This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet86.90 288.67 281.57 2291.50 263.30 12084.80 3287.77 1086.18 296.26 296.06 190.32 184.49 7068.08 8997.05 296.93 1
PMVScopyleft70.70 681.70 3383.15 3277.36 7690.35 682.82 382.15 5779.22 15574.08 2187.16 2991.97 2084.80 276.97 19864.98 12093.61 6072.28 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LPG-MVS_test83.47 1784.33 1380.90 3387.00 4070.41 6182.04 6086.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
LGP-MVS_train80.90 3387.00 4070.41 6186.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
SR-MVS84.51 685.27 582.25 1988.52 3477.71 1486.81 1685.25 3877.42 1486.15 3890.24 7181.69 585.94 3477.77 2793.58 6183.09 157
ACMP69.50 882.64 2683.38 2780.40 3886.50 4669.44 6882.30 5686.08 2566.80 6786.70 3189.99 7681.64 685.95 3374.35 5096.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RE-MVS-def85.50 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4881.38 778.11 2494.46 3684.89 95
ACMM69.25 982.11 3083.31 2878.49 6388.17 3773.96 3583.11 5184.52 5866.40 7187.45 2389.16 9481.02 880.52 13974.27 5195.73 880.98 202
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.64 1081.20 3782.48 4077.35 7781.16 12862.39 12580.51 7187.80 873.02 2787.57 2191.08 3880.28 982.44 10164.82 12196.10 587.21 57
APD-MVS_3200maxsize83.57 1484.33 1381.31 2982.83 10673.53 4185.50 2787.45 1374.11 2086.45 3590.52 5680.02 1084.48 7177.73 2894.34 4785.93 75
tt080576.12 8478.43 7069.20 20281.32 12541.37 30576.72 11877.64 18463.78 10182.06 8987.88 12279.78 1179.05 16064.33 12592.40 7687.17 60
COLMAP_ROBcopyleft72.78 383.75 1284.11 1682.68 1382.97 10374.39 3387.18 1088.18 778.98 786.11 4091.47 3279.70 1285.76 4266.91 10895.46 1287.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 987.95 1592.53 1479.37 1384.79 6774.51 4896.15 392.88 8
SR-MVS-dyc-post84.75 485.26 683.21 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4879.20 1485.58 4878.11 2494.46 3684.89 95
HPM-MVScopyleft84.12 984.63 1082.60 1488.21 3674.40 3285.24 2887.21 1470.69 4885.14 5590.42 5978.99 1586.62 1580.83 694.93 2486.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft84.22 784.84 982.35 1889.23 2276.66 2387.65 685.89 2771.03 4585.85 4290.58 5278.77 1685.78 4179.37 1695.17 1784.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 3883.12 3375.24 10286.16 5260.78 14683.77 4180.58 13172.48 3585.83 4390.41 6078.57 1785.69 4475.86 3994.39 4179.24 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5260.78 14683.81 4085.10 4172.48 3585.27 5489.96 7778.57 17
HPM-MVS_fast84.59 585.10 783.06 588.60 3375.83 2486.27 2486.89 1673.69 2486.17 3791.70 2778.23 1985.20 5879.45 1394.91 2588.15 47
APDe-MVScopyleft82.88 2484.14 1579.08 5284.80 7566.72 9186.54 2085.11 4072.00 4086.65 3291.75 2678.20 2087.04 1177.93 2694.32 4883.47 144
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_ETH3D76.74 8079.02 6369.92 19289.27 2043.81 28474.47 15171.70 23372.33 3885.50 5093.65 477.98 2176.88 20154.60 21491.64 8589.08 32
test_241102_TWO84.80 4672.61 3384.93 5789.70 8177.73 2285.89 3975.29 4294.22 5283.25 152
SED-MVS81.78 3283.48 2576.67 8286.12 5461.06 14083.62 4384.72 5072.61 3387.38 2589.70 8177.48 2385.89 3975.29 4294.39 4183.08 158
test_241102_ONE86.12 5461.06 14084.72 5072.64 3287.38 2589.47 8477.48 2385.74 43
CP-MVS84.12 984.55 1182.80 1189.42 1879.74 688.19 584.43 5971.96 4184.70 6290.56 5377.12 2586.18 2879.24 1895.36 1382.49 175
HFP-MVS83.39 1884.03 1781.48 2489.25 2175.69 2587.01 1484.27 6270.23 4984.47 6590.43 5876.79 2685.94 3479.58 1194.23 5182.82 166
test_one_060185.84 6261.45 13485.63 2975.27 1885.62 4890.38 6576.72 27
mPP-MVS84.01 1184.39 1282.88 790.65 481.38 487.08 1282.79 8572.41 3785.11 5690.85 4576.65 2884.89 6479.30 1794.63 3382.35 177
DPE-MVScopyleft82.00 3183.02 3478.95 5785.36 6667.25 8682.91 5284.98 4373.52 2585.43 5290.03 7576.37 2986.97 1374.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2783.46 2679.76 4288.88 3168.44 7781.57 6386.33 2063.17 11085.38 5391.26 3576.33 3084.67 6983.30 294.96 2386.17 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS80.99 4281.63 4779.07 5386.86 4469.39 6979.41 8784.00 7165.64 7585.54 4989.28 8776.32 3183.47 8674.03 5393.57 6284.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH63.62 1477.50 7480.11 5569.68 19479.61 14156.28 17778.81 9283.62 7463.41 10887.14 3090.23 7276.11 3273.32 24067.58 9594.44 3979.44 232
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5978.67 6779.72 4484.81 7473.93 3680.65 7076.50 19651.98 22387.40 2491.86 2476.09 3378.53 16968.58 8490.20 12186.69 65
APD-MVScopyleft81.13 3981.73 4579.36 5084.47 8070.53 6083.85 3983.70 7369.43 5583.67 7388.96 10075.89 3486.41 1872.62 6492.95 6881.14 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 8769.36 7081.09 11958.91 14382.73 8589.11 9575.77 3586.63 1472.73 6292.93 69
PGM-MVS83.07 2283.25 3182.54 1689.57 1477.21 2182.04 6085.40 3567.96 6284.91 6090.88 4375.59 3686.57 1678.16 2394.71 3183.82 132
test_0728_THIRD74.03 2285.83 4390.41 6075.58 3785.69 4477.43 3194.74 3084.31 122
SteuartSystems-ACMMP83.07 2283.64 2381.35 2785.14 6971.00 5585.53 2684.78 4770.91 4685.64 4590.41 6075.55 3887.69 579.75 895.08 2085.36 86
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP82.33 2883.28 2979.46 4889.28 1969.09 7583.62 4384.98 4364.77 9283.97 7091.02 3975.53 3985.93 3682.00 394.36 4583.35 150
region2R83.54 1583.86 2082.58 1589.82 1077.53 1787.06 1384.23 6570.19 5183.86 7190.72 5075.20 4086.27 2379.41 1594.25 5083.95 130
ACMMPR83.62 1383.93 1882.69 1289.78 1177.51 1987.01 1484.19 6670.23 4984.49 6490.67 5175.15 4186.37 2079.58 1194.26 4984.18 125
test_040278.17 6979.48 6074.24 11283.50 9159.15 16072.52 16674.60 21275.34 1688.69 1491.81 2575.06 4282.37 10365.10 11888.68 15481.20 194
PS-CasMVS80.41 4882.86 3773.07 13589.93 739.21 32077.15 11481.28 11379.74 690.87 592.73 1275.03 4384.93 6363.83 13395.19 1695.07 3
PEN-MVS80.46 4782.91 3573.11 13489.83 939.02 32377.06 11682.61 9180.04 590.60 792.85 1074.93 4485.21 5763.15 14195.15 1895.09 2
ZNCC-MVS83.12 2183.68 2281.45 2589.14 2573.28 4386.32 2385.97 2667.39 6384.02 6990.39 6374.73 4586.46 1780.73 794.43 4084.60 110
MTAPA83.19 1983.87 1981.13 3191.16 378.16 1284.87 3080.63 12972.08 3984.93 5790.79 4674.65 4684.42 7380.98 594.75 2980.82 206
9.1480.22 5480.68 13280.35 7687.69 1159.90 13283.00 7888.20 11674.57 4781.75 11473.75 5593.78 57
MP-MVScopyleft83.19 1983.54 2482.14 2090.54 579.00 986.42 2283.59 7571.31 4281.26 10190.96 4074.57 4784.69 6878.41 2294.78 2882.74 169
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DTE-MVSNet80.35 4982.89 3672.74 14989.84 837.34 34077.16 11381.81 10380.45 490.92 492.95 874.57 4786.12 3163.65 13494.68 3294.76 6
XVG-OURS-SEG-HR79.62 5379.99 5678.49 6386.46 4774.79 3077.15 11485.39 3666.73 6880.39 11388.85 10274.43 5078.33 17974.73 4685.79 20182.35 177
SD-MVS80.28 5081.55 4876.47 8783.57 9067.83 8183.39 4885.35 3764.42 9486.14 3987.07 13174.02 5180.97 13077.70 2992.32 7980.62 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS83.51 1683.73 2182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 8190.39 6373.86 5286.31 2178.84 2094.03 5384.64 105
X-MVStestdata76.81 7974.79 10182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 819.95 40873.86 5286.31 2178.84 2094.03 5384.64 105
jajsoiax78.51 6478.16 7379.59 4684.65 7773.83 3880.42 7376.12 19851.33 23387.19 2891.51 3173.79 5478.44 17368.27 8790.13 12586.49 67
SF-MVS80.72 4481.80 4377.48 7482.03 11664.40 11283.41 4788.46 665.28 8384.29 6689.18 9273.73 5583.22 9076.01 3893.77 5884.81 102
GST-MVS82.79 2583.27 3081.34 2888.99 2773.29 4285.94 2585.13 3968.58 6084.14 6890.21 7373.37 5686.41 1879.09 1993.98 5684.30 124
wuyk23d61.97 26666.25 22249.12 35658.19 37860.77 14866.32 26152.97 35555.93 17290.62 686.91 13473.07 5735.98 40220.63 40591.63 8650.62 391
TranMVSNet+NR-MVSNet76.13 8377.66 7771.56 16784.61 7842.57 29970.98 19578.29 17568.67 5983.04 7789.26 8872.99 5880.75 13555.58 20695.47 1191.35 12
pmmvs671.82 15173.66 12066.31 24475.94 20342.01 30166.99 25272.53 22863.45 10676.43 17392.78 1172.95 5969.69 27751.41 23790.46 11887.22 56
MGCFI-Net71.70 15373.10 13467.49 23073.23 24443.08 29372.06 17282.43 9454.58 18875.97 17882.00 22172.42 6075.22 21757.84 18587.34 17484.18 125
DeepC-MVS72.44 481.00 4180.83 5181.50 2386.70 4570.03 6582.06 5887.00 1559.89 13380.91 10790.53 5472.19 6188.56 273.67 5694.52 3585.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
canonicalmvs72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
SMA-MVScopyleft82.12 2982.68 3980.43 3788.90 3069.52 6685.12 2984.76 4863.53 10484.23 6791.47 3272.02 6487.16 879.74 1094.36 4584.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS81.51 3581.76 4480.76 3589.20 2378.75 1086.48 2182.03 9968.80 5680.92 10688.52 10972.00 6582.39 10274.80 4493.04 6781.14 196
DP-MVS78.44 6779.29 6275.90 9381.86 11965.33 10379.05 9084.63 5674.83 1980.41 11286.27 15871.68 6683.45 8762.45 14592.40 7678.92 239
nrg03074.87 10575.99 9271.52 16874.90 21549.88 22674.10 15682.58 9254.55 19083.50 7589.21 9071.51 6775.74 21161.24 15292.34 7888.94 37
OMC-MVS79.41 5678.79 6581.28 3080.62 13370.71 5980.91 6884.76 4862.54 11581.77 9386.65 14671.46 6883.53 8567.95 9392.44 7589.60 24
anonymousdsp78.60 6277.80 7581.00 3278.01 16874.34 3480.09 8076.12 19850.51 24289.19 1190.88 4371.45 6977.78 19173.38 5790.60 11790.90 17
LTVRE_ROB75.46 184.22 784.98 881.94 2184.82 7375.40 2691.60 387.80 873.52 2588.90 1293.06 771.39 7081.53 11681.53 492.15 8188.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RPSCF75.76 8674.37 10779.93 4174.81 21777.53 1777.53 10879.30 15459.44 13678.88 12889.80 8071.26 7173.09 24257.45 18680.89 26289.17 31
testf175.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
APD_test275.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
MVS_111021_HR72.98 13372.97 13872.99 13780.82 13165.47 10168.81 22472.77 22557.67 15375.76 17982.38 21971.01 7477.17 19661.38 15186.15 19576.32 267
AdaColmapbinary74.22 10874.56 10473.20 13181.95 11760.97 14279.43 8580.90 12365.57 7672.54 22781.76 22770.98 7585.26 5447.88 27290.00 12673.37 292
GeoE73.14 12473.77 11971.26 17178.09 16652.64 20274.32 15279.56 15056.32 16776.35 17583.36 20570.76 7677.96 18763.32 13981.84 25183.18 155
test_fmvsmvis_n_192072.36 14572.49 14571.96 16371.29 26764.06 11472.79 16581.82 10240.23 33381.25 10281.04 23570.62 7768.69 28469.74 8083.60 23683.14 156
AllTest77.66 7277.43 7878.35 6579.19 15070.81 5678.60 9488.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
TestCases78.35 6579.19 15070.81 5688.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
ITE_SJBPF80.35 3976.94 18473.60 3980.48 13266.87 6683.64 7486.18 16170.25 8079.90 14961.12 15588.95 15287.56 53
casdiffmvs_mvgpermissive75.26 9476.18 9072.52 15472.87 25549.47 22772.94 16484.71 5259.49 13580.90 10888.81 10370.07 8179.71 15167.40 9988.39 15688.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS77.33 7577.06 8378.14 6884.21 8463.98 11576.07 13083.45 7654.20 19877.68 14587.18 12769.98 8285.37 5068.01 9192.72 7385.08 92
Effi-MVS+72.10 14972.28 15071.58 16674.21 23050.33 21574.72 14782.73 8862.62 11470.77 25076.83 29269.96 8380.97 13060.20 16278.43 29083.45 146
EC-MVSNet77.08 7777.39 7976.14 9176.86 18956.87 17580.32 7787.52 1263.45 10674.66 19684.52 18669.87 8484.94 6269.76 7989.59 13686.60 66
UA-Net81.56 3482.28 4179.40 4988.91 2969.16 7384.67 3380.01 14275.34 1679.80 11794.91 269.79 8580.25 14372.63 6394.46 3688.78 42
CS-MVS76.51 8176.00 9178.06 7077.02 18164.77 10980.78 6982.66 9060.39 12974.15 20483.30 20769.65 8682.07 10969.27 8286.75 19087.36 55
CLD-MVS72.88 13672.36 14974.43 10977.03 18054.30 19068.77 22783.43 7752.12 22076.79 16074.44 31169.54 8783.91 7855.88 20193.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D80.99 4280.85 5081.41 2678.37 16271.37 5187.45 785.87 2877.48 1381.98 9089.95 7869.14 8885.26 5466.15 11091.24 9487.61 52
XVG-ACMP-BASELINE80.54 4581.06 4978.98 5687.01 3972.91 4480.23 7985.56 3066.56 7085.64 4589.57 8369.12 8980.55 13872.51 6593.37 6383.48 143
MVS_111021_LR72.10 14971.82 15572.95 13979.53 14373.90 3770.45 20366.64 27556.87 16076.81 15981.76 22768.78 9071.76 26161.81 14683.74 23273.18 294
Fast-Effi-MVS+68.81 18968.30 19570.35 18174.66 22248.61 23666.06 26378.32 17350.62 24171.48 24475.54 30068.75 9179.59 15450.55 24578.73 28682.86 165
DeepPCF-MVS71.07 578.48 6677.14 8282.52 1784.39 8377.04 2276.35 12484.05 6956.66 16480.27 11485.31 17768.56 9287.03 1267.39 10091.26 9383.50 140
CP-MVSNet79.48 5581.65 4672.98 13889.66 1339.06 32276.76 11780.46 13378.91 890.32 891.70 2768.49 9384.89 6463.40 13895.12 1995.01 4
LCM-MVSNet-Re69.10 18571.57 16161.70 28470.37 28134.30 36061.45 30579.62 14656.81 16189.59 988.16 11968.44 9472.94 24342.30 30687.33 17577.85 255
CNVR-MVS78.49 6578.59 6878.16 6785.86 6167.40 8578.12 10381.50 10763.92 9877.51 14686.56 15068.43 9584.82 6673.83 5491.61 8782.26 181
segment_acmp68.30 96
cdsmvs_eth3d_5k17.71 37723.62 3780.00 3960.00 4190.00 4210.00 40770.17 2570.00 4140.00 41574.25 31468.16 970.00 4150.00 4140.00 4130.00 411
WR-MVS_H80.22 5182.17 4274.39 11089.46 1542.69 29778.24 10082.24 9578.21 1089.57 1092.10 1968.05 9885.59 4766.04 11395.62 1094.88 5
test_djsdf78.88 6078.27 7180.70 3681.42 12371.24 5383.98 3775.72 20352.27 21887.37 2792.25 1768.04 9980.56 13672.28 6791.15 9790.32 21
v7n79.37 5780.41 5376.28 8978.67 16155.81 18179.22 8982.51 9370.72 4787.54 2292.44 1568.00 10081.34 11872.84 6191.72 8391.69 11
test_fmvsmconf0.01_n73.91 11073.64 12174.71 10369.79 29166.25 9475.90 13279.90 14346.03 28276.48 17185.02 18067.96 10173.97 23574.47 4987.22 18183.90 131
test_prior275.57 13558.92 14276.53 17086.78 13867.83 10269.81 7892.76 72
NCCC78.25 6878.04 7478.89 5885.61 6369.45 6779.80 8480.99 12265.77 7475.55 18286.25 16067.42 10385.42 4970.10 7690.88 11081.81 187
baseline73.10 12573.96 11570.51 17871.46 26546.39 26772.08 17184.40 6055.95 17176.62 16486.46 15367.20 10478.03 18664.22 12687.27 17987.11 61
test_fmvsmconf0.1_n73.26 12372.82 14074.56 10569.10 29766.18 9674.65 15079.34 15345.58 28475.54 18383.91 19467.19 10573.88 23873.26 5886.86 18683.63 139
casdiffmvspermissive73.06 12873.84 11670.72 17471.32 26646.71 26370.93 19684.26 6355.62 17477.46 14787.10 12867.09 10677.81 18963.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test175.04 9975.38 9974.02 11669.89 28770.15 6376.46 12079.71 14565.50 7782.99 7988.60 10866.94 10772.35 25359.77 17088.54 15579.56 228
TAPA-MVS65.27 1275.16 9674.29 10977.77 7274.86 21668.08 7877.89 10484.04 7055.15 17876.19 17783.39 20166.91 10880.11 14760.04 16790.14 12485.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST985.47 6469.32 7176.42 12278.69 16653.73 20876.97 15186.74 14066.84 10981.10 124
DVP-MVS++81.24 3682.74 3876.76 8183.14 9660.90 14491.64 185.49 3174.03 2284.93 5790.38 6566.82 11085.90 3777.43 3190.78 11283.49 141
OPU-MVS78.65 6183.44 9466.85 9083.62 4386.12 16566.82 11086.01 3261.72 14989.79 13383.08 158
XVG-OURS79.51 5479.82 5778.58 6286.11 5774.96 2976.33 12684.95 4566.89 6582.75 8488.99 9966.82 11078.37 17774.80 4490.76 11582.40 176
test_fmvsmconf_n72.91 13572.40 14874.46 10668.62 30166.12 9774.21 15578.80 16345.64 28374.62 19783.25 20966.80 11373.86 23972.97 6086.66 19283.39 147
CS-MVS-test74.89 10474.23 11076.86 8077.01 18262.94 12378.98 9184.61 5758.62 14470.17 25880.80 23866.74 11481.96 11061.74 14889.40 14285.69 82
train_agg76.38 8276.55 8675.86 9485.47 6469.32 7176.42 12278.69 16654.00 20376.97 15186.74 14066.60 11581.10 12472.50 6691.56 8877.15 261
test_885.09 7067.89 8076.26 12778.66 16854.00 20376.89 15586.72 14266.60 11580.89 134
mamv490.28 188.75 194.85 193.34 196.17 182.69 5591.63 186.34 197.97 194.77 366.57 11795.38 187.74 197.72 193.00 7
PC_three_145246.98 27681.83 9286.28 15766.55 11884.47 7263.31 14090.78 11283.49 141
Anonymous2023121175.54 9077.19 8170.59 17677.67 17445.70 27374.73 14680.19 13868.80 5682.95 8092.91 966.26 11976.76 20358.41 18192.77 7189.30 27
EI-MVSNet-Vis-set72.78 13871.87 15375.54 9874.77 21859.02 16372.24 16871.56 23663.92 9878.59 13071.59 33366.22 12078.60 16867.58 9580.32 26989.00 35
EI-MVSNet-UG-set72.63 14171.68 15775.47 9974.67 22058.64 16872.02 17371.50 23763.53 10478.58 13271.39 33765.98 12178.53 16967.30 10580.18 27189.23 29
Anonymous2024052972.56 14273.79 11868.86 21376.89 18845.21 27568.80 22677.25 19067.16 6476.89 15590.44 5765.95 12274.19 23350.75 24290.00 12687.18 59
ETV-MVS72.72 13972.16 15274.38 11176.90 18755.95 17873.34 16184.67 5362.04 11872.19 23370.81 33865.90 12385.24 5658.64 17884.96 21681.95 185
TransMVSNet (Re)69.62 17671.63 15863.57 26576.51 19335.93 34865.75 26971.29 24461.05 12475.02 18889.90 7965.88 12470.41 27549.79 24989.48 13884.38 120
SDMVSNet66.36 22367.85 20461.88 28373.04 25246.14 26958.54 32671.36 24151.42 23068.93 27482.72 21465.62 12562.22 33154.41 21784.67 21877.28 258
DeepC-MVS_fast69.89 777.17 7676.33 8879.70 4583.90 8867.94 7980.06 8283.75 7256.73 16374.88 19185.32 17665.54 12687.79 365.61 11791.14 9883.35 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.79.05 5878.81 6479.74 4388.94 2867.52 8486.61 1981.38 11151.71 22577.15 14991.42 3465.49 12787.20 779.44 1487.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft79.89 5279.80 5880.18 4089.02 2678.44 1183.49 4680.18 13964.71 9378.11 13888.39 11265.46 12883.14 9177.64 3091.20 9578.94 238
Fast-Effi-MVS+-dtu70.00 17068.74 19073.77 11973.47 23964.53 11171.36 18878.14 17855.81 17368.84 27874.71 30865.36 12975.75 21052.00 23379.00 28381.03 199
EGC-MVSNET64.77 23761.17 27075.60 9786.90 4374.47 3184.04 3668.62 2670.60 4101.13 41291.61 3065.32 13074.15 23464.01 12788.28 15778.17 248
MCST-MVS73.42 11873.34 12873.63 12281.28 12659.17 15974.80 14483.13 8145.50 28572.84 22283.78 19765.15 13180.99 12864.54 12289.09 15080.73 210
PCF-MVS63.80 1372.70 14071.69 15675.72 9578.10 16560.01 15373.04 16381.50 10745.34 29079.66 11884.35 18965.15 13182.65 9948.70 26189.38 14384.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test1276.51 8582.28 11360.94 14381.64 10673.60 21264.88 13385.19 5990.42 11983.38 148
Effi-MVS+-dtu75.43 9272.28 15084.91 377.05 17983.58 278.47 9677.70 18357.68 15274.89 19078.13 28264.80 13484.26 7556.46 19685.32 20986.88 62
VPA-MVSNet68.71 19170.37 17263.72 26376.13 19838.06 33464.10 28771.48 23856.60 16674.10 20688.31 11464.78 13569.72 27647.69 27490.15 12383.37 149
F-COLMAP75.29 9373.99 11479.18 5181.73 12071.90 4781.86 6282.98 8259.86 13472.27 23084.00 19364.56 13683.07 9451.48 23687.19 18382.56 174
dcpmvs_271.02 16072.65 14366.16 24576.06 20250.49 21371.97 17579.36 15250.34 24382.81 8383.63 19864.38 13767.27 29961.54 15083.71 23480.71 212
DP-MVS Recon73.57 11672.69 14276.23 9082.85 10563.39 11874.32 15282.96 8357.75 15170.35 25481.98 22364.34 13884.41 7449.69 25089.95 12880.89 204
114514_t73.40 11973.33 12973.64 12184.15 8657.11 17378.20 10180.02 14143.76 30272.55 22686.07 16864.00 13983.35 8960.14 16591.03 10380.45 217
pm-mvs168.40 19469.85 17664.04 26173.10 24939.94 31764.61 28370.50 25455.52 17573.97 21089.33 8663.91 14068.38 28749.68 25188.02 16283.81 133
sd_testset63.55 25065.38 23158.07 31173.04 25238.83 32657.41 33465.44 28551.42 23068.93 27482.72 21463.76 14158.11 34641.05 31584.67 21877.28 258
UniMVSNet_NR-MVSNet74.90 10375.65 9472.64 15283.04 10145.79 27069.26 21778.81 16166.66 6981.74 9586.88 13563.26 14281.07 12656.21 19894.98 2191.05 14
MSLP-MVS++74.48 10775.78 9370.59 17684.66 7662.40 12478.65 9384.24 6460.55 12877.71 14481.98 22363.12 14377.64 19362.95 14288.14 15971.73 311
fmvsm_s_conf0.1_n_a67.37 21266.36 22170.37 18070.86 26961.17 13874.00 15757.18 32840.77 32868.83 27980.88 23763.11 14467.61 29566.94 10774.72 31982.33 180
fmvsm_s_conf0.5_n_a67.00 21765.95 22870.17 18569.72 29261.16 13973.34 16156.83 33140.96 32568.36 28280.08 25262.84 14567.57 29666.90 10974.50 32381.78 188
UniMVSNet (Re)75.00 10075.48 9773.56 12583.14 9647.92 24570.41 20481.04 12163.67 10279.54 11986.37 15662.83 14681.82 11257.10 19095.25 1590.94 16
MIMVSNet166.57 22069.23 18158.59 30881.26 12737.73 33764.06 28857.62 32157.02 15978.40 13490.75 4762.65 14758.10 34741.77 31189.58 13779.95 223
xiu_mvs_v2_base64.43 24363.96 24765.85 24977.72 17351.32 20863.63 29272.31 23145.06 29461.70 32869.66 35162.56 14873.93 23749.06 25873.91 32972.31 305
Test By Simon62.56 148
Vis-MVSNetpermissive74.85 10674.56 10475.72 9581.63 12264.64 11076.35 12479.06 15762.85 11373.33 21788.41 11162.54 15079.59 15463.94 13282.92 24082.94 162
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
NR-MVSNet73.62 11474.05 11372.33 15983.50 9143.71 28565.65 27077.32 18864.32 9575.59 18187.08 12962.45 15181.34 11854.90 20995.63 991.93 9
pcd_1.5k_mvsjas5.20 3806.93 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41462.39 1520.00 4150.00 4140.00 4130.00 411
PS-MVSNAJss77.54 7377.35 8078.13 6984.88 7266.37 9378.55 9579.59 14953.48 21086.29 3692.43 1662.39 15280.25 14367.90 9490.61 11687.77 49
PS-MVSNAJ64.27 24663.73 25065.90 24877.82 17151.42 20763.33 29572.33 23045.09 29361.60 32968.04 36562.39 15273.95 23649.07 25773.87 33072.34 304
PHI-MVS74.92 10174.36 10876.61 8376.40 19462.32 12680.38 7483.15 8054.16 20073.23 21980.75 23962.19 15583.86 7968.02 9090.92 10783.65 138
MVS_Test69.84 17370.71 17067.24 23367.49 31543.25 29269.87 21081.22 11652.69 21671.57 24186.68 14362.09 15674.51 22866.05 11278.74 28583.96 129
CSCG74.12 10974.39 10673.33 12879.35 14561.66 13277.45 10981.98 10062.47 11779.06 12780.19 24961.83 15778.79 16659.83 16987.35 17379.54 231
DU-MVS74.91 10275.57 9672.93 14283.50 9145.79 27069.47 21480.14 14065.22 8481.74 9587.08 12961.82 15881.07 12656.21 19894.98 2191.93 9
Baseline_NR-MVSNet70.62 16473.19 13062.92 27576.97 18334.44 35868.84 22270.88 25260.25 13079.50 12090.53 5461.82 15869.11 28154.67 21395.27 1485.22 87
原ACMM173.90 11785.90 5865.15 10781.67 10550.97 23774.25 20386.16 16361.60 16083.54 8456.75 19191.08 10273.00 296
PAPR69.20 18368.66 19270.82 17375.15 21247.77 24875.31 13681.11 11749.62 25366.33 29879.27 26461.53 16182.96 9548.12 26981.50 25981.74 190
API-MVS70.97 16171.51 16269.37 19775.20 21055.94 17980.99 6676.84 19362.48 11671.24 24677.51 28861.51 16280.96 13352.04 23285.76 20371.22 316
xiu_mvs_v1_base_debu67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base_debi67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
fmvsm_s_conf0.5_n66.34 22465.27 23269.57 19668.20 30659.14 16271.66 18356.48 33440.92 32667.78 28779.46 26061.23 16666.90 30367.39 10074.32 32782.66 171
CNLPA73.44 11773.03 13674.66 10478.27 16375.29 2775.99 13178.49 17065.39 8075.67 18083.22 21261.23 16666.77 30853.70 22585.33 20881.92 186
MSDG67.47 21067.48 20967.46 23170.70 27254.69 18866.90 25578.17 17660.88 12670.41 25374.76 30661.22 16873.18 24147.38 27576.87 30274.49 283
fmvsm_s_conf0.1_n66.60 21965.54 22969.77 19368.99 29859.15 16072.12 17056.74 33340.72 33068.25 28580.14 25161.18 16966.92 30267.34 10474.40 32483.23 154
test_fmvsm_n_192069.63 17568.45 19373.16 13270.56 27665.86 9970.26 20578.35 17237.69 34974.29 20278.89 27261.10 17068.10 29065.87 11579.07 28285.53 84
CANet73.00 13171.84 15476.48 8675.82 20461.28 13674.81 14280.37 13663.17 11062.43 32780.50 24361.10 17085.16 6064.00 12884.34 22683.01 161
EG-PatchMatch MVS70.70 16370.88 16870.16 18682.64 10958.80 16571.48 18573.64 21754.98 17976.55 16881.77 22661.10 17078.94 16354.87 21080.84 26472.74 301
HQP_MVS78.77 6178.78 6678.72 5985.18 6765.18 10582.74 5385.49 3165.45 7878.23 13589.11 9560.83 17386.15 2971.09 7090.94 10484.82 100
plane_prior684.18 8565.31 10460.83 173
MM78.15 7077.68 7679.55 4780.10 13765.47 10180.94 6778.74 16571.22 4372.40 22988.70 10460.51 17587.70 477.40 3389.13 14885.48 85
FMVSNet171.06 15872.48 14666.81 23877.65 17540.68 31171.96 17673.03 22061.14 12379.45 12190.36 6860.44 17675.20 21950.20 24788.05 16184.54 112
EIA-MVS68.59 19367.16 21372.90 14375.18 21155.64 18369.39 21581.29 11252.44 21764.53 30870.69 33960.33 17782.30 10554.27 22076.31 30680.75 209
BH-untuned69.39 18169.46 17769.18 20377.96 16956.88 17468.47 23377.53 18556.77 16277.79 14279.63 25860.30 17880.20 14646.04 28680.65 26670.47 322
patch_mono-262.73 26264.08 24658.68 30770.36 28255.87 18060.84 31164.11 29741.23 32164.04 31378.22 27960.00 17948.80 36454.17 22183.71 23471.37 313
PAPM_NR73.91 11074.16 11173.16 13281.90 11853.50 19781.28 6581.40 11066.17 7273.30 21883.31 20659.96 18083.10 9358.45 18081.66 25782.87 164
VDDNet71.60 15473.13 13267.02 23786.29 4841.11 30769.97 20866.50 27668.72 5874.74 19291.70 2759.90 18175.81 20948.58 26391.72 8384.15 127
VDD-MVS70.81 16271.44 16368.91 21279.07 15546.51 26467.82 23970.83 25361.23 12274.07 20788.69 10559.86 18275.62 21251.11 23990.28 12084.61 108
ANet_high67.08 21469.94 17458.51 30957.55 37927.09 39158.43 32876.80 19463.56 10382.40 8791.93 2359.82 18364.98 31950.10 24888.86 15383.46 145
3Dnovator+73.19 281.08 4080.48 5282.87 881.41 12472.03 4684.38 3586.23 2477.28 1580.65 11090.18 7459.80 18487.58 673.06 5991.34 9289.01 34
PLCcopyleft62.01 1671.79 15270.28 17376.33 8880.31 13668.63 7678.18 10281.24 11454.57 18967.09 29680.63 24159.44 18581.74 11546.91 27984.17 22778.63 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TinyColmap67.98 20169.28 17964.08 25967.98 31046.82 26170.04 20675.26 20753.05 21277.36 14886.79 13759.39 18672.59 25045.64 28988.01 16372.83 299
FC-MVSNet-test73.32 12174.78 10268.93 21179.21 14936.57 34271.82 18279.54 15157.63 15682.57 8690.38 6559.38 18778.99 16257.91 18494.56 3491.23 13
V4271.06 15870.83 16971.72 16567.25 31747.14 25965.94 26480.35 13751.35 23283.40 7683.23 21059.25 18878.80 16565.91 11480.81 26589.23 29
BH-RMVSNet68.69 19268.20 19970.14 18776.40 19453.90 19564.62 28273.48 21858.01 14873.91 21181.78 22559.09 18978.22 18148.59 26277.96 29678.31 245
alignmvs70.54 16571.00 16769.15 20473.50 23848.04 24469.85 21179.62 14653.94 20676.54 16982.00 22159.00 19074.68 22657.32 18787.21 18284.72 103
DELS-MVS68.83 18868.31 19470.38 17970.55 27848.31 23763.78 29182.13 9754.00 20368.96 27275.17 30458.95 19180.06 14858.55 17982.74 24282.76 167
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet65.58 22867.56 20659.65 30179.72 14030.17 38060.27 31662.14 30554.19 19971.24 24686.63 14758.80 19267.62 29444.17 29890.87 11181.18 195
mvs_anonymous65.08 23365.49 23063.83 26263.79 34537.60 33866.52 26069.82 25943.44 30773.46 21586.08 16758.79 19371.75 26251.90 23475.63 31182.15 182
v1075.69 8776.20 8974.16 11374.44 22648.69 23475.84 13482.93 8459.02 14185.92 4189.17 9358.56 19482.74 9870.73 7289.14 14791.05 14
diffmvspermissive67.42 21167.50 20867.20 23462.26 35245.21 27564.87 27977.04 19248.21 26471.74 23579.70 25758.40 19571.17 26764.99 11980.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 14273.80 11768.84 21478.74 16037.74 33671.02 19479.83 14456.12 16880.88 10989.45 8558.18 19678.28 18056.63 19293.36 6490.51 20
EI-MVSNet69.61 17769.01 18571.41 17073.94 23449.90 22271.31 19071.32 24258.22 14675.40 18670.44 34058.16 19775.85 20762.51 14379.81 27588.48 44
fmvsm_l_conf0.5_n67.48 20866.88 21969.28 20167.41 31662.04 12770.69 20069.85 25839.46 33669.59 26581.09 23458.15 19868.73 28367.51 9778.16 29577.07 265
IterMVS-LS73.01 13073.12 13372.66 15173.79 23649.90 22271.63 18478.44 17158.22 14680.51 11186.63 14758.15 19879.62 15262.51 14388.20 15888.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP2-MVS58.09 200
HQP-MVS75.24 9575.01 10075.94 9282.37 11058.80 16577.32 11084.12 6759.08 13771.58 23885.96 17058.09 20085.30 5267.38 10289.16 14483.73 137
v875.07 9875.64 9573.35 12773.42 24047.46 25475.20 13781.45 10960.05 13185.64 4589.26 8858.08 20281.80 11369.71 8187.97 16490.79 18
v114473.29 12273.39 12473.01 13674.12 23248.11 24172.01 17481.08 12053.83 20781.77 9384.68 18258.07 20381.91 11168.10 8886.86 18688.99 36
v14419272.99 13273.06 13572.77 14774.58 22447.48 25371.90 18080.44 13451.57 22781.46 9984.11 19258.04 20482.12 10867.98 9287.47 17088.70 43
ab-mvs64.11 24765.13 23861.05 29171.99 26138.03 33567.59 24068.79 26549.08 25965.32 30486.26 15958.02 20566.85 30639.33 32379.79 27778.27 246
Gipumacopyleft69.55 17872.83 13959.70 30063.63 34753.97 19380.08 8175.93 20164.24 9673.49 21488.93 10157.89 20662.46 32859.75 17191.55 8962.67 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + GP.73.08 12671.60 16077.54 7378.99 15770.73 5874.96 13969.38 26160.73 12774.39 20178.44 27657.72 20782.78 9760.16 16489.60 13579.11 236
WR-MVS71.20 15772.48 14667.36 23284.98 7135.70 35064.43 28568.66 26665.05 8881.49 9886.43 15557.57 20876.48 20550.36 24693.32 6589.90 23
MVS_030475.45 9174.66 10377.83 7175.58 20761.53 13378.29 9877.18 19163.15 11269.97 26087.20 12657.54 20987.05 1074.05 5288.96 15184.89 95
LF4IMVS67.50 20767.31 21168.08 22458.86 37361.93 12871.43 18675.90 20244.67 29672.42 22880.20 24857.16 21070.44 27358.99 17786.12 19871.88 309
OurMVSNet-221017-078.57 6378.53 6978.67 6080.48 13464.16 11380.24 7882.06 9861.89 11988.77 1393.32 557.15 21182.60 10070.08 7792.80 7089.25 28
v119273.40 11973.42 12373.32 12974.65 22348.67 23572.21 16981.73 10452.76 21581.85 9184.56 18457.12 21282.24 10768.58 8487.33 17589.06 33
MSP-MVS80.49 4679.67 5982.96 689.70 1277.46 2087.16 1185.10 4164.94 9181.05 10488.38 11357.10 21387.10 979.75 883.87 23084.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal66.48 22167.93 20162.16 28173.40 24136.65 34163.45 29364.99 28855.97 17072.82 22387.80 12357.06 21469.10 28248.31 26787.54 16780.72 211
MAR-MVS67.72 20566.16 22372.40 15774.45 22564.99 10874.87 14077.50 18648.67 26165.78 30268.58 36357.01 21577.79 19046.68 28281.92 24874.42 285
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
KD-MVS_self_test66.38 22267.51 20762.97 27361.76 35434.39 35958.11 33175.30 20650.84 23977.12 15085.42 17556.84 21669.44 27851.07 24091.16 9685.08 92
XXY-MVS55.19 31057.40 30048.56 35964.45 34234.84 35751.54 36753.59 34938.99 34163.79 31879.43 26156.59 21745.57 37536.92 34671.29 34865.25 358
v192192072.96 13472.98 13772.89 14474.67 22047.58 25271.92 17980.69 12651.70 22681.69 9783.89 19556.58 21882.25 10668.34 8687.36 17288.82 40
fmvsm_l_conf0.5_n_a66.66 21865.97 22768.72 21667.09 31961.38 13570.03 20769.15 26338.59 34368.41 28180.36 24556.56 21968.32 28866.10 11177.45 29976.46 266
MVSMamba_PlusPlus76.88 7878.21 7272.88 14580.83 12948.71 23283.28 4982.79 8572.78 2879.17 12491.94 2156.47 22083.95 7670.51 7486.15 19585.99 73
iter_conf0577.90 7179.33 6173.61 12380.83 12946.85 26082.06 5886.72 1772.78 2885.44 5191.94 2156.47 22083.95 7670.51 7487.24 18090.02 22
VNet64.01 24965.15 23760.57 29573.28 24335.61 35157.60 33367.08 27354.61 18766.76 29783.37 20356.28 22266.87 30442.19 30785.20 21179.23 235
v124073.06 12873.14 13172.84 14674.74 21947.27 25871.88 18181.11 11751.80 22482.28 8884.21 19056.22 22382.34 10468.82 8387.17 18488.91 38
MG-MVS70.47 16671.34 16467.85 22679.26 14740.42 31574.67 14975.15 20958.41 14568.74 28088.14 12056.08 22483.69 8159.90 16881.71 25679.43 233
v2v48272.55 14472.58 14472.43 15672.92 25446.72 26271.41 18779.13 15655.27 17681.17 10385.25 17855.41 22581.13 12367.25 10685.46 20489.43 26
3Dnovator65.95 1171.50 15571.22 16572.34 15873.16 24563.09 12178.37 9778.32 17357.67 15372.22 23284.61 18354.77 22678.47 17160.82 15881.07 26175.45 273
v14869.38 18269.39 17869.36 19869.14 29644.56 27968.83 22372.70 22654.79 18378.59 13084.12 19154.69 22776.74 20459.40 17482.20 24586.79 63
旧先验184.55 7960.36 15163.69 29987.05 13254.65 22883.34 23869.66 330
c3_l69.82 17469.89 17569.61 19566.24 32743.48 28868.12 23679.61 14851.43 22977.72 14380.18 25054.61 22978.15 18563.62 13587.50 16987.20 58
balanced_conf0373.59 11574.06 11272.17 16277.48 17747.72 25081.43 6482.20 9654.38 19179.19 12387.68 12454.41 23083.57 8363.98 12985.78 20285.22 87
BH-w/o64.81 23664.29 24466.36 24376.08 20154.71 18765.61 27175.23 20850.10 24871.05 24971.86 33254.33 23179.02 16138.20 33476.14 30765.36 357
SSC-MVS61.79 26966.08 22448.89 35876.91 18510.00 41453.56 35947.37 37768.20 6176.56 16789.21 9054.13 23257.59 34854.75 21174.07 32879.08 237
ambc70.10 18877.74 17250.21 21774.28 15477.93 18279.26 12288.29 11554.11 23379.77 15064.43 12391.10 10180.30 219
QAPM69.18 18469.26 18068.94 21071.61 26352.58 20380.37 7578.79 16449.63 25273.51 21385.14 17953.66 23479.12 15955.11 20875.54 31275.11 278
WB-MVS60.04 28364.19 24547.59 36076.09 19910.22 41352.44 36446.74 37865.17 8674.07 20787.48 12553.48 23555.28 35149.36 25572.84 33677.28 258
miper_ehance_all_eth68.36 19568.16 20068.98 20865.14 33843.34 29067.07 25178.92 16049.11 25876.21 17677.72 28553.48 23577.92 18861.16 15484.59 22285.68 83
IS-MVSNet75.10 9775.42 9874.15 11479.23 14848.05 24379.43 8578.04 17970.09 5279.17 12488.02 12153.04 23783.60 8258.05 18393.76 5990.79 18
新几何169.99 19088.37 3571.34 5262.08 30743.85 29974.99 18986.11 16652.85 23870.57 27150.99 24183.23 23968.05 342
OpenMVScopyleft62.51 1568.76 19068.75 18968.78 21570.56 27653.91 19478.29 9877.35 18748.85 26070.22 25683.52 19952.65 23976.93 19955.31 20781.99 24775.49 272
bld_raw_conf0372.88 13672.76 14173.22 13076.77 19048.71 23283.28 4982.79 8548.38 26379.17 12486.44 15452.61 24084.97 6159.29 17586.15 19585.99 73
UGNet70.20 16869.05 18373.65 12076.24 19663.64 11675.87 13372.53 22861.48 12160.93 33786.14 16452.37 24177.12 19750.67 24385.21 21080.17 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)71.27 15671.06 16671.92 16473.96 23352.32 20476.45 12176.12 19859.07 14074.04 20986.18 16152.18 24279.43 15659.75 17181.76 25284.03 128
Anonymous20240521166.02 22566.89 21863.43 26874.22 22938.14 33259.00 32266.13 27863.33 10969.76 26485.95 17151.88 24370.50 27244.23 29787.52 16881.64 191
PVSNet_BlendedMVS65.38 22964.30 24368.61 21769.81 28849.36 22865.60 27278.96 15845.50 28559.98 34078.61 27451.82 24478.20 18244.30 29584.11 22878.27 246
PVSNet_Blended62.90 25961.64 26566.69 24169.81 28849.36 22861.23 30878.96 15842.04 31459.98 34068.86 36051.82 24478.20 18244.30 29577.77 29872.52 302
testgi54.00 32056.86 30345.45 36958.20 37725.81 39749.05 37149.50 36945.43 28867.84 28681.17 23351.81 24643.20 38929.30 38179.41 28067.34 346
EPNet69.10 18567.32 21074.46 10668.33 30561.27 13777.56 10663.57 30060.95 12556.62 36182.75 21351.53 24781.24 12154.36 21990.20 12180.88 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu70.04 16968.88 18673.53 12682.71 10763.62 11774.81 14281.95 10148.53 26267.16 29579.18 26751.42 24878.38 17654.39 21879.72 27878.60 241
DPM-MVS69.98 17169.22 18272.26 16082.69 10858.82 16470.53 20181.23 11547.79 27064.16 31280.21 24751.32 24983.12 9260.14 16584.95 21774.83 279
TR-MVS64.59 23963.54 25267.73 22975.75 20650.83 21163.39 29470.29 25649.33 25571.55 24274.55 30950.94 25078.46 17240.43 31975.69 31073.89 289
CL-MVSNet_self_test62.44 26463.40 25359.55 30272.34 25832.38 36756.39 33964.84 29051.21 23567.46 29281.01 23650.75 25163.51 32638.47 33288.12 16082.75 168
MVS60.62 27959.97 28062.58 27768.13 30847.28 25768.59 22973.96 21632.19 37459.94 34268.86 36050.48 25277.64 19341.85 31075.74 30962.83 368
SixPastTwentyTwo75.77 8576.34 8774.06 11581.69 12154.84 18676.47 11975.49 20564.10 9787.73 1892.24 1850.45 25381.30 12067.41 9891.46 9086.04 72
PatchMatch-RL58.68 29357.72 29761.57 28576.21 19773.59 4061.83 30349.00 37147.30 27461.08 33368.97 35650.16 25459.01 34136.06 35468.84 36352.10 389
eth_miper_zixun_eth69.42 18068.73 19171.50 16967.99 30946.42 26567.58 24178.81 16150.72 24078.13 13780.34 24650.15 25580.34 14160.18 16384.65 22087.74 50
miper_enhance_ethall65.86 22665.05 24268.28 22361.62 35642.62 29864.74 28077.97 18042.52 31273.42 21672.79 32649.66 25677.68 19258.12 18284.59 22284.54 112
K. test v373.67 11373.61 12273.87 11879.78 13955.62 18474.69 14862.04 30966.16 7384.76 6193.23 649.47 25780.97 13065.66 11686.67 19185.02 94
EPP-MVSNet73.86 11273.38 12575.31 10078.19 16453.35 19980.45 7277.32 18865.11 8776.47 17286.80 13649.47 25783.77 8053.89 22392.72 7388.81 41
cascas64.59 23962.77 26070.05 18975.27 20950.02 21961.79 30471.61 23442.46 31363.68 31968.89 35949.33 25980.35 14047.82 27384.05 22979.78 226
WB-MVSnew53.94 32154.76 31851.49 34371.53 26428.05 38758.22 32950.36 36537.94 34859.16 34770.17 34549.21 26051.94 35624.49 39771.80 34674.47 284
h-mvs3373.08 12671.61 15977.48 7483.89 8972.89 4570.47 20271.12 24954.28 19477.89 13983.41 20049.04 26180.98 12963.62 13590.77 11478.58 242
hse-mvs272.32 14670.66 17177.31 7883.10 10071.77 4869.19 21971.45 23954.28 19477.89 13978.26 27849.04 26179.23 15763.62 13589.13 14880.92 203
MDA-MVSNet-bldmvs62.34 26561.73 26364.16 25761.64 35549.90 22248.11 37557.24 32753.31 21180.95 10579.39 26249.00 26361.55 33345.92 28780.05 27281.03 199
testdata64.13 25885.87 6063.34 11961.80 31047.83 26976.42 17486.60 14948.83 26462.31 33054.46 21681.26 26066.74 351
cl____68.26 20068.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.42 21848.74 26575.38 21360.92 15789.81 13185.80 81
DIV-MVS_self_test68.27 19968.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.43 21748.74 26575.38 21360.94 15689.81 13185.81 77
GBi-Net68.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
test168.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
FMVSNet267.48 20868.21 19865.29 25073.14 24638.94 32468.81 22471.21 24854.81 18076.73 16186.48 15248.63 26774.60 22747.98 27186.11 19982.35 177
test22287.30 3869.15 7467.85 23859.59 31741.06 32373.05 22185.72 17448.03 27080.65 26666.92 347
OpenMVS_ROBcopyleft54.93 1763.23 25563.28 25463.07 27169.81 28845.34 27468.52 23167.14 27243.74 30370.61 25279.22 26547.90 27172.66 24648.75 26073.84 33171.21 317
lessismore_v072.75 14879.60 14256.83 17657.37 32483.80 7289.01 9847.45 27278.74 16764.39 12486.49 19482.69 170
TAMVS65.31 23063.75 24969.97 19182.23 11459.76 15566.78 25763.37 30145.20 29169.79 26379.37 26347.42 27372.17 25434.48 36085.15 21277.99 253
Syy-MVS54.13 31655.45 31450.18 34868.77 29923.59 40055.02 34944.55 38343.80 30058.05 35264.07 37746.22 27458.83 34246.16 28572.36 34068.12 340
PM-MVS64.49 24163.61 25167.14 23676.68 19175.15 2868.49 23242.85 39051.17 23677.85 14180.51 24245.76 27566.31 31152.83 23176.35 30559.96 379
USDC62.80 26063.10 25761.89 28265.19 33543.30 29167.42 24474.20 21535.80 35972.25 23184.48 18745.67 27671.95 25937.95 33684.97 21370.42 324
test20.0355.74 30657.51 29950.42 34759.89 36832.09 36950.63 36949.01 37050.11 24765.07 30683.23 21045.61 27748.11 36930.22 37683.82 23171.07 319
cl2267.14 21366.51 22069.03 20763.20 34843.46 28966.88 25676.25 19749.22 25674.48 19977.88 28445.49 27877.40 19560.64 15984.59 22286.24 68
IterMVS-SCA-FT67.68 20666.07 22572.49 15573.34 24258.20 17063.80 29065.55 28448.10 26576.91 15482.64 21645.20 27978.84 16461.20 15377.89 29780.44 218
SCA58.57 29458.04 29560.17 29870.17 28441.07 30865.19 27653.38 35343.34 31061.00 33673.48 32045.20 27969.38 27940.34 32070.31 35570.05 325
1112_ss59.48 28758.99 28760.96 29377.84 17042.39 30061.42 30668.45 26837.96 34759.93 34367.46 36845.11 28165.07 31840.89 31771.81 34575.41 274
new-patchmatchnet52.89 32755.76 31244.26 37559.94 3676.31 41537.36 39950.76 36441.10 32264.28 31179.82 25544.77 28248.43 36836.24 35187.61 16678.03 251
jason64.47 24262.84 25969.34 20076.91 18559.20 15667.15 25065.67 28135.29 36065.16 30576.74 29344.67 28370.68 26954.74 21279.28 28178.14 249
jason: jason.
IterMVS63.12 25662.48 26265.02 25366.34 32652.86 20063.81 28962.25 30446.57 27871.51 24380.40 24444.60 28466.82 30751.38 23875.47 31375.38 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM61.79 26960.37 27866.05 24676.09 19941.87 30269.30 21676.79 19540.64 33153.80 37579.62 25944.38 28582.92 9629.64 38073.11 33573.36 293
HY-MVS49.31 1957.96 29757.59 29859.10 30566.85 32336.17 34565.13 27765.39 28639.24 33954.69 37278.14 28144.28 28667.18 30133.75 36570.79 35173.95 288
CANet_DTU64.04 24863.83 24864.66 25468.39 30242.97 29573.45 16074.50 21352.05 22254.78 37075.44 30343.99 28770.42 27453.49 22778.41 29180.59 215
LFMVS67.06 21567.89 20264.56 25578.02 16738.25 33170.81 19959.60 31665.18 8571.06 24886.56 15043.85 28875.22 21746.35 28389.63 13480.21 221
pmmvs-eth3d64.41 24463.27 25567.82 22875.81 20560.18 15269.49 21362.05 30838.81 34274.13 20582.23 22043.76 28968.65 28542.53 30580.63 26874.63 280
131459.83 28558.86 28862.74 27665.71 33244.78 27868.59 22972.63 22733.54 37261.05 33567.29 37143.62 29071.26 26649.49 25467.84 36972.19 307
CDS-MVSNet64.33 24562.66 26169.35 19980.44 13558.28 16965.26 27565.66 28244.36 29767.30 29475.54 30043.27 29171.77 26037.68 33784.44 22578.01 252
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer69.93 17269.03 18472.63 15374.93 21359.19 15783.98 3775.72 20352.27 21863.53 32276.74 29343.19 29280.56 13672.28 6778.67 28778.14 249
lupinMVS63.36 25261.49 26868.97 20974.93 21359.19 15765.80 26864.52 29434.68 36563.53 32274.25 31443.19 29270.62 27053.88 22478.67 28777.10 262
Test_1112_low_res58.78 29258.69 28959.04 30679.41 14438.13 33357.62 33266.98 27434.74 36359.62 34677.56 28742.92 29463.65 32538.66 32970.73 35275.35 276
test_yl65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
DCV-MVSNet65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
PMMVS44.69 36143.95 36946.92 36350.05 40353.47 19848.08 37642.40 39222.36 40344.01 40253.05 39842.60 29745.49 37631.69 37161.36 38541.79 400
Anonymous2023120654.13 31655.82 31149.04 35770.89 26835.96 34751.73 36650.87 36334.86 36162.49 32679.22 26542.52 29844.29 38527.95 38781.88 24966.88 348
WTY-MVS49.39 34850.31 35046.62 36561.22 35732.00 37046.61 38049.77 36733.87 36854.12 37469.55 35341.96 29945.40 37731.28 37364.42 37662.47 372
UnsupCasMVSNet_eth52.26 33253.29 32749.16 35555.08 39033.67 36350.03 37058.79 31937.67 35063.43 32474.75 30741.82 30045.83 37438.59 33159.42 38967.98 343
UnsupCasMVSNet_bld50.01 34651.03 34346.95 36258.61 37432.64 36648.31 37353.27 35434.27 36660.47 33871.53 33441.40 30147.07 37230.68 37460.78 38661.13 377
ppachtmachnet_test60.26 28259.61 28362.20 28067.70 31344.33 28158.18 33060.96 31240.75 32965.80 30172.57 32741.23 30263.92 32346.87 28082.42 24478.33 244
baseline157.82 29858.36 29456.19 32069.17 29530.76 37862.94 30055.21 34046.04 28163.83 31778.47 27541.20 30363.68 32439.44 32268.99 36274.13 286
MIMVSNet54.39 31556.12 30949.20 35472.57 25630.91 37659.98 31748.43 37341.66 31755.94 36483.86 19641.19 30450.42 35926.05 39075.38 31566.27 352
CHOSEN 1792x268858.09 29656.30 30763.45 26779.95 13850.93 21054.07 35765.59 28328.56 38661.53 33074.33 31241.09 30566.52 31033.91 36367.69 37072.92 297
YYNet152.58 32953.50 32449.85 35054.15 39436.45 34440.53 39246.55 38038.09 34675.52 18473.31 32341.08 30643.88 38641.10 31471.14 35069.21 335
MDA-MVSNet_test_wron52.57 33053.49 32649.81 35154.24 39336.47 34340.48 39346.58 37938.13 34575.47 18573.32 32241.05 30743.85 38740.98 31671.20 34969.10 337
PVSNet_036.71 2241.12 36940.78 37242.14 37859.97 36540.13 31640.97 39142.24 39530.81 38344.86 39949.41 40240.70 30845.12 37923.15 40034.96 40541.16 401
Vis-MVSNet (Re-imp)62.74 26163.21 25661.34 28972.19 25931.56 37267.31 24953.87 34753.60 20969.88 26283.37 20340.52 30970.98 26841.40 31386.78 18981.48 193
sss47.59 35348.32 35345.40 37056.73 38433.96 36145.17 38348.51 37232.11 37852.37 37865.79 37340.39 31041.91 39331.85 37061.97 38360.35 378
test_vis1_n_192052.96 32553.50 32451.32 34459.15 37144.90 27756.13 34364.29 29630.56 38459.87 34460.68 38840.16 31147.47 37048.25 26862.46 38161.58 376
our_test_356.46 30256.51 30556.30 31967.70 31339.66 31955.36 34852.34 35940.57 33263.85 31669.91 35040.04 31258.22 34543.49 30275.29 31771.03 320
Anonymous2024052163.55 25066.07 22555.99 32166.18 32944.04 28368.77 22768.80 26446.99 27572.57 22585.84 17239.87 31350.22 36053.40 23092.23 8073.71 291
miper_lstm_enhance61.97 26661.63 26662.98 27260.04 36345.74 27247.53 37770.95 25044.04 29873.06 22078.84 27339.72 31460.33 33655.82 20284.64 22182.88 163
pmmvs460.78 27759.04 28666.00 24773.06 25157.67 17264.53 28460.22 31436.91 35465.96 29977.27 28939.66 31568.54 28638.87 32774.89 31871.80 310
MVP-Stereo61.56 27159.22 28468.58 21879.28 14660.44 15069.20 21871.57 23543.58 30556.42 36278.37 27739.57 31676.46 20634.86 35960.16 38768.86 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_testset45.26 35847.51 35638.49 38559.96 36614.71 40958.50 32743.39 38741.30 32051.79 38156.48 39439.44 31749.91 36321.42 40355.35 39950.85 390
FPMVS59.43 28860.07 27957.51 31477.62 17671.52 5062.33 30250.92 36257.40 15769.40 26780.00 25339.14 31861.92 33237.47 34066.36 37239.09 402
DSMNet-mixed43.18 36744.66 36738.75 38454.75 39228.88 38657.06 33627.42 40913.47 40747.27 39477.67 28638.83 31939.29 39925.32 39660.12 38848.08 393
HyFIR lowres test63.01 25760.47 27770.61 17583.04 10154.10 19259.93 31872.24 23233.67 37069.00 27075.63 29938.69 32076.93 19936.60 34775.45 31480.81 208
MVEpermissive27.91 2336.69 37335.64 37639.84 38343.37 41035.85 34919.49 40424.61 41024.68 39839.05 40562.63 38338.67 32127.10 40821.04 40447.25 40356.56 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu58.93 29158.52 29060.16 29967.91 31147.70 25169.97 20858.02 32049.73 25147.28 39373.02 32538.14 32262.34 32936.57 34885.99 20070.43 323
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs552.49 33152.58 33152.21 33954.99 39132.38 36755.45 34753.84 34832.15 37655.49 36774.81 30538.08 32357.37 34934.02 36274.40 32466.88 348
N_pmnet52.06 33351.11 34154.92 32559.64 37071.03 5437.42 39861.62 31133.68 36957.12 35472.10 32837.94 32431.03 40429.13 38671.35 34762.70 369
CMPMVSbinary48.73 2061.54 27260.89 27363.52 26661.08 35851.55 20668.07 23768.00 27033.88 36765.87 30081.25 23237.91 32567.71 29249.32 25682.60 24371.31 315
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet365.00 23465.16 23564.52 25669.47 29337.56 33966.63 25870.38 25551.55 22874.72 19383.27 20837.89 32674.44 22947.12 27685.37 20581.57 192
test_cas_vis1_n_192050.90 34050.92 34450.83 34654.12 39647.80 24751.44 36854.61 34326.95 39163.95 31560.85 38737.86 32744.97 38045.53 29062.97 38059.72 380
AUN-MVS70.22 16767.88 20377.22 7982.96 10471.61 4969.08 22071.39 24049.17 25771.70 23678.07 28337.62 32879.21 15861.81 14689.15 14680.82 206
ECVR-MVScopyleft64.82 23565.22 23363.60 26478.80 15831.14 37566.97 25356.47 33554.23 19669.94 26188.68 10637.23 32974.81 22545.28 29489.41 14084.86 98
test111164.62 23865.19 23462.93 27479.01 15629.91 38165.45 27354.41 34554.09 20171.47 24588.48 11037.02 33074.29 23246.83 28189.94 12984.58 111
GA-MVS62.91 25861.66 26466.66 24267.09 31944.49 28061.18 30969.36 26251.33 23369.33 26874.47 31036.83 33174.94 22250.60 24474.72 31980.57 216
MS-PatchMatch55.59 30854.89 31757.68 31369.18 29449.05 23161.00 31062.93 30335.98 35758.36 35068.93 35836.71 33266.59 30937.62 33963.30 37957.39 385
dmvs_re49.91 34750.77 34647.34 36159.98 36438.86 32553.18 36053.58 35039.75 33555.06 36861.58 38636.42 33344.40 38429.15 38568.23 36558.75 382
CVMVSNet59.21 28958.44 29261.51 28673.94 23447.76 24971.31 19064.56 29326.91 39260.34 33970.44 34036.24 33467.65 29353.57 22668.66 36469.12 336
PMMVS237.74 37140.87 37128.36 38842.41 4115.35 41624.61 40327.75 40832.15 37647.85 39270.27 34335.85 33529.51 40619.08 40667.85 36850.22 392
mvsmamba68.87 18767.30 21273.57 12476.58 19253.70 19684.43 3474.25 21445.38 28976.63 16384.55 18535.85 33585.27 5349.54 25378.49 28981.75 189
tpmrst50.15 34551.38 33946.45 36656.05 38524.77 39864.40 28649.98 36636.14 35653.32 37669.59 35235.16 33748.69 36539.24 32458.51 39265.89 353
D2MVS62.58 26361.05 27267.20 23463.85 34447.92 24556.29 34069.58 26039.32 33770.07 25978.19 28034.93 33872.68 24553.44 22883.74 23281.00 201
PVSNet43.83 2151.56 33751.17 34052.73 33668.34 30438.27 33048.22 37453.56 35136.41 35554.29 37364.94 37634.60 33954.20 35530.34 37569.87 35865.71 355
MVS-HIRNet45.53 35747.29 35740.24 38262.29 35126.82 39256.02 34437.41 40429.74 38543.69 40381.27 23133.96 34055.48 35024.46 39856.79 39438.43 403
test_vis1_rt46.70 35545.24 36351.06 34544.58 40951.04 20939.91 39467.56 27121.84 40551.94 38050.79 40133.83 34139.77 39735.25 35861.50 38462.38 373
baseline255.57 30952.74 32864.05 26065.26 33444.11 28262.38 30154.43 34439.03 34051.21 38267.35 37033.66 34272.45 25137.14 34264.22 37775.60 271
RPMNet65.77 22765.08 24167.84 22766.37 32448.24 23970.93 19686.27 2154.66 18661.35 33186.77 13933.29 34385.67 4655.93 20070.17 35669.62 331
CR-MVSNet58.96 29058.49 29160.36 29766.37 32448.24 23970.93 19656.40 33632.87 37361.35 33186.66 14433.19 34463.22 32748.50 26470.17 35669.62 331
Patchmtry60.91 27563.01 25854.62 32866.10 33026.27 39567.47 24356.40 33654.05 20272.04 23486.66 14433.19 34460.17 33743.69 29987.45 17177.42 256
mvsany_test137.88 37035.74 37544.28 37447.28 40749.90 22236.54 40024.37 41119.56 40645.76 39553.46 39732.99 34637.97 40126.17 38935.52 40444.99 399
CostFormer57.35 30056.14 30860.97 29263.76 34638.43 32867.50 24260.22 31437.14 35359.12 34876.34 29532.78 34771.99 25839.12 32669.27 36172.47 303
tpm cat154.02 31952.63 33058.19 31064.85 34139.86 31866.26 26257.28 32532.16 37556.90 35770.39 34232.75 34865.30 31734.29 36158.79 39069.41 333
thres20057.55 29957.02 30159.17 30367.89 31234.93 35558.91 32457.25 32650.24 24564.01 31471.46 33532.49 34971.39 26531.31 37279.57 27971.19 318
tfpn200view960.35 28159.97 28061.51 28670.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25377.08 263
thres40060.77 27859.97 28063.15 26970.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25382.02 183
EU-MVSNet60.82 27660.80 27560.86 29468.37 30341.16 30672.27 16768.27 26926.96 39069.08 26975.71 29832.09 35267.44 29755.59 20578.90 28473.97 287
thres100view90061.17 27461.09 27161.39 28872.14 26035.01 35465.42 27456.99 32955.23 17770.71 25179.90 25432.07 35372.09 25535.61 35581.73 25377.08 263
thres600view761.82 26861.38 26963.12 27071.81 26234.93 35564.64 28156.99 32954.78 18470.33 25579.74 25632.07 35372.42 25238.61 33083.46 23782.02 183
FE-MVS68.29 19866.96 21772.26 16074.16 23154.24 19177.55 10773.42 21957.65 15572.66 22484.91 18132.02 35581.49 11748.43 26581.85 25081.04 198
test_fmvs254.80 31354.11 32256.88 31851.76 40149.95 22156.70 33865.80 28026.22 39369.42 26665.25 37531.82 35649.98 36149.63 25270.36 35470.71 321
test_f43.79 36545.63 36038.24 38642.29 41238.58 32734.76 40147.68 37522.22 40467.34 29363.15 38031.82 35630.60 40539.19 32562.28 38245.53 398
PatchmatchNetpermissive54.60 31454.27 32155.59 32465.17 33739.08 32166.92 25451.80 36139.89 33458.39 34973.12 32431.69 35858.33 34443.01 30458.38 39369.38 334
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs131.41 35970.05 325
patchmatchnet-post68.99 35531.32 36069.38 279
ADS-MVSNet248.76 34947.25 35853.29 33555.90 38740.54 31447.34 37854.99 34231.41 38150.48 38572.06 32931.23 36154.26 35425.93 39155.93 39565.07 359
ADS-MVSNet44.62 36245.58 36141.73 38055.90 38720.83 40547.34 37839.94 40131.41 38150.48 38572.06 32931.23 36139.31 39825.93 39155.93 39565.07 359
sam_mvs31.21 363
Patchmatch-RL test59.95 28459.12 28562.44 27872.46 25754.61 18959.63 31947.51 37641.05 32474.58 19874.30 31331.06 36465.31 31651.61 23579.85 27467.39 344
tpmvs55.84 30455.45 31457.01 31660.33 36233.20 36565.89 26559.29 31847.52 27356.04 36373.60 31931.05 36568.06 29140.64 31864.64 37569.77 329
test_post1.99 41130.91 36654.76 353
MDTV_nov1_ep1354.05 32365.54 33329.30 38459.00 32255.22 33935.96 35852.44 37775.98 29630.77 36759.62 33938.21 33373.33 334
test_post166.63 2582.08 41030.66 36859.33 34040.34 320
Patchmatch-test47.93 35149.96 35141.84 37957.42 38024.26 39948.75 37241.49 39739.30 33856.79 35873.48 32030.48 36933.87 40329.29 38272.61 33867.39 344
tpm256.12 30354.64 31960.55 29666.24 32736.01 34668.14 23556.77 33233.60 37158.25 35175.52 30230.25 37074.33 23133.27 36669.76 36071.32 314
MVSTER63.29 25461.60 26768.36 21959.77 36946.21 26860.62 31371.32 24241.83 31675.40 18679.12 26830.25 37075.85 20756.30 19779.81 27583.03 160
tpm50.60 34152.42 33345.14 37165.18 33626.29 39460.30 31543.50 38637.41 35157.01 35679.09 26930.20 37242.32 39032.77 36866.36 37266.81 350
PatchT53.35 32356.47 30643.99 37664.19 34317.46 40759.15 32043.10 38852.11 22154.74 37186.95 13329.97 37349.98 36143.62 30074.40 32464.53 365
MDTV_nov1_ep13_2view18.41 40653.74 35831.57 38044.89 39829.90 37432.93 36771.48 312
test_vis1_n51.27 33950.41 34953.83 32956.99 38150.01 22056.75 33760.53 31325.68 39559.74 34557.86 39329.40 37547.41 37143.10 30363.66 37864.08 366
test-LLR50.43 34250.69 34749.64 35260.76 35941.87 30253.18 36045.48 38143.41 30849.41 38960.47 39029.22 37644.73 38242.09 30872.14 34362.33 374
test0.0.03 147.72 35248.31 35445.93 36755.53 38929.39 38346.40 38141.21 39943.41 30855.81 36667.65 36729.22 37643.77 38825.73 39469.87 35864.62 363
test_fmvs151.51 33850.86 34553.48 33249.72 40449.35 23054.11 35664.96 28924.64 39963.66 32059.61 39228.33 37848.45 36745.38 29367.30 37162.66 371
test_fmvs1_n52.70 32852.01 33554.76 32653.83 39850.36 21455.80 34565.90 27924.96 39765.39 30360.64 38927.69 37948.46 36645.88 28867.99 36765.46 356
mvsany_test343.76 36641.01 37052.01 34048.09 40657.74 17142.47 38923.85 41223.30 40264.80 30762.17 38427.12 38040.59 39629.17 38448.11 40257.69 384
thisisatest053067.05 21665.16 23572.73 15073.10 24950.55 21271.26 19263.91 29850.22 24674.46 20080.75 23926.81 38180.25 14359.43 17386.50 19387.37 54
tttt051769.46 17967.79 20574.46 10675.34 20852.72 20175.05 13863.27 30254.69 18578.87 12984.37 18826.63 38281.15 12263.95 13087.93 16589.51 25
EMVS44.61 36344.45 36845.10 37248.91 40543.00 29437.92 39741.10 40046.75 27738.00 40648.43 40326.42 38346.27 37337.11 34375.38 31546.03 396
thisisatest051560.48 28057.86 29668.34 22067.25 31746.42 26560.58 31462.14 30540.82 32763.58 32169.12 35426.28 38478.34 17848.83 25982.13 24680.26 220
E-PMN45.17 35945.36 36244.60 37350.07 40242.75 29638.66 39642.29 39446.39 27939.55 40451.15 40026.00 38545.37 37837.68 33776.41 30445.69 397
EPMVS45.74 35646.53 35943.39 37754.14 39522.33 40455.02 34935.00 40634.69 36451.09 38370.20 34425.92 38642.04 39237.19 34155.50 39765.78 354
tmp_tt11.98 37814.73 3813.72 3932.28 4164.62 41719.44 40514.50 4140.47 41121.55 4099.58 40925.78 3874.57 41211.61 40927.37 4061.96 408
ET-MVSNet_ETH3D63.32 25360.69 27671.20 17270.15 28555.66 18265.02 27864.32 29543.28 31168.99 27172.05 33125.46 38878.19 18454.16 22282.80 24179.74 227
FMVSNet555.08 31255.54 31353.71 33065.80 33133.50 36456.22 34152.50 35743.72 30461.06 33483.38 20225.46 38854.87 35230.11 37781.64 25872.75 300
test_fmvs356.78 30155.99 31059.12 30453.96 39748.09 24258.76 32566.22 27727.54 38876.66 16268.69 36225.32 39051.31 35753.42 22973.38 33377.97 254
new_pmnet37.55 37239.80 37430.79 38756.83 38216.46 40839.35 39530.65 40725.59 39645.26 39761.60 38524.54 39128.02 40721.60 40252.80 40047.90 394
testing9155.74 30655.29 31657.08 31570.63 27330.85 37754.94 35256.31 33850.34 24357.08 35570.10 34724.50 39265.86 31236.98 34576.75 30374.53 282
dp44.09 36444.88 36641.72 38158.53 37623.18 40154.70 35442.38 39334.80 36244.25 40165.61 37424.48 39344.80 38129.77 37949.42 40157.18 386
IB-MVS49.67 1859.69 28656.96 30267.90 22568.19 30750.30 21661.42 30665.18 28747.57 27255.83 36567.15 37223.77 39479.60 15343.56 30179.97 27373.79 290
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42041.62 36839.89 37346.80 36461.81 35351.59 20533.56 40235.74 40527.48 38937.64 40753.53 39623.24 39542.09 39127.39 38858.64 39146.72 395
testing9955.16 31154.56 32056.98 31770.13 28630.58 37954.55 35554.11 34649.53 25456.76 35970.14 34622.76 39665.79 31336.99 34476.04 30874.57 281
testing1153.13 32452.26 33455.75 32370.44 28031.73 37154.75 35352.40 35844.81 29552.36 37968.40 36421.83 39765.74 31432.64 36972.73 33769.78 328
test_vis3_rt51.94 33651.04 34254.65 32746.32 40850.13 21844.34 38778.17 17623.62 40168.95 27362.81 38121.41 39838.52 40041.49 31272.22 34275.30 277
gg-mvs-nofinetune55.75 30556.75 30452.72 33762.87 34928.04 38868.92 22141.36 39871.09 4450.80 38492.63 1320.74 39966.86 30529.97 37872.41 33963.25 367
GG-mvs-BLEND52.24 33860.64 36129.21 38569.73 21242.41 39145.47 39652.33 39920.43 40068.16 28925.52 39565.42 37459.36 381
JIA-IIPM54.03 31851.62 33661.25 29059.14 37255.21 18559.10 32147.72 37450.85 23850.31 38885.81 17320.10 40163.97 32236.16 35255.41 39864.55 364
ETVMVS50.32 34449.87 35251.68 34170.30 28326.66 39352.33 36543.93 38543.54 30654.91 36967.95 36620.01 40260.17 33722.47 40173.40 33268.22 339
UWE-MVS52.94 32652.70 32953.65 33173.56 23727.49 39057.30 33549.57 36838.56 34462.79 32571.42 33619.49 40360.41 33524.33 39977.33 30073.06 295
testing22253.37 32252.50 33255.98 32270.51 27929.68 38256.20 34251.85 36046.19 28056.76 35968.94 35719.18 40465.39 31525.87 39376.98 30172.87 298
test-mter48.56 35048.20 35549.64 35260.76 35941.87 30253.18 36045.48 38131.91 37949.41 38960.47 39018.34 40544.73 38242.09 30872.14 34362.33 374
TESTMET0.1,145.17 35944.93 36545.89 36856.02 38638.31 32953.18 36041.94 39627.85 38744.86 39956.47 39517.93 40641.50 39538.08 33568.06 36657.85 383
test250661.23 27360.85 27462.38 27978.80 15827.88 38967.33 24837.42 40354.23 19667.55 29188.68 10617.87 40774.39 23046.33 28489.41 14084.86 98
test_method19.26 37619.12 38019.71 3909.09 4151.91 4187.79 40653.44 3521.42 40910.27 41135.80 40517.42 40825.11 40912.44 40824.38 40732.10 404
DeepMVS_CXcopyleft11.83 39215.51 41413.86 41011.25 4175.76 40820.85 41026.46 40717.06 4099.22 4119.69 41013.82 41012.42 407
pmmvs346.71 35445.09 36451.55 34256.76 38348.25 23855.78 34639.53 40224.13 40050.35 38763.40 37915.90 41051.08 35829.29 38270.69 35355.33 388
KD-MVS_2432*160052.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
miper_refine_blended52.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
myMVS_eth3d50.36 34350.52 34849.88 34968.77 29922.69 40255.02 34944.55 38343.80 30058.05 35264.07 37714.16 41358.83 34233.90 36472.36 34068.12 340
testing358.28 29558.38 29358.00 31277.45 17826.12 39660.78 31243.00 38956.02 16970.18 25775.76 29713.27 41467.24 30048.02 27080.89 26280.65 213
dongtai31.66 37432.98 37727.71 38958.58 37512.61 41145.02 38414.24 41541.90 31547.93 39143.91 40410.65 41541.81 39414.06 40720.53 40828.72 405
kuosan22.02 37523.52 37917.54 39141.56 41311.24 41241.99 39013.39 41626.13 39428.87 40830.75 4069.72 41621.94 4104.77 41114.49 40919.43 406
testmvs4.06 3825.28 3850.41 3940.64 4180.16 42042.54 3880.31 4190.26 4130.50 4141.40 4130.77 4170.17 4130.56 4120.55 4120.90 409
test1234.43 3815.78 3840.39 3950.97 4170.28 41946.33 3820.45 4180.31 4120.62 4131.50 4120.61 4180.11 4140.56 4120.63 4110.77 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re5.62 3797.50 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41567.46 3680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS22.69 40236.10 353
FOURS189.19 2477.84 1391.64 189.11 384.05 391.57 3
MSC_two_6792asdad79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
No_MVS79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
eth-test20.00 419
eth-test0.00 419
IU-MVS86.12 5460.90 14480.38 13545.49 28781.31 10075.64 4194.39 4184.65 104
save fliter87.00 4067.23 8779.24 8877.94 18156.65 165
test_0728_SECOND76.57 8486.20 4960.57 14983.77 4185.49 3185.90 3775.86 3994.39 4183.25 152
GSMVS70.05 325
test_part285.90 5866.44 9284.61 63
MTGPAbinary80.63 129
MTMP84.83 3119.26 413
gm-plane-assit62.51 35033.91 36237.25 35262.71 38272.74 24438.70 328
test9_res72.12 6991.37 9177.40 257
agg_prior270.70 7390.93 10678.55 243
agg_prior84.44 8266.02 9878.62 16976.95 15380.34 141
test_prior470.14 6477.57 105
test_prior75.27 10182.15 11559.85 15484.33 6183.39 8882.58 173
旧先验271.17 19345.11 29278.54 13361.28 33459.19 176
新几何271.33 189
无先验74.82 14170.94 25147.75 27176.85 20254.47 21572.09 308
原ACMM274.78 145
testdata267.30 29848.34 266
testdata168.34 23457.24 158
plane_prior785.18 6766.21 95
plane_prior585.49 3186.15 2971.09 7090.94 10484.82 100
plane_prior489.11 95
plane_prior365.67 10063.82 10078.23 135
plane_prior282.74 5365.45 78
plane_prior184.46 81
plane_prior65.18 10580.06 8261.88 12089.91 130
n20.00 420
nn0.00 420
door-mid55.02 341
test1182.71 89
door52.91 356
HQP5-MVS58.80 165
HQP-NCC82.37 11077.32 11059.08 13771.58 238
ACMP_Plane82.37 11077.32 11059.08 13771.58 238
BP-MVS67.38 102
HQP4-MVS71.59 23785.31 5183.74 136
HQP3-MVS84.12 6789.16 144
NP-MVS83.34 9563.07 12285.97 169
ACMMP++_ref89.47 139
ACMMP++91.96 82