This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS81.17 189.72 891.38 384.72 11593.00 6958.16 27996.72 794.41 4086.50 690.25 1897.83 175.46 1498.67 2392.78 595.49 1297.32 6
DPE-MVScopyleft88.77 1489.21 1487.45 3596.26 2067.56 9094.17 5194.15 5168.77 23490.74 1497.27 276.09 1298.49 2790.58 2394.91 1996.30 28
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS90.70 290.52 791.24 189.68 14376.68 297.29 195.35 1082.87 1591.58 1097.22 379.93 599.10 983.12 7797.64 297.94 1
SED-MVS89.94 790.36 888.70 1596.45 1269.38 4596.89 494.44 3871.65 18492.11 497.21 476.79 999.11 692.34 895.36 1397.62 2
test_241102_TWO94.41 4071.65 18492.07 697.21 474.58 1799.11 692.34 895.36 1396.59 15
test072696.40 1569.99 3196.76 694.33 4671.92 17191.89 897.11 673.77 21
test_241102_ONE96.45 1269.38 4594.44 3871.65 18492.11 497.05 776.79 999.11 6
OPU-MVS89.97 397.52 373.15 1296.89 497.00 883.82 299.15 295.72 197.63 397.62 2
DVP-MVScopyleft89.41 1189.73 1288.45 2096.40 1569.99 3196.64 894.52 3471.92 17190.55 1696.93 973.77 2199.08 1191.91 1494.90 2096.29 29
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 15590.55 1696.93 976.24 1199.08 1191.53 1694.99 1696.43 25
DVP-MVS++90.53 391.09 488.87 1397.31 469.91 3593.96 6294.37 4472.48 15592.07 696.85 1183.82 299.15 291.53 1697.42 497.55 4
test_one_060196.32 1869.74 4094.18 4971.42 19590.67 1596.85 1174.45 18
PC_three_145280.91 3594.07 296.83 1383.57 499.12 595.70 297.42 497.55 4
CNVR-MVS90.32 590.89 688.61 1896.76 870.65 2496.47 1294.83 2384.83 989.07 2296.80 1470.86 3499.06 1592.64 695.71 1096.12 34
SMA-MVScopyleft88.14 1588.29 1887.67 2793.21 6368.72 6293.85 6994.03 5374.18 12091.74 996.67 1565.61 6098.42 3189.24 2996.08 795.88 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PHI-MVS86.83 3286.85 3386.78 5393.47 5765.55 14195.39 2895.10 1671.77 18185.69 4296.52 1662.07 9998.77 2186.06 5695.60 1196.03 37
9.1487.63 2293.86 4794.41 4994.18 4972.76 15086.21 3596.51 1766.64 5097.88 4190.08 2494.04 35
MSLP-MVS++86.27 3785.91 4187.35 3792.01 9368.97 5795.04 3892.70 10179.04 5981.50 7496.50 1858.98 13296.78 9783.49 7593.93 3796.29 29
SF-MVS87.03 2987.09 2886.84 4992.70 7767.45 9593.64 7893.76 6070.78 20886.25 3496.44 1966.98 4797.79 4388.68 3494.56 3095.28 63
HPM-MVS++copyleft89.37 1289.95 1187.64 2895.10 3068.23 7595.24 3194.49 3682.43 1988.90 2396.35 2071.89 3398.63 2488.76 3396.40 696.06 35
APDe-MVS87.54 2387.84 2086.65 5696.07 2366.30 12394.84 4393.78 5769.35 22588.39 2496.34 2167.74 4497.66 4890.62 2293.44 4796.01 38
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 889.33 185.77 4096.26 2272.84 2699.38 192.64 695.93 997.08 9
NCCC89.07 1389.46 1387.91 2396.60 1069.05 5496.38 1394.64 3184.42 1086.74 3296.20 2366.56 5298.76 2289.03 3294.56 3095.92 40
DeepC-MVS_fast79.48 287.95 1988.00 1987.79 2695.86 2768.32 7095.74 1994.11 5283.82 1283.49 6196.19 2464.53 7298.44 2983.42 7694.88 2396.61 14
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS90.38 491.87 185.88 7892.83 7164.03 17893.06 9694.33 4682.19 2193.65 396.15 2585.89 197.19 7491.02 2097.75 196.43 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ88.14 1587.61 2389.71 692.06 9076.72 195.75 1893.26 8183.86 1189.55 2096.06 2653.55 19197.89 4091.10 1893.31 4994.54 90
xiu_mvs_v2_base87.92 2087.38 2789.55 1191.41 11376.43 395.74 1993.12 8983.53 1389.55 2095.95 2753.45 19597.68 4591.07 1992.62 5694.54 90
APD-MVScopyleft85.93 4385.99 4085.76 8595.98 2665.21 14893.59 8192.58 10966.54 25186.17 3695.88 2863.83 7997.00 8486.39 5392.94 5395.06 71
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet89.61 1089.99 1088.46 1994.39 3969.71 4196.53 1193.78 5786.89 489.68 1995.78 2965.94 5699.10 992.99 493.91 3896.58 17
SD-MVS87.49 2487.49 2587.50 3493.60 5368.82 6093.90 6692.63 10776.86 8887.90 2695.76 3066.17 5397.63 5089.06 3191.48 7496.05 36
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP86.82 3386.90 3186.58 5990.42 12966.38 12096.09 1593.87 5577.73 7784.01 5995.66 3163.39 8797.94 3787.40 4393.55 4695.42 51
Skip Steuart: Steuart Systems R&D Blog.
MP-MVS-pluss85.24 5185.13 5085.56 9091.42 11165.59 13991.54 15992.51 11174.56 11480.62 8495.64 3259.15 13097.00 8486.94 4993.80 3994.07 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_prior295.10 3675.40 10585.25 4995.61 3367.94 4287.47 4294.77 24
MAR-MVS84.18 6883.43 6886.44 6496.25 2165.93 13294.28 5094.27 4874.41 11579.16 10095.61 3353.99 18698.88 2069.62 18193.26 5094.50 94
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS-test86.14 4087.01 2983.52 14792.63 8059.36 26795.49 2591.92 13180.09 4085.46 4595.53 3561.82 10395.77 12986.77 5193.37 4895.41 52
CS-MVS85.80 4586.65 3483.27 15592.00 9458.92 27295.31 2991.86 13679.97 4184.82 5095.40 3662.26 9795.51 14786.11 5592.08 6495.37 55
test_894.19 4067.19 9994.15 5593.42 7771.87 17685.38 4695.35 3768.19 3996.95 91
TEST994.18 4167.28 9794.16 5293.51 7171.75 18285.52 4395.33 3868.01 4197.27 72
train_agg87.21 2787.42 2686.60 5794.18 4167.28 9794.16 5293.51 7171.87 17685.52 4395.33 3868.19 3997.27 7289.09 3094.90 2095.25 67
ACMMP_NAP86.05 4185.80 4386.80 5291.58 10667.53 9291.79 14993.49 7474.93 11184.61 5195.30 4059.42 12697.92 3886.13 5494.92 1894.94 76
SR-MVS82.81 9182.58 8783.50 15093.35 5861.16 23592.23 12891.28 16364.48 26581.27 7595.28 4153.71 19095.86 12582.87 7888.77 9993.49 126
CDPH-MVS85.71 4685.46 4686.46 6394.75 3467.19 9993.89 6792.83 9870.90 20483.09 6495.28 4163.62 8397.36 6380.63 9694.18 3394.84 80
cdsmvs_eth3d_5k19.86 34326.47 3420.00 3620.00 3850.00 3860.00 37393.45 750.00 3800.00 38195.27 4349.56 2250.00 3810.00 3790.00 3780.00 377
lupinMVS87.74 2287.77 2187.63 3289.24 15571.18 1996.57 1092.90 9682.70 1887.13 2995.27 4364.99 6495.80 12689.34 2791.80 6895.93 39
canonicalmvs86.85 3186.25 3788.66 1791.80 10171.92 1493.54 8391.71 14480.26 3987.55 2795.25 4563.59 8596.93 9488.18 3584.34 13297.11 8
alignmvs87.28 2686.97 3088.24 2291.30 11471.14 2195.61 2393.56 6979.30 5187.07 3195.25 4568.43 3796.93 9487.87 3784.33 13396.65 13
MTAPA83.91 7383.38 7285.50 9191.89 9965.16 15081.75 29992.23 11775.32 10680.53 8595.21 4756.06 16497.16 7684.86 6592.55 5894.18 99
ZD-MVS96.63 965.50 14393.50 7370.74 20985.26 4895.19 4864.92 6797.29 6887.51 4193.01 52
patch_mono-289.71 990.99 585.85 8196.04 2463.70 18795.04 3895.19 1386.74 591.53 1195.15 4973.86 2097.58 5393.38 392.00 6596.28 31
PAPR85.15 5284.47 5687.18 4096.02 2568.29 7191.85 14793.00 9376.59 9379.03 10195.00 5061.59 10497.61 5278.16 11689.00 9795.63 46
1112_ss80.56 12779.83 12682.77 16388.65 16760.78 24192.29 12588.36 26472.58 15372.46 17394.95 5165.09 6393.42 22166.38 21377.71 17894.10 104
ab-mvs-re7.91 34510.55 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.95 510.00 3850.00 3810.00 3790.00 3780.00 377
HFP-MVS84.73 5784.40 5885.72 8693.75 5165.01 15493.50 8593.19 8572.19 16579.22 9994.93 5359.04 13197.67 4681.55 8792.21 6094.49 95
CP-MVS83.71 7883.40 7184.65 11793.14 6663.84 18094.59 4692.28 11571.03 20277.41 11994.92 5455.21 17296.19 11281.32 9290.70 8493.91 114
DELS-MVS90.05 690.09 989.94 493.14 6673.88 797.01 394.40 4288.32 285.71 4194.91 5574.11 1998.91 1787.26 4595.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPR84.37 6184.06 6085.28 9893.56 5464.37 17093.50 8593.15 8772.19 16578.85 10794.86 5656.69 15697.45 5781.55 8792.20 6194.02 110
region2R84.36 6284.03 6185.36 9693.54 5564.31 17293.43 8892.95 9472.16 16878.86 10694.84 5756.97 15197.53 5581.38 9192.11 6394.24 98
TSAR-MVS + GP.87.96 1888.37 1786.70 5593.51 5665.32 14595.15 3493.84 5678.17 7085.93 3994.80 5875.80 1398.21 3289.38 2688.78 9896.59 15
WTY-MVS86.32 3685.81 4287.85 2492.82 7369.37 4795.20 3295.25 1282.71 1781.91 7194.73 5967.93 4397.63 5079.55 10282.25 14596.54 18
MVS84.66 5882.86 8290.06 290.93 12074.56 687.91 25195.54 968.55 23672.35 17694.71 6059.78 12298.90 1881.29 9394.69 2996.74 12
ZNCC-MVS85.33 5085.08 5186.06 7393.09 6865.65 13793.89 6793.41 7873.75 13179.94 9094.68 6160.61 11398.03 3682.63 8093.72 4294.52 92
test_vis1_n_192081.66 11082.01 9580.64 21782.24 27155.09 30694.76 4486.87 28281.67 2684.40 5494.63 6238.17 28894.67 17291.98 1383.34 13992.16 163
APD-MVS_3200maxsize81.64 11181.32 10282.59 16992.36 8358.74 27491.39 16691.01 17763.35 27479.72 9394.62 6351.82 20596.14 11479.71 10087.93 10492.89 143
EPNet87.84 2188.38 1686.23 7193.30 6066.05 12795.26 3094.84 2287.09 388.06 2594.53 6466.79 4997.34 6583.89 7391.68 7095.29 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post81.06 12080.70 11282.15 18292.02 9158.56 27690.90 18590.45 18762.76 28178.89 10294.46 6551.26 21295.61 13978.77 11286.77 11592.28 156
RE-MVS-def80.48 11792.02 9158.56 27690.90 18590.45 18762.76 28178.89 10294.46 6549.30 22878.77 11286.77 11592.28 156
MP-MVScopyleft85.02 5384.97 5385.17 10292.60 8164.27 17493.24 9192.27 11673.13 14279.63 9494.43 6761.90 10097.17 7585.00 6292.56 5794.06 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS83.25 8482.70 8584.92 10792.81 7564.07 17790.44 19892.20 12171.28 19677.23 12294.43 6755.17 17397.31 6779.33 10591.38 7693.37 128
xiu_mvs_v1_base_debu82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
xiu_mvs_v1_base82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
xiu_mvs_v1_base_debi82.16 10181.12 10485.26 9986.42 21368.72 6292.59 11890.44 19073.12 14384.20 5594.36 6938.04 29195.73 13184.12 7086.81 11291.33 173
旧先验191.94 9560.74 24591.50 15494.36 6965.23 6291.84 6794.55 88
CSCG86.87 3086.26 3688.72 1495.05 3170.79 2393.83 7395.33 1168.48 23877.63 11694.35 7373.04 2498.45 2884.92 6493.71 4396.92 11
MVSFormer83.75 7782.88 8186.37 6789.24 15571.18 1989.07 23590.69 18165.80 25687.13 2994.34 7464.99 6492.67 24372.83 14891.80 6895.27 64
jason86.40 3586.17 3887.11 4286.16 21970.54 2695.71 2292.19 12282.00 2384.58 5294.34 7461.86 10195.53 14687.76 3890.89 8295.27 64
jason: jason.
XVS83.87 7483.47 6685.05 10393.22 6163.78 18292.92 10392.66 10473.99 12378.18 11194.31 7655.25 16997.41 6079.16 10691.58 7293.95 112
EIA-MVS84.84 5684.88 5484.69 11691.30 11462.36 21493.85 6992.04 12679.45 4879.33 9894.28 7762.42 9696.35 10880.05 9991.25 7995.38 54
mPP-MVS82.96 9082.44 9084.52 12192.83 7162.92 20592.76 10691.85 13871.52 19275.61 13894.24 7853.48 19496.99 8778.97 10990.73 8393.64 123
DROMVSNet84.53 6085.04 5283.01 15989.34 15061.37 23294.42 4891.09 17177.91 7483.24 6294.20 7958.37 13595.40 14885.35 5991.41 7592.27 159
GST-MVS84.63 5984.29 5985.66 8892.82 7365.27 14693.04 9893.13 8873.20 14078.89 10294.18 8059.41 12797.85 4281.45 8992.48 5993.86 117
EI-MVSNet-Vis-set83.77 7683.67 6384.06 13492.79 7663.56 19291.76 15294.81 2479.65 4777.87 11494.09 8163.35 8897.90 3979.35 10479.36 16590.74 183
testdata81.34 20089.02 15957.72 28489.84 21458.65 31185.32 4794.09 8157.03 14793.28 22269.34 18490.56 8793.03 139
ETV-MVS86.01 4286.11 3985.70 8790.21 13467.02 10693.43 8891.92 13181.21 3284.13 5894.07 8360.93 11095.63 13789.28 2889.81 9094.46 96
MVS_111021_HR86.19 3985.80 4387.37 3693.17 6569.79 3893.99 6193.76 6079.08 5878.88 10593.99 8462.25 9898.15 3485.93 5791.15 8094.15 102
HPM-MVScopyleft83.25 8482.95 7984.17 13292.25 8662.88 20790.91 18491.86 13670.30 21477.12 12393.96 8556.75 15496.28 11082.04 8491.34 7893.34 129
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DP-MVS Recon82.73 9281.65 9985.98 7597.31 467.06 10395.15 3491.99 12869.08 23176.50 13093.89 8654.48 18198.20 3370.76 17085.66 12492.69 144
EI-MVSNet-UG-set83.14 8682.96 7883.67 14592.28 8563.19 19791.38 16894.68 2979.22 5376.60 12893.75 8762.64 9497.76 4478.07 11778.01 17690.05 192
CANet_DTU84.09 7083.52 6485.81 8290.30 13266.82 10991.87 14589.01 24685.27 786.09 3793.74 8847.71 24496.98 8877.90 11889.78 9293.65 122
dcpmvs_287.37 2587.55 2486.85 4895.04 3268.20 7690.36 20290.66 18479.37 5081.20 7693.67 8974.73 1596.55 10590.88 2192.00 6595.82 42
ET-MVSNet_ETH3D84.01 7183.15 7786.58 5990.78 12570.89 2294.74 4594.62 3281.44 3058.19 30193.64 9073.64 2392.35 25782.66 7978.66 17396.50 23
DeepC-MVS77.85 385.52 4885.24 4886.37 6788.80 16566.64 11492.15 12993.68 6581.07 3376.91 12693.64 9062.59 9598.44 2985.50 5892.84 5594.03 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPM_NR82.97 8981.84 9786.37 6794.10 4466.76 11287.66 25692.84 9769.96 21874.07 15493.57 9263.10 9297.50 5670.66 17290.58 8694.85 77
PMMVS81.98 10682.04 9481.78 19189.76 14256.17 29891.13 18090.69 18177.96 7280.09 8993.57 9246.33 25394.99 15981.41 9087.46 10894.17 100
LFMVS84.34 6382.73 8489.18 1294.76 3373.25 994.99 4091.89 13471.90 17382.16 7093.49 9447.98 24197.05 7982.55 8184.82 12897.25 7
ACMMPcopyleft81.49 11280.67 11383.93 13791.71 10362.90 20692.13 13092.22 12071.79 18071.68 18493.49 9450.32 21796.96 9078.47 11484.22 13791.93 165
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS79.59 14379.16 13980.89 21591.54 10959.80 25992.10 13288.54 26260.42 29972.96 16293.28 9648.27 23792.80 23778.89 11186.50 12090.06 191
MVS_111021_LR82.02 10581.52 10083.51 14988.42 17362.88 20789.77 22088.93 24876.78 9175.55 13993.10 9750.31 21895.38 15083.82 7487.02 11192.26 160
131480.70 12578.95 14185.94 7787.77 19367.56 9087.91 25192.55 11072.17 16767.44 23593.09 9850.27 21997.04 8271.68 16487.64 10793.23 133
PVSNet_Blended86.73 3486.86 3286.31 7093.76 4967.53 9296.33 1493.61 6782.34 2081.00 8193.08 9963.19 9097.29 6887.08 4791.38 7694.13 103
VNet86.20 3885.65 4587.84 2593.92 4669.99 3195.73 2195.94 678.43 6786.00 3893.07 10058.22 13697.00 8485.22 6084.33 13396.52 19
HPM-MVS_fast80.25 13279.55 13282.33 17591.55 10859.95 25791.32 17289.16 23865.23 26274.71 14793.07 10047.81 24395.74 13074.87 13988.23 10191.31 177
PAPM85.89 4485.46 4687.18 4088.20 18372.42 1392.41 12392.77 9982.11 2280.34 8693.07 10068.27 3895.02 15878.39 11593.59 4594.09 105
MG-MVS87.11 2886.27 3589.62 797.79 176.27 494.96 4194.49 3678.74 6583.87 6092.94 10364.34 7396.94 9275.19 13294.09 3495.66 45
新几何184.73 11492.32 8464.28 17391.46 15659.56 30779.77 9292.90 10456.95 15296.57 10363.40 23792.91 5493.34 129
TSAR-MVS + MP.88.11 1788.64 1586.54 6191.73 10268.04 7990.36 20293.55 7082.89 1491.29 1292.89 10572.27 3096.03 12187.99 3694.77 2495.54 50
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_yl84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22881.09 7892.88 10657.00 14997.44 5881.11 9481.76 14996.23 32
DCV-MVSNet84.28 6483.16 7587.64 2894.52 3769.24 4995.78 1695.09 1769.19 22881.09 7892.88 10657.00 14997.44 5881.11 9481.76 14996.23 32
API-MVS82.28 9980.53 11687.54 3396.13 2270.59 2593.63 7991.04 17665.72 25875.45 14092.83 10856.11 16398.89 1964.10 23389.75 9393.15 135
Effi-MVS+83.82 7582.76 8386.99 4789.56 14669.40 4491.35 17086.12 29272.59 15283.22 6392.81 10959.60 12496.01 12381.76 8687.80 10595.56 49
TAPA-MVS70.22 1274.94 22073.53 21679.17 24990.40 13052.07 31989.19 23389.61 22362.69 28370.07 19992.67 11048.89 23594.32 18638.26 34479.97 16191.12 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvspermissive84.28 6483.83 6285.61 8987.40 19968.02 8090.88 18789.24 23380.54 3781.64 7392.52 11159.83 12194.52 18287.32 4485.11 12694.29 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
原ACMM184.42 12493.21 6364.27 17493.40 7965.39 25979.51 9592.50 11258.11 13896.69 9965.27 22793.96 3692.32 154
baseline85.01 5484.44 5786.71 5488.33 17768.73 6190.24 20791.82 14081.05 3481.18 7792.50 11263.69 8296.08 11884.45 6886.71 11795.32 59
3Dnovator+73.60 782.10 10480.60 11586.60 5790.89 12266.80 11195.20 3293.44 7674.05 12267.42 23692.49 11449.46 22697.65 4970.80 16991.68 7095.33 57
3Dnovator73.91 682.69 9580.82 11088.31 2189.57 14571.26 1892.60 11694.39 4378.84 6267.89 23092.48 11548.42 23698.52 2668.80 19194.40 3295.15 69
test22289.77 14161.60 22889.55 22389.42 22856.83 32077.28 12192.43 11652.76 19991.14 8193.09 137
sss82.71 9482.38 9183.73 14289.25 15459.58 26292.24 12794.89 2177.96 7279.86 9192.38 11756.70 15597.05 7977.26 12180.86 15794.55 88
AdaColmapbinary78.94 15577.00 17184.76 11396.34 1765.86 13392.66 11487.97 27462.18 28670.56 19192.37 11843.53 26797.35 6464.50 23182.86 14191.05 181
VDD-MVS83.06 8781.81 9886.81 5190.86 12367.70 8795.40 2791.50 15475.46 10381.78 7292.34 11940.09 27897.13 7786.85 5082.04 14795.60 47
CLD-MVS82.73 9282.35 9283.86 13887.90 19067.65 8995.45 2692.18 12385.06 872.58 16992.27 12052.46 20295.78 12784.18 6979.06 16888.16 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
h-mvs3383.01 8882.56 8884.35 12789.34 15062.02 21992.72 10893.76 6081.45 2882.73 6692.25 12160.11 11797.13 7787.69 3962.96 28493.91 114
OMC-MVS78.67 16477.91 15580.95 21385.76 22657.40 29188.49 24488.67 25773.85 12872.43 17492.10 12249.29 22994.55 18072.73 15177.89 17790.91 182
casdiffmvspermissive85.37 4984.87 5586.84 4988.25 18069.07 5393.04 9891.76 14181.27 3180.84 8392.07 12364.23 7496.06 11984.98 6387.43 10995.39 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OpenMVScopyleft70.45 1178.54 16675.92 18486.41 6685.93 22571.68 1692.74 10792.51 11166.49 25264.56 26191.96 12443.88 26698.10 3554.61 27990.65 8589.44 201
Vis-MVSNet (Re-imp)79.24 14979.57 12978.24 26188.46 17152.29 31890.41 20089.12 24174.24 11969.13 20891.91 12565.77 5890.09 29359.00 26588.09 10392.33 153
gm-plane-assit88.42 17367.04 10578.62 6691.83 12697.37 6276.57 124
Vis-MVSNetpermissive80.92 12379.98 12483.74 14088.48 17061.80 22393.44 8788.26 26973.96 12677.73 11591.76 12749.94 22294.76 16565.84 21990.37 8894.65 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
QAPM79.95 13977.39 16587.64 2889.63 14471.41 1793.30 9093.70 6465.34 26167.39 23891.75 12847.83 24298.96 1657.71 26989.81 9092.54 149
IS-MVSNet80.14 13479.41 13482.33 17587.91 18960.08 25691.97 14288.27 26772.90 14871.44 18791.73 12961.44 10593.66 21662.47 24686.53 11993.24 132
baseline181.84 10781.03 10884.28 13091.60 10566.62 11591.08 18191.66 14881.87 2474.86 14491.67 13069.98 3694.92 16371.76 16264.75 27391.29 178
test_fmvs174.07 22773.69 21475.22 28878.91 30847.34 34189.06 23774.69 34163.68 27179.41 9691.59 13124.36 33987.77 31385.22 6076.26 19590.55 187
casdiffmvs_mvgpermissive85.66 4785.18 4987.09 4388.22 18269.35 4893.74 7691.89 13481.47 2780.10 8891.45 13264.80 6896.35 10887.23 4687.69 10695.58 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250683.29 8282.92 8084.37 12688.39 17563.18 19892.01 13891.35 15977.66 7978.49 11091.42 13364.58 7195.09 15773.19 14489.23 9494.85 77
ECVR-MVScopyleft81.29 11580.38 11984.01 13688.39 17561.96 22192.56 12186.79 28477.66 7976.63 12791.42 13346.34 25295.24 15574.36 14189.23 9494.85 77
test111180.84 12480.02 12183.33 15387.87 19160.76 24392.62 11586.86 28377.86 7575.73 13491.39 13546.35 25194.70 17172.79 15088.68 10094.52 92
TR-MVS78.77 16177.37 16682.95 16090.49 12860.88 23993.67 7790.07 20670.08 21774.51 14891.37 13645.69 25895.70 13660.12 25980.32 16092.29 155
EPNet_dtu78.80 15979.26 13877.43 26988.06 18549.71 33191.96 14391.95 13077.67 7876.56 12991.28 13758.51 13490.20 29156.37 27380.95 15692.39 151
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs1_n72.69 24671.92 23674.99 29171.15 34347.08 34387.34 26175.67 33663.48 27378.08 11391.17 13820.16 35187.87 31084.65 6675.57 19990.01 193
BH-RMVSNet79.46 14777.65 15784.89 10891.68 10465.66 13693.55 8288.09 27172.93 14773.37 15991.12 13946.20 25596.12 11556.28 27485.61 12592.91 142
thisisatest051583.41 8082.49 8986.16 7289.46 14968.26 7393.54 8394.70 2874.31 11875.75 13390.92 14072.62 2896.52 10669.64 17981.50 15293.71 120
VDDNet80.50 12878.26 14887.21 3986.19 21869.79 3894.48 4791.31 16060.42 29979.34 9790.91 14138.48 28696.56 10482.16 8281.05 15595.27 64
GG-mvs-BLEND86.53 6291.91 9869.67 4375.02 33594.75 2678.67 10990.85 14277.91 794.56 17972.25 15693.74 4195.36 56
CNLPA74.31 22572.30 23280.32 22191.49 11061.66 22790.85 18880.72 32656.67 32163.85 26990.64 14346.75 24790.84 28153.79 28375.99 19788.47 214
PCF-MVS73.15 979.29 14877.63 15884.29 12986.06 22065.96 13187.03 26391.10 17069.86 22069.79 20590.64 14357.54 14396.59 10164.37 23282.29 14490.32 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t79.17 15077.67 15683.68 14495.32 2965.53 14292.85 10591.60 15063.49 27267.92 22790.63 14546.65 24895.72 13567.01 20683.54 13889.79 195
PLCcopyleft68.80 1475.23 21673.68 21579.86 23692.93 7058.68 27590.64 19588.30 26560.90 29664.43 26590.53 14642.38 27294.57 17756.52 27276.54 19286.33 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet73.49 880.05 13678.63 14384.31 12890.92 12164.97 15592.47 12291.05 17579.18 5472.43 17490.51 14737.05 30394.06 19968.06 19586.00 12293.90 116
hse-mvs281.12 11981.11 10781.16 20486.52 21257.48 28989.40 22891.16 16681.45 2882.73 6690.49 14860.11 11794.58 17587.69 3960.41 31191.41 172
AUN-MVS78.37 16877.43 16181.17 20386.60 21157.45 29089.46 22791.16 16674.11 12174.40 14990.49 14855.52 16894.57 17774.73 14060.43 31091.48 170
baseline283.68 7983.42 7084.48 12387.37 20066.00 12990.06 21195.93 779.71 4669.08 21090.39 15077.92 696.28 11078.91 11081.38 15391.16 179
EPP-MVSNet81.79 10881.52 10082.61 16888.77 16660.21 25493.02 10093.66 6668.52 23772.90 16490.39 15072.19 3194.96 16074.93 13679.29 16792.67 145
NP-MVS87.41 19863.04 19990.30 152
HQP-MVS81.14 11780.64 11482.64 16787.54 19563.66 19094.06 5791.70 14679.80 4374.18 15090.30 15251.63 20995.61 13977.63 11978.90 16988.63 208
mvsany_test168.77 27268.56 26069.39 32373.57 33645.88 34880.93 30860.88 36459.65 30671.56 18590.26 15443.22 26975.05 35474.26 14262.70 28787.25 233
Anonymous20240521177.96 17575.33 19185.87 7993.73 5264.52 16094.85 4285.36 29862.52 28476.11 13190.18 15529.43 33097.29 6868.51 19377.24 18895.81 43
test_vis1_n71.63 25170.73 24674.31 29869.63 34947.29 34286.91 26672.11 34763.21 27775.18 14290.17 15620.40 34985.76 32584.59 6774.42 20389.87 194
BH-w/o80.49 12979.30 13784.05 13590.83 12464.36 17193.60 8089.42 22874.35 11769.09 20990.15 15755.23 17195.61 13964.61 23086.43 12192.17 162
EI-MVSNet78.97 15478.22 14981.25 20185.33 23062.73 21089.53 22593.21 8272.39 16072.14 17790.13 15860.99 10894.72 16867.73 20072.49 21986.29 247
CVMVSNet74.04 22874.27 20573.33 30485.33 23043.94 35289.53 22588.39 26354.33 32870.37 19590.13 15849.17 23184.05 33161.83 25079.36 16591.99 164
XVG-OURS-SEG-HR74.70 22273.08 22079.57 24378.25 31657.33 29280.49 31087.32 27863.22 27668.76 21790.12 16044.89 26391.59 27270.55 17374.09 20689.79 195
OPM-MVS79.00 15378.09 15081.73 19283.52 26063.83 18191.64 15890.30 19776.36 9671.97 17989.93 16146.30 25495.17 15675.10 13377.70 17986.19 251
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended_VisFu83.97 7283.50 6585.39 9590.02 13666.59 11793.77 7491.73 14277.43 8577.08 12589.81 16263.77 8196.97 8979.67 10188.21 10292.60 147
CDS-MVSNet81.43 11380.74 11183.52 14786.26 21764.45 16492.09 13390.65 18575.83 10073.95 15689.81 16263.97 7792.91 23371.27 16582.82 14293.20 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS74.25 22672.46 23179.63 24178.45 31457.59 28880.33 31287.39 27763.86 26968.76 21789.62 16440.50 27791.72 27069.00 18874.25 20489.58 198
GeoE78.90 15677.43 16183.29 15488.95 16162.02 21992.31 12486.23 29070.24 21571.34 18889.27 16554.43 18294.04 20263.31 23880.81 15993.81 119
thisisatest053081.15 11680.07 12084.39 12588.26 17965.63 13891.40 16494.62 3271.27 19770.93 19089.18 16672.47 2996.04 12065.62 22276.89 19091.49 169
UA-Net80.02 13779.65 12881.11 20689.33 15257.72 28486.33 27189.00 24777.44 8481.01 8089.15 16759.33 12895.90 12461.01 25384.28 13589.73 197
HQP_MVS80.34 13179.75 12782.12 18486.94 20662.42 21293.13 9491.31 16078.81 6372.53 17089.14 16850.66 21595.55 14476.74 12278.53 17488.39 215
plane_prior489.14 168
thres20079.66 14278.33 14683.66 14692.54 8265.82 13593.06 9696.31 374.90 11273.30 16088.66 17059.67 12395.61 13947.84 30778.67 17289.56 200
BH-untuned78.68 16277.08 16883.48 15189.84 13963.74 18492.70 11088.59 26071.57 19066.83 24588.65 17151.75 20795.39 14959.03 26484.77 12991.32 176
TAMVS80.37 13079.45 13383.13 15885.14 23463.37 19391.23 17590.76 18074.81 11372.65 16788.49 17260.63 11292.95 22869.41 18381.95 14893.08 138
LPG-MVS_test75.82 20874.58 19979.56 24484.31 24959.37 26590.44 19889.73 21969.49 22364.86 25688.42 17338.65 28494.30 18772.56 15372.76 21685.01 276
LGP-MVS_train79.56 24484.31 24959.37 26589.73 21969.49 22364.86 25688.42 17338.65 28494.30 18772.56 15372.76 21685.01 276
iter_conf_final81.74 10980.93 10984.18 13192.66 7969.10 5292.94 10282.80 32079.01 6074.85 14588.40 17561.83 10294.61 17379.36 10376.52 19388.83 203
iter_conf0583.27 8382.70 8584.98 10693.32 5971.84 1594.16 5281.76 32282.74 1673.83 15788.40 17572.77 2794.61 17382.10 8375.21 20088.48 212
VPNet78.82 15877.53 16082.70 16584.52 24466.44 11993.93 6492.23 11780.46 3872.60 16888.38 17749.18 23093.13 22472.47 15563.97 28188.55 211
FIs79.47 14679.41 13479.67 24085.95 22259.40 26491.68 15693.94 5478.06 7168.96 21388.28 17866.61 5191.77 26966.20 21674.99 20187.82 220
CHOSEN 1792x268884.98 5583.45 6789.57 1089.94 13875.14 592.07 13592.32 11481.87 2475.68 13588.27 17960.18 11698.60 2580.46 9890.27 8994.96 75
tfpn200view978.79 16077.43 16182.88 16192.21 8864.49 16192.05 13696.28 473.48 13771.75 18288.26 18060.07 11995.32 15145.16 31877.58 18188.83 203
Fast-Effi-MVS+81.14 11780.01 12284.51 12290.24 13365.86 13394.12 5689.15 23973.81 13075.37 14188.26 18057.26 14494.53 18166.97 20784.92 12793.15 135
thres40078.68 16277.43 16182.43 17192.21 8864.49 16192.05 13696.28 473.48 13771.75 18288.26 18060.07 11995.32 15145.16 31877.58 18187.48 224
nrg03080.93 12279.86 12584.13 13383.69 25768.83 5993.23 9291.20 16475.55 10275.06 14388.22 18363.04 9394.74 16781.88 8566.88 25688.82 206
F-COLMAP70.66 25668.44 26277.32 27186.37 21655.91 30088.00 24986.32 28756.94 31957.28 30988.07 18433.58 31492.49 25151.02 29068.37 24683.55 287
tttt051779.50 14578.53 14582.41 17487.22 20261.43 23189.75 22194.76 2569.29 22667.91 22888.06 18572.92 2595.63 13762.91 24273.90 20990.16 190
HY-MVS76.49 584.28 6483.36 7387.02 4692.22 8767.74 8684.65 27794.50 3579.15 5582.23 6987.93 18666.88 4896.94 9280.53 9782.20 14696.39 27
thres100view90078.37 16877.01 17082.46 17091.89 9963.21 19691.19 17996.33 172.28 16370.45 19487.89 18760.31 11495.32 15145.16 31877.58 18188.83 203
thres600view778.00 17376.66 17582.03 18991.93 9663.69 18891.30 17396.33 172.43 15870.46 19387.89 18760.31 11494.92 16342.64 33076.64 19187.48 224
test0.0.03 172.76 24272.71 22772.88 30880.25 29147.99 33791.22 17689.45 22671.51 19362.51 28187.66 18953.83 18785.06 32850.16 29467.84 25285.58 266
FC-MVSNet-test77.99 17478.08 15177.70 26484.89 23955.51 30390.27 20593.75 6376.87 8766.80 24687.59 19065.71 5990.23 29062.89 24373.94 20787.37 227
TESTMET0.1,182.41 9781.98 9683.72 14388.08 18463.74 18492.70 11093.77 5979.30 5177.61 11787.57 19158.19 13794.08 19773.91 14386.68 11893.33 131
LS3D69.17 26766.40 27177.50 26791.92 9756.12 29985.12 27480.37 32846.96 34656.50 31187.51 19237.25 29893.71 21432.52 35979.40 16482.68 305
Anonymous2024052976.84 19174.15 20784.88 10991.02 11864.95 15693.84 7291.09 17153.57 32973.00 16187.42 19335.91 30797.32 6669.14 18772.41 22192.36 152
Test_1112_low_res79.56 14478.60 14482.43 17188.24 18160.39 25192.09 13387.99 27372.10 16971.84 18087.42 19364.62 7093.04 22565.80 22077.30 18693.85 118
ACMP71.68 1075.58 21374.23 20679.62 24284.97 23859.64 26090.80 19089.07 24470.39 21362.95 27687.30 19538.28 28793.87 21172.89 14771.45 22785.36 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CHOSEN 280x42077.35 18476.95 17278.55 25687.07 20562.68 21169.71 34382.95 31868.80 23371.48 18687.27 19666.03 5584.00 33376.47 12582.81 14388.95 202
test-LLR80.10 13579.56 13081.72 19386.93 20861.17 23392.70 11091.54 15171.51 19375.62 13686.94 19753.83 18792.38 25472.21 15784.76 13091.60 167
test-mter79.96 13879.38 13681.72 19386.93 20861.17 23392.70 11091.54 15173.85 12875.62 13686.94 19749.84 22492.38 25472.21 15784.76 13091.60 167
UniMVSNet_NR-MVSNet78.15 17277.55 15979.98 23284.46 24660.26 25292.25 12693.20 8477.50 8368.88 21486.61 19966.10 5492.13 26166.38 21362.55 28887.54 222
MVS_Test84.16 6983.20 7487.05 4591.56 10769.82 3789.99 21692.05 12577.77 7682.84 6586.57 20063.93 7896.09 11674.91 13789.18 9695.25 67
tt080573.07 23670.73 24680.07 22978.37 31557.05 29487.78 25392.18 12361.23 29567.04 24186.49 20131.35 32494.58 17565.06 22867.12 25488.57 210
DU-MVS76.86 18875.84 18579.91 23482.96 26660.26 25291.26 17491.54 15176.46 9568.88 21486.35 20256.16 16192.13 26166.38 21362.55 28887.35 229
NR-MVSNet76.05 20274.59 19880.44 21982.96 26662.18 21890.83 18991.73 14277.12 8660.96 28786.35 20259.28 12991.80 26860.74 25461.34 30387.35 229
mvsmamba76.85 19075.71 18880.25 22583.07 26559.16 26991.44 16080.64 32776.84 8967.95 22686.33 20446.17 25694.24 19276.06 12772.92 21587.36 228
UGNet79.87 14078.68 14283.45 15289.96 13761.51 22992.13 13090.79 17976.83 9078.85 10786.33 20438.16 28996.17 11367.93 19887.17 11092.67 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet75.86 20774.52 20179.89 23582.44 26960.64 24891.37 16991.37 15876.63 9267.65 23386.21 20652.37 20391.55 27361.84 24960.81 30687.48 224
cascas78.18 17175.77 18685.41 9487.14 20469.11 5192.96 10191.15 16866.71 25070.47 19286.07 20737.49 29796.48 10770.15 17579.80 16290.65 184
HyFIR lowres test81.03 12179.56 13085.43 9387.81 19268.11 7890.18 20890.01 21070.65 21072.95 16386.06 20863.61 8494.50 18375.01 13579.75 16393.67 121
ACMM69.62 1374.34 22472.73 22679.17 24984.25 25157.87 28290.36 20289.93 21163.17 27865.64 25186.04 20937.79 29594.10 19565.89 21871.52 22685.55 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS77.94 17676.44 17782.43 17182.60 26864.44 16592.01 13891.83 13973.59 13670.00 20185.82 21054.43 18294.76 16569.63 18068.02 24988.10 219
IB-MVS77.80 482.18 10080.46 11887.35 3789.14 15770.28 2995.59 2495.17 1578.85 6170.19 19885.82 21070.66 3597.67 4672.19 15966.52 25994.09 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER82.47 9682.05 9383.74 14092.68 7869.01 5591.90 14493.21 8279.83 4272.14 17785.71 21274.72 1694.72 16875.72 12872.49 21987.50 223
WR-MVS76.76 19375.74 18779.82 23784.60 24262.27 21792.60 11692.51 11176.06 9767.87 23185.34 21356.76 15390.24 28962.20 24763.69 28386.94 237
DP-MVS69.90 26366.48 27080.14 22795.36 2862.93 20389.56 22276.11 33450.27 33957.69 30785.23 21439.68 27995.73 13133.35 35471.05 23081.78 315
PVSNet_BlendedMVS83.38 8183.43 6883.22 15693.76 4967.53 9294.06 5793.61 6779.13 5681.00 8185.14 21563.19 9097.29 6887.08 4773.91 20884.83 278
ab-mvs80.18 13378.31 14785.80 8388.44 17265.49 14483.00 29492.67 10371.82 17977.36 12085.01 21654.50 17896.59 10176.35 12675.63 19895.32 59
VPA-MVSNet79.03 15278.00 15282.11 18785.95 22264.48 16393.22 9394.66 3075.05 11074.04 15584.95 21752.17 20493.52 21874.90 13867.04 25588.32 217
RRT_MVS74.44 22372.97 22378.84 25482.36 27057.66 28689.83 21988.79 25470.61 21164.58 26084.89 21839.24 28092.65 24670.11 17666.34 26086.21 250
Fast-Effi-MVS+-dtu75.04 21873.37 21880.07 22980.86 28159.52 26391.20 17885.38 29771.90 17365.20 25484.84 21941.46 27492.97 22766.50 21272.96 21487.73 221
UniMVSNet (Re)77.58 18176.78 17379.98 23284.11 25260.80 24091.76 15293.17 8676.56 9469.93 20484.78 22063.32 8992.36 25664.89 22962.51 29086.78 239
mvs_anonymous81.36 11479.99 12385.46 9290.39 13168.40 6886.88 26890.61 18674.41 11570.31 19784.67 22163.79 8092.32 25873.13 14585.70 12395.67 44
RPSCF64.24 30061.98 30271.01 32076.10 32945.00 34975.83 33375.94 33546.94 34758.96 29884.59 22231.40 32382.00 34747.76 30860.33 31286.04 256
PS-MVSNAJss77.26 18576.31 17980.13 22880.64 28559.16 26990.63 19791.06 17472.80 14968.58 22084.57 22353.55 19193.96 20772.97 14671.96 22387.27 232
test_fmvs265.78 29464.84 28168.60 32666.54 35441.71 35483.27 28869.81 35254.38 32767.91 22884.54 22415.35 35681.22 35075.65 12966.16 26182.88 298
UniMVSNet_ETH3D72.74 24370.53 24879.36 24678.62 31356.64 29685.01 27589.20 23563.77 27064.84 25884.44 22534.05 31291.86 26763.94 23470.89 23189.57 199
MS-PatchMatch77.90 17876.50 17682.12 18485.99 22169.95 3491.75 15492.70 10173.97 12562.58 28084.44 22541.11 27595.78 12763.76 23692.17 6280.62 323
bld_raw_dy_0_6471.59 25269.71 25677.22 27477.82 32158.12 28087.71 25573.66 34368.01 23961.90 28584.29 22733.68 31388.43 30469.91 17870.43 23285.11 275
MSDG69.54 26565.73 27580.96 21285.11 23663.71 18684.19 27983.28 31756.95 31854.50 31584.03 22831.50 32296.03 12142.87 32869.13 24183.14 297
GA-MVS78.33 17076.23 18084.65 11783.65 25866.30 12391.44 16090.14 20476.01 9870.32 19684.02 22942.50 27194.72 16870.98 16777.00 18992.94 141
miper_enhance_ethall78.86 15777.97 15381.54 19688.00 18865.17 14991.41 16289.15 23975.19 10868.79 21683.98 23067.17 4692.82 23572.73 15165.30 26486.62 244
pmmvs473.92 23071.81 23880.25 22579.17 30265.24 14787.43 25987.26 28067.64 24463.46 27283.91 23148.96 23491.53 27762.94 24165.49 26383.96 283
pmmvs573.35 23471.52 24078.86 25378.64 31260.61 24991.08 18186.90 28167.69 24163.32 27383.64 23244.33 26590.53 28362.04 24866.02 26285.46 269
ITE_SJBPF70.43 32174.44 33347.06 34477.32 33260.16 30254.04 31883.53 23323.30 34484.01 33243.07 32561.58 30280.21 329
jajsoiax73.05 23771.51 24177.67 26577.46 32254.83 30788.81 23990.04 20969.13 23062.85 27883.51 23431.16 32592.75 23970.83 16869.80 23485.43 270
testgi64.48 29962.87 29769.31 32471.24 34140.62 35785.49 27379.92 32965.36 26054.18 31783.49 23523.74 34384.55 32941.60 33260.79 30782.77 300
v2v48277.42 18375.65 18982.73 16480.38 28767.13 10291.85 14790.23 20175.09 10969.37 20683.39 23653.79 18994.44 18471.77 16165.00 27086.63 243
mvs_tets72.71 24471.11 24277.52 26677.41 32354.52 30988.45 24589.76 21568.76 23562.70 27983.26 23729.49 32992.71 24070.51 17469.62 23685.34 272
FMVSNet377.73 17976.04 18282.80 16291.20 11768.99 5691.87 14591.99 12873.35 13967.04 24183.19 23856.62 15792.14 26059.80 26169.34 23887.28 231
FA-MVS(test-final)79.12 15177.23 16784.81 11290.54 12763.98 17981.35 30591.71 14471.09 20174.85 14582.94 23952.85 19897.05 7967.97 19681.73 15193.41 127
MVP-Stereo77.12 18776.23 18079.79 23881.72 27666.34 12289.29 22990.88 17870.56 21262.01 28382.88 24049.34 22794.13 19465.55 22493.80 3978.88 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL72.06 24869.98 25078.28 25989.51 14855.70 30283.49 28483.39 31661.24 29463.72 27082.76 24134.77 31093.03 22653.37 28677.59 18086.12 255
CP-MVSNet70.50 25869.91 25372.26 31380.71 28351.00 32587.23 26290.30 19767.84 24059.64 29282.69 24250.23 22082.30 34551.28 28959.28 31483.46 291
cl2277.94 17676.78 17381.42 19887.57 19464.93 15790.67 19388.86 25172.45 15767.63 23482.68 24364.07 7592.91 23371.79 16065.30 26486.44 245
miper_ehance_all_eth77.60 18076.44 17781.09 21085.70 22764.41 16890.65 19488.64 25972.31 16167.37 23982.52 24464.77 6992.64 24770.67 17165.30 26486.24 249
PEN-MVS69.46 26668.56 26072.17 31579.27 30049.71 33186.90 26789.24 23367.24 24959.08 29782.51 24547.23 24683.54 33648.42 30257.12 31983.25 294
PS-CasMVS69.86 26469.13 25872.07 31680.35 28950.57 32787.02 26489.75 21667.27 24659.19 29682.28 24646.58 24982.24 34650.69 29159.02 31583.39 293
FMVSNet276.07 19974.01 21082.26 17988.85 16267.66 8891.33 17191.61 14970.84 20565.98 24982.25 24748.03 23892.00 26558.46 26668.73 24487.10 234
DTE-MVSNet68.46 27667.33 26871.87 31877.94 31949.00 33486.16 27288.58 26166.36 25358.19 30182.21 24846.36 25083.87 33444.97 32155.17 32682.73 301
CMPMVSbinary48.56 2166.77 28864.41 28873.84 30170.65 34650.31 32877.79 32885.73 29645.54 34944.76 34982.14 24935.40 30890.14 29263.18 24074.54 20281.07 318
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_djsdf73.76 23372.56 22977.39 27077.00 32553.93 31189.07 23590.69 18165.80 25663.92 26782.03 25043.14 27092.67 24372.83 14868.53 24585.57 267
v114476.73 19474.88 19482.27 17780.23 29266.60 11691.68 15690.21 20373.69 13369.06 21181.89 25152.73 20094.40 18569.21 18665.23 26785.80 262
V4276.46 19674.55 20082.19 18179.14 30467.82 8490.26 20689.42 22873.75 13168.63 21981.89 25151.31 21194.09 19671.69 16364.84 27184.66 279
pm-mvs172.89 24071.09 24378.26 26079.10 30557.62 28790.80 19089.30 23167.66 24262.91 27781.78 25349.11 23392.95 22860.29 25858.89 31684.22 282
IterMVS-LS76.49 19575.18 19380.43 22084.49 24562.74 20990.64 19588.80 25272.40 15965.16 25581.72 25460.98 10992.27 25967.74 19964.65 27586.29 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth75.96 20674.40 20380.66 21684.66 24163.02 20089.28 23088.27 26771.88 17565.73 25081.65 25559.45 12592.81 23668.13 19460.53 30886.14 252
c3_l76.83 19275.47 19080.93 21485.02 23764.18 17690.39 20188.11 27071.66 18366.65 24781.64 25663.58 8692.56 24869.31 18562.86 28586.04 256
DIV-MVS_self_test76.07 19974.67 19580.28 22385.14 23461.75 22690.12 20988.73 25571.16 19865.42 25381.60 25761.15 10692.94 23266.54 21062.16 29486.14 252
cl____76.07 19974.67 19580.28 22385.15 23361.76 22590.12 20988.73 25571.16 19865.43 25281.57 25861.15 10692.95 22866.54 21062.17 29286.13 254
CostFormer82.33 9881.15 10385.86 8089.01 16068.46 6782.39 29793.01 9175.59 10180.25 8781.57 25872.03 3294.96 16079.06 10877.48 18494.16 101
Effi-MVS+-dtu76.14 19875.28 19278.72 25583.22 26255.17 30589.87 21787.78 27575.42 10467.98 22581.43 26045.08 26292.52 25075.08 13471.63 22488.48 212
v119275.98 20473.92 21182.15 18279.73 29466.24 12591.22 17689.75 21672.67 15168.49 22181.42 26149.86 22394.27 18967.08 20565.02 26985.95 259
COLMAP_ROBcopyleft57.96 2062.98 30659.65 30872.98 30781.44 27853.00 31583.75 28275.53 33948.34 34448.81 33881.40 26224.14 34190.30 28532.95 35660.52 30975.65 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419276.05 20274.03 20982.12 18479.50 29866.55 11891.39 16689.71 22272.30 16268.17 22381.33 26351.75 20794.03 20467.94 19764.19 27785.77 263
AllTest61.66 30858.06 31272.46 31179.57 29551.42 32380.17 31568.61 35451.25 33545.88 34381.23 26419.86 35286.58 32238.98 34157.01 32179.39 332
TestCases72.46 31179.57 29551.42 32368.61 35451.25 33545.88 34381.23 26419.86 35286.58 32238.98 34157.01 32179.39 332
v192192075.63 21273.49 21782.06 18879.38 29966.35 12191.07 18389.48 22571.98 17067.99 22481.22 26649.16 23293.90 21066.56 20964.56 27685.92 261
v124075.21 21772.98 22281.88 19079.20 30166.00 12990.75 19289.11 24271.63 18867.41 23781.22 26647.36 24593.87 21165.46 22564.72 27485.77 263
XVG-ACMP-BASELINE68.04 27965.53 27875.56 28674.06 33552.37 31778.43 32385.88 29462.03 28858.91 29981.21 26820.38 35091.15 28060.69 25568.18 24783.16 296
EU-MVSNet64.01 30163.01 29567.02 33274.40 33438.86 36283.27 28886.19 29145.11 35054.27 31681.15 26936.91 30480.01 35248.79 30157.02 32082.19 312
ACMH+65.35 1667.65 28264.55 28576.96 27884.59 24357.10 29388.08 24880.79 32558.59 31253.00 32181.09 27026.63 33792.95 22846.51 31261.69 30180.82 320
v14876.19 19774.47 20281.36 19980.05 29364.44 16591.75 15490.23 20173.68 13467.13 24080.84 27155.92 16693.86 21368.95 18961.73 29985.76 265
WR-MVS_H70.59 25769.94 25272.53 31081.03 28051.43 32287.35 26092.03 12767.38 24560.23 29080.70 27255.84 16783.45 33746.33 31458.58 31882.72 302
Baseline_NR-MVSNet73.99 22972.83 22477.48 26880.78 28259.29 26891.79 14984.55 30568.85 23268.99 21280.70 27256.16 16192.04 26462.67 24460.98 30581.11 317
Anonymous2023121173.08 23570.39 24981.13 20590.62 12663.33 19491.40 16490.06 20851.84 33464.46 26480.67 27436.49 30594.07 19863.83 23564.17 27885.98 258
PVSNet_068.08 1571.81 24968.32 26482.27 17784.68 24062.31 21688.68 24190.31 19675.84 9957.93 30680.65 27537.85 29494.19 19369.94 17729.05 36890.31 189
tpm279.80 14177.95 15485.34 9788.28 17868.26 7381.56 30291.42 15770.11 21677.59 11880.50 27667.40 4594.26 19167.34 20377.35 18593.51 125
TransMVSNet (Re)70.07 26167.66 26677.31 27280.62 28659.13 27191.78 15184.94 30265.97 25560.08 29180.44 27750.78 21491.87 26648.84 30045.46 34680.94 319
USDC67.43 28664.51 28676.19 28377.94 31955.29 30478.38 32485.00 30173.17 14148.36 33980.37 27821.23 34792.48 25252.15 28864.02 28080.81 321
LTVRE_ROB59.60 1966.27 29063.54 29274.45 29584.00 25451.55 32167.08 35083.53 31358.78 31054.94 31480.31 27934.54 31193.23 22340.64 33768.03 24878.58 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v875.35 21473.26 21981.61 19580.67 28466.82 10989.54 22489.27 23271.65 18463.30 27480.30 28054.99 17594.06 19967.33 20462.33 29183.94 284
GBi-Net75.65 21073.83 21281.10 20788.85 16265.11 15190.01 21390.32 19370.84 20567.04 24180.25 28148.03 23891.54 27459.80 26169.34 23886.64 240
test175.65 21073.83 21281.10 20788.85 16265.11 15190.01 21390.32 19370.84 20567.04 24180.25 28148.03 23891.54 27459.80 26169.34 23886.64 240
FMVSNet172.71 24469.91 25381.10 20783.60 25965.11 15190.01 21390.32 19363.92 26863.56 27180.25 28136.35 30691.54 27454.46 28066.75 25786.64 240
LCM-MVSNet-Re72.93 23971.84 23776.18 28488.49 16948.02 33680.07 31770.17 35173.96 12652.25 32480.09 28449.98 22188.24 30667.35 20284.23 13692.28 156
v1074.77 22172.54 23081.46 19780.33 29066.71 11389.15 23489.08 24370.94 20363.08 27579.86 28552.52 20194.04 20265.70 22162.17 29283.64 286
FE-MVS75.97 20573.02 22184.82 11189.78 14065.56 14077.44 32991.07 17364.55 26472.66 16679.85 28646.05 25796.69 9954.97 27880.82 15892.21 161
anonymousdsp71.14 25569.37 25776.45 28172.95 33854.71 30884.19 27988.88 24961.92 29062.15 28279.77 28738.14 29091.44 27968.90 19067.45 25383.21 295
tpm78.58 16577.03 16983.22 15685.94 22464.56 15983.21 29191.14 16978.31 6873.67 15879.68 28864.01 7692.09 26366.07 21771.26 22993.03 139
OurMVSNet-221017-064.68 29762.17 30172.21 31476.08 33047.35 34080.67 30981.02 32456.19 32251.60 32679.66 28927.05 33688.56 30253.60 28553.63 33180.71 322
tpmrst80.57 12679.14 14084.84 11090.10 13568.28 7281.70 30089.72 22177.63 8175.96 13279.54 29064.94 6692.71 24075.43 13077.28 18793.55 124
ACMH63.93 1768.62 27364.81 28280.03 23185.22 23263.25 19587.72 25484.66 30460.83 29751.57 32779.43 29127.29 33594.96 16041.76 33164.84 27181.88 313
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT71.55 25369.97 25176.32 28281.48 27760.67 24787.64 25785.99 29366.17 25459.50 29378.88 29245.53 25983.65 33562.58 24561.93 29584.63 281
IterMVS72.65 24770.83 24478.09 26282.17 27262.96 20287.64 25786.28 28871.56 19160.44 28978.85 29345.42 26186.66 32163.30 23961.83 29684.65 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal70.10 26067.36 26778.32 25883.45 26160.97 23888.85 23892.77 9964.85 26360.83 28878.53 29443.52 26893.48 21931.73 36061.70 30080.52 324
D2MVS73.80 23172.02 23579.15 25179.15 30362.97 20188.58 24390.07 20672.94 14659.22 29578.30 29542.31 27392.70 24265.59 22372.00 22281.79 314
v7n71.31 25468.65 25979.28 24776.40 32760.77 24286.71 26989.45 22664.17 26758.77 30078.24 29644.59 26493.54 21757.76 26861.75 29883.52 289
miper_lstm_enhance73.05 23771.73 23977.03 27583.80 25558.32 27881.76 29888.88 24969.80 22161.01 28678.23 29757.19 14587.51 31765.34 22659.53 31385.27 274
EPMVS78.49 16775.98 18386.02 7491.21 11669.68 4280.23 31491.20 16475.25 10772.48 17278.11 29854.65 17793.69 21557.66 27083.04 14094.69 83
pmmvs667.57 28364.76 28376.00 28572.82 34053.37 31388.71 24086.78 28553.19 33057.58 30878.03 29935.33 30992.41 25355.56 27654.88 32882.21 311
OpenMVS_ROBcopyleft61.12 1866.39 28962.92 29676.80 28076.51 32657.77 28389.22 23183.41 31555.48 32553.86 31977.84 30026.28 33893.95 20834.90 35168.76 24378.68 338
EG-PatchMatch MVS68.55 27465.41 27977.96 26378.69 31162.93 20389.86 21889.17 23760.55 29850.27 33277.73 30122.60 34594.06 19947.18 31072.65 21876.88 344
SixPastTwentyTwo64.92 29661.78 30374.34 29778.74 31049.76 33083.42 28779.51 33162.86 28050.27 33277.35 30230.92 32790.49 28445.89 31647.06 34382.78 299
test20.0363.83 30262.65 29867.38 33170.58 34739.94 35886.57 27084.17 30763.29 27551.86 32577.30 30337.09 30282.47 34338.87 34354.13 33079.73 330
Anonymous2023120667.53 28465.78 27472.79 30974.95 33147.59 33988.23 24787.32 27861.75 29358.07 30377.29 30437.79 29587.29 31942.91 32663.71 28283.48 290
test_040264.54 29861.09 30474.92 29284.10 25360.75 24487.95 25079.71 33052.03 33252.41 32377.20 30532.21 32091.64 27123.14 36361.03 30472.36 352
dp75.01 21972.09 23483.76 13989.28 15366.22 12679.96 31989.75 21671.16 19867.80 23277.19 30651.81 20692.54 24950.39 29271.44 22892.51 150
SCA75.82 20872.76 22585.01 10586.63 21070.08 3081.06 30789.19 23671.60 18970.01 20077.09 30745.53 25990.25 28660.43 25673.27 21194.68 84
Patchmatch-test65.86 29260.94 30580.62 21883.75 25658.83 27358.91 36175.26 34044.50 35250.95 33177.09 30758.81 13387.90 30935.13 35064.03 27995.12 70
PatchmatchNetpermissive77.46 18274.63 19785.96 7689.55 14770.35 2879.97 31889.55 22472.23 16470.94 18976.91 30957.03 14792.79 23854.27 28181.17 15494.74 82
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test69.92 26268.09 26575.41 28773.25 33755.90 30190.05 21289.90 21269.96 21861.96 28476.54 31051.05 21387.64 31449.51 29850.59 33882.70 304
KD-MVS_2432*160069.03 26966.37 27277.01 27685.56 22861.06 23681.44 30390.25 19967.27 24658.00 30476.53 31154.49 17987.63 31548.04 30435.77 36082.34 308
miper_refine_blended69.03 26966.37 27277.01 27685.56 22861.06 23681.44 30390.25 19967.27 24658.00 30476.53 31154.49 17987.63 31548.04 30435.77 36082.34 308
tpm cat175.30 21572.21 23384.58 12088.52 16867.77 8578.16 32788.02 27261.88 29168.45 22276.37 31360.65 11194.03 20453.77 28474.11 20591.93 165
TDRefinement55.28 32151.58 32466.39 33359.53 36246.15 34676.23 33172.80 34544.60 35142.49 35476.28 31415.29 35782.39 34433.20 35543.75 34870.62 354
our_test_368.29 27764.69 28479.11 25278.92 30664.85 15888.40 24685.06 30060.32 30152.68 32276.12 31540.81 27689.80 29644.25 32355.65 32482.67 306
ppachtmachnet_test67.72 28163.70 29179.77 23978.92 30666.04 12888.68 24182.90 31960.11 30355.45 31275.96 31639.19 28190.55 28239.53 33952.55 33482.71 303
MDTV_nov1_ep1372.61 22889.06 15868.48 6680.33 31290.11 20571.84 17871.81 18175.92 31753.01 19793.92 20948.04 30473.38 210
TinyColmap60.32 31256.42 31972.00 31778.78 30953.18 31478.36 32575.64 33752.30 33141.59 35675.82 31814.76 35988.35 30535.84 34754.71 32974.46 348
LF4IMVS54.01 32252.12 32359.69 33762.41 36039.91 36068.59 34568.28 35642.96 35544.55 35175.18 31914.09 36168.39 36141.36 33451.68 33570.78 353
tpmvs72.88 24169.76 25582.22 18090.98 11967.05 10478.22 32688.30 26563.10 27964.35 26674.98 32055.09 17494.27 18943.25 32469.57 23785.34 272
MIMVSNet71.64 25068.44 26281.23 20281.97 27564.44 16573.05 33688.80 25269.67 22264.59 25974.79 32132.79 31687.82 31153.99 28276.35 19491.42 171
UnsupCasMVSNet_eth65.79 29363.10 29473.88 30070.71 34550.29 32981.09 30689.88 21372.58 15349.25 33774.77 32232.57 31887.43 31855.96 27541.04 35383.90 285
lessismore_v073.72 30272.93 33947.83 33861.72 36345.86 34573.76 32328.63 33389.81 29447.75 30931.37 36583.53 288
MVS_030468.99 27167.23 26974.28 29980.36 28852.54 31687.01 26586.36 28659.89 30566.22 24873.56 32424.25 34088.03 30857.34 27170.11 23382.27 310
FMVSNet568.04 27965.66 27775.18 29084.43 24757.89 28183.54 28386.26 28961.83 29253.64 32073.30 32537.15 30185.08 32748.99 29961.77 29782.56 307
pmmvs-eth3d65.53 29562.32 30075.19 28969.39 35059.59 26182.80 29583.43 31462.52 28451.30 32972.49 32632.86 31587.16 32055.32 27750.73 33778.83 337
MDA-MVSNet-bldmvs61.54 31057.70 31473.05 30679.53 29757.00 29583.08 29281.23 32357.57 31334.91 36072.45 32732.79 31686.26 32435.81 34841.95 35175.89 346
CR-MVSNet73.79 23270.82 24582.70 16583.15 26367.96 8170.25 34084.00 31073.67 13569.97 20272.41 32857.82 14089.48 29752.99 28773.13 21290.64 185
Patchmtry67.53 28463.93 29078.34 25782.12 27364.38 16968.72 34484.00 31048.23 34559.24 29472.41 32857.82 14089.27 29846.10 31556.68 32381.36 316
K. test v363.09 30559.61 30973.53 30376.26 32849.38 33383.27 28877.15 33364.35 26647.77 34172.32 33028.73 33187.79 31249.93 29636.69 35983.41 292
PM-MVS59.40 31556.59 31767.84 32763.63 35741.86 35376.76 33063.22 36159.01 30951.07 33072.27 33111.72 36283.25 33961.34 25150.28 33978.39 340
MIMVSNet160.16 31457.33 31568.67 32569.71 34844.13 35178.92 32184.21 30655.05 32644.63 35071.85 33223.91 34281.54 34932.63 35855.03 32780.35 325
DSMNet-mixed56.78 31954.44 32263.79 33563.21 35829.44 37364.43 35364.10 36042.12 35651.32 32871.60 33331.76 32175.04 35536.23 34665.20 26886.87 238
MDA-MVSNet_test_wron63.78 30360.16 30674.64 29378.15 31760.41 25083.49 28484.03 30856.17 32439.17 35871.59 33437.22 29983.24 34042.87 32848.73 34080.26 327
YYNet163.76 30460.14 30774.62 29478.06 31860.19 25583.46 28683.99 31256.18 32339.25 35771.56 33537.18 30083.34 33842.90 32748.70 34180.32 326
test_fmvs356.82 31854.86 32162.69 33653.59 36535.47 36475.87 33265.64 35943.91 35355.10 31371.43 3366.91 37074.40 35768.64 19252.63 33278.20 341
Anonymous2024052162.09 30759.08 31071.10 31967.19 35348.72 33583.91 28185.23 29950.38 33847.84 34071.22 33720.74 34885.51 32646.47 31358.75 31779.06 335
ADS-MVSNet266.90 28763.44 29377.26 27388.06 18560.70 24668.01 34775.56 33857.57 31364.48 26269.87 33838.68 28284.10 33040.87 33567.89 25086.97 235
ADS-MVSNet68.54 27564.38 28981.03 21188.06 18566.90 10868.01 34784.02 30957.57 31364.48 26269.87 33838.68 28289.21 29940.87 33567.89 25086.97 235
N_pmnet50.55 32349.11 32654.88 34377.17 3244.02 38384.36 2782.00 38248.59 34245.86 34568.82 34032.22 31982.80 34231.58 36151.38 33677.81 342
KD-MVS_self_test60.87 31158.60 31167.68 32966.13 35539.93 35975.63 33484.70 30357.32 31649.57 33568.45 34129.55 32882.87 34148.09 30347.94 34280.25 328
mvsany_test348.86 32546.35 32856.41 33946.00 37131.67 36962.26 35547.25 37243.71 35445.54 34768.15 34210.84 36364.44 36957.95 26735.44 36273.13 349
patchmatchnet-post67.62 34357.62 14290.25 286
ambc69.61 32261.38 36141.35 35549.07 36785.86 29550.18 33466.40 34410.16 36488.14 30745.73 31744.20 34779.32 334
new-patchmatchnet59.30 31656.48 31867.79 32865.86 35644.19 35082.47 29681.77 32159.94 30443.65 35366.20 34527.67 33481.68 34839.34 34041.40 35277.50 343
PatchT69.11 26865.37 28080.32 22182.07 27463.68 18967.96 34987.62 27650.86 33769.37 20665.18 34657.09 14688.53 30341.59 33366.60 25888.74 207
RPMNet70.42 25965.68 27684.63 11983.15 26367.96 8170.25 34090.45 18746.83 34869.97 20265.10 34756.48 16095.30 15435.79 34973.13 21290.64 185
pmmvs355.51 32051.50 32567.53 33057.90 36350.93 32680.37 31173.66 34340.63 35744.15 35264.75 34816.30 35478.97 35344.77 32240.98 35572.69 350
test_vis1_rt59.09 31757.31 31664.43 33468.44 35246.02 34783.05 29348.63 37151.96 33349.57 33563.86 34916.30 35480.20 35171.21 16662.79 28667.07 358
Patchmatch-RL test68.17 27864.49 28779.19 24871.22 34253.93 31170.07 34271.54 35069.22 22756.79 31062.89 35056.58 15888.61 30069.53 18252.61 33395.03 74
EGC-MVSNET42.35 32838.09 33155.11 34274.57 33246.62 34571.63 33955.77 3650.04 3770.24 37862.70 35114.24 36074.91 35617.59 36746.06 34543.80 363
test_f46.58 32643.45 32955.96 34045.18 37232.05 36861.18 35649.49 37033.39 36042.05 35562.48 3527.00 36965.56 36547.08 31143.21 35070.27 355
UnsupCasMVSNet_bld61.60 30957.71 31373.29 30568.73 35151.64 32078.61 32289.05 24557.20 31746.11 34261.96 35328.70 33288.60 30150.08 29538.90 35779.63 331
FPMVS45.64 32743.10 33053.23 34551.42 36836.46 36364.97 35271.91 34829.13 36327.53 36361.55 3549.83 36565.01 36716.00 37055.58 32558.22 361
new_pmnet49.31 32446.44 32757.93 33862.84 35940.74 35668.47 34662.96 36236.48 35835.09 35957.81 35514.97 35872.18 35832.86 35746.44 34460.88 360
APD_test140.50 33037.31 33350.09 34751.88 36635.27 36559.45 36052.59 36721.64 36626.12 36457.80 3564.56 37466.56 36322.64 36439.09 35648.43 362
DeepMVS_CXcopyleft34.71 35551.45 36724.73 37728.48 38131.46 36217.49 37152.75 3575.80 37242.60 37618.18 36619.42 36936.81 368
test_method38.59 33335.16 33648.89 34854.33 36421.35 37845.32 36853.71 3667.41 37428.74 36251.62 3588.70 36752.87 37233.73 35232.89 36472.47 351
PMMVS237.93 33433.61 33750.92 34646.31 37024.76 37660.55 35950.05 36828.94 36420.93 36647.59 3594.41 37665.13 36625.14 36218.55 37062.87 359
JIA-IIPM66.06 29162.45 29976.88 27981.42 27954.45 31057.49 36288.67 25749.36 34163.86 26846.86 36056.06 16490.25 28649.53 29768.83 24285.95 259
gg-mvs-nofinetune77.18 18674.31 20485.80 8391.42 11168.36 6971.78 33794.72 2749.61 34077.12 12345.92 36177.41 893.98 20667.62 20193.16 5195.05 72
LCM-MVSNet40.54 32935.79 33454.76 34436.92 37830.81 37051.41 36569.02 35322.07 36524.63 36545.37 3624.56 37465.81 36433.67 35334.50 36367.67 356
testf132.77 33629.47 33942.67 35241.89 37530.81 37052.07 36343.45 37315.45 36918.52 36944.82 3632.12 37858.38 37016.05 36830.87 36638.83 365
APD_test232.77 33629.47 33942.67 35241.89 37530.81 37052.07 36343.45 37315.45 36918.52 36944.82 3632.12 37858.38 37016.05 36830.87 36638.83 365
tmp_tt22.26 34223.75 34417.80 3585.23 38212.06 38235.26 36939.48 3762.82 37618.94 36744.20 36522.23 34624.64 37736.30 3459.31 37416.69 371
MVS-HIRNet60.25 31355.55 32074.35 29684.37 24856.57 29771.64 33874.11 34234.44 35945.54 34742.24 36631.11 32689.81 29440.36 33876.10 19676.67 345
ANet_high40.27 33235.20 33555.47 34134.74 37934.47 36663.84 35471.56 34948.42 34318.80 36841.08 3679.52 36664.45 36820.18 3658.66 37567.49 357
PMVScopyleft26.43 2231.84 33828.16 34142.89 35125.87 38127.58 37450.92 36649.78 36921.37 36714.17 37340.81 3682.01 38066.62 3629.61 37338.88 35834.49 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt40.46 33137.79 33248.47 34944.49 37333.35 36766.56 35132.84 37932.39 36129.65 36139.13 3693.91 37768.65 36050.17 29340.99 35443.40 364
MVEpermissive24.84 2324.35 34019.77 34638.09 35434.56 38026.92 37526.57 37038.87 37711.73 37311.37 37427.44 3701.37 38150.42 37311.41 37214.60 37136.93 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_post23.01 37156.49 15992.67 243
E-PMN24.61 33924.00 34326.45 35643.74 37418.44 38060.86 35739.66 37515.11 3719.53 37522.10 3726.52 37146.94 3748.31 37410.14 37213.98 372
Gipumacopyleft34.91 33531.44 33845.30 35070.99 34439.64 36119.85 37272.56 34620.10 36816.16 37221.47 3735.08 37371.16 35913.07 37143.70 34925.08 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.95 32020.70 37453.05 19691.50 27860.43 256
EMVS23.76 34123.20 34525.46 35741.52 37716.90 38160.56 35838.79 37814.62 3728.99 37620.24 3757.35 36845.82 3757.25 3759.46 37313.64 373
X-MVStestdata76.86 18874.13 20885.05 10393.22 6163.78 18292.92 10392.66 10473.99 12378.18 11110.19 37655.25 16997.41 6079.16 10691.58 7293.95 112
wuyk23d11.30 34410.95 34712.33 35948.05 36919.89 37925.89 3711.92 3833.58 3753.12 3771.37 3770.64 38215.77 3786.23 3767.77 3761.35 374
testmvs7.23 3469.62 3490.06 3610.04 3830.02 38584.98 2760.02 3840.03 3780.18 3791.21 3780.01 3840.02 3790.14 3770.01 3770.13 376
test1236.92 3479.21 3500.08 3600.03 3840.05 38481.65 3010.01 3850.02 3790.14 3800.85 3790.03 3830.02 3790.12 3780.00 3780.16 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
pcd_1.5k_mvsjas4.46 3485.95 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38053.55 1910.00 3810.00 3790.00 3780.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3780.00 377
FOURS193.95 4561.77 22493.96 6291.92 13162.14 28786.57 33
MSC_two_6792asdad89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
No_MVS89.60 897.31 473.22 1095.05 1999.07 1392.01 1194.77 2496.51 20
eth-test20.00 385
eth-test0.00 385
IU-MVS96.46 1169.91 3595.18 1480.75 3695.28 192.34 895.36 1396.47 24
save fliter93.84 4867.89 8395.05 3792.66 10478.19 69
test_0728_SECOND88.70 1596.45 1270.43 2796.64 894.37 4499.15 291.91 1494.90 2096.51 20
GSMVS94.68 84
test_part296.29 1968.16 7790.78 13
sam_mvs157.85 13994.68 84
sam_mvs54.91 176
MTGPAbinary92.23 117
MTMP93.77 7432.52 380
test9_res89.41 2594.96 1795.29 61
agg_prior286.41 5294.75 2895.33 57
agg_prior94.16 4366.97 10793.31 8084.49 5396.75 98
test_prior467.18 10193.92 65
test_prior86.42 6594.71 3567.35 9693.10 9096.84 9695.05 72
旧先验292.00 14159.37 30887.54 2893.47 22075.39 131
新几何291.41 162
无先验92.71 10992.61 10862.03 28897.01 8366.63 20893.97 111
原ACMM292.01 138
testdata296.09 11661.26 252
segment_acmp65.94 56
testdata189.21 23277.55 82
test1287.09 4394.60 3668.86 5892.91 9582.67 6865.44 6197.55 5493.69 4494.84 80
plane_prior786.94 20661.51 229
plane_prior687.23 20162.32 21550.66 215
plane_prior591.31 16095.55 14476.74 12278.53 17488.39 215
plane_prior361.95 22279.09 5772.53 170
plane_prior293.13 9478.81 63
plane_prior187.15 203
plane_prior62.42 21293.85 6979.38 4978.80 171
n20.00 386
nn0.00 386
door-mid66.01 358
test1193.01 91
door66.57 357
HQP5-MVS63.66 190
HQP-NCC87.54 19594.06 5779.80 4374.18 150
ACMP_Plane87.54 19594.06 5779.80 4374.18 150
BP-MVS77.63 119
HQP4-MVS74.18 15095.61 13988.63 208
HQP3-MVS91.70 14678.90 169
HQP2-MVS51.63 209
MDTV_nov1_ep13_2view59.90 25880.13 31667.65 24372.79 16554.33 18459.83 26092.58 148
ACMMP++_ref71.63 224
ACMMP++69.72 235
Test By Simon54.21 185