This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
jajsoiax99.89 399.89 399.89 999.96 499.78 4699.70 3499.86 2499.89 1799.98 399.90 2399.94 199.98 999.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 599.96 499.79 4399.72 2999.88 1999.92 1099.98 399.93 1599.94 199.98 999.77 12100.00 199.92 3
wuyk23d97.58 30299.13 12892.93 36099.69 13199.49 13499.52 8099.77 6697.97 27899.96 899.79 7099.84 399.94 6295.85 32599.82 15679.36 376
cdsmvs_eth3d_5k24.88 34833.17 3500.00 3640.00 3870.00 3880.00 37599.62 1430.00 3820.00 38399.13 31299.82 40.00 3830.00 3810.00 3810.00 379
LTVRE_ROB99.19 199.88 499.87 499.88 1399.91 2099.90 599.96 199.92 999.90 1299.97 699.87 3499.81 599.95 4799.54 3499.99 1299.80 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 10
test_djsdf99.84 899.81 999.91 299.94 1199.84 2299.77 1499.80 5299.73 5399.97 699.92 1899.77 799.98 999.43 47100.00 199.90 4
pmmvs699.86 699.86 699.83 2699.94 1199.90 599.83 699.91 1299.85 3299.94 1299.95 1399.73 899.90 14299.65 1999.97 3899.69 60
UniMVSNet_ETH3D99.85 799.83 799.90 599.89 2699.91 299.89 499.71 9899.93 899.95 1199.89 2799.71 999.96 3799.51 3999.97 3899.84 15
XVG-OURS99.21 14199.06 15299.65 10999.82 5199.62 10797.87 33099.74 8398.36 24799.66 12599.68 13699.71 999.90 14296.84 27999.88 11299.43 221
XVG-OURS-SEG-HR99.16 15598.99 17699.66 10499.84 4099.64 10198.25 29299.73 8698.39 24499.63 13599.43 25199.70 1199.90 14297.34 24698.64 34399.44 215
DeepC-MVS98.90 499.62 4299.61 3899.67 9799.72 11699.44 14899.24 14199.71 9899.27 13699.93 1599.90 2399.70 1199.93 7898.99 11099.99 1299.64 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH98.42 699.59 4699.54 5399.72 8499.86 3699.62 10799.56 7799.79 5898.77 20899.80 6699.85 4599.64 1399.85 22398.70 14099.89 10399.70 56
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.69 2599.66 2799.78 4299.76 9299.76 5799.60 7099.82 4199.46 11199.75 8999.56 21099.63 1499.95 4799.43 4799.88 11299.62 116
pm-mvs199.79 1399.79 1199.78 4299.91 2099.83 2799.76 1799.87 2199.73 5399.89 3299.87 3499.63 1499.87 18599.54 3499.92 8499.63 105
DSMNet-mixed99.48 6399.65 2998.95 27199.71 11997.27 32399.50 8299.82 4199.59 9499.41 21399.85 4599.62 16100.00 199.53 3799.89 10399.59 139
Vis-MVSNetpermissive99.75 1699.74 1699.79 3999.88 3099.66 9499.69 4099.92 999.67 7099.77 7999.75 9399.61 1799.98 999.35 6099.98 2699.72 50
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 57100.00 199.90 12100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 15
TransMVSNet (Re)99.78 1499.77 1399.81 3199.91 2099.85 1599.75 2099.86 2499.70 6199.91 2299.89 2799.60 1999.87 18599.59 2499.74 19799.71 53
CS-MVS-test99.68 2899.70 1899.64 11699.57 17799.83 2799.78 1199.97 299.92 1099.50 18899.38 26399.57 2099.95 4799.69 1699.90 9499.15 281
PMMVS299.48 6399.45 6699.57 14999.76 9298.99 23098.09 30699.90 1598.95 18399.78 7499.58 19799.57 2099.93 7899.48 4299.95 6199.79 32
DROMVSNet99.69 2599.69 2399.68 9499.71 11999.91 299.76 1799.96 699.86 2799.51 18699.39 26199.57 2099.93 7899.64 2199.86 12899.20 270
SD-MVS99.01 18799.30 9798.15 32099.50 21299.40 16098.94 22099.61 15099.22 14899.75 8999.82 5899.54 2395.51 38097.48 23999.87 12199.54 164
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS99.67 3199.70 1899.58 14399.53 19599.84 2299.79 1099.96 699.90 1299.61 14999.41 25399.51 2499.95 4799.66 1899.89 10398.96 314
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 999.73 2699.85 2899.70 6199.92 1999.93 1599.45 2599.97 1999.36 59100.00 199.85 14
ETV-MVS99.18 15099.18 11999.16 25099.34 27199.28 18699.12 18299.79 5899.48 10298.93 28498.55 36399.40 2699.93 7898.51 15099.52 27398.28 351
xiu_mvs_v1_base_debu99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base_debi99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
ACMM98.09 1199.46 7099.38 7899.72 8499.80 6399.69 8799.13 17899.65 13298.99 17799.64 13199.72 10599.39 2799.86 20598.23 16999.81 16499.60 130
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base99.02 18399.11 13598.77 29599.37 25798.09 29598.13 30199.51 22199.47 10799.42 20598.54 36499.38 3199.97 1998.83 12799.33 30298.24 353
XXY-MVS99.71 2199.67 2699.81 3199.89 2699.72 7499.59 7199.82 4199.39 12299.82 5699.84 5099.38 3199.91 12299.38 5499.93 8099.80 26
LPG-MVS_test99.22 13699.05 15699.74 6899.82 5199.63 10599.16 16899.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
LGP-MVS_train99.74 6899.82 5199.63 10599.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
TDRefinement99.72 2099.70 1899.77 4599.90 2499.85 1599.86 599.92 999.69 6499.78 7499.92 1899.37 3399.88 17398.93 12299.95 6199.60 130
testgi99.29 11599.26 10999.37 21399.75 10398.81 25098.84 23099.89 1798.38 24599.75 8999.04 32699.36 3699.86 20599.08 10499.25 31199.45 210
Fast-Effi-MVS+99.02 18398.87 19699.46 18299.38 25499.50 13399.04 19899.79 5897.17 32098.62 31698.74 35699.34 3799.95 4798.32 16299.41 29098.92 319
casdiffmvs99.63 3999.61 3899.67 9799.79 7399.59 11899.13 17899.85 2899.79 4799.76 8199.72 10599.33 3899.82 26199.21 8199.94 7299.59 139
new-patchmatchnet99.35 9999.57 4898.71 30099.82 5196.62 33798.55 26599.75 7899.50 10099.88 3899.87 3499.31 3999.88 17399.43 47100.00 199.62 116
HPM-MVS_fast99.43 7599.30 9799.80 3499.83 4499.81 3699.52 8099.70 10498.35 25299.51 18699.50 23099.31 3999.88 17398.18 17699.84 13799.69 60
EG-PatchMatch MVS99.57 4799.56 5299.62 13299.77 8899.33 17899.26 13499.76 7199.32 13199.80 6699.78 7799.29 4199.87 18599.15 9499.91 9399.66 83
DeepPCF-MVS98.42 699.18 15099.02 16599.67 9799.22 29799.75 6197.25 35799.47 23698.72 21399.66 12599.70 11999.29 4199.63 35098.07 18599.81 16499.62 116
pcd_1.5k_mvsjas16.61 34922.14 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 199.28 430.00 3830.00 3810.00 3810.00 379
PS-MVSNAJss99.84 899.82 899.89 999.96 499.77 4999.68 4399.85 2899.95 599.98 399.92 1899.28 4399.98 999.75 13100.00 199.94 2
PS-MVSNAJ99.00 18999.08 14698.76 29699.37 25798.10 29498.00 31699.51 22199.47 10799.41 21398.50 36699.28 4399.97 1998.83 12799.34 30098.20 357
TSAR-MVS + MP.99.34 10499.24 11399.63 12399.82 5199.37 16899.26 13499.35 27398.77 20899.57 16099.70 11999.27 4699.88 17397.71 21899.75 18999.65 91
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH+98.40 899.50 5999.43 7199.71 8899.86 3699.76 5799.32 11499.77 6699.53 9899.77 7999.76 8899.26 4799.78 28897.77 21099.88 11299.60 130
HPM-MVScopyleft99.25 12399.07 15099.78 4299.81 5899.75 6199.61 6599.67 11897.72 29299.35 22499.25 29699.23 4899.92 9897.21 26099.82 15699.67 73
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS99.34 10499.30 9799.48 17799.51 20699.36 17198.12 30299.53 20999.36 12699.41 21399.61 18099.22 4999.87 18599.21 8199.68 22399.20 270
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
bld_raw_conf00599.81 1199.79 1199.86 1899.94 1199.85 1599.77 1499.90 1599.97 299.92 1999.86 4199.21 5099.94 6299.59 2499.98 2699.78 34
pmmvs-eth3d99.48 6399.47 6199.51 16799.77 8899.41 15998.81 23799.66 12299.42 12199.75 8999.66 14599.20 5199.76 29898.98 11299.99 1299.36 238
COLMAP_ROBcopyleft98.06 1299.45 7299.37 8199.70 9299.83 4499.70 8399.38 10099.78 6399.53 9899.67 12199.78 7799.19 5299.86 20597.32 24799.87 12199.55 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + GP.99.12 16399.04 16299.38 21099.34 27199.16 21298.15 29899.29 28798.18 26799.63 13599.62 17199.18 5399.68 33298.20 17299.74 19799.30 250
MVS_111021_HR99.12 16399.02 16599.40 20299.50 21299.11 21797.92 32799.71 9898.76 21199.08 27299.47 24399.17 5499.54 36097.85 20599.76 18699.54 164
3Dnovator99.15 299.43 7599.36 8499.65 10999.39 25199.42 15599.70 3499.56 18799.23 14499.35 22499.80 6499.17 5499.95 4798.21 17199.84 13799.59 139
EGC-MVSNET89.05 34585.52 34899.64 11699.89 2699.78 4699.56 7799.52 21724.19 37949.96 38099.83 5199.15 5699.92 9897.71 21899.85 13299.21 266
UA-Net99.78 1499.76 1599.86 1899.72 11699.71 7699.91 399.95 899.96 399.71 10899.91 2199.15 5699.97 1999.50 41100.00 199.90 4
baseline99.63 3999.62 3499.66 10499.80 6399.62 10799.44 9299.80 5299.71 5799.72 10399.69 12599.15 5699.83 25199.32 6799.94 7299.53 170
OPM-MVS99.26 12299.13 12899.63 12399.70 12799.61 11398.58 25999.48 23298.50 23399.52 18199.63 16299.14 5999.76 29897.89 19899.77 18499.51 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+99.06 17498.97 18099.34 21899.31 27998.98 23198.31 28799.91 1298.81 20298.79 30398.94 34399.14 5999.84 24098.79 13198.74 33999.20 270
v7n99.82 1099.80 1099.88 1399.96 499.84 2299.82 899.82 4199.84 3599.94 1299.91 2199.13 6199.96 3799.83 999.99 1299.83 19
nrg03099.70 2299.66 2799.82 2899.76 9299.84 2299.61 6599.70 10499.93 899.78 7499.68 13699.10 6299.78 28899.45 4599.96 5299.83 19
MSDG99.08 17298.98 17999.37 21399.60 15899.13 21597.54 34399.74 8398.84 20099.53 17999.55 21799.10 6299.79 28597.07 26799.86 12899.18 275
PC_three_145297.56 29899.68 11699.41 25399.09 6497.09 37896.66 28999.60 25299.62 116
v124099.56 5099.58 4599.51 16799.80 6399.00 22999.00 20699.65 13299.15 16199.90 2799.75 9399.09 6499.88 17399.90 299.96 5299.67 73
abl_699.36 9799.23 11599.75 6299.71 11999.74 6799.33 11199.76 7199.07 17099.65 12999.63 16299.09 6499.92 9897.13 26499.76 18699.58 144
MVS_111021_LR99.13 16199.03 16499.42 19499.58 16799.32 18097.91 32999.73 8698.68 21599.31 23599.48 23899.09 6499.66 34197.70 22199.77 18499.29 253
v192192099.56 5099.57 4899.55 15699.75 10399.11 21799.05 19699.61 15099.15 16199.88 3899.71 11299.08 6899.87 18599.90 299.97 3899.66 83
v119299.57 4799.57 4899.57 14999.77 8899.22 20399.04 19899.60 16399.18 15199.87 4599.72 10599.08 6899.85 22399.89 599.98 2699.66 83
test_040299.22 13699.14 12599.45 18699.79 7399.43 15299.28 12999.68 11399.54 9699.40 21899.56 21099.07 7099.82 26196.01 31799.96 5299.11 290
ACMP97.51 1499.05 17798.84 20099.67 9799.78 8099.55 12798.88 22399.66 12297.11 32499.47 19399.60 18999.07 7099.89 15896.18 31299.85 13299.58 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS98.76 22198.57 22699.33 22099.57 17798.97 23397.53 34599.55 19396.41 33699.27 24299.13 31299.07 7099.78 28896.73 28599.89 10399.23 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu99.40 8599.38 7899.44 18899.90 2498.66 26198.94 22099.91 1297.97 27899.79 7199.73 9999.05 7399.97 1999.15 9499.99 1299.68 66
canonicalmvs99.02 18399.00 17199.09 25999.10 32098.70 25799.61 6599.66 12299.63 8198.64 31597.65 37799.04 7499.54 36098.79 13198.92 32899.04 306
SteuartSystems-ACMMP99.30 11399.14 12599.76 5299.87 3499.66 9499.18 15799.60 16398.55 22799.57 16099.67 14199.03 7599.94 6297.01 26899.80 16999.69 60
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.38 9199.25 11199.77 4599.03 32999.77 4999.74 2299.61 15099.18 15199.76 8199.61 18099.00 7699.92 9897.72 21699.60 25299.62 116
OPU-MVS99.29 23099.12 31499.44 14899.20 15199.40 25799.00 7698.84 37596.54 29599.60 25299.58 144
EI-MVSNet-UG-set99.48 6399.50 5999.42 19499.57 17798.65 26499.24 14199.46 24099.68 6699.80 6699.66 14598.99 7899.89 15899.19 8599.90 9499.72 50
Fast-Effi-MVS+-dtu99.20 14399.12 13299.43 19299.25 29399.69 8799.05 19699.82 4199.50 10098.97 28099.05 32398.98 7999.98 998.20 17299.24 31398.62 334
FMVSNet199.66 3399.63 3399.73 7899.78 8099.77 4999.68 4399.70 10499.67 7099.82 5699.83 5198.98 7999.90 14299.24 7899.97 3899.53 170
EI-MVSNet-Vis-set99.47 6999.49 6099.42 19499.57 17798.66 26199.24 14199.46 24099.67 7099.79 7199.65 15098.97 8199.89 15899.15 9499.89 10399.71 53
PHI-MVS99.11 16798.95 18499.59 13999.13 31299.59 11899.17 16299.65 13297.88 28499.25 24499.46 24698.97 8199.80 28297.26 25499.82 15699.37 235
TinyColmap98.97 19398.93 18599.07 26399.46 23398.19 28797.75 33499.75 7898.79 20599.54 17499.70 11998.97 8199.62 35196.63 29299.83 14799.41 225
Regformer-499.45 7299.44 6899.50 17099.52 20198.94 23799.17 16299.53 20999.64 7899.76 8199.60 18998.96 8499.90 14298.91 12399.84 13799.67 73
SMA-MVScopyleft99.19 14699.00 17199.73 7899.46 23399.73 7099.13 17899.52 21797.40 30999.57 16099.64 15298.93 8599.83 25197.61 23199.79 17499.63 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE99.23 12799.10 14399.63 12399.82 5199.58 12198.83 23299.72 9598.36 24799.60 15299.71 11298.92 8699.91 12297.08 26699.84 13799.40 227
CSCG99.37 9499.29 10299.60 13799.71 11999.46 14199.43 9499.85 2898.79 20599.41 21399.60 18998.92 8699.92 9898.02 18699.92 8499.43 221
SED-MVS99.40 8599.28 10499.77 4599.69 13199.82 3399.20 15199.54 19999.13 16399.82 5699.63 16298.91 8899.92 9897.85 20599.70 21599.58 144
test_241102_ONE99.69 13199.82 3399.54 19999.12 16699.82 5699.49 23598.91 8899.52 364
Gipumacopyleft99.57 4799.59 4199.49 17399.98 399.71 7699.72 2999.84 3499.81 4199.94 1299.78 7798.91 8899.71 31398.41 15499.95 6199.05 305
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Regformer-399.41 8299.41 7499.40 20299.52 20198.70 25799.17 16299.44 24599.62 8299.75 8999.60 18998.90 9199.85 22398.89 12499.84 13799.65 91
DeepC-MVS_fast98.47 599.23 12799.12 13299.56 15399.28 28899.22 20398.99 21199.40 25999.08 16899.58 15799.64 15298.90 9199.83 25197.44 24199.75 18999.63 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 21099.63 15199.44 14899.73 8698.56 22599.33 22999.53 22198.88 9399.68 33296.01 31799.65 23799.02 311
xxxxxxxxxxxxxcwj99.11 16798.96 18299.54 16099.53 19599.25 19498.29 28899.76 7199.07 17099.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
SF-MVS99.10 17198.93 18599.62 13299.58 16799.51 13299.13 17899.65 13297.97 27899.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
tfpnnormal99.43 7599.38 7899.60 13799.87 3499.75 6199.59 7199.78 6399.71 5799.90 2799.69 12598.85 9699.90 14297.25 25799.78 18099.15 281
test_low_dy_conf_00199.75 1699.70 1899.90 599.94 1199.85 1599.74 2299.54 19999.88 2299.90 2799.89 2798.84 9799.95 4799.59 2499.98 2699.90 4
ZNCC-MVS99.22 13699.04 16299.77 4599.76 9299.73 7099.28 12999.56 18798.19 26699.14 26599.29 28798.84 9799.92 9897.53 23799.80 16999.64 100
MP-MVS-pluss99.14 15998.92 18999.80 3499.83 4499.83 2798.61 25599.63 14096.84 33099.44 19999.58 19798.81 9999.91 12297.70 22199.82 15699.67 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VPA-MVSNet99.66 3399.62 3499.79 3999.68 13999.75 6199.62 6099.69 11099.85 3299.80 6699.81 6198.81 9999.91 12299.47 4399.88 11299.70 56
test20.0399.55 5399.54 5399.58 14399.79 7399.37 16899.02 20299.89 1799.60 9299.82 5699.62 17198.81 9999.89 15899.43 4799.86 12899.47 204
PGM-MVS99.20 14399.01 16899.77 4599.75 10399.71 7699.16 16899.72 9597.99 27699.42 20599.60 18998.81 9999.93 7896.91 27399.74 19799.66 83
HFP-MVS99.25 12399.08 14699.76 5299.73 11299.70 8399.31 11899.59 17098.36 24799.36 22299.37 26598.80 10399.91 12297.43 24299.75 18999.68 66
#test#99.12 16398.90 19399.76 5299.73 11299.70 8399.10 18599.59 17097.60 29799.36 22299.37 26598.80 10399.91 12296.84 27999.75 18999.68 66
Regformer-299.34 10499.27 10799.53 16299.41 24699.10 22298.99 21199.53 20999.47 10799.66 12599.52 22398.80 10399.89 15898.31 16399.74 19799.60 130
APDe-MVS99.48 6399.36 8499.85 2199.55 18999.81 3699.50 8299.69 11098.99 17799.75 8999.71 11298.79 10699.93 7898.46 15299.85 13299.80 26
CP-MVS99.23 12799.05 15699.75 6299.66 14599.66 9499.38 10099.62 14398.38 24599.06 27699.27 29198.79 10699.94 6297.51 23899.82 15699.66 83
Regformer-199.32 11099.27 10799.47 17999.41 24698.95 23698.99 21199.48 23299.48 10299.66 12599.52 22398.78 10899.87 18598.36 15799.74 19799.60 130
MSLP-MVS++99.05 17799.09 14498.91 27899.21 29998.36 28098.82 23699.47 23698.85 19798.90 29099.56 21098.78 10899.09 37398.57 14799.68 22399.26 256
MVS_Test99.28 11699.31 9299.19 24799.35 26198.79 25299.36 10799.49 23099.17 15599.21 25499.67 14198.78 10899.66 34199.09 10399.66 23499.10 292
3Dnovator+98.92 399.35 9999.24 11399.67 9799.35 26199.47 13799.62 6099.50 22599.44 11499.12 26899.78 7798.77 11199.94 6297.87 20299.72 21099.62 116
APD-MVS_3200maxsize99.31 11299.16 12199.74 6899.53 19599.75 6199.27 13299.61 15099.19 15099.57 16099.64 15298.76 11299.90 14297.29 24999.62 24299.56 153
TranMVSNet+NR-MVSNet99.54 5599.47 6199.76 5299.58 16799.64 10199.30 12199.63 14099.61 8699.71 10899.56 21098.76 11299.96 3799.14 10099.92 8499.68 66
EIA-MVS99.12 16399.01 16899.45 18699.36 25999.62 10799.34 10999.79 5898.41 24198.84 29798.89 34898.75 11499.84 24098.15 18099.51 27498.89 321
ACMMP_NAP99.28 11699.11 13599.79 3999.75 10399.81 3698.95 21899.53 20998.27 26199.53 17999.73 9998.75 11499.87 18597.70 22199.83 14799.68 66
v1099.69 2599.69 2399.66 10499.81 5899.39 16299.66 5199.75 7899.60 9299.92 1999.87 3498.75 11499.86 20599.90 299.99 1299.73 49
region2R99.23 12799.05 15699.77 4599.76 9299.70 8399.31 11899.59 17098.41 24199.32 23199.36 27098.73 11799.93 7897.29 24999.74 19799.67 73
LS3D99.24 12699.11 13599.61 13598.38 36699.79 4399.57 7599.68 11399.61 8699.15 26399.71 11298.70 11899.91 12297.54 23599.68 22399.13 289
DP-MVS99.48 6399.39 7699.74 6899.57 17799.62 10799.29 12899.61 15099.87 2499.74 9899.76 8898.69 11999.87 18598.20 17299.80 16999.75 47
AllTest99.21 14199.07 15099.63 12399.78 8099.64 10199.12 18299.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
TestCases99.63 12399.78 8099.64 10199.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
LCM-MVSNet-Re99.28 11699.15 12499.67 9799.33 27699.76 5799.34 10999.97 298.93 18799.91 2299.79 7098.68 12099.93 7896.80 28199.56 25999.30 250
v114499.54 5599.53 5799.59 13999.79 7399.28 18699.10 18599.61 15099.20 14999.84 5199.73 9998.67 12399.84 24099.86 899.98 2699.64 100
DTE-MVSNet99.68 2899.61 3899.88 1399.80 6399.87 1199.67 4799.71 9899.72 5699.84 5199.78 7798.67 12399.97 1999.30 7199.95 6199.80 26
v14419299.55 5399.54 5399.58 14399.78 8099.20 20999.11 18499.62 14399.18 15199.89 3299.72 10598.66 12599.87 18599.88 699.97 3899.66 83
v899.68 2899.69 2399.65 10999.80 6399.40 16099.66 5199.76 7199.64 7899.93 1599.85 4598.66 12599.84 24099.88 699.99 1299.71 53
GST-MVS99.16 15598.96 18299.75 6299.73 11299.73 7099.20 15199.55 19398.22 26399.32 23199.35 27598.65 12799.91 12296.86 27699.74 19799.62 116
ppachtmachnet_test98.89 20799.12 13298.20 31999.66 14595.24 35497.63 33999.68 11399.08 16899.78 7499.62 17198.65 12799.88 17398.02 18699.96 5299.48 199
PS-CasMVS99.66 3399.58 4599.89 999.80 6399.85 1599.66 5199.73 8699.62 8299.84 5199.71 11298.62 12999.96 3799.30 7199.96 5299.86 12
LF4IMVS99.01 18798.92 18999.27 23499.71 11999.28 18698.59 25899.77 6698.32 25899.39 21999.41 25398.62 12999.84 24096.62 29399.84 13798.69 332
ACMMPR99.23 12799.06 15299.76 5299.74 10999.69 8799.31 11899.59 17098.36 24799.35 22499.38 26398.61 13199.93 7897.43 24299.75 18999.67 73
API-MVS98.38 26598.39 24398.35 31298.83 34899.26 19099.14 17299.18 31098.59 22398.66 31498.78 35498.61 13199.57 35994.14 35499.56 25996.21 373
mvsmamba99.74 1999.70 1899.85 2199.93 1799.83 2799.76 1799.81 5099.96 399.91 2299.81 6198.60 13399.94 6299.58 2999.98 2699.77 39
test_one_060199.63 15199.76 5799.55 19399.23 14499.31 23599.61 18098.59 134
OMC-MVS98.90 20498.72 21099.44 18899.39 25199.42 15598.58 25999.64 13897.31 31499.44 19999.62 17198.59 13499.69 32196.17 31399.79 17499.22 264
test_0728_THIRD99.18 15199.62 14399.61 18098.58 13699.91 12297.72 21699.80 16999.77 39
RE-MVS-def99.13 12899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.57 13797.27 25299.61 24999.54 164
ACMMPcopyleft99.25 12399.08 14699.74 6899.79 7399.68 9099.50 8299.65 13298.07 27299.52 18199.69 12598.57 13799.92 9897.18 26199.79 17499.63 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS99.66 3399.59 4199.89 999.83 4499.87 1199.66 5199.73 8699.70 6199.84 5199.73 9998.56 13999.96 3799.29 7499.94 7299.83 19
V4299.56 5099.54 5399.63 12399.79 7399.46 14199.39 9899.59 17099.24 14299.86 4699.70 11998.55 14099.82 26199.79 1199.95 6199.60 130
QAPM98.40 26497.99 27799.65 10999.39 25199.47 13799.67 4799.52 21791.70 36898.78 30599.80 6498.55 14099.95 4794.71 34899.75 18999.53 170
EI-MVSNet99.38 9199.44 6899.21 24499.58 16798.09 29599.26 13499.46 24099.62 8299.75 8999.67 14198.54 14299.85 22399.15 9499.92 8499.68 66
jason99.16 15599.11 13599.32 22499.75 10398.44 27398.26 29199.39 26298.70 21499.74 9899.30 28498.54 14299.97 1998.48 15199.82 15699.55 156
jason: jason.
OurMVSNet-221017-099.75 1699.71 1799.84 2499.96 499.83 2799.83 699.85 2899.80 4499.93 1599.93 1598.54 14299.93 7899.59 2499.98 2699.76 44
IterMVS-LS99.41 8299.47 6199.25 23999.81 5898.09 29598.85 22999.76 7199.62 8299.83 5599.64 15298.54 14299.97 1999.15 9499.99 1299.68 66
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
9.1498.64 21799.45 23698.81 23799.60 16397.52 30399.28 24199.56 21098.53 14699.83 25195.36 33999.64 239
mPP-MVS99.19 14699.00 17199.76 5299.76 9299.68 9099.38 10099.54 19998.34 25699.01 27899.50 23098.53 14699.93 7897.18 26199.78 18099.66 83
CNVR-MVS98.99 19298.80 20699.56 15399.25 29399.43 15298.54 26899.27 29198.58 22498.80 30299.43 25198.53 14699.70 31597.22 25999.59 25699.54 164
PVSNet_BlendedMVS99.03 18199.01 16899.09 25999.54 19097.99 29998.58 25999.82 4197.62 29699.34 22799.71 11298.52 14999.77 29697.98 19199.97 3899.52 181
PVSNet_Blended98.70 22998.59 22299.02 26799.54 19097.99 29997.58 34299.82 4195.70 34799.34 22798.98 33698.52 14999.77 29697.98 19199.83 14799.30 250
MCST-MVS99.02 18398.81 20499.65 10999.58 16799.49 13498.58 25999.07 31798.40 24399.04 27799.25 29698.51 15199.80 28297.31 24899.51 27499.65 91
UGNet99.38 9199.34 8699.49 17398.90 33998.90 24599.70 3499.35 27399.86 2798.57 32199.81 6198.50 15299.93 7899.38 5499.98 2699.66 83
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVS99.27 12099.11 13599.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30799.47 24398.47 15399.88 17397.62 22999.73 20499.67 73
X-MVStestdata96.09 33394.87 34299.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30761.30 38698.47 15399.88 17397.62 22999.73 20499.67 73
diffmvs99.34 10499.32 9199.39 20699.67 14498.77 25398.57 26399.81 5099.61 8699.48 19199.41 25398.47 15399.86 20598.97 11499.90 9499.53 170
ambc99.20 24699.35 26198.53 26799.17 16299.46 24099.67 12199.80 6498.46 15699.70 31597.92 19699.70 21599.38 232
FC-MVSNet-test99.70 2299.65 2999.86 1899.88 3099.86 1499.72 2999.78 6399.90 1299.82 5699.83 5198.45 15799.87 18599.51 3999.97 3899.86 12
dcpmvs_299.61 4499.64 3299.53 16299.79 7398.82 24999.58 7399.97 299.95 599.96 899.76 8898.44 15899.99 699.34 6199.96 5299.78 34
131498.00 28797.90 29098.27 31898.90 33997.45 31999.30 12199.06 31994.98 35597.21 36699.12 31698.43 15999.67 33795.58 33398.56 34697.71 365
USDC98.96 19698.93 18599.05 26599.54 19097.99 29997.07 36399.80 5298.21 26499.75 8999.77 8498.43 15999.64 34997.90 19799.88 11299.51 183
KD-MVS_self_test99.63 3999.59 4199.76 5299.84 4099.90 599.37 10499.79 5899.83 3899.88 3899.85 4598.42 16199.90 14299.60 2399.73 20499.49 194
test117299.23 12799.05 15699.74 6899.52 20199.75 6199.20 15199.61 15098.97 17999.48 19199.58 19798.41 16299.91 12297.15 26399.55 26399.57 150
SR-MVS-dyc-post99.27 12099.11 13599.73 7899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.41 16299.91 12297.27 25299.61 24999.54 164
v14899.40 8599.41 7499.39 20699.76 9298.94 23799.09 19099.59 17099.17 15599.81 6399.61 18098.41 16299.69 32199.32 6799.94 7299.53 170
Test By Simon98.41 162
PM-MVS99.36 9799.29 10299.58 14399.83 4499.66 9498.95 21899.86 2498.85 19799.81 6399.73 9998.40 16699.92 9898.36 15799.83 14799.17 277
SR-MVS99.19 14699.00 17199.74 6899.51 20699.72 7499.18 15799.60 16398.85 19799.47 19399.58 19798.38 16799.92 9896.92 27299.54 26999.57 150
segment_acmp98.37 168
MP-MVScopyleft99.06 17498.83 20299.76 5299.76 9299.71 7699.32 11499.50 22598.35 25298.97 28099.48 23898.37 16899.92 9895.95 32399.75 18999.63 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
bld_raw_dy_0_6499.70 2299.65 2999.85 2199.95 1099.77 4999.66 5199.71 9899.95 599.91 2299.77 8498.35 170100.00 199.54 3499.99 1299.79 32
DVP-MVScopyleft99.32 11099.17 12099.77 4599.69 13199.80 4199.14 17299.31 28299.16 15799.62 14399.61 18098.35 17099.91 12297.88 19999.72 21099.61 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 13199.80 4199.24 14199.57 18299.16 15799.73 10299.65 15098.35 170
MVS95.72 34094.63 34498.99 26898.56 36397.98 30599.30 12198.86 32672.71 37797.30 36399.08 32098.34 17399.74 30489.21 36998.33 35199.26 256
CDPH-MVS98.56 24398.20 26299.61 13599.50 21299.46 14198.32 28699.41 25295.22 35299.21 25499.10 31998.34 17399.82 26195.09 34399.66 23499.56 153
testdata99.42 19499.51 20698.93 24199.30 28596.20 34098.87 29499.40 25798.33 17599.89 15896.29 30799.28 30799.44 215
test_241102_TWO99.54 19999.13 16399.76 8199.63 16298.32 17699.92 9897.85 20599.69 21899.75 47
APD-MVScopyleft98.87 21098.59 22299.71 8899.50 21299.62 10799.01 20499.57 18296.80 33299.54 17499.63 16298.29 17799.91 12295.24 34099.71 21399.61 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.12 1098.23 27797.89 29199.26 23699.19 30499.26 19099.65 5799.69 11091.33 36998.14 34399.77 8498.28 17899.96 3795.41 33799.55 26398.58 338
FIs99.65 3899.58 4599.84 2499.84 4099.85 1599.66 5199.75 7899.86 2799.74 9899.79 7098.27 17999.85 22399.37 5799.93 8099.83 19
TAPA-MVS97.92 1398.03 28597.55 30199.46 18299.47 22899.44 14898.50 27299.62 14386.79 37299.07 27599.26 29498.26 18099.62 35197.28 25199.73 20499.31 249
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-299.51 5899.46 6599.64 11699.70 12799.11 21799.04 19899.87 2199.71 5799.47 19399.79 7098.24 18199.98 999.38 5499.96 5299.83 19
v2v48299.50 5999.47 6199.58 14399.78 8099.25 19499.14 17299.58 18099.25 14099.81 6399.62 17198.24 18199.84 24099.83 999.97 3899.64 100
pmmvs499.13 16199.06 15299.36 21699.57 17799.10 22298.01 31499.25 29798.78 20799.58 15799.44 25098.24 18199.76 29898.74 13799.93 8099.22 264
mvs_anonymous99.28 11699.39 7698.94 27299.19 30497.81 30899.02 20299.55 19399.78 4999.85 4899.80 6498.24 18199.86 20599.57 3199.50 27699.15 281
DPE-MVScopyleft99.14 15998.92 18999.82 2899.57 17799.77 4998.74 24899.60 16398.55 22799.76 8199.69 12598.23 18599.92 9896.39 30399.75 18999.76 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS99.30 11399.14 12599.80 3499.81 5899.81 3698.73 25099.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
MTAPA99.35 9999.20 11799.80 3499.81 5899.81 3699.33 11199.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
MS-PatchMatch99.00 18998.97 18099.09 25999.11 31998.19 28798.76 24799.33 27698.49 23599.44 19999.58 19798.21 18699.69 32198.20 17299.62 24299.39 230
our_test_398.85 21299.09 14498.13 32199.66 14594.90 35797.72 33599.58 18099.07 17099.64 13199.62 17198.19 18999.93 7898.41 15499.95 6199.55 156
MVP-Stereo99.16 15599.08 14699.43 19299.48 22399.07 22699.08 19399.55 19398.63 21999.31 23599.68 13698.19 18999.78 28898.18 17699.58 25799.45 210
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H99.61 4499.53 5799.87 1699.80 6399.83 2799.67 4799.75 7899.58 9599.85 4899.69 12598.18 19199.94 6299.28 7699.95 6199.83 19
new_pmnet98.88 20898.89 19498.84 28899.70 12797.62 31498.15 29899.50 22597.98 27799.62 14399.54 21998.15 19299.94 6297.55 23499.84 13798.95 316
D2MVS99.22 13699.19 11899.29 23099.69 13198.74 25598.81 23799.41 25298.55 22799.68 11699.69 12598.13 19399.87 18598.82 12999.98 2699.24 259
Anonymous2024052999.42 7899.34 8699.65 10999.53 19599.60 11599.63 5999.39 26299.47 10799.76 8199.78 7798.13 19399.86 20598.70 14099.68 22399.49 194
EU-MVSNet99.39 8999.62 3498.72 29899.88 3096.44 33999.56 7799.85 2899.90 1299.90 2799.85 4598.09 19599.83 25199.58 2999.95 6199.90 4
PMVScopyleft92.94 2198.82 21598.81 20498.85 28699.84 4097.99 29999.20 15199.47 23699.71 5799.42 20599.82 5898.09 19599.47 36793.88 35999.85 13299.07 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HPM-MVS++copyleft98.96 19698.70 21499.74 6899.52 20199.71 7698.86 22799.19 30998.47 23798.59 31999.06 32298.08 19799.91 12296.94 27199.60 25299.60 130
ab-mvs99.33 10899.28 10499.47 17999.57 17799.39 16299.78 1199.43 24998.87 19599.57 16099.82 5898.06 19899.87 18598.69 14299.73 20499.15 281
RRT_MVS99.67 3199.59 4199.91 299.94 1199.88 999.78 1199.27 29199.87 2499.91 2299.87 3498.04 19999.96 3799.68 1799.99 1299.90 4
agg_prior198.33 27197.92 28799.57 14999.35 26199.36 17197.99 31899.39 26294.85 35997.76 35998.98 33698.03 20099.85 22395.49 33499.44 28499.51 183
N_pmnet98.73 22698.53 23299.35 21799.72 11698.67 25998.34 28394.65 37398.35 25299.79 7199.68 13698.03 20099.93 7898.28 16599.92 8499.44 215
TEST999.35 26199.35 17598.11 30499.41 25294.83 36097.92 35098.99 33398.02 20299.85 223
train_agg98.35 26997.95 28199.57 14999.35 26199.35 17598.11 30499.41 25294.90 35697.92 35098.99 33398.02 20299.85 22395.38 33899.44 28499.50 189
test_899.34 27199.31 18198.08 30899.40 25994.90 35697.87 35498.97 33998.02 20299.84 240
MVSFormer99.41 8299.44 6899.31 22799.57 17798.40 27699.77 1499.80 5299.73 5399.63 13599.30 28498.02 20299.98 999.43 4799.69 21899.55 156
lupinMVS98.96 19698.87 19699.24 24199.57 17798.40 27698.12 30299.18 31098.28 26099.63 13599.13 31298.02 20299.97 1998.22 17099.69 21899.35 241
Anonymous2023121199.62 4299.57 4899.76 5299.61 15699.60 11599.81 999.73 8699.82 4099.90 2799.90 2397.97 20799.86 20599.42 5299.96 5299.80 26
MIMVSNet199.66 3399.62 3499.80 3499.94 1199.87 1199.69 4099.77 6699.78 4999.93 1599.89 2797.94 20899.92 9899.65 1999.98 2699.62 116
原ACMM199.37 21399.47 22898.87 24899.27 29196.74 33398.26 33499.32 28097.93 20999.82 26195.96 32299.38 29399.43 221
ETH3D-3000-0.198.77 21998.50 23499.59 13999.47 22899.53 12998.77 24599.60 16397.33 31399.23 24899.50 23097.91 21099.83 25195.02 34499.67 23099.41 225
test_prior398.62 23498.34 24999.46 18299.35 26199.22 20397.95 32399.39 26297.87 28598.05 34599.05 32397.90 21199.69 32195.99 31999.49 27899.48 199
test_prior297.95 32397.87 28598.05 34599.05 32397.90 21195.99 31999.49 278
RPSCF99.18 15099.02 16599.64 11699.83 4499.85 1599.44 9299.82 4198.33 25799.50 18899.78 7797.90 21199.65 34796.78 28299.83 14799.44 215
PMMVS98.49 25498.29 25499.11 25798.96 33698.42 27597.54 34399.32 27897.53 30298.47 32898.15 37297.88 21499.82 26197.46 24099.24 31399.09 295
ZD-MVS99.43 24099.61 11399.43 24996.38 33799.11 26999.07 32197.86 21599.92 9894.04 35699.49 278
NCCC98.82 21598.57 22699.58 14399.21 29999.31 18198.61 25599.25 29798.65 21798.43 32999.26 29497.86 21599.81 27796.55 29499.27 31099.61 126
UniMVSNet_NR-MVSNet99.37 9499.25 11199.72 8499.47 22899.56 12498.97 21699.61 15099.43 11999.67 12199.28 28997.85 21799.95 4799.17 9099.81 16499.65 91
TAMVS99.49 6199.45 6699.63 12399.48 22399.42 15599.45 8999.57 18299.66 7499.78 7499.83 5197.85 21799.86 20599.44 4699.96 5299.61 126
DP-MVS Recon98.50 25198.23 25899.31 22799.49 21799.46 14198.56 26499.63 14094.86 35898.85 29699.37 26597.81 21999.59 35796.08 31499.44 28498.88 322
PatchMatch-RL98.68 23098.47 23599.30 22999.44 23899.28 18698.14 30099.54 19997.12 32399.11 26999.25 29697.80 22099.70 31596.51 29799.30 30598.93 318
CP-MVSNet99.54 5599.43 7199.87 1699.76 9299.82 3399.57 7599.61 15099.54 9699.80 6699.64 15297.79 22199.95 4799.21 8199.94 7299.84 15
DPM-MVS98.28 27297.94 28599.32 22499.36 25999.11 21797.31 35598.78 33196.88 32798.84 29799.11 31897.77 22299.61 35594.03 35799.36 29899.23 262
114514_t98.49 25498.11 27199.64 11699.73 11299.58 12199.24 14199.76 7189.94 37199.42 20599.56 21097.76 22399.86 20597.74 21599.82 15699.47 204
tmp_tt95.75 33995.42 33796.76 34889.90 38494.42 35998.86 22797.87 35778.01 37599.30 24099.69 12597.70 22495.89 37999.29 7498.14 35899.95 1
UniMVSNet (Re)99.37 9499.26 10999.68 9499.51 20699.58 12198.98 21599.60 16399.43 11999.70 11199.36 27097.70 22499.88 17399.20 8499.87 12199.59 139
Effi-MVS+-dtu99.07 17398.92 18999.52 16498.89 34299.78 4699.15 17099.66 12299.34 12798.92 28799.24 30197.69 22699.98 998.11 18299.28 30798.81 328
mvs-test198.83 21398.70 21499.22 24398.89 34299.65 9998.88 22399.66 12299.34 12798.29 33298.94 34397.69 22699.96 3798.11 18298.54 34798.04 361
F-COLMAP98.74 22498.45 23799.62 13299.57 17799.47 13798.84 23099.65 13296.31 33998.93 28499.19 30997.68 22899.87 18596.52 29699.37 29799.53 170
新几何199.52 16499.50 21299.22 20399.26 29495.66 34898.60 31899.28 28997.67 22999.89 15895.95 32399.32 30399.45 210
旧先验199.49 21799.29 18499.26 29499.39 26197.67 22999.36 29899.46 208
DU-MVS99.33 10899.21 11699.71 8899.43 24099.56 12498.83 23299.53 20999.38 12399.67 12199.36 27097.67 22999.95 4799.17 9099.81 16499.63 105
Baseline_NR-MVSNet99.49 6199.37 8199.82 2899.91 2099.84 2298.83 23299.86 2499.68 6699.65 12999.88 3197.67 22999.87 18599.03 10799.86 12899.76 44
CANet99.11 16799.05 15699.28 23298.83 34898.56 26698.71 25399.41 25299.25 14099.23 24899.22 30397.66 23399.94 6299.19 8599.97 3899.33 244
VPNet99.46 7099.37 8199.71 8899.82 5199.59 11899.48 8699.70 10499.81 4199.69 11499.58 19797.66 23399.86 20599.17 9099.44 28499.67 73
Anonymous2023120699.35 9999.31 9299.47 17999.74 10999.06 22899.28 12999.74 8399.23 14499.72 10399.53 22197.63 23599.88 17399.11 10299.84 13799.48 199
ETH3D cwj APD-0.1698.50 25198.16 26899.51 16799.04 32799.39 16298.47 27499.47 23696.70 33498.78 30599.33 27997.62 23699.86 20594.69 34999.38 29399.28 255
test1299.54 16099.29 28599.33 17899.16 31298.43 32997.54 23799.82 26199.47 28199.48 199
NR-MVSNet99.40 8599.31 9299.68 9499.43 24099.55 12799.73 2699.50 22599.46 11199.88 3899.36 27097.54 23799.87 18598.97 11499.87 12199.63 105
MAR-MVS98.24 27697.92 28799.19 24798.78 35599.65 9999.17 16299.14 31495.36 35098.04 34798.81 35397.47 23999.72 30995.47 33699.06 31998.21 355
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268899.39 8999.30 9799.65 10999.88 3099.25 19498.78 24499.88 1998.66 21699.96 899.79 7097.45 24099.93 7899.34 6199.99 1299.78 34
PAPR97.56 30397.07 31199.04 26698.80 35298.11 29397.63 33999.25 29794.56 36298.02 34898.25 37197.43 24199.68 33290.90 36898.74 33999.33 244
YYNet198.95 19998.99 17698.84 28899.64 14997.14 32798.22 29499.32 27898.92 18999.59 15599.66 14597.40 24299.83 25198.27 16699.90 9499.55 156
PVSNet97.47 1598.42 26198.44 23898.35 31299.46 23396.26 34196.70 36899.34 27597.68 29499.00 27999.13 31297.40 24299.72 30997.59 23399.68 22399.08 298
112198.56 24398.24 25799.52 16499.49 21799.24 19999.30 12199.22 30495.77 34598.52 32499.29 28797.39 24499.85 22395.79 32899.34 30099.46 208
MDA-MVSNet_test_wron98.95 19998.99 17698.85 28699.64 14997.16 32698.23 29399.33 27698.93 18799.56 16799.66 14597.39 24499.83 25198.29 16499.88 11299.55 156
MG-MVS98.52 24998.39 24398.94 27299.15 30997.39 32198.18 29599.21 30898.89 19499.23 24899.63 16297.37 24699.74 30494.22 35399.61 24999.69 60
OpenMVS_ROBcopyleft97.31 1797.36 30996.84 31998.89 28599.29 28599.45 14698.87 22699.48 23286.54 37499.44 19999.74 9597.34 24799.86 20591.61 36499.28 30797.37 369
AdaColmapbinary98.60 23798.35 24899.38 21099.12 31499.22 20398.67 25499.42 25197.84 28998.81 30099.27 29197.32 24899.81 27795.14 34199.53 27199.10 292
test22299.51 20699.08 22597.83 33299.29 28795.21 35398.68 31399.31 28297.28 24999.38 29399.43 221
HQP_MVS98.90 20498.68 21699.55 15699.58 16799.24 19998.80 24099.54 19998.94 18499.14 26599.25 29697.24 25099.82 26195.84 32699.78 18099.60 130
plane_prior699.47 22899.26 19097.24 250
GBi-Net99.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
test199.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
FMVSNet299.35 9999.28 10499.55 15699.49 21799.35 17599.45 8999.57 18299.44 11499.70 11199.74 9597.21 25299.87 18599.03 10799.94 7299.44 215
BH-RMVSNet98.41 26298.14 27099.21 24499.21 29998.47 27098.60 25798.26 35198.35 25298.93 28499.31 28297.20 25599.66 34194.32 35199.10 31899.51 183
MVS-HIRNet97.86 28998.22 26096.76 34899.28 28891.53 37498.38 28292.60 37899.13 16399.31 23599.96 1297.18 25699.68 33298.34 16099.83 14799.07 303
PAPM_NR98.36 26698.04 27499.33 22099.48 22398.93 24198.79 24399.28 29097.54 30198.56 32298.57 36197.12 25799.69 32194.09 35598.90 33099.38 232
CPTT-MVS98.74 22498.44 23899.64 11699.61 15699.38 16599.18 15799.55 19396.49 33599.27 24299.37 26597.11 25899.92 9895.74 33099.67 23099.62 116
testtj98.56 24398.17 26799.72 8499.45 23699.60 11598.88 22399.50 22596.88 32799.18 26099.48 23897.08 25999.92 9893.69 36099.38 29399.63 105
CNLPA98.57 24298.34 24999.28 23299.18 30699.10 22298.34 28399.41 25298.48 23698.52 32498.98 33697.05 26099.78 28895.59 33299.50 27698.96 314
BH-untuned98.22 27898.09 27298.58 30499.38 25497.24 32498.55 26598.98 32497.81 29099.20 25998.76 35597.01 26199.65 34794.83 34598.33 35198.86 324
VDD-MVS99.20 14399.11 13599.44 18899.43 24098.98 23199.50 8298.32 35099.80 4499.56 16799.69 12596.99 26299.85 22398.99 11099.73 20499.50 189
PLCcopyleft97.35 1698.36 26697.99 27799.48 17799.32 27899.24 19998.50 27299.51 22195.19 35498.58 32098.96 34196.95 26399.83 25195.63 33199.25 31199.37 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS99.11 16798.93 18599.66 10499.30 28399.42 15598.42 28099.37 26999.04 17599.57 16099.20 30796.89 26499.86 20598.66 14499.87 12199.70 56
CL-MVSNet_self_test98.71 22898.56 22999.15 25299.22 29798.66 26197.14 36099.51 22198.09 27199.54 17499.27 29196.87 26599.74 30498.43 15398.96 32599.03 307
MSP-MVS99.04 18098.79 20799.81 3199.78 8099.73 7099.35 10899.57 18298.54 23099.54 17498.99 33396.81 26699.93 7896.97 27099.53 27199.77 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HQP2-MVS96.67 267
HQP-MVS98.36 26698.02 27699.39 20699.31 27998.94 23797.98 31999.37 26997.45 30698.15 33998.83 35196.67 26799.70 31594.73 34699.67 23099.53 170
CANet_DTU98.91 20298.85 19899.09 25998.79 35398.13 29098.18 29599.31 28299.48 10298.86 29599.51 22796.56 26999.95 4799.05 10699.95 6199.19 273
pmmvs599.19 14699.11 13599.42 19499.76 9298.88 24698.55 26599.73 8698.82 20199.72 10399.62 17196.56 26999.82 26199.32 6799.95 6199.56 153
MVEpermissive92.54 2296.66 32396.11 32798.31 31699.68 13997.55 31697.94 32595.60 37199.37 12490.68 37998.70 35796.56 26998.61 37786.94 37799.55 26398.77 330
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
VNet99.18 15099.06 15299.56 15399.24 29599.36 17199.33 11199.31 28299.67 7099.47 19399.57 20796.48 27299.84 24099.15 9499.30 30599.47 204
MDA-MVSNet-bldmvs99.06 17499.05 15699.07 26399.80 6397.83 30798.89 22299.72 9599.29 13299.63 13599.70 11996.47 27399.89 15898.17 17899.82 15699.50 189
DeepMVS_CXcopyleft97.98 32399.69 13196.95 33099.26 29475.51 37695.74 37498.28 37096.47 27399.62 35191.23 36697.89 36297.38 368
1112_ss99.05 17798.84 20099.67 9799.66 14599.29 18498.52 27099.82 4197.65 29599.43 20399.16 31096.42 27599.91 12299.07 10599.84 13799.80 26
TR-MVS97.44 30697.15 31098.32 31498.53 36497.46 31898.47 27497.91 35696.85 32998.21 33898.51 36596.42 27599.51 36592.16 36397.29 36797.98 362
miper_ehance_all_eth98.59 24098.59 22298.59 30398.98 33597.07 32897.49 34899.52 21798.50 23399.52 18199.37 26596.41 27799.71 31397.86 20399.62 24299.00 313
Anonymous2024052199.44 7499.42 7399.49 17399.89 2698.96 23599.62 6099.76 7199.85 3299.82 5699.88 3196.39 27899.97 1999.59 2499.98 2699.55 156
c3_l98.72 22798.71 21198.72 29899.12 31497.22 32597.68 33899.56 18798.90 19199.54 17499.48 23896.37 27999.73 30797.88 19999.88 11299.21 266
sss98.90 20498.77 20899.27 23499.48 22398.44 27398.72 25199.32 27897.94 28299.37 22199.35 27596.31 28099.91 12298.85 12699.63 24199.47 204
CDS-MVSNet99.22 13699.13 12899.50 17099.35 26199.11 21798.96 21799.54 19999.46 11199.61 14999.70 11996.31 28099.83 25199.34 6199.88 11299.55 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth98.68 23098.71 21198.60 30299.10 32096.84 33497.52 34799.54 19998.94 18499.58 15799.48 23896.25 28299.76 29898.01 18999.93 8099.21 266
SixPastTwentyTwo99.42 7899.30 9799.76 5299.92 1999.67 9299.70 3499.14 31499.65 7699.89 3299.90 2396.20 28399.94 6299.42 5299.92 8499.67 73
MVS_030498.88 20898.71 21199.39 20698.85 34698.91 24499.45 8999.30 28598.56 22597.26 36599.68 13696.18 28499.96 3799.17 9099.94 7299.29 253
Test_1112_low_res98.95 19998.73 20999.63 12399.68 13999.15 21498.09 30699.80 5297.14 32299.46 19799.40 25796.11 28599.89 15899.01 10999.84 13799.84 15
IterMVS98.97 19399.16 12198.42 30999.74 10995.64 35098.06 31199.83 3699.83 3899.85 4899.74 9596.10 28699.99 699.27 77100.00 199.63 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT99.00 18999.16 12198.51 30599.75 10395.90 34798.07 30999.84 3499.84 3599.89 3299.73 9996.01 28799.99 699.33 65100.00 199.63 105
SCA98.11 28198.36 24697.36 33999.20 30292.99 36698.17 29798.49 34498.24 26299.10 27199.57 20796.01 28799.94 6296.86 27699.62 24299.14 286
ETH3 D test640097.76 29397.19 30999.50 17099.38 25499.26 19098.34 28399.49 23092.99 36598.54 32399.20 30795.92 28999.82 26191.14 36799.66 23499.40 227
PVSNet_095.53 1995.85 33895.31 34097.47 33698.78 35593.48 36595.72 37199.40 25996.18 34197.37 36297.73 37695.73 29099.58 35895.49 33481.40 37899.36 238
CMPMVSbinary77.52 2398.50 25198.19 26599.41 20198.33 36899.56 12499.01 20499.59 17095.44 34999.57 16099.80 6495.64 29199.46 36996.47 30099.92 8499.21 266
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-w/o97.20 31097.01 31397.76 33099.08 32395.69 34998.03 31398.52 34195.76 34697.96 34998.02 37395.62 29299.47 36792.82 36297.25 36898.12 359
cascas96.99 31496.82 32097.48 33597.57 37895.64 35096.43 37099.56 18791.75 36797.13 36897.61 37895.58 29398.63 37696.68 28799.11 31798.18 358
UnsupCasMVSNet_bld98.55 24698.27 25599.40 20299.56 18899.37 16897.97 32299.68 11397.49 30599.08 27299.35 27595.41 29499.82 26197.70 22198.19 35699.01 312
UnsupCasMVSNet_eth98.83 21398.57 22699.59 13999.68 13999.45 14698.99 21199.67 11899.48 10299.55 17299.36 27094.92 29599.86 20598.95 12096.57 37199.45 210
EPP-MVSNet99.17 15499.00 17199.66 10499.80 6399.43 15299.70 3499.24 30099.48 10299.56 16799.77 8494.89 29699.93 7898.72 13999.89 10399.63 105
WTY-MVS98.59 24098.37 24599.26 23699.43 24098.40 27698.74 24899.13 31698.10 26999.21 25499.24 30194.82 29799.90 14297.86 20398.77 33599.49 194
miper_enhance_ethall98.03 28597.94 28598.32 31498.27 36996.43 34096.95 36499.41 25296.37 33899.43 20398.96 34194.74 29899.69 32197.71 21899.62 24298.83 327
IS-MVSNet99.03 18198.85 19899.55 15699.80 6399.25 19499.73 2699.15 31399.37 12499.61 14999.71 11294.73 29999.81 27797.70 22199.88 11299.58 144
miper_lstm_enhance98.65 23298.60 22098.82 29399.20 30297.33 32297.78 33399.66 12299.01 17699.59 15599.50 23094.62 30099.85 22398.12 18199.90 9499.26 256
lessismore_v099.64 11699.86 3699.38 16590.66 38099.89 3299.83 5194.56 30199.97 1999.56 3299.92 8499.57 150
PCF-MVS96.03 1896.73 32195.86 33299.33 22099.44 23899.16 21296.87 36699.44 24586.58 37398.95 28299.40 25794.38 30299.88 17387.93 37299.80 16998.95 316
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet98.97 19398.82 20399.42 19499.71 11998.81 25099.62 6098.68 33499.81 4199.38 22099.80 6494.25 30399.85 22398.79 13199.32 30399.59 139
HY-MVS98.23 998.21 27997.95 28198.99 26899.03 32998.24 28399.61 6598.72 33396.81 33198.73 30999.51 22794.06 30499.86 20596.91 27398.20 35498.86 324
test_method91.72 34492.32 34789.91 36193.49 38370.18 38590.28 37499.56 18761.71 37895.39 37599.52 22393.90 30599.94 6298.76 13598.27 35399.62 116
DIV-MVS_self_test98.54 24798.42 24098.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.87 30699.78 28897.97 19399.89 10399.18 275
cl____98.54 24798.41 24198.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.85 30799.78 28897.97 19399.89 10399.17 277
EMVS96.96 31697.28 30595.99 35898.76 35791.03 37695.26 37398.61 33899.34 12798.92 28798.88 34993.79 30899.66 34192.87 36199.05 32097.30 370
EPNet_dtu97.62 30097.79 29497.11 34696.67 37992.31 36998.51 27198.04 35299.24 14295.77 37399.47 24393.78 30999.66 34198.98 11299.62 24299.37 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111197.74 29498.16 26896.49 35399.60 15889.86 38299.71 3391.21 37999.89 1799.88 3899.87 3493.73 31099.90 14299.56 3299.99 1299.70 56
K. test v398.87 21098.60 22099.69 9399.93 1799.46 14199.74 2294.97 37299.78 4999.88 3899.88 3193.66 31199.97 1999.61 2299.95 6199.64 100
ECVR-MVScopyleft97.73 29598.04 27496.78 34799.59 16290.81 37899.72 2990.43 38199.89 1799.86 4699.86 4193.60 31299.89 15899.46 4499.99 1299.65 91
CHOSEN 280x42098.41 26298.41 24198.40 31099.34 27195.89 34896.94 36599.44 24598.80 20499.25 24499.52 22393.51 31399.98 998.94 12199.98 2699.32 247
CVMVSNet98.61 23598.88 19597.80 32999.58 16793.60 36499.26 13499.64 13899.66 7499.72 10399.67 14193.26 31499.93 7899.30 7199.81 16499.87 10
Anonymous20240521198.75 22298.46 23699.63 12399.34 27199.66 9499.47 8897.65 35899.28 13599.56 16799.50 23093.15 31599.84 24098.62 14599.58 25799.40 227
EPNet98.13 28097.77 29599.18 24994.57 38297.99 29999.24 14197.96 35499.74 5297.29 36499.62 17193.13 31699.97 1998.59 14699.83 14799.58 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM95.61 34194.71 34398.31 31699.12 31496.63 33696.66 36998.46 34590.77 37096.25 37098.68 35893.01 31799.69 32181.60 37897.86 36498.62 334
Vis-MVSNet (Re-imp)98.77 21998.58 22599.34 21899.78 8098.88 24699.61 6599.56 18799.11 16799.24 24799.56 21093.00 31899.78 28897.43 24299.89 10399.35 241
E-PMN97.14 31397.43 30296.27 35598.79 35391.62 37395.54 37299.01 32399.44 11498.88 29199.12 31692.78 31999.68 33294.30 35299.03 32297.50 366
FMVSNet398.80 21798.63 21999.32 22499.13 31298.72 25699.10 18599.48 23299.23 14499.62 14399.64 15292.57 32099.86 20598.96 11699.90 9499.39 230
HyFIR lowres test98.91 20298.64 21799.73 7899.85 3999.47 13798.07 30999.83 3698.64 21899.89 3299.60 18992.57 320100.00 199.33 6599.97 3899.72 50
RPMNet98.60 23798.53 23298.83 29099.05 32598.12 29199.30 12199.62 14399.86 2799.16 26199.74 9592.53 32299.92 9898.75 13698.77 33598.44 346
h-mvs3398.61 23598.34 24999.44 18899.60 15898.67 25999.27 13299.44 24599.68 6699.32 23199.49 23592.50 323100.00 199.24 7896.51 37299.65 91
hse-mvs298.52 24998.30 25399.16 25099.29 28598.60 26598.77 24599.02 32199.68 6699.32 23199.04 32692.50 32399.85 22399.24 7897.87 36399.03 307
tpmvs97.39 30797.69 29796.52 35298.41 36591.76 37199.30 12198.94 32597.74 29197.85 35599.55 21792.40 32599.73 30796.25 30998.73 34198.06 360
tpmrst97.73 29598.07 27396.73 35098.71 35992.00 37099.10 18598.86 32698.52 23198.92 28799.54 21991.90 32699.82 26198.02 18699.03 32298.37 348
JIA-IIPM98.06 28497.92 28798.50 30698.59 36297.02 32998.80 24098.51 34299.88 2297.89 35299.87 3491.89 32799.90 14298.16 17997.68 36598.59 336
CR-MVSNet98.35 26998.20 26298.83 29099.05 32598.12 29199.30 12199.67 11897.39 31099.16 26199.79 7091.87 32899.91 12298.78 13498.77 33598.44 346
Patchmtry98.78 21898.54 23099.49 17398.89 34299.19 21099.32 11499.67 11899.65 7699.72 10399.79 7091.87 32899.95 4798.00 19099.97 3899.33 244
MDTV_nov1_ep13_2view91.44 37599.14 17297.37 31199.21 25491.78 33096.75 28399.03 307
PatchT98.45 25998.32 25298.83 29098.94 33798.29 28299.24 14198.82 32999.84 3599.08 27299.76 8891.37 33199.94 6298.82 12999.00 32498.26 352
test_yl98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
DCV-MVSNet98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
baseline197.73 29597.33 30498.96 27099.30 28397.73 31199.40 9698.42 34699.33 13099.46 19799.21 30591.18 33499.82 26198.35 15991.26 37799.32 247
tpm cat196.78 31996.98 31496.16 35798.85 34690.59 38099.08 19399.32 27892.37 36697.73 36199.46 24691.15 33599.69 32196.07 31598.80 33298.21 355
LFMVS98.46 25798.19 26599.26 23699.24 29598.52 26999.62 6096.94 36599.87 2499.31 23599.58 19791.04 33699.81 27798.68 14399.42 28999.45 210
MDTV_nov1_ep1397.73 29698.70 36090.83 37799.15 17098.02 35398.51 23298.82 29999.61 18090.98 33799.66 34196.89 27598.92 328
MIMVSNet98.43 26098.20 26299.11 25799.53 19598.38 27999.58 7398.61 33898.96 18299.33 22999.76 8890.92 33899.81 27797.38 24599.76 18699.15 281
ADS-MVSNet297.78 29297.66 30098.12 32299.14 31095.36 35299.22 14898.75 33296.97 32598.25 33599.64 15290.90 33999.94 6296.51 29799.56 25999.08 298
ADS-MVSNet97.72 29897.67 29997.86 32799.14 31094.65 35899.22 14898.86 32696.97 32598.25 33599.64 15290.90 33999.84 24096.51 29799.56 25999.08 298
alignmvs98.28 27297.96 28099.25 23999.12 31498.93 24199.03 20198.42 34699.64 7898.72 31097.85 37590.86 34199.62 35198.88 12599.13 31699.19 273
sam_mvs190.81 34299.14 286
PatchmatchNetpermissive97.65 29997.80 29297.18 34498.82 35192.49 36899.17 16298.39 34898.12 26898.79 30399.58 19790.71 34399.89 15897.23 25899.41 29099.16 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post99.62 17190.58 34499.94 62
Patchmatch-RL test98.60 23798.36 24699.33 22099.77 8899.07 22698.27 29099.87 2198.91 19099.74 9899.72 10590.57 34599.79 28598.55 14899.85 13299.11 290
sam_mvs90.52 346
pmmvs398.08 28397.80 29298.91 27899.41 24697.69 31397.87 33099.66 12295.87 34399.50 18899.51 22790.35 34799.97 1998.55 14899.47 28199.08 298
test_post52.41 38790.25 34899.86 205
iter_conf_final98.75 22298.54 23099.40 20299.33 27698.75 25499.26 13499.59 17099.80 4499.76 8199.58 19790.17 34999.92 9899.37 5799.97 3899.54 164
Patchmatch-test98.10 28297.98 27998.48 30799.27 29096.48 33899.40 9699.07 31798.81 20299.23 24899.57 20790.11 35099.87 18596.69 28699.64 23999.09 295
test-LLR97.15 31196.95 31597.74 33298.18 37295.02 35597.38 35196.10 36698.00 27497.81 35698.58 35990.04 35199.91 12297.69 22798.78 33398.31 349
test0.0.03 197.37 30896.91 31898.74 29797.72 37597.57 31597.60 34197.36 36498.00 27499.21 25498.02 37390.04 35199.79 28598.37 15695.89 37598.86 324
GA-MVS97.99 28897.68 29898.93 27599.52 20198.04 29897.19 35999.05 32098.32 25898.81 30098.97 33989.89 35399.41 37098.33 16199.05 32099.34 243
test_post199.14 17251.63 38889.54 35499.82 26196.86 276
AUN-MVS97.82 29097.38 30399.14 25499.27 29098.53 26798.72 25199.02 32198.10 26997.18 36799.03 33089.26 35599.85 22397.94 19597.91 36199.03 307
MVSTER98.47 25698.22 26099.24 24199.06 32498.35 28199.08 19399.46 24099.27 13699.75 8999.66 14588.61 35699.85 22399.14 10099.92 8499.52 181
baseline296.83 31896.28 32498.46 30899.09 32296.91 33298.83 23293.87 37797.23 31796.23 37298.36 36888.12 35799.90 14296.68 28798.14 35898.57 339
iter_conf0598.46 25798.23 25899.15 25299.04 32797.99 29999.10 18599.61 15099.79 4799.76 8199.58 19787.88 35899.92 9899.31 7099.97 3899.53 170
cl2297.56 30397.28 30598.40 31098.37 36796.75 33597.24 35899.37 26997.31 31499.41 21399.22 30387.30 35999.37 37197.70 22199.62 24299.08 298
dp96.86 31797.07 31196.24 35698.68 36190.30 38199.19 15698.38 34997.35 31298.23 33799.59 19587.23 36099.82 26196.27 30898.73 34198.59 336
ET-MVSNet_ETH3D96.78 31996.07 32898.91 27899.26 29297.92 30697.70 33796.05 36997.96 28192.37 37898.43 36787.06 36199.90 14298.27 16697.56 36698.91 320
thres100view90096.39 32796.03 32997.47 33699.63 15195.93 34699.18 15797.57 35998.75 21298.70 31297.31 38187.04 36299.67 33787.62 37398.51 34896.81 371
thres600view796.60 32496.16 32697.93 32599.63 15196.09 34599.18 15797.57 35998.77 20898.72 31097.32 38087.04 36299.72 30988.57 37098.62 34497.98 362
tfpn200view996.30 33095.89 33097.53 33499.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34896.81 371
thres40096.40 32695.89 33097.92 32699.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34897.98 362
thres20096.09 33395.68 33597.33 34199.48 22396.22 34298.53 26997.57 35998.06 27398.37 33196.73 38586.84 36699.61 35586.99 37698.57 34596.16 374
test_part198.63 23398.26 25699.75 6299.40 24999.49 13499.67 4799.68 11399.86 2799.88 3899.86 4186.73 36799.93 7899.34 6199.97 3899.81 25
tpm97.15 31196.95 31597.75 33198.91 33894.24 36099.32 11497.96 35497.71 29398.29 33299.32 28086.72 36899.92 9898.10 18496.24 37499.09 295
EPMVS96.53 32596.32 32397.17 34598.18 37292.97 36799.39 9889.95 38298.21 26498.61 31799.59 19586.69 36999.72 30996.99 26999.23 31598.81 328
CostFormer96.71 32296.79 32196.46 35498.90 33990.71 37999.41 9598.68 33494.69 36198.14 34399.34 27886.32 37099.80 28297.60 23298.07 36098.88 322
thisisatest051596.98 31596.42 32298.66 30199.42 24597.47 31797.27 35694.30 37597.24 31699.15 26398.86 35085.01 37199.87 18597.10 26599.39 29298.63 333
tpm296.35 32896.22 32596.73 35098.88 34591.75 37299.21 15098.51 34293.27 36497.89 35299.21 30584.83 37299.70 31596.04 31698.18 35798.75 331
tttt051797.62 30097.20 30898.90 28499.76 9297.40 32099.48 8694.36 37499.06 17499.70 11199.49 23584.55 37399.94 6298.73 13899.65 23799.36 238
thisisatest053097.45 30596.95 31598.94 27299.68 13997.73 31199.09 19094.19 37698.61 22299.56 16799.30 28484.30 37499.93 7898.27 16699.54 26999.16 279
FPMVS96.32 32995.50 33698.79 29499.60 15898.17 28998.46 27998.80 33097.16 32196.28 36999.63 16282.19 37599.09 37388.45 37198.89 33199.10 292
gg-mvs-nofinetune95.87 33795.17 34197.97 32498.19 37196.95 33099.69 4089.23 38399.89 1796.24 37199.94 1481.19 37699.51 36593.99 35898.20 35497.44 367
GG-mvs-BLEND97.36 33997.59 37696.87 33399.70 3488.49 38494.64 37797.26 38280.66 37799.12 37291.50 36596.50 37396.08 375
FMVSNet597.80 29197.25 30799.42 19498.83 34898.97 23399.38 10099.80 5298.87 19599.25 24499.69 12580.60 37899.91 12298.96 11699.90 9499.38 232
TESTMET0.1,196.24 33195.84 33397.41 33898.24 37093.84 36397.38 35195.84 37098.43 23897.81 35698.56 36279.77 37999.89 15897.77 21098.77 33598.52 340
KD-MVS_2432*160095.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
miper_refine_blended95.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
test-mter96.23 33295.73 33497.74 33298.18 37295.02 35597.38 35196.10 36697.90 28397.81 35698.58 35979.12 38299.91 12297.69 22798.78 33398.31 349
test250694.73 34394.59 34595.15 35999.59 16285.90 38499.75 2074.01 38599.89 1799.71 10899.86 4179.00 38399.90 14299.52 3899.99 1299.65 91
IB-MVS95.41 2095.30 34294.46 34697.84 32898.76 35795.33 35397.33 35496.07 36896.02 34295.37 37697.41 37976.17 38499.96 3797.54 23595.44 37698.22 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12329.31 34633.05 35118.08 36225.93 38612.24 38697.53 34510.93 38711.78 38024.21 38150.08 39021.04 3858.60 38123.51 37932.43 38033.39 377
testmvs28.94 34733.33 34915.79 36326.03 3859.81 38796.77 36715.67 38611.55 38123.87 38250.74 38919.03 3868.53 38223.21 38033.07 37929.03 378
test_blank8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
sosnet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
Regformer8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.26 35811.02 3610.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.16 3100.00 3870.00 3830.00 3810.00 3810.00 379
uanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.83 4499.89 899.74 2299.71 9899.69 6499.63 135
MSC_two_6792asdad99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
No_MVS99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
eth-test20.00 387
eth-test0.00 387
IU-MVS99.69 13199.77 4999.22 30497.50 30499.69 11497.75 21499.70 21599.77 39
save fliter99.53 19599.25 19498.29 28899.38 26899.07 170
test_0728_SECOND99.83 2699.70 12799.79 4399.14 17299.61 15099.92 9897.88 19999.72 21099.77 39
GSMVS99.14 286
test_part299.62 15599.67 9299.55 172
MTGPAbinary99.53 209
MTMP99.09 19098.59 340
gm-plane-assit97.59 37689.02 38393.47 36398.30 36999.84 24096.38 304
test9_res95.10 34299.44 28499.50 189
agg_prior294.58 35099.46 28399.50 189
agg_prior99.35 26199.36 17199.39 26297.76 35999.85 223
test_prior499.19 21098.00 316
test_prior99.46 18299.35 26199.22 20399.39 26299.69 32199.48 199
旧先验297.94 32595.33 35198.94 28399.88 17396.75 283
新几何298.04 312
无先验98.01 31499.23 30195.83 34499.85 22395.79 32899.44 215
原ACMM297.92 327
testdata299.89 15895.99 319
testdata197.72 33597.86 288
plane_prior799.58 16799.38 165
plane_prior599.54 19999.82 26195.84 32699.78 18099.60 130
plane_prior499.25 296
plane_prior399.31 18198.36 24799.14 265
plane_prior298.80 24098.94 184
plane_prior199.51 206
plane_prior99.24 19998.42 28097.87 28599.71 213
n20.00 388
nn0.00 388
door-mid99.83 36
test1199.29 287
door99.77 66
HQP5-MVS98.94 237
HQP-NCC99.31 27997.98 31997.45 30698.15 339
ACMP_Plane99.31 27997.98 31997.45 30698.15 339
BP-MVS94.73 346
HQP4-MVS98.15 33999.70 31599.53 170
HQP3-MVS99.37 26999.67 230
NP-MVS99.40 24999.13 21598.83 351
ACMMP++_ref99.94 72
ACMMP++99.79 174