This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13097.75 3299.89 2599.62 27
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1899.67 299.73 399.65 499.15 399.86 2497.22 4999.92 1499.77 9
XVG-OURS-SEG-HR97.38 10597.07 12098.30 7199.01 10097.41 3694.66 24999.02 5495.20 16998.15 10997.52 19398.83 498.43 34494.87 16396.41 33799.07 166
ACMH93.61 998.44 2298.76 1397.51 13499.43 3793.54 18598.23 4599.05 4597.40 7799.37 1899.08 3998.79 599.47 20097.74 3399.71 6199.50 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2299.22 1596.23 11899.71 499.48 798.77 699.93 398.89 399.95 599.84 5
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18698.58 1399.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)98.38 2598.67 1797.51 13499.51 2793.39 18998.20 5098.87 9098.23 3699.48 1299.27 2098.47 899.55 17796.52 7199.53 10899.60 29
pm-mvs198.47 2198.67 1797.86 10899.52 2694.58 14398.28 4199.00 6297.57 6599.27 2499.22 2398.32 999.50 19197.09 5699.75 5299.50 49
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3099.12 3095.83 14599.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
ACMH+93.58 1098.23 3298.31 2997.98 9999.39 4295.22 12197.55 8999.20 1898.21 3799.25 2598.51 8098.21 1199.40 22494.79 16799.72 5899.32 105
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2297.48 3298.35 3499.03 5295.88 14097.88 14198.22 11698.15 1299.74 8096.50 7399.62 7699.42 85
wuyk23d93.25 28295.20 19887.40 35796.07 33195.38 10897.04 11994.97 32295.33 16499.70 598.11 12898.14 1391.94 37577.76 36899.68 6774.89 375
ACMM93.33 1198.05 4397.79 5998.85 2599.15 7797.55 2796.68 13998.83 10995.21 16898.36 8398.13 12498.13 1499.62 15696.04 9099.54 10599.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 3997.83 5798.92 2299.42 3997.46 3398.57 1999.05 4595.43 16297.41 16797.50 19597.98 1599.79 4595.58 12199.57 9399.50 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 17596.50 15694.80 27999.26 5387.69 29495.96 17598.58 16495.08 17598.02 12796.25 28197.92 1697.60 36488.68 30998.74 25399.11 159
LPG-MVS_test97.94 5597.67 7198.74 3599.15 7797.02 4497.09 11699.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
LGP-MVS_train98.74 3599.15 7797.02 4499.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
abl_698.42 2398.19 3299.09 399.16 7498.10 697.73 8099.11 3197.76 5398.62 5698.27 10997.88 1999.80 4495.67 11299.50 12299.38 92
SED-MVS97.94 5597.90 4898.07 9199.22 6295.35 11196.79 13098.83 10996.11 12499.08 3398.24 11197.87 2099.72 9095.44 13099.51 11899.14 149
test_241102_ONE99.22 6295.35 11198.83 10996.04 12999.08 3398.13 12497.87 2099.33 245
SD-MVS97.37 10697.70 6796.35 21098.14 19895.13 12596.54 14298.92 7995.94 13699.19 2898.08 13097.74 2295.06 37395.24 14299.54 10598.87 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 7397.70 6798.16 8298.78 11995.72 8796.23 15999.02 5493.92 21498.62 5698.99 4497.69 2399.62 15696.18 8499.87 2799.15 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 1898.62 2198.32 6799.22 6295.66 9397.90 6799.08 3998.31 3399.02 3698.74 6297.68 2499.61 16297.77 3199.85 3199.70 19
ANet_high98.31 2898.94 696.41 20999.33 4889.64 25397.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3397.55 3999.98 299.77 9
canonicalmvs97.23 11697.21 11297.30 15797.65 26094.39 14997.84 7099.05 4597.42 7396.68 21193.85 33797.63 2699.33 24596.29 8098.47 27398.18 272
GeoE97.75 7897.70 6797.89 10598.88 11094.53 14497.10 11598.98 6895.75 14997.62 15297.59 18797.61 2799.77 5896.34 7999.44 14099.36 100
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5899.07 9295.87 8296.73 13799.05 4598.67 2498.84 4598.45 8497.58 2899.88 2096.45 7599.86 2899.54 42
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2240.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
ACMP92.54 1397.47 9997.10 11798.55 5099.04 9896.70 5396.24 15898.89 8293.71 21997.97 13297.75 17497.44 3099.63 14893.22 22499.70 6499.32 105
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1599.02 5496.50 10699.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
TDRefinement98.90 598.86 899.02 999.54 2298.06 899.34 499.44 1098.85 2099.00 3899.20 2497.42 3299.59 16497.21 5099.76 4799.40 88
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 1899.19 2095.62 15399.35 1999.37 1297.38 3399.90 1498.59 1299.91 1799.77 9
PS-CasMVS98.73 1198.85 1098.39 6299.55 2095.47 10598.49 2799.13 2999.22 899.22 2798.96 4797.35 3499.92 597.79 3099.93 1099.79 8
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6997.35 3797.96 6299.16 2298.34 3298.78 4998.52 7997.32 3599.45 20794.08 19799.67 6899.13 151
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 8297.79 5997.40 15299.06 9393.52 18695.96 17598.97 7294.55 19598.82 4698.76 6197.31 3699.29 25697.20 5299.44 14099.38 92
XXY-MVS97.54 9397.70 6797.07 16999.46 3392.21 21197.22 10999.00 6294.93 18398.58 6298.92 5197.31 3699.41 22294.44 18099.43 14899.59 30
PEN-MVS98.75 1098.85 1098.44 5699.58 1695.67 9298.45 3099.15 2699.33 599.30 2199.00 4397.27 3899.92 597.64 3699.92 1499.75 14
DTE-MVSNet98.79 898.86 898.59 4799.55 2096.12 7398.48 2999.10 3399.36 499.29 2399.06 4197.27 3899.93 397.71 3499.91 1799.70 19
ZNCC-MVS97.92 5997.62 8198.83 2699.32 5097.24 4197.45 9698.84 10295.76 14796.93 19897.43 20197.26 4099.79 4596.06 8799.53 10899.45 73
MP-MVS-pluss97.69 8297.36 10098.70 3999.50 3096.84 4995.38 20898.99 6592.45 25698.11 11398.31 9697.25 4199.77 5896.60 6799.62 7699.48 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 6597.63 7998.67 4199.35 4696.84 4996.36 15098.79 11995.07 17697.88 14198.35 9297.24 4299.72 9096.05 8999.58 9099.45 73
Effi-MVS+96.19 17196.01 17496.71 18997.43 27792.19 21496.12 16499.10 3395.45 16093.33 32794.71 32497.23 4399.56 17393.21 22597.54 31198.37 249
PGM-MVS97.88 6697.52 9098.96 1699.20 7097.62 2297.09 11699.06 4395.45 16097.55 15497.94 15297.11 4499.78 4994.77 17099.46 13599.48 63
test_0728_THIRD96.62 9798.40 7798.28 10597.10 4599.71 10695.70 10899.62 7699.58 31
APD-MVS_3200maxsize98.13 3897.90 4898.79 3198.79 11797.31 3897.55 8998.92 7997.72 5798.25 9898.13 12497.10 4599.75 7095.44 13099.24 19699.32 105
OPM-MVS97.54 9397.25 10798.41 6099.11 8796.61 5895.24 22098.46 17394.58 19498.10 11698.07 13297.09 4799.39 22995.16 14899.44 14099.21 133
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS97.94 5597.64 7798.83 2699.15 7797.50 3097.59 8698.84 10296.05 12797.49 15997.54 19097.07 4899.70 11595.61 11899.46 13599.30 111
#test#97.62 8797.22 11198.83 2699.15 7797.50 3096.81 12898.84 10294.25 20397.49 15997.54 19097.07 4899.70 11594.37 18599.46 13599.30 111
DVP-MVScopyleft97.78 7697.65 7498.16 8299.24 5795.51 10096.74 13398.23 20395.92 13798.40 7798.28 10597.06 5099.71 10695.48 12699.52 11399.26 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5795.51 10096.89 12598.89 8295.92 13798.64 5598.31 9697.06 50
casdiffmvs97.50 9697.81 5896.56 19998.51 15491.04 23395.83 18499.09 3897.23 8398.33 9098.30 10097.03 5299.37 23596.58 6999.38 16199.28 119
SteuartSystems-ACMMP98.02 4597.76 6498.79 3199.43 3797.21 4397.15 11198.90 8196.58 10298.08 11997.87 16397.02 5399.76 6395.25 14199.59 8899.40 88
Skip Steuart: Steuart Systems R&D Blog.
PC_three_145287.24 31498.37 8097.44 20097.00 5496.78 37092.01 23899.25 19399.21 133
DROMVSNet97.90 6497.94 4797.79 11298.66 13495.14 12498.31 3899.66 497.57 6595.95 24997.01 23796.99 5599.82 3597.66 3599.64 7398.39 247
DVP-MVS++97.96 4897.90 4898.12 8897.75 24995.40 10699.03 798.89 8296.62 9798.62 5698.30 10096.97 5699.75 7095.70 10899.25 19399.21 133
OPU-MVS97.64 12598.01 20995.27 11696.79 13097.35 21296.97 5698.51 34191.21 25899.25 19399.14 149
RE-MVS-def97.88 5298.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.94 5895.49 12399.20 19899.26 124
APDe-MVS98.14 3598.03 4198.47 5598.72 12596.04 7698.07 5799.10 3395.96 13498.59 6198.69 6696.94 5899.81 3896.64 6599.58 9099.57 36
test_one_060199.05 9795.50 10398.87 9097.21 8498.03 12598.30 10096.93 60
GST-MVS97.82 7397.49 9498.81 2999.23 5997.25 4097.16 11098.79 11995.96 13497.53 15597.40 20396.93 6099.77 5895.04 15799.35 17099.42 85
test_241102_TWO98.83 10996.11 12498.62 5698.24 11196.92 6299.72 9095.44 13099.49 12699.49 57
LCM-MVSNet-Re97.33 10997.33 10297.32 15698.13 20193.79 17596.99 12299.65 596.74 9599.47 1398.93 5096.91 6399.84 3090.11 28799.06 22198.32 256
VPA-MVSNet98.27 2998.46 2497.70 12099.06 9393.80 17497.76 7599.00 6298.40 3099.07 3598.98 4596.89 6499.75 7097.19 5399.79 4199.55 41
ACMMPcopyleft98.05 4397.75 6698.93 2199.23 5997.60 2398.09 5698.96 7395.75 14997.91 13798.06 13796.89 6499.76 6395.32 13799.57 9399.43 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS98.09 4098.01 4298.32 6798.45 16596.69 5498.52 2599.69 298.07 4296.07 24497.19 22396.88 6699.86 2497.50 4199.73 5498.41 244
PMVScopyleft89.60 1796.71 14896.97 12595.95 22899.51 2797.81 1797.42 10097.49 26697.93 4795.95 24998.58 7396.88 6696.91 36789.59 29599.36 16593.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 5997.59 8598.92 2299.22 6297.55 2797.60 8598.84 10296.00 13297.22 17197.62 18596.87 6899.76 6395.48 12699.43 14899.46 68
CP-MVS97.92 5997.56 8898.99 1398.99 10197.82 1697.93 6498.96 7396.11 12496.89 20197.45 19996.85 6999.78 4995.19 14499.63 7599.38 92
DPE-MVScopyleft97.64 8597.35 10198.50 5298.85 11296.18 7095.21 22298.99 6595.84 14498.78 4998.08 13096.84 7099.81 3893.98 20499.57 9399.52 46
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040297.84 7097.97 4497.47 14299.19 7294.07 16396.71 13898.73 13298.66 2598.56 6398.41 8796.84 7099.69 12394.82 16599.81 3798.64 225
CS-MVS-test97.91 6297.84 5498.14 8698.52 15296.03 7898.38 3399.67 398.11 4095.50 26696.92 24396.81 7299.87 2296.87 6399.76 4798.51 237
ACMMPR97.95 5297.62 8198.94 1899.20 7097.56 2697.59 8698.83 10996.05 12797.46 16597.63 18496.77 7399.76 6395.61 11899.46 13599.49 57
Vis-MVSNetpermissive98.27 2998.34 2898.07 9199.33 4895.21 12398.04 5999.46 997.32 8097.82 14999.11 3596.75 7499.86 2497.84 2799.36 16599.15 146
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 19695.07 20496.75 18797.67 25992.82 19994.22 26698.60 16091.61 26893.42 32592.90 34796.73 7599.70 11592.60 23197.89 29597.74 299
baseline97.44 10197.78 6396.43 20598.52 15290.75 24096.84 12699.03 5296.51 10597.86 14598.02 14196.67 7699.36 23797.09 5699.47 13299.19 138
SR-MVS98.00 4797.66 7299.01 1198.77 12197.93 1197.38 10298.83 10997.32 8098.06 12197.85 16496.65 7799.77 5895.00 16099.11 21299.32 105
tfpnnormal97.72 8097.97 4496.94 17599.26 5392.23 21097.83 7198.45 17498.25 3599.13 3298.66 6896.65 7799.69 12393.92 20699.62 7698.91 192
DeepPCF-MVS94.58 596.90 13196.43 15898.31 7097.48 27197.23 4292.56 31798.60 16092.84 25098.54 6497.40 20396.64 7998.78 31594.40 18499.41 15798.93 187
MVS_111021_LR96.82 13896.55 14997.62 12698.27 17995.34 11393.81 28798.33 19494.59 19396.56 21996.63 26296.61 8098.73 32094.80 16699.34 17398.78 211
Gipumacopyleft98.07 4298.31 2997.36 15499.76 596.28 6998.51 2699.10 3398.76 2396.79 20499.34 1896.61 8098.82 31196.38 7799.50 12296.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test117298.08 4197.76 6499.05 698.78 11998.07 797.41 10198.85 9797.57 6598.15 10997.96 14796.60 8299.76 6395.30 13899.18 20299.33 104
SR-MVS-dyc-post98.14 3597.84 5499.02 998.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.60 8299.76 6395.49 12399.20 19899.26 124
MVS_111021_HR96.73 14596.54 15197.27 15898.35 17293.66 18293.42 29798.36 18994.74 18696.58 21796.76 25596.54 8498.99 29794.87 16399.27 19199.15 146
SMA-MVScopyleft97.48 9897.11 11698.60 4698.83 11396.67 5596.74 13398.73 13291.61 26898.48 7098.36 9196.53 8599.68 13095.17 14699.54 10599.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v7n98.73 1198.99 597.95 10099.64 1294.20 16098.67 1599.14 2899.08 1099.42 1599.23 2296.53 8599.91 1399.27 299.93 1099.73 16
mPP-MVS97.91 6297.53 8999.04 799.22 6297.87 1597.74 7898.78 12396.04 12997.10 18197.73 17796.53 8599.78 4995.16 14899.50 12299.46 68
XVS97.96 4897.63 7998.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23097.64 18396.49 8899.72 9095.66 11499.37 16299.45 73
X-MVStestdata92.86 28790.83 31198.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23036.50 37796.49 8899.72 9095.66 11499.37 16299.45 73
9.1496.69 14198.53 15196.02 17098.98 6893.23 23297.18 17597.46 19896.47 9099.62 15692.99 22899.32 182
UA-Net98.88 798.76 1399.22 299.11 8797.89 1499.47 399.32 1199.08 1097.87 14499.67 296.47 9099.92 597.88 2599.98 299.85 3
xxxxxxxxxxxxxcwj97.24 11597.03 12397.89 10598.48 16094.71 13794.53 25499.07 4295.02 17997.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
SF-MVS97.60 8997.39 9898.22 7898.93 10695.69 8997.05 11899.10 3395.32 16597.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
xiu_mvs_v1_base_debu95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
ETV-MVS96.13 17495.90 18196.82 18397.76 24793.89 16995.40 20698.95 7595.87 14195.58 26591.00 36896.36 9799.72 9093.36 21898.83 24596.85 329
MP-MVScopyleft97.64 8597.18 11399.00 1299.32 5097.77 1897.49 9598.73 13296.27 11595.59 26497.75 17496.30 9899.78 4993.70 21499.48 13099.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 18096.34 16194.96 27097.90 22187.91 28794.13 27398.49 17194.41 19798.16 10797.76 17196.29 9998.68 32790.52 28099.42 15198.30 260
Fast-Effi-MVS+-dtu96.44 16296.12 16997.39 15397.18 29694.39 14995.46 20098.73 13296.03 13194.72 28294.92 32196.28 10099.69 12393.81 20997.98 29098.09 274
OMC-MVS96.48 16096.00 17597.91 10398.30 17496.01 8094.86 24198.60 16091.88 26597.18 17597.21 22296.11 10199.04 29190.49 28399.34 17398.69 222
xiu_mvs_v2_base94.22 25394.63 22992.99 32497.32 28884.84 33592.12 32597.84 24491.96 26394.17 29693.43 33896.07 10299.71 10691.27 25597.48 31494.42 360
CSCG97.40 10497.30 10397.69 12298.95 10394.83 13297.28 10598.99 6596.35 11498.13 11295.95 29895.99 10399.66 14194.36 18899.73 5498.59 231
PHI-MVS96.96 12796.53 15298.25 7697.48 27196.50 6196.76 13298.85 9793.52 22296.19 24096.85 24695.94 10499.42 21393.79 21099.43 14898.83 205
TSAR-MVS + MP.97.42 10297.23 11098.00 9899.38 4395.00 12897.63 8498.20 20893.00 24398.16 10798.06 13795.89 10599.72 9095.67 11299.10 21499.28 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 9197.28 10698.49 5399.16 7496.90 4896.39 14798.98 6895.05 17798.06 12198.02 14195.86 10699.56 17394.37 18599.64 7399.00 175
AllTest97.20 11796.92 13098.06 9399.08 9096.16 7197.14 11399.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
TestCases98.06 9399.08 9096.16 7199.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
APD-MVScopyleft97.00 12296.53 15298.41 6098.55 14996.31 6796.32 15398.77 12492.96 24897.44 16697.58 18995.84 10799.74 8091.96 23999.35 17099.19 138
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
PS-MVSNAJss98.53 1998.63 1998.21 8199.68 994.82 13398.10 5599.21 1696.91 9099.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
PS-MVSNAJ94.10 25994.47 23993.00 32397.35 28184.88 33491.86 32997.84 24491.96 26394.17 29692.50 35495.82 11099.71 10691.27 25597.48 31494.40 361
3Dnovator96.53 297.61 8897.64 7797.50 13797.74 25293.65 18398.49 2798.88 8896.86 9297.11 18098.55 7795.82 11099.73 8595.94 9899.42 15199.13 151
zzz-MVS98.01 4697.66 7299.06 499.44 3597.90 1295.66 19198.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
MTAPA98.14 3597.84 5499.06 499.44 3597.90 1297.25 10698.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
DP-MVS97.87 6797.89 5197.81 11198.62 14094.82 13397.13 11498.79 11998.98 1798.74 5298.49 8195.80 11699.49 19495.04 15799.44 14099.11 159
Anonymous2024052997.96 4898.04 4097.71 11898.69 13294.28 15697.86 6998.31 19798.79 2299.23 2698.86 5695.76 11799.61 16295.49 12399.36 16599.23 131
LS3D97.77 7797.50 9398.57 4896.24 32097.58 2598.45 3098.85 9798.58 2797.51 15797.94 15295.74 11899.63 14895.19 14498.97 22698.51 237
EIA-MVS96.04 17795.77 18596.85 18197.80 23592.98 19696.12 16499.16 2294.65 18993.77 30991.69 36295.68 11999.67 13594.18 19398.85 24397.91 292
CNVR-MVS96.92 12996.55 14998.03 9798.00 21395.54 9894.87 24098.17 21494.60 19196.38 22797.05 23395.67 12099.36 23795.12 15499.08 21699.19 138
CLD-MVS95.47 19995.07 20496.69 19198.27 17992.53 20491.36 33598.67 15091.22 27695.78 25894.12 33595.65 12198.98 29990.81 26799.72 5898.57 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 1798.76 1397.94 10198.79 11794.37 15198.84 1199.15 2699.37 399.67 699.43 1195.61 12299.72 9098.12 1999.86 2899.73 16
EGC-MVSNET83.08 34377.93 34698.53 5199.57 1797.55 2798.33 3798.57 1654.71 37910.38 38098.90 5395.60 12399.50 19195.69 11099.61 8298.55 235
Regformer-297.41 10397.24 10997.93 10297.21 29394.72 13694.85 24298.27 19897.74 5498.11 11397.50 19595.58 12499.69 12396.57 7099.31 18499.37 99
ITE_SJBPF97.85 10998.64 13596.66 5698.51 17095.63 15297.22 17197.30 21795.52 12598.55 33890.97 26298.90 23598.34 255
Regformer-497.53 9597.47 9697.71 11897.35 28193.91 16895.26 21898.14 22097.97 4698.34 8697.89 15795.49 12699.71 10697.41 4499.42 15199.51 48
DeepC-MVS_fast94.34 796.74 14396.51 15597.44 14897.69 25594.15 16196.02 17098.43 17793.17 23897.30 16997.38 20995.48 12799.28 25893.74 21199.34 17398.88 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1598.62 2198.75 3399.51 2796.61 5898.55 2199.17 2199.05 1399.17 2998.79 5895.47 12899.89 1897.95 2499.91 1799.75 14
FMVSNet197.95 5298.08 3597.56 12999.14 8593.67 17998.23 4598.66 15297.41 7699.00 3899.19 2595.47 12899.73 8595.83 10599.76 4799.30 111
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1298.89 8298.49 2899.38 1799.14 3495.44 13099.84 3096.47 7499.80 4099.47 66
CP-MVSNet98.42 2398.46 2498.30 7199.46 3395.22 12198.27 4398.84 10299.05 1399.01 3798.65 7095.37 13199.90 1497.57 3899.91 1799.77 9
Regformer-197.27 11297.16 11497.61 12797.21 29393.86 17194.85 24298.04 23597.62 6498.03 12597.50 19595.34 13299.63 14896.52 7199.31 18499.35 102
segment_acmp95.34 132
CDPH-MVS95.45 20194.65 22697.84 11098.28 17794.96 12993.73 28998.33 19485.03 33895.44 26796.60 26395.31 13499.44 21090.01 28999.13 20899.11 159
3Dnovator+96.13 397.73 7997.59 8598.15 8598.11 20395.60 9598.04 5998.70 14298.13 3996.93 19898.45 8495.30 13599.62 15695.64 11698.96 22799.24 130
MVS_Test96.27 16796.79 13894.73 28296.94 30586.63 31296.18 16198.33 19494.94 18196.07 24498.28 10595.25 13699.26 26297.21 5097.90 29498.30 260
XVG-OURS97.12 11896.74 13998.26 7398.99 10197.45 3493.82 28599.05 4595.19 17098.32 9197.70 17995.22 13798.41 34594.27 19098.13 28598.93 187
dcpmvs_297.12 11897.99 4394.51 29299.11 8784.00 34397.75 7699.65 597.38 7899.14 3198.42 8695.16 13899.96 295.52 12299.78 4499.58 31
MCST-MVS96.24 16895.80 18397.56 12998.75 12294.13 16294.66 24998.17 21490.17 28696.21 23896.10 29195.14 13999.43 21294.13 19698.85 24399.13 151
EI-MVSNet-Vis-set97.32 11097.39 9897.11 16697.36 28092.08 21795.34 21197.65 25897.74 5498.29 9698.11 12895.05 14099.68 13097.50 4199.50 12299.56 39
Regformer-397.25 11497.29 10497.11 16697.35 28192.32 20895.26 21897.62 26397.67 6398.17 10697.89 15795.05 14099.56 17397.16 5499.42 15199.46 68
EI-MVSNet-UG-set97.32 11097.40 9797.09 16897.34 28592.01 21995.33 21297.65 25897.74 5498.30 9598.14 12295.04 14299.69 12397.55 3999.52 11399.58 31
KD-MVS_self_test97.86 6998.07 3697.25 16199.22 6292.81 20097.55 8998.94 7697.10 8698.85 4398.88 5495.03 14399.67 13597.39 4699.65 7199.26 124
ZD-MVS98.43 16695.94 8198.56 16690.72 28096.66 21397.07 23195.02 14499.74 8091.08 25998.93 233
DELS-MVS96.17 17296.23 16495.99 22497.55 26790.04 24892.38 32298.52 16894.13 20796.55 22197.06 23294.99 14599.58 16695.62 11799.28 18998.37 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 15496.93 12895.55 24698.88 11087.12 30594.47 25699.30 1294.12 20896.65 21598.41 8794.98 14699.87 2295.81 10799.78 4499.66 22
ab-mvs96.59 15496.59 14596.60 19498.64 13592.21 21198.35 3497.67 25494.45 19696.99 19398.79 5894.96 14799.49 19490.39 28499.07 21898.08 275
ETH3D-3000-0.196.89 13396.46 15798.16 8298.62 14095.69 8995.96 17598.98 6893.36 22797.04 18897.31 21694.93 14899.63 14892.60 23199.34 17399.17 142
MSLP-MVS++96.42 16496.71 14095.57 24397.82 23090.56 24495.71 18698.84 10294.72 18796.71 21097.39 20794.91 14998.10 35995.28 13999.02 22398.05 284
QAPM95.88 18495.57 19296.80 18497.90 22191.84 22398.18 5298.73 13288.41 30396.42 22598.13 12494.73 15099.75 7088.72 30798.94 23198.81 207
RPSCF97.87 6797.51 9198.95 1799.15 7798.43 397.56 8899.06 4396.19 12198.48 7098.70 6594.72 15199.24 26594.37 18599.33 18099.17 142
DU-MVS97.79 7597.60 8498.36 6498.73 12395.78 8595.65 19498.87 9097.57 6598.31 9397.83 16594.69 15299.85 2797.02 5999.71 6199.46 68
Baseline_NR-MVSNet97.72 8097.79 5997.50 13799.56 1893.29 19095.44 20198.86 9398.20 3898.37 8099.24 2194.69 15299.55 17795.98 9699.79 4199.65 24
TEST997.84 22795.23 11893.62 29198.39 18586.81 31993.78 30795.99 29394.68 15499.52 186
UniMVSNet (Re)97.83 7197.65 7498.35 6698.80 11695.86 8495.92 18099.04 5197.51 7098.22 10197.81 16994.68 15499.78 4997.14 5599.75 5299.41 87
agg_prior195.39 20394.60 23197.75 11597.80 23594.96 12993.39 29998.36 18987.20 31593.49 32095.97 29694.65 15699.53 18291.69 24998.86 24198.77 214
UniMVSNet_NR-MVSNet97.83 7197.65 7498.37 6398.72 12595.78 8595.66 19199.02 5498.11 4098.31 9397.69 18194.65 15699.85 2797.02 5999.71 6199.48 63
VPNet97.26 11397.49 9496.59 19599.47 3290.58 24296.27 15498.53 16797.77 5098.46 7398.41 8794.59 15899.68 13094.61 17399.29 18899.52 46
train_agg95.46 20094.66 22597.88 10797.84 22795.23 11893.62 29198.39 18587.04 31793.78 30795.99 29394.58 15999.52 18691.76 24798.90 23598.89 196
test_897.81 23195.07 12793.54 29498.38 18787.04 31793.71 31195.96 29794.58 15999.52 186
API-MVS95.09 21695.01 20895.31 25696.61 31194.02 16596.83 12797.18 27595.60 15495.79 25694.33 33294.54 16198.37 35085.70 33798.52 27093.52 364
Test By Simon94.51 162
MSDG95.33 20595.13 20195.94 23097.40 27991.85 22291.02 34698.37 18895.30 16696.31 23295.99 29394.51 16298.38 34889.59 29597.65 30897.60 306
TSAR-MVS + GP.96.47 16196.12 16997.49 14097.74 25295.23 11894.15 27096.90 28693.26 23198.04 12496.70 25894.41 16498.89 30694.77 17099.14 20598.37 249
NR-MVSNet97.96 4897.86 5398.26 7398.73 12395.54 9898.14 5398.73 13297.79 4999.42 1597.83 16594.40 16599.78 4995.91 10099.76 4799.46 68
AdaColmapbinary95.11 21494.62 23096.58 19697.33 28794.45 14894.92 23898.08 22893.15 23993.98 30595.53 31094.34 16699.10 28585.69 33898.61 26596.20 345
FC-MVSNet-test98.16 3398.37 2797.56 12999.49 3193.10 19498.35 3499.21 1698.43 2998.89 4198.83 5794.30 16799.81 3897.87 2699.91 1799.77 9
Effi-MVS+-dtu96.81 13996.09 17198.99 1396.90 30798.69 296.42 14698.09 22695.86 14295.15 27395.54 30994.26 16899.81 3894.06 19898.51 27298.47 241
mvs-test196.20 17095.50 19498.32 6796.90 30798.16 595.07 22998.09 22695.86 14293.63 31494.32 33394.26 16899.71 10694.06 19897.27 32297.07 319
ambc96.56 19998.23 18591.68 22697.88 6898.13 22298.42 7698.56 7694.22 17099.04 29194.05 20199.35 17098.95 181
test20.0396.58 15696.61 14496.48 20398.49 15891.72 22595.68 19097.69 25396.81 9398.27 9797.92 15594.18 17198.71 32290.78 26999.66 7099.00 175
HPM-MVS++copyleft96.99 12396.38 15998.81 2998.64 13597.59 2495.97 17498.20 20895.51 15895.06 27496.53 26794.10 17299.70 11594.29 18999.15 20499.13 151
testtj96.69 14996.13 16898.36 6498.46 16496.02 7996.44 14598.70 14294.26 20296.79 20497.13 22594.07 17399.75 7090.53 27998.80 24799.31 110
ETH3D cwj APD-0.1696.23 16995.61 19198.09 9097.91 21995.65 9494.94 23798.74 13091.31 27496.02 24797.08 23094.05 17499.69 12391.51 25198.94 23198.93 187
PM-MVS97.36 10897.10 11798.14 8698.91 10896.77 5196.20 16098.63 15893.82 21698.54 6498.33 9493.98 17599.05 29095.99 9599.45 13998.61 230
OpenMVScopyleft94.22 895.48 19895.20 19896.32 21297.16 29791.96 22097.74 7898.84 10287.26 31394.36 29398.01 14393.95 17699.67 13590.70 27598.75 25297.35 316
v897.60 8998.06 3896.23 21598.71 12889.44 25797.43 9998.82 11797.29 8298.74 5299.10 3693.86 17799.68 13098.61 1199.94 899.56 39
diffmvs96.04 17796.23 16495.46 25197.35 28188.03 28693.42 29799.08 3994.09 21096.66 21396.93 24193.85 17899.29 25696.01 9498.67 25899.06 168
NCCC96.52 15895.99 17698.10 8997.81 23195.68 9195.00 23598.20 20895.39 16395.40 26996.36 27793.81 17999.45 20793.55 21798.42 27499.17 142
TAPA-MVS93.32 1294.93 22194.23 24697.04 17198.18 19194.51 14595.22 22198.73 13281.22 35596.25 23695.95 29893.80 18098.98 29989.89 29198.87 23997.62 304
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 5898.07 3697.48 14199.38 4392.95 19798.03 6199.11 3198.04 4498.62 5698.66 6893.75 18199.78 4997.23 4899.84 3299.73 16
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4598.05 4399.61 1199.52 593.72 18299.88 2098.72 999.88 2699.65 24
test_prior395.91 18295.39 19597.46 14597.79 24194.26 15893.33 30298.42 18094.21 20494.02 30296.25 28193.64 18399.34 24291.90 24198.96 22798.79 209
test_prior293.33 30294.21 20494.02 30296.25 28193.64 18391.90 24198.96 227
旧先验197.80 23593.87 17097.75 24997.04 23493.57 18598.68 25798.72 219
v1097.55 9297.97 4496.31 21398.60 14389.64 25397.44 9799.02 5496.60 9998.72 5499.16 3193.48 18699.72 9098.76 699.92 1499.58 31
v14896.58 15696.97 12595.42 25398.63 13987.57 29595.09 22697.90 23995.91 13998.24 9997.96 14793.42 18799.39 22996.04 9099.52 11399.29 118
V4297.04 12197.16 11496.68 19298.59 14591.05 23296.33 15298.36 18994.60 19197.99 12898.30 10093.32 18899.62 15697.40 4599.53 10899.38 92
new-patchmatchnet95.67 19096.58 14692.94 32697.48 27180.21 36192.96 30898.19 21394.83 18498.82 4698.79 5893.31 18999.51 19095.83 10599.04 22299.12 156
test1297.46 14597.61 26394.07 16397.78 24893.57 31893.31 18999.42 21398.78 24998.89 196
UGNet96.81 13996.56 14897.58 12896.64 31093.84 17397.75 7697.12 27896.47 10993.62 31598.88 5493.22 19199.53 18295.61 11899.69 6599.36 100
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs-eth3d96.49 15996.18 16797.42 15098.25 18294.29 15394.77 24698.07 23289.81 29097.97 13298.33 9493.11 19299.08 28795.46 12999.84 3298.89 196
v114496.84 13497.08 11996.13 22198.42 16789.28 26095.41 20598.67 15094.21 20497.97 13298.31 9693.06 19399.65 14398.06 2299.62 7699.45 73
PVSNet_BlendedMVS95.02 22094.93 21195.27 25797.79 24187.40 30094.14 27298.68 14788.94 29894.51 28998.01 14393.04 19499.30 25289.77 29399.49 12699.11 159
PVSNet_Blended93.96 26393.65 26294.91 27197.79 24187.40 30091.43 33498.68 14784.50 34394.51 28994.48 33093.04 19499.30 25289.77 29398.61 26598.02 287
mvs_anonymous95.36 20496.07 17393.21 31896.29 31881.56 35694.60 25197.66 25693.30 23096.95 19798.91 5293.03 19699.38 23296.60 6797.30 32198.69 222
v119296.83 13797.06 12196.15 22098.28 17789.29 25995.36 20998.77 12493.73 21898.11 11398.34 9393.02 19799.67 13598.35 1799.58 9099.50 49
F-COLMAP95.30 20794.38 24398.05 9698.64 13596.04 7695.61 19798.66 15289.00 29793.22 32896.40 27592.90 19899.35 24087.45 32797.53 31298.77 214
WR-MVS96.90 13196.81 13597.16 16398.56 14892.20 21394.33 25998.12 22397.34 7998.20 10297.33 21492.81 19999.75 7094.79 16799.81 3799.54 42
v124096.74 14397.02 12495.91 23198.18 19188.52 27295.39 20798.88 8893.15 23998.46 7398.40 9092.80 20099.71 10698.45 1599.49 12699.49 57
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20187.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 19495.13 20196.80 18498.51 15493.99 16794.60 25198.69 14590.20 28595.78 25896.21 28492.73 20298.98 29990.58 27898.86 24197.42 313
CANet95.86 18595.65 18896.49 20296.41 31690.82 23794.36 25898.41 18294.94 18192.62 34196.73 25692.68 20399.71 10695.12 15499.60 8698.94 183
v192192096.72 14696.96 12795.99 22498.21 18688.79 26995.42 20398.79 11993.22 23398.19 10598.26 11092.68 20399.70 11598.34 1899.55 10299.49 57
BH-untuned94.69 23494.75 22394.52 29197.95 21887.53 29694.07 27597.01 28293.99 21297.10 18195.65 30592.65 20598.95 30487.60 32396.74 33197.09 318
LF4IMVS96.07 17595.63 18997.36 15498.19 18895.55 9795.44 20198.82 11792.29 25995.70 26296.55 26592.63 20698.69 32491.75 24899.33 18097.85 294
v2v48296.78 14197.06 12195.95 22898.57 14788.77 27095.36 20998.26 20095.18 17197.85 14698.23 11392.58 20799.63 14897.80 2999.69 6599.45 73
EI-MVSNet96.63 15396.93 12895.74 23797.26 29088.13 28395.29 21697.65 25896.99 8797.94 13598.19 11892.55 20899.58 16696.91 6199.56 9699.50 49
IterMVS-LS96.92 12997.29 10495.79 23598.51 15488.13 28395.10 22598.66 15296.99 8798.46 7398.68 6792.55 20899.74 8096.91 6199.79 4199.50 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 10697.25 10797.74 11698.69 13294.50 14797.04 11995.61 31498.59 2698.51 6698.72 6392.54 21099.58 16696.02 9299.49 12699.12 156
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29364.72 37590.62 35292.77 34992.54 21098.39 34779.30 36395.56 34992.12 368
v14419296.69 14996.90 13296.03 22398.25 18288.92 26495.49 19998.77 12493.05 24198.09 11798.29 10492.51 21299.70 11598.11 2099.56 9699.47 66
原ACMM196.58 19698.16 19592.12 21598.15 21985.90 32793.49 32096.43 27292.47 21399.38 23287.66 32298.62 26498.23 267
VNet96.84 13496.83 13496.88 17998.06 20492.02 21896.35 15197.57 26597.70 6097.88 14197.80 17092.40 21499.54 18094.73 17298.96 22799.08 164
114514_t93.96 26393.22 27096.19 21899.06 9390.97 23595.99 17298.94 7673.88 37393.43 32496.93 24192.38 21599.37 23589.09 30299.28 18998.25 266
CPTT-MVS96.69 14996.08 17298.49 5398.89 10996.64 5797.25 10698.77 12492.89 24996.01 24897.13 22592.23 21699.67 13592.24 23699.34 17399.17 142
MSP-MVS97.45 10096.92 13099.03 899.26 5397.70 1997.66 8198.89 8295.65 15198.51 6696.46 27192.15 21799.81 3895.14 15198.58 26899.58 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS94.21 25593.03 27397.76 11496.94 30597.44 3596.97 12397.15 27687.89 31192.00 34692.73 35192.14 21899.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 18195.80 18396.42 20799.28 5290.62 24195.31 21499.08 3988.40 30496.97 19698.17 12192.11 21999.78 4993.64 21599.21 19798.86 203
BH-RMVSNet94.56 24294.44 24294.91 27197.57 26487.44 29993.78 28896.26 29993.69 22096.41 22696.50 27092.10 22099.00 29585.96 33597.71 30298.31 258
新几何197.25 16198.29 17594.70 14097.73 25077.98 36694.83 28196.67 26092.08 22199.45 20788.17 31698.65 26297.61 305
testdata95.70 24098.16 19590.58 24297.72 25180.38 35895.62 26397.02 23592.06 22298.98 29989.06 30498.52 27097.54 308
YYNet194.73 22994.84 21794.41 29597.47 27585.09 33290.29 35295.85 30992.52 25397.53 15597.76 17191.97 22399.18 27193.31 22196.86 32798.95 181
Anonymous2023120695.27 20895.06 20695.88 23298.72 12589.37 25895.70 18797.85 24288.00 30996.98 19597.62 18591.95 22499.34 24289.21 30099.53 10898.94 183
MS-PatchMatch94.83 22594.91 21394.57 28996.81 30987.10 30694.23 26597.34 27088.74 30197.14 17797.11 22891.94 22598.23 35592.99 22897.92 29298.37 249
112194.26 25193.26 26897.27 15898.26 18194.73 13595.86 18197.71 25277.96 36794.53 28896.71 25791.93 22699.40 22487.71 31998.64 26397.69 302
MDA-MVSNet_test_wron94.73 22994.83 21994.42 29497.48 27185.15 33090.28 35395.87 30892.52 25397.48 16297.76 17191.92 22799.17 27593.32 22096.80 33098.94 183
HQP_MVS96.66 15296.33 16297.68 12398.70 13094.29 15396.50 14398.75 12896.36 11296.16 24196.77 25391.91 22899.46 20392.59 23399.20 19899.28 119
plane_prior698.38 16994.37 15191.91 228
ETH3 D test640094.77 22893.87 25997.47 14298.12 20293.73 17794.56 25398.70 14285.45 33394.70 28495.93 30091.77 23099.63 14886.45 33399.14 20599.05 170
MVP-Stereo95.69 18895.28 19796.92 17698.15 19793.03 19595.64 19698.20 20890.39 28396.63 21697.73 17791.63 23199.10 28591.84 24597.31 32098.63 227
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 24093.81 26097.02 17398.19 18895.72 8793.66 29097.23 27288.17 30794.94 27995.62 30791.43 23298.57 33587.36 32897.68 30596.76 335
MDA-MVSNet-bldmvs95.69 18895.67 18795.74 23798.48 16088.76 27192.84 30997.25 27196.00 13297.59 15397.95 15191.38 23399.46 20393.16 22696.35 33898.99 178
mvsmamba98.16 3398.06 3898.44 5699.53 2595.87 8298.70 1398.94 7697.71 5998.85 4399.10 3691.35 23499.83 3398.47 1499.90 2399.64 26
PAPR92.22 29791.27 30395.07 26595.73 34088.81 26891.97 32897.87 24185.80 32890.91 35192.73 35191.16 23598.33 35279.48 36295.76 34798.08 275
131492.38 29492.30 28992.64 33095.42 34785.15 33095.86 18196.97 28485.40 33490.62 35293.06 34591.12 23697.80 36286.74 33195.49 35094.97 358
ppachtmachnet_test94.49 24694.84 21793.46 31296.16 32682.10 35290.59 34997.48 26790.53 28297.01 19297.59 18791.01 23799.36 23793.97 20599.18 20298.94 183
PLCcopyleft91.02 1694.05 26292.90 27597.51 13498.00 21395.12 12694.25 26398.25 20186.17 32391.48 34995.25 31391.01 23799.19 27085.02 34696.69 33298.22 268
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 19393.24 19292.74 31497.61 26475.17 37194.65 28596.69 25990.96 23998.66 26097.66 303
CL-MVSNet_self_test95.04 21794.79 22295.82 23497.51 26989.79 25191.14 34396.82 28993.05 24196.72 20996.40 27590.82 24099.16 27691.95 24098.66 26098.50 239
USDC94.56 24294.57 23694.55 29097.78 24586.43 31592.75 31298.65 15785.96 32596.91 20097.93 15490.82 24098.74 31990.71 27499.59 8898.47 241
PCF-MVS89.43 1892.12 30090.64 31496.57 19897.80 23593.48 18789.88 35998.45 17474.46 37296.04 24695.68 30490.71 24299.31 24973.73 37199.01 22596.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 24094.17 25095.96 22698.36 17191.23 23095.93 17997.95 23692.98 24493.42 32594.43 33190.53 24398.38 34887.60 32396.29 33998.27 264
our_test_394.20 25794.58 23493.07 32096.16 32681.20 35890.42 35196.84 28790.72 28097.14 17797.13 22590.47 24499.11 28394.04 20298.25 28098.91 192
OpenMVS_ROBcopyleft91.80 1493.64 27393.05 27195.42 25397.31 28991.21 23195.08 22896.68 29681.56 35296.88 20296.41 27390.44 24599.25 26485.39 34297.67 30695.80 349
HQP2-MVS90.33 246
N_pmnet95.18 21194.23 24698.06 9397.85 22396.55 6092.49 31891.63 35389.34 29398.09 11797.41 20290.33 24699.06 28991.58 25099.31 18498.56 233
HQP-MVS95.17 21394.58 23496.92 17697.85 22392.47 20594.26 26098.43 17793.18 23592.86 33395.08 31590.33 24699.23 26790.51 28198.74 25399.05 170
CNLPA95.04 21794.47 23996.75 18797.81 23195.25 11794.12 27497.89 24094.41 19794.57 28695.69 30390.30 24998.35 35186.72 33298.76 25196.64 337
PMMVS92.39 29391.08 30596.30 21493.12 37092.81 20090.58 35095.96 30679.17 36391.85 34892.27 35590.29 25098.66 32989.85 29296.68 33397.43 312
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32489.96 28894.95 27893.87 33690.24 25198.61 33281.18 36094.88 35395.45 355
MVS_030495.50 19595.05 20796.84 18296.28 31993.12 19397.00 12196.16 30095.03 17889.22 36397.70 17990.16 25299.48 19794.51 17999.34 17397.93 291
TAMVS95.49 19694.94 20997.16 16398.31 17393.41 18895.07 22996.82 28991.09 27797.51 15797.82 16889.96 25399.42 21388.42 31299.44 14098.64 225
DPM-MVS93.68 27092.77 28296.42 20797.91 21992.54 20391.17 34297.47 26884.99 33993.08 33094.74 32389.90 25499.00 29587.54 32598.09 28797.72 300
PMMVS293.66 27194.07 25292.45 33497.57 26480.67 36086.46 36796.00 30493.99 21297.10 18197.38 20989.90 25497.82 36188.76 30699.47 13298.86 203
RRT_MVS97.95 5297.79 5998.43 5899.67 1095.56 9698.86 1096.73 29597.99 4599.15 3099.35 1689.84 25699.90 1498.64 1099.90 2399.82 6
bld_raw_dy_0_6497.69 8297.61 8397.91 10399.54 2294.27 15798.06 5898.60 16096.60 9998.79 4898.95 4889.62 25799.84 3098.43 1699.91 1799.62 27
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31189.33 29494.21 29592.74 35089.60 25898.24 35481.68 35894.66 35594.66 359
Anonymous2024052197.07 12097.51 9195.76 23699.35 4688.18 28097.78 7298.40 18497.11 8598.34 8699.04 4289.58 25999.79 4598.09 2199.93 1099.30 111
UnsupCasMVSNet_bld94.72 23394.26 24596.08 22298.62 14090.54 24593.38 30098.05 23490.30 28497.02 19196.80 25289.54 26099.16 27688.44 31196.18 34098.56 233
MG-MVS94.08 26194.00 25494.32 29797.09 29985.89 32093.19 30695.96 30692.52 25394.93 28097.51 19489.54 26098.77 31687.52 32697.71 30298.31 258
UnsupCasMVSNet_eth95.91 18295.73 18696.44 20498.48 16091.52 22895.31 21498.45 17495.76 14797.48 16297.54 19089.53 26298.69 32494.43 18194.61 35699.13 151
GBi-Net96.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
test196.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
FMVSNet296.72 14696.67 14396.87 18097.96 21591.88 22197.15 11198.06 23395.59 15598.50 6898.62 7189.51 26399.65 14394.99 16199.60 8699.07 166
pmmvs494.82 22694.19 24996.70 19097.42 27892.75 20292.09 32796.76 29186.80 32095.73 26197.22 22189.28 26698.89 30693.28 22299.14 20598.46 243
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 15979.32 36292.16 34591.44 36489.22 26798.12 35890.80 26897.47 31696.82 332
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33376.97 37092.54 34299.18 2889.20 26898.55 33883.88 35298.60 26797.51 309
c3_l95.20 21095.32 19694.83 27896.19 32486.43 31591.83 33098.35 19393.47 22497.36 16897.26 21988.69 26999.28 25895.41 13699.36 16598.78 211
CANet_DTU94.65 23894.21 24895.96 22695.90 33389.68 25293.92 28297.83 24693.19 23490.12 35895.64 30688.52 27099.57 17293.27 22399.47 13298.62 228
EPP-MVSNet96.84 13496.58 14697.65 12499.18 7393.78 17698.68 1496.34 29897.91 4897.30 16998.06 13788.46 27199.85 2793.85 20899.40 15899.32 105
SixPastTwentyTwo97.49 9797.57 8797.26 16099.56 1892.33 20798.28 4196.97 28498.30 3499.45 1499.35 1688.43 27299.89 1898.01 2399.76 4799.54 42
miper_ehance_all_eth94.69 23494.70 22494.64 28395.77 33886.22 31791.32 33998.24 20291.67 26797.05 18796.65 26188.39 27399.22 26994.88 16298.34 27698.49 240
IS-MVSNet96.93 12896.68 14297.70 12099.25 5694.00 16698.57 1996.74 29398.36 3198.14 11197.98 14688.23 27499.71 10693.10 22799.72 5899.38 92
jason94.39 24994.04 25395.41 25598.29 17587.85 29092.74 31496.75 29285.38 33595.29 27096.15 28688.21 27599.65 14394.24 19199.34 17398.74 216
jason: jason.
IterMVS-SCA-FT95.86 18596.19 16694.85 27697.68 25685.53 32392.42 32097.63 26296.99 8798.36 8398.54 7887.94 27699.75 7097.07 5899.08 21699.27 123
SCA93.38 27993.52 26492.96 32596.24 32081.40 35793.24 30494.00 33091.58 27094.57 28696.97 23887.94 27699.42 21389.47 29797.66 30798.06 281
sss94.22 25393.72 26195.74 23797.71 25489.95 25093.84 28496.98 28388.38 30593.75 31095.74 30287.94 27698.89 30691.02 26198.10 28698.37 249
IterMVS95.42 20295.83 18294.20 30097.52 26883.78 34592.41 32197.47 26895.49 15998.06 12198.49 8187.94 27699.58 16696.02 9299.02 22399.23 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 25993.41 26696.18 21999.16 7490.04 24892.15 32498.68 14779.90 36096.22 23797.83 16587.92 28099.42 21389.18 30199.65 7199.08 164
VDDNet96.98 12696.84 13397.41 15199.40 4193.26 19197.94 6395.31 32099.26 798.39 7999.18 2887.85 28199.62 15695.13 15399.09 21599.35 102
pmmvs594.63 23994.34 24495.50 24897.63 26288.34 27694.02 27697.13 27787.15 31695.22 27297.15 22487.50 28299.27 26193.99 20399.26 19298.88 200
D2MVS95.18 21195.17 20095.21 25997.76 24787.76 29394.15 27097.94 23789.77 29196.99 19397.68 18287.45 28399.14 27895.03 15999.81 3798.74 216
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26678.04 36587.17 36694.60 32684.65 34192.34 34392.20 35687.37 28498.47 34285.17 34597.69 30497.96 289
Anonymous20240521196.34 16595.98 17797.43 14998.25 18293.85 17296.74 13394.41 32897.72 5798.37 8098.03 14087.15 28599.53 18294.06 19899.07 21898.92 191
MVSFormer96.14 17396.36 16095.49 24997.68 25687.81 29198.67 1599.02 5496.50 10694.48 29196.15 28686.90 28699.92 598.73 799.13 20898.74 216
lupinMVS93.77 26693.28 26795.24 25897.68 25687.81 29192.12 32596.05 30284.52 34294.48 29195.06 31786.90 28699.63 14893.62 21699.13 20898.27 264
eth_miper_zixun_eth94.89 22394.93 21194.75 28195.99 33286.12 31891.35 33698.49 17193.40 22597.12 17997.25 22086.87 28899.35 24095.08 15698.82 24698.78 211
WTY-MVS93.55 27593.00 27495.19 26097.81 23187.86 28893.89 28396.00 30489.02 29694.07 30095.44 31286.27 28999.33 24587.69 32196.82 32898.39 247
CDS-MVSNet94.88 22494.12 25197.14 16597.64 26193.57 18493.96 28197.06 28190.05 28796.30 23396.55 26586.10 29099.47 20090.10 28899.31 18498.40 245
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 25893.42 26596.23 21598.59 14590.85 23694.24 26498.85 9785.49 33092.97 33194.94 31986.01 29199.64 14691.78 24697.92 29298.20 270
miper_enhance_ethall93.14 28492.78 28194.20 30093.65 36685.29 32789.97 35597.85 24285.05 33796.15 24394.56 32685.74 29299.14 27893.74 21198.34 27698.17 273
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26292.27 32392.88 34284.39 34595.29 27096.35 27885.66 29396.74 37184.53 34997.56 31097.05 320
alignmvs96.01 17995.52 19397.50 13797.77 24694.71 13796.07 16696.84 28797.48 7196.78 20894.28 33485.50 29499.40 22496.22 8198.73 25698.40 245
lessismore_v097.05 17099.36 4592.12 21584.07 37598.77 5198.98 4585.36 29599.74 8097.34 4799.37 16299.30 111
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26697.31 10394.62 32585.92 32690.50 35596.84 24785.05 29699.40 22483.77 35495.78 34696.43 342
EPNet93.72 26892.62 28697.03 17287.61 38292.25 20996.27 15491.28 35496.74 9587.65 36897.39 20785.00 29799.64 14692.14 23799.48 13099.20 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 22794.80 22194.85 27696.16 32686.45 31491.14 34398.20 20893.49 22397.03 19097.37 21184.97 29899.26 26295.28 13999.56 9698.83 205
Test_1112_low_res93.53 27692.86 27695.54 24798.60 14388.86 26792.75 31298.69 14582.66 34992.65 33896.92 24384.75 29999.56 17390.94 26397.76 29898.19 271
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 3884.72 30098.23 35582.52 35796.59 33590.69 373
K. test v396.44 16296.28 16396.95 17499.41 4091.53 22797.65 8290.31 36398.89 1998.93 4099.36 1484.57 30199.92 597.81 2899.56 9699.39 90
h-mvs3396.29 16695.63 18998.26 7398.50 15796.11 7496.90 12497.09 27996.58 10297.21 17398.19 11884.14 30299.78 4995.89 10196.17 34198.89 196
hse-mvs295.77 18795.09 20397.79 11297.84 22795.51 10095.66 19195.43 31996.58 10297.21 17396.16 28584.14 30299.54 18095.89 10196.92 32498.32 256
DIV-MVS_self_test94.73 22994.64 22795.01 26795.86 33487.00 30791.33 33798.08 22893.34 22897.10 18197.34 21384.02 30499.31 24995.15 15099.55 10298.72 219
cl____94.73 22994.64 22795.01 26795.85 33587.00 30791.33 33798.08 22893.34 22897.10 18197.33 21484.01 30599.30 25295.14 15199.56 9698.71 221
Vis-MVSNet (Re-imp)95.11 21494.85 21695.87 23399.12 8689.17 26197.54 9494.92 32396.50 10696.58 21797.27 21883.64 30699.48 19788.42 31299.67 6898.97 179
FA-MVS(test-final)94.91 22294.89 21494.99 26997.51 26988.11 28598.27 4395.20 32192.40 25896.68 21198.60 7283.44 30799.28 25893.34 21998.53 26997.59 307
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30896.63 37273.44 37266.86 37893.40 365
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18693.57 36894.67 14194.21 26797.67 25480.36 35993.61 31696.60 26382.85 30997.35 36584.86 34798.78 24998.29 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet94.25 25294.47 23993.60 30998.14 19882.60 35097.24 10892.72 34585.08 33698.48 7098.94 4982.59 31098.76 31897.47 4399.53 10899.44 83
baseline193.14 28492.64 28594.62 28597.34 28587.20 30496.67 14093.02 34094.71 18896.51 22295.83 30181.64 31198.60 33490.00 29088.06 37198.07 277
test111194.53 24594.81 22093.72 30699.06 9381.94 35598.31 3883.87 37696.37 11198.49 6999.17 3081.49 31299.73 8596.64 6599.86 2899.49 57
CVMVSNet92.33 29692.79 27990.95 34397.26 29075.84 37395.29 21692.33 34881.86 35096.27 23498.19 11881.44 31398.46 34394.23 19298.29 27998.55 235
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22681.74 37694.90 32281.36 31499.11 28388.28 31498.87 23998.21 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft94.37 25094.48 23894.05 30398.95 10383.10 34798.31 3882.48 37796.20 11998.23 10099.16 3181.18 31599.66 14195.95 9799.83 3499.38 92
test_yl94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
DCV-MVSNet94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
MIMVSNet93.42 27792.86 27695.10 26498.17 19388.19 27998.13 5493.69 33192.07 26095.04 27798.21 11780.95 31899.03 29481.42 35998.06 28898.07 277
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31579.52 36183.82 37393.05 34680.57 31998.41 34562.29 37792.79 36295.71 350
HyFIR lowres test93.72 26892.65 28496.91 17898.93 10691.81 22491.23 34198.52 16882.69 34896.46 22496.52 26980.38 32099.90 1490.36 28598.79 24899.03 172
FMVSNet395.26 20994.94 20996.22 21796.53 31390.06 24795.99 17297.66 25694.11 20997.99 12897.91 15680.22 32199.63 14894.60 17499.44 14098.96 180
RPMNet94.68 23694.60 23194.90 27395.44 34588.15 28196.18 16198.86 9397.43 7294.10 29898.49 8179.40 32299.76 6395.69 11095.81 34396.81 333
test_part196.77 14296.53 15297.47 14298.04 20592.92 19897.93 6498.85 9798.83 2199.30 2199.07 4079.25 32399.79 4597.59 3799.93 1099.69 21
LFMVS95.32 20694.88 21596.62 19398.03 20691.47 22997.65 8290.72 36099.11 997.89 14098.31 9679.20 32499.48 19793.91 20799.12 21198.93 187
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31083.46 34692.69 33696.84 24779.15 32599.41 22285.66 33990.52 36698.04 285
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32598.70 32385.66 33990.52 36698.04 285
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32785.50 34197.82 296
cl2293.25 28292.84 27894.46 29394.30 35886.00 31991.09 34596.64 29790.74 27995.79 25696.31 27978.24 32898.77 31694.15 19598.34 27698.62 228
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 32999.18 27190.84 26694.57 35898.01 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 33098.06 281
CR-MVSNet93.29 28192.79 27994.78 28095.44 34588.15 28196.18 16197.20 27384.94 34094.10 29898.57 7477.67 33199.39 22995.17 14695.81 34396.81 333
Patchmtry95.03 21994.59 23396.33 21194.83 35290.82 23796.38 14997.20 27396.59 10197.49 15998.57 7477.67 33199.38 23292.95 23099.62 7698.80 208
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33188.01 30892.32 34496.86 24577.45 33398.82 31191.04 26087.01 37297.04 321
sam_mvs77.38 334
patchmatchnet-post96.84 24777.36 33599.42 213
Patchmatch-RL test94.66 23794.49 23795.19 26098.54 15088.91 26592.57 31698.74 13091.46 27198.32 9197.75 17477.31 33698.81 31396.06 8799.61 8297.85 294
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27891.91 34796.26 28077.19 33798.86 31089.38 29989.85 36996.56 340
test_post10.87 38076.83 33899.07 288
Patchmatch-test93.60 27493.25 26994.63 28496.14 32987.47 29796.04 16894.50 32793.57 22196.47 22396.97 23876.50 33998.61 33290.67 27698.41 27597.81 298
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34098.55 33888.85 30596.43 336
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19092.63 34091.81 36076.30 34197.02 36683.83 35396.90 32691.48 371
test_post194.98 23610.37 38176.21 34299.04 29189.47 297
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30191.83 26694.05 30194.57 32576.01 34398.97 30392.46 23597.34 31998.36 254
PatchT93.75 26793.57 26394.29 29995.05 35087.32 30296.05 16792.98 34197.54 6994.25 29498.72 6375.79 34499.24 26595.92 9995.81 34396.32 343
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18593.71 31193.11 34075.31 34596.81 36885.81 33696.81 32991.77 370
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34670.63 37959.23 37884.94 37475.62 374
AUN-MVS93.95 26592.69 28397.74 11697.80 23595.38 10895.57 19895.46 31891.26 27592.64 33996.10 29174.67 34799.55 17793.72 21396.97 32398.30 260
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 27981.44 35487.44 36993.15 33973.99 34899.47 20088.69 30899.07 21896.52 341
thres20091.00 31390.42 31792.77 32897.47 27583.98 34494.01 27791.18 35695.12 17495.44 26791.21 36673.93 34999.31 24977.76 36897.63 30995.01 357
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26189.97 35990.77 36973.92 35098.57 33591.88 24397.36 31796.92 324
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26194.71 28391.14 36773.92 35094.48 37483.75 35592.94 36197.16 317
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 32973.84 37489.26 36295.61 30873.64 35298.30 35384.13 35086.20 37395.57 354
tfpn200view991.55 30791.00 30693.21 31898.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29997.36 314
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30314.32 37864.27 37991.69 36273.45 35588.05 37776.06 37066.94 37793.54 363
thres100view90091.76 30591.26 30493.26 31598.21 18684.50 33896.39 14790.39 36196.87 9196.33 22993.08 34473.44 35699.42 21378.85 36597.74 29995.85 347
thres600view792.03 30191.43 29993.82 30498.19 18884.61 33796.27 15490.39 36196.81 9396.37 22893.11 34073.44 35699.49 19480.32 36197.95 29197.36 314
MVSTER94.21 25593.93 25795.05 26695.83 33686.46 31395.18 22397.65 25892.41 25797.94 13598.00 14572.39 35899.58 16696.36 7899.56 9699.12 156
JIA-IIPM91.79 30490.69 31395.11 26293.80 36590.98 23494.16 26991.78 35296.38 11090.30 35799.30 1972.02 35998.90 30588.28 31490.17 36895.45 355
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36099.30 25291.25 25793.87 35997.87 293
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36199.33 24586.01 33494.60 35797.72 300
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36298.89 30688.59 31092.63 36396.87 327
FPMVS89.92 32388.63 33193.82 30498.37 17096.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36391.13 37671.91 37496.16 34293.39 366
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36498.10 35990.75 27089.32 37096.98 322
FE-MVS92.95 28692.22 29095.11 26297.21 29388.33 27798.54 2293.66 33489.91 28996.21 23898.14 12270.33 36599.50 19187.79 31898.24 28197.51 309
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25096.41 31689.15 26391.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21094.16 19496.61 33497.82 296
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
iter_conf_final94.54 24493.91 25896.43 20597.23 29290.41 24696.81 12898.10 22493.87 21596.80 20397.89 15768.02 36999.72 9096.73 6499.77 4699.18 141
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30398.03 28995.92 346
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16690.59 27798.67 25897.50 311
tttt051793.31 28092.56 28795.57 24398.71 12887.86 28897.44 9787.17 37195.79 14697.47 16496.84 24764.12 37399.81 3896.20 8299.32 18299.02 174
thisisatest053092.71 29091.76 29795.56 24598.42 16788.23 27896.03 16987.35 37094.04 21196.56 21995.47 31164.03 37499.77 5894.78 16999.11 21298.68 224
iter_conf0593.65 27293.05 27195.46 25196.13 33087.45 29895.95 17898.22 20492.66 25297.04 18897.89 15763.52 37599.72 9096.19 8399.82 3699.21 133
FMVSNet593.39 27892.35 28896.50 20195.83 33690.81 23997.31 10398.27 19892.74 25196.27 23498.28 10562.23 37699.67 13590.86 26599.36 16599.03 172
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16487.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26496.92 32496.64 337
test250689.86 32489.16 32991.97 33898.95 10376.83 37098.54 2261.07 38496.20 11997.07 18699.16 3155.19 38399.69 12396.43 7699.83 3499.38 92
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24397.36 31796.92 324
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.59 1598.20 499.03 799.25 1498.96 1898.87 42
MSC_two_6792asdad98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
No_MVS98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
eth-test20.00 387
eth-test0.00 387
IU-MVS99.22 6295.40 10698.14 22085.77 32998.36 8395.23 14399.51 11899.49 57
save fliter98.48 16094.71 13794.53 25498.41 18295.02 179
test_0728_SECOND98.25 7699.23 5995.49 10496.74 13398.89 8299.75 7095.48 12699.52 11399.53 45
GSMVS98.06 281
test_part299.03 9996.07 7598.08 119
MTGPAbinary98.73 132
MTMP96.55 14174.60 380
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
test9_res91.29 25498.89 23899.00 175
agg_prior290.34 28698.90 23599.10 163
agg_prior97.80 23594.96 12998.36 18993.49 32099.53 182
test_prior495.38 10893.61 293
test_prior97.46 14597.79 24194.26 15898.42 18099.34 24298.79 209
旧先验293.35 30177.95 36895.77 26098.67 32890.74 273
新几何293.43 296
无先验93.20 30597.91 23880.78 35699.40 22487.71 31997.94 290
原ACMM292.82 310
testdata299.46 20387.84 317
testdata192.77 31193.78 217
plane_prior798.70 13094.67 141
plane_prior598.75 12899.46 20392.59 23399.20 19899.28 119
plane_prior496.77 253
plane_prior394.51 14595.29 16796.16 241
plane_prior296.50 14396.36 112
plane_prior198.49 158
plane_prior94.29 15395.42 20394.31 20198.93 233
n20.00 388
nn0.00 388
door-mid98.17 214
test1198.08 228
door97.81 247
HQP5-MVS92.47 205
HQP-NCC97.85 22394.26 26093.18 23592.86 333
ACMP_Plane97.85 22394.26 26093.18 23592.86 333
BP-MVS90.51 281
HQP4-MVS92.87 33299.23 26799.06 168
HQP3-MVS98.43 17798.74 253
NP-MVS98.14 19893.72 17895.08 315
ACMMP++_ref99.52 113
ACMMP++99.55 102