This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
HyFIR lowres test97.19 23096.60 25198.96 13599.62 5197.28 19995.17 32099.50 6094.21 29899.01 11898.32 24986.61 31199.99 297.10 13999.84 5699.60 51
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9199.28 2999.66 1999.09 6699.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
mvs_tets99.63 599.67 599.49 4999.88 798.61 9199.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
DTE-MVSNet99.43 1599.35 1799.66 499.71 3199.30 1799.31 2099.51 5899.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
MVSFormer98.26 14498.43 10697.77 24998.88 21893.89 30099.39 1399.56 4299.11 5798.16 21898.13 26093.81 25899.97 399.26 1899.57 17799.43 139
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8099.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
h-mvs3397.77 18897.33 20999.10 11099.21 13997.84 16498.35 11298.57 28199.11 5798.58 18799.02 11588.65 30499.96 898.11 8196.34 34899.49 106
IterMVS-SCA-FT97.85 18298.18 14096.87 29699.27 12791.16 34295.53 31099.25 16299.10 6399.41 4999.35 5893.10 26899.96 898.65 5499.94 2199.49 106
UA-Net99.47 1199.40 1499.70 299.49 8599.29 1899.80 399.72 1099.82 399.04 11499.81 398.05 6999.96 898.85 4299.99 599.86 6
RRT_MVS97.07 23896.57 25398.58 18595.89 36696.33 23397.36 21298.77 26597.85 14999.08 10499.12 9482.30 34299.96 898.82 4499.90 4499.45 130
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 12999.20 3599.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 5199.29 2599.54 5099.62 1799.56 2899.42 4998.16 6299.96 898.78 4599.93 2599.77 16
K. test v398.00 16597.66 18499.03 12799.79 1997.56 18599.19 3992.47 36199.62 1799.52 3599.66 1789.61 29599.96 899.25 2099.81 6999.56 73
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15598.43 28998.11 13297.61 18999.50 6098.64 9297.39 27497.52 30198.12 6599.95 1596.90 15798.71 29598.38 303
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31499.49 398.02 14699.16 19198.29 11697.64 25397.99 27296.44 17999.95 1596.66 17998.93 28598.60 292
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6299.34 1599.69 1598.93 8199.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
v7n99.53 899.57 899.41 6199.88 798.54 9999.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
PS-CasMVS99.40 1899.33 2099.62 699.71 3199.10 5999.29 2599.53 5499.53 2399.46 4399.41 5198.23 5299.95 1598.89 4099.95 1699.81 11
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11298.87 7198.39 10899.42 9399.42 3199.36 5999.06 10198.38 4399.95 1598.34 7299.90 4499.57 68
Vis-MVSNetpermissive99.34 2299.36 1699.27 8599.73 2498.26 11799.17 4099.78 699.11 5799.27 7499.48 4198.82 2199.95 1598.94 3699.93 2599.59 57
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052198.69 8398.87 4598.16 22899.77 2095.11 26899.08 4799.44 8499.34 3899.33 6399.55 2994.10 25599.94 2399.25 2099.96 1499.42 142
CP-MVSNet99.21 2999.09 3499.56 2499.65 4498.96 6899.13 4499.34 12199.42 3199.33 6399.26 6997.01 14699.94 2398.74 5099.93 2599.79 13
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22499.73 2495.15 26597.36 21299.68 1694.45 29398.99 12299.27 6796.87 15399.94 2397.13 13799.91 4099.57 68
IterMVS97.73 18998.11 15096.57 30399.24 13290.28 34395.52 31299.21 17198.86 8499.33 6399.33 6293.11 26799.94 2398.49 6299.94 2199.48 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.57 799.67 599.28 8299.89 698.09 13399.14 4399.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
CHOSEN 280x42095.51 29095.47 28195.65 32298.25 30188.27 35193.25 35598.88 24293.53 30994.65 34797.15 32086.17 31599.93 2897.41 12099.93 2598.73 284
bset_n11_16_dypcd96.99 24796.56 25498.27 22199.00 19195.25 26092.18 36194.05 35698.75 8999.01 11898.38 24088.98 30099.93 2898.77 4899.92 3499.64 41
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15598.74 8097.68 18199.40 9799.14 5599.06 10798.59 21696.71 16799.93 2898.57 5899.77 9099.53 91
DU-MVS98.82 6198.63 7499.39 6499.16 15798.74 8097.54 19799.25 16298.84 8699.06 10798.76 18396.76 16399.93 2898.57 5899.77 9099.50 102
WR-MVS_H99.33 2399.22 2799.65 599.71 3199.24 2499.32 1799.55 4699.46 2799.50 3999.34 6097.30 12899.93 2898.90 3899.93 2599.77 16
SixPastTwentyTwo98.75 7398.62 7599.16 10199.83 1597.96 15499.28 2998.20 29799.37 3599.70 1599.65 1992.65 27799.93 2899.04 3299.84 5699.60 51
IterMVS-LS98.55 10998.70 6598.09 23099.48 9394.73 27497.22 22499.39 9998.97 7699.38 5599.31 6496.00 19599.93 2898.58 5699.97 1199.60 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051795.64 28694.98 29797.64 25899.36 11393.81 30298.72 7390.47 36798.08 13398.67 17298.34 24673.88 36499.92 3597.77 10399.51 19599.20 211
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
zzz-MVS98.79 6598.52 8799.61 999.67 4199.36 1097.33 21499.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
mvs-test197.83 18597.48 19898.89 14598.02 31499.20 3397.20 22599.16 19198.29 11696.46 31797.17 31896.44 17999.92 3596.66 17997.90 32497.54 339
xiu_mvs_v1_base97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
MTAPA98.88 5698.64 7399.61 999.67 4199.36 1098.43 10599.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
LCM-MVSNet-Re98.64 9398.48 9699.11 10898.85 22398.51 10198.49 9799.83 498.37 10899.69 1799.46 4398.21 5799.92 3594.13 28399.30 23498.91 260
lessismore_v098.97 13499.73 2497.53 18786.71 37199.37 5799.52 3589.93 29399.92 3598.99 3599.72 11499.44 135
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6499.63 699.58 2899.44 2999.78 1099.76 696.39 18199.92 3599.44 1399.92 3499.68 33
GeoE99.05 3698.99 4299.25 9099.44 10198.35 11498.73 7299.56 4298.42 10798.91 13998.81 17598.94 1899.91 4598.35 7199.73 10799.49 106
Fast-Effi-MVS+97.67 19397.38 20398.57 18898.71 24897.43 19297.23 22199.45 8194.82 28596.13 32196.51 32998.52 3699.91 4596.19 21498.83 28898.37 305
jason97.45 21097.35 20697.76 25099.24 13293.93 29695.86 29798.42 28894.24 29798.50 19898.13 26094.82 23499.91 4597.22 12899.73 10799.43 139
jason: jason.
lupinMVS97.06 23996.86 23497.65 25698.88 21893.89 30095.48 31397.97 30693.53 30998.16 21897.58 29793.81 25899.91 4596.77 16899.57 17799.17 222
thisisatest053095.27 29394.45 30397.74 25299.19 14694.37 28297.86 16390.20 36897.17 21398.22 21597.65 29373.53 36599.90 4996.90 15799.35 22598.95 251
xiu_mvs_v2_base97.16 23397.49 19596.17 31298.54 27992.46 32295.45 31498.84 25397.25 20397.48 26896.49 33098.31 4999.90 4996.34 20698.68 29796.15 357
PS-MVSNAJ97.08 23797.39 20296.16 31498.56 27692.46 32295.24 31998.85 25297.25 20397.49 26795.99 33998.07 6699.90 4996.37 20398.67 29896.12 358
DSMNet-mixed97.42 21297.60 19096.87 29699.15 16191.46 33398.54 8999.12 20092.87 31897.58 25899.63 2096.21 18899.90 4995.74 23599.54 18599.27 198
DROMVSNet99.09 3499.05 3799.20 9599.28 12598.93 6999.24 3399.84 399.08 6898.12 22298.37 24298.72 2699.90 4999.05 3199.77 9098.77 279
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3699.41 1299.59 2699.59 2099.71 1499.57 2797.12 13999.90 4999.21 2399.87 5299.54 85
QAPM97.31 21996.81 23898.82 15398.80 23697.49 18899.06 5199.19 17890.22 34497.69 25099.16 8696.91 15199.90 4990.89 34299.41 21599.07 231
EPP-MVSNet98.30 13898.04 15799.07 11799.56 6397.83 16599.29 2598.07 30399.03 7098.59 18599.13 9392.16 28199.90 4996.87 16099.68 13499.49 106
3Dnovator98.27 298.81 6398.73 5899.05 12498.76 23997.81 17099.25 3299.30 14498.57 10298.55 19399.33 6297.95 7899.90 4997.16 13199.67 14099.44 135
OpenMVScopyleft96.65 797.09 23696.68 24598.32 21598.32 29797.16 21098.86 6699.37 10589.48 34896.29 32099.15 9096.56 17299.90 4992.90 31099.20 24897.89 320
MSC_two_6792asdad99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
No_MVS99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 12799.15 4797.01 23699.39 9997.67 15899.44 4698.99 12797.53 11099.89 5995.40 24999.68 13499.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part197.91 17097.46 20099.27 8598.80 23698.18 12699.07 4999.36 10999.75 599.63 2599.49 3982.20 34599.89 5998.87 4199.95 1699.74 24
CANet97.87 17697.76 17598.19 22697.75 32695.51 25396.76 25499.05 21297.74 15496.93 29098.21 25695.59 21399.89 5997.86 9999.93 2599.19 216
APDe-MVS98.99 4098.79 5399.60 1399.21 13999.15 4798.87 6499.48 7097.57 16799.35 6099.24 7297.83 8399.89 5997.88 9799.70 12399.75 22
PGM-MVS98.66 9098.37 11699.55 2699.53 7199.18 3798.23 11999.49 6897.01 22198.69 17098.88 15798.00 7299.89 5995.87 22999.59 16799.58 63
abl_698.99 4098.78 5499.61 999.45 9999.46 498.60 8299.50 6098.59 9899.24 8399.04 11198.54 3599.89 5996.45 19899.62 15499.50 102
mPP-MVS98.64 9398.34 12099.54 2999.54 6999.17 3898.63 7999.24 16797.47 17698.09 22698.68 19597.62 10299.89 5996.22 21299.62 15499.57 68
CP-MVS98.70 8198.42 10899.52 4199.36 11399.12 5698.72 7399.36 10997.54 17198.30 21198.40 23697.86 8199.89 5996.53 19399.72 11499.56 73
IB-MVS91.63 1992.24 33190.90 33596.27 30997.22 34791.24 34094.36 34393.33 35992.37 32392.24 36294.58 36066.20 37499.89 5993.16 30894.63 36097.66 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DVP-MVS++.98.90 5498.70 6599.51 4598.43 28999.15 4799.43 1099.32 12898.17 12899.26 7899.02 11598.18 5999.88 7097.07 14099.45 21099.49 106
SED-MVS98.91 5298.72 6099.49 4999.49 8599.17 3898.10 13399.31 13498.03 13599.66 2099.02 11598.36 4499.88 7096.91 15299.62 15499.41 145
test_241102_TWO99.30 14498.03 13599.26 7899.02 11597.51 11399.88 7096.91 15299.60 16399.66 36
ETV-MVS98.03 16197.86 17198.56 19298.69 25698.07 13997.51 20199.50 6098.10 13297.50 26695.51 34798.41 4199.88 7096.27 21099.24 24397.71 333
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7899.21 2798.02 14698.84 25397.97 13999.08 10499.02 11597.61 10399.88 7096.99 14699.63 15199.48 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 12899.08 10499.02 11597.89 7999.88 7097.07 14099.71 11899.70 31
test_0728_SECOND99.60 1399.50 7899.23 2598.02 14699.32 12899.88 7096.99 14699.63 15199.68 33
MVS_030497.64 19597.35 20698.52 19797.87 32296.69 22798.59 8498.05 30597.44 18593.74 35898.85 16493.69 26299.88 7098.11 8199.81 6998.98 246
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 3999.35 1297.16 23199.38 10194.87 28498.97 12798.99 12798.01 7199.88 7097.29 12599.70 12399.58 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 12998.00 16099.61 999.57 5699.25 2398.57 8699.35 11597.55 17099.31 7197.71 28994.61 24199.88 7096.14 21899.19 25299.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.69 8398.40 11099.54 2999.53 7199.17 3898.52 9199.31 13497.46 18198.44 20198.51 22497.83 8399.88 7096.46 19799.58 17399.58 63
VPA-MVSNet99.30 2499.30 2399.28 8299.49 8598.36 11399.00 5599.45 8199.63 1499.52 3599.44 4898.25 5099.88 7099.09 2899.84 5699.62 46
ACMMPR98.70 8198.42 10899.54 2999.52 7399.14 5198.52 9199.31 13497.47 17698.56 19198.54 22097.75 9099.88 7096.57 18599.59 16799.58 63
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5699.22 2698.50 9699.19 17897.61 16497.58 25898.66 20097.40 12399.88 7094.72 26399.60 16399.54 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CHOSEN 1792x268897.49 20597.14 22098.54 19699.68 4096.09 24096.50 26799.62 2291.58 33298.84 15398.97 13392.36 27999.88 7096.76 16999.95 1699.67 35
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2499.16 4298.23 11999.31 13497.92 14398.90 14098.90 14898.00 7299.88 7096.15 21799.72 11499.58 63
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet596.01 27795.20 29298.41 20897.53 33696.10 23898.74 7099.50 6097.22 21298.03 23299.04 11169.80 36799.88 7097.27 12699.71 11899.25 202
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5699.21 2798.46 10299.29 15197.28 20098.11 22498.39 23898.00 7299.87 8796.86 16299.64 14899.55 81
SR-MVS98.71 7898.43 10699.57 1899.18 15399.35 1298.36 11199.29 15198.29 11698.88 14798.85 16497.53 11099.87 8796.14 21899.31 23199.48 116
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3499.64 41
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4499.29 1899.16 4199.43 9096.74 23198.61 18198.38 24098.62 3099.87 8796.47 19699.67 14099.59 57
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet96.14 27595.44 28498.25 22290.76 37395.50 25497.92 15694.65 34898.97 7692.98 35998.85 16489.12 29999.87 8795.99 22299.68 13499.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet97.02 24396.93 22897.30 27897.71 32894.22 28498.11 13199.30 14499.37 3596.91 29399.34 6086.72 31099.87 8797.53 11597.36 33597.81 326
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6399.16 4298.87 6499.37 10597.16 21498.82 15899.01 12497.71 9399.87 8796.29 20999.69 12999.54 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 4999.06 6398.69 7699.54 5099.31 4099.62 2799.53 3397.36 12699.86 9499.24 2299.71 11899.39 154
ZD-MVS99.01 19098.84 7399.07 20794.10 30198.05 23098.12 26396.36 18599.86 9492.70 31899.19 252
test117298.76 7198.49 9499.57 1899.18 15399.37 998.39 10899.31 13498.43 10698.90 14098.88 15797.49 11799.86 9496.43 20099.37 22299.48 116
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.49 11799.86 9496.56 18899.39 21899.45 130
testtj97.79 18797.25 21199.42 5899.03 18698.85 7297.78 16999.18 18295.83 26398.12 22298.50 22795.50 21799.86 9492.23 32499.07 26899.54 85
tfpnnormal98.90 5498.90 4498.91 14299.67 4197.82 16899.00 5599.44 8499.45 2899.51 3899.24 7298.20 5899.86 9495.92 22599.69 12999.04 237
Regformer-498.73 7698.68 6898.89 14599.02 18897.22 20397.17 22999.06 20899.21 4699.17 9498.85 16497.45 12099.86 9498.48 6399.70 12399.60 51
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13298.73 8397.73 17799.38 10198.93 8199.12 9698.73 18696.77 16199.86 9498.63 5599.80 7799.46 126
NR-MVSNet98.95 4898.82 5099.36 6599.16 15798.72 8599.22 3499.20 17399.10 6399.72 1398.76 18396.38 18399.86 9498.00 9199.82 6599.50 102
GBi-Net98.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
test198.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
FMVSNet199.17 3099.17 2999.17 9899.55 6698.24 11999.20 3599.44 8499.21 4699.43 4799.55 2997.82 8699.86 9498.42 6799.89 4899.41 145
XXY-MVS99.14 3299.15 3299.10 11099.76 2297.74 17698.85 6799.62 2298.48 10599.37 5799.49 3998.75 2499.86 9498.20 7899.80 7799.71 26
1112_ss97.29 22296.86 23498.58 18599.34 11996.32 23496.75 25599.58 2893.14 31496.89 29797.48 30492.11 28299.86 9496.91 15299.54 18599.57 68
GST-MVS98.61 9898.30 12599.52 4199.51 7599.20 3398.26 11799.25 16297.44 18598.67 17298.39 23897.68 9499.85 10896.00 22199.51 19599.52 95
patchmatchnet-post98.77 18184.37 33099.85 108
SCA96.41 26996.66 24895.67 32098.24 30288.35 35095.85 29996.88 33296.11 25297.67 25198.67 19793.10 26899.85 10894.16 27899.22 24598.81 271
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11099.30 2499.57 3599.61 1999.40 5299.50 3697.12 13999.85 10899.02 3399.94 2199.80 12
HFP-MVS98.71 7898.44 10499.51 4599.49 8599.16 4298.52 9199.31 13497.47 17698.58 18798.50 22797.97 7699.85 10896.57 18599.59 16799.53 91
#test#98.50 11798.16 14499.51 4599.49 8599.16 4298.03 14499.31 13496.30 24898.58 18798.50 22797.97 7699.85 10895.68 23999.59 16799.53 91
EI-MVSNet-UG-set98.69 8398.71 6298.62 18099.10 16996.37 23297.23 22198.87 24499.20 4999.19 8998.99 12797.30 12899.85 10898.77 4899.79 8299.65 40
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17899.09 17296.40 23197.23 22198.86 24999.20 4999.18 9398.97 13397.29 13099.85 10898.72 5199.78 8699.64 41
v124098.55 10998.62 7598.32 21599.22 13795.58 25097.51 20199.45 8197.16 21499.45 4599.24 7296.12 19099.85 10899.60 499.88 4999.55 81
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 14699.27 2198.49 9799.33 12698.64 9299.03 11798.98 13197.89 7999.85 10896.54 19299.42 21499.46 126
ADS-MVSNet295.43 29194.98 29796.76 30298.14 30891.74 33097.92 15697.76 31090.23 34296.51 31398.91 14585.61 32099.85 10892.88 31196.90 34198.69 288
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23599.44 10194.96 27096.63 26199.15 19798.35 10998.83 15499.11 9694.31 24899.85 10896.60 18298.72 29399.37 164
WR-MVS98.40 12998.19 13999.03 12799.00 19197.65 18196.85 24898.94 23198.57 10298.89 14398.50 22795.60 21299.85 10897.54 11499.85 5499.59 57
RRT_test8_iter0595.24 29495.13 29495.57 32397.32 34487.02 35697.99 15099.41 9498.06 13499.12 9699.05 10866.85 37299.85 10898.93 3799.47 20699.84 8
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16598.93 6997.76 17499.28 15394.97 28198.72 16998.77 18197.04 14299.85 10893.79 29499.54 18599.49 106
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmtry97.35 21696.97 22798.50 20197.31 34596.47 23098.18 12498.92 23698.95 8098.78 16199.37 5485.44 32399.85 10895.96 22499.83 6299.17 222
N_pmnet97.63 19797.17 21698.99 13399.27 12797.86 16295.98 28893.41 35895.25 27799.47 4298.90 14895.63 21199.85 10896.91 15299.73 10799.27 198
our_test_397.39 21497.73 17996.34 30798.70 25289.78 34594.61 33798.97 23096.50 23999.04 11498.85 16495.98 19999.84 12597.26 12799.67 14099.41 145
CANet_DTU97.26 22397.06 22297.84 24597.57 33394.65 27896.19 28498.79 26297.23 20995.14 34498.24 25393.22 26599.84 12597.34 12399.84 5699.04 237
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5299.29 1897.82 16799.25 16296.94 22398.78 16199.12 9498.02 7099.84 12597.13 13799.67 14099.59 57
v14419298.54 11298.57 8398.45 20599.21 13995.98 24197.63 18699.36 10997.15 21699.32 6999.18 8095.84 20699.84 12599.50 1099.91 4099.54 85
v192192098.54 11298.60 8098.38 21199.20 14395.76 24997.56 19599.36 10997.23 20999.38 5599.17 8496.02 19399.84 12599.57 699.90 4499.54 85
Regformer-298.60 10098.46 10099.02 13098.85 22397.71 17896.91 24599.09 20498.98 7599.01 11898.64 20597.37 12599.84 12597.75 10899.57 17799.52 95
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17299.13 5497.52 19998.75 26997.46 18196.90 29697.83 28396.01 19499.84 12595.82 23399.35 22599.46 126
PMMVS298.07 16098.08 15498.04 23799.41 10794.59 28094.59 33899.40 9797.50 17398.82 15898.83 17096.83 15699.84 12597.50 11799.81 6999.71 26
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9499.54 6998.59 9397.71 17899.46 7897.25 20398.98 12498.99 12797.54 10899.84 12595.88 22699.74 10499.23 206
CPTT-MVS97.84 18397.36 20599.27 8599.31 12098.46 10498.29 11499.27 15694.90 28397.83 24198.37 24294.90 23099.84 12593.85 29399.54 18599.51 98
UGNet98.53 11498.45 10298.79 15997.94 31896.96 21799.08 4798.54 28299.10 6396.82 30299.47 4296.55 17399.84 12598.56 6199.94 2199.55 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG98.68 8798.50 9199.20 9599.45 9998.63 8898.56 8799.57 3597.87 14798.85 15198.04 27097.66 9699.84 12596.72 17499.81 6999.13 226
DeepC-MVS97.60 498.97 4598.93 4399.10 11099.35 11797.98 14998.01 14999.46 7897.56 16999.54 3099.50 3698.97 1699.84 12598.06 8699.92 3499.49 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+97.89 398.69 8398.51 8999.24 9298.81 23498.40 10699.02 5299.19 17898.99 7398.07 22799.28 6597.11 14199.84 12596.84 16399.32 22999.47 124
CS-MVS-test98.41 12698.30 12598.73 17198.84 22698.39 10798.71 7599.79 597.98 13796.86 29997.38 31097.86 8199.83 13997.81 10099.46 20797.97 318
Anonymous2023121199.27 2599.27 2499.26 8899.29 12498.18 12699.49 899.51 5899.70 899.80 999.68 1496.84 15499.83 13999.21 2399.91 4099.77 16
Anonymous2023120698.21 14998.21 13698.20 22599.51 7595.43 25798.13 12899.32 12896.16 25198.93 13798.82 17396.00 19599.83 13997.32 12499.73 10799.36 170
XVS98.72 7798.45 10299.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26298.63 20997.50 11499.83 13996.79 16599.53 18999.56 73
X-MVStestdata94.32 30692.59 32499.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26245.85 36897.50 11499.83 13996.79 16599.53 18999.56 73
v1098.97 4599.11 3398.55 19399.44 10196.21 23798.90 6299.55 4698.73 9099.48 4099.60 2596.63 17099.83 13999.70 399.99 599.61 50
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9499.27 3199.57 3599.39 3399.75 1299.62 2199.17 1299.83 13999.06 3099.62 15499.66 36
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9697.47 20599.57 3599.37 3599.21 8799.61 2396.76 16399.83 13998.06 8699.83 6299.71 26
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5698.97 6598.23 11999.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
LGP-MVS_train99.47 5499.57 5698.97 6599.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
Test_1112_low_res96.99 24796.55 25598.31 21799.35 11795.47 25595.84 30099.53 5491.51 33496.80 30398.48 23291.36 28699.83 13996.58 18399.53 18999.62 46
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12299.11 16597.97 15096.53 26499.54 5098.24 11998.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
SF-MVS98.53 11498.27 12999.32 7799.31 12098.75 7998.19 12399.41 9496.77 23098.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
new-patchmatchnet98.35 13498.74 5797.18 28299.24 13292.23 32796.42 27299.48 7098.30 11399.69 1799.53 3397.44 12199.82 15098.84 4399.77 9099.49 106
FIs99.14 3299.09 3499.29 8099.70 3798.28 11699.13 4499.52 5799.48 2499.24 8399.41 5196.79 16099.82 15098.69 5399.88 4999.76 20
v119298.60 10098.66 7198.41 20899.27 12795.88 24497.52 19999.36 10997.41 18799.33 6399.20 7796.37 18499.82 15099.57 699.92 3499.55 81
pm-mvs199.44 1399.48 1199.33 7599.80 1798.63 8899.29 2599.63 2199.30 4299.65 2299.60 2599.16 1499.82 15099.07 2999.83 6299.56 73
VPNet98.87 5798.83 4999.01 13199.70 3797.62 18498.43 10599.35 11599.47 2699.28 7299.05 10896.72 16699.82 15098.09 8499.36 22399.59 57
pmmvs395.03 29894.40 30496.93 29297.70 33092.53 32195.08 32397.71 31288.57 35397.71 24898.08 26879.39 35499.82 15096.19 21499.11 26698.43 301
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3199.35 1299.00 5599.50 6097.33 19498.94 13698.86 16198.75 2499.82 15097.53 11599.71 11899.56 73
DELS-MVS98.27 14298.20 13798.48 20298.86 22196.70 22695.60 30899.20 17397.73 15598.45 20098.71 18997.50 11499.82 15098.21 7799.59 16798.93 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet298.49 11898.40 11098.75 16798.90 21297.14 21298.61 8199.13 19898.59 9899.19 8999.28 6594.14 25199.82 15097.97 9299.80 7799.29 195
WTY-MVS96.67 25996.27 26597.87 24498.81 23494.61 27996.77 25397.92 30894.94 28297.12 28197.74 28891.11 28799.82 15093.89 29098.15 31599.18 218
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7598.79 7897.68 18199.38 10195.76 26598.81 16098.82 17398.36 4499.82 15094.75 26099.77 9099.48 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9798.51 28298.64 8796.85 24899.13 19894.19 29997.65 25298.40 23695.78 20799.81 16393.37 30599.16 25599.12 227
ET-MVSNet_ETH3D94.30 30893.21 31897.58 26298.14 30894.47 28194.78 33093.24 36094.72 28689.56 36695.87 34278.57 35899.81 16396.91 15297.11 34098.46 297
TSAR-MVS + MP.98.63 9598.49 9499.06 12299.64 4797.90 15998.51 9598.94 23196.96 22299.24 8398.89 15697.83 8399.81 16396.88 15999.49 20399.48 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-198.55 10998.44 10498.87 14798.85 22397.29 19796.91 24598.99 22898.97 7698.99 12298.64 20597.26 13499.81 16397.79 10199.57 17799.51 98
v899.01 3899.16 3098.57 18899.47 9596.31 23598.90 6299.47 7699.03 7099.52 3599.57 2796.93 15099.81 16399.60 499.98 999.60 51
CR-MVSNet96.28 27295.95 26997.28 27997.71 32894.22 28498.11 13198.92 23692.31 32496.91 29399.37 5485.44 32399.81 16397.39 12197.36 33597.81 326
PatchT96.65 26096.35 26097.54 26797.40 34195.32 25997.98 15296.64 33599.33 3996.89 29799.42 4984.32 33199.81 16397.69 11197.49 32897.48 340
FMVSNet397.50 20397.24 21398.29 21998.08 31295.83 24697.86 16398.91 23897.89 14698.95 13098.95 14087.06 30899.81 16397.77 10399.69 12999.23 206
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5899.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16399.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EIA-MVS98.00 16597.74 17798.80 15798.72 24598.09 13398.05 14199.60 2597.39 18996.63 30795.55 34697.68 9499.80 17296.73 17399.27 23898.52 295
CS-MVS98.16 15698.22 13597.97 24198.56 27697.01 21698.10 13399.70 1497.45 18397.29 27797.19 31697.72 9299.80 17298.37 6999.62 15497.11 345
Anonymous2024052998.93 5098.87 4599.12 10699.19 14698.22 12499.01 5398.99 22899.25 4599.54 3099.37 5497.04 14299.80 17297.89 9499.52 19299.35 174
thisisatest051594.12 31293.16 31996.97 29198.60 27092.90 31593.77 35290.61 36694.10 30196.91 29395.87 34274.99 36399.80 17294.52 26799.12 26598.20 308
Effi-MVS+98.02 16397.82 17398.62 18098.53 28197.19 20797.33 21499.68 1697.30 19896.68 30597.46 30698.56 3499.80 17296.63 18198.20 31198.86 265
v114498.60 10098.66 7198.41 20899.36 11395.90 24397.58 19399.34 12197.51 17299.27 7499.15 9096.34 18699.80 17299.47 1299.93 2599.51 98
VDDNet98.21 14997.95 16399.01 13199.58 5297.74 17699.01 5397.29 32399.67 1098.97 12799.50 3690.45 29099.80 17297.88 9799.20 24899.48 116
EI-MVSNet98.40 12998.51 8998.04 23799.10 16994.73 27497.20 22598.87 24498.97 7699.06 10799.02 11596.00 19599.80 17298.58 5699.82 6599.60 51
CVMVSNet96.25 27397.21 21593.38 34699.10 16980.56 37297.20 22598.19 29996.94 22399.00 12199.02 11589.50 29799.80 17296.36 20599.59 16799.78 14
MVSTER96.86 25196.55 25597.79 24897.91 32094.21 28697.56 19598.87 24497.49 17599.06 10799.05 10880.72 34799.80 17298.44 6599.82 6599.37 164
sss97.21 22896.93 22898.06 23598.83 22995.22 26396.75 25598.48 28694.49 28997.27 27897.90 27992.77 27599.80 17296.57 18599.32 22999.16 225
ab-mvs98.41 12698.36 11798.59 18499.19 14697.23 20199.32 1798.81 25997.66 15998.62 17999.40 5396.82 15799.80 17295.88 22699.51 19598.75 282
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17298.24 7599.84 5699.52 95
LS3D98.63 9598.38 11599.36 6597.25 34699.38 699.12 4699.32 12899.21 4698.44 20198.88 15797.31 12799.80 17296.58 18399.34 22798.92 257
hse-mvs297.46 20897.07 22198.64 17598.73 24397.33 19597.45 20797.64 31699.11 5798.58 18797.98 27388.65 30499.79 18698.11 8197.39 33298.81 271
AUN-MVS96.24 27495.45 28398.60 18398.70 25297.22 20397.38 21097.65 31495.95 25995.53 33997.96 27782.11 34699.79 18696.31 20797.44 33098.80 276
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 15799.21 2798.05 14199.22 17094.16 30098.98 12499.10 9897.52 11299.79 18696.45 19899.64 14899.53 91
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Regformer-398.61 9898.61 7898.63 17899.02 18896.53 22997.17 22998.84 25399.13 5699.10 10198.85 16497.24 13599.79 18698.41 6899.70 12399.57 68
testdata299.79 18692.80 315
VDD-MVS98.56 10598.39 11399.07 11799.13 16498.07 13998.59 8497.01 32799.59 2099.11 9899.27 6794.82 23499.79 18698.34 7299.63 15199.34 176
v2v48298.56 10598.62 7598.37 21299.42 10695.81 24797.58 19399.16 19197.90 14599.28 7299.01 12495.98 19999.79 18699.33 1599.90 4499.51 98
mvs_anonymous97.83 18598.16 14496.87 29698.18 30691.89 32997.31 21698.90 23997.37 19198.83 15499.46 4396.28 18799.79 18698.90 3898.16 31498.95 251
tpm94.67 30294.34 30695.66 32197.68 33288.42 34997.88 16094.90 34794.46 29196.03 32798.56 21978.66 35699.79 18695.88 22695.01 35898.78 278
IS-MVSNet98.19 15197.90 16899.08 11499.57 5697.97 15099.31 2098.32 29299.01 7298.98 12499.03 11491.59 28599.79 18695.49 24799.80 7799.48 116
test_040298.76 7198.71 6298.93 13999.56 6398.14 13198.45 10499.34 12199.28 4398.95 13098.91 14598.34 4899.79 18695.63 24299.91 4098.86 265
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6699.14 5198.07 13799.37 10597.62 16299.04 11498.96 13698.84 2099.79 18697.43 11999.65 14699.49 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_lstm_enhance97.18 23197.16 21797.25 28198.16 30792.85 31695.15 32299.31 13497.25 20398.74 16898.78 17990.07 29299.78 19897.19 12999.80 7799.11 229
Anonymous20240521197.90 17197.50 19499.08 11498.90 21298.25 11898.53 9096.16 33998.87 8399.11 9898.86 16190.40 29199.78 19897.36 12299.31 23199.19 216
ppachtmachnet_test97.50 20397.74 17796.78 30198.70 25291.23 34194.55 33999.05 21296.36 24499.21 8798.79 17896.39 18199.78 19896.74 17199.82 6599.34 176
新几何198.91 14298.94 20297.76 17398.76 26687.58 35796.75 30498.10 26594.80 23799.78 19892.73 31799.00 27999.20 211
V4298.78 6898.78 5498.76 16599.44 10197.04 21398.27 11699.19 17897.87 14799.25 8299.16 8696.84 15499.78 19899.21 2399.84 5699.46 126
VNet98.42 12598.30 12598.79 15998.79 23897.29 19798.23 11998.66 27699.31 4098.85 15198.80 17694.80 23799.78 19898.13 8099.13 26299.31 188
ETH3 D test640096.46 26895.59 27999.08 11498.88 21898.21 12596.53 26499.18 18288.87 35297.08 28497.79 28493.64 26399.77 20488.92 34999.40 21799.28 196
ETH3D-3000-0.198.03 16197.62 18899.29 8099.11 16598.80 7797.47 20599.32 12895.54 26898.43 20498.62 21196.61 17199.77 20493.95 28899.49 20399.30 191
agg_prior197.06 23996.40 25999.03 12798.68 25997.99 14595.76 30199.01 22491.73 32995.59 33197.50 30296.49 17699.77 20493.71 29599.14 25999.34 176
agg_prior98.68 25997.99 14599.01 22495.59 33199.77 204
baseline293.73 31792.83 32396.42 30697.70 33091.28 33996.84 25089.77 36993.96 30592.44 36195.93 34079.14 35599.77 20492.94 30996.76 34598.21 307
PM-MVS98.82 6198.72 6099.12 10699.64 4798.54 9997.98 15299.68 1697.62 16299.34 6299.18 8097.54 10899.77 20497.79 10199.74 10499.04 237
TAMVS98.24 14798.05 15698.80 15799.07 17697.18 20897.88 16098.81 25996.66 23599.17 9499.21 7594.81 23699.77 20496.96 15099.88 4999.44 135
9.1497.78 17499.07 17697.53 19899.32 12895.53 27098.54 19598.70 19297.58 10599.76 21194.32 27799.46 207
TEST998.71 24898.08 13795.96 29199.03 21791.40 33595.85 32897.53 29996.52 17499.76 211
train_agg97.10 23596.45 25899.07 11798.71 24898.08 13795.96 29199.03 21791.64 33095.85 32897.53 29996.47 17799.76 21193.67 29699.16 25599.36 170
test_898.67 26198.01 14495.91 29699.02 22191.64 33095.79 33097.50 30296.47 17799.76 211
test20.0398.78 6898.77 5698.78 16299.46 9697.20 20697.78 16999.24 16799.04 6999.41 4998.90 14897.65 9799.76 21197.70 10999.79 8299.39 154
EG-PatchMatch MVS98.99 4099.01 3998.94 13899.50 7897.47 18998.04 14399.59 2698.15 13199.40 5299.36 5798.58 3399.76 21198.78 4599.68 13499.59 57
ACMH96.65 799.25 2799.24 2699.26 8899.72 3098.38 10999.07 4999.55 4698.30 11399.65 2299.45 4799.22 999.76 21198.44 6599.77 9099.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.64 19597.49 19598.08 23399.14 16295.12 26796.70 25899.05 21293.77 30698.62 17998.83 17093.23 26499.75 21898.33 7499.76 10099.36 170
HY-MVS95.94 1395.90 28095.35 28897.55 26697.95 31794.79 27298.81 6996.94 33092.28 32595.17 34398.57 21889.90 29499.75 21891.20 33797.33 33798.10 312
DP-MVS98.93 5098.81 5299.28 8299.21 13998.45 10598.46 10299.33 12699.63 1499.48 4099.15 9097.23 13699.75 21897.17 13099.66 14599.63 45
PatchmatchNetpermissive95.58 28795.67 27695.30 32997.34 34387.32 35497.65 18596.65 33495.30 27697.07 28598.69 19384.77 32699.75 21894.97 25698.64 29998.83 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet95.24 29494.93 29996.18 31198.14 30890.10 34497.92 15697.32 32290.23 34296.51 31398.91 14585.61 32099.74 22292.88 31196.90 34198.69 288
diffmvs98.22 14898.24 13298.17 22799.00 19195.44 25696.38 27499.58 2897.79 15398.53 19698.50 22796.76 16399.74 22297.95 9399.64 14899.34 176
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16799.31 12097.17 20997.62 18799.35 11598.72 9198.76 16598.68 19592.57 27899.74 22297.76 10795.60 35599.34 176
CDS-MVSNet97.69 19197.35 20698.69 17298.73 24397.02 21596.92 24498.75 26995.89 26198.59 18598.67 19792.08 28399.74 22296.72 17499.81 6999.32 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
nrg03099.40 1899.35 1799.54 2999.58 5299.13 5498.98 5899.48 7099.68 999.46 4399.26 6998.62 3099.73 22699.17 2699.92 3499.76 20
无先验95.74 30398.74 27189.38 34999.73 22692.38 32299.22 210
112196.73 25696.00 26798.91 14298.95 20197.76 17398.07 13798.73 27287.65 35696.54 31098.13 26094.52 24399.73 22692.38 32299.02 27699.24 205
LFMVS97.20 22996.72 24298.64 17598.72 24596.95 21898.93 6194.14 35599.74 798.78 16199.01 12484.45 32999.73 22697.44 11899.27 23899.25 202
YYNet197.60 19897.67 18197.39 27699.04 18393.04 31495.27 31798.38 29197.25 20398.92 13898.95 14095.48 21999.73 22696.99 14698.74 29199.41 145
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27599.04 18393.09 31095.27 31798.42 28897.26 20298.88 14798.95 14095.43 22099.73 22697.02 14398.72 29399.41 145
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21499.55 6696.10 23898.94 6098.44 28798.32 11298.16 21898.62 21188.76 30199.73 22693.88 29199.79 8299.18 218
PCF-MVS92.86 1894.36 30593.00 32298.42 20798.70 25297.56 18593.16 35699.11 20279.59 36697.55 26197.43 30792.19 28099.73 22679.85 36699.45 21097.97 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5299.10 5998.74 7099.56 4299.09 6699.33 6399.19 7898.40 4299.72 23495.98 22399.76 10099.42 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
原ACMM198.35 21398.90 21296.25 23698.83 25892.48 32296.07 32598.10 26595.39 22199.71 23592.61 32098.99 28099.08 230
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20599.28 12596.78 22596.20 28399.27 15695.42 27398.28 21398.30 25093.16 26699.71 23594.99 25597.37 33398.87 264
test_post21.25 37183.86 33599.70 237
testdata98.09 23098.93 20495.40 25898.80 26190.08 34697.45 27098.37 24295.26 22399.70 23793.58 29998.95 28499.17 222
HQP_MVS97.99 16897.67 18198.93 13999.19 14697.65 18197.77 17299.27 15698.20 12597.79 24497.98 27394.90 23099.70 23794.42 27299.51 19599.45 130
plane_prior599.27 15699.70 23794.42 27299.51 19599.45 130
cl____97.02 24396.83 23797.58 26297.82 32494.04 29094.66 33499.16 19197.04 21998.63 17798.71 18988.68 30399.69 24197.00 14499.81 6999.00 244
DIV-MVS_self_test97.02 24396.84 23697.58 26297.82 32494.03 29194.66 33499.16 19197.04 21998.63 17798.71 18988.69 30299.69 24197.00 14499.81 6999.01 241
eth_miper_zixun_eth97.23 22797.25 21197.17 28398.00 31692.77 31894.71 33199.18 18297.27 20198.56 19198.74 18591.89 28499.69 24197.06 14299.81 6999.05 233
D2MVS97.84 18397.84 17297.83 24699.14 16294.74 27396.94 24098.88 24295.84 26298.89 14398.96 13694.40 24699.69 24197.55 11299.95 1699.05 233
Patchmatch-test96.55 26396.34 26197.17 28398.35 29593.06 31198.40 10797.79 30997.33 19498.41 20598.67 19783.68 33699.69 24195.16 25299.31 23198.77 279
CDPH-MVS97.26 22396.66 24899.07 11799.00 19198.15 12996.03 28799.01 22491.21 33897.79 24497.85 28296.89 15299.69 24192.75 31699.38 22199.39 154
test1298.93 13998.58 27397.83 16598.66 27696.53 31195.51 21699.69 24199.13 26299.27 198
casdiffmvs98.95 4899.00 4098.81 15599.38 11097.33 19597.82 16799.57 3599.17 5499.35 6099.17 8498.35 4799.69 24198.46 6499.73 10799.41 145
baseline98.96 4799.02 3898.76 16599.38 11097.26 20098.49 9799.50 6098.86 8499.19 8999.06 10198.23 5299.69 24198.71 5299.76 10099.33 182
EU-MVSNet97.66 19498.50 9195.13 33099.63 4985.84 35998.35 11298.21 29698.23 12199.54 3099.46 4395.02 22899.68 25098.24 7599.87 5299.87 4
F-COLMAP97.30 22096.68 24599.14 10499.19 14698.39 10797.27 22099.30 14492.93 31696.62 30898.00 27195.73 20999.68 25092.62 31998.46 30599.35 174
OpenMVS_ROBcopyleft95.38 1495.84 28295.18 29397.81 24798.41 29397.15 21197.37 21198.62 27983.86 36298.65 17598.37 24294.29 24999.68 25088.41 35098.62 30196.60 352
test-LLR93.90 31593.85 30994.04 33896.53 35684.62 36494.05 34892.39 36296.17 24994.12 35295.07 35182.30 34299.67 25395.87 22998.18 31297.82 324
test-mter92.33 33091.76 33394.04 33896.53 35684.62 36494.05 34892.39 36294.00 30494.12 35295.07 35165.63 37599.67 25395.87 22998.18 31297.82 324
thres600view794.45 30493.83 31096.29 30899.06 18091.53 33297.99 15094.24 35398.34 11097.44 27195.01 35379.84 35099.67 25384.33 35898.23 30997.66 334
114514_t96.50 26695.77 27198.69 17299.48 9397.43 19297.84 16599.55 4681.42 36596.51 31398.58 21795.53 21499.67 25393.41 30499.58 17398.98 246
PVSNet_BlendedMVS97.55 20197.53 19297.60 26098.92 20893.77 30496.64 26099.43 9094.49 28997.62 25499.18 8096.82 15799.67 25394.73 26199.93 2599.36 170
PVSNet_Blended96.88 25096.68 24597.47 27198.92 20893.77 30494.71 33199.43 9090.98 34097.62 25497.36 31396.82 15799.67 25394.73 26199.56 18298.98 246
PHI-MVS98.29 14197.95 16399.34 7398.44 28899.16 4298.12 13099.38 10196.01 25798.06 22898.43 23497.80 8799.67 25395.69 23899.58 17399.20 211
ACMH+96.62 999.08 3599.00 4099.33 7599.71 3198.83 7498.60 8299.58 2899.11 5799.53 3399.18 8098.81 2299.67 25396.71 17699.77 9099.50 102
test_post197.59 19220.48 37283.07 33999.66 26194.16 278
旧先验295.76 30188.56 35497.52 26499.66 26194.48 268
MCST-MVS98.00 16597.63 18799.10 11099.24 13298.17 12896.89 24798.73 27295.66 26697.92 23497.70 29197.17 13899.66 26196.18 21699.23 24499.47 124
NCCC97.86 17797.47 19999.05 12498.61 26898.07 13996.98 23898.90 23997.63 16197.04 28797.93 27895.99 19899.66 26195.31 25098.82 28999.43 139
PMMVS96.51 26495.98 26898.09 23097.53 33695.84 24594.92 32798.84 25391.58 33296.05 32695.58 34595.68 21099.66 26195.59 24498.09 31898.76 281
OPM-MVS98.56 10598.32 12499.25 9099.41 10798.73 8397.13 23399.18 18297.10 21798.75 16698.92 14498.18 5999.65 26696.68 17899.56 18299.37 164
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet96.62 26296.25 26697.71 25399.04 18394.66 27799.16 4196.92 33197.23 20997.87 23899.10 9886.11 31799.65 26691.65 32999.21 24798.82 268
CL-MVSNet_self_test97.44 21197.22 21498.08 23398.57 27595.78 24894.30 34498.79 26296.58 23898.60 18398.19 25894.74 24099.64 26896.41 20298.84 28798.82 268
c3_l97.36 21597.37 20497.31 27798.09 31193.25 30995.01 32599.16 19197.05 21898.77 16498.72 18892.88 27399.64 26896.93 15199.76 10099.05 233
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16798.61 26897.23 20197.76 17499.09 20497.31 19798.75 16698.66 20097.56 10799.64 26896.10 22099.55 18499.39 154
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d98.47 12098.34 12098.86 14999.30 12397.76 17397.16 23199.28 15395.54 26899.42 4899.19 7897.27 13199.63 27197.89 9499.97 1199.20 211
baseline195.96 27995.44 28497.52 26998.51 28293.99 29498.39 10896.09 34198.21 12298.40 20997.76 28786.88 30999.63 27195.42 24889.27 36798.95 251
thres100view90094.19 30993.67 31395.75 31999.06 18091.35 33698.03 14494.24 35398.33 11197.40 27394.98 35579.84 35099.62 27383.05 36098.08 31996.29 353
tfpn200view994.03 31393.44 31595.78 31898.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31996.29 353
Patchmatch-RL test97.26 22397.02 22497.99 24099.52 7395.53 25296.13 28599.71 1197.47 17699.27 7499.16 8684.30 33299.62 27397.89 9499.77 9098.81 271
v14898.45 12298.60 8098.00 23999.44 10194.98 26997.44 20899.06 20898.30 11399.32 6998.97 13396.65 16999.62 27398.37 6999.85 5499.39 154
thres40094.14 31193.44 31596.24 31098.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31997.66 334
CostFormer93.97 31493.78 31194.51 33597.53 33685.83 36097.98 15295.96 34289.29 35094.99 34698.63 20978.63 35799.62 27394.54 26696.50 34698.09 313
miper_ehance_all_eth97.06 23997.03 22397.16 28597.83 32393.06 31194.66 33499.09 20495.99 25898.69 17098.45 23392.73 27699.61 27996.79 16599.03 27398.82 268
gm-plane-assit94.83 36881.97 37088.07 35594.99 35499.60 28091.76 327
MVP-Stereo98.08 15997.92 16698.57 18898.96 19996.79 22297.90 15999.18 18296.41 24398.46 19998.95 14095.93 20299.60 28096.51 19498.98 28299.31 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs497.58 20097.28 21098.51 19998.84 22696.93 21995.40 31698.52 28493.60 30898.61 18198.65 20295.10 22799.60 28096.97 14999.79 8298.99 245
JIA-IIPM95.52 28995.03 29697.00 28896.85 35294.03 29196.93 24295.82 34399.20 4994.63 34899.71 1283.09 33899.60 28094.42 27294.64 35997.36 342
test_prior397.48 20797.00 22598.95 13698.69 25697.95 15595.74 30399.03 21796.48 24096.11 32297.63 29595.92 20399.59 28494.16 27899.20 24899.30 191
test_prior98.95 13698.69 25697.95 15599.03 21799.59 28499.30 191
tpmrst95.07 29795.46 28293.91 34097.11 34884.36 36697.62 18796.96 32894.98 28096.35 31998.80 17685.46 32299.59 28495.60 24396.23 35097.79 329
dp93.47 32093.59 31493.13 34896.64 35581.62 37197.66 18396.42 33792.80 31996.11 32298.64 20578.55 35999.59 28493.31 30692.18 36698.16 310
PLCcopyleft94.65 1696.51 26495.73 27398.85 15098.75 24197.91 15896.42 27299.06 20890.94 34195.59 33197.38 31094.41 24599.59 28490.93 34098.04 32299.05 233
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
miper_enhance_ethall96.01 27795.74 27296.81 30096.41 36092.27 32693.69 35398.89 24191.14 33998.30 21197.35 31490.58 28999.58 28996.31 20799.03 27398.60 292
AllTest98.44 12398.20 13799.16 10199.50 7898.55 9698.25 11899.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
TestCases99.16 10199.50 7898.55 9699.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
CNVR-MVS98.17 15497.87 17099.07 11798.67 26198.24 11997.01 23698.93 23397.25 20397.62 25498.34 24697.27 13199.57 29096.42 20199.33 22899.39 154
TESTMET0.1,192.19 33291.77 33293.46 34496.48 35882.80 36994.05 34891.52 36594.45 29394.00 35594.88 35766.65 37399.56 29395.78 23498.11 31798.02 315
thres20093.72 31893.14 32095.46 32798.66 26691.29 33896.61 26294.63 34997.39 18996.83 30193.71 36479.88 34999.56 29382.40 36398.13 31695.54 362
MVS_Test98.18 15298.36 11797.67 25498.48 28494.73 27498.18 12499.02 22197.69 15798.04 23199.11 9697.22 13799.56 29398.57 5898.90 28698.71 285
test_yl96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
DCV-MVSNet96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
alignmvs97.35 21696.88 23398.78 16298.54 27998.09 13397.71 17897.69 31399.20 4997.59 25795.90 34188.12 30799.55 29698.18 7998.96 28398.70 287
HQP4-MVS95.56 33499.54 29999.32 184
HQP-MVS97.00 24696.49 25798.55 19398.67 26196.79 22296.29 27899.04 21596.05 25495.55 33596.84 32493.84 25699.54 29992.82 31399.26 24199.32 184
tpmvs95.02 29995.25 29094.33 33696.39 36185.87 35898.08 13696.83 33395.46 27295.51 34098.69 19385.91 31899.53 30194.16 27896.23 35097.58 337
tpm293.09 32492.58 32594.62 33497.56 33486.53 35797.66 18395.79 34486.15 35994.07 35498.23 25575.95 36199.53 30190.91 34196.86 34497.81 326
MDTV_nov1_ep1395.22 29197.06 34983.20 36897.74 17696.16 33994.37 29596.99 28998.83 17083.95 33499.53 30193.90 28997.95 323
AdaColmapbinary97.14 23496.71 24398.46 20498.34 29697.80 17196.95 23998.93 23395.58 26796.92 29197.66 29295.87 20599.53 30190.97 33999.14 25998.04 314
new_pmnet96.99 24796.76 24097.67 25498.72 24594.89 27195.95 29398.20 29792.62 32198.55 19398.54 22094.88 23399.52 30593.96 28799.44 21398.59 294
RPSCF98.62 9798.36 11799.42 5899.65 4499.42 598.55 8899.57 3597.72 15698.90 14099.26 6996.12 19099.52 30595.72 23699.71 11899.32 184
MAR-MVS96.47 26795.70 27498.79 15997.92 31999.12 5698.28 11598.60 28092.16 32795.54 33896.17 33794.77 23999.52 30589.62 34798.23 30997.72 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 17197.69 18098.52 19799.17 15597.66 18097.19 22899.47 7696.31 24797.85 24098.20 25796.71 16799.52 30594.62 26499.72 11498.38 303
Gipumacopyleft99.03 3799.16 3098.64 17599.94 298.51 10199.32 1799.75 999.58 2298.60 18399.62 2198.22 5599.51 30997.70 10999.73 10797.89 320
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc98.24 22398.82 23295.97 24298.62 8099.00 22799.27 7499.21 7596.99 14799.50 31096.55 19199.50 20299.26 201
testgi98.32 13698.39 11398.13 22999.57 5695.54 25197.78 16999.49 6897.37 19199.19 8997.65 29398.96 1799.49 31196.50 19598.99 28099.34 176
EPNet_dtu94.93 30094.78 30195.38 32893.58 37087.68 35396.78 25295.69 34597.35 19389.14 36798.09 26788.15 30699.49 31194.95 25799.30 23498.98 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.24 22696.78 23998.61 18299.03 18697.83 16596.36 27599.06 20893.49 31197.36 27697.78 28595.75 20899.49 31193.44 30398.77 29098.52 295
test_241102_ONE99.49 8599.17 3899.31 13497.98 13799.66 2098.90 14898.36 4499.48 314
CLD-MVS97.49 20597.16 21798.48 20299.07 17697.03 21494.71 33199.21 17194.46 29198.06 22897.16 31997.57 10699.48 31494.46 26999.78 8698.95 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-untuned96.83 25296.75 24197.08 28698.74 24293.33 30896.71 25798.26 29496.72 23298.44 20197.37 31295.20 22499.47 31691.89 32697.43 33198.44 300
OMC-MVS97.88 17597.49 19599.04 12698.89 21798.63 8896.94 24099.25 16295.02 27998.53 19698.51 22497.27 13199.47 31693.50 30299.51 19599.01 241
canonicalmvs98.34 13598.26 13098.58 18598.46 28697.82 16898.96 5999.46 7899.19 5397.46 26995.46 34998.59 3299.46 31898.08 8598.71 29598.46 297
DWT-MVSNet_test92.75 32792.05 32894.85 33296.48 35887.21 35597.83 16694.99 34692.22 32692.72 36094.11 36370.75 36699.46 31895.01 25494.33 36297.87 322
CNLPA97.17 23296.71 24398.55 19398.56 27698.05 14296.33 27698.93 23396.91 22597.06 28697.39 30994.38 24799.45 32091.66 32899.18 25498.14 311
BH-RMVSNet96.83 25296.58 25297.58 26298.47 28594.05 28996.67 25997.36 31996.70 23497.87 23897.98 27395.14 22699.44 32190.47 34498.58 30399.25 202
DPM-MVS96.32 27095.59 27998.51 19998.76 23997.21 20594.54 34098.26 29491.94 32896.37 31897.25 31593.06 27099.43 32291.42 33498.74 29198.89 261
PVSNet93.40 1795.67 28595.70 27495.57 32398.83 22988.57 34892.50 35897.72 31192.69 32096.49 31696.44 33393.72 26199.43 32293.61 29799.28 23798.71 285
TSAR-MVS + GP.98.18 15297.98 16198.77 16498.71 24897.88 16096.32 27798.66 27696.33 24599.23 8698.51 22497.48 11999.40 32497.16 13199.46 20799.02 240
TAPA-MVS96.21 1196.63 26195.95 26998.65 17498.93 20498.09 13396.93 24299.28 15383.58 36398.13 22197.78 28596.13 18999.40 32493.52 30099.29 23698.45 299
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 32293.13 32193.75 34197.39 34284.74 36397.39 20997.65 31483.39 36494.16 35198.41 23582.86 34099.39 32691.56 33295.35 35797.14 344
MG-MVS96.77 25596.61 25097.26 28098.31 29893.06 31195.93 29498.12 30296.45 24297.92 23498.73 18693.77 26099.39 32691.19 33899.04 27299.33 182
MVS_111021_HR98.25 14698.08 15498.75 16799.09 17297.46 19095.97 28999.27 15697.60 16597.99 23398.25 25298.15 6499.38 32896.87 16099.57 17799.42 142
MS-PatchMatch97.68 19297.75 17697.45 27298.23 30493.78 30397.29 21798.84 25396.10 25398.64 17698.65 20296.04 19299.36 32996.84 16399.14 25999.20 211
ITE_SJBPF98.87 14799.22 13798.48 10399.35 11597.50 17398.28 21398.60 21597.64 10099.35 33093.86 29299.27 23898.79 277
MVS_111021_LR98.30 13898.12 14998.83 15299.16 15798.03 14396.09 28699.30 14497.58 16698.10 22598.24 25398.25 5099.34 33196.69 17799.65 14699.12 227
USDC97.41 21397.40 20197.44 27398.94 20293.67 30695.17 32099.53 5494.03 30398.97 12799.10 9895.29 22299.34 33195.84 23299.73 10799.30 191
MSDG97.71 19097.52 19398.28 22098.91 21196.82 22194.42 34199.37 10597.65 16098.37 21098.29 25197.40 12399.33 33394.09 28499.22 24598.68 291
XVG-OURS98.53 11498.34 12099.11 10899.50 7898.82 7695.97 28999.50 6097.30 19899.05 11298.98 13199.35 799.32 33495.72 23699.68 13499.18 218
DP-MVS Recon97.33 21896.92 23098.57 18899.09 17297.99 14596.79 25199.35 11593.18 31397.71 24898.07 26995.00 22999.31 33593.97 28699.13 26298.42 302
EPMVS93.72 31893.27 31795.09 33196.04 36487.76 35298.13 12885.01 37294.69 28796.92 29198.64 20578.47 36099.31 33595.04 25396.46 34798.20 308
MVS93.19 32392.09 32796.50 30596.91 35094.03 29198.07 13798.06 30468.01 36794.56 34996.48 33195.96 20199.30 33783.84 35996.89 34396.17 355
GA-MVS95.86 28195.32 28997.49 27098.60 27094.15 28893.83 35197.93 30795.49 27196.68 30597.42 30883.21 33799.30 33796.22 21298.55 30499.01 241
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10499.49 8598.83 7496.54 26399.48 7097.32 19699.11 9898.61 21499.33 899.30 33796.23 21198.38 30699.28 196
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9398.39 29498.97 6595.03 32499.18 18296.88 22699.33 6398.78 17998.16 6299.28 34096.74 17199.62 15499.44 135
TinyColmap97.89 17397.98 16197.60 26098.86 22194.35 28396.21 28299.44 8497.45 18399.06 10798.88 15797.99 7599.28 34094.38 27699.58 17399.18 218
KD-MVS_2432*160092.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
cl2295.79 28395.39 28796.98 29096.77 35492.79 31794.40 34298.53 28394.59 28897.89 23798.17 25982.82 34199.24 34296.37 20399.03 27398.92 257
miper_refine_blended92.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
PAPM91.88 33390.34 33696.51 30498.06 31392.56 32092.44 35997.17 32486.35 35890.38 36596.01 33886.61 31199.21 34570.65 36995.43 35697.75 330
MVS-HIRNet94.32 30695.62 27790.42 35098.46 28675.36 37396.29 27889.13 37095.25 27795.38 34199.75 792.88 27399.19 34694.07 28599.39 21896.72 351
PAPM_NR96.82 25496.32 26298.30 21899.07 17696.69 22797.48 20398.76 26695.81 26496.61 30996.47 33294.12 25499.17 34790.82 34397.78 32599.06 232
TR-MVS95.55 28895.12 29596.86 29997.54 33593.94 29596.49 26896.53 33694.36 29697.03 28896.61 32894.26 25099.16 34886.91 35496.31 34997.47 341
API-MVS97.04 24296.91 23297.42 27497.88 32198.23 12398.18 12498.50 28597.57 16797.39 27496.75 32696.77 16199.15 34990.16 34599.02 27694.88 363
PAPR95.29 29294.47 30297.75 25197.50 34095.14 26694.89 32898.71 27491.39 33695.35 34295.48 34894.57 24299.14 35084.95 35797.37 33398.97 250
131495.74 28495.60 27896.17 31297.53 33692.75 31998.07 13798.31 29391.22 33794.25 35096.68 32795.53 21499.03 35191.64 33097.18 33896.74 350
gg-mvs-nofinetune92.37 32991.20 33495.85 31795.80 36792.38 32499.31 2081.84 37499.75 591.83 36399.74 868.29 36899.02 35287.15 35397.12 33996.16 356
BH-w/o95.13 29694.89 30095.86 31698.20 30591.31 33795.65 30697.37 31893.64 30796.52 31295.70 34493.04 27199.02 35288.10 35195.82 35497.24 343
test0.0.03 194.51 30393.69 31296.99 28996.05 36393.61 30794.97 32693.49 35796.17 24997.57 26094.88 35782.30 34299.01 35493.60 29894.17 36398.37 305
E-PMN94.17 31094.37 30593.58 34396.86 35185.71 36190.11 36397.07 32698.17 12897.82 24397.19 31684.62 32898.94 35589.77 34697.68 32796.09 359
EMVS93.83 31694.02 30893.23 34796.83 35384.96 36289.77 36496.32 33897.92 14397.43 27296.36 33686.17 31598.93 35687.68 35297.73 32695.81 360
CMPMVSbinary75.91 2396.29 27195.44 28498.84 15196.25 36298.69 8697.02 23599.12 20088.90 35197.83 24198.86 16189.51 29698.90 35791.92 32599.51 19598.92 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_089.98 2191.15 33490.30 33793.70 34297.72 32784.34 36790.24 36297.42 31790.20 34593.79 35693.09 36590.90 28898.89 35886.57 35572.76 36997.87 322
MSLP-MVS++98.02 16398.14 14897.64 25898.58 27395.19 26497.48 20399.23 16997.47 17697.90 23698.62 21197.04 14298.81 35997.55 11299.41 21598.94 255
OPU-MVS98.82 15398.59 27298.30 11598.10 13398.52 22398.18 5998.75 36094.62 26499.48 20599.41 145
cascas94.79 30194.33 30796.15 31596.02 36592.36 32592.34 36099.26 16185.34 36195.08 34594.96 35692.96 27298.53 36194.41 27598.59 30297.56 338
wuyk23d96.06 27697.62 18891.38 34998.65 26798.57 9598.85 6796.95 32996.86 22799.90 499.16 8699.18 1198.40 36289.23 34899.77 9077.18 367
PMVScopyleft91.26 2097.86 17797.94 16597.65 25699.71 3197.94 15798.52 9198.68 27598.99 7397.52 26499.35 5897.41 12298.18 36391.59 33199.67 14096.82 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND94.76 33394.54 36992.13 32899.31 2080.47 37588.73 36891.01 36767.59 37198.16 36482.30 36494.53 36193.98 364
test_method79.78 33579.50 33880.62 35180.21 37445.76 37670.82 36598.41 29031.08 37080.89 37197.71 28984.85 32597.37 36591.51 33380.03 36898.75 282
PC_three_145293.27 31299.40 5298.54 22098.22 5597.00 36695.17 25199.45 21099.49 106
FPMVS93.44 32192.23 32697.08 28699.25 13197.86 16295.61 30797.16 32592.90 31793.76 35798.65 20275.94 36295.66 36779.30 36797.49 32897.73 331
MVEpermissive83.40 2292.50 32891.92 33194.25 33798.83 22991.64 33192.71 35783.52 37395.92 26086.46 37095.46 34995.20 22495.40 36880.51 36598.64 29995.73 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SD-MVS98.40 12998.68 6897.54 26798.96 19997.99 14597.88 16099.36 10998.20 12599.63 2599.04 11198.76 2395.33 36996.56 18899.74 10499.31 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepMVS_CXcopyleft93.44 34598.24 30294.21 28694.34 35064.28 36891.34 36494.87 35989.45 29892.77 37077.54 36893.14 36493.35 365
tmp_tt78.77 33678.73 33978.90 35258.45 37574.76 37594.20 34578.26 37639.16 36986.71 36992.82 36680.50 34875.19 37186.16 35692.29 36586.74 366
test12317.04 33920.11 3427.82 35310.25 3774.91 37794.80 3294.47 3784.93 37110.00 37324.28 3709.69 3763.64 37210.14 37012.43 37114.92 368
testmvs17.12 33820.53 3416.87 35412.05 3764.20 37893.62 3546.73 3774.62 37210.41 37224.33 3698.28 3773.56 3739.69 37115.07 37012.86 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.66 33732.88 3400.00 3550.00 3780.00 3790.00 36699.10 2030.00 3730.00 37497.58 29799.21 100.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas8.17 34010.90 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37398.07 660.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.12 34110.83 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.48 3040.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.73 2499.67 299.43 1099.54 5099.43 3099.26 78
test_one_060199.39 10999.20 3399.31 13498.49 10498.66 17499.02 11597.64 100
eth-test20.00 378
eth-test0.00 378
RE-MVS-def98.58 8299.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.75 9096.56 18899.39 21899.45 130
IU-MVS99.49 8599.15 4798.87 24492.97 31599.41 4996.76 16999.62 15499.66 36
save fliter99.11 16597.97 15096.53 26499.02 22198.24 119
test072699.50 7899.21 2798.17 12799.35 11597.97 13999.26 7899.06 10197.61 103
GSMVS98.81 271
test_part299.36 11399.10 5999.05 112
sam_mvs184.74 32798.81 271
sam_mvs84.29 333
MTGPAbinary99.20 173
MTMP97.93 15591.91 364
test9_res93.28 30799.15 25899.38 161
agg_prior292.50 32199.16 25599.37 164
test_prior497.97 15095.86 297
test_prior295.74 30396.48 24096.11 32297.63 29595.92 20394.16 27899.20 248
新几何295.93 294
旧先验198.82 23297.45 19198.76 26698.34 24695.50 21799.01 27899.23 206
原ACMM295.53 310
test22298.92 20896.93 21995.54 30998.78 26485.72 36096.86 29998.11 26494.43 24499.10 26799.23 206
segment_acmp97.02 145
testdata195.44 31596.32 246
plane_prior799.19 14697.87 161
plane_prior698.99 19597.70 17994.90 230
plane_prior497.98 273
plane_prior397.78 17297.41 18797.79 244
plane_prior297.77 17298.20 125
plane_prior199.05 182
plane_prior97.65 18197.07 23496.72 23299.36 223
n20.00 379
nn0.00 379
door-mid99.57 35
test1198.87 244
door99.41 94
HQP5-MVS96.79 222
HQP-NCC98.67 26196.29 27896.05 25495.55 335
ACMP_Plane98.67 26196.29 27896.05 25495.55 335
BP-MVS92.82 313
HQP3-MVS99.04 21599.26 241
HQP2-MVS93.84 256
NP-MVS98.84 22697.39 19496.84 324
MDTV_nov1_ep13_2view74.92 37497.69 18090.06 34797.75 24785.78 31993.52 30098.69 288
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 174