This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 31196.72 994.41 4886.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 5968.77 26690.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4671.65 21792.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
test_241102_TWO94.41 4871.65 21792.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
test072696.40 1569.99 3896.76 894.33 5471.92 20391.89 1197.11 673.77 22
test_241102_ONE96.45 1269.38 5594.44 4671.65 21792.11 797.05 776.79 999.11 6
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 23163.55 21093.69 8791.08 19484.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9594.26 118
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22964.19 19094.41 5288.14 30480.24 5992.54 596.97 1069.52 4697.17 8595.89 388.51 10994.56 105
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4271.92 20390.55 2096.93 1173.77 2299.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18790.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 22463.54 21194.74 4790.02 23382.52 2590.14 2596.92 1362.93 11497.84 4695.28 882.26 16893.07 163
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25663.58 20893.79 8389.32 25781.42 4190.21 2396.91 1462.41 11997.67 5194.48 1080.56 18792.90 169
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 23264.37 18394.30 5588.45 29580.51 5192.70 496.86 1569.98 4497.15 8995.83 488.08 11494.65 102
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5272.48 18792.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
test_one_060196.32 1869.74 4994.18 5771.42 22890.67 1996.85 1674.45 19
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3084.83 1189.07 3196.80 1970.86 3999.06 1592.64 2095.71 1196.12 40
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29963.48 21394.03 6889.46 25181.69 3489.86 2696.74 2061.85 12597.75 4994.74 982.01 17492.81 171
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6274.18 15091.74 1296.67 2165.61 7498.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 32663.50 21292.79 12288.73 28680.46 5289.84 2796.65 2260.96 13397.57 6193.80 1380.14 18992.53 178
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15495.39 3095.10 2271.77 21385.69 5696.52 2362.07 12298.77 2386.06 7495.60 1296.03 43
9.1487.63 2893.86 4894.41 5294.18 5772.76 18286.21 4896.51 2466.64 6297.88 4490.08 3994.04 39
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10568.97 6695.04 4092.70 11579.04 8481.50 9396.50 2558.98 15996.78 11583.49 10093.93 4196.29 35
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 6970.78 24186.25 4796.44 2666.98 5997.79 4788.68 4994.56 3495.28 72
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4482.43 2688.90 3296.35 2771.89 3698.63 2688.76 4896.40 696.06 41
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13694.84 4593.78 6669.35 25788.39 3396.34 2867.74 5597.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 26262.55 23594.26 5789.78 23983.81 1787.78 3696.33 2965.33 7696.98 10194.40 1187.55 12094.95 87
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1089.33 185.77 5496.26 3072.84 2899.38 192.64 2095.93 997.08 11
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 3984.42 1286.74 4596.20 3166.56 6498.76 2489.03 4794.56 3495.92 46
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4398.91 1896.83 195.06 1796.76 15
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6083.82 1683.49 7696.19 3264.53 8898.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7387.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3396.47 28
MSP-MVS90.38 591.87 185.88 8992.83 7964.03 19393.06 11294.33 5482.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9383.86 1589.55 2996.06 3653.55 22397.89 4391.10 3293.31 5394.54 108
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 31662.33 24093.84 8088.81 28383.50 1987.00 4396.01 3763.36 10696.93 10994.04 1287.29 12394.61 104
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10183.53 1889.55 2995.95 3853.45 22797.68 5091.07 3392.62 6094.54 108
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16193.59 9392.58 12466.54 28486.17 5095.88 3963.83 9597.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 2895.78 4065.94 7099.10 992.99 1793.91 4296.58 21
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12276.86 11587.90 3595.76 4166.17 6797.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 30263.72 20191.37 18983.99 35181.42 4177.68 14295.74 4258.37 16497.58 5993.38 1486.87 12693.00 166
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13396.09 1793.87 6477.73 10284.01 7495.66 4363.39 10597.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 12465.59 15291.54 18092.51 12674.56 14480.62 10695.64 4459.15 15497.00 9786.94 6793.80 4394.07 130
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_prior295.10 3875.40 13585.25 6395.61 4567.94 5387.47 5994.77 26
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14594.28 5694.27 5674.41 14579.16 12695.61 4553.99 21898.88 2269.62 21093.26 5494.50 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
reproduce-ours83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
our_new_method83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
SPE-MVS-test86.14 5187.01 3683.52 17592.63 8759.36 30095.49 2791.92 15080.09 6085.46 5995.53 4961.82 12695.77 15586.77 6993.37 5295.41 60
reproduce_model83.15 11082.96 10383.73 16892.02 10259.74 29290.37 22992.08 14163.70 30682.86 8295.48 5058.62 16197.17 8583.06 10388.42 11094.26 118
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36961.72 25492.17 14887.24 31782.36 2784.91 6495.41 5155.60 19996.83 11492.85 1885.87 13894.21 121
CS-MVS85.80 5886.65 4383.27 18392.00 10658.92 30495.31 3191.86 15579.97 6184.82 6595.40 5262.26 12095.51 17386.11 7392.08 6895.37 63
test_894.19 4067.19 11194.15 6193.42 8871.87 20885.38 6095.35 5368.19 5096.95 106
TEST994.18 4167.28 10994.16 5993.51 8171.75 21485.52 5795.33 5468.01 5297.27 80
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8171.87 20885.52 5795.33 5468.19 5097.27 8089.09 4594.90 2295.25 76
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11967.53 10491.79 17093.49 8474.93 14184.61 6695.30 5659.42 15097.92 4186.13 7294.92 2094.94 88
SR-MVS82.81 11682.58 11283.50 17893.35 6361.16 26492.23 14791.28 18464.48 29881.27 9695.28 5753.71 22295.86 15182.87 10488.77 10793.49 149
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11193.89 7592.83 11270.90 23783.09 8195.28 5763.62 10097.36 7180.63 12294.18 3794.84 92
cdsmvs_eth3d_5k19.86 38726.47 3860.00 4060.00 4290.00 4310.00 41793.45 850.00 4240.00 42595.27 5949.56 2610.00 4250.00 4240.00 4220.00 421
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11082.70 2487.13 4095.27 5964.99 7995.80 15289.34 4291.80 7295.93 45
sasdasda86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
canonicalmvs86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 7979.30 7487.07 4295.25 6168.43 4896.93 10987.87 5384.33 15196.65 17
MTAPA83.91 9483.38 9585.50 10391.89 11165.16 16381.75 33392.23 13275.32 13680.53 10895.21 6456.06 19597.16 8884.86 8592.55 6294.18 122
ZD-MVS96.63 965.50 15693.50 8370.74 24285.26 6295.19 6564.92 8297.29 7687.51 5793.01 56
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20395.04 4095.19 1986.74 791.53 1595.15 6673.86 2197.58 5993.38 1492.00 6996.28 37
MGCFI-Net85.59 6485.73 5985.17 11791.41 12762.44 23692.87 12091.31 18079.65 6786.99 4495.14 6762.90 11596.12 13987.13 6484.13 15696.96 13
PAPR85.15 7084.47 7587.18 4996.02 2568.29 8191.85 16893.00 10776.59 12279.03 12795.00 6861.59 12797.61 5878.16 14489.00 10595.63 53
1112_ss80.56 15579.83 15582.77 19188.65 18760.78 27092.29 14488.36 29772.58 18572.46 20194.95 6965.09 7893.42 25066.38 24577.71 20994.10 127
ab-mvs-re7.91 38910.55 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.95 690.00 4290.00 4250.00 4240.00 4220.00 421
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16793.50 9893.19 9772.19 19779.22 12594.93 7159.04 15797.67 5181.55 11292.21 6494.49 113
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19594.59 4992.28 13071.03 23577.41 14694.92 7255.21 20496.19 13681.32 11790.70 8893.91 137
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5594.91 7374.11 2098.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18393.50 9893.15 9972.19 19778.85 13394.86 7456.69 18697.45 6581.55 11292.20 6594.02 133
region2R84.36 8284.03 8085.36 10993.54 5964.31 18693.43 10392.95 10872.16 20078.86 13294.84 7556.97 18197.53 6381.38 11692.11 6794.24 120
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15895.15 3693.84 6578.17 9585.93 5394.80 7675.80 1398.21 3489.38 4188.78 10696.59 19
WTY-MVS86.32 4785.81 5687.85 2992.82 8169.37 5795.20 3495.25 1782.71 2381.91 9094.73 7767.93 5497.63 5679.55 13082.25 16996.54 22
MVS84.66 7882.86 10890.06 290.93 13674.56 787.91 28095.54 1368.55 26872.35 20494.71 7859.78 14698.90 2081.29 11894.69 3296.74 16
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 15093.89 7593.41 8973.75 16179.94 11594.68 7960.61 13798.03 3882.63 10693.72 4694.52 110
test_vis1_n_192081.66 13682.01 12080.64 24882.24 30455.09 33894.76 4686.87 31981.67 3584.40 6994.63 8038.17 32894.67 20091.98 2783.34 15992.16 192
APD-MVS_3200maxsize81.64 13781.32 12782.59 19892.36 9158.74 30691.39 18691.01 19963.35 31079.72 11894.62 8151.82 23796.14 13879.71 12887.93 11592.89 170
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14095.26 3294.84 2987.09 588.06 3494.53 8266.79 6197.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post81.06 14780.70 14082.15 21292.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8351.26 24795.61 16578.77 14086.77 13092.28 185
RE-MVS-def80.48 14692.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8349.30 26478.77 14086.77 13092.28 185
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8864.27 18893.24 10792.27 13173.13 17279.63 11994.43 8561.90 12397.17 8585.00 8292.56 6194.06 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS83.25 10882.70 11184.92 12292.81 8364.07 19290.44 22592.20 13671.28 22977.23 14994.43 8555.17 20597.31 7579.33 13391.38 8093.37 151
xiu_mvs_v1_base_debu82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base_debi82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
旧先验191.94 10760.74 27491.50 17494.36 8765.23 7791.84 7194.55 106
CSCG86.87 3686.26 4688.72 1795.05 3170.79 2993.83 8295.33 1668.48 27077.63 14394.35 9173.04 2698.45 3084.92 8493.71 4796.92 14
MVSFormer83.75 9982.88 10786.37 7889.24 17571.18 2489.07 26290.69 20365.80 28987.13 4094.34 9264.99 7992.67 27372.83 17891.80 7295.27 73
jason86.40 4586.17 4987.11 5186.16 24770.54 3295.71 2492.19 13882.00 3184.58 6794.34 9261.86 12495.53 17287.76 5490.89 8695.27 73
jason: jason.
XVS83.87 9583.47 8985.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13794.31 9455.25 20197.41 6879.16 13491.58 7693.95 135
EIA-MVS84.84 7584.88 7184.69 13591.30 12962.36 23993.85 7792.04 14379.45 7079.33 12494.28 9562.42 11896.35 13080.05 12691.25 8395.38 62
mPP-MVS82.96 11582.44 11584.52 14392.83 7962.92 22892.76 12391.85 15771.52 22575.61 16594.24 9653.48 22696.99 10078.97 13790.73 8793.64 146
EC-MVSNet84.53 8085.04 6983.01 18789.34 16761.37 26194.42 5191.09 19277.91 9983.24 7794.20 9758.37 16495.40 17485.35 7791.41 7992.27 188
GST-MVS84.63 7984.29 7885.66 10092.82 8165.27 15993.04 11493.13 10073.20 17078.89 12894.18 9859.41 15197.85 4581.45 11492.48 6393.86 140
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8463.56 20991.76 17394.81 3179.65 6777.87 14094.09 9963.35 10797.90 4279.35 13279.36 19690.74 214
testdata81.34 23189.02 17957.72 31589.84 23858.65 34785.32 6194.09 9957.03 17793.28 25169.34 21390.56 9193.03 164
ETV-MVS86.01 5386.11 5085.70 9990.21 15067.02 11893.43 10391.92 15081.21 4584.13 7394.07 10160.93 13495.63 16389.28 4389.81 9694.46 114
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 6993.76 6979.08 8178.88 13193.99 10262.25 12198.15 3685.93 7591.15 8494.15 125
HPM-MVScopyleft83.25 10882.95 10584.17 15592.25 9462.88 23090.91 20791.86 15570.30 24677.12 15093.96 10356.75 18496.28 13282.04 10991.34 8293.34 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon82.73 11781.65 12485.98 8697.31 467.06 11595.15 3691.99 14769.08 26376.50 15793.89 10454.48 21398.20 3570.76 20185.66 14092.69 172
EI-MVSNet-UG-set83.14 11182.96 10383.67 17392.28 9363.19 22091.38 18894.68 3779.22 7676.60 15593.75 10562.64 11697.76 4878.07 14578.01 20790.05 223
CANet_DTU84.09 9183.52 8585.81 9390.30 14866.82 12291.87 16689.01 27585.27 986.09 5193.74 10647.71 28196.98 10177.90 14689.78 9893.65 145
test_cas_vis1_n_192080.45 15880.61 14379.97 26778.25 35257.01 32694.04 6788.33 29879.06 8382.81 8493.70 10738.65 32391.63 30390.82 3679.81 19191.27 209
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23090.66 20679.37 7381.20 9793.67 10874.73 1596.55 12390.88 3592.00 6995.82 48
ET-MVSNet_ETH3D84.01 9283.15 10286.58 7090.78 14170.89 2894.74 4794.62 4081.44 4058.19 33793.64 10973.64 2492.35 28682.66 10578.66 20496.50 27
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18566.64 12792.15 14993.68 7581.07 4676.91 15393.64 10962.59 11798.44 3185.50 7692.84 5994.03 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPM_NR82.97 11481.84 12286.37 7894.10 4466.76 12587.66 28692.84 11169.96 25074.07 18193.57 11163.10 11297.50 6470.66 20390.58 9094.85 89
PMMVS81.98 13282.04 11981.78 22189.76 15956.17 33091.13 20390.69 20377.96 9780.09 11493.57 11146.33 29194.99 18781.41 11587.46 12194.17 123
LFMVS84.34 8382.73 11089.18 1394.76 3373.25 1194.99 4291.89 15371.90 20582.16 8993.49 11347.98 27797.05 9282.55 10784.82 14597.25 8
ACMMPcopyleft81.49 13980.67 14183.93 16391.71 11662.90 22992.13 15092.22 13571.79 21271.68 21393.49 11350.32 25296.96 10578.47 14284.22 15591.93 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS79.59 17379.16 16880.89 24691.54 12259.80 29192.10 15288.54 29460.42 33672.96 18993.28 11548.27 27392.80 26778.89 13986.50 13590.06 222
MVS_111021_LR82.02 13181.52 12583.51 17788.42 19362.88 23089.77 24788.93 27976.78 11875.55 16693.10 11650.31 25395.38 17683.82 9687.02 12592.26 189
131480.70 15378.95 17185.94 8887.77 21667.56 10287.91 28092.55 12572.17 19967.44 26893.09 11750.27 25497.04 9571.68 19587.64 11993.23 156
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7782.34 2881.00 10293.08 11863.19 10997.29 7687.08 6591.38 8094.13 126
VNet86.20 4985.65 6087.84 3093.92 4769.99 3895.73 2395.94 778.43 9286.00 5293.07 11958.22 16697.00 9785.22 7884.33 15196.52 23
HPM-MVS_fast80.25 16279.55 16182.33 20491.55 12159.95 28991.32 19389.16 26565.23 29574.71 17493.07 11947.81 28095.74 15674.87 16888.23 11191.31 207
PAPM85.89 5785.46 6287.18 4988.20 20372.42 1592.41 14292.77 11382.11 3080.34 11193.07 11968.27 4995.02 18578.39 14393.59 4994.09 128
MG-MVS87.11 3486.27 4589.62 897.79 176.27 494.96 4394.49 4478.74 8983.87 7592.94 12264.34 8996.94 10775.19 16194.09 3895.66 52
新几何184.73 13292.32 9264.28 18791.46 17659.56 34379.77 11792.90 12356.95 18296.57 12163.40 26992.91 5893.34 152
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23093.55 8082.89 2191.29 1692.89 12472.27 3396.03 14787.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_yl84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
DCV-MVSNet84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
API-MVS82.28 12580.53 14587.54 4196.13 2270.59 3193.63 9191.04 19865.72 29175.45 16792.83 12756.11 19498.89 2164.10 26589.75 9993.15 159
Effi-MVS+83.82 9682.76 10986.99 5689.56 16369.40 5391.35 19186.12 32972.59 18483.22 8092.81 12859.60 14896.01 14981.76 11187.80 11795.56 56
TAPA-MVS70.22 1274.94 25473.53 25079.17 28390.40 14652.07 35089.19 26089.61 24862.69 31970.07 23192.67 12948.89 27194.32 21338.26 37879.97 19091.12 211
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive84.28 8483.83 8185.61 10187.40 22268.02 9190.88 21089.24 26080.54 5081.64 9292.52 13059.83 14594.52 20987.32 6185.11 14394.29 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
原ACMM184.42 14693.21 6764.27 18893.40 9065.39 29279.51 12092.50 13158.11 16896.69 11765.27 25993.96 4092.32 183
baseline85.01 7284.44 7686.71 6488.33 19768.73 7190.24 23591.82 15981.05 4781.18 9892.50 13163.69 9896.08 14484.45 8986.71 13295.32 68
3Dnovator+73.60 782.10 13080.60 14486.60 6890.89 13866.80 12495.20 3493.44 8674.05 15267.42 26992.49 13349.46 26297.65 5570.80 20091.68 7495.33 66
3Dnovator73.91 682.69 12080.82 13788.31 2689.57 16271.26 2292.60 13494.39 5178.84 8667.89 26292.48 13448.42 27298.52 2868.80 22194.40 3695.15 78
test22289.77 15861.60 25689.55 25089.42 25456.83 35877.28 14892.43 13552.76 23191.14 8593.09 161
sss82.71 11982.38 11683.73 16889.25 17259.58 29592.24 14694.89 2877.96 9779.86 11692.38 13656.70 18597.05 9277.26 14980.86 18494.55 106
AdaColmapbinary78.94 18677.00 20284.76 13196.34 1765.86 14692.66 13187.97 31062.18 32270.56 22392.37 13743.53 30697.35 7264.50 26382.86 16291.05 212
VDD-MVS83.06 11281.81 12386.81 6190.86 13967.70 9895.40 2991.50 17475.46 13381.78 9192.34 13840.09 31897.13 9086.85 6882.04 17395.60 54
testing22285.18 6984.69 7486.63 6792.91 7769.91 4292.61 13395.80 980.31 5580.38 11092.27 13968.73 4795.19 18275.94 15583.27 16094.81 96
CLD-MVS82.73 11782.35 11783.86 16487.90 21067.65 10095.45 2892.18 13985.06 1072.58 19792.27 13952.46 23495.78 15384.18 9179.06 19988.16 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
h-mvs3383.01 11382.56 11384.35 15089.34 16762.02 24692.72 12593.76 6981.45 3882.73 8592.25 14160.11 14197.13 9087.69 5562.96 31993.91 137
testing1186.71 4386.44 4487.55 4093.54 5971.35 2193.65 8995.58 1081.36 4380.69 10592.21 14272.30 3296.46 12885.18 8083.43 15894.82 95
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1281.52 3681.50 9392.12 14373.58 2596.28 13284.37 9085.20 14295.51 58
OMC-MVS78.67 19577.91 18680.95 24485.76 25557.40 32188.49 27188.67 28973.85 15872.43 20292.10 14449.29 26594.55 20772.73 18277.89 20890.91 213
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 20069.07 6293.04 11491.76 16081.27 4480.84 10492.07 14564.23 9096.06 14584.98 8387.43 12295.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft70.45 1178.54 19775.92 21686.41 7785.93 25371.68 1892.74 12492.51 12666.49 28564.56 29391.96 14643.88 30598.10 3754.61 31290.65 8989.44 235
testing9986.01 5385.47 6187.63 3893.62 5571.25 2393.47 10195.23 1880.42 5480.60 10791.95 14771.73 3796.50 12680.02 12782.22 17095.13 79
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 9895.08 2580.26 5680.53 10891.93 14870.43 4196.51 12580.32 12582.13 17295.37 63
Vis-MVSNet (Re-imp)79.24 18079.57 15878.24 29488.46 19152.29 34990.41 22789.12 26974.24 14969.13 24091.91 14965.77 7290.09 32659.00 29888.09 11392.33 182
gm-plane-assit88.42 19367.04 11778.62 9091.83 15097.37 7076.57 152
Vis-MVSNetpermissive80.92 15079.98 15383.74 16688.48 19061.80 25093.44 10288.26 30373.96 15677.73 14191.76 15149.94 25794.76 19365.84 25190.37 9394.65 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM79.95 16977.39 19687.64 3489.63 16171.41 2093.30 10693.70 7465.34 29467.39 27191.75 15247.83 27998.96 1657.71 30289.81 9692.54 177
IS-MVSNet80.14 16479.41 16382.33 20487.91 20960.08 28891.97 16288.27 30172.90 18071.44 21791.73 15361.44 12893.66 24562.47 27986.53 13493.24 155
baseline181.84 13381.03 13484.28 15391.60 11866.62 12891.08 20491.66 16881.87 3274.86 17291.67 15469.98 4494.92 19171.76 19364.75 30691.29 208
ETVMVS84.22 8883.71 8285.76 9692.58 8968.25 8592.45 14195.53 1479.54 6979.46 12191.64 15570.29 4294.18 22169.16 21682.76 16694.84 92
test_fmvs174.07 26073.69 24875.22 32078.91 34447.34 37789.06 26474.69 38063.68 30779.41 12291.59 15624.36 38287.77 34685.22 7876.26 22590.55 218
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5288.22 20269.35 5893.74 8691.89 15381.47 3780.10 11391.45 15764.80 8496.35 13087.23 6387.69 11895.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250683.29 10782.92 10684.37 14988.39 19563.18 22192.01 15891.35 17977.66 10478.49 13691.42 15864.58 8795.09 18473.19 17489.23 10094.85 89
ECVR-MVScopyleft81.29 14280.38 14884.01 16288.39 19561.96 24892.56 13986.79 32177.66 10476.63 15491.42 15846.34 29095.24 18174.36 17089.23 10094.85 89
test111180.84 15180.02 15083.33 18187.87 21160.76 27292.62 13286.86 32077.86 10075.73 16191.39 16046.35 28994.70 19972.79 18088.68 10894.52 110
TR-MVS78.77 19277.37 19782.95 18890.49 14460.88 26893.67 8890.07 22970.08 24974.51 17591.37 16145.69 29595.70 16260.12 29280.32 18892.29 184
EPNet_dtu78.80 19079.26 16777.43 30288.06 20549.71 36491.96 16391.95 14977.67 10376.56 15691.28 16258.51 16290.20 32456.37 30680.95 18392.39 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs1_n72.69 27971.92 27074.99 32371.15 38247.08 37987.34 29175.67 37563.48 30978.08 13991.17 16320.16 39487.87 34384.65 8775.57 22990.01 224
BH-RMVSNet79.46 17877.65 18884.89 12391.68 11765.66 14993.55 9488.09 30672.93 17773.37 18691.12 16446.20 29396.12 13956.28 30785.61 14192.91 168
thisisatest051583.41 10582.49 11486.16 8389.46 16668.26 8393.54 9594.70 3674.31 14875.75 16090.92 16572.62 2996.52 12469.64 20881.50 17993.71 143
VDDNet80.50 15678.26 17987.21 4786.19 24569.79 4794.48 5091.31 18060.42 33679.34 12390.91 16638.48 32696.56 12282.16 10881.05 18295.27 73
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37494.75 3378.67 13590.85 16777.91 794.56 20672.25 18793.74 4595.36 65
CNLPA74.31 25872.30 26680.32 25391.49 12361.66 25590.85 21180.72 36456.67 35963.85 30290.64 16846.75 28590.84 31453.79 31675.99 22788.47 246
PCF-MVS73.15 979.29 17977.63 18984.29 15286.06 24865.96 14487.03 29391.10 19169.86 25269.79 23790.64 16857.54 17396.59 11964.37 26482.29 16790.32 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t79.17 18177.67 18783.68 17295.32 2965.53 15592.85 12191.60 17063.49 30867.92 25990.63 17046.65 28695.72 16167.01 23883.54 15789.79 227
PLCcopyleft68.80 1475.23 25073.68 24979.86 27092.93 7658.68 30790.64 22188.30 29960.90 33364.43 29790.53 17142.38 31194.57 20356.52 30576.54 22386.33 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet73.49 880.05 16678.63 17484.31 15190.92 13764.97 16892.47 14091.05 19779.18 7772.43 20290.51 17237.05 34394.06 22768.06 22586.00 13793.90 139
hse-mvs281.12 14681.11 13381.16 23586.52 23957.48 31989.40 25591.16 18781.45 3882.73 8590.49 17360.11 14194.58 20187.69 5560.41 34691.41 202
AUN-MVS78.37 19977.43 19281.17 23486.60 23857.45 32089.46 25491.16 18774.11 15174.40 17690.49 17355.52 20094.57 20374.73 16960.43 34591.48 200
baseline283.68 10283.42 9384.48 14587.37 22366.00 14290.06 23995.93 879.71 6669.08 24290.39 17577.92 696.28 13278.91 13881.38 18091.16 210
EPP-MVSNet81.79 13481.52 12582.61 19788.77 18660.21 28693.02 11693.66 7668.52 26972.90 19190.39 17572.19 3494.96 18874.93 16579.29 19892.67 173
NP-MVS87.41 22163.04 22290.30 177
HQP-MVS81.14 14480.64 14282.64 19687.54 21863.66 20694.06 6391.70 16679.80 6374.18 17790.30 17751.63 24295.61 16577.63 14778.90 20088.63 241
mvsany_test168.77 30668.56 29569.39 35873.57 37545.88 38680.93 34260.88 40659.65 34271.56 21490.26 17943.22 30875.05 39374.26 17162.70 32287.25 265
Anonymous20240521177.96 20675.33 22485.87 9093.73 5364.52 17394.85 4485.36 33662.52 32076.11 15890.18 18029.43 37297.29 7668.51 22377.24 21995.81 49
test_vis1_n71.63 28570.73 28174.31 33069.63 38847.29 37886.91 29572.11 38663.21 31375.18 16990.17 18120.40 39285.76 35884.59 8874.42 23589.87 225
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22493.43 8784.06 1486.20 4990.17 18172.42 3196.98 10193.09 1695.92 1097.29 7
BH-w/o80.49 15779.30 16684.05 16090.83 14064.36 18593.60 9289.42 25474.35 14769.09 24190.15 18355.23 20395.61 16564.61 26286.43 13692.17 191
EI-MVSNet78.97 18578.22 18081.25 23285.33 26062.73 23389.53 25293.21 9472.39 19272.14 20590.13 18460.99 13194.72 19667.73 23072.49 25086.29 279
CVMVSNet74.04 26174.27 23973.33 33685.33 26043.94 39089.53 25288.39 29654.33 36670.37 22790.13 18449.17 26784.05 36761.83 28379.36 19691.99 194
XVG-OURS-SEG-HR74.70 25673.08 25479.57 27778.25 35257.33 32280.49 34487.32 31463.22 31268.76 25090.12 18644.89 30291.59 30470.55 20474.09 23889.79 227
OPM-MVS79.00 18478.09 18181.73 22283.52 29163.83 19691.64 17990.30 22076.36 12571.97 20889.93 18746.30 29295.17 18375.10 16277.70 21086.19 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 15366.59 13093.77 8491.73 16177.43 11077.08 15289.81 18863.77 9796.97 10479.67 12988.21 11292.60 175
CDS-MVSNet81.43 14080.74 13883.52 17586.26 24464.45 17792.09 15390.65 20775.83 12973.95 18389.81 18863.97 9392.91 26371.27 19682.82 16393.20 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS74.25 25972.46 26579.63 27578.45 35057.59 31880.33 34687.39 31363.86 30468.76 25089.62 19040.50 31791.72 30069.00 21874.25 23689.58 230
dmvs_re76.93 22275.36 22381.61 22587.78 21560.71 27580.00 35287.99 30879.42 7169.02 24489.47 19146.77 28494.32 21363.38 27074.45 23489.81 226
UWE-MVS80.81 15281.01 13580.20 25889.33 16957.05 32491.91 16494.71 3575.67 13075.01 17189.37 19263.13 11191.44 31167.19 23682.80 16592.12 193
GeoE78.90 18777.43 19283.29 18288.95 18162.02 24692.31 14386.23 32770.24 24771.34 21889.27 19354.43 21494.04 23063.31 27180.81 18693.81 142
thisisatest053081.15 14380.07 14984.39 14888.26 19965.63 15191.40 18494.62 4071.27 23070.93 22089.18 19472.47 3096.04 14665.62 25476.89 22191.49 199
UA-Net80.02 16779.65 15781.11 23789.33 16957.72 31586.33 30189.00 27877.44 10981.01 10189.15 19559.33 15295.90 15061.01 28684.28 15389.73 229
HQP_MVS80.34 16079.75 15682.12 21486.94 23362.42 23793.13 11091.31 18078.81 8772.53 19889.14 19650.66 25095.55 17076.74 15078.53 20588.39 247
plane_prior489.14 196
thres20079.66 17278.33 17783.66 17492.54 9065.82 14893.06 11296.31 374.90 14273.30 18788.66 19859.67 14795.61 16547.84 34178.67 20389.56 232
BH-untuned78.68 19377.08 19983.48 17989.84 15663.74 19992.70 12788.59 29271.57 22366.83 27888.65 19951.75 24095.39 17559.03 29784.77 14691.32 206
TAMVS80.37 15979.45 16283.13 18685.14 26563.37 21491.23 19790.76 20274.81 14372.65 19588.49 20060.63 13692.95 25869.41 21281.95 17593.08 162
LPG-MVS_test75.82 24274.58 23379.56 27884.31 28059.37 29890.44 22589.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
LGP-MVS_train79.56 27884.31 28059.37 29889.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
VPNet78.82 18977.53 19182.70 19484.52 27566.44 13293.93 7292.23 13280.46 5272.60 19688.38 20349.18 26693.13 25372.47 18663.97 31688.55 244
FIs79.47 17779.41 16379.67 27485.95 25059.40 29791.68 17793.94 6378.06 9668.96 24688.28 20466.61 6391.77 29966.20 24874.99 23087.82 253
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15575.14 692.07 15592.32 12981.87 3275.68 16288.27 20560.18 14098.60 2780.46 12490.27 9494.96 86
tfpn200view978.79 19177.43 19282.88 18992.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21288.83 237
Fast-Effi-MVS+81.14 14480.01 15184.51 14490.24 14965.86 14694.12 6289.15 26673.81 16075.37 16888.26 20657.26 17494.53 20866.97 23984.92 14493.15 159
thres40078.68 19377.43 19282.43 20092.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21287.48 257
nrg03080.93 14979.86 15484.13 15683.69 28868.83 6893.23 10891.20 18575.55 13275.06 17088.22 20963.04 11394.74 19581.88 11066.88 28888.82 239
Syy-MVS69.65 29969.52 29170.03 35687.87 21143.21 39288.07 27689.01 27572.91 17863.11 30888.10 21045.28 29985.54 35922.07 40669.23 27081.32 349
myMVS_eth3d72.58 28172.74 25972.10 34887.87 21149.45 36688.07 27689.01 27572.91 17863.11 30888.10 21063.63 9985.54 35932.73 39369.23 27081.32 349
F-COLMAP70.66 28968.44 29777.32 30486.37 24355.91 33288.00 27886.32 32456.94 35757.28 34688.07 21233.58 35592.49 28051.02 32368.37 27783.55 320
tttt051779.50 17578.53 17682.41 20387.22 22661.43 26089.75 24894.76 3269.29 25867.91 26088.06 21372.92 2795.63 16362.91 27573.90 24190.16 221
HY-MVS76.49 584.28 8483.36 9687.02 5592.22 9567.74 9784.65 30894.50 4379.15 7882.23 8887.93 21466.88 6096.94 10780.53 12382.20 17196.39 33
thres100view90078.37 19977.01 20182.46 19991.89 11163.21 21991.19 20196.33 172.28 19570.45 22687.89 21560.31 13895.32 17745.16 35277.58 21288.83 237
thres600view778.00 20476.66 20682.03 21991.93 10863.69 20491.30 19496.33 172.43 19070.46 22587.89 21560.31 13894.92 19142.64 36476.64 22287.48 257
dmvs_testset65.55 33066.45 30662.86 37479.87 32922.35 42076.55 36671.74 38877.42 11155.85 34987.77 21751.39 24480.69 38731.51 39965.92 29485.55 300
test0.0.03 172.76 27572.71 26172.88 34080.25 32547.99 37391.22 19889.45 25271.51 22662.51 31687.66 21853.83 21985.06 36350.16 32767.84 28485.58 298
MVSMamba_PlusPlus84.97 7483.65 8488.93 1490.17 15174.04 887.84 28292.69 11762.18 32281.47 9587.64 21971.47 3896.28 13284.69 8694.74 3196.47 28
FC-MVSNet-test77.99 20578.08 18277.70 29784.89 27055.51 33590.27 23393.75 7276.87 11466.80 27987.59 22065.71 7390.23 32362.89 27673.94 23987.37 260
TESTMET0.1,182.41 12381.98 12183.72 17088.08 20463.74 19992.70 12793.77 6879.30 7477.61 14487.57 22158.19 16794.08 22573.91 17286.68 13393.33 154
LS3D69.17 30266.40 30777.50 30091.92 10956.12 33185.12 30580.37 36646.96 38656.50 34887.51 22237.25 33893.71 24332.52 39579.40 19582.68 338
Anonymous2024052976.84 22574.15 24184.88 12491.02 13464.95 16993.84 8091.09 19253.57 36773.00 18887.42 22335.91 34797.32 7469.14 21772.41 25292.36 181
Test_1112_low_res79.56 17478.60 17582.43 20088.24 20160.39 28392.09 15387.99 30872.10 20171.84 20987.42 22364.62 8693.04 25465.80 25277.30 21793.85 141
ACMP71.68 1075.58 24774.23 24079.62 27684.97 26959.64 29390.80 21389.07 27370.39 24562.95 31187.30 22538.28 32793.87 24072.89 17771.45 25885.36 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WB-MVSnew77.14 21876.18 21380.01 26486.18 24663.24 21791.26 19594.11 6071.72 21573.52 18587.29 22645.14 30093.00 25656.98 30479.42 19483.80 318
CHOSEN 280x42077.35 21576.95 20378.55 28987.07 23062.68 23469.71 38582.95 35868.80 26571.48 21687.27 22766.03 6984.00 36976.47 15382.81 16488.95 236
SDMVSNet80.26 16178.88 17284.40 14789.25 17267.63 10185.35 30493.02 10476.77 11970.84 22187.12 22847.95 27896.09 14185.04 8174.55 23189.48 233
sd_testset77.08 22075.37 22282.20 21089.25 17262.11 24582.06 33189.09 27176.77 11970.84 22187.12 22841.43 31495.01 18667.23 23574.55 23189.48 233
RRT-MVS82.61 12181.16 12886.96 5791.10 13368.75 7087.70 28592.20 13676.97 11372.68 19387.10 23051.30 24696.41 12983.56 9987.84 11695.74 50
mvsmamba81.55 13880.72 13984.03 16191.42 12466.93 12083.08 32489.13 26878.55 9167.50 26787.02 23151.79 23990.07 32787.48 5890.49 9295.10 81
test-LLR80.10 16579.56 15981.72 22386.93 23561.17 26292.70 12791.54 17171.51 22675.62 16386.94 23253.83 21992.38 28372.21 18884.76 14791.60 197
test-mter79.96 16879.38 16581.72 22386.93 23561.17 26292.70 12791.54 17173.85 15875.62 16386.94 23249.84 25992.38 28372.21 18884.76 14791.60 197
testing370.38 29370.83 27869.03 36085.82 25443.93 39190.72 21890.56 20968.06 27160.24 32586.82 23464.83 8384.12 36526.33 40164.10 31379.04 370
UniMVSNet_NR-MVSNet78.15 20377.55 19079.98 26584.46 27760.26 28492.25 14593.20 9677.50 10868.88 24786.61 23566.10 6892.13 29166.38 24562.55 32387.54 255
MVS_Test84.16 9083.20 9987.05 5491.56 12069.82 4589.99 24492.05 14277.77 10182.84 8386.57 23663.93 9496.09 14174.91 16689.18 10295.25 76
tt080573.07 26970.73 28180.07 26178.37 35157.05 32487.78 28392.18 13961.23 33267.04 27486.49 23731.35 36594.58 20165.06 26067.12 28688.57 243
DU-MVS76.86 22375.84 21779.91 26882.96 29760.26 28491.26 19591.54 17176.46 12468.88 24786.35 23856.16 19292.13 29166.38 24562.55 32387.35 261
NR-MVSNet76.05 23674.59 23280.44 25182.96 29762.18 24490.83 21291.73 16177.12 11260.96 32186.35 23859.28 15391.80 29860.74 28761.34 33887.35 261
UGNet79.87 17078.68 17383.45 18089.96 15461.51 25792.13 15090.79 20176.83 11778.85 13386.33 24038.16 32996.17 13767.93 22887.17 12492.67 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet75.86 24174.52 23579.89 26982.44 30360.64 27891.37 18991.37 17876.63 12167.65 26586.21 24152.37 23591.55 30561.84 28260.81 34187.48 257
cascas78.18 20275.77 21885.41 10687.14 22869.11 6192.96 11791.15 18966.71 28370.47 22486.07 24237.49 33796.48 12770.15 20679.80 19290.65 215
HyFIR lowres test81.03 14879.56 15985.43 10587.81 21468.11 8990.18 23690.01 23470.65 24372.95 19086.06 24363.61 10194.50 21075.01 16479.75 19393.67 144
ACMM69.62 1374.34 25772.73 26079.17 28384.25 28257.87 31390.36 23089.93 23563.17 31465.64 28486.04 24437.79 33594.10 22365.89 25071.52 25785.55 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS77.94 20776.44 20882.43 20082.60 30164.44 17892.01 15891.83 15873.59 16670.00 23385.82 24554.43 21494.76 19369.63 20968.02 28188.10 251
IB-MVS77.80 482.18 12680.46 14787.35 4589.14 17770.28 3595.59 2695.17 2178.85 8570.19 23085.82 24570.66 4097.67 5172.19 19066.52 29194.09 128
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER82.47 12282.05 11883.74 16692.68 8669.01 6491.90 16593.21 9479.83 6272.14 20585.71 24774.72 1694.72 19675.72 15772.49 25087.50 256
mamv465.18 33267.43 30258.44 37877.88 35849.36 36969.40 38670.99 39148.31 38457.78 34385.53 24859.01 15851.88 41673.67 17364.32 31074.07 386
WR-MVS76.76 22775.74 21979.82 27184.60 27362.27 24392.60 13492.51 12676.06 12667.87 26385.34 24956.76 18390.24 32262.20 28063.69 31886.94 269
DP-MVS69.90 29766.48 30580.14 25995.36 2862.93 22689.56 24976.11 37350.27 37857.69 34485.23 25039.68 31995.73 15733.35 38871.05 26181.78 347
PVSNet_BlendedMVS83.38 10683.43 9183.22 18493.76 5067.53 10494.06 6393.61 7779.13 7981.00 10285.14 25163.19 10997.29 7687.08 6573.91 24084.83 310
ab-mvs80.18 16378.31 17885.80 9488.44 19265.49 15783.00 32792.67 11871.82 21177.36 14785.01 25254.50 21096.59 11976.35 15475.63 22895.32 68
VPA-MVSNet79.03 18378.00 18382.11 21785.95 25064.48 17693.22 10994.66 3875.05 14074.04 18284.95 25352.17 23693.52 24774.90 16767.04 28788.32 249
Fast-Effi-MVS+-dtu75.04 25273.37 25280.07 26180.86 31559.52 29691.20 20085.38 33571.90 20565.20 28784.84 25441.46 31392.97 25766.50 24472.96 24687.73 254
UniMVSNet (Re)77.58 21276.78 20479.98 26584.11 28360.80 26991.76 17393.17 9876.56 12369.93 23684.78 25563.32 10892.36 28564.89 26162.51 32586.78 271
mvs_anonymous81.36 14179.99 15285.46 10490.39 14768.40 7886.88 29790.61 20874.41 14570.31 22984.67 25663.79 9692.32 28873.13 17585.70 13995.67 51
RPSCF64.24 33761.98 33971.01 35476.10 36645.00 38775.83 37175.94 37446.94 38758.96 33484.59 25731.40 36482.00 38347.76 34260.33 34786.04 287
PS-MVSNAJss77.26 21676.31 21080.13 26080.64 32059.16 30290.63 22391.06 19672.80 18168.58 25384.57 25853.55 22393.96 23572.97 17671.96 25487.27 264
test_fmvs265.78 32964.84 31868.60 36266.54 39441.71 39483.27 32069.81 39354.38 36567.91 26084.54 25915.35 39981.22 38675.65 15866.16 29282.88 331
UniMVSNet_ETH3D72.74 27670.53 28379.36 28078.62 34956.64 32885.01 30689.20 26263.77 30564.84 29184.44 26034.05 35491.86 29763.94 26670.89 26289.57 231
MS-PatchMatch77.90 20976.50 20782.12 21485.99 24969.95 4191.75 17592.70 11573.97 15562.58 31584.44 26041.11 31595.78 15363.76 26892.17 6680.62 357
WBMVS81.67 13580.98 13683.72 17093.07 7369.40 5394.33 5493.05 10376.84 11672.05 20784.14 26274.49 1893.88 23972.76 18168.09 27987.88 252
MSDG69.54 30065.73 31280.96 24385.11 26763.71 20284.19 31183.28 35756.95 35654.50 35384.03 26331.50 36396.03 14742.87 36269.13 27283.14 330
GA-MVS78.33 20176.23 21184.65 13783.65 28966.30 13691.44 18190.14 22776.01 12770.32 22884.02 26442.50 31094.72 19670.98 19877.00 22092.94 167
miper_enhance_ethall78.86 18877.97 18481.54 22788.00 20865.17 16291.41 18289.15 26675.19 13868.79 24983.98 26567.17 5892.82 26572.73 18265.30 29786.62 276
pmmvs473.92 26371.81 27280.25 25779.17 33865.24 16087.43 28987.26 31667.64 27663.46 30583.91 26648.96 27091.53 30962.94 27465.49 29683.96 315
pmmvs573.35 26771.52 27478.86 28778.64 34860.61 27991.08 20486.90 31867.69 27363.32 30683.64 26744.33 30490.53 31662.04 28166.02 29385.46 302
ITE_SJBPF70.43 35574.44 37247.06 38077.32 37160.16 33954.04 35683.53 26823.30 38684.01 36843.07 35961.58 33780.21 363
jajsoiax73.05 27071.51 27577.67 29877.46 35954.83 33988.81 26690.04 23269.13 26262.85 31383.51 26931.16 36692.75 26970.83 19969.80 26385.43 303
testgi64.48 33662.87 33469.31 35971.24 38040.62 39785.49 30379.92 36765.36 29354.18 35583.49 27023.74 38584.55 36441.60 36660.79 34282.77 333
v2v48277.42 21475.65 22082.73 19280.38 32267.13 11491.85 16890.23 22475.09 13969.37 23883.39 27153.79 22194.44 21171.77 19265.00 30386.63 275
mvs_tets72.71 27771.11 27677.52 29977.41 36054.52 34188.45 27289.76 24068.76 26762.70 31483.26 27229.49 37192.71 27070.51 20569.62 26585.34 305
FMVSNet377.73 21076.04 21482.80 19091.20 13268.99 6591.87 16691.99 14773.35 16967.04 27483.19 27356.62 18792.14 29059.80 29469.34 26787.28 263
FA-MVS(test-final)79.12 18277.23 19884.81 12990.54 14363.98 19481.35 33991.71 16371.09 23474.85 17382.94 27452.85 23097.05 9267.97 22681.73 17893.41 150
MVP-Stereo77.12 21976.23 21179.79 27281.72 30966.34 13589.29 25690.88 20070.56 24462.01 31882.88 27549.34 26394.13 22265.55 25693.80 4378.88 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL72.06 28269.98 28578.28 29289.51 16555.70 33483.49 31683.39 35661.24 33163.72 30382.76 27634.77 35193.03 25553.37 31977.59 21186.12 286
CP-MVSNet70.50 29169.91 28872.26 34580.71 31851.00 35887.23 29290.30 22067.84 27259.64 32882.69 27750.23 25582.30 38151.28 32259.28 34983.46 324
cl2277.94 20776.78 20481.42 22987.57 21764.93 17090.67 21988.86 28272.45 18967.63 26682.68 27864.07 9192.91 26371.79 19165.30 29786.44 277
miper_ehance_all_eth77.60 21176.44 20881.09 24185.70 25764.41 18190.65 22088.64 29172.31 19367.37 27282.52 27964.77 8592.64 27670.67 20265.30 29786.24 281
PEN-MVS69.46 30168.56 29572.17 34779.27 33649.71 36486.90 29689.24 26067.24 28159.08 33382.51 28047.23 28383.54 37248.42 33657.12 35583.25 327
reproduce_monomvs79.49 17679.11 17080.64 24892.91 7761.47 25991.17 20293.28 9283.09 2064.04 29982.38 28166.19 6694.57 20381.19 11957.71 35485.88 293
PS-CasMVS69.86 29869.13 29372.07 34980.35 32350.57 36087.02 29489.75 24167.27 27859.19 33282.28 28246.58 28782.24 38250.69 32459.02 35083.39 326
FMVSNet276.07 23374.01 24482.26 20888.85 18267.66 9991.33 19291.61 16970.84 23865.98 28282.25 28348.03 27492.00 29558.46 29968.73 27587.10 266
DTE-MVSNet68.46 31067.33 30471.87 35177.94 35649.00 37086.16 30288.58 29366.36 28658.19 33782.21 28446.36 28883.87 37044.97 35555.17 36282.73 334
CMPMVSbinary48.56 2166.77 32364.41 32573.84 33370.65 38550.31 36177.79 36385.73 33445.54 39044.76 38982.14 28535.40 34990.14 32563.18 27374.54 23381.07 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_djsdf73.76 26672.56 26377.39 30377.00 36253.93 34389.07 26290.69 20365.80 28963.92 30082.03 28643.14 30992.67 27372.83 17868.53 27685.57 299
v114476.73 22874.88 22882.27 20680.23 32666.60 12991.68 17790.21 22673.69 16369.06 24381.89 28752.73 23294.40 21269.21 21565.23 30085.80 294
V4276.46 23074.55 23482.19 21179.14 34067.82 9590.26 23489.42 25473.75 16168.63 25281.89 28751.31 24594.09 22471.69 19464.84 30484.66 311
pm-mvs172.89 27371.09 27778.26 29379.10 34157.62 31790.80 21389.30 25867.66 27462.91 31281.78 28949.11 26992.95 25860.29 29158.89 35184.22 314
IterMVS-LS76.49 22975.18 22680.43 25284.49 27662.74 23290.64 22188.80 28472.40 19165.16 28881.72 29060.98 13292.27 28967.74 22964.65 30886.29 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth75.96 24074.40 23780.66 24784.66 27263.02 22389.28 25788.27 30171.88 20765.73 28381.65 29159.45 14992.81 26668.13 22460.53 34386.14 283
c3_l76.83 22675.47 22180.93 24585.02 26864.18 19190.39 22888.11 30571.66 21666.65 28081.64 29263.58 10492.56 27769.31 21462.86 32086.04 287
DIV-MVS_self_test76.07 23374.67 22980.28 25585.14 26561.75 25390.12 23788.73 28671.16 23165.42 28681.60 29361.15 12992.94 26266.54 24262.16 32986.14 283
cl____76.07 23374.67 22980.28 25585.15 26461.76 25290.12 23788.73 28671.16 23165.43 28581.57 29461.15 12992.95 25866.54 24262.17 32786.13 285
CostFormer82.33 12481.15 12985.86 9189.01 18068.46 7782.39 33093.01 10575.59 13180.25 11281.57 29472.03 3594.96 18879.06 13677.48 21594.16 124
Effi-MVS+-dtu76.14 23275.28 22578.72 28883.22 29455.17 33789.87 24587.78 31175.42 13467.98 25881.43 29645.08 30192.52 27975.08 16371.63 25588.48 245
v119275.98 23873.92 24582.15 21279.73 33066.24 13891.22 19889.75 24172.67 18368.49 25481.42 29749.86 25894.27 21767.08 23765.02 30285.95 290
COLMAP_ROBcopyleft57.96 2062.98 34359.65 34672.98 33981.44 31253.00 34783.75 31475.53 37848.34 38348.81 37881.40 29824.14 38390.30 31832.95 39060.52 34475.65 384
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419276.05 23674.03 24382.12 21479.50 33466.55 13191.39 18689.71 24772.30 19468.17 25681.33 29951.75 24094.03 23267.94 22764.19 31185.77 295
AllTest61.66 34558.06 35072.46 34379.57 33151.42 35580.17 34968.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
TestCases72.46 34379.57 33151.42 35568.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
v192192075.63 24673.49 25182.06 21879.38 33566.35 13491.07 20689.48 25071.98 20267.99 25781.22 30249.16 26893.90 23866.56 24164.56 30985.92 292
v124075.21 25172.98 25681.88 22079.20 33766.00 14290.75 21589.11 27071.63 22167.41 27081.22 30247.36 28293.87 24065.46 25764.72 30785.77 295
XVG-ACMP-BASELINE68.04 31465.53 31575.56 31874.06 37452.37 34878.43 35885.88 33162.03 32558.91 33581.21 30420.38 39391.15 31360.69 28868.18 27883.16 329
EU-MVSNet64.01 33863.01 33267.02 36874.40 37338.86 40383.27 32086.19 32845.11 39154.27 35481.15 30536.91 34480.01 38948.79 33557.02 35682.19 344
ACMH+65.35 1667.65 31764.55 32276.96 31084.59 27457.10 32388.08 27580.79 36358.59 34853.00 35981.09 30626.63 38092.95 25846.51 34661.69 33680.82 354
v14876.19 23174.47 23681.36 23080.05 32864.44 17891.75 17590.23 22473.68 16467.13 27380.84 30755.92 19793.86 24268.95 21961.73 33485.76 297
WR-MVS_H70.59 29069.94 28772.53 34281.03 31451.43 35487.35 29092.03 14667.38 27760.23 32680.70 30855.84 19883.45 37346.33 34858.58 35382.72 335
Baseline_NR-MVSNet73.99 26272.83 25777.48 30180.78 31759.29 30191.79 17084.55 34468.85 26468.99 24580.70 30856.16 19292.04 29462.67 27760.98 34081.11 351
Anonymous2023121173.08 26870.39 28481.13 23690.62 14263.33 21591.40 18490.06 23151.84 37264.46 29680.67 31036.49 34594.07 22663.83 26764.17 31285.98 289
PVSNet_068.08 1571.81 28368.32 29982.27 20684.68 27162.31 24288.68 26890.31 21975.84 12857.93 34280.65 31137.85 33494.19 22069.94 20729.05 40890.31 220
tpm279.80 17177.95 18585.34 11088.28 19868.26 8381.56 33691.42 17770.11 24877.59 14580.50 31267.40 5794.26 21967.34 23377.35 21693.51 148
TransMVSNet (Re)70.07 29567.66 30177.31 30580.62 32159.13 30391.78 17284.94 34065.97 28860.08 32780.44 31350.78 24991.87 29648.84 33445.46 38280.94 353
USDC67.43 32164.51 32376.19 31577.94 35655.29 33678.38 35985.00 33973.17 17148.36 37980.37 31421.23 39092.48 28152.15 32164.02 31580.81 355
LTVRE_ROB59.60 1966.27 32563.54 32974.45 32784.00 28551.55 35367.08 39483.53 35358.78 34654.94 35280.31 31534.54 35293.23 25240.64 37168.03 28078.58 374
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v875.35 24873.26 25381.61 22580.67 31966.82 12289.54 25189.27 25971.65 21763.30 30780.30 31654.99 20794.06 22767.33 23462.33 32683.94 316
GBi-Net75.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
test175.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
FMVSNet172.71 27769.91 28881.10 23883.60 29065.11 16490.01 24190.32 21663.92 30363.56 30480.25 31736.35 34691.54 30654.46 31366.75 28986.64 272
LCM-MVSNet-Re72.93 27271.84 27176.18 31688.49 18948.02 37280.07 35170.17 39273.96 15652.25 36280.09 32049.98 25688.24 34067.35 23284.23 15492.28 185
v1074.77 25572.54 26481.46 22880.33 32466.71 12689.15 26189.08 27270.94 23663.08 31079.86 32152.52 23394.04 23065.70 25362.17 32783.64 319
FE-MVS75.97 23973.02 25584.82 12689.78 15765.56 15377.44 36491.07 19564.55 29772.66 19479.85 32246.05 29496.69 11754.97 31180.82 18592.21 190
anonymousdsp71.14 28869.37 29276.45 31372.95 37754.71 34084.19 31188.88 28061.92 32762.15 31779.77 32338.14 33091.44 31168.90 22067.45 28583.21 328
tpm78.58 19677.03 20083.22 18485.94 25264.56 17283.21 32391.14 19078.31 9373.67 18479.68 32464.01 9292.09 29366.07 24971.26 26093.03 164
OurMVSNet-221017-064.68 33462.17 33872.21 34676.08 36747.35 37680.67 34381.02 36256.19 36051.60 36579.66 32527.05 37988.56 33653.60 31853.63 36780.71 356
tpmrst80.57 15479.14 16984.84 12590.10 15268.28 8281.70 33489.72 24677.63 10675.96 15979.54 32664.94 8192.71 27075.43 15977.28 21893.55 147
ACMH63.93 1768.62 30764.81 31980.03 26385.22 26363.25 21687.72 28484.66 34260.83 33451.57 36679.43 32727.29 37894.96 18841.76 36564.84 30481.88 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MonoMVSNet76.99 22175.08 22782.73 19283.32 29363.24 21786.47 30086.37 32379.08 8166.31 28179.30 32849.80 26091.72 30079.37 13165.70 29593.23 156
IterMVS-SCA-FT71.55 28669.97 28676.32 31481.48 31160.67 27787.64 28785.99 33066.17 28759.50 32978.88 32945.53 29683.65 37162.58 27861.93 33084.63 313
IterMVS72.65 28070.83 27878.09 29582.17 30562.96 22587.64 28786.28 32571.56 22460.44 32478.85 33045.42 29886.66 35463.30 27261.83 33184.65 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal70.10 29467.36 30378.32 29183.45 29260.97 26788.85 26592.77 11364.85 29660.83 32278.53 33143.52 30793.48 24831.73 39661.70 33580.52 358
D2MVS73.80 26472.02 26979.15 28579.15 33962.97 22488.58 27090.07 22972.94 17659.22 33178.30 33242.31 31292.70 27265.59 25572.00 25381.79 346
v7n71.31 28768.65 29479.28 28176.40 36460.77 27186.71 29889.45 25264.17 30258.77 33678.24 33344.59 30393.54 24657.76 30161.75 33383.52 322
miper_lstm_enhance73.05 27071.73 27377.03 30783.80 28658.32 31081.76 33288.88 28069.80 25361.01 32078.23 33457.19 17587.51 35065.34 25859.53 34885.27 307
EPMVS78.49 19875.98 21586.02 8591.21 13169.68 5180.23 34891.20 18575.25 13772.48 20078.11 33554.65 20993.69 24457.66 30383.04 16194.69 98
pmmvs667.57 31864.76 32076.00 31772.82 37953.37 34588.71 26786.78 32253.19 36857.58 34578.03 33635.33 35092.41 28255.56 30954.88 36482.21 343
OpenMVS_ROBcopyleft61.12 1866.39 32462.92 33376.80 31276.51 36357.77 31489.22 25883.41 35555.48 36353.86 35777.84 33726.28 38193.95 23634.90 38568.76 27478.68 373
ttmdpeth53.34 36349.96 36663.45 37362.07 40340.04 39872.06 37865.64 40042.54 39851.88 36377.79 33813.94 40576.48 39232.93 39130.82 40773.84 387
EG-PatchMatch MVS68.55 30865.41 31677.96 29678.69 34762.93 22689.86 24689.17 26460.55 33550.27 37177.73 33922.60 38894.06 22747.18 34472.65 24976.88 381
SixPastTwentyTwo64.92 33361.78 34074.34 32978.74 34649.76 36383.42 31979.51 36962.86 31650.27 37177.35 34030.92 36890.49 31745.89 35047.06 37982.78 332
test20.0363.83 33962.65 33567.38 36770.58 38639.94 39986.57 29984.17 34663.29 31151.86 36477.30 34137.09 34282.47 37938.87 37754.13 36679.73 364
Anonymous2023120667.53 31965.78 31172.79 34174.95 37047.59 37588.23 27487.32 31461.75 33058.07 33977.29 34237.79 33587.29 35242.91 36063.71 31783.48 323
test_040264.54 33561.09 34174.92 32484.10 28460.75 27387.95 27979.71 36852.03 37052.41 36177.20 34332.21 36191.64 30223.14 40461.03 33972.36 392
dp75.01 25372.09 26883.76 16589.28 17166.22 13979.96 35489.75 24171.16 23167.80 26477.19 34451.81 23892.54 27850.39 32571.44 25992.51 179
SCA75.82 24272.76 25885.01 12186.63 23770.08 3781.06 34189.19 26371.60 22270.01 23277.09 34545.53 29690.25 31960.43 28973.27 24394.68 99
Patchmatch-test65.86 32760.94 34280.62 25083.75 28758.83 30558.91 40575.26 37944.50 39350.95 37077.09 34558.81 16087.90 34235.13 38464.03 31495.12 80
PatchmatchNetpermissive77.46 21374.63 23185.96 8789.55 16470.35 3479.97 35389.55 24972.23 19670.94 21976.91 34757.03 17792.79 26854.27 31481.17 18194.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test69.92 29668.09 30075.41 31973.25 37655.90 33390.05 24089.90 23669.96 25061.96 31976.54 34851.05 24887.64 34749.51 33150.59 37482.70 337
KD-MVS_2432*160069.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
miper_refine_blended69.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
tpm cat175.30 24972.21 26784.58 14188.52 18867.77 9678.16 36288.02 30761.88 32868.45 25576.37 35160.65 13594.03 23253.77 31774.11 23791.93 195
TDRefinement55.28 36051.58 36466.39 36959.53 40646.15 38476.23 36872.80 38344.60 39242.49 39576.28 35215.29 40082.39 38033.20 38943.75 38470.62 394
our_test_368.29 31264.69 32179.11 28678.92 34264.85 17188.40 27385.06 33860.32 33852.68 36076.12 35340.81 31689.80 33044.25 35755.65 36082.67 339
ppachtmachnet_test67.72 31663.70 32879.77 27378.92 34266.04 14188.68 26882.90 35960.11 34055.45 35075.96 35439.19 32090.55 31539.53 37352.55 37082.71 336
MDTV_nov1_ep1372.61 26289.06 17868.48 7680.33 34690.11 22871.84 21071.81 21075.92 35553.01 22993.92 23748.04 33873.38 242
TinyColmap60.32 35156.42 35872.00 35078.78 34553.18 34678.36 36075.64 37652.30 36941.59 39775.82 35614.76 40288.35 33935.84 38154.71 36574.46 385
LF4IMVS54.01 36252.12 36359.69 37762.41 40139.91 40168.59 38868.28 39742.96 39744.55 39175.18 35714.09 40468.39 40341.36 36851.68 37170.78 393
tpmvs72.88 27469.76 29082.22 20990.98 13567.05 11678.22 36188.30 29963.10 31564.35 29874.98 35855.09 20694.27 21743.25 35869.57 26685.34 305
MVStest151.35 36446.89 36864.74 37065.06 39751.10 35767.33 39372.58 38430.20 40635.30 40174.82 35927.70 37669.89 40124.44 40324.57 41073.22 388
MIMVSNet71.64 28468.44 29781.23 23381.97 30864.44 17873.05 37688.80 28469.67 25464.59 29274.79 36032.79 35787.82 34453.99 31576.35 22491.42 201
UnsupCasMVSNet_eth65.79 32863.10 33173.88 33270.71 38450.29 36281.09 34089.88 23772.58 18549.25 37674.77 36132.57 35987.43 35155.96 30841.04 38983.90 317
lessismore_v073.72 33472.93 37847.83 37461.72 40545.86 38573.76 36228.63 37589.81 32847.75 34331.37 40483.53 321
FMVSNet568.04 31465.66 31475.18 32284.43 27857.89 31283.54 31586.26 32661.83 32953.64 35873.30 36337.15 34185.08 36248.99 33361.77 33282.56 340
mvs5depth61.03 34857.65 35371.18 35267.16 39347.04 38172.74 37777.49 37057.47 35360.52 32372.53 36422.84 38788.38 33849.15 33238.94 39378.11 378
pmmvs-eth3d65.53 33162.32 33775.19 32169.39 38959.59 29482.80 32883.43 35462.52 32051.30 36872.49 36532.86 35687.16 35355.32 31050.73 37378.83 372
MDA-MVSNet-bldmvs61.54 34757.70 35273.05 33879.53 33357.00 32783.08 32481.23 36157.57 35034.91 40372.45 36632.79 35786.26 35735.81 38241.95 38775.89 383
CR-MVSNet73.79 26570.82 28082.70 19483.15 29567.96 9270.25 38284.00 34973.67 16569.97 23472.41 36757.82 17089.48 33152.99 32073.13 24490.64 216
Patchmtry67.53 31963.93 32778.34 29082.12 30664.38 18268.72 38784.00 34948.23 38559.24 33072.41 36757.82 17089.27 33246.10 34956.68 35981.36 348
K. test v363.09 34259.61 34773.53 33576.26 36549.38 36883.27 32077.15 37264.35 29947.77 38172.32 36928.73 37387.79 34549.93 32936.69 39683.41 325
PM-MVS59.40 35456.59 35667.84 36363.63 39841.86 39376.76 36563.22 40359.01 34551.07 36972.27 37011.72 40683.25 37561.34 28450.28 37578.39 376
MIMVSNet160.16 35357.33 35468.67 36169.71 38744.13 38978.92 35684.21 34555.05 36444.63 39071.85 37123.91 38481.54 38532.63 39455.03 36380.35 359
DSMNet-mixed56.78 35854.44 36263.79 37263.21 39929.44 41564.43 39764.10 40242.12 39951.32 36771.60 37231.76 36275.04 39436.23 38065.20 30186.87 270
MDA-MVSNet_test_wron63.78 34060.16 34474.64 32578.15 35460.41 28283.49 31684.03 34756.17 36239.17 39971.59 37337.22 33983.24 37642.87 36248.73 37680.26 361
YYNet163.76 34160.14 34574.62 32678.06 35560.19 28783.46 31883.99 35156.18 36139.25 39871.56 37437.18 34083.34 37442.90 36148.70 37780.32 360
test_fmvs356.82 35754.86 36162.69 37653.59 40935.47 40675.87 37065.64 40043.91 39455.10 35171.43 3756.91 41474.40 39668.64 22252.63 36878.20 377
Anonymous2024052162.09 34459.08 34871.10 35367.19 39248.72 37183.91 31385.23 33750.38 37747.84 38071.22 37620.74 39185.51 36146.47 34758.75 35279.06 369
ADS-MVSNet266.90 32263.44 33077.26 30688.06 20560.70 27668.01 39075.56 37757.57 35064.48 29469.87 37738.68 32184.10 36640.87 36967.89 28286.97 267
ADS-MVSNet68.54 30964.38 32681.03 24288.06 20566.90 12168.01 39084.02 34857.57 35064.48 29469.87 37738.68 32189.21 33340.87 36967.89 28286.97 267
kuosan60.86 35060.24 34362.71 37581.57 31046.43 38375.70 37285.88 33157.98 34948.95 37769.53 37958.42 16376.53 39128.25 40035.87 39865.15 399
N_pmnet50.55 36549.11 36754.88 38477.17 3614.02 42884.36 3092.00 42648.59 38145.86 38568.82 38032.22 36082.80 37831.58 39751.38 37277.81 379
mmtdpeth68.33 31166.37 30874.21 33182.81 30051.73 35184.34 31080.42 36567.01 28271.56 21468.58 38130.52 36992.35 28675.89 15636.21 39778.56 375
KD-MVS_self_test60.87 34958.60 34967.68 36566.13 39539.93 40075.63 37384.70 34157.32 35449.57 37468.45 38229.55 37082.87 37748.09 33747.94 37880.25 362
mvsany_test348.86 36746.35 37056.41 38046.00 41531.67 41162.26 39947.25 41643.71 39545.54 38768.15 38310.84 40764.44 41257.95 30035.44 40173.13 389
patchmatchnet-post67.62 38457.62 17290.25 319
ambc69.61 35761.38 40441.35 39549.07 41185.86 33350.18 37366.40 38510.16 40888.14 34145.73 35144.20 38379.32 368
new-patchmatchnet59.30 35556.48 35767.79 36465.86 39644.19 38882.47 32981.77 36059.94 34143.65 39366.20 38627.67 37781.68 38439.34 37441.40 38877.50 380
PatchT69.11 30365.37 31780.32 25382.07 30763.68 20567.96 39287.62 31250.86 37669.37 23865.18 38757.09 17688.53 33741.59 36766.60 29088.74 240
RPMNet70.42 29265.68 31384.63 13983.15 29567.96 9270.25 38290.45 21046.83 38869.97 23465.10 38856.48 19195.30 18035.79 38373.13 24490.64 216
pmmvs355.51 35951.50 36567.53 36657.90 40750.93 35980.37 34573.66 38240.63 40044.15 39264.75 38916.30 39778.97 39044.77 35640.98 39172.69 390
dongtai55.18 36155.46 36054.34 38676.03 36836.88 40476.07 36984.61 34351.28 37343.41 39464.61 39056.56 18967.81 40418.09 40928.50 40958.32 402
test_vis1_rt59.09 35657.31 35564.43 37168.44 39146.02 38583.05 32648.63 41551.96 37149.57 37463.86 39116.30 39780.20 38871.21 19762.79 32167.07 398
Patchmatch-RL test68.17 31364.49 32479.19 28271.22 38153.93 34370.07 38471.54 39069.22 25956.79 34762.89 39256.58 18888.61 33469.53 21152.61 36995.03 85
EGC-MVSNET42.35 37238.09 37555.11 38374.57 37146.62 38271.63 38155.77 4070.04 4210.24 42262.70 39314.24 40374.91 39517.59 41046.06 38143.80 407
test_f46.58 36843.45 37255.96 38145.18 41632.05 41061.18 40049.49 41433.39 40342.05 39662.48 3947.00 41365.56 40847.08 34543.21 38670.27 395
UnsupCasMVSNet_bld61.60 34657.71 35173.29 33768.73 39051.64 35278.61 35789.05 27457.20 35546.11 38261.96 39528.70 37488.60 33550.08 32838.90 39479.63 365
FPMVS45.64 37043.10 37453.23 38751.42 41236.46 40564.97 39671.91 38729.13 40727.53 40761.55 3969.83 40965.01 41016.00 41355.58 36158.22 403
WB-MVS46.23 36944.94 37150.11 38962.13 40221.23 42276.48 36755.49 40845.89 38935.78 40061.44 39735.54 34872.83 3979.96 41621.75 41156.27 404
SSC-MVS44.51 37143.35 37347.99 39361.01 40518.90 42474.12 37554.36 40943.42 39634.10 40460.02 39834.42 35370.39 4009.14 41819.57 41254.68 405
new_pmnet49.31 36646.44 36957.93 37962.84 40040.74 39668.47 38962.96 40436.48 40135.09 40257.81 39914.97 40172.18 39832.86 39246.44 38060.88 401
APD_test140.50 37437.31 37750.09 39051.88 41035.27 40759.45 40452.59 41121.64 41026.12 40857.80 4004.56 41866.56 40622.64 40539.09 39248.43 406
DeepMVS_CXcopyleft34.71 39951.45 41124.73 41928.48 42531.46 40517.49 41552.75 4015.80 41642.60 42018.18 40819.42 41336.81 412
test_method38.59 37735.16 38048.89 39154.33 40821.35 42145.32 41253.71 4107.41 41828.74 40651.62 4028.70 41152.87 41533.73 38632.89 40372.47 391
PMMVS237.93 37833.61 38150.92 38846.31 41424.76 41860.55 40350.05 41228.94 40820.93 41047.59 4034.41 42065.13 40925.14 40218.55 41462.87 400
JIA-IIPM66.06 32662.45 33676.88 31181.42 31354.45 34257.49 40688.67 28949.36 38063.86 30146.86 40456.06 19590.25 31949.53 33068.83 27385.95 290
gg-mvs-nofinetune77.18 21774.31 23885.80 9491.42 12468.36 7971.78 37994.72 3449.61 37977.12 15045.92 40577.41 893.98 23467.62 23193.16 5595.05 83
LCM-MVSNet40.54 37335.79 37854.76 38536.92 42230.81 41251.41 40969.02 39422.07 40924.63 40945.37 4064.56 41865.81 40733.67 38734.50 40267.67 396
testf132.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
APD_test232.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
tmp_tt22.26 38623.75 38817.80 4025.23 42612.06 42735.26 41339.48 4202.82 42018.94 41144.20 40922.23 38924.64 42136.30 3799.31 41816.69 415
MVS-HIRNet60.25 35255.55 35974.35 32884.37 27956.57 32971.64 38074.11 38134.44 40245.54 38742.24 41031.11 36789.81 32840.36 37276.10 22676.67 382
ANet_high40.27 37635.20 37955.47 38234.74 42334.47 40863.84 39871.56 38948.42 38218.80 41241.08 4119.52 41064.45 41120.18 4078.66 41967.49 397
PMVScopyleft26.43 2231.84 38228.16 38542.89 39525.87 42527.58 41650.92 41049.78 41321.37 41114.17 41740.81 4122.01 42466.62 4059.61 41738.88 39534.49 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt40.46 37537.79 37648.47 39244.49 41733.35 40966.56 39532.84 42332.39 40429.65 40539.13 4133.91 42168.65 40250.17 32640.99 39043.40 408
MVEpermissive24.84 2324.35 38419.77 39038.09 39834.56 42426.92 41726.57 41438.87 42111.73 41711.37 41827.44 4141.37 42550.42 41711.41 41514.60 41536.93 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_post23.01 41556.49 19092.67 273
E-PMN24.61 38324.00 38726.45 40043.74 41818.44 42560.86 40139.66 41915.11 4159.53 41922.10 4166.52 41546.94 4188.31 41910.14 41613.98 416
Gipumacopyleft34.91 37931.44 38245.30 39470.99 38339.64 40219.85 41672.56 38520.10 41216.16 41621.47 4175.08 41771.16 39913.07 41443.70 38525.08 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.95 35520.70 41853.05 22891.50 31060.43 289
EMVS23.76 38523.20 38925.46 40141.52 42116.90 42660.56 40238.79 42214.62 4168.99 42020.24 4197.35 41245.82 4197.25 4209.46 41713.64 417
X-MVStestdata76.86 22374.13 24285.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13710.19 42055.25 20197.41 6879.16 13491.58 7693.95 135
wuyk23d11.30 38810.95 39112.33 40348.05 41319.89 42325.89 4151.92 4273.58 4193.12 4211.37 4210.64 42615.77 4226.23 4217.77 4201.35 418
testmvs7.23 3909.62 3930.06 4050.04 4270.02 43084.98 3070.02 4280.03 4220.18 4231.21 4220.01 4280.02 4230.14 4220.01 4210.13 420
test1236.92 3919.21 3940.08 4040.03 4280.05 42981.65 3350.01 4290.02 4230.14 4240.85 4230.03 4270.02 4230.12 4230.00 4220.16 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
pcd_1.5k_mvsjas4.46 3925.95 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42453.55 2230.00 4250.00 4240.00 4220.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
WAC-MVS49.45 36631.56 398
FOURS193.95 4661.77 25193.96 7091.92 15062.14 32486.57 46
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
eth-test20.00 429
eth-test0.00 429
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2295.36 1496.47 28
save fliter93.84 4967.89 9495.05 3992.66 11978.19 94
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5299.15 291.91 2894.90 2296.51 24
GSMVS94.68 99
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 16994.68 99
sam_mvs54.91 208
MTGPAbinary92.23 132
MTMP93.77 8432.52 424
test9_res89.41 4094.96 1995.29 70
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 11993.31 9184.49 6896.75 116
test_prior467.18 11393.92 73
test_prior86.42 7694.71 3567.35 10893.10 10296.84 11395.05 83
旧先验292.00 16159.37 34487.54 3993.47 24975.39 160
新几何291.41 182
无先验92.71 12692.61 12362.03 32597.01 9666.63 24093.97 134
原ACMM292.01 158
testdata296.09 14161.26 285
segment_acmp65.94 70
testdata189.21 25977.55 107
test1287.09 5294.60 3668.86 6792.91 10982.67 8765.44 7597.55 6293.69 4894.84 92
plane_prior786.94 23361.51 257
plane_prior687.23 22562.32 24150.66 250
plane_prior591.31 18095.55 17076.74 15078.53 20588.39 247
plane_prior361.95 24979.09 8072.53 198
plane_prior293.13 11078.81 87
plane_prior187.15 227
plane_prior62.42 23793.85 7779.38 7278.80 202
n20.00 430
nn0.00 430
door-mid66.01 399
test1193.01 105
door66.57 398
HQP5-MVS63.66 206
HQP-NCC87.54 21894.06 6379.80 6374.18 177
ACMP_Plane87.54 21894.06 6379.80 6374.18 177
BP-MVS77.63 147
HQP4-MVS74.18 17795.61 16588.63 241
HQP3-MVS91.70 16678.90 200
HQP2-MVS51.63 242
MDTV_nov1_ep13_2view59.90 29080.13 35067.65 27572.79 19254.33 21659.83 29392.58 176
ACMMP++_ref71.63 255
ACMMP++69.72 264
Test By Simon54.21 217