This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
mvs_tets99.63 599.67 599.49 4999.88 798.61 9199.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9199.28 2999.66 1999.09 6699.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3499.64 41
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5899.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16399.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS98.53 11498.34 12099.11 10899.50 7898.82 7695.97 28999.50 6097.30 19899.05 11298.98 13199.35 799.32 33495.72 23699.68 13499.18 218
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10499.49 8598.83 7496.54 26399.48 7097.32 19699.11 9898.61 21499.33 899.30 33796.23 21198.38 30699.28 196
ACMH96.65 799.25 2799.24 2699.26 8899.72 3098.38 10999.07 4999.55 4698.30 11399.65 2299.45 4799.22 999.76 21198.44 6599.77 9099.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cdsmvs_eth3d_5k24.66 33732.88 3400.00 3550.00 3780.00 3790.00 36699.10 2030.00 3730.00 37497.58 29799.21 100.00 3740.00 3720.00 3720.00 370
wuyk23d96.06 27697.62 18891.38 34998.65 26798.57 9598.85 6796.95 32996.86 22799.90 499.16 8699.18 1198.40 36289.23 34899.77 9077.18 367
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9499.27 3199.57 3599.39 3399.75 1299.62 2199.17 1299.83 13999.06 3099.62 15499.66 36
ANet_high99.57 799.67 599.28 8299.89 698.09 13399.14 4399.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
pm-mvs199.44 1399.48 1199.33 7599.80 1798.63 8899.29 2599.63 2199.30 4299.65 2299.60 2599.16 1499.82 15099.07 2999.83 6299.56 73
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8099.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
DeepC-MVS97.60 498.97 4598.93 4399.10 11099.35 11797.98 14998.01 14999.46 7897.56 16999.54 3099.50 3698.97 1699.84 12598.06 8699.92 3499.49 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi98.32 13698.39 11398.13 22999.57 5695.54 25197.78 16999.49 6897.37 19199.19 8997.65 29398.96 1799.49 31196.50 19598.99 28099.34 176
GeoE99.05 3698.99 4299.25 9099.44 10198.35 11498.73 7299.56 4298.42 10798.91 13998.81 17598.94 1899.91 4598.35 7199.73 10799.49 106
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6299.34 1599.69 1598.93 8199.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6699.14 5198.07 13799.37 10597.62 16299.04 11498.96 13698.84 2099.79 18697.43 11999.65 14699.49 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive99.34 2299.36 1699.27 8599.73 2498.26 11799.17 4099.78 699.11 5799.27 7499.48 4198.82 2199.95 1598.94 3699.93 2599.59 57
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 3599.00 4099.33 7599.71 3198.83 7498.60 8299.58 2899.11 5799.53 3399.18 8098.81 2299.67 25396.71 17699.77 9099.50 102
SD-MVS98.40 12998.68 6897.54 26798.96 19997.99 14597.88 16099.36 10998.20 12599.63 2599.04 11198.76 2395.33 36996.56 18899.74 10499.31 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3199.35 1299.00 5599.50 6097.33 19498.94 13698.86 16198.75 2499.82 15097.53 11599.71 11899.56 73
XXY-MVS99.14 3299.15 3299.10 11099.76 2297.74 17698.85 6799.62 2298.48 10599.37 5799.49 3998.75 2499.86 9498.20 7899.80 7799.71 26
DROMVSNet99.09 3499.05 3799.20 9599.28 12598.93 6999.24 3399.84 399.08 6898.12 22298.37 24298.72 2699.90 4999.05 3199.77 9098.77 279
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5698.97 6598.23 11999.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
LGP-MVS_train99.47 5499.57 5698.97 6599.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17298.24 7599.84 5699.52 95
nrg03099.40 1899.35 1799.54 2999.58 5299.13 5498.98 5899.48 7099.68 999.46 4399.26 6998.62 3099.73 22699.17 2699.92 3499.76 20
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4499.29 1899.16 4199.43 9096.74 23198.61 18198.38 24098.62 3099.87 8796.47 19699.67 14099.59 57
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
canonicalmvs98.34 13598.26 13098.58 18598.46 28697.82 16898.96 5999.46 7899.19 5397.46 26995.46 34998.59 3299.46 31898.08 8598.71 29598.46 297
EG-PatchMatch MVS98.99 4099.01 3998.94 13899.50 7897.47 18998.04 14399.59 2698.15 13199.40 5299.36 5798.58 3399.76 21198.78 4599.68 13499.59 57
Effi-MVS+98.02 16397.82 17398.62 18098.53 28197.19 20797.33 21499.68 1697.30 19896.68 30597.46 30698.56 3499.80 17296.63 18198.20 31198.86 265
abl_698.99 4098.78 5499.61 999.45 9999.46 498.60 8299.50 6098.59 9899.24 8399.04 11198.54 3599.89 5996.45 19899.62 15499.50 102
Fast-Effi-MVS+97.67 19397.38 20398.57 18898.71 24897.43 19297.23 22199.45 8194.82 28596.13 32196.51 32998.52 3699.91 4596.19 21498.83 28898.37 305
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
v7n99.53 899.57 899.41 6199.88 798.54 9999.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
ETV-MVS98.03 16197.86 17198.56 19298.69 25698.07 13997.51 20199.50 6098.10 13297.50 26695.51 34798.41 4199.88 7096.27 21099.24 24397.71 333
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5299.10 5998.74 7099.56 4299.09 6699.33 6399.19 7898.40 4299.72 23495.98 22399.76 10099.42 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11298.87 7198.39 10899.42 9399.42 3199.36 5999.06 10198.38 4399.95 1598.34 7299.90 4499.57 68
SED-MVS98.91 5298.72 6099.49 4999.49 8599.17 3898.10 13399.31 13498.03 13599.66 2099.02 11598.36 4499.88 7096.91 15299.62 15499.41 145
test_241102_ONE99.49 8599.17 3899.31 13497.98 13799.66 2098.90 14898.36 4499.48 314
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7598.79 7897.68 18199.38 10195.76 26598.81 16098.82 17398.36 4499.82 15094.75 26099.77 9099.48 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvs98.95 4899.00 4098.81 15599.38 11097.33 19597.82 16799.57 3599.17 5499.35 6099.17 8498.35 4799.69 24198.46 6499.73 10799.41 145
test_040298.76 7198.71 6298.93 13999.56 6398.14 13198.45 10499.34 12199.28 4398.95 13098.91 14598.34 4899.79 18695.63 24299.91 4098.86 265
xiu_mvs_v2_base97.16 23397.49 19596.17 31298.54 27992.46 32295.45 31498.84 25397.25 20397.48 26896.49 33098.31 4999.90 4996.34 20698.68 29796.15 357
VPA-MVSNet99.30 2499.30 2399.28 8299.49 8598.36 11399.00 5599.45 8199.63 1499.52 3599.44 4898.25 5099.88 7099.09 2899.84 5699.62 46
MVS_111021_LR98.30 13898.12 14998.83 15299.16 15798.03 14396.09 28699.30 14497.58 16698.10 22598.24 25398.25 5099.34 33196.69 17799.65 14699.12 227
PS-CasMVS99.40 1899.33 2099.62 699.71 3199.10 5999.29 2599.53 5499.53 2399.46 4399.41 5198.23 5299.95 1598.89 4099.95 1699.81 11
DTE-MVSNet99.43 1599.35 1799.66 499.71 3199.30 1799.31 2099.51 5899.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
baseline98.96 4799.02 3898.76 16599.38 11097.26 20098.49 9799.50 6098.86 8499.19 8999.06 10198.23 5299.69 24198.71 5299.76 10099.33 182
PC_three_145293.27 31299.40 5298.54 22098.22 5597.00 36695.17 25199.45 21099.49 106
Gipumacopyleft99.03 3799.16 3098.64 17599.94 298.51 10199.32 1799.75 999.58 2298.60 18399.62 2198.22 5599.51 30997.70 10999.73 10797.89 320
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re98.64 9398.48 9699.11 10898.85 22398.51 10198.49 9799.83 498.37 10899.69 1799.46 4398.21 5799.92 3594.13 28399.30 23498.91 260
tfpnnormal98.90 5498.90 4498.91 14299.67 4197.82 16899.00 5599.44 8499.45 2899.51 3899.24 7298.20 5899.86 9495.92 22599.69 12999.04 237
DVP-MVS++.98.90 5498.70 6599.51 4598.43 28999.15 4799.43 1099.32 12898.17 12899.26 7899.02 11598.18 5999.88 7097.07 14099.45 21099.49 106
OPU-MVS98.82 15398.59 27298.30 11598.10 13398.52 22398.18 5998.75 36094.62 26499.48 20599.41 145
OPM-MVS98.56 10598.32 12499.25 9099.41 10798.73 8397.13 23399.18 18297.10 21798.75 16698.92 14498.18 5999.65 26696.68 17899.56 18299.37 164
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 5199.29 2599.54 5099.62 1799.56 2899.42 4998.16 6299.96 898.78 4599.93 2599.77 16
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9398.39 29498.97 6595.03 32499.18 18296.88 22699.33 6398.78 17998.16 6299.28 34096.74 17199.62 15499.44 135
MVS_111021_HR98.25 14698.08 15498.75 16799.09 17297.46 19095.97 28999.27 15697.60 16597.99 23398.25 25298.15 6499.38 32896.87 16099.57 17799.42 142
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15598.43 28998.11 13297.61 18999.50 6098.64 9297.39 27497.52 30198.12 6599.95 1596.90 15798.71 29598.38 303
pcd_1.5k_mvsjas8.17 34010.90 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37398.07 660.00 3740.00 3720.00 3720.00 370
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 12999.20 3599.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
PS-MVSNAJ97.08 23797.39 20296.16 31498.56 27692.46 32295.24 31998.85 25297.25 20397.49 26795.99 33998.07 6699.90 4996.37 20398.67 29896.12 358
UA-Net99.47 1199.40 1499.70 299.49 8599.29 1899.80 399.72 1099.82 399.04 11499.81 398.05 6999.96 898.85 4299.99 599.86 6
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5299.29 1897.82 16799.25 16296.94 22398.78 16199.12 9498.02 7099.84 12597.13 13799.67 14099.59 57
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 3999.35 1297.16 23199.38 10194.87 28498.97 12798.99 12798.01 7199.88 7097.29 12599.70 12399.58 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5699.21 2798.46 10299.29 15197.28 20098.11 22498.39 23898.00 7299.87 8796.86 16299.64 14899.55 81
PGM-MVS98.66 9098.37 11699.55 2699.53 7199.18 3798.23 11999.49 6897.01 22198.69 17098.88 15798.00 7299.89 5995.87 22999.59 16799.58 63
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2499.16 4298.23 11999.31 13497.92 14398.90 14098.90 14898.00 7299.88 7096.15 21799.72 11499.58 63
Skip Steuart: Steuart Systems R&D Blog.
TinyColmap97.89 17397.98 16197.60 26098.86 22194.35 28396.21 28299.44 8497.45 18399.06 10798.88 15797.99 7599.28 34094.38 27699.58 17399.18 218
HFP-MVS98.71 7898.44 10499.51 4599.49 8599.16 4298.52 9199.31 13497.47 17698.58 18798.50 22797.97 7699.85 10896.57 18599.59 16799.53 91
#test#98.50 11798.16 14499.51 4599.49 8599.16 4298.03 14499.31 13496.30 24898.58 18798.50 22797.97 7699.85 10895.68 23999.59 16799.53 91
3Dnovator98.27 298.81 6398.73 5899.05 12498.76 23997.81 17099.25 3299.30 14498.57 10298.55 19399.33 6297.95 7899.90 4997.16 13199.67 14099.44 135
test_0728_THIRD98.17 12899.08 10499.02 11597.89 7999.88 7097.07 14099.71 11899.70 31
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 14699.27 2198.49 9799.33 12698.64 9299.03 11798.98 13197.89 7999.85 10896.54 19299.42 21499.46 126
CS-MVS-test98.41 12698.30 12598.73 17198.84 22698.39 10798.71 7599.79 597.98 13796.86 29997.38 31097.86 8199.83 13997.81 10099.46 20797.97 318
CP-MVS98.70 8198.42 10899.52 4199.36 11399.12 5698.72 7399.36 10997.54 17198.30 21198.40 23697.86 8199.89 5996.53 19399.72 11499.56 73
TSAR-MVS + MP.98.63 9598.49 9499.06 12299.64 4797.90 15998.51 9598.94 23196.96 22299.24 8398.89 15697.83 8399.81 16396.88 15999.49 20399.48 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R98.69 8398.40 11099.54 2999.53 7199.17 3898.52 9199.31 13497.46 18198.44 20198.51 22497.83 8399.88 7096.46 19799.58 17399.58 63
APDe-MVS98.99 4098.79 5399.60 1399.21 13999.15 4798.87 6499.48 7097.57 16799.35 6099.24 7297.83 8399.89 5997.88 9799.70 12399.75 22
FMVSNet199.17 3099.17 2999.17 9899.55 6698.24 11999.20 3599.44 8499.21 4699.43 4799.55 2997.82 8699.86 9498.42 6799.89 4899.41 145
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12299.11 16597.97 15096.53 26499.54 5098.24 11998.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
SF-MVS98.53 11498.27 12999.32 7799.31 12098.75 7998.19 12399.41 9496.77 23098.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
PHI-MVS98.29 14197.95 16399.34 7398.44 28899.16 4298.12 13099.38 10196.01 25798.06 22898.43 23497.80 8799.67 25395.69 23899.58 17399.20 211
RE-MVS-def98.58 8299.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.75 9096.56 18899.39 21899.45 130
ACMMPR98.70 8198.42 10899.54 2999.52 7399.14 5198.52 9199.31 13497.47 17698.56 19198.54 22097.75 9099.88 7096.57 18599.59 16799.58 63
CS-MVS98.16 15698.22 13597.97 24198.56 27697.01 21698.10 13399.70 1497.45 18397.29 27797.19 31697.72 9299.80 17298.37 6999.62 15497.11 345
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6399.16 4298.87 6499.37 10597.16 21498.82 15899.01 12497.71 9399.87 8796.29 20999.69 12999.54 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS98.00 16597.74 17798.80 15798.72 24598.09 13398.05 14199.60 2597.39 18996.63 30795.55 34697.68 9499.80 17296.73 17399.27 23898.52 295
GST-MVS98.61 9898.30 12599.52 4199.51 7599.20 3398.26 11799.25 16297.44 18598.67 17298.39 23897.68 9499.85 10896.00 22199.51 19599.52 95
CSCG98.68 8798.50 9199.20 9599.45 9998.63 8898.56 8799.57 3597.87 14798.85 15198.04 27097.66 9699.84 12596.72 17499.81 6999.13 226
AllTest98.44 12398.20 13799.16 10199.50 7898.55 9698.25 11899.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
TestCases99.16 10199.50 7898.55 9699.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
test20.0398.78 6898.77 5698.78 16299.46 9697.20 20697.78 16999.24 16799.04 6999.41 4998.90 14897.65 9799.76 21197.70 10999.79 8299.39 154
test_one_060199.39 10999.20 3399.31 13498.49 10498.66 17499.02 11597.64 100
ITE_SJBPF98.87 14799.22 13798.48 10399.35 11597.50 17398.28 21398.60 21597.64 10099.35 33093.86 29299.27 23898.79 277
mPP-MVS98.64 9398.34 12099.54 2999.54 6999.17 3898.63 7999.24 16797.47 17698.09 22698.68 19597.62 10299.89 5996.22 21299.62 15499.57 68
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7899.21 2798.02 14698.84 25397.97 13999.08 10499.02 11597.61 10399.88 7096.99 14699.63 15199.48 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 7899.21 2798.17 12799.35 11597.97 13999.26 7899.06 10197.61 103
9.1497.78 17499.07 17697.53 19899.32 12895.53 27098.54 19598.70 19297.58 10599.76 21194.32 27799.46 207
CLD-MVS97.49 20597.16 21798.48 20299.07 17697.03 21494.71 33199.21 17194.46 29198.06 22897.16 31997.57 10699.48 31494.46 26999.78 8698.95 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16798.61 26897.23 20197.76 17499.09 20497.31 19798.75 16698.66 20097.56 10799.64 26896.10 22099.55 18499.39 154
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS98.82 6198.72 6099.12 10699.64 4798.54 9997.98 15299.68 1697.62 16299.34 6299.18 8097.54 10899.77 20497.79 10199.74 10499.04 237
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9499.54 6998.59 9397.71 17899.46 7897.25 20398.98 12498.99 12797.54 10899.84 12595.88 22699.74 10499.23 206
SR-MVS98.71 7898.43 10699.57 1899.18 15399.35 1298.36 11199.29 15198.29 11698.88 14798.85 16497.53 11099.87 8796.14 21899.31 23199.48 116
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 12799.15 4797.01 23699.39 9997.67 15899.44 4698.99 12797.53 11099.89 5995.40 24999.68 13499.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 15799.21 2798.05 14199.22 17094.16 30098.98 12499.10 9897.52 11299.79 18696.45 19899.64 14899.53 91
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_241102_TWO99.30 14498.03 13599.26 7899.02 11597.51 11399.88 7096.91 15299.60 16399.66 36
XVS98.72 7798.45 10299.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26298.63 20997.50 11499.83 13996.79 16599.53 18999.56 73
X-MVStestdata94.32 30692.59 32499.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26245.85 36897.50 11499.83 13996.79 16599.53 18999.56 73
DELS-MVS98.27 14298.20 13798.48 20298.86 22196.70 22695.60 30899.20 17397.73 15598.45 20098.71 18997.50 11499.82 15098.21 7799.59 16798.93 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test117298.76 7198.49 9499.57 1899.18 15399.37 998.39 10899.31 13498.43 10698.90 14098.88 15797.49 11799.86 9496.43 20099.37 22299.48 116
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.49 11799.86 9496.56 18899.39 21899.45 130
TSAR-MVS + GP.98.18 15297.98 16198.77 16498.71 24897.88 16096.32 27798.66 27696.33 24599.23 8698.51 22497.48 11999.40 32497.16 13199.46 20799.02 240
Regformer-498.73 7698.68 6898.89 14599.02 18897.22 20397.17 22999.06 20899.21 4699.17 9498.85 16497.45 12099.86 9498.48 6399.70 12399.60 51
new-patchmatchnet98.35 13498.74 5797.18 28299.24 13292.23 32796.42 27299.48 7098.30 11399.69 1799.53 3397.44 12199.82 15098.84 4399.77 9099.49 106
PMVScopyleft91.26 2097.86 17797.94 16597.65 25699.71 3197.94 15798.52 9198.68 27598.99 7397.52 26499.35 5897.41 12298.18 36391.59 33199.67 14096.82 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5699.22 2698.50 9699.19 17897.61 16497.58 25898.66 20097.40 12399.88 7094.72 26399.60 16399.54 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSDG97.71 19097.52 19398.28 22098.91 21196.82 22194.42 34199.37 10597.65 16098.37 21098.29 25197.40 12399.33 33394.09 28499.22 24598.68 291
Regformer-298.60 10098.46 10099.02 13098.85 22397.71 17896.91 24599.09 20498.98 7599.01 11898.64 20597.37 12599.84 12597.75 10899.57 17799.52 95
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 4999.06 6398.69 7699.54 5099.31 4099.62 2799.53 3397.36 12699.86 9499.24 2299.71 11899.39 154
LS3D98.63 9598.38 11599.36 6597.25 34699.38 699.12 4699.32 12899.21 4698.44 20198.88 15797.31 12799.80 17296.58 18399.34 22798.92 257
EI-MVSNet-UG-set98.69 8398.71 6298.62 18099.10 16996.37 23297.23 22198.87 24499.20 4999.19 8998.99 12797.30 12899.85 10898.77 4899.79 8299.65 40
WR-MVS_H99.33 2399.22 2799.65 599.71 3199.24 2499.32 1799.55 4699.46 2799.50 3999.34 6097.30 12899.93 2898.90 3899.93 2599.77 16
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17899.09 17296.40 23197.23 22198.86 24999.20 4999.18 9398.97 13397.29 13099.85 10898.72 5199.78 8699.64 41
pmmvs-eth3d98.47 12098.34 12098.86 14999.30 12397.76 17397.16 23199.28 15395.54 26899.42 4899.19 7897.27 13199.63 27197.89 9499.97 1199.20 211
CNVR-MVS98.17 15497.87 17099.07 11798.67 26198.24 11997.01 23698.93 23397.25 20397.62 25498.34 24697.27 13199.57 29096.42 20199.33 22899.39 154
OMC-MVS97.88 17597.49 19599.04 12698.89 21798.63 8896.94 24099.25 16295.02 27998.53 19698.51 22497.27 13199.47 31693.50 30299.51 19599.01 241
Regformer-198.55 10998.44 10498.87 14798.85 22397.29 19796.91 24598.99 22898.97 7698.99 12298.64 20597.26 13499.81 16397.79 10199.57 17799.51 98
Regformer-398.61 9898.61 7898.63 17899.02 18896.53 22997.17 22998.84 25399.13 5699.10 10198.85 16497.24 13599.79 18698.41 6899.70 12399.57 68
DP-MVS98.93 5098.81 5299.28 8299.21 13998.45 10598.46 10299.33 12699.63 1499.48 4099.15 9097.23 13699.75 21897.17 13099.66 14599.63 45
MVS_Test98.18 15298.36 11797.67 25498.48 28494.73 27498.18 12499.02 22197.69 15798.04 23199.11 9697.22 13799.56 29398.57 5898.90 28698.71 285
MCST-MVS98.00 16597.63 18799.10 11099.24 13298.17 12896.89 24798.73 27295.66 26697.92 23497.70 29197.17 13899.66 26196.18 21699.23 24499.47 124
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11099.30 2499.57 3599.61 1999.40 5299.50 3697.12 13999.85 10899.02 3399.94 2199.80 12
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3699.41 1299.59 2699.59 2099.71 1499.57 2797.12 13999.90 4999.21 2399.87 5299.54 85
3Dnovator+97.89 398.69 8398.51 8999.24 9298.81 23498.40 10699.02 5299.19 17898.99 7398.07 22799.28 6597.11 14199.84 12596.84 16399.32 22999.47 124
Anonymous2024052998.93 5098.87 4599.12 10699.19 14698.22 12499.01 5398.99 22899.25 4599.54 3099.37 5497.04 14299.80 17297.89 9499.52 19299.35 174
MSLP-MVS++98.02 16398.14 14897.64 25898.58 27395.19 26497.48 20399.23 16997.47 17697.90 23698.62 21197.04 14298.81 35997.55 11299.41 21598.94 255
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16598.93 6997.76 17499.28 15394.97 28198.72 16998.77 18197.04 14299.85 10893.79 29499.54 18599.49 106
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp97.02 145
CP-MVSNet99.21 2999.09 3499.56 2499.65 4498.96 6899.13 4499.34 12199.42 3199.33 6399.26 6997.01 14699.94 2398.74 5099.93 2599.79 13
ambc98.24 22398.82 23295.97 24298.62 8099.00 22799.27 7499.21 7596.99 14799.50 31096.55 19199.50 20299.26 201
zzz-MVS98.79 6598.52 8799.61 999.67 4199.36 1097.33 21499.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
MTAPA98.88 5698.64 7399.61 999.67 4199.36 1098.43 10599.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
v899.01 3899.16 3098.57 18899.47 9596.31 23598.90 6299.47 7699.03 7099.52 3599.57 2796.93 15099.81 16399.60 499.98 999.60 51
QAPM97.31 21996.81 23898.82 15398.80 23697.49 18899.06 5199.19 17890.22 34497.69 25099.16 8696.91 15199.90 4990.89 34299.41 21599.07 231
CDPH-MVS97.26 22396.66 24899.07 11799.00 19198.15 12996.03 28799.01 22491.21 33897.79 24497.85 28296.89 15299.69 24192.75 31699.38 22199.39 154
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22499.73 2495.15 26597.36 21299.68 1694.45 29398.99 12299.27 6796.87 15399.94 2397.13 13799.91 4099.57 68
Anonymous2023121199.27 2599.27 2499.26 8899.29 12498.18 12699.49 899.51 5899.70 899.80 999.68 1496.84 15499.83 13999.21 2399.91 4099.77 16
V4298.78 6898.78 5498.76 16599.44 10197.04 21398.27 11699.19 17897.87 14799.25 8299.16 8696.84 15499.78 19899.21 2399.84 5699.46 126
PMMVS298.07 16098.08 15498.04 23799.41 10794.59 28094.59 33899.40 9797.50 17398.82 15898.83 17096.83 15699.84 12597.50 11799.81 6999.71 26
PVSNet_BlendedMVS97.55 20197.53 19297.60 26098.92 20893.77 30496.64 26099.43 9094.49 28997.62 25499.18 8096.82 15799.67 25394.73 26199.93 2599.36 170
PVSNet_Blended96.88 25096.68 24597.47 27198.92 20893.77 30494.71 33199.43 9090.98 34097.62 25497.36 31396.82 15799.67 25394.73 26199.56 18298.98 246
ab-mvs98.41 12698.36 11798.59 18499.19 14697.23 20199.32 1798.81 25997.66 15998.62 17999.40 5396.82 15799.80 17295.88 22699.51 19598.75 282
FIs99.14 3299.09 3499.29 8099.70 3798.28 11699.13 4499.52 5799.48 2499.24 8399.41 5196.79 16099.82 15098.69 5399.88 4999.76 20
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13298.73 8397.73 17799.38 10198.93 8199.12 9698.73 18696.77 16199.86 9498.63 5599.80 7799.46 126
API-MVS97.04 24296.91 23297.42 27497.88 32198.23 12398.18 12498.50 28597.57 16797.39 27496.75 32696.77 16199.15 34990.16 34599.02 27694.88 363
diffmvs98.22 14898.24 13298.17 22799.00 19195.44 25696.38 27499.58 2897.79 15398.53 19698.50 22796.76 16399.74 22297.95 9399.64 14899.34 176
DU-MVS98.82 6198.63 7499.39 6499.16 15798.74 8097.54 19799.25 16298.84 8699.06 10798.76 18396.76 16399.93 2898.57 5899.77 9099.50 102
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9697.47 20599.57 3599.37 3599.21 8799.61 2396.76 16399.83 13998.06 8699.83 6299.71 26
VPNet98.87 5798.83 4999.01 13199.70 3797.62 18498.43 10599.35 11599.47 2699.28 7299.05 10896.72 16699.82 15098.09 8499.36 22399.59 57
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15598.74 8097.68 18199.40 9799.14 5599.06 10798.59 21696.71 16799.93 2898.57 5899.77 9099.53 91
LF4IMVS97.90 17197.69 18098.52 19799.17 15597.66 18097.19 22899.47 7696.31 24797.85 24098.20 25796.71 16799.52 30594.62 26499.72 11498.38 303
v14898.45 12298.60 8098.00 23999.44 10194.98 26997.44 20899.06 20898.30 11399.32 6998.97 13396.65 16999.62 27398.37 6999.85 5499.39 154
v1098.97 4599.11 3398.55 19399.44 10196.21 23798.90 6299.55 4698.73 9099.48 4099.60 2596.63 17099.83 13999.70 399.99 599.61 50
ETH3D-3000-0.198.03 16197.62 18899.29 8099.11 16598.80 7797.47 20599.32 12895.54 26898.43 20498.62 21196.61 17199.77 20493.95 28899.49 20399.30 191
OpenMVScopyleft96.65 797.09 23696.68 24598.32 21598.32 29797.16 21098.86 6699.37 10589.48 34896.29 32099.15 9096.56 17299.90 4992.90 31099.20 24897.89 320
UGNet98.53 11498.45 10298.79 15997.94 31896.96 21799.08 4798.54 28299.10 6396.82 30299.47 4296.55 17399.84 12598.56 6199.94 2199.55 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST998.71 24898.08 13795.96 29199.03 21791.40 33595.85 32897.53 29996.52 17499.76 211
Test By Simon96.52 174
agg_prior197.06 23996.40 25999.03 12798.68 25997.99 14595.76 30199.01 22491.73 32995.59 33197.50 30296.49 17699.77 20493.71 29599.14 25999.34 176
train_agg97.10 23596.45 25899.07 11798.71 24898.08 13795.96 29199.03 21791.64 33095.85 32897.53 29996.47 17799.76 21193.67 29699.16 25599.36 170
test_898.67 26198.01 14495.91 29699.02 22191.64 33095.79 33097.50 30296.47 17799.76 211
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31499.49 398.02 14699.16 19198.29 11697.64 25397.99 27296.44 17999.95 1596.66 17998.93 28598.60 292
mvs-test197.83 18597.48 19898.89 14598.02 31499.20 3397.20 22599.16 19198.29 11696.46 31797.17 31896.44 17999.92 3596.66 17997.90 32497.54 339
ppachtmachnet_test97.50 20397.74 17796.78 30198.70 25291.23 34194.55 33999.05 21296.36 24499.21 8798.79 17896.39 18199.78 19896.74 17199.82 6599.34 176
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6499.63 699.58 2899.44 2999.78 1099.76 696.39 18199.92 3599.44 1399.92 3499.68 33
NR-MVSNet98.95 4898.82 5099.36 6599.16 15798.72 8599.22 3499.20 17399.10 6399.72 1398.76 18396.38 18399.86 9498.00 9199.82 6599.50 102
v119298.60 10098.66 7198.41 20899.27 12795.88 24497.52 19999.36 10997.41 18799.33 6399.20 7796.37 18499.82 15099.57 699.92 3499.55 81
ZD-MVS99.01 19098.84 7399.07 20794.10 30198.05 23098.12 26396.36 18599.86 9492.70 31899.19 252
v114498.60 10098.66 7198.41 20899.36 11395.90 24397.58 19399.34 12197.51 17299.27 7499.15 9096.34 18699.80 17299.47 1299.93 2599.51 98
mvs_anonymous97.83 18598.16 14496.87 29698.18 30691.89 32997.31 21698.90 23997.37 19198.83 15499.46 4396.28 18799.79 18698.90 3898.16 31498.95 251
DSMNet-mixed97.42 21297.60 19096.87 29699.15 16191.46 33398.54 8999.12 20092.87 31897.58 25899.63 2096.21 18899.90 4995.74 23599.54 18599.27 198
TAPA-MVS96.21 1196.63 26195.95 26998.65 17498.93 20498.09 13396.93 24299.28 15383.58 36398.13 22197.78 28596.13 18999.40 32493.52 30099.29 23698.45 299
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124098.55 10998.62 7598.32 21599.22 13795.58 25097.51 20199.45 8197.16 21499.45 4599.24 7296.12 19099.85 10899.60 499.88 4999.55 81
RPSCF98.62 9798.36 11799.42 5899.65 4499.42 598.55 8899.57 3597.72 15698.90 14099.26 6996.12 19099.52 30595.72 23699.71 11899.32 184
MS-PatchMatch97.68 19297.75 17697.45 27298.23 30493.78 30397.29 21798.84 25396.10 25398.64 17698.65 20296.04 19299.36 32996.84 16399.14 25999.20 211
v192192098.54 11298.60 8098.38 21199.20 14395.76 24997.56 19599.36 10997.23 20999.38 5599.17 8496.02 19399.84 12599.57 699.90 4499.54 85
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17299.13 5497.52 19998.75 26997.46 18196.90 29697.83 28396.01 19499.84 12595.82 23399.35 22599.46 126
Anonymous2023120698.21 14998.21 13698.20 22599.51 7595.43 25798.13 12899.32 12896.16 25198.93 13798.82 17396.00 19599.83 13997.32 12499.73 10799.36 170
EI-MVSNet98.40 12998.51 8998.04 23799.10 16994.73 27497.20 22598.87 24498.97 7699.06 10799.02 11596.00 19599.80 17298.58 5699.82 6599.60 51
IterMVS-LS98.55 10998.70 6598.09 23099.48 9394.73 27497.22 22499.39 9998.97 7699.38 5599.31 6496.00 19599.93 2898.58 5699.97 1199.60 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NCCC97.86 17797.47 19999.05 12498.61 26898.07 13996.98 23898.90 23997.63 16197.04 28797.93 27895.99 19899.66 26195.31 25098.82 28999.43 139
our_test_397.39 21497.73 17996.34 30798.70 25289.78 34594.61 33798.97 23096.50 23999.04 11498.85 16495.98 19999.84 12597.26 12799.67 14099.41 145
v2v48298.56 10598.62 7598.37 21299.42 10695.81 24797.58 19399.16 19197.90 14599.28 7299.01 12495.98 19999.79 18699.33 1599.90 4499.51 98
MVS93.19 32392.09 32796.50 30596.91 35094.03 29198.07 13798.06 30468.01 36794.56 34996.48 33195.96 20199.30 33783.84 35996.89 34396.17 355
MVP-Stereo98.08 15997.92 16698.57 18898.96 19996.79 22297.90 15999.18 18296.41 24398.46 19998.95 14095.93 20299.60 28096.51 19498.98 28299.31 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior397.48 20797.00 22598.95 13698.69 25697.95 15595.74 30399.03 21796.48 24096.11 32297.63 29595.92 20399.59 28494.16 27899.20 24899.30 191
test_prior295.74 30396.48 24096.11 32297.63 29595.92 20394.16 27899.20 248
AdaColmapbinary97.14 23496.71 24398.46 20498.34 29697.80 17196.95 23998.93 23395.58 26796.92 29197.66 29295.87 20599.53 30190.97 33999.14 25998.04 314
v14419298.54 11298.57 8398.45 20599.21 13995.98 24197.63 18699.36 10997.15 21699.32 6999.18 8095.84 20699.84 12599.50 1099.91 4099.54 85
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9798.51 28298.64 8796.85 24899.13 19894.19 29997.65 25298.40 23695.78 20799.81 16393.37 30599.16 25599.12 227
PatchMatch-RL97.24 22696.78 23998.61 18299.03 18697.83 16596.36 27599.06 20893.49 31197.36 27697.78 28595.75 20899.49 31193.44 30398.77 29098.52 295
F-COLMAP97.30 22096.68 24599.14 10499.19 14698.39 10797.27 22099.30 14492.93 31696.62 30898.00 27195.73 20999.68 25092.62 31998.46 30599.35 174
PMMVS96.51 26495.98 26898.09 23097.53 33695.84 24594.92 32798.84 25391.58 33296.05 32695.58 34595.68 21099.66 26195.59 24498.09 31898.76 281
N_pmnet97.63 19797.17 21698.99 13399.27 12797.86 16295.98 28893.41 35895.25 27799.47 4298.90 14895.63 21199.85 10896.91 15299.73 10799.27 198
WR-MVS98.40 12998.19 13999.03 12799.00 19197.65 18196.85 24898.94 23198.57 10298.89 14398.50 22795.60 21299.85 10897.54 11499.85 5499.59 57
CANet97.87 17697.76 17598.19 22697.75 32695.51 25396.76 25499.05 21297.74 15496.93 29098.21 25695.59 21399.89 5997.86 9999.93 2599.19 216
131495.74 28495.60 27896.17 31297.53 33692.75 31998.07 13798.31 29391.22 33794.25 35096.68 32795.53 21499.03 35191.64 33097.18 33896.74 350
114514_t96.50 26695.77 27198.69 17299.48 9397.43 19297.84 16599.55 4681.42 36596.51 31398.58 21795.53 21499.67 25393.41 30499.58 17398.98 246
test1298.93 13998.58 27397.83 16598.66 27696.53 31195.51 21699.69 24199.13 26299.27 198
testtj97.79 18797.25 21199.42 5899.03 18698.85 7297.78 16999.18 18295.83 26398.12 22298.50 22795.50 21799.86 9492.23 32499.07 26899.54 85
旧先验198.82 23297.45 19198.76 26698.34 24695.50 21799.01 27899.23 206
YYNet197.60 19897.67 18197.39 27699.04 18393.04 31495.27 31798.38 29197.25 20398.92 13898.95 14095.48 21999.73 22696.99 14698.74 29199.41 145
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27599.04 18393.09 31095.27 31798.42 28897.26 20298.88 14798.95 14095.43 22099.73 22697.02 14398.72 29399.41 145
原ACMM198.35 21398.90 21296.25 23698.83 25892.48 32296.07 32598.10 26595.39 22199.71 23592.61 32098.99 28099.08 230
USDC97.41 21397.40 20197.44 27398.94 20293.67 30695.17 32099.53 5494.03 30398.97 12799.10 9895.29 22299.34 33195.84 23299.73 10799.30 191
testdata98.09 23098.93 20495.40 25898.80 26190.08 34697.45 27098.37 24295.26 22399.70 23793.58 29998.95 28499.17 222
BH-untuned96.83 25296.75 24197.08 28698.74 24293.33 30896.71 25798.26 29496.72 23298.44 20197.37 31295.20 22499.47 31691.89 32697.43 33198.44 300
MVEpermissive83.40 2292.50 32891.92 33194.25 33798.83 22991.64 33192.71 35783.52 37395.92 26086.46 37095.46 34995.20 22495.40 36880.51 36598.64 29995.73 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-RMVSNet96.83 25296.58 25297.58 26298.47 28594.05 28996.67 25997.36 31996.70 23497.87 23897.98 27395.14 22699.44 32190.47 34498.58 30399.25 202
pmmvs497.58 20097.28 21098.51 19998.84 22696.93 21995.40 31698.52 28493.60 30898.61 18198.65 20295.10 22799.60 28096.97 14999.79 8298.99 245
EU-MVSNet97.66 19498.50 9195.13 33099.63 4985.84 35998.35 11298.21 29698.23 12199.54 3099.46 4395.02 22899.68 25098.24 7599.87 5299.87 4
DP-MVS Recon97.33 21896.92 23098.57 18899.09 17297.99 14596.79 25199.35 11593.18 31397.71 24898.07 26995.00 22999.31 33593.97 28699.13 26298.42 302
HQP_MVS97.99 16897.67 18198.93 13999.19 14697.65 18197.77 17299.27 15698.20 12597.79 24497.98 27394.90 23099.70 23794.42 27299.51 19599.45 130
plane_prior698.99 19597.70 17994.90 230
CPTT-MVS97.84 18397.36 20599.27 8599.31 12098.46 10498.29 11499.27 15694.90 28397.83 24198.37 24294.90 23099.84 12593.85 29399.54 18599.51 98
new_pmnet96.99 24796.76 24097.67 25498.72 24594.89 27195.95 29398.20 29792.62 32198.55 19398.54 22094.88 23399.52 30593.96 28799.44 21398.59 294
VDD-MVS98.56 10598.39 11399.07 11799.13 16498.07 13998.59 8497.01 32799.59 2099.11 9899.27 6794.82 23499.79 18698.34 7299.63 15199.34 176
jason97.45 21097.35 20697.76 25099.24 13293.93 29695.86 29798.42 28894.24 29798.50 19898.13 26094.82 23499.91 4597.22 12899.73 10799.43 139
jason: jason.
TAMVS98.24 14798.05 15698.80 15799.07 17697.18 20897.88 16098.81 25996.66 23599.17 9499.21 7594.81 23699.77 20496.96 15099.88 4999.44 135
新几何198.91 14298.94 20297.76 17398.76 26687.58 35796.75 30498.10 26594.80 23799.78 19892.73 31799.00 27999.20 211
VNet98.42 12598.30 12598.79 15998.79 23897.29 19798.23 11998.66 27699.31 4098.85 15198.80 17694.80 23799.78 19898.13 8099.13 26299.31 188
MAR-MVS96.47 26795.70 27498.79 15997.92 31999.12 5698.28 11598.60 28092.16 32795.54 33896.17 33794.77 23999.52 30589.62 34798.23 30997.72 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CL-MVSNet_self_test97.44 21197.22 21498.08 23398.57 27595.78 24894.30 34498.79 26296.58 23898.60 18398.19 25894.74 24099.64 26896.41 20298.84 28798.82 268
MSP-MVS98.40 12998.00 16099.61 999.57 5699.25 2398.57 8699.35 11597.55 17099.31 7197.71 28994.61 24199.88 7096.14 21899.19 25299.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPR95.29 29294.47 30297.75 25197.50 34095.14 26694.89 32898.71 27491.39 33695.35 34295.48 34894.57 24299.14 35084.95 35797.37 33398.97 250
112196.73 25696.00 26798.91 14298.95 20197.76 17398.07 13798.73 27287.65 35696.54 31098.13 26094.52 24399.73 22692.38 32299.02 27699.24 205
test22298.92 20896.93 21995.54 30998.78 26485.72 36096.86 29998.11 26494.43 24499.10 26799.23 206
PLCcopyleft94.65 1696.51 26495.73 27398.85 15098.75 24197.91 15896.42 27299.06 20890.94 34195.59 33197.38 31094.41 24599.59 28490.93 34098.04 32299.05 233
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS97.84 18397.84 17297.83 24699.14 16294.74 27396.94 24098.88 24295.84 26298.89 14398.96 13694.40 24699.69 24197.55 11299.95 1699.05 233
CNLPA97.17 23296.71 24398.55 19398.56 27698.05 14296.33 27698.93 23396.91 22597.06 28697.39 30994.38 24799.45 32091.66 32899.18 25498.14 311
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23599.44 10194.96 27096.63 26199.15 19798.35 10998.83 15499.11 9694.31 24899.85 10896.60 18298.72 29399.37 164
OpenMVS_ROBcopyleft95.38 1495.84 28295.18 29397.81 24798.41 29397.15 21197.37 21198.62 27983.86 36298.65 17598.37 24294.29 24999.68 25088.41 35098.62 30196.60 352
TR-MVS95.55 28895.12 29596.86 29997.54 33593.94 29596.49 26896.53 33694.36 29697.03 28896.61 32894.26 25099.16 34886.91 35496.31 34997.47 341
GBi-Net98.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
test198.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
FMVSNet298.49 11898.40 11098.75 16798.90 21297.14 21298.61 8199.13 19898.59 9899.19 8999.28 6594.14 25199.82 15097.97 9299.80 7799.29 195
PAPM_NR96.82 25496.32 26298.30 21899.07 17696.69 22797.48 20398.76 26695.81 26496.61 30996.47 33294.12 25499.17 34790.82 34397.78 32599.06 232
Anonymous2024052198.69 8398.87 4598.16 22899.77 2095.11 26899.08 4799.44 8499.34 3899.33 6399.55 2994.10 25599.94 2399.25 2099.96 1499.42 142
HQP2-MVS93.84 256
HQP-MVS97.00 24696.49 25798.55 19398.67 26196.79 22296.29 27899.04 21596.05 25495.55 33596.84 32493.84 25699.54 29992.82 31399.26 24199.32 184
MVSFormer98.26 14498.43 10697.77 24998.88 21893.89 30099.39 1399.56 4299.11 5798.16 21898.13 26093.81 25899.97 399.26 1899.57 17799.43 139
lupinMVS97.06 23996.86 23497.65 25698.88 21893.89 30095.48 31397.97 30693.53 30998.16 21897.58 29793.81 25899.91 4596.77 16899.57 17799.17 222
MG-MVS96.77 25596.61 25097.26 28098.31 29893.06 31195.93 29498.12 30296.45 24297.92 23498.73 18693.77 26099.39 32691.19 33899.04 27299.33 182
PVSNet93.40 1795.67 28595.70 27495.57 32398.83 22988.57 34892.50 35897.72 31192.69 32096.49 31696.44 33393.72 26199.43 32293.61 29799.28 23798.71 285
MVS_030497.64 19597.35 20698.52 19797.87 32296.69 22798.59 8498.05 30597.44 18593.74 35898.85 16493.69 26299.88 7098.11 8199.81 6998.98 246
ETH3 D test640096.46 26895.59 27999.08 11498.88 21898.21 12596.53 26499.18 18288.87 35297.08 28497.79 28493.64 26399.77 20488.92 34999.40 21799.28 196
pmmvs597.64 19597.49 19598.08 23399.14 16295.12 26796.70 25899.05 21293.77 30698.62 17998.83 17093.23 26499.75 21898.33 7499.76 10099.36 170
CANet_DTU97.26 22397.06 22297.84 24597.57 33394.65 27896.19 28498.79 26297.23 20995.14 34498.24 25393.22 26599.84 12597.34 12399.84 5699.04 237
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20599.28 12596.78 22596.20 28399.27 15695.42 27398.28 21398.30 25093.16 26699.71 23594.99 25597.37 33398.87 264
IterMVS97.73 18998.11 15096.57 30399.24 13290.28 34395.52 31299.21 17198.86 8499.33 6399.33 6293.11 26799.94 2398.49 6299.94 2199.48 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.85 18298.18 14096.87 29699.27 12791.16 34295.53 31099.25 16299.10 6399.41 4999.35 5893.10 26899.96 898.65 5499.94 2199.49 106
SCA96.41 26996.66 24895.67 32098.24 30288.35 35095.85 29996.88 33296.11 25297.67 25198.67 19793.10 26899.85 10894.16 27899.22 24598.81 271
DPM-MVS96.32 27095.59 27998.51 19998.76 23997.21 20594.54 34098.26 29491.94 32896.37 31897.25 31593.06 27099.43 32291.42 33498.74 29198.89 261
BH-w/o95.13 29694.89 30095.86 31698.20 30591.31 33795.65 30697.37 31893.64 30796.52 31295.70 34493.04 27199.02 35288.10 35195.82 35497.24 343
cascas94.79 30194.33 30796.15 31596.02 36592.36 32592.34 36099.26 16185.34 36195.08 34594.96 35692.96 27298.53 36194.41 27598.59 30297.56 338
c3_l97.36 21597.37 20497.31 27798.09 31193.25 30995.01 32599.16 19197.05 21898.77 16498.72 18892.88 27399.64 26896.93 15199.76 10099.05 233
MVS-HIRNet94.32 30695.62 27790.42 35098.46 28675.36 37396.29 27889.13 37095.25 27795.38 34199.75 792.88 27399.19 34694.07 28599.39 21896.72 351
sss97.21 22896.93 22898.06 23598.83 22995.22 26396.75 25598.48 28694.49 28997.27 27897.90 27992.77 27599.80 17296.57 18599.32 22999.16 225
miper_ehance_all_eth97.06 23997.03 22397.16 28597.83 32393.06 31194.66 33499.09 20495.99 25898.69 17098.45 23392.73 27699.61 27996.79 16599.03 27398.82 268
SixPastTwentyTwo98.75 7398.62 7599.16 10199.83 1597.96 15499.28 2998.20 29799.37 3599.70 1599.65 1992.65 27799.93 2899.04 3299.84 5699.60 51
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16799.31 12097.17 20997.62 18799.35 11598.72 9198.76 16598.68 19592.57 27899.74 22297.76 10795.60 35599.34 176
CHOSEN 1792x268897.49 20597.14 22098.54 19699.68 4096.09 24096.50 26799.62 2291.58 33298.84 15398.97 13392.36 27999.88 7096.76 16999.95 1699.67 35
PCF-MVS92.86 1894.36 30593.00 32298.42 20798.70 25297.56 18593.16 35699.11 20279.59 36697.55 26197.43 30792.19 28099.73 22679.85 36699.45 21097.97 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet98.30 13898.04 15799.07 11799.56 6397.83 16599.29 2598.07 30399.03 7098.59 18599.13 9392.16 28199.90 4996.87 16099.68 13499.49 106
1112_ss97.29 22296.86 23498.58 18599.34 11996.32 23496.75 25599.58 2893.14 31496.89 29797.48 30492.11 28299.86 9496.91 15299.54 18599.57 68
CDS-MVSNet97.69 19197.35 20698.69 17298.73 24397.02 21596.92 24498.75 26995.89 26198.59 18598.67 19792.08 28399.74 22296.72 17499.81 6999.32 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth97.23 22797.25 21197.17 28398.00 31692.77 31894.71 33199.18 18297.27 20198.56 19198.74 18591.89 28499.69 24197.06 14299.81 6999.05 233
IS-MVSNet98.19 15197.90 16899.08 11499.57 5697.97 15099.31 2098.32 29299.01 7298.98 12499.03 11491.59 28599.79 18695.49 24799.80 7799.48 116
Test_1112_low_res96.99 24796.55 25598.31 21799.35 11795.47 25595.84 30099.53 5491.51 33496.80 30398.48 23291.36 28699.83 13996.58 18399.53 18999.62 46
WTY-MVS96.67 25996.27 26597.87 24498.81 23494.61 27996.77 25397.92 30894.94 28297.12 28197.74 28891.11 28799.82 15093.89 29098.15 31599.18 218
PVSNet_089.98 2191.15 33490.30 33793.70 34297.72 32784.34 36790.24 36297.42 31790.20 34593.79 35693.09 36590.90 28898.89 35886.57 35572.76 36997.87 322
miper_enhance_ethall96.01 27795.74 27296.81 30096.41 36092.27 32693.69 35398.89 24191.14 33998.30 21197.35 31490.58 28999.58 28996.31 20799.03 27398.60 292
VDDNet98.21 14997.95 16399.01 13199.58 5297.74 17699.01 5397.29 32399.67 1098.97 12799.50 3690.45 29099.80 17297.88 9799.20 24899.48 116
Anonymous20240521197.90 17197.50 19499.08 11498.90 21298.25 11898.53 9096.16 33998.87 8399.11 9898.86 16190.40 29199.78 19897.36 12299.31 23199.19 216
miper_lstm_enhance97.18 23197.16 21797.25 28198.16 30792.85 31695.15 32299.31 13497.25 20398.74 16898.78 17990.07 29299.78 19897.19 12999.80 7799.11 229
lessismore_v098.97 13499.73 2497.53 18786.71 37199.37 5799.52 3589.93 29399.92 3598.99 3599.72 11499.44 135
HY-MVS95.94 1395.90 28095.35 28897.55 26697.95 31794.79 27298.81 6996.94 33092.28 32595.17 34398.57 21889.90 29499.75 21891.20 33797.33 33798.10 312
K. test v398.00 16597.66 18499.03 12799.79 1997.56 18599.19 3992.47 36199.62 1799.52 3599.66 1789.61 29599.96 899.25 2099.81 6999.56 73
CMPMVSbinary75.91 2396.29 27195.44 28498.84 15196.25 36298.69 8697.02 23599.12 20088.90 35197.83 24198.86 16189.51 29698.90 35791.92 32599.51 19598.92 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet96.25 27397.21 21593.38 34699.10 16980.56 37297.20 22598.19 29996.94 22399.00 12199.02 11589.50 29799.80 17296.36 20599.59 16799.78 14
DeepMVS_CXcopyleft93.44 34598.24 30294.21 28694.34 35064.28 36891.34 36494.87 35989.45 29892.77 37077.54 36893.14 36493.35 365
EPNet96.14 27595.44 28498.25 22290.76 37395.50 25497.92 15694.65 34898.97 7692.98 35998.85 16489.12 29999.87 8795.99 22299.68 13499.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bset_n11_16_dypcd96.99 24796.56 25498.27 22199.00 19195.25 26092.18 36194.05 35698.75 8999.01 11898.38 24088.98 30099.93 2898.77 4899.92 3499.64 41
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21499.55 6696.10 23898.94 6098.44 28798.32 11298.16 21898.62 21188.76 30199.73 22693.88 29199.79 8299.18 218
DIV-MVS_self_test97.02 24396.84 23697.58 26297.82 32494.03 29194.66 33499.16 19197.04 21998.63 17798.71 18988.69 30299.69 24197.00 14499.81 6999.01 241
cl____97.02 24396.83 23797.58 26297.82 32494.04 29094.66 33499.16 19197.04 21998.63 17798.71 18988.68 30399.69 24197.00 14499.81 6999.00 244
h-mvs3397.77 18897.33 20999.10 11099.21 13997.84 16498.35 11298.57 28199.11 5798.58 18799.02 11588.65 30499.96 898.11 8196.34 34899.49 106
hse-mvs297.46 20897.07 22198.64 17598.73 24397.33 19597.45 20797.64 31699.11 5798.58 18797.98 27388.65 30499.79 18698.11 8197.39 33298.81 271
EPNet_dtu94.93 30094.78 30195.38 32893.58 37087.68 35396.78 25295.69 34597.35 19389.14 36798.09 26788.15 30699.49 31194.95 25799.30 23498.98 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.35 21696.88 23398.78 16298.54 27998.09 13397.71 17897.69 31399.20 4997.59 25795.90 34188.12 30799.55 29698.18 7998.96 28398.70 287
FMVSNet397.50 20397.24 21398.29 21998.08 31295.83 24697.86 16398.91 23897.89 14698.95 13098.95 14087.06 30899.81 16397.77 10399.69 12999.23 206
baseline195.96 27995.44 28497.52 26998.51 28293.99 29498.39 10896.09 34198.21 12298.40 20997.76 28786.88 30999.63 27195.42 24889.27 36798.95 251
RPMNet97.02 24396.93 22897.30 27897.71 32894.22 28498.11 13199.30 14499.37 3596.91 29399.34 6086.72 31099.87 8797.53 11597.36 33597.81 326
HyFIR lowres test97.19 23096.60 25198.96 13599.62 5197.28 19995.17 32099.50 6094.21 29899.01 11898.32 24986.61 31199.99 297.10 13999.84 5699.60 51
PAPM91.88 33390.34 33696.51 30498.06 31392.56 32092.44 35997.17 32486.35 35890.38 36596.01 33886.61 31199.21 34570.65 36995.43 35697.75 330
test_yl96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
DCV-MVSNet96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
CHOSEN 280x42095.51 29095.47 28195.65 32298.25 30188.27 35193.25 35598.88 24293.53 30994.65 34797.15 32086.17 31599.93 2897.41 12099.93 2598.73 284
EMVS93.83 31694.02 30893.23 34796.83 35384.96 36289.77 36496.32 33897.92 14397.43 27296.36 33686.17 31598.93 35687.68 35297.73 32695.81 360
MIMVSNet96.62 26296.25 26697.71 25399.04 18394.66 27799.16 4196.92 33197.23 20997.87 23899.10 9886.11 31799.65 26691.65 32999.21 24798.82 268
tpmvs95.02 29995.25 29094.33 33696.39 36185.87 35898.08 13696.83 33395.46 27295.51 34098.69 19385.91 31899.53 30194.16 27896.23 35097.58 337
MDTV_nov1_ep13_2view74.92 37497.69 18090.06 34797.75 24785.78 31993.52 30098.69 288
ADS-MVSNet295.43 29194.98 29796.76 30298.14 30891.74 33097.92 15697.76 31090.23 34296.51 31398.91 14585.61 32099.85 10892.88 31196.90 34198.69 288
ADS-MVSNet95.24 29494.93 29996.18 31198.14 30890.10 34497.92 15697.32 32290.23 34296.51 31398.91 14585.61 32099.74 22292.88 31196.90 34198.69 288
tpmrst95.07 29795.46 28293.91 34097.11 34884.36 36697.62 18796.96 32894.98 28096.35 31998.80 17685.46 32299.59 28495.60 24396.23 35097.79 329
CR-MVSNet96.28 27295.95 26997.28 27997.71 32894.22 28498.11 13198.92 23692.31 32496.91 29399.37 5485.44 32399.81 16397.39 12197.36 33597.81 326
Patchmtry97.35 21696.97 22798.50 20197.31 34596.47 23098.18 12498.92 23698.95 8098.78 16199.37 5485.44 32399.85 10895.96 22499.83 6299.17 222
test_method79.78 33579.50 33880.62 35180.21 37445.76 37670.82 36598.41 29031.08 37080.89 37197.71 28984.85 32597.37 36591.51 33380.03 36898.75 282
PatchmatchNetpermissive95.58 28795.67 27695.30 32997.34 34387.32 35497.65 18596.65 33495.30 27697.07 28598.69 19384.77 32699.75 21894.97 25698.64 29998.83 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs184.74 32798.81 271
E-PMN94.17 31094.37 30593.58 34396.86 35185.71 36190.11 36397.07 32698.17 12897.82 24397.19 31684.62 32898.94 35589.77 34697.68 32796.09 359
LFMVS97.20 22996.72 24298.64 17598.72 24596.95 21898.93 6194.14 35599.74 798.78 16199.01 12484.45 32999.73 22697.44 11899.27 23899.25 202
patchmatchnet-post98.77 18184.37 33099.85 108
PatchT96.65 26096.35 26097.54 26797.40 34195.32 25997.98 15296.64 33599.33 3996.89 29799.42 4984.32 33199.81 16397.69 11197.49 32897.48 340
Patchmatch-RL test97.26 22397.02 22497.99 24099.52 7395.53 25296.13 28599.71 1197.47 17699.27 7499.16 8684.30 33299.62 27397.89 9499.77 9098.81 271
sam_mvs84.29 333
MDTV_nov1_ep1395.22 29197.06 34983.20 36897.74 17696.16 33994.37 29596.99 28998.83 17083.95 33499.53 30193.90 28997.95 323
test_post21.25 37183.86 33599.70 237
Patchmatch-test96.55 26396.34 26197.17 28398.35 29593.06 31198.40 10797.79 30997.33 19498.41 20598.67 19783.68 33699.69 24195.16 25299.31 23198.77 279
GA-MVS95.86 28195.32 28997.49 27098.60 27094.15 28893.83 35197.93 30795.49 27196.68 30597.42 30883.21 33799.30 33796.22 21298.55 30499.01 241
JIA-IIPM95.52 28995.03 29697.00 28896.85 35294.03 29196.93 24295.82 34399.20 4994.63 34899.71 1283.09 33899.60 28094.42 27294.64 35997.36 342
test_post197.59 19220.48 37283.07 33999.66 26194.16 278
tpm cat193.29 32293.13 32193.75 34197.39 34284.74 36397.39 20997.65 31483.39 36494.16 35198.41 23582.86 34099.39 32691.56 33295.35 35797.14 344
cl2295.79 28395.39 28796.98 29096.77 35492.79 31794.40 34298.53 28394.59 28897.89 23798.17 25982.82 34199.24 34296.37 20399.03 27398.92 257
RRT_MVS97.07 23896.57 25398.58 18595.89 36696.33 23397.36 21298.77 26597.85 14999.08 10499.12 9482.30 34299.96 898.82 4499.90 4499.45 130
test-LLR93.90 31593.85 30994.04 33896.53 35684.62 36494.05 34892.39 36296.17 24994.12 35295.07 35182.30 34299.67 25395.87 22998.18 31297.82 324
test0.0.03 194.51 30393.69 31296.99 28996.05 36393.61 30794.97 32693.49 35796.17 24997.57 26094.88 35782.30 34299.01 35493.60 29894.17 36398.37 305
test_part197.91 17097.46 20099.27 8598.80 23698.18 12699.07 4999.36 10999.75 599.63 2599.49 3982.20 34599.89 5998.87 4199.95 1699.74 24
AUN-MVS96.24 27495.45 28398.60 18398.70 25297.22 20397.38 21097.65 31495.95 25995.53 33997.96 27782.11 34699.79 18696.31 20797.44 33098.80 276
MVSTER96.86 25196.55 25597.79 24897.91 32094.21 28697.56 19598.87 24497.49 17599.06 10799.05 10880.72 34799.80 17298.44 6599.82 6599.37 164
tmp_tt78.77 33678.73 33978.90 35258.45 37574.76 37594.20 34578.26 37639.16 36986.71 36992.82 36680.50 34875.19 37186.16 35692.29 36586.74 366
thres20093.72 31893.14 32095.46 32798.66 26691.29 33896.61 26294.63 34997.39 18996.83 30193.71 36479.88 34999.56 29382.40 36398.13 31695.54 362
thres100view90094.19 30993.67 31395.75 31999.06 18091.35 33698.03 14494.24 35398.33 11197.40 27394.98 35579.84 35099.62 27383.05 36098.08 31996.29 353
thres600view794.45 30493.83 31096.29 30899.06 18091.53 33297.99 15094.24 35398.34 11097.44 27195.01 35379.84 35099.67 25384.33 35898.23 30997.66 334
tfpn200view994.03 31393.44 31595.78 31898.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31996.29 353
thres40094.14 31193.44 31596.24 31098.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31997.66 334
pmmvs395.03 29894.40 30496.93 29297.70 33092.53 32195.08 32397.71 31288.57 35397.71 24898.08 26879.39 35499.82 15096.19 21499.11 26698.43 301
baseline293.73 31792.83 32396.42 30697.70 33091.28 33996.84 25089.77 36993.96 30592.44 36195.93 34079.14 35599.77 20492.94 30996.76 34598.21 307
tpm94.67 30294.34 30695.66 32197.68 33288.42 34997.88 16094.90 34794.46 29196.03 32798.56 21978.66 35699.79 18695.88 22695.01 35898.78 278
CostFormer93.97 31493.78 31194.51 33597.53 33685.83 36097.98 15295.96 34289.29 35094.99 34698.63 20978.63 35799.62 27394.54 26696.50 34698.09 313
ET-MVSNet_ETH3D94.30 30893.21 31897.58 26298.14 30894.47 28194.78 33093.24 36094.72 28689.56 36695.87 34278.57 35899.81 16396.91 15297.11 34098.46 297
dp93.47 32093.59 31493.13 34896.64 35581.62 37197.66 18396.42 33792.80 31996.11 32298.64 20578.55 35999.59 28493.31 30692.18 36698.16 310
EPMVS93.72 31893.27 31795.09 33196.04 36487.76 35298.13 12885.01 37294.69 28796.92 29198.64 20578.47 36099.31 33595.04 25396.46 34798.20 308
tpm293.09 32492.58 32594.62 33497.56 33486.53 35797.66 18395.79 34486.15 35994.07 35498.23 25575.95 36199.53 30190.91 34196.86 34497.81 326
FPMVS93.44 32192.23 32697.08 28699.25 13197.86 16295.61 30797.16 32592.90 31793.76 35798.65 20275.94 36295.66 36779.30 36797.49 32897.73 331
thisisatest051594.12 31293.16 31996.97 29198.60 27092.90 31593.77 35290.61 36694.10 30196.91 29395.87 34274.99 36399.80 17294.52 26799.12 26598.20 308
tttt051795.64 28694.98 29797.64 25899.36 11393.81 30298.72 7390.47 36798.08 13398.67 17298.34 24673.88 36499.92 3597.77 10399.51 19599.20 211
thisisatest053095.27 29394.45 30397.74 25299.19 14694.37 28297.86 16390.20 36897.17 21398.22 21597.65 29373.53 36599.90 4996.90 15799.35 22598.95 251
DWT-MVSNet_test92.75 32792.05 32894.85 33296.48 35887.21 35597.83 16694.99 34692.22 32692.72 36094.11 36370.75 36699.46 31895.01 25494.33 36297.87 322
FMVSNet596.01 27795.20 29298.41 20897.53 33696.10 23898.74 7099.50 6097.22 21298.03 23299.04 11169.80 36799.88 7097.27 12699.71 11899.25 202
gg-mvs-nofinetune92.37 32991.20 33495.85 31795.80 36792.38 32499.31 2081.84 37499.75 591.83 36399.74 868.29 36899.02 35287.15 35397.12 33996.16 356
KD-MVS_2432*160092.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
miper_refine_blended92.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
GG-mvs-BLEND94.76 33394.54 36992.13 32899.31 2080.47 37588.73 36891.01 36767.59 37198.16 36482.30 36494.53 36193.98 364
RRT_test8_iter0595.24 29495.13 29495.57 32397.32 34487.02 35697.99 15099.41 9498.06 13499.12 9699.05 10866.85 37299.85 10898.93 3799.47 20699.84 8
TESTMET0.1,192.19 33291.77 33293.46 34496.48 35882.80 36994.05 34891.52 36594.45 29394.00 35594.88 35766.65 37399.56 29395.78 23498.11 31798.02 315
IB-MVS91.63 1992.24 33190.90 33596.27 30997.22 34791.24 34094.36 34393.33 35992.37 32392.24 36294.58 36066.20 37499.89 5993.16 30894.63 36097.66 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter92.33 33091.76 33394.04 33896.53 35684.62 36494.05 34892.39 36294.00 30494.12 35295.07 35165.63 37599.67 25395.87 22998.18 31297.82 324
test12317.04 33920.11 3427.82 35310.25 3774.91 37794.80 3294.47 3784.93 37110.00 37324.28 3709.69 3763.64 37210.14 37012.43 37114.92 368
testmvs17.12 33820.53 3416.87 35412.05 3764.20 37893.62 3546.73 3774.62 37210.41 37224.33 3698.28 3773.56 3739.69 37115.07 37012.86 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.12 34110.83 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.48 3040.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.73 2499.67 299.43 1099.54 5099.43 3099.26 78
MSC_two_6792asdad99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
No_MVS99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
eth-test20.00 378
eth-test0.00 378
IU-MVS99.49 8599.15 4798.87 24492.97 31599.41 4996.76 16999.62 15499.66 36
save fliter99.11 16597.97 15096.53 26499.02 22198.24 119
test_0728_SECOND99.60 1399.50 7899.23 2598.02 14699.32 12899.88 7096.99 14699.63 15199.68 33
GSMVS98.81 271
test_part299.36 11399.10 5999.05 112
MTGPAbinary99.20 173
MTMP97.93 15591.91 364
gm-plane-assit94.83 36881.97 37088.07 35594.99 35499.60 28091.76 327
test9_res93.28 30799.15 25899.38 161
agg_prior292.50 32199.16 25599.37 164
agg_prior98.68 25997.99 14599.01 22495.59 33199.77 204
test_prior497.97 15095.86 297
test_prior98.95 13698.69 25697.95 15599.03 21799.59 28499.30 191
旧先验295.76 30188.56 35497.52 26499.66 26194.48 268
新几何295.93 294
无先验95.74 30398.74 27189.38 34999.73 22692.38 32299.22 210
原ACMM295.53 310
testdata299.79 18692.80 315
testdata195.44 31596.32 246
plane_prior799.19 14697.87 161
plane_prior599.27 15699.70 23794.42 27299.51 19599.45 130
plane_prior497.98 273
plane_prior397.78 17297.41 18797.79 244
plane_prior297.77 17298.20 125
plane_prior199.05 182
plane_prior97.65 18197.07 23496.72 23299.36 223
n20.00 379
nn0.00 379
door-mid99.57 35
test1198.87 244
door99.41 94
HQP5-MVS96.79 222
HQP-NCC98.67 26196.29 27896.05 25495.55 335
ACMP_Plane98.67 26196.29 27896.05 25495.55 335
BP-MVS92.82 313
HQP4-MVS95.56 33499.54 29999.32 184
HQP3-MVS99.04 21599.26 241
NP-MVS98.84 22697.39 19496.84 324
ACMMP++_ref99.77 90
ACMMP++99.68 134