This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS81.17 189.72 1091.38 484.72 13093.00 7458.16 30296.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
DPE-MVScopyleft88.77 1689.21 1687.45 4296.26 2067.56 9994.17 5894.15 5968.77 26290.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 31
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS90.70 390.52 891.24 189.68 15176.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9597.64 297.94 1
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5396.89 694.44 4671.65 21292.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_TWO94.41 4871.65 21292.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 18
test072696.40 1569.99 3896.76 894.33 5471.92 19891.89 1197.11 673.77 21
test_241102_ONE96.45 1269.38 5394.44 4671.65 21292.11 797.05 776.79 999.11 6
test_fmvsm_n_192087.69 2588.50 1885.27 11087.05 22263.55 20693.69 8891.08 18384.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 111
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10887.10 22064.19 18694.41 5388.14 29380.24 5892.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 100
DVP-MVScopyleft89.41 1389.73 1488.45 2496.40 1569.99 3896.64 1094.52 4271.92 19890.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18290.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 28
fmvsm_s_conf0.5_n86.39 4486.91 3784.82 12387.36 21563.54 20794.74 4890.02 22282.52 2690.14 2596.92 1362.93 10997.84 4695.28 882.26 15993.07 154
fmvsm_s_conf0.5_n_a85.75 5786.09 4984.72 13085.73 24763.58 20493.79 8489.32 24681.42 4190.21 2396.91 1462.41 11397.67 5194.48 1080.56 17892.90 160
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10486.95 22364.37 17994.30 5588.45 28480.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 97
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7194.37 5272.48 18292.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
test_one_060196.32 1869.74 4894.18 5771.42 22390.67 1996.85 1674.45 18
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
CNVR-MVS90.32 690.89 788.61 2196.76 870.65 3196.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 37
fmvsm_s_conf0.1_n85.61 6185.93 5284.68 13382.95 29063.48 20994.03 6989.46 24081.69 3589.86 2696.74 2061.85 11997.75 4994.74 982.01 16592.81 162
SMA-MVScopyleft88.14 1788.29 2187.67 3293.21 6868.72 6993.85 7894.03 6274.18 14591.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 45
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n_a84.76 7284.84 7084.53 13980.23 31663.50 20892.79 12188.73 27580.46 5289.84 2796.65 2260.96 12797.57 6193.80 1380.14 18092.53 169
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30788.32 492.60 596.57 2332.61 34697.45 6692.21 2495.80 1097.53 6
PHI-MVS86.83 3886.85 4086.78 6093.47 6265.55 15095.39 3195.10 2271.77 20885.69 5496.52 2462.07 11698.77 2286.06 7295.60 1296.03 40
9.1487.63 2793.86 4794.41 5394.18 5772.76 17786.21 4796.51 2566.64 6097.88 4490.08 4094.04 38
MSLP-MVS++86.27 4685.91 5387.35 4492.01 10068.97 6495.04 4192.70 11179.04 8181.50 8896.50 2658.98 15096.78 11283.49 9393.93 4096.29 32
bld_raw_dy_0_6482.84 11080.75 13089.09 1493.74 5272.16 1593.16 10977.36 35889.69 174.55 16896.48 2732.35 34897.56 6292.21 2477.24 21097.53 6
SF-MVS87.03 3487.09 3486.84 5692.70 8367.45 10493.64 9193.76 6970.78 23686.25 4696.44 2866.98 5797.79 4788.68 5094.56 3395.28 68
HPM-MVS++copyleft89.37 1489.95 1387.64 3395.10 3068.23 8395.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 38
APDe-MVScopyleft87.54 2687.84 2586.65 6396.07 2366.30 13294.84 4693.78 6669.35 25388.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf_n86.58 4287.17 3384.82 12385.28 25362.55 23094.26 5789.78 22883.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 82
MVS_030490.01 890.50 988.53 2290.14 14270.94 2896.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 44
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5296.26 3272.84 2699.38 192.64 1995.93 997.08 11
NCCC89.07 1589.46 1587.91 2796.60 1069.05 6196.38 1694.64 3984.42 1486.74 4496.20 3466.56 6298.76 2389.03 4894.56 3395.92 43
MM90.87 291.52 288.92 1592.12 9671.10 2797.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 14
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3095.86 2768.32 7795.74 2294.11 6083.82 1783.49 7496.19 3564.53 8498.44 3183.42 9494.88 2596.61 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS90.38 591.87 185.88 8692.83 7764.03 18993.06 11294.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21197.89 4391.10 3393.31 5294.54 103
test_fmvsmconf0.1_n85.71 5886.08 5084.62 13780.83 30662.33 23493.84 8188.81 27183.50 2087.00 4396.01 3963.36 10196.93 10794.04 1287.29 11794.61 99
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12076.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21597.68 5091.07 3492.62 5994.54 103
APD-MVScopyleft85.93 5385.99 5185.76 9395.98 2665.21 15793.59 9492.58 11966.54 27986.17 4895.88 4163.83 9197.00 9686.39 6992.94 5695.06 77
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet89.61 1289.99 1288.46 2394.39 3969.71 4996.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 20
SD-MVS87.49 2787.49 3087.50 4193.60 5668.82 6793.90 7592.63 11776.86 11087.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 39
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmvis_n_192083.80 9383.48 8484.77 12782.51 29263.72 19791.37 18983.99 33881.42 4177.68 13595.74 4458.37 15397.58 5993.38 1486.87 12093.00 157
SteuartSystems-ACMMP86.82 3986.90 3886.58 6790.42 13666.38 12996.09 1893.87 6477.73 9884.01 7295.66 4563.39 10097.94 4087.40 5993.55 4995.42 55
Skip Steuart: Steuart Systems R&D Blog.
MP-MVS-pluss85.24 6585.13 6485.56 9991.42 11865.59 14891.54 17992.51 12174.56 13980.62 9995.64 4659.15 14897.00 9686.94 6593.80 4294.07 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_prior295.10 3975.40 13085.25 6195.61 4767.94 5187.47 5894.77 26
MAR-MVS84.18 8583.43 8786.44 7296.25 2165.93 14194.28 5694.27 5674.41 14079.16 11995.61 4753.99 20698.88 2169.62 20093.26 5394.50 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS-test86.14 4987.01 3583.52 16792.63 8559.36 29095.49 2891.92 14180.09 5985.46 5795.53 4961.82 12095.77 14886.77 6793.37 5195.41 56
test_fmvsmconf0.01_n83.70 9783.52 8184.25 15175.26 35761.72 24892.17 14787.24 30682.36 2884.91 6295.41 5055.60 18796.83 11192.85 1785.87 13294.21 113
CS-MVS85.80 5686.65 4183.27 17592.00 10158.92 29595.31 3291.86 14679.97 6084.82 6395.40 5162.26 11495.51 16686.11 7192.08 6795.37 59
test_894.19 4067.19 10894.15 6293.42 8671.87 20385.38 5895.35 5268.19 4896.95 104
TEST994.18 4167.28 10694.16 5993.51 8071.75 20985.52 5595.33 5368.01 5097.27 82
train_agg87.21 3287.42 3186.60 6594.18 4167.28 10694.16 5993.51 8071.87 20385.52 5595.33 5368.19 4897.27 8289.09 4694.90 2295.25 72
ACMMP_NAP86.05 5085.80 5586.80 5991.58 11367.53 10191.79 16993.49 8374.93 13684.61 6495.30 5559.42 14497.92 4186.13 7094.92 2094.94 83
SR-MVS82.81 11182.58 10683.50 17093.35 6361.16 25792.23 14691.28 17364.48 29381.27 8995.28 5653.71 21095.86 14482.87 9688.77 10393.49 141
CDPH-MVS85.71 5885.46 5986.46 7194.75 3467.19 10893.89 7692.83 10870.90 23283.09 7795.28 5663.62 9697.36 7380.63 11494.18 3694.84 87
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5849.56 2460.00 4100.00 4090.00 4070.00 406
lupinMVS87.74 2487.77 2687.63 3789.24 16671.18 2496.57 1292.90 10682.70 2587.13 4095.27 5864.99 7595.80 14589.34 4391.80 7195.93 42
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
alignmvs87.28 3186.97 3688.24 2691.30 12171.14 2695.61 2693.56 7879.30 7287.07 4295.25 6068.43 4696.93 10787.87 5384.33 14396.65 16
MTAPA83.91 9083.38 9185.50 10091.89 10665.16 15981.75 32492.23 12775.32 13180.53 10195.21 6256.06 18397.16 8784.86 8392.55 6194.18 114
ZD-MVS96.63 965.50 15293.50 8270.74 23785.26 6095.19 6364.92 7897.29 7887.51 5793.01 55
patch_mono-289.71 1190.99 685.85 8996.04 2463.70 19995.04 4195.19 1986.74 991.53 1595.15 6473.86 2097.58 5993.38 1492.00 6896.28 34
PAPR85.15 6784.47 7287.18 4796.02 2568.29 7891.85 16793.00 10376.59 11779.03 12095.00 6561.59 12197.61 5878.16 13589.00 10195.63 50
1112_ss80.56 14779.83 14782.77 18388.65 17860.78 26392.29 14388.36 28672.58 18072.46 19594.95 6665.09 7493.42 24366.38 23577.71 20094.10 119
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 660.00 4140.00 4100.00 4090.00 4070.00 406
HFP-MVS84.73 7384.40 7485.72 9593.75 5165.01 16393.50 9893.19 9472.19 19279.22 11894.93 6859.04 14997.67 5181.55 10592.21 6394.49 108
CP-MVS83.71 9683.40 9084.65 13493.14 7163.84 19194.59 5092.28 12571.03 23077.41 13994.92 6955.21 19296.19 13081.32 11090.70 8793.91 129
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5394.91 7074.11 1998.91 1787.26 6195.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPR84.37 7784.06 7685.28 10993.56 5864.37 17993.50 9893.15 9672.19 19278.85 12694.86 7156.69 17597.45 6681.55 10592.20 6494.02 125
region2R84.36 7884.03 7785.36 10693.54 5964.31 18293.43 10392.95 10472.16 19578.86 12594.84 7256.97 17097.53 6481.38 10992.11 6694.24 112
TSAR-MVS + GP.87.96 2088.37 2086.70 6293.51 6165.32 15495.15 3793.84 6578.17 9185.93 5194.80 7375.80 1398.21 3489.38 4288.78 10296.59 18
WTY-MVS86.32 4585.81 5487.85 2892.82 7969.37 5595.20 3595.25 1782.71 2481.91 8594.73 7467.93 5297.63 5679.55 12282.25 16096.54 21
MVS84.66 7482.86 10190.06 290.93 12774.56 687.91 27695.54 1368.55 26472.35 19894.71 7559.78 14098.90 1981.29 11194.69 3296.74 15
ZNCC-MVS85.33 6485.08 6586.06 8193.09 7365.65 14693.89 7693.41 8773.75 15679.94 10894.68 7660.61 13198.03 3882.63 9893.72 4594.52 105
test_vis1_n_192081.66 12982.01 11480.64 23982.24 29555.09 33094.76 4786.87 30981.67 3684.40 6794.63 7738.17 31594.67 19391.98 2883.34 15092.16 183
APD-MVS_3200maxsize81.64 13081.32 12182.59 18992.36 8958.74 29791.39 18691.01 18863.35 30279.72 11194.62 7851.82 22596.14 13279.71 12087.93 11092.89 161
EPNet87.84 2388.38 1986.23 7993.30 6566.05 13695.26 3394.84 2987.09 788.06 3594.53 7966.79 5997.34 7583.89 9191.68 7395.29 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post81.06 13980.70 13282.15 20392.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8051.26 23395.61 15878.77 13186.77 12492.28 176
RE-MVS-def80.48 13892.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8049.30 24978.77 13186.77 12492.28 176
MP-MVScopyleft85.02 6884.97 6785.17 11492.60 8664.27 18493.24 10692.27 12673.13 16779.63 11294.43 8261.90 11797.17 8585.00 8092.56 6094.06 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS83.25 10382.70 10484.92 11992.81 8164.07 18890.44 22192.20 13171.28 22477.23 14294.43 8255.17 19397.31 7779.33 12491.38 7993.37 143
xiu_mvs_v1_base_debu82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base_debi82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
旧先验191.94 10260.74 26791.50 16494.36 8465.23 7391.84 7094.55 101
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3093.83 8395.33 1668.48 26677.63 13694.35 8873.04 2498.45 3084.92 8293.71 4696.92 13
MVSFormer83.75 9582.88 10086.37 7589.24 16671.18 2489.07 25890.69 19265.80 28487.13 4094.34 8964.99 7592.67 26672.83 16891.80 7195.27 69
jason86.40 4386.17 4787.11 4986.16 23870.54 3395.71 2592.19 13282.00 3284.58 6594.34 8961.86 11895.53 16587.76 5490.89 8595.27 69
jason: jason.
XVS83.87 9183.47 8585.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13094.31 9155.25 18997.41 7079.16 12591.58 7593.95 127
EIA-MVS84.84 7184.88 6884.69 13291.30 12162.36 23393.85 7892.04 13679.45 6879.33 11794.28 9262.42 11296.35 12680.05 11891.25 8295.38 58
mPP-MVS82.96 10982.44 10984.52 14092.83 7762.92 22392.76 12291.85 14871.52 22075.61 15894.24 9353.48 21496.99 9978.97 12890.73 8693.64 138
EC-MVSNet84.53 7685.04 6683.01 17989.34 15861.37 25494.42 5291.09 18177.91 9583.24 7594.20 9458.37 15395.40 16785.35 7591.41 7892.27 179
GST-MVS84.63 7584.29 7585.66 9792.82 7965.27 15593.04 11493.13 9773.20 16578.89 12194.18 9559.41 14597.85 4581.45 10792.48 6293.86 132
EI-MVSNet-Vis-set83.77 9483.67 8084.06 15492.79 8263.56 20591.76 17294.81 3179.65 6677.87 13394.09 9663.35 10297.90 4279.35 12379.36 18790.74 205
testdata81.34 22289.02 17057.72 30689.84 22758.65 33885.32 5994.09 9657.03 16693.28 24469.34 20390.56 9093.03 155
ETV-MVS86.01 5186.11 4885.70 9690.21 14167.02 11593.43 10391.92 14181.21 4584.13 7194.07 9860.93 12895.63 15689.28 4489.81 9494.46 109
MVS_111021_HR86.19 4885.80 5587.37 4393.17 7069.79 4693.99 7093.76 6979.08 7978.88 12493.99 9962.25 11598.15 3685.93 7391.15 8394.15 117
HPM-MVScopyleft83.25 10382.95 9884.17 15292.25 9262.88 22590.91 20691.86 14670.30 24277.12 14393.96 10056.75 17396.28 12882.04 10291.34 8193.34 144
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon82.73 11281.65 11885.98 8397.31 467.06 11295.15 3791.99 13869.08 25976.50 15093.89 10154.48 20198.20 3570.76 19085.66 13492.69 163
EI-MVSNet-UG-set83.14 10582.96 9783.67 16592.28 9163.19 21591.38 18894.68 3779.22 7476.60 14893.75 10262.64 11097.76 4878.07 13678.01 19890.05 214
CANet_DTU84.09 8783.52 8185.81 9090.30 13966.82 11891.87 16589.01 26385.27 1186.09 4993.74 10347.71 26696.98 10077.90 13789.78 9693.65 137
test_cas_vis1_n_192080.45 15080.61 13579.97 25878.25 34257.01 31894.04 6888.33 28779.06 8082.81 7993.70 10438.65 31091.63 29590.82 3779.81 18291.27 200
dcpmvs_287.37 3087.55 2986.85 5595.04 3268.20 8490.36 22590.66 19579.37 7181.20 9093.67 10574.73 1596.55 12090.88 3692.00 6895.82 46
ET-MVSNet_ETH3D84.01 8883.15 9686.58 6790.78 13270.89 2994.74 4894.62 4081.44 4058.19 32793.64 10673.64 2392.35 28082.66 9778.66 19596.50 26
DeepC-MVS77.85 385.52 6285.24 6286.37 7588.80 17666.64 12392.15 14893.68 7481.07 4676.91 14693.64 10662.59 11198.44 3185.50 7492.84 5894.03 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPM_NR82.97 10881.84 11686.37 7594.10 4466.76 12187.66 28092.84 10769.96 24674.07 17593.57 10863.10 10797.50 6570.66 19290.58 8994.85 84
PMMVS81.98 12682.04 11381.78 21289.76 15056.17 32291.13 20290.69 19277.96 9380.09 10793.57 10846.33 27694.99 18081.41 10887.46 11594.17 115
LFMVS84.34 7982.73 10389.18 1294.76 3373.25 994.99 4391.89 14471.90 20082.16 8493.49 11047.98 26297.05 9182.55 9984.82 13897.25 9
ACMMPcopyleft81.49 13180.67 13383.93 15791.71 11062.90 22492.13 14992.22 13071.79 20771.68 20693.49 11050.32 23896.96 10378.47 13384.22 14791.93 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS79.59 16579.16 16080.89 23791.54 11659.80 28292.10 15188.54 28360.42 32772.96 18493.28 11248.27 25892.80 26078.89 13086.50 12990.06 213
MVS_111021_LR82.02 12581.52 11983.51 16988.42 18462.88 22589.77 24388.93 26776.78 11375.55 15993.10 11350.31 23995.38 16983.82 9287.02 11992.26 180
131480.70 14578.95 16285.94 8587.77 20767.56 9987.91 27692.55 12072.17 19467.44 26093.09 11450.27 24097.04 9471.68 18487.64 11393.23 148
PVSNet_Blended86.73 4086.86 3986.31 7893.76 4967.53 10196.33 1793.61 7682.34 2981.00 9593.08 11563.19 10497.29 7887.08 6391.38 7994.13 118
VNet86.20 4785.65 5787.84 2993.92 4669.99 3895.73 2495.94 778.43 8886.00 5093.07 11658.22 15597.00 9685.22 7684.33 14396.52 22
HPM-MVS_fast80.25 15479.55 15382.33 19591.55 11559.95 28091.32 19389.16 25465.23 29074.71 16793.07 11647.81 26595.74 14974.87 15988.23 10691.31 198
PAPM85.89 5585.46 5987.18 4788.20 19472.42 1492.41 14192.77 10982.11 3180.34 10493.07 11668.27 4795.02 17878.39 13493.59 4894.09 120
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8683.87 7392.94 11964.34 8596.94 10575.19 15294.09 3795.66 49
新几何184.73 12992.32 9064.28 18391.46 16659.56 33479.77 11092.90 12056.95 17196.57 11863.40 25992.91 5793.34 144
TSAR-MVS + MP.88.11 1988.64 1786.54 6991.73 10968.04 8790.36 22593.55 7982.89 2191.29 1692.89 12172.27 3196.03 14087.99 5294.77 2695.54 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_yl84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
DCV-MVSNet84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
API-MVS82.28 11980.53 13787.54 4096.13 2270.59 3293.63 9291.04 18765.72 28675.45 16092.83 12456.11 18298.89 2064.10 25589.75 9793.15 150
Effi-MVS+83.82 9282.76 10286.99 5489.56 15469.40 5291.35 19186.12 31872.59 17983.22 7692.81 12559.60 14296.01 14281.76 10487.80 11195.56 53
TAPA-MVS70.22 1274.94 24573.53 24179.17 27490.40 13752.07 34289.19 25689.61 23762.69 31170.07 22392.67 12648.89 25694.32 20638.26 36779.97 18191.12 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive84.28 8083.83 7885.61 9887.40 21368.02 8890.88 20989.24 24980.54 5081.64 8792.52 12759.83 13994.52 20287.32 6085.11 13694.29 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
原ACMM184.42 14393.21 6864.27 18493.40 8865.39 28779.51 11392.50 12858.11 15796.69 11465.27 24993.96 3992.32 174
baseline85.01 6984.44 7386.71 6188.33 18868.73 6890.24 23091.82 15081.05 4781.18 9192.50 12863.69 9496.08 13784.45 8686.71 12695.32 64
3Dnovator+73.60 782.10 12480.60 13686.60 6590.89 12966.80 12095.20 3593.44 8574.05 14767.42 26192.49 13049.46 24797.65 5570.80 18991.68 7395.33 62
3Dnovator73.91 682.69 11580.82 12988.31 2589.57 15371.26 2292.60 13394.39 5178.84 8367.89 25592.48 13148.42 25798.52 2868.80 21194.40 3595.15 74
test22289.77 14961.60 25089.55 24689.42 24356.83 34777.28 14192.43 13252.76 21991.14 8493.09 152
sss82.71 11482.38 11083.73 16289.25 16359.58 28592.24 14594.89 2877.96 9379.86 10992.38 13356.70 17497.05 9177.26 14080.86 17594.55 101
AdaColmapbinary78.94 17777.00 19384.76 12896.34 1765.86 14292.66 13087.97 29962.18 31470.56 21592.37 13443.53 29297.35 7464.50 25382.86 15391.05 203
VDD-MVS83.06 10681.81 11786.81 5890.86 13067.70 9595.40 3091.50 16475.46 12881.78 8692.34 13540.09 30497.13 8986.85 6682.04 16495.60 51
testing22285.18 6684.69 7186.63 6492.91 7669.91 4292.61 13295.80 980.31 5580.38 10392.27 13668.73 4495.19 17575.94 14783.27 15194.81 91
CLD-MVS82.73 11282.35 11183.86 15887.90 20167.65 9795.45 2992.18 13385.06 1272.58 19192.27 13652.46 22295.78 14684.18 8779.06 19088.16 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
h-mvs3383.01 10782.56 10784.35 14789.34 15862.02 24092.72 12493.76 6981.45 3882.73 8092.25 13860.11 13597.13 8987.69 5562.96 31193.91 129
testing1186.71 4186.44 4287.55 3993.54 5971.35 2193.65 9095.58 1181.36 4380.69 9892.21 13972.30 3096.46 12585.18 7883.43 14994.82 90
OMC-MVS78.67 18677.91 17780.95 23585.76 24657.40 31388.49 26788.67 27873.85 15372.43 19692.10 14049.29 25094.55 20072.73 17177.89 19990.91 204
casdiffmvspermissive85.37 6384.87 6986.84 5688.25 19169.07 6093.04 11491.76 15181.27 4480.84 9792.07 14164.23 8696.06 13884.98 8187.43 11695.39 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft70.45 1178.54 18875.92 20786.41 7485.93 24471.68 1892.74 12392.51 12166.49 28064.56 28591.96 14243.88 29198.10 3754.61 30290.65 8889.44 226
testing9986.01 5185.47 5887.63 3793.62 5571.25 2393.47 10195.23 1880.42 5480.60 10091.95 14371.73 3596.50 12380.02 11982.22 16195.13 75
testing9185.93 5385.31 6187.78 3193.59 5771.47 1993.50 9895.08 2580.26 5680.53 10191.93 14470.43 3896.51 12280.32 11782.13 16395.37 59
Vis-MVSNet (Re-imp)79.24 17179.57 15078.24 28688.46 18252.29 34190.41 22389.12 25774.24 14469.13 23291.91 14565.77 6890.09 31859.00 28888.09 10892.33 173
gm-plane-assit88.42 18467.04 11478.62 8791.83 14697.37 7276.57 143
Vis-MVSNetpermissive80.92 14279.98 14583.74 16088.48 18161.80 24493.44 10288.26 29273.96 15177.73 13491.76 14749.94 24394.76 18665.84 24190.37 9194.65 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM79.95 16177.39 18787.64 3389.63 15271.41 2093.30 10593.70 7365.34 28967.39 26391.75 14847.83 26498.96 1657.71 29289.81 9492.54 168
IS-MVSNet80.14 15679.41 15582.33 19587.91 20060.08 27991.97 16188.27 29072.90 17571.44 20991.73 14961.44 12293.66 23862.47 26986.53 12893.24 147
baseline181.84 12781.03 12784.28 15091.60 11266.62 12491.08 20391.66 15881.87 3374.86 16591.67 15069.98 4194.92 18471.76 18264.75 29991.29 199
ETVMVS84.22 8483.71 7985.76 9392.58 8768.25 8292.45 14095.53 1479.54 6779.46 11491.64 15170.29 3994.18 21569.16 20682.76 15794.84 87
test_fmvs174.07 25273.69 23975.22 31278.91 33447.34 36689.06 26074.69 36863.68 29979.41 11591.59 15224.36 36987.77 33685.22 7676.26 21790.55 209
casdiffmvs_mvgpermissive85.66 6085.18 6387.09 5088.22 19369.35 5693.74 8791.89 14481.47 3780.10 10691.45 15364.80 8096.35 12687.23 6287.69 11295.58 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250683.29 10182.92 9984.37 14688.39 18663.18 21692.01 15791.35 16977.66 10078.49 12991.42 15464.58 8395.09 17773.19 16489.23 9894.85 84
ECVR-MVScopyleft81.29 13480.38 14084.01 15688.39 18661.96 24292.56 13886.79 31177.66 10076.63 14791.42 15446.34 27595.24 17474.36 16189.23 9894.85 84
test111180.84 14380.02 14283.33 17387.87 20260.76 26592.62 13186.86 31077.86 9675.73 15491.39 15646.35 27494.70 19272.79 17088.68 10494.52 105
TR-MVS78.77 18377.37 18882.95 18090.49 13560.88 26193.67 8990.07 21870.08 24574.51 16991.37 15745.69 28195.70 15560.12 28280.32 17992.29 175
EPNet_dtu78.80 18179.26 15977.43 29488.06 19649.71 35491.96 16291.95 14077.67 9976.56 14991.28 15858.51 15290.20 31656.37 29680.95 17492.39 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs1_n72.69 27171.92 26274.99 31571.15 37047.08 36887.34 28575.67 36363.48 30178.08 13291.17 15920.16 38087.87 33384.65 8475.57 22190.01 215
BH-RMVSNet79.46 16977.65 17984.89 12091.68 11165.66 14593.55 9588.09 29572.93 17273.37 18191.12 16046.20 27896.12 13356.28 29785.61 13592.91 159
thisisatest051583.41 9982.49 10886.16 8089.46 15768.26 8093.54 9694.70 3674.31 14375.75 15390.92 16172.62 2896.52 12169.64 19881.50 17093.71 135
VDDNet80.50 14878.26 17087.21 4686.19 23669.79 4694.48 5191.31 17060.42 32779.34 11690.91 16238.48 31396.56 11982.16 10081.05 17395.27 69
GG-mvs-BLEND86.53 7091.91 10569.67 5175.02 36394.75 3378.67 12890.85 16377.91 794.56 19972.25 17693.74 4495.36 61
CNLPA74.31 25072.30 25880.32 24391.49 11761.66 24990.85 21080.72 35256.67 34863.85 29390.64 16446.75 27090.84 30653.79 30675.99 21988.47 238
PCF-MVS73.15 979.29 17077.63 18084.29 14986.06 23965.96 14087.03 28791.10 18069.86 24869.79 22990.64 16457.54 16296.59 11664.37 25482.29 15890.32 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t79.17 17277.67 17883.68 16495.32 2965.53 15192.85 12091.60 16063.49 30067.92 25290.63 16646.65 27195.72 15467.01 22883.54 14889.79 218
PLCcopyleft68.80 1475.23 24173.68 24079.86 26192.93 7558.68 29890.64 21888.30 28860.90 32464.43 28990.53 16742.38 29794.57 19756.52 29576.54 21586.33 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet73.49 880.05 15878.63 16584.31 14890.92 12864.97 16492.47 13991.05 18679.18 7572.43 19690.51 16837.05 33094.06 22168.06 21586.00 13193.90 131
hse-mvs281.12 13881.11 12681.16 22686.52 23057.48 31189.40 25191.16 17681.45 3882.73 8090.49 16960.11 13594.58 19587.69 5560.41 33891.41 193
AUN-MVS78.37 19077.43 18381.17 22586.60 22957.45 31289.46 25091.16 17674.11 14674.40 17090.49 16955.52 18894.57 19774.73 16060.43 33791.48 191
baseline283.68 9883.42 8984.48 14287.37 21466.00 13890.06 23495.93 879.71 6569.08 23490.39 17177.92 696.28 12878.91 12981.38 17191.16 201
EPP-MVSNet81.79 12881.52 11982.61 18888.77 17760.21 27793.02 11693.66 7568.52 26572.90 18690.39 17172.19 3294.96 18174.93 15679.29 18992.67 164
NP-MVS87.41 21263.04 21790.30 173
HQP-MVS81.14 13680.64 13482.64 18787.54 20963.66 20294.06 6491.70 15679.80 6274.18 17190.30 17351.63 22995.61 15877.63 13878.90 19188.63 232
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20790.26 17543.22 29475.05 38174.26 16262.70 31487.25 257
Anonymous20240521177.96 19775.33 21685.87 8793.73 5464.52 16994.85 4585.36 32462.52 31276.11 15190.18 17629.43 36097.29 7868.51 21377.24 21095.81 47
test_vis1_n71.63 27770.73 27374.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16290.17 17720.40 37885.76 34884.59 8574.42 22889.87 216
BH-w/o80.49 14979.30 15884.05 15590.83 13164.36 18193.60 9389.42 24374.35 14269.09 23390.15 17855.23 19195.61 15864.61 25286.43 13092.17 182
EI-MVSNet78.97 17678.22 17181.25 22385.33 25162.73 22889.53 24893.21 9172.39 18772.14 19990.13 17960.99 12594.72 18967.73 22072.49 24486.29 271
CVMVSNet74.04 25374.27 23073.33 32785.33 25143.94 37789.53 24888.39 28554.33 35570.37 21990.13 17949.17 25284.05 35761.83 27379.36 18791.99 185
XVG-OURS-SEG-HR74.70 24773.08 24579.57 26878.25 34257.33 31480.49 33587.32 30363.22 30468.76 24290.12 18144.89 28891.59 29670.55 19374.09 23189.79 218
OPM-MVS79.00 17578.09 17281.73 21383.52 28263.83 19291.64 17890.30 20976.36 12071.97 20189.93 18246.30 27795.17 17675.10 15377.70 20186.19 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended_VisFu83.97 8983.50 8385.39 10490.02 14466.59 12693.77 8591.73 15277.43 10677.08 14589.81 18363.77 9396.97 10279.67 12188.21 10792.60 166
CDS-MVSNet81.43 13280.74 13183.52 16786.26 23564.45 17392.09 15290.65 19675.83 12473.95 17789.81 18363.97 8992.91 25671.27 18582.82 15493.20 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS74.25 25172.46 25779.63 26678.45 34057.59 31080.33 33787.39 30263.86 29768.76 24289.62 18540.50 30391.72 29369.00 20874.25 22989.58 221
dmvs_re76.93 21275.36 21581.61 21687.78 20660.71 26880.00 34387.99 29779.42 6969.02 23689.47 18646.77 26994.32 20663.38 26074.45 22789.81 217
UWE-MVS80.81 14481.01 12880.20 24989.33 16057.05 31691.91 16394.71 3575.67 12575.01 16489.37 18763.13 10691.44 30367.19 22682.80 15692.12 184
GeoE78.90 17877.43 18383.29 17488.95 17262.02 24092.31 14286.23 31670.24 24371.34 21089.27 18854.43 20294.04 22463.31 26180.81 17793.81 134
thisisatest053081.15 13580.07 14184.39 14588.26 19065.63 14791.40 18494.62 4071.27 22570.93 21289.18 18972.47 2996.04 13965.62 24476.89 21391.49 190
UA-Net80.02 15979.65 14981.11 22889.33 16057.72 30686.33 29489.00 26677.44 10581.01 9489.15 19059.33 14695.90 14361.01 27684.28 14589.73 220
HQP_MVS80.34 15279.75 14882.12 20586.94 22462.42 23193.13 11091.31 17078.81 8472.53 19289.14 19150.66 23695.55 16376.74 14178.53 19688.39 239
plane_prior489.14 191
thres20079.66 16478.33 16883.66 16692.54 8865.82 14493.06 11296.31 374.90 13773.30 18288.66 19359.67 14195.61 15847.84 33078.67 19489.56 223
BH-untuned78.68 18477.08 19083.48 17189.84 14763.74 19592.70 12688.59 28171.57 21866.83 27088.65 19451.75 22795.39 16859.03 28784.77 13991.32 197
TAMVS80.37 15179.45 15483.13 17885.14 25663.37 21091.23 19790.76 19174.81 13872.65 18988.49 19560.63 13092.95 25169.41 20281.95 16693.08 153
LPG-MVS_test75.82 23374.58 22479.56 26984.31 27159.37 28890.44 22189.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
LGP-MVS_train79.56 26984.31 27159.37 28889.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
iter_conf0583.27 10282.70 10484.98 11893.32 6471.84 1794.16 5981.76 34882.74 2373.83 17888.40 19872.77 2794.61 19482.10 10175.21 22288.48 236
VPNet78.82 18077.53 18282.70 18584.52 26666.44 12893.93 7392.23 12780.46 5272.60 19088.38 19949.18 25193.13 24672.47 17563.97 30888.55 235
FIs79.47 16879.41 15579.67 26585.95 24159.40 28791.68 17693.94 6378.06 9268.96 23888.28 20066.61 6191.77 29266.20 23874.99 22387.82 244
CHOSEN 1792x268884.98 7083.45 8689.57 1089.94 14675.14 592.07 15492.32 12481.87 3375.68 15588.27 20160.18 13498.60 2780.46 11690.27 9294.96 81
tfpn200view978.79 18277.43 18382.88 18192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20388.83 228
Fast-Effi-MVS+81.14 13680.01 14384.51 14190.24 14065.86 14294.12 6389.15 25573.81 15575.37 16188.26 20257.26 16394.53 20166.97 22984.92 13793.15 150
thres40078.68 18477.43 18382.43 19192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20387.48 248
nrg03080.93 14179.86 14684.13 15383.69 27968.83 6693.23 10791.20 17475.55 12775.06 16388.22 20563.04 10894.74 18881.88 10366.88 28188.82 230
Syy-MVS69.65 29169.52 28370.03 34687.87 20243.21 37988.07 27289.01 26372.91 17363.11 29988.10 20645.28 28585.54 34922.07 39269.23 26481.32 341
myMVS_eth3d72.58 27372.74 25172.10 33987.87 20249.45 35688.07 27289.01 26372.91 17363.11 29988.10 20663.63 9585.54 34932.73 38169.23 26481.32 341
F-COLMAP70.66 28168.44 28977.32 29686.37 23455.91 32488.00 27486.32 31356.94 34657.28 33588.07 20833.58 34292.49 27451.02 31368.37 27183.55 312
tttt051779.50 16778.53 16782.41 19487.22 21761.43 25389.75 24494.76 3269.29 25467.91 25388.06 20972.92 2595.63 15662.91 26573.90 23490.16 212
HY-MVS76.49 584.28 8083.36 9287.02 5392.22 9367.74 9484.65 30194.50 4379.15 7682.23 8387.93 21066.88 5896.94 10580.53 11582.20 16296.39 30
thres100view90078.37 19077.01 19282.46 19091.89 10663.21 21491.19 20196.33 172.28 19070.45 21887.89 21160.31 13295.32 17045.16 34177.58 20388.83 228
thres600view778.00 19576.66 19782.03 21091.93 10363.69 20091.30 19496.33 172.43 18570.46 21787.89 21160.31 13294.92 18442.64 35376.64 21487.48 248
dmvs_testset65.55 32166.45 29762.86 36279.87 31922.35 40576.55 35771.74 37577.42 10755.85 33887.77 21351.39 23180.69 37731.51 38765.92 28885.55 292
test0.0.03 172.76 26772.71 25372.88 33180.25 31547.99 36291.22 19889.45 24171.51 22162.51 30787.66 21453.83 20785.06 35350.16 31767.84 27785.58 290
FC-MVSNet-test77.99 19678.08 17377.70 28984.89 26155.51 32790.27 22893.75 7276.87 10966.80 27187.59 21565.71 6990.23 31562.89 26673.94 23287.37 251
TESTMET0.1,182.41 11781.98 11583.72 16388.08 19563.74 19592.70 12693.77 6879.30 7277.61 13787.57 21658.19 15694.08 21973.91 16386.68 12793.33 146
LS3D69.17 29466.40 29877.50 29291.92 10456.12 32385.12 29880.37 35446.96 37356.50 33787.51 21737.25 32593.71 23632.52 38379.40 18682.68 330
Anonymous2024052976.84 21674.15 23284.88 12191.02 12564.95 16593.84 8191.09 18153.57 35673.00 18387.42 21835.91 33497.32 7669.14 20772.41 24692.36 172
Test_1112_low_res79.56 16678.60 16682.43 19188.24 19260.39 27492.09 15287.99 29772.10 19671.84 20287.42 21864.62 8293.04 24765.80 24277.30 20893.85 133
ACMP71.68 1075.58 23874.23 23179.62 26784.97 26059.64 28390.80 21289.07 26170.39 24162.95 30287.30 22038.28 31493.87 23372.89 16771.45 25285.36 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WB-MVSnew77.14 20976.18 20480.01 25586.18 23763.24 21391.26 19594.11 6071.72 21073.52 18087.29 22145.14 28693.00 24956.98 29479.42 18583.80 310
CHOSEN 280x42077.35 20676.95 19478.55 28187.07 22162.68 22969.71 37282.95 34568.80 26171.48 20887.27 22266.03 6584.00 35976.47 14482.81 15588.95 227
SDMVSNet80.26 15378.88 16384.40 14489.25 16367.63 9885.35 29793.02 10076.77 11470.84 21387.12 22347.95 26396.09 13485.04 7974.55 22489.48 224
sd_testset77.08 21175.37 21482.20 20189.25 16362.11 23982.06 32289.09 25976.77 11470.84 21387.12 22341.43 30095.01 17967.23 22574.55 22489.48 224
test-LLR80.10 15779.56 15181.72 21486.93 22661.17 25592.70 12691.54 16171.51 22175.62 15686.94 22553.83 20792.38 27772.21 17784.76 14091.60 188
test-mter79.96 16079.38 15781.72 21486.93 22661.17 25592.70 12691.54 16173.85 15375.62 15686.94 22549.84 24592.38 27772.21 17784.76 14091.60 188
testing370.38 28570.83 27069.03 35085.82 24543.93 37890.72 21590.56 19868.06 26760.24 31586.82 22764.83 7984.12 35526.33 38864.10 30579.04 362
UniMVSNet_NR-MVSNet78.15 19477.55 18179.98 25684.46 26860.26 27592.25 14493.20 9377.50 10468.88 23986.61 22866.10 6492.13 28466.38 23562.55 31587.54 246
MVS_Test84.16 8683.20 9387.05 5291.56 11469.82 4589.99 23992.05 13577.77 9782.84 7886.57 22963.93 9096.09 13474.91 15789.18 10095.25 72
tt080573.07 26170.73 27380.07 25278.37 34157.05 31687.78 27892.18 13361.23 32367.04 26686.49 23031.35 35494.58 19565.06 25067.12 27988.57 234
DU-MVS76.86 21375.84 20879.91 25982.96 28860.26 27591.26 19591.54 16176.46 11968.88 23986.35 23156.16 18092.13 28466.38 23562.55 31587.35 253
NR-MVSNet76.05 22774.59 22380.44 24182.96 28862.18 23890.83 21191.73 15277.12 10860.96 31286.35 23159.28 14791.80 29160.74 27761.34 33087.35 253
mvsmamba76.85 21575.71 21180.25 24783.07 28759.16 29291.44 18080.64 35376.84 11167.95 25186.33 23346.17 27994.24 21376.06 14672.92 24087.36 252
UGNet79.87 16278.68 16483.45 17289.96 14561.51 25192.13 14990.79 19076.83 11278.85 12686.33 23338.16 31696.17 13167.93 21887.17 11892.67 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet75.86 23274.52 22679.89 26082.44 29360.64 27191.37 18991.37 16876.63 11667.65 25886.21 23552.37 22391.55 29761.84 27260.81 33387.48 248
cascas78.18 19375.77 20985.41 10387.14 21969.11 5992.96 11791.15 17866.71 27870.47 21686.07 23637.49 32496.48 12470.15 19579.80 18390.65 206
HyFIR lowres test81.03 14079.56 15185.43 10287.81 20568.11 8690.18 23190.01 22370.65 23872.95 18586.06 23763.61 9794.50 20375.01 15579.75 18493.67 136
ACMM69.62 1374.34 24972.73 25279.17 27484.25 27357.87 30490.36 22589.93 22463.17 30665.64 27586.04 23837.79 32294.10 21765.89 24071.52 25185.55 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS77.94 19876.44 19982.43 19182.60 29164.44 17492.01 15791.83 14973.59 16170.00 22585.82 23954.43 20294.76 18669.63 19968.02 27488.10 243
IB-MVS77.80 482.18 12080.46 13987.35 4489.14 16870.28 3695.59 2795.17 2178.85 8270.19 22285.82 23970.66 3797.67 5172.19 17966.52 28494.09 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER82.47 11682.05 11283.74 16092.68 8469.01 6291.90 16493.21 9179.83 6172.14 19985.71 24174.72 1694.72 18975.72 14872.49 24487.50 247
WR-MVS76.76 21875.74 21079.82 26284.60 26462.27 23792.60 13392.51 12176.06 12167.87 25685.34 24256.76 17290.24 31462.20 27063.69 31086.94 261
DP-MVS69.90 28966.48 29680.14 25095.36 2862.93 22189.56 24576.11 36150.27 36657.69 33385.23 24339.68 30595.73 15033.35 37771.05 25581.78 339
PVSNet_BlendedMVS83.38 10083.43 8783.22 17693.76 4967.53 10194.06 6493.61 7679.13 7781.00 9585.14 24463.19 10497.29 7887.08 6373.91 23384.83 302
ab-mvs80.18 15578.31 16985.80 9188.44 18365.49 15383.00 31892.67 11371.82 20677.36 14085.01 24554.50 19896.59 11676.35 14575.63 22095.32 64
VPA-MVSNet79.03 17478.00 17482.11 20885.95 24164.48 17293.22 10894.66 3875.05 13574.04 17684.95 24652.17 22493.52 24074.90 15867.04 28088.32 241
RRT_MVS74.44 24872.97 24878.84 27982.36 29457.66 30889.83 24288.79 27470.61 23964.58 28484.89 24739.24 30692.65 26970.11 19666.34 28586.21 274
Fast-Effi-MVS+-dtu75.04 24373.37 24380.07 25280.86 30559.52 28691.20 20085.38 32371.90 20065.20 27884.84 24841.46 29992.97 25066.50 23472.96 23987.73 245
UniMVSNet (Re)77.58 20376.78 19579.98 25684.11 27460.80 26291.76 17293.17 9576.56 11869.93 22884.78 24963.32 10392.36 27964.89 25162.51 31786.78 263
mvs_anonymous81.36 13379.99 14485.46 10190.39 13868.40 7586.88 29190.61 19774.41 14070.31 22184.67 25063.79 9292.32 28173.13 16585.70 13395.67 48
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36246.94 37458.96 32484.59 25131.40 35382.00 37347.76 33160.33 33986.04 280
PS-MVSNAJss77.26 20776.31 20180.13 25180.64 31059.16 29290.63 22091.06 18572.80 17668.58 24584.57 25253.55 21193.96 22972.97 16671.96 24887.27 256
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25384.54 25315.35 38581.22 37675.65 14966.16 28682.88 323
UniMVSNet_ETH3D72.74 26870.53 27579.36 27178.62 33956.64 32085.01 29989.20 25163.77 29864.84 28284.44 25434.05 34191.86 29063.94 25670.89 25689.57 222
MS-PatchMatch77.90 20076.50 19882.12 20585.99 24069.95 4191.75 17492.70 11173.97 15062.58 30684.44 25441.11 30195.78 14663.76 25892.17 6580.62 349
MSDG69.54 29265.73 30280.96 23485.11 25863.71 19884.19 30383.28 34456.95 34554.50 34284.03 25631.50 35296.03 14042.87 35169.13 26683.14 322
GA-MVS78.33 19276.23 20284.65 13483.65 28066.30 13291.44 18090.14 21676.01 12270.32 22084.02 25742.50 29694.72 18970.98 18777.00 21292.94 158
miper_enhance_ethall78.86 17977.97 17581.54 21888.00 19965.17 15891.41 18289.15 25575.19 13368.79 24183.98 25867.17 5692.82 25872.73 17165.30 29086.62 268
pmmvs473.92 25571.81 26480.25 24779.17 32865.24 15687.43 28387.26 30567.64 27263.46 29683.91 25948.96 25591.53 30162.94 26465.49 28983.96 307
pmmvs573.35 25971.52 26678.86 27878.64 33860.61 27291.08 20386.90 30867.69 26963.32 29783.64 26044.33 29090.53 30862.04 27166.02 28785.46 294
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35960.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
jajsoiax73.05 26271.51 26777.67 29077.46 34854.83 33188.81 26290.04 22169.13 25862.85 30483.51 26231.16 35592.75 26270.83 18869.80 25785.43 295
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
v2v48277.42 20575.65 21282.73 18480.38 31267.13 11191.85 16790.23 21375.09 13469.37 23083.39 26453.79 20994.44 20471.77 18165.00 29686.63 267
mvs_tets72.71 26971.11 26877.52 29177.41 34954.52 33388.45 26889.76 22968.76 26362.70 30583.26 26529.49 35992.71 26370.51 19469.62 25985.34 297
FMVSNet377.73 20176.04 20582.80 18291.20 12468.99 6391.87 16591.99 13873.35 16467.04 26683.19 26656.62 17692.14 28359.80 28469.34 26187.28 255
FA-MVS(test-final)79.12 17377.23 18984.81 12690.54 13463.98 19081.35 33091.71 15471.09 22974.85 16682.94 26752.85 21897.05 9167.97 21681.73 16993.41 142
MVP-Stereo77.12 21076.23 20279.79 26381.72 30066.34 13189.29 25290.88 18970.56 24062.01 30982.88 26849.34 24894.13 21665.55 24693.80 4278.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL72.06 27469.98 27778.28 28489.51 15655.70 32683.49 30883.39 34361.24 32263.72 29482.76 26934.77 33893.03 24853.37 30977.59 20286.12 279
CP-MVSNet70.50 28369.91 28072.26 33680.71 30851.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24182.30 37151.28 31259.28 34183.46 316
cl2277.94 19876.78 19581.42 22087.57 20864.93 16690.67 21688.86 27072.45 18467.63 25982.68 27164.07 8792.91 25671.79 18065.30 29086.44 269
miper_ehance_all_eth77.60 20276.44 19981.09 23285.70 24864.41 17790.65 21788.64 28072.31 18867.37 26482.52 27264.77 8192.64 27070.67 19165.30 29086.24 273
PEN-MVS69.46 29368.56 28772.17 33879.27 32649.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26883.54 36248.42 32557.12 34683.25 319
PS-CasMVS69.86 29069.13 28572.07 34080.35 31350.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27282.24 37250.69 31459.02 34283.39 318
FMVSNet276.07 22474.01 23582.26 19988.85 17367.66 9691.33 19291.61 15970.84 23365.98 27382.25 27548.03 25992.00 28858.46 28968.73 26987.10 258
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34649.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27383.87 36044.97 34455.17 35382.73 326
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32245.54 37744.76 37682.14 27735.40 33690.14 31763.18 26374.54 22681.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_djsdf73.76 25872.56 25577.39 29577.00 35153.93 33589.07 25890.69 19265.80 28463.92 29182.03 27843.14 29592.67 26672.83 16868.53 27085.57 291
v114476.73 21974.88 21982.27 19780.23 31666.60 12591.68 17690.21 21573.69 15869.06 23581.89 27952.73 22094.40 20569.21 20565.23 29385.80 286
V4276.46 22174.55 22582.19 20279.14 33067.82 9290.26 22989.42 24373.75 15668.63 24481.89 27951.31 23294.09 21871.69 18364.84 29784.66 303
pm-mvs172.89 26571.09 26978.26 28579.10 33157.62 30990.80 21289.30 24767.66 27062.91 30381.78 28149.11 25492.95 25160.29 28158.89 34384.22 306
IterMVS-LS76.49 22075.18 21880.43 24284.49 26762.74 22790.64 21888.80 27272.40 18665.16 27981.72 28260.98 12692.27 28267.74 21964.65 30186.29 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth75.96 23174.40 22880.66 23884.66 26363.02 21889.28 25388.27 29071.88 20265.73 27481.65 28359.45 14392.81 25968.13 21460.53 33586.14 276
c3_l76.83 21775.47 21380.93 23685.02 25964.18 18790.39 22488.11 29471.66 21166.65 27281.64 28463.58 9992.56 27169.31 20462.86 31286.04 280
DIV-MVS_self_test76.07 22474.67 22080.28 24585.14 25661.75 24790.12 23288.73 27571.16 22665.42 27781.60 28561.15 12392.94 25566.54 23262.16 32186.14 276
cl____76.07 22474.67 22080.28 24585.15 25561.76 24690.12 23288.73 27571.16 22665.43 27681.57 28661.15 12392.95 25166.54 23262.17 31986.13 278
CostFormer82.33 11881.15 12285.86 8889.01 17168.46 7482.39 32193.01 10175.59 12680.25 10581.57 28672.03 3394.96 18179.06 12777.48 20694.16 116
Effi-MVS+-dtu76.14 22375.28 21778.72 28083.22 28455.17 32989.87 24087.78 30075.42 12967.98 25081.43 28845.08 28792.52 27375.08 15471.63 24988.48 236
v119275.98 22973.92 23682.15 20379.73 32066.24 13491.22 19889.75 23072.67 17868.49 24681.42 28949.86 24494.27 21067.08 22765.02 29585.95 283
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30253.00 33983.75 30675.53 36648.34 37148.81 36581.40 29024.14 37090.30 31032.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419276.05 22774.03 23482.12 20579.50 32466.55 12791.39 18689.71 23672.30 18968.17 24881.33 29151.75 22794.03 22667.94 21764.19 30385.77 287
AllTest61.66 33558.06 33972.46 33479.57 32151.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32151.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
v192192075.63 23773.49 24282.06 20979.38 32566.35 13091.07 20589.48 23971.98 19767.99 24981.22 29449.16 25393.90 23266.56 23164.56 30285.92 285
v124075.21 24272.98 24781.88 21179.20 32766.00 13890.75 21489.11 25871.63 21667.41 26281.22 29447.36 26793.87 23365.46 24764.72 30085.77 287
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 32062.03 31658.91 32581.21 29620.38 37991.15 30560.69 27868.18 27283.16 321
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31745.11 37854.27 34381.15 29736.91 33180.01 37948.79 32457.02 34782.19 336
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26557.10 31588.08 27180.79 35158.59 33953.00 34881.09 29826.63 36792.95 25146.51 33561.69 32880.82 346
v14876.19 22274.47 22781.36 22180.05 31864.44 17491.75 17490.23 21373.68 15967.13 26580.84 29955.92 18593.86 23568.95 20961.73 32685.76 289
WR-MVS_H70.59 28269.94 27972.53 33381.03 30451.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18683.45 36346.33 33758.58 34582.72 327
Baseline_NR-MVSNet73.99 25472.83 24977.48 29380.78 30759.29 29191.79 16984.55 33168.85 26068.99 23780.70 30056.16 18092.04 28762.67 26760.98 33281.11 343
Anonymous2023121173.08 26070.39 27681.13 22790.62 13363.33 21191.40 18490.06 22051.84 36164.46 28880.67 30236.49 33294.07 22063.83 25764.17 30485.98 282
PVSNet_068.08 1571.81 27568.32 29182.27 19784.68 26262.31 23688.68 26490.31 20875.84 12357.93 33280.65 30337.85 32194.19 21469.94 19729.05 39590.31 211
tpm279.80 16377.95 17685.34 10788.28 18968.26 8081.56 32791.42 16770.11 24477.59 13880.50 30467.40 5594.26 21267.34 22377.35 20793.51 140
TransMVSNet (Re)70.07 28767.66 29377.31 29780.62 31159.13 29491.78 17184.94 32865.97 28360.08 31780.44 30550.78 23591.87 28948.84 32345.46 37380.94 345
USDC67.43 31264.51 31376.19 30777.94 34655.29 32878.38 35085.00 32773.17 16648.36 36680.37 30621.23 37692.48 27552.15 31164.02 30780.81 347
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27651.55 34467.08 37983.53 34058.78 33754.94 34180.31 30734.54 33993.23 24540.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v875.35 23973.26 24481.61 21680.67 30966.82 11889.54 24789.27 24871.65 21263.30 29880.30 30854.99 19594.06 22167.33 22462.33 31883.94 308
GBi-Net75.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
test175.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
FMVSNet172.71 26969.91 28081.10 22983.60 28165.11 16090.01 23690.32 20563.92 29663.56 29580.25 30936.35 33391.54 29854.46 30366.75 28286.64 264
LCM-MVSNet-Re72.93 26471.84 26376.18 30888.49 18048.02 36180.07 34270.17 37873.96 15152.25 35180.09 31249.98 24288.24 33067.35 22284.23 14692.28 176
v1074.77 24672.54 25681.46 21980.33 31466.71 12289.15 25789.08 26070.94 23163.08 30179.86 31352.52 22194.04 22465.70 24362.17 31983.64 311
FE-MVS75.97 23073.02 24684.82 12389.78 14865.56 14977.44 35591.07 18464.55 29272.66 18879.85 31446.05 28096.69 11454.97 30180.82 17692.21 181
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30879.77 31538.14 31791.44 30368.90 21067.45 27883.21 320
tpm78.58 18777.03 19183.22 17685.94 24364.56 16883.21 31591.14 17978.31 8973.67 17979.68 31664.01 8892.09 28666.07 23971.26 25493.03 155
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32753.60 30853.63 35880.71 348
tpmrst80.57 14679.14 16184.84 12290.10 14368.28 7981.70 32589.72 23577.63 10275.96 15279.54 31864.94 7792.71 26375.43 15077.28 20993.55 139
ACMH63.93 1768.62 29964.81 30980.03 25485.22 25463.25 21287.72 27984.66 33060.83 32551.57 35479.43 31927.29 36594.96 18141.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT71.55 27869.97 27876.32 30681.48 30160.67 27087.64 28185.99 31966.17 28259.50 31978.88 32045.53 28283.65 36162.58 26861.93 32284.63 305
IterMVS72.65 27270.83 27078.09 28782.17 29662.96 22087.64 28186.28 31471.56 21960.44 31478.85 32145.42 28486.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal70.10 28667.36 29478.32 28383.45 28360.97 26088.85 26192.77 10964.85 29160.83 31378.53 32243.52 29393.48 24131.73 38461.70 32780.52 350
D2MVS73.80 25672.02 26179.15 27679.15 32962.97 21988.58 26690.07 21872.94 17159.22 32178.30 32342.31 29892.70 26565.59 24572.00 24781.79 338
v7n71.31 27968.65 28679.28 27276.40 35360.77 26486.71 29289.45 24164.17 29558.77 32678.24 32444.59 28993.54 23957.76 29161.75 32583.52 314
miper_lstm_enhance73.05 26271.73 26577.03 29983.80 27758.32 30181.76 32388.88 26869.80 24961.01 31178.23 32557.19 16487.51 34065.34 24859.53 34085.27 299
EPMVS78.49 18975.98 20686.02 8291.21 12369.68 5080.23 33991.20 17475.25 13272.48 19478.11 32654.65 19793.69 23757.66 29383.04 15294.69 93
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26386.78 31253.19 35757.58 33478.03 32735.33 33792.41 27655.56 29954.88 35582.21 335
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25483.41 34255.48 35253.86 34677.84 32826.28 36893.95 23034.90 37468.76 26878.68 365
EG-PatchMatch MVS68.55 30065.41 30677.96 28878.69 33762.93 22189.86 24189.17 25360.55 32650.27 35977.73 32922.60 37494.06 22147.18 33372.65 24376.88 371
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33649.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30945.89 33947.06 37082.78 324
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33363.29 30351.86 35277.30 33137.09 32982.47 36938.87 36654.13 35779.73 356
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 27087.32 30361.75 32158.07 32977.29 33237.79 32287.29 34242.91 34963.71 30983.48 315
test_040264.54 32561.09 33174.92 31684.10 27560.75 26687.95 27579.71 35652.03 35952.41 35077.20 33332.21 35091.64 29423.14 39061.03 33172.36 379
dp75.01 24472.09 26083.76 15989.28 16266.22 13579.96 34589.75 23071.16 22667.80 25777.19 33451.81 22692.54 27250.39 31571.44 25392.51 170
SCA75.82 23372.76 25085.01 11786.63 22870.08 3781.06 33289.19 25271.60 21770.01 22477.09 33545.53 28290.25 31160.43 27973.27 23694.68 94
Patchmatch-test65.86 31860.94 33280.62 24083.75 27858.83 29658.91 39075.26 36744.50 38050.95 35877.09 33558.81 15187.90 33235.13 37364.03 30695.12 76
PatchmatchNetpermissive77.46 20474.63 22285.96 8489.55 15570.35 3579.97 34489.55 23872.23 19170.94 21176.91 33757.03 16692.79 26154.27 30481.17 17294.74 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23589.90 22569.96 24661.96 31076.54 33851.05 23487.64 33749.51 32150.59 36582.70 329
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
tpm cat175.30 24072.21 25984.58 13888.52 17967.77 9378.16 35388.02 29661.88 31968.45 24776.37 34160.65 12994.03 22653.77 30774.11 23091.93 186
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
our_test_368.29 30364.69 31179.11 27778.92 33264.85 16788.40 26985.06 32660.32 32952.68 34976.12 34340.81 30289.80 32144.25 34655.65 35182.67 331
ppachtmachnet_test67.72 30763.70 31879.77 26478.92 33266.04 13788.68 26482.90 34660.11 33155.45 33975.96 34439.19 30790.55 30739.53 36252.55 36182.71 328
MDTV_nov1_ep1372.61 25489.06 16968.48 7380.33 33790.11 21771.84 20571.81 20375.92 34553.01 21793.92 23148.04 32773.38 235
TinyColmap60.32 33956.42 34672.00 34178.78 33553.18 33878.36 35175.64 36452.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
tpmvs72.88 26669.76 28282.22 20090.98 12667.05 11378.22 35288.30 28863.10 30764.35 29074.98 34855.09 19494.27 21043.25 34769.57 26085.34 297
MIMVSNet71.64 27668.44 28981.23 22481.97 29964.44 17473.05 36588.80 27269.67 25064.59 28374.79 34932.79 34487.82 33453.99 30576.35 21691.42 192
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 18049.25 36474.77 35032.57 34787.43 34155.96 29841.04 38083.90 309
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31947.75 33231.37 39283.53 313
FMVSNet568.04 30565.66 30475.18 31484.43 26957.89 30383.54 30786.26 31561.83 32053.64 34773.30 35237.15 32885.08 35248.99 32261.77 32482.56 332
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28482.80 31983.43 34162.52 31251.30 35672.49 35332.86 34387.16 34355.32 30050.73 36478.83 364
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32357.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34486.26 34735.81 37141.95 37875.89 373
CR-MVSNet73.79 25770.82 27282.70 18583.15 28567.96 8970.25 36984.00 33673.67 16069.97 22672.41 35557.82 15989.48 32252.99 31073.13 23790.64 207
Patchmtry67.53 31063.93 31778.34 28282.12 29764.38 17868.72 37384.00 33648.23 37259.24 32072.41 35557.82 15989.27 32346.10 33856.68 35081.36 340
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 36064.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33255.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 262
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34460.41 27383.49 30884.03 33456.17 35139.17 38571.59 36137.22 32683.24 36642.87 35148.73 36780.26 353
YYNet163.76 33160.14 33474.62 31878.06 34560.19 27883.46 31083.99 33856.18 35039.25 38471.56 36237.18 32783.34 36442.90 35048.70 36880.32 352
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32550.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
ADS-MVSNet266.90 31363.44 32077.26 29888.06 19660.70 26968.01 37675.56 36557.57 34064.48 28669.87 36538.68 30884.10 35640.87 35867.89 27586.97 259
ADS-MVSNet68.54 30164.38 31681.03 23388.06 19666.90 11768.01 37684.02 33557.57 34064.48 28669.87 36538.68 30889.21 32440.87 35867.89 27586.97 259
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32957.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
patchmatchnet-post67.62 37057.62 16190.25 311
ambc69.61 34761.38 38941.35 38249.07 39685.86 32150.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
PatchT69.11 29565.37 30780.32 24382.07 29863.68 20167.96 37887.62 30150.86 36469.37 23065.18 37357.09 16588.53 32841.59 35666.60 28388.74 231
RPMNet70.42 28465.68 30384.63 13683.15 28567.96 8970.25 36990.45 19946.83 37569.97 22665.10 37456.48 17995.30 17335.79 37273.13 23790.64 207
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 37040.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18662.79 31367.07 385
Patchmatch-RL test68.17 30464.49 31479.19 27371.22 36953.93 33570.07 37171.54 37769.22 25556.79 33662.89 37756.58 17788.61 32569.53 20152.61 36095.03 80
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32650.08 31838.90 38479.63 357
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33572.83 3859.96 40121.75 39656.27 389
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34070.39 3889.14 40319.57 39754.68 390
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
JIA-IIPM66.06 31762.45 32676.88 30381.42 30354.45 33457.49 39188.67 27849.36 36863.86 29246.86 38956.06 18390.25 31149.53 32068.83 26785.95 283
gg-mvs-nofinetune77.18 20874.31 22985.80 9191.42 11868.36 7671.78 36694.72 3449.61 36777.12 14345.92 39077.41 893.98 22867.62 22193.16 5495.05 78
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
MVS-HIRNet60.25 34055.55 34774.35 32084.37 27056.57 32171.64 36774.11 36934.44 38845.54 37442.24 39531.11 35689.81 31940.36 36176.10 21876.67 372
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_post23.01 40056.49 17892.67 266
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.95 34620.70 40353.05 21691.50 30260.43 279
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
X-MVStestdata76.86 21374.13 23385.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13010.19 40555.25 18997.41 7079.16 12591.58 7593.95 127
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2110.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
FOURS193.95 4561.77 24593.96 7191.92 14162.14 31586.57 45
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
eth-test20.00 414
eth-test0.00 414
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2195.36 1496.47 27
save fliter93.84 4867.89 9195.05 4092.66 11478.19 90
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2994.90 2296.51 23
GSMVS94.68 94
test_part296.29 1968.16 8590.78 17
sam_mvs157.85 15894.68 94
sam_mvs54.91 196
MTGPAbinary92.23 127
MTMP93.77 8532.52 409
test9_res89.41 4194.96 1995.29 66
agg_prior286.41 6894.75 3095.33 62
agg_prior94.16 4366.97 11693.31 8984.49 6696.75 113
test_prior467.18 11093.92 74
test_prior86.42 7394.71 3567.35 10593.10 9996.84 11095.05 78
旧先验292.00 16059.37 33587.54 3993.47 24275.39 151
新几何291.41 182
无先验92.71 12592.61 11862.03 31697.01 9566.63 23093.97 126
原ACMM292.01 157
testdata296.09 13461.26 275
segment_acmp65.94 66
testdata189.21 25577.55 103
test1287.09 5094.60 3668.86 6592.91 10582.67 8265.44 7197.55 6393.69 4794.84 87
plane_prior786.94 22461.51 251
plane_prior687.23 21662.32 23550.66 236
plane_prior591.31 17095.55 16376.74 14178.53 19688.39 239
plane_prior361.95 24379.09 7872.53 192
plane_prior293.13 11078.81 84
plane_prior187.15 218
plane_prior62.42 23193.85 7879.38 7078.80 193
n20.00 415
nn0.00 415
door-mid66.01 385
test1193.01 101
door66.57 384
HQP5-MVS63.66 202
HQP-NCC87.54 20994.06 6479.80 6274.18 171
ACMP_Plane87.54 20994.06 6479.80 6274.18 171
BP-MVS77.63 138
HQP4-MVS74.18 17195.61 15888.63 232
HQP3-MVS91.70 15678.90 191
HQP2-MVS51.63 229
MDTV_nov1_ep13_2view59.90 28180.13 34167.65 27172.79 18754.33 20459.83 28392.58 167
ACMMP++_ref71.63 249
ACMMP++69.72 258
Test By Simon54.21 205