This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
bld_raw_dy_0_6499.70 2699.65 3699.85 2099.95 1399.77 5099.66 5299.71 10999.95 599.91 3299.77 9598.35 176100.00 199.54 4499.99 1399.79 38
h-mvs3398.61 23698.34 25299.44 17899.60 16798.67 24799.27 14299.44 24499.68 7499.32 23799.49 24092.50 321100.00 199.24 8896.51 37099.65 97
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1199.99 1100.00 199.98 1099.78 10100.00 199.92 10100.00 199.87 17
DSMNet-mixed99.48 7399.65 3698.95 26999.71 12897.27 32099.50 8799.82 5399.59 10099.41 21999.85 4999.62 21100.00 199.53 4799.89 11099.59 142
HyFIR lowres test98.91 20798.64 22199.73 7499.85 4999.47 13398.07 30899.83 4898.64 22299.89 4299.60 19992.57 318100.00 199.33 7599.97 4399.72 58
test_vis1_n_192099.72 2299.88 699.27 22999.93 2397.84 30399.34 118100.00 199.99 199.99 799.82 6299.87 399.99 699.97 499.99 1399.97 3
test_fmvs399.83 1299.93 299.53 15899.96 598.62 25699.67 48100.00 199.95 5100.00 199.95 1399.85 499.99 699.98 199.99 1399.98 1
dcpmvs_299.61 5499.64 4099.53 15899.79 8398.82 23799.58 7499.97 1199.95 599.96 1699.76 9998.44 16499.99 699.34 7299.96 5799.78 41
IterMVS-SCA-FT99.00 19499.16 13098.51 30399.75 11395.90 34598.07 30899.84 4699.84 3799.89 4299.73 11196.01 28599.99 699.33 75100.00 199.63 110
IterMVS98.97 19899.16 13098.42 30799.74 11995.64 34898.06 31099.83 4899.83 4099.85 5999.74 10796.10 28499.99 699.27 87100.00 199.63 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs1_n99.68 3299.81 1599.28 22699.95 1397.93 30199.49 91100.00 199.82 4299.99 799.89 3199.21 6199.98 1199.97 499.98 3199.93 10
test_fmvs299.72 2299.85 1299.34 21199.91 2798.08 29299.48 92100.00 199.90 1499.99 799.91 2499.50 3299.98 1199.98 199.99 1399.96 5
patch_mono-299.51 6899.46 7699.64 11499.70 13699.11 20899.04 20599.87 3399.71 6499.47 20199.79 8198.24 18799.98 1199.38 6499.96 5799.83 26
CHOSEN 280x42098.41 26198.41 24498.40 30899.34 27195.89 34696.94 36399.44 24498.80 20899.25 25099.52 23193.51 31099.98 1198.94 13199.98 3199.32 242
Fast-Effi-MVS+-dtu99.20 15099.12 14099.43 18299.25 29399.69 8699.05 20399.82 5399.50 10698.97 28499.05 32498.98 9099.98 1198.20 18099.24 31198.62 333
Effi-MVS+-dtu99.07 17898.92 19599.52 16098.89 34199.78 4799.15 17799.66 13299.34 13398.92 29199.24 30297.69 22899.98 1198.11 19099.28 30598.81 325
PS-MVSNAJss99.84 1099.82 1499.89 899.96 599.77 5099.68 4499.85 4099.95 599.98 1199.92 2199.28 5299.98 1199.75 24100.00 199.94 8
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3499.86 3699.89 2099.98 1199.90 2799.94 199.98 1199.75 24100.00 199.90 12
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 2999.88 3199.92 1299.98 1199.93 1799.94 199.98 1199.77 23100.00 199.92 11
MVSFormer99.41 9499.44 8199.31 22199.57 18698.40 26899.77 1499.80 6499.73 5899.63 14399.30 28698.02 20699.98 1199.43 5799.69 22399.55 157
test_djsdf99.84 1099.81 1599.91 299.94 1699.84 2499.77 1499.80 6499.73 5899.97 1499.92 2199.77 1199.98 1199.43 57100.00 199.90 12
Vis-MVSNetpermissive99.75 1899.74 2399.79 3899.88 3999.66 9399.69 4199.92 1999.67 7899.77 9199.75 10499.61 2299.98 1199.35 7199.98 3199.72 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs199.48 7399.65 3698.97 26799.54 19997.16 32399.11 19199.98 999.78 5299.96 1699.81 6798.72 12399.97 2399.95 899.97 4399.79 38
Anonymous2024052199.44 8599.42 8599.49 16599.89 3498.96 22599.62 6199.76 8399.85 3499.82 6799.88 3696.39 27699.97 2399.59 3599.98 3199.55 157
xiu_mvs_v1_base_debu99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v2_base99.02 18899.11 14398.77 29399.37 25898.09 28998.13 30099.51 22499.47 11299.42 21398.54 36299.38 4099.97 2398.83 13599.33 29998.24 352
xiu_mvs_v1_base99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v1_base_debi99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
anonymousdsp99.80 1499.77 2099.90 599.96 599.88 1299.73 2699.85 4099.70 6999.92 2999.93 1799.45 3399.97 2399.36 69100.00 199.85 21
UA-Net99.78 1699.76 2299.86 1899.72 12599.71 7699.91 399.95 1899.96 399.71 11899.91 2499.15 6799.97 2399.50 51100.00 199.90 12
PS-MVSNAJ99.00 19499.08 15498.76 29499.37 25898.10 28898.00 31599.51 22499.47 11299.41 21998.50 36499.28 5299.97 2398.83 13599.34 29898.20 356
pmmvs398.08 28197.80 29098.91 27699.41 25197.69 31097.87 32899.66 13295.87 34399.50 19799.51 23390.35 34599.97 2398.55 15899.47 28299.08 295
DTE-MVSNet99.68 3299.61 4699.88 1299.80 7399.87 1599.67 4899.71 10999.72 6299.84 6299.78 8898.67 12999.97 2399.30 8199.95 6899.80 32
jason99.16 16299.11 14399.32 21899.75 11398.44 26598.26 29099.39 26098.70 21899.74 10899.30 28698.54 14899.97 2398.48 16199.82 16499.55 157
jason: jason.
lupinMVS98.96 20198.87 20199.24 23799.57 18698.40 26898.12 30199.18 30598.28 26499.63 14399.13 31298.02 20699.97 2398.22 17899.69 22399.35 236
K. test v398.87 21598.60 22499.69 9099.93 2399.46 13799.74 2394.97 37099.78 5299.88 4899.88 3693.66 30899.97 2399.61 3399.95 6899.64 105
lessismore_v099.64 11499.86 4699.38 16090.66 37899.89 4299.83 5594.56 29899.97 2399.56 4199.92 9199.57 152
EPNet98.13 27897.77 29399.18 24494.57 38097.99 29499.24 15197.96 35299.74 5797.29 36299.62 18293.13 31399.97 2398.59 15699.83 15599.58 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu99.40 9699.38 8999.44 17899.90 3298.66 25098.94 22699.91 2297.97 28299.79 8299.73 11199.05 8399.97 2399.15 10499.99 1399.68 74
IterMVS-LS99.41 9499.47 7299.25 23599.81 6898.09 28998.85 23399.76 8399.62 8999.83 6699.64 16598.54 14899.97 2399.15 10499.99 1399.68 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 58100.00 199.90 14100.00 199.97 1199.61 2299.97 2399.75 24100.00 199.84 22
test_vis1_n99.68 3299.79 1899.36 20899.94 1698.18 28299.52 83100.00 199.86 29100.00 199.88 3698.99 8899.96 4299.97 499.96 5799.95 6
UniMVSNet_ETH3D99.85 899.83 1399.90 599.89 3499.91 499.89 499.71 10999.93 1099.95 2099.89 3199.71 1499.96 4299.51 4999.97 4399.84 22
MVS_030498.88 21398.71 21699.39 19798.85 34498.91 23299.45 9899.30 28198.56 22997.26 36399.68 14996.18 28299.96 4299.17 10099.94 7999.29 250
v7n99.82 1399.80 1799.88 1299.96 599.84 2499.82 899.82 5399.84 3799.94 2299.91 2499.13 7299.96 4299.83 1899.99 1399.83 26
RRT_MVS99.67 3899.59 5199.91 299.94 1699.88 1299.78 1199.27 28799.87 2699.91 3299.87 4098.04 20499.96 4299.68 2899.99 1399.90 12
PS-CasMVS99.66 4099.58 5599.89 899.80 7399.85 1999.66 5299.73 9799.62 8999.84 6299.71 12598.62 13599.96 4299.30 8199.96 5799.86 19
PEN-MVS99.66 4099.59 5199.89 899.83 5499.87 1599.66 5299.73 9799.70 6999.84 6299.73 11198.56 14599.96 4299.29 8499.94 7999.83 26
TranMVSNet+NR-MVSNet99.54 6599.47 7299.76 5199.58 17699.64 9999.30 13199.63 14999.61 9299.71 11899.56 21898.76 11699.96 4299.14 11099.92 9199.68 74
IB-MVS95.41 2095.30 34094.46 34497.84 32698.76 35595.33 35197.33 35296.07 36696.02 34295.37 37497.41 37776.17 38299.96 4297.54 24395.44 37498.22 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft98.12 1098.23 27597.89 28999.26 23299.19 30499.26 18599.65 5899.69 12191.33 36798.14 34399.77 9598.28 18499.96 4295.41 33999.55 26598.58 337
GeoE99.69 2999.66 3499.78 4199.76 10299.76 5899.60 7199.82 5399.46 11599.75 10099.56 21899.63 1999.95 5299.43 5799.88 11999.62 121
CS-MVS99.67 3899.70 2599.58 14199.53 20599.84 2499.79 1099.96 1599.90 1499.61 15899.41 25799.51 3199.95 5299.66 2999.89 11098.96 311
CANet_DTU98.91 20798.85 20399.09 25698.79 35198.13 28498.18 29499.31 27899.48 10898.86 29999.51 23396.56 26799.95 5299.05 11699.95 6899.19 269
CS-MVS-test99.68 3299.70 2599.64 11499.57 18699.83 2999.78 1199.97 1199.92 1299.50 19799.38 26799.57 2699.95 5299.69 2799.90 10199.15 277
Fast-Effi-MVS+99.02 18898.87 20199.46 17399.38 25699.50 13099.04 20599.79 7097.17 32298.62 31998.74 35499.34 4699.95 5298.32 17199.41 29098.92 316
MTAPA99.35 11099.20 12699.80 3499.81 6899.81 3899.33 12199.53 21599.27 14199.42 21399.63 17598.21 19299.95 5297.83 21799.79 18399.65 97
UniMVSNet_NR-MVSNet99.37 10599.25 12199.72 8099.47 23499.56 12298.97 22299.61 15999.43 12399.67 13299.28 29097.85 21999.95 5299.17 10099.81 17399.65 97
DU-MVS99.33 11899.21 12599.71 8599.43 24599.56 12298.83 23699.53 21599.38 12999.67 13299.36 27397.67 23099.95 5299.17 10099.81 17399.63 110
CP-MVSNet99.54 6599.43 8399.87 1599.76 10299.82 3599.57 7799.61 15999.54 10299.80 7799.64 16597.79 22399.95 5299.21 9199.94 7999.84 22
Patchmtry98.78 22298.54 23499.49 16598.89 34199.19 20199.32 12399.67 12899.65 8499.72 11399.79 8191.87 32699.95 5298.00 19799.97 4399.33 239
QAPM98.40 26397.99 27699.65 10799.39 25399.47 13399.67 4899.52 22091.70 36698.78 30999.80 7198.55 14699.95 5294.71 34999.75 19699.53 171
3Dnovator99.15 299.43 8799.36 9599.65 10799.39 25399.42 15199.70 3499.56 19499.23 14999.35 22999.80 7199.17 6599.95 5298.21 17999.84 14799.59 142
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2799.90 799.96 199.92 1999.90 1499.97 1499.87 4099.81 899.95 5299.54 4499.99 1399.80 32
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvsany_test399.85 899.88 699.75 6099.95 1399.37 16399.53 8299.98 999.77 5699.99 799.95 1399.85 499.94 6599.95 899.98 3199.94 8
test_f99.75 1899.88 699.37 20499.96 598.21 27999.51 86100.00 199.94 9100.00 199.93 1799.58 2599.94 6599.97 499.99 1399.97 3
test_method91.72 34292.32 34589.91 35993.49 38170.18 38390.28 37299.56 19461.71 37695.39 37399.52 23193.90 30299.94 6598.76 14598.27 35199.62 121
tttt051797.62 29897.20 30798.90 28299.76 10297.40 31799.48 9294.36 37299.06 17899.70 12199.49 24084.55 37199.94 6598.73 14899.65 23999.36 233
CANet99.11 17399.05 16499.28 22698.83 34698.56 25898.71 25599.41 25099.25 14599.23 25499.22 30497.66 23499.94 6599.19 9599.97 4399.33 239
patchmatchnet-post99.62 18290.58 34299.94 65
SCA98.11 27998.36 24997.36 33799.20 30292.99 36498.17 29698.49 34198.24 26699.10 27599.57 21596.01 28599.94 6596.86 28299.62 24499.14 282
ADS-MVSNet297.78 29197.66 29898.12 32099.14 31095.36 35099.22 15898.75 32796.97 32798.25 33599.64 16590.90 33799.94 6596.51 30299.56 26199.08 295
WR-MVS_H99.61 5499.53 6899.87 1599.80 7399.83 2999.67 4899.75 8899.58 10199.85 5999.69 13898.18 19699.94 6599.28 8699.95 6899.83 26
mvsmamba99.74 2199.70 2599.85 2099.93 2399.83 2999.76 1899.81 6299.96 399.91 3299.81 6798.60 13999.94 6599.58 3899.98 3199.77 45
SixPastTwentyTwo99.42 9099.30 10899.76 5199.92 2699.67 9199.70 3499.14 30999.65 8499.89 4299.90 2796.20 28199.94 6599.42 6299.92 9199.67 80
CP-MVS99.23 13599.05 16499.75 6099.66 15499.66 9399.38 10999.62 15298.38 24999.06 28099.27 29298.79 11199.94 6597.51 24699.82 16499.66 89
SteuartSystems-ACMMP99.30 12299.14 13499.76 5199.87 4399.66 9399.18 16699.60 17198.55 23199.57 16999.67 15499.03 8599.94 6597.01 27499.80 17899.69 68
Skip Steuart: Steuart Systems R&D Blog.
PatchT98.45 25898.32 25498.83 28898.94 33698.29 27499.24 15198.82 32499.84 3799.08 27699.76 9991.37 32999.94 6598.82 13799.00 32398.26 351
new_pmnet98.88 21398.89 19998.84 28699.70 13697.62 31198.15 29799.50 22897.98 28199.62 15299.54 22798.15 19799.94 6597.55 24299.84 14798.95 313
wuyk23d97.58 30099.13 13692.93 35899.69 14099.49 13199.52 8399.77 7897.97 28299.96 1699.79 8199.84 699.94 6595.85 32999.82 16479.36 374
3Dnovator+98.92 399.35 11099.24 12399.67 9599.35 26399.47 13399.62 6199.50 22899.44 11899.12 27299.78 8898.77 11599.94 6597.87 21099.72 21499.62 121
mvsany_test199.44 8599.45 7899.40 19399.37 25898.64 25497.90 32799.59 17799.27 14199.92 2999.82 6299.74 1299.93 8299.55 4399.87 13099.63 110
ETV-MVS99.18 15799.18 12899.16 24599.34 27199.28 18199.12 18999.79 7099.48 10898.93 28898.55 36199.40 3599.93 8298.51 16099.52 27598.28 350
thisisatest053097.45 30396.95 31398.94 27099.68 14897.73 30899.09 19794.19 37498.61 22699.56 17699.30 28684.30 37299.93 8298.27 17499.54 27099.16 275
our_test_398.85 21799.09 15298.13 31999.66 15494.90 35597.72 33399.58 18799.07 17699.64 13999.62 18298.19 19499.93 8298.41 16499.95 6899.55 157
MSP-MVS99.04 18598.79 21299.81 3099.78 9099.73 7099.35 11799.57 18998.54 23499.54 18398.99 33396.81 26499.93 8296.97 27699.53 27299.77 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R99.23 13599.05 16499.77 4499.76 10299.70 8399.31 12899.59 17798.41 24599.32 23799.36 27398.73 12299.93 8297.29 25799.74 20399.67 80
APDe-MVS99.48 7399.36 9599.85 2099.55 19899.81 3899.50 8799.69 12198.99 18299.75 10099.71 12598.79 11199.93 8298.46 16299.85 14299.80 32
CVMVSNet98.61 23698.88 20097.80 32799.58 17693.60 36299.26 14499.64 14799.66 8299.72 11399.67 15493.26 31199.93 8299.30 8199.81 17399.87 17
ACMMPR99.23 13599.06 16099.76 5199.74 11999.69 8699.31 12899.59 17798.36 25199.35 22999.38 26798.61 13799.93 8297.43 25099.75 19699.67 80
PGM-MVS99.20 15099.01 17599.77 4499.75 11399.71 7699.16 17599.72 10697.99 28099.42 21399.60 19998.81 10699.93 8296.91 27999.74 20399.66 89
LCM-MVSNet-Re99.28 12499.15 13399.67 9599.33 27699.76 5899.34 11899.97 1198.93 19199.91 3299.79 8198.68 12699.93 8296.80 28699.56 26199.30 247
PMMVS299.48 7399.45 7899.57 14799.76 10298.99 22098.09 30599.90 2598.95 18799.78 8699.58 20699.57 2699.93 8299.48 5299.95 6899.79 38
mPP-MVS99.19 15399.00 17899.76 5199.76 10299.68 8999.38 10999.54 20698.34 26099.01 28299.50 23698.53 15299.93 8297.18 26999.78 18899.66 89
OurMVSNet-221017-099.75 1899.71 2499.84 2399.96 599.83 2999.83 699.85 4099.80 4799.93 2599.93 1798.54 14899.93 8299.59 3599.98 3199.76 51
CHOSEN 1792x268899.39 10099.30 10899.65 10799.88 3999.25 18898.78 24899.88 3198.66 22099.96 1699.79 8197.45 24099.93 8299.34 7299.99 1399.78 41
N_pmnet98.73 22998.53 23699.35 21099.72 12598.67 24798.34 28494.65 37198.35 25699.79 8299.68 14998.03 20599.93 8298.28 17399.92 9199.44 212
UGNet99.38 10299.34 9799.49 16598.90 33898.90 23399.70 3499.35 26999.86 2998.57 32499.81 6798.50 15899.93 8299.38 6499.98 3199.66 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DROMVSNet99.69 2999.69 2999.68 9299.71 12899.91 499.76 1899.96 1599.86 2999.51 19599.39 26599.57 2699.93 8299.64 3299.86 13899.20 266
EPP-MVSNet99.17 16199.00 17899.66 10299.80 7399.43 14899.70 3499.24 29699.48 10899.56 17699.77 9594.89 29399.93 8298.72 14999.89 11099.63 110
DeepC-MVS98.90 499.62 5299.61 4699.67 9599.72 12599.44 14499.24 15199.71 10999.27 14199.93 2599.90 2799.70 1699.93 8298.99 12099.99 1399.64 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf_final98.75 22598.54 23499.40 19399.33 27698.75 24299.26 14499.59 17799.80 4799.76 9399.58 20690.17 34799.92 10299.37 6799.97 4399.54 165
EGC-MVSNET89.05 34385.52 34699.64 11499.89 3499.78 4799.56 7999.52 22024.19 37749.96 37899.83 5599.15 6799.92 10297.71 22699.85 14299.21 262
DVP-MVS++99.38 10299.25 12199.77 4499.03 32899.77 5099.74 2399.61 15999.18 15699.76 9399.61 19199.00 8699.92 10297.72 22499.60 25499.62 121
MSC_two_6792asdad99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
No_MVS99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
ZD-MVS99.43 24599.61 11199.43 24796.38 33799.11 27399.07 32297.86 21799.92 10294.04 35699.49 280
SED-MVS99.40 9699.28 11599.77 4499.69 14099.82 3599.20 16199.54 20699.13 16999.82 6799.63 17598.91 9899.92 10297.85 21399.70 21999.58 147
test_241102_TWO99.54 20699.13 16999.76 9399.63 17598.32 18299.92 10297.85 21399.69 22399.75 54
ZNCC-MVS99.22 14399.04 16999.77 4499.76 10299.73 7099.28 13999.56 19498.19 27099.14 26999.29 28998.84 10599.92 10297.53 24599.80 17899.64 105
test_0728_SECOND99.83 2599.70 13699.79 4499.14 17999.61 15999.92 10297.88 20799.72 21499.77 45
SR-MVS99.19 15399.00 17899.74 6599.51 21299.72 7499.18 16699.60 17198.85 20199.47 20199.58 20698.38 17399.92 10296.92 27899.54 27099.57 152
DPE-MVScopyleft99.14 16698.92 19599.82 2799.57 18699.77 5098.74 25199.60 17198.55 23199.76 9399.69 13898.23 19199.92 10296.39 30899.75 19699.76 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0598.46 25698.23 25999.15 24799.04 32797.99 29499.10 19399.61 15999.79 5099.76 9399.58 20687.88 35799.92 10299.31 8099.97 4399.53 171
MP-MVScopyleft99.06 17998.83 20799.76 5199.76 10299.71 7699.32 12399.50 22898.35 25698.97 28499.48 24398.37 17499.92 10295.95 32799.75 19699.63 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS99.36 10899.29 11399.58 14199.83 5499.66 9398.95 22499.86 3698.85 20199.81 7499.73 11198.40 17299.92 10298.36 16799.83 15599.17 273
HPM-MVScopyleft99.25 13199.07 15899.78 4199.81 6899.75 6299.61 6699.67 12897.72 29599.35 22999.25 29799.23 5999.92 10297.21 26899.82 16499.67 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 30996.95 31397.75 32998.91 33794.24 35899.32 12397.96 35297.71 29698.29 33399.32 28286.72 36699.92 10298.10 19196.24 37299.09 292
RPMNet98.60 23898.53 23698.83 28899.05 32598.12 28599.30 13199.62 15299.86 2999.16 26599.74 10792.53 32099.92 10298.75 14698.77 33498.44 345
CPTT-MVS98.74 22798.44 24199.64 11499.61 16599.38 16099.18 16699.55 20096.49 33599.27 24899.37 26997.11 25799.92 10295.74 33399.67 23499.62 121
MIMVSNet199.66 4099.62 4299.80 3499.94 1699.87 1599.69 4199.77 7899.78 5299.93 2599.89 3197.94 21299.92 10299.65 3099.98 3199.62 121
CSCG99.37 10599.29 11399.60 13699.71 12899.46 13799.43 10399.85 4098.79 20999.41 21999.60 19998.92 9699.92 10298.02 19399.92 9199.43 218
ACMMPcopyleft99.25 13199.08 15499.74 6599.79 8399.68 8999.50 8799.65 14198.07 27699.52 19099.69 13898.57 14399.92 10297.18 26999.79 18399.63 110
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 12899.11 14399.73 7499.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.41 16899.91 12497.27 26099.61 25199.54 165
DVP-MVScopyleft99.32 12099.17 12999.77 4499.69 14099.80 4299.14 17999.31 27899.16 16399.62 15299.61 19198.35 17699.91 12497.88 20799.72 21499.61 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 15699.62 15299.61 19198.58 14299.91 12497.72 22499.80 17899.77 45
GST-MVS99.16 16298.96 18999.75 6099.73 12299.73 7099.20 16199.55 20098.22 26799.32 23799.35 27898.65 13399.91 12496.86 28299.74 20399.62 121
MP-MVS-pluss99.14 16698.92 19599.80 3499.83 5499.83 2998.61 25799.63 14996.84 33199.44 20799.58 20698.81 10699.91 12497.70 22999.82 16499.67 80
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS99.25 13199.08 15499.76 5199.73 12299.70 8399.31 12899.59 17798.36 25199.36 22899.37 26998.80 11099.91 12497.43 25099.75 19699.68 74
HPM-MVS++copyleft98.96 20198.70 21999.74 6599.52 21099.71 7698.86 23199.19 30498.47 24198.59 32299.06 32398.08 20299.91 12496.94 27799.60 25499.60 135
test-LLR97.15 30996.95 31397.74 33098.18 37095.02 35397.38 34996.10 36498.00 27897.81 35598.58 35790.04 34999.91 12497.69 23598.78 33298.31 348
test-mter96.23 33095.73 33297.74 33098.18 37095.02 35397.38 34996.10 36497.90 28797.81 35598.58 35779.12 38099.91 12497.69 23598.78 33298.31 348
VPA-MVSNet99.66 4099.62 4299.79 3899.68 14899.75 6299.62 6199.69 12199.85 3499.80 7799.81 6798.81 10699.91 12499.47 5399.88 11999.70 64
XVG-ACMP-BASELINE99.23 13599.10 15199.63 12199.82 6199.58 11998.83 23699.72 10698.36 25199.60 16199.71 12598.92 9699.91 12497.08 27299.84 14799.40 223
APD-MVScopyleft98.87 21598.59 22699.71 8599.50 21899.62 10599.01 21199.57 18996.80 33399.54 18399.63 17598.29 18399.91 12495.24 34299.71 21799.61 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CR-MVSNet98.35 26898.20 26398.83 28899.05 32598.12 28599.30 13199.67 12897.39 31299.16 26599.79 8191.87 32699.91 12498.78 14498.77 33498.44 345
FMVSNet597.80 29097.25 30699.42 18498.83 34698.97 22399.38 10999.80 6498.87 19999.25 25099.69 13880.60 37699.91 12498.96 12699.90 10199.38 227
XXY-MVS99.71 2599.67 3399.81 3099.89 3499.72 7499.59 7299.82 5399.39 12899.82 6799.84 5499.38 4099.91 12499.38 6499.93 8799.80 32
sss98.90 20998.77 21399.27 22999.48 22898.44 26598.72 25399.32 27497.94 28699.37 22799.35 27896.31 27899.91 12498.85 13499.63 24399.47 202
1112_ss99.05 18298.84 20599.67 9599.66 15499.29 17998.52 27299.82 5397.65 29899.43 21199.16 31096.42 27399.91 12499.07 11599.84 14799.80 32
LS3D99.24 13499.11 14399.61 13398.38 36499.79 4499.57 7799.68 12499.61 9299.15 26799.71 12598.70 12499.91 12497.54 24399.68 22899.13 285
testf199.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
APD_test299.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
test250694.73 34194.59 34395.15 35799.59 17185.90 38299.75 2174.01 38399.89 2099.71 11899.86 4779.00 38199.90 14299.52 4899.99 1399.65 97
test111197.74 29298.16 26896.49 35199.60 16789.86 38099.71 3391.21 37799.89 2099.88 4899.87 4093.73 30799.90 14299.56 4199.99 1399.70 64
KD-MVS_self_test99.63 4699.59 5199.76 5199.84 5099.90 799.37 11399.79 7099.83 4099.88 4899.85 4998.42 16799.90 14299.60 3499.73 20899.49 194
ET-MVSNet_ETH3D96.78 31796.07 32698.91 27699.26 29297.92 30297.70 33596.05 36797.96 28592.37 37698.43 36587.06 36099.90 14298.27 17497.56 36498.91 317
tfpnnormal99.43 8799.38 8999.60 13699.87 4399.75 6299.59 7299.78 7599.71 6499.90 3899.69 13898.85 10499.90 14297.25 26599.78 18899.15 277
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2299.85 3499.94 2299.95 1399.73 1399.90 14299.65 3099.97 4399.69 68
APD-MVS_3200maxsize99.31 12199.16 13099.74 6599.53 20599.75 6299.27 14299.61 15999.19 15599.57 16999.64 16598.76 11699.90 14297.29 25799.62 24499.56 154
baseline296.83 31696.28 32298.46 30699.09 32296.91 33098.83 23693.87 37597.23 31996.23 37098.36 36688.12 35699.90 14296.68 29298.14 35698.57 338
XVG-OURS-SEG-HR99.16 16298.99 18399.66 10299.84 5099.64 9998.25 29199.73 9798.39 24899.63 14399.43 25599.70 1699.90 14297.34 25498.64 34299.44 212
XVG-OURS99.21 14899.06 16099.65 10799.82 6199.62 10597.87 32899.74 9398.36 25199.66 13699.68 14999.71 1499.90 14296.84 28599.88 11999.43 218
JIA-IIPM98.06 28297.92 28698.50 30498.59 36097.02 32798.80 24498.51 33999.88 2597.89 35199.87 4091.89 32599.90 14298.16 18797.68 36398.59 335
GBi-Net99.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
test199.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
FMVSNet199.66 4099.63 4199.73 7499.78 9099.77 5099.68 4499.70 11599.67 7899.82 6799.83 5598.98 9099.90 14299.24 8899.97 4399.53 171
WTY-MVS98.59 24198.37 24899.26 23299.43 24598.40 26898.74 25199.13 31198.10 27399.21 25999.24 30294.82 29499.90 14297.86 21198.77 33499.49 194
ECVR-MVScopyleft97.73 29398.04 27396.78 34599.59 17190.81 37699.72 2990.43 37999.89 2099.86 5799.86 4793.60 30999.89 15999.46 5499.99 1399.65 97
EI-MVSNet-UG-set99.48 7399.50 7099.42 18499.57 18698.65 25399.24 15199.46 23999.68 7499.80 7799.66 15898.99 8899.89 15999.19 9599.90 10199.72 58
EI-MVSNet-Vis-set99.47 8099.49 7199.42 18499.57 18698.66 25099.24 15199.46 23999.67 7899.79 8299.65 16398.97 9299.89 15999.15 10499.89 11099.71 61
新几何199.52 16099.50 21899.22 19599.26 29095.66 34898.60 32199.28 29097.67 23099.89 15995.95 32799.32 30099.45 207
testdata299.89 15995.99 324
testdata99.42 18499.51 21298.93 22999.30 28196.20 34098.87 29899.40 26198.33 18199.89 15996.29 31299.28 30599.44 212
TESTMET0.1,196.24 32995.84 33197.41 33698.24 36893.84 36197.38 34995.84 36898.43 24297.81 35598.56 36079.77 37799.89 15997.77 21898.77 33498.52 339
test20.0399.55 6399.54 6499.58 14199.79 8399.37 16399.02 20999.89 2799.60 9899.82 6799.62 18298.81 10699.89 15999.43 5799.86 13899.47 202
MDA-MVSNet-bldmvs99.06 17999.05 16499.07 26099.80 7397.83 30498.89 22899.72 10699.29 13799.63 14399.70 13296.47 27199.89 15998.17 18699.82 16499.50 189
LPG-MVS_test99.22 14399.05 16499.74 6599.82 6199.63 10399.16 17599.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
LGP-MVS_train99.74 6599.82 6199.63 10399.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
Test_1112_low_res98.95 20498.73 21499.63 12199.68 14899.15 20598.09 30599.80 6497.14 32499.46 20599.40 26196.11 28399.89 15999.01 11999.84 14799.84 22
PatchmatchNetpermissive97.65 29797.80 29097.18 34298.82 34992.49 36699.17 17198.39 34598.12 27298.79 30799.58 20690.71 34199.89 15997.23 26699.41 29099.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMP97.51 1499.05 18298.84 20599.67 9599.78 9099.55 12598.88 22999.66 13297.11 32699.47 20199.60 19999.07 8099.89 15996.18 31799.85 14299.58 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6299.70 34100.00 199.73 58100.00 199.89 3199.79 999.88 17399.98 1100.00 199.98 1
FE-MVS97.85 28897.42 30199.15 24799.44 24298.75 24299.77 1498.20 34995.85 34499.33 23499.80 7188.86 35499.88 17396.40 30799.12 31598.81 325
ppachtmachnet_test98.89 21299.12 14098.20 31799.66 15495.24 35297.63 33799.68 12499.08 17499.78 8699.62 18298.65 13399.88 17398.02 19399.96 5799.48 198
TSAR-MVS + MP.99.34 11599.24 12399.63 12199.82 6199.37 16399.26 14499.35 26998.77 21299.57 16999.70 13299.27 5599.88 17397.71 22699.75 19699.65 97
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 11099.57 5898.71 29899.82 6196.62 33598.55 26799.75 8899.50 10699.88 4899.87 4099.31 4899.88 17399.43 57100.00 199.62 121
Anonymous2023120699.35 11099.31 10399.47 17199.74 11999.06 21899.28 13999.74 9399.23 14999.72 11399.53 22997.63 23699.88 17399.11 11299.84 14799.48 198
XVS99.27 12899.11 14399.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31099.47 24798.47 15999.88 17397.62 23799.73 20899.67 80
v124099.56 6099.58 5599.51 16299.80 7399.00 21999.00 21399.65 14199.15 16799.90 3899.75 10499.09 7599.88 17399.90 1199.96 5799.67 80
X-MVStestdata96.09 33194.87 34099.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31061.30 38498.47 15999.88 17397.62 23799.73 20899.67 80
旧先验297.94 32295.33 35198.94 28799.88 17396.75 288
UniMVSNet (Re)99.37 10599.26 11999.68 9299.51 21299.58 11998.98 22199.60 17199.43 12399.70 12199.36 27397.70 22699.88 17399.20 9499.87 13099.59 142
HPM-MVS_fast99.43 8799.30 10899.80 3499.83 5499.81 3899.52 8399.70 11598.35 25699.51 19599.50 23699.31 4899.88 17398.18 18499.84 14799.69 68
TDRefinement99.72 2299.70 2599.77 4499.90 3299.85 1999.86 599.92 1999.69 7299.78 8699.92 2199.37 4299.88 17398.93 13299.95 6899.60 135
PCF-MVS96.03 1896.73 31995.86 33099.33 21499.44 24299.16 20396.87 36499.44 24486.58 37198.95 28699.40 26194.38 29999.88 17387.93 37099.80 17898.95 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SF-MVS99.10 17698.93 19199.62 13099.58 17699.51 12999.13 18599.65 14197.97 28299.42 21399.61 19198.86 10399.87 18796.45 30699.68 22899.49 194
D2MVS99.22 14399.19 12799.29 22499.69 14098.74 24498.81 24199.41 25098.55 23199.68 12799.69 13898.13 19899.87 18798.82 13799.98 3199.24 255
thisisatest051596.98 31396.42 32098.66 29999.42 25097.47 31497.27 35494.30 37397.24 31899.15 26798.86 34885.01 36999.87 18797.10 27199.39 29298.63 332
ACMMP_NAP99.28 12499.11 14399.79 3899.75 11399.81 3898.95 22499.53 21598.27 26599.53 18899.73 11198.75 11899.87 18797.70 22999.83 15599.68 74
Patchmatch-test98.10 28097.98 27898.48 30599.27 29096.48 33699.40 10599.07 31298.81 20699.23 25499.57 21590.11 34899.87 18796.69 29199.64 24199.09 292
v14419299.55 6399.54 6499.58 14199.78 9099.20 20099.11 19199.62 15299.18 15699.89 4299.72 11898.66 13199.87 18799.88 1599.97 4399.66 89
v192192099.56 6099.57 5899.55 15399.75 11399.11 20899.05 20399.61 15999.15 16799.88 4899.71 12599.08 7899.87 18799.90 1199.97 4399.66 89
FC-MVSNet-test99.70 2699.65 3699.86 1899.88 3999.86 1899.72 2999.78 7599.90 1499.82 6799.83 5598.45 16399.87 18799.51 4999.97 4399.86 19
pm-mvs199.79 1599.79 1899.78 4199.91 2799.83 2999.76 1899.87 3399.73 5899.89 4299.87 4099.63 1999.87 18799.54 4499.92 9199.63 110
TransMVSNet (Re)99.78 1699.77 2099.81 3099.91 2799.85 1999.75 2199.86 3699.70 6999.91 3299.89 3199.60 2499.87 18799.59 3599.74 20399.71 61
NR-MVSNet99.40 9699.31 10399.68 9299.43 24599.55 12599.73 2699.50 22899.46 11599.88 4899.36 27397.54 23799.87 18798.97 12499.87 13099.63 110
Baseline_NR-MVSNet99.49 7199.37 9299.82 2799.91 2799.84 2498.83 23699.86 3699.68 7499.65 13899.88 3697.67 23099.87 18799.03 11799.86 13899.76 51
EG-PatchMatch MVS99.57 5799.56 6399.62 13099.77 9899.33 17399.26 14499.76 8399.32 13699.80 7799.78 8899.29 5099.87 18799.15 10499.91 10099.66 89
DELS-MVS99.34 11599.30 10899.48 16999.51 21299.36 16798.12 30199.53 21599.36 13299.41 21999.61 19199.22 6099.87 18799.21 9199.68 22899.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet299.35 11099.28 11599.55 15399.49 22399.35 17099.45 9899.57 18999.44 11899.70 12199.74 10797.21 25199.87 18799.03 11799.94 7999.44 212
ab-mvs99.33 11899.28 11599.47 17199.57 18699.39 15899.78 1199.43 24798.87 19999.57 16999.82 6298.06 20399.87 18798.69 15299.73 20899.15 277
DP-MVS99.48 7399.39 8799.74 6599.57 18699.62 10599.29 13799.61 15999.87 2699.74 10899.76 9998.69 12599.87 18798.20 18099.80 17899.75 54
F-COLMAP98.74 22798.45 24099.62 13099.57 18699.47 13398.84 23499.65 14196.31 33998.93 28899.19 30997.68 22999.87 18796.52 30199.37 29599.53 171
Anonymous2024052999.42 9099.34 9799.65 10799.53 20599.60 11399.63 6099.39 26099.47 11299.76 9399.78 8898.13 19899.86 20598.70 15099.68 22899.49 194
test_post52.41 38590.25 34699.86 205
Anonymous2023121199.62 5299.57 5899.76 5199.61 16599.60 11399.81 999.73 9799.82 4299.90 3899.90 2797.97 21199.86 20599.42 6299.96 5799.80 32
v1099.69 2999.69 2999.66 10299.81 6899.39 15899.66 5299.75 8899.60 9899.92 2999.87 4098.75 11899.86 20599.90 1199.99 1399.73 56
VPNet99.46 8199.37 9299.71 8599.82 6199.59 11599.48 9299.70 11599.81 4499.69 12499.58 20697.66 23499.86 20599.17 10099.44 28599.67 80
testgi99.29 12399.26 11999.37 20499.75 11398.81 23898.84 23499.89 2798.38 24999.75 10099.04 32699.36 4599.86 20599.08 11499.25 30999.45 207
mvs_anonymous99.28 12499.39 8798.94 27099.19 30497.81 30599.02 20999.55 20099.78 5299.85 5999.80 7198.24 18799.86 20599.57 4099.50 27899.15 277
diffmvspermissive99.34 11599.32 10299.39 19799.67 15398.77 24198.57 26599.81 6299.61 9299.48 20099.41 25798.47 15999.86 20598.97 12499.90 10199.53 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS99.11 17398.93 19199.66 10299.30 28399.42 15198.42 28199.37 26599.04 17999.57 16999.20 30896.89 26299.86 20598.66 15499.87 13099.70 64
114514_t98.49 25398.11 27099.64 11499.73 12299.58 11999.24 15199.76 8389.94 36999.42 21399.56 21897.76 22599.86 20597.74 22399.82 16499.47 202
UnsupCasMVSNet_eth98.83 21898.57 23099.59 13899.68 14899.45 14298.99 21899.67 12899.48 10899.55 18199.36 27394.92 29299.86 20598.95 13096.57 36999.45 207
FMVSNet398.80 22198.63 22399.32 21899.13 31298.72 24599.10 19399.48 23399.23 14999.62 15299.64 16592.57 31899.86 20598.96 12699.90 10199.39 225
HY-MVS98.23 998.21 27797.95 28098.99 26599.03 32898.24 27599.61 6698.72 32896.81 33298.73 31299.51 23394.06 30199.86 20596.91 27998.20 35298.86 321
TAMVS99.49 7199.45 7899.63 12199.48 22899.42 15199.45 9899.57 18999.66 8299.78 8699.83 5597.85 21999.86 20599.44 5699.96 5799.61 131
ACMM98.09 1199.46 8199.38 8999.72 8099.80 7399.69 8699.13 18599.65 14198.99 18299.64 13999.72 11899.39 3699.86 20598.23 17799.81 17399.60 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 30796.84 31798.89 28399.29 28599.45 14298.87 23099.48 23386.54 37299.44 20799.74 10797.34 24699.86 20591.61 36399.28 30597.37 367
COLMAP_ROBcopyleft98.06 1299.45 8399.37 9299.70 8999.83 5499.70 8399.38 10999.78 7599.53 10499.67 13299.78 8899.19 6399.86 20597.32 25599.87 13099.55 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
hse-mvs298.52 24898.30 25699.16 24599.29 28598.60 25798.77 24999.02 31699.68 7499.32 23799.04 32692.50 32199.85 22299.24 8897.87 36199.03 304
AUN-MVS97.82 28997.38 30299.14 25099.27 29098.53 25998.72 25399.02 31698.10 27397.18 36599.03 33089.26 35399.85 22297.94 20297.91 35999.03 304
miper_lstm_enhance98.65 23598.60 22498.82 29199.20 30297.33 31997.78 33199.66 13299.01 18199.59 16499.50 23694.62 29799.85 22298.12 18999.90 10199.26 252
TEST999.35 26399.35 17098.11 30399.41 25094.83 35997.92 34998.99 33398.02 20699.85 222
train_agg98.35 26897.95 28099.57 14799.35 26399.35 17098.11 30399.41 25094.90 35697.92 34998.99 33398.02 20699.85 22295.38 34099.44 28599.50 189
agg_prior99.35 26399.36 16799.39 26097.76 35899.85 222
FIs99.65 4599.58 5599.84 2399.84 5099.85 1999.66 5299.75 8899.86 2999.74 10899.79 8198.27 18599.85 22299.37 6799.93 8799.83 26
v119299.57 5799.57 5899.57 14799.77 9899.22 19599.04 20599.60 17199.18 15699.87 5699.72 11899.08 7899.85 22299.89 1499.98 3199.66 89
无先验98.01 31399.23 29795.83 34599.85 22295.79 33299.44 212
VDD-MVS99.20 15099.11 14399.44 17899.43 24598.98 22199.50 8798.32 34799.80 4799.56 17699.69 13896.99 26099.85 22298.99 12099.73 20899.50 189
VDDNet98.97 19898.82 20899.42 18499.71 12898.81 23899.62 6198.68 33099.81 4499.38 22699.80 7194.25 30099.85 22298.79 14199.32 30099.59 142
EI-MVSNet99.38 10299.44 8199.21 23999.58 17698.09 28999.26 14499.46 23999.62 8999.75 10099.67 15498.54 14899.85 22299.15 10499.92 9199.68 74
MVSTER98.47 25598.22 26199.24 23799.06 32498.35 27399.08 20099.46 23999.27 14199.75 10099.66 15888.61 35599.85 22299.14 11099.92 9199.52 182
ACMH98.42 699.59 5699.54 6499.72 8099.86 4699.62 10599.56 7999.79 7098.77 21299.80 7799.85 4999.64 1899.85 22298.70 15099.89 11099.70 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD_test199.36 10899.28 11599.61 13399.89 3499.89 1099.32 12399.74 9399.18 15699.69 12499.75 10498.41 16899.84 23697.85 21399.70 21999.10 288
test_vis1_rt99.45 8399.46 7699.41 19199.71 12898.63 25598.99 21899.96 1599.03 18099.95 2099.12 31698.75 11899.84 23699.82 2099.82 16499.77 45
FA-MVS(test-final)98.52 24898.32 25499.10 25599.48 22898.67 24799.77 1498.60 33697.35 31499.63 14399.80 7193.07 31499.84 23697.92 20399.30 30298.78 328
EIA-MVS99.12 17099.01 17599.45 17699.36 26199.62 10599.34 11899.79 7098.41 24598.84 30198.89 34698.75 11899.84 23698.15 18899.51 27698.89 318
Anonymous20240521198.75 22598.46 23999.63 12199.34 27199.66 9399.47 9597.65 35699.28 14099.56 17699.50 23693.15 31299.84 23698.62 15599.58 25999.40 223
Effi-MVS+99.06 17998.97 18799.34 21199.31 27998.98 22198.31 28799.91 2298.81 20698.79 30798.94 34299.14 7099.84 23698.79 14198.74 33899.20 266
gm-plane-assit97.59 37489.02 38193.47 36298.30 36799.84 23696.38 309
test_899.34 27199.31 17698.08 30799.40 25794.90 35697.87 35398.97 33898.02 20699.84 236
v114499.54 6599.53 6899.59 13899.79 8399.28 18199.10 19399.61 15999.20 15499.84 6299.73 11198.67 12999.84 23699.86 1799.98 3199.64 105
v899.68 3299.69 2999.65 10799.80 7399.40 15699.66 5299.76 8399.64 8699.93 2599.85 4998.66 13199.84 23699.88 1599.99 1399.71 61
v2v48299.50 6999.47 7299.58 14199.78 9099.25 18899.14 17999.58 18799.25 14599.81 7499.62 18298.24 18799.84 23699.83 1899.97 4399.64 105
VNet99.18 15799.06 16099.56 15099.24 29599.36 16799.33 12199.31 27899.67 7899.47 20199.57 21596.48 27099.84 23699.15 10499.30 30299.47 202
ADS-MVSNet97.72 29697.67 29797.86 32599.14 31094.65 35699.22 15898.86 32196.97 32798.25 33599.64 16590.90 33799.84 23696.51 30299.56 26199.08 295
casdiffmvs_mvgpermissive99.68 3299.68 3299.69 9099.81 6899.59 11599.29 13799.90 2599.71 6499.79 8299.73 11199.54 2999.84 23699.36 6999.96 5799.65 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LF4IMVS99.01 19298.92 19599.27 22999.71 12899.28 18198.59 26099.77 7898.32 26299.39 22599.41 25798.62 13599.84 23696.62 29899.84 14798.69 331
9.1498.64 22199.45 24198.81 24199.60 17197.52 30599.28 24799.56 21898.53 15299.83 25195.36 34199.64 241
SMA-MVScopyleft99.19 15399.00 17899.73 7499.46 23899.73 7099.13 18599.52 22097.40 31199.57 16999.64 16598.93 9599.83 25197.61 23999.79 18399.63 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EU-MVSNet99.39 10099.62 4298.72 29699.88 3996.44 33799.56 7999.85 4099.90 1499.90 3899.85 4998.09 20099.83 25199.58 3899.95 6899.90 12
YYNet198.95 20498.99 18398.84 28699.64 15897.14 32598.22 29399.32 27498.92 19399.59 16499.66 15897.40 24299.83 25198.27 17499.90 10199.55 157
MDA-MVSNet_test_wron98.95 20498.99 18398.85 28499.64 15897.16 32398.23 29299.33 27298.93 19199.56 17699.66 15897.39 24499.83 25198.29 17299.88 11999.55 157
baseline99.63 4699.62 4299.66 10299.80 7399.62 10599.44 10199.80 6499.71 6499.72 11399.69 13899.15 6799.83 25199.32 7799.94 7999.53 171
CDS-MVSNet99.22 14399.13 13699.50 16499.35 26399.11 20898.96 22399.54 20699.46 11599.61 15899.70 13296.31 27899.83 25199.34 7299.88 11999.55 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DeepC-MVS_fast98.47 599.23 13599.12 14099.56 15099.28 28899.22 19598.99 21899.40 25799.08 17499.58 16699.64 16598.90 10199.83 25197.44 24999.75 19699.63 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft97.35 1698.36 26597.99 27699.48 16999.32 27899.24 19298.50 27499.51 22495.19 35498.58 32398.96 34096.95 26199.83 25195.63 33499.25 30999.37 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs599.19 15399.11 14399.42 18499.76 10298.88 23498.55 26799.73 9798.82 20599.72 11399.62 18296.56 26799.82 26099.32 7799.95 6899.56 154
test_post199.14 17951.63 38689.54 35299.82 26096.86 282
原ACMM199.37 20499.47 23498.87 23699.27 28796.74 33498.26 33499.32 28297.93 21399.82 26095.96 32699.38 29399.43 218
V4299.56 6099.54 6499.63 12199.79 8399.46 13799.39 10799.59 17799.24 14799.86 5799.70 13298.55 14699.82 26099.79 2299.95 6899.60 135
CDPH-MVS98.56 24498.20 26399.61 13399.50 21899.46 13798.32 28699.41 25095.22 35299.21 25999.10 32098.34 17999.82 26095.09 34599.66 23799.56 154
test1299.54 15799.29 28599.33 17399.16 30798.43 33097.54 23799.82 26099.47 28299.48 198
casdiffmvspermissive99.63 4699.61 4699.67 9599.79 8399.59 11599.13 18599.85 4099.79 5099.76 9399.72 11899.33 4799.82 26099.21 9199.94 7999.59 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline197.73 29397.33 30398.96 26899.30 28397.73 30899.40 10598.42 34399.33 13599.46 20599.21 30691.18 33299.82 26098.35 16891.26 37599.32 242
HQP_MVS98.90 20998.68 22099.55 15399.58 17699.24 19298.80 24499.54 20698.94 18899.14 26999.25 29797.24 24999.82 26095.84 33099.78 18899.60 135
plane_prior599.54 20699.82 26095.84 33099.78 18899.60 135
tpmrst97.73 29398.07 27296.73 34898.71 35792.00 36899.10 19398.86 32198.52 23598.92 29199.54 22791.90 32499.82 26098.02 19399.03 32198.37 347
UnsupCasMVSNet_bld98.55 24598.27 25899.40 19399.56 19799.37 16397.97 32099.68 12497.49 30799.08 27699.35 27895.41 29199.82 26097.70 22998.19 35499.01 309
dp96.86 31597.07 30996.24 35498.68 35990.30 37999.19 16598.38 34697.35 31498.23 33799.59 20487.23 35999.82 26096.27 31398.73 34098.59 335
test_040299.22 14399.14 13499.45 17699.79 8399.43 14899.28 13999.68 12499.54 10299.40 22499.56 21899.07 8099.82 26096.01 32299.96 5799.11 286
PMMVS98.49 25398.29 25799.11 25398.96 33598.42 26797.54 34199.32 27497.53 30498.47 32998.15 37097.88 21699.82 26097.46 24899.24 31199.09 292
tt080599.63 4699.57 5899.81 3099.87 4399.88 1299.58 7498.70 32999.72 6299.91 3299.60 19999.43 3499.81 27599.81 2199.53 27299.73 56
LFMVS98.46 25698.19 26699.26 23299.24 29598.52 26199.62 6196.94 36399.87 2699.31 24199.58 20691.04 33499.81 27598.68 15399.42 28999.45 207
NCCC98.82 21998.57 23099.58 14199.21 29999.31 17698.61 25799.25 29398.65 22198.43 33099.26 29597.86 21799.81 27596.55 29999.27 30899.61 131
MIMVSNet98.43 25998.20 26399.11 25399.53 20598.38 27199.58 7498.61 33498.96 18699.33 23499.76 9990.92 33699.81 27597.38 25399.76 19499.15 277
IS-MVSNet99.03 18698.85 20399.55 15399.80 7399.25 18899.73 2699.15 30899.37 13099.61 15899.71 12594.73 29699.81 27597.70 22999.88 11999.58 147
AdaColmapbinary98.60 23898.35 25199.38 20199.12 31499.22 19598.67 25699.42 24997.84 29298.81 30499.27 29297.32 24799.81 27595.14 34399.53 27299.10 288
MCST-MVS99.02 18898.81 20999.65 10799.58 17699.49 13198.58 26199.07 31298.40 24799.04 28199.25 29798.51 15799.80 28197.31 25699.51 27699.65 97
CostFormer96.71 32096.79 31996.46 35298.90 33890.71 37799.41 10498.68 33094.69 36098.14 34399.34 28186.32 36899.80 28197.60 24098.07 35898.88 319
PHI-MVS99.11 17398.95 19099.59 13899.13 31299.59 11599.17 17199.65 14197.88 28899.25 25099.46 25098.97 9299.80 28197.26 26299.82 16499.37 230
Patchmatch-RL test98.60 23898.36 24999.33 21499.77 9899.07 21698.27 28999.87 3398.91 19499.74 10899.72 11890.57 34399.79 28498.55 15899.85 14299.11 286
test0.0.03 197.37 30696.91 31698.74 29597.72 37397.57 31297.60 33997.36 36298.00 27899.21 25998.02 37190.04 34999.79 28498.37 16695.89 37398.86 321
MSDG99.08 17798.98 18699.37 20499.60 16799.13 20697.54 34199.74 9398.84 20499.53 18899.55 22599.10 7399.79 28497.07 27399.86 13899.18 271
cl____98.54 24698.41 24498.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.85 30499.78 28797.97 20099.89 11099.17 273
DIV-MVS_self_test98.54 24698.42 24398.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.87 30399.78 28797.97 20099.89 11099.18 271
MVP-Stereo99.16 16299.08 15499.43 18299.48 22899.07 21699.08 20099.55 20098.63 22399.31 24199.68 14998.19 19499.78 28798.18 18499.58 25999.45 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
nrg03099.70 2699.66 3499.82 2799.76 10299.84 2499.61 6699.70 11599.93 1099.78 8699.68 14999.10 7399.78 28799.45 5599.96 5799.83 26
Vis-MVSNet (Re-imp)98.77 22398.58 22999.34 21199.78 9098.88 23499.61 6699.56 19499.11 17399.24 25399.56 21893.00 31699.78 28797.43 25099.89 11099.35 236
CNLPA98.57 24398.34 25299.28 22699.18 30699.10 21398.34 28499.41 25098.48 24098.52 32698.98 33697.05 25899.78 28795.59 33599.50 27898.96 311
ACMH+98.40 899.50 6999.43 8399.71 8599.86 4699.76 5899.32 12399.77 7899.53 10499.77 9199.76 9999.26 5699.78 28797.77 21899.88 11999.60 135
CLD-MVS98.76 22498.57 23099.33 21499.57 18698.97 22397.53 34399.55 20096.41 33699.27 24899.13 31299.07 8099.78 28796.73 29099.89 11099.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_BlendedMVS99.03 18699.01 17599.09 25699.54 19997.99 29498.58 26199.82 5397.62 29999.34 23299.71 12598.52 15599.77 29597.98 19899.97 4399.52 182
PVSNet_Blended98.70 23298.59 22699.02 26499.54 19997.99 29497.58 34099.82 5395.70 34799.34 23298.98 33698.52 15599.77 29597.98 19899.83 15599.30 247
eth_miper_zixun_eth98.68 23398.71 21698.60 30099.10 32096.84 33297.52 34599.54 20698.94 18899.58 16699.48 24396.25 28099.76 29798.01 19699.93 8799.21 262
OPM-MVS99.26 13099.13 13699.63 12199.70 13699.61 11198.58 26199.48 23398.50 23799.52 19099.63 17599.14 7099.76 29797.89 20699.77 19299.51 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs-eth3d99.48 7399.47 7299.51 16299.77 9899.41 15598.81 24199.66 13299.42 12799.75 10099.66 15899.20 6299.76 29798.98 12299.99 1399.36 233
pmmvs499.13 16899.06 16099.36 20899.57 18699.10 21398.01 31399.25 29398.78 21199.58 16699.44 25498.24 18799.76 29798.74 14799.93 8799.22 260
AllTest99.21 14899.07 15899.63 12199.78 9099.64 9999.12 18999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
TestCases99.63 12199.78 9099.64 9999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
CL-MVSNet_self_test98.71 23198.56 23399.15 24799.22 29798.66 25097.14 35899.51 22498.09 27599.54 18399.27 29296.87 26399.74 30398.43 16398.96 32499.03 304
MVS95.72 33894.63 34298.99 26598.56 36197.98 30099.30 13198.86 32172.71 37597.30 36199.08 32198.34 17999.74 30389.21 36798.33 34999.26 252
MG-MVS98.52 24898.39 24698.94 27099.15 30997.39 31898.18 29499.21 30398.89 19899.23 25499.63 17597.37 24599.74 30394.22 35399.61 25199.69 68
c3_l98.72 23098.71 21698.72 29699.12 31497.22 32297.68 33699.56 19498.90 19599.54 18399.48 24396.37 27799.73 30697.88 20799.88 11999.21 262
tpmvs97.39 30597.69 29596.52 35098.41 36391.76 36999.30 13198.94 32097.74 29497.85 35499.55 22592.40 32399.73 30696.25 31498.73 34098.06 359
thres600view796.60 32296.16 32497.93 32399.63 16096.09 34399.18 16697.57 35798.77 21298.72 31397.32 37887.04 36199.72 30888.57 36898.62 34397.98 360
EPMVS96.53 32396.32 32197.17 34398.18 37092.97 36599.39 10789.95 38098.21 26898.61 32099.59 20486.69 36799.72 30896.99 27599.23 31398.81 325
PVSNet97.47 1598.42 26098.44 24198.35 31099.46 23896.26 33996.70 36699.34 27197.68 29799.00 28399.13 31297.40 24299.72 30897.59 24199.68 22899.08 295
MAR-MVS98.24 27497.92 28699.19 24298.78 35399.65 9899.17 17199.14 30995.36 35098.04 34698.81 35197.47 23999.72 30895.47 33899.06 31898.21 354
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_ehance_all_eth98.59 24198.59 22698.59 30198.98 33497.07 32697.49 34699.52 22098.50 23799.52 19099.37 26996.41 27599.71 31297.86 21199.62 24499.00 310
Gipumacopyleft99.57 5799.59 5199.49 16599.98 399.71 7699.72 2999.84 4699.81 4499.94 2299.78 8898.91 9899.71 31298.41 16499.95 6899.05 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc99.20 24199.35 26398.53 25999.17 17199.46 23999.67 13299.80 7198.46 16299.70 31497.92 20399.70 21999.38 227
HQP4-MVS98.15 33999.70 31499.53 171
CNVR-MVS98.99 19798.80 21199.56 15099.25 29399.43 14898.54 27099.27 28798.58 22898.80 30699.43 25598.53 15299.70 31497.22 26799.59 25899.54 165
tpm296.35 32696.22 32396.73 34898.88 34391.75 37099.21 16098.51 33993.27 36397.89 35199.21 30684.83 37099.70 31496.04 32198.18 35598.75 330
HQP-MVS98.36 26598.02 27599.39 19799.31 27998.94 22697.98 31799.37 26597.45 30898.15 33998.83 34996.67 26599.70 31494.73 34799.67 23499.53 171
PatchMatch-RL98.68 23398.47 23899.30 22399.44 24299.28 18198.14 29999.54 20697.12 32599.11 27399.25 29797.80 22299.70 31496.51 30299.30 30298.93 315
miper_enhance_ethall98.03 28397.94 28498.32 31298.27 36796.43 33896.95 36299.41 25096.37 33899.43 21198.96 34094.74 29599.69 32097.71 22699.62 24498.83 324
test_yl98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
DCV-MVSNet98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
MS-PatchMatch99.00 19498.97 18799.09 25699.11 31998.19 28098.76 25099.33 27298.49 23999.44 20799.58 20698.21 19299.69 32098.20 18099.62 24499.39 225
v14899.40 9699.41 8699.39 19799.76 10298.94 22699.09 19799.59 17799.17 16199.81 7499.61 19198.41 16899.69 32099.32 7799.94 7999.53 171
test_prior99.46 17399.35 26399.22 19599.39 26099.69 32099.48 198
tpm cat196.78 31796.98 31296.16 35598.85 34490.59 37899.08 20099.32 27492.37 36497.73 35999.46 25091.15 33399.69 32096.07 32098.80 33198.21 354
PAPM_NR98.36 26598.04 27399.33 21499.48 22898.93 22998.79 24799.28 28697.54 30398.56 32598.57 35997.12 25699.69 32094.09 35598.90 32999.38 227
PAPM95.61 33994.71 34198.31 31499.12 31496.63 33496.66 36798.46 34290.77 36896.25 36898.68 35693.01 31599.69 32081.60 37697.86 36298.62 333
OMC-MVS98.90 20998.72 21599.44 17899.39 25399.42 15198.58 26199.64 14797.31 31699.44 20799.62 18298.59 14099.69 32096.17 31899.79 18399.22 260
E-PMN97.14 31197.43 30096.27 35398.79 35191.62 37195.54 37099.01 31899.44 11898.88 29599.12 31692.78 31799.68 33094.30 35299.03 32197.50 364
TSAR-MVS + GP.99.12 17099.04 16999.38 20199.34 27199.16 20398.15 29799.29 28398.18 27199.63 14399.62 18299.18 6499.68 33098.20 18099.74 20399.30 247
MVS-HIRNet97.86 28798.22 26196.76 34699.28 28891.53 37298.38 28392.60 37699.13 16999.31 24199.96 1297.18 25599.68 33098.34 16999.83 15599.07 300
PAPR97.56 30197.07 30999.04 26398.80 35098.11 28797.63 33799.25 29394.56 36198.02 34798.25 36997.43 24199.68 33090.90 36698.74 33899.33 239
ITE_SJBPF99.38 20199.63 16099.44 14499.73 9798.56 22999.33 23499.53 22998.88 10299.68 33096.01 32299.65 23999.02 308
thres100view90096.39 32596.03 32797.47 33499.63 16095.93 34499.18 16697.57 35798.75 21698.70 31597.31 37987.04 36199.67 33587.62 37198.51 34696.81 369
tfpn200view996.30 32895.89 32897.53 33299.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34696.81 369
131498.00 28597.90 28898.27 31698.90 33897.45 31699.30 13199.06 31494.98 35597.21 36499.12 31698.43 16599.67 33595.58 33698.56 34597.71 363
thres40096.40 32495.89 32897.92 32499.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34697.98 360
EMVS96.96 31497.28 30495.99 35698.76 35591.03 37495.26 37198.61 33499.34 13398.92 29198.88 34793.79 30599.66 33992.87 36099.05 31997.30 368
MVS_Test99.28 12499.31 10399.19 24299.35 26398.79 24099.36 11699.49 23299.17 16199.21 25999.67 15498.78 11399.66 33999.09 11399.66 23799.10 288
EPNet_dtu97.62 29897.79 29297.11 34496.67 37792.31 36798.51 27398.04 35099.24 14795.77 37199.47 24793.78 30699.66 33998.98 12299.62 24499.37 230
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet98.41 26198.14 26999.21 23999.21 29998.47 26298.60 25998.26 34898.35 25698.93 28899.31 28497.20 25499.66 33994.32 35199.10 31799.51 184
MDTV_nov1_ep1397.73 29498.70 35890.83 37599.15 17798.02 35198.51 23698.82 30399.61 19190.98 33599.66 33996.89 28198.92 327
MVS_111021_LR99.13 16899.03 17199.42 18499.58 17699.32 17597.91 32699.73 9798.68 21999.31 24199.48 24399.09 7599.66 33997.70 22999.77 19299.29 250
BH-untuned98.22 27698.09 27198.58 30299.38 25697.24 32198.55 26798.98 31997.81 29399.20 26498.76 35397.01 25999.65 34594.83 34698.33 34998.86 321
RPSCF99.18 15799.02 17299.64 11499.83 5499.85 1999.44 10199.82 5398.33 26199.50 19799.78 8897.90 21499.65 34596.78 28799.83 15599.44 212
USDC98.96 20198.93 19199.05 26299.54 19997.99 29497.07 36199.80 6498.21 26899.75 10099.77 9598.43 16599.64 34797.90 20599.88 11999.51 184
DeepPCF-MVS98.42 699.18 15799.02 17299.67 9599.22 29799.75 6297.25 35599.47 23698.72 21799.66 13699.70 13299.29 5099.63 34898.07 19299.81 17399.62 121
alignmvs98.28 27097.96 27999.25 23599.12 31498.93 22999.03 20898.42 34399.64 8698.72 31397.85 37390.86 33999.62 34998.88 13399.13 31499.19 269
DeepMVS_CXcopyleft97.98 32199.69 14096.95 32899.26 29075.51 37495.74 37298.28 36896.47 27199.62 34991.23 36597.89 36097.38 366
TinyColmap98.97 19898.93 19199.07 26099.46 23898.19 28097.75 33299.75 8898.79 20999.54 18399.70 13298.97 9299.62 34996.63 29799.83 15599.41 222
TAPA-MVS97.92 1398.03 28397.55 29999.46 17399.47 23499.44 14498.50 27499.62 15286.79 37099.07 27999.26 29598.26 18699.62 34997.28 25999.73 20899.31 246
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS98.28 27097.94 28499.32 21899.36 26199.11 20897.31 35398.78 32696.88 32998.84 30199.11 31997.77 22499.61 35394.03 35799.36 29699.23 258
thres20096.09 33195.68 33397.33 33999.48 22896.22 34098.53 27197.57 35798.06 27798.37 33296.73 38386.84 36599.61 35386.99 37498.57 34496.16 372
DP-MVS Recon98.50 25198.23 25999.31 22199.49 22399.46 13798.56 26699.63 14994.86 35898.85 30099.37 26997.81 22199.59 35596.08 31999.44 28598.88 319
PVSNet_095.53 1995.85 33695.31 33897.47 33498.78 35393.48 36395.72 36999.40 25796.18 34197.37 36097.73 37495.73 28799.58 35695.49 33781.40 37699.36 233
API-MVS98.38 26498.39 24698.35 31098.83 34699.26 18599.14 17999.18 30598.59 22798.66 31798.78 35298.61 13799.57 35794.14 35499.56 26196.21 371
KD-MVS_2432*160095.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
miper_refine_blended95.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
canonicalmvs99.02 18899.00 17899.09 25699.10 32098.70 24699.61 6699.66 13299.63 8898.64 31897.65 37599.04 8499.54 35898.79 14198.92 32799.04 303
MVS_111021_HR99.12 17099.02 17299.40 19399.50 21899.11 20897.92 32499.71 10998.76 21599.08 27699.47 24799.17 6599.54 35897.85 21399.76 19499.54 165
test_241102_ONE99.69 14099.82 3599.54 20699.12 17299.82 6799.49 24098.91 9899.52 362
gg-mvs-nofinetune95.87 33595.17 33997.97 32298.19 36996.95 32899.69 4189.23 38199.89 2096.24 36999.94 1681.19 37499.51 36393.99 35898.20 35297.44 365
TR-MVS97.44 30497.15 30898.32 31298.53 36297.46 31598.47 27697.91 35496.85 33098.21 33898.51 36396.42 27399.51 36392.16 36297.29 36597.98 360
BH-w/o97.20 30897.01 31197.76 32899.08 32395.69 34798.03 31298.52 33895.76 34697.96 34898.02 37195.62 28999.47 36592.82 36197.25 36698.12 358
PMVScopyleft92.94 2198.82 21998.81 20998.85 28499.84 5097.99 29499.20 16199.47 23699.71 6499.42 21399.82 6298.09 20099.47 36593.88 35999.85 14299.07 300
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CMPMVSbinary77.52 2398.50 25198.19 26699.41 19198.33 36699.56 12299.01 21199.59 17795.44 34999.57 16999.80 7195.64 28899.46 36796.47 30599.92 9199.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS97.99 28697.68 29698.93 27399.52 21098.04 29397.19 35799.05 31598.32 26298.81 30498.97 33889.89 35199.41 36898.33 17099.05 31999.34 238
cl2297.56 30197.28 30498.40 30898.37 36596.75 33397.24 35699.37 26597.31 31699.41 21999.22 30487.30 35899.37 36997.70 22999.62 24499.08 295
GG-mvs-BLEND97.36 33797.59 37496.87 33199.70 3488.49 38294.64 37597.26 38080.66 37599.12 37091.50 36496.50 37196.08 373
MSLP-MVS++99.05 18299.09 15298.91 27699.21 29998.36 27298.82 24099.47 23698.85 20198.90 29499.56 21898.78 11399.09 37198.57 15799.68 22899.26 252
FPMVS96.32 32795.50 33498.79 29299.60 16798.17 28398.46 28098.80 32597.16 32396.28 36799.63 17582.19 37399.09 37188.45 36998.89 33099.10 288
OPU-MVS99.29 22499.12 31499.44 14499.20 16199.40 26199.00 8698.84 37396.54 30099.60 25499.58 147
cascas96.99 31296.82 31897.48 33397.57 37695.64 34896.43 36899.56 19491.75 36597.13 36697.61 37695.58 29098.63 37496.68 29299.11 31698.18 357
MVEpermissive92.54 2296.66 32196.11 32598.31 31499.68 14897.55 31397.94 32295.60 36999.37 13090.68 37798.70 35596.56 26798.61 37586.94 37599.55 26598.77 329
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PC_three_145297.56 30099.68 12799.41 25799.09 7597.09 37696.66 29499.60 25499.62 121
tmp_tt95.75 33795.42 33596.76 34689.90 38294.42 35798.86 23197.87 35578.01 37399.30 24699.69 13897.70 22695.89 37799.29 8498.14 35699.95 6
SD-MVS99.01 19299.30 10898.15 31899.50 21899.40 15698.94 22699.61 15999.22 15399.75 10099.82 6299.54 2995.51 37897.48 24799.87 13099.54 165
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test12329.31 34433.05 34918.08 36025.93 38412.24 38497.53 34310.93 38511.78 37824.21 37950.08 38821.04 3838.60 37923.51 37732.43 37833.39 375
testmvs28.94 34533.33 34715.79 36126.03 3839.81 38596.77 36515.67 38411.55 37923.87 38050.74 38719.03 3848.53 38023.21 37833.07 37729.03 376
test_blank8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.88 34633.17 3480.00 3620.00 3850.00 3860.00 37399.62 1520.00 3800.00 38199.13 31299.82 70.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas16.61 34722.14 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 199.28 520.00 3810.00 3790.00 3790.00 377
sosnet-low-res8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
sosnet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
Regformer8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.26 35611.02 3590.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.16 3100.00 3850.00 3810.00 3790.00 3790.00 377
uanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.83 5499.89 1099.74 2399.71 10999.69 7299.63 143
test_one_060199.63 16099.76 5899.55 20099.23 14999.31 24199.61 19198.59 140
eth-test20.00 385
eth-test0.00 385
RE-MVS-def99.13 13699.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.57 14397.27 26099.61 25199.54 165
IU-MVS99.69 14099.77 5099.22 30097.50 30699.69 12497.75 22299.70 21999.77 45
save fliter99.53 20599.25 18898.29 28899.38 26499.07 176
test072699.69 14099.80 4299.24 15199.57 18999.16 16399.73 11299.65 16398.35 176
GSMVS99.14 282
test_part299.62 16499.67 9199.55 181
sam_mvs190.81 34099.14 282
sam_mvs90.52 344
MTGPAbinary99.53 215
MTMP99.09 19798.59 337
test9_res95.10 34499.44 28599.50 189
agg_prior294.58 35099.46 28499.50 189
test_prior499.19 20198.00 315
test_prior297.95 32197.87 28998.05 34599.05 32497.90 21495.99 32499.49 280
新几何298.04 311
旧先验199.49 22399.29 17999.26 29099.39 26597.67 23099.36 29699.46 206
原ACMM297.92 324
test22299.51 21299.08 21597.83 33099.29 28395.21 35398.68 31699.31 28497.28 24899.38 29399.43 218
segment_acmp98.37 174
testdata197.72 33397.86 291
plane_prior799.58 17699.38 160
plane_prior699.47 23499.26 18597.24 249
plane_prior499.25 297
plane_prior399.31 17698.36 25199.14 269
plane_prior298.80 24498.94 188
plane_prior199.51 212
plane_prior99.24 19298.42 28197.87 28999.71 217
n20.00 386
nn0.00 386
door-mid99.83 48
test1199.29 283
door99.77 78
HQP5-MVS98.94 226
HQP-NCC99.31 27997.98 31797.45 30898.15 339
ACMP_Plane99.31 27997.98 31797.45 30898.15 339
BP-MVS94.73 347
HQP3-MVS99.37 26599.67 234
HQP2-MVS96.67 265
NP-MVS99.40 25299.13 20698.83 349
MDTV_nov1_ep13_2view91.44 37399.14 17997.37 31399.21 25991.78 32896.75 28899.03 304
ACMMP++_ref99.94 79
ACMMP++99.79 183
Test By Simon98.41 168