This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 5100.00 199.85 12
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 1999.71 2199.27 4999.90 699.74 1299.68 299.97 499.55 1699.99 599.88 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4299.90 299.86 1099.78 899.58 399.95 1799.00 4799.95 1999.78 20
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3699.66 3299.09 7199.89 899.68 1899.53 499.97 499.50 1899.99 599.87 9
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 1899.64 1199.84 1199.83 399.50 599.87 8999.36 2499.92 4299.64 50
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1699.63 1399.78 1599.67 2099.48 699.81 16399.30 2999.97 1299.77 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS98.53 12398.34 13299.11 10999.50 9398.82 7895.97 29899.50 7497.30 20399.05 12598.98 15299.35 799.32 33695.72 25299.68 15299.18 221
XVG-OURS-SEG-HR98.49 12798.28 13999.14 10599.49 10098.83 7696.54 27499.48 8397.32 20199.11 11398.61 22999.33 899.30 33996.23 22698.38 31399.28 199
ACMH96.65 799.25 2799.24 2799.26 8899.72 4298.38 10999.07 6199.55 6098.30 11899.65 3299.45 5999.22 999.76 20598.44 8299.77 10999.64 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cdsmvs_eth3d_5k24.66 34432.88 3470.00 3620.00 3850.00 3860.00 37399.10 2110.00 3800.00 38197.58 30999.21 100.00 3810.00 3790.00 3790.00 377
wuyk23d96.06 28297.62 19991.38 35698.65 27698.57 9698.85 8196.95 33496.86 23299.90 699.16 11099.18 1198.40 36889.23 35699.77 10977.18 374
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 2298.58 9599.27 3899.57 4999.39 3699.75 1899.62 2899.17 1299.83 14099.06 4299.62 17299.66 45
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5399.93 399.82 399.93 399.81 599.17 1299.94 2699.31 27100.00 199.82 14
pm-mvs199.44 1399.48 1199.33 7699.80 2298.63 8999.29 3299.63 3499.30 4799.65 3299.60 3299.16 1499.82 15099.07 4199.83 7799.56 82
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1699.56 5699.11 6199.70 2399.73 1499.00 1599.97 499.26 3099.98 999.89 6
DeepC-MVS97.60 498.97 5498.93 5599.10 11199.35 13697.98 14898.01 16799.46 9197.56 17599.54 4199.50 4998.97 1699.84 12698.06 10299.92 4299.49 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi98.32 14498.39 12598.13 22499.57 6995.54 24697.78 18799.49 8197.37 19699.19 10697.65 30598.96 1799.49 31096.50 21298.99 28499.34 182
GeoE99.05 4698.99 5299.25 9199.44 11498.35 11598.73 8699.56 5698.42 11198.91 15098.81 19398.94 1899.91 4798.35 8699.73 12799.49 112
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6399.34 1999.69 2498.93 8699.65 3299.72 1598.93 1999.95 1799.11 39100.00 199.82 14
casdiffmvs_mvgpermissive99.12 4099.16 3298.99 13199.43 11997.73 17498.00 16899.62 3599.22 5199.55 4099.22 9798.93 1999.75 21298.66 6999.81 8499.50 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testf199.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
APD_test299.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
ACMM96.08 1298.91 6198.73 7299.48 5199.55 8099.14 5298.07 15799.37 11997.62 16899.04 12798.96 15798.84 2399.79 18397.43 13699.65 16499.49 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive99.34 2299.36 1799.27 8699.73 3698.26 11899.17 4999.78 1699.11 6199.27 9299.48 5398.82 2499.95 1798.94 5099.93 3199.59 67
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 4499.00 4999.33 7699.71 4498.83 7698.60 9999.58 4299.11 6199.53 4599.18 10498.81 2599.67 24896.71 19399.77 10999.50 108
SD-MVS98.40 13698.68 8297.54 26998.96 21397.99 14597.88 17899.36 12398.20 12999.63 3599.04 13398.76 2695.33 37696.56 20599.74 12499.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.01 4898.82 6599.57 1699.71 4499.35 1299.00 6899.50 7497.33 19998.94 14798.86 18198.75 2799.82 15097.53 13299.71 13999.56 82
XXY-MVS99.14 3599.15 3799.10 11199.76 3097.74 17298.85 8199.62 3598.48 11099.37 7499.49 5298.75 2799.86 9898.20 9499.80 9599.71 33
DROMVSNet99.09 4299.05 4699.20 9799.28 14498.93 7199.24 4099.84 1299.08 7398.12 23698.37 25598.72 2999.90 5299.05 4399.77 10998.77 285
LPG-MVS_test98.71 8798.46 11499.47 5499.57 6998.97 6698.23 13999.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
LGP-MVS_train99.47 5499.57 6998.97 6699.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
CS-MVS99.13 3899.10 4199.24 9399.06 19799.15 4799.36 1899.88 999.36 4198.21 22898.46 24798.68 3299.93 3199.03 4599.85 6698.64 299
CS-MVS-test99.13 3899.09 4299.26 8899.13 18298.97 6699.31 2699.88 999.44 3198.16 23198.51 23998.64 3399.93 3198.91 5199.85 6698.88 268
TDRefinement99.42 1699.38 1699.55 2399.76 3099.33 1699.68 599.71 2199.38 3799.53 4599.61 3098.64 3399.80 17098.24 9199.84 7099.52 103
tt080598.69 9398.62 9098.90 14299.75 3499.30 1799.15 5296.97 33298.86 9198.87 16197.62 30898.63 3598.96 35899.41 2398.29 31698.45 307
nrg03099.40 1899.35 1899.54 2799.58 6599.13 5598.98 7199.48 8399.68 899.46 5599.26 8998.62 3699.73 22199.17 3899.92 4299.76 26
HPM-MVScopyleft98.79 7698.53 10199.59 1599.65 5799.29 1999.16 5099.43 10496.74 23798.61 19398.38 25498.62 3699.87 8996.47 21399.67 15899.59 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
canonicalmvs98.34 14398.26 14298.58 17998.46 29597.82 16598.96 7299.46 9199.19 5897.46 28395.46 35798.59 3899.46 31898.08 10198.71 30198.46 305
EG-PatchMatch MVS98.99 5099.01 4898.94 13699.50 9397.47 18598.04 16299.59 4098.15 13699.40 6799.36 7298.58 3999.76 20598.78 5899.68 15299.59 67
test_fmvs399.12 4099.41 1498.25 21599.76 3095.07 26599.05 6499.94 197.78 15899.82 1299.84 298.56 4099.71 22999.96 199.96 1599.97 1
Effi-MVS+98.02 17197.82 18398.62 17498.53 28997.19 20197.33 23199.68 2997.30 20396.68 31697.46 31798.56 4099.80 17096.63 19798.20 31998.86 270
Fast-Effi-MVS+97.67 20097.38 21298.57 18198.71 25797.43 18897.23 23899.45 9494.82 29396.13 33096.51 33798.52 4299.91 4796.19 22998.83 29498.37 314
xiu_mvs_v1_base_debu97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base_debi97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 3899.66 1099.68 2799.66 2298.44 4699.95 1799.73 1099.96 1599.75 29
ETV-MVS98.03 17097.86 18198.56 18598.69 26698.07 13997.51 21999.50 7498.10 13797.50 28095.51 35598.41 4799.88 7196.27 22599.24 25297.71 342
COLMAP_ROBcopyleft96.50 1098.99 5098.85 6399.41 6099.58 6599.10 6098.74 8499.56 5699.09 7199.33 8199.19 10198.40 4899.72 22895.98 23999.76 12099.42 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TranMVSNet+NR-MVSNet99.17 3399.07 4599.46 5699.37 13198.87 7398.39 12899.42 10799.42 3499.36 7699.06 12498.38 4999.95 1798.34 8799.90 5599.57 78
SED-MVS98.91 6198.72 7499.49 4899.49 10099.17 3998.10 15499.31 14698.03 14099.66 2999.02 13698.36 5099.88 7196.91 16999.62 17299.41 149
test_241102_ONE99.49 10099.17 3999.31 14697.98 14299.66 2998.90 17198.36 5099.48 313
ACMP95.32 1598.41 13498.09 16099.36 6499.51 9098.79 8097.68 19899.38 11595.76 27198.81 17198.82 19198.36 5099.82 15094.75 27399.77 10999.48 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvspermissive98.95 5799.00 4998.81 15099.38 12597.33 19197.82 18599.57 4999.17 5999.35 7899.17 10898.35 5399.69 23698.46 8199.73 12799.41 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_040298.76 8298.71 7698.93 13799.56 7698.14 13198.45 12399.34 13499.28 4898.95 14198.91 16898.34 5499.79 18395.63 25699.91 4898.86 270
xiu_mvs_v2_base97.16 23997.49 20696.17 31898.54 28792.46 32695.45 32198.84 25797.25 20897.48 28296.49 33898.31 5599.90 5296.34 22198.68 30496.15 364
VPA-MVSNet99.30 2499.30 2499.28 8399.49 10098.36 11499.00 6899.45 9499.63 1399.52 4799.44 6098.25 5699.88 7199.09 4099.84 7099.62 54
MVS_111021_LR98.30 14798.12 15898.83 14799.16 17598.03 14396.09 29599.30 15497.58 17298.10 23898.24 26698.25 5699.34 33396.69 19499.65 16499.12 230
PS-CasMVS99.40 1899.33 2199.62 699.71 4499.10 6099.29 3299.53 6899.53 2399.46 5599.41 6698.23 5899.95 1798.89 5499.95 1999.81 16
DTE-MVSNet99.43 1599.35 1899.66 499.71 4499.30 1799.31 2699.51 7299.64 1199.56 3899.46 5598.23 5899.97 498.78 5899.93 3199.72 32
baseline98.96 5699.02 4798.76 16099.38 12597.26 19598.49 11699.50 7498.86 9199.19 10699.06 12498.23 5899.69 23698.71 6599.76 12099.33 187
PC_three_145293.27 32199.40 6798.54 23598.22 6197.00 37395.17 26599.45 22199.49 112
Gipumacopyleft99.03 4799.16 3298.64 17099.94 298.51 10299.32 2299.75 1999.58 2198.60 19599.62 2898.22 6199.51 30897.70 12599.73 12797.89 330
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re98.64 10598.48 11099.11 10998.85 23598.51 10298.49 11699.83 1398.37 11299.69 2599.46 5598.21 6399.92 3994.13 29599.30 24398.91 264
tfpnnormal98.90 6398.90 5898.91 14099.67 5597.82 16599.00 6899.44 9899.45 3099.51 5099.24 9498.20 6499.86 9895.92 24199.69 14799.04 239
mvsany_test398.87 6698.92 5698.74 16699.38 12596.94 21298.58 10299.10 21196.49 24699.96 299.81 598.18 6599.45 31998.97 4999.79 10099.83 13
DVP-MVS++98.90 6398.70 7999.51 4398.43 29899.15 4799.43 1199.32 14198.17 13299.26 9699.02 13698.18 6599.88 7197.07 15799.45 22199.49 112
OPU-MVS98.82 14898.59 28198.30 11698.10 15498.52 23898.18 6598.75 36594.62 27799.48 21899.41 149
OPM-MVS98.56 11598.32 13699.25 9199.41 12298.73 8597.13 24799.18 19297.10 22298.75 17898.92 16798.18 6599.65 26496.68 19599.56 19599.37 170
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS99.41 1799.34 2099.62 699.73 3699.14 5299.29 3299.54 6599.62 1699.56 3899.42 6398.16 6999.96 1198.78 5899.93 3199.77 22
DeepPCF-MVS96.93 598.32 14498.01 16899.23 9598.39 30398.97 6695.03 33299.18 19296.88 23199.33 8198.78 19798.16 6999.28 34396.74 18899.62 17299.44 139
MVS_111021_HR98.25 15598.08 16398.75 16299.09 18997.46 18695.97 29899.27 16797.60 17197.99 24698.25 26598.15 7199.38 33096.87 17799.57 19299.42 146
Fast-Effi-MVS+-dtu98.27 15198.09 16098.81 15098.43 29898.11 13297.61 20799.50 7498.64 9897.39 28897.52 31398.12 7299.95 1796.90 17498.71 30198.38 312
pcd_1.5k_mvsjas8.17 34710.90 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38098.07 730.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4499.65 3399.48 2699.92 499.71 1698.07 7399.96 1199.53 17100.00 199.93 4
PS-MVSNAJ97.08 24497.39 21196.16 32098.56 28592.46 32695.24 32798.85 25697.25 20897.49 28195.99 34798.07 7399.90 5296.37 21898.67 30596.12 365
UA-Net99.47 1199.40 1599.70 299.49 10099.29 1999.80 399.72 2099.82 399.04 12799.81 598.05 7699.96 1198.85 5599.99 599.86 11
ACMMP_NAP98.75 8398.48 11099.57 1699.58 6599.29 1997.82 18599.25 17396.94 22898.78 17299.12 11898.02 7799.84 12697.13 15399.67 15899.59 67
MP-MVS-pluss98.57 11498.23 14599.60 1199.69 5299.35 1297.16 24599.38 11594.87 29298.97 13898.99 14898.01 7899.88 7197.29 14299.70 14499.58 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS98.68 9898.40 12299.54 2799.57 6999.21 2898.46 12199.29 16197.28 20598.11 23798.39 25298.00 7999.87 8996.86 17999.64 16699.55 89
PGM-MVS98.66 10298.37 12899.55 2399.53 8699.18 3898.23 13999.49 8197.01 22698.69 18298.88 17898.00 7999.89 6295.87 24599.59 18399.58 73
SteuartSystems-ACMMP98.79 7698.54 10099.54 2799.73 3699.16 4398.23 13999.31 14697.92 14798.90 15198.90 17198.00 7999.88 7196.15 23299.72 13499.58 73
Skip Steuart: Steuart Systems R&D Blog.
TinyColmap97.89 18097.98 17097.60 26298.86 23394.35 28396.21 29199.44 9897.45 18999.06 12098.88 17897.99 8299.28 34394.38 28999.58 18899.18 221
HFP-MVS98.71 8798.44 11799.51 4399.49 10099.16 4398.52 10999.31 14697.47 18298.58 19998.50 24397.97 8399.85 11096.57 20199.59 18399.53 100
3Dnovator98.27 298.81 7498.73 7299.05 12498.76 24897.81 16799.25 3999.30 15498.57 10798.55 20499.33 7997.95 8499.90 5297.16 14899.67 15899.44 139
mvsany_test197.60 20597.54 20297.77 24897.72 33695.35 25495.36 32497.13 32894.13 30999.71 2199.33 7997.93 8599.30 33997.60 12898.94 28998.67 298
test_0728_THIRD98.17 13299.08 11899.02 13697.89 8699.88 7197.07 15799.71 13999.70 38
APD-MVS_3200maxsize98.84 7098.61 9499.53 3499.19 16599.27 2298.49 11699.33 13998.64 9899.03 13098.98 15297.89 8699.85 11096.54 20999.42 22599.46 131
CP-MVS98.70 9098.42 12099.52 3999.36 13299.12 5798.72 8799.36 12397.54 17798.30 22398.40 25197.86 8899.89 6296.53 21099.72 13499.56 82
TSAR-MVS + MP.98.63 10798.49 10999.06 12399.64 6097.90 15698.51 11398.94 23596.96 22799.24 10198.89 17797.83 8999.81 16396.88 17699.49 21799.48 122
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R98.69 9398.40 12299.54 2799.53 8699.17 3998.52 10999.31 14697.46 18798.44 21498.51 23997.83 8999.88 7196.46 21499.58 18899.58 73
APDe-MVS98.99 5098.79 6899.60 1199.21 15899.15 4798.87 7899.48 8397.57 17399.35 7899.24 9497.83 8999.89 6297.88 11499.70 14499.75 29
FMVSNet199.17 3399.17 3099.17 9999.55 8098.24 12099.20 4499.44 9899.21 5299.43 6099.55 4097.82 9299.86 9898.42 8499.89 5999.41 149
SF-MVS98.53 12398.27 14199.32 7899.31 13998.75 8198.19 14399.41 10896.77 23698.83 16698.90 17197.80 9399.82 15095.68 25599.52 20799.38 168
PHI-MVS98.29 15097.95 17299.34 7298.44 29799.16 4398.12 15199.38 11596.01 26498.06 24198.43 24997.80 9399.67 24895.69 25499.58 18899.20 214
APD_test198.83 7198.66 8499.34 7299.78 2599.47 698.42 12699.45 9498.28 12398.98 13499.19 10197.76 9599.58 28796.57 20199.55 19898.97 252
RE-MVS-def98.58 9799.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.75 9696.56 20599.39 22899.45 135
ACMMPR98.70 9098.42 12099.54 2799.52 8899.14 5298.52 10999.31 14697.47 18298.56 20298.54 23597.75 9699.88 7196.57 20199.59 18399.58 73
ACMMPcopyleft98.75 8398.50 10599.52 3999.56 7699.16 4398.87 7899.37 11997.16 21998.82 16999.01 14597.71 9899.87 8996.29 22499.69 14799.54 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS98.00 17397.74 18798.80 15298.72 25498.09 13398.05 16099.60 3997.39 19496.63 31895.55 35497.68 9999.80 17096.73 19099.27 24798.52 303
GST-MVS98.61 11098.30 13799.52 3999.51 9099.20 3498.26 13799.25 17397.44 19098.67 18498.39 25297.68 9999.85 11096.00 23799.51 20999.52 103
CSCG98.68 9898.50 10599.20 9799.45 11398.63 8998.56 10499.57 4997.87 15198.85 16298.04 28397.66 10199.84 12696.72 19199.81 8499.13 229
AllTest98.44 13298.20 14799.16 10299.50 9398.55 9798.25 13899.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
TestCases99.16 10299.50 9398.55 9799.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
test20.0398.78 7898.77 7098.78 15799.46 11097.20 20097.78 18799.24 17899.04 7699.41 6498.90 17197.65 10299.76 20597.70 12599.79 10099.39 161
test_one_060199.39 12499.20 3499.31 14698.49 10998.66 18699.02 13697.64 105
ITE_SJBPF98.87 14399.22 15698.48 10499.35 12897.50 17998.28 22598.60 23097.64 10599.35 33293.86 30399.27 24798.79 283
mPP-MVS98.64 10598.34 13299.54 2799.54 8399.17 3998.63 9599.24 17897.47 18298.09 23998.68 21397.62 10799.89 6296.22 22799.62 17299.57 78
DVP-MVScopyleft98.77 8198.52 10299.52 3999.50 9399.21 2898.02 16498.84 25797.97 14399.08 11899.02 13697.61 10899.88 7196.99 16399.63 16999.48 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 9399.21 2898.17 14799.35 12897.97 14399.26 9699.06 12497.61 108
9.1497.78 18499.07 19397.53 21699.32 14195.53 27598.54 20698.70 21097.58 11099.76 20594.32 29099.46 219
CLD-MVS97.49 21297.16 22598.48 19599.07 19397.03 20894.71 33999.21 18294.46 30098.06 24197.16 32797.57 11199.48 31394.46 28299.78 10598.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS_fast96.85 698.30 14798.15 15598.75 16298.61 27797.23 19697.76 19199.09 21397.31 20298.75 17898.66 21897.56 11299.64 26796.10 23699.55 19899.39 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EGC-MVSNET85.24 34180.54 34499.34 7299.77 2799.20 3499.08 5899.29 16112.08 37720.84 37899.42 6397.55 11399.85 11097.08 15699.72 13498.96 254
PM-MVS98.82 7298.72 7499.12 10799.64 6098.54 10097.98 17099.68 2997.62 16899.34 8099.18 10497.54 11499.77 20097.79 11999.74 12499.04 239
XVG-ACMP-BASELINE98.56 11598.34 13299.22 9699.54 8398.59 9497.71 19599.46 9197.25 20898.98 13498.99 14897.54 11499.84 12695.88 24299.74 12499.23 209
SR-MVS98.71 8798.43 11899.57 1699.18 17299.35 1298.36 13099.29 16198.29 12198.88 15798.85 18497.53 11699.87 8996.14 23399.31 24099.48 122
DPE-MVScopyleft98.59 11398.26 14299.57 1699.27 14699.15 4797.01 25099.39 11397.67 16499.44 5998.99 14897.53 11699.89 6295.40 26399.68 15299.66 45
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft98.40 13698.03 16799.51 4399.16 17599.21 2898.05 16099.22 18194.16 30898.98 13499.10 12197.52 11899.79 18396.45 21599.64 16699.53 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_241102_TWO99.30 15498.03 14099.26 9699.02 13697.51 11999.88 7196.91 16999.60 17999.66 45
XVS98.72 8698.45 11599.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27698.63 22597.50 12099.83 14096.79 18299.53 20499.56 82
X-MVStestdata94.32 31292.59 33099.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27645.85 37597.50 12099.83 14096.79 18299.53 20499.56 82
DELS-MVS98.27 15198.20 14798.48 19598.86 23396.70 22095.60 31599.20 18497.73 16098.45 21398.71 20797.50 12099.82 15098.21 9399.59 18398.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS-dyc-post98.81 7498.55 9999.57 1699.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.49 12399.86 9896.56 20599.39 22899.45 135
TSAR-MVS + GP.98.18 16197.98 17098.77 15998.71 25797.88 15796.32 28698.66 27796.33 25199.23 10398.51 23997.48 12499.40 32697.16 14899.46 21999.02 242
new-patchmatchnet98.35 14298.74 7197.18 28699.24 15192.23 33296.42 28199.48 8398.30 11899.69 2599.53 4597.44 12599.82 15098.84 5699.77 10999.49 112
PMVScopyleft91.26 2097.86 18497.94 17497.65 25899.71 4497.94 15498.52 10998.68 27698.99 8097.52 27899.35 7397.41 12698.18 37091.59 33999.67 15896.82 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft98.46 13098.09 16099.54 2799.57 6999.22 2798.50 11599.19 18897.61 17097.58 27298.66 21897.40 12799.88 7194.72 27699.60 17999.54 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSDG97.71 19797.52 20498.28 21498.91 22496.82 21594.42 34999.37 11997.65 16698.37 22298.29 26497.40 12799.33 33594.09 29699.22 25498.68 297
KD-MVS_self_test99.25 2799.18 2999.44 5799.63 6299.06 6498.69 9199.54 6599.31 4599.62 3699.53 4597.36 12999.86 9899.24 3499.71 13999.39 161
LS3D98.63 10798.38 12799.36 6497.25 35599.38 899.12 5699.32 14199.21 5298.44 21498.88 17897.31 13099.80 17096.58 19999.34 23698.92 261
EI-MVSNet-UG-set98.69 9398.71 7698.62 17499.10 18696.37 22597.23 23898.87 24899.20 5499.19 10698.99 14897.30 13199.85 11098.77 6199.79 10099.65 49
WR-MVS_H99.33 2399.22 2899.65 599.71 4499.24 2599.32 2299.55 6099.46 2999.50 5199.34 7797.30 13199.93 3198.90 5299.93 3199.77 22
EI-MVSNet-Vis-set98.68 9898.70 7998.63 17399.09 18996.40 22497.23 23898.86 25399.20 5499.18 11098.97 15497.29 13399.85 11098.72 6499.78 10599.64 50
pmmvs-eth3d98.47 12998.34 13298.86 14499.30 14297.76 17097.16 24599.28 16495.54 27499.42 6399.19 10197.27 13499.63 27097.89 11199.97 1299.20 214
CNVR-MVS98.17 16397.87 18099.07 11798.67 26998.24 12097.01 25098.93 23797.25 20897.62 26898.34 25997.27 13499.57 28996.42 21699.33 23799.39 161
OMC-MVS97.88 18297.49 20699.04 12698.89 23098.63 8996.94 25499.25 17395.02 28798.53 20798.51 23997.27 13499.47 31693.50 31299.51 20999.01 243
DP-MVS98.93 5998.81 6799.28 8399.21 15898.45 10698.46 12199.33 13999.63 1399.48 5299.15 11497.23 13799.75 21297.17 14799.66 16399.63 53
MVS_Test98.18 16198.36 12997.67 25698.48 29394.73 27398.18 14499.02 22797.69 16398.04 24499.11 11997.22 13899.56 29298.57 7498.90 29298.71 291
dcpmvs_298.78 7899.11 3997.78 24799.56 7693.67 30899.06 6299.86 1199.50 2499.66 2999.26 8997.21 13999.99 298.00 10799.91 4899.68 41
MCST-MVS98.00 17397.63 19899.10 11199.24 15198.17 12896.89 25998.73 27495.66 27297.92 24897.70 30397.17 14099.66 25996.18 23199.23 25399.47 129
test_vis3_rt99.14 3599.17 3099.07 11799.78 2598.38 10998.92 7599.94 197.80 15699.91 599.67 2097.15 14198.91 36199.76 899.56 19599.92 5
FC-MVSNet-test99.27 2599.25 2699.34 7299.77 2798.37 11199.30 3199.57 4999.61 1899.40 6799.50 4997.12 14299.85 11099.02 4699.94 2799.80 17
MIMVSNet199.38 2099.32 2299.55 2399.86 1499.19 3799.41 1399.59 4099.59 1999.71 2199.57 3597.12 14299.90 5299.21 3599.87 6399.54 93
3Dnovator+97.89 398.69 9398.51 10399.24 9398.81 24398.40 10799.02 6599.19 18898.99 8098.07 24099.28 8597.11 14499.84 12696.84 18099.32 23899.47 129
patch_mono-298.51 12698.63 8898.17 22199.38 12594.78 27097.36 22999.69 2498.16 13598.49 21099.29 8497.06 14599.97 498.29 9099.91 4899.76 26
Anonymous2024052998.93 5998.87 5999.12 10799.19 16598.22 12599.01 6698.99 23399.25 5099.54 4199.37 6997.04 14699.80 17097.89 11199.52 20799.35 180
MSLP-MVS++98.02 17198.14 15797.64 26098.58 28295.19 26097.48 22199.23 18097.47 18297.90 25098.62 22797.04 14698.81 36497.55 12999.41 22698.94 259
APD-MVScopyleft98.10 16597.67 19299.42 5899.11 18498.93 7197.76 19199.28 16494.97 28998.72 18198.77 19997.04 14699.85 11093.79 30599.54 20099.49 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp97.02 149
CP-MVSNet99.21 3299.09 4299.56 2199.65 5798.96 7099.13 5499.34 13499.42 3499.33 8199.26 8997.01 15099.94 2698.74 6299.93 3199.79 18
ambc98.24 21798.82 24195.97 23698.62 9799.00 23299.27 9299.21 9896.99 15199.50 30996.55 20899.50 21699.26 203
MTAPA98.88 6598.64 8799.61 999.67 5599.36 1198.43 12499.20 18498.83 9598.89 15398.90 17196.98 15299.92 3997.16 14899.70 14499.56 82
v899.01 4899.16 3298.57 18199.47 10996.31 22898.90 7699.47 8999.03 7799.52 4799.57 3596.93 15399.81 16399.60 1299.98 999.60 61
QAPM97.31 22596.81 24698.82 14898.80 24697.49 18499.06 6299.19 18890.22 35297.69 26599.16 11096.91 15499.90 5290.89 35099.41 22699.07 233
CDPH-MVS97.26 22996.66 25699.07 11799.00 20698.15 12996.03 29699.01 23091.21 34697.79 25997.85 29596.89 15599.69 23692.75 32599.38 23199.39 161
PVSNet_Blended_VisFu98.17 16398.15 15598.22 21899.73 3695.15 26197.36 22999.68 2994.45 30298.99 13399.27 8796.87 15699.94 2697.13 15399.91 4899.57 78
Anonymous2023121199.27 2599.27 2599.26 8899.29 14398.18 12699.49 899.51 7299.70 799.80 1399.68 1896.84 15799.83 14099.21 3599.91 4899.77 22
V4298.78 7898.78 6998.76 16099.44 11497.04 20798.27 13699.19 18897.87 15199.25 10099.16 11096.84 15799.78 19499.21 3599.84 7099.46 131
PMMVS298.07 16998.08 16398.04 23399.41 12294.59 27994.59 34699.40 11097.50 17998.82 16998.83 18896.83 15999.84 12697.50 13499.81 8499.71 33
PVSNet_BlendedMVS97.55 20997.53 20397.60 26298.92 22193.77 30696.64 27199.43 10494.49 29897.62 26899.18 10496.82 16099.67 24894.73 27499.93 3199.36 176
PVSNet_Blended96.88 25596.68 25397.47 27598.92 22193.77 30694.71 33999.43 10490.98 34897.62 26897.36 32396.82 16099.67 24894.73 27499.56 19598.98 248
ab-mvs98.41 13498.36 12998.59 17899.19 16597.23 19699.32 2298.81 26297.66 16598.62 19199.40 6896.82 16099.80 17095.88 24299.51 20998.75 288
FIs99.14 3599.09 4299.29 8199.70 5098.28 11799.13 5499.52 7199.48 2699.24 10199.41 6696.79 16399.82 15098.69 6799.88 6099.76 26
UniMVSNet (Re)98.87 6698.71 7699.35 6999.24 15198.73 8597.73 19499.38 11598.93 8699.12 11298.73 20496.77 16499.86 9898.63 7199.80 9599.46 131
API-MVS97.04 24796.91 23897.42 27897.88 33098.23 12498.18 14498.50 28697.57 17397.39 28896.75 33496.77 16499.15 35290.16 35399.02 28194.88 370
diffmvspermissive98.22 15798.24 14498.17 22199.00 20695.44 25196.38 28399.58 4297.79 15798.53 20798.50 24396.76 16699.74 21797.95 11099.64 16699.34 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS98.82 7298.63 8899.39 6399.16 17598.74 8297.54 21599.25 17398.84 9499.06 12098.76 20196.76 16699.93 3198.57 7499.77 10999.50 108
Baseline_NR-MVSNet98.98 5398.86 6299.36 6499.82 2198.55 9797.47 22399.57 4999.37 3899.21 10499.61 3096.76 16699.83 14098.06 10299.83 7799.71 33
VPNet98.87 6698.83 6499.01 12999.70 5097.62 18098.43 12499.35 12899.47 2899.28 9099.05 13196.72 16999.82 15098.09 10099.36 23299.59 67
UniMVSNet_NR-MVSNet98.86 6998.68 8299.40 6299.17 17398.74 8297.68 19899.40 11099.14 6099.06 12098.59 23196.71 17099.93 3198.57 7499.77 10999.53 100
LF4IMVS97.90 17897.69 19198.52 19099.17 17397.66 17697.19 24499.47 8996.31 25397.85 25598.20 27096.71 17099.52 30494.62 27799.72 13498.38 312
v14898.45 13198.60 9598.00 23599.44 11494.98 26697.44 22599.06 21698.30 11899.32 8798.97 15496.65 17299.62 27298.37 8599.85 6699.39 161
v1098.97 5499.11 3998.55 18699.44 11496.21 23098.90 7699.55 6098.73 9699.48 5299.60 3296.63 17399.83 14099.70 1199.99 599.61 60
test_fmvs298.70 9098.97 5397.89 24099.54 8394.05 29098.55 10599.92 596.78 23599.72 1999.78 896.60 17499.67 24899.91 299.90 5599.94 3
OpenMVScopyleft96.65 797.09 24396.68 25398.32 20998.32 30697.16 20498.86 8099.37 11989.48 35696.29 32999.15 11496.56 17599.90 5292.90 31999.20 25797.89 330
UGNet98.53 12398.45 11598.79 15497.94 32696.96 21099.08 5898.54 28399.10 6896.82 31399.47 5496.55 17699.84 12698.56 7799.94 2799.55 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST998.71 25798.08 13795.96 30099.03 22491.40 34395.85 33697.53 31196.52 17799.76 205
Test By Simon96.52 177
train_agg97.10 24196.45 26699.07 11798.71 25798.08 13795.96 30099.03 22491.64 33895.85 33697.53 31196.47 17999.76 20593.67 30699.16 26399.36 176
test_898.67 26998.01 14495.91 30599.02 22791.64 33895.79 33897.50 31496.47 17999.76 205
Effi-MVS+-dtu98.26 15397.90 17899.35 6998.02 32399.49 598.02 16499.16 19998.29 12197.64 26797.99 28596.44 18199.95 1796.66 19698.93 29098.60 300
ppachtmachnet_test97.50 21097.74 18796.78 30798.70 26191.23 34694.55 34799.05 21996.36 25099.21 10498.79 19696.39 18299.78 19496.74 18899.82 8099.34 182
OurMVSNet-221017-099.37 2199.31 2399.53 3499.91 398.98 6599.63 699.58 4299.44 3199.78 1599.76 1096.39 18299.92 3999.44 2299.92 4299.68 41
NR-MVSNet98.95 5798.82 6599.36 6499.16 17598.72 8799.22 4199.20 18499.10 6899.72 1998.76 20196.38 18499.86 9898.00 10799.82 8099.50 108
v119298.60 11198.66 8498.41 20299.27 14695.88 23897.52 21799.36 12397.41 19299.33 8199.20 10096.37 18599.82 15099.57 1499.92 4299.55 89
ZD-MVS99.01 20598.84 7599.07 21594.10 31098.05 24398.12 27596.36 18699.86 9892.70 32799.19 260
v114498.60 11198.66 8498.41 20299.36 13295.90 23797.58 21199.34 13497.51 17899.27 9299.15 11496.34 18799.80 17099.47 2099.93 3199.51 105
mvs_anonymous97.83 19298.16 15496.87 30198.18 31591.89 33497.31 23298.90 24397.37 19698.83 16699.46 5596.28 18899.79 18398.90 5298.16 32398.95 255
test_vis1_rt97.75 19497.72 19097.83 24398.81 24396.35 22697.30 23399.69 2494.61 29697.87 25298.05 28296.26 18998.32 36998.74 6298.18 32098.82 273
DSMNet-mixed97.42 21897.60 20096.87 30199.15 17991.46 33898.54 10799.12 20792.87 32897.58 27299.63 2796.21 19099.90 5295.74 25199.54 20099.27 200
test_f98.67 10198.87 5998.05 23299.72 4295.59 24498.51 11399.81 1496.30 25599.78 1599.82 496.14 19198.63 36699.82 399.93 3199.95 2
TAPA-MVS96.21 1196.63 26595.95 27698.65 16998.93 21798.09 13396.93 25699.28 16483.58 36998.13 23597.78 29796.13 19299.40 32693.52 31099.29 24598.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124098.55 11998.62 9098.32 20999.22 15695.58 24597.51 21999.45 9497.16 21999.45 5899.24 9496.12 19399.85 11099.60 1299.88 6099.55 89
RPSCF98.62 10998.36 12999.42 5899.65 5799.42 798.55 10599.57 4997.72 16298.90 15199.26 8996.12 19399.52 30495.72 25299.71 13999.32 189
MS-PatchMatch97.68 19997.75 18697.45 27698.23 31393.78 30597.29 23498.84 25796.10 26098.64 18898.65 22096.04 19599.36 33196.84 18099.14 26699.20 214
v192192098.54 12198.60 9598.38 20599.20 16295.76 24397.56 21399.36 12397.23 21499.38 7199.17 10896.02 19699.84 12699.57 1499.90 5599.54 93
HPM-MVS++copyleft98.10 16597.64 19799.48 5199.09 18999.13 5597.52 21798.75 27197.46 18796.90 30897.83 29696.01 19799.84 12695.82 24999.35 23499.46 131
Anonymous2023120698.21 15898.21 14698.20 21999.51 9095.43 25298.13 14999.32 14196.16 25898.93 14898.82 19196.00 19899.83 14097.32 14199.73 12799.36 176
EI-MVSNet98.40 13698.51 10398.04 23399.10 18694.73 27397.20 24298.87 24898.97 8299.06 12099.02 13696.00 19899.80 17098.58 7299.82 8099.60 61
IterMVS-LS98.55 11998.70 7998.09 22599.48 10794.73 27397.22 24199.39 11398.97 8299.38 7199.31 8396.00 19899.93 3198.58 7299.97 1299.60 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NCCC97.86 18497.47 20999.05 12498.61 27798.07 13996.98 25298.90 24397.63 16797.04 29997.93 29195.99 20199.66 25995.31 26498.82 29599.43 143
our_test_397.39 22097.73 18996.34 31398.70 26189.78 35194.61 34598.97 23496.50 24599.04 12798.85 18495.98 20299.84 12697.26 14499.67 15899.41 149
v2v48298.56 11598.62 9098.37 20699.42 12095.81 24197.58 21199.16 19997.90 14999.28 9099.01 14595.98 20299.79 18399.33 2599.90 5599.51 105
MVS93.19 32992.09 33396.50 31196.91 35994.03 29398.07 15798.06 30668.01 37394.56 35696.48 33995.96 20499.30 33983.84 36696.89 35196.17 362
MVP-Stereo98.08 16897.92 17698.57 18198.96 21396.79 21697.90 17799.18 19296.41 24998.46 21298.95 16195.93 20599.60 27996.51 21198.98 28699.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior295.74 31196.48 24796.11 33197.63 30795.92 20694.16 29199.20 257
AdaColmapbinary97.14 24096.71 25198.46 19798.34 30597.80 16896.95 25398.93 23795.58 27396.92 30397.66 30495.87 20799.53 30090.97 34799.14 26698.04 325
mvsmamba99.24 3199.15 3799.49 4899.83 1998.85 7499.41 1399.55 6099.54 2299.40 6799.52 4795.86 20899.91 4799.32 2699.95 1999.70 38
v14419298.54 12198.57 9898.45 19899.21 15895.98 23597.63 20499.36 12397.15 22199.32 8799.18 10495.84 20999.84 12699.50 1899.91 4899.54 93
PatchMatch-RL97.24 23296.78 24798.61 17699.03 20497.83 16296.36 28499.06 21693.49 32097.36 29097.78 29795.75 21099.49 31093.44 31398.77 29698.52 303
F-COLMAP97.30 22696.68 25399.14 10599.19 16598.39 10897.27 23799.30 15492.93 32696.62 31998.00 28495.73 21199.68 24592.62 32898.46 31299.35 180
PMMVS96.51 26995.98 27598.09 22597.53 34695.84 23994.92 33598.84 25791.58 34096.05 33495.58 35395.68 21299.66 25995.59 25898.09 32798.76 287
N_pmnet97.63 20497.17 22498.99 13199.27 14697.86 15995.98 29793.41 36295.25 28399.47 5498.90 17195.63 21399.85 11096.91 16999.73 12799.27 200
WR-MVS98.40 13698.19 14999.03 12799.00 20697.65 17796.85 26098.94 23598.57 10798.89 15398.50 24395.60 21499.85 11097.54 13199.85 6699.59 67
CANet97.87 18397.76 18598.19 22097.75 33595.51 24896.76 26599.05 21997.74 15996.93 30298.21 26995.59 21599.89 6297.86 11699.93 3199.19 219
131495.74 29095.60 28596.17 31897.53 34692.75 32398.07 15798.31 29491.22 34594.25 35796.68 33595.53 21699.03 35491.64 33897.18 34696.74 357
114514_t96.50 27195.77 27898.69 16799.48 10797.43 18897.84 18499.55 6081.42 37196.51 32398.58 23295.53 21699.67 24893.41 31499.58 18898.98 248
test1298.93 13798.58 28297.83 16298.66 27796.53 32195.51 21899.69 23699.13 26899.27 200
旧先验198.82 24197.45 18798.76 26898.34 25995.50 21999.01 28299.23 209
YYNet197.60 20597.67 19297.39 28099.04 20193.04 31895.27 32598.38 29297.25 20898.92 14998.95 16195.48 22099.73 22196.99 16398.74 29799.41 149
MDA-MVSNet_test_wron97.60 20597.66 19597.41 27999.04 20193.09 31495.27 32598.42 28997.26 20798.88 15798.95 16195.43 22199.73 22197.02 16098.72 29999.41 149
原ACMM198.35 20798.90 22596.25 22998.83 26192.48 33296.07 33398.10 27795.39 22299.71 22992.61 32998.99 28499.08 232
USDC97.41 21997.40 21097.44 27798.94 21593.67 30895.17 32899.53 6894.03 31298.97 13899.10 12195.29 22399.34 33395.84 24899.73 12799.30 196
testdata98.09 22598.93 21795.40 25398.80 26490.08 35497.45 28498.37 25595.26 22499.70 23293.58 30998.95 28899.17 225
bld_raw_dy_0_6499.07 4599.00 4999.29 8199.85 1698.18 12699.11 5799.40 11099.33 4399.38 7199.44 6095.21 22599.97 499.31 2799.98 999.73 31
BH-untuned96.83 25796.75 24997.08 29098.74 25193.33 31296.71 26898.26 29596.72 23898.44 21497.37 32295.20 22699.47 31691.89 33497.43 33998.44 309
MVEpermissive83.40 2292.50 33391.92 33694.25 34398.83 23891.64 33692.71 36583.52 37995.92 26786.46 37695.46 35795.20 22695.40 37580.51 37298.64 30695.73 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-RMVSNet96.83 25796.58 26297.58 26498.47 29494.05 29096.67 27097.36 32196.70 24097.87 25297.98 28695.14 22899.44 32190.47 35298.58 31099.25 204
pmmvs497.58 20897.28 21998.51 19298.84 23696.93 21395.40 32398.52 28593.60 31798.61 19398.65 22095.10 22999.60 27996.97 16699.79 10098.99 247
test_vis1_n_192098.40 13698.92 5696.81 30599.74 3590.76 34898.15 14899.91 698.33 11599.89 899.55 4095.07 23099.88 7199.76 899.93 3199.79 18
EU-MVSNet97.66 20198.50 10595.13 33799.63 6285.84 36598.35 13198.21 29798.23 12599.54 4199.46 5595.02 23199.68 24598.24 9199.87 6399.87 9
DP-MVS Recon97.33 22496.92 23698.57 18199.09 18997.99 14596.79 26299.35 12893.18 32297.71 26398.07 28195.00 23299.31 33793.97 29899.13 26898.42 311
HQP_MVS97.99 17697.67 19298.93 13799.19 16597.65 17797.77 18999.27 16798.20 12997.79 25997.98 28694.90 23399.70 23294.42 28599.51 20999.45 135
plane_prior698.99 20997.70 17594.90 233
CPTT-MVS97.84 19097.36 21499.27 8699.31 13998.46 10598.29 13499.27 16794.90 29197.83 25698.37 25594.90 23399.84 12693.85 30499.54 20099.51 105
new_pmnet96.99 25296.76 24897.67 25698.72 25494.89 26895.95 30298.20 29892.62 33198.55 20498.54 23594.88 23699.52 30493.96 29999.44 22498.59 302
VDD-MVS98.56 11598.39 12599.07 11799.13 18298.07 13998.59 10097.01 33099.59 1999.11 11399.27 8794.82 23799.79 18398.34 8799.63 16999.34 182
jason97.45 21697.35 21597.76 25199.24 15193.93 29895.86 30698.42 28994.24 30698.50 20998.13 27394.82 23799.91 4797.22 14599.73 12799.43 143
jason: jason.
TAMVS98.24 15698.05 16598.80 15299.07 19397.18 20297.88 17898.81 26296.66 24199.17 11199.21 9894.81 23999.77 20096.96 16799.88 6099.44 139
新几何198.91 14098.94 21597.76 17098.76 26887.58 36396.75 31598.10 27794.80 24099.78 19492.73 32699.00 28399.20 214
VNet98.42 13398.30 13798.79 15498.79 24797.29 19398.23 13998.66 27799.31 4598.85 16298.80 19494.80 24099.78 19498.13 9699.13 26899.31 193
RRT_MVS99.09 4298.94 5499.55 2399.87 1298.82 7899.48 998.16 30199.49 2599.59 3799.65 2494.79 24299.95 1799.45 2199.96 1599.88 7
MAR-MVS96.47 27395.70 28198.79 15497.92 32799.12 5798.28 13598.60 28192.16 33695.54 34596.17 34594.77 24399.52 30489.62 35598.23 31797.72 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CL-MVSNet_self_test97.44 21797.22 22298.08 22898.57 28495.78 24294.30 35298.79 26596.58 24498.60 19598.19 27194.74 24499.64 26796.41 21798.84 29398.82 273
MSP-MVS98.40 13698.00 16999.61 999.57 6999.25 2498.57 10399.35 12897.55 17699.31 8997.71 30194.61 24599.88 7196.14 23399.19 26099.70 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPR95.29 29994.47 30897.75 25297.50 35095.14 26294.89 33698.71 27591.39 34495.35 34995.48 35694.57 24699.14 35384.95 36497.37 34198.97 252
test22298.92 22196.93 21395.54 31698.78 26785.72 36696.86 31198.11 27694.43 24799.10 27399.23 209
PLCcopyleft94.65 1696.51 26995.73 28098.85 14598.75 25097.91 15596.42 28199.06 21690.94 34995.59 33997.38 32194.41 24899.59 28390.93 34898.04 33199.05 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS97.84 19097.84 18297.83 24399.14 18094.74 27296.94 25498.88 24695.84 26998.89 15398.96 15794.40 24999.69 23697.55 12999.95 1999.05 235
CNLPA97.17 23896.71 25198.55 18698.56 28598.05 14296.33 28598.93 23796.91 23097.06 29897.39 32094.38 25099.45 31991.66 33699.18 26298.14 321
MDA-MVSNet-bldmvs97.94 17797.91 17798.06 23099.44 11494.96 26796.63 27299.15 20498.35 11398.83 16699.11 11994.31 25199.85 11096.60 19898.72 29999.37 170
OpenMVS_ROBcopyleft95.38 1495.84 28895.18 29997.81 24598.41 30297.15 20597.37 22898.62 28083.86 36898.65 18798.37 25594.29 25299.68 24588.41 35798.62 30896.60 359
TR-MVS95.55 29595.12 30096.86 30497.54 34593.94 29796.49 27796.53 34194.36 30597.03 30096.61 33694.26 25399.16 35186.91 36196.31 35797.47 349
GBi-Net98.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
test198.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
FMVSNet298.49 12798.40 12298.75 16298.90 22597.14 20698.61 9899.13 20698.59 10499.19 10699.28 8594.14 25499.82 15097.97 10999.80 9599.29 198
PAPM_NR96.82 25996.32 26998.30 21299.07 19396.69 22197.48 22198.76 26895.81 27096.61 32096.47 34094.12 25799.17 35090.82 35197.78 33399.06 234
Anonymous2024052198.69 9398.87 5998.16 22399.77 2795.11 26499.08 5899.44 9899.34 4299.33 8199.55 4094.10 25899.94 2699.25 3299.96 1599.42 146
HQP2-MVS93.84 259
HQP-MVS97.00 25196.49 26598.55 18698.67 26996.79 21696.29 28799.04 22296.05 26195.55 34296.84 33293.84 25999.54 29892.82 32299.26 25099.32 189
MVSFormer98.26 15398.43 11897.77 24898.88 23193.89 30299.39 1699.56 5699.11 6198.16 23198.13 27393.81 26199.97 499.26 3099.57 19299.43 143
lupinMVS97.06 24596.86 24097.65 25898.88 23193.89 30295.48 32097.97 30893.53 31898.16 23197.58 30993.81 26199.91 4796.77 18599.57 19299.17 225
MG-MVS96.77 26096.61 25997.26 28498.31 30793.06 31595.93 30398.12 30496.45 24897.92 24898.73 20493.77 26399.39 32891.19 34699.04 27799.33 187
PVSNet93.40 1795.67 29195.70 28195.57 33098.83 23888.57 35492.50 36697.72 31392.69 33096.49 32696.44 34193.72 26499.43 32293.61 30799.28 24698.71 291
MVS_030497.64 20297.35 21598.52 19097.87 33196.69 22198.59 10098.05 30797.44 19093.74 36598.85 18493.69 26599.88 7198.11 9799.81 8498.98 248
pmmvs597.64 20297.49 20698.08 22899.14 18095.12 26396.70 26999.05 21993.77 31598.62 19198.83 18893.23 26699.75 21298.33 8999.76 12099.36 176
CANet_DTU97.26 22997.06 23097.84 24297.57 34394.65 27796.19 29398.79 26597.23 21495.14 35198.24 26693.22 26799.84 12697.34 14099.84 7099.04 239
UnsupCasMVSNet_bld97.30 22696.92 23698.45 19899.28 14496.78 21996.20 29299.27 16795.42 27898.28 22598.30 26393.16 26899.71 22994.99 26897.37 34198.87 269
IterMVS97.73 19598.11 15996.57 30999.24 15190.28 34995.52 31999.21 18298.86 9199.33 8199.33 7993.11 26999.94 2698.49 8099.94 2799.48 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.85 18998.18 15096.87 30199.27 14691.16 34795.53 31799.25 17399.10 6899.41 6499.35 7393.10 27099.96 1198.65 7099.94 2799.49 112
SCA96.41 27596.66 25695.67 32798.24 31188.35 35695.85 30896.88 33796.11 25997.67 26698.67 21593.10 27099.85 11094.16 29199.22 25498.81 277
DPM-MVS96.32 27695.59 28698.51 19298.76 24897.21 19994.54 34898.26 29591.94 33796.37 32797.25 32593.06 27299.43 32291.42 34298.74 29798.89 265
BH-w/o95.13 30294.89 30695.86 32298.20 31491.31 34295.65 31397.37 32093.64 31696.52 32295.70 35293.04 27399.02 35588.10 35895.82 36297.24 351
cascas94.79 30794.33 31396.15 32196.02 37392.36 33092.34 36899.26 17285.34 36795.08 35294.96 36492.96 27498.53 36794.41 28898.59 30997.56 347
c3_l97.36 22197.37 21397.31 28198.09 32093.25 31395.01 33399.16 19997.05 22398.77 17598.72 20692.88 27599.64 26796.93 16899.76 12099.05 235
MVS-HIRNet94.32 31295.62 28490.42 35798.46 29575.36 38096.29 28789.13 37495.25 28395.38 34899.75 1192.88 27599.19 34994.07 29799.39 22896.72 358
test_vis1_n98.31 14698.50 10597.73 25499.76 3094.17 28898.68 9299.91 696.31 25399.79 1499.57 3592.85 27799.42 32499.79 699.84 7099.60 61
sss97.21 23496.93 23498.06 23098.83 23895.22 25996.75 26698.48 28794.49 29897.27 29197.90 29292.77 27899.80 17096.57 20199.32 23899.16 228
miper_ehance_all_eth97.06 24597.03 23197.16 28997.83 33293.06 31594.66 34299.09 21395.99 26598.69 18298.45 24892.73 27999.61 27896.79 18299.03 27898.82 273
SixPastTwentyTwo98.75 8398.62 9099.16 10299.83 1997.96 15299.28 3698.20 29899.37 3899.70 2399.65 2492.65 28099.93 3199.04 4499.84 7099.60 61
UnsupCasMVSNet_eth97.89 18097.60 20098.75 16299.31 13997.17 20397.62 20599.35 12898.72 9798.76 17798.68 21392.57 28199.74 21797.76 12495.60 36399.34 182
CHOSEN 1792x268897.49 21297.14 22898.54 18999.68 5396.09 23396.50 27699.62 3591.58 34098.84 16598.97 15492.36 28299.88 7196.76 18699.95 1999.67 44
PCF-MVS92.86 1894.36 31193.00 32898.42 20198.70 26197.56 18193.16 36499.11 20979.59 37297.55 27597.43 31892.19 28399.73 22179.85 37399.45 22197.97 329
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet98.30 14798.04 16699.07 11799.56 7697.83 16299.29 3298.07 30599.03 7798.59 19799.13 11792.16 28499.90 5296.87 17799.68 15299.49 112
1112_ss97.29 22896.86 24098.58 17999.34 13896.32 22796.75 26699.58 4293.14 32396.89 30997.48 31592.11 28599.86 9896.91 16999.54 20099.57 78
CDS-MVSNet97.69 19897.35 21598.69 16798.73 25297.02 20996.92 25898.75 27195.89 26898.59 19798.67 21592.08 28699.74 21796.72 19199.81 8499.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth97.23 23397.25 22097.17 28798.00 32492.77 32294.71 33999.18 19297.27 20698.56 20298.74 20391.89 28799.69 23697.06 15999.81 8499.05 235
test_fmvs1_n98.09 16798.28 13997.52 27199.68 5393.47 31198.63 9599.93 395.41 28199.68 2799.64 2691.88 28899.48 31399.82 399.87 6399.62 54
IS-MVSNet98.19 16097.90 17899.08 11599.57 6997.97 14999.31 2698.32 29399.01 7998.98 13499.03 13591.59 28999.79 18395.49 26199.80 9599.48 122
test_fmvs197.72 19697.94 17497.07 29298.66 27492.39 32897.68 19899.81 1495.20 28599.54 4199.44 6091.56 29099.41 32599.78 799.77 10999.40 158
Test_1112_low_res96.99 25296.55 26398.31 21199.35 13695.47 25095.84 30999.53 6891.51 34296.80 31498.48 24691.36 29199.83 14096.58 19999.53 20499.62 54
WTY-MVS96.67 26396.27 27297.87 24198.81 24394.61 27896.77 26497.92 31094.94 29097.12 29497.74 30091.11 29299.82 15093.89 30198.15 32499.18 221
PVSNet_089.98 2191.15 34090.30 34393.70 34997.72 33684.34 37390.24 36997.42 31990.20 35393.79 36393.09 37290.90 29398.89 36386.57 36272.76 37697.87 332
miper_enhance_ethall96.01 28395.74 27996.81 30596.41 36892.27 33193.69 36198.89 24591.14 34798.30 22397.35 32490.58 29499.58 28796.31 22299.03 27898.60 300
VDDNet98.21 15897.95 17299.01 12999.58 6597.74 17299.01 6697.29 32599.67 998.97 13899.50 4990.45 29599.80 17097.88 11499.20 25799.48 122
Anonymous20240521197.90 17897.50 20599.08 11598.90 22598.25 11998.53 10896.16 34498.87 9099.11 11398.86 18190.40 29699.78 19497.36 13999.31 24099.19 219
miper_lstm_enhance97.18 23797.16 22597.25 28598.16 31692.85 32095.15 33099.31 14697.25 20898.74 18098.78 19790.07 29799.78 19497.19 14699.80 9599.11 231
lessismore_v098.97 13399.73 3697.53 18386.71 37699.37 7499.52 4789.93 29899.92 3998.99 4899.72 13499.44 139
HY-MVS95.94 1395.90 28695.35 29497.55 26897.95 32594.79 26998.81 8396.94 33592.28 33595.17 35098.57 23389.90 29999.75 21291.20 34597.33 34598.10 322
K. test v398.00 17397.66 19599.03 12799.79 2497.56 18199.19 4892.47 36599.62 1699.52 4799.66 2289.61 30099.96 1199.25 3299.81 8499.56 82
CMPMVSbinary75.91 2396.29 27795.44 29098.84 14696.25 37098.69 8897.02 24999.12 20788.90 35997.83 25698.86 18189.51 30198.90 36291.92 33399.51 20998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet96.25 27997.21 22393.38 35399.10 18680.56 37997.20 24298.19 30096.94 22899.00 13299.02 13689.50 30299.80 17096.36 22099.59 18399.78 20
DeepMVS_CXcopyleft93.44 35298.24 31194.21 28694.34 35564.28 37491.34 37094.87 36789.45 30392.77 37777.54 37593.14 37193.35 372
EPNet96.14 28195.44 29098.25 21590.76 38095.50 24997.92 17494.65 35398.97 8292.98 36698.85 18489.12 30499.87 8995.99 23899.68 15299.39 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)97.46 21497.16 22598.34 20899.55 8096.10 23198.94 7398.44 28898.32 11798.16 23198.62 22788.76 30599.73 22193.88 30299.79 10099.18 221
test111196.49 27296.82 24495.52 33199.42 12087.08 36299.22 4187.14 37599.11 6199.46 5599.58 3488.69 30699.86 9898.80 5799.95 1999.62 54
DIV-MVS_self_test97.02 24896.84 24297.58 26497.82 33394.03 29394.66 34299.16 19997.04 22498.63 18998.71 20788.69 30699.69 23697.00 16199.81 8499.01 243
cl____97.02 24896.83 24397.58 26497.82 33394.04 29294.66 34299.16 19997.04 22498.63 18998.71 20788.68 30899.69 23697.00 16199.81 8499.00 246
h-mvs3397.77 19397.33 21899.10 11199.21 15897.84 16198.35 13198.57 28299.11 6198.58 19999.02 13688.65 30999.96 1198.11 9796.34 35699.49 112
hse-mvs297.46 21497.07 22998.64 17098.73 25297.33 19197.45 22497.64 31899.11 6198.58 19997.98 28688.65 30999.79 18398.11 9797.39 34098.81 277
ECVR-MVScopyleft96.42 27496.61 25995.85 32399.38 12588.18 35899.22 4186.00 37799.08 7399.36 7699.57 3588.47 31199.82 15098.52 7899.95 1999.54 93
FA-MVS(test-final)96.99 25296.82 24497.50 27398.70 26194.78 27099.34 1996.99 33195.07 28698.48 21199.33 7988.41 31299.65 26496.13 23598.92 29198.07 324
EPNet_dtu94.93 30694.78 30795.38 33593.58 37787.68 36096.78 26395.69 35197.35 19889.14 37398.09 27988.15 31399.49 31094.95 27099.30 24398.98 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.35 22296.88 23998.78 15798.54 28798.09 13397.71 19597.69 31599.20 5497.59 27195.90 34988.12 31499.55 29598.18 9598.96 28798.70 293
FMVSNet397.50 21097.24 22198.29 21398.08 32195.83 24097.86 18298.91 24297.89 15098.95 14198.95 16187.06 31599.81 16397.77 12099.69 14799.23 209
baseline195.96 28595.44 29097.52 27198.51 29293.99 29698.39 12896.09 34698.21 12698.40 22197.76 29986.88 31699.63 27095.42 26289.27 37498.95 255
RPMNet97.02 24896.93 23497.30 28297.71 33894.22 28498.11 15299.30 15499.37 3896.91 30599.34 7786.72 31799.87 8997.53 13297.36 34397.81 335
HyFIR lowres test97.19 23696.60 26198.96 13499.62 6497.28 19495.17 32899.50 7494.21 30799.01 13198.32 26286.61 31899.99 297.10 15599.84 7099.60 61
PAPM91.88 33990.34 34296.51 31098.06 32292.56 32492.44 36797.17 32686.35 36490.38 37196.01 34686.61 31899.21 34870.65 37695.43 36497.75 339
test_yl96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
DCV-MVSNet96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
CHOSEN 280x42095.51 29795.47 28795.65 32998.25 31088.27 35793.25 36398.88 24693.53 31894.65 35497.15 32886.17 32299.93 3197.41 13799.93 3198.73 290
EMVS93.83 32294.02 31493.23 35496.83 36284.96 36889.77 37196.32 34397.92 14797.43 28696.36 34486.17 32298.93 36087.68 35997.73 33495.81 367
MIMVSNet96.62 26696.25 27397.71 25599.04 20194.66 27699.16 5096.92 33697.23 21497.87 25299.10 12186.11 32499.65 26491.65 33799.21 25698.82 273
tpmvs95.02 30595.25 29694.33 34296.39 36985.87 36498.08 15696.83 33895.46 27795.51 34798.69 21185.91 32599.53 30094.16 29196.23 35897.58 346
MDTV_nov1_ep13_2view74.92 38197.69 19790.06 35597.75 26285.78 32693.52 31098.69 294
ADS-MVSNet295.43 29894.98 30296.76 30898.14 31791.74 33597.92 17497.76 31290.23 35096.51 32398.91 16885.61 32799.85 11092.88 32096.90 34998.69 294
ADS-MVSNet95.24 30194.93 30596.18 31798.14 31790.10 35097.92 17497.32 32490.23 35096.51 32398.91 16885.61 32799.74 21792.88 32096.90 34998.69 294
tpmrst95.07 30395.46 28893.91 34697.11 35784.36 37297.62 20596.96 33394.98 28896.35 32898.80 19485.46 32999.59 28395.60 25796.23 35897.79 338
CR-MVSNet96.28 27895.95 27697.28 28397.71 33894.22 28498.11 15298.92 24092.31 33496.91 30599.37 6985.44 33099.81 16397.39 13897.36 34397.81 335
Patchmtry97.35 22296.97 23398.50 19497.31 35496.47 22398.18 14498.92 24098.95 8598.78 17299.37 6985.44 33099.85 11095.96 24099.83 7799.17 225
test_method79.78 34279.50 34580.62 35880.21 38145.76 38370.82 37298.41 29131.08 37680.89 37797.71 30184.85 33297.37 37291.51 34180.03 37598.75 288
PatchmatchNetpermissive95.58 29495.67 28395.30 33697.34 35387.32 36197.65 20396.65 33995.30 28297.07 29798.69 21184.77 33399.75 21294.97 26998.64 30698.83 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs184.74 33498.81 277
E-PMN94.17 31694.37 31193.58 35096.86 36085.71 36790.11 37097.07 32998.17 13297.82 25897.19 32684.62 33598.94 35989.77 35497.68 33596.09 366
LFMVS97.20 23596.72 25098.64 17098.72 25496.95 21198.93 7494.14 36099.74 698.78 17299.01 14584.45 33699.73 22197.44 13599.27 24799.25 204
patchmatchnet-post98.77 19984.37 33799.85 110
PatchT96.65 26496.35 26797.54 26997.40 35195.32 25597.98 17096.64 34099.33 4396.89 30999.42 6384.32 33899.81 16397.69 12797.49 33697.48 348
Patchmatch-RL test97.26 22997.02 23297.99 23699.52 8895.53 24796.13 29499.71 2197.47 18299.27 9299.16 11084.30 33999.62 27297.89 11199.77 10998.81 277
sam_mvs84.29 340
MDTV_nov1_ep1395.22 29797.06 35883.20 37497.74 19396.16 34494.37 30496.99 30198.83 18883.95 34199.53 30093.90 30097.95 332
test_post21.25 37883.86 34299.70 232
Patchmatch-test96.55 26796.34 26897.17 28798.35 30493.06 31598.40 12797.79 31197.33 19998.41 21798.67 21583.68 34399.69 23695.16 26699.31 24098.77 285
GA-MVS95.86 28795.32 29597.49 27498.60 27994.15 28993.83 35997.93 30995.49 27696.68 31697.42 31983.21 34499.30 33996.22 22798.55 31199.01 243
JIA-IIPM95.52 29695.03 30197.00 29396.85 36194.03 29396.93 25695.82 34999.20 5494.63 35599.71 1683.09 34599.60 27994.42 28594.64 36797.36 350
test_post197.59 21020.48 37983.07 34699.66 25994.16 291
tpm cat193.29 32893.13 32793.75 34897.39 35284.74 36997.39 22697.65 31683.39 37094.16 35898.41 25082.86 34799.39 32891.56 34095.35 36597.14 352
cl2295.79 28995.39 29396.98 29596.77 36392.79 32194.40 35098.53 28494.59 29797.89 25198.17 27282.82 34899.24 34596.37 21899.03 27898.92 261
test-LLR93.90 32193.85 31594.04 34496.53 36584.62 37094.05 35692.39 36696.17 25694.12 35995.07 35982.30 34999.67 24895.87 24598.18 32097.82 333
test0.0.03 194.51 30993.69 31896.99 29496.05 37193.61 31094.97 33493.49 36196.17 25697.57 27494.88 36582.30 34999.01 35793.60 30894.17 37098.37 314
AUN-MVS96.24 28095.45 28998.60 17798.70 26197.22 19897.38 22797.65 31695.95 26695.53 34697.96 29082.11 35199.79 18396.31 22297.44 33898.80 282
MVSTER96.86 25696.55 26397.79 24697.91 32894.21 28697.56 21398.87 24897.49 18199.06 12099.05 13180.72 35299.80 17098.44 8299.82 8099.37 170
tmp_tt78.77 34378.73 34678.90 35958.45 38274.76 38294.20 35378.26 38239.16 37586.71 37592.82 37380.50 35375.19 37886.16 36392.29 37286.74 373
thres20093.72 32493.14 32695.46 33498.66 27491.29 34396.61 27394.63 35497.39 19496.83 31293.71 37179.88 35499.56 29282.40 37098.13 32595.54 369
thres100view90094.19 31593.67 31995.75 32699.06 19791.35 34198.03 16394.24 35898.33 11597.40 28794.98 36379.84 35599.62 27283.05 36798.08 32896.29 360
thres600view794.45 31093.83 31696.29 31499.06 19791.53 33797.99 16994.24 35898.34 11497.44 28595.01 36179.84 35599.67 24884.33 36598.23 31797.66 343
tfpn200view994.03 31993.44 32195.78 32598.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32896.29 360
thres40094.14 31793.44 32196.24 31698.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32897.66 343
pmmvs395.03 30494.40 31096.93 29797.70 34092.53 32595.08 33197.71 31488.57 36097.71 26398.08 28079.39 35999.82 15096.19 22999.11 27298.43 310
iter_conf_final97.10 24196.65 25898.45 19898.53 28996.08 23498.30 13399.11 20998.10 13798.85 16298.95 16179.38 36099.87 8998.68 6899.91 4899.40 158
baseline293.73 32392.83 32996.42 31297.70 34091.28 34496.84 26189.77 37393.96 31492.44 36795.93 34879.14 36199.77 20092.94 31896.76 35398.21 317
FE-MVS95.66 29294.95 30497.77 24898.53 28995.28 25699.40 1596.09 34693.11 32497.96 24799.26 8979.10 36299.77 20092.40 33198.71 30198.27 316
tpm94.67 30894.34 31295.66 32897.68 34288.42 35597.88 17894.90 35294.46 30096.03 33598.56 23478.66 36399.79 18395.88 24295.01 36698.78 284
CostFormer93.97 32093.78 31794.51 34197.53 34685.83 36697.98 17095.96 34889.29 35894.99 35398.63 22578.63 36499.62 27294.54 27996.50 35498.09 323
ET-MVSNet_ETH3D94.30 31493.21 32497.58 26498.14 31794.47 28194.78 33893.24 36494.72 29489.56 37295.87 35078.57 36599.81 16396.91 16997.11 34898.46 305
dp93.47 32693.59 32093.13 35596.64 36481.62 37897.66 20196.42 34292.80 32996.11 33198.64 22378.55 36699.59 28393.31 31592.18 37398.16 320
EPMVS93.72 32493.27 32395.09 33896.04 37287.76 35998.13 14985.01 37894.69 29596.92 30398.64 22378.47 36799.31 33795.04 26796.46 35598.20 318
tpm293.09 33092.58 33194.62 34097.56 34486.53 36397.66 20195.79 35086.15 36594.07 36198.23 26875.95 36899.53 30090.91 34996.86 35297.81 335
FPMVS93.44 32792.23 33297.08 29099.25 15097.86 15995.61 31497.16 32792.90 32793.76 36498.65 22075.94 36995.66 37479.30 37497.49 33697.73 340
iter_conf0596.54 26896.07 27497.92 23797.90 32994.50 28097.87 18199.14 20597.73 16098.89 15398.95 16175.75 37099.87 8998.50 7999.92 4299.40 158
thisisatest051594.12 31893.16 32596.97 29698.60 27992.90 31993.77 36090.61 37094.10 31096.91 30595.87 35074.99 37199.80 17094.52 28099.12 27198.20 318
tttt051795.64 29394.98 30297.64 26099.36 13293.81 30498.72 8790.47 37198.08 13998.67 18498.34 25973.88 37299.92 3997.77 12099.51 20999.20 214
thisisatest053095.27 30094.45 30997.74 25399.19 16594.37 28297.86 18290.20 37297.17 21898.22 22797.65 30573.53 37399.90 5296.90 17499.35 23498.95 255
FMVSNet596.01 28395.20 29898.41 20297.53 34696.10 23198.74 8499.50 7497.22 21798.03 24599.04 13369.80 37499.88 7197.27 14399.71 13999.25 204
gg-mvs-nofinetune92.37 33591.20 34095.85 32395.80 37492.38 32999.31 2681.84 38099.75 591.83 36999.74 1268.29 37599.02 35587.15 36097.12 34796.16 363
KD-MVS_2432*160092.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
miper_refine_blended92.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
GG-mvs-BLEND94.76 33994.54 37692.13 33399.31 2680.47 38188.73 37491.01 37467.59 37898.16 37182.30 37194.53 36993.98 371
TESTMET0.1,192.19 33891.77 33893.46 35196.48 36782.80 37594.05 35691.52 36994.45 30294.00 36294.88 36566.65 37999.56 29295.78 25098.11 32698.02 326
test250692.39 33491.89 33793.89 34799.38 12582.28 37699.32 2266.03 38399.08 7398.77 17599.57 3566.26 38099.84 12698.71 6599.95 1999.54 93
IB-MVS91.63 1992.24 33790.90 34196.27 31597.22 35691.24 34594.36 35193.33 36392.37 33392.24 36894.58 36866.20 38199.89 6293.16 31794.63 36897.66 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter92.33 33691.76 33994.04 34496.53 36584.62 37094.05 35692.39 36694.00 31394.12 35995.07 35965.63 38299.67 24895.87 24598.18 32097.82 333
test12317.04 34620.11 3497.82 36010.25 3844.91 38494.80 3374.47 3854.93 37810.00 38024.28 3779.69 3833.64 37910.14 37712.43 37814.92 375
testmvs17.12 34520.53 3486.87 36112.05 3834.20 38593.62 3626.73 3844.62 37910.41 37924.33 3768.28 3843.56 3809.69 37815.07 37712.86 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.12 34810.83 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.48 3150.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.73 3699.67 299.43 1199.54 6599.43 3399.26 96
MSC_two_6792asdad99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
No_MVS99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
eth-test20.00 385
eth-test0.00 385
IU-MVS99.49 10099.15 4798.87 24892.97 32599.41 6496.76 18699.62 17299.66 45
save fliter99.11 18497.97 14996.53 27599.02 22798.24 124
test_0728_SECOND99.60 1199.50 9399.23 2698.02 16499.32 14199.88 7196.99 16399.63 16999.68 41
GSMVS98.81 277
test_part299.36 13299.10 6099.05 125
MTGPAbinary99.20 184
MTMP97.93 17391.91 368
gm-plane-assit94.83 37581.97 37788.07 36294.99 36299.60 27991.76 335
test9_res93.28 31699.15 26599.38 168
agg_prior292.50 33099.16 26399.37 170
agg_prior98.68 26897.99 14599.01 23095.59 33999.77 200
test_prior497.97 14995.86 306
test_prior98.95 13598.69 26697.95 15399.03 22499.59 28399.30 196
旧先验295.76 31088.56 36197.52 27899.66 25994.48 281
新几何295.93 303
无先验95.74 31198.74 27389.38 35799.73 22192.38 33299.22 213
原ACMM295.53 317
testdata299.79 18392.80 324
testdata195.44 32296.32 252
plane_prior799.19 16597.87 158
plane_prior599.27 16799.70 23294.42 28599.51 20999.45 135
plane_prior497.98 286
plane_prior397.78 16997.41 19297.79 259
plane_prior297.77 18998.20 129
plane_prior199.05 200
plane_prior97.65 17797.07 24896.72 23899.36 232
n20.00 386
nn0.00 386
door-mid99.57 49
test1198.87 248
door99.41 108
HQP5-MVS96.79 216
HQP-NCC98.67 26996.29 28796.05 26195.55 342
ACMP_Plane98.67 26996.29 28796.05 26195.55 342
BP-MVS92.82 322
HQP4-MVS95.56 34199.54 29899.32 189
HQP3-MVS99.04 22299.26 250
NP-MVS98.84 23697.39 19096.84 332
ACMMP++_ref99.77 109
ACMMP++99.68 152