This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3295.24 3699.65 393.39 5999.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 11786.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19698.73 89
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 5991.98 11599.63 693.08 7499.81 999.70 3
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4591.76 12099.63 694.23 2699.84 399.66 6
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7197.88 8288.72 17598.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
MVSFormer92.18 17992.23 16992.04 21494.74 25780.06 24297.15 1397.37 12088.98 16988.83 29592.79 27677.02 28799.60 896.41 496.75 26096.46 238
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 16998.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5894.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20298.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 12999.23 493.45 7599.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15396.19 15082.07 24999.57 1387.28 20798.89 11498.65 94
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21198.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9189.83 8593.46 14398.30 2392.37 8097.75 2996.95 9595.14 3999.51 1891.74 10799.28 7298.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14495.15 19986.60 21299.50 1993.43 5796.81 25798.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
anonymousdsp96.74 1796.42 2997.68 798.00 8694.03 2596.97 1797.61 10587.68 19998.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
APDe-MVS96.46 3296.64 2295.93 6097.68 10589.38 9696.90 1998.41 1692.52 7797.43 4397.92 4195.11 4299.50 1994.45 1999.30 6498.92 67
DROMVSNet95.44 6995.62 6994.89 10596.93 14387.69 12996.48 3399.14 393.93 5592.77 22194.52 22793.95 7099.49 2293.62 4399.22 8097.51 194
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 7898.30 2391.40 11895.76 11596.87 10295.26 3599.45 2392.77 8099.21 8199.00 51
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5298.16 4391.74 10995.34 13396.36 14095.68 1999.44 2494.41 2199.28 7298.97 59
test_part194.39 11094.55 10793.92 14896.14 19582.86 21095.54 7298.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13697.86 8395.96 3097.48 4197.14 8695.33 3299.44 2490.79 12699.76 1199.38 22
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7698.22 3292.36 8194.11 17598.07 3392.02 11299.44 2493.38 6097.67 23097.85 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5098.07 5695.17 3796.82 6796.73 11495.09 4499.43 2892.99 7798.71 13898.50 111
test117296.79 1596.52 2797.60 998.03 8394.87 1096.07 5398.06 5995.76 3296.89 6396.85 10394.85 5299.42 2993.35 6198.81 12998.53 109
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9294.85 5299.42 2993.49 4898.84 12198.00 149
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6798.01 6992.08 9095.74 11796.28 14595.22 3799.42 2993.17 6999.06 9498.88 71
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5197.78 9592.73 7293.48 19696.72 11594.23 6699.42 2991.99 9999.29 6799.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12796.68 11794.50 6199.42 2993.10 7299.26 7498.99 53
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13296.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 14896.39 13794.77 5499.42 2993.17 6999.44 4598.58 107
MSC_two_6792asdad95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
No_MVS95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13796.57 12495.02 4799.41 3693.63 4299.11 9298.94 62
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12496.61 12294.93 5199.41 3693.78 3899.15 8799.00 51
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10488.59 11092.26 18497.84 8794.91 3896.80 6895.78 17190.42 15399.41 3691.60 11299.58 3199.29 28
DU-MVS95.28 7895.12 8795.75 7397.75 9788.59 11092.58 16497.81 9093.99 5296.80 6895.90 16190.10 16299.41 3691.60 11299.58 3199.26 29
RPMNet90.31 22190.14 22090.81 25291.01 32778.93 26692.52 16698.12 4691.91 9589.10 29296.89 10168.84 31499.41 3690.17 14792.70 33194.08 305
testtj94.81 9694.42 11196.01 5497.23 12790.51 7794.77 10097.85 8691.29 12094.92 15595.66 17691.71 12199.40 4388.07 19398.25 18898.11 140
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23594.75 16197.12 8791.85 11799.40 4393.45 5398.33 17798.62 102
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6098.32 2093.93 5597.53 3997.56 5688.48 17699.40 4392.91 7999.83 699.68 4
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6496.51 999.40 4394.06 3099.23 7898.85 75
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10695.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZD-MVS97.23 12790.32 7897.54 11084.40 25094.78 16095.79 16892.76 9999.39 4888.72 18398.40 165
tttt051789.81 23588.90 24192.55 19797.00 13879.73 25395.03 9283.65 35789.88 15295.30 13594.79 22053.64 36399.39 4891.99 9998.79 13298.54 108
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 14798.32 2087.89 19296.86 6597.38 6795.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17196.49 12694.56 5999.39 4893.57 4499.05 9798.93 63
X-MVStestdata90.70 20788.45 24797.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17126.89 36894.56 5999.39 4893.57 4499.05 9798.93 63
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9093.82 3396.31 4498.25 2795.51 3596.99 6097.05 9195.63 2199.39 4893.31 6298.88 11698.75 84
DVP-MVS++.95.93 5396.34 3494.70 11496.54 16386.66 15298.45 498.22 3293.26 6897.54 3797.36 7193.12 8799.38 5493.88 3498.68 14298.04 144
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8498.22 3299.38 5493.44 5599.31 6298.53 109
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 13897.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6197.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6598.01 6993.34 6796.64 7496.57 12494.99 4999.36 5893.48 5199.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8298.10 4991.95 9297.63 3297.25 7996.48 1199.35 5993.29 6399.29 6797.95 157
test_241102_TWO98.10 4991.95 9297.54 3797.25 7995.37 2899.35 5993.29 6399.25 7598.49 112
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14082.88 23899.35 5988.19 18999.52 3798.96 60
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8497.00 15191.85 9897.40 4697.35 7495.58 2299.34 6293.44 5599.31 6298.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6897.40 4697.35 7494.69 5599.34 6293.88 3499.42 4798.89 69
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9588.91 10292.91 15598.07 5693.46 6596.31 8795.97 16090.14 15899.34 6292.11 9499.64 2399.16 36
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7196.92 699.34 6294.31 2399.38 5598.92 67
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12290.88 7194.59 10697.81 9089.22 16795.46 12996.17 15393.42 7899.34 6289.30 16598.87 11997.56 191
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NR-MVSNet95.28 7895.28 8195.26 9397.75 9787.21 13795.08 8997.37 12093.92 5797.65 3195.90 16190.10 16299.33 6790.11 14999.66 2199.26 29
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 11988.05 12292.04 19298.42 1587.63 20096.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7098.56 1191.84 10196.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
RRT_MVS91.36 19690.05 22195.29 9289.21 34888.15 11992.51 17094.89 24086.73 21495.54 12595.68 17561.82 34899.30 7094.91 1399.13 9198.43 117
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 8897.79 9486.48 21597.42 4597.51 6194.47 6399.29 7193.55 4699.29 6798.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 7898.14 4493.05 7197.07 5397.18 8487.65 19099.29 7191.72 10899.69 1599.61 11
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 7898.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12196.47 12795.37 2899.27 7593.78 3899.14 8898.48 113
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 8797.98 7289.34 16295.63 12196.47 12795.37 2899.27 7591.99 9999.14 8898.48 113
thisisatest053088.69 25587.52 26692.20 20596.33 17979.36 25992.81 15784.01 35686.44 21693.67 19292.68 28053.62 36499.25 7789.65 16198.45 16298.00 149
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 10998.03 6590.42 14396.37 8297.35 7495.68 1999.25 7794.44 2099.34 5898.80 79
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9293.58 3794.09 12696.99 15391.05 12692.40 23295.22 19891.03 14299.25 7792.11 9498.69 14197.90 163
CS-MVS-test93.33 13893.53 14192.71 18895.74 22283.08 20794.55 11298.85 591.02 12789.30 29191.91 29591.79 11899.23 8090.23 14498.41 16495.82 264
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 14889.92 8292.72 15998.02 6784.73 24893.65 19395.54 18591.68 12299.22 8188.78 18098.49 16198.26 128
CANet92.38 17391.99 17593.52 16493.82 28483.46 20091.14 22597.00 15189.81 15386.47 32494.04 24287.90 18899.21 8289.50 16398.27 18497.90 163
LS3D96.11 4895.83 6296.95 3794.75 25594.20 1897.34 1197.98 7297.31 1195.32 13496.77 10893.08 8999.20 8391.79 10598.16 19897.44 198
ETV-MVS92.99 15392.74 15893.72 15595.86 21586.30 16392.33 18097.84 8791.70 11292.81 21986.17 35292.22 10899.19 8488.03 19497.73 22495.66 272
EIA-MVS92.35 17492.03 17393.30 17095.81 21883.97 19592.80 15898.17 4087.71 19789.79 28487.56 34291.17 14099.18 8587.97 19597.27 24296.77 227
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15090.79 7396.30 4697.82 8996.13 2594.74 16297.23 8191.33 13099.16 8693.25 6698.30 18298.46 115
Anonymous2023121196.60 2597.13 1295.00 10297.46 11986.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
v1094.68 10195.27 8292.90 18296.57 16080.15 23894.65 10597.57 10890.68 13697.43 4398.00 3788.18 18099.15 8794.84 1599.55 3499.41 20
h-mvs3392.89 15691.99 17595.58 7996.97 13990.55 7593.94 13294.01 26489.23 16593.95 18396.19 15076.88 29099.14 8991.02 12195.71 28097.04 216
HyFIR lowres test87.19 28485.51 29492.24 20497.12 13680.51 23585.03 33396.06 20566.11 35591.66 24992.98 27270.12 31299.14 8975.29 32295.23 29397.07 213
ETH3 D test640091.91 18491.25 19593.89 15096.59 15884.41 18692.10 18997.72 9878.52 30091.82 24793.78 25488.70 17499.13 9183.61 25098.39 16898.14 136
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 14897.24 13796.88 1697.69 3097.77 4894.12 6899.13 9191.54 11599.29 6797.88 165
GeoE94.55 10594.68 10294.15 13897.23 12785.11 18094.14 12497.34 12888.71 17695.26 13895.50 18694.65 5799.12 9390.94 12498.40 16598.23 129
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12098.08 5389.46 15996.61 7696.47 12795.85 1799.12 9390.45 13199.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_test8_iter0588.21 26188.17 25688.33 30191.62 32066.82 35691.73 21496.60 18086.34 21894.14 17495.38 19647.72 36999.11 9591.78 10698.26 18599.06 47
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4277.49 28199.11 9592.62 8698.08 20798.74 87
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 10989.72 8694.05 12798.37 1788.09 18895.06 14995.85 16392.58 10299.10 9790.33 13998.99 10498.62 102
CS-MVS92.12 18092.62 16290.60 25794.57 26678.12 27892.00 19598.58 1087.75 19690.08 27491.88 29789.79 16699.10 9790.35 13698.60 14994.58 296
9.1494.81 9497.49 11694.11 12598.37 1787.56 20395.38 13196.03 15794.66 5699.08 9990.70 12898.97 109
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
v894.65 10295.29 8092.74 18796.65 15479.77 25294.59 10697.17 14191.86 9797.47 4297.93 4088.16 18199.08 9994.32 2299.47 3999.38 22
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10083.95 19692.14 18897.46 11678.85 29992.35 23594.98 20984.16 23099.08 9986.36 22296.77 25995.79 266
v124093.29 14093.71 13192.06 21396.01 20777.89 28291.81 21197.37 12085.12 24096.69 7296.40 13386.67 21099.07 10394.51 1898.76 13599.22 32
v192192093.26 14393.61 13592.19 20696.04 20678.31 27591.88 20497.24 13785.17 23796.19 9996.19 15086.76 20999.05 10494.18 2898.84 12199.22 32
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22199.60 2599.10 44
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10690.17 7993.86 13498.02 6787.35 20496.22 9597.99 3894.48 6299.05 10492.73 8399.68 1897.93 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419293.20 14893.54 13992.16 21096.05 20278.26 27691.95 19797.14 14284.98 24495.96 10696.11 15487.08 20199.04 10793.79 3798.84 12199.17 35
Regformer-294.86 9294.55 10795.77 7192.83 29989.98 8191.87 20596.40 19094.38 4796.19 9995.04 20692.47 10799.04 10793.49 4898.31 18098.28 126
WR-MVS93.49 13493.72 13092.80 18697.57 11280.03 24490.14 25495.68 21693.70 6096.62 7595.39 19487.21 19899.04 10787.50 20299.64 2399.33 25
v119293.49 13493.78 12892.62 19496.16 19379.62 25491.83 21097.22 13986.07 22396.10 10396.38 13887.22 19799.02 11094.14 2998.88 11699.22 32
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21383.13 20693.79 13599.19 292.00 9198.84 598.04 3593.64 7299.02 11081.28 27398.54 15496.96 219
bset_n11_16_dypcd89.99 23189.15 23492.53 19894.75 25581.34 22684.19 34287.56 32885.13 23993.77 18892.46 28372.82 30499.01 11292.46 9099.21 8197.23 210
Regformer-494.90 8994.67 10395.59 7892.78 30189.02 10092.39 17695.91 20994.50 4396.41 8095.56 18392.10 11199.01 11294.23 2698.14 20098.74 87
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10198.03 6590.82 13297.15 5196.85 10396.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6297.66 10089.21 16893.28 20395.46 18888.89 17398.98 11589.80 15698.82 12797.80 174
GBi-Net93.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
test193.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
FMVSNet194.84 9495.13 8693.97 14497.60 11084.29 18795.99 5496.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8698.65 94
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 25796.67 394.00 12995.41 22989.94 14991.93 24692.13 29290.12 15998.97 11987.68 20097.48 23697.67 184
v114493.50 13393.81 12692.57 19696.28 18379.61 25591.86 20996.96 15486.95 21295.91 11096.32 14287.65 19098.96 12093.51 4798.88 11699.13 39
NCCC94.08 12493.54 13995.70 7696.49 16889.90 8492.39 17696.91 16090.64 13792.33 23894.60 22490.58 15298.96 12090.21 14697.70 22898.23 129
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9296.48 1198.95 122
nrg03096.32 4196.55 2695.62 7797.83 9488.55 11295.77 6498.29 2692.68 7398.03 2697.91 4295.13 4098.95 12293.85 3699.49 3899.36 24
HQP_MVS94.26 11893.93 12495.23 9597.71 10188.12 12094.56 11097.81 9091.74 10993.31 20095.59 17886.93 20498.95 12289.26 16998.51 15898.60 105
plane_prior597.81 9098.95 12289.26 16998.51 15898.60 105
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28179.22 26387.56 30293.51 27091.53 11695.37 13296.62 12178.65 27298.90 12691.89 10494.95 29797.70 181
v2v48293.29 14093.63 13492.29 20296.35 17778.82 26991.77 21396.28 19488.45 18195.70 12096.26 14786.02 21898.90 12693.02 7598.81 12999.14 38
EPNet89.80 23688.25 25294.45 13183.91 36986.18 16693.87 13387.07 33291.16 12580.64 35894.72 22178.83 27098.89 12885.17 23198.89 11498.28 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs-test193.07 15191.80 18196.89 3994.74 25795.83 692.17 18795.41 22989.94 14989.85 28190.59 31990.12 15998.88 12987.68 20095.66 28195.97 256
TEST996.45 17089.46 9190.60 23896.92 15879.09 29590.49 26694.39 23191.31 13198.88 129
train_agg92.71 16491.83 17995.35 8696.45 17089.46 9190.60 23896.92 15879.37 29090.49 26694.39 23191.20 13798.88 12988.66 18498.43 16397.72 180
CDPH-MVS92.67 16591.83 17995.18 9796.94 14188.46 11590.70 23697.07 14877.38 30692.34 23795.08 20492.67 10198.88 12985.74 22798.57 15098.20 133
QAPM92.88 15792.77 15693.22 17295.82 21683.31 20196.45 3497.35 12783.91 25393.75 18996.77 10889.25 17198.88 12984.56 24497.02 24997.49 195
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30485.87 17192.42 17494.69 24993.67 6496.13 10195.84 16691.20 13798.86 13493.78 3898.23 19199.03 49
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30385.98 16992.44 17294.69 24993.70 6096.12 10295.81 16791.24 13498.86 13493.76 4198.22 19398.98 58
V4293.43 13693.58 13692.97 17795.34 24181.22 22892.67 16296.49 18787.25 20696.20 9796.37 13987.32 19698.85 13692.39 9398.21 19498.85 75
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23682.53 21389.25 28196.52 18685.00 24389.91 27988.55 33892.94 9298.84 13784.72 24395.44 28796.22 247
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
test_896.37 17289.14 9890.51 24196.89 16179.37 29090.42 26894.36 23391.20 13798.82 139
PS-MVSNAJ88.86 25188.99 23888.48 29894.88 24874.71 31486.69 32195.60 21880.88 27787.83 31487.37 34590.77 14498.82 13982.52 26194.37 30991.93 340
xiu_mvs_v2_base89.00 24789.19 23288.46 29994.86 25074.63 31686.97 31295.60 21880.88 27787.83 31488.62 33791.04 14198.81 14482.51 26294.38 30891.93 340
FMVSNet292.78 16192.73 16092.95 17995.40 23781.98 21794.18 12295.53 22688.63 17796.05 10497.37 6881.31 25698.81 14487.38 20698.67 14498.06 141
Anonymous2024052995.50 6795.83 6294.50 12697.33 12585.93 17095.19 8696.77 17296.64 1997.61 3598.05 3493.23 8398.79 14688.60 18599.04 10298.78 81
Regformer-194.55 10594.33 11595.19 9692.83 29988.54 11391.87 20595.84 21393.99 5295.95 10795.04 20692.00 11398.79 14693.14 7198.31 18098.23 129
VDD-MVS94.37 11194.37 11394.40 13397.49 11686.07 16893.97 13193.28 27394.49 4496.24 9397.78 4687.99 18698.79 14688.92 17699.14 8898.34 121
test1294.43 13295.95 21086.75 14896.24 19789.76 28589.79 16698.79 14697.95 21697.75 179
agg_prior192.60 16791.76 18295.10 10096.20 18988.89 10390.37 24596.88 16279.67 28790.21 27194.41 22991.30 13298.78 15088.46 18698.37 17597.64 186
agg_prior96.20 18988.89 10396.88 16290.21 27198.78 150
CSCG94.69 10094.75 9794.52 12597.55 11387.87 12695.01 9397.57 10892.68 7396.20 9793.44 26191.92 11698.78 15089.11 17399.24 7796.92 220
PHI-MVS94.34 11493.80 12795.95 5795.65 22891.67 6294.82 9897.86 8387.86 19393.04 21494.16 23991.58 12498.78 15090.27 14298.96 11197.41 199
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5695.48 2598.77 15490.11 14999.44 4598.31 124
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7491.78 30397.19 1296.32 8698.60 1884.24 22998.75 15587.09 20998.83 12698.81 78
114514_t90.51 21189.80 22592.63 19398.00 8682.24 21593.40 14597.29 13365.84 35689.40 28994.80 21986.99 20298.75 15583.88 24998.61 14796.89 222
FMVSNet390.78 20590.32 21692.16 21093.03 29679.92 24792.54 16594.95 23886.17 22295.10 14596.01 15869.97 31398.75 15586.74 21298.38 17097.82 172
IterMVS-LS93.78 12994.28 11792.27 20396.27 18479.21 26491.87 20596.78 17091.77 10796.57 7897.07 8987.15 19998.74 15891.99 9999.03 10398.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS92.05 18292.16 17091.72 22194.44 26880.13 24087.62 29997.25 13687.34 20592.22 24093.18 26889.54 16998.73 15989.67 16098.20 19696.30 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest051584.72 30082.99 30889.90 27592.96 29775.33 31384.36 34083.42 35877.37 30788.27 30986.65 34753.94 36298.72 16082.56 26097.40 23995.67 271
alignmvs93.26 14392.85 15494.50 12695.70 22487.45 13193.45 14495.76 21491.58 11495.25 14092.42 28881.96 25198.72 16091.61 11197.87 22097.33 207
MCST-MVS92.91 15592.51 16594.10 14097.52 11485.72 17491.36 22297.13 14480.33 28192.91 21894.24 23591.23 13598.72 16089.99 15397.93 21797.86 167
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11498.05 6090.45 14296.31 8796.76 11092.91 9498.72 16091.19 11999.42 4798.32 122
CNVR-MVS94.58 10494.29 11695.46 8496.94 14189.35 9791.81 21196.80 16989.66 15593.90 18695.44 19092.80 9898.72 16092.74 8298.52 15698.32 122
DP-MVS95.62 6395.84 6194.97 10397.16 13288.62 10994.54 11497.64 10196.94 1596.58 7797.32 7793.07 9098.72 16090.45 13198.84 12197.57 189
原ACMM192.87 18396.91 14484.22 19097.01 15076.84 31189.64 28794.46 22888.00 18598.70 16681.53 27198.01 21395.70 270
ANet_high94.83 9596.28 3790.47 26096.65 15473.16 32894.33 11898.74 896.39 2398.09 2598.93 893.37 7998.70 16690.38 13499.68 1899.53 14
hse-mvs292.24 17891.20 19695.38 8596.16 19390.65 7492.52 16692.01 30189.23 16593.95 18392.99 27176.88 29098.69 16891.02 12196.03 27296.81 225
AUN-MVS90.05 22988.30 25095.32 9196.09 19990.52 7692.42 17492.05 30082.08 27288.45 30692.86 27365.76 32998.69 16888.91 17796.07 27196.75 229
test_prior393.29 14092.85 15494.61 11795.95 21087.23 13590.21 25097.36 12589.33 16390.77 26194.81 21690.41 15498.68 17088.21 18798.55 15197.93 159
test_prior94.61 11795.95 21087.23 13597.36 12598.68 17097.93 159
Effi-MVS+92.79 16092.74 15892.94 18095.10 24583.30 20294.00 12997.53 11291.36 11989.35 29090.65 31894.01 6998.66 17287.40 20595.30 29196.88 223
canonicalmvs94.59 10394.69 10094.30 13595.60 23287.03 14295.59 6998.24 3091.56 11595.21 14392.04 29494.95 5098.66 17291.45 11697.57 23497.20 212
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23587.06 14096.63 2597.28 13591.82 10494.34 17397.41 6590.60 15198.65 17492.47 8998.11 20497.70 181
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 6898.61 996.10 2698.16 2397.52 5996.90 798.62 17590.30 14099.60 2598.72 90
HQP4-MVS88.81 29798.61 17698.15 135
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17696.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26388.25 11792.05 19196.65 17889.62 15690.08 27491.23 30692.56 10398.60 17886.30 22396.27 26996.90 221
HQP-MVS92.09 18191.49 18993.88 15196.36 17484.89 18291.37 21997.31 13087.16 20788.81 29793.40 26284.76 22698.60 17886.55 21897.73 22498.14 136
无先验89.94 26095.75 21570.81 34198.59 18081.17 27694.81 289
112190.26 22289.23 23193.34 16797.15 13487.40 13291.94 19994.39 25467.88 35191.02 25994.91 21286.91 20698.59 18081.17 27697.71 22794.02 310
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19587.90 12593.36 14697.14 14285.53 23293.90 18695.45 18991.30 13298.59 18089.51 16298.62 14697.31 208
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet_DTU89.85 23489.17 23391.87 21692.20 30980.02 24590.79 23395.87 21186.02 22482.53 34891.77 29980.01 26498.57 18385.66 22897.70 22897.01 217
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16397.33 12990.05 14896.77 7096.85 10395.04 4598.56 18492.77 8099.06 9498.70 93
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jason89.17 24388.32 24991.70 22295.73 22380.07 24188.10 29693.22 27471.98 33490.09 27392.79 27678.53 27598.56 18487.43 20497.06 24796.46 238
jason: jason.
F-COLMAP92.28 17691.06 20095.95 5797.52 11491.90 5793.53 14197.18 14083.98 25288.70 30394.04 24288.41 17898.55 18680.17 28495.99 27497.39 203
lupinMVS88.34 26087.31 26891.45 22894.74 25780.06 24287.23 30792.27 29371.10 33888.83 29591.15 30777.02 28798.53 18786.67 21596.75 26095.76 267
PCF-MVS84.52 1789.12 24487.71 26393.34 16796.06 20185.84 17286.58 32697.31 13068.46 34993.61 19493.89 25087.51 19398.52 18867.85 35398.11 20495.66 272
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9683.15 20594.58 10897.58 10793.39 6697.05 5698.04 3593.25 8298.51 18989.75 15999.59 2799.08 45
EI-MVSNet92.99 15393.26 14992.19 20692.12 31179.21 26492.32 18194.67 25191.77 10795.24 14195.85 16387.14 20098.49 19091.99 9998.26 18598.86 72
casdiffmvs94.32 11594.80 9592.85 18496.05 20281.44 22592.35 17998.05 6091.53 11695.75 11696.80 10793.35 8098.49 19091.01 12398.32 17998.64 98
MVSTER89.32 24188.75 24391.03 24290.10 33876.62 30090.85 23194.67 25182.27 27095.24 14195.79 16861.09 35198.49 19090.49 13098.26 18597.97 156
UGNet93.08 14992.50 16694.79 11093.87 28287.99 12495.07 9094.26 25890.64 13787.33 32097.67 5186.89 20798.49 19088.10 19298.71 13897.91 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Regformer-394.28 11694.23 12194.46 13092.78 30186.28 16492.39 17694.70 24893.69 6395.97 10595.56 18391.34 12998.48 19493.45 5398.14 20098.62 102
baseline94.26 11894.80 9592.64 19196.08 20080.99 23193.69 13898.04 6490.80 13394.89 15696.32 14293.19 8498.48 19491.68 11098.51 15898.43 117
LFMVS91.33 19791.16 19991.82 21796.27 18479.36 25995.01 9385.61 34596.04 2994.82 15897.06 9072.03 30998.46 19684.96 23998.70 14097.65 185
thres600view787.66 27187.10 27589.36 28396.05 20273.17 32792.72 15985.31 34891.89 9693.29 20290.97 31063.42 34198.39 19773.23 33296.99 25496.51 233
IB-MVS77.21 1983.11 30781.05 31889.29 28491.15 32575.85 30885.66 32986.00 34079.70 28682.02 35386.61 34848.26 36898.39 19777.84 30492.22 33693.63 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v14892.87 15893.29 14591.62 22496.25 18777.72 28591.28 22395.05 23589.69 15495.93 10996.04 15687.34 19598.38 19990.05 15297.99 21498.78 81
CDS-MVSNet89.55 23788.22 25593.53 16395.37 24086.49 15589.26 27993.59 26879.76 28591.15 25792.31 28977.12 28698.38 19977.51 30897.92 21895.71 269
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 26784.10 19395.70 6597.03 14982.44 26991.14 25896.42 13188.47 17798.38 19985.95 22697.47 23795.55 276
MVS_Test92.57 17093.29 14590.40 26393.53 28675.85 30892.52 16696.96 15488.73 17492.35 23596.70 11690.77 14498.37 20292.53 8895.49 28596.99 218
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 10779.49 25794.86 9797.12 14589.59 15896.87 6497.65 5290.40 15698.34 20389.08 17499.35 5798.75 84
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 21795.62 21791.84 10195.74 11797.10 8889.31 17098.32 20485.07 23899.06 9498.93 63
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23386.36 16192.24 18696.27 19588.88 17389.90 28092.69 27991.65 12398.32 20477.38 31097.64 23192.72 334
thres100view90087.35 27986.89 27788.72 29396.14 19573.09 32993.00 15285.31 34892.13 8993.26 20590.96 31163.42 34198.28 20671.27 34496.54 26494.79 290
tfpn200view987.05 28786.52 28588.67 29495.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26494.79 290
thres40087.20 28386.52 28589.24 28795.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26496.51 233
Vis-MVSNet (Re-imp)90.42 21490.16 21791.20 23897.66 10777.32 29094.33 11887.66 32791.20 12392.99 21595.13 20175.40 29798.28 20677.86 30399.19 8397.99 152
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31376.84 29886.91 31496.67 17785.21 23694.41 16993.92 24879.53 26798.26 21089.76 15897.02 24998.06 141
PLCcopyleft85.34 1590.40 21588.92 23994.85 10796.53 16690.02 8091.58 21696.48 18880.16 28286.14 32692.18 29085.73 22098.25 21176.87 31394.61 30696.30 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
新几何193.17 17397.16 13287.29 13494.43 25367.95 35091.29 25394.94 21186.97 20398.23 21281.06 27897.75 22393.98 311
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21391.38 11899.69 1599.42 19
1112_ss88.42 25887.41 26791.45 22896.69 15380.99 23189.72 26796.72 17573.37 32787.00 32290.69 31677.38 28398.20 21481.38 27293.72 31895.15 282
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13186.87 14691.10 22797.37 12084.92 24592.08 24394.08 24188.59 17598.20 21483.50 25198.14 20095.73 268
TAMVS90.16 22489.05 23693.49 16596.49 16886.37 16090.34 24792.55 28980.84 27992.99 21594.57 22681.94 25298.20 21473.51 33098.21 19495.90 261
ET-MVSNet_ETH3D86.15 29284.27 30091.79 21893.04 29581.28 22787.17 31086.14 33779.57 28883.65 34088.66 33657.10 35698.18 21787.74 19995.40 28895.90 261
tfpnnormal94.27 11794.87 9392.48 20097.71 10180.88 23394.55 11295.41 22993.70 6096.67 7397.72 4991.40 12898.18 21787.45 20399.18 8598.36 120
c3_l91.32 19891.42 19091.00 24592.29 30676.79 29987.52 30596.42 18985.76 22994.72 16493.89 25082.73 24198.16 21990.93 12598.55 15198.04 144
PVSNet_BlendedMVS90.35 21889.96 22291.54 22794.81 25278.80 27190.14 25496.93 15679.43 28988.68 30495.06 20586.27 21598.15 22080.27 28198.04 21097.68 183
PVSNet_Blended88.74 25488.16 25890.46 26294.81 25278.80 27186.64 32296.93 15674.67 31988.68 30489.18 33486.27 21598.15 22080.27 28196.00 27394.44 300
OMC-MVS94.22 12093.69 13295.81 6797.25 12691.27 6492.27 18397.40 11987.10 21094.56 16695.42 19193.74 7198.11 22286.62 21698.85 12098.06 141
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 20992.96 4489.48 27297.46 11685.14 23896.23 9495.42 19193.19 8498.08 22390.37 13598.76 13597.38 205
OPU-MVS95.15 9896.84 14789.43 9395.21 8295.66 17693.12 8798.06 22486.28 22498.61 14797.95 157
miper_ehance_all_eth90.48 21290.42 21490.69 25491.62 32076.57 30186.83 31796.18 20283.38 25594.06 17992.66 28182.20 24798.04 22589.79 15797.02 24997.45 197
test_yl90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
DCV-MVSNet90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
testdata298.03 22680.24 283
DPM-MVS89.35 24088.40 24892.18 20996.13 19884.20 19186.96 31396.15 20475.40 31787.36 31991.55 30483.30 23498.01 22982.17 26696.62 26394.32 303
thres20085.85 29485.18 29587.88 30794.44 26872.52 33389.08 28386.21 33688.57 18091.44 25188.40 33964.22 33698.00 23068.35 35295.88 27893.12 326
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23094.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DIV-MVS_self_test90.65 20990.56 21190.91 24991.85 31576.99 29586.75 31995.36 23285.52 23494.06 17994.89 21377.37 28497.99 23290.28 14198.97 10997.76 177
cl____90.65 20990.56 21190.91 24991.85 31576.98 29686.75 31995.36 23285.53 23294.06 17994.89 21377.36 28597.98 23390.27 14298.98 10597.76 177
Anonymous2024052192.86 15993.57 13790.74 25396.57 16075.50 31294.15 12395.60 21889.38 16095.90 11197.90 4480.39 26397.96 23492.60 8799.68 1898.75 84
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 16789.69 8792.91 15597.68 9978.02 30492.79 22094.10 24090.85 14397.96 23484.76 24298.16 19896.54 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9096.76 17393.97 5497.77 2898.57 1995.72 1897.90 23688.89 17899.23 7899.08 45
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9386.50 15492.00 19596.74 17488.16 18796.93 6297.61 5493.04 9197.90 23691.60 11298.12 20398.03 147
miper_enhance_ethall88.42 25887.87 26190.07 27288.67 35375.52 31185.10 33295.59 22275.68 31392.49 22889.45 33178.96 26997.88 23887.86 19897.02 24996.81 225
BH-RMVSNet90.47 21390.44 21390.56 25995.21 24478.65 27389.15 28293.94 26688.21 18592.74 22294.22 23686.38 21397.88 23878.67 30095.39 28995.14 283
Test_1112_low_res87.50 27686.58 28290.25 26796.80 15177.75 28487.53 30496.25 19669.73 34586.47 32493.61 25775.67 29697.88 23879.95 28693.20 32395.11 284
MAR-MVS90.32 22088.87 24294.66 11694.82 25191.85 5894.22 12194.75 24680.91 27687.52 31888.07 34186.63 21197.87 24176.67 31496.21 27094.25 304
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest94.88 9194.51 11096.00 5598.02 8492.17 5195.26 8198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
TestCases96.00 5598.02 8492.17 5198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
CLD-MVS91.82 18591.41 19193.04 17496.37 17283.65 19986.82 31897.29 13384.65 24992.27 23989.67 32892.20 10997.85 24483.95 24899.47 3997.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030490.96 20290.15 21993.37 16693.17 29187.06 14093.62 14092.43 29289.60 15782.25 34995.50 18682.56 24597.83 24584.41 24697.83 22295.22 280
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21690.87 7290.97 22992.61 28888.04 18994.61 16593.79 25388.08 18297.81 24689.41 16498.39 16896.50 236
ambc92.98 17696.88 14583.01 20995.92 5996.38 19296.41 8097.48 6288.26 17997.80 24789.96 15498.93 11398.12 139
baseline283.38 30681.54 31588.90 28991.38 32372.84 33288.78 28881.22 36378.97 29679.82 36087.56 34261.73 34997.80 24774.30 32790.05 34896.05 254
OpenMVS_ROBcopyleft85.12 1689.52 23989.05 23690.92 24794.58 26581.21 22991.10 22793.41 27277.03 31093.41 19793.99 24683.23 23597.80 24779.93 28894.80 30193.74 317
BH-untuned90.68 20890.90 20190.05 27495.98 20879.57 25690.04 25794.94 23987.91 19094.07 17893.00 27087.76 18997.78 25079.19 29795.17 29492.80 332
RPSCF95.58 6594.89 9297.62 897.58 11196.30 495.97 5797.53 11292.42 7893.41 19797.78 4691.21 13697.77 25191.06 12097.06 24798.80 79
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15486.96 14589.30 27896.23 19888.36 18493.57 19594.60 22493.45 7597.77 25190.23 14498.38 17098.03 147
GA-MVS87.70 26986.82 27890.31 26493.27 28977.22 29284.72 33792.79 28285.11 24189.82 28290.07 32066.80 32297.76 25384.56 24494.27 31295.96 257
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19096.68 17693.82 5896.29 8998.56 2090.10 16297.75 25490.10 15199.66 2199.24 31
MG-MVS89.54 23889.80 22588.76 29294.88 24872.47 33489.60 26992.44 29185.82 22789.48 28895.98 15982.85 23997.74 25581.87 26795.27 29296.08 252
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7597.12 14591.84 10197.28 4898.46 2595.30 3497.71 25690.17 14799.42 4798.99 53
EPNet_dtu85.63 29584.37 29889.40 28286.30 36374.33 32191.64 21588.26 32184.84 24672.96 36789.85 32171.27 31197.69 25776.60 31597.62 23296.18 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet87.39 27886.71 28189.44 28093.40 28776.11 30594.93 9690.00 31457.17 36595.71 11997.37 6864.77 33597.68 25892.67 8594.37 30994.52 298
CR-MVSNet87.89 26587.12 27490.22 26891.01 32778.93 26692.52 16692.81 28073.08 32989.10 29296.93 9867.11 31997.64 25988.80 17992.70 33194.08 305
patchmatchnet-post91.71 30066.22 32897.59 260
SCA87.43 27787.21 27188.10 30492.01 31471.98 33689.43 27388.11 32582.26 27188.71 30292.83 27478.65 27297.59 26079.61 29293.30 32294.75 292
cl2289.02 24588.50 24690.59 25889.76 34076.45 30286.62 32494.03 26182.98 26392.65 22492.49 28272.05 30897.53 26288.93 17597.02 24997.78 175
Patchmtry90.11 22589.92 22390.66 25590.35 33677.00 29492.96 15392.81 28090.25 14694.74 16296.93 9867.11 31997.52 26385.17 23198.98 10597.46 196
Anonymous20240521192.58 16892.50 16692.83 18596.55 16283.22 20392.43 17391.64 30494.10 5195.59 12396.64 12081.88 25397.50 26485.12 23598.52 15697.77 176
ab-mvs92.40 17292.62 16291.74 22097.02 13781.65 22195.84 6295.50 22786.95 21292.95 21797.56 5690.70 14997.50 26479.63 29197.43 23896.06 253
FMVSNet587.82 26886.56 28391.62 22492.31 30579.81 25193.49 14294.81 24583.26 25691.36 25296.93 9852.77 36597.49 26676.07 31898.03 21197.55 192
diffmvs91.74 18691.93 17791.15 24093.06 29478.17 27788.77 28997.51 11586.28 21992.42 23193.96 24788.04 18497.46 26790.69 12996.67 26297.82 172
ppachtmachnet_test88.61 25688.64 24488.50 29791.76 31770.99 34084.59 33892.98 27779.30 29492.38 23393.53 26079.57 26697.45 26886.50 22097.17 24597.07 213
IterMVS90.18 22390.16 21790.21 26993.15 29275.98 30787.56 30292.97 27886.43 21794.09 17696.40 13378.32 27697.43 26987.87 19794.69 30497.23 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HY-MVS82.50 1886.81 29085.93 29189.47 27993.63 28577.93 28094.02 12891.58 30575.68 31383.64 34193.64 25577.40 28297.42 27071.70 34192.07 33893.05 329
TR-MVS87.70 26987.17 27289.27 28594.11 27579.26 26188.69 29191.86 30281.94 27390.69 26489.79 32582.82 24097.42 27072.65 33691.98 33991.14 345
mvs_anonymous90.37 21791.30 19487.58 30992.17 31068.00 35089.84 26594.73 24783.82 25493.22 20897.40 6687.54 19297.40 27287.94 19695.05 29697.34 206
MVP-Stereo90.07 22888.92 23993.54 16296.31 18186.49 15590.93 23095.59 22279.80 28391.48 25095.59 17880.79 26097.39 27378.57 30191.19 34396.76 228
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VNet92.67 16592.96 15191.79 21896.27 18480.15 23891.95 19794.98 23792.19 8894.52 16896.07 15587.43 19497.39 27384.83 24098.38 17097.83 170
testdata91.03 24296.87 14682.01 21694.28 25771.55 33592.46 22995.42 19185.65 22297.38 27582.64 25997.27 24293.70 318
tpm84.38 30284.08 30185.30 32790.47 33463.43 36689.34 27685.63 34477.24 30987.62 31695.03 20861.00 35297.30 27679.26 29691.09 34595.16 281
PAPM_NR91.03 20190.81 20591.68 22396.73 15281.10 23093.72 13796.35 19388.19 18688.77 30192.12 29385.09 22597.25 27782.40 26393.90 31596.68 230
PAPM81.91 31880.11 32887.31 31293.87 28272.32 33584.02 34493.22 27469.47 34676.13 36589.84 32272.15 30797.23 27853.27 36689.02 34992.37 337
gm-plane-assit87.08 36159.33 36871.22 33783.58 35897.20 27973.95 328
PAPR87.65 27286.77 28090.27 26692.85 29877.38 28988.56 29496.23 19876.82 31284.98 33289.75 32786.08 21797.16 28072.33 33793.35 32196.26 246
CHOSEN 1792x268887.19 28485.92 29291.00 24597.13 13579.41 25884.51 33995.60 21864.14 35990.07 27694.81 21678.26 27797.14 28173.34 33195.38 29096.46 238
ITE_SJBPF95.95 5797.34 12493.36 4196.55 18591.93 9494.82 15895.39 19491.99 11497.08 28285.53 22997.96 21597.41 199
API-MVS91.52 19291.61 18491.26 23494.16 27386.26 16594.66 10494.82 24391.17 12492.13 24291.08 30990.03 16597.06 28379.09 29897.35 24190.45 349
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17198.13 4590.69 13593.75 18996.25 14898.03 297.02 28492.08 9695.55 28398.45 116
XVG-OURS94.72 9994.12 12296.50 4898.00 8694.23 1791.48 21898.17 4090.72 13495.30 13596.47 12787.94 18796.98 28591.41 11797.61 23398.30 125
D2MVS89.93 23289.60 23090.92 24794.03 27878.40 27488.69 29194.85 24178.96 29793.08 21195.09 20374.57 29896.94 28688.19 18998.96 11197.41 199
cascas87.02 28886.28 28989.25 28691.56 32276.45 30284.33 34196.78 17071.01 33986.89 32385.91 35381.35 25596.94 28683.09 25595.60 28294.35 302
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26280.16 23785.49 33092.14 29790.41 14494.93 15495.79 16885.10 22496.93 28885.15 23394.19 31497.57 189
BH-w/o87.21 28287.02 27687.79 30894.77 25477.27 29187.90 29793.21 27681.74 27489.99 27888.39 34083.47 23296.93 28871.29 34392.43 33589.15 350
CostFormer83.09 30882.21 31185.73 32289.27 34767.01 35190.35 24686.47 33570.42 34283.52 34393.23 26761.18 35096.85 29077.21 31188.26 35293.34 325
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22187.86 12790.83 23293.98 26578.23 30394.02 18296.22 14982.62 24496.83 29186.57 21798.33 17797.29 209
MVS84.98 29984.30 29987.01 31391.03 32677.69 28691.94 19994.16 25959.36 36484.23 33887.50 34485.66 22196.80 29271.79 33993.05 32886.54 356
tpmvs84.22 30383.97 30284.94 32887.09 36065.18 35991.21 22488.35 32082.87 26485.21 32990.96 31165.24 33396.75 29379.60 29485.25 35692.90 331
pmmvs587.87 26687.14 27390.07 27293.26 29076.97 29788.89 28692.18 29473.71 32688.36 30793.89 25076.86 29296.73 29480.32 28096.81 25796.51 233
CVMVSNet85.16 29784.72 29686.48 31692.12 31170.19 34292.32 18188.17 32456.15 36690.64 26595.85 16367.97 31796.69 29588.78 18090.52 34692.56 335
tpm281.46 31980.35 32684.80 32989.90 33965.14 36090.44 24285.36 34765.82 35782.05 35292.44 28657.94 35596.69 29570.71 34788.49 35192.56 335
DWT-MVSNet_test80.74 32579.18 33185.43 32587.51 35766.87 35389.87 26486.01 33974.20 32380.86 35780.62 36248.84 36796.68 29781.54 27083.14 36192.75 333
PatchmatchNetpermissive85.22 29684.64 29786.98 31489.51 34569.83 34790.52 24087.34 33078.87 29887.22 32192.74 27866.91 32196.53 29881.77 26886.88 35494.58 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
旧先验290.00 25968.65 34892.71 22396.52 29985.15 233
new-patchmatchnet88.97 24890.79 20683.50 33794.28 27255.83 37185.34 33193.56 26986.18 22195.47 12795.73 17383.10 23696.51 30085.40 23098.06 20898.16 134
ADS-MVSNet284.01 30482.20 31289.41 28189.04 34976.37 30487.57 30090.98 30872.71 33284.46 33592.45 28468.08 31596.48 30170.58 34883.97 35795.38 278
TinyColmap92.00 18392.76 15789.71 27795.62 23177.02 29390.72 23596.17 20387.70 19895.26 13896.29 14492.54 10496.45 30281.77 26898.77 13495.66 272
pmmvs488.95 24987.70 26492.70 18994.30 27185.60 17587.22 30892.16 29674.62 32089.75 28694.19 23777.97 27996.41 30382.71 25896.36 26896.09 251
USDC89.02 24589.08 23588.84 29195.07 24674.50 31988.97 28496.39 19173.21 32893.27 20496.28 14582.16 24896.39 30477.55 30798.80 13195.62 275
MVS_111021_LR93.66 13193.28 14794.80 10996.25 18790.95 6990.21 25095.43 22887.91 19093.74 19194.40 23092.88 9696.38 30590.39 13398.28 18397.07 213
PatchT87.51 27588.17 25685.55 32390.64 33066.91 35292.02 19486.09 33892.20 8789.05 29497.16 8564.15 33796.37 30689.21 17292.98 32993.37 324
MSLP-MVS++93.25 14593.88 12591.37 23096.34 17882.81 21193.11 14997.74 9689.37 16194.08 17795.29 19790.40 15696.35 30790.35 13698.25 18894.96 287
LF4IMVS92.72 16392.02 17494.84 10895.65 22891.99 5592.92 15496.60 18085.08 24292.44 23093.62 25686.80 20896.35 30786.81 21198.25 18896.18 249
PC_three_145275.31 31895.87 11295.75 17292.93 9396.34 30987.18 20898.68 14298.04 144
gg-mvs-nofinetune82.10 31781.02 31985.34 32687.46 35871.04 33894.74 10167.56 37196.44 2279.43 36198.99 645.24 37096.15 31067.18 35592.17 33788.85 352
JIA-IIPM85.08 29883.04 30791.19 23987.56 35586.14 16789.40 27584.44 35588.98 16982.20 35097.95 3956.82 35896.15 31076.55 31683.45 35991.30 344
KD-MVS_2432*160082.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
miper_refine_blended82.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
CL-MVSNet_self_test90.04 23089.90 22490.47 26095.24 24377.81 28386.60 32592.62 28785.64 23193.25 20793.92 24883.84 23196.06 31479.93 28898.03 21197.53 193
test_post190.21 2505.85 37265.36 33196.00 31579.61 292
PM-MVS93.33 13892.67 16195.33 8896.58 15994.06 2092.26 18492.18 29485.92 22696.22 9596.61 12285.64 22395.99 31690.35 13698.23 19195.93 258
test_post6.07 37165.74 33095.84 317
MSDG90.82 20390.67 20991.26 23494.16 27383.08 20786.63 32396.19 20190.60 13991.94 24591.89 29689.16 17295.75 31880.96 27994.51 30794.95 288
our_test_387.55 27487.59 26587.44 31191.76 31770.48 34183.83 34590.55 31279.79 28492.06 24492.17 29178.63 27495.63 31984.77 24194.73 30296.22 247
MDTV_nov1_ep1383.88 30389.42 34661.52 36788.74 29087.41 32973.99 32484.96 33394.01 24565.25 33295.53 32078.02 30293.16 324
baseline187.62 27387.31 26888.54 29694.71 26174.27 32293.10 15088.20 32386.20 22092.18 24193.04 26973.21 30395.52 32179.32 29585.82 35595.83 263
MIMVSNet87.13 28686.54 28488.89 29096.05 20276.11 30594.39 11688.51 31981.37 27588.27 30996.75 11172.38 30695.52 32165.71 35895.47 28695.03 285
Gipumacopyleft95.31 7795.80 6493.81 15497.99 8990.91 7096.42 3797.95 7896.69 1791.78 24898.85 1291.77 11995.49 32391.72 10899.08 9395.02 286
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7295.85 21296.47 2193.40 19997.46 6395.31 3395.47 32486.18 22598.78 13389.11 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp79.28 33078.62 33381.24 34285.97 36456.45 37086.91 31485.26 35072.97 33081.45 35689.17 33556.01 36095.45 32573.19 33376.68 36591.82 343
Anonymous2023120688.77 25388.29 25190.20 27096.31 18178.81 27089.56 27193.49 27174.26 32292.38 23395.58 18182.21 24695.43 32672.07 33898.75 13796.34 242
CHOSEN 280x42080.04 32977.97 33586.23 32190.13 33774.53 31872.87 36089.59 31566.38 35476.29 36485.32 35556.96 35795.36 32769.49 35194.72 30388.79 353
tpmrst82.85 31182.93 30982.64 33987.65 35458.99 36990.14 25487.90 32675.54 31583.93 33991.63 30266.79 32495.36 32781.21 27581.54 36393.57 323
Patchmatch-RL test88.81 25288.52 24589.69 27895.33 24279.94 24686.22 32792.71 28478.46 30195.80 11494.18 23866.25 32795.33 32989.22 17198.53 15593.78 315
tpm cat180.61 32779.46 33084.07 33588.78 35165.06 36289.26 27988.23 32262.27 36281.90 35489.66 32962.70 34695.29 33071.72 34080.60 36491.86 342
test20.0390.80 20490.85 20490.63 25695.63 23079.24 26289.81 26692.87 27989.90 15194.39 17096.40 13385.77 21995.27 33173.86 32999.05 9797.39 203
miper_lstm_enhance89.90 23389.80 22590.19 27191.37 32477.50 28783.82 34695.00 23684.84 24693.05 21394.96 21076.53 29495.20 33289.96 15498.67 14497.86 167
131486.46 29186.33 28886.87 31591.65 31974.54 31791.94 19994.10 26074.28 32184.78 33487.33 34683.03 23795.00 33378.72 29991.16 34491.06 346
MVS-HIRNet78.83 33280.60 32473.51 34993.07 29347.37 37287.10 31178.00 36868.94 34777.53 36397.26 7871.45 31094.62 33463.28 36188.74 35078.55 364
PVSNet76.22 2082.89 31082.37 31084.48 33293.96 27964.38 36478.60 35788.61 31871.50 33684.43 33786.36 35174.27 29994.60 33569.87 35093.69 31994.46 299
XXY-MVS92.58 16893.16 15090.84 25197.75 9779.84 24891.87 20596.22 20085.94 22595.53 12697.68 5092.69 10094.48 33683.21 25497.51 23598.21 132
GG-mvs-BLEND83.24 33885.06 36771.03 33994.99 9565.55 37274.09 36675.51 36544.57 37194.46 33759.57 36387.54 35384.24 358
PatchMatch-RL89.18 24288.02 26092.64 19195.90 21492.87 4688.67 29391.06 30780.34 28090.03 27791.67 30183.34 23394.42 33876.35 31794.84 30090.64 348
CNLPA91.72 18791.20 19693.26 17196.17 19291.02 6791.14 22595.55 22590.16 14790.87 26093.56 25986.31 21494.40 33979.92 29097.12 24694.37 301
SD-MVS95.19 8195.73 6693.55 16096.62 15788.88 10594.67 10398.05 6091.26 12197.25 5096.40 13395.42 2694.36 34092.72 8499.19 8397.40 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UnsupCasMVSNet_bld88.50 25788.03 25989.90 27595.52 23478.88 26887.39 30694.02 26379.32 29393.06 21294.02 24480.72 26194.27 34175.16 32393.08 32796.54 231
WTY-MVS86.93 28986.50 28788.24 30294.96 24774.64 31587.19 30992.07 29978.29 30288.32 30891.59 30378.06 27894.27 34174.88 32493.15 32595.80 265
MS-PatchMatch88.05 26487.75 26288.95 28893.28 28877.93 28087.88 29892.49 29075.42 31692.57 22793.59 25880.44 26294.24 34381.28 27392.75 33094.69 295
CMPMVSbinary68.83 2287.28 28085.67 29392.09 21288.77 35285.42 17790.31 24894.38 25570.02 34488.00 31293.30 26473.78 30294.03 34475.96 32096.54 26496.83 224
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet188.17 26288.24 25387.93 30592.21 30873.62 32580.75 35488.77 31782.51 26894.99 15295.11 20282.70 24293.70 34583.33 25293.83 31696.48 237
MDA-MVSNet_test_wron88.16 26388.23 25487.93 30592.22 30773.71 32480.71 35588.84 31682.52 26794.88 15795.14 20082.70 24293.61 34683.28 25393.80 31796.46 238
test-LLR83.58 30583.17 30684.79 33089.68 34266.86 35483.08 34784.52 35383.07 26182.85 34684.78 35662.86 34493.49 34782.85 25694.86 29894.03 308
test-mter81.21 32280.01 32984.79 33089.68 34266.86 35483.08 34784.52 35373.85 32582.85 34684.78 35643.66 37393.49 34782.85 25694.86 29894.03 308
pmmvs380.83 32478.96 33286.45 31787.23 35977.48 28884.87 33482.31 36063.83 36085.03 33189.50 33049.66 36693.10 34973.12 33495.10 29588.78 354
testgi90.38 21691.34 19387.50 31097.49 11671.54 33789.43 27395.16 23488.38 18394.54 16794.68 22392.88 9693.09 35071.60 34297.85 22197.88 165
UnsupCasMVSNet_eth90.33 21990.34 21590.28 26594.64 26480.24 23689.69 26895.88 21085.77 22893.94 18595.69 17481.99 25092.98 35184.21 24791.30 34297.62 187
EPMVS81.17 32380.37 32583.58 33685.58 36565.08 36190.31 24871.34 37077.31 30885.80 32891.30 30559.38 35392.70 35279.99 28582.34 36292.96 330
ADS-MVSNet82.25 31381.55 31484.34 33389.04 34965.30 35887.57 30085.13 35272.71 33284.46 33592.45 28468.08 31592.33 35370.58 34883.97 35795.38 278
sss87.23 28186.82 27888.46 29993.96 27977.94 27986.84 31692.78 28377.59 30587.61 31791.83 29878.75 27191.92 35477.84 30494.20 31395.52 277
N_pmnet88.90 25087.25 27093.83 15394.40 27093.81 3584.73 33587.09 33179.36 29293.26 20592.43 28779.29 26891.68 35577.50 30997.22 24496.00 255
PMMVS83.00 30981.11 31788.66 29583.81 37086.44 15882.24 35185.65 34361.75 36382.07 35185.64 35479.75 26591.59 35675.99 31993.09 32687.94 355
Patchmatch-test86.10 29386.01 29086.38 32090.63 33174.22 32389.57 27086.69 33385.73 23089.81 28392.83 27465.24 33391.04 35777.82 30695.78 27993.88 314
TESTMET0.1,179.09 33178.04 33482.25 34087.52 35664.03 36583.08 34780.62 36570.28 34380.16 35983.22 35944.13 37290.56 35879.95 28693.36 32092.15 338
DSMNet-mixed82.21 31481.56 31384.16 33489.57 34470.00 34690.65 23777.66 36954.99 36783.30 34497.57 5577.89 28090.50 35966.86 35695.54 28491.97 339
EMVS80.35 32880.28 32780.54 34384.73 36869.07 34872.54 36180.73 36487.80 19481.66 35581.73 36162.89 34389.84 36075.79 32194.65 30582.71 361
PVSNet_070.34 2174.58 33372.96 33679.47 34590.63 33166.24 35773.26 35883.40 35963.67 36178.02 36278.35 36472.53 30589.59 36156.68 36460.05 36882.57 362
E-PMN80.72 32680.86 32180.29 34485.11 36668.77 34972.96 35981.97 36187.76 19583.25 34583.01 36062.22 34789.17 36277.15 31294.31 31182.93 360
test0.0.03 182.48 31281.47 31685.48 32489.70 34173.57 32684.73 33581.64 36283.07 26188.13 31186.61 34862.86 34489.10 36366.24 35790.29 34793.77 316
FPMVS84.50 30183.28 30588.16 30396.32 18094.49 1585.76 32885.47 34683.09 26085.20 33094.26 23463.79 34086.58 36463.72 36091.88 34183.40 359
new_pmnet81.22 32181.01 32081.86 34190.92 32970.15 34384.03 34380.25 36770.83 34085.97 32789.78 32667.93 31884.65 36567.44 35491.90 34090.78 347
PMMVS281.31 32083.44 30474.92 34890.52 33346.49 37369.19 36285.23 35184.30 25187.95 31394.71 22276.95 28984.36 36664.07 35998.09 20693.89 313
wuyk23d87.83 26790.79 20678.96 34690.46 33588.63 10892.72 15990.67 31191.65 11398.68 1197.64 5396.06 1677.53 36759.84 36299.41 5270.73 365
MVEpermissive59.87 2373.86 33472.65 33777.47 34787.00 36274.35 32061.37 36460.93 37367.27 35269.69 36886.49 35081.24 25972.33 36856.45 36583.45 35985.74 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 33548.94 33854.93 35039.68 37412.38 37628.59 36590.09 3136.82 36941.10 37178.41 36354.41 36170.69 36950.12 36751.26 36981.72 363
DeepMVS_CXcopyleft53.83 35170.38 37364.56 36348.52 37533.01 36865.50 36974.21 36656.19 35946.64 37038.45 36970.07 36650.30 366
tmp_tt37.97 33644.33 33918.88 35211.80 37521.54 37563.51 36345.66 3764.23 37051.34 37050.48 36759.08 35422.11 37144.50 36868.35 36713.00 367
test1239.49 33812.01 3411.91 3532.87 3761.30 37782.38 3501.34 3781.36 3712.84 3726.56 3702.45 3760.97 3722.73 3705.56 3703.47 368
testmvs9.02 33911.42 3421.81 3542.77 3771.13 37879.44 3561.90 3771.18 3722.65 3736.80 3691.95 3770.87 3732.62 3713.45 3713.44 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.35 33731.13 3400.00 3550.00 3780.00 3790.00 36695.58 2240.00 3730.00 37491.15 30793.43 770.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.56 34010.09 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37390.77 1440.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.56 34010.08 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37490.69 3160.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7195.13 40
eth-test20.00 378
eth-test0.00 378
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9295.40 2793.49 4898.84 12198.00 149
IU-MVS98.51 4686.66 15296.83 16772.74 33195.83 11393.00 7699.29 6798.64 98
save fliter97.46 11988.05 12292.04 19297.08 14787.63 200
test072698.51 4686.69 15095.34 7798.18 3691.85 9897.63 3297.37 6895.58 22
GSMVS94.75 292
test_part298.21 7089.41 9496.72 71
sam_mvs166.64 32594.75 292
sam_mvs66.41 326
MTGPAbinary97.62 102
MTMP94.82 9854.62 374
test9_res88.16 19198.40 16597.83 170
agg_prior287.06 21098.36 17697.98 153
test_prior489.91 8390.74 234
test_prior290.21 25089.33 16390.77 26194.81 21690.41 15488.21 18798.55 151
新几何290.02 258
旧先验196.20 18984.17 19294.82 24395.57 18289.57 16897.89 21996.32 243
原ACMM289.34 276
test22296.95 14085.27 17988.83 28793.61 26765.09 35890.74 26394.85 21584.62 22897.36 24093.91 312
segment_acmp92.14 110
testdata188.96 28588.44 182
plane_prior797.71 10188.68 107
plane_prior697.21 13088.23 11886.93 204
plane_prior495.59 178
plane_prior388.43 11690.35 14593.31 200
plane_prior294.56 11091.74 109
plane_prior197.38 122
plane_prior88.12 12093.01 15188.98 16998.06 208
n20.00 379
nn0.00 379
door-mid92.13 298
test1196.65 178
door91.26 306
HQP5-MVS84.89 182
HQP-NCC96.36 17491.37 21987.16 20788.81 297
ACMP_Plane96.36 17491.37 21987.16 20788.81 297
BP-MVS86.55 218
HQP3-MVS97.31 13097.73 224
HQP2-MVS84.76 226
NP-MVS96.82 14887.10 13993.40 262
MDTV_nov1_ep13_2view42.48 37488.45 29567.22 35383.56 34266.80 32272.86 33594.06 307
ACMMP++_ref98.82 127
ACMMP++99.25 75
Test By Simon90.61 150