This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS90.38 591.87 185.88 8992.83 7964.03 19393.06 11294.33 5482.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5272.48 18792.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
baseline283.68 10283.42 9384.48 14587.37 22366.00 14290.06 23995.93 879.71 6669.08 24290.39 17577.92 696.28 13278.91 13881.38 18091.16 210
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37494.75 3378.67 13590.85 16777.91 794.56 20672.25 18793.74 4595.36 65
gg-mvs-nofinetune77.18 21774.31 23885.80 9491.42 12468.36 7971.78 37994.72 3449.61 37977.12 15045.92 40577.41 893.98 23467.62 23193.16 5595.05 83
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4671.65 21792.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
test_241102_ONE96.45 1269.38 5594.44 4671.65 21792.11 797.05 776.79 999.11 6
test_0728_THIRD72.48 18790.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 5968.77 26690.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15895.15 3693.84 6578.17 9585.93 5394.80 7675.80 1398.21 3489.38 4188.78 10696.59 19
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 31196.72 994.41 4886.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23090.66 20679.37 7381.20 9793.67 10874.73 1596.55 12390.88 3592.00 6995.82 48
MVSTER82.47 12282.05 11883.74 16692.68 8669.01 6491.90 16593.21 9479.83 6272.14 20585.71 24774.72 1694.72 19675.72 15772.49 25087.50 256
test_241102_TWO94.41 4871.65 21792.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
WBMVS81.67 13580.98 13683.72 17093.07 7369.40 5394.33 5493.05 10376.84 11672.05 20784.14 26274.49 1893.88 23972.76 18168.09 27987.88 252
test_one_060196.32 1869.74 4994.18 5771.42 22890.67 1996.85 1674.45 19
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5594.91 7374.11 2098.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20395.04 4095.19 1986.74 791.53 1595.15 6673.86 2197.58 5993.38 1492.00 6996.28 37
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4271.92 20390.55 2096.93 1173.77 2299.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3896.76 894.33 5471.92 20391.89 1197.11 673.77 22
ET-MVSNet_ETH3D84.01 9283.15 10286.58 7090.78 14170.89 2894.74 4794.62 4081.44 4058.19 33793.64 10973.64 2492.35 28682.66 10578.66 20496.50 27
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1281.52 3681.50 9392.12 14373.58 2596.28 13284.37 9085.20 14295.51 58
CSCG86.87 3686.26 4688.72 1795.05 3170.79 2993.83 8295.33 1668.48 27077.63 14394.35 9173.04 2698.45 3084.92 8493.71 4796.92 14
tttt051779.50 17578.53 17682.41 20387.22 22661.43 26089.75 24894.76 3269.29 25867.91 26088.06 21372.92 2795.63 16362.91 27573.90 24190.16 221
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1089.33 185.77 5496.26 3072.84 2899.38 192.64 2095.93 997.08 11
thisisatest051583.41 10582.49 11486.16 8389.46 16668.26 8393.54 9594.70 3674.31 14875.75 16090.92 16572.62 2996.52 12469.64 20881.50 17993.71 143
thisisatest053081.15 14380.07 14984.39 14888.26 19965.63 15191.40 18494.62 4071.27 23070.93 22089.18 19472.47 3096.04 14665.62 25476.89 22191.49 199
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22493.43 8784.06 1486.20 4990.17 18172.42 3196.98 10193.09 1695.92 1097.29 7
testing1186.71 4386.44 4487.55 4093.54 5971.35 2193.65 8995.58 1081.36 4380.69 10592.21 14272.30 3296.46 12885.18 8083.43 15894.82 95
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23093.55 8082.89 2191.29 1692.89 12472.27 3396.03 14787.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet81.79 13481.52 12582.61 19788.77 18660.21 28693.02 11693.66 7668.52 26972.90 19190.39 17572.19 3494.96 18874.93 16579.29 19892.67 173
CostFormer82.33 12481.15 12985.86 9189.01 18068.46 7782.39 33093.01 10575.59 13180.25 11281.57 29472.03 3594.96 18879.06 13677.48 21594.16 124
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4482.43 2688.90 3296.35 2771.89 3698.63 2688.76 4896.40 696.06 41
testing9986.01 5385.47 6187.63 3893.62 5571.25 2393.47 10195.23 1880.42 5480.60 10791.95 14771.73 3796.50 12680.02 12782.22 17095.13 79
MVSMamba_PlusPlus84.97 7483.65 8488.93 1490.17 15174.04 887.84 28292.69 11762.18 32281.47 9587.64 21971.47 3896.28 13284.69 8694.74 3196.47 28
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3084.83 1189.07 3196.80 1970.86 3999.06 1592.64 2095.71 1196.12 40
IB-MVS77.80 482.18 12680.46 14787.35 4589.14 17770.28 3595.59 2695.17 2178.85 8570.19 23085.82 24570.66 4097.67 5172.19 19066.52 29194.09 128
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 9895.08 2580.26 5680.53 10891.93 14870.43 4196.51 12580.32 12582.13 17295.37 63
ETVMVS84.22 8883.71 8285.76 9692.58 8968.25 8592.45 14195.53 1479.54 6979.46 12191.64 15570.29 4294.18 22169.16 21682.76 16694.84 92
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4398.91 1896.83 195.06 1796.76 15
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 23264.37 18394.30 5588.45 29580.51 5192.70 496.86 1569.98 4497.15 8995.83 488.08 11494.65 102
baseline181.84 13381.03 13484.28 15391.60 11866.62 12891.08 20491.66 16881.87 3274.86 17291.67 15469.98 4494.92 19171.76 19364.75 30691.29 208
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22964.19 19094.41 5288.14 30480.24 5992.54 596.97 1069.52 4697.17 8595.89 388.51 10994.56 105
testing22285.18 6984.69 7486.63 6792.91 7769.91 4292.61 13395.80 980.31 5580.38 11092.27 13968.73 4795.19 18275.94 15583.27 16094.81 96
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 7979.30 7487.07 4295.25 6168.43 4896.93 10987.87 5384.33 15196.65 17
PAPM85.89 5785.46 6287.18 4988.20 20372.42 1592.41 14292.77 11382.11 3080.34 11193.07 11968.27 4995.02 18578.39 14393.59 4994.09 128
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8171.87 20885.52 5795.33 5468.19 5097.27 8089.09 4594.90 2295.25 76
test_894.19 4067.19 11194.15 6193.42 8871.87 20885.38 6095.35 5368.19 5096.95 106
TEST994.18 4167.28 10994.16 5993.51 8171.75 21485.52 5795.33 5468.01 5297.27 80
test_prior295.10 3875.40 13585.25 6395.61 4567.94 5387.47 5994.77 26
WTY-MVS86.32 4785.81 5687.85 2992.82 8169.37 5795.20 3495.25 1782.71 2381.91 9094.73 7767.93 5497.63 5679.55 13082.25 16996.54 22
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13694.84 4593.78 6669.35 25788.39 3396.34 2867.74 5597.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 23163.55 21093.69 8791.08 19484.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9594.26 118
tpm279.80 17177.95 18585.34 11088.28 19868.26 8381.56 33691.42 17770.11 24877.59 14580.50 31267.40 5794.26 21967.34 23377.35 21693.51 148
miper_enhance_ethall78.86 18877.97 18481.54 22788.00 20865.17 16291.41 18289.15 26675.19 13868.79 24983.98 26567.17 5892.82 26572.73 18265.30 29786.62 276
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 6970.78 24186.25 4796.44 2666.98 5997.79 4788.68 4994.56 3495.28 72
HY-MVS76.49 584.28 8483.36 9687.02 5592.22 9567.74 9784.65 30894.50 4379.15 7882.23 8887.93 21466.88 6096.94 10780.53 12382.20 17196.39 33
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14095.26 3294.84 2987.09 588.06 3494.53 8266.79 6197.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1487.63 2893.86 4894.41 5294.18 5772.76 18286.21 4896.51 2466.64 6297.88 4490.08 3994.04 39
FIs79.47 17779.41 16379.67 27485.95 25059.40 29791.68 17793.94 6378.06 9668.96 24688.28 20466.61 6391.77 29966.20 24874.99 23087.82 253
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 3984.42 1286.74 4596.20 3166.56 6498.76 2489.03 4794.56 3495.92 46
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7387.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3396.47 28
reproduce_monomvs79.49 17679.11 17080.64 24892.91 7761.47 25991.17 20293.28 9283.09 2064.04 29982.38 28166.19 6694.57 20381.19 11957.71 35485.88 293
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12276.86 11587.90 3595.76 4166.17 6797.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet_NR-MVSNet78.15 20377.55 19079.98 26584.46 27760.26 28492.25 14593.20 9677.50 10868.88 24786.61 23566.10 6892.13 29166.38 24562.55 32387.54 255
CHOSEN 280x42077.35 21576.95 20378.55 28987.07 23062.68 23469.71 38582.95 35868.80 26571.48 21687.27 22766.03 6984.00 36976.47 15382.81 16488.95 236
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 2895.78 4065.94 7099.10 992.99 1793.91 4296.58 21
segment_acmp65.94 70
Vis-MVSNet (Re-imp)79.24 18079.57 15878.24 29488.46 19152.29 34990.41 22789.12 26974.24 14969.13 24091.91 14965.77 7290.09 32659.00 29888.09 11392.33 182
FC-MVSNet-test77.99 20578.08 18277.70 29784.89 27055.51 33590.27 23393.75 7276.87 11466.80 27987.59 22065.71 7390.23 32362.89 27673.94 23987.37 260
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6274.18 15091.74 1296.67 2165.61 7498.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test1287.09 5294.60 3668.86 6792.91 10982.67 8765.44 7597.55 6293.69 4894.84 92
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 26262.55 23594.26 5789.78 23983.81 1787.78 3696.33 2965.33 7696.98 10194.40 1187.55 12094.95 87
旧先验191.94 10760.74 27491.50 17494.36 8765.23 7791.84 7194.55 106
1112_ss80.56 15579.83 15582.77 19188.65 18760.78 27092.29 14488.36 29772.58 18572.46 20194.95 6965.09 7893.42 25066.38 24577.71 20994.10 127
MVSFormer83.75 9982.88 10786.37 7889.24 17571.18 2489.07 26290.69 20365.80 28987.13 4094.34 9264.99 7992.67 27372.83 17891.80 7295.27 73
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11082.70 2487.13 4095.27 5964.99 7995.80 15289.34 4291.80 7295.93 45
tpmrst80.57 15479.14 16984.84 12590.10 15268.28 8281.70 33489.72 24677.63 10675.96 15979.54 32664.94 8192.71 27075.43 15977.28 21893.55 147
ZD-MVS96.63 965.50 15693.50 8370.74 24285.26 6295.19 6564.92 8297.29 7687.51 5793.01 56
testing370.38 29370.83 27869.03 36085.82 25443.93 39190.72 21890.56 20968.06 27160.24 32586.82 23464.83 8384.12 36526.33 40164.10 31379.04 370
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5288.22 20269.35 5893.74 8691.89 15381.47 3780.10 11391.45 15764.80 8496.35 13087.23 6387.69 11895.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth77.60 21176.44 20881.09 24185.70 25764.41 18190.65 22088.64 29172.31 19367.37 27282.52 27964.77 8592.64 27670.67 20265.30 29786.24 281
Test_1112_low_res79.56 17478.60 17582.43 20088.24 20160.39 28392.09 15387.99 30872.10 20171.84 20987.42 22364.62 8693.04 25465.80 25277.30 21793.85 141
test250683.29 10782.92 10684.37 14988.39 19563.18 22192.01 15891.35 17977.66 10478.49 13691.42 15864.58 8795.09 18473.19 17489.23 10094.85 89
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6083.82 1683.49 7696.19 3264.53 8898.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS87.11 3486.27 4589.62 897.79 176.27 494.96 4394.49 4478.74 8983.87 7592.94 12264.34 8996.94 10775.19 16194.09 3895.66 52
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 20069.07 6293.04 11491.76 16081.27 4480.84 10492.07 14564.23 9096.06 14584.98 8387.43 12295.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cl2277.94 20776.78 20481.42 22987.57 21764.93 17090.67 21988.86 28272.45 18967.63 26682.68 27864.07 9192.91 26371.79 19165.30 29786.44 277
tpm78.58 19677.03 20083.22 18485.94 25264.56 17283.21 32391.14 19078.31 9373.67 18479.68 32464.01 9292.09 29366.07 24971.26 26093.03 164
CDS-MVSNet81.43 14080.74 13883.52 17586.26 24464.45 17792.09 15390.65 20775.83 12973.95 18389.81 18863.97 9392.91 26371.27 19682.82 16393.20 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test84.16 9083.20 9987.05 5491.56 12069.82 4589.99 24492.05 14277.77 10182.84 8386.57 23663.93 9496.09 14174.91 16689.18 10295.25 76
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16193.59 9392.58 12466.54 28486.17 5095.88 3963.83 9597.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mvs_anonymous81.36 14179.99 15285.46 10490.39 14768.40 7886.88 29790.61 20874.41 14570.31 22984.67 25663.79 9692.32 28873.13 17585.70 13995.67 51
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 15366.59 13093.77 8491.73 16177.43 11077.08 15289.81 18863.77 9796.97 10479.67 12988.21 11292.60 175
baseline85.01 7284.44 7686.71 6488.33 19768.73 7190.24 23591.82 15981.05 4781.18 9892.50 13163.69 9896.08 14484.45 8986.71 13295.32 68
myMVS_eth3d72.58 28172.74 25972.10 34887.87 21149.45 36688.07 27689.01 27572.91 17863.11 30888.10 21063.63 9985.54 35932.73 39369.23 27081.32 349
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11193.89 7592.83 11270.90 23783.09 8195.28 5763.62 10097.36 7180.63 12294.18 3794.84 92
HyFIR lowres test81.03 14879.56 15985.43 10587.81 21468.11 8990.18 23690.01 23470.65 24372.95 19086.06 24363.61 10194.50 21075.01 16479.75 19393.67 144
sasdasda86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
canonicalmvs86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
c3_l76.83 22675.47 22180.93 24585.02 26864.18 19190.39 22888.11 30571.66 21666.65 28081.64 29263.58 10492.56 27769.31 21462.86 32086.04 287
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13396.09 1793.87 6477.73 10284.01 7495.66 4363.39 10597.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 31662.33 24093.84 8088.81 28383.50 1987.00 4396.01 3763.36 10696.93 10994.04 1287.29 12394.61 104
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8463.56 20991.76 17394.81 3179.65 6777.87 14094.09 9963.35 10797.90 4279.35 13279.36 19690.74 214
UniMVSNet (Re)77.58 21276.78 20479.98 26584.11 28360.80 26991.76 17393.17 9876.56 12369.93 23684.78 25563.32 10892.36 28564.89 26162.51 32586.78 271
PVSNet_BlendedMVS83.38 10683.43 9183.22 18493.76 5067.53 10494.06 6393.61 7779.13 7981.00 10285.14 25163.19 10997.29 7687.08 6573.91 24084.83 310
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7782.34 2881.00 10293.08 11863.19 10997.29 7687.08 6591.38 8094.13 126
UWE-MVS80.81 15281.01 13580.20 25889.33 16957.05 32491.91 16494.71 3575.67 13075.01 17189.37 19263.13 11191.44 31167.19 23682.80 16592.12 193
PAPM_NR82.97 11481.84 12286.37 7894.10 4466.76 12587.66 28692.84 11169.96 25074.07 18193.57 11163.10 11297.50 6470.66 20390.58 9094.85 89
nrg03080.93 14979.86 15484.13 15683.69 28868.83 6893.23 10891.20 18575.55 13275.06 17088.22 20963.04 11394.74 19581.88 11066.88 28888.82 239
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 22463.54 21194.74 4790.02 23382.52 2590.14 2596.92 1362.93 11497.84 4695.28 882.26 16893.07 163
MGCFI-Net85.59 6485.73 5985.17 11791.41 12762.44 23692.87 12091.31 18079.65 6786.99 4495.14 6762.90 11596.12 13987.13 6484.13 15696.96 13
EI-MVSNet-UG-set83.14 11182.96 10383.67 17392.28 9363.19 22091.38 18894.68 3779.22 7676.60 15593.75 10562.64 11697.76 4878.07 14578.01 20790.05 223
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18566.64 12792.15 14993.68 7581.07 4676.91 15393.64 10962.59 11798.44 3185.50 7692.84 5994.03 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS84.84 7584.88 7184.69 13591.30 12962.36 23993.85 7792.04 14379.45 7079.33 12494.28 9562.42 11896.35 13080.05 12691.25 8395.38 62
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25663.58 20893.79 8389.32 25781.42 4190.21 2396.91 1462.41 11997.67 5194.48 1080.56 18792.90 169
CS-MVS85.80 5886.65 4383.27 18392.00 10658.92 30495.31 3191.86 15579.97 6184.82 6595.40 5262.26 12095.51 17386.11 7392.08 6895.37 63
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 6993.76 6979.08 8178.88 13193.99 10262.25 12198.15 3685.93 7591.15 8494.15 125
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15495.39 3095.10 2271.77 21385.69 5696.52 2362.07 12298.77 2386.06 7495.60 1296.03 43
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8864.27 18893.24 10792.27 13173.13 17279.63 11994.43 8561.90 12397.17 8585.00 8292.56 6194.06 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
jason86.40 4586.17 4987.11 5186.16 24770.54 3295.71 2492.19 13882.00 3184.58 6794.34 9261.86 12495.53 17287.76 5490.89 8695.27 73
jason: jason.
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29963.48 21394.03 6889.46 25181.69 3489.86 2696.74 2061.85 12597.75 4994.74 982.01 17492.81 171
SPE-MVS-test86.14 5187.01 3683.52 17592.63 8759.36 30095.49 2791.92 15080.09 6085.46 5995.53 4961.82 12695.77 15586.77 6993.37 5295.41 60
PAPR85.15 7084.47 7587.18 4996.02 2568.29 8191.85 16893.00 10776.59 12279.03 12795.00 6861.59 12797.61 5878.16 14489.00 10595.63 53
IS-MVSNet80.14 16479.41 16382.33 20487.91 20960.08 28891.97 16288.27 30172.90 18071.44 21791.73 15361.44 12893.66 24562.47 27986.53 13493.24 155
cl____76.07 23374.67 22980.28 25585.15 26461.76 25290.12 23788.73 28671.16 23165.43 28581.57 29461.15 12992.95 25866.54 24262.17 32786.13 285
DIV-MVS_self_test76.07 23374.67 22980.28 25585.14 26561.75 25390.12 23788.73 28671.16 23165.42 28681.60 29361.15 12992.94 26266.54 24262.16 32986.14 283
EI-MVSNet78.97 18578.22 18081.25 23285.33 26062.73 23389.53 25293.21 9472.39 19272.14 20590.13 18460.99 13194.72 19667.73 23072.49 25086.29 279
IterMVS-LS76.49 22975.18 22680.43 25284.49 27662.74 23290.64 22188.80 28472.40 19165.16 28881.72 29060.98 13292.27 28967.74 22964.65 30886.29 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 32663.50 21292.79 12288.73 28680.46 5289.84 2796.65 2260.96 13397.57 6193.80 1380.14 18992.53 178
ETV-MVS86.01 5386.11 5085.70 9990.21 15067.02 11893.43 10391.92 15081.21 4584.13 7394.07 10160.93 13495.63 16389.28 4389.81 9694.46 114
tpm cat175.30 24972.21 26784.58 14188.52 18867.77 9678.16 36288.02 30761.88 32868.45 25576.37 35160.65 13594.03 23253.77 31774.11 23791.93 195
TAMVS80.37 15979.45 16283.13 18685.14 26563.37 21491.23 19790.76 20274.81 14372.65 19588.49 20060.63 13692.95 25869.41 21281.95 17593.08 162
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 15093.89 7593.41 8973.75 16179.94 11594.68 7960.61 13798.03 3882.63 10693.72 4694.52 110
thres100view90078.37 19977.01 20182.46 19991.89 11163.21 21991.19 20196.33 172.28 19570.45 22687.89 21560.31 13895.32 17745.16 35277.58 21288.83 237
thres600view778.00 20476.66 20682.03 21991.93 10863.69 20491.30 19496.33 172.43 19070.46 22587.89 21560.31 13894.92 19142.64 36476.64 22287.48 257
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15575.14 692.07 15592.32 12981.87 3275.68 16288.27 20560.18 14098.60 2780.46 12490.27 9494.96 86
h-mvs3383.01 11382.56 11384.35 15089.34 16762.02 24692.72 12593.76 6981.45 3882.73 8592.25 14160.11 14197.13 9087.69 5562.96 31993.91 137
hse-mvs281.12 14681.11 13381.16 23586.52 23957.48 31989.40 25591.16 18781.45 3882.73 8590.49 17360.11 14194.58 20187.69 5560.41 34691.41 202
tfpn200view978.79 19177.43 19282.88 18992.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21288.83 237
thres40078.68 19377.43 19282.43 20092.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21287.48 257
diffmvspermissive84.28 8483.83 8185.61 10187.40 22268.02 9190.88 21089.24 26080.54 5081.64 9292.52 13059.83 14594.52 20987.32 6185.11 14394.29 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS84.66 7882.86 10890.06 290.93 13674.56 787.91 28095.54 1368.55 26872.35 20494.71 7859.78 14698.90 2081.29 11894.69 3296.74 16
thres20079.66 17278.33 17783.66 17492.54 9065.82 14893.06 11296.31 374.90 14273.30 18788.66 19859.67 14795.61 16547.84 34178.67 20389.56 232
Effi-MVS+83.82 9682.76 10986.99 5689.56 16369.40 5391.35 19186.12 32972.59 18483.22 8092.81 12859.60 14896.01 14981.76 11187.80 11795.56 56
eth_miper_zixun_eth75.96 24074.40 23780.66 24784.66 27263.02 22389.28 25788.27 30171.88 20765.73 28381.65 29159.45 14992.81 26668.13 22460.53 34386.14 283
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11967.53 10491.79 17093.49 8474.93 14184.61 6695.30 5659.42 15097.92 4186.13 7294.92 2094.94 88
GST-MVS84.63 7984.29 7885.66 10092.82 8165.27 15993.04 11493.13 10073.20 17078.89 12894.18 9859.41 15197.85 4581.45 11492.48 6393.86 140
UA-Net80.02 16779.65 15781.11 23789.33 16957.72 31586.33 30189.00 27877.44 10981.01 10189.15 19559.33 15295.90 15061.01 28684.28 15389.73 229
NR-MVSNet76.05 23674.59 23280.44 25182.96 29762.18 24490.83 21291.73 16177.12 11260.96 32186.35 23859.28 15391.80 29860.74 28761.34 33887.35 261
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 12465.59 15291.54 18092.51 12674.56 14480.62 10695.64 4459.15 15497.00 9786.94 6793.80 4394.07 130
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
reproduce-ours83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
our_new_method83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16793.50 9893.19 9772.19 19779.22 12594.93 7159.04 15797.67 5181.55 11292.21 6494.49 113
mamv465.18 33267.43 30258.44 37877.88 35849.36 36969.40 38670.99 39148.31 38457.78 34385.53 24859.01 15851.88 41673.67 17364.32 31074.07 386
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10568.97 6695.04 4092.70 11579.04 8481.50 9396.50 2558.98 15996.78 11583.49 10093.93 4196.29 35
Patchmatch-test65.86 32760.94 34280.62 25083.75 28758.83 30558.91 40575.26 37944.50 39350.95 37077.09 34558.81 16087.90 34235.13 38464.03 31495.12 80
reproduce_model83.15 11082.96 10383.73 16892.02 10259.74 29290.37 22992.08 14163.70 30682.86 8295.48 5058.62 16197.17 8583.06 10388.42 11094.26 118
EPNet_dtu78.80 19079.26 16777.43 30288.06 20549.71 36491.96 16391.95 14977.67 10376.56 15691.28 16258.51 16290.20 32456.37 30680.95 18392.39 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
kuosan60.86 35060.24 34362.71 37581.57 31046.43 38375.70 37285.88 33157.98 34948.95 37769.53 37958.42 16376.53 39128.25 40035.87 39865.15 399
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 30263.72 20191.37 18983.99 35181.42 4177.68 14295.74 4258.37 16497.58 5993.38 1486.87 12693.00 166
EC-MVSNet84.53 8085.04 6983.01 18789.34 16761.37 26194.42 5191.09 19277.91 9983.24 7794.20 9758.37 16495.40 17485.35 7791.41 7992.27 188
VNet86.20 4985.65 6087.84 3093.92 4769.99 3895.73 2395.94 778.43 9286.00 5293.07 11958.22 16697.00 9785.22 7884.33 15196.52 23
TESTMET0.1,182.41 12381.98 12183.72 17088.08 20463.74 19992.70 12793.77 6879.30 7477.61 14487.57 22158.19 16794.08 22573.91 17286.68 13393.33 154
原ACMM184.42 14693.21 6764.27 18893.40 9065.39 29279.51 12092.50 13158.11 16896.69 11765.27 25993.96 4092.32 183
sam_mvs157.85 16994.68 99
CR-MVSNet73.79 26570.82 28082.70 19483.15 29567.96 9270.25 38284.00 34973.67 16569.97 23472.41 36757.82 17089.48 33152.99 32073.13 24490.64 216
Patchmtry67.53 31963.93 32778.34 29082.12 30664.38 18268.72 38784.00 34948.23 38559.24 33072.41 36757.82 17089.27 33246.10 34956.68 35981.36 348
patchmatchnet-post67.62 38457.62 17290.25 319
PCF-MVS73.15 979.29 17977.63 18984.29 15286.06 24865.96 14487.03 29391.10 19169.86 25269.79 23790.64 16857.54 17396.59 11964.37 26482.29 16790.32 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+81.14 14480.01 15184.51 14490.24 14965.86 14694.12 6289.15 26673.81 16075.37 16888.26 20657.26 17494.53 20866.97 23984.92 14493.15 159
miper_lstm_enhance73.05 27071.73 27377.03 30783.80 28658.32 31081.76 33288.88 28069.80 25361.01 32078.23 33457.19 17587.51 35065.34 25859.53 34885.27 307
PatchT69.11 30365.37 31780.32 25382.07 30763.68 20567.96 39287.62 31250.86 37669.37 23865.18 38757.09 17688.53 33741.59 36766.60 29088.74 240
testdata81.34 23189.02 17957.72 31589.84 23858.65 34785.32 6194.09 9957.03 17793.28 25169.34 21390.56 9193.03 164
PatchmatchNetpermissive77.46 21374.63 23185.96 8789.55 16470.35 3479.97 35389.55 24972.23 19670.94 21976.91 34757.03 17792.79 26854.27 31481.17 18194.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_yl84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
DCV-MVSNet84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
region2R84.36 8284.03 8085.36 10993.54 5964.31 18693.43 10392.95 10872.16 20078.86 13294.84 7556.97 18197.53 6381.38 11692.11 6794.24 120
新几何184.73 13292.32 9264.28 18791.46 17659.56 34379.77 11792.90 12356.95 18296.57 12163.40 26992.91 5893.34 152
WR-MVS76.76 22775.74 21979.82 27184.60 27362.27 24392.60 13492.51 12676.06 12667.87 26385.34 24956.76 18390.24 32262.20 28063.69 31886.94 269
HPM-MVScopyleft83.25 10882.95 10584.17 15592.25 9462.88 23090.91 20791.86 15570.30 24677.12 15093.96 10356.75 18496.28 13282.04 10991.34 8293.34 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss82.71 11982.38 11683.73 16889.25 17259.58 29592.24 14694.89 2877.96 9779.86 11692.38 13656.70 18597.05 9277.26 14980.86 18494.55 106
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18393.50 9893.15 9972.19 19778.85 13394.86 7456.69 18697.45 6581.55 11292.20 6594.02 133
FMVSNet377.73 21076.04 21482.80 19091.20 13268.99 6591.87 16691.99 14773.35 16967.04 27483.19 27356.62 18792.14 29059.80 29469.34 26787.28 263
Patchmatch-RL test68.17 31364.49 32479.19 28271.22 38153.93 34370.07 38471.54 39069.22 25956.79 34762.89 39256.58 18888.61 33469.53 21152.61 36995.03 85
dongtai55.18 36155.46 36054.34 38676.03 36836.88 40476.07 36984.61 34351.28 37343.41 39464.61 39056.56 18967.81 40418.09 40928.50 40958.32 402
test_post23.01 41556.49 19092.67 273
RPMNet70.42 29265.68 31384.63 13983.15 29567.96 9270.25 38290.45 21046.83 38869.97 23465.10 38856.48 19195.30 18035.79 38373.13 24490.64 216
DU-MVS76.86 22375.84 21779.91 26882.96 29760.26 28491.26 19591.54 17176.46 12468.88 24786.35 23856.16 19292.13 29166.38 24562.55 32387.35 261
Baseline_NR-MVSNet73.99 26272.83 25777.48 30180.78 31759.29 30191.79 17084.55 34468.85 26468.99 24580.70 30856.16 19292.04 29462.67 27760.98 34081.11 351
API-MVS82.28 12580.53 14587.54 4196.13 2270.59 3193.63 9191.04 19865.72 29175.45 16792.83 12756.11 19498.89 2164.10 26589.75 9993.15 159
MTAPA83.91 9483.38 9585.50 10391.89 11165.16 16381.75 33392.23 13275.32 13680.53 10895.21 6456.06 19597.16 8884.86 8592.55 6294.18 122
JIA-IIPM66.06 32662.45 33676.88 31181.42 31354.45 34257.49 40688.67 28949.36 38063.86 30146.86 40456.06 19590.25 31949.53 33068.83 27385.95 290
v14876.19 23174.47 23681.36 23080.05 32864.44 17891.75 17590.23 22473.68 16467.13 27380.84 30755.92 19793.86 24268.95 21961.73 33485.76 297
WR-MVS_H70.59 29069.94 28772.53 34281.03 31451.43 35487.35 29092.03 14667.38 27760.23 32680.70 30855.84 19883.45 37346.33 34858.58 35382.72 335
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36961.72 25492.17 14887.24 31782.36 2784.91 6495.41 5155.60 19996.83 11492.85 1885.87 13894.21 121
AUN-MVS78.37 19977.43 19281.17 23486.60 23857.45 32089.46 25491.16 18774.11 15174.40 17690.49 17355.52 20094.57 20374.73 16960.43 34591.48 200
XVS83.87 9583.47 8985.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13794.31 9455.25 20197.41 6879.16 13491.58 7693.95 135
X-MVStestdata76.86 22374.13 24285.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13710.19 42055.25 20197.41 6879.16 13491.58 7693.95 135
BH-w/o80.49 15779.30 16684.05 16090.83 14064.36 18593.60 9289.42 25474.35 14769.09 24190.15 18355.23 20395.61 16564.61 26286.43 13692.17 191
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19594.59 4992.28 13071.03 23577.41 14694.92 7255.21 20496.19 13681.32 11790.70 8893.91 137
PGM-MVS83.25 10882.70 11184.92 12292.81 8364.07 19290.44 22592.20 13671.28 22977.23 14994.43 8555.17 20597.31 7579.33 13391.38 8093.37 151
tpmvs72.88 27469.76 29082.22 20990.98 13567.05 11678.22 36188.30 29963.10 31564.35 29874.98 35855.09 20694.27 21743.25 35869.57 26685.34 305
v875.35 24873.26 25381.61 22580.67 31966.82 12289.54 25189.27 25971.65 21763.30 30780.30 31654.99 20794.06 22767.33 23462.33 32683.94 316
sam_mvs54.91 208
EPMVS78.49 19875.98 21586.02 8591.21 13169.68 5180.23 34891.20 18575.25 13772.48 20078.11 33554.65 20993.69 24457.66 30383.04 16194.69 98
ab-mvs80.18 16378.31 17885.80 9488.44 19265.49 15783.00 32792.67 11871.82 21177.36 14785.01 25254.50 21096.59 11976.35 15475.63 22895.32 68
KD-MVS_2432*160069.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
miper_refine_blended69.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
DP-MVS Recon82.73 11781.65 12485.98 8697.31 467.06 11595.15 3691.99 14769.08 26376.50 15793.89 10454.48 21398.20 3570.76 20185.66 14092.69 172
GeoE78.90 18777.43 19283.29 18288.95 18162.02 24692.31 14386.23 32770.24 24771.34 21889.27 19354.43 21494.04 23063.31 27180.81 18693.81 142
XXY-MVS77.94 20776.44 20882.43 20082.60 30164.44 17892.01 15891.83 15873.59 16670.00 23385.82 24554.43 21494.76 19369.63 20968.02 28188.10 251
MDTV_nov1_ep13_2view59.90 29080.13 35067.65 27572.79 19254.33 21659.83 29392.58 176
Test By Simon54.21 217
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14594.28 5694.27 5674.41 14579.16 12695.61 4553.99 21898.88 2269.62 21093.26 5494.50 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test-LLR80.10 16579.56 15981.72 22386.93 23561.17 26292.70 12791.54 17171.51 22675.62 16386.94 23253.83 21992.38 28372.21 18884.76 14791.60 197
test0.0.03 172.76 27572.71 26172.88 34080.25 32547.99 37391.22 19889.45 25271.51 22662.51 31687.66 21853.83 21985.06 36350.16 32767.84 28485.58 298
v2v48277.42 21475.65 22082.73 19280.38 32267.13 11491.85 16890.23 22475.09 13969.37 23883.39 27153.79 22194.44 21171.77 19265.00 30386.63 275
SR-MVS82.81 11682.58 11283.50 17893.35 6361.16 26492.23 14791.28 18464.48 29881.27 9695.28 5753.71 22295.86 15182.87 10488.77 10793.49 149
pcd_1.5k_mvsjas4.46 3925.95 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42453.55 2230.00 4250.00 4240.00 4220.00 421
PS-MVSNAJss77.26 21676.31 21080.13 26080.64 32059.16 30290.63 22391.06 19672.80 18168.58 25384.57 25853.55 22393.96 23572.97 17671.96 25487.27 264
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9383.86 1589.55 2996.06 3653.55 22397.89 4391.10 3293.31 5394.54 108
mPP-MVS82.96 11582.44 11584.52 14392.83 7962.92 22892.76 12391.85 15771.52 22575.61 16594.24 9653.48 22696.99 10078.97 13790.73 8793.64 146
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10183.53 1889.55 2995.95 3853.45 22797.68 5091.07 3392.62 6094.54 108
test_post178.95 35520.70 41853.05 22891.50 31060.43 289
MDTV_nov1_ep1372.61 26289.06 17868.48 7680.33 34690.11 22871.84 21071.81 21075.92 35553.01 22993.92 23748.04 33873.38 242
FA-MVS(test-final)79.12 18277.23 19884.81 12990.54 14363.98 19481.35 33991.71 16371.09 23474.85 17382.94 27452.85 23097.05 9267.97 22681.73 17893.41 150
test22289.77 15861.60 25689.55 25089.42 25456.83 35877.28 14892.43 13552.76 23191.14 8593.09 161
v114476.73 22874.88 22882.27 20680.23 32666.60 12991.68 17790.21 22673.69 16369.06 24381.89 28752.73 23294.40 21269.21 21565.23 30085.80 294
v1074.77 25572.54 26481.46 22880.33 32466.71 12689.15 26189.08 27270.94 23663.08 31079.86 32152.52 23394.04 23065.70 25362.17 32783.64 319
CLD-MVS82.73 11782.35 11783.86 16487.90 21067.65 10095.45 2892.18 13985.06 1072.58 19792.27 13952.46 23495.78 15384.18 9179.06 19988.16 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet75.86 24174.52 23579.89 26982.44 30360.64 27891.37 18991.37 17876.63 12167.65 26586.21 24152.37 23591.55 30561.84 28260.81 34187.48 257
VPA-MVSNet79.03 18378.00 18382.11 21785.95 25064.48 17693.22 10994.66 3875.05 14074.04 18284.95 25352.17 23693.52 24774.90 16767.04 28788.32 249
APD-MVS_3200maxsize81.64 13781.32 12782.59 19892.36 9158.74 30691.39 18691.01 19963.35 31079.72 11894.62 8151.82 23796.14 13879.71 12887.93 11592.89 170
dp75.01 25372.09 26883.76 16589.28 17166.22 13979.96 35489.75 24171.16 23167.80 26477.19 34451.81 23892.54 27850.39 32571.44 25992.51 179
mvsmamba81.55 13880.72 13984.03 16191.42 12466.93 12083.08 32489.13 26878.55 9167.50 26787.02 23151.79 23990.07 32787.48 5890.49 9295.10 81
v14419276.05 23674.03 24382.12 21479.50 33466.55 13191.39 18689.71 24772.30 19468.17 25681.33 29951.75 24094.03 23267.94 22764.19 31185.77 295
BH-untuned78.68 19377.08 19983.48 17989.84 15663.74 19992.70 12788.59 29271.57 22366.83 27888.65 19951.75 24095.39 17559.03 29784.77 14691.32 206
HQP2-MVS51.63 242
HQP-MVS81.14 14480.64 14282.64 19687.54 21863.66 20694.06 6391.70 16679.80 6374.18 17790.30 17751.63 24295.61 16577.63 14778.90 20088.63 241
dmvs_testset65.55 33066.45 30662.86 37479.87 32922.35 42076.55 36671.74 38877.42 11155.85 34987.77 21751.39 24480.69 38731.51 39965.92 29485.55 300
V4276.46 23074.55 23482.19 21179.14 34067.82 9590.26 23489.42 25473.75 16168.63 25281.89 28751.31 24594.09 22471.69 19464.84 30484.66 311
RRT-MVS82.61 12181.16 12886.96 5791.10 13368.75 7087.70 28592.20 13676.97 11372.68 19387.10 23051.30 24696.41 12983.56 9987.84 11695.74 50
SR-MVS-dyc-post81.06 14780.70 14082.15 21292.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8351.26 24795.61 16578.77 14086.77 13092.28 185
CL-MVSNet_self_test69.92 29668.09 30075.41 31973.25 37655.90 33390.05 24089.90 23669.96 25061.96 31976.54 34851.05 24887.64 34749.51 33150.59 37482.70 337
TransMVSNet (Re)70.07 29567.66 30177.31 30580.62 32159.13 30391.78 17284.94 34065.97 28860.08 32780.44 31350.78 24991.87 29648.84 33445.46 38280.94 353
HQP_MVS80.34 16079.75 15682.12 21486.94 23362.42 23793.13 11091.31 18078.81 8772.53 19889.14 19650.66 25095.55 17076.74 15078.53 20588.39 247
plane_prior687.23 22562.32 24150.66 250
ACMMPcopyleft81.49 13980.67 14183.93 16391.71 11662.90 22992.13 15092.22 13571.79 21271.68 21393.49 11350.32 25296.96 10578.47 14284.22 15591.93 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR82.02 13181.52 12583.51 17788.42 19362.88 23089.77 24788.93 27976.78 11875.55 16693.10 11650.31 25395.38 17683.82 9687.02 12592.26 189
131480.70 15378.95 17185.94 8887.77 21667.56 10287.91 28092.55 12572.17 19967.44 26893.09 11750.27 25497.04 9571.68 19587.64 11993.23 156
CP-MVSNet70.50 29169.91 28872.26 34580.71 31851.00 35887.23 29290.30 22067.84 27259.64 32882.69 27750.23 25582.30 38151.28 32259.28 34983.46 324
LCM-MVSNet-Re72.93 27271.84 27176.18 31688.49 18948.02 37280.07 35170.17 39273.96 15652.25 36280.09 32049.98 25688.24 34067.35 23284.23 15492.28 185
Vis-MVSNetpermissive80.92 15079.98 15383.74 16688.48 19061.80 25093.44 10288.26 30373.96 15677.73 14191.76 15149.94 25794.76 19365.84 25190.37 9394.65 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119275.98 23873.92 24582.15 21279.73 33066.24 13891.22 19889.75 24172.67 18368.49 25481.42 29749.86 25894.27 21767.08 23765.02 30285.95 290
test-mter79.96 16879.38 16581.72 22386.93 23561.17 26292.70 12791.54 17173.85 15875.62 16386.94 23249.84 25992.38 28372.21 18884.76 14791.60 197
MonoMVSNet76.99 22175.08 22782.73 19283.32 29363.24 21786.47 30086.37 32379.08 8166.31 28179.30 32849.80 26091.72 30079.37 13165.70 29593.23 156
cdsmvs_eth3d_5k19.86 38726.47 3860.00 4060.00 4290.00 4310.00 41793.45 850.00 4240.00 42595.27 5949.56 2610.00 4250.00 4240.00 4220.00 421
3Dnovator+73.60 782.10 13080.60 14486.60 6890.89 13866.80 12495.20 3493.44 8674.05 15267.42 26992.49 13349.46 26297.65 5570.80 20091.68 7495.33 66
MVP-Stereo77.12 21976.23 21179.79 27281.72 30966.34 13589.29 25690.88 20070.56 24462.01 31882.88 27549.34 26394.13 22265.55 25693.80 4378.88 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
RE-MVS-def80.48 14692.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8349.30 26478.77 14086.77 13092.28 185
OMC-MVS78.67 19577.91 18680.95 24485.76 25557.40 32188.49 27188.67 28973.85 15872.43 20292.10 14449.29 26594.55 20772.73 18277.89 20890.91 213
VPNet78.82 18977.53 19182.70 19484.52 27566.44 13293.93 7292.23 13280.46 5272.60 19688.38 20349.18 26693.13 25372.47 18663.97 31688.55 244
CVMVSNet74.04 26174.27 23973.33 33685.33 26043.94 39089.53 25288.39 29654.33 36670.37 22790.13 18449.17 26784.05 36761.83 28379.36 19691.99 194
v192192075.63 24673.49 25182.06 21879.38 33566.35 13491.07 20689.48 25071.98 20267.99 25781.22 30249.16 26893.90 23866.56 24164.56 30985.92 292
pm-mvs172.89 27371.09 27778.26 29379.10 34157.62 31790.80 21389.30 25867.66 27462.91 31281.78 28949.11 26992.95 25860.29 29158.89 35184.22 314
pmmvs473.92 26371.81 27280.25 25779.17 33865.24 16087.43 28987.26 31667.64 27663.46 30583.91 26648.96 27091.53 30962.94 27465.49 29683.96 315
TAPA-MVS70.22 1274.94 25473.53 25079.17 28390.40 14652.07 35089.19 26089.61 24862.69 31970.07 23192.67 12948.89 27194.32 21338.26 37879.97 19091.12 211
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator73.91 682.69 12080.82 13788.31 2689.57 16271.26 2292.60 13494.39 5178.84 8667.89 26292.48 13448.42 27298.52 2868.80 22194.40 3695.15 78
CPTT-MVS79.59 17379.16 16880.89 24691.54 12259.80 29192.10 15288.54 29460.42 33672.96 18993.28 11548.27 27392.80 26778.89 13986.50 13590.06 222
GBi-Net75.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
test175.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
FMVSNet276.07 23374.01 24482.26 20888.85 18267.66 9991.33 19291.61 16970.84 23865.98 28282.25 28348.03 27492.00 29558.46 29968.73 27587.10 266
LFMVS84.34 8382.73 11089.18 1394.76 3373.25 1194.99 4291.89 15371.90 20582.16 8993.49 11347.98 27797.05 9282.55 10784.82 14597.25 8
SDMVSNet80.26 16178.88 17284.40 14789.25 17267.63 10185.35 30493.02 10476.77 11970.84 22187.12 22847.95 27896.09 14185.04 8174.55 23189.48 233
QAPM79.95 16977.39 19687.64 3489.63 16171.41 2093.30 10693.70 7465.34 29467.39 27191.75 15247.83 27998.96 1657.71 30289.81 9692.54 177
HPM-MVS_fast80.25 16279.55 16182.33 20491.55 12159.95 28991.32 19389.16 26565.23 29574.71 17493.07 11947.81 28095.74 15674.87 16888.23 11191.31 207
CANet_DTU84.09 9183.52 8585.81 9390.30 14866.82 12291.87 16689.01 27585.27 986.09 5193.74 10647.71 28196.98 10177.90 14689.78 9893.65 145
v124075.21 25172.98 25681.88 22079.20 33766.00 14290.75 21589.11 27071.63 22167.41 27081.22 30247.36 28293.87 24065.46 25764.72 30785.77 295
PEN-MVS69.46 30168.56 29572.17 34779.27 33649.71 36486.90 29689.24 26067.24 28159.08 33382.51 28047.23 28383.54 37248.42 33657.12 35583.25 327
dmvs_re76.93 22275.36 22381.61 22587.78 21560.71 27580.00 35287.99 30879.42 7169.02 24489.47 19146.77 28494.32 21363.38 27074.45 23489.81 226
CNLPA74.31 25872.30 26680.32 25391.49 12361.66 25590.85 21180.72 36456.67 35963.85 30290.64 16846.75 28590.84 31453.79 31675.99 22788.47 246
114514_t79.17 18177.67 18783.68 17295.32 2965.53 15592.85 12191.60 17063.49 30867.92 25990.63 17046.65 28695.72 16167.01 23883.54 15789.79 227
PS-CasMVS69.86 29869.13 29372.07 34980.35 32350.57 36087.02 29489.75 24167.27 27859.19 33282.28 28246.58 28782.24 38250.69 32459.02 35083.39 326
DTE-MVSNet68.46 31067.33 30471.87 35177.94 35649.00 37086.16 30288.58 29366.36 28658.19 33782.21 28446.36 28883.87 37044.97 35555.17 36282.73 334
test111180.84 15180.02 15083.33 18187.87 21160.76 27292.62 13286.86 32077.86 10075.73 16191.39 16046.35 28994.70 19972.79 18088.68 10894.52 110
ECVR-MVScopyleft81.29 14280.38 14884.01 16288.39 19561.96 24892.56 13986.79 32177.66 10476.63 15491.42 15846.34 29095.24 18174.36 17089.23 10094.85 89
PMMVS81.98 13282.04 11981.78 22189.76 15956.17 33091.13 20390.69 20377.96 9780.09 11493.57 11146.33 29194.99 18781.41 11587.46 12194.17 123
OPM-MVS79.00 18478.09 18181.73 22283.52 29163.83 19691.64 17990.30 22076.36 12571.97 20889.93 18746.30 29295.17 18375.10 16277.70 21086.19 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet79.46 17877.65 18884.89 12391.68 11765.66 14993.55 9488.09 30672.93 17773.37 18691.12 16446.20 29396.12 13956.28 30785.61 14192.91 168
FE-MVS75.97 23973.02 25584.82 12689.78 15765.56 15377.44 36491.07 19564.55 29772.66 19479.85 32246.05 29496.69 11754.97 31180.82 18592.21 190
TR-MVS78.77 19277.37 19782.95 18890.49 14460.88 26893.67 8890.07 22970.08 24974.51 17591.37 16145.69 29595.70 16260.12 29280.32 18892.29 184
IterMVS-SCA-FT71.55 28669.97 28676.32 31481.48 31160.67 27787.64 28785.99 33066.17 28759.50 32978.88 32945.53 29683.65 37162.58 27861.93 33084.63 313
SCA75.82 24272.76 25885.01 12186.63 23770.08 3781.06 34189.19 26371.60 22270.01 23277.09 34545.53 29690.25 31960.43 28973.27 24394.68 99
IterMVS72.65 28070.83 27878.09 29582.17 30562.96 22587.64 28786.28 32571.56 22460.44 32478.85 33045.42 29886.66 35463.30 27261.83 33184.65 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Syy-MVS69.65 29969.52 29170.03 35687.87 21143.21 39288.07 27689.01 27572.91 17863.11 30888.10 21045.28 29985.54 35922.07 40669.23 27081.32 349
WB-MVSnew77.14 21876.18 21380.01 26486.18 24663.24 21791.26 19594.11 6071.72 21573.52 18587.29 22645.14 30093.00 25656.98 30479.42 19483.80 318
Effi-MVS+-dtu76.14 23275.28 22578.72 28883.22 29455.17 33789.87 24587.78 31175.42 13467.98 25881.43 29645.08 30192.52 27975.08 16371.63 25588.48 245
XVG-OURS-SEG-HR74.70 25673.08 25479.57 27778.25 35257.33 32280.49 34487.32 31463.22 31268.76 25090.12 18644.89 30291.59 30470.55 20474.09 23889.79 227
v7n71.31 28768.65 29479.28 28176.40 36460.77 27186.71 29889.45 25264.17 30258.77 33678.24 33344.59 30393.54 24657.76 30161.75 33383.52 322
pmmvs573.35 26771.52 27478.86 28778.64 34860.61 27991.08 20486.90 31867.69 27363.32 30683.64 26744.33 30490.53 31662.04 28166.02 29385.46 302
OpenMVScopyleft70.45 1178.54 19775.92 21686.41 7785.93 25371.68 1892.74 12492.51 12666.49 28564.56 29391.96 14643.88 30598.10 3754.61 31290.65 8989.44 235
AdaColmapbinary78.94 18677.00 20284.76 13196.34 1765.86 14692.66 13187.97 31062.18 32270.56 22392.37 13743.53 30697.35 7264.50 26382.86 16291.05 212
tfpnnormal70.10 29467.36 30378.32 29183.45 29260.97 26788.85 26592.77 11364.85 29660.83 32278.53 33143.52 30793.48 24831.73 39661.70 33580.52 358
mvsany_test168.77 30668.56 29569.39 35873.57 37545.88 38680.93 34260.88 40659.65 34271.56 21490.26 17943.22 30875.05 39374.26 17162.70 32287.25 265
test_djsdf73.76 26672.56 26377.39 30377.00 36253.93 34389.07 26290.69 20365.80 28963.92 30082.03 28643.14 30992.67 27372.83 17868.53 27685.57 299
GA-MVS78.33 20176.23 21184.65 13783.65 28966.30 13691.44 18190.14 22776.01 12770.32 22884.02 26442.50 31094.72 19670.98 19877.00 22092.94 167
PLCcopyleft68.80 1475.23 25073.68 24979.86 27092.93 7658.68 30790.64 22188.30 29960.90 33364.43 29790.53 17142.38 31194.57 20356.52 30576.54 22386.33 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS73.80 26472.02 26979.15 28579.15 33962.97 22488.58 27090.07 22972.94 17659.22 33178.30 33242.31 31292.70 27265.59 25572.00 25381.79 346
Fast-Effi-MVS+-dtu75.04 25273.37 25280.07 26180.86 31559.52 29691.20 20085.38 33571.90 20565.20 28784.84 25441.46 31392.97 25766.50 24472.96 24687.73 254
sd_testset77.08 22075.37 22282.20 21089.25 17262.11 24582.06 33189.09 27176.77 11970.84 22187.12 22841.43 31495.01 18667.23 23574.55 23189.48 233
MS-PatchMatch77.90 20976.50 20782.12 21485.99 24969.95 4191.75 17592.70 11573.97 15562.58 31584.44 26041.11 31595.78 15363.76 26892.17 6680.62 357
our_test_368.29 31264.69 32179.11 28678.92 34264.85 17188.40 27385.06 33860.32 33852.68 36076.12 35340.81 31689.80 33044.25 35755.65 36082.67 339
XVG-OURS74.25 25972.46 26579.63 27578.45 35057.59 31880.33 34687.39 31363.86 30468.76 25089.62 19040.50 31791.72 30069.00 21874.25 23689.58 230
VDD-MVS83.06 11281.81 12386.81 6190.86 13967.70 9895.40 2991.50 17475.46 13381.78 9192.34 13840.09 31897.13 9086.85 6882.04 17395.60 54
DP-MVS69.90 29766.48 30580.14 25995.36 2862.93 22689.56 24976.11 37350.27 37857.69 34485.23 25039.68 31995.73 15733.35 38871.05 26181.78 347
ppachtmachnet_test67.72 31663.70 32879.77 27378.92 34266.04 14188.68 26882.90 35960.11 34055.45 35075.96 35439.19 32090.55 31539.53 37352.55 37082.71 336
ADS-MVSNet266.90 32263.44 33077.26 30688.06 20560.70 27668.01 39075.56 37757.57 35064.48 29469.87 37738.68 32184.10 36640.87 36967.89 28286.97 267
ADS-MVSNet68.54 30964.38 32681.03 24288.06 20566.90 12168.01 39084.02 34857.57 35064.48 29469.87 37738.68 32189.21 33340.87 36967.89 28286.97 267
test_cas_vis1_n_192080.45 15880.61 14379.97 26778.25 35257.01 32694.04 6788.33 29879.06 8382.81 8493.70 10738.65 32391.63 30390.82 3679.81 19191.27 209
LPG-MVS_test75.82 24274.58 23379.56 27884.31 28059.37 29890.44 22589.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
LGP-MVS_train79.56 27884.31 28059.37 29889.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
VDDNet80.50 15678.26 17987.21 4786.19 24569.79 4794.48 5091.31 18060.42 33679.34 12390.91 16638.48 32696.56 12282.16 10881.05 18295.27 73
ACMP71.68 1075.58 24774.23 24079.62 27684.97 26959.64 29390.80 21389.07 27370.39 24562.95 31187.30 22538.28 32793.87 24072.89 17771.45 25885.36 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192081.66 13682.01 12080.64 24882.24 30455.09 33894.76 4686.87 31981.67 3584.40 6994.63 8038.17 32894.67 20091.98 2783.34 15992.16 192
UGNet79.87 17078.68 17383.45 18089.96 15461.51 25792.13 15090.79 20176.83 11778.85 13386.33 24038.16 32996.17 13767.93 22887.17 12492.67 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
anonymousdsp71.14 28869.37 29276.45 31372.95 37754.71 34084.19 31188.88 28061.92 32762.15 31779.77 32338.14 33091.44 31168.90 22067.45 28583.21 328
xiu_mvs_v1_base_debu82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base_debi82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
PVSNet_068.08 1571.81 28368.32 29982.27 20684.68 27162.31 24288.68 26890.31 21975.84 12857.93 34280.65 31137.85 33494.19 22069.94 20729.05 40890.31 220
Anonymous2023120667.53 31965.78 31172.79 34174.95 37047.59 37588.23 27487.32 31461.75 33058.07 33977.29 34237.79 33587.29 35242.91 36063.71 31783.48 323
ACMM69.62 1374.34 25772.73 26079.17 28384.25 28257.87 31390.36 23089.93 23563.17 31465.64 28486.04 24437.79 33594.10 22365.89 25071.52 25785.55 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas78.18 20275.77 21885.41 10687.14 22869.11 6192.96 11791.15 18966.71 28370.47 22486.07 24237.49 33796.48 12770.15 20679.80 19290.65 215
LS3D69.17 30266.40 30777.50 30091.92 10956.12 33185.12 30580.37 36646.96 38656.50 34887.51 22237.25 33893.71 24332.52 39579.40 19582.68 338
MDA-MVSNet_test_wron63.78 34060.16 34474.64 32578.15 35460.41 28283.49 31684.03 34756.17 36239.17 39971.59 37337.22 33983.24 37642.87 36248.73 37680.26 361
YYNet163.76 34160.14 34574.62 32678.06 35560.19 28783.46 31883.99 35156.18 36139.25 39871.56 37437.18 34083.34 37442.90 36148.70 37780.32 360
FMVSNet568.04 31465.66 31475.18 32284.43 27857.89 31283.54 31586.26 32661.83 32953.64 35873.30 36337.15 34185.08 36248.99 33361.77 33282.56 340
test20.0363.83 33962.65 33567.38 36770.58 38639.94 39986.57 29984.17 34663.29 31151.86 36477.30 34137.09 34282.47 37938.87 37754.13 36679.73 364
PVSNet73.49 880.05 16678.63 17484.31 15190.92 13764.97 16892.47 14091.05 19779.18 7772.43 20290.51 17237.05 34394.06 22768.06 22586.00 13793.90 139
EU-MVSNet64.01 33863.01 33267.02 36874.40 37338.86 40383.27 32086.19 32845.11 39154.27 35481.15 30536.91 34480.01 38948.79 33557.02 35682.19 344
Anonymous2023121173.08 26870.39 28481.13 23690.62 14263.33 21591.40 18490.06 23151.84 37264.46 29680.67 31036.49 34594.07 22663.83 26764.17 31285.98 289
FMVSNet172.71 27769.91 28881.10 23883.60 29065.11 16490.01 24190.32 21663.92 30363.56 30480.25 31736.35 34691.54 30654.46 31366.75 28986.64 272
Anonymous2024052976.84 22574.15 24184.88 12491.02 13464.95 16993.84 8091.09 19253.57 36773.00 18887.42 22335.91 34797.32 7469.14 21772.41 25292.36 181
WB-MVS46.23 36944.94 37150.11 38962.13 40221.23 42276.48 36755.49 40845.89 38935.78 40061.44 39735.54 34872.83 3979.96 41621.75 41156.27 404
CMPMVSbinary48.56 2166.77 32364.41 32573.84 33370.65 38550.31 36177.79 36385.73 33445.54 39044.76 38982.14 28535.40 34990.14 32563.18 27374.54 23381.07 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs667.57 31864.76 32076.00 31772.82 37953.37 34588.71 26786.78 32253.19 36857.58 34578.03 33635.33 35092.41 28255.56 30954.88 36482.21 343
PatchMatch-RL72.06 28269.98 28578.28 29289.51 16555.70 33483.49 31683.39 35661.24 33163.72 30382.76 27634.77 35193.03 25553.37 31977.59 21186.12 286
LTVRE_ROB59.60 1966.27 32563.54 32974.45 32784.00 28551.55 35367.08 39483.53 35358.78 34654.94 35280.31 31534.54 35293.23 25240.64 37168.03 28078.58 374
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SSC-MVS44.51 37143.35 37347.99 39361.01 40518.90 42474.12 37554.36 40943.42 39634.10 40460.02 39834.42 35370.39 4009.14 41819.57 41254.68 405
UniMVSNet_ETH3D72.74 27670.53 28379.36 28078.62 34956.64 32885.01 30689.20 26263.77 30564.84 29184.44 26034.05 35491.86 29763.94 26670.89 26289.57 231
F-COLMAP70.66 28968.44 29777.32 30486.37 24355.91 33288.00 27886.32 32456.94 35757.28 34688.07 21233.58 35592.49 28051.02 32368.37 27783.55 320
pmmvs-eth3d65.53 33162.32 33775.19 32169.39 38959.59 29482.80 32883.43 35462.52 32051.30 36872.49 36532.86 35687.16 35355.32 31050.73 37378.83 372
MDA-MVSNet-bldmvs61.54 34757.70 35273.05 33879.53 33357.00 32783.08 32481.23 36157.57 35034.91 40372.45 36632.79 35786.26 35735.81 38241.95 38775.89 383
MIMVSNet71.64 28468.44 29781.23 23381.97 30864.44 17873.05 37688.80 28469.67 25464.59 29274.79 36032.79 35787.82 34453.99 31576.35 22491.42 201
UnsupCasMVSNet_eth65.79 32863.10 33173.88 33270.71 38450.29 36281.09 34089.88 23772.58 18549.25 37674.77 36132.57 35987.43 35155.96 30841.04 38983.90 317
N_pmnet50.55 36549.11 36754.88 38477.17 3614.02 42884.36 3092.00 42648.59 38145.86 38568.82 38032.22 36082.80 37831.58 39751.38 37277.81 379
test_040264.54 33561.09 34174.92 32484.10 28460.75 27387.95 27979.71 36852.03 37052.41 36177.20 34332.21 36191.64 30223.14 40461.03 33972.36 392
DSMNet-mixed56.78 35854.44 36263.79 37263.21 39929.44 41564.43 39764.10 40242.12 39951.32 36771.60 37231.76 36275.04 39436.23 38065.20 30186.87 270
MSDG69.54 30065.73 31280.96 24385.11 26763.71 20284.19 31183.28 35756.95 35654.50 35384.03 26331.50 36396.03 14742.87 36269.13 27283.14 330
RPSCF64.24 33761.98 33971.01 35476.10 36645.00 38775.83 37175.94 37446.94 38758.96 33484.59 25731.40 36482.00 38347.76 34260.33 34786.04 287
tt080573.07 26970.73 28180.07 26178.37 35157.05 32487.78 28392.18 13961.23 33267.04 27486.49 23731.35 36594.58 20165.06 26067.12 28688.57 243
jajsoiax73.05 27071.51 27577.67 29877.46 35954.83 33988.81 26690.04 23269.13 26262.85 31383.51 26931.16 36692.75 26970.83 19969.80 26385.43 303
MVS-HIRNet60.25 35255.55 35974.35 32884.37 27956.57 32971.64 38074.11 38134.44 40245.54 38742.24 41031.11 36789.81 32840.36 37276.10 22676.67 382
SixPastTwentyTwo64.92 33361.78 34074.34 32978.74 34649.76 36383.42 31979.51 36962.86 31650.27 37177.35 34030.92 36890.49 31745.89 35047.06 37982.78 332
mmtdpeth68.33 31166.37 30874.21 33182.81 30051.73 35184.34 31080.42 36567.01 28271.56 21468.58 38130.52 36992.35 28675.89 15636.21 39778.56 375
KD-MVS_self_test60.87 34958.60 34967.68 36566.13 39539.93 40075.63 37384.70 34157.32 35449.57 37468.45 38229.55 37082.87 37748.09 33747.94 37880.25 362
mvs_tets72.71 27771.11 27677.52 29977.41 36054.52 34188.45 27289.76 24068.76 26762.70 31483.26 27229.49 37192.71 27070.51 20569.62 26585.34 305
Anonymous20240521177.96 20675.33 22485.87 9093.73 5364.52 17394.85 4485.36 33662.52 32076.11 15890.18 18029.43 37297.29 7668.51 22377.24 21995.81 49
K. test v363.09 34259.61 34773.53 33576.26 36549.38 36883.27 32077.15 37264.35 29947.77 38172.32 36928.73 37387.79 34549.93 32936.69 39683.41 325
UnsupCasMVSNet_bld61.60 34657.71 35173.29 33768.73 39051.64 35278.61 35789.05 27457.20 35546.11 38261.96 39528.70 37488.60 33550.08 32838.90 39479.63 365
lessismore_v073.72 33472.93 37847.83 37461.72 40545.86 38573.76 36228.63 37589.81 32847.75 34331.37 40483.53 321
MVStest151.35 36446.89 36864.74 37065.06 39751.10 35767.33 39372.58 38430.20 40635.30 40174.82 35927.70 37669.89 40124.44 40324.57 41073.22 388
new-patchmatchnet59.30 35556.48 35767.79 36465.86 39644.19 38882.47 32981.77 36059.94 34143.65 39366.20 38627.67 37781.68 38439.34 37441.40 38877.50 380
ACMH63.93 1768.62 30764.81 31980.03 26385.22 26363.25 21687.72 28484.66 34260.83 33451.57 36679.43 32727.29 37894.96 18841.76 36564.84 30481.88 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-064.68 33462.17 33872.21 34676.08 36747.35 37680.67 34381.02 36256.19 36051.60 36579.66 32527.05 37988.56 33653.60 31853.63 36780.71 356
ACMH+65.35 1667.65 31764.55 32276.96 31084.59 27457.10 32388.08 27580.79 36358.59 34853.00 35981.09 30626.63 38092.95 25846.51 34661.69 33680.82 354
OpenMVS_ROBcopyleft61.12 1866.39 32462.92 33376.80 31276.51 36357.77 31489.22 25883.41 35555.48 36353.86 35777.84 33726.28 38193.95 23634.90 38568.76 27478.68 373
test_fmvs174.07 26073.69 24875.22 32078.91 34447.34 37789.06 26474.69 38063.68 30779.41 12291.59 15624.36 38287.77 34685.22 7876.26 22590.55 218
COLMAP_ROBcopyleft57.96 2062.98 34359.65 34672.98 33981.44 31253.00 34783.75 31475.53 37848.34 38348.81 37881.40 29824.14 38390.30 31832.95 39060.52 34475.65 384
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet160.16 35357.33 35468.67 36169.71 38744.13 38978.92 35684.21 34555.05 36444.63 39071.85 37123.91 38481.54 38532.63 39455.03 36380.35 359
testgi64.48 33662.87 33469.31 35971.24 38040.62 39785.49 30379.92 36765.36 29354.18 35583.49 27023.74 38584.55 36441.60 36660.79 34282.77 333
ITE_SJBPF70.43 35574.44 37247.06 38077.32 37160.16 33954.04 35683.53 26823.30 38684.01 36843.07 35961.58 33780.21 363
mvs5depth61.03 34857.65 35371.18 35267.16 39347.04 38172.74 37777.49 37057.47 35360.52 32372.53 36422.84 38788.38 33849.15 33238.94 39378.11 378
EG-PatchMatch MVS68.55 30865.41 31677.96 29678.69 34762.93 22689.86 24689.17 26460.55 33550.27 37177.73 33922.60 38894.06 22747.18 34472.65 24976.88 381
tmp_tt22.26 38623.75 38817.80 4025.23 42612.06 42735.26 41339.48 4202.82 42018.94 41144.20 40922.23 38924.64 42136.30 3799.31 41816.69 415
USDC67.43 32164.51 32376.19 31577.94 35655.29 33678.38 35985.00 33973.17 17148.36 37980.37 31421.23 39092.48 28152.15 32164.02 31580.81 355
Anonymous2024052162.09 34459.08 34871.10 35367.19 39248.72 37183.91 31385.23 33750.38 37747.84 38071.22 37620.74 39185.51 36146.47 34758.75 35279.06 369
test_vis1_n71.63 28570.73 28174.31 33069.63 38847.29 37886.91 29572.11 38663.21 31375.18 16990.17 18120.40 39285.76 35884.59 8874.42 23589.87 225
XVG-ACMP-BASELINE68.04 31465.53 31575.56 31874.06 37452.37 34878.43 35885.88 33162.03 32558.91 33581.21 30420.38 39391.15 31360.69 28868.18 27883.16 329
test_fmvs1_n72.69 27971.92 27074.99 32371.15 38247.08 37987.34 29175.67 37563.48 30978.08 13991.17 16320.16 39487.87 34384.65 8775.57 22990.01 224
AllTest61.66 34558.06 35072.46 34379.57 33151.42 35580.17 34968.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
TestCases72.46 34379.57 33151.42 35568.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
test_vis1_rt59.09 35657.31 35564.43 37168.44 39146.02 38583.05 32648.63 41551.96 37149.57 37463.86 39116.30 39780.20 38871.21 19762.79 32167.07 398
pmmvs355.51 35951.50 36567.53 36657.90 40750.93 35980.37 34573.66 38240.63 40044.15 39264.75 38916.30 39778.97 39044.77 35640.98 39172.69 390
test_fmvs265.78 32964.84 31868.60 36266.54 39441.71 39483.27 32069.81 39354.38 36567.91 26084.54 25915.35 39981.22 38675.65 15866.16 29282.88 331
TDRefinement55.28 36051.58 36466.39 36959.53 40646.15 38476.23 36872.80 38344.60 39242.49 39576.28 35215.29 40082.39 38033.20 38943.75 38470.62 394
new_pmnet49.31 36646.44 36957.93 37962.84 40040.74 39668.47 38962.96 40436.48 40135.09 40257.81 39914.97 40172.18 39832.86 39246.44 38060.88 401
TinyColmap60.32 35156.42 35872.00 35078.78 34553.18 34678.36 36075.64 37652.30 36941.59 39775.82 35614.76 40288.35 33935.84 38154.71 36574.46 385
EGC-MVSNET42.35 37238.09 37555.11 38374.57 37146.62 38271.63 38155.77 4070.04 4210.24 42262.70 39314.24 40374.91 39517.59 41046.06 38143.80 407
LF4IMVS54.01 36252.12 36359.69 37762.41 40139.91 40168.59 38868.28 39742.96 39744.55 39175.18 35714.09 40468.39 40341.36 36851.68 37170.78 393
ttmdpeth53.34 36349.96 36663.45 37362.07 40340.04 39872.06 37865.64 40042.54 39851.88 36377.79 33813.94 40576.48 39232.93 39130.82 40773.84 387
PM-MVS59.40 35456.59 35667.84 36363.63 39841.86 39376.76 36563.22 40359.01 34551.07 36972.27 37011.72 40683.25 37561.34 28450.28 37578.39 376
mvsany_test348.86 36746.35 37056.41 38046.00 41531.67 41162.26 39947.25 41643.71 39545.54 38768.15 38310.84 40764.44 41257.95 30035.44 40173.13 389
ambc69.61 35761.38 40441.35 39549.07 41185.86 33350.18 37366.40 38510.16 40888.14 34145.73 35144.20 38379.32 368
FPMVS45.64 37043.10 37453.23 38751.42 41236.46 40564.97 39671.91 38729.13 40727.53 40761.55 3969.83 40965.01 41016.00 41355.58 36158.22 403
ANet_high40.27 37635.20 37955.47 38234.74 42334.47 40863.84 39871.56 38948.42 38218.80 41241.08 4119.52 41064.45 41120.18 4078.66 41967.49 397
test_method38.59 37735.16 38048.89 39154.33 40821.35 42145.32 41253.71 4107.41 41828.74 40651.62 4028.70 41152.87 41533.73 38632.89 40372.47 391
EMVS23.76 38523.20 38925.46 40141.52 42116.90 42660.56 40238.79 42214.62 4168.99 42020.24 4197.35 41245.82 4197.25 4209.46 41713.64 417
test_f46.58 36843.45 37255.96 38145.18 41632.05 41061.18 40049.49 41433.39 40342.05 39662.48 3947.00 41365.56 40847.08 34543.21 38670.27 395
test_fmvs356.82 35754.86 36162.69 37653.59 40935.47 40675.87 37065.64 40043.91 39455.10 35171.43 3756.91 41474.40 39668.64 22252.63 36878.20 377
E-PMN24.61 38324.00 38726.45 40043.74 41818.44 42560.86 40139.66 41915.11 4159.53 41922.10 4166.52 41546.94 4188.31 41910.14 41613.98 416
DeepMVS_CXcopyleft34.71 39951.45 41124.73 41928.48 42531.46 40517.49 41552.75 4015.80 41642.60 42018.18 40819.42 41336.81 412
Gipumacopyleft34.91 37931.44 38245.30 39470.99 38339.64 40219.85 41672.56 38520.10 41216.16 41621.47 4175.08 41771.16 39913.07 41443.70 38525.08 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test140.50 37437.31 37750.09 39051.88 41035.27 40759.45 40452.59 41121.64 41026.12 40857.80 4004.56 41866.56 40622.64 40539.09 39248.43 406
LCM-MVSNet40.54 37335.79 37854.76 38536.92 42230.81 41251.41 40969.02 39422.07 40924.63 40945.37 4064.56 41865.81 40733.67 38734.50 40267.67 396
PMMVS237.93 37833.61 38150.92 38846.31 41424.76 41860.55 40350.05 41228.94 40820.93 41047.59 4034.41 42065.13 40925.14 40218.55 41462.87 400
test_vis3_rt40.46 37537.79 37648.47 39244.49 41733.35 40966.56 39532.84 42332.39 40429.65 40539.13 4133.91 42168.65 40250.17 32640.99 39043.40 408
testf132.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
APD_test232.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
PMVScopyleft26.43 2231.84 38228.16 38542.89 39525.87 42527.58 41650.92 41049.78 41321.37 41114.17 41740.81 4122.01 42466.62 4059.61 41738.88 39534.49 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 38419.77 39038.09 39834.56 42426.92 41726.57 41438.87 42111.73 41711.37 41827.44 4141.37 42550.42 41711.41 41514.60 41536.93 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 38810.95 39112.33 40348.05 41319.89 42325.89 4151.92 4273.58 4193.12 4211.37 4210.64 42615.77 4226.23 4217.77 4201.35 418
test1236.92 3919.21 3940.08 4040.03 4280.05 42981.65 3350.01 4290.02 4230.14 4240.85 4230.03 4270.02 4230.12 4230.00 4220.16 419
testmvs7.23 3909.62 3930.06 4050.04 4270.02 43084.98 3070.02 4280.03 4220.18 4231.21 4220.01 4280.02 4230.14 4220.01 4210.13 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
ab-mvs-re7.91 38910.55 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.95 690.00 4290.00 4250.00 4240.00 4220.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
WAC-MVS49.45 36631.56 398
FOURS193.95 4661.77 25193.96 7091.92 15062.14 32486.57 46
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
eth-test20.00 429
eth-test0.00 429
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2295.36 1496.47 28
save fliter93.84 4967.89 9495.05 3992.66 11978.19 94
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5299.15 291.91 2894.90 2296.51 24
GSMVS94.68 99
test_part296.29 1968.16 8890.78 17
MTGPAbinary92.23 132
MTMP93.77 8432.52 424
gm-plane-assit88.42 19367.04 11778.62 9091.83 15097.37 7076.57 152
test9_res89.41 4094.96 1995.29 70
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 11993.31 9184.49 6896.75 116
test_prior467.18 11393.92 73
test_prior86.42 7694.71 3567.35 10893.10 10296.84 11395.05 83
旧先验292.00 16159.37 34487.54 3993.47 24975.39 160
新几何291.41 182
无先验92.71 12692.61 12362.03 32597.01 9666.63 24093.97 134
原ACMM292.01 158
testdata296.09 14161.26 285
testdata189.21 25977.55 107
plane_prior786.94 23361.51 257
plane_prior591.31 18095.55 17076.74 15078.53 20588.39 247
plane_prior489.14 196
plane_prior361.95 24979.09 8072.53 198
plane_prior293.13 11078.81 87
plane_prior187.15 227
plane_prior62.42 23793.85 7779.38 7278.80 202
n20.00 430
nn0.00 430
door-mid66.01 399
test1193.01 105
door66.57 398
HQP5-MVS63.66 206
HQP-NCC87.54 21894.06 6379.80 6374.18 177
ACMP_Plane87.54 21894.06 6379.80 6374.18 177
BP-MVS77.63 147
HQP4-MVS74.18 17795.61 16588.63 241
HQP3-MVS91.70 16678.90 200
NP-MVS87.41 22163.04 22290.30 177
ACMMP++_ref71.63 255
ACMMP++69.72 264