This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 1099.30 2899.01 2099.63 1499.66 399.27 299.68 12497.75 5399.89 2499.62 35
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 596.34 6699.18 699.20 3799.67 299.73 599.65 599.15 399.86 2797.22 7099.92 1599.77 11
test_fmvsmconf0.01_n98.57 1898.74 1798.06 8899.39 4594.63 13696.70 14999.82 195.44 17099.64 1399.52 798.96 499.74 7999.38 399.86 3099.81 7
XVG-OURS-SEG-HR97.38 11997.07 13598.30 6899.01 10997.41 3594.66 27299.02 8095.20 17898.15 13197.52 21798.83 598.43 36094.87 18796.41 35999.07 170
ACMH93.61 998.44 2698.76 1497.51 12799.43 3893.54 18098.23 4799.05 6997.40 8399.37 2699.08 5498.79 699.47 19897.74 5499.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 698.94 698.75 3299.69 1096.48 6198.54 2499.22 3496.23 12599.71 799.48 1098.77 799.93 498.89 1899.95 599.84 5
test_fmvsmconf0.1_n98.41 2898.54 2798.03 9399.16 8294.61 13796.18 17899.73 395.05 18699.60 1799.34 2498.68 899.72 9099.21 899.85 3799.76 16
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 996.99 4599.69 299.57 1599.02 1999.62 1599.36 2198.53 999.52 18398.58 2999.95 599.66 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n98.30 3398.41 3597.99 9698.94 11594.60 13896.00 19399.64 1394.99 18999.43 2299.18 4098.51 1099.71 10499.13 1199.84 3999.67 27
TransMVSNet (Re)98.38 2998.67 1997.51 12799.51 2993.39 18698.20 5298.87 11698.23 4499.48 1999.27 3098.47 1199.55 17596.52 9399.53 12699.60 36
pm-mvs198.47 2598.67 1997.86 10399.52 2894.58 13998.28 4399.00 8997.57 7099.27 3299.22 3498.32 1299.50 18897.09 7799.75 6599.50 62
jajsoiax98.77 1098.79 1398.74 3599.66 1296.48 6198.45 3299.12 5195.83 15199.67 1099.37 1998.25 1399.92 798.77 2199.94 899.82 6
sd_testset97.97 5498.12 4497.51 12799.41 4193.44 18397.96 6698.25 21998.58 3298.78 6699.39 1698.21 1499.56 17192.65 25599.86 3099.52 58
ACMH+93.58 1098.23 3798.31 3897.98 9799.39 4595.22 11897.55 9799.20 3798.21 4599.25 3498.51 10798.21 1499.40 22394.79 19199.72 7199.32 115
HPM-MVS_fast98.32 3198.13 4398.88 2499.54 2597.48 3198.35 3699.03 7795.88 14797.88 16098.22 14998.15 1699.74 7996.50 9499.62 9399.42 97
wuyk23d93.25 30095.20 21987.40 38796.07 35095.38 10597.04 12794.97 33695.33 17399.70 998.11 16198.14 1791.94 40577.76 39699.68 8274.89 405
ACMM93.33 1198.05 4997.79 7798.85 2599.15 8597.55 2796.68 15098.83 13395.21 17798.36 10598.13 15798.13 1899.62 15296.04 11399.54 12299.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4497.83 7398.92 2299.42 4097.46 3298.57 2199.05 6995.43 17197.41 18597.50 21997.98 1999.79 4795.58 14399.57 10999.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 19096.50 17494.80 29199.26 5987.69 31095.96 19898.58 18495.08 18498.02 14796.25 29997.92 2097.60 38588.68 33198.74 26399.11 163
LPG-MVS_test97.94 6397.67 8998.74 3599.15 8597.02 4397.09 12499.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
LGP-MVS_train98.74 3599.15 8597.02 4399.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
SED-MVS97.94 6397.90 6398.07 8699.22 6895.35 10896.79 14098.83 13396.11 13199.08 4298.24 14497.87 2399.72 9095.44 15299.51 13699.14 153
test_241102_ONE99.22 6895.35 10898.83 13396.04 13699.08 4298.13 15797.87 2399.33 247
SDMVSNet97.97 5498.26 4297.11 16399.41 4192.21 21696.92 13298.60 18098.58 3298.78 6699.39 1697.80 2599.62 15294.98 18599.86 3099.52 58
testf198.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
APD_test298.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
SD-MVS97.37 12197.70 8496.35 21698.14 21895.13 12296.54 15598.92 10595.94 14399.19 3798.08 16397.74 2895.06 39995.24 16499.54 12298.87 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 8397.70 8498.16 7998.78 13795.72 8796.23 17699.02 8093.92 22598.62 7798.99 6097.69 2999.62 15296.18 10899.87 2799.15 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 2298.62 2398.32 6599.22 6895.66 9297.90 7199.08 6198.31 4099.02 4598.74 8497.68 3099.61 15997.77 5299.85 3799.70 25
MGCFI-Net97.20 13097.23 12597.08 16897.68 27593.71 17397.79 7799.09 5997.40 8396.59 23993.96 35297.67 3199.35 24296.43 9798.50 28598.17 285
ANet_high98.31 3298.94 696.41 21499.33 5389.64 26597.92 7099.56 1799.27 799.66 1299.50 997.67 3199.83 3597.55 6199.98 299.77 11
test_fmvsmvis_n_192098.08 4698.47 2996.93 17899.03 10793.29 18896.32 16899.65 1095.59 16299.71 799.01 5797.66 3399.60 16199.44 299.83 4297.90 309
casdiffmvs_mvgpermissive97.83 7998.11 4597.00 17598.57 16492.10 22495.97 19699.18 4097.67 6999.00 4898.48 11297.64 3499.50 18896.96 8299.54 12299.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
canonicalmvs97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
GeoE97.75 8997.70 8497.89 10198.88 12394.53 14097.10 12398.98 9595.75 15597.62 17197.59 21297.61 3799.77 5996.34 10199.44 15699.36 112
TranMVSNet+NR-MVSNet98.33 3098.30 4098.43 5899.07 10095.87 8296.73 14799.05 6998.67 2898.84 6198.45 11397.58 3899.88 2396.45 9699.86 3099.54 53
cdsmvs_eth3d_5k24.22 37832.30 3810.00 3960.00 4190.00 4210.00 40798.10 2420.00 4140.00 41595.06 33497.54 390.00 4150.00 4140.00 4130.00 411
ACMP92.54 1397.47 11297.10 13298.55 5099.04 10696.70 5296.24 17598.89 10893.71 22997.97 15297.75 20097.44 4099.63 14793.22 24899.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1298.74 1798.69 4099.63 1496.30 6898.67 1699.02 8096.50 11399.32 2999.44 1497.43 4199.92 798.73 2399.95 599.86 2
TDRefinement98.90 698.86 999.02 799.54 2598.06 999.34 499.44 2098.85 2599.00 4899.20 3697.42 4299.59 16297.21 7199.76 5899.40 100
anonymousdsp98.72 1598.63 2198.99 1199.62 1597.29 3898.65 2099.19 3995.62 16099.35 2899.37 1997.38 4399.90 1898.59 2899.91 1899.77 11
PS-CasMVS98.73 1298.85 1198.39 6199.55 2295.47 10298.49 2999.13 5099.22 1099.22 3698.96 6497.35 4499.92 797.79 5199.93 1199.79 9
COLMAP_ROBcopyleft94.48 698.25 3698.11 4598.64 4499.21 7597.35 3697.96 6699.16 4298.34 3998.78 6698.52 10597.32 4599.45 20594.08 22099.67 8499.13 155
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 9497.79 7797.40 14499.06 10193.52 18195.96 19898.97 9894.55 20598.82 6398.76 8397.31 4699.29 25997.20 7399.44 15699.38 106
XXY-MVS97.54 10797.70 8497.07 16999.46 3592.21 21697.22 11699.00 8994.93 19298.58 8298.92 6897.31 4699.41 22194.44 20499.43 16499.59 38
PEN-MVS98.75 1198.85 1198.44 5699.58 1895.67 9198.45 3299.15 4699.33 699.30 3099.00 5897.27 4899.92 797.64 5999.92 1599.75 18
DTE-MVSNet98.79 998.86 998.59 4799.55 2296.12 7398.48 3199.10 5499.36 599.29 3199.06 5597.27 4899.93 497.71 5599.91 1899.70 25
ZNCC-MVS97.92 6797.62 9898.83 2699.32 5597.24 4097.45 10498.84 12795.76 15396.93 21797.43 22397.26 5099.79 4796.06 11099.53 12699.45 85
MP-MVS-pluss97.69 9497.36 11798.70 3999.50 3296.84 4895.38 23498.99 9292.45 27398.11 13498.31 12897.25 5199.77 5996.60 9099.62 9399.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 7397.63 9698.67 4199.35 5096.84 4896.36 16598.79 14395.07 18597.88 16098.35 12497.24 5299.72 9096.05 11299.58 10699.45 85
Effi-MVS+96.19 18696.01 19396.71 19597.43 30092.19 22096.12 18499.10 5495.45 16893.33 34794.71 34197.23 5399.56 17193.21 24997.54 32998.37 259
tt080597.44 11497.56 10497.11 16399.55 2296.36 6498.66 1995.66 32298.31 4097.09 20695.45 32897.17 5498.50 35598.67 2697.45 33596.48 368
PGM-MVS97.88 7497.52 10898.96 1499.20 7797.62 2297.09 12499.06 6595.45 16897.55 17397.94 18397.11 5599.78 5094.77 19499.46 15299.48 76
test_0728_THIRD96.62 10498.40 9998.28 13797.10 5699.71 10495.70 13199.62 9399.58 39
APD-MVS_3200maxsize98.13 4397.90 6398.79 3098.79 13497.31 3797.55 9798.92 10597.72 6298.25 11998.13 15797.10 5699.75 7095.44 15299.24 20799.32 115
OPM-MVS97.54 10797.25 12398.41 5999.11 9496.61 5795.24 24598.46 19394.58 20498.10 13698.07 16597.09 5899.39 22795.16 17099.44 15699.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS97.94 6397.64 9498.83 2699.15 8597.50 3097.59 9498.84 12796.05 13497.49 17897.54 21597.07 5999.70 11295.61 14099.46 15299.30 120
DVP-MVScopyleft97.78 8797.65 9198.16 7999.24 6395.51 9796.74 14398.23 22295.92 14498.40 9998.28 13797.06 6099.71 10495.48 14899.52 13199.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6395.51 9796.89 13498.89 10895.92 14498.64 7598.31 12897.06 60
test_fmvsm_n_192098.08 4698.29 4197.43 14098.88 12393.95 16496.17 18299.57 1595.66 15799.52 1898.71 8797.04 6299.64 14399.21 899.87 2798.69 228
casdiffmvspermissive97.50 10997.81 7596.56 20598.51 17391.04 24495.83 20699.09 5997.23 9098.33 11198.30 13297.03 6399.37 23596.58 9299.38 17499.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SteuartSystems-ACMMP98.02 5297.76 8198.79 3099.43 3897.21 4297.15 11998.90 10796.58 10898.08 13997.87 18997.02 6499.76 6495.25 16399.59 10499.40 100
Skip Steuart: Steuart Systems R&D Blog.
PC_three_145287.24 34298.37 10297.44 22297.00 6596.78 39592.01 26399.25 20499.21 140
EC-MVSNet97.90 7297.94 6297.79 10798.66 15195.14 12198.31 4099.66 997.57 7095.95 27197.01 25696.99 6699.82 3797.66 5899.64 8998.39 257
DVP-MVS++97.96 5697.90 6398.12 8497.75 26695.40 10399.03 898.89 10896.62 10498.62 7798.30 13296.97 6799.75 7095.70 13199.25 20499.21 140
OPU-MVS97.64 11898.01 22795.27 11396.79 14097.35 23496.97 6798.51 35491.21 28199.25 20499.14 153
RE-MVS-def97.88 6898.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.94 6995.49 14599.20 20999.26 132
APDe-MVScopyleft98.14 4098.03 5398.47 5598.72 14296.04 7698.07 5999.10 5495.96 14198.59 8198.69 8996.94 6999.81 3996.64 8899.58 10699.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_one_060199.05 10595.50 10098.87 11697.21 9198.03 14698.30 13296.93 71
GST-MVS97.82 8397.49 11298.81 2899.23 6597.25 3997.16 11898.79 14395.96 14197.53 17497.40 22596.93 7199.77 5995.04 17999.35 18399.42 97
test_241102_TWO98.83 13396.11 13198.62 7798.24 14496.92 7399.72 9095.44 15299.49 14399.49 70
LCM-MVSNet-Re97.33 12497.33 11997.32 14898.13 22193.79 17096.99 12999.65 1096.74 10299.47 2098.93 6796.91 7499.84 3390.11 30999.06 23298.32 266
VPA-MVSNet98.27 3498.46 3097.70 11399.06 10193.80 16997.76 8199.00 8998.40 3799.07 4498.98 6196.89 7599.75 7097.19 7499.79 5299.55 52
ACMMPcopyleft98.05 4997.75 8398.93 1999.23 6597.60 2398.09 5898.96 9995.75 15597.91 15798.06 17096.89 7599.76 6495.32 16099.57 10999.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS98.09 4598.01 5598.32 6598.45 18296.69 5398.52 2799.69 698.07 5096.07 26797.19 24496.88 7799.86 2797.50 6399.73 6798.41 254
PMVScopyleft89.60 1796.71 16396.97 14195.95 23599.51 2997.81 1797.42 10897.49 27997.93 5395.95 27198.58 9996.88 7796.91 39289.59 31799.36 17893.12 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 6797.59 10198.92 2299.22 6897.55 2797.60 9298.84 12796.00 13997.22 19097.62 21096.87 7999.76 6495.48 14899.43 16499.46 81
CP-MVS97.92 6797.56 10498.99 1198.99 11097.82 1697.93 6998.96 9996.11 13196.89 22097.45 22196.85 8099.78 5095.19 16699.63 9199.38 106
DPE-MVScopyleft97.64 9897.35 11898.50 5298.85 12896.18 7095.21 24798.99 9295.84 15098.78 6698.08 16396.84 8199.81 3993.98 22699.57 10999.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040297.84 7897.97 5997.47 13699.19 7994.07 15996.71 14898.73 15598.66 2998.56 8398.41 11896.84 8199.69 11994.82 18999.81 4798.64 232
CS-MVS-test97.91 7097.84 7098.14 8298.52 17196.03 7898.38 3599.67 798.11 4895.50 28896.92 26296.81 8399.87 2596.87 8599.76 5898.51 247
ACMMPR97.95 6097.62 9898.94 1699.20 7797.56 2697.59 9498.83 13396.05 13497.46 18397.63 20996.77 8499.76 6495.61 14099.46 15299.49 70
Vis-MVSNetpermissive98.27 3498.34 3798.07 8699.33 5395.21 12098.04 6099.46 1897.32 8797.82 16799.11 5096.75 8599.86 2797.84 4899.36 17899.15 150
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 21495.07 22596.75 19297.67 27992.82 19794.22 28798.60 18091.61 28693.42 34592.90 36596.73 8699.70 11292.60 25697.89 31297.74 321
baseline97.44 11497.78 8096.43 21198.52 17190.75 25196.84 13599.03 7796.51 11297.86 16498.02 17496.67 8799.36 23897.09 7799.47 14999.19 144
SR-MVS98.00 5397.66 9099.01 998.77 13897.93 1297.38 10998.83 13397.32 8798.06 14297.85 19096.65 8899.77 5995.00 18299.11 22399.32 115
tfpnnormal97.72 9297.97 5996.94 17799.26 5992.23 21597.83 7698.45 19498.25 4399.13 4098.66 9196.65 8899.69 11993.92 22899.62 9398.91 196
DeepPCF-MVS94.58 596.90 14696.43 17698.31 6797.48 29497.23 4192.56 34198.60 18092.84 26598.54 8497.40 22596.64 9098.78 32594.40 20899.41 17198.93 192
MVS_111021_LR96.82 15496.55 16897.62 11998.27 19795.34 11093.81 30998.33 21294.59 20396.56 24296.63 28096.61 9198.73 33094.80 19099.34 18698.78 215
Gipumacopyleft98.07 4898.31 3897.36 14699.76 796.28 6998.51 2899.10 5498.76 2796.79 22499.34 2496.61 9198.82 32196.38 9999.50 14096.98 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SR-MVS-dyc-post98.14 4097.84 7099.02 798.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.60 9399.76 6495.49 14599.20 20999.26 132
MVS_111021_HR96.73 16096.54 17097.27 15298.35 19093.66 17793.42 31998.36 20894.74 19596.58 24096.76 27496.54 9498.99 30794.87 18799.27 20299.15 150
SMA-MVScopyleft97.48 11197.11 13198.60 4698.83 12996.67 5496.74 14398.73 15591.61 28698.48 9198.36 12396.53 9599.68 12495.17 16899.54 12299.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v7n98.73 1298.99 597.95 9899.64 1394.20 15698.67 1699.14 4999.08 1499.42 2399.23 3396.53 9599.91 1599.27 699.93 1199.73 21
mPP-MVS97.91 7097.53 10799.04 599.22 6897.87 1597.74 8498.78 14796.04 13697.10 20197.73 20396.53 9599.78 5095.16 17099.50 14099.46 81
XVS97.96 5697.63 9698.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25397.64 20896.49 9899.72 9095.66 13699.37 17599.45 85
X-MVStestdata92.86 30590.83 33298.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25336.50 40996.49 9899.72 9095.66 13699.37 17599.45 85
9.1496.69 15898.53 17096.02 19198.98 9593.23 24597.18 19597.46 22096.47 10099.62 15292.99 25299.32 193
UA-Net98.88 898.76 1499.22 399.11 9497.89 1499.47 399.32 2699.08 1497.87 16399.67 296.47 10099.92 797.88 4599.98 299.85 3
fmvsm_l_conf0.5_n97.68 9697.81 7597.27 15298.92 11992.71 20395.89 20399.41 2593.36 24099.00 4898.44 11596.46 10299.65 13899.09 1299.76 5899.45 85
SF-MVS97.60 10297.39 11598.22 7598.93 11795.69 8997.05 12699.10 5495.32 17497.83 16697.88 18896.44 10399.72 9094.59 20399.39 17399.25 136
fmvsm_s_conf0.1_n_a97.80 8598.01 5597.18 15899.17 8192.51 20696.57 15399.15 4693.68 23298.89 5699.30 2896.42 10499.37 23599.03 1499.83 4299.66 29
xiu_mvs_v1_base_debu95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base_debi95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
ETV-MVS96.13 18995.90 20196.82 18797.76 26493.89 16595.40 23298.95 10195.87 14895.58 28791.00 38996.36 10899.72 9093.36 24298.83 25596.85 355
fmvsm_l_conf0.5_n_a97.60 10297.76 8197.11 16398.92 11992.28 21395.83 20699.32 2693.22 24698.91 5598.49 10896.31 10999.64 14399.07 1399.76 5899.40 100
fmvsm_s_conf0.1_n97.73 9098.02 5496.85 18499.09 9791.43 23996.37 16499.11 5294.19 21599.01 4699.25 3196.30 11099.38 23099.00 1599.88 2599.73 21
MP-MVScopyleft97.64 9897.18 12999.00 1099.32 5597.77 1897.49 10398.73 15596.27 12295.59 28697.75 20096.30 11099.78 5093.70 23699.48 14799.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 19596.34 18194.96 28297.90 23987.91 30394.13 29498.49 19194.41 20798.16 12997.76 19796.29 11298.68 33990.52 30299.42 16798.30 270
Fast-Effi-MVS+-dtu96.44 17796.12 18897.39 14597.18 31594.39 14595.46 22698.73 15596.03 13894.72 30694.92 33896.28 11399.69 11993.81 23197.98 30698.09 288
fmvsm_s_conf0.5_n_a97.65 9797.83 7397.13 16298.80 13292.51 20696.25 17499.06 6593.67 23398.64 7599.00 5896.23 11499.36 23898.99 1699.80 5099.53 56
fmvsm_s_conf0.5_n97.62 10097.89 6696.80 18898.79 13491.44 23896.14 18399.06 6594.19 21598.82 6398.98 6196.22 11599.38 23098.98 1799.86 3099.58 39
APD_test197.95 6097.68 8898.75 3299.60 1698.60 697.21 11799.08 6196.57 11198.07 14198.38 12296.22 11599.14 28594.71 19899.31 19698.52 246
OMC-MVS96.48 17596.00 19497.91 10098.30 19296.01 7994.86 26498.60 18091.88 28297.18 19597.21 24396.11 11799.04 30190.49 30599.34 18698.69 228
xiu_mvs_v2_base94.22 27094.63 24992.99 34497.32 31084.84 35292.12 35397.84 25991.96 28094.17 31893.43 35696.07 11899.71 10491.27 27897.48 33294.42 389
CSCG97.40 11897.30 12097.69 11598.95 11294.83 12897.28 11298.99 9296.35 12198.13 13395.95 31495.99 11999.66 13694.36 21199.73 6798.59 238
PHI-MVS96.96 14296.53 17198.25 7397.48 29496.50 6096.76 14298.85 12393.52 23596.19 26396.85 26595.94 12099.42 21293.79 23299.43 16498.83 209
mamv499.05 598.91 899.46 298.94 11599.62 297.98 6599.70 599.49 399.78 299.22 3495.92 12199.95 399.31 499.83 4298.83 209
TSAR-MVS + MP.97.42 11797.23 12598.00 9599.38 4795.00 12597.63 9198.20 22693.00 25898.16 12998.06 17095.89 12299.72 9095.67 13599.10 22599.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 10597.28 12298.49 5399.16 8296.90 4796.39 16098.98 9595.05 18698.06 14298.02 17495.86 12399.56 17194.37 20999.64 8999.00 179
AllTest97.20 13096.92 14698.06 8899.08 9896.16 7197.14 12199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
TestCases98.06 8899.08 9896.16 7199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
APD-MVScopyleft97.00 13796.53 17198.41 5998.55 16796.31 6796.32 16898.77 14892.96 26397.44 18497.58 21495.84 12499.74 7991.96 26499.35 18399.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 38110.65 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41495.82 1270.00 4150.00 4140.00 4130.00 411
PS-MVSNAJss98.53 2398.63 2198.21 7899.68 1194.82 12998.10 5799.21 3596.91 9799.75 399.45 1395.82 12799.92 798.80 2099.96 499.89 1
PS-MVSNAJ94.10 27694.47 25993.00 34397.35 30584.88 35091.86 35897.84 25991.96 28094.17 31892.50 37495.82 12799.71 10491.27 27897.48 33294.40 390
3Dnovator96.53 297.61 10197.64 9497.50 13197.74 26993.65 17898.49 2998.88 11496.86 9997.11 20098.55 10395.82 12799.73 8595.94 12199.42 16799.13 155
MTAPA98.14 4097.84 7099.06 499.44 3797.90 1397.25 11398.73 15597.69 6697.90 15897.96 18095.81 13199.82 3796.13 10999.61 9999.45 85
DP-MVS97.87 7597.89 6697.81 10698.62 15894.82 12997.13 12298.79 14398.98 2198.74 7298.49 10895.80 13299.49 19395.04 17999.44 15699.11 163
Anonymous2024052997.96 5698.04 5297.71 11298.69 14994.28 15497.86 7398.31 21698.79 2699.23 3598.86 7695.76 13399.61 15995.49 14599.36 17899.23 138
LS3D97.77 8897.50 11198.57 4896.24 33997.58 2598.45 3298.85 12398.58 3297.51 17697.94 18395.74 13499.63 14795.19 16698.97 23798.51 247
EIA-MVS96.04 19295.77 20796.85 18497.80 25492.98 19596.12 18499.16 4294.65 19993.77 33191.69 38395.68 13599.67 13094.18 21698.85 25297.91 308
CNVR-MVS96.92 14496.55 16898.03 9398.00 23195.54 9594.87 26398.17 23294.60 20196.38 25097.05 25295.67 13699.36 23895.12 17699.08 22799.19 144
CLD-MVS95.47 21795.07 22596.69 19798.27 19792.53 20591.36 36498.67 17091.22 29495.78 28094.12 35195.65 13798.98 30990.81 29099.72 7198.57 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 2198.76 1497.94 9998.79 13494.37 14898.84 1299.15 4699.37 499.67 1099.43 1595.61 13899.72 9098.12 3799.86 3099.73 21
EGC-MVSNET83.08 37377.93 37698.53 5199.57 1997.55 2798.33 3998.57 1854.71 41110.38 41298.90 7295.60 13999.50 18895.69 13399.61 9998.55 243
ITE_SJBPF97.85 10498.64 15296.66 5598.51 19095.63 15997.22 19097.30 23895.52 14098.55 35190.97 28598.90 24598.34 265
DeepC-MVS_fast94.34 796.74 15896.51 17397.44 13997.69 27494.15 15796.02 19198.43 19793.17 25397.30 18797.38 23195.48 14199.28 26193.74 23399.34 18698.88 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1698.62 2398.75 3299.51 2996.61 5798.55 2399.17 4199.05 1799.17 3898.79 7895.47 14299.89 2197.95 4499.91 1899.75 18
FMVSNet197.95 6098.08 4797.56 12299.14 9293.67 17498.23 4798.66 17297.41 8299.00 4899.19 3795.47 14299.73 8595.83 12899.76 5899.30 120
MIMVSNet198.51 2498.45 3298.67 4199.72 896.71 5198.76 1398.89 10898.49 3599.38 2599.14 4795.44 14499.84 3396.47 9599.80 5099.47 79
CP-MVSNet98.42 2798.46 3098.30 6899.46 3595.22 11898.27 4598.84 12799.05 1799.01 4698.65 9495.37 14599.90 1897.57 6099.91 1899.77 11
segment_acmp95.34 146
CDPH-MVS95.45 21994.65 24697.84 10598.28 19594.96 12693.73 31198.33 21285.03 36795.44 28996.60 28195.31 14799.44 20890.01 31199.13 21999.11 163
3Dnovator+96.13 397.73 9097.59 10198.15 8198.11 22295.60 9398.04 6098.70 16498.13 4796.93 21798.45 11395.30 14899.62 15295.64 13898.96 23899.24 137
MVS_Test96.27 18396.79 15594.73 29596.94 32586.63 32896.18 17898.33 21294.94 19096.07 26798.28 13795.25 14999.26 26597.21 7197.90 31198.30 270
XVG-OURS97.12 13296.74 15698.26 7098.99 11097.45 3393.82 30799.05 6995.19 17998.32 11297.70 20595.22 15098.41 36194.27 21398.13 30198.93 192
dcpmvs_297.12 13297.99 5794.51 30599.11 9484.00 36197.75 8299.65 1097.38 8599.14 3998.42 11795.16 15199.96 295.52 14499.78 5599.58 39
MCST-MVS96.24 18495.80 20597.56 12298.75 13994.13 15894.66 27298.17 23290.17 30996.21 26196.10 30895.14 15299.43 21094.13 21998.85 25299.13 155
EI-MVSNet-Vis-set97.32 12597.39 11597.11 16397.36 30492.08 22595.34 23897.65 27297.74 6098.29 11798.11 16195.05 15399.68 12497.50 6399.50 14099.56 50
EI-MVSNet-UG-set97.32 12597.40 11497.09 16797.34 30792.01 22795.33 23997.65 27297.74 6098.30 11698.14 15595.04 15499.69 11997.55 6199.52 13199.58 39
KD-MVS_self_test97.86 7798.07 4897.25 15599.22 6892.81 19897.55 9798.94 10297.10 9398.85 5998.88 7495.03 15599.67 13097.39 6799.65 8799.26 132
ZD-MVS98.43 18495.94 8098.56 18690.72 29996.66 23597.07 25095.02 15699.74 7991.08 28298.93 243
DELS-MVS96.17 18796.23 18495.99 23197.55 29090.04 25892.38 35098.52 18894.13 21796.55 24497.06 25194.99 15799.58 16495.62 13999.28 20098.37 259
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 16996.93 14495.55 25698.88 12387.12 32094.47 27799.30 2894.12 21896.65 23798.41 11894.98 15899.87 2595.81 13099.78 5599.66 29
ab-mvs96.59 16996.59 16496.60 20098.64 15292.21 21698.35 3697.67 26894.45 20696.99 21298.79 7894.96 15999.49 19390.39 30699.07 22998.08 289
MSLP-MVS++96.42 17996.71 15795.57 25397.82 24990.56 25595.71 21098.84 12794.72 19696.71 23197.39 22994.91 16098.10 37795.28 16199.02 23498.05 298
QAPM95.88 19995.57 21496.80 18897.90 23991.84 23198.18 5498.73 15588.41 33096.42 24898.13 15794.73 16199.75 7088.72 32998.94 24198.81 212
RPSCF97.87 7597.51 10998.95 1599.15 8598.43 797.56 9699.06 6596.19 12898.48 9198.70 8894.72 16299.24 27194.37 20999.33 19199.17 147
DU-MVS97.79 8697.60 10098.36 6398.73 14095.78 8595.65 21798.87 11697.57 7098.31 11497.83 19194.69 16399.85 3097.02 8099.71 7499.46 81
Baseline_NR-MVSNet97.72 9297.79 7797.50 13199.56 2093.29 18895.44 22798.86 11998.20 4698.37 10299.24 3294.69 16399.55 17595.98 11999.79 5299.65 32
TEST997.84 24695.23 11593.62 31398.39 20486.81 34893.78 32995.99 31094.68 16599.52 183
UniMVSNet (Re)97.83 7997.65 9198.35 6498.80 13295.86 8495.92 20199.04 7697.51 7598.22 12297.81 19594.68 16599.78 5097.14 7599.75 6599.41 99
UniMVSNet_NR-MVSNet97.83 7997.65 9198.37 6298.72 14295.78 8595.66 21599.02 8098.11 4898.31 11497.69 20694.65 16799.85 3097.02 8099.71 7499.48 76
VPNet97.26 12797.49 11296.59 20199.47 3490.58 25396.27 17098.53 18797.77 5798.46 9498.41 11894.59 16899.68 12494.61 19999.29 19999.52 58
train_agg95.46 21894.66 24597.88 10297.84 24695.23 11593.62 31398.39 20487.04 34493.78 32995.99 31094.58 16999.52 18391.76 27298.90 24598.89 200
test_897.81 25095.07 12493.54 31698.38 20687.04 34493.71 33395.96 31394.58 16999.52 183
API-MVS95.09 23595.01 22895.31 26596.61 33194.02 16196.83 13697.18 28895.60 16195.79 27894.33 34994.54 17198.37 36685.70 36098.52 28293.52 394
Test By Simon94.51 172
MSDG95.33 22395.13 22295.94 23797.40 30291.85 23091.02 37598.37 20795.30 17596.31 25595.99 31094.51 17298.38 36489.59 31797.65 32697.60 330
TSAR-MVS + GP.96.47 17696.12 18897.49 13497.74 26995.23 11594.15 29196.90 29993.26 24498.04 14596.70 27694.41 17498.89 31694.77 19499.14 21798.37 259
NR-MVSNet97.96 5697.86 6998.26 7098.73 14095.54 9598.14 5598.73 15597.79 5699.42 2397.83 19194.40 17599.78 5095.91 12399.76 5899.46 81
AdaColmapbinary95.11 23394.62 25096.58 20297.33 30994.45 14494.92 26198.08 24493.15 25493.98 32795.53 32694.34 17699.10 29585.69 36198.61 27796.20 373
FC-MVSNet-test98.16 3898.37 3697.56 12299.49 3393.10 19398.35 3699.21 3598.43 3698.89 5698.83 7794.30 17799.81 3997.87 4699.91 1899.77 11
Effi-MVS+-dtu96.81 15596.09 19098.99 1196.90 32798.69 596.42 15998.09 24395.86 14995.15 29695.54 32594.26 17899.81 3994.06 22198.51 28498.47 251
ambc96.56 20598.23 20291.68 23497.88 7298.13 24098.42 9798.56 10294.22 17999.04 30194.05 22399.35 18398.95 186
test20.0396.58 17196.61 16396.48 20998.49 17791.72 23395.68 21497.69 26796.81 10098.27 11897.92 18694.18 18098.71 33390.78 29299.66 8699.00 179
HPM-MVS++copyleft96.99 13896.38 17998.81 2898.64 15297.59 2495.97 19698.20 22695.51 16695.06 29896.53 28594.10 18199.70 11294.29 21299.15 21699.13 155
test_vis3_rt97.04 13596.98 14097.23 15798.44 18395.88 8196.82 13799.67 790.30 30699.27 3299.33 2794.04 18296.03 39897.14 7597.83 31399.78 10
test_fmvs397.38 11997.56 10496.84 18698.63 15692.81 19897.60 9299.61 1490.87 29798.76 7199.66 394.03 18397.90 37999.24 799.68 8299.81 7
PM-MVS97.36 12397.10 13298.14 8298.91 12196.77 5096.20 17798.63 17893.82 22698.54 8498.33 12693.98 18499.05 30095.99 11899.45 15598.61 237
mvsany_test396.21 18595.93 20097.05 17097.40 30294.33 15095.76 20994.20 34489.10 31999.36 2799.60 693.97 18597.85 38095.40 15998.63 27598.99 182
OpenMVScopyleft94.22 895.48 21695.20 21996.32 21897.16 31691.96 22897.74 8498.84 12787.26 34194.36 31598.01 17693.95 18699.67 13090.70 29898.75 26297.35 341
v897.60 10298.06 5096.23 22198.71 14589.44 27097.43 10798.82 14197.29 8998.74 7299.10 5193.86 18799.68 12498.61 2799.94 899.56 50
diffmvspermissive96.04 19296.23 18495.46 26197.35 30588.03 30193.42 31999.08 6194.09 22196.66 23596.93 26093.85 18899.29 25996.01 11798.67 27099.06 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC96.52 17395.99 19598.10 8597.81 25095.68 9095.00 25998.20 22695.39 17295.40 29196.36 29593.81 18999.45 20593.55 23998.42 29099.17 147
TAPA-MVS93.32 1294.93 24094.23 26697.04 17298.18 20994.51 14195.22 24698.73 15581.22 38696.25 25995.95 31493.80 19098.98 30989.89 31398.87 24997.62 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 6698.07 4897.48 13599.38 4792.95 19698.03 6299.11 5298.04 5298.62 7798.66 9193.75 19199.78 5097.23 6999.84 3999.73 21
OurMVSNet-221017-098.61 1798.61 2598.63 4599.77 596.35 6599.17 799.05 6998.05 5199.61 1699.52 793.72 19299.88 2398.72 2599.88 2599.65 32
test_prior293.33 32394.21 21394.02 32596.25 29993.64 19391.90 26698.96 238
mvsany_test193.47 29493.03 29094.79 29294.05 39392.12 22190.82 37790.01 39085.02 36897.26 18998.28 13793.57 19497.03 38992.51 25995.75 37495.23 385
旧先验197.80 25493.87 16697.75 26497.04 25393.57 19498.68 26998.72 224
v1097.55 10697.97 5996.31 21998.60 16089.64 26597.44 10599.02 8096.60 10698.72 7499.16 4493.48 19699.72 9098.76 2299.92 1599.58 39
v14896.58 17196.97 14195.42 26298.63 15687.57 31195.09 25197.90 25495.91 14698.24 12097.96 18093.42 19799.39 22796.04 11399.52 13199.29 126
V4297.04 13597.16 13096.68 19898.59 16291.05 24396.33 16798.36 20894.60 20197.99 14898.30 13293.32 19899.62 15297.40 6699.53 12699.38 106
new-patchmatchnet95.67 20796.58 16592.94 34697.48 29480.21 38692.96 32998.19 23194.83 19398.82 6398.79 7893.31 19999.51 18795.83 12899.04 23399.12 160
test1297.46 13797.61 28594.07 15997.78 26393.57 33993.31 19999.42 21298.78 25998.89 200
UGNet96.81 15596.56 16797.58 12196.64 33093.84 16897.75 8297.12 29196.47 11693.62 33698.88 7493.22 20199.53 18095.61 14099.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs-eth3d96.49 17496.18 18797.42 14298.25 19994.29 15194.77 26898.07 24889.81 31397.97 15298.33 12693.11 20299.08 29795.46 15199.84 3998.89 200
v114496.84 15097.08 13496.13 22898.42 18589.28 27395.41 23198.67 17094.21 21397.97 15298.31 12893.06 20399.65 13898.06 4199.62 9399.45 85
MVSMamba_PlusPlus97.43 11697.98 5895.78 24498.88 12389.70 26398.03 6298.85 12399.18 1196.84 22299.12 4893.04 20499.91 1598.38 3299.55 11897.73 322
iter_conf0597.83 7998.49 2895.84 24198.88 12389.05 27898.87 1099.42 2299.18 1199.73 599.12 4893.04 20499.91 1598.38 3299.78 5598.58 239
PVSNet_BlendedMVS95.02 23994.93 23195.27 26697.79 25987.40 31594.14 29398.68 16788.94 32394.51 31198.01 17693.04 20499.30 25589.77 31599.49 14399.11 163
PVSNet_Blended93.96 28193.65 28094.91 28397.79 25987.40 31591.43 36398.68 16784.50 37494.51 31194.48 34793.04 20499.30 25589.77 31598.61 27798.02 301
mvs_anonymous95.36 22196.07 19293.21 33796.29 33881.56 37894.60 27497.66 27093.30 24396.95 21698.91 7193.03 20899.38 23096.60 9097.30 34098.69 228
v119296.83 15397.06 13696.15 22798.28 19589.29 27295.36 23598.77 14893.73 22898.11 13498.34 12593.02 20999.67 13098.35 3499.58 10699.50 62
F-COLMAP95.30 22594.38 26398.05 9298.64 15296.04 7695.61 22198.66 17289.00 32293.22 34896.40 29392.90 21099.35 24287.45 34997.53 33098.77 218
bld_raw_dy_0_6498.03 5198.57 2696.38 21599.35 5089.63 26799.26 599.26 3199.27 799.74 499.34 2492.88 21199.93 498.20 3699.87 2799.60 36
WR-MVS96.90 14696.81 15297.16 15998.56 16692.20 21994.33 28098.12 24197.34 8698.20 12397.33 23692.81 21299.75 7094.79 19199.81 4799.54 53
v124096.74 15897.02 13995.91 23898.18 20988.52 28795.39 23398.88 11493.15 25498.46 9498.40 12192.80 21399.71 10498.45 3199.49 14399.49 70
MVS_030496.62 16896.40 17897.28 15197.91 23792.30 21296.47 15889.74 39197.52 7495.38 29298.63 9692.76 21499.81 3999.28 599.93 1199.75 18
MVEpermissive73.61 2286.48 37185.92 37088.18 38596.23 34185.28 34481.78 40575.79 40986.01 35482.53 40591.88 38092.74 21587.47 40871.42 40594.86 38291.78 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 21295.13 22296.80 18898.51 17393.99 16394.60 27498.69 16590.20 30895.78 28096.21 30192.73 21698.98 30990.58 30198.86 25197.42 338
CANet95.86 20095.65 21196.49 20896.41 33690.82 24894.36 27998.41 20194.94 19092.62 36496.73 27592.68 21799.71 10495.12 17699.60 10298.94 188
v192192096.72 16196.96 14395.99 23198.21 20388.79 28495.42 22998.79 14393.22 24698.19 12798.26 14292.68 21799.70 11298.34 3599.55 11899.49 70
BH-untuned94.69 25294.75 24394.52 30497.95 23687.53 31294.07 29697.01 29593.99 22397.10 20195.65 32192.65 21998.95 31487.60 34496.74 35297.09 345
LF4IMVS96.07 19095.63 21297.36 14698.19 20695.55 9495.44 22798.82 14192.29 27695.70 28496.55 28392.63 22098.69 33691.75 27399.33 19197.85 313
v2v48296.78 15797.06 13695.95 23598.57 16488.77 28595.36 23598.26 21895.18 18097.85 16598.23 14692.58 22199.63 14797.80 5099.69 7899.45 85
WB-MVSnew91.50 32891.29 32192.14 36394.85 38080.32 38593.29 32488.77 39488.57 32994.03 32492.21 37692.56 22298.28 37180.21 38997.08 34197.81 317
EI-MVSNet96.63 16796.93 14495.74 24697.26 31288.13 29895.29 24397.65 27296.99 9497.94 15598.19 15192.55 22399.58 16496.91 8399.56 11299.50 62
IterMVS-LS96.92 14497.29 12195.79 24398.51 17388.13 29895.10 25098.66 17296.99 9498.46 9498.68 9092.55 22399.74 7996.91 8399.79 5299.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 12197.25 12397.74 11098.69 14994.50 14397.04 12795.61 32698.59 3198.51 8698.72 8592.54 22599.58 16496.02 11599.49 14399.12 160
MVS90.02 34089.20 34792.47 35894.71 38286.90 32495.86 20496.74 30664.72 40690.62 37792.77 36892.54 22598.39 36379.30 39195.56 37692.12 398
test_vis1_rt94.03 28093.65 28095.17 27195.76 36393.42 18493.97 30298.33 21284.68 37193.17 34995.89 31692.53 22794.79 40093.50 24094.97 38097.31 342
v14419296.69 16496.90 14996.03 23098.25 19988.92 27995.49 22598.77 14893.05 25698.09 13798.29 13692.51 22899.70 11298.11 3899.56 11299.47 79
原ACMM196.58 20298.16 21492.12 22198.15 23885.90 35793.49 34196.43 29092.47 22999.38 23087.66 34398.62 27698.23 277
VNet96.84 15096.83 15196.88 18298.06 22392.02 22696.35 16697.57 27897.70 6597.88 16097.80 19692.40 23099.54 17894.73 19698.96 23899.08 168
114514_t93.96 28193.22 28896.19 22499.06 10190.97 24695.99 19498.94 10273.88 40493.43 34496.93 26092.38 23199.37 23589.09 32499.28 20098.25 276
CPTT-MVS96.69 16496.08 19198.49 5398.89 12296.64 5697.25 11398.77 14892.89 26496.01 27097.13 24692.23 23299.67 13092.24 26199.34 18699.17 147
MSP-MVS97.45 11396.92 14699.03 699.26 5997.70 1997.66 8898.89 10895.65 15898.51 8696.46 28992.15 23399.81 3995.14 17398.58 28099.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS94.21 27293.03 29097.76 10996.94 32597.44 3496.97 13097.15 28987.89 33992.00 36992.73 37092.14 23499.12 28983.92 37597.51 33196.73 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 19695.80 20596.42 21299.28 5790.62 25295.31 24199.08 6188.40 33196.97 21598.17 15492.11 23599.78 5093.64 23799.21 20898.86 207
BH-RMVSNet94.56 26094.44 26294.91 28397.57 28787.44 31493.78 31096.26 31193.69 23196.41 24996.50 28892.10 23699.00 30585.96 35897.71 32098.31 268
新几何197.25 15598.29 19394.70 13397.73 26577.98 39794.83 30596.67 27892.08 23799.45 20588.17 33898.65 27497.61 329
testdata95.70 24998.16 21490.58 25397.72 26680.38 38995.62 28597.02 25492.06 23898.98 30989.06 32698.52 28297.54 333
YYNet194.73 24794.84 23794.41 30997.47 29885.09 34890.29 38295.85 32092.52 27097.53 17497.76 19791.97 23999.18 27893.31 24596.86 34698.95 186
Anonymous2023120695.27 22695.06 22795.88 23998.72 14289.37 27195.70 21197.85 25788.00 33796.98 21497.62 21091.95 24099.34 24589.21 32299.53 12698.94 188
MS-PatchMatch94.83 24494.91 23394.57 30296.81 32887.10 32194.23 28697.34 28388.74 32697.14 19797.11 24891.94 24198.23 37392.99 25297.92 30998.37 259
MDA-MVSNet_test_wron94.73 24794.83 23994.42 30897.48 29485.15 34690.28 38395.87 31992.52 27097.48 18097.76 19791.92 24299.17 28293.32 24496.80 35198.94 188
HQP_MVS96.66 16696.33 18297.68 11698.70 14794.29 15196.50 15698.75 15296.36 11996.16 26496.77 27291.91 24399.46 20192.59 25799.20 20999.28 127
plane_prior698.38 18794.37 14891.91 243
iter_conf05_1196.88 14896.92 14696.75 19297.70 27392.38 21098.03 6299.03 7794.26 21296.84 22298.43 11691.72 24599.65 13896.67 8799.63 9198.20 280
MVP-Stereo95.69 20595.28 21796.92 17998.15 21693.03 19495.64 22098.20 22690.39 30596.63 23897.73 20391.63 24699.10 29591.84 26997.31 33998.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 25893.81 27897.02 17498.19 20695.72 8793.66 31297.23 28588.17 33594.94 30395.62 32391.43 24798.57 34887.36 35097.68 32396.76 361
MDA-MVSNet-bldmvs95.69 20595.67 20995.74 24698.48 17988.76 28692.84 33197.25 28496.00 13997.59 17297.95 18291.38 24899.46 20193.16 25096.35 36198.99 182
SSC-MVS95.92 19797.03 13892.58 35599.28 5778.39 39196.68 15095.12 33598.90 2399.11 4198.66 9191.36 24999.68 12495.00 18299.16 21599.67 27
mvsmamba98.16 3898.06 5098.44 5699.53 2795.87 8298.70 1498.94 10297.71 6498.85 5999.10 5191.35 25099.83 3598.47 3099.90 2399.64 34
PAPR92.22 31591.27 32395.07 27595.73 36588.81 28391.97 35697.87 25685.80 35890.91 37692.73 37091.16 25198.33 36879.48 39095.76 37398.08 289
131492.38 31292.30 30792.64 35495.42 37285.15 34695.86 20496.97 29785.40 36390.62 37793.06 36391.12 25297.80 38286.74 35595.49 37794.97 387
WB-MVS95.50 21396.62 16192.11 36499.21 7577.26 39996.12 18495.40 33298.62 3098.84 6198.26 14291.08 25399.50 18893.37 24198.70 26899.58 39
ppachtmachnet_test94.49 26494.84 23793.46 33096.16 34582.10 37390.59 37997.48 28090.53 30397.01 21197.59 21291.01 25499.36 23893.97 22799.18 21398.94 188
PLCcopyleft91.02 1694.05 27992.90 29397.51 12798.00 23195.12 12394.25 28498.25 21986.17 35391.48 37495.25 33091.01 25499.19 27785.02 37096.69 35498.22 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 21293.24 19192.74 33697.61 27775.17 40294.65 30896.69 27790.96 25698.66 27297.66 325
CL-MVSNet_self_test95.04 23694.79 24295.82 24297.51 29289.79 26291.14 37296.82 30293.05 25696.72 23096.40 29390.82 25799.16 28391.95 26598.66 27298.50 249
USDC94.56 26094.57 25694.55 30397.78 26286.43 33192.75 33498.65 17785.96 35596.91 21997.93 18590.82 25798.74 32990.71 29799.59 10498.47 251
PCF-MVS89.43 1892.12 31890.64 33596.57 20497.80 25493.48 18289.88 38998.45 19474.46 40396.04 26995.68 32090.71 25999.31 25273.73 40199.01 23696.91 352
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 25894.17 27095.96 23398.36 18991.23 24195.93 20097.95 25192.98 25993.42 34594.43 34890.53 26098.38 36487.60 34496.29 36398.27 274
our_test_394.20 27494.58 25493.07 33996.16 34581.20 38190.42 38196.84 30090.72 29997.14 19797.13 24690.47 26199.11 29294.04 22498.25 29698.91 196
MM96.87 14996.62 16197.62 11997.72 27193.30 18796.39 16092.61 36497.90 5596.76 22998.64 9590.46 26299.81 3999.16 1099.94 899.76 16
test_f95.82 20295.88 20395.66 25097.61 28593.21 19295.61 22198.17 23286.98 34698.42 9799.47 1190.46 26294.74 40197.71 5598.45 28899.03 175
OpenMVS_ROBcopyleft91.80 1493.64 29093.05 28995.42 26297.31 31191.21 24295.08 25396.68 30881.56 38396.88 22196.41 29190.44 26499.25 26785.39 36697.67 32495.80 377
HQP2-MVS90.33 265
N_pmnet95.18 23094.23 26698.06 8897.85 24196.55 5992.49 34291.63 37289.34 31698.09 13797.41 22490.33 26599.06 29991.58 27499.31 19698.56 241
HQP-MVS95.17 23294.58 25496.92 17997.85 24192.47 20894.26 28198.43 19793.18 25092.86 35595.08 33290.33 26599.23 27390.51 30398.74 26399.05 174
CNLPA95.04 23694.47 25996.75 19297.81 25095.25 11494.12 29597.89 25594.41 20794.57 30995.69 31990.30 26898.35 36786.72 35698.76 26196.64 363
PMMVS92.39 31191.08 32696.30 22093.12 40092.81 19890.58 38095.96 31779.17 39491.85 37192.27 37590.29 26998.66 34189.85 31496.68 35597.43 337
TR-MVS92.54 31092.20 30993.57 32896.49 33486.66 32793.51 31794.73 33889.96 31194.95 30293.87 35390.24 27098.61 34581.18 38694.88 38195.45 383
TAMVS95.49 21494.94 22997.16 15998.31 19193.41 18595.07 25496.82 30291.09 29597.51 17697.82 19489.96 27199.42 21288.42 33499.44 15698.64 232
DPM-MVS93.68 28892.77 30096.42 21297.91 23792.54 20491.17 37197.47 28184.99 36993.08 35194.74 34089.90 27299.00 30587.54 34698.09 30397.72 323
PMMVS293.66 28994.07 27292.45 35997.57 28780.67 38486.46 39796.00 31593.99 22397.10 20197.38 23189.90 27297.82 38188.76 32899.47 14998.86 207
BH-w/o92.14 31791.94 31192.73 35297.13 31885.30 34292.46 34495.64 32389.33 31794.21 31792.74 36989.60 27498.24 37281.68 38494.66 38394.66 388
Anonymous2024052197.07 13497.51 10995.76 24599.35 5088.18 29597.78 7898.40 20397.11 9298.34 10899.04 5689.58 27599.79 4798.09 3999.93 1199.30 120
UnsupCasMVSNet_bld94.72 25194.26 26596.08 22998.62 15890.54 25693.38 32198.05 25090.30 30697.02 21096.80 27189.54 27699.16 28388.44 33396.18 36598.56 241
MG-MVS94.08 27894.00 27494.32 31297.09 31985.89 33693.19 32795.96 31792.52 27094.93 30497.51 21889.54 27698.77 32687.52 34897.71 32098.31 268
UnsupCasMVSNet_eth95.91 19895.73 20896.44 21098.48 17991.52 23695.31 24198.45 19495.76 15397.48 18097.54 21589.53 27898.69 33694.43 20594.61 38499.13 155
GBi-Net96.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
test196.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
FMVSNet296.72 16196.67 16096.87 18397.96 23391.88 22997.15 11998.06 24995.59 16298.50 8898.62 9789.51 27999.65 13894.99 18499.60 10299.07 170
pmmvs494.82 24594.19 26996.70 19697.42 30192.75 20292.09 35596.76 30486.80 34995.73 28397.22 24289.28 28298.89 31693.28 24699.14 21798.46 253
cascas91.89 32391.35 32093.51 32994.27 38885.60 33888.86 39498.61 17979.32 39392.16 36891.44 38589.22 28398.12 37690.80 29197.47 33496.82 358
DSMNet-mixed92.19 31691.83 31393.25 33496.18 34483.68 36496.27 17093.68 34976.97 40192.54 36599.18 4089.20 28498.55 35183.88 37698.60 27997.51 334
c3_l95.20 22995.32 21694.83 29096.19 34386.43 33191.83 35998.35 21193.47 23797.36 18697.26 24088.69 28599.28 26195.41 15899.36 17898.78 215
test_fmvs296.38 18096.45 17596.16 22697.85 24191.30 24096.81 13899.45 1989.24 31898.49 8999.38 1888.68 28697.62 38498.83 1999.32 19399.57 46
CANet_DTU94.65 25694.21 26895.96 23395.90 35389.68 26493.92 30497.83 26193.19 24990.12 38595.64 32288.52 28799.57 17093.27 24799.47 14998.62 235
EPP-MVSNet96.84 15096.58 16597.65 11799.18 8093.78 17198.68 1596.34 31097.91 5497.30 18798.06 17088.46 28899.85 3093.85 23099.40 17299.32 115
SixPastTwentyTwo97.49 11097.57 10397.26 15499.56 2092.33 21198.28 4396.97 29798.30 4299.45 2199.35 2388.43 28999.89 2198.01 4299.76 5899.54 53
miper_ehance_all_eth94.69 25294.70 24494.64 29695.77 36286.22 33391.32 36898.24 22191.67 28497.05 20896.65 27988.39 29099.22 27594.88 18698.34 29298.49 250
IS-MVSNet96.93 14396.68 15997.70 11399.25 6294.00 16298.57 2196.74 30698.36 3898.14 13297.98 17988.23 29199.71 10493.10 25199.72 7199.38 106
jason94.39 26794.04 27395.41 26498.29 19387.85 30692.74 33696.75 30585.38 36495.29 29396.15 30388.21 29299.65 13894.24 21499.34 18698.74 221
jason: jason.
IterMVS-SCA-FT95.86 20096.19 18694.85 28897.68 27585.53 33992.42 34797.63 27696.99 9498.36 10598.54 10487.94 29399.75 7097.07 7999.08 22799.27 131
SCA93.38 29793.52 28392.96 34596.24 33981.40 38093.24 32594.00 34591.58 28894.57 30996.97 25787.94 29399.42 21289.47 31997.66 32598.06 295
sss94.22 27093.72 27995.74 24697.71 27289.95 26093.84 30696.98 29688.38 33293.75 33295.74 31887.94 29398.89 31691.02 28498.10 30298.37 259
IterMVS95.42 22095.83 20494.20 31697.52 29183.78 36392.41 34897.47 28195.49 16798.06 14298.49 10887.94 29399.58 16496.02 11599.02 23499.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 27693.41 28596.18 22599.16 8290.04 25892.15 35298.68 16779.90 39196.22 26097.83 19187.92 29799.42 21289.18 32399.65 8799.08 168
VDDNet96.98 14196.84 15097.41 14399.40 4493.26 19097.94 6895.31 33399.26 998.39 10199.18 4087.85 29899.62 15295.13 17599.09 22699.35 114
pmmvs594.63 25794.34 26495.50 25897.63 28488.34 29194.02 29797.13 29087.15 34395.22 29597.15 24587.50 29999.27 26493.99 22599.26 20398.88 204
D2MVS95.18 23095.17 22195.21 26897.76 26487.76 30994.15 29197.94 25289.77 31496.99 21297.68 20787.45 30099.14 28595.03 18199.81 4798.74 221
test_vis1_n_192095.77 20396.41 17793.85 32198.55 16784.86 35195.91 20299.71 492.72 26897.67 17098.90 7287.44 30198.73 33097.96 4398.85 25297.96 305
PVSNet86.72 1991.10 33290.97 32991.49 36897.56 28978.04 39387.17 39694.60 34084.65 37292.34 36692.20 37787.37 30298.47 35885.17 36997.69 32297.96 305
Anonymous20240521196.34 18195.98 19697.43 14098.25 19993.85 16796.74 14394.41 34297.72 6298.37 10298.03 17387.15 30399.53 18094.06 22199.07 22998.92 195
MVSFormer96.14 18896.36 18095.49 25997.68 27587.81 30798.67 1699.02 8096.50 11394.48 31396.15 30386.90 30499.92 798.73 2399.13 21998.74 221
lupinMVS93.77 28493.28 28695.24 26797.68 27587.81 30792.12 35396.05 31384.52 37394.48 31395.06 33486.90 30499.63 14793.62 23899.13 21998.27 274
eth_miper_zixun_eth94.89 24294.93 23194.75 29495.99 35186.12 33491.35 36598.49 19193.40 23897.12 19997.25 24186.87 30699.35 24295.08 17898.82 25698.78 215
test_vis1_n95.67 20795.89 20295.03 27798.18 20989.89 26196.94 13199.28 3088.25 33498.20 12398.92 6886.69 30797.19 38797.70 5798.82 25698.00 303
WTY-MVS93.55 29293.00 29295.19 26997.81 25087.86 30493.89 30596.00 31589.02 32194.07 32295.44 32986.27 30899.33 24787.69 34296.82 34998.39 257
CDS-MVSNet94.88 24394.12 27197.14 16197.64 28393.57 17993.96 30397.06 29490.05 31096.30 25696.55 28386.10 30999.47 19890.10 31099.31 19698.40 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 27593.42 28496.23 22198.59 16290.85 24794.24 28598.85 12385.49 36092.97 35394.94 33686.01 31099.64 14391.78 27197.92 30998.20 280
dmvs_testset87.30 36886.99 36588.24 38496.71 32977.48 39694.68 27186.81 40192.64 26989.61 38987.01 40385.91 31193.12 40461.04 40888.49 40094.13 391
miper_enhance_ethall93.14 30292.78 29994.20 31693.65 39685.29 34389.97 38597.85 25785.05 36696.15 26694.56 34385.74 31299.14 28593.74 23398.34 29298.17 285
new_pmnet92.34 31391.69 31794.32 31296.23 34189.16 27592.27 35192.88 35884.39 37695.29 29396.35 29685.66 31396.74 39684.53 37397.56 32897.05 346
Syy-MVS92.09 31991.80 31592.93 34795.19 37582.65 36992.46 34491.35 37490.67 30191.76 37287.61 40185.64 31498.50 35594.73 19696.84 34797.65 326
alignmvs96.01 19495.52 21597.50 13197.77 26394.71 13196.07 18796.84 30097.48 7696.78 22894.28 35085.50 31599.40 22396.22 10698.73 26698.40 255
lessismore_v097.05 17099.36 4992.12 22184.07 40498.77 7098.98 6185.36 31699.74 7997.34 6899.37 17599.30 120
HY-MVS91.43 1592.58 30991.81 31494.90 28596.49 33488.87 28197.31 11094.62 33985.92 35690.50 38096.84 26685.05 31799.40 22383.77 37895.78 37296.43 369
EPNet93.72 28692.62 30497.03 17387.61 41292.25 21496.27 17091.28 37696.74 10287.65 39897.39 22985.00 31899.64 14392.14 26299.48 14799.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 24694.80 24194.85 28896.16 34586.45 33091.14 37298.20 22693.49 23697.03 20997.37 23384.97 31999.26 26595.28 16199.56 11298.83 209
Test_1112_low_res93.53 29392.86 29495.54 25798.60 16088.86 28292.75 33498.69 16582.66 38092.65 36196.92 26284.75 32099.56 17190.94 28697.76 31698.19 282
MVS-HIRNet88.40 35990.20 34082.99 38897.01 32160.04 41393.11 32885.61 40384.45 37588.72 39499.09 5384.72 32198.23 37382.52 38296.59 35790.69 403
K. test v396.44 17796.28 18396.95 17699.41 4191.53 23597.65 8990.31 38698.89 2498.93 5299.36 2184.57 32299.92 797.81 4999.56 11299.39 104
test_cas_vis1_n_192095.34 22295.67 20994.35 31198.21 20386.83 32695.61 22199.26 3190.45 30498.17 12898.96 6484.43 32398.31 36996.74 8699.17 21497.90 309
h-mvs3396.29 18295.63 21298.26 7098.50 17696.11 7496.90 13397.09 29296.58 10897.21 19298.19 15184.14 32499.78 5095.89 12496.17 36698.89 200
hse-mvs295.77 20395.09 22497.79 10797.84 24695.51 9795.66 21595.43 33196.58 10897.21 19296.16 30284.14 32499.54 17895.89 12496.92 34398.32 266
DIV-MVS_self_test94.73 24794.64 24795.01 27895.86 35687.00 32291.33 36698.08 24493.34 24197.10 20197.34 23584.02 32699.31 25295.15 17299.55 11898.72 224
cl____94.73 24794.64 24795.01 27895.85 35787.00 32291.33 36698.08 24493.34 24197.10 20197.33 23684.01 32799.30 25595.14 17399.56 11298.71 227
Vis-MVSNet (Re-imp)95.11 23394.85 23695.87 24099.12 9389.17 27497.54 10294.92 33796.50 11396.58 24097.27 23983.64 32899.48 19688.42 33499.67 8498.97 184
FA-MVS(test-final)94.91 24194.89 23494.99 28097.51 29288.11 30098.27 4595.20 33492.40 27596.68 23298.60 9883.44 32999.28 26193.34 24398.53 28197.59 331
dmvs_re92.08 32091.27 32394.51 30597.16 31692.79 20195.65 21792.64 36394.11 21992.74 35890.98 39083.41 33094.44 40380.72 38794.07 38796.29 371
PVSNet_081.89 2184.49 37283.21 37588.34 38395.76 36374.97 40683.49 40292.70 36278.47 39687.94 39786.90 40483.38 33196.63 39773.44 40266.86 40893.40 395
test_fmvs1_n95.21 22895.28 21794.99 28098.15 21689.13 27796.81 13899.43 2186.97 34797.21 19298.92 6883.00 33297.13 38898.09 3998.94 24198.72 224
CMPMVSbinary73.10 2392.74 30791.39 31996.77 19193.57 39894.67 13494.21 28897.67 26880.36 39093.61 33796.60 28182.85 33397.35 38684.86 37198.78 25998.29 273
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs194.51 26394.60 25194.26 31595.91 35287.92 30295.35 23799.02 8086.56 35196.79 22498.52 10582.64 33497.00 39197.87 4698.71 26797.88 311
EU-MVSNet94.25 26994.47 25993.60 32798.14 21882.60 37197.24 11592.72 36185.08 36598.48 9198.94 6682.59 33598.76 32897.47 6599.53 12699.44 95
baseline193.14 30292.64 30394.62 29897.34 30787.20 31996.67 15293.02 35694.71 19796.51 24595.83 31781.64 33698.60 34790.00 31288.06 40198.07 291
test111194.53 26294.81 24093.72 32499.06 10181.94 37698.31 4083.87 40596.37 11898.49 8999.17 4381.49 33799.73 8596.64 8899.86 3099.49 70
CVMVSNet92.33 31492.79 29790.95 37197.26 31275.84 40395.29 24392.33 36681.86 38196.27 25798.19 15181.44 33898.46 35994.23 21598.29 29598.55 243
EPNet_dtu91.39 33090.75 33393.31 33290.48 40982.61 37094.80 26592.88 35893.39 23981.74 40694.90 33981.36 33999.11 29288.28 33698.87 24998.21 279
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft94.37 26894.48 25894.05 32098.95 11283.10 36698.31 4082.48 40796.20 12698.23 12199.16 4481.18 34099.66 13695.95 12099.83 4299.38 106
test_yl94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
DCV-MVSNet94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
MIMVSNet93.42 29592.86 29495.10 27498.17 21288.19 29498.13 5693.69 34792.07 27795.04 30198.21 15080.95 34399.03 30481.42 38598.06 30498.07 291
PAPM87.64 36485.84 37193.04 34096.54 33284.99 34988.42 39595.57 32779.52 39283.82 40393.05 36480.57 34498.41 36162.29 40792.79 39195.71 378
HyFIR lowres test93.72 28692.65 30296.91 18198.93 11791.81 23291.23 37098.52 18882.69 37996.46 24796.52 28780.38 34599.90 1890.36 30798.79 25899.03 175
FMVSNet395.26 22794.94 22996.22 22396.53 33390.06 25795.99 19497.66 27094.11 21997.99 14897.91 18780.22 34699.63 14794.60 20099.44 15698.96 185
RPMNet94.68 25494.60 25194.90 28595.44 37088.15 29696.18 17898.86 11997.43 7794.10 32098.49 10879.40 34799.76 6495.69 13395.81 36996.81 359
LFMVS95.32 22494.88 23596.62 19998.03 22491.47 23797.65 8990.72 38299.11 1397.89 15998.31 12879.20 34899.48 19693.91 22999.12 22298.93 192
ADS-MVSNet291.47 32990.51 33794.36 31095.51 36885.63 33795.05 25695.70 32183.46 37792.69 35996.84 26679.15 34999.41 22185.66 36290.52 39598.04 299
ADS-MVSNet90.95 33590.26 33993.04 34095.51 36882.37 37295.05 25693.41 35383.46 37792.69 35996.84 26679.15 34998.70 33485.66 36290.52 39598.04 299
MDTV_nov1_ep13_2view57.28 41494.89 26280.59 38894.02 32578.66 35185.50 36497.82 315
cl2293.25 30092.84 29694.46 30794.30 38786.00 33591.09 37496.64 30990.74 29895.79 27896.31 29778.24 35298.77 32694.15 21898.34 29298.62 235
PatchmatchNetpermissive91.98 32291.87 31292.30 36194.60 38479.71 38795.12 24993.59 35289.52 31593.61 33797.02 25477.94 35399.18 27890.84 28994.57 38698.01 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 35498.06 295
CR-MVSNet93.29 29992.79 29794.78 29395.44 37088.15 29696.18 17897.20 28684.94 37094.10 32098.57 10077.67 35599.39 22795.17 16895.81 36996.81 359
Patchmtry95.03 23894.59 25396.33 21794.83 38190.82 24896.38 16397.20 28696.59 10797.49 17898.57 10077.67 35599.38 23092.95 25499.62 9398.80 213
tpmrst90.31 33890.61 33689.41 37994.06 39272.37 41095.06 25593.69 34788.01 33692.32 36796.86 26477.45 35798.82 32191.04 28387.01 40297.04 347
sam_mvs77.38 358
patchmatchnet-post96.84 26677.36 35999.42 212
Patchmatch-RL test94.66 25594.49 25795.19 26998.54 16988.91 28092.57 34098.74 15491.46 28998.32 11297.75 20077.31 36098.81 32396.06 11099.61 9997.85 313
tpmvs90.79 33690.87 33090.57 37492.75 40476.30 40195.79 20893.64 35191.04 29691.91 37096.26 29877.19 36198.86 32089.38 32189.85 39896.56 366
test_post10.87 41276.83 36299.07 298
Patchmatch-test93.60 29193.25 28794.63 29796.14 34987.47 31396.04 18994.50 34193.57 23496.47 24696.97 25776.50 36398.61 34590.67 29998.41 29197.81 317
MDTV_nov1_ep1391.28 32294.31 38673.51 40894.80 26593.16 35586.75 35093.45 34397.40 22576.37 36498.55 35188.85 32796.43 358
EMVS89.06 35389.22 34588.61 38293.00 40177.34 39782.91 40490.92 37994.64 20092.63 36391.81 38176.30 36597.02 39083.83 37796.90 34591.48 401
test_post194.98 26010.37 41376.21 36699.04 30189.47 319
GA-MVS92.83 30692.15 31094.87 28796.97 32287.27 31890.03 38496.12 31291.83 28394.05 32394.57 34276.01 36798.97 31392.46 26097.34 33898.36 264
PatchT93.75 28593.57 28294.29 31495.05 37887.32 31796.05 18892.98 35797.54 7394.25 31698.72 8575.79 36899.24 27195.92 12295.81 36996.32 370
E-PMN89.52 35089.78 34288.73 38193.14 39977.61 39583.26 40392.02 36894.82 19493.71 33393.11 35875.31 36996.81 39385.81 35996.81 35091.77 400
DeepMVS_CXcopyleft77.17 38990.94 40885.28 34474.08 41252.51 40880.87 40888.03 40075.25 37070.63 41059.23 40984.94 40475.62 404
AUN-MVS93.95 28392.69 30197.74 11097.80 25495.38 10595.57 22495.46 33091.26 29392.64 36296.10 30874.67 37199.55 17593.72 23596.97 34298.30 270
CHOSEN 280x42089.98 34289.19 34892.37 36095.60 36781.13 38286.22 39897.09 29281.44 38587.44 39993.15 35773.99 37299.47 19888.69 33099.07 22996.52 367
thres20091.00 33490.42 33892.77 35197.47 29883.98 36294.01 29891.18 37895.12 18395.44 28991.21 38773.93 37399.31 25277.76 39697.63 32795.01 386
test-LLR89.97 34389.90 34190.16 37594.24 38974.98 40489.89 38689.06 39292.02 27889.97 38690.77 39173.92 37498.57 34891.88 26797.36 33696.92 350
test0.0.03 190.11 33989.21 34692.83 34993.89 39486.87 32591.74 36088.74 39592.02 27894.71 30791.14 38873.92 37494.48 40283.75 37992.94 39097.16 344
tpm cat188.01 36287.33 36390.05 37894.48 38576.28 40294.47 27794.35 34373.84 40589.26 39195.61 32473.64 37698.30 37084.13 37486.20 40395.57 382
tfpn200view991.55 32791.00 32793.21 33798.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31795.85 375
thres40091.68 32691.00 32793.71 32598.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31797.36 339
test_method66.88 37466.13 37769.11 39062.68 41525.73 41849.76 40696.04 31414.32 41064.27 41091.69 38373.45 37988.05 40776.06 39866.94 40793.54 393
thres100view90091.76 32591.26 32593.26 33398.21 20384.50 35596.39 16090.39 38396.87 9896.33 25293.08 36273.44 38099.42 21278.85 39397.74 31795.85 375
thres600view792.03 32191.43 31893.82 32298.19 20684.61 35496.27 17090.39 38396.81 10096.37 25193.11 35873.44 38099.49 19380.32 38897.95 30897.36 339
MVSTER94.21 27293.93 27795.05 27695.83 35886.46 32995.18 24897.65 27292.41 27497.94 15598.00 17872.39 38299.58 16496.36 10099.56 11299.12 160
JIA-IIPM91.79 32490.69 33495.11 27293.80 39590.98 24594.16 29091.78 37196.38 11790.30 38399.30 2872.02 38398.90 31588.28 33690.17 39795.45 383
tpm91.08 33390.85 33191.75 36795.33 37378.09 39295.03 25891.27 37788.75 32593.53 34097.40 22571.24 38499.30 25591.25 28093.87 38897.87 312
baseline289.65 34988.44 35593.25 33495.62 36682.71 36893.82 30785.94 40288.89 32487.35 40092.54 37271.23 38599.33 24786.01 35794.60 38597.72 323
CostFormer89.75 34689.25 34491.26 37094.69 38378.00 39495.32 24091.98 36981.50 38490.55 37996.96 25971.06 38698.89 31688.59 33292.63 39296.87 353
FPMVS89.92 34488.63 35293.82 32298.37 18896.94 4691.58 36193.34 35488.00 33790.32 38297.10 24970.87 38791.13 40671.91 40496.16 36793.39 396
EPMVS89.26 35188.55 35391.39 36992.36 40579.11 39095.65 21779.86 40888.60 32893.12 35096.53 28570.73 38898.10 37790.75 29389.32 39996.98 348
FE-MVS92.95 30492.22 30895.11 27297.21 31488.33 29298.54 2493.66 35089.91 31296.21 26198.14 15570.33 38999.50 18887.79 34098.24 29797.51 334
tmp_tt57.23 37662.50 37941.44 39334.77 41649.21 41783.93 40160.22 41515.31 40971.11 40979.37 40670.09 39044.86 41264.76 40682.93 40630.25 408
ET-MVSNet_ETH3D91.12 33189.67 34395.47 26096.41 33689.15 27691.54 36290.23 38789.07 32086.78 40292.84 36769.39 39199.44 20894.16 21796.61 35697.82 315
dp88.08 36188.05 35788.16 38692.85 40268.81 41294.17 28992.88 35885.47 36191.38 37596.14 30568.87 39298.81 32386.88 35483.80 40596.87 353
tpm288.47 35887.69 36190.79 37294.98 37977.34 39795.09 25191.83 37077.51 40089.40 39096.41 29167.83 39398.73 33083.58 38092.60 39396.29 371
pmmvs390.00 34188.90 35193.32 33194.20 39185.34 34191.25 36992.56 36578.59 39593.82 32895.17 33167.36 39498.69 33689.08 32598.03 30595.92 374
thisisatest051590.43 33789.18 34994.17 31897.07 32085.44 34089.75 39087.58 39788.28 33393.69 33591.72 38265.27 39599.58 16490.59 30098.67 27097.50 336
tttt051793.31 29892.56 30595.57 25398.71 14587.86 30497.44 10587.17 39995.79 15297.47 18296.84 26664.12 39699.81 3996.20 10799.32 19399.02 178
thisisatest053092.71 30891.76 31695.56 25598.42 18588.23 29396.03 19087.35 39894.04 22296.56 24295.47 32764.03 39799.77 5994.78 19399.11 22398.68 231
FMVSNet593.39 29692.35 30696.50 20795.83 35890.81 25097.31 11098.27 21792.74 26796.27 25798.28 13762.23 39899.67 13090.86 28899.36 17899.03 175
IB-MVS85.98 2088.63 35786.95 36793.68 32695.12 37784.82 35390.85 37690.17 38887.55 34088.48 39591.34 38658.01 39999.59 16287.24 35293.80 38996.63 365
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9189.67 34888.55 35393.04 34095.90 35381.80 37792.71 33893.71 34693.71 22990.18 38490.15 39557.11 40099.22 27587.17 35396.32 36298.12 287
gg-mvs-nofinetune88.28 36086.96 36692.23 36292.84 40384.44 35698.19 5374.60 41099.08 1487.01 40199.47 1156.93 40198.23 37378.91 39295.61 37594.01 392
KD-MVS_2432*160088.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
miper_refine_blended88.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
GG-mvs-BLEND90.60 37391.00 40784.21 36098.23 4772.63 41382.76 40484.11 40556.14 40496.79 39472.20 40392.09 39490.78 402
TESTMET0.1,187.20 36986.57 36989.07 38093.62 39772.84 40989.89 38687.01 40085.46 36289.12 39290.20 39456.00 40597.72 38390.91 28796.92 34396.64 363
testing9989.21 35288.04 35892.70 35395.78 36181.00 38392.65 33992.03 36793.20 24889.90 38890.08 39755.25 40699.14 28587.54 34695.95 36897.97 304
UWE-MVS87.57 36686.72 36890.13 37795.21 37473.56 40791.94 35783.78 40688.73 32793.00 35292.87 36655.22 40799.25 26781.74 38397.96 30797.59 331
test250689.86 34589.16 35091.97 36598.95 11276.83 40098.54 2461.07 41496.20 12697.07 20799.16 4455.19 40899.69 11996.43 9799.83 4299.38 106
testing1188.93 35487.63 36292.80 35095.87 35581.49 37992.48 34391.54 37391.62 28588.27 39690.24 39355.12 40999.11 29287.30 35196.28 36497.81 317
test-mter87.92 36387.17 36490.16 37594.24 38974.98 40489.89 38689.06 39286.44 35289.97 38690.77 39154.96 41098.57 34891.88 26797.36 33696.92 350
ETVMVS87.62 36585.75 37293.22 33696.15 34883.26 36592.94 33090.37 38591.39 29090.37 38188.45 39951.93 41198.64 34273.76 40096.38 36097.75 320
testing22287.35 36785.50 37492.93 34795.79 36082.83 36792.40 34990.10 38992.80 26688.87 39389.02 39848.34 41298.70 33475.40 39996.74 35297.27 343
myMVS_eth3d87.16 37085.61 37391.82 36695.19 37579.32 38892.46 34491.35 37490.67 30191.76 37287.61 40141.96 41398.50 35582.66 38196.84 34797.65 326
testing389.72 34788.26 35694.10 31997.66 28084.30 35994.80 26588.25 39694.66 19895.07 29792.51 37341.15 41499.43 21091.81 27098.44 28998.55 243
dongtai63.43 37563.37 37863.60 39183.91 41353.17 41585.14 39943.40 41777.91 39980.96 40779.17 40736.36 41577.10 40937.88 41045.63 40960.54 406
kuosan54.81 37754.94 38054.42 39274.43 41450.03 41684.98 40044.27 41661.80 40762.49 41170.43 40835.16 41658.04 41119.30 41141.61 41055.19 407
test12312.59 37915.49 3823.87 3946.07 4172.55 41990.75 3782.59 4192.52 4125.20 41413.02 4114.96 4171.85 4145.20 4129.09 4117.23 409
testmvs12.33 38015.23 3833.64 3955.77 4182.23 42088.99 3933.62 4182.30 4135.29 41313.09 4104.52 4181.95 4135.16 4138.32 4126.75 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.91 38210.55 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.94 3360.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.32 38885.41 365
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 58
MSC_two_6792asdad98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
No_MVS98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
eth-test20.00 419
eth-test0.00 419
IU-MVS99.22 6895.40 10398.14 23985.77 35998.36 10595.23 16599.51 13699.49 70
save fliter98.48 17994.71 13194.53 27698.41 20195.02 188
test_0728_SECOND98.25 7399.23 6595.49 10196.74 14398.89 10899.75 7095.48 14899.52 13199.53 56
GSMVS98.06 295
test_part299.03 10796.07 7598.08 139
MTGPAbinary98.73 155
MTMP96.55 15474.60 410
gm-plane-assit91.79 40671.40 41181.67 38290.11 39698.99 30784.86 371
test9_res91.29 27798.89 24899.00 179
agg_prior290.34 30898.90 24599.10 167
agg_prior97.80 25494.96 12698.36 20893.49 34199.53 180
test_prior495.38 10593.61 315
test_prior97.46 13797.79 25994.26 15598.42 20099.34 24598.79 214
旧先验293.35 32277.95 39895.77 28298.67 34090.74 296
新几何293.43 318
无先验93.20 32697.91 25380.78 38799.40 22387.71 34197.94 307
原ACMM292.82 332
testdata299.46 20187.84 339
testdata192.77 33393.78 227
plane_prior798.70 14794.67 134
plane_prior598.75 15299.46 20192.59 25799.20 20999.28 127
plane_prior496.77 272
plane_prior394.51 14195.29 17696.16 264
plane_prior296.50 15696.36 119
plane_prior198.49 177
plane_prior94.29 15195.42 22994.31 21198.93 243
n20.00 420
nn0.00 420
door-mid98.17 232
test1198.08 244
door97.81 262
HQP5-MVS92.47 208
HQP-NCC97.85 24194.26 28193.18 25092.86 355
ACMP_Plane97.85 24194.26 28193.18 25092.86 355
BP-MVS90.51 303
HQP4-MVS92.87 35499.23 27399.06 172
HQP3-MVS98.43 19798.74 263
NP-MVS98.14 21893.72 17295.08 332
ACMMP++_ref99.52 131
ACMMP++99.55 118