| LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
| XVG-OURS-SEG-HR | | | 95.38 78 | 95.00 100 | 96.51 46 | 98.10 81 | 94.07 20 | 92.46 194 | 98.13 50 | 90.69 140 | 93.75 204 | 96.25 177 | 98.03 2 | 97.02 293 | 92.08 105 | 95.55 298 | 98.45 127 |
|
| pmmvs6 | | | 96.80 12 | 97.36 9 | 95.15 97 | 99.12 8 | 87.82 129 | 96.68 30 | 97.86 85 | 96.10 27 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 209 | 91.38 127 | 99.69 14 | 99.42 19 |
|
| UniMVSNet_ETH3D | | | 97.13 5 | 97.72 3 | 95.35 84 | 99.51 2 | 87.38 134 | 97.70 8 | 97.54 112 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 94 | 90.73 139 | 99.73 13 | 99.59 13 |
|
| ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 141 | 98.56 42 | 85.33 186 | 96.33 47 | 98.30 27 | 94.66 42 | 98.72 8 | 98.30 35 | 97.51 5 | 98.00 228 | 94.87 29 | 99.59 28 | 98.86 78 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| HPM-MVS_fast | | | 97.01 6 | 96.89 14 | 97.39 21 | 99.12 8 | 93.92 28 | 97.16 14 | 98.17 45 | 93.11 74 | 96.48 90 | 97.36 94 | 96.92 6 | 99.34 63 | 94.31 38 | 99.38 59 | 98.92 72 |
|
| ACMH+ | | 88.43 11 | 96.48 30 | 96.82 15 | 95.47 81 | 98.54 48 | 89.06 101 | 95.65 79 | 98.61 12 | 96.10 27 | 98.16 23 | 97.52 81 | 96.90 7 | 98.62 169 | 90.30 153 | 99.60 26 | 98.72 97 |
|
| HPM-MVS |  | | 96.81 11 | 96.62 22 | 97.36 23 | 98.89 20 | 93.53 38 | 97.51 10 | 98.44 16 | 92.35 88 | 95.95 116 | 96.41 160 | 96.71 8 | 99.42 33 | 93.99 45 | 99.36 60 | 99.13 41 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| mvs_tets | | | 96.83 8 | 96.71 18 | 97.17 27 | 98.83 25 | 92.51 48 | 96.58 33 | 97.61 107 | 87.57 207 | 98.80 7 | 98.90 9 | 96.50 9 | 99.59 13 | 96.15 13 | 99.47 43 | 99.40 21 |
|
| SED-MVS | | | 96.00 51 | 96.41 32 | 94.76 109 | 98.51 51 | 86.97 144 | 95.21 94 | 98.10 54 | 91.95 98 | 97.63 35 | 97.25 104 | 96.48 10 | 99.35 60 | 93.29 73 | 99.29 74 | 97.95 169 |
|
| test_241102_ONE | | | | | | 98.51 51 | 86.97 144 | | 98.10 54 | 91.85 104 | 97.63 35 | 97.03 121 | 96.48 10 | 98.95 114 | | | |
|
| LPG-MVS_test | | | 96.38 39 | 96.23 39 | 96.84 38 | 98.36 66 | 92.13 52 | 95.33 90 | 98.25 31 | 91.78 111 | 97.07 63 | 97.22 108 | 96.38 12 | 99.28 72 | 92.07 106 | 99.59 28 | 99.11 44 |
|
| LGP-MVS_train | | | | | 96.84 38 | 98.36 66 | 92.13 52 | | 98.25 31 | 91.78 111 | 97.07 63 | 97.22 108 | 96.38 12 | 99.28 72 | 92.07 106 | 99.59 28 | 99.11 44 |
|
| ACMM | | 88.83 9 | 96.30 42 | 96.07 50 | 96.97 34 | 98.39 62 | 92.95 44 | 94.74 111 | 98.03 69 | 90.82 137 | 97.15 59 | 96.85 133 | 96.25 14 | 99.00 106 | 93.10 81 | 99.33 66 | 98.95 65 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| wuyk23d | | | 87.83 283 | 90.79 215 | 78.96 372 | 90.46 359 | 88.63 110 | 92.72 181 | 90.67 327 | 91.65 119 | 98.68 11 | 97.64 71 | 96.06 15 | 77.53 394 | 59.84 389 | 99.41 56 | 70.73 392 |
|
| testf1 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 22 | 94.96 38 | 97.30 54 | 97.93 55 | 96.05 16 | 97.90 235 | 89.32 178 | 99.23 86 | 98.19 144 |
|
| APD_test2 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 22 | 94.96 38 | 97.30 54 | 97.93 55 | 96.05 16 | 97.90 235 | 89.32 178 | 99.23 86 | 98.19 144 |
|
| ACMP | | 88.15 13 | 95.71 62 | 95.43 79 | 96.54 45 | 98.17 77 | 91.73 60 | 94.24 132 | 98.08 57 | 89.46 163 | 96.61 87 | 96.47 156 | 95.85 18 | 99.12 91 | 90.45 145 | 99.56 36 | 98.77 91 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_fmvsmconf0.01_n | | | 95.90 54 | 96.09 47 | 95.31 89 | 97.30 137 | 89.21 97 | 94.24 132 | 98.76 10 | 86.25 223 | 97.56 39 | 98.66 18 | 95.73 19 | 98.44 190 | 97.35 2 | 98.99 113 | 98.27 138 |
|
| TransMVSNet (Re) | | | 95.27 87 | 96.04 52 | 92.97 179 | 98.37 65 | 81.92 231 | 95.07 101 | 96.76 176 | 93.97 55 | 97.77 31 | 98.57 23 | 95.72 20 | 97.90 235 | 88.89 195 | 99.23 86 | 99.08 48 |
|
| ZNCC-MVS | | | 96.42 35 | 96.20 41 | 97.07 30 | 98.80 30 | 92.79 46 | 96.08 61 | 98.16 48 | 91.74 115 | 95.34 149 | 96.36 168 | 95.68 21 | 99.44 29 | 94.41 36 | 99.28 79 | 98.97 62 |
|
| ACMMP_NAP | | | 96.21 44 | 96.12 46 | 96.49 48 | 98.90 19 | 91.42 63 | 94.57 119 | 98.03 69 | 90.42 148 | 96.37 93 | 97.35 97 | 95.68 21 | 99.25 75 | 94.44 35 | 99.34 64 | 98.80 86 |
|
| APD-MVS_3200maxsize | | | 96.82 9 | 96.65 20 | 97.32 25 | 97.95 95 | 93.82 33 | 96.31 50 | 98.25 31 | 95.51 35 | 96.99 70 | 97.05 120 | 95.63 23 | 99.39 49 | 93.31 72 | 98.88 128 | 98.75 92 |
|
| DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 111 | 98.51 51 | 86.69 152 | 95.20 96 | 97.00 155 | 91.85 104 | 97.40 52 | 97.35 97 | 95.58 24 | 99.34 63 | 93.44 66 | 99.31 69 | 98.13 150 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 98.51 51 | 86.69 152 | 95.34 89 | 98.18 41 | 91.85 104 | 97.63 35 | 97.37 91 | 95.58 24 | | | | |
|
| MP-MVS-pluss | | | 96.08 48 | 95.92 58 | 96.57 44 | 99.06 10 | 91.21 65 | 93.25 165 | 98.32 24 | 87.89 198 | 96.86 75 | 97.38 90 | 95.55 26 | 99.39 49 | 95.47 24 | 99.47 43 | 99.11 44 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 22 | 97.13 28 | 98.38 63 | 94.31 17 | 96.79 26 | 98.32 24 | 96.69 17 | 96.86 75 | 97.56 76 | 95.48 27 | 98.77 146 | 90.11 162 | 99.44 50 | 98.31 135 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| SD-MVS | | | 95.19 88 | 95.73 67 | 93.55 161 | 96.62 174 | 88.88 107 | 94.67 113 | 98.05 64 | 91.26 126 | 97.25 58 | 96.40 161 | 95.42 28 | 94.36 353 | 92.72 93 | 99.19 92 | 97.40 218 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| RE-MVS-def | | | | 96.66 19 | | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 51 | 95.66 33 | 97.00 68 | 97.03 121 | 95.40 29 | | 93.49 60 | 98.84 133 | 98.00 161 |
|
| test_241102_TWO | | | | | | | | | 98.10 54 | 91.95 98 | 97.54 40 | 97.25 104 | 95.37 30 | 99.35 60 | 93.29 73 | 99.25 83 | 98.49 124 |
|
| HFP-MVS | | | 96.39 38 | 96.17 44 | 97.04 31 | 98.51 51 | 93.37 39 | 96.30 54 | 97.98 75 | 92.35 88 | 95.63 133 | 96.47 156 | 95.37 30 | 99.27 74 | 93.78 50 | 99.14 99 | 98.48 125 |
|
| jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 31 | 92.49 49 | 96.44 41 | 97.42 121 | 86.96 216 | 98.71 10 | 98.72 17 | 95.36 32 | 99.56 17 | 95.92 14 | 99.45 47 | 99.32 27 |
|
| test_fmvsmconf0.1_n | | | 95.61 65 | 95.72 68 | 95.26 90 | 96.85 159 | 89.20 98 | 93.51 157 | 98.60 13 | 85.68 235 | 97.42 50 | 98.30 35 | 95.34 33 | 98.39 191 | 96.85 3 | 98.98 114 | 98.19 144 |
|
| TranMVSNet+NR-MVSNet | | | 96.07 49 | 96.26 38 | 95.50 80 | 98.26 71 | 87.69 131 | 93.75 150 | 97.86 85 | 95.96 32 | 97.48 46 | 97.14 114 | 95.33 34 | 99.44 29 | 90.79 137 | 99.76 10 | 99.38 22 |
|
| PMVS |  | 87.21 14 | 94.97 94 | 95.33 85 | 93.91 149 | 98.97 17 | 97.16 2 | 95.54 85 | 95.85 218 | 96.47 22 | 93.40 215 | 97.46 87 | 95.31 35 | 95.47 335 | 86.18 245 | 98.78 144 | 89.11 375 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| pm-mvs1 | | | 95.43 73 | 95.94 55 | 93.93 148 | 98.38 63 | 85.08 189 | 95.46 87 | 97.12 148 | 91.84 107 | 97.28 56 | 98.46 30 | 95.30 36 | 97.71 258 | 90.17 160 | 99.42 52 | 98.99 56 |
|
| PGM-MVS | | | 96.32 40 | 95.94 55 | 97.43 18 | 98.59 41 | 93.84 32 | 95.33 90 | 98.30 27 | 91.40 124 | 95.76 125 | 96.87 132 | 95.26 37 | 99.45 27 | 92.77 89 | 99.21 90 | 99.00 54 |
|
| PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 128 | 99.13 6 | 84.09 203 | 96.61 32 | 97.97 77 | 97.91 5 | 98.64 13 | 98.13 41 | 95.24 38 | 99.65 3 | 93.39 70 | 99.84 3 | 99.72 2 |
|
| test_fmvsmconf_n | | | 95.43 73 | 95.50 75 | 95.22 94 | 96.48 186 | 89.19 99 | 93.23 167 | 98.36 21 | 85.61 238 | 96.92 73 | 98.02 50 | 95.23 39 | 98.38 194 | 96.69 6 | 98.95 123 | 98.09 152 |
|
| GST-MVS | | | 96.24 43 | 95.99 54 | 97.00 33 | 98.65 34 | 92.71 47 | 95.69 78 | 98.01 72 | 92.08 96 | 95.74 128 | 96.28 174 | 95.22 40 | 99.42 33 | 93.17 79 | 99.06 103 | 98.88 77 |
|
| LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 28 | 93.86 31 | 99.07 2 | 98.98 6 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 40 | 98.61 170 | 96.85 3 | 99.77 9 | 99.31 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| DPE-MVS |  | | 95.89 55 | 95.88 59 | 95.92 64 | 97.93 96 | 89.83 85 | 93.46 159 | 98.30 27 | 92.37 86 | 97.75 32 | 96.95 126 | 95.14 42 | 99.51 20 | 91.74 116 | 99.28 79 | 98.41 129 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_one_0601 | | | | | | 98.26 71 | 87.14 140 | | 98.18 41 | 94.25 48 | 96.99 70 | 97.36 94 | 95.13 43 | | | | |
|
| nrg030 | | | 96.32 40 | 96.55 25 | 95.62 76 | 97.83 102 | 88.55 115 | 95.77 74 | 98.29 30 | 92.68 79 | 98.03 26 | 97.91 59 | 95.13 43 | 98.95 114 | 93.85 48 | 99.49 42 | 99.36 24 |
|
| APDe-MVS |  | | 96.46 31 | 96.64 21 | 95.93 62 | 97.68 116 | 89.38 95 | 96.90 22 | 98.41 19 | 92.52 83 | 97.43 48 | 97.92 58 | 95.11 45 | 99.50 21 | 94.45 34 | 99.30 71 | 98.92 72 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 18 | 98.61 38 | 93.88 29 | 96.95 21 | 98.18 41 | 92.26 91 | 96.33 95 | 96.84 135 | 95.10 46 | 99.40 46 | 93.47 63 | 99.33 66 | 99.02 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 85 | 94.69 11 | 96.13 59 | 98.07 60 | 95.17 37 | 96.82 77 | 96.73 144 | 95.09 47 | 99.43 32 | 92.99 86 | 98.71 151 | 98.50 122 |
|
| OPM-MVS | | | 95.61 65 | 95.45 77 | 96.08 54 | 98.49 58 | 91.00 68 | 92.65 186 | 97.33 131 | 90.05 153 | 96.77 80 | 96.85 133 | 95.04 48 | 98.56 177 | 92.77 89 | 99.06 103 | 98.70 101 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 113 | 99.13 6 | 84.68 192 | 96.51 35 | 97.94 83 | 98.14 3 | 98.67 12 | 98.32 34 | 95.04 48 | 99.69 2 | 93.27 75 | 99.82 7 | 99.62 10 |
|
| region2R | | | 96.41 36 | 96.09 47 | 97.38 22 | 98.62 36 | 93.81 35 | 96.32 49 | 97.96 78 | 92.26 91 | 95.28 153 | 96.57 153 | 95.02 50 | 99.41 39 | 93.63 54 | 99.11 101 | 98.94 66 |
|
| PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 118 | 99.16 4 | 84.50 193 | 96.54 34 | 98.05 64 | 98.06 4 | 98.64 13 | 98.25 37 | 95.01 51 | 99.65 3 | 92.95 87 | 99.83 5 | 99.68 4 |
|
| SteuartSystems-ACMMP | | | 96.40 37 | 96.30 36 | 96.71 40 | 98.63 35 | 91.96 55 | 95.70 76 | 98.01 72 | 93.34 70 | 96.64 85 | 96.57 153 | 94.99 52 | 99.36 58 | 93.48 62 | 99.34 64 | 98.82 82 |
| Skip Steuart: Steuart Systems R&D Blog. |
| canonicalmvs | | | 94.59 108 | 94.69 111 | 94.30 134 | 95.60 249 | 87.03 143 | 95.59 81 | 98.24 34 | 91.56 121 | 95.21 159 | 92.04 319 | 94.95 53 | 98.66 165 | 91.45 125 | 97.57 241 | 97.20 228 |
|
| ACMMPR | | | 96.46 31 | 96.14 45 | 97.41 20 | 98.60 39 | 93.82 33 | 96.30 54 | 97.96 78 | 92.35 88 | 95.57 135 | 96.61 151 | 94.93 54 | 99.41 39 | 93.78 50 | 99.15 98 | 99.00 54 |
|
| tt0805 | | | 95.42 76 | 95.93 57 | 93.86 152 | 98.75 32 | 88.47 117 | 97.68 9 | 94.29 268 | 96.48 21 | 95.38 145 | 93.63 281 | 94.89 55 | 97.94 234 | 95.38 27 | 96.92 267 | 95.17 300 |
|
| SR-MVS-dyc-post | | | 96.84 7 | 96.60 24 | 97.56 10 | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 51 | 95.66 33 | 97.00 68 | 97.03 121 | 94.85 56 | 99.42 33 | 93.49 60 | 98.84 133 | 98.00 161 |
|
| casdiffmvs_mvg |  | | 95.10 90 | 95.62 71 | 93.53 164 | 96.25 205 | 83.23 213 | 92.66 185 | 98.19 39 | 93.06 75 | 97.49 44 | 97.15 113 | 94.78 57 | 98.71 158 | 92.27 101 | 98.72 149 | 98.65 107 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CP-MVS | | | 96.44 34 | 96.08 49 | 97.54 11 | 98.29 68 | 94.62 14 | 96.80 25 | 98.08 57 | 92.67 81 | 95.08 165 | 96.39 165 | 94.77 58 | 99.42 33 | 93.17 79 | 99.44 50 | 98.58 119 |
|
| test_0728_THIRD | | | | | | | | | | 93.26 71 | 97.40 52 | 97.35 97 | 94.69 59 | 99.34 63 | 93.88 46 | 99.42 52 | 98.89 75 |
|
| 9.14 | | | | 94.81 104 | | 97.49 127 | | 94.11 139 | 98.37 20 | 87.56 208 | 95.38 145 | 96.03 187 | 94.66 60 | 99.08 94 | 90.70 140 | 98.97 119 | |
|
| GeoE | | | 94.55 110 | 94.68 113 | 94.15 137 | 97.23 139 | 85.11 188 | 94.14 138 | 97.34 130 | 88.71 181 | 95.26 154 | 95.50 212 | 94.65 61 | 99.12 91 | 90.94 134 | 98.40 179 | 98.23 140 |
|
| TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 8 | 98.61 3 | 98.81 8 | 97.41 10 | 97.28 56 | 98.46 30 | 94.62 62 | 98.84 129 | 94.64 32 | 99.53 38 | 98.99 56 |
|
| SDMVSNet | | | 94.43 114 | 95.02 98 | 92.69 192 | 97.93 96 | 82.88 221 | 91.92 219 | 95.99 214 | 93.65 65 | 95.51 137 | 98.63 20 | 94.60 63 | 96.48 310 | 87.57 219 | 99.35 61 | 98.70 101 |
|
| XVS | | | 96.49 29 | 96.18 42 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 80 | 94.58 43 | 94.38 187 | 96.49 155 | 94.56 64 | 99.39 49 | 93.57 56 | 99.05 106 | 98.93 68 |
|
| X-MVStestdata | | | 90.70 212 | 88.45 259 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 80 | 94.58 43 | 94.38 187 | 26.89 395 | 94.56 64 | 99.39 49 | 93.57 56 | 99.05 106 | 98.93 68 |
|
| mPP-MVS | | | 96.46 31 | 96.05 51 | 97.69 4 | 98.62 36 | 94.65 13 | 96.45 39 | 97.74 98 | 92.59 82 | 95.47 140 | 96.68 147 | 94.50 66 | 99.42 33 | 93.10 81 | 99.26 82 | 98.99 56 |
|
| sd_testset | | | 93.94 135 | 94.39 119 | 92.61 198 | 97.93 96 | 83.24 212 | 93.17 169 | 95.04 248 | 93.65 65 | 95.51 137 | 98.63 20 | 94.49 67 | 95.89 327 | 81.72 292 | 99.35 61 | 98.70 101 |
|
| DeepC-MVS | | 91.39 4 | 95.43 73 | 95.33 85 | 95.71 74 | 97.67 117 | 90.17 80 | 93.86 147 | 98.02 71 | 87.35 209 | 96.22 105 | 97.99 53 | 94.48 68 | 99.05 99 | 92.73 92 | 99.68 18 | 97.93 171 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SMA-MVS |  | | 95.77 59 | 95.54 74 | 96.47 49 | 98.27 70 | 91.19 66 | 95.09 99 | 97.79 95 | 86.48 219 | 97.42 50 | 97.51 84 | 94.47 69 | 99.29 70 | 93.55 58 | 99.29 74 | 98.93 68 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| SF-MVS | | | 95.88 56 | 95.88 59 | 95.87 68 | 98.12 79 | 89.65 87 | 95.58 83 | 98.56 14 | 91.84 107 | 96.36 94 | 96.68 147 | 94.37 70 | 99.32 69 | 92.41 99 | 99.05 106 | 98.64 112 |
|
| MP-MVS |  | | 96.14 46 | 95.68 69 | 97.51 13 | 98.81 28 | 94.06 21 | 96.10 60 | 97.78 96 | 92.73 78 | 93.48 212 | 96.72 145 | 94.23 71 | 99.42 33 | 91.99 108 | 99.29 74 | 99.05 51 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 6 | 98.00 91 | 94.03 25 | 96.97 20 | 97.61 107 | 87.68 205 | 98.45 18 | 98.77 15 | 94.20 72 | 99.50 21 | 96.70 5 | 99.40 57 | 99.53 15 |
|
| test_0402 | | | 95.73 61 | 96.22 40 | 94.26 135 | 98.19 76 | 85.77 178 | 93.24 166 | 97.24 139 | 96.88 16 | 97.69 33 | 97.77 65 | 94.12 73 | 99.13 88 | 91.54 124 | 99.29 74 | 97.88 177 |
|
| test_fmvsmvis_n_1920 | | | 95.08 91 | 95.40 81 | 94.13 139 | 96.66 169 | 87.75 130 | 93.44 161 | 98.49 15 | 85.57 240 | 98.27 20 | 97.11 116 | 94.11 74 | 97.75 255 | 96.26 11 | 98.72 149 | 96.89 239 |
|
| Effi-MVS+ | | | 92.79 167 | 92.74 167 | 92.94 183 | 95.10 262 | 83.30 211 | 94.00 142 | 97.53 114 | 91.36 125 | 89.35 313 | 90.65 341 | 94.01 75 | 98.66 165 | 87.40 223 | 95.30 307 | 96.88 241 |
|
| EC-MVSNet | | | 95.44 72 | 95.62 71 | 94.89 103 | 96.93 154 | 87.69 131 | 96.48 38 | 99.14 4 | 93.93 56 | 92.77 241 | 94.52 253 | 93.95 76 | 99.49 24 | 93.62 55 | 99.22 89 | 97.51 209 |
|
| OMC-MVS | | | 94.22 125 | 93.69 142 | 95.81 69 | 97.25 138 | 91.27 64 | 92.27 205 | 97.40 122 | 87.10 215 | 94.56 182 | 95.42 216 | 93.74 77 | 98.11 218 | 86.62 235 | 98.85 132 | 98.06 153 |
|
| LCM-MVSNet-Re | | | 94.20 126 | 94.58 116 | 93.04 176 | 95.91 230 | 83.13 217 | 93.79 149 | 99.19 3 | 92.00 97 | 98.84 5 | 98.04 48 | 93.64 78 | 99.02 104 | 81.28 296 | 98.54 169 | 96.96 236 |
|
| CS-MVS | | | 95.77 59 | 95.58 73 | 96.37 50 | 96.84 160 | 91.72 61 | 96.73 29 | 99.06 5 | 94.23 49 | 92.48 250 | 94.79 243 | 93.56 79 | 99.49 24 | 93.47 63 | 99.05 106 | 97.89 176 |
|
| MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 18 | 94.05 23 | 95.88 70 | 97.62 105 | 94.46 47 | 96.29 99 | 96.94 127 | 93.56 79 | 99.37 57 | 94.29 39 | 99.42 52 | 98.99 56 |
|
| CS-MVS-test | | | 95.32 81 | 95.10 96 | 95.96 58 | 96.86 158 | 90.75 74 | 96.33 47 | 99.20 2 | 93.99 53 | 91.03 283 | 93.73 279 | 93.52 81 | 99.55 18 | 91.81 114 | 99.45 47 | 97.58 203 |
|
| UA-Net | | | 97.35 4 | 97.24 11 | 97.69 4 | 98.22 74 | 93.87 30 | 98.42 6 | 98.19 39 | 96.95 14 | 95.46 142 | 99.23 4 | 93.45 82 | 99.57 14 | 95.34 28 | 99.89 2 | 99.63 9 |
|
| MVS_111021_HR | | | 93.63 142 | 93.42 153 | 94.26 135 | 96.65 170 | 86.96 146 | 89.30 298 | 96.23 202 | 88.36 190 | 93.57 210 | 94.60 250 | 93.45 82 | 97.77 252 | 90.23 158 | 98.38 183 | 98.03 159 |
|
| cdsmvs_eth3d_5k | | | 23.35 363 | 31.13 366 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 95.58 230 | 0.00 400 | 0.00 401 | 91.15 330 | 93.43 84 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| APD-MVS |  | | 95.00 93 | 94.69 111 | 95.93 62 | 97.38 132 | 90.88 71 | 94.59 116 | 97.81 91 | 89.22 170 | 95.46 142 | 96.17 182 | 93.42 85 | 99.34 63 | 89.30 180 | 98.87 131 | 97.56 206 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ANet_high | | | 94.83 100 | 96.28 37 | 90.47 271 | 96.65 170 | 73.16 348 | 94.33 128 | 98.74 11 | 96.39 24 | 98.09 25 | 98.93 8 | 93.37 86 | 98.70 159 | 90.38 148 | 99.68 18 | 99.53 15 |
|
| APD_test1 | | | 95.91 53 | 95.42 80 | 97.36 23 | 98.82 26 | 96.62 6 | 95.64 80 | 97.64 103 | 93.38 69 | 95.89 121 | 97.23 106 | 93.35 87 | 97.66 261 | 88.20 204 | 98.66 159 | 97.79 188 |
|
| casdiffmvs |  | | 94.32 119 | 94.80 105 | 92.85 187 | 96.05 219 | 81.44 239 | 92.35 200 | 98.05 64 | 91.53 122 | 95.75 127 | 96.80 136 | 93.35 87 | 98.49 183 | 91.01 133 | 98.32 191 | 98.64 112 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_djsdf | | | 96.62 23 | 96.49 26 | 97.01 32 | 98.55 45 | 91.77 59 | 97.15 15 | 97.37 123 | 88.98 174 | 98.26 22 | 98.86 10 | 93.35 87 | 99.60 9 | 96.41 9 | 99.45 47 | 99.66 6 |
|
| VPA-MVSNet | | | 95.14 89 | 95.67 70 | 93.58 160 | 97.76 106 | 83.15 216 | 94.58 118 | 97.58 109 | 93.39 68 | 97.05 66 | 98.04 48 | 93.25 90 | 98.51 182 | 89.75 172 | 99.59 28 | 99.08 48 |
|
| Anonymous20240529 | | | 95.50 70 | 95.83 63 | 94.50 126 | 97.33 136 | 85.93 173 | 95.19 98 | 96.77 175 | 96.64 19 | 97.61 38 | 98.05 46 | 93.23 91 | 98.79 140 | 88.60 201 | 99.04 111 | 98.78 88 |
|
| baseline | | | 94.26 122 | 94.80 105 | 92.64 194 | 96.08 217 | 80.99 245 | 93.69 153 | 98.04 68 | 90.80 138 | 94.89 172 | 96.32 170 | 93.19 92 | 98.48 187 | 91.68 119 | 98.51 173 | 98.43 128 |
|
| DeepPCF-MVS | | 90.46 6 | 94.20 126 | 93.56 149 | 96.14 52 | 95.96 226 | 92.96 43 | 89.48 291 | 97.46 118 | 85.14 247 | 96.23 104 | 95.42 216 | 93.19 92 | 98.08 220 | 90.37 149 | 98.76 146 | 97.38 221 |
|
| Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 100 | 97.46 130 | 86.35 164 | 97.11 19 | 98.24 34 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 94 | 99.15 84 | 93.18 78 | 99.74 12 | 99.50 17 |
|
| DVP-MVS++ | | | 95.93 52 | 96.34 34 | 94.70 112 | 96.54 179 | 86.66 154 | 98.45 4 | 98.22 36 | 93.26 71 | 97.54 40 | 97.36 94 | 93.12 95 | 99.38 55 | 93.88 46 | 98.68 155 | 98.04 156 |
|
| OPU-MVS | | | | | 95.15 97 | 96.84 160 | 89.43 92 | 95.21 94 | | | | 95.66 205 | 93.12 95 | 98.06 221 | 86.28 244 | 98.61 161 | 97.95 169 |
|
| LS3D | | | 96.11 47 | 95.83 63 | 96.95 36 | 94.75 274 | 94.20 19 | 97.34 13 | 97.98 75 | 97.31 11 | 95.32 150 | 96.77 137 | 93.08 97 | 99.20 80 | 91.79 115 | 98.16 206 | 97.44 214 |
|
| DP-MVS | | | 95.62 64 | 95.84 62 | 94.97 101 | 97.16 144 | 88.62 111 | 94.54 123 | 97.64 103 | 96.94 15 | 96.58 88 | 97.32 101 | 93.07 98 | 98.72 152 | 90.45 145 | 98.84 133 | 97.57 204 |
|
| EG-PatchMatch MVS | | | 94.54 111 | 94.67 114 | 94.14 138 | 97.87 101 | 86.50 156 | 92.00 214 | 96.74 177 | 88.16 194 | 96.93 72 | 97.61 73 | 93.04 99 | 97.90 235 | 91.60 121 | 98.12 209 | 98.03 159 |
|
| Fast-Effi-MVS+ | | | 91.28 205 | 90.86 212 | 92.53 202 | 95.45 253 | 82.53 224 | 89.25 301 | 96.52 190 | 85.00 251 | 89.91 303 | 88.55 362 | 92.94 100 | 98.84 129 | 84.72 265 | 95.44 302 | 96.22 266 |
|
| PC_three_1452 | | | | | | | | | | 75.31 337 | 95.87 122 | 95.75 202 | 92.93 101 | 96.34 319 | 87.18 226 | 98.68 155 | 98.04 156 |
|
| v7n | | | 96.82 9 | 97.31 10 | 95.33 86 | 98.54 48 | 86.81 148 | 96.83 23 | 98.07 60 | 96.59 20 | 98.46 17 | 98.43 32 | 92.91 102 | 99.52 19 | 96.25 12 | 99.76 10 | 99.65 8 |
|
| XVG-ACMP-BASELINE | | | 95.68 63 | 95.34 84 | 96.69 41 | 98.40 61 | 93.04 41 | 94.54 123 | 98.05 64 | 90.45 147 | 96.31 97 | 96.76 139 | 92.91 102 | 98.72 152 | 91.19 128 | 99.42 52 | 98.32 133 |
|
| testgi | | | 90.38 224 | 91.34 203 | 87.50 329 | 97.49 127 | 71.54 358 | 89.43 293 | 95.16 245 | 88.38 189 | 94.54 183 | 94.68 247 | 92.88 104 | 93.09 363 | 71.60 367 | 97.85 228 | 97.88 177 |
|
| MVS_111021_LR | | | 93.66 141 | 93.28 156 | 94.80 107 | 96.25 205 | 90.95 69 | 90.21 268 | 95.43 237 | 87.91 196 | 93.74 206 | 94.40 255 | 92.88 104 | 96.38 315 | 90.39 147 | 98.28 193 | 97.07 230 |
|
| CNVR-MVS | | | 94.58 109 | 94.29 124 | 95.46 82 | 96.94 152 | 89.35 96 | 91.81 227 | 96.80 172 | 89.66 160 | 93.90 202 | 95.44 215 | 92.80 106 | 98.72 152 | 92.74 91 | 98.52 171 | 98.32 133 |
|
| ZD-MVS | | | | | | 97.23 139 | 90.32 78 | | 97.54 112 | 84.40 260 | 94.78 176 | 95.79 197 | 92.76 107 | 99.39 49 | 88.72 199 | 98.40 179 | |
|
| XXY-MVS | | | 92.58 174 | 93.16 159 | 90.84 262 | 97.75 107 | 79.84 263 | 91.87 223 | 96.22 204 | 85.94 229 | 95.53 136 | 97.68 67 | 92.69 108 | 94.48 349 | 83.21 275 | 97.51 242 | 98.21 142 |
|
| CDPH-MVS | | | 92.67 172 | 91.83 191 | 95.18 96 | 96.94 152 | 88.46 118 | 90.70 252 | 97.07 151 | 77.38 323 | 92.34 260 | 95.08 231 | 92.67 109 | 98.88 121 | 85.74 248 | 98.57 166 | 98.20 143 |
|
| Fast-Effi-MVS+-dtu | | | 92.77 169 | 92.16 180 | 94.58 124 | 94.66 280 | 88.25 120 | 92.05 211 | 96.65 181 | 89.62 161 | 90.08 299 | 91.23 329 | 92.56 110 | 98.60 172 | 86.30 243 | 96.27 284 | 96.90 238 |
|
| fmvsm_s_conf0.1_n_a | | | 94.26 122 | 94.37 121 | 93.95 147 | 97.36 134 | 85.72 180 | 94.15 136 | 95.44 235 | 83.25 270 | 95.51 137 | 98.05 46 | 92.54 111 | 97.19 286 | 95.55 20 | 97.46 246 | 98.94 66 |
|
| AllTest | | | 94.88 98 | 94.51 117 | 96.00 56 | 98.02 89 | 92.17 50 | 95.26 93 | 98.43 17 | 90.48 145 | 95.04 166 | 96.74 142 | 92.54 111 | 97.86 243 | 85.11 258 | 98.98 114 | 97.98 165 |
|
| TestCases | | | | | 96.00 56 | 98.02 89 | 92.17 50 | | 98.43 17 | 90.48 145 | 95.04 166 | 96.74 142 | 92.54 111 | 97.86 243 | 85.11 258 | 98.98 114 | 97.98 165 |
|
| TinyColmap | | | 92.00 190 | 92.76 166 | 89.71 291 | 95.62 248 | 77.02 310 | 90.72 251 | 96.17 207 | 87.70 204 | 95.26 154 | 96.29 172 | 92.54 111 | 96.45 312 | 81.77 290 | 98.77 145 | 95.66 291 |
|
| EGC-MVSNET | | | 80.97 348 | 75.73 361 | 96.67 42 | 98.85 24 | 94.55 15 | 96.83 23 | 96.60 183 | 2.44 397 | 5.32 398 | 98.25 37 | 92.24 115 | 98.02 226 | 91.85 113 | 99.21 90 | 97.45 212 |
|
| fmvsm_s_conf0.5_n_a | | | 94.02 132 | 94.08 133 | 93.84 153 | 96.72 166 | 85.73 179 | 93.65 155 | 95.23 244 | 83.30 268 | 95.13 160 | 97.56 76 | 92.22 116 | 97.17 287 | 95.51 22 | 97.41 248 | 98.64 112 |
|
| ETV-MVS | | | 92.99 160 | 92.74 167 | 93.72 156 | 95.86 232 | 86.30 165 | 92.33 201 | 97.84 88 | 91.70 118 | 92.81 238 | 86.17 376 | 92.22 116 | 99.19 81 | 88.03 212 | 97.73 232 | 95.66 291 |
|
| CLD-MVS | | | 91.82 191 | 91.41 201 | 93.04 176 | 96.37 189 | 83.65 208 | 86.82 341 | 97.29 135 | 84.65 257 | 92.27 262 | 89.67 350 | 92.20 118 | 97.85 245 | 83.95 270 | 99.47 43 | 97.62 201 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| segment_acmp | | | | | | | | | | | | | 92.14 119 | | | | |
|
| Vis-MVSNet |  | | 95.50 70 | 95.48 76 | 95.56 79 | 98.11 80 | 89.40 94 | 95.35 88 | 98.22 36 | 92.36 87 | 94.11 190 | 98.07 45 | 92.02 120 | 99.44 29 | 93.38 71 | 97.67 237 | 97.85 181 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| ITE_SJBPF | | | | | 95.95 59 | 97.34 135 | 93.36 40 | | 96.55 189 | 91.93 100 | 94.82 174 | 95.39 220 | 91.99 121 | 97.08 291 | 85.53 251 | 97.96 222 | 97.41 215 |
|
| CP-MVSNet | | | 96.19 45 | 96.80 16 | 94.38 133 | 98.99 16 | 83.82 206 | 96.31 50 | 97.53 114 | 97.60 7 | 98.34 19 | 97.52 81 | 91.98 122 | 99.63 6 | 93.08 83 | 99.81 8 | 99.70 3 |
|
| CSCG | | | 94.69 105 | 94.75 107 | 94.52 125 | 97.55 124 | 87.87 127 | 95.01 104 | 97.57 110 | 92.68 79 | 96.20 107 | 93.44 287 | 91.92 123 | 98.78 143 | 89.11 189 | 99.24 85 | 96.92 237 |
|
| fmvsm_s_conf0.1_n | | | 94.19 128 | 94.41 118 | 93.52 166 | 97.22 141 | 84.37 194 | 93.73 151 | 95.26 243 | 84.45 259 | 95.76 125 | 98.00 51 | 91.85 124 | 97.21 283 | 95.62 18 | 97.82 229 | 98.98 60 |
|
| TSAR-MVS + MP. | | | 94.96 95 | 94.75 107 | 95.57 78 | 98.86 22 | 88.69 108 | 96.37 44 | 96.81 171 | 85.23 244 | 94.75 177 | 97.12 115 | 91.85 124 | 99.40 46 | 93.45 65 | 98.33 189 | 98.62 116 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| fmvsm_s_conf0.5_n | | | 94.00 133 | 94.20 129 | 93.42 169 | 96.69 167 | 84.37 194 | 93.38 163 | 95.13 246 | 84.50 258 | 95.40 144 | 97.55 80 | 91.77 126 | 97.20 284 | 95.59 19 | 97.79 230 | 98.69 104 |
|
| Gipuma |  | | 95.31 84 | 95.80 65 | 93.81 155 | 97.99 94 | 90.91 70 | 96.42 42 | 97.95 80 | 96.69 17 | 91.78 270 | 98.85 12 | 91.77 126 | 95.49 334 | 91.72 117 | 99.08 102 | 95.02 306 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| WR-MVS_H | | | 96.60 25 | 97.05 13 | 95.24 92 | 99.02 12 | 86.44 160 | 96.78 27 | 98.08 57 | 97.42 9 | 98.48 16 | 97.86 62 | 91.76 128 | 99.63 6 | 94.23 40 | 99.84 3 | 99.66 6 |
|
| AdaColmap |  | | 91.63 196 | 91.36 202 | 92.47 204 | 95.56 250 | 86.36 163 | 92.24 208 | 96.27 199 | 88.88 178 | 89.90 304 | 92.69 305 | 91.65 129 | 98.32 200 | 77.38 334 | 97.64 238 | 92.72 357 |
|
| PHI-MVS | | | 94.34 118 | 93.80 137 | 95.95 59 | 95.65 245 | 91.67 62 | 94.82 109 | 97.86 85 | 87.86 199 | 93.04 231 | 94.16 264 | 91.58 130 | 98.78 143 | 90.27 155 | 98.96 121 | 97.41 215 |
|
| xiu_mvs_v1_base_debu | | | 91.47 200 | 91.52 196 | 91.33 241 | 95.69 242 | 81.56 235 | 89.92 278 | 96.05 211 | 83.22 271 | 91.26 277 | 90.74 336 | 91.55 131 | 98.82 131 | 89.29 181 | 95.91 290 | 93.62 344 |
|
| xiu_mvs_v1_base | | | 91.47 200 | 91.52 196 | 91.33 241 | 95.69 242 | 81.56 235 | 89.92 278 | 96.05 211 | 83.22 271 | 91.26 277 | 90.74 336 | 91.55 131 | 98.82 131 | 89.29 181 | 95.91 290 | 93.62 344 |
|
| xiu_mvs_v1_base_debi | | | 91.47 200 | 91.52 196 | 91.33 241 | 95.69 242 | 81.56 235 | 89.92 278 | 96.05 211 | 83.22 271 | 91.26 277 | 90.74 336 | 91.55 131 | 98.82 131 | 89.29 181 | 95.91 290 | 93.62 344 |
|
| tfpnnormal | | | 94.27 120 | 94.87 103 | 92.48 203 | 97.71 112 | 80.88 247 | 94.55 122 | 95.41 238 | 93.70 61 | 96.67 84 | 97.72 66 | 91.40 134 | 98.18 213 | 87.45 221 | 99.18 94 | 98.36 131 |
|
| 3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 66 | 96.13 53 | 96.81 163 | 90.79 73 | 96.30 54 | 97.82 90 | 96.13 26 | 94.74 178 | 97.23 106 | 91.33 135 | 99.16 83 | 93.25 76 | 98.30 192 | 98.46 126 |
|
| TEST9 | | | | | | 96.45 187 | 89.46 90 | 90.60 255 | 96.92 162 | 79.09 313 | 90.49 290 | 94.39 256 | 91.31 136 | 98.88 121 | | | |
|
| DeepC-MVS_fast | | 89.96 7 | 93.73 140 | 93.44 152 | 94.60 121 | 96.14 213 | 87.90 126 | 93.36 164 | 97.14 145 | 85.53 241 | 93.90 202 | 95.45 214 | 91.30 137 | 98.59 174 | 89.51 175 | 98.62 160 | 97.31 224 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EI-MVSNet-Vis-set | | | 94.36 116 | 94.28 125 | 94.61 118 | 92.55 320 | 85.98 172 | 92.44 195 | 94.69 260 | 93.70 61 | 96.12 111 | 95.81 196 | 91.24 138 | 98.86 126 | 93.76 53 | 98.22 201 | 98.98 60 |
|
| MCST-MVS | | | 92.91 162 | 92.51 174 | 94.10 140 | 97.52 125 | 85.72 180 | 91.36 237 | 97.13 147 | 80.33 299 | 92.91 236 | 94.24 260 | 91.23 139 | 98.72 152 | 89.99 166 | 97.93 224 | 97.86 179 |
|
| RPSCF | | | 95.58 68 | 94.89 102 | 97.62 7 | 97.58 122 | 96.30 7 | 95.97 66 | 97.53 114 | 92.42 84 | 93.41 213 | 97.78 63 | 91.21 140 | 97.77 252 | 91.06 130 | 97.06 259 | 98.80 86 |
|
| train_agg | | | 92.71 171 | 91.83 191 | 95.35 84 | 96.45 187 | 89.46 90 | 90.60 255 | 96.92 162 | 79.37 308 | 90.49 290 | 94.39 256 | 91.20 141 | 98.88 121 | 88.66 200 | 98.43 178 | 97.72 195 |
|
| test_8 | | | | | | 96.37 189 | 89.14 100 | 90.51 258 | 96.89 165 | 79.37 308 | 90.42 292 | 94.36 258 | 91.20 141 | 98.82 131 | | | |
|
| EI-MVSNet-UG-set | | | 94.35 117 | 94.27 127 | 94.59 122 | 92.46 321 | 85.87 175 | 92.42 197 | 94.69 260 | 93.67 64 | 96.13 110 | 95.84 195 | 91.20 141 | 98.86 126 | 93.78 50 | 98.23 199 | 99.03 52 |
|
| EIA-MVS | | | 92.35 182 | 92.03 184 | 93.30 172 | 95.81 236 | 83.97 204 | 92.80 179 | 98.17 45 | 87.71 203 | 89.79 307 | 87.56 366 | 91.17 144 | 99.18 82 | 87.97 213 | 97.27 252 | 96.77 245 |
|
| dcpmvs_2 | | | 93.96 134 | 95.01 99 | 90.82 263 | 97.60 120 | 74.04 343 | 93.68 154 | 98.85 7 | 89.80 158 | 97.82 29 | 97.01 124 | 91.14 145 | 99.21 78 | 90.56 143 | 98.59 164 | 99.19 36 |
|
| xiu_mvs_v2_base | | | 89.00 261 | 89.19 244 | 88.46 316 | 94.86 268 | 74.63 335 | 86.97 335 | 95.60 224 | 80.88 295 | 87.83 337 | 88.62 361 | 91.04 146 | 98.81 136 | 82.51 283 | 94.38 327 | 91.93 363 |
|
| HPM-MVS++ |  | | 95.02 92 | 94.39 119 | 96.91 37 | 97.88 99 | 93.58 37 | 94.09 140 | 96.99 157 | 91.05 132 | 92.40 255 | 95.22 225 | 91.03 147 | 99.25 75 | 92.11 103 | 98.69 154 | 97.90 174 |
|
| test_fmvsm_n_1920 | | | 94.72 103 | 94.74 109 | 94.67 113 | 96.30 200 | 88.62 111 | 93.19 168 | 98.07 60 | 85.63 237 | 97.08 62 | 97.35 97 | 90.86 148 | 97.66 261 | 95.70 16 | 98.48 176 | 97.74 194 |
|
| TAPA-MVS | | 88.58 10 | 92.49 177 | 91.75 193 | 94.73 110 | 96.50 183 | 89.69 86 | 92.91 176 | 97.68 101 | 78.02 321 | 92.79 240 | 94.10 265 | 90.85 149 | 97.96 232 | 84.76 264 | 98.16 206 | 96.54 250 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| pcd_1.5k_mvsjas | | | 7.56 366 | 10.09 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 90.77 150 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| PS-MVSNAJss | | | 96.01 50 | 96.04 52 | 95.89 67 | 98.82 26 | 88.51 116 | 95.57 84 | 97.88 84 | 88.72 180 | 98.81 6 | 98.86 10 | 90.77 150 | 99.60 9 | 95.43 26 | 99.53 38 | 99.57 14 |
|
| PS-MVSNAJ | | | 88.86 266 | 88.99 250 | 88.48 315 | 94.88 266 | 74.71 333 | 86.69 344 | 95.60 224 | 80.88 295 | 87.83 337 | 87.37 369 | 90.77 150 | 98.82 131 | 82.52 282 | 94.37 328 | 91.93 363 |
|
| MVS_Test | | | 92.57 176 | 93.29 154 | 90.40 274 | 93.53 305 | 75.85 327 | 92.52 190 | 96.96 158 | 88.73 179 | 92.35 258 | 96.70 146 | 90.77 150 | 98.37 198 | 92.53 97 | 95.49 300 | 96.99 235 |
|
| MIMVSNet1 | | | 95.52 69 | 95.45 77 | 95.72 73 | 99.14 5 | 89.02 102 | 96.23 57 | 96.87 167 | 93.73 60 | 97.87 28 | 98.49 29 | 90.73 154 | 99.05 99 | 86.43 241 | 99.60 26 | 99.10 47 |
|
| ab-mvs | | | 92.40 180 | 92.62 172 | 91.74 225 | 97.02 148 | 81.65 234 | 95.84 71 | 95.50 234 | 86.95 217 | 92.95 235 | 97.56 76 | 90.70 155 | 97.50 268 | 79.63 315 | 97.43 247 | 96.06 272 |
|
| Test By Simon | | | | | | | | | | | | | 90.61 156 | | | | |
|
| 3Dnovator | | 92.54 3 | 94.80 101 | 94.90 101 | 94.47 129 | 95.47 252 | 87.06 142 | 96.63 31 | 97.28 137 | 91.82 110 | 94.34 189 | 97.41 88 | 90.60 157 | 98.65 167 | 92.47 98 | 98.11 210 | 97.70 196 |
|
| NCCC | | | 94.08 130 | 93.54 150 | 95.70 75 | 96.49 184 | 89.90 83 | 92.39 199 | 96.91 164 | 90.64 142 | 92.33 261 | 94.60 250 | 90.58 158 | 98.96 112 | 90.21 159 | 97.70 235 | 98.23 140 |
|
| UniMVSNet_NR-MVSNet | | | 95.35 79 | 95.21 90 | 95.76 71 | 97.69 115 | 88.59 113 | 92.26 206 | 97.84 88 | 94.91 40 | 96.80 78 | 95.78 200 | 90.42 159 | 99.41 39 | 91.60 121 | 99.58 33 | 99.29 29 |
|
| test_prior2 | | | | | | | | 90.21 268 | | 89.33 167 | 90.77 286 | 94.81 240 | 90.41 160 | | 88.21 203 | 98.55 167 | |
|
| KD-MVS_self_test | | | 94.10 129 | 94.73 110 | 92.19 210 | 97.66 118 | 79.49 273 | 94.86 108 | 97.12 148 | 89.59 162 | 96.87 74 | 97.65 70 | 90.40 161 | 98.34 199 | 89.08 190 | 99.35 61 | 98.75 92 |
|
| MSLP-MVS++ | | | 93.25 153 | 93.88 135 | 91.37 239 | 96.34 195 | 82.81 222 | 93.11 170 | 97.74 98 | 89.37 166 | 94.08 192 | 95.29 224 | 90.40 161 | 96.35 317 | 90.35 150 | 98.25 197 | 94.96 307 |
|
| UniMVSNet (Re) | | | 95.32 81 | 95.15 93 | 95.80 70 | 97.79 105 | 88.91 105 | 92.91 176 | 98.07 60 | 93.46 67 | 96.31 97 | 95.97 190 | 90.14 163 | 99.34 63 | 92.11 103 | 99.64 24 | 99.16 38 |
|
| Effi-MVS+-dtu | | | 93.90 138 | 92.60 173 | 97.77 3 | 94.74 275 | 96.67 5 | 94.00 142 | 95.41 238 | 89.94 154 | 91.93 269 | 92.13 317 | 90.12 164 | 98.97 111 | 87.68 218 | 97.48 244 | 97.67 199 |
|
| FMVSNet1 | | | 94.84 99 | 95.13 94 | 93.97 144 | 97.60 120 | 84.29 196 | 95.99 63 | 96.56 186 | 92.38 85 | 97.03 67 | 98.53 26 | 90.12 164 | 98.98 107 | 88.78 197 | 99.16 97 | 98.65 107 |
|
| DU-MVS | | | 95.28 85 | 95.12 95 | 95.75 72 | 97.75 107 | 88.59 113 | 92.58 188 | 97.81 91 | 93.99 53 | 96.80 78 | 95.90 191 | 90.10 166 | 99.41 39 | 91.60 121 | 99.58 33 | 99.26 30 |
|
| NR-MVSNet | | | 95.28 85 | 95.28 88 | 95.26 90 | 97.75 107 | 87.21 138 | 95.08 100 | 97.37 123 | 93.92 58 | 97.65 34 | 95.90 191 | 90.10 166 | 99.33 68 | 90.11 162 | 99.66 21 | 99.26 30 |
|
| Baseline_NR-MVSNet | | | 94.47 113 | 95.09 97 | 92.60 199 | 98.50 57 | 80.82 248 | 92.08 210 | 96.68 179 | 93.82 59 | 96.29 99 | 98.56 24 | 90.10 166 | 97.75 255 | 90.10 164 | 99.66 21 | 99.24 32 |
|
| API-MVS | | | 91.52 199 | 91.61 194 | 91.26 245 | 94.16 290 | 86.26 167 | 94.66 114 | 94.82 255 | 91.17 130 | 92.13 265 | 91.08 332 | 90.03 169 | 97.06 292 | 79.09 322 | 97.35 251 | 90.45 373 |
|
| patch_mono-2 | | | 92.46 178 | 92.72 170 | 91.71 227 | 96.65 170 | 78.91 285 | 88.85 308 | 97.17 143 | 83.89 265 | 92.45 252 | 96.76 139 | 89.86 170 | 97.09 290 | 90.24 157 | 98.59 164 | 99.12 43 |
|
| test12 | | | | | 94.43 131 | 95.95 227 | 86.75 150 | | 96.24 201 | | 89.76 308 | | 89.79 171 | 98.79 140 | | 97.95 223 | 97.75 193 |
|
| 旧先验1 | | | | | | 96.20 208 | 84.17 201 | | 94.82 255 | | | 95.57 211 | 89.57 172 | | | 97.89 226 | 96.32 262 |
|
| DELS-MVS | | | 92.05 189 | 92.16 180 | 91.72 226 | 94.44 285 | 80.13 254 | 87.62 322 | 97.25 138 | 87.34 210 | 92.22 263 | 93.18 294 | 89.54 173 | 98.73 151 | 89.67 173 | 98.20 204 | 96.30 263 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| VPNet | | | 93.08 157 | 93.76 139 | 91.03 253 | 98.60 39 | 75.83 329 | 91.51 232 | 95.62 223 | 91.84 107 | 95.74 128 | 97.10 117 | 89.31 174 | 98.32 200 | 85.07 260 | 99.06 103 | 98.93 68 |
|
| QAPM | | | 92.88 164 | 92.77 165 | 93.22 174 | 95.82 234 | 83.31 210 | 96.45 39 | 97.35 129 | 83.91 264 | 93.75 204 | 96.77 137 | 89.25 175 | 98.88 121 | 84.56 266 | 97.02 261 | 97.49 210 |
|
| MSDG | | | 90.82 208 | 90.67 218 | 91.26 245 | 94.16 290 | 83.08 218 | 86.63 346 | 96.19 205 | 90.60 144 | 91.94 268 | 91.89 320 | 89.16 176 | 95.75 329 | 80.96 301 | 94.51 325 | 94.95 308 |
|
| CPTT-MVS | | | 94.74 102 | 94.12 131 | 96.60 43 | 98.15 78 | 93.01 42 | 95.84 71 | 97.66 102 | 89.21 171 | 93.28 219 | 95.46 213 | 88.89 177 | 98.98 107 | 89.80 169 | 98.82 139 | 97.80 187 |
|
| DP-MVS Recon | | | 92.31 183 | 91.88 189 | 93.60 159 | 97.18 143 | 86.87 147 | 91.10 242 | 97.37 123 | 84.92 253 | 92.08 266 | 94.08 266 | 88.59 178 | 98.20 210 | 83.50 272 | 98.14 208 | 95.73 286 |
|
| FC-MVSNet-test | | | 95.32 81 | 95.88 59 | 93.62 158 | 98.49 58 | 81.77 232 | 95.90 69 | 98.32 24 | 93.93 56 | 97.53 42 | 97.56 76 | 88.48 179 | 99.40 46 | 92.91 88 | 99.83 5 | 99.68 4 |
|
| OpenMVS |  | 89.45 8 | 92.27 185 | 92.13 183 | 92.68 193 | 94.53 284 | 84.10 202 | 95.70 76 | 97.03 153 | 82.44 285 | 91.14 281 | 96.42 159 | 88.47 180 | 98.38 194 | 85.95 246 | 97.47 245 | 95.55 295 |
|
| F-COLMAP | | | 92.28 184 | 91.06 209 | 95.95 59 | 97.52 125 | 91.90 56 | 93.53 156 | 97.18 142 | 83.98 263 | 88.70 325 | 94.04 267 | 88.41 181 | 98.55 179 | 80.17 308 | 95.99 289 | 97.39 219 |
|
| ambc | | | | | 92.98 178 | 96.88 156 | 83.01 219 | 95.92 68 | 96.38 196 | | 96.41 92 | 97.48 86 | 88.26 182 | 97.80 247 | 89.96 167 | 98.93 125 | 98.12 151 |
|
| v10 | | | 94.68 106 | 95.27 89 | 92.90 185 | 96.57 176 | 80.15 252 | 94.65 115 | 97.57 110 | 90.68 141 | 97.43 48 | 98.00 51 | 88.18 183 | 99.15 84 | 94.84 30 | 99.55 37 | 99.41 20 |
|
| v8 | | | 94.65 107 | 95.29 87 | 92.74 190 | 96.65 170 | 79.77 267 | 94.59 116 | 97.17 143 | 91.86 103 | 97.47 47 | 97.93 55 | 88.16 184 | 99.08 94 | 94.32 37 | 99.47 43 | 99.38 22 |
|
| TSAR-MVS + GP. | | | 93.07 159 | 92.41 177 | 95.06 99 | 95.82 234 | 90.87 72 | 90.97 244 | 92.61 302 | 88.04 195 | 94.61 181 | 93.79 278 | 88.08 185 | 97.81 246 | 89.41 177 | 98.39 182 | 96.50 255 |
|
| OurMVSNet-221017-0 | | | 96.80 12 | 96.75 17 | 96.96 35 | 99.03 11 | 91.85 57 | 97.98 7 | 98.01 72 | 94.15 51 | 98.93 3 | 99.07 5 | 88.07 186 | 99.57 14 | 95.86 15 | 99.69 14 | 99.46 18 |
|
| diffmvs |  | | 91.74 193 | 91.93 188 | 91.15 251 | 93.06 312 | 78.17 295 | 88.77 311 | 97.51 117 | 86.28 222 | 92.42 254 | 93.96 272 | 88.04 187 | 97.46 271 | 90.69 141 | 96.67 276 | 97.82 185 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 原ACMM1 | | | | | 92.87 186 | 96.91 155 | 84.22 199 | | 97.01 154 | 76.84 329 | 89.64 310 | 94.46 254 | 88.00 188 | 98.70 159 | 81.53 294 | 98.01 219 | 95.70 289 |
|
| VDD-MVS | | | 94.37 115 | 94.37 121 | 94.40 132 | 97.49 127 | 86.07 171 | 93.97 144 | 93.28 287 | 94.49 45 | 96.24 103 | 97.78 63 | 87.99 189 | 98.79 140 | 88.92 193 | 99.14 99 | 98.34 132 |
|
| XVG-OURS | | | 94.72 103 | 94.12 131 | 96.50 47 | 98.00 91 | 94.23 18 | 91.48 233 | 98.17 45 | 90.72 139 | 95.30 151 | 96.47 156 | 87.94 190 | 96.98 294 | 91.41 126 | 97.61 240 | 98.30 136 |
|
| CANet | | | 92.38 181 | 91.99 186 | 93.52 166 | 93.82 301 | 83.46 209 | 91.14 240 | 97.00 155 | 89.81 157 | 86.47 348 | 94.04 267 | 87.90 191 | 99.21 78 | 89.50 176 | 98.27 194 | 97.90 174 |
|
| BH-untuned | | | 90.68 213 | 90.90 210 | 90.05 285 | 95.98 225 | 79.57 271 | 90.04 274 | 94.94 252 | 87.91 196 | 94.07 193 | 93.00 296 | 87.76 192 | 97.78 251 | 79.19 321 | 95.17 310 | 92.80 356 |
|
| FIs | | | 94.90 97 | 95.35 83 | 93.55 161 | 98.28 69 | 81.76 233 | 95.33 90 | 98.14 49 | 93.05 76 | 97.07 63 | 97.18 111 | 87.65 193 | 99.29 70 | 91.72 117 | 99.69 14 | 99.61 11 |
|
| v1144 | | | 93.50 143 | 93.81 136 | 92.57 200 | 96.28 201 | 79.61 270 | 91.86 225 | 96.96 158 | 86.95 217 | 95.91 119 | 96.32 170 | 87.65 193 | 98.96 112 | 93.51 59 | 98.88 128 | 99.13 41 |
|
| mvs_anonymous | | | 90.37 225 | 91.30 204 | 87.58 328 | 92.17 329 | 68.00 372 | 89.84 281 | 94.73 259 | 83.82 266 | 93.22 225 | 97.40 89 | 87.54 195 | 97.40 276 | 87.94 214 | 95.05 312 | 97.34 222 |
|
| PCF-MVS | | 84.52 17 | 89.12 255 | 87.71 279 | 93.34 170 | 96.06 218 | 85.84 176 | 86.58 349 | 97.31 132 | 68.46 375 | 93.61 209 | 93.89 275 | 87.51 196 | 98.52 181 | 67.85 380 | 98.11 210 | 95.66 291 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| VNet | | | 92.67 172 | 92.96 160 | 91.79 223 | 96.27 202 | 80.15 252 | 91.95 215 | 94.98 250 | 92.19 94 | 94.52 184 | 96.07 185 | 87.43 197 | 97.39 277 | 84.83 262 | 98.38 183 | 97.83 183 |
|
| v148 | | | 92.87 165 | 93.29 154 | 91.62 231 | 96.25 205 | 77.72 302 | 91.28 238 | 95.05 247 | 89.69 159 | 95.93 118 | 96.04 186 | 87.34 198 | 98.38 194 | 90.05 165 | 97.99 220 | 98.78 88 |
|
| V42 | | | 93.43 146 | 93.58 147 | 92.97 179 | 95.34 258 | 81.22 242 | 92.67 184 | 96.49 191 | 87.25 211 | 96.20 107 | 96.37 167 | 87.32 199 | 98.85 128 | 92.39 100 | 98.21 202 | 98.85 81 |
|
| v1192 | | | 93.49 144 | 93.78 138 | 92.62 197 | 96.16 211 | 79.62 269 | 91.83 226 | 97.22 141 | 86.07 227 | 96.10 112 | 96.38 166 | 87.22 200 | 99.02 104 | 94.14 42 | 98.88 128 | 99.22 33 |
|
| WR-MVS | | | 93.49 144 | 93.72 140 | 92.80 189 | 97.57 123 | 80.03 258 | 90.14 271 | 95.68 222 | 93.70 61 | 96.62 86 | 95.39 220 | 87.21 201 | 99.04 102 | 87.50 220 | 99.64 24 | 99.33 26 |
|
| IterMVS-LS | | | 93.78 139 | 94.28 125 | 92.27 207 | 96.27 202 | 79.21 280 | 91.87 223 | 96.78 173 | 91.77 113 | 96.57 89 | 97.07 118 | 87.15 202 | 98.74 150 | 91.99 108 | 99.03 112 | 98.86 78 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 92.99 160 | 93.26 158 | 92.19 210 | 92.12 330 | 79.21 280 | 92.32 202 | 94.67 262 | 91.77 113 | 95.24 157 | 95.85 193 | 87.14 203 | 98.49 183 | 91.99 108 | 98.26 195 | 98.86 78 |
|
| v144192 | | | 93.20 156 | 93.54 150 | 92.16 214 | 96.05 219 | 78.26 294 | 91.95 215 | 97.14 145 | 84.98 252 | 95.96 115 | 96.11 183 | 87.08 204 | 99.04 102 | 93.79 49 | 98.84 133 | 99.17 37 |
|
| 114514_t | | | 90.51 217 | 89.80 237 | 92.63 196 | 98.00 91 | 82.24 228 | 93.40 162 | 97.29 135 | 65.84 382 | 89.40 312 | 94.80 242 | 86.99 205 | 98.75 147 | 83.88 271 | 98.61 161 | 96.89 239 |
|
| 新几何1 | | | | | 93.17 175 | 97.16 144 | 87.29 135 | | 94.43 265 | 67.95 376 | 91.29 276 | 94.94 236 | 86.97 206 | 98.23 208 | 81.06 300 | 97.75 231 | 93.98 334 |
|
| HQP_MVS | | | 94.26 122 | 93.93 134 | 95.23 93 | 97.71 112 | 88.12 122 | 94.56 120 | 97.81 91 | 91.74 115 | 93.31 216 | 95.59 207 | 86.93 207 | 98.95 114 | 89.26 184 | 98.51 173 | 98.60 117 |
|
| plane_prior6 | | | | | | 97.21 142 | 88.23 121 | | | | | | 86.93 207 | | | | |
|
| UGNet | | | 93.08 157 | 92.50 175 | 94.79 108 | 93.87 299 | 87.99 125 | 95.07 101 | 94.26 270 | 90.64 142 | 87.33 344 | 97.67 69 | 86.89 209 | 98.49 183 | 88.10 208 | 98.71 151 | 97.91 173 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LF4IMVS | | | 92.72 170 | 92.02 185 | 94.84 106 | 95.65 245 | 91.99 54 | 92.92 175 | 96.60 183 | 85.08 250 | 92.44 253 | 93.62 282 | 86.80 210 | 96.35 317 | 86.81 230 | 98.25 197 | 96.18 268 |
|
| v1921920 | | | 93.26 151 | 93.61 146 | 92.19 210 | 96.04 223 | 78.31 293 | 91.88 222 | 97.24 139 | 85.17 246 | 96.19 109 | 96.19 179 | 86.76 211 | 99.05 99 | 94.18 41 | 98.84 133 | 99.22 33 |
|
| MVS_0304 | | | 93.92 136 | 93.68 143 | 94.64 117 | 95.94 229 | 85.83 177 | 94.34 127 | 88.14 341 | 92.98 77 | 91.09 282 | 97.68 67 | 86.73 212 | 99.36 58 | 96.64 7 | 99.59 28 | 98.72 97 |
|
| v1240 | | | 93.29 149 | 93.71 141 | 92.06 217 | 96.01 224 | 77.89 299 | 91.81 227 | 97.37 123 | 85.12 248 | 96.69 83 | 96.40 161 | 86.67 213 | 99.07 98 | 94.51 33 | 98.76 146 | 99.22 33 |
|
| MAR-MVS | | | 90.32 228 | 88.87 254 | 94.66 115 | 94.82 269 | 91.85 57 | 94.22 134 | 94.75 258 | 80.91 294 | 87.52 342 | 88.07 365 | 86.63 214 | 97.87 242 | 76.67 338 | 96.21 285 | 94.25 328 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MSP-MVS | | | 95.34 80 | 94.63 115 | 97.48 14 | 98.67 33 | 94.05 23 | 96.41 43 | 98.18 41 | 91.26 126 | 95.12 161 | 95.15 226 | 86.60 215 | 99.50 21 | 93.43 69 | 96.81 271 | 98.89 75 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| BH-RMVSNet | | | 90.47 219 | 90.44 223 | 90.56 270 | 95.21 261 | 78.65 291 | 89.15 302 | 93.94 278 | 88.21 191 | 92.74 242 | 94.22 261 | 86.38 216 | 97.88 239 | 78.67 324 | 95.39 304 | 95.14 303 |
|
| CNLPA | | | 91.72 194 | 91.20 205 | 93.26 173 | 96.17 210 | 91.02 67 | 91.14 240 | 95.55 231 | 90.16 152 | 90.87 284 | 93.56 285 | 86.31 217 | 94.40 352 | 79.92 314 | 97.12 257 | 94.37 325 |
|
| PVSNet_BlendedMVS | | | 90.35 226 | 89.96 233 | 91.54 234 | 94.81 270 | 78.80 289 | 90.14 271 | 96.93 160 | 79.43 307 | 88.68 326 | 95.06 232 | 86.27 218 | 98.15 216 | 80.27 304 | 98.04 216 | 97.68 198 |
|
| PVSNet_Blended | | | 88.74 269 | 88.16 273 | 90.46 273 | 94.81 270 | 78.80 289 | 86.64 345 | 96.93 160 | 74.67 339 | 88.68 326 | 89.18 357 | 86.27 218 | 98.15 216 | 80.27 304 | 96.00 288 | 94.44 324 |
|
| PAPR | | | 87.65 288 | 86.77 298 | 90.27 277 | 92.85 316 | 77.38 306 | 88.56 316 | 96.23 202 | 76.82 330 | 84.98 359 | 89.75 349 | 86.08 220 | 97.16 288 | 72.33 362 | 93.35 345 | 96.26 265 |
|
| v2v482 | | | 93.29 149 | 93.63 145 | 92.29 206 | 96.35 194 | 78.82 287 | 91.77 229 | 96.28 198 | 88.45 186 | 95.70 132 | 96.26 176 | 86.02 221 | 98.90 118 | 93.02 84 | 98.81 141 | 99.14 40 |
|
| test20.03 | | | 90.80 209 | 90.85 213 | 90.63 268 | 95.63 247 | 79.24 278 | 89.81 282 | 92.87 293 | 89.90 155 | 94.39 186 | 96.40 161 | 85.77 222 | 95.27 342 | 73.86 354 | 99.05 106 | 97.39 219 |
|
| PLC |  | 85.34 15 | 90.40 221 | 88.92 251 | 94.85 105 | 96.53 182 | 90.02 81 | 91.58 231 | 96.48 192 | 80.16 300 | 86.14 350 | 92.18 315 | 85.73 223 | 98.25 207 | 76.87 337 | 94.61 324 | 96.30 263 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MVS | | | 84.98 319 | 84.30 320 | 87.01 333 | 91.03 350 | 77.69 303 | 91.94 217 | 94.16 271 | 59.36 390 | 84.23 365 | 87.50 368 | 85.66 224 | 96.80 302 | 71.79 364 | 93.05 352 | 86.54 383 |
|
| testdata | | | | | 91.03 253 | 96.87 157 | 82.01 229 | | 94.28 269 | 71.55 357 | 92.46 251 | 95.42 216 | 85.65 225 | 97.38 279 | 82.64 280 | 97.27 252 | 93.70 341 |
|
| PM-MVS | | | 93.33 148 | 92.67 171 | 95.33 86 | 96.58 175 | 94.06 21 | 92.26 206 | 92.18 307 | 85.92 230 | 96.22 105 | 96.61 151 | 85.64 226 | 95.99 326 | 90.35 150 | 98.23 199 | 95.93 277 |
|
| SSC-MVS | | | 90.16 232 | 92.96 160 | 81.78 366 | 97.88 99 | 48.48 398 | 90.75 249 | 87.69 345 | 96.02 31 | 96.70 82 | 97.63 72 | 85.60 227 | 97.80 247 | 85.73 249 | 98.60 163 | 99.06 50 |
|
| MM | | | | | 95.22 94 | | 87.21 138 | 94.31 131 | 90.92 324 | 94.48 46 | 92.80 239 | 97.52 81 | 85.27 228 | 99.49 24 | 96.58 8 | 99.57 35 | 98.97 62 |
|
| WB-MVS | | | 89.44 250 | 92.15 182 | 81.32 367 | 97.73 110 | 48.22 399 | 89.73 284 | 87.98 343 | 95.24 36 | 96.05 113 | 96.99 125 | 85.18 229 | 96.95 295 | 82.45 284 | 97.97 221 | 98.78 88 |
|
| MDA-MVSNet-bldmvs | | | 91.04 206 | 90.88 211 | 91.55 233 | 94.68 279 | 80.16 251 | 85.49 356 | 92.14 310 | 90.41 149 | 94.93 170 | 95.79 197 | 85.10 230 | 96.93 298 | 85.15 255 | 94.19 334 | 97.57 204 |
|
| PAPM_NR | | | 91.03 207 | 90.81 214 | 91.68 229 | 96.73 165 | 81.10 244 | 93.72 152 | 96.35 197 | 88.19 192 | 88.77 323 | 92.12 318 | 85.09 231 | 97.25 281 | 82.40 285 | 93.90 337 | 96.68 248 |
|
| HQP2-MVS | | | | | | | | | | | | | 84.76 232 | | | | |
|
| HQP-MVS | | | 92.09 188 | 91.49 199 | 93.88 150 | 96.36 191 | 84.89 190 | 91.37 234 | 97.31 132 | 87.16 212 | 88.81 319 | 93.40 288 | 84.76 232 | 98.60 172 | 86.55 238 | 97.73 232 | 98.14 149 |
|
| test222 | | | | | | 96.95 151 | 85.27 187 | 88.83 309 | 93.61 279 | 65.09 384 | 90.74 287 | 94.85 239 | 84.62 234 | | | 97.36 250 | 93.91 335 |
|
| VDDNet | | | 94.03 131 | 94.27 127 | 93.31 171 | 98.87 21 | 82.36 227 | 95.51 86 | 91.78 316 | 97.19 12 | 96.32 96 | 98.60 22 | 84.24 235 | 98.75 147 | 87.09 228 | 98.83 138 | 98.81 84 |
|
| PVSNet_Blended_VisFu | | | 91.63 196 | 91.20 205 | 92.94 183 | 97.73 110 | 83.95 205 | 92.14 209 | 97.46 118 | 78.85 317 | 92.35 258 | 94.98 234 | 84.16 236 | 99.08 94 | 86.36 242 | 96.77 273 | 95.79 284 |
|
| CL-MVSNet_self_test | | | 90.04 240 | 89.90 235 | 90.47 271 | 95.24 260 | 77.81 300 | 86.60 348 | 92.62 301 | 85.64 236 | 93.25 223 | 93.92 273 | 83.84 237 | 96.06 324 | 79.93 312 | 98.03 217 | 97.53 208 |
|
| mvsany_test3 | | | 89.11 256 | 88.21 271 | 91.83 221 | 91.30 348 | 90.25 79 | 88.09 319 | 78.76 389 | 76.37 331 | 96.43 91 | 98.39 33 | 83.79 238 | 90.43 376 | 86.57 236 | 94.20 332 | 94.80 314 |
|
| mvsmamba | | | 95.61 65 | 95.40 81 | 96.22 51 | 98.44 60 | 89.86 84 | 97.14 17 | 97.45 120 | 91.25 128 | 97.49 44 | 98.14 39 | 83.49 239 | 99.45 27 | 95.52 21 | 99.66 21 | 99.36 24 |
|
| BH-w/o | | | 87.21 299 | 87.02 294 | 87.79 327 | 94.77 273 | 77.27 308 | 87.90 320 | 93.21 290 | 81.74 290 | 89.99 302 | 88.39 364 | 83.47 240 | 96.93 298 | 71.29 368 | 92.43 359 | 89.15 374 |
|
| PatchMatch-RL | | | 89.18 253 | 88.02 276 | 92.64 194 | 95.90 231 | 92.87 45 | 88.67 315 | 91.06 321 | 80.34 298 | 90.03 301 | 91.67 324 | 83.34 241 | 94.42 351 | 76.35 341 | 94.84 318 | 90.64 372 |
|
| DPM-MVS | | | 89.35 251 | 88.40 260 | 92.18 213 | 96.13 215 | 84.20 200 | 86.96 336 | 96.15 208 | 75.40 336 | 87.36 343 | 91.55 327 | 83.30 242 | 98.01 227 | 82.17 288 | 96.62 277 | 94.32 327 |
|
| OpenMVS_ROB |  | 85.12 16 | 89.52 248 | 89.05 247 | 90.92 258 | 94.58 283 | 81.21 243 | 91.10 242 | 93.41 286 | 77.03 327 | 93.41 213 | 93.99 271 | 83.23 243 | 97.80 247 | 79.93 312 | 94.80 319 | 93.74 340 |
|
| new-patchmatchnet | | | 88.97 262 | 90.79 215 | 83.50 361 | 94.28 289 | 55.83 396 | 85.34 358 | 93.56 282 | 86.18 225 | 95.47 140 | 95.73 203 | 83.10 244 | 96.51 309 | 85.40 252 | 98.06 214 | 98.16 147 |
|
| mvsany_test1 | | | 83.91 327 | 82.93 331 | 86.84 337 | 86.18 389 | 85.93 173 | 81.11 380 | 75.03 395 | 70.80 365 | 88.57 328 | 94.63 248 | 83.08 245 | 87.38 385 | 80.39 302 | 86.57 381 | 87.21 381 |
|
| 1314 | | | 86.46 309 | 86.33 306 | 86.87 336 | 91.65 343 | 74.54 336 | 91.94 217 | 94.10 272 | 74.28 342 | 84.78 361 | 87.33 370 | 83.03 246 | 95.00 344 | 78.72 323 | 91.16 368 | 91.06 370 |
|
| IS-MVSNet | | | 94.49 112 | 94.35 123 | 94.92 102 | 98.25 73 | 86.46 159 | 97.13 18 | 94.31 267 | 96.24 25 | 96.28 101 | 96.36 168 | 82.88 247 | 99.35 60 | 88.19 205 | 99.52 41 | 98.96 64 |
|
| test_fmvs3 | | | 92.42 179 | 92.40 178 | 92.46 205 | 93.80 302 | 87.28 136 | 93.86 147 | 97.05 152 | 76.86 328 | 96.25 102 | 98.66 18 | 82.87 248 | 91.26 371 | 95.44 25 | 96.83 270 | 98.82 82 |
|
| MG-MVS | | | 89.54 247 | 89.80 237 | 88.76 307 | 94.88 266 | 72.47 355 | 89.60 287 | 92.44 305 | 85.82 231 | 89.48 311 | 95.98 189 | 82.85 249 | 97.74 257 | 81.87 289 | 95.27 308 | 96.08 271 |
|
| TR-MVS | | | 87.70 285 | 87.17 289 | 89.27 299 | 94.11 292 | 79.26 277 | 88.69 313 | 91.86 315 | 81.94 289 | 90.69 288 | 89.79 347 | 82.82 250 | 97.42 274 | 72.65 361 | 91.98 363 | 91.14 369 |
|
| c3_l | | | 91.32 204 | 91.42 200 | 91.00 256 | 92.29 323 | 76.79 317 | 87.52 328 | 96.42 194 | 85.76 233 | 94.72 180 | 93.89 275 | 82.73 251 | 98.16 215 | 90.93 135 | 98.55 167 | 98.04 156 |
|
| YYNet1 | | | 88.17 278 | 88.24 268 | 87.93 324 | 92.21 326 | 73.62 345 | 80.75 381 | 88.77 333 | 82.51 284 | 94.99 168 | 95.11 229 | 82.70 252 | 93.70 358 | 83.33 273 | 93.83 338 | 96.48 256 |
|
| MDA-MVSNet_test_wron | | | 88.16 279 | 88.23 269 | 87.93 324 | 92.22 325 | 73.71 344 | 80.71 382 | 88.84 332 | 82.52 283 | 94.88 173 | 95.14 227 | 82.70 252 | 93.61 359 | 83.28 274 | 93.80 339 | 96.46 257 |
|
| pmmvs-eth3d | | | 91.54 198 | 90.73 217 | 93.99 142 | 95.76 239 | 87.86 128 | 90.83 247 | 93.98 277 | 78.23 320 | 94.02 197 | 96.22 178 | 82.62 254 | 96.83 301 | 86.57 236 | 98.33 189 | 97.29 225 |
|
| Anonymous20231206 | | | 88.77 268 | 88.29 264 | 90.20 281 | 96.31 198 | 78.81 288 | 89.56 289 | 93.49 284 | 74.26 343 | 92.38 256 | 95.58 210 | 82.21 255 | 95.43 337 | 72.07 363 | 98.75 148 | 96.34 261 |
|
| miper_ehance_all_eth | | | 90.48 218 | 90.42 224 | 90.69 266 | 91.62 344 | 76.57 320 | 86.83 340 | 96.18 206 | 83.38 267 | 94.06 194 | 92.66 307 | 82.20 256 | 98.04 222 | 89.79 170 | 97.02 261 | 97.45 212 |
|
| USDC | | | 89.02 258 | 89.08 246 | 88.84 306 | 95.07 263 | 74.50 338 | 88.97 304 | 96.39 195 | 73.21 349 | 93.27 220 | 96.28 174 | 82.16 257 | 96.39 314 | 77.55 331 | 98.80 142 | 95.62 294 |
|
| EPP-MVSNet | | | 93.91 137 | 93.68 143 | 94.59 122 | 98.08 82 | 85.55 183 | 97.44 12 | 94.03 273 | 94.22 50 | 94.94 169 | 96.19 179 | 82.07 258 | 99.57 14 | 87.28 225 | 98.89 126 | 98.65 107 |
|
| UnsupCasMVSNet_eth | | | 90.33 227 | 90.34 226 | 90.28 276 | 94.64 282 | 80.24 250 | 89.69 286 | 95.88 216 | 85.77 232 | 93.94 201 | 95.69 204 | 81.99 259 | 92.98 364 | 84.21 268 | 91.30 366 | 97.62 201 |
|
| alignmvs | | | 93.26 151 | 92.85 164 | 94.50 126 | 95.70 241 | 87.45 133 | 93.45 160 | 95.76 219 | 91.58 120 | 95.25 156 | 92.42 313 | 81.96 260 | 98.72 152 | 91.61 120 | 97.87 227 | 97.33 223 |
|
| TAMVS | | | 90.16 232 | 89.05 247 | 93.49 168 | 96.49 184 | 86.37 162 | 90.34 265 | 92.55 303 | 80.84 297 | 92.99 232 | 94.57 252 | 81.94 261 | 98.20 210 | 73.51 355 | 98.21 202 | 95.90 280 |
|
| Anonymous202405211 | | | 92.58 174 | 92.50 175 | 92.83 188 | 96.55 178 | 83.22 214 | 92.43 196 | 91.64 318 | 94.10 52 | 95.59 134 | 96.64 149 | 81.88 262 | 97.50 268 | 85.12 257 | 98.52 171 | 97.77 190 |
|
| SixPastTwentyTwo | | | 94.91 96 | 95.21 90 | 93.98 143 | 98.52 50 | 83.19 215 | 95.93 67 | 94.84 254 | 94.86 41 | 98.49 15 | 98.74 16 | 81.45 263 | 99.60 9 | 94.69 31 | 99.39 58 | 99.15 39 |
|
| cascas | | | 87.02 305 | 86.28 307 | 89.25 300 | 91.56 345 | 76.45 321 | 84.33 368 | 96.78 173 | 71.01 362 | 86.89 347 | 85.91 377 | 81.35 264 | 96.94 296 | 83.09 276 | 95.60 297 | 94.35 326 |
|
| GBi-Net | | | 93.21 154 | 92.96 160 | 93.97 144 | 95.40 254 | 84.29 196 | 95.99 63 | 96.56 186 | 88.63 182 | 95.10 162 | 98.53 26 | 81.31 265 | 98.98 107 | 86.74 231 | 98.38 183 | 98.65 107 |
|
| test1 | | | 93.21 154 | 92.96 160 | 93.97 144 | 95.40 254 | 84.29 196 | 95.99 63 | 96.56 186 | 88.63 182 | 95.10 162 | 98.53 26 | 81.31 265 | 98.98 107 | 86.74 231 | 98.38 183 | 98.65 107 |
|
| FMVSNet2 | | | 92.78 168 | 92.73 169 | 92.95 181 | 95.40 254 | 81.98 230 | 94.18 135 | 95.53 233 | 88.63 182 | 96.05 113 | 97.37 91 | 81.31 265 | 98.81 136 | 87.38 224 | 98.67 157 | 98.06 153 |
|
| MVE |  | 59.87 23 | 73.86 360 | 72.65 363 | 77.47 373 | 87.00 387 | 74.35 339 | 61.37 391 | 60.93 399 | 67.27 377 | 69.69 394 | 86.49 374 | 81.24 268 | 72.33 395 | 56.45 392 | 83.45 386 | 85.74 384 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| RRT_MVS | | | 95.41 77 | 95.20 92 | 96.05 55 | 98.86 22 | 88.92 104 | 97.49 11 | 94.48 264 | 93.12 73 | 97.94 27 | 98.54 25 | 81.19 269 | 99.63 6 | 95.48 23 | 99.69 14 | 99.60 12 |
|
| MVP-Stereo | | | 90.07 238 | 88.92 251 | 93.54 163 | 96.31 198 | 86.49 157 | 90.93 245 | 95.59 228 | 79.80 301 | 91.48 273 | 95.59 207 | 80.79 270 | 97.39 277 | 78.57 325 | 91.19 367 | 96.76 246 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| UnsupCasMVSNet_bld | | | 88.50 273 | 88.03 275 | 89.90 287 | 95.52 251 | 78.88 286 | 87.39 329 | 94.02 275 | 79.32 311 | 93.06 229 | 94.02 269 | 80.72 271 | 94.27 354 | 75.16 347 | 93.08 351 | 96.54 250 |
|
| MS-PatchMatch | | | 88.05 280 | 87.75 278 | 88.95 303 | 93.28 307 | 77.93 297 | 87.88 321 | 92.49 304 | 75.42 335 | 92.57 248 | 93.59 284 | 80.44 272 | 94.24 356 | 81.28 296 | 92.75 354 | 94.69 320 |
|
| Anonymous20240521 | | | 92.86 166 | 93.57 148 | 90.74 265 | 96.57 176 | 75.50 331 | 94.15 136 | 95.60 224 | 89.38 165 | 95.90 120 | 97.90 61 | 80.39 273 | 97.96 232 | 92.60 96 | 99.68 18 | 98.75 92 |
|
| CANet_DTU | | | 89.85 243 | 89.17 245 | 91.87 220 | 92.20 327 | 80.02 259 | 90.79 248 | 95.87 217 | 86.02 228 | 82.53 375 | 91.77 322 | 80.01 274 | 98.57 176 | 85.66 250 | 97.70 235 | 97.01 234 |
|
| PMMVS | | | 83.00 333 | 81.11 341 | 88.66 310 | 83.81 396 | 86.44 160 | 82.24 377 | 85.65 361 | 61.75 389 | 82.07 377 | 85.64 378 | 79.75 275 | 91.59 370 | 75.99 343 | 93.09 350 | 87.94 380 |
|
| ppachtmachnet_test | | | 88.61 272 | 88.64 256 | 88.50 314 | 91.76 339 | 70.99 362 | 84.59 365 | 92.98 291 | 79.30 312 | 92.38 256 | 93.53 286 | 79.57 276 | 97.45 272 | 86.50 240 | 97.17 256 | 97.07 230 |
|
| eth_miper_zixun_eth | | | 90.72 211 | 90.61 219 | 91.05 252 | 92.04 333 | 76.84 316 | 86.91 337 | 96.67 180 | 85.21 245 | 94.41 185 | 93.92 273 | 79.53 277 | 98.26 206 | 89.76 171 | 97.02 261 | 98.06 153 |
|
| test_vis1_rt | | | 85.58 314 | 84.58 317 | 88.60 311 | 87.97 379 | 86.76 149 | 85.45 357 | 93.59 280 | 66.43 379 | 87.64 339 | 89.20 356 | 79.33 278 | 85.38 390 | 81.59 293 | 89.98 374 | 93.66 342 |
|
| N_pmnet | | | 88.90 265 | 87.25 287 | 93.83 154 | 94.40 287 | 93.81 35 | 84.73 362 | 87.09 350 | 79.36 310 | 93.26 221 | 92.43 312 | 79.29 279 | 91.68 369 | 77.50 333 | 97.22 254 | 96.00 274 |
|
| miper_enhance_ethall | | | 88.42 274 | 87.87 277 | 90.07 283 | 88.67 377 | 75.52 330 | 85.10 359 | 95.59 228 | 75.68 332 | 92.49 249 | 89.45 353 | 78.96 280 | 97.88 239 | 87.86 216 | 97.02 261 | 96.81 243 |
|
| EPNet | | | 89.80 245 | 88.25 267 | 94.45 130 | 83.91 395 | 86.18 168 | 93.87 146 | 87.07 351 | 91.16 131 | 80.64 384 | 94.72 245 | 78.83 281 | 98.89 120 | 85.17 253 | 98.89 126 | 98.28 137 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| sss | | | 87.23 298 | 86.82 296 | 88.46 316 | 93.96 296 | 77.94 296 | 86.84 339 | 92.78 297 | 77.59 322 | 87.61 341 | 91.83 321 | 78.75 282 | 91.92 368 | 77.84 328 | 94.20 332 | 95.52 296 |
|
| bld_raw_dy_0_64 | | | 94.27 120 | 94.15 130 | 94.65 116 | 98.55 45 | 86.28 166 | 95.80 73 | 95.55 231 | 88.41 188 | 97.09 61 | 98.08 44 | 78.69 283 | 98.87 125 | 95.63 17 | 99.53 38 | 98.81 84 |
|
| IterMVS-SCA-FT | | | 91.65 195 | 91.55 195 | 91.94 219 | 93.89 298 | 79.22 279 | 87.56 325 | 93.51 283 | 91.53 122 | 95.37 147 | 96.62 150 | 78.65 284 | 98.90 118 | 91.89 112 | 94.95 314 | 97.70 196 |
|
| SCA | | | 87.43 294 | 87.21 288 | 88.10 322 | 92.01 334 | 71.98 357 | 89.43 293 | 88.11 342 | 82.26 287 | 88.71 324 | 92.83 300 | 78.65 284 | 97.59 264 | 79.61 316 | 93.30 346 | 94.75 317 |
|
| our_test_3 | | | 87.55 291 | 87.59 281 | 87.44 330 | 91.76 339 | 70.48 363 | 83.83 371 | 90.55 328 | 79.79 302 | 92.06 267 | 92.17 316 | 78.63 286 | 95.63 330 | 84.77 263 | 94.73 320 | 96.22 266 |
|
| jason | | | 89.17 254 | 88.32 262 | 91.70 228 | 95.73 240 | 80.07 255 | 88.10 318 | 93.22 288 | 71.98 356 | 90.09 298 | 92.79 302 | 78.53 287 | 98.56 177 | 87.43 222 | 97.06 259 | 96.46 257 |
| jason: jason. |
| IterMVS | | | 90.18 231 | 90.16 228 | 90.21 280 | 93.15 310 | 75.98 326 | 87.56 325 | 92.97 292 | 86.43 221 | 94.09 191 | 96.40 161 | 78.32 288 | 97.43 273 | 87.87 215 | 94.69 322 | 97.23 227 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CHOSEN 1792x2688 | | | 87.19 301 | 85.92 310 | 91.00 256 | 97.13 146 | 79.41 274 | 84.51 366 | 95.60 224 | 64.14 385 | 90.07 300 | 94.81 240 | 78.26 289 | 97.14 289 | 73.34 356 | 95.38 305 | 96.46 257 |
|
| WTY-MVS | | | 86.93 306 | 86.50 305 | 88.24 319 | 94.96 264 | 74.64 334 | 87.19 332 | 92.07 312 | 78.29 319 | 88.32 331 | 91.59 326 | 78.06 290 | 94.27 354 | 74.88 348 | 93.15 349 | 95.80 283 |
|
| pmmvs4 | | | 88.95 263 | 87.70 280 | 92.70 191 | 94.30 288 | 85.60 182 | 87.22 331 | 92.16 309 | 74.62 340 | 89.75 309 | 94.19 262 | 77.97 291 | 96.41 313 | 82.71 279 | 96.36 283 | 96.09 270 |
|
| DSMNet-mixed | | | 82.21 338 | 81.56 337 | 84.16 357 | 89.57 369 | 70.00 368 | 90.65 254 | 77.66 393 | 54.99 393 | 83.30 371 | 97.57 75 | 77.89 292 | 90.50 375 | 66.86 383 | 95.54 299 | 91.97 362 |
|
| FA-MVS(test-final) | | | 91.81 192 | 91.85 190 | 91.68 229 | 94.95 265 | 79.99 260 | 96.00 62 | 93.44 285 | 87.80 200 | 94.02 197 | 97.29 102 | 77.60 293 | 98.45 189 | 88.04 211 | 97.49 243 | 96.61 249 |
|
| lessismore_v0 | | | | | 93.87 151 | 98.05 85 | 83.77 207 | | 80.32 386 | | 97.13 60 | 97.91 59 | 77.49 294 | 99.11 93 | 92.62 95 | 98.08 213 | 98.74 95 |
|
| Syy-MVS | | | 84.81 320 | 84.93 314 | 84.42 355 | 91.71 341 | 63.36 389 | 85.89 352 | 81.49 381 | 81.03 292 | 85.13 356 | 81.64 387 | 77.44 295 | 95.00 344 | 85.94 247 | 94.12 335 | 94.91 311 |
|
| HY-MVS | | 82.50 18 | 86.81 307 | 85.93 309 | 89.47 293 | 93.63 303 | 77.93 297 | 94.02 141 | 91.58 319 | 75.68 332 | 83.64 368 | 93.64 280 | 77.40 296 | 97.42 274 | 71.70 366 | 92.07 362 | 93.05 353 |
|
| 1112_ss | | | 88.42 274 | 87.41 283 | 91.45 237 | 96.69 167 | 80.99 245 | 89.72 285 | 96.72 178 | 73.37 347 | 87.00 346 | 90.69 339 | 77.38 297 | 98.20 210 | 81.38 295 | 93.72 340 | 95.15 302 |
|
| DIV-MVS_self_test | | | 90.65 214 | 90.56 221 | 90.91 260 | 91.85 337 | 76.99 312 | 86.75 342 | 95.36 241 | 85.52 243 | 94.06 194 | 94.89 237 | 77.37 298 | 97.99 230 | 90.28 154 | 98.97 119 | 97.76 191 |
|
| cl____ | | | 90.65 214 | 90.56 221 | 90.91 260 | 91.85 337 | 76.98 313 | 86.75 342 | 95.36 241 | 85.53 241 | 94.06 194 | 94.89 237 | 77.36 299 | 97.98 231 | 90.27 155 | 98.98 114 | 97.76 191 |
|
| CDS-MVSNet | | | 89.55 246 | 88.22 270 | 93.53 164 | 95.37 257 | 86.49 157 | 89.26 299 | 93.59 280 | 79.76 303 | 91.15 280 | 92.31 314 | 77.12 300 | 98.38 194 | 77.51 332 | 97.92 225 | 95.71 287 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| test_vis3_rt | | | 90.40 221 | 90.03 232 | 91.52 235 | 92.58 318 | 88.95 103 | 90.38 263 | 97.72 100 | 73.30 348 | 97.79 30 | 97.51 84 | 77.05 301 | 87.10 386 | 89.03 191 | 94.89 315 | 98.50 122 |
|
| MVSFormer | | | 92.18 187 | 92.23 179 | 92.04 218 | 94.74 275 | 80.06 256 | 97.15 15 | 97.37 123 | 88.98 174 | 88.83 317 | 92.79 302 | 77.02 302 | 99.60 9 | 96.41 9 | 96.75 274 | 96.46 257 |
|
| lupinMVS | | | 88.34 276 | 87.31 284 | 91.45 237 | 94.74 275 | 80.06 256 | 87.23 330 | 92.27 306 | 71.10 361 | 88.83 317 | 91.15 330 | 77.02 302 | 98.53 180 | 86.67 234 | 96.75 274 | 95.76 285 |
|
| PMMVS2 | | | 81.31 344 | 83.44 326 | 74.92 375 | 90.52 357 | 46.49 401 | 69.19 389 | 85.23 369 | 84.30 262 | 87.95 336 | 94.71 246 | 76.95 304 | 84.36 392 | 64.07 386 | 98.09 212 | 93.89 336 |
|
| h-mvs33 | | | 92.89 163 | 91.99 186 | 95.58 77 | 96.97 150 | 90.55 76 | 93.94 145 | 94.01 276 | 89.23 168 | 93.95 199 | 96.19 179 | 76.88 305 | 99.14 86 | 91.02 131 | 95.71 295 | 97.04 233 |
|
| hse-mvs2 | | | 92.24 186 | 91.20 205 | 95.38 83 | 96.16 211 | 90.65 75 | 92.52 190 | 92.01 314 | 89.23 168 | 93.95 199 | 92.99 297 | 76.88 305 | 98.69 161 | 91.02 131 | 96.03 287 | 96.81 243 |
|
| pmmvs5 | | | 87.87 282 | 87.14 290 | 90.07 283 | 93.26 309 | 76.97 314 | 88.89 306 | 92.18 307 | 73.71 346 | 88.36 330 | 93.89 275 | 76.86 307 | 96.73 304 | 80.32 303 | 96.81 271 | 96.51 252 |
|
| test_vis1_n_1920 | | | 89.45 249 | 89.85 236 | 88.28 318 | 93.59 304 | 76.71 318 | 90.67 253 | 97.78 96 | 79.67 305 | 90.30 296 | 96.11 183 | 76.62 308 | 92.17 367 | 90.31 152 | 93.57 342 | 95.96 275 |
|
| K. test v3 | | | 93.37 147 | 93.27 157 | 93.66 157 | 98.05 85 | 82.62 223 | 94.35 126 | 86.62 353 | 96.05 29 | 97.51 43 | 98.85 12 | 76.59 309 | 99.65 3 | 93.21 77 | 98.20 204 | 98.73 96 |
|
| miper_lstm_enhance | | | 89.90 242 | 89.80 237 | 90.19 282 | 91.37 347 | 77.50 304 | 83.82 372 | 95.00 249 | 84.84 255 | 93.05 230 | 94.96 235 | 76.53 310 | 95.20 343 | 89.96 167 | 98.67 157 | 97.86 179 |
|
| dmvs_testset | | | 78.23 358 | 78.99 355 | 75.94 374 | 91.99 335 | 55.34 397 | 88.86 307 | 78.70 390 | 82.69 280 | 81.64 382 | 79.46 389 | 75.93 311 | 85.74 389 | 48.78 395 | 82.85 388 | 86.76 382 |
|
| Test_1112_low_res | | | 87.50 293 | 86.58 300 | 90.25 278 | 96.80 164 | 77.75 301 | 87.53 327 | 96.25 200 | 69.73 371 | 86.47 348 | 93.61 283 | 75.67 312 | 97.88 239 | 79.95 310 | 93.20 347 | 95.11 304 |
|
| test_fmvs2 | | | 90.62 216 | 90.40 225 | 91.29 244 | 91.93 336 | 85.46 184 | 92.70 183 | 96.48 192 | 74.44 341 | 94.91 171 | 97.59 74 | 75.52 313 | 90.57 373 | 93.44 66 | 96.56 278 | 97.84 182 |
|
| Vis-MVSNet (Re-imp) | | | 90.42 220 | 90.16 228 | 91.20 249 | 97.66 118 | 77.32 307 | 94.33 128 | 87.66 346 | 91.20 129 | 92.99 232 | 95.13 228 | 75.40 314 | 98.28 202 | 77.86 327 | 99.19 92 | 97.99 164 |
|
| test_vis1_n | | | 89.01 260 | 89.01 249 | 89.03 302 | 92.57 319 | 82.46 226 | 92.62 187 | 96.06 209 | 73.02 351 | 90.40 293 | 95.77 201 | 74.86 315 | 89.68 379 | 90.78 138 | 94.98 313 | 94.95 308 |
|
| D2MVS | | | 89.93 241 | 89.60 242 | 90.92 258 | 94.03 295 | 78.40 292 | 88.69 313 | 94.85 253 | 78.96 315 | 93.08 228 | 95.09 230 | 74.57 316 | 96.94 296 | 88.19 205 | 98.96 121 | 97.41 215 |
|
| PVSNet | | 76.22 20 | 82.89 334 | 82.37 334 | 84.48 354 | 93.96 296 | 64.38 386 | 78.60 384 | 88.61 334 | 71.50 358 | 84.43 364 | 86.36 375 | 74.27 317 | 94.60 348 | 69.87 376 | 93.69 341 | 94.46 323 |
|
| test_yl | | | 90.11 235 | 89.73 240 | 91.26 245 | 94.09 293 | 79.82 264 | 90.44 259 | 92.65 299 | 90.90 133 | 93.19 226 | 93.30 290 | 73.90 318 | 98.03 223 | 82.23 286 | 96.87 268 | 95.93 277 |
|
| DCV-MVSNet | | | 90.11 235 | 89.73 240 | 91.26 245 | 94.09 293 | 79.82 264 | 90.44 259 | 92.65 299 | 90.90 133 | 93.19 226 | 93.30 290 | 73.90 318 | 98.03 223 | 82.23 286 | 96.87 268 | 95.93 277 |
|
| CMPMVS |  | 68.83 22 | 87.28 297 | 85.67 311 | 92.09 216 | 88.77 376 | 85.42 185 | 90.31 266 | 94.38 266 | 70.02 369 | 88.00 335 | 93.30 290 | 73.78 320 | 94.03 357 | 75.96 344 | 96.54 279 | 96.83 242 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| baseline1 | | | 87.62 289 | 87.31 284 | 88.54 312 | 94.71 278 | 74.27 341 | 93.10 171 | 88.20 339 | 86.20 224 | 92.18 264 | 93.04 295 | 73.21 321 | 95.52 332 | 79.32 319 | 85.82 382 | 95.83 282 |
|
| PVSNet_0 | | 70.34 21 | 74.58 359 | 72.96 362 | 79.47 371 | 90.63 355 | 66.24 378 | 73.26 385 | 83.40 377 | 63.67 387 | 78.02 388 | 78.35 391 | 72.53 322 | 89.59 380 | 56.68 391 | 60.05 395 | 82.57 389 |
|
| dmvs_re | | | 84.69 322 | 83.94 324 | 86.95 335 | 92.24 324 | 82.93 220 | 89.51 290 | 87.37 348 | 84.38 261 | 85.37 353 | 85.08 380 | 72.44 323 | 86.59 387 | 68.05 379 | 91.03 370 | 91.33 367 |
|
| MIMVSNet | | | 87.13 303 | 86.54 302 | 88.89 305 | 96.05 219 | 76.11 324 | 94.39 125 | 88.51 335 | 81.37 291 | 88.27 332 | 96.75 141 | 72.38 324 | 95.52 332 | 65.71 385 | 95.47 301 | 95.03 305 |
|
| PAPM | | | 81.91 342 | 80.11 352 | 87.31 331 | 93.87 299 | 72.32 356 | 84.02 370 | 93.22 288 | 69.47 372 | 76.13 391 | 89.84 344 | 72.15 325 | 97.23 282 | 53.27 393 | 89.02 375 | 92.37 360 |
|
| cl22 | | | 89.02 258 | 88.50 258 | 90.59 269 | 89.76 365 | 76.45 321 | 86.62 347 | 94.03 273 | 82.98 277 | 92.65 244 | 92.49 308 | 72.05 326 | 97.53 266 | 88.93 192 | 97.02 261 | 97.78 189 |
|
| LFMVS | | | 91.33 203 | 91.16 208 | 91.82 222 | 96.27 202 | 79.36 275 | 95.01 104 | 85.61 363 | 96.04 30 | 94.82 174 | 97.06 119 | 72.03 327 | 98.46 188 | 84.96 261 | 98.70 153 | 97.65 200 |
|
| test_cas_vis1_n_1920 | | | 88.25 277 | 88.27 266 | 88.20 320 | 92.19 328 | 78.92 284 | 89.45 292 | 95.44 235 | 75.29 338 | 93.23 224 | 95.65 206 | 71.58 328 | 90.23 377 | 88.05 210 | 93.55 343 | 95.44 297 |
|
| MVS-HIRNet | | | 78.83 357 | 80.60 348 | 73.51 376 | 93.07 311 | 47.37 400 | 87.10 334 | 78.00 392 | 68.94 373 | 77.53 389 | 97.26 103 | 71.45 329 | 94.62 347 | 63.28 388 | 88.74 376 | 78.55 391 |
|
| EPNet_dtu | | | 85.63 313 | 84.37 319 | 89.40 296 | 86.30 388 | 74.33 340 | 91.64 230 | 88.26 337 | 84.84 255 | 72.96 393 | 89.85 343 | 71.27 330 | 97.69 259 | 76.60 339 | 97.62 239 | 96.18 268 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test1111 | | | 90.39 223 | 90.61 219 | 89.74 290 | 98.04 88 | 71.50 359 | 95.59 81 | 79.72 388 | 89.41 164 | 95.94 117 | 98.14 39 | 70.79 331 | 98.81 136 | 88.52 202 | 99.32 68 | 98.90 74 |
|
| ECVR-MVS |  | | 90.12 234 | 90.16 228 | 90.00 286 | 97.81 103 | 72.68 353 | 95.76 75 | 78.54 391 | 89.04 172 | 95.36 148 | 98.10 42 | 70.51 332 | 98.64 168 | 87.10 227 | 99.18 94 | 98.67 105 |
|
| HyFIR lowres test | | | 87.19 301 | 85.51 312 | 92.24 208 | 97.12 147 | 80.51 249 | 85.03 360 | 96.06 209 | 66.11 381 | 91.66 272 | 92.98 298 | 70.12 333 | 99.14 86 | 75.29 346 | 95.23 309 | 97.07 230 |
|
| FMVSNet3 | | | 90.78 210 | 90.32 227 | 92.16 214 | 93.03 314 | 79.92 262 | 92.54 189 | 94.95 251 | 86.17 226 | 95.10 162 | 96.01 188 | 69.97 334 | 98.75 147 | 86.74 231 | 98.38 183 | 97.82 185 |
|
| test_f | | | 86.65 308 | 87.13 291 | 85.19 349 | 90.28 361 | 86.11 170 | 86.52 350 | 91.66 317 | 69.76 370 | 95.73 130 | 97.21 110 | 69.51 335 | 81.28 393 | 89.15 188 | 94.40 326 | 88.17 379 |
|
| RPMNet | | | 90.31 229 | 90.14 231 | 90.81 264 | 91.01 351 | 78.93 282 | 92.52 190 | 98.12 51 | 91.91 101 | 89.10 314 | 96.89 131 | 68.84 336 | 99.41 39 | 90.17 160 | 92.70 355 | 94.08 329 |
|
| test_fmvs1_n | | | 88.73 270 | 88.38 261 | 89.76 289 | 92.06 332 | 82.53 224 | 92.30 204 | 96.59 185 | 71.14 360 | 92.58 247 | 95.41 219 | 68.55 337 | 89.57 381 | 91.12 129 | 95.66 296 | 97.18 229 |
|
| test_fmvs1 | | | 87.59 290 | 87.27 286 | 88.54 312 | 88.32 378 | 81.26 241 | 90.43 262 | 95.72 221 | 70.55 366 | 91.70 271 | 94.63 248 | 68.13 338 | 89.42 382 | 90.59 142 | 95.34 306 | 94.94 310 |
|
| ADS-MVSNet2 | | | 84.01 326 | 82.20 336 | 89.41 295 | 89.04 373 | 76.37 323 | 87.57 323 | 90.98 323 | 72.71 354 | 84.46 362 | 92.45 309 | 68.08 339 | 96.48 310 | 70.58 374 | 83.97 384 | 95.38 298 |
|
| ADS-MVSNet | | | 82.25 337 | 81.55 338 | 84.34 356 | 89.04 373 | 65.30 380 | 87.57 323 | 85.13 370 | 72.71 354 | 84.46 362 | 92.45 309 | 68.08 339 | 92.33 366 | 70.58 374 | 83.97 384 | 95.38 298 |
|
| CVMVSNet | | | 85.16 317 | 84.72 315 | 86.48 338 | 92.12 330 | 70.19 364 | 92.32 202 | 88.17 340 | 56.15 392 | 90.64 289 | 95.85 193 | 67.97 341 | 96.69 305 | 88.78 197 | 90.52 371 | 92.56 358 |
|
| new_pmnet | | | 81.22 345 | 81.01 344 | 81.86 365 | 90.92 353 | 70.15 365 | 84.03 369 | 80.25 387 | 70.83 363 | 85.97 351 | 89.78 348 | 67.93 342 | 84.65 391 | 67.44 381 | 91.90 364 | 90.78 371 |
|
| CR-MVSNet | | | 87.89 281 | 87.12 292 | 90.22 279 | 91.01 351 | 78.93 282 | 92.52 190 | 92.81 294 | 73.08 350 | 89.10 314 | 96.93 128 | 67.11 343 | 97.64 263 | 88.80 196 | 92.70 355 | 94.08 329 |
|
| Patchmtry | | | 90.11 235 | 89.92 234 | 90.66 267 | 90.35 360 | 77.00 311 | 92.96 174 | 92.81 294 | 90.25 151 | 94.74 178 | 96.93 128 | 67.11 343 | 97.52 267 | 85.17 253 | 98.98 114 | 97.46 211 |
|
| PatchmatchNet |  | | 85.22 316 | 84.64 316 | 86.98 334 | 89.51 370 | 69.83 369 | 90.52 257 | 87.34 349 | 78.87 316 | 87.22 345 | 92.74 304 | 66.91 345 | 96.53 307 | 81.77 290 | 86.88 380 | 94.58 321 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| GA-MVS | | | 87.70 285 | 86.82 296 | 90.31 275 | 93.27 308 | 77.22 309 | 84.72 364 | 92.79 296 | 85.11 249 | 89.82 305 | 90.07 342 | 66.80 346 | 97.76 254 | 84.56 266 | 94.27 331 | 95.96 275 |
|
| MDTV_nov1_ep13_2view | | | | | | | 42.48 402 | 88.45 317 | | 67.22 378 | 83.56 369 | | 66.80 346 | | 72.86 360 | | 94.06 331 |
|
| tpmrst | | | 82.85 335 | 82.93 331 | 82.64 363 | 87.65 380 | 58.99 394 | 90.14 271 | 87.90 344 | 75.54 334 | 83.93 366 | 91.63 325 | 66.79 348 | 95.36 338 | 81.21 298 | 81.54 390 | 93.57 347 |
|
| sam_mvs1 | | | | | | | | | | | | | 66.64 349 | | | | 94.75 317 |
|
| sam_mvs | | | | | | | | | | | | | 66.41 350 | | | | |
|
| Patchmatch-RL test | | | 88.81 267 | 88.52 257 | 89.69 292 | 95.33 259 | 79.94 261 | 86.22 351 | 92.71 298 | 78.46 318 | 95.80 124 | 94.18 263 | 66.25 351 | 95.33 340 | 89.22 186 | 98.53 170 | 93.78 338 |
|
| patchmatchnet-post | | | | | | | | | | | | 91.71 323 | 66.22 352 | 97.59 264 | | | |
|
| AUN-MVS | | | 90.05 239 | 88.30 263 | 95.32 88 | 96.09 216 | 90.52 77 | 92.42 197 | 92.05 313 | 82.08 288 | 88.45 329 | 92.86 299 | 65.76 353 | 98.69 161 | 88.91 194 | 96.07 286 | 96.75 247 |
|
| test_post | | | | | | | | | | | | 6.07 398 | 65.74 354 | 95.84 328 | | | |
|
| test_post1 | | | | | | | | 90.21 268 | | | | 5.85 399 | 65.36 355 | 96.00 325 | 79.61 316 | | |
|
| MDTV_nov1_ep13 | | | | 83.88 325 | | 89.42 371 | 61.52 390 | 88.74 312 | 87.41 347 | 73.99 344 | 84.96 360 | 94.01 270 | 65.25 356 | 95.53 331 | 78.02 326 | 93.16 348 | |
|
| Patchmatch-test | | | 86.10 311 | 86.01 308 | 86.38 342 | 90.63 355 | 74.22 342 | 89.57 288 | 86.69 352 | 85.73 234 | 89.81 306 | 92.83 300 | 65.24 357 | 91.04 372 | 77.82 330 | 95.78 294 | 93.88 337 |
|
| tpmvs | | | 84.22 325 | 83.97 323 | 84.94 350 | 87.09 385 | 65.18 381 | 91.21 239 | 88.35 336 | 82.87 278 | 85.21 354 | 90.96 334 | 65.24 357 | 96.75 303 | 79.60 318 | 85.25 383 | 92.90 355 |
|
| EU-MVSNet | | | 87.39 295 | 86.71 299 | 89.44 294 | 93.40 306 | 76.11 324 | 94.93 107 | 90.00 330 | 57.17 391 | 95.71 131 | 97.37 91 | 64.77 359 | 97.68 260 | 92.67 94 | 94.37 328 | 94.52 322 |
|
| thres200 | | | 85.85 312 | 85.18 313 | 87.88 326 | 94.44 285 | 72.52 354 | 89.08 303 | 86.21 355 | 88.57 185 | 91.44 274 | 88.40 363 | 64.22 360 | 98.00 228 | 68.35 378 | 95.88 293 | 93.12 350 |
|
| PatchT | | | 87.51 292 | 88.17 272 | 85.55 345 | 90.64 354 | 66.91 374 | 92.02 213 | 86.09 357 | 92.20 93 | 89.05 316 | 97.16 112 | 64.15 361 | 96.37 316 | 89.21 187 | 92.98 353 | 93.37 348 |
|
| tfpn200view9 | | | 87.05 304 | 86.52 303 | 88.67 309 | 95.77 237 | 72.94 350 | 91.89 220 | 86.00 358 | 90.84 135 | 92.61 245 | 89.80 345 | 63.93 362 | 98.28 202 | 71.27 369 | 96.54 279 | 94.79 315 |
|
| thres400 | | | 87.20 300 | 86.52 303 | 89.24 301 | 95.77 237 | 72.94 350 | 91.89 220 | 86.00 358 | 90.84 135 | 92.61 245 | 89.80 345 | 63.93 362 | 98.28 202 | 71.27 369 | 96.54 279 | 96.51 252 |
|
| FPMVS | | | 84.50 323 | 83.28 327 | 88.16 321 | 96.32 197 | 94.49 16 | 85.76 354 | 85.47 364 | 83.09 274 | 85.20 355 | 94.26 259 | 63.79 364 | 86.58 388 | 63.72 387 | 91.88 365 | 83.40 386 |
|
| thres100view900 | | | 87.35 296 | 86.89 295 | 88.72 308 | 96.14 213 | 73.09 349 | 93.00 173 | 85.31 366 | 92.13 95 | 93.26 221 | 90.96 334 | 63.42 365 | 98.28 202 | 71.27 369 | 96.54 279 | 94.79 315 |
|
| thres600view7 | | | 87.66 287 | 87.10 293 | 89.36 297 | 96.05 219 | 73.17 347 | 92.72 181 | 85.31 366 | 91.89 102 | 93.29 218 | 90.97 333 | 63.42 365 | 98.39 191 | 73.23 357 | 96.99 266 | 96.51 252 |
|
| EMVS | | | 80.35 352 | 80.28 351 | 80.54 369 | 84.73 394 | 69.07 370 | 72.54 388 | 80.73 384 | 87.80 200 | 81.66 381 | 81.73 386 | 62.89 367 | 89.84 378 | 75.79 345 | 94.65 323 | 82.71 388 |
|
| test-LLR | | | 83.58 329 | 83.17 328 | 84.79 352 | 89.68 367 | 66.86 375 | 83.08 373 | 84.52 371 | 83.07 275 | 82.85 373 | 84.78 381 | 62.86 368 | 93.49 360 | 82.85 277 | 94.86 316 | 94.03 332 |
|
| test0.0.03 1 | | | 82.48 336 | 81.47 340 | 85.48 346 | 89.70 366 | 73.57 346 | 84.73 362 | 81.64 380 | 83.07 275 | 88.13 334 | 86.61 372 | 62.86 368 | 89.10 384 | 66.24 384 | 90.29 372 | 93.77 339 |
|
| tpm cat1 | | | 80.61 351 | 79.46 354 | 84.07 358 | 88.78 375 | 65.06 384 | 89.26 299 | 88.23 338 | 62.27 388 | 81.90 380 | 89.66 351 | 62.70 370 | 95.29 341 | 71.72 365 | 80.60 391 | 91.86 365 |
|
| E-PMN | | | 80.72 350 | 80.86 345 | 80.29 370 | 85.11 392 | 68.77 371 | 72.96 386 | 81.97 379 | 87.76 202 | 83.25 372 | 83.01 385 | 62.22 371 | 89.17 383 | 77.15 336 | 94.31 330 | 82.93 387 |
|
| baseline2 | | | 83.38 330 | 81.54 339 | 88.90 304 | 91.38 346 | 72.84 352 | 88.78 310 | 81.22 383 | 78.97 314 | 79.82 386 | 87.56 366 | 61.73 372 | 97.80 247 | 74.30 352 | 90.05 373 | 96.05 273 |
|
| CostFormer | | | 83.09 332 | 82.21 335 | 85.73 344 | 89.27 372 | 67.01 373 | 90.35 264 | 86.47 354 | 70.42 367 | 83.52 370 | 93.23 293 | 61.18 373 | 96.85 300 | 77.21 335 | 88.26 378 | 93.34 349 |
|
| MVSTER | | | 89.32 252 | 88.75 255 | 91.03 253 | 90.10 363 | 76.62 319 | 90.85 246 | 94.67 262 | 82.27 286 | 95.24 157 | 95.79 197 | 61.09 374 | 98.49 183 | 90.49 144 | 98.26 195 | 97.97 168 |
|
| tpm | | | 84.38 324 | 84.08 322 | 85.30 348 | 90.47 358 | 63.43 388 | 89.34 296 | 85.63 362 | 77.24 326 | 87.62 340 | 95.03 233 | 61.00 375 | 97.30 280 | 79.26 320 | 91.09 369 | 95.16 301 |
|
| FE-MVS | | | 89.06 257 | 88.29 264 | 91.36 240 | 94.78 272 | 79.57 271 | 96.77 28 | 90.99 322 | 84.87 254 | 92.96 234 | 96.29 172 | 60.69 376 | 98.80 139 | 80.18 307 | 97.11 258 | 95.71 287 |
|
| EPMVS | | | 81.17 347 | 80.37 349 | 83.58 360 | 85.58 391 | 65.08 383 | 90.31 266 | 71.34 396 | 77.31 325 | 85.80 352 | 91.30 328 | 59.38 377 | 92.70 365 | 79.99 309 | 82.34 389 | 92.96 354 |
|
| tmp_tt | | | 37.97 362 | 44.33 365 | 18.88 379 | 11.80 401 | 21.54 403 | 63.51 390 | 45.66 403 | 4.23 396 | 51.34 396 | 50.48 394 | 59.08 378 | 22.11 398 | 44.50 396 | 68.35 394 | 13.00 394 |
|
| tpm2 | | | 81.46 343 | 80.35 350 | 84.80 351 | 89.90 364 | 65.14 382 | 90.44 259 | 85.36 365 | 65.82 383 | 82.05 378 | 92.44 311 | 57.94 379 | 96.69 305 | 70.71 373 | 88.49 377 | 92.56 358 |
|
| ET-MVSNet_ETH3D | | | 86.15 310 | 84.27 321 | 91.79 223 | 93.04 313 | 81.28 240 | 87.17 333 | 86.14 356 | 79.57 306 | 83.65 367 | 88.66 359 | 57.10 380 | 98.18 213 | 87.74 217 | 95.40 303 | 95.90 280 |
|
| CHOSEN 280x420 | | | 80.04 353 | 77.97 360 | 86.23 343 | 90.13 362 | 74.53 337 | 72.87 387 | 89.59 331 | 66.38 380 | 76.29 390 | 85.32 379 | 56.96 381 | 95.36 338 | 69.49 377 | 94.72 321 | 88.79 377 |
|
| JIA-IIPM | | | 85.08 318 | 83.04 329 | 91.19 250 | 87.56 381 | 86.14 169 | 89.40 295 | 84.44 373 | 88.98 174 | 82.20 376 | 97.95 54 | 56.82 382 | 96.15 320 | 76.55 340 | 83.45 386 | 91.30 368 |
|
| DeepMVS_CX |  | | | | 53.83 378 | 70.38 399 | 64.56 385 | | 48.52 402 | 33.01 394 | 65.50 395 | 74.21 393 | 56.19 383 | 46.64 397 | 38.45 397 | 70.07 393 | 50.30 393 |
|
| dp | | | 79.28 355 | 78.62 357 | 81.24 368 | 85.97 390 | 56.45 395 | 86.91 337 | 85.26 368 | 72.97 352 | 81.45 383 | 89.17 358 | 56.01 384 | 95.45 336 | 73.19 358 | 76.68 392 | 91.82 366 |
|
| iter_conf_final | | | 90.23 230 | 89.32 243 | 92.95 181 | 94.65 281 | 81.46 238 | 94.32 130 | 95.40 240 | 85.61 238 | 92.84 237 | 95.37 222 | 54.58 385 | 99.13 88 | 92.16 102 | 98.94 124 | 98.25 139 |
|
| test_method | | | 50.44 361 | 48.94 364 | 54.93 377 | 39.68 400 | 12.38 404 | 28.59 392 | 90.09 329 | 6.82 395 | 41.10 397 | 78.41 390 | 54.41 386 | 70.69 396 | 50.12 394 | 51.26 396 | 81.72 390 |
|
| thisisatest0515 | | | 84.72 321 | 82.99 330 | 89.90 287 | 92.96 315 | 75.33 332 | 84.36 367 | 83.42 376 | 77.37 324 | 88.27 332 | 86.65 371 | 53.94 387 | 98.72 152 | 82.56 281 | 97.40 249 | 95.67 290 |
|
| tttt0517 | | | 89.81 244 | 88.90 253 | 92.55 201 | 97.00 149 | 79.73 268 | 95.03 103 | 83.65 375 | 89.88 156 | 95.30 151 | 94.79 243 | 53.64 388 | 99.39 49 | 91.99 108 | 98.79 143 | 98.54 120 |
|
| thisisatest0530 | | | 88.69 271 | 87.52 282 | 92.20 209 | 96.33 196 | 79.36 275 | 92.81 178 | 84.01 374 | 86.44 220 | 93.67 207 | 92.68 306 | 53.62 389 | 99.25 75 | 89.65 174 | 98.45 177 | 98.00 161 |
|
| FMVSNet5 | | | 87.82 284 | 86.56 301 | 91.62 231 | 92.31 322 | 79.81 266 | 93.49 158 | 94.81 257 | 83.26 269 | 91.36 275 | 96.93 128 | 52.77 390 | 97.49 270 | 76.07 342 | 98.03 217 | 97.55 207 |
|
| pmmvs3 | | | 80.83 349 | 78.96 356 | 86.45 339 | 87.23 384 | 77.48 305 | 84.87 361 | 82.31 378 | 63.83 386 | 85.03 358 | 89.50 352 | 49.66 391 | 93.10 362 | 73.12 359 | 95.10 311 | 88.78 378 |
|
| iter_conf05 | | | 88.94 264 | 88.09 274 | 91.50 236 | 92.74 317 | 76.97 314 | 92.80 179 | 95.92 215 | 82.82 279 | 93.65 208 | 95.37 222 | 49.41 392 | 99.13 88 | 90.82 136 | 99.28 79 | 98.40 130 |
|
| IB-MVS | | 77.21 19 | 83.11 331 | 81.05 342 | 89.29 298 | 91.15 349 | 75.85 327 | 85.66 355 | 86.00 358 | 79.70 304 | 82.02 379 | 86.61 372 | 48.26 393 | 98.39 191 | 77.84 328 | 92.22 360 | 93.63 343 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| gg-mvs-nofinetune | | | 82.10 341 | 81.02 343 | 85.34 347 | 87.46 383 | 71.04 360 | 94.74 111 | 67.56 397 | 96.44 23 | 79.43 387 | 98.99 6 | 45.24 394 | 96.15 320 | 67.18 382 | 92.17 361 | 88.85 376 |
|
| GG-mvs-BLEND | | | | | 83.24 362 | 85.06 393 | 71.03 361 | 94.99 106 | 65.55 398 | | 74.09 392 | 75.51 392 | 44.57 395 | 94.46 350 | 59.57 390 | 87.54 379 | 84.24 385 |
|
| TESTMET0.1,1 | | | 79.09 356 | 78.04 359 | 82.25 364 | 87.52 382 | 64.03 387 | 83.08 373 | 80.62 385 | 70.28 368 | 80.16 385 | 83.22 384 | 44.13 396 | 90.56 374 | 79.95 310 | 93.36 344 | 92.15 361 |
|
| test-mter | | | 81.21 346 | 80.01 353 | 84.79 352 | 89.68 367 | 66.86 375 | 83.08 373 | 84.52 371 | 73.85 345 | 82.85 373 | 84.78 381 | 43.66 397 | 93.49 360 | 82.85 277 | 94.86 316 | 94.03 332 |
|
| KD-MVS_2432*1600 | | | 82.17 339 | 80.75 346 | 86.42 340 | 82.04 397 | 70.09 366 | 81.75 378 | 90.80 325 | 82.56 281 | 90.37 294 | 89.30 354 | 42.90 398 | 96.11 322 | 74.47 350 | 92.55 357 | 93.06 351 |
|
| miper_refine_blended | | | 82.17 339 | 80.75 346 | 86.42 340 | 82.04 397 | 70.09 366 | 81.75 378 | 90.80 325 | 82.56 281 | 90.37 294 | 89.30 354 | 42.90 398 | 96.11 322 | 74.47 350 | 92.55 357 | 93.06 351 |
|
| test2506 | | | 85.42 315 | 84.57 318 | 87.96 323 | 97.81 103 | 66.53 377 | 96.14 58 | 56.35 400 | 89.04 172 | 93.55 211 | 98.10 42 | 42.88 400 | 98.68 163 | 88.09 209 | 99.18 94 | 98.67 105 |
|
| myMVS_eth3d | | | 79.62 354 | 78.26 358 | 83.72 359 | 91.71 341 | 61.25 391 | 85.89 352 | 81.49 381 | 81.03 292 | 85.13 356 | 81.64 387 | 32.12 401 | 95.00 344 | 71.17 372 | 94.12 335 | 94.91 311 |
|
| testing3 | | | 83.66 328 | 82.52 333 | 87.08 332 | 95.84 233 | 65.84 379 | 89.80 283 | 77.17 394 | 88.17 193 | 90.84 285 | 88.63 360 | 30.95 402 | 98.11 218 | 84.05 269 | 97.19 255 | 97.28 226 |
|
| test123 | | | 9.49 364 | 12.01 367 | 1.91 380 | 2.87 402 | 1.30 405 | 82.38 376 | 1.34 405 | 1.36 398 | 2.84 399 | 6.56 397 | 2.45 403 | 0.97 399 | 2.73 398 | 5.56 397 | 3.47 395 |
|
| testmvs | | | 9.02 365 | 11.42 368 | 1.81 381 | 2.77 403 | 1.13 406 | 79.44 383 | 1.90 404 | 1.18 399 | 2.65 400 | 6.80 396 | 1.95 404 | 0.87 400 | 2.62 399 | 3.45 398 | 3.44 396 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 7.56 366 | 10.08 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 90.69 339 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| WAC-MVS | | | | | | | 61.25 391 | | | | | | | | 74.55 349 | | |
|
| FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 8 | 97.73 6 | 98.27 20 | | | | | | |
|
| MSC_two_6792asdad | | | | | 95.90 65 | 96.54 179 | 89.57 88 | | 96.87 167 | | | | | 99.41 39 | 94.06 43 | 99.30 71 | 98.72 97 |
|
| No_MVS | | | | | 95.90 65 | 96.54 179 | 89.57 88 | | 96.87 167 | | | | | 99.41 39 | 94.06 43 | 99.30 71 | 98.72 97 |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 98.51 51 | 86.66 154 | | 96.83 170 | 72.74 353 | 95.83 123 | | | | 93.00 85 | 99.29 74 | 98.64 112 |
|
| save fliter | | | | | | 97.46 130 | 88.05 124 | 92.04 212 | 97.08 150 | 87.63 206 | | | | | | | |
|
| test_0728_SECOND | | | | | 94.88 104 | 98.55 45 | 86.72 151 | 95.20 96 | 98.22 36 | | | | | 99.38 55 | 93.44 66 | 99.31 69 | 98.53 121 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.75 317 |
|
| test_part2 | | | | | | 98.21 75 | 89.41 93 | | | | 96.72 81 | | | | | | |
|
| MTGPA |  | | | | | | | | 97.62 105 | | | | | | | | |
|
| MTMP | | | | | | | | 94.82 109 | 54.62 401 | | | | | | | | |
|
| gm-plane-assit | | | | | | 87.08 386 | 59.33 393 | | | 71.22 359 | | 83.58 383 | | 97.20 284 | 73.95 353 | | |
|
| test9_res | | | | | | | | | | | | | | | 88.16 207 | 98.40 179 | 97.83 183 |
|
| agg_prior2 | | | | | | | | | | | | | | | 87.06 229 | 98.36 188 | 97.98 165 |
|
| agg_prior | | | | | | 96.20 208 | 88.89 106 | | 96.88 166 | | 90.21 297 | | | 98.78 143 | | | |
|
| test_prior4 | | | | | | | 89.91 82 | 90.74 250 | | | | | | | | | |
|
| test_prior | | | | | 94.61 118 | 95.95 227 | 87.23 137 | | 97.36 128 | | | | | 98.68 163 | | | 97.93 171 |
|
| 旧先验2 | | | | | | | | 90.00 276 | | 68.65 374 | 92.71 243 | | | 96.52 308 | 85.15 255 | | |
|
| 新几何2 | | | | | | | | 90.02 275 | | | | | | | | | |
|
| 无先验 | | | | | | | | 89.94 277 | 95.75 220 | 70.81 364 | | | | 98.59 174 | 81.17 299 | | 94.81 313 |
|
| 原ACMM2 | | | | | | | | 89.34 296 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.03 223 | 80.24 306 | | |
|
| testdata1 | | | | | | | | 88.96 305 | | 88.44 187 | | | | | | | |
|
| plane_prior7 | | | | | | 97.71 112 | 88.68 109 | | | | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.81 91 | | | | | 98.95 114 | 89.26 184 | 98.51 173 | 98.60 117 |
|
| plane_prior4 | | | | | | | | | | | | 95.59 207 | | | | | |
|
| plane_prior3 | | | | | | | 88.43 119 | | | 90.35 150 | 93.31 216 | | | | | | |
|
| plane_prior2 | | | | | | | | 94.56 120 | | 91.74 115 | | | | | | | |
|
| plane_prior1 | | | | | | 97.38 132 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 88.12 122 | 93.01 172 | | 88.98 174 | | | | | | 98.06 214 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 92.13 311 | | | | | | | | |
|
| test11 | | | | | | | | | 96.65 181 | | | | | | | | |
|
| door | | | | | | | | | 91.26 320 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 84.89 190 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 96.36 191 | | 91.37 234 | | 87.16 212 | 88.81 319 | | | | | | |
|
| ACMP_Plane | | | | | | 96.36 191 | | 91.37 234 | | 87.16 212 | 88.81 319 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 86.55 238 | | |
|
| HQP4-MVS | | | | | | | | | | | 88.81 319 | | | 98.61 170 | | | 98.15 148 |
|
| HQP3-MVS | | | | | | | | | 97.31 132 | | | | | | | 97.73 232 | |
|
| NP-MVS | | | | | | 96.82 162 | 87.10 141 | | | | | 93.40 288 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 139 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.25 83 | |
|