This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 9
dcpmvs_298.78 7599.11 3697.78 25699.56 6993.67 31399.06 6299.86 599.50 2699.66 2099.26 7997.21 14099.99 298.00 10099.91 4899.68 38
HyFIR lowres test97.19 23796.60 26198.96 14399.62 5797.28 20695.17 33099.50 6494.21 30799.01 12498.32 26186.61 32099.99 297.10 14899.84 6899.60 57
bld_raw_dy_0_6499.07 4299.00 4699.29 8599.85 1598.18 13299.11 5699.40 10099.33 4699.38 6199.44 5595.21 23099.97 499.31 2099.98 999.73 27
patch_mono-298.51 12598.63 8298.17 23399.38 11894.78 27897.36 22299.69 1798.16 14198.49 20799.29 7497.06 14599.97 498.29 8399.91 4899.76 21
jajsoiax99.58 699.61 799.48 5599.87 1098.61 9899.28 3699.66 2299.09 7599.89 699.68 1499.53 499.97 499.50 1099.99 599.87 5
mvs_tets99.63 599.67 599.49 5299.88 798.61 9899.34 2099.71 1499.27 5299.90 499.74 899.68 299.97 499.55 899.99 599.88 3
DTE-MVSNet99.43 1599.35 1899.66 499.71 3799.30 1799.31 2699.51 6299.64 1399.56 3099.46 5098.23 5499.97 498.78 5199.93 3399.72 28
MVSFormer98.26 15298.43 11597.77 25798.88 23093.89 30799.39 1699.56 4599.11 6598.16 22898.13 27293.81 26699.97 499.26 2399.57 18999.43 146
test_djsdf99.52 999.51 999.53 3899.86 1298.74 8799.39 1699.56 4599.11 6599.70 1599.73 1099.00 1599.97 499.26 2399.98 999.89 2
h-mvs3397.77 19597.33 21699.10 11899.21 15097.84 17198.35 12398.57 28899.11 6598.58 19599.02 12488.65 31299.96 1198.11 9096.34 35899.49 114
IterMVS-SCA-FT97.85 18998.18 14796.87 30499.27 13891.16 35095.53 32099.25 16799.10 7299.41 5499.35 6793.10 27699.96 1198.65 6199.94 2899.49 114
UA-Net99.47 1199.40 1499.70 299.49 9299.29 1899.80 399.72 1399.82 399.04 12099.81 398.05 7199.96 1198.85 4899.99 599.86 8
PS-MVSNAJss99.46 1299.49 1099.35 7499.90 498.15 13699.20 4499.65 2399.48 2899.92 399.71 1298.07 6899.96 1199.53 9100.00 199.93 1
PEN-MVS99.41 1799.34 2099.62 699.73 3099.14 5399.29 3299.54 5499.62 1899.56 3099.42 5798.16 6499.96 1198.78 5199.93 3399.77 17
K. test v398.00 17297.66 19199.03 13599.79 2497.56 19299.19 4892.47 36799.62 1899.52 3799.66 1889.61 30399.96 1199.25 2599.81 8199.56 79
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 3199.90 299.86 799.78 599.58 399.95 1799.00 4099.95 1899.78 15
Fast-Effi-MVS+-dtu98.27 15098.09 15898.81 16398.43 30098.11 13997.61 19999.50 6498.64 10297.39 28597.52 31398.12 6799.95 1796.90 16798.71 30598.38 315
Effi-MVS+-dtu98.26 15297.90 17599.35 7498.02 32599.49 398.02 15799.16 19698.29 12697.64 26497.99 28496.44 18399.95 1796.66 18998.93 29598.60 304
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6499.34 2099.69 1798.93 9299.65 2399.72 1198.93 1999.95 1799.11 32100.00 199.82 10
v7n99.53 899.57 899.41 6599.88 798.54 10699.45 1099.61 2799.66 1299.68 1999.66 1898.44 4299.95 1799.73 299.96 1599.75 24
RRT_MVS99.09 3998.94 5099.55 2699.87 1098.82 8299.48 998.16 30799.49 2799.59 2999.65 2094.79 24699.95 1799.45 1399.96 1599.88 3
PS-CasMVS99.40 1999.33 2199.62 699.71 3799.10 6199.29 3299.53 5899.53 2599.46 4699.41 6098.23 5499.95 1798.89 4699.95 1899.81 12
TranMVSNet+NR-MVSNet99.17 3399.07 4299.46 6099.37 12398.87 7598.39 11999.42 9799.42 3699.36 6699.06 11198.38 4599.95 1798.34 8099.90 5599.57 74
Vis-MVSNetpermissive99.34 2399.36 1799.27 9199.73 3098.26 12399.17 4999.78 899.11 6599.27 8299.48 4898.82 2199.95 1798.94 4299.93 3399.59 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052198.69 9198.87 5398.16 23599.77 2595.11 27399.08 5799.44 8899.34 4599.33 7199.55 3594.10 26399.94 2699.25 2599.96 1599.42 149
CP-MVSNet99.21 3299.09 3999.56 2499.65 5098.96 7199.13 5399.34 12599.42 3699.33 7199.26 7997.01 15099.94 2698.74 5599.93 3399.79 14
PVSNet_Blended_VisFu98.17 16298.15 15398.22 23099.73 3095.15 27097.36 22299.68 1994.45 30298.99 12799.27 7796.87 15799.94 2697.13 14699.91 4899.57 74
IterMVS97.73 19698.11 15796.57 31199.24 14390.28 35195.52 32299.21 17698.86 9599.33 7199.33 7193.11 27599.94 2698.49 7199.94 2899.48 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.57 799.67 599.28 8899.89 698.09 14099.14 5299.93 199.82 399.93 299.81 399.17 1299.94 2699.31 20100.00 199.82 10
test_low_dy_conf_00199.26 2899.16 3199.55 2699.86 1298.86 7699.37 1898.87 25199.42 3699.46 4699.68 1496.44 18399.93 3199.39 1599.94 2899.87 5
CS-MVS99.13 3799.10 3899.24 9999.06 19299.15 4899.36 1999.88 399.36 4498.21 22598.46 24598.68 2999.93 3199.03 3899.85 6498.64 303
CHOSEN 280x42095.51 29995.47 29095.65 33198.25 31288.27 35993.25 36598.88 24993.53 31894.65 35697.15 33086.17 32499.93 3197.41 12999.93 3398.73 295
CS-MVS-test99.13 3799.09 3999.26 9499.13 17598.97 6799.31 2699.88 399.44 3398.16 22898.51 23598.64 3099.93 3198.91 4399.85 6498.88 274
UniMVSNet_NR-MVSNet98.86 6698.68 7699.40 6799.17 16698.74 8797.68 19199.40 10099.14 6399.06 11398.59 22796.71 17199.93 3198.57 6599.77 10299.53 99
DU-MVS98.82 6898.63 8299.39 6899.16 16898.74 8797.54 20799.25 16798.84 9799.06 11398.76 19496.76 16799.93 3198.57 6599.77 10299.50 110
WR-MVS_H99.33 2499.22 2899.65 599.71 3799.24 2499.32 2299.55 4999.46 3199.50 4299.34 6997.30 12999.93 3198.90 4499.93 3399.77 17
SixPastTwentyTwo98.75 8198.62 8499.16 10999.83 1997.96 16199.28 3698.20 30499.37 4199.70 1599.65 2092.65 28599.93 3199.04 3799.84 6899.60 57
IterMVS-LS98.55 11798.70 7398.09 23799.48 10094.73 28097.22 23499.39 10398.97 8799.38 6199.31 7396.00 20099.93 3198.58 6399.97 1299.60 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051795.64 29594.98 30597.64 26699.36 12493.81 30998.72 8590.47 37398.08 14598.67 18098.34 25873.88 37499.92 4097.77 11299.51 20799.20 220
xiu_mvs_v1_base_debu97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
zzz-MVS98.79 7298.52 9699.61 999.67 4799.36 1097.33 22499.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
mvs-test197.83 19297.48 20598.89 15398.02 32599.20 3397.20 23599.16 19698.29 12696.46 32697.17 32896.44 18399.92 4096.66 18997.90 33497.54 349
xiu_mvs_v1_base97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base_debi97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
MTAPA98.88 6398.64 8199.61 999.67 4799.36 1098.43 11699.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
LCM-MVSNet-Re98.64 10198.48 10599.11 11698.85 23598.51 10898.49 10899.83 798.37 11899.69 1799.46 5098.21 5999.92 4094.13 29299.30 24498.91 270
lessismore_v098.97 14299.73 3097.53 19486.71 37899.37 6499.52 4189.93 30199.92 4098.99 4199.72 12699.44 142
OurMVSNet-221017-099.37 2299.31 2399.53 3899.91 398.98 6699.63 699.58 3199.44 3399.78 1099.76 696.39 18699.92 4099.44 1499.92 4299.68 38
GeoE99.05 4398.99 4999.25 9799.44 10898.35 12098.73 8499.56 4598.42 11798.91 14498.81 18698.94 1899.91 5098.35 7999.73 11999.49 114
Fast-Effi-MVS+97.67 20097.38 21098.57 19498.71 25997.43 19997.23 23199.45 8594.82 29496.13 33096.51 33998.52 3899.91 5096.19 22498.83 29898.37 317
mvsmamba99.24 3199.15 3499.49 5299.83 1998.85 7799.41 1499.55 4999.54 2499.40 5799.52 4195.86 21199.91 5099.32 1999.95 1899.70 35
jason97.45 21797.35 21397.76 25899.24 14393.93 30395.86 30798.42 29594.24 30698.50 20698.13 27294.82 24199.91 5097.22 13799.73 11999.43 146
jason: jason.
lupinMVS97.06 24696.86 24197.65 26498.88 23093.89 30795.48 32397.97 31493.53 31898.16 22897.58 30993.81 26699.91 5096.77 17899.57 18999.17 231
bld_raw_conf00599.41 1799.38 1599.51 4799.85 1598.88 7499.44 1199.74 1299.68 999.51 4099.61 2597.25 13699.91 5099.37 1699.95 1899.72 28
thisisatest053095.27 30294.45 31197.74 26099.19 15794.37 28997.86 17490.20 37497.17 22298.22 22497.65 30573.53 37599.90 5696.90 16799.35 23598.95 261
xiu_mvs_v2_base97.16 24097.49 20296.17 32098.54 28992.46 33095.45 32498.84 26197.25 21297.48 27996.49 34098.31 5199.90 5696.34 21698.68 30796.15 366
PS-MVSNAJ97.08 24597.39 20996.16 32298.56 28792.46 33095.24 32998.85 26097.25 21297.49 27895.99 34998.07 6899.90 5696.37 21398.67 30896.12 367
DSMNet-mixed97.42 21997.60 19796.87 30499.15 17291.46 34198.54 10099.12 20692.87 32797.58 26999.63 2296.21 19399.90 5695.74 24599.54 19799.27 207
DROMVSNet99.09 3999.05 4399.20 10399.28 13698.93 7299.24 4099.84 699.08 7798.12 23398.37 25498.72 2699.90 5699.05 3699.77 10298.77 290
MIMVSNet199.38 2199.32 2299.55 2699.86 1299.19 3799.41 1499.59 2999.59 2199.71 1499.57 3197.12 14299.90 5699.21 2899.87 6299.54 91
QAPM97.31 22696.81 24698.82 16198.80 24797.49 19599.06 6299.19 18390.22 35297.69 26199.16 9796.91 15599.90 5690.89 35199.41 22599.07 240
EPP-MVSNet98.30 14698.04 16499.07 12599.56 6997.83 17299.29 3298.07 31199.03 8198.59 19399.13 10492.16 28999.90 5696.87 17099.68 14799.49 114
3Dnovator98.27 298.81 7098.73 6699.05 13298.76 25097.81 17799.25 3999.30 14898.57 11298.55 20199.33 7197.95 8099.90 5697.16 14099.67 15399.44 142
OpenMVScopyleft96.65 797.09 24496.68 25398.32 22298.32 30897.16 21798.86 7899.37 10989.48 35696.29 32999.15 10196.56 17699.90 5692.90 31999.20 25897.89 331
MSC_two_6792asdad99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
No_MVS99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
DPE-MVScopyleft98.59 11198.26 13899.57 1899.27 13899.15 4897.01 24699.39 10397.67 16899.44 5198.99 13697.53 11199.89 6695.40 25999.68 14799.66 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part197.91 17797.46 20799.27 9198.80 24798.18 13299.07 6099.36 11399.75 599.63 2699.49 4682.20 35399.89 6698.87 4799.95 1899.74 26
CANet97.87 18397.76 18298.19 23297.75 33895.51 25996.76 26499.05 21997.74 16396.93 30098.21 26895.59 21999.89 6697.86 10999.93 3399.19 225
APDe-MVS98.99 4798.79 6199.60 1399.21 15099.15 4898.87 7699.48 7497.57 17799.35 6899.24 8397.83 8499.89 6697.88 10799.70 13699.75 24
PGM-MVS98.66 9898.37 12599.55 2699.53 7899.18 3898.23 13199.49 7297.01 23098.69 17898.88 16898.00 7499.89 6695.87 23999.59 17999.58 69
abl_698.99 4798.78 6299.61 999.45 10699.46 498.60 9399.50 6498.59 10899.24 9199.04 12098.54 3799.89 6696.45 20899.62 16799.50 110
mPP-MVS98.64 10198.34 12999.54 3199.54 7699.17 3998.63 9099.24 17297.47 18698.09 23798.68 20697.62 10299.89 6696.22 22299.62 16799.57 74
CP-MVS98.70 8998.42 11799.52 4399.36 12499.12 5898.72 8599.36 11397.54 18198.30 22098.40 24997.86 8399.89 6696.53 20399.72 12699.56 79
IB-MVS91.63 1992.24 33990.90 34396.27 31797.22 35891.24 34894.36 35393.33 36592.37 33292.24 37094.58 37066.20 38399.89 6693.16 31794.63 37097.66 344
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DVP-MVS++98.90 6198.70 7399.51 4798.43 30099.15 4899.43 1299.32 13298.17 13899.26 8699.02 12498.18 6199.88 7797.07 15099.45 22099.49 114
SED-MVS98.91 5998.72 6899.49 5299.49 9299.17 3998.10 14599.31 13898.03 14699.66 2099.02 12498.36 4699.88 7796.91 16299.62 16799.41 152
test_241102_TWO99.30 14898.03 14699.26 8699.02 12497.51 11499.88 7796.91 16299.60 17599.66 42
ETV-MVS98.03 16897.86 17898.56 19898.69 26798.07 14697.51 21199.50 6498.10 14397.50 27795.51 35798.41 4399.88 7796.27 22099.24 25397.71 343
DVP-MVScopyleft98.77 7898.52 9699.52 4399.50 8599.21 2798.02 15798.84 26197.97 14999.08 11199.02 12497.61 10399.88 7796.99 15699.63 16499.48 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 13899.08 11199.02 12497.89 8199.88 7797.07 15099.71 13199.70 35
test_0728_SECOND99.60 1399.50 8599.23 2598.02 15799.32 13299.88 7796.99 15699.63 16499.68 38
MVS_030497.64 20297.35 21398.52 20397.87 33496.69 23398.59 9598.05 31397.44 19493.74 36798.85 17593.69 27099.88 7798.11 9099.81 8198.98 255
MP-MVS-pluss98.57 11298.23 14299.60 1399.69 4599.35 1297.16 24199.38 10594.87 29398.97 13298.99 13698.01 7399.88 7797.29 13499.70 13699.58 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 13798.00 16799.61 999.57 6299.25 2398.57 9799.35 11997.55 18099.31 7997.71 30194.61 24999.88 7796.14 22899.19 26299.70 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.69 9198.40 11999.54 3199.53 7899.17 3998.52 10299.31 13897.46 19198.44 21098.51 23597.83 8499.88 7796.46 20799.58 18599.58 69
VPA-MVSNet99.30 2599.30 2499.28 8899.49 9298.36 11999.00 6799.45 8599.63 1599.52 3799.44 5598.25 5299.88 7799.09 3399.84 6899.62 51
ACMMPR98.70 8998.42 11799.54 3199.52 8099.14 5398.52 10299.31 13897.47 18698.56 19998.54 23197.75 9199.88 7796.57 19599.59 17999.58 69
MP-MVScopyleft98.46 13098.09 15899.54 3199.57 6299.22 2698.50 10799.19 18397.61 17497.58 26998.66 21197.40 12499.88 7794.72 27299.60 17599.54 91
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CHOSEN 1792x268897.49 21297.14 22798.54 20299.68 4696.09 24596.50 27799.62 2591.58 34098.84 16098.97 14292.36 28799.88 7796.76 17999.95 1899.67 41
SteuartSystems-ACMMP98.79 7298.54 9499.54 3199.73 3099.16 4398.23 13199.31 13897.92 15398.90 14598.90 15998.00 7499.88 7796.15 22799.72 12699.58 69
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet596.01 28695.20 30198.41 21597.53 34896.10 24398.74 8299.50 6497.22 22198.03 24399.04 12069.80 37699.88 7797.27 13599.71 13199.25 211
iter_conf_final97.10 24296.65 25898.45 21198.53 29196.08 24698.30 12599.11 20898.10 14398.85 15798.95 14979.38 36399.87 9498.68 6099.91 4899.40 161
ZNCC-MVS98.68 9598.40 11999.54 3199.57 6299.21 2798.46 11399.29 15597.28 20998.11 23598.39 25198.00 7499.87 9496.86 17299.64 16199.55 87
SR-MVS98.71 8698.43 11599.57 1899.18 16499.35 1298.36 12299.29 15598.29 12698.88 15398.85 17597.53 11199.87 9496.14 22899.31 24199.48 124
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1399.84 899.83 299.50 599.87 9499.36 1799.92 4299.64 47
iter_conf0596.54 27096.07 27597.92 24897.90 33294.50 28797.87 17399.14 20397.73 16498.89 14898.95 14975.75 37299.87 9498.50 7099.92 4299.40 161
HPM-MVScopyleft98.79 7298.53 9599.59 1799.65 5099.29 1899.16 5099.43 9496.74 24098.61 18998.38 25398.62 3299.87 9496.47 20699.67 15399.59 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet96.14 28495.44 29398.25 22890.76 38295.50 26097.92 16694.65 35598.97 8792.98 36898.85 17589.12 30799.87 9495.99 23299.68 14799.39 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet97.02 25096.93 23597.30 28697.71 34094.22 29198.11 14399.30 14899.37 4196.91 30399.34 6986.72 31999.87 9497.53 12497.36 34597.81 336
ACMMPcopyleft98.75 8198.50 10099.52 4399.56 6999.16 4398.87 7699.37 10997.16 22398.82 16599.01 13397.71 9399.87 9496.29 21999.69 14299.54 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test111196.49 27496.82 24595.52 33399.42 11387.08 36499.22 4187.14 37799.11 6599.46 4699.58 3088.69 30999.86 10398.80 5099.95 1899.62 51
KD-MVS_self_test99.25 2999.18 2999.44 6199.63 5599.06 6598.69 8799.54 5499.31 4899.62 2899.53 3997.36 12799.86 10399.24 2799.71 13199.39 163
ZD-MVS99.01 20398.84 7999.07 21494.10 31098.05 24198.12 27596.36 19099.86 10392.70 32799.19 262
test117298.76 7998.49 10399.57 1899.18 16499.37 998.39 11999.31 13898.43 11698.90 14598.88 16897.49 11899.86 10396.43 21099.37 23299.48 124
SR-MVS-dyc-post98.81 7098.55 9399.57 1899.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.49 11899.86 10396.56 19899.39 22899.45 138
testtj97.79 19497.25 21899.42 6299.03 19998.85 7797.78 17999.18 18795.83 27298.12 23398.50 23995.50 22399.86 10392.23 33399.07 27899.54 91
tfpnnormal98.90 6198.90 5298.91 15099.67 4797.82 17599.00 6799.44 8899.45 3299.51 4099.24 8398.20 6099.86 10395.92 23599.69 14299.04 246
Regformer-498.73 8498.68 7698.89 15399.02 20197.22 21097.17 23999.06 21599.21 5499.17 10298.85 17597.45 12199.86 10398.48 7299.70 13699.60 57
UniMVSNet (Re)98.87 6498.71 7099.35 7499.24 14398.73 9097.73 18799.38 10598.93 9299.12 10498.73 19796.77 16599.86 10398.63 6299.80 8999.46 134
NR-MVSNet98.95 5598.82 5899.36 6999.16 16898.72 9299.22 4199.20 17899.10 7299.72 1398.76 19496.38 18899.86 10398.00 10099.82 7799.50 110
GBi-Net98.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
test198.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
FMVSNet199.17 3399.17 3099.17 10699.55 7398.24 12599.20 4499.44 8899.21 5499.43 5299.55 3597.82 8799.86 10398.42 7699.89 5899.41 152
XXY-MVS99.14 3599.15 3499.10 11899.76 2897.74 18398.85 7999.62 2598.48 11599.37 6499.49 4698.75 2499.86 10398.20 8799.80 8999.71 30
1112_ss97.29 22996.86 24198.58 19299.34 13096.32 23996.75 26599.58 3193.14 32396.89 30797.48 31692.11 29099.86 10396.91 16299.54 19799.57 74
EGC-MVSNET85.24 34380.54 34699.34 7799.77 2599.20 3399.08 5799.29 15512.08 37920.84 38099.42 5797.55 10899.85 11897.08 14999.72 12698.96 260
GST-MVS98.61 10698.30 13499.52 4399.51 8299.20 3398.26 12999.25 16797.44 19498.67 18098.39 25197.68 9499.85 11896.00 23199.51 20799.52 103
patchmatchnet-post98.77 19284.37 33999.85 118
SCA96.41 27896.66 25695.67 32998.24 31388.35 35895.85 30996.88 34096.11 26197.67 26298.67 20893.10 27699.85 11894.16 28799.22 25598.81 282
FC-MVSNet-test99.27 2699.25 2699.34 7799.77 2598.37 11699.30 3199.57 3899.61 2099.40 5799.50 4397.12 14299.85 11899.02 3999.94 2899.80 13
HFP-MVS98.71 8698.44 11399.51 4799.49 9299.16 4398.52 10299.31 13897.47 18698.58 19598.50 23997.97 7899.85 11896.57 19599.59 17999.53 99
#test#98.50 12698.16 15199.51 4799.49 9299.16 4398.03 15599.31 13896.30 25798.58 19598.50 23997.97 7899.85 11895.68 24999.59 17999.53 99
EI-MVSNet-UG-set98.69 9198.71 7098.62 18799.10 18196.37 23897.23 23198.87 25199.20 5799.19 9798.99 13697.30 12999.85 11898.77 5499.79 9499.65 46
EI-MVSNet-Vis-set98.68 9598.70 7398.63 18599.09 18496.40 23797.23 23198.86 25799.20 5799.18 10198.97 14297.29 13199.85 11898.72 5699.78 9899.64 47
v124098.55 11798.62 8498.32 22299.22 14895.58 25697.51 21199.45 8597.16 22399.45 5099.24 8396.12 19599.85 11899.60 499.88 5999.55 87
APD-MVS_3200maxsize98.84 6798.61 8799.53 3899.19 15799.27 2198.49 10899.33 13098.64 10299.03 12398.98 14097.89 8199.85 11896.54 20299.42 22499.46 134
ADS-MVSNet295.43 30094.98 30596.76 31098.14 31991.74 33897.92 16697.76 31890.23 35096.51 32298.91 15685.61 32999.85 11892.88 32096.90 35198.69 299
MDA-MVSNet-bldmvs97.94 17697.91 17498.06 24299.44 10894.96 27596.63 27199.15 20298.35 11998.83 16199.11 10694.31 25699.85 11896.60 19298.72 30399.37 173
WR-MVS98.40 13798.19 14699.03 13599.00 20497.65 18896.85 25898.94 23898.57 11298.89 14898.50 23995.60 21899.85 11897.54 12399.85 6499.59 63
APD-MVScopyleft98.10 16497.67 18899.42 6299.11 17798.93 7297.76 18499.28 15894.97 29098.72 17798.77 19297.04 14699.85 11893.79 30399.54 19799.49 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmtry97.35 22396.97 23498.50 20797.31 35696.47 23698.18 13698.92 24398.95 9198.78 16899.37 6385.44 33299.85 11895.96 23499.83 7499.17 231
N_pmnet97.63 20497.17 22398.99 14199.27 13897.86 16995.98 29893.41 36495.25 28699.47 4598.90 15995.63 21799.85 11896.91 16299.73 11999.27 207
test250692.39 33691.89 33993.89 34999.38 11882.28 37899.32 2266.03 38599.08 7798.77 17199.57 3166.26 38299.84 13598.71 5799.95 1899.54 91
our_test_397.39 22197.73 18696.34 31598.70 26389.78 35394.61 34798.97 23796.50 24899.04 12098.85 17595.98 20499.84 13597.26 13699.67 15399.41 152
CANet_DTU97.26 23097.06 22997.84 25297.57 34594.65 28496.19 29498.79 27097.23 21895.14 35398.24 26593.22 27399.84 13597.34 13299.84 6899.04 246
ACMMP_NAP98.75 8198.48 10599.57 1899.58 5899.29 1897.82 17799.25 16796.94 23298.78 16899.12 10598.02 7299.84 13597.13 14699.67 15399.59 63
v14419298.54 12098.57 9298.45 21199.21 15095.98 24797.63 19699.36 11397.15 22599.32 7799.18 9195.84 21299.84 13599.50 1099.91 4899.54 91
v192192098.54 12098.60 8998.38 21899.20 15495.76 25597.56 20599.36 11397.23 21899.38 6199.17 9596.02 19899.84 13599.57 699.90 5599.54 91
Regformer-298.60 10898.46 10999.02 13898.85 23597.71 18596.91 25599.09 21198.98 8699.01 12498.64 21697.37 12699.84 13597.75 11799.57 18999.52 103
HPM-MVS++copyleft98.10 16497.64 19399.48 5599.09 18499.13 5697.52 20998.75 27697.46 19196.90 30697.83 29596.01 19999.84 13595.82 24399.35 23599.46 134
PMMVS298.07 16798.08 16198.04 24499.41 11594.59 28694.59 34899.40 10097.50 18398.82 16598.83 18196.83 16099.84 13597.50 12699.81 8199.71 30
XVG-ACMP-BASELINE98.56 11398.34 12999.22 10299.54 7698.59 10097.71 18899.46 8297.25 21298.98 12998.99 13697.54 10999.84 13595.88 23699.74 11699.23 215
CPTT-MVS97.84 19097.36 21299.27 9199.31 13198.46 11198.29 12699.27 16194.90 29297.83 25298.37 25494.90 23799.84 13593.85 30299.54 19799.51 106
UGNet98.53 12298.45 11198.79 16797.94 32996.96 22399.08 5798.54 28999.10 7296.82 31199.47 4996.55 17799.84 13598.56 6899.94 2899.55 87
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG98.68 9598.50 10099.20 10399.45 10698.63 9598.56 9899.57 3897.87 15798.85 15798.04 28297.66 9699.84 13596.72 18499.81 8199.13 235
DeepC-MVS97.60 498.97 5298.93 5199.10 11899.35 12897.98 15698.01 16099.46 8297.56 17999.54 3299.50 4398.97 1699.84 13598.06 9599.92 4299.49 114
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+97.89 398.69 9198.51 9899.24 9998.81 24598.40 11399.02 6499.19 18398.99 8498.07 23899.28 7597.11 14499.84 13596.84 17399.32 23999.47 132
Anonymous2023121199.27 2699.27 2599.26 9499.29 13598.18 13299.49 899.51 6299.70 899.80 999.68 1496.84 15899.83 15099.21 2899.91 4899.77 17
Anonymous2023120698.21 15798.21 14398.20 23199.51 8295.43 26398.13 14099.32 13296.16 26098.93 14298.82 18496.00 20099.83 15097.32 13399.73 11999.36 179
XVS98.72 8598.45 11199.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27398.63 22097.50 11599.83 15096.79 17599.53 20199.56 79
X-MVStestdata94.32 31492.59 33299.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27345.85 37797.50 11599.83 15096.79 17599.53 20199.56 79
v1098.97 5299.11 3698.55 19999.44 10896.21 24298.90 7499.55 4998.73 10099.48 4399.60 2896.63 17499.83 15099.70 399.99 599.61 56
TransMVSNet (Re)99.44 1399.47 1299.36 6999.80 2298.58 10199.27 3899.57 3899.39 3999.75 1299.62 2399.17 1299.83 15099.06 3599.62 16799.66 42
Baseline_NR-MVSNet98.98 5198.86 5599.36 6999.82 2198.55 10397.47 21599.57 3899.37 4199.21 9599.61 2596.76 16799.83 15098.06 9599.83 7499.71 30
LPG-MVS_test98.71 8698.46 10999.47 5899.57 6298.97 6798.23 13199.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
LGP-MVS_train99.47 5899.57 6298.97 6799.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
Test_1112_low_res96.99 25496.55 26398.31 22499.35 12895.47 26195.84 31099.53 5891.51 34296.80 31298.48 24491.36 29499.83 15096.58 19399.53 20199.62 51
ECVR-MVScopyleft96.42 27796.61 25995.85 32599.38 11888.18 36099.22 4186.00 37999.08 7799.36 6699.57 3188.47 31499.82 16098.52 6999.95 1899.54 91
xxxxxxxxxxxxxcwj98.44 13298.24 14099.06 13099.11 17797.97 15796.53 27499.54 5498.24 12998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
SF-MVS98.53 12298.27 13799.32 8299.31 13198.75 8698.19 13599.41 9896.77 23998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
new-patchmatchnet98.35 14298.74 6597.18 29099.24 14392.23 33596.42 28299.48 7498.30 12399.69 1799.53 3997.44 12299.82 16098.84 4999.77 10299.49 114
FIs99.14 3599.09 3999.29 8599.70 4398.28 12299.13 5399.52 6199.48 2899.24 9199.41 6096.79 16499.82 16098.69 5999.88 5999.76 21
v119298.60 10898.66 7998.41 21599.27 13895.88 25097.52 20999.36 11397.41 19699.33 7199.20 8896.37 18999.82 16099.57 699.92 4299.55 87
pm-mvs199.44 1399.48 1199.33 8099.80 2298.63 9599.29 3299.63 2499.30 5099.65 2399.60 2899.16 1499.82 16099.07 3499.83 7499.56 79
VPNet98.87 6498.83 5799.01 13999.70 4397.62 19198.43 11699.35 11999.47 3099.28 8099.05 11896.72 17099.82 16098.09 9399.36 23399.59 63
pmmvs395.03 30694.40 31296.93 30097.70 34292.53 32995.08 33397.71 32088.57 36197.71 25998.08 28079.39 36299.82 16096.19 22499.11 27698.43 313
HPM-MVS_fast99.01 4598.82 5899.57 1899.71 3799.35 1299.00 6799.50 6497.33 20398.94 14198.86 17298.75 2499.82 16097.53 12499.71 13199.56 79
DELS-MVS98.27 15098.20 14498.48 20898.86 23396.70 23295.60 31899.20 17897.73 16498.45 20998.71 20097.50 11599.82 16098.21 8699.59 17998.93 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet298.49 12798.40 11998.75 17598.90 22497.14 21998.61 9299.13 20498.59 10899.19 9799.28 7594.14 25999.82 16097.97 10299.80 8999.29 204
WTY-MVS96.67 26596.27 27397.87 25198.81 24594.61 28596.77 26397.92 31694.94 29197.12 29197.74 30091.11 29599.82 16093.89 29998.15 32599.18 227
ACMP95.32 1598.41 13598.09 15899.36 6999.51 8298.79 8597.68 19199.38 10595.76 27498.81 16798.82 18498.36 4699.82 16094.75 26999.77 10299.48 124
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETH3D cwj APD-0.1697.55 20897.00 23299.19 10598.51 29398.64 9496.85 25899.13 20494.19 30897.65 26398.40 24995.78 21399.81 17493.37 31499.16 26599.12 236
ET-MVSNet_ETH3D94.30 31693.21 32697.58 27098.14 31994.47 28894.78 34093.24 36694.72 29589.56 37495.87 35278.57 36799.81 17496.91 16297.11 35098.46 309
TSAR-MVS + MP.98.63 10398.49 10399.06 13099.64 5397.90 16698.51 10698.94 23896.96 23199.24 9198.89 16797.83 8499.81 17496.88 16999.49 21599.48 124
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-198.55 11798.44 11398.87 15598.85 23597.29 20496.91 25598.99 23598.97 8798.99 12798.64 21697.26 13599.81 17497.79 11099.57 18999.51 106
v899.01 4599.16 3198.57 19499.47 10296.31 24098.90 7499.47 8099.03 8199.52 3799.57 3196.93 15499.81 17499.60 499.98 999.60 57
CR-MVSNet96.28 28195.95 27897.28 28797.71 34094.22 29198.11 14398.92 24392.31 33396.91 30399.37 6385.44 33299.81 17497.39 13097.36 34597.81 336
PatchT96.65 26696.35 26897.54 27597.40 35395.32 26597.98 16296.64 34399.33 4696.89 30799.42 5784.32 34099.81 17497.69 12097.49 33897.48 350
FMVSNet397.50 21097.24 22098.29 22698.08 32395.83 25297.86 17498.91 24597.89 15698.95 13598.95 14987.06 31799.81 17497.77 11299.69 14299.23 215
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1599.11 6099.90 199.78 899.63 1599.78 1099.67 1799.48 699.81 17499.30 2299.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EIA-MVS98.00 17297.74 18498.80 16598.72 25698.09 14098.05 15299.60 2897.39 19896.63 31695.55 35697.68 9499.80 18396.73 18399.27 24898.52 307
Anonymous2024052998.93 5798.87 5399.12 11499.19 15798.22 13099.01 6598.99 23599.25 5399.54 3299.37 6397.04 14699.80 18397.89 10499.52 20499.35 183
thisisatest051594.12 32093.16 32796.97 29998.60 28192.90 32393.77 36290.61 37294.10 31096.91 30395.87 35274.99 37399.80 18394.52 27699.12 27598.20 320
Effi-MVS+98.02 17097.82 18098.62 18798.53 29197.19 21497.33 22499.68 1997.30 20796.68 31497.46 31898.56 3699.80 18396.63 19198.20 32198.86 276
v114498.60 10898.66 7998.41 21599.36 12495.90 24997.58 20399.34 12597.51 18299.27 8299.15 10196.34 19199.80 18399.47 1299.93 3399.51 106
VDDNet98.21 15797.95 17099.01 13999.58 5897.74 18399.01 6597.29 33199.67 1198.97 13299.50 4390.45 29899.80 18397.88 10799.20 25899.48 124
EI-MVSNet98.40 13798.51 9898.04 24499.10 18194.73 28097.20 23598.87 25198.97 8799.06 11399.02 12496.00 20099.80 18398.58 6399.82 7799.60 57
CVMVSNet96.25 28297.21 22293.38 35599.10 18180.56 38197.20 23598.19 30696.94 23299.00 12699.02 12489.50 30599.80 18396.36 21599.59 17999.78 15
MVSTER96.86 25796.55 26397.79 25597.91 33194.21 29397.56 20598.87 25197.49 18599.06 11399.05 11880.72 35599.80 18398.44 7499.82 7799.37 173
sss97.21 23596.93 23598.06 24298.83 24095.22 26896.75 26598.48 29394.49 29897.27 28897.90 29192.77 28399.80 18396.57 19599.32 23999.16 234
ab-mvs98.41 13598.36 12698.59 19199.19 15797.23 20899.32 2298.81 26797.66 16998.62 18799.40 6296.82 16199.80 18395.88 23699.51 20798.75 293
TDRefinement99.42 1699.38 1599.55 2699.76 2899.33 1699.68 599.71 1499.38 4099.53 3599.61 2598.64 3099.80 18398.24 8499.84 6899.52 103
LS3D98.63 10398.38 12499.36 6997.25 35799.38 699.12 5599.32 13299.21 5498.44 21098.88 16897.31 12899.80 18396.58 19399.34 23798.92 267
hse-mvs297.46 21597.07 22898.64 18298.73 25497.33 20297.45 21797.64 32499.11 6598.58 19597.98 28588.65 31299.79 19698.11 9097.39 34298.81 282
AUN-MVS96.24 28395.45 29298.60 19098.70 26397.22 21097.38 22097.65 32295.95 26895.53 34897.96 28982.11 35499.79 19696.31 21797.44 34098.80 287
SMA-MVScopyleft98.40 13798.03 16599.51 4799.16 16899.21 2798.05 15299.22 17594.16 30998.98 12999.10 10897.52 11399.79 19696.45 20899.64 16199.53 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Regformer-398.61 10698.61 8798.63 18599.02 20196.53 23597.17 23998.84 26199.13 6499.10 10898.85 17597.24 13799.79 19698.41 7799.70 13699.57 74
testdata299.79 19692.80 324
VDD-MVS98.56 11398.39 12299.07 12599.13 17598.07 14698.59 9597.01 33599.59 2199.11 10599.27 7794.82 24199.79 19698.34 8099.63 16499.34 185
v2v48298.56 11398.62 8498.37 21999.42 11395.81 25397.58 20399.16 19697.90 15599.28 8099.01 13395.98 20499.79 19699.33 1899.90 5599.51 106
mvs_anonymous97.83 19298.16 15196.87 30498.18 31791.89 33797.31 22698.90 24697.37 20098.83 16199.46 5096.28 19299.79 19698.90 4498.16 32498.95 261
tpm94.67 31094.34 31495.66 33097.68 34488.42 35797.88 17094.90 35494.46 30096.03 33698.56 23078.66 36599.79 19695.88 23695.01 36898.78 289
IS-MVSNet98.19 15997.90 17599.08 12299.57 6297.97 15799.31 2698.32 29999.01 8398.98 12999.03 12391.59 29399.79 19695.49 25799.80 8999.48 124
test_040298.76 7998.71 7098.93 14799.56 6998.14 13898.45 11599.34 12599.28 5198.95 13598.91 15698.34 5099.79 19695.63 25299.91 4898.86 276
ACMM96.08 1298.91 5998.73 6699.48 5599.55 7399.14 5398.07 14899.37 10997.62 17299.04 12098.96 14598.84 2099.79 19697.43 12899.65 15999.49 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_lstm_enhance97.18 23897.16 22497.25 28998.16 31892.85 32495.15 33299.31 13897.25 21298.74 17698.78 19090.07 30099.78 20897.19 13899.80 8999.11 238
Anonymous20240521197.90 17897.50 20199.08 12298.90 22498.25 12498.53 10196.16 34798.87 9499.11 10598.86 17290.40 29999.78 20897.36 13199.31 24199.19 225
ppachtmachnet_test97.50 21097.74 18496.78 30998.70 26391.23 34994.55 34999.05 21996.36 25399.21 9598.79 18996.39 18699.78 20896.74 18199.82 7799.34 185
新几何198.91 15098.94 21497.76 18098.76 27387.58 36596.75 31398.10 27794.80 24499.78 20892.73 32699.00 28999.20 220
V4298.78 7598.78 6298.76 17399.44 10897.04 22098.27 12899.19 18397.87 15799.25 9099.16 9796.84 15899.78 20899.21 2899.84 6899.46 134
VNet98.42 13498.30 13498.79 16798.79 24997.29 20498.23 13198.66 28399.31 4898.85 15798.80 18794.80 24499.78 20898.13 8999.13 27299.31 197
ETH3 D test640096.46 27695.59 28899.08 12298.88 23098.21 13196.53 27499.18 18788.87 36097.08 29497.79 29693.64 27199.77 21488.92 35899.40 22799.28 205
ETH3D-3000-0.198.03 16897.62 19599.29 8599.11 17798.80 8497.47 21599.32 13295.54 27798.43 21398.62 22296.61 17599.77 21493.95 29799.49 21599.30 200
agg_prior197.06 24696.40 26799.03 13598.68 27097.99 15295.76 31199.01 23191.73 33795.59 34097.50 31496.49 18099.77 21493.71 30499.14 26999.34 185
agg_prior98.68 27097.99 15299.01 23195.59 34099.77 214
baseline293.73 32592.83 33196.42 31497.70 34291.28 34796.84 26089.77 37593.96 31492.44 36995.93 35079.14 36499.77 21492.94 31896.76 35598.21 319
PM-MVS98.82 6898.72 6899.12 11499.64 5398.54 10697.98 16299.68 1997.62 17299.34 7099.18 9197.54 10999.77 21497.79 11099.74 11699.04 246
TAMVS98.24 15598.05 16398.80 16599.07 18897.18 21597.88 17098.81 26796.66 24499.17 10299.21 8694.81 24399.77 21496.96 16099.88 5999.44 142
9.1497.78 18199.07 18897.53 20899.32 13295.53 27998.54 20398.70 20397.58 10599.76 22194.32 28699.46 218
TEST998.71 25998.08 14495.96 30199.03 22491.40 34395.85 33797.53 31196.52 17899.76 221
train_agg97.10 24296.45 26699.07 12598.71 25998.08 14495.96 30199.03 22491.64 33895.85 33797.53 31196.47 18199.76 22193.67 30599.16 26599.36 179
test_898.67 27298.01 15195.91 30699.02 22891.64 33895.79 33997.50 31496.47 18199.76 221
test20.0398.78 7598.77 6498.78 17099.46 10397.20 21397.78 17999.24 17299.04 8099.41 5498.90 15997.65 9799.76 22197.70 11899.79 9499.39 163
EG-PatchMatch MVS98.99 4799.01 4598.94 14699.50 8597.47 19698.04 15499.59 2998.15 14299.40 5799.36 6698.58 3599.76 22198.78 5199.68 14799.59 63
ACMH96.65 799.25 2999.24 2799.26 9499.72 3698.38 11599.07 6099.55 4998.30 12399.65 2399.45 5499.22 999.76 22198.44 7499.77 10299.64 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.64 20297.49 20298.08 24099.14 17395.12 27296.70 26899.05 21993.77 31598.62 18798.83 18193.23 27299.75 22898.33 8299.76 11299.36 179
HY-MVS95.94 1395.90 28995.35 29797.55 27497.95 32894.79 27798.81 8196.94 33892.28 33495.17 35298.57 22989.90 30299.75 22891.20 34697.33 34798.10 324
DP-MVS98.93 5798.81 6099.28 8899.21 15098.45 11298.46 11399.33 13099.63 1599.48 4399.15 10197.23 13899.75 22897.17 13999.66 15899.63 50
PatchmatchNetpermissive95.58 29695.67 28595.30 33897.34 35587.32 36397.65 19596.65 34295.30 28597.07 29598.69 20484.77 33599.75 22894.97 26598.64 30998.83 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet95.24 30394.93 30796.18 31998.14 31990.10 35297.92 16697.32 33090.23 35096.51 32298.91 15685.61 32999.74 23292.88 32096.90 35198.69 299
diffmvs98.22 15698.24 14098.17 23399.00 20495.44 26296.38 28499.58 3197.79 16298.53 20498.50 23996.76 16799.74 23297.95 10399.64 16199.34 185
UnsupCasMVSNet_eth97.89 18097.60 19798.75 17599.31 13197.17 21697.62 19799.35 11998.72 10198.76 17398.68 20692.57 28699.74 23297.76 11695.60 36599.34 185
CDS-MVSNet97.69 19897.35 21398.69 17998.73 25497.02 22296.92 25498.75 27695.89 27098.59 19398.67 20892.08 29199.74 23296.72 18499.81 8199.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
nrg03099.40 1999.35 1899.54 3199.58 5899.13 5698.98 7099.48 7499.68 999.46 4699.26 7998.62 3299.73 23699.17 3199.92 4299.76 21
无先验95.74 31398.74 27889.38 35799.73 23692.38 33199.22 219
112196.73 26296.00 27698.91 15098.95 21397.76 18098.07 14898.73 27987.65 36496.54 31998.13 27294.52 25199.73 23692.38 33199.02 28699.24 214
LFMVS97.20 23696.72 25098.64 18298.72 25696.95 22498.93 7394.14 36299.74 798.78 16899.01 13384.45 33899.73 23697.44 12799.27 24899.25 211
YYNet197.60 20597.67 18897.39 28499.04 19693.04 32295.27 32798.38 29897.25 21298.92 14398.95 14995.48 22599.73 23696.99 15698.74 30199.41 152
MDA-MVSNet_test_wron97.60 20597.66 19197.41 28399.04 19693.09 31895.27 32798.42 29597.26 21198.88 15398.95 14995.43 22699.73 23697.02 15398.72 30399.41 152
Vis-MVSNet (Re-imp)97.46 21597.16 22498.34 22199.55 7396.10 24398.94 7298.44 29498.32 12298.16 22898.62 22288.76 30899.73 23693.88 30099.79 9499.18 227
PCF-MVS92.86 1894.36 31393.00 33098.42 21498.70 26397.56 19293.16 36699.11 20879.59 37497.55 27297.43 31992.19 28899.73 23679.85 37599.45 22097.97 330
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft96.50 1098.99 4798.85 5699.41 6599.58 5899.10 6198.74 8299.56 4599.09 7599.33 7199.19 8998.40 4499.72 24495.98 23399.76 11299.42 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
原ACMM198.35 22098.90 22496.25 24198.83 26692.48 33196.07 33498.10 27795.39 22799.71 24592.61 32998.99 29099.08 239
UnsupCasMVSNet_bld97.30 22796.92 23798.45 21199.28 13696.78 23196.20 29399.27 16195.42 28298.28 22298.30 26293.16 27499.71 24594.99 26497.37 34398.87 275
test_post21.25 38083.86 34499.70 247
testdata98.09 23798.93 21695.40 26498.80 26990.08 35497.45 28198.37 25495.26 22999.70 24793.58 30898.95 29499.17 231
HQP_MVS97.99 17597.67 18898.93 14799.19 15797.65 18897.77 18299.27 16198.20 13597.79 25597.98 28594.90 23799.70 24794.42 28199.51 20799.45 138
plane_prior599.27 16199.70 24794.42 28199.51 20799.45 138
cl____97.02 25096.83 24497.58 27097.82 33694.04 29794.66 34499.16 19697.04 22898.63 18598.71 20088.68 31199.69 25197.00 15499.81 8199.00 253
DIV-MVS_self_test97.02 25096.84 24397.58 27097.82 33694.03 29894.66 34499.16 19697.04 22898.63 18598.71 20088.69 30999.69 25197.00 15499.81 8199.01 250
eth_miper_zixun_eth97.23 23497.25 21897.17 29198.00 32792.77 32694.71 34199.18 18797.27 21098.56 19998.74 19691.89 29299.69 25197.06 15299.81 8199.05 242
D2MVS97.84 19097.84 17997.83 25399.14 17394.74 27996.94 25098.88 24995.84 27198.89 14898.96 14594.40 25499.69 25197.55 12199.95 1899.05 242
Patchmatch-test96.55 26996.34 26997.17 29198.35 30693.06 31998.40 11897.79 31797.33 20398.41 21498.67 20883.68 34599.69 25195.16 26299.31 24198.77 290
CDPH-MVS97.26 23096.66 25699.07 12599.00 20498.15 13696.03 29799.01 23191.21 34697.79 25597.85 29496.89 15699.69 25192.75 32599.38 23199.39 163
test1298.93 14798.58 28497.83 17298.66 28396.53 32095.51 22299.69 25199.13 27299.27 207
casdiffmvs98.95 5599.00 4698.81 16399.38 11897.33 20297.82 17799.57 3899.17 6299.35 6899.17 9598.35 4999.69 25198.46 7399.73 11999.41 152
baseline98.96 5499.02 4498.76 17399.38 11897.26 20798.49 10899.50 6498.86 9599.19 9799.06 11198.23 5499.69 25198.71 5799.76 11299.33 191
EU-MVSNet97.66 20198.50 10095.13 33999.63 5585.84 36798.35 12398.21 30398.23 13199.54 3299.46 5095.02 23599.68 26098.24 8499.87 6299.87 5
F-COLMAP97.30 22796.68 25399.14 11299.19 15798.39 11497.27 23099.30 14892.93 32596.62 31798.00 28395.73 21599.68 26092.62 32898.46 31599.35 183
OpenMVS_ROBcopyleft95.38 1495.84 29195.18 30297.81 25498.41 30497.15 21897.37 22198.62 28683.86 37098.65 18398.37 25494.29 25799.68 26088.41 35998.62 31196.60 361
test-LLR93.90 32393.85 31794.04 34696.53 36784.62 37294.05 35892.39 36896.17 25894.12 36195.07 36182.30 35199.67 26395.87 23998.18 32297.82 334
test-mter92.33 33891.76 34194.04 34696.53 36784.62 37294.05 35892.39 36894.00 31394.12 36195.07 36165.63 38499.67 26395.87 23998.18 32297.82 334
thres600view794.45 31293.83 31896.29 31699.06 19291.53 34097.99 16194.24 36098.34 12097.44 28295.01 36379.84 35899.67 26384.33 36798.23 31997.66 344
114514_t96.50 27395.77 28098.69 17999.48 10097.43 19997.84 17699.55 4981.42 37396.51 32298.58 22895.53 22099.67 26393.41 31399.58 18598.98 255
PVSNet_BlendedMVS97.55 20897.53 19997.60 26898.92 22093.77 31196.64 27099.43 9494.49 29897.62 26599.18 9196.82 16199.67 26394.73 27099.93 3399.36 179
PVSNet_Blended96.88 25696.68 25397.47 27998.92 22093.77 31194.71 34199.43 9490.98 34897.62 26597.36 32496.82 16199.67 26394.73 27099.56 19498.98 255
PHI-MVS98.29 14997.95 17099.34 7798.44 29999.16 4398.12 14299.38 10596.01 26698.06 23998.43 24797.80 8899.67 26395.69 24899.58 18599.20 220
ACMH+96.62 999.08 4199.00 4699.33 8099.71 3798.83 8098.60 9399.58 3199.11 6599.53 3599.18 9198.81 2299.67 26396.71 18699.77 10299.50 110
test_post197.59 20220.48 38183.07 34899.66 27194.16 287
旧先验295.76 31188.56 36297.52 27599.66 27194.48 277
MCST-MVS98.00 17297.63 19499.10 11899.24 14398.17 13596.89 25798.73 27995.66 27597.92 24597.70 30397.17 14199.66 27196.18 22699.23 25499.47 132
NCCC97.86 18497.47 20699.05 13298.61 27998.07 14696.98 24898.90 24697.63 17197.04 29797.93 29095.99 20399.66 27195.31 26098.82 29999.43 146
PMMVS96.51 27195.98 27798.09 23797.53 34895.84 25194.92 33798.84 26191.58 34096.05 33595.58 35595.68 21699.66 27195.59 25498.09 32898.76 292
OPM-MVS98.56 11398.32 13399.25 9799.41 11598.73 9097.13 24399.18 18797.10 22698.75 17498.92 15598.18 6199.65 27696.68 18899.56 19499.37 173
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet96.62 26896.25 27497.71 26199.04 19694.66 28399.16 5096.92 33997.23 21897.87 24999.10 10886.11 32699.65 27691.65 33899.21 25798.82 279
CL-MVSNet_self_test97.44 21897.22 22198.08 24098.57 28695.78 25494.30 35498.79 27096.58 24798.60 19198.19 27094.74 24899.64 27896.41 21298.84 29798.82 279
c3_l97.36 22297.37 21197.31 28598.09 32293.25 31795.01 33599.16 19697.05 22798.77 17198.72 19992.88 28199.64 27896.93 16199.76 11299.05 242
DeepC-MVS_fast96.85 698.30 14698.15 15398.75 17598.61 27997.23 20897.76 18499.09 21197.31 20698.75 17498.66 21197.56 10799.64 27896.10 23099.55 19699.39 163
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d98.47 12998.34 12998.86 15799.30 13497.76 18097.16 24199.28 15895.54 27799.42 5399.19 8997.27 13299.63 28197.89 10499.97 1299.20 220
baseline195.96 28895.44 29397.52 27798.51 29393.99 30198.39 11996.09 34998.21 13298.40 21897.76 29986.88 31899.63 28195.42 25889.27 37698.95 261
thres100view90094.19 31793.67 32195.75 32899.06 19291.35 34498.03 15594.24 36098.33 12197.40 28494.98 36579.84 35899.62 28383.05 36998.08 32996.29 362
tfpn200view994.03 32193.44 32395.78 32798.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32996.29 362
Patchmatch-RL test97.26 23097.02 23197.99 24799.52 8095.53 25896.13 29599.71 1497.47 18699.27 8299.16 9784.30 34199.62 28397.89 10499.77 10298.81 282
v14898.45 13198.60 8998.00 24699.44 10894.98 27497.44 21899.06 21598.30 12399.32 7798.97 14296.65 17399.62 28398.37 7899.85 6499.39 163
thres40094.14 31993.44 32396.24 31898.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32997.66 344
CostFormer93.97 32293.78 31994.51 34397.53 34885.83 36897.98 16295.96 35089.29 35894.99 35598.63 22078.63 36699.62 28394.54 27596.50 35698.09 325
miper_ehance_all_eth97.06 24697.03 23097.16 29397.83 33593.06 31994.66 34499.09 21195.99 26798.69 17898.45 24692.73 28499.61 28996.79 17599.03 28398.82 279
gm-plane-assit94.83 37781.97 37988.07 36394.99 36499.60 29091.76 336
MVP-Stereo98.08 16697.92 17398.57 19498.96 21196.79 22897.90 16999.18 18796.41 25298.46 20898.95 14995.93 20799.60 29096.51 20498.98 29299.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs497.58 20797.28 21798.51 20598.84 23896.93 22595.40 32698.52 29193.60 31798.61 18998.65 21395.10 23499.60 29096.97 15999.79 9498.99 254
JIA-IIPM95.52 29895.03 30497.00 29696.85 36394.03 29896.93 25295.82 35199.20 5794.63 35799.71 1283.09 34799.60 29094.42 28194.64 36997.36 352
test_prior397.48 21497.00 23298.95 14498.69 26797.95 16295.74 31399.03 22496.48 24996.11 33197.63 30795.92 20899.59 29494.16 28799.20 25899.30 200
test_prior98.95 14498.69 26797.95 16299.03 22499.59 29499.30 200
tpmrst95.07 30595.46 29193.91 34897.11 35984.36 37497.62 19796.96 33694.98 28996.35 32898.80 18785.46 33199.59 29495.60 25396.23 36097.79 339
dp93.47 32893.59 32293.13 35796.64 36681.62 38097.66 19396.42 34592.80 32896.11 33198.64 21678.55 36899.59 29493.31 31592.18 37598.16 322
PLCcopyleft94.65 1696.51 27195.73 28298.85 15898.75 25297.91 16596.42 28299.06 21590.94 34995.59 34097.38 32294.41 25399.59 29490.93 34998.04 33299.05 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
miper_enhance_ethall96.01 28695.74 28196.81 30896.41 37092.27 33493.69 36398.89 24891.14 34798.30 22097.35 32590.58 29799.58 29996.31 21799.03 28398.60 304
AllTest98.44 13298.20 14499.16 10999.50 8598.55 10398.25 13099.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
TestCases99.16 10999.50 8598.55 10399.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
CNVR-MVS98.17 16297.87 17799.07 12598.67 27298.24 12597.01 24698.93 24097.25 21297.62 26598.34 25897.27 13299.57 30096.42 21199.33 23899.39 163
TESTMET0.1,192.19 34091.77 34093.46 35396.48 36982.80 37794.05 35891.52 37194.45 30294.00 36494.88 36766.65 38199.56 30395.78 24498.11 32798.02 327
thres20093.72 32693.14 32895.46 33698.66 27791.29 34696.61 27294.63 35697.39 19896.83 31093.71 37379.88 35799.56 30382.40 37298.13 32695.54 371
MVS_Test98.18 16098.36 12697.67 26298.48 29594.73 28098.18 13699.02 22897.69 16798.04 24299.11 10697.22 13999.56 30398.57 6598.90 29698.71 296
test_yl96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
DCV-MVSNet96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
alignmvs97.35 22396.88 24098.78 17098.54 28998.09 14097.71 18897.69 32199.20 5797.59 26895.90 35188.12 31699.55 30698.18 8898.96 29398.70 298
HQP4-MVS95.56 34399.54 30999.32 193
HQP-MVS97.00 25396.49 26598.55 19998.67 27296.79 22896.29 28899.04 22296.05 26395.55 34496.84 33493.84 26499.54 30992.82 32299.26 25199.32 193
tpmvs95.02 30795.25 29994.33 34496.39 37185.87 36698.08 14796.83 34195.46 28195.51 34998.69 20485.91 32799.53 31194.16 28796.23 36097.58 347
tpm293.09 33292.58 33394.62 34297.56 34686.53 36597.66 19395.79 35286.15 36794.07 36398.23 26775.95 37099.53 31190.91 35096.86 35497.81 336
MDTV_nov1_ep1395.22 30097.06 36083.20 37697.74 18696.16 34794.37 30496.99 29998.83 18183.95 34399.53 31193.90 29897.95 333
AdaColmapbinary97.14 24196.71 25198.46 21098.34 30797.80 17896.95 24998.93 24095.58 27696.92 30197.66 30495.87 21099.53 31190.97 34899.14 26998.04 326
new_pmnet96.99 25496.76 24897.67 26298.72 25694.89 27695.95 30398.20 30492.62 33098.55 20198.54 23194.88 24099.52 31593.96 29699.44 22398.59 306
RPSCF98.62 10598.36 12699.42 6299.65 5099.42 598.55 9999.57 3897.72 16698.90 14599.26 7996.12 19599.52 31595.72 24699.71 13199.32 193
MAR-MVS96.47 27595.70 28398.79 16797.92 33099.12 5898.28 12798.60 28792.16 33595.54 34796.17 34794.77 24799.52 31589.62 35698.23 31997.72 342
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 17897.69 18798.52 20399.17 16697.66 18797.19 23899.47 8096.31 25697.85 25198.20 26996.71 17199.52 31594.62 27399.72 12698.38 315
Gipumacopyleft99.03 4499.16 3198.64 18299.94 298.51 10899.32 2299.75 1199.58 2398.60 19199.62 2398.22 5799.51 31997.70 11899.73 11997.89 331
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc98.24 22998.82 24395.97 24898.62 9199.00 23499.27 8299.21 8696.99 15199.50 32096.55 20199.50 21499.26 210
testgi98.32 14498.39 12298.13 23699.57 6295.54 25797.78 17999.49 7297.37 20099.19 9797.65 30598.96 1799.49 32196.50 20598.99 29099.34 185
EPNet_dtu94.93 30894.78 30995.38 33793.58 37987.68 36296.78 26295.69 35397.35 20289.14 37598.09 27988.15 31599.49 32194.95 26699.30 24498.98 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.24 23396.78 24798.61 18999.03 19997.83 17296.36 28599.06 21593.49 32097.36 28797.78 29795.75 21499.49 32193.44 31298.77 30098.52 307
test_241102_ONE99.49 9299.17 3999.31 13897.98 14899.66 2098.90 15998.36 4699.48 324
CLD-MVS97.49 21297.16 22498.48 20899.07 18897.03 22194.71 34199.21 17694.46 30098.06 23997.16 32997.57 10699.48 32494.46 27899.78 9898.95 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-untuned96.83 25896.75 24997.08 29498.74 25393.33 31696.71 26798.26 30196.72 24198.44 21097.37 32395.20 23199.47 32691.89 33597.43 34198.44 312
OMC-MVS97.88 18297.49 20299.04 13498.89 22998.63 9596.94 25099.25 16795.02 28898.53 20498.51 23597.27 13299.47 32693.50 31199.51 20799.01 250
canonicalmvs98.34 14398.26 13898.58 19298.46 29797.82 17598.96 7199.46 8299.19 6197.46 28095.46 35998.59 3499.46 32898.08 9498.71 30598.46 309
CNLPA97.17 23996.71 25198.55 19998.56 28798.05 14996.33 28698.93 24096.91 23497.06 29697.39 32194.38 25599.45 32991.66 33799.18 26498.14 323
BH-RMVSNet96.83 25896.58 26297.58 27098.47 29694.05 29696.67 26997.36 32796.70 24397.87 24997.98 28595.14 23399.44 33090.47 35398.58 31399.25 211
DPM-MVS96.32 27995.59 28898.51 20598.76 25097.21 21294.54 35098.26 30191.94 33696.37 32797.25 32693.06 27899.43 33191.42 34398.74 30198.89 271
PVSNet93.40 1795.67 29495.70 28395.57 33298.83 24088.57 35692.50 36897.72 31992.69 32996.49 32596.44 34393.72 26999.43 33193.61 30699.28 24798.71 296
TSAR-MVS + GP.98.18 16097.98 16898.77 17298.71 25997.88 16796.32 28798.66 28396.33 25499.23 9498.51 23597.48 12099.40 33397.16 14099.46 21899.02 249
TAPA-MVS96.21 1196.63 26795.95 27898.65 18198.93 21698.09 14096.93 25299.28 15883.58 37198.13 23297.78 29796.13 19499.40 33393.52 30999.29 24698.45 311
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 33093.13 32993.75 35097.39 35484.74 37197.39 21997.65 32283.39 37294.16 36098.41 24882.86 34999.39 33591.56 34195.35 36797.14 354
MG-MVS96.77 26196.61 25997.26 28898.31 30993.06 31995.93 30498.12 31096.45 25197.92 24598.73 19793.77 26899.39 33591.19 34799.04 28299.33 191
MVS_111021_HR98.25 15498.08 16198.75 17599.09 18497.46 19795.97 29999.27 16197.60 17597.99 24498.25 26498.15 6699.38 33796.87 17099.57 18999.42 149
MS-PatchMatch97.68 19997.75 18397.45 28098.23 31593.78 31097.29 22798.84 26196.10 26298.64 18498.65 21396.04 19799.36 33896.84 17399.14 26999.20 220
ITE_SJBPF98.87 15599.22 14898.48 11099.35 11997.50 18398.28 22298.60 22697.64 10099.35 33993.86 30199.27 24898.79 288
MVS_111021_LR98.30 14698.12 15698.83 16099.16 16898.03 15096.09 29699.30 14897.58 17698.10 23698.24 26598.25 5299.34 34096.69 18799.65 15999.12 236
USDC97.41 22097.40 20897.44 28198.94 21493.67 31395.17 33099.53 5894.03 31298.97 13299.10 10895.29 22899.34 34095.84 24299.73 11999.30 200
MSDG97.71 19797.52 20098.28 22798.91 22396.82 22794.42 35199.37 10997.65 17098.37 21998.29 26397.40 12499.33 34294.09 29399.22 25598.68 302
XVG-OURS98.53 12298.34 12999.11 11699.50 8598.82 8295.97 29999.50 6497.30 20799.05 11898.98 14099.35 799.32 34395.72 24699.68 14799.18 227
DP-MVS Recon97.33 22596.92 23798.57 19499.09 18497.99 15296.79 26199.35 11993.18 32297.71 25998.07 28195.00 23699.31 34493.97 29599.13 27298.42 314
EPMVS93.72 32693.27 32595.09 34096.04 37487.76 36198.13 14085.01 38094.69 29696.92 30198.64 21678.47 36999.31 34495.04 26396.46 35798.20 320
MVS93.19 33192.09 33596.50 31396.91 36194.03 29898.07 14898.06 31268.01 37594.56 35896.48 34195.96 20699.30 34683.84 36896.89 35396.17 364
GA-MVS95.86 29095.32 29897.49 27898.60 28194.15 29593.83 36197.93 31595.49 28096.68 31497.42 32083.21 34699.30 34696.22 22298.55 31499.01 250
XVG-OURS-SEG-HR98.49 12798.28 13699.14 11299.49 9298.83 8096.54 27399.48 7497.32 20599.11 10598.61 22599.33 899.30 34696.23 22198.38 31699.28 205
DeepPCF-MVS96.93 598.32 14498.01 16699.23 10198.39 30598.97 6795.03 33499.18 18796.88 23599.33 7198.78 19098.16 6499.28 34996.74 18199.62 16799.44 142
TinyColmap97.89 18097.98 16897.60 26898.86 23394.35 29096.21 29299.44 8897.45 19399.06 11398.88 16897.99 7799.28 34994.38 28599.58 18599.18 227
KD-MVS_2432*160092.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
cl2295.79 29295.39 29696.98 29896.77 36592.79 32594.40 35298.53 29094.59 29797.89 24898.17 27182.82 35099.24 35196.37 21399.03 28398.92 267
miper_refine_blended92.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
PAPM91.88 34190.34 34496.51 31298.06 32492.56 32892.44 36997.17 33286.35 36690.38 37396.01 34886.61 32099.21 35470.65 37895.43 36697.75 340
MVS-HIRNet94.32 31495.62 28690.42 35998.46 29775.36 38296.29 28889.13 37695.25 28695.38 35099.75 792.88 28199.19 35594.07 29499.39 22896.72 360
PAPM_NR96.82 26096.32 27098.30 22599.07 18896.69 23397.48 21398.76 27395.81 27396.61 31896.47 34294.12 26299.17 35690.82 35297.78 33599.06 241
TR-MVS95.55 29795.12 30396.86 30797.54 34793.94 30296.49 27896.53 34494.36 30597.03 29896.61 33894.26 25899.16 35786.91 36396.31 35997.47 351
API-MVS97.04 24996.91 23997.42 28297.88 33398.23 12998.18 13698.50 29297.57 17797.39 28596.75 33696.77 16599.15 35890.16 35499.02 28694.88 372
PAPR95.29 30194.47 31097.75 25997.50 35295.14 27194.89 33898.71 28191.39 34495.35 35195.48 35894.57 25099.14 35984.95 36697.37 34398.97 259
131495.74 29395.60 28796.17 32097.53 34892.75 32798.07 14898.31 30091.22 34594.25 35996.68 33795.53 22099.03 36091.64 33997.18 34896.74 359
gg-mvs-nofinetune92.37 33791.20 34295.85 32595.80 37692.38 33299.31 2681.84 38299.75 591.83 37199.74 868.29 37799.02 36187.15 36297.12 34996.16 365
BH-w/o95.13 30494.89 30895.86 32498.20 31691.31 34595.65 31697.37 32693.64 31696.52 32195.70 35493.04 27999.02 36188.10 36095.82 36497.24 353
test0.0.03 194.51 31193.69 32096.99 29796.05 37393.61 31594.97 33693.49 36396.17 25897.57 27194.88 36782.30 35199.01 36393.60 30794.17 37298.37 317
E-PMN94.17 31894.37 31393.58 35296.86 36285.71 36990.11 37297.07 33498.17 13897.82 25497.19 32784.62 33798.94 36489.77 35597.68 33796.09 368
EMVS93.83 32494.02 31693.23 35696.83 36484.96 37089.77 37396.32 34697.92 15397.43 28396.36 34686.17 32498.93 36587.68 36197.73 33695.81 369
CMPMVSbinary75.91 2396.29 28095.44 29398.84 15996.25 37298.69 9397.02 24599.12 20688.90 35997.83 25298.86 17289.51 30498.90 36691.92 33499.51 20798.92 267
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_089.98 2191.15 34290.30 34593.70 35197.72 33984.34 37590.24 37197.42 32590.20 35393.79 36593.09 37490.90 29698.89 36786.57 36472.76 37897.87 333
MSLP-MVS++98.02 17098.14 15597.64 26698.58 28495.19 26997.48 21399.23 17497.47 18697.90 24798.62 22297.04 14698.81 36897.55 12199.41 22598.94 265
OPU-MVS98.82 16198.59 28398.30 12198.10 14598.52 23498.18 6198.75 36994.62 27399.48 21799.41 152
cascas94.79 30994.33 31596.15 32396.02 37592.36 33392.34 37099.26 16685.34 36995.08 35494.96 36692.96 28098.53 37094.41 28498.59 31297.56 348
wuyk23d96.06 28597.62 19591.38 35898.65 27898.57 10298.85 7996.95 33796.86 23699.90 499.16 9799.18 1198.40 37189.23 35799.77 10277.18 376
PMVScopyleft91.26 2097.86 18497.94 17297.65 26499.71 3797.94 16498.52 10298.68 28298.99 8497.52 27599.35 6797.41 12398.18 37291.59 34099.67 15396.82 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND94.76 34194.54 37892.13 33699.31 2680.47 38388.73 37691.01 37667.59 38098.16 37382.30 37394.53 37193.98 373
test_method79.78 34479.50 34780.62 36080.21 38345.76 38570.82 37498.41 29731.08 37880.89 37997.71 30184.85 33497.37 37491.51 34280.03 37798.75 293
PC_three_145293.27 32199.40 5798.54 23198.22 5797.00 37595.17 26199.45 22099.49 114
FPMVS93.44 32992.23 33497.08 29499.25 14297.86 16995.61 31797.16 33392.90 32693.76 36698.65 21375.94 37195.66 37679.30 37697.49 33897.73 341
MVEpermissive83.40 2292.50 33591.92 33894.25 34598.83 24091.64 33992.71 36783.52 38195.92 26986.46 37895.46 35995.20 23195.40 37780.51 37498.64 30995.73 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SD-MVS98.40 13798.68 7697.54 27598.96 21197.99 15297.88 17099.36 11398.20 13599.63 2699.04 12098.76 2395.33 37896.56 19899.74 11699.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepMVS_CXcopyleft93.44 35498.24 31394.21 29394.34 35764.28 37691.34 37294.87 36989.45 30692.77 37977.54 37793.14 37393.35 374
tmp_tt78.77 34578.73 34878.90 36158.45 38474.76 38494.20 35578.26 38439.16 37786.71 37792.82 37580.50 35675.19 38086.16 36592.29 37486.74 375
test12317.04 34820.11 3517.82 36210.25 3864.91 38694.80 3394.47 3874.93 38010.00 38224.28 3799.69 3853.64 38110.14 37912.43 38014.92 377
testmvs17.12 34720.53 3506.87 36312.05 3854.20 38793.62 3646.73 3864.62 38110.41 38124.33 3788.28 3863.56 3829.69 38015.07 37912.86 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.66 34632.88 3490.00 3640.00 3870.00 3880.00 37599.10 2100.00 3820.00 38397.58 30999.21 100.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.17 34910.90 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38298.07 680.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.12 35010.83 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38397.48 3160.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.73 3099.67 299.43 1299.54 5499.43 3599.26 86
test_one_060199.39 11799.20 3399.31 13898.49 11498.66 18299.02 12497.64 100
eth-test20.00 387
eth-test0.00 387
RE-MVS-def98.58 9199.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.75 9196.56 19899.39 22899.45 138
IU-MVS99.49 9299.15 4898.87 25192.97 32499.41 5496.76 17999.62 16799.66 42
save fliter99.11 17797.97 15796.53 27499.02 22898.24 129
test072699.50 8599.21 2798.17 13999.35 11997.97 14999.26 8699.06 11197.61 103
GSMVS98.81 282
test_part299.36 12499.10 6199.05 118
sam_mvs184.74 33698.81 282
sam_mvs84.29 342
MTGPAbinary99.20 178
MTMP97.93 16591.91 370
test9_res93.28 31699.15 26899.38 170
agg_prior292.50 33099.16 26599.37 173
test_prior497.97 15795.86 307
test_prior295.74 31396.48 24996.11 33197.63 30795.92 20894.16 28799.20 258
新几何295.93 304
旧先验198.82 24397.45 19898.76 27398.34 25895.50 22399.01 28899.23 215
原ACMM295.53 320
test22298.92 22096.93 22595.54 31998.78 27285.72 36896.86 30998.11 27694.43 25299.10 27799.23 215
segment_acmp97.02 149
testdata195.44 32596.32 255
plane_prior799.19 15797.87 168
plane_prior698.99 20797.70 18694.90 237
plane_prior497.98 285
plane_prior397.78 17997.41 19697.79 255
plane_prior297.77 18298.20 135
plane_prior199.05 195
plane_prior97.65 18897.07 24496.72 24199.36 233
n20.00 388
nn0.00 388
door-mid99.57 38
test1198.87 251
door99.41 98
HQP5-MVS96.79 228
HQP-NCC98.67 27296.29 28896.05 26395.55 344
ACMP_Plane98.67 27296.29 28896.05 26395.55 344
BP-MVS92.82 322
HQP3-MVS99.04 22299.26 251
HQP2-MVS93.84 264
NP-MVS98.84 23897.39 20196.84 334
MDTV_nov1_ep13_2view74.92 38397.69 19090.06 35597.75 25885.78 32893.52 30998.69 299
ACMMP++_ref99.77 102
ACMMP++99.68 147
Test By Simon96.52 178