This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 18
test_fmvs399.12 5199.41 1998.25 23599.76 2995.07 28699.05 6399.94 297.78 17899.82 2199.84 298.56 5499.71 24899.96 199.96 2399.97 3
pmmvs699.67 399.70 399.60 1199.90 499.27 2399.53 899.76 2999.64 1899.84 2099.83 399.50 899.87 10199.36 3799.92 5299.64 60
test_f98.67 11598.87 7298.05 25299.72 4295.59 26498.51 12199.81 2396.30 28399.78 2899.82 496.14 20998.63 39699.82 799.93 4199.95 6
mvsany_test398.87 7898.92 6998.74 17599.38 13896.94 22398.58 10999.10 22896.49 27399.96 499.81 598.18 8099.45 34798.97 6499.79 11299.83 20
UA-Net99.47 1399.40 2099.70 299.49 11399.29 2099.80 399.72 3399.82 399.04 14299.81 598.05 9199.96 1298.85 7099.99 599.86 17
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3599.31 39100.00 199.82 23
test_fmvs298.70 10498.97 6797.89 25999.54 9694.05 31298.55 11299.92 696.78 26199.72 3399.78 896.60 19099.67 26899.91 299.90 6599.94 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1699.69 499.58 5699.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 2999.78 31
OurMVSNet-221017-099.37 2599.31 3199.53 3499.91 398.98 6699.63 699.58 5699.44 3899.78 2899.76 1096.39 19899.92 5199.44 3599.92 5299.68 51
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16499.95 199.45 3699.98 299.75 1199.80 199.97 599.82 799.99 599.99 1
MVS-HIRNet94.32 33595.62 30490.42 38998.46 31875.36 41396.29 31389.13 40595.25 31595.38 37399.75 1192.88 29699.19 37994.07 31999.39 24396.72 390
gg-mvs-nofinetune92.37 36591.20 36995.85 35395.80 40692.38 35399.31 2681.84 41299.75 691.83 40199.74 1368.29 39999.02 38587.15 39097.12 37796.16 395
mvs_tets99.63 599.67 599.49 4899.88 998.61 9199.34 1999.71 3499.27 5799.90 1299.74 1399.68 499.97 599.55 2899.99 599.88 14
test_djsdf99.52 1099.51 1199.53 3499.86 1498.74 8199.39 1699.56 7099.11 7399.70 3799.73 1599.00 2299.97 599.26 4499.98 1299.89 11
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6499.34 1999.69 3898.93 9999.65 4799.72 1698.93 2699.95 2399.11 53100.00 199.82 23
fmvsm_s_conf0.1_n_a99.17 4299.30 3398.80 15999.75 3396.59 23697.97 18499.86 1398.22 14499.88 1799.71 1798.59 5099.84 14099.73 1899.98 1299.98 2
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4799.48 3299.92 899.71 1798.07 8899.96 1299.53 29100.00 199.93 8
JIA-IIPM95.52 31995.03 32497.00 31796.85 39194.03 31596.93 27995.82 37199.20 6494.63 38399.71 1783.09 37199.60 30094.42 30794.64 39897.36 382
fmvsm_s_conf0.1_n99.16 4599.33 2798.64 18099.71 4596.10 24997.87 19599.85 1598.56 12499.90 1299.68 2098.69 4199.85 12299.72 2099.98 1299.97 3
SDMVSNet99.23 3899.32 2998.96 13899.68 5697.35 19798.84 8899.48 9699.69 1299.63 5099.68 2099.03 2199.96 1297.97 12699.92 5299.57 88
sd_testset99.28 3099.31 3199.19 10099.68 5698.06 14399.41 1399.30 17299.69 1299.63 5099.68 2099.25 1499.96 1297.25 16499.92 5299.57 88
Anonymous2023121199.27 3199.27 3699.26 8999.29 15998.18 12599.49 999.51 8599.70 1199.80 2699.68 2096.84 17399.83 15799.21 4999.91 5999.77 33
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4699.09 8399.89 1599.68 2099.53 799.97 599.50 3299.99 599.87 15
test_vis3_rt99.14 4699.17 4599.07 11999.78 2398.38 10898.92 7799.94 297.80 17699.91 1199.67 2597.15 15798.91 39199.76 1599.56 21099.92 9
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1699.11 6099.90 199.78 2799.63 2099.78 2899.67 2599.48 999.81 18099.30 4099.97 1999.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2398.11 13197.77 20699.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1299.99 599.96 5
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5299.66 1699.68 4199.66 2798.44 6199.95 2399.73 1899.96 2399.75 41
K. test v398.00 19497.66 21699.03 12999.79 2297.56 18699.19 4892.47 39499.62 2399.52 6399.66 2789.61 32699.96 1299.25 4699.81 9799.56 94
SixPastTwentyTwo98.75 9698.62 10699.16 10499.83 1897.96 15499.28 3698.20 31799.37 4599.70 3799.65 3092.65 30299.93 4299.04 5999.84 8399.60 71
test_fmvs1_n98.09 18898.28 15797.52 29299.68 5693.47 33498.63 10399.93 495.41 31399.68 4199.64 3191.88 31199.48 34099.82 799.87 7499.62 64
DSMNet-mixed97.42 24097.60 22196.87 32599.15 19591.46 36398.54 11499.12 22592.87 36097.58 29199.63 3296.21 20699.90 6595.74 27299.54 21599.27 212
test_cas_vis1_n_192098.33 16398.68 9797.27 30699.69 5492.29 35598.03 17299.85 1597.62 18799.96 499.62 3393.98 27999.74 23599.52 3199.86 7799.79 28
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2098.58 9499.27 3899.57 6399.39 4399.75 3299.62 3399.17 1899.83 15799.06 5799.62 18799.66 55
Gipumacopyleft99.03 5899.16 4798.64 18099.94 298.51 10199.32 2299.75 3299.58 2898.60 21299.62 3398.22 7699.51 33397.70 14499.73 14297.89 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 6598.86 7599.36 6399.82 1998.55 9697.47 24499.57 6399.37 4599.21 11999.61 3696.76 18299.83 15798.06 11999.83 9099.71 44
TDRefinement99.42 2099.38 2299.55 2499.76 2999.33 1799.68 599.71 3499.38 4499.53 6199.61 3698.64 4499.80 18798.24 10699.84 8399.52 115
pm-mvs199.44 1599.48 1499.33 7799.80 2098.63 8899.29 3299.63 4899.30 5499.65 4799.60 3899.16 2099.82 16799.07 5699.83 9099.56 94
v1098.97 6699.11 5398.55 20099.44 12796.21 24898.90 7899.55 7498.73 10999.48 6999.60 3896.63 18999.83 15799.70 2199.99 599.61 70
test111196.49 29296.82 26695.52 36199.42 13387.08 39499.22 4187.14 40799.11 7399.46 7299.58 4088.69 33299.86 10998.80 7299.95 2999.62 64
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6898.10 13397.68 21799.84 1899.29 5599.92 899.57 4199.60 599.96 1299.74 1799.98 1299.89 11
test_vis1_n98.31 16698.50 12297.73 27599.76 2994.17 31098.68 10099.91 796.31 28199.79 2799.57 4192.85 29899.42 35299.79 1299.84 8399.60 71
test250692.39 36391.89 36593.89 37999.38 13882.28 40999.32 2266.03 41599.08 8598.77 19099.57 4166.26 40599.84 14098.71 8199.95 2999.54 105
ECVR-MVScopyleft96.42 29496.61 28095.85 35399.38 13888.18 39099.22 4186.00 40999.08 8599.36 9199.57 4188.47 33799.82 16798.52 9499.95 2999.54 105
mamv499.44 1599.39 2199.58 1699.30 15799.74 299.04 6499.81 2399.77 599.82 2199.57 4197.82 10799.98 499.53 2999.89 6999.01 256
v899.01 6099.16 4798.57 19599.47 12296.31 24698.90 7899.47 10499.03 8999.52 6399.57 4196.93 16999.81 18099.60 2499.98 1299.60 71
MIMVSNet199.38 2499.32 2999.55 2499.86 1499.19 3899.41 1399.59 5499.59 2699.71 3599.57 4197.12 15899.90 6599.21 4999.87 7499.54 105
fmvsm_s_conf0.5_n99.09 5499.26 3898.61 18899.55 9196.09 25297.74 21199.81 2398.55 12599.85 1999.55 4898.60 4999.84 14099.69 2399.98 1299.89 11
test_vis1_n_192098.40 15298.92 6996.81 32999.74 3590.76 37898.15 15699.91 798.33 13399.89 1599.55 4895.07 24999.88 8499.76 1599.93 4199.79 28
Anonymous2024052198.69 10798.87 7298.16 24399.77 2695.11 28599.08 5799.44 11499.34 4999.33 9699.55 4894.10 27899.94 3599.25 4699.96 2399.42 159
GBi-Net98.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
test198.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
FMVSNet199.17 4299.17 4599.17 10199.55 9198.24 11999.20 4499.44 11499.21 6299.43 7799.55 4897.82 10799.86 10998.42 9999.89 6999.41 162
fmvsm_s_conf0.5_n_a99.10 5399.20 4398.78 16599.55 9196.59 23697.79 20399.82 2298.21 14599.81 2599.53 5498.46 6099.84 14099.70 2199.97 1999.90 10
KD-MVS_self_test99.25 3499.18 4499.44 5699.63 7299.06 6598.69 9999.54 7899.31 5299.62 5399.53 5497.36 14599.86 10999.24 4899.71 15499.39 172
new-patchmatchnet98.35 15998.74 8497.18 30999.24 16792.23 35796.42 30599.48 9698.30 13699.69 3999.53 5497.44 14199.82 16798.84 7199.77 12399.49 125
lessismore_v098.97 13799.73 3697.53 18886.71 40899.37 8999.52 5789.93 32499.92 5198.99 6399.72 14999.44 152
MVSMamba_PlusPlus98.83 8398.98 6698.36 22599.32 15296.58 23898.90 7899.41 12599.75 698.72 19699.50 5896.17 20799.94 3599.27 4299.78 11798.57 322
test_fmvsmvis_n_192099.26 3399.49 1298.54 20399.66 6296.97 21998.00 17899.85 1599.24 5999.92 899.50 5899.39 1199.95 2399.89 399.98 1298.71 306
FC-MVSNet-test99.27 3199.25 3999.34 7299.77 2698.37 11099.30 3199.57 6399.61 2599.40 8499.50 5897.12 15899.85 12299.02 6199.94 3699.80 27
iter_conf0599.03 5899.22 4198.46 21399.32 15296.55 24099.55 799.70 3799.75 699.82 2199.50 5896.17 20799.94 3599.27 4299.86 7798.88 282
VDDNet98.21 17997.95 19399.01 13299.58 7597.74 17599.01 6697.29 34299.67 1598.97 15399.50 5890.45 32199.80 18797.88 13299.20 27399.48 135
DeepC-MVS97.60 498.97 6698.93 6899.10 11399.35 14997.98 15098.01 17799.46 10697.56 19699.54 5799.50 5898.97 2399.84 14098.06 11999.92 5299.49 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XXY-MVS99.14 4699.15 5299.10 11399.76 2997.74 17598.85 8699.62 4998.48 12799.37 8999.49 6498.75 3699.86 10998.20 10999.80 10799.71 44
Vis-MVSNetpermissive99.34 2699.36 2399.27 8799.73 3698.26 11799.17 4999.78 2799.11 7399.27 10799.48 6598.82 3199.95 2398.94 6599.93 4199.59 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 13898.45 13298.79 16297.94 35096.96 22199.08 5798.54 30299.10 8096.82 33599.47 6696.55 19299.84 14098.56 9399.94 3699.55 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 22298.50 12295.13 36799.63 7285.84 39798.35 14098.21 31698.23 14399.54 5799.46 6795.02 25099.68 26598.24 10699.87 7499.87 15
LCM-MVSNet-Re98.64 11998.48 12799.11 11198.85 25298.51 10198.49 12499.83 2098.37 13099.69 3999.46 6798.21 7899.92 5194.13 31799.30 25898.91 277
mvs_anonymous97.83 21398.16 17496.87 32598.18 33991.89 35997.31 25498.90 26097.37 21798.83 18199.46 6796.28 20499.79 20098.90 6798.16 34698.95 268
DTE-MVSNet99.43 1999.35 2499.66 499.71 4599.30 1899.31 2699.51 8599.64 1899.56 5499.46 6798.23 7399.97 598.78 7399.93 4199.72 43
ACMH96.65 799.25 3499.24 4099.26 8999.72 4298.38 10899.07 6099.55 7498.30 13699.65 4799.45 7199.22 1599.76 22398.44 9799.77 12399.64 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs197.72 21797.94 19597.07 31698.66 29392.39 35297.68 21799.81 2395.20 31799.54 5799.44 7291.56 31399.41 35399.78 1499.77 12399.40 171
VPA-MVSNet99.30 2999.30 3399.28 8499.49 11398.36 11399.00 6899.45 11099.63 2099.52 6399.44 7298.25 7199.88 8499.09 5599.84 8399.62 64
EGC-MVSNET85.24 37380.54 37699.34 7299.77 2699.20 3599.08 5799.29 18012.08 41120.84 41299.42 7497.55 12999.85 12297.08 17699.72 14998.96 267
PEN-MVS99.41 2199.34 2699.62 699.73 3699.14 5399.29 3299.54 7899.62 2399.56 5499.42 7498.16 8499.96 1298.78 7399.93 4199.77 33
PatchT96.65 28596.35 28897.54 29097.40 37895.32 27697.98 18196.64 35999.33 5096.89 33199.42 7484.32 36499.81 18097.69 14697.49 36397.48 379
FIs99.14 4699.09 5699.29 8399.70 5298.28 11699.13 5499.52 8499.48 3299.24 11699.41 7796.79 17999.82 16798.69 8399.88 7199.76 37
PS-CasMVS99.40 2299.33 2799.62 699.71 4599.10 6199.29 3299.53 8199.53 3099.46 7299.41 7798.23 7399.95 2398.89 6999.95 2999.81 26
ab-mvs98.41 15098.36 14798.59 19199.19 18197.23 20499.32 2298.81 27997.66 18498.62 20899.40 7996.82 17699.80 18795.88 26399.51 22498.75 303
Anonymous2024052998.93 7198.87 7299.12 10999.19 18198.22 12499.01 6698.99 25099.25 5899.54 5799.37 8097.04 16299.80 18797.89 12999.52 22299.35 191
CR-MVSNet96.28 29895.95 29697.28 30597.71 36094.22 30698.11 16098.92 25792.31 36696.91 32799.37 8085.44 35699.81 18097.39 15797.36 37297.81 366
Patchmtry97.35 24496.97 25598.50 21097.31 38196.47 24198.18 15298.92 25798.95 9898.78 18799.37 8085.44 35699.85 12295.96 26199.83 9099.17 237
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10697.47 19098.04 17199.59 5498.15 15699.40 8499.36 8398.58 5399.76 22398.78 7399.68 16799.59 77
testf199.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
APD_test299.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
IterMVS-SCA-FT97.85 21098.18 17096.87 32599.27 16291.16 37395.53 34899.25 19299.10 8099.41 8199.35 8493.10 29199.96 1298.65 8599.94 3699.49 125
PMVScopyleft91.26 2097.86 20597.94 19597.65 27999.71 4597.94 15698.52 11698.68 29498.99 9297.52 29799.35 8497.41 14298.18 40091.59 36599.67 17396.82 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2799.22 4199.65 599.71 4599.24 2699.32 2299.55 7499.46 3599.50 6899.34 8897.30 14799.93 4298.90 6799.93 4199.77 33
RPMNet97.02 26996.93 25697.30 30497.71 36094.22 30698.11 16099.30 17299.37 4596.91 32799.34 8886.72 34399.87 10197.53 15197.36 37297.81 366
mvsany_test197.60 22597.54 22397.77 26797.72 35895.35 27595.36 35697.13 34694.13 34199.71 3599.33 9097.93 10099.30 36997.60 14798.94 30798.67 314
FA-MVS(test-final)96.99 27396.82 26697.50 29498.70 27894.78 29199.34 1996.99 34995.07 31898.48 22899.33 9088.41 33899.65 28496.13 25698.92 30998.07 354
IterMVS97.73 21698.11 17996.57 33499.24 16790.28 38195.52 35099.21 20198.86 10499.33 9699.33 9093.11 29099.94 3598.49 9599.94 3699.48 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 8798.73 8699.05 12698.76 26597.81 17099.25 3999.30 17298.57 12298.55 22199.33 9097.95 9999.90 6597.16 16899.67 17399.44 152
IterMVS-LS98.55 13498.70 9498.09 24599.48 12094.73 29497.22 26399.39 13198.97 9599.38 8799.31 9496.00 21699.93 4298.58 8899.97 1999.60 71
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsm_n_192099.33 2799.45 1898.99 13499.57 7997.73 17797.93 18599.83 2099.22 6099.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 209
patch_mono-298.51 14298.63 10498.17 24199.38 13894.78 29197.36 25099.69 3898.16 15598.49 22799.29 9697.06 16199.97 598.29 10599.91 5999.76 37
FMVSNet298.49 14398.40 13998.75 17198.90 24197.14 21498.61 10699.13 22498.59 11999.19 12199.28 9794.14 27499.82 16797.97 12699.80 10799.29 209
3Dnovator+97.89 398.69 10798.51 12099.24 9498.81 26098.40 10699.02 6599.19 20798.99 9298.07 25899.28 9797.11 16099.84 14096.84 20099.32 25399.47 142
VDD-MVS98.56 13098.39 14299.07 11999.13 19898.07 14098.59 10897.01 34899.59 2699.11 12899.27 9994.82 25699.79 20098.34 10299.63 18499.34 193
PVSNet_Blended_VisFu98.17 18498.15 17598.22 23899.73 3695.15 28297.36 25099.68 4394.45 33498.99 14899.27 9996.87 17299.94 3597.13 17399.91 5999.57 88
FE-MVS95.66 31594.95 32797.77 26798.53 31295.28 27799.40 1596.09 36793.11 35697.96 26599.26 10179.10 38799.77 21792.40 35698.71 32098.27 345
dcpmvs_298.78 9199.11 5397.78 26699.56 8793.67 33099.06 6199.86 1399.50 3199.66 4499.26 10197.21 15599.99 298.00 12499.91 5999.68 51
nrg03099.40 2299.35 2499.54 2799.58 7599.13 5698.98 7199.48 9699.68 1499.46 7299.26 10198.62 4799.73 24099.17 5299.92 5299.76 37
CP-MVSNet99.21 3999.09 5699.56 2299.65 6398.96 7199.13 5499.34 15299.42 4199.33 9699.26 10197.01 16699.94 3598.74 7899.93 4199.79 28
RPSCF98.62 12498.36 14799.42 5799.65 6399.42 898.55 11299.57 6397.72 18198.90 16899.26 10196.12 21199.52 32995.72 27399.71 15499.32 200
SSC-MVS98.71 10098.74 8498.62 18599.72 4296.08 25498.74 9098.64 29899.74 999.67 4399.24 10694.57 26499.95 2399.11 5399.24 26799.82 23
tfpnnormal98.90 7598.90 7198.91 14699.67 6097.82 16799.00 6899.44 11499.45 3699.51 6799.24 10698.20 7999.86 10995.92 26299.69 16299.04 252
v124098.55 13498.62 10698.32 22999.22 17295.58 26697.51 24099.45 11097.16 24199.45 7599.24 10696.12 21199.85 12299.60 2499.88 7199.55 101
APDe-MVScopyleft98.99 6298.79 8199.60 1199.21 17499.15 4898.87 8399.48 9697.57 19399.35 9399.24 10697.83 10499.89 7597.88 13299.70 15999.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mvsmamba97.57 22997.26 24098.51 20698.69 28396.73 23298.74 9097.25 34397.03 24897.88 27099.23 11090.95 31799.87 10196.61 21899.00 29998.91 277
casdiffmvs_mvgpermissive99.12 5199.16 4798.99 13499.43 13297.73 17798.00 17899.62 4999.22 6099.55 5699.22 11198.93 2699.75 23098.66 8499.81 9799.50 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ambc98.24 23798.82 25895.97 25698.62 10599.00 24999.27 10799.21 11296.99 16799.50 33496.55 22999.50 23199.26 215
TAMVS98.24 17698.05 18598.80 15999.07 20997.18 21097.88 19298.81 27996.66 26799.17 12699.21 11294.81 25899.77 21796.96 18799.88 7199.44 152
bld_raw_conf0398.38 15898.39 14298.33 22898.69 28396.58 23898.90 7899.41 12597.57 19398.72 19699.20 11495.48 23999.86 10997.76 14299.78 11798.57 322
v119298.60 12698.66 10098.41 21999.27 16295.88 25897.52 23899.36 14197.41 21399.33 9699.20 11496.37 20199.82 16799.57 2699.92 5299.55 101
APD_test198.83 8398.66 10099.34 7299.78 2399.47 798.42 13499.45 11098.28 14198.98 14999.19 11697.76 11199.58 31096.57 22299.55 21398.97 265
balanced_conf0398.63 12198.72 8898.38 22298.66 29396.68 23598.90 7899.42 12398.99 9298.97 15399.19 11695.81 22899.85 12298.77 7699.77 12398.60 318
pmmvs-eth3d98.47 14598.34 15098.86 15199.30 15797.76 17397.16 26899.28 18395.54 30699.42 8099.19 11697.27 15099.63 29097.89 12999.97 1999.20 226
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7699.41 5999.58 7599.10 6198.74 9099.56 7099.09 8399.33 9699.19 11698.40 6399.72 24795.98 26099.76 13599.42 159
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 13698.57 11498.45 21599.21 17495.98 25597.63 22599.36 14197.15 24399.32 10299.18 12095.84 22799.84 14099.50 3299.91 5999.54 105
PM-MVS98.82 8598.72 8899.12 10999.64 6898.54 9997.98 18199.68 4397.62 18799.34 9599.18 12097.54 13099.77 21797.79 13799.74 13999.04 252
PVSNet_BlendedMVS97.55 23097.53 22497.60 28398.92 23793.77 32896.64 29499.43 12094.49 33097.62 28799.18 12096.82 17699.67 26894.73 29699.93 4199.36 187
ACMH+96.62 999.08 5699.00 6399.33 7799.71 4598.83 7698.60 10799.58 5699.11 7399.53 6199.18 12098.81 3299.67 26896.71 21399.77 12399.50 121
v192192098.54 13698.60 11198.38 22299.20 17895.76 26397.56 23499.36 14197.23 23599.38 8799.17 12496.02 21499.84 14099.57 2699.90 6599.54 105
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 13897.33 19897.82 19999.57 6399.17 7199.35 9399.17 12498.35 6899.69 25698.46 9699.73 14299.41 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Patchmatch-RL test97.26 25197.02 25397.99 25699.52 10195.53 26896.13 32399.71 3497.47 20499.27 10799.16 12684.30 36599.62 29397.89 12999.77 12398.81 292
V4298.78 9198.78 8298.76 16999.44 12797.04 21698.27 14499.19 20797.87 17199.25 11599.16 12696.84 17399.78 21199.21 4999.84 8399.46 144
QAPM97.31 24796.81 26898.82 15598.80 26397.49 18999.06 6199.19 20790.22 38497.69 28499.16 12696.91 17099.90 6590.89 37899.41 24199.07 246
wuyk23d96.06 30297.62 22091.38 38898.65 29798.57 9598.85 8696.95 35296.86 25799.90 1299.16 12699.18 1798.40 39889.23 38599.77 12377.18 408
v114498.60 12698.66 10098.41 21999.36 14595.90 25797.58 23299.34 15297.51 20099.27 10799.15 13096.34 20399.80 18799.47 3499.93 4199.51 118
DP-MVS98.93 7198.81 8099.28 8499.21 17498.45 10598.46 12999.33 15799.63 2099.48 6999.15 13097.23 15399.75 23097.17 16799.66 17899.63 63
OpenMVScopyleft96.65 797.09 26496.68 27598.32 22998.32 33097.16 21298.86 8599.37 13789.48 38896.29 35399.15 13096.56 19199.90 6592.90 34499.20 27397.89 361
MM98.22 17797.99 19098.91 14698.66 29396.97 21997.89 19194.44 38299.54 2998.95 15799.14 13393.50 28699.92 5199.80 1199.96 2399.85 18
EPP-MVSNet98.30 16798.04 18699.07 11999.56 8797.83 16499.29 3298.07 32399.03 8998.59 21499.13 13492.16 30799.90 6596.87 19799.68 16799.49 125
ACMMP_NAP98.75 9698.48 12799.57 1799.58 7599.29 2097.82 19999.25 19296.94 25298.78 18799.12 13598.02 9299.84 14097.13 17399.67 17399.59 77
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6397.05 21597.80 20299.76 2998.70 11299.78 2899.11 13698.79 3499.95 2399.85 599.96 2399.83 20
MVS_Test98.18 18298.36 14797.67 27798.48 31594.73 29498.18 15299.02 24497.69 18298.04 26299.11 13697.22 15499.56 31598.57 9098.90 31098.71 306
MDA-MVSNet-bldmvs97.94 19897.91 19898.06 25099.44 12794.96 28896.63 29599.15 22398.35 13198.83 18199.11 13694.31 27199.85 12296.60 21998.72 31899.37 181
SMA-MVScopyleft98.40 15298.03 18799.51 4399.16 19199.21 2998.05 16999.22 20094.16 34098.98 14999.10 13997.52 13499.79 20096.45 23699.64 18199.53 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 28796.25 29497.71 27699.04 21794.66 29799.16 5096.92 35497.23 23597.87 27199.10 13986.11 35099.65 28491.65 36399.21 27298.82 288
USDC97.41 24197.40 23197.44 29998.94 23193.67 33095.17 36099.53 8194.03 34498.97 15399.10 13995.29 24399.34 36395.84 26999.73 14299.30 207
fmvsm_l_conf0.5_n99.21 3999.28 3599.02 13199.64 6897.28 20197.82 19999.76 2998.73 10999.82 2199.09 14298.81 3299.95 2399.86 499.96 2399.83 20
test072699.50 10699.21 2998.17 15599.35 14697.97 16299.26 11199.06 14397.61 124
AllTest98.44 14898.20 16799.16 10499.50 10698.55 9698.25 14699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
TestCases99.16 10499.50 10698.55 9699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14498.87 7498.39 13699.42 12399.42 4199.36 9199.06 14398.38 6499.95 2398.34 10299.90 6599.57 88
LPG-MVS_test98.71 10098.46 13199.47 5399.57 7998.97 6798.23 14799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
LGP-MVS_train99.47 5399.57 7998.97 6799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
baseline98.96 6899.02 6198.76 16999.38 13897.26 20398.49 12499.50 8798.86 10499.19 12199.06 14398.23 7399.69 25698.71 8199.76 13599.33 198
VPNet98.87 7898.83 7799.01 13299.70 5297.62 18498.43 13299.35 14699.47 3499.28 10599.05 15096.72 18599.82 16798.09 11699.36 24799.59 77
MVSTER96.86 27796.55 28497.79 26597.91 35294.21 30897.56 23498.87 26597.49 20399.06 13599.05 15080.72 37899.80 18798.44 9799.82 9399.37 181
SD-MVS98.40 15298.68 9797.54 29098.96 22997.99 14797.88 19299.36 14198.20 14999.63 5099.04 15298.76 3595.33 40896.56 22699.74 13999.31 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet596.01 30495.20 32198.41 21997.53 37196.10 24998.74 9099.50 8797.22 23898.03 26399.04 15269.80 39899.88 8497.27 16299.71 15499.25 216
IS-MVSNet98.19 18197.90 19999.08 11799.57 7997.97 15199.31 2698.32 31299.01 9198.98 14999.03 15491.59 31299.79 20095.49 28299.80 10799.48 135
DVP-MVS++98.90 7598.70 9499.51 4398.43 32299.15 4899.43 1199.32 15998.17 15299.26 11199.02 15598.18 8099.88 8497.07 17799.45 23699.49 125
test_one_060199.39 13799.20 3599.31 16498.49 12698.66 20399.02 15597.64 121
h-mvs3397.77 21497.33 23899.10 11399.21 17497.84 16398.35 14098.57 30199.11 7398.58 21699.02 15588.65 33599.96 1298.11 11496.34 38699.49 125
SED-MVS98.91 7398.72 8899.49 4899.49 11399.17 4098.10 16299.31 16498.03 15999.66 4499.02 15598.36 6599.88 8496.91 18999.62 18799.41 162
test_241102_TWO99.30 17298.03 15999.26 11199.02 15597.51 13599.88 8496.91 18999.60 19499.66 55
DVP-MVScopyleft98.77 9498.52 11999.52 3999.50 10699.21 2998.02 17498.84 27497.97 16299.08 13399.02 15597.61 12499.88 8496.99 18399.63 18499.48 135
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 15299.08 13399.02 15597.89 10199.88 8497.07 17799.71 15499.70 49
EI-MVSNet98.40 15298.51 12098.04 25399.10 20294.73 29497.20 26498.87 26598.97 9599.06 13599.02 15596.00 21699.80 18798.58 8899.82 9399.60 71
CVMVSNet96.25 29997.21 24493.38 38599.10 20280.56 41297.20 26498.19 31996.94 25299.00 14799.02 15589.50 32899.80 18796.36 24199.59 19899.78 31
LFMVS97.20 25796.72 27298.64 18098.72 27196.95 22298.93 7694.14 38899.74 998.78 18799.01 16484.45 36299.73 24097.44 15499.27 26299.25 216
v2v48298.56 13098.62 10698.37 22499.42 13395.81 26197.58 23299.16 21897.90 16999.28 10599.01 16495.98 22199.79 20099.33 3899.90 6599.51 118
ACMMPcopyleft98.75 9698.50 12299.52 3999.56 8799.16 4498.87 8399.37 13797.16 24198.82 18499.01 16497.71 11499.87 10196.29 24599.69 16299.54 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WB-MVS98.52 14198.55 11598.43 21799.65 6395.59 26498.52 11698.77 28599.65 1799.52 6399.00 16794.34 27099.93 4298.65 8598.83 31299.76 37
DPE-MVScopyleft98.59 12898.26 16199.57 1799.27 16299.15 4897.01 27399.39 13197.67 18399.44 7698.99 16897.53 13299.89 7595.40 28499.68 16799.66 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 12998.23 16599.60 1199.69 5499.35 1397.16 26899.38 13394.87 32498.97 15398.99 16898.01 9399.88 8497.29 16199.70 15999.58 83
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 10798.71 9198.62 18599.10 20296.37 24397.23 26098.87 26599.20 6499.19 12198.99 16897.30 14799.85 12298.77 7699.79 11299.65 59
XVG-ACMP-BASELINE98.56 13098.34 15099.22 9799.54 9698.59 9397.71 21499.46 10697.25 22998.98 14998.99 16897.54 13099.84 14095.88 26399.74 13999.23 221
APD-MVS_3200maxsize98.84 8298.61 11099.53 3499.19 18199.27 2398.49 12499.33 15798.64 11399.03 14598.98 17297.89 10199.85 12296.54 23099.42 24099.46 144
XVG-OURS98.53 13898.34 15099.11 11199.50 10698.82 7895.97 32999.50 8797.30 22499.05 14098.98 17299.35 1299.32 36695.72 27399.68 16799.18 233
v14898.45 14798.60 11198.00 25599.44 12794.98 28797.44 24699.06 23398.30 13699.32 10298.97 17496.65 18899.62 29398.37 10099.85 7999.39 172
EI-MVSNet-Vis-set98.68 11298.70 9498.63 18499.09 20596.40 24297.23 26098.86 27099.20 6499.18 12598.97 17497.29 14999.85 12298.72 8099.78 11799.64 60
CHOSEN 1792x268897.49 23397.14 24998.54 20399.68 5696.09 25296.50 30099.62 4991.58 37298.84 18098.97 17492.36 30499.88 8496.76 20699.95 2999.67 54
SR-MVS-dyc-post98.81 8798.55 11599.57 1799.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.49 13999.86 10996.56 22699.39 24399.45 148
RE-MVS-def98.58 11399.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.75 11296.56 22699.39 24399.45 148
D2MVS97.84 21197.84 20397.83 26299.14 19694.74 29396.94 27798.88 26395.84 29898.89 17098.96 17794.40 26899.69 25697.55 14899.95 2999.05 248
ACMM96.08 1298.91 7398.73 8699.48 5099.55 9199.14 5398.07 16699.37 13797.62 18799.04 14298.96 17798.84 3099.79 20097.43 15599.65 17999.49 125
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo98.08 18997.92 19798.57 19598.96 22996.79 22797.90 19099.18 21196.41 27798.46 22998.95 18195.93 22499.60 30096.51 23298.98 30399.31 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
YYNet197.60 22597.67 21397.39 30299.04 21793.04 34195.27 35798.38 31197.25 22998.92 16698.95 18195.48 23999.73 24096.99 18398.74 31699.41 162
MDA-MVSNet_test_wron97.60 22597.66 21697.41 30199.04 21793.09 33795.27 35798.42 30897.26 22898.88 17398.95 18195.43 24199.73 24097.02 18098.72 31899.41 162
FMVSNet397.50 23197.24 24298.29 23398.08 34595.83 26097.86 19698.91 25997.89 17098.95 15798.95 18187.06 34199.81 18097.77 13899.69 16299.23 221
OPM-MVS98.56 13098.32 15499.25 9299.41 13598.73 8497.13 27099.18 21197.10 24498.75 19398.92 18598.18 8099.65 28496.68 21599.56 21099.37 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ADS-MVSNet295.43 32194.98 32596.76 33298.14 34191.74 36097.92 18797.76 32990.23 38296.51 34798.91 18685.61 35399.85 12292.88 34596.90 37998.69 310
ADS-MVSNet95.24 32494.93 32896.18 34798.14 34190.10 38297.92 18797.32 34190.23 38296.51 34798.91 18685.61 35399.74 23592.88 34596.90 37998.69 310
test_040298.76 9598.71 9198.93 14399.56 8798.14 12998.45 13199.34 15299.28 5698.95 15798.91 18698.34 6999.79 20095.63 27799.91 5998.86 285
test_241102_ONE99.49 11399.17 4099.31 16497.98 16199.66 4498.90 18998.36 6599.48 340
SF-MVS98.53 13898.27 16099.32 7999.31 15498.75 8098.19 15199.41 12596.77 26298.83 18198.90 18997.80 10999.82 16795.68 27699.52 22299.38 179
MTAPA98.88 7798.64 10399.61 999.67 6099.36 1298.43 13299.20 20398.83 10898.89 17098.90 18996.98 16899.92 5197.16 16899.70 15999.56 94
test20.0398.78 9198.77 8398.78 16599.46 12397.20 20897.78 20499.24 19799.04 8899.41 8198.90 18997.65 11899.76 22397.70 14499.79 11299.39 172
SteuartSystems-ACMMP98.79 8998.54 11799.54 2799.73 3699.16 4498.23 14799.31 16497.92 16798.90 16898.90 18998.00 9499.88 8496.15 25399.72 14999.58 83
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 22497.17 24598.99 13499.27 16297.86 16195.98 32893.41 39195.25 31599.47 7198.90 18995.63 23299.85 12296.91 18999.73 14299.27 212
TSAR-MVS + MP.98.63 12198.49 12699.06 12599.64 6897.90 15898.51 12198.94 25296.96 25099.24 11698.89 19597.83 10499.81 18096.88 19699.49 23299.48 135
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS98.66 11698.37 14699.55 2499.53 9999.18 3998.23 14799.49 9497.01 24998.69 19998.88 19698.00 9499.89 7595.87 26699.59 19899.58 83
TinyColmap97.89 20197.98 19197.60 28398.86 24994.35 30596.21 31799.44 11497.45 21199.06 13598.88 19697.99 9799.28 37394.38 31199.58 20399.18 233
LS3D98.63 12198.38 14599.36 6397.25 38299.38 999.12 5699.32 15999.21 6298.44 23198.88 19697.31 14699.80 18796.58 22099.34 25198.92 274
Anonymous20240521197.90 19997.50 22699.08 11798.90 24198.25 11898.53 11596.16 36598.87 10399.11 12898.86 19990.40 32299.78 21197.36 15899.31 25599.19 231
HPM-MVS_fast99.01 6098.82 7899.57 1799.71 4599.35 1399.00 6899.50 8797.33 22098.94 16498.86 19998.75 3699.82 16797.53 15199.71 15499.56 94
CMPMVSbinary75.91 2396.29 29795.44 31298.84 15396.25 40298.69 8797.02 27299.12 22588.90 39197.83 27598.86 19989.51 32798.90 39291.92 35899.51 22498.92 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 10098.43 13599.57 1799.18 18899.35 1398.36 13999.29 18098.29 13998.88 17398.85 20297.53 13299.87 10196.14 25499.31 25599.48 135
our_test_397.39 24297.73 21096.34 33998.70 27889.78 38394.61 37798.97 25196.50 27299.04 14298.85 20295.98 22199.84 14097.26 16399.67 17399.41 162
EPNet96.14 30195.44 31298.25 23590.76 41395.50 27097.92 18794.65 38098.97 9592.98 39698.85 20289.12 33099.87 10195.99 25999.68 16799.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 22397.49 22798.08 24899.14 19695.12 28496.70 29299.05 23693.77 34798.62 20898.83 20593.23 28799.75 23098.33 10499.76 13599.36 187
PMMVS298.07 19098.08 18398.04 25399.41 13594.59 30094.59 37899.40 12997.50 20198.82 18498.83 20596.83 17599.84 14097.50 15399.81 9799.71 44
MDTV_nov1_ep1395.22 32097.06 38883.20 40797.74 21196.16 36594.37 33696.99 32398.83 20583.95 36799.53 32593.90 32297.95 357
Anonymous2023120698.21 17998.21 16698.20 23999.51 10395.43 27398.13 15799.32 15996.16 28698.93 16598.82 20896.00 21699.83 15797.32 16099.73 14299.36 187
ACMP95.32 1598.41 15098.09 18099.36 6399.51 10398.79 7997.68 21799.38 13395.76 30098.81 18698.82 20898.36 6599.82 16794.75 29599.77 12399.48 135
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE99.05 5798.99 6599.25 9299.44 12798.35 11498.73 9499.56 7098.42 12998.91 16798.81 21098.94 2599.91 6098.35 10199.73 14299.49 125
VNet98.42 14998.30 15598.79 16298.79 26497.29 20098.23 14798.66 29599.31 5298.85 17898.80 21194.80 25999.78 21198.13 11399.13 28499.31 204
tpmrst95.07 32695.46 31093.91 37897.11 38584.36 40597.62 22696.96 35194.98 32096.35 35298.80 21185.46 35599.59 30495.60 27896.23 38897.79 369
ppachtmachnet_test97.50 23197.74 20896.78 33198.70 27891.23 37294.55 37999.05 23696.36 27899.21 11998.79 21396.39 19899.78 21196.74 20899.82 9399.34 193
MVS_030497.44 23897.01 25498.72 17696.42 39996.74 23197.20 26491.97 39898.46 12898.30 24098.79 21392.74 30099.91 6099.30 4099.94 3699.52 115
miper_lstm_enhance97.18 25997.16 24697.25 30898.16 34092.85 34395.15 36299.31 16497.25 22998.74 19598.78 21590.07 32399.78 21197.19 16699.80 10799.11 243
DeepPCF-MVS96.93 598.32 16498.01 18899.23 9698.39 32798.97 6795.03 36499.18 21196.88 25599.33 9698.78 21598.16 8499.28 37396.74 20899.62 18799.44 152
patchmatchnet-post98.77 21784.37 36399.85 122
APD-MVScopyleft98.10 18697.67 21399.42 5799.11 20098.93 7297.76 20999.28 18394.97 32198.72 19698.77 21797.04 16299.85 12293.79 32799.54 21599.49 125
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 8598.63 10499.39 6299.16 19198.74 8197.54 23699.25 19298.84 10799.06 13598.76 21996.76 18299.93 4298.57 9099.77 12399.50 121
NR-MVSNet98.95 6998.82 7899.36 6399.16 19198.72 8699.22 4199.20 20399.10 8099.72 3398.76 21996.38 20099.86 10998.00 12499.82 9399.50 121
eth_miper_zixun_eth97.23 25597.25 24197.17 31198.00 34892.77 34594.71 37199.18 21197.27 22798.56 21998.74 22191.89 31099.69 25697.06 17999.81 9799.05 248
UniMVSNet (Re)98.87 7898.71 9199.35 6999.24 16798.73 8497.73 21399.38 13398.93 9999.12 12798.73 22296.77 18099.86 10998.63 8799.80 10799.46 144
MG-MVS96.77 28196.61 28097.26 30798.31 33193.06 33895.93 33498.12 32296.45 27697.92 26698.73 22293.77 28499.39 35691.19 37399.04 29399.33 198
c3_l97.36 24397.37 23497.31 30398.09 34493.25 33695.01 36599.16 21897.05 24598.77 19098.72 22492.88 29699.64 28796.93 18899.76 13599.05 248
cl____97.02 26996.83 26597.58 28597.82 35594.04 31494.66 37499.16 21897.04 24698.63 20698.71 22588.68 33499.69 25697.00 18199.81 9799.00 260
DIV-MVS_self_test97.02 26996.84 26497.58 28597.82 35594.03 31594.66 37499.16 21897.04 24698.63 20698.71 22588.69 33299.69 25697.00 18199.81 9799.01 256
DELS-MVS98.27 17198.20 16798.48 21198.86 24996.70 23395.60 34699.20 20397.73 18098.45 23098.71 22597.50 13699.82 16798.21 10899.59 19898.93 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 20599.07 20997.53 23799.32 15995.53 30798.54 22398.70 22897.58 12699.76 22394.32 31299.46 234
tpmvs95.02 32895.25 31994.33 37396.39 40185.87 39698.08 16496.83 35695.46 30995.51 37298.69 22985.91 35199.53 32594.16 31396.23 38897.58 377
PatchmatchNetpermissive95.58 31795.67 30395.30 36697.34 38087.32 39397.65 22396.65 35895.30 31497.07 31898.69 22984.77 35999.75 23094.97 29198.64 32798.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 11998.34 15099.54 2799.54 9699.17 4098.63 10399.24 19797.47 20498.09 25798.68 23197.62 12399.89 7596.22 24899.62 18799.57 88
UnsupCasMVSNet_eth97.89 20197.60 22198.75 17199.31 15497.17 21197.62 22699.35 14698.72 11198.76 19298.68 23192.57 30399.74 23597.76 14295.60 39499.34 193
SCA96.41 29596.66 27895.67 35798.24 33588.35 38895.85 33996.88 35596.11 28797.67 28598.67 23393.10 29199.85 12294.16 31399.22 27098.81 292
Patchmatch-test96.55 28896.34 28997.17 31198.35 32893.06 33898.40 13597.79 32897.33 22098.41 23498.67 23383.68 36999.69 25695.16 28899.31 25598.77 300
CDS-MVSNet97.69 21997.35 23698.69 17798.73 26997.02 21896.92 28198.75 28995.89 29798.59 21498.67 23392.08 30999.74 23596.72 21199.81 9799.32 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 14698.09 18099.54 2799.57 7999.22 2898.50 12399.19 20797.61 19097.58 29198.66 23697.40 14399.88 8494.72 29899.60 19499.54 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 16798.15 17598.75 17198.61 29897.23 20497.76 20999.09 23097.31 22398.75 19398.66 23697.56 12899.64 28796.10 25799.55 21399.39 172
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 22097.75 20797.45 29898.23 33793.78 32797.29 25698.84 27496.10 28898.64 20598.65 23896.04 21399.36 35996.84 20099.14 28299.20 226
pmmvs497.58 22897.28 23998.51 20698.84 25396.93 22495.40 35598.52 30493.60 34998.61 21098.65 23895.10 24899.60 30096.97 18699.79 11298.99 261
FPMVS93.44 35192.23 35697.08 31499.25 16697.86 16195.61 34597.16 34592.90 35993.76 39398.65 23875.94 39495.66 40679.30 40697.49 36397.73 371
dp93.47 35093.59 34393.13 38796.64 39581.62 41197.66 22196.42 36392.80 36196.11 35698.64 24178.55 39199.59 30493.31 33892.18 40598.16 349
EPMVS93.72 34793.27 34695.09 36996.04 40487.76 39198.13 15785.01 41094.69 32796.92 32598.64 24178.47 39299.31 36795.04 28996.46 38598.20 347
XVS98.72 9998.45 13299.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29598.63 24397.50 13699.83 15796.79 20299.53 21999.56 94
CostFormer93.97 34393.78 34094.51 37297.53 37185.83 39897.98 18195.96 36989.29 39094.99 37898.63 24378.63 38999.62 29394.54 30196.50 38498.09 353
MSLP-MVS++98.02 19298.14 17797.64 28198.58 30595.19 28197.48 24299.23 19997.47 20497.90 26898.62 24597.04 16298.81 39497.55 14899.41 24198.94 272
Vis-MVSNet (Re-imp)97.46 23597.16 24698.34 22799.55 9196.10 24998.94 7598.44 30798.32 13598.16 24998.62 24588.76 33199.73 24093.88 32499.79 11299.18 233
XVG-OURS-SEG-HR98.49 14398.28 15799.14 10799.49 11398.83 7696.54 29799.48 9697.32 22299.11 12898.61 24799.33 1399.30 36996.23 24798.38 33599.28 211
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14697.50 20198.28 24398.60 24897.64 12199.35 36293.86 32599.27 26298.79 298
UniMVSNet_NR-MVSNet98.86 8198.68 9799.40 6199.17 18998.74 8197.68 21799.40 12999.14 7299.06 13598.59 24996.71 18699.93 4298.57 9099.77 12399.53 112
114514_t96.50 29195.77 29898.69 17799.48 12097.43 19497.84 19899.55 7481.42 40496.51 34798.58 25095.53 23599.67 26893.41 33799.58 20398.98 262
HY-MVS95.94 1395.90 30895.35 31797.55 28997.95 34994.79 29098.81 8996.94 35392.28 36795.17 37598.57 25189.90 32599.75 23091.20 37297.33 37498.10 352
tpm94.67 33194.34 33595.66 35897.68 36588.42 38797.88 19294.90 37894.46 33296.03 36098.56 25278.66 38899.79 20095.88 26395.01 39798.78 299
PC_three_145293.27 35399.40 8498.54 25398.22 7697.00 40495.17 28799.45 23699.49 125
ACMMPR98.70 10498.42 13799.54 2799.52 10199.14 5398.52 11699.31 16497.47 20498.56 21998.54 25397.75 11299.88 8496.57 22299.59 19899.58 83
new_pmnet96.99 27396.76 27097.67 27798.72 27194.89 28995.95 33398.20 31792.62 36398.55 22198.54 25394.88 25599.52 32993.96 32199.44 23998.59 321
OPU-MVS98.82 15598.59 30398.30 11598.10 16298.52 25698.18 8098.75 39594.62 29999.48 23399.41 162
CS-MVS-test99.13 4999.09 5699.26 8999.13 19898.97 6799.31 2699.88 1199.44 3898.16 24998.51 25798.64 4499.93 4298.91 6699.85 7998.88 282
region2R98.69 10798.40 13999.54 2799.53 9999.17 4098.52 11699.31 16497.46 20998.44 23198.51 25797.83 10499.88 8496.46 23599.58 20399.58 83
TSAR-MVS + GP.98.18 18297.98 19198.77 16898.71 27497.88 15996.32 31198.66 29596.33 27999.23 11898.51 25797.48 14099.40 35497.16 16899.46 23499.02 255
OMC-MVS97.88 20397.49 22799.04 12898.89 24698.63 8896.94 27799.25 19295.02 31998.53 22498.51 25797.27 15099.47 34393.50 33599.51 22499.01 256
HFP-MVS98.71 10098.44 13499.51 4399.49 11399.16 4498.52 11699.31 16497.47 20498.58 21698.50 26197.97 9899.85 12296.57 22299.59 19899.53 112
diffmvspermissive98.22 17798.24 16498.17 24199.00 22295.44 27296.38 30799.58 5697.79 17798.53 22498.50 26196.76 18299.74 23597.95 12899.64 18199.34 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15298.19 16999.03 12999.00 22297.65 18196.85 28398.94 25298.57 12298.89 17098.50 26195.60 23399.85 12297.54 15099.85 7999.59 77
Test_1112_low_res96.99 27396.55 28498.31 23199.35 14995.47 27195.84 34099.53 8191.51 37496.80 33698.48 26491.36 31499.83 15796.58 22099.53 21999.62 64
CS-MVS99.13 4999.10 5599.24 9499.06 21399.15 4899.36 1899.88 1199.36 4898.21 24698.46 26598.68 4299.93 4299.03 6099.85 7998.64 315
miper_ehance_all_eth97.06 26697.03 25297.16 31397.83 35493.06 33894.66 37499.09 23095.99 29398.69 19998.45 26692.73 30199.61 29996.79 20299.03 29498.82 288
PHI-MVS98.29 17097.95 19399.34 7298.44 32199.16 4498.12 15999.38 13396.01 29298.06 25998.43 26797.80 10999.67 26895.69 27599.58 20399.20 226
tpm cat193.29 35393.13 35093.75 38097.39 37984.74 40197.39 24797.65 33383.39 40294.16 38698.41 26882.86 37399.39 35691.56 36695.35 39697.14 384
CP-MVS98.70 10498.42 13799.52 3999.36 14599.12 5898.72 9599.36 14197.54 19998.30 24098.40 26997.86 10399.89 7596.53 23199.72 14999.56 94
ZNCC-MVS98.68 11298.40 13999.54 2799.57 7999.21 2998.46 12999.29 18097.28 22698.11 25598.39 27098.00 9499.87 10196.86 19999.64 18199.55 101
GST-MVS98.61 12598.30 15599.52 3999.51 10399.20 3598.26 14599.25 19297.44 21298.67 20198.39 27097.68 11599.85 12296.00 25899.51 22499.52 115
HPM-MVScopyleft98.79 8998.53 11899.59 1599.65 6399.29 2099.16 5099.43 12096.74 26398.61 21098.38 27298.62 4799.87 10196.47 23499.67 17399.59 77
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 24598.93 23395.40 27498.80 28190.08 38697.45 30498.37 27395.26 24499.70 25293.58 33298.95 30699.17 237
CPTT-MVS97.84 21197.36 23599.27 8799.31 15498.46 10498.29 14299.27 18694.90 32397.83 27598.37 27394.90 25299.84 14093.85 32699.54 21599.51 118
EC-MVSNet99.09 5499.05 6099.20 9899.28 16098.93 7299.24 4099.84 1899.08 8598.12 25498.37 27398.72 3899.90 6599.05 5899.77 12398.77 300
OpenMVS_ROBcopyleft95.38 1495.84 31095.18 32297.81 26498.41 32697.15 21397.37 24998.62 29983.86 40098.65 20498.37 27394.29 27299.68 26588.41 38698.62 33096.60 391
tttt051795.64 31694.98 32597.64 28199.36 14593.81 32698.72 9590.47 40298.08 15898.67 20198.34 27773.88 39699.92 5197.77 13899.51 22499.20 226
旧先验198.82 25897.45 19298.76 28698.34 27795.50 23899.01 29899.23 221
CNVR-MVS98.17 18497.87 20199.07 11998.67 28898.24 11997.01 27398.93 25497.25 22997.62 28798.34 27797.27 15099.57 31296.42 23799.33 25299.39 172
HyFIR lowres test97.19 25896.60 28298.96 13899.62 7497.28 20195.17 36099.50 8794.21 33999.01 14698.32 28086.61 34499.99 297.10 17599.84 8399.60 71
UnsupCasMVSNet_bld97.30 24896.92 25898.45 21599.28 16096.78 23096.20 31899.27 18695.42 31098.28 24398.30 28193.16 28999.71 24894.99 29097.37 37098.87 284
MSDG97.71 21897.52 22598.28 23498.91 24096.82 22694.42 38199.37 13797.65 18598.37 23998.29 28297.40 14399.33 36594.09 31899.22 27098.68 313
MVS_111021_HR98.25 17598.08 18398.75 17199.09 20597.46 19195.97 32999.27 18697.60 19197.99 26498.25 28398.15 8699.38 35896.87 19799.57 20799.42 159
CANet_DTU97.26 25197.06 25197.84 26197.57 36694.65 29896.19 31998.79 28297.23 23595.14 37698.24 28493.22 28899.84 14097.34 15999.84 8399.04 252
MVS_111021_LR98.30 16798.12 17898.83 15499.16 19198.03 14596.09 32599.30 17297.58 19298.10 25698.24 28498.25 7199.34 36396.69 21499.65 17999.12 242
tpm293.09 35592.58 35494.62 37197.56 36786.53 39597.66 22195.79 37286.15 39794.07 38998.23 28675.95 39399.53 32590.91 37796.86 38297.81 366
CANet97.87 20497.76 20698.19 24097.75 35795.51 26996.76 28899.05 23697.74 17996.93 32498.21 28795.59 23499.89 7597.86 13499.93 4199.19 231
LF4IMVS97.90 19997.69 21298.52 20599.17 18997.66 18097.19 26799.47 10496.31 28197.85 27498.20 28896.71 18699.52 32994.62 29999.72 14998.38 339
CL-MVSNet_self_test97.44 23897.22 24398.08 24898.57 30795.78 26294.30 38498.79 28296.58 27098.60 21298.19 28994.74 26299.64 28796.41 23898.84 31198.82 288
cl2295.79 31195.39 31596.98 31996.77 39392.79 34494.40 38298.53 30394.59 32997.89 26998.17 29082.82 37499.24 37596.37 23999.03 29498.92 274
MVSFormer98.26 17398.43 13597.77 26798.88 24793.89 32499.39 1699.56 7099.11 7398.16 24998.13 29193.81 28299.97 599.26 4499.57 20799.43 156
jason97.45 23797.35 23697.76 27099.24 16793.93 32095.86 33798.42 30894.24 33898.50 22698.13 29194.82 25699.91 6097.22 16599.73 14299.43 156
jason: jason.
ZD-MVS99.01 22198.84 7599.07 23294.10 34298.05 26198.12 29396.36 20299.86 10992.70 35299.19 276
test22298.92 23796.93 22495.54 34798.78 28485.72 39896.86 33398.11 29494.43 26699.10 28999.23 221
新几何198.91 14698.94 23197.76 17398.76 28687.58 39596.75 33898.10 29594.80 25999.78 21192.73 35199.00 29999.20 226
原ACMM198.35 22698.90 24196.25 24798.83 27892.48 36496.07 35898.10 29595.39 24299.71 24892.61 35498.99 30199.08 244
EPNet_dtu94.93 32994.78 33095.38 36593.58 40987.68 39296.78 28695.69 37597.35 21989.14 40698.09 29788.15 33999.49 33794.95 29299.30 25898.98 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 32794.40 33396.93 32197.70 36292.53 34995.08 36397.71 33188.57 39297.71 28298.08 29879.39 38599.82 16796.19 25099.11 28898.43 334
DP-MVS Recon97.33 24696.92 25898.57 19599.09 20597.99 14796.79 28599.35 14693.18 35497.71 28298.07 29995.00 25199.31 36793.97 32099.13 28498.42 336
test_vis1_rt97.75 21597.72 21197.83 26298.81 26096.35 24497.30 25599.69 3894.61 32897.87 27198.05 30096.26 20598.32 39998.74 7898.18 34398.82 288
CSCG98.68 11298.50 12299.20 9899.45 12698.63 8898.56 11199.57 6397.87 17198.85 17898.04 30197.66 11799.84 14096.72 21199.81 9799.13 241
F-COLMAP97.30 24896.68 27599.14 10799.19 18198.39 10797.27 25999.30 17292.93 35896.62 34298.00 30295.73 23099.68 26592.62 35398.46 33499.35 191
Effi-MVS+-dtu98.26 17397.90 19999.35 6998.02 34799.49 698.02 17499.16 21898.29 13997.64 28697.99 30396.44 19799.95 2396.66 21698.93 30898.60 318
hse-mvs297.46 23597.07 25098.64 18098.73 26997.33 19897.45 24597.64 33599.11 7398.58 21697.98 30488.65 33599.79 20098.11 11497.39 36998.81 292
HQP_MVS97.99 19797.67 21398.93 14399.19 18197.65 18197.77 20699.27 18698.20 14997.79 27897.98 30494.90 25299.70 25294.42 30799.51 22499.45 148
plane_prior497.98 304
BH-RMVSNet96.83 27896.58 28397.58 28598.47 31694.05 31296.67 29397.36 33896.70 26697.87 27197.98 30495.14 24799.44 34990.47 38098.58 33299.25 216
AUN-MVS96.24 30095.45 31198.60 19098.70 27897.22 20697.38 24897.65 33395.95 29595.53 37197.96 30882.11 37799.79 20096.31 24397.44 36698.80 297
NCCC97.86 20597.47 23099.05 12698.61 29898.07 14096.98 27598.90 26097.63 18697.04 32097.93 30995.99 22099.66 27995.31 28598.82 31499.43 156
sss97.21 25696.93 25698.06 25098.83 25595.22 28096.75 28998.48 30694.49 33097.27 31297.90 31092.77 29999.80 18796.57 22299.32 25399.16 240
test_yl96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
DCV-MVSNet96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
CDPH-MVS97.26 25196.66 27899.07 11999.00 22298.15 12796.03 32799.01 24791.21 37897.79 27897.85 31396.89 17199.69 25692.75 35099.38 24699.39 172
HPM-MVS++copyleft98.10 18697.64 21899.48 5099.09 20599.13 5697.52 23898.75 28997.46 20996.90 33097.83 31496.01 21599.84 14095.82 27099.35 24999.46 144
PatchMatch-RL97.24 25496.78 26998.61 18899.03 22097.83 16496.36 30899.06 23393.49 35297.36 31197.78 31595.75 22999.49 33793.44 33698.77 31598.52 325
TAPA-MVS96.21 1196.63 28695.95 29698.65 17998.93 23398.09 13496.93 27999.28 18383.58 40198.13 25397.78 31596.13 21099.40 35493.52 33399.29 26098.45 330
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 30795.44 31297.52 29298.51 31493.99 31898.39 13696.09 36798.21 14598.40 23897.76 31786.88 34299.63 29095.42 28389.27 40698.95 268
WTY-MVS96.67 28496.27 29397.87 26098.81 26094.61 29996.77 28797.92 32794.94 32297.12 31597.74 31891.11 31699.82 16793.89 32398.15 34799.18 233
test_method79.78 37479.50 37780.62 39080.21 41545.76 41870.82 40698.41 31031.08 41080.89 41097.71 31984.85 35897.37 40391.51 36780.03 40798.75 303
MSP-MVS98.40 15298.00 18999.61 999.57 7999.25 2598.57 11099.35 14697.55 19899.31 10497.71 31994.61 26399.88 8496.14 25499.19 27699.70 49
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 19497.63 21999.10 11399.24 16798.17 12696.89 28298.73 29295.66 30197.92 26697.70 32197.17 15699.66 27996.18 25299.23 26999.47 142
AdaColmapbinary97.14 26296.71 27398.46 21398.34 32997.80 17196.95 27698.93 25495.58 30596.92 32597.66 32295.87 22699.53 32590.97 37599.14 28298.04 355
thisisatest053095.27 32394.45 33297.74 27399.19 18194.37 30497.86 19690.20 40397.17 24098.22 24597.65 32373.53 39799.90 6596.90 19499.35 24998.95 268
testgi98.32 16498.39 14298.13 24499.57 7995.54 26797.78 20499.49 9497.37 21799.19 12197.65 32398.96 2499.49 33796.50 23398.99 30199.34 193
test_prior295.74 34296.48 27496.11 35697.63 32595.92 22594.16 31399.20 273
tt080598.69 10798.62 10698.90 14999.75 3399.30 1899.15 5296.97 35098.86 10498.87 17797.62 32698.63 4698.96 38899.41 3698.29 33998.45 330
cdsmvs_eth3d_5k24.66 37832.88 3810.00 3960.00 4190.00 4210.00 40799.10 2280.00 4140.00 41597.58 32799.21 160.00 4150.00 4140.00 4130.00 411
lupinMVS97.06 26696.86 26297.65 27998.88 24793.89 32495.48 35197.97 32593.53 35098.16 24997.58 32793.81 28299.91 6096.77 20599.57 20799.17 237
TEST998.71 27498.08 13895.96 33199.03 24191.40 37595.85 36197.53 32996.52 19399.76 223
train_agg97.10 26396.45 28799.07 11998.71 27498.08 13895.96 33199.03 24191.64 37095.85 36197.53 32996.47 19599.76 22393.67 32999.16 27999.36 187
Fast-Effi-MVS+-dtu98.27 17198.09 18098.81 15798.43 32298.11 13197.61 22899.50 8798.64 11397.39 30997.52 33198.12 8799.95 2396.90 19498.71 32098.38 339
test_898.67 28898.01 14695.91 33699.02 24491.64 37095.79 36397.50 33296.47 19599.76 223
1112_ss97.29 25096.86 26298.58 19299.34 15196.32 24596.75 28999.58 5693.14 35596.89 33197.48 33392.11 30899.86 10996.91 18999.54 21599.57 88
ab-mvs-re8.12 38210.83 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.48 3330.00 4190.00 4150.00 4140.00 4130.00 411
Effi-MVS+98.02 19297.82 20498.62 18598.53 31297.19 20997.33 25299.68 4397.30 22496.68 33997.46 33598.56 5499.80 18796.63 21798.20 34298.86 285
PCF-MVS92.86 1894.36 33493.00 35198.42 21898.70 27897.56 18693.16 39699.11 22779.59 40597.55 29497.43 33692.19 30699.73 24079.85 40599.45 23697.97 360
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 30995.32 31897.49 29598.60 30094.15 31193.83 39197.93 32695.49 30896.68 33997.42 33783.21 37099.30 36996.22 24898.55 33399.01 256
CNLPA97.17 26096.71 27398.55 20098.56 30898.05 14496.33 31098.93 25496.91 25497.06 31997.39 33894.38 26999.45 34791.66 36299.18 27898.14 350
PLCcopyleft94.65 1696.51 28995.73 30098.85 15298.75 26797.91 15796.42 30599.06 23390.94 38195.59 36497.38 33994.41 26799.59 30490.93 37698.04 35699.05 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27896.75 27197.08 31498.74 26893.33 33596.71 29198.26 31496.72 26498.44 23197.37 34095.20 24599.47 34391.89 35997.43 36798.44 332
PVSNet_Blended96.88 27696.68 27597.47 29798.92 23793.77 32894.71 37199.43 12090.98 38097.62 28797.36 34196.82 17699.67 26894.73 29699.56 21098.98 262
miper_enhance_ethall96.01 30495.74 29996.81 32996.41 40092.27 35693.69 39398.89 26291.14 37998.30 24097.35 34290.58 32099.58 31096.31 24399.03 29498.60 318
DPM-MVS96.32 29695.59 30698.51 20698.76 26597.21 20794.54 38098.26 31491.94 36996.37 35197.25 34393.06 29399.43 35091.42 36898.74 31698.89 279
E-PMN94.17 33994.37 33493.58 38296.86 39085.71 39990.11 40497.07 34798.17 15297.82 27797.19 34484.62 36198.94 38989.77 38297.68 36096.09 398
CLD-MVS97.49 23397.16 24698.48 21199.07 20997.03 21794.71 37199.21 20194.46 33298.06 25997.16 34597.57 12799.48 34094.46 30499.78 11798.95 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 32095.47 30995.65 35998.25 33488.27 38993.25 39598.88 26393.53 35094.65 38297.15 34686.17 34899.93 4297.41 15699.93 4198.73 305
xiu_mvs_v1_base_debu97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
xiu_mvs_v1_base97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
xiu_mvs_v1_base_debi97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
NP-MVS98.84 25397.39 19696.84 350
HQP-MVS97.00 27296.49 28698.55 20098.67 28896.79 22796.29 31399.04 23996.05 28995.55 36796.84 35093.84 28099.54 32392.82 34799.26 26599.32 200
API-MVS97.04 26896.91 26097.42 30097.88 35398.23 12398.18 15298.50 30597.57 19397.39 30996.75 35296.77 18099.15 38290.16 38199.02 29794.88 402
131495.74 31295.60 30596.17 34897.53 37192.75 34698.07 16698.31 31391.22 37794.25 38596.68 35395.53 23599.03 38491.64 36497.18 37696.74 389
TR-MVS95.55 31895.12 32396.86 32897.54 36993.94 31996.49 30196.53 36294.36 33797.03 32296.61 35494.26 27399.16 38186.91 39396.31 38797.47 380
Fast-Effi-MVS+97.67 22197.38 23398.57 19598.71 27497.43 19497.23 26099.45 11094.82 32596.13 35596.51 35598.52 5699.91 6096.19 25098.83 31298.37 341
xiu_mvs_v2_base97.16 26197.49 22796.17 34898.54 31092.46 35095.45 35298.84 27497.25 22997.48 30196.49 35698.31 7099.90 6596.34 24298.68 32596.15 396
MVS93.19 35492.09 35896.50 33696.91 38994.03 31598.07 16698.06 32468.01 40794.56 38496.48 35795.96 22399.30 36983.84 39896.89 38196.17 394
PAPM_NR96.82 28096.32 29098.30 23299.07 20996.69 23497.48 24298.76 28695.81 29996.61 34396.47 35894.12 27799.17 38090.82 37997.78 35899.06 247
KD-MVS_2432*160092.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
miper_refine_blended92.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
PVSNet93.40 1795.67 31495.70 30195.57 36098.83 25588.57 38692.50 39897.72 33092.69 36296.49 35096.44 35993.72 28599.43 35093.61 33099.28 26198.71 306
EMVS93.83 34594.02 33793.23 38696.83 39284.96 40089.77 40596.32 36497.92 16797.43 30696.36 36286.17 34898.93 39087.68 38997.73 35995.81 399
MAR-MVS96.47 29395.70 30198.79 16297.92 35199.12 5898.28 14398.60 30092.16 36895.54 37096.17 36394.77 26199.52 32989.62 38398.23 34097.72 372
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 37190.34 37496.51 33598.06 34692.56 34892.44 39997.17 34486.35 39690.38 40396.01 36486.61 34499.21 37870.65 40995.43 39597.75 370
PS-MVSNAJ97.08 26597.39 23296.16 35098.56 30892.46 35095.24 35998.85 27397.25 22997.49 30095.99 36598.07 8899.90 6596.37 23998.67 32696.12 397
dmvs_re95.98 30695.39 31597.74 27398.86 24997.45 19298.37 13895.69 37597.95 16496.56 34495.95 36690.70 31997.68 40288.32 38796.13 39098.11 351
baseline293.73 34692.83 35296.42 33897.70 36291.28 36996.84 28489.77 40493.96 34692.44 39995.93 36779.14 38699.77 21792.94 34396.76 38398.21 346
alignmvs97.35 24496.88 26198.78 16598.54 31098.09 13497.71 21497.69 33299.20 6497.59 29095.90 36888.12 34099.55 31898.18 11098.96 30598.70 309
ET-MVSNet_ETH3D94.30 33793.21 34797.58 28598.14 34194.47 30294.78 37093.24 39394.72 32689.56 40495.87 36978.57 39099.81 18096.91 18997.11 37898.46 327
thisisatest051594.12 34193.16 34896.97 32098.60 30092.90 34293.77 39290.61 40194.10 34296.91 32795.87 36974.99 39599.80 18794.52 30299.12 28798.20 347
UWE-MVS92.38 36491.76 36794.21 37597.16 38484.65 40295.42 35488.45 40695.96 29496.17 35495.84 37166.36 40499.71 24891.87 36098.64 32798.28 344
BH-w/o95.13 32594.89 32995.86 35298.20 33891.31 36795.65 34497.37 33793.64 34896.52 34695.70 37293.04 29499.02 38588.10 38895.82 39397.24 383
PMMVS96.51 28995.98 29598.09 24597.53 37195.84 25994.92 36798.84 27491.58 37296.05 35995.58 37395.68 23199.66 27995.59 27998.09 35098.76 302
EIA-MVS98.00 19497.74 20898.80 15998.72 27198.09 13498.05 16999.60 5397.39 21596.63 34195.55 37497.68 11599.80 18796.73 21099.27 26298.52 325
ETV-MVS98.03 19197.86 20298.56 19998.69 28398.07 14097.51 24099.50 8798.10 15797.50 29995.51 37598.41 6299.88 8496.27 24699.24 26797.71 373
MGCFI-Net98.34 16098.28 15798.51 20698.47 31697.59 18598.96 7299.48 9699.18 7097.40 30795.50 37698.66 4399.50 33498.18 11098.71 32098.44 332
testing393.51 34992.09 35897.75 27198.60 30094.40 30397.32 25395.26 37797.56 19696.79 33795.50 37653.57 41499.77 21795.26 28698.97 30499.08 244
PAPR95.29 32294.47 33197.75 27197.50 37695.14 28394.89 36898.71 29391.39 37695.35 37495.48 37894.57 26499.14 38384.95 39697.37 37098.97 265
sasdasda98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
canonicalmvs98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
MVEpermissive83.40 2292.50 36291.92 36494.25 37498.83 25591.64 36192.71 39783.52 41195.92 29686.46 40995.46 37995.20 24595.40 40780.51 40498.64 32795.73 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVSnew95.73 31395.57 30796.23 34596.70 39490.70 37996.07 32693.86 38995.60 30497.04 32095.45 38296.00 21699.55 31891.04 37498.31 33898.43 334
test-LLR93.90 34493.85 33894.04 37696.53 39684.62 40394.05 38892.39 39596.17 28494.12 38795.07 38382.30 37599.67 26895.87 26698.18 34397.82 364
test-mter92.33 36691.76 36794.04 37696.53 39684.62 40394.05 38892.39 39594.00 34594.12 38795.07 38365.63 40799.67 26895.87 26698.18 34397.82 364
thres600view794.45 33393.83 33996.29 34199.06 21391.53 36297.99 18094.24 38698.34 13297.44 30595.01 38579.84 38199.67 26884.33 39798.23 34097.66 374
gm-plane-assit94.83 40781.97 41088.07 39494.99 38699.60 30091.76 361
thres100view90094.19 33893.67 34295.75 35699.06 21391.35 36698.03 17294.24 38698.33 13397.40 30794.98 38779.84 38199.62 29383.05 39998.08 35196.29 392
cascas94.79 33094.33 33696.15 35196.02 40592.36 35492.34 40099.26 19185.34 39995.08 37794.96 38892.96 29598.53 39794.41 31098.59 33197.56 378
TESTMET0.1,192.19 36891.77 36693.46 38396.48 39882.80 40894.05 38891.52 40094.45 33494.00 39094.88 38966.65 40399.56 31595.78 27198.11 34998.02 356
test0.0.03 194.51 33293.69 34196.99 31896.05 40393.61 33394.97 36693.49 39096.17 28497.57 29394.88 38982.30 37599.01 38793.60 33194.17 40198.37 341
DeepMVS_CXcopyleft93.44 38498.24 33594.21 30894.34 38364.28 40891.34 40294.87 39189.45 32992.77 40977.54 40793.14 40293.35 404
dongtai76.24 37675.95 37977.12 39292.39 41067.91 41690.16 40359.44 41782.04 40389.42 40594.67 39249.68 41581.74 41048.06 41077.66 40881.72 406
IB-MVS91.63 1992.24 36790.90 37196.27 34297.22 38391.24 37194.36 38393.33 39292.37 36592.24 40094.58 39366.20 40699.89 7593.16 34194.63 39997.66 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 34293.44 34495.78 35598.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35196.29 392
thres40094.14 34093.44 34496.24 34498.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35197.66 374
testing1193.08 35692.02 36096.26 34397.56 36790.83 37796.32 31195.70 37396.47 27592.66 39893.73 39664.36 40999.59 30493.77 32897.57 36198.37 341
thres20093.72 34793.14 34995.46 36498.66 29391.29 36896.61 29694.63 38197.39 21596.83 33493.71 39779.88 38099.56 31582.40 40298.13 34895.54 401
dmvs_testset92.94 35892.21 35795.13 36798.59 30390.99 37497.65 22392.09 39796.95 25194.00 39093.55 39892.34 30596.97 40572.20 40892.52 40397.43 381
testing9193.32 35292.27 35596.47 33797.54 36991.25 37096.17 32296.76 35797.18 23993.65 39493.50 39965.11 40899.63 29093.04 34297.45 36598.53 324
testing9993.04 35791.98 36396.23 34597.53 37190.70 37996.35 30995.94 37096.87 25693.41 39593.43 40063.84 41099.59 30493.24 34097.19 37598.40 337
PVSNet_089.98 2191.15 37290.30 37593.70 38197.72 35884.34 40690.24 40297.42 33690.20 38593.79 39293.09 40190.90 31898.89 39386.57 39472.76 40997.87 363
testing22291.96 36990.37 37396.72 33397.47 37792.59 34796.11 32494.76 37996.83 25892.90 39792.87 40257.92 41299.55 31886.93 39297.52 36298.00 359
tmp_tt78.77 37578.73 37878.90 39158.45 41674.76 41594.20 38578.26 41439.16 40986.71 40892.82 40380.50 37975.19 41186.16 39592.29 40486.74 405
ETVMVS92.60 36191.08 37097.18 30997.70 36293.65 33296.54 29795.70 37396.51 27194.68 38192.39 40461.80 41199.50 33486.97 39197.41 36898.40 337
Syy-MVS96.04 30395.56 30897.49 29597.10 38694.48 30196.18 32096.58 36095.65 30294.77 37992.29 40591.27 31599.36 35998.17 11298.05 35498.63 316
myMVS_eth3d91.92 37090.45 37296.30 34097.10 38690.90 37596.18 32096.58 36095.65 30294.77 37992.29 40553.88 41399.36 35989.59 38498.05 35498.63 316
GG-mvs-BLEND94.76 37094.54 40892.13 35899.31 2680.47 41388.73 40791.01 40767.59 40298.16 40182.30 40394.53 40093.98 403
kuosan69.30 37768.95 38070.34 39387.68 41465.00 41791.11 40159.90 41669.02 40674.46 41188.89 40848.58 41668.03 41228.61 41172.33 41077.99 407
X-MVStestdata94.32 33592.59 35399.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29545.85 40997.50 13699.83 15796.79 20299.53 21999.56 94
testmvs17.12 37920.53 3826.87 39512.05 4174.20 42093.62 3946.73 4184.62 41310.41 41324.33 4108.28 4183.56 4149.69 41315.07 41112.86 410
test12317.04 38020.11 3837.82 39410.25 4184.91 41994.80 3694.47 4194.93 41210.00 41424.28 4119.69 4173.64 41310.14 41212.43 41214.92 409
test_post21.25 41283.86 36899.70 252
test_post197.59 23120.48 41383.07 37299.66 27994.16 313
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.17 38110.90 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41498.07 880.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.90 37591.37 369
FOURS199.73 3699.67 399.43 1199.54 7899.43 4099.26 111
MSC_two_6792asdad99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
No_MVS99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
eth-test20.00 419
eth-test0.00 419
IU-MVS99.49 11399.15 4898.87 26592.97 35799.41 8196.76 20699.62 18799.66 55
save fliter99.11 20097.97 15196.53 29999.02 24498.24 142
test_0728_SECOND99.60 1199.50 10699.23 2798.02 17499.32 15999.88 8496.99 18399.63 18499.68 51
GSMVS98.81 292
test_part299.36 14599.10 6199.05 140
sam_mvs184.74 36098.81 292
sam_mvs84.29 366
MTGPAbinary99.20 203
MTMP97.93 18591.91 399
test9_res93.28 33999.15 28199.38 179
agg_prior292.50 35599.16 27999.37 181
agg_prior98.68 28797.99 14799.01 24795.59 36499.77 217
test_prior497.97 15195.86 337
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30499.30 207
旧先验295.76 34188.56 39397.52 29799.66 27994.48 303
新几何295.93 334
无先验95.74 34298.74 29189.38 38999.73 24092.38 35799.22 225
原ACMM295.53 348
testdata299.79 20092.80 349
segment_acmp97.02 165
testdata195.44 35396.32 280
test1298.93 14398.58 30597.83 16498.66 29596.53 34595.51 23799.69 25699.13 28499.27 212
plane_prior799.19 18197.87 160
plane_prior698.99 22597.70 17994.90 252
plane_prior599.27 18699.70 25294.42 30799.51 22499.45 148
plane_prior397.78 17297.41 21397.79 278
plane_prior297.77 20698.20 149
plane_prior199.05 216
plane_prior97.65 18197.07 27196.72 26499.36 247
n20.00 420
nn0.00 420
door-mid99.57 63
test1198.87 265
door99.41 125
HQP5-MVS96.79 227
HQP-NCC98.67 28896.29 31396.05 28995.55 367
ACMP_Plane98.67 28896.29 31396.05 28995.55 367
BP-MVS92.82 347
HQP4-MVS95.56 36699.54 32399.32 200
HQP3-MVS99.04 23999.26 265
HQP2-MVS93.84 280
MDTV_nov1_ep13_2view74.92 41497.69 21690.06 38797.75 28185.78 35293.52 33398.69 310
ACMMP++_ref99.77 123
ACMMP++99.68 167
Test By Simon96.52 193