This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4090.69 13193.75 18596.25 14698.03 297.02 27992.08 9295.55 27798.45 114
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20891.38 11599.69 1599.42 19
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10598.16 298.94 299.33 297.84 499.08 9490.73 12499.73 1499.59 12
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22594.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17090.30 13699.60 2598.72 90
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6496.51 999.40 4094.06 3099.23 7698.85 75
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19798.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 7998.10 4491.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
test_241102_ONE98.51 4586.97 13898.10 4491.85 9497.63 3197.03 9096.48 1198.95 117
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6090.82 12897.15 4996.85 10196.25 1599.00 10993.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d87.83 26490.79 20378.96 34190.46 32888.63 10592.72 15690.67 30491.65 10998.68 1197.64 5396.06 1677.53 36159.84 35699.41 5270.73 359
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 4889.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TransMVSNet (Re)95.27 7896.04 5192.97 17398.37 5981.92 21295.07 8796.76 16693.97 5297.77 2798.57 1995.72 1897.90 23188.89 17399.23 7699.08 45
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6090.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8995.63 2199.39 4593.31 5898.88 11398.75 84
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8197.00 14691.85 9497.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4586.69 14595.34 7498.18 3291.85 9497.63 3197.37 6895.58 22
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1787.89 18896.86 6297.38 6795.55 2499.39 4595.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5695.48 2598.77 14990.11 14499.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS95.19 7995.73 6593.55 15696.62 15488.88 10294.67 10198.05 5591.26 11897.25 4896.40 13195.42 2694.36 33492.72 8099.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9095.40 2793.49 4498.84 11898.00 145
test_241102_TWO98.10 4491.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15895.63 11796.47 12595.37 2899.27 7291.99 9599.14 8598.48 111
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20698.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 7895.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 6995.85 20596.47 2093.40 19597.46 6395.31 3395.47 31886.18 21998.78 13089.11 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17595.46 7297.12 14091.84 9797.28 4698.46 2595.30 3497.71 25190.17 14299.42 4798.99 53
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11196.87 10095.26 3599.45 2292.77 7699.21 7899.00 51
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18896.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9198.88 71
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 17196.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2092.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11793.85 3399.49 3899.36 24
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10495.10 4299.40 4093.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12490.05 14496.77 6796.85 10195.04 4498.56 17992.77 7699.06 9198.70 91
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17896.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13396.57 12295.02 4699.41 3593.63 3999.11 8998.94 62
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 17996.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
canonicalmvs94.59 10194.69 9894.30 13195.60 22687.03 13795.59 6698.24 2791.56 11195.21 13992.04 29194.95 4998.66 16791.45 11397.57 22897.20 207
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 12096.61 12094.93 5099.41 3593.78 3599.15 8499.00 51
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12698.53 107
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11898.00 145
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
9.1494.81 9297.49 11494.11 12298.37 1487.56 19895.38 12796.03 15594.66 5599.08 9490.70 12598.97 106
GeoE94.55 10394.68 10094.15 13497.23 12585.11 17494.14 12197.34 12388.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 15998.23 127
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13294.64 1799.53 3598.99 53
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16796.49 12494.56 5899.39 4593.57 4099.05 9498.93 63
X-MVStestdata90.70 20488.45 24497.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16726.89 36394.56 5899.39 4593.57 4099.05 9498.93 63
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6287.35 19996.22 9297.99 3894.48 6199.05 9992.73 7999.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 21097.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1287.63 19596.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 891.84 9796.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 19296.72 11394.23 6599.42 2891.99 9599.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19498.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13296.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19694.00 12697.53 10791.36 11589.35 28590.65 31394.01 6898.66 16787.40 20095.30 28596.88 218
OMC-MVS94.22 11893.69 13195.81 6597.25 12491.27 6392.27 18097.40 11487.10 20594.56 16295.42 18893.74 6998.11 21786.62 21098.85 11798.06 139
LCM-MVSNet-Re94.20 11994.58 10493.04 17095.91 20783.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10581.28 26798.54 14996.96 214
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27496.23 19188.36 18093.57 19194.60 22193.45 7397.77 24690.23 14098.38 16498.03 143
cdsmvs_eth3d_5k23.35 33431.13 3370.00 3500.00 3710.00 3720.00 36295.58 2170.00 3670.00 36891.15 30293.43 750.00 3680.00 3660.00 3660.00 364
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10497.81 8589.22 16395.46 12596.17 15193.42 7699.34 5989.30 16098.87 11697.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ANet_high94.83 9396.28 3690.47 25596.65 15173.16 32194.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16190.38 13199.68 1899.53 14
casdiffmvs94.32 11394.80 9392.85 18196.05 19681.44 21992.35 17698.05 5591.53 11295.75 11296.80 10593.35 7898.49 18591.01 12098.32 17398.64 96
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
VPA-MVSNet95.14 8095.67 6793.58 15597.76 9483.15 20094.58 10697.58 10293.39 6397.05 5498.04 3593.25 8098.51 18489.75 15499.59 2799.08 45
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8396.77 16596.64 1897.61 3498.05 3493.23 8198.79 14188.60 18099.04 9998.78 81
baseline94.26 11694.80 9392.64 18796.08 19480.99 22593.69 13598.04 5990.80 12994.89 15296.32 14093.19 8298.48 18991.68 10798.51 15398.43 115
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5195.96 20392.96 4389.48 26897.46 11185.14 23396.23 9195.42 18893.19 8298.08 21890.37 13298.76 13297.38 200
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2797.58 798.72 898.97 793.15 8499.15 8393.18 6499.74 1399.50 16
OPU-MVS95.15 9696.84 14489.43 9095.21 7995.66 17393.12 8598.06 21986.28 21898.61 14397.95 153
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6797.31 1095.32 13096.77 10693.08 8699.20 7991.79 10298.16 19297.44 193
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9696.94 1496.58 7497.32 7593.07 8798.72 15590.45 12898.84 11897.57 185
EG-PatchMatch MVS94.54 10594.67 10194.14 13597.87 9186.50 14892.00 19296.74 16788.16 18396.93 5997.61 5493.04 8897.90 23191.60 10998.12 19798.03 143
Fast-Effi-MVS+91.28 19690.86 20092.53 19495.45 23082.53 20789.25 27796.52 17985.00 23889.91 27488.55 33392.94 8998.84 13284.72 23795.44 28196.22 242
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5196.59 1998.46 1798.43 2792.91 9099.52 1796.25 699.76 1199.65 8
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5590.45 13896.31 8496.76 10892.91 9098.72 15591.19 11699.42 4798.32 120
testgi90.38 21391.34 19087.50 30597.49 11471.54 33089.43 26995.16 22788.38 17994.54 16394.68 22092.88 9293.09 34471.60 33697.85 21597.88 161
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18190.95 6890.21 24695.43 22187.91 18693.74 18794.40 22692.88 9296.38 30090.39 13098.28 17797.07 208
CNVR-MVS94.58 10294.29 11495.46 8296.94 13989.35 9491.81 20796.80 16289.66 15193.90 18295.44 18792.80 9498.72 15592.74 7898.52 15198.32 120
ZD-MVS97.23 12590.32 7797.54 10584.40 24594.78 15695.79 16692.76 9599.39 4588.72 17898.40 159
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24291.87 20196.22 19385.94 22095.53 12297.68 5092.69 9694.48 33083.21 24897.51 22998.21 130
CDPH-MVS92.67 16391.83 17695.18 9596.94 13988.46 11290.70 23297.07 14377.38 30192.34 23295.08 20192.67 9798.88 12485.74 22198.57 14598.20 131
ETH3D-3000-0.194.86 9094.55 10595.81 6597.61 10789.72 8594.05 12498.37 1488.09 18495.06 14595.85 16192.58 9899.10 9390.33 13598.99 10198.62 100
Fast-Effi-MVS+-dtu92.77 16092.16 16794.58 12094.66 25788.25 11492.05 18896.65 17189.62 15290.08 27091.23 30192.56 9998.60 17386.30 21796.27 26396.90 216
AllTest94.88 8994.51 10896.00 5598.02 8292.17 5095.26 7898.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
TinyColmap92.00 18092.76 15589.71 27295.62 22577.02 28690.72 23196.17 19687.70 19395.26 13496.29 14292.54 10096.45 29781.77 26298.77 13195.66 267
Regformer-294.86 9094.55 10595.77 6992.83 29289.98 8091.87 20196.40 18394.38 4696.19 9695.04 20392.47 10399.04 10293.49 4498.31 17498.28 124
CS-MVS93.91 12594.22 12092.95 17595.65 22183.25 19794.91 9498.87 491.32 11691.32 24893.07 26592.24 10499.37 5291.90 10098.73 13596.21 244
ETV-MVS92.99 15192.74 15693.72 15195.86 20986.30 15792.33 17797.84 8291.70 10892.81 21586.17 34792.22 10599.19 8088.03 18997.73 21895.66 267
CLD-MVS91.82 18291.41 18893.04 17096.37 16683.65 19386.82 31497.29 12884.65 24492.27 23489.67 32392.20 10697.85 23983.95 24299.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
segment_acmp92.14 107
Regformer-494.90 8794.67 10195.59 7692.78 29489.02 9792.39 17395.91 20294.50 4296.41 7795.56 18092.10 10899.01 10794.23 2698.14 19498.74 87
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7398.22 2992.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22497.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-194.55 10394.33 11395.19 9492.83 29288.54 11091.87 20195.84 20693.99 5095.95 10495.04 20392.00 11098.79 14193.14 6798.31 17498.23 127
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17891.93 9094.82 15495.39 19191.99 11197.08 27785.53 22397.96 20997.41 194
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19196.31 4197.53 10797.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
CSCG94.69 9894.75 9594.52 12197.55 11187.87 12395.01 9097.57 10392.68 6996.20 9493.44 25791.92 11398.78 14589.11 16899.24 7596.92 215
TSAR-MVS + MP.94.96 8594.75 9595.57 7898.86 2088.69 10396.37 3696.81 16185.23 23094.75 15797.12 8591.85 11499.40 4093.45 4998.33 17198.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Gipumacopyleft95.31 7595.80 6393.81 15097.99 8790.91 6996.42 3497.95 7396.69 1691.78 24398.85 1291.77 11595.49 31791.72 10599.08 9095.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 4897.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
testtj94.81 9494.42 10996.01 5497.23 12590.51 7694.77 9897.85 8191.29 11794.92 15195.66 17391.71 11799.40 4088.07 18898.25 18298.11 138
ETH3D cwj APD-0.1693.99 12493.38 14295.80 6796.82 14589.92 8192.72 15698.02 6284.73 24393.65 18995.54 18291.68 11899.22 7788.78 17598.49 15698.26 126
AdaColmapbinary91.63 18691.36 18992.47 19795.56 22786.36 15592.24 18396.27 18888.88 16989.90 27592.69 27691.65 11998.32 19977.38 30497.64 22592.72 328
PHI-MVS94.34 11293.80 12695.95 5795.65 22191.67 6194.82 9697.86 7887.86 18993.04 21094.16 23591.58 12098.78 14590.27 13898.96 10897.41 194
xiu_mvs_v1_base_debu91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base_debi91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
tfpnnormal94.27 11594.87 9192.48 19697.71 9980.88 22794.55 11095.41 22293.70 5796.67 7097.72 4991.40 12498.18 21287.45 19899.18 8298.36 118
Regformer-394.28 11494.23 11994.46 12692.78 29486.28 15892.39 17394.70 24193.69 6095.97 10295.56 18091.34 12598.48 18993.45 4998.14 19498.62 100
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8496.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17698.46 113
TEST996.45 16489.46 8890.60 23496.92 15379.09 29090.49 26294.39 22791.31 12798.88 124
agg_prior192.60 16591.76 17995.10 9896.20 18388.89 10090.37 24196.88 15779.67 28290.21 26794.41 22591.30 12898.78 14588.46 18198.37 16997.64 182
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 18987.90 12293.36 14397.14 13785.53 22793.90 18295.45 18691.30 12898.59 17589.51 15798.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set94.36 11094.28 11594.61 11392.55 29685.98 16392.44 16994.69 24293.70 5796.12 9995.81 16591.24 13098.86 12993.76 3898.22 18798.98 58
MCST-MVS92.91 15392.51 16294.10 13697.52 11285.72 16891.36 21897.13 13980.33 27692.91 21494.24 23191.23 13198.72 15589.99 14897.93 21197.86 163
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 19397.78 4691.21 13297.77 24691.06 11797.06 24198.80 79
train_agg92.71 16291.83 17695.35 8496.45 16489.46 8890.60 23496.92 15379.37 28590.49 26294.39 22791.20 13398.88 12488.66 17998.43 15897.72 176
test_896.37 16689.14 9590.51 23796.89 15679.37 28590.42 26494.36 22991.20 13398.82 134
EI-MVSNet-UG-set94.35 11194.27 11794.59 11892.46 29785.87 16592.42 17194.69 24293.67 6196.13 9895.84 16491.20 13398.86 12993.78 3598.23 18599.03 49
EIA-MVS92.35 17292.03 17093.30 16695.81 21283.97 18992.80 15598.17 3587.71 19289.79 27987.56 33791.17 13699.18 8187.97 19097.27 23696.77 222
xiu_mvs_v2_base89.00 24489.19 22988.46 29494.86 24474.63 30986.97 30895.60 21180.88 27287.83 30888.62 33291.04 13798.81 13982.51 25694.38 30291.93 334
HPM-MVS++copyleft95.02 8294.39 11096.91 3897.88 9093.58 3694.09 12396.99 14891.05 12392.40 22795.22 19591.03 13899.25 7492.11 9098.69 13997.90 159
TAPA-MVS88.58 1092.49 16991.75 18094.73 10996.50 16189.69 8692.91 15297.68 9478.02 29992.79 21694.10 23690.85 13997.96 22984.76 23698.16 19296.54 226
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas7.56 33710.09 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36890.77 1400.00 3680.00 3660.00 3660.00 364
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7788.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
PS-MVSNAJ88.86 24888.99 23588.48 29394.88 24274.71 30786.69 31795.60 21180.88 27287.83 30887.37 34090.77 14098.82 13482.52 25594.37 30391.93 334
MVS_Test92.57 16893.29 14390.40 25893.53 27975.85 30192.52 16396.96 14988.73 17092.35 23096.70 11490.77 14098.37 19792.53 8495.49 27996.99 213
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 15993.73 5697.87 2698.49 2490.73 14499.05 9986.43 21599.60 2599.10 44
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22086.95 20792.95 21397.56 5690.70 14597.50 25979.63 28597.43 23296.06 249
Test By Simon90.61 146
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13091.82 10094.34 16997.41 6590.60 14798.65 16992.47 8598.11 19897.70 177
NCCC94.08 12293.54 13895.70 7496.49 16289.90 8392.39 17396.91 15590.64 13392.33 23394.60 22190.58 14898.96 11590.21 14197.70 22298.23 127
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8294.91 3796.80 6595.78 16990.42 14999.41 3591.60 10999.58 3199.29 28
test_prior393.29 13892.85 15294.61 11395.95 20487.23 13190.21 24697.36 12089.33 15990.77 25794.81 21390.41 15098.68 16588.21 18298.55 14697.93 155
test_prior290.21 24689.33 15990.77 25794.81 21390.41 15088.21 18298.55 146
DIV-MVS_2432*160094.10 12194.73 9792.19 20297.66 10579.49 25194.86 9597.12 14089.59 15496.87 6197.65 5290.40 15298.34 19889.08 16999.35 5798.75 84
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17282.81 20593.11 14697.74 9189.37 15794.08 17395.29 19490.40 15296.35 30290.35 13398.25 18294.96 282
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5193.46 6296.31 8495.97 15890.14 15499.34 5992.11 9099.64 2399.16 36
Effi-MVS+-dtu93.90 12792.60 16197.77 494.74 25196.67 394.00 12695.41 22289.94 14591.93 24192.13 28990.12 15598.97 11487.68 19597.48 23097.67 180
mvs-test193.07 14991.80 17896.89 3994.74 25195.83 692.17 18495.41 22289.94 14589.85 27690.59 31490.12 15598.88 12487.68 19595.66 27595.97 252
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18195.99 5196.56 17592.38 7597.03 5598.53 2190.12 15598.98 11088.78 17599.16 8398.65 92
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8593.99 5096.80 6595.90 15990.10 15899.41 3591.60 10999.58 3199.26 29
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8697.37 11593.92 5497.65 3095.90 15990.10 15899.33 6490.11 14499.66 2199.26 29
Baseline_NR-MVSNet94.47 10795.09 8692.60 19198.50 5280.82 22892.08 18796.68 16993.82 5596.29 8698.56 2090.10 15897.75 24990.10 14699.66 2199.24 31
API-MVS91.52 18991.61 18191.26 23094.16 26686.26 15994.66 10294.82 23691.17 12192.13 23791.08 30490.03 16197.06 27879.09 29297.35 23590.45 343
test1294.43 12895.95 20486.75 14396.24 19089.76 28089.79 16298.79 14197.95 21097.75 175
旧先验196.20 18384.17 18694.82 23695.57 17989.57 16397.89 21396.32 238
DELS-MVS92.05 17992.16 16791.72 21794.44 26180.13 23487.62 29597.25 13187.34 20092.22 23593.18 26489.54 16498.73 15489.67 15598.20 19096.30 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30391.51 21395.62 21091.84 9795.74 11397.10 8689.31 16598.32 19985.07 23299.06 9198.93 63
QAPM92.88 15592.77 15493.22 16895.82 21083.31 19596.45 3197.35 12283.91 24893.75 18596.77 10689.25 16698.88 12484.56 23897.02 24397.49 190
MSDG90.82 20090.67 20691.26 23094.16 26683.08 20286.63 31996.19 19490.60 13591.94 24091.89 29289.16 16795.75 31280.96 27394.51 30194.95 283
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9589.21 16493.28 19995.46 18588.89 16898.98 11089.80 15198.82 12497.80 170
ETH3 D test640091.91 18191.25 19293.89 14696.59 15584.41 18092.10 18697.72 9378.52 29591.82 24293.78 25088.70 16999.13 8783.61 24498.39 16298.14 134
DP-MVS Recon92.31 17391.88 17593.60 15497.18 12986.87 14191.10 22397.37 11584.92 24092.08 23894.08 23788.59 17098.20 20983.50 24598.14 19495.73 263
FC-MVSNet-test95.32 7395.88 5793.62 15398.49 5381.77 21395.90 5798.32 1793.93 5397.53 3797.56 5688.48 17199.40 4092.91 7599.83 699.68 4
OpenMVScopyleft89.45 892.27 17592.13 16992.68 18694.53 26084.10 18795.70 6297.03 14482.44 26491.14 25496.42 12988.47 17298.38 19485.95 22097.47 23195.55 271
F-COLMAP92.28 17491.06 19795.95 5797.52 11291.90 5693.53 13897.18 13583.98 24788.70 29794.04 23888.41 17398.55 18180.17 27895.99 26897.39 198
ambc92.98 17296.88 14283.01 20395.92 5696.38 18596.41 7797.48 6288.26 17497.80 24289.96 14998.93 11098.12 137
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10390.68 13297.43 4198.00 3788.18 17599.15 8394.84 1599.55 3499.41 20
v894.65 10095.29 7892.74 18496.65 15179.77 24694.59 10497.17 13691.86 9397.47 4097.93 4088.16 17699.08 9494.32 2299.47 3999.38 22
TSAR-MVS + GP.93.07 14992.41 16595.06 9995.82 21090.87 7190.97 22592.61 28188.04 18594.61 16193.79 24988.08 17797.81 24189.41 15998.39 16296.50 231
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17899.57 1395.86 999.69 1599.46 18
diffmvs91.74 18391.93 17491.15 23693.06 28778.17 27188.77 28597.51 11086.28 21492.42 22693.96 24388.04 17997.46 26290.69 12696.67 25697.82 168
原ACMM192.87 18096.91 14184.22 18497.01 14576.84 30689.64 28294.46 22488.00 18098.70 16181.53 26598.01 20795.70 265
VDD-MVS94.37 10994.37 11194.40 12997.49 11486.07 16293.97 12893.28 26694.49 4396.24 9097.78 4687.99 18198.79 14188.92 17199.14 8598.34 119
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21498.17 3590.72 13095.30 13196.47 12587.94 18296.98 28091.41 11497.61 22798.30 123
CANet92.38 17191.99 17293.52 16093.82 27783.46 19491.14 22197.00 14689.81 14986.47 31894.04 23887.90 18399.21 7889.50 15898.27 17897.90 159
BH-untuned90.68 20590.90 19890.05 26995.98 20279.57 25090.04 25394.94 23287.91 18694.07 17493.00 26787.76 18497.78 24579.19 29195.17 28892.80 326
FIs94.90 8795.35 7493.55 15698.28 6381.76 21495.33 7598.14 3993.05 6797.07 5197.18 8287.65 18599.29 6891.72 10599.69 1599.61 11
v114493.50 13293.81 12592.57 19296.28 17779.61 24991.86 20596.96 14986.95 20795.91 10796.32 14087.65 18598.96 11593.51 4398.88 11399.13 39
mvs_anonymous90.37 21491.30 19187.58 30492.17 30368.00 34389.84 26194.73 24083.82 24993.22 20497.40 6687.54 18797.40 26787.94 19195.05 29097.34 201
PCF-MVS84.52 1789.12 24187.71 26093.34 16396.06 19585.84 16686.58 32297.31 12568.46 34393.61 19093.89 24687.51 18898.52 18367.85 34798.11 19895.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet92.67 16392.96 14991.79 21496.27 17880.15 23291.95 19394.98 23092.19 8494.52 16496.07 15387.43 18997.39 26884.83 23498.38 16497.83 166
v14892.87 15693.29 14391.62 22096.25 18177.72 27891.28 21995.05 22889.69 15095.93 10696.04 15487.34 19098.38 19490.05 14797.99 20898.78 81
V4293.43 13593.58 13592.97 17395.34 23581.22 22292.67 15996.49 18087.25 20196.20 9496.37 13787.32 19198.85 13192.39 8998.21 18898.85 75
v119293.49 13393.78 12792.62 19096.16 18779.62 24891.83 20697.22 13486.07 21896.10 10096.38 13687.22 19299.02 10594.14 2998.88 11399.22 32
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25095.68 20993.70 5796.62 7295.39 19187.21 19399.04 10287.50 19799.64 2399.33 25
IterMVS-LS93.78 12894.28 11592.27 19996.27 17879.21 25891.87 20196.78 16391.77 10396.57 7597.07 8787.15 19498.74 15391.99 9599.03 10098.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet92.99 15193.26 14792.19 20292.12 30479.21 25892.32 17894.67 24491.77 10395.24 13795.85 16187.14 19598.49 18591.99 9598.26 17998.86 72
v14419293.20 14693.54 13892.16 20696.05 19678.26 27091.95 19397.14 13784.98 23995.96 10396.11 15287.08 19699.04 10293.79 3498.84 11899.17 35
114514_t90.51 20889.80 22292.63 18998.00 8482.24 20993.40 14297.29 12865.84 35089.40 28494.80 21686.99 19798.75 15083.88 24398.61 14396.89 217
新几何193.17 16997.16 13087.29 13094.43 24667.95 34491.29 24994.94 20886.97 19898.23 20781.06 27297.75 21793.98 305
HQP_MVS94.26 11693.93 12395.23 9397.71 9988.12 11794.56 10897.81 8591.74 10593.31 19695.59 17586.93 19998.95 11789.26 16498.51 15398.60 103
plane_prior697.21 12888.23 11586.93 199
112190.26 21989.23 22893.34 16397.15 13287.40 12891.94 19594.39 24767.88 34591.02 25594.91 20986.91 20198.59 17581.17 27097.71 22194.02 304
UGNet93.08 14792.50 16394.79 10793.87 27587.99 12195.07 8794.26 25190.64 13387.33 31497.67 5186.89 20298.49 18588.10 18798.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS92.72 16192.02 17194.84 10595.65 22191.99 5492.92 15196.60 17385.08 23792.44 22593.62 25286.80 20396.35 30286.81 20598.25 18296.18 245
v192192093.26 14193.61 13492.19 20296.04 20078.31 26991.88 20097.24 13285.17 23296.19 9696.19 14886.76 20499.05 9994.18 2898.84 11899.22 32
v124093.29 13893.71 13092.06 20996.01 20177.89 27591.81 20797.37 11585.12 23596.69 6996.40 13186.67 20599.07 9894.51 1898.76 13299.22 32
MAR-MVS90.32 21788.87 23994.66 11294.82 24591.85 5794.22 11894.75 23980.91 27187.52 31288.07 33686.63 20697.87 23676.67 30896.21 26494.25 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSP-MVS95.34 7294.63 10397.48 1498.67 2794.05 2196.41 3598.18 3291.26 11895.12 14095.15 19686.60 20799.50 1993.43 5396.81 25198.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
BH-RMVSNet90.47 21090.44 21090.56 25495.21 23878.65 26789.15 27893.94 25988.21 18192.74 21794.22 23286.38 20897.88 23378.67 29495.39 28395.14 278
CNLPA91.72 18491.20 19393.26 16796.17 18691.02 6691.14 22195.55 21890.16 14390.87 25693.56 25586.31 20994.40 33379.92 28497.12 24094.37 295
PVSNet_BlendedMVS90.35 21589.96 21991.54 22394.81 24678.80 26590.14 25096.93 15179.43 28488.68 29895.06 20286.27 21098.15 21580.27 27598.04 20497.68 179
PVSNet_Blended88.74 25188.16 25590.46 25794.81 24678.80 26586.64 31896.93 15174.67 31388.68 29889.18 32986.27 21098.15 21580.27 27596.00 26794.44 294
PAPR87.65 26986.77 27790.27 26192.85 29177.38 28288.56 29096.23 19176.82 30784.98 32689.75 32286.08 21297.16 27572.33 33193.35 31596.26 241
v2v48293.29 13893.63 13392.29 19896.35 17178.82 26391.77 20996.28 18788.45 17795.70 11696.26 14586.02 21398.90 12193.02 7198.81 12699.14 38
test20.0390.80 20190.85 20190.63 25295.63 22479.24 25689.81 26292.87 27289.90 14794.39 16696.40 13185.77 21495.27 32573.86 32399.05 9497.39 198
PLCcopyleft85.34 1590.40 21288.92 23694.85 10496.53 16090.02 7991.58 21296.48 18180.16 27786.14 32092.18 28785.73 21598.25 20676.87 30794.61 30096.30 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS84.98 29684.30 29687.01 30891.03 31977.69 27991.94 19594.16 25259.36 35884.23 33287.50 33985.66 21696.80 28771.79 33393.05 32286.54 350
testdata91.03 23896.87 14382.01 21094.28 25071.55 32992.46 22495.42 18885.65 21797.38 27082.64 25397.27 23693.70 312
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28785.92 22196.22 9296.61 12085.64 21895.99 31090.35 13398.23 18595.93 254
MDA-MVSNet-bldmvs91.04 19790.88 19991.55 22294.68 25680.16 23185.49 32692.14 29090.41 14094.93 15095.79 16685.10 21996.93 28385.15 22794.19 30897.57 185
PAPM_NR91.03 19890.81 20291.68 21996.73 14981.10 22493.72 13496.35 18688.19 18288.77 29592.12 29085.09 22097.25 27282.40 25793.90 30996.68 225
HQP2-MVS84.76 221
HQP-MVS92.09 17891.49 18693.88 14796.36 16884.89 17691.37 21597.31 12587.16 20288.81 29193.40 25884.76 22198.60 17386.55 21297.73 21898.14 134
test22296.95 13885.27 17388.83 28393.61 26065.09 35290.74 25994.85 21284.62 22397.36 23493.91 306
VDDNet94.03 12394.27 11793.31 16598.87 1982.36 20895.51 7191.78 29697.19 1196.32 8398.60 1884.24 22498.75 15087.09 20398.83 12398.81 78
PVSNet_Blended_VisFu91.63 18691.20 19392.94 17797.73 9883.95 19092.14 18597.46 11178.85 29492.35 23094.98 20684.16 22599.08 9486.36 21696.77 25395.79 261
CL-MVSNet_2432*160090.04 22789.90 22190.47 25595.24 23777.81 27686.60 32192.62 28085.64 22693.25 20393.92 24483.84 22696.06 30879.93 28298.03 20597.53 189
BH-w/o87.21 27987.02 27387.79 30394.77 24877.27 28487.90 29393.21 26981.74 26989.99 27388.39 33583.47 22796.93 28371.29 33792.43 32989.15 344
PatchMatch-RL89.18 23988.02 25792.64 18795.90 20892.87 4588.67 28991.06 30080.34 27590.03 27291.67 29683.34 22894.42 33276.35 31194.84 29490.64 342
DPM-MVS89.35 23788.40 24592.18 20596.13 19284.20 18586.96 30996.15 19775.40 31287.36 31391.55 29983.30 22998.01 22482.17 26096.62 25794.32 297
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23390.92 24394.58 25981.21 22391.10 22393.41 26577.03 30593.41 19393.99 24283.23 23097.80 24279.93 28294.80 29593.74 311
new-patchmatchnet88.97 24590.79 20383.50 33294.28 26555.83 36485.34 32793.56 26286.18 21695.47 12395.73 17083.10 23196.51 29585.40 22498.06 20298.16 132
131486.46 28886.33 28586.87 31091.65 31274.54 31091.94 19594.10 25374.28 31584.78 32887.33 34183.03 23295.00 32778.72 29391.16 33891.06 340
IS-MVSNet94.49 10694.35 11294.92 10298.25 6686.46 15197.13 1394.31 24996.24 2396.28 8996.36 13882.88 23399.35 5688.19 18499.52 3798.96 60
MG-MVS89.54 23589.80 22288.76 28794.88 24272.47 32789.60 26592.44 28485.82 22289.48 28395.98 15782.85 23497.74 25081.87 26195.27 28696.08 248
TR-MVS87.70 26687.17 26989.27 28094.11 26879.26 25588.69 28791.86 29581.94 26890.69 26089.79 32082.82 23597.42 26572.65 33091.98 33391.14 339
cl_fuxian91.32 19591.42 18791.00 24192.29 29976.79 29287.52 30196.42 18285.76 22494.72 16093.89 24682.73 23698.16 21490.93 12298.55 14698.04 142
YYNet188.17 25988.24 25087.93 30092.21 30173.62 31880.75 35088.77 31082.51 26394.99 14895.11 19982.70 23793.70 33983.33 24693.83 31096.48 232
MDA-MVSNet_test_wron88.16 26088.23 25187.93 30092.22 30073.71 31780.71 35188.84 30982.52 26294.88 15395.14 19782.70 23793.61 34083.28 24793.80 31196.46 233
pmmvs-eth3d91.54 18890.73 20593.99 13895.76 21587.86 12490.83 22893.98 25878.23 29894.02 17896.22 14782.62 23996.83 28686.57 21198.33 17197.29 204
MVS_030490.96 19990.15 21693.37 16293.17 28487.06 13593.62 13792.43 28589.60 15382.25 34395.50 18382.56 24097.83 24084.41 24097.83 21695.22 275
Anonymous2023120688.77 25088.29 24890.20 26596.31 17578.81 26489.56 26793.49 26474.26 31692.38 22895.58 17882.21 24195.43 32072.07 33298.75 13496.34 237
miper_ehance_all_eth90.48 20990.42 21190.69 25091.62 31376.57 29486.83 31396.18 19583.38 25094.06 17592.66 27882.20 24298.04 22089.79 15297.02 24397.45 192
USDC89.02 24289.08 23288.84 28695.07 24074.50 31288.97 28096.39 18473.21 32293.27 20096.28 14382.16 24396.39 29977.55 30198.80 12895.62 270
EPP-MVSNet93.91 12593.68 13294.59 11898.08 7585.55 17097.44 894.03 25494.22 4794.94 14996.19 14882.07 24499.57 1387.28 20298.89 11198.65 92
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26094.64 25880.24 23089.69 26495.88 20385.77 22393.94 18195.69 17181.99 24592.98 34584.21 24191.30 33697.62 183
alignmvs93.26 14192.85 15294.50 12295.70 21787.45 12793.45 14195.76 20791.58 11095.25 13692.42 28581.96 24698.72 15591.61 10897.87 21497.33 202
TAMVS90.16 22189.05 23393.49 16196.49 16286.37 15490.34 24392.55 28280.84 27492.99 21194.57 22381.94 24798.20 20973.51 32498.21 18895.90 257
Anonymous20240521192.58 16692.50 16392.83 18296.55 15983.22 19892.43 17091.64 29794.10 4995.59 11996.64 11881.88 24897.50 25985.12 22998.52 15197.77 172
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23594.86 3898.49 1598.74 1681.45 24999.60 894.69 1699.39 5499.15 37
cascas87.02 28586.28 28689.25 28191.56 31576.45 29584.33 33796.78 16371.01 33386.89 31785.91 34881.35 25096.94 28183.09 24995.60 27694.35 296
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
FMVSNet292.78 15992.73 15892.95 17595.40 23181.98 21194.18 11995.53 21988.63 17396.05 10197.37 6881.31 25198.81 13987.38 20198.67 14098.06 139
MVEpermissive59.87 2373.86 33172.65 33477.47 34287.00 35574.35 31361.37 36060.93 36667.27 34669.69 36286.49 34581.24 25472.33 36256.45 35983.45 35385.74 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVP-Stereo90.07 22588.92 23693.54 15896.31 17586.49 14990.93 22695.59 21579.80 27891.48 24595.59 17580.79 25597.39 26878.57 29591.19 33796.76 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld88.50 25488.03 25689.90 27095.52 22878.88 26287.39 30294.02 25679.32 28893.06 20894.02 24080.72 25694.27 33575.16 31793.08 32196.54 226
MS-PatchMatch88.05 26187.75 25988.95 28393.28 28177.93 27387.88 29492.49 28375.42 31192.57 22293.59 25480.44 25794.24 33781.28 26792.75 32494.69 290
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30594.15 12095.60 21189.38 15695.90 10897.90 4480.39 25897.96 22992.60 8399.68 1898.75 84
CANet_DTU89.85 23189.17 23091.87 21292.20 30280.02 23990.79 22995.87 20486.02 21982.53 34291.77 29480.01 25998.57 17885.66 22297.70 22297.01 212
PMMVS83.00 30681.11 31488.66 29083.81 36386.44 15282.24 34785.65 33661.75 35782.07 34585.64 34979.75 26091.59 35075.99 31393.09 32087.94 349
ppachtmachnet_test88.61 25388.64 24188.50 29291.76 31070.99 33384.59 33492.98 27079.30 28992.38 22893.53 25679.57 26197.45 26386.50 21497.17 23997.07 208
eth_miper_zixun_eth90.72 20390.61 20791.05 23792.04 30676.84 29186.91 31096.67 17085.21 23194.41 16593.92 24479.53 26298.26 20589.76 15397.02 24398.06 139
N_pmnet88.90 24787.25 26793.83 14994.40 26393.81 3484.73 33187.09 32479.36 28793.26 20192.43 28479.29 26391.68 34977.50 30397.22 23896.00 251
miper_enhance_ethall88.42 25587.87 25890.07 26788.67 34675.52 30485.10 32895.59 21575.68 30892.49 22389.45 32678.96 26497.88 23387.86 19397.02 24396.81 220
EPNet89.80 23388.25 24994.45 12783.91 36286.18 16093.87 13087.07 32591.16 12280.64 35294.72 21878.83 26598.89 12385.17 22598.89 11198.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss87.23 27886.82 27588.46 29493.96 27277.94 27286.84 31292.78 27677.59 30087.61 31191.83 29378.75 26691.92 34877.84 29894.20 30795.52 272
IterMVS-SCA-FT91.65 18591.55 18291.94 21193.89 27479.22 25787.56 29893.51 26391.53 11295.37 12896.62 11978.65 26798.90 12191.89 10194.95 29197.70 177
SCA87.43 27487.21 26888.10 29992.01 30771.98 32989.43 26988.11 31882.26 26688.71 29692.83 27178.65 26797.59 25579.61 28693.30 31694.75 287
our_test_387.55 27187.59 26287.44 30691.76 31070.48 33483.83 34190.55 30579.79 27992.06 23992.17 28878.63 26995.63 31384.77 23594.73 29696.22 242
jason89.17 24088.32 24691.70 21895.73 21680.07 23588.10 29293.22 26771.98 32890.09 26992.79 27378.53 27098.56 17987.43 19997.06 24196.46 233
jason: jason.
IterMVS90.18 22090.16 21490.21 26493.15 28575.98 30087.56 29892.97 27186.43 21294.09 17296.40 13178.32 27197.43 26487.87 19294.69 29897.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268887.19 28185.92 28991.00 24197.13 13379.41 25284.51 33595.60 21164.14 35390.07 27194.81 21378.26 27297.14 27673.34 32595.38 28496.46 233
WTY-MVS86.93 28686.50 28488.24 29794.96 24174.64 30887.19 30592.07 29278.29 29788.32 30291.59 29878.06 27394.27 33574.88 31893.15 31995.80 260
pmmvs488.95 24687.70 26192.70 18594.30 26485.60 16987.22 30492.16 28974.62 31489.75 28194.19 23377.97 27496.41 29882.71 25296.36 26296.09 247
DSMNet-mixed82.21 31181.56 31084.16 32989.57 33770.00 33990.65 23377.66 36254.99 36183.30 33897.57 5577.89 27590.50 35366.86 35095.54 27891.97 333
lessismore_v093.87 14898.05 7883.77 19280.32 35997.13 5097.91 4277.49 27699.11 9192.62 8298.08 20198.74 87
HY-MVS82.50 1886.81 28785.93 28889.47 27493.63 27877.93 27394.02 12591.58 29875.68 30883.64 33593.64 25177.40 27797.42 26571.70 33592.07 33293.05 323
1112_ss88.42 25587.41 26491.45 22496.69 15080.99 22589.72 26396.72 16873.37 32187.00 31690.69 31177.38 27898.20 20981.38 26693.72 31295.15 277
cl-mvsnet190.65 20690.56 20890.91 24591.85 30876.99 28886.75 31595.36 22585.52 22994.06 17594.89 21077.37 27997.99 22790.28 13798.97 10697.76 173
cl-mvsnet____90.65 20690.56 20890.91 24591.85 30876.98 28986.75 31595.36 22585.53 22794.06 17594.89 21077.36 28097.98 22890.27 13898.98 10297.76 173
CDS-MVSNet89.55 23488.22 25293.53 15995.37 23486.49 14989.26 27593.59 26179.76 28091.15 25392.31 28677.12 28198.38 19477.51 30297.92 21295.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer92.18 17792.23 16692.04 21094.74 25180.06 23697.15 1197.37 11588.98 16588.83 28992.79 27377.02 28299.60 896.41 496.75 25496.46 233
lupinMVS88.34 25787.31 26591.45 22494.74 25180.06 23687.23 30392.27 28671.10 33288.83 28991.15 30277.02 28298.53 18286.67 20996.75 25495.76 262
PMMVS281.31 31783.44 30174.92 34390.52 32646.49 36669.19 35885.23 34484.30 24687.95 30794.71 21976.95 28484.36 36064.07 35398.09 20093.89 307
hse-mvs392.89 15491.99 17295.58 7796.97 13790.55 7493.94 12994.01 25789.23 16193.95 17996.19 14876.88 28599.14 8591.02 11895.71 27497.04 211
hse-mvs292.24 17691.20 19395.38 8396.16 18790.65 7392.52 16392.01 29489.23 16193.95 17992.99 26876.88 28598.69 16391.02 11896.03 26696.81 220
pmmvs587.87 26387.14 27090.07 26793.26 28376.97 29088.89 28292.18 28773.71 32088.36 30193.89 24676.86 28796.73 28980.32 27496.81 25196.51 228
K. test v393.37 13693.27 14693.66 15298.05 7882.62 20694.35 11486.62 32796.05 2797.51 3898.85 1276.59 28899.65 393.21 6398.20 19098.73 89
miper_lstm_enhance89.90 23089.80 22290.19 26691.37 31777.50 28083.82 34295.00 22984.84 24193.05 20994.96 20776.53 28995.20 32689.96 14998.67 14097.86 163
test_part194.39 10894.55 10593.92 14496.14 18982.86 20495.54 6998.09 4795.36 3598.27 2098.36 2875.91 29099.44 2393.41 5499.84 399.47 17
Test_1112_low_res87.50 27386.58 27990.25 26296.80 14877.75 27787.53 30096.25 18969.73 33986.47 31893.61 25375.67 29197.88 23379.95 28093.20 31795.11 279
Vis-MVSNet (Re-imp)90.42 21190.16 21491.20 23497.66 10577.32 28394.33 11587.66 32091.20 12092.99 21195.13 19875.40 29298.28 20177.86 29799.19 8097.99 148
D2MVS89.93 22989.60 22790.92 24394.03 27178.40 26888.69 28794.85 23478.96 29293.08 20795.09 20074.57 29396.94 28188.19 18498.96 10897.41 194
PVSNet76.22 2082.89 30782.37 30784.48 32793.96 27264.38 35778.60 35388.61 31171.50 33084.43 33186.36 34674.27 29494.60 32969.87 34493.69 31394.46 293
test_yl90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
DCV-MVSNet90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
CMPMVSbinary68.83 2287.28 27785.67 29092.09 20888.77 34585.42 17190.31 24494.38 24870.02 33888.00 30693.30 26073.78 29794.03 33875.96 31496.54 25896.83 219
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline187.62 27087.31 26588.54 29194.71 25574.27 31593.10 14788.20 31686.20 21592.18 23693.04 26673.21 29895.52 31579.32 28985.82 34995.83 259
bset_n11_16_dypcd89.99 22889.15 23192.53 19494.75 24981.34 22084.19 33887.56 32185.13 23493.77 18492.46 28072.82 29999.01 10792.46 8699.21 7897.23 205
PVSNet_070.34 2174.58 33072.96 33379.47 34090.63 32466.24 35073.26 35483.40 35263.67 35578.02 35678.35 35972.53 30089.59 35556.68 35860.05 36282.57 356
MIMVSNet87.13 28386.54 28188.89 28596.05 19676.11 29894.39 11388.51 31281.37 27088.27 30396.75 10972.38 30195.52 31565.71 35295.47 28095.03 280
PAPM81.91 31580.11 32587.31 30793.87 27572.32 32884.02 34093.22 26769.47 34076.13 35989.84 31772.15 30297.23 27353.27 36089.02 34392.37 331
cl-mvsnet289.02 24288.50 24390.59 25389.76 33376.45 29586.62 32094.03 25482.98 25892.65 21992.49 27972.05 30397.53 25788.93 17097.02 24397.78 171
LFMVS91.33 19491.16 19691.82 21396.27 17879.36 25395.01 9085.61 33896.04 2894.82 15497.06 8872.03 30498.46 19184.96 23398.70 13897.65 181
MVS-HIRNet78.83 32980.60 32173.51 34493.07 28647.37 36587.10 30778.00 36168.94 34177.53 35797.26 7671.45 30594.62 32863.28 35588.74 34478.55 358
EPNet_dtu85.63 29284.37 29589.40 27786.30 35674.33 31491.64 21188.26 31484.84 24172.96 36189.85 31671.27 30697.69 25276.60 30997.62 22696.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test87.19 28185.51 29192.24 20097.12 13480.51 22985.03 32996.06 19866.11 34991.66 24492.98 26970.12 30799.14 8575.29 31695.23 28797.07 208
FMVSNet390.78 20290.32 21392.16 20693.03 28979.92 24192.54 16294.95 23186.17 21795.10 14196.01 15669.97 30898.75 15086.74 20698.38 16497.82 168
RPMNet90.31 21890.14 21790.81 24891.01 32078.93 26092.52 16398.12 4191.91 9189.10 28696.89 9968.84 30999.41 3590.17 14292.70 32594.08 299
ADS-MVSNet284.01 30182.20 30989.41 27689.04 34276.37 29787.57 29690.98 30172.71 32684.46 32992.45 28168.08 31096.48 29670.58 34283.97 35195.38 273
ADS-MVSNet82.25 31081.55 31184.34 32889.04 34265.30 35187.57 29685.13 34572.71 32684.46 32992.45 28168.08 31092.33 34770.58 34283.97 35195.38 273
CVMVSNet85.16 29484.72 29386.48 31192.12 30470.19 33592.32 17888.17 31756.15 36090.64 26195.85 16167.97 31296.69 29088.78 17590.52 34092.56 329
new_pmnet81.22 31881.01 31781.86 33690.92 32270.15 33684.03 33980.25 36070.83 33485.97 32189.78 32167.93 31384.65 35967.44 34891.90 33490.78 341
CR-MVSNet87.89 26287.12 27190.22 26391.01 32078.93 26092.52 16392.81 27373.08 32389.10 28696.93 9667.11 31497.64 25488.80 17492.70 32594.08 299
Patchmtry90.11 22289.92 22090.66 25190.35 32977.00 28792.96 15092.81 27390.25 14294.74 15896.93 9667.11 31497.52 25885.17 22598.98 10297.46 191
PatchmatchNetpermissive85.22 29384.64 29486.98 30989.51 33869.83 34090.52 23687.34 32378.87 29387.22 31592.74 27566.91 31696.53 29381.77 26286.88 34894.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GA-MVS87.70 26686.82 27590.31 25993.27 28277.22 28584.72 33392.79 27585.11 23689.82 27790.07 31566.80 31797.76 24884.56 23894.27 30695.96 253
MDTV_nov1_ep13_2view42.48 36788.45 29167.22 34783.56 33666.80 31772.86 32994.06 301
tpmrst82.85 30882.93 30682.64 33487.65 34758.99 36290.14 25087.90 31975.54 31083.93 33391.63 29766.79 31995.36 32181.21 26981.54 35793.57 317
sam_mvs166.64 32094.75 287
sam_mvs66.41 321
Patchmatch-RL test88.81 24988.52 24289.69 27395.33 23679.94 24086.22 32392.71 27778.46 29695.80 11094.18 23466.25 32295.33 32389.22 16698.53 15093.78 309
patchmatchnet-post91.71 29566.22 32397.59 255
AUN-MVS90.05 22688.30 24795.32 8996.09 19390.52 7592.42 17192.05 29382.08 26788.45 30092.86 27065.76 32498.69 16388.91 17296.07 26596.75 224
test_post6.07 36665.74 32595.84 311
test_post190.21 2465.85 36765.36 32696.00 30979.61 286
MDTV_nov1_ep1383.88 30089.42 33961.52 36088.74 28687.41 32273.99 31884.96 32794.01 24165.25 32795.53 31478.02 29693.16 318
Patchmatch-test86.10 29086.01 28786.38 31590.63 32474.22 31689.57 26686.69 32685.73 22589.81 27892.83 27165.24 32891.04 35177.82 30095.78 27393.88 308
tpmvs84.22 30083.97 29984.94 32387.09 35365.18 35291.21 22088.35 31382.87 25985.21 32390.96 30665.24 32896.75 28879.60 28885.25 35092.90 325
EU-MVSNet87.39 27586.71 27889.44 27593.40 28076.11 29894.93 9390.00 30757.17 35995.71 11597.37 6864.77 33097.68 25392.67 8194.37 30394.52 292
thres20085.85 29185.18 29287.88 30294.44 26172.52 32689.08 27986.21 32988.57 17691.44 24688.40 33464.22 33198.00 22568.35 34695.88 27293.12 320
PatchT87.51 27288.17 25385.55 31890.64 32366.91 34592.02 19186.09 33192.20 8389.05 28897.16 8364.15 33296.37 30189.21 16792.98 32393.37 318
tfpn200view987.05 28486.52 28288.67 28995.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25894.79 285
thres40087.20 28086.52 28289.24 28295.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25896.51 228
FPMVS84.50 29883.28 30288.16 29896.32 17494.49 1485.76 32485.47 33983.09 25585.20 32494.26 23063.79 33586.58 35863.72 35491.88 33583.40 353
thres100view90087.35 27686.89 27488.72 28896.14 18973.09 32293.00 14985.31 34192.13 8593.26 20190.96 30663.42 33698.28 20171.27 33896.54 25894.79 285
thres600view787.66 26887.10 27289.36 27896.05 19673.17 32092.72 15685.31 34191.89 9293.29 19890.97 30563.42 33698.39 19273.23 32696.99 24896.51 228
EMVS80.35 32580.28 32480.54 33884.73 36169.07 34172.54 35780.73 35787.80 19081.66 34981.73 35662.89 33889.84 35475.79 31594.65 29982.71 355
test-LLR83.58 30283.17 30384.79 32589.68 33566.86 34783.08 34384.52 34683.07 25682.85 34084.78 35162.86 33993.49 34182.85 25094.86 29294.03 302
test0.0.03 182.48 30981.47 31385.48 31989.70 33473.57 31984.73 33181.64 35583.07 25688.13 30586.61 34362.86 33989.10 35766.24 35190.29 34193.77 310
tpm cat180.61 32479.46 32784.07 33088.78 34465.06 35589.26 27588.23 31562.27 35681.90 34889.66 32462.70 34195.29 32471.72 33480.60 35891.86 336
E-PMN80.72 32380.86 31880.29 33985.11 35968.77 34272.96 35581.97 35487.76 19183.25 33983.01 35562.22 34289.17 35677.15 30694.31 30582.93 354
RRT_MVS91.36 19390.05 21895.29 9089.21 34188.15 11692.51 16794.89 23386.73 20995.54 12195.68 17261.82 34399.30 6794.91 1399.13 8898.43 115
baseline283.38 30381.54 31288.90 28491.38 31672.84 32588.78 28481.22 35678.97 29179.82 35487.56 33761.73 34497.80 24274.30 32190.05 34296.05 250
CostFormer83.09 30582.21 30885.73 31789.27 34067.01 34490.35 24286.47 32870.42 33683.52 33793.23 26361.18 34596.85 28577.21 30588.26 34693.34 319
MVSTER89.32 23888.75 24091.03 23890.10 33176.62 29390.85 22794.67 24482.27 26595.24 13795.79 16661.09 34698.49 18590.49 12798.26 17997.97 152
tpm84.38 29984.08 29885.30 32290.47 32763.43 35989.34 27285.63 33777.24 30487.62 31095.03 20561.00 34797.30 27179.26 29091.09 33995.16 276
EPMVS81.17 32080.37 32283.58 33185.58 35865.08 35490.31 24471.34 36377.31 30385.80 32291.30 30059.38 34892.70 34679.99 27982.34 35692.96 324
tmp_tt37.97 33344.33 33618.88 34711.80 36821.54 36863.51 35945.66 3694.23 36451.34 36450.48 36259.08 34922.11 36544.50 36268.35 36113.00 361
tpm281.46 31680.35 32384.80 32489.90 33265.14 35390.44 23885.36 34065.82 35182.05 34692.44 28357.94 35096.69 29070.71 34188.49 34592.56 329
ET-MVSNet_ETH3D86.15 28984.27 29791.79 21493.04 28881.28 22187.17 30686.14 33079.57 28383.65 33488.66 33157.10 35198.18 21287.74 19495.40 28295.90 257
CHOSEN 280x42080.04 32677.97 33286.23 31690.13 33074.53 31172.87 35689.59 30866.38 34876.29 35885.32 35056.96 35295.36 32169.49 34594.72 29788.79 347
JIA-IIPM85.08 29583.04 30491.19 23587.56 34886.14 16189.40 27184.44 34888.98 16582.20 34497.95 3956.82 35396.15 30476.55 31083.45 35391.30 338
DeepMVS_CXcopyleft53.83 34670.38 36664.56 35648.52 36833.01 36265.50 36374.21 36156.19 35446.64 36438.45 36370.07 36050.30 360
dp79.28 32778.62 33081.24 33785.97 35756.45 36386.91 31085.26 34372.97 32481.45 35089.17 33056.01 35595.45 31973.19 32776.68 35991.82 337
test_method50.44 33248.94 33554.93 34539.68 36712.38 36928.59 36190.09 3066.82 36341.10 36578.41 35854.41 35670.69 36350.12 36151.26 36381.72 357
thisisatest051584.72 29782.99 30589.90 27092.96 29075.33 30684.36 33683.42 35177.37 30288.27 30386.65 34253.94 35798.72 15582.56 25497.40 23395.67 266
tttt051789.81 23288.90 23892.55 19397.00 13679.73 24795.03 8983.65 35089.88 14895.30 13194.79 21753.64 35899.39 4591.99 9598.79 12998.54 106
thisisatest053088.69 25287.52 26392.20 20196.33 17379.36 25392.81 15484.01 34986.44 21193.67 18892.68 27753.62 35999.25 7489.65 15698.45 15798.00 145
FMVSNet587.82 26586.56 28091.62 22092.31 29879.81 24593.49 13994.81 23883.26 25191.36 24796.93 9652.77 36097.49 26176.07 31298.03 20597.55 188
pmmvs380.83 32178.96 32986.45 31287.23 35277.48 28184.87 33082.31 35363.83 35485.03 32589.50 32549.66 36193.10 34373.12 32895.10 28988.78 348
DWT-MVSNet_test80.74 32279.18 32885.43 32087.51 35066.87 34689.87 26086.01 33274.20 31780.86 35180.62 35748.84 36296.68 29281.54 26483.14 35592.75 327
IB-MVS77.21 1983.11 30481.05 31589.29 27991.15 31875.85 30185.66 32586.00 33379.70 28182.02 34786.61 34348.26 36398.39 19277.84 29892.22 33093.63 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RRT_test8_iter0588.21 25888.17 25388.33 29691.62 31366.82 34991.73 21096.60 17386.34 21394.14 17095.38 19347.72 36499.11 9191.78 10398.26 17999.06 47
gg-mvs-nofinetune82.10 31481.02 31685.34 32187.46 35171.04 33194.74 9967.56 36496.44 2179.43 35598.99 645.24 36596.15 30467.18 34992.17 33188.85 346
GG-mvs-BLEND83.24 33385.06 36071.03 33294.99 9265.55 36574.09 36075.51 36044.57 36694.46 33159.57 35787.54 34784.24 352
TESTMET0.1,179.09 32878.04 33182.25 33587.52 34964.03 35883.08 34380.62 35870.28 33780.16 35383.22 35444.13 36790.56 35279.95 28093.36 31492.15 332
test-mter81.21 31980.01 32684.79 32589.68 33566.86 34783.08 34384.52 34673.85 31982.85 34084.78 35143.66 36893.49 34182.85 25094.86 29294.03 302
KD-MVS_2432*160082.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
miper_refine_blended82.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
test1239.49 33512.01 3381.91 3482.87 3691.30 37082.38 3461.34 3711.36 3652.84 3666.56 3652.45 3710.97 3662.73 3645.56 3643.47 362
testmvs9.02 33611.42 3391.81 3492.77 3701.13 37179.44 3521.90 3701.18 3662.65 3676.80 3641.95 3720.87 3672.62 3653.45 3653.44 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.56 33710.08 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36890.69 3110.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
IU-MVS98.51 4586.66 14796.83 16072.74 32595.83 10993.00 7299.29 6598.64 96
save fliter97.46 11788.05 11992.04 18997.08 14287.63 195
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8198.22 2999.38 5193.44 5199.31 6298.53 107
GSMVS94.75 287
test_part298.21 6889.41 9196.72 68
MTGPAbinary97.62 97
MTMP94.82 9654.62 367
gm-plane-assit87.08 35459.33 36171.22 33183.58 35397.20 27473.95 322
test9_res88.16 18698.40 15997.83 166
agg_prior287.06 20498.36 17097.98 149
agg_prior96.20 18388.89 10096.88 15790.21 26798.78 145
test_prior489.91 8290.74 230
test_prior94.61 11395.95 20487.23 13197.36 12098.68 16597.93 155
旧先验290.00 25568.65 34292.71 21896.52 29485.15 227
新几何290.02 254
无先验89.94 25695.75 20870.81 33598.59 17581.17 27094.81 284
原ACMM289.34 272
testdata298.03 22180.24 277
testdata188.96 28188.44 178
plane_prior797.71 9988.68 104
plane_prior597.81 8598.95 11789.26 16498.51 15398.60 103
plane_prior495.59 175
plane_prior388.43 11390.35 14193.31 196
plane_prior294.56 10891.74 105
plane_prior197.38 120
plane_prior88.12 11793.01 14888.98 16598.06 202
n20.00 372
nn0.00 372
door-mid92.13 291
test1196.65 171
door91.26 299
HQP5-MVS84.89 176
HQP-NCC96.36 16891.37 21587.16 20288.81 291
ACMP_Plane96.36 16891.37 21587.16 20288.81 291
BP-MVS86.55 212
HQP4-MVS88.81 29198.61 17198.15 133
HQP3-MVS97.31 12597.73 218
NP-MVS96.82 14587.10 13493.40 258
ACMMP++_ref98.82 124
ACMMP++99.25 73