| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 133 | 93.00 75 | 58.16 311 | 96.72 9 | 94.41 48 | 86.50 8 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 19 | 95.49 13 | 97.32 6 |
|
| DPE-MVS |  | | 88.77 17 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 102 | 94.17 58 | 94.15 59 | 68.77 266 | 90.74 18 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 38 | 94.91 21 | 96.30 34 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DPM-MVS | | | 90.70 3 | 90.52 9 | 91.24 1 | 89.68 160 | 76.68 2 | 97.29 1 | 95.35 15 | 82.87 22 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 102 | 97.64 2 | 97.94 1 |
|
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 55 | 96.89 6 | 94.44 46 | 71.65 217 | 92.11 7 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 22 | 95.36 14 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 48 | 71.65 217 | 92.07 9 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 22 | 95.36 14 | 96.59 19 |
|
| test0726 | | | | | | 96.40 15 | 69.99 38 | 96.76 8 | 94.33 54 | 71.92 203 | 91.89 11 | 97.11 6 | 73.77 22 | | | | |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 55 | | 94.44 46 | 71.65 217 | 92.11 7 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| test_fmvsm_n_1920 | | | 87.69 26 | 88.50 19 | 85.27 113 | 87.05 231 | 63.55 210 | 93.69 87 | 91.08 194 | 84.18 13 | 90.17 24 | 97.04 8 | 67.58 56 | 97.99 39 | 95.72 5 | 90.03 95 | 94.26 118 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 14 | 96.89 6 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| fmvsm_l_conf0.5_n_a | | | 87.44 30 | 88.15 24 | 85.30 111 | 87.10 229 | 64.19 190 | 94.41 52 | 88.14 304 | 80.24 59 | 92.54 5 | 96.97 10 | 69.52 46 | 97.17 85 | 95.89 3 | 88.51 109 | 94.56 105 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 38 | 96.64 10 | 94.52 42 | 71.92 203 | 90.55 20 | 96.93 11 | 73.77 22 | 99.08 11 | 91.91 28 | 94.90 22 | 96.29 35 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 72.48 187 | 90.55 20 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 30 | 94.99 18 | 96.43 31 |
|
| fmvsm_s_conf0.5_n | | | 86.39 46 | 86.91 38 | 84.82 126 | 87.36 224 | 63.54 211 | 94.74 47 | 90.02 233 | 82.52 25 | 90.14 25 | 96.92 13 | 62.93 114 | 97.84 46 | 95.28 8 | 82.26 168 | 93.07 163 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 59 | 86.09 51 | 84.72 133 | 85.73 256 | 63.58 208 | 93.79 83 | 89.32 257 | 81.42 41 | 90.21 23 | 96.91 14 | 62.41 119 | 97.67 51 | 94.48 10 | 80.56 187 | 92.90 169 |
|
| fmvsm_l_conf0.5_n | | | 87.49 28 | 88.19 23 | 85.39 107 | 86.95 232 | 64.37 183 | 94.30 55 | 88.45 295 | 80.51 51 | 92.70 4 | 96.86 15 | 69.98 44 | 97.15 89 | 95.83 4 | 88.08 114 | 94.65 102 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 42 | 93.96 70 | 94.37 52 | 72.48 187 | 92.07 9 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 30 | 97.42 4 | 97.55 4 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 57 | 71.42 228 | 90.67 19 | 96.85 16 | 74.45 19 | | | | |
|
| PC_three_1452 | | | | | | | | | | 80.91 48 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| CNVR-MVS | | | 90.32 6 | 90.89 8 | 88.61 22 | 96.76 8 | 70.65 30 | 96.47 14 | 94.83 30 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 39 | 99.06 15 | 92.64 20 | 95.71 11 | 96.12 40 |
|
| fmvsm_s_conf0.1_n | | | 85.61 63 | 85.93 54 | 84.68 136 | 82.95 299 | 63.48 213 | 94.03 68 | 89.46 251 | 81.69 34 | 89.86 26 | 96.74 20 | 61.85 125 | 97.75 49 | 94.74 9 | 82.01 174 | 92.81 171 |
|
| SMA-MVS |  | | 88.14 18 | 88.29 22 | 87.67 33 | 93.21 67 | 68.72 72 | 93.85 77 | 94.03 62 | 74.18 150 | 91.74 12 | 96.67 21 | 65.61 74 | 98.42 33 | 89.24 44 | 96.08 7 | 95.88 47 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| fmvsm_s_conf0.1_n_a | | | 84.76 76 | 84.84 73 | 84.53 142 | 80.23 326 | 63.50 212 | 92.79 122 | 88.73 286 | 80.46 52 | 89.84 27 | 96.65 22 | 60.96 133 | 97.57 61 | 93.80 13 | 80.14 189 | 92.53 178 |
|
| PHI-MVS | | | 86.83 39 | 86.85 41 | 86.78 63 | 93.47 62 | 65.55 154 | 95.39 30 | 95.10 22 | 71.77 213 | 85.69 56 | 96.52 23 | 62.07 122 | 98.77 23 | 86.06 74 | 95.60 12 | 96.03 43 |
|
| 9.14 | | | | 87.63 28 | | 93.86 48 | | 94.41 52 | 94.18 57 | 72.76 182 | 86.21 48 | 96.51 24 | 66.64 62 | 97.88 44 | 90.08 39 | 94.04 39 | |
|
| MSLP-MVS++ | | | 86.27 48 | 85.91 55 | 87.35 45 | 92.01 105 | 68.97 66 | 95.04 40 | 92.70 115 | 79.04 84 | 81.50 93 | 96.50 25 | 58.98 159 | 96.78 115 | 83.49 100 | 93.93 41 | 96.29 35 |
|
| SF-MVS | | | 87.03 35 | 87.09 35 | 86.84 59 | 92.70 85 | 67.45 107 | 93.64 90 | 93.76 69 | 70.78 241 | 86.25 47 | 96.44 26 | 66.98 59 | 97.79 47 | 88.68 49 | 94.56 34 | 95.28 72 |
|
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 86 | 95.24 33 | 94.49 44 | 82.43 26 | 88.90 32 | 96.35 27 | 71.89 36 | 98.63 26 | 88.76 48 | 96.40 6 | 96.06 41 |
|
| APDe-MVS |  | | 87.54 27 | 87.84 26 | 86.65 66 | 96.07 23 | 66.30 136 | 94.84 45 | 93.78 66 | 69.35 257 | 88.39 33 | 96.34 28 | 67.74 55 | 97.66 54 | 90.62 37 | 93.44 51 | 96.01 44 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test_fmvsmconf_n | | | 86.58 44 | 87.17 34 | 84.82 126 | 85.28 262 | 62.55 235 | 94.26 57 | 89.78 239 | 83.81 17 | 87.78 36 | 96.33 29 | 65.33 76 | 96.98 101 | 94.40 11 | 87.55 120 | 94.95 87 |
|
| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 10 | 97.13 2 | 95.58 10 | 89.33 1 | 85.77 54 | 96.26 30 | 72.84 28 | 99.38 1 | 92.64 20 | 95.93 9 | 97.08 11 |
|
| NCCC | | | 89.07 16 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 63 | 96.38 15 | 94.64 39 | 84.42 12 | 86.74 45 | 96.20 31 | 66.56 64 | 98.76 24 | 89.03 47 | 94.56 34 | 95.92 46 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 100 | 71.10 27 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 14 | 96.19 32 | 70.12 43 | 98.91 18 | 96.83 1 | 95.06 17 | 96.76 15 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 22 | 88.00 25 | 87.79 31 | 95.86 27 | 68.32 80 | 95.74 21 | 94.11 60 | 83.82 16 | 83.49 76 | 96.19 32 | 64.53 88 | 98.44 31 | 83.42 101 | 94.88 25 | 96.61 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MVS_0304 | | | 90.32 6 | 90.90 7 | 88.55 23 | 94.05 45 | 70.23 36 | 97.00 5 | 93.73 73 | 87.30 4 | 92.15 6 | 96.15 34 | 66.38 65 | 98.94 17 | 96.71 2 | 94.67 33 | 96.47 28 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 89 | 92.83 79 | 64.03 193 | 93.06 112 | 94.33 54 | 82.19 29 | 93.65 3 | 96.15 34 | 85.89 1 | 97.19 84 | 91.02 34 | 97.75 1 | 96.43 31 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PS-MVSNAJ | | | 88.14 18 | 87.61 29 | 89.71 7 | 92.06 101 | 76.72 1 | 95.75 20 | 93.26 93 | 83.86 15 | 89.55 29 | 96.06 36 | 53.55 223 | 97.89 43 | 91.10 32 | 93.31 53 | 94.54 108 |
|
| test_fmvsmconf0.1_n | | | 85.71 60 | 86.08 52 | 84.62 140 | 80.83 316 | 62.33 240 | 93.84 80 | 88.81 283 | 83.50 19 | 87.00 43 | 96.01 37 | 63.36 106 | 96.93 109 | 94.04 12 | 87.29 123 | 94.61 104 |
|
| xiu_mvs_v2_base | | | 87.92 23 | 87.38 33 | 89.55 12 | 91.41 127 | 76.43 3 | 95.74 21 | 93.12 101 | 83.53 18 | 89.55 29 | 95.95 38 | 53.45 227 | 97.68 50 | 91.07 33 | 92.62 60 | 94.54 108 |
|
| APD-MVS |  | | 85.93 55 | 85.99 53 | 85.76 96 | 95.98 26 | 65.21 161 | 93.59 93 | 92.58 124 | 66.54 284 | 86.17 50 | 95.88 39 | 63.83 95 | 97.00 97 | 86.39 71 | 92.94 57 | 95.06 82 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 66 | 86.89 6 | 89.68 28 | 95.78 40 | 65.94 70 | 99.10 9 | 92.99 17 | 93.91 42 | 96.58 21 |
|
| SD-MVS | | | 87.49 28 | 87.49 31 | 87.50 42 | 93.60 56 | 68.82 69 | 93.90 74 | 92.63 122 | 76.86 115 | 87.90 35 | 95.76 41 | 66.17 67 | 97.63 56 | 89.06 46 | 91.48 78 | 96.05 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test_fmvsmvis_n_1920 | | | 83.80 97 | 83.48 88 | 84.77 130 | 82.51 302 | 63.72 201 | 91.37 189 | 83.99 351 | 81.42 41 | 77.68 142 | 95.74 42 | 58.37 164 | 97.58 59 | 93.38 14 | 86.87 126 | 93.00 166 |
|
| SteuartSystems-ACMMP | | | 86.82 41 | 86.90 39 | 86.58 70 | 90.42 145 | 66.38 133 | 96.09 17 | 93.87 64 | 77.73 102 | 84.01 74 | 95.66 43 | 63.39 105 | 97.94 40 | 87.40 60 | 93.55 50 | 95.42 59 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MP-MVS-pluss | | | 85.24 68 | 85.13 67 | 85.56 102 | 91.42 124 | 65.59 152 | 91.54 180 | 92.51 126 | 74.56 144 | 80.62 106 | 95.64 44 | 59.15 154 | 97.00 97 | 86.94 67 | 93.80 43 | 94.07 130 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 135 | 85.25 63 | 95.61 45 | 67.94 53 | | 87.47 59 | 94.77 26 | |
|
| MAR-MVS | | | 84.18 89 | 83.43 91 | 86.44 75 | 96.25 21 | 65.93 145 | 94.28 56 | 94.27 56 | 74.41 145 | 79.16 126 | 95.61 45 | 53.99 218 | 98.88 22 | 69.62 210 | 93.26 54 | 94.50 112 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| reproduce-ours | | | 83.51 103 | 83.33 97 | 84.06 157 | 92.18 98 | 60.49 280 | 90.74 216 | 92.04 143 | 64.35 299 | 83.24 77 | 95.59 47 | 59.05 155 | 97.27 80 | 83.61 97 | 89.17 103 | 94.41 115 |
|
| our_new_method | | | 83.51 103 | 83.33 97 | 84.06 157 | 92.18 98 | 60.49 280 | 90.74 216 | 92.04 143 | 64.35 299 | 83.24 77 | 95.59 47 | 59.05 155 | 97.27 80 | 83.61 97 | 89.17 103 | 94.41 115 |
|
| SPE-MVS-test | | | 86.14 51 | 87.01 36 | 83.52 175 | 92.63 87 | 59.36 300 | 95.49 27 | 91.92 150 | 80.09 60 | 85.46 59 | 95.53 49 | 61.82 126 | 95.77 155 | 86.77 69 | 93.37 52 | 95.41 60 |
|
| reproduce_model | | | 83.15 110 | 82.96 103 | 83.73 168 | 92.02 102 | 59.74 292 | 90.37 229 | 92.08 141 | 63.70 306 | 82.86 82 | 95.48 50 | 58.62 161 | 97.17 85 | 83.06 103 | 88.42 110 | 94.26 118 |
|
| test_fmvsmconf0.01_n | | | 83.70 101 | 83.52 85 | 84.25 154 | 75.26 369 | 61.72 254 | 92.17 148 | 87.24 317 | 82.36 27 | 84.91 64 | 95.41 51 | 55.60 199 | 96.83 114 | 92.85 18 | 85.87 138 | 94.21 121 |
|
| CS-MVS | | | 85.80 58 | 86.65 43 | 83.27 183 | 92.00 106 | 58.92 304 | 95.31 31 | 91.86 155 | 79.97 61 | 84.82 65 | 95.40 52 | 62.26 120 | 95.51 173 | 86.11 73 | 92.08 68 | 95.37 63 |
|
| test_8 | | | | | | 94.19 40 | 67.19 111 | 94.15 61 | 93.42 88 | 71.87 208 | 85.38 60 | 95.35 53 | 68.19 50 | 96.95 106 | | | |
|
| TEST9 | | | | | | 94.18 41 | 67.28 109 | 94.16 59 | 93.51 81 | 71.75 214 | 85.52 57 | 95.33 54 | 68.01 52 | 97.27 80 | | | |
|
| train_agg | | | 87.21 33 | 87.42 32 | 86.60 68 | 94.18 41 | 67.28 109 | 94.16 59 | 93.51 81 | 71.87 208 | 85.52 57 | 95.33 54 | 68.19 50 | 97.27 80 | 89.09 45 | 94.90 22 | 95.25 76 |
|
| ACMMP_NAP | | | 86.05 52 | 85.80 57 | 86.80 62 | 91.58 119 | 67.53 104 | 91.79 170 | 93.49 84 | 74.93 141 | 84.61 66 | 95.30 56 | 59.42 150 | 97.92 41 | 86.13 72 | 94.92 20 | 94.94 88 |
|
| SR-MVS | | | 82.81 116 | 82.58 112 | 83.50 178 | 93.35 63 | 61.16 264 | 92.23 147 | 91.28 184 | 64.48 298 | 81.27 96 | 95.28 57 | 53.71 222 | 95.86 151 | 82.87 104 | 88.77 107 | 93.49 149 |
|
| CDPH-MVS | | | 85.71 60 | 85.46 62 | 86.46 74 | 94.75 34 | 67.19 111 | 93.89 75 | 92.83 112 | 70.90 237 | 83.09 81 | 95.28 57 | 63.62 100 | 97.36 71 | 80.63 122 | 94.18 37 | 94.84 92 |
|
| cdsmvs_eth3d_5k | | | 19.86 387 | 26.47 386 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 93.45 85 | 0.00 424 | 0.00 425 | 95.27 59 | 49.56 261 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| lupinMVS | | | 87.74 25 | 87.77 27 | 87.63 38 | 89.24 175 | 71.18 24 | 96.57 12 | 92.90 110 | 82.70 24 | 87.13 40 | 95.27 59 | 64.99 79 | 95.80 152 | 89.34 42 | 91.80 72 | 95.93 45 |
|
| sasdasda | | | 86.85 37 | 86.25 47 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 95 | 91.71 163 | 80.26 56 | 87.55 37 | 95.25 61 | 63.59 102 | 96.93 109 | 88.18 50 | 84.34 149 | 97.11 9 |
|
| canonicalmvs | | | 86.85 37 | 86.25 47 | 88.66 20 | 91.80 113 | 71.92 16 | 93.54 95 | 91.71 163 | 80.26 56 | 87.55 37 | 95.25 61 | 63.59 102 | 96.93 109 | 88.18 50 | 84.34 149 | 97.11 9 |
|
| alignmvs | | | 87.28 32 | 86.97 37 | 88.24 27 | 91.30 129 | 71.14 26 | 95.61 25 | 93.56 79 | 79.30 74 | 87.07 42 | 95.25 61 | 68.43 48 | 96.93 109 | 87.87 53 | 84.33 151 | 96.65 17 |
|
| MTAPA | | | 83.91 94 | 83.38 95 | 85.50 103 | 91.89 111 | 65.16 163 | 81.75 333 | 92.23 132 | 75.32 136 | 80.53 108 | 95.21 64 | 56.06 195 | 97.16 88 | 84.86 85 | 92.55 62 | 94.18 122 |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 156 | | 93.50 83 | 70.74 242 | 85.26 62 | 95.19 65 | 64.92 82 | 97.29 76 | 87.51 57 | 93.01 56 | |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 92 | 96.04 24 | 63.70 203 | 95.04 40 | 95.19 19 | 86.74 7 | 91.53 15 | 95.15 66 | 73.86 21 | 97.58 59 | 93.38 14 | 92.00 69 | 96.28 37 |
|
| MGCFI-Net | | | 85.59 64 | 85.73 59 | 85.17 117 | 91.41 127 | 62.44 236 | 92.87 120 | 91.31 180 | 79.65 67 | 86.99 44 | 95.14 67 | 62.90 115 | 96.12 139 | 87.13 64 | 84.13 156 | 96.96 13 |
|
| PAPR | | | 85.15 70 | 84.47 75 | 87.18 49 | 96.02 25 | 68.29 81 | 91.85 168 | 93.00 107 | 76.59 122 | 79.03 127 | 95.00 68 | 61.59 127 | 97.61 58 | 78.16 144 | 89.00 105 | 95.63 53 |
|
| 1112_ss | | | 80.56 155 | 79.83 155 | 82.77 191 | 88.65 187 | 60.78 270 | 92.29 144 | 88.36 297 | 72.58 185 | 72.46 201 | 94.95 69 | 65.09 78 | 93.42 250 | 66.38 245 | 77.71 209 | 94.10 127 |
|
| ab-mvs-re | | | 7.91 389 | 10.55 392 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 94.95 69 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| HFP-MVS | | | 84.73 77 | 84.40 77 | 85.72 98 | 93.75 52 | 65.01 167 | 93.50 98 | 93.19 97 | 72.19 197 | 79.22 125 | 94.93 71 | 59.04 157 | 97.67 51 | 81.55 112 | 92.21 64 | 94.49 113 |
|
| CP-MVS | | | 83.71 100 | 83.40 94 | 84.65 137 | 93.14 70 | 63.84 195 | 94.59 49 | 92.28 130 | 71.03 235 | 77.41 146 | 94.92 72 | 55.21 204 | 96.19 136 | 81.32 117 | 90.70 88 | 93.91 137 |
|
| DELS-MVS | | | 90.05 8 | 90.09 11 | 89.94 4 | 93.14 70 | 73.88 9 | 97.01 4 | 94.40 50 | 88.32 3 | 85.71 55 | 94.91 73 | 74.11 20 | 98.91 18 | 87.26 62 | 95.94 8 | 97.03 12 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| ACMMPR | | | 84.37 81 | 84.06 79 | 85.28 112 | 93.56 58 | 64.37 183 | 93.50 98 | 93.15 99 | 72.19 197 | 78.85 133 | 94.86 74 | 56.69 186 | 97.45 65 | 81.55 112 | 92.20 65 | 94.02 133 |
|
| region2R | | | 84.36 82 | 84.03 80 | 85.36 109 | 93.54 59 | 64.31 186 | 93.43 103 | 92.95 108 | 72.16 200 | 78.86 132 | 94.84 75 | 56.97 181 | 97.53 63 | 81.38 116 | 92.11 67 | 94.24 120 |
|
| TSAR-MVS + GP. | | | 87.96 21 | 88.37 21 | 86.70 65 | 93.51 61 | 65.32 158 | 95.15 36 | 93.84 65 | 78.17 95 | 85.93 53 | 94.80 76 | 75.80 13 | 98.21 34 | 89.38 41 | 88.78 106 | 96.59 19 |
|
| WTY-MVS | | | 86.32 47 | 85.81 56 | 87.85 29 | 92.82 81 | 69.37 57 | 95.20 34 | 95.25 17 | 82.71 23 | 81.91 90 | 94.73 77 | 67.93 54 | 97.63 56 | 79.55 130 | 82.25 169 | 96.54 22 |
|
| MVS | | | 84.66 78 | 82.86 108 | 90.06 2 | 90.93 136 | 74.56 7 | 87.91 280 | 95.54 13 | 68.55 268 | 72.35 204 | 94.71 78 | 59.78 146 | 98.90 20 | 81.29 118 | 94.69 32 | 96.74 16 |
|
| ZNCC-MVS | | | 85.33 67 | 85.08 68 | 86.06 84 | 93.09 72 | 65.65 150 | 93.89 75 | 93.41 89 | 73.75 161 | 79.94 115 | 94.68 79 | 60.61 137 | 98.03 38 | 82.63 106 | 93.72 46 | 94.52 110 |
|
| test_vis1_n_1920 | | | 81.66 136 | 82.01 120 | 80.64 248 | 82.24 304 | 55.09 338 | 94.76 46 | 86.87 319 | 81.67 35 | 84.40 69 | 94.63 80 | 38.17 328 | 94.67 200 | 91.98 27 | 83.34 159 | 92.16 192 |
|
| APD-MVS_3200maxsize | | | 81.64 137 | 81.32 127 | 82.59 198 | 92.36 91 | 58.74 306 | 91.39 186 | 91.01 199 | 63.35 310 | 79.72 118 | 94.62 81 | 51.82 237 | 96.14 138 | 79.71 128 | 87.93 115 | 92.89 170 |
|
| EPNet | | | 87.84 24 | 88.38 20 | 86.23 82 | 93.30 64 | 66.05 140 | 95.26 32 | 94.84 29 | 87.09 5 | 88.06 34 | 94.53 82 | 66.79 61 | 97.34 73 | 83.89 95 | 91.68 74 | 95.29 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| SR-MVS-dyc-post | | | 81.06 147 | 80.70 140 | 82.15 212 | 92.02 102 | 58.56 308 | 90.90 208 | 90.45 210 | 62.76 317 | 78.89 128 | 94.46 83 | 51.26 247 | 95.61 165 | 78.77 140 | 86.77 130 | 92.28 185 |
|
| RE-MVS-def | | | | 80.48 146 | | 92.02 102 | 58.56 308 | 90.90 208 | 90.45 210 | 62.76 317 | 78.89 128 | 94.46 83 | 49.30 264 | | 78.77 140 | 86.77 130 | 92.28 185 |
|
| MP-MVS |  | | 85.02 71 | 84.97 70 | 85.17 117 | 92.60 88 | 64.27 188 | 93.24 107 | 92.27 131 | 73.13 172 | 79.63 119 | 94.43 85 | 61.90 123 | 97.17 85 | 85.00 82 | 92.56 61 | 94.06 131 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PGM-MVS | | | 83.25 108 | 82.70 111 | 84.92 122 | 92.81 83 | 64.07 192 | 90.44 225 | 92.20 136 | 71.28 229 | 77.23 149 | 94.43 85 | 55.17 205 | 97.31 75 | 79.33 133 | 91.38 80 | 93.37 151 |
|
| xiu_mvs_v1_base_debu | | | 82.16 127 | 81.12 130 | 85.26 114 | 86.42 240 | 68.72 72 | 92.59 136 | 90.44 213 | 73.12 173 | 84.20 70 | 94.36 87 | 38.04 331 | 95.73 157 | 84.12 92 | 86.81 127 | 91.33 203 |
|
| xiu_mvs_v1_base | | | 82.16 127 | 81.12 130 | 85.26 114 | 86.42 240 | 68.72 72 | 92.59 136 | 90.44 213 | 73.12 173 | 84.20 70 | 94.36 87 | 38.04 331 | 95.73 157 | 84.12 92 | 86.81 127 | 91.33 203 |
|
| xiu_mvs_v1_base_debi | | | 82.16 127 | 81.12 130 | 85.26 114 | 86.42 240 | 68.72 72 | 92.59 136 | 90.44 213 | 73.12 173 | 84.20 70 | 94.36 87 | 38.04 331 | 95.73 157 | 84.12 92 | 86.81 127 | 91.33 203 |
|
| 旧先验1 | | | | | | 91.94 107 | 60.74 274 | | 91.50 174 | | | 94.36 87 | 65.23 77 | | | 91.84 71 | 94.55 106 |
|
| CSCG | | | 86.87 36 | 86.26 46 | 88.72 17 | 95.05 31 | 70.79 29 | 93.83 82 | 95.33 16 | 68.48 270 | 77.63 143 | 94.35 91 | 73.04 26 | 98.45 30 | 84.92 84 | 93.71 47 | 96.92 14 |
|
| MVSFormer | | | 83.75 99 | 82.88 107 | 86.37 78 | 89.24 175 | 71.18 24 | 89.07 262 | 90.69 203 | 65.80 289 | 87.13 40 | 94.34 92 | 64.99 79 | 92.67 273 | 72.83 178 | 91.80 72 | 95.27 73 |
|
| jason | | | 86.40 45 | 86.17 49 | 87.11 51 | 86.16 247 | 70.54 32 | 95.71 24 | 92.19 138 | 82.00 31 | 84.58 67 | 94.34 92 | 61.86 124 | 95.53 172 | 87.76 54 | 90.89 86 | 95.27 73 |
| jason: jason. |
| XVS | | | 83.87 95 | 83.47 89 | 85.05 119 | 93.22 65 | 63.78 197 | 92.92 118 | 92.66 119 | 73.99 153 | 78.18 137 | 94.31 94 | 55.25 201 | 97.41 68 | 79.16 134 | 91.58 76 | 93.95 135 |
|
| EIA-MVS | | | 84.84 75 | 84.88 71 | 84.69 135 | 91.30 129 | 62.36 239 | 93.85 77 | 92.04 143 | 79.45 70 | 79.33 124 | 94.28 95 | 62.42 118 | 96.35 130 | 80.05 126 | 91.25 83 | 95.38 62 |
|
| mPP-MVS | | | 82.96 115 | 82.44 115 | 84.52 143 | 92.83 79 | 62.92 228 | 92.76 123 | 91.85 157 | 71.52 225 | 75.61 165 | 94.24 96 | 53.48 226 | 96.99 100 | 78.97 137 | 90.73 87 | 93.64 146 |
|
| EC-MVSNet | | | 84.53 80 | 85.04 69 | 83.01 187 | 89.34 167 | 61.37 261 | 94.42 51 | 91.09 192 | 77.91 99 | 83.24 77 | 94.20 97 | 58.37 164 | 95.40 174 | 85.35 77 | 91.41 79 | 92.27 188 |
|
| GST-MVS | | | 84.63 79 | 84.29 78 | 85.66 100 | 92.82 81 | 65.27 159 | 93.04 114 | 93.13 100 | 73.20 170 | 78.89 128 | 94.18 98 | 59.41 151 | 97.85 45 | 81.45 114 | 92.48 63 | 93.86 140 |
|
| EI-MVSNet-Vis-set | | | 83.77 98 | 83.67 83 | 84.06 157 | 92.79 84 | 63.56 209 | 91.76 173 | 94.81 31 | 79.65 67 | 77.87 140 | 94.09 99 | 63.35 107 | 97.90 42 | 79.35 132 | 79.36 196 | 90.74 214 |
|
| testdata | | | | | 81.34 231 | 89.02 179 | 57.72 315 | | 89.84 238 | 58.65 347 | 85.32 61 | 94.09 99 | 57.03 177 | 93.28 251 | 69.34 213 | 90.56 91 | 93.03 164 |
|
| ETV-MVS | | | 86.01 53 | 86.11 50 | 85.70 99 | 90.21 150 | 67.02 118 | 93.43 103 | 91.92 150 | 81.21 45 | 84.13 73 | 94.07 101 | 60.93 134 | 95.63 163 | 89.28 43 | 89.81 96 | 94.46 114 |
|
| MVS_111021_HR | | | 86.19 50 | 85.80 57 | 87.37 44 | 93.17 69 | 69.79 47 | 93.99 69 | 93.76 69 | 79.08 81 | 78.88 131 | 93.99 102 | 62.25 121 | 98.15 36 | 85.93 75 | 91.15 84 | 94.15 125 |
|
| HPM-MVS |  | | 83.25 108 | 82.95 105 | 84.17 155 | 92.25 94 | 62.88 230 | 90.91 207 | 91.86 155 | 70.30 246 | 77.12 150 | 93.96 103 | 56.75 184 | 96.28 132 | 82.04 109 | 91.34 82 | 93.34 152 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DP-MVS Recon | | | 82.73 117 | 81.65 124 | 85.98 86 | 97.31 4 | 67.06 115 | 95.15 36 | 91.99 147 | 69.08 263 | 76.50 157 | 93.89 104 | 54.48 213 | 98.20 35 | 70.76 201 | 85.66 140 | 92.69 172 |
|
| EI-MVSNet-UG-set | | | 83.14 111 | 82.96 103 | 83.67 173 | 92.28 93 | 63.19 220 | 91.38 188 | 94.68 37 | 79.22 76 | 76.60 155 | 93.75 105 | 62.64 116 | 97.76 48 | 78.07 145 | 78.01 207 | 90.05 223 |
|
| CANet_DTU | | | 84.09 91 | 83.52 85 | 85.81 93 | 90.30 148 | 66.82 122 | 91.87 166 | 89.01 275 | 85.27 9 | 86.09 51 | 93.74 106 | 47.71 281 | 96.98 101 | 77.90 146 | 89.78 98 | 93.65 145 |
|
| test_cas_vis1_n_1920 | | | 80.45 158 | 80.61 143 | 79.97 267 | 78.25 352 | 57.01 326 | 94.04 67 | 88.33 298 | 79.06 83 | 82.81 84 | 93.70 107 | 38.65 323 | 91.63 303 | 90.82 36 | 79.81 191 | 91.27 209 |
|
| dcpmvs_2 | | | 87.37 31 | 87.55 30 | 86.85 58 | 95.04 32 | 68.20 87 | 90.36 230 | 90.66 206 | 79.37 73 | 81.20 97 | 93.67 108 | 74.73 15 | 96.55 123 | 90.88 35 | 92.00 69 | 95.82 48 |
|
| ET-MVSNet_ETH3D | | | 84.01 92 | 83.15 102 | 86.58 70 | 90.78 141 | 70.89 28 | 94.74 47 | 94.62 40 | 81.44 40 | 58.19 337 | 93.64 109 | 73.64 24 | 92.35 286 | 82.66 105 | 78.66 204 | 96.50 27 |
|
| DeepC-MVS | | 77.85 3 | 85.52 65 | 85.24 65 | 86.37 78 | 88.80 185 | 66.64 127 | 92.15 149 | 93.68 75 | 81.07 46 | 76.91 153 | 93.64 109 | 62.59 117 | 98.44 31 | 85.50 76 | 92.84 59 | 94.03 132 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PAPM_NR | | | 82.97 114 | 81.84 122 | 86.37 78 | 94.10 44 | 66.76 125 | 87.66 286 | 92.84 111 | 69.96 250 | 74.07 181 | 93.57 111 | 63.10 112 | 97.50 64 | 70.66 203 | 90.58 90 | 94.85 89 |
|
| PMMVS | | | 81.98 132 | 82.04 119 | 81.78 221 | 89.76 159 | 56.17 330 | 91.13 203 | 90.69 203 | 77.96 97 | 80.09 114 | 93.57 111 | 46.33 291 | 94.99 187 | 81.41 115 | 87.46 121 | 94.17 123 |
|
| LFMVS | | | 84.34 83 | 82.73 110 | 89.18 13 | 94.76 33 | 73.25 11 | 94.99 42 | 91.89 153 | 71.90 205 | 82.16 89 | 93.49 113 | 47.98 277 | 97.05 92 | 82.55 107 | 84.82 145 | 97.25 8 |
|
| ACMMP |  | | 81.49 139 | 80.67 141 | 83.93 163 | 91.71 116 | 62.90 229 | 92.13 150 | 92.22 135 | 71.79 212 | 71.68 213 | 93.49 113 | 50.32 252 | 96.96 105 | 78.47 142 | 84.22 155 | 91.93 195 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CPTT-MVS | | | 79.59 173 | 79.16 168 | 80.89 246 | 91.54 122 | 59.80 291 | 92.10 152 | 88.54 294 | 60.42 336 | 72.96 189 | 93.28 115 | 48.27 273 | 92.80 267 | 78.89 139 | 86.50 135 | 90.06 222 |
|
| MVS_111021_LR | | | 82.02 131 | 81.52 125 | 83.51 177 | 88.42 193 | 62.88 230 | 89.77 247 | 88.93 279 | 76.78 118 | 75.55 166 | 93.10 116 | 50.31 253 | 95.38 176 | 83.82 96 | 87.02 125 | 92.26 189 |
|
| 1314 | | | 80.70 153 | 78.95 171 | 85.94 88 | 87.77 216 | 67.56 102 | 87.91 280 | 92.55 125 | 72.17 199 | 67.44 268 | 93.09 117 | 50.27 254 | 97.04 95 | 71.68 195 | 87.64 119 | 93.23 156 |
|
| PVSNet_Blended | | | 86.73 42 | 86.86 40 | 86.31 81 | 93.76 50 | 67.53 104 | 96.33 16 | 93.61 77 | 82.34 28 | 81.00 102 | 93.08 118 | 63.19 109 | 97.29 76 | 87.08 65 | 91.38 80 | 94.13 126 |
|
| VNet | | | 86.20 49 | 85.65 60 | 87.84 30 | 93.92 47 | 69.99 38 | 95.73 23 | 95.94 7 | 78.43 92 | 86.00 52 | 93.07 119 | 58.22 166 | 97.00 97 | 85.22 78 | 84.33 151 | 96.52 23 |
|
| HPM-MVS_fast | | | 80.25 162 | 79.55 161 | 82.33 204 | 91.55 121 | 59.95 289 | 91.32 193 | 89.16 265 | 65.23 295 | 74.71 174 | 93.07 119 | 47.81 280 | 95.74 156 | 74.87 168 | 88.23 111 | 91.31 207 |
|
| PAPM | | | 85.89 57 | 85.46 62 | 87.18 49 | 88.20 203 | 72.42 15 | 92.41 142 | 92.77 113 | 82.11 30 | 80.34 111 | 93.07 119 | 68.27 49 | 95.02 185 | 78.39 143 | 93.59 49 | 94.09 128 |
|
| MG-MVS | | | 87.11 34 | 86.27 45 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 44 | 78.74 89 | 83.87 75 | 92.94 122 | 64.34 89 | 96.94 107 | 75.19 161 | 94.09 38 | 95.66 52 |
|
| æ–°å‡ ä½•1 | | | | | 84.73 132 | 92.32 92 | 64.28 187 | | 91.46 176 | 59.56 343 | 79.77 117 | 92.90 123 | 56.95 182 | 96.57 121 | 63.40 269 | 92.91 58 | 93.34 152 |
|
| TSAR-MVS + MP. | | | 88.11 20 | 88.64 18 | 86.54 72 | 91.73 115 | 68.04 90 | 90.36 230 | 93.55 80 | 82.89 21 | 91.29 16 | 92.89 124 | 72.27 33 | 96.03 147 | 87.99 52 | 94.77 26 | 95.54 57 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test_yl | | | 84.28 84 | 83.16 100 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 23 | 69.19 260 | 81.09 99 | 92.88 125 | 57.00 179 | 97.44 66 | 81.11 120 | 81.76 176 | 96.23 38 |
|
| DCV-MVSNet | | | 84.28 84 | 83.16 100 | 87.64 34 | 94.52 37 | 69.24 59 | 95.78 18 | 95.09 23 | 69.19 260 | 81.09 99 | 92.88 125 | 57.00 179 | 97.44 66 | 81.11 120 | 81.76 176 | 96.23 38 |
|
| API-MVS | | | 82.28 125 | 80.53 145 | 87.54 41 | 96.13 22 | 70.59 31 | 93.63 91 | 91.04 198 | 65.72 291 | 75.45 167 | 92.83 127 | 56.11 194 | 98.89 21 | 64.10 265 | 89.75 99 | 93.15 159 |
|
| Effi-MVS+ | | | 83.82 96 | 82.76 109 | 86.99 56 | 89.56 163 | 69.40 53 | 91.35 191 | 86.12 329 | 72.59 184 | 83.22 80 | 92.81 128 | 59.60 148 | 96.01 149 | 81.76 111 | 87.80 117 | 95.56 56 |
|
| TAPA-MVS | | 70.22 12 | 74.94 254 | 73.53 250 | 79.17 283 | 90.40 146 | 52.07 350 | 89.19 260 | 89.61 248 | 62.69 319 | 70.07 231 | 92.67 129 | 48.89 271 | 94.32 213 | 38.26 378 | 79.97 190 | 91.12 211 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| diffmvs |  | | 84.28 84 | 83.83 81 | 85.61 101 | 87.40 222 | 68.02 91 | 90.88 210 | 89.24 260 | 80.54 50 | 81.64 92 | 92.52 130 | 59.83 145 | 94.52 209 | 87.32 61 | 85.11 143 | 94.29 117 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 原ACMM1 | | | | | 84.42 146 | 93.21 67 | 64.27 188 | | 93.40 90 | 65.39 292 | 79.51 120 | 92.50 131 | 58.11 168 | 96.69 117 | 65.27 259 | 93.96 40 | 92.32 183 |
|
| baseline | | | 85.01 72 | 84.44 76 | 86.71 64 | 88.33 197 | 68.73 71 | 90.24 235 | 91.82 159 | 81.05 47 | 81.18 98 | 92.50 131 | 63.69 98 | 96.08 144 | 84.45 89 | 86.71 132 | 95.32 68 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 130 | 80.60 144 | 86.60 68 | 90.89 138 | 66.80 124 | 95.20 34 | 93.44 86 | 74.05 152 | 67.42 269 | 92.49 133 | 49.46 262 | 97.65 55 | 70.80 200 | 91.68 74 | 95.33 66 |
|
| 3Dnovator | | 73.91 6 | 82.69 120 | 80.82 137 | 88.31 26 | 89.57 162 | 71.26 22 | 92.60 134 | 94.39 51 | 78.84 86 | 67.89 262 | 92.48 134 | 48.42 272 | 98.52 28 | 68.80 221 | 94.40 36 | 95.15 78 |
|
| test222 | | | | | | 89.77 158 | 61.60 256 | 89.55 250 | 89.42 254 | 56.83 358 | 77.28 148 | 92.43 135 | 52.76 231 | | | 91.14 85 | 93.09 161 |
|
| sss | | | 82.71 119 | 82.38 116 | 83.73 168 | 89.25 172 | 59.58 295 | 92.24 146 | 94.89 28 | 77.96 97 | 79.86 116 | 92.38 136 | 56.70 185 | 97.05 92 | 77.26 149 | 80.86 184 | 94.55 106 |
|
| AdaColmap |  | | 78.94 186 | 77.00 202 | 84.76 131 | 96.34 17 | 65.86 146 | 92.66 131 | 87.97 310 | 62.18 322 | 70.56 223 | 92.37 137 | 43.53 306 | 97.35 72 | 64.50 263 | 82.86 162 | 91.05 212 |
|
| VDD-MVS | | | 83.06 112 | 81.81 123 | 86.81 61 | 90.86 139 | 67.70 98 | 95.40 29 | 91.50 174 | 75.46 133 | 81.78 91 | 92.34 138 | 40.09 318 | 97.13 90 | 86.85 68 | 82.04 173 | 95.60 54 |
|
| testing222 | | | 85.18 69 | 84.69 74 | 86.63 67 | 92.91 77 | 69.91 42 | 92.61 133 | 95.80 9 | 80.31 55 | 80.38 110 | 92.27 139 | 68.73 47 | 95.19 182 | 75.94 155 | 83.27 160 | 94.81 96 |
|
| CLD-MVS | | | 82.73 117 | 82.35 117 | 83.86 164 | 87.90 210 | 67.65 100 | 95.45 28 | 92.18 139 | 85.06 10 | 72.58 197 | 92.27 139 | 52.46 234 | 95.78 153 | 84.18 91 | 79.06 199 | 88.16 250 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| h-mvs33 | | | 83.01 113 | 82.56 113 | 84.35 150 | 89.34 167 | 62.02 246 | 92.72 125 | 93.76 69 | 81.45 38 | 82.73 85 | 92.25 141 | 60.11 141 | 97.13 90 | 87.69 55 | 62.96 319 | 93.91 137 |
|
| testing11 | | | 86.71 43 | 86.44 44 | 87.55 40 | 93.54 59 | 71.35 21 | 93.65 89 | 95.58 10 | 81.36 43 | 80.69 105 | 92.21 142 | 72.30 32 | 96.46 128 | 85.18 80 | 83.43 158 | 94.82 95 |
|
| UBG | | | 86.83 39 | 86.70 42 | 87.20 48 | 93.07 73 | 69.81 46 | 93.43 103 | 95.56 12 | 81.52 36 | 81.50 93 | 92.12 143 | 73.58 25 | 96.28 132 | 84.37 90 | 85.20 142 | 95.51 58 |
|
| OMC-MVS | | | 78.67 195 | 77.91 186 | 80.95 244 | 85.76 255 | 57.40 321 | 88.49 271 | 88.67 289 | 73.85 158 | 72.43 202 | 92.10 144 | 49.29 265 | 94.55 207 | 72.73 182 | 77.89 208 | 90.91 213 |
|
| casdiffmvs |  | | 85.37 66 | 84.87 72 | 86.84 59 | 88.25 200 | 69.07 62 | 93.04 114 | 91.76 160 | 81.27 44 | 80.84 104 | 92.07 145 | 64.23 90 | 96.06 145 | 84.98 83 | 87.43 122 | 95.39 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| OpenMVS |  | 70.45 11 | 78.54 197 | 75.92 216 | 86.41 77 | 85.93 253 | 71.68 18 | 92.74 124 | 92.51 126 | 66.49 285 | 64.56 293 | 91.96 146 | 43.88 305 | 98.10 37 | 54.61 312 | 90.65 89 | 89.44 235 |
|
| testing99 | | | 86.01 53 | 85.47 61 | 87.63 38 | 93.62 55 | 71.25 23 | 93.47 101 | 95.23 18 | 80.42 54 | 80.60 107 | 91.95 147 | 71.73 37 | 96.50 126 | 80.02 127 | 82.22 170 | 95.13 79 |
|
| testing91 | | | 85.93 55 | 85.31 64 | 87.78 32 | 93.59 57 | 71.47 19 | 93.50 98 | 95.08 25 | 80.26 56 | 80.53 108 | 91.93 148 | 70.43 41 | 96.51 125 | 80.32 125 | 82.13 172 | 95.37 63 |
|
| Vis-MVSNet (Re-imp) | | | 79.24 180 | 79.57 158 | 78.24 294 | 88.46 191 | 52.29 349 | 90.41 227 | 89.12 269 | 74.24 149 | 69.13 240 | 91.91 149 | 65.77 72 | 90.09 326 | 59.00 298 | 88.09 113 | 92.33 182 |
|
| gm-plane-assit | | | | | | 88.42 193 | 67.04 117 | | | 78.62 90 | | 91.83 150 | | 97.37 70 | 76.57 152 | | |
|
| Vis-MVSNet |  | | 80.92 150 | 79.98 153 | 83.74 166 | 88.48 190 | 61.80 250 | 93.44 102 | 88.26 303 | 73.96 156 | 77.73 141 | 91.76 151 | 49.94 257 | 94.76 193 | 65.84 251 | 90.37 93 | 94.65 102 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| QAPM | | | 79.95 169 | 77.39 196 | 87.64 34 | 89.63 161 | 71.41 20 | 93.30 106 | 93.70 74 | 65.34 294 | 67.39 271 | 91.75 152 | 47.83 279 | 98.96 16 | 57.71 302 | 89.81 96 | 92.54 177 |
|
| IS-MVSNet | | | 80.14 164 | 79.41 163 | 82.33 204 | 87.91 209 | 60.08 288 | 91.97 162 | 88.27 301 | 72.90 180 | 71.44 217 | 91.73 153 | 61.44 128 | 93.66 245 | 62.47 279 | 86.53 134 | 93.24 155 |
|
| baseline1 | | | 81.84 133 | 81.03 134 | 84.28 153 | 91.60 118 | 66.62 128 | 91.08 204 | 91.66 168 | 81.87 32 | 74.86 172 | 91.67 154 | 69.98 44 | 94.92 191 | 71.76 193 | 64.75 306 | 91.29 208 |
|
| ETVMVS | | | 84.22 88 | 83.71 82 | 85.76 96 | 92.58 89 | 68.25 85 | 92.45 141 | 95.53 14 | 79.54 69 | 79.46 121 | 91.64 155 | 70.29 42 | 94.18 221 | 69.16 216 | 82.76 166 | 94.84 92 |
|
| test_fmvs1 | | | 74.07 260 | 73.69 248 | 75.22 320 | 78.91 344 | 47.34 377 | 89.06 264 | 74.69 380 | 63.68 307 | 79.41 122 | 91.59 156 | 24.36 382 | 87.77 346 | 85.22 78 | 76.26 225 | 90.55 218 |
|
| casdiffmvs_mvg |  | | 85.66 62 | 85.18 66 | 87.09 52 | 88.22 202 | 69.35 58 | 93.74 86 | 91.89 153 | 81.47 37 | 80.10 113 | 91.45 157 | 64.80 84 | 96.35 130 | 87.23 63 | 87.69 118 | 95.58 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test2506 | | | 83.29 107 | 82.92 106 | 84.37 149 | 88.39 195 | 63.18 221 | 92.01 158 | 91.35 179 | 77.66 104 | 78.49 136 | 91.42 158 | 64.58 87 | 95.09 184 | 73.19 174 | 89.23 100 | 94.85 89 |
|
| ECVR-MVS |  | | 81.29 142 | 80.38 148 | 84.01 162 | 88.39 195 | 61.96 248 | 92.56 139 | 86.79 321 | 77.66 104 | 76.63 154 | 91.42 158 | 46.34 290 | 95.24 181 | 74.36 170 | 89.23 100 | 94.85 89 |
|
| test1111 | | | 80.84 151 | 80.02 150 | 83.33 181 | 87.87 211 | 60.76 272 | 92.62 132 | 86.86 320 | 77.86 100 | 75.73 161 | 91.39 160 | 46.35 289 | 94.70 199 | 72.79 180 | 88.68 108 | 94.52 110 |
|
| TR-MVS | | | 78.77 192 | 77.37 197 | 82.95 188 | 90.49 144 | 60.88 268 | 93.67 88 | 90.07 229 | 70.08 249 | 74.51 175 | 91.37 161 | 45.69 295 | 95.70 162 | 60.12 292 | 80.32 188 | 92.29 184 |
|
| EPNet_dtu | | | 78.80 190 | 79.26 167 | 77.43 302 | 88.06 205 | 49.71 364 | 91.96 163 | 91.95 149 | 77.67 103 | 76.56 156 | 91.28 162 | 58.51 162 | 90.20 324 | 56.37 306 | 80.95 183 | 92.39 180 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvs1_n | | | 72.69 279 | 71.92 270 | 74.99 323 | 71.15 382 | 47.08 379 | 87.34 291 | 75.67 375 | 63.48 309 | 78.08 139 | 91.17 163 | 20.16 394 | 87.87 343 | 84.65 87 | 75.57 229 | 90.01 224 |
|
| BH-RMVSNet | | | 79.46 178 | 77.65 188 | 84.89 123 | 91.68 117 | 65.66 149 | 93.55 94 | 88.09 306 | 72.93 177 | 73.37 186 | 91.12 164 | 46.20 293 | 96.12 139 | 56.28 307 | 85.61 141 | 92.91 168 |
|
| thisisatest0515 | | | 83.41 105 | 82.49 114 | 86.16 83 | 89.46 166 | 68.26 83 | 93.54 95 | 94.70 36 | 74.31 148 | 75.75 160 | 90.92 165 | 72.62 29 | 96.52 124 | 69.64 208 | 81.50 179 | 93.71 143 |
|
| VDDNet | | | 80.50 156 | 78.26 179 | 87.21 47 | 86.19 245 | 69.79 47 | 94.48 50 | 91.31 180 | 60.42 336 | 79.34 123 | 90.91 166 | 38.48 326 | 96.56 122 | 82.16 108 | 81.05 182 | 95.27 73 |
|
| GG-mvs-BLEND | | | | | 86.53 73 | 91.91 110 | 69.67 52 | 75.02 374 | 94.75 33 | | 78.67 135 | 90.85 167 | 77.91 7 | 94.56 206 | 72.25 187 | 93.74 45 | 95.36 65 |
|
| CNLPA | | | 74.31 258 | 72.30 266 | 80.32 253 | 91.49 123 | 61.66 255 | 90.85 211 | 80.72 364 | 56.67 359 | 63.85 302 | 90.64 168 | 46.75 285 | 90.84 314 | 53.79 316 | 75.99 227 | 88.47 246 |
|
| PCF-MVS | | 73.15 9 | 79.29 179 | 77.63 189 | 84.29 152 | 86.06 248 | 65.96 144 | 87.03 293 | 91.10 191 | 69.86 252 | 69.79 237 | 90.64 168 | 57.54 173 | 96.59 119 | 64.37 264 | 82.29 167 | 90.32 219 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| 114514_t | | | 79.17 181 | 77.67 187 | 83.68 172 | 95.32 29 | 65.53 155 | 92.85 121 | 91.60 170 | 63.49 308 | 67.92 259 | 90.63 170 | 46.65 286 | 95.72 161 | 67.01 238 | 83.54 157 | 89.79 227 |
|
| PLC |  | 68.80 14 | 75.23 250 | 73.68 249 | 79.86 270 | 92.93 76 | 58.68 307 | 90.64 221 | 88.30 299 | 60.90 333 | 64.43 297 | 90.53 171 | 42.38 311 | 94.57 203 | 56.52 305 | 76.54 223 | 86.33 278 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PVSNet | | 73.49 8 | 80.05 166 | 78.63 174 | 84.31 151 | 90.92 137 | 64.97 168 | 92.47 140 | 91.05 197 | 79.18 77 | 72.43 202 | 90.51 172 | 37.05 343 | 94.06 227 | 68.06 225 | 86.00 137 | 93.90 139 |
|
| hse-mvs2 | | | 81.12 146 | 81.11 133 | 81.16 235 | 86.52 239 | 57.48 319 | 89.40 255 | 91.16 187 | 81.45 38 | 82.73 85 | 90.49 173 | 60.11 141 | 94.58 201 | 87.69 55 | 60.41 346 | 91.41 202 |
|
| AUN-MVS | | | 78.37 199 | 77.43 192 | 81.17 234 | 86.60 238 | 57.45 320 | 89.46 254 | 91.16 187 | 74.11 151 | 74.40 176 | 90.49 173 | 55.52 200 | 94.57 203 | 74.73 169 | 60.43 345 | 91.48 200 |
|
| baseline2 | | | 83.68 102 | 83.42 93 | 84.48 145 | 87.37 223 | 66.00 142 | 90.06 239 | 95.93 8 | 79.71 66 | 69.08 242 | 90.39 175 | 77.92 6 | 96.28 132 | 78.91 138 | 81.38 180 | 91.16 210 |
|
| EPP-MVSNet | | | 81.79 134 | 81.52 125 | 82.61 197 | 88.77 186 | 60.21 286 | 93.02 116 | 93.66 76 | 68.52 269 | 72.90 191 | 90.39 175 | 72.19 34 | 94.96 188 | 74.93 165 | 79.29 198 | 92.67 173 |
|
| NP-MVS | | | | | | 87.41 221 | 63.04 222 | | | | | 90.30 177 | | | | | |
|
| HQP-MVS | | | 81.14 144 | 80.64 142 | 82.64 196 | 87.54 218 | 63.66 206 | 94.06 63 | 91.70 166 | 79.80 63 | 74.18 177 | 90.30 177 | 51.63 242 | 95.61 165 | 77.63 147 | 78.90 200 | 88.63 241 |
|
| mvsany_test1 | | | 68.77 306 | 68.56 295 | 69.39 358 | 73.57 375 | 45.88 386 | 80.93 342 | 60.88 406 | 59.65 342 | 71.56 214 | 90.26 179 | 43.22 308 | 75.05 393 | 74.26 171 | 62.70 322 | 87.25 265 |
|
| Anonymous202405211 | | | 77.96 206 | 75.33 224 | 85.87 90 | 93.73 53 | 64.52 173 | 94.85 44 | 85.36 336 | 62.52 320 | 76.11 158 | 90.18 180 | 29.43 372 | 97.29 76 | 68.51 223 | 77.24 219 | 95.81 49 |
|
| test_vis1_n | | | 71.63 285 | 70.73 281 | 74.31 330 | 69.63 388 | 47.29 378 | 86.91 295 | 72.11 386 | 63.21 313 | 75.18 169 | 90.17 181 | 20.40 392 | 85.76 358 | 84.59 88 | 74.42 235 | 89.87 225 |
|
| balanced_conf03 | | | 89.08 15 | 88.84 17 | 89.81 6 | 93.66 54 | 75.15 5 | 90.61 224 | 93.43 87 | 84.06 14 | 86.20 49 | 90.17 181 | 72.42 31 | 96.98 101 | 93.09 16 | 95.92 10 | 97.29 7 |
|
| BH-w/o | | | 80.49 157 | 79.30 166 | 84.05 160 | 90.83 140 | 64.36 185 | 93.60 92 | 89.42 254 | 74.35 147 | 69.09 241 | 90.15 183 | 55.23 203 | 95.61 165 | 64.61 262 | 86.43 136 | 92.17 191 |
|
| EI-MVSNet | | | 78.97 185 | 78.22 180 | 81.25 232 | 85.33 260 | 62.73 233 | 89.53 252 | 93.21 94 | 72.39 192 | 72.14 205 | 90.13 184 | 60.99 131 | 94.72 196 | 67.73 230 | 72.49 250 | 86.29 279 |
|
| CVMVSNet | | | 74.04 261 | 74.27 239 | 73.33 336 | 85.33 260 | 43.94 390 | 89.53 252 | 88.39 296 | 54.33 366 | 70.37 227 | 90.13 184 | 49.17 267 | 84.05 367 | 61.83 283 | 79.36 196 | 91.99 194 |
|
| XVG-OURS-SEG-HR | | | 74.70 256 | 73.08 254 | 79.57 277 | 78.25 352 | 57.33 322 | 80.49 344 | 87.32 314 | 63.22 312 | 68.76 250 | 90.12 186 | 44.89 302 | 91.59 304 | 70.55 204 | 74.09 238 | 89.79 227 |
|
| OPM-MVS | | | 79.00 184 | 78.09 181 | 81.73 222 | 83.52 291 | 63.83 196 | 91.64 179 | 90.30 220 | 76.36 125 | 71.97 208 | 89.93 187 | 46.30 292 | 95.17 183 | 75.10 162 | 77.70 210 | 86.19 282 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PVSNet_Blended_VisFu | | | 83.97 93 | 83.50 87 | 85.39 107 | 90.02 153 | 66.59 130 | 93.77 84 | 91.73 161 | 77.43 110 | 77.08 152 | 89.81 188 | 63.77 97 | 96.97 104 | 79.67 129 | 88.21 112 | 92.60 175 |
|
| CDS-MVSNet | | | 81.43 140 | 80.74 138 | 83.52 175 | 86.26 244 | 64.45 177 | 92.09 153 | 90.65 207 | 75.83 129 | 73.95 183 | 89.81 188 | 63.97 93 | 92.91 263 | 71.27 196 | 82.82 163 | 93.20 158 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| XVG-OURS | | | 74.25 259 | 72.46 265 | 79.63 275 | 78.45 350 | 57.59 318 | 80.33 346 | 87.39 313 | 63.86 304 | 68.76 250 | 89.62 190 | 40.50 317 | 91.72 300 | 69.00 218 | 74.25 236 | 89.58 230 |
|
| dmvs_re | | | 76.93 222 | 75.36 223 | 81.61 225 | 87.78 215 | 60.71 275 | 80.00 352 | 87.99 308 | 79.42 71 | 69.02 244 | 89.47 191 | 46.77 284 | 94.32 213 | 63.38 270 | 74.45 234 | 89.81 226 |
|
| UWE-MVS | | | 80.81 152 | 81.01 135 | 80.20 258 | 89.33 169 | 57.05 324 | 91.91 164 | 94.71 35 | 75.67 130 | 75.01 171 | 89.37 192 | 63.13 111 | 91.44 311 | 67.19 236 | 82.80 165 | 92.12 193 |
|
| GeoE | | | 78.90 187 | 77.43 192 | 83.29 182 | 88.95 181 | 62.02 246 | 92.31 143 | 86.23 327 | 70.24 247 | 71.34 218 | 89.27 193 | 54.43 214 | 94.04 230 | 63.31 271 | 80.81 186 | 93.81 142 |
|
| thisisatest0530 | | | 81.15 143 | 80.07 149 | 84.39 148 | 88.26 199 | 65.63 151 | 91.40 184 | 94.62 40 | 71.27 230 | 70.93 220 | 89.18 194 | 72.47 30 | 96.04 146 | 65.62 254 | 76.89 221 | 91.49 199 |
|
| UA-Net | | | 80.02 167 | 79.65 157 | 81.11 237 | 89.33 169 | 57.72 315 | 86.33 301 | 89.00 278 | 77.44 109 | 81.01 101 | 89.15 195 | 59.33 152 | 95.90 150 | 61.01 286 | 84.28 153 | 89.73 229 |
|
| HQP_MVS | | | 80.34 160 | 79.75 156 | 82.12 214 | 86.94 233 | 62.42 237 | 93.13 110 | 91.31 180 | 78.81 87 | 72.53 198 | 89.14 196 | 50.66 250 | 95.55 170 | 76.74 150 | 78.53 205 | 88.39 247 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 196 | | | | | |
|
| thres200 | | | 79.66 172 | 78.33 177 | 83.66 174 | 92.54 90 | 65.82 148 | 93.06 112 | 96.31 3 | 74.90 142 | 73.30 187 | 88.66 198 | 59.67 147 | 95.61 165 | 47.84 341 | 78.67 203 | 89.56 232 |
|
| BH-untuned | | | 78.68 193 | 77.08 199 | 83.48 179 | 89.84 156 | 63.74 199 | 92.70 127 | 88.59 292 | 71.57 223 | 66.83 278 | 88.65 199 | 51.75 240 | 95.39 175 | 59.03 297 | 84.77 146 | 91.32 206 |
|
| TAMVS | | | 80.37 159 | 79.45 162 | 83.13 186 | 85.14 265 | 63.37 214 | 91.23 197 | 90.76 202 | 74.81 143 | 72.65 195 | 88.49 200 | 60.63 136 | 92.95 258 | 69.41 212 | 81.95 175 | 93.08 162 |
|
| LPG-MVS_test | | | 75.82 242 | 74.58 233 | 79.56 278 | 84.31 280 | 59.37 298 | 90.44 225 | 89.73 244 | 69.49 255 | 64.86 289 | 88.42 201 | 38.65 323 | 94.30 215 | 72.56 184 | 72.76 247 | 85.01 308 |
|
| LGP-MVS_train | | | | | 79.56 278 | 84.31 280 | 59.37 298 | | 89.73 244 | 69.49 255 | 64.86 289 | 88.42 201 | 38.65 323 | 94.30 215 | 72.56 184 | 72.76 247 | 85.01 308 |
|
| VPNet | | | 78.82 189 | 77.53 191 | 82.70 194 | 84.52 275 | 66.44 132 | 93.93 72 | 92.23 132 | 80.46 52 | 72.60 196 | 88.38 203 | 49.18 266 | 93.13 253 | 72.47 186 | 63.97 316 | 88.55 244 |
|
| FIs | | | 79.47 177 | 79.41 163 | 79.67 274 | 85.95 250 | 59.40 297 | 91.68 177 | 93.94 63 | 78.06 96 | 68.96 246 | 88.28 204 | 66.61 63 | 91.77 299 | 66.20 248 | 74.99 230 | 87.82 253 |
|
| CHOSEN 1792x2688 | | | 84.98 73 | 83.45 90 | 89.57 11 | 89.94 155 | 75.14 6 | 92.07 155 | 92.32 129 | 81.87 32 | 75.68 162 | 88.27 205 | 60.18 140 | 98.60 27 | 80.46 124 | 90.27 94 | 94.96 86 |
|
| tfpn200view9 | | | 78.79 191 | 77.43 192 | 82.88 189 | 92.21 96 | 64.49 174 | 92.05 156 | 96.28 4 | 73.48 167 | 71.75 211 | 88.26 206 | 60.07 143 | 95.32 177 | 45.16 352 | 77.58 212 | 88.83 237 |
|
| Fast-Effi-MVS+ | | | 81.14 144 | 80.01 151 | 84.51 144 | 90.24 149 | 65.86 146 | 94.12 62 | 89.15 266 | 73.81 160 | 75.37 168 | 88.26 206 | 57.26 174 | 94.53 208 | 66.97 239 | 84.92 144 | 93.15 159 |
|
| thres400 | | | 78.68 193 | 77.43 192 | 82.43 200 | 92.21 96 | 64.49 174 | 92.05 156 | 96.28 4 | 73.48 167 | 71.75 211 | 88.26 206 | 60.07 143 | 95.32 177 | 45.16 352 | 77.58 212 | 87.48 257 |
|
| nrg030 | | | 80.93 149 | 79.86 154 | 84.13 156 | 83.69 288 | 68.83 68 | 93.23 108 | 91.20 185 | 75.55 132 | 75.06 170 | 88.22 209 | 63.04 113 | 94.74 195 | 81.88 110 | 66.88 288 | 88.82 239 |
|
| Syy-MVS | | | 69.65 299 | 69.52 291 | 70.03 356 | 87.87 211 | 43.21 392 | 88.07 276 | 89.01 275 | 72.91 178 | 63.11 308 | 88.10 210 | 45.28 299 | 85.54 359 | 22.07 406 | 69.23 270 | 81.32 349 |
|
| myMVS_eth3d | | | 72.58 281 | 72.74 259 | 72.10 348 | 87.87 211 | 49.45 366 | 88.07 276 | 89.01 275 | 72.91 178 | 63.11 308 | 88.10 210 | 63.63 99 | 85.54 359 | 32.73 393 | 69.23 270 | 81.32 349 |
|
| F-COLMAP | | | 70.66 289 | 68.44 297 | 77.32 304 | 86.37 243 | 55.91 332 | 88.00 278 | 86.32 324 | 56.94 357 | 57.28 346 | 88.07 212 | 33.58 355 | 92.49 280 | 51.02 323 | 68.37 277 | 83.55 320 |
|
| tttt0517 | | | 79.50 175 | 78.53 176 | 82.41 203 | 87.22 226 | 61.43 260 | 89.75 248 | 94.76 32 | 69.29 258 | 67.91 260 | 88.06 213 | 72.92 27 | 95.63 163 | 62.91 275 | 73.90 241 | 90.16 221 |
|
| HY-MVS | | 76.49 5 | 84.28 84 | 83.36 96 | 87.02 55 | 92.22 95 | 67.74 97 | 84.65 308 | 94.50 43 | 79.15 78 | 82.23 88 | 87.93 214 | 66.88 60 | 96.94 107 | 80.53 123 | 82.20 171 | 96.39 33 |
|
| thres100view900 | | | 78.37 199 | 77.01 201 | 82.46 199 | 91.89 111 | 63.21 219 | 91.19 201 | 96.33 1 | 72.28 195 | 70.45 226 | 87.89 215 | 60.31 138 | 95.32 177 | 45.16 352 | 77.58 212 | 88.83 237 |
|
| thres600view7 | | | 78.00 204 | 76.66 206 | 82.03 219 | 91.93 108 | 63.69 204 | 91.30 194 | 96.33 1 | 72.43 190 | 70.46 225 | 87.89 215 | 60.31 138 | 94.92 191 | 42.64 364 | 76.64 222 | 87.48 257 |
|
| dmvs_testset | | | 65.55 330 | 66.45 306 | 62.86 374 | 79.87 329 | 22.35 420 | 76.55 366 | 71.74 388 | 77.42 111 | 55.85 349 | 87.77 217 | 51.39 244 | 80.69 387 | 31.51 399 | 65.92 294 | 85.55 300 |
|
| test0.0.03 1 | | | 72.76 275 | 72.71 261 | 72.88 340 | 80.25 325 | 47.99 373 | 91.22 198 | 89.45 252 | 71.51 226 | 62.51 316 | 87.66 218 | 53.83 219 | 85.06 363 | 50.16 327 | 67.84 284 | 85.58 298 |
|
| MVSMamba_PlusPlus | | | 84.97 74 | 83.65 84 | 88.93 14 | 90.17 151 | 74.04 8 | 87.84 282 | 92.69 117 | 62.18 322 | 81.47 95 | 87.64 219 | 71.47 38 | 96.28 132 | 84.69 86 | 94.74 31 | 96.47 28 |
|
| FC-MVSNet-test | | | 77.99 205 | 78.08 182 | 77.70 297 | 84.89 270 | 55.51 335 | 90.27 233 | 93.75 72 | 76.87 114 | 66.80 279 | 87.59 220 | 65.71 73 | 90.23 323 | 62.89 276 | 73.94 239 | 87.37 260 |
|
| TESTMET0.1,1 | | | 82.41 123 | 81.98 121 | 83.72 170 | 88.08 204 | 63.74 199 | 92.70 127 | 93.77 68 | 79.30 74 | 77.61 144 | 87.57 221 | 58.19 167 | 94.08 225 | 73.91 172 | 86.68 133 | 93.33 154 |
|
| LS3D | | | 69.17 302 | 66.40 307 | 77.50 300 | 91.92 109 | 56.12 331 | 85.12 305 | 80.37 366 | 46.96 386 | 56.50 348 | 87.51 222 | 37.25 338 | 93.71 243 | 32.52 395 | 79.40 195 | 82.68 338 |
|
| Anonymous20240529 | | | 76.84 225 | 74.15 241 | 84.88 124 | 91.02 134 | 64.95 169 | 93.84 80 | 91.09 192 | 53.57 367 | 73.00 188 | 87.42 223 | 35.91 347 | 97.32 74 | 69.14 217 | 72.41 252 | 92.36 181 |
|
| Test_1112_low_res | | | 79.56 174 | 78.60 175 | 82.43 200 | 88.24 201 | 60.39 283 | 92.09 153 | 87.99 308 | 72.10 201 | 71.84 209 | 87.42 223 | 64.62 86 | 93.04 254 | 65.80 252 | 77.30 217 | 93.85 141 |
|
| ACMP | | 71.68 10 | 75.58 247 | 74.23 240 | 79.62 276 | 84.97 269 | 59.64 293 | 90.80 213 | 89.07 273 | 70.39 245 | 62.95 311 | 87.30 225 | 38.28 327 | 93.87 240 | 72.89 177 | 71.45 258 | 85.36 304 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| WB-MVSnew | | | 77.14 218 | 76.18 213 | 80.01 264 | 86.18 246 | 63.24 217 | 91.26 195 | 94.11 60 | 71.72 215 | 73.52 185 | 87.29 226 | 45.14 300 | 93.00 256 | 56.98 304 | 79.42 194 | 83.80 318 |
|
| CHOSEN 280x420 | | | 77.35 215 | 76.95 203 | 78.55 289 | 87.07 230 | 62.68 234 | 69.71 385 | 82.95 358 | 68.80 265 | 71.48 216 | 87.27 227 | 66.03 69 | 84.00 369 | 76.47 153 | 82.81 164 | 88.95 236 |
|
| SDMVSNet | | | 80.26 161 | 78.88 172 | 84.40 147 | 89.25 172 | 67.63 101 | 85.35 304 | 93.02 104 | 76.77 119 | 70.84 221 | 87.12 228 | 47.95 278 | 96.09 141 | 85.04 81 | 74.55 231 | 89.48 233 |
|
| sd_testset | | | 77.08 220 | 75.37 222 | 82.20 210 | 89.25 172 | 62.11 245 | 82.06 331 | 89.09 271 | 76.77 119 | 70.84 221 | 87.12 228 | 41.43 314 | 95.01 186 | 67.23 235 | 74.55 231 | 89.48 233 |
|
| RRT-MVS | | | 82.61 121 | 81.16 128 | 86.96 57 | 91.10 133 | 68.75 70 | 87.70 285 | 92.20 136 | 76.97 113 | 72.68 193 | 87.10 230 | 51.30 246 | 96.41 129 | 83.56 99 | 87.84 116 | 95.74 50 |
|
| mvsmamba | | | 81.55 138 | 80.72 139 | 84.03 161 | 91.42 124 | 66.93 120 | 83.08 324 | 89.13 268 | 78.55 91 | 67.50 267 | 87.02 231 | 51.79 239 | 90.07 327 | 87.48 58 | 90.49 92 | 95.10 81 |
|
| test-LLR | | | 80.10 165 | 79.56 159 | 81.72 223 | 86.93 235 | 61.17 262 | 92.70 127 | 91.54 171 | 71.51 226 | 75.62 163 | 86.94 232 | 53.83 219 | 92.38 283 | 72.21 188 | 84.76 147 | 91.60 197 |
|
| test-mter | | | 79.96 168 | 79.38 165 | 81.72 223 | 86.93 235 | 61.17 262 | 92.70 127 | 91.54 171 | 73.85 158 | 75.62 163 | 86.94 232 | 49.84 259 | 92.38 283 | 72.21 188 | 84.76 147 | 91.60 197 |
|
| testing3 | | | 70.38 293 | 70.83 278 | 69.03 360 | 85.82 254 | 43.93 391 | 90.72 218 | 90.56 209 | 68.06 271 | 60.24 325 | 86.82 234 | 64.83 83 | 84.12 365 | 26.33 401 | 64.10 313 | 79.04 370 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 203 | 77.55 190 | 79.98 265 | 84.46 277 | 60.26 284 | 92.25 145 | 93.20 96 | 77.50 108 | 68.88 247 | 86.61 235 | 66.10 68 | 92.13 291 | 66.38 245 | 62.55 323 | 87.54 255 |
|
| MVS_Test | | | 84.16 90 | 83.20 99 | 87.05 54 | 91.56 120 | 69.82 45 | 89.99 244 | 92.05 142 | 77.77 101 | 82.84 83 | 86.57 236 | 63.93 94 | 96.09 141 | 74.91 166 | 89.18 102 | 95.25 76 |
|
| tt0805 | | | 73.07 269 | 70.73 281 | 80.07 261 | 78.37 351 | 57.05 324 | 87.78 283 | 92.18 139 | 61.23 332 | 67.04 274 | 86.49 237 | 31.35 365 | 94.58 201 | 65.06 260 | 67.12 286 | 88.57 243 |
|
| DU-MVS | | | 76.86 223 | 75.84 217 | 79.91 268 | 82.96 297 | 60.26 284 | 91.26 195 | 91.54 171 | 76.46 124 | 68.88 247 | 86.35 238 | 56.16 192 | 92.13 291 | 66.38 245 | 62.55 323 | 87.35 261 |
|
| NR-MVSNet | | | 76.05 236 | 74.59 232 | 80.44 251 | 82.96 297 | 62.18 244 | 90.83 212 | 91.73 161 | 77.12 112 | 60.96 321 | 86.35 238 | 59.28 153 | 91.80 298 | 60.74 287 | 61.34 338 | 87.35 261 |
|
| UGNet | | | 79.87 170 | 78.68 173 | 83.45 180 | 89.96 154 | 61.51 257 | 92.13 150 | 90.79 201 | 76.83 117 | 78.85 133 | 86.33 240 | 38.16 329 | 96.17 137 | 67.93 228 | 87.17 124 | 92.67 173 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TranMVSNet+NR-MVSNet | | | 75.86 241 | 74.52 235 | 79.89 269 | 82.44 303 | 60.64 278 | 91.37 189 | 91.37 178 | 76.63 121 | 67.65 265 | 86.21 241 | 52.37 235 | 91.55 305 | 61.84 282 | 60.81 341 | 87.48 257 |
|
| cascas | | | 78.18 202 | 75.77 218 | 85.41 106 | 87.14 228 | 69.11 61 | 92.96 117 | 91.15 189 | 66.71 283 | 70.47 224 | 86.07 242 | 37.49 337 | 96.48 127 | 70.15 206 | 79.80 192 | 90.65 215 |
|
| HyFIR lowres test | | | 81.03 148 | 79.56 159 | 85.43 105 | 87.81 214 | 68.11 89 | 90.18 236 | 90.01 234 | 70.65 243 | 72.95 190 | 86.06 243 | 63.61 101 | 94.50 210 | 75.01 164 | 79.75 193 | 93.67 144 |
|
| ACMM | | 69.62 13 | 74.34 257 | 72.73 260 | 79.17 283 | 84.25 282 | 57.87 313 | 90.36 230 | 89.93 235 | 63.17 314 | 65.64 284 | 86.04 244 | 37.79 335 | 94.10 223 | 65.89 250 | 71.52 257 | 85.55 300 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XXY-MVS | | | 77.94 207 | 76.44 208 | 82.43 200 | 82.60 301 | 64.44 178 | 92.01 158 | 91.83 158 | 73.59 166 | 70.00 233 | 85.82 245 | 54.43 214 | 94.76 193 | 69.63 209 | 68.02 281 | 88.10 251 |
|
| IB-MVS | | 77.80 4 | 82.18 126 | 80.46 147 | 87.35 45 | 89.14 177 | 70.28 35 | 95.59 26 | 95.17 21 | 78.85 85 | 70.19 230 | 85.82 245 | 70.66 40 | 97.67 51 | 72.19 190 | 66.52 291 | 94.09 128 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MVSTER | | | 82.47 122 | 82.05 118 | 83.74 166 | 92.68 86 | 69.01 64 | 91.90 165 | 93.21 94 | 79.83 62 | 72.14 205 | 85.71 247 | 74.72 16 | 94.72 196 | 75.72 157 | 72.49 250 | 87.50 256 |
|
| mamv4 | | | 65.18 332 | 67.43 302 | 58.44 378 | 77.88 358 | 49.36 369 | 69.40 386 | 70.99 391 | 48.31 384 | 57.78 343 | 85.53 248 | 59.01 158 | 51.88 416 | 73.67 173 | 64.32 310 | 74.07 386 |
|
| WR-MVS | | | 76.76 227 | 75.74 219 | 79.82 271 | 84.60 273 | 62.27 243 | 92.60 134 | 92.51 126 | 76.06 126 | 67.87 263 | 85.34 249 | 56.76 183 | 90.24 322 | 62.20 280 | 63.69 318 | 86.94 269 |
|
| DP-MVS | | | 69.90 297 | 66.48 305 | 80.14 259 | 95.36 28 | 62.93 226 | 89.56 249 | 76.11 373 | 50.27 378 | 57.69 344 | 85.23 250 | 39.68 319 | 95.73 157 | 33.35 388 | 71.05 261 | 81.78 347 |
|
| PVSNet_BlendedMVS | | | 83.38 106 | 83.43 91 | 83.22 184 | 93.76 50 | 67.53 104 | 94.06 63 | 93.61 77 | 79.13 79 | 81.00 102 | 85.14 251 | 63.19 109 | 97.29 76 | 87.08 65 | 73.91 240 | 84.83 310 |
|
| ab-mvs | | | 80.18 163 | 78.31 178 | 85.80 94 | 88.44 192 | 65.49 157 | 83.00 327 | 92.67 118 | 71.82 211 | 77.36 147 | 85.01 252 | 54.50 210 | 96.59 119 | 76.35 154 | 75.63 228 | 95.32 68 |
|
| VPA-MVSNet | | | 79.03 183 | 78.00 183 | 82.11 217 | 85.95 250 | 64.48 176 | 93.22 109 | 94.66 38 | 75.05 140 | 74.04 182 | 84.95 253 | 52.17 236 | 93.52 247 | 74.90 167 | 67.04 287 | 88.32 249 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 252 | 73.37 252 | 80.07 261 | 80.86 315 | 59.52 296 | 91.20 200 | 85.38 335 | 71.90 205 | 65.20 287 | 84.84 254 | 41.46 313 | 92.97 257 | 66.50 244 | 72.96 246 | 87.73 254 |
|
| UniMVSNet (Re) | | | 77.58 212 | 76.78 204 | 79.98 265 | 84.11 283 | 60.80 269 | 91.76 173 | 93.17 98 | 76.56 123 | 69.93 236 | 84.78 255 | 63.32 108 | 92.36 285 | 64.89 261 | 62.51 325 | 86.78 271 |
|
| mvs_anonymous | | | 81.36 141 | 79.99 152 | 85.46 104 | 90.39 147 | 68.40 78 | 86.88 297 | 90.61 208 | 74.41 145 | 70.31 229 | 84.67 256 | 63.79 96 | 92.32 288 | 73.13 175 | 85.70 139 | 95.67 51 |
|
| RPSCF | | | 64.24 337 | 61.98 339 | 71.01 354 | 76.10 366 | 45.00 387 | 75.83 371 | 75.94 374 | 46.94 387 | 58.96 334 | 84.59 257 | 31.40 364 | 82.00 383 | 47.76 342 | 60.33 347 | 86.04 287 |
|
| PS-MVSNAJss | | | 77.26 216 | 76.31 210 | 80.13 260 | 80.64 320 | 59.16 302 | 90.63 223 | 91.06 196 | 72.80 181 | 68.58 253 | 84.57 258 | 53.55 223 | 93.96 235 | 72.97 176 | 71.96 254 | 87.27 264 |
|
| test_fmvs2 | | | 65.78 329 | 64.84 318 | 68.60 362 | 66.54 394 | 41.71 394 | 83.27 320 | 69.81 393 | 54.38 365 | 67.91 260 | 84.54 259 | 15.35 399 | 81.22 386 | 75.65 158 | 66.16 292 | 82.88 331 |
|
| UniMVSNet_ETH3D | | | 72.74 276 | 70.53 283 | 79.36 280 | 78.62 349 | 56.64 328 | 85.01 306 | 89.20 262 | 63.77 305 | 64.84 291 | 84.44 260 | 34.05 354 | 91.86 297 | 63.94 266 | 70.89 262 | 89.57 231 |
|
| MS-PatchMatch | | | 77.90 209 | 76.50 207 | 82.12 214 | 85.99 249 | 69.95 41 | 91.75 175 | 92.70 115 | 73.97 155 | 62.58 315 | 84.44 260 | 41.11 315 | 95.78 153 | 63.76 268 | 92.17 66 | 80.62 357 |
|
| WBMVS | | | 81.67 135 | 80.98 136 | 83.72 170 | 93.07 73 | 69.40 53 | 94.33 54 | 93.05 103 | 76.84 116 | 72.05 207 | 84.14 262 | 74.49 18 | 93.88 239 | 72.76 181 | 68.09 279 | 87.88 252 |
|
| MSDG | | | 69.54 300 | 65.73 312 | 80.96 243 | 85.11 267 | 63.71 202 | 84.19 311 | 83.28 357 | 56.95 356 | 54.50 353 | 84.03 263 | 31.50 363 | 96.03 147 | 42.87 362 | 69.13 272 | 83.14 330 |
|
| GA-MVS | | | 78.33 201 | 76.23 211 | 84.65 137 | 83.65 289 | 66.30 136 | 91.44 181 | 90.14 227 | 76.01 127 | 70.32 228 | 84.02 264 | 42.50 310 | 94.72 196 | 70.98 198 | 77.00 220 | 92.94 167 |
|
| miper_enhance_ethall | | | 78.86 188 | 77.97 184 | 81.54 227 | 88.00 208 | 65.17 162 | 91.41 182 | 89.15 266 | 75.19 138 | 68.79 249 | 83.98 265 | 67.17 58 | 92.82 265 | 72.73 182 | 65.30 297 | 86.62 276 |
|
| pmmvs4 | | | 73.92 263 | 71.81 272 | 80.25 257 | 79.17 338 | 65.24 160 | 87.43 289 | 87.26 316 | 67.64 276 | 63.46 305 | 83.91 266 | 48.96 270 | 91.53 309 | 62.94 274 | 65.49 296 | 83.96 315 |
|
| pmmvs5 | | | 73.35 267 | 71.52 274 | 78.86 287 | 78.64 348 | 60.61 279 | 91.08 204 | 86.90 318 | 67.69 273 | 63.32 306 | 83.64 267 | 44.33 304 | 90.53 316 | 62.04 281 | 66.02 293 | 85.46 302 |
|
| ITE_SJBPF | | | | | 70.43 355 | 74.44 372 | 47.06 380 | | 77.32 371 | 60.16 339 | 54.04 356 | 83.53 268 | 23.30 386 | 84.01 368 | 43.07 359 | 61.58 337 | 80.21 363 |
|
| jajsoiax | | | 73.05 270 | 71.51 275 | 77.67 298 | 77.46 359 | 54.83 339 | 88.81 266 | 90.04 232 | 69.13 262 | 62.85 313 | 83.51 269 | 31.16 366 | 92.75 269 | 70.83 199 | 69.80 263 | 85.43 303 |
|
| testgi | | | 64.48 336 | 62.87 334 | 69.31 359 | 71.24 380 | 40.62 397 | 85.49 303 | 79.92 367 | 65.36 293 | 54.18 355 | 83.49 270 | 23.74 385 | 84.55 364 | 41.60 366 | 60.79 342 | 82.77 333 |
|
| v2v482 | | | 77.42 214 | 75.65 220 | 82.73 192 | 80.38 322 | 67.13 114 | 91.85 168 | 90.23 224 | 75.09 139 | 69.37 238 | 83.39 271 | 53.79 221 | 94.44 211 | 71.77 192 | 65.00 303 | 86.63 275 |
|
| mvs_tets | | | 72.71 277 | 71.11 276 | 77.52 299 | 77.41 360 | 54.52 341 | 88.45 272 | 89.76 240 | 68.76 267 | 62.70 314 | 83.26 272 | 29.49 371 | 92.71 270 | 70.51 205 | 69.62 265 | 85.34 305 |
|
| FMVSNet3 | | | 77.73 210 | 76.04 214 | 82.80 190 | 91.20 132 | 68.99 65 | 91.87 166 | 91.99 147 | 73.35 169 | 67.04 274 | 83.19 273 | 56.62 187 | 92.14 290 | 59.80 294 | 69.34 267 | 87.28 263 |
|
| FA-MVS(test-final) | | | 79.12 182 | 77.23 198 | 84.81 129 | 90.54 143 | 63.98 194 | 81.35 339 | 91.71 163 | 71.09 234 | 74.85 173 | 82.94 274 | 52.85 230 | 97.05 92 | 67.97 226 | 81.73 178 | 93.41 150 |
|
| MVP-Stereo | | | 77.12 219 | 76.23 211 | 79.79 272 | 81.72 309 | 66.34 135 | 89.29 256 | 90.88 200 | 70.56 244 | 62.01 318 | 82.88 275 | 49.34 263 | 94.13 222 | 65.55 256 | 93.80 43 | 78.88 371 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PatchMatch-RL | | | 72.06 282 | 69.98 285 | 78.28 292 | 89.51 165 | 55.70 334 | 83.49 316 | 83.39 356 | 61.24 331 | 63.72 303 | 82.76 276 | 34.77 351 | 93.03 255 | 53.37 319 | 77.59 211 | 86.12 286 |
|
| CP-MVSNet | | | 70.50 291 | 69.91 288 | 72.26 345 | 80.71 318 | 51.00 358 | 87.23 292 | 90.30 220 | 67.84 272 | 59.64 328 | 82.69 277 | 50.23 255 | 82.30 381 | 51.28 322 | 59.28 349 | 83.46 324 |
|
| cl22 | | | 77.94 207 | 76.78 204 | 81.42 229 | 87.57 217 | 64.93 170 | 90.67 219 | 88.86 282 | 72.45 189 | 67.63 266 | 82.68 278 | 64.07 91 | 92.91 263 | 71.79 191 | 65.30 297 | 86.44 277 |
|
| miper_ehance_all_eth | | | 77.60 211 | 76.44 208 | 81.09 241 | 85.70 257 | 64.41 181 | 90.65 220 | 88.64 291 | 72.31 193 | 67.37 272 | 82.52 279 | 64.77 85 | 92.64 276 | 70.67 202 | 65.30 297 | 86.24 281 |
|
| PEN-MVS | | | 69.46 301 | 68.56 295 | 72.17 347 | 79.27 336 | 49.71 364 | 86.90 296 | 89.24 260 | 67.24 281 | 59.08 333 | 82.51 280 | 47.23 283 | 83.54 372 | 48.42 336 | 57.12 355 | 83.25 327 |
|
| reproduce_monomvs | | | 79.49 176 | 79.11 170 | 80.64 248 | 92.91 77 | 61.47 259 | 91.17 202 | 93.28 92 | 83.09 20 | 64.04 299 | 82.38 281 | 66.19 66 | 94.57 203 | 81.19 119 | 57.71 354 | 85.88 293 |
|
| PS-CasMVS | | | 69.86 298 | 69.13 293 | 72.07 349 | 80.35 323 | 50.57 360 | 87.02 294 | 89.75 241 | 67.27 278 | 59.19 332 | 82.28 282 | 46.58 287 | 82.24 382 | 50.69 324 | 59.02 350 | 83.39 326 |
|
| FMVSNet2 | | | 76.07 233 | 74.01 244 | 82.26 208 | 88.85 182 | 67.66 99 | 91.33 192 | 91.61 169 | 70.84 238 | 65.98 282 | 82.25 283 | 48.03 274 | 92.00 295 | 58.46 299 | 68.73 275 | 87.10 266 |
|
| DTE-MVSNet | | | 68.46 310 | 67.33 304 | 71.87 351 | 77.94 356 | 49.00 370 | 86.16 302 | 88.58 293 | 66.36 286 | 58.19 337 | 82.21 284 | 46.36 288 | 83.87 370 | 44.97 355 | 55.17 362 | 82.73 334 |
|
| CMPMVS |  | 48.56 21 | 66.77 323 | 64.41 325 | 73.84 333 | 70.65 385 | 50.31 361 | 77.79 363 | 85.73 334 | 45.54 390 | 44.76 389 | 82.14 285 | 35.40 349 | 90.14 325 | 63.18 273 | 74.54 233 | 81.07 352 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_djsdf | | | 73.76 266 | 72.56 263 | 77.39 303 | 77.00 362 | 53.93 343 | 89.07 262 | 90.69 203 | 65.80 289 | 63.92 300 | 82.03 286 | 43.14 309 | 92.67 273 | 72.83 178 | 68.53 276 | 85.57 299 |
|
| v1144 | | | 76.73 228 | 74.88 228 | 82.27 206 | 80.23 326 | 66.60 129 | 91.68 177 | 90.21 226 | 73.69 163 | 69.06 243 | 81.89 287 | 52.73 232 | 94.40 212 | 69.21 215 | 65.23 300 | 85.80 294 |
|
| V42 | | | 76.46 230 | 74.55 234 | 82.19 211 | 79.14 340 | 67.82 95 | 90.26 234 | 89.42 254 | 73.75 161 | 68.63 252 | 81.89 287 | 51.31 245 | 94.09 224 | 71.69 194 | 64.84 304 | 84.66 311 |
|
| pm-mvs1 | | | 72.89 273 | 71.09 277 | 78.26 293 | 79.10 341 | 57.62 317 | 90.80 213 | 89.30 258 | 67.66 274 | 62.91 312 | 81.78 289 | 49.11 269 | 92.95 258 | 60.29 291 | 58.89 351 | 84.22 314 |
|
| IterMVS-LS | | | 76.49 229 | 75.18 226 | 80.43 252 | 84.49 276 | 62.74 232 | 90.64 221 | 88.80 284 | 72.40 191 | 65.16 288 | 81.72 290 | 60.98 132 | 92.27 289 | 67.74 229 | 64.65 308 | 86.29 279 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| eth_miper_zixun_eth | | | 75.96 240 | 74.40 237 | 80.66 247 | 84.66 272 | 63.02 223 | 89.28 257 | 88.27 301 | 71.88 207 | 65.73 283 | 81.65 291 | 59.45 149 | 92.81 266 | 68.13 224 | 60.53 343 | 86.14 283 |
|
| c3_l | | | 76.83 226 | 75.47 221 | 80.93 245 | 85.02 268 | 64.18 191 | 90.39 228 | 88.11 305 | 71.66 216 | 66.65 280 | 81.64 292 | 63.58 104 | 92.56 277 | 69.31 214 | 62.86 320 | 86.04 287 |
|
| DIV-MVS_self_test | | | 76.07 233 | 74.67 229 | 80.28 255 | 85.14 265 | 61.75 253 | 90.12 237 | 88.73 286 | 71.16 231 | 65.42 286 | 81.60 293 | 61.15 129 | 92.94 262 | 66.54 242 | 62.16 329 | 86.14 283 |
|
| cl____ | | | 76.07 233 | 74.67 229 | 80.28 255 | 85.15 264 | 61.76 252 | 90.12 237 | 88.73 286 | 71.16 231 | 65.43 285 | 81.57 294 | 61.15 129 | 92.95 258 | 66.54 242 | 62.17 327 | 86.13 285 |
|
| CostFormer | | | 82.33 124 | 81.15 129 | 85.86 91 | 89.01 180 | 68.46 77 | 82.39 330 | 93.01 105 | 75.59 131 | 80.25 112 | 81.57 294 | 72.03 35 | 94.96 188 | 79.06 136 | 77.48 215 | 94.16 124 |
|
| Effi-MVS+-dtu | | | 76.14 232 | 75.28 225 | 78.72 288 | 83.22 294 | 55.17 337 | 89.87 245 | 87.78 311 | 75.42 134 | 67.98 258 | 81.43 296 | 45.08 301 | 92.52 279 | 75.08 163 | 71.63 255 | 88.48 245 |
|
| v1192 | | | 75.98 238 | 73.92 245 | 82.15 212 | 79.73 330 | 66.24 138 | 91.22 198 | 89.75 241 | 72.67 183 | 68.49 254 | 81.42 297 | 49.86 258 | 94.27 217 | 67.08 237 | 65.02 302 | 85.95 290 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 343 | 59.65 346 | 72.98 339 | 81.44 312 | 53.00 347 | 83.75 314 | 75.53 378 | 48.34 383 | 48.81 378 | 81.40 298 | 24.14 383 | 90.30 318 | 32.95 390 | 60.52 344 | 75.65 384 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| v144192 | | | 76.05 236 | 74.03 243 | 82.12 214 | 79.50 334 | 66.55 131 | 91.39 186 | 89.71 247 | 72.30 194 | 68.17 256 | 81.33 299 | 51.75 240 | 94.03 232 | 67.94 227 | 64.19 311 | 85.77 295 |
|
| AllTest | | | 61.66 345 | 58.06 350 | 72.46 343 | 79.57 331 | 51.42 355 | 80.17 349 | 68.61 395 | 51.25 374 | 45.88 383 | 81.23 300 | 19.86 395 | 86.58 355 | 38.98 375 | 57.01 357 | 79.39 366 |
|
| TestCases | | | | | 72.46 343 | 79.57 331 | 51.42 355 | | 68.61 395 | 51.25 374 | 45.88 383 | 81.23 300 | 19.86 395 | 86.58 355 | 38.98 375 | 57.01 357 | 79.39 366 |
|
| v1921920 | | | 75.63 246 | 73.49 251 | 82.06 218 | 79.38 335 | 66.35 134 | 91.07 206 | 89.48 250 | 71.98 202 | 67.99 257 | 81.22 302 | 49.16 268 | 93.90 238 | 66.56 241 | 64.56 309 | 85.92 292 |
|
| v1240 | | | 75.21 251 | 72.98 256 | 81.88 220 | 79.20 337 | 66.00 142 | 90.75 215 | 89.11 270 | 71.63 221 | 67.41 270 | 81.22 302 | 47.36 282 | 93.87 240 | 65.46 257 | 64.72 307 | 85.77 295 |
|
| XVG-ACMP-BASELINE | | | 68.04 314 | 65.53 315 | 75.56 318 | 74.06 374 | 52.37 348 | 78.43 358 | 85.88 331 | 62.03 325 | 58.91 335 | 81.21 304 | 20.38 393 | 91.15 313 | 60.69 288 | 68.18 278 | 83.16 329 |
|
| EU-MVSNet | | | 64.01 338 | 63.01 332 | 67.02 368 | 74.40 373 | 38.86 403 | 83.27 320 | 86.19 328 | 45.11 391 | 54.27 354 | 81.15 305 | 36.91 344 | 80.01 389 | 48.79 335 | 57.02 356 | 82.19 344 |
|
| ACMH+ | | 65.35 16 | 67.65 317 | 64.55 322 | 76.96 310 | 84.59 274 | 57.10 323 | 88.08 275 | 80.79 363 | 58.59 348 | 53.00 359 | 81.09 306 | 26.63 380 | 92.95 258 | 46.51 346 | 61.69 336 | 80.82 354 |
|
| v148 | | | 76.19 231 | 74.47 236 | 81.36 230 | 80.05 328 | 64.44 178 | 91.75 175 | 90.23 224 | 73.68 164 | 67.13 273 | 80.84 307 | 55.92 197 | 93.86 242 | 68.95 219 | 61.73 334 | 85.76 297 |
|
| WR-MVS_H | | | 70.59 290 | 69.94 287 | 72.53 342 | 81.03 314 | 51.43 354 | 87.35 290 | 92.03 146 | 67.38 277 | 60.23 326 | 80.70 308 | 55.84 198 | 83.45 373 | 46.33 348 | 58.58 353 | 82.72 335 |
|
| Baseline_NR-MVSNet | | | 73.99 262 | 72.83 257 | 77.48 301 | 80.78 317 | 59.29 301 | 91.79 170 | 84.55 344 | 68.85 264 | 68.99 245 | 80.70 308 | 56.16 192 | 92.04 294 | 62.67 277 | 60.98 340 | 81.11 351 |
|
| Anonymous20231211 | | | 73.08 268 | 70.39 284 | 81.13 236 | 90.62 142 | 63.33 215 | 91.40 184 | 90.06 231 | 51.84 372 | 64.46 296 | 80.67 310 | 36.49 345 | 94.07 226 | 63.83 267 | 64.17 312 | 85.98 289 |
|
| PVSNet_0 | | 68.08 15 | 71.81 283 | 68.32 299 | 82.27 206 | 84.68 271 | 62.31 242 | 88.68 268 | 90.31 219 | 75.84 128 | 57.93 342 | 80.65 311 | 37.85 334 | 94.19 220 | 69.94 207 | 29.05 408 | 90.31 220 |
|
| tpm2 | | | 79.80 171 | 77.95 185 | 85.34 110 | 88.28 198 | 68.26 83 | 81.56 336 | 91.42 177 | 70.11 248 | 77.59 145 | 80.50 312 | 67.40 57 | 94.26 219 | 67.34 233 | 77.35 216 | 93.51 148 |
|
| TransMVSNet (Re) | | | 70.07 295 | 67.66 301 | 77.31 305 | 80.62 321 | 59.13 303 | 91.78 172 | 84.94 340 | 65.97 288 | 60.08 327 | 80.44 313 | 50.78 249 | 91.87 296 | 48.84 334 | 45.46 382 | 80.94 353 |
|
| USDC | | | 67.43 321 | 64.51 323 | 76.19 315 | 77.94 356 | 55.29 336 | 78.38 359 | 85.00 339 | 73.17 171 | 48.36 379 | 80.37 314 | 21.23 390 | 92.48 281 | 52.15 321 | 64.02 315 | 80.81 355 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 325 | 63.54 329 | 74.45 327 | 84.00 285 | 51.55 353 | 67.08 394 | 83.53 353 | 58.78 346 | 54.94 352 | 80.31 315 | 34.54 352 | 93.23 252 | 40.64 371 | 68.03 280 | 78.58 374 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v8 | | | 75.35 248 | 73.26 253 | 81.61 225 | 80.67 319 | 66.82 122 | 89.54 251 | 89.27 259 | 71.65 217 | 63.30 307 | 80.30 316 | 54.99 207 | 94.06 227 | 67.33 234 | 62.33 326 | 83.94 316 |
|
| GBi-Net | | | 75.65 244 | 73.83 246 | 81.10 238 | 88.85 182 | 65.11 164 | 90.01 241 | 90.32 216 | 70.84 238 | 67.04 274 | 80.25 317 | 48.03 274 | 91.54 306 | 59.80 294 | 69.34 267 | 86.64 272 |
|
| test1 | | | 75.65 244 | 73.83 246 | 81.10 238 | 88.85 182 | 65.11 164 | 90.01 241 | 90.32 216 | 70.84 238 | 67.04 274 | 80.25 317 | 48.03 274 | 91.54 306 | 59.80 294 | 69.34 267 | 86.64 272 |
|
| FMVSNet1 | | | 72.71 277 | 69.91 288 | 81.10 238 | 83.60 290 | 65.11 164 | 90.01 241 | 90.32 216 | 63.92 303 | 63.56 304 | 80.25 317 | 36.35 346 | 91.54 306 | 54.46 313 | 66.75 289 | 86.64 272 |
|
| LCM-MVSNet-Re | | | 72.93 272 | 71.84 271 | 76.18 316 | 88.49 189 | 48.02 372 | 80.07 351 | 70.17 392 | 73.96 156 | 52.25 362 | 80.09 320 | 49.98 256 | 88.24 340 | 67.35 232 | 84.23 154 | 92.28 185 |
|
| v10 | | | 74.77 255 | 72.54 264 | 81.46 228 | 80.33 324 | 66.71 126 | 89.15 261 | 89.08 272 | 70.94 236 | 63.08 310 | 79.86 321 | 52.52 233 | 94.04 230 | 65.70 253 | 62.17 327 | 83.64 319 |
|
| FE-MVS | | | 75.97 239 | 73.02 255 | 84.82 126 | 89.78 157 | 65.56 153 | 77.44 364 | 91.07 195 | 64.55 297 | 72.66 194 | 79.85 322 | 46.05 294 | 96.69 117 | 54.97 311 | 80.82 185 | 92.21 190 |
|
| anonymousdsp | | | 71.14 288 | 69.37 292 | 76.45 313 | 72.95 377 | 54.71 340 | 84.19 311 | 88.88 280 | 61.92 327 | 62.15 317 | 79.77 323 | 38.14 330 | 91.44 311 | 68.90 220 | 67.45 285 | 83.21 328 |
|
| tpm | | | 78.58 196 | 77.03 200 | 83.22 184 | 85.94 252 | 64.56 172 | 83.21 323 | 91.14 190 | 78.31 93 | 73.67 184 | 79.68 324 | 64.01 92 | 92.09 293 | 66.07 249 | 71.26 260 | 93.03 164 |
|
| OurMVSNet-221017-0 | | | 64.68 334 | 62.17 338 | 72.21 346 | 76.08 367 | 47.35 376 | 80.67 343 | 81.02 362 | 56.19 360 | 51.60 365 | 79.66 325 | 27.05 379 | 88.56 336 | 53.60 318 | 53.63 367 | 80.71 356 |
|
| tpmrst | | | 80.57 154 | 79.14 169 | 84.84 125 | 90.10 152 | 68.28 82 | 81.70 334 | 89.72 246 | 77.63 106 | 75.96 159 | 79.54 326 | 64.94 81 | 92.71 270 | 75.43 159 | 77.28 218 | 93.55 147 |
|
| ACMH | | 63.93 17 | 68.62 307 | 64.81 319 | 80.03 263 | 85.22 263 | 63.25 216 | 87.72 284 | 84.66 342 | 60.83 334 | 51.57 366 | 79.43 327 | 27.29 378 | 94.96 188 | 41.76 365 | 64.84 304 | 81.88 345 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MonoMVSNet | | | 76.99 221 | 75.08 227 | 82.73 192 | 83.32 293 | 63.24 217 | 86.47 300 | 86.37 323 | 79.08 81 | 66.31 281 | 79.30 328 | 49.80 260 | 91.72 300 | 79.37 131 | 65.70 295 | 93.23 156 |
|
| IterMVS-SCA-FT | | | 71.55 286 | 69.97 286 | 76.32 314 | 81.48 311 | 60.67 277 | 87.64 287 | 85.99 330 | 66.17 287 | 59.50 329 | 78.88 329 | 45.53 296 | 83.65 371 | 62.58 278 | 61.93 330 | 84.63 313 |
|
| IterMVS | | | 72.65 280 | 70.83 278 | 78.09 295 | 82.17 305 | 62.96 225 | 87.64 287 | 86.28 325 | 71.56 224 | 60.44 324 | 78.85 330 | 45.42 298 | 86.66 354 | 63.30 272 | 61.83 331 | 84.65 312 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| tfpnnormal | | | 70.10 294 | 67.36 303 | 78.32 291 | 83.45 292 | 60.97 267 | 88.85 265 | 92.77 113 | 64.85 296 | 60.83 322 | 78.53 331 | 43.52 307 | 93.48 248 | 31.73 396 | 61.70 335 | 80.52 358 |
|
| D2MVS | | | 73.80 264 | 72.02 269 | 79.15 285 | 79.15 339 | 62.97 224 | 88.58 270 | 90.07 229 | 72.94 176 | 59.22 331 | 78.30 332 | 42.31 312 | 92.70 272 | 65.59 255 | 72.00 253 | 81.79 346 |
|
| v7n | | | 71.31 287 | 68.65 294 | 79.28 281 | 76.40 364 | 60.77 271 | 86.71 298 | 89.45 252 | 64.17 302 | 58.77 336 | 78.24 333 | 44.59 303 | 93.54 246 | 57.76 301 | 61.75 333 | 83.52 322 |
|
| miper_lstm_enhance | | | 73.05 270 | 71.73 273 | 77.03 307 | 83.80 286 | 58.32 310 | 81.76 332 | 88.88 280 | 69.80 253 | 61.01 320 | 78.23 334 | 57.19 175 | 87.51 350 | 65.34 258 | 59.53 348 | 85.27 307 |
|
| EPMVS | | | 78.49 198 | 75.98 215 | 86.02 85 | 91.21 131 | 69.68 51 | 80.23 348 | 91.20 185 | 75.25 137 | 72.48 200 | 78.11 335 | 54.65 209 | 93.69 244 | 57.66 303 | 83.04 161 | 94.69 98 |
|
| pmmvs6 | | | 67.57 318 | 64.76 320 | 76.00 317 | 72.82 379 | 53.37 345 | 88.71 267 | 86.78 322 | 53.19 368 | 57.58 345 | 78.03 336 | 35.33 350 | 92.41 282 | 55.56 309 | 54.88 364 | 82.21 343 |
|
| OpenMVS_ROB |  | 61.12 18 | 66.39 324 | 62.92 333 | 76.80 312 | 76.51 363 | 57.77 314 | 89.22 258 | 83.41 355 | 55.48 363 | 53.86 357 | 77.84 337 | 26.28 381 | 93.95 236 | 34.90 385 | 68.76 274 | 78.68 373 |
|
| ttmdpeth | | | 53.34 363 | 49.96 366 | 63.45 373 | 62.07 403 | 40.04 398 | 72.06 378 | 65.64 400 | 42.54 398 | 51.88 363 | 77.79 338 | 13.94 405 | 76.48 392 | 32.93 391 | 30.82 407 | 73.84 387 |
|
| EG-PatchMatch MVS | | | 68.55 308 | 65.41 316 | 77.96 296 | 78.69 347 | 62.93 226 | 89.86 246 | 89.17 264 | 60.55 335 | 50.27 371 | 77.73 339 | 22.60 388 | 94.06 227 | 47.18 344 | 72.65 249 | 76.88 381 |
|
| SixPastTwentyTwo | | | 64.92 333 | 61.78 340 | 74.34 329 | 78.74 346 | 49.76 363 | 83.42 319 | 79.51 369 | 62.86 316 | 50.27 371 | 77.35 340 | 30.92 368 | 90.49 317 | 45.89 350 | 47.06 379 | 82.78 332 |
|
| test20.03 | | | 63.83 339 | 62.65 335 | 67.38 367 | 70.58 386 | 39.94 399 | 86.57 299 | 84.17 346 | 63.29 311 | 51.86 364 | 77.30 341 | 37.09 342 | 82.47 379 | 38.87 377 | 54.13 366 | 79.73 364 |
|
| Anonymous20231206 | | | 67.53 319 | 65.78 311 | 72.79 341 | 74.95 370 | 47.59 375 | 88.23 274 | 87.32 314 | 61.75 330 | 58.07 339 | 77.29 342 | 37.79 335 | 87.29 352 | 42.91 360 | 63.71 317 | 83.48 323 |
|
| test_0402 | | | 64.54 335 | 61.09 341 | 74.92 324 | 84.10 284 | 60.75 273 | 87.95 279 | 79.71 368 | 52.03 370 | 52.41 361 | 77.20 343 | 32.21 361 | 91.64 302 | 23.14 404 | 61.03 339 | 72.36 392 |
|
| dp | | | 75.01 253 | 72.09 268 | 83.76 165 | 89.28 171 | 66.22 139 | 79.96 354 | 89.75 241 | 71.16 231 | 67.80 264 | 77.19 344 | 51.81 238 | 92.54 278 | 50.39 325 | 71.44 259 | 92.51 179 |
|
| SCA | | | 75.82 242 | 72.76 258 | 85.01 121 | 86.63 237 | 70.08 37 | 81.06 341 | 89.19 263 | 71.60 222 | 70.01 232 | 77.09 345 | 45.53 296 | 90.25 319 | 60.43 289 | 73.27 243 | 94.68 99 |
|
| Patchmatch-test | | | 65.86 327 | 60.94 342 | 80.62 250 | 83.75 287 | 58.83 305 | 58.91 405 | 75.26 379 | 44.50 393 | 50.95 370 | 77.09 345 | 58.81 160 | 87.90 342 | 35.13 384 | 64.03 314 | 95.12 80 |
|
| PatchmatchNet |  | | 77.46 213 | 74.63 231 | 85.96 87 | 89.55 164 | 70.35 34 | 79.97 353 | 89.55 249 | 72.23 196 | 70.94 219 | 76.91 347 | 57.03 177 | 92.79 268 | 54.27 314 | 81.17 181 | 94.74 97 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| CL-MVSNet_self_test | | | 69.92 296 | 68.09 300 | 75.41 319 | 73.25 376 | 55.90 333 | 90.05 240 | 89.90 236 | 69.96 250 | 61.96 319 | 76.54 348 | 51.05 248 | 87.64 347 | 49.51 331 | 50.59 374 | 82.70 337 |
|
| KD-MVS_2432*1600 | | | 69.03 304 | 66.37 308 | 77.01 308 | 85.56 258 | 61.06 265 | 81.44 337 | 90.25 222 | 67.27 278 | 58.00 340 | 76.53 349 | 54.49 211 | 87.63 348 | 48.04 338 | 35.77 399 | 82.34 341 |
|
| miper_refine_blended | | | 69.03 304 | 66.37 308 | 77.01 308 | 85.56 258 | 61.06 265 | 81.44 337 | 90.25 222 | 67.27 278 | 58.00 340 | 76.53 349 | 54.49 211 | 87.63 348 | 48.04 338 | 35.77 399 | 82.34 341 |
|
| tpm cat1 | | | 75.30 249 | 72.21 267 | 84.58 141 | 88.52 188 | 67.77 96 | 78.16 362 | 88.02 307 | 61.88 328 | 68.45 255 | 76.37 351 | 60.65 135 | 94.03 232 | 53.77 317 | 74.11 237 | 91.93 195 |
|
| TDRefinement | | | 55.28 360 | 51.58 364 | 66.39 369 | 59.53 406 | 46.15 384 | 76.23 368 | 72.80 383 | 44.60 392 | 42.49 395 | 76.28 352 | 15.29 400 | 82.39 380 | 33.20 389 | 43.75 384 | 70.62 394 |
|
| our_test_3 | | | 68.29 312 | 64.69 321 | 79.11 286 | 78.92 342 | 64.85 171 | 88.40 273 | 85.06 338 | 60.32 338 | 52.68 360 | 76.12 353 | 40.81 316 | 89.80 330 | 44.25 357 | 55.65 360 | 82.67 339 |
|
| ppachtmachnet_test | | | 67.72 316 | 63.70 328 | 79.77 273 | 78.92 342 | 66.04 141 | 88.68 268 | 82.90 359 | 60.11 340 | 55.45 350 | 75.96 354 | 39.19 320 | 90.55 315 | 39.53 373 | 52.55 370 | 82.71 336 |
|
| MDTV_nov1_ep13 | | | | 72.61 262 | | 89.06 178 | 68.48 76 | 80.33 346 | 90.11 228 | 71.84 210 | 71.81 210 | 75.92 355 | 53.01 229 | 93.92 237 | 48.04 338 | 73.38 242 | |
|
| TinyColmap | | | 60.32 351 | 56.42 358 | 72.00 350 | 78.78 345 | 53.18 346 | 78.36 360 | 75.64 376 | 52.30 369 | 41.59 397 | 75.82 356 | 14.76 402 | 88.35 339 | 35.84 381 | 54.71 365 | 74.46 385 |
|
| LF4IMVS | | | 54.01 362 | 52.12 363 | 59.69 377 | 62.41 401 | 39.91 401 | 68.59 388 | 68.28 397 | 42.96 397 | 44.55 391 | 75.18 357 | 14.09 404 | 68.39 403 | 41.36 368 | 51.68 371 | 70.78 393 |
|
| tpmvs | | | 72.88 274 | 69.76 290 | 82.22 209 | 90.98 135 | 67.05 116 | 78.22 361 | 88.30 299 | 63.10 315 | 64.35 298 | 74.98 358 | 55.09 206 | 94.27 217 | 43.25 358 | 69.57 266 | 85.34 305 |
|
| MVStest1 | | | 51.35 364 | 46.89 368 | 64.74 370 | 65.06 397 | 51.10 357 | 67.33 393 | 72.58 384 | 30.20 406 | 35.30 401 | 74.82 359 | 27.70 376 | 69.89 401 | 24.44 403 | 24.57 410 | 73.22 388 |
|
| MIMVSNet | | | 71.64 284 | 68.44 297 | 81.23 233 | 81.97 308 | 64.44 178 | 73.05 376 | 88.80 284 | 69.67 254 | 64.59 292 | 74.79 360 | 32.79 357 | 87.82 344 | 53.99 315 | 76.35 224 | 91.42 201 |
|
| UnsupCasMVSNet_eth | | | 65.79 328 | 63.10 331 | 73.88 332 | 70.71 384 | 50.29 362 | 81.09 340 | 89.88 237 | 72.58 185 | 49.25 376 | 74.77 361 | 32.57 359 | 87.43 351 | 55.96 308 | 41.04 389 | 83.90 317 |
|
| lessismore_v0 | | | | | 73.72 334 | 72.93 378 | 47.83 374 | | 61.72 405 | | 45.86 385 | 73.76 362 | 28.63 375 | 89.81 328 | 47.75 343 | 31.37 404 | 83.53 321 |
|
| FMVSNet5 | | | 68.04 314 | 65.66 314 | 75.18 322 | 84.43 278 | 57.89 312 | 83.54 315 | 86.26 326 | 61.83 329 | 53.64 358 | 73.30 363 | 37.15 341 | 85.08 362 | 48.99 333 | 61.77 332 | 82.56 340 |
|
| mvs5depth | | | 61.03 348 | 57.65 353 | 71.18 352 | 67.16 393 | 47.04 381 | 72.74 377 | 77.49 370 | 57.47 353 | 60.52 323 | 72.53 364 | 22.84 387 | 88.38 338 | 49.15 332 | 38.94 393 | 78.11 378 |
|
| pmmvs-eth3d | | | 65.53 331 | 62.32 337 | 75.19 321 | 69.39 389 | 59.59 294 | 82.80 328 | 83.43 354 | 62.52 320 | 51.30 368 | 72.49 365 | 32.86 356 | 87.16 353 | 55.32 310 | 50.73 373 | 78.83 372 |
|
| MDA-MVSNet-bldmvs | | | 61.54 347 | 57.70 352 | 73.05 338 | 79.53 333 | 57.00 327 | 83.08 324 | 81.23 361 | 57.57 350 | 34.91 403 | 72.45 366 | 32.79 357 | 86.26 357 | 35.81 382 | 41.95 387 | 75.89 383 |
|
| CR-MVSNet | | | 73.79 265 | 70.82 280 | 82.70 194 | 83.15 295 | 67.96 92 | 70.25 382 | 84.00 349 | 73.67 165 | 69.97 234 | 72.41 367 | 57.82 170 | 89.48 331 | 52.99 320 | 73.13 244 | 90.64 216 |
|
| Patchmtry | | | 67.53 319 | 63.93 327 | 78.34 290 | 82.12 306 | 64.38 182 | 68.72 387 | 84.00 349 | 48.23 385 | 59.24 330 | 72.41 367 | 57.82 170 | 89.27 332 | 46.10 349 | 56.68 359 | 81.36 348 |
|
| K. test v3 | | | 63.09 342 | 59.61 347 | 73.53 335 | 76.26 365 | 49.38 368 | 83.27 320 | 77.15 372 | 64.35 299 | 47.77 381 | 72.32 369 | 28.73 373 | 87.79 345 | 49.93 329 | 36.69 396 | 83.41 325 |
|
| PM-MVS | | | 59.40 354 | 56.59 356 | 67.84 363 | 63.63 398 | 41.86 393 | 76.76 365 | 63.22 403 | 59.01 345 | 51.07 369 | 72.27 370 | 11.72 406 | 83.25 375 | 61.34 284 | 50.28 375 | 78.39 376 |
|
| MIMVSNet1 | | | 60.16 353 | 57.33 354 | 68.67 361 | 69.71 387 | 44.13 389 | 78.92 356 | 84.21 345 | 55.05 364 | 44.63 390 | 71.85 371 | 23.91 384 | 81.54 385 | 32.63 394 | 55.03 363 | 80.35 359 |
|
| DSMNet-mixed | | | 56.78 358 | 54.44 362 | 63.79 372 | 63.21 399 | 29.44 415 | 64.43 397 | 64.10 402 | 42.12 399 | 51.32 367 | 71.60 372 | 31.76 362 | 75.04 394 | 36.23 380 | 65.20 301 | 86.87 270 |
|
| MDA-MVSNet_test_wron | | | 63.78 340 | 60.16 344 | 74.64 325 | 78.15 354 | 60.41 282 | 83.49 316 | 84.03 347 | 56.17 362 | 39.17 399 | 71.59 373 | 37.22 339 | 83.24 376 | 42.87 362 | 48.73 376 | 80.26 361 |
|
| YYNet1 | | | 63.76 341 | 60.14 345 | 74.62 326 | 78.06 355 | 60.19 287 | 83.46 318 | 83.99 351 | 56.18 361 | 39.25 398 | 71.56 374 | 37.18 340 | 83.34 374 | 42.90 361 | 48.70 377 | 80.32 360 |
|
| test_fmvs3 | | | 56.82 357 | 54.86 361 | 62.69 376 | 53.59 409 | 35.47 406 | 75.87 370 | 65.64 400 | 43.91 394 | 55.10 351 | 71.43 375 | 6.91 414 | 74.40 396 | 68.64 222 | 52.63 368 | 78.20 377 |
|
| Anonymous20240521 | | | 62.09 344 | 59.08 348 | 71.10 353 | 67.19 392 | 48.72 371 | 83.91 313 | 85.23 337 | 50.38 377 | 47.84 380 | 71.22 376 | 20.74 391 | 85.51 361 | 46.47 347 | 58.75 352 | 79.06 369 |
|
| ADS-MVSNet2 | | | 66.90 322 | 63.44 330 | 77.26 306 | 88.06 205 | 60.70 276 | 68.01 390 | 75.56 377 | 57.57 350 | 64.48 294 | 69.87 377 | 38.68 321 | 84.10 366 | 40.87 369 | 67.89 282 | 86.97 267 |
|
| ADS-MVSNet | | | 68.54 309 | 64.38 326 | 81.03 242 | 88.06 205 | 66.90 121 | 68.01 390 | 84.02 348 | 57.57 350 | 64.48 294 | 69.87 377 | 38.68 321 | 89.21 333 | 40.87 369 | 67.89 282 | 86.97 267 |
|
| kuosan | | | 60.86 350 | 60.24 343 | 62.71 375 | 81.57 310 | 46.43 383 | 75.70 372 | 85.88 331 | 57.98 349 | 48.95 377 | 69.53 379 | 58.42 163 | 76.53 391 | 28.25 400 | 35.87 398 | 65.15 399 |
|
| N_pmnet | | | 50.55 365 | 49.11 367 | 54.88 384 | 77.17 361 | 4.02 428 | 84.36 309 | 2.00 426 | 48.59 381 | 45.86 385 | 68.82 380 | 32.22 360 | 82.80 378 | 31.58 397 | 51.38 372 | 77.81 379 |
|
| mmtdpeth | | | 68.33 311 | 66.37 308 | 74.21 331 | 82.81 300 | 51.73 351 | 84.34 310 | 80.42 365 | 67.01 282 | 71.56 214 | 68.58 381 | 30.52 369 | 92.35 286 | 75.89 156 | 36.21 397 | 78.56 375 |
|
| KD-MVS_self_test | | | 60.87 349 | 58.60 349 | 67.68 365 | 66.13 395 | 39.93 400 | 75.63 373 | 84.70 341 | 57.32 354 | 49.57 374 | 68.45 382 | 29.55 370 | 82.87 377 | 48.09 337 | 47.94 378 | 80.25 362 |
|
| mvsany_test3 | | | 48.86 367 | 46.35 370 | 56.41 380 | 46.00 415 | 31.67 411 | 62.26 399 | 47.25 416 | 43.71 395 | 45.54 387 | 68.15 383 | 10.84 407 | 64.44 412 | 57.95 300 | 35.44 401 | 73.13 389 |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 384 | 57.62 172 | 90.25 319 | | | |
|
| ambc | | | | | 69.61 357 | 61.38 404 | 41.35 395 | 49.07 411 | 85.86 333 | | 50.18 373 | 66.40 385 | 10.16 408 | 88.14 341 | 45.73 351 | 44.20 383 | 79.32 368 |
|
| new-patchmatchnet | | | 59.30 355 | 56.48 357 | 67.79 364 | 65.86 396 | 44.19 388 | 82.47 329 | 81.77 360 | 59.94 341 | 43.65 393 | 66.20 386 | 27.67 377 | 81.68 384 | 39.34 374 | 41.40 388 | 77.50 380 |
|
| PatchT | | | 69.11 303 | 65.37 317 | 80.32 253 | 82.07 307 | 63.68 205 | 67.96 392 | 87.62 312 | 50.86 376 | 69.37 238 | 65.18 387 | 57.09 176 | 88.53 337 | 41.59 367 | 66.60 290 | 88.74 240 |
|
| RPMNet | | | 70.42 292 | 65.68 313 | 84.63 139 | 83.15 295 | 67.96 92 | 70.25 382 | 90.45 210 | 46.83 388 | 69.97 234 | 65.10 388 | 56.48 191 | 95.30 180 | 35.79 383 | 73.13 244 | 90.64 216 |
|
| pmmvs3 | | | 55.51 359 | 51.50 365 | 67.53 366 | 57.90 407 | 50.93 359 | 80.37 345 | 73.66 382 | 40.63 400 | 44.15 392 | 64.75 389 | 16.30 397 | 78.97 390 | 44.77 356 | 40.98 391 | 72.69 390 |
|
| dongtai | | | 55.18 361 | 55.46 360 | 54.34 386 | 76.03 368 | 36.88 404 | 76.07 369 | 84.61 343 | 51.28 373 | 43.41 394 | 64.61 390 | 56.56 189 | 67.81 404 | 18.09 409 | 28.50 409 | 58.32 402 |
|
| test_vis1_rt | | | 59.09 356 | 57.31 355 | 64.43 371 | 68.44 391 | 46.02 385 | 83.05 326 | 48.63 415 | 51.96 371 | 49.57 374 | 63.86 391 | 16.30 397 | 80.20 388 | 71.21 197 | 62.79 321 | 67.07 398 |
|
| Patchmatch-RL test | | | 68.17 313 | 64.49 324 | 79.19 282 | 71.22 381 | 53.93 343 | 70.07 384 | 71.54 390 | 69.22 259 | 56.79 347 | 62.89 392 | 56.58 188 | 88.61 334 | 69.53 211 | 52.61 369 | 95.03 85 |
|
| EGC-MVSNET | | | 42.35 372 | 38.09 375 | 55.11 383 | 74.57 371 | 46.62 382 | 71.63 381 | 55.77 407 | 0.04 421 | 0.24 422 | 62.70 393 | 14.24 403 | 74.91 395 | 17.59 410 | 46.06 381 | 43.80 407 |
|
| test_f | | | 46.58 368 | 43.45 372 | 55.96 381 | 45.18 416 | 32.05 410 | 61.18 400 | 49.49 414 | 33.39 403 | 42.05 396 | 62.48 394 | 7.00 413 | 65.56 408 | 47.08 345 | 43.21 386 | 70.27 395 |
|
| UnsupCasMVSNet_bld | | | 61.60 346 | 57.71 351 | 73.29 337 | 68.73 390 | 51.64 352 | 78.61 357 | 89.05 274 | 57.20 355 | 46.11 382 | 61.96 395 | 28.70 374 | 88.60 335 | 50.08 328 | 38.90 394 | 79.63 365 |
|
| FPMVS | | | 45.64 370 | 43.10 374 | 53.23 387 | 51.42 412 | 36.46 405 | 64.97 396 | 71.91 387 | 29.13 407 | 27.53 407 | 61.55 396 | 9.83 409 | 65.01 410 | 16.00 413 | 55.58 361 | 58.22 403 |
|
| WB-MVS | | | 46.23 369 | 44.94 371 | 50.11 389 | 62.13 402 | 21.23 422 | 76.48 367 | 55.49 408 | 45.89 389 | 35.78 400 | 61.44 397 | 35.54 348 | 72.83 397 | 9.96 416 | 21.75 411 | 56.27 404 |
|
| SSC-MVS | | | 44.51 371 | 43.35 373 | 47.99 393 | 61.01 405 | 18.90 424 | 74.12 375 | 54.36 409 | 43.42 396 | 34.10 404 | 60.02 398 | 34.42 353 | 70.39 400 | 9.14 418 | 19.57 412 | 54.68 405 |
|
| new_pmnet | | | 49.31 366 | 46.44 369 | 57.93 379 | 62.84 400 | 40.74 396 | 68.47 389 | 62.96 404 | 36.48 401 | 35.09 402 | 57.81 399 | 14.97 401 | 72.18 398 | 32.86 392 | 46.44 380 | 60.88 401 |
|
| APD_test1 | | | 40.50 374 | 37.31 377 | 50.09 390 | 51.88 410 | 35.27 407 | 59.45 404 | 52.59 411 | 21.64 410 | 26.12 408 | 57.80 400 | 4.56 418 | 66.56 406 | 22.64 405 | 39.09 392 | 48.43 406 |
|
| DeepMVS_CX |  | | | | 34.71 399 | 51.45 411 | 24.73 419 | | 28.48 425 | 31.46 405 | 17.49 415 | 52.75 401 | 5.80 416 | 42.60 420 | 18.18 408 | 19.42 413 | 36.81 412 |
|
| test_method | | | 38.59 377 | 35.16 380 | 48.89 391 | 54.33 408 | 21.35 421 | 45.32 412 | 53.71 410 | 7.41 418 | 28.74 406 | 51.62 402 | 8.70 411 | 52.87 415 | 33.73 386 | 32.89 403 | 72.47 391 |
|
| PMMVS2 | | | 37.93 378 | 33.61 381 | 50.92 388 | 46.31 414 | 24.76 418 | 60.55 403 | 50.05 412 | 28.94 408 | 20.93 410 | 47.59 403 | 4.41 420 | 65.13 409 | 25.14 402 | 18.55 414 | 62.87 400 |
|
| JIA-IIPM | | | 66.06 326 | 62.45 336 | 76.88 311 | 81.42 313 | 54.45 342 | 57.49 406 | 88.67 289 | 49.36 380 | 63.86 301 | 46.86 404 | 56.06 195 | 90.25 319 | 49.53 330 | 68.83 273 | 85.95 290 |
|
| gg-mvs-nofinetune | | | 77.18 217 | 74.31 238 | 85.80 94 | 91.42 124 | 68.36 79 | 71.78 379 | 94.72 34 | 49.61 379 | 77.12 150 | 45.92 405 | 77.41 8 | 93.98 234 | 67.62 231 | 93.16 55 | 95.05 83 |
|
| LCM-MVSNet | | | 40.54 373 | 35.79 378 | 54.76 385 | 36.92 422 | 30.81 412 | 51.41 409 | 69.02 394 | 22.07 409 | 24.63 409 | 45.37 406 | 4.56 418 | 65.81 407 | 33.67 387 | 34.50 402 | 67.67 396 |
|
| testf1 | | | 32.77 380 | 29.47 383 | 42.67 396 | 41.89 419 | 30.81 412 | 52.07 407 | 43.45 417 | 15.45 413 | 18.52 413 | 44.82 407 | 2.12 422 | 58.38 413 | 16.05 411 | 30.87 405 | 38.83 409 |
|
| APD_test2 | | | 32.77 380 | 29.47 383 | 42.67 396 | 41.89 419 | 30.81 412 | 52.07 407 | 43.45 417 | 15.45 413 | 18.52 413 | 44.82 407 | 2.12 422 | 58.38 413 | 16.05 411 | 30.87 405 | 38.83 409 |
|
| tmp_tt | | | 22.26 386 | 23.75 388 | 17.80 402 | 5.23 426 | 12.06 427 | 35.26 413 | 39.48 420 | 2.82 420 | 18.94 411 | 44.20 409 | 22.23 389 | 24.64 421 | 36.30 379 | 9.31 418 | 16.69 415 |
|
| MVS-HIRNet | | | 60.25 352 | 55.55 359 | 74.35 328 | 84.37 279 | 56.57 329 | 71.64 380 | 74.11 381 | 34.44 402 | 45.54 387 | 42.24 410 | 31.11 367 | 89.81 328 | 40.36 372 | 76.10 226 | 76.67 382 |
|
| ANet_high | | | 40.27 376 | 35.20 379 | 55.47 382 | 34.74 423 | 34.47 408 | 63.84 398 | 71.56 389 | 48.42 382 | 18.80 412 | 41.08 411 | 9.52 410 | 64.45 411 | 20.18 407 | 8.66 419 | 67.49 397 |
|
| PMVS |  | 26.43 22 | 31.84 382 | 28.16 385 | 42.89 395 | 25.87 425 | 27.58 416 | 50.92 410 | 49.78 413 | 21.37 411 | 14.17 417 | 40.81 412 | 2.01 424 | 66.62 405 | 9.61 417 | 38.88 395 | 34.49 413 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis3_rt | | | 40.46 375 | 37.79 376 | 48.47 392 | 44.49 417 | 33.35 409 | 66.56 395 | 32.84 423 | 32.39 404 | 29.65 405 | 39.13 413 | 3.91 421 | 68.65 402 | 50.17 326 | 40.99 390 | 43.40 408 |
|
| MVE |  | 24.84 23 | 24.35 384 | 19.77 390 | 38.09 398 | 34.56 424 | 26.92 417 | 26.57 414 | 38.87 421 | 11.73 417 | 11.37 418 | 27.44 414 | 1.37 425 | 50.42 417 | 11.41 415 | 14.60 415 | 36.93 411 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_post | | | | | | | | | | | | 23.01 415 | 56.49 190 | 92.67 273 | | | |
|
| E-PMN | | | 24.61 383 | 24.00 387 | 26.45 400 | 43.74 418 | 18.44 425 | 60.86 401 | 39.66 419 | 15.11 415 | 9.53 419 | 22.10 416 | 6.52 415 | 46.94 418 | 8.31 419 | 10.14 416 | 13.98 416 |
|
| Gipuma |  | | 34.91 379 | 31.44 382 | 45.30 394 | 70.99 383 | 39.64 402 | 19.85 416 | 72.56 385 | 20.10 412 | 16.16 416 | 21.47 417 | 5.08 417 | 71.16 399 | 13.07 414 | 43.70 385 | 25.08 414 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_post1 | | | | | | | | 78.95 355 | | | | 20.70 418 | 53.05 228 | 91.50 310 | 60.43 289 | | |
|
| EMVS | | | 23.76 385 | 23.20 389 | 25.46 401 | 41.52 421 | 16.90 426 | 60.56 402 | 38.79 422 | 14.62 416 | 8.99 420 | 20.24 419 | 7.35 412 | 45.82 419 | 7.25 420 | 9.46 417 | 13.64 417 |
|
| X-MVStestdata | | | 76.86 223 | 74.13 242 | 85.05 119 | 93.22 65 | 63.78 197 | 92.92 118 | 92.66 119 | 73.99 153 | 78.18 137 | 10.19 420 | 55.25 201 | 97.41 68 | 79.16 134 | 91.58 76 | 93.95 135 |
|
| wuyk23d | | | 11.30 388 | 10.95 391 | 12.33 403 | 48.05 413 | 19.89 423 | 25.89 415 | 1.92 427 | 3.58 419 | 3.12 421 | 1.37 421 | 0.64 426 | 15.77 422 | 6.23 421 | 7.77 420 | 1.35 418 |
|
| testmvs | | | 7.23 390 | 9.62 393 | 0.06 405 | 0.04 427 | 0.02 430 | 84.98 307 | 0.02 428 | 0.03 422 | 0.18 423 | 1.21 422 | 0.01 428 | 0.02 423 | 0.14 422 | 0.01 421 | 0.13 420 |
|
| test123 | | | 6.92 391 | 9.21 394 | 0.08 404 | 0.03 428 | 0.05 429 | 81.65 335 | 0.01 429 | 0.02 423 | 0.14 424 | 0.85 423 | 0.03 427 | 0.02 423 | 0.12 423 | 0.00 422 | 0.16 419 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 4.46 392 | 5.95 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 53.55 223 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 422 | 0.00 421 |
|
| WAC-MVS | | | | | | | 49.45 366 | | | | | | | | 31.56 398 | | |
|
| FOURS1 | | | | | | 93.95 46 | 61.77 251 | 93.96 70 | 91.92 150 | 62.14 324 | 86.57 46 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 26 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 12 | | 95.05 26 | | | | | 99.07 13 | 92.01 25 | 94.77 26 | 96.51 24 |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 42 | | 95.18 20 | 80.75 49 | 95.28 1 | | | | 92.34 22 | 95.36 14 | 96.47 28 |
|
| save fliter | | | | | | 93.84 49 | 67.89 94 | 95.05 39 | 92.66 119 | 78.19 94 | | | | | | | |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 33 | 96.64 10 | 94.37 52 | | | | | 99.15 2 | 91.91 28 | 94.90 22 | 96.51 24 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 99 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 88 | | | | 90.78 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 169 | | | | 94.68 99 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 208 | | | | |
|
| MTGPA |  | | | | | | | | 92.23 132 | | | | | | | | |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 424 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 40 | 94.96 19 | 95.29 70 |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 70 | 94.75 30 | 95.33 66 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 119 | | 93.31 91 | | 84.49 68 | | | 96.75 116 | | | |
|
| test_prior4 | | | | | | | 67.18 113 | 93.92 73 | | | | | | | | | |
|
| test_prior | | | | | 86.42 76 | 94.71 35 | 67.35 108 | | 93.10 102 | | | | | 96.84 113 | | | 95.05 83 |
|
| 旧先验2 | | | | | | | | 92.00 161 | | 59.37 344 | 87.54 39 | | | 93.47 249 | 75.39 160 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 182 | | | | | | | | | |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 126 | 92.61 123 | 62.03 325 | | | | 97.01 96 | 66.63 240 | | 93.97 134 |
|
| 原ACMM2 | | | | | | | | 92.01 158 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 96.09 141 | 61.26 285 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 70 | | | | |
|
| testdata1 | | | | | | | | 89.21 259 | | 77.55 107 | | | | | | | |
|
| test12 | | | | | 87.09 52 | 94.60 36 | 68.86 67 | | 92.91 109 | | 82.67 87 | | 65.44 75 | 97.55 62 | | 93.69 48 | 94.84 92 |
|
| plane_prior7 | | | | | | 86.94 233 | 61.51 257 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 225 | 62.32 241 | | | | | | 50.66 250 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 180 | | | | | 95.55 170 | 76.74 150 | 78.53 205 | 88.39 247 |
|
| plane_prior3 | | | | | | | 61.95 249 | | | 79.09 80 | 72.53 198 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 110 | | 78.81 87 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 227 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 237 | 93.85 77 | | 79.38 72 | | | | | | 78.80 202 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 399 | | | | | | | | |
|
| test11 | | | | | | | | | 93.01 105 | | | | | | | | |
|
| door | | | | | | | | | 66.57 398 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 206 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 218 | | 94.06 63 | | 79.80 63 | 74.18 177 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 218 | | 94.06 63 | | 79.80 63 | 74.18 177 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 147 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 177 | | | 95.61 165 | | | 88.63 241 |
|
| HQP3-MVS | | | | | | | | | 91.70 166 | | | | | | | 78.90 200 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 242 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 290 | 80.13 350 | | 67.65 275 | 72.79 192 | | 54.33 216 | | 59.83 293 | | 92.58 176 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 255 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 264 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 217 | | | | |
|