This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 5100.00 199.85 12
dcpmvs_298.78 7899.11 3997.78 24799.56 7693.67 30899.06 6299.86 1199.50 2499.66 2999.26 8997.21 13999.99 298.00 10799.91 4899.68 41
HyFIR lowres test97.19 23696.60 26198.96 13499.62 6497.28 19495.17 32899.50 7494.21 30799.01 13198.32 26286.61 31899.99 297.10 15599.84 7099.60 61
bld_raw_dy_0_6499.07 4599.00 4999.29 8199.85 1698.18 12699.11 5799.40 11099.33 4399.38 7199.44 6095.21 22599.97 499.31 2799.98 999.73 31
patch_mono-298.51 12698.63 8898.17 22199.38 12594.78 27097.36 22999.69 2498.16 13598.49 21099.29 8497.06 14599.97 498.29 9099.91 4899.76 26
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3699.66 3299.09 7199.89 899.68 1899.53 499.97 499.50 1899.99 599.87 9
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 1999.71 2199.27 4999.90 699.74 1299.68 299.97 499.55 1699.99 599.88 7
DTE-MVSNet99.43 1599.35 1899.66 499.71 4499.30 1799.31 2699.51 7299.64 1199.56 3899.46 5598.23 5899.97 498.78 5899.93 3199.72 32
MVSFormer98.26 15398.43 11897.77 24898.88 23193.89 30299.39 1699.56 5699.11 6198.16 23198.13 27393.81 26199.97 499.26 3099.57 19299.43 143
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1699.56 5699.11 6199.70 2399.73 1499.00 1599.97 499.26 3099.98 999.89 6
h-mvs3397.77 19397.33 21899.10 11199.21 15897.84 16198.35 13198.57 28299.11 6198.58 19999.02 13688.65 30999.96 1198.11 9796.34 35699.49 112
IterMVS-SCA-FT97.85 18998.18 15096.87 30199.27 14691.16 34795.53 31799.25 17399.10 6899.41 6499.35 7393.10 27099.96 1198.65 7099.94 2799.49 112
UA-Net99.47 1199.40 1599.70 299.49 10099.29 1999.80 399.72 2099.82 399.04 12799.81 598.05 7699.96 1198.85 5599.99 599.86 11
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4499.65 3399.48 2699.92 499.71 1698.07 7399.96 1199.53 17100.00 199.93 4
PEN-MVS99.41 1799.34 2099.62 699.73 3699.14 5299.29 3299.54 6599.62 1699.56 3899.42 6398.16 6999.96 1198.78 5899.93 3199.77 22
K. test v398.00 17397.66 19599.03 12799.79 2497.56 18199.19 4892.47 36599.62 1699.52 4799.66 2289.61 30099.96 1199.25 3299.81 8499.56 82
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4299.90 299.86 1099.78 899.58 399.95 1799.00 4799.95 1999.78 20
Fast-Effi-MVS+-dtu98.27 15198.09 16098.81 15098.43 29898.11 13297.61 20799.50 7498.64 9897.39 28897.52 31398.12 7299.95 1796.90 17498.71 30198.38 312
Effi-MVS+-dtu98.26 15397.90 17899.35 6998.02 32399.49 598.02 16499.16 19998.29 12197.64 26797.99 28596.44 18199.95 1796.66 19698.93 29098.60 300
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6399.34 1999.69 2498.93 8699.65 3299.72 1598.93 1999.95 1799.11 39100.00 199.82 14
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 3899.66 1099.68 2799.66 2298.44 4699.95 1799.73 1099.96 1599.75 29
RRT_MVS99.09 4298.94 5499.55 2399.87 1298.82 7899.48 998.16 30199.49 2599.59 3799.65 2494.79 24299.95 1799.45 2199.96 1599.88 7
PS-CasMVS99.40 1899.33 2199.62 699.71 4499.10 6099.29 3299.53 6899.53 2399.46 5599.41 6698.23 5899.95 1798.89 5499.95 1999.81 16
TranMVSNet+NR-MVSNet99.17 3399.07 4599.46 5699.37 13198.87 7398.39 12899.42 10799.42 3499.36 7699.06 12498.38 4999.95 1798.34 8799.90 5599.57 78
Vis-MVSNetpermissive99.34 2299.36 1799.27 8699.73 3698.26 11899.17 4999.78 1699.11 6199.27 9299.48 5398.82 2499.95 1798.94 5099.93 3199.59 67
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052198.69 9398.87 5998.16 22399.77 2795.11 26499.08 5899.44 9899.34 4299.33 8199.55 4094.10 25899.94 2699.25 3299.96 1599.42 146
CP-MVSNet99.21 3299.09 4299.56 2199.65 5798.96 7099.13 5499.34 13499.42 3499.33 8199.26 8997.01 15099.94 2698.74 6299.93 3199.79 18
PVSNet_Blended_VisFu98.17 16398.15 15598.22 21899.73 3695.15 26197.36 22999.68 2994.45 30298.99 13399.27 8796.87 15699.94 2697.13 15399.91 4899.57 78
IterMVS97.73 19598.11 15996.57 30999.24 15190.28 34995.52 31999.21 18298.86 9199.33 8199.33 7993.11 26999.94 2698.49 8099.94 2799.48 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5399.93 399.82 399.93 399.81 599.17 1299.94 2699.31 27100.00 199.82 14
CS-MVS99.13 3899.10 4199.24 9399.06 19799.15 4799.36 1899.88 999.36 4198.21 22898.46 24798.68 3299.93 3199.03 4599.85 6698.64 299
CHOSEN 280x42095.51 29795.47 28795.65 32998.25 31088.27 35793.25 36398.88 24693.53 31894.65 35497.15 32886.17 32299.93 3197.41 13799.93 3198.73 290
CS-MVS-test99.13 3899.09 4299.26 8899.13 18298.97 6699.31 2699.88 999.44 3198.16 23198.51 23998.64 3399.93 3198.91 5199.85 6698.88 268
UniMVSNet_NR-MVSNet98.86 6998.68 8299.40 6299.17 17398.74 8297.68 19899.40 11099.14 6099.06 12098.59 23196.71 17099.93 3198.57 7499.77 10999.53 100
DU-MVS98.82 7298.63 8899.39 6399.16 17598.74 8297.54 21599.25 17398.84 9499.06 12098.76 20196.76 16699.93 3198.57 7499.77 10999.50 108
WR-MVS_H99.33 2399.22 2899.65 599.71 4499.24 2599.32 2299.55 6099.46 2999.50 5199.34 7797.30 13199.93 3198.90 5299.93 3199.77 22
SixPastTwentyTwo98.75 8398.62 9099.16 10299.83 1997.96 15299.28 3698.20 29899.37 3899.70 2399.65 2492.65 28099.93 3199.04 4499.84 7099.60 61
IterMVS-LS98.55 11998.70 7998.09 22599.48 10794.73 27397.22 24199.39 11398.97 8299.38 7199.31 8396.00 19899.93 3198.58 7299.97 1299.60 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051795.64 29394.98 30297.64 26099.36 13293.81 30498.72 8790.47 37198.08 13998.67 18498.34 25973.88 37299.92 3997.77 12099.51 20999.20 214
xiu_mvs_v1_base_debu97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base_debi97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
MTAPA98.88 6598.64 8799.61 999.67 5599.36 1198.43 12499.20 18498.83 9598.89 15398.90 17196.98 15299.92 3997.16 14899.70 14499.56 82
LCM-MVSNet-Re98.64 10598.48 11099.11 10998.85 23598.51 10298.49 11699.83 1398.37 11299.69 2599.46 5598.21 6399.92 3994.13 29599.30 24398.91 264
lessismore_v098.97 13399.73 3697.53 18386.71 37699.37 7499.52 4789.93 29899.92 3998.99 4899.72 13499.44 139
OurMVSNet-221017-099.37 2199.31 2399.53 3499.91 398.98 6599.63 699.58 4299.44 3199.78 1599.76 1096.39 18299.92 3999.44 2299.92 4299.68 41
GeoE99.05 4698.99 5299.25 9199.44 11498.35 11598.73 8699.56 5698.42 11198.91 15098.81 19398.94 1899.91 4798.35 8699.73 12799.49 112
Fast-Effi-MVS+97.67 20097.38 21298.57 18198.71 25797.43 18897.23 23899.45 9494.82 29396.13 33096.51 33798.52 4299.91 4796.19 22998.83 29498.37 314
mvsmamba99.24 3199.15 3799.49 4899.83 1998.85 7499.41 1399.55 6099.54 2299.40 6799.52 4795.86 20899.91 4799.32 2699.95 1999.70 38
jason97.45 21697.35 21597.76 25199.24 15193.93 29895.86 30698.42 28994.24 30698.50 20998.13 27394.82 23799.91 4797.22 14599.73 12799.43 143
jason: jason.
lupinMVS97.06 24596.86 24097.65 25898.88 23193.89 30295.48 32097.97 30893.53 31898.16 23197.58 30993.81 26199.91 4796.77 18599.57 19299.17 225
thisisatest053095.27 30094.45 30997.74 25399.19 16594.37 28297.86 18290.20 37297.17 21898.22 22797.65 30573.53 37399.90 5296.90 17499.35 23498.95 255
xiu_mvs_v2_base97.16 23997.49 20696.17 31898.54 28792.46 32695.45 32198.84 25797.25 20897.48 28296.49 33898.31 5599.90 5296.34 22198.68 30496.15 364
PS-MVSNAJ97.08 24497.39 21196.16 32098.56 28592.46 32695.24 32798.85 25697.25 20897.49 28195.99 34798.07 7399.90 5296.37 21898.67 30596.12 365
DSMNet-mixed97.42 21897.60 20096.87 30199.15 17991.46 33898.54 10799.12 20792.87 32897.58 27299.63 2796.21 19099.90 5295.74 25199.54 20099.27 200
DROMVSNet99.09 4299.05 4699.20 9799.28 14498.93 7199.24 4099.84 1299.08 7398.12 23698.37 25598.72 2999.90 5299.05 4399.77 10998.77 285
MIMVSNet199.38 2099.32 2299.55 2399.86 1499.19 3799.41 1399.59 4099.59 1999.71 2199.57 3597.12 14299.90 5299.21 3599.87 6399.54 93
QAPM97.31 22596.81 24698.82 14898.80 24697.49 18499.06 6299.19 18890.22 35297.69 26599.16 11096.91 15499.90 5290.89 35099.41 22699.07 233
EPP-MVSNet98.30 14798.04 16699.07 11799.56 7697.83 16299.29 3298.07 30599.03 7798.59 19799.13 11792.16 28499.90 5296.87 17799.68 15299.49 112
3Dnovator98.27 298.81 7498.73 7299.05 12498.76 24897.81 16799.25 3999.30 15498.57 10798.55 20499.33 7997.95 8499.90 5297.16 14899.67 15899.44 139
OpenMVScopyleft96.65 797.09 24396.68 25398.32 20998.32 30697.16 20498.86 8099.37 11989.48 35696.29 32999.15 11496.56 17599.90 5292.90 31999.20 25797.89 330
MSC_two_6792asdad99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
No_MVS99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
DPE-MVScopyleft98.59 11398.26 14299.57 1699.27 14699.15 4797.01 25099.39 11397.67 16499.44 5998.99 14897.53 11699.89 6295.40 26399.68 15299.66 45
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CANet97.87 18397.76 18598.19 22097.75 33595.51 24896.76 26599.05 21997.74 15996.93 30298.21 26995.59 21599.89 6297.86 11699.93 3199.19 219
APDe-MVS98.99 5098.79 6899.60 1199.21 15899.15 4798.87 7899.48 8397.57 17399.35 7899.24 9497.83 8999.89 6297.88 11499.70 14499.75 29
PGM-MVS98.66 10298.37 12899.55 2399.53 8699.18 3898.23 13999.49 8197.01 22698.69 18298.88 17898.00 7999.89 6295.87 24599.59 18399.58 73
mPP-MVS98.64 10598.34 13299.54 2799.54 8399.17 3998.63 9599.24 17897.47 18298.09 23998.68 21397.62 10799.89 6296.22 22799.62 17299.57 78
CP-MVS98.70 9098.42 12099.52 3999.36 13299.12 5798.72 8799.36 12397.54 17798.30 22398.40 25197.86 8899.89 6296.53 21099.72 13499.56 82
IB-MVS91.63 1992.24 33790.90 34196.27 31597.22 35691.24 34594.36 35193.33 36392.37 33392.24 36894.58 36866.20 38199.89 6293.16 31794.63 36897.66 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_vis1_n_192098.40 13698.92 5696.81 30599.74 3590.76 34898.15 14899.91 698.33 11599.89 899.55 4095.07 23099.88 7199.76 899.93 3199.79 18
DVP-MVS++98.90 6398.70 7999.51 4398.43 29899.15 4799.43 1199.32 14198.17 13299.26 9699.02 13698.18 6599.88 7197.07 15799.45 22199.49 112
SED-MVS98.91 6198.72 7499.49 4899.49 10099.17 3998.10 15499.31 14698.03 14099.66 2999.02 13698.36 5099.88 7196.91 16999.62 17299.41 149
test_241102_TWO99.30 15498.03 14099.26 9699.02 13697.51 11999.88 7196.91 16999.60 17999.66 45
ETV-MVS98.03 17097.86 18198.56 18598.69 26698.07 13997.51 21999.50 7498.10 13797.50 28095.51 35598.41 4799.88 7196.27 22599.24 25297.71 342
DVP-MVScopyleft98.77 8198.52 10299.52 3999.50 9399.21 2898.02 16498.84 25797.97 14399.08 11899.02 13697.61 10899.88 7196.99 16399.63 16999.48 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 13299.08 11899.02 13697.89 8699.88 7197.07 15799.71 13999.70 38
test_0728_SECOND99.60 1199.50 9399.23 2698.02 16499.32 14199.88 7196.99 16399.63 16999.68 41
MVS_030497.64 20297.35 21598.52 19097.87 33196.69 22198.59 10098.05 30797.44 19093.74 36598.85 18493.69 26599.88 7198.11 9799.81 8498.98 248
MP-MVS-pluss98.57 11498.23 14599.60 1199.69 5299.35 1297.16 24599.38 11594.87 29298.97 13898.99 14898.01 7899.88 7197.29 14299.70 14499.58 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 13698.00 16999.61 999.57 6999.25 2498.57 10399.35 12897.55 17699.31 8997.71 30194.61 24599.88 7196.14 23399.19 26099.70 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.69 9398.40 12299.54 2799.53 8699.17 3998.52 10999.31 14697.46 18798.44 21498.51 23997.83 8999.88 7196.46 21499.58 18899.58 73
VPA-MVSNet99.30 2499.30 2499.28 8399.49 10098.36 11499.00 6899.45 9499.63 1399.52 4799.44 6098.25 5699.88 7199.09 4099.84 7099.62 54
ACMMPR98.70 9098.42 12099.54 2799.52 8899.14 5298.52 10999.31 14697.47 18298.56 20298.54 23597.75 9699.88 7196.57 20199.59 18399.58 73
MP-MVScopyleft98.46 13098.09 16099.54 2799.57 6999.22 2798.50 11599.19 18897.61 17097.58 27298.66 21897.40 12799.88 7194.72 27699.60 17999.54 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CHOSEN 1792x268897.49 21297.14 22898.54 18999.68 5396.09 23396.50 27699.62 3591.58 34098.84 16598.97 15492.36 28299.88 7196.76 18699.95 1999.67 44
SteuartSystems-ACMMP98.79 7698.54 10099.54 2799.73 3699.16 4398.23 13999.31 14697.92 14798.90 15198.90 17198.00 7999.88 7196.15 23299.72 13499.58 73
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet596.01 28395.20 29898.41 20297.53 34696.10 23198.74 8499.50 7497.22 21798.03 24599.04 13369.80 37499.88 7197.27 14399.71 13999.25 204
iter_conf_final97.10 24196.65 25898.45 19898.53 28996.08 23498.30 13399.11 20998.10 13798.85 16298.95 16179.38 36099.87 8998.68 6899.91 4899.40 158
ZNCC-MVS98.68 9898.40 12299.54 2799.57 6999.21 2898.46 12199.29 16197.28 20598.11 23798.39 25298.00 7999.87 8996.86 17999.64 16699.55 89
SR-MVS98.71 8798.43 11899.57 1699.18 17299.35 1298.36 13099.29 16198.29 12198.88 15798.85 18497.53 11699.87 8996.14 23399.31 24099.48 122
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 1899.64 1199.84 1199.83 399.50 599.87 8999.36 2499.92 4299.64 50
iter_conf0596.54 26896.07 27497.92 23797.90 32994.50 28097.87 18199.14 20597.73 16098.89 15398.95 16175.75 37099.87 8998.50 7999.92 4299.40 158
HPM-MVScopyleft98.79 7698.53 10199.59 1599.65 5799.29 1999.16 5099.43 10496.74 23798.61 19398.38 25498.62 3699.87 8996.47 21399.67 15899.59 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet96.14 28195.44 29098.25 21590.76 38095.50 24997.92 17494.65 35398.97 8292.98 36698.85 18489.12 30499.87 8995.99 23899.68 15299.39 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet97.02 24896.93 23497.30 28297.71 33894.22 28498.11 15299.30 15499.37 3896.91 30599.34 7786.72 31799.87 8997.53 13297.36 34397.81 335
ACMMPcopyleft98.75 8398.50 10599.52 3999.56 7699.16 4398.87 7899.37 11997.16 21998.82 16999.01 14597.71 9899.87 8996.29 22499.69 14799.54 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test111196.49 27296.82 24495.52 33199.42 12087.08 36299.22 4187.14 37599.11 6199.46 5599.58 3488.69 30699.86 9898.80 5799.95 1999.62 54
KD-MVS_self_test99.25 2799.18 2999.44 5799.63 6299.06 6498.69 9199.54 6599.31 4599.62 3699.53 4597.36 12999.86 9899.24 3499.71 13999.39 161
ZD-MVS99.01 20598.84 7599.07 21594.10 31098.05 24398.12 27596.36 18699.86 9892.70 32799.19 260
SR-MVS-dyc-post98.81 7498.55 9999.57 1699.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.49 12399.86 9896.56 20599.39 22899.45 135
tfpnnormal98.90 6398.90 5898.91 14099.67 5597.82 16599.00 6899.44 9899.45 3099.51 5099.24 9498.20 6499.86 9895.92 24199.69 14799.04 239
UniMVSNet (Re)98.87 6698.71 7699.35 6999.24 15198.73 8597.73 19499.38 11598.93 8699.12 11298.73 20496.77 16499.86 9898.63 7199.80 9599.46 131
NR-MVSNet98.95 5798.82 6599.36 6499.16 17598.72 8799.22 4199.20 18499.10 6899.72 1998.76 20196.38 18499.86 9898.00 10799.82 8099.50 108
GBi-Net98.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
test198.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
FMVSNet199.17 3399.17 3099.17 9999.55 8098.24 12099.20 4499.44 9899.21 5299.43 6099.55 4097.82 9299.86 9898.42 8499.89 5999.41 149
XXY-MVS99.14 3599.15 3799.10 11199.76 3097.74 17298.85 8199.62 3598.48 11099.37 7499.49 5298.75 2799.86 9898.20 9499.80 9599.71 33
1112_ss97.29 22896.86 24098.58 17999.34 13896.32 22796.75 26699.58 4293.14 32396.89 30997.48 31592.11 28599.86 9896.91 16999.54 20099.57 78
EGC-MVSNET85.24 34180.54 34499.34 7299.77 2799.20 3499.08 5899.29 16112.08 37720.84 37899.42 6397.55 11399.85 11097.08 15699.72 13498.96 254
GST-MVS98.61 11098.30 13799.52 3999.51 9099.20 3498.26 13799.25 17397.44 19098.67 18498.39 25297.68 9999.85 11096.00 23799.51 20999.52 103
patchmatchnet-post98.77 19984.37 33799.85 110
SCA96.41 27596.66 25695.67 32798.24 31188.35 35695.85 30896.88 33796.11 25997.67 26698.67 21593.10 27099.85 11094.16 29199.22 25498.81 277
FC-MVSNet-test99.27 2599.25 2699.34 7299.77 2798.37 11199.30 3199.57 4999.61 1899.40 6799.50 4997.12 14299.85 11099.02 4699.94 2799.80 17
HFP-MVS98.71 8798.44 11799.51 4399.49 10099.16 4398.52 10999.31 14697.47 18298.58 19998.50 24397.97 8399.85 11096.57 20199.59 18399.53 100
EI-MVSNet-UG-set98.69 9398.71 7698.62 17499.10 18696.37 22597.23 23898.87 24899.20 5499.19 10698.99 14897.30 13199.85 11098.77 6199.79 10099.65 49
EI-MVSNet-Vis-set98.68 9898.70 7998.63 17399.09 18996.40 22497.23 23898.86 25399.20 5499.18 11098.97 15497.29 13399.85 11098.72 6499.78 10599.64 50
v124098.55 11998.62 9098.32 20999.22 15695.58 24597.51 21999.45 9497.16 21999.45 5899.24 9496.12 19399.85 11099.60 1299.88 6099.55 89
APD-MVS_3200maxsize98.84 7098.61 9499.53 3499.19 16599.27 2298.49 11699.33 13998.64 9899.03 13098.98 15297.89 8699.85 11096.54 20999.42 22599.46 131
ADS-MVSNet295.43 29894.98 30296.76 30898.14 31791.74 33597.92 17497.76 31290.23 35096.51 32398.91 16885.61 32799.85 11092.88 32096.90 34998.69 294
MDA-MVSNet-bldmvs97.94 17797.91 17798.06 23099.44 11494.96 26796.63 27299.15 20498.35 11398.83 16699.11 11994.31 25199.85 11096.60 19898.72 29999.37 170
WR-MVS98.40 13698.19 14999.03 12799.00 20697.65 17796.85 26098.94 23598.57 10798.89 15398.50 24395.60 21499.85 11097.54 13199.85 6699.59 67
APD-MVScopyleft98.10 16597.67 19299.42 5899.11 18498.93 7197.76 19199.28 16494.97 28998.72 18198.77 19997.04 14699.85 11093.79 30599.54 20099.49 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmtry97.35 22296.97 23398.50 19497.31 35496.47 22398.18 14498.92 24098.95 8598.78 17299.37 6985.44 33099.85 11095.96 24099.83 7799.17 225
N_pmnet97.63 20497.17 22498.99 13199.27 14697.86 15995.98 29793.41 36295.25 28399.47 5498.90 17195.63 21399.85 11096.91 16999.73 12799.27 200
test250692.39 33491.89 33793.89 34799.38 12582.28 37699.32 2266.03 38399.08 7398.77 17599.57 3566.26 38099.84 12698.71 6599.95 1999.54 93
our_test_397.39 22097.73 18996.34 31398.70 26189.78 35194.61 34598.97 23496.50 24599.04 12798.85 18495.98 20299.84 12697.26 14499.67 15899.41 149
CANet_DTU97.26 22997.06 23097.84 24297.57 34394.65 27796.19 29398.79 26597.23 21495.14 35198.24 26693.22 26799.84 12697.34 14099.84 7099.04 239
ACMMP_NAP98.75 8398.48 11099.57 1699.58 6599.29 1997.82 18599.25 17396.94 22898.78 17299.12 11898.02 7799.84 12697.13 15399.67 15899.59 67
v14419298.54 12198.57 9898.45 19899.21 15895.98 23597.63 20499.36 12397.15 22199.32 8799.18 10495.84 20999.84 12699.50 1899.91 4899.54 93
v192192098.54 12198.60 9598.38 20599.20 16295.76 24397.56 21399.36 12397.23 21499.38 7199.17 10896.02 19699.84 12699.57 1499.90 5599.54 93
HPM-MVS++copyleft98.10 16597.64 19799.48 5199.09 18999.13 5597.52 21798.75 27197.46 18796.90 30897.83 29696.01 19799.84 12695.82 24999.35 23499.46 131
PMMVS298.07 16998.08 16398.04 23399.41 12294.59 27994.59 34699.40 11097.50 17998.82 16998.83 18896.83 15999.84 12697.50 13499.81 8499.71 33
XVG-ACMP-BASELINE98.56 11598.34 13299.22 9699.54 8398.59 9497.71 19599.46 9197.25 20898.98 13498.99 14897.54 11499.84 12695.88 24299.74 12499.23 209
CPTT-MVS97.84 19097.36 21499.27 8699.31 13998.46 10598.29 13499.27 16794.90 29197.83 25698.37 25594.90 23399.84 12693.85 30499.54 20099.51 105
UGNet98.53 12398.45 11598.79 15497.94 32696.96 21099.08 5898.54 28399.10 6896.82 31399.47 5496.55 17699.84 12698.56 7799.94 2799.55 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG98.68 9898.50 10599.20 9799.45 11398.63 8998.56 10499.57 4997.87 15198.85 16298.04 28397.66 10199.84 12696.72 19199.81 8499.13 229
DeepC-MVS97.60 498.97 5498.93 5599.10 11199.35 13697.98 14898.01 16799.46 9197.56 17599.54 4199.50 4998.97 1699.84 12698.06 10299.92 4299.49 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+97.89 398.69 9398.51 10399.24 9398.81 24398.40 10799.02 6599.19 18898.99 8098.07 24099.28 8597.11 14499.84 12696.84 18099.32 23899.47 129
Anonymous2023121199.27 2599.27 2599.26 8899.29 14398.18 12699.49 899.51 7299.70 799.80 1399.68 1896.84 15799.83 14099.21 3599.91 4899.77 22
Anonymous2023120698.21 15898.21 14698.20 21999.51 9095.43 25298.13 14999.32 14196.16 25898.93 14898.82 19196.00 19899.83 14097.32 14199.73 12799.36 176
XVS98.72 8698.45 11599.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27698.63 22597.50 12099.83 14096.79 18299.53 20499.56 82
X-MVStestdata94.32 31292.59 33099.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27645.85 37597.50 12099.83 14096.79 18299.53 20499.56 82
v1098.97 5499.11 3998.55 18699.44 11496.21 23098.90 7699.55 6098.73 9699.48 5299.60 3296.63 17399.83 14099.70 1199.99 599.61 60
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 2298.58 9599.27 3899.57 4999.39 3699.75 1899.62 2899.17 1299.83 14099.06 4299.62 17299.66 45
Baseline_NR-MVSNet98.98 5398.86 6299.36 6499.82 2198.55 9797.47 22399.57 4999.37 3899.21 10499.61 3096.76 16699.83 14098.06 10299.83 7799.71 33
LPG-MVS_test98.71 8798.46 11499.47 5499.57 6998.97 6698.23 13999.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
LGP-MVS_train99.47 5499.57 6998.97 6699.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
Test_1112_low_res96.99 25296.55 26398.31 21199.35 13695.47 25095.84 30999.53 6891.51 34296.80 31498.48 24691.36 29199.83 14096.58 19999.53 20499.62 54
ECVR-MVScopyleft96.42 27496.61 25995.85 32399.38 12588.18 35899.22 4186.00 37799.08 7399.36 7699.57 3588.47 31199.82 15098.52 7899.95 1999.54 93
SF-MVS98.53 12398.27 14199.32 7899.31 13998.75 8198.19 14399.41 10896.77 23698.83 16698.90 17197.80 9399.82 15095.68 25599.52 20799.38 168
new-patchmatchnet98.35 14298.74 7197.18 28699.24 15192.23 33296.42 28199.48 8398.30 11899.69 2599.53 4597.44 12599.82 15098.84 5699.77 10999.49 112
FIs99.14 3599.09 4299.29 8199.70 5098.28 11799.13 5499.52 7199.48 2699.24 10199.41 6696.79 16399.82 15098.69 6799.88 6099.76 26
v119298.60 11198.66 8498.41 20299.27 14695.88 23897.52 21799.36 12397.41 19299.33 8199.20 10096.37 18599.82 15099.57 1499.92 4299.55 89
pm-mvs199.44 1399.48 1199.33 7699.80 2298.63 8999.29 3299.63 3499.30 4799.65 3299.60 3299.16 1499.82 15099.07 4199.83 7799.56 82
VPNet98.87 6698.83 6499.01 12999.70 5097.62 18098.43 12499.35 12899.47 2899.28 9099.05 13196.72 16999.82 15098.09 10099.36 23299.59 67
pmmvs395.03 30494.40 31096.93 29797.70 34092.53 32595.08 33197.71 31488.57 36097.71 26398.08 28079.39 35999.82 15096.19 22999.11 27298.43 310
HPM-MVS_fast99.01 4898.82 6599.57 1699.71 4499.35 1299.00 6899.50 7497.33 19998.94 14798.86 18198.75 2799.82 15097.53 13299.71 13999.56 82
DELS-MVS98.27 15198.20 14798.48 19598.86 23396.70 22095.60 31599.20 18497.73 16098.45 21398.71 20797.50 12099.82 15098.21 9399.59 18398.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet298.49 12798.40 12298.75 16298.90 22597.14 20698.61 9899.13 20698.59 10499.19 10699.28 8594.14 25499.82 15097.97 10999.80 9599.29 198
WTY-MVS96.67 26396.27 27297.87 24198.81 24394.61 27896.77 26497.92 31094.94 29097.12 29497.74 30091.11 29299.82 15093.89 30198.15 32499.18 221
ACMP95.32 1598.41 13498.09 16099.36 6499.51 9098.79 8097.68 19899.38 11595.76 27198.81 17198.82 19198.36 5099.82 15094.75 27399.77 10999.48 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D94.30 31493.21 32497.58 26498.14 31794.47 28194.78 33893.24 36494.72 29489.56 37295.87 35078.57 36599.81 16396.91 16997.11 34898.46 305
TSAR-MVS + MP.98.63 10798.49 10999.06 12399.64 6097.90 15698.51 11398.94 23596.96 22799.24 10198.89 17797.83 8999.81 16396.88 17699.49 21799.48 122
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v899.01 4899.16 3298.57 18199.47 10996.31 22898.90 7699.47 8999.03 7799.52 4799.57 3596.93 15399.81 16399.60 1299.98 999.60 61
CR-MVSNet96.28 27895.95 27697.28 28397.71 33894.22 28498.11 15298.92 24092.31 33496.91 30599.37 6985.44 33099.81 16397.39 13897.36 34397.81 335
PatchT96.65 26496.35 26797.54 26997.40 35195.32 25597.98 17096.64 34099.33 4396.89 30999.42 6384.32 33899.81 16397.69 12797.49 33697.48 348
FMVSNet397.50 21097.24 22198.29 21398.08 32195.83 24097.86 18298.91 24297.89 15098.95 14198.95 16187.06 31599.81 16397.77 12099.69 14799.23 209
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1699.63 1399.78 1599.67 2099.48 699.81 16399.30 2999.97 1299.77 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EIA-MVS98.00 17397.74 18798.80 15298.72 25498.09 13398.05 16099.60 3997.39 19496.63 31895.55 35497.68 9999.80 17096.73 19099.27 24798.52 303
Anonymous2024052998.93 5998.87 5999.12 10799.19 16598.22 12599.01 6698.99 23399.25 5099.54 4199.37 6997.04 14699.80 17097.89 11199.52 20799.35 180
thisisatest051594.12 31893.16 32596.97 29698.60 27992.90 31993.77 36090.61 37094.10 31096.91 30595.87 35074.99 37199.80 17094.52 28099.12 27198.20 318
Effi-MVS+98.02 17197.82 18398.62 17498.53 28997.19 20197.33 23199.68 2997.30 20396.68 31697.46 31798.56 4099.80 17096.63 19798.20 31998.86 270
v114498.60 11198.66 8498.41 20299.36 13295.90 23797.58 21199.34 13497.51 17899.27 9299.15 11496.34 18799.80 17099.47 2099.93 3199.51 105
VDDNet98.21 15897.95 17299.01 12999.58 6597.74 17299.01 6697.29 32599.67 998.97 13899.50 4990.45 29599.80 17097.88 11499.20 25799.48 122
EI-MVSNet98.40 13698.51 10398.04 23399.10 18694.73 27397.20 24298.87 24898.97 8299.06 12099.02 13696.00 19899.80 17098.58 7299.82 8099.60 61
CVMVSNet96.25 27997.21 22393.38 35399.10 18680.56 37997.20 24298.19 30096.94 22899.00 13299.02 13689.50 30299.80 17096.36 22099.59 18399.78 20
MVSTER96.86 25696.55 26397.79 24697.91 32894.21 28697.56 21398.87 24897.49 18199.06 12099.05 13180.72 35299.80 17098.44 8299.82 8099.37 170
sss97.21 23496.93 23498.06 23098.83 23895.22 25996.75 26698.48 28794.49 29897.27 29197.90 29292.77 27899.80 17096.57 20199.32 23899.16 228
ab-mvs98.41 13498.36 12998.59 17899.19 16597.23 19699.32 2298.81 26297.66 16598.62 19199.40 6896.82 16099.80 17095.88 24299.51 20998.75 288
TDRefinement99.42 1699.38 1699.55 2399.76 3099.33 1699.68 599.71 2199.38 3799.53 4599.61 3098.64 3399.80 17098.24 9199.84 7099.52 103
LS3D98.63 10798.38 12799.36 6497.25 35599.38 899.12 5699.32 14199.21 5298.44 21498.88 17897.31 13099.80 17096.58 19999.34 23698.92 261
hse-mvs297.46 21497.07 22998.64 17098.73 25297.33 19197.45 22497.64 31899.11 6198.58 19997.98 28688.65 30999.79 18398.11 9797.39 34098.81 277
AUN-MVS96.24 28095.45 28998.60 17798.70 26197.22 19897.38 22797.65 31695.95 26695.53 34697.96 29082.11 35199.79 18396.31 22297.44 33898.80 282
SMA-MVScopyleft98.40 13698.03 16799.51 4399.16 17599.21 2898.05 16099.22 18194.16 30898.98 13499.10 12197.52 11899.79 18396.45 21599.64 16699.53 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testdata299.79 18392.80 324
VDD-MVS98.56 11598.39 12599.07 11799.13 18298.07 13998.59 10097.01 33099.59 1999.11 11399.27 8794.82 23799.79 18398.34 8799.63 16999.34 182
v2v48298.56 11598.62 9098.37 20699.42 12095.81 24197.58 21199.16 19997.90 14999.28 9099.01 14595.98 20299.79 18399.33 2599.90 5599.51 105
mvs_anonymous97.83 19298.16 15496.87 30198.18 31591.89 33497.31 23298.90 24397.37 19698.83 16699.46 5596.28 18899.79 18398.90 5298.16 32398.95 255
tpm94.67 30894.34 31295.66 32897.68 34288.42 35597.88 17894.90 35294.46 30096.03 33598.56 23478.66 36399.79 18395.88 24295.01 36698.78 284
IS-MVSNet98.19 16097.90 17899.08 11599.57 6997.97 14999.31 2698.32 29399.01 7998.98 13499.03 13591.59 28999.79 18395.49 26199.80 9599.48 122
test_040298.76 8298.71 7698.93 13799.56 7698.14 13198.45 12399.34 13499.28 4898.95 14198.91 16898.34 5499.79 18395.63 25699.91 4898.86 270
ACMM96.08 1298.91 6198.73 7299.48 5199.55 8099.14 5298.07 15799.37 11997.62 16899.04 12798.96 15798.84 2399.79 18397.43 13699.65 16499.49 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_lstm_enhance97.18 23797.16 22597.25 28598.16 31692.85 32095.15 33099.31 14697.25 20898.74 18098.78 19790.07 29799.78 19497.19 14699.80 9599.11 231
Anonymous20240521197.90 17897.50 20599.08 11598.90 22598.25 11998.53 10896.16 34498.87 9099.11 11398.86 18190.40 29699.78 19497.36 13999.31 24099.19 219
ppachtmachnet_test97.50 21097.74 18796.78 30798.70 26191.23 34694.55 34799.05 21996.36 25099.21 10498.79 19696.39 18299.78 19496.74 18899.82 8099.34 182
新几何198.91 14098.94 21597.76 17098.76 26887.58 36396.75 31598.10 27794.80 24099.78 19492.73 32699.00 28399.20 214
V4298.78 7898.78 6998.76 16099.44 11497.04 20798.27 13699.19 18897.87 15199.25 10099.16 11096.84 15799.78 19499.21 3599.84 7099.46 131
VNet98.42 13398.30 13798.79 15498.79 24797.29 19398.23 13998.66 27799.31 4598.85 16298.80 19494.80 24099.78 19498.13 9699.13 26899.31 193
FE-MVS95.66 29294.95 30497.77 24898.53 28995.28 25699.40 1596.09 34693.11 32497.96 24799.26 8979.10 36299.77 20092.40 33198.71 30198.27 316
agg_prior98.68 26897.99 14599.01 23095.59 33999.77 200
baseline293.73 32392.83 32996.42 31297.70 34091.28 34496.84 26189.77 37393.96 31492.44 36795.93 34879.14 36199.77 20092.94 31896.76 35398.21 317
PM-MVS98.82 7298.72 7499.12 10799.64 6098.54 10097.98 17099.68 2997.62 16899.34 8099.18 10497.54 11499.77 20097.79 11999.74 12499.04 239
TAMVS98.24 15698.05 16598.80 15299.07 19397.18 20297.88 17898.81 26296.66 24199.17 11199.21 9894.81 23999.77 20096.96 16799.88 6099.44 139
9.1497.78 18499.07 19397.53 21699.32 14195.53 27598.54 20698.70 21097.58 11099.76 20594.32 29099.46 219
TEST998.71 25798.08 13795.96 30099.03 22491.40 34395.85 33697.53 31196.52 17799.76 205
train_agg97.10 24196.45 26699.07 11798.71 25798.08 13795.96 30099.03 22491.64 33895.85 33697.53 31196.47 17999.76 20593.67 30699.16 26399.36 176
test_898.67 26998.01 14495.91 30599.02 22791.64 33895.79 33897.50 31496.47 17999.76 205
test20.0398.78 7898.77 7098.78 15799.46 11097.20 20097.78 18799.24 17899.04 7699.41 6498.90 17197.65 10299.76 20597.70 12599.79 10099.39 161
EG-PatchMatch MVS98.99 5099.01 4898.94 13699.50 9397.47 18598.04 16299.59 4098.15 13699.40 6799.36 7298.58 3999.76 20598.78 5899.68 15299.59 67
ACMH96.65 799.25 2799.24 2799.26 8899.72 4298.38 10999.07 6199.55 6098.30 11899.65 3299.45 5999.22 999.76 20598.44 8299.77 10999.64 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.64 20297.49 20698.08 22899.14 18095.12 26396.70 26999.05 21993.77 31598.62 19198.83 18893.23 26699.75 21298.33 8999.76 12099.36 176
casdiffmvs_mvgpermissive99.12 4099.16 3298.99 13199.43 11997.73 17498.00 16899.62 3599.22 5199.55 4099.22 9798.93 1999.75 21298.66 6999.81 8499.50 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS95.94 1395.90 28695.35 29497.55 26897.95 32594.79 26998.81 8396.94 33592.28 33595.17 35098.57 23389.90 29999.75 21291.20 34597.33 34598.10 322
DP-MVS98.93 5998.81 6799.28 8399.21 15898.45 10698.46 12199.33 13999.63 1399.48 5299.15 11497.23 13799.75 21297.17 14799.66 16399.63 53
PatchmatchNetpermissive95.58 29495.67 28395.30 33697.34 35387.32 36197.65 20396.65 33995.30 28297.07 29798.69 21184.77 33399.75 21294.97 26998.64 30698.83 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet95.24 30194.93 30596.18 31798.14 31790.10 35097.92 17497.32 32490.23 35096.51 32398.91 16885.61 32799.74 21792.88 32096.90 34998.69 294
diffmvspermissive98.22 15798.24 14498.17 22199.00 20695.44 25196.38 28399.58 4297.79 15798.53 20798.50 24396.76 16699.74 21797.95 11099.64 16699.34 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 18097.60 20098.75 16299.31 13997.17 20397.62 20599.35 12898.72 9798.76 17798.68 21392.57 28199.74 21797.76 12495.60 36399.34 182
CDS-MVSNet97.69 19897.35 21598.69 16798.73 25297.02 20996.92 25898.75 27195.89 26898.59 19798.67 21592.08 28699.74 21796.72 19199.81 8499.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
nrg03099.40 1899.35 1899.54 2799.58 6599.13 5598.98 7199.48 8399.68 899.46 5599.26 8998.62 3699.73 22199.17 3899.92 4299.76 26
无先验95.74 31198.74 27389.38 35799.73 22192.38 33299.22 213
LFMVS97.20 23596.72 25098.64 17098.72 25496.95 21198.93 7494.14 36099.74 698.78 17299.01 14584.45 33699.73 22197.44 13599.27 24799.25 204
YYNet197.60 20597.67 19297.39 28099.04 20193.04 31895.27 32598.38 29297.25 20898.92 14998.95 16195.48 22099.73 22196.99 16398.74 29799.41 149
MDA-MVSNet_test_wron97.60 20597.66 19597.41 27999.04 20193.09 31495.27 32598.42 28997.26 20798.88 15798.95 16195.43 22199.73 22197.02 16098.72 29999.41 149
Vis-MVSNet (Re-imp)97.46 21497.16 22598.34 20899.55 8096.10 23198.94 7398.44 28898.32 11798.16 23198.62 22788.76 30599.73 22193.88 30299.79 10099.18 221
PCF-MVS92.86 1894.36 31193.00 32898.42 20198.70 26197.56 18193.16 36499.11 20979.59 37297.55 27597.43 31892.19 28399.73 22179.85 37399.45 22197.97 329
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft96.50 1098.99 5098.85 6399.41 6099.58 6599.10 6098.74 8499.56 5699.09 7199.33 8199.19 10198.40 4899.72 22895.98 23999.76 12099.42 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs399.12 4099.41 1498.25 21599.76 3095.07 26599.05 6499.94 197.78 15899.82 1299.84 298.56 4099.71 22999.96 199.96 1599.97 1
原ACMM198.35 20798.90 22596.25 22998.83 26192.48 33296.07 33398.10 27795.39 22299.71 22992.61 32998.99 28499.08 232
UnsupCasMVSNet_bld97.30 22696.92 23698.45 19899.28 14496.78 21996.20 29299.27 16795.42 27898.28 22598.30 26393.16 26899.71 22994.99 26897.37 34198.87 269
test_post21.25 37883.86 34299.70 232
testdata98.09 22598.93 21795.40 25398.80 26490.08 35497.45 28498.37 25595.26 22499.70 23293.58 30998.95 28899.17 225
HQP_MVS97.99 17697.67 19298.93 13799.19 16597.65 17797.77 18999.27 16798.20 12997.79 25997.98 28694.90 23399.70 23294.42 28599.51 20999.45 135
plane_prior599.27 16799.70 23294.42 28599.51 20999.45 135
cl____97.02 24896.83 24397.58 26497.82 33394.04 29294.66 34299.16 19997.04 22498.63 18998.71 20788.68 30899.69 23697.00 16199.81 8499.00 246
DIV-MVS_self_test97.02 24896.84 24297.58 26497.82 33394.03 29394.66 34299.16 19997.04 22498.63 18998.71 20788.69 30699.69 23697.00 16199.81 8499.01 243
eth_miper_zixun_eth97.23 23397.25 22097.17 28798.00 32492.77 32294.71 33999.18 19297.27 20698.56 20298.74 20391.89 28799.69 23697.06 15999.81 8499.05 235
D2MVS97.84 19097.84 18297.83 24399.14 18094.74 27296.94 25498.88 24695.84 26998.89 15398.96 15794.40 24999.69 23697.55 12999.95 1999.05 235
Patchmatch-test96.55 26796.34 26897.17 28798.35 30493.06 31598.40 12797.79 31197.33 19998.41 21798.67 21583.68 34399.69 23695.16 26699.31 24098.77 285
CDPH-MVS97.26 22996.66 25699.07 11799.00 20698.15 12996.03 29699.01 23091.21 34697.79 25997.85 29596.89 15599.69 23692.75 32599.38 23199.39 161
test1298.93 13798.58 28297.83 16298.66 27796.53 32195.51 21899.69 23699.13 26899.27 200
casdiffmvspermissive98.95 5799.00 4998.81 15099.38 12597.33 19197.82 18599.57 4999.17 5999.35 7899.17 10898.35 5399.69 23698.46 8199.73 12799.41 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 5699.02 4798.76 16099.38 12597.26 19598.49 11699.50 7498.86 9199.19 10699.06 12498.23 5899.69 23698.71 6599.76 12099.33 187
EU-MVSNet97.66 20198.50 10595.13 33799.63 6285.84 36598.35 13198.21 29798.23 12599.54 4199.46 5595.02 23199.68 24598.24 9199.87 6399.87 9
F-COLMAP97.30 22696.68 25399.14 10599.19 16598.39 10897.27 23799.30 15492.93 32696.62 31998.00 28495.73 21199.68 24592.62 32898.46 31299.35 180
OpenMVS_ROBcopyleft95.38 1495.84 28895.18 29997.81 24598.41 30297.15 20597.37 22898.62 28083.86 36898.65 18798.37 25594.29 25299.68 24588.41 35798.62 30896.60 359
test_fmvs298.70 9098.97 5397.89 24099.54 8394.05 29098.55 10599.92 596.78 23599.72 1999.78 896.60 17499.67 24899.91 299.90 5599.94 3
testf199.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
APD_test299.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
test-LLR93.90 32193.85 31594.04 34496.53 36584.62 37094.05 35692.39 36696.17 25694.12 35995.07 35982.30 34999.67 24895.87 24598.18 32097.82 333
test-mter92.33 33691.76 33994.04 34496.53 36584.62 37094.05 35692.39 36694.00 31394.12 35995.07 35965.63 38299.67 24895.87 24598.18 32097.82 333
thres600view794.45 31093.83 31696.29 31499.06 19791.53 33797.99 16994.24 35898.34 11497.44 28595.01 36179.84 35599.67 24884.33 36598.23 31797.66 343
114514_t96.50 27195.77 27898.69 16799.48 10797.43 18897.84 18499.55 6081.42 37196.51 32398.58 23295.53 21699.67 24893.41 31499.58 18898.98 248
PVSNet_BlendedMVS97.55 20997.53 20397.60 26298.92 22193.77 30696.64 27199.43 10494.49 29897.62 26899.18 10496.82 16099.67 24894.73 27499.93 3199.36 176
PVSNet_Blended96.88 25596.68 25397.47 27598.92 22193.77 30694.71 33999.43 10490.98 34897.62 26897.36 32396.82 16099.67 24894.73 27499.56 19598.98 248
PHI-MVS98.29 15097.95 17299.34 7298.44 29799.16 4398.12 15199.38 11596.01 26498.06 24198.43 24997.80 9399.67 24895.69 25499.58 18899.20 214
ACMH+96.62 999.08 4499.00 4999.33 7699.71 4498.83 7698.60 9999.58 4299.11 6199.53 4599.18 10498.81 2599.67 24896.71 19399.77 10999.50 108
test_post197.59 21020.48 37983.07 34699.66 25994.16 291
旧先验295.76 31088.56 36197.52 27899.66 25994.48 281
MCST-MVS98.00 17397.63 19899.10 11199.24 15198.17 12896.89 25998.73 27495.66 27297.92 24897.70 30397.17 14099.66 25996.18 23199.23 25399.47 129
NCCC97.86 18497.47 20999.05 12498.61 27798.07 13996.98 25298.90 24397.63 16797.04 29997.93 29195.99 20199.66 25995.31 26498.82 29599.43 143
PMMVS96.51 26995.98 27598.09 22597.53 34695.84 23994.92 33598.84 25791.58 34096.05 33495.58 35395.68 21299.66 25995.59 25898.09 32798.76 287
FA-MVS(test-final)96.99 25296.82 24497.50 27398.70 26194.78 27099.34 1996.99 33195.07 28698.48 21199.33 7988.41 31299.65 26496.13 23598.92 29198.07 324
OPM-MVS98.56 11598.32 13699.25 9199.41 12298.73 8597.13 24799.18 19297.10 22298.75 17898.92 16798.18 6599.65 26496.68 19599.56 19599.37 170
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet96.62 26696.25 27397.71 25599.04 20194.66 27699.16 5096.92 33697.23 21497.87 25299.10 12186.11 32499.65 26491.65 33799.21 25698.82 273
CL-MVSNet_self_test97.44 21797.22 22298.08 22898.57 28495.78 24294.30 35298.79 26596.58 24498.60 19598.19 27194.74 24499.64 26796.41 21798.84 29398.82 273
c3_l97.36 22197.37 21397.31 28198.09 32093.25 31395.01 33399.16 19997.05 22398.77 17598.72 20692.88 27599.64 26796.93 16899.76 12099.05 235
DeepC-MVS_fast96.85 698.30 14798.15 15598.75 16298.61 27797.23 19697.76 19199.09 21397.31 20298.75 17898.66 21897.56 11299.64 26796.10 23699.55 19899.39 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d98.47 12998.34 13298.86 14499.30 14297.76 17097.16 24599.28 16495.54 27499.42 6399.19 10197.27 13499.63 27097.89 11199.97 1299.20 214
baseline195.96 28595.44 29097.52 27198.51 29293.99 29698.39 12896.09 34698.21 12698.40 22197.76 29986.88 31699.63 27095.42 26289.27 37498.95 255
thres100view90094.19 31593.67 31995.75 32699.06 19791.35 34198.03 16394.24 35898.33 11597.40 28794.98 36379.84 35599.62 27283.05 36798.08 32896.29 360
tfpn200view994.03 31993.44 32195.78 32598.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32896.29 360
Patchmatch-RL test97.26 22997.02 23297.99 23699.52 8895.53 24796.13 29499.71 2197.47 18299.27 9299.16 11084.30 33999.62 27297.89 11199.77 10998.81 277
v14898.45 13198.60 9598.00 23599.44 11494.98 26697.44 22599.06 21698.30 11899.32 8798.97 15496.65 17299.62 27298.37 8599.85 6699.39 161
thres40094.14 31793.44 32196.24 31698.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32897.66 343
CostFormer93.97 32093.78 31794.51 34197.53 34685.83 36697.98 17095.96 34889.29 35894.99 35398.63 22578.63 36499.62 27294.54 27996.50 35498.09 323
miper_ehance_all_eth97.06 24597.03 23197.16 28997.83 33293.06 31594.66 34299.09 21395.99 26598.69 18298.45 24892.73 27999.61 27896.79 18299.03 27898.82 273
gm-plane-assit94.83 37581.97 37788.07 36294.99 36299.60 27991.76 335
MVP-Stereo98.08 16897.92 17698.57 18198.96 21396.79 21697.90 17799.18 19296.41 24998.46 21298.95 16195.93 20599.60 27996.51 21198.98 28699.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs497.58 20897.28 21998.51 19298.84 23696.93 21395.40 32398.52 28593.60 31798.61 19398.65 22095.10 22999.60 27996.97 16699.79 10098.99 247
JIA-IIPM95.52 29695.03 30197.00 29396.85 36194.03 29396.93 25695.82 34999.20 5494.63 35599.71 1683.09 34599.60 27994.42 28594.64 36797.36 350
test_prior98.95 13598.69 26697.95 15399.03 22499.59 28399.30 196
tpmrst95.07 30395.46 28893.91 34697.11 35784.36 37297.62 20596.96 33394.98 28896.35 32898.80 19485.46 32999.59 28395.60 25796.23 35897.79 338
dp93.47 32693.59 32093.13 35596.64 36481.62 37897.66 20196.42 34292.80 32996.11 33198.64 22378.55 36699.59 28393.31 31592.18 37398.16 320
PLCcopyleft94.65 1696.51 26995.73 28098.85 14598.75 25097.91 15596.42 28199.06 21690.94 34995.59 33997.38 32194.41 24899.59 28390.93 34898.04 33199.05 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD_test198.83 7198.66 8499.34 7299.78 2599.47 698.42 12699.45 9498.28 12398.98 13499.19 10197.76 9599.58 28796.57 20199.55 19898.97 252
miper_enhance_ethall96.01 28395.74 27996.81 30596.41 36892.27 33193.69 36198.89 24591.14 34798.30 22397.35 32490.58 29499.58 28796.31 22299.03 27898.60 300
AllTest98.44 13298.20 14799.16 10299.50 9398.55 9798.25 13899.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
TestCases99.16 10299.50 9398.55 9799.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
CNVR-MVS98.17 16397.87 18099.07 11798.67 26998.24 12097.01 25098.93 23797.25 20897.62 26898.34 25997.27 13499.57 28996.42 21699.33 23799.39 161
TESTMET0.1,192.19 33891.77 33893.46 35196.48 36782.80 37594.05 35691.52 36994.45 30294.00 36294.88 36566.65 37999.56 29295.78 25098.11 32698.02 326
thres20093.72 32493.14 32695.46 33498.66 27491.29 34396.61 27394.63 35497.39 19496.83 31293.71 37179.88 35499.56 29282.40 37098.13 32595.54 369
MVS_Test98.18 16198.36 12997.67 25698.48 29394.73 27398.18 14499.02 22797.69 16398.04 24499.11 11997.22 13899.56 29298.57 7498.90 29298.71 291
test_yl96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
DCV-MVSNet96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
alignmvs97.35 22296.88 23998.78 15798.54 28798.09 13397.71 19597.69 31599.20 5497.59 27195.90 34988.12 31499.55 29598.18 9598.96 28798.70 293
HQP4-MVS95.56 34199.54 29899.32 189
HQP-MVS97.00 25196.49 26598.55 18698.67 26996.79 21696.29 28799.04 22296.05 26195.55 34296.84 33293.84 25999.54 29892.82 32299.26 25099.32 189
tpmvs95.02 30595.25 29694.33 34296.39 36985.87 36498.08 15696.83 33895.46 27795.51 34798.69 21185.91 32599.53 30094.16 29196.23 35897.58 346
tpm293.09 33092.58 33194.62 34097.56 34486.53 36397.66 20195.79 35086.15 36594.07 36198.23 26875.95 36899.53 30090.91 34996.86 35297.81 335
MDTV_nov1_ep1395.22 29797.06 35883.20 37497.74 19396.16 34494.37 30496.99 30198.83 18883.95 34199.53 30093.90 30097.95 332
AdaColmapbinary97.14 24096.71 25198.46 19798.34 30597.80 16896.95 25398.93 23795.58 27396.92 30397.66 30495.87 20799.53 30090.97 34799.14 26698.04 325
new_pmnet96.99 25296.76 24897.67 25698.72 25494.89 26895.95 30298.20 29892.62 33198.55 20498.54 23594.88 23699.52 30493.96 29999.44 22498.59 302
RPSCF98.62 10998.36 12999.42 5899.65 5799.42 798.55 10599.57 4997.72 16298.90 15199.26 8996.12 19399.52 30495.72 25299.71 13999.32 189
MAR-MVS96.47 27395.70 28198.79 15497.92 32799.12 5798.28 13598.60 28192.16 33695.54 34596.17 34594.77 24399.52 30489.62 35598.23 31797.72 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 17897.69 19198.52 19099.17 17397.66 17697.19 24499.47 8996.31 25397.85 25598.20 27096.71 17099.52 30494.62 27799.72 13498.38 312
Gipumacopyleft99.03 4799.16 3298.64 17099.94 298.51 10299.32 2299.75 1999.58 2198.60 19599.62 2898.22 6199.51 30897.70 12599.73 12797.89 330
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc98.24 21798.82 24195.97 23698.62 9799.00 23299.27 9299.21 9896.99 15199.50 30996.55 20899.50 21699.26 203
testgi98.32 14498.39 12598.13 22499.57 6995.54 24697.78 18799.49 8197.37 19699.19 10697.65 30598.96 1799.49 31096.50 21298.99 28499.34 182
EPNet_dtu94.93 30694.78 30795.38 33593.58 37787.68 36096.78 26395.69 35197.35 19889.14 37398.09 27988.15 31399.49 31094.95 27099.30 24398.98 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.24 23296.78 24798.61 17699.03 20497.83 16296.36 28499.06 21693.49 32097.36 29097.78 29795.75 21099.49 31093.44 31398.77 29698.52 303
test_fmvs1_n98.09 16798.28 13997.52 27199.68 5393.47 31198.63 9599.93 395.41 28199.68 2799.64 2691.88 28899.48 31399.82 399.87 6399.62 54
test_241102_ONE99.49 10099.17 3999.31 14697.98 14299.66 2998.90 17198.36 5099.48 313
CLD-MVS97.49 21297.16 22598.48 19599.07 19397.03 20894.71 33999.21 18294.46 30098.06 24197.16 32797.57 11199.48 31394.46 28299.78 10598.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-untuned96.83 25796.75 24997.08 29098.74 25193.33 31296.71 26898.26 29596.72 23898.44 21497.37 32295.20 22699.47 31691.89 33497.43 33998.44 309
OMC-MVS97.88 18297.49 20699.04 12698.89 23098.63 8996.94 25499.25 17395.02 28798.53 20798.51 23997.27 13499.47 31693.50 31299.51 20999.01 243
canonicalmvs98.34 14398.26 14298.58 17998.46 29597.82 16598.96 7299.46 9199.19 5897.46 28395.46 35798.59 3899.46 31898.08 10198.71 30198.46 305
mvsany_test398.87 6698.92 5698.74 16699.38 12596.94 21298.58 10299.10 21196.49 24699.96 299.81 598.18 6599.45 31998.97 4999.79 10099.83 13
CNLPA97.17 23896.71 25198.55 18698.56 28598.05 14296.33 28598.93 23796.91 23097.06 29897.39 32094.38 25099.45 31991.66 33699.18 26298.14 321
BH-RMVSNet96.83 25796.58 26297.58 26498.47 29494.05 29096.67 27097.36 32196.70 24097.87 25297.98 28695.14 22899.44 32190.47 35298.58 31099.25 204
DPM-MVS96.32 27695.59 28698.51 19298.76 24897.21 19994.54 34898.26 29591.94 33796.37 32797.25 32593.06 27299.43 32291.42 34298.74 29798.89 265
PVSNet93.40 1795.67 29195.70 28195.57 33098.83 23888.57 35492.50 36697.72 31392.69 33096.49 32696.44 34193.72 26499.43 32293.61 30799.28 24698.71 291
test_vis1_n98.31 14698.50 10597.73 25499.76 3094.17 28898.68 9299.91 696.31 25399.79 1499.57 3592.85 27799.42 32499.79 699.84 7099.60 61
test_fmvs197.72 19697.94 17497.07 29298.66 27492.39 32897.68 19899.81 1495.20 28599.54 4199.44 6091.56 29099.41 32599.78 799.77 10999.40 158
TSAR-MVS + GP.98.18 16197.98 17098.77 15998.71 25797.88 15796.32 28698.66 27796.33 25199.23 10398.51 23997.48 12499.40 32697.16 14899.46 21999.02 242
TAPA-MVS96.21 1196.63 26595.95 27698.65 16998.93 21798.09 13396.93 25699.28 16483.58 36998.13 23597.78 29796.13 19299.40 32693.52 31099.29 24598.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 32893.13 32793.75 34897.39 35284.74 36997.39 22697.65 31683.39 37094.16 35898.41 25082.86 34799.39 32891.56 34095.35 36597.14 352
MG-MVS96.77 26096.61 25997.26 28498.31 30793.06 31595.93 30398.12 30496.45 24897.92 24898.73 20493.77 26399.39 32891.19 34699.04 27799.33 187
MVS_111021_HR98.25 15598.08 16398.75 16299.09 18997.46 18695.97 29899.27 16797.60 17197.99 24698.25 26598.15 7199.38 33096.87 17799.57 19299.42 146
MS-PatchMatch97.68 19997.75 18697.45 27698.23 31393.78 30597.29 23498.84 25796.10 26098.64 18898.65 22096.04 19599.36 33196.84 18099.14 26699.20 214
ITE_SJBPF98.87 14399.22 15698.48 10499.35 12897.50 17998.28 22598.60 23097.64 10599.35 33293.86 30399.27 24798.79 283
MVS_111021_LR98.30 14798.12 15898.83 14799.16 17598.03 14396.09 29599.30 15497.58 17298.10 23898.24 26698.25 5699.34 33396.69 19499.65 16499.12 230
USDC97.41 21997.40 21097.44 27798.94 21593.67 30895.17 32899.53 6894.03 31298.97 13899.10 12195.29 22399.34 33395.84 24899.73 12799.30 196
MSDG97.71 19797.52 20498.28 21498.91 22496.82 21594.42 34999.37 11997.65 16698.37 22298.29 26497.40 12799.33 33594.09 29699.22 25498.68 297
XVG-OURS98.53 12398.34 13299.11 10999.50 9398.82 7895.97 29899.50 7497.30 20399.05 12598.98 15299.35 799.32 33695.72 25299.68 15299.18 221
DP-MVS Recon97.33 22496.92 23698.57 18199.09 18997.99 14596.79 26299.35 12893.18 32297.71 26398.07 28195.00 23299.31 33793.97 29899.13 26898.42 311
EPMVS93.72 32493.27 32395.09 33896.04 37287.76 35998.13 14985.01 37894.69 29596.92 30398.64 22378.47 36799.31 33795.04 26796.46 35598.20 318
mvsany_test197.60 20597.54 20297.77 24897.72 33695.35 25495.36 32497.13 32894.13 30999.71 2199.33 7997.93 8599.30 33997.60 12898.94 28998.67 298
MVS93.19 32992.09 33396.50 31196.91 35994.03 29398.07 15798.06 30668.01 37394.56 35696.48 33995.96 20499.30 33983.84 36696.89 35196.17 362
GA-MVS95.86 28795.32 29597.49 27498.60 27994.15 28993.83 35997.93 30995.49 27696.68 31697.42 31983.21 34499.30 33996.22 22798.55 31199.01 243
XVG-OURS-SEG-HR98.49 12798.28 13999.14 10599.49 10098.83 7696.54 27499.48 8397.32 20199.11 11398.61 22999.33 899.30 33996.23 22698.38 31399.28 199
DeepPCF-MVS96.93 598.32 14498.01 16899.23 9598.39 30398.97 6695.03 33299.18 19296.88 23199.33 8198.78 19798.16 6999.28 34396.74 18899.62 17299.44 139
TinyColmap97.89 18097.98 17097.60 26298.86 23394.35 28396.21 29199.44 9897.45 18999.06 12098.88 17897.99 8299.28 34394.38 28999.58 18899.18 221
KD-MVS_2432*160092.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
cl2295.79 28995.39 29396.98 29596.77 36392.79 32194.40 35098.53 28494.59 29797.89 25198.17 27282.82 34899.24 34596.37 21899.03 27898.92 261
miper_refine_blended92.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
PAPM91.88 33990.34 34296.51 31098.06 32292.56 32492.44 36797.17 32686.35 36490.38 37196.01 34686.61 31899.21 34870.65 37695.43 36497.75 339
MVS-HIRNet94.32 31295.62 28490.42 35798.46 29575.36 38096.29 28789.13 37495.25 28395.38 34899.75 1192.88 27599.19 34994.07 29799.39 22896.72 358
PAPM_NR96.82 25996.32 26998.30 21299.07 19396.69 22197.48 22198.76 26895.81 27096.61 32096.47 34094.12 25799.17 35090.82 35197.78 33399.06 234
TR-MVS95.55 29595.12 30096.86 30497.54 34593.94 29796.49 27796.53 34194.36 30597.03 30096.61 33694.26 25399.16 35186.91 36196.31 35797.47 349
API-MVS97.04 24796.91 23897.42 27897.88 33098.23 12498.18 14498.50 28697.57 17397.39 28896.75 33496.77 16499.15 35290.16 35399.02 28194.88 370
PAPR95.29 29994.47 30897.75 25297.50 35095.14 26294.89 33698.71 27591.39 34495.35 34995.48 35694.57 24699.14 35384.95 36497.37 34198.97 252
131495.74 29095.60 28596.17 31897.53 34692.75 32398.07 15798.31 29491.22 34594.25 35796.68 33595.53 21699.03 35491.64 33897.18 34696.74 357
gg-mvs-nofinetune92.37 33591.20 34095.85 32395.80 37492.38 32999.31 2681.84 38099.75 591.83 36999.74 1268.29 37599.02 35587.15 36097.12 34796.16 363
BH-w/o95.13 30294.89 30695.86 32298.20 31491.31 34295.65 31397.37 32093.64 31696.52 32295.70 35293.04 27399.02 35588.10 35895.82 36297.24 351
test0.0.03 194.51 30993.69 31896.99 29496.05 37193.61 31094.97 33493.49 36196.17 25697.57 27494.88 36582.30 34999.01 35793.60 30894.17 37098.37 314
tt080598.69 9398.62 9098.90 14299.75 3499.30 1799.15 5296.97 33298.86 9198.87 16197.62 30898.63 3598.96 35899.41 2398.29 31698.45 307
E-PMN94.17 31694.37 31193.58 35096.86 36085.71 36790.11 37097.07 32998.17 13297.82 25897.19 32684.62 33598.94 35989.77 35497.68 33596.09 366
EMVS93.83 32294.02 31493.23 35496.83 36284.96 36889.77 37196.32 34397.92 14797.43 28696.36 34486.17 32298.93 36087.68 35997.73 33495.81 367
test_vis3_rt99.14 3599.17 3099.07 11799.78 2598.38 10998.92 7599.94 197.80 15699.91 599.67 2097.15 14198.91 36199.76 899.56 19599.92 5
CMPMVSbinary75.91 2396.29 27795.44 29098.84 14696.25 37098.69 8897.02 24999.12 20788.90 35997.83 25698.86 18189.51 30198.90 36291.92 33399.51 20998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_089.98 2191.15 34090.30 34393.70 34997.72 33684.34 37390.24 36997.42 31990.20 35393.79 36393.09 37290.90 29398.89 36386.57 36272.76 37697.87 332
MSLP-MVS++98.02 17198.14 15797.64 26098.58 28295.19 26097.48 22199.23 18097.47 18297.90 25098.62 22797.04 14698.81 36497.55 12999.41 22698.94 259
OPU-MVS98.82 14898.59 28198.30 11698.10 15498.52 23898.18 6598.75 36594.62 27799.48 21899.41 149
test_f98.67 10198.87 5998.05 23299.72 4295.59 24498.51 11399.81 1496.30 25599.78 1599.82 496.14 19198.63 36699.82 399.93 3199.95 2
cascas94.79 30794.33 31396.15 32196.02 37392.36 33092.34 36899.26 17285.34 36795.08 35294.96 36492.96 27498.53 36794.41 28898.59 30997.56 347
wuyk23d96.06 28297.62 19991.38 35698.65 27698.57 9698.85 8196.95 33496.86 23299.90 699.16 11099.18 1198.40 36889.23 35699.77 10977.18 374
test_vis1_rt97.75 19497.72 19097.83 24398.81 24396.35 22697.30 23399.69 2494.61 29697.87 25298.05 28296.26 18998.32 36998.74 6298.18 32098.82 273
PMVScopyleft91.26 2097.86 18497.94 17497.65 25899.71 4497.94 15498.52 10998.68 27698.99 8097.52 27899.35 7397.41 12698.18 37091.59 33999.67 15896.82 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND94.76 33994.54 37692.13 33399.31 2680.47 38188.73 37491.01 37467.59 37898.16 37182.30 37194.53 36993.98 371
test_method79.78 34279.50 34580.62 35880.21 38145.76 38370.82 37298.41 29131.08 37680.89 37797.71 30184.85 33297.37 37291.51 34180.03 37598.75 288
PC_three_145293.27 32199.40 6798.54 23598.22 6197.00 37395.17 26599.45 22199.49 112
FPMVS93.44 32792.23 33297.08 29099.25 15097.86 15995.61 31497.16 32792.90 32793.76 36498.65 22075.94 36995.66 37479.30 37497.49 33697.73 340
MVEpermissive83.40 2292.50 33391.92 33694.25 34398.83 23891.64 33692.71 36583.52 37995.92 26786.46 37695.46 35795.20 22695.40 37580.51 37298.64 30695.73 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SD-MVS98.40 13698.68 8297.54 26998.96 21397.99 14597.88 17899.36 12398.20 12999.63 3599.04 13398.76 2695.33 37696.56 20599.74 12499.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepMVS_CXcopyleft93.44 35298.24 31194.21 28694.34 35564.28 37491.34 37094.87 36789.45 30392.77 37777.54 37593.14 37193.35 372
tmp_tt78.77 34378.73 34678.90 35958.45 38274.76 38294.20 35378.26 38239.16 37586.71 37592.82 37380.50 35375.19 37886.16 36392.29 37286.74 373
test12317.04 34620.11 3497.82 36010.25 3844.91 38494.80 3374.47 3854.93 37810.00 38024.28 3779.69 3833.64 37910.14 37712.43 37814.92 375
testmvs17.12 34520.53 3486.87 36112.05 3834.20 38593.62 3626.73 3844.62 37910.41 37924.33 3768.28 3843.56 3809.69 37815.07 37712.86 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.66 34432.88 3470.00 3620.00 3850.00 3860.00 37399.10 2110.00 3800.00 38197.58 30999.21 100.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.17 34710.90 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38098.07 730.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.12 34810.83 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.48 3150.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.73 3699.67 299.43 1199.54 6599.43 3399.26 96
test_one_060199.39 12499.20 3499.31 14698.49 10998.66 18699.02 13697.64 105
eth-test20.00 385
eth-test0.00 385
RE-MVS-def98.58 9799.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.75 9696.56 20599.39 22899.45 135
IU-MVS99.49 10099.15 4798.87 24892.97 32599.41 6496.76 18699.62 17299.66 45
save fliter99.11 18497.97 14996.53 27599.02 22798.24 124
test072699.50 9399.21 2898.17 14799.35 12897.97 14399.26 9699.06 12497.61 108
GSMVS98.81 277
test_part299.36 13299.10 6099.05 125
sam_mvs184.74 33498.81 277
sam_mvs84.29 340
MTGPAbinary99.20 184
MTMP97.93 17391.91 368
test9_res93.28 31699.15 26599.38 168
agg_prior292.50 33099.16 26399.37 170
test_prior497.97 14995.86 306
test_prior295.74 31196.48 24796.11 33197.63 30795.92 20694.16 29199.20 257
新几何295.93 303
旧先验198.82 24197.45 18798.76 26898.34 25995.50 21999.01 28299.23 209
原ACMM295.53 317
test22298.92 22196.93 21395.54 31698.78 26785.72 36696.86 31198.11 27694.43 24799.10 27399.23 209
segment_acmp97.02 149
testdata195.44 32296.32 252
plane_prior799.19 16597.87 158
plane_prior698.99 20997.70 17594.90 233
plane_prior497.98 286
plane_prior397.78 16997.41 19297.79 259
plane_prior297.77 18998.20 129
plane_prior199.05 200
plane_prior97.65 17797.07 24896.72 23899.36 232
n20.00 386
nn0.00 386
door-mid99.57 49
test1198.87 248
door99.41 108
HQP5-MVS96.79 216
HQP-NCC98.67 26996.29 28796.05 26195.55 342
ACMP_Plane98.67 26996.29 28796.05 26195.55 342
BP-MVS92.82 322
HQP3-MVS99.04 22299.26 250
HQP2-MVS93.84 259
NP-MVS98.84 23697.39 19096.84 332
MDTV_nov1_ep13_2view74.92 38197.69 19790.06 35597.75 26285.78 32693.52 31098.69 294
ACMMP++_ref99.77 109
ACMMP++99.68 152
Test By Simon96.52 177