This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19296.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7599.82 799.62 10
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20396.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7099.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19396.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8799.83 599.68 4
K. test v393.37 14793.27 15793.66 15798.05 8582.62 22394.35 12686.62 35396.05 2997.51 4398.85 1276.59 30999.65 393.21 7798.20 20498.73 96
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26493.12 7397.94 2798.54 2581.19 26999.63 695.48 2399.69 1499.60 12
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20696.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8399.81 899.70 3
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4099.84 399.66 6
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15099.60 995.43 2699.53 3899.57 14
MVSFormer92.18 18792.23 17992.04 21894.74 27580.06 25697.15 1597.37 12388.98 17488.83 31792.79 30277.02 30299.60 996.41 996.75 27496.46 257
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21595.93 6794.84 25494.86 4198.49 1598.74 1681.45 26399.60 994.69 3199.39 5899.15 39
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14299.23 493.45 8299.57 1495.34 2899.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18699.57 1495.86 1599.69 1499.46 18
EPP-MVSNet93.91 13793.68 14394.59 12298.08 8285.55 18397.44 1294.03 27394.22 5094.94 16996.19 17982.07 25899.57 1487.28 22598.89 12698.65 107
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28393.73 27993.52 8199.55 1891.81 11499.45 4797.58 203
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12695.14 4299.51 2091.74 11699.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16195.15 22686.60 21599.50 2193.43 6996.81 27198.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3499.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM95.22 9487.21 13894.31 13190.92 32494.48 4692.80 23997.52 8185.27 22899.49 2496.58 899.57 3598.97 62
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25094.79 24393.56 7999.49 2493.47 6399.05 10697.89 176
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24194.52 25393.95 7699.49 2493.62 5599.22 8997.51 209
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12596.87 13295.26 3799.45 2792.77 8999.21 9099.00 54
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 23999.45 2795.52 2199.66 2199.36 24
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 14996.36 16895.68 2199.44 2994.41 3699.28 7998.97 62
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13799.76 1099.38 22
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19098.07 4592.02 12099.44 2993.38 7197.67 23797.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14495.09 4799.43 3292.99 8698.71 15198.50 122
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12194.85 5699.42 3393.49 6098.84 13398.00 161
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12896.28 17495.22 4099.42 3393.17 7999.06 10398.88 77
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21296.72 14594.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14096.68 14794.50 6699.42 3393.10 8199.26 8298.99 56
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16096.71 899.42 3393.99 4599.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16596.39 16594.77 5899.42 3393.17 7999.44 5098.58 119
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15396.57 15395.02 5099.41 3993.63 5499.11 10198.94 66
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13596.61 15194.93 5499.41 3993.78 5099.15 9899.00 54
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20697.84 8894.91 4096.80 7895.78 20090.42 15999.41 3991.60 12199.58 3399.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19190.10 16699.41 3991.60 12199.58 3399.26 30
RPMNet90.31 22990.14 23190.81 26491.01 35178.93 28292.52 19098.12 5191.91 10189.10 31496.89 13168.84 33699.41 3990.17 16092.70 35594.08 329
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17797.12 11591.85 12499.40 4693.45 6598.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5881.77 23295.90 6998.32 2493.93 5697.53 4297.56 7688.48 17999.40 4692.91 8899.83 599.68 4
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13595.10 4699.40 4693.47 6399.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17695.79 19792.76 10799.39 4988.72 19998.40 179
tttt051789.81 24488.90 25392.55 20197.00 14979.73 26895.03 10383.65 37589.88 15695.30 15194.79 24353.64 38899.39 4991.99 10898.79 14398.54 120
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18796.49 15594.56 6499.39 4993.57 5699.05 10698.93 68
X-MVStestdata90.70 21288.45 25997.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18726.89 39594.56 6499.39 4993.57 5699.05 10698.93 68
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12095.63 2399.39 4993.31 7298.88 12898.75 92
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4698.68 15598.04 156
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6699.31 6998.53 121
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12793.56 7999.37 5794.29 3999.42 5298.99 56
MVS_030493.92 13693.68 14394.64 11795.94 22985.83 17794.34 12788.14 34192.98 7791.09 28297.68 6786.73 21299.36 5896.64 799.59 2898.72 97
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15394.99 5299.36 5893.48 6299.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7399.29 7497.95 169
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7399.25 8398.49 124
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26796.24 2596.28 10196.36 16882.88 24799.35 6088.19 20599.52 4198.96 64
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6699.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4699.42 5298.89 75
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19090.14 16399.34 6392.11 10399.64 2499.16 38
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 3899.38 5998.92 72
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14296.17 18293.42 8599.34 6389.30 18098.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19190.10 16699.33 6890.11 16299.66 2199.26 30
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14794.37 7099.32 6992.41 9999.05 10698.64 112
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 5899.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FIs94.90 9795.35 8393.55 16198.28 6981.76 23395.33 9098.14 4993.05 7697.07 6397.18 11187.65 19399.29 7091.72 11799.69 1499.61 11
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13396.47 15695.37 3099.27 7493.78 5099.14 9998.48 125
thisisatest053088.69 27187.52 28292.20 20996.33 19679.36 27592.81 17884.01 37486.44 22093.67 20792.68 30653.62 38999.25 7589.65 17498.45 17798.00 161
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3599.34 6498.80 86
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25595.22 22591.03 14799.25 7592.11 10398.69 15497.90 174
dcpmvs_293.96 13495.01 9990.82 26397.60 12074.04 34393.68 15498.85 789.80 15897.82 2997.01 12491.14 14599.21 7890.56 14398.59 16499.19 36
CANet92.38 18191.99 18693.52 16693.82 30183.46 20991.14 24097.00 15589.81 15786.47 34894.04 26787.90 19199.21 7889.50 17698.27 19497.90 174
LS3D96.11 4795.83 6396.95 3694.75 27494.20 1997.34 1397.98 7597.31 1195.32 15096.77 13793.08 9799.20 8091.79 11598.16 20697.44 214
ETV-MVS92.99 16092.74 16793.72 15695.86 23286.30 16592.33 20197.84 8891.70 11892.81 23886.17 37692.22 11699.19 8188.03 21297.73 23295.66 291
EIA-MVS92.35 18292.03 18493.30 17295.81 23683.97 20492.80 17998.17 4587.71 20389.79 30787.56 36691.17 14499.18 8287.97 21397.27 25296.77 245
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 17897.23 10691.33 13599.16 8393.25 7698.30 19298.46 126
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 7899.74 1299.50 17
v1094.68 10695.27 8992.90 18596.57 17680.15 25294.65 11597.57 11090.68 14197.43 4898.00 5188.18 18399.15 8494.84 3099.55 3799.41 20
h-mvs3392.89 16391.99 18695.58 7796.97 15090.55 7693.94 14594.01 27689.23 16893.95 19996.19 17976.88 30599.14 8691.02 13195.71 29597.04 233
HyFIR lowres test87.19 30185.51 31292.24 20897.12 14780.51 24985.03 36096.06 20966.11 38191.66 27292.98 29870.12 33399.14 8675.29 34695.23 30997.07 230
iter_conf_final90.23 23089.32 24392.95 18194.65 28181.46 23894.32 13095.40 24085.61 23892.84 23795.37 22254.58 38599.13 8892.16 10298.94 12498.25 139
iter_conf0588.94 26488.09 27491.50 23692.74 31776.97 31492.80 17995.92 21582.82 27993.65 20895.37 22249.41 39299.13 8890.82 13699.28 7998.40 130
test_040295.73 6196.22 4094.26 13598.19 7685.77 17893.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12499.29 7497.88 177
GeoE94.55 11094.68 11394.15 13797.23 13985.11 18894.14 13897.34 13088.71 18195.26 15495.50 21294.65 6199.12 9190.94 13498.40 17998.23 140
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15695.85 1899.12 9190.45 14599.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
lessismore_v093.87 15198.05 8583.77 20780.32 38697.13 6097.91 5977.49 29499.11 9392.62 9598.08 21398.74 95
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14596.03 18794.66 6099.08 9490.70 14098.97 119
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 13999.73 1399.59 13
v894.65 10795.29 8792.74 19096.65 17079.77 26794.59 11697.17 14391.86 10397.47 4797.93 5588.16 18499.08 9494.32 3799.47 4399.38 22
PVSNet_Blended_VisFu91.63 19691.20 20592.94 18397.73 11083.95 20592.14 20997.46 11878.85 31792.35 25894.98 23484.16 23699.08 9486.36 24296.77 27395.79 284
v124093.29 14993.71 14192.06 21796.01 22477.89 29991.81 22797.37 12385.12 24896.69 8396.40 16186.67 21399.07 9894.51 3398.76 14699.22 33
v192192093.26 15193.61 14692.19 21096.04 22378.31 29391.88 22297.24 13985.17 24696.19 10996.19 17986.76 21199.05 9994.18 4198.84 13399.22 33
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15499.05 9986.43 24199.60 2699.10 47
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9299.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419293.20 15693.54 15092.16 21496.05 21978.26 29491.95 21597.14 14584.98 25295.96 11596.11 18387.08 20499.04 10293.79 4998.84 13399.17 37
WR-MVS93.49 14493.72 14092.80 18997.57 12380.03 25890.14 27195.68 22293.70 6196.62 8695.39 22087.21 20199.04 10287.50 22099.64 2499.33 26
v119293.49 14493.78 13892.62 19796.16 21179.62 26991.83 22697.22 14186.07 22796.10 11296.38 16687.22 20099.02 10494.14 4298.88 12899.22 33
LCM-MVSNet-Re94.20 12694.58 11693.04 17695.91 23083.13 21793.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29698.54 16996.96 236
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13396.25 1499.00 10693.10 8199.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 21995.46 21388.89 17798.98 10789.80 16998.82 13997.80 187
GBi-Net93.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
test193.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19695.99 6396.56 18692.38 8597.03 6798.53 2690.12 16498.98 10788.78 19799.16 9798.65 107
Effi-MVS+-dtu93.90 13892.60 17397.77 394.74 27596.67 594.00 14295.41 23889.94 15491.93 26992.13 31790.12 16498.97 11187.68 21897.48 24497.67 199
v114493.50 14393.81 13692.57 20096.28 20179.61 27091.86 22596.96 15886.95 21795.91 11996.32 17087.65 19398.96 11293.51 5998.88 12899.13 41
NCCC94.08 13093.54 15095.70 7596.49 18489.90 8392.39 19996.91 16490.64 14292.33 26194.60 25090.58 15898.96 11290.21 15997.70 23598.23 140
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12196.48 1098.95 114
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 4899.49 4299.36 24
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21695.59 20786.93 20798.95 11489.26 18498.51 17398.60 117
plane_prior597.81 9198.95 11489.26 18498.51 17398.60 117
IterMVS-SCA-FT91.65 19591.55 19591.94 21993.89 29879.22 27987.56 32593.51 28391.53 12295.37 14796.62 15078.65 28498.90 11891.89 11294.95 31497.70 196
v2v48293.29 14993.63 14592.29 20696.35 19478.82 28791.77 22996.28 19888.45 18695.70 13296.26 17686.02 22198.90 11893.02 8498.81 14199.14 40
EPNet89.80 24588.25 26794.45 13083.91 39586.18 16893.87 14687.07 35191.16 13180.64 38494.72 24578.83 28198.89 12085.17 25398.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TEST996.45 18789.46 9090.60 25596.92 16279.09 31390.49 29094.39 25691.31 13698.88 121
train_agg92.71 17191.83 19195.35 8496.45 18789.46 9090.60 25596.92 16279.37 30890.49 29094.39 25691.20 14198.88 12188.66 20098.43 17897.72 195
CDPH-MVS92.67 17291.83 19195.18 9696.94 15288.46 11890.70 25297.07 15177.38 32392.34 26095.08 23192.67 10998.88 12185.74 24898.57 16698.20 143
QAPM92.88 16492.77 16593.22 17495.82 23483.31 21096.45 3997.35 12983.91 26493.75 20496.77 13789.25 17598.88 12184.56 26697.02 26197.49 210
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23188.41 18897.09 6198.08 4478.69 28398.87 12595.63 1799.53 3898.81 84
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32185.87 17592.42 19794.69 26093.67 6496.13 11095.84 19591.20 14198.86 12693.78 5098.23 19999.03 52
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32085.98 17292.44 19594.69 26093.70 6196.12 11195.81 19691.24 13898.86 12693.76 5398.22 20198.98 60
V4293.43 14693.58 14792.97 17995.34 25881.22 24292.67 18496.49 19187.25 21196.20 10796.37 16787.32 19998.85 12892.39 10098.21 20298.85 81
Fast-Effi-MVS+91.28 20590.86 21292.53 20295.45 25382.53 22489.25 30196.52 19085.00 25189.91 30388.55 36292.94 10098.84 12984.72 26595.44 30296.22 266
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3299.53 3898.99 56
xiu_mvs_v1_base_debu91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base_debi91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
test_896.37 18989.14 10090.51 25896.89 16579.37 30890.42 29294.36 25891.20 14198.82 131
PS-MVSNAJ88.86 26688.99 25088.48 31594.88 26674.71 33386.69 34495.60 22480.88 29587.83 33787.37 36990.77 15098.82 13182.52 28294.37 32891.93 363
test111190.39 22390.61 21989.74 29098.04 8871.50 35995.59 8179.72 38889.41 16495.94 11798.14 3970.79 33198.81 13688.52 20299.32 6898.90 74
xiu_mvs_v2_base89.00 26189.19 24488.46 31694.86 26874.63 33586.97 33595.60 22480.88 29587.83 33788.62 36191.04 14698.81 13682.51 28394.38 32791.93 363
FMVSNet292.78 16892.73 16992.95 18195.40 25481.98 23094.18 13595.53 23388.63 18296.05 11397.37 9181.31 26598.81 13687.38 22498.67 15798.06 153
FE-MVS89.06 25788.29 26491.36 24094.78 27279.57 27196.77 2890.99 32284.87 25492.96 23496.29 17260.69 37698.80 13980.18 30797.11 25895.71 287
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17395.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20199.04 11198.78 88
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17193.97 14493.28 28794.49 4596.24 10397.78 6387.99 18998.79 14088.92 19399.14 9998.34 132
test1294.43 13195.95 22786.75 15096.24 20189.76 30889.79 17198.79 14097.95 22397.75 193
agg_prior96.20 20888.89 10696.88 16690.21 29798.78 143
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28791.92 12398.78 14389.11 18999.24 8596.92 237
PHI-MVS94.34 11893.80 13795.95 5995.65 24591.67 6294.82 10997.86 8587.86 19993.04 23194.16 26491.58 13098.78 14390.27 15598.96 12197.41 215
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16299.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet94.03 13194.27 12793.31 17198.87 2182.36 22795.51 8691.78 31697.19 1296.32 9698.60 2284.24 23598.75 14787.09 22898.83 13898.81 84
114514_t90.51 21789.80 23792.63 19698.00 9182.24 22893.40 16297.29 13565.84 38289.40 31294.80 24286.99 20598.75 14783.88 27198.61 16196.89 239
FMVSNet390.78 21090.32 22792.16 21493.03 31479.92 26292.54 18994.95 25186.17 22695.10 16296.01 18869.97 33498.75 14786.74 23198.38 18397.82 185
IterMVS-LS93.78 13994.28 12592.27 20796.27 20279.21 28091.87 22396.78 17391.77 11396.57 8997.07 11887.15 20298.74 15091.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS92.05 18992.16 18091.72 22694.44 28580.13 25487.62 32297.25 13887.34 21092.22 26393.18 29489.54 17398.73 15189.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest051584.72 32182.99 33089.90 28792.96 31575.33 33284.36 36783.42 37677.37 32488.27 33286.65 37153.94 38798.72 15282.56 28197.40 24995.67 290
alignmvs93.26 15192.85 16494.50 12695.70 24187.45 13393.45 16095.76 21991.58 12095.25 15692.42 31381.96 26098.72 15291.61 12097.87 22797.33 223
MCST-MVS92.91 16292.51 17494.10 14097.52 12585.72 18091.36 23797.13 14780.33 29992.91 23694.24 26091.23 13998.72 15289.99 16697.93 22497.86 179
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 13992.91 10298.72 15291.19 12899.42 5298.32 133
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22796.80 17289.66 16093.90 20295.44 21592.80 10698.72 15292.74 9198.52 17198.32 133
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14598.84 13397.57 204
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20583.23 21392.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10198.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
原ACMM192.87 18696.91 15584.22 19997.01 15476.84 32989.64 31094.46 25488.00 18898.70 15981.53 29498.01 21995.70 289
ANet_high94.83 10096.28 3790.47 27196.65 17073.16 34894.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 14899.68 1899.53 15
hse-mvs292.24 18691.20 20595.38 8396.16 21190.65 7592.52 19092.01 31489.23 16893.95 19992.99 29776.88 30598.69 16191.02 13196.03 28796.81 243
AUN-MVS90.05 23988.30 26395.32 8896.09 21690.52 7792.42 19792.05 31382.08 28888.45 32992.86 29965.76 35398.69 16188.91 19496.07 28696.75 247
test250685.42 31584.57 31887.96 32397.81 10366.53 37796.14 5856.35 40089.04 17293.55 21198.10 4242.88 40098.68 16388.09 20999.18 9498.67 105
test_prior94.61 11895.95 22787.23 13797.36 12898.68 16397.93 171
Effi-MVS+92.79 16792.74 16792.94 18395.10 26283.30 21194.00 14297.53 11491.36 12589.35 31390.65 34194.01 7598.66 16587.40 22395.30 30796.88 241
canonicalmvs94.59 10894.69 11194.30 13495.60 24987.03 14395.59 8198.24 3491.56 12195.21 15992.04 31994.95 5398.66 16591.45 12597.57 24197.20 228
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25287.06 14296.63 3197.28 13791.82 11094.34 18997.41 8890.60 15798.65 16792.47 9898.11 21097.70 196
ECVR-MVScopyleft90.12 23490.16 22890.00 28697.81 10372.68 35395.76 7578.54 39189.04 17295.36 14898.10 4270.51 33298.64 16887.10 22799.18 9498.67 105
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15399.60 2698.72 97
HQP4-MVS88.81 31998.61 17098.15 148
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Fast-Effi-MVS+-dtu92.77 16992.16 18094.58 12494.66 28088.25 12092.05 21196.65 18189.62 16190.08 29991.23 32992.56 11098.60 17286.30 24396.27 28496.90 238
HQP-MVS92.09 18891.49 19993.88 15096.36 19184.89 19091.37 23497.31 13287.16 21288.81 31993.40 28884.76 23298.60 17286.55 23897.73 23298.14 149
无先验89.94 27795.75 22070.81 36498.59 17481.17 29994.81 313
DeepC-MVS_fast89.96 793.73 14093.44 15294.60 12196.14 21387.90 12693.36 16497.14 14585.53 24193.90 20295.45 21491.30 13798.59 17489.51 17598.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet_DTU89.85 24389.17 24591.87 22092.20 32780.02 25990.79 24895.87 21786.02 22882.53 37591.77 32280.01 27498.57 17685.66 25097.70 23597.01 234
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13395.04 4898.56 17792.77 8999.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jason89.17 25488.32 26291.70 22895.73 24080.07 25588.10 31893.22 28871.98 35690.09 29892.79 30278.53 28798.56 17787.43 22297.06 25996.46 257
jason: jason.
F-COLMAP92.28 18491.06 20995.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32594.04 26788.41 18198.55 17980.17 30895.99 28997.39 219
lupinMVS88.34 27687.31 28491.45 23794.74 27580.06 25687.23 33092.27 30671.10 36188.83 31791.15 33077.02 30298.53 18086.67 23496.75 27495.76 285
PCF-MVS84.52 1789.12 25587.71 27993.34 17096.06 21885.84 17686.58 34997.31 13268.46 37593.61 20993.89 27587.51 19698.52 18167.85 38098.11 21095.66 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10683.15 21694.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17299.59 2899.08 48
EI-MVSNet92.99 16093.26 15892.19 21092.12 33079.21 28092.32 20294.67 26291.77 11395.24 15795.85 19387.14 20398.49 18391.99 10898.26 19598.86 78
casdiffmvspermissive94.32 11994.80 10592.85 18796.05 21981.44 23992.35 20098.05 6491.53 12295.75 12796.80 13693.35 8798.49 18391.01 13398.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSTER89.32 25288.75 25591.03 25390.10 36376.62 31990.85 24694.67 26282.27 28695.24 15795.79 19761.09 37498.49 18390.49 14498.26 19597.97 168
UGNet93.08 15792.50 17594.79 10893.87 29987.99 12595.07 10194.26 27090.64 14287.33 34497.67 6986.89 20998.49 18388.10 20898.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline94.26 12294.80 10592.64 19496.08 21780.99 24593.69 15398.04 6890.80 13894.89 17296.32 17093.19 9298.48 18791.68 11998.51 17398.43 128
LFMVS91.33 20391.16 20891.82 22296.27 20279.36 27595.01 10485.61 36396.04 3094.82 17497.06 11972.03 32798.46 18884.96 26198.70 15397.65 200
FA-MVS(test-final)91.81 19291.85 19091.68 22994.95 26579.99 26096.00 6293.44 28587.80 20094.02 19797.29 10277.60 29398.45 18988.04 21197.49 24396.61 249
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
thres600view787.66 28787.10 29389.36 29796.05 21973.17 34792.72 18185.31 36691.89 10293.29 21890.97 33363.42 36598.39 19173.23 35796.99 26696.51 252
IB-MVS77.21 1983.11 33181.05 34289.29 29891.15 34975.85 32785.66 35586.00 35879.70 30482.02 37986.61 37248.26 39398.39 19177.84 32892.22 36093.63 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
v14892.87 16593.29 15491.62 23196.25 20577.72 30291.28 23895.05 24789.69 15995.93 11896.04 18687.34 19898.38 19490.05 16597.99 22098.78 88
CDS-MVSNet89.55 24688.22 27093.53 16495.37 25786.49 15789.26 29993.59 28079.76 30391.15 28092.31 31477.12 30098.38 19477.51 33297.92 22595.71 287
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 18592.13 18392.68 19394.53 28484.10 20295.70 7697.03 15382.44 28591.14 28196.42 15988.47 18098.38 19485.95 24697.47 24595.55 295
MVS_Test92.57 17693.29 15490.40 27493.53 30575.85 32792.52 19096.96 15888.73 17992.35 25896.70 14690.77 15098.37 19892.53 9795.49 30096.99 235
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11879.49 27394.86 10897.12 14889.59 16296.87 7497.65 7090.40 16198.34 19989.08 19099.35 6198.75 92
VPNet93.08 15793.76 13991.03 25398.60 3975.83 32991.51 23295.62 22391.84 10795.74 12897.10 11789.31 17498.32 20085.07 26099.06 10398.93 68
AdaColmapbinary91.63 19691.36 20292.47 20495.56 25086.36 16392.24 20896.27 19988.88 17889.90 30492.69 30591.65 12998.32 20077.38 33497.64 23892.72 357
thres100view90087.35 29686.89 29588.72 30896.14 21373.09 34993.00 17385.31 36692.13 9593.26 22190.96 33463.42 36598.28 20271.27 36996.54 27994.79 315
tfpn200view987.05 30486.52 30388.67 30995.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27994.79 315
thres40087.20 30086.52 30389.24 30195.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27996.51 252
Vis-MVSNet (Re-imp)90.42 22090.16 22891.20 24997.66 11877.32 30794.33 12887.66 34691.20 12992.99 23295.13 22875.40 31498.28 20277.86 32799.19 9297.99 164
eth_miper_zixun_eth90.72 21190.61 21991.05 25292.04 33376.84 31686.91 33796.67 18085.21 24594.41 18593.92 27379.53 27798.26 20689.76 17197.02 26198.06 153
PLCcopyleft85.34 1590.40 22188.92 25194.85 10596.53 18290.02 8191.58 23196.48 19280.16 30086.14 35092.18 31585.73 22398.25 20776.87 33794.61 32496.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
新几何193.17 17597.16 14487.29 13594.43 26567.95 37691.29 27694.94 23686.97 20698.23 20881.06 30097.75 23193.98 334
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
1112_ss88.42 27487.41 28391.45 23796.69 16780.99 24589.72 28596.72 17873.37 34787.00 34690.69 33977.38 29798.20 21081.38 29593.72 34095.15 302
DP-MVS Recon92.31 18391.88 18993.60 15997.18 14386.87 14791.10 24297.37 12384.92 25392.08 26694.08 26688.59 17898.20 21083.50 27298.14 20895.73 286
TAMVS90.16 23289.05 24793.49 16896.49 18486.37 16290.34 26592.55 30380.84 29792.99 23294.57 25281.94 26198.20 21073.51 35598.21 20295.90 280
ET-MVSNet_ETH3D86.15 31084.27 32191.79 22393.04 31381.28 24087.17 33386.14 35679.57 30683.65 36788.66 35957.10 38098.18 21387.74 21795.40 30395.90 280
tfpnnormal94.27 12094.87 10392.48 20397.71 11280.88 24794.55 12295.41 23893.70 6196.67 8497.72 6691.40 13498.18 21387.45 22199.18 9498.36 131
c3_l91.32 20491.42 20091.00 25692.29 32376.79 31787.52 32896.42 19485.76 23394.72 18093.89 27582.73 25198.16 21590.93 13598.55 16798.04 156
PVSNet_BlendedMVS90.35 22689.96 23391.54 23494.81 27078.80 28990.14 27196.93 16079.43 30788.68 32695.06 23286.27 21898.15 21680.27 30498.04 21697.68 198
PVSNet_Blended88.74 26988.16 27390.46 27394.81 27078.80 28986.64 34596.93 16074.67 33988.68 32689.18 35786.27 21898.15 21680.27 30496.00 28894.44 324
testing383.66 32882.52 33387.08 33295.84 23365.84 37989.80 28377.17 39488.17 19390.84 28588.63 36030.95 40298.11 21884.05 26997.19 25597.28 226
OMC-MVS94.22 12593.69 14295.81 6997.25 13891.27 6492.27 20597.40 12287.10 21594.56 18295.42 21693.74 7798.11 21886.62 23598.85 13298.06 153
DeepPCF-MVS90.46 694.20 12693.56 14996.14 5295.96 22692.96 4389.48 29197.46 11885.14 24796.23 10495.42 21693.19 9298.08 22090.37 14998.76 14697.38 221
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20593.12 9598.06 22186.28 24498.61 16197.95 169
miper_ehance_all_eth90.48 21890.42 22490.69 26691.62 34476.57 32086.83 34096.18 20683.38 26794.06 19492.66 30782.20 25698.04 22289.79 17097.02 26197.45 212
test_yl90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
DCV-MVSNet90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
testdata298.03 22380.24 306
EGC-MVSNET80.97 34875.73 36196.67 4298.85 2494.55 1596.83 2396.60 1832.44 3975.32 39898.25 3792.24 11598.02 22691.85 11399.21 9097.45 212
DPM-MVS89.35 25188.40 26092.18 21396.13 21584.20 20086.96 33696.15 20875.40 33687.36 34391.55 32783.30 24298.01 22782.17 28896.62 27794.32 327
thres20085.85 31285.18 31387.88 32694.44 28572.52 35489.08 30386.21 35588.57 18591.44 27488.40 36364.22 36098.00 22868.35 37895.88 29393.12 350
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18696.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 2999.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DIV-MVS_self_test90.65 21490.56 22190.91 26091.85 33776.99 31286.75 34295.36 24185.52 24394.06 19494.89 23777.37 29897.99 23090.28 15498.97 11997.76 191
cl____90.65 21490.56 22190.91 26091.85 33776.98 31386.75 34295.36 24185.53 24194.06 19494.89 23777.36 29997.98 23190.27 15598.98 11497.76 191
Anonymous2024052192.86 16693.57 14890.74 26596.57 17675.50 33194.15 13695.60 22489.38 16595.90 12097.90 6180.39 27397.96 23292.60 9699.68 1898.75 92
TAPA-MVS88.58 1092.49 17791.75 19394.73 11096.50 18389.69 8692.91 17697.68 10178.02 32192.79 24094.10 26590.85 14997.96 23284.76 26498.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 26896.48 2195.38 14593.63 28194.89 5597.94 23495.38 2796.92 26795.17 300
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
TransMVSNet (Re)95.27 8796.04 5292.97 17998.37 6581.92 23195.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21496.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12198.12 20998.03 159
miper_enhance_ethall88.42 27487.87 27790.07 28388.67 37775.52 33085.10 35995.59 22875.68 33292.49 24989.45 35378.96 28097.88 23987.86 21697.02 26196.81 243
BH-RMVSNet90.47 21990.44 22390.56 27095.21 26178.65 29189.15 30293.94 27888.21 19192.74 24294.22 26186.38 21697.88 23978.67 32495.39 30495.14 303
Test_1112_low_res87.50 29386.58 30090.25 27896.80 16477.75 30187.53 32796.25 20069.73 37186.47 34893.61 28375.67 31297.88 23979.95 31093.20 34795.11 304
MAR-MVS90.32 22888.87 25494.66 11594.82 26991.85 5794.22 13494.75 25880.91 29487.52 34288.07 36586.63 21497.87 24276.67 33896.21 28594.25 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
CLD-MVS91.82 19191.41 20193.04 17696.37 18983.65 20886.82 34197.29 13584.65 25792.27 26289.67 35092.20 11897.85 24583.95 27099.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TSAR-MVS + GP.93.07 15992.41 17795.06 9995.82 23490.87 7290.97 24492.61 30288.04 19594.61 18193.79 27888.08 18597.81 24689.41 17798.39 18296.50 255
SSC-MVS90.16 23292.96 16081.78 36697.88 9948.48 39890.75 24987.69 34596.02 3196.70 8297.63 7285.60 22797.80 24785.73 24998.60 16399.06 50
ambc92.98 17896.88 15683.01 21995.92 6896.38 19696.41 9297.48 8688.26 18297.80 24789.96 16798.93 12598.12 151
baseline283.38 33081.54 33988.90 30491.38 34672.84 35288.78 31081.22 38378.97 31479.82 38687.56 36661.73 37297.80 24774.30 35290.05 37396.05 273
OpenMVS_ROBcopyleft85.12 1689.52 24889.05 24790.92 25894.58 28381.21 24391.10 24293.41 28677.03 32793.41 21393.99 27183.23 24397.80 24779.93 31294.80 31993.74 340
BH-untuned90.68 21390.90 21090.05 28595.98 22579.57 27190.04 27494.94 25287.91 19694.07 19393.00 29687.76 19297.78 25179.19 32195.17 31092.80 356
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21397.78 6391.21 14097.77 25291.06 13097.06 25998.80 86
MVS_111021_HR93.63 14293.42 15394.26 13596.65 17086.96 14689.30 29896.23 20288.36 19093.57 21094.60 25093.45 8297.77 25290.23 15898.38 18398.03 159
GA-MVS87.70 28586.82 29690.31 27593.27 30877.22 30984.72 36492.79 29685.11 24989.82 30590.07 34266.80 34697.76 25484.56 26694.27 33195.96 275
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11694.11 7497.75 25596.26 1198.72 14996.89 239
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5780.82 24892.08 21096.68 17993.82 5996.29 9998.56 2490.10 16697.75 25590.10 16499.66 2199.24 32
MG-MVS89.54 24789.80 23788.76 30794.88 26672.47 35589.60 28792.44 30585.82 23189.48 31195.98 18982.85 24997.74 25781.87 28995.27 30896.08 271
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 18995.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 25890.17 16099.42 5298.99 56
EPNet_dtu85.63 31384.37 31989.40 29686.30 38874.33 34091.64 23088.26 33784.84 25572.96 39389.85 34371.27 33097.69 25976.60 33997.62 23996.18 268
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet87.39 29586.71 29989.44 29493.40 30676.11 32494.93 10790.00 33057.17 39195.71 13197.37 9164.77 35997.68 26092.67 9494.37 32894.52 322
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26195.70 1698.48 17697.74 194
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26188.20 20498.66 15997.79 188
CR-MVSNet87.89 28187.12 29290.22 27991.01 35178.93 28292.52 19092.81 29473.08 35089.10 31496.93 12867.11 34397.64 26388.80 19692.70 35594.08 329
patchmatchnet-post91.71 32366.22 35297.59 264
SCA87.43 29487.21 28888.10 32292.01 33471.98 35789.43 29388.11 34282.26 28788.71 32492.83 30078.65 28497.59 26479.61 31693.30 34694.75 317
cl2289.02 25888.50 25890.59 26989.76 36576.45 32186.62 34794.03 27382.98 27792.65 24492.49 30872.05 32697.53 26688.93 19297.02 26197.78 189
Patchmtry90.11 23589.92 23490.66 26790.35 36077.00 31192.96 17492.81 29490.25 15194.74 17896.93 12867.11 34397.52 26785.17 25398.98 11497.46 211
Anonymous20240521192.58 17492.50 17592.83 18896.55 17883.22 21492.43 19691.64 31894.10 5295.59 13496.64 14981.88 26297.50 26885.12 25798.52 17197.77 190
ab-mvs92.40 18092.62 17291.74 22597.02 14881.65 23495.84 7195.50 23486.95 21792.95 23597.56 7690.70 15597.50 26879.63 31597.43 24796.06 272
FMVSNet587.82 28486.56 30191.62 23192.31 32279.81 26693.49 15894.81 25783.26 26991.36 27596.93 12852.77 39097.49 27076.07 34298.03 21797.55 207
diffmvspermissive91.74 19391.93 18891.15 25193.06 31278.17 29588.77 31197.51 11786.28 22292.42 25493.96 27288.04 18797.46 27190.69 14196.67 27697.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ppachtmachnet_test88.61 27288.64 25688.50 31491.76 33970.99 36284.59 36592.98 29179.30 31292.38 25693.53 28679.57 27697.45 27286.50 24097.17 25697.07 230
IterMVS90.18 23190.16 22890.21 28093.15 31075.98 32687.56 32592.97 29286.43 22194.09 19196.40 16178.32 28897.43 27387.87 21594.69 32297.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HY-MVS82.50 1886.81 30785.93 30989.47 29393.63 30377.93 29794.02 14191.58 31975.68 33283.64 36893.64 28077.40 29697.42 27471.70 36692.07 36293.05 353
TR-MVS87.70 28587.17 28989.27 29994.11 29279.26 27788.69 31391.86 31581.94 28990.69 28889.79 34782.82 25097.42 27472.65 36191.98 36391.14 369
mvs_anonymous90.37 22591.30 20487.58 32892.17 32968.00 37289.84 28194.73 25983.82 26693.22 22597.40 8987.54 19597.40 27687.94 21495.05 31297.34 222
MVP-Stereo90.07 23888.92 25193.54 16396.31 19886.49 15790.93 24595.59 22879.80 30191.48 27395.59 20780.79 27097.39 27778.57 32591.19 36796.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VNet92.67 17292.96 16091.79 22396.27 20280.15 25291.95 21594.98 25092.19 9494.52 18496.07 18587.43 19797.39 27784.83 26298.38 18397.83 183
testdata91.03 25396.87 15782.01 22994.28 26971.55 35792.46 25195.42 21685.65 22597.38 27982.64 28097.27 25293.70 341
tpm84.38 32484.08 32285.30 34890.47 35863.43 38889.34 29685.63 36277.24 32687.62 34095.03 23361.00 37597.30 28079.26 32091.09 36995.16 301
PAPM_NR91.03 20790.81 21491.68 22996.73 16581.10 24493.72 15296.35 19788.19 19288.77 32392.12 31885.09 23197.25 28182.40 28593.90 33796.68 248
PAPM81.91 34280.11 35287.31 33193.87 29972.32 35684.02 37093.22 28869.47 37276.13 39189.84 34472.15 32597.23 28253.27 39389.02 37592.37 360
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14184.37 19493.73 15195.26 24384.45 25995.76 12598.00 5191.85 12497.21 28395.62 1897.82 22998.98 60
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 16996.69 16784.37 19493.38 16395.13 24684.50 25895.40 14497.55 8091.77 12697.20 28495.59 1997.79 23098.69 104
gm-plane-assit87.08 38659.33 39371.22 35983.58 38397.20 28473.95 353
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18094.15 13695.44 23583.25 27095.51 13798.05 4692.54 11197.19 28695.55 2097.46 24698.94 66
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 17993.65 15595.23 24483.30 26895.13 16097.56 7692.22 11697.17 28795.51 2297.41 24898.64 112
PAPR87.65 28886.77 29890.27 27792.85 31677.38 30688.56 31696.23 20276.82 33084.98 35989.75 34986.08 22097.16 28872.33 36293.35 34596.26 265
CHOSEN 1792x268887.19 30185.92 31091.00 25697.13 14679.41 27484.51 36695.60 22464.14 38590.07 30094.81 24078.26 28997.14 28973.34 35695.38 30596.46 257
patch_mono-292.46 17892.72 17091.71 22796.65 17078.91 28588.85 30897.17 14383.89 26592.45 25296.76 13989.86 17097.09 29090.24 15798.59 16499.12 43
ITE_SJBPF95.95 5997.34 13593.36 4096.55 18991.93 10094.82 17495.39 22091.99 12197.08 29185.53 25197.96 22297.41 215
API-MVS91.52 19991.61 19491.26 24594.16 29086.26 16794.66 11494.82 25591.17 13092.13 26591.08 33290.03 16997.06 29279.09 32297.35 25190.45 373
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20496.25 17798.03 297.02 29392.08 10595.55 29898.45 127
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23398.17 4590.72 13995.30 15196.47 15687.94 19096.98 29491.41 12697.61 24098.30 136
WB-MVS89.44 25092.15 18281.32 36797.73 11048.22 39989.73 28487.98 34395.24 3696.05 11396.99 12585.18 22996.95 29582.45 28497.97 22198.78 88
D2MVS89.93 24189.60 24290.92 25894.03 29578.40 29288.69 31394.85 25378.96 31593.08 22895.09 23074.57 31696.94 29688.19 20598.96 12197.41 215
cascas87.02 30586.28 30789.25 30091.56 34576.45 32184.33 36896.78 17371.01 36286.89 34785.91 37781.35 26496.94 29683.09 27695.60 29794.35 326
MDA-MVSNet-bldmvs91.04 20690.88 21191.55 23394.68 27980.16 25185.49 35692.14 31090.41 14994.93 17095.79 19785.10 23096.93 29885.15 25594.19 33497.57 204
BH-w/o87.21 29987.02 29487.79 32794.77 27377.27 30887.90 32093.21 29081.74 29089.99 30288.39 36483.47 24096.93 29871.29 36892.43 35989.15 374
CostFormer83.09 33282.21 33585.73 34489.27 37267.01 37390.35 26486.47 35470.42 36783.52 37093.23 29361.18 37396.85 30077.21 33588.26 37893.34 349
pmmvs-eth3d91.54 19890.73 21793.99 14295.76 23987.86 12890.83 24793.98 27778.23 32094.02 19796.22 17882.62 25496.83 30186.57 23698.33 18997.29 225
MVS84.98 31984.30 32087.01 33391.03 35077.69 30391.94 21794.16 27159.36 39084.23 36587.50 36885.66 22496.80 30271.79 36493.05 35286.54 383
tpmvs84.22 32583.97 32384.94 35087.09 38565.18 38191.21 23988.35 33682.87 27885.21 35490.96 33465.24 35796.75 30379.60 31885.25 38392.90 355
pmmvs587.87 28287.14 29090.07 28393.26 30976.97 31488.89 30692.18 30773.71 34688.36 33093.89 27576.86 30796.73 30480.32 30396.81 27196.51 252
CVMVSNet85.16 31784.72 31586.48 33892.12 33070.19 36492.32 20288.17 34056.15 39290.64 28995.85 19367.97 34196.69 30588.78 19790.52 37192.56 358
tpm281.46 34380.35 35084.80 35189.90 36465.14 38290.44 25985.36 36565.82 38382.05 37892.44 31157.94 37996.69 30570.71 37388.49 37792.56 358
PatchmatchNetpermissive85.22 31684.64 31686.98 33489.51 37069.83 36990.52 25787.34 34978.87 31687.22 34592.74 30466.91 34596.53 30781.77 29086.88 38094.58 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
旧先验290.00 27668.65 37492.71 24396.52 30885.15 255
new-patchmatchnet88.97 26290.79 21583.50 36194.28 28955.83 39685.34 35893.56 28286.18 22595.47 14095.73 20383.10 24496.51 30985.40 25298.06 21498.16 147
SDMVSNet94.43 11495.02 9892.69 19297.93 9682.88 22191.92 21995.99 21493.65 6595.51 13798.63 2094.60 6396.48 31087.57 21999.35 6198.70 101
ADS-MVSNet284.01 32682.20 33689.41 29589.04 37376.37 32387.57 32390.98 32372.71 35484.46 36292.45 30968.08 33996.48 31070.58 37483.97 38495.38 298
TinyColmap92.00 19092.76 16689.71 29195.62 24877.02 31090.72 25196.17 20787.70 20495.26 15496.29 17292.54 11196.45 31281.77 29098.77 14595.66 291
pmmvs488.95 26387.70 28092.70 19194.30 28885.60 18287.22 33192.16 30974.62 34089.75 30994.19 26277.97 29196.41 31382.71 27996.36 28396.09 270
USDC89.02 25889.08 24688.84 30695.07 26374.50 33888.97 30496.39 19573.21 34993.27 22096.28 17482.16 25796.39 31477.55 33198.80 14295.62 294
MVS_111021_LR93.66 14193.28 15694.80 10796.25 20590.95 6990.21 26895.43 23787.91 19693.74 20694.40 25592.88 10496.38 31590.39 14798.28 19397.07 230
PatchT87.51 29288.17 27285.55 34590.64 35466.91 37492.02 21386.09 35792.20 9389.05 31697.16 11264.15 36196.37 31689.21 18792.98 35393.37 348
MSLP-MVS++93.25 15393.88 13591.37 23996.34 19582.81 22293.11 17097.74 9889.37 16694.08 19295.29 22490.40 16196.35 31790.35 15098.25 19794.96 307
LF4IMVS92.72 17092.02 18594.84 10695.65 24591.99 5492.92 17596.60 18385.08 25092.44 25393.62 28286.80 21096.35 31786.81 23098.25 19796.18 268
PC_three_145275.31 33795.87 12295.75 20292.93 10196.34 31987.18 22698.68 15598.04 156
gg-mvs-nofinetune82.10 34181.02 34385.34 34787.46 38371.04 36094.74 11167.56 39796.44 2379.43 38798.99 645.24 39496.15 32067.18 38292.17 36188.85 376
JIA-IIPM85.08 31883.04 32991.19 25087.56 38186.14 16989.40 29584.44 37388.98 17482.20 37697.95 5456.82 38296.15 32076.55 34083.45 38691.30 368
KD-MVS_2432*160082.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
miper_refine_blended82.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
CL-MVSNet_self_test90.04 24089.90 23590.47 27195.24 26077.81 30086.60 34892.62 30185.64 23693.25 22393.92 27383.84 23796.06 32479.93 31298.03 21797.53 208
test_post190.21 2685.85 39965.36 35596.00 32579.61 316
PM-MVS93.33 14892.67 17195.33 8696.58 17594.06 2192.26 20692.18 30785.92 23096.22 10596.61 15185.64 22695.99 32690.35 15098.23 19995.93 277
sd_testset93.94 13594.39 11992.61 19897.93 9683.24 21293.17 16995.04 24893.65 6595.51 13798.63 2094.49 6795.89 32781.72 29299.35 6198.70 101
test_post6.07 39865.74 35495.84 328
MSDG90.82 20890.67 21891.26 24594.16 29083.08 21886.63 34696.19 20590.60 14491.94 26891.89 32089.16 17695.75 32980.96 30194.51 32594.95 308
our_test_387.55 29187.59 28187.44 33091.76 33970.48 36383.83 37190.55 32879.79 30292.06 26792.17 31678.63 28695.63 33084.77 26394.73 32096.22 266
MDTV_nov1_ep1383.88 32589.42 37161.52 39088.74 31287.41 34773.99 34484.96 36094.01 27065.25 35695.53 33178.02 32693.16 348
baseline187.62 28987.31 28488.54 31294.71 27874.27 34193.10 17188.20 33986.20 22492.18 26493.04 29573.21 32195.52 33279.32 31985.82 38295.83 282
MIMVSNet87.13 30386.54 30288.89 30596.05 21976.11 32494.39 12588.51 33581.37 29188.27 33296.75 14172.38 32495.52 33265.71 38595.47 30195.03 305
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27098.85 1291.77 12695.49 33491.72 11799.08 10295.02 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 21896.47 2293.40 21597.46 8795.31 3595.47 33586.18 24598.78 14489.11 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp79.28 35578.62 35781.24 36885.97 39056.45 39586.91 33785.26 36872.97 35281.45 38389.17 35856.01 38495.45 33673.19 35876.68 39291.82 366
Anonymous2023120688.77 26888.29 26490.20 28196.31 19878.81 28889.56 28993.49 28474.26 34392.38 25695.58 21082.21 25595.43 33772.07 36398.75 14896.34 261
CHOSEN 280x42080.04 35377.97 36086.23 34390.13 36274.53 33772.87 38789.59 33166.38 38076.29 39085.32 37956.96 38195.36 33869.49 37794.72 32188.79 377
tpmrst82.85 33582.93 33182.64 36387.65 38058.99 39490.14 27187.90 34475.54 33483.93 36691.63 32566.79 34895.36 33881.21 29881.54 39093.57 347
Patchmatch-RL test88.81 26788.52 25789.69 29295.33 25979.94 26186.22 35192.71 29878.46 31895.80 12494.18 26366.25 35195.33 34089.22 18698.53 17093.78 338
tpm cat180.61 35179.46 35484.07 35888.78 37565.06 38489.26 29988.23 33862.27 38881.90 38089.66 35162.70 37095.29 34171.72 36580.60 39191.86 365
test20.0390.80 20990.85 21390.63 26895.63 24779.24 27889.81 28292.87 29389.90 15594.39 18696.40 16185.77 22295.27 34273.86 35499.05 10697.39 219
miper_lstm_enhance89.90 24289.80 23790.19 28291.37 34777.50 30483.82 37295.00 24984.84 25593.05 23094.96 23576.53 31095.20 34389.96 16798.67 15797.86 179
Syy-MVS84.81 32084.93 31484.42 35591.71 34163.36 38985.89 35281.49 38181.03 29285.13 35681.64 38777.44 29595.00 34485.94 24794.12 33594.91 311
myMVS_eth3d79.62 35478.26 35883.72 35991.71 34161.25 39185.89 35281.49 38181.03 29285.13 35681.64 38732.12 40195.00 34471.17 37294.12 33594.91 311
131486.46 30986.33 30686.87 33691.65 34374.54 33691.94 21794.10 27274.28 34284.78 36187.33 37083.03 24695.00 34478.72 32391.16 36891.06 370
MVS-HIRNet78.83 35780.60 34873.51 37693.07 31147.37 40087.10 33478.00 39268.94 37377.53 38997.26 10371.45 32994.62 34763.28 38888.74 37678.55 391
PVSNet76.22 2082.89 33482.37 33484.48 35493.96 29664.38 38678.60 38488.61 33471.50 35884.43 36486.36 37574.27 31794.60 34869.87 37693.69 34194.46 323
XXY-MVS92.58 17493.16 15990.84 26297.75 10779.84 26391.87 22396.22 20485.94 22995.53 13697.68 6792.69 10894.48 34983.21 27597.51 24298.21 142
GG-mvs-BLEND83.24 36285.06 39371.03 36194.99 10665.55 39874.09 39275.51 39244.57 39594.46 35059.57 39087.54 37984.24 385
PatchMatch-RL89.18 25388.02 27692.64 19495.90 23192.87 4588.67 31591.06 32180.34 29890.03 30191.67 32483.34 24194.42 35176.35 34194.84 31890.64 372
CNLPA91.72 19491.20 20593.26 17396.17 21091.02 6791.14 24095.55 23190.16 15290.87 28493.56 28586.31 21794.40 35279.92 31497.12 25794.37 325
SD-MVS95.19 8895.73 6793.55 16196.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16195.42 2894.36 35392.72 9399.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UnsupCasMVSNet_bld88.50 27388.03 27589.90 28795.52 25178.88 28687.39 32994.02 27579.32 31193.06 22994.02 26980.72 27194.27 35475.16 34793.08 35196.54 250
WTY-MVS86.93 30686.50 30588.24 31994.96 26474.64 33487.19 33292.07 31278.29 31988.32 33191.59 32678.06 29094.27 35474.88 34893.15 34995.80 283
MS-PatchMatch88.05 28087.75 27888.95 30393.28 30777.93 29787.88 32192.49 30475.42 33592.57 24893.59 28480.44 27294.24 35681.28 29692.75 35494.69 320
CMPMVSbinary68.83 2287.28 29785.67 31192.09 21688.77 37685.42 18590.31 26694.38 26670.02 36988.00 33593.30 29073.78 32094.03 35775.96 34496.54 27996.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet188.17 27888.24 26887.93 32492.21 32673.62 34580.75 38188.77 33382.51 28494.99 16895.11 22982.70 25293.70 35883.33 27393.83 33896.48 256
MDA-MVSNet_test_wron88.16 27988.23 26987.93 32492.22 32573.71 34480.71 38288.84 33282.52 28394.88 17395.14 22782.70 25293.61 35983.28 27493.80 33996.46 257
test-LLR83.58 32983.17 32884.79 35289.68 36766.86 37583.08 37384.52 37183.07 27582.85 37384.78 38162.86 36893.49 36082.85 27794.86 31694.03 332
test-mter81.21 34680.01 35384.79 35289.68 36766.86 37583.08 37384.52 37173.85 34582.85 37384.78 38143.66 39793.49 36082.85 27794.86 31694.03 332
pmmvs380.83 34978.96 35686.45 33987.23 38477.48 30584.87 36182.31 37863.83 38685.03 35889.50 35249.66 39193.10 36273.12 35995.10 31188.78 378
testgi90.38 22491.34 20387.50 32997.49 12771.54 35889.43 29395.16 24588.38 18994.54 18394.68 24792.88 10493.09 36371.60 36797.85 22897.88 177
UnsupCasMVSNet_eth90.33 22790.34 22690.28 27694.64 28280.24 25089.69 28695.88 21685.77 23293.94 20195.69 20481.99 25992.98 36484.21 26891.30 36697.62 201
EPMVS81.17 34780.37 34983.58 36085.58 39165.08 38390.31 26671.34 39677.31 32585.80 35291.30 32859.38 37792.70 36579.99 30982.34 38992.96 354
ADS-MVSNet82.25 33781.55 33884.34 35689.04 37365.30 38087.57 32385.13 37072.71 35484.46 36292.45 30968.08 33992.33 36670.58 37483.97 38495.38 298
test_vis1_n_192089.45 24989.85 23688.28 31893.59 30476.71 31890.67 25397.78 9679.67 30590.30 29696.11 18376.62 30892.17 36790.31 15293.57 34295.96 275
sss87.23 29886.82 29688.46 31693.96 29677.94 29686.84 33992.78 29777.59 32287.61 34191.83 32178.75 28291.92 36877.84 32894.20 33295.52 296
N_pmnet88.90 26587.25 28793.83 15494.40 28793.81 3584.73 36287.09 35079.36 31093.26 22192.43 31279.29 27991.68 36977.50 33397.22 25496.00 274
PMMVS83.00 33381.11 34188.66 31083.81 39686.44 16082.24 37785.65 36161.75 38982.07 37785.64 37879.75 27591.59 37075.99 34393.09 35087.94 380
test_fmvs392.42 17992.40 17892.46 20593.80 30287.28 13693.86 14797.05 15276.86 32896.25 10298.66 1882.87 24891.26 37195.44 2596.83 27098.82 82
Patchmatch-test86.10 31186.01 30886.38 34290.63 35574.22 34289.57 28886.69 35285.73 23489.81 30692.83 30065.24 35791.04 37277.82 33095.78 29493.88 337
test_fmvs290.62 21690.40 22591.29 24491.93 33685.46 18492.70 18396.48 19274.44 34194.91 17197.59 7475.52 31390.57 37393.44 6696.56 27897.84 182
TESTMET0.1,179.09 35678.04 35982.25 36487.52 38264.03 38783.08 37380.62 38570.28 36880.16 38583.22 38444.13 39690.56 37479.95 31093.36 34492.15 361
DSMNet-mixed82.21 33881.56 33784.16 35789.57 36970.00 36890.65 25477.66 39354.99 39383.30 37197.57 7577.89 29290.50 37566.86 38395.54 29991.97 362
mvsany_test389.11 25688.21 27191.83 22191.30 34890.25 7988.09 31978.76 38976.37 33196.43 9198.39 3383.79 23890.43 37686.57 23694.20 33294.80 314
test_cas_vis1_n_192088.25 27788.27 26688.20 32092.19 32878.92 28489.45 29295.44 23575.29 33893.23 22495.65 20671.58 32890.23 37788.05 21093.55 34395.44 297
EMVS80.35 35280.28 35180.54 36984.73 39469.07 37072.54 38880.73 38487.80 20081.66 38181.73 38662.89 36789.84 37875.79 34594.65 32382.71 388
test_vis1_n89.01 26089.01 24989.03 30292.57 31982.46 22692.62 18796.06 20973.02 35190.40 29395.77 20174.86 31589.68 37990.78 13894.98 31394.95 308
PVSNet_070.34 2174.58 35972.96 36279.47 37190.63 35566.24 37873.26 38583.40 37763.67 38778.02 38878.35 39172.53 32289.59 38056.68 39160.05 39582.57 389
test_fmvs1_n88.73 27088.38 26189.76 28992.06 33282.53 22492.30 20496.59 18571.14 36092.58 24795.41 21968.55 33789.57 38191.12 12995.66 29697.18 229
test_fmvs187.59 29087.27 28688.54 31288.32 37881.26 24190.43 26295.72 22170.55 36691.70 27194.63 24868.13 33889.42 38290.59 14295.34 30694.94 310
E-PMN80.72 35080.86 34580.29 37085.11 39268.77 37172.96 38681.97 37987.76 20283.25 37283.01 38562.22 37189.17 38377.15 33694.31 33082.93 387
test0.0.03 182.48 33681.47 34085.48 34689.70 36673.57 34684.73 36281.64 38083.07 27588.13 33486.61 37262.86 36889.10 38466.24 38490.29 37293.77 339
mvsany_test183.91 32782.93 33186.84 33786.18 38985.93 17381.11 38075.03 39570.80 36588.57 32894.63 24883.08 24587.38 38580.39 30286.57 38187.21 381
test_vis3_rt90.40 22190.03 23291.52 23592.58 31888.95 10390.38 26397.72 10073.30 34897.79 3097.51 8477.05 30187.10 38689.03 19194.89 31598.50 122
dmvs_re84.69 32283.94 32486.95 33592.24 32482.93 22089.51 29087.37 34884.38 26185.37 35385.08 38072.44 32386.59 38768.05 37991.03 37091.33 367
FPMVS84.50 32383.28 32788.16 32196.32 19794.49 1685.76 35485.47 36483.09 27485.20 35594.26 25963.79 36486.58 38863.72 38791.88 36583.40 386
dmvs_testset78.23 35878.99 35575.94 37491.99 33555.34 39788.86 30778.70 39082.69 28081.64 38279.46 38975.93 31185.74 38948.78 39582.85 38886.76 382
test_vis1_rt85.58 31484.58 31788.60 31187.97 37986.76 14985.45 35793.59 28066.43 37987.64 33989.20 35679.33 27885.38 39081.59 29389.98 37493.66 342
new_pmnet81.22 34581.01 34481.86 36590.92 35370.15 36584.03 36980.25 38770.83 36385.97 35189.78 34867.93 34284.65 39167.44 38191.90 36490.78 371
PMMVS281.31 34483.44 32674.92 37590.52 35746.49 40169.19 38985.23 36984.30 26287.95 33694.71 24676.95 30484.36 39264.07 38698.09 21293.89 336
test_f86.65 30887.13 29185.19 34990.28 36186.11 17086.52 35091.66 31769.76 37095.73 13097.21 11069.51 33581.28 39389.15 18894.40 32688.17 379
wuyk23d87.83 28390.79 21578.96 37290.46 35988.63 11092.72 18190.67 32791.65 11998.68 1197.64 7196.06 1577.53 39459.84 38999.41 5670.73 392
MVEpermissive59.87 2373.86 36072.65 36377.47 37387.00 38774.35 33961.37 39160.93 39967.27 37769.69 39486.49 37481.24 26872.33 39556.45 39283.45 38685.74 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 36148.94 36454.93 37739.68 40012.38 40428.59 39290.09 3296.82 39541.10 39778.41 39054.41 38670.69 39650.12 39451.26 39681.72 390
DeepMVS_CXcopyleft53.83 37870.38 39964.56 38548.52 40233.01 39465.50 39574.21 39356.19 38346.64 39738.45 39770.07 39350.30 393
tmp_tt37.97 36244.33 36518.88 37911.80 40121.54 40363.51 39045.66 4034.23 39651.34 39650.48 39459.08 37822.11 39844.50 39668.35 39413.00 394
test1239.49 36412.01 3671.91 3802.87 4021.30 40582.38 3761.34 4051.36 3982.84 3996.56 3972.45 4030.97 3992.73 3985.56 3973.47 395
testmvs9.02 36511.42 3681.81 3812.77 4031.13 40679.44 3831.90 4041.18 3992.65 4006.80 3961.95 4040.87 4002.62 3993.45 3983.44 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k23.35 36331.13 3660.00 3820.00 4040.00 4070.00 39395.58 2300.00 4000.00 40191.15 33093.43 840.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.56 36610.09 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40090.77 1500.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.56 36610.08 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40190.69 3390.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS61.25 39174.55 349
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 404
eth-test0.00 404
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12195.40 2993.49 6098.84 13398.00 161
IU-MVS98.51 5186.66 15496.83 17072.74 35395.83 12393.00 8599.29 7498.64 112
save fliter97.46 13088.05 12492.04 21297.08 15087.63 206
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
GSMVS94.75 317
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 34994.75 317
sam_mvs66.41 350
MTGPAbinary97.62 105
MTMP94.82 10954.62 401
test9_res88.16 20798.40 17997.83 183
agg_prior287.06 22998.36 18897.98 165
test_prior489.91 8290.74 250
test_prior290.21 26889.33 16790.77 28694.81 24090.41 16088.21 20398.55 167
新几何290.02 275
旧先验196.20 20884.17 20194.82 25595.57 21189.57 17297.89 22696.32 262
原ACMM289.34 296
test22296.95 15185.27 18788.83 30993.61 27965.09 38490.74 28794.85 23984.62 23497.36 25093.91 335
segment_acmp92.14 119
testdata188.96 30588.44 187
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 207
plane_prior495.59 207
plane_prior388.43 11990.35 15093.31 216
plane_prior294.56 12091.74 115
plane_prior197.38 132
plane_prior88.12 12293.01 17288.98 17498.06 214
n20.00 406
nn0.00 406
door-mid92.13 311
test1196.65 181
door91.26 320
HQP5-MVS84.89 190
HQP-NCC96.36 19191.37 23487.16 21288.81 319
ACMP_Plane96.36 19191.37 23487.16 21288.81 319
BP-MVS86.55 238
HQP3-MVS97.31 13297.73 232
HQP2-MVS84.76 232
NP-MVS96.82 16287.10 14193.40 288
MDTV_nov1_ep13_2view42.48 40288.45 31767.22 37883.56 36966.80 34672.86 36094.06 331
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 156