This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 15999.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20399.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21499.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8199.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17797.93 18099.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
test_fmvsmvis_n_192099.26 3299.49 1298.54 20399.66 6496.97 21898.00 17399.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32599.50 8797.30 22099.05 14198.98 16999.35 1299.32 36395.72 27099.68 16799.18 236
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29399.48 9697.32 21899.11 12998.61 24499.33 1399.30 36696.23 24498.38 33299.28 214
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1197.25 16099.92 5599.57 91
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13299.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cdsmvs_eth3d_5k24.66 37332.88 3760.00 3910.00 4140.00 4160.00 40299.10 2240.00 4090.00 41097.58 32499.21 160.00 4100.00 4090.00 4080.00 406
wuyk23d96.06 29997.62 21691.38 38598.65 29498.57 9698.85 8196.95 34896.86 25299.90 1299.16 12299.18 1798.40 39589.23 38299.77 12477.18 403
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19698.84 8399.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12399.92 5599.57 91
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7199.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17299.46 10597.56 19299.54 5699.50 5998.97 2399.84 13798.06 11699.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi98.32 15998.39 14098.13 23899.57 8195.54 26397.78 20199.49 9497.37 21399.19 12297.65 32098.96 2499.49 33596.50 22898.99 30099.34 196
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 8899.56 6998.42 12598.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9699.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17798.00 17399.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16199.37 13297.62 18499.04 14398.96 17498.84 3099.79 19797.43 15199.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7199.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20097.82 19699.76 2998.73 10699.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10199.58 5599.11 7199.53 6099.18 11698.81 3299.67 26796.71 20999.77 12499.50 123
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21497.80 19999.76 2998.70 10999.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
SD-MVS98.40 15098.68 9597.54 28798.96 22897.99 14897.88 18899.36 13698.20 14599.63 4899.04 14998.76 3595.33 40596.56 22199.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21698.94 16498.86 19798.75 3699.82 16497.53 14799.71 15499.56 97
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17598.85 8199.62 4898.48 12499.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8398.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14199.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24597.87 19199.85 1598.56 12199.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4399.93 4098.91 6599.85 8198.88 283
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4399.80 18498.24 10599.84 8599.52 118
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34698.86 10198.87 17897.62 32398.63 4598.96 38599.41 3798.29 33698.45 326
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4699.73 23899.17 5199.92 5599.76 39
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 11896.74 25898.61 20998.38 26998.62 4699.87 10096.47 22999.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 24897.74 20899.81 2498.55 12299.85 1999.55 4898.60 4899.84 13799.69 2499.98 1299.89 11
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23297.97 17999.86 1398.22 14099.88 1799.71 1798.59 4999.84 13799.73 1999.98 1299.98 2
canonicalmvs98.34 15798.26 15798.58 19398.46 31497.82 16898.96 7299.46 10599.19 6897.46 30095.46 37798.59 4999.46 34398.08 11598.71 31998.46 324
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 18998.04 16699.59 5398.15 15299.40 8399.36 8298.58 5199.76 22198.78 7299.68 16799.59 80
test_fmvs399.12 5199.41 1998.25 22999.76 3195.07 28299.05 6499.94 297.78 17499.82 2199.84 298.56 5299.71 24699.96 199.96 2599.97 3
Effi-MVS+98.02 18897.82 20098.62 18698.53 30997.19 20897.33 24999.68 4297.30 22096.68 33697.46 33298.56 5299.80 18496.63 21398.20 33998.86 285
Fast-Effi-MVS+97.67 21797.38 23098.57 19598.71 27497.43 19397.23 25799.45 10894.82 32296.13 35296.51 35498.52 5499.91 5996.19 24798.83 31198.37 336
xiu_mvs_v1_base_debu97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base_debi97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23297.79 20099.82 2298.21 14199.81 2399.53 5498.46 5899.84 13799.70 2299.97 1999.90 10
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 5999.95 2299.73 1999.96 2599.75 43
ETV-MVS98.03 18797.86 19898.56 19998.69 28398.07 14197.51 23799.50 8798.10 15397.50 29795.51 37498.41 6099.88 8396.27 24199.24 26797.71 370
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8599.56 6999.09 8199.33 9799.19 11398.40 6199.72 24595.98 25799.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13099.42 12199.42 4199.36 9299.06 14098.38 6299.95 2298.34 10199.90 6999.57 91
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15799.31 15998.03 15599.66 4299.02 15298.36 6399.88 8396.91 18599.62 18799.41 164
test_241102_ONE99.49 11599.17 3999.31 15997.98 15799.66 4298.90 18798.36 6399.48 338
ACMP95.32 1598.41 14898.09 17599.36 6499.51 10598.79 8097.68 21499.38 12895.76 29798.81 18798.82 20698.36 6399.82 16494.75 29299.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19797.82 19699.57 6299.17 6999.35 9499.17 12098.35 6699.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12599.34 14799.28 5698.95 15798.91 18498.34 6799.79 19795.63 27499.91 6398.86 285
xiu_mvs_v2_base97.16 25697.49 22496.17 34598.54 30792.46 34795.45 34898.84 27097.25 22597.48 29996.49 35598.31 6899.90 6496.34 23798.68 32296.15 393
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 10899.63 1799.52 6299.44 7198.25 6999.88 8399.09 5499.84 8599.62 67
MVS_111021_LR98.30 16298.12 17398.83 15599.16 19098.03 14696.09 32199.30 16797.58 18998.10 25598.24 28198.25 6999.34 36096.69 21099.65 17999.12 245
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7199.95 2298.89 6899.95 3299.81 28
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7199.97 498.78 7299.93 4499.72 45
baseline98.96 6899.02 6098.76 17099.38 14097.26 20298.49 11899.50 8798.86 10199.19 12299.06 14098.23 7199.69 25598.71 7999.76 13599.33 201
PC_three_145293.27 35099.40 8398.54 25098.22 7497.00 40195.17 28499.45 23699.49 127
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7499.51 33297.70 14099.73 14297.89 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 11899.83 2098.37 12699.69 3799.46 6698.21 7699.92 5094.13 31499.30 25898.91 279
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11299.45 3699.51 6699.24 10598.20 7799.86 10895.92 25999.69 16299.04 255
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22298.58 10399.10 22496.49 26899.96 499.81 598.18 7899.45 34498.97 6399.79 11499.83 22
DVP-MVS++98.90 7598.70 9299.51 4398.43 31799.15 4799.43 1199.32 15498.17 14899.26 11299.02 15298.18 7899.88 8397.07 17399.45 23699.49 127
OPU-MVS98.82 15698.59 30098.30 11698.10 15798.52 25398.18 7898.75 39294.62 29699.48 23399.41 164
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26699.18 20697.10 24098.75 19498.92 18398.18 7899.65 28396.68 21199.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8299.96 1198.78 7299.93 4499.77 35
DeepPCF-MVS96.93 598.32 15998.01 18399.23 9798.39 32298.97 6695.03 36099.18 20696.88 25099.33 9798.78 21298.16 8299.28 37096.74 20499.62 18799.44 154
MVS_111021_HR98.25 17098.08 17898.75 17399.09 20497.46 19095.97 32599.27 18197.60 18897.99 26398.25 28098.15 8499.38 35596.87 19399.57 20799.42 161
Fast-Effi-MVS+-dtu98.27 16698.09 17598.81 15898.43 31798.11 13297.61 22599.50 8798.64 11097.39 30597.52 32898.12 8599.95 2296.90 19098.71 31998.38 334
pcd_1.5k_mvsjas8.17 37610.90 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40998.07 860.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8699.96 1199.53 30100.00 199.93 8
PS-MVSNAJ97.08 26097.39 22996.16 34798.56 30592.46 34795.24 35598.85 26997.25 22597.49 29895.99 36498.07 8699.90 6496.37 23498.67 32396.12 394
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 8999.96 1198.85 6999.99 599.86 18
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19699.25 18796.94 24798.78 18899.12 13298.02 9099.84 13797.13 16999.67 17399.59 80
MP-MVS-pluss98.57 12798.23 16099.60 1199.69 5699.35 1297.16 26499.38 12894.87 32198.97 15498.99 16598.01 9199.88 8397.29 15799.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12399.29 17597.28 22298.11 25498.39 26798.00 9299.87 10096.86 19599.64 18199.55 104
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14199.49 9497.01 24498.69 19898.88 19498.00 9299.89 7495.87 26399.59 19899.58 86
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14199.31 15997.92 16398.90 16898.90 18798.00 9299.88 8396.15 25099.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
TinyColmap97.89 19797.98 18697.60 28098.86 24894.35 30296.21 31399.44 11297.45 20799.06 13698.88 19497.99 9599.28 37094.38 30899.58 20399.18 236
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11099.31 15997.47 20098.58 21598.50 25897.97 9699.85 12096.57 21799.59 19899.53 115
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17099.25 4099.30 16798.57 11998.55 22099.33 8997.95 9799.90 6497.16 16499.67 17399.44 154
mvsany_test197.60 22297.54 21997.77 26497.72 35695.35 27195.36 35297.13 34294.13 33899.71 3399.33 8997.93 9899.30 36697.60 14398.94 30698.67 314
test_0728_THIRD98.17 14899.08 13499.02 15297.89 9999.88 8397.07 17399.71 15499.70 51
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 11899.33 15298.64 11099.03 14698.98 16997.89 9999.85 12096.54 22599.42 24099.46 146
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 8999.36 13697.54 19598.30 24098.40 26697.86 10199.89 7496.53 22699.72 14999.56 97
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11598.94 24896.96 24599.24 11798.89 19397.83 10299.81 17796.88 19299.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11099.31 15997.46 20598.44 23098.51 25497.83 10299.88 8396.46 23099.58 20399.58 86
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 7899.48 9697.57 19099.35 9499.24 10597.83 10299.89 7497.88 12999.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11299.21 6299.43 7699.55 4897.82 10599.86 10898.42 9899.89 7399.41 164
SF-MVS98.53 13698.27 15699.32 8099.31 15498.75 8198.19 14699.41 12296.77 25798.83 18298.90 18797.80 10699.82 16495.68 27399.52 22299.38 182
PHI-MVS98.29 16597.95 18899.34 7398.44 31699.16 4398.12 15499.38 12896.01 28998.06 25898.43 26497.80 10699.67 26795.69 27299.58 20399.20 229
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 12899.45 10898.28 13798.98 15099.19 11397.76 10899.58 30996.57 21799.55 21398.97 267
RE-MVS-def98.58 11199.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.75 10996.56 22199.39 24399.45 150
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11099.31 15997.47 20098.56 21898.54 25097.75 10999.88 8396.57 21799.59 19899.58 86
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 7899.37 13297.16 23798.82 18599.01 16197.71 11199.87 10096.29 24099.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS98.00 19097.74 20498.80 16098.72 27198.09 13598.05 16499.60 5297.39 21196.63 33895.55 37397.68 11299.80 18496.73 20699.27 26298.52 322
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 13999.25 18797.44 20898.67 20098.39 26797.68 11299.85 12096.00 25599.51 22499.52 118
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10599.57 6297.87 16798.85 17998.04 29897.66 11499.84 13796.72 20799.81 9999.13 244
AllTest98.44 14698.20 16299.16 10599.50 10898.55 9798.25 14099.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20797.78 20199.24 19299.04 8699.41 8098.90 18797.65 11599.76 22197.70 14099.79 11499.39 175
test_one_060199.39 13999.20 3499.31 15998.49 12398.66 20299.02 15297.64 118
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14197.50 19798.28 24298.60 24597.64 11899.35 35993.86 32299.27 26298.79 298
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9799.24 19297.47 20098.09 25698.68 22897.62 12099.89 7496.22 24599.62 18799.57 91
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 16998.84 27097.97 15899.08 13499.02 15297.61 12199.88 8396.99 17999.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10899.21 2898.17 15099.35 14197.97 15899.26 11299.06 14097.61 121
9.1497.78 20199.07 20897.53 23499.32 15495.53 30498.54 22298.70 22597.58 12399.76 22194.32 30999.46 234
CLD-MVS97.49 22997.16 24298.48 20999.07 20897.03 21694.71 36899.21 19694.46 32998.06 25897.16 34297.57 12499.48 33894.46 30199.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS_fast96.85 698.30 16298.15 17098.75 17398.61 29597.23 20397.76 20699.09 22697.31 21998.75 19498.66 23397.56 12599.64 28696.10 25499.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EGC-MVSNET85.24 37080.54 37399.34 7399.77 2899.20 3499.08 5899.29 17512.08 40620.84 40799.42 7397.55 12699.85 12097.08 17299.72 14998.96 269
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17699.68 4297.62 18499.34 9699.18 11697.54 12799.77 21597.79 13499.74 13999.04 255
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21199.46 10597.25 22598.98 15098.99 16597.54 12799.84 13795.88 26099.74 13999.23 224
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13399.29 17598.29 13598.88 17498.85 20097.53 12999.87 10096.14 25199.31 25599.48 137
DPE-MVScopyleft98.59 12698.26 15799.57 1699.27 16199.15 4797.01 26999.39 12697.67 18099.44 7598.99 16597.53 12999.89 7495.40 28199.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft98.40 15098.03 18299.51 4399.16 19099.21 2898.05 16499.22 19594.16 33798.98 15099.10 13697.52 13199.79 19796.45 23199.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_241102_TWO99.30 16798.03 15599.26 11299.02 15297.51 13299.88 8396.91 18599.60 19499.66 58
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29398.63 24097.50 13399.83 15496.79 19899.53 21999.56 97
X-MVStestdata94.32 33292.59 35099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29345.85 40497.50 13399.83 15496.79 19899.53 21999.56 97
DELS-MVS98.27 16698.20 16298.48 20998.86 24896.70 23095.60 34299.20 19897.73 17698.45 22998.71 22297.50 13399.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.49 13699.86 10896.56 22199.39 24399.45 150
TSAR-MVS + GP.98.18 17797.98 18698.77 16998.71 27497.88 16096.32 30798.66 29196.33 27699.23 11998.51 25497.48 13799.40 35197.16 16499.46 23499.02 258
new-patchmatchnet98.35 15698.74 8397.18 30699.24 16692.23 35496.42 30199.48 9698.30 13299.69 3799.53 5497.44 13899.82 16498.84 7099.77 12499.49 127
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4797.94 15798.52 11098.68 29098.99 9097.52 29599.35 8397.41 13998.18 39791.59 36299.67 17396.82 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft98.46 14498.09 17599.54 2799.57 8199.22 2798.50 11799.19 20297.61 18797.58 28998.66 23397.40 14099.88 8394.72 29599.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSDG97.71 21497.52 22198.28 22898.91 23996.82 22594.42 37899.37 13297.65 18298.37 23898.29 27997.40 14099.33 36294.09 31599.22 27098.68 313
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9399.54 7899.31 5299.62 5199.53 5497.36 14299.86 10899.24 4799.71 15499.39 175
LS3D98.63 12098.38 14299.36 6497.25 38099.38 899.12 5799.32 15499.21 6298.44 23098.88 19497.31 14399.80 18496.58 21599.34 25198.92 276
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23797.23 25798.87 26199.20 6499.19 12298.99 16597.30 14499.85 12098.77 7599.79 11499.65 62
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14499.93 4098.90 6699.93 4499.77 35
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23697.23 25798.86 26699.20 6499.18 12698.97 17197.29 14699.85 12098.72 7899.78 11999.64 63
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17397.16 26499.28 17895.54 30399.42 7999.19 11397.27 14799.63 28997.89 12699.97 1999.20 229
CNVR-MVS98.17 17997.87 19799.07 12098.67 28698.24 12097.01 26998.93 25097.25 22597.62 28598.34 27497.27 14799.57 31196.42 23299.33 25299.39 175
OMC-MVS97.88 19997.49 22499.04 12998.89 24598.63 8996.94 27399.25 18795.02 31698.53 22398.51 25497.27 14799.47 34193.50 33299.51 22499.01 259
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12399.33 15299.63 1799.48 6899.15 12697.23 15099.75 22897.17 16399.66 17899.63 66
MVS_Test98.18 17798.36 14497.67 27498.48 31294.73 29098.18 14799.02 24097.69 17998.04 26199.11 13397.22 15199.56 31498.57 8898.90 30998.71 306
dcpmvs_298.78 9099.11 5297.78 26399.56 8993.67 32799.06 6299.86 1399.50 3099.66 4299.26 10097.21 15299.99 298.00 12199.91 6399.68 54
MCST-MVS98.00 19097.63 21599.10 11499.24 16698.17 12796.89 27898.73 28895.66 29897.92 26597.70 31897.17 15399.66 27896.18 24999.23 26999.47 144
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7599.94 297.80 17299.91 1199.67 2597.15 15498.91 38899.76 1699.56 21099.92 9
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15599.85 12099.02 6099.94 4099.80 29
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15599.90 6499.21 4899.87 7799.54 108
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20298.99 9098.07 25799.28 9697.11 15799.84 13796.84 19699.32 25399.47 144
patch_mono-298.51 14098.63 10298.17 23599.38 14094.78 28797.36 24799.69 3798.16 15198.49 22699.29 9597.06 15899.97 498.29 10499.91 6399.76 39
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24699.25 5899.54 5699.37 7997.04 15999.80 18497.89 12699.52 22299.35 194
MSLP-MVS++98.02 18898.14 17297.64 27898.58 30295.19 27797.48 23999.23 19497.47 20097.90 26798.62 24297.04 15998.81 39197.55 14499.41 24198.94 274
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 19998.93 7197.76 20699.28 17894.97 31898.72 19798.77 21497.04 15999.85 12093.79 32499.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp97.02 162
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14799.42 4199.33 9799.26 10097.01 16399.94 3598.74 7699.93 4499.79 30
ambc98.24 23198.82 25795.97 25298.62 9999.00 24599.27 10899.21 11096.99 16499.50 33396.55 22499.50 23199.26 218
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12699.20 19898.83 10598.89 17098.90 18796.98 16599.92 5097.16 16499.70 15999.56 97
v899.01 6099.16 4598.57 19599.47 12496.31 24098.90 7699.47 10399.03 8799.52 6299.57 4296.93 16699.81 17799.60 2599.98 1299.60 74
QAPM97.31 24296.81 26398.82 15698.80 26397.49 18899.06 6299.19 20290.22 38197.69 28299.16 12296.91 16799.90 6490.89 37599.41 24199.07 249
CDPH-MVS97.26 24696.66 27399.07 12099.00 22198.15 12896.03 32399.01 24391.21 37597.79 27697.85 31096.89 16899.69 25592.75 34799.38 24699.39 175
PVSNet_Blended_VisFu98.17 17998.15 17098.22 23299.73 3895.15 27897.36 24799.68 4294.45 33198.99 14999.27 9896.87 16999.94 3597.13 16999.91 6399.57 91
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17099.83 15499.21 4899.91 6399.77 35
V4298.78 9098.78 8198.76 17099.44 12997.04 21598.27 13899.19 20297.87 16799.25 11699.16 12296.84 17099.78 20899.21 4899.84 8599.46 146
PMMVS298.07 18698.08 17898.04 24799.41 13794.59 29694.59 37599.40 12497.50 19798.82 18598.83 20396.83 17299.84 13797.50 14999.81 9999.71 46
PVSNet_BlendedMVS97.55 22697.53 22097.60 28098.92 23693.77 32596.64 29099.43 11894.49 32797.62 28599.18 11696.82 17399.67 26794.73 29399.93 4499.36 190
PVSNet_Blended96.88 27196.68 27097.47 29498.92 23693.77 32594.71 36899.43 11890.98 37797.62 28597.36 33896.82 17399.67 26794.73 29399.56 21098.98 264
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20399.32 2398.81 27597.66 18198.62 20799.40 7896.82 17399.80 18495.88 26099.51 22498.75 303
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17699.82 16498.69 8199.88 7499.76 39
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21099.38 12898.93 9699.12 12898.73 21996.77 17799.86 10898.63 8599.80 10999.46 146
API-MVS97.04 26396.91 25597.42 29797.88 35198.23 12498.18 14798.50 30197.57 19097.39 30596.75 35196.77 17799.15 37990.16 37899.02 29794.88 399
diffmvspermissive98.22 17298.24 15998.17 23599.00 22195.44 26896.38 30399.58 5597.79 17398.53 22398.50 25896.76 17999.74 23397.95 12599.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23399.25 18798.84 10499.06 13698.76 21696.76 17999.93 4098.57 8899.77 12499.50 123
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24199.57 6299.37 4599.21 12099.61 3796.76 17999.83 15498.06 11699.83 9299.71 46
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18498.43 12699.35 14199.47 3499.28 10699.05 14796.72 18299.82 16498.09 11499.36 24799.59 80
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21499.40 12499.14 7099.06 13698.59 24696.71 18399.93 4098.57 8899.77 12499.53 115
LF4IMVS97.90 19597.69 20898.52 20599.17 18897.66 18097.19 26399.47 10396.31 27897.85 27298.20 28596.71 18399.52 32894.62 29699.72 14998.38 334
v14898.45 14598.60 10998.00 24999.44 12994.98 28397.44 24399.06 22998.30 13299.32 10398.97 17196.65 18599.62 29298.37 9999.85 8199.39 175
v1098.97 6699.11 5298.55 20099.44 12996.21 24498.90 7699.55 7398.73 10699.48 6899.60 3996.63 18699.83 15499.70 2299.99 599.61 73
test_fmvs298.70 10398.97 6597.89 25699.54 9894.05 30998.55 10699.92 696.78 25699.72 3199.78 896.60 18799.67 26799.91 299.90 6999.94 7
OpenMVScopyleft96.65 797.09 25996.68 27098.32 22398.32 32597.16 21198.86 8099.37 13289.48 38596.29 35099.15 12696.56 18899.90 6492.90 34199.20 27397.89 358
UGNet98.53 13698.45 13098.79 16397.94 34796.96 22099.08 5898.54 29899.10 7896.82 33199.47 6596.55 18999.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST998.71 27498.08 13995.96 32799.03 23791.40 37295.85 35897.53 32696.52 19099.76 221
Test By Simon96.52 190
train_agg97.10 25896.45 28299.07 12098.71 27498.08 13995.96 32799.03 23791.64 36795.85 35897.53 32696.47 19299.76 22193.67 32699.16 27999.36 190
test_898.67 28698.01 14795.91 33299.02 24091.64 36795.79 36097.50 32996.47 19299.76 221
Effi-MVS+-dtu98.26 16897.90 19499.35 7098.02 34299.49 598.02 16999.16 21398.29 13597.64 28497.99 30096.44 19499.95 2296.66 21298.93 30798.60 318
ppachtmachnet_test97.50 22797.74 20496.78 32898.70 27891.23 36994.55 37699.05 23296.36 27599.21 12098.79 21196.39 19599.78 20896.74 20499.82 9599.34 196
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19599.92 5099.44 3699.92 5599.68 54
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 19899.10 7899.72 3198.76 21696.38 19799.86 10898.00 12199.82 9599.50 123
v119298.60 12498.66 9898.41 21699.27 16195.88 25497.52 23599.36 13697.41 20999.33 9799.20 11296.37 19899.82 16499.57 2799.92 5599.55 104
ZD-MVS99.01 22098.84 7599.07 22894.10 33998.05 26098.12 29096.36 19999.86 10892.70 34999.19 276
v114498.60 12498.66 9898.41 21699.36 14795.90 25397.58 22999.34 14797.51 19699.27 10899.15 12696.34 20099.80 18499.47 3499.93 4499.51 120
mvs_anonymous97.83 20998.16 16996.87 32298.18 33491.89 35697.31 25198.90 25697.37 21398.83 18299.46 6696.28 20199.79 19798.90 6698.16 34398.95 270
test_vis1_rt97.75 21197.72 20797.83 25998.81 26096.35 23897.30 25299.69 3794.61 32597.87 26998.05 29796.26 20298.32 39698.74 7698.18 34098.82 288
DSMNet-mixed97.42 23597.60 21796.87 32299.15 19491.46 36098.54 10899.12 22192.87 35797.58 28999.63 3396.21 20399.90 6495.74 26999.54 21599.27 215
test_f98.67 11498.87 7198.05 24699.72 4495.59 26098.51 11599.81 2496.30 28099.78 2699.82 496.14 20498.63 39399.82 899.93 4499.95 6
TAPA-MVS96.21 1196.63 28295.95 29398.65 18098.93 23298.09 13596.93 27599.28 17883.58 39898.13 25297.78 31296.13 20599.40 35193.52 33099.29 26098.45 326
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124098.55 13298.62 10498.32 22399.22 17195.58 26297.51 23799.45 10897.16 23799.45 7499.24 10596.12 20699.85 12099.60 2599.88 7499.55 104
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10699.57 6297.72 17898.90 16899.26 10096.12 20699.52 32895.72 27099.71 15499.32 203
MVS_030498.10 18197.88 19698.76 17098.82 25796.50 23497.90 18591.35 39799.56 2698.32 23999.13 13096.06 20899.93 4099.84 799.97 1999.85 19
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33293.78 32497.29 25398.84 27096.10 28598.64 20498.65 23596.04 20999.36 35696.84 19699.14 28299.20 229
v192192098.54 13498.60 10998.38 21999.20 17795.76 25997.56 23199.36 13697.23 23199.38 8799.17 12096.02 21099.84 13799.57 2799.90 6999.54 108
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20499.13 5597.52 23598.75 28597.46 20596.90 32697.83 31196.01 21199.84 13795.82 26799.35 24999.46 146
WB-MVSnew95.73 31095.57 30496.23 34296.70 39290.70 37696.07 32293.86 38695.60 30197.04 31695.45 37996.00 21299.55 31791.04 37198.31 33598.43 329
Anonymous2023120698.21 17498.21 16198.20 23399.51 10595.43 26998.13 15299.32 15496.16 28398.93 16598.82 20696.00 21299.83 15497.32 15699.73 14299.36 190
EI-MVSNet98.40 15098.51 11898.04 24799.10 20194.73 29097.20 26198.87 26198.97 9299.06 13699.02 15296.00 21299.80 18498.58 8699.82 9599.60 74
IterMVS-LS98.55 13298.70 9298.09 23999.48 12294.73 29097.22 26099.39 12698.97 9299.38 8799.31 9396.00 21299.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NCCC97.86 20197.47 22799.05 12798.61 29598.07 14196.98 27198.90 25697.63 18397.04 31697.93 30695.99 21699.66 27895.31 28298.82 31399.43 158
our_test_397.39 23797.73 20696.34 33698.70 27889.78 38094.61 37498.97 24796.50 26799.04 14398.85 20095.98 21799.84 13797.26 15999.67 17399.41 164
v2v48298.56 12898.62 10498.37 22099.42 13595.81 25797.58 22999.16 21397.90 16599.28 10699.01 16195.98 21799.79 19799.33 3999.90 6999.51 120
MVS93.19 35192.09 35596.50 33396.91 38794.03 31298.07 16198.06 32168.01 40294.56 38196.48 35695.96 21999.30 36683.84 39596.89 37896.17 391
MVP-Stereo98.08 18597.92 19298.57 19598.96 22896.79 22697.90 18599.18 20696.41 27498.46 22898.95 17895.93 22099.60 29996.51 22798.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior295.74 33896.48 26996.11 35397.63 32295.92 22194.16 31099.20 273
AdaColmapbinary97.14 25796.71 26898.46 21198.34 32497.80 17196.95 27298.93 25095.58 30296.92 32197.66 31995.87 22299.53 32490.97 37299.14 28298.04 350
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22399.91 5999.32 4099.95 3299.70 51
v14419298.54 13498.57 11298.45 21299.21 17395.98 25197.63 22299.36 13697.15 23999.32 10399.18 11695.84 22499.84 13799.50 3299.91 6399.54 108
PatchMatch-RL97.24 24996.78 26498.61 18999.03 21997.83 16596.36 30499.06 22993.49 34997.36 30797.78 31295.75 22599.49 33593.44 33398.77 31498.52 322
F-COLMAP97.30 24396.68 27099.14 10899.19 18098.39 10897.27 25699.30 16792.93 35596.62 33998.00 29995.73 22699.68 26492.62 35098.46 33199.35 194
PMMVS96.51 28695.98 29298.09 23997.53 36995.84 25594.92 36498.84 27091.58 36996.05 35695.58 37295.68 22799.66 27895.59 27698.09 34798.76 302
N_pmnet97.63 22097.17 24198.99 13599.27 16197.86 16295.98 32493.41 38895.25 31299.47 7098.90 18795.63 22899.85 12096.91 18599.73 14299.27 215
WR-MVS98.40 15098.19 16499.03 13099.00 22197.65 18196.85 27998.94 24898.57 11998.89 17098.50 25895.60 22999.85 12097.54 14699.85 8199.59 80
CANet97.87 20097.76 20298.19 23497.75 35595.51 26596.76 28499.05 23297.74 17596.93 32098.21 28495.59 23099.89 7497.86 13199.93 4499.19 234
131495.74 30995.60 30296.17 34597.53 36992.75 34398.07 16198.31 30991.22 37494.25 38296.68 35295.53 23199.03 38191.64 36197.18 37396.74 386
114514_t96.50 28895.77 29598.69 17899.48 12297.43 19397.84 19599.55 7381.42 40096.51 34498.58 24795.53 23199.67 26793.41 33499.58 20398.98 264
test1298.93 14498.58 30297.83 16598.66 29196.53 34295.51 23399.69 25599.13 28499.27 215
旧先验198.82 25797.45 19198.76 28298.34 27495.50 23499.01 29899.23 224
YYNet197.60 22297.67 20997.39 29999.04 21693.04 33895.27 35398.38 30797.25 22598.92 16698.95 17895.48 23599.73 23896.99 17998.74 31599.41 164
MDA-MVSNet_test_wron97.60 22297.66 21297.41 29899.04 21693.09 33495.27 35398.42 30497.26 22498.88 17498.95 17895.43 23699.73 23897.02 17698.72 31799.41 164
原ACMM198.35 22198.90 24096.25 24298.83 27492.48 36196.07 35598.10 29295.39 23799.71 24692.61 35198.99 30099.08 247
USDC97.41 23697.40 22897.44 29698.94 23093.67 32795.17 35699.53 8194.03 34198.97 15499.10 13695.29 23899.34 36095.84 26699.73 14299.30 210
testdata98.09 23998.93 23295.40 27098.80 27790.08 38397.45 30198.37 27095.26 23999.70 25093.58 32998.95 30599.17 240
BH-untuned96.83 27396.75 26697.08 31198.74 26893.33 33296.71 28798.26 31096.72 25998.44 23097.37 33795.20 24099.47 34191.89 35697.43 36498.44 328
MVEpermissive83.40 2292.50 35991.92 36194.25 37198.83 25491.64 35892.71 39483.52 40895.92 29386.46 40595.46 37795.20 24095.40 40480.51 40198.64 32495.73 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31394.05 30996.67 28997.36 33596.70 26197.87 26997.98 30195.14 24299.44 34690.47 37798.58 32999.25 219
pmmvs497.58 22597.28 23698.51 20698.84 25296.93 22395.40 35198.52 30093.60 34698.61 20998.65 23595.10 24399.60 29996.97 18299.79 11498.99 263
test_vis1_n_192098.40 15098.92 6896.81 32699.74 3790.76 37598.15 15199.91 798.33 12999.89 1599.55 4895.07 24499.88 8399.76 1699.93 4499.79 30
EU-MVSNet97.66 21898.50 12095.13 36499.63 7485.84 39498.35 13498.21 31298.23 13999.54 5699.46 6695.02 24599.68 26498.24 10599.87 7799.87 16
DP-MVS Recon97.33 24196.92 25398.57 19599.09 20497.99 14896.79 28199.35 14193.18 35197.71 28098.07 29695.00 24699.31 36493.97 31799.13 28498.42 331
HQP_MVS97.99 19397.67 20998.93 14499.19 18097.65 18197.77 20399.27 18198.20 14597.79 27697.98 30194.90 24799.70 25094.42 30499.51 22499.45 150
plane_prior698.99 22497.70 17994.90 247
CPTT-MVS97.84 20797.36 23299.27 8899.31 15498.46 10598.29 13699.27 18194.90 32097.83 27398.37 27094.90 24799.84 13793.85 32399.54 21599.51 120
new_pmnet96.99 26896.76 26597.67 27498.72 27194.89 28595.95 32998.20 31392.62 36098.55 22098.54 25094.88 25099.52 32893.96 31899.44 23998.59 320
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10297.01 34499.59 2399.11 12999.27 9894.82 25199.79 19798.34 10199.63 18499.34 196
jason97.45 23397.35 23397.76 26799.24 16693.93 31795.86 33398.42 30494.24 33598.50 22598.13 28894.82 25199.91 5997.22 16199.73 14299.43 158
jason: jason.
TAMVS98.24 17198.05 18098.80 16099.07 20897.18 20997.88 18898.81 27596.66 26299.17 12799.21 11094.81 25399.77 21596.96 18399.88 7499.44 154
新几何198.91 14798.94 23097.76 17398.76 28287.58 39296.75 33598.10 29294.80 25499.78 20892.73 34899.00 29999.20 229
VNet98.42 14798.30 15298.79 16398.79 26497.29 19998.23 14198.66 29199.31 5298.85 17998.80 20994.80 25499.78 20898.13 11199.13 28499.31 207
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31699.49 3199.59 5299.65 3094.79 25699.95 2299.45 3599.96 2599.88 14
MAR-MVS96.47 29095.70 29898.79 16397.92 34899.12 5798.28 13798.60 29692.16 36595.54 36796.17 36294.77 25799.52 32889.62 38098.23 33797.72 369
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CL-MVSNet_self_test97.44 23497.22 23998.08 24298.57 30495.78 25894.30 38198.79 27896.58 26598.60 21198.19 28694.74 25899.64 28696.41 23398.84 31098.82 288
MSP-MVS98.40 15098.00 18499.61 999.57 8199.25 2498.57 10499.35 14197.55 19499.31 10597.71 31694.61 25999.88 8396.14 25199.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25098.74 8598.64 29499.74 699.67 4199.24 10594.57 26099.95 2299.11 5299.24 26799.82 25
PAPR95.29 31994.47 32897.75 26897.50 37495.14 27994.89 36598.71 28991.39 37395.35 37195.48 37694.57 26099.14 38084.95 39397.37 36798.97 267
test22298.92 23696.93 22395.54 34398.78 28085.72 39596.86 32998.11 29194.43 26299.10 28999.23 224
PLCcopyleft94.65 1696.51 28695.73 29798.85 15398.75 26797.91 15896.42 30199.06 22990.94 37895.59 36197.38 33694.41 26399.59 30390.93 37398.04 35399.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS97.84 20797.84 19997.83 25999.14 19594.74 28996.94 27398.88 25995.84 29598.89 17098.96 17494.40 26499.69 25597.55 14499.95 3299.05 251
CNLPA97.17 25596.71 26898.55 20098.56 30598.05 14596.33 30698.93 25096.91 24997.06 31597.39 33594.38 26599.45 34491.66 35999.18 27898.14 345
WB-MVS98.52 13998.55 11398.43 21499.65 6595.59 26098.52 11098.77 28199.65 1499.52 6299.00 16494.34 26699.93 4098.65 8398.83 31199.76 39
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24499.44 12994.96 28496.63 29199.15 21898.35 12798.83 18299.11 13394.31 26799.85 12096.60 21498.72 31799.37 184
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32197.15 21297.37 24698.62 29583.86 39798.65 20398.37 27094.29 26899.68 26488.41 38398.62 32796.60 388
TR-MVS95.55 31595.12 32096.86 32597.54 36793.94 31696.49 29796.53 35894.36 33497.03 31896.61 35394.26 26999.16 37886.91 39096.31 38497.47 377
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21398.61 10099.13 22098.59 11699.19 12299.28 9694.14 27099.82 16497.97 12399.80 10999.29 212
PAPM_NR96.82 27596.32 28598.30 22699.07 20896.69 23197.48 23998.76 28295.81 29696.61 34096.47 35794.12 27399.17 37790.82 37697.78 35599.06 250
Anonymous2024052198.69 10698.87 7198.16 23799.77 2895.11 28199.08 5899.44 11299.34 4999.33 9799.55 4894.10 27499.94 3599.25 4599.96 2599.42 161
test_cas_vis1_n_192098.33 15898.68 9597.27 30399.69 5692.29 35298.03 16799.85 1597.62 18499.96 499.62 3493.98 27599.74 23399.52 3199.86 8099.79 30
HQP2-MVS93.84 276
HQP-MVS97.00 26796.49 28198.55 20098.67 28696.79 22696.29 30999.04 23596.05 28695.55 36496.84 34893.84 27699.54 32292.82 34499.26 26599.32 203
MVSFormer98.26 16898.43 13397.77 26498.88 24693.89 32199.39 1799.56 6999.11 7198.16 24898.13 28893.81 27899.97 499.26 4399.57 20799.43 158
lupinMVS97.06 26196.86 25797.65 27698.88 24693.89 32195.48 34797.97 32293.53 34798.16 24897.58 32493.81 27899.91 5996.77 20199.57 20799.17 240
MG-MVS96.77 27696.61 27597.26 30498.31 32693.06 33595.93 33098.12 31996.45 27297.92 26598.73 21993.77 28099.39 35391.19 37099.04 29399.33 201
PVSNet93.40 1795.67 31195.70 29895.57 35798.83 25488.57 38392.50 39597.72 32792.69 35996.49 34796.44 35893.72 28199.43 34793.61 32799.28 26198.71 306
MM98.22 17297.99 18598.91 14798.66 29196.97 21897.89 18794.44 37999.54 2798.95 15799.14 12993.50 28299.92 5099.80 1299.96 2599.85 19
pmmvs597.64 21997.49 22498.08 24299.14 19595.12 28096.70 28899.05 23293.77 34498.62 20798.83 20393.23 28399.75 22898.33 10399.76 13599.36 190
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31598.79 27897.23 23195.14 37398.24 28193.22 28499.84 13797.34 15599.84 8599.04 255
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21299.28 15996.78 22996.20 31499.27 18195.42 30798.28 24298.30 27893.16 28599.71 24694.99 28797.37 36798.87 284
IterMVS97.73 21298.11 17496.57 33199.24 16690.28 37895.52 34699.21 19698.86 10199.33 9799.33 8993.11 28699.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.85 20698.18 16596.87 32299.27 16191.16 37095.53 34499.25 18799.10 7899.41 8099.35 8393.10 28799.96 1198.65 8399.94 4099.49 127
SCA96.41 29296.66 27395.67 35498.24 33088.35 38595.85 33596.88 35196.11 28497.67 28398.67 23093.10 28799.85 12094.16 31099.22 27098.81 292
DPM-MVS96.32 29395.59 30398.51 20698.76 26597.21 20694.54 37798.26 31091.94 36696.37 34897.25 34093.06 28999.43 34791.42 36598.74 31598.89 280
BH-w/o95.13 32294.89 32695.86 34998.20 33391.31 36495.65 34097.37 33493.64 34596.52 34395.70 37193.04 29099.02 38288.10 38595.82 39097.24 380
cascas94.79 32794.33 33396.15 34896.02 40292.36 35192.34 39799.26 18685.34 39695.08 37494.96 38592.96 29198.53 39494.41 30798.59 32897.56 375
c3_l97.36 23897.37 23197.31 30098.09 33993.25 33395.01 36199.16 21397.05 24198.77 19198.72 22192.88 29299.64 28696.93 18499.76 13599.05 251
MVS-HIRNet94.32 33295.62 30190.42 38698.46 31475.36 41096.29 30989.13 40295.25 31295.38 37099.75 1192.88 29299.19 37694.07 31699.39 24396.72 387
test_vis1_n98.31 16198.50 12097.73 27299.76 3194.17 30798.68 9499.91 796.31 27899.79 2599.57 4292.85 29499.42 34999.79 1399.84 8599.60 74
sss97.21 25196.93 25198.06 24498.83 25495.22 27696.75 28598.48 30294.49 32797.27 30897.90 30792.77 29599.80 18496.57 21799.32 25399.16 243
miper_ehance_all_eth97.06 26197.03 24897.16 31097.83 35293.06 33594.66 37199.09 22695.99 29098.69 19898.45 26392.73 29699.61 29896.79 19899.03 29498.82 288
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31399.37 4599.70 3599.65 3092.65 29799.93 4099.04 5899.84 8599.60 74
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17399.31 15497.17 21097.62 22399.35 14198.72 10898.76 19398.68 22892.57 29899.74 23397.76 13995.60 39199.34 196
bld_raw_dy_0_6497.62 22197.51 22297.96 25297.97 34496.28 24198.20 14599.82 2296.46 27199.37 8997.12 34792.42 29999.70 25096.27 24199.97 1997.90 356
CHOSEN 1792x268897.49 22997.14 24598.54 20399.68 5896.09 24896.50 29699.62 4891.58 36998.84 18198.97 17192.36 30099.88 8396.76 20299.95 3299.67 57
dmvs_testset92.94 35592.21 35495.13 36498.59 30090.99 37197.65 22092.09 39496.95 24694.00 38793.55 39492.34 30196.97 40272.20 40592.52 40097.43 378
PCF-MVS92.86 1894.36 33193.00 34898.42 21598.70 27897.56 18593.16 39399.11 22379.59 40197.55 29297.43 33392.19 30299.73 23879.85 40299.45 23697.97 355
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet98.30 16298.04 18199.07 12099.56 8997.83 16599.29 3398.07 32099.03 8798.59 21399.13 13092.16 30399.90 6496.87 19399.68 16799.49 127
1112_ss97.29 24596.86 25798.58 19399.34 15396.32 23996.75 28599.58 5593.14 35296.89 32797.48 33092.11 30499.86 10896.91 18599.54 21599.57 91
CDS-MVSNet97.69 21597.35 23398.69 17898.73 26997.02 21796.92 27798.75 28595.89 29498.59 21398.67 23092.08 30599.74 23396.72 20799.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34392.77 34294.71 36899.18 20697.27 22398.56 21898.74 21891.89 30699.69 25597.06 17599.81 9999.05 251
test_fmvs1_n98.09 18498.28 15497.52 28999.68 5893.47 33198.63 9799.93 495.41 31099.68 3999.64 3291.88 30799.48 33899.82 899.87 7799.62 67
IS-MVSNet98.19 17697.90 19499.08 11899.57 8197.97 15299.31 2798.32 30899.01 8998.98 15099.03 15191.59 30899.79 19795.49 27999.80 10999.48 137
test_fmvs197.72 21397.94 19097.07 31398.66 29192.39 34997.68 21499.81 2495.20 31499.54 5699.44 7191.56 30999.41 35099.78 1599.77 12499.40 173
iter_conf05_1196.72 27796.30 28697.97 25197.97 34496.24 24394.99 36296.19 36196.45 27296.77 33496.84 34891.46 31099.78 20896.27 24199.78 11997.90 356
Test_1112_low_res96.99 26896.55 27998.31 22599.35 15195.47 26795.84 33699.53 8191.51 37196.80 33298.48 26191.36 31199.83 15496.58 21599.53 21999.62 67
Syy-MVS96.04 30095.56 30597.49 29297.10 38494.48 29896.18 31696.58 35695.65 29994.77 37692.29 40191.27 31299.36 35698.17 11098.05 35198.63 316
WTY-MVS96.67 28096.27 28997.87 25798.81 26094.61 29596.77 28397.92 32494.94 31997.12 31197.74 31591.11 31399.82 16493.89 32098.15 34499.18 236
PVSNet_089.98 2191.15 36990.30 37293.70 37897.72 35684.34 40390.24 39897.42 33390.20 38293.79 38993.09 39790.90 31498.89 39086.57 39172.76 40597.87 360
dmvs_re95.98 30395.39 31297.74 27098.86 24897.45 19198.37 13295.69 37297.95 16096.56 34195.95 36590.70 31597.68 39988.32 38496.13 38798.11 346
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39792.27 35393.69 39098.89 25891.14 37698.30 24097.35 33990.58 31699.58 30996.31 23899.03 29498.60 318
VDDNet98.21 17497.95 18899.01 13399.58 7797.74 17599.01 6697.29 33999.67 1298.97 15499.50 5990.45 31799.80 18497.88 12999.20 27399.48 137
Anonymous20240521197.90 19597.50 22399.08 11898.90 24098.25 11998.53 10996.16 36298.87 10099.11 12998.86 19790.40 31899.78 20897.36 15499.31 25599.19 234
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33592.85 34095.15 35899.31 15997.25 22598.74 19698.78 21290.07 31999.78 20897.19 16299.80 10999.11 246
lessismore_v098.97 13899.73 3897.53 18786.71 40599.37 8999.52 5789.93 32099.92 5098.99 6299.72 14999.44 154
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8496.94 34992.28 36495.17 37298.57 24889.90 32199.75 22891.20 36997.33 37198.10 347
K. test v398.00 19097.66 21299.03 13099.79 2497.56 18599.19 4992.47 39199.62 2099.52 6299.66 2789.61 32299.96 1199.25 4599.81 9999.56 97
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15496.25 39998.69 8897.02 26899.12 22188.90 38897.83 27398.86 19789.51 32398.90 38991.92 35599.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet96.25 29697.21 24093.38 38299.10 20180.56 40997.20 26198.19 31596.94 24799.00 14899.02 15289.50 32499.80 18496.36 23699.59 19899.78 33
DeepMVS_CXcopyleft93.44 38198.24 33094.21 30594.34 38064.28 40391.34 39994.87 38889.45 32592.77 40677.54 40493.14 39993.35 401
EPNet96.14 29895.44 30998.25 22990.76 40995.50 26697.92 18294.65 37798.97 9292.98 39398.85 20089.12 32699.87 10095.99 25699.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22299.55 9396.10 24598.94 7398.44 30398.32 13198.16 24898.62 24288.76 32799.73 23893.88 32199.79 11499.18 236
test111196.49 28996.82 26195.52 35899.42 13587.08 39199.22 4287.14 40499.11 7199.46 7199.58 4188.69 32899.86 10898.80 7199.95 3299.62 67
DIV-MVS_self_test97.02 26496.84 25997.58 28297.82 35394.03 31294.66 37199.16 21397.04 24298.63 20598.71 22288.69 32899.69 25597.00 17799.81 9999.01 259
cl____97.02 26496.83 26097.58 28297.82 35394.04 31194.66 37199.16 21397.04 24298.63 20598.71 22288.68 33099.69 25597.00 17799.81 9999.00 262
h-mvs3397.77 21097.33 23599.10 11499.21 17397.84 16498.35 13498.57 29799.11 7198.58 21599.02 15288.65 33199.96 1198.11 11296.34 38399.49 127
hse-mvs297.46 23197.07 24698.64 18198.73 26997.33 19797.45 24297.64 33299.11 7198.58 21597.98 30188.65 33199.79 19798.11 11297.39 36698.81 292
ECVR-MVScopyleft96.42 29196.61 27595.85 35099.38 14088.18 38799.22 4286.00 40699.08 8399.36 9299.57 4288.47 33399.82 16498.52 9299.95 3299.54 108
FA-MVS(test-final)96.99 26896.82 26197.50 29198.70 27894.78 28799.34 2096.99 34595.07 31598.48 22799.33 8988.41 33499.65 28396.13 25398.92 30898.07 349
EPNet_dtu94.93 32694.78 32795.38 36293.58 40687.68 38996.78 28295.69 37297.35 21589.14 40298.09 29488.15 33599.49 33594.95 28999.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.35 23996.88 25698.78 16698.54 30798.09 13597.71 21197.69 32999.20 6497.59 28895.90 36788.12 33699.55 31798.18 10998.96 30498.70 309
FMVSNet397.50 22797.24 23898.29 22798.08 34095.83 25697.86 19398.91 25597.89 16698.95 15798.95 17887.06 33799.81 17797.77 13599.69 16299.23 224
baseline195.96 30495.44 30997.52 28998.51 31193.99 31598.39 13096.09 36498.21 14198.40 23797.76 31486.88 33899.63 28995.42 28089.27 40398.95 270
RPMNet97.02 26496.93 25197.30 30197.71 35894.22 30398.11 15599.30 16799.37 4596.91 32399.34 8786.72 33999.87 10097.53 14797.36 36997.81 363
HyFIR lowres test97.19 25396.60 27798.96 13999.62 7697.28 20095.17 35699.50 8794.21 33699.01 14798.32 27786.61 34099.99 297.10 17199.84 8599.60 74
PAPM91.88 36890.34 37196.51 33298.06 34192.56 34592.44 39697.17 34086.35 39390.38 40096.01 36386.61 34099.21 37570.65 40695.43 39297.75 367
test_yl96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
CHOSEN 280x42095.51 31795.47 30695.65 35698.25 32988.27 38693.25 39298.88 25993.53 34794.65 37997.15 34386.17 34499.93 4097.41 15299.93 4498.73 305
EMVS93.83 34294.02 33493.23 38396.83 39084.96 39789.77 40096.32 36097.92 16397.43 30396.36 36186.17 34498.93 38787.68 38697.73 35695.81 396
MIMVSNet96.62 28396.25 29097.71 27399.04 21694.66 29399.16 5196.92 35097.23 23197.87 26999.10 13686.11 34699.65 28391.65 36099.21 27298.82 288
tpmvs95.02 32595.25 31694.33 37096.39 39885.87 39398.08 15996.83 35295.46 30695.51 36998.69 22685.91 34799.53 32494.16 31096.23 38597.58 374
MDTV_nov1_ep13_2view74.92 41197.69 21390.06 38497.75 27985.78 34893.52 33098.69 310
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33691.74 35797.92 18297.76 32690.23 37996.51 34498.91 18485.61 34999.85 12092.88 34296.90 37698.69 310
ADS-MVSNet95.24 32194.93 32596.18 34498.14 33690.10 37997.92 18297.32 33890.23 37996.51 34498.91 18485.61 34999.74 23392.88 34296.90 37698.69 310
tpmrst95.07 32395.46 30793.91 37597.11 38384.36 40297.62 22396.96 34794.98 31796.35 34998.80 20985.46 35199.59 30395.60 27596.23 38597.79 366
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15598.92 25392.31 36396.91 32399.37 7985.44 35299.81 17797.39 15397.36 36997.81 363
Patchmtry97.35 23996.97 25098.50 20897.31 37996.47 23598.18 14798.92 25398.95 9598.78 18899.37 7985.44 35299.85 12095.96 25899.83 9299.17 240
test_method79.78 37179.50 37480.62 38780.21 41045.76 41370.82 40198.41 30631.08 40580.89 40697.71 31684.85 35497.37 40091.51 36480.03 40498.75 303
PatchmatchNetpermissive95.58 31495.67 30095.30 36397.34 37887.32 39097.65 22096.65 35495.30 31197.07 31498.69 22684.77 35599.75 22894.97 28898.64 32498.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs184.74 35698.81 292
E-PMN94.17 33694.37 33193.58 37996.86 38885.71 39690.11 39997.07 34398.17 14897.82 27597.19 34184.62 35798.94 38689.77 37997.68 35796.09 395
LFMVS97.20 25296.72 26798.64 18198.72 27196.95 22198.93 7494.14 38599.74 698.78 18899.01 16184.45 35899.73 23897.44 15099.27 26299.25 219
patchmatchnet-post98.77 21484.37 35999.85 120
PatchT96.65 28196.35 28397.54 28797.40 37695.32 27297.98 17696.64 35599.33 5096.89 32799.42 7384.32 36099.81 17797.69 14297.49 36097.48 376
Patchmatch-RL test97.26 24697.02 24997.99 25099.52 10395.53 26496.13 31999.71 3497.47 20099.27 10899.16 12284.30 36199.62 29297.89 12699.77 12498.81 292
sam_mvs84.29 362
MDTV_nov1_ep1395.22 31797.06 38683.20 40497.74 20896.16 36294.37 33396.99 31998.83 20383.95 36399.53 32493.90 31997.95 354
test_post21.25 40783.86 36499.70 250
Patchmatch-test96.55 28496.34 28497.17 30898.35 32393.06 33598.40 12997.79 32597.33 21698.41 23398.67 23083.68 36599.69 25595.16 28599.31 25598.77 300
GA-MVS95.86 30695.32 31597.49 29298.60 29794.15 30893.83 38897.93 32395.49 30596.68 33697.42 33483.21 36699.30 36696.22 24598.55 33099.01 259
JIA-IIPM95.52 31695.03 32197.00 31496.85 38994.03 31296.93 27595.82 36899.20 6494.63 38099.71 1783.09 36799.60 29994.42 30494.64 39597.36 379
test_post197.59 22820.48 40883.07 36899.66 27894.16 310
tpm cat193.29 35093.13 34793.75 37797.39 37784.74 39897.39 24497.65 33083.39 39994.16 38398.41 26582.86 36999.39 35391.56 36395.35 39397.14 381
cl2295.79 30895.39 31296.98 31696.77 39192.79 34194.40 37998.53 29994.59 32697.89 26898.17 28782.82 37099.24 37296.37 23499.03 29498.92 276
test-LLR93.90 34193.85 33594.04 37396.53 39484.62 40094.05 38592.39 39296.17 28194.12 38495.07 38082.30 37199.67 26795.87 26398.18 34097.82 361
test0.0.03 194.51 32993.69 33896.99 31596.05 40093.61 33094.97 36393.49 38796.17 28197.57 29194.88 38682.30 37199.01 38493.60 32894.17 39898.37 336
AUN-MVS96.24 29795.45 30898.60 19198.70 27897.22 20597.38 24597.65 33095.95 29295.53 36897.96 30582.11 37399.79 19796.31 23897.44 36398.80 297
MVSTER96.86 27296.55 27997.79 26297.91 34994.21 30597.56 23198.87 26197.49 19999.06 13699.05 14780.72 37499.80 18498.44 9699.82 9599.37 184
tmp_tt78.77 37278.73 37578.90 38858.45 41174.76 41294.20 38278.26 41139.16 40486.71 40492.82 39980.50 37575.19 40786.16 39292.29 40186.74 402
thres20093.72 34493.14 34695.46 36198.66 29191.29 36596.61 29294.63 37897.39 21196.83 33093.71 39379.88 37699.56 31482.40 39998.13 34595.54 398
thres100view90094.19 33593.67 33995.75 35399.06 21291.35 36398.03 16794.24 38398.33 12997.40 30494.98 38479.84 37799.62 29283.05 39698.08 34896.29 389
thres600view794.45 33093.83 33696.29 33899.06 21291.53 35997.99 17594.24 38398.34 12897.44 30295.01 38279.84 37799.67 26784.33 39498.23 33797.66 371
tfpn200view994.03 33993.44 34195.78 35298.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34896.29 389
thres40094.14 33793.44 34196.24 34198.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34897.66 371
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35997.71 32888.57 38997.71 28098.08 29579.39 38199.82 16496.19 24799.11 28898.43 329
baseline293.73 34392.83 34996.42 33597.70 36091.28 36696.84 28089.77 40193.96 34392.44 39695.93 36679.14 38299.77 21592.94 34096.76 38098.21 341
FE-MVS95.66 31294.95 32497.77 26498.53 30995.28 27399.40 1696.09 36493.11 35397.96 26499.26 10079.10 38399.77 21592.40 35398.71 31998.27 340
tpm94.67 32894.34 33295.66 35597.68 36388.42 38497.88 18894.90 37594.46 32996.03 35798.56 24978.66 38499.79 19795.88 26095.01 39498.78 299
CostFormer93.97 34093.78 33794.51 36997.53 36985.83 39597.98 17695.96 36689.29 38794.99 37598.63 24078.63 38599.62 29294.54 29896.50 38198.09 348
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33694.47 29994.78 36793.24 39094.72 32389.56 40195.87 36878.57 38699.81 17796.91 18597.11 37598.46 324
dp93.47 34793.59 34093.13 38496.64 39381.62 40897.66 21896.42 35992.80 35896.11 35398.64 23878.55 38799.59 30393.31 33592.18 40298.16 344
EPMVS93.72 34493.27 34395.09 36696.04 40187.76 38898.13 15285.01 40794.69 32496.92 32198.64 23878.47 38899.31 36495.04 28696.46 38298.20 342
tpm293.09 35292.58 35194.62 36897.56 36586.53 39297.66 21895.79 36986.15 39494.07 38698.23 28375.95 38999.53 32490.91 37496.86 37997.81 363
FPMVS93.44 34892.23 35397.08 31199.25 16597.86 16295.61 34197.16 34192.90 35693.76 39098.65 23575.94 39095.66 40379.30 40397.49 36097.73 368
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19199.14 21997.73 17698.89 17098.95 17875.75 39199.87 10098.50 9399.92 5599.40 173
thisisatest051594.12 33893.16 34596.97 31798.60 29792.90 33993.77 38990.61 39894.10 33996.91 32395.87 36874.99 39299.80 18494.52 29999.12 28798.20 342
tttt051795.64 31394.98 32297.64 27899.36 14793.81 32398.72 8990.47 39998.08 15498.67 20098.34 27473.88 39399.92 5097.77 13599.51 22499.20 229
thisisatest053095.27 32094.45 32997.74 27099.19 18094.37 30197.86 19390.20 40097.17 23698.22 24497.65 32073.53 39499.90 6496.90 19099.35 24998.95 270
FMVSNet596.01 30195.20 31898.41 21697.53 36996.10 24598.74 8599.50 8797.22 23498.03 26299.04 14969.80 39599.88 8397.27 15899.71 15499.25 219
gg-mvs-nofinetune92.37 36291.20 36695.85 35095.80 40392.38 35099.31 2781.84 40999.75 591.83 39899.74 1368.29 39699.02 38287.15 38797.12 37496.16 392
KD-MVS_2432*160092.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
miper_refine_blended92.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
GG-mvs-BLEND94.76 36794.54 40592.13 35599.31 2780.47 41088.73 40391.01 40367.59 39998.16 39882.30 40094.53 39793.98 400
TESTMET0.1,192.19 36591.77 36393.46 38096.48 39682.80 40594.05 38591.52 39694.45 33194.00 38794.88 38666.65 40099.56 31495.78 26898.11 34698.02 351
UWE-MVS92.38 36191.76 36494.21 37297.16 38284.65 39995.42 35088.45 40395.96 29196.17 35195.84 37066.36 40199.71 24691.87 35798.64 32498.28 339
test250692.39 36091.89 36293.89 37699.38 14082.28 40699.32 2366.03 41299.08 8398.77 19199.57 4266.26 40299.84 13798.71 7999.95 3299.54 108
IB-MVS91.63 1992.24 36490.90 36896.27 33997.22 38191.24 36894.36 38093.33 38992.37 36292.24 39794.58 38966.20 40399.89 7493.16 33894.63 39697.66 371
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter92.33 36391.76 36494.04 37396.53 39484.62 40094.05 38592.39 39294.00 34294.12 38495.07 38065.63 40499.67 26795.87 26398.18 34097.82 361
testing9193.32 34992.27 35296.47 33497.54 36791.25 36796.17 31896.76 35397.18 23593.65 39193.50 39565.11 40599.63 28993.04 33997.45 36298.53 321
testing1193.08 35392.02 35796.26 34097.56 36590.83 37496.32 30795.70 37096.47 27092.66 39593.73 39264.36 40699.59 30393.77 32597.57 35898.37 336
testing9993.04 35491.98 36096.23 34297.53 36990.70 37696.35 30595.94 36796.87 25193.41 39293.43 39663.84 40799.59 30393.24 33797.19 37298.40 332
ETVMVS92.60 35891.08 36797.18 30697.70 36093.65 32996.54 29395.70 37096.51 26694.68 37892.39 40061.80 40899.50 33386.97 38897.41 36598.40 332
testing22291.96 36690.37 37096.72 33097.47 37592.59 34496.11 32094.76 37696.83 25392.90 39492.87 39857.92 40999.55 31786.93 38997.52 35998.00 354
myMVS_eth3d91.92 36790.45 36996.30 33797.10 38490.90 37296.18 31696.58 35695.65 29994.77 37692.29 40153.88 41099.36 35689.59 38198.05 35198.63 316
testing393.51 34692.09 35597.75 26898.60 29794.40 30097.32 25095.26 37497.56 19296.79 33395.50 37553.57 41199.77 21595.26 28398.97 30399.08 247
test12317.04 37520.11 3787.82 38910.25 4134.91 41494.80 3664.47 4144.93 40710.00 40924.28 4069.69 4123.64 40810.14 40712.43 40714.92 404
testmvs17.12 37420.53 3776.87 39012.05 4124.20 41593.62 3916.73 4134.62 40810.41 40824.33 4058.28 4133.56 4099.69 40815.07 40612.86 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.12 37710.83 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.48 3300.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.90 37291.37 366
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
MSC_two_6792asdad99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
No_MVS99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
eth-test20.00 414
eth-test0.00 414
IU-MVS99.49 11599.15 4798.87 26192.97 35499.41 8096.76 20299.62 18799.66 58
save fliter99.11 19997.97 15296.53 29599.02 24098.24 138
test_0728_SECOND99.60 1199.50 10899.23 2698.02 16999.32 15499.88 8396.99 17999.63 18499.68 54
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
MTGPAbinary99.20 198
MTMP97.93 18091.91 395
gm-plane-assit94.83 40481.97 40788.07 39194.99 38399.60 29991.76 358
test9_res93.28 33699.15 28199.38 182
agg_prior292.50 35299.16 27999.37 184
agg_prior98.68 28597.99 14899.01 24395.59 36199.77 215
test_prior497.97 15295.86 333
test_prior98.95 14198.69 28397.95 15699.03 23799.59 30399.30 210
旧先验295.76 33788.56 39097.52 29599.66 27894.48 300
新几何295.93 330
无先验95.74 33898.74 28789.38 38699.73 23892.38 35499.22 228
原ACMM295.53 344
testdata299.79 19792.80 346
testdata195.44 34996.32 277
plane_prior799.19 18097.87 161
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 150
plane_prior497.98 301
plane_prior397.78 17297.41 20997.79 276
plane_prior297.77 20398.20 145
plane_prior199.05 215
plane_prior97.65 18197.07 26796.72 25999.36 247
n20.00 415
nn0.00 415
door-mid99.57 62
test1198.87 261
door99.41 122
HQP5-MVS96.79 226
HQP-NCC98.67 28696.29 30996.05 28695.55 364
ACMP_Plane98.67 28696.29 30996.05 28695.55 364
BP-MVS92.82 344
HQP4-MVS95.56 36399.54 32299.32 203
HQP3-MVS99.04 23599.26 265
NP-MVS98.84 25297.39 19596.84 348
ACMMP++_ref99.77 124
ACMMP++99.68 167