This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 8100.00 199.85 12
test_fmvs399.12 4499.41 1698.25 21999.76 3095.07 27099.05 6599.94 197.78 16499.82 1599.84 298.56 4499.71 23499.96 199.96 1899.97 1
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2199.64 1399.84 1499.83 399.50 599.87 9399.36 2899.92 4599.64 52
test_f98.67 10598.87 6398.05 23699.72 4295.59 24998.51 11499.81 1796.30 26299.78 1899.82 496.14 19598.63 37199.82 699.93 3499.95 2
mvsany_test398.87 7098.92 6098.74 17099.38 13096.94 21798.58 10399.10 21696.49 25399.96 299.81 598.18 6999.45 32498.97 5399.79 10599.83 14
UA-Net99.47 1199.40 1799.70 299.49 10599.29 1999.80 399.72 2399.82 399.04 13299.81 598.05 8099.96 1198.85 5999.99 599.86 11
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5499.93 399.82 399.93 499.81 599.17 1599.94 3099.31 31100.00 199.82 15
test_fmvs298.70 9498.97 5797.89 24499.54 8894.05 29598.55 10699.92 596.78 24299.72 2299.78 896.60 17899.67 25399.91 299.90 6099.94 3
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4599.90 299.86 1399.78 899.58 399.95 2099.00 5199.95 2299.78 22
OurMVSNet-221017-099.37 2199.31 2699.53 3499.91 398.98 6599.63 699.58 4599.44 3499.78 1899.76 1096.39 18699.92 4499.44 2699.92 4599.68 43
MVS-HIRNet94.32 31895.62 28990.42 36498.46 30375.36 38796.29 29489.13 38195.25 29095.38 35599.75 1192.88 28099.19 35494.07 30299.39 23396.72 365
gg-mvs-nofinetune92.37 34291.20 34795.85 32995.80 38192.38 33499.31 2781.84 38799.75 591.83 37699.74 1268.29 38299.02 36087.15 36697.12 35296.16 370
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 2499.27 5299.90 999.74 1299.68 299.97 499.55 1999.99 599.88 7
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1799.56 5999.11 6699.70 2699.73 1499.00 1999.97 499.26 3499.98 1099.89 6
anonymousdsp99.51 1099.47 1399.62 699.88 999.08 6399.34 2099.69 2798.93 9199.65 3599.72 1598.93 2399.95 2099.11 43100.00 199.82 15
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4599.65 3699.48 2999.92 699.71 1698.07 7799.96 1199.53 20100.00 199.93 4
JIA-IIPM95.52 30295.03 30797.00 29996.85 36894.03 29896.93 26395.82 35399.20 5994.63 36299.71 1683.09 35299.60 28494.42 29094.64 37397.36 357
SDMVSNet99.23 3599.32 2498.96 13699.68 5497.35 19498.84 8499.48 8699.69 899.63 3899.68 1899.03 1899.96 1197.97 11299.92 4599.57 80
sd_testset99.28 2699.31 2699.19 9999.68 5498.06 14299.41 1399.30 15899.69 899.63 3899.68 1899.25 1199.96 1197.25 14999.92 4599.57 80
Anonymous2023121199.27 2799.27 2999.26 8899.29 14898.18 12699.49 899.51 7599.70 799.80 1699.68 1896.84 16199.83 14499.21 3999.91 5399.77 24
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3799.66 3599.09 7699.89 1199.68 1899.53 499.97 499.50 2299.99 599.87 9
test_vis3_rt99.14 3999.17 3499.07 11899.78 2598.38 10998.92 7699.94 197.80 16299.91 899.67 2297.15 14598.91 36699.76 1199.56 20099.92 5
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1999.63 1599.78 1899.67 2299.48 699.81 16799.30 3399.97 1499.77 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 4199.66 1299.68 3099.66 2498.44 5099.95 2099.73 1399.96 1899.75 31
K. test v398.00 17997.66 20199.03 12899.79 2497.56 18399.19 4992.47 37099.62 1899.52 5299.66 2489.61 30799.96 1199.25 3699.81 9099.56 86
RRT_MVS99.09 4698.94 5899.55 2399.87 1298.82 7899.48 998.16 30699.49 2899.59 4299.65 2694.79 24799.95 2099.45 2599.96 1899.88 7
SixPastTwentyTwo98.75 8798.62 9599.16 10399.83 1997.96 15399.28 3798.20 30399.37 4199.70 2699.65 2692.65 28599.93 3599.04 4899.84 7699.60 63
test_fmvs1_n98.09 17398.28 14497.52 27699.68 5493.47 31698.63 9799.93 395.41 28899.68 3099.64 2891.88 29499.48 31899.82 699.87 6899.62 56
DSMNet-mixed97.42 22397.60 20696.87 30799.15 18491.46 34498.54 10899.12 21292.87 33597.58 27899.63 2996.21 19499.90 5795.74 25699.54 20599.27 205
test_cas_vis1_n_192098.33 14898.68 8697.27 28999.69 5292.29 33698.03 16599.85 1297.62 17499.96 299.62 3093.98 26499.74 22199.52 2199.86 7199.79 19
TransMVSNet (Re)99.44 1399.47 1399.36 6499.80 2298.58 9599.27 3999.57 5299.39 3999.75 2199.62 3099.17 1599.83 14499.06 4699.62 17799.66 47
Gipumacopyleft99.03 5199.16 3698.64 17499.94 298.51 10299.32 2399.75 2299.58 2398.60 20099.62 3098.22 6599.51 31397.70 12999.73 13297.89 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 5798.86 6699.36 6499.82 2198.55 9797.47 23099.57 5299.37 4199.21 10999.61 3396.76 17099.83 14498.06 10599.83 8399.71 35
TDRefinement99.42 1699.38 1899.55 2399.76 3099.33 1699.68 599.71 2499.38 4099.53 5099.61 3398.64 3799.80 17498.24 9599.84 7699.52 107
pm-mvs199.44 1399.48 1299.33 7699.80 2298.63 8999.29 3399.63 3799.30 5099.65 3599.60 3599.16 1799.82 15499.07 4599.83 8399.56 86
v1098.97 5899.11 4398.55 19099.44 11996.21 23598.90 7799.55 6398.73 10199.48 5799.60 3596.63 17799.83 14499.70 1499.99 599.61 62
test111196.49 27796.82 24995.52 33799.42 12587.08 36999.22 4287.14 38299.11 6699.46 6099.58 3788.69 31399.86 10298.80 6199.95 2299.62 56
test_vis1_n98.31 15198.50 11097.73 25999.76 3094.17 29398.68 9499.91 696.31 26099.79 1799.57 3892.85 28299.42 32999.79 999.84 7699.60 63
test250692.39 34191.89 34493.89 35499.38 13082.28 38399.32 2366.03 39099.08 7898.77 18099.57 3866.26 38799.84 13098.71 6999.95 2299.54 97
ECVR-MVScopyleft96.42 27996.61 26495.85 32999.38 13088.18 36599.22 4286.00 38499.08 7899.36 8199.57 3888.47 31899.82 15498.52 8299.95 2299.54 97
v899.01 5299.16 3698.57 18599.47 11496.31 23398.90 7799.47 9399.03 8299.52 5299.57 3896.93 15799.81 16799.60 1599.98 1099.60 63
MIMVSNet199.38 2099.32 2499.55 2399.86 1499.19 3799.41 1399.59 4399.59 2199.71 2499.57 3897.12 14699.90 5799.21 3999.87 6899.54 97
test_vis1_n_192098.40 14098.92 6096.81 31199.74 3590.76 35598.15 15099.91 698.33 12099.89 1199.55 4395.07 23599.88 7699.76 1199.93 3499.79 19
Anonymous2024052198.69 9798.87 6398.16 22799.77 2795.11 26999.08 5999.44 10299.34 4599.33 8699.55 4394.10 26399.94 3099.25 3699.96 1899.42 150
GBi-Net98.65 10798.47 11799.17 10098.90 23098.24 12099.20 4599.44 10298.59 10998.95 14699.55 4394.14 25999.86 10297.77 12499.69 15299.41 153
test198.65 10798.47 11799.17 10098.90 23098.24 12099.20 4599.44 10298.59 10998.95 14699.55 4394.14 25999.86 10297.77 12499.69 15299.41 153
FMVSNet199.17 3799.17 3499.17 10099.55 8598.24 12099.20 4599.44 10299.21 5799.43 6599.55 4397.82 9699.86 10298.42 8899.89 6499.41 153
KD-MVS_self_test99.25 3099.18 3399.44 5799.63 6699.06 6498.69 9399.54 6899.31 4899.62 4199.53 4897.36 13399.86 10299.24 3899.71 14499.39 165
new-patchmatchnet98.35 14698.74 7597.18 29299.24 15692.23 33896.42 28899.48 8698.30 12399.69 2899.53 4897.44 12999.82 15498.84 6099.77 11499.49 116
mvsmamba99.24 3499.15 4199.49 4899.83 1998.85 7499.41 1399.55 6399.54 2599.40 7299.52 5095.86 21399.91 5299.32 3099.95 2299.70 40
lessismore_v098.97 13599.73 3697.53 18586.71 38399.37 7999.52 5089.93 30599.92 4498.99 5299.72 13999.44 143
test_fmvsmvis_n_192099.26 2999.49 1098.54 19399.66 6096.97 21498.00 17199.85 1299.24 5499.92 699.50 5299.39 899.95 2099.89 399.98 1098.71 295
FC-MVSNet-test99.27 2799.25 3099.34 7299.77 2798.37 11199.30 3299.57 5299.61 2099.40 7299.50 5297.12 14699.85 11499.02 5099.94 3099.80 18
VDDNet98.21 16397.95 17799.01 13099.58 6997.74 17399.01 6797.29 32999.67 1198.97 14399.50 5290.45 30299.80 17497.88 11899.20 26299.48 126
DeepC-MVS97.60 498.97 5898.93 5999.10 11299.35 14197.98 14998.01 17099.46 9597.56 18299.54 4699.50 5298.97 2099.84 13098.06 10599.92 4599.49 116
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XXY-MVS99.14 3999.15 4199.10 11299.76 3097.74 17398.85 8299.62 3898.48 11599.37 7999.49 5698.75 3199.86 10298.20 9899.80 10099.71 35
Vis-MVSNetpermissive99.34 2299.36 1999.27 8699.73 3698.26 11899.17 5099.78 1999.11 6699.27 9799.48 5798.82 2899.95 2098.94 5499.93 3499.59 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 12798.45 12098.79 15797.94 33496.96 21599.08 5998.54 28899.10 7396.82 31999.47 5896.55 18099.84 13098.56 8199.94 3099.55 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 20798.50 11095.13 34399.63 6685.84 37298.35 13398.21 30298.23 13099.54 4699.46 5995.02 23699.68 25098.24 9599.87 6899.87 9
LCM-MVSNet-Re98.64 10998.48 11599.11 11098.85 24198.51 10298.49 11799.83 1598.37 11799.69 2899.46 5998.21 6799.92 4494.13 30099.30 24898.91 268
mvs_anonymous97.83 19898.16 15996.87 30798.18 32391.89 34097.31 23998.90 24897.37 20298.83 17199.46 5996.28 19299.79 18798.90 5698.16 32898.95 259
DTE-MVSNet99.43 1599.35 2099.66 499.71 4499.30 1799.31 2799.51 7599.64 1399.56 4399.46 5998.23 6299.97 498.78 6299.93 3499.72 34
ACMH96.65 799.25 3099.24 3199.26 8899.72 4298.38 10999.07 6299.55 6398.30 12399.65 3599.45 6399.22 1299.76 20998.44 8699.77 11499.64 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs197.72 20297.94 17997.07 29898.66 28192.39 33397.68 20499.81 1795.20 29299.54 4699.44 6491.56 29699.41 33099.78 1099.77 11499.40 162
bld_raw_dy_0_6499.07 4999.00 5399.29 8199.85 1698.18 12699.11 5899.40 11499.33 4699.38 7699.44 6495.21 23099.97 499.31 3199.98 1099.73 33
VPA-MVSNet99.30 2599.30 2899.28 8399.49 10598.36 11499.00 6999.45 9899.63 1599.52 5299.44 6498.25 6099.88 7699.09 4499.84 7699.62 56
EGC-MVSNET85.24 34880.54 35199.34 7299.77 2799.20 3499.08 5999.29 16612.08 38420.84 38599.42 6797.55 11799.85 11497.08 16199.72 13998.96 258
PEN-MVS99.41 1799.34 2299.62 699.73 3699.14 5299.29 3399.54 6899.62 1899.56 4399.42 6798.16 7399.96 1198.78 6299.93 3499.77 24
PatchT96.65 26996.35 27297.54 27497.40 35895.32 26097.98 17496.64 34499.33 4696.89 31599.42 6784.32 34599.81 16797.69 13197.49 34197.48 354
FIs99.14 3999.09 4699.29 8199.70 5098.28 11799.13 5599.52 7499.48 2999.24 10699.41 7096.79 16799.82 15498.69 7199.88 6599.76 28
PS-CasMVS99.40 1899.33 2399.62 699.71 4499.10 6099.29 3399.53 7199.53 2699.46 6099.41 7098.23 6299.95 2098.89 5899.95 2299.81 17
ab-mvs98.41 13898.36 13498.59 18299.19 17097.23 20099.32 2398.81 26797.66 17198.62 19699.40 7296.82 16499.80 17495.88 24799.51 21498.75 292
Anonymous2024052998.93 6398.87 6399.12 10899.19 17098.22 12599.01 6798.99 23899.25 5399.54 4699.37 7397.04 15099.80 17497.89 11599.52 21299.35 184
CR-MVSNet96.28 28395.95 28197.28 28897.71 34594.22 28998.11 15498.92 24592.31 34196.91 31199.37 7385.44 33799.81 16797.39 14297.36 34897.81 341
Patchmtry97.35 22796.97 23898.50 19897.31 36196.47 22898.18 14698.92 24598.95 9098.78 17799.37 7385.44 33799.85 11495.96 24599.83 8399.17 230
EG-PatchMatch MVS98.99 5499.01 5298.94 13999.50 9897.47 18798.04 16499.59 4398.15 14199.40 7299.36 7698.58 4399.76 20998.78 6299.68 15799.59 69
testf199.25 3099.16 3699.51 4399.89 699.63 398.71 9199.69 2798.90 9399.43 6599.35 7798.86 2599.67 25397.81 12199.81 9099.24 212
APD_test299.25 3099.16 3699.51 4399.89 699.63 398.71 9199.69 2798.90 9399.43 6599.35 7798.86 2599.67 25397.81 12199.81 9099.24 212
IterMVS-SCA-FT97.85 19598.18 15596.87 30799.27 15191.16 35395.53 32499.25 17899.10 7399.41 6999.35 7793.10 27599.96 1198.65 7499.94 3099.49 116
PMVScopyleft91.26 2097.86 19097.94 17997.65 26399.71 4497.94 15598.52 11098.68 28198.99 8597.52 28499.35 7797.41 13098.18 37591.59 34499.67 16396.82 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2399.22 3299.65 599.71 4499.24 2599.32 2399.55 6399.46 3299.50 5699.34 8197.30 13599.93 3598.90 5699.93 3499.77 24
RPMNet97.02 25396.93 23997.30 28797.71 34594.22 28998.11 15499.30 15899.37 4196.91 31199.34 8186.72 32499.87 9397.53 13697.36 34897.81 341
mvsany_test197.60 21097.54 20897.77 25297.72 34395.35 25995.36 33197.13 33294.13 31699.71 2499.33 8397.93 8999.30 34497.60 13298.94 29498.67 303
FA-MVS(test-final)96.99 25796.82 24997.50 27898.70 26894.78 27599.34 2096.99 33595.07 29398.48 21699.33 8388.41 31999.65 26996.13 24098.92 29698.07 330
IterMVS97.73 20198.11 16496.57 31599.24 15690.28 35695.52 32699.21 18798.86 9699.33 8699.33 8393.11 27499.94 3098.49 8499.94 3099.48 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 7898.73 7699.05 12598.76 25597.81 16899.25 4099.30 15898.57 11298.55 20999.33 8397.95 8899.90 5797.16 15399.67 16399.44 143
IterMVS-LS98.55 12398.70 8398.09 22999.48 11294.73 27897.22 24899.39 11798.97 8799.38 7699.31 8796.00 20399.93 3598.58 7699.97 1499.60 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsm_n_192099.33 2399.45 1598.99 13299.57 7397.73 17597.93 17799.83 1599.22 5599.93 499.30 8899.42 799.96 1199.85 499.99 599.29 202
patch_mono-298.51 13098.63 9398.17 22599.38 13094.78 27597.36 23699.69 2798.16 14098.49 21599.29 8997.06 14999.97 498.29 9499.91 5399.76 28
FMVSNet298.49 13198.40 12798.75 16698.90 23097.14 21098.61 10099.13 21198.59 10999.19 11199.28 9094.14 25999.82 15497.97 11299.80 10099.29 202
3Dnovator+97.89 398.69 9798.51 10899.24 9398.81 25098.40 10799.02 6699.19 19398.99 8598.07 24699.28 9097.11 14899.84 13096.84 18599.32 24399.47 133
VDD-MVS98.56 11998.39 13099.07 11899.13 18798.07 13998.59 10297.01 33499.59 2199.11 11899.27 9294.82 24299.79 18798.34 9199.63 17499.34 186
PVSNet_Blended_VisFu98.17 16898.15 16098.22 22299.73 3695.15 26697.36 23699.68 3294.45 30998.99 13899.27 9296.87 16099.94 3097.13 15899.91 5399.57 80
FE-MVS95.66 29894.95 31097.77 25298.53 29795.28 26199.40 1696.09 35093.11 33197.96 25399.26 9479.10 36999.77 20492.40 33698.71 30698.27 321
dcpmvs_298.78 8299.11 4397.78 25199.56 8193.67 31399.06 6399.86 1199.50 2799.66 3299.26 9497.21 14399.99 298.00 11099.91 5399.68 43
nrg03099.40 1899.35 2099.54 2799.58 6999.13 5598.98 7299.48 8699.68 1099.46 6099.26 9498.62 4099.73 22699.17 4299.92 4599.76 28
CP-MVSNet99.21 3699.09 4699.56 2199.65 6198.96 7099.13 5599.34 13899.42 3799.33 8699.26 9497.01 15499.94 3098.74 6699.93 3499.79 19
RPSCF98.62 11398.36 13499.42 5899.65 6199.42 798.55 10699.57 5297.72 16898.90 15699.26 9496.12 19799.52 30995.72 25799.71 14499.32 193
tfpnnormal98.90 6798.90 6298.91 14399.67 5897.82 16699.00 6999.44 10299.45 3399.51 5599.24 9998.20 6899.86 10295.92 24699.69 15299.04 244
v124098.55 12398.62 9598.32 21399.22 16195.58 25097.51 22699.45 9897.16 22599.45 6399.24 9996.12 19799.85 11499.60 1599.88 6599.55 93
APDe-MVS98.99 5498.79 7299.60 1199.21 16399.15 4798.87 7999.48 8697.57 18099.35 8399.24 9997.83 9399.89 6797.88 11899.70 14999.75 31
casdiffmvs_mvgpermissive99.12 4499.16 3698.99 13299.43 12497.73 17598.00 17199.62 3899.22 5599.55 4599.22 10298.93 2399.75 21698.66 7399.81 9099.50 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ambc98.24 22198.82 24795.97 24198.62 9999.00 23799.27 9799.21 10396.99 15599.50 31496.55 21399.50 22199.26 208
TAMVS98.24 16198.05 17098.80 15599.07 19897.18 20697.88 18498.81 26796.66 24899.17 11699.21 10394.81 24499.77 20496.96 17299.88 6599.44 143
v119298.60 11598.66 8998.41 20699.27 15195.88 24397.52 22499.36 12797.41 19899.33 8699.20 10596.37 18999.82 15499.57 1799.92 4599.55 93
APD_test198.83 7598.66 8999.34 7299.78 2599.47 698.42 12799.45 9898.28 12898.98 13999.19 10697.76 9999.58 29296.57 20699.55 20398.97 256
pmmvs-eth3d98.47 13398.34 13798.86 14799.30 14797.76 17197.16 25299.28 16995.54 28199.42 6899.19 10697.27 13899.63 27597.89 11599.97 1499.20 219
COLMAP_ROBcopyleft96.50 1098.99 5498.85 6799.41 6099.58 6999.10 6098.74 8699.56 5999.09 7699.33 8699.19 10698.40 5299.72 23395.98 24499.76 12599.42 150
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 12598.57 10398.45 20299.21 16395.98 24097.63 21199.36 12797.15 22799.32 9299.18 10995.84 21499.84 13099.50 2299.91 5399.54 97
PM-MVS98.82 7698.72 7899.12 10899.64 6498.54 10097.98 17499.68 3297.62 17499.34 8599.18 10997.54 11899.77 20497.79 12399.74 12999.04 244
PVSNet_BlendedMVS97.55 21497.53 20997.60 26798.92 22693.77 31196.64 27899.43 10894.49 30597.62 27499.18 10996.82 16499.67 25394.73 27999.93 3499.36 180
ACMH+96.62 999.08 4899.00 5399.33 7699.71 4498.83 7698.60 10199.58 4599.11 6699.53 5099.18 10998.81 2999.67 25396.71 19899.77 11499.50 112
v192192098.54 12598.60 10098.38 20999.20 16795.76 24897.56 22099.36 12797.23 22099.38 7699.17 11396.02 20199.84 13099.57 1799.90 6099.54 97
casdiffmvspermissive98.95 6199.00 5398.81 15399.38 13097.33 19597.82 19199.57 5299.17 6499.35 8399.17 11398.35 5799.69 24198.46 8599.73 13299.41 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Patchmatch-RL test97.26 23497.02 23797.99 24099.52 9395.53 25296.13 30199.71 2497.47 18999.27 9799.16 11584.30 34699.62 27797.89 11599.77 11498.81 281
V4298.78 8298.78 7398.76 16399.44 11997.04 21198.27 13899.19 19397.87 15799.25 10599.16 11596.84 16199.78 19899.21 3999.84 7699.46 135
QAPM97.31 23096.81 25198.82 15198.80 25397.49 18699.06 6399.19 19390.22 35997.69 27199.16 11596.91 15899.90 5790.89 35599.41 23199.07 238
wuyk23d96.06 28797.62 20591.38 36398.65 28398.57 9698.85 8296.95 33896.86 23999.90 999.16 11599.18 1498.40 37389.23 36199.77 11477.18 381
v114498.60 11598.66 8998.41 20699.36 13795.90 24297.58 21899.34 13897.51 18599.27 9799.15 11996.34 19199.80 17499.47 2499.93 3499.51 109
DP-MVS98.93 6398.81 7199.28 8399.21 16398.45 10698.46 12299.33 14399.63 1599.48 5799.15 11997.23 14199.75 21697.17 15299.66 16899.63 55
OpenMVScopyleft96.65 797.09 24896.68 25898.32 21398.32 31497.16 20898.86 8199.37 12389.48 36396.29 33699.15 11996.56 17999.90 5792.90 32499.20 26297.89 336
MVS_030498.10 17097.88 18598.76 16398.82 24796.50 22797.90 18291.35 37699.56 2498.32 22899.13 12296.06 19999.93 3599.84 599.97 1499.85 12
EPP-MVSNet98.30 15298.04 17199.07 11899.56 8197.83 16399.29 3398.07 31099.03 8298.59 20299.13 12292.16 29099.90 5796.87 18299.68 15799.49 116
ACMMP_NAP98.75 8798.48 11599.57 1699.58 6999.29 1997.82 19199.25 17896.94 23598.78 17799.12 12498.02 8199.84 13097.13 15899.67 16399.59 69
MVS_Test98.18 16698.36 13497.67 26198.48 30194.73 27898.18 14699.02 23297.69 16998.04 25099.11 12597.22 14299.56 29798.57 7898.90 29798.71 295
MDA-MVSNet-bldmvs97.94 18397.91 18298.06 23499.44 11994.96 27296.63 27999.15 20998.35 11898.83 17199.11 12594.31 25699.85 11496.60 20398.72 30499.37 174
SMA-MVScopyleft98.40 14098.03 17299.51 4399.16 18099.21 2898.05 16299.22 18694.16 31598.98 13999.10 12797.52 12299.79 18796.45 22099.64 17199.53 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 27196.25 27897.71 26099.04 20694.66 28199.16 5196.92 34097.23 22097.87 25899.10 12786.11 33199.65 26991.65 34299.21 26198.82 277
USDC97.41 22497.40 21697.44 28298.94 22093.67 31395.17 33599.53 7194.03 31998.97 14399.10 12795.29 22899.34 33895.84 25399.73 13299.30 200
test072699.50 9899.21 2898.17 14999.35 13297.97 14899.26 10199.06 13097.61 112
AllTest98.44 13698.20 15299.16 10399.50 9898.55 9798.25 14099.58 4596.80 24098.88 16299.06 13097.65 10699.57 29494.45 28899.61 18299.37 174
TestCases99.16 10399.50 9898.55 9799.58 4596.80 24098.88 16299.06 13097.65 10699.57 29494.45 28899.61 18299.37 174
TranMVSNet+NR-MVSNet99.17 3799.07 4999.46 5699.37 13698.87 7398.39 12999.42 11199.42 3799.36 8199.06 13098.38 5399.95 2098.34 9199.90 6099.57 80
LPG-MVS_test98.71 9198.46 11999.47 5499.57 7398.97 6698.23 14199.48 8696.60 24999.10 12199.06 13098.71 3499.83 14495.58 26499.78 11099.62 56
LGP-MVS_train99.47 5499.57 7398.97 6699.48 8696.60 24999.10 12199.06 13098.71 3499.83 14495.58 26499.78 11099.62 56
baseline98.96 6099.02 5198.76 16399.38 13097.26 19998.49 11799.50 7798.86 9699.19 11199.06 13098.23 6299.69 24198.71 6999.76 12599.33 191
VPNet98.87 7098.83 6899.01 13099.70 5097.62 18298.43 12599.35 13299.47 3199.28 9599.05 13796.72 17399.82 15498.09 10399.36 23799.59 69
MVSTER96.86 26196.55 26897.79 25097.91 33694.21 29197.56 22098.87 25397.49 18899.06 12599.05 13780.72 35999.80 17498.44 8699.82 8699.37 174
SD-MVS98.40 14098.68 8697.54 27498.96 21897.99 14697.88 18499.36 12798.20 13499.63 3899.04 13998.76 3095.33 38396.56 21099.74 12999.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet596.01 28895.20 30498.41 20697.53 35396.10 23698.74 8699.50 7797.22 22398.03 25199.04 13969.80 38199.88 7697.27 14799.71 14499.25 209
IS-MVSNet98.19 16597.90 18399.08 11699.57 7397.97 15099.31 2798.32 29899.01 8498.98 13999.03 14191.59 29599.79 18795.49 26699.80 10099.48 126
DVP-MVS++98.90 6798.70 8399.51 4398.43 30699.15 4799.43 1199.32 14598.17 13799.26 10199.02 14298.18 6999.88 7697.07 16299.45 22699.49 116
test_one_060199.39 12999.20 3499.31 15098.49 11498.66 19199.02 14297.64 109
h-mvs3397.77 19997.33 22399.10 11299.21 16397.84 16298.35 13398.57 28799.11 6698.58 20499.02 14288.65 31699.96 1198.11 10196.34 36199.49 116
SED-MVS98.91 6598.72 7899.49 4899.49 10599.17 3998.10 15699.31 15098.03 14599.66 3299.02 14298.36 5499.88 7696.91 17499.62 17799.41 153
test_241102_TWO99.30 15898.03 14599.26 10199.02 14297.51 12399.88 7696.91 17499.60 18499.66 47
DVP-MVScopyleft98.77 8598.52 10799.52 3999.50 9899.21 2898.02 16798.84 26297.97 14899.08 12399.02 14297.61 11299.88 7696.99 16899.63 17499.48 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 13799.08 12399.02 14297.89 9099.88 7697.07 16299.71 14499.70 40
EI-MVSNet98.40 14098.51 10898.04 23799.10 19194.73 27897.20 24998.87 25398.97 8799.06 12599.02 14296.00 20399.80 17498.58 7699.82 8699.60 63
CVMVSNet96.25 28497.21 22893.38 36099.10 19180.56 38697.20 24998.19 30596.94 23599.00 13799.02 14289.50 30999.80 17496.36 22599.59 18899.78 22
LFMVS97.20 24096.72 25598.64 17498.72 26196.95 21698.93 7594.14 36599.74 698.78 17799.01 15184.45 34399.73 22697.44 13999.27 25299.25 209
v2v48298.56 11998.62 9598.37 21099.42 12595.81 24697.58 21899.16 20497.90 15599.28 9599.01 15195.98 20799.79 18799.33 2999.90 6099.51 109
ACMMPcopyleft98.75 8798.50 11099.52 3999.56 8199.16 4398.87 7999.37 12397.16 22598.82 17499.01 15197.71 10299.87 9396.29 22999.69 15299.54 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 11798.26 14799.57 1699.27 15199.15 4797.01 25799.39 11797.67 17099.44 6498.99 15497.53 12099.89 6795.40 26899.68 15799.66 47
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 11898.23 15099.60 1199.69 5299.35 1297.16 25299.38 11994.87 29998.97 14398.99 15498.01 8299.88 7697.29 14699.70 14999.58 75
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 9798.71 8098.62 17899.10 19196.37 23097.23 24598.87 25399.20 5999.19 11198.99 15497.30 13599.85 11498.77 6599.79 10599.65 51
XVG-ACMP-BASELINE98.56 11998.34 13799.22 9699.54 8898.59 9497.71 20199.46 9597.25 21498.98 13998.99 15497.54 11899.84 13095.88 24799.74 12999.23 214
APD-MVS_3200maxsize98.84 7498.61 9999.53 3499.19 17099.27 2298.49 11799.33 14398.64 10399.03 13598.98 15897.89 9099.85 11496.54 21499.42 23099.46 135
XVG-OURS98.53 12798.34 13799.11 11099.50 9898.82 7895.97 30599.50 7797.30 20999.05 13098.98 15899.35 999.32 34195.72 25799.68 15799.18 226
v14898.45 13598.60 10098.00 23999.44 11994.98 27197.44 23299.06 22198.30 12399.32 9298.97 16096.65 17699.62 27798.37 8999.85 7299.39 165
EI-MVSNet-Vis-set98.68 10298.70 8398.63 17799.09 19496.40 22997.23 24598.86 25899.20 5999.18 11598.97 16097.29 13799.85 11498.72 6899.78 11099.64 52
CHOSEN 1792x268897.49 21797.14 23398.54 19399.68 5496.09 23896.50 28399.62 3891.58 34798.84 17098.97 16092.36 28799.88 7696.76 19199.95 2299.67 46
SR-MVS-dyc-post98.81 7898.55 10499.57 1699.20 16799.38 898.48 12099.30 15898.64 10398.95 14698.96 16397.49 12799.86 10296.56 21099.39 23399.45 139
RE-MVS-def98.58 10299.20 16799.38 898.48 12099.30 15898.64 10398.95 14698.96 16397.75 10096.56 21099.39 23399.45 139
D2MVS97.84 19697.84 18897.83 24799.14 18594.74 27796.94 26198.88 25195.84 27698.89 15898.96 16394.40 25499.69 24197.55 13399.95 2299.05 240
ACMM96.08 1298.91 6598.73 7699.48 5199.55 8599.14 5298.07 15999.37 12397.62 17499.04 13298.96 16398.84 2799.79 18797.43 14099.65 16999.49 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final97.10 24696.65 26398.45 20298.53 29796.08 23998.30 13599.11 21498.10 14298.85 16798.95 16779.38 36799.87 9398.68 7299.91 5399.40 162
MVP-Stereo98.08 17497.92 18198.57 18598.96 21896.79 22197.90 18299.18 19796.41 25698.46 21798.95 16795.93 21099.60 28496.51 21698.98 29199.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf0596.54 27396.07 27997.92 24197.90 33794.50 28597.87 18799.14 21097.73 16698.89 15898.95 16775.75 37799.87 9398.50 8399.92 4599.40 162
YYNet197.60 21097.67 19897.39 28599.04 20693.04 32395.27 33298.38 29797.25 21498.92 15498.95 16795.48 22599.73 22696.99 16898.74 30299.41 153
MDA-MVSNet_test_wron97.60 21097.66 20197.41 28499.04 20693.09 31995.27 33298.42 29497.26 21398.88 16298.95 16795.43 22699.73 22697.02 16598.72 30499.41 153
FMVSNet397.50 21597.24 22698.29 21798.08 32995.83 24597.86 18898.91 24797.89 15698.95 14698.95 16787.06 32299.81 16797.77 12499.69 15299.23 214
OPM-MVS98.56 11998.32 14199.25 9199.41 12798.73 8597.13 25499.18 19797.10 22898.75 18398.92 17398.18 6999.65 26996.68 20099.56 20099.37 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ADS-MVSNet295.43 30494.98 30896.76 31498.14 32591.74 34197.92 17997.76 31690.23 35796.51 33098.91 17485.61 33499.85 11492.88 32596.90 35498.69 299
ADS-MVSNet95.24 30794.93 31196.18 32398.14 32590.10 35797.92 17997.32 32890.23 35796.51 33098.91 17485.61 33499.74 22192.88 32596.90 35498.69 299
test_040298.76 8698.71 8098.93 14099.56 8198.14 13198.45 12499.34 13899.28 5198.95 14698.91 17498.34 5899.79 18795.63 26199.91 5398.86 274
test_241102_ONE99.49 10599.17 3999.31 15097.98 14799.66 3298.90 17798.36 5499.48 318
SF-MVS98.53 12798.27 14699.32 7899.31 14498.75 8198.19 14599.41 11296.77 24398.83 17198.90 17797.80 9799.82 15495.68 26099.52 21299.38 172
MTAPA98.88 6998.64 9299.61 999.67 5899.36 1198.43 12599.20 18998.83 10098.89 15898.90 17796.98 15699.92 4497.16 15399.70 14999.56 86
test20.0398.78 8298.77 7498.78 16099.46 11597.20 20497.78 19399.24 18399.04 8199.41 6998.90 17797.65 10699.76 20997.70 12999.79 10599.39 165
SteuartSystems-ACMMP98.79 8098.54 10599.54 2799.73 3699.16 4398.23 14199.31 15097.92 15398.90 15698.90 17798.00 8399.88 7696.15 23799.72 13999.58 75
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 20997.17 22998.99 13299.27 15197.86 16095.98 30493.41 36795.25 29099.47 5998.90 17795.63 21899.85 11496.91 17499.73 13299.27 205
TSAR-MVS + MP.98.63 11198.49 11499.06 12499.64 6497.90 15798.51 11498.94 24096.96 23399.24 10698.89 18397.83 9399.81 16796.88 18199.49 22299.48 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS98.66 10698.37 13399.55 2399.53 9199.18 3898.23 14199.49 8497.01 23298.69 18798.88 18498.00 8399.89 6795.87 25099.59 18899.58 75
TinyColmap97.89 18697.98 17597.60 26798.86 23894.35 28896.21 29899.44 10297.45 19699.06 12598.88 18497.99 8699.28 34894.38 29499.58 19399.18 226
LS3D98.63 11198.38 13299.36 6497.25 36299.38 899.12 5799.32 14599.21 5798.44 21998.88 18497.31 13499.80 17496.58 20499.34 24198.92 265
Anonymous20240521197.90 18497.50 21199.08 11698.90 23098.25 11998.53 10996.16 34898.87 9599.11 11898.86 18790.40 30399.78 19897.36 14399.31 24599.19 224
HPM-MVS_fast99.01 5298.82 6999.57 1699.71 4499.35 1299.00 6999.50 7797.33 20598.94 15298.86 18798.75 3199.82 15497.53 13699.71 14499.56 86
CMPMVSbinary75.91 2396.29 28295.44 29598.84 14996.25 37798.69 8897.02 25699.12 21288.90 36697.83 26298.86 18789.51 30898.90 36791.92 33899.51 21498.92 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 9198.43 12399.57 1699.18 17799.35 1298.36 13299.29 16698.29 12698.88 16298.85 19097.53 12099.87 9396.14 23899.31 24599.48 126
our_test_397.39 22597.73 19596.34 31998.70 26889.78 35894.61 35298.97 23996.50 25299.04 13298.85 19095.98 20799.84 13097.26 14899.67 16399.41 153
EPNet96.14 28695.44 29598.25 21990.76 38795.50 25497.92 17994.65 35898.97 8792.98 37398.85 19089.12 31199.87 9395.99 24399.68 15799.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 20897.49 21298.08 23299.14 18595.12 26896.70 27699.05 22493.77 32298.62 19698.83 19393.23 27199.75 21698.33 9399.76 12599.36 180
PMMVS298.07 17598.08 16898.04 23799.41 12794.59 28494.59 35399.40 11497.50 18698.82 17498.83 19396.83 16399.84 13097.50 13899.81 9099.71 35
MDTV_nov1_ep1395.22 30397.06 36583.20 38197.74 19996.16 34894.37 31196.99 30798.83 19383.95 34899.53 30593.90 30597.95 337
Anonymous2023120698.21 16398.21 15198.20 22399.51 9595.43 25798.13 15199.32 14596.16 26598.93 15398.82 19696.00 20399.83 14497.32 14599.73 13299.36 180
ACMP95.32 1598.41 13898.09 16599.36 6499.51 9598.79 8097.68 20499.38 11995.76 27898.81 17698.82 19698.36 5499.82 15494.75 27899.77 11499.48 126
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE99.05 5098.99 5699.25 9199.44 11998.35 11598.73 8899.56 5998.42 11698.91 15598.81 19898.94 2299.91 5298.35 9099.73 13299.49 116
VNet98.42 13798.30 14298.79 15798.79 25497.29 19798.23 14198.66 28299.31 4898.85 16798.80 19994.80 24599.78 19898.13 10099.13 27399.31 197
tpmrst95.07 30995.46 29393.91 35397.11 36484.36 37997.62 21296.96 33794.98 29596.35 33598.80 19985.46 33699.59 28895.60 26296.23 36397.79 344
ppachtmachnet_test97.50 21597.74 19396.78 31398.70 26891.23 35294.55 35499.05 22496.36 25799.21 10998.79 20196.39 18699.78 19896.74 19399.82 8699.34 186
miper_lstm_enhance97.18 24297.16 23097.25 29198.16 32492.85 32595.15 33799.31 15097.25 21498.74 18598.78 20290.07 30499.78 19897.19 15199.80 10099.11 236
DeepPCF-MVS96.93 598.32 14998.01 17399.23 9598.39 31198.97 6695.03 33999.18 19796.88 23899.33 8698.78 20298.16 7399.28 34896.74 19399.62 17799.44 143
patchmatchnet-post98.77 20484.37 34499.85 114
APD-MVScopyleft98.10 17097.67 19899.42 5899.11 18998.93 7197.76 19799.28 16994.97 29698.72 18698.77 20497.04 15099.85 11493.79 31099.54 20599.49 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 7698.63 9399.39 6399.16 18098.74 8297.54 22299.25 17898.84 9999.06 12598.76 20696.76 17099.93 3598.57 7899.77 11499.50 112
NR-MVSNet98.95 6198.82 6999.36 6499.16 18098.72 8799.22 4299.20 18999.10 7399.72 2298.76 20696.38 18899.86 10298.00 11099.82 8699.50 112
eth_miper_zixun_eth97.23 23897.25 22597.17 29398.00 33292.77 32794.71 34699.18 19797.27 21298.56 20798.74 20891.89 29399.69 24197.06 16499.81 9099.05 240
UniMVSNet (Re)98.87 7098.71 8099.35 6999.24 15698.73 8597.73 20099.38 11998.93 9199.12 11798.73 20996.77 16899.86 10298.63 7599.80 10099.46 135
MG-MVS96.77 26596.61 26497.26 29098.31 31593.06 32095.93 31098.12 30996.45 25597.92 25498.73 20993.77 26999.39 33391.19 35199.04 28299.33 191
c3_l97.36 22697.37 21997.31 28698.09 32893.25 31895.01 34099.16 20497.05 22998.77 18098.72 21192.88 28099.64 27296.93 17399.76 12599.05 240
cl____97.02 25396.83 24897.58 26997.82 34094.04 29794.66 34999.16 20497.04 23098.63 19498.71 21288.68 31599.69 24197.00 16699.81 9099.00 251
DIV-MVS_self_test97.02 25396.84 24797.58 26997.82 34094.03 29894.66 34999.16 20497.04 23098.63 19498.71 21288.69 31399.69 24197.00 16699.81 9099.01 248
DELS-MVS98.27 15698.20 15298.48 19998.86 23896.70 22595.60 32299.20 18997.73 16698.45 21898.71 21297.50 12499.82 15498.21 9799.59 18898.93 264
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 19099.07 19897.53 22399.32 14595.53 28298.54 21198.70 21597.58 11499.76 20994.32 29599.46 224
tpmvs95.02 31195.25 30294.33 34996.39 37685.87 37198.08 15896.83 34295.46 28495.51 35498.69 21685.91 33299.53 30594.16 29696.23 36397.58 352
PatchmatchNetpermissive95.58 30095.67 28895.30 34297.34 36087.32 36897.65 20996.65 34395.30 28997.07 30398.69 21684.77 34099.75 21694.97 27498.64 31198.83 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 10998.34 13799.54 2799.54 8899.17 3998.63 9799.24 18397.47 18998.09 24598.68 21897.62 11199.89 6796.22 23299.62 17799.57 80
UnsupCasMVSNet_eth97.89 18697.60 20698.75 16699.31 14497.17 20797.62 21299.35 13298.72 10298.76 18298.68 21892.57 28699.74 22197.76 12895.60 36999.34 186
SCA96.41 28096.66 26195.67 33398.24 31988.35 36395.85 31596.88 34196.11 26697.67 27298.67 22093.10 27599.85 11494.16 29699.22 25998.81 281
Patchmatch-test96.55 27296.34 27397.17 29398.35 31293.06 32098.40 12897.79 31597.33 20598.41 22298.67 22083.68 35099.69 24195.16 27199.31 24598.77 289
CDS-MVSNet97.69 20497.35 22198.69 17198.73 25997.02 21396.92 26598.75 27695.89 27598.59 20298.67 22092.08 29299.74 22196.72 19699.81 9099.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 13498.09 16599.54 2799.57 7399.22 2798.50 11699.19 19397.61 17797.58 27898.66 22397.40 13199.88 7694.72 28199.60 18499.54 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 15298.15 16098.75 16698.61 28497.23 20097.76 19799.09 21897.31 20898.75 18398.66 22397.56 11699.64 27296.10 24199.55 20399.39 165
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 20597.75 19297.45 28198.23 32193.78 31097.29 24198.84 26296.10 26798.64 19398.65 22596.04 20099.36 33696.84 18599.14 27199.20 219
pmmvs497.58 21397.28 22498.51 19698.84 24296.93 21895.40 33098.52 29093.60 32498.61 19898.65 22595.10 23499.60 28496.97 17199.79 10598.99 252
FPMVS93.44 33392.23 33897.08 29699.25 15597.86 16095.61 32197.16 33192.90 33493.76 37298.65 22575.94 37695.66 38179.30 38097.49 34197.73 346
dp93.47 33293.59 32693.13 36296.64 37181.62 38597.66 20796.42 34692.80 33696.11 33898.64 22878.55 37399.59 28893.31 32092.18 38098.16 325
EPMVS93.72 33093.27 32995.09 34596.04 37987.76 36698.13 15185.01 38594.69 30296.92 30998.64 22878.47 37499.31 34295.04 27296.46 36098.20 323
XVS98.72 9098.45 12099.53 3499.46 11599.21 2898.65 9599.34 13898.62 10797.54 28298.63 23097.50 12499.83 14496.79 18799.53 20999.56 86
CostFormer93.97 32693.78 32394.51 34897.53 35385.83 37397.98 17495.96 35289.29 36594.99 36098.63 23078.63 37199.62 27794.54 28496.50 35998.09 329
MSLP-MVS++98.02 17798.14 16297.64 26598.58 29095.19 26597.48 22899.23 18597.47 18997.90 25698.62 23297.04 15098.81 36997.55 13399.41 23198.94 263
Vis-MVSNet (Re-imp)97.46 21997.16 23098.34 21299.55 8596.10 23698.94 7498.44 29398.32 12298.16 23798.62 23288.76 31299.73 22693.88 30799.79 10599.18 226
XVG-OURS-SEG-HR98.49 13198.28 14499.14 10699.49 10598.83 7696.54 28199.48 8697.32 20799.11 11898.61 23499.33 1099.30 34496.23 23198.38 31899.28 204
ITE_SJBPF98.87 14699.22 16198.48 10499.35 13297.50 18698.28 23198.60 23597.64 10999.35 33793.86 30899.27 25298.79 287
UniMVSNet_NR-MVSNet98.86 7398.68 8699.40 6299.17 17898.74 8297.68 20499.40 11499.14 6599.06 12598.59 23696.71 17499.93 3598.57 7899.77 11499.53 104
114514_t96.50 27695.77 28398.69 17199.48 11297.43 19197.84 19099.55 6381.42 37896.51 33098.58 23795.53 22199.67 25393.41 31999.58 19398.98 253
HY-MVS95.94 1395.90 29295.35 30097.55 27397.95 33394.79 27498.81 8596.94 33992.28 34295.17 35798.57 23889.90 30699.75 21691.20 35097.33 35098.10 328
tpm94.67 31494.34 31895.66 33497.68 34988.42 36297.88 18494.90 35794.46 30796.03 34298.56 23978.66 37099.79 18795.88 24795.01 37298.78 288
PC_three_145293.27 32899.40 7298.54 24098.22 6597.00 37995.17 27099.45 22699.49 116
ACMMPR98.70 9498.42 12599.54 2799.52 9399.14 5298.52 11099.31 15097.47 18998.56 20798.54 24097.75 10099.88 7696.57 20699.59 18899.58 75
new_pmnet96.99 25796.76 25397.67 26198.72 26194.89 27395.95 30998.20 30392.62 33898.55 20998.54 24094.88 24199.52 30993.96 30499.44 22998.59 307
OPU-MVS98.82 15198.59 28898.30 11698.10 15698.52 24398.18 6998.75 37094.62 28299.48 22399.41 153
CS-MVS-test99.13 4299.09 4699.26 8899.13 18798.97 6699.31 2799.88 999.44 3498.16 23798.51 24498.64 3799.93 3598.91 5599.85 7298.88 272
region2R98.69 9798.40 12799.54 2799.53 9199.17 3998.52 11099.31 15097.46 19498.44 21998.51 24497.83 9399.88 7696.46 21999.58 19399.58 75
TSAR-MVS + GP.98.18 16697.98 17598.77 16298.71 26497.88 15896.32 29398.66 28296.33 25899.23 10898.51 24497.48 12899.40 33197.16 15399.46 22499.02 247
OMC-MVS97.88 18897.49 21299.04 12798.89 23598.63 8996.94 26199.25 17895.02 29498.53 21298.51 24497.27 13899.47 32193.50 31799.51 21499.01 248
HFP-MVS98.71 9198.44 12299.51 4399.49 10599.16 4398.52 11099.31 15097.47 18998.58 20498.50 24897.97 8799.85 11496.57 20699.59 18899.53 104
diffmvspermissive98.22 16298.24 14998.17 22599.00 21195.44 25696.38 29099.58 4597.79 16398.53 21298.50 24896.76 17099.74 22197.95 11499.64 17199.34 186
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 14098.19 15499.03 12899.00 21197.65 17996.85 26798.94 24098.57 11298.89 15898.50 24895.60 21999.85 11497.54 13599.85 7299.59 69
Test_1112_low_res96.99 25796.55 26898.31 21599.35 14195.47 25595.84 31699.53 7191.51 34996.80 32098.48 25191.36 29799.83 14496.58 20499.53 20999.62 56
CS-MVS99.13 4299.10 4599.24 9399.06 20299.15 4799.36 1999.88 999.36 4498.21 23498.46 25298.68 3699.93 3599.03 4999.85 7298.64 304
miper_ehance_all_eth97.06 25097.03 23697.16 29597.83 33993.06 32094.66 34999.09 21895.99 27298.69 18798.45 25392.73 28499.61 28396.79 18799.03 28398.82 277
PHI-MVS98.29 15597.95 17799.34 7298.44 30599.16 4398.12 15399.38 11996.01 27198.06 24798.43 25497.80 9799.67 25395.69 25999.58 19399.20 219
tpm cat193.29 33493.13 33393.75 35597.39 35984.74 37697.39 23397.65 32083.39 37794.16 36598.41 25582.86 35499.39 33391.56 34595.35 37197.14 359
CP-MVS98.70 9498.42 12599.52 3999.36 13799.12 5798.72 8999.36 12797.54 18498.30 22998.40 25697.86 9299.89 6796.53 21599.72 13999.56 86
ZNCC-MVS98.68 10298.40 12799.54 2799.57 7399.21 2898.46 12299.29 16697.28 21198.11 24398.39 25798.00 8399.87 9396.86 18499.64 17199.55 93
GST-MVS98.61 11498.30 14299.52 3999.51 9599.20 3498.26 13999.25 17897.44 19798.67 18998.39 25797.68 10399.85 11496.00 24299.51 21499.52 107
HPM-MVScopyleft98.79 8098.53 10699.59 1599.65 6199.29 1999.16 5199.43 10896.74 24498.61 19898.38 25998.62 4099.87 9396.47 21899.67 16399.59 69
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 22998.93 22295.40 25898.80 26990.08 36197.45 29098.37 26095.26 22999.70 23793.58 31498.95 29399.17 230
CPTT-MVS97.84 19697.36 22099.27 8699.31 14498.46 10598.29 13699.27 17294.90 29897.83 26298.37 26094.90 23899.84 13093.85 30999.54 20599.51 109
EC-MVSNet99.09 4699.05 5099.20 9799.28 14998.93 7199.24 4199.84 1499.08 7898.12 24298.37 26098.72 3399.90 5799.05 4799.77 11498.77 289
OpenMVS_ROBcopyleft95.38 1495.84 29495.18 30597.81 24998.41 31097.15 20997.37 23598.62 28583.86 37598.65 19298.37 26094.29 25799.68 25088.41 36298.62 31396.60 366
tttt051795.64 29994.98 30897.64 26599.36 13793.81 30998.72 8990.47 37898.08 14498.67 18998.34 26473.88 37999.92 4497.77 12499.51 21499.20 219
旧先验198.82 24797.45 18998.76 27398.34 26495.50 22499.01 28799.23 214
CNVR-MVS98.17 16897.87 18699.07 11898.67 27698.24 12097.01 25798.93 24297.25 21497.62 27498.34 26497.27 13899.57 29496.42 22199.33 24299.39 165
HyFIR lowres test97.19 24196.60 26698.96 13699.62 6897.28 19895.17 33599.50 7794.21 31499.01 13698.32 26786.61 32599.99 297.10 16099.84 7699.60 63
UnsupCasMVSNet_bld97.30 23196.92 24198.45 20299.28 14996.78 22496.20 29999.27 17295.42 28598.28 23198.30 26893.16 27399.71 23494.99 27397.37 34698.87 273
MSDG97.71 20397.52 21098.28 21898.91 22996.82 22094.42 35699.37 12397.65 17298.37 22798.29 26997.40 13199.33 34094.09 30199.22 25998.68 302
MVS_111021_HR98.25 16098.08 16898.75 16699.09 19497.46 18895.97 30599.27 17297.60 17897.99 25298.25 27098.15 7599.38 33596.87 18299.57 19799.42 150
CANet_DTU97.26 23497.06 23597.84 24697.57 35094.65 28296.19 30098.79 27097.23 22095.14 35898.24 27193.22 27299.84 13097.34 14499.84 7699.04 244
MVS_111021_LR98.30 15298.12 16398.83 15099.16 18098.03 14496.09 30299.30 15897.58 17998.10 24498.24 27198.25 6099.34 33896.69 19999.65 16999.12 235
tpm293.09 33692.58 33794.62 34797.56 35186.53 37097.66 20795.79 35486.15 37294.07 36898.23 27375.95 37599.53 30590.91 35496.86 35797.81 341
CANet97.87 18997.76 19198.19 22497.75 34295.51 25396.76 27299.05 22497.74 16596.93 30898.21 27495.59 22099.89 6797.86 12099.93 3499.19 224
LF4IMVS97.90 18497.69 19798.52 19599.17 17897.66 17897.19 25199.47 9396.31 26097.85 26198.20 27596.71 17499.52 30994.62 28299.72 13998.38 317
CL-MVSNet_self_test97.44 22297.22 22798.08 23298.57 29295.78 24794.30 35998.79 27096.58 25198.60 20098.19 27694.74 24999.64 27296.41 22298.84 29898.82 277
cl2295.79 29595.39 29896.98 30196.77 37092.79 32694.40 35798.53 28994.59 30497.89 25798.17 27782.82 35599.24 35096.37 22399.03 28398.92 265
MVSFormer98.26 15898.43 12397.77 25298.88 23693.89 30799.39 1799.56 5999.11 6698.16 23798.13 27893.81 26799.97 499.26 3499.57 19799.43 147
jason97.45 22197.35 22197.76 25599.24 15693.93 30395.86 31398.42 29494.24 31398.50 21498.13 27894.82 24299.91 5297.22 15099.73 13299.43 147
jason: jason.
ZD-MVS99.01 21098.84 7599.07 22094.10 31798.05 24998.12 28096.36 19099.86 10292.70 33299.19 265
test22298.92 22696.93 21895.54 32398.78 27285.72 37396.86 31798.11 28194.43 25299.10 27899.23 214
新几何198.91 14398.94 22097.76 17198.76 27387.58 37096.75 32198.10 28294.80 24599.78 19892.73 33199.00 28899.20 219
原ACMM198.35 21198.90 23096.25 23498.83 26692.48 33996.07 34098.10 28295.39 22799.71 23492.61 33498.99 28999.08 237
EPNet_dtu94.93 31294.78 31395.38 34193.58 38487.68 36796.78 27095.69 35597.35 20489.14 38098.09 28488.15 32099.49 31594.95 27599.30 24898.98 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 31094.40 31696.93 30397.70 34792.53 33095.08 33897.71 31888.57 36797.71 26998.08 28579.39 36699.82 15496.19 23499.11 27798.43 315
DP-MVS Recon97.33 22996.92 24198.57 18599.09 19497.99 14696.79 26999.35 13293.18 32997.71 26998.07 28695.00 23799.31 34293.97 30399.13 27398.42 316
test_vis1_rt97.75 20097.72 19697.83 24798.81 25096.35 23197.30 24099.69 2794.61 30397.87 25898.05 28796.26 19398.32 37498.74 6698.18 32598.82 277
CSCG98.68 10298.50 11099.20 9799.45 11898.63 8998.56 10599.57 5297.87 15798.85 16798.04 28897.66 10599.84 13096.72 19699.81 9099.13 234
F-COLMAP97.30 23196.68 25899.14 10699.19 17098.39 10897.27 24499.30 15892.93 33396.62 32598.00 28995.73 21699.68 25092.62 33398.46 31799.35 184
Effi-MVS+-dtu98.26 15897.90 18399.35 6998.02 33199.49 598.02 16799.16 20498.29 12697.64 27397.99 29096.44 18599.95 2096.66 20198.93 29598.60 305
hse-mvs297.46 21997.07 23498.64 17498.73 25997.33 19597.45 23197.64 32299.11 6698.58 20497.98 29188.65 31699.79 18798.11 10197.39 34598.81 281
HQP_MVS97.99 18297.67 19898.93 14099.19 17097.65 17997.77 19599.27 17298.20 13497.79 26597.98 29194.90 23899.70 23794.42 29099.51 21499.45 139
plane_prior497.98 291
BH-RMVSNet96.83 26296.58 26797.58 26998.47 30294.05 29596.67 27797.36 32596.70 24797.87 25897.98 29195.14 23399.44 32690.47 35798.58 31599.25 209
AUN-MVS96.24 28595.45 29498.60 18198.70 26897.22 20297.38 23497.65 32095.95 27395.53 35397.96 29582.11 35899.79 18796.31 22797.44 34398.80 286
NCCC97.86 19097.47 21599.05 12598.61 28498.07 13996.98 25998.90 24897.63 17397.04 30597.93 29695.99 20699.66 26495.31 26998.82 30099.43 147
sss97.21 23996.93 23998.06 23498.83 24495.22 26496.75 27398.48 29294.49 30597.27 29797.90 29792.77 28399.80 17496.57 20699.32 24399.16 233
test_yl96.69 26696.29 27597.90 24298.28 31695.24 26297.29 24197.36 32598.21 13198.17 23597.86 29886.27 32799.55 30094.87 27698.32 31998.89 269
DCV-MVSNet96.69 26696.29 27597.90 24298.28 31695.24 26297.29 24197.36 32598.21 13198.17 23597.86 29886.27 32799.55 30094.87 27698.32 31998.89 269
CDPH-MVS97.26 23496.66 26199.07 11899.00 21198.15 12996.03 30399.01 23591.21 35397.79 26597.85 30096.89 15999.69 24192.75 33099.38 23699.39 165
HPM-MVS++copyleft98.10 17097.64 20399.48 5199.09 19499.13 5597.52 22498.75 27697.46 19496.90 31497.83 30196.01 20299.84 13095.82 25499.35 23999.46 135
PatchMatch-RL97.24 23796.78 25298.61 18099.03 20997.83 16396.36 29199.06 22193.49 32797.36 29697.78 30295.75 21599.49 31593.44 31898.77 30198.52 308
TAPA-MVS96.21 1196.63 27095.95 28198.65 17398.93 22298.09 13396.93 26399.28 16983.58 37698.13 24197.78 30296.13 19699.40 33193.52 31599.29 25098.45 312
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 29195.44 29597.52 27698.51 30093.99 30198.39 12996.09 35098.21 13198.40 22697.76 30486.88 32399.63 27595.42 26789.27 38198.95 259
WTY-MVS96.67 26896.27 27797.87 24598.81 25094.61 28396.77 27197.92 31494.94 29797.12 30097.74 30591.11 29899.82 15493.89 30698.15 32999.18 226
test_method79.78 34979.50 35280.62 36580.21 38845.76 39070.82 37998.41 29631.08 38380.89 38497.71 30684.85 33997.37 37891.51 34680.03 38298.75 292
MSP-MVS98.40 14098.00 17499.61 999.57 7399.25 2498.57 10499.35 13297.55 18399.31 9497.71 30694.61 25099.88 7696.14 23899.19 26599.70 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 17997.63 20499.10 11299.24 15698.17 12896.89 26698.73 27995.66 27997.92 25497.70 30897.17 14499.66 26496.18 23699.23 25899.47 133
AdaColmapbinary97.14 24596.71 25698.46 20198.34 31397.80 16996.95 26098.93 24295.58 28096.92 30997.66 30995.87 21299.53 30590.97 35299.14 27198.04 331
thisisatest053095.27 30694.45 31597.74 25799.19 17094.37 28797.86 18890.20 37997.17 22498.22 23397.65 31073.53 38099.90 5796.90 17999.35 23998.95 259
testgi98.32 14998.39 13098.13 22899.57 7395.54 25197.78 19399.49 8497.37 20299.19 11197.65 31098.96 2199.49 31596.50 21798.99 28999.34 186
test_prior295.74 31896.48 25496.11 33897.63 31295.92 21194.16 29699.20 262
tt080598.69 9798.62 9598.90 14599.75 3499.30 1799.15 5396.97 33698.86 9698.87 16697.62 31398.63 3998.96 36399.41 2798.29 32198.45 312
cdsmvs_eth3d_5k24.66 35132.88 3540.00 3690.00 3920.00 3930.00 38099.10 2160.00 3870.00 38897.58 31499.21 130.00 3880.00 3860.00 3860.00 384
lupinMVS97.06 25096.86 24597.65 26398.88 23693.89 30795.48 32797.97 31293.53 32598.16 23797.58 31493.81 26799.91 5296.77 19099.57 19799.17 230
TEST998.71 26498.08 13795.96 30799.03 22991.40 35095.85 34397.53 31696.52 18199.76 209
train_agg97.10 24696.45 27199.07 11898.71 26498.08 13795.96 30799.03 22991.64 34595.85 34397.53 31696.47 18399.76 20993.67 31199.16 26899.36 180
Fast-Effi-MVS+-dtu98.27 15698.09 16598.81 15398.43 30698.11 13297.61 21499.50 7798.64 10397.39 29497.52 31898.12 7699.95 2096.90 17998.71 30698.38 317
test_898.67 27698.01 14595.91 31299.02 23291.64 34595.79 34597.50 31996.47 18399.76 209
1112_ss97.29 23396.86 24598.58 18399.34 14396.32 23296.75 27399.58 4593.14 33096.89 31597.48 32092.11 29199.86 10296.91 17499.54 20599.57 80
ab-mvs-re8.12 35510.83 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.48 3200.00 3920.00 3880.00 3860.00 3860.00 384
Effi-MVS+98.02 17797.82 18998.62 17898.53 29797.19 20597.33 23899.68 3297.30 20996.68 32297.46 32298.56 4499.80 17496.63 20298.20 32498.86 274
PCF-MVS92.86 1894.36 31793.00 33498.42 20598.70 26897.56 18393.16 37199.11 21479.59 37997.55 28197.43 32392.19 28999.73 22679.85 37999.45 22697.97 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 29395.32 30197.49 27998.60 28694.15 29493.83 36697.93 31395.49 28396.68 32297.42 32483.21 35199.30 34496.22 23298.55 31699.01 248
CNLPA97.17 24396.71 25698.55 19098.56 29398.05 14396.33 29298.93 24296.91 23797.06 30497.39 32594.38 25599.45 32491.66 34199.18 26798.14 326
PLCcopyleft94.65 1696.51 27495.73 28598.85 14898.75 25797.91 15696.42 28899.06 22190.94 35695.59 34697.38 32694.41 25399.59 28890.93 35398.04 33699.05 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 26296.75 25497.08 29698.74 25893.33 31796.71 27598.26 30096.72 24598.44 21997.37 32795.20 23199.47 32191.89 33997.43 34498.44 314
PVSNet_Blended96.88 26096.68 25897.47 28098.92 22693.77 31194.71 34699.43 10890.98 35597.62 27497.36 32896.82 16499.67 25394.73 27999.56 20098.98 253
miper_enhance_ethall96.01 28895.74 28496.81 31196.41 37592.27 33793.69 36898.89 25091.14 35498.30 22997.35 32990.58 30199.58 29296.31 22799.03 28398.60 305
DPM-MVS96.32 28195.59 29198.51 19698.76 25597.21 20394.54 35598.26 30091.94 34496.37 33497.25 33093.06 27799.43 32791.42 34798.74 30298.89 269
E-PMN94.17 32294.37 31793.58 35796.86 36785.71 37490.11 37797.07 33398.17 13797.82 26497.19 33184.62 34298.94 36489.77 35997.68 34096.09 373
CLD-MVS97.49 21797.16 23098.48 19999.07 19897.03 21294.71 34699.21 18794.46 30798.06 24797.16 33297.57 11599.48 31894.46 28799.78 11098.95 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 30395.47 29295.65 33598.25 31888.27 36493.25 37098.88 25193.53 32594.65 36197.15 33386.17 32999.93 3597.41 14199.93 3498.73 294
xiu_mvs_v1_base_debu97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
xiu_mvs_v1_base97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
xiu_mvs_v1_base_debi97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
NP-MVS98.84 24297.39 19396.84 337
HQP-MVS97.00 25696.49 27098.55 19098.67 27696.79 22196.29 29499.04 22796.05 26895.55 34996.84 33793.84 26599.54 30392.82 32799.26 25599.32 193
API-MVS97.04 25296.91 24397.42 28397.88 33898.23 12498.18 14698.50 29197.57 18097.39 29496.75 33996.77 16899.15 35790.16 35899.02 28694.88 377
131495.74 29695.60 29096.17 32497.53 35392.75 32898.07 15998.31 29991.22 35294.25 36496.68 34095.53 22199.03 35991.64 34397.18 35196.74 364
TR-MVS95.55 30195.12 30696.86 31097.54 35293.94 30296.49 28496.53 34594.36 31297.03 30696.61 34194.26 25899.16 35686.91 36796.31 36297.47 355
Fast-Effi-MVS+97.67 20697.38 21898.57 18598.71 26497.43 19197.23 24599.45 9894.82 30096.13 33796.51 34298.52 4699.91 5296.19 23498.83 29998.37 319
xiu_mvs_v2_base97.16 24497.49 21296.17 32498.54 29592.46 33195.45 32898.84 26297.25 21497.48 28896.49 34398.31 5999.90 5796.34 22698.68 30996.15 371
MVS93.19 33592.09 34096.50 31796.91 36694.03 29898.07 15998.06 31168.01 38094.56 36396.48 34495.96 20999.30 34483.84 37296.89 35696.17 369
PAPM_NR96.82 26496.32 27498.30 21699.07 19896.69 22697.48 22898.76 27395.81 27796.61 32696.47 34594.12 26299.17 35590.82 35697.78 33899.06 239
KD-MVS_2432*160092.87 33891.99 34195.51 33891.37 38589.27 35994.07 36198.14 30795.42 28597.25 29896.44 34667.86 38399.24 35091.28 34896.08 36698.02 332
miper_refine_blended92.87 33891.99 34195.51 33891.37 38589.27 35994.07 36198.14 30795.42 28597.25 29896.44 34667.86 38399.24 35091.28 34896.08 36698.02 332
PVSNet93.40 1795.67 29795.70 28695.57 33698.83 24488.57 36192.50 37397.72 31792.69 33796.49 33396.44 34693.72 27099.43 32793.61 31299.28 25198.71 295
EMVS93.83 32894.02 32093.23 36196.83 36984.96 37589.77 37896.32 34797.92 15397.43 29296.36 34986.17 32998.93 36587.68 36597.73 33995.81 374
MAR-MVS96.47 27895.70 28698.79 15797.92 33599.12 5798.28 13798.60 28692.16 34395.54 35296.17 35094.77 24899.52 30989.62 36098.23 32297.72 347
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 34690.34 34996.51 31698.06 33092.56 32992.44 37497.17 33086.35 37190.38 37896.01 35186.61 32599.21 35370.65 38395.43 37097.75 345
PS-MVSNAJ97.08 24997.39 21796.16 32698.56 29392.46 33195.24 33498.85 26197.25 21497.49 28795.99 35298.07 7799.90 5796.37 22398.67 31096.12 372
dmvs_re95.98 29095.39 29897.74 25798.86 23897.45 18998.37 13195.69 35597.95 15096.56 32795.95 35390.70 30097.68 37788.32 36396.13 36598.11 327
baseline293.73 32992.83 33596.42 31897.70 34791.28 35096.84 26889.77 38093.96 32192.44 37495.93 35479.14 36899.77 20492.94 32396.76 35898.21 322
alignmvs97.35 22796.88 24498.78 16098.54 29598.09 13397.71 20197.69 31999.20 5997.59 27795.90 35588.12 32199.55 30098.18 9998.96 29298.70 298
ET-MVSNet_ETH3D94.30 32093.21 33097.58 26998.14 32594.47 28694.78 34593.24 36994.72 30189.56 37995.87 35678.57 37299.81 16796.91 17497.11 35398.46 310
thisisatest051594.12 32493.16 33196.97 30298.60 28692.90 32493.77 36790.61 37794.10 31796.91 31195.87 35674.99 37899.80 17494.52 28599.12 27698.20 323
BH-w/o95.13 30894.89 31295.86 32898.20 32291.31 34895.65 32097.37 32493.64 32396.52 32995.70 35893.04 27899.02 36088.10 36495.82 36897.24 358
PMMVS96.51 27495.98 28098.09 22997.53 35395.84 24494.92 34298.84 26291.58 34796.05 34195.58 35995.68 21799.66 26495.59 26398.09 33298.76 291
EIA-MVS98.00 17997.74 19398.80 15598.72 26198.09 13398.05 16299.60 4297.39 20096.63 32495.55 36097.68 10399.80 17496.73 19599.27 25298.52 308
ETV-MVS98.03 17697.86 18798.56 18998.69 27398.07 13997.51 22699.50 7798.10 14297.50 28695.51 36198.41 5199.88 7696.27 23099.24 25797.71 348
PAPR95.29 30594.47 31497.75 25697.50 35795.14 26794.89 34398.71 28091.39 35195.35 35695.48 36294.57 25199.14 35884.95 37097.37 34698.97 256
canonicalmvs98.34 14798.26 14798.58 18398.46 30397.82 16698.96 7399.46 9599.19 6397.46 28995.46 36398.59 4299.46 32398.08 10498.71 30698.46 310
MVEpermissive83.40 2292.50 34091.92 34394.25 35098.83 24491.64 34292.71 37283.52 38695.92 27486.46 38395.46 36395.20 23195.40 38280.51 37898.64 31195.73 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 32793.85 32194.04 35196.53 37284.62 37794.05 36392.39 37196.17 26394.12 36695.07 36582.30 35699.67 25395.87 25098.18 32597.82 339
test-mter92.33 34391.76 34694.04 35196.53 37284.62 37794.05 36392.39 37194.00 32094.12 36695.07 36565.63 38999.67 25395.87 25098.18 32597.82 339
thres600view794.45 31693.83 32296.29 32099.06 20291.53 34397.99 17394.24 36398.34 11997.44 29195.01 36779.84 36299.67 25384.33 37198.23 32297.66 349
gm-plane-assit94.83 38281.97 38488.07 36994.99 36899.60 28491.76 340
thres100view90094.19 32193.67 32595.75 33299.06 20291.35 34798.03 16594.24 36398.33 12097.40 29394.98 36979.84 36299.62 27783.05 37398.08 33396.29 367
cascas94.79 31394.33 31996.15 32796.02 38092.36 33592.34 37599.26 17785.34 37495.08 35994.96 37092.96 27998.53 37294.41 29398.59 31497.56 353
TESTMET0.1,192.19 34591.77 34593.46 35896.48 37482.80 38294.05 36391.52 37594.45 30994.00 36994.88 37166.65 38699.56 29795.78 25598.11 33198.02 332
test0.0.03 194.51 31593.69 32496.99 30096.05 37893.61 31594.97 34193.49 36696.17 26397.57 28094.88 37182.30 35699.01 36293.60 31394.17 37698.37 319
DeepMVS_CXcopyleft93.44 35998.24 31994.21 29194.34 36064.28 38191.34 37794.87 37389.45 31092.77 38477.54 38193.14 37793.35 379
IB-MVS91.63 1992.24 34490.90 34896.27 32197.22 36391.24 35194.36 35893.33 36892.37 34092.24 37594.58 37466.20 38899.89 6793.16 32294.63 37497.66 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 32593.44 32795.78 33198.93 22291.44 34597.60 21594.29 36197.94 15197.10 30194.31 37579.67 36499.62 27783.05 37398.08 33396.29 367
thres40094.14 32393.44 32796.24 32298.93 22291.44 34597.60 21594.29 36197.94 15197.10 30194.31 37579.67 36499.62 27783.05 37398.08 33397.66 349
thres20093.72 33093.14 33295.46 34098.66 28191.29 34996.61 28094.63 35997.39 20096.83 31893.71 37779.88 36199.56 29782.40 37698.13 33095.54 376
dmvs_testset92.94 33792.21 33995.13 34398.59 28890.99 35497.65 20992.09 37396.95 23494.00 36993.55 37892.34 28896.97 38072.20 38292.52 37897.43 356
PVSNet_089.98 2191.15 34790.30 35093.70 35697.72 34384.34 38090.24 37697.42 32390.20 36093.79 37193.09 37990.90 29998.89 36886.57 36872.76 38397.87 338
tmp_tt78.77 35078.73 35378.90 36658.45 38974.76 38994.20 36078.26 38939.16 38286.71 38292.82 38080.50 36075.19 38586.16 36992.29 37986.74 380
GG-mvs-BLEND94.76 34694.54 38392.13 33999.31 2780.47 38888.73 38191.01 38167.59 38598.16 37682.30 37794.53 37593.98 378
X-MVStestdata94.32 31892.59 33699.53 3499.46 11599.21 2898.65 9599.34 13898.62 10797.54 28245.85 38297.50 12499.83 14496.79 18799.53 20999.56 86
testmvs17.12 35220.53 3556.87 36812.05 3904.20 39293.62 3696.73 3914.62 38610.41 38624.33 3838.28 3913.56 3879.69 38515.07 38412.86 383
test12317.04 35320.11 3567.82 36710.25 3914.91 39194.80 3444.47 3924.93 38510.00 38724.28 3849.69 3903.64 38610.14 38412.43 38514.92 382
test_post21.25 38583.86 34999.70 237
test_post197.59 21720.48 38683.07 35399.66 26494.16 296
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.17 35410.90 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38798.07 770.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.73 3699.67 299.43 1199.54 6899.43 3699.26 101
MSC_two_6792asdad99.32 7898.43 30698.37 11198.86 25899.89 6797.14 15699.60 18499.71 35
No_MVS99.32 7898.43 30698.37 11198.86 25899.89 6797.14 15699.60 18499.71 35
eth-test20.00 392
eth-test0.00 392
IU-MVS99.49 10599.15 4798.87 25392.97 33299.41 6996.76 19199.62 17799.66 47
save fliter99.11 18997.97 15096.53 28299.02 23298.24 129
test_0728_SECOND99.60 1199.50 9899.23 2698.02 16799.32 14599.88 7696.99 16899.63 17499.68 43
GSMVS98.81 281
test_part299.36 13799.10 6099.05 130
sam_mvs184.74 34198.81 281
sam_mvs84.29 347
MTGPAbinary99.20 189
MTMP97.93 17791.91 374
test9_res93.28 32199.15 27099.38 172
agg_prior292.50 33599.16 26899.37 174
agg_prior98.68 27597.99 14699.01 23595.59 34699.77 204
test_prior497.97 15095.86 313
test_prior98.95 13898.69 27397.95 15499.03 22999.59 28899.30 200
旧先验295.76 31788.56 36897.52 28499.66 26494.48 286
新几何295.93 310
无先验95.74 31898.74 27889.38 36499.73 22692.38 33799.22 218
原ACMM295.53 324
testdata299.79 18792.80 329
segment_acmp97.02 153
testdata195.44 32996.32 259
test1298.93 14098.58 29097.83 16398.66 28296.53 32895.51 22399.69 24199.13 27399.27 205
plane_prior799.19 17097.87 159
plane_prior698.99 21497.70 17794.90 238
plane_prior599.27 17299.70 23794.42 29099.51 21499.45 139
plane_prior397.78 17097.41 19897.79 265
plane_prior297.77 19598.20 134
plane_prior199.05 205
plane_prior97.65 17997.07 25596.72 24599.36 237
n20.00 393
nn0.00 393
door-mid99.57 52
test1198.87 253
door99.41 112
HQP5-MVS96.79 221
HQP-NCC98.67 27696.29 29496.05 26895.55 349
ACMP_Plane98.67 27696.29 29496.05 26895.55 349
BP-MVS92.82 327
HQP4-MVS95.56 34899.54 30399.32 193
HQP3-MVS99.04 22799.26 255
HQP2-MVS93.84 265
MDTV_nov1_ep13_2view74.92 38897.69 20390.06 36297.75 26885.78 33393.52 31598.69 299
ACMMP++_ref99.77 114
ACMMP++99.68 157
Test By Simon96.52 181