This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 28099.78 2699.82 496.14 20498.63 39399.82 899.93 4499.95 6
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 27099.96 499.81 598.18 7899.45 34498.97 6499.79 11599.83 22
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25899.72 3199.78 896.60 18799.67 26799.91 299.90 7099.94 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
MVS-HIRNet94.32 33295.62 30190.42 38698.46 31675.36 41096.29 31089.13 40295.25 31295.38 37099.75 1192.88 29399.19 37694.07 31699.39 24396.72 387
gg-mvs-nofinetune92.37 36291.20 36695.85 35095.80 40392.38 35099.31 2781.84 40999.75 591.83 39899.74 1368.29 39699.02 38287.15 38797.12 37496.16 392
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
JIA-IIPM95.52 31695.03 32197.00 31496.85 38994.03 31296.93 27695.82 36899.20 6594.63 38099.71 1783.09 36699.60 29994.42 30494.64 39597.36 379
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38899.76 1699.56 21099.92 9
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
K. test v398.00 19197.66 21399.03 13199.79 2597.56 18699.19 4992.47 39199.62 2099.52 6299.66 2789.61 32199.96 1299.25 4699.81 10099.56 98
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25799.95 2399.45 3599.96 2599.88 14
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29899.93 4199.04 5999.84 8699.60 75
test_fmvs1_n98.09 18598.28 15597.52 28999.68 5993.47 33198.63 9899.93 495.41 31099.68 3999.64 3291.88 30799.48 33899.82 899.87 7899.62 68
DSMNet-mixed97.42 23597.60 21896.87 32299.15 19591.46 36098.54 10999.12 22192.87 35797.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35298.03 16899.85 1597.62 18699.96 499.62 3493.98 27699.74 23499.52 3199.86 8199.79 30
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 33297.70 14299.73 14297.89 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
test111196.49 28996.82 26195.52 35899.42 13687.08 39199.22 4287.14 40499.11 7299.46 7199.58 4188.69 32799.86 11098.80 7299.95 3299.62 68
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27899.79 2599.57 4292.85 29599.42 34999.79 1399.84 8699.60 75
test250692.39 36091.89 36293.89 37699.38 14182.28 40699.32 2366.03 41299.08 8498.77 19299.57 4266.26 40299.84 13998.71 8099.95 3299.54 109
ECVR-MVScopyleft96.42 29196.61 27695.85 35099.38 14188.18 38799.22 4286.00 40699.08 8499.36 9299.57 4288.47 33299.82 16698.52 9499.95 3299.54 109
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
test_vis1_n_192098.40 15198.92 6996.81 32699.74 3890.76 37598.15 15299.91 798.33 13099.89 1599.55 4895.07 24599.88 8499.76 1699.93 4499.79 30
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27599.94 3699.25 4699.96 2599.42 162
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35496.42 30299.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22399.91 6099.32 4099.95 3299.70 52
lessismore_v098.97 13999.73 3997.53 18886.71 40599.37 9099.52 5789.93 31999.92 5198.99 6399.72 14999.44 155
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
VDDNet98.21 17597.95 18999.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31699.80 18697.88 13199.20 27399.48 138
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 13798.45 13198.79 16497.94 34796.96 22199.08 5998.54 29999.10 7996.82 33299.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 21998.50 12195.13 36499.63 7585.84 39498.35 13598.21 31398.23 14099.54 5699.46 6695.02 24699.68 26498.24 10799.87 7899.87 16
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
mvs_anonymous97.83 21098.16 17096.87 32298.18 33691.89 35697.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34398.95 272
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs197.72 21497.94 19197.07 31398.66 29292.39 34997.68 21599.81 2395.20 31499.54 5699.44 7191.56 30999.41 35099.78 1599.77 12499.40 174
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 24099.97 499.31 4199.98 1299.73 45
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
EGC-MVSNET85.24 37080.54 37399.34 7399.77 2999.20 3499.08 5999.29 17512.08 40620.84 40799.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
PatchT96.65 28196.35 28497.54 28797.40 37695.32 27297.98 17796.64 35699.33 5096.89 32899.42 7484.32 35999.81 17997.69 14497.49 36097.48 376
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15698.92 25492.31 36396.91 32499.37 8085.44 35199.81 17997.39 15597.36 36997.81 363
Patchmtry97.35 23996.97 25098.50 20997.31 37996.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35199.85 12295.96 25899.83 9399.17 242
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26797.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26797.81 13499.81 10099.24 224
IterMVS-SCA-FT97.85 20798.18 16696.87 32299.27 16291.16 37095.53 34599.25 18799.10 7999.41 8099.35 8493.10 28899.96 1298.65 8599.94 4099.49 128
PMVScopyleft91.26 2097.86 20297.94 19197.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39791.59 36299.67 17396.82 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
RPMNet97.02 26596.93 25197.30 30197.71 35894.22 30398.11 15699.30 16799.37 4596.91 32499.34 8886.72 33899.87 10197.53 14997.36 36997.81 363
mvsany_test197.60 22297.54 22097.77 26497.72 35695.35 27195.36 35397.13 34394.13 33899.71 3399.33 9097.93 9899.30 36697.60 14598.94 30698.67 316
FA-MVS(test-final)96.99 26996.82 26197.50 29198.70 27994.78 28799.34 2096.99 34695.07 31598.48 22899.33 9088.41 33399.65 28396.13 25398.92 30898.07 351
IterMVS97.73 21398.11 17596.57 33199.24 16790.28 37895.52 34799.21 19698.86 10299.33 9799.33 9093.11 28799.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27199.82 16697.97 12599.80 11099.29 214
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25299.79 19998.34 10399.63 18499.34 198
PVSNet_Blended_VisFu98.17 18098.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 33198.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
FE-MVS95.66 31294.95 32497.77 26498.53 31095.28 27399.40 1696.09 36493.11 35397.96 26599.26 10179.10 38399.77 21692.40 35398.71 31998.27 342
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32895.72 27099.71 15499.32 205
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26199.95 2399.11 5399.24 26799.82 25
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23999.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 33396.55 22699.50 23199.26 220
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26499.17 12799.21 11194.81 25499.77 21696.96 18599.88 7599.44 155
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30996.57 21999.55 21398.97 269
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 30399.42 7999.19 11497.27 14799.63 28997.89 12899.97 2099.20 231
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24199.32 10399.18 11795.84 22499.84 13999.50 3299.91 6399.54 109
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
PVSNet_BlendedMVS97.55 22697.53 22197.60 28098.92 23793.77 32596.64 29199.43 11794.49 32797.62 28699.18 11796.82 17399.67 26794.73 29399.93 4499.36 192
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26796.71 21199.77 12499.50 124
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25598.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Patchmatch-RL test97.26 24697.02 24997.99 25299.52 10495.53 26496.13 32099.71 3397.47 20299.27 10899.16 12384.30 36099.62 29297.89 12899.77 12498.81 294
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
QAPM97.31 24296.81 26398.82 15798.80 26497.49 18999.06 6399.19 20290.22 38197.69 28399.16 12396.91 16799.90 6590.89 37599.41 24199.07 251
wuyk23d96.06 29997.62 21791.38 38598.65 29598.57 9698.85 8296.95 34996.86 25499.90 1299.16 12399.18 1798.40 39589.23 38299.77 12477.18 403
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
OpenMVScopyleft96.65 797.09 26096.68 27098.32 22598.32 32797.16 21298.86 8199.37 13289.48 38596.29 35099.15 12796.56 18899.90 6592.90 34199.20 27397.89 358
MM98.22 17397.99 18698.91 14898.66 29296.97 21997.89 18894.44 37999.54 2798.95 15799.14 13093.50 28399.92 5199.80 1299.96 2599.85 19
MVS_030498.10 18297.88 19798.76 17198.82 25896.50 23597.90 18691.35 39799.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30399.90 6596.87 19599.68 16799.49 128
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24998.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
MVS_Test98.18 17898.36 14597.67 27498.48 31494.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31498.57 9098.90 30998.71 308
MDA-MVSNet-bldmvs97.94 19597.91 19498.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26899.85 12296.60 21698.72 31799.37 186
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33798.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 28396.25 29097.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34599.65 28391.65 36099.21 27298.82 290
USDC97.41 23697.40 22897.44 29698.94 23193.67 32795.17 35799.53 8094.03 34198.97 15499.10 13795.29 23899.34 36095.84 26699.73 14299.30 212
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25698.88 17499.06 14197.65 11599.57 31194.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25698.88 17499.06 14197.65 11599.57 31194.45 30299.61 19299.37 186
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26599.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26599.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25598.71 8099.76 13599.33 203
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
MVSTER96.86 27396.55 28097.79 26297.91 34994.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37399.80 18698.44 9899.82 9699.37 186
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 40596.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet596.01 30195.20 31898.41 21897.53 36996.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39599.88 8497.27 16099.71 15499.25 221
IS-MVSNet98.19 17797.90 19599.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30899.79 19995.49 27999.80 11099.48 138
DVP-MVS++98.90 7698.70 9399.51 4398.43 31999.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
h-mvs3397.77 21197.33 23599.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 33099.96 1298.11 11496.34 38399.49 128
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
CVMVSNet96.25 29697.21 24093.38 38299.10 20280.56 40997.20 26298.19 31696.94 24999.00 14899.02 15389.50 32399.80 18696.36 23899.59 19899.78 33
LFMVS97.20 25296.72 26798.64 18298.72 27296.95 22298.93 7594.14 38599.74 698.78 18999.01 16284.45 35799.73 23997.44 15299.27 26299.25 221
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21799.79 19999.33 3999.90 7099.51 121
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23998.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26799.93 4198.65 8598.83 31199.76 39
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 32198.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32699.50 8697.30 22299.05 14198.98 17099.35 1299.32 36395.72 27099.68 16799.18 238
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29298.37 10199.85 8299.39 177
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
CHOSEN 1792x268897.49 22997.14 24598.54 20499.68 5996.09 24796.50 29799.62 4791.58 36998.84 18298.97 17292.36 30099.88 8496.76 20499.95 3299.67 58
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
D2MVS97.84 20897.84 20097.83 25999.14 19694.74 28996.94 27498.88 26095.84 29598.89 17098.96 17594.40 26599.69 25597.55 14699.95 3299.05 253
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final97.10 25896.65 27598.45 21398.53 31096.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38199.87 10198.68 8399.91 6399.40 174
MVP-Stereo98.08 18697.92 19398.57 19698.96 22996.79 22797.90 18699.18 20696.41 27498.46 22998.95 17995.93 22099.60 29996.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39199.87 10198.50 9599.92 5599.40 174
YYNet197.60 22297.67 21097.39 29999.04 21793.04 33895.27 35498.38 30897.25 22798.92 16698.95 17995.48 23599.73 23996.99 18198.74 31599.41 165
MDA-MVSNet_test_wron97.60 22297.66 21397.41 29899.04 21793.09 33495.27 35498.42 30597.26 22698.88 17498.95 17995.43 23699.73 23997.02 17898.72 31799.41 165
FMVSNet397.50 22797.24 23898.29 22998.08 34295.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33699.81 17997.77 13799.69 16299.23 226
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24298.75 19598.92 18598.18 7899.65 28396.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33891.74 35797.92 18397.76 32790.23 37996.51 34498.91 18685.61 34899.85 12292.88 34296.90 37698.69 312
ADS-MVSNet95.24 32194.93 32596.18 34498.14 33890.10 37997.92 18397.32 33990.23 37996.51 34498.91 18685.61 34899.74 23492.88 34296.90 37698.69 312
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 338
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25998.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 22197.17 24198.99 13699.27 16297.86 16395.98 32593.41 38895.25 31299.47 7098.90 18995.63 22899.85 12296.91 18799.73 14299.27 217
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24799.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24698.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
TinyColmap97.89 19897.98 18797.60 28098.86 24994.35 30296.21 31499.44 11197.45 20999.06 13698.88 19697.99 9599.28 37094.38 30899.58 20399.18 238
LS3D98.63 12198.38 14399.36 6497.25 38099.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
Anonymous20240521197.90 19697.50 22399.08 11998.90 24198.25 11998.53 11096.16 36298.87 10199.11 12998.86 19990.40 31799.78 21097.36 15699.31 25599.19 236
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15596.25 39998.69 8897.02 26999.12 22188.90 38897.83 27498.86 19989.51 32298.90 38991.92 35599.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
our_test_397.39 23797.73 20796.34 33698.70 27989.78 38094.61 37498.97 24896.50 26999.04 14398.85 20295.98 21799.84 13997.26 16199.67 17399.41 165
EPNet96.14 29895.44 30998.25 23190.76 40995.50 26697.92 18394.65 37798.97 9392.98 39398.85 20289.12 32599.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 22097.49 22498.08 24499.14 19695.12 28096.70 28999.05 23393.77 34498.62 20898.83 20593.23 28499.75 22998.33 10599.76 13599.36 192
PMMVS298.07 18798.08 17998.04 24999.41 13894.59 29694.59 37599.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
MDTV_nov1_ep1395.22 31797.06 38683.20 40497.74 20996.16 36294.37 33396.99 32098.83 20583.95 36299.53 32493.90 31997.95 354
Anonymous2023120698.21 17598.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 28398.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29798.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25599.78 21098.13 11399.13 28499.31 209
tpmrst95.07 32395.46 30793.91 37597.11 38384.36 40297.62 22496.96 34894.98 31796.35 34998.80 21185.46 35099.59 30395.60 27596.23 38597.79 366
ppachtmachnet_test97.50 22797.74 20596.78 32898.70 27991.23 36994.55 37699.05 23396.36 27599.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33792.85 34095.15 35999.31 15997.25 22798.74 19798.78 21490.07 31899.78 21097.19 16499.80 11099.11 248
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32498.97 6695.03 36199.18 20696.88 25299.33 9798.78 21498.16 8299.28 37096.74 20699.62 18799.44 155
patchmatchnet-post98.77 21684.37 35899.85 122
APD-MVScopyleft98.10 18297.67 21099.42 5899.11 20098.93 7197.76 20799.28 17894.97 31898.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34592.77 34294.71 36899.18 20697.27 22598.56 21998.74 22091.89 30699.69 25597.06 17799.81 10099.05 253
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
MG-MVS96.77 27796.61 27697.26 30498.31 32893.06 33595.93 33198.12 32096.45 27397.92 26698.73 22193.77 28199.39 35391.19 37099.04 29399.33 203
c3_l97.36 23897.37 23197.31 30098.09 34193.25 33395.01 36299.16 21397.05 24398.77 19298.72 22392.88 29399.64 28696.93 18699.76 13599.05 253
cl____97.02 26596.83 26097.58 28297.82 35394.04 31194.66 37199.16 21397.04 24498.63 20698.71 22488.68 32999.69 25597.00 17999.81 10099.00 264
DIV-MVS_self_test97.02 26596.84 25997.58 28297.82 35394.03 31294.66 37199.16 21397.04 24498.63 20698.71 22488.69 32799.69 25597.00 17999.81 10099.01 261
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 34399.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 20299.07 20997.53 23599.32 15495.53 30498.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
tpmvs95.02 32595.25 31694.33 37096.39 39885.87 39398.08 16096.83 35395.46 30695.51 36998.69 22885.91 34699.53 32494.16 31096.23 38597.58 374
PatchmatchNetpermissive95.58 31495.67 30095.30 36397.34 37887.32 39097.65 22196.65 35595.30 31197.07 31598.69 22884.77 35499.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
UnsupCasMVSNet_eth97.89 19897.60 21898.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29999.74 23497.76 14195.60 39199.34 198
SCA96.41 29296.66 27395.67 35498.24 33288.35 38595.85 33696.88 35296.11 28497.67 28498.67 23293.10 28899.85 12294.16 31099.22 27098.81 294
Patchmatch-test96.55 28496.34 28597.17 30898.35 32593.06 33598.40 13097.79 32697.33 21898.41 23498.67 23283.68 36499.69 25595.16 28599.31 25598.77 302
CDS-MVSNet97.69 21697.35 23398.69 17998.73 27097.02 21896.92 27898.75 28695.89 29498.59 21498.67 23292.08 30599.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29697.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28696.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 21797.75 20497.45 29598.23 33493.78 32497.29 25498.84 27196.10 28598.64 20598.65 23796.04 20999.36 35696.84 19899.14 28299.20 231
pmmvs497.58 22597.28 23698.51 20798.84 25396.93 22495.40 35298.52 30193.60 34698.61 21098.65 23795.10 24499.60 29996.97 18499.79 11598.99 265
FPMVS93.44 34892.23 35397.08 31199.25 16697.86 16395.61 34297.16 34292.90 35693.76 39098.65 23775.94 39095.66 40379.30 40397.49 36097.73 368
dp93.47 34793.59 34093.13 38496.64 39381.62 40897.66 21996.42 36092.80 35896.11 35398.64 24078.55 38799.59 30393.31 33592.18 40298.16 346
EPMVS93.72 34493.27 34395.09 36696.04 40187.76 38898.13 15385.01 40794.69 32496.92 32298.64 24078.47 38899.31 36495.04 28696.46 38298.20 344
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
CostFormer93.97 34093.78 33794.51 36997.53 36985.83 39597.98 17795.96 36689.29 38794.99 37598.63 24278.63 38599.62 29294.54 29896.50 38198.09 350
MSLP-MVS++98.02 18998.14 17397.64 27898.58 30395.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 39197.55 14699.41 24198.94 276
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32699.73 23993.88 32199.79 11599.18 238
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 36696.23 24498.38 33299.28 216
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35993.86 32299.27 26298.79 300
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
114514_t96.50 28895.77 29598.69 17999.48 12397.43 19497.84 19699.55 7281.42 40096.51 34498.58 24995.53 23199.67 26793.41 33499.58 20398.98 266
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8596.94 35092.28 36495.17 37298.57 25089.90 32099.75 22991.20 36997.33 37198.10 349
tpm94.67 32894.34 33295.66 35597.68 36388.42 38497.88 18994.90 37594.46 32996.03 35798.56 25178.66 38499.79 19995.88 26095.01 39498.78 301
PC_three_145293.27 35099.40 8398.54 25298.22 7497.00 40195.17 28499.45 23699.49 128
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
new_pmnet96.99 26996.76 26597.67 27498.72 27294.89 28595.95 33098.20 31492.62 36098.55 22198.54 25294.88 25199.52 32893.96 31899.44 23998.59 322
OPU-MVS98.82 15798.59 30198.30 11698.10 15898.52 25598.18 7898.75 39294.62 29699.48 23399.41 165
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
TSAR-MVS + GP.98.18 17897.98 18798.77 17098.71 27597.88 16196.32 30898.66 29296.33 27699.23 11998.51 25697.48 13799.40 35197.16 16699.46 23499.02 260
OMC-MVS97.88 20097.49 22499.04 13098.89 24698.63 8996.94 27499.25 18795.02 31698.53 22498.51 25697.27 14799.47 34193.50 33299.51 22499.01 261
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30499.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22999.85 12297.54 14899.85 8299.59 81
Test_1112_low_res96.99 26996.55 28098.31 22799.35 15295.47 26795.84 33799.53 8091.51 37196.80 33398.48 26391.36 31099.83 15696.58 21799.53 21999.62 68
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
miper_ehance_all_eth97.06 26297.03 24897.16 31097.83 35293.06 33594.66 37199.09 22795.99 29098.69 19998.45 26592.73 29799.61 29896.79 20099.03 29498.82 290
PHI-MVS98.29 16697.95 18999.34 7398.44 31899.16 4398.12 15599.38 12896.01 28998.06 25998.43 26697.80 10699.67 26795.69 27299.58 20399.20 231
tpm cat193.29 35093.13 34793.75 37797.39 37784.74 39897.39 24597.65 33183.39 39994.16 38398.41 26782.86 36899.39 35391.56 36395.35 39397.14 381
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 26098.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 24198.93 23395.40 27098.80 27890.08 38397.45 30298.37 27295.26 23999.70 25193.58 32998.95 30599.17 242
CPTT-MVS97.84 20897.36 23299.27 8999.31 15598.46 10598.29 13899.27 18194.90 32097.83 27498.37 27294.90 24899.84 13993.85 32399.54 21599.51 121
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32397.15 21397.37 24798.62 29683.86 39798.65 20498.37 27294.29 26999.68 26488.41 38398.62 32796.60 388
tttt051795.64 31394.98 32297.64 27899.36 14893.81 32398.72 9090.47 39998.08 15698.67 20198.34 27673.88 39399.92 5197.77 13799.51 22499.20 231
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23499.01 29899.23 226
CNVR-MVS98.17 18097.87 19899.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 31196.42 23499.33 25299.39 177
HyFIR lowres test97.19 25396.60 27898.96 14099.62 7797.28 20195.17 35799.50 8694.21 33699.01 14798.32 27986.61 33999.99 297.10 17399.84 8699.60 75
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21399.28 16096.78 23096.20 31599.27 18195.42 30798.28 24398.30 28093.16 28699.71 24794.99 28797.37 36798.87 286
MSDG97.71 21597.52 22298.28 23098.91 24096.82 22694.42 37899.37 13297.65 18498.37 23998.29 28197.40 14099.33 36294.09 31599.22 27098.68 315
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32699.27 18197.60 19097.99 26498.25 28298.15 8499.38 35596.87 19599.57 20799.42 162
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31698.79 27997.23 23395.14 37398.24 28393.22 28599.84 13997.34 15799.84 8699.04 257
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 32299.30 16797.58 19198.10 25698.24 28398.25 6999.34 36096.69 21299.65 17999.12 247
tpm293.09 35292.58 35194.62 36897.56 36586.53 39297.66 21995.79 36986.15 39494.07 38698.23 28575.95 38999.53 32490.91 37496.86 37997.81 363
CANet97.87 20197.76 20398.19 23697.75 35595.51 26596.76 28599.05 23397.74 17796.93 32198.21 28695.59 23099.89 7597.86 13399.93 4499.19 236
LF4IMVS97.90 19697.69 20998.52 20699.17 18997.66 18197.19 26499.47 10296.31 27897.85 27398.20 28796.71 18399.52 32894.62 29699.72 14998.38 336
CL-MVSNet_self_test97.44 23497.22 23998.08 24498.57 30595.78 25894.30 38198.79 27996.58 26798.60 21298.19 28894.74 25999.64 28696.41 23598.84 31098.82 290
cl2295.79 30895.39 31296.98 31696.77 39192.79 34194.40 37998.53 30094.59 32697.89 26998.17 28982.82 36999.24 37296.37 23699.03 29498.92 278
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27999.97 499.26 4499.57 20799.43 159
jason97.45 23397.35 23397.76 26799.24 16793.93 31795.86 33498.42 30594.24 33598.50 22698.13 29094.82 25299.91 6097.22 16399.73 14299.43 159
jason: jason.
ZD-MVS99.01 22198.84 7599.07 22994.10 33998.05 26198.12 29296.36 19999.86 11092.70 34999.19 276
test22298.92 23796.93 22495.54 34498.78 28185.72 39596.86 33098.11 29394.43 26399.10 28999.23 226
新几何198.91 14898.94 23197.76 17498.76 28387.58 39296.75 33598.10 29494.80 25599.78 21092.73 34899.00 29999.20 231
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 36196.07 35598.10 29495.39 23799.71 24792.61 35198.99 30099.08 249
EPNet_dtu94.93 32694.78 32795.38 36293.58 40687.68 38996.78 28395.69 37297.35 21789.14 40298.09 29688.15 33499.49 33594.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 36097.71 32988.57 38997.71 28198.08 29779.39 38099.82 16696.19 24799.11 28898.43 331
DP-MVS Recon97.33 24196.92 25398.57 19699.09 20597.99 14996.79 28299.35 14193.18 35197.71 28198.07 29895.00 24799.31 36493.97 31799.13 28498.42 333
test_vis1_rt97.75 21297.72 20897.83 25998.81 26196.35 23997.30 25399.69 3694.61 32597.87 27098.05 29996.26 20298.32 39698.74 7798.18 34098.82 290
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
F-COLMAP97.30 24396.68 27099.14 10999.19 18198.39 10897.27 25799.30 16792.93 35596.62 33998.00 30195.73 22699.68 26492.62 35098.46 33199.35 196
Effi-MVS+-dtu98.26 16997.90 19599.35 7098.02 34499.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
hse-mvs297.46 23197.07 24698.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 33099.79 19998.11 11497.39 36698.81 294
HQP_MVS97.99 19497.67 21098.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24899.70 25194.42 30499.51 22499.45 151
plane_prior497.98 303
BH-RMVSNet96.83 27496.58 27997.58 28298.47 31594.05 30996.67 29097.36 33696.70 26397.87 27097.98 30395.14 24399.44 34690.47 37798.58 32999.25 221
AUN-MVS96.24 29795.45 30898.60 19298.70 27997.22 20697.38 24697.65 33195.95 29295.53 36897.96 30782.11 37299.79 19996.31 24097.44 36398.80 299
NCCC97.86 20297.47 22799.05 12898.61 29698.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21699.66 27895.31 28298.82 31399.43 159
sss97.21 25196.93 25198.06 24698.83 25595.22 27696.75 28698.48 30394.49 32797.27 30997.90 30992.77 29699.80 18696.57 21999.32 25399.16 245
test_yl96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31794.87 29098.32 33398.89 282
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31794.87 29098.32 33398.89 282
CDPH-MVS97.26 24696.66 27399.07 12199.00 22298.15 12996.03 32499.01 24491.21 37597.79 27797.85 31296.89 16899.69 25592.75 34799.38 24699.39 177
HPM-MVS++copyleft98.10 18297.64 21599.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32797.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
PatchMatch-RL97.24 24996.78 26498.61 19099.03 22097.83 16696.36 30599.06 23093.49 34997.36 30897.78 31495.75 22599.49 33593.44 33398.77 31498.52 324
TAPA-MVS96.21 1196.63 28295.95 29398.65 18198.93 23398.09 13696.93 27699.28 17883.58 39898.13 25397.78 31496.13 20599.40 35193.52 33099.29 26098.45 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 30495.44 30997.52 28998.51 31393.99 31598.39 13196.09 36498.21 14298.40 23897.76 31686.88 33799.63 28995.42 28089.27 40398.95 272
WTY-MVS96.67 28096.27 28997.87 25798.81 26194.61 29596.77 28497.92 32594.94 31997.12 31297.74 31791.11 31299.82 16693.89 32098.15 34499.18 238
test_method79.78 37179.50 37480.62 38780.21 41045.76 41370.82 40198.41 30731.08 40580.89 40697.71 31884.85 35397.37 40091.51 36480.03 40498.75 305
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 26099.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 19197.63 21699.10 11599.24 16798.17 12896.89 27998.73 28995.66 29897.92 26697.70 32097.17 15399.66 27896.18 24999.23 26999.47 145
AdaColmapbinary97.14 25796.71 26898.46 21298.34 32697.80 17296.95 27398.93 25195.58 30296.92 32297.66 32195.87 22299.53 32490.97 37299.14 28298.04 352
thisisatest053095.27 32094.45 32997.74 27099.19 18194.37 30197.86 19490.20 40097.17 23898.22 24597.65 32273.53 39499.90 6596.90 19299.35 24998.95 272
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 33596.50 23098.99 30099.34 198
test_prior295.74 33996.48 27196.11 35397.63 32495.92 22194.16 31099.20 273
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 38599.41 3798.29 33698.45 328
cdsmvs_eth3d_5k24.66 37332.88 3760.00 3910.00 4140.00 4160.00 40299.10 2250.00 4090.00 41097.58 32699.21 160.00 4100.00 4090.00 4080.00 406
lupinMVS97.06 26296.86 25797.65 27698.88 24793.89 32195.48 34897.97 32393.53 34798.16 24997.58 32693.81 27999.91 6096.77 20399.57 20799.17 242
TEST998.71 27598.08 14095.96 32899.03 23891.40 37295.85 35897.53 32896.52 19099.76 222
train_agg97.10 25896.45 28399.07 12198.71 27598.08 14095.96 32899.03 23891.64 36795.85 35897.53 32896.47 19299.76 22293.67 32699.16 27999.36 192
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31998.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 336
test_898.67 28798.01 14895.91 33399.02 24191.64 36795.79 36097.50 33196.47 19299.76 222
1112_ss97.29 24596.86 25798.58 19499.34 15496.32 24096.75 28699.58 5493.14 35296.89 32897.48 33292.11 30499.86 11096.91 18799.54 21599.57 92
ab-mvs-re8.12 37710.83 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.48 3320.00 4140.00 4100.00 4090.00 4080.00 406
Effi-MVS+98.02 18997.82 20198.62 18798.53 31097.19 20997.33 25099.68 4197.30 22296.68 33697.46 33498.56 5299.80 18696.63 21598.20 33998.86 287
PCF-MVS92.86 1894.36 33193.00 34898.42 21798.70 27997.56 18693.16 39399.11 22379.59 40197.55 29397.43 33592.19 30299.73 23979.85 40299.45 23697.97 357
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 30695.32 31597.49 29298.60 29894.15 30893.83 38897.93 32495.49 30596.68 33697.42 33683.21 36599.30 36696.22 24598.55 33099.01 261
CNLPA97.17 25596.71 26898.55 20198.56 30698.05 14696.33 30798.93 25196.91 25197.06 31697.39 33794.38 26699.45 34491.66 35999.18 27898.14 347
PLCcopyleft94.65 1696.51 28695.73 29798.85 15498.75 26897.91 15996.42 30299.06 23090.94 37895.59 36197.38 33894.41 26499.59 30390.93 37398.04 35399.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27496.75 26697.08 31198.74 26993.33 33296.71 28898.26 31196.72 26198.44 23197.37 33995.20 24199.47 34191.89 35697.43 36498.44 330
PVSNet_Blended96.88 27296.68 27097.47 29498.92 23793.77 32594.71 36899.43 11790.98 37797.62 28697.36 34096.82 17399.67 26794.73 29399.56 21098.98 266
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39792.27 35393.69 39098.89 25991.14 37698.30 24197.35 34190.58 31599.58 30996.31 24099.03 29498.60 320
DPM-MVS96.32 29395.59 30398.51 20798.76 26697.21 20794.54 37798.26 31191.94 36696.37 34897.25 34293.06 29099.43 34791.42 36598.74 31598.89 282
E-PMN94.17 33694.37 33193.58 37996.86 38885.71 39690.11 39997.07 34498.17 14997.82 27697.19 34384.62 35698.94 38689.77 37997.68 35796.09 395
CLD-MVS97.49 22997.16 24298.48 21099.07 20997.03 21794.71 36899.21 19694.46 32998.06 25997.16 34497.57 12499.48 33894.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 31795.47 30695.65 35698.25 33188.27 38693.25 39298.88 26093.53 34794.65 37997.15 34586.17 34399.93 4197.41 15499.93 4498.73 307
xiu_mvs_v1_base_debu97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 382
xiu_mvs_v1_base97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 382
xiu_mvs_v1_base_debi97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 382
NP-MVS98.84 25397.39 19696.84 349
HQP-MVS97.00 26896.49 28298.55 20198.67 28796.79 22796.29 31099.04 23696.05 28695.55 36496.84 34993.84 27799.54 32292.82 34499.26 26599.32 205
API-MVS97.04 26496.91 25597.42 29797.88 35198.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37990.16 37899.02 29794.88 399
131495.74 30995.60 30296.17 34597.53 36992.75 34398.07 16298.31 31091.22 37494.25 38296.68 35295.53 23199.03 38191.64 36197.18 37396.74 386
TR-MVS95.55 31595.12 32096.86 32597.54 36793.94 31696.49 29896.53 35994.36 33497.03 31996.61 35394.26 27099.16 37886.91 39096.31 38497.47 377
Fast-Effi-MVS+97.67 21897.38 23098.57 19698.71 27597.43 19497.23 25899.45 10794.82 32296.13 35296.51 35498.52 5499.91 6096.19 24798.83 31198.37 338
xiu_mvs_v2_base97.16 25697.49 22496.17 34598.54 30892.46 34795.45 34998.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 393
MVS93.19 35192.09 35596.50 33396.91 38794.03 31298.07 16298.06 32268.01 40294.56 38196.48 35695.96 21999.30 36683.84 39596.89 37896.17 391
PAPM_NR96.82 27696.32 28698.30 22899.07 20996.69 23297.48 24098.76 28395.81 29696.61 34096.47 35794.12 27499.17 37790.82 37697.78 35599.06 252
KD-MVS_2432*160092.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31895.42 30797.25 31096.44 35867.86 39799.24 37291.28 36796.08 38898.02 353
miper_refine_blended92.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31895.42 30797.25 31096.44 35867.86 39799.24 37291.28 36796.08 38898.02 353
PVSNet93.40 1795.67 31195.70 29895.57 35798.83 25588.57 38392.50 39597.72 32892.69 35996.49 34796.44 35893.72 28299.43 34793.61 32799.28 26198.71 308
EMVS93.83 34294.02 33493.23 38396.83 39084.96 39789.77 40096.32 36197.92 16597.43 30496.36 36186.17 34398.93 38787.68 38697.73 35695.81 396
MAR-MVS96.47 29095.70 29898.79 16497.92 34899.12 5798.28 13998.60 29792.16 36595.54 36796.17 36294.77 25899.52 32889.62 38098.23 33797.72 369
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 36890.34 37196.51 33298.06 34392.56 34592.44 39697.17 34186.35 39390.38 40096.01 36386.61 33999.21 37570.65 40695.43 39297.75 367
PS-MVSNAJ97.08 26197.39 22996.16 34798.56 30692.46 34795.24 35698.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 394
dmvs_re95.98 30395.39 31297.74 27098.86 24997.45 19298.37 13395.69 37297.95 16296.56 34195.95 36590.70 31497.68 39988.32 38496.13 38798.11 348
baseline293.73 34392.83 34996.42 33597.70 36091.28 36696.84 28189.77 40193.96 34392.44 39695.93 36679.14 38299.77 21692.94 34096.76 38098.21 343
alignmvs97.35 23996.88 25698.78 16798.54 30898.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33599.55 31798.18 11198.96 30498.70 311
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33894.47 29994.78 36793.24 39094.72 32389.56 40195.87 36878.57 38699.81 17996.91 18797.11 37598.46 326
thisisatest051594.12 33893.16 34596.97 31798.60 29892.90 33993.77 38990.61 39894.10 33996.91 32495.87 36874.99 39299.80 18694.52 29999.12 28798.20 344
UWE-MVS92.38 36191.76 36494.21 37297.16 38284.65 39995.42 35188.45 40395.96 29196.17 35195.84 37066.36 40199.71 24791.87 35798.64 32498.28 341
BH-w/o95.13 32294.89 32695.86 34998.20 33591.31 36495.65 34197.37 33593.64 34596.52 34395.70 37193.04 29199.02 38288.10 38595.82 39097.24 380
PMMVS96.51 28695.98 29298.09 24197.53 36995.84 25594.92 36498.84 27191.58 36996.05 35695.58 37295.68 22799.66 27895.59 27698.09 34798.76 304
EIA-MVS98.00 19197.74 20598.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33895.55 37397.68 11299.80 18696.73 20899.27 26298.52 324
ETV-MVS98.03 18897.86 19998.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37498.41 6099.88 8496.27 24399.24 26797.71 370
testing393.51 34692.09 35597.75 26898.60 29894.40 30097.32 25195.26 37497.56 19496.79 33495.50 37553.57 41199.77 21695.26 28398.97 30399.08 249
PAPR95.29 31994.47 32897.75 26897.50 37495.14 27994.89 36598.71 29091.39 37395.35 37195.48 37694.57 26199.14 38084.95 39397.37 36798.97 269
canonicalmvs98.34 15898.26 15898.58 19498.46 31697.82 16998.96 7399.46 10499.19 6997.46 30195.46 37798.59 4999.46 34398.08 11798.71 31998.46 326
MVEpermissive83.40 2292.50 35991.92 36194.25 37198.83 25591.64 35892.71 39483.52 40895.92 29386.46 40595.46 37795.20 24195.40 40480.51 40198.64 32495.73 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVSnew95.73 31095.57 30496.23 34296.70 39290.70 37696.07 32393.86 38695.60 30197.04 31795.45 37996.00 21299.55 31791.04 37198.31 33598.43 331
test-LLR93.90 34193.85 33594.04 37396.53 39484.62 40094.05 38592.39 39296.17 28194.12 38495.07 38082.30 37099.67 26795.87 26398.18 34097.82 361
test-mter92.33 36391.76 36494.04 37396.53 39484.62 40094.05 38592.39 39294.00 34294.12 38495.07 38065.63 40499.67 26795.87 26398.18 34097.82 361
thres600view794.45 33093.83 33696.29 33899.06 21391.53 35997.99 17694.24 38398.34 12997.44 30395.01 38279.84 37699.67 26784.33 39498.23 33797.66 371
gm-plane-assit94.83 40481.97 40788.07 39194.99 38399.60 29991.76 358
thres100view90094.19 33593.67 33995.75 35399.06 21391.35 36398.03 16894.24 38398.33 13097.40 30594.98 38479.84 37699.62 29283.05 39698.08 34896.29 389
cascas94.79 32794.33 33396.15 34896.02 40292.36 35192.34 39799.26 18685.34 39695.08 37494.96 38592.96 29298.53 39494.41 30798.59 32897.56 375
TESTMET0.1,192.19 36591.77 36393.46 38096.48 39682.80 40594.05 38591.52 39694.45 33194.00 38794.88 38666.65 40099.56 31495.78 26898.11 34698.02 353
test0.0.03 194.51 32993.69 33896.99 31596.05 40093.61 33094.97 36393.49 38796.17 28197.57 29294.88 38682.30 37099.01 38493.60 32894.17 39898.37 338
DeepMVS_CXcopyleft93.44 38198.24 33294.21 30594.34 38064.28 40391.34 39994.87 38889.45 32492.77 40677.54 40493.14 39993.35 401
IB-MVS91.63 1992.24 36490.90 36896.27 33997.22 38191.24 36894.36 38093.33 38992.37 36292.24 39794.58 38966.20 40399.89 7593.16 33894.63 39697.66 371
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 33993.44 34195.78 35298.93 23391.44 36197.60 22794.29 38197.94 16397.10 31394.31 39079.67 37899.62 29283.05 39698.08 34896.29 389
thres40094.14 33793.44 34196.24 34198.93 23391.44 36197.60 22794.29 38197.94 16397.10 31394.31 39079.67 37899.62 29283.05 39698.08 34897.66 371
testing1193.08 35392.02 35796.26 34097.56 36590.83 37496.32 30895.70 37096.47 27292.66 39593.73 39264.36 40699.59 30393.77 32597.57 35898.37 338
thres20093.72 34493.14 34695.46 36198.66 29291.29 36596.61 29394.63 37897.39 21396.83 33193.71 39379.88 37599.56 31482.40 39998.13 34595.54 398
dmvs_testset92.94 35592.21 35495.13 36498.59 30190.99 37197.65 22192.09 39496.95 24894.00 38793.55 39492.34 30196.97 40272.20 40592.52 40097.43 378
testing9193.32 34992.27 35296.47 33497.54 36791.25 36796.17 31996.76 35497.18 23793.65 39193.50 39565.11 40599.63 28993.04 33997.45 36298.53 323
testing9993.04 35491.98 36096.23 34297.53 36990.70 37696.35 30695.94 36796.87 25393.41 39293.43 39663.84 40799.59 30393.24 33797.19 37298.40 334
PVSNet_089.98 2191.15 36990.30 37293.70 37897.72 35684.34 40390.24 39897.42 33490.20 38293.79 38993.09 39790.90 31398.89 39086.57 39172.76 40597.87 360
testing22291.96 36690.37 37096.72 33097.47 37592.59 34496.11 32194.76 37696.83 25592.90 39492.87 39857.92 40999.55 31786.93 38997.52 35998.00 356
tmp_tt78.77 37278.73 37578.90 38858.45 41174.76 41294.20 38278.26 41139.16 40486.71 40492.82 39980.50 37475.19 40786.16 39292.29 40186.74 402
ETVMVS92.60 35891.08 36797.18 30697.70 36093.65 32996.54 29495.70 37096.51 26894.68 37892.39 40061.80 40899.50 33386.97 38897.41 36598.40 334
Syy-MVS96.04 30095.56 30597.49 29297.10 38494.48 29896.18 31796.58 35795.65 29994.77 37692.29 40191.27 31199.36 35698.17 11298.05 35198.63 318
myMVS_eth3d91.92 36790.45 36996.30 33797.10 38490.90 37296.18 31796.58 35795.65 29994.77 37692.29 40153.88 41099.36 35689.59 38198.05 35198.63 318
GG-mvs-BLEND94.76 36794.54 40592.13 35599.31 2780.47 41088.73 40391.01 40367.59 39998.16 39882.30 40094.53 39793.98 400
X-MVStestdata94.32 33292.59 35099.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 40497.50 13399.83 15696.79 20099.53 21999.56 98
testmvs17.12 37420.53 3776.87 39012.05 4124.20 41593.62 3916.73 4134.62 40810.41 40824.33 4058.28 4133.56 4099.69 40815.07 40612.86 405
test12317.04 37520.11 3787.82 38910.25 4134.91 41494.80 3664.47 4144.93 40710.00 40924.28 4069.69 4123.64 40810.14 40712.43 40714.92 404
test_post21.25 40783.86 36399.70 251
test_post197.59 22920.48 40883.07 36799.66 27894.16 310
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.17 37610.90 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40998.07 860.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.90 37291.37 366
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
No_MVS99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
eth-test20.00 414
eth-test0.00 414
IU-MVS99.49 11699.15 4798.87 26292.97 35499.41 8096.76 20499.62 18799.66 59
save fliter99.11 20097.97 15396.53 29699.02 24198.24 139
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
GSMVS98.81 294
test_part299.36 14899.10 6099.05 141
sam_mvs184.74 35598.81 294
sam_mvs84.29 361
MTGPAbinary99.20 198
MTMP97.93 18191.91 395
test9_res93.28 33699.15 28199.38 184
agg_prior292.50 35299.16 27999.37 186
agg_prior98.68 28697.99 14999.01 24495.59 36199.77 216
test_prior497.97 15395.86 334
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30399.30 212
旧先验295.76 33888.56 39097.52 29699.66 27894.48 300
新几何295.93 331
无先验95.74 33998.74 28889.38 38699.73 23992.38 35499.22 230
原ACMM295.53 345
testdata299.79 19992.80 346
segment_acmp97.02 162
testdata195.44 35096.32 277
test1298.93 14598.58 30397.83 16698.66 29296.53 34295.51 23399.69 25599.13 28499.27 217
plane_prior799.19 18197.87 162
plane_prior698.99 22597.70 18094.90 248
plane_prior599.27 18199.70 25194.42 30499.51 22499.45 151
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 26199.36 247
n20.00 415
nn0.00 415
door-mid99.57 61
test1198.87 262
door99.41 121
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 31096.05 28695.55 364
ACMP_Plane98.67 28796.29 31096.05 28695.55 364
BP-MVS92.82 344
HQP4-MVS95.56 36399.54 32299.32 205
HQP3-MVS99.04 23699.26 265
HQP2-MVS93.84 277
MDTV_nov1_ep13_2view74.92 41197.69 21490.06 38497.75 28085.78 34793.52 33098.69 312
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190