This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 288.67 281.57 2291.50 263.30 12084.80 3287.77 1086.18 296.26 296.06 190.32 184.49 7068.08 8997.05 296.93 1
UA-Net81.56 3482.28 4179.40 4988.91 2969.16 7384.67 3380.01 14275.34 1679.80 11794.91 269.79 8580.25 14372.63 6394.46 3688.78 42
mamv490.28 188.75 194.85 193.34 196.17 182.69 5591.63 186.34 197.97 194.77 366.57 11795.38 187.74 197.72 193.00 7
UniMVSNet_ETH3D76.74 8079.02 6369.92 19289.27 2043.81 28474.47 15171.70 23372.33 3885.50 5093.65 477.98 2176.88 20154.60 21491.64 8589.08 32
OurMVSNet-221017-078.57 6378.53 6978.67 6080.48 13464.16 11380.24 7882.06 9861.89 11988.77 1393.32 557.15 21182.60 10070.08 7792.80 7089.25 28
K. test v373.67 11373.61 12273.87 11879.78 13955.62 18474.69 14862.04 30966.16 7384.76 6193.23 649.47 25780.97 13065.66 11686.67 19185.02 94
LTVRE_ROB75.46 184.22 784.98 881.94 2184.82 7375.40 2691.60 387.80 873.52 2588.90 1293.06 771.39 7081.53 11681.53 492.15 8188.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet80.35 4982.89 3672.74 14989.84 837.34 34077.16 11381.81 10380.45 490.92 492.95 874.57 4786.12 3163.65 13494.68 3294.76 6
Anonymous2023121175.54 9077.19 8170.59 17677.67 17445.70 27374.73 14680.19 13868.80 5682.95 8092.91 966.26 11976.76 20358.41 18192.77 7189.30 27
PEN-MVS80.46 4782.91 3573.11 13489.83 939.02 32377.06 11682.61 9180.04 590.60 792.85 1074.93 4485.21 5763.15 14195.15 1895.09 2
pmmvs671.82 15173.66 12066.31 24475.94 20342.01 30166.99 25272.53 22863.45 10676.43 17392.78 1172.95 5969.69 27751.41 23790.46 11887.22 56
PS-CasMVS80.41 4882.86 3773.07 13589.93 739.21 32077.15 11481.28 11379.74 690.87 592.73 1275.03 4384.93 6363.83 13395.19 1695.07 3
gg-mvs-nofinetune55.75 30556.75 30452.72 33762.87 34928.04 38868.92 22141.36 39871.09 4450.80 38492.63 1320.74 39966.86 30529.97 37872.41 33963.25 367
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 987.95 1592.53 1479.37 1384.79 6774.51 4896.15 392.88 8
v7n79.37 5780.41 5376.28 8978.67 16155.81 18179.22 8982.51 9370.72 4787.54 2292.44 1568.00 10081.34 11872.84 6191.72 8391.69 11
PS-MVSNAJss77.54 7377.35 8078.13 6984.88 7266.37 9378.55 9579.59 14953.48 21086.29 3692.43 1662.39 15280.25 14367.90 9490.61 11687.77 49
test_djsdf78.88 6078.27 7180.70 3681.42 12371.24 5383.98 3775.72 20352.27 21887.37 2792.25 1768.04 9980.56 13672.28 6791.15 9790.32 21
SixPastTwentyTwo75.77 8576.34 8774.06 11581.69 12154.84 18676.47 11975.49 20564.10 9787.73 1892.24 1850.45 25381.30 12067.41 9891.46 9086.04 72
WR-MVS_H80.22 5182.17 4274.39 11089.46 1542.69 29778.24 10082.24 9578.21 1089.57 1092.10 1968.05 9885.59 4766.04 11395.62 1094.88 5
PMVScopyleft70.70 681.70 3383.15 3277.36 7690.35 682.82 382.15 5779.22 15574.08 2187.16 2991.97 2084.80 276.97 19864.98 12093.61 6072.28 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVSMamba_PlusPlus76.88 7878.21 7272.88 14580.83 12948.71 23283.28 4982.79 8572.78 2879.17 12491.94 2156.47 22083.95 7670.51 7486.15 19585.99 73
iter_conf0577.90 7179.33 6173.61 12380.83 12946.85 26082.06 5886.72 1772.78 2885.44 5191.94 2156.47 22083.95 7670.51 7487.24 18090.02 22
ANet_high67.08 21469.94 17458.51 30957.55 37927.09 39158.43 32876.80 19463.56 10382.40 8791.93 2359.82 18364.98 31950.10 24888.86 15383.46 145
mvs_tets78.93 5978.67 6779.72 4484.81 7473.93 3680.65 7076.50 19651.98 22387.40 2491.86 2476.09 3378.53 16968.58 8490.20 12186.69 65
test_040278.17 6979.48 6074.24 11283.50 9159.15 16072.52 16674.60 21275.34 1688.69 1491.81 2575.06 4282.37 10365.10 11888.68 15481.20 194
APDe-MVScopyleft82.88 2484.14 1579.08 5284.80 7566.72 9186.54 2085.11 4072.00 4086.65 3291.75 2678.20 2087.04 1177.93 2694.32 4883.47 144
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VDDNet71.60 15473.13 13267.02 23786.29 4841.11 30769.97 20866.50 27668.72 5874.74 19291.70 2759.90 18175.81 20948.58 26391.72 8384.15 127
CP-MVSNet79.48 5581.65 4672.98 13889.66 1339.06 32276.76 11780.46 13378.91 890.32 891.70 2768.49 9384.89 6463.40 13895.12 1995.01 4
HPM-MVS_fast84.59 585.10 783.06 588.60 3375.83 2486.27 2486.89 1673.69 2486.17 3791.70 2778.23 1985.20 5879.45 1394.91 2588.15 47
EGC-MVSNET64.77 23761.17 27075.60 9786.90 4374.47 3184.04 3668.62 2670.60 4101.13 41291.61 3065.32 13074.15 23464.01 12788.28 15778.17 248
jajsoiax78.51 6478.16 7379.59 4684.65 7773.83 3880.42 7376.12 19851.33 23387.19 2891.51 3173.79 5478.44 17368.27 8790.13 12586.49 67
SMA-MVScopyleft82.12 2982.68 3980.43 3788.90 3069.52 6685.12 2984.76 4863.53 10484.23 6791.47 3272.02 6487.16 879.74 1094.36 4584.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
COLMAP_ROBcopyleft72.78 383.75 1284.11 1682.68 1382.97 10374.39 3387.18 1088.18 778.98 786.11 4091.47 3279.70 1285.76 4266.91 10895.46 1287.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + MP.79.05 5878.81 6479.74 4388.94 2867.52 8486.61 1981.38 11151.71 22577.15 14991.42 3465.49 12787.20 779.44 1487.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss82.54 2783.46 2679.76 4288.88 3168.44 7781.57 6386.33 2063.17 11085.38 5391.26 3576.33 3084.67 6983.30 294.96 2386.17 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test83.47 1784.33 1380.90 3387.00 4070.41 6182.04 6086.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
LGP-MVS_train80.90 3387.00 4070.41 6186.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
ACMH+66.64 1081.20 3782.48 4077.35 7781.16 12862.39 12580.51 7187.80 873.02 2787.57 2191.08 3880.28 982.44 10164.82 12196.10 587.21 57
ACMMP_NAP82.33 2883.28 2979.46 4889.28 1969.09 7583.62 4384.98 4364.77 9283.97 7091.02 3975.53 3985.93 3682.00 394.36 4583.35 150
MP-MVScopyleft83.19 1983.54 2482.14 2090.54 579.00 986.42 2283.59 7571.31 4281.26 10190.96 4074.57 4784.69 6878.41 2294.78 2882.74 169
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testf175.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
APD_test275.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
anonymousdsp78.60 6277.80 7581.00 3278.01 16874.34 3480.09 8076.12 19850.51 24289.19 1190.88 4371.45 6977.78 19173.38 5790.60 11790.90 17
PGM-MVS83.07 2283.25 3182.54 1689.57 1477.21 2182.04 6085.40 3567.96 6284.91 6090.88 4375.59 3686.57 1678.16 2394.71 3183.82 132
mPP-MVS84.01 1184.39 1282.88 790.65 481.38 487.08 1282.79 8572.41 3785.11 5690.85 4576.65 2884.89 6479.30 1794.63 3382.35 177
MTAPA83.19 1983.87 1981.13 3191.16 378.16 1284.87 3080.63 12972.08 3984.93 5790.79 4674.65 4684.42 7380.98 594.75 2980.82 206
MIMVSNet166.57 22069.23 18158.59 30881.26 12737.73 33764.06 28857.62 32157.02 15978.40 13490.75 4762.65 14758.10 34741.77 31189.58 13779.95 223
SR-MVS-dyc-post84.75 485.26 683.21 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4879.20 1485.58 4878.11 2494.46 3684.89 95
RE-MVS-def85.50 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4881.38 778.11 2494.46 3684.89 95
region2R83.54 1583.86 2082.58 1589.82 1077.53 1787.06 1384.23 6570.19 5183.86 7190.72 5075.20 4086.27 2379.41 1594.25 5083.95 130
ACMMPR83.62 1383.93 1882.69 1289.78 1177.51 1987.01 1484.19 6670.23 4984.49 6490.67 5175.15 4186.37 2079.58 1194.26 4984.18 125
ACMMPcopyleft84.22 784.84 982.35 1889.23 2276.66 2387.65 685.89 2771.03 4585.85 4290.58 5278.77 1685.78 4179.37 1695.17 1784.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS84.12 984.55 1182.80 1189.42 1879.74 688.19 584.43 5971.96 4184.70 6290.56 5377.12 2586.18 2879.24 1895.36 1382.49 175
Baseline_NR-MVSNet70.62 16473.19 13062.92 27576.97 18334.44 35868.84 22270.88 25260.25 13079.50 12090.53 5461.82 15869.11 28154.67 21395.27 1485.22 87
DeepC-MVS72.44 481.00 4180.83 5181.50 2386.70 4570.03 6582.06 5887.00 1559.89 13380.91 10790.53 5472.19 6188.56 273.67 5694.52 3585.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize83.57 1484.33 1381.31 2982.83 10673.53 4185.50 2787.45 1374.11 2086.45 3590.52 5680.02 1084.48 7177.73 2894.34 4785.93 75
Anonymous2024052972.56 14273.79 11868.86 21376.89 18845.21 27568.80 22677.25 19067.16 6476.89 15590.44 5765.95 12274.19 23350.75 24290.00 12687.18 59
HFP-MVS83.39 1884.03 1781.48 2489.25 2175.69 2587.01 1484.27 6270.23 4984.47 6590.43 5876.79 2685.94 3479.58 1194.23 5182.82 166
HPM-MVScopyleft84.12 984.63 1082.60 1488.21 3674.40 3285.24 2887.21 1470.69 4885.14 5590.42 5978.99 1586.62 1580.83 694.93 2486.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVScopyleft81.15 3883.12 3375.24 10286.16 5260.78 14683.77 4180.58 13172.48 3585.83 4390.41 6078.57 1785.69 4475.86 3994.39 4179.24 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2285.83 4390.41 6075.58 3785.69 4477.43 3194.74 3084.31 122
SteuartSystems-ACMMP83.07 2283.64 2381.35 2785.14 6971.00 5585.53 2684.78 4770.91 4685.64 4590.41 6075.55 3887.69 579.75 895.08 2085.36 86
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS83.12 2183.68 2281.45 2589.14 2573.28 4386.32 2385.97 2667.39 6384.02 6990.39 6374.73 4586.46 1780.73 794.43 4084.60 110
XVS83.51 1683.73 2182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 8190.39 6373.86 5286.31 2178.84 2094.03 5384.64 105
DVP-MVS++81.24 3682.74 3876.76 8183.14 9660.90 14491.64 185.49 3174.03 2284.93 5790.38 6566.82 11085.90 3777.43 3190.78 11283.49 141
test_one_060185.84 6261.45 13485.63 2975.27 1885.62 4890.38 6576.72 27
FC-MVSNet-test73.32 12174.78 10268.93 21179.21 14936.57 34271.82 18279.54 15157.63 15682.57 8690.38 6559.38 18778.99 16257.91 18494.56 3491.23 13
GBi-Net68.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
test168.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
FMVSNet171.06 15872.48 14666.81 23877.65 17540.68 31171.96 17673.03 22061.14 12379.45 12190.36 6860.44 17675.20 21950.20 24788.05 16184.54 112
SR-MVS84.51 685.27 582.25 1988.52 3477.71 1486.81 1685.25 3877.42 1486.15 3890.24 7181.69 585.94 3477.77 2793.58 6183.09 157
ACMH63.62 1477.50 7480.11 5569.68 19479.61 14156.28 17778.81 9283.62 7463.41 10887.14 3090.23 7276.11 3273.32 24067.58 9594.44 3979.44 232
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS82.79 2583.27 3081.34 2888.99 2773.29 4285.94 2585.13 3968.58 6084.14 6890.21 7373.37 5686.41 1879.09 1993.98 5684.30 124
3Dnovator+73.19 281.08 4080.48 5282.87 881.41 12472.03 4684.38 3586.23 2477.28 1580.65 11090.18 7459.80 18487.58 673.06 5991.34 9289.01 34
DPE-MVScopyleft82.00 3183.02 3478.95 5785.36 6667.25 8682.91 5284.98 4373.52 2585.43 5290.03 7576.37 2986.97 1374.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP69.50 882.64 2683.38 2780.40 3886.50 4669.44 6882.30 5686.08 2566.80 6786.70 3189.99 7681.64 685.95 3374.35 5096.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test072686.16 5260.78 14683.81 4085.10 4172.48 3585.27 5489.96 7778.57 17
LS3D80.99 4280.85 5081.41 2678.37 16271.37 5187.45 785.87 2877.48 1381.98 9089.95 7869.14 8885.26 5466.15 11091.24 9487.61 52
TransMVSNet (Re)69.62 17671.63 15863.57 26576.51 19335.93 34865.75 26971.29 24461.05 12475.02 18889.90 7965.88 12470.41 27549.79 24989.48 13884.38 120
RPSCF75.76 8674.37 10779.93 4174.81 21777.53 1777.53 10879.30 15459.44 13678.88 12889.80 8071.26 7173.09 24257.45 18680.89 26289.17 31
SED-MVS81.78 3283.48 2576.67 8286.12 5461.06 14083.62 4384.72 5072.61 3387.38 2589.70 8177.48 2385.89 3975.29 4294.39 4183.08 158
test_241102_TWO84.80 4672.61 3384.93 5789.70 8177.73 2285.89 3975.29 4294.22 5283.25 152
XVG-ACMP-BASELINE80.54 4581.06 4978.98 5687.01 3972.91 4480.23 7985.56 3066.56 7085.64 4589.57 8369.12 8980.55 13872.51 6593.37 6383.48 143
test_241102_ONE86.12 5461.06 14084.72 5072.64 3287.38 2589.47 8477.48 2385.74 43
FIs72.56 14273.80 11768.84 21478.74 16037.74 33671.02 19479.83 14456.12 16880.88 10989.45 8558.18 19678.28 18056.63 19293.36 6490.51 20
pm-mvs168.40 19469.85 17664.04 26173.10 24939.94 31764.61 28370.50 25455.52 17573.97 21089.33 8663.91 14068.38 28749.68 25188.02 16283.81 133
OPM-MVS80.99 4281.63 4779.07 5386.86 4469.39 6979.41 8784.00 7165.64 7585.54 4989.28 8776.32 3183.47 8674.03 5393.57 6284.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v875.07 9875.64 9573.35 12773.42 24047.46 25475.20 13781.45 10960.05 13185.64 4589.26 8858.08 20281.80 11369.71 8187.97 16490.79 18
TranMVSNet+NR-MVSNet76.13 8377.66 7771.56 16784.61 7842.57 29970.98 19578.29 17568.67 5983.04 7789.26 8872.99 5880.75 13555.58 20695.47 1191.35 12
SSC-MVS61.79 26966.08 22448.89 35876.91 18510.00 41453.56 35947.37 37768.20 6176.56 16789.21 9054.13 23257.59 34854.75 21174.07 32879.08 237
nrg03074.87 10575.99 9271.52 16874.90 21549.88 22674.10 15682.58 9254.55 19083.50 7589.21 9071.51 6775.74 21161.24 15292.34 7888.94 37
SF-MVS80.72 4481.80 4377.48 7482.03 11664.40 11283.41 4788.46 665.28 8384.29 6689.18 9273.73 5583.22 9076.01 3893.77 5884.81 102
v1075.69 8776.20 8974.16 11374.44 22648.69 23475.84 13482.93 8459.02 14185.92 4189.17 9358.56 19482.74 9870.73 7289.14 14791.05 14
ACMM69.25 982.11 3083.31 2878.49 6388.17 3773.96 3583.11 5184.52 5866.40 7187.45 2389.16 9481.02 880.52 13974.27 5195.73 880.98 202
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZD-MVS83.91 8769.36 7081.09 11958.91 14382.73 8589.11 9575.77 3586.63 1472.73 6292.93 69
HQP_MVS78.77 6178.78 6678.72 5985.18 6765.18 10582.74 5385.49 3165.45 7878.23 13589.11 9560.83 17386.15 2971.09 7090.94 10484.82 100
plane_prior489.11 95
lessismore_v072.75 14879.60 14256.83 17657.37 32483.80 7289.01 9847.45 27278.74 16764.39 12486.49 19482.69 170
XVG-OURS79.51 5479.82 5778.58 6286.11 5774.96 2976.33 12684.95 4566.89 6582.75 8488.99 9966.82 11078.37 17774.80 4490.76 11582.40 176
APD-MVScopyleft81.13 3981.73 4579.36 5084.47 8070.53 6083.85 3983.70 7369.43 5583.67 7388.96 10075.89 3486.41 1872.62 6492.95 6881.14 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Gipumacopyleft69.55 17872.83 13959.70 30063.63 34753.97 19380.08 8175.93 20164.24 9673.49 21488.93 10157.89 20662.46 32859.75 17191.55 8962.67 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XVG-OURS-SEG-HR79.62 5379.99 5678.49 6386.46 4774.79 3077.15 11485.39 3666.73 6880.39 11388.85 10274.43 5078.33 17974.73 4685.79 20182.35 177
casdiffmvs_mvgpermissive75.26 9476.18 9072.52 15472.87 25549.47 22772.94 16484.71 5259.49 13580.90 10888.81 10370.07 8179.71 15167.40 9988.39 15688.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MM78.15 7077.68 7679.55 4780.10 13765.47 10180.94 6778.74 16571.22 4372.40 22988.70 10460.51 17587.70 477.40 3389.13 14885.48 85
VDD-MVS70.81 16271.44 16368.91 21279.07 15546.51 26467.82 23970.83 25361.23 12274.07 20788.69 10559.86 18275.62 21251.11 23990.28 12084.61 108
test250661.23 27360.85 27462.38 27978.80 15827.88 38967.33 24837.42 40354.23 19667.55 29188.68 10617.87 40774.39 23046.33 28489.41 14084.86 98
ECVR-MVScopyleft64.82 23565.22 23363.60 26478.80 15831.14 37566.97 25356.47 33554.23 19669.94 26188.68 10637.23 32974.81 22545.28 29489.41 14084.86 98
APD_test175.04 9975.38 9974.02 11669.89 28770.15 6376.46 12079.71 14565.50 7782.99 7988.60 10866.94 10772.35 25359.77 17088.54 15579.56 228
CPTT-MVS81.51 3581.76 4480.76 3589.20 2378.75 1086.48 2182.03 9968.80 5680.92 10688.52 10972.00 6582.39 10274.80 4493.04 6781.14 196
test111164.62 23865.19 23462.93 27479.01 15629.91 38165.45 27354.41 34554.09 20171.47 24588.48 11037.02 33074.29 23246.83 28189.94 12984.58 111
Vis-MVSNetpermissive74.85 10674.56 10475.72 9581.63 12264.64 11076.35 12479.06 15762.85 11373.33 21788.41 11162.54 15079.59 15463.94 13282.92 24082.94 162
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HPM-MVS++copyleft79.89 5279.80 5880.18 4089.02 2678.44 1183.49 4680.18 13964.71 9378.11 13888.39 11265.46 12883.14 9177.64 3091.20 9578.94 238
MSP-MVS80.49 4679.67 5982.96 689.70 1277.46 2087.16 1185.10 4164.94 9181.05 10488.38 11357.10 21387.10 979.75 883.87 23084.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPA-MVSNet68.71 19170.37 17263.72 26376.13 19838.06 33464.10 28771.48 23856.60 16674.10 20688.31 11464.78 13569.72 27647.69 27490.15 12383.37 149
ambc70.10 18877.74 17250.21 21774.28 15477.93 18279.26 12288.29 11554.11 23379.77 15064.43 12391.10 10180.30 219
9.1480.22 5480.68 13280.35 7687.69 1159.90 13283.00 7888.20 11674.57 4781.75 11473.75 5593.78 57
AllTest77.66 7277.43 7878.35 6579.19 15070.81 5678.60 9488.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
TestCases78.35 6579.19 15070.81 5688.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
LCM-MVSNet-Re69.10 18571.57 16161.70 28470.37 28134.30 36061.45 30579.62 14656.81 16189.59 988.16 11968.44 9472.94 24342.30 30687.33 17577.85 255
MG-MVS70.47 16671.34 16467.85 22679.26 14740.42 31574.67 14975.15 20958.41 14568.74 28088.14 12056.08 22483.69 8159.90 16881.71 25679.43 233
IS-MVSNet75.10 9775.42 9874.15 11479.23 14848.05 24379.43 8578.04 17970.09 5279.17 12488.02 12153.04 23783.60 8258.05 18393.76 5990.79 18
tt080576.12 8478.43 7069.20 20281.32 12541.37 30576.72 11877.64 18463.78 10182.06 8987.88 12279.78 1179.05 16064.33 12592.40 7687.17 60
tfpnnormal66.48 22167.93 20162.16 28173.40 24136.65 34163.45 29364.99 28855.97 17072.82 22387.80 12357.06 21469.10 28248.31 26787.54 16780.72 211
balanced_conf0373.59 11574.06 11272.17 16277.48 17747.72 25081.43 6482.20 9654.38 19179.19 12387.68 12454.41 23083.57 8363.98 12985.78 20285.22 87
WB-MVS60.04 28364.19 24547.59 36076.09 19910.22 41352.44 36446.74 37865.17 8674.07 20787.48 12553.48 23555.28 35149.36 25572.84 33677.28 258
MVS_030475.45 9174.66 10377.83 7175.58 20761.53 13378.29 9877.18 19163.15 11269.97 26087.20 12657.54 20987.05 1074.05 5288.96 15184.89 95
CDPH-MVS77.33 7577.06 8378.14 6884.21 8463.98 11576.07 13083.45 7654.20 19877.68 14587.18 12769.98 8285.37 5068.01 9192.72 7385.08 92
casdiffmvspermissive73.06 12873.84 11670.72 17471.32 26646.71 26370.93 19684.26 6355.62 17477.46 14787.10 12867.09 10677.81 18963.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS74.91 10275.57 9672.93 14283.50 9145.79 27069.47 21480.14 14065.22 8481.74 9587.08 12961.82 15881.07 12656.21 19894.98 2191.93 9
NR-MVSNet73.62 11474.05 11372.33 15983.50 9143.71 28565.65 27077.32 18864.32 9575.59 18187.08 12962.45 15181.34 11854.90 20995.63 991.93 9
SD-MVS80.28 5081.55 4876.47 8783.57 9067.83 8183.39 4885.35 3764.42 9486.14 3987.07 13174.02 5180.97 13077.70 2992.32 7980.62 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验184.55 7960.36 15163.69 29987.05 13254.65 22883.34 23869.66 330
PatchT53.35 32356.47 30643.99 37664.19 34317.46 40759.15 32043.10 38852.11 22154.74 37186.95 13329.97 37349.98 36143.62 30074.40 32464.53 365
wuyk23d61.97 26666.25 22249.12 35658.19 37860.77 14866.32 26152.97 35555.93 17290.62 686.91 13473.07 5735.98 40220.63 40591.63 8650.62 391
UniMVSNet_NR-MVSNet74.90 10375.65 9472.64 15283.04 10145.79 27069.26 21778.81 16166.66 6981.74 9586.88 13563.26 14281.07 12656.21 19894.98 2191.05 14
EPP-MVSNet73.86 11273.38 12575.31 10078.19 16453.35 19980.45 7277.32 18865.11 8776.47 17286.80 13649.47 25783.77 8053.89 22392.72 7388.81 41
TinyColmap67.98 20169.28 17964.08 25967.98 31046.82 26170.04 20675.26 20753.05 21277.36 14886.79 13759.39 18672.59 25045.64 28988.01 16372.83 299
test_prior275.57 13558.92 14276.53 17086.78 13867.83 10269.81 7892.76 72
RPMNet65.77 22765.08 24167.84 22766.37 32448.24 23970.93 19686.27 2154.66 18661.35 33186.77 13933.29 34385.67 4655.93 20070.17 35669.62 331
TEST985.47 6469.32 7176.42 12278.69 16653.73 20876.97 15186.74 14066.84 10981.10 124
train_agg76.38 8276.55 8675.86 9485.47 6469.32 7176.42 12278.69 16654.00 20376.97 15186.74 14066.60 11581.10 12472.50 6691.56 8877.15 261
test_885.09 7067.89 8076.26 12778.66 16854.00 20376.89 15586.72 14266.60 11580.89 134
MVS_Test69.84 17370.71 17067.24 23367.49 31543.25 29269.87 21081.22 11652.69 21671.57 24186.68 14362.09 15674.51 22866.05 11278.74 28583.96 129
CR-MVSNet58.96 29058.49 29160.36 29766.37 32448.24 23970.93 19656.40 33632.87 37361.35 33186.66 14433.19 34463.22 32748.50 26470.17 35669.62 331
Patchmtry60.91 27563.01 25854.62 32866.10 33026.27 39567.47 24356.40 33654.05 20272.04 23486.66 14433.19 34460.17 33743.69 29987.45 17177.42 256
OMC-MVS79.41 5678.79 6581.28 3080.62 13370.71 5980.91 6884.76 4862.54 11581.77 9386.65 14671.46 6883.53 8567.95 9392.44 7589.60 24
VPNet65.58 22867.56 20659.65 30179.72 14030.17 38060.27 31662.14 30554.19 19971.24 24686.63 14758.80 19267.62 29444.17 29890.87 11181.18 195
IterMVS-LS73.01 13073.12 13372.66 15173.79 23649.90 22271.63 18478.44 17158.22 14680.51 11186.63 14758.15 19879.62 15262.51 14388.20 15888.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata64.13 25885.87 6063.34 11961.80 31047.83 26976.42 17486.60 14948.83 26462.31 33054.46 21681.26 26066.74 351
LFMVS67.06 21567.89 20264.56 25578.02 16738.25 33170.81 19959.60 31665.18 8571.06 24886.56 15043.85 28875.22 21746.35 28389.63 13480.21 221
CNVR-MVS78.49 6578.59 6878.16 6785.86 6167.40 8578.12 10381.50 10763.92 9877.51 14686.56 15068.43 9584.82 6673.83 5491.61 8782.26 181
FMVSNet267.48 20868.21 19865.29 25073.14 24638.94 32468.81 22471.21 24854.81 18076.73 16186.48 15248.63 26774.60 22747.98 27186.11 19982.35 177
baseline73.10 12573.96 11570.51 17871.46 26546.39 26772.08 17184.40 6055.95 17176.62 16486.46 15367.20 10478.03 18664.22 12687.27 17987.11 61
bld_raw_conf0372.88 13672.76 14173.22 13076.77 19048.71 23283.28 4982.79 8548.38 26379.17 12486.44 15452.61 24084.97 6159.29 17586.15 19585.99 73
WR-MVS71.20 15772.48 14667.36 23284.98 7135.70 35064.43 28568.66 26665.05 8881.49 9886.43 15557.57 20876.48 20550.36 24693.32 6589.90 23
UniMVSNet (Re)75.00 10075.48 9773.56 12583.14 9647.92 24570.41 20481.04 12163.67 10279.54 11986.37 15662.83 14681.82 11257.10 19095.25 1590.94 16
PC_three_145246.98 27681.83 9286.28 15766.55 11884.47 7263.31 14090.78 11283.49 141
DP-MVS78.44 6779.29 6275.90 9381.86 11965.33 10379.05 9084.63 5674.83 1980.41 11286.27 15871.68 6683.45 8762.45 14592.40 7678.92 239
ab-mvs64.11 24765.13 23861.05 29171.99 26138.03 33567.59 24068.79 26549.08 25965.32 30486.26 15958.02 20566.85 30639.33 32379.79 27778.27 246
NCCC78.25 6878.04 7478.89 5885.61 6369.45 6779.80 8480.99 12265.77 7475.55 18286.25 16067.42 10385.42 4970.10 7690.88 11081.81 187
FA-MVS(test-final)71.27 15671.06 16671.92 16473.96 23352.32 20476.45 12176.12 19859.07 14074.04 20986.18 16152.18 24279.43 15659.75 17181.76 25284.03 128
ITE_SJBPF80.35 3976.94 18473.60 3980.48 13266.87 6683.64 7486.18 16170.25 8079.90 14961.12 15588.95 15287.56 53
原ACMM173.90 11785.90 5865.15 10781.67 10550.97 23774.25 20386.16 16361.60 16083.54 8456.75 19191.08 10273.00 296
UGNet70.20 16869.05 18373.65 12076.24 19663.64 11675.87 13372.53 22861.48 12160.93 33786.14 16452.37 24177.12 19750.67 24385.21 21080.17 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
OPU-MVS78.65 6183.44 9466.85 9083.62 4386.12 16566.82 11086.01 3261.72 14989.79 13383.08 158
新几何169.99 19088.37 3571.34 5262.08 30743.85 29974.99 18986.11 16652.85 23870.57 27150.99 24183.23 23968.05 342
mvs_anonymous65.08 23365.49 23063.83 26263.79 34537.60 33866.52 26069.82 25943.44 30773.46 21586.08 16758.79 19371.75 26251.90 23475.63 31182.15 182
114514_t73.40 11973.33 12973.64 12184.15 8657.11 17378.20 10180.02 14143.76 30272.55 22686.07 16864.00 13983.35 8960.14 16591.03 10380.45 217
NP-MVS83.34 9563.07 12285.97 169
HQP-MVS75.24 9575.01 10075.94 9282.37 11058.80 16577.32 11084.12 6759.08 13771.58 23885.96 17058.09 20085.30 5267.38 10289.16 14483.73 137
Anonymous20240521166.02 22566.89 21863.43 26874.22 22938.14 33259.00 32266.13 27863.33 10969.76 26485.95 17151.88 24370.50 27244.23 29787.52 16881.64 191
Anonymous2024052163.55 25066.07 22555.99 32166.18 32944.04 28368.77 22768.80 26446.99 27572.57 22585.84 17239.87 31350.22 36053.40 23092.23 8073.71 291
JIA-IIPM54.03 31851.62 33661.25 29059.14 37255.21 18559.10 32147.72 37450.85 23850.31 38885.81 17320.10 40163.97 32236.16 35255.41 39864.55 364
test22287.30 3869.15 7467.85 23859.59 31741.06 32373.05 22185.72 17448.03 27080.65 26666.92 347
KD-MVS_self_test66.38 22267.51 20762.97 27361.76 35434.39 35958.11 33175.30 20650.84 23977.12 15085.42 17556.84 21669.44 27851.07 24091.16 9685.08 92
DeepC-MVS_fast69.89 777.17 7676.33 8879.70 4583.90 8867.94 7980.06 8283.75 7256.73 16374.88 19185.32 17665.54 12687.79 365.61 11791.14 9883.35 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6677.14 8282.52 1784.39 8377.04 2276.35 12484.05 6956.66 16480.27 11485.31 17768.56 9287.03 1267.39 10091.26 9383.50 140
v2v48272.55 14472.58 14472.43 15672.92 25446.72 26271.41 18779.13 15655.27 17681.17 10385.25 17855.41 22581.13 12367.25 10685.46 20489.43 26
QAPM69.18 18469.26 18068.94 21071.61 26352.58 20380.37 7578.79 16449.63 25273.51 21385.14 17953.66 23479.12 15955.11 20875.54 31275.11 278
test_fmvsmconf0.01_n73.91 11073.64 12174.71 10369.79 29166.25 9475.90 13279.90 14346.03 28276.48 17185.02 18067.96 10173.97 23574.47 4987.22 18183.90 131
FE-MVS68.29 19866.96 21772.26 16074.16 23154.24 19177.55 10773.42 21957.65 15572.66 22484.91 18132.02 35581.49 11748.43 26581.85 25081.04 198
v114473.29 12273.39 12473.01 13674.12 23248.11 24172.01 17481.08 12053.83 20781.77 9384.68 18258.07 20381.91 11168.10 8886.86 18688.99 36
3Dnovator65.95 1171.50 15571.22 16572.34 15873.16 24563.09 12178.37 9778.32 17357.67 15372.22 23284.61 18354.77 22678.47 17160.82 15881.07 26175.45 273
v119273.40 11973.42 12373.32 12974.65 22348.67 23572.21 16981.73 10452.76 21581.85 9184.56 18457.12 21282.24 10768.58 8487.33 17589.06 33
mvsmamba68.87 18767.30 21273.57 12476.58 19253.70 19684.43 3474.25 21445.38 28976.63 16384.55 18535.85 33585.27 5349.54 25378.49 28981.75 189
EC-MVSNet77.08 7777.39 7976.14 9176.86 18956.87 17580.32 7787.52 1263.45 10674.66 19684.52 18669.87 8484.94 6269.76 7989.59 13686.60 66
USDC62.80 26063.10 25761.89 28265.19 33543.30 29167.42 24474.20 21535.80 35972.25 23184.48 18745.67 27671.95 25937.95 33684.97 21370.42 324
tttt051769.46 17967.79 20574.46 10675.34 20852.72 20175.05 13863.27 30254.69 18578.87 12984.37 18826.63 38281.15 12263.95 13087.93 16589.51 25
PCF-MVS63.80 1372.70 14071.69 15675.72 9578.10 16560.01 15373.04 16381.50 10745.34 29079.66 11884.35 18965.15 13182.65 9948.70 26189.38 14384.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v124073.06 12873.14 13172.84 14674.74 21947.27 25871.88 18181.11 11751.80 22482.28 8884.21 19056.22 22382.34 10468.82 8387.17 18488.91 38
v14869.38 18269.39 17869.36 19869.14 29644.56 27968.83 22372.70 22654.79 18378.59 13084.12 19154.69 22776.74 20459.40 17482.20 24586.79 63
v14419272.99 13273.06 13572.77 14774.58 22447.48 25371.90 18080.44 13451.57 22781.46 9984.11 19258.04 20482.12 10867.98 9287.47 17088.70 43
F-COLMAP75.29 9373.99 11479.18 5181.73 12071.90 4781.86 6282.98 8259.86 13472.27 23084.00 19364.56 13683.07 9451.48 23687.19 18382.56 174
test_fmvsmconf0.1_n73.26 12372.82 14074.56 10569.10 29766.18 9674.65 15079.34 15345.58 28475.54 18383.91 19467.19 10573.88 23873.26 5886.86 18683.63 139
v192192072.96 13472.98 13772.89 14474.67 22047.58 25271.92 17980.69 12651.70 22681.69 9783.89 19556.58 21882.25 10668.34 8687.36 17288.82 40
MIMVSNet54.39 31556.12 30949.20 35472.57 25630.91 37659.98 31748.43 37341.66 31755.94 36483.86 19641.19 30450.42 35926.05 39075.38 31566.27 352
MCST-MVS73.42 11873.34 12873.63 12281.28 12659.17 15974.80 14483.13 8145.50 28572.84 22283.78 19765.15 13180.99 12864.54 12289.09 15080.73 210
dcpmvs_271.02 16072.65 14366.16 24576.06 20250.49 21371.97 17579.36 15250.34 24382.81 8383.63 19864.38 13767.27 29961.54 15083.71 23480.71 212
OpenMVScopyleft62.51 1568.76 19068.75 18968.78 21570.56 27653.91 19478.29 9877.35 18748.85 26070.22 25683.52 19952.65 23976.93 19955.31 20781.99 24775.49 272
h-mvs3373.08 12671.61 15977.48 7483.89 8972.89 4570.47 20271.12 24954.28 19477.89 13983.41 20049.04 26180.98 12963.62 13590.77 11478.58 242
TAPA-MVS65.27 1275.16 9674.29 10977.77 7274.86 21668.08 7877.89 10484.04 7055.15 17876.19 17783.39 20166.91 10880.11 14760.04 16790.14 12485.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet555.08 31255.54 31353.71 33065.80 33133.50 36456.22 34152.50 35743.72 30461.06 33483.38 20225.46 38854.87 35230.11 37781.64 25872.75 300
VNet64.01 24965.15 23760.57 29573.28 24335.61 35157.60 33367.08 27354.61 18766.76 29783.37 20356.28 22266.87 30442.19 30785.20 21179.23 235
Vis-MVSNet (Re-imp)62.74 26163.21 25661.34 28972.19 25931.56 37267.31 24953.87 34753.60 20969.88 26283.37 20340.52 30970.98 26841.40 31386.78 18981.48 193
GeoE73.14 12473.77 11971.26 17178.09 16652.64 20274.32 15279.56 15056.32 16776.35 17583.36 20570.76 7677.96 18763.32 13981.84 25183.18 155
PAPM_NR73.91 11074.16 11173.16 13281.90 11853.50 19781.28 6581.40 11066.17 7273.30 21883.31 20659.96 18083.10 9358.45 18081.66 25782.87 164
CS-MVS76.51 8176.00 9178.06 7077.02 18164.77 10980.78 6982.66 9060.39 12974.15 20483.30 20769.65 8682.07 10969.27 8286.75 19087.36 55
FMVSNet365.00 23465.16 23564.52 25669.47 29337.56 33966.63 25870.38 25551.55 22874.72 19383.27 20837.89 32674.44 22947.12 27685.37 20581.57 192
test_fmvsmconf_n72.91 13572.40 14874.46 10668.62 30166.12 9774.21 15578.80 16345.64 28374.62 19783.25 20966.80 11373.86 23972.97 6086.66 19283.39 147
V4271.06 15870.83 16971.72 16567.25 31747.14 25965.94 26480.35 13751.35 23283.40 7683.23 21059.25 18878.80 16565.91 11480.81 26589.23 29
test20.0355.74 30657.51 29950.42 34759.89 36832.09 36950.63 36949.01 37050.11 24765.07 30683.23 21045.61 27748.11 36930.22 37683.82 23171.07 319
CNLPA73.44 11773.03 13674.66 10478.27 16375.29 2775.99 13178.49 17065.39 8075.67 18083.22 21261.23 16666.77 30853.70 22585.33 20881.92 186
EPNet69.10 18567.32 21074.46 10668.33 30561.27 13777.56 10663.57 30060.95 12556.62 36182.75 21351.53 24781.24 12154.36 21990.20 12180.88 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SDMVSNet66.36 22367.85 20461.88 28373.04 25246.14 26958.54 32671.36 24151.42 23068.93 27482.72 21465.62 12562.22 33154.41 21784.67 21877.28 258
sd_testset63.55 25065.38 23158.07 31173.04 25238.83 32657.41 33465.44 28551.42 23068.93 27482.72 21463.76 14158.11 34641.05 31584.67 21877.28 258
IterMVS-SCA-FT67.68 20666.07 22572.49 15573.34 24258.20 17063.80 29065.55 28448.10 26576.91 15482.64 21645.20 27978.84 16461.20 15377.89 29780.44 218
DIV-MVS_self_test68.27 19968.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.43 21748.74 26575.38 21360.94 15689.81 13185.81 77
cl____68.26 20068.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.42 21848.74 26575.38 21360.92 15789.81 13185.80 81
MVS_111021_HR72.98 13372.97 13872.99 13780.82 13165.47 10168.81 22472.77 22557.67 15375.76 17982.38 21971.01 7477.17 19661.38 15186.15 19576.32 267
pmmvs-eth3d64.41 24463.27 25567.82 22875.81 20560.18 15269.49 21362.05 30838.81 34274.13 20582.23 22043.76 28968.65 28542.53 30580.63 26874.63 280
MGCFI-Net71.70 15373.10 13467.49 23073.23 24443.08 29372.06 17282.43 9454.58 18875.97 17882.00 22172.42 6075.22 21757.84 18587.34 17484.18 125
alignmvs70.54 16571.00 16769.15 20473.50 23848.04 24469.85 21179.62 14653.94 20676.54 16982.00 22159.00 19074.68 22657.32 18787.21 18284.72 103
MSLP-MVS++74.48 10775.78 9370.59 17684.66 7662.40 12478.65 9384.24 6460.55 12877.71 14481.98 22363.12 14377.64 19362.95 14288.14 15971.73 311
DP-MVS Recon73.57 11672.69 14276.23 9082.85 10563.39 11874.32 15282.96 8357.75 15170.35 25481.98 22364.34 13884.41 7449.69 25089.95 12880.89 204
BH-RMVSNet68.69 19268.20 19970.14 18776.40 19453.90 19564.62 28273.48 21858.01 14873.91 21181.78 22559.09 18978.22 18148.59 26277.96 29678.31 245
EG-PatchMatch MVS70.70 16370.88 16870.16 18682.64 10958.80 16571.48 18573.64 21754.98 17976.55 16881.77 22661.10 17078.94 16354.87 21080.84 26472.74 301
MVS_111021_LR72.10 14971.82 15572.95 13979.53 14373.90 3770.45 20366.64 27556.87 16076.81 15981.76 22768.78 9071.76 26161.81 14683.74 23273.18 294
AdaColmapbinary74.22 10874.56 10473.20 13181.95 11760.97 14279.43 8580.90 12365.57 7672.54 22781.76 22770.98 7585.26 5447.88 27290.00 12673.37 292
sasdasda72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
canonicalmvs72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
MVS-HIRNet45.53 35747.29 35740.24 38262.29 35126.82 39256.02 34437.41 40429.74 38543.69 40381.27 23133.96 34055.48 35024.46 39856.79 39438.43 403
CMPMVSbinary48.73 2061.54 27260.89 27363.52 26661.08 35851.55 20668.07 23768.00 27033.88 36765.87 30081.25 23237.91 32567.71 29249.32 25682.60 24371.31 315
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi54.00 32056.86 30345.45 36958.20 37725.81 39749.05 37149.50 36945.43 28867.84 28681.17 23351.81 24643.20 38929.30 38179.41 28067.34 346
fmvsm_l_conf0.5_n67.48 20866.88 21969.28 20167.41 31662.04 12770.69 20069.85 25839.46 33669.59 26581.09 23458.15 19868.73 28367.51 9778.16 29577.07 265
test_fmvsmvis_n_192072.36 14572.49 14571.96 16371.29 26764.06 11472.79 16581.82 10240.23 33381.25 10281.04 23570.62 7768.69 28469.74 8083.60 23683.14 156
CL-MVSNet_self_test62.44 26463.40 25359.55 30272.34 25832.38 36756.39 33964.84 29051.21 23567.46 29281.01 23650.75 25163.51 32638.47 33288.12 16082.75 168
fmvsm_s_conf0.1_n_a67.37 21266.36 22170.37 18070.86 26961.17 13874.00 15757.18 32840.77 32868.83 27980.88 23763.11 14467.61 29566.94 10774.72 31982.33 180
CS-MVS-test74.89 10474.23 11076.86 8077.01 18262.94 12378.98 9184.61 5758.62 14470.17 25880.80 23866.74 11481.96 11061.74 14889.40 14285.69 82
thisisatest053067.05 21665.16 23572.73 15073.10 24950.55 21271.26 19263.91 29850.22 24674.46 20080.75 23926.81 38180.25 14359.43 17386.50 19387.37 54
PHI-MVS74.92 10174.36 10876.61 8376.40 19462.32 12680.38 7483.15 8054.16 20073.23 21980.75 23962.19 15583.86 7968.02 9090.92 10783.65 138
PLCcopyleft62.01 1671.79 15270.28 17376.33 8880.31 13668.63 7678.18 10281.24 11454.57 18967.09 29680.63 24159.44 18581.74 11546.91 27984.17 22778.63 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PM-MVS64.49 24163.61 25167.14 23676.68 19175.15 2868.49 23242.85 39051.17 23677.85 14180.51 24245.76 27566.31 31152.83 23176.35 30559.96 379
CANet73.00 13171.84 15476.48 8675.82 20461.28 13674.81 14280.37 13663.17 11062.43 32780.50 24361.10 17085.16 6064.00 12884.34 22683.01 161
IterMVS63.12 25662.48 26265.02 25366.34 32652.86 20063.81 28962.25 30446.57 27871.51 24380.40 24444.60 28466.82 30751.38 23875.47 31375.38 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
fmvsm_l_conf0.5_n_a66.66 21865.97 22768.72 21667.09 31961.38 13570.03 20769.15 26338.59 34368.41 28180.36 24556.56 21968.32 28866.10 11177.45 29976.46 266
eth_miper_zixun_eth69.42 18068.73 19171.50 16967.99 30946.42 26567.58 24178.81 16150.72 24078.13 13780.34 24650.15 25580.34 14160.18 16384.65 22087.74 50
DPM-MVS69.98 17169.22 18272.26 16082.69 10858.82 16470.53 20181.23 11547.79 27064.16 31280.21 24751.32 24983.12 9260.14 16584.95 21774.83 279
LF4IMVS67.50 20767.31 21168.08 22458.86 37361.93 12871.43 18675.90 20244.67 29672.42 22880.20 24857.16 21070.44 27358.99 17786.12 19871.88 309
CSCG74.12 10974.39 10673.33 12879.35 14561.66 13277.45 10981.98 10062.47 11779.06 12780.19 24961.83 15778.79 16659.83 16987.35 17379.54 231
c3_l69.82 17469.89 17569.61 19566.24 32743.48 28868.12 23679.61 14851.43 22977.72 14380.18 25054.61 22978.15 18563.62 13587.50 16987.20 58
fmvsm_s_conf0.1_n66.60 21965.54 22969.77 19368.99 29859.15 16072.12 17056.74 33340.72 33068.25 28580.14 25161.18 16966.92 30267.34 10474.40 32483.23 154
fmvsm_s_conf0.5_n_a67.00 21765.95 22870.17 18569.72 29261.16 13973.34 16156.83 33140.96 32568.36 28280.08 25262.84 14567.57 29666.90 10974.50 32381.78 188
FPMVS59.43 28860.07 27957.51 31477.62 17671.52 5062.33 30250.92 36257.40 15769.40 26780.00 25339.14 31861.92 33237.47 34066.36 37239.09 402
thres100view90061.17 27461.09 27161.39 28872.14 26035.01 35465.42 27456.99 32955.23 17770.71 25179.90 25432.07 35372.09 25535.61 35581.73 25377.08 263
new-patchmatchnet52.89 32755.76 31244.26 37559.94 3676.31 41537.36 39950.76 36441.10 32264.28 31179.82 25544.77 28248.43 36836.24 35187.61 16678.03 251
thres600view761.82 26861.38 26963.12 27071.81 26234.93 35564.64 28156.99 32954.78 18470.33 25579.74 25632.07 35372.42 25238.61 33083.46 23782.02 183
diffmvspermissive67.42 21167.50 20867.20 23462.26 35245.21 27564.87 27977.04 19248.21 26471.74 23579.70 25758.40 19571.17 26764.99 11980.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned69.39 18169.46 17769.18 20377.96 16956.88 17468.47 23377.53 18556.77 16277.79 14279.63 25860.30 17880.20 14646.04 28680.65 26670.47 322
PAPM61.79 26960.37 27866.05 24676.09 19941.87 30269.30 21676.79 19540.64 33153.80 37579.62 25944.38 28582.92 9629.64 38073.11 33573.36 293
fmvsm_s_conf0.5_n66.34 22465.27 23269.57 19668.20 30659.14 16271.66 18356.48 33440.92 32667.78 28779.46 26061.23 16666.90 30367.39 10074.32 32782.66 171
XXY-MVS55.19 31057.40 30048.56 35964.45 34234.84 35751.54 36753.59 34938.99 34163.79 31879.43 26156.59 21745.57 37536.92 34671.29 34865.25 358
MDA-MVSNet-bldmvs62.34 26561.73 26364.16 25761.64 35549.90 22248.11 37557.24 32753.31 21180.95 10579.39 26249.00 26361.55 33345.92 28780.05 27281.03 199
TAMVS65.31 23063.75 24969.97 19182.23 11459.76 15566.78 25763.37 30145.20 29169.79 26379.37 26347.42 27372.17 25434.48 36085.15 21277.99 253
PAPR69.20 18368.66 19270.82 17375.15 21247.77 24875.31 13681.11 11749.62 25366.33 29879.27 26461.53 16182.96 9548.12 26981.50 25981.74 190
Anonymous2023120654.13 31655.82 31149.04 35770.89 26835.96 34751.73 36650.87 36334.86 36162.49 32679.22 26542.52 29844.29 38527.95 38781.88 24966.88 348
OpenMVS_ROBcopyleft54.93 1763.23 25563.28 25463.07 27169.81 28845.34 27468.52 23167.14 27243.74 30370.61 25279.22 26547.90 27172.66 24648.75 26073.84 33171.21 317
PVSNet_Blended_VisFu70.04 16968.88 18673.53 12682.71 10763.62 11774.81 14281.95 10148.53 26267.16 29579.18 26751.42 24878.38 17654.39 21879.72 27878.60 241
MVSTER63.29 25461.60 26768.36 21959.77 36946.21 26860.62 31371.32 24241.83 31675.40 18679.12 26830.25 37075.85 20756.30 19779.81 27583.03 160
tpm50.60 34152.42 33345.14 37165.18 33626.29 39460.30 31543.50 38637.41 35157.01 35679.09 26930.20 37242.32 39032.77 36866.36 37266.81 350
test_yl65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
DCV-MVSNet65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
test_fmvsm_n_192069.63 17568.45 19373.16 13270.56 27665.86 9970.26 20578.35 17237.69 34974.29 20278.89 27261.10 17068.10 29065.87 11579.07 28285.53 84
miper_lstm_enhance61.97 26661.63 26662.98 27260.04 36345.74 27247.53 37770.95 25044.04 29873.06 22078.84 27339.72 31460.33 33655.82 20284.64 22182.88 163
PVSNet_BlendedMVS65.38 22964.30 24368.61 21769.81 28849.36 22865.60 27278.96 15845.50 28559.98 34078.61 27451.82 24478.20 18244.30 29584.11 22878.27 246
baseline157.82 29858.36 29456.19 32069.17 29530.76 37862.94 30055.21 34046.04 28163.83 31778.47 27541.20 30363.68 32439.44 32268.99 36274.13 286
TSAR-MVS + GP.73.08 12671.60 16077.54 7378.99 15770.73 5874.96 13969.38 26160.73 12774.39 20178.44 27657.72 20782.78 9760.16 16489.60 13579.11 236
MVP-Stereo61.56 27159.22 28468.58 21879.28 14660.44 15069.20 21871.57 23543.58 30556.42 36278.37 27739.57 31676.46 20634.86 35960.16 38768.86 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
hse-mvs272.32 14670.66 17177.31 7883.10 10071.77 4869.19 21971.45 23954.28 19477.89 13978.26 27849.04 26179.23 15763.62 13589.13 14880.92 203
patch_mono-262.73 26264.08 24658.68 30770.36 28255.87 18060.84 31164.11 29741.23 32164.04 31378.22 27960.00 17948.80 36454.17 22183.71 23471.37 313
D2MVS62.58 26361.05 27267.20 23463.85 34447.92 24556.29 34069.58 26039.32 33770.07 25978.19 28034.93 33872.68 24553.44 22883.74 23281.00 201
HY-MVS49.31 1957.96 29757.59 29859.10 30566.85 32336.17 34565.13 27765.39 28639.24 33954.69 37278.14 28144.28 28667.18 30133.75 36570.79 35173.95 288
Effi-MVS+-dtu75.43 9272.28 15084.91 377.05 17983.58 278.47 9677.70 18357.68 15274.89 19078.13 28264.80 13484.26 7556.46 19685.32 20986.88 62
AUN-MVS70.22 16767.88 20377.22 7982.96 10471.61 4969.08 22071.39 24049.17 25771.70 23678.07 28337.62 32879.21 15861.81 14689.15 14680.82 206
cl2267.14 21366.51 22069.03 20763.20 34843.46 28966.88 25676.25 19749.22 25674.48 19977.88 28445.49 27877.40 19560.64 15984.59 22286.24 68
miper_ehance_all_eth68.36 19568.16 20068.98 20865.14 33843.34 29067.07 25178.92 16049.11 25876.21 17677.72 28553.48 23577.92 18861.16 15484.59 22285.68 83
DSMNet-mixed43.18 36744.66 36738.75 38454.75 39228.88 38657.06 33627.42 40913.47 40747.27 39477.67 28638.83 31939.29 39925.32 39660.12 38848.08 393
Test_1112_low_res58.78 29258.69 28959.04 30679.41 14438.13 33357.62 33266.98 27434.74 36359.62 34677.56 28742.92 29463.65 32538.66 32970.73 35275.35 276
API-MVS70.97 16171.51 16269.37 19775.20 21055.94 17980.99 6676.84 19362.48 11671.24 24677.51 28861.51 16280.96 13352.04 23285.76 20371.22 316
pmmvs460.78 27759.04 28666.00 24773.06 25157.67 17264.53 28460.22 31436.91 35465.96 29977.27 28939.66 31568.54 28638.87 32774.89 31871.80 310
tfpn200view960.35 28159.97 28061.51 28670.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25377.08 263
thres40060.77 27859.97 28063.15 26970.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25382.02 183
Effi-MVS+72.10 14972.28 15071.58 16674.21 23050.33 21574.72 14782.73 8862.62 11470.77 25076.83 29269.96 8380.97 13060.20 16278.43 29083.45 146
MVSFormer69.93 17269.03 18472.63 15374.93 21359.19 15783.98 3775.72 20352.27 21863.53 32276.74 29343.19 29280.56 13672.28 6778.67 28778.14 249
jason64.47 24262.84 25969.34 20076.91 18559.20 15667.15 25065.67 28135.29 36065.16 30576.74 29344.67 28370.68 26954.74 21279.28 28178.14 249
jason: jason.
CostFormer57.35 30056.14 30860.97 29263.76 34638.43 32867.50 24260.22 31437.14 35359.12 34876.34 29532.78 34771.99 25839.12 32669.27 36172.47 303
MDTV_nov1_ep1354.05 32365.54 33329.30 38459.00 32255.22 33935.96 35852.44 37775.98 29630.77 36759.62 33938.21 33373.33 334
testing358.28 29558.38 29358.00 31277.45 17826.12 39660.78 31243.00 38956.02 16970.18 25775.76 29713.27 41467.24 30048.02 27080.89 26280.65 213
EU-MVSNet60.82 27660.80 27560.86 29468.37 30341.16 30672.27 16768.27 26926.96 39069.08 26975.71 29832.09 35267.44 29755.59 20578.90 28473.97 287
HyFIR lowres test63.01 25760.47 27770.61 17583.04 10154.10 19259.93 31872.24 23233.67 37069.00 27075.63 29938.69 32076.93 19936.60 34775.45 31480.81 208
Fast-Effi-MVS+68.81 18968.30 19570.35 18174.66 22248.61 23666.06 26378.32 17350.62 24171.48 24475.54 30068.75 9179.59 15450.55 24578.73 28682.86 165
CDS-MVSNet64.33 24562.66 26169.35 19980.44 13558.28 16965.26 27565.66 28244.36 29767.30 29475.54 30043.27 29171.77 26037.68 33784.44 22578.01 252
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm256.12 30354.64 31960.55 29666.24 32736.01 34668.14 23556.77 33233.60 37158.25 35175.52 30230.25 37074.33 23133.27 36669.76 36071.32 314
CANet_DTU64.04 24863.83 24864.66 25468.39 30242.97 29573.45 16074.50 21352.05 22254.78 37075.44 30343.99 28770.42 27453.49 22778.41 29180.59 215
DELS-MVS68.83 18868.31 19470.38 17970.55 27848.31 23763.78 29182.13 9754.00 20368.96 27275.17 30458.95 19180.06 14858.55 17982.74 24282.76 167
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
pmmvs552.49 33152.58 33152.21 33954.99 39132.38 36755.45 34753.84 34832.15 37655.49 36774.81 30538.08 32357.37 34934.02 36274.40 32466.88 348
MSDG67.47 21067.48 20967.46 23170.70 27254.69 18866.90 25578.17 17660.88 12670.41 25374.76 30661.22 16873.18 24147.38 27576.87 30274.49 283
UnsupCasMVSNet_eth52.26 33253.29 32749.16 35555.08 39033.67 36350.03 37058.79 31937.67 35063.43 32474.75 30741.82 30045.83 37438.59 33159.42 38967.98 343
Fast-Effi-MVS+-dtu70.00 17068.74 19073.77 11973.47 23964.53 11171.36 18878.14 17855.81 17368.84 27874.71 30865.36 12975.75 21052.00 23379.00 28381.03 199
TR-MVS64.59 23963.54 25267.73 22975.75 20650.83 21163.39 29470.29 25649.33 25571.55 24274.55 30950.94 25078.46 17240.43 31975.69 31073.89 289
GA-MVS62.91 25861.66 26466.66 24267.09 31944.49 28061.18 30969.36 26251.33 23369.33 26874.47 31036.83 33174.94 22250.60 24474.72 31980.57 216
CLD-MVS72.88 13672.36 14974.43 10977.03 18054.30 19068.77 22783.43 7752.12 22076.79 16074.44 31169.54 8783.91 7855.88 20193.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 1792x268858.09 29656.30 30763.45 26779.95 13850.93 21054.07 35765.59 28328.56 38661.53 33074.33 31241.09 30566.52 31033.91 36367.69 37072.92 297
Patchmatch-RL test59.95 28459.12 28562.44 27872.46 25754.61 18959.63 31947.51 37641.05 32474.58 19874.30 31331.06 36465.31 31651.61 23579.85 27467.39 344
cdsmvs_eth3d_5k17.71 37723.62 3780.00 3960.00 4190.00 4210.00 40770.17 2570.00 4140.00 41574.25 31468.16 970.00 4150.00 4140.00 4130.00 411
lupinMVS63.36 25261.49 26868.97 20974.93 21359.19 15765.80 26864.52 29434.68 36563.53 32274.25 31443.19 29270.62 27053.88 22478.67 28777.10 262
xiu_mvs_v1_base_debu67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base_debi67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
tpmvs55.84 30455.45 31457.01 31660.33 36233.20 36565.89 26559.29 31847.52 27356.04 36373.60 31931.05 36568.06 29140.64 31864.64 37569.77 329
SCA58.57 29458.04 29560.17 29870.17 28441.07 30865.19 27653.38 35343.34 31061.00 33673.48 32045.20 27969.38 27940.34 32070.31 35570.05 325
Patchmatch-test47.93 35149.96 35141.84 37957.42 38024.26 39948.75 37241.49 39739.30 33856.79 35873.48 32030.48 36933.87 40329.29 38272.61 33867.39 344
MDA-MVSNet_test_wron52.57 33053.49 32649.81 35154.24 39336.47 34340.48 39346.58 37938.13 34575.47 18573.32 32241.05 30743.85 38740.98 31671.20 34969.10 337
YYNet152.58 32953.50 32449.85 35054.15 39436.45 34440.53 39246.55 38038.09 34675.52 18473.31 32341.08 30643.88 38641.10 31471.14 35069.21 335
PatchmatchNetpermissive54.60 31454.27 32155.59 32465.17 33739.08 32166.92 25451.80 36139.89 33458.39 34973.12 32431.69 35858.33 34443.01 30458.38 39369.38 334
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu58.93 29158.52 29060.16 29967.91 31147.70 25169.97 20858.02 32049.73 25147.28 39373.02 32538.14 32262.34 32936.57 34885.99 20070.43 323
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall65.86 22665.05 24268.28 22361.62 35642.62 29864.74 28077.97 18042.52 31273.42 21672.79 32649.66 25677.68 19258.12 18284.59 22284.54 112
ppachtmachnet_test60.26 28259.61 28362.20 28067.70 31344.33 28158.18 33060.96 31240.75 32965.80 30172.57 32741.23 30263.92 32346.87 28082.42 24478.33 244
N_pmnet52.06 33351.11 34154.92 32559.64 37071.03 5437.42 39861.62 31133.68 36957.12 35472.10 32837.94 32431.03 40429.13 38671.35 34762.70 369
ADS-MVSNet248.76 34947.25 35853.29 33555.90 38740.54 31447.34 37854.99 34231.41 38150.48 38572.06 32931.23 36154.26 35425.93 39155.93 39565.07 359
ADS-MVSNet44.62 36245.58 36141.73 38055.90 38720.83 40547.34 37839.94 40131.41 38150.48 38572.06 32931.23 36139.31 39825.93 39155.93 39565.07 359
ET-MVSNet_ETH3D63.32 25360.69 27671.20 17270.15 28555.66 18265.02 27864.32 29543.28 31168.99 27172.05 33125.46 38878.19 18454.16 22282.80 24179.74 227
BH-w/o64.81 23664.29 24466.36 24376.08 20154.71 18765.61 27175.23 20850.10 24871.05 24971.86 33254.33 23179.02 16138.20 33476.14 30765.36 357
EI-MVSNet-Vis-set72.78 13871.87 15375.54 9874.77 21859.02 16372.24 16871.56 23663.92 9878.59 13071.59 33366.22 12078.60 16867.58 9580.32 26989.00 35
UnsupCasMVSNet_bld50.01 34651.03 34346.95 36258.61 37432.64 36648.31 37353.27 35434.27 36660.47 33871.53 33441.40 30147.07 37230.68 37460.78 38661.13 377
thres20057.55 29957.02 30159.17 30367.89 31234.93 35558.91 32457.25 32650.24 24564.01 31471.46 33532.49 34971.39 26531.31 37279.57 27971.19 318
UWE-MVS52.94 32652.70 32953.65 33173.56 23727.49 39057.30 33549.57 36838.56 34462.79 32571.42 33619.49 40360.41 33524.33 39977.33 30073.06 295
EI-MVSNet-UG-set72.63 14171.68 15775.47 9974.67 22058.64 16872.02 17371.50 23763.53 10478.58 13271.39 33765.98 12178.53 16967.30 10580.18 27189.23 29
ETV-MVS72.72 13972.16 15274.38 11176.90 18755.95 17873.34 16184.67 5362.04 11872.19 23370.81 33865.90 12385.24 5658.64 17884.96 21681.95 185
EIA-MVS68.59 19367.16 21372.90 14375.18 21155.64 18369.39 21581.29 11252.44 21764.53 30870.69 33960.33 17782.30 10554.27 22076.31 30680.75 209
EI-MVSNet69.61 17769.01 18571.41 17073.94 23449.90 22271.31 19071.32 24258.22 14675.40 18670.44 34058.16 19775.85 20762.51 14379.81 27588.48 44
CVMVSNet59.21 28958.44 29261.51 28673.94 23447.76 24971.31 19064.56 29326.91 39260.34 33970.44 34036.24 33467.65 29353.57 22668.66 36469.12 336
tpm cat154.02 31952.63 33058.19 31064.85 34139.86 31866.26 26257.28 32532.16 37556.90 35770.39 34232.75 34865.30 31734.29 36158.79 39069.41 333
PMMVS237.74 37140.87 37128.36 38842.41 4115.35 41624.61 40327.75 40832.15 37647.85 39270.27 34335.85 33529.51 40619.08 40667.85 36850.22 392
EPMVS45.74 35646.53 35943.39 37754.14 39522.33 40455.02 34935.00 40634.69 36451.09 38370.20 34425.92 38642.04 39237.19 34155.50 39765.78 354
WB-MVSnew53.94 32154.76 31851.49 34371.53 26428.05 38758.22 32950.36 36537.94 34859.16 34770.17 34549.21 26051.94 35624.49 39771.80 34674.47 284
testing9955.16 31154.56 32056.98 31770.13 28630.58 37954.55 35554.11 34649.53 25456.76 35970.14 34622.76 39665.79 31336.99 34476.04 30874.57 281
testing9155.74 30655.29 31657.08 31570.63 27330.85 37754.94 35256.31 33850.34 24357.08 35570.10 34724.50 39265.86 31236.98 34576.75 30374.53 282
KD-MVS_2432*160052.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
miper_refine_blended52.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
our_test_356.46 30256.51 30556.30 31967.70 31339.66 31955.36 34852.34 35940.57 33263.85 31669.91 35040.04 31258.22 34543.49 30275.29 31771.03 320
xiu_mvs_v2_base64.43 24363.96 24765.85 24977.72 17351.32 20863.63 29272.31 23145.06 29461.70 32869.66 35162.56 14873.93 23749.06 25873.91 32972.31 305
tpmrst50.15 34551.38 33946.45 36656.05 38524.77 39864.40 28649.98 36636.14 35653.32 37669.59 35235.16 33748.69 36539.24 32458.51 39265.89 353
WTY-MVS49.39 34850.31 35046.62 36561.22 35732.00 37046.61 38049.77 36733.87 36854.12 37469.55 35341.96 29945.40 37731.28 37364.42 37662.47 372
thisisatest051560.48 28057.86 29668.34 22067.25 31746.42 26560.58 31462.14 30540.82 32763.58 32169.12 35426.28 38478.34 17848.83 25982.13 24680.26 220
patchmatchnet-post68.99 35531.32 36069.38 279
PatchMatch-RL58.68 29357.72 29761.57 28576.21 19773.59 4061.83 30349.00 37147.30 27461.08 33368.97 35650.16 25459.01 34136.06 35468.84 36352.10 389
testing22253.37 32252.50 33255.98 32270.51 27929.68 38256.20 34251.85 36046.19 28056.76 35968.94 35719.18 40465.39 31525.87 39376.98 30172.87 298
MS-PatchMatch55.59 30854.89 31757.68 31369.18 29449.05 23161.00 31062.93 30335.98 35758.36 35068.93 35836.71 33266.59 30937.62 33963.30 37957.39 385
cascas64.59 23962.77 26070.05 18975.27 20950.02 21961.79 30471.61 23442.46 31363.68 31968.89 35949.33 25980.35 14047.82 27384.05 22979.78 226
MVS60.62 27959.97 28062.58 27768.13 30847.28 25768.59 22973.96 21632.19 37459.94 34268.86 36050.48 25277.64 19341.85 31075.74 30962.83 368
PVSNet_Blended62.90 25961.64 26566.69 24169.81 28849.36 22861.23 30878.96 15842.04 31459.98 34068.86 36051.82 24478.20 18244.30 29577.77 29872.52 302
test_fmvs356.78 30155.99 31059.12 30453.96 39748.09 24258.76 32566.22 27727.54 38876.66 16268.69 36225.32 39051.31 35753.42 22973.38 33377.97 254
MAR-MVS67.72 20566.16 22372.40 15774.45 22564.99 10874.87 14077.50 18648.67 26165.78 30268.58 36357.01 21577.79 19046.68 28281.92 24874.42 285
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing1153.13 32452.26 33455.75 32370.44 28031.73 37154.75 35352.40 35844.81 29552.36 37968.40 36421.83 39765.74 31432.64 36972.73 33769.78 328
PS-MVSNAJ64.27 24663.73 25065.90 24877.82 17151.42 20763.33 29572.33 23045.09 29361.60 32968.04 36562.39 15273.95 23649.07 25773.87 33072.34 304
ETVMVS50.32 34449.87 35251.68 34170.30 28326.66 39352.33 36543.93 38543.54 30654.91 36967.95 36620.01 40260.17 33722.47 40173.40 33268.22 339
test0.0.03 147.72 35248.31 35445.93 36755.53 38929.39 38346.40 38141.21 39943.41 30855.81 36667.65 36729.22 37643.77 38825.73 39469.87 35864.62 363
1112_ss59.48 28758.99 28760.96 29377.84 17042.39 30061.42 30668.45 26837.96 34759.93 34367.46 36845.11 28165.07 31840.89 31771.81 34575.41 274
ab-mvs-re5.62 3797.50 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41567.46 3680.00 4190.00 4150.00 4140.00 4130.00 411
baseline255.57 30952.74 32864.05 26065.26 33444.11 28262.38 30154.43 34439.03 34051.21 38267.35 37033.66 34272.45 25137.14 34264.22 37775.60 271
131459.83 28558.86 28862.74 27665.71 33244.78 27868.59 22972.63 22733.54 37261.05 33567.29 37143.62 29071.26 26649.49 25467.84 36972.19 307
IB-MVS49.67 1859.69 28656.96 30267.90 22568.19 30750.30 21661.42 30665.18 28747.57 27255.83 36567.15 37223.77 39479.60 15343.56 30179.97 27373.79 290
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
sss47.59 35348.32 35345.40 37056.73 38433.96 36145.17 38348.51 37232.11 37852.37 37865.79 37340.39 31041.91 39331.85 37061.97 38360.35 378
dp44.09 36444.88 36641.72 38158.53 37623.18 40154.70 35442.38 39334.80 36244.25 40165.61 37424.48 39344.80 38129.77 37949.42 40157.18 386
test_fmvs254.80 31354.11 32256.88 31851.76 40149.95 22156.70 33865.80 28026.22 39369.42 26665.25 37531.82 35649.98 36149.63 25270.36 35470.71 321
PVSNet43.83 2151.56 33751.17 34052.73 33668.34 30438.27 33048.22 37453.56 35136.41 35554.29 37364.94 37634.60 33954.20 35530.34 37569.87 35865.71 355
Syy-MVS54.13 31655.45 31450.18 34868.77 29923.59 40055.02 34944.55 38343.80 30058.05 35264.07 37746.22 27458.83 34246.16 28572.36 34068.12 340
myMVS_eth3d50.36 34350.52 34849.88 34968.77 29922.69 40255.02 34944.55 38343.80 30058.05 35264.07 37714.16 41358.83 34233.90 36472.36 34068.12 340
pmmvs346.71 35445.09 36451.55 34256.76 38348.25 23855.78 34639.53 40224.13 40050.35 38763.40 37915.90 41051.08 35829.29 38270.69 35355.33 388
test_f43.79 36545.63 36038.24 38642.29 41238.58 32734.76 40147.68 37522.22 40467.34 29363.15 38031.82 35630.60 40539.19 32562.28 38245.53 398
test_vis3_rt51.94 33651.04 34254.65 32746.32 40850.13 21844.34 38778.17 17623.62 40168.95 27362.81 38121.41 39838.52 40041.49 31272.22 34275.30 277
gm-plane-assit62.51 35033.91 36237.25 35262.71 38272.74 24438.70 328
MVEpermissive27.91 2336.69 37335.64 37639.84 38343.37 41035.85 34919.49 40424.61 41024.68 39839.05 40562.63 38338.67 32127.10 40821.04 40447.25 40356.56 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test343.76 36641.01 37052.01 34048.09 40657.74 17142.47 38923.85 41223.30 40264.80 30762.17 38427.12 38040.59 39629.17 38448.11 40257.69 384
new_pmnet37.55 37239.80 37430.79 38756.83 38216.46 40839.35 39530.65 40725.59 39645.26 39761.60 38524.54 39128.02 40721.60 40252.80 40047.90 394
dmvs_re49.91 34750.77 34647.34 36159.98 36438.86 32553.18 36053.58 35039.75 33555.06 36861.58 38636.42 33344.40 38429.15 38568.23 36558.75 382
test_cas_vis1_n_192050.90 34050.92 34450.83 34654.12 39647.80 24751.44 36854.61 34326.95 39163.95 31560.85 38737.86 32744.97 38045.53 29062.97 38059.72 380
test_vis1_n_192052.96 32553.50 32451.32 34459.15 37144.90 27756.13 34364.29 29630.56 38459.87 34460.68 38840.16 31147.47 37048.25 26862.46 38161.58 376
test_fmvs1_n52.70 32852.01 33554.76 32653.83 39850.36 21455.80 34565.90 27924.96 39765.39 30360.64 38927.69 37948.46 36645.88 28867.99 36765.46 356
test-LLR50.43 34250.69 34749.64 35260.76 35941.87 30253.18 36045.48 38143.41 30849.41 38960.47 39029.22 37644.73 38242.09 30872.14 34362.33 374
test-mter48.56 35048.20 35549.64 35260.76 35941.87 30253.18 36045.48 38131.91 37949.41 38960.47 39018.34 40544.73 38242.09 30872.14 34362.33 374
test_fmvs151.51 33850.86 34553.48 33249.72 40449.35 23054.11 35664.96 28924.64 39963.66 32059.61 39228.33 37848.45 36745.38 29367.30 37162.66 371
test_vis1_n51.27 33950.41 34953.83 32956.99 38150.01 22056.75 33760.53 31325.68 39559.74 34557.86 39329.40 37547.41 37143.10 30363.66 37864.08 366
dmvs_testset45.26 35847.51 35638.49 38559.96 36614.71 40958.50 32743.39 38741.30 32051.79 38156.48 39439.44 31749.91 36321.42 40355.35 39950.85 390
TESTMET0.1,145.17 35944.93 36545.89 36856.02 38638.31 32953.18 36041.94 39627.85 38744.86 39956.47 39517.93 40641.50 39538.08 33568.06 36657.85 383
CHOSEN 280x42041.62 36839.89 37346.80 36461.81 35351.59 20533.56 40235.74 40527.48 38937.64 40753.53 39623.24 39542.09 39127.39 38858.64 39146.72 395
mvsany_test137.88 37035.74 37544.28 37447.28 40749.90 22236.54 40024.37 41119.56 40645.76 39553.46 39732.99 34637.97 40126.17 38935.52 40444.99 399
PMMVS44.69 36143.95 36946.92 36350.05 40353.47 19848.08 37642.40 39222.36 40344.01 40253.05 39842.60 29745.49 37631.69 37161.36 38541.79 400
GG-mvs-BLEND52.24 33860.64 36129.21 38569.73 21242.41 39145.47 39652.33 39920.43 40068.16 28925.52 39565.42 37459.36 381
E-PMN45.17 35945.36 36244.60 37350.07 40242.75 29638.66 39642.29 39446.39 27939.55 40451.15 40026.00 38545.37 37837.68 33776.41 30445.69 397
test_vis1_rt46.70 35545.24 36351.06 34544.58 40951.04 20939.91 39467.56 27121.84 40551.94 38050.79 40133.83 34139.77 39735.25 35861.50 38462.38 373
PVSNet_036.71 2241.12 36940.78 37242.14 37859.97 36540.13 31640.97 39142.24 39530.81 38344.86 39949.41 40240.70 30845.12 37923.15 40034.96 40541.16 401
EMVS44.61 36344.45 36845.10 37248.91 40543.00 29437.92 39741.10 40046.75 27738.00 40648.43 40326.42 38346.27 37337.11 34375.38 31546.03 396
dongtai31.66 37432.98 37727.71 38958.58 37512.61 41145.02 38414.24 41541.90 31547.93 39143.91 40410.65 41541.81 39414.06 40720.53 40828.72 405
test_method19.26 37619.12 38019.71 3909.09 4151.91 4187.79 40653.44 3521.42 40910.27 41135.80 40517.42 40825.11 40912.44 40824.38 40732.10 404
kuosan22.02 37523.52 37917.54 39141.56 41311.24 41241.99 39013.39 41626.13 39428.87 40830.75 4069.72 41621.94 4104.77 41114.49 40919.43 406
DeepMVS_CXcopyleft11.83 39215.51 41413.86 41011.25 4175.76 40820.85 41026.46 40717.06 4099.22 4119.69 41013.82 41012.42 407
X-MVStestdata76.81 7974.79 10182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 819.95 40873.86 5286.31 2178.84 2094.03 5384.64 105
tmp_tt11.98 37814.73 3813.72 3932.28 4164.62 41719.44 40514.50 4140.47 41121.55 4099.58 40925.78 3874.57 41211.61 40927.37 4061.96 408
test_post166.63 2582.08 41030.66 36859.33 34040.34 320
test_post1.99 41130.91 36654.76 353
test1234.43 3815.78 3840.39 3950.97 4170.28 41946.33 3820.45 4180.31 4120.62 4131.50 4120.61 4180.11 4140.56 4120.63 4110.77 410
testmvs4.06 3825.28 3850.41 3940.64 4180.16 42042.54 3880.31 4190.26 4130.50 4141.40 4130.77 4170.17 4130.56 4120.55 4120.90 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.20 3806.93 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41462.39 1520.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS22.69 40236.10 353
FOURS189.19 2477.84 1391.64 189.11 384.05 391.57 3
MSC_two_6792asdad79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
No_MVS79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
eth-test20.00 419
eth-test0.00 419
IU-MVS86.12 5460.90 14480.38 13545.49 28781.31 10075.64 4194.39 4184.65 104
save fliter87.00 4067.23 8779.24 8877.94 18156.65 165
test_0728_SECOND76.57 8486.20 4960.57 14983.77 4185.49 3185.90 3775.86 3994.39 4183.25 152
GSMVS70.05 325
test_part285.90 5866.44 9284.61 63
sam_mvs131.41 35970.05 325
sam_mvs31.21 363
MTGPAbinary80.63 129
MTMP84.83 3119.26 413
test9_res72.12 6991.37 9177.40 257
agg_prior270.70 7390.93 10678.55 243
agg_prior84.44 8266.02 9878.62 16976.95 15380.34 141
test_prior470.14 6477.57 105
test_prior75.27 10182.15 11559.85 15484.33 6183.39 8882.58 173
旧先验271.17 19345.11 29278.54 13361.28 33459.19 176
新几何271.33 189
无先验74.82 14170.94 25147.75 27176.85 20254.47 21572.09 308
原ACMM274.78 145
testdata267.30 29848.34 266
segment_acmp68.30 96
testdata168.34 23457.24 158
test1276.51 8582.28 11360.94 14381.64 10673.60 21264.88 13385.19 5990.42 11983.38 148
plane_prior785.18 6766.21 95
plane_prior684.18 8565.31 10460.83 173
plane_prior585.49 3186.15 2971.09 7090.94 10484.82 100
plane_prior365.67 10063.82 10078.23 135
plane_prior282.74 5365.45 78
plane_prior184.46 81
plane_prior65.18 10580.06 8261.88 12089.91 130
n20.00 420
nn0.00 420
door-mid55.02 341
test1182.71 89
door52.91 356
HQP5-MVS58.80 165
HQP-NCC82.37 11077.32 11059.08 13771.58 238
ACMP_Plane82.37 11077.32 11059.08 13771.58 238
BP-MVS67.38 102
HQP4-MVS71.59 23785.31 5183.74 136
HQP3-MVS84.12 6789.16 144
HQP2-MVS58.09 200
MDTV_nov1_ep13_2view18.41 40653.74 35831.57 38044.89 39829.90 37432.93 36771.48 312
ACMMP++_ref89.47 139
ACMMP++91.96 82
Test By Simon62.56 148