This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19398.13 5190.69 14093.75 20696.25 17898.03 297.02 29792.08 10595.55 30198.45 126
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8696.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11398.16 298.94 299.33 297.84 499.08 9390.73 13999.73 1399.59 13
ACMH88.36 1296.59 2797.43 594.07 14098.56 4285.33 18796.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 22894.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4693.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16890.30 15399.60 2798.72 96
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10887.57 20698.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14495.21 9398.10 5591.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
test_241102_ONE98.51 5086.97 14498.10 5591.85 10497.63 3597.03 12296.48 1098.95 114
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 8998.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11098.03 7090.82 13797.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18090.67 32991.65 11998.68 1197.64 7096.06 1577.53 40359.84 39799.41 5670.73 401
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13098.08 5889.46 16396.61 8796.47 15795.85 1899.12 9090.45 14599.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13098.76 1186.25 22297.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 137
TransMVSNet (Re)95.27 8796.04 5292.97 18098.37 6481.92 23295.07 10096.76 17793.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4991.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11898.03 7090.42 14896.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15295.20 9597.00 15691.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5086.69 15295.34 8898.18 4291.85 10497.63 3597.37 9095.58 24
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16498.32 2587.89 19796.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16299.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS95.19 8895.73 6793.55 16196.62 17388.88 10794.67 11298.05 6591.26 12697.25 5896.40 16295.42 2894.36 36192.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
test_241102_TWO98.10 5591.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7692.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12286.96 21598.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15698.60 1485.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 142
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 14997.86 8695.96 3297.48 4697.14 11395.33 3499.44 2990.79 13799.76 1099.38 22
PMVScopyleft87.21 1494.97 9495.33 8593.91 14898.97 1797.16 295.54 8495.85 22196.47 2293.40 21797.46 8695.31 3595.47 34286.18 24598.78 14389.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pm-mvs195.43 7395.94 5593.93 14798.38 6285.08 19095.46 8697.12 14991.84 10797.28 5698.46 3095.30 3697.71 26090.17 16099.42 5298.99 56
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 8998.30 2891.40 12495.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20496.61 3297.97 7897.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16698.36 2285.61 23896.92 7398.02 4995.23 3998.38 19496.69 698.95 12398.09 150
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7392.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 16996.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 15898.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060198.26 7087.14 14098.18 4294.25 4896.99 7097.36 9395.13 43
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4292.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6195.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18597.33 13290.05 15396.77 8096.85 13495.04 4898.56 17792.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19396.51 3597.94 8498.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7992.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19496.54 3498.05 6598.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7393.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 31994.95 5398.66 16491.45 12597.57 24397.20 226
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7992.35 8895.57 13796.61 15294.93 5499.41 3993.78 5199.15 9899.00 54
tt080595.42 7695.93 5793.86 15198.75 3288.47 11797.68 994.29 26996.48 2195.38 14793.63 28194.89 5597.94 23495.38 2796.92 26995.17 305
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12294.85 5699.42 3393.49 6198.84 13298.00 159
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20483.23 21492.66 18498.19 4093.06 7597.49 4497.15 11294.78 5798.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 5892.67 8195.08 16796.39 16694.77 5899.42 3393.17 8099.44 5098.58 118
test_0728_THIRD93.26 7197.40 5297.35 9694.69 5999.34 6393.88 4799.42 5298.89 75
9.1494.81 10497.49 12694.11 13798.37 2187.56 20795.38 14796.03 18894.66 6099.08 9390.70 14098.97 119
GeoE94.55 11094.68 11394.15 13697.23 13885.11 18994.14 13697.34 13188.71 18195.26 15695.50 21394.65 6199.12 9090.94 13498.40 17998.23 138
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6298.84 12894.64 3399.53 3998.99 56
SDMVSNet94.43 11495.02 9892.69 19297.93 9582.88 22291.92 22095.99 21793.65 6595.51 13998.63 2094.60 6396.48 31687.57 21999.35 6198.70 100
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18996.49 15694.56 6499.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21588.45 26197.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18926.89 40494.56 6499.39 4993.57 5799.05 10698.93 68
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9992.59 8295.47 14296.68 14894.50 6699.42 3393.10 8299.26 8298.99 56
sd_testset93.94 13594.39 11992.61 19897.93 9583.24 21393.17 16895.04 24993.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 100
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14698.02 7287.35 20896.22 10597.99 5294.48 6899.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 9897.79 9686.48 21897.42 5097.51 8394.47 6999.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8298.56 1591.84 10796.36 9496.68 14894.37 7099.32 6992.41 10099.05 10698.64 111
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9792.73 7893.48 21496.72 14694.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 10887.68 20498.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
test_040295.73 6196.22 4094.26 13498.19 7585.77 17893.24 16597.24 14096.88 1697.69 3397.77 6494.12 7399.13 8891.54 12499.29 7497.88 175
test_fmvsmvis_n_192095.08 9195.40 8194.13 13896.66 16887.75 13093.44 16098.49 1685.57 23998.27 2097.11 11694.11 7497.75 25696.26 1198.72 14896.89 239
Effi-MVS+92.79 16992.74 16992.94 18395.10 26483.30 21294.00 14097.53 11591.36 12589.35 31490.65 34194.01 7598.66 16487.40 22395.30 31096.88 241
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24294.52 25393.95 7699.49 2493.62 5699.22 8997.51 207
OMC-MVS94.22 12593.69 14395.81 6997.25 13791.27 6492.27 20697.40 12387.10 21494.56 18495.42 21793.74 7798.11 21886.62 23598.85 13198.06 151
LCM-MVSNet-Re94.20 12694.58 11693.04 17795.91 23183.13 21893.79 14899.19 392.00 9798.84 598.04 4793.64 7899.02 10381.28 29898.54 16996.96 236
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25194.79 24393.56 7999.49 2493.47 6499.05 10697.89 174
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10694.46 4796.29 9996.94 12893.56 7999.37 5794.29 4099.42 5298.99 56
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28493.73 27993.52 8199.55 1891.81 11499.45 4797.58 201
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4096.95 1495.46 14499.23 493.45 8299.57 1495.34 2999.89 299.63 9
MVS_111021_HR93.63 14393.42 15594.26 13496.65 16986.96 14689.30 29996.23 20588.36 18993.57 21294.60 25093.45 8297.77 25390.23 15898.38 18398.03 157
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2330.00 4090.00 41091.15 33093.43 840.00 4100.00 4090.00 4080.00 406
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11597.81 9289.22 17095.46 14496.17 18393.42 8599.34 6389.30 18098.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ANet_high94.83 10096.28 3790.47 27296.65 16973.16 35094.33 12798.74 1296.39 2498.09 2598.93 893.37 8698.70 15890.38 14899.68 1899.53 15
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10493.38 6995.89 12197.23 10593.35 8797.66 26388.20 20498.66 15997.79 186
casdiffmvspermissive94.32 12094.80 10592.85 18796.05 22081.44 23992.35 20098.05 6591.53 12295.75 12896.80 13793.35 8798.49 18391.01 13398.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12488.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10583.15 21794.58 11797.58 11093.39 6897.05 6598.04 4793.25 9098.51 18289.75 17299.59 2999.08 48
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17395.19 9796.77 17696.64 1997.61 3898.05 4593.23 9198.79 13988.60 20199.04 11198.78 87
baseline94.26 12294.80 10592.64 19496.08 21880.99 24593.69 15298.04 6990.80 13894.89 17496.32 17193.19 9298.48 18791.68 11998.51 17398.43 127
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22792.96 4389.48 29297.46 11985.14 24796.23 10495.42 21793.19 9298.08 22090.37 14998.76 14597.38 219
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16497.11 1998.24 3597.58 898.72 898.97 793.15 9499.15 8493.18 7999.74 1299.50 17
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15498.45 498.22 3793.26 7197.54 4097.36 9393.12 9599.38 5593.88 4798.68 15598.04 154
OPU-MVS95.15 9796.84 15989.43 9295.21 9395.66 20693.12 9598.06 22186.28 24498.61 16197.95 167
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7697.31 1195.32 15296.77 13893.08 9799.20 8091.79 11598.16 20697.44 212
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12297.64 10496.94 1596.58 8897.32 10093.07 9898.72 15190.45 14598.84 13297.57 202
EG-PatchMatch MVS94.54 11194.67 11494.14 13797.87 10086.50 15692.00 21596.74 17888.16 19396.93 7297.61 7293.04 9997.90 23591.60 12198.12 20998.03 157
Fast-Effi-MVS+91.28 20790.86 21592.53 20295.45 25582.53 22589.25 30296.52 19385.00 25189.91 30488.55 36492.94 10098.84 12884.72 26795.44 30596.22 267
PC_three_145275.31 34695.87 12295.75 20392.93 10196.34 32587.18 22698.68 15598.04 154
v7n96.82 997.31 1095.33 8698.54 4786.81 14896.83 2398.07 6196.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12298.05 6590.45 14796.31 9796.76 14092.91 10298.72 15191.19 12899.42 5298.32 132
testgi90.38 22791.34 20587.50 33197.49 12671.54 36089.43 29495.16 24688.38 18894.54 18594.68 24792.88 10493.09 37271.60 37297.85 23097.88 175
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20490.95 6990.21 26995.43 23987.91 19593.74 20894.40 25592.88 10496.38 32190.39 14798.28 19397.07 229
CNVR-MVS94.58 10994.29 12495.46 8296.94 15189.35 9691.81 22896.80 17389.66 16093.90 20495.44 21692.80 10698.72 15192.74 9298.52 17198.32 132
ZD-MVS97.23 13890.32 7897.54 11384.40 26094.78 17895.79 19892.76 10799.39 4988.72 19998.40 179
XXY-MVS92.58 17693.16 16190.84 26297.75 10679.84 26391.87 22496.22 20785.94 22995.53 13897.68 6692.69 10894.48 35783.21 27797.51 24498.21 140
CDPH-MVS92.67 17491.83 19395.18 9696.94 15188.46 11890.70 25397.07 15277.38 33092.34 26195.08 23192.67 10998.88 12185.74 24898.57 16698.20 141
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12394.66 28288.25 12092.05 21296.65 18389.62 16190.08 30091.23 32992.56 11098.60 17186.30 24396.27 28796.90 238
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14697.36 13385.72 18094.15 13495.44 23783.25 27195.51 13998.05 4592.54 11197.19 28895.55 2097.46 24898.94 66
AllTest94.88 9894.51 11796.00 5698.02 8892.17 5095.26 9298.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25296.17 21087.70 20395.26 15696.29 17392.54 11196.45 31881.77 29298.77 14495.66 294
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1852.44 4065.32 40798.25 3792.24 11598.02 22691.85 11399.21 9097.45 210
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15296.72 16585.73 17993.65 15495.23 24583.30 26995.13 16297.56 7592.22 11697.17 28995.51 2297.41 25098.64 111
ETV-MVS92.99 16292.74 16993.72 15695.86 23386.30 16592.33 20197.84 8991.70 11892.81 23986.17 38092.22 11699.19 8188.03 21297.73 23495.66 294
CLD-MVS91.82 19391.41 20393.04 17796.37 18883.65 20986.82 34497.29 13684.65 25792.27 26389.67 35292.20 11897.85 24583.95 27299.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
segment_acmp92.14 119
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8798.22 3792.36 8794.11 19298.07 4492.02 12099.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19291.93 10094.82 17695.39 22191.99 12197.08 29485.53 25197.96 22497.41 213
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 8091.98 12299.63 693.08 8499.81 899.70 3
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10397.57 11192.68 7996.20 10793.44 28791.92 12398.78 14289.11 18999.24 8596.92 237
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14084.37 19593.73 15095.26 24484.45 25995.76 12698.00 5091.85 12497.21 28595.62 1797.82 23198.98 60
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17285.23 24494.75 17997.12 11591.85 12499.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17096.69 16684.37 19593.38 16295.13 24784.50 25895.40 14697.55 7991.77 12697.20 28695.59 1897.79 23298.69 103
Gipumacopyleft95.31 8495.80 6593.81 15497.99 9390.91 7096.42 4297.95 8196.69 1791.78 27198.85 1291.77 12695.49 34191.72 11799.08 10295.02 313
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5897.42 998.48 1697.86 6191.76 12899.63 694.23 4199.84 399.66 6
AdaColmapbinary91.63 19891.36 20492.47 20495.56 25286.36 16392.24 20996.27 20288.88 17889.90 30592.69 30591.65 12998.32 20077.38 33697.64 24092.72 366
PHI-MVS94.34 11993.80 13895.95 5995.65 24791.67 6294.82 10897.86 8687.86 19893.04 23394.16 26491.58 13098.78 14290.27 15598.96 12197.41 213
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
tfpnnormal94.27 12194.87 10392.48 20397.71 11180.88 24794.55 12195.41 24093.70 6196.67 8497.72 6591.40 13498.18 21387.45 22199.18 9498.36 130
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9196.13 2694.74 18097.23 10591.33 13599.16 8393.25 7798.30 19298.46 125
TEST996.45 18689.46 9090.60 25696.92 16379.09 31990.49 29194.39 25691.31 13698.88 121
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12096.14 21387.90 12693.36 16397.14 14685.53 24093.90 20495.45 21591.30 13798.59 17389.51 17598.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11792.55 32685.98 17292.44 19594.69 26193.70 6196.12 11195.81 19791.24 13898.86 12593.76 5498.22 20198.98 60
MCST-MVS92.91 16492.51 17694.10 13997.52 12485.72 18091.36 23897.13 14880.33 30492.91 23894.24 26091.23 13998.72 15189.99 16697.93 22697.86 177
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11592.42 8493.41 21597.78 6291.21 14097.77 25391.06 13097.06 26198.80 85
train_agg92.71 17391.83 19395.35 8496.45 18689.46 9090.60 25696.92 16379.37 31390.49 29194.39 25691.20 14198.88 12188.66 20098.43 17897.72 193
test_896.37 18889.14 10090.51 25996.89 16679.37 31390.42 29394.36 25891.20 14198.82 130
EI-MVSNet-UG-set94.35 11894.27 12794.59 12192.46 32985.87 17592.42 19794.69 26193.67 6496.13 11095.84 19691.20 14198.86 12593.78 5198.23 19999.03 52
EIA-MVS92.35 18492.03 18693.30 17395.81 23883.97 20592.80 17898.17 4687.71 20289.79 30887.56 37091.17 14499.18 8287.97 21397.27 25496.77 245
dcpmvs_293.96 13495.01 9990.82 26397.60 11974.04 34593.68 15398.85 889.80 15897.82 2997.01 12591.14 14599.21 7890.56 14398.59 16499.19 36
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33895.60 22780.88 30087.83 33988.62 36391.04 14698.81 13582.51 28594.38 33191.93 372
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9893.58 3794.09 13896.99 15891.05 13292.40 25695.22 22591.03 14799.25 7592.11 10398.69 15397.90 172
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16798.07 6185.63 23797.08 6197.35 9690.86 14897.66 26395.70 1698.48 17697.74 192
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18289.69 8692.91 17597.68 10278.02 32792.79 24194.10 26590.85 14997.96 23284.76 26698.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15596.16 21086.26 16692.46 19396.72 17981.69 29395.77 12597.11 11690.83 15097.82 24695.58 1997.99 22197.11 228
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8397.88 8588.72 18098.81 698.86 1090.77 15199.60 995.43 2699.53 3999.57 14
PS-MVSNAJ88.86 26988.99 25288.48 31794.88 26874.71 33586.69 34795.60 22780.88 30087.83 33987.37 37390.77 15198.82 13082.52 28494.37 33291.93 372
MVS_Test92.57 17893.29 15690.40 27693.53 30875.85 32992.52 18996.96 15988.73 17992.35 25996.70 14790.77 15198.37 19892.53 9895.49 30396.99 235
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16893.73 6097.87 2898.49 2990.73 15599.05 9886.43 24199.60 2799.10 47
ab-mvs92.40 18292.62 17491.74 22597.02 14781.65 23595.84 7195.50 23686.95 21692.95 23797.56 7590.70 15697.50 27079.63 31797.43 24996.06 274
Test By Simon90.61 157
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25487.06 14296.63 3197.28 13891.82 11094.34 19197.41 8790.60 15898.65 16692.47 9998.11 21097.70 194
NCCC94.08 13093.54 15295.70 7596.49 18389.90 8392.39 19996.91 16590.64 14292.33 26294.60 25090.58 15998.96 11190.21 15997.70 23798.23 138
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20797.84 8994.91 4096.80 7895.78 20190.42 16099.41 3991.60 12199.58 3499.29 29
test_prior290.21 26989.33 16790.77 28794.81 24090.41 16188.21 20398.55 167
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11779.49 27394.86 10797.12 14989.59 16296.87 7497.65 6990.40 16298.34 19989.08 19099.35 6198.75 91
MSLP-MVS++93.25 15593.88 13591.37 23996.34 19482.81 22393.11 16997.74 9989.37 16694.08 19495.29 22490.40 16296.35 32390.35 15098.25 19794.96 314
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16896.10 21685.66 18292.32 20296.57 18881.32 29695.63 13497.14 11390.19 16497.73 25995.37 2898.03 21797.07 229
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17598.07 6193.46 6796.31 9795.97 19190.14 16599.34 6392.11 10399.64 2499.16 38
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14095.41 24089.94 15491.93 27092.13 31790.12 16698.97 11087.68 21897.48 24697.67 197
FMVSNet194.84 9995.13 9493.97 14397.60 11984.29 19795.99 6396.56 18992.38 8597.03 6698.53 2690.12 16698.98 10688.78 19799.16 9798.65 106
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18797.81 9293.99 5396.80 7895.90 19290.10 16899.41 3991.60 12199.58 3499.26 30
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 9997.37 12493.92 5897.65 3495.90 19290.10 16899.33 6890.11 16299.66 2199.26 30
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5680.82 24892.08 21196.68 18193.82 5996.29 9998.56 2490.10 16897.75 25690.10 16499.66 2199.24 32
API-MVS91.52 20191.61 19691.26 24594.16 29186.26 16694.66 11394.82 25691.17 13092.13 26691.08 33290.03 17197.06 29679.09 32497.35 25390.45 382
patch_mono-292.46 18092.72 17291.71 22796.65 16978.91 28588.85 30997.17 14483.89 26592.45 25396.76 14089.86 17297.09 29390.24 15798.59 16499.12 43
test1294.43 13095.95 22886.75 15096.24 20489.76 30989.79 17398.79 13997.95 22597.75 191
旧先验196.20 20784.17 20294.82 25695.57 21289.57 17497.89 22896.32 262
DELS-MVS92.05 19192.16 18291.72 22694.44 28680.13 25487.62 32497.25 13987.34 20992.22 26493.18 29489.54 17598.73 15089.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet93.08 15993.76 14091.03 25398.60 3975.83 33191.51 23395.62 22691.84 10795.74 12997.10 11889.31 17698.32 20085.07 26299.06 10398.93 68
QAPM92.88 16692.77 16793.22 17595.82 23683.31 21196.45 3997.35 13083.91 26493.75 20696.77 13889.25 17798.88 12184.56 26897.02 26397.49 208
MSDG90.82 21190.67 22191.26 24594.16 29183.08 21986.63 34996.19 20890.60 14491.94 26991.89 32089.16 17895.75 33680.96 30394.51 32994.95 315
CPTT-MVS94.74 10294.12 13196.60 4398.15 7793.01 4295.84 7197.66 10389.21 17193.28 22195.46 21488.89 17998.98 10689.80 16998.82 13897.80 185
DP-MVS Recon92.31 18591.88 19193.60 15997.18 14286.87 14791.10 24397.37 12484.92 25392.08 26794.08 26688.59 18098.20 21083.50 27498.14 20895.73 289
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5781.77 23395.90 6998.32 2593.93 5697.53 4297.56 7588.48 18199.40 4692.91 8999.83 599.68 4
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19394.53 28584.10 20395.70 7597.03 15482.44 28691.14 28296.42 16088.47 18298.38 19485.95 24697.47 24795.55 299
F-COLMAP92.28 18691.06 21195.95 5997.52 12491.90 5693.53 15597.18 14383.98 26388.70 32694.04 26788.41 18398.55 17980.17 31095.99 29297.39 217
ambc92.98 17996.88 15583.01 22095.92 6896.38 19996.41 9297.48 8588.26 18497.80 24889.96 16798.93 12498.12 149
v1094.68 10695.27 8992.90 18596.57 17580.15 25294.65 11497.57 11190.68 14197.43 4898.00 5088.18 18599.15 8494.84 3199.55 3899.41 20
v894.65 10795.29 8792.74 19096.65 16979.77 26794.59 11597.17 14491.86 10397.47 4797.93 5488.16 18699.08 9394.32 3899.47 4399.38 22
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24592.61 30488.04 19494.61 18393.79 27888.08 18797.81 24789.41 17798.39 18296.50 255
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7394.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
diffmvspermissive91.74 19591.93 19091.15 25193.06 31578.17 29588.77 31297.51 11886.28 22192.42 25593.96 27288.04 18997.46 27390.69 14196.67 27897.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
原ACMM192.87 18696.91 15484.22 20097.01 15576.84 33689.64 31194.46 25488.00 19098.70 15881.53 29698.01 22095.70 292
VDD-MVS94.37 11694.37 12194.40 13197.49 12686.07 17193.97 14393.28 28894.49 4596.24 10397.78 6287.99 19198.79 13988.92 19399.14 9998.34 131
XVG-OURS94.72 10394.12 13196.50 4798.00 9094.23 1891.48 23498.17 4690.72 13995.30 15396.47 15787.94 19296.98 29891.41 12697.61 24298.30 135
CANet92.38 18391.99 18893.52 16693.82 30483.46 21091.14 24197.00 15689.81 15786.47 35294.04 26787.90 19399.21 7889.50 17698.27 19497.90 172
BH-untuned90.68 21690.90 21390.05 28795.98 22679.57 27190.04 27594.94 25387.91 19594.07 19593.00 29687.76 19497.78 25279.19 32395.17 31392.80 365
FIs94.90 9795.35 8393.55 16198.28 6881.76 23495.33 8998.14 5093.05 7697.07 6297.18 11087.65 19599.29 7091.72 11799.69 1499.61 11
v114493.50 14593.81 13692.57 20096.28 20079.61 27091.86 22696.96 15986.95 21695.91 11996.32 17187.65 19598.96 11193.51 6098.88 12799.13 41
mvs_anonymous90.37 22891.30 20687.58 33092.17 33768.00 37589.84 28294.73 26083.82 26693.22 22797.40 8887.54 19797.40 27887.94 21495.05 31697.34 220
PCF-MVS84.52 1789.12 25787.71 28293.34 17196.06 21985.84 17686.58 35297.31 13368.46 38493.61 21193.89 27587.51 19898.52 18167.85 38598.11 21095.66 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VNet92.67 17492.96 16291.79 22396.27 20180.15 25291.95 21694.98 25192.19 9494.52 18696.07 18687.43 19997.39 27984.83 26498.38 18397.83 181
v14892.87 16793.29 15691.62 23196.25 20477.72 30491.28 23995.05 24889.69 15995.93 11896.04 18787.34 20098.38 19490.05 16597.99 22198.78 87
V4293.43 14893.58 14992.97 18095.34 26081.22 24292.67 18396.49 19487.25 21096.20 10796.37 16887.32 20198.85 12792.39 10198.21 20298.85 81
v119293.49 14693.78 13992.62 19796.16 21079.62 26991.83 22797.22 14286.07 22796.10 11296.38 16787.22 20299.02 10394.14 4398.88 12799.22 33
WR-MVS93.49 14693.72 14192.80 18997.57 12280.03 25890.14 27295.68 22593.70 6196.62 8695.39 22187.21 20399.04 10187.50 22099.64 2499.33 26
IterMVS-LS93.78 14094.28 12592.27 20796.27 20179.21 28091.87 22496.78 17491.77 11396.57 8997.07 11987.15 20498.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet92.99 16293.26 16092.19 21092.12 33879.21 28092.32 20294.67 26391.77 11395.24 15995.85 19487.14 20598.49 18391.99 10898.26 19598.86 78
v14419293.20 15893.54 15292.16 21496.05 22078.26 29491.95 21697.14 14684.98 25295.96 11596.11 18487.08 20699.04 10193.79 5098.84 13299.17 37
114514_t90.51 22089.80 24092.63 19698.00 9082.24 22993.40 16197.29 13665.84 39189.40 31394.80 24286.99 20798.75 14683.88 27398.61 16196.89 239
新几何193.17 17697.16 14387.29 13594.43 26667.95 38591.29 27794.94 23686.97 20898.23 20881.06 30297.75 23393.98 343
HQP_MVS94.26 12293.93 13495.23 9397.71 11188.12 12294.56 11997.81 9291.74 11593.31 21895.59 20886.93 20998.95 11489.26 18498.51 17398.60 116
plane_prior697.21 14188.23 12186.93 209
UGNet93.08 15992.50 17794.79 10893.87 30287.99 12595.07 10094.26 27190.64 14287.33 34897.67 6886.89 21198.49 18388.10 20898.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17496.60 18585.08 25092.44 25493.62 28286.80 21296.35 32386.81 23098.25 19796.18 269
v192192093.26 15393.61 14892.19 21096.04 22478.31 29391.88 22397.24 14085.17 24696.19 10996.19 18086.76 21399.05 9894.18 4298.84 13299.22 33
MVS_030493.92 13693.68 14494.64 11695.94 23085.83 17794.34 12688.14 34392.98 7791.09 28397.68 6686.73 21499.36 5896.64 799.59 2998.72 96
v124093.29 15193.71 14292.06 21796.01 22577.89 30091.81 22897.37 12485.12 24896.69 8396.40 16286.67 21599.07 9794.51 3498.76 14599.22 33
MAR-MVS90.32 23188.87 25694.66 11594.82 27191.85 5794.22 13294.75 25980.91 29987.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4291.26 12695.12 16395.15 22686.60 21799.50 2193.43 7096.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
BH-RMVSNet90.47 22290.44 22690.56 27195.21 26378.65 29189.15 30393.94 27988.21 19092.74 24394.22 26186.38 21897.88 23978.67 32695.39 30795.14 308
CNLPA91.72 19691.20 20793.26 17496.17 20991.02 6791.14 24195.55 23490.16 15290.87 28593.56 28586.31 21994.40 36079.92 31697.12 25994.37 334
PVSNet_BlendedMVS90.35 22989.96 23691.54 23494.81 27278.80 28990.14 27296.93 16179.43 31288.68 32795.06 23286.27 22098.15 21680.27 30698.04 21697.68 196
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27278.80 28986.64 34896.93 16174.67 34888.68 32789.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31796.23 20576.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 266
v2v48293.29 15193.63 14692.29 20696.35 19378.82 28791.77 23096.28 20188.45 18695.70 13396.26 17786.02 22398.90 11893.02 8598.81 14099.14 40
test20.0390.80 21290.85 21690.63 26995.63 24979.24 27889.81 28392.87 29589.90 15594.39 18896.40 16285.77 22495.27 34973.86 35999.05 10697.39 217
PLCcopyleft85.34 1590.40 22488.92 25394.85 10596.53 18190.02 8191.58 23296.48 19580.16 30586.14 35492.18 31585.73 22598.25 20776.87 33994.61 32896.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21894.16 27259.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
testdata91.03 25396.87 15682.01 23094.28 27071.55 36692.46 25295.42 21785.65 22797.38 28182.64 28297.27 25493.70 350
PM-MVS93.33 15092.67 17395.33 8696.58 17494.06 2192.26 20792.18 30985.92 23096.22 10596.61 15285.64 22895.99 33290.35 15098.23 19995.93 280
SSC-MVS90.16 23492.96 16281.78 37597.88 9848.48 40790.75 25087.69 34896.02 3196.70 8297.63 7185.60 22997.80 24885.73 24998.60 16399.06 50
MM94.41 11594.14 13095.22 9495.84 23487.21 13894.31 12990.92 32694.48 4692.80 24097.52 8085.27 23099.49 2496.58 899.57 3698.97 62
WB-MVS89.44 25292.15 18481.32 37697.73 10948.22 40889.73 28587.98 34695.24 3696.05 11396.99 12685.18 23196.95 29982.45 28697.97 22398.78 87
MDA-MVSNet-bldmvs91.04 20890.88 21491.55 23394.68 28180.16 25185.49 36592.14 31290.41 14994.93 17295.79 19885.10 23296.93 30285.15 25794.19 33997.57 202
PAPM_NR91.03 20990.81 21791.68 22996.73 16481.10 24493.72 15196.35 20088.19 19188.77 32492.12 31885.09 23397.25 28382.40 28793.90 34496.68 248
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 31981.00 39076.23 33987.98 33787.77 36984.98 23493.35 37062.85 39594.10 34295.98 277
HQP2-MVS84.76 235
HQP-MVS92.09 19091.49 20193.88 14996.36 19084.89 19191.37 23597.31 13387.16 21188.81 32093.40 28884.76 23598.60 17186.55 23897.73 23498.14 147
test22296.95 15085.27 18888.83 31093.61 28065.09 39390.74 28894.85 23984.62 23797.36 25293.91 344
VDDNet94.03 13194.27 12793.31 17298.87 2182.36 22895.51 8591.78 31897.19 1296.32 9698.60 2284.24 23898.75 14687.09 22898.83 13798.81 84
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18397.73 10983.95 20692.14 21097.46 11978.85 32392.35 25994.98 23484.16 23999.08 9386.36 24296.77 27595.79 287
CL-MVSNet_self_test90.04 24289.90 23890.47 27295.24 26277.81 30286.60 35192.62 30385.64 23693.25 22593.92 27383.84 24096.06 33079.93 31498.03 21797.53 206
mvsany_test389.11 25888.21 27491.83 22191.30 35890.25 7988.09 32178.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23694.20 33794.80 323
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12191.25 12897.49 4498.14 3983.49 24299.45 2795.52 2199.66 2199.36 24
BH-w/o87.21 30287.02 29787.79 32994.77 27577.27 31087.90 32293.21 29181.74 29289.99 30388.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
PatchMatch-RL89.18 25588.02 27992.64 19495.90 23292.87 4588.67 31691.06 32380.34 30390.03 30291.67 32483.34 24494.42 35976.35 34494.84 32290.64 381
DPM-MVS89.35 25388.40 26292.18 21396.13 21584.20 20186.96 33996.15 21175.40 34487.36 34791.55 32783.30 24598.01 22782.17 29096.62 27994.32 336
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 25894.58 28481.21 24391.10 24393.41 28777.03 33493.41 21593.99 27183.23 24697.80 24879.93 31494.80 32393.74 349
new-patchmatchnet88.97 26490.79 21883.50 37094.28 29055.83 40585.34 36793.56 28386.18 22595.47 14295.73 20483.10 24796.51 31585.40 25298.06 21498.16 145
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17381.11 38975.03 40470.80 37488.57 32994.63 24883.08 24887.38 39480.39 30486.57 39087.21 390
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21894.10 27374.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
IS-MVSNet94.49 11294.35 12394.92 10298.25 7286.46 15997.13 1894.31 26896.24 2596.28 10196.36 16982.88 25099.35 6088.19 20599.52 4198.96 64
test_fmvs392.42 18192.40 18092.46 20593.80 30587.28 13693.86 14697.05 15376.86 33596.25 10298.66 1882.87 25191.26 38095.44 2596.83 27298.82 82
MG-MVS89.54 24989.80 24088.76 30994.88 26872.47 35789.60 28892.44 30785.82 23189.48 31295.98 19082.85 25297.74 25881.87 29195.27 31196.08 273
TR-MVS87.70 28887.17 29289.27 30194.11 29379.26 27788.69 31491.86 31781.94 29190.69 28989.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
c3_l91.32 20691.42 20291.00 25692.29 33176.79 31987.52 33096.42 19785.76 23394.72 18293.89 27582.73 25498.16 21590.93 13598.55 16798.04 154
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28594.99 17095.11 22982.70 25593.70 36683.33 27593.83 34596.48 256
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28494.88 17595.14 22782.70 25593.61 36783.28 27693.80 34696.46 257
pmmvs-eth3d91.54 20090.73 22093.99 14195.76 24187.86 12890.83 24893.98 27878.23 32694.02 19996.22 17982.62 25796.83 30786.57 23698.33 18997.29 223
Anonymous2023120688.77 27188.29 26790.20 28396.31 19778.81 28889.56 29093.49 28574.26 35292.38 25795.58 21182.21 25895.43 34472.07 36898.75 14796.34 261
miper_ehance_all_eth90.48 22190.42 22790.69 26691.62 35376.57 32286.83 34396.18 20983.38 26894.06 19692.66 30782.20 25998.04 22289.79 17097.02 26397.45 210
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30596.39 19873.21 35893.27 22296.28 17582.16 26096.39 32077.55 33398.80 14195.62 297
EPP-MVSNet93.91 13793.68 14494.59 12198.08 8185.55 18497.44 1294.03 27494.22 5094.94 17196.19 18082.07 26199.57 1487.28 22598.89 12598.65 106
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28380.24 25089.69 28795.88 21985.77 23293.94 20395.69 20581.99 26292.98 37384.21 27091.30 37597.62 199
alignmvs93.26 15392.85 16694.50 12595.70 24387.45 13393.45 15995.76 22291.58 12095.25 15892.42 31381.96 26398.72 15191.61 12097.87 22997.33 221
TAMVS90.16 23489.05 24993.49 16896.49 18386.37 16290.34 26692.55 30580.84 30292.99 23494.57 25281.94 26498.20 21073.51 36098.21 20295.90 283
Anonymous20240521192.58 17692.50 17792.83 18896.55 17783.22 21592.43 19691.64 32094.10 5295.59 13696.64 15081.88 26597.50 27085.12 25998.52 17197.77 188
bld_raw_dy_0_6490.86 21090.99 21290.47 27293.95 29977.88 30193.99 14298.93 777.75 32897.03 6690.61 34281.82 26698.58 17585.18 25399.61 2694.95 315
SixPastTwentyTwo94.91 9695.21 9093.98 14298.52 4983.19 21695.93 6794.84 25594.86 4198.49 1598.74 1681.45 26799.60 994.69 3299.39 5899.15 39
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17471.01 37186.89 35185.91 38181.35 26896.94 30083.09 27895.60 30094.35 335
GBi-Net93.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
test193.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
FMVSNet292.78 17092.73 17192.95 18295.40 25681.98 23194.18 13395.53 23588.63 18296.05 11397.37 9081.31 26998.81 13587.38 22498.67 15798.06 151
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27272.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26593.12 7397.94 2798.54 2581.19 27399.63 695.48 2399.69 1499.60 12
MVP-Stereo90.07 24088.92 25393.54 16396.31 19786.49 15790.93 24695.59 23179.80 30691.48 27495.59 20880.79 27497.39 27978.57 32791.19 37696.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25378.88 28687.39 33194.02 27679.32 31793.06 23194.02 26980.72 27594.27 36275.16 35193.08 36096.54 250
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29887.88 32392.49 30675.42 34392.57 24993.59 28480.44 27694.24 36481.28 29892.75 36394.69 329
Anonymous2024052192.86 16893.57 15090.74 26596.57 17575.50 33394.15 13495.60 22789.38 16595.90 12097.90 6080.39 27797.96 23292.60 9799.68 1898.75 91
iter_conf05_1188.91 26788.32 26490.66 26793.95 29978.09 29686.98 33793.06 29279.35 31687.64 34289.80 34680.25 27898.96 11185.18 25398.69 15394.95 315
CANet_DTU89.85 24589.17 24791.87 22092.20 33580.02 25990.79 24995.87 22086.02 22882.53 38391.77 32280.01 27998.57 17685.66 25097.70 23797.01 234
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 28091.59 37975.99 34793.09 35987.94 389
ppachtmachnet_test88.61 27588.64 25888.50 31691.76 34870.99 36484.59 37492.98 29379.30 31892.38 25793.53 28679.57 28197.45 27486.50 24097.17 25897.07 229
eth_miper_zixun_eth90.72 21490.61 22291.05 25292.04 34176.84 31886.91 34096.67 18285.21 24594.41 18793.92 27379.53 28298.26 20689.76 17197.02 26398.06 151
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28166.43 38887.64 34289.20 35879.33 28385.38 39981.59 29589.98 38393.66 351
N_pmnet88.90 26887.25 29093.83 15394.40 28893.81 3584.73 37187.09 35379.36 31593.26 22392.43 31279.29 28491.68 37877.50 33597.22 25696.00 276
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23175.68 34092.49 25089.45 35578.96 28597.88 23987.86 21697.02 26396.81 243
EPNet89.80 24788.25 27094.45 12983.91 40586.18 16893.87 14587.07 35491.16 13180.64 39394.72 24578.83 28698.89 12085.17 25598.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss87.23 30186.82 29988.46 31893.96 29777.94 29786.84 34292.78 29977.59 32987.61 34591.83 32178.75 28791.92 37777.84 33094.20 33795.52 300
IterMVS-SCA-FT91.65 19791.55 19791.94 21993.89 30179.22 27987.56 32793.51 28491.53 12295.37 14996.62 15178.65 28898.90 11891.89 11294.95 31897.70 194
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29488.11 34482.26 28888.71 32592.83 30078.65 28897.59 26679.61 31893.30 35494.75 326
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30792.06 26892.17 31678.63 29095.63 33784.77 26594.73 32496.22 267
jason89.17 25688.32 26491.70 22895.73 24280.07 25588.10 32093.22 28971.98 36590.09 29992.79 30278.53 29198.56 17787.43 22297.06 26196.46 257
jason: jason.
IterMVS90.18 23390.16 23190.21 28293.15 31375.98 32887.56 32792.97 29486.43 22094.09 19396.40 16278.32 29297.43 27587.87 21594.69 32697.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268887.19 30485.92 31391.00 25697.13 14579.41 27484.51 37595.60 22764.14 39490.07 30194.81 24078.26 29397.14 29273.34 36195.38 30896.46 257
WTY-MVS86.93 30986.50 30888.24 32194.96 26674.64 33687.19 33492.07 31478.29 32588.32 33291.59 32678.06 29494.27 36274.88 35293.15 35895.80 286
pmmvs488.95 26587.70 28392.70 19194.30 28985.60 18387.22 33392.16 31174.62 34989.75 31094.19 26277.97 29596.41 31982.71 28196.36 28596.09 272
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25577.66 40154.99 40283.30 37897.57 7477.89 29690.50 38466.86 38895.54 30291.97 371
FA-MVS(test-final)91.81 19491.85 19291.68 22994.95 26779.99 26096.00 6293.44 28687.80 19994.02 19997.29 10177.60 29798.45 18988.04 21197.49 24596.61 249
lessismore_v093.87 15098.05 8483.77 20880.32 39497.13 6097.91 5877.49 29899.11 9292.62 9698.08 21398.74 94
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29785.13 36081.64 39677.44 29995.00 35185.94 24794.12 34094.91 320
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29894.02 13991.58 32175.68 34083.64 37493.64 28077.40 30097.42 27671.70 37192.07 37193.05 362
1112_ss88.42 27787.41 28691.45 23796.69 16680.99 24589.72 28696.72 17973.37 35687.00 35090.69 33977.38 30198.20 21081.38 29793.72 34795.15 307
DIV-MVS_self_test90.65 21790.56 22490.91 26091.85 34676.99 31486.75 34595.36 24285.52 24294.06 19694.89 23777.37 30297.99 23090.28 15498.97 11997.76 189
cl____90.65 21790.56 22490.91 26091.85 34676.98 31586.75 34595.36 24285.53 24094.06 19694.89 23777.36 30397.98 23190.27 15598.98 11497.76 189
CDS-MVSNet89.55 24888.22 27393.53 16495.37 25986.49 15789.26 30093.59 28179.76 30891.15 28192.31 31477.12 30498.38 19477.51 33497.92 22795.71 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_vis3_rt90.40 22490.03 23591.52 23592.58 32488.95 10390.38 26497.72 10173.30 35797.79 3097.51 8377.05 30587.10 39589.03 19194.89 31998.50 121
MVSFormer92.18 18992.23 18192.04 21894.74 27780.06 25697.15 1597.37 12488.98 17488.83 31892.79 30277.02 30699.60 996.41 996.75 27696.46 257
lupinMVS88.34 27987.31 28791.45 23794.74 27780.06 25687.23 33292.27 30871.10 37088.83 31891.15 33077.02 30698.53 18086.67 23496.75 27695.76 288
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26287.95 33894.71 24676.95 30884.36 40164.07 39298.09 21293.89 345
h-mvs3392.89 16591.99 18895.58 7796.97 14990.55 7693.94 14494.01 27789.23 16893.95 20196.19 18076.88 30999.14 8691.02 13195.71 29897.04 233
hse-mvs292.24 18891.20 20795.38 8396.16 21090.65 7592.52 18992.01 31689.23 16893.95 20192.99 29776.88 30998.69 16091.02 13196.03 29096.81 243
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30792.18 30973.71 35588.36 33193.89 27576.86 31196.73 31080.32 30596.81 27396.51 252
test_vis1_n_192089.45 25189.85 23988.28 32093.59 30776.71 32090.67 25497.78 9779.67 31090.30 29796.11 18476.62 31292.17 37690.31 15293.57 34995.96 278
K. test v393.37 14993.27 15993.66 15798.05 8482.62 22494.35 12586.62 35696.05 2997.51 4398.85 1276.59 31399.65 393.21 7898.20 20498.73 95
miper_lstm_enhance89.90 24489.80 24090.19 28491.37 35777.50 30683.82 38195.00 25084.84 25593.05 23294.96 23576.53 31495.20 35089.96 16798.67 15797.86 177
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30878.70 39882.69 28181.64 39079.46 39875.93 31585.74 39848.78 40482.85 39786.76 391
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16377.75 30387.53 32996.25 20369.73 38086.47 35293.61 28375.67 31697.88 23979.95 31293.20 35695.11 311
test_fmvs290.62 21990.40 22891.29 24491.93 34585.46 18592.70 18296.48 19574.44 35094.91 17397.59 7375.52 31790.57 38293.44 6796.56 28097.84 180
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 24997.66 11777.32 30994.33 12787.66 34991.20 12992.99 23495.13 22875.40 31898.28 20277.86 32999.19 9297.99 162
test_vis1_n89.01 26289.01 25189.03 30492.57 32582.46 22792.62 18696.06 21273.02 36090.40 29495.77 20274.86 31989.68 38890.78 13894.98 31794.95 315
D2MVS89.93 24389.60 24590.92 25894.03 29678.40 29288.69 31494.85 25478.96 32193.08 23095.09 23074.57 32096.94 30088.19 20598.96 12197.41 213
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29764.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32194.60 35669.87 38193.69 34894.46 332
test_yl90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
DCV-MVSNet90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21688.77 38685.42 18690.31 26794.38 26770.02 37888.00 33693.30 29073.78 32494.03 36575.96 34896.54 28196.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline187.62 29287.31 28788.54 31494.71 28074.27 34393.10 17088.20 34186.20 22492.18 26593.04 29573.21 32595.52 33979.32 32185.82 39195.83 285
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32689.59 38956.68 39960.05 40482.57 398
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22189.51 29187.37 35184.38 26185.37 35785.08 38772.44 32786.59 39668.05 38491.03 37991.33 376
MIMVSNet87.13 30686.54 30588.89 30796.05 22076.11 32694.39 12488.51 33781.37 29588.27 33396.75 14272.38 32895.52 33965.71 39095.47 30495.03 312
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 28969.47 38176.13 40089.84 34572.15 32997.23 28453.27 40289.02 38492.37 369
cl2289.02 26088.50 26090.59 27089.76 37576.45 32386.62 35094.03 27482.98 27892.65 24592.49 30872.05 33097.53 26888.93 19297.02 26397.78 187
LFMVS91.33 20591.16 21091.82 22296.27 20179.36 27595.01 10385.61 36796.04 3094.82 17697.06 12072.03 33198.46 18884.96 26398.70 15297.65 198
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28489.45 29395.44 23775.29 34793.23 22695.65 20771.58 33290.23 38688.05 21093.55 35195.44 301
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33678.00 40068.94 38277.53 39897.26 10271.45 33394.62 35563.28 39488.74 38578.55 400
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23188.26 33984.84 25572.96 40289.85 34471.27 33497.69 26176.60 34197.62 24196.18 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111190.39 22690.61 22289.74 29298.04 8771.50 36195.59 8079.72 39689.41 16495.94 11798.14 3970.79 33598.81 13588.52 20299.32 6898.90 74
ECVR-MVScopyleft90.12 23690.16 23190.00 28897.81 10272.68 35595.76 7478.54 39989.04 17295.36 15098.10 4270.51 33698.64 16787.10 22799.18 9498.67 104
HyFIR lowres test87.19 30485.51 31592.24 20897.12 14680.51 24985.03 36996.06 21266.11 39091.66 27392.98 29870.12 33799.14 8675.29 35095.23 31297.07 229
FMVSNet390.78 21390.32 23092.16 21493.03 31779.92 26292.54 18894.95 25286.17 22695.10 16496.01 18969.97 33898.75 14686.74 23198.38 18397.82 183
test_f86.65 31187.13 29485.19 35690.28 37186.11 17086.52 35391.66 31969.76 37995.73 13197.21 10969.51 33981.28 40289.15 18894.40 33088.17 388
RPMNet90.31 23290.14 23490.81 26491.01 36178.93 28292.52 18998.12 5291.91 10189.10 31596.89 13268.84 34099.41 3990.17 16092.70 36494.08 338
test_fmvs1_n88.73 27388.38 26389.76 29192.06 34082.53 22592.30 20596.59 18771.14 36992.58 24895.41 22068.55 34189.57 39091.12 12995.66 29997.18 227
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24190.43 26395.72 22470.55 37591.70 27294.63 24868.13 34289.42 39190.59 14295.34 30994.94 319
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32590.98 32572.71 36384.46 36692.45 30968.08 34396.48 31670.58 37983.97 39395.38 302
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32585.13 37472.71 36384.46 36692.45 30968.08 34392.33 37570.58 37983.97 39395.38 302
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20288.17 34256.15 40190.64 29095.85 19467.97 34596.69 31188.78 19790.52 38092.56 367
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34684.65 40067.44 38691.90 37390.78 380
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28292.52 18992.81 29673.08 35989.10 31596.93 12967.11 34797.64 26588.80 19692.70 36494.08 338
Patchmtry90.11 23789.92 23790.66 26790.35 37077.00 31392.96 17392.81 29690.25 15194.74 18096.93 12967.11 34797.52 26985.17 25598.98 11497.46 209
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25887.34 35278.87 32287.22 34992.74 30466.91 34996.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 24989.82 30690.07 34366.80 35097.76 25584.56 26894.27 33595.96 278
MDTV_nov1_ep13_2view42.48 41188.45 31867.22 38783.56 37566.80 35072.86 36594.06 340
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27287.90 34775.54 34283.93 37291.63 32566.79 35295.36 34581.21 30081.54 39993.57 356
sam_mvs166.64 35394.75 326
sam_mvs66.41 354
Patchmatch-RL test88.81 27088.52 25989.69 29495.33 26179.94 26186.22 35792.71 30078.46 32495.80 12494.18 26366.25 35595.33 34789.22 18698.53 17093.78 347
patchmatchnet-post91.71 32366.22 35697.59 266
AUN-MVS90.05 24188.30 26695.32 8896.09 21790.52 7792.42 19792.05 31582.08 29088.45 33092.86 29965.76 35798.69 16088.91 19496.07 28996.75 247
test_post6.07 40765.74 35895.84 335
test_post190.21 2695.85 40865.36 35996.00 33179.61 318
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31387.41 35073.99 35384.96 36494.01 27065.25 36095.53 33878.02 32893.16 357
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 28986.69 35585.73 23489.81 30792.83 30065.24 36191.04 38177.82 33295.78 29793.88 346
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24088.35 33882.87 27985.21 35890.96 33465.24 36196.75 30979.60 32085.25 39292.90 364
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10690.00 33257.17 40095.71 13297.37 9064.77 36397.68 26292.67 9594.37 33294.52 331
thres20085.85 31585.18 31687.88 32894.44 28672.52 35689.08 30486.21 35888.57 18591.44 27588.40 36564.22 36498.00 22868.35 38395.88 29693.12 359
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21486.09 36092.20 9389.05 31797.16 11164.15 36596.37 32289.21 18792.98 36293.37 357
tfpn200view987.05 30786.52 30688.67 31195.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28194.79 324
thres40087.20 30386.52 30689.24 30395.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28196.51 252
FPMVS84.50 32683.28 33188.16 32396.32 19694.49 1685.76 36385.47 36883.09 27585.20 35994.26 25963.79 36886.58 39763.72 39391.88 37483.40 395
thres100view90087.35 29986.89 29888.72 31096.14 21373.09 35193.00 17285.31 37092.13 9593.26 22390.96 33463.42 36998.28 20271.27 37496.54 28194.79 324
thres600view787.66 29087.10 29689.36 29996.05 22073.17 34992.72 18085.31 37091.89 10293.29 22090.97 33363.42 36998.39 19173.23 36296.99 26896.51 252
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 19981.66 38981.73 39562.89 37189.84 38775.79 34994.65 32782.71 397
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27682.85 38084.78 38862.86 37293.49 36882.85 27994.86 32094.03 341
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27688.13 33586.61 37662.86 37289.10 39366.24 38990.29 38193.77 348
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30088.23 34062.27 39781.90 38889.66 35362.70 37495.29 34871.72 37080.60 40091.86 374
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20183.25 37983.01 39462.22 37589.17 39277.15 33894.31 33482.93 396
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31181.22 38978.97 32079.82 39587.56 37061.73 37697.80 24874.30 35690.05 38296.05 275
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26586.47 35770.42 37683.52 37693.23 29361.18 37796.85 30677.21 33788.26 38793.34 358
MVSTER89.32 25488.75 25791.03 25390.10 37376.62 32190.85 24794.67 26382.27 28795.24 15995.79 19861.09 37898.49 18390.49 14498.26 19597.97 166
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29785.63 36677.24 33387.62 34495.03 23361.00 37997.30 28279.26 32291.09 37895.16 306
FE-MVS89.06 25988.29 26791.36 24094.78 27479.57 27196.77 2890.99 32484.87 25492.96 23696.29 17360.69 38098.80 13880.18 30997.11 26095.71 290
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26771.34 40577.31 33285.80 35691.30 32859.38 38192.70 37479.99 31182.34 39892.96 363
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38222.11 40744.50 40568.35 40313.00 403
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26085.36 36965.82 39282.05 38692.44 31157.94 38396.69 31170.71 37888.49 38692.56 367
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22393.04 31681.28 24087.17 33586.14 35979.57 31183.65 37388.66 36157.10 38498.18 21387.74 21795.40 30695.90 283
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38595.36 34569.49 38294.72 32588.79 386
JIA-IIPM85.08 32183.04 33391.19 25087.56 39186.14 16989.40 29684.44 37888.98 17482.20 38497.95 5356.82 38696.15 32676.55 34383.45 39591.30 377
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38746.64 40638.45 40670.07 40250.30 402
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38895.45 34373.19 36376.68 40191.82 375
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33386.65 37553.94 39098.72 15182.56 28397.40 25195.67 293
tttt051789.81 24688.90 25592.55 20197.00 14879.73 26895.03 10283.65 38089.88 15695.30 15394.79 24353.64 39199.39 4991.99 10898.79 14298.54 119
thisisatest053088.69 27487.52 28592.20 20996.33 19579.36 27592.81 17784.01 37986.44 21993.67 20992.68 30653.62 39299.25 7589.65 17498.45 17798.00 159
FMVSNet587.82 28786.56 30491.62 23192.31 33079.81 26693.49 15794.81 25883.26 27091.36 27696.93 12952.77 39397.49 27276.07 34698.03 21797.55 205
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
iter_conf0588.94 26688.09 27791.50 23692.74 32276.97 31692.80 17895.92 21882.82 28093.65 21095.37 22349.41 39599.13 8890.82 13699.28 7998.40 129
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 30982.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22384.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 265
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24383.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 271
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 28981.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 308
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11067.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10565.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34188.10 36744.08 40396.90 30464.23 39196.36 28595.14 308
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
test250685.42 31884.57 32187.96 32597.81 10266.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16288.09 20999.18 9498.67 104
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29483.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 298
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26782.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 304
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29785.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
testing383.66 33282.52 33787.08 33495.84 23465.84 38789.80 28477.17 40388.17 19290.84 28688.63 36230.95 41198.11 21884.05 27197.19 25797.28 224
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3390.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS61.25 39974.55 353
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
eth-test20.00 414
eth-test0.00 414
IU-MVS98.51 5086.66 15496.83 17172.74 36295.83 12393.00 8699.29 7498.64 111
save fliter97.46 12988.05 12492.04 21397.08 15187.63 205
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9598.22 3799.38 5593.44 6799.31 6998.53 120
GSMVS94.75 326
test_part298.21 7489.41 9396.72 81
MTGPAbinary97.62 106
MTMP94.82 10854.62 410
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
test9_res88.16 20798.40 17997.83 181
agg_prior287.06 22998.36 18897.98 163
agg_prior96.20 20788.89 10696.88 16790.21 29898.78 142
test_prior489.91 8290.74 251
test_prior94.61 11795.95 22887.23 13797.36 12998.68 16297.93 169
旧先验290.00 27768.65 38392.71 24496.52 31485.15 257
新几何290.02 276
无先验89.94 27895.75 22370.81 37398.59 17381.17 30194.81 322
原ACMM289.34 297
testdata298.03 22380.24 308
testdata188.96 30688.44 187
plane_prior797.71 11188.68 109
plane_prior597.81 9298.95 11489.26 18498.51 17398.60 116
plane_prior495.59 208
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 11991.74 115
plane_prior197.38 131
plane_prior88.12 12293.01 17188.98 17498.06 214
n20.00 415
nn0.00 415
door-mid92.13 313
test1196.65 183
door91.26 322
HQP5-MVS84.89 191
HQP-NCC96.36 19091.37 23587.16 21188.81 320
ACMP_Plane96.36 19091.37 23587.16 21188.81 320
BP-MVS86.55 238
HQP4-MVS88.81 32098.61 16998.15 146
HQP3-MVS97.31 13397.73 234
NP-MVS96.82 16187.10 14193.40 288
ACMMP++_ref98.82 138
ACMMP++99.25 83