This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
XVG-OURS-SEG-HR95.38 7795.00 9696.51 4998.10 8294.07 2092.46 18398.13 4690.69 13993.75 19496.25 15998.03 297.02 29492.08 10195.55 29398.45 125
pmmvs696.80 1397.36 995.15 10499.12 887.82 13496.68 3097.86 8596.10 2698.14 2499.28 397.94 398.21 22191.38 12499.69 1599.42 21
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 13997.70 897.54 11298.16 298.94 299.33 297.84 499.08 10490.73 13499.73 1499.59 13
ACMH88.36 1296.59 2797.43 594.07 14898.56 4085.33 18596.33 4898.30 2494.66 4098.72 898.30 3397.51 598.00 23994.87 1899.59 3198.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4193.11 7396.48 8597.36 8096.92 699.34 6894.31 2799.38 6198.92 72
ACMH+88.43 1196.48 3096.82 1695.47 9098.54 4689.06 10595.65 7898.61 1196.10 2698.16 2397.52 6896.90 798.62 18390.30 14799.60 2998.72 97
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1392.35 8695.95 11396.41 14396.71 899.42 3593.99 3799.36 6299.13 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
abl_697.31 597.12 1397.86 398.54 4695.32 796.61 3298.35 2095.81 3197.55 4097.44 7396.51 999.40 4994.06 3499.23 8698.85 81
mvs_tets96.83 996.71 1997.17 2798.83 2492.51 5096.58 3497.61 10787.57 21198.80 798.90 996.50 1099.59 1396.15 799.47 4499.40 24
SED-MVS96.00 5396.41 3294.76 11798.51 5186.97 14995.21 9398.10 5191.95 9697.63 3597.25 8896.48 1199.35 6593.29 6899.29 7497.95 167
test_241102_ONE98.51 5186.97 14998.10 5191.85 10297.63 3597.03 10196.48 1198.95 126
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6792.13 5495.33 8998.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
LGP-MVS_train96.84 4098.36 6792.13 5498.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
ACMM88.83 996.30 4396.07 5196.97 3598.39 6392.95 4694.74 11298.03 6790.82 13697.15 5696.85 11396.25 1599.00 11893.10 7799.33 6698.95 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d87.83 27590.79 21378.96 35590.46 34688.63 11592.72 17290.67 31991.65 11798.68 1197.64 6296.06 1677.53 37659.84 37199.41 5870.73 374
ACMP88.15 1395.71 6395.43 7796.54 4898.17 7891.73 6294.24 13198.08 5589.46 16596.61 8296.47 13895.85 1799.12 10090.45 13999.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TransMVSNet (Re)95.27 8696.04 5392.97 18498.37 6681.92 22495.07 10196.76 17793.97 5697.77 3198.57 1995.72 1897.90 24588.89 18599.23 8699.08 51
ZNCC-MVS96.42 3696.20 4297.07 3098.80 2892.79 4896.08 6098.16 4491.74 11395.34 14096.36 15195.68 1999.44 3094.41 2599.28 7998.97 64
ACMMP_NAP96.21 4696.12 4896.49 5198.90 1891.42 6594.57 12098.03 6790.42 14796.37 8897.35 8395.68 1999.25 8294.44 2499.34 6498.80 86
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9793.82 3496.31 5198.25 2895.51 3596.99 6697.05 10095.63 2199.39 5493.31 6798.88 12798.75 91
DVP-MVScopyleft95.82 5996.18 4394.72 11998.51 5186.69 15695.20 9597.00 15591.85 10297.40 5197.35 8395.58 2299.34 6893.44 6099.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5186.69 15695.34 8898.18 3791.85 10297.63 3597.37 7795.58 22
MP-MVS-pluss96.08 5095.92 5896.57 4699.06 1091.21 6793.25 15998.32 2187.89 20296.86 7197.38 7695.55 2499.39 5495.47 1599.47 4499.11 47
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 6494.31 1796.79 2798.32 2196.69 1796.86 7197.56 6595.48 2598.77 16090.11 15699.44 5198.31 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS95.19 8795.73 6793.55 16796.62 17088.88 11294.67 11498.05 6291.26 12597.25 5596.40 14495.42 2694.36 34992.72 8999.19 9197.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RE-MVS-def96.66 2098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10195.40 2793.49 5298.84 13298.00 159
test_241102_TWO98.10 5191.95 9697.54 4197.25 8895.37 2899.35 6593.29 6899.25 8398.49 121
HFP-MVS96.39 3996.17 4597.04 3198.51 5193.37 4096.30 5397.98 7492.35 8695.63 12896.47 13895.37 2899.27 8093.78 4299.14 9898.48 122
#test#95.89 5595.51 7397.04 3198.51 5193.37 4095.14 9897.98 7489.34 16995.63 12896.47 13895.37 2899.27 8091.99 10499.14 9898.48 122
jajsoiax96.59 2796.42 2997.12 2998.76 2992.49 5196.44 4297.42 12186.96 22098.71 1098.72 1795.36 3199.56 1795.92 999.45 4899.32 30
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8998.26 7287.69 13593.75 14797.86 8595.96 3097.48 4697.14 9595.33 3299.44 3090.79 13399.76 1199.38 25
PMVScopyleft87.21 1494.97 9295.33 8193.91 15698.97 1597.16 295.54 8395.85 21796.47 2193.40 20697.46 7295.31 3395.47 33386.18 23598.78 14489.11 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pm-mvs195.43 7495.94 5693.93 15498.38 6485.08 18895.46 8697.12 14991.84 10597.28 5398.46 2895.30 3497.71 26590.17 15499.42 5398.99 58
PGM-MVS96.32 4195.94 5697.43 1998.59 3993.84 3395.33 8998.30 2491.40 12295.76 12296.87 11295.26 3599.45 2892.77 8599.21 8999.00 56
PS-CasMVS96.69 2097.43 594.49 13599.13 684.09 20196.61 3297.97 7797.91 598.64 1398.13 3895.24 3699.65 393.39 6499.84 399.72 2
GST-MVS96.24 4495.99 5597.00 3498.65 3292.71 4995.69 7798.01 7192.08 9495.74 12496.28 15695.22 3799.42 3593.17 7499.06 10398.88 77
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2693.86 3299.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 18496.85 299.77 1099.31 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DPE-MVScopyleft95.89 5595.88 5995.92 6997.93 9889.83 9193.46 15598.30 2492.37 8497.75 3296.95 10595.14 3999.51 2091.74 11399.28 7998.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060198.26 7287.14 14498.18 3794.25 4896.99 6697.36 8095.13 40
nrg03096.32 4196.55 2695.62 8497.83 10188.55 11995.77 7398.29 2792.68 7798.03 2797.91 5195.13 4098.95 12693.85 4099.49 4399.36 27
APDe-MVS96.46 3296.64 2295.93 6797.68 11489.38 10296.90 2398.41 1792.52 8197.43 4897.92 5095.11 4299.50 2194.45 2399.30 7198.92 72
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3693.88 3096.95 2298.18 3792.26 8996.33 9196.84 11695.10 4399.40 4993.47 5699.33 6699.02 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS96.70 1996.42 2997.54 1198.05 8694.69 1196.13 5898.07 5895.17 3796.82 7396.73 12595.09 4499.43 3492.99 8298.71 14998.50 120
OPM-MVS95.61 6795.45 7596.08 5898.49 5991.00 7092.65 17697.33 13290.05 15296.77 7696.85 11395.04 4598.56 19292.77 8599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DTE-MVSNet96.74 1797.43 594.67 12199.13 684.68 19196.51 3697.94 8398.14 398.67 1298.32 3295.04 4599.69 293.27 7099.82 899.62 10
region2R96.41 3796.09 4997.38 2398.62 3493.81 3696.32 5097.96 7892.26 8995.28 14496.57 13595.02 4799.41 4293.63 4699.11 10198.94 67
PEN-MVS96.69 2097.39 894.61 12499.16 484.50 19296.54 3598.05 6298.06 498.64 1398.25 3495.01 4899.65 392.95 8399.83 699.68 4
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3391.96 5795.70 7598.01 7193.34 6996.64 8096.57 13594.99 4999.36 6493.48 5599.34 6498.82 83
Skip Steuart: Steuart Systems R&D Blog.
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 14895.59 7998.24 3191.56 11995.21 15092.04 30694.95 5098.66 17991.45 12297.57 24497.20 224
ACMMPR96.46 3296.14 4697.41 2198.60 3793.82 3496.30 5397.96 7892.35 8695.57 13196.61 13394.93 5199.41 4293.78 4299.15 9799.00 56
test117296.79 1596.52 2797.60 998.03 9094.87 1096.07 6198.06 6195.76 3296.89 6996.85 11394.85 5299.42 3593.35 6698.81 14098.53 118
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10194.85 5299.42 3593.49 5298.84 13298.00 159
CP-MVS96.44 3596.08 5097.54 1198.29 6994.62 1496.80 2698.08 5592.67 7995.08 15596.39 14894.77 5499.42 3593.17 7499.44 5198.58 116
test_0728_THIRD93.26 7097.40 5197.35 8394.69 5599.34 6893.88 3899.42 5398.89 75
9.1494.81 10197.49 12694.11 13698.37 1887.56 21295.38 13796.03 16894.66 5699.08 10490.70 13598.97 119
GeoE94.55 11194.68 10994.15 14597.23 13785.11 18794.14 13597.34 13188.71 18595.26 14595.50 19694.65 5799.12 10090.94 13098.40 17698.23 139
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 897.41 1097.28 5398.46 2894.62 5898.84 14294.64 2199.53 3998.99 58
XVS96.49 2996.18 4397.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17896.49 13794.56 5999.39 5493.57 4899.05 10698.93 68
X-MVStestdata90.70 21388.45 25597.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17826.89 37794.56 5999.39 5493.57 4899.05 10698.93 68
mPP-MVS96.46 3296.05 5297.69 598.62 3494.65 1396.45 4097.74 9892.59 8095.47 13396.68 12894.50 6199.42 3593.10 7799.26 8298.99 58
DeepC-MVS91.39 495.43 7495.33 8195.71 8297.67 11590.17 8393.86 14598.02 6987.35 21396.22 10197.99 4794.48 6299.05 10992.73 8899.68 2197.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft95.77 6095.54 7296.47 5298.27 7191.19 6895.09 9997.79 9686.48 22397.42 5097.51 7094.47 6399.29 7693.55 5099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12892.04 20498.42 1687.63 20996.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
SF-MVS95.88 5795.88 5995.87 7398.12 8089.65 9495.58 8198.56 1291.84 10596.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
MP-MVScopyleft96.14 4895.68 6897.51 1398.81 2694.06 2196.10 5997.78 9792.73 7593.48 20396.72 12694.23 6699.42 3591.99 10499.29 7499.05 53
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
anonymousdsp96.74 1796.42 2997.68 798.00 9394.03 2696.97 2197.61 10787.68 20898.45 1898.77 1594.20 6799.50 2196.70 399.40 5999.53 15
test_040295.73 6296.22 4094.26 14398.19 7785.77 18093.24 16097.24 14096.88 1697.69 3397.77 5794.12 6899.13 9691.54 12199.29 7497.88 176
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 20994.00 14097.53 11491.36 12389.35 30090.65 32894.01 6998.66 17987.40 21495.30 30196.88 235
DROMVSNet95.44 7395.62 7094.89 11196.93 15387.69 13596.48 3999.14 493.93 5792.77 22994.52 23993.95 7099.49 2493.62 4799.22 8897.51 206
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6692.27 19597.40 12287.10 21994.56 17395.42 20193.74 7198.11 23086.62 22698.85 13198.06 151
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21393.79 14699.19 392.00 9598.84 598.04 4493.64 7299.02 11581.28 28298.54 16696.96 231
CS-MVS95.77 6095.58 7196.37 5396.84 15891.72 6396.73 2999.06 594.23 4992.48 23794.79 23193.56 7399.49 2493.47 5699.05 10697.89 175
zzz-MVS96.47 3196.14 4697.47 1598.95 1694.05 2393.69 14997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7696.33 4899.20 293.99 5391.03 26993.73 26793.52 7699.55 1891.81 11199.45 4897.58 200
UA-Net97.35 497.24 1197.69 598.22 7593.87 3198.42 698.19 3696.95 1495.46 13599.23 493.45 7799.57 1495.34 1799.89 299.63 9
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15189.30 28796.23 20288.36 19493.57 20194.60 23693.45 7797.77 26090.23 15298.38 18198.03 157
cdsmvs_eth3d_5k23.35 34631.13 3490.00 3640.00 3870.00 3880.00 37595.58 2290.00 3820.00 38391.15 31793.43 790.00 3830.00 3810.00 3810.00 379
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7394.59 11797.81 9289.22 17495.46 13596.17 16493.42 8099.34 6889.30 17298.87 13097.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ANet_high94.83 10196.28 3790.47 26896.65 16673.16 33694.33 12898.74 1096.39 2398.09 2698.93 893.37 8198.70 17290.38 14299.68 2199.53 15
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23292.35 19198.05 6291.53 12095.75 12396.80 11793.35 8298.49 19891.01 12998.32 19098.64 107
test_djsdf96.62 2396.49 2897.01 3398.55 4391.77 6197.15 1597.37 12388.98 17898.26 2298.86 1093.35 8299.60 996.41 499.45 4899.66 6
VPA-MVSNet95.14 8895.67 6993.58 16697.76 10583.15 21294.58 11997.58 10993.39 6897.05 6298.04 4493.25 8498.51 19789.75 16699.59 3199.08 51
Anonymous2024052995.50 7195.83 6394.50 13397.33 13585.93 17795.19 9796.77 17696.64 1997.61 3898.05 4393.23 8598.79 15288.60 19299.04 11298.78 88
baseline94.26 12594.80 10292.64 19896.08 21380.99 23793.69 14998.04 6690.80 13794.89 16396.32 15393.19 8698.48 20291.68 11698.51 17098.43 126
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4589.48 28197.46 11885.14 24696.23 10095.42 20193.19 8698.08 23190.37 14398.76 14697.38 218
Anonymous2023121196.60 2597.13 1295.00 10897.46 12986.35 16897.11 1998.24 3197.58 898.72 898.97 793.15 8899.15 9293.18 7399.74 1399.50 17
DVP-MVS++95.93 5496.34 3494.70 12096.54 17686.66 15898.45 498.22 3393.26 7097.54 4197.36 8093.12 8999.38 6093.88 3898.68 15398.04 154
OPU-MVS95.15 10496.84 15889.43 9995.21 9395.66 18693.12 8998.06 23286.28 23498.61 15897.95 167
LS3D96.11 4995.83 6396.95 3794.75 26794.20 1997.34 1297.98 7497.31 1195.32 14196.77 11893.08 9199.20 8891.79 11298.16 20897.44 211
DP-MVS95.62 6695.84 6294.97 10997.16 14288.62 11694.54 12497.64 10396.94 1596.58 8397.32 8693.07 9298.72 16690.45 13998.84 13297.57 201
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16092.00 20796.74 17888.16 19796.93 6897.61 6393.04 9397.90 24591.60 11898.12 21398.03 157
Fast-Effi-MVS+91.28 20590.86 21092.53 20595.45 24882.53 21989.25 29096.52 19085.00 25089.91 28988.55 34892.94 9498.84 14284.72 25395.44 29796.22 259
PC_three_145275.31 32795.87 11995.75 18392.93 9596.34 31887.18 21798.68 15398.04 154
v7n96.82 1097.31 1095.33 9598.54 4686.81 15396.83 2498.07 5896.59 2098.46 1798.43 3092.91 9699.52 1996.25 699.76 1199.65 8
XVG-ACMP-BASELINE95.68 6495.34 8096.69 4398.40 6293.04 4394.54 12498.05 6290.45 14696.31 9396.76 12092.91 9698.72 16691.19 12599.42 5398.32 131
testgi90.38 22391.34 20087.50 32097.49 12671.54 34689.43 28295.16 24288.38 19394.54 17494.68 23592.88 9893.09 35971.60 35197.85 23197.88 176
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7190.21 26095.43 23587.91 20093.74 19694.40 24292.88 9896.38 31490.39 14198.28 19497.07 225
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10391.81 22296.80 17389.66 16193.90 19295.44 20092.80 10098.72 16692.74 8798.52 16898.32 131
ZD-MVS97.23 13790.32 8297.54 11284.40 25794.78 16795.79 17992.76 10199.39 5488.72 19098.40 176
XXY-MVS92.58 17593.16 15790.84 25997.75 10679.84 25491.87 21696.22 20485.94 23295.53 13297.68 5992.69 10294.48 34583.21 26497.51 24598.21 142
CDPH-MVS92.67 17291.83 18695.18 10396.94 15188.46 12290.70 24697.07 15277.38 31592.34 24795.08 21592.67 10398.88 13385.74 23798.57 16298.20 143
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9294.05 13898.37 1888.09 19895.06 15695.85 17492.58 10499.10 10390.33 14698.99 11498.62 111
Fast-Effi-MVS+-dtu92.77 16992.16 17794.58 13194.66 27488.25 12492.05 20396.65 18289.62 16290.08 28591.23 31692.56 10598.60 18686.30 23396.27 27996.90 233
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5295.26 9298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
TestCases96.00 6198.02 9192.17 5298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
TinyColmap92.00 19092.76 16489.71 28795.62 24377.02 29990.72 24596.17 20787.70 20795.26 14596.29 15592.54 10696.45 31181.77 27898.77 14595.66 283
Regformer-294.86 9894.55 11495.77 7892.83 31089.98 8591.87 21696.40 19494.38 4796.19 10595.04 21792.47 10999.04 11293.49 5298.31 19198.28 135
EGC-MVSNET80.97 33375.73 34496.67 4498.85 2394.55 1596.83 2496.60 1842.44 3795.32 38098.25 3492.24 11098.02 23791.85 11099.21 8997.45 209
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 16992.33 19297.84 8991.70 11692.81 22786.17 36292.22 11199.19 8988.03 20397.73 23495.66 283
CLD-MVS91.82 19291.41 19893.04 18196.37 18583.65 20686.82 32897.29 13684.65 25692.27 24989.67 33892.20 11297.85 25383.95 25899.47 4497.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
segment_acmp92.14 113
Regformer-494.90 9594.67 11095.59 8592.78 31289.02 10692.39 18895.91 21494.50 4396.41 8695.56 19392.10 11499.01 11794.23 3098.14 21098.74 94
Vis-MVSNetpermissive95.50 7195.48 7495.56 8898.11 8189.40 10195.35 8798.22 3392.36 8594.11 18198.07 4292.02 11599.44 3093.38 6597.67 24097.85 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-194.55 11194.33 12295.19 10292.83 31088.54 12091.87 21695.84 21893.99 5395.95 11395.04 21792.00 11698.79 15293.14 7698.31 19198.23 139
ITE_SJBPF95.95 6497.34 13493.36 4296.55 18991.93 9894.82 16595.39 20491.99 11797.08 29285.53 23997.96 22597.41 212
CP-MVSNet96.19 4796.80 1794.38 14198.99 1483.82 20496.31 5197.53 11497.60 798.34 1997.52 6891.98 11899.63 693.08 7999.81 999.70 3
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13295.01 10497.57 11092.68 7796.20 10393.44 27491.92 11998.78 15689.11 18099.24 8596.92 232
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2188.69 11396.37 4596.81 17285.23 24394.75 16897.12 9691.85 12099.40 4993.45 5898.33 18898.62 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Gipumacopyleft95.31 8395.80 6593.81 16197.99 9690.91 7296.42 4397.95 8096.69 1791.78 25898.85 1291.77 12195.49 33291.72 11499.08 10295.02 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H96.60 2597.05 1495.24 10099.02 1286.44 16496.78 2898.08 5597.42 998.48 1697.86 5491.76 12299.63 694.23 3099.84 399.66 6
testtj94.81 10294.42 11896.01 6097.23 13790.51 8194.77 11197.85 8891.29 12494.92 16295.66 18691.71 12399.40 4988.07 20298.25 19898.11 150
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8692.72 17298.02 6984.73 25593.65 19895.54 19591.68 12499.22 8588.78 18798.49 17398.26 137
AdaColmapbinary91.63 19691.36 19992.47 20795.56 24586.36 16792.24 19896.27 19988.88 18289.90 29092.69 29291.65 12598.32 21277.38 31997.64 24192.72 343
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6494.82 10997.86 8587.86 20393.04 22194.16 25191.58 12698.78 15690.27 14998.96 12197.41 212
xiu_mvs_v1_base_debu91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base_debi91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 23994.55 12395.41 23693.70 6296.67 7997.72 5891.40 13098.18 22587.45 21299.18 9398.36 129
Regformer-394.28 12294.23 12894.46 13792.78 31286.28 17092.39 18894.70 25593.69 6595.97 11195.56 19391.34 13198.48 20293.45 5898.14 21098.62 111
3Dnovator+92.74 295.86 5895.77 6696.13 5796.81 16290.79 7596.30 5397.82 9196.13 2594.74 16997.23 9091.33 13299.16 9193.25 7198.30 19398.46 124
TEST996.45 18389.46 9790.60 24896.92 16279.09 30490.49 27794.39 24391.31 13398.88 133
agg_prior192.60 17491.76 18995.10 10696.20 20288.89 11090.37 25596.88 16679.67 29690.21 28294.41 24191.30 13498.78 15688.46 19498.37 18697.64 197
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13193.36 15897.14 14685.53 24093.90 19295.45 19991.30 13498.59 18889.51 16998.62 15797.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31585.98 17692.44 18494.69 25693.70 6296.12 10895.81 17891.24 13698.86 13993.76 4598.22 20398.98 63
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18191.36 23297.13 14880.33 29092.91 22594.24 24791.23 13798.72 16689.99 16097.93 22797.86 178
RPSCF95.58 6994.89 9997.62 897.58 12196.30 495.97 6597.53 11492.42 8293.41 20497.78 5591.21 13897.77 26091.06 12697.06 25798.80 86
train_agg92.71 17191.83 18695.35 9396.45 18389.46 9790.60 24896.92 16279.37 29990.49 27794.39 24391.20 13998.88 13388.66 19198.43 17597.72 191
test_896.37 18589.14 10490.51 25196.89 16579.37 29990.42 27994.36 24591.20 13998.82 144
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31685.87 17892.42 18694.69 25693.67 6696.13 10795.84 17791.20 13998.86 13993.78 4298.23 20199.03 54
EIA-MVS92.35 18292.03 18093.30 17795.81 23183.97 20292.80 17098.17 4187.71 20689.79 29487.56 35291.17 14299.18 9087.97 20497.27 25296.77 239
dcpmvs_293.96 13495.01 9590.82 26097.60 11974.04 33193.68 15198.85 789.80 15997.82 3097.01 10491.14 14399.21 8690.56 13798.59 16099.19 39
xiu_mvs_v2_base89.00 25589.19 24188.46 30994.86 26274.63 32386.97 32295.60 22380.88 28687.83 32388.62 34791.04 14498.81 14982.51 27294.38 31891.93 349
HPM-MVS++copyleft95.02 9094.39 11996.91 3897.88 9993.58 3894.09 13796.99 15791.05 13192.40 24295.22 20991.03 14599.25 8292.11 9998.69 15297.90 173
TAPA-MVS88.58 1092.49 17891.75 19094.73 11896.50 18089.69 9392.91 16797.68 10178.02 31392.79 22894.10 25290.85 14697.96 24384.76 25298.16 20896.54 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas7.56 34910.09 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38290.77 1470.00 3830.00 3810.00 3810.00 379
PS-MVSNAJss96.01 5296.04 5395.89 7298.82 2588.51 12195.57 8297.88 8488.72 18498.81 698.86 1090.77 14799.60 995.43 1699.53 3999.57 14
PS-MVSNAJ88.86 26088.99 24688.48 30894.88 26074.71 32186.69 33195.60 22380.88 28687.83 32387.37 35590.77 14798.82 14482.52 27194.37 31991.93 349
MVS_Test92.57 17793.29 15290.40 27193.53 29775.85 31592.52 17996.96 15888.73 18392.35 24596.70 12790.77 14798.37 21092.53 9395.49 29596.99 230
MIMVSNet195.52 7095.45 7595.72 8199.14 589.02 10696.23 5696.87 16893.73 6197.87 2998.49 2690.73 15199.05 10986.43 23199.60 2999.10 50
ab-mvs92.40 18092.62 17091.74 22697.02 14781.65 22795.84 7095.50 23386.95 22192.95 22497.56 6590.70 15297.50 27379.63 30097.43 24896.06 265
Test By Simon90.61 153
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14696.63 3197.28 13891.82 10894.34 18097.41 7490.60 15498.65 18192.47 9498.11 21497.70 192
NCCC94.08 13193.54 14795.70 8396.49 18189.90 8892.39 18896.91 16490.64 14192.33 24894.60 23690.58 15598.96 12490.21 15397.70 23898.23 139
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11792.26 19697.84 8994.91 3896.80 7495.78 18290.42 15699.41 4291.60 11899.58 3599.29 32
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14190.21 26097.36 12889.33 17090.77 27294.81 22790.41 15798.68 17688.21 19598.55 16397.93 169
test_prior290.21 26089.33 17090.77 27294.81 22790.41 15788.21 19598.55 163
KD-MVS_self_test94.10 13094.73 10692.19 21297.66 11679.49 26394.86 10897.12 14989.59 16496.87 7097.65 6190.40 15998.34 21189.08 18199.35 6398.75 91
MSLP-MVS++93.25 15293.88 13391.37 23896.34 19182.81 21793.11 16197.74 9889.37 16894.08 18395.29 20890.40 15996.35 31690.35 14498.25 19894.96 298
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 10992.91 16798.07 5893.46 6796.31 9395.97 17190.14 16199.34 6892.11 9999.64 2799.16 41
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 26896.67 394.00 14095.41 23689.94 15491.93 25692.13 30490.12 16298.97 12387.68 20997.48 24697.67 195
mvs-test193.07 15891.80 18896.89 3994.74 26895.83 692.17 19995.41 23689.94 15489.85 29190.59 32990.12 16298.88 13387.68 20995.66 29195.97 268
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19495.99 6296.56 18692.38 8397.03 6398.53 2290.12 16298.98 11988.78 18799.16 9698.65 103
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11792.58 17797.81 9293.99 5396.80 7495.90 17290.10 16599.41 4291.60 11899.58 3599.26 33
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14395.08 10097.37 12393.92 5997.65 3495.90 17290.10 16599.33 7390.11 15699.66 2499.26 33
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24092.08 20296.68 18093.82 6096.29 9598.56 2090.10 16597.75 26390.10 15899.66 2499.24 35
API-MVS91.52 19991.61 19191.26 24294.16 28486.26 17294.66 11594.82 25091.17 12992.13 25291.08 31990.03 16897.06 29379.09 30797.35 25190.45 358
patch_mono-292.46 17992.72 16891.71 22896.65 16678.91 27488.85 29697.17 14483.89 26192.45 23996.76 12089.86 16997.09 29190.24 15198.59 16099.12 46
test1294.43 13995.95 22386.75 15496.24 20189.76 29589.79 17098.79 15297.95 22697.75 190
旧先验196.20 20284.17 19994.82 25095.57 19289.57 17197.89 22996.32 255
DELS-MVS92.05 18992.16 17791.72 22794.44 27980.13 24687.62 30997.25 13987.34 21492.22 25093.18 28189.54 17298.73 16589.67 16798.20 20696.30 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet93.08 15693.76 13791.03 25098.60 3775.83 31791.51 22795.62 22291.84 10595.74 12497.10 9789.31 17398.32 21285.07 24899.06 10398.93 68
QAPM92.88 16492.77 16393.22 17995.82 22983.31 20896.45 4097.35 13083.91 26093.75 19496.77 11889.25 17498.88 13384.56 25497.02 25997.49 207
MSDG90.82 20990.67 21691.26 24294.16 28483.08 21486.63 33396.19 20590.60 14391.94 25591.89 30789.16 17595.75 32780.96 28894.51 31794.95 299
CPTT-MVS94.74 10494.12 13096.60 4598.15 7993.01 4495.84 7097.66 10289.21 17593.28 21095.46 19888.89 17698.98 11989.80 16398.82 13897.80 185
ETH3 D test640091.91 19191.25 20293.89 15796.59 17184.41 19392.10 20197.72 10078.52 30991.82 25793.78 26688.70 17799.13 9683.61 26098.39 17998.14 146
DP-MVS Recon92.31 18391.88 18593.60 16597.18 14186.87 15291.10 23797.37 12384.92 25292.08 25394.08 25388.59 17898.20 22283.50 26198.14 21095.73 279
FC-MVSNet-test95.32 8095.88 5993.62 16498.49 5981.77 22595.90 6898.32 2193.93 5797.53 4397.56 6588.48 17999.40 4992.91 8499.83 699.68 4
OpenMVScopyleft89.45 892.27 18592.13 17992.68 19794.53 27884.10 20095.70 7597.03 15382.44 27891.14 26896.42 14288.47 18098.38 20785.95 23697.47 24795.55 287
F-COLMAP92.28 18491.06 20795.95 6497.52 12491.90 5893.53 15397.18 14383.98 25988.70 31294.04 25488.41 18198.55 19480.17 29395.99 28497.39 216
ambc92.98 18396.88 15583.01 21595.92 6796.38 19696.41 8697.48 7188.26 18297.80 25689.96 16198.93 12498.12 149
v1094.68 10795.27 8692.90 19096.57 17380.15 24494.65 11697.57 11090.68 14097.43 4898.00 4688.18 18399.15 9294.84 1999.55 3899.41 23
v894.65 10895.29 8492.74 19596.65 16679.77 25894.59 11797.17 14491.86 10197.47 4797.93 4988.16 18499.08 10494.32 2699.47 4499.38 25
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7490.97 23992.61 29688.04 19994.61 17293.79 26588.08 18597.81 25589.41 17198.39 17996.50 248
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 7194.15 5198.93 399.07 588.07 18699.57 1495.86 1099.69 1599.46 20
diffmvs91.74 19391.93 18491.15 24893.06 30578.17 28488.77 29997.51 11786.28 22692.42 24193.96 25988.04 18797.46 27690.69 13696.67 27297.82 183
原ACMM192.87 19196.91 15484.22 19797.01 15476.84 32089.64 29794.46 24088.00 18898.70 17281.53 28098.01 22395.70 281
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17593.97 14293.28 28194.49 4496.24 9997.78 5587.99 18998.79 15288.92 18399.14 9898.34 130
XVG-OURS94.72 10594.12 13096.50 5098.00 9394.23 1891.48 22898.17 4190.72 13895.30 14296.47 13887.94 19096.98 29591.41 12397.61 24398.30 134
CANet92.38 18191.99 18293.52 17193.82 29583.46 20791.14 23597.00 15589.81 15886.47 33394.04 25487.90 19199.21 8689.50 17098.27 19597.90 173
BH-untuned90.68 21490.90 20890.05 28295.98 22179.57 26290.04 26794.94 24787.91 20094.07 18493.00 28387.76 19297.78 25979.19 30695.17 30492.80 342
FIs94.90 9595.35 7993.55 16798.28 7081.76 22695.33 8998.14 4593.05 7497.07 5997.18 9387.65 19399.29 7691.72 11499.69 1599.61 11
v114493.50 14193.81 13492.57 20396.28 19679.61 26191.86 22096.96 15886.95 22195.91 11796.32 15387.65 19398.96 12493.51 5198.88 12799.13 44
mvs_anonymous90.37 22491.30 20187.58 31992.17 32268.00 36089.84 27494.73 25483.82 26293.22 21597.40 7587.54 19597.40 28187.94 20595.05 30697.34 219
PCF-MVS84.52 1789.12 25287.71 27193.34 17496.06 21485.84 17986.58 33697.31 13368.46 35793.61 20093.89 26287.51 19698.52 19667.85 36298.11 21495.66 283
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet92.67 17292.96 15891.79 22496.27 19780.15 24491.95 20894.98 24592.19 9294.52 17596.07 16687.43 19797.39 28284.83 25098.38 18197.83 181
v14892.87 16593.29 15291.62 23196.25 20077.72 29191.28 23395.05 24389.69 16095.93 11696.04 16787.34 19898.38 20790.05 15997.99 22498.78 88
V4293.43 14493.58 14492.97 18495.34 25381.22 23492.67 17596.49 19187.25 21596.20 10396.37 15087.32 19998.85 14192.39 9798.21 20498.85 81
v119293.49 14293.78 13692.62 20196.16 20679.62 26091.83 22197.22 14286.07 23096.10 10996.38 14987.22 20099.02 11594.14 3398.88 12799.22 36
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25090.14 26495.68 22193.70 6296.62 8195.39 20487.21 20199.04 11287.50 21199.64 2799.33 29
bld_raw_conf00596.23 4596.22 4096.26 5498.53 4989.90 8897.25 1398.12 4792.70 7698.10 2598.51 2587.19 20299.46 2695.86 1099.69 1599.42 21
IterMVS-LS93.78 13794.28 12492.27 20996.27 19779.21 27091.87 21696.78 17491.77 11196.57 8497.07 9887.15 20398.74 16491.99 10499.03 11398.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet92.99 16093.26 15692.19 21292.12 32379.21 27092.32 19394.67 25891.77 11195.24 14895.85 17487.14 20498.49 19891.99 10498.26 19698.86 78
v14419293.20 15593.54 14792.16 21696.05 21578.26 28391.95 20897.14 14684.98 25195.96 11296.11 16587.08 20599.04 11293.79 4198.84 13299.17 40
114514_t90.51 21789.80 23392.63 20098.00 9382.24 22193.40 15797.29 13665.84 36489.40 29994.80 23086.99 20698.75 16183.88 25998.61 15896.89 234
新几何193.17 18097.16 14287.29 14094.43 26167.95 35891.29 26394.94 22286.97 20798.23 22081.06 28797.75 23393.98 321
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12694.56 12197.81 9291.74 11393.31 20795.59 18886.93 20898.95 12689.26 17698.51 17098.60 114
plane_prior697.21 14088.23 12586.93 208
112190.26 22989.23 24093.34 17497.15 14487.40 13891.94 21094.39 26267.88 35991.02 27094.91 22386.91 21098.59 18881.17 28597.71 23794.02 320
UGNet93.08 15692.50 17394.79 11693.87 29387.99 13095.07 10194.26 26690.64 14187.33 32997.67 6086.89 21198.49 19888.10 20098.71 14997.91 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS92.72 17092.02 18194.84 11495.65 24091.99 5692.92 16696.60 18485.08 24992.44 24093.62 26986.80 21296.35 31686.81 22198.25 19896.18 261
v192192093.26 15093.61 14392.19 21296.04 21978.31 28291.88 21597.24 14085.17 24596.19 10596.19 16186.76 21399.05 10994.18 3298.84 13299.22 36
v124093.29 14793.71 13992.06 21996.01 22077.89 28891.81 22297.37 12385.12 24796.69 7896.40 14486.67 21499.07 10894.51 2298.76 14699.22 36
MAR-MVS90.32 22788.87 25094.66 12294.82 26391.85 5994.22 13294.75 25380.91 28587.52 32788.07 35186.63 21597.87 25076.67 32396.21 28094.25 314
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSP-MVS95.34 7994.63 11297.48 1498.67 3194.05 2396.41 4498.18 3791.26 12595.12 15195.15 21086.60 21699.50 2193.43 6296.81 26798.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
BH-RMVSNet90.47 21990.44 22190.56 26795.21 25678.65 28089.15 29193.94 27488.21 19592.74 23094.22 24886.38 21797.88 24778.67 30995.39 29995.14 294
CNLPA91.72 19491.20 20393.26 17896.17 20591.02 6991.14 23595.55 23090.16 15190.87 27193.56 27286.31 21894.40 34879.92 29997.12 25694.37 311
PVSNet_BlendedMVS90.35 22589.96 23091.54 23494.81 26478.80 27890.14 26496.93 16079.43 29888.68 31395.06 21686.27 21998.15 22880.27 29098.04 22097.68 194
PVSNet_Blended88.74 26388.16 26590.46 27094.81 26478.80 27886.64 33296.93 16074.67 32888.68 31389.18 34486.27 21998.15 22880.27 29096.00 28394.44 310
PAPR87.65 28086.77 28890.27 27492.85 30977.38 29588.56 30496.23 20276.82 32184.98 34189.75 33786.08 22197.16 28972.33 34693.35 33196.26 258
v2v48293.29 14793.63 14292.29 20896.35 19078.82 27691.77 22496.28 19888.45 19095.70 12796.26 15886.02 22298.90 13093.02 8098.81 14099.14 43
test20.0390.80 21090.85 21190.63 26595.63 24279.24 26889.81 27592.87 28789.90 15694.39 17796.40 14485.77 22395.27 34073.86 33899.05 10697.39 216
PLCcopyleft85.34 1590.40 22188.92 24794.85 11396.53 17990.02 8491.58 22696.48 19280.16 29186.14 33592.18 30285.73 22498.25 21976.87 32294.61 31696.30 256
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS84.98 30884.30 30887.01 32391.03 33777.69 29291.94 21094.16 26759.36 37284.23 34787.50 35485.66 22596.80 30271.79 34893.05 33886.54 365
testdata91.03 25096.87 15682.01 22294.28 26571.55 34392.46 23895.42 20185.65 22697.38 28482.64 26997.27 25293.70 328
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2192.26 19692.18 30285.92 23396.22 10196.61 13385.64 22795.99 32590.35 14498.23 20195.93 270
MDA-MVSNet-bldmvs91.04 20690.88 20991.55 23394.68 27380.16 24385.49 34092.14 30590.41 14894.93 16195.79 17985.10 22896.93 29885.15 24394.19 32497.57 201
PAPM_NR91.03 20790.81 21291.68 23096.73 16481.10 23693.72 14896.35 19788.19 19688.77 31092.12 30585.09 22997.25 28682.40 27393.90 32596.68 242
HQP2-MVS84.76 230
HQP-MVS92.09 18891.49 19693.88 15896.36 18784.89 18991.37 22997.31 13387.16 21688.81 30693.40 27584.76 23098.60 18686.55 22897.73 23498.14 146
test_low_dy_conf_00195.63 6595.32 8396.56 4798.74 3090.71 7797.10 2095.47 23490.00 15397.57 3998.49 2684.73 23299.46 2696.06 899.69 1599.50 17
test22296.95 15085.27 18688.83 29793.61 27565.09 36690.74 27494.85 22684.62 23397.36 25093.91 322
VDDNet94.03 13294.27 12693.31 17698.87 2082.36 22095.51 8591.78 31197.19 1296.32 9298.60 1884.24 23498.75 16187.09 21998.83 13798.81 84
PVSNet_Blended_VisFu91.63 19691.20 20392.94 18897.73 10983.95 20392.14 20097.46 11878.85 30892.35 24594.98 22084.16 23599.08 10486.36 23296.77 26995.79 277
CL-MVSNet_self_test90.04 23989.90 23290.47 26895.24 25577.81 28986.60 33592.62 29585.64 23893.25 21493.92 26083.84 23696.06 32379.93 29798.03 22197.53 205
mvsmamba95.61 6795.40 7896.22 5598.44 6189.86 9097.14 1797.45 12091.25 12797.49 4598.14 3683.49 23799.45 2895.52 1399.66 2499.36 27
BH-w/o87.21 29087.02 28487.79 31894.77 26677.27 29787.90 30793.21 28481.74 28389.99 28888.39 35083.47 23896.93 29871.29 35292.43 34589.15 359
PatchMatch-RL89.18 25088.02 26892.64 19895.90 22792.87 4788.67 30391.06 31580.34 28990.03 28791.67 31183.34 23994.42 34776.35 32694.84 31090.64 357
DPM-MVS89.35 24888.40 25692.18 21596.13 21184.20 19886.96 32396.15 20875.40 32687.36 32891.55 31483.30 24098.01 23882.17 27696.62 27394.32 313
OpenMVS_ROBcopyleft85.12 1689.52 24789.05 24490.92 25594.58 27781.21 23591.10 23793.41 28077.03 31993.41 20493.99 25883.23 24197.80 25679.93 29794.80 31193.74 327
new-patchmatchnet88.97 25690.79 21383.50 34694.28 28355.83 38085.34 34193.56 27786.18 22895.47 13395.73 18483.10 24296.51 30985.40 24098.06 21898.16 144
131486.46 29986.33 29686.87 32591.65 33174.54 32491.94 21094.10 26874.28 33084.78 34387.33 35683.03 24395.00 34278.72 30891.16 35491.06 355
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16397.13 1894.31 26496.24 2496.28 9896.36 15182.88 24499.35 6588.19 19799.52 4298.96 65
MG-MVS89.54 24689.80 23388.76 30294.88 26072.47 34389.60 27892.44 29985.82 23489.48 29895.98 17082.85 24597.74 26481.87 27795.27 30296.08 264
TR-MVS87.70 27787.17 28089.27 29594.11 28679.26 26788.69 30191.86 31081.94 28290.69 27589.79 33582.82 24697.42 27972.65 34591.98 34991.14 354
c3_l91.32 20491.42 19791.00 25392.29 31876.79 30687.52 31596.42 19385.76 23694.72 17193.89 26282.73 24798.16 22790.93 13198.55 16398.04 154
YYNet188.17 27088.24 26187.93 31592.21 32073.62 33380.75 36388.77 32582.51 27794.99 15995.11 21382.70 24893.70 35483.33 26293.83 32696.48 249
MDA-MVSNet_test_wron88.16 27188.23 26287.93 31592.22 31973.71 33280.71 36488.84 32482.52 27694.88 16495.14 21182.70 24893.61 35583.28 26393.80 32796.46 250
pmmvs-eth3d91.54 19890.73 21593.99 14995.76 23487.86 13390.83 24293.98 27378.23 31294.02 18896.22 16082.62 25096.83 30186.57 22798.33 18897.29 222
MVS_030490.96 20890.15 22893.37 17393.17 30287.06 14693.62 15292.43 30089.60 16382.25 35895.50 19682.56 25197.83 25484.41 25697.83 23295.22 291
Anonymous2023120688.77 26288.29 25990.20 27896.31 19478.81 27789.56 28093.49 27974.26 33192.38 24395.58 19182.21 25295.43 33572.07 34798.75 14896.34 254
miper_ehance_all_eth90.48 21890.42 22290.69 26391.62 33276.57 30886.83 32796.18 20683.38 26394.06 18592.66 29482.20 25398.04 23389.79 16497.02 25997.45 209
USDC89.02 25389.08 24388.84 30195.07 25874.50 32688.97 29396.39 19573.21 33693.27 21196.28 15682.16 25496.39 31377.55 31698.80 14295.62 286
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18397.44 1194.03 26994.22 5094.94 16096.19 16182.07 25599.57 1487.28 21698.89 12598.65 103
UnsupCasMVSNet_eth90.33 22690.34 22390.28 27394.64 27680.24 24289.69 27795.88 21585.77 23593.94 19195.69 18581.99 25692.98 36084.21 25791.30 35297.62 198
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13793.45 15695.76 21991.58 11895.25 14792.42 30081.96 25798.72 16691.61 11797.87 23097.33 220
TAMVS90.16 23289.05 24493.49 17296.49 18186.37 16690.34 25792.55 29780.84 28892.99 22294.57 23881.94 25898.20 22273.51 33998.21 20495.90 273
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21092.43 18591.64 31294.10 5295.59 13096.64 13181.88 25997.50 27385.12 24598.52 16897.77 187
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21195.93 6694.84 24994.86 3998.49 1598.74 1681.45 26099.60 994.69 2099.39 6099.15 42
cascas87.02 29686.28 29789.25 29691.56 33376.45 30984.33 35196.78 17471.01 34786.89 33285.91 36381.35 26196.94 29683.09 26595.60 29294.35 312
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
test193.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22394.18 13395.53 23288.63 18696.05 11097.37 7781.31 26298.81 14987.38 21598.67 15598.06 151
MVEpermissive59.87 2373.86 34372.65 34677.47 35687.00 37174.35 32761.37 37360.93 38167.27 36069.69 37686.49 36081.24 26572.33 37756.45 37483.45 36985.74 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
RRT_MVS95.41 7695.20 8996.05 5998.86 2188.92 10897.49 1094.48 26093.12 7297.94 2898.54 2181.19 26699.63 695.48 1499.69 1599.60 12
MVP-Stereo90.07 23788.92 24793.54 16996.31 19486.49 16190.93 24095.59 22779.80 29291.48 26095.59 18880.79 26797.39 28278.57 31091.19 35396.76 240
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld88.50 26688.03 26789.90 28495.52 24678.88 27587.39 31694.02 27179.32 30293.06 21994.02 25680.72 26894.27 35075.16 33293.08 33796.54 243
MS-PatchMatch88.05 27287.75 27088.95 29893.28 29977.93 28687.88 30892.49 29875.42 32592.57 23593.59 27180.44 26994.24 35281.28 28292.75 34094.69 306
Anonymous2024052192.86 16693.57 14590.74 26296.57 17375.50 31994.15 13495.60 22389.38 16795.90 11897.90 5380.39 27097.96 24392.60 9299.68 2198.75 91
CANet_DTU89.85 24289.17 24291.87 22292.20 32180.02 25190.79 24395.87 21686.02 23182.53 35791.77 30980.01 27198.57 19185.66 23897.70 23897.01 229
PMMVS83.00 31881.11 32688.66 30583.81 37986.44 16482.24 36085.65 34961.75 37182.07 36085.64 36479.75 27291.59 36575.99 32893.09 33687.94 364
ppachtmachnet_test88.61 26588.64 25288.50 30791.76 32970.99 35084.59 34892.98 28579.30 30392.38 24393.53 27379.57 27397.45 27786.50 23097.17 25597.07 225
eth_miper_zixun_eth90.72 21290.61 21791.05 24992.04 32576.84 30586.91 32496.67 18185.21 24494.41 17693.92 26079.53 27498.26 21889.76 16597.02 25998.06 151
N_pmnet88.90 25987.25 27893.83 16094.40 28193.81 3684.73 34587.09 33879.36 30193.26 21292.43 29979.29 27591.68 36477.50 31897.22 25496.00 267
miper_enhance_ethall88.42 26787.87 26990.07 28088.67 36375.52 31885.10 34295.59 22775.68 32292.49 23689.45 34178.96 27697.88 24787.86 20797.02 25996.81 237
EPNet89.80 24488.25 26094.45 13883.91 37886.18 17393.87 14487.07 33991.16 13080.64 36694.72 23378.83 27798.89 13285.17 24198.89 12598.28 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss87.23 28986.82 28688.46 30993.96 29077.94 28586.84 32692.78 29177.59 31487.61 32691.83 30878.75 27891.92 36377.84 31394.20 32395.52 288
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4386.28 17095.80 7295.55 23088.41 19297.09 5898.08 4178.69 27998.87 13895.63 1299.53 3998.81 84
IterMVS-SCA-FT91.65 19591.55 19291.94 22193.89 29279.22 26987.56 31293.51 27891.53 12095.37 13896.62 13278.65 28098.90 13091.89 10994.95 30797.70 192
SCA87.43 28587.21 27988.10 31392.01 32671.98 34589.43 28288.11 33382.26 28088.71 31192.83 28778.65 28097.59 26979.61 30193.30 33294.75 303
our_test_387.55 28287.59 27387.44 32191.76 32970.48 35183.83 35490.55 32079.79 29392.06 25492.17 30378.63 28295.63 32884.77 25194.73 31296.22 259
jason89.17 25188.32 25791.70 22995.73 23580.07 24788.10 30693.22 28271.98 34290.09 28492.79 28978.53 28398.56 19287.43 21397.06 25796.46 250
jason: jason.
IterMVS90.18 23190.16 22590.21 27793.15 30375.98 31487.56 31292.97 28686.43 22594.09 18296.40 14478.32 28497.43 27887.87 20694.69 31497.23 223
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268887.19 29285.92 30091.00 25397.13 14579.41 26484.51 34995.60 22364.14 36790.07 28694.81 22778.26 28597.14 29073.34 34095.38 30096.46 250
WTY-MVS86.93 29786.50 29588.24 31194.96 25974.64 32287.19 31992.07 30778.29 31188.32 31791.59 31378.06 28694.27 35074.88 33393.15 33595.80 276
pmmvs488.95 25787.70 27292.70 19694.30 28285.60 18287.22 31892.16 30474.62 32989.75 29694.19 24977.97 28796.41 31282.71 26896.36 27896.09 263
DSMNet-mixed82.21 32381.56 32284.16 34389.57 35570.00 35690.65 24777.66 37754.99 37583.30 35397.57 6477.89 28890.50 36866.86 36595.54 29491.97 348
lessismore_v093.87 15998.05 8683.77 20580.32 37297.13 5797.91 5177.49 28999.11 10292.62 9198.08 21798.74 94
HY-MVS82.50 1886.81 29885.93 29989.47 28993.63 29677.93 28694.02 13991.58 31375.68 32283.64 35093.64 26877.40 29097.42 27971.70 35092.07 34893.05 339
1112_ss88.42 26787.41 27591.45 23696.69 16580.99 23789.72 27696.72 17973.37 33587.00 33190.69 32677.38 29198.20 22281.38 28193.72 32895.15 293
DIV-MVS_self_test90.65 21590.56 21990.91 25791.85 32776.99 30186.75 32995.36 24085.52 24294.06 18594.89 22477.37 29297.99 24190.28 14898.97 11997.76 188
cl____90.65 21590.56 21990.91 25791.85 32776.98 30286.75 32995.36 24085.53 24094.06 18594.89 22477.36 29397.98 24290.27 14998.98 11597.76 188
CDS-MVSNet89.55 24588.22 26393.53 17095.37 25286.49 16189.26 28893.59 27679.76 29491.15 26792.31 30177.12 29498.38 20777.51 31797.92 22895.71 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer92.18 18792.23 17692.04 22094.74 26880.06 24897.15 1597.37 12388.98 17888.83 30492.79 28977.02 29599.60 996.41 496.75 27096.46 250
lupinMVS88.34 26987.31 27691.45 23694.74 26880.06 24887.23 31792.27 30171.10 34688.83 30491.15 31777.02 29598.53 19586.67 22596.75 27095.76 278
PMMVS281.31 32983.44 31374.92 35790.52 34446.49 38269.19 37185.23 35784.30 25887.95 32294.71 23476.95 29784.36 37564.07 36898.09 21693.89 323
h-mvs3392.89 16391.99 18295.58 8696.97 14990.55 7993.94 14394.01 27289.23 17293.95 18996.19 16176.88 29899.14 9491.02 12795.71 29097.04 228
hse-mvs292.24 18691.20 20395.38 9296.16 20690.65 7892.52 17992.01 30989.23 17293.95 18992.99 28476.88 29898.69 17491.02 12796.03 28296.81 237
pmmvs587.87 27487.14 28190.07 28093.26 30176.97 30388.89 29592.18 30273.71 33488.36 31693.89 26276.86 30096.73 30480.32 28996.81 26796.51 245
K. test v393.37 14593.27 15593.66 16398.05 8682.62 21894.35 12786.62 34196.05 2897.51 4498.85 1276.59 30199.65 393.21 7298.20 20698.73 96
miper_lstm_enhance89.90 24189.80 23390.19 27991.37 33577.50 29383.82 35595.00 24484.84 25393.05 22094.96 22176.53 30295.20 34189.96 16198.67 15597.86 178
test_part194.39 11694.55 11493.92 15596.14 20882.86 21695.54 8398.09 5495.36 3698.27 2098.36 3175.91 30399.44 3093.41 6399.84 399.47 19
Test_1112_low_res87.50 28486.58 29090.25 27596.80 16377.75 29087.53 31496.25 20069.73 35386.47 33393.61 27075.67 30497.88 24779.95 29593.20 33395.11 295
Vis-MVSNet (Re-imp)90.42 22090.16 22591.20 24697.66 11677.32 29694.33 12887.66 33591.20 12892.99 22295.13 21275.40 30598.28 21477.86 31299.19 9197.99 162
D2MVS89.93 24089.60 23890.92 25594.03 28978.40 28188.69 30194.85 24878.96 30693.08 21895.09 21474.57 30696.94 29688.19 19798.96 12197.41 212
PVSNet76.22 2082.89 31982.37 31984.48 34193.96 29064.38 37378.60 36688.61 32671.50 34484.43 34686.36 36174.27 30794.60 34469.87 35993.69 32994.46 309
test_yl90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
DCV-MVSNet90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
CMPMVSbinary68.83 2287.28 28885.67 30192.09 21888.77 36285.42 18490.31 25894.38 26370.02 35288.00 32193.30 27773.78 31094.03 35375.96 32996.54 27496.83 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline187.62 28187.31 27688.54 30694.71 27274.27 32993.10 16288.20 33186.20 22792.18 25193.04 28273.21 31195.52 33079.32 30485.82 36595.83 275
PVSNet_070.34 2174.58 34272.96 34579.47 35490.63 34266.24 36673.26 36783.40 36563.67 36978.02 37078.35 37372.53 31289.59 37056.68 37360.05 37782.57 371
MIMVSNet87.13 29486.54 29288.89 30096.05 21576.11 31294.39 12688.51 32781.37 28488.27 31896.75 12272.38 31395.52 33065.71 36795.47 29695.03 296
PAPM81.91 32780.11 33787.31 32293.87 29372.32 34484.02 35393.22 28269.47 35476.13 37389.84 33272.15 31497.23 28753.27 37589.02 35992.37 346
cl2289.02 25388.50 25490.59 26689.76 35176.45 30986.62 33494.03 26982.98 27192.65 23292.49 29572.05 31597.53 27188.93 18297.02 25997.78 186
LFMVS91.33 20391.16 20691.82 22396.27 19779.36 26595.01 10485.61 35196.04 2994.82 16597.06 9972.03 31698.46 20484.96 24998.70 15197.65 196
MVS-HIRNet78.83 34180.60 33373.51 35893.07 30447.37 38187.10 32178.00 37668.94 35577.53 37197.26 8771.45 31794.62 34363.28 37088.74 36078.55 373
EPNet_dtu85.63 30384.37 30789.40 29286.30 37274.33 32891.64 22588.26 32984.84 25372.96 37589.85 33171.27 31897.69 26676.60 32497.62 24296.18 261
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111190.39 22290.61 21789.74 28698.04 8971.50 34795.59 7979.72 37489.41 16695.94 11598.14 3670.79 31998.81 14988.52 19399.32 6898.90 74
ECVR-MVScopyleft90.12 23390.16 22590.00 28397.81 10272.68 34195.76 7478.54 37589.04 17695.36 13998.10 3970.51 32098.64 18287.10 21899.18 9398.67 101
HyFIR lowres test87.19 29285.51 30292.24 21097.12 14680.51 24185.03 34396.06 20966.11 36391.66 25992.98 28570.12 32199.14 9475.29 33195.23 30397.07 225
FMVSNet390.78 21190.32 22492.16 21693.03 30779.92 25392.54 17894.95 24686.17 22995.10 15296.01 16969.97 32298.75 16186.74 22298.38 18197.82 183
RPMNet90.31 22890.14 22990.81 26191.01 33878.93 27292.52 17998.12 4791.91 9989.10 30196.89 11168.84 32399.41 4290.17 15492.70 34194.08 315
ADS-MVSNet284.01 31382.20 32189.41 29189.04 35976.37 31187.57 31090.98 31672.71 34084.46 34492.45 29668.08 32496.48 31070.58 35783.97 36795.38 289
ADS-MVSNet82.25 32281.55 32384.34 34289.04 35965.30 36787.57 31085.13 35872.71 34084.46 34492.45 29668.08 32492.33 36270.58 35783.97 36795.38 289
CVMVSNet85.16 30684.72 30486.48 32692.12 32370.19 35292.32 19388.17 33256.15 37490.64 27695.85 17467.97 32696.69 30588.78 18790.52 35692.56 344
new_pmnet81.22 33081.01 32981.86 35090.92 34070.15 35384.03 35280.25 37370.83 34885.97 33689.78 33667.93 32784.65 37467.44 36391.90 35090.78 356
CR-MVSNet87.89 27387.12 28290.22 27691.01 33878.93 27292.52 17992.81 28873.08 33789.10 30196.93 10867.11 32897.64 26888.80 18692.70 34194.08 315
Patchmtry90.11 23489.92 23190.66 26490.35 34777.00 30092.96 16592.81 28890.25 15094.74 16996.93 10867.11 32897.52 27285.17 24198.98 11597.46 208
PatchmatchNetpermissive85.22 30584.64 30586.98 32489.51 35669.83 35790.52 25087.34 33778.87 30787.22 33092.74 29166.91 33096.53 30781.77 27886.88 36494.58 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GA-MVS87.70 27786.82 28690.31 27293.27 30077.22 29884.72 34792.79 29085.11 24889.82 29290.07 33066.80 33197.76 26284.56 25494.27 32295.96 269
MDTV_nov1_ep13_2view42.48 38388.45 30567.22 36183.56 35166.80 33172.86 34494.06 317
tpmrst82.85 32082.93 31882.64 34887.65 36458.99 37890.14 26487.90 33475.54 32483.93 34891.63 31266.79 33395.36 33681.21 28481.54 37293.57 333
sam_mvs166.64 33494.75 303
sam_mvs66.41 335
Patchmatch-RL test88.81 26188.52 25389.69 28895.33 25479.94 25286.22 33792.71 29278.46 31095.80 12194.18 25066.25 33695.33 33889.22 17898.53 16793.78 325
patchmatchnet-post91.71 31066.22 33797.59 269
AUN-MVS90.05 23888.30 25895.32 9896.09 21290.52 8092.42 18692.05 30882.08 28188.45 31592.86 28665.76 33898.69 17488.91 18496.07 28196.75 241
test_post6.07 38065.74 33995.84 326
test_post190.21 2605.85 38165.36 34096.00 32479.61 301
MDTV_nov1_ep1383.88 31289.42 35761.52 37688.74 30087.41 33673.99 33284.96 34294.01 25765.25 34195.53 32978.02 31193.16 334
Patchmatch-test86.10 30186.01 29886.38 33090.63 34274.22 33089.57 27986.69 34085.73 23789.81 29392.83 28765.24 34291.04 36677.82 31595.78 28993.88 324
tpmvs84.22 31283.97 31184.94 33787.09 36965.18 36891.21 23488.35 32882.87 27285.21 33890.96 32165.24 34296.75 30379.60 30385.25 36692.90 341
EU-MVSNet87.39 28686.71 28989.44 29093.40 29876.11 31294.93 10790.00 32257.17 37395.71 12697.37 7764.77 34497.68 26792.67 9094.37 31994.52 308
thres20085.85 30285.18 30387.88 31794.44 27972.52 34289.08 29286.21 34388.57 18991.44 26188.40 34964.22 34598.00 23968.35 36195.88 28893.12 336
PatchT87.51 28388.17 26485.55 33390.64 34166.91 36292.02 20686.09 34592.20 9189.05 30397.16 9464.15 34696.37 31589.21 17992.98 33993.37 334
tfpn200view987.05 29586.52 29388.67 30495.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27494.79 301
thres40087.20 29186.52 29389.24 29795.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27496.51 245
FPMVS84.50 31083.28 31488.16 31296.32 19394.49 1685.76 33885.47 35283.09 26885.20 33994.26 24663.79 34986.58 37363.72 36991.88 35183.40 368
thres100view90087.35 28786.89 28588.72 30396.14 20873.09 33793.00 16485.31 35492.13 9393.26 21290.96 32163.42 35098.28 21471.27 35396.54 27494.79 301
thres600view787.66 27987.10 28389.36 29396.05 21573.17 33592.72 17285.31 35491.89 10093.29 20990.97 32063.42 35098.39 20573.23 34196.99 26496.51 245
EMVS80.35 33780.28 33680.54 35284.73 37769.07 35872.54 37080.73 37087.80 20481.66 36481.73 37162.89 35289.84 36975.79 33094.65 31582.71 370
test-LLR83.58 31483.17 31584.79 33989.68 35366.86 36383.08 35684.52 35983.07 26982.85 35584.78 36662.86 35393.49 35682.85 26694.86 30894.03 318
test0.0.03 182.48 32181.47 32585.48 33489.70 35273.57 33484.73 34581.64 36883.07 26988.13 32086.61 35862.86 35389.10 37266.24 36690.29 35793.77 326
tpm cat180.61 33679.46 33984.07 34488.78 36165.06 37189.26 28888.23 33062.27 37081.90 36389.66 33962.70 35595.29 33971.72 34980.60 37391.86 351
E-PMN80.72 33580.86 33080.29 35385.11 37568.77 35972.96 36881.97 36787.76 20583.25 35483.01 37062.22 35689.17 37177.15 32194.31 32182.93 369
baseline283.38 31581.54 32488.90 29991.38 33472.84 34088.78 29881.22 36978.97 30579.82 36887.56 35261.73 35797.80 25674.30 33690.05 35896.05 266
CostFormer83.09 31782.21 32085.73 33289.27 35867.01 36190.35 25686.47 34270.42 35083.52 35293.23 28061.18 35896.85 30077.21 32088.26 36293.34 335
MVSTER89.32 24988.75 25191.03 25090.10 34976.62 30790.85 24194.67 25882.27 27995.24 14895.79 17961.09 35998.49 19890.49 13898.26 19697.97 166
tpm84.38 31184.08 31085.30 33690.47 34563.43 37589.34 28585.63 35077.24 31887.62 32595.03 21961.00 36097.30 28579.26 30591.09 35595.16 292
EPMVS81.17 33280.37 33483.58 34585.58 37465.08 37090.31 25871.34 37877.31 31785.80 33791.30 31559.38 36192.70 36179.99 29482.34 37192.96 340
tmp_tt37.97 34544.33 34818.88 36111.80 38421.54 38463.51 37245.66 3854.23 37851.34 37850.48 37659.08 36222.11 38044.50 37768.35 37613.00 376
tpm281.46 32880.35 33584.80 33889.90 35065.14 36990.44 25285.36 35365.82 36582.05 36192.44 29857.94 36396.69 30570.71 35688.49 36192.56 344
ET-MVSNet_ETH3D86.15 30084.27 30991.79 22493.04 30681.28 23387.17 32086.14 34479.57 29783.65 34988.66 34657.10 36498.18 22587.74 20895.40 29895.90 273
CHOSEN 280x42080.04 33877.97 34386.23 33190.13 34874.53 32572.87 36989.59 32366.38 36276.29 37285.32 36556.96 36595.36 33669.49 36094.72 31388.79 362
JIA-IIPM85.08 30783.04 31691.19 24787.56 36586.14 17489.40 28484.44 36188.98 17882.20 35997.95 4856.82 36696.15 31976.55 32583.45 36991.30 353
DeepMVS_CXcopyleft53.83 36070.38 38264.56 37248.52 38433.01 37665.50 37774.21 37556.19 36746.64 37938.45 37870.07 37550.30 375
dp79.28 33978.62 34181.24 35185.97 37356.45 37986.91 32485.26 35672.97 33881.45 36589.17 34556.01 36895.45 33473.19 34276.68 37491.82 352
iter_conf_final90.23 23089.32 23992.95 18694.65 27581.46 23194.32 13095.40 23985.61 23992.84 22695.37 20654.58 36999.13 9692.16 9898.94 12398.25 138
test_method50.44 34448.94 34754.93 35939.68 38312.38 38528.59 37490.09 3216.82 37741.10 37978.41 37254.41 37070.69 37850.12 37651.26 37881.72 372
thisisatest051584.72 30982.99 31789.90 28492.96 30875.33 32084.36 35083.42 36477.37 31688.27 31886.65 35753.94 37198.72 16682.56 27097.40 24995.67 282
tttt051789.81 24388.90 24992.55 20497.00 14879.73 25995.03 10383.65 36389.88 15795.30 14294.79 23153.64 37299.39 5491.99 10498.79 14398.54 117
thisisatest053088.69 26487.52 27492.20 21196.33 19279.36 26592.81 16984.01 36286.44 22493.67 19792.68 29353.62 37399.25 8289.65 16898.45 17498.00 159
FMVSNet587.82 27686.56 29191.62 23192.31 31779.81 25793.49 15494.81 25283.26 26491.36 26296.93 10852.77 37497.49 27576.07 32798.03 22197.55 204
pmmvs380.83 33478.96 34086.45 32787.23 36877.48 29484.87 34482.31 36663.83 36885.03 34089.50 34049.66 37593.10 35873.12 34395.10 30588.78 363
iter_conf0588.94 25888.09 26691.50 23592.74 31476.97 30392.80 17095.92 21382.82 27393.65 19895.37 20649.41 37699.13 9690.82 13299.28 7998.40 128
IB-MVS77.21 1983.11 31681.05 32789.29 29491.15 33675.85 31585.66 33986.00 34679.70 29582.02 36286.61 35848.26 37798.39 20577.84 31392.22 34693.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 32681.02 32885.34 33587.46 36771.04 34894.74 11267.56 37996.44 2279.43 36998.99 645.24 37896.15 31967.18 36492.17 34788.85 361
GG-mvs-BLEND83.24 34785.06 37671.03 34994.99 10665.55 38074.09 37475.51 37444.57 37994.46 34659.57 37287.54 36384.24 367
TESTMET0.1,179.09 34078.04 34282.25 34987.52 36664.03 37483.08 35680.62 37170.28 35180.16 36783.22 36944.13 38090.56 36779.95 29593.36 33092.15 347
test-mter81.21 33180.01 33884.79 33989.68 35366.86 36383.08 35684.52 35973.85 33382.85 35584.78 36643.66 38193.49 35682.85 26694.86 30894.03 318
KD-MVS_2432*160082.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
miper_refine_blended82.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
test250685.42 30484.57 30687.96 31497.81 10266.53 36596.14 5756.35 38289.04 17693.55 20298.10 3942.88 38498.68 17688.09 20199.18 9398.67 101
test1239.49 34712.01 3501.91 3622.87 3851.30 38682.38 3591.34 3871.36 3802.84 3816.56 3792.45 3850.97 3812.73 3795.56 3793.47 377
testmvs9.02 34811.42 3511.81 3632.77 3861.13 38779.44 3651.90 3861.18 3812.65 3826.80 3781.95 3860.87 3822.62 3803.45 3803.44 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.56 34910.08 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38390.69 3260.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
No_MVS95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
eth-test20.00 387
eth-test0.00 387
IU-MVS98.51 5186.66 15896.83 17172.74 33995.83 12093.00 8199.29 7498.64 107
save fliter97.46 12988.05 12892.04 20497.08 15187.63 209
test_0728_SECOND94.88 11298.55 4386.72 15595.20 9598.22 3399.38 6093.44 6099.31 6998.53 118
GSMVS94.75 303
test_part298.21 7689.41 10096.72 77
MTGPAbinary97.62 104
MTMP94.82 10954.62 383
gm-plane-assit87.08 37059.33 37771.22 34583.58 36897.20 28873.95 337
test9_res88.16 19998.40 17697.83 181
agg_prior287.06 22098.36 18797.98 163
agg_prior96.20 20288.89 11096.88 16690.21 28298.78 156
test_prior489.91 8790.74 244
test_prior94.61 12495.95 22387.23 14197.36 12898.68 17697.93 169
旧先验290.00 26968.65 35692.71 23196.52 30885.15 243
新几何290.02 268
无先验89.94 27095.75 22070.81 34998.59 18881.17 28594.81 300
原ACMM289.34 285
testdata298.03 23480.24 292
testdata188.96 29488.44 191
plane_prior797.71 11088.68 114
plane_prior597.81 9298.95 12689.26 17698.51 17098.60 114
plane_prior495.59 188
plane_prior388.43 12390.35 14993.31 207
plane_prior294.56 12191.74 113
plane_prior197.38 132
plane_prior88.12 12693.01 16388.98 17898.06 218
n20.00 388
nn0.00 388
door-mid92.13 306
test1196.65 182
door91.26 314
HQP5-MVS84.89 189
HQP-NCC96.36 18791.37 22987.16 21688.81 306
ACMP_Plane96.36 18791.37 22987.16 21688.81 306
BP-MVS86.55 228
HQP4-MVS88.81 30698.61 18498.15 145
HQP3-MVS97.31 13397.73 234
NP-MVS96.82 16087.10 14593.40 275
ACMMP++_ref98.82 138
ACMMP++99.25 83