This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18193.06 10594.33 4882.19 2893.65 396.15 3385.89 197.19 8291.02 3197.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6894.37 4672.48 17392.07 696.85 1483.82 299.15 291.53 2797.42 497.55 4
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 397.63 397.62 2
PC_three_145280.91 4594.07 296.83 1683.57 499.12 595.70 597.42 497.55 4
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1097.22 379.93 599.10 983.12 9097.64 297.94 1
baseline283.68 8983.42 8084.48 13387.37 20666.00 13290.06 22495.93 879.71 5769.08 22490.39 16277.92 696.28 12178.91 12381.38 16291.16 191
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35494.75 2878.67 12090.85 15477.91 794.56 19272.25 16993.74 4395.36 58
gg-mvs-nofinetune77.18 19874.31 21885.80 8591.42 11168.36 7171.78 35794.72 2949.61 35877.12 13545.92 38177.41 893.98 22067.62 21493.16 5395.05 74
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20292.11 497.21 476.79 999.11 692.34 1995.36 1397.62 2
test_241102_ONE96.45 1269.38 4794.44 4071.65 20292.11 497.05 776.79 999.11 6
test_0728_THIRD72.48 17390.55 1796.93 1076.24 1199.08 1191.53 2794.99 1796.43 26
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5594.15 5368.77 25290.74 1597.27 276.09 1298.49 2990.58 3594.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8385.93 4894.80 6975.80 1398.21 3489.38 3888.78 10196.59 16
DeepPCF-MVS81.17 189.72 991.38 384.72 12193.00 6958.16 29396.72 894.41 4286.50 890.25 1997.83 175.46 1498.67 2592.78 1695.49 1297.32 6
dcpmvs_287.37 2787.55 2686.85 5095.04 3268.20 7890.36 21590.66 18879.37 6281.20 8793.67 10174.73 1596.55 11690.88 3292.00 6795.82 44
MVSTER82.47 10682.05 10383.74 15292.68 7869.01 5791.90 15593.21 8479.83 5372.14 18985.71 23174.72 1694.72 18175.72 14172.49 23487.50 238
test_241102_TWO94.41 4271.65 20292.07 697.21 474.58 1799.11 692.34 1995.36 1396.59 16
test_one_060196.32 1869.74 4294.18 5171.42 21390.67 1696.85 1474.45 18
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5094.91 6674.11 1998.91 1787.26 5795.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19195.04 4095.19 1586.74 791.53 1295.15 6073.86 2097.58 5993.38 1292.00 6796.28 32
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 18990.55 1796.93 1073.77 2199.08 1191.91 2594.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3396.76 794.33 4871.92 18991.89 897.11 673.77 21
ET-MVSNet_ETH3D84.01 7983.15 8786.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 31893.64 10273.64 2392.35 27182.66 9278.66 18596.50 24
CSCG86.87 3286.26 4088.72 1595.05 3170.79 2593.83 8095.33 1368.48 25677.63 12894.35 8473.04 2498.45 3084.92 7793.71 4596.92 11
tttt051779.50 15778.53 15782.41 18687.22 20961.43 24489.75 23494.76 2769.29 24467.91 24388.06 20072.92 2595.63 14962.91 25773.90 22490.16 202
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 4996.26 2872.84 2699.38 192.64 1795.93 997.08 9
iter_conf0583.27 9382.70 9584.98 10993.32 5971.84 1594.16 5681.76 33982.74 2173.83 16988.40 18872.77 2794.61 18682.10 9675.21 21288.48 227
thisisatest051583.41 9082.49 9986.16 7489.46 15068.26 7593.54 9294.70 3074.31 13475.75 14590.92 15272.62 2896.52 11769.64 19281.50 16193.71 126
thisisatest053081.15 12680.07 13184.39 13688.26 18265.63 14191.40 17594.62 3471.27 21570.93 20289.18 17972.47 2996.04 13265.62 23676.89 20291.49 180
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21593.55 7282.89 1991.29 1392.89 11772.27 3096.03 13387.99 4894.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet81.79 11881.52 11082.61 18088.77 16960.21 26893.02 10993.66 6868.52 25572.90 17690.39 16272.19 3194.96 17374.93 14979.29 17992.67 155
CostFormer82.33 10881.15 11385.86 8289.01 16368.46 6982.39 31293.01 9475.59 11780.25 9881.57 27772.03 3294.96 17379.06 12177.48 19694.16 107
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3096.35 2571.89 3398.63 2688.76 4596.40 696.06 36
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 2996.80 1770.86 3499.06 1592.64 1795.71 1096.12 35
IB-MVS77.80 482.18 11080.46 12987.35 3989.14 16070.28 3195.59 2695.17 1778.85 7470.19 21285.82 22970.66 3597.67 5172.19 17266.52 27594.09 111
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1196.19 3170.12 3698.91 1796.83 195.06 1696.76 12
baseline181.84 11781.03 11884.28 14191.60 10566.62 11891.08 19391.66 15181.87 3174.86 15691.67 14269.98 3794.92 17671.76 17564.75 29091.29 189
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2696.26 2868.44 3898.74 2495.82 294.72 3095.90 42
alignmvs87.28 2886.97 3388.24 2491.30 11471.14 2195.61 2593.56 7179.30 6387.07 3995.25 5668.43 3996.93 10387.87 4984.33 14096.65 14
PAPM85.89 4885.46 5387.18 4288.20 18672.42 1392.41 13392.77 10282.11 2980.34 9793.07 11268.27 4095.02 17078.39 12893.59 4794.09 111
train_agg87.21 2987.42 2886.60 5994.18 4167.28 10094.16 5693.51 7371.87 19485.52 5295.33 4968.19 4197.27 8089.09 4294.90 2195.25 69
test_894.19 4067.19 10294.15 5993.42 7971.87 19485.38 5595.35 4868.19 4196.95 100
TEST994.18 4167.28 10094.16 5693.51 7371.75 20085.52 5295.33 4968.01 4397.27 80
test_prior295.10 3875.40 12185.25 5895.61 4367.94 4487.47 5494.77 25
WTY-MVS86.32 4085.81 4987.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8294.73 7067.93 4597.63 5679.55 11582.25 15396.54 19
APDe-MVScopyleft87.54 2587.84 2286.65 5896.07 2366.30 12694.84 4593.78 5969.35 24388.39 3196.34 2667.74 4697.66 5490.62 3493.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsm_n_192087.69 2488.50 1785.27 10187.05 21363.55 19893.69 8591.08 17684.18 1390.17 2197.04 867.58 4797.99 3995.72 390.03 9294.26 102
tpm279.80 15377.95 16685.34 9988.28 18168.26 7581.56 31891.42 16070.11 23477.59 13080.50 29567.40 4894.26 20567.34 21677.35 19793.51 131
miper_enhance_ethall78.86 16977.97 16581.54 21088.00 19165.17 15291.41 17389.15 24875.19 12468.79 23183.98 24967.17 4992.82 24972.73 16465.30 28186.62 259
SF-MVS87.03 3187.09 3186.84 5192.70 7767.45 9893.64 8793.76 6270.78 22686.25 4396.44 2466.98 5097.79 4788.68 4694.56 3295.28 65
HY-MVS76.49 584.28 7283.36 8387.02 4892.22 8767.74 8884.65 29294.50 3779.15 6782.23 8087.93 20166.88 5196.94 10180.53 11082.20 15496.39 28
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3294.53 7566.79 5297.34 7383.89 8691.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1487.63 2493.86 4794.41 5294.18 5172.76 16886.21 4496.51 2266.64 5397.88 4490.08 3694.04 37
FIs79.47 15879.41 14579.67 25585.95 23059.40 27891.68 16793.94 5678.06 8468.96 22888.28 19166.61 5491.77 28366.20 23074.99 21387.82 235
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4196.20 3066.56 5598.76 2389.03 4494.56 3295.92 41
SD-MVS87.49 2687.49 2787.50 3693.60 5368.82 6293.90 7292.63 11076.86 10287.90 3395.76 3966.17 5697.63 5689.06 4391.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet_NR-MVSNet78.15 18477.55 17179.98 24684.46 25760.26 26692.25 13693.20 8677.50 9668.88 22986.61 21866.10 5792.13 27566.38 22762.55 30687.54 237
CHOSEN 280x42077.35 19676.95 18478.55 27187.07 21262.68 22069.71 36382.95 33568.80 25171.48 19887.27 21266.03 5884.00 35076.47 13882.81 15088.95 217
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2595.78 3865.94 5999.10 992.99 1493.91 4096.58 18
segment_acmp65.94 59
Vis-MVSNet (Re-imp)79.24 16179.57 14078.24 27688.46 17452.29 33290.41 21389.12 25074.24 13569.13 22291.91 13765.77 6190.09 30859.00 28088.09 10692.33 164
FC-MVSNet-test77.99 18678.08 16377.70 27984.89 25055.51 31890.27 21893.75 6576.87 10166.80 26187.59 20665.71 6290.23 30562.89 25873.94 22287.37 242
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7594.03 5574.18 13691.74 996.67 1965.61 6398.42 3389.24 4196.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test1287.09 4594.60 3668.86 6092.91 9882.67 7965.44 6497.55 6293.69 4694.84 83
test_fmvsmconf_n86.58 3787.17 3084.82 11485.28 24262.55 22194.26 5489.78 22183.81 1687.78 3496.33 2765.33 6596.98 9694.40 987.55 11194.95 78
旧先验191.94 9560.74 25891.50 15794.36 8065.23 6691.84 6994.55 92
1112_ss80.56 13779.83 13782.77 17588.65 17060.78 25492.29 13588.36 27872.58 17172.46 18594.95 6265.09 6793.42 23566.38 22777.71 19094.10 110
MVSFormer83.75 8682.88 9186.37 6989.24 15871.18 1989.07 24890.69 18565.80 27587.13 3794.34 8564.99 6892.67 25772.83 16191.80 7095.27 66
lupinMVS87.74 2387.77 2387.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3795.27 5464.99 6895.80 13889.34 3991.80 7095.93 40
tpmrst80.57 13679.14 15184.84 11390.10 13668.28 7481.70 31689.72 22877.63 9475.96 14479.54 30964.94 7092.71 25475.43 14377.28 19993.55 130
ZD-MVS96.63 965.50 14693.50 7570.74 22785.26 5795.19 5964.92 7197.29 7687.51 5393.01 54
testing370.38 27570.83 25969.03 34185.82 23443.93 36990.72 20590.56 19168.06 25760.24 30686.82 21764.83 7284.12 34626.33 37964.10 29679.04 353
casdiffmvs_mvgpermissive85.66 5385.18 5687.09 4588.22 18569.35 5093.74 8491.89 13781.47 3580.10 9991.45 14464.80 7396.35 11987.23 5887.69 10995.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth77.60 19276.44 18981.09 22485.70 23764.41 17190.65 20788.64 27372.31 17967.37 25482.52 26364.77 7492.64 26170.67 18465.30 28186.24 264
Test_1112_low_res79.56 15678.60 15682.43 18388.24 18460.39 26592.09 14487.99 28872.10 18771.84 19287.42 20964.62 7593.04 23965.80 23477.30 19893.85 124
test250683.29 9282.92 9084.37 13788.39 17863.18 20792.01 14991.35 16277.66 9278.49 12191.42 14564.58 7695.09 16973.19 15789.23 9794.85 80
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7196.19 3164.53 7798.44 3183.42 8994.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS87.11 3086.27 3989.62 797.79 176.27 494.96 4394.49 3878.74 7883.87 7092.94 11564.34 7896.94 10175.19 14594.09 3695.66 47
casdiffmvspermissive85.37 5684.87 6286.84 5188.25 18369.07 5593.04 10791.76 14481.27 4180.84 9492.07 13564.23 7996.06 13184.98 7687.43 11395.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cl2277.94 18876.78 18581.42 21287.57 20064.93 16090.67 20688.86 26372.45 17567.63 24982.68 26264.07 8092.91 24771.79 17365.30 28186.44 260
tpm78.58 17777.03 18183.22 16885.94 23264.56 16283.21 30691.14 17278.31 8173.67 17079.68 30764.01 8192.09 27766.07 23171.26 24493.03 146
CDS-MVSNet81.43 12380.74 12183.52 15986.26 22564.45 16792.09 14490.65 18975.83 11673.95 16889.81 17463.97 8292.91 24771.27 17882.82 14993.20 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test84.16 7783.20 8487.05 4791.56 10769.82 3989.99 22992.05 12877.77 8982.84 7586.57 21963.93 8396.09 12774.91 15089.18 9995.25 69
APD-MVScopyleft85.93 4785.99 4685.76 8795.98 2665.21 15193.59 9092.58 11266.54 27086.17 4595.88 3763.83 8497.00 9286.39 6592.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mvs_anonymous81.36 12479.99 13485.46 9490.39 13168.40 7086.88 28290.61 19074.41 13170.31 21184.67 24063.79 8592.32 27273.13 15885.70 13095.67 46
PVSNet_Blended_VisFu83.97 8083.50 7485.39 9790.02 13766.59 12093.77 8291.73 14577.43 9877.08 13789.81 17463.77 8696.97 9879.67 11488.21 10592.60 157
baseline85.01 6184.44 6586.71 5688.33 18068.73 6390.24 22091.82 14381.05 4481.18 8892.50 12463.69 8796.08 13084.45 8186.71 12395.32 61
myMVS_eth3d72.58 26272.74 24072.10 33087.87 19449.45 34788.07 26289.01 25672.91 16463.11 28988.10 19763.63 8885.54 34032.73 37269.23 25581.32 332
CDPH-MVS85.71 5185.46 5386.46 6594.75 3467.19 10293.89 7392.83 10170.90 22283.09 7495.28 5263.62 8997.36 7180.63 10994.18 3594.84 83
HyFIR lowres test81.03 13179.56 14185.43 9587.81 19768.11 8090.18 22190.01 21670.65 22872.95 17586.06 22763.61 9094.50 19675.01 14879.75 17593.67 127
canonicalmvs86.85 3386.25 4188.66 1891.80 10171.92 1493.54 9291.71 14780.26 5087.55 3595.25 5663.59 9196.93 10388.18 4784.34 13997.11 8
c3_l76.83 20675.47 20280.93 22885.02 24864.18 17990.39 21488.11 28571.66 20166.65 26281.64 27563.58 9292.56 26269.31 19862.86 30386.04 271
SteuartSystems-ACMMP86.82 3586.90 3586.58 6190.42 12966.38 12396.09 1793.87 5777.73 9084.01 6995.66 4163.39 9397.94 4087.40 5593.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsmconf0.1_n85.71 5186.08 4584.62 12880.83 29562.33 22593.84 7888.81 26483.50 1887.00 4096.01 3563.36 9496.93 10394.04 1087.29 11494.61 91
EI-MVSNet-Vis-set83.77 8583.67 7184.06 14692.79 7663.56 19791.76 16394.81 2679.65 5877.87 12594.09 9263.35 9597.90 4279.35 11779.36 17790.74 195
UniMVSNet (Re)77.58 19376.78 18579.98 24684.11 26360.80 25391.76 16393.17 8876.56 11069.93 21884.78 23963.32 9692.36 27064.89 24362.51 30886.78 254
PVSNet_BlendedMVS83.38 9183.43 7883.22 16893.76 4967.53 9594.06 6193.61 6979.13 6881.00 9285.14 23463.19 9797.29 7687.08 5973.91 22384.83 294
PVSNet_Blended86.73 3686.86 3686.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9293.08 11163.19 9797.29 7687.08 5991.38 7894.13 109
PAPM_NR82.97 9981.84 10786.37 6994.10 4466.76 11587.66 27192.84 10069.96 23674.07 16693.57 10463.10 9997.50 6470.66 18590.58 8894.85 80
nrg03080.93 13279.86 13684.13 14583.69 26868.83 6193.23 10191.20 16775.55 11875.06 15588.22 19663.04 10094.74 18081.88 9866.88 27288.82 221
fmvsm_s_conf0.5_n86.39 3986.91 3484.82 11487.36 20763.54 19994.74 4790.02 21582.52 2490.14 2296.92 1262.93 10197.84 4695.28 682.26 15293.07 145
EI-MVSNet-UG-set83.14 9682.96 8883.67 15792.28 8563.19 20691.38 17994.68 3179.22 6576.60 14093.75 9862.64 10297.76 4878.07 13078.01 18890.05 204
DeepC-MVS77.85 385.52 5585.24 5586.37 6988.80 16866.64 11792.15 14093.68 6781.07 4376.91 13893.64 10262.59 10398.44 3185.50 7092.84 5794.03 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS84.84 6384.88 6184.69 12391.30 11462.36 22493.85 7592.04 12979.45 5979.33 10994.28 8862.42 10496.35 11980.05 11291.25 8195.38 56
fmvsm_s_conf0.5_n_a85.75 5086.09 4484.72 12185.73 23663.58 19693.79 8189.32 23981.42 3990.21 2096.91 1362.41 10597.67 5194.48 880.56 16992.90 151
CS-MVS85.80 4986.65 3883.27 16792.00 9458.92 28695.31 3191.86 13979.97 5284.82 6095.40 4762.26 10695.51 15986.11 6792.08 6695.37 57
MVS_111021_HR86.19 4385.80 5087.37 3893.17 6569.79 4093.99 6793.76 6279.08 7078.88 11693.99 9562.25 10798.15 3685.93 6991.15 8294.15 108
PHI-MVS86.83 3486.85 3786.78 5593.47 5765.55 14495.39 3095.10 1871.77 19985.69 5196.52 2162.07 10898.77 2286.06 6895.60 1196.03 38
MP-MVScopyleft85.02 6084.97 6085.17 10592.60 8164.27 17793.24 10092.27 11973.13 15879.63 10594.43 7861.90 10997.17 8385.00 7592.56 5994.06 114
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
jason86.40 3886.17 4287.11 4486.16 22770.54 2895.71 2492.19 12582.00 3084.58 6294.34 8561.86 11095.53 15887.76 5090.89 8495.27 66
jason: jason.
fmvsm_s_conf0.1_n85.61 5485.93 4784.68 12482.95 27963.48 20194.03 6689.46 23381.69 3389.86 2396.74 1861.85 11197.75 4994.74 782.01 15692.81 153
iter_conf_final81.74 11980.93 11984.18 14392.66 7969.10 5492.94 11182.80 33779.01 7374.85 15788.40 18861.83 11294.61 18679.36 11676.52 20588.83 218
CS-MVS-test86.14 4487.01 3283.52 15992.63 8059.36 28195.49 2791.92 13480.09 5185.46 5495.53 4561.82 11395.77 14186.77 6393.37 5095.41 54
PAPR85.15 5984.47 6487.18 4296.02 2568.29 7391.85 15893.00 9676.59 10979.03 11295.00 6161.59 11497.61 5878.16 12989.00 10095.63 48
IS-MVSNet80.14 14679.41 14582.33 18787.91 19260.08 27091.97 15388.27 28272.90 16671.44 19991.73 14161.44 11593.66 23062.47 26186.53 12593.24 138
cl____76.07 21374.67 20980.28 23785.15 24461.76 23790.12 22288.73 26871.16 21665.43 26681.57 27761.15 11692.95 24266.54 22462.17 31086.13 269
DIV-MVS_self_test76.07 21374.67 20980.28 23785.14 24561.75 23890.12 22288.73 26871.16 21665.42 26781.60 27661.15 11692.94 24666.54 22462.16 31286.14 267
EI-MVSNet78.97 16678.22 16181.25 21585.33 24062.73 21989.53 23893.21 8472.39 17872.14 18990.13 17060.99 11894.72 18167.73 21372.49 23486.29 262
IterMVS-LS76.49 20975.18 20780.43 23484.49 25662.74 21890.64 20888.80 26572.40 17765.16 26981.72 27360.98 11992.27 27367.74 21264.65 29286.29 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
fmvsm_s_conf0.1_n_a84.76 6484.84 6384.53 13080.23 30563.50 20092.79 11588.73 26880.46 4889.84 2496.65 2060.96 12097.57 6193.80 1180.14 17192.53 160
ETV-MVS86.01 4686.11 4385.70 8990.21 13467.02 10993.43 9791.92 13481.21 4284.13 6894.07 9460.93 12195.63 14989.28 4089.81 9394.46 100
tpm cat175.30 22972.21 24884.58 12988.52 17167.77 8778.16 34488.02 28761.88 31068.45 23776.37 33260.65 12294.03 21853.77 29874.11 22091.93 176
TAMVS80.37 14179.45 14483.13 17085.14 24563.37 20291.23 18790.76 18474.81 12972.65 17988.49 18560.63 12392.95 24269.41 19681.95 15793.08 144
ZNCC-MVS85.33 5785.08 5886.06 7593.09 6865.65 14093.89 7393.41 8073.75 14779.94 10194.68 7260.61 12498.03 3882.63 9393.72 4494.52 96
thres100view90078.37 18077.01 18282.46 18291.89 9963.21 20591.19 19196.33 172.28 18170.45 20887.89 20260.31 12595.32 16345.16 33277.58 19388.83 218
thres600view778.00 18576.66 18782.03 20291.93 9663.69 19291.30 18596.33 172.43 17670.46 20787.89 20260.31 12594.92 17642.64 34476.64 20387.48 239
CHOSEN 1792x268884.98 6283.45 7789.57 1089.94 13975.14 592.07 14692.32 11781.87 3175.68 14788.27 19260.18 12798.60 2780.46 11190.27 9194.96 77
h-mvs3383.01 9882.56 9884.35 13889.34 15162.02 23192.72 11893.76 6281.45 3682.73 7792.25 13360.11 12897.13 8587.69 5162.96 30293.91 120
hse-mvs281.12 12981.11 11781.16 21886.52 22057.48 30389.40 24191.16 16981.45 3682.73 7790.49 16060.11 12894.58 18887.69 5160.41 32991.41 183
tfpn200view978.79 17277.43 17382.88 17392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19388.83 218
thres40078.68 17477.43 17382.43 18392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19387.48 239
diffmvspermissive84.28 7283.83 7085.61 9187.40 20568.02 8290.88 19989.24 24280.54 4781.64 8492.52 12359.83 13294.52 19587.32 5685.11 13394.29 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS84.66 6682.86 9290.06 290.93 12074.56 687.91 26695.54 1168.55 25472.35 18894.71 7159.78 13398.90 1981.29 10694.69 3196.74 13
thres20079.66 15478.33 15883.66 15892.54 8265.82 13893.06 10596.31 374.90 12873.30 17288.66 18359.67 13495.61 15147.84 32178.67 18489.56 213
Effi-MVS+83.82 8382.76 9386.99 4989.56 14769.40 4691.35 18286.12 30872.59 17083.22 7392.81 12159.60 13596.01 13581.76 9987.80 10895.56 51
eth_miper_zixun_eth75.96 22074.40 21780.66 23084.66 25263.02 20989.28 24388.27 28271.88 19365.73 26481.65 27459.45 13692.81 25068.13 20760.53 32686.14 267
ACMMP_NAP86.05 4585.80 5086.80 5491.58 10667.53 9591.79 16093.49 7674.93 12784.61 6195.30 5159.42 13797.92 4186.13 6694.92 1994.94 79
GST-MVS84.63 6784.29 6785.66 9092.82 7365.27 14993.04 10793.13 9073.20 15678.89 11394.18 9159.41 13897.85 4581.45 10292.48 6193.86 123
UA-Net80.02 14979.65 13981.11 22089.33 15357.72 29886.33 28589.00 25977.44 9781.01 9189.15 18059.33 13995.90 13661.01 26884.28 14289.73 210
NR-MVSNet76.05 21674.59 21280.44 23382.96 27762.18 22990.83 20191.73 14577.12 10060.96 30386.35 22159.28 14091.80 28260.74 26961.34 32187.35 244
MP-MVS-pluss85.24 5885.13 5785.56 9291.42 11165.59 14291.54 17092.51 11474.56 13080.62 9595.64 4259.15 14197.00 9286.94 6193.80 4194.07 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS84.73 6584.40 6685.72 8893.75 5165.01 15793.50 9493.19 8772.19 18379.22 11094.93 6459.04 14297.67 5181.55 10092.21 6294.49 99
MSLP-MVS++86.27 4185.91 4887.35 3992.01 9368.97 5995.04 4092.70 10479.04 7281.50 8596.50 2358.98 14396.78 10883.49 8893.93 3996.29 30
Patchmatch-test65.86 30860.94 32280.62 23283.75 26758.83 28758.91 38175.26 35744.50 37150.95 34977.09 32658.81 14487.90 32335.13 36464.03 29795.12 72
EPNet_dtu78.80 17179.26 14977.43 28488.06 18849.71 34591.96 15491.95 13377.67 9176.56 14191.28 14958.51 14590.20 30656.37 28780.95 16592.39 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192083.80 8483.48 7584.77 11882.51 28163.72 18991.37 18083.99 32881.42 3977.68 12795.74 4058.37 14697.58 5993.38 1286.87 11793.00 148
EC-MVSNet84.53 6885.04 5983.01 17189.34 15161.37 24594.42 5191.09 17477.91 8783.24 7294.20 9058.37 14695.40 16085.35 7191.41 7792.27 170
VNet86.20 4285.65 5287.84 2793.92 4669.99 3395.73 2395.94 778.43 8086.00 4793.07 11258.22 14897.00 9285.22 7284.33 14096.52 20
TESTMET0.1,182.41 10781.98 10683.72 15588.08 18763.74 18792.70 12093.77 6179.30 6377.61 12987.57 20758.19 14994.08 21173.91 15686.68 12493.33 137
原ACMM184.42 13493.21 6364.27 17793.40 8165.39 27879.51 10692.50 12458.11 15096.69 11065.27 24193.96 3892.32 165
sam_mvs157.85 15194.68 87
CR-MVSNet73.79 24670.82 26182.70 17783.15 27467.96 8370.25 36084.00 32673.67 15169.97 21672.41 34657.82 15289.48 31252.99 30173.13 22790.64 197
Patchmtry67.53 30063.93 30778.34 27282.12 28664.38 17268.72 36484.00 32648.23 36359.24 31172.41 34657.82 15289.27 31346.10 32956.68 34181.36 331
patchmatchnet-post67.62 36157.62 15490.25 301
PCF-MVS73.15 979.29 16077.63 17084.29 14086.06 22865.96 13487.03 27891.10 17369.86 23869.79 21990.64 15557.54 15596.59 11264.37 24682.29 15190.32 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+81.14 12780.01 13384.51 13290.24 13365.86 13694.12 6089.15 24873.81 14675.37 15388.26 19357.26 15694.53 19466.97 22184.92 13493.15 141
miper_lstm_enhance73.05 25171.73 25477.03 29083.80 26658.32 29281.76 31488.88 26169.80 23961.01 30278.23 31657.19 15787.51 33165.34 24059.53 33185.27 290
PatchT69.11 28565.37 29780.32 23582.07 28763.68 19367.96 36987.62 29250.86 35569.37 22065.18 36457.09 15888.53 31841.59 34766.60 27488.74 222
testdata81.34 21489.02 16257.72 29889.84 22058.65 32985.32 5694.09 9257.03 15993.28 23669.34 19790.56 8993.03 146
PatchmatchNetpermissive77.46 19474.63 21185.96 7889.55 14870.35 3079.97 33589.55 23172.23 18270.94 20176.91 32857.03 15992.79 25254.27 29581.17 16394.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_yl84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
DCV-MVSNet84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
region2R84.36 7084.03 6985.36 9893.54 5564.31 17593.43 9792.95 9772.16 18678.86 11794.84 6856.97 16397.53 6381.38 10492.11 6594.24 103
新几何184.73 12092.32 8464.28 17691.46 15959.56 32579.77 10392.90 11656.95 16496.57 11463.40 25192.91 5693.34 135
WR-MVS76.76 20775.74 19979.82 25284.60 25362.27 22892.60 12692.51 11476.06 11367.87 24685.34 23256.76 16590.24 30462.20 26263.69 30186.94 252
HPM-MVScopyleft83.25 9482.95 8984.17 14492.25 8662.88 21690.91 19691.86 13970.30 23277.12 13593.96 9656.75 16696.28 12182.04 9791.34 8093.34 135
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss82.71 10482.38 10183.73 15489.25 15559.58 27692.24 13794.89 2377.96 8579.86 10292.38 12956.70 16797.05 8777.26 13480.86 16694.55 92
ACMMPR84.37 6984.06 6885.28 10093.56 5464.37 17393.50 9493.15 8972.19 18378.85 11894.86 6756.69 16897.45 6581.55 10092.20 6394.02 116
FMVSNet377.73 19176.04 19482.80 17491.20 11768.99 5891.87 15691.99 13173.35 15567.04 25683.19 25756.62 16992.14 27459.80 27669.34 25287.28 246
Patchmatch-RL test68.17 29464.49 30479.19 26371.22 35953.93 32670.07 36271.54 36869.22 24556.79 32762.89 36856.58 17088.61 31569.53 19552.61 35195.03 76
test_post23.01 39156.49 17192.67 257
RPMNet70.42 27465.68 29384.63 12783.15 27467.96 8370.25 36090.45 19246.83 36669.97 21665.10 36556.48 17295.30 16635.79 36373.13 22790.64 197
DU-MVS76.86 20275.84 19779.91 24982.96 27760.26 26691.26 18691.54 15476.46 11168.88 22986.35 22156.16 17392.13 27566.38 22762.55 30687.35 244
Baseline_NR-MVSNet73.99 24372.83 23877.48 28380.78 29659.29 28291.79 16084.55 32168.85 25068.99 22780.70 29156.16 17392.04 27862.67 25960.98 32381.11 334
API-MVS82.28 10980.53 12787.54 3596.13 2270.59 2793.63 8891.04 18065.72 27775.45 15292.83 12056.11 17598.89 2064.10 24789.75 9693.15 141
MTAPA83.91 8183.38 8285.50 9391.89 9965.16 15381.75 31592.23 12075.32 12280.53 9695.21 5856.06 17697.16 8484.86 7892.55 6094.18 105
JIA-IIPM66.06 30762.45 31676.88 29481.42 29254.45 32557.49 38288.67 27149.36 35963.86 28246.86 38056.06 17690.25 30149.53 31168.83 25885.95 274
v14876.19 21174.47 21681.36 21380.05 30764.44 16891.75 16590.23 20673.68 15067.13 25580.84 29055.92 17893.86 22768.95 20261.73 31785.76 280
WR-MVS_H70.59 27269.94 26872.53 32481.03 29351.43 33687.35 27592.03 13067.38 26460.23 30780.70 29155.84 17983.45 35446.33 32858.58 33682.72 318
test_fmvsmconf0.01_n83.70 8883.52 7284.25 14275.26 34761.72 23992.17 13987.24 29782.36 2684.91 5995.41 4655.60 18096.83 10792.85 1585.87 12994.21 104
AUN-MVS78.37 18077.43 17381.17 21786.60 21957.45 30489.46 24091.16 16974.11 13774.40 16190.49 16055.52 18194.57 19074.73 15360.43 32891.48 181
XVS83.87 8283.47 7685.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12294.31 8755.25 18297.41 6879.16 11991.58 7493.95 118
X-MVStestdata76.86 20274.13 22285.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12210.19 39655.25 18297.41 6879.16 11991.58 7493.95 118
BH-w/o80.49 13979.30 14884.05 14790.83 12464.36 17493.60 8989.42 23674.35 13369.09 22390.15 16955.23 18495.61 15164.61 24486.43 12792.17 173
CP-MVS83.71 8783.40 8184.65 12593.14 6663.84 18394.59 4992.28 11871.03 22077.41 13194.92 6555.21 18596.19 12381.32 10590.70 8693.91 120
PGM-MVS83.25 9482.70 9584.92 11092.81 7564.07 18090.44 21192.20 12471.28 21477.23 13494.43 7855.17 18697.31 7579.33 11891.38 7893.37 134
tpmvs72.88 25569.76 27182.22 19290.98 11967.05 10778.22 34388.30 28063.10 29864.35 28074.98 33955.09 18794.27 20343.25 33869.57 25185.34 288
v875.35 22873.26 23381.61 20880.67 29866.82 11289.54 23789.27 24171.65 20263.30 28880.30 29954.99 18894.06 21367.33 21762.33 30983.94 300
sam_mvs54.91 189
EPMVS78.49 17975.98 19586.02 7691.21 11669.68 4480.23 33091.20 16775.25 12372.48 18478.11 31754.65 19093.69 22957.66 28583.04 14794.69 86
ab-mvs80.18 14578.31 15985.80 8588.44 17565.49 14783.00 30992.67 10671.82 19777.36 13285.01 23554.50 19196.59 11276.35 13975.63 21095.32 61
KD-MVS_2432*160069.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
miper_refine_blended69.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
DP-MVS Recon82.73 10281.65 10985.98 7797.31 467.06 10695.15 3691.99 13169.08 24976.50 14293.89 9754.48 19498.20 3570.76 18385.66 13192.69 154
GeoE78.90 16877.43 17383.29 16688.95 16462.02 23192.31 13486.23 30670.24 23371.34 20089.27 17854.43 19594.04 21663.31 25380.81 16893.81 125
XXY-MVS77.94 18876.44 18982.43 18382.60 28064.44 16892.01 14991.83 14273.59 15270.00 21585.82 22954.43 19594.76 17869.63 19368.02 26588.10 234
MDTV_nov1_ep13_2view59.90 27280.13 33267.65 26272.79 17754.33 19759.83 27592.58 158
Test By Simon54.21 198
MAR-MVS84.18 7683.43 7886.44 6696.25 2165.93 13594.28 5394.27 5074.41 13179.16 11195.61 4353.99 19998.88 2169.62 19493.26 5294.50 98
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test-LLR80.10 14779.56 14181.72 20686.93 21661.17 24692.70 12091.54 15471.51 21175.62 14886.94 21553.83 20092.38 26872.21 17084.76 13791.60 178
test0.0.03 172.76 25672.71 24272.88 32280.25 30447.99 35391.22 18889.45 23471.51 21162.51 29787.66 20553.83 20085.06 34450.16 30867.84 26885.58 281
v2v48277.42 19575.65 20182.73 17680.38 30167.13 10591.85 15890.23 20675.09 12569.37 22083.39 25553.79 20294.44 19771.77 17465.00 28786.63 258
SR-MVS82.81 10182.58 9783.50 16293.35 5861.16 24892.23 13891.28 16664.48 28481.27 8695.28 5253.71 20395.86 13782.87 9188.77 10293.49 132
pcd_1.5k_mvsjas4.46 3675.95 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40053.55 2040.00 4010.00 4000.00 3980.00 397
PS-MVSNAJss77.26 19776.31 19180.13 24280.64 29959.16 28390.63 21091.06 17872.80 16768.58 23584.57 24253.55 20493.96 22172.97 15971.96 23887.27 247
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2796.06 3453.55 20497.89 4391.10 2993.31 5194.54 94
mPP-MVS82.96 10082.44 10084.52 13192.83 7162.92 21492.76 11691.85 14171.52 21075.61 15094.24 8953.48 20796.99 9578.97 12290.73 8593.64 129
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2795.95 3653.45 20897.68 5091.07 3092.62 5894.54 94
test_post178.95 33720.70 39453.05 20991.50 29360.43 271
MDTV_nov1_ep1372.61 24389.06 16168.48 6880.33 32890.11 21071.84 19671.81 19375.92 33653.01 21093.92 22348.04 31873.38 225
FA-MVS(test-final)79.12 16377.23 17984.81 11790.54 12763.98 18281.35 32191.71 14771.09 21974.85 15782.94 25852.85 21197.05 8767.97 20981.73 16093.41 133
test22289.77 14261.60 24189.55 23689.42 23656.83 33877.28 13392.43 12852.76 21291.14 8393.09 143
v114476.73 20874.88 20882.27 18980.23 30566.60 11991.68 16790.21 20873.69 14969.06 22581.89 27052.73 21394.40 19869.21 19965.23 28485.80 277
v1074.77 23572.54 24581.46 21180.33 30366.71 11689.15 24789.08 25370.94 22163.08 29179.86 30452.52 21494.04 21665.70 23562.17 31083.64 302
CLD-MVS82.73 10282.35 10283.86 15087.90 19367.65 9195.45 2892.18 12685.06 1072.58 18192.27 13252.46 21595.78 13984.18 8279.06 18088.16 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet75.86 22174.52 21579.89 25082.44 28260.64 26291.37 18091.37 16176.63 10867.65 24886.21 22552.37 21691.55 28861.84 26460.81 32487.48 239
VPA-MVSNet79.03 16478.00 16482.11 20085.95 23064.48 16693.22 10294.66 3275.05 12674.04 16784.95 23652.17 21793.52 23274.90 15167.04 27188.32 232
APD-MVS_3200maxsize81.64 12181.32 11282.59 18192.36 8358.74 28891.39 17791.01 18163.35 29379.72 10494.62 7451.82 21896.14 12579.71 11387.93 10792.89 152
dp75.01 23372.09 24983.76 15189.28 15466.22 12979.96 33689.75 22371.16 21667.80 24777.19 32551.81 21992.54 26350.39 30671.44 24392.51 161
v14419276.05 21674.03 22382.12 19779.50 31366.55 12191.39 17789.71 22972.30 18068.17 23881.33 28251.75 22094.03 21867.94 21064.19 29485.77 278
BH-untuned78.68 17477.08 18083.48 16389.84 14063.74 18792.70 12088.59 27471.57 20866.83 26088.65 18451.75 22095.39 16159.03 27984.77 13691.32 187
HQP2-MVS51.63 222
HQP-MVS81.14 12780.64 12482.64 17987.54 20163.66 19494.06 6191.70 14979.80 5474.18 16290.30 16451.63 22295.61 15177.63 13278.90 18188.63 223
dmvs_testset65.55 31166.45 28762.86 35379.87 30822.35 39676.55 34871.74 36677.42 9955.85 32987.77 20451.39 22480.69 36831.51 37865.92 27985.55 283
V4276.46 21074.55 21482.19 19479.14 31967.82 8690.26 21989.42 23673.75 14768.63 23481.89 27051.31 22594.09 21071.69 17664.84 28884.66 295
SR-MVS-dyc-post81.06 13080.70 12282.15 19592.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7651.26 22695.61 15178.77 12586.77 12192.28 167
CL-MVSNet_self_test69.92 27868.09 28275.41 30273.25 35455.90 31690.05 22589.90 21869.96 23661.96 30076.54 32951.05 22787.64 32849.51 31250.59 35682.70 320
TransMVSNet (Re)70.07 27767.66 28377.31 28780.62 30059.13 28591.78 16284.94 31865.97 27460.08 30880.44 29650.78 22891.87 28048.84 31445.46 36480.94 336
HQP_MVS80.34 14279.75 13882.12 19786.94 21462.42 22293.13 10391.31 16378.81 7672.53 18289.14 18150.66 22995.55 15676.74 13578.53 18688.39 230
plane_prior687.23 20862.32 22650.66 229
ACMMPcopyleft81.49 12280.67 12383.93 14991.71 10362.90 21592.13 14192.22 12371.79 19871.68 19693.49 10650.32 23196.96 9978.47 12784.22 14491.93 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR82.02 11581.52 11083.51 16188.42 17662.88 21689.77 23388.93 26076.78 10575.55 15193.10 10950.31 23295.38 16283.82 8787.02 11692.26 171
131480.70 13578.95 15285.94 7987.77 19967.56 9387.91 26692.55 11372.17 18567.44 25093.09 11050.27 23397.04 9071.68 17787.64 11093.23 139
CP-MVSNet70.50 27369.91 26972.26 32780.71 29751.00 33987.23 27790.30 20267.84 25959.64 30982.69 26150.23 23482.30 36251.28 30359.28 33283.46 307
LCM-MVSNet-Re72.93 25371.84 25276.18 29988.49 17248.02 35280.07 33370.17 36973.96 14252.25 34280.09 30349.98 23588.24 32167.35 21584.23 14392.28 167
Vis-MVSNetpermissive80.92 13379.98 13583.74 15288.48 17361.80 23593.44 9688.26 28473.96 14277.73 12691.76 13949.94 23694.76 17865.84 23390.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119275.98 21873.92 22582.15 19579.73 30966.24 12891.22 18889.75 22372.67 16968.49 23681.42 28049.86 23794.27 20367.08 21965.02 28685.95 274
test-mter79.96 15079.38 14781.72 20686.93 21661.17 24692.70 12091.54 15473.85 14475.62 14886.94 21549.84 23892.38 26872.21 17084.76 13791.60 178
cdsmvs_eth3d_5k19.86 36226.47 3610.00 3820.00 4040.00 4070.00 39393.45 770.00 4000.00 40195.27 5449.56 2390.00 4010.00 4000.00 3980.00 397
3Dnovator+73.60 782.10 11480.60 12686.60 5990.89 12266.80 11495.20 3493.44 7874.05 13867.42 25192.49 12649.46 24097.65 5570.80 18291.68 7295.33 59
MVP-Stereo77.12 19976.23 19279.79 25381.72 28966.34 12589.29 24290.88 18270.56 23062.01 29982.88 25949.34 24194.13 20865.55 23893.80 4178.88 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
RE-MVS-def80.48 12892.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7649.30 24278.77 12586.77 12192.28 167
OMC-MVS78.67 17677.91 16780.95 22785.76 23557.40 30588.49 25788.67 27173.85 14472.43 18692.10 13449.29 24394.55 19372.73 16477.89 18990.91 194
VPNet78.82 17077.53 17282.70 17784.52 25566.44 12293.93 7092.23 12080.46 4872.60 18088.38 19049.18 24493.13 23872.47 16863.97 29988.55 226
CVMVSNet74.04 24274.27 21973.33 31885.33 24043.94 36889.53 23888.39 27754.33 34670.37 20990.13 17049.17 24584.05 34861.83 26579.36 17791.99 175
v192192075.63 22673.49 23182.06 20179.38 31466.35 12491.07 19589.48 23271.98 18867.99 23981.22 28549.16 24693.90 22466.56 22364.56 29385.92 276
pm-mvs172.89 25471.09 25878.26 27579.10 32057.62 30190.80 20289.30 24067.66 26162.91 29381.78 27249.11 24792.95 24260.29 27358.89 33484.22 298
pmmvs473.92 24471.81 25380.25 23979.17 31765.24 15087.43 27487.26 29667.64 26363.46 28683.91 25048.96 24891.53 29262.94 25665.49 28083.96 299
TAPA-MVS70.22 1274.94 23473.53 23079.17 26490.40 13052.07 33389.19 24689.61 23062.69 30270.07 21392.67 12248.89 24994.32 19938.26 35879.97 17291.12 192
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator73.91 682.69 10580.82 12088.31 2389.57 14671.26 1892.60 12694.39 4578.84 7567.89 24592.48 12748.42 25098.52 2868.80 20494.40 3495.15 71
CPTT-MVS79.59 15579.16 15080.89 22991.54 10959.80 27392.10 14388.54 27660.42 31872.96 17493.28 10848.27 25192.80 25178.89 12486.50 12690.06 203
GBi-Net75.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
test175.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
FMVSNet276.07 21374.01 22482.26 19188.85 16567.66 9091.33 18391.61 15270.84 22365.98 26382.25 26648.03 25292.00 27958.46 28168.73 26087.10 249
LFMVS84.34 7182.73 9489.18 1294.76 3373.25 994.99 4291.89 13771.90 19182.16 8193.49 10647.98 25597.05 8782.55 9484.82 13597.25 7
SDMVSNet80.26 14378.88 15384.40 13589.25 15567.63 9285.35 28893.02 9376.77 10670.84 20387.12 21347.95 25696.09 12785.04 7474.55 21489.48 214
QAPM79.95 15177.39 17787.64 3089.63 14571.41 1793.30 9993.70 6665.34 28067.39 25391.75 14047.83 25798.96 1657.71 28489.81 9392.54 159
HPM-MVS_fast80.25 14479.55 14382.33 18791.55 10859.95 27191.32 18489.16 24765.23 28174.71 15993.07 11247.81 25895.74 14274.87 15288.23 10491.31 188
CANet_DTU84.09 7883.52 7285.81 8490.30 13266.82 11291.87 15689.01 25685.27 986.09 4693.74 9947.71 25996.98 9677.90 13189.78 9593.65 128
v124075.21 23172.98 23681.88 20379.20 31666.00 13290.75 20489.11 25171.63 20667.41 25281.22 28547.36 26093.87 22565.46 23964.72 29185.77 278
PEN-MVS69.46 28368.56 27772.17 32979.27 31549.71 34586.90 28189.24 24267.24 26859.08 31482.51 26447.23 26183.54 35348.42 31657.12 33783.25 310
dmvs_re76.93 20175.36 20481.61 20887.78 19860.71 25980.00 33487.99 28879.42 6069.02 22689.47 17746.77 26294.32 19963.38 25274.45 21789.81 207
CNLPA74.31 23972.30 24780.32 23591.49 11061.66 24090.85 20080.72 34356.67 33963.85 28390.64 15546.75 26390.84 29653.79 29775.99 20988.47 229
114514_t79.17 16277.67 16883.68 15695.32 2965.53 14592.85 11491.60 15363.49 29167.92 24290.63 15746.65 26495.72 14767.01 22083.54 14589.79 208
PS-CasMVS69.86 28069.13 27572.07 33180.35 30250.57 34187.02 27989.75 22367.27 26559.19 31382.28 26546.58 26582.24 36350.69 30559.02 33383.39 309
DTE-MVSNet68.46 29267.33 28571.87 33377.94 33549.00 35086.16 28688.58 27566.36 27258.19 31882.21 26746.36 26683.87 35144.97 33555.17 34482.73 317
test111180.84 13480.02 13283.33 16587.87 19460.76 25692.62 12586.86 30077.86 8875.73 14691.39 14746.35 26794.70 18472.79 16388.68 10394.52 96
ECVR-MVScopyleft81.29 12580.38 13084.01 14888.39 17861.96 23392.56 13186.79 30177.66 9276.63 13991.42 14546.34 26895.24 16774.36 15489.23 9794.85 80
PMMVS81.98 11682.04 10481.78 20489.76 14356.17 31391.13 19290.69 18577.96 8580.09 10093.57 10446.33 26994.99 17281.41 10387.46 11294.17 106
OPM-MVS79.00 16578.09 16281.73 20583.52 27163.83 18491.64 16990.30 20276.36 11271.97 19189.93 17346.30 27095.17 16875.10 14677.70 19186.19 266
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet79.46 15977.65 16984.89 11191.68 10465.66 13993.55 9188.09 28672.93 16373.37 17191.12 15146.20 27196.12 12656.28 28885.61 13292.91 150
mvsmamba76.85 20475.71 20080.25 23983.07 27659.16 28391.44 17180.64 34476.84 10367.95 24186.33 22346.17 27294.24 20676.06 14072.92 23087.36 243
FE-MVS75.97 21973.02 23584.82 11489.78 14165.56 14377.44 34691.07 17764.55 28372.66 17879.85 30546.05 27396.69 11054.97 29280.82 16792.21 172
TR-MVS78.77 17377.37 17882.95 17290.49 12860.88 25293.67 8690.07 21170.08 23574.51 16091.37 14845.69 27495.70 14860.12 27480.32 17092.29 166
IterMVS-SCA-FT71.55 26869.97 26776.32 29781.48 29060.67 26187.64 27285.99 30966.17 27359.50 31078.88 31145.53 27583.65 35262.58 26061.93 31384.63 297
SCA75.82 22272.76 23985.01 10886.63 21870.08 3281.06 32389.19 24571.60 20770.01 21477.09 32645.53 27590.25 30160.43 27173.27 22694.68 87
IterMVS72.65 26170.83 25978.09 27782.17 28562.96 21187.64 27286.28 30471.56 20960.44 30578.85 31245.42 27786.66 33563.30 25461.83 31484.65 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Syy-MVS69.65 28169.52 27370.03 33787.87 19443.21 37088.07 26289.01 25672.91 16463.11 28988.10 19745.28 27885.54 34022.07 38369.23 25581.32 332
Effi-MVS+-dtu76.14 21275.28 20678.72 27083.22 27355.17 32089.87 23087.78 29175.42 12067.98 24081.43 27945.08 27992.52 26475.08 14771.63 23988.48 227
XVG-OURS-SEG-HR74.70 23673.08 23479.57 25878.25 33157.33 30680.49 32687.32 29463.22 29568.76 23290.12 17244.89 28091.59 28770.55 18674.09 22189.79 208
v7n71.31 26968.65 27679.28 26276.40 34360.77 25586.71 28389.45 23464.17 28658.77 31778.24 31544.59 28193.54 23157.76 28361.75 31683.52 305
pmmvs573.35 24871.52 25578.86 26878.64 32760.61 26391.08 19386.90 29867.69 26063.32 28783.64 25144.33 28290.53 29862.04 26366.02 27885.46 285
OpenMVScopyleft70.45 1178.54 17875.92 19686.41 6885.93 23371.68 1692.74 11792.51 11466.49 27164.56 27591.96 13643.88 28398.10 3754.61 29390.65 8789.44 216
AdaColmapbinary78.94 16777.00 18384.76 11996.34 1765.86 13692.66 12487.97 29062.18 30570.56 20592.37 13043.53 28497.35 7264.50 24582.86 14891.05 193
tfpnnormal70.10 27667.36 28478.32 27383.45 27260.97 25188.85 25192.77 10264.85 28260.83 30478.53 31343.52 28593.48 23331.73 37561.70 31880.52 341
mvsany_test168.77 28868.56 27769.39 33973.57 35345.88 36480.93 32460.88 38259.65 32471.56 19790.26 16643.22 28675.05 37274.26 15562.70 30587.25 248
test_djsdf73.76 24772.56 24477.39 28577.00 34153.93 32689.07 24890.69 18565.80 27563.92 28182.03 26943.14 28792.67 25772.83 16168.53 26185.57 282
GA-MVS78.33 18276.23 19284.65 12583.65 26966.30 12691.44 17190.14 20976.01 11470.32 21084.02 24842.50 28894.72 18170.98 18077.00 20192.94 149
PLCcopyleft68.80 1475.23 23073.68 22979.86 25192.93 7058.68 28990.64 20888.30 28060.90 31564.43 27990.53 15842.38 28994.57 19056.52 28676.54 20486.33 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS73.80 24572.02 25079.15 26679.15 31862.97 21088.58 25690.07 21172.94 16259.22 31278.30 31442.31 29092.70 25665.59 23772.00 23781.79 329
Fast-Effi-MVS+-dtu75.04 23273.37 23280.07 24380.86 29459.52 27791.20 19085.38 31371.90 19165.20 26884.84 23841.46 29192.97 24166.50 22672.96 22987.73 236
sd_testset77.08 20075.37 20382.20 19389.25 15562.11 23082.06 31389.09 25276.77 10670.84 20387.12 21341.43 29295.01 17167.23 21874.55 21489.48 214
MS-PatchMatch77.90 19076.50 18882.12 19785.99 22969.95 3691.75 16592.70 10473.97 14162.58 29684.44 24441.11 29395.78 13963.76 25092.17 6480.62 340
our_test_368.29 29364.69 30179.11 26778.92 32164.85 16188.40 25985.06 31660.32 32052.68 34076.12 33440.81 29489.80 31144.25 33755.65 34282.67 322
XVG-OURS74.25 24072.46 24679.63 25678.45 32957.59 30280.33 32887.39 29363.86 28868.76 23289.62 17640.50 29591.72 28469.00 20174.25 21989.58 211
VDD-MVS83.06 9781.81 10886.81 5390.86 12367.70 8995.40 2991.50 15775.46 11981.78 8392.34 13140.09 29697.13 8586.85 6282.04 15595.60 49
DP-MVS69.90 27966.48 28680.14 24195.36 2862.93 21289.56 23576.11 35150.27 35757.69 32485.23 23339.68 29795.73 14333.35 36871.05 24581.78 330
RRT_MVS74.44 23772.97 23778.84 26982.36 28357.66 30089.83 23288.79 26770.61 22964.58 27484.89 23739.24 29892.65 26070.11 18966.34 27686.21 265
ppachtmachnet_test67.72 29763.70 30879.77 25478.92 32166.04 13188.68 25482.90 33660.11 32255.45 33075.96 33539.19 29990.55 29739.53 35352.55 35282.71 319
ADS-MVSNet266.90 30363.44 31077.26 28888.06 18860.70 26068.01 36775.56 35557.57 33164.48 27669.87 35638.68 30084.10 34740.87 34967.89 26686.97 250
ADS-MVSNet68.54 29164.38 30681.03 22588.06 18866.90 11168.01 36784.02 32557.57 33164.48 27669.87 35638.68 30089.21 31440.87 34967.89 26686.97 250
test_cas_vis1_n_192080.45 14080.61 12579.97 24878.25 33157.01 30994.04 6588.33 27979.06 7182.81 7693.70 10038.65 30291.63 28690.82 3379.81 17391.27 190
LPG-MVS_test75.82 22274.58 21379.56 25984.31 26059.37 27990.44 21189.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
LGP-MVS_train79.56 25984.31 26059.37 27989.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
VDDNet80.50 13878.26 16087.21 4186.19 22669.79 4094.48 5091.31 16360.42 31879.34 10890.91 15338.48 30596.56 11582.16 9581.05 16495.27 66
ACMP71.68 1075.58 22774.23 22079.62 25784.97 24959.64 27490.80 20289.07 25470.39 23162.95 29287.30 21138.28 30693.87 22572.89 16071.45 24285.36 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192081.66 12082.01 10580.64 23182.24 28455.09 32194.76 4686.87 29981.67 3484.40 6494.63 7338.17 30794.67 18591.98 2483.34 14692.16 174
UGNet79.87 15278.68 15483.45 16489.96 13861.51 24292.13 14190.79 18376.83 10478.85 11886.33 22338.16 30896.17 12467.93 21187.17 11592.67 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
anonymousdsp71.14 27069.37 27476.45 29672.95 35554.71 32384.19 29488.88 26161.92 30962.15 29879.77 30638.14 30991.44 29468.90 20367.45 26983.21 311
xiu_mvs_v1_base_debu82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base_debi82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
PVSNet_068.08 1571.81 26468.32 28182.27 18984.68 25162.31 22788.68 25490.31 20175.84 11557.93 32380.65 29437.85 31394.19 20769.94 19029.05 38690.31 201
Anonymous2023120667.53 30065.78 29172.79 32374.95 34847.59 35588.23 26087.32 29461.75 31258.07 32077.29 32337.79 31487.29 33342.91 34063.71 30083.48 306
ACMM69.62 1374.34 23872.73 24179.17 26484.25 26257.87 29690.36 21589.93 21763.17 29765.64 26586.04 22837.79 31494.10 20965.89 23271.52 24185.55 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas78.18 18375.77 19885.41 9687.14 21169.11 5392.96 11091.15 17166.71 26970.47 20686.07 22637.49 31696.48 11870.15 18879.80 17490.65 196
LS3D69.17 28466.40 28877.50 28291.92 9756.12 31485.12 28980.37 34546.96 36456.50 32887.51 20837.25 31793.71 22832.52 37479.40 17682.68 321
MDA-MVSNet_test_wron63.78 32060.16 32374.64 30878.15 33360.41 26483.49 29984.03 32456.17 34239.17 37671.59 35237.22 31883.24 35742.87 34248.73 35880.26 344
YYNet163.76 32160.14 32474.62 30978.06 33460.19 26983.46 30183.99 32856.18 34139.25 37571.56 35337.18 31983.34 35542.90 34148.70 35980.32 343
FMVSNet568.04 29565.66 29475.18 30584.43 25857.89 29583.54 29886.26 30561.83 31153.64 33873.30 34337.15 32085.08 34348.99 31361.77 31582.56 323
test20.0363.83 31962.65 31567.38 34870.58 36439.94 37686.57 28484.17 32363.29 29451.86 34377.30 32237.09 32182.47 36038.87 35754.13 34879.73 347
PVSNet73.49 880.05 14878.63 15584.31 13990.92 12164.97 15892.47 13291.05 17979.18 6672.43 18690.51 15937.05 32294.06 21368.06 20886.00 12893.90 122
EU-MVSNet64.01 31863.01 31267.02 34974.40 35138.86 38083.27 30386.19 30745.11 36954.27 33481.15 28836.91 32380.01 37048.79 31557.02 33882.19 327
Anonymous2023121173.08 24970.39 26581.13 21990.62 12663.33 20391.40 17590.06 21351.84 35264.46 27880.67 29336.49 32494.07 21263.83 24964.17 29585.98 273
FMVSNet172.71 25869.91 26981.10 22183.60 27065.11 15490.01 22690.32 19863.92 28763.56 28580.25 30036.35 32591.54 28954.46 29466.75 27386.64 255
Anonymous2024052976.84 20574.15 22184.88 11291.02 11864.95 15993.84 7891.09 17453.57 34773.00 17387.42 20935.91 32697.32 7469.14 20072.41 23692.36 163
WB-MVS46.23 34444.94 34650.11 36562.13 37821.23 39876.48 34955.49 38445.89 36735.78 37761.44 37335.54 32772.83 3769.96 39221.75 38756.27 380
CMPMVSbinary48.56 2166.77 30464.41 30573.84 31570.65 36350.31 34277.79 34585.73 31245.54 36844.76 36782.14 26835.40 32890.14 30763.18 25574.54 21681.07 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs667.57 29964.76 30076.00 30072.82 35753.37 32888.71 25386.78 30253.19 34857.58 32578.03 31835.33 32992.41 26755.56 29054.88 34682.21 326
PatchMatch-RL72.06 26369.98 26678.28 27489.51 14955.70 31783.49 29983.39 33361.24 31363.72 28482.76 26034.77 33093.03 24053.37 30077.59 19286.12 270
LTVRE_ROB59.60 1966.27 30663.54 30974.45 31084.00 26551.55 33567.08 37083.53 33058.78 32854.94 33280.31 29834.54 33193.23 23740.64 35168.03 26478.58 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SSC-MVS44.51 34643.35 34847.99 36961.01 38018.90 40074.12 35554.36 38543.42 37434.10 38060.02 37434.42 33270.39 3799.14 39419.57 38854.68 381
UniMVSNet_ETH3D72.74 25770.53 26479.36 26178.62 32856.64 31185.01 29089.20 24463.77 28964.84 27284.44 24434.05 33391.86 28163.94 24870.89 24689.57 212
bld_raw_dy_0_6471.59 26769.71 27277.22 28977.82 33758.12 29487.71 27073.66 36068.01 25861.90 30184.29 24633.68 33488.43 31969.91 19170.43 24785.11 291
F-COLMAP70.66 27168.44 27977.32 28686.37 22455.91 31588.00 26486.32 30356.94 33757.28 32688.07 19933.58 33592.49 26551.02 30468.37 26283.55 303
pmmvs-eth3d65.53 31262.32 31775.19 30469.39 36759.59 27582.80 31083.43 33162.52 30351.30 34772.49 34432.86 33687.16 33455.32 29150.73 35578.83 355
MDA-MVSNet-bldmvs61.54 32757.70 33173.05 32079.53 31257.00 31083.08 30781.23 34057.57 33134.91 37972.45 34532.79 33786.26 33835.81 36241.95 36975.89 364
MIMVSNet71.64 26568.44 27981.23 21681.97 28864.44 16873.05 35688.80 26569.67 24064.59 27374.79 34032.79 33787.82 32553.99 29676.35 20691.42 182
UnsupCasMVSNet_eth65.79 30963.10 31173.88 31470.71 36250.29 34381.09 32289.88 21972.58 17149.25 35574.77 34132.57 33987.43 33255.96 28941.04 37183.90 301
N_pmnet50.55 34049.11 34354.88 36177.17 3404.02 40484.36 2932.00 40248.59 36045.86 36368.82 35832.22 34082.80 35931.58 37651.38 35477.81 360
test_040264.54 31561.09 32174.92 30784.10 26460.75 25787.95 26579.71 34752.03 35052.41 34177.20 32432.21 34191.64 28523.14 38161.03 32272.36 370
DSMNet-mixed56.78 33654.44 33963.79 35263.21 37529.44 39164.43 37364.10 37842.12 37651.32 34671.60 35131.76 34275.04 37336.23 36065.20 28586.87 253
MSDG69.54 28265.73 29280.96 22685.11 24763.71 19084.19 29483.28 33456.95 33654.50 33384.03 24731.50 34396.03 13342.87 34269.13 25783.14 313
RPSCF64.24 31761.98 31971.01 33576.10 34545.00 36575.83 35275.94 35246.94 36558.96 31584.59 24131.40 34482.00 36447.76 32260.33 33086.04 271
tt080573.07 25070.73 26280.07 24378.37 33057.05 30887.78 26892.18 12661.23 31467.04 25686.49 22031.35 34594.58 18865.06 24267.12 27088.57 225
jajsoiax73.05 25171.51 25677.67 28077.46 33854.83 32288.81 25290.04 21469.13 24862.85 29483.51 25331.16 34692.75 25370.83 18169.80 24885.43 286
MVS-HIRNet60.25 33055.55 33774.35 31184.37 25956.57 31271.64 35874.11 35934.44 37945.54 36542.24 38631.11 34789.81 30940.36 35276.10 20876.67 363
SixPastTwentyTwo64.92 31361.78 32074.34 31278.74 32549.76 34483.42 30279.51 34862.86 29950.27 35077.35 32130.92 34890.49 29945.89 33047.06 36182.78 315
KD-MVS_self_test60.87 32858.60 32867.68 34666.13 37239.93 37775.63 35384.70 31957.32 33449.57 35368.45 35929.55 34982.87 35848.09 31747.94 36080.25 345
mvs_tets72.71 25871.11 25777.52 28177.41 33954.52 32488.45 25889.76 22268.76 25362.70 29583.26 25629.49 35092.71 25470.51 18769.62 25085.34 288
Anonymous20240521177.96 18775.33 20585.87 8193.73 5264.52 16394.85 4485.36 31462.52 30376.11 14390.18 16729.43 35197.29 7668.51 20677.24 20095.81 45
K. test v363.09 32259.61 32673.53 31776.26 34449.38 34983.27 30377.15 35064.35 28547.77 35972.32 34828.73 35287.79 32649.93 31036.69 37783.41 308
UnsupCasMVSNet_bld61.60 32657.71 33073.29 31968.73 36851.64 33478.61 33989.05 25557.20 33546.11 36061.96 37128.70 35388.60 31650.08 30938.90 37579.63 348
lessismore_v073.72 31672.93 35647.83 35461.72 38145.86 36373.76 34228.63 35489.81 30947.75 32331.37 38383.53 304
new-patchmatchnet59.30 33356.48 33567.79 34565.86 37344.19 36682.47 31181.77 33859.94 32343.65 37166.20 36327.67 35581.68 36539.34 35441.40 37077.50 361
ACMH63.93 1768.62 28964.81 29980.03 24585.22 24363.25 20487.72 26984.66 32060.83 31651.57 34579.43 31027.29 35694.96 17341.76 34564.84 28881.88 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-064.68 31462.17 31872.21 32876.08 34647.35 35680.67 32581.02 34156.19 34051.60 34479.66 30827.05 35788.56 31753.60 29953.63 34980.71 339
ACMH+65.35 1667.65 29864.55 30276.96 29384.59 25457.10 30788.08 26180.79 34258.59 33053.00 33981.09 28926.63 35892.95 24246.51 32661.69 31980.82 337
OpenMVS_ROBcopyleft61.12 1866.39 30562.92 31376.80 29576.51 34257.77 29789.22 24483.41 33255.48 34353.86 33777.84 31926.28 35993.95 22234.90 36568.76 25978.68 356
test_fmvs174.07 24173.69 22875.22 30378.91 32347.34 35789.06 25074.69 35863.68 29079.41 10791.59 14324.36 36087.77 32785.22 7276.26 20790.55 199
COLMAP_ROBcopyleft57.96 2062.98 32359.65 32572.98 32181.44 29153.00 33083.75 29775.53 35648.34 36248.81 35681.40 28124.14 36190.30 30032.95 37060.52 32775.65 365
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet160.16 33157.33 33268.67 34269.71 36544.13 36778.92 33884.21 32255.05 34444.63 36871.85 35023.91 36281.54 36632.63 37355.03 34580.35 342
testgi64.48 31662.87 31469.31 34071.24 35840.62 37585.49 28779.92 34665.36 27954.18 33583.49 25423.74 36384.55 34541.60 34660.79 32582.77 316
ITE_SJBPF70.43 33674.44 35047.06 36077.32 34960.16 32154.04 33683.53 25223.30 36484.01 34943.07 33961.58 32080.21 346
EG-PatchMatch MVS68.55 29065.41 29677.96 27878.69 32662.93 21289.86 23189.17 24660.55 31750.27 35077.73 32022.60 36594.06 21347.18 32472.65 23376.88 362
tmp_tt22.26 36123.75 36317.80 3785.23 40112.06 40335.26 38939.48 3962.82 39618.94 38744.20 38522.23 36624.64 39736.30 3599.31 39416.69 391
USDC67.43 30264.51 30376.19 29877.94 33555.29 31978.38 34185.00 31773.17 15748.36 35780.37 29721.23 36792.48 26652.15 30264.02 29880.81 338
Anonymous2024052162.09 32459.08 32771.10 33467.19 37048.72 35183.91 29685.23 31550.38 35647.84 35871.22 35520.74 36885.51 34246.47 32758.75 33579.06 352
test_vis1_n71.63 26670.73 26274.31 31369.63 36647.29 35886.91 28072.11 36463.21 29675.18 15490.17 16820.40 36985.76 33984.59 8074.42 21889.87 206
XVG-ACMP-BASELINE68.04 29565.53 29575.56 30174.06 35252.37 33178.43 34085.88 31062.03 30758.91 31681.21 28720.38 37091.15 29560.69 27068.18 26383.16 312
test_fmvs1_n72.69 26071.92 25174.99 30671.15 36047.08 35987.34 27675.67 35363.48 29278.08 12491.17 15020.16 37187.87 32484.65 7975.57 21190.01 205
AllTest61.66 32558.06 32972.46 32579.57 31051.42 33780.17 33168.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
TestCases72.46 32579.57 31051.42 33768.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
test_vis1_rt59.09 33457.31 33364.43 35168.44 36946.02 36383.05 30848.63 39151.96 35149.57 35363.86 36716.30 37480.20 36971.21 17962.79 30467.07 376
pmmvs355.51 33751.50 34267.53 34757.90 38250.93 34080.37 32773.66 36040.63 37744.15 37064.75 36616.30 37478.97 37144.77 33640.98 37372.69 368
test_fmvs265.78 31064.84 29868.60 34366.54 37141.71 37283.27 30369.81 37054.38 34567.91 24384.54 24315.35 37681.22 36775.65 14266.16 27782.88 314
TDRefinement55.28 33851.58 34166.39 35059.53 38146.15 36276.23 35072.80 36244.60 37042.49 37276.28 33315.29 37782.39 36133.20 36943.75 36670.62 372
new_pmnet49.31 34146.44 34457.93 35662.84 37640.74 37468.47 36662.96 38036.48 37835.09 37857.81 37514.97 37872.18 37732.86 37146.44 36260.88 378
TinyColmap60.32 32956.42 33672.00 33278.78 32453.18 32978.36 34275.64 35452.30 34941.59 37475.82 33714.76 37988.35 32035.84 36154.71 34774.46 366
EGC-MVSNET42.35 34738.09 35055.11 36074.57 34946.62 36171.63 35955.77 3830.04 3970.24 39862.70 36914.24 38074.91 37417.59 38646.06 36343.80 383
LF4IMVS54.01 33952.12 34059.69 35562.41 37739.91 37868.59 36568.28 37442.96 37544.55 36975.18 33814.09 38168.39 38141.36 34851.68 35370.78 371
PM-MVS59.40 33256.59 33467.84 34463.63 37441.86 37176.76 34763.22 37959.01 32751.07 34872.27 34911.72 38283.25 35661.34 26650.28 35778.39 358
mvsany_test348.86 34246.35 34556.41 35746.00 39031.67 38762.26 37547.25 39243.71 37345.54 36568.15 36010.84 38364.44 38957.95 28235.44 38073.13 367
ambc69.61 33861.38 37941.35 37349.07 38785.86 31150.18 35266.40 36210.16 38488.14 32245.73 33144.20 36579.32 351
FPMVS45.64 34543.10 34953.23 36351.42 38736.46 38164.97 37271.91 36529.13 38327.53 38361.55 3729.83 38565.01 38716.00 38955.58 34358.22 379
ANet_high40.27 35135.20 35455.47 35934.74 39834.47 38463.84 37471.56 36748.42 36118.80 38841.08 3879.52 38664.45 38820.18 3848.66 39567.49 375
test_method38.59 35235.16 35548.89 36754.33 38321.35 39745.32 38853.71 3867.41 39428.74 38251.62 3788.70 38752.87 39233.73 36632.89 38272.47 369
EMVS23.76 36023.20 36425.46 37741.52 39616.90 40260.56 37838.79 39814.62 3928.99 39620.24 3957.35 38845.82 3957.25 3969.46 39313.64 393
test_f46.58 34343.45 34755.96 35845.18 39132.05 38661.18 37649.49 39033.39 38042.05 37362.48 3707.00 38965.56 38547.08 32543.21 36870.27 373
test_fmvs356.82 33554.86 33862.69 35453.59 38435.47 38275.87 35165.64 37743.91 37255.10 33171.43 3546.91 39074.40 37568.64 20552.63 35078.20 359
E-PMN24.61 35824.00 36226.45 37643.74 39318.44 40160.86 37739.66 39515.11 3919.53 39522.10 3926.52 39146.94 3948.31 39510.14 39213.98 392
DeepMVS_CXcopyleft34.71 37551.45 38624.73 39528.48 40131.46 38217.49 39152.75 3775.80 39242.60 39618.18 38519.42 38936.81 388
Gipumacopyleft34.91 35431.44 35745.30 37070.99 36139.64 37919.85 39272.56 36320.10 38816.16 39221.47 3935.08 39371.16 37813.07 39043.70 36725.08 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test140.50 34937.31 35250.09 36651.88 38535.27 38359.45 38052.59 38721.64 38626.12 38457.80 3764.56 39466.56 38322.64 38239.09 37448.43 382
LCM-MVSNet40.54 34835.79 35354.76 36236.92 39730.81 38851.41 38569.02 37122.07 38524.63 38545.37 3824.56 39465.81 38433.67 36734.50 38167.67 374
PMMVS237.93 35333.61 35650.92 36446.31 38924.76 39460.55 37950.05 38828.94 38420.93 38647.59 3794.41 39665.13 38625.14 38018.55 39062.87 377
test_vis3_rt40.46 35037.79 35148.47 36844.49 39233.35 38566.56 37132.84 39932.39 38129.65 38139.13 3893.91 39768.65 38050.17 30740.99 37243.40 384
testf132.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
APD_test232.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
PMVScopyleft26.43 2231.84 35728.16 36042.89 37125.87 40027.58 39250.92 38649.78 38921.37 38714.17 39340.81 3882.01 40066.62 3829.61 39338.88 37634.49 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 35919.77 36538.09 37434.56 39926.92 39326.57 39038.87 39711.73 39311.37 39427.44 3901.37 40150.42 39311.41 39114.60 39136.93 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 36310.95 36612.33 37948.05 38819.89 39925.89 3911.92 4033.58 3953.12 3971.37 3970.64 40215.77 3986.23 3977.77 3961.35 394
test1236.92 3669.21 3690.08 3800.03 4030.05 40581.65 3170.01 4050.02 3990.14 4000.85 3990.03 4030.02 3990.12 3990.00 3980.16 395
testmvs7.23 3659.62 3680.06 3810.04 4020.02 40684.98 2910.02 4040.03 3980.18 3991.21 3980.01 4040.02 3990.14 3980.01 3970.13 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
ab-mvs-re7.91 36410.55 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.95 620.00 4050.00 4010.00 4000.00 3980.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
WAC-MVS49.45 34731.56 377
FOURS193.95 4561.77 23693.96 6891.92 13462.14 30686.57 42
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
eth-test20.00 404
eth-test0.00 404
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 1995.36 1396.47 25
save fliter93.84 4867.89 8595.05 3992.66 10778.19 82
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2594.90 2196.51 21
GSMVS94.68 87
test_part296.29 1968.16 7990.78 14
MTGPAbinary92.23 120
MTMP93.77 8232.52 400
gm-plane-assit88.42 17667.04 10878.62 7991.83 13897.37 7076.57 137
test9_res89.41 3794.96 1895.29 63
agg_prior286.41 6494.75 2995.33 59
agg_prior94.16 4366.97 11093.31 8284.49 6396.75 109
test_prior467.18 10493.92 71
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10695.05 74
旧先验292.00 15259.37 32687.54 3693.47 23475.39 144
新几何291.41 173
无先验92.71 11992.61 11162.03 30797.01 9166.63 22293.97 117
原ACMM292.01 149
testdata296.09 12761.26 267
testdata189.21 24577.55 95
plane_prior786.94 21461.51 242
plane_prior591.31 16395.55 15676.74 13578.53 18688.39 230
plane_prior489.14 181
plane_prior361.95 23479.09 6972.53 182
plane_prior293.13 10378.81 76
plane_prior187.15 210
plane_prior62.42 22293.85 7579.38 6178.80 183
n20.00 406
nn0.00 406
door-mid66.01 376
test1193.01 94
door66.57 375
HQP5-MVS63.66 194
HQP-NCC87.54 20194.06 6179.80 5474.18 162
ACMP_Plane87.54 20194.06 6179.80 5474.18 162
BP-MVS77.63 132
HQP4-MVS74.18 16295.61 15188.63 223
HQP3-MVS91.70 14978.90 181
NP-MVS87.41 20463.04 20890.30 164
ACMMP++_ref71.63 239
ACMMP++69.72 249