This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 999.01 1699.63 999.66 399.27 299.68 11997.75 3099.89 2299.62 25
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4599.92 1499.77 8
XVG-OURS-SEG-HR97.38 9897.07 11298.30 6799.01 9297.41 3494.66 23699.02 4995.20 15798.15 10197.52 18098.83 498.43 33094.87 15096.41 32199.07 155
ACMH93.61 998.44 2298.76 1397.51 12499.43 3293.54 17398.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18697.74 3199.71 5199.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10799.71 499.48 798.77 699.93 298.89 399.95 599.84 5
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17498.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)98.38 2598.67 1797.51 12499.51 2293.39 17798.20 3798.87 8398.23 3599.48 1299.27 1998.47 899.55 16596.52 6799.53 9699.60 26
pm-mvs198.47 2198.67 1797.86 9999.52 2194.58 13298.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17997.09 5399.75 4399.50 43
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 13399.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
ACMH+93.58 1098.23 3298.31 2997.98 9199.39 3795.22 11197.55 7499.20 1398.21 3699.25 2598.51 7298.21 1199.40 21094.79 15499.72 4899.32 96
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12897.88 13298.22 10498.15 1299.74 7296.50 6999.62 6599.42 78
wuyk23d93.25 27195.20 19087.40 34396.07 31295.38 10097.04 10594.97 30895.33 15299.70 598.11 11598.14 1391.94 36077.76 35399.68 5774.89 360
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7297.55 2696.68 12498.83 10195.21 15698.36 7598.13 11198.13 1499.62 14496.04 8499.54 9399.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 15097.41 16097.50 18297.98 1599.79 3895.58 10999.57 8199.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 16796.50 14894.80 26799.26 4887.69 28295.96 16098.58 15595.08 16398.02 11896.25 26597.92 1697.60 35088.68 29598.74 23999.11 148
LPG-MVS_test97.94 5197.67 6498.74 3599.15 7297.02 4297.09 10299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
LGP-MVS_train98.74 3599.15 7297.02 4299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
abl_698.42 2398.19 3299.09 399.16 6998.10 597.73 6599.11 2697.76 4998.62 5198.27 9797.88 1999.80 3795.67 10099.50 10899.38 85
SED-MVS97.94 5197.90 4498.07 8399.22 5795.35 10396.79 11598.83 10196.11 11199.08 3198.24 9997.87 2099.72 8295.44 11799.51 10699.14 136
test_241102_ONE99.22 5795.35 10398.83 10196.04 11699.08 3198.13 11197.87 2099.33 231
SD-MVS97.37 9997.70 6096.35 20198.14 18495.13 11496.54 12798.92 7395.94 12499.19 2898.08 11797.74 2295.06 35895.24 12999.54 9398.87 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 6797.70 6098.16 7698.78 10895.72 8296.23 14499.02 4993.92 20498.62 5198.99 3997.69 2399.62 14496.18 7899.87 2499.15 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 1898.62 2198.32 6499.22 5795.66 8897.90 5399.08 3498.31 3299.02 3498.74 5597.68 2499.61 15097.77 2999.85 2799.70 18
ANet_high98.31 2898.94 696.41 20099.33 4389.64 24397.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3699.98 299.77 8
canonicalmvs97.23 10997.21 10497.30 14897.65 24494.39 13897.84 5699.05 4097.42 6796.68 20193.85 32297.63 2699.33 23196.29 7598.47 25898.18 257
GeoE97.75 7297.70 6097.89 9698.88 10094.53 13397.10 10198.98 6395.75 13797.62 14397.59 17497.61 2799.77 5296.34 7499.44 12699.36 91
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8695.87 7896.73 12299.05 4098.67 2398.84 4198.45 7697.58 2899.88 1896.45 7199.86 2599.54 36
cdsmvs_eth3d_5k24.22 33432.30 3370.00 3500.00 3710.00 3720.00 36298.10 2120.00 3670.00 36895.06 30297.54 290.00 3680.00 3660.00 3660.00 364
ACMP92.54 1397.47 9297.10 10998.55 5099.04 9096.70 5196.24 14398.89 7693.71 20897.97 12397.75 16097.44 3099.63 13693.22 21099.70 5499.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9699.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 798.85 1999.00 3699.20 2397.42 3299.59 15297.21 4799.76 3999.40 81
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 14199.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9898.49 2099.13 2499.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6497.35 3597.96 4899.16 1798.34 3198.78 4498.52 7197.32 3599.45 19394.08 18499.67 5899.13 139
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 7697.79 5397.40 14299.06 8793.52 17495.96 16098.97 6794.55 18498.82 4298.76 5497.31 3699.29 24297.20 4999.44 12699.38 85
XXY-MVS97.54 8697.70 6097.07 16099.46 2892.21 20197.22 9599.00 5794.93 17198.58 5698.92 4597.31 3699.41 20894.44 16799.43 13499.59 27
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8798.45 2399.15 2199.33 599.30 2199.00 3897.27 3899.92 497.64 3399.92 1499.75 13
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
ZNCC-MVS97.92 5597.62 7498.83 2699.32 4597.24 3997.45 8198.84 9495.76 13596.93 18997.43 18797.26 4099.79 3896.06 8199.53 9699.45 66
MP-MVS-pluss97.69 7697.36 9298.70 3999.50 2596.84 4795.38 19398.99 6092.45 24498.11 10598.31 8697.25 4199.77 5296.60 6399.62 6599.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 5997.63 7298.67 4199.35 4196.84 4796.36 13598.79 11195.07 16497.88 13298.35 8297.24 4299.72 8296.05 8399.58 7899.45 66
Effi-MVS+96.19 16396.01 16696.71 18097.43 26192.19 20496.12 14999.10 2895.45 14893.33 31294.71 30997.23 4399.56 16193.21 21197.54 29598.37 234
PGM-MVS97.88 6097.52 8298.96 1699.20 6597.62 2197.09 10299.06 3895.45 14897.55 14597.94 13997.11 4499.78 4294.77 15799.46 12199.48 56
test_0728_THIRD96.62 8998.40 7098.28 9397.10 4599.71 9695.70 9899.62 6599.58 28
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10697.31 3697.55 7498.92 7397.72 5398.25 9098.13 11197.10 4599.75 6595.44 11799.24 18199.32 96
OPM-MVS97.54 8697.25 9998.41 5799.11 8296.61 5595.24 20698.46 16494.58 18398.10 10898.07 11997.09 4799.39 21595.16 13599.44 12699.21 124
HFP-MVS97.94 5197.64 7098.83 2699.15 7297.50 2897.59 7198.84 9496.05 11497.49 15197.54 17797.07 4899.70 10595.61 10699.46 12199.30 102
#test#97.62 8097.22 10398.83 2699.15 7297.50 2896.81 11498.84 9494.25 19397.49 15197.54 17797.07 4899.70 10594.37 17299.46 12199.30 102
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11898.23 19495.92 12598.40 7098.28 9397.06 5099.71 9695.48 11399.52 10199.26 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5295.51 9496.89 11198.89 7695.92 12598.64 5098.31 8697.06 50
casdiffmvs97.50 8997.81 5296.56 19198.51 14191.04 22395.83 16899.09 3397.23 7698.33 8298.30 9097.03 5299.37 22196.58 6599.38 14899.28 110
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9798.90 7596.58 9298.08 11197.87 14897.02 5399.76 5795.25 12899.59 7699.40 81
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS97.64 11598.01 19595.27 10696.79 11597.35 19896.97 5498.51 32791.21 24399.25 18099.14 136
RE-MVS-def97.88 4798.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.94 5595.49 11099.20 18399.26 115
APDe-MVS98.14 3498.03 4098.47 5498.72 11496.04 7398.07 4499.10 2895.96 12298.59 5598.69 5996.94 5599.81 3196.64 6299.58 7899.57 32
GST-MVS97.82 6797.49 8698.81 2999.23 5497.25 3897.16 9698.79 11195.96 12297.53 14697.40 18996.93 5799.77 5295.04 14499.35 15799.42 78
test_241102_TWO98.83 10196.11 11198.62 5198.24 9996.92 5899.72 8295.44 11799.49 11299.49 51
LCM-MVSNet-Re97.33 10297.33 9497.32 14798.13 18793.79 16396.99 10899.65 296.74 8799.47 1398.93 4496.91 5999.84 2590.11 27399.06 20798.32 241
VPA-MVSNet98.27 2998.46 2497.70 11099.06 8793.80 16297.76 6199.00 5798.40 2999.07 3398.98 4096.89 6099.75 6597.19 5099.79 3599.55 35
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5497.60 2298.09 4398.96 6895.75 13797.91 12898.06 12496.89 6099.76 5795.32 12499.57 8199.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PMVScopyleft89.60 1796.71 14196.97 11895.95 22099.51 2297.81 1697.42 8597.49 25397.93 4395.95 23598.58 6596.88 6296.91 35389.59 28199.36 15293.12 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 5597.59 7798.92 2299.22 5797.55 2697.60 7098.84 9496.00 11997.22 16497.62 17296.87 6399.76 5795.48 11399.43 13499.46 61
CP-MVS97.92 5597.56 8098.99 1398.99 9397.82 1597.93 5098.96 6896.11 11196.89 19297.45 18696.85 6499.78 4295.19 13199.63 6499.38 85
DPE-MVScopyleft97.64 7897.35 9398.50 5198.85 10196.18 6795.21 20898.99 6095.84 13298.78 4498.08 11796.84 6599.81 3193.98 19199.57 8199.52 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040297.84 6497.97 4197.47 13299.19 6794.07 15196.71 12398.73 12498.66 2498.56 5798.41 7896.84 6599.69 11394.82 15299.81 3098.64 214
ACMMPR97.95 4997.62 7498.94 1899.20 6597.56 2597.59 7198.83 10196.05 11497.46 15797.63 17196.77 6799.76 5795.61 10699.46 12199.49 51
Vis-MVSNetpermissive98.27 2998.34 2898.07 8399.33 4395.21 11398.04 4599.46 697.32 7397.82 14099.11 3196.75 6899.86 2097.84 2599.36 15299.15 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 18895.07 19696.75 17897.67 24392.82 18894.22 25298.60 15291.61 25593.42 31092.90 33296.73 6999.70 10592.60 21797.89 27997.74 284
baseline97.44 9497.78 5696.43 19798.52 14090.75 23096.84 11299.03 4796.51 9597.86 13698.02 12896.67 7099.36 22397.09 5399.47 11899.19 126
SR-MVS98.00 4597.66 6599.01 1198.77 11097.93 1097.38 8798.83 10197.32 7398.06 11397.85 14996.65 7199.77 5295.00 14799.11 19899.32 96
tfpnnormal97.72 7497.97 4196.94 16699.26 4892.23 20097.83 5798.45 16598.25 3499.13 3098.66 6196.65 7199.69 11393.92 19399.62 6598.91 181
DeepPCF-MVS94.58 596.90 12496.43 15098.31 6697.48 25597.23 4092.56 30398.60 15292.84 23998.54 5897.40 18996.64 7398.78 30194.40 17199.41 14498.93 176
MVS_111021_LR96.82 13196.55 14197.62 11698.27 16595.34 10593.81 27398.33 18594.59 18296.56 20796.63 24596.61 7498.73 30694.80 15399.34 16098.78 200
Gipumacopyleft98.07 4098.31 2997.36 14599.76 596.28 6698.51 1999.10 2898.76 2296.79 19499.34 1796.61 7498.82 29796.38 7299.50 10896.98 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test117298.08 3997.76 5799.05 698.78 10898.07 697.41 8698.85 8997.57 6098.15 10197.96 13496.60 7699.76 5795.30 12599.18 18799.33 95
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.60 7699.76 5795.49 11099.20 18399.26 115
MVS_111021_HR96.73 13896.54 14397.27 14998.35 15893.66 17093.42 28398.36 18094.74 17596.58 20596.76 23896.54 7898.99 28294.87 15099.27 17899.15 133
SMA-MVScopyleft97.48 9197.11 10898.60 4698.83 10296.67 5296.74 11898.73 12491.61 25598.48 6398.36 8196.53 7999.68 11995.17 13399.54 9399.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v7n98.73 1198.99 597.95 9299.64 1194.20 14898.67 1199.14 2399.08 1099.42 1599.23 2196.53 7999.91 1299.27 299.93 1099.73 15
mPP-MVS97.91 5897.53 8199.04 799.22 5797.87 1497.74 6398.78 11596.04 11697.10 17497.73 16396.53 7999.78 4295.16 13599.50 10899.46 61
XVS97.96 4697.63 7298.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21897.64 17096.49 8299.72 8295.66 10299.37 14999.45 66
X-MVStestdata92.86 27590.83 30098.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21836.50 36396.49 8299.72 8295.66 10299.37 14999.45 66
9.1496.69 13398.53 13996.02 15598.98 6393.23 22197.18 16897.46 18596.47 8499.62 14492.99 21499.32 169
UA-Net98.88 798.76 1399.22 299.11 8297.89 1399.47 399.32 899.08 1097.87 13599.67 296.47 8499.92 497.88 2399.98 299.85 3
xxxxxxxxxxxxxcwj97.24 10897.03 11697.89 9698.48 14794.71 12694.53 24199.07 3795.02 16797.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
SF-MVS97.60 8297.39 9098.22 7498.93 9695.69 8497.05 10499.10 2895.32 15397.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
xiu_mvs_v1_base_debu95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base_debi95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
ETV-MVS96.13 16695.90 17396.82 17497.76 23493.89 15795.40 19198.95 7095.87 12995.58 25091.00 35396.36 9199.72 8293.36 20598.83 23196.85 313
MP-MVScopyleft97.64 7897.18 10599.00 1299.32 4597.77 1797.49 8098.73 12496.27 10495.59 24997.75 16096.30 9299.78 4293.70 20199.48 11699.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 17296.34 15394.96 25897.90 20787.91 27594.13 25998.49 16294.41 18698.16 9997.76 15796.29 9398.68 31390.52 26699.42 13798.30 245
Fast-Effi-MVS+-dtu96.44 15496.12 16197.39 14397.18 27894.39 13895.46 18598.73 12496.03 11894.72 26794.92 30696.28 9499.69 11393.81 19697.98 27498.09 259
OMC-MVS96.48 15296.00 16797.91 9598.30 16096.01 7694.86 22898.60 15291.88 25297.18 16897.21 20896.11 9599.04 27690.49 26999.34 16098.69 211
xiu_mvs_v2_base94.22 24394.63 21992.99 30997.32 27284.84 32192.12 31197.84 23191.96 25094.17 28193.43 32396.07 9699.71 9691.27 24097.48 29894.42 345
CS-MVS96.95 12097.07 11296.59 18697.86 20992.74 19297.38 8799.52 595.98 12194.89 26595.89 28596.05 9799.76 5796.65 6199.42 13797.26 300
CSCG97.40 9797.30 9597.69 11298.95 9594.83 12197.28 9198.99 6096.35 10398.13 10495.95 28295.99 9899.66 13094.36 17599.73 4598.59 220
PHI-MVS96.96 11996.53 14498.25 7297.48 25596.50 5896.76 11798.85 8993.52 21196.19 22796.85 22995.94 9999.42 19993.79 19799.43 13498.83 194
TSAR-MVS + MP.97.42 9597.23 10298.00 9099.38 3895.00 11797.63 6998.20 19893.00 23298.16 9998.06 12495.89 10099.72 8295.67 10099.10 20099.28 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 8497.28 9898.49 5299.16 6996.90 4696.39 13298.98 6395.05 16598.06 11398.02 12895.86 10199.56 16194.37 17299.64 6399.00 164
AllTest97.20 11096.92 12298.06 8599.08 8496.16 6897.14 9999.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
TestCases98.06 8599.08 8496.16 6899.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
APD-MVScopyleft97.00 11496.53 14498.41 5798.55 13796.31 6496.32 13898.77 11692.96 23797.44 15997.58 17695.84 10299.74 7291.96 22499.35 15799.19 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 33710.65 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36895.82 1050.00 3680.00 3660.00 3660.00 364
PS-MVSNAJss98.53 1998.63 1998.21 7599.68 994.82 12298.10 4299.21 1196.91 8299.75 299.45 995.82 10599.92 498.80 499.96 499.89 1
PS-MVSNAJ94.10 24994.47 22893.00 30897.35 26584.88 32091.86 31597.84 23191.96 25094.17 28192.50 33995.82 10599.71 9691.27 24097.48 29894.40 346
3Dnovator96.53 297.61 8197.64 7097.50 12797.74 23693.65 17198.49 2098.88 8196.86 8497.11 17398.55 6995.82 10599.73 7895.94 9199.42 13799.13 139
zzz-MVS98.01 4497.66 6599.06 499.44 3097.90 1195.66 17698.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9298.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
DP-MVS97.87 6197.89 4697.81 10298.62 12894.82 12297.13 10098.79 11198.98 1798.74 4798.49 7395.80 11199.49 18095.04 14499.44 12699.11 148
Anonymous2024052997.96 4698.04 3997.71 10898.69 12194.28 14597.86 5598.31 18898.79 2199.23 2698.86 4995.76 11299.61 15095.49 11099.36 15299.23 122
LS3D97.77 7197.50 8598.57 4896.24 30297.58 2498.45 2398.85 8998.58 2697.51 14897.94 13995.74 11399.63 13695.19 13198.97 21298.51 225
EIA-MVS96.04 16995.77 17796.85 17297.80 22292.98 18596.12 14999.16 1794.65 17893.77 29491.69 34795.68 11499.67 12494.18 18098.85 22997.91 277
CNVR-MVS96.92 12296.55 14198.03 8998.00 19995.54 9294.87 22798.17 20494.60 18096.38 21597.05 21895.67 11599.36 22395.12 14199.08 20299.19 126
CLD-MVS95.47 19195.07 19696.69 18298.27 16592.53 19491.36 32198.67 14291.22 26395.78 24394.12 32095.65 11698.98 28490.81 25299.72 4898.57 221
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 1798.76 1397.94 9398.79 10694.37 14098.84 899.15 2199.37 399.67 699.43 1195.61 11799.72 8298.12 1699.86 2599.73 15
Regformer-297.41 9697.24 10197.93 9497.21 27694.72 12594.85 22998.27 18997.74 5098.11 10597.50 18295.58 11899.69 11396.57 6699.31 17199.37 90
ITE_SJBPF97.85 10098.64 12396.66 5398.51 16195.63 14097.22 16497.30 20395.52 11998.55 32490.97 24798.90 22198.34 240
Regformer-497.53 8897.47 8897.71 10897.35 26593.91 15695.26 20398.14 20897.97 4298.34 7897.89 14495.49 12099.71 9697.41 4099.42 13799.51 42
DeepC-MVS_fast94.34 796.74 13696.51 14797.44 13897.69 23994.15 14996.02 15598.43 16893.17 22797.30 16297.38 19595.48 12199.28 24493.74 19899.34 16098.88 189
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5195.47 12299.89 1697.95 2199.91 1799.75 13
FMVSNet197.95 4998.08 3597.56 11999.14 8093.67 16798.23 3298.66 14497.41 7099.00 3699.19 2495.47 12299.73 7895.83 9699.76 3999.30 102
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7698.49 2799.38 1799.14 3095.44 12499.84 2596.47 7099.80 3399.47 59
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 11198.27 3198.84 9499.05 1399.01 3598.65 6395.37 12599.90 1397.57 3599.91 1799.77 8
Regformer-197.27 10597.16 10697.61 11797.21 27693.86 15994.85 22998.04 22297.62 5998.03 11797.50 18295.34 12699.63 13696.52 6799.31 17199.35 93
segment_acmp95.34 126
CDPH-MVS95.45 19394.65 21697.84 10198.28 16394.96 11893.73 27598.33 18585.03 32495.44 25196.60 24695.31 12899.44 19690.01 27599.13 19499.11 148
3Dnovator+96.13 397.73 7397.59 7798.15 7998.11 18995.60 9098.04 4598.70 13498.13 3896.93 18998.45 7695.30 12999.62 14495.64 10498.96 21399.24 121
MVS_Test96.27 15996.79 13094.73 27096.94 28786.63 29896.18 14698.33 18594.94 16996.07 23198.28 9395.25 13099.26 24797.21 4797.90 27898.30 245
XVG-OURS97.12 11196.74 13198.26 6998.99 9397.45 3293.82 27199.05 4095.19 15898.32 8397.70 16695.22 13198.41 33194.27 17798.13 26998.93 176
MCST-MVS96.24 16095.80 17597.56 11998.75 11194.13 15094.66 23698.17 20490.17 27396.21 22696.10 27595.14 13299.43 19894.13 18398.85 22999.13 139
EI-MVSNet-Vis-set97.32 10397.39 9097.11 15797.36 26492.08 20795.34 19697.65 24597.74 5098.29 8898.11 11595.05 13399.68 11997.50 3899.50 10899.56 33
Regformer-397.25 10797.29 9697.11 15797.35 26592.32 19895.26 20397.62 25097.67 5898.17 9897.89 14495.05 13399.56 16197.16 5199.42 13799.46 61
EI-MVSNet-UG-set97.32 10397.40 8997.09 15997.34 26992.01 20995.33 19797.65 24597.74 5098.30 8798.14 11095.04 13599.69 11397.55 3699.52 10199.58 28
DIV-MVS_2432*160097.86 6398.07 3697.25 15299.22 5792.81 18997.55 7498.94 7197.10 7898.85 4098.88 4795.03 13699.67 12497.39 4299.65 6199.26 115
ZD-MVS98.43 15295.94 7798.56 15690.72 26796.66 20297.07 21695.02 13799.74 7291.08 24498.93 219
DELS-MVS96.17 16496.23 15695.99 21697.55 25290.04 23792.38 30898.52 15994.13 19796.55 20997.06 21794.99 13899.58 15495.62 10599.28 17698.37 234
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ab-mvs96.59 14796.59 13796.60 18598.64 12392.21 20198.35 2697.67 24194.45 18596.99 18498.79 5194.96 13999.49 18090.39 27099.07 20498.08 260
ETH3D-3000-0.196.89 12696.46 14998.16 7698.62 12895.69 8495.96 16098.98 6393.36 21697.04 18097.31 20294.93 14099.63 13692.60 21799.34 16099.17 129
MSLP-MVS++96.42 15696.71 13295.57 23597.82 21790.56 23495.71 17198.84 9494.72 17696.71 20097.39 19394.91 14198.10 34595.28 12699.02 20998.05 269
QAPM95.88 17695.57 18496.80 17597.90 20791.84 21398.18 3998.73 12488.41 28996.42 21398.13 11194.73 14299.75 6588.72 29398.94 21798.81 196
RPSCF97.87 6197.51 8398.95 1799.15 7298.43 397.56 7399.06 3896.19 10898.48 6398.70 5894.72 14399.24 25094.37 17299.33 16799.17 129
DU-MVS97.79 6997.60 7698.36 6198.73 11295.78 8095.65 17998.87 8397.57 6098.31 8597.83 15194.69 14499.85 2297.02 5699.71 5199.46 61
Baseline_NR-MVSNet97.72 7497.79 5397.50 12799.56 1593.29 17895.44 18698.86 8598.20 3798.37 7399.24 2094.69 14499.55 16595.98 9099.79 3599.65 23
TEST997.84 21495.23 10893.62 27798.39 17686.81 30493.78 29295.99 27794.68 14699.52 174
UniMVSNet (Re)97.83 6597.65 6798.35 6398.80 10595.86 7995.92 16499.04 4697.51 6498.22 9397.81 15594.68 14699.78 4297.14 5299.75 4399.41 80
agg_prior195.39 19594.60 22197.75 10597.80 22294.96 11893.39 28598.36 18087.20 30093.49 30595.97 28094.65 14899.53 17091.69 23498.86 22798.77 203
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6098.72 11495.78 8095.66 17699.02 4998.11 3998.31 8597.69 16894.65 14899.85 2297.02 5699.71 5199.48 56
VPNet97.26 10697.49 8696.59 18699.47 2790.58 23296.27 13998.53 15897.77 4698.46 6698.41 7894.59 15099.68 11994.61 16099.29 17599.52 40
train_agg95.46 19294.66 21597.88 9897.84 21495.23 10893.62 27798.39 17687.04 30293.78 29295.99 27794.58 15199.52 17491.76 23298.90 22198.89 185
test_897.81 21895.07 11693.54 28098.38 17887.04 30293.71 29695.96 28194.58 15199.52 174
API-MVS95.09 20895.01 20095.31 24696.61 29394.02 15396.83 11397.18 26395.60 14295.79 24194.33 31794.54 15398.37 33685.70 32298.52 25593.52 349
Test By Simon94.51 154
MSDG95.33 19795.13 19395.94 22297.40 26391.85 21291.02 33298.37 17995.30 15496.31 22095.99 27794.51 15498.38 33489.59 28197.65 29297.60 291
TSAR-MVS + GP.96.47 15396.12 16197.49 13097.74 23695.23 10894.15 25696.90 27493.26 22098.04 11696.70 24194.41 15698.89 29294.77 15799.14 19098.37 234
NR-MVSNet97.96 4697.86 4898.26 6998.73 11295.54 9298.14 4098.73 12497.79 4599.42 1597.83 15194.40 15799.78 4295.91 9399.76 3999.46 61
AdaColmapbinary95.11 20694.62 22096.58 18897.33 27194.45 13794.92 22598.08 21593.15 22893.98 29095.53 29594.34 15899.10 27085.69 32398.61 25196.20 330
FC-MVSNet-test98.16 3398.37 2797.56 11999.49 2693.10 18398.35 2699.21 1198.43 2898.89 3998.83 5094.30 15999.81 3197.87 2499.91 1799.77 8
Effi-MVS+-dtu96.81 13296.09 16398.99 1396.90 28998.69 296.42 13198.09 21395.86 13095.15 25795.54 29494.26 16099.81 3194.06 18598.51 25798.47 228
mvs-test196.20 16295.50 18698.32 6496.90 28998.16 495.07 21698.09 21395.86 13093.63 29994.32 31894.26 16099.71 9694.06 18597.27 30697.07 303
ambc96.56 19198.23 17191.68 21697.88 5498.13 21098.42 6998.56 6894.22 16299.04 27694.05 18899.35 15798.95 170
test20.0396.58 14896.61 13696.48 19598.49 14591.72 21595.68 17597.69 24096.81 8598.27 8997.92 14294.18 16398.71 30890.78 25499.66 6099.00 164
HPM-MVS++copyleft96.99 11596.38 15198.81 2998.64 12397.59 2395.97 15998.20 19895.51 14695.06 25896.53 25094.10 16499.70 10594.29 17699.15 18999.13 139
testtj96.69 14296.13 16098.36 6198.46 15196.02 7596.44 13098.70 13494.26 19296.79 19497.13 21094.07 16599.75 6590.53 26598.80 23399.31 101
ETH3D cwj APD-0.1696.23 16195.61 18398.09 8297.91 20595.65 8994.94 22498.74 12291.31 26196.02 23397.08 21594.05 16699.69 11391.51 23698.94 21798.93 176
PM-MVS97.36 10197.10 10998.14 8098.91 9896.77 4996.20 14598.63 15093.82 20598.54 5898.33 8493.98 16799.05 27595.99 8999.45 12598.61 219
OpenMVScopyleft94.22 895.48 19095.20 19096.32 20397.16 27991.96 21097.74 6398.84 9487.26 29994.36 27898.01 13093.95 16899.67 12490.70 26098.75 23897.35 299
v897.60 8298.06 3896.23 20798.71 11789.44 24797.43 8498.82 10997.29 7598.74 4799.10 3293.86 16999.68 11998.61 1099.94 899.56 33
diffmvs96.04 16996.23 15695.46 24297.35 26588.03 27493.42 28399.08 3494.09 19996.66 20296.93 22593.85 17099.29 24296.01 8898.67 24499.06 157
NCCC96.52 15095.99 16898.10 8197.81 21895.68 8695.00 22298.20 19895.39 15195.40 25396.36 26193.81 17199.45 19393.55 20498.42 25999.17 129
TAPA-MVS93.32 1294.93 21394.23 23597.04 16298.18 17794.51 13495.22 20798.73 12481.22 34196.25 22495.95 28293.80 17298.98 28489.89 27798.87 22597.62 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 5498.07 3697.48 13199.38 3892.95 18698.03 4799.11 2698.04 4198.62 5198.66 6193.75 17399.78 4297.23 4499.84 2899.73 15
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17499.88 1898.72 999.88 2399.65 23
test_prior395.91 17495.39 18797.46 13597.79 22894.26 14693.33 28898.42 17194.21 19494.02 28796.25 26593.64 17599.34 22891.90 22698.96 21398.79 198
test_prior293.33 28894.21 19494.02 28796.25 26593.64 17591.90 22698.96 213
旧先验197.80 22293.87 15897.75 23697.04 21993.57 17798.68 24398.72 208
v1097.55 8597.97 4196.31 20498.60 13189.64 24397.44 8299.02 4996.60 9098.72 4999.16 2993.48 17899.72 8298.76 699.92 1499.58 28
v14896.58 14896.97 11895.42 24398.63 12787.57 28395.09 21397.90 22695.91 12798.24 9297.96 13493.42 17999.39 21596.04 8499.52 10199.29 109
V4297.04 11397.16 10696.68 18398.59 13391.05 22296.33 13798.36 18094.60 18097.99 11998.30 9093.32 18099.62 14497.40 4199.53 9699.38 85
new-patchmatchnet95.67 18296.58 13892.94 31197.48 25580.21 34492.96 29498.19 20394.83 17398.82 4298.79 5193.31 18199.51 17895.83 9699.04 20899.12 144
test1297.46 13597.61 24794.07 15197.78 23593.57 30393.31 18199.42 19998.78 23598.89 185
UGNet96.81 13296.56 14097.58 11896.64 29293.84 16197.75 6297.12 26696.47 9993.62 30098.88 4793.22 18399.53 17095.61 10699.69 5599.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs-eth3d96.49 15196.18 15997.42 14098.25 16894.29 14294.77 23398.07 21989.81 27697.97 12398.33 8493.11 18499.08 27295.46 11699.84 2898.89 185
v114496.84 12797.08 11196.13 21398.42 15389.28 25095.41 19098.67 14294.21 19497.97 12398.31 8693.06 18599.65 13198.06 1999.62 6599.45 66
PVSNet_BlendedMVS95.02 21294.93 20395.27 24797.79 22887.40 28794.14 25898.68 13988.94 28494.51 27498.01 13093.04 18699.30 23889.77 27999.49 11299.11 148
PVSNet_Blended93.96 25393.65 25294.91 25997.79 22887.40 28791.43 32098.68 13984.50 32994.51 27494.48 31593.04 18699.30 23889.77 27998.61 25198.02 272
mvs_anonymous95.36 19696.07 16593.21 30396.29 30081.56 33994.60 23897.66 24393.30 21996.95 18898.91 4693.03 18899.38 21896.60 6397.30 30598.69 211
v119296.83 13097.06 11496.15 21298.28 16389.29 24995.36 19498.77 11693.73 20798.11 10598.34 8393.02 18999.67 12498.35 1499.58 7899.50 43
F-COLMAP95.30 19994.38 23298.05 8898.64 12396.04 7395.61 18298.66 14489.00 28393.22 31396.40 25892.90 19099.35 22687.45 31297.53 29698.77 203
WR-MVS96.90 12496.81 12797.16 15498.56 13692.20 20394.33 24598.12 21197.34 7298.20 9497.33 20092.81 19199.75 6594.79 15499.81 3099.54 36
v124096.74 13697.02 11795.91 22398.18 17788.52 26295.39 19298.88 8193.15 22898.46 6698.40 8092.80 19299.71 9698.45 1399.49 11299.49 51
MVEpermissive73.61 2286.48 33085.92 33288.18 34196.23 30485.28 31481.78 36075.79 36486.01 30982.53 36191.88 34492.74 19387.47 36371.42 36094.86 33891.78 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 18695.13 19396.80 17598.51 14193.99 15594.60 23898.69 13790.20 27295.78 24396.21 26892.73 19498.98 28490.58 26498.86 22797.42 296
CANet95.86 17795.65 18096.49 19496.41 29890.82 22794.36 24498.41 17394.94 16992.62 32696.73 23992.68 19599.71 9695.12 14199.60 7498.94 172
v192192096.72 13996.96 12095.99 21698.21 17288.79 25995.42 18898.79 11193.22 22298.19 9798.26 9892.68 19599.70 10598.34 1599.55 9099.49 51
BH-untuned94.69 22694.75 21394.52 27997.95 20487.53 28494.07 26197.01 27093.99 20197.10 17495.65 29092.65 19798.95 28987.60 30896.74 31597.09 302
LF4IMVS96.07 16795.63 18197.36 14598.19 17495.55 9195.44 18698.82 10992.29 24695.70 24796.55 24892.63 19898.69 31091.75 23399.33 16797.85 279
v2v48296.78 13497.06 11495.95 22098.57 13588.77 26095.36 19498.26 19195.18 15997.85 13798.23 10192.58 19999.63 13697.80 2799.69 5599.45 66
EI-MVSNet96.63 14696.93 12195.74 22997.26 27488.13 27295.29 20197.65 24596.99 7997.94 12698.19 10692.55 20099.58 15496.91 5999.56 8499.50 43
IterMVS-LS96.92 12297.29 9695.79 22798.51 14188.13 27295.10 21198.66 14496.99 7998.46 6698.68 6092.55 20099.74 7296.91 5999.79 3599.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 9997.25 9997.74 10698.69 12194.50 13697.04 10595.61 30198.59 2598.51 6098.72 5692.54 20299.58 15496.02 8699.49 11299.12 144
MVS90.02 30889.20 31592.47 31894.71 33586.90 29595.86 16596.74 28164.72 36190.62 33792.77 33492.54 20298.39 33379.30 34895.56 33392.12 353
v14419296.69 14296.90 12496.03 21598.25 16888.92 25495.49 18498.77 11693.05 23098.09 10998.29 9292.51 20499.70 10598.11 1799.56 8499.47 59
原ACMM196.58 18898.16 18192.12 20598.15 20785.90 31293.49 30596.43 25592.47 20599.38 21887.66 30798.62 25098.23 252
VNet96.84 12796.83 12696.88 17098.06 19092.02 20896.35 13697.57 25297.70 5597.88 13297.80 15692.40 20699.54 16894.73 15998.96 21399.08 153
114514_t93.96 25393.22 26096.19 21099.06 8790.97 22595.99 15798.94 7173.88 35993.43 30996.93 22592.38 20799.37 22189.09 28899.28 17698.25 251
CPTT-MVS96.69 14296.08 16498.49 5298.89 9996.64 5497.25 9298.77 11692.89 23896.01 23497.13 21092.23 20899.67 12492.24 22299.34 16099.17 129
MSP-MVS97.45 9396.92 12299.03 899.26 4897.70 1897.66 6698.89 7695.65 13998.51 6096.46 25492.15 20999.81 3195.14 13898.58 25499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS94.21 24593.03 26297.76 10496.94 28797.44 3396.97 10997.15 26487.89 29792.00 33192.73 33692.14 21099.12 26583.92 33697.51 29796.73 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 17395.80 17596.42 19899.28 4790.62 23195.31 19999.08 3488.40 29096.97 18798.17 10992.11 21199.78 4293.64 20299.21 18298.86 192
BH-RMVSNet94.56 23494.44 23194.91 25997.57 24887.44 28693.78 27496.26 28693.69 20996.41 21496.50 25392.10 21299.00 28085.96 32097.71 28698.31 243
新几何197.25 15298.29 16194.70 12997.73 23777.98 35294.83 26696.67 24392.08 21399.45 19388.17 30298.65 24897.61 290
testdata95.70 23298.16 18190.58 23297.72 23880.38 34495.62 24897.02 22092.06 21498.98 28489.06 29098.52 25597.54 292
YYNet194.73 22194.84 20894.41 28297.47 25985.09 31890.29 33895.85 29692.52 24197.53 14697.76 15791.97 21599.18 25693.31 20796.86 31198.95 170
Anonymous2023120695.27 20095.06 19895.88 22498.72 11489.37 24895.70 17297.85 22988.00 29596.98 18697.62 17291.95 21699.34 22889.21 28699.53 9698.94 172
MS-PatchMatch94.83 21794.91 20594.57 27796.81 29187.10 29294.23 25197.34 25888.74 28797.14 17097.11 21391.94 21798.23 34192.99 21497.92 27698.37 234
112194.26 24193.26 25897.27 14998.26 16794.73 12495.86 16597.71 23977.96 35394.53 27396.71 24091.93 21899.40 21087.71 30498.64 24997.69 287
MDA-MVSNet_test_wron94.73 22194.83 21094.42 28197.48 25585.15 31690.28 33995.87 29592.52 24197.48 15497.76 15791.92 21999.17 26093.32 20696.80 31498.94 172
HQP_MVS96.66 14596.33 15497.68 11398.70 11994.29 14296.50 12898.75 12096.36 10196.16 22896.77 23691.91 22099.46 18992.59 21999.20 18399.28 110
plane_prior698.38 15594.37 14091.91 220
ETH3 D test640094.77 22093.87 24997.47 13298.12 18893.73 16594.56 24098.70 13485.45 31994.70 26995.93 28491.77 22299.63 13686.45 31899.14 19099.05 159
MVP-Stereo95.69 18095.28 18996.92 16798.15 18393.03 18495.64 18198.20 19890.39 27096.63 20497.73 16391.63 22399.10 27091.84 23097.31 30498.63 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 23293.81 25097.02 16498.19 17495.72 8293.66 27697.23 26088.17 29394.94 26395.62 29291.43 22498.57 32187.36 31397.68 28996.76 319
MDA-MVSNet-bldmvs95.69 18095.67 17995.74 22998.48 14788.76 26192.84 29597.25 25996.00 11997.59 14497.95 13891.38 22599.46 18993.16 21296.35 32298.99 167
PAPR92.22 28691.27 29295.07 25495.73 32188.81 25891.97 31497.87 22885.80 31390.91 33692.73 33691.16 22698.33 33879.48 34795.76 33198.08 260
131492.38 28392.30 27992.64 31595.42 32885.15 31695.86 16596.97 27285.40 32090.62 33793.06 33091.12 22797.80 34886.74 31695.49 33494.97 343
ppachtmachnet_test94.49 23794.84 20893.46 29796.16 30882.10 33690.59 33597.48 25590.53 26997.01 18397.59 17491.01 22899.36 22393.97 19299.18 18798.94 172
PLCcopyleft91.02 1694.05 25292.90 26497.51 12498.00 19995.12 11594.25 24998.25 19286.17 30891.48 33495.25 29891.01 22899.19 25585.02 33196.69 31698.22 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 17993.24 18092.74 30097.61 25175.17 35794.65 27096.69 24290.96 23098.66 24697.66 288
CL-MVSNet_2432*160095.04 20994.79 21295.82 22697.51 25489.79 24191.14 32996.82 27793.05 23096.72 19996.40 25890.82 23199.16 26191.95 22598.66 24698.50 226
USDC94.56 23494.57 22694.55 27897.78 23286.43 30192.75 29898.65 14985.96 31096.91 19197.93 14190.82 23198.74 30590.71 25999.59 7698.47 228
PCF-MVS89.43 1892.12 28990.64 30396.57 19097.80 22293.48 17589.88 34598.45 16574.46 35896.04 23295.68 28990.71 23399.31 23573.73 35699.01 21196.91 310
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 23294.17 23995.96 21898.36 15791.23 22095.93 16397.95 22392.98 23393.42 31094.43 31690.53 23498.38 33487.60 30896.29 32398.27 249
our_test_394.20 24794.58 22493.07 30596.16 30881.20 34190.42 33796.84 27590.72 26797.14 17097.13 21090.47 23599.11 26894.04 18998.25 26598.91 181
OpenMVS_ROBcopyleft91.80 1493.64 26293.05 26195.42 24397.31 27391.21 22195.08 21596.68 28381.56 33896.88 19396.41 25690.44 23699.25 24985.39 32797.67 29095.80 334
HQP2-MVS90.33 237
N_pmnet95.18 20394.23 23598.06 8597.85 21096.55 5792.49 30491.63 33889.34 27998.09 10997.41 18890.33 23799.06 27491.58 23599.31 17198.56 222
HQP-MVS95.17 20594.58 22496.92 16797.85 21092.47 19594.26 24698.43 16893.18 22492.86 31895.08 30090.33 23799.23 25290.51 26798.74 23999.05 159
CNLPA95.04 20994.47 22896.75 17897.81 21895.25 10794.12 26097.89 22794.41 18694.57 27195.69 28890.30 24098.35 33786.72 31798.76 23796.64 322
PMMVS92.39 28291.08 29496.30 20593.12 35492.81 18990.58 33695.96 29379.17 34991.85 33392.27 34090.29 24198.66 31589.85 27896.68 31797.43 295
TR-MVS92.54 28092.20 28093.57 29596.49 29686.66 29793.51 28194.73 31089.96 27594.95 26293.87 32190.24 24298.61 31881.18 34594.88 33795.45 340
MVS_030495.50 18795.05 19996.84 17396.28 30193.12 18297.00 10796.16 28795.03 16689.22 34897.70 16690.16 24399.48 18394.51 16699.34 16097.93 276
TAMVS95.49 18894.94 20197.16 15498.31 15993.41 17695.07 21696.82 27791.09 26497.51 14897.82 15489.96 24499.42 19988.42 29899.44 12698.64 214
DPM-MVS93.68 26092.77 27196.42 19897.91 20592.54 19391.17 32897.47 25684.99 32593.08 31594.74 30889.90 24599.00 28087.54 31098.09 27197.72 285
PMMVS293.66 26194.07 24192.45 31997.57 24880.67 34386.46 35496.00 29193.99 20197.10 17497.38 19589.90 24597.82 34788.76 29299.47 11898.86 192
BH-w/o92.14 28891.94 28292.73 31497.13 28085.30 31292.46 30595.64 29889.33 28094.21 28092.74 33589.60 24798.24 34081.68 34394.66 33994.66 344
Anonymous2024052197.07 11297.51 8395.76 22899.35 4188.18 26997.78 5898.40 17597.11 7798.34 7899.04 3789.58 24899.79 3898.09 1899.93 1099.30 102
UnsupCasMVSNet_bld94.72 22594.26 23496.08 21498.62 12890.54 23593.38 28698.05 22190.30 27197.02 18296.80 23589.54 24999.16 26188.44 29796.18 32498.56 222
MG-MVS94.08 25194.00 24494.32 28497.09 28185.89 30693.19 29295.96 29392.52 24194.93 26497.51 18189.54 24998.77 30287.52 31197.71 28698.31 243
UnsupCasMVSNet_eth95.91 17495.73 17896.44 19698.48 14791.52 21895.31 19998.45 16595.76 13597.48 15497.54 17789.53 25198.69 31094.43 16894.61 34099.13 139
GBi-Net96.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
test196.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
FMVSNet296.72 13996.67 13596.87 17197.96 20191.88 21197.15 9798.06 22095.59 14398.50 6298.62 6489.51 25299.65 13194.99 14899.60 7499.07 155
pmmvs494.82 21894.19 23896.70 18197.42 26292.75 19192.09 31396.76 27986.80 30595.73 24697.22 20789.28 25598.89 29293.28 20899.14 19098.46 230
cascas91.89 29291.35 29093.51 29694.27 34185.60 30888.86 35098.61 15179.32 34892.16 33091.44 34989.22 25698.12 34490.80 25397.47 30096.82 316
DSMNet-mixed92.19 28791.83 28493.25 30196.18 30783.68 33196.27 13993.68 31976.97 35692.54 32799.18 2789.20 25798.55 32483.88 33798.60 25397.51 293
cl_fuxian95.20 20295.32 18894.83 26696.19 30686.43 30191.83 31698.35 18493.47 21397.36 16197.26 20588.69 25899.28 24495.41 12399.36 15298.78 200
CANet_DTU94.65 23094.21 23795.96 21895.90 31489.68 24293.92 26897.83 23393.19 22390.12 34395.64 29188.52 25999.57 16093.27 20999.47 11898.62 217
EPP-MVSNet96.84 12796.58 13897.65 11499.18 6893.78 16498.68 1096.34 28597.91 4497.30 16298.06 12488.46 26099.85 2293.85 19599.40 14599.32 96
SixPastTwentyTwo97.49 9097.57 7997.26 15199.56 1592.33 19798.28 2996.97 27298.30 3399.45 1499.35 1688.43 26199.89 1698.01 2099.76 3999.54 36
miper_ehance_all_eth94.69 22694.70 21494.64 27195.77 31986.22 30391.32 32598.24 19391.67 25497.05 17996.65 24488.39 26299.22 25494.88 14998.34 26198.49 227
IS-MVSNet96.93 12196.68 13497.70 11099.25 5194.00 15498.57 1596.74 28198.36 3098.14 10397.98 13388.23 26399.71 9693.10 21399.72 4899.38 85
jason94.39 24094.04 24395.41 24598.29 16187.85 27892.74 30096.75 28085.38 32195.29 25496.15 27088.21 26499.65 13194.24 17899.34 16098.74 205
jason: jason.
IterMVS-SCA-FT95.86 17796.19 15894.85 26497.68 24085.53 30992.42 30697.63 24996.99 7998.36 7598.54 7087.94 26599.75 6597.07 5599.08 20299.27 114
SCA93.38 26893.52 25492.96 31096.24 30281.40 34093.24 29094.00 31691.58 25794.57 27196.97 22287.94 26599.42 19989.47 28397.66 29198.06 266
sss94.22 24393.72 25195.74 22997.71 23889.95 23993.84 27096.98 27188.38 29193.75 29595.74 28787.94 26598.89 29291.02 24698.10 27098.37 234
IterMVS95.42 19495.83 17494.20 28797.52 25383.78 33092.41 30797.47 25695.49 14798.06 11398.49 7387.94 26599.58 15496.02 8699.02 20999.23 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 24993.41 25696.18 21199.16 6990.04 23792.15 31098.68 13979.90 34696.22 22597.83 15187.92 26999.42 19989.18 28799.65 6199.08 153
VDDNet96.98 11896.84 12597.41 14199.40 3693.26 17997.94 4995.31 30799.26 798.39 7299.18 2787.85 27099.62 14495.13 14099.09 20199.35 93
pmmvs594.63 23194.34 23395.50 23997.63 24688.34 26694.02 26297.13 26587.15 30195.22 25697.15 20987.50 27199.27 24693.99 19099.26 17998.88 189
D2MVS95.18 20395.17 19295.21 24997.76 23487.76 28194.15 25697.94 22489.77 27796.99 18497.68 16987.45 27299.14 26395.03 14699.81 3098.74 205
PVSNet86.72 1991.10 30090.97 29791.49 32597.56 25078.04 34987.17 35394.60 31284.65 32792.34 32892.20 34187.37 27398.47 32885.17 33097.69 28897.96 274
Anonymous20240521196.34 15795.98 16997.43 13998.25 16893.85 16096.74 11894.41 31497.72 5398.37 7398.03 12787.15 27499.53 17094.06 18599.07 20498.92 180
MVSFormer96.14 16596.36 15295.49 24097.68 24087.81 27998.67 1199.02 4996.50 9694.48 27696.15 27086.90 27599.92 498.73 799.13 19498.74 205
lupinMVS93.77 25693.28 25795.24 24897.68 24087.81 27992.12 31196.05 28984.52 32894.48 27695.06 30286.90 27599.63 13693.62 20399.13 19498.27 249
eth_miper_zixun_eth94.89 21594.93 20394.75 26995.99 31386.12 30491.35 32298.49 16293.40 21497.12 17297.25 20686.87 27799.35 22695.08 14398.82 23298.78 200
WTY-MVS93.55 26493.00 26395.19 25097.81 21887.86 27693.89 26996.00 29189.02 28294.07 28595.44 29786.27 27899.33 23187.69 30696.82 31298.39 233
CDS-MVSNet94.88 21694.12 24097.14 15697.64 24593.57 17293.96 26797.06 26990.05 27496.30 22196.55 24886.10 27999.47 18690.10 27499.31 17198.40 231
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 24893.42 25596.23 20798.59 13390.85 22694.24 25098.85 8985.49 31692.97 31694.94 30486.01 28099.64 13491.78 23197.92 27698.20 255
miper_enhance_ethall93.14 27392.78 27094.20 28793.65 34885.29 31389.97 34197.85 22985.05 32396.15 23094.56 31185.74 28199.14 26393.74 19898.34 26198.17 258
new_pmnet92.34 28491.69 28794.32 28496.23 30489.16 25292.27 30992.88 32784.39 33195.29 25496.35 26285.66 28296.74 35684.53 33497.56 29497.05 304
alignmvs96.01 17195.52 18597.50 12797.77 23394.71 12696.07 15196.84 27597.48 6596.78 19894.28 31985.50 28399.40 21096.22 7698.73 24298.40 231
lessismore_v097.05 16199.36 4092.12 20584.07 36298.77 4698.98 4085.36 28499.74 7297.34 4399.37 14999.30 102
HY-MVS91.43 1592.58 27991.81 28594.90 26196.49 29688.87 25697.31 8994.62 31185.92 31190.50 34096.84 23085.05 28599.40 21083.77 33995.78 33096.43 327
EPNet93.72 25892.62 27597.03 16387.61 36692.25 19996.27 13991.28 34196.74 8787.65 35497.39 19385.00 28699.64 13492.14 22399.48 11699.20 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 21994.80 21194.85 26496.16 30886.45 30091.14 32998.20 19893.49 21297.03 18197.37 19784.97 28799.26 24795.28 12699.56 8498.83 194
Test_1112_low_res93.53 26592.86 26595.54 23898.60 13188.86 25792.75 29898.69 13782.66 33592.65 32396.92 22784.75 28899.56 16190.94 24897.76 28298.19 256
MVS-HIRNet88.40 32290.20 30882.99 34497.01 28360.04 36693.11 29385.61 36184.45 33088.72 35099.09 3384.72 28998.23 34182.52 34296.59 31990.69 358
K. test v396.44 15496.28 15596.95 16599.41 3591.53 21797.65 6790.31 35098.89 1898.93 3899.36 1484.57 29099.92 497.81 2699.56 8499.39 83
hse-mvs396.29 15895.63 18198.26 6998.50 14496.11 7196.90 11097.09 26796.58 9297.21 16698.19 10684.14 29199.78 4295.89 9496.17 32598.89 185
hse-mvs295.77 17995.09 19597.79 10397.84 21495.51 9495.66 17695.43 30696.58 9297.21 16696.16 26984.14 29199.54 16895.89 9496.92 30898.32 241
cl-mvsnet194.73 22194.64 21795.01 25695.86 31587.00 29391.33 32398.08 21593.34 21797.10 17497.34 19984.02 29399.31 23595.15 13799.55 9098.72 208
cl-mvsnet____94.73 22194.64 21795.01 25695.85 31687.00 29391.33 32398.08 21593.34 21797.10 17497.33 20084.01 29499.30 23895.14 13899.56 8498.71 210
Vis-MVSNet (Re-imp)95.11 20694.85 20795.87 22599.12 8189.17 25197.54 7994.92 30996.50 9696.58 20597.27 20483.64 29599.48 18388.42 29899.67 5898.97 168
PVSNet_081.89 2184.49 33183.21 33488.34 34095.76 32074.97 36083.49 35792.70 33178.47 35187.94 35386.90 36083.38 29696.63 35773.44 35766.86 36393.40 350
CMPMVSbinary73.10 2392.74 27791.39 28996.77 17793.57 35094.67 13094.21 25397.67 24180.36 34593.61 30196.60 24682.85 29797.35 35184.86 33298.78 23598.29 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet94.25 24294.47 22893.60 29498.14 18482.60 33497.24 9492.72 33085.08 32298.48 6398.94 4382.59 29898.76 30497.47 3999.53 9699.44 76
bset_n11_16_dypcd94.53 23693.95 24796.25 20697.56 25089.85 24088.52 35191.32 34094.90 17297.51 14896.38 26082.34 29999.78 4297.22 4599.80 3399.12 144
baseline193.14 27392.64 27494.62 27397.34 26987.20 29196.67 12593.02 32594.71 17796.51 21095.83 28681.64 30098.60 32090.00 27688.06 35598.07 262
CVMVSNet92.33 28592.79 26890.95 32997.26 27475.84 35795.29 20192.33 33381.86 33696.27 22298.19 10681.44 30198.46 32994.23 17998.29 26498.55 224
EPNet_dtu91.39 29890.75 30193.31 29990.48 36382.61 33394.80 23192.88 32793.39 21581.74 36294.90 30781.36 30299.11 26888.28 30098.87 22598.21 254
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
DCV-MVSNet94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
MIMVSNet93.42 26692.86 26595.10 25398.17 17988.19 26898.13 4193.69 31792.07 24795.04 26198.21 10580.95 30599.03 27981.42 34498.06 27298.07 262
PAPM87.64 32885.84 33393.04 30696.54 29484.99 31988.42 35295.57 30279.52 34783.82 35993.05 33180.57 30698.41 33162.29 36292.79 34695.71 335
HyFIR lowres test93.72 25892.65 27396.91 16998.93 9691.81 21491.23 32798.52 15982.69 33496.46 21296.52 25280.38 30799.90 1390.36 27198.79 23499.03 161
FMVSNet395.26 20194.94 20196.22 20996.53 29590.06 23695.99 15797.66 24394.11 19897.99 11997.91 14380.22 30899.63 13694.60 16199.44 12698.96 169
RPMNet94.68 22894.60 22194.90 26195.44 32688.15 27096.18 14698.86 8597.43 6694.10 28398.49 7379.40 30999.76 5795.69 9995.81 32796.81 317
test_part196.77 13596.53 14497.47 13298.04 19192.92 18797.93 5098.85 8998.83 2099.30 2199.07 3579.25 31099.79 3897.59 3499.93 1099.69 20
LFMVS95.32 19894.88 20696.62 18498.03 19291.47 21997.65 6790.72 34799.11 997.89 13198.31 8679.20 31199.48 18393.91 19499.12 19798.93 176
ADS-MVSNet291.47 29790.51 30594.36 28395.51 32485.63 30795.05 21995.70 29783.46 33292.69 32196.84 23079.15 31299.41 20885.66 32490.52 35098.04 270
ADS-MVSNet90.95 30390.26 30793.04 30695.51 32482.37 33595.05 21993.41 32283.46 33292.69 32196.84 23079.15 31298.70 30985.66 32490.52 35098.04 270
MDTV_nov1_ep13_2view57.28 36794.89 22680.59 34394.02 28778.66 31485.50 32697.82 281
cl-mvsnet293.25 27192.84 26794.46 28094.30 34086.00 30591.09 33196.64 28490.74 26695.79 24196.31 26378.24 31598.77 30294.15 18298.34 26198.62 217
PatchmatchNetpermissive91.98 29191.87 28392.30 32194.60 33779.71 34595.12 21093.59 32189.52 27893.61 30197.02 22077.94 31699.18 25690.84 25194.57 34298.01 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 31798.06 266
CR-MVSNet93.29 27092.79 26894.78 26895.44 32688.15 27096.18 14697.20 26184.94 32694.10 28398.57 6677.67 31899.39 21595.17 13395.81 32796.81 317
Patchmtry95.03 21194.59 22396.33 20294.83 33490.82 22796.38 13497.20 26196.59 9197.49 15198.57 6677.67 31899.38 21892.95 21699.62 6598.80 197
tpmrst90.31 30690.61 30489.41 33694.06 34572.37 36395.06 21893.69 31788.01 29492.32 32996.86 22877.45 32098.82 29791.04 24587.01 35797.04 305
sam_mvs77.38 321
patchmatchnet-post96.84 23077.36 32299.42 199
Patchmatch-RL test94.66 22994.49 22795.19 25098.54 13888.91 25592.57 30298.74 12291.46 25898.32 8397.75 16077.31 32398.81 29996.06 8199.61 7197.85 279
tpmvs90.79 30490.87 29890.57 33292.75 35876.30 35595.79 16993.64 32091.04 26591.91 33296.26 26477.19 32498.86 29689.38 28589.85 35396.56 325
test_post10.87 36676.83 32599.07 273
Patchmatch-test93.60 26393.25 25994.63 27296.14 31187.47 28596.04 15394.50 31393.57 21096.47 21196.97 22276.50 32698.61 31890.67 26198.41 26097.81 283
MDTV_nov1_ep1391.28 29194.31 33973.51 36194.80 23193.16 32486.75 30693.45 30897.40 18976.37 32798.55 32488.85 29196.43 320
EMVS89.06 31789.22 31388.61 33993.00 35577.34 35382.91 35990.92 34494.64 17992.63 32591.81 34576.30 32897.02 35283.83 33896.90 31091.48 356
test_post194.98 22310.37 36776.21 32999.04 27689.47 283
GA-MVS92.83 27692.15 28194.87 26396.97 28487.27 29090.03 34096.12 28891.83 25394.05 28694.57 31076.01 33098.97 28892.46 22197.34 30398.36 239
PatchT93.75 25793.57 25394.29 28695.05 33287.32 28996.05 15292.98 32697.54 6394.25 27998.72 5675.79 33199.24 25095.92 9295.81 32796.32 328
E-PMN89.52 31589.78 31088.73 33893.14 35377.61 35183.26 35892.02 33494.82 17493.71 29693.11 32575.31 33296.81 35485.81 32196.81 31391.77 355
DeepMVS_CXcopyleft77.17 34590.94 36285.28 31474.08 36752.51 36280.87 36388.03 35975.25 33370.63 36459.23 36384.94 35975.62 359
AUN-MVS93.95 25592.69 27297.74 10697.80 22295.38 10095.57 18395.46 30591.26 26292.64 32496.10 27574.67 33499.55 16593.72 20096.97 30798.30 245
CHOSEN 280x42089.98 31089.19 31692.37 32095.60 32381.13 34286.22 35597.09 26781.44 34087.44 35593.15 32473.99 33599.47 18688.69 29499.07 20496.52 326
thres20091.00 30290.42 30692.77 31397.47 25983.98 32994.01 26391.18 34395.12 16295.44 25191.21 35173.93 33699.31 23577.76 35397.63 29395.01 342
test-LLR89.97 31189.90 30990.16 33394.24 34274.98 35889.89 34289.06 35392.02 24889.97 34490.77 35473.92 33798.57 32191.88 22897.36 30196.92 308
test0.0.03 190.11 30789.21 31492.83 31293.89 34686.87 29691.74 31788.74 35592.02 24894.71 26891.14 35273.92 33794.48 35983.75 34092.94 34597.16 301
tpm cat188.01 32587.33 32690.05 33594.48 33876.28 35694.47 24394.35 31573.84 36089.26 34795.61 29373.64 33998.30 33984.13 33586.20 35895.57 339
tfpn200view991.55 29691.00 29593.21 30398.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28395.85 332
thres40091.68 29591.00 29593.71 29298.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28397.36 297
test_method66.88 33266.13 33569.11 34662.68 36725.73 36949.76 36196.04 29014.32 36464.27 36591.69 34773.45 34288.05 36276.06 35566.94 36293.54 348
thres100view90091.76 29491.26 29393.26 30098.21 17284.50 32496.39 13290.39 34896.87 8396.33 21793.08 32973.44 34399.42 19978.85 35097.74 28395.85 332
thres600view792.03 29091.43 28893.82 29098.19 17484.61 32396.27 13990.39 34896.81 8596.37 21693.11 32573.44 34399.49 18080.32 34697.95 27597.36 297
RRT_MVS94.90 21494.07 24197.39 14393.18 35193.21 18195.26 20397.49 25393.94 20398.25 9097.85 14972.96 34599.84 2597.90 2299.78 3899.14 136
MVSTER94.21 24593.93 24895.05 25595.83 31786.46 29995.18 20997.65 24592.41 24597.94 12698.00 13272.39 34699.58 15496.36 7399.56 8499.12 144
JIA-IIPM91.79 29390.69 30295.11 25293.80 34790.98 22494.16 25591.78 33796.38 10090.30 34299.30 1872.02 34798.90 29088.28 30090.17 35295.45 340
tpm91.08 30190.85 29991.75 32495.33 32978.09 34895.03 22191.27 34288.75 28693.53 30497.40 18971.24 34899.30 23891.25 24293.87 34397.87 278
baseline289.65 31488.44 32193.25 30195.62 32282.71 33293.82 27185.94 36088.89 28587.35 35692.54 33871.23 34999.33 23186.01 31994.60 34197.72 285
CostFormer89.75 31389.25 31291.26 32894.69 33678.00 35095.32 19891.98 33581.50 33990.55 33996.96 22471.06 35098.89 29288.59 29692.63 34796.87 311
FPMVS89.92 31288.63 31993.82 29098.37 15696.94 4591.58 31893.34 32388.00 29590.32 34197.10 21470.87 35191.13 36171.91 35996.16 32693.39 351
EPMVS89.26 31688.55 32091.39 32692.36 35979.11 34695.65 17979.86 36388.60 28893.12 31496.53 25070.73 35298.10 34590.75 25589.32 35496.98 306
tmp_tt57.23 33362.50 33641.44 34734.77 36849.21 36883.93 35660.22 36915.31 36371.11 36479.37 36270.09 35344.86 36564.76 36182.93 36130.25 361
ET-MVSNet_ETH3D91.12 29989.67 31195.47 24196.41 29889.15 25391.54 31990.23 35189.07 28186.78 35892.84 33369.39 35499.44 19694.16 18196.61 31897.82 281
dp88.08 32488.05 32288.16 34292.85 35668.81 36594.17 25492.88 32785.47 31791.38 33596.14 27268.87 35598.81 29986.88 31583.80 36096.87 311
tpm288.47 32187.69 32590.79 33094.98 33377.34 35395.09 21391.83 33677.51 35589.40 34696.41 25667.83 35698.73 30683.58 34192.60 34896.29 329
pmmvs390.00 30988.90 31893.32 29894.20 34485.34 31191.25 32692.56 33278.59 35093.82 29195.17 29967.36 35798.69 31089.08 28998.03 27395.92 331
thisisatest051590.43 30589.18 31794.17 28997.07 28285.44 31089.75 34687.58 35688.28 29293.69 29891.72 34665.27 35899.58 15490.59 26398.67 24497.50 294
tttt051793.31 26992.56 27695.57 23598.71 11787.86 27697.44 8287.17 35895.79 13497.47 15696.84 23064.12 35999.81 3196.20 7799.32 16999.02 163
thisisatest053092.71 27891.76 28695.56 23798.42 15388.23 26796.03 15487.35 35794.04 20096.56 20795.47 29664.03 36099.77 5294.78 15699.11 19898.68 213
FMVSNet593.39 26792.35 27896.50 19395.83 31790.81 22997.31 8998.27 18992.74 24096.27 22298.28 9362.23 36199.67 12490.86 25099.36 15299.03 161
DWT-MVSNet_test87.92 32686.77 33091.39 32693.18 35178.62 34795.10 21191.42 33985.58 31588.00 35288.73 35860.60 36298.90 29090.60 26287.70 35696.65 321
IB-MVS85.98 2088.63 32086.95 32993.68 29395.12 33184.82 32290.85 33390.17 35287.55 29888.48 35191.34 35058.01 36399.59 15287.24 31493.80 34496.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RRT_test8_iter0592.46 28192.52 27792.29 32295.33 32977.43 35295.73 17098.55 15794.41 18697.46 15797.72 16557.44 36499.74 7296.92 5899.14 19099.69 20
gg-mvs-nofinetune88.28 32386.96 32892.23 32392.84 35784.44 32598.19 3874.60 36599.08 1087.01 35799.47 856.93 36598.23 34178.91 34995.61 33294.01 347
KD-MVS_2432*160088.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
miper_refine_blended88.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
GG-mvs-BLEND90.60 33191.00 36184.21 32898.23 3272.63 36882.76 36084.11 36156.14 36896.79 35572.20 35892.09 34990.78 357
TESTMET0.1,187.20 32986.57 33189.07 33793.62 34972.84 36289.89 34287.01 35985.46 31889.12 34990.20 35656.00 36997.72 34990.91 24996.92 30896.64 322
test-mter87.92 32687.17 32790.16 33394.24 34274.98 35889.89 34289.06 35386.44 30789.97 34490.77 35454.96 37098.57 32191.88 22897.36 30196.92 308
test12312.59 33515.49 3383.87 3486.07 3692.55 37090.75 3342.59 3712.52 3655.20 36713.02 3654.96 3711.85 3675.20 3649.09 3647.23 362
testmvs12.33 33615.23 3393.64 3495.77 3702.23 37188.99 3493.62 3702.30 3665.29 36613.09 3644.52 3721.95 3665.16 3658.32 3656.75 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.91 33810.55 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36894.94 3040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
IU-MVS99.22 5795.40 9998.14 20885.77 31498.36 7595.23 13099.51 10699.49 51
save fliter98.48 14794.71 12694.53 24198.41 17395.02 167
test_0728_SECOND98.25 7299.23 5495.49 9796.74 11898.89 7699.75 6595.48 11399.52 10199.53 39
GSMVS98.06 266
test_part299.03 9196.07 7298.08 111
MTGPAbinary98.73 124
MTMP96.55 12674.60 365
gm-plane-assit91.79 36071.40 36481.67 33790.11 35798.99 28284.86 332
test9_res91.29 23998.89 22499.00 164
agg_prior290.34 27298.90 22199.10 152
agg_prior97.80 22294.96 11898.36 18093.49 30599.53 170
test_prior495.38 10093.61 279
test_prior97.46 13597.79 22894.26 14698.42 17199.34 22898.79 198
旧先验293.35 28777.95 35495.77 24598.67 31490.74 258
新几何293.43 282
无先验93.20 29197.91 22580.78 34299.40 21087.71 30497.94 275
原ACMM292.82 296
testdata299.46 18987.84 303
testdata192.77 29793.78 206
plane_prior798.70 11994.67 130
plane_prior598.75 12099.46 18992.59 21999.20 18399.28 110
plane_prior496.77 236
plane_prior394.51 13495.29 15596.16 228
plane_prior296.50 12896.36 101
plane_prior198.49 145
plane_prior94.29 14295.42 18894.31 19198.93 219
n20.00 372
nn0.00 372
door-mid98.17 204
test1198.08 215
door97.81 234
HQP5-MVS92.47 195
HQP-NCC97.85 21094.26 24693.18 22492.86 318
ACMP_Plane97.85 21094.26 24693.18 22492.86 318
BP-MVS90.51 267
HQP4-MVS92.87 31799.23 25299.06 157
HQP3-MVS98.43 16898.74 239
NP-MVS98.14 18493.72 16695.08 300
ACMMP++_ref99.52 101
ACMMP++99.55 90