This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 196100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22799.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17699.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17699.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 23999.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21499.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32499.34 121100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8499.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
wuyk23d97.58 32099.13 15192.93 38799.69 15599.49 14599.52 8599.77 9597.97 30999.96 2399.79 9399.84 1299.94 7795.85 35699.82 17979.36 403
cdsmvs_eth3d_5k24.88 37533.17 3770.00 3910.00 4140.00 4160.00 40299.62 1680.00 4090.00 41099.13 32799.82 130.00 4100.00 4090.00 4080.00 406
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28699.30 13499.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22299.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27297.90 35699.59 19399.27 15899.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35799.74 11098.36 27899.66 15299.68 16299.71 2299.90 15796.84 30799.88 13499.43 234
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11699.84 6199.64 11098.25 31899.73 11498.39 27599.63 15999.43 27099.70 2499.90 15797.34 27398.64 36599.44 228
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15599.71 12699.27 15899.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20399.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19699.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8099.79 8698.77 23599.80 9299.85 5699.64 2899.85 24098.70 16699.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7299.82 6799.46 13199.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
DSMNet-mixed99.48 8799.65 5098.95 29099.71 14397.27 34499.50 9099.82 6799.59 11699.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20099.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22299.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
test_f99.75 3299.88 699.37 21999.96 798.21 29899.51 89100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33299.90 3898.95 20799.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
SD-MVS99.01 20999.30 12398.15 34399.50 23499.40 17198.94 24499.61 17599.22 17199.75 11499.82 7399.54 4195.51 40797.48 26599.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14199.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 333
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31199.48 95100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7598.70 34699.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19699.79 8699.48 12498.93 30698.55 37999.40 4999.93 9498.51 17699.52 29098.28 379
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19299.65 15798.99 20199.64 15599.72 13099.39 5099.86 22298.23 19599.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base99.02 20599.11 15898.77 31599.37 27698.09 30898.13 32799.51 23999.47 12899.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 381
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7399.82 6799.39 14499.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18299.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25399.89 4098.38 27699.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
Fast-Effi-MVS+99.02 20598.87 21999.46 18999.38 27499.50 14499.04 21899.79 8697.17 35198.62 33998.74 37199.34 6099.95 6398.32 18799.41 30698.92 339
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19299.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
new-patchmatchnet99.35 12599.57 7198.71 32099.82 7296.62 35998.55 29199.75 10599.50 12299.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8599.70 13198.35 28399.51 21199.50 25199.31 6299.88 18998.18 20299.84 16299.69 83
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14899.76 10099.32 15299.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38499.47 25198.72 24099.66 15299.70 14599.29 6499.63 37398.07 21099.81 18899.62 138
pcd_1.5k_mvsjas16.61 37622.14 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 199.28 660.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
PS-MVSNAJ99.00 21199.08 16998.76 31699.37 27698.10 30798.00 34399.51 23999.47 12899.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 385
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14899.35 28498.77 23599.57 18599.70 14599.27 6999.88 18997.71 24499.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12699.77 9599.53 12099.77 10699.76 11199.26 7099.78 30897.77 23699.88 13499.60 152
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32499.35 24699.25 31299.23 7399.92 11697.21 28899.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32899.53 23099.36 14899.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32199.49 94100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26099.66 14899.42 14399.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11299.78 9299.53 12099.67 14899.78 10199.19 7799.86 22297.32 27499.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32499.29 29798.18 29899.63 15999.62 19699.18 7899.68 35598.20 19899.74 21899.30 265
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35399.71 12698.76 23899.08 29499.47 26299.17 7999.54 38597.85 23199.76 20999.54 182
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 20999.23 16699.35 24699.80 8399.17 7999.95 6398.21 19799.84 16299.59 159
EGC-MVSNET89.05 37285.52 37599.64 12899.89 3999.78 4999.56 8099.52 23524.19 40649.96 40799.83 6699.15 8199.92 11697.71 24499.85 15799.21 280
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10499.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28599.48 24898.50 26499.52 20699.63 18999.14 8499.76 31897.89 22499.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+99.06 19698.97 20499.34 22699.31 29798.98 23898.31 31399.91 3398.81 22898.79 32698.94 35899.14 8499.84 25598.79 15798.74 35999.20 284
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
MSDG99.08 19498.98 20399.37 21999.60 18299.13 22397.54 37099.74 11098.84 22599.53 20499.55 24099.10 8799.79 30597.07 29499.86 15399.18 289
PC_three_145297.56 32999.68 14299.41 27299.09 8997.09 40596.66 31699.60 26999.62 138
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23099.65 15799.15 18699.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35599.73 11498.68 24499.31 25899.48 25899.09 8999.66 36497.70 24799.77 20799.29 268
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21599.61 17599.15 18699.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21899.60 18799.18 17499.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14399.68 14099.54 11899.40 24199.56 23399.07 9499.82 27996.01 34799.96 7099.11 304
ACMP97.51 1499.05 19998.84 22399.67 10999.78 10599.55 13898.88 24899.66 14897.11 35599.47 21899.60 21399.07 9499.89 17596.18 34299.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS98.76 24198.57 24799.33 22999.57 20198.97 24097.53 37299.55 21596.41 36599.27 26699.13 32799.07 9499.78 30896.73 31299.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26898.94 24499.91 3397.97 30999.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17199.60 18798.55 25799.57 18599.67 16699.03 9999.94 7797.01 29599.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.38 11799.25 13699.77 5799.03 34999.77 5499.74 2499.61 17599.18 17499.76 10899.61 20599.00 10099.92 11697.72 24299.60 26999.62 138
OPU-MVS99.29 24099.12 33399.44 15899.20 16699.40 27699.00 10098.84 40296.54 32399.60 26999.58 164
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30199.52 85100.00 199.86 45100.00 199.88 4298.99 10299.96 5499.97 499.96 7099.95 11
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27199.24 15599.46 25499.68 9099.80 9299.66 17198.99 10299.89 17599.19 11199.90 11599.72 73
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21599.82 6799.50 12298.97 30299.05 33998.98 10499.98 2098.20 19899.24 32998.62 359
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10499.90 15799.24 10499.97 5699.53 187
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26899.24 15599.46 25499.67 9499.79 9799.65 17698.97 10699.89 17599.15 11999.89 12499.71 76
PHI-MVS99.11 19098.95 20799.59 15299.13 33199.59 12899.17 17699.65 15797.88 31799.25 26899.46 26598.97 10699.80 30297.26 28199.82 17999.37 246
TinyColmap98.97 21598.93 20899.07 27999.46 25498.19 29997.75 36199.75 10598.79 23199.54 19999.70 14598.97 10699.62 37496.63 32099.83 17099.41 238
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19299.52 23597.40 34099.57 18599.64 17898.93 10999.83 27097.61 25799.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25599.72 12398.36 27899.60 17799.71 13898.92 11099.91 13997.08 29399.84 16299.40 239
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10699.85 5498.79 23199.41 23699.60 21398.92 11099.92 11698.02 21199.92 10599.43 234
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16699.54 22199.13 18899.82 8199.63 18998.91 11299.92 11697.85 23199.70 23499.58 164
test_241102_ONE99.69 15599.82 3599.54 22199.12 19199.82 8199.49 25598.91 11299.52 389
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11299.71 33498.41 18099.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23599.40 27299.08 19399.58 18299.64 17898.90 11599.83 27097.44 26799.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25699.33 25199.53 24498.88 11699.68 35596.01 34799.65 25499.02 329
SF-MVS99.10 19398.93 20899.62 14499.58 19199.51 14399.13 19299.65 15797.97 30999.42 23099.61 20598.86 11799.87 20396.45 33199.68 24399.49 210
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7399.78 9299.71 8099.90 4999.69 15198.85 11899.90 15797.25 28599.78 20399.15 295
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14399.56 20998.19 29799.14 28799.29 30498.84 11999.92 11697.53 26399.80 19399.64 122
MP-MVS-pluss99.14 18398.92 21299.80 4599.83 6599.83 2998.61 27899.63 16596.84 36099.44 22499.58 22198.81 12099.91 13997.70 24799.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12099.91 13999.47 6899.88 13499.70 79
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22599.89 4099.60 11499.82 8199.62 19698.81 12099.89 17599.43 7299.86 15399.47 218
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18299.72 12397.99 30799.42 23099.60 21398.81 12099.93 9496.91 30199.74 21899.66 104
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13199.59 19398.36 27899.36 24599.37 28498.80 12499.91 13997.43 26899.75 21199.68 89
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9099.69 13798.99 20199.75 11499.71 13898.79 12599.93 9498.46 17899.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11299.62 16898.38 27699.06 29899.27 30798.79 12599.94 7797.51 26499.82 17999.66 104
MSLP-MVS++99.05 19999.09 16798.91 29799.21 31898.36 29198.82 25999.47 25198.85 22298.90 31299.56 23398.78 12799.09 39998.57 17399.68 24399.26 270
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 11999.49 24799.17 17999.21 27799.67 16698.78 12799.66 36499.09 12999.66 25299.10 306
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24399.44 13499.12 29099.78 10198.77 12999.94 7797.87 22899.72 22999.62 138
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14699.61 17599.19 17399.57 18599.64 17898.76 13099.90 15797.29 27699.62 25999.56 171
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13499.63 16599.61 10899.71 13299.56 23398.76 13099.96 5499.14 12599.92 10599.68 89
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27398.99 23599.96 2399.03 19999.95 3199.12 33198.75 13299.84 25599.82 3599.82 17999.77 60
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12199.79 8698.41 27298.84 31998.89 36398.75 13299.84 25598.15 20699.51 29198.89 343
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24299.53 23098.27 29299.53 20499.73 12398.75 13299.87 20397.70 24799.83 17099.68 89
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11499.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 71
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13199.59 19398.41 27299.32 25499.36 28898.73 13699.93 9497.29 27699.74 21899.67 95
test_fmvs199.48 8799.65 5098.97 28799.54 21597.16 34799.11 20099.98 1199.78 6899.96 2399.81 7998.72 13799.97 3399.95 1299.97 5699.79 54
LS3D99.24 14999.11 15899.61 14798.38 39299.79 4699.57 7899.68 14099.61 10899.15 28599.71 13898.70 13899.91 13997.54 26199.68 24399.13 303
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14199.61 17599.87 4199.74 12299.76 11198.69 13999.87 20398.20 19899.80 19399.75 69
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19699.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12199.97 1898.93 21199.91 4499.79 9398.68 14099.93 9496.80 30899.56 27699.30 265
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20399.61 17599.20 17299.84 7699.73 12398.67 14399.84 25599.86 3199.98 4199.64 122
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14399.97 3399.30 9799.95 8399.80 47
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20099.62 16899.18 17499.89 5399.72 13098.66 14599.87 20399.88 2999.97 5699.66 104
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14599.84 25599.88 2999.99 1699.71 76
GST-MVS99.16 17998.96 20699.75 7499.73 13799.73 7699.20 16699.55 21598.22 29499.32 25499.35 29398.65 14799.91 13996.86 30499.74 21899.62 138
ppachtmachnet_test98.89 23099.12 15598.20 34299.66 16995.24 38097.63 36699.68 14099.08 19399.78 10199.62 19698.65 14799.88 18998.02 21199.96 7099.48 214
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10599.84 7699.71 13898.62 14999.96 5499.30 9799.96 7099.86 32
LF4IMVS99.01 20998.92 21299.27 24599.71 14399.28 19698.59 28399.77 9598.32 28999.39 24299.41 27298.62 14999.84 25596.62 32199.84 16298.69 357
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13199.59 19398.36 27899.35 24699.38 28298.61 15199.93 9497.43 26899.75 21199.67 95
API-MVS98.38 28298.39 26398.35 33498.83 36699.26 20099.14 18699.18 32198.59 25498.66 33798.78 36998.61 15199.57 38294.14 38399.56 27696.21 400
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15399.94 7799.58 5499.98 4199.77 60
test_one_060199.63 17599.76 6199.55 21599.23 16699.31 25899.61 20598.59 154
OMC-MVS98.90 22798.72 23399.44 19599.39 27199.42 16598.58 28599.64 16397.31 34599.44 22499.62 19698.59 15499.69 34396.17 34399.79 19899.22 278
test_0728_THIRD99.18 17499.62 16899.61 20598.58 15699.91 13997.72 24299.80 19399.77 60
RE-MVS-def99.13 15199.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.57 15797.27 27999.61 26699.54 182
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9099.65 15798.07 30399.52 20699.69 15198.57 15799.92 11697.18 29099.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 15999.96 5499.29 10099.94 9499.83 40
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11099.59 19399.24 16499.86 7199.70 14598.55 16099.82 27999.79 3799.95 8399.60 152
QAPM98.40 28197.99 29599.65 12199.39 27199.47 14799.67 4999.52 23591.70 39598.78 32899.80 8398.55 16099.95 6394.71 37799.75 21199.53 187
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30899.26 14899.46 25499.62 10599.75 11499.67 16698.54 16299.85 24099.15 11999.92 10599.68 89
jason99.16 17999.11 15899.32 23399.75 12898.44 28398.26 31799.39 27598.70 24399.74 12299.30 30198.54 16299.97 3398.48 17799.82 17999.55 174
jason: jason.
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16299.93 9499.59 5199.98 4199.76 66
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30898.85 25299.76 10099.62 10599.83 8099.64 17898.54 16299.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
9.1498.64 23899.45 25898.81 26099.60 18797.52 33499.28 26599.56 23398.53 16699.83 27095.36 36899.64 256
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11299.54 22198.34 28799.01 30099.50 25198.53 16699.93 9497.18 29099.78 20399.66 104
CNVR-MVS98.99 21498.80 22999.56 16599.25 31199.43 16298.54 29499.27 30198.58 25598.80 32499.43 27098.53 16699.70 33797.22 28799.59 27399.54 182
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31498.58 28599.82 6797.62 32899.34 24999.71 13898.52 16999.77 31697.98 21699.97 5699.52 198
PVSNet_Blended98.70 24898.59 24399.02 28399.54 21597.99 31497.58 36999.82 6795.70 37699.34 24998.98 35298.52 16999.77 31697.98 21699.83 17099.30 265
MCST-MVS99.02 20598.81 22799.65 12199.58 19199.49 14598.58 28599.07 32998.40 27499.04 29999.25 31298.51 17199.80 30297.31 27599.51 29199.65 112
UGNet99.38 11799.34 11199.49 18198.90 35998.90 24999.70 3599.35 28499.86 4598.57 34499.81 7998.50 17299.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32999.47 26298.47 17399.88 18997.62 25599.73 22399.67 95
X-MVStestdata96.09 35594.87 36799.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32961.30 41398.47 17399.88 18997.62 25599.73 22399.67 95
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 28999.81 7699.61 10899.48 21699.41 27298.47 17399.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ambc99.20 25799.35 28198.53 27799.17 17699.46 25499.67 14899.80 8398.46 17699.70 33797.92 22199.70 23499.38 243
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17799.87 20399.51 6499.97 5699.86 32
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7599.97 1899.95 2099.96 2399.76 11198.44 17899.99 799.34 8899.96 7099.78 56
131498.00 30597.90 30798.27 34198.90 35997.45 33999.30 13499.06 33194.98 38497.21 38699.12 33198.43 17999.67 36095.58 36398.56 36897.71 392
USDC98.96 21998.93 20899.05 28199.54 21597.99 31497.07 39099.80 8098.21 29599.75 11499.77 10898.43 17999.64 37297.90 22399.88 13499.51 200
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11699.79 8699.83 5699.88 6199.85 5698.42 18199.90 15799.60 5099.73 22399.49 210
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12699.74 11099.18 17499.69 13999.75 11698.41 18299.84 25597.85 23199.70 23499.10 306
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.41 18299.91 13997.27 27999.61 26699.54 182
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20899.59 19399.17 17999.81 8899.61 20598.41 18299.69 34399.32 9399.94 9499.53 187
Test By Simon98.41 182
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24299.86 4998.85 22299.81 8899.73 12398.40 18699.92 11698.36 18399.83 17099.17 291
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17199.60 18798.85 22299.47 21899.58 22198.38 18799.92 11696.92 30099.54 28599.57 169
segment_acmp98.37 188
MP-MVScopyleft99.06 19698.83 22599.76 6499.76 11799.71 8399.32 12699.50 24398.35 28398.97 30299.48 25898.37 18899.92 11695.95 35399.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18699.31 29399.16 18299.62 16899.61 20598.35 19099.91 13997.88 22599.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15599.80 4499.24 15599.57 20499.16 18299.73 12699.65 17698.35 190
MVS95.72 36594.63 37098.99 28598.56 38697.98 32099.30 13498.86 33872.71 40497.30 38399.08 33698.34 19299.74 32589.21 39698.33 37399.26 270
CDPH-MVS98.56 26198.20 28199.61 14799.50 23499.46 15198.32 31299.41 26595.22 38199.21 27799.10 33598.34 19299.82 27995.09 37399.66 25299.56 171
testdata99.42 20199.51 22898.93 24699.30 29696.20 36998.87 31699.40 27698.33 19499.89 17596.29 33799.28 32399.44 228
test_241102_TWO99.54 22199.13 18899.76 10899.63 18998.32 19599.92 11697.85 23199.69 23899.75 69
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21895.32 39799.99 299.68 14299.57 22998.30 19699.97 3399.94 1699.98 4199.88 25
APD-MVScopyleft98.87 23298.59 24399.71 9999.50 23499.62 11799.01 22799.57 20496.80 36299.54 19999.63 18998.29 19799.91 13995.24 36999.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.12 1098.23 29497.89 30899.26 24899.19 32399.26 20099.65 5899.69 13791.33 39698.14 36499.77 10898.28 19899.96 5495.41 36699.55 28098.58 363
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 19999.85 24099.37 8399.93 10199.83 40
TAPA-MVS97.92 1398.03 30397.55 31999.46 18999.47 25099.44 15898.50 29999.62 16886.79 39999.07 29799.26 31098.26 20099.62 37497.28 27899.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21899.87 4699.71 8099.47 21899.79 9398.24 20199.98 2099.38 8099.96 7099.83 40
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18699.58 20299.25 16299.81 8899.62 19698.24 20199.84 25599.83 3299.97 5699.64 122
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34199.25 30798.78 23399.58 18299.44 26998.24 20199.76 31898.74 16399.93 10199.22 278
mvs_anonymous99.28 13999.39 10198.94 29199.19 32397.81 32699.02 22599.55 21599.78 6899.85 7399.80 8398.24 20199.86 22299.57 5699.50 29499.15 295
DPE-MVScopyleft99.14 18398.92 21299.82 3799.57 20199.77 5498.74 27099.60 18798.55 25799.76 10899.69 15198.23 20599.92 11696.39 33399.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12499.53 23099.27 15899.42 23099.63 18998.21 20699.95 6397.83 23599.79 19899.65 112
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33898.19 29998.76 26999.33 28798.49 26699.44 22499.58 22198.21 20699.69 34398.20 19899.62 25999.39 241
our_test_398.85 23499.09 16798.13 34499.66 16994.90 38497.72 36299.58 20299.07 19599.64 15599.62 19698.19 20899.93 9498.41 18099.95 8399.55 174
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21199.55 21598.63 24999.31 25899.68 16298.19 20899.78 30898.18 20299.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11799.85 7399.69 15198.18 21099.94 7799.28 10299.95 8399.83 40
new_pmnet98.88 23198.89 21798.84 30899.70 15197.62 33398.15 32499.50 24397.98 30899.62 16899.54 24298.15 21199.94 7797.55 26099.84 16298.95 335
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26099.41 26598.55 25799.68 14299.69 15198.13 21299.87 20398.82 15399.98 4199.24 273
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27599.47 12899.76 10899.78 10198.13 21299.86 22298.70 16699.68 24399.49 210
EU-MVSNet99.39 11599.62 5598.72 31899.88 4496.44 36199.56 8099.85 5499.90 2999.90 4999.85 5698.09 21499.83 27099.58 5499.95 8399.90 20
PMVScopyleft92.94 2198.82 23698.81 22798.85 30699.84 6197.99 31499.20 16699.47 25199.71 8099.42 23099.82 7398.09 21499.47 39293.88 38899.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HPM-MVS++copyleft98.96 21998.70 23699.74 7999.52 22699.71 8398.86 25099.19 32098.47 26898.59 34299.06 33898.08 21699.91 13996.94 29999.60 26999.60 152
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26298.87 21999.57 18599.82 7398.06 21799.87 20398.69 16899.73 22399.15 295
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30199.87 4199.91 4499.87 4798.04 21899.96 5499.68 4499.99 1699.90 20
N_pmnet98.73 24598.53 25299.35 22599.72 14098.67 26598.34 31094.65 39998.35 28399.79 9799.68 16298.03 21999.93 9498.28 19199.92 10599.44 228
TEST999.35 28199.35 18598.11 33099.41 26594.83 38897.92 37098.99 34998.02 22099.85 240
train_agg98.35 28697.95 29999.57 16299.35 28199.35 18598.11 33099.41 26594.90 38597.92 37098.99 34998.02 22099.85 24095.38 36799.44 30199.50 205
test_899.34 29099.31 19198.08 33499.40 27294.90 38597.87 37498.97 35498.02 22099.84 255
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28699.77 1599.80 8099.73 7499.63 15999.30 30198.02 22099.98 2099.43 7299.69 23899.55 174
lupinMVS98.96 21998.87 21999.24 25399.57 20198.40 28698.12 32899.18 32198.28 29199.63 15999.13 32798.02 22099.97 3398.22 19699.69 23899.35 252
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22599.86 22299.42 7799.96 7099.80 47
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22699.92 11699.65 4699.98 4199.62 138
原ACMM199.37 21999.47 25098.87 25399.27 30196.74 36398.26 35599.32 29797.93 22799.82 27995.96 35299.38 30999.43 234
test_prior297.95 34997.87 31898.05 36699.05 33997.90 22895.99 35099.49 296
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10499.82 6798.33 28899.50 21399.78 10197.90 22899.65 37096.78 30999.83 17099.44 228
PMMVS98.49 27198.29 27599.11 27298.96 35698.42 28597.54 37099.32 28997.53 33398.47 34998.15 38997.88 23099.82 27997.46 26699.24 32999.09 310
ZD-MVS99.43 26399.61 12399.43 26296.38 36699.11 29199.07 33797.86 23199.92 11694.04 38599.49 296
NCCC98.82 23698.57 24799.58 15699.21 31899.31 19198.61 27899.25 30798.65 24798.43 35199.26 31097.86 23199.81 29496.55 32299.27 32699.61 148
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 23999.61 17599.43 13999.67 14899.28 30597.85 23399.95 6399.17 11699.81 18899.65 112
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10299.57 20499.66 9899.78 10199.83 6697.85 23399.86 22299.44 7199.96 7099.61 148
DP-MVS Recon98.50 26998.23 27799.31 23699.49 23999.46 15198.56 29099.63 16594.86 38798.85 31899.37 28497.81 23599.59 38096.08 34499.44 30198.88 344
PatchMatch-RL98.68 25098.47 25599.30 23999.44 25999.28 19698.14 32699.54 22197.12 35499.11 29199.25 31297.80 23699.70 33796.51 32599.30 32098.93 337
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7899.61 17599.54 11899.80 9299.64 17897.79 23799.95 6399.21 10799.94 9499.84 36
WB-MVSnew98.34 28898.14 28798.96 28898.14 40197.90 32398.27 31597.26 38898.63 24998.80 32498.00 39297.77 23899.90 15797.37 27298.98 34499.09 310
DPM-MVS98.28 28997.94 30399.32 23399.36 27999.11 22597.31 38298.78 34396.88 35898.84 31999.11 33497.77 23899.61 37894.03 38699.36 31299.23 276
114514_t98.49 27198.11 28999.64 12899.73 13799.58 13299.24 15599.76 10089.94 39899.42 23099.56 23397.76 24099.86 22297.74 24199.82 17999.47 218
tmp_tt95.75 36495.42 35896.76 37589.90 41194.42 38698.86 25097.87 37878.01 40299.30 26399.69 15197.70 24195.89 40699.29 10098.14 38399.95 11
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23899.60 18799.43 13999.70 13699.36 28897.70 24199.88 18999.20 11099.87 14599.59 159
Effi-MVS+-dtu99.07 19598.92 21299.52 17698.89 36299.78 4999.15 18499.66 14899.34 14998.92 30999.24 31797.69 24399.98 2098.11 20899.28 32398.81 350
F-COLMAP98.74 24398.45 25799.62 14499.57 20199.47 14798.84 25399.65 15796.31 36898.93 30699.19 32497.68 24499.87 20396.52 32499.37 31199.53 187
新几何199.52 17699.50 23499.22 21199.26 30495.66 37798.60 34199.28 30597.67 24599.89 17595.95 35399.32 31899.45 223
旧先验199.49 23999.29 19499.26 30499.39 28097.67 24599.36 31299.46 222
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25599.53 23099.38 14599.67 14899.36 28897.67 24599.95 6399.17 11699.81 18899.63 127
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25599.86 4999.68 9099.65 15499.88 4297.67 24599.87 20399.03 13399.86 15399.76 66
CANet99.11 19099.05 17999.28 24298.83 36698.56 27698.71 27499.41 26599.25 16299.23 27299.22 31997.66 24999.94 7799.19 11199.97 5699.33 256
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9599.70 13199.81 6199.69 13999.58 22197.66 24999.86 22299.17 11699.44 30199.67 95
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14399.74 11099.23 16699.72 12799.53 24497.63 25199.88 18999.11 12799.84 16299.48 214
test1299.54 17399.29 30399.33 18899.16 32398.43 35197.54 25299.82 27999.47 29899.48 214
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24399.46 13199.88 6199.36 28897.54 25299.87 20398.97 14099.87 14599.63 127
MAR-MVS98.24 29397.92 30599.19 25898.78 37499.65 10799.17 17699.14 32595.36 37998.04 36798.81 36897.47 25499.72 33095.47 36599.06 33798.21 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26799.88 4498.66 24699.96 2399.79 9397.45 25599.93 9499.34 8899.99 1699.78 56
PAPR97.56 32197.07 32999.04 28298.80 37098.11 30697.63 36699.25 30794.56 39098.02 36898.25 38797.43 25699.68 35590.90 39598.74 35999.33 256
YYNet198.95 22298.99 20098.84 30899.64 17397.14 34998.22 32099.32 28998.92 21399.59 18099.66 17197.40 25799.83 27098.27 19299.90 11599.55 174
PVSNet97.47 1598.42 27898.44 25898.35 33499.46 25496.26 36596.70 39599.34 28697.68 32699.00 30199.13 32797.40 25799.72 33097.59 25999.68 24399.08 316
MDA-MVSNet_test_wron98.95 22298.99 20098.85 30699.64 17397.16 34798.23 31999.33 28798.93 21199.56 19299.66 17197.39 25999.83 27098.29 18899.88 13499.55 174
MG-MVS98.52 26698.39 26398.94 29199.15 32897.39 34298.18 32199.21 31798.89 21899.23 27299.63 18997.37 26099.74 32594.22 38299.61 26699.69 83
OpenMVS_ROBcopyleft97.31 1797.36 32796.84 33798.89 30499.29 30399.45 15698.87 24999.48 24886.54 40199.44 22499.74 11997.34 26199.86 22291.61 39299.28 32397.37 396
AdaColmapbinary98.60 25598.35 26899.38 21699.12 33399.22 21198.67 27599.42 26497.84 32198.81 32299.27 30797.32 26299.81 29495.14 37199.53 28799.10 306
test22299.51 22899.08 23297.83 35999.29 29795.21 38298.68 33699.31 29997.28 26399.38 30999.43 234
HQP_MVS98.90 22798.68 23799.55 16899.58 19199.24 20798.80 26399.54 22198.94 20899.14 28799.25 31297.24 26499.82 27995.84 35799.78 20399.60 152
plane_prior699.47 25099.26 20097.24 264
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10299.57 20499.44 13499.70 13699.74 11997.21 26699.87 20399.03 13399.94 9499.44 228
BH-RMVSNet98.41 27998.14 28799.21 25599.21 31898.47 28098.60 28098.26 36998.35 28398.93 30699.31 29997.20 26999.66 36494.32 38099.10 33699.51 200
MVS-HIRNet97.86 30798.22 27996.76 37599.28 30691.53 40298.38 30892.60 40599.13 18899.31 25899.96 1297.18 27099.68 35598.34 18599.83 17099.07 321
PAPM_NR98.36 28398.04 29299.33 22999.48 24498.93 24698.79 26699.28 30097.54 33298.56 34598.57 37797.12 27199.69 34394.09 38498.90 35099.38 243
dmvs_testset97.27 32896.83 33898.59 32499.46 25497.55 33599.25 15496.84 39098.78 23397.24 38597.67 39697.11 27298.97 40186.59 40598.54 36999.27 269
CPTT-MVS98.74 24398.44 25899.64 12899.61 18099.38 17599.18 17199.55 21596.49 36499.27 26699.37 28497.11 27299.92 11695.74 36099.67 24999.62 138
CNLPA98.57 26098.34 26999.28 24299.18 32599.10 23098.34 31099.41 26598.48 26798.52 34698.98 35297.05 27499.78 30895.59 36299.50 29498.96 333
BH-untuned98.22 29598.09 29098.58 32699.38 27497.24 34598.55 29198.98 33697.81 32299.20 28298.76 37097.01 27599.65 37094.83 37498.33 37398.86 346
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9098.32 36899.80 6499.56 19299.69 15196.99 27699.85 24098.99 13699.73 22399.50 205
PLCcopyleft97.35 1698.36 28397.99 29599.48 18599.32 29699.24 20798.50 29999.51 23995.19 38398.58 34398.96 35696.95 27799.83 27095.63 36199.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS99.11 19098.93 20899.66 11699.30 30199.42 16598.42 30699.37 28099.04 19899.57 18599.20 32396.89 27899.86 22298.66 17099.87 14599.70 79
CL-MVSNet_self_test98.71 24798.56 25099.15 26599.22 31698.66 26897.14 38799.51 23998.09 30299.54 19999.27 30796.87 27999.74 32598.43 17998.96 34599.03 325
MSP-MVS99.04 20298.79 23099.81 4099.78 10599.73 7699.35 12099.57 20498.54 26099.54 19998.99 34996.81 28099.93 9496.97 29899.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8599.81 7699.87 4199.81 8899.79 9396.78 28199.99 799.83 3299.51 29199.86 32
dmvs_re98.69 24998.48 25499.31 23699.55 21399.42 16599.54 8398.38 36599.32 15298.72 33298.71 37296.76 28299.21 39796.01 34799.35 31499.31 263
HQP2-MVS96.67 283
HQP-MVS98.36 28398.02 29499.39 21399.31 29798.94 24397.98 34599.37 28097.45 33798.15 36098.83 36696.67 28399.70 33794.73 37599.67 24999.53 187
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9899.81 7699.82 5899.71 13299.72 13096.60 28599.98 2099.75 3999.23 33199.82 46
CANet_DTU98.91 22598.85 22199.09 27598.79 37298.13 30398.18 32199.31 29399.48 12498.86 31799.51 24896.56 28699.95 6399.05 13299.95 8399.19 287
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29199.73 11498.82 22699.72 12799.62 19696.56 28699.82 27999.32 9399.95 8399.56 171
MVEpermissive92.54 2296.66 34296.11 34698.31 33999.68 16397.55 33597.94 35095.60 39699.37 14690.68 40698.70 37396.56 28698.61 40486.94 40499.55 28098.77 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12499.31 29399.67 9499.47 21899.57 22996.48 28999.84 25599.15 11999.30 32099.47 218
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 27999.80 8697.83 32598.89 24799.72 12399.29 15499.63 15999.70 14596.47 29099.89 17598.17 20499.82 17999.50 205
DeepMVS_CXcopyleft97.98 34799.69 15596.95 35299.26 30475.51 40395.74 40198.28 38696.47 29099.62 37491.23 39497.89 38997.38 395
1112_ss99.05 19998.84 22399.67 10999.66 16999.29 19498.52 29799.82 6797.65 32799.43 22899.16 32596.42 29299.91 13999.07 13199.84 16299.80 47
TR-MVS97.44 32497.15 32898.32 33798.53 38797.46 33898.47 30197.91 37696.85 35998.21 35998.51 38196.42 29299.51 39092.16 39197.29 39497.98 389
miper_ehance_all_eth98.59 25898.59 24398.59 32498.98 35597.07 35097.49 37599.52 23598.50 26499.52 20699.37 28496.41 29499.71 33497.86 22999.62 25999.00 331
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29599.97 3399.59 5199.98 4199.55 174
c3_l98.72 24698.71 23498.72 31899.12 33397.22 34697.68 36599.56 20998.90 21599.54 19999.48 25896.37 29699.73 32897.88 22599.88 13499.21 280
sss98.90 22798.77 23199.27 24599.48 24498.44 28398.72 27299.32 28997.94 31399.37 24499.35 29396.31 29799.91 13998.85 15099.63 25899.47 218
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24199.54 22199.46 13199.61 17499.70 14596.31 29799.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21597.79 37999.99 299.48 21699.59 21896.29 29999.95 6399.94 1699.98 4199.88 25
eth_miper_zixun_eth98.68 25098.71 23498.60 32399.10 33996.84 35697.52 37499.54 22198.94 20899.58 18299.48 25896.25 30099.76 31898.01 21499.93 10199.21 280
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32599.65 10099.89 5399.90 2996.20 30199.94 7799.42 7799.92 10599.67 95
Test_1112_low_res98.95 22298.73 23299.63 13599.68 16399.15 22298.09 33299.80 8097.14 35399.46 22299.40 27696.11 30299.89 17599.01 13599.84 16299.84 36
IterMVS98.97 21599.16 14598.42 33199.74 13495.64 37498.06 33799.83 6299.83 5699.85 7399.74 11996.10 30399.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT99.00 21199.16 14598.51 32799.75 12895.90 37198.07 33599.84 6099.84 5399.89 5399.73 12396.01 30499.99 799.33 91100.00 199.63 127
SCA98.11 29998.36 26697.36 36699.20 32192.99 39498.17 32398.49 35998.24 29399.10 29399.57 22996.01 30499.94 7796.86 30499.62 25999.14 300
PVSNet_095.53 1995.85 36395.31 36397.47 36398.78 37493.48 39395.72 39899.40 27296.18 37097.37 38297.73 39595.73 30699.58 38195.49 36481.40 40599.36 249
CMPMVSbinary77.52 2398.50 26998.19 28499.41 20898.33 39499.56 13599.01 22799.59 19395.44 37899.57 18599.80 8395.64 30799.46 39496.47 32999.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-w/o97.20 32997.01 33197.76 35699.08 34295.69 37398.03 34098.52 35695.76 37597.96 36998.02 39095.62 30899.47 39292.82 39097.25 39598.12 387
cascas96.99 33396.82 33997.48 36297.57 40595.64 37496.43 39799.56 20991.75 39497.13 38997.61 39895.58 30998.63 40396.68 31499.11 33598.18 386
bld_raw_dy_0_6498.97 21598.90 21699.17 26299.07 34399.24 20799.24 15599.93 2999.23 16699.87 6999.03 34595.48 31099.81 29498.29 18899.99 1698.47 372
Syy-MVS98.17 29797.85 30999.15 26598.50 38998.79 25898.60 28099.21 31797.89 31596.76 39196.37 41095.47 31199.57 38299.10 12898.73 36199.09 310
UnsupCasMVSNet_bld98.55 26298.27 27699.40 21099.56 21299.37 17897.97 34899.68 14097.49 33699.08 29499.35 29395.41 31299.82 27997.70 24798.19 38099.01 330
UnsupCasMVSNet_eth98.83 23598.57 24799.59 15299.68 16399.45 15698.99 23599.67 14499.48 12499.55 19799.36 28894.92 31399.86 22298.95 14696.57 39899.45 223
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31099.48 12499.56 19299.77 10894.89 31499.93 9498.72 16599.89 12499.63 127
WTY-MVS98.59 25898.37 26599.26 24899.43 26398.40 28698.74 27099.13 32798.10 30099.21 27799.24 31794.82 31599.90 15797.86 22998.77 35599.49 210
iter_conf05_1198.54 26398.33 27199.18 26099.07 34399.20 21697.94 35097.59 38199.17 17999.30 26398.92 36294.79 31699.86 22298.29 18899.89 12498.47 372
miper_enhance_ethall98.03 30397.94 30398.32 33798.27 39596.43 36296.95 39199.41 26596.37 36799.43 22898.96 35694.74 31799.69 34397.71 24499.62 25998.83 349
IS-MVSNet99.03 20398.85 22199.55 16899.80 8699.25 20399.73 2799.15 32499.37 14699.61 17499.71 13894.73 31899.81 29497.70 24799.88 13499.58 164
miper_lstm_enhance98.65 25298.60 24198.82 31399.20 32197.33 34397.78 36099.66 14899.01 20099.59 18099.50 25194.62 31999.85 24098.12 20799.90 11599.26 270
lessismore_v099.64 12899.86 5499.38 17590.66 40799.89 5399.83 6694.56 32099.97 3399.56 5799.92 10599.57 169
PCF-MVS96.03 1896.73 34095.86 35199.33 22999.44 25999.16 22096.87 39399.44 25986.58 40098.95 30499.40 27694.38 32199.88 18987.93 39999.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet98.97 21598.82 22699.42 20199.71 14398.81 25599.62 6298.68 34799.81 6199.38 24399.80 8394.25 32299.85 24098.79 15799.32 31899.59 159
HY-MVS98.23 998.21 29697.95 29998.99 28599.03 34998.24 29499.61 6798.72 34596.81 36198.73 33199.51 24894.06 32399.86 22296.91 30198.20 37898.86 346
test_method91.72 37192.32 37489.91 38893.49 41070.18 41390.28 40199.56 20961.71 40595.39 40299.52 24693.90 32499.94 7798.76 16198.27 37699.62 138
DIV-MVS_self_test98.54 26398.42 26098.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.87 32599.78 30897.97 21899.89 12499.18 289
cl____98.54 26398.41 26198.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.85 32699.78 30897.97 21899.89 12499.17 291
EMVS96.96 33597.28 32495.99 38598.76 37791.03 40495.26 40098.61 35299.34 14998.92 30998.88 36493.79 32799.66 36492.87 38999.05 33997.30 397
EPNet_dtu97.62 31897.79 31297.11 37396.67 40692.31 39798.51 29898.04 37299.24 16495.77 40099.47 26293.78 32899.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111197.74 31298.16 28696.49 38099.60 18289.86 41099.71 3491.21 40699.89 3599.88 6199.87 4793.73 32999.90 15799.56 5799.99 1699.70 79
K. test v398.87 23298.60 24199.69 10499.93 2599.46 15199.74 2494.97 39899.78 6899.88 6199.88 4293.66 33099.97 3399.61 4999.95 8399.64 122
ECVR-MVScopyleft97.73 31398.04 29296.78 37499.59 18690.81 40699.72 3090.43 40899.89 3599.86 7199.86 5493.60 33199.89 17599.46 6999.99 1699.65 112
CHOSEN 280x42098.41 27998.41 26198.40 33299.34 29095.89 37296.94 39299.44 25998.80 23099.25 26899.52 24693.51 33299.98 2098.94 14799.98 4199.32 259
CVMVSNet98.61 25398.88 21897.80 35599.58 19193.60 39299.26 14899.64 16399.66 9899.72 12799.67 16693.26 33399.93 9499.30 9799.81 18899.87 30
Anonymous20240521198.75 24298.46 25699.63 13599.34 29099.66 10199.47 9897.65 38099.28 15799.56 19299.50 25193.15 33499.84 25598.62 17199.58 27499.40 239
EPNet98.13 29897.77 31399.18 26094.57 40997.99 31499.24 15597.96 37499.74 7397.29 38499.62 19693.13 33599.97 3398.59 17299.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)98.52 26698.32 27299.10 27499.48 24498.67 26599.77 1598.60 35497.35 34399.63 15999.80 8393.07 33699.84 25597.92 22199.30 32098.78 353
PAPM95.61 36794.71 36998.31 33999.12 33396.63 35896.66 39698.46 36090.77 39796.25 39798.68 37493.01 33799.69 34381.60 40697.86 39198.62 359
Vis-MVSNet (Re-imp)98.77 24098.58 24699.34 22699.78 10598.88 25199.61 6799.56 20999.11 19299.24 27199.56 23393.00 33899.78 30897.43 26899.89 12499.35 252
E-PMN97.14 33297.43 32096.27 38298.79 37291.62 40195.54 39999.01 33599.44 13498.88 31399.12 33192.78 33999.68 35594.30 38199.03 34197.50 393
FMVSNet398.80 23898.63 24099.32 23399.13 33198.72 26399.10 20399.48 24899.23 16699.62 16899.64 17892.57 34099.86 22298.96 14299.90 11599.39 241
HyFIR lowres test98.91 22598.64 23899.73 8899.85 5899.47 14798.07 33599.83 6298.64 24899.89 5399.60 21392.57 340100.00 199.33 9199.97 5699.72 73
RPMNet98.60 25598.53 25298.83 31099.05 34698.12 30499.30 13499.62 16899.86 4599.16 28399.74 11992.53 34299.92 11698.75 16298.77 35598.44 374
h-mvs3398.61 25398.34 26999.44 19599.60 18298.67 26599.27 14699.44 25999.68 9099.32 25499.49 25592.50 343100.00 199.24 10496.51 39999.65 112
hse-mvs298.52 26698.30 27499.16 26399.29 30398.60 27598.77 26899.02 33399.68 9099.32 25499.04 34192.50 34399.85 24099.24 10497.87 39099.03 325
tpmvs97.39 32597.69 31596.52 37998.41 39191.76 39999.30 13498.94 33797.74 32397.85 37599.55 24092.40 34599.73 32896.25 33998.73 36198.06 388
tpmrst97.73 31398.07 29196.73 37798.71 38192.00 39899.10 20398.86 33898.52 26298.92 30999.54 24291.90 34699.82 27998.02 21199.03 34198.37 376
JIA-IIPM98.06 30297.92 30598.50 32898.59 38597.02 35198.80 26398.51 35799.88 4097.89 37299.87 4791.89 34799.90 15798.16 20597.68 39298.59 361
CR-MVSNet98.35 28698.20 28198.83 31099.05 34698.12 30499.30 13499.67 14497.39 34199.16 28399.79 9391.87 34899.91 13998.78 16098.77 35598.44 374
Patchmtry98.78 23998.54 25199.49 18198.89 36299.19 21899.32 12699.67 14499.65 10099.72 12799.79 9391.87 34899.95 6398.00 21599.97 5699.33 256
MDTV_nov1_ep13_2view91.44 40399.14 18697.37 34299.21 27791.78 35096.75 31099.03 325
PatchT98.45 27698.32 27298.83 31098.94 35798.29 29399.24 15598.82 34199.84 5399.08 29499.76 11191.37 35199.94 7798.82 15399.00 34398.26 380
test_yl98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
DCV-MVSNet98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
baseline197.73 31397.33 32398.96 28899.30 30197.73 33099.40 10898.42 36299.33 15199.46 22299.21 32191.18 35499.82 27998.35 18491.26 40499.32 259
tpm cat196.78 33896.98 33296.16 38498.85 36590.59 40899.08 21199.32 28992.37 39397.73 38199.46 26591.15 35599.69 34396.07 34598.80 35298.21 383
LFMVS98.46 27498.19 28499.26 24899.24 31398.52 27999.62 6296.94 38999.87 4199.31 25899.58 22191.04 35699.81 29498.68 16999.42 30599.45 223
MDTV_nov1_ep1397.73 31498.70 38290.83 40599.15 18498.02 37398.51 26398.82 32199.61 20590.98 35799.66 36496.89 30398.92 348
MIMVSNet98.43 27798.20 28199.11 27299.53 22198.38 29099.58 7598.61 35298.96 20599.33 25199.76 11190.92 35899.81 29497.38 27199.76 20999.15 295
ADS-MVSNet297.78 31197.66 31898.12 34599.14 32995.36 37799.22 16398.75 34496.97 35698.25 35699.64 17890.90 35999.94 7796.51 32599.56 27699.08 316
ADS-MVSNet97.72 31697.67 31797.86 35399.14 32994.65 38599.22 16398.86 33896.97 35698.25 35699.64 17890.90 35999.84 25596.51 32599.56 27699.08 316
alignmvs98.28 28997.96 29899.25 25199.12 33398.93 24699.03 22298.42 36299.64 10298.72 33297.85 39490.86 36199.62 37498.88 14999.13 33399.19 287
sam_mvs190.81 36299.14 300
PatchmatchNetpermissive97.65 31797.80 31097.18 37198.82 36992.49 39699.17 17698.39 36498.12 29998.79 32699.58 22190.71 36399.89 17597.23 28699.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post99.62 19690.58 36499.94 77
Patchmatch-RL test98.60 25598.36 26699.33 22999.77 11399.07 23398.27 31599.87 4698.91 21499.74 12299.72 13090.57 36599.79 30598.55 17499.85 15799.11 304
sam_mvs90.52 366
pmmvs398.08 30197.80 31098.91 29799.41 26997.69 33297.87 35799.66 14895.87 37299.50 21399.51 24890.35 36799.97 3398.55 17499.47 29899.08 316
test_post52.41 41490.25 36899.86 222
Patchmatch-test98.10 30097.98 29798.48 32999.27 30896.48 36099.40 10899.07 32998.81 22899.23 27299.57 22990.11 36999.87 20396.69 31399.64 25699.09 310
test-LLR97.15 33096.95 33397.74 35898.18 39895.02 38297.38 37896.10 39198.00 30597.81 37798.58 37590.04 37099.91 13997.69 25398.78 35398.31 377
test0.0.03 197.37 32696.91 33698.74 31797.72 40297.57 33497.60 36897.36 38798.00 30599.21 27798.02 39090.04 37099.79 30598.37 18295.89 40298.86 346
GA-MVS97.99 30697.68 31698.93 29499.52 22698.04 31297.19 38699.05 33298.32 28998.81 32298.97 35489.89 37299.41 39598.33 18699.05 33999.34 255
test_post199.14 18651.63 41589.54 37399.82 27996.86 304
AUN-MVS97.82 30997.38 32299.14 26999.27 30898.53 27798.72 27299.02 33398.10 30097.18 38799.03 34589.26 37499.85 24097.94 22097.91 38899.03 325
FE-MVS97.85 30897.42 32199.15 26599.44 25998.75 26199.77 1598.20 37195.85 37399.33 25199.80 8388.86 37599.88 18996.40 33299.12 33498.81 350
MVSTER98.47 27398.22 27999.24 25399.06 34598.35 29299.08 21199.46 25499.27 15899.75 11499.66 17188.61 37699.85 24099.14 12599.92 10599.52 198
baseline296.83 33796.28 34398.46 33099.09 34196.91 35498.83 25593.87 40497.23 34896.23 39998.36 38488.12 37799.90 15796.68 31498.14 38398.57 364
iter_conf0598.46 27498.23 27799.15 26599.04 34897.99 31499.10 20399.61 17599.79 6699.76 10899.58 22187.88 37899.92 11699.31 9699.97 5699.53 187
cl2297.56 32197.28 32498.40 33298.37 39396.75 35797.24 38599.37 28097.31 34599.41 23699.22 31987.30 37999.37 39697.70 24799.62 25999.08 316
dp96.86 33697.07 32996.24 38398.68 38390.30 40999.19 17098.38 36597.35 34398.23 35899.59 21887.23 38099.82 27996.27 33898.73 36198.59 361
ET-MVSNet_ETH3D96.78 33896.07 34798.91 29799.26 31097.92 32297.70 36496.05 39497.96 31292.37 40598.43 38387.06 38199.90 15798.27 19297.56 39398.91 340
thres100view90096.39 34796.03 34897.47 36399.63 17595.93 37099.18 17197.57 38298.75 23998.70 33597.31 40187.04 38299.67 36087.62 40098.51 37096.81 398
thres600view796.60 34396.16 34597.93 35099.63 17596.09 36999.18 17197.57 38298.77 23598.72 33297.32 40087.04 38299.72 33088.57 39798.62 36697.98 389
tfpn200view996.30 35095.89 34997.53 36099.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37096.81 398
thres40096.40 34695.89 34997.92 35199.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37097.98 389
thres20096.09 35595.68 35597.33 36899.48 24496.22 36698.53 29697.57 38298.06 30498.37 35396.73 40686.84 38699.61 37886.99 40398.57 36796.16 401
tpm97.15 33096.95 33397.75 35798.91 35894.24 38799.32 12697.96 37497.71 32598.29 35499.32 29786.72 38799.92 11698.10 20996.24 40199.09 310
EPMVS96.53 34496.32 34297.17 37298.18 39892.97 39599.39 11089.95 40998.21 29598.61 34099.59 21886.69 38899.72 33096.99 29699.23 33198.81 350
CostFormer96.71 34196.79 34096.46 38198.90 35990.71 40799.41 10798.68 34794.69 38998.14 36499.34 29686.32 38999.80 30297.60 25898.07 38698.88 344
thisisatest051596.98 33496.42 34198.66 32199.42 26897.47 33797.27 38394.30 40197.24 34799.15 28598.86 36585.01 39099.87 20397.10 29299.39 30898.63 358
tpm296.35 34896.22 34496.73 37798.88 36491.75 40099.21 16598.51 35793.27 39297.89 37299.21 32184.83 39199.70 33796.04 34698.18 38198.75 356
tttt051797.62 31897.20 32798.90 30399.76 11797.40 34199.48 9594.36 40099.06 19799.70 13699.49 25584.55 39299.94 7798.73 16499.65 25499.36 249
thisisatest053097.45 32396.95 33398.94 29199.68 16397.73 33099.09 20894.19 40298.61 25399.56 19299.30 30184.30 39399.93 9498.27 19299.54 28599.16 293
FPMVS96.32 34995.50 35798.79 31499.60 18298.17 30298.46 30598.80 34297.16 35296.28 39699.63 18982.19 39499.09 39988.45 39898.89 35199.10 306
gg-mvs-nofinetune95.87 36195.17 36697.97 34898.19 39796.95 35299.69 4289.23 41099.89 3596.24 39899.94 1681.19 39599.51 39093.99 38798.20 37897.44 394
GG-mvs-BLEND97.36 36697.59 40396.87 35599.70 3588.49 41194.64 40497.26 40280.66 39699.12 39891.50 39396.50 40096.08 402
FMVSNet597.80 31097.25 32699.42 20198.83 36698.97 24099.38 11299.80 8098.87 21999.25 26899.69 15180.60 39799.91 13998.96 14299.90 11599.38 243
UWE-MVS96.21 35395.78 35397.49 36198.53 38793.83 39198.04 33893.94 40398.96 20598.46 35098.17 38879.86 39899.87 20396.99 29699.06 33798.78 353
TESTMET0.1,196.24 35195.84 35297.41 36598.24 39693.84 39097.38 37895.84 39598.43 26997.81 37798.56 37879.77 39999.89 17597.77 23698.77 35598.52 366
KD-MVS_2432*160095.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
miper_refine_blended95.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
test-mter96.23 35295.73 35497.74 35898.18 39895.02 38297.38 37896.10 39197.90 31497.81 37798.58 37579.12 40299.91 13997.69 25398.78 35398.31 377
test250694.73 37094.59 37195.15 38699.59 18685.90 41299.75 2274.01 41299.89 3599.71 13299.86 5479.00 40399.90 15799.52 6399.99 1699.65 112
IB-MVS95.41 2095.30 36994.46 37397.84 35498.76 37795.33 37897.33 38196.07 39396.02 37195.37 40397.41 39976.17 40499.96 5497.54 26195.44 40398.22 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1196.05 35795.41 35997.97 34898.78 37495.27 37998.59 28398.23 37098.86 22196.56 39496.91 40575.20 40599.69 34397.26 28198.29 37598.93 337
testing9196.00 35895.32 36298.02 34698.76 37795.39 37698.38 30898.65 35198.82 22696.84 39096.71 40775.06 40699.71 33496.46 33098.23 37798.98 332
testing9995.86 36295.19 36597.87 35298.76 37795.03 38198.62 27798.44 36198.68 24496.67 39396.66 40874.31 40799.69 34396.51 32598.03 38798.90 341
ETVMVS96.14 35495.22 36498.89 30498.80 37098.01 31398.66 27698.35 36798.71 24297.18 38796.31 41274.23 40899.75 32296.64 31998.13 38598.90 341
testing396.48 34595.63 35699.01 28499.23 31597.81 32698.90 24699.10 32898.72 24097.84 37697.92 39372.44 40999.85 24097.21 28899.33 31699.35 252
myMVS_eth3d95.63 36694.73 36898.34 33698.50 38996.36 36398.60 28099.21 31797.89 31596.76 39196.37 41072.10 41099.57 38294.38 37998.73 36199.09 310
testing22295.60 36894.59 37198.61 32298.66 38497.45 33998.54 29497.90 37798.53 26196.54 39596.47 40970.62 41199.81 29495.91 35598.15 38298.56 365
test12329.31 37333.05 37818.08 38925.93 41312.24 41497.53 37210.93 41411.78 40724.21 40850.08 41721.04 4128.60 40823.51 40732.43 40733.39 404
testmvs28.94 37433.33 37615.79 39026.03 4129.81 41596.77 39415.67 41311.55 40823.87 40950.74 41619.03 4138.53 40923.21 40833.07 40629.03 405
test_blank8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
Regformer8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.26 38511.02 3880.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.16 3250.00 4140.00 4100.00 4090.00 4080.00 406
uanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS96.36 36395.20 370
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
MSC_two_6792asdad99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
No_MVS99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
eth-test20.00 414
eth-test0.00 414
IU-MVS99.69 15599.77 5499.22 31497.50 33599.69 13997.75 24099.70 23499.77 60
save fliter99.53 22199.25 20398.29 31499.38 27999.07 195
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18699.61 17599.92 11697.88 22599.72 22999.77 60
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
MTGPAbinary99.53 230
MTMP99.09 20898.59 355
gm-plane-assit97.59 40389.02 41193.47 39198.30 38599.84 25596.38 334
test9_res95.10 37299.44 30199.50 205
agg_prior294.58 37899.46 30099.50 205
agg_prior99.35 28199.36 18299.39 27597.76 38099.85 240
test_prior499.19 21898.00 343
test_prior99.46 18999.35 28199.22 21199.39 27599.69 34399.48 214
旧先验297.94 35095.33 38098.94 30599.88 18996.75 310
新几何298.04 338
无先验98.01 34199.23 31195.83 37499.85 24095.79 35999.44 228
原ACMM297.92 353
testdata299.89 17595.99 350
testdata197.72 36297.86 320
plane_prior799.58 19199.38 175
plane_prior599.54 22199.82 27995.84 35799.78 20399.60 152
plane_prior499.25 312
plane_prior399.31 19198.36 27899.14 287
plane_prior298.80 26398.94 208
plane_prior199.51 228
plane_prior99.24 20798.42 30697.87 31899.71 232
n20.00 415
nn0.00 415
door-mid99.83 62
test1199.29 297
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34597.45 33798.15 360
ACMP_Plane99.31 29797.98 34597.45 33798.15 360
BP-MVS94.73 375
HQP4-MVS98.15 36099.70 33799.53 187
HQP3-MVS99.37 28099.67 249
NP-MVS99.40 27099.13 22398.83 366
ACMMP++_ref99.94 94
ACMMP++99.79 198