LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
XVG-OURS-SEG-HR | | | 95.38 75 | 95.00 95 | 96.51 46 | 98.10 81 | 94.07 20 | 92.46 183 | 98.13 46 | 90.69 134 | 93.75 191 | 96.25 162 | 98.03 2 | 97.02 281 | 92.08 94 | 95.55 283 | 98.45 117 |
|
pmmvs6 | | | 96.80 12 | 97.36 9 | 95.15 93 | 99.12 8 | 87.82 125 | 96.68 30 | 97.86 80 | 96.10 27 | 98.14 23 | 99.28 3 | 97.94 3 | 98.21 204 | 91.38 116 | 99.69 14 | 99.42 19 |
|
UniMVSNet_ETH3D | | | 97.13 5 | 97.72 3 | 95.35 84 | 99.51 2 | 87.38 129 | 97.70 8 | 97.54 107 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 92 | 90.73 128 | 99.73 13 | 99.59 13 |
|
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 134 | 98.56 42 | 85.33 178 | 96.33 47 | 98.30 23 | 94.66 40 | 98.72 8 | 98.30 32 | 97.51 5 | 98.00 222 | 94.87 18 | 99.59 28 | 98.86 74 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HPM-MVS_fast | | | 97.01 6 | 96.89 14 | 97.39 21 | 99.12 8 | 93.92 28 | 97.16 14 | 98.17 41 | 93.11 69 | 96.48 84 | 97.36 82 | 96.92 6 | 99.34 61 | 94.31 27 | 99.38 57 | 98.92 68 |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 15 | 95.47 81 | 98.54 48 | 89.06 98 | 95.65 79 | 98.61 11 | 96.10 27 | 98.16 22 | 97.52 70 | 96.90 7 | 98.62 167 | 90.30 142 | 99.60 26 | 98.72 92 |
|
HPM-MVS |  | | 96.81 11 | 96.62 22 | 97.36 23 | 98.89 20 | 93.53 38 | 97.51 10 | 98.44 13 | 92.35 82 | 95.95 109 | 96.41 145 | 96.71 8 | 99.42 32 | 93.99 34 | 99.36 58 | 99.13 41 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mvs_tets | | | 96.83 8 | 96.71 18 | 97.17 27 | 98.83 25 | 92.51 48 | 96.58 33 | 97.61 102 | 87.57 201 | 98.80 7 | 98.90 9 | 96.50 9 | 99.59 13 | 96.15 7 | 99.47 41 | 99.40 21 |
|
SED-MVS | | | 96.00 51 | 96.41 32 | 94.76 105 | 98.51 51 | 86.97 139 | 95.21 94 | 98.10 50 | 91.95 92 | 97.63 34 | 97.25 91 | 96.48 10 | 99.35 58 | 93.29 62 | 99.29 70 | 97.95 156 |
|
test_241102_ONE | | | | | | 98.51 51 | 86.97 139 | | 98.10 50 | 91.85 98 | 97.63 34 | 97.03 107 | 96.48 10 | 98.95 112 | | | |
|
LPG-MVS_test | | | 96.38 39 | 96.23 39 | 96.84 38 | 98.36 66 | 92.13 52 | 95.33 90 | 98.25 27 | 91.78 105 | 97.07 59 | 97.22 95 | 96.38 12 | 99.28 70 | 92.07 95 | 99.59 28 | 99.11 44 |
|
LGP-MVS_train | | | | | 96.84 38 | 98.36 66 | 92.13 52 | | 98.25 27 | 91.78 105 | 97.07 59 | 97.22 95 | 96.38 12 | 99.28 70 | 92.07 95 | 99.59 28 | 99.11 44 |
|
ACMM | | 88.83 9 | 96.30 42 | 96.07 49 | 96.97 34 | 98.39 62 | 92.95 44 | 94.74 111 | 98.03 64 | 90.82 131 | 97.15 56 | 96.85 118 | 96.25 14 | 99.00 104 | 93.10 70 | 99.33 62 | 98.95 62 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
wuyk23d | | | 87.83 269 | 90.79 201 | 78.96 353 | 90.46 340 | 88.63 107 | 92.72 170 | 90.67 315 | 91.65 113 | 98.68 11 | 97.64 63 | 96.06 15 | 77.53 374 | 59.84 369 | 99.41 54 | 70.73 372 |
|
testf1 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 18 | 94.96 36 | 97.30 51 | 97.93 48 | 96.05 16 | 97.90 229 | 89.32 167 | 99.23 82 | 98.19 133 |
|
APD_test2 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 18 | 94.96 36 | 97.30 51 | 97.93 48 | 96.05 16 | 97.90 229 | 89.32 167 | 99.23 82 | 98.19 133 |
|
ACMP | | 88.15 13 | 95.71 61 | 95.43 76 | 96.54 45 | 98.17 77 | 91.73 60 | 94.24 130 | 98.08 53 | 89.46 158 | 96.61 81 | 96.47 141 | 95.85 18 | 99.12 89 | 90.45 134 | 99.56 34 | 98.77 86 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
TransMVSNet (Re) | | | 95.27 84 | 96.04 51 | 92.97 169 | 98.37 65 | 81.92 218 | 95.07 101 | 96.76 171 | 93.97 52 | 97.77 30 | 98.57 20 | 95.72 19 | 97.90 229 | 88.89 184 | 99.23 82 | 99.08 48 |
|
ZNCC-MVS | | | 96.42 35 | 96.20 41 | 97.07 30 | 98.80 30 | 92.79 46 | 96.08 61 | 98.16 44 | 91.74 109 | 95.34 137 | 96.36 153 | 95.68 20 | 99.44 28 | 94.41 25 | 99.28 75 | 98.97 60 |
|
ACMMP_NAP | | | 96.21 44 | 96.12 46 | 96.49 48 | 98.90 19 | 91.42 63 | 94.57 119 | 98.03 64 | 90.42 142 | 96.37 87 | 97.35 85 | 95.68 20 | 99.25 73 | 94.44 24 | 99.34 60 | 98.80 82 |
|
APD-MVS_3200maxsize | | | 96.82 9 | 96.65 20 | 97.32 25 | 97.95 95 | 93.82 33 | 96.31 50 | 98.25 27 | 95.51 34 | 96.99 66 | 97.05 106 | 95.63 22 | 99.39 48 | 93.31 61 | 98.88 121 | 98.75 87 |
|
DVP-MVS |  | | 95.82 57 | 96.18 42 | 94.72 107 | 98.51 51 | 86.69 147 | 95.20 96 | 97.00 150 | 91.85 98 | 97.40 49 | 97.35 85 | 95.58 23 | 99.34 61 | 93.44 55 | 99.31 65 | 98.13 138 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.51 51 | 86.69 147 | 95.34 89 | 98.18 37 | 91.85 98 | 97.63 34 | 97.37 79 | 95.58 23 | | | | |
|
MP-MVS-pluss | | | 96.08 48 | 95.92 57 | 96.57 44 | 99.06 10 | 91.21 65 | 93.25 157 | 98.32 20 | 87.89 192 | 96.86 70 | 97.38 78 | 95.55 25 | 99.39 48 | 95.47 13 | 99.47 41 | 99.11 44 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 22 | 97.13 28 | 98.38 63 | 94.31 17 | 96.79 26 | 98.32 20 | 96.69 17 | 96.86 70 | 97.56 67 | 95.48 26 | 98.77 144 | 90.11 151 | 99.44 48 | 98.31 125 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SD-MVS | | | 95.19 85 | 95.73 66 | 93.55 152 | 96.62 163 | 88.88 104 | 94.67 113 | 98.05 59 | 91.26 120 | 97.25 55 | 96.40 146 | 95.42 27 | 94.36 336 | 92.72 82 | 99.19 88 | 97.40 204 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
RE-MVS-def | | | | 96.66 19 | | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 47 | 95.66 32 | 97.00 64 | 97.03 107 | 95.40 28 | | 93.49 49 | 98.84 126 | 98.00 148 |
|
test_241102_TWO | | | | | | | | | 98.10 50 | 91.95 92 | 97.54 38 | 97.25 91 | 95.37 29 | 99.35 58 | 93.29 62 | 99.25 79 | 98.49 114 |
|
HFP-MVS | | | 96.39 38 | 96.17 44 | 97.04 31 | 98.51 51 | 93.37 39 | 96.30 54 | 97.98 70 | 92.35 82 | 95.63 125 | 96.47 141 | 95.37 29 | 99.27 72 | 93.78 39 | 99.14 95 | 98.48 115 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 31 | 92.49 49 | 96.44 41 | 97.42 116 | 86.96 210 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 17 | 95.92 8 | 99.45 45 | 99.32 27 |
|
TranMVSNet+NR-MVSNet | | | 96.07 49 | 96.26 38 | 95.50 80 | 98.26 71 | 87.69 126 | 93.75 146 | 97.86 80 | 95.96 31 | 97.48 44 | 97.14 101 | 95.33 32 | 99.44 28 | 90.79 126 | 99.76 10 | 99.38 22 |
|
PMVS |  | 87.21 14 | 94.97 90 | 95.33 81 | 93.91 141 | 98.97 17 | 97.16 2 | 95.54 85 | 95.85 212 | 96.47 22 | 93.40 202 | 97.46 75 | 95.31 33 | 95.47 320 | 86.18 232 | 98.78 137 | 89.11 356 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
pm-mvs1 | | | 95.43 71 | 95.94 54 | 93.93 140 | 98.38 63 | 85.08 181 | 95.46 87 | 97.12 143 | 91.84 101 | 97.28 53 | 98.46 27 | 95.30 34 | 97.71 251 | 90.17 149 | 99.42 50 | 98.99 55 |
|
PGM-MVS | | | 96.32 40 | 95.94 54 | 97.43 18 | 98.59 41 | 93.84 32 | 95.33 90 | 98.30 23 | 91.40 118 | 95.76 118 | 96.87 117 | 95.26 35 | 99.45 26 | 92.77 78 | 99.21 86 | 99.00 53 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 122 | 99.13 6 | 84.09 193 | 96.61 32 | 97.97 72 | 97.91 5 | 98.64 13 | 98.13 37 | 95.24 36 | 99.65 3 | 93.39 59 | 99.84 3 | 99.72 2 |
|
GST-MVS | | | 96.24 43 | 95.99 53 | 97.00 33 | 98.65 34 | 92.71 47 | 95.69 78 | 98.01 67 | 92.08 90 | 95.74 120 | 96.28 159 | 95.22 37 | 99.42 32 | 93.17 68 | 99.06 99 | 98.88 73 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 28 | 93.86 31 | 99.07 2 | 98.98 6 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 168 | 96.85 2 | 99.77 9 | 99.31 28 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DPE-MVS |  | | 95.89 54 | 95.88 58 | 95.92 64 | 97.93 96 | 89.83 85 | 93.46 153 | 98.30 23 | 92.37 80 | 97.75 31 | 96.95 111 | 95.14 39 | 99.51 20 | 91.74 105 | 99.28 75 | 98.41 119 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_one_0601 | | | | | | 98.26 71 | 87.14 134 | | 98.18 37 | 94.25 45 | 96.99 66 | 97.36 82 | 95.13 40 | | | | |
|
nrg030 | | | 96.32 40 | 96.55 25 | 95.62 76 | 97.83 99 | 88.55 111 | 95.77 74 | 98.29 26 | 92.68 73 | 98.03 25 | 97.91 52 | 95.13 40 | 98.95 112 | 93.85 37 | 99.49 40 | 99.36 24 |
|
APDe-MVS | | | 96.46 31 | 96.64 21 | 95.93 62 | 97.68 112 | 89.38 95 | 96.90 22 | 98.41 16 | 92.52 77 | 97.43 46 | 97.92 51 | 95.11 42 | 99.50 21 | 94.45 23 | 99.30 67 | 98.92 68 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 18 | 98.61 38 | 93.88 29 | 96.95 21 | 98.18 37 | 92.26 85 | 96.33 89 | 96.84 120 | 95.10 43 | 99.40 45 | 93.47 52 | 99.33 62 | 99.02 52 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 85 | 94.69 11 | 96.13 59 | 98.07 56 | 95.17 35 | 96.82 72 | 96.73 129 | 95.09 44 | 99.43 31 | 92.99 75 | 98.71 143 | 98.50 112 |
|
OPM-MVS | | | 95.61 64 | 95.45 74 | 96.08 54 | 98.49 58 | 91.00 68 | 92.65 175 | 97.33 126 | 90.05 147 | 96.77 75 | 96.85 118 | 95.04 45 | 98.56 175 | 92.77 78 | 99.06 99 | 98.70 95 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 109 | 99.13 6 | 84.68 184 | 96.51 35 | 97.94 78 | 98.14 3 | 98.67 12 | 98.32 31 | 95.04 45 | 99.69 2 | 93.27 64 | 99.82 7 | 99.62 10 |
|
region2R | | | 96.41 36 | 96.09 47 | 97.38 22 | 98.62 36 | 93.81 35 | 96.32 49 | 97.96 73 | 92.26 85 | 95.28 141 | 96.57 138 | 95.02 47 | 99.41 38 | 93.63 43 | 99.11 97 | 98.94 63 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 112 | 99.16 4 | 84.50 185 | 96.54 34 | 98.05 59 | 98.06 4 | 98.64 13 | 98.25 33 | 95.01 48 | 99.65 3 | 92.95 76 | 99.83 5 | 99.68 4 |
|
SteuartSystems-ACMMP | | | 96.40 37 | 96.30 36 | 96.71 40 | 98.63 35 | 91.96 55 | 95.70 76 | 98.01 67 | 93.34 65 | 96.64 79 | 96.57 138 | 94.99 49 | 99.36 57 | 93.48 51 | 99.34 60 | 98.82 78 |
Skip Steuart: Steuart Systems R&D Blog. |
canonicalmvs | | | 94.59 103 | 94.69 105 | 94.30 128 | 95.60 234 | 87.03 138 | 95.59 81 | 98.24 30 | 91.56 115 | 95.21 147 | 92.04 304 | 94.95 50 | 98.66 163 | 91.45 114 | 97.57 229 | 97.20 213 |
|
ACMMPR | | | 96.46 31 | 96.14 45 | 97.41 20 | 98.60 39 | 93.82 33 | 96.30 54 | 97.96 73 | 92.35 82 | 95.57 127 | 96.61 136 | 94.93 51 | 99.41 38 | 93.78 39 | 99.15 94 | 99.00 53 |
|
tt0805 | | | 95.42 73 | 95.93 56 | 93.86 144 | 98.75 32 | 88.47 113 | 97.68 9 | 94.29 256 | 96.48 21 | 95.38 133 | 93.63 266 | 94.89 52 | 97.94 228 | 95.38 16 | 96.92 252 | 95.17 284 |
|
SR-MVS-dyc-post | | | 96.84 7 | 96.60 24 | 97.56 10 | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 47 | 95.66 32 | 97.00 64 | 97.03 107 | 94.85 53 | 99.42 32 | 93.49 49 | 98.84 126 | 98.00 148 |
|
casdiffmvs_mvg |  | | 95.10 87 | 95.62 69 | 93.53 155 | 96.25 192 | 83.23 202 | 92.66 174 | 98.19 35 | 93.06 70 | 97.49 42 | 97.15 100 | 94.78 54 | 98.71 156 | 92.27 90 | 98.72 142 | 98.65 98 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CP-MVS | | | 96.44 34 | 96.08 48 | 97.54 11 | 98.29 68 | 94.62 14 | 96.80 25 | 98.08 53 | 92.67 75 | 95.08 152 | 96.39 150 | 94.77 55 | 99.42 32 | 93.17 68 | 99.44 48 | 98.58 109 |
|
test_0728_THIRD | | | | | | | | | | 93.26 66 | 97.40 49 | 97.35 85 | 94.69 56 | 99.34 61 | 93.88 35 | 99.42 50 | 98.89 71 |
|
9.14 | | | | 94.81 99 | | 97.49 123 | | 94.11 135 | 98.37 17 | 87.56 202 | 95.38 133 | 96.03 172 | 94.66 57 | 99.08 92 | 90.70 129 | 98.97 113 | |
|
GeoE | | | 94.55 105 | 94.68 107 | 94.15 131 | 97.23 133 | 85.11 180 | 94.14 134 | 97.34 125 | 88.71 176 | 95.26 142 | 95.50 196 | 94.65 58 | 99.12 89 | 90.94 123 | 98.40 169 | 98.23 129 |
|
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 8 | 98.61 3 | 98.81 8 | 97.41 10 | 97.28 53 | 98.46 27 | 94.62 59 | 98.84 127 | 94.64 21 | 99.53 36 | 98.99 55 |
|
XVS | | | 96.49 29 | 96.18 42 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 75 | 94.58 41 | 94.38 174 | 96.49 140 | 94.56 60 | 99.39 48 | 93.57 45 | 99.05 102 | 98.93 64 |
|
X-MVStestdata | | | 90.70 201 | 88.45 246 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 75 | 94.58 41 | 94.38 174 | 26.89 375 | 94.56 60 | 99.39 48 | 93.57 45 | 99.05 102 | 98.93 64 |
|
mPP-MVS | | | 96.46 31 | 96.05 50 | 97.69 4 | 98.62 36 | 94.65 13 | 96.45 39 | 97.74 93 | 92.59 76 | 95.47 129 | 96.68 132 | 94.50 62 | 99.42 32 | 93.10 70 | 99.26 78 | 98.99 55 |
|
DeepC-MVS | | 91.39 4 | 95.43 71 | 95.33 81 | 95.71 74 | 97.67 113 | 90.17 80 | 93.86 143 | 98.02 66 | 87.35 203 | 96.22 99 | 97.99 46 | 94.48 63 | 99.05 97 | 92.73 81 | 99.68 18 | 97.93 158 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SMA-MVS |  | | 95.77 58 | 95.54 72 | 96.47 49 | 98.27 70 | 91.19 66 | 95.09 99 | 97.79 90 | 86.48 213 | 97.42 48 | 97.51 72 | 94.47 64 | 99.29 68 | 93.55 47 | 99.29 70 | 98.93 64 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 95.88 55 | 95.88 58 | 95.87 68 | 98.12 79 | 89.65 87 | 95.58 83 | 98.56 12 | 91.84 101 | 96.36 88 | 96.68 132 | 94.37 65 | 99.32 67 | 92.41 88 | 99.05 102 | 98.64 103 |
|
MP-MVS |  | | 96.14 46 | 95.68 67 | 97.51 13 | 98.81 28 | 94.06 21 | 96.10 60 | 97.78 91 | 92.73 72 | 93.48 199 | 96.72 130 | 94.23 66 | 99.42 32 | 91.99 97 | 99.29 70 | 99.05 50 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 6 | 98.00 91 | 94.03 25 | 96.97 20 | 97.61 102 | 87.68 199 | 98.45 18 | 98.77 15 | 94.20 67 | 99.50 21 | 96.70 3 | 99.40 55 | 99.53 15 |
|
test_0402 | | | 95.73 60 | 96.22 40 | 94.26 129 | 98.19 76 | 85.77 172 | 93.24 158 | 97.24 134 | 96.88 16 | 97.69 32 | 97.77 58 | 94.12 68 | 99.13 86 | 91.54 113 | 99.29 70 | 97.88 164 |
|
Effi-MVS+ | | | 92.79 155 | 92.74 154 | 92.94 173 | 95.10 247 | 83.30 201 | 94.00 138 | 97.53 109 | 91.36 119 | 89.35 296 | 90.65 326 | 94.01 69 | 98.66 163 | 87.40 210 | 95.30 292 | 96.88 225 |
|
DROMVSNet | | | 95.44 70 | 95.62 69 | 94.89 99 | 96.93 147 | 87.69 126 | 96.48 38 | 99.14 4 | 93.93 53 | 92.77 226 | 94.52 238 | 93.95 70 | 99.49 24 | 93.62 44 | 99.22 85 | 97.51 195 |
|
OMC-MVS | | | 94.22 118 | 93.69 131 | 95.81 69 | 97.25 132 | 91.27 64 | 92.27 194 | 97.40 117 | 87.10 209 | 94.56 169 | 95.42 201 | 93.74 71 | 98.11 213 | 86.62 222 | 98.85 125 | 98.06 140 |
|
LCM-MVSNet-Re | | | 94.20 119 | 94.58 110 | 93.04 166 | 95.91 216 | 83.13 206 | 93.79 145 | 99.19 3 | 92.00 91 | 98.84 5 | 98.04 43 | 93.64 72 | 99.02 102 | 81.28 279 | 98.54 160 | 96.96 221 |
|
CS-MVS | | | 95.77 58 | 95.58 71 | 96.37 50 | 96.84 152 | 91.72 61 | 96.73 29 | 99.06 5 | 94.23 46 | 92.48 235 | 94.79 228 | 93.56 73 | 99.49 24 | 93.47 52 | 99.05 102 | 97.89 163 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 18 | 94.05 23 | 95.88 70 | 97.62 100 | 94.46 44 | 96.29 93 | 96.94 112 | 93.56 73 | 99.37 56 | 94.29 28 | 99.42 50 | 98.99 55 |
|
CS-MVS-test | | | 95.32 78 | 95.10 92 | 95.96 58 | 96.86 151 | 90.75 74 | 96.33 47 | 99.20 2 | 93.99 50 | 91.03 267 | 93.73 264 | 93.52 75 | 99.55 18 | 91.81 103 | 99.45 45 | 97.58 189 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 4 | 98.22 74 | 93.87 30 | 98.42 6 | 98.19 35 | 96.95 14 | 95.46 131 | 99.23 4 | 93.45 76 | 99.57 14 | 95.34 17 | 99.89 2 | 99.63 9 |
|
MVS_111021_HR | | | 93.63 130 | 93.42 141 | 94.26 129 | 96.65 159 | 86.96 141 | 89.30 281 | 96.23 197 | 88.36 185 | 93.57 197 | 94.60 235 | 93.45 76 | 97.77 246 | 90.23 147 | 98.38 173 | 98.03 146 |
|
cdsmvs_eth3d_5k | | | 23.35 344 | 31.13 347 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 95.58 224 | 0.00 380 | 0.00 381 | 91.15 315 | 93.43 78 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
APD-MVS |  | | 95.00 89 | 94.69 105 | 95.93 62 | 97.38 128 | 90.88 71 | 94.59 116 | 97.81 86 | 89.22 165 | 95.46 131 | 96.17 167 | 93.42 79 | 99.34 61 | 89.30 169 | 98.87 124 | 97.56 192 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ANet_high | | | 94.83 96 | 96.28 37 | 90.47 259 | 96.65 159 | 73.16 334 | 94.33 127 | 98.74 10 | 96.39 24 | 98.09 24 | 98.93 8 | 93.37 80 | 98.70 157 | 90.38 137 | 99.68 18 | 99.53 15 |
|
APD_test1 | | | 95.91 53 | 95.42 77 | 97.36 23 | 98.82 26 | 96.62 6 | 95.64 80 | 97.64 98 | 93.38 64 | 95.89 114 | 97.23 93 | 93.35 81 | 97.66 254 | 88.20 193 | 98.66 151 | 97.79 175 |
|
casdiffmvs |  | | 94.32 113 | 94.80 100 | 92.85 177 | 96.05 206 | 81.44 226 | 92.35 189 | 98.05 59 | 91.53 116 | 95.75 119 | 96.80 121 | 93.35 81 | 98.49 181 | 91.01 122 | 98.32 181 | 98.64 103 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
test_djsdf | | | 96.62 23 | 96.49 26 | 97.01 32 | 98.55 45 | 91.77 59 | 97.15 15 | 97.37 118 | 88.98 169 | 98.26 21 | 98.86 10 | 93.35 81 | 99.60 9 | 96.41 4 | 99.45 45 | 99.66 6 |
|
VPA-MVSNet | | | 95.14 86 | 95.67 68 | 93.58 151 | 97.76 103 | 83.15 205 | 94.58 118 | 97.58 104 | 93.39 63 | 97.05 62 | 98.04 43 | 93.25 84 | 98.51 180 | 89.75 161 | 99.59 28 | 99.08 48 |
|
Anonymous20240529 | | | 95.50 68 | 95.83 62 | 94.50 120 | 97.33 131 | 85.93 168 | 95.19 98 | 96.77 170 | 96.64 19 | 97.61 37 | 98.05 42 | 93.23 85 | 98.79 138 | 88.60 190 | 99.04 107 | 98.78 84 |
|
baseline | | | 94.26 116 | 94.80 100 | 92.64 183 | 96.08 204 | 80.99 232 | 93.69 148 | 98.04 63 | 90.80 132 | 94.89 159 | 96.32 155 | 93.19 86 | 98.48 185 | 91.68 108 | 98.51 164 | 98.43 118 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 119 | 93.56 137 | 96.14 52 | 95.96 213 | 92.96 43 | 89.48 275 | 97.46 113 | 85.14 236 | 96.23 98 | 95.42 201 | 93.19 86 | 98.08 214 | 90.37 138 | 98.76 139 | 97.38 207 |
|
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 96 | 97.46 126 | 86.35 159 | 97.11 19 | 98.24 30 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 88 | 99.15 82 | 93.18 67 | 99.74 12 | 99.50 17 |
|
DVP-MVS++ | | | 95.93 52 | 96.34 34 | 94.70 108 | 96.54 168 | 86.66 149 | 98.45 4 | 98.22 32 | 93.26 66 | 97.54 38 | 97.36 82 | 93.12 89 | 99.38 54 | 93.88 35 | 98.68 147 | 98.04 143 |
|
OPU-MVS | | | | | 95.15 93 | 96.84 152 | 89.43 92 | 95.21 94 | | | | 95.66 190 | 93.12 89 | 98.06 215 | 86.28 231 | 98.61 153 | 97.95 156 |
|
LS3D | | | 96.11 47 | 95.83 62 | 96.95 36 | 94.75 259 | 94.20 19 | 97.34 13 | 97.98 70 | 97.31 11 | 95.32 138 | 96.77 122 | 93.08 91 | 99.20 78 | 91.79 104 | 98.16 196 | 97.44 200 |
|
DP-MVS | | | 95.62 63 | 95.84 61 | 94.97 97 | 97.16 137 | 88.62 108 | 94.54 123 | 97.64 98 | 96.94 15 | 96.58 82 | 97.32 88 | 93.07 92 | 98.72 150 | 90.45 134 | 98.84 126 | 97.57 190 |
|
EG-PatchMatch MVS | | | 94.54 106 | 94.67 108 | 94.14 132 | 97.87 98 | 86.50 151 | 92.00 203 | 96.74 172 | 88.16 188 | 96.93 68 | 97.61 64 | 93.04 93 | 97.90 229 | 91.60 110 | 98.12 199 | 98.03 146 |
|
Fast-Effi-MVS+ | | | 91.28 193 | 90.86 198 | 92.53 190 | 95.45 238 | 82.53 211 | 89.25 284 | 96.52 185 | 85.00 240 | 89.91 286 | 88.55 346 | 92.94 94 | 98.84 127 | 84.72 250 | 95.44 287 | 96.22 250 |
|
PC_three_1452 | | | | | | | | | | 75.31 318 | 95.87 115 | 95.75 187 | 92.93 95 | 96.34 305 | 87.18 213 | 98.68 147 | 98.04 143 |
|
v7n | | | 96.82 9 | 97.31 10 | 95.33 86 | 98.54 48 | 86.81 143 | 96.83 23 | 98.07 56 | 96.59 20 | 98.46 17 | 98.43 29 | 92.91 96 | 99.52 19 | 96.25 6 | 99.76 10 | 99.65 8 |
|
XVG-ACMP-BASELINE | | | 95.68 62 | 95.34 80 | 96.69 41 | 98.40 61 | 93.04 41 | 94.54 123 | 98.05 59 | 90.45 141 | 96.31 91 | 96.76 124 | 92.91 96 | 98.72 150 | 91.19 117 | 99.42 50 | 98.32 123 |
|
testgi | | | 90.38 213 | 91.34 189 | 87.50 316 | 97.49 123 | 71.54 344 | 89.43 276 | 95.16 235 | 88.38 184 | 94.54 170 | 94.68 232 | 92.88 98 | 93.09 346 | 71.60 349 | 97.85 217 | 97.88 164 |
|
MVS_111021_LR | | | 93.66 129 | 93.28 144 | 94.80 103 | 96.25 192 | 90.95 69 | 90.21 255 | 95.43 229 | 87.91 190 | 93.74 193 | 94.40 240 | 92.88 98 | 96.38 301 | 90.39 136 | 98.28 183 | 97.07 215 |
|
CNVR-MVS | | | 94.58 104 | 94.29 115 | 95.46 82 | 96.94 145 | 89.35 96 | 91.81 215 | 96.80 167 | 89.66 154 | 93.90 189 | 95.44 200 | 92.80 100 | 98.72 150 | 92.74 80 | 98.52 162 | 98.32 123 |
|
ZD-MVS | | | | | | 97.23 133 | 90.32 78 | | 97.54 107 | 84.40 247 | 94.78 163 | 95.79 182 | 92.76 101 | 99.39 48 | 88.72 188 | 98.40 169 | |
|
XXY-MVS | | | 92.58 162 | 93.16 147 | 90.84 250 | 97.75 104 | 79.84 250 | 91.87 211 | 96.22 199 | 85.94 222 | 95.53 128 | 97.68 60 | 92.69 102 | 94.48 332 | 83.21 260 | 97.51 230 | 98.21 131 |
|
CDPH-MVS | | | 92.67 160 | 91.83 177 | 95.18 92 | 96.94 145 | 88.46 114 | 90.70 239 | 97.07 146 | 77.38 304 | 92.34 245 | 95.08 216 | 92.67 103 | 98.88 119 | 85.74 234 | 98.57 157 | 98.20 132 |
|
Fast-Effi-MVS+-dtu | | | 92.77 157 | 92.16 167 | 94.58 118 | 94.66 265 | 88.25 116 | 92.05 200 | 96.65 176 | 89.62 155 | 90.08 282 | 91.23 314 | 92.56 104 | 98.60 170 | 86.30 230 | 96.27 269 | 96.90 223 |
|
AllTest | | | 94.88 94 | 94.51 111 | 96.00 56 | 98.02 89 | 92.17 50 | 95.26 93 | 98.43 14 | 90.48 139 | 95.04 153 | 96.74 127 | 92.54 105 | 97.86 237 | 85.11 243 | 98.98 109 | 97.98 152 |
|
TestCases | | | | | 96.00 56 | 98.02 89 | 92.17 50 | | 98.43 14 | 90.48 139 | 95.04 153 | 96.74 127 | 92.54 105 | 97.86 237 | 85.11 243 | 98.98 109 | 97.98 152 |
|
TinyColmap | | | 92.00 178 | 92.76 153 | 89.71 279 | 95.62 233 | 77.02 296 | 90.72 238 | 96.17 202 | 87.70 198 | 95.26 142 | 96.29 157 | 92.54 105 | 96.45 298 | 81.77 274 | 98.77 138 | 95.66 275 |
|
EGC-MVSNET | | | 80.97 331 | 75.73 342 | 96.67 42 | 98.85 24 | 94.55 15 | 96.83 23 | 96.60 178 | 2.44 377 | 5.32 378 | 98.25 33 | 92.24 108 | 98.02 220 | 91.85 102 | 99.21 86 | 97.45 198 |
|
ETV-MVS | | | 92.99 148 | 92.74 154 | 93.72 147 | 95.86 218 | 86.30 160 | 92.33 190 | 97.84 83 | 91.70 112 | 92.81 224 | 86.17 360 | 92.22 109 | 99.19 79 | 88.03 200 | 97.73 220 | 95.66 275 |
|
CLD-MVS | | | 91.82 179 | 91.41 187 | 93.04 166 | 96.37 177 | 83.65 198 | 86.82 323 | 97.29 130 | 84.65 246 | 92.27 247 | 89.67 335 | 92.20 110 | 97.85 239 | 83.95 255 | 99.47 41 | 97.62 187 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
segment_acmp | | | | | | | | | | | | | 92.14 111 | | | | |
|
Vis-MVSNet |  | | 95.50 68 | 95.48 73 | 95.56 79 | 98.11 80 | 89.40 94 | 95.35 88 | 98.22 32 | 92.36 81 | 94.11 177 | 98.07 41 | 92.02 112 | 99.44 28 | 93.38 60 | 97.67 225 | 97.85 168 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ITE_SJBPF | | | | | 95.95 59 | 97.34 130 | 93.36 40 | | 96.55 184 | 91.93 94 | 94.82 161 | 95.39 205 | 91.99 113 | 97.08 279 | 85.53 236 | 97.96 211 | 97.41 201 |
|
CP-MVSNet | | | 96.19 45 | 96.80 16 | 94.38 127 | 98.99 16 | 83.82 196 | 96.31 50 | 97.53 109 | 97.60 7 | 98.34 19 | 97.52 70 | 91.98 114 | 99.63 6 | 93.08 72 | 99.81 8 | 99.70 3 |
|
CSCG | | | 94.69 100 | 94.75 102 | 94.52 119 | 97.55 120 | 87.87 123 | 95.01 104 | 97.57 105 | 92.68 73 | 96.20 101 | 93.44 272 | 91.92 115 | 98.78 141 | 89.11 178 | 99.24 81 | 96.92 222 |
|
TSAR-MVS + MP. | | | 94.96 91 | 94.75 102 | 95.57 78 | 98.86 22 | 88.69 105 | 96.37 44 | 96.81 166 | 85.23 233 | 94.75 164 | 97.12 102 | 91.85 116 | 99.40 45 | 93.45 54 | 98.33 179 | 98.62 106 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
Gipuma |  | | 95.31 81 | 95.80 64 | 93.81 146 | 97.99 94 | 90.91 70 | 96.42 42 | 97.95 75 | 96.69 17 | 91.78 255 | 98.85 12 | 91.77 117 | 95.49 319 | 91.72 106 | 99.08 98 | 95.02 290 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
WR-MVS_H | | | 96.60 25 | 97.05 13 | 95.24 90 | 99.02 12 | 86.44 155 | 96.78 27 | 98.08 53 | 97.42 9 | 98.48 16 | 97.86 55 | 91.76 118 | 99.63 6 | 94.23 29 | 99.84 3 | 99.66 6 |
|
AdaColmap |  | | 91.63 184 | 91.36 188 | 92.47 192 | 95.56 235 | 86.36 158 | 92.24 197 | 96.27 194 | 88.88 173 | 89.90 287 | 92.69 290 | 91.65 119 | 98.32 195 | 77.38 317 | 97.64 226 | 92.72 339 |
|
PHI-MVS | | | 94.34 112 | 93.80 126 | 95.95 59 | 95.65 230 | 91.67 62 | 94.82 109 | 97.86 80 | 87.86 193 | 93.04 217 | 94.16 249 | 91.58 120 | 98.78 141 | 90.27 144 | 98.96 115 | 97.41 201 |
|
xiu_mvs_v1_base_debu | | | 91.47 188 | 91.52 182 | 91.33 229 | 95.69 227 | 81.56 222 | 89.92 265 | 96.05 206 | 83.22 255 | 91.26 262 | 90.74 321 | 91.55 121 | 98.82 129 | 89.29 170 | 95.91 275 | 93.62 326 |
|
xiu_mvs_v1_base | | | 91.47 188 | 91.52 182 | 91.33 229 | 95.69 227 | 81.56 222 | 89.92 265 | 96.05 206 | 83.22 255 | 91.26 262 | 90.74 321 | 91.55 121 | 98.82 129 | 89.29 170 | 95.91 275 | 93.62 326 |
|
xiu_mvs_v1_base_debi | | | 91.47 188 | 91.52 182 | 91.33 229 | 95.69 227 | 81.56 222 | 89.92 265 | 96.05 206 | 83.22 255 | 91.26 262 | 90.74 321 | 91.55 121 | 98.82 129 | 89.29 170 | 95.91 275 | 93.62 326 |
|
tfpnnormal | | | 94.27 114 | 94.87 98 | 92.48 191 | 97.71 108 | 80.88 234 | 94.55 122 | 95.41 230 | 93.70 58 | 96.67 78 | 97.72 59 | 91.40 124 | 98.18 208 | 87.45 208 | 99.18 90 | 98.36 121 |
|
3Dnovator+ | | 92.74 2 | 95.86 56 | 95.77 65 | 96.13 53 | 96.81 155 | 90.79 73 | 96.30 54 | 97.82 85 | 96.13 26 | 94.74 165 | 97.23 93 | 91.33 125 | 99.16 81 | 93.25 65 | 98.30 182 | 98.46 116 |
|
TEST9 | | | | | | 96.45 175 | 89.46 90 | 90.60 242 | 96.92 157 | 79.09 294 | 90.49 273 | 94.39 241 | 91.31 126 | 98.88 119 | | | |
|
DeepC-MVS_fast | | 89.96 7 | 93.73 128 | 93.44 140 | 94.60 115 | 96.14 200 | 87.90 122 | 93.36 156 | 97.14 140 | 85.53 230 | 93.90 189 | 95.45 199 | 91.30 127 | 98.59 172 | 89.51 164 | 98.62 152 | 97.31 210 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EI-MVSNet-Vis-set | | | 94.36 110 | 94.28 116 | 94.61 112 | 92.55 306 | 85.98 167 | 92.44 184 | 94.69 248 | 93.70 58 | 96.12 105 | 95.81 181 | 91.24 128 | 98.86 124 | 93.76 42 | 98.22 191 | 98.98 59 |
|
MCST-MVS | | | 92.91 150 | 92.51 161 | 94.10 133 | 97.52 121 | 85.72 173 | 91.36 225 | 97.13 142 | 80.33 280 | 92.91 222 | 94.24 245 | 91.23 129 | 98.72 150 | 89.99 155 | 97.93 213 | 97.86 166 |
|
RPSCF | | | 95.58 66 | 94.89 97 | 97.62 7 | 97.58 118 | 96.30 7 | 95.97 66 | 97.53 109 | 92.42 78 | 93.41 200 | 97.78 56 | 91.21 130 | 97.77 246 | 91.06 119 | 97.06 244 | 98.80 82 |
|
train_agg | | | 92.71 159 | 91.83 177 | 95.35 84 | 96.45 175 | 89.46 90 | 90.60 242 | 96.92 157 | 79.37 289 | 90.49 273 | 94.39 241 | 91.20 131 | 98.88 119 | 88.66 189 | 98.43 168 | 97.72 181 |
|
test_8 | | | | | | 96.37 177 | 89.14 97 | 90.51 245 | 96.89 160 | 79.37 289 | 90.42 275 | 94.36 243 | 91.20 131 | 98.82 129 | | | |
|
EI-MVSNet-UG-set | | | 94.35 111 | 94.27 118 | 94.59 116 | 92.46 307 | 85.87 170 | 92.42 186 | 94.69 248 | 93.67 61 | 96.13 104 | 95.84 180 | 91.20 131 | 98.86 124 | 93.78 39 | 98.23 189 | 99.03 51 |
|
EIA-MVS | | | 92.35 170 | 92.03 170 | 93.30 162 | 95.81 221 | 83.97 194 | 92.80 168 | 98.17 41 | 87.71 197 | 89.79 290 | 87.56 350 | 91.17 134 | 99.18 80 | 87.97 201 | 97.27 238 | 96.77 229 |
|
dcpmvs_2 | | | 93.96 124 | 95.01 94 | 90.82 251 | 97.60 116 | 74.04 329 | 93.68 149 | 98.85 7 | 89.80 152 | 97.82 28 | 97.01 110 | 91.14 135 | 99.21 76 | 90.56 132 | 98.59 155 | 99.19 36 |
|
xiu_mvs_v2_base | | | 89.00 248 | 89.19 231 | 88.46 304 | 94.86 253 | 74.63 321 | 86.97 317 | 95.60 218 | 80.88 276 | 87.83 320 | 88.62 345 | 91.04 136 | 98.81 134 | 82.51 268 | 94.38 312 | 91.93 345 |
|
HPM-MVS++ |  | | 95.02 88 | 94.39 112 | 96.91 37 | 97.88 97 | 93.58 37 | 94.09 136 | 96.99 152 | 91.05 126 | 92.40 240 | 95.22 210 | 91.03 137 | 99.25 73 | 92.11 92 | 98.69 146 | 97.90 161 |
|
TAPA-MVS | | 88.58 10 | 92.49 165 | 91.75 179 | 94.73 106 | 96.50 172 | 89.69 86 | 92.91 165 | 97.68 96 | 78.02 302 | 92.79 225 | 94.10 250 | 90.85 138 | 97.96 226 | 84.76 249 | 98.16 196 | 96.54 234 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
pcd_1.5k_mvsjas | | | 7.56 347 | 10.09 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 90.77 139 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
PS-MVSNAJss | | | 96.01 50 | 96.04 51 | 95.89 67 | 98.82 26 | 88.51 112 | 95.57 84 | 97.88 79 | 88.72 175 | 98.81 6 | 98.86 10 | 90.77 139 | 99.60 9 | 95.43 15 | 99.53 36 | 99.57 14 |
|
PS-MVSNAJ | | | 88.86 253 | 88.99 237 | 88.48 303 | 94.88 251 | 74.71 319 | 86.69 326 | 95.60 218 | 80.88 276 | 87.83 320 | 87.37 353 | 90.77 139 | 98.82 129 | 82.52 267 | 94.37 313 | 91.93 345 |
|
MVS_Test | | | 92.57 164 | 93.29 142 | 90.40 262 | 93.53 290 | 75.85 313 | 92.52 179 | 96.96 153 | 88.73 174 | 92.35 243 | 96.70 131 | 90.77 139 | 98.37 193 | 92.53 86 | 95.49 285 | 96.99 220 |
|
MIMVSNet1 | | | 95.52 67 | 95.45 74 | 95.72 73 | 99.14 5 | 89.02 99 | 96.23 57 | 96.87 162 | 93.73 57 | 97.87 27 | 98.49 26 | 90.73 143 | 99.05 97 | 86.43 228 | 99.60 26 | 99.10 47 |
|
ab-mvs | | | 92.40 168 | 92.62 159 | 91.74 213 | 97.02 141 | 81.65 221 | 95.84 71 | 95.50 228 | 86.95 211 | 92.95 221 | 97.56 67 | 90.70 144 | 97.50 260 | 79.63 298 | 97.43 234 | 96.06 256 |
|
Test By Simon | | | | | | | | | | | | | 90.61 145 | | | | |
|
3Dnovator | | 92.54 3 | 94.80 97 | 94.90 96 | 94.47 123 | 95.47 237 | 87.06 136 | 96.63 31 | 97.28 132 | 91.82 104 | 94.34 176 | 97.41 76 | 90.60 146 | 98.65 165 | 92.47 87 | 98.11 200 | 97.70 182 |
|
NCCC | | | 94.08 122 | 93.54 138 | 95.70 75 | 96.49 173 | 89.90 83 | 92.39 188 | 96.91 159 | 90.64 136 | 92.33 246 | 94.60 235 | 90.58 147 | 98.96 110 | 90.21 148 | 97.70 223 | 98.23 129 |
|
UniMVSNet_NR-MVSNet | | | 95.35 76 | 95.21 86 | 95.76 71 | 97.69 111 | 88.59 109 | 92.26 195 | 97.84 83 | 94.91 38 | 96.80 73 | 95.78 185 | 90.42 148 | 99.41 38 | 91.60 110 | 99.58 32 | 99.29 29 |
|
test_prior2 | | | | | | | | 90.21 255 | | 89.33 162 | 90.77 269 | 94.81 225 | 90.41 149 | | 88.21 192 | 98.55 158 | |
|
KD-MVS_self_test | | | 94.10 121 | 94.73 104 | 92.19 198 | 97.66 114 | 79.49 260 | 94.86 108 | 97.12 143 | 89.59 157 | 96.87 69 | 97.65 62 | 90.40 150 | 98.34 194 | 89.08 179 | 99.35 59 | 98.75 87 |
|
MSLP-MVS++ | | | 93.25 141 | 93.88 124 | 91.37 227 | 96.34 183 | 82.81 209 | 93.11 159 | 97.74 93 | 89.37 161 | 94.08 179 | 95.29 209 | 90.40 150 | 96.35 303 | 90.35 139 | 98.25 187 | 94.96 291 |
|
UniMVSNet (Re) | | | 95.32 78 | 95.15 89 | 95.80 70 | 97.79 102 | 88.91 102 | 92.91 165 | 98.07 56 | 93.46 62 | 96.31 91 | 95.97 175 | 90.14 152 | 99.34 61 | 92.11 92 | 99.64 24 | 99.16 38 |
|
Effi-MVS+-dtu | | | 93.90 126 | 92.60 160 | 97.77 3 | 94.74 260 | 96.67 5 | 94.00 138 | 95.41 230 | 89.94 148 | 91.93 254 | 92.13 302 | 90.12 153 | 98.97 109 | 87.68 206 | 97.48 232 | 97.67 185 |
|
FMVSNet1 | | | 94.84 95 | 95.13 90 | 93.97 137 | 97.60 116 | 84.29 186 | 95.99 63 | 96.56 181 | 92.38 79 | 97.03 63 | 98.53 23 | 90.12 153 | 98.98 105 | 88.78 186 | 99.16 93 | 98.65 98 |
|
DU-MVS | | | 95.28 82 | 95.12 91 | 95.75 72 | 97.75 104 | 88.59 109 | 92.58 177 | 97.81 86 | 93.99 50 | 96.80 73 | 95.90 176 | 90.10 155 | 99.41 38 | 91.60 110 | 99.58 32 | 99.26 30 |
|
NR-MVSNet | | | 95.28 82 | 95.28 84 | 95.26 89 | 97.75 104 | 87.21 133 | 95.08 100 | 97.37 118 | 93.92 55 | 97.65 33 | 95.90 176 | 90.10 155 | 99.33 66 | 90.11 151 | 99.66 21 | 99.26 30 |
|
Baseline_NR-MVSNet | | | 94.47 108 | 95.09 93 | 92.60 187 | 98.50 57 | 80.82 235 | 92.08 199 | 96.68 174 | 93.82 56 | 96.29 93 | 98.56 21 | 90.10 155 | 97.75 249 | 90.10 153 | 99.66 21 | 99.24 32 |
|
API-MVS | | | 91.52 187 | 91.61 180 | 91.26 233 | 94.16 275 | 86.26 162 | 94.66 114 | 94.82 243 | 91.17 124 | 92.13 250 | 91.08 317 | 90.03 158 | 97.06 280 | 79.09 305 | 97.35 237 | 90.45 354 |
|
patch_mono-2 | | | 92.46 166 | 92.72 157 | 91.71 215 | 96.65 159 | 78.91 271 | 88.85 290 | 97.17 138 | 83.89 251 | 92.45 237 | 96.76 124 | 89.86 159 | 97.09 278 | 90.24 146 | 98.59 155 | 99.12 43 |
|
test12 | | | | | 94.43 125 | 95.95 214 | 86.75 145 | | 96.24 196 | | 89.76 291 | | 89.79 160 | 98.79 138 | | 97.95 212 | 97.75 180 |
|
旧先验1 | | | | | | 96.20 195 | 84.17 191 | | 94.82 243 | | | 95.57 195 | 89.57 161 | | | 97.89 215 | 96.32 246 |
|
DELS-MVS | | | 92.05 177 | 92.16 167 | 91.72 214 | 94.44 270 | 80.13 241 | 87.62 304 | 97.25 133 | 87.34 204 | 92.22 248 | 93.18 279 | 89.54 162 | 98.73 149 | 89.67 162 | 98.20 194 | 96.30 247 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
VPNet | | | 93.08 145 | 93.76 128 | 91.03 241 | 98.60 39 | 75.83 315 | 91.51 220 | 95.62 217 | 91.84 101 | 95.74 120 | 97.10 103 | 89.31 163 | 98.32 195 | 85.07 245 | 99.06 99 | 98.93 64 |
|
QAPM | | | 92.88 152 | 92.77 152 | 93.22 164 | 95.82 219 | 83.31 200 | 96.45 39 | 97.35 124 | 83.91 250 | 93.75 191 | 96.77 122 | 89.25 164 | 98.88 119 | 84.56 251 | 97.02 246 | 97.49 196 |
|
MSDG | | | 90.82 197 | 90.67 204 | 91.26 233 | 94.16 275 | 83.08 207 | 86.63 328 | 96.19 200 | 90.60 138 | 91.94 253 | 91.89 305 | 89.16 165 | 95.75 314 | 80.96 284 | 94.51 310 | 94.95 292 |
|
CPTT-MVS | | | 94.74 98 | 94.12 121 | 96.60 43 | 98.15 78 | 93.01 42 | 95.84 71 | 97.66 97 | 89.21 166 | 93.28 206 | 95.46 198 | 88.89 166 | 98.98 105 | 89.80 158 | 98.82 132 | 97.80 174 |
|
DP-MVS Recon | | | 92.31 171 | 91.88 175 | 93.60 150 | 97.18 136 | 86.87 142 | 91.10 230 | 97.37 118 | 84.92 242 | 92.08 251 | 94.08 251 | 88.59 167 | 98.20 205 | 83.50 257 | 98.14 198 | 95.73 270 |
|
FC-MVSNet-test | | | 95.32 78 | 95.88 58 | 93.62 149 | 98.49 58 | 81.77 219 | 95.90 69 | 98.32 20 | 93.93 53 | 97.53 40 | 97.56 67 | 88.48 168 | 99.40 45 | 92.91 77 | 99.83 5 | 99.68 4 |
|
OpenMVS |  | 89.45 8 | 92.27 173 | 92.13 169 | 92.68 182 | 94.53 269 | 84.10 192 | 95.70 76 | 97.03 148 | 82.44 268 | 91.14 266 | 96.42 144 | 88.47 169 | 98.38 190 | 85.95 233 | 97.47 233 | 95.55 279 |
|
F-COLMAP | | | 92.28 172 | 91.06 195 | 95.95 59 | 97.52 121 | 91.90 56 | 93.53 151 | 97.18 137 | 83.98 249 | 88.70 308 | 94.04 252 | 88.41 170 | 98.55 177 | 80.17 291 | 95.99 274 | 97.39 205 |
|
ambc | | | | | 92.98 168 | 96.88 149 | 83.01 208 | 95.92 68 | 96.38 191 | | 96.41 86 | 97.48 74 | 88.26 171 | 97.80 242 | 89.96 156 | 98.93 118 | 98.12 139 |
|
v10 | | | 94.68 101 | 95.27 85 | 92.90 175 | 96.57 165 | 80.15 239 | 94.65 115 | 97.57 105 | 90.68 135 | 97.43 46 | 98.00 45 | 88.18 172 | 99.15 82 | 94.84 19 | 99.55 35 | 99.41 20 |
|
v8 | | | 94.65 102 | 95.29 83 | 92.74 180 | 96.65 159 | 79.77 254 | 94.59 116 | 97.17 138 | 91.86 97 | 97.47 45 | 97.93 48 | 88.16 173 | 99.08 92 | 94.32 26 | 99.47 41 | 99.38 22 |
|
TSAR-MVS + GP. | | | 93.07 147 | 92.41 164 | 95.06 95 | 95.82 219 | 90.87 72 | 90.97 232 | 92.61 290 | 88.04 189 | 94.61 168 | 93.79 263 | 88.08 174 | 97.81 241 | 89.41 166 | 98.39 172 | 96.50 239 |
|
OurMVSNet-221017-0 | | | 96.80 12 | 96.75 17 | 96.96 35 | 99.03 11 | 91.85 57 | 97.98 7 | 98.01 67 | 94.15 48 | 98.93 3 | 99.07 5 | 88.07 175 | 99.57 14 | 95.86 9 | 99.69 14 | 99.46 18 |
|
diffmvs |  | | 91.74 181 | 91.93 174 | 91.15 239 | 93.06 298 | 78.17 281 | 88.77 293 | 97.51 112 | 86.28 216 | 92.42 239 | 93.96 257 | 88.04 176 | 97.46 263 | 90.69 130 | 96.67 261 | 97.82 172 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
原ACMM1 | | | | | 92.87 176 | 96.91 148 | 84.22 189 | | 97.01 149 | 76.84 310 | 89.64 293 | 94.46 239 | 88.00 177 | 98.70 157 | 81.53 277 | 98.01 209 | 95.70 273 |
|
VDD-MVS | | | 94.37 109 | 94.37 113 | 94.40 126 | 97.49 123 | 86.07 166 | 93.97 140 | 93.28 275 | 94.49 43 | 96.24 97 | 97.78 56 | 87.99 178 | 98.79 138 | 88.92 182 | 99.14 95 | 98.34 122 |
|
XVG-OURS | | | 94.72 99 | 94.12 121 | 96.50 47 | 98.00 91 | 94.23 18 | 91.48 221 | 98.17 41 | 90.72 133 | 95.30 139 | 96.47 141 | 87.94 179 | 96.98 282 | 91.41 115 | 97.61 228 | 98.30 126 |
|
CANet | | | 92.38 169 | 91.99 172 | 93.52 157 | 93.82 286 | 83.46 199 | 91.14 228 | 97.00 150 | 89.81 151 | 86.47 331 | 94.04 252 | 87.90 180 | 99.21 76 | 89.50 165 | 98.27 184 | 97.90 161 |
|
BH-untuned | | | 90.68 202 | 90.90 196 | 90.05 273 | 95.98 212 | 79.57 258 | 90.04 261 | 94.94 240 | 87.91 190 | 94.07 180 | 93.00 281 | 87.76 181 | 97.78 245 | 79.19 304 | 95.17 295 | 92.80 338 |
|
FIs | | | 94.90 93 | 95.35 79 | 93.55 152 | 98.28 69 | 81.76 220 | 95.33 90 | 98.14 45 | 93.05 71 | 97.07 59 | 97.18 98 | 87.65 182 | 99.29 68 | 91.72 106 | 99.69 14 | 99.61 11 |
|
v1144 | | | 93.50 131 | 93.81 125 | 92.57 188 | 96.28 188 | 79.61 257 | 91.86 213 | 96.96 153 | 86.95 211 | 95.91 112 | 96.32 155 | 87.65 182 | 98.96 110 | 93.51 48 | 98.88 121 | 99.13 41 |
|
mvs_anonymous | | | 90.37 214 | 91.30 190 | 87.58 315 | 92.17 313 | 68.00 358 | 89.84 268 | 94.73 247 | 83.82 252 | 93.22 211 | 97.40 77 | 87.54 184 | 97.40 268 | 87.94 202 | 95.05 297 | 97.34 208 |
|
PCF-MVS | | 84.52 17 | 89.12 242 | 87.71 265 | 93.34 160 | 96.06 205 | 85.84 171 | 86.58 331 | 97.31 127 | 68.46 355 | 93.61 196 | 93.89 260 | 87.51 185 | 98.52 179 | 67.85 360 | 98.11 200 | 95.66 275 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
VNet | | | 92.67 160 | 92.96 148 | 91.79 211 | 96.27 189 | 80.15 239 | 91.95 204 | 94.98 238 | 92.19 88 | 94.52 171 | 96.07 170 | 87.43 186 | 97.39 269 | 84.83 247 | 98.38 173 | 97.83 170 |
|
v148 | | | 92.87 153 | 93.29 142 | 91.62 219 | 96.25 192 | 77.72 288 | 91.28 226 | 95.05 236 | 89.69 153 | 95.93 111 | 96.04 171 | 87.34 187 | 98.38 190 | 90.05 154 | 97.99 210 | 98.78 84 |
|
V42 | | | 93.43 134 | 93.58 135 | 92.97 169 | 95.34 243 | 81.22 229 | 92.67 173 | 96.49 186 | 87.25 205 | 96.20 101 | 96.37 152 | 87.32 188 | 98.85 126 | 92.39 89 | 98.21 192 | 98.85 77 |
|
v1192 | | | 93.49 132 | 93.78 127 | 92.62 186 | 96.16 198 | 79.62 256 | 91.83 214 | 97.22 136 | 86.07 220 | 96.10 106 | 96.38 151 | 87.22 189 | 99.02 102 | 94.14 31 | 98.88 121 | 99.22 33 |
|
WR-MVS | | | 93.49 132 | 93.72 129 | 92.80 179 | 97.57 119 | 80.03 245 | 90.14 258 | 95.68 216 | 93.70 58 | 96.62 80 | 95.39 205 | 87.21 190 | 99.04 100 | 87.50 207 | 99.64 24 | 99.33 26 |
|
IterMVS-LS | | | 93.78 127 | 94.28 116 | 92.27 195 | 96.27 189 | 79.21 267 | 91.87 211 | 96.78 168 | 91.77 107 | 96.57 83 | 97.07 104 | 87.15 191 | 98.74 148 | 91.99 97 | 99.03 108 | 98.86 74 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 92.99 148 | 93.26 146 | 92.19 198 | 92.12 314 | 79.21 267 | 92.32 191 | 94.67 250 | 91.77 107 | 95.24 145 | 95.85 178 | 87.14 192 | 98.49 181 | 91.99 97 | 98.26 185 | 98.86 74 |
|
v144192 | | | 93.20 144 | 93.54 138 | 92.16 202 | 96.05 206 | 78.26 280 | 91.95 204 | 97.14 140 | 84.98 241 | 95.96 108 | 96.11 168 | 87.08 193 | 99.04 100 | 93.79 38 | 98.84 126 | 99.17 37 |
|
114514_t | | | 90.51 206 | 89.80 224 | 92.63 185 | 98.00 91 | 82.24 215 | 93.40 155 | 97.29 130 | 65.84 362 | 89.40 295 | 94.80 227 | 86.99 194 | 98.75 145 | 83.88 256 | 98.61 153 | 96.89 224 |
|
新几何1 | | | | | 93.17 165 | 97.16 137 | 87.29 130 | | 94.43 253 | 67.95 356 | 91.29 261 | 94.94 221 | 86.97 195 | 98.23 203 | 81.06 283 | 97.75 219 | 93.98 316 |
|
HQP_MVS | | | 94.26 116 | 93.93 123 | 95.23 91 | 97.71 108 | 88.12 118 | 94.56 120 | 97.81 86 | 91.74 109 | 93.31 203 | 95.59 191 | 86.93 196 | 98.95 112 | 89.26 173 | 98.51 164 | 98.60 107 |
|
plane_prior6 | | | | | | 97.21 135 | 88.23 117 | | | | | | 86.93 196 | | | | |
|
UGNet | | | 93.08 145 | 92.50 162 | 94.79 104 | 93.87 284 | 87.99 121 | 95.07 101 | 94.26 258 | 90.64 136 | 87.33 327 | 97.67 61 | 86.89 198 | 98.49 181 | 88.10 197 | 98.71 143 | 97.91 160 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LF4IMVS | | | 92.72 158 | 92.02 171 | 94.84 102 | 95.65 230 | 91.99 54 | 92.92 164 | 96.60 178 | 85.08 239 | 92.44 238 | 93.62 267 | 86.80 199 | 96.35 303 | 86.81 217 | 98.25 187 | 96.18 252 |
|
v1921920 | | | 93.26 139 | 93.61 134 | 92.19 198 | 96.04 210 | 78.31 279 | 91.88 210 | 97.24 134 | 85.17 235 | 96.19 103 | 96.19 164 | 86.76 200 | 99.05 97 | 94.18 30 | 98.84 126 | 99.22 33 |
|
v1240 | | | 93.29 137 | 93.71 130 | 92.06 205 | 96.01 211 | 77.89 285 | 91.81 215 | 97.37 118 | 85.12 237 | 96.69 77 | 96.40 146 | 86.67 201 | 99.07 96 | 94.51 22 | 98.76 139 | 99.22 33 |
|
MAR-MVS | | | 90.32 217 | 88.87 241 | 94.66 110 | 94.82 254 | 91.85 57 | 94.22 131 | 94.75 246 | 80.91 275 | 87.52 325 | 88.07 349 | 86.63 202 | 97.87 236 | 76.67 321 | 96.21 270 | 94.25 310 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MSP-MVS | | | 95.34 77 | 94.63 109 | 97.48 14 | 98.67 33 | 94.05 23 | 96.41 43 | 98.18 37 | 91.26 120 | 95.12 148 | 95.15 211 | 86.60 203 | 99.50 21 | 93.43 58 | 96.81 256 | 98.89 71 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
BH-RMVSNet | | | 90.47 208 | 90.44 209 | 90.56 258 | 95.21 246 | 78.65 277 | 89.15 285 | 93.94 266 | 88.21 186 | 92.74 227 | 94.22 246 | 86.38 204 | 97.88 233 | 78.67 307 | 95.39 289 | 95.14 287 |
|
CNLPA | | | 91.72 182 | 91.20 191 | 93.26 163 | 96.17 197 | 91.02 67 | 91.14 228 | 95.55 225 | 90.16 146 | 90.87 268 | 93.56 270 | 86.31 205 | 94.40 335 | 79.92 297 | 97.12 242 | 94.37 307 |
|
PVSNet_BlendedMVS | | | 90.35 215 | 89.96 220 | 91.54 222 | 94.81 255 | 78.80 275 | 90.14 258 | 96.93 155 | 79.43 288 | 88.68 309 | 95.06 217 | 86.27 206 | 98.15 211 | 80.27 287 | 98.04 206 | 97.68 184 |
|
PVSNet_Blended | | | 88.74 256 | 88.16 259 | 90.46 261 | 94.81 255 | 78.80 275 | 86.64 327 | 96.93 155 | 74.67 319 | 88.68 309 | 89.18 342 | 86.27 206 | 98.15 211 | 80.27 287 | 96.00 273 | 94.44 306 |
|
PAPR | | | 87.65 274 | 86.77 284 | 90.27 265 | 92.85 302 | 77.38 292 | 88.56 298 | 96.23 197 | 76.82 311 | 84.98 339 | 89.75 334 | 86.08 208 | 97.16 276 | 72.33 344 | 93.35 327 | 96.26 249 |
|
v2v482 | | | 93.29 137 | 93.63 133 | 92.29 194 | 96.35 182 | 78.82 273 | 91.77 217 | 96.28 193 | 88.45 181 | 95.70 124 | 96.26 161 | 86.02 209 | 98.90 116 | 93.02 73 | 98.81 134 | 99.14 40 |
|
test20.03 | | | 90.80 198 | 90.85 199 | 90.63 256 | 95.63 232 | 79.24 265 | 89.81 269 | 92.87 281 | 89.90 149 | 94.39 173 | 96.40 146 | 85.77 210 | 95.27 327 | 73.86 336 | 99.05 102 | 97.39 205 |
|
PLC |  | 85.34 15 | 90.40 210 | 88.92 238 | 94.85 101 | 96.53 171 | 90.02 81 | 91.58 219 | 96.48 187 | 80.16 281 | 86.14 333 | 92.18 300 | 85.73 211 | 98.25 202 | 76.87 320 | 94.61 309 | 96.30 247 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS | | | 84.98 305 | 84.30 305 | 87.01 319 | 91.03 331 | 77.69 289 | 91.94 206 | 94.16 259 | 59.36 370 | 84.23 345 | 87.50 352 | 85.66 212 | 96.80 289 | 71.79 346 | 93.05 334 | 86.54 363 |
|
testdata | | | | | 91.03 241 | 96.87 150 | 82.01 216 | | 94.28 257 | 71.55 337 | 92.46 236 | 95.42 201 | 85.65 213 | 97.38 271 | 82.64 265 | 97.27 238 | 93.70 323 |
|
PM-MVS | | | 93.33 136 | 92.67 158 | 95.33 86 | 96.58 164 | 94.06 21 | 92.26 195 | 92.18 296 | 85.92 223 | 96.22 99 | 96.61 136 | 85.64 214 | 95.99 312 | 90.35 139 | 98.23 189 | 95.93 261 |
|
MDA-MVSNet-bldmvs | | | 91.04 194 | 90.88 197 | 91.55 221 | 94.68 264 | 80.16 238 | 85.49 336 | 92.14 299 | 90.41 143 | 94.93 157 | 95.79 182 | 85.10 215 | 96.93 285 | 85.15 240 | 94.19 319 | 97.57 190 |
|
PAPM_NR | | | 91.03 195 | 90.81 200 | 91.68 217 | 96.73 157 | 81.10 231 | 93.72 147 | 96.35 192 | 88.19 187 | 88.77 306 | 92.12 303 | 85.09 216 | 97.25 273 | 82.40 269 | 93.90 320 | 96.68 232 |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 217 | | | | |
|
HQP-MVS | | | 92.09 176 | 91.49 185 | 93.88 142 | 96.36 179 | 84.89 182 | 91.37 222 | 97.31 127 | 87.16 206 | 88.81 302 | 93.40 273 | 84.76 217 | 98.60 170 | 86.55 225 | 97.73 220 | 98.14 137 |
|
test222 | | | | | | 96.95 144 | 85.27 179 | 88.83 291 | 93.61 267 | 65.09 364 | 90.74 270 | 94.85 224 | 84.62 219 | | | 97.36 236 | 93.91 317 |
|
VDDNet | | | 94.03 123 | 94.27 118 | 93.31 161 | 98.87 21 | 82.36 214 | 95.51 86 | 91.78 305 | 97.19 12 | 96.32 90 | 98.60 19 | 84.24 220 | 98.75 145 | 87.09 215 | 98.83 131 | 98.81 80 |
|
PVSNet_Blended_VisFu | | | 91.63 184 | 91.20 191 | 92.94 173 | 97.73 107 | 83.95 195 | 92.14 198 | 97.46 113 | 78.85 298 | 92.35 243 | 94.98 219 | 84.16 221 | 99.08 92 | 86.36 229 | 96.77 258 | 95.79 268 |
|
CL-MVSNet_self_test | | | 90.04 228 | 89.90 222 | 90.47 259 | 95.24 245 | 77.81 286 | 86.60 330 | 92.62 289 | 85.64 228 | 93.25 210 | 93.92 258 | 83.84 222 | 96.06 310 | 79.93 295 | 98.03 207 | 97.53 194 |
|
mvsany_test3 | | | 89.11 243 | 88.21 257 | 91.83 209 | 91.30 329 | 90.25 79 | 88.09 301 | 78.76 371 | 76.37 312 | 96.43 85 | 98.39 30 | 83.79 223 | 90.43 359 | 86.57 223 | 94.20 317 | 94.80 296 |
|
mvsmamba | | | 95.61 64 | 95.40 78 | 96.22 51 | 98.44 60 | 89.86 84 | 97.14 17 | 97.45 115 | 91.25 122 | 97.49 42 | 98.14 35 | 83.49 224 | 99.45 26 | 95.52 11 | 99.66 21 | 99.36 24 |
|
BH-w/o | | | 87.21 285 | 87.02 280 | 87.79 314 | 94.77 258 | 77.27 294 | 87.90 302 | 93.21 278 | 81.74 273 | 89.99 285 | 88.39 348 | 83.47 225 | 96.93 285 | 71.29 350 | 92.43 341 | 89.15 355 |
|
PatchMatch-RL | | | 89.18 240 | 88.02 262 | 92.64 183 | 95.90 217 | 92.87 45 | 88.67 297 | 91.06 310 | 80.34 279 | 90.03 284 | 91.67 309 | 83.34 226 | 94.42 334 | 76.35 324 | 94.84 303 | 90.64 353 |
|
DPM-MVS | | | 89.35 238 | 88.40 247 | 92.18 201 | 96.13 202 | 84.20 190 | 86.96 318 | 96.15 203 | 75.40 317 | 87.36 326 | 91.55 312 | 83.30 227 | 98.01 221 | 82.17 272 | 96.62 262 | 94.32 309 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 236 | 89.05 234 | 90.92 246 | 94.58 268 | 81.21 230 | 91.10 230 | 93.41 274 | 77.03 308 | 93.41 200 | 93.99 256 | 83.23 228 | 97.80 242 | 79.93 295 | 94.80 304 | 93.74 322 |
|
new-patchmatchnet | | | 88.97 249 | 90.79 201 | 83.50 344 | 94.28 274 | 55.83 378 | 85.34 338 | 93.56 270 | 86.18 218 | 95.47 129 | 95.73 188 | 83.10 229 | 96.51 296 | 85.40 237 | 98.06 204 | 98.16 135 |
|
mvsany_test1 | | | 83.91 311 | 82.93 315 | 86.84 322 | 86.18 370 | 85.93 168 | 81.11 360 | 75.03 375 | 70.80 345 | 88.57 311 | 94.63 233 | 83.08 230 | 87.38 367 | 80.39 285 | 86.57 362 | 87.21 362 |
|
1314 | | | 86.46 295 | 86.33 292 | 86.87 321 | 91.65 324 | 74.54 322 | 91.94 206 | 94.10 260 | 74.28 322 | 84.78 341 | 87.33 354 | 83.03 231 | 95.00 329 | 78.72 306 | 91.16 350 | 91.06 351 |
|
IS-MVSNet | | | 94.49 107 | 94.35 114 | 94.92 98 | 98.25 73 | 86.46 154 | 97.13 18 | 94.31 255 | 96.24 25 | 96.28 95 | 96.36 153 | 82.88 232 | 99.35 58 | 88.19 194 | 99.52 39 | 98.96 61 |
|
test_fmvs3 | | | 92.42 167 | 92.40 165 | 92.46 193 | 93.80 287 | 87.28 131 | 93.86 143 | 97.05 147 | 76.86 309 | 96.25 96 | 98.66 18 | 82.87 233 | 91.26 354 | 95.44 14 | 96.83 255 | 98.82 78 |
|
MG-MVS | | | 89.54 235 | 89.80 224 | 88.76 295 | 94.88 251 | 72.47 341 | 89.60 272 | 92.44 293 | 85.82 224 | 89.48 294 | 95.98 174 | 82.85 234 | 97.74 250 | 81.87 273 | 95.27 293 | 96.08 255 |
|
TR-MVS | | | 87.70 271 | 87.17 275 | 89.27 287 | 94.11 277 | 79.26 264 | 88.69 295 | 91.86 304 | 81.94 272 | 90.69 271 | 89.79 332 | 82.82 235 | 97.42 266 | 72.65 343 | 91.98 345 | 91.14 350 |
|
c3_l | | | 91.32 192 | 91.42 186 | 91.00 244 | 92.29 309 | 76.79 303 | 87.52 310 | 96.42 189 | 85.76 226 | 94.72 167 | 93.89 260 | 82.73 236 | 98.16 210 | 90.93 124 | 98.55 158 | 98.04 143 |
|
YYNet1 | | | 88.17 264 | 88.24 254 | 87.93 311 | 92.21 311 | 73.62 331 | 80.75 361 | 88.77 321 | 82.51 267 | 94.99 155 | 95.11 214 | 82.70 237 | 93.70 341 | 83.33 258 | 93.83 321 | 96.48 240 |
|
MDA-MVSNet_test_wron | | | 88.16 265 | 88.23 255 | 87.93 311 | 92.22 310 | 73.71 330 | 80.71 362 | 88.84 320 | 82.52 266 | 94.88 160 | 95.14 212 | 82.70 237 | 93.61 342 | 83.28 259 | 93.80 322 | 96.46 241 |
|
pmmvs-eth3d | | | 91.54 186 | 90.73 203 | 93.99 135 | 95.76 224 | 87.86 124 | 90.83 235 | 93.98 265 | 78.23 301 | 94.02 184 | 96.22 163 | 82.62 239 | 96.83 288 | 86.57 223 | 98.33 179 | 97.29 211 |
|
MVS_0304 | | | 90.96 196 | 90.15 217 | 93.37 159 | 93.17 295 | 87.06 136 | 93.62 150 | 92.43 294 | 89.60 156 | 82.25 356 | 95.50 196 | 82.56 240 | 97.83 240 | 84.41 253 | 97.83 218 | 95.22 283 |
|
Anonymous20231206 | | | 88.77 255 | 88.29 251 | 90.20 269 | 96.31 186 | 78.81 274 | 89.56 274 | 93.49 272 | 74.26 323 | 92.38 241 | 95.58 194 | 82.21 241 | 95.43 322 | 72.07 345 | 98.75 141 | 96.34 245 |
|
miper_ehance_all_eth | | | 90.48 207 | 90.42 210 | 90.69 254 | 91.62 325 | 76.57 306 | 86.83 322 | 96.18 201 | 83.38 253 | 94.06 181 | 92.66 292 | 82.20 242 | 98.04 216 | 89.79 159 | 97.02 246 | 97.45 198 |
|
USDC | | | 89.02 245 | 89.08 233 | 88.84 294 | 95.07 248 | 74.50 324 | 88.97 287 | 96.39 190 | 73.21 329 | 93.27 207 | 96.28 159 | 82.16 243 | 96.39 300 | 77.55 314 | 98.80 135 | 95.62 278 |
|
EPP-MVSNet | | | 93.91 125 | 93.68 132 | 94.59 116 | 98.08 82 | 85.55 175 | 97.44 12 | 94.03 261 | 94.22 47 | 94.94 156 | 96.19 164 | 82.07 244 | 99.57 14 | 87.28 212 | 98.89 119 | 98.65 98 |
|
UnsupCasMVSNet_eth | | | 90.33 216 | 90.34 212 | 90.28 264 | 94.64 267 | 80.24 237 | 89.69 271 | 95.88 210 | 85.77 225 | 93.94 188 | 95.69 189 | 81.99 245 | 92.98 347 | 84.21 254 | 91.30 348 | 97.62 187 |
|
alignmvs | | | 93.26 139 | 92.85 151 | 94.50 120 | 95.70 226 | 87.45 128 | 93.45 154 | 95.76 213 | 91.58 114 | 95.25 144 | 92.42 298 | 81.96 246 | 98.72 150 | 91.61 109 | 97.87 216 | 97.33 209 |
|
TAMVS | | | 90.16 221 | 89.05 234 | 93.49 158 | 96.49 173 | 86.37 157 | 90.34 252 | 92.55 291 | 80.84 278 | 92.99 218 | 94.57 237 | 81.94 247 | 98.20 205 | 73.51 337 | 98.21 192 | 95.90 264 |
|
Anonymous202405211 | | | 92.58 162 | 92.50 162 | 92.83 178 | 96.55 167 | 83.22 203 | 92.43 185 | 91.64 307 | 94.10 49 | 95.59 126 | 96.64 134 | 81.88 248 | 97.50 260 | 85.12 242 | 98.52 162 | 97.77 177 |
|
SixPastTwentyTwo | | | 94.91 92 | 95.21 86 | 93.98 136 | 98.52 50 | 83.19 204 | 95.93 67 | 94.84 242 | 94.86 39 | 98.49 15 | 98.74 16 | 81.45 249 | 99.60 9 | 94.69 20 | 99.39 56 | 99.15 39 |
|
cascas | | | 87.02 291 | 86.28 293 | 89.25 288 | 91.56 326 | 76.45 307 | 84.33 348 | 96.78 168 | 71.01 342 | 86.89 330 | 85.91 361 | 81.35 250 | 96.94 283 | 83.09 261 | 95.60 282 | 94.35 308 |
|
GBi-Net | | | 93.21 142 | 92.96 148 | 93.97 137 | 95.40 239 | 84.29 186 | 95.99 63 | 96.56 181 | 88.63 177 | 95.10 149 | 98.53 23 | 81.31 251 | 98.98 105 | 86.74 218 | 98.38 173 | 98.65 98 |
|
test1 | | | 93.21 142 | 92.96 148 | 93.97 137 | 95.40 239 | 84.29 186 | 95.99 63 | 96.56 181 | 88.63 177 | 95.10 149 | 98.53 23 | 81.31 251 | 98.98 105 | 86.74 218 | 98.38 173 | 98.65 98 |
|
FMVSNet2 | | | 92.78 156 | 92.73 156 | 92.95 171 | 95.40 239 | 81.98 217 | 94.18 132 | 95.53 227 | 88.63 177 | 96.05 107 | 97.37 79 | 81.31 251 | 98.81 134 | 87.38 211 | 98.67 149 | 98.06 140 |
|
MVE |  | 59.87 23 | 73.86 341 | 72.65 344 | 77.47 354 | 87.00 368 | 74.35 325 | 61.37 371 | 60.93 379 | 67.27 357 | 69.69 374 | 86.49 358 | 81.24 254 | 72.33 375 | 56.45 372 | 83.45 367 | 85.74 364 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
RRT_MVS | | | 95.41 74 | 95.20 88 | 96.05 55 | 98.86 22 | 88.92 101 | 97.49 11 | 94.48 252 | 93.12 68 | 97.94 26 | 98.54 22 | 81.19 255 | 99.63 6 | 95.48 12 | 99.69 14 | 99.60 12 |
|
MVP-Stereo | | | 90.07 226 | 88.92 238 | 93.54 154 | 96.31 186 | 86.49 152 | 90.93 233 | 95.59 222 | 79.80 282 | 91.48 258 | 95.59 191 | 80.79 256 | 97.39 269 | 78.57 308 | 91.19 349 | 96.76 230 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UnsupCasMVSNet_bld | | | 88.50 260 | 88.03 261 | 89.90 275 | 95.52 236 | 78.88 272 | 87.39 311 | 94.02 263 | 79.32 292 | 93.06 215 | 94.02 254 | 80.72 257 | 94.27 337 | 75.16 330 | 93.08 333 | 96.54 234 |
|
MS-PatchMatch | | | 88.05 266 | 87.75 264 | 88.95 291 | 93.28 292 | 77.93 283 | 87.88 303 | 92.49 292 | 75.42 316 | 92.57 233 | 93.59 269 | 80.44 258 | 94.24 339 | 81.28 279 | 92.75 336 | 94.69 302 |
|
Anonymous20240521 | | | 92.86 154 | 93.57 136 | 90.74 253 | 96.57 165 | 75.50 317 | 94.15 133 | 95.60 218 | 89.38 160 | 95.90 113 | 97.90 54 | 80.39 259 | 97.96 226 | 92.60 85 | 99.68 18 | 98.75 87 |
|
CANet_DTU | | | 89.85 231 | 89.17 232 | 91.87 208 | 92.20 312 | 80.02 246 | 90.79 236 | 95.87 211 | 86.02 221 | 82.53 355 | 91.77 307 | 80.01 260 | 98.57 174 | 85.66 235 | 97.70 223 | 97.01 219 |
|
PMMVS | | | 83.00 316 | 81.11 324 | 88.66 298 | 83.81 377 | 86.44 155 | 82.24 357 | 85.65 345 | 61.75 369 | 82.07 358 | 85.64 362 | 79.75 261 | 91.59 353 | 75.99 326 | 93.09 332 | 87.94 361 |
|
ppachtmachnet_test | | | 88.61 259 | 88.64 243 | 88.50 302 | 91.76 322 | 70.99 348 | 84.59 345 | 92.98 279 | 79.30 293 | 92.38 241 | 93.53 271 | 79.57 262 | 97.45 264 | 86.50 227 | 97.17 241 | 97.07 215 |
|
eth_miper_zixun_eth | | | 90.72 200 | 90.61 205 | 91.05 240 | 92.04 317 | 76.84 302 | 86.91 319 | 96.67 175 | 85.21 234 | 94.41 172 | 93.92 258 | 79.53 263 | 98.26 201 | 89.76 160 | 97.02 246 | 98.06 140 |
|
test_vis1_rt | | | 85.58 300 | 84.58 302 | 88.60 299 | 87.97 360 | 86.76 144 | 85.45 337 | 93.59 268 | 66.43 359 | 87.64 322 | 89.20 341 | 79.33 264 | 85.38 370 | 81.59 276 | 89.98 355 | 93.66 324 |
|
N_pmnet | | | 88.90 252 | 87.25 273 | 93.83 145 | 94.40 272 | 93.81 35 | 84.73 342 | 87.09 334 | 79.36 291 | 93.26 208 | 92.43 297 | 79.29 265 | 91.68 352 | 77.50 316 | 97.22 240 | 96.00 258 |
|
miper_enhance_ethall | | | 88.42 261 | 87.87 263 | 90.07 271 | 88.67 358 | 75.52 316 | 85.10 339 | 95.59 222 | 75.68 313 | 92.49 234 | 89.45 338 | 78.96 266 | 97.88 233 | 87.86 204 | 97.02 246 | 96.81 227 |
|
EPNet | | | 89.80 233 | 88.25 253 | 94.45 124 | 83.91 376 | 86.18 163 | 93.87 142 | 87.07 335 | 91.16 125 | 80.64 364 | 94.72 230 | 78.83 267 | 98.89 118 | 85.17 238 | 98.89 119 | 98.28 127 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
sss | | | 87.23 284 | 86.82 282 | 88.46 304 | 93.96 281 | 77.94 282 | 86.84 321 | 92.78 285 | 77.59 303 | 87.61 324 | 91.83 306 | 78.75 268 | 91.92 351 | 77.84 311 | 94.20 317 | 95.52 280 |
|
bld_raw_dy_0_64 | | | 94.27 114 | 94.15 120 | 94.65 111 | 98.55 45 | 86.28 161 | 95.80 73 | 95.55 225 | 88.41 183 | 97.09 58 | 98.08 40 | 78.69 269 | 98.87 123 | 95.63 10 | 99.53 36 | 98.81 80 |
|
IterMVS-SCA-FT | | | 91.65 183 | 91.55 181 | 91.94 207 | 93.89 283 | 79.22 266 | 87.56 307 | 93.51 271 | 91.53 116 | 95.37 135 | 96.62 135 | 78.65 270 | 98.90 116 | 91.89 101 | 94.95 299 | 97.70 182 |
|
SCA | | | 87.43 280 | 87.21 274 | 88.10 309 | 92.01 318 | 71.98 343 | 89.43 276 | 88.11 329 | 82.26 270 | 88.71 307 | 92.83 285 | 78.65 270 | 97.59 256 | 79.61 299 | 93.30 328 | 94.75 299 |
|
our_test_3 | | | 87.55 277 | 87.59 267 | 87.44 317 | 91.76 322 | 70.48 349 | 83.83 351 | 90.55 316 | 79.79 283 | 92.06 252 | 92.17 301 | 78.63 272 | 95.63 315 | 84.77 248 | 94.73 305 | 96.22 250 |
|
jason | | | 89.17 241 | 88.32 249 | 91.70 216 | 95.73 225 | 80.07 242 | 88.10 300 | 93.22 276 | 71.98 336 | 90.09 281 | 92.79 287 | 78.53 273 | 98.56 175 | 87.43 209 | 97.06 244 | 96.46 241 |
jason: jason. |
IterMVS | | | 90.18 220 | 90.16 214 | 90.21 268 | 93.15 296 | 75.98 312 | 87.56 307 | 92.97 280 | 86.43 215 | 94.09 178 | 96.40 146 | 78.32 274 | 97.43 265 | 87.87 203 | 94.69 307 | 97.23 212 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 1792x2688 | | | 87.19 287 | 85.92 296 | 91.00 244 | 97.13 139 | 79.41 261 | 84.51 346 | 95.60 218 | 64.14 365 | 90.07 283 | 94.81 225 | 78.26 275 | 97.14 277 | 73.34 338 | 95.38 290 | 96.46 241 |
|
WTY-MVS | | | 86.93 292 | 86.50 291 | 88.24 307 | 94.96 249 | 74.64 320 | 87.19 314 | 92.07 301 | 78.29 300 | 88.32 314 | 91.59 311 | 78.06 276 | 94.27 337 | 74.88 331 | 93.15 331 | 95.80 267 |
|
pmmvs4 | | | 88.95 250 | 87.70 266 | 92.70 181 | 94.30 273 | 85.60 174 | 87.22 313 | 92.16 298 | 74.62 320 | 89.75 292 | 94.19 247 | 77.97 277 | 96.41 299 | 82.71 264 | 96.36 268 | 96.09 254 |
|
DSMNet-mixed | | | 82.21 321 | 81.56 320 | 84.16 341 | 89.57 350 | 70.00 354 | 90.65 241 | 77.66 374 | 54.99 373 | 83.30 351 | 97.57 66 | 77.89 278 | 90.50 358 | 66.86 363 | 95.54 284 | 91.97 344 |
|
FA-MVS(test-final) | | | 91.81 180 | 91.85 176 | 91.68 217 | 94.95 250 | 79.99 247 | 96.00 62 | 93.44 273 | 87.80 194 | 94.02 184 | 97.29 89 | 77.60 279 | 98.45 187 | 88.04 199 | 97.49 231 | 96.61 233 |
|
lessismore_v0 | | | | | 93.87 143 | 98.05 85 | 83.77 197 | | 80.32 368 | | 97.13 57 | 97.91 52 | 77.49 280 | 99.11 91 | 92.62 84 | 98.08 203 | 98.74 90 |
|
HY-MVS | | 82.50 18 | 86.81 293 | 85.93 295 | 89.47 281 | 93.63 288 | 77.93 283 | 94.02 137 | 91.58 308 | 75.68 313 | 83.64 348 | 93.64 265 | 77.40 281 | 97.42 266 | 71.70 348 | 92.07 344 | 93.05 335 |
|
1112_ss | | | 88.42 261 | 87.41 269 | 91.45 225 | 96.69 158 | 80.99 232 | 89.72 270 | 96.72 173 | 73.37 327 | 87.00 329 | 90.69 324 | 77.38 282 | 98.20 205 | 81.38 278 | 93.72 323 | 95.15 286 |
|
DIV-MVS_self_test | | | 90.65 203 | 90.56 207 | 90.91 248 | 91.85 320 | 76.99 298 | 86.75 324 | 95.36 233 | 85.52 232 | 94.06 181 | 94.89 222 | 77.37 283 | 97.99 224 | 90.28 143 | 98.97 113 | 97.76 178 |
|
cl____ | | | 90.65 203 | 90.56 207 | 90.91 248 | 91.85 320 | 76.98 299 | 86.75 324 | 95.36 233 | 85.53 230 | 94.06 181 | 94.89 222 | 77.36 284 | 97.98 225 | 90.27 144 | 98.98 109 | 97.76 178 |
|
CDS-MVSNet | | | 89.55 234 | 88.22 256 | 93.53 155 | 95.37 242 | 86.49 152 | 89.26 282 | 93.59 268 | 79.76 284 | 91.15 265 | 92.31 299 | 77.12 285 | 98.38 190 | 77.51 315 | 97.92 214 | 95.71 271 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
test_vis3_rt | | | 90.40 210 | 90.03 219 | 91.52 223 | 92.58 304 | 88.95 100 | 90.38 250 | 97.72 95 | 73.30 328 | 97.79 29 | 97.51 72 | 77.05 286 | 87.10 368 | 89.03 180 | 94.89 300 | 98.50 112 |
|
MVSFormer | | | 92.18 175 | 92.23 166 | 92.04 206 | 94.74 260 | 80.06 243 | 97.15 15 | 97.37 118 | 88.98 169 | 88.83 300 | 92.79 287 | 77.02 287 | 99.60 9 | 96.41 4 | 96.75 259 | 96.46 241 |
|
lupinMVS | | | 88.34 263 | 87.31 270 | 91.45 225 | 94.74 260 | 80.06 243 | 87.23 312 | 92.27 295 | 71.10 341 | 88.83 300 | 91.15 315 | 77.02 287 | 98.53 178 | 86.67 221 | 96.75 259 | 95.76 269 |
|
PMMVS2 | | | 81.31 327 | 83.44 310 | 74.92 355 | 90.52 338 | 46.49 380 | 69.19 369 | 85.23 353 | 84.30 248 | 87.95 319 | 94.71 231 | 76.95 289 | 84.36 372 | 64.07 366 | 98.09 202 | 93.89 318 |
|
h-mvs33 | | | 92.89 151 | 91.99 172 | 95.58 77 | 96.97 143 | 90.55 76 | 93.94 141 | 94.01 264 | 89.23 163 | 93.95 186 | 96.19 164 | 76.88 290 | 99.14 84 | 91.02 120 | 95.71 280 | 97.04 218 |
|
hse-mvs2 | | | 92.24 174 | 91.20 191 | 95.38 83 | 96.16 198 | 90.65 75 | 92.52 179 | 92.01 303 | 89.23 163 | 93.95 186 | 92.99 282 | 76.88 290 | 98.69 159 | 91.02 120 | 96.03 272 | 96.81 227 |
|
pmmvs5 | | | 87.87 268 | 87.14 276 | 90.07 271 | 93.26 294 | 76.97 300 | 88.89 289 | 92.18 296 | 73.71 326 | 88.36 313 | 93.89 260 | 76.86 292 | 96.73 291 | 80.32 286 | 96.81 256 | 96.51 236 |
|
test_vis1_n_1920 | | | 89.45 237 | 89.85 223 | 88.28 306 | 93.59 289 | 76.71 304 | 90.67 240 | 97.78 91 | 79.67 286 | 90.30 279 | 96.11 168 | 76.62 293 | 92.17 350 | 90.31 141 | 93.57 325 | 95.96 259 |
|
K. test v3 | | | 93.37 135 | 93.27 145 | 93.66 148 | 98.05 85 | 82.62 210 | 94.35 126 | 86.62 337 | 96.05 29 | 97.51 41 | 98.85 12 | 76.59 294 | 99.65 3 | 93.21 66 | 98.20 194 | 98.73 91 |
|
miper_lstm_enhance | | | 89.90 230 | 89.80 224 | 90.19 270 | 91.37 328 | 77.50 290 | 83.82 352 | 95.00 237 | 84.84 244 | 93.05 216 | 94.96 220 | 76.53 295 | 95.20 328 | 89.96 156 | 98.67 149 | 97.86 166 |
|
Test_1112_low_res | | | 87.50 279 | 86.58 286 | 90.25 266 | 96.80 156 | 77.75 287 | 87.53 309 | 96.25 195 | 69.73 351 | 86.47 331 | 93.61 268 | 75.67 296 | 97.88 233 | 79.95 293 | 93.20 329 | 95.11 288 |
|
test_fmvs2 | | | 90.62 205 | 90.40 211 | 91.29 232 | 91.93 319 | 85.46 176 | 92.70 172 | 96.48 187 | 74.44 321 | 94.91 158 | 97.59 65 | 75.52 297 | 90.57 356 | 93.44 55 | 96.56 263 | 97.84 169 |
|
Vis-MVSNet (Re-imp) | | | 90.42 209 | 90.16 214 | 91.20 237 | 97.66 114 | 77.32 293 | 94.33 127 | 87.66 331 | 91.20 123 | 92.99 218 | 95.13 213 | 75.40 298 | 98.28 197 | 77.86 310 | 99.19 88 | 97.99 151 |
|
test_vis1_n | | | 89.01 247 | 89.01 236 | 89.03 290 | 92.57 305 | 82.46 213 | 92.62 176 | 96.06 204 | 73.02 331 | 90.40 276 | 95.77 186 | 74.86 299 | 89.68 361 | 90.78 127 | 94.98 298 | 94.95 292 |
|
D2MVS | | | 89.93 229 | 89.60 229 | 90.92 246 | 94.03 280 | 78.40 278 | 88.69 295 | 94.85 241 | 78.96 296 | 93.08 214 | 95.09 215 | 74.57 300 | 96.94 283 | 88.19 194 | 98.96 115 | 97.41 201 |
|
PVSNet | | 76.22 20 | 82.89 317 | 82.37 317 | 84.48 339 | 93.96 281 | 64.38 371 | 78.60 364 | 88.61 322 | 71.50 338 | 84.43 344 | 86.36 359 | 74.27 301 | 94.60 331 | 69.87 357 | 93.69 324 | 94.46 305 |
|
test_yl | | | 90.11 223 | 89.73 227 | 91.26 233 | 94.09 278 | 79.82 251 | 90.44 246 | 92.65 287 | 90.90 127 | 93.19 212 | 93.30 275 | 73.90 302 | 98.03 217 | 82.23 270 | 96.87 253 | 95.93 261 |
|
DCV-MVSNet | | | 90.11 223 | 89.73 227 | 91.26 233 | 94.09 278 | 79.82 251 | 90.44 246 | 92.65 287 | 90.90 127 | 93.19 212 | 93.30 275 | 73.90 302 | 98.03 217 | 82.23 270 | 96.87 253 | 95.93 261 |
|
CMPMVS |  | 68.83 22 | 87.28 283 | 85.67 297 | 92.09 204 | 88.77 357 | 85.42 177 | 90.31 253 | 94.38 254 | 70.02 349 | 88.00 318 | 93.30 275 | 73.78 304 | 94.03 340 | 75.96 327 | 96.54 264 | 96.83 226 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline1 | | | 87.62 275 | 87.31 270 | 88.54 300 | 94.71 263 | 74.27 327 | 93.10 160 | 88.20 327 | 86.20 217 | 92.18 249 | 93.04 280 | 73.21 305 | 95.52 317 | 79.32 302 | 85.82 363 | 95.83 266 |
|
PVSNet_0 | | 70.34 21 | 74.58 340 | 72.96 343 | 79.47 352 | 90.63 336 | 66.24 364 | 73.26 365 | 83.40 361 | 63.67 367 | 78.02 368 | 78.35 371 | 72.53 306 | 89.59 362 | 56.68 371 | 60.05 375 | 82.57 369 |
|
MIMVSNet | | | 87.13 289 | 86.54 288 | 88.89 293 | 96.05 206 | 76.11 310 | 94.39 125 | 88.51 323 | 81.37 274 | 88.27 315 | 96.75 126 | 72.38 307 | 95.52 317 | 65.71 365 | 95.47 286 | 95.03 289 |
|
PAPM | | | 81.91 325 | 80.11 335 | 87.31 318 | 93.87 284 | 72.32 342 | 84.02 350 | 93.22 276 | 69.47 352 | 76.13 371 | 89.84 329 | 72.15 308 | 97.23 274 | 53.27 373 | 89.02 356 | 92.37 342 |
|
cl22 | | | 89.02 245 | 88.50 245 | 90.59 257 | 89.76 346 | 76.45 307 | 86.62 329 | 94.03 261 | 82.98 261 | 92.65 229 | 92.49 293 | 72.05 309 | 97.53 258 | 88.93 181 | 97.02 246 | 97.78 176 |
|
LFMVS | | | 91.33 191 | 91.16 194 | 91.82 210 | 96.27 189 | 79.36 262 | 95.01 104 | 85.61 347 | 96.04 30 | 94.82 161 | 97.06 105 | 72.03 310 | 98.46 186 | 84.96 246 | 98.70 145 | 97.65 186 |
|
MVS-HIRNet | | | 78.83 339 | 80.60 331 | 73.51 356 | 93.07 297 | 47.37 379 | 87.10 316 | 78.00 373 | 68.94 353 | 77.53 369 | 97.26 90 | 71.45 311 | 94.62 330 | 63.28 368 | 88.74 357 | 78.55 371 |
|
EPNet_dtu | | | 85.63 299 | 84.37 304 | 89.40 284 | 86.30 369 | 74.33 326 | 91.64 218 | 88.26 325 | 84.84 244 | 72.96 373 | 89.85 328 | 71.27 312 | 97.69 252 | 76.60 322 | 97.62 227 | 96.18 252 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test1111 | | | 90.39 212 | 90.61 205 | 89.74 278 | 98.04 88 | 71.50 345 | 95.59 81 | 79.72 370 | 89.41 159 | 95.94 110 | 98.14 35 | 70.79 313 | 98.81 134 | 88.52 191 | 99.32 64 | 98.90 70 |
|
ECVR-MVS |  | | 90.12 222 | 90.16 214 | 90.00 274 | 97.81 100 | 72.68 339 | 95.76 75 | 78.54 372 | 89.04 167 | 95.36 136 | 98.10 38 | 70.51 314 | 98.64 166 | 87.10 214 | 99.18 90 | 98.67 96 |
|
HyFIR lowres test | | | 87.19 287 | 85.51 298 | 92.24 196 | 97.12 140 | 80.51 236 | 85.03 340 | 96.06 204 | 66.11 361 | 91.66 257 | 92.98 283 | 70.12 315 | 99.14 84 | 75.29 329 | 95.23 294 | 97.07 215 |
|
FMVSNet3 | | | 90.78 199 | 90.32 213 | 92.16 202 | 93.03 300 | 79.92 249 | 92.54 178 | 94.95 239 | 86.17 219 | 95.10 149 | 96.01 173 | 69.97 316 | 98.75 145 | 86.74 218 | 98.38 173 | 97.82 172 |
|
test_f | | | 86.65 294 | 87.13 277 | 85.19 334 | 90.28 342 | 86.11 165 | 86.52 332 | 91.66 306 | 69.76 350 | 95.73 122 | 97.21 97 | 69.51 317 | 81.28 373 | 89.15 177 | 94.40 311 | 88.17 360 |
|
RPMNet | | | 90.31 218 | 90.14 218 | 90.81 252 | 91.01 332 | 78.93 269 | 92.52 179 | 98.12 47 | 91.91 95 | 89.10 297 | 96.89 116 | 68.84 318 | 99.41 38 | 90.17 149 | 92.70 337 | 94.08 311 |
|
test_fmvs1_n | | | 88.73 257 | 88.38 248 | 89.76 277 | 92.06 316 | 82.53 211 | 92.30 193 | 96.59 180 | 71.14 340 | 92.58 232 | 95.41 204 | 68.55 319 | 89.57 363 | 91.12 118 | 95.66 281 | 97.18 214 |
|
test_fmvs1 | | | 87.59 276 | 87.27 272 | 88.54 300 | 88.32 359 | 81.26 228 | 90.43 249 | 95.72 215 | 70.55 346 | 91.70 256 | 94.63 233 | 68.13 320 | 89.42 364 | 90.59 131 | 95.34 291 | 94.94 294 |
|
ADS-MVSNet2 | | | 84.01 310 | 82.20 319 | 89.41 283 | 89.04 354 | 76.37 309 | 87.57 305 | 90.98 312 | 72.71 334 | 84.46 342 | 92.45 294 | 68.08 321 | 96.48 297 | 70.58 355 | 83.97 365 | 95.38 281 |
|
ADS-MVSNet | | | 82.25 320 | 81.55 321 | 84.34 340 | 89.04 354 | 65.30 365 | 87.57 305 | 85.13 354 | 72.71 334 | 84.46 342 | 92.45 294 | 68.08 321 | 92.33 349 | 70.58 355 | 83.97 365 | 95.38 281 |
|
CVMVSNet | | | 85.16 303 | 84.72 300 | 86.48 323 | 92.12 314 | 70.19 350 | 92.32 191 | 88.17 328 | 56.15 372 | 90.64 272 | 95.85 178 | 67.97 323 | 96.69 292 | 88.78 186 | 90.52 352 | 92.56 340 |
|
new_pmnet | | | 81.22 328 | 81.01 327 | 81.86 348 | 90.92 334 | 70.15 351 | 84.03 349 | 80.25 369 | 70.83 343 | 85.97 334 | 89.78 333 | 67.93 324 | 84.65 371 | 67.44 361 | 91.90 346 | 90.78 352 |
|
CR-MVSNet | | | 87.89 267 | 87.12 278 | 90.22 267 | 91.01 332 | 78.93 269 | 92.52 179 | 92.81 282 | 73.08 330 | 89.10 297 | 96.93 113 | 67.11 325 | 97.64 255 | 88.80 185 | 92.70 337 | 94.08 311 |
|
Patchmtry | | | 90.11 223 | 89.92 221 | 90.66 255 | 90.35 341 | 77.00 297 | 92.96 163 | 92.81 282 | 90.25 145 | 94.74 165 | 96.93 113 | 67.11 325 | 97.52 259 | 85.17 238 | 98.98 109 | 97.46 197 |
|
PatchmatchNet |  | | 85.22 302 | 84.64 301 | 86.98 320 | 89.51 351 | 69.83 355 | 90.52 244 | 87.34 333 | 78.87 297 | 87.22 328 | 92.74 289 | 66.91 327 | 96.53 294 | 81.77 274 | 86.88 361 | 94.58 303 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
GA-MVS | | | 87.70 271 | 86.82 282 | 90.31 263 | 93.27 293 | 77.22 295 | 84.72 344 | 92.79 284 | 85.11 238 | 89.82 288 | 90.07 327 | 66.80 328 | 97.76 248 | 84.56 251 | 94.27 316 | 95.96 259 |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 381 | 88.45 299 | | 67.22 358 | 83.56 349 | | 66.80 328 | | 72.86 342 | | 94.06 313 |
|
tpmrst | | | 82.85 318 | 82.93 315 | 82.64 346 | 87.65 361 | 58.99 376 | 90.14 258 | 87.90 330 | 75.54 315 | 83.93 346 | 91.63 310 | 66.79 330 | 95.36 323 | 81.21 281 | 81.54 370 | 93.57 329 |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 331 | | | | 94.75 299 |
|
sam_mvs | | | | | | | | | | | | | 66.41 332 | | | | |
|
Patchmatch-RL test | | | 88.81 254 | 88.52 244 | 89.69 280 | 95.33 244 | 79.94 248 | 86.22 333 | 92.71 286 | 78.46 299 | 95.80 117 | 94.18 248 | 66.25 333 | 95.33 325 | 89.22 175 | 98.53 161 | 93.78 320 |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 308 | 66.22 334 | 97.59 256 | | | |
|
AUN-MVS | | | 90.05 227 | 88.30 250 | 95.32 88 | 96.09 203 | 90.52 77 | 92.42 186 | 92.05 302 | 82.08 271 | 88.45 312 | 92.86 284 | 65.76 335 | 98.69 159 | 88.91 183 | 96.07 271 | 96.75 231 |
|
test_post | | | | | | | | | | | | 6.07 378 | 65.74 336 | 95.84 313 | | | |
|
test_post1 | | | | | | | | 90.21 255 | | | | 5.85 379 | 65.36 337 | 96.00 311 | 79.61 299 | | |
|
MDTV_nov1_ep13 | | | | 83.88 309 | | 89.42 352 | 61.52 374 | 88.74 294 | 87.41 332 | 73.99 324 | 84.96 340 | 94.01 255 | 65.25 338 | 95.53 316 | 78.02 309 | 93.16 330 | |
|
Patchmatch-test | | | 86.10 297 | 86.01 294 | 86.38 327 | 90.63 336 | 74.22 328 | 89.57 273 | 86.69 336 | 85.73 227 | 89.81 289 | 92.83 285 | 65.24 339 | 91.04 355 | 77.82 313 | 95.78 279 | 93.88 319 |
|
tpmvs | | | 84.22 309 | 83.97 308 | 84.94 335 | 87.09 366 | 65.18 366 | 91.21 227 | 88.35 324 | 82.87 262 | 85.21 336 | 90.96 319 | 65.24 339 | 96.75 290 | 79.60 301 | 85.25 364 | 92.90 337 |
|
EU-MVSNet | | | 87.39 281 | 86.71 285 | 89.44 282 | 93.40 291 | 76.11 310 | 94.93 107 | 90.00 318 | 57.17 371 | 95.71 123 | 97.37 79 | 64.77 341 | 97.68 253 | 92.67 83 | 94.37 313 | 94.52 304 |
|
thres200 | | | 85.85 298 | 85.18 299 | 87.88 313 | 94.44 270 | 72.52 340 | 89.08 286 | 86.21 339 | 88.57 180 | 91.44 259 | 88.40 347 | 64.22 342 | 98.00 222 | 68.35 359 | 95.88 278 | 93.12 332 |
|
PatchT | | | 87.51 278 | 88.17 258 | 85.55 330 | 90.64 335 | 66.91 360 | 92.02 202 | 86.09 341 | 92.20 87 | 89.05 299 | 97.16 99 | 64.15 343 | 96.37 302 | 89.21 176 | 92.98 335 | 93.37 330 |
|
tfpn200view9 | | | 87.05 290 | 86.52 289 | 88.67 297 | 95.77 222 | 72.94 336 | 91.89 208 | 86.00 342 | 90.84 129 | 92.61 230 | 89.80 330 | 63.93 344 | 98.28 197 | 71.27 351 | 96.54 264 | 94.79 297 |
|
thres400 | | | 87.20 286 | 86.52 289 | 89.24 289 | 95.77 222 | 72.94 336 | 91.89 208 | 86.00 342 | 90.84 129 | 92.61 230 | 89.80 330 | 63.93 344 | 98.28 197 | 71.27 351 | 96.54 264 | 96.51 236 |
|
FPMVS | | | 84.50 307 | 83.28 311 | 88.16 308 | 96.32 185 | 94.49 16 | 85.76 334 | 85.47 348 | 83.09 258 | 85.20 337 | 94.26 244 | 63.79 346 | 86.58 369 | 63.72 367 | 91.88 347 | 83.40 366 |
|
thres100view900 | | | 87.35 282 | 86.89 281 | 88.72 296 | 96.14 200 | 73.09 335 | 93.00 162 | 85.31 350 | 92.13 89 | 93.26 208 | 90.96 319 | 63.42 347 | 98.28 197 | 71.27 351 | 96.54 264 | 94.79 297 |
|
thres600view7 | | | 87.66 273 | 87.10 279 | 89.36 285 | 96.05 206 | 73.17 333 | 92.72 170 | 85.31 350 | 91.89 96 | 93.29 205 | 90.97 318 | 63.42 347 | 98.39 188 | 73.23 339 | 96.99 251 | 96.51 236 |
|
EMVS | | | 80.35 335 | 80.28 334 | 80.54 350 | 84.73 375 | 69.07 356 | 72.54 368 | 80.73 366 | 87.80 194 | 81.66 362 | 81.73 369 | 62.89 349 | 89.84 360 | 75.79 328 | 94.65 308 | 82.71 368 |
|
test-LLR | | | 83.58 312 | 83.17 312 | 84.79 337 | 89.68 348 | 66.86 361 | 83.08 353 | 84.52 355 | 83.07 259 | 82.85 353 | 84.78 364 | 62.86 350 | 93.49 343 | 82.85 262 | 94.86 301 | 94.03 314 |
|
test0.0.03 1 | | | 82.48 319 | 81.47 323 | 85.48 331 | 89.70 347 | 73.57 332 | 84.73 342 | 81.64 364 | 83.07 259 | 88.13 317 | 86.61 356 | 62.86 350 | 89.10 366 | 66.24 364 | 90.29 353 | 93.77 321 |
|
tpm cat1 | | | 80.61 334 | 79.46 337 | 84.07 342 | 88.78 356 | 65.06 369 | 89.26 282 | 88.23 326 | 62.27 368 | 81.90 361 | 89.66 336 | 62.70 352 | 95.29 326 | 71.72 347 | 80.60 371 | 91.86 347 |
|
E-PMN | | | 80.72 333 | 80.86 328 | 80.29 351 | 85.11 373 | 68.77 357 | 72.96 366 | 81.97 363 | 87.76 196 | 83.25 352 | 83.01 368 | 62.22 353 | 89.17 365 | 77.15 319 | 94.31 315 | 82.93 367 |
|
baseline2 | | | 83.38 313 | 81.54 322 | 88.90 292 | 91.38 327 | 72.84 338 | 88.78 292 | 81.22 365 | 78.97 295 | 79.82 366 | 87.56 350 | 61.73 354 | 97.80 242 | 74.30 334 | 90.05 354 | 96.05 257 |
|
CostFormer | | | 83.09 315 | 82.21 318 | 85.73 329 | 89.27 353 | 67.01 359 | 90.35 251 | 86.47 338 | 70.42 347 | 83.52 350 | 93.23 278 | 61.18 355 | 96.85 287 | 77.21 318 | 88.26 359 | 93.34 331 |
|
MVSTER | | | 89.32 239 | 88.75 242 | 91.03 241 | 90.10 344 | 76.62 305 | 90.85 234 | 94.67 250 | 82.27 269 | 95.24 145 | 95.79 182 | 61.09 356 | 98.49 181 | 90.49 133 | 98.26 185 | 97.97 155 |
|
tpm | | | 84.38 308 | 84.08 307 | 85.30 333 | 90.47 339 | 63.43 373 | 89.34 279 | 85.63 346 | 77.24 307 | 87.62 323 | 95.03 218 | 61.00 357 | 97.30 272 | 79.26 303 | 91.09 351 | 95.16 285 |
|
FE-MVS | | | 89.06 244 | 88.29 251 | 91.36 228 | 94.78 257 | 79.57 258 | 96.77 28 | 90.99 311 | 84.87 243 | 92.96 220 | 96.29 157 | 60.69 358 | 98.80 137 | 80.18 290 | 97.11 243 | 95.71 271 |
|
EPMVS | | | 81.17 330 | 80.37 332 | 83.58 343 | 85.58 372 | 65.08 368 | 90.31 253 | 71.34 376 | 77.31 306 | 85.80 335 | 91.30 313 | 59.38 359 | 92.70 348 | 79.99 292 | 82.34 369 | 92.96 336 |
|
tmp_tt | | | 37.97 343 | 44.33 346 | 18.88 359 | 11.80 382 | 21.54 382 | 63.51 370 | 45.66 383 | 4.23 376 | 51.34 376 | 50.48 374 | 59.08 360 | 22.11 378 | 44.50 375 | 68.35 374 | 13.00 374 |
|
tpm2 | | | 81.46 326 | 80.35 333 | 84.80 336 | 89.90 345 | 65.14 367 | 90.44 246 | 85.36 349 | 65.82 363 | 82.05 359 | 92.44 296 | 57.94 361 | 96.69 292 | 70.71 354 | 88.49 358 | 92.56 340 |
|
ET-MVSNet_ETH3D | | | 86.15 296 | 84.27 306 | 91.79 211 | 93.04 299 | 81.28 227 | 87.17 315 | 86.14 340 | 79.57 287 | 83.65 347 | 88.66 344 | 57.10 362 | 98.18 208 | 87.74 205 | 95.40 288 | 95.90 264 |
|
CHOSEN 280x420 | | | 80.04 336 | 77.97 341 | 86.23 328 | 90.13 343 | 74.53 323 | 72.87 367 | 89.59 319 | 66.38 360 | 76.29 370 | 85.32 363 | 56.96 363 | 95.36 323 | 69.49 358 | 94.72 306 | 88.79 358 |
|
JIA-IIPM | | | 85.08 304 | 83.04 313 | 91.19 238 | 87.56 362 | 86.14 164 | 89.40 278 | 84.44 357 | 88.98 169 | 82.20 357 | 97.95 47 | 56.82 364 | 96.15 306 | 76.55 323 | 83.45 367 | 91.30 349 |
|
DeepMVS_CX |  | | | | 53.83 358 | 70.38 380 | 64.56 370 | | 48.52 382 | 33.01 374 | 65.50 375 | 74.21 373 | 56.19 365 | 46.64 377 | 38.45 376 | 70.07 373 | 50.30 373 |
|
dp | | | 79.28 337 | 78.62 339 | 81.24 349 | 85.97 371 | 56.45 377 | 86.91 319 | 85.26 352 | 72.97 332 | 81.45 363 | 89.17 343 | 56.01 366 | 95.45 321 | 73.19 340 | 76.68 372 | 91.82 348 |
|
iter_conf_final | | | 90.23 219 | 89.32 230 | 92.95 171 | 94.65 266 | 81.46 225 | 94.32 129 | 95.40 232 | 85.61 229 | 92.84 223 | 95.37 207 | 54.58 367 | 99.13 86 | 92.16 91 | 98.94 117 | 98.25 128 |
|
test_method | | | 50.44 342 | 48.94 345 | 54.93 357 | 39.68 381 | 12.38 383 | 28.59 372 | 90.09 317 | 6.82 375 | 41.10 377 | 78.41 370 | 54.41 368 | 70.69 376 | 50.12 374 | 51.26 376 | 81.72 370 |
|
thisisatest0515 | | | 84.72 306 | 82.99 314 | 89.90 275 | 92.96 301 | 75.33 318 | 84.36 347 | 83.42 360 | 77.37 305 | 88.27 315 | 86.65 355 | 53.94 369 | 98.72 150 | 82.56 266 | 97.40 235 | 95.67 274 |
|
tttt0517 | | | 89.81 232 | 88.90 240 | 92.55 189 | 97.00 142 | 79.73 255 | 95.03 103 | 83.65 359 | 89.88 150 | 95.30 139 | 94.79 228 | 53.64 370 | 99.39 48 | 91.99 97 | 98.79 136 | 98.54 110 |
|
thisisatest0530 | | | 88.69 258 | 87.52 268 | 92.20 197 | 96.33 184 | 79.36 262 | 92.81 167 | 84.01 358 | 86.44 214 | 93.67 194 | 92.68 291 | 53.62 371 | 99.25 73 | 89.65 163 | 98.45 167 | 98.00 148 |
|
FMVSNet5 | | | 87.82 270 | 86.56 287 | 91.62 219 | 92.31 308 | 79.81 253 | 93.49 152 | 94.81 245 | 83.26 254 | 91.36 260 | 96.93 113 | 52.77 372 | 97.49 262 | 76.07 325 | 98.03 207 | 97.55 193 |
|
pmmvs3 | | | 80.83 332 | 78.96 338 | 86.45 324 | 87.23 365 | 77.48 291 | 84.87 341 | 82.31 362 | 63.83 366 | 85.03 338 | 89.50 337 | 49.66 373 | 93.10 345 | 73.12 341 | 95.10 296 | 88.78 359 |
|
iter_conf05 | | | 88.94 251 | 88.09 260 | 91.50 224 | 92.74 303 | 76.97 300 | 92.80 168 | 95.92 209 | 82.82 263 | 93.65 195 | 95.37 207 | 49.41 374 | 99.13 86 | 90.82 125 | 99.28 75 | 98.40 120 |
|
IB-MVS | | 77.21 19 | 83.11 314 | 81.05 325 | 89.29 286 | 91.15 330 | 75.85 313 | 85.66 335 | 86.00 342 | 79.70 285 | 82.02 360 | 86.61 356 | 48.26 375 | 98.39 188 | 77.84 311 | 92.22 342 | 93.63 325 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
gg-mvs-nofinetune | | | 82.10 324 | 81.02 326 | 85.34 332 | 87.46 364 | 71.04 346 | 94.74 111 | 67.56 377 | 96.44 23 | 79.43 367 | 98.99 6 | 45.24 376 | 96.15 306 | 67.18 362 | 92.17 343 | 88.85 357 |
|
GG-mvs-BLEND | | | | | 83.24 345 | 85.06 374 | 71.03 347 | 94.99 106 | 65.55 378 | | 74.09 372 | 75.51 372 | 44.57 377 | 94.46 333 | 59.57 370 | 87.54 360 | 84.24 365 |
|
TESTMET0.1,1 | | | 79.09 338 | 78.04 340 | 82.25 347 | 87.52 363 | 64.03 372 | 83.08 353 | 80.62 367 | 70.28 348 | 80.16 365 | 83.22 367 | 44.13 378 | 90.56 357 | 79.95 293 | 93.36 326 | 92.15 343 |
|
test-mter | | | 81.21 329 | 80.01 336 | 84.79 337 | 89.68 348 | 66.86 361 | 83.08 353 | 84.52 355 | 73.85 325 | 82.85 353 | 84.78 364 | 43.66 379 | 93.49 343 | 82.85 262 | 94.86 301 | 94.03 314 |
|
KD-MVS_2432*1600 | | | 82.17 322 | 80.75 329 | 86.42 325 | 82.04 378 | 70.09 352 | 81.75 358 | 90.80 313 | 82.56 264 | 90.37 277 | 89.30 339 | 42.90 380 | 96.11 308 | 74.47 332 | 92.55 339 | 93.06 333 |
|
miper_refine_blended | | | 82.17 322 | 80.75 329 | 86.42 325 | 82.04 378 | 70.09 352 | 81.75 358 | 90.80 313 | 82.56 264 | 90.37 277 | 89.30 339 | 42.90 380 | 96.11 308 | 74.47 332 | 92.55 339 | 93.06 333 |
|
test2506 | | | 85.42 301 | 84.57 303 | 87.96 310 | 97.81 100 | 66.53 363 | 96.14 58 | 56.35 380 | 89.04 167 | 93.55 198 | 98.10 38 | 42.88 382 | 98.68 161 | 88.09 198 | 99.18 90 | 98.67 96 |
|
test123 | | | 9.49 345 | 12.01 348 | 1.91 360 | 2.87 383 | 1.30 384 | 82.38 356 | 1.34 385 | 1.36 378 | 2.84 379 | 6.56 377 | 2.45 383 | 0.97 379 | 2.73 377 | 5.56 377 | 3.47 375 |
|
testmvs | | | 9.02 346 | 11.42 349 | 1.81 361 | 2.77 384 | 1.13 385 | 79.44 363 | 1.90 384 | 1.18 379 | 2.65 380 | 6.80 376 | 1.95 384 | 0.87 380 | 2.62 378 | 3.45 378 | 3.44 376 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 7.56 347 | 10.08 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 90.69 324 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 8 | 97.73 6 | 98.27 20 | | | | | | |
|
MSC_two_6792asdad | | | | | 95.90 65 | 96.54 168 | 89.57 88 | | 96.87 162 | | | | | 99.41 38 | 94.06 32 | 99.30 67 | 98.72 92 |
|
No_MVS | | | | | 95.90 65 | 96.54 168 | 89.57 88 | | 96.87 162 | | | | | 99.41 38 | 94.06 32 | 99.30 67 | 98.72 92 |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
IU-MVS | | | | | | 98.51 51 | 86.66 149 | | 96.83 165 | 72.74 333 | 95.83 116 | | | | 93.00 74 | 99.29 70 | 98.64 103 |
|
save fliter | | | | | | 97.46 126 | 88.05 120 | 92.04 201 | 97.08 145 | 87.63 200 | | | | | | | |
|
test_0728_SECOND | | | | | 94.88 100 | 98.55 45 | 86.72 146 | 95.20 96 | 98.22 32 | | | | | 99.38 54 | 93.44 55 | 99.31 65 | 98.53 111 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 299 |
|
test_part2 | | | | | | 98.21 75 | 89.41 93 | | | | 96.72 76 | | | | | | |
|
MTGPA |  | | | | | | | | 97.62 100 | | | | | | | | |
|
MTMP | | | | | | | | 94.82 109 | 54.62 381 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 367 | 59.33 375 | | | 71.22 339 | | 83.58 366 | | 97.20 275 | 73.95 335 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 196 | 98.40 169 | 97.83 170 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 216 | 98.36 178 | 97.98 152 |
|
agg_prior | | | | | | 96.20 195 | 88.89 103 | | 96.88 161 | | 90.21 280 | | | 98.78 141 | | | |
|
test_prior4 | | | | | | | 89.91 82 | 90.74 237 | | | | | | | | | |
|
test_prior | | | | | 94.61 112 | 95.95 214 | 87.23 132 | | 97.36 123 | | | | | 98.68 161 | | | 97.93 158 |
|
旧先验2 | | | | | | | | 90.00 263 | | 68.65 354 | 92.71 228 | | | 96.52 295 | 85.15 240 | | |
|
新几何2 | | | | | | | | 90.02 262 | | | | | | | | | |
|
无先验 | | | | | | | | 89.94 264 | 95.75 214 | 70.81 344 | | | | 98.59 172 | 81.17 282 | | 94.81 295 |
|
原ACMM2 | | | | | | | | 89.34 279 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.03 217 | 80.24 289 | | |
|
testdata1 | | | | | | | | 88.96 288 | | 88.44 182 | | | | | | | |
|
plane_prior7 | | | | | | 97.71 108 | 88.68 106 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.81 86 | | | | | 98.95 112 | 89.26 173 | 98.51 164 | 98.60 107 |
|
plane_prior4 | | | | | | | | | | | | 95.59 191 | | | | | |
|
plane_prior3 | | | | | | | 88.43 115 | | | 90.35 144 | 93.31 203 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 120 | | 91.74 109 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 128 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 118 | 93.01 161 | | 88.98 169 | | | | | | 98.06 204 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 300 | | | | | | | | |
|
test11 | | | | | | | | | 96.65 176 | | | | | | | | |
|
door | | | | | | | | | 91.26 309 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 182 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 179 | | 91.37 222 | | 87.16 206 | 88.81 302 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 179 | | 91.37 222 | | 87.16 206 | 88.81 302 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 225 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 302 | | | 98.61 168 | | | 98.15 136 |
|
HQP3-MVS | | | | | | | | | 97.31 127 | | | | | | | 97.73 220 | |
|
NP-MVS | | | | | | 96.82 154 | 87.10 135 | | | | | 93.40 273 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 132 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 79 | |
|