This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17198.13 4590.69 13593.75 18996.25 14898.03 297.02 28492.08 9695.55 28398.45 116
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21391.38 11899.69 1599.42 19
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23094.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7196.92 699.34 6294.31 2399.38 5598.92 67
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 6898.61 996.10 2698.16 2397.52 5996.90 798.62 17590.30 14099.60 2598.72 90
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13296.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6496.51 999.40 4394.06 3099.23 7898.85 75
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20298.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8298.10 4991.95 9297.63 3297.25 7996.48 1199.35 5993.29 6399.29 6797.95 157
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9296.48 1198.95 122
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 7898.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10198.03 6590.82 13297.15 5196.85 10396.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d87.83 26790.79 20678.96 34690.46 33588.63 10892.72 15990.67 31191.65 11398.68 1197.64 5396.06 1677.53 36759.84 36299.41 5270.73 365
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12098.08 5389.46 15996.61 7696.47 12795.85 1799.12 9390.45 13199.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9096.76 17393.97 5497.77 2898.57 1995.72 1897.90 23688.89 17899.23 7899.08 45
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5298.16 4391.74 10995.34 13396.36 14095.68 1999.44 2494.41 2199.28 7298.97 59
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 10998.03 6590.42 14396.37 8297.35 7495.68 1999.25 7794.44 2099.34 5898.80 79
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9093.82 3396.31 4498.25 2795.51 3596.99 6097.05 9195.63 2199.39 4893.31 6298.88 11698.75 84
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8497.00 15191.85 9897.40 4697.35 7495.58 2299.34 6293.44 5599.31 6298.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4686.69 15095.34 7798.18 3691.85 9897.63 3297.37 6895.58 22
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 14798.32 2087.89 19296.86 6597.38 6795.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5695.48 2598.77 15490.11 14999.44 4598.31 124
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS95.19 8195.73 6693.55 16096.62 15788.88 10594.67 10398.05 6091.26 12197.25 5096.40 13395.42 2694.36 34092.72 8499.19 8397.40 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9295.40 2793.49 4898.84 12198.00 149
test_241102_TWO98.10 4991.95 9297.54 3797.25 7995.37 2899.35 5993.29 6399.25 7598.49 112
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12196.47 12795.37 2899.27 7593.78 3899.14 8898.48 113
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 8797.98 7289.34 16295.63 12196.47 12795.37 2899.27 7591.99 9999.14 8898.48 113
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21198.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13697.86 8395.96 3097.48 4197.14 8695.33 3299.44 2490.79 12699.76 1199.38 22
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7295.85 21296.47 2193.40 19997.46 6395.31 3395.47 32486.18 22598.78 13389.11 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7597.12 14591.84 10197.28 4898.46 2595.30 3497.71 25690.17 14799.42 4798.99 53
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 7898.30 2391.40 11895.76 11596.87 10295.26 3599.45 2392.77 8099.21 8199.00 51
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3295.24 3699.65 393.39 5999.84 399.72 2
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6798.01 6992.08 9095.74 11796.28 14595.22 3799.42 2993.17 6999.06 9498.88 71
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17696.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9189.83 8593.46 14398.30 2392.37 8097.75 2996.95 9595.14 3999.51 1891.74 10799.28 7298.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7195.13 40
nrg03096.32 4196.55 2695.62 7797.83 9488.55 11295.77 6498.29 2692.68 7398.03 2697.91 4295.13 4098.95 12293.85 3699.49 3899.36 24
APDe-MVS96.46 3296.64 2295.93 6097.68 10589.38 9696.90 1998.41 1692.52 7797.43 4397.92 4195.11 4299.50 1994.45 1999.30 6498.92 67
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10695.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5098.07 5695.17 3796.82 6796.73 11495.09 4499.43 2892.99 7798.71 13898.50 111
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16397.33 12990.05 14896.77 7096.85 10395.04 4598.56 18492.77 8099.06 9498.70 93
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13796.57 12495.02 4799.41 3693.63 4299.11 9298.94 62
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6598.01 6993.34 6796.64 7496.57 12494.99 4999.36 5893.48 5199.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
canonicalmvs94.59 10394.69 10094.30 13595.60 23287.03 14295.59 6998.24 3091.56 11595.21 14392.04 29494.95 5098.66 17291.45 11697.57 23497.20 212
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12496.61 12294.93 5199.41 3693.78 3899.15 8799.00 51
test117296.79 1596.52 2797.60 998.03 8394.87 1096.07 5398.06 5995.76 3296.89 6396.85 10394.85 5299.42 2993.35 6198.81 12998.53 109
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9294.85 5299.42 2993.49 4898.84 12198.00 149
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 14896.39 13794.77 5499.42 2993.17 6999.44 4598.58 107
test_0728_THIRD93.26 6897.40 4697.35 7494.69 5599.34 6293.88 3499.42 4798.89 69
9.1494.81 9497.49 11694.11 12598.37 1787.56 20395.38 13196.03 15794.66 5699.08 9990.70 12898.97 109
GeoE94.55 10594.68 10294.15 13897.23 12785.11 18094.14 12497.34 12888.71 17695.26 13895.50 18694.65 5799.12 9390.94 12498.40 16598.23 129
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17196.49 12694.56 5999.39 4893.57 4499.05 9798.93 63
X-MVStestdata90.70 20788.45 24797.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17126.89 36894.56 5999.39 4893.57 4499.05 9798.93 63
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12796.68 11794.50 6199.42 2993.10 7299.26 7498.99 53
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10690.17 7993.86 13498.02 6787.35 20496.22 9597.99 3894.48 6299.05 10492.73 8399.68 1897.93 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 8897.79 9486.48 21597.42 4597.51 6194.47 6399.29 7193.55 4699.29 6798.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 11988.05 12292.04 19298.42 1587.63 20096.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7098.56 1191.84 10196.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5197.78 9592.73 7293.48 19696.72 11594.23 6699.42 2991.99 9999.29 6799.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
anonymousdsp96.74 1796.42 2997.68 798.00 8694.03 2596.97 1797.61 10587.68 19998.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 14897.24 13796.88 1697.69 3097.77 4894.12 6899.13 9191.54 11599.29 6797.88 165
Effi-MVS+92.79 16092.74 15892.94 18095.10 24583.30 20294.00 12997.53 11291.36 11989.35 29090.65 31894.01 6998.66 17287.40 20595.30 29196.88 223
DROMVSNet95.44 6995.62 6994.89 10596.93 14387.69 12996.48 3399.14 393.93 5592.77 22194.52 22793.95 7099.49 2293.62 4399.22 8097.51 194
OMC-MVS94.22 12093.69 13295.81 6797.25 12691.27 6492.27 18397.40 11987.10 21094.56 16695.42 19193.74 7198.11 22286.62 21698.85 12098.06 141
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21383.13 20693.79 13599.19 292.00 9198.84 598.04 3593.64 7299.02 11081.28 27398.54 15496.96 219
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 13897.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6197.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 12999.23 493.45 7599.57 1395.34 1299.89 299.63 9
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15486.96 14589.30 27896.23 19888.36 18493.57 19594.60 22493.45 7597.77 25190.23 14498.38 17098.03 147
cdsmvs_eth3d_5k23.35 33731.13 3400.00 3550.00 3780.00 3790.00 36695.58 2240.00 3730.00 37491.15 30793.43 770.00 3740.00 3720.00 3720.00 370
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12290.88 7194.59 10697.81 9089.22 16795.46 12996.17 15393.42 7899.34 6289.30 16598.87 11997.56 191
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ANet_high94.83 9596.28 3790.47 26096.65 15473.16 32894.33 11898.74 896.39 2398.09 2598.93 893.37 7998.70 16690.38 13499.68 1899.53 14
casdiffmvs94.32 11594.80 9592.85 18496.05 20281.44 22592.35 17998.05 6091.53 11695.75 11696.80 10793.35 8098.49 19091.01 12398.32 17998.64 98
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 16998.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9683.15 20594.58 10897.58 10793.39 6697.05 5698.04 3593.25 8298.51 18989.75 15999.59 2799.08 45
Anonymous2024052995.50 6795.83 6294.50 12697.33 12585.93 17095.19 8696.77 17296.64 1997.61 3598.05 3493.23 8398.79 14688.60 18599.04 10298.78 81
baseline94.26 11894.80 9592.64 19196.08 20080.99 23193.69 13898.04 6490.80 13394.89 15696.32 14293.19 8498.48 19491.68 11098.51 15898.43 117
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 20992.96 4489.48 27297.46 11685.14 23896.23 9495.42 19193.19 8498.08 22390.37 13598.76 13597.38 205
Anonymous2023121196.60 2597.13 1295.00 10297.46 11986.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
DVP-MVS++.95.93 5396.34 3494.70 11496.54 16386.66 15298.45 498.22 3293.26 6897.54 3797.36 7193.12 8799.38 5493.88 3498.68 14298.04 144
OPU-MVS95.15 9896.84 14789.43 9395.21 8295.66 17693.12 8798.06 22486.28 22498.61 14797.95 157
LS3D96.11 4895.83 6296.95 3794.75 25594.20 1897.34 1197.98 7297.31 1195.32 13496.77 10893.08 8999.20 8391.79 10598.16 19897.44 198
DP-MVS95.62 6395.84 6194.97 10397.16 13288.62 10994.54 11497.64 10196.94 1596.58 7797.32 7793.07 9098.72 16090.45 13198.84 12197.57 189
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9386.50 15492.00 19596.74 17488.16 18796.93 6297.61 5493.04 9197.90 23691.60 11298.12 20398.03 147
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23682.53 21389.25 28196.52 18685.00 24389.91 27988.55 33892.94 9298.84 13784.72 24395.44 28796.22 247
PC_three_145275.31 31895.87 11295.75 17292.93 9396.34 30987.18 20898.68 14298.04 144
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11498.05 6090.45 14296.31 8796.76 11092.91 9498.72 16091.19 11999.42 4798.32 122
testgi90.38 21691.34 19387.50 31097.49 11671.54 33789.43 27395.16 23488.38 18394.54 16794.68 22392.88 9693.09 35071.60 34297.85 22197.88 165
MVS_111021_LR93.66 13193.28 14794.80 10996.25 18790.95 6990.21 25095.43 22887.91 19093.74 19194.40 23092.88 9696.38 30590.39 13398.28 18397.07 213
CNVR-MVS94.58 10494.29 11695.46 8496.94 14189.35 9791.81 21196.80 16989.66 15593.90 18695.44 19092.80 9898.72 16092.74 8298.52 15698.32 122
ZD-MVS97.23 12790.32 7897.54 11084.40 25094.78 16095.79 16892.76 9999.39 4888.72 18398.40 165
XXY-MVS92.58 16893.16 15090.84 25197.75 9779.84 24891.87 20596.22 20085.94 22595.53 12697.68 5092.69 10094.48 33683.21 25497.51 23598.21 132
CDPH-MVS92.67 16591.83 17995.18 9796.94 14188.46 11590.70 23697.07 14877.38 30692.34 23795.08 20492.67 10198.88 12985.74 22798.57 15098.20 133
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 10989.72 8694.05 12798.37 1788.09 18895.06 14995.85 16392.58 10299.10 9790.33 13998.99 10498.62 102
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26388.25 11792.05 19196.65 17889.62 15690.08 27491.23 30692.56 10398.60 17886.30 22396.27 26996.90 221
AllTest94.88 9194.51 11096.00 5598.02 8492.17 5195.26 8198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
TestCases96.00 5598.02 8492.17 5198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
TinyColmap92.00 18392.76 15789.71 27795.62 23177.02 29390.72 23596.17 20387.70 19895.26 13896.29 14492.54 10496.45 30281.77 26898.77 13495.66 272
Regformer-294.86 9294.55 10795.77 7192.83 29989.98 8191.87 20596.40 19094.38 4796.19 9995.04 20692.47 10799.04 10793.49 4898.31 18098.28 126
ETV-MVS92.99 15392.74 15893.72 15595.86 21586.30 16392.33 18097.84 8791.70 11292.81 21986.17 35292.22 10899.19 8488.03 19497.73 22495.66 272
CLD-MVS91.82 18591.41 19193.04 17496.37 17283.65 19986.82 31897.29 13384.65 24992.27 23989.67 32892.20 10997.85 24483.95 24899.47 3997.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
segment_acmp92.14 110
Regformer-494.90 8994.67 10395.59 7892.78 30189.02 10092.39 17695.91 20994.50 4396.41 8095.56 18392.10 11199.01 11294.23 2698.14 20098.74 87
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7698.22 3292.36 8194.11 17598.07 3392.02 11299.44 2493.38 6097.67 23097.85 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-194.55 10594.33 11595.19 9692.83 29988.54 11391.87 20595.84 21393.99 5295.95 10795.04 20692.00 11398.79 14693.14 7198.31 18098.23 129
ITE_SJBPF95.95 5797.34 12493.36 4196.55 18591.93 9494.82 15895.39 19491.99 11497.08 28285.53 22997.96 21597.41 199
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 5991.98 11599.63 693.08 7499.81 999.70 3
CSCG94.69 10094.75 9794.52 12597.55 11387.87 12695.01 9397.57 10892.68 7396.20 9793.44 26191.92 11698.78 15089.11 17399.24 7796.92 220
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23594.75 16197.12 8791.85 11799.40 4393.45 5398.33 17798.62 102
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test93.33 13893.53 14192.71 18895.74 22283.08 20794.55 11298.85 591.02 12789.30 29191.91 29591.79 11899.23 8090.23 14498.41 16495.82 264
Gipumacopyleft95.31 7795.80 6493.81 15497.99 8990.91 7096.42 3797.95 7896.69 1791.78 24898.85 1291.77 11995.49 32391.72 10899.08 9395.02 286
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4591.76 12099.63 694.23 2699.84 399.66 6
testtj94.81 9694.42 11196.01 5497.23 12790.51 7794.77 10097.85 8691.29 12094.92 15595.66 17691.71 12199.40 4388.07 19398.25 18898.11 140
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 14889.92 8292.72 15998.02 6784.73 24893.65 19395.54 18591.68 12299.22 8188.78 18098.49 16198.26 128
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23386.36 16192.24 18696.27 19588.88 17389.90 28092.69 27991.65 12398.32 20477.38 31097.64 23192.72 334
PHI-MVS94.34 11493.80 12795.95 5795.65 22891.67 6294.82 9897.86 8387.86 19393.04 21494.16 23991.58 12498.78 15090.27 14298.96 11197.41 199
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
tfpnnormal94.27 11794.87 9392.48 20097.71 10180.88 23394.55 11295.41 22993.70 6096.67 7397.72 4991.40 12898.18 21787.45 20399.18 8598.36 120
Regformer-394.28 11694.23 12194.46 13092.78 30186.28 16492.39 17694.70 24893.69 6395.97 10595.56 18391.34 12998.48 19493.45 5398.14 20098.62 102
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15090.79 7396.30 4697.82 8996.13 2594.74 16297.23 8191.33 13099.16 8693.25 6698.30 18298.46 115
TEST996.45 17089.46 9190.60 23896.92 15879.09 29590.49 26694.39 23191.31 13198.88 129
agg_prior192.60 16791.76 18295.10 10096.20 18988.89 10390.37 24596.88 16279.67 28790.21 27194.41 22991.30 13298.78 15088.46 18698.37 17597.64 186
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19587.90 12593.36 14697.14 14285.53 23293.90 18695.45 18991.30 13298.59 18089.51 16298.62 14697.31 208
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30385.98 16992.44 17294.69 24993.70 6096.12 10295.81 16791.24 13498.86 13493.76 4198.22 19398.98 58
MCST-MVS92.91 15592.51 16594.10 14097.52 11485.72 17491.36 22297.13 14480.33 28192.91 21894.24 23591.23 13598.72 16089.99 15397.93 21797.86 167
RPSCF95.58 6594.89 9297.62 897.58 11196.30 495.97 5797.53 11292.42 7893.41 19797.78 4691.21 13697.77 25191.06 12097.06 24798.80 79
train_agg92.71 16491.83 17995.35 8696.45 17089.46 9190.60 23896.92 15879.37 29090.49 26694.39 23191.20 13798.88 12988.66 18498.43 16397.72 180
test_896.37 17289.14 9890.51 24196.89 16179.37 29090.42 26894.36 23391.20 13798.82 139
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30485.87 17192.42 17494.69 24993.67 6496.13 10195.84 16691.20 13798.86 13493.78 3898.23 19199.03 49
EIA-MVS92.35 17492.03 17393.30 17095.81 21883.97 19592.80 15898.17 4087.71 19789.79 28487.56 34291.17 14099.18 8587.97 19597.27 24296.77 227
xiu_mvs_v2_base89.00 24789.19 23288.46 29994.86 25074.63 31686.97 31295.60 21880.88 27787.83 31488.62 33791.04 14198.81 14482.51 26294.38 30891.93 340
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9293.58 3794.09 12696.99 15391.05 12692.40 23295.22 19891.03 14299.25 7792.11 9498.69 14197.90 163
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 16789.69 8792.91 15597.68 9978.02 30492.79 22094.10 24090.85 14397.96 23484.76 24298.16 19896.54 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas7.56 34010.09 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37390.77 1440.00 3740.00 3720.00 3720.00 370
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7197.88 8288.72 17598.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
PS-MVSNAJ88.86 25188.99 23888.48 29894.88 24874.71 31486.69 32195.60 21880.88 27787.83 31487.37 34590.77 14498.82 13982.52 26194.37 30991.93 340
MVS_Test92.57 17093.29 14590.40 26393.53 28675.85 30892.52 16696.96 15488.73 17492.35 23596.70 11690.77 14498.37 20292.53 8895.49 28596.99 218
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22199.60 2599.10 44
ab-mvs92.40 17292.62 16291.74 22097.02 13781.65 22195.84 6295.50 22786.95 21292.95 21797.56 5690.70 14997.50 26479.63 29197.43 23896.06 253
Test By Simon90.61 150
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23587.06 14096.63 2597.28 13591.82 10494.34 17397.41 6590.60 15198.65 17492.47 8998.11 20497.70 181
NCCC94.08 12493.54 13995.70 7696.49 16889.90 8492.39 17696.91 16090.64 13792.33 23894.60 22490.58 15298.96 12090.21 14697.70 22898.23 129
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10488.59 11092.26 18497.84 8794.91 3896.80 6895.78 17190.42 15399.41 3691.60 11299.58 3199.29 28
test_prior393.29 14092.85 15494.61 11795.95 21087.23 13590.21 25097.36 12589.33 16390.77 26194.81 21690.41 15498.68 17088.21 18798.55 15197.93 159
test_prior290.21 25089.33 16390.77 26194.81 21690.41 15488.21 18798.55 151
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 10779.49 25794.86 9797.12 14589.59 15896.87 6497.65 5290.40 15698.34 20389.08 17499.35 5798.75 84
MSLP-MVS++93.25 14593.88 12591.37 23096.34 17882.81 21193.11 14997.74 9689.37 16194.08 17795.29 19790.40 15696.35 30790.35 13698.25 18894.96 287
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9588.91 10292.91 15598.07 5693.46 6596.31 8795.97 16090.14 15899.34 6292.11 9499.64 2399.16 36
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 25796.67 394.00 12995.41 22989.94 14991.93 24692.13 29290.12 15998.97 11987.68 20097.48 23697.67 184
mvs-test193.07 15191.80 18196.89 3994.74 25795.83 692.17 18795.41 22989.94 14989.85 28190.59 31990.12 15998.88 12987.68 20095.66 28195.97 256
FMVSNet194.84 9495.13 8693.97 14497.60 11084.29 18795.99 5496.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8698.65 94
DU-MVS95.28 7895.12 8795.75 7397.75 9788.59 11092.58 16497.81 9093.99 5296.80 6895.90 16190.10 16299.41 3691.60 11299.58 3199.26 29
NR-MVSNet95.28 7895.28 8195.26 9397.75 9787.21 13795.08 8997.37 12093.92 5797.65 3195.90 16190.10 16299.33 6790.11 14999.66 2199.26 29
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19096.68 17693.82 5896.29 8998.56 2090.10 16297.75 25490.10 15199.66 2199.24 31
API-MVS91.52 19291.61 18491.26 23494.16 27386.26 16594.66 10494.82 24391.17 12492.13 24291.08 30990.03 16597.06 28379.09 29897.35 24190.45 349
CS-MVS92.12 18092.62 16290.60 25794.57 26678.12 27892.00 19598.58 1087.75 19690.08 27491.88 29789.79 16699.10 9790.35 13698.60 14994.58 296
test1294.43 13295.95 21086.75 14896.24 19789.76 28589.79 16698.79 14697.95 21697.75 179
旧先验196.20 18984.17 19294.82 24395.57 18289.57 16897.89 21996.32 243
DELS-MVS92.05 18292.16 17091.72 22194.44 26880.13 24087.62 29997.25 13687.34 20592.22 24093.18 26889.54 16998.73 15989.67 16098.20 19696.30 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 21795.62 21791.84 10195.74 11797.10 8889.31 17098.32 20485.07 23899.06 9498.93 63
QAPM92.88 15792.77 15693.22 17295.82 21683.31 20196.45 3497.35 12783.91 25393.75 18996.77 10889.25 17198.88 12984.56 24497.02 24997.49 195
MSDG90.82 20390.67 20991.26 23494.16 27383.08 20786.63 32396.19 20190.60 13991.94 24591.89 29689.16 17295.75 31880.96 27994.51 30794.95 288
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6297.66 10089.21 16893.28 20395.46 18888.89 17398.98 11589.80 15698.82 12797.80 174
ETH3 D test640091.91 18491.25 19593.89 15096.59 15884.41 18692.10 18997.72 9878.52 30091.82 24793.78 25488.70 17499.13 9183.61 25098.39 16898.14 136
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13186.87 14691.10 22797.37 12084.92 24592.08 24394.08 24188.59 17598.20 21483.50 25198.14 20095.73 268
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6098.32 2093.93 5597.53 3997.56 5688.48 17699.40 4392.91 7999.83 699.68 4
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 26784.10 19395.70 6597.03 14982.44 26991.14 25896.42 13188.47 17798.38 19985.95 22697.47 23795.55 276
F-COLMAP92.28 17691.06 20095.95 5797.52 11491.90 5793.53 14197.18 14083.98 25288.70 30394.04 24288.41 17898.55 18680.17 28495.99 27497.39 203
ambc92.98 17696.88 14583.01 20995.92 5996.38 19296.41 8097.48 6288.26 17997.80 24789.96 15498.93 11398.12 139
v1094.68 10195.27 8292.90 18296.57 16080.15 23894.65 10597.57 10890.68 13697.43 4398.00 3788.18 18099.15 8794.84 1599.55 3499.41 20
v894.65 10295.29 8092.74 18796.65 15479.77 25294.59 10697.17 14191.86 9797.47 4297.93 4088.16 18199.08 9994.32 2299.47 3999.38 22
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21690.87 7290.97 22992.61 28888.04 18994.61 16593.79 25388.08 18297.81 24689.41 16498.39 16896.50 236
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
diffmvs91.74 18691.93 17791.15 24093.06 29478.17 27788.77 28997.51 11586.28 21992.42 23193.96 24788.04 18497.46 26790.69 12996.67 26297.82 172
原ACMM192.87 18396.91 14484.22 19097.01 15076.84 31189.64 28794.46 22888.00 18598.70 16681.53 27198.01 21395.70 270
VDD-MVS94.37 11194.37 11394.40 13397.49 11686.07 16893.97 13193.28 27394.49 4496.24 9397.78 4687.99 18698.79 14688.92 17699.14 8898.34 121
XVG-OURS94.72 9994.12 12296.50 4898.00 8694.23 1791.48 21898.17 4090.72 13495.30 13596.47 12787.94 18796.98 28591.41 11797.61 23398.30 125
CANet92.38 17391.99 17593.52 16493.82 28483.46 20091.14 22597.00 15189.81 15386.47 32494.04 24287.90 18899.21 8289.50 16398.27 18497.90 163
BH-untuned90.68 20890.90 20190.05 27495.98 20879.57 25690.04 25794.94 23987.91 19094.07 17893.00 27087.76 18997.78 25079.19 29795.17 29492.80 332
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 7898.14 4493.05 7197.07 5397.18 8487.65 19099.29 7191.72 10899.69 1599.61 11
v114493.50 13393.81 12692.57 19696.28 18379.61 25591.86 20996.96 15486.95 21295.91 11096.32 14287.65 19098.96 12093.51 4798.88 11699.13 39
mvs_anonymous90.37 21791.30 19487.58 30992.17 31068.00 35089.84 26594.73 24783.82 25493.22 20897.40 6687.54 19297.40 27287.94 19695.05 29697.34 206
PCF-MVS84.52 1789.12 24487.71 26393.34 16796.06 20185.84 17286.58 32697.31 13068.46 34993.61 19493.89 25087.51 19398.52 18867.85 35398.11 20495.66 272
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet92.67 16592.96 15191.79 21896.27 18480.15 23891.95 19794.98 23792.19 8894.52 16896.07 15587.43 19497.39 27384.83 24098.38 17097.83 170
v14892.87 15893.29 14591.62 22496.25 18777.72 28591.28 22395.05 23589.69 15495.93 10996.04 15687.34 19598.38 19990.05 15297.99 21498.78 81
V4293.43 13693.58 13692.97 17795.34 24181.22 22892.67 16296.49 18787.25 20696.20 9796.37 13987.32 19698.85 13692.39 9398.21 19498.85 75
v119293.49 13493.78 12892.62 19496.16 19379.62 25491.83 21097.22 13986.07 22396.10 10396.38 13887.22 19799.02 11094.14 2998.88 11699.22 32
WR-MVS93.49 13493.72 13092.80 18697.57 11280.03 24490.14 25495.68 21693.70 6096.62 7595.39 19487.21 19899.04 10787.50 20299.64 2399.33 25
IterMVS-LS93.78 12994.28 11792.27 20396.27 18479.21 26491.87 20596.78 17091.77 10796.57 7897.07 8987.15 19998.74 15891.99 9999.03 10398.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet92.99 15393.26 14992.19 20692.12 31179.21 26492.32 18194.67 25191.77 10795.24 14195.85 16387.14 20098.49 19091.99 9998.26 18598.86 72
v14419293.20 14893.54 13992.16 21096.05 20278.26 27691.95 19797.14 14284.98 24495.96 10696.11 15487.08 20199.04 10793.79 3798.84 12199.17 35
114514_t90.51 21189.80 22592.63 19398.00 8682.24 21593.40 14597.29 13365.84 35689.40 28994.80 21986.99 20298.75 15583.88 24998.61 14796.89 222
新几何193.17 17397.16 13287.29 13494.43 25367.95 35091.29 25394.94 21186.97 20398.23 21281.06 27897.75 22393.98 311
HQP_MVS94.26 11893.93 12495.23 9597.71 10188.12 12094.56 11097.81 9091.74 10993.31 20095.59 17886.93 20498.95 12289.26 16998.51 15898.60 105
plane_prior697.21 13088.23 11886.93 204
112190.26 22289.23 23193.34 16797.15 13487.40 13291.94 19994.39 25467.88 35191.02 25994.91 21286.91 20698.59 18081.17 27697.71 22794.02 310
UGNet93.08 14992.50 16694.79 11093.87 28287.99 12495.07 9094.26 25890.64 13787.33 32097.67 5186.89 20798.49 19088.10 19298.71 13897.91 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS92.72 16392.02 17494.84 10895.65 22891.99 5592.92 15496.60 18085.08 24292.44 23093.62 25686.80 20896.35 30786.81 21198.25 18896.18 249
v192192093.26 14393.61 13592.19 20696.04 20678.31 27591.88 20497.24 13785.17 23796.19 9996.19 15086.76 20999.05 10494.18 2898.84 12199.22 32
v124093.29 14093.71 13192.06 21396.01 20777.89 28291.81 21197.37 12085.12 24096.69 7296.40 13386.67 21099.07 10394.51 1898.76 13599.22 32
MAR-MVS90.32 22088.87 24294.66 11694.82 25191.85 5894.22 12194.75 24680.91 27687.52 31888.07 34186.63 21197.87 24176.67 31496.21 27094.25 304
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14495.15 19986.60 21299.50 1993.43 5796.81 25798.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
BH-RMVSNet90.47 21390.44 21390.56 25995.21 24478.65 27389.15 28293.94 26688.21 18592.74 22294.22 23686.38 21397.88 23878.67 30095.39 28995.14 283
CNLPA91.72 18791.20 19693.26 17196.17 19291.02 6791.14 22595.55 22590.16 14790.87 26093.56 25986.31 21494.40 33979.92 29097.12 24694.37 301
PVSNet_BlendedMVS90.35 21889.96 22291.54 22794.81 25278.80 27190.14 25496.93 15679.43 28988.68 30495.06 20586.27 21598.15 22080.27 28198.04 21097.68 183
PVSNet_Blended88.74 25488.16 25890.46 26294.81 25278.80 27186.64 32296.93 15674.67 31988.68 30489.18 33486.27 21598.15 22080.27 28196.00 27394.44 300
PAPR87.65 27286.77 28090.27 26692.85 29877.38 28988.56 29496.23 19876.82 31284.98 33289.75 32786.08 21797.16 28072.33 33793.35 32196.26 246
v2v48293.29 14093.63 13492.29 20296.35 17778.82 26991.77 21396.28 19488.45 18195.70 12096.26 14786.02 21898.90 12693.02 7598.81 12999.14 38
test20.0390.80 20490.85 20490.63 25695.63 23079.24 26289.81 26692.87 27989.90 15194.39 17096.40 13385.77 21995.27 33173.86 32999.05 9797.39 203
PLCcopyleft85.34 1590.40 21588.92 23994.85 10796.53 16690.02 8091.58 21696.48 18880.16 28286.14 32692.18 29085.73 22098.25 21176.87 31394.61 30696.30 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS84.98 29984.30 29987.01 31391.03 32677.69 28691.94 19994.16 25959.36 36484.23 33887.50 34485.66 22196.80 29271.79 33993.05 32886.54 356
testdata91.03 24296.87 14682.01 21694.28 25771.55 33592.46 22995.42 19185.65 22297.38 27582.64 25997.27 24293.70 318
PM-MVS93.33 13892.67 16195.33 8896.58 15994.06 2092.26 18492.18 29485.92 22696.22 9596.61 12285.64 22395.99 31690.35 13698.23 19195.93 258
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26280.16 23785.49 33092.14 29790.41 14494.93 15495.79 16885.10 22496.93 28885.15 23394.19 31497.57 189
PAPM_NR91.03 20190.81 20591.68 22396.73 15281.10 23093.72 13796.35 19388.19 18688.77 30192.12 29385.09 22597.25 27782.40 26393.90 31596.68 230
HQP2-MVS84.76 226
HQP-MVS92.09 18191.49 18993.88 15196.36 17484.89 18291.37 21997.31 13087.16 20788.81 29793.40 26284.76 22698.60 17886.55 21897.73 22498.14 136
test22296.95 14085.27 17988.83 28793.61 26765.09 35890.74 26394.85 21584.62 22897.36 24093.91 312
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7491.78 30397.19 1296.32 8698.60 1884.24 22998.75 15587.09 20998.83 12698.81 78
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10083.95 19692.14 18897.46 11678.85 29992.35 23594.98 20984.16 23099.08 9986.36 22296.77 25995.79 266
CL-MVSNet_self_test90.04 23089.90 22490.47 26095.24 24377.81 28386.60 32592.62 28785.64 23193.25 20793.92 24883.84 23196.06 31479.93 28898.03 21197.53 193
BH-w/o87.21 28287.02 27687.79 30894.77 25477.27 29187.90 29793.21 27681.74 27489.99 27888.39 34083.47 23296.93 28871.29 34392.43 33589.15 350
PatchMatch-RL89.18 24288.02 26092.64 19195.90 21492.87 4688.67 29391.06 30780.34 28090.03 27791.67 30183.34 23394.42 33876.35 31794.84 30090.64 348
DPM-MVS89.35 24088.40 24892.18 20996.13 19884.20 19186.96 31396.15 20475.40 31787.36 31991.55 30483.30 23498.01 22982.17 26696.62 26394.32 303
OpenMVS_ROBcopyleft85.12 1689.52 23989.05 23690.92 24794.58 26581.21 22991.10 22793.41 27277.03 31093.41 19793.99 24683.23 23597.80 24779.93 28894.80 30193.74 317
new-patchmatchnet88.97 24890.79 20683.50 33794.28 27255.83 37185.34 33193.56 26986.18 22195.47 12795.73 17383.10 23696.51 30085.40 23098.06 20898.16 134
131486.46 29186.33 28886.87 31591.65 31974.54 31791.94 19994.10 26074.28 32184.78 33487.33 34683.03 23795.00 33378.72 29991.16 34491.06 346
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14082.88 23899.35 5988.19 18999.52 3798.96 60
MG-MVS89.54 23889.80 22588.76 29294.88 24872.47 33489.60 26992.44 29185.82 22789.48 28895.98 15982.85 23997.74 25581.87 26795.27 29296.08 252
TR-MVS87.70 26987.17 27289.27 28594.11 27579.26 26188.69 29191.86 30281.94 27390.69 26489.79 32582.82 24097.42 27072.65 33691.98 33991.14 345
c3_l91.32 19891.42 19091.00 24592.29 30676.79 29987.52 30596.42 18985.76 22994.72 16493.89 25082.73 24198.16 21990.93 12598.55 15198.04 144
YYNet188.17 26288.24 25387.93 30592.21 30873.62 32580.75 35488.77 31782.51 26894.99 15295.11 20282.70 24293.70 34583.33 25293.83 31696.48 237
MDA-MVSNet_test_wron88.16 26388.23 25487.93 30592.22 30773.71 32480.71 35588.84 31682.52 26794.88 15795.14 20082.70 24293.61 34683.28 25393.80 31796.46 238
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22187.86 12790.83 23293.98 26578.23 30394.02 18296.22 14982.62 24496.83 29186.57 21798.33 17797.29 209
MVS_030490.96 20290.15 21993.37 16693.17 29187.06 14093.62 14092.43 29289.60 15782.25 34995.50 18682.56 24597.83 24584.41 24697.83 22295.22 280
Anonymous2023120688.77 25388.29 25190.20 27096.31 18178.81 27089.56 27193.49 27174.26 32292.38 23395.58 18182.21 24695.43 32672.07 33898.75 13796.34 242
miper_ehance_all_eth90.48 21290.42 21490.69 25491.62 32076.57 30186.83 31796.18 20283.38 25594.06 17992.66 28182.20 24798.04 22589.79 15797.02 24997.45 197
USDC89.02 24589.08 23588.84 29195.07 24674.50 31988.97 28496.39 19173.21 32893.27 20496.28 14582.16 24896.39 30477.55 30798.80 13195.62 275
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15396.19 15082.07 24999.57 1387.28 20798.89 11498.65 94
UnsupCasMVSNet_eth90.33 21990.34 21590.28 26594.64 26480.24 23689.69 26895.88 21085.77 22893.94 18595.69 17481.99 25092.98 35184.21 24791.30 34297.62 187
alignmvs93.26 14392.85 15494.50 12695.70 22487.45 13193.45 14495.76 21491.58 11495.25 14092.42 28881.96 25198.72 16091.61 11197.87 22097.33 207
TAMVS90.16 22489.05 23693.49 16596.49 16886.37 16090.34 24792.55 28980.84 27992.99 21594.57 22681.94 25298.20 21473.51 33098.21 19495.90 261
Anonymous20240521192.58 16892.50 16692.83 18596.55 16283.22 20392.43 17391.64 30494.10 5195.59 12396.64 12081.88 25397.50 26485.12 23598.52 15697.77 176
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5894.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
cascas87.02 28886.28 28989.25 28691.56 32276.45 30284.33 34196.78 17071.01 33986.89 32385.91 35381.35 25596.94 28683.09 25595.60 28294.35 302
GBi-Net93.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
test193.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
FMVSNet292.78 16192.73 16092.95 17995.40 23781.98 21794.18 12295.53 22688.63 17796.05 10497.37 6881.31 25698.81 14487.38 20698.67 14498.06 141
MVEpermissive59.87 2373.86 33472.65 33777.47 34787.00 36274.35 32061.37 36460.93 37367.27 35269.69 36886.49 35081.24 25972.33 36856.45 36583.45 35985.74 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVP-Stereo90.07 22888.92 23993.54 16296.31 18186.49 15590.93 23095.59 22279.80 28391.48 25095.59 17880.79 26097.39 27378.57 30191.19 34396.76 228
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld88.50 25788.03 25989.90 27595.52 23478.88 26887.39 30694.02 26379.32 29393.06 21294.02 24480.72 26194.27 34175.16 32393.08 32796.54 231
MS-PatchMatch88.05 26487.75 26288.95 28893.28 28877.93 28087.88 29892.49 29075.42 31692.57 22793.59 25880.44 26294.24 34381.28 27392.75 33094.69 295
Anonymous2024052192.86 15993.57 13790.74 25396.57 16075.50 31294.15 12395.60 21889.38 16095.90 11197.90 4480.39 26397.96 23492.60 8799.68 1898.75 84
CANet_DTU89.85 23489.17 23391.87 21692.20 30980.02 24590.79 23395.87 21186.02 22482.53 34891.77 29980.01 26498.57 18385.66 22897.70 22897.01 217
PMMVS83.00 30981.11 31788.66 29583.81 37086.44 15882.24 35185.65 34361.75 36382.07 35185.64 35479.75 26591.59 35675.99 31993.09 32687.94 355
ppachtmachnet_test88.61 25688.64 24488.50 29791.76 31770.99 34084.59 33892.98 27779.30 29492.38 23393.53 26079.57 26697.45 26886.50 22097.17 24597.07 213
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31376.84 29886.91 31496.67 17785.21 23694.41 16993.92 24879.53 26798.26 21089.76 15897.02 24998.06 141
N_pmnet88.90 25087.25 27093.83 15394.40 27093.81 3584.73 33587.09 33179.36 29293.26 20592.43 28779.29 26891.68 35577.50 30997.22 24496.00 255
miper_enhance_ethall88.42 25887.87 26190.07 27288.67 35375.52 31185.10 33295.59 22275.68 31392.49 22889.45 33178.96 26997.88 23887.86 19897.02 24996.81 225
EPNet89.80 23688.25 25294.45 13183.91 36986.18 16693.87 13387.07 33291.16 12580.64 35894.72 22178.83 27098.89 12885.17 23198.89 11498.28 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss87.23 28186.82 27888.46 29993.96 27977.94 27986.84 31692.78 28377.59 30587.61 31791.83 29878.75 27191.92 35477.84 30494.20 31395.52 277
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28179.22 26387.56 30293.51 27091.53 11695.37 13296.62 12178.65 27298.90 12691.89 10494.95 29797.70 181
SCA87.43 27787.21 27188.10 30492.01 31471.98 33689.43 27388.11 32582.26 27188.71 30292.83 27478.65 27297.59 26079.61 29293.30 32294.75 292
our_test_387.55 27487.59 26587.44 31191.76 31770.48 34183.83 34590.55 31279.79 28492.06 24492.17 29178.63 27495.63 31984.77 24194.73 30296.22 247
jason89.17 24388.32 24991.70 22295.73 22380.07 24188.10 29693.22 27471.98 33490.09 27392.79 27678.53 27598.56 18487.43 20497.06 24796.46 238
jason: jason.
IterMVS90.18 22390.16 21790.21 26993.15 29275.98 30787.56 30292.97 27886.43 21794.09 17696.40 13378.32 27697.43 26987.87 19794.69 30497.23 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268887.19 28485.92 29291.00 24597.13 13579.41 25884.51 33995.60 21864.14 35990.07 27694.81 21678.26 27797.14 28173.34 33195.38 29096.46 238
WTY-MVS86.93 28986.50 28788.24 30294.96 24774.64 31587.19 30992.07 29978.29 30288.32 30891.59 30378.06 27894.27 34174.88 32493.15 32595.80 265
pmmvs488.95 24987.70 26492.70 18994.30 27185.60 17587.22 30892.16 29674.62 32089.75 28694.19 23777.97 27996.41 30382.71 25896.36 26896.09 251
DSMNet-mixed82.21 31481.56 31384.16 33489.57 34470.00 34690.65 23777.66 36954.99 36783.30 34497.57 5577.89 28090.50 35966.86 35695.54 28491.97 339
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4277.49 28199.11 9592.62 8698.08 20798.74 87
HY-MVS82.50 1886.81 29085.93 29189.47 27993.63 28577.93 28094.02 12891.58 30575.68 31383.64 34193.64 25577.40 28297.42 27071.70 34192.07 33893.05 329
1112_ss88.42 25887.41 26791.45 22896.69 15380.99 23189.72 26796.72 17573.37 32787.00 32290.69 31677.38 28398.20 21481.38 27293.72 31895.15 282
DIV-MVS_self_test90.65 20990.56 21190.91 24991.85 31576.99 29586.75 31995.36 23285.52 23494.06 17994.89 21377.37 28497.99 23290.28 14198.97 10997.76 177
cl____90.65 20990.56 21190.91 24991.85 31576.98 29686.75 31995.36 23285.53 23294.06 17994.89 21377.36 28597.98 23390.27 14298.98 10597.76 177
CDS-MVSNet89.55 23788.22 25593.53 16395.37 24086.49 15589.26 27993.59 26879.76 28591.15 25792.31 28977.12 28698.38 19977.51 30897.92 21895.71 269
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer92.18 17992.23 16992.04 21494.74 25780.06 24297.15 1397.37 12088.98 16988.83 29592.79 27677.02 28799.60 896.41 496.75 26096.46 238
lupinMVS88.34 26087.31 26891.45 22894.74 25780.06 24287.23 30792.27 29371.10 33888.83 29591.15 30777.02 28798.53 18786.67 21596.75 26095.76 267
PMMVS281.31 32083.44 30474.92 34890.52 33346.49 37369.19 36285.23 35184.30 25187.95 31394.71 22276.95 28984.36 36664.07 35998.09 20693.89 313
h-mvs3392.89 15691.99 17595.58 7996.97 13990.55 7593.94 13294.01 26489.23 16593.95 18396.19 15076.88 29099.14 8991.02 12195.71 28097.04 216
hse-mvs292.24 17891.20 19695.38 8596.16 19390.65 7492.52 16692.01 30189.23 16593.95 18392.99 27176.88 29098.69 16891.02 12196.03 27296.81 225
pmmvs587.87 26687.14 27390.07 27293.26 29076.97 29788.89 28692.18 29473.71 32688.36 30793.89 25076.86 29296.73 29480.32 28096.81 25796.51 233
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 11786.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19698.73 89
miper_lstm_enhance89.90 23389.80 22590.19 27191.37 32477.50 28783.82 34695.00 23684.84 24693.05 21394.96 21076.53 29495.20 33289.96 15498.67 14497.86 167
test_part194.39 11094.55 10793.92 14896.14 19582.86 21095.54 7298.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
Test_1112_low_res87.50 27686.58 28290.25 26796.80 15177.75 28487.53 30496.25 19669.73 34586.47 32493.61 25775.67 29697.88 23879.95 28693.20 32395.11 284
Vis-MVSNet (Re-imp)90.42 21490.16 21791.20 23897.66 10777.32 29094.33 11887.66 32791.20 12392.99 21595.13 20175.40 29798.28 20677.86 30399.19 8397.99 152
D2MVS89.93 23289.60 23090.92 24794.03 27878.40 27488.69 29194.85 24178.96 29793.08 21195.09 20374.57 29896.94 28688.19 18998.96 11197.41 199
PVSNet76.22 2082.89 31082.37 31084.48 33293.96 27964.38 36478.60 35788.61 31871.50 33684.43 33786.36 35174.27 29994.60 33569.87 35093.69 31994.46 299
test_yl90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
DCV-MVSNet90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
CMPMVSbinary68.83 2287.28 28085.67 29392.09 21288.77 35285.42 17790.31 24894.38 25570.02 34488.00 31293.30 26473.78 30294.03 34475.96 32096.54 26496.83 224
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline187.62 27387.31 26888.54 29694.71 26174.27 32293.10 15088.20 32386.20 22092.18 24193.04 26973.21 30395.52 32179.32 29585.82 35595.83 263
bset_n11_16_dypcd89.99 23189.15 23492.53 19894.75 25581.34 22684.19 34287.56 32885.13 23993.77 18892.46 28372.82 30499.01 11292.46 9099.21 8197.23 210
PVSNet_070.34 2174.58 33372.96 33679.47 34590.63 33166.24 35773.26 35883.40 35963.67 36178.02 36278.35 36472.53 30589.59 36156.68 36460.05 36882.57 362
MIMVSNet87.13 28686.54 28488.89 29096.05 20276.11 30594.39 11688.51 31981.37 27588.27 30996.75 11172.38 30695.52 32165.71 35895.47 28695.03 285
PAPM81.91 31880.11 32887.31 31293.87 28272.32 33584.02 34493.22 27469.47 34676.13 36589.84 32272.15 30797.23 27853.27 36689.02 34992.37 337
cl2289.02 24588.50 24690.59 25889.76 34076.45 30286.62 32494.03 26182.98 26392.65 22492.49 28272.05 30897.53 26288.93 17597.02 24997.78 175
LFMVS91.33 19791.16 19991.82 21796.27 18479.36 25995.01 9385.61 34596.04 2994.82 15897.06 9072.03 30998.46 19684.96 23998.70 14097.65 185
MVS-HIRNet78.83 33280.60 32473.51 34993.07 29347.37 37287.10 31178.00 36868.94 34777.53 36397.26 7871.45 31094.62 33463.28 36188.74 35078.55 364
EPNet_dtu85.63 29584.37 29889.40 28286.30 36374.33 32191.64 21588.26 32184.84 24672.96 36789.85 32171.27 31197.69 25776.60 31597.62 23296.18 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test87.19 28485.51 29492.24 20497.12 13680.51 23585.03 33396.06 20566.11 35591.66 24992.98 27270.12 31299.14 8975.29 32295.23 29397.07 213
FMVSNet390.78 20590.32 21692.16 21093.03 29679.92 24792.54 16594.95 23886.17 22295.10 14596.01 15869.97 31398.75 15586.74 21298.38 17097.82 172
RPMNet90.31 22190.14 22090.81 25291.01 32778.93 26692.52 16698.12 4691.91 9589.10 29296.89 10168.84 31499.41 3690.17 14792.70 33194.08 305
ADS-MVSNet284.01 30482.20 31289.41 28189.04 34976.37 30487.57 30090.98 30872.71 33284.46 33592.45 28468.08 31596.48 30170.58 34883.97 35795.38 278
ADS-MVSNet82.25 31381.55 31484.34 33389.04 34965.30 35887.57 30085.13 35272.71 33284.46 33592.45 28468.08 31592.33 35370.58 34883.97 35795.38 278
CVMVSNet85.16 29784.72 29686.48 31692.12 31170.19 34292.32 18188.17 32456.15 36690.64 26595.85 16367.97 31796.69 29588.78 18090.52 34692.56 335
new_pmnet81.22 32181.01 32081.86 34190.92 32970.15 34384.03 34380.25 36770.83 34085.97 32789.78 32667.93 31884.65 36567.44 35491.90 34090.78 347
CR-MVSNet87.89 26587.12 27490.22 26891.01 32778.93 26692.52 16692.81 28073.08 32989.10 29296.93 9867.11 31997.64 25988.80 17992.70 33194.08 305
Patchmtry90.11 22589.92 22390.66 25590.35 33677.00 29492.96 15392.81 28090.25 14694.74 16296.93 9867.11 31997.52 26385.17 23198.98 10597.46 196
PatchmatchNetpermissive85.22 29684.64 29786.98 31489.51 34569.83 34790.52 24087.34 33078.87 29887.22 32192.74 27866.91 32196.53 29881.77 26886.88 35494.58 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GA-MVS87.70 26986.82 27890.31 26493.27 28977.22 29284.72 33792.79 28285.11 24189.82 28290.07 32066.80 32297.76 25384.56 24494.27 31295.96 257
MDTV_nov1_ep13_2view42.48 37488.45 29567.22 35383.56 34266.80 32272.86 33594.06 307
tpmrst82.85 31182.93 30982.64 33987.65 35458.99 36990.14 25487.90 32675.54 31583.93 33991.63 30266.79 32495.36 32781.21 27581.54 36393.57 323
sam_mvs166.64 32594.75 292
sam_mvs66.41 326
Patchmatch-RL test88.81 25288.52 24589.69 27895.33 24279.94 24686.22 32792.71 28478.46 30195.80 11494.18 23866.25 32795.33 32989.22 17198.53 15593.78 315
patchmatchnet-post91.71 30066.22 32897.59 260
AUN-MVS90.05 22988.30 25095.32 9196.09 19990.52 7692.42 17492.05 30082.08 27288.45 30692.86 27365.76 32998.69 16888.91 17796.07 27196.75 229
test_post6.07 37165.74 33095.84 317
test_post190.21 2505.85 37265.36 33196.00 31579.61 292
MDTV_nov1_ep1383.88 30389.42 34661.52 36788.74 29087.41 32973.99 32484.96 33394.01 24565.25 33295.53 32078.02 30293.16 324
Patchmatch-test86.10 29386.01 29086.38 32090.63 33174.22 32389.57 27086.69 33385.73 23089.81 28392.83 27465.24 33391.04 35777.82 30695.78 27993.88 314
tpmvs84.22 30383.97 30284.94 32887.09 36065.18 35991.21 22488.35 32082.87 26485.21 32990.96 31165.24 33396.75 29379.60 29485.25 35692.90 331
EU-MVSNet87.39 27886.71 28189.44 28093.40 28776.11 30594.93 9690.00 31457.17 36595.71 11997.37 6864.77 33597.68 25892.67 8594.37 30994.52 298
thres20085.85 29485.18 29587.88 30794.44 26872.52 33389.08 28386.21 33688.57 18091.44 25188.40 33964.22 33698.00 23068.35 35295.88 27893.12 326
PatchT87.51 27588.17 25685.55 32390.64 33066.91 35292.02 19486.09 33892.20 8789.05 29497.16 8564.15 33796.37 30689.21 17292.98 32993.37 324
tfpn200view987.05 28786.52 28588.67 29495.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26494.79 290
thres40087.20 28386.52 28589.24 28795.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26496.51 233
FPMVS84.50 30183.28 30588.16 30396.32 18094.49 1585.76 32885.47 34683.09 26085.20 33094.26 23463.79 34086.58 36463.72 36091.88 34183.40 359
thres100view90087.35 27986.89 27788.72 29396.14 19573.09 32993.00 15285.31 34892.13 8993.26 20590.96 31163.42 34198.28 20671.27 34496.54 26494.79 290
thres600view787.66 27187.10 27589.36 28396.05 20273.17 32792.72 15985.31 34891.89 9693.29 20290.97 31063.42 34198.39 19773.23 33296.99 25496.51 233
EMVS80.35 32880.28 32780.54 34384.73 36869.07 34872.54 36180.73 36487.80 19481.66 35581.73 36162.89 34389.84 36075.79 32194.65 30582.71 361
test-LLR83.58 30583.17 30684.79 33089.68 34266.86 35483.08 34784.52 35383.07 26182.85 34684.78 35662.86 34493.49 34782.85 25694.86 29894.03 308
test0.0.03 182.48 31281.47 31685.48 32489.70 34173.57 32684.73 33581.64 36283.07 26188.13 31186.61 34862.86 34489.10 36366.24 35790.29 34793.77 316
tpm cat180.61 32779.46 33084.07 33588.78 35165.06 36289.26 27988.23 32262.27 36281.90 35489.66 32962.70 34695.29 33071.72 34080.60 36491.86 342
E-PMN80.72 32680.86 32180.29 34485.11 36668.77 34972.96 35981.97 36187.76 19583.25 34583.01 36062.22 34789.17 36277.15 31294.31 31182.93 360
RRT_MVS91.36 19690.05 22195.29 9289.21 34888.15 11992.51 17094.89 24086.73 21495.54 12595.68 17561.82 34899.30 7094.91 1399.13 9198.43 117
baseline283.38 30681.54 31588.90 28991.38 32372.84 33288.78 28881.22 36378.97 29679.82 36087.56 34261.73 34997.80 24774.30 32790.05 34896.05 254
CostFormer83.09 30882.21 31185.73 32289.27 34767.01 35190.35 24686.47 33570.42 34283.52 34393.23 26761.18 35096.85 29077.21 31188.26 35293.34 325
MVSTER89.32 24188.75 24391.03 24290.10 33876.62 30090.85 23194.67 25182.27 27095.24 14195.79 16861.09 35198.49 19090.49 13098.26 18597.97 156
tpm84.38 30284.08 30185.30 32790.47 33463.43 36689.34 27685.63 34477.24 30987.62 31695.03 20861.00 35297.30 27679.26 29691.09 34595.16 281
EPMVS81.17 32380.37 32583.58 33685.58 36565.08 36190.31 24871.34 37077.31 30885.80 32891.30 30559.38 35392.70 35279.99 28582.34 36292.96 330
tmp_tt37.97 33644.33 33918.88 35211.80 37521.54 37563.51 36345.66 3764.23 37051.34 37050.48 36759.08 35422.11 37144.50 36868.35 36713.00 367
tpm281.46 31980.35 32684.80 32989.90 33965.14 36090.44 24285.36 34765.82 35782.05 35292.44 28657.94 35596.69 29570.71 34788.49 35192.56 335
ET-MVSNet_ETH3D86.15 29284.27 30091.79 21893.04 29581.28 22787.17 31086.14 33779.57 28883.65 34088.66 33657.10 35698.18 21787.74 19995.40 28895.90 261
CHOSEN 280x42080.04 32977.97 33586.23 32190.13 33774.53 31872.87 36089.59 31566.38 35476.29 36485.32 35556.96 35795.36 32769.49 35194.72 30388.79 353
JIA-IIPM85.08 29883.04 30791.19 23987.56 35586.14 16789.40 27584.44 35588.98 16982.20 35097.95 3956.82 35896.15 31076.55 31683.45 35991.30 344
DeepMVS_CXcopyleft53.83 35170.38 37364.56 36348.52 37533.01 36865.50 36974.21 36656.19 35946.64 37038.45 36970.07 36650.30 366
dp79.28 33078.62 33381.24 34285.97 36456.45 37086.91 31485.26 35072.97 33081.45 35689.17 33556.01 36095.45 32573.19 33376.68 36591.82 343
test_method50.44 33548.94 33854.93 35039.68 37412.38 37628.59 36590.09 3136.82 36941.10 37178.41 36354.41 36170.69 36950.12 36751.26 36981.72 363
thisisatest051584.72 30082.99 30889.90 27592.96 29775.33 31384.36 34083.42 35877.37 30788.27 30986.65 34753.94 36298.72 16082.56 26097.40 23995.67 271
tttt051789.81 23588.90 24192.55 19797.00 13879.73 25395.03 9283.65 35789.88 15295.30 13594.79 22053.64 36399.39 4891.99 9998.79 13298.54 108
thisisatest053088.69 25587.52 26692.20 20596.33 17979.36 25992.81 15784.01 35686.44 21693.67 19292.68 28053.62 36499.25 7789.65 16198.45 16298.00 149
FMVSNet587.82 26886.56 28391.62 22492.31 30579.81 25193.49 14294.81 24583.26 25691.36 25296.93 9852.77 36597.49 26676.07 31898.03 21197.55 192
pmmvs380.83 32478.96 33286.45 31787.23 35977.48 28884.87 33482.31 36063.83 36085.03 33189.50 33049.66 36693.10 34973.12 33495.10 29588.78 354
DWT-MVSNet_test80.74 32579.18 33185.43 32587.51 35766.87 35389.87 26486.01 33974.20 32380.86 35780.62 36248.84 36796.68 29781.54 27083.14 36192.75 333
IB-MVS77.21 1983.11 30781.05 31889.29 28491.15 32575.85 30885.66 32986.00 34079.70 28682.02 35386.61 34848.26 36898.39 19777.84 30492.22 33693.63 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RRT_test8_iter0588.21 26188.17 25688.33 30191.62 32066.82 35691.73 21496.60 18086.34 21894.14 17495.38 19647.72 36999.11 9591.78 10698.26 18599.06 47
gg-mvs-nofinetune82.10 31781.02 31985.34 32687.46 35871.04 33894.74 10167.56 37196.44 2279.43 36198.99 645.24 37096.15 31067.18 35592.17 33788.85 352
GG-mvs-BLEND83.24 33885.06 36771.03 33994.99 9565.55 37274.09 36675.51 36544.57 37194.46 33759.57 36387.54 35384.24 358
TESTMET0.1,179.09 33178.04 33482.25 34087.52 35664.03 36583.08 34780.62 36570.28 34380.16 35983.22 35944.13 37290.56 35879.95 28693.36 32092.15 338
test-mter81.21 32280.01 32984.79 33089.68 34266.86 35483.08 34784.52 35373.85 32582.85 34684.78 35643.66 37393.49 34782.85 25694.86 29894.03 308
KD-MVS_2432*160082.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
miper_refine_blended82.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
test1239.49 33812.01 3411.91 3532.87 3761.30 37782.38 3501.34 3781.36 3712.84 3726.56 3702.45 3760.97 3722.73 3705.56 3703.47 368
testmvs9.02 33911.42 3421.81 3542.77 3771.13 37879.44 3561.90 3771.18 3722.65 3736.80 3691.95 3770.87 3732.62 3713.45 3713.44 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.56 34010.08 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37490.69 3160.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
MSC_two_6792asdad95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
No_MVS95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
eth-test20.00 378
eth-test0.00 378
IU-MVS98.51 4686.66 15296.83 16772.74 33195.83 11393.00 7699.29 6798.64 98
save fliter97.46 11988.05 12292.04 19297.08 14787.63 200
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8498.22 3299.38 5493.44 5599.31 6298.53 109
GSMVS94.75 292
test_part298.21 7089.41 9496.72 71
MTGPAbinary97.62 102
MTMP94.82 9854.62 374
gm-plane-assit87.08 36159.33 36871.22 33783.58 35897.20 27973.95 328
test9_res88.16 19198.40 16597.83 170
agg_prior287.06 21098.36 17697.98 153
agg_prior96.20 18988.89 10396.88 16290.21 27198.78 150
test_prior489.91 8390.74 234
test_prior94.61 11795.95 21087.23 13597.36 12598.68 17097.93 159
旧先验290.00 25968.65 34892.71 22396.52 29985.15 233
新几何290.02 258
无先验89.94 26095.75 21570.81 34198.59 18081.17 27694.81 289
原ACMM289.34 276
testdata298.03 22680.24 283
testdata188.96 28588.44 182
plane_prior797.71 10188.68 107
plane_prior597.81 9098.95 12289.26 16998.51 15898.60 105
plane_prior495.59 178
plane_prior388.43 11690.35 14593.31 200
plane_prior294.56 11091.74 109
plane_prior197.38 122
plane_prior88.12 12093.01 15188.98 16998.06 208
n20.00 379
nn0.00 379
door-mid92.13 298
test1196.65 178
door91.26 306
HQP5-MVS84.89 182
HQP-NCC96.36 17491.37 21987.16 20788.81 297
ACMP_Plane96.36 17491.37 21987.16 20788.81 297
BP-MVS86.55 218
HQP4-MVS88.81 29798.61 17698.15 135
HQP3-MVS97.31 13097.73 224
NP-MVS96.82 14887.10 13993.40 262
ACMMP++_ref98.82 127
ACMMP++99.25 75