This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2199.01 1699.63 1099.66 399.27 299.68 12097.75 4199.89 2599.62 29
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2999.67 299.73 399.65 599.15 399.86 2497.22 5899.92 1499.77 11
XVG-OURS-SEG-HR97.38 10897.07 12298.30 6899.01 10497.41 3494.66 25699.02 6595.20 17098.15 11997.52 20498.83 498.43 33694.87 17396.41 33899.07 161
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17698.23 4699.05 5697.40 7699.37 2099.08 4698.79 599.47 18997.74 4299.71 6599.50 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2696.23 11899.71 499.48 998.77 699.93 398.89 799.95 599.84 5
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1199.02 1599.62 1199.36 2098.53 799.52 17598.58 1999.95 599.66 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18298.20 5198.87 10198.23 3899.48 1499.27 2798.47 899.55 16796.52 8199.53 11599.60 31
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7497.57 6499.27 2699.22 3098.32 999.50 18097.09 6599.75 5699.50 53
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4295.83 14499.67 799.37 1898.25 1099.92 598.77 1099.94 899.82 6
sd_testset97.97 4998.12 3897.51 12499.41 4393.44 17997.96 6398.25 20498.58 2698.78 5599.39 1598.21 1199.56 16392.65 23999.86 2999.52 49
ACMH+93.58 1098.23 3398.31 3297.98 9499.39 4795.22 11897.55 9299.20 2998.21 3999.25 2898.51 9698.21 1199.40 21394.79 17799.72 6299.32 104
HPM-MVS_fast98.32 2898.13 3798.88 2399.54 2697.48 3098.35 3599.03 6395.88 14097.88 14898.22 13498.15 1399.74 7696.50 8299.62 8399.42 87
wuyk23d93.25 28595.20 20287.40 36296.07 33395.38 10597.04 12294.97 32295.33 16599.70 698.11 14698.14 1491.94 38077.76 37299.68 7374.89 380
ACMM93.33 1198.05 4597.79 6598.85 2499.15 8197.55 2696.68 14598.83 11795.21 16998.36 9398.13 14298.13 1599.62 14496.04 10099.54 11199.39 93
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4097.83 6398.92 2199.42 4297.46 3198.57 2099.05 5695.43 16397.41 17397.50 20697.98 1699.79 4495.58 13099.57 9999.50 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 17596.50 15794.80 27899.26 5887.69 29695.96 18498.58 16995.08 17698.02 13596.25 28697.92 1797.60 36088.68 31498.74 25199.11 154
LPG-MVS_test97.94 5997.67 7798.74 3499.15 8197.02 4297.09 11999.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
LGP-MVS_train98.74 3499.15 8197.02 4299.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
SED-MVS97.94 5997.90 5498.07 8699.22 6795.35 10896.79 13698.83 11796.11 12499.08 3698.24 12997.87 2099.72 8695.44 13999.51 12599.14 144
test_241102_ONE99.22 6795.35 10898.83 11796.04 12999.08 3698.13 14297.87 2099.33 232
SDMVSNet97.97 4998.26 3697.11 15699.41 4392.21 20696.92 12798.60 16498.58 2698.78 5599.39 1597.80 2299.62 14494.98 17199.86 2999.52 49
testf198.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
APD_test298.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
SD-MVS97.37 11097.70 7296.35 20498.14 20595.13 12296.54 14898.92 9095.94 13699.19 3198.08 14897.74 2595.06 37495.24 15199.54 11198.87 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 7897.70 7298.16 7998.78 12495.72 8696.23 16699.02 6593.92 21198.62 6598.99 5197.69 2699.62 14496.18 9599.87 2799.15 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 2098.62 2198.32 6599.22 6795.66 9197.90 6899.08 5098.31 3499.02 3998.74 7597.68 2799.61 15197.77 4099.85 3499.70 22
ANet_high98.31 2998.94 696.41 20399.33 5389.64 25397.92 6799.56 1399.27 699.66 999.50 897.67 2899.83 3397.55 4999.98 299.77 11
test_fmvsmvis_n_192098.08 4298.47 2496.93 16999.03 10293.29 18396.32 15999.65 795.59 15599.71 499.01 4997.66 2999.60 15399.44 299.83 3797.90 292
casdiffmvs_mvgpermissive97.83 7598.11 3997.00 16698.57 15192.10 21495.97 18299.18 3297.67 6399.00 4198.48 10097.64 3099.50 18096.96 7099.54 11199.40 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs97.23 11797.21 11597.30 14697.65 26494.39 14297.84 7199.05 5697.42 7296.68 21993.85 34097.63 3199.33 23296.29 8998.47 27298.18 270
GeoE97.75 8397.70 7297.89 9998.88 11494.53 13797.10 11898.98 8095.75 14897.62 15997.59 19997.61 3299.77 5696.34 8899.44 14599.36 101
TranMVSNet+NR-MVSNet98.33 2798.30 3498.43 5799.07 9595.87 8196.73 14399.05 5698.67 2398.84 5198.45 10197.58 3399.88 2096.45 8499.86 2999.54 45
cdsmvs_eth3d_5k24.22 35132.30 3540.00 3690.00 3920.00 3930.00 38098.10 2280.00 3870.00 38895.06 32197.54 340.00 3880.00 3860.00 3860.00 384
ACMP92.54 1397.47 10297.10 11998.55 4999.04 10196.70 5196.24 16598.89 9393.71 21697.97 14097.75 18797.44 3599.63 13993.22 23299.70 6899.32 104
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6596.50 10699.32 2399.44 1397.43 3699.92 598.73 1299.95 599.86 2
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1698.85 2099.00 4199.20 3197.42 3799.59 15497.21 5999.76 5199.40 90
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 3195.62 15399.35 2299.37 1897.38 3899.90 1498.59 1899.91 1799.77 11
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4199.22 899.22 3098.96 5497.35 3999.92 597.79 3999.93 1099.79 9
COLMAP_ROBcopyleft94.48 698.25 3298.11 3998.64 4399.21 7497.35 3597.96 6399.16 3498.34 3398.78 5598.52 9497.32 4099.45 19694.08 20599.67 7599.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 8797.79 6597.40 14199.06 9693.52 17795.96 18498.97 8394.55 19498.82 5298.76 7497.31 4199.29 24397.20 6199.44 14599.38 95
XXY-MVS97.54 9797.70 7297.07 16099.46 3792.21 20697.22 11199.00 7494.93 18298.58 7098.92 5997.31 4199.41 21194.44 18999.43 15399.59 32
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3899.33 599.30 2499.00 5097.27 4399.92 597.64 4799.92 1499.75 16
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4499.36 499.29 2599.06 4797.27 4399.93 397.71 4399.91 1799.70 22
ZNCC-MVS97.92 6397.62 8698.83 2599.32 5597.24 3997.45 9998.84 11195.76 14696.93 20697.43 21097.26 4599.79 4496.06 9799.53 11599.45 76
MP-MVS-pluss97.69 8797.36 10698.70 3899.50 3496.84 4795.38 21998.99 7792.45 25498.11 12298.31 11497.25 4699.77 5696.60 7899.62 8399.48 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 6997.63 8498.67 4099.35 5196.84 4796.36 15698.79 12795.07 17797.88 14898.35 11097.24 4799.72 8696.05 9999.58 9699.45 76
Effi-MVS+96.19 17196.01 17696.71 18397.43 28292.19 21096.12 17299.10 4495.45 16193.33 33094.71 32897.23 4899.56 16393.21 23397.54 31298.37 247
tt080597.44 10497.56 9397.11 15699.55 2396.36 6398.66 1895.66 31098.31 3497.09 19495.45 31597.17 4998.50 33398.67 1597.45 31896.48 343
PGM-MVS97.88 7097.52 9798.96 1399.20 7597.62 2197.09 11999.06 5495.45 16197.55 16197.94 16897.11 5099.78 4794.77 18099.46 14199.48 67
test_0728_THIRD96.62 9698.40 8798.28 12397.10 5199.71 10195.70 11899.62 8399.58 33
APD-MVS_3200maxsize98.13 3997.90 5498.79 2998.79 12297.31 3697.55 9298.92 9097.72 5698.25 10798.13 14297.10 5199.75 6795.44 13999.24 19699.32 104
OPM-MVS97.54 9797.25 11298.41 5999.11 9096.61 5695.24 23098.46 17894.58 19398.10 12498.07 15097.09 5399.39 21795.16 15799.44 14599.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS97.94 5997.64 8298.83 2599.15 8197.50 2997.59 8998.84 11196.05 12797.49 16697.54 20297.07 5499.70 10895.61 12799.46 14199.30 109
DVP-MVScopyleft97.78 8197.65 7998.16 7999.24 6295.51 9796.74 13998.23 20795.92 13798.40 8798.28 12397.06 5599.71 10195.48 13599.52 12099.26 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6295.51 9796.89 12998.89 9395.92 13798.64 6498.31 11497.06 55
test_fmvsm_n_192098.08 4298.29 3597.43 13798.88 11493.95 16196.17 17199.57 1195.66 15099.52 1398.71 7897.04 5799.64 13699.21 699.87 2798.69 218
casdiffmvspermissive97.50 9997.81 6496.56 19398.51 16091.04 23295.83 19299.09 4997.23 8298.33 9998.30 11897.03 5899.37 22396.58 8099.38 16399.28 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SteuartSystems-ACMMP98.02 4797.76 7098.79 2999.43 4097.21 4197.15 11498.90 9296.58 10198.08 12797.87 17697.02 5999.76 6195.25 15099.59 9499.40 90
Skip Steuart: Steuart Systems R&D Blog.
PC_three_145287.24 31798.37 9097.44 20997.00 6096.78 37092.01 24799.25 19399.21 129
EC-MVSNet97.90 6897.94 5397.79 10598.66 13895.14 12198.31 3999.66 697.57 6495.95 25697.01 24396.99 6199.82 3597.66 4699.64 8098.39 245
DVP-MVS++97.96 5197.90 5498.12 8497.75 25395.40 10399.03 798.89 9396.62 9698.62 6598.30 11896.97 6299.75 6795.70 11899.25 19399.21 129
OPU-MVS97.64 11698.01 21495.27 11396.79 13697.35 22196.97 6298.51 33291.21 26499.25 19399.14 144
RE-MVS-def97.88 5898.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.94 6495.49 13299.20 19899.26 121
APDe-MVS98.14 3698.03 4798.47 5498.72 12996.04 7598.07 5899.10 4495.96 13498.59 6998.69 8096.94 6499.81 3796.64 7699.58 9699.57 38
test_one_060199.05 10095.50 10098.87 10197.21 8398.03 13498.30 11896.93 66
GST-MVS97.82 7897.49 10198.81 2799.23 6497.25 3897.16 11398.79 12795.96 13497.53 16297.40 21296.93 6699.77 5695.04 16699.35 17299.42 87
test_241102_TWO98.83 11796.11 12498.62 6598.24 12996.92 6899.72 8695.44 13999.49 13299.49 61
LCM-MVSNet-Re97.33 11397.33 10897.32 14598.13 20893.79 16796.99 12499.65 796.74 9499.47 1598.93 5896.91 6999.84 3090.11 29299.06 22098.32 254
VPA-MVSNet98.27 3098.46 2597.70 11199.06 9693.80 16697.76 7699.00 7498.40 3199.07 3898.98 5296.89 7099.75 6797.19 6299.79 4599.55 44
ACMMPcopyleft98.05 4597.75 7198.93 1899.23 6497.60 2298.09 5798.96 8495.75 14897.91 14598.06 15596.89 7099.76 6195.32 14799.57 9999.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS98.09 4198.01 4898.32 6598.45 16996.69 5298.52 2699.69 398.07 4496.07 25297.19 23196.88 7299.86 2497.50 5199.73 5898.41 242
PMVScopyleft89.60 1796.71 14896.97 12795.95 22399.51 3197.81 1697.42 10397.49 26697.93 4895.95 25698.58 8896.88 7296.91 36789.59 30099.36 16793.12 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 6397.59 9098.92 2199.22 6797.55 2697.60 8798.84 11196.00 13297.22 17897.62 19796.87 7499.76 6195.48 13599.43 15399.46 72
CP-MVS97.92 6397.56 9398.99 1098.99 10597.82 1597.93 6698.96 8496.11 12496.89 20997.45 20896.85 7599.78 4795.19 15399.63 8299.38 95
DPE-MVScopyleft97.64 9097.35 10798.50 5198.85 11796.18 6995.21 23298.99 7795.84 14398.78 5598.08 14896.84 7699.81 3793.98 21199.57 9999.52 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040297.84 7497.97 5097.47 13399.19 7794.07 15696.71 14498.73 13998.66 2498.56 7198.41 10496.84 7699.69 11594.82 17599.81 4198.64 222
CS-MVS-test97.91 6697.84 6098.14 8298.52 15896.03 7798.38 3499.67 498.11 4295.50 27396.92 24996.81 7899.87 2296.87 7399.76 5198.51 235
ACMMPR97.95 5597.62 8698.94 1599.20 7597.56 2597.59 8998.83 11796.05 12797.46 17197.63 19696.77 7999.76 6195.61 12799.46 14199.49 61
Vis-MVSNetpermissive98.27 3098.34 3198.07 8699.33 5395.21 12098.04 6099.46 1497.32 7997.82 15599.11 4296.75 8099.86 2497.84 3699.36 16799.15 141
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 19795.07 20896.75 18197.67 26392.82 19294.22 27198.60 16491.61 26693.42 32892.90 35096.73 8199.70 10892.60 24097.89 29597.74 301
baseline97.44 10497.78 6996.43 19998.52 15890.75 23996.84 13099.03 6396.51 10597.86 15298.02 15996.67 8299.36 22597.09 6599.47 13899.19 134
SR-MVS98.00 4897.66 7899.01 898.77 12597.93 1197.38 10498.83 11797.32 7998.06 13097.85 17796.65 8399.77 5695.00 16999.11 21199.32 104
tfpnnormal97.72 8597.97 5096.94 16899.26 5892.23 20597.83 7298.45 17998.25 3799.13 3598.66 8296.65 8399.69 11593.92 21399.62 8398.91 187
DeepPCF-MVS94.58 596.90 13396.43 15998.31 6797.48 27697.23 4092.56 32198.60 16492.84 24698.54 7297.40 21296.64 8598.78 30594.40 19399.41 16098.93 183
MVS_111021_LR96.82 13996.55 15197.62 11798.27 18495.34 11093.81 29398.33 19794.59 19296.56 22796.63 26796.61 8698.73 31094.80 17699.34 17598.78 205
Gipumacopyleft98.07 4498.31 3297.36 14399.76 796.28 6898.51 2799.10 4498.76 2296.79 21299.34 2496.61 8698.82 30196.38 8699.50 12996.98 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SR-MVS-dyc-post98.14 3697.84 6099.02 698.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.60 8899.76 6195.49 13299.20 19899.26 121
MVS_111021_HR96.73 14596.54 15397.27 14898.35 17793.66 17393.42 30398.36 19394.74 18596.58 22596.76 26196.54 8998.99 28794.87 17399.27 19199.15 141
SMA-MVScopyleft97.48 10197.11 11898.60 4598.83 11896.67 5396.74 13998.73 13991.61 26698.48 7998.36 10996.53 9099.68 12095.17 15599.54 11199.45 76
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 4099.08 1099.42 1799.23 2996.53 9099.91 1399.27 499.93 1099.73 19
mPP-MVS97.91 6697.53 9699.04 499.22 6797.87 1497.74 7998.78 13196.04 12997.10 18997.73 19096.53 9099.78 4795.16 15799.50 12999.46 72
XVS97.96 5197.63 8498.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23897.64 19596.49 9399.72 8695.66 12399.37 16499.45 76
X-MVStestdata92.86 29090.83 31598.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23836.50 38296.49 9399.72 8695.66 12399.37 16499.45 76
9.1496.69 14398.53 15796.02 17898.98 8093.23 22897.18 18397.46 20796.47 9599.62 14492.99 23699.32 182
UA-Net98.88 798.76 1399.22 299.11 9097.89 1399.47 399.32 2099.08 1097.87 15199.67 296.47 9599.92 597.88 3399.98 299.85 3
SF-MVS97.60 9397.39 10498.22 7598.93 11095.69 8897.05 12199.10 4495.32 16697.83 15497.88 17596.44 9799.72 8694.59 18899.39 16299.25 125
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
ETV-MVS96.13 17495.90 18496.82 17797.76 25193.89 16295.40 21798.95 8695.87 14195.58 27291.00 37196.36 10199.72 8693.36 22698.83 24396.85 330
MP-MVScopyleft97.64 9097.18 11699.00 999.32 5597.77 1797.49 9898.73 13996.27 11595.59 27197.75 18796.30 10299.78 4793.70 22199.48 13699.45 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 18096.34 16494.96 26997.90 22687.91 28994.13 27898.49 17694.41 19698.16 11797.76 18496.29 10398.68 31890.52 28599.42 15698.30 258
Fast-Effi-MVS+-dtu96.44 16296.12 17197.39 14297.18 29894.39 14295.46 21198.73 13996.03 13194.72 29094.92 32596.28 10499.69 11593.81 21697.98 29098.09 272
APD_test197.95 5597.68 7698.75 3199.60 1798.60 597.21 11299.08 5096.57 10498.07 12998.38 10896.22 10599.14 26794.71 18399.31 18598.52 234
OMC-MVS96.48 16096.00 17797.91 9798.30 17996.01 7894.86 24998.60 16491.88 26397.18 18397.21 23096.11 10699.04 28190.49 28899.34 17598.69 218
xiu_mvs_v2_base94.22 25494.63 23292.99 32897.32 29284.84 33992.12 32997.84 24691.96 26194.17 30293.43 34196.07 10799.71 10191.27 26197.48 31594.42 364
CSCG97.40 10797.30 10997.69 11398.95 10794.83 12897.28 10798.99 7796.35 11498.13 12195.95 30195.99 10899.66 13194.36 19699.73 5898.59 228
PHI-MVS96.96 12996.53 15498.25 7397.48 27696.50 5996.76 13898.85 10893.52 21996.19 24896.85 25295.94 10999.42 20293.79 21799.43 15398.83 200
TSAR-MVS + MP.97.42 10697.23 11498.00 9399.38 4895.00 12597.63 8698.20 21293.00 23998.16 11798.06 15595.89 11099.72 8695.67 12299.10 21399.28 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 9597.28 11198.49 5299.16 7996.90 4696.39 15398.98 8095.05 17898.06 13098.02 15995.86 11199.56 16394.37 19499.64 8099.00 170
AllTest97.20 11896.92 13298.06 8899.08 9396.16 7097.14 11699.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
TestCases98.06 8899.08 9396.16 7099.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
APD-MVScopyleft97.00 12496.53 15498.41 5998.55 15496.31 6696.32 15998.77 13292.96 24497.44 17297.58 20195.84 11299.74 7691.96 24899.35 17299.19 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 35410.65 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38795.82 1150.00 3880.00 3860.00 3860.00 384
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2796.91 8999.75 299.45 1295.82 11599.92 598.80 999.96 499.89 1
PS-MVSNAJ94.10 26094.47 24293.00 32797.35 28784.88 33791.86 33397.84 24691.96 26194.17 30292.50 35795.82 11599.71 10191.27 26197.48 31594.40 365
3Dnovator96.53 297.61 9297.64 8297.50 12897.74 25693.65 17498.49 2898.88 9996.86 9197.11 18898.55 9295.82 11599.73 8195.94 10899.42 15699.13 146
MTAPA98.14 3697.84 6099.06 399.44 3997.90 1297.25 10898.73 13997.69 6097.90 14697.96 16595.81 11999.82 3596.13 9699.61 8999.45 76
DP-MVS97.87 7197.89 5797.81 10498.62 14594.82 12997.13 11798.79 12798.98 1798.74 6198.49 9795.80 12099.49 18495.04 16699.44 14599.11 154
Anonymous2024052997.96 5198.04 4697.71 11098.69 13694.28 15097.86 7098.31 20198.79 2199.23 2998.86 6795.76 12199.61 15195.49 13299.36 16799.23 127
LS3D97.77 8297.50 10098.57 4796.24 32297.58 2498.45 3198.85 10898.58 2697.51 16497.94 16895.74 12299.63 13995.19 15398.97 22598.51 235
EIA-MVS96.04 17795.77 19096.85 17597.80 24192.98 19096.12 17299.16 3494.65 18893.77 31491.69 36595.68 12399.67 12594.18 20198.85 24097.91 291
CNVR-MVS96.92 13196.55 15198.03 9298.00 21895.54 9594.87 24898.17 21894.60 19096.38 23597.05 23995.67 12499.36 22595.12 16399.08 21599.19 134
CLD-MVS95.47 20095.07 20896.69 18598.27 18492.53 19991.36 33998.67 15491.22 27395.78 26594.12 33895.65 12598.98 28990.81 27399.72 6298.57 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 1998.76 1397.94 9698.79 12294.37 14498.84 1199.15 3899.37 399.67 799.43 1495.61 12699.72 8698.12 2599.86 2999.73 19
EGC-MVSNET83.08 34877.93 35198.53 5099.57 2097.55 2698.33 3898.57 1704.71 38410.38 38598.90 6395.60 12799.50 18095.69 12099.61 8998.55 232
ITE_SJBPF97.85 10298.64 13996.66 5498.51 17595.63 15297.22 17897.30 22595.52 12898.55 32990.97 26898.90 23398.34 253
DeepC-MVS_fast94.34 796.74 14396.51 15697.44 13697.69 25994.15 15496.02 17898.43 18293.17 23497.30 17597.38 21895.48 12999.28 24593.74 21899.34 17598.88 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3399.05 1399.17 3298.79 6995.47 13099.89 1897.95 3299.91 1799.75 16
FMVSNet197.95 5598.08 4197.56 11999.14 8893.67 17098.23 4698.66 15697.41 7599.00 4199.19 3295.47 13099.73 8195.83 11599.76 5199.30 109
MIMVSNet198.51 2298.45 2798.67 4099.72 896.71 5098.76 1298.89 9398.49 2999.38 1999.14 4195.44 13299.84 3096.47 8399.80 4499.47 70
CP-MVSNet98.42 2598.46 2598.30 6899.46 3795.22 11898.27 4498.84 11199.05 1399.01 4098.65 8495.37 13399.90 1497.57 4899.91 1799.77 11
segment_acmp95.34 134
CDPH-MVS95.45 20294.65 22997.84 10398.28 18294.96 12693.73 29598.33 19785.03 34295.44 27496.60 26895.31 13599.44 19990.01 29499.13 20799.11 154
3Dnovator+96.13 397.73 8497.59 9098.15 8198.11 20995.60 9298.04 6098.70 14898.13 4196.93 20698.45 10195.30 13699.62 14495.64 12598.96 22699.24 126
MVS_Test96.27 16896.79 14094.73 28296.94 30886.63 31596.18 16898.33 19794.94 18096.07 25298.28 12395.25 13799.26 24997.21 5997.90 29498.30 258
XVG-OURS97.12 11996.74 14198.26 7098.99 10597.45 3293.82 29199.05 5695.19 17198.32 10097.70 19295.22 13898.41 33794.27 19898.13 28598.93 183
dcpmvs_297.12 11997.99 4994.51 29299.11 9084.00 34797.75 7799.65 797.38 7799.14 3498.42 10395.16 13999.96 295.52 13199.78 4899.58 33
MCST-MVS96.24 16995.80 18897.56 11998.75 12694.13 15594.66 25698.17 21890.17 28696.21 24696.10 29595.14 14099.43 20194.13 20498.85 24099.13 146
EI-MVSNet-Vis-set97.32 11497.39 10497.11 15697.36 28692.08 21595.34 22397.65 25997.74 5498.29 10598.11 14695.05 14199.68 12097.50 5199.50 12999.56 42
EI-MVSNet-UG-set97.32 11497.40 10397.09 15997.34 28992.01 21795.33 22497.65 25997.74 5498.30 10498.14 14095.04 14299.69 11597.55 4999.52 12099.58 33
KD-MVS_self_test97.86 7398.07 4297.25 15099.22 6792.81 19397.55 9298.94 8797.10 8598.85 4998.88 6595.03 14399.67 12597.39 5599.65 7899.26 121
ZD-MVS98.43 17195.94 7998.56 17190.72 27896.66 22197.07 23795.02 14499.74 7691.08 26598.93 231
DELS-MVS96.17 17296.23 16795.99 21997.55 27290.04 24792.38 32698.52 17394.13 20396.55 22997.06 23894.99 14599.58 15695.62 12699.28 18998.37 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 15496.93 13095.55 24298.88 11487.12 30794.47 26199.30 2194.12 20496.65 22398.41 10494.98 14699.87 2295.81 11799.78 4899.66 24
ab-mvs96.59 15496.59 14796.60 18898.64 13992.21 20698.35 3597.67 25594.45 19596.99 20198.79 6994.96 14799.49 18490.39 28999.07 21798.08 273
MSLP-MVS++96.42 16496.71 14295.57 23997.82 23690.56 24395.71 19598.84 11194.72 18696.71 21897.39 21694.91 14898.10 35295.28 14899.02 22298.05 282
QAPM95.88 18395.57 19796.80 17897.90 22691.84 22198.18 5398.73 13988.41 30596.42 23398.13 14294.73 14999.75 6788.72 31298.94 22998.81 202
RPSCF97.87 7197.51 9898.95 1499.15 8198.43 697.56 9199.06 5496.19 12198.48 7998.70 7994.72 15099.24 25494.37 19499.33 18099.17 138
DU-MVS97.79 8097.60 8998.36 6398.73 12795.78 8495.65 20298.87 10197.57 6498.31 10297.83 17894.69 15199.85 2797.02 6899.71 6599.46 72
Baseline_NR-MVSNet97.72 8597.79 6597.50 12899.56 2193.29 18395.44 21298.86 10498.20 4098.37 9099.24 2894.69 15199.55 16795.98 10699.79 4599.65 26
TEST997.84 23395.23 11593.62 29798.39 18986.81 32393.78 31295.99 29794.68 15399.52 175
UniMVSNet (Re)97.83 7597.65 7998.35 6498.80 12195.86 8395.92 18899.04 6297.51 6998.22 11097.81 18294.68 15399.78 4797.14 6399.75 5699.41 89
UniMVSNet_NR-MVSNet97.83 7597.65 7998.37 6298.72 12995.78 8495.66 20099.02 6598.11 4298.31 10297.69 19394.65 15599.85 2797.02 6899.71 6599.48 67
VPNet97.26 11697.49 10196.59 18999.47 3690.58 24196.27 16198.53 17297.77 5198.46 8298.41 10494.59 15699.68 12094.61 18499.29 18899.52 49
train_agg95.46 20194.66 22897.88 10097.84 23395.23 11593.62 29798.39 18987.04 31993.78 31295.99 29794.58 15799.52 17591.76 25598.90 23398.89 191
test_897.81 23795.07 12493.54 30098.38 19187.04 31993.71 31695.96 30094.58 15799.52 175
API-MVS95.09 21895.01 21195.31 25296.61 31494.02 15896.83 13197.18 27595.60 15495.79 26394.33 33694.54 15998.37 34285.70 34098.52 26993.52 369
Test By Simon94.51 160
MSDG95.33 20695.13 20595.94 22597.40 28491.85 22091.02 35098.37 19295.30 16796.31 24095.99 29794.51 16098.38 34089.59 30097.65 30997.60 307
TSAR-MVS + GP.96.47 16196.12 17197.49 13197.74 25695.23 11594.15 27596.90 28693.26 22798.04 13396.70 26394.41 16298.89 29694.77 18099.14 20598.37 247
NR-MVSNet97.96 5197.86 5998.26 7098.73 12795.54 9598.14 5498.73 13997.79 5099.42 1797.83 17894.40 16399.78 4795.91 11099.76 5199.46 72
AdaColmapbinary95.11 21694.62 23396.58 19097.33 29194.45 14194.92 24698.08 23193.15 23593.98 31095.53 31394.34 16499.10 27585.69 34198.61 26496.20 348
FC-MVSNet-test98.16 3498.37 3097.56 11999.49 3593.10 18898.35 3599.21 2798.43 3098.89 4798.83 6894.30 16599.81 3797.87 3499.91 1799.77 11
Effi-MVS+-dtu96.81 14096.09 17398.99 1096.90 31098.69 496.42 15298.09 23095.86 14295.15 28195.54 31294.26 16699.81 3794.06 20698.51 27198.47 239
ambc96.56 19398.23 18991.68 22497.88 6998.13 22698.42 8598.56 9194.22 16799.04 28194.05 20899.35 17298.95 177
test20.0396.58 15696.61 14696.48 19798.49 16491.72 22395.68 19997.69 25496.81 9298.27 10697.92 17194.18 16898.71 31390.78 27599.66 7799.00 170
HPM-MVS++copyleft96.99 12596.38 16298.81 2798.64 13997.59 2395.97 18298.20 21295.51 15995.06 28296.53 27294.10 16999.70 10894.29 19799.15 20499.13 146
test_vis3_rt97.04 12296.98 12697.23 15298.44 17095.88 8096.82 13299.67 490.30 28399.27 2699.33 2594.04 17096.03 37397.14 6397.83 29699.78 10
test_fmvs397.38 10897.56 9396.84 17698.63 14392.81 19397.60 8799.61 1090.87 27698.76 6099.66 394.03 17197.90 35499.24 599.68 7399.81 8
PM-MVS97.36 11297.10 11998.14 8298.91 11296.77 4996.20 16798.63 16293.82 21398.54 7298.33 11293.98 17299.05 28095.99 10599.45 14498.61 227
mvsany_test396.21 17095.93 18397.05 16197.40 28494.33 14695.76 19494.20 33089.10 29699.36 2199.60 693.97 17397.85 35595.40 14698.63 26298.99 173
OpenMVScopyleft94.22 895.48 19995.20 20296.32 20697.16 29991.96 21897.74 7998.84 11187.26 31694.36 29998.01 16193.95 17499.67 12590.70 28198.75 25097.35 317
v897.60 9398.06 4496.23 20998.71 13289.44 25797.43 10298.82 12597.29 8198.74 6199.10 4393.86 17599.68 12098.61 1799.94 899.56 42
diffmvspermissive96.04 17796.23 16795.46 24797.35 28788.03 28793.42 30399.08 5094.09 20796.66 22196.93 24793.85 17699.29 24396.01 10498.67 25799.06 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC96.52 15895.99 17898.10 8597.81 23795.68 8995.00 24498.20 21295.39 16495.40 27696.36 28293.81 17799.45 19693.55 22498.42 27499.17 138
TAPA-MVS93.32 1294.93 22394.23 24997.04 16398.18 19694.51 13895.22 23198.73 13981.22 36196.25 24495.95 30193.80 17898.98 28989.89 29698.87 23797.62 305
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 6298.07 4297.48 13299.38 4892.95 19198.03 6299.11 4398.04 4698.62 6598.66 8293.75 17999.78 4797.23 5799.84 3599.73 19
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5698.05 4599.61 1299.52 793.72 18099.88 2098.72 1499.88 2699.65 26
test_prior293.33 30794.21 20194.02 30896.25 28693.64 18191.90 25098.96 226
mvsany_test193.47 27993.03 27594.79 27994.05 36892.12 21190.82 35290.01 36885.02 34397.26 17798.28 12393.57 18297.03 36492.51 24395.75 34995.23 360
旧先验197.80 24193.87 16397.75 25197.04 24093.57 18298.68 25698.72 214
v1097.55 9697.97 5096.31 20798.60 14789.64 25397.44 10099.02 6596.60 9898.72 6399.16 3893.48 18499.72 8698.76 1199.92 1499.58 33
v14896.58 15696.97 12795.42 24998.63 14387.57 29795.09 23697.90 24195.91 13998.24 10897.96 16593.42 18599.39 21796.04 10099.52 12099.29 115
V4297.04 12297.16 11796.68 18698.59 14991.05 23196.33 15898.36 19394.60 19097.99 13698.30 11893.32 18699.62 14497.40 5499.53 11599.38 95
new-patchmatchnet95.67 19196.58 14892.94 33097.48 27680.21 36592.96 31298.19 21794.83 18398.82 5298.79 6993.31 18799.51 17995.83 11599.04 22199.12 151
test1297.46 13497.61 26794.07 15697.78 25093.57 32293.31 18799.42 20298.78 24798.89 191
UGNet96.81 14096.56 15097.58 11896.64 31393.84 16597.75 7797.12 27896.47 10993.62 31998.88 6593.22 18999.53 17295.61 12799.69 6999.36 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs-eth3d96.49 15996.18 17097.42 13998.25 18694.29 14794.77 25298.07 23589.81 29097.97 14098.33 11293.11 19099.08 27795.46 13899.84 3598.89 191
v114496.84 13597.08 12196.13 21698.42 17289.28 26095.41 21698.67 15494.21 20197.97 14098.31 11493.06 19199.65 13398.06 2999.62 8399.45 76
PVSNet_BlendedMVS95.02 22294.93 21495.27 25397.79 24687.40 30294.14 27798.68 15188.94 30094.51 29598.01 16193.04 19299.30 23989.77 29899.49 13299.11 154
PVSNet_Blended93.96 26593.65 26494.91 27097.79 24687.40 30291.43 33898.68 15184.50 34994.51 29594.48 33493.04 19299.30 23989.77 29898.61 26498.02 285
mvs_anonymous95.36 20496.07 17593.21 32296.29 32181.56 36094.60 25897.66 25793.30 22696.95 20598.91 6293.03 19499.38 22096.60 7897.30 32398.69 218
v119296.83 13897.06 12396.15 21598.28 18289.29 25995.36 22098.77 13293.73 21598.11 12298.34 11193.02 19599.67 12598.35 2399.58 9699.50 53
F-COLMAP95.30 20894.38 24698.05 9198.64 13996.04 7595.61 20698.66 15689.00 29993.22 33196.40 28092.90 19699.35 22887.45 33197.53 31398.77 208
WR-MVS96.90 13396.81 13797.16 15398.56 15392.20 20994.33 26498.12 22797.34 7898.20 11197.33 22392.81 19799.75 6794.79 17799.81 4199.54 45
v124096.74 14397.02 12595.91 22698.18 19688.52 27395.39 21898.88 9993.15 23598.46 8298.40 10792.80 19899.71 10198.45 2199.49 13299.49 61
MVS_030496.62 15396.40 16197.28 14797.91 22492.30 20396.47 15189.74 36997.52 6895.38 27798.63 8592.76 19999.81 3799.28 399.93 1099.75 16
MVEpermissive73.61 2286.48 34685.92 34888.18 36096.23 32485.28 33181.78 37875.79 38486.01 32982.53 38091.88 36292.74 20087.47 38371.42 37994.86 35791.78 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 19695.13 20596.80 17898.51 16093.99 16094.60 25898.69 14990.20 28595.78 26596.21 28892.73 20198.98 28990.58 28498.86 23997.42 314
CANet95.86 18495.65 19496.49 19696.41 31990.82 23694.36 26398.41 18694.94 18092.62 34696.73 26292.68 20299.71 10195.12 16399.60 9298.94 179
v192192096.72 14696.96 12995.99 21998.21 19088.79 27095.42 21498.79 12793.22 22998.19 11598.26 12892.68 20299.70 10898.34 2499.55 10899.49 61
BH-untuned94.69 23594.75 22694.52 29197.95 22387.53 29894.07 28097.01 28293.99 20997.10 18995.65 30892.65 20498.95 29487.60 32796.74 33297.09 320
LF4IMVS96.07 17595.63 19597.36 14398.19 19395.55 9495.44 21298.82 12592.29 25795.70 26996.55 27092.63 20598.69 31591.75 25699.33 18097.85 296
v2v48296.78 14297.06 12395.95 22398.57 15188.77 27195.36 22098.26 20395.18 17297.85 15398.23 13192.58 20699.63 13997.80 3899.69 6999.45 76
EI-MVSNet96.63 15296.93 13095.74 23297.26 29488.13 28495.29 22897.65 25996.99 8697.94 14398.19 13692.55 20799.58 15696.91 7199.56 10299.50 53
IterMVS-LS96.92 13197.29 11095.79 23098.51 16088.13 28495.10 23598.66 15696.99 8698.46 8298.68 8192.55 20799.74 7696.91 7199.79 4599.50 53
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 11097.25 11297.74 10898.69 13694.50 14097.04 12295.61 31498.59 2598.51 7498.72 7692.54 20999.58 15696.02 10299.49 13299.12 151
MVS90.02 32389.20 33092.47 33794.71 35786.90 31195.86 19096.74 29364.72 38090.62 35792.77 35292.54 20998.39 33979.30 36795.56 35192.12 373
test_vis1_rt94.03 26493.65 26495.17 25895.76 34293.42 18093.97 28698.33 19784.68 34693.17 33295.89 30392.53 21194.79 37593.50 22594.97 35597.31 318
v14419296.69 14996.90 13496.03 21898.25 18688.92 26595.49 21098.77 13293.05 23798.09 12598.29 12292.51 21299.70 10898.11 2699.56 10299.47 70
原ACMM196.58 19098.16 20192.12 21198.15 22485.90 33293.49 32496.43 27792.47 21399.38 22087.66 32698.62 26398.23 265
VNet96.84 13596.83 13696.88 17398.06 21092.02 21696.35 15797.57 26597.70 5997.88 14897.80 18392.40 21499.54 17094.73 18298.96 22699.08 159
114514_t93.96 26593.22 27296.19 21299.06 9690.97 23495.99 18098.94 8773.88 37893.43 32796.93 24792.38 21599.37 22389.09 30799.28 18998.25 264
CPTT-MVS96.69 14996.08 17498.49 5298.89 11396.64 5597.25 10898.77 13292.89 24596.01 25597.13 23392.23 21699.67 12592.24 24599.34 17599.17 138
MSP-MVS97.45 10396.92 13299.03 599.26 5897.70 1897.66 8398.89 9395.65 15198.51 7496.46 27692.15 21799.81 3795.14 16098.58 26799.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS94.21 25693.03 27597.76 10796.94 30897.44 3396.97 12597.15 27687.89 31492.00 35192.73 35492.14 21899.12 27083.92 35497.51 31496.73 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 18195.80 18896.42 20199.28 5790.62 24095.31 22699.08 5088.40 30696.97 20498.17 13992.11 21999.78 4793.64 22299.21 19798.86 198
BH-RMVSNet94.56 24394.44 24594.91 27097.57 26987.44 30193.78 29496.26 29993.69 21796.41 23496.50 27592.10 22099.00 28585.96 33897.71 30398.31 256
新几何197.25 15098.29 18094.70 13397.73 25277.98 37294.83 28996.67 26592.08 22199.45 19688.17 32198.65 26197.61 306
testdata95.70 23598.16 20190.58 24197.72 25380.38 36495.62 27097.02 24192.06 22298.98 28989.06 30998.52 26997.54 309
YYNet194.73 23094.84 22094.41 29697.47 28085.09 33590.29 35795.85 30892.52 25197.53 16297.76 18491.97 22399.18 26093.31 22996.86 32898.95 177
Anonymous2023120695.27 20995.06 21095.88 22798.72 12989.37 25895.70 19697.85 24488.00 31296.98 20397.62 19791.95 22499.34 23089.21 30599.53 11598.94 179
MS-PatchMatch94.83 22794.91 21694.57 28996.81 31187.10 30894.23 27097.34 27088.74 30397.14 18597.11 23591.94 22598.23 34892.99 23697.92 29298.37 247
MDA-MVSNet_test_wron94.73 23094.83 22294.42 29597.48 27685.15 33390.28 35895.87 30792.52 25197.48 16897.76 18491.92 22699.17 26493.32 22896.80 33198.94 179
HQP_MVS96.66 15196.33 16597.68 11498.70 13494.29 14796.50 14998.75 13696.36 11296.16 24996.77 25991.91 22799.46 19292.59 24199.20 19899.28 116
plane_prior698.38 17494.37 14491.91 227
MVP-Stereo95.69 18995.28 20096.92 17098.15 20393.03 18995.64 20598.20 21290.39 28296.63 22497.73 19091.63 22999.10 27591.84 25397.31 32298.63 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 24193.81 26297.02 16598.19 19395.72 8693.66 29697.23 27288.17 31094.94 28795.62 31091.43 23098.57 32687.36 33297.68 30696.76 336
MDA-MVSNet-bldmvs95.69 18995.67 19295.74 23298.48 16688.76 27292.84 31397.25 27196.00 13297.59 16097.95 16791.38 23199.46 19293.16 23496.35 33998.99 173
mvsmamba98.16 3498.06 4498.44 5599.53 2995.87 8198.70 1398.94 8797.71 5898.85 4999.10 4391.35 23299.83 3398.47 2099.90 2399.64 28
PAPR92.22 30091.27 30695.07 26295.73 34488.81 26991.97 33297.87 24385.80 33390.91 35692.73 35491.16 23398.33 34479.48 36695.76 34898.08 273
131492.38 29792.30 29292.64 33495.42 35185.15 33395.86 19096.97 28485.40 33890.62 35793.06 34891.12 23497.80 35786.74 33595.49 35294.97 362
ppachtmachnet_test94.49 24894.84 22093.46 31696.16 32882.10 35690.59 35497.48 26790.53 28097.01 20097.59 19991.01 23599.36 22593.97 21299.18 20298.94 179
PLCcopyleft91.02 1694.05 26392.90 27897.51 12498.00 21895.12 12394.25 26898.25 20486.17 32891.48 35495.25 31791.01 23599.19 25985.02 34996.69 33398.22 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 19993.24 18692.74 31897.61 26475.17 37694.65 29296.69 26490.96 23798.66 25997.66 304
CL-MVSNet_self_test95.04 21994.79 22595.82 22997.51 27489.79 25191.14 34796.82 28993.05 23796.72 21796.40 28090.82 23899.16 26591.95 24998.66 25998.50 237
USDC94.56 24394.57 23994.55 29097.78 24986.43 31892.75 31698.65 16185.96 33096.91 20897.93 17090.82 23898.74 30990.71 28099.59 9498.47 239
PCF-MVS89.43 1892.12 30390.64 31896.57 19297.80 24193.48 17889.88 36498.45 17974.46 37796.04 25495.68 30790.71 24099.31 23673.73 37599.01 22496.91 327
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 24194.17 25395.96 22198.36 17691.23 22995.93 18797.95 23892.98 24093.42 32894.43 33590.53 24198.38 34087.60 32796.29 34098.27 262
our_test_394.20 25894.58 23793.07 32496.16 32881.20 36290.42 35696.84 28790.72 27897.14 18597.13 23390.47 24299.11 27394.04 20998.25 28098.91 187
test_f95.82 18695.88 18695.66 23697.61 26793.21 18795.61 20698.17 21886.98 32198.42 8599.47 1090.46 24394.74 37697.71 4398.45 27399.03 166
OpenMVS_ROBcopyleft91.80 1493.64 27593.05 27395.42 24997.31 29391.21 23095.08 23896.68 29681.56 35896.88 21096.41 27890.44 24499.25 25185.39 34597.67 30795.80 352
HQP2-MVS90.33 245
N_pmnet95.18 21394.23 24998.06 8897.85 22896.55 5892.49 32291.63 35589.34 29398.09 12597.41 21190.33 24599.06 27991.58 25799.31 18598.56 230
HQP-MVS95.17 21594.58 23796.92 17097.85 22892.47 20094.26 26598.43 18293.18 23192.86 33795.08 31990.33 24599.23 25690.51 28698.74 25199.05 165
CNLPA95.04 21994.47 24296.75 18197.81 23795.25 11494.12 27997.89 24294.41 19694.57 29395.69 30690.30 24898.35 34386.72 33698.76 24996.64 338
PMMVS92.39 29691.08 30996.30 20893.12 37592.81 19390.58 35595.96 30579.17 36991.85 35392.27 35890.29 24998.66 32089.85 29796.68 33497.43 313
TR-MVS92.54 29592.20 29493.57 31496.49 31786.66 31493.51 30194.73 32489.96 28894.95 28693.87 33990.24 25098.61 32381.18 36394.88 35695.45 358
TAMVS95.49 19794.94 21297.16 15398.31 17893.41 18195.07 23996.82 28991.09 27497.51 16497.82 18189.96 25199.42 20288.42 31799.44 14598.64 222
DPM-MVS93.68 27292.77 28596.42 20197.91 22492.54 19891.17 34697.47 26884.99 34493.08 33494.74 32789.90 25299.00 28587.54 32998.09 28797.72 302
PMMVS293.66 27394.07 25592.45 33897.57 26980.67 36486.46 37296.00 30393.99 20997.10 18997.38 21889.90 25297.82 35688.76 31199.47 13898.86 198
RRT_MVS97.95 5597.79 6598.43 5799.67 1295.56 9398.86 1096.73 29597.99 4799.15 3399.35 2289.84 25499.90 1498.64 1699.90 2399.82 6
bld_raw_dy_0_6497.69 8797.61 8897.91 9799.54 2694.27 15198.06 5998.60 16496.60 9898.79 5498.95 5689.62 25599.84 3098.43 2299.91 1799.62 29
BH-w/o92.14 30291.94 29692.73 33397.13 30185.30 32992.46 32395.64 31189.33 29494.21 30192.74 35389.60 25698.24 34781.68 36194.66 35894.66 363
Anonymous2024052197.07 12197.51 9895.76 23199.35 5188.18 28197.78 7398.40 18897.11 8498.34 9699.04 4889.58 25799.79 4498.09 2799.93 1099.30 109
UnsupCasMVSNet_bld94.72 23494.26 24896.08 21798.62 14590.54 24493.38 30598.05 23790.30 28397.02 19996.80 25889.54 25899.16 26588.44 31696.18 34198.56 230
MG-MVS94.08 26294.00 25794.32 29997.09 30285.89 32393.19 31095.96 30592.52 25194.93 28897.51 20589.54 25898.77 30687.52 33097.71 30398.31 256
UnsupCasMVSNet_eth95.91 18295.73 19196.44 19898.48 16691.52 22695.31 22698.45 17995.76 14697.48 16897.54 20289.53 26098.69 31594.43 19094.61 35999.13 146
GBi-Net96.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
test196.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
FMVSNet296.72 14696.67 14596.87 17497.96 22091.88 21997.15 11498.06 23695.59 15598.50 7698.62 8689.51 26199.65 13394.99 17099.60 9299.07 161
pmmvs494.82 22894.19 25296.70 18497.42 28392.75 19792.09 33196.76 29186.80 32495.73 26897.22 22989.28 26498.89 29693.28 23099.14 20598.46 241
cascas91.89 30791.35 30493.51 31594.27 36385.60 32588.86 36998.61 16379.32 36892.16 35091.44 36789.22 26598.12 35190.80 27497.47 31796.82 333
DSMNet-mixed92.19 30191.83 29893.25 32096.18 32783.68 35096.27 16193.68 33476.97 37592.54 34799.18 3589.20 26698.55 32983.88 35598.60 26697.51 310
c3_l95.20 21295.32 19994.83 27796.19 32686.43 31891.83 33498.35 19693.47 22197.36 17497.26 22788.69 26799.28 24595.41 14599.36 16798.78 205
test_fmvs296.38 16596.45 15896.16 21497.85 22891.30 22896.81 13399.45 1589.24 29598.49 7799.38 1788.68 26897.62 35998.83 899.32 18299.57 38
CANet_DTU94.65 23994.21 25195.96 22195.90 33689.68 25293.92 28897.83 24893.19 23090.12 36395.64 30988.52 26999.57 16293.27 23199.47 13898.62 225
EPP-MVSNet96.84 13596.58 14897.65 11599.18 7893.78 16898.68 1496.34 29897.91 4997.30 17598.06 15588.46 27099.85 2793.85 21599.40 16199.32 104
SixPastTwentyTwo97.49 10097.57 9297.26 14999.56 2192.33 20298.28 4296.97 28498.30 3699.45 1699.35 2288.43 27199.89 1898.01 3099.76 5199.54 45
miper_ehance_all_eth94.69 23594.70 22794.64 28395.77 34186.22 32091.32 34398.24 20691.67 26597.05 19696.65 26688.39 27299.22 25894.88 17298.34 27698.49 238
IS-MVSNet96.93 13096.68 14497.70 11199.25 6194.00 15998.57 2096.74 29398.36 3298.14 12097.98 16488.23 27399.71 10193.10 23599.72 6299.38 95
jason94.39 25194.04 25695.41 25198.29 18087.85 29292.74 31896.75 29285.38 33995.29 27896.15 29088.21 27499.65 13394.24 19999.34 17598.74 211
jason: jason.
IterMVS-SCA-FT95.86 18496.19 16994.85 27597.68 26085.53 32692.42 32497.63 26396.99 8698.36 9398.54 9387.94 27599.75 6797.07 6799.08 21599.27 120
SCA93.38 28293.52 26792.96 32996.24 32281.40 36193.24 30894.00 33191.58 26894.57 29396.97 24487.94 27599.42 20289.47 30297.66 30898.06 279
sss94.22 25493.72 26395.74 23297.71 25889.95 24993.84 29096.98 28388.38 30793.75 31595.74 30587.94 27598.89 29691.02 26798.10 28698.37 247
IterMVS95.42 20395.83 18794.20 30397.52 27383.78 34992.41 32597.47 26895.49 16098.06 13098.49 9787.94 27599.58 15696.02 10299.02 22299.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 26093.41 26996.18 21399.16 7990.04 24792.15 32898.68 15179.90 36696.22 24597.83 17887.92 27999.42 20289.18 30699.65 7899.08 159
VDDNet96.98 12896.84 13597.41 14099.40 4693.26 18597.94 6595.31 32099.26 798.39 8999.18 3587.85 28099.62 14495.13 16299.09 21499.35 103
pmmvs594.63 24094.34 24795.50 24497.63 26688.34 27794.02 28197.13 27787.15 31895.22 28097.15 23287.50 28199.27 24893.99 21099.26 19298.88 195
D2MVS95.18 21395.17 20495.21 25597.76 25187.76 29594.15 27597.94 23989.77 29196.99 20197.68 19487.45 28299.14 26795.03 16899.81 4198.74 211
test_vis1_n_192095.77 18796.41 16093.85 30798.55 15484.86 33895.91 18999.71 292.72 24897.67 15898.90 6387.44 28398.73 31097.96 3198.85 24097.96 288
PVSNet86.72 1991.10 31590.97 31291.49 34497.56 27178.04 36987.17 37194.60 32684.65 34792.34 34892.20 35987.37 28498.47 33485.17 34897.69 30597.96 288
Anonymous20240521196.34 16695.98 17997.43 13798.25 18693.85 16496.74 13994.41 32897.72 5698.37 9098.03 15887.15 28599.53 17294.06 20699.07 21798.92 186
MVSFormer96.14 17396.36 16395.49 24597.68 26087.81 29398.67 1599.02 6596.50 10694.48 29796.15 29086.90 28699.92 598.73 1299.13 20798.74 211
lupinMVS93.77 26893.28 27095.24 25497.68 26087.81 29392.12 32996.05 30184.52 34894.48 29795.06 32186.90 28699.63 13993.62 22399.13 20798.27 262
eth_miper_zixun_eth94.89 22594.93 21494.75 28195.99 33486.12 32191.35 34098.49 17693.40 22297.12 18797.25 22886.87 28899.35 22895.08 16598.82 24498.78 205
test_vis1_n95.67 19195.89 18595.03 26498.18 19689.89 25096.94 12699.28 2388.25 30998.20 11198.92 5986.69 28997.19 36297.70 4598.82 24498.00 287
WTY-MVS93.55 27793.00 27795.19 25697.81 23787.86 29093.89 28996.00 30389.02 29894.07 30695.44 31686.27 29099.33 23287.69 32596.82 32998.39 245
CDS-MVSNet94.88 22694.12 25497.14 15597.64 26593.57 17593.96 28797.06 28190.05 28796.30 24196.55 27086.10 29199.47 18990.10 29399.31 18598.40 243
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 25993.42 26896.23 20998.59 14990.85 23594.24 26998.85 10885.49 33592.97 33594.94 32386.01 29299.64 13691.78 25497.92 29298.20 268
dmvs_testset87.30 34486.99 34488.24 35996.71 31277.48 37294.68 25586.81 37792.64 25089.61 36687.01 37885.91 29393.12 37961.04 38288.49 37594.13 366
miper_enhance_ethall93.14 28792.78 28494.20 30393.65 37185.29 33089.97 36097.85 24485.05 34196.15 25194.56 33085.74 29499.14 26793.74 21898.34 27698.17 271
new_pmnet92.34 29891.69 30194.32 29996.23 32489.16 26292.27 32792.88 34384.39 35195.29 27896.35 28385.66 29596.74 37184.53 35297.56 31197.05 321
alignmvs96.01 17995.52 19897.50 12897.77 25094.71 13196.07 17496.84 28797.48 7096.78 21694.28 33785.50 29699.40 21396.22 9298.73 25498.40 243
lessismore_v097.05 16199.36 5092.12 21184.07 38098.77 5998.98 5285.36 29799.74 7697.34 5699.37 16499.30 109
HY-MVS91.43 1592.58 29491.81 29994.90 27296.49 31788.87 26797.31 10594.62 32585.92 33190.50 36096.84 25385.05 29899.40 21383.77 35795.78 34796.43 344
EPNet93.72 27092.62 28997.03 16487.61 38792.25 20496.27 16191.28 35696.74 9487.65 37397.39 21685.00 29999.64 13692.14 24699.48 13699.20 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 22994.80 22494.85 27596.16 32886.45 31791.14 34798.20 21293.49 22097.03 19897.37 22084.97 30099.26 24995.28 14899.56 10298.83 200
Test_1112_low_res93.53 27892.86 27995.54 24398.60 14788.86 26892.75 31698.69 14982.66 35592.65 34396.92 24984.75 30199.56 16390.94 26997.76 29998.19 269
MVS-HIRNet88.40 33890.20 32382.99 36397.01 30460.04 38793.11 31185.61 37984.45 35088.72 37099.09 4584.72 30298.23 34882.52 36096.59 33690.69 378
K. test v396.44 16296.28 16696.95 16799.41 4391.53 22597.65 8490.31 36598.89 1998.93 4499.36 2084.57 30399.92 597.81 3799.56 10299.39 93
test_cas_vis1_n_192095.34 20595.67 19294.35 29898.21 19086.83 31395.61 20699.26 2490.45 28198.17 11698.96 5484.43 30498.31 34596.74 7499.17 20397.90 292
h-mvs3396.29 16795.63 19598.26 7098.50 16396.11 7396.90 12897.09 27996.58 10197.21 18098.19 13684.14 30599.78 4795.89 11196.17 34298.89 191
hse-mvs295.77 18795.09 20797.79 10597.84 23395.51 9795.66 20095.43 31996.58 10197.21 18096.16 28984.14 30599.54 17095.89 11196.92 32598.32 254
DIV-MVS_self_test94.73 23094.64 23095.01 26595.86 33787.00 30991.33 34198.08 23193.34 22497.10 18997.34 22284.02 30799.31 23695.15 15999.55 10898.72 214
cl____94.73 23094.64 23095.01 26595.85 33887.00 30991.33 34198.08 23193.34 22497.10 18997.33 22384.01 30899.30 23995.14 16099.56 10298.71 217
Vis-MVSNet (Re-imp)95.11 21694.85 21995.87 22899.12 8989.17 26197.54 9794.92 32396.50 10696.58 22597.27 22683.64 30999.48 18788.42 31799.67 7598.97 175
FA-MVS(test-final)94.91 22494.89 21794.99 26797.51 27488.11 28698.27 4495.20 32192.40 25696.68 21998.60 8783.44 31099.28 24593.34 22798.53 26897.59 308
dmvs_re92.08 30491.27 30694.51 29297.16 29992.79 19695.65 20292.64 34894.11 20592.74 34090.98 37283.41 31194.44 37880.72 36494.07 36296.29 346
PVSNet_081.89 2184.49 34783.21 35088.34 35895.76 34274.97 38183.49 37592.70 34778.47 37187.94 37286.90 37983.38 31296.63 37273.44 37666.86 38393.40 370
test_fmvs1_n95.21 21195.28 20094.99 26798.15 20389.13 26496.81 13399.43 1786.97 32297.21 18098.92 5983.00 31397.13 36398.09 2798.94 22998.72 214
CMPMVSbinary73.10 2392.74 29291.39 30396.77 18093.57 37394.67 13494.21 27297.67 25580.36 36593.61 32096.60 26882.85 31497.35 36184.86 35098.78 24798.29 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs194.51 24794.60 23494.26 30295.91 33587.92 28895.35 22299.02 6586.56 32696.79 21298.52 9482.64 31597.00 36697.87 3498.71 25597.88 294
EU-MVSNet94.25 25394.47 24293.60 31398.14 20582.60 35497.24 11092.72 34685.08 34098.48 7998.94 5782.59 31698.76 30897.47 5399.53 11599.44 85
baseline193.14 28792.64 28894.62 28597.34 28987.20 30696.67 14693.02 34194.71 18796.51 23095.83 30481.64 31798.60 32590.00 29588.06 37698.07 275
test111194.53 24694.81 22393.72 31099.06 9681.94 35998.31 3983.87 38196.37 11198.49 7799.17 3781.49 31899.73 8196.64 7699.86 2999.49 61
CVMVSNet92.33 29992.79 28290.95 34797.26 29475.84 37895.29 22892.33 35081.86 35696.27 24298.19 13681.44 31998.46 33594.23 20098.29 27998.55 232
EPNet_dtu91.39 31390.75 31693.31 31890.48 38482.61 35394.80 25092.88 34393.39 22381.74 38194.90 32681.36 32099.11 27388.28 31998.87 23798.21 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft94.37 25294.48 24194.05 30698.95 10783.10 35198.31 3982.48 38296.20 11998.23 10999.16 3881.18 32199.66 13195.95 10799.83 3799.38 95
test_yl94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
DCV-MVSNet94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
MIMVSNet93.42 28092.86 27995.10 26198.17 19988.19 28098.13 5593.69 33292.07 25895.04 28598.21 13580.95 32499.03 28481.42 36298.06 28898.07 275
PAPM87.64 34385.84 34993.04 32596.54 31584.99 33688.42 37095.57 31579.52 36783.82 37893.05 34980.57 32598.41 33762.29 38192.79 36695.71 353
HyFIR lowres test93.72 27092.65 28796.91 17298.93 11091.81 22291.23 34598.52 17382.69 35496.46 23296.52 27480.38 32699.90 1490.36 29098.79 24699.03 166
FMVSNet395.26 21094.94 21296.22 21196.53 31690.06 24695.99 18097.66 25794.11 20597.99 13697.91 17280.22 32799.63 13994.60 18599.44 14598.96 176
RPMNet94.68 23794.60 23494.90 27295.44 34988.15 28296.18 16898.86 10497.43 7194.10 30498.49 9779.40 32899.76 6195.69 12095.81 34496.81 334
LFMVS95.32 20794.88 21896.62 18798.03 21191.47 22797.65 8490.72 36299.11 997.89 14798.31 11479.20 32999.48 18793.91 21499.12 21098.93 183
ADS-MVSNet291.47 31290.51 32094.36 29795.51 34785.63 32495.05 24195.70 30983.46 35292.69 34196.84 25379.15 33099.41 21185.66 34290.52 37098.04 283
ADS-MVSNet90.95 31890.26 32293.04 32595.51 34782.37 35595.05 24193.41 33883.46 35292.69 34196.84 25379.15 33098.70 31485.66 34290.52 37098.04 283
MDTV_nov1_ep13_2view57.28 38894.89 24780.59 36394.02 30878.66 33285.50 34497.82 298
cl2293.25 28592.84 28194.46 29494.30 36286.00 32291.09 34996.64 29790.74 27795.79 26396.31 28478.24 33398.77 30694.15 20398.34 27698.62 225
PatchmatchNetpermissive91.98 30691.87 29792.30 34094.60 35979.71 36695.12 23493.59 33789.52 29293.61 32097.02 24177.94 33499.18 26090.84 27294.57 36198.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 33598.06 279
CR-MVSNet93.29 28492.79 28294.78 28095.44 34988.15 28296.18 16897.20 27384.94 34594.10 30498.57 8977.67 33699.39 21795.17 15595.81 34496.81 334
Patchmtry95.03 22194.59 23696.33 20594.83 35690.82 23696.38 15597.20 27396.59 10097.49 16698.57 8977.67 33699.38 22092.95 23899.62 8398.80 203
tpmrst90.31 32190.61 31989.41 35494.06 36772.37 38495.06 24093.69 33288.01 31192.32 34996.86 25177.45 33898.82 30191.04 26687.01 37797.04 322
sam_mvs77.38 339
patchmatchnet-post96.84 25377.36 34099.42 202
Patchmatch-RL test94.66 23894.49 24095.19 25698.54 15688.91 26692.57 32098.74 13891.46 26998.32 10097.75 18777.31 34198.81 30396.06 9799.61 8997.85 296
tpmvs90.79 31990.87 31390.57 35092.75 37976.30 37695.79 19393.64 33691.04 27591.91 35296.26 28577.19 34298.86 30089.38 30489.85 37396.56 341
test_post10.87 38576.83 34399.07 278
Patchmatch-test93.60 27693.25 27194.63 28496.14 33187.47 29996.04 17694.50 32793.57 21896.47 23196.97 24476.50 34498.61 32390.67 28298.41 27597.81 300
MDTV_nov1_ep1391.28 30594.31 36173.51 38294.80 25093.16 34086.75 32593.45 32697.40 21276.37 34598.55 32988.85 31096.43 337
EMVS89.06 33389.22 32888.61 35793.00 37677.34 37382.91 37790.92 35994.64 18992.63 34591.81 36376.30 34697.02 36583.83 35696.90 32791.48 376
test_post194.98 24510.37 38676.21 34799.04 28189.47 302
GA-MVS92.83 29192.15 29594.87 27496.97 30587.27 30590.03 35996.12 30091.83 26494.05 30794.57 32976.01 34898.97 29392.46 24497.34 32198.36 252
PatchT93.75 26993.57 26694.29 30195.05 35487.32 30496.05 17592.98 34297.54 6794.25 30098.72 7675.79 34999.24 25495.92 10995.81 34496.32 345
E-PMN89.52 33189.78 32588.73 35693.14 37477.61 37183.26 37692.02 35194.82 18493.71 31693.11 34375.31 35096.81 36885.81 33996.81 33091.77 375
DeepMVS_CXcopyleft77.17 36490.94 38385.28 33174.08 38752.51 38180.87 38288.03 37775.25 35170.63 38459.23 38384.94 37975.62 379
AUN-MVS93.95 26792.69 28697.74 10897.80 24195.38 10595.57 20995.46 31891.26 27292.64 34496.10 29574.67 35299.55 16793.72 22096.97 32498.30 258
CHOSEN 280x42089.98 32589.19 33192.37 33995.60 34681.13 36386.22 37397.09 27981.44 36087.44 37493.15 34273.99 35399.47 18988.69 31399.07 21796.52 342
thres20091.00 31790.42 32192.77 33297.47 28083.98 34894.01 28291.18 35895.12 17595.44 27491.21 36973.93 35499.31 23677.76 37297.63 31095.01 361
test-LLR89.97 32689.90 32490.16 35194.24 36474.98 37989.89 36189.06 37092.02 25989.97 36490.77 37373.92 35598.57 32691.88 25197.36 31996.92 325
test0.0.03 190.11 32289.21 32992.83 33193.89 36986.87 31291.74 33588.74 37292.02 25994.71 29191.14 37073.92 35594.48 37783.75 35892.94 36597.16 319
tpm cat188.01 34187.33 34290.05 35394.48 36076.28 37794.47 26194.35 32973.84 37989.26 36895.61 31173.64 35798.30 34684.13 35386.20 37895.57 357
tfpn200view991.55 31191.00 31093.21 32298.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30095.85 350
thres40091.68 31091.00 31093.71 31198.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30097.36 315
test_method66.88 34966.13 35269.11 36562.68 38825.73 39049.76 37996.04 30214.32 38364.27 38491.69 36573.45 36088.05 38276.06 37466.94 38293.54 368
thres100view90091.76 30991.26 30893.26 31998.21 19084.50 34296.39 15390.39 36396.87 9096.33 23793.08 34773.44 36199.42 20278.85 36997.74 30095.85 350
thres600view792.03 30591.43 30293.82 30898.19 19384.61 34196.27 16190.39 36396.81 9296.37 23693.11 34373.44 36199.49 18480.32 36597.95 29197.36 315
MVSTER94.21 25693.93 26095.05 26395.83 33986.46 31695.18 23397.65 25992.41 25597.94 14398.00 16372.39 36399.58 15696.36 8799.56 10299.12 151
JIA-IIPM91.79 30890.69 31795.11 25993.80 37090.98 23394.16 27491.78 35496.38 11090.30 36299.30 2672.02 36498.90 29588.28 31990.17 37295.45 358
tpm91.08 31690.85 31491.75 34395.33 35278.09 36895.03 24391.27 35788.75 30293.53 32397.40 21271.24 36599.30 23991.25 26393.87 36397.87 295
baseline289.65 33088.44 33793.25 32095.62 34582.71 35293.82 29185.94 37888.89 30187.35 37592.54 35671.23 36699.33 23286.01 33794.60 36097.72 302
CostFormer89.75 32989.25 32791.26 34694.69 35878.00 37095.32 22591.98 35281.50 35990.55 35996.96 24671.06 36798.89 29688.59 31592.63 36796.87 328
FPMVS89.92 32788.63 33593.82 30898.37 17596.94 4591.58 33693.34 33988.00 31290.32 36197.10 23670.87 36891.13 38171.91 37896.16 34393.39 371
EPMVS89.26 33288.55 33691.39 34592.36 38079.11 36795.65 20279.86 38388.60 30493.12 33396.53 27270.73 36998.10 35290.75 27689.32 37496.98 323
FE-MVS92.95 28992.22 29395.11 25997.21 29788.33 27898.54 2393.66 33589.91 28996.21 24698.14 14070.33 37099.50 18087.79 32398.24 28197.51 310
tmp_tt57.23 35062.50 35341.44 36634.77 38949.21 38983.93 37460.22 39015.31 38271.11 38379.37 38170.09 37144.86 38564.76 38082.93 38130.25 381
ET-MVSNet_ETH3D91.12 31489.67 32695.47 24696.41 31989.15 26391.54 33790.23 36689.07 29786.78 37792.84 35169.39 37299.44 19994.16 20296.61 33597.82 298
dp88.08 34088.05 33888.16 36192.85 37768.81 38694.17 27392.88 34385.47 33691.38 35596.14 29268.87 37398.81 30386.88 33483.80 38096.87 328
iter_conf_final94.54 24593.91 26196.43 19997.23 29690.41 24596.81 13398.10 22893.87 21296.80 21197.89 17368.02 37499.72 8696.73 7599.77 5099.18 137
tpm288.47 33787.69 34190.79 34894.98 35577.34 37395.09 23691.83 35377.51 37489.40 36796.41 27867.83 37598.73 31083.58 35992.60 36896.29 346
pmmvs390.00 32488.90 33493.32 31794.20 36685.34 32891.25 34492.56 34978.59 37093.82 31195.17 31867.36 37698.69 31589.08 30898.03 28995.92 349
thisisatest051590.43 32089.18 33294.17 30597.07 30385.44 32789.75 36587.58 37388.28 30893.69 31891.72 36465.27 37799.58 15690.59 28398.67 25797.50 312
tttt051793.31 28392.56 29095.57 23998.71 13287.86 29097.44 10087.17 37595.79 14597.47 17096.84 25364.12 37899.81 3796.20 9399.32 18299.02 169
thisisatest053092.71 29391.76 30095.56 24198.42 17288.23 27996.03 17787.35 37494.04 20896.56 22795.47 31464.03 37999.77 5694.78 17999.11 21198.68 221
iter_conf0593.65 27493.05 27395.46 24796.13 33287.45 30095.95 18698.22 20892.66 24997.04 19797.89 17363.52 38099.72 8696.19 9499.82 4099.21 129
FMVSNet593.39 28192.35 29196.50 19595.83 33990.81 23897.31 10598.27 20292.74 24796.27 24298.28 12362.23 38199.67 12590.86 27199.36 16799.03 166
IB-MVS85.98 2088.63 33686.95 34693.68 31295.12 35384.82 34090.85 35190.17 36787.55 31588.48 37191.34 36858.01 38299.59 15487.24 33393.80 36496.63 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune88.28 33986.96 34592.23 34192.84 37884.44 34398.19 5274.60 38599.08 1087.01 37699.47 1056.93 38398.23 34878.91 36895.61 35094.01 367
KD-MVS_2432*160088.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
miper_refine_blended88.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
GG-mvs-BLEND90.60 34991.00 38284.21 34698.23 4672.63 38882.76 37984.11 38056.14 38696.79 36972.20 37792.09 36990.78 377
TESTMET0.1,187.20 34586.57 34789.07 35593.62 37272.84 38389.89 36187.01 37685.46 33789.12 36990.20 37556.00 38797.72 35890.91 27096.92 32596.64 338
test250689.86 32889.16 33391.97 34298.95 10776.83 37598.54 2361.07 38996.20 11997.07 19599.16 3855.19 38899.69 11596.43 8599.83 3799.38 95
test-mter87.92 34287.17 34390.16 35194.24 36474.98 37989.89 36189.06 37086.44 32789.97 36490.77 37354.96 38998.57 32691.88 25197.36 31996.92 325
test12312.59 35215.49 3553.87 3676.07 3902.55 39190.75 3532.59 3922.52 3855.20 38713.02 3844.96 3901.85 3875.20 3849.09 3847.23 382
testmvs12.33 35315.23 3563.64 3685.77 3912.23 39288.99 3683.62 3912.30 3865.29 38613.09 3834.52 3911.95 3865.16 3858.32 3856.75 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.91 35510.55 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.94 3230.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.59 1898.20 799.03 799.25 2598.96 1898.87 48
MSC_two_6792asdad98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
No_MVS98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
eth-test20.00 392
eth-test0.00 392
IU-MVS99.22 6795.40 10398.14 22585.77 33498.36 9395.23 15299.51 12599.49 61
save fliter98.48 16694.71 13194.53 26098.41 18695.02 179
test_0728_SECOND98.25 7399.23 6495.49 10196.74 13998.89 9399.75 6795.48 13599.52 12099.53 48
GSMVS98.06 279
test_part299.03 10296.07 7498.08 127
MTGPAbinary98.73 139
MTMP96.55 14774.60 385
gm-plane-assit91.79 38171.40 38581.67 35790.11 37698.99 28784.86 350
test9_res91.29 26098.89 23699.00 170
agg_prior290.34 29198.90 23399.10 158
agg_prior97.80 24194.96 12698.36 19393.49 32499.53 172
test_prior495.38 10593.61 299
test_prior97.46 13497.79 24694.26 15298.42 18599.34 23098.79 204
旧先验293.35 30677.95 37395.77 26798.67 31990.74 279
新几何293.43 302
无先验93.20 30997.91 24080.78 36299.40 21387.71 32497.94 290
原ACMM292.82 314
testdata299.46 19287.84 322
testdata192.77 31593.78 214
plane_prior798.70 13494.67 134
plane_prior598.75 13699.46 19292.59 24199.20 19899.28 116
plane_prior496.77 259
plane_prior394.51 13895.29 16896.16 249
plane_prior296.50 14996.36 112
plane_prior198.49 164
plane_prior94.29 14795.42 21494.31 20098.93 231
n20.00 393
nn0.00 393
door-mid98.17 218
test1198.08 231
door97.81 249
HQP5-MVS92.47 200
HQP-NCC97.85 22894.26 26593.18 23192.86 337
ACMP_Plane97.85 22894.26 26593.18 23192.86 337
BP-MVS90.51 286
HQP4-MVS92.87 33699.23 25699.06 163
HQP3-MVS98.43 18298.74 251
NP-MVS98.14 20593.72 16995.08 319
ACMMP++_ref99.52 120
ACMMP++99.55 108