This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
tt080576.12 8478.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14156.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 40373.86 5286.31 1978.84 1994.03 5384.64 104
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
wuyk23d61.97 26366.25 21849.12 35358.19 37460.77 15066.32 25852.97 35255.93 17090.62 586.91 13373.07 5735.98 39820.63 40291.63 8750.62 388
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
pmmvs671.82 14873.66 11866.31 24175.94 20142.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs72.29 14573.38 12369.04 20474.23 22447.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
nrg03074.87 10475.99 9171.52 16774.90 21249.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
anonymousdsp78.60 6177.80 7281.00 3178.01 16974.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RPSCF75.76 8674.37 10679.93 4074.81 21477.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
testf175.66 8876.57 8272.95 13967.07 31867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8876.57 8272.95 13967.07 31867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
MVS_111021_HR72.98 13172.97 13472.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
AdaColmapbinary74.22 10774.56 10373.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 289
GeoE73.14 12273.77 11771.26 17078.09 16752.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
test_fmvsmvis_n_192072.36 14372.49 14171.96 16271.29 26364.06 11472.79 16281.82 9640.23 32981.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
AllTest77.66 7177.43 7678.35 6679.19 15170.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15170.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
ITE_SJBPF80.35 3876.94 18473.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15372.87 25149.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS77.33 7477.06 8178.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
Effi-MVS+72.10 14672.28 14671.58 16574.21 22650.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
EC-MVSNet77.08 7777.39 7776.14 9276.86 18956.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
CS-MVS76.51 8076.00 9078.06 7177.02 18164.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
CLD-MVS72.88 13472.36 14574.43 11077.03 18054.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D80.99 4180.85 4981.41 2578.37 16371.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
MVS_111021_LR72.10 14671.82 15172.95 13979.53 14373.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 291
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21948.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
LCM-MVSNet-Re69.10 18171.57 15761.70 28170.37 27734.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
segment_acmp68.30 94
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2530.00 4090.00 41074.25 31168.16 950.00 4100.00 4090.00 4080.00 406
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
v7n79.37 5680.41 5276.28 9078.67 16255.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 13079.90 13846.03 27976.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14879.34 14845.58 28175.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21368.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
test_fmvsmconf_n72.91 13372.40 14474.46 10768.62 29866.12 9674.21 15378.80 15845.64 28074.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
CS-MVS-test74.89 10374.23 10976.86 8177.01 18262.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
PC_three_145246.98 27381.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
Anonymous2023121175.54 9077.19 7970.59 17577.67 17545.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
EI-MVSNet-Vis-set72.78 13671.87 14975.54 9974.77 21559.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
EI-MVSNet-UG-set72.63 13971.68 15375.47 10074.67 21758.64 17072.02 17071.50 23363.53 10278.58 13071.39 33465.98 11878.53 16767.30 10580.18 26989.23 29
Anonymous2024052972.56 14073.79 11668.86 21176.89 18845.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
ETV-MVS72.72 13772.16 14874.38 11276.90 18755.95 18073.34 15884.67 5162.04 11572.19 22970.81 33565.90 12085.24 5658.64 17884.96 21481.95 183
TransMVSNet (Re)69.62 17271.63 15463.57 26276.51 19135.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32854.41 21584.67 21677.28 255
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
Fast-Effi-MVS+-dtu70.00 16668.74 18673.77 12073.47 23664.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2630.60 4051.13 40791.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
MCST-MVS73.42 11673.34 12573.63 12481.28 12759.17 16174.80 14283.13 7845.50 28272.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
PCF-MVS63.80 1372.70 13871.69 15275.72 9678.10 16660.01 15573.04 16081.50 10145.34 28679.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
Effi-MVS+-dtu75.43 9172.28 14684.91 277.05 17983.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
VPA-MVSNet68.71 18670.37 16863.72 26076.13 19638.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
F-COLMAP75.29 9273.99 11279.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
dcpmvs_271.02 15672.65 13966.16 24276.06 20050.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
DP-MVS Recon73.57 11472.69 13876.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
114514_t73.40 11773.33 12673.64 12384.15 8657.11 17578.20 9880.02 13643.76 29972.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
pm-mvs168.40 19069.85 17264.04 25873.10 24539.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
sd_testset63.55 24765.38 22858.07 30873.04 24838.83 32357.41 33165.44 28151.42 22768.93 27182.72 21363.76 13858.11 34341.05 31284.67 21677.28 255
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 308
fmvsm_s_conf0.1_n_a67.37 20866.36 21770.37 17970.86 26561.17 13974.00 15557.18 32540.77 32468.83 27680.88 23463.11 14167.61 29266.94 10774.72 31682.33 178
fmvsm_s_conf0.5_n_a67.00 21465.95 22470.17 18469.72 28961.16 14073.34 15856.83 32840.96 32168.36 27980.08 24962.84 14267.57 29366.90 10974.50 32081.78 186
UniMVSNet (Re)75.00 9975.48 9773.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
MIMVSNet166.57 21769.23 17758.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17451.32 21063.63 28972.31 22745.06 29161.70 32569.66 34862.56 14573.93 23349.06 25573.91 32672.31 302
Test By Simon62.56 145
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
NR-MVSNet73.62 11374.05 11172.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17251.42 20963.33 29272.33 22645.09 29061.60 32668.04 36262.39 14973.95 23249.07 25473.87 32772.34 301
PHI-MVS74.92 10074.36 10776.61 8476.40 19262.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
MVS_Test69.84 16970.71 16667.24 23067.49 31243.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
CSCG74.12 10874.39 10573.33 12879.35 14561.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
DU-MVS74.91 10175.57 9672.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
Baseline_NR-MVSNet70.62 16073.19 12762.92 27276.97 18334.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 293
PAPR69.20 17968.66 18870.82 17275.15 20947.77 24875.31 13481.11 11149.62 25166.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
API-MVS70.97 15771.51 15869.37 19675.20 20755.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 313
xiu_mvs_v1_base_debu67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
fmvsm_s_conf0.5_n66.34 22165.27 22969.57 19568.20 30359.14 16471.66 18056.48 33140.92 32267.78 28479.46 25761.23 16366.90 30067.39 10074.32 32482.66 169
CNLPA73.44 11573.03 13274.66 10578.27 16475.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
MSDG67.47 20667.48 20567.46 22870.70 26854.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29974.49 280
fmvsm_s_conf0.1_n66.60 21665.54 22669.77 19268.99 29559.15 16272.12 16856.74 33040.72 32668.25 28280.14 24861.18 16666.92 29967.34 10474.40 32183.23 152
test_fmvsm_n_192069.63 17168.45 18973.16 13170.56 27265.86 9870.26 20278.35 16737.69 34574.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
CANet73.00 12971.84 15076.48 8775.82 20261.28 13774.81 14080.37 13063.17 10862.43 32480.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
EG-PatchMatch MVS70.70 15970.88 16470.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 298
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior684.18 8565.31 10360.83 170
MM78.15 7077.68 7479.55 4880.10 13765.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
FMVSNet171.06 15472.48 14266.81 23577.65 17640.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
EIA-MVS68.59 18967.16 20872.90 14375.18 20855.64 18569.39 21281.29 10652.44 21364.53 30570.69 33660.33 17482.30 10354.27 21876.31 30380.75 206
BH-untuned69.39 17769.46 17369.18 20277.96 17056.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 319
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18260.84 30864.11 29441.23 31764.04 31078.22 27660.00 17648.80 36154.17 21983.71 23271.37 310
PAPM_NR73.91 10974.16 11073.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
VDDNet71.60 15073.13 12967.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
VDD-MVS70.81 15871.44 15968.91 21079.07 15646.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
ANet_high67.08 21169.94 17058.51 30657.55 37527.09 38858.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31650.10 24688.86 15683.46 143
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
PLCcopyleft62.01 1671.79 14970.28 16976.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TinyColmap67.98 19769.28 17564.08 25667.98 30746.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 296
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 15036.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
V4271.06 15470.83 16571.72 16467.25 31447.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19253.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
alignmvs70.54 16171.00 16369.15 20373.50 23548.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet65.58 22567.56 20259.65 29879.72 14030.17 37760.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
mvs_anonymous65.08 23065.49 22763.83 25963.79 34237.60 33566.52 25769.82 25543.44 30473.46 21086.08 16558.79 19071.75 25851.90 23275.63 30882.15 180
v1075.69 8776.20 8874.16 11474.44 22348.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
diffmvspermissive67.42 20767.50 20467.20 23162.26 34945.21 27364.87 27677.04 18648.21 26171.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 14073.80 11568.84 21278.74 16137.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
EI-MVSNet69.61 17369.01 18171.41 16973.94 23049.90 22471.31 18771.32 23858.22 14375.40 18170.44 33758.16 19475.85 20562.51 14379.81 27388.48 44
fmvsm_l_conf0.5_n67.48 20466.88 21569.28 20067.41 31362.04 12770.69 19769.85 25439.46 33269.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
IterMVS-LS73.01 12873.12 13072.66 15073.79 23249.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP2-MVS58.09 197
HQP-MVS75.24 9475.01 10075.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
v875.07 9775.64 9573.35 12773.42 23747.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
v114473.29 12073.39 12273.01 13674.12 22848.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
v14419272.99 13073.06 13172.77 14674.58 22147.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23768.79 26149.08 25765.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32559.75 17291.55 9162.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030476.32 8275.96 9277.42 7679.33 14660.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
TSAR-MVS + GP.73.08 12471.60 15677.54 7378.99 15870.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
WR-MVS71.20 15372.48 14267.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
LF4IMVS67.50 20367.31 20768.08 22258.86 37061.93 12871.43 18375.90 19744.67 29372.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 306
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
v119273.40 11773.42 12173.32 12974.65 22048.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal66.48 21867.93 19762.16 27873.40 23836.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
MAR-MVS67.72 20166.16 21972.40 15774.45 22264.99 10774.87 13877.50 18148.67 25965.78 29968.58 36057.01 21277.79 18846.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31579.43 25856.59 21445.57 37236.92 34371.29 34565.25 355
v192192072.96 13272.98 13372.89 14474.67 21747.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
fmvsm_l_conf0.5_n_a66.66 21565.97 22368.72 21467.09 31661.38 13570.03 20469.15 25938.59 33968.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
VNet64.01 24665.15 23460.57 29273.28 24035.61 34857.60 33067.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
v124073.06 12673.14 12872.84 14574.74 21647.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
MG-MVS70.47 16271.34 16067.85 22479.26 14840.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
v2v48272.55 14272.58 14072.43 15672.92 25046.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
3Dnovator65.95 1171.50 15171.22 16172.34 15873.16 24163.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 327
c3_l69.82 17069.89 17169.61 19466.24 32443.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
BH-w/o64.81 23364.29 24166.36 24076.08 19954.71 18965.61 26875.23 20350.10 24671.05 24571.86 32954.33 22579.02 15938.20 33176.14 30465.36 354
SSC-MVS61.79 26666.08 22048.89 35576.91 18510.00 40953.56 35647.37 37468.20 5876.56 16389.21 9054.13 22657.59 34554.75 20974.07 32579.08 234
ambc70.10 18777.74 17350.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20480.37 7178.79 15949.63 25073.51 20885.14 17753.66 22879.12 15755.11 20675.54 30975.11 275
WB-MVS60.04 28064.19 24247.59 35776.09 19710.22 40852.44 36146.74 37565.17 8474.07 20287.48 12553.48 22955.28 34849.36 25272.84 33377.28 255
miper_ehance_all_eth68.36 19168.16 19668.98 20665.14 33543.34 28867.07 24878.92 15549.11 25676.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
IS-MVSNet75.10 9675.42 9874.15 11579.23 14948.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
新几何169.99 18988.37 3471.34 5162.08 30443.85 29674.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 339
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19678.29 9677.35 18248.85 25870.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
UGNet70.20 16469.05 17973.65 12276.24 19463.64 11675.87 13172.53 22461.48 11860.93 33486.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)71.27 15271.06 16271.92 16373.96 22952.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
Anonymous20240521166.02 22266.89 21463.43 26574.22 22538.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 23065.60 26978.96 15345.50 28259.98 33778.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 23061.23 30578.96 15342.04 31159.98 33768.86 35751.82 23778.20 18044.30 29277.77 29572.52 299
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28567.84 28381.17 23051.81 23943.20 38629.30 37879.41 27867.34 343
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13877.56 10363.57 29760.95 12256.62 35882.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu70.04 16568.88 18273.53 12682.71 10863.62 11774.81 14081.95 9548.53 26067.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
DPM-MVS69.98 16769.22 17872.26 16082.69 10958.82 16670.53 19881.23 10947.79 26764.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
TR-MVS64.59 23663.54 24967.73 22775.75 20450.83 21363.39 29170.29 25249.33 25371.55 23874.55 30650.94 24378.46 17040.43 31675.69 30773.89 286
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28651.21 23267.46 28981.01 23350.75 24463.51 32338.47 32988.12 16382.75 166
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
MVS60.62 27659.97 27762.58 27468.13 30547.28 25568.59 22673.96 21132.19 37059.94 33968.86 35750.48 24677.64 19141.85 30775.74 30662.83 365
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19573.59 3961.83 30049.00 36847.30 27161.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
eth_miper_zixun_eth69.42 17668.73 18771.50 16867.99 30646.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17542.52 30973.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
mvsmamba77.20 7576.37 8579.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
K. test v373.67 11273.61 12073.87 11979.78 13955.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16553.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
cascas64.59 23662.77 25770.05 18875.27 20650.02 22161.79 30171.61 23042.46 31063.68 31668.89 35649.33 25480.35 13847.82 27084.05 22779.78 223
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
h-mvs3373.08 12471.61 15577.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25680.98 12763.62 13590.77 11678.58 239
hse-mvs272.32 14470.66 16777.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25679.23 15563.62 13589.13 15180.92 200
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22448.11 37257.24 32453.31 20780.95 10679.39 25949.00 25861.55 33045.92 28480.05 27081.03 196
testdata64.13 25585.87 5963.34 11961.80 30747.83 26676.42 17086.60 14848.83 25962.31 32754.46 21481.26 25866.74 348
cl____68.26 19668.26 19268.29 21964.98 33643.67 28465.89 26274.67 20650.04 24776.86 15582.42 21748.74 26075.38 21160.92 15889.81 13385.80 80
DIV-MVS_self_test68.27 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20650.04 24776.86 15582.43 21648.74 26075.38 21160.94 15789.81 13385.81 76
GBi-Net68.30 19268.79 18366.81 23573.14 24240.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
test168.30 19268.79 18366.81 23573.14 24240.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
FMVSNet267.48 20468.21 19465.29 24773.14 24238.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26274.60 22347.98 26886.11 19882.35 175
test22287.30 3769.15 7367.85 23559.59 31441.06 31973.05 21685.72 17248.03 26580.65 26466.92 344
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22867.14 26843.74 30070.61 24879.22 26247.90 26672.66 24248.75 25773.84 32871.21 314
lessismore_v072.75 14779.60 14256.83 17857.37 32183.80 7289.01 9847.45 26778.74 16564.39 12586.49 19482.69 168
TAMVS65.31 22763.75 24669.97 19082.23 11559.76 15766.78 25463.37 29845.20 28869.79 25979.37 26047.42 26872.17 25034.48 35785.15 21077.99 250
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29758.05 34964.07 37446.22 26958.83 33946.16 28272.36 33768.12 337
PM-MVS64.49 23863.61 24867.14 23376.68 19075.15 2768.49 22942.85 38751.17 23377.85 13980.51 23945.76 27066.31 30852.83 22976.35 30259.96 376
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24174.20 21035.80 35572.25 22784.48 18445.67 27171.95 25537.95 33384.97 21170.42 321
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24565.07 30383.23 20745.61 27248.11 36630.22 37383.82 22971.07 316
cl2267.14 21066.51 21669.03 20563.20 34543.46 28766.88 25376.25 19249.22 25474.48 19477.88 28145.49 27377.40 19360.64 16084.59 22086.24 69
IterMVS-SCA-FT67.68 20266.07 22172.49 15573.34 23958.20 17263.80 28765.55 28048.10 26276.91 15282.64 21545.20 27478.84 16261.20 15377.89 29480.44 215
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30761.00 33373.48 31745.20 27469.38 27640.34 31770.31 35270.05 322
1112_ss59.48 28458.99 28460.96 29077.84 17142.39 29761.42 30368.45 26437.96 34359.93 34067.46 36545.11 27665.07 31540.89 31471.81 34275.41 271
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31864.28 30879.82 25244.77 27748.43 36536.24 34887.61 16978.03 248
jason64.47 23962.84 25669.34 19976.91 18559.20 15867.15 24765.67 27735.29 35665.16 30276.74 29044.67 27870.68 26554.74 21079.28 27978.14 246
jason: jason.
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20163.81 28662.25 30146.57 27571.51 23980.40 24144.60 27966.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM61.79 26660.37 27566.05 24376.09 19741.87 29969.30 21376.79 19040.64 32753.80 37279.62 25644.38 28082.92 9429.64 37773.11 33273.36 290
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28239.24 33554.69 36978.14 27844.28 28167.18 29833.75 36270.79 34873.95 285
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15774.50 20952.05 21854.78 36775.44 30043.99 28270.42 27053.49 22578.41 28880.59 212
LFMVS67.06 21267.89 19864.56 25278.02 16838.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28375.22 21446.35 28089.63 13780.21 218
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20360.18 15469.49 21062.05 30538.81 33874.13 20082.23 21943.76 28468.65 28242.53 30280.63 26674.63 277
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22672.63 22333.54 36861.05 33267.29 36843.62 28571.26 26249.49 25167.84 36672.19 304
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13458.28 17165.26 27265.66 27844.36 29467.30 29175.54 29743.27 28671.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer69.93 16869.03 18072.63 15274.93 21059.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28780.56 13472.28 6778.67 28578.14 246
lupinMVS63.36 24961.49 26568.97 20774.93 21059.19 15965.80 26564.52 29034.68 36163.53 31974.25 31143.19 28770.62 26653.88 22278.67 28577.10 259
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14438.13 33057.62 32966.98 27034.74 35959.62 34377.56 28442.92 28963.65 32238.66 32670.73 34975.35 273
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19948.08 37342.40 38922.36 39844.01 39853.05 39542.60 29245.49 37331.69 36861.36 38241.79 397
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26242.52 29344.29 38227.95 38481.88 24766.88 345
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29445.40 37431.28 37064.42 37362.47 369
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32174.75 30441.82 29545.83 37138.59 32859.42 38667.98 340
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29647.07 36930.68 37160.78 38361.13 374
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32565.80 29872.57 32441.23 29763.92 32046.87 27782.42 24278.33 241
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27863.83 31478.47 27241.20 29863.68 32139.44 31968.99 35974.13 283
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31355.94 36183.86 19341.19 29950.42 35626.05 38775.38 31266.27 349
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13850.93 21254.07 35465.59 27928.56 38261.53 32774.33 30941.09 30066.52 30733.91 36067.69 36772.92 294
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30143.88 38341.10 31171.14 34769.21 332
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30243.85 38440.98 31371.20 34669.10 334
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30345.12 37623.15 39734.96 40241.16 398
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24653.87 34453.60 20469.88 25883.37 20040.52 30470.98 26441.40 31086.78 18981.48 190
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30541.91 39031.85 36761.97 38060.35 375
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29230.56 38059.87 34160.68 38540.16 30647.47 36748.25 26562.46 37861.58 373
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32863.85 31369.91 34740.04 30758.22 34243.49 29975.29 31471.03 317
Anonymous2024052163.55 24766.07 22155.99 31866.18 32644.04 28168.77 22468.80 26046.99 27272.57 22185.84 17039.87 30850.22 35753.40 22892.23 8173.71 288
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24644.04 29573.06 21578.84 27039.72 30960.33 33355.82 20084.64 21982.88 161
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17464.53 28160.22 31136.91 35065.96 29677.27 28639.66 31068.54 28338.87 32474.89 31571.80 307
MVP-Stereo61.56 26859.22 28168.58 21679.28 14760.44 15269.20 21571.57 23143.58 30256.42 35978.37 27439.57 31176.46 20434.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31651.79 37856.48 39139.44 31249.91 36021.42 40055.35 39650.85 387
bld_raw_dy_0_6472.85 13572.76 13773.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31369.91 27270.73 7391.60 8984.56 111
FPMVS59.43 28560.07 27657.51 31177.62 17771.52 4962.33 29950.92 35957.40 15569.40 26380.00 25039.14 31461.92 32937.47 33766.36 36939.09 399
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28338.83 31539.29 39525.32 39360.12 38548.08 390
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10254.10 19459.93 31572.24 22833.67 36669.00 26775.63 29638.69 31676.93 19736.60 34475.45 31180.81 205
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31727.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 25069.97 20558.02 31749.73 24947.28 38973.02 32238.14 31862.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30238.08 31957.37 34634.02 35974.40 32166.88 345
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32031.03 40029.13 38371.35 34462.70 366
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20868.07 23468.00 26633.88 36365.87 29781.25 22937.91 32167.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32274.44 22547.12 27385.37 20381.57 189
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24751.44 36554.61 34026.95 38763.95 31260.85 38437.86 32344.97 37745.53 28762.97 37759.72 377
AUN-MVS70.22 16367.88 19977.22 8082.96 10571.61 4869.08 21771.39 23649.17 25571.70 23278.07 28037.62 32479.21 15661.81 14689.15 14980.82 203
ECVR-MVScopyleft64.82 23265.22 23063.60 26178.80 15931.14 37266.97 25056.47 33254.23 19169.94 25688.68 10737.23 32574.81 22145.28 29189.41 14384.86 97
test111164.62 23565.19 23162.93 27179.01 15729.91 37865.45 27054.41 34254.09 19671.47 24188.48 11137.02 32674.29 22846.83 27889.94 13184.58 110
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32774.94 21850.60 24274.72 31680.57 213
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23361.00 30762.93 30035.98 35358.36 34768.93 35536.71 32866.59 30637.62 33663.30 37657.39 382
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 32944.40 38129.15 38268.23 36258.75 379
CVMVSNet59.21 28658.44 28961.51 28373.94 23047.76 24971.31 18764.56 28926.91 38860.34 33670.44 33736.24 33067.65 29053.57 22468.66 36169.12 333
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33129.51 40219.08 40367.85 36550.22 389
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33248.69 36239.24 32158.51 38965.89 350
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24556.29 33769.58 25639.32 33370.07 25578.19 27734.93 33372.68 24153.44 22683.74 23081.00 198
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33454.20 35230.34 37269.87 35565.71 352
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22833.96 33555.48 34724.46 39556.79 39138.43 400
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 21139.91 38967.56 26721.84 40051.94 37750.79 39833.83 33639.77 39335.25 35561.50 38162.38 370
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33772.45 24737.14 33964.22 37475.60 268
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23970.93 19386.27 1954.66 18461.35 32886.77 13833.29 33885.67 4755.93 19870.17 35369.62 328
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23970.93 19356.40 33332.87 36961.35 32886.66 14333.19 33963.22 32448.50 26170.17 35369.62 328
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 24056.40 33354.05 19772.04 23086.66 14333.19 33960.17 33443.69 29687.45 17477.42 253
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22436.54 39524.37 40819.56 40145.76 39153.46 39432.99 34137.97 39726.17 38635.52 40144.99 396
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23960.22 31137.14 34959.12 34576.34 29232.78 34271.99 25439.12 32369.27 35872.47 300
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25957.28 32232.16 37156.90 35470.39 33932.75 34365.30 31434.29 35858.79 38769.41 330
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24364.01 31171.46 33232.49 34471.39 26131.31 36979.57 27771.19 315
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35281.73 25177.08 260
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35281.73 25182.02 181
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16468.27 26526.96 38669.08 26675.71 29532.09 34767.44 29455.59 20378.90 28273.97 284
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34872.09 25135.61 35281.73 25177.08 260
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34872.42 24838.61 32783.46 23582.02 181
FE-MVS68.29 19466.96 21372.26 16074.16 22754.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 35081.49 11548.43 26281.85 24881.04 195
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22356.70 33565.80 27626.22 38969.42 26265.25 37231.82 35149.98 35849.63 25070.36 35170.71 318
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 29063.15 37731.82 35130.60 40139.19 32262.28 37945.53 395
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25151.80 35839.89 33058.39 34673.12 32131.69 35358.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs131.41 35470.05 322
patchmatchnet-post68.99 35231.32 35569.38 276
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35654.26 35125.93 38855.93 39265.07 356
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35639.31 39425.93 38855.93 39265.07 356
sam_mvs31.21 358
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19159.63 31647.51 37341.05 32074.58 19374.30 31031.06 35965.31 31351.61 23379.85 27267.39 341
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 27056.04 36073.60 31631.05 36068.06 28840.64 31564.64 37269.77 326
test_post1.99 40630.91 36154.76 350
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29330.77 36259.62 33638.21 33073.33 331
test_post166.63 2552.08 40530.66 36359.33 33740.34 317
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36433.87 39929.29 37972.61 33567.39 341
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23256.77 32933.60 36758.25 34875.52 29930.25 36574.33 22733.27 36369.76 35771.32 311
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23841.83 31275.40 18179.12 26530.25 36575.85 20556.30 19579.81 27383.03 158
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26630.20 36742.32 38732.77 36566.36 36966.81 347
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13229.97 36849.98 35843.62 29774.40 32164.53 362
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 36932.93 36471.48 309
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22256.75 33460.53 31025.68 39059.74 34257.86 39029.40 37047.41 36843.10 30063.66 37564.08 363
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30549.41 38660.47 38729.22 37144.73 37942.09 30572.14 34062.33 371
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30555.81 36367.65 36429.22 37143.77 38525.73 39169.87 35564.62 360
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23254.11 35364.96 28524.64 39463.66 31759.61 38928.33 37348.45 36445.38 29067.30 36862.66 368
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21655.80 34265.90 27524.96 39265.39 30060.64 38627.69 37448.46 36345.88 28567.99 36465.46 353
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17342.47 38523.85 40923.30 39764.80 30462.17 38127.12 37540.59 39229.17 38148.11 39957.69 381
thisisatest053067.05 21365.16 23272.73 14973.10 24550.55 21471.26 18963.91 29550.22 24474.46 19580.75 23626.81 37680.25 14159.43 17486.50 19387.37 54
tttt051769.46 17567.79 20174.46 10775.34 20552.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37781.15 12063.95 13087.93 16889.51 25
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27438.00 40248.43 40026.42 37846.27 37037.11 34075.38 31246.03 393
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32363.58 31869.12 35126.28 37978.34 17648.83 25682.13 24480.26 217
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27639.55 40051.15 39726.00 38045.37 37537.68 33476.41 30145.69 394
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38142.04 38937.19 33855.50 39465.78 351
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3824.57 40711.61 40527.37 4031.96 403
ET-MVSNet_ETH3D63.32 25060.69 27371.20 17170.15 28155.66 18465.02 27564.32 29143.28 30868.99 26872.05 32825.46 38378.19 18254.16 22082.80 23979.74 224
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 30161.06 33183.38 19925.46 38354.87 34930.11 37481.64 25672.75 297
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24258.76 32266.22 27327.54 38476.66 16068.69 35925.32 38551.31 35453.42 22773.38 33077.97 251
iter_conf_final68.69 18767.00 21273.76 12173.68 23352.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38683.73 7865.40 11886.33 19585.22 87
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 24157.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21861.42 30365.18 28347.57 26955.83 36267.15 36923.77 39079.60 15143.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20733.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25256.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29252.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 22044.34 38378.17 17123.62 39668.95 27062.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21841.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
iter_conf0567.34 20965.62 22572.50 15469.82 28447.06 25872.19 16776.86 18745.32 28772.86 21782.85 21020.53 39683.73 7861.13 15589.02 15486.70 65
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20942.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18759.10 31847.72 37150.85 23550.31 38585.81 17120.10 39863.97 31936.16 34955.41 39564.55 361
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30354.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
UWE-MVS52.94 32352.70 32653.65 32873.56 23427.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27756.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
test250661.23 27060.85 27162.38 27678.80 15927.88 38667.33 24537.42 40054.23 19167.55 28888.68 10717.87 40474.39 22646.33 28189.41 14384.86 97
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23855.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28741.53 31464.37 30670.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28741.53 31464.37 30670.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29758.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
testing358.28 29258.38 29058.00 30977.45 17826.12 39360.78 30943.00 38656.02 16770.18 25375.76 29413.27 41167.24 29748.02 26780.89 26080.65 210
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS22.69 39936.10 350
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
eth-test20.00 414
eth-test0.00 414
IU-MVS86.12 5360.90 14580.38 12945.49 28481.31 10175.64 4194.39 4184.65 103
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
GSMVS70.05 322
test_part285.90 5766.44 9184.61 62
MTGPAbinary80.63 123
MTMP84.83 3119.26 410
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24038.70 325
test9_res72.12 6991.37 9377.40 254
agg_prior270.70 7590.93 10878.55 240
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
test_prior470.14 6377.57 102
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
旧先验271.17 19045.11 28978.54 13161.28 33159.19 176
新几何271.33 186
无先验74.82 13970.94 24747.75 26876.85 20054.47 21372.09 305
原ACMM274.78 143
testdata267.30 29548.34 263
testdata168.34 23157.24 156
plane_prior785.18 6666.21 94
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 81
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 415
nn0.00 415
door-mid55.02 338
test1182.71 84
door52.91 353
HQP5-MVS58.80 167
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
BP-MVS67.38 102
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
NP-MVS83.34 9563.07 12285.97 167
ACMMP++_ref89.47 142
ACMMP++91.96 83