This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
DTE-MVSNet96.74 1797.43 594.67 12199.13 684.68 19196.51 3697.94 8398.14 398.67 1298.32 3295.04 4599.69 293.27 7099.82 899.62 10
PS-CasMVS96.69 2097.43 594.49 13599.13 684.09 20196.61 3297.97 7797.91 598.64 1398.13 3895.24 3699.65 393.39 6499.84 399.72 2
PEN-MVS96.69 2097.39 894.61 12499.16 484.50 19296.54 3598.05 6298.06 498.64 1398.25 3495.01 4899.65 392.95 8399.83 699.68 4
K. test v393.37 14593.27 15593.66 16398.05 8682.62 21894.35 12786.62 34196.05 2897.51 4498.85 1276.59 30199.65 393.21 7298.20 20698.73 96
RRT_MVS95.41 7695.20 8996.05 5998.86 2188.92 10897.49 1094.48 26093.12 7297.94 2898.54 2181.19 26699.63 695.48 1499.69 1599.60 12
CP-MVSNet96.19 4796.80 1794.38 14198.99 1483.82 20496.31 5197.53 11497.60 798.34 1997.52 6891.98 11899.63 693.08 7999.81 999.70 3
WR-MVS_H96.60 2597.05 1495.24 10099.02 1286.44 16496.78 2898.08 5597.42 998.48 1697.86 5491.76 12299.63 694.23 3099.84 399.66 6
PS-MVSNAJss96.01 5296.04 5395.89 7298.82 2588.51 12195.57 8297.88 8488.72 18498.81 698.86 1090.77 14799.60 995.43 1699.53 3999.57 14
MVSFormer92.18 18792.23 17692.04 22094.74 26880.06 24897.15 1597.37 12388.98 17888.83 30492.79 28977.02 29599.60 996.41 496.75 27096.46 250
test_djsdf96.62 2396.49 2897.01 3398.55 4391.77 6197.15 1597.37 12388.98 17898.26 2298.86 1093.35 8299.60 996.41 499.45 4899.66 6
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21195.93 6694.84 24994.86 3998.49 1598.74 1681.45 26099.60 994.69 2099.39 6099.15 42
mvs_tets96.83 996.71 1997.17 2798.83 2492.51 5096.58 3497.61 10787.57 21198.80 798.90 996.50 1099.59 1396.15 799.47 4499.40 24
UA-Net97.35 497.24 1197.69 598.22 7593.87 3198.42 698.19 3696.95 1495.46 13599.23 493.45 7799.57 1495.34 1799.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 7194.15 5198.93 399.07 588.07 18699.57 1495.86 1099.69 1599.46 20
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18397.44 1194.03 26994.22 5094.94 16096.19 16182.07 25599.57 1487.28 21698.89 12598.65 103
jajsoiax96.59 2796.42 2997.12 2998.76 2992.49 5196.44 4297.42 12186.96 22098.71 1098.72 1795.36 3199.56 1795.92 999.45 4899.32 30
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7696.33 4899.20 293.99 5391.03 26993.73 26793.52 7699.55 1891.81 11199.45 4897.58 200
v7n96.82 1097.31 1095.33 9598.54 4686.81 15396.83 2498.07 5896.59 2098.46 1798.43 3092.91 9699.52 1996.25 699.76 1199.65 8
DPE-MVScopyleft95.89 5595.88 5995.92 6997.93 9889.83 9193.46 15598.30 2492.37 8497.75 3296.95 10595.14 3999.51 2091.74 11399.28 7998.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS95.34 7994.63 11297.48 1498.67 3194.05 2396.41 4498.18 3791.26 12595.12 15195.15 21086.60 21699.50 2193.43 6296.81 26798.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
anonymousdsp96.74 1796.42 2997.68 798.00 9394.03 2696.97 2197.61 10787.68 20898.45 1898.77 1594.20 6799.50 2196.70 399.40 5999.53 15
APDe-MVS96.46 3296.64 2295.93 6797.68 11489.38 10296.90 2398.41 1792.52 8197.43 4897.92 5095.11 4299.50 2194.45 2399.30 7198.92 72
CS-MVS95.77 6095.58 7196.37 5396.84 15891.72 6396.73 2999.06 594.23 4992.48 23794.79 23193.56 7399.49 2493.47 5699.05 10697.89 175
DROMVSNet95.44 7395.62 7094.89 11196.93 15387.69 13596.48 3999.14 493.93 5792.77 22994.52 23993.95 7099.49 2493.62 4799.22 8897.51 206
test_low_dy_conf_00195.63 6595.32 8396.56 4798.74 3090.71 7797.10 2095.47 23490.00 15397.57 3998.49 2684.73 23299.46 2696.06 899.69 1599.50 17
bld_raw_conf00596.23 4596.22 4096.26 5498.53 4989.90 8897.25 1398.12 4792.70 7698.10 2598.51 2587.19 20299.46 2695.86 1099.69 1599.42 21
PGM-MVS96.32 4195.94 5697.43 1998.59 3993.84 3395.33 8998.30 2491.40 12295.76 12296.87 11295.26 3599.45 2892.77 8599.21 8999.00 56
mvsmamba95.61 6795.40 7896.22 5598.44 6189.86 9097.14 1797.45 12091.25 12797.49 4598.14 3683.49 23799.45 2895.52 1399.66 2499.36 27
ZNCC-MVS96.42 3696.20 4297.07 3098.80 2892.79 4896.08 6098.16 4491.74 11395.34 14096.36 15195.68 1999.44 3094.41 2599.28 7998.97 64
test_part194.39 11694.55 11493.92 15596.14 20882.86 21695.54 8398.09 5495.36 3698.27 2098.36 3175.91 30399.44 3093.41 6399.84 399.47 19
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8998.26 7287.69 13593.75 14797.86 8595.96 3097.48 4697.14 9595.33 3299.44 3090.79 13399.76 1199.38 25
Vis-MVSNetpermissive95.50 7195.48 7495.56 8898.11 8189.40 10195.35 8798.22 3392.36 8594.11 18198.07 4292.02 11599.44 3093.38 6597.67 24097.85 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8694.69 1196.13 5898.07 5895.17 3796.82 7396.73 12595.09 4499.43 3492.99 8298.71 14998.50 120
test117296.79 1596.52 2797.60 998.03 9094.87 1096.07 6198.06 6195.76 3296.89 6996.85 11394.85 5299.42 3593.35 6698.81 14098.53 118
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10194.85 5299.42 3593.49 5298.84 13298.00 159
GST-MVS96.24 4495.99 5597.00 3498.65 3292.71 4995.69 7798.01 7192.08 9495.74 12496.28 15695.22 3799.42 3593.17 7499.06 10398.88 77
MP-MVScopyleft96.14 4895.68 6897.51 1398.81 2694.06 2196.10 5997.78 9792.73 7593.48 20396.72 12694.23 6699.42 3591.99 10499.29 7499.05 53
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.46 3296.05 5297.69 598.62 3494.65 1396.45 4097.74 9892.59 8095.47 13396.68 12894.50 6199.42 3593.10 7799.26 8298.99 58
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1392.35 8695.95 11396.41 14396.71 899.42 3593.99 3799.36 6299.13 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS96.44 3596.08 5097.54 1198.29 6994.62 1496.80 2698.08 5592.67 7995.08 15596.39 14894.77 5499.42 3593.17 7499.44 5198.58 116
MSC_two_6792asdad95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
No_MVS95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
region2R96.41 3796.09 4997.38 2398.62 3493.81 3696.32 5097.96 7892.26 8995.28 14496.57 13595.02 4799.41 4293.63 4699.11 10198.94 67
ACMMPR96.46 3296.14 4697.41 2198.60 3793.82 3496.30 5397.96 7892.35 8695.57 13196.61 13394.93 5199.41 4293.78 4299.15 9799.00 56
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11792.26 19697.84 8994.91 3896.80 7495.78 18290.42 15699.41 4291.60 11899.58 3599.29 32
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11792.58 17797.81 9293.99 5396.80 7495.90 17290.10 16599.41 4291.60 11899.58 3599.26 33
RPMNet90.31 22890.14 22990.81 26191.01 33878.93 27292.52 17998.12 4791.91 9989.10 30196.89 11168.84 32399.41 4290.17 15492.70 34194.08 315
testtj94.81 10294.42 11896.01 6097.23 13790.51 8194.77 11197.85 8891.29 12494.92 16295.66 18691.71 12399.40 4988.07 20298.25 19898.11 150
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2188.69 11396.37 4596.81 17285.23 24394.75 16897.12 9691.85 12099.40 4993.45 5898.33 18898.62 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FC-MVSNet-test95.32 8095.88 5993.62 16498.49 5981.77 22595.90 6898.32 2193.93 5797.53 4397.56 6588.48 17999.40 4992.91 8499.83 699.68 4
abl_697.31 597.12 1397.86 398.54 4695.32 796.61 3298.35 2095.81 3197.55 4097.44 7396.51 999.40 4994.06 3499.23 8698.85 81
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3693.88 3096.95 2298.18 3792.26 8996.33 9196.84 11695.10 4399.40 4993.47 5699.33 6699.02 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZD-MVS97.23 13790.32 8297.54 11284.40 25794.78 16795.79 17992.76 10199.39 5488.72 19098.40 176
tttt051789.81 24388.90 24992.55 20497.00 14879.73 25995.03 10383.65 36389.88 15795.30 14294.79 23153.64 37299.39 5491.99 10498.79 14398.54 117
MP-MVS-pluss96.08 5095.92 5896.57 4699.06 1091.21 6793.25 15998.32 2187.89 20296.86 7197.38 7695.55 2499.39 5495.47 1599.47 4499.11 47
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
XVS96.49 2996.18 4397.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17896.49 13794.56 5999.39 5493.57 4899.05 10698.93 68
X-MVStestdata90.70 21388.45 25597.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17826.89 37794.56 5999.39 5493.57 4899.05 10698.93 68
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9793.82 3496.31 5198.25 2895.51 3596.99 6697.05 10095.63 2199.39 5493.31 6798.88 12798.75 91
DVP-MVS++95.93 5496.34 3494.70 12096.54 17686.66 15898.45 498.22 3393.26 7097.54 4197.36 8093.12 8999.38 6093.88 3898.68 15398.04 154
test_0728_SECOND94.88 11298.55 4386.72 15595.20 9598.22 3399.38 6093.44 6099.31 6998.53 118
zzz-MVS96.47 3196.14 4697.47 1598.95 1694.05 2393.69 14997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3391.96 5795.70 7598.01 7193.34 6996.64 8096.57 13594.99 4999.36 6493.48 5599.34 6498.82 83
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS96.00 5396.41 3294.76 11798.51 5186.97 14995.21 9398.10 5191.95 9697.63 3597.25 8896.48 1199.35 6593.29 6899.29 7497.95 167
test_241102_TWO98.10 5191.95 9697.54 4197.25 8895.37 2899.35 6593.29 6899.25 8398.49 121
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16397.13 1894.31 26496.24 2496.28 9896.36 15182.88 24499.35 6588.19 19799.52 4298.96 65
DVP-MVScopyleft95.82 5996.18 4394.72 11998.51 5186.69 15695.20 9597.00 15591.85 10297.40 5197.35 8395.58 2299.34 6893.44 6099.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7097.40 5197.35 8394.69 5599.34 6893.88 3899.42 5398.89 75
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 10992.91 16798.07 5893.46 6796.31 9395.97 17190.14 16199.34 6892.11 9999.64 2799.16 41
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4193.11 7396.48 8597.36 8096.92 699.34 6894.31 2799.38 6198.92 72
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7394.59 11797.81 9289.22 17495.46 13596.17 16493.42 8099.34 6889.30 17298.87 13097.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14395.08 10097.37 12393.92 5997.65 3495.90 17290.10 16599.33 7390.11 15699.66 2499.26 33
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12892.04 20498.42 1687.63 20996.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
SF-MVS95.88 5795.88 5995.87 7398.12 8089.65 9495.58 8198.56 1291.84 10596.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
SMA-MVScopyleft95.77 6095.54 7296.47 5298.27 7191.19 6895.09 9997.79 9686.48 22397.42 5097.51 7094.47 6399.29 7693.55 5099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FIs94.90 9595.35 7993.55 16798.28 7081.76 22695.33 8998.14 4593.05 7497.07 5997.18 9387.65 19399.29 7691.72 11499.69 1599.61 11
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6792.13 5495.33 8998.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
LGP-MVS_train96.84 4098.36 6792.13 5498.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
HFP-MVS96.39 3996.17 4597.04 3198.51 5193.37 4096.30 5397.98 7492.35 8695.63 12896.47 13895.37 2899.27 8093.78 4299.14 9898.48 122
#test#95.89 5595.51 7397.04 3198.51 5193.37 4095.14 9897.98 7489.34 16995.63 12896.47 13895.37 2899.27 8091.99 10499.14 9898.48 122
thisisatest053088.69 26487.52 27492.20 21196.33 19279.36 26592.81 16984.01 36286.44 22493.67 19792.68 29353.62 37399.25 8289.65 16898.45 17498.00 159
ACMMP_NAP96.21 4696.12 4896.49 5198.90 1891.42 6594.57 12098.03 6790.42 14796.37 8897.35 8395.68 1999.25 8294.44 2499.34 6498.80 86
HPM-MVS++copyleft95.02 9094.39 11996.91 3897.88 9993.58 3894.09 13796.99 15791.05 13192.40 24295.22 20991.03 14599.25 8292.11 9998.69 15297.90 173
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8692.72 17298.02 6984.73 25593.65 19895.54 19591.68 12499.22 8588.78 18798.49 17398.26 137
dcpmvs_293.96 13495.01 9590.82 26097.60 11974.04 33193.68 15198.85 789.80 15997.82 3097.01 10491.14 14399.21 8690.56 13798.59 16099.19 39
CANet92.38 18191.99 18293.52 17193.82 29583.46 20791.14 23597.00 15589.81 15886.47 33394.04 25487.90 19199.21 8689.50 17098.27 19597.90 173
LS3D96.11 4995.83 6396.95 3794.75 26794.20 1997.34 1297.98 7497.31 1195.32 14196.77 11893.08 9199.20 8891.79 11298.16 20897.44 211
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 16992.33 19297.84 8991.70 11692.81 22786.17 36292.22 11199.19 8988.03 20397.73 23495.66 283
EIA-MVS92.35 18292.03 18093.30 17795.81 23183.97 20292.80 17098.17 4187.71 20689.79 29487.56 35291.17 14299.18 9087.97 20497.27 25296.77 239
3Dnovator+92.74 295.86 5895.77 6696.13 5796.81 16290.79 7596.30 5397.82 9196.13 2594.74 16997.23 9091.33 13299.16 9193.25 7198.30 19398.46 124
Anonymous2023121196.60 2597.13 1295.00 10897.46 12986.35 16897.11 1998.24 3197.58 898.72 898.97 793.15 8899.15 9293.18 7399.74 1399.50 17
v1094.68 10795.27 8692.90 19096.57 17380.15 24494.65 11697.57 11090.68 14097.43 4898.00 4688.18 18399.15 9294.84 1999.55 3899.41 23
h-mvs3392.89 16391.99 18295.58 8696.97 14990.55 7993.94 14394.01 27289.23 17293.95 18996.19 16176.88 29899.14 9491.02 12795.71 29097.04 228
HyFIR lowres test87.19 29285.51 30292.24 21097.12 14680.51 24185.03 34396.06 20966.11 36391.66 25992.98 28570.12 32199.14 9475.29 33195.23 30397.07 225
iter_conf_final90.23 23089.32 23992.95 18694.65 27581.46 23194.32 13095.40 23985.61 23992.84 22695.37 20654.58 36999.13 9692.16 9898.94 12398.25 138
ETH3 D test640091.91 19191.25 20293.89 15796.59 17184.41 19392.10 20197.72 10078.52 30991.82 25793.78 26688.70 17799.13 9683.61 26098.39 17998.14 146
iter_conf0588.94 25888.09 26691.50 23592.74 31476.97 30392.80 17095.92 21382.82 27393.65 19895.37 20649.41 37699.13 9690.82 13299.28 7998.40 128
test_040295.73 6296.22 4094.26 14398.19 7785.77 18093.24 16097.24 14096.88 1697.69 3397.77 5794.12 6899.13 9691.54 12199.29 7497.88 176
GeoE94.55 11194.68 10994.15 14597.23 13785.11 18794.14 13597.34 13188.71 18595.26 14595.50 19694.65 5799.12 10090.94 13098.40 17698.23 139
ACMP88.15 1395.71 6395.43 7796.54 4898.17 7891.73 6294.24 13198.08 5589.46 16596.61 8296.47 13895.85 1799.12 10090.45 13999.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
lessismore_v093.87 15998.05 8683.77 20580.32 37297.13 5797.91 5177.49 28999.11 10292.62 9198.08 21798.74 94
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9294.05 13898.37 1888.09 19895.06 15695.85 17492.58 10499.10 10390.33 14698.99 11498.62 111
9.1494.81 10197.49 12694.11 13698.37 1887.56 21295.38 13796.03 16894.66 5699.08 10490.70 13598.97 119
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 13997.70 897.54 11298.16 298.94 299.33 297.84 499.08 10490.73 13499.73 1499.59 13
v894.65 10895.29 8492.74 19596.65 16679.77 25894.59 11797.17 14491.86 10197.47 4797.93 4988.16 18499.08 10494.32 2699.47 4499.38 25
PVSNet_Blended_VisFu91.63 19691.20 20392.94 18897.73 10983.95 20392.14 20097.46 11878.85 30892.35 24594.98 22084.16 23599.08 10486.36 23296.77 26995.79 277
v124093.29 14793.71 13992.06 21996.01 22077.89 28891.81 22297.37 12385.12 24796.69 7896.40 14486.67 21499.07 10894.51 2298.76 14699.22 36
v192192093.26 15093.61 14392.19 21296.04 21978.31 28291.88 21597.24 14085.17 24596.19 10596.19 16186.76 21399.05 10994.18 3298.84 13299.22 36
MIMVSNet195.52 7095.45 7595.72 8199.14 589.02 10696.23 5696.87 16893.73 6197.87 2998.49 2690.73 15199.05 10986.43 23199.60 2999.10 50
DeepC-MVS91.39 495.43 7495.33 8195.71 8297.67 11590.17 8393.86 14598.02 6987.35 21396.22 10197.99 4794.48 6299.05 10992.73 8899.68 2197.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419293.20 15593.54 14792.16 21696.05 21578.26 28391.95 20897.14 14684.98 25195.96 11296.11 16587.08 20599.04 11293.79 4198.84 13299.17 40
Regformer-294.86 9894.55 11495.77 7892.83 31089.98 8591.87 21696.40 19494.38 4796.19 10595.04 21792.47 10999.04 11293.49 5298.31 19198.28 135
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25090.14 26495.68 22193.70 6296.62 8195.39 20487.21 20199.04 11287.50 21199.64 2799.33 29
v119293.49 14293.78 13692.62 20196.16 20679.62 26091.83 22197.22 14286.07 23096.10 10996.38 14987.22 20099.02 11594.14 3398.88 12799.22 36
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21393.79 14699.19 392.00 9598.84 598.04 4493.64 7299.02 11581.28 28298.54 16696.96 231
Regformer-494.90 9594.67 11095.59 8592.78 31289.02 10692.39 18895.91 21494.50 4396.41 8695.56 19392.10 11499.01 11794.23 3098.14 21098.74 94
ACMM88.83 996.30 4396.07 5196.97 3598.39 6392.95 4694.74 11298.03 6790.82 13697.15 5696.85 11396.25 1599.00 11893.10 7799.33 6698.95 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS94.74 10494.12 13096.60 4598.15 7993.01 4495.84 7097.66 10289.21 17593.28 21095.46 19888.89 17698.98 11989.80 16398.82 13897.80 185
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
test193.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19495.99 6296.56 18692.38 8397.03 6398.53 2290.12 16298.98 11988.78 18799.16 9698.65 103
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 26896.67 394.00 14095.41 23689.94 15491.93 25692.13 30490.12 16298.97 12387.68 20997.48 24697.67 195
v114493.50 14193.81 13492.57 20396.28 19679.61 26191.86 22096.96 15886.95 22195.91 11796.32 15387.65 19398.96 12493.51 5198.88 12799.13 44
NCCC94.08 13193.54 14795.70 8396.49 18189.90 8892.39 18896.91 16490.64 14192.33 24894.60 23690.58 15598.96 12490.21 15397.70 23898.23 139
test_241102_ONE98.51 5186.97 14998.10 5191.85 10297.63 3597.03 10196.48 1198.95 126
nrg03096.32 4196.55 2695.62 8497.83 10188.55 11995.77 7398.29 2792.68 7798.03 2797.91 5195.13 4098.95 12693.85 4099.49 4399.36 27
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12694.56 12197.81 9291.74 11393.31 20795.59 18886.93 20898.95 12689.26 17698.51 17098.60 114
plane_prior597.81 9298.95 12689.26 17698.51 17098.60 114
IterMVS-SCA-FT91.65 19591.55 19291.94 22193.89 29279.22 26987.56 31293.51 27891.53 12095.37 13896.62 13278.65 28098.90 13091.89 10994.95 30797.70 192
v2v48293.29 14793.63 14292.29 20896.35 19078.82 27691.77 22496.28 19888.45 19095.70 12796.26 15886.02 22298.90 13093.02 8098.81 14099.14 43
EPNet89.80 24488.25 26094.45 13883.91 37886.18 17393.87 14487.07 33991.16 13080.64 36694.72 23378.83 27798.89 13285.17 24198.89 12598.28 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs-test193.07 15891.80 18896.89 3994.74 26895.83 692.17 19995.41 23689.94 15489.85 29190.59 32990.12 16298.88 13387.68 20995.66 29195.97 268
TEST996.45 18389.46 9790.60 24896.92 16279.09 30490.49 27794.39 24391.31 13398.88 133
train_agg92.71 17191.83 18695.35 9396.45 18389.46 9790.60 24896.92 16279.37 29990.49 27794.39 24391.20 13998.88 13388.66 19198.43 17597.72 191
CDPH-MVS92.67 17291.83 18695.18 10396.94 15188.46 12290.70 24697.07 15277.38 31592.34 24795.08 21592.67 10398.88 13385.74 23798.57 16298.20 143
QAPM92.88 16492.77 16393.22 17995.82 22983.31 20896.45 4097.35 13083.91 26093.75 19496.77 11889.25 17498.88 13384.56 25497.02 25997.49 207
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4386.28 17095.80 7295.55 23088.41 19297.09 5898.08 4178.69 27998.87 13895.63 1299.53 3998.81 84
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31685.87 17892.42 18694.69 25693.67 6696.13 10795.84 17791.20 13998.86 13993.78 4298.23 20199.03 54
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31585.98 17692.44 18494.69 25693.70 6296.12 10895.81 17891.24 13698.86 13993.76 4598.22 20398.98 63
V4293.43 14493.58 14492.97 18495.34 25381.22 23492.67 17596.49 19187.25 21596.20 10396.37 15087.32 19998.85 14192.39 9798.21 20498.85 81
Fast-Effi-MVS+91.28 20590.86 21092.53 20595.45 24882.53 21989.25 29096.52 19085.00 25089.91 28988.55 34892.94 9498.84 14284.72 25395.44 29796.22 259
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 897.41 1097.28 5398.46 2894.62 5898.84 14294.64 2199.53 3998.99 58
xiu_mvs_v1_base_debu91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base_debi91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
test_896.37 18589.14 10490.51 25196.89 16579.37 29990.42 27994.36 24591.20 13998.82 144
PS-MVSNAJ88.86 26088.99 24688.48 30894.88 26074.71 32186.69 33195.60 22380.88 28687.83 32387.37 35590.77 14798.82 14482.52 27194.37 31991.93 349
test111190.39 22290.61 21789.74 28698.04 8971.50 34795.59 7979.72 37489.41 16695.94 11598.14 3670.79 31998.81 14988.52 19399.32 6898.90 74
xiu_mvs_v2_base89.00 25589.19 24188.46 30994.86 26274.63 32386.97 32295.60 22380.88 28687.83 32388.62 34791.04 14498.81 14982.51 27294.38 31891.93 349
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22394.18 13395.53 23288.63 18696.05 11097.37 7781.31 26298.81 14987.38 21598.67 15598.06 151
Anonymous2024052995.50 7195.83 6394.50 13397.33 13585.93 17795.19 9796.77 17696.64 1997.61 3898.05 4393.23 8598.79 15288.60 19299.04 11298.78 88
Regformer-194.55 11194.33 12295.19 10292.83 31088.54 12091.87 21695.84 21893.99 5395.95 11395.04 21792.00 11698.79 15293.14 7698.31 19198.23 139
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17593.97 14293.28 28194.49 4496.24 9997.78 5587.99 18998.79 15288.92 18399.14 9898.34 130
test1294.43 13995.95 22386.75 15496.24 20189.76 29589.79 17098.79 15297.95 22697.75 190
agg_prior192.60 17491.76 18995.10 10696.20 20288.89 11090.37 25596.88 16679.67 29690.21 28294.41 24191.30 13498.78 15688.46 19498.37 18697.64 197
agg_prior96.20 20288.89 11096.88 16690.21 28298.78 156
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13295.01 10497.57 11092.68 7796.20 10393.44 27491.92 11998.78 15689.11 18099.24 8596.92 232
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6494.82 10997.86 8587.86 20393.04 22194.16 25191.58 12698.78 15690.27 14998.96 12197.41 212
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 6494.31 1796.79 2798.32 2196.69 1796.86 7197.56 6595.48 2598.77 16090.11 15699.44 5198.31 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet94.03 13294.27 12693.31 17698.87 2082.36 22095.51 8591.78 31197.19 1296.32 9298.60 1884.24 23498.75 16187.09 21998.83 13798.81 84
114514_t90.51 21789.80 23392.63 20098.00 9382.24 22193.40 15797.29 13665.84 36489.40 29994.80 23086.99 20698.75 16183.88 25998.61 15896.89 234
FMVSNet390.78 21190.32 22492.16 21693.03 30779.92 25392.54 17894.95 24686.17 22995.10 15296.01 16969.97 32298.75 16186.74 22298.38 18197.82 183
IterMVS-LS93.78 13794.28 12492.27 20996.27 19779.21 27091.87 21696.78 17491.77 11196.57 8497.07 9887.15 20398.74 16491.99 10499.03 11398.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS92.05 18992.16 17791.72 22794.44 27980.13 24687.62 30997.25 13987.34 21492.22 25093.18 28189.54 17298.73 16589.67 16798.20 20696.30 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest051584.72 30982.99 31789.90 28492.96 30875.33 32084.36 35083.42 36477.37 31688.27 31886.65 35753.94 37198.72 16682.56 27097.40 24995.67 282
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13793.45 15695.76 21991.58 11895.25 14792.42 30081.96 25798.72 16691.61 11797.87 23097.33 220
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18191.36 23297.13 14880.33 29092.91 22594.24 24791.23 13798.72 16689.99 16097.93 22797.86 178
XVG-ACMP-BASELINE95.68 6495.34 8096.69 4398.40 6293.04 4394.54 12498.05 6290.45 14696.31 9396.76 12092.91 9698.72 16691.19 12599.42 5398.32 131
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10391.81 22296.80 17389.66 16193.90 19295.44 20092.80 10098.72 16692.74 8798.52 16898.32 131
DP-MVS95.62 6695.84 6294.97 10997.16 14288.62 11694.54 12497.64 10396.94 1596.58 8397.32 8693.07 9298.72 16690.45 13998.84 13297.57 201
原ACMM192.87 19196.91 15484.22 19797.01 15476.84 32089.64 29794.46 24088.00 18898.70 17281.53 28098.01 22395.70 281
ANet_high94.83 10196.28 3790.47 26896.65 16673.16 33694.33 12898.74 1096.39 2398.09 2698.93 893.37 8198.70 17290.38 14299.68 2199.53 15
hse-mvs292.24 18691.20 20395.38 9296.16 20690.65 7892.52 17992.01 30989.23 17293.95 18992.99 28476.88 29898.69 17491.02 12796.03 28296.81 237
AUN-MVS90.05 23888.30 25895.32 9896.09 21290.52 8092.42 18692.05 30882.08 28188.45 31592.86 28665.76 33898.69 17488.91 18496.07 28196.75 241
test250685.42 30484.57 30687.96 31497.81 10266.53 36596.14 5756.35 38289.04 17693.55 20298.10 3942.88 38498.68 17688.09 20199.18 9398.67 101
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14190.21 26097.36 12889.33 17090.77 27294.81 22790.41 15798.68 17688.21 19598.55 16397.93 169
test_prior94.61 12495.95 22387.23 14197.36 12898.68 17697.93 169
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 20994.00 14097.53 11491.36 12389.35 30090.65 32894.01 6998.66 17987.40 21495.30 30196.88 235
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 14895.59 7998.24 3191.56 11995.21 15092.04 30694.95 5098.66 17991.45 12297.57 24497.20 224
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14696.63 3197.28 13891.82 10894.34 18097.41 7490.60 15498.65 18192.47 9498.11 21497.70 192
ECVR-MVScopyleft90.12 23390.16 22590.00 28397.81 10272.68 34195.76 7478.54 37589.04 17695.36 13998.10 3970.51 32098.64 18287.10 21899.18 9398.67 101
ACMH+88.43 1196.48 3096.82 1695.47 9098.54 4689.06 10595.65 7898.61 1196.10 2698.16 2397.52 6896.90 798.62 18390.30 14799.60 2998.72 97
HQP4-MVS88.81 30698.61 18498.15 145
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2693.86 3299.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 18496.85 299.77 1099.31 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Fast-Effi-MVS+-dtu92.77 16992.16 17794.58 13194.66 27488.25 12492.05 20396.65 18289.62 16290.08 28591.23 31692.56 10598.60 18686.30 23396.27 27996.90 233
HQP-MVS92.09 18891.49 19693.88 15896.36 18784.89 18991.37 22997.31 13387.16 21688.81 30693.40 27584.76 23098.60 18686.55 22897.73 23498.14 146
无先验89.94 27095.75 22070.81 34998.59 18881.17 28594.81 300
112190.26 22989.23 24093.34 17497.15 14487.40 13891.94 21094.39 26267.88 35991.02 27094.91 22386.91 21098.59 18881.17 28597.71 23794.02 320
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13193.36 15897.14 14685.53 24093.90 19295.45 19991.30 13498.59 18889.51 16998.62 15797.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet_DTU89.85 24289.17 24291.87 22292.20 32180.02 25190.79 24395.87 21686.02 23182.53 35791.77 30980.01 27198.57 19185.66 23897.70 23897.01 229
OPM-MVS95.61 6795.45 7596.08 5898.49 5991.00 7092.65 17697.33 13290.05 15296.77 7696.85 11395.04 4598.56 19292.77 8599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jason89.17 25188.32 25791.70 22995.73 23580.07 24788.10 30693.22 28271.98 34290.09 28492.79 28978.53 28398.56 19287.43 21397.06 25796.46 250
jason: jason.
F-COLMAP92.28 18491.06 20795.95 6497.52 12491.90 5893.53 15397.18 14383.98 25988.70 31294.04 25488.41 18198.55 19480.17 29395.99 28497.39 216
lupinMVS88.34 26987.31 27691.45 23694.74 26880.06 24887.23 31792.27 30171.10 34688.83 30491.15 31777.02 29598.53 19586.67 22596.75 27095.76 278
PCF-MVS84.52 1789.12 25287.71 27193.34 17496.06 21485.84 17986.58 33697.31 13368.46 35793.61 20093.89 26287.51 19698.52 19667.85 36298.11 21495.66 283
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet95.14 8895.67 6993.58 16697.76 10583.15 21294.58 11997.58 10993.39 6897.05 6298.04 4493.25 8498.51 19789.75 16699.59 3199.08 51
EI-MVSNet92.99 16093.26 15692.19 21292.12 32379.21 27092.32 19394.67 25891.77 11195.24 14895.85 17487.14 20498.49 19891.99 10498.26 19698.86 78
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23292.35 19198.05 6291.53 12095.75 12396.80 11793.35 8298.49 19891.01 12998.32 19098.64 107
MVSTER89.32 24988.75 25191.03 25090.10 34976.62 30790.85 24194.67 25882.27 27995.24 14895.79 17961.09 35998.49 19890.49 13898.26 19697.97 166
UGNet93.08 15692.50 17394.79 11693.87 29387.99 13095.07 10194.26 26690.64 14187.33 32997.67 6086.89 21198.49 19888.10 20098.71 14997.91 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Regformer-394.28 12294.23 12894.46 13792.78 31286.28 17092.39 18894.70 25593.69 6595.97 11195.56 19391.34 13198.48 20293.45 5898.14 21098.62 111
baseline94.26 12594.80 10292.64 19896.08 21380.99 23793.69 14998.04 6690.80 13794.89 16396.32 15393.19 8698.48 20291.68 11698.51 17098.43 126
LFMVS91.33 20391.16 20691.82 22396.27 19779.36 26595.01 10485.61 35196.04 2994.82 16597.06 9972.03 31698.46 20484.96 24998.70 15197.65 196
thres600view787.66 27987.10 28389.36 29396.05 21573.17 33592.72 17285.31 35491.89 10093.29 20990.97 32063.42 35098.39 20573.23 34196.99 26496.51 245
IB-MVS77.21 1983.11 31681.05 32789.29 29491.15 33675.85 31585.66 33986.00 34679.70 29582.02 36286.61 35848.26 37798.39 20577.84 31392.22 34693.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v14892.87 16593.29 15291.62 23196.25 20077.72 29191.28 23395.05 24389.69 16095.93 11696.04 16787.34 19898.38 20790.05 15997.99 22498.78 88
CDS-MVSNet89.55 24588.22 26393.53 17095.37 25286.49 16189.26 28893.59 27679.76 29491.15 26792.31 30177.12 29498.38 20777.51 31797.92 22895.71 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 18592.13 17992.68 19794.53 27884.10 20095.70 7597.03 15382.44 27891.14 26896.42 14288.47 18098.38 20785.95 23697.47 24795.55 287
MVS_Test92.57 17793.29 15290.40 27193.53 29775.85 31592.52 17996.96 15888.73 18392.35 24596.70 12790.77 14798.37 21092.53 9395.49 29596.99 230
KD-MVS_self_test94.10 13094.73 10692.19 21297.66 11679.49 26394.86 10897.12 14989.59 16496.87 7097.65 6190.40 15998.34 21189.08 18199.35 6398.75 91
VPNet93.08 15693.76 13791.03 25098.60 3775.83 31791.51 22795.62 22291.84 10595.74 12497.10 9789.31 17398.32 21285.07 24899.06 10398.93 68
AdaColmapbinary91.63 19691.36 19992.47 20795.56 24586.36 16792.24 19896.27 19988.88 18289.90 29092.69 29291.65 12598.32 21277.38 31997.64 24192.72 343
thres100view90087.35 28786.89 28588.72 30396.14 20873.09 33793.00 16485.31 35492.13 9393.26 21290.96 32163.42 35098.28 21471.27 35396.54 27494.79 301
tfpn200view987.05 29586.52 29388.67 30495.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27494.79 301
thres40087.20 29186.52 29389.24 29795.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27496.51 245
Vis-MVSNet (Re-imp)90.42 22090.16 22591.20 24697.66 11677.32 29694.33 12887.66 33591.20 12892.99 22295.13 21275.40 30598.28 21477.86 31299.19 9197.99 162
eth_miper_zixun_eth90.72 21290.61 21791.05 24992.04 32576.84 30586.91 32496.67 18185.21 24494.41 17693.92 26079.53 27498.26 21889.76 16597.02 25998.06 151
PLCcopyleft85.34 1590.40 22188.92 24794.85 11396.53 17990.02 8491.58 22696.48 19280.16 29186.14 33592.18 30285.73 22498.25 21976.87 32294.61 31696.30 256
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
新几何193.17 18097.16 14287.29 14094.43 26167.95 35891.29 26394.94 22286.97 20798.23 22081.06 28797.75 23393.98 321
pmmvs696.80 1397.36 995.15 10499.12 887.82 13496.68 3097.86 8596.10 2698.14 2499.28 397.94 398.21 22191.38 12499.69 1599.42 21
1112_ss88.42 26787.41 27591.45 23696.69 16580.99 23789.72 27696.72 17973.37 33587.00 33190.69 32677.38 29198.20 22281.38 28193.72 32895.15 293
DP-MVS Recon92.31 18391.88 18593.60 16597.18 14186.87 15291.10 23797.37 12384.92 25292.08 25394.08 25388.59 17898.20 22283.50 26198.14 21095.73 279
TAMVS90.16 23289.05 24493.49 17296.49 18186.37 16690.34 25792.55 29780.84 28892.99 22294.57 23881.94 25898.20 22273.51 33998.21 20495.90 273
ET-MVSNet_ETH3D86.15 30084.27 30991.79 22493.04 30681.28 23387.17 32086.14 34479.57 29783.65 34988.66 34657.10 36498.18 22587.74 20895.40 29895.90 273
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 23994.55 12395.41 23693.70 6296.67 7997.72 5891.40 13098.18 22587.45 21299.18 9398.36 129
c3_l91.32 20491.42 19791.00 25392.29 31876.79 30687.52 31596.42 19385.76 23694.72 17193.89 26282.73 24798.16 22790.93 13198.55 16398.04 154
PVSNet_BlendedMVS90.35 22589.96 23091.54 23494.81 26478.80 27890.14 26496.93 16079.43 29888.68 31395.06 21686.27 21998.15 22880.27 29098.04 22097.68 194
PVSNet_Blended88.74 26388.16 26590.46 27094.81 26478.80 27886.64 33296.93 16074.67 32888.68 31389.18 34486.27 21998.15 22880.27 29096.00 28394.44 310
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6692.27 19597.40 12287.10 21994.56 17395.42 20193.74 7198.11 23086.62 22698.85 13198.06 151
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4589.48 28197.46 11885.14 24696.23 10095.42 20193.19 8698.08 23190.37 14398.76 14697.38 218
OPU-MVS95.15 10496.84 15889.43 9995.21 9395.66 18693.12 8998.06 23286.28 23498.61 15897.95 167
miper_ehance_all_eth90.48 21890.42 22290.69 26391.62 33276.57 30886.83 32796.18 20683.38 26394.06 18592.66 29482.20 25398.04 23389.79 16497.02 25997.45 209
test_yl90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
DCV-MVSNet90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
testdata298.03 23480.24 292
EGC-MVSNET80.97 33375.73 34496.67 4498.85 2394.55 1596.83 2496.60 1842.44 3795.32 38098.25 3492.24 11098.02 23791.85 11099.21 8997.45 209
DPM-MVS89.35 24888.40 25692.18 21596.13 21184.20 19886.96 32396.15 20875.40 32687.36 32891.55 31483.30 24098.01 23882.17 27696.62 27394.32 313
thres20085.85 30285.18 30387.88 31794.44 27972.52 34289.08 29286.21 34388.57 18991.44 26188.40 34964.22 34598.00 23968.35 36195.88 28893.12 336
ACMH88.36 1296.59 2797.43 594.07 14898.56 4085.33 18596.33 4898.30 2494.66 4098.72 898.30 3397.51 598.00 23994.87 1899.59 3198.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DIV-MVS_self_test90.65 21590.56 21990.91 25791.85 32776.99 30186.75 32995.36 24085.52 24294.06 18594.89 22477.37 29297.99 24190.28 14898.97 11997.76 188
cl____90.65 21590.56 21990.91 25791.85 32776.98 30286.75 32995.36 24085.53 24094.06 18594.89 22477.36 29397.98 24290.27 14998.98 11597.76 188
Anonymous2024052192.86 16693.57 14590.74 26296.57 17375.50 31994.15 13495.60 22389.38 16795.90 11897.90 5380.39 27097.96 24392.60 9299.68 2198.75 91
TAPA-MVS88.58 1092.49 17891.75 19094.73 11896.50 18089.69 9392.91 16797.68 10178.02 31392.79 22894.10 25290.85 14697.96 24384.76 25298.16 20896.54 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TransMVSNet (Re)95.27 8696.04 5392.97 18498.37 6681.92 22495.07 10196.76 17793.97 5697.77 3198.57 1995.72 1897.90 24588.89 18599.23 8699.08 51
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16092.00 20796.74 17888.16 19796.93 6897.61 6393.04 9397.90 24591.60 11898.12 21398.03 157
miper_enhance_ethall88.42 26787.87 26990.07 28088.67 36375.52 31885.10 34295.59 22775.68 32292.49 23689.45 34178.96 27697.88 24787.86 20797.02 25996.81 237
BH-RMVSNet90.47 21990.44 22190.56 26795.21 25678.65 28089.15 29193.94 27488.21 19592.74 23094.22 24886.38 21797.88 24778.67 30995.39 29995.14 294
Test_1112_low_res87.50 28486.58 29090.25 27596.80 16377.75 29087.53 31496.25 20069.73 35386.47 33393.61 27075.67 30497.88 24779.95 29593.20 33395.11 295
MAR-MVS90.32 22788.87 25094.66 12294.82 26391.85 5994.22 13294.75 25380.91 28587.52 32788.07 35186.63 21597.87 25076.67 32396.21 28094.25 314
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5295.26 9298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
TestCases96.00 6198.02 9192.17 5298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
CLD-MVS91.82 19291.41 19893.04 18196.37 18583.65 20686.82 32897.29 13684.65 25692.27 24989.67 33892.20 11297.85 25383.95 25899.47 4497.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030490.96 20890.15 22893.37 17393.17 30287.06 14693.62 15292.43 30089.60 16382.25 35895.50 19682.56 25197.83 25484.41 25697.83 23295.22 291
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7490.97 23992.61 29688.04 19994.61 17293.79 26588.08 18597.81 25589.41 17198.39 17996.50 248
ambc92.98 18396.88 15583.01 21595.92 6796.38 19696.41 8697.48 7188.26 18297.80 25689.96 16198.93 12498.12 149
baseline283.38 31581.54 32488.90 29991.38 33472.84 34088.78 29881.22 36978.97 30579.82 36887.56 35261.73 35797.80 25674.30 33690.05 35896.05 266
OpenMVS_ROBcopyleft85.12 1689.52 24789.05 24490.92 25594.58 27781.21 23591.10 23793.41 28077.03 31993.41 20493.99 25883.23 24197.80 25679.93 29794.80 31193.74 327
BH-untuned90.68 21490.90 20890.05 28295.98 22179.57 26290.04 26794.94 24787.91 20094.07 18493.00 28387.76 19297.78 25979.19 30695.17 30492.80 342
RPSCF95.58 6994.89 9997.62 897.58 12196.30 495.97 6597.53 11492.42 8293.41 20497.78 5591.21 13897.77 26091.06 12697.06 25798.80 86
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15189.30 28796.23 20288.36 19493.57 20194.60 23693.45 7797.77 26090.23 15298.38 18198.03 157
GA-MVS87.70 27786.82 28690.31 27293.27 30077.22 29884.72 34792.79 29085.11 24889.82 29290.07 33066.80 33197.76 26284.56 25494.27 32295.96 269
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24092.08 20296.68 18093.82 6096.29 9598.56 2090.10 16597.75 26390.10 15899.66 2499.24 35
MG-MVS89.54 24689.80 23388.76 30294.88 26072.47 34389.60 27892.44 29985.82 23489.48 29895.98 17082.85 24597.74 26481.87 27795.27 30296.08 264
pm-mvs195.43 7495.94 5693.93 15498.38 6485.08 18895.46 8697.12 14991.84 10597.28 5398.46 2895.30 3497.71 26590.17 15499.42 5398.99 58
EPNet_dtu85.63 30384.37 30789.40 29286.30 37274.33 32891.64 22588.26 32984.84 25372.96 37589.85 33171.27 31897.69 26676.60 32497.62 24296.18 261
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet87.39 28686.71 28989.44 29093.40 29876.11 31294.93 10790.00 32257.17 37395.71 12697.37 7764.77 34497.68 26792.67 9094.37 31994.52 308
CR-MVSNet87.89 27387.12 28290.22 27691.01 33878.93 27292.52 17992.81 28873.08 33789.10 30196.93 10867.11 32897.64 26888.80 18692.70 34194.08 315
patchmatchnet-post91.71 31066.22 33797.59 269
SCA87.43 28587.21 27988.10 31392.01 32671.98 34589.43 28288.11 33382.26 28088.71 31192.83 28778.65 28097.59 26979.61 30193.30 33294.75 303
cl2289.02 25388.50 25490.59 26689.76 35176.45 30986.62 33494.03 26982.98 27192.65 23292.49 29572.05 31597.53 27188.93 18297.02 25997.78 186
Patchmtry90.11 23489.92 23190.66 26490.35 34777.00 30092.96 16592.81 28890.25 15094.74 16996.93 10867.11 32897.52 27285.17 24198.98 11597.46 208
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21092.43 18591.64 31294.10 5295.59 13096.64 13181.88 25997.50 27385.12 24598.52 16897.77 187
ab-mvs92.40 18092.62 17091.74 22697.02 14781.65 22795.84 7095.50 23386.95 22192.95 22497.56 6590.70 15297.50 27379.63 30097.43 24896.06 265
FMVSNet587.82 27686.56 29191.62 23192.31 31779.81 25793.49 15494.81 25283.26 26491.36 26296.93 10852.77 37497.49 27576.07 32798.03 22197.55 204
diffmvs91.74 19391.93 18491.15 24893.06 30578.17 28488.77 29997.51 11786.28 22692.42 24193.96 25988.04 18797.46 27690.69 13696.67 27297.82 183
ppachtmachnet_test88.61 26588.64 25288.50 30791.76 32970.99 35084.59 34892.98 28579.30 30392.38 24393.53 27379.57 27397.45 27786.50 23097.17 25597.07 225
IterMVS90.18 23190.16 22590.21 27793.15 30375.98 31487.56 31292.97 28686.43 22594.09 18296.40 14478.32 28497.43 27887.87 20694.69 31497.23 223
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HY-MVS82.50 1886.81 29885.93 29989.47 28993.63 29677.93 28694.02 13991.58 31375.68 32283.64 35093.64 26877.40 29097.42 27971.70 35092.07 34893.05 339
TR-MVS87.70 27787.17 28089.27 29594.11 28679.26 26788.69 30191.86 31081.94 28290.69 27589.79 33582.82 24697.42 27972.65 34591.98 34991.14 354
mvs_anonymous90.37 22491.30 20187.58 31992.17 32268.00 36089.84 27494.73 25483.82 26293.22 21597.40 7587.54 19597.40 28187.94 20595.05 30697.34 219
MVP-Stereo90.07 23788.92 24793.54 16996.31 19486.49 16190.93 24095.59 22779.80 29291.48 26095.59 18880.79 26797.39 28278.57 31091.19 35396.76 240
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VNet92.67 17292.96 15891.79 22496.27 19780.15 24491.95 20894.98 24592.19 9294.52 17596.07 16687.43 19797.39 28284.83 25098.38 18197.83 181
testdata91.03 25096.87 15682.01 22294.28 26571.55 34392.46 23895.42 20185.65 22697.38 28482.64 26997.27 25293.70 328
tpm84.38 31184.08 31085.30 33690.47 34563.43 37589.34 28585.63 35077.24 31887.62 32595.03 21961.00 36097.30 28579.26 30591.09 35595.16 292
PAPM_NR91.03 20790.81 21291.68 23096.73 16481.10 23693.72 14896.35 19788.19 19688.77 31092.12 30585.09 22997.25 28682.40 27393.90 32596.68 242
PAPM81.91 32780.11 33787.31 32293.87 29372.32 34484.02 35393.22 28269.47 35476.13 37389.84 33272.15 31497.23 28753.27 37589.02 35992.37 346
gm-plane-assit87.08 37059.33 37771.22 34583.58 36897.20 28873.95 337
PAPR87.65 28086.77 28890.27 27492.85 30977.38 29588.56 30496.23 20276.82 32184.98 34189.75 33786.08 22197.16 28972.33 34693.35 33196.26 258
CHOSEN 1792x268887.19 29285.92 30091.00 25397.13 14579.41 26484.51 34995.60 22364.14 36790.07 28694.81 22778.26 28597.14 29073.34 34095.38 30096.46 250
patch_mono-292.46 17992.72 16891.71 22896.65 16678.91 27488.85 29697.17 14483.89 26192.45 23996.76 12089.86 16997.09 29190.24 15198.59 16099.12 46
ITE_SJBPF95.95 6497.34 13493.36 4296.55 18991.93 9894.82 16595.39 20491.99 11797.08 29285.53 23997.96 22597.41 212
API-MVS91.52 19991.61 19191.26 24294.16 28486.26 17294.66 11594.82 25091.17 12992.13 25291.08 31990.03 16897.06 29379.09 30797.35 25190.45 358
XVG-OURS-SEG-HR95.38 7795.00 9696.51 4998.10 8294.07 2092.46 18398.13 4690.69 13993.75 19496.25 15998.03 297.02 29492.08 10195.55 29398.45 125
XVG-OURS94.72 10594.12 13096.50 5098.00 9394.23 1891.48 22898.17 4190.72 13895.30 14296.47 13887.94 19096.98 29591.41 12397.61 24398.30 134
D2MVS89.93 24089.60 23890.92 25594.03 28978.40 28188.69 30194.85 24878.96 30693.08 21895.09 21474.57 30696.94 29688.19 19798.96 12197.41 212
cascas87.02 29686.28 29789.25 29691.56 33376.45 30984.33 35196.78 17471.01 34786.89 33285.91 36381.35 26196.94 29683.09 26595.60 29294.35 312
MDA-MVSNet-bldmvs91.04 20690.88 20991.55 23394.68 27380.16 24385.49 34092.14 30590.41 14894.93 16195.79 17985.10 22896.93 29885.15 24394.19 32497.57 201
BH-w/o87.21 29087.02 28487.79 31894.77 26677.27 29787.90 30793.21 28481.74 28389.99 28888.39 35083.47 23896.93 29871.29 35292.43 34589.15 359
CostFormer83.09 31782.21 32085.73 33289.27 35867.01 36190.35 25686.47 34270.42 35083.52 35293.23 28061.18 35896.85 30077.21 32088.26 36293.34 335
pmmvs-eth3d91.54 19890.73 21593.99 14995.76 23487.86 13390.83 24293.98 27378.23 31294.02 18896.22 16082.62 25096.83 30186.57 22798.33 18897.29 222
MVS84.98 30884.30 30887.01 32391.03 33777.69 29291.94 21094.16 26759.36 37284.23 34787.50 35485.66 22596.80 30271.79 34893.05 33886.54 365
tpmvs84.22 31283.97 31184.94 33787.09 36965.18 36891.21 23488.35 32882.87 27285.21 33890.96 32165.24 34296.75 30379.60 30385.25 36692.90 341
pmmvs587.87 27487.14 28190.07 28093.26 30176.97 30388.89 29592.18 30273.71 33488.36 31693.89 26276.86 30096.73 30480.32 28996.81 26796.51 245
CVMVSNet85.16 30684.72 30486.48 32692.12 32370.19 35292.32 19388.17 33256.15 37490.64 27695.85 17467.97 32696.69 30588.78 18790.52 35692.56 344
tpm281.46 32880.35 33584.80 33889.90 35065.14 36990.44 25285.36 35365.82 36582.05 36192.44 29857.94 36396.69 30570.71 35688.49 36192.56 344
PatchmatchNetpermissive85.22 30584.64 30586.98 32489.51 35669.83 35790.52 25087.34 33778.87 30787.22 33092.74 29166.91 33096.53 30781.77 27886.88 36494.58 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
旧先验290.00 26968.65 35692.71 23196.52 30885.15 243
new-patchmatchnet88.97 25690.79 21383.50 34694.28 28355.83 38085.34 34193.56 27786.18 22895.47 13395.73 18483.10 24296.51 30985.40 24098.06 21898.16 144
ADS-MVSNet284.01 31382.20 32189.41 29189.04 35976.37 31187.57 31090.98 31672.71 34084.46 34492.45 29668.08 32496.48 31070.58 35783.97 36795.38 289
TinyColmap92.00 19092.76 16489.71 28795.62 24377.02 29990.72 24596.17 20787.70 20795.26 14596.29 15592.54 10696.45 31181.77 27898.77 14595.66 283
pmmvs488.95 25787.70 27292.70 19694.30 28285.60 18287.22 31892.16 30474.62 32989.75 29694.19 24977.97 28796.41 31282.71 26896.36 27896.09 263
USDC89.02 25389.08 24388.84 30195.07 25874.50 32688.97 29396.39 19573.21 33693.27 21196.28 15682.16 25496.39 31377.55 31698.80 14295.62 286
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7190.21 26095.43 23587.91 20093.74 19694.40 24292.88 9896.38 31490.39 14198.28 19497.07 225
PatchT87.51 28388.17 26485.55 33390.64 34166.91 36292.02 20686.09 34592.20 9189.05 30397.16 9464.15 34696.37 31589.21 17992.98 33993.37 334
MSLP-MVS++93.25 15293.88 13391.37 23896.34 19182.81 21793.11 16197.74 9889.37 16894.08 18395.29 20890.40 15996.35 31690.35 14498.25 19894.96 298
LF4IMVS92.72 17092.02 18194.84 11495.65 24091.99 5692.92 16696.60 18485.08 24992.44 24093.62 26986.80 21296.35 31686.81 22198.25 19896.18 261
PC_three_145275.31 32795.87 11995.75 18392.93 9596.34 31887.18 21798.68 15398.04 154
gg-mvs-nofinetune82.10 32681.02 32885.34 33587.46 36771.04 34894.74 11267.56 37996.44 2279.43 36998.99 645.24 37896.15 31967.18 36492.17 34788.85 361
JIA-IIPM85.08 30783.04 31691.19 24787.56 36586.14 17489.40 28484.44 36188.98 17882.20 35997.95 4856.82 36696.15 31976.55 32583.45 36991.30 353
KD-MVS_2432*160082.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
miper_refine_blended82.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
CL-MVSNet_self_test90.04 23989.90 23290.47 26895.24 25577.81 28986.60 33592.62 29585.64 23893.25 21493.92 26083.84 23696.06 32379.93 29798.03 22197.53 205
test_post190.21 2605.85 38165.36 34096.00 32479.61 301
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2192.26 19692.18 30285.92 23396.22 10196.61 13385.64 22795.99 32590.35 14498.23 20195.93 270
test_post6.07 38065.74 33995.84 326
MSDG90.82 20990.67 21691.26 24294.16 28483.08 21486.63 33396.19 20590.60 14391.94 25591.89 30789.16 17595.75 32780.96 28894.51 31794.95 299
our_test_387.55 28287.59 27387.44 32191.76 32970.48 35183.83 35490.55 32079.79 29392.06 25492.17 30378.63 28295.63 32884.77 25194.73 31296.22 259
MDTV_nov1_ep1383.88 31289.42 35761.52 37688.74 30087.41 33673.99 33284.96 34294.01 25765.25 34195.53 32978.02 31193.16 334
baseline187.62 28187.31 27688.54 30694.71 27274.27 32993.10 16288.20 33186.20 22792.18 25193.04 28273.21 31195.52 33079.32 30485.82 36595.83 275
MIMVSNet87.13 29486.54 29288.89 30096.05 21576.11 31294.39 12688.51 32781.37 28488.27 31896.75 12272.38 31395.52 33065.71 36795.47 29695.03 296
Gipumacopyleft95.31 8395.80 6593.81 16197.99 9690.91 7296.42 4397.95 8096.69 1791.78 25898.85 1291.77 12195.49 33291.72 11499.08 10295.02 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft87.21 1494.97 9295.33 8193.91 15698.97 1597.16 295.54 8395.85 21796.47 2193.40 20697.46 7295.31 3395.47 33386.18 23598.78 14489.11 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp79.28 33978.62 34181.24 35185.97 37356.45 37986.91 32485.26 35672.97 33881.45 36589.17 34556.01 36895.45 33473.19 34276.68 37491.82 352
Anonymous2023120688.77 26288.29 25990.20 27896.31 19478.81 27789.56 28093.49 27974.26 33192.38 24395.58 19182.21 25295.43 33572.07 34798.75 14896.34 254
CHOSEN 280x42080.04 33877.97 34386.23 33190.13 34874.53 32572.87 36989.59 32366.38 36276.29 37285.32 36556.96 36595.36 33669.49 36094.72 31388.79 362
tpmrst82.85 32082.93 31882.64 34887.65 36458.99 37890.14 26487.90 33475.54 32483.93 34891.63 31266.79 33395.36 33681.21 28481.54 37293.57 333
Patchmatch-RL test88.81 26188.52 25389.69 28895.33 25479.94 25286.22 33792.71 29278.46 31095.80 12194.18 25066.25 33695.33 33889.22 17898.53 16793.78 325
tpm cat180.61 33679.46 33984.07 34488.78 36165.06 37189.26 28888.23 33062.27 37081.90 36389.66 33962.70 35595.29 33971.72 34980.60 37391.86 351
test20.0390.80 21090.85 21190.63 26595.63 24279.24 26889.81 27592.87 28789.90 15694.39 17796.40 14485.77 22395.27 34073.86 33899.05 10697.39 216
miper_lstm_enhance89.90 24189.80 23390.19 27991.37 33577.50 29383.82 35595.00 24484.84 25393.05 22094.96 22176.53 30295.20 34189.96 16198.67 15597.86 178
131486.46 29986.33 29686.87 32591.65 33174.54 32491.94 21094.10 26874.28 33084.78 34387.33 35683.03 24395.00 34278.72 30891.16 35491.06 355
MVS-HIRNet78.83 34180.60 33373.51 35893.07 30447.37 38187.10 32178.00 37668.94 35577.53 37197.26 8771.45 31794.62 34363.28 37088.74 36078.55 373
PVSNet76.22 2082.89 31982.37 31984.48 34193.96 29064.38 37378.60 36688.61 32671.50 34484.43 34686.36 36174.27 30794.60 34469.87 35993.69 32994.46 309
XXY-MVS92.58 17593.16 15790.84 25997.75 10679.84 25491.87 21696.22 20485.94 23295.53 13297.68 5992.69 10294.48 34583.21 26497.51 24598.21 142
GG-mvs-BLEND83.24 34785.06 37671.03 34994.99 10665.55 38074.09 37475.51 37444.57 37994.46 34659.57 37287.54 36384.24 367
PatchMatch-RL89.18 25088.02 26892.64 19895.90 22792.87 4788.67 30391.06 31580.34 28990.03 28791.67 31183.34 23994.42 34776.35 32694.84 31090.64 357
CNLPA91.72 19491.20 20393.26 17896.17 20591.02 6991.14 23595.55 23090.16 15190.87 27193.56 27286.31 21894.40 34879.92 29997.12 25694.37 311
SD-MVS95.19 8795.73 6793.55 16796.62 17088.88 11294.67 11498.05 6291.26 12597.25 5596.40 14495.42 2694.36 34992.72 8999.19 9197.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UnsupCasMVSNet_bld88.50 26688.03 26789.90 28495.52 24678.88 27587.39 31694.02 27179.32 30293.06 21994.02 25680.72 26894.27 35075.16 33293.08 33796.54 243
WTY-MVS86.93 29786.50 29588.24 31194.96 25974.64 32287.19 31992.07 30778.29 31188.32 31791.59 31378.06 28694.27 35074.88 33393.15 33595.80 276
MS-PatchMatch88.05 27287.75 27088.95 29893.28 29977.93 28687.88 30892.49 29875.42 32592.57 23593.59 27180.44 26994.24 35281.28 28292.75 34094.69 306
CMPMVSbinary68.83 2287.28 28885.67 30192.09 21888.77 36285.42 18490.31 25894.38 26370.02 35288.00 32193.30 27773.78 31094.03 35375.96 32996.54 27496.83 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet188.17 27088.24 26187.93 31592.21 32073.62 33380.75 36388.77 32582.51 27794.99 15995.11 21382.70 24893.70 35483.33 26293.83 32696.48 249
MDA-MVSNet_test_wron88.16 27188.23 26287.93 31592.22 31973.71 33280.71 36488.84 32482.52 27694.88 16495.14 21182.70 24893.61 35583.28 26393.80 32796.46 250
test-LLR83.58 31483.17 31584.79 33989.68 35366.86 36383.08 35684.52 35983.07 26982.85 35584.78 36662.86 35393.49 35682.85 26694.86 30894.03 318
test-mter81.21 33180.01 33884.79 33989.68 35366.86 36383.08 35684.52 35973.85 33382.85 35584.78 36643.66 38193.49 35682.85 26694.86 30894.03 318
pmmvs380.83 33478.96 34086.45 32787.23 36877.48 29484.87 34482.31 36663.83 36885.03 34089.50 34049.66 37593.10 35873.12 34395.10 30588.78 363
testgi90.38 22391.34 20087.50 32097.49 12671.54 34689.43 28295.16 24288.38 19394.54 17494.68 23592.88 9893.09 35971.60 35197.85 23197.88 176
UnsupCasMVSNet_eth90.33 22690.34 22390.28 27394.64 27680.24 24289.69 27795.88 21585.77 23593.94 19195.69 18581.99 25692.98 36084.21 25791.30 35297.62 198
EPMVS81.17 33280.37 33483.58 34585.58 37465.08 37090.31 25871.34 37877.31 31785.80 33791.30 31559.38 36192.70 36179.99 29482.34 37192.96 340
ADS-MVSNet82.25 32281.55 32384.34 34289.04 35965.30 36787.57 31085.13 35872.71 34084.46 34492.45 29668.08 32492.33 36270.58 35783.97 36795.38 289
sss87.23 28986.82 28688.46 30993.96 29077.94 28586.84 32692.78 29177.59 31487.61 32691.83 30878.75 27891.92 36377.84 31394.20 32395.52 288
N_pmnet88.90 25987.25 27893.83 16094.40 28193.81 3684.73 34587.09 33879.36 30193.26 21292.43 29979.29 27591.68 36477.50 31897.22 25496.00 267
PMMVS83.00 31881.11 32688.66 30583.81 37986.44 16482.24 36085.65 34961.75 37182.07 36085.64 36479.75 27291.59 36575.99 32893.09 33687.94 364
Patchmatch-test86.10 30186.01 29886.38 33090.63 34274.22 33089.57 27986.69 34085.73 23789.81 29392.83 28765.24 34291.04 36677.82 31595.78 28993.88 324
TESTMET0.1,179.09 34078.04 34282.25 34987.52 36664.03 37483.08 35680.62 37170.28 35180.16 36783.22 36944.13 38090.56 36779.95 29593.36 33092.15 347
DSMNet-mixed82.21 32381.56 32284.16 34389.57 35570.00 35690.65 24777.66 37754.99 37583.30 35397.57 6477.89 28890.50 36866.86 36595.54 29491.97 348
EMVS80.35 33780.28 33680.54 35284.73 37769.07 35872.54 37080.73 37087.80 20481.66 36481.73 37162.89 35289.84 36975.79 33094.65 31582.71 370
PVSNet_070.34 2174.58 34272.96 34579.47 35490.63 34266.24 36673.26 36783.40 36563.67 36978.02 37078.35 37372.53 31289.59 37056.68 37360.05 37782.57 371
E-PMN80.72 33580.86 33080.29 35385.11 37568.77 35972.96 36881.97 36787.76 20583.25 35483.01 37062.22 35689.17 37177.15 32194.31 32182.93 369
test0.0.03 182.48 32181.47 32585.48 33489.70 35273.57 33484.73 34581.64 36883.07 26988.13 32086.61 35862.86 35389.10 37266.24 36690.29 35793.77 326
FPMVS84.50 31083.28 31488.16 31296.32 19394.49 1685.76 33885.47 35283.09 26885.20 33994.26 24663.79 34986.58 37363.72 36991.88 35183.40 368
new_pmnet81.22 33081.01 32981.86 35090.92 34070.15 35384.03 35280.25 37370.83 34885.97 33689.78 33667.93 32784.65 37467.44 36391.90 35090.78 356
PMMVS281.31 32983.44 31374.92 35790.52 34446.49 38269.19 37185.23 35784.30 25887.95 32294.71 23476.95 29784.36 37564.07 36898.09 21693.89 323
wuyk23d87.83 27590.79 21378.96 35590.46 34688.63 11592.72 17290.67 31991.65 11798.68 1197.64 6296.06 1677.53 37659.84 37199.41 5870.73 374
MVEpermissive59.87 2373.86 34372.65 34677.47 35687.00 37174.35 32761.37 37360.93 38167.27 36069.69 37686.49 36081.24 26572.33 37756.45 37483.45 36985.74 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 34448.94 34754.93 35939.68 38312.38 38528.59 37490.09 3216.82 37741.10 37978.41 37254.41 37070.69 37850.12 37651.26 37881.72 372
DeepMVS_CXcopyleft53.83 36070.38 38264.56 37248.52 38433.01 37665.50 37774.21 37556.19 36746.64 37938.45 37870.07 37550.30 375
tmp_tt37.97 34544.33 34818.88 36111.80 38421.54 38463.51 37245.66 3854.23 37851.34 37850.48 37659.08 36222.11 38044.50 37768.35 37613.00 376
test1239.49 34712.01 3501.91 3622.87 3851.30 38682.38 3591.34 3871.36 3802.84 3816.56 3792.45 3850.97 3812.73 3795.56 3793.47 377
testmvs9.02 34811.42 3511.81 3632.77 3861.13 38779.44 3651.90 3861.18 3812.65 3826.80 3781.95 3860.87 3822.62 3803.45 3803.44 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.35 34631.13 3490.00 3640.00 3870.00 3880.00 37595.58 2290.00 3820.00 38391.15 31793.43 790.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.56 34910.09 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38290.77 1470.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.56 34910.08 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38390.69 3260.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7287.14 14498.18 3794.25 4896.99 6697.36 8095.13 40
eth-test20.00 387
eth-test0.00 387
RE-MVS-def96.66 2098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10195.40 2793.49 5298.84 13298.00 159
IU-MVS98.51 5186.66 15896.83 17172.74 33995.83 12093.00 8199.29 7498.64 107
save fliter97.46 12988.05 12892.04 20497.08 15187.63 209
test072698.51 5186.69 15695.34 8898.18 3791.85 10297.63 3597.37 7795.58 22
GSMVS94.75 303
test_part298.21 7689.41 10096.72 77
sam_mvs166.64 33494.75 303
sam_mvs66.41 335
MTGPAbinary97.62 104
MTMP94.82 10954.62 383
test9_res88.16 19998.40 17697.83 181
agg_prior287.06 22098.36 18797.98 163
test_prior489.91 8790.74 244
test_prior290.21 26089.33 17090.77 27294.81 22790.41 15788.21 19598.55 163
新几何290.02 268
旧先验196.20 20284.17 19994.82 25095.57 19289.57 17197.89 22996.32 255
原ACMM289.34 285
test22296.95 15085.27 18688.83 29793.61 27565.09 36690.74 27494.85 22684.62 23397.36 25093.91 322
segment_acmp92.14 113
testdata188.96 29488.44 191
plane_prior797.71 11088.68 114
plane_prior697.21 14088.23 12586.93 208
plane_prior495.59 188
plane_prior388.43 12390.35 14993.31 207
plane_prior294.56 12191.74 113
plane_prior197.38 132
plane_prior88.12 12693.01 16388.98 17898.06 218
n20.00 388
nn0.00 388
door-mid92.13 306
test1196.65 182
door91.26 314
HQP5-MVS84.89 189
HQP-NCC96.36 18791.37 22987.16 21688.81 306
ACMP_Plane96.36 18791.37 22987.16 21688.81 306
BP-MVS86.55 228
HQP3-MVS97.31 13397.73 234
HQP2-MVS84.76 230
NP-MVS96.82 16087.10 14593.40 275
MDTV_nov1_ep13_2view42.48 38388.45 30567.22 36183.56 35166.80 33172.86 34494.06 317
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 153