This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS90.38 591.87 185.88 8692.83 7764.03 18993.06 11294.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7194.37 5272.48 18292.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
DPM-MVS90.70 390.52 891.24 189.68 15176.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9597.64 297.94 1
baseline283.68 9883.42 8984.48 14287.37 21466.00 13890.06 23495.93 879.71 6569.08 23490.39 17177.92 696.28 12878.91 12981.38 17191.16 201
GG-mvs-BLEND86.53 7091.91 10569.67 5175.02 36394.75 3378.67 12890.85 16377.91 794.56 19972.25 17693.74 4495.36 61
gg-mvs-nofinetune77.18 20874.31 22985.80 9191.42 11868.36 7671.78 36694.72 3449.61 36777.12 14345.92 39077.41 893.98 22867.62 22193.16 5495.05 78
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5396.89 694.44 4671.65 21292.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_ONE96.45 1269.38 5394.44 4671.65 21292.11 797.05 776.79 999.11 6
test_0728_THIRD72.48 18290.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 28
DPE-MVScopyleft88.77 1689.21 1687.45 4296.26 2067.56 9994.17 5894.15 5968.77 26290.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 31
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + GP.87.96 2088.37 2086.70 6293.51 6165.32 15495.15 3793.84 6578.17 9185.93 5194.80 7375.80 1398.21 3489.38 4288.78 10296.59 18
DeepPCF-MVS81.17 189.72 1091.38 484.72 13093.00 7458.16 30296.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
dcpmvs_287.37 3087.55 2986.85 5595.04 3268.20 8490.36 22590.66 19579.37 7181.20 9093.67 10574.73 1596.55 12090.88 3692.00 6895.82 46
MVSTER82.47 11682.05 11283.74 16092.68 8469.01 6291.90 16493.21 9179.83 6172.14 19985.71 24174.72 1694.72 18975.72 14872.49 24487.50 247
test_241102_TWO94.41 4871.65 21292.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 18
test_one_060196.32 1869.74 4894.18 5771.42 22390.67 1996.85 1674.45 18
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5394.91 7074.11 1998.91 1787.26 6195.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-289.71 1190.99 685.85 8996.04 2463.70 19995.04 4195.19 1986.74 991.53 1595.15 6473.86 2097.58 5993.38 1492.00 6896.28 34
DVP-MVScopyleft89.41 1389.73 1488.45 2496.40 1569.99 3896.64 1094.52 4271.92 19890.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3896.76 894.33 5471.92 19891.89 1197.11 673.77 21
ET-MVSNet_ETH3D84.01 8883.15 9686.58 6790.78 13270.89 2994.74 4894.62 4081.44 4058.19 32793.64 10673.64 2392.35 28082.66 9778.66 19596.50 26
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3093.83 8395.33 1668.48 26677.63 13694.35 8873.04 2498.45 3084.92 8293.71 4696.92 13
tttt051779.50 16778.53 16782.41 19487.22 21761.43 25389.75 24494.76 3269.29 25467.91 25388.06 20972.92 2595.63 15662.91 26573.90 23490.16 212
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5296.26 3272.84 2699.38 192.64 1995.93 997.08 11
iter_conf0583.27 10282.70 10484.98 11893.32 6471.84 1794.16 5981.76 34882.74 2373.83 17888.40 19872.77 2794.61 19482.10 10175.21 22288.48 236
thisisatest051583.41 9982.49 10886.16 8089.46 15768.26 8093.54 9694.70 3674.31 14375.75 15390.92 16172.62 2896.52 12169.64 19881.50 17093.71 135
thisisatest053081.15 13580.07 14184.39 14588.26 19065.63 14791.40 18494.62 4071.27 22570.93 21289.18 18972.47 2996.04 13965.62 24476.89 21391.49 190
testing1186.71 4186.44 4287.55 3993.54 5971.35 2193.65 9095.58 1181.36 4380.69 9892.21 13972.30 3096.46 12585.18 7883.43 14994.82 90
TSAR-MVS + MP.88.11 1988.64 1786.54 6991.73 10968.04 8790.36 22593.55 7982.89 2191.29 1692.89 12172.27 3196.03 14087.99 5294.77 2695.54 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet81.79 12881.52 11982.61 18888.77 17760.21 27793.02 11693.66 7568.52 26572.90 18690.39 17172.19 3294.96 18174.93 15679.29 18992.67 164
CostFormer82.33 11881.15 12285.86 8889.01 17168.46 7482.39 32193.01 10175.59 12680.25 10581.57 28672.03 3394.96 18179.06 12777.48 20694.16 116
HPM-MVS++copyleft89.37 1489.95 1387.64 3395.10 3068.23 8395.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 38
testing9986.01 5185.47 5887.63 3793.62 5571.25 2393.47 10195.23 1880.42 5480.60 10091.95 14371.73 3596.50 12380.02 11982.22 16195.13 75
CNVR-MVS90.32 690.89 788.61 2196.76 870.65 3196.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 37
IB-MVS77.80 482.18 12080.46 13987.35 4489.14 16870.28 3695.59 2795.17 2178.85 8270.19 22285.82 23970.66 3797.67 5172.19 17966.52 28494.09 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9185.93 5385.31 6187.78 3193.59 5771.47 1993.50 9895.08 2580.26 5680.53 10191.93 14470.43 3896.51 12280.32 11782.13 16395.37 59
ETVMVS84.22 8483.71 7985.76 9392.58 8768.25 8292.45 14095.53 1479.54 6779.46 11491.64 15170.29 3994.18 21569.16 20682.76 15794.84 87
MM90.87 291.52 288.92 1592.12 9671.10 2797.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 14
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10486.95 22364.37 17994.30 5588.45 28480.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 97
baseline181.84 12781.03 12784.28 15091.60 11266.62 12491.08 20391.66 15881.87 3374.86 16591.67 15069.98 4194.92 18471.76 18264.75 29991.29 199
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10887.10 22064.19 18694.41 5388.14 29380.24 5892.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 100
testing22285.18 6684.69 7186.63 6492.91 7669.91 4292.61 13295.80 980.31 5580.38 10392.27 13668.73 4495.19 17575.94 14783.27 15194.81 91
MVS_030490.01 890.50 988.53 2290.14 14270.94 2896.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 44
alignmvs87.28 3186.97 3688.24 2691.30 12171.14 2695.61 2693.56 7879.30 7287.07 4295.25 6068.43 4696.93 10787.87 5384.33 14396.65 16
PAPM85.89 5585.46 5987.18 4788.20 19472.42 1492.41 14192.77 10982.11 3180.34 10493.07 11668.27 4795.02 17878.39 13493.59 4894.09 120
train_agg87.21 3287.42 3186.60 6594.18 4167.28 10694.16 5993.51 8071.87 20385.52 5595.33 5368.19 4897.27 8289.09 4694.90 2295.25 72
test_894.19 4067.19 10894.15 6293.42 8671.87 20385.38 5895.35 5268.19 4896.95 104
TEST994.18 4167.28 10694.16 5993.51 8071.75 20985.52 5595.33 5368.01 5097.27 82
test_prior295.10 3975.40 13085.25 6195.61 4767.94 5187.47 5894.77 26
WTY-MVS86.32 4585.81 5487.85 2892.82 7969.37 5595.20 3595.25 1782.71 2481.91 8594.73 7467.93 5297.63 5679.55 12282.25 16096.54 21
APDe-MVScopyleft87.54 2687.84 2586.65 6396.07 2366.30 13294.84 4693.78 6669.35 25388.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsm_n_192087.69 2588.50 1885.27 11087.05 22263.55 20693.69 8891.08 18384.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 111
tpm279.80 16377.95 17685.34 10788.28 18968.26 8081.56 32791.42 16770.11 24477.59 13880.50 30467.40 5594.26 21267.34 22377.35 20793.51 140
miper_enhance_ethall78.86 17977.97 17581.54 21888.00 19965.17 15891.41 18289.15 25575.19 13368.79 24183.98 25867.17 5692.82 25872.73 17165.30 29086.62 268
SF-MVS87.03 3487.09 3486.84 5692.70 8367.45 10493.64 9193.76 6970.78 23686.25 4696.44 2866.98 5797.79 4788.68 5094.56 3395.28 68
HY-MVS76.49 584.28 8083.36 9287.02 5392.22 9367.74 9484.65 30194.50 4379.15 7682.23 8387.93 21066.88 5896.94 10580.53 11582.20 16296.39 30
EPNet87.84 2388.38 1986.23 7993.30 6566.05 13695.26 3394.84 2987.09 788.06 3594.53 7966.79 5997.34 7583.89 9191.68 7395.29 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1487.63 2793.86 4794.41 5394.18 5772.76 17786.21 4796.51 2566.64 6097.88 4490.08 4094.04 38
FIs79.47 16879.41 15579.67 26585.95 24159.40 28791.68 17693.94 6378.06 9268.96 23888.28 20066.61 6191.77 29266.20 23874.99 22387.82 244
NCCC89.07 1589.46 1587.91 2796.60 1069.05 6196.38 1694.64 3984.42 1486.74 4496.20 3466.56 6298.76 2389.03 4894.56 3395.92 43
SD-MVS87.49 2787.49 3087.50 4193.60 5668.82 6793.90 7592.63 11776.86 11087.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 39
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet_NR-MVSNet78.15 19477.55 18179.98 25684.46 26860.26 27592.25 14493.20 9377.50 10468.88 23986.61 22866.10 6492.13 28466.38 23562.55 31587.54 246
CHOSEN 280x42077.35 20676.95 19478.55 28187.07 22162.68 22969.71 37282.95 34568.80 26171.48 20887.27 22266.03 6584.00 35976.47 14482.81 15588.95 227
CANet89.61 1289.99 1288.46 2394.39 3969.71 4996.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 20
segment_acmp65.94 66
Vis-MVSNet (Re-imp)79.24 17179.57 15078.24 28688.46 18252.29 34190.41 22389.12 25774.24 14469.13 23291.91 14565.77 6890.09 31859.00 28888.09 10892.33 173
FC-MVSNet-test77.99 19678.08 17377.70 28984.89 26155.51 32790.27 22893.75 7276.87 10966.80 27187.59 21565.71 6990.23 31562.89 26673.94 23287.37 251
SMA-MVScopyleft88.14 1788.29 2187.67 3293.21 6868.72 6993.85 7894.03 6274.18 14591.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 45
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test1287.09 5094.60 3668.86 6592.91 10582.67 8265.44 7197.55 6393.69 4794.84 87
test_fmvsmconf_n86.58 4287.17 3384.82 12385.28 25362.55 23094.26 5789.78 22883.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 82
旧先验191.94 10260.74 26791.50 16494.36 8465.23 7391.84 7094.55 101
1112_ss80.56 14779.83 14782.77 18388.65 17860.78 26392.29 14388.36 28672.58 18072.46 19594.95 6665.09 7493.42 24366.38 23577.71 20094.10 119
MVSFormer83.75 9582.88 10086.37 7589.24 16671.18 2489.07 25890.69 19265.80 28487.13 4094.34 8964.99 7592.67 26672.83 16891.80 7195.27 69
lupinMVS87.74 2487.77 2687.63 3789.24 16671.18 2496.57 1292.90 10682.70 2587.13 4095.27 5864.99 7595.80 14589.34 4391.80 7195.93 42
tpmrst80.57 14679.14 16184.84 12290.10 14368.28 7981.70 32589.72 23577.63 10275.96 15279.54 31864.94 7792.71 26375.43 15077.28 20993.55 139
ZD-MVS96.63 965.50 15293.50 8270.74 23785.26 6095.19 6364.92 7897.29 7887.51 5793.01 55
testing370.38 28570.83 27069.03 35085.82 24543.93 37890.72 21590.56 19868.06 26760.24 31586.82 22764.83 7984.12 35526.33 38864.10 30579.04 362
casdiffmvs_mvgpermissive85.66 6085.18 6387.09 5088.22 19369.35 5693.74 8791.89 14481.47 3780.10 10691.45 15364.80 8096.35 12687.23 6287.69 11295.58 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth77.60 20276.44 19981.09 23285.70 24864.41 17790.65 21788.64 28072.31 18867.37 26482.52 27264.77 8192.64 27070.67 19165.30 29086.24 273
Test_1112_low_res79.56 16678.60 16682.43 19188.24 19260.39 27492.09 15287.99 29772.10 19671.84 20287.42 21864.62 8293.04 24765.80 24277.30 20893.85 133
test250683.29 10182.92 9984.37 14688.39 18663.18 21692.01 15791.35 16977.66 10078.49 12991.42 15464.58 8395.09 17773.19 16489.23 9894.85 84
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3095.86 2768.32 7795.74 2294.11 6083.82 1783.49 7496.19 3564.53 8498.44 3183.42 9494.88 2596.61 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8683.87 7392.94 11964.34 8596.94 10575.19 15294.09 3795.66 49
casdiffmvspermissive85.37 6384.87 6986.84 5688.25 19169.07 6093.04 11491.76 15181.27 4480.84 9792.07 14164.23 8696.06 13884.98 8187.43 11695.39 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cl2277.94 19876.78 19581.42 22087.57 20864.93 16690.67 21688.86 27072.45 18467.63 25982.68 27164.07 8792.91 25671.79 18065.30 29086.44 269
tpm78.58 18777.03 19183.22 17685.94 24364.56 16883.21 31591.14 17978.31 8973.67 17979.68 31664.01 8892.09 28666.07 23971.26 25493.03 155
CDS-MVSNet81.43 13280.74 13183.52 16786.26 23564.45 17392.09 15290.65 19675.83 12473.95 17789.81 18363.97 8992.91 25671.27 18582.82 15493.20 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test84.16 8683.20 9387.05 5291.56 11469.82 4589.99 23992.05 13577.77 9782.84 7886.57 22963.93 9096.09 13474.91 15789.18 10095.25 72
APD-MVScopyleft85.93 5385.99 5185.76 9395.98 2665.21 15793.59 9492.58 11966.54 27986.17 4895.88 4163.83 9197.00 9686.39 6992.94 5695.06 77
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mvs_anonymous81.36 13379.99 14485.46 10190.39 13868.40 7586.88 29190.61 19774.41 14070.31 22184.67 25063.79 9292.32 28173.13 16585.70 13395.67 48
PVSNet_Blended_VisFu83.97 8983.50 8385.39 10490.02 14466.59 12693.77 8591.73 15277.43 10677.08 14589.81 18363.77 9396.97 10279.67 12188.21 10792.60 166
baseline85.01 6984.44 7386.71 6188.33 18868.73 6890.24 23091.82 15081.05 4781.18 9192.50 12863.69 9496.08 13784.45 8686.71 12695.32 64
myMVS_eth3d72.58 27372.74 25172.10 33987.87 20249.45 35688.07 27289.01 26372.91 17363.11 29988.10 20663.63 9585.54 34932.73 38169.23 26481.32 341
CDPH-MVS85.71 5885.46 5986.46 7194.75 3467.19 10893.89 7692.83 10870.90 23283.09 7795.28 5663.62 9697.36 7380.63 11494.18 3694.84 87
HyFIR lowres test81.03 14079.56 15185.43 10287.81 20568.11 8690.18 23190.01 22370.65 23872.95 18586.06 23763.61 9794.50 20375.01 15579.75 18493.67 136
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
c3_l76.83 21775.47 21380.93 23685.02 25964.18 18790.39 22488.11 29471.66 21166.65 27281.64 28463.58 9992.56 27169.31 20462.86 31286.04 280
SteuartSystems-ACMMP86.82 3986.90 3886.58 6790.42 13666.38 12996.09 1893.87 6477.73 9884.01 7295.66 4563.39 10097.94 4087.40 5993.55 4995.42 55
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsmconf0.1_n85.71 5886.08 5084.62 13780.83 30662.33 23493.84 8188.81 27183.50 2087.00 4396.01 3963.36 10196.93 10794.04 1287.29 11794.61 99
EI-MVSNet-Vis-set83.77 9483.67 8084.06 15492.79 8263.56 20591.76 17294.81 3179.65 6677.87 13394.09 9663.35 10297.90 4279.35 12379.36 18790.74 205
UniMVSNet (Re)77.58 20376.78 19579.98 25684.11 27460.80 26291.76 17293.17 9576.56 11869.93 22884.78 24963.32 10392.36 27964.89 25162.51 31786.78 263
PVSNet_BlendedMVS83.38 10083.43 8783.22 17693.76 4967.53 10194.06 6493.61 7679.13 7781.00 9585.14 24463.19 10497.29 7887.08 6373.91 23384.83 302
PVSNet_Blended86.73 4086.86 3986.31 7893.76 4967.53 10196.33 1793.61 7682.34 2981.00 9593.08 11563.19 10497.29 7887.08 6391.38 7994.13 118
UWE-MVS80.81 14481.01 12880.20 24989.33 16057.05 31691.91 16394.71 3575.67 12575.01 16489.37 18763.13 10691.44 30367.19 22682.80 15692.12 184
PAPM_NR82.97 10881.84 11686.37 7594.10 4466.76 12187.66 28092.84 10769.96 24674.07 17593.57 10863.10 10797.50 6570.66 19290.58 8994.85 84
nrg03080.93 14179.86 14684.13 15383.69 27968.83 6693.23 10791.20 17475.55 12775.06 16388.22 20563.04 10894.74 18881.88 10366.88 28188.82 230
fmvsm_s_conf0.5_n86.39 4486.91 3784.82 12387.36 21563.54 20794.74 4890.02 22282.52 2690.14 2596.92 1362.93 10997.84 4695.28 882.26 15993.07 154
EI-MVSNet-UG-set83.14 10582.96 9783.67 16592.28 9163.19 21591.38 18894.68 3779.22 7476.60 14893.75 10262.64 11097.76 4878.07 13678.01 19890.05 214
DeepC-MVS77.85 385.52 6285.24 6286.37 7588.80 17666.64 12392.15 14893.68 7481.07 4676.91 14693.64 10662.59 11198.44 3185.50 7492.84 5894.03 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS84.84 7184.88 6884.69 13291.30 12162.36 23393.85 7892.04 13679.45 6879.33 11794.28 9262.42 11296.35 12680.05 11891.25 8295.38 58
fmvsm_s_conf0.5_n_a85.75 5786.09 4984.72 13085.73 24763.58 20493.79 8489.32 24681.42 4190.21 2396.91 1462.41 11397.67 5194.48 1080.56 17892.90 160
CS-MVS85.80 5686.65 4183.27 17592.00 10158.92 29595.31 3291.86 14679.97 6084.82 6395.40 5162.26 11495.51 16686.11 7192.08 6795.37 59
MVS_111021_HR86.19 4885.80 5587.37 4393.17 7069.79 4693.99 7093.76 6979.08 7978.88 12493.99 9962.25 11598.15 3685.93 7391.15 8394.15 117
PHI-MVS86.83 3886.85 4086.78 6093.47 6265.55 15095.39 3195.10 2271.77 20885.69 5496.52 2462.07 11698.77 2286.06 7295.60 1296.03 40
MP-MVScopyleft85.02 6884.97 6785.17 11492.60 8664.27 18493.24 10692.27 12673.13 16779.63 11294.43 8261.90 11797.17 8585.00 8092.56 6094.06 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
jason86.40 4386.17 4787.11 4986.16 23870.54 3395.71 2592.19 13282.00 3284.58 6594.34 8961.86 11895.53 16587.76 5490.89 8595.27 69
jason: jason.
fmvsm_s_conf0.1_n85.61 6185.93 5284.68 13382.95 29063.48 20994.03 6989.46 24081.69 3589.86 2696.74 2061.85 11997.75 4994.74 982.01 16592.81 162
CS-MVS-test86.14 4987.01 3583.52 16792.63 8559.36 29095.49 2891.92 14180.09 5985.46 5795.53 4961.82 12095.77 14886.77 6793.37 5195.41 56
PAPR85.15 6784.47 7287.18 4796.02 2568.29 7891.85 16793.00 10376.59 11779.03 12095.00 6561.59 12197.61 5878.16 13589.00 10195.63 50
IS-MVSNet80.14 15679.41 15582.33 19587.91 20060.08 27991.97 16188.27 29072.90 17571.44 20991.73 14961.44 12293.66 23862.47 26986.53 12893.24 147
cl____76.07 22474.67 22080.28 24585.15 25561.76 24690.12 23288.73 27571.16 22665.43 27681.57 28661.15 12392.95 25166.54 23262.17 31986.13 278
DIV-MVS_self_test76.07 22474.67 22080.28 24585.14 25661.75 24790.12 23288.73 27571.16 22665.42 27781.60 28561.15 12392.94 25566.54 23262.16 32186.14 276
EI-MVSNet78.97 17678.22 17181.25 22385.33 25162.73 22889.53 24893.21 9172.39 18772.14 19990.13 17960.99 12594.72 18967.73 22072.49 24486.29 271
IterMVS-LS76.49 22075.18 21880.43 24284.49 26762.74 22790.64 21888.80 27272.40 18665.16 27981.72 28260.98 12692.27 28267.74 21964.65 30186.29 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
fmvsm_s_conf0.1_n_a84.76 7284.84 7084.53 13980.23 31663.50 20892.79 12188.73 27580.46 5289.84 2796.65 2260.96 12797.57 6193.80 1380.14 18092.53 169
ETV-MVS86.01 5186.11 4885.70 9690.21 14167.02 11593.43 10391.92 14181.21 4584.13 7194.07 9860.93 12895.63 15689.28 4489.81 9494.46 109
tpm cat175.30 24072.21 25984.58 13888.52 17967.77 9378.16 35388.02 29661.88 31968.45 24776.37 34160.65 12994.03 22653.77 30774.11 23091.93 186
TAMVS80.37 15179.45 15483.13 17885.14 25663.37 21091.23 19790.76 19174.81 13872.65 18988.49 19560.63 13092.95 25169.41 20281.95 16693.08 153
ZNCC-MVS85.33 6485.08 6586.06 8193.09 7365.65 14693.89 7693.41 8773.75 15679.94 10894.68 7660.61 13198.03 3882.63 9893.72 4594.52 105
thres100view90078.37 19077.01 19282.46 19091.89 10663.21 21491.19 20196.33 172.28 19070.45 21887.89 21160.31 13295.32 17045.16 34177.58 20388.83 228
thres600view778.00 19576.66 19782.03 21091.93 10363.69 20091.30 19496.33 172.43 18570.46 21787.89 21160.31 13294.92 18442.64 35376.64 21487.48 248
CHOSEN 1792x268884.98 7083.45 8689.57 1089.94 14675.14 592.07 15492.32 12481.87 3375.68 15588.27 20160.18 13498.60 2780.46 11690.27 9294.96 81
h-mvs3383.01 10782.56 10784.35 14789.34 15862.02 24092.72 12493.76 6981.45 3882.73 8092.25 13860.11 13597.13 8987.69 5562.96 31193.91 129
hse-mvs281.12 13881.11 12681.16 22686.52 23057.48 31189.40 25191.16 17681.45 3882.73 8090.49 16960.11 13594.58 19587.69 5560.41 33891.41 193
tfpn200view978.79 18277.43 18382.88 18192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20388.83 228
thres40078.68 18477.43 18382.43 19192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20387.48 248
diffmvspermissive84.28 8083.83 7885.61 9887.40 21368.02 8890.88 20989.24 24980.54 5081.64 8792.52 12759.83 13994.52 20287.32 6085.11 13694.29 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS84.66 7482.86 10190.06 290.93 12774.56 687.91 27695.54 1368.55 26472.35 19894.71 7559.78 14098.90 1981.29 11194.69 3296.74 15
thres20079.66 16478.33 16883.66 16692.54 8865.82 14493.06 11296.31 374.90 13773.30 18288.66 19359.67 14195.61 15847.84 33078.67 19489.56 223
Effi-MVS+83.82 9282.76 10286.99 5489.56 15469.40 5291.35 19186.12 31872.59 17983.22 7692.81 12559.60 14296.01 14281.76 10487.80 11195.56 53
eth_miper_zixun_eth75.96 23174.40 22880.66 23884.66 26363.02 21889.28 25388.27 29071.88 20265.73 27481.65 28359.45 14392.81 25968.13 21460.53 33586.14 276
ACMMP_NAP86.05 5085.80 5586.80 5991.58 11367.53 10191.79 16993.49 8374.93 13684.61 6495.30 5559.42 14497.92 4186.13 7094.92 2094.94 83
GST-MVS84.63 7584.29 7585.66 9792.82 7965.27 15593.04 11493.13 9773.20 16578.89 12194.18 9559.41 14597.85 4581.45 10792.48 6293.86 132
UA-Net80.02 15979.65 14981.11 22889.33 16057.72 30686.33 29489.00 26677.44 10581.01 9489.15 19059.33 14695.90 14361.01 27684.28 14589.73 220
NR-MVSNet76.05 22774.59 22380.44 24182.96 28862.18 23890.83 21191.73 15277.12 10860.96 31286.35 23159.28 14791.80 29160.74 27761.34 33087.35 253
MP-MVS-pluss85.24 6585.13 6485.56 9991.42 11865.59 14891.54 17992.51 12174.56 13980.62 9995.64 4659.15 14897.00 9686.94 6593.80 4294.07 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS84.73 7384.40 7485.72 9593.75 5165.01 16393.50 9893.19 9472.19 19279.22 11894.93 6859.04 14997.67 5181.55 10592.21 6394.49 108
MSLP-MVS++86.27 4685.91 5387.35 4492.01 10068.97 6495.04 4192.70 11179.04 8181.50 8896.50 2658.98 15096.78 11283.49 9393.93 4096.29 32
Patchmatch-test65.86 31860.94 33280.62 24083.75 27858.83 29658.91 39075.26 36744.50 38050.95 35877.09 33558.81 15187.90 33235.13 37364.03 30695.12 76
EPNet_dtu78.80 18179.26 15977.43 29488.06 19649.71 35491.96 16291.95 14077.67 9976.56 14991.28 15858.51 15290.20 31656.37 29680.95 17492.39 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192083.80 9383.48 8484.77 12782.51 29263.72 19791.37 18983.99 33881.42 4177.68 13595.74 4458.37 15397.58 5993.38 1486.87 12093.00 157
EC-MVSNet84.53 7685.04 6683.01 17989.34 15861.37 25494.42 5291.09 18177.91 9583.24 7594.20 9458.37 15395.40 16785.35 7591.41 7892.27 179
VNet86.20 4785.65 5787.84 2993.92 4669.99 3895.73 2495.94 778.43 8886.00 5093.07 11658.22 15597.00 9685.22 7684.33 14396.52 22
TESTMET0.1,182.41 11781.98 11583.72 16388.08 19563.74 19592.70 12693.77 6879.30 7277.61 13787.57 21658.19 15694.08 21973.91 16386.68 12793.33 146
原ACMM184.42 14393.21 6864.27 18493.40 8865.39 28779.51 11392.50 12858.11 15796.69 11465.27 24993.96 3992.32 174
sam_mvs157.85 15894.68 94
CR-MVSNet73.79 25770.82 27282.70 18583.15 28567.96 8970.25 36984.00 33673.67 16069.97 22672.41 35557.82 15989.48 32252.99 31073.13 23790.64 207
Patchmtry67.53 31063.93 31778.34 28282.12 29764.38 17868.72 37384.00 33648.23 37259.24 32072.41 35557.82 15989.27 32346.10 33856.68 35081.36 340
patchmatchnet-post67.62 37057.62 16190.25 311
PCF-MVS73.15 979.29 17077.63 18084.29 14986.06 23965.96 14087.03 28791.10 18069.86 24869.79 22990.64 16457.54 16296.59 11664.37 25482.29 15890.32 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+81.14 13680.01 14384.51 14190.24 14065.86 14294.12 6389.15 25573.81 15575.37 16188.26 20257.26 16394.53 20166.97 22984.92 13793.15 150
miper_lstm_enhance73.05 26271.73 26577.03 29983.80 27758.32 30181.76 32388.88 26869.80 24961.01 31178.23 32557.19 16487.51 34065.34 24859.53 34085.27 299
PatchT69.11 29565.37 30780.32 24382.07 29863.68 20167.96 37887.62 30150.86 36469.37 23065.18 37357.09 16588.53 32841.59 35666.60 28388.74 231
testdata81.34 22289.02 17057.72 30689.84 22758.65 33885.32 5994.09 9657.03 16693.28 24469.34 20390.56 9093.03 155
PatchmatchNetpermissive77.46 20474.63 22285.96 8489.55 15570.35 3579.97 34489.55 23872.23 19170.94 21176.91 33757.03 16692.79 26154.27 30481.17 17294.74 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_yl84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
DCV-MVSNet84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
region2R84.36 7884.03 7785.36 10693.54 5964.31 18293.43 10392.95 10472.16 19578.86 12594.84 7256.97 17097.53 6481.38 10992.11 6694.24 112
新几何184.73 12992.32 9064.28 18391.46 16659.56 33479.77 11092.90 12056.95 17196.57 11863.40 25992.91 5793.34 144
WR-MVS76.76 21875.74 21079.82 26284.60 26462.27 23792.60 13392.51 12176.06 12167.87 25685.34 24256.76 17290.24 31462.20 27063.69 31086.94 261
HPM-MVScopyleft83.25 10382.95 9884.17 15292.25 9262.88 22590.91 20691.86 14670.30 24277.12 14393.96 10056.75 17396.28 12882.04 10291.34 8193.34 144
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss82.71 11482.38 11083.73 16289.25 16359.58 28592.24 14594.89 2877.96 9379.86 10992.38 13356.70 17497.05 9177.26 14080.86 17594.55 101
ACMMPR84.37 7784.06 7685.28 10993.56 5864.37 17993.50 9893.15 9672.19 19278.85 12694.86 7156.69 17597.45 6681.55 10592.20 6494.02 125
FMVSNet377.73 20176.04 20582.80 18291.20 12468.99 6391.87 16591.99 13873.35 16467.04 26683.19 26656.62 17692.14 28359.80 28469.34 26187.28 255
Patchmatch-RL test68.17 30464.49 31479.19 27371.22 36953.93 33570.07 37171.54 37769.22 25556.79 33662.89 37756.58 17788.61 32569.53 20152.61 36095.03 80
test_post23.01 40056.49 17892.67 266
RPMNet70.42 28465.68 30384.63 13683.15 28567.96 8970.25 36990.45 19946.83 37569.97 22665.10 37456.48 17995.30 17335.79 37273.13 23790.64 207
DU-MVS76.86 21375.84 20879.91 25982.96 28860.26 27591.26 19591.54 16176.46 11968.88 23986.35 23156.16 18092.13 28466.38 23562.55 31587.35 253
Baseline_NR-MVSNet73.99 25472.83 24977.48 29380.78 30759.29 29191.79 16984.55 33168.85 26068.99 23780.70 30056.16 18092.04 28762.67 26760.98 33281.11 343
API-MVS82.28 11980.53 13787.54 4096.13 2270.59 3293.63 9291.04 18765.72 28675.45 16092.83 12456.11 18298.89 2064.10 25589.75 9793.15 150
MTAPA83.91 9083.38 9185.50 10091.89 10665.16 15981.75 32492.23 12775.32 13180.53 10195.21 6256.06 18397.16 8784.86 8392.55 6194.18 114
JIA-IIPM66.06 31762.45 32676.88 30381.42 30354.45 33457.49 39188.67 27849.36 36863.86 29246.86 38956.06 18390.25 31149.53 32068.83 26785.95 283
v14876.19 22274.47 22781.36 22180.05 31864.44 17491.75 17490.23 21373.68 15967.13 26580.84 29955.92 18593.86 23568.95 20961.73 32685.76 289
WR-MVS_H70.59 28269.94 27972.53 33381.03 30451.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18683.45 36346.33 33758.58 34582.72 327
test_fmvsmconf0.01_n83.70 9783.52 8184.25 15175.26 35761.72 24892.17 14787.24 30682.36 2884.91 6295.41 5055.60 18796.83 11192.85 1785.87 13294.21 113
AUN-MVS78.37 19077.43 18381.17 22586.60 22957.45 31289.46 25091.16 17674.11 14674.40 17090.49 16955.52 18894.57 19774.73 16060.43 33791.48 191
XVS83.87 9183.47 8585.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13094.31 9155.25 18997.41 7079.16 12591.58 7593.95 127
X-MVStestdata76.86 21374.13 23385.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13010.19 40555.25 18997.41 7079.16 12591.58 7593.95 127
BH-w/o80.49 14979.30 15884.05 15590.83 13164.36 18193.60 9389.42 24374.35 14269.09 23390.15 17855.23 19195.61 15864.61 25286.43 13092.17 182
CP-MVS83.71 9683.40 9084.65 13493.14 7163.84 19194.59 5092.28 12571.03 23077.41 13994.92 6955.21 19296.19 13081.32 11090.70 8793.91 129
PGM-MVS83.25 10382.70 10484.92 11992.81 8164.07 18890.44 22192.20 13171.28 22477.23 14294.43 8255.17 19397.31 7779.33 12491.38 7993.37 143
tpmvs72.88 26669.76 28282.22 20090.98 12667.05 11378.22 35288.30 28863.10 30764.35 29074.98 34855.09 19494.27 21043.25 34769.57 26085.34 297
v875.35 23973.26 24481.61 21680.67 30966.82 11889.54 24789.27 24871.65 21263.30 29880.30 30854.99 19594.06 22167.33 22462.33 31883.94 308
sam_mvs54.91 196
EPMVS78.49 18975.98 20686.02 8291.21 12369.68 5080.23 33991.20 17475.25 13272.48 19478.11 32654.65 19793.69 23757.66 29383.04 15294.69 93
ab-mvs80.18 15578.31 16985.80 9188.44 18365.49 15383.00 31892.67 11371.82 20677.36 14085.01 24554.50 19896.59 11676.35 14575.63 22095.32 64
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
DP-MVS Recon82.73 11281.65 11885.98 8397.31 467.06 11295.15 3791.99 13869.08 25976.50 15093.89 10154.48 20198.20 3570.76 19085.66 13492.69 163
GeoE78.90 17877.43 18383.29 17488.95 17262.02 24092.31 14286.23 31670.24 24371.34 21089.27 18854.43 20294.04 22463.31 26180.81 17793.81 134
XXY-MVS77.94 19876.44 19982.43 19182.60 29164.44 17492.01 15791.83 14973.59 16170.00 22585.82 23954.43 20294.76 18669.63 19968.02 27488.10 243
MDTV_nov1_ep13_2view59.90 28180.13 34167.65 27172.79 18754.33 20459.83 28392.58 167
Test By Simon54.21 205
MAR-MVS84.18 8583.43 8786.44 7296.25 2165.93 14194.28 5694.27 5674.41 14079.16 11995.61 4753.99 20698.88 2169.62 20093.26 5394.50 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test-LLR80.10 15779.56 15181.72 21486.93 22661.17 25592.70 12691.54 16171.51 22175.62 15686.94 22553.83 20792.38 27772.21 17784.76 14091.60 188
test0.0.03 172.76 26772.71 25372.88 33180.25 31547.99 36291.22 19889.45 24171.51 22162.51 30787.66 21453.83 20785.06 35350.16 31767.84 27785.58 290
v2v48277.42 20575.65 21282.73 18480.38 31267.13 11191.85 16790.23 21375.09 13469.37 23083.39 26453.79 20994.44 20471.77 18165.00 29686.63 267
SR-MVS82.81 11182.58 10683.50 17093.35 6361.16 25792.23 14691.28 17364.48 29381.27 8995.28 5653.71 21095.86 14482.87 9688.77 10393.49 141
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2110.00 4100.00 4090.00 4070.00 406
PS-MVSNAJss77.26 20776.31 20180.13 25180.64 31059.16 29290.63 22091.06 18572.80 17668.58 24584.57 25253.55 21193.96 22972.97 16671.96 24887.27 256
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21197.89 4391.10 3393.31 5294.54 103
mPP-MVS82.96 10982.44 10984.52 14092.83 7762.92 22392.76 12291.85 14871.52 22075.61 15894.24 9353.48 21496.99 9978.97 12890.73 8693.64 138
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12076.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21597.68 5091.07 3492.62 5994.54 103
test_post178.95 34620.70 40353.05 21691.50 30260.43 279
MDTV_nov1_ep1372.61 25489.06 16968.48 7380.33 33790.11 21771.84 20571.81 20375.92 34553.01 21793.92 23148.04 32773.38 235
FA-MVS(test-final)79.12 17377.23 18984.81 12690.54 13463.98 19081.35 33091.71 15471.09 22974.85 16682.94 26752.85 21897.05 9167.97 21681.73 16993.41 142
test22289.77 14961.60 25089.55 24689.42 24356.83 34777.28 14192.43 13252.76 21991.14 8493.09 152
v114476.73 21974.88 21982.27 19780.23 31666.60 12591.68 17690.21 21573.69 15869.06 23581.89 27952.73 22094.40 20569.21 20565.23 29385.80 286
v1074.77 24672.54 25681.46 21980.33 31466.71 12289.15 25789.08 26070.94 23163.08 30179.86 31352.52 22194.04 22465.70 24362.17 31983.64 311
CLD-MVS82.73 11282.35 11183.86 15887.90 20167.65 9795.45 2992.18 13385.06 1272.58 19192.27 13652.46 22295.78 14684.18 8779.06 19088.16 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet75.86 23274.52 22679.89 26082.44 29360.64 27191.37 18991.37 16876.63 11667.65 25886.21 23552.37 22391.55 29761.84 27260.81 33387.48 248
VPA-MVSNet79.03 17478.00 17482.11 20885.95 24164.48 17293.22 10894.66 3875.05 13574.04 17684.95 24652.17 22493.52 24074.90 15867.04 28088.32 241
APD-MVS_3200maxsize81.64 13081.32 12182.59 18992.36 8958.74 29791.39 18691.01 18863.35 30279.72 11194.62 7851.82 22596.14 13279.71 12087.93 11092.89 161
dp75.01 24472.09 26083.76 15989.28 16266.22 13579.96 34589.75 23071.16 22667.80 25777.19 33451.81 22692.54 27250.39 31571.44 25392.51 170
v14419276.05 22774.03 23482.12 20579.50 32466.55 12791.39 18689.71 23672.30 18968.17 24881.33 29151.75 22794.03 22667.94 21764.19 30385.77 287
BH-untuned78.68 18477.08 19083.48 17189.84 14763.74 19592.70 12688.59 28171.57 21866.83 27088.65 19451.75 22795.39 16859.03 28784.77 13991.32 197
HQP2-MVS51.63 229
HQP-MVS81.14 13680.64 13482.64 18787.54 20963.66 20294.06 6491.70 15679.80 6274.18 17190.30 17351.63 22995.61 15877.63 13878.90 19188.63 232
dmvs_testset65.55 32166.45 29762.86 36279.87 31922.35 40576.55 35771.74 37577.42 10755.85 33887.77 21351.39 23180.69 37731.51 38765.92 28885.55 292
V4276.46 22174.55 22582.19 20279.14 33067.82 9290.26 22989.42 24373.75 15668.63 24481.89 27951.31 23294.09 21871.69 18364.84 29784.66 303
SR-MVS-dyc-post81.06 13980.70 13282.15 20392.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8051.26 23395.61 15878.77 13186.77 12492.28 176
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23589.90 22569.96 24661.96 31076.54 33851.05 23487.64 33749.51 32150.59 36582.70 329
TransMVSNet (Re)70.07 28767.66 29377.31 29780.62 31159.13 29491.78 17184.94 32865.97 28360.08 31780.44 30550.78 23591.87 28948.84 32345.46 37380.94 345
HQP_MVS80.34 15279.75 14882.12 20586.94 22462.42 23193.13 11091.31 17078.81 8472.53 19289.14 19150.66 23695.55 16376.74 14178.53 19688.39 239
plane_prior687.23 21662.32 23550.66 236
ACMMPcopyleft81.49 13180.67 13383.93 15791.71 11062.90 22492.13 14992.22 13071.79 20771.68 20693.49 11050.32 23896.96 10378.47 13384.22 14791.93 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR82.02 12581.52 11983.51 16988.42 18462.88 22589.77 24388.93 26776.78 11375.55 15993.10 11350.31 23995.38 16983.82 9287.02 11992.26 180
131480.70 14578.95 16285.94 8587.77 20767.56 9987.91 27692.55 12072.17 19467.44 26093.09 11450.27 24097.04 9471.68 18487.64 11393.23 148
CP-MVSNet70.50 28369.91 28072.26 33680.71 30851.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24182.30 37151.28 31259.28 34183.46 316
LCM-MVSNet-Re72.93 26471.84 26376.18 30888.49 18048.02 36180.07 34270.17 37873.96 15152.25 35180.09 31249.98 24288.24 33067.35 22284.23 14692.28 176
Vis-MVSNetpermissive80.92 14279.98 14583.74 16088.48 18161.80 24493.44 10288.26 29273.96 15177.73 13491.76 14749.94 24394.76 18665.84 24190.37 9194.65 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119275.98 22973.92 23682.15 20379.73 32066.24 13491.22 19889.75 23072.67 17868.49 24681.42 28949.86 24494.27 21067.08 22765.02 29585.95 283
test-mter79.96 16079.38 15781.72 21486.93 22661.17 25592.70 12691.54 16173.85 15375.62 15686.94 22549.84 24592.38 27772.21 17784.76 14091.60 188
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5849.56 2460.00 4100.00 4090.00 4070.00 406
3Dnovator+73.60 782.10 12480.60 13686.60 6590.89 12966.80 12095.20 3593.44 8574.05 14767.42 26192.49 13049.46 24797.65 5570.80 18991.68 7395.33 62
MVP-Stereo77.12 21076.23 20279.79 26381.72 30066.34 13189.29 25290.88 18970.56 24062.01 30982.88 26849.34 24894.13 21665.55 24693.80 4278.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
RE-MVS-def80.48 13892.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8049.30 24978.77 13186.77 12492.28 176
OMC-MVS78.67 18677.91 17780.95 23585.76 24657.40 31388.49 26788.67 27873.85 15372.43 19692.10 14049.29 25094.55 20072.73 17177.89 19990.91 204
VPNet78.82 18077.53 18282.70 18584.52 26666.44 12893.93 7392.23 12780.46 5272.60 19088.38 19949.18 25193.13 24672.47 17563.97 30888.55 235
CVMVSNet74.04 25374.27 23073.33 32785.33 25143.94 37789.53 24888.39 28554.33 35570.37 21990.13 17949.17 25284.05 35761.83 27379.36 18791.99 185
v192192075.63 23773.49 24282.06 20979.38 32566.35 13091.07 20589.48 23971.98 19767.99 24981.22 29449.16 25393.90 23266.56 23164.56 30285.92 285
pm-mvs172.89 26571.09 26978.26 28579.10 33157.62 30990.80 21289.30 24767.66 27062.91 30381.78 28149.11 25492.95 25160.29 28158.89 34384.22 306
pmmvs473.92 25571.81 26480.25 24779.17 32865.24 15687.43 28387.26 30567.64 27263.46 29683.91 25948.96 25591.53 30162.94 26465.49 28983.96 307
TAPA-MVS70.22 1274.94 24573.53 24179.17 27490.40 13752.07 34289.19 25689.61 23762.69 31170.07 22392.67 12648.89 25694.32 20638.26 36779.97 18191.12 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator73.91 682.69 11580.82 12988.31 2589.57 15371.26 2292.60 13394.39 5178.84 8367.89 25592.48 13148.42 25798.52 2868.80 21194.40 3595.15 74
CPTT-MVS79.59 16579.16 16080.89 23791.54 11659.80 28292.10 15188.54 28360.42 32772.96 18493.28 11248.27 25892.80 26078.89 13086.50 12990.06 213
GBi-Net75.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
test175.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
FMVSNet276.07 22474.01 23582.26 19988.85 17367.66 9691.33 19291.61 15970.84 23365.98 27382.25 27548.03 25992.00 28858.46 28968.73 26987.10 258
LFMVS84.34 7982.73 10389.18 1294.76 3373.25 994.99 4391.89 14471.90 20082.16 8493.49 11047.98 26297.05 9182.55 9984.82 13897.25 9
SDMVSNet80.26 15378.88 16384.40 14489.25 16367.63 9885.35 29793.02 10076.77 11470.84 21387.12 22347.95 26396.09 13485.04 7974.55 22489.48 224
QAPM79.95 16177.39 18787.64 3389.63 15271.41 2093.30 10593.70 7365.34 28967.39 26391.75 14847.83 26498.96 1657.71 29289.81 9492.54 168
HPM-MVS_fast80.25 15479.55 15382.33 19591.55 11559.95 28091.32 19389.16 25465.23 29074.71 16793.07 11647.81 26595.74 14974.87 15988.23 10691.31 198
CANet_DTU84.09 8783.52 8185.81 9090.30 13966.82 11891.87 16589.01 26385.27 1186.09 4993.74 10347.71 26696.98 10077.90 13789.78 9693.65 137
v124075.21 24272.98 24781.88 21179.20 32766.00 13890.75 21489.11 25871.63 21667.41 26281.22 29447.36 26793.87 23365.46 24764.72 30085.77 287
PEN-MVS69.46 29368.56 28772.17 33879.27 32649.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26883.54 36248.42 32557.12 34683.25 319
dmvs_re76.93 21275.36 21581.61 21687.78 20660.71 26880.00 34387.99 29779.42 6969.02 23689.47 18646.77 26994.32 20663.38 26074.45 22789.81 217
CNLPA74.31 25072.30 25880.32 24391.49 11761.66 24990.85 21080.72 35256.67 34863.85 29390.64 16446.75 27090.84 30653.79 30675.99 21988.47 238
114514_t79.17 17277.67 17883.68 16495.32 2965.53 15192.85 12091.60 16063.49 30067.92 25290.63 16646.65 27195.72 15467.01 22883.54 14889.79 218
PS-CasMVS69.86 29069.13 28572.07 34080.35 31350.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27282.24 37250.69 31459.02 34283.39 318
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34649.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27383.87 36044.97 34455.17 35382.73 326
test111180.84 14380.02 14283.33 17387.87 20260.76 26592.62 13186.86 31077.86 9675.73 15491.39 15646.35 27494.70 19272.79 17088.68 10494.52 105
ECVR-MVScopyleft81.29 13480.38 14084.01 15688.39 18661.96 24292.56 13886.79 31177.66 10076.63 14791.42 15446.34 27595.24 17474.36 16189.23 9894.85 84
PMMVS81.98 12682.04 11381.78 21289.76 15056.17 32291.13 20290.69 19277.96 9380.09 10793.57 10846.33 27694.99 18081.41 10887.46 11594.17 115
OPM-MVS79.00 17578.09 17281.73 21383.52 28263.83 19291.64 17890.30 20976.36 12071.97 20189.93 18246.30 27795.17 17675.10 15377.70 20186.19 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet79.46 16977.65 17984.89 12091.68 11165.66 14593.55 9588.09 29572.93 17273.37 18191.12 16046.20 27896.12 13356.28 29785.61 13592.91 159
mvsmamba76.85 21575.71 21180.25 24783.07 28759.16 29291.44 18080.64 35376.84 11167.95 25186.33 23346.17 27994.24 21376.06 14672.92 24087.36 252
FE-MVS75.97 23073.02 24684.82 12389.78 14865.56 14977.44 35591.07 18464.55 29272.66 18879.85 31446.05 28096.69 11454.97 30180.82 17692.21 181
TR-MVS78.77 18377.37 18882.95 18090.49 13560.88 26193.67 8990.07 21870.08 24574.51 16991.37 15745.69 28195.70 15560.12 28280.32 17992.29 175
IterMVS-SCA-FT71.55 27869.97 27876.32 30681.48 30160.67 27087.64 28185.99 31966.17 28259.50 31978.88 32045.53 28283.65 36162.58 26861.93 32284.63 305
SCA75.82 23372.76 25085.01 11786.63 22870.08 3781.06 33289.19 25271.60 21770.01 22477.09 33545.53 28290.25 31160.43 27973.27 23694.68 94
IterMVS72.65 27270.83 27078.09 28782.17 29662.96 22087.64 28186.28 31471.56 21960.44 31478.85 32145.42 28486.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Syy-MVS69.65 29169.52 28370.03 34687.87 20243.21 37988.07 27289.01 26372.91 17363.11 29988.10 20645.28 28585.54 34922.07 39269.23 26481.32 341
WB-MVSnew77.14 20976.18 20480.01 25586.18 23763.24 21391.26 19594.11 6071.72 21073.52 18087.29 22145.14 28693.00 24956.98 29479.42 18583.80 310
Effi-MVS+-dtu76.14 22375.28 21778.72 28083.22 28455.17 32989.87 24087.78 30075.42 12967.98 25081.43 28845.08 28792.52 27375.08 15471.63 24988.48 236
XVG-OURS-SEG-HR74.70 24773.08 24579.57 26878.25 34257.33 31480.49 33587.32 30363.22 30468.76 24290.12 18144.89 28891.59 29670.55 19374.09 23189.79 218
v7n71.31 27968.65 28679.28 27276.40 35360.77 26486.71 29289.45 24164.17 29558.77 32678.24 32444.59 28993.54 23957.76 29161.75 32583.52 314
pmmvs573.35 25971.52 26678.86 27878.64 33860.61 27291.08 20386.90 30867.69 26963.32 29783.64 26044.33 29090.53 30862.04 27166.02 28785.46 294
OpenMVScopyleft70.45 1178.54 18875.92 20786.41 7485.93 24471.68 1892.74 12392.51 12166.49 28064.56 28591.96 14243.88 29198.10 3754.61 30290.65 8889.44 226
AdaColmapbinary78.94 17777.00 19384.76 12896.34 1765.86 14292.66 13087.97 29962.18 31470.56 21592.37 13443.53 29297.35 7464.50 25382.86 15391.05 203
tfpnnormal70.10 28667.36 29478.32 28383.45 28360.97 26088.85 26192.77 10964.85 29160.83 31378.53 32243.52 29393.48 24131.73 38461.70 32780.52 350
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20790.26 17543.22 29475.05 38174.26 16262.70 31487.25 257
test_djsdf73.76 25872.56 25577.39 29577.00 35153.93 33589.07 25890.69 19265.80 28463.92 29182.03 27843.14 29592.67 26672.83 16868.53 27085.57 291
GA-MVS78.33 19276.23 20284.65 13483.65 28066.30 13291.44 18090.14 21676.01 12270.32 22084.02 25742.50 29694.72 18970.98 18777.00 21292.94 158
PLCcopyleft68.80 1475.23 24173.68 24079.86 26192.93 7558.68 29890.64 21888.30 28860.90 32464.43 28990.53 16742.38 29794.57 19756.52 29576.54 21586.33 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS73.80 25672.02 26179.15 27679.15 32962.97 21988.58 26690.07 21872.94 17159.22 32178.30 32342.31 29892.70 26565.59 24572.00 24781.79 338
Fast-Effi-MVS+-dtu75.04 24373.37 24380.07 25280.86 30559.52 28691.20 20085.38 32371.90 20065.20 27884.84 24841.46 29992.97 25066.50 23472.96 23987.73 245
sd_testset77.08 21175.37 21482.20 20189.25 16362.11 23982.06 32289.09 25976.77 11470.84 21387.12 22341.43 30095.01 17967.23 22574.55 22489.48 224
MS-PatchMatch77.90 20076.50 19882.12 20585.99 24069.95 4191.75 17492.70 11173.97 15062.58 30684.44 25441.11 30195.78 14663.76 25892.17 6580.62 349
our_test_368.29 30364.69 31179.11 27778.92 33264.85 16788.40 26985.06 32660.32 32952.68 34976.12 34340.81 30289.80 32144.25 34655.65 35182.67 331
XVG-OURS74.25 25172.46 25779.63 26678.45 34057.59 31080.33 33787.39 30263.86 29768.76 24289.62 18540.50 30391.72 29369.00 20874.25 22989.58 221
VDD-MVS83.06 10681.81 11786.81 5890.86 13067.70 9595.40 3091.50 16475.46 12881.78 8692.34 13540.09 30497.13 8986.85 6682.04 16495.60 51
DP-MVS69.90 28966.48 29680.14 25095.36 2862.93 22189.56 24576.11 36150.27 36657.69 33385.23 24339.68 30595.73 15033.35 37771.05 25581.78 339
RRT_MVS74.44 24872.97 24878.84 27982.36 29457.66 30889.83 24288.79 27470.61 23964.58 28484.89 24739.24 30692.65 26970.11 19666.34 28586.21 274
ppachtmachnet_test67.72 30763.70 31879.77 26478.92 33266.04 13788.68 26482.90 34660.11 33155.45 33975.96 34439.19 30790.55 30739.53 36252.55 36182.71 328
ADS-MVSNet266.90 31363.44 32077.26 29888.06 19660.70 26968.01 37675.56 36557.57 34064.48 28669.87 36538.68 30884.10 35640.87 35867.89 27586.97 259
ADS-MVSNet68.54 30164.38 31681.03 23388.06 19666.90 11768.01 37684.02 33557.57 34064.48 28669.87 36538.68 30889.21 32440.87 35867.89 27586.97 259
test_cas_vis1_n_192080.45 15080.61 13579.97 25878.25 34257.01 31894.04 6888.33 28779.06 8082.81 7993.70 10438.65 31091.63 29590.82 3779.81 18291.27 200
LPG-MVS_test75.82 23374.58 22479.56 26984.31 27159.37 28890.44 22189.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
LGP-MVS_train79.56 26984.31 27159.37 28889.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
VDDNet80.50 14878.26 17087.21 4686.19 23669.79 4694.48 5191.31 17060.42 32779.34 11690.91 16238.48 31396.56 11982.16 10081.05 17395.27 69
ACMP71.68 1075.58 23874.23 23179.62 26784.97 26059.64 28390.80 21289.07 26170.39 24162.95 30287.30 22038.28 31493.87 23372.89 16771.45 25285.36 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192081.66 12982.01 11480.64 23982.24 29555.09 33094.76 4786.87 30981.67 3684.40 6794.63 7738.17 31594.67 19391.98 2883.34 15092.16 183
UGNet79.87 16278.68 16483.45 17289.96 14561.51 25192.13 14990.79 19076.83 11278.85 12686.33 23338.16 31696.17 13167.93 21887.17 11892.67 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30879.77 31538.14 31791.44 30368.90 21067.45 27883.21 320
xiu_mvs_v1_base_debu82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base_debi82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
PVSNet_068.08 1571.81 27568.32 29182.27 19784.68 26262.31 23688.68 26490.31 20875.84 12357.93 33280.65 30337.85 32194.19 21469.94 19729.05 39590.31 211
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 27087.32 30361.75 32158.07 32977.29 33237.79 32287.29 34242.91 34963.71 30983.48 315
ACMM69.62 1374.34 24972.73 25279.17 27484.25 27357.87 30490.36 22589.93 22463.17 30665.64 27586.04 23837.79 32294.10 21765.89 24071.52 25185.55 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas78.18 19375.77 20985.41 10387.14 21969.11 5992.96 11791.15 17866.71 27870.47 21686.07 23637.49 32496.48 12470.15 19579.80 18390.65 206
LS3D69.17 29466.40 29877.50 29291.92 10456.12 32385.12 29880.37 35446.96 37356.50 33787.51 21737.25 32593.71 23632.52 38379.40 18682.68 330
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34460.41 27383.49 30884.03 33456.17 35139.17 38571.59 36137.22 32683.24 36642.87 35148.73 36780.26 353
YYNet163.76 33160.14 33474.62 31878.06 34560.19 27883.46 31083.99 33856.18 35039.25 38471.56 36237.18 32783.34 36442.90 35048.70 36880.32 352
FMVSNet568.04 30565.66 30475.18 31484.43 26957.89 30383.54 30786.26 31561.83 32053.64 34773.30 35237.15 32885.08 35248.99 32261.77 32482.56 332
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33363.29 30351.86 35277.30 33137.09 32982.47 36938.87 36654.13 35779.73 356
PVSNet73.49 880.05 15878.63 16584.31 14890.92 12864.97 16492.47 13991.05 18679.18 7572.43 19690.51 16837.05 33094.06 22168.06 21586.00 13193.90 131
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31745.11 37854.27 34381.15 29736.91 33180.01 37948.79 32457.02 34782.19 336
Anonymous2023121173.08 26070.39 27681.13 22790.62 13363.33 21191.40 18490.06 22051.84 36164.46 28880.67 30236.49 33294.07 22063.83 25764.17 30485.98 282
FMVSNet172.71 26969.91 28081.10 22983.60 28165.11 16090.01 23690.32 20563.92 29663.56 29580.25 30936.35 33391.54 29854.46 30366.75 28286.64 264
Anonymous2024052976.84 21674.15 23284.88 12191.02 12564.95 16593.84 8191.09 18153.57 35673.00 18387.42 21835.91 33497.32 7669.14 20772.41 24692.36 172
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33572.83 3859.96 40121.75 39656.27 389
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32245.54 37744.76 37682.14 27735.40 33690.14 31763.18 26374.54 22681.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26386.78 31253.19 35757.58 33478.03 32735.33 33792.41 27655.56 29954.88 35582.21 335
PatchMatch-RL72.06 27469.98 27778.28 28489.51 15655.70 32683.49 30883.39 34361.24 32263.72 29482.76 26934.77 33893.03 24853.37 30977.59 20286.12 279
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27651.55 34467.08 37983.53 34058.78 33754.94 34180.31 30734.54 33993.23 24540.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34070.39 3889.14 40319.57 39754.68 390
UniMVSNet_ETH3D72.74 26870.53 27579.36 27178.62 33956.64 32085.01 29989.20 25163.77 29864.84 28284.44 25434.05 34191.86 29063.94 25670.89 25689.57 222
F-COLMAP70.66 28168.44 28977.32 29686.37 23455.91 32488.00 27486.32 31356.94 34657.28 33588.07 20833.58 34292.49 27451.02 31368.37 27183.55 312
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28482.80 31983.43 34162.52 31251.30 35672.49 35332.86 34387.16 34355.32 30050.73 36478.83 364
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32357.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34486.26 34735.81 37141.95 37875.89 373
MIMVSNet71.64 27668.44 28981.23 22481.97 29964.44 17473.05 36588.80 27269.67 25064.59 28374.79 34932.79 34487.82 33453.99 30576.35 21691.42 192
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30788.32 492.60 596.57 2332.61 34697.45 6692.21 2495.80 1097.53 6
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 18049.25 36474.77 35032.57 34787.43 34155.96 29841.04 38083.90 309
bld_raw_dy_0_6482.84 11080.75 13089.09 1493.74 5272.16 1593.16 10977.36 35889.69 174.55 16896.48 2732.35 34897.56 6292.21 2477.24 21097.53 6
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
test_040264.54 32561.09 33174.92 31684.10 27560.75 26687.95 27579.71 35652.03 35952.41 35077.20 33332.21 35091.64 29423.14 39061.03 33172.36 379
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 262
MSDG69.54 29265.73 30280.96 23485.11 25863.71 19884.19 30383.28 34456.95 34554.50 34284.03 25631.50 35296.03 14042.87 35169.13 26683.14 322
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36246.94 37458.96 32484.59 25131.40 35382.00 37347.76 33160.33 33986.04 280
tt080573.07 26170.73 27380.07 25278.37 34157.05 31687.78 27892.18 13361.23 32367.04 26686.49 23031.35 35494.58 19565.06 25067.12 27988.57 234
jajsoiax73.05 26271.51 26777.67 29077.46 34854.83 33188.81 26290.04 22169.13 25862.85 30483.51 26231.16 35592.75 26270.83 18869.80 25785.43 295
MVS-HIRNet60.25 34055.55 34774.35 32084.37 27056.57 32171.64 36774.11 36934.44 38845.54 37442.24 39531.11 35689.81 31940.36 36176.10 21876.67 372
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33649.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30945.89 33947.06 37082.78 324
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32957.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
mvs_tets72.71 26971.11 26877.52 29177.41 34954.52 33388.45 26889.76 22968.76 26362.70 30583.26 26529.49 35992.71 26370.51 19469.62 25985.34 297
Anonymous20240521177.96 19775.33 21685.87 8793.73 5464.52 16994.85 4585.36 32462.52 31276.11 15190.18 17629.43 36097.29 7868.51 21377.24 21095.81 47
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 36064.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32650.08 31838.90 38479.63 357
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31947.75 33231.37 39283.53 313
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
ACMH63.93 1768.62 29964.81 30980.03 25485.22 25463.25 21287.72 27984.66 33060.83 32551.57 35479.43 31927.29 36594.96 18141.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32753.60 30853.63 35880.71 348
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26557.10 31588.08 27180.79 35158.59 33953.00 34881.09 29826.63 36792.95 25146.51 33561.69 32880.82 346
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25483.41 34255.48 35253.86 34677.84 32826.28 36893.95 23034.90 37468.76 26878.68 365
test_fmvs174.07 25273.69 23975.22 31278.91 33447.34 36689.06 26074.69 36863.68 29979.41 11591.59 15224.36 36987.77 33685.22 7676.26 21790.55 209
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30253.00 33983.75 30675.53 36648.34 37148.81 36581.40 29024.14 37090.30 31032.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33255.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35960.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
EG-PatchMatch MVS68.55 30065.41 30677.96 28878.69 33762.93 22189.86 24189.17 25360.55 32650.27 35977.73 32922.60 37494.06 22147.18 33372.65 24376.88 371
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
USDC67.43 31264.51 31376.19 30777.94 34655.29 32878.38 35085.00 32773.17 16648.36 36680.37 30621.23 37692.48 27552.15 31164.02 30780.81 347
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32550.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
test_vis1_n71.63 27770.73 27374.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16290.17 17720.40 37885.76 34884.59 8574.42 22889.87 216
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 32062.03 31658.91 32581.21 29620.38 37991.15 30560.69 27868.18 27283.16 321
test_fmvs1_n72.69 27171.92 26274.99 31571.15 37047.08 36887.34 28575.67 36363.48 30178.08 13291.17 15920.16 38087.87 33384.65 8475.57 22190.01 215
AllTest61.66 33558.06 33972.46 33479.57 32151.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32151.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18662.79 31367.07 385
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 37040.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25384.54 25315.35 38581.22 37675.65 14966.16 28682.88 323
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
TinyColmap60.32 33956.42 34672.00 34178.78 33553.18 33878.36 35175.64 36452.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
ambc69.61 34761.38 38941.35 38249.07 39685.86 32150.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 660.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
FOURS193.95 4561.77 24593.96 7191.92 14162.14 31586.57 45
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
eth-test20.00 414
eth-test0.00 414
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2195.36 1496.47 27
save fliter93.84 4867.89 9195.05 4092.66 11478.19 90
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2994.90 2296.51 23
GSMVS94.68 94
test_part296.29 1968.16 8590.78 17
MTGPAbinary92.23 127
MTMP93.77 8532.52 409
gm-plane-assit88.42 18467.04 11478.62 8791.83 14697.37 7276.57 143
test9_res89.41 4194.96 1995.29 66
agg_prior286.41 6894.75 3095.33 62
agg_prior94.16 4366.97 11693.31 8984.49 6696.75 113
test_prior467.18 11093.92 74
test_prior86.42 7394.71 3567.35 10593.10 9996.84 11095.05 78
旧先验292.00 16059.37 33587.54 3993.47 24275.39 151
新几何291.41 182
无先验92.71 12592.61 11862.03 31697.01 9566.63 23093.97 126
原ACMM292.01 157
testdata296.09 13461.26 275
testdata189.21 25577.55 103
plane_prior786.94 22461.51 251
plane_prior591.31 17095.55 16376.74 14178.53 19688.39 239
plane_prior489.14 191
plane_prior361.95 24379.09 7872.53 192
plane_prior293.13 11078.81 84
plane_prior187.15 218
plane_prior62.42 23193.85 7879.38 7078.80 193
n20.00 415
nn0.00 415
door-mid66.01 385
test1193.01 101
door66.57 384
HQP5-MVS63.66 202
HQP-NCC87.54 20994.06 6479.80 6274.18 171
ACMP_Plane87.54 20994.06 6479.80 6274.18 171
BP-MVS77.63 138
HQP4-MVS74.18 17195.61 15888.63 232
HQP3-MVS91.70 15678.90 191
NP-MVS87.41 21263.04 21790.30 173
ACMMP++_ref71.63 249
ACMMP++69.72 258