This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8399.36 1499.92 3499.64 39
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17699.92 3599.44 1399.92 3499.68 31
MVS-HIRNet94.32 30395.62 27490.42 34598.46 28275.36 36696.29 27489.13 36395.25 27295.38 33599.75 792.88 26899.19 34194.07 27999.39 21296.72 345
gg-mvs-nofinetune92.37 32691.20 33195.85 31295.80 36092.38 31799.31 1881.84 36799.75 591.83 35799.74 868.29 36399.02 34787.15 34797.12 33396.16 350
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1398.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1899.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
JIA-IIPM95.52 28695.03 29397.00 28396.85 34594.03 28496.93 23895.82 33699.20 4894.63 34299.71 1283.09 33399.60 27594.42 26694.64 35397.36 337
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5599.70 899.80 999.68 1496.84 14999.83 13699.21 2399.91 4099.77 16
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1799.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2299.66 1199.68 1999.66 1798.44 3999.95 1599.73 299.96 1499.75 22
K. test v398.00 16297.66 18199.03 12399.79 1997.56 17999.19 3692.47 35499.62 1799.52 3599.66 1789.61 29099.96 899.25 2099.81 6999.56 71
SixPastTwentyTwo98.75 7198.62 7399.16 9799.83 1597.96 14899.28 2798.20 29099.37 3499.70 1599.65 1992.65 27299.93 2899.04 3199.84 5699.60 49
DSMNet-mixed97.42 20997.60 18796.87 29199.15 15891.46 32698.54 8699.12 19592.87 31297.58 25399.63 2096.21 18399.90 4995.74 23099.54 18299.27 194
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15399.66 34
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9799.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30497.70 10799.73 10697.89 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9297.47 20199.57 3399.37 3499.21 8499.61 2396.76 15899.83 13698.06 8599.83 6299.71 26
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7499.84 5699.52 93
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1999.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
v1098.97 4499.11 3398.55 18999.44 10096.21 23098.90 5999.55 4498.73 8899.48 4099.60 2596.63 16599.83 13699.70 399.99 599.61 48
v899.01 3799.16 3098.57 18499.47 9496.31 22898.90 5999.47 7399.03 6899.52 3599.57 2796.93 14599.81 15999.60 499.98 999.60 49
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13499.90 4999.21 2399.87 5299.54 83
Anonymous2024052198.69 8198.87 4498.16 22499.77 2095.11 26199.08 4499.44 8199.34 3799.33 6299.55 2994.10 25099.94 2399.25 2099.96 1499.42 138
GBi-Net98.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
test198.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11299.20 3299.44 8199.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 4899.31 3999.62 2799.53 3397.36 12199.86 9199.24 2299.71 11799.39 150
new-patchmatchnet98.35 13298.74 5697.18 27799.24 12992.23 32096.42 26899.48 6798.30 11199.69 1799.53 3397.44 11699.82 14698.84 4299.77 9099.49 104
lessismore_v098.97 13099.73 2497.53 18186.71 36499.37 5699.52 3589.93 28899.92 3598.99 3499.72 11399.44 131
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13499.85 10599.02 3299.94 2199.80 12
VDDNet98.21 14797.95 16099.01 12799.58 5197.74 17099.01 5097.29 31699.67 1098.97 12499.50 3690.45 28599.80 16897.88 9699.20 24299.48 112
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14599.46 7597.56 16599.54 3099.50 3698.97 1699.84 12298.06 8599.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_part197.91 16797.46 19799.27 8298.80 23398.18 12099.07 4699.36 10699.75 599.63 2599.49 3982.20 34099.89 5898.87 4099.95 1699.74 24
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6499.62 2098.48 10299.37 5699.49 3998.75 2499.86 9198.20 7799.80 7799.71 26
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11099.17 3799.78 499.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 11398.45 10198.79 15597.94 31196.96 21099.08 4498.54 27599.10 6296.82 29699.47 4296.55 16899.84 12298.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 19198.50 9095.13 32599.63 4885.84 35298.35 10998.21 28998.23 11999.54 3099.46 4395.02 22399.68 24598.24 7499.87 5299.87 4
LCM-MVSNet-Re98.64 9198.48 9599.11 10498.85 22098.51 9798.49 9499.83 398.37 10599.69 1799.46 4398.21 5699.92 3594.13 27799.30 22898.91 256
mvs_anonymous97.83 18298.16 14196.87 29198.18 29991.89 32297.31 21298.90 23497.37 18698.83 15199.46 4396.28 18299.79 18198.90 3798.16 30898.95 247
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5599.64 1299.56 2899.46 4398.23 5299.97 398.78 4499.93 2599.72 25
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4498.30 11199.65 2299.45 4799.22 999.76 20698.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7899.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4899.62 1799.56 2899.42 4998.16 6099.96 898.78 4499.93 2599.77 16
PatchT96.65 25796.35 25797.54 26297.40 33495.32 25297.98 14896.64 32899.33 3896.89 29299.42 4984.32 32699.81 15997.69 10997.49 32297.48 335
FIs99.14 3299.09 3499.29 7799.70 3698.28 10999.13 4199.52 5499.48 2499.24 8099.41 5196.79 15599.82 14698.69 5299.88 4999.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5199.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19599.32 1598.81 25297.66 15598.62 17599.40 5396.82 15299.80 16895.88 22199.51 19298.75 277
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11799.01 5098.99 22399.25 4499.54 3099.37 5497.04 13799.80 16897.89 9399.52 18999.35 170
CR-MVSNet96.28 26995.95 26697.28 27497.71 32194.22 27798.11 12898.92 23192.31 31896.91 28899.37 5485.44 31899.81 15997.39 11997.36 32997.81 321
Patchmtry97.35 21396.97 22498.50 19797.31 33896.47 22398.18 12198.92 23198.95 7898.78 15899.37 5485.44 31899.85 10595.96 21999.83 6299.17 218
EG-PatchMatch MVS98.99 3999.01 3898.94 13499.50 7797.47 18398.04 13999.59 2498.15 12899.40 5299.36 5798.58 3299.76 20698.78 4499.68 13399.59 55
IterMVS-SCA-FT97.85 17998.18 13796.87 29199.27 12491.16 33595.53 30699.25 15799.10 6299.41 4999.35 5893.10 26399.96 898.65 5399.94 2199.49 104
PMVScopyleft91.26 2097.86 17497.94 16297.65 25199.71 3097.94 15198.52 8898.68 26898.99 7197.52 26099.35 5897.41 11798.18 35891.59 32599.67 13996.82 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4499.46 2799.50 3999.34 6097.30 12399.93 2898.90 3799.93 2599.77 16
RPMNet97.02 24096.93 22597.30 27397.71 32194.22 27798.11 12899.30 13999.37 3496.91 28899.34 6086.72 30599.87 8397.53 11397.36 32997.81 321
IterMVS97.73 18698.11 14796.57 29899.24 12990.28 33695.52 30899.21 16698.86 8299.33 6299.33 6293.11 26299.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 6198.73 5799.05 12098.76 23697.81 16499.25 3099.30 13998.57 10098.55 18999.33 6297.95 7699.90 4997.16 12999.67 13999.44 131
IterMVS-LS98.55 10898.70 6498.09 22699.48 9294.73 26797.22 22099.39 9698.97 7499.38 5499.31 6496.00 19099.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet298.49 11798.40 10998.75 16398.90 20997.14 20698.61 7899.13 19398.59 9699.19 8699.28 6594.14 24699.82 14697.97 9199.80 7799.29 191
3Dnovator+97.89 398.69 8198.51 8899.24 8998.81 23198.40 10299.02 4999.19 17398.99 7198.07 22299.28 6597.11 13699.84 12296.84 15899.32 22399.47 120
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32099.59 2099.11 9599.27 6794.82 22999.79 18198.34 7199.63 15099.34 172
PVSNet_Blended_VisFu98.17 15298.15 14398.22 22099.73 2495.15 25897.36 20899.68 1494.45 28898.99 11999.27 6796.87 14899.94 2397.13 13399.91 4099.57 66
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6799.68 999.46 4399.26 6998.62 2999.73 22199.17 2699.92 3499.76 20
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11899.42 3099.33 6299.26 6997.01 14199.94 2398.74 4999.93 2599.79 13
RPSCF98.62 9598.36 11699.42 5799.65 4399.42 498.55 8599.57 3397.72 15298.90 13799.26 6996.12 18599.52 30095.72 23199.71 11799.32 180
tfpnnormal98.90 5398.90 4398.91 13899.67 4097.82 16299.00 5299.44 8199.45 2899.51 3899.24 7298.20 5799.86 9195.92 22099.69 12899.04 233
v124098.55 10898.62 7398.32 21199.22 13495.58 24397.51 19799.45 7897.16 20999.45 4599.24 7296.12 18599.85 10599.60 499.88 4999.55 79
APDe-MVS98.99 3998.79 5299.60 1399.21 13699.15 4598.87 6199.48 6797.57 16399.35 5999.24 7297.83 8099.89 5897.88 9699.70 12299.75 22
ambc98.24 21998.82 22895.97 23598.62 7799.00 22299.27 7399.21 7596.99 14299.50 30596.55 18699.50 19999.26 197
TAMVS98.24 14598.05 15398.80 15399.07 17397.18 20297.88 15698.81 25296.66 23099.17 9199.21 7594.81 23199.77 19996.96 14599.88 4999.44 131
v119298.60 9998.66 6998.41 20499.27 12495.88 23797.52 19599.36 10697.41 18299.33 6299.20 7796.37 17999.82 14699.57 699.92 3499.55 79
pmmvs-eth3d98.47 11998.34 11998.86 14599.30 12197.76 16797.16 22799.28 14895.54 26399.42 4899.19 7897.27 12699.63 26697.89 9399.97 1199.20 207
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4099.09 6599.33 6299.19 7898.40 4199.72 22995.98 21899.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 11198.57 8298.45 20199.21 13695.98 23497.63 18299.36 10697.15 21199.32 6899.18 8095.84 20199.84 12299.50 1099.91 4099.54 83
PM-MVS98.82 5998.72 5999.12 10299.64 4698.54 9597.98 14899.68 1497.62 15899.34 6199.18 8097.54 10399.77 19997.79 9999.74 10399.04 233
PVSNet_BlendedMVS97.55 19897.53 18997.60 25598.92 20593.77 29796.64 25699.43 8794.49 28497.62 24999.18 8096.82 15299.67 24894.73 25599.93 2599.36 166
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2699.11 5699.53 3399.18 8098.81 2299.67 24896.71 17199.77 9099.50 100
v192192098.54 11198.60 7898.38 20799.20 14095.76 24297.56 19199.36 10697.23 20499.38 5499.17 8496.02 18899.84 12299.57 699.90 4499.54 83
casdiffmvs98.95 4799.00 3998.81 15199.38 10897.33 18997.82 16399.57 3399.17 5399.35 5999.17 8498.35 4699.69 23698.46 6499.73 10699.41 141
Patchmatch-RL test97.26 22097.02 22197.99 23699.52 7295.53 24596.13 28199.71 1097.47 17299.27 7399.16 8684.30 32799.62 26897.89 9399.77 9098.81 267
V4298.78 6698.78 5398.76 16199.44 10097.04 20798.27 11399.19 17397.87 14399.25 7999.16 8696.84 14999.78 19399.21 2399.84 5699.46 122
QAPM97.31 21696.81 23598.82 14998.80 23397.49 18299.06 4899.19 17390.22 33897.69 24599.16 8696.91 14699.90 4990.89 33699.41 20999.07 227
wuyk23d96.06 27397.62 18591.38 34498.65 26498.57 9198.85 6496.95 32296.86 22299.90 499.16 8699.18 1198.40 35789.23 34299.77 9077.18 361
v114498.60 9998.66 6998.41 20499.36 11195.90 23697.58 18999.34 11897.51 16899.27 7399.15 9096.34 18199.80 16899.47 1299.93 2599.51 96
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10198.46 9999.33 12399.63 1499.48 4099.15 9097.23 13199.75 21397.17 12899.66 14499.63 43
OpenMVScopyleft96.65 797.09 23396.68 24298.32 21198.32 29097.16 20498.86 6399.37 10289.48 34296.29 31499.15 9096.56 16799.90 4992.90 30499.20 24297.89 314
EPP-MVSNet98.30 13698.04 15499.07 11399.56 6297.83 15999.29 2398.07 29699.03 6898.59 18199.13 9392.16 27699.90 4996.87 15599.68 13399.49 104
ACMMP_NAP98.75 7198.48 9599.57 1899.58 5199.29 1797.82 16399.25 15796.94 21898.78 15899.12 9498.02 6899.84 12297.13 13399.67 13999.59 55
RRT_MVS97.07 23596.57 25098.58 18195.89 35996.33 22697.36 20898.77 25897.85 14599.08 10199.12 9482.30 33799.96 898.82 4399.90 4499.45 126
MVS_Test98.18 15098.36 11697.67 24998.48 28094.73 26798.18 12199.02 21697.69 15398.04 22699.11 9697.22 13299.56 28898.57 5798.90 28098.71 280
MDA-MVSNet-bldmvs97.94 16697.91 16498.06 23199.44 10094.96 26396.63 25799.15 19298.35 10698.83 15199.11 9694.31 24399.85 10596.60 17798.72 28799.37 160
SMA-MVScopyleft98.40 12798.03 15599.51 4599.16 15499.21 2698.05 13799.22 16594.16 29598.98 12199.10 9897.52 10799.79 18196.45 19399.64 14799.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 25996.25 26397.71 24899.04 18094.66 27099.16 3896.92 32497.23 20497.87 23399.10 9886.11 31299.65 26191.65 32399.21 24198.82 264
USDC97.41 21097.40 19897.44 26898.94 19993.67 29995.17 31699.53 5194.03 29898.97 12499.10 9895.29 21799.34 32695.84 22799.73 10699.30 187
test072699.50 7799.21 2698.17 12499.35 11297.97 13599.26 7799.06 10197.61 98
AllTest98.44 12298.20 13499.16 9799.50 7798.55 9298.25 11599.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
TestCases99.16 9799.50 7798.55 9299.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9099.42 3099.36 5899.06 10198.38 4299.95 1598.34 7199.90 4499.57 66
LPG-MVS_test98.71 7698.46 9999.47 5399.57 5598.97 6298.23 11699.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
baseline98.96 4699.02 3798.76 16199.38 10897.26 19498.49 9499.50 5798.86 8299.19 8699.06 10198.23 5299.69 23698.71 5199.76 9999.33 178
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17898.43 10299.35 11299.47 2699.28 7199.05 10896.72 16199.82 14698.09 8399.36 21799.59 55
RRT_test8_iter0595.24 29195.13 29195.57 31897.32 33787.02 34997.99 14699.41 9198.06 13199.12 9399.05 10866.85 36799.85 10598.93 3699.47 20399.84 8
MVSTER96.86 24896.55 25297.79 24397.91 31394.21 27997.56 19198.87 23997.49 17199.06 10499.05 10880.72 34299.80 16898.44 6599.82 6599.37 160
SD-MVS98.40 12798.68 6697.54 26298.96 19697.99 13997.88 15699.36 10698.20 12399.63 2599.04 11198.76 2395.33 36396.56 18399.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_698.99 3998.78 5399.61 999.45 9899.46 398.60 7999.50 5798.59 9699.24 8099.04 11198.54 3499.89 5896.45 19399.62 15399.50 100
FMVSNet596.01 27495.20 28998.41 20497.53 32996.10 23198.74 6899.50 5797.22 20798.03 22799.04 11169.80 36299.88 6797.27 12499.71 11799.25 198
IS-MVSNet98.19 14997.90 16599.08 11099.57 5597.97 14499.31 1898.32 28599.01 7098.98 12199.03 11491.59 28099.79 18195.49 24299.80 7799.48 112
hse-mvs397.77 18597.33 20699.10 10699.21 13697.84 15898.35 10998.57 27499.11 5698.58 18399.02 11588.65 29999.96 898.11 8096.34 34299.49 104
SED-MVS98.91 5198.72 5999.49 4899.49 8499.17 3698.10 13099.31 13098.03 13299.66 2099.02 11598.36 4399.88 6796.91 14799.62 15399.41 141
test_241102_TWO99.30 13998.03 13299.26 7799.02 11597.51 10899.88 6796.91 14799.60 16299.66 34
DVP-MVS98.77 6898.52 8699.52 4199.50 7799.21 2698.02 14298.84 24697.97 13599.08 10199.02 11597.61 9899.88 6796.99 14199.63 15099.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13699.71 11799.70 29
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26797.20 22198.87 23998.97 7499.06 10499.02 11596.00 19099.80 16898.58 5599.82 6599.60 49
CVMVSNet96.25 27097.21 21293.38 34199.10 16680.56 36597.20 22198.19 29296.94 21899.00 11899.02 11589.50 29299.80 16896.36 20099.59 16499.78 14
LFMVS97.20 22696.72 23998.64 17198.72 24296.95 21198.93 5894.14 34899.74 798.78 15899.01 12284.45 32499.73 22197.44 11699.27 23299.25 198
v2v48298.56 10498.62 7398.37 20899.42 10595.81 24097.58 18999.16 18697.90 14199.28 7199.01 12295.98 19499.79 18199.33 1599.90 4499.51 96
ACMMPcopyleft98.75 7198.50 9099.52 4199.56 6299.16 4098.87 6199.37 10297.16 20998.82 15599.01 12297.71 8999.87 8396.29 20499.69 12899.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23299.39 9697.67 15499.44 4698.99 12597.53 10599.89 5895.40 24499.68 13399.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22799.38 9894.87 27998.97 12498.99 12598.01 6999.88 6797.29 12399.70 12299.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 8198.71 6198.62 17699.10 16696.37 22597.23 21798.87 23999.20 4899.19 8698.99 12597.30 12399.85 10598.77 4799.79 8299.65 38
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 8997.71 17499.46 7597.25 19898.98 12198.99 12597.54 10399.84 12295.88 22199.74 10399.23 202
APD-MVS_3200maxsize98.84 5898.61 7699.53 3699.19 14399.27 2098.49 9499.33 12398.64 9099.03 11498.98 12997.89 7799.85 10596.54 18799.42 20899.46 122
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28599.50 5797.30 19399.05 10998.98 12999.35 799.32 32995.72 23199.68 13399.18 214
v14898.45 12198.60 7898.00 23599.44 10094.98 26297.44 20499.06 20398.30 11199.32 6898.97 13196.65 16499.62 26898.37 6999.85 5499.39 150
EI-MVSNet-Vis-set98.68 8598.70 6498.63 17499.09 16996.40 22497.23 21798.86 24499.20 4899.18 9098.97 13197.29 12599.85 10598.72 5099.78 8699.64 39
CHOSEN 1792x268897.49 20297.14 21798.54 19299.68 3996.09 23396.50 26399.62 2091.58 32698.84 15098.97 13192.36 27499.88 6796.76 16499.95 1699.67 33
SR-MVS-dyc-post98.81 6198.55 8399.57 1899.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.49 11299.86 9196.56 18399.39 21299.45 126
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.75 8796.56 18399.39 21299.45 126
D2MVS97.84 18097.84 16997.83 24199.14 15994.74 26696.94 23698.88 23795.84 25798.89 14098.96 13494.40 24199.69 23697.55 11099.95 1699.05 229
ACMM96.08 1298.91 5198.73 5799.48 5099.55 6599.14 4898.07 13399.37 10297.62 15899.04 11198.96 13498.84 2099.79 18197.43 11799.65 14599.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo98.08 15697.92 16398.57 18498.96 19696.79 21597.90 15599.18 17796.41 23898.46 19598.95 13895.93 19799.60 27596.51 18998.98 27699.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
YYNet197.60 19597.67 17897.39 27199.04 18093.04 30795.27 31398.38 28497.25 19898.92 13598.95 13895.48 21499.73 22196.99 14198.74 28599.41 141
MDA-MVSNet_test_wron97.60 19597.66 18197.41 27099.04 18093.09 30395.27 31398.42 28197.26 19798.88 14498.95 13895.43 21599.73 22197.02 13898.72 28799.41 141
FMVSNet397.50 20097.24 21098.29 21598.08 30595.83 23997.86 15998.91 23397.89 14298.95 12798.95 13887.06 30399.81 15997.77 10199.69 12899.23 202
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 22999.18 17797.10 21298.75 16398.92 14298.18 5899.65 26196.68 17399.56 17999.37 160
ADS-MVSNet295.43 28894.98 29496.76 29798.14 30191.74 32397.92 15297.76 30390.23 33696.51 30798.91 14385.61 31599.85 10592.88 30596.90 33598.69 283
ADS-MVSNet95.24 29194.93 29696.18 30698.14 30190.10 33797.92 15297.32 31590.23 33696.51 30798.91 14385.61 31599.74 21792.88 30596.90 33598.69 283
test_040298.76 6998.71 6198.93 13599.56 6298.14 12598.45 10199.34 11899.28 4298.95 12798.91 14398.34 4799.79 18195.63 23799.91 4098.86 261
test_241102_ONE99.49 8499.17 3699.31 13097.98 13499.66 2098.90 14698.36 4399.48 309
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26099.54 4898.24 11798.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9196.77 22598.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
zzz-MVS98.79 6398.52 8699.61 999.67 4099.36 997.33 21099.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
MTAPA98.88 5498.64 7199.61 999.67 4099.36 998.43 10299.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
test20.0398.78 6698.77 5598.78 15899.46 9597.20 20097.78 16599.24 16299.04 6799.41 4998.90 14697.65 9399.76 20697.70 10799.79 8299.39 150
SteuartSystems-ACMMP98.79 6398.54 8499.54 2999.73 2499.16 4098.23 11699.31 13097.92 13998.90 13798.90 14698.00 7099.88 6796.15 21299.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 19497.17 21398.99 12999.27 12497.86 15695.98 28493.41 35195.25 27299.47 4298.90 14695.63 20699.85 10596.91 14799.73 10699.27 194
TSAR-MVS + MP.98.63 9398.49 9399.06 11899.64 4697.90 15398.51 9298.94 22696.96 21799.24 8098.89 15497.83 8099.81 15996.88 15499.49 20099.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test117298.76 6998.49 9399.57 1899.18 15099.37 898.39 10599.31 13098.43 10398.90 13798.88 15597.49 11299.86 9196.43 19599.37 21699.48 112
PGM-MVS98.66 8898.37 11599.55 2699.53 7099.18 3598.23 11699.49 6597.01 21698.69 16798.88 15598.00 7099.89 5895.87 22499.59 16499.58 61
TinyColmap97.89 17097.98 15897.60 25598.86 21894.35 27696.21 27899.44 8197.45 17999.06 10498.88 15597.99 7399.28 33594.38 27099.58 17099.18 214
LS3D98.63 9398.38 11499.36 6497.25 33999.38 599.12 4399.32 12599.21 4598.44 19798.88 15597.31 12299.80 16896.58 17899.34 22198.92 253
Anonymous20240521197.90 16897.50 19199.08 11098.90 20998.25 11198.53 8796.16 33298.87 8199.11 9598.86 15990.40 28699.78 19397.36 12099.31 22599.19 212
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5797.33 18998.94 13398.86 15998.75 2499.82 14697.53 11399.71 11799.56 71
CMPMVSbinary75.91 2396.29 26895.44 28198.84 14796.25 35598.69 8297.02 23199.12 19588.90 34597.83 23698.86 15989.51 29198.90 35291.92 31999.51 19298.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 7698.43 10599.57 1899.18 15099.35 1198.36 10899.29 14698.29 11498.88 14498.85 16297.53 10599.87 8396.14 21399.31 22599.48 112
our_test_397.39 21197.73 17696.34 30298.70 24989.78 33894.61 33398.97 22596.50 23499.04 11198.85 16295.98 19499.84 12297.26 12599.67 13999.41 141
MVS_030497.64 19297.35 20398.52 19397.87 31596.69 22098.59 8198.05 29897.44 18093.74 35298.85 16293.69 25799.88 6798.11 8099.81 6998.98 242
Regformer-398.61 9698.61 7698.63 17499.02 18596.53 22297.17 22598.84 24699.13 5599.10 9898.85 16297.24 13099.79 18198.41 6899.70 12299.57 66
Regformer-498.73 7498.68 6698.89 14199.02 18597.22 19797.17 22599.06 20399.21 4599.17 9198.85 16297.45 11599.86 9198.48 6399.70 12299.60 49
EPNet96.14 27295.44 28198.25 21890.76 36695.50 24797.92 15294.65 34198.97 7492.98 35398.85 16289.12 29499.87 8395.99 21799.68 13399.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 19297.49 19298.08 22999.14 15995.12 26096.70 25499.05 20793.77 30198.62 17598.83 16893.23 25999.75 21398.33 7399.76 9999.36 166
PMMVS298.07 15798.08 15198.04 23399.41 10694.59 27394.59 33499.40 9497.50 16998.82 15598.83 16896.83 15199.84 12297.50 11599.81 6999.71 26
MDTV_nov1_ep1395.22 28897.06 34283.20 36197.74 17296.16 33294.37 29096.99 28498.83 16883.95 32999.53 29693.90 28397.95 317
Anonymous2023120698.21 14798.21 13398.20 22199.51 7495.43 25098.13 12599.32 12596.16 24698.93 13498.82 17196.00 19099.83 13697.32 12299.73 10699.36 166
ACMP95.32 1598.41 12598.09 14899.36 6499.51 7498.79 7497.68 17799.38 9895.76 26098.81 15798.82 17198.36 4399.82 14694.75 25499.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10798.73 7099.56 4098.42 10498.91 13698.81 17398.94 1899.91 4598.35 7099.73 10699.49 104
VNet98.42 12498.30 12498.79 15598.79 23597.29 19198.23 11698.66 26999.31 3998.85 14898.80 17494.80 23299.78 19398.13 7999.13 25699.31 184
tpmrst95.07 29495.46 27993.91 33597.11 34184.36 35997.62 18396.96 32194.98 27596.35 31398.80 17485.46 31799.59 27995.60 23896.23 34497.79 324
ppachtmachnet_test97.50 20097.74 17496.78 29698.70 24991.23 33494.55 33599.05 20796.36 23999.21 8498.79 17696.39 17699.78 19396.74 16699.82 6599.34 172
miper_lstm_enhance97.18 22897.16 21497.25 27698.16 30092.85 30995.15 31899.31 13097.25 19898.74 16598.78 17790.07 28799.78 19397.19 12799.80 7799.11 225
DeepPCF-MVS96.93 598.32 13498.01 15699.23 9098.39 28798.97 6295.03 32099.18 17796.88 22199.33 6298.78 17798.16 6099.28 33596.74 16699.62 15399.44 131
patchmatchnet-post98.77 17984.37 32599.85 105
APD-MVScopyleft98.10 15497.67 17899.42 5799.11 16298.93 6697.76 17099.28 14894.97 27698.72 16698.77 17997.04 13799.85 10593.79 28899.54 18299.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 5998.63 7299.39 6399.16 15498.74 7697.54 19399.25 15798.84 8499.06 10498.76 18196.76 15899.93 2898.57 5799.77 9099.50 100
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 16899.10 6299.72 1398.76 18196.38 17899.86 9198.00 9099.82 6599.50 100
eth_miper_zixun_eth97.23 22497.25 20897.17 27898.00 30992.77 31194.71 32799.18 17797.27 19698.56 18798.74 18391.89 27999.69 23697.06 13799.81 6999.05 229
UniMVSNet (Re)98.87 5598.71 6199.35 6999.24 12998.73 7997.73 17399.38 9898.93 7999.12 9398.73 18496.77 15699.86 9198.63 5499.80 7799.46 122
MG-MVS96.77 25296.61 24797.26 27598.31 29193.06 30495.93 29098.12 29596.45 23797.92 22998.73 18493.77 25599.39 32191.19 33299.04 26699.33 178
cl_fuxian97.36 21297.37 20197.31 27298.09 30493.25 30295.01 32199.16 18697.05 21398.77 16198.72 18692.88 26899.64 26396.93 14699.76 9999.05 229
cl-mvsnet____97.02 24096.83 23497.58 25797.82 31794.04 28394.66 33099.16 18697.04 21498.63 17398.71 18788.68 29899.69 23697.00 13999.81 6999.00 240
cl-mvsnet197.02 24096.84 23397.58 25797.82 31794.03 28494.66 33099.16 18697.04 21498.63 17398.71 18788.69 29799.69 23697.00 13999.81 6999.01 237
DELS-MVS98.27 14098.20 13498.48 19898.86 21896.70 21995.60 30499.20 16897.73 15198.45 19698.71 18797.50 10999.82 14698.21 7699.59 16498.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 17199.07 17397.53 19499.32 12595.53 26598.54 19198.70 19097.58 10099.76 20694.32 27199.46 204
tpmvs95.02 29695.25 28794.33 33196.39 35485.87 35198.08 13296.83 32695.46 26795.51 33498.69 19185.91 31399.53 29694.16 27296.23 34497.58 332
PatchmatchNetpermissive95.58 28495.67 27395.30 32497.34 33687.32 34797.65 18196.65 32795.30 27197.07 28098.69 19184.77 32199.75 21394.97 25098.64 29398.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 9198.34 11999.54 2999.54 6899.17 3698.63 7699.24 16297.47 17298.09 22198.68 19397.62 9799.89 5896.22 20799.62 15399.57 66
UnsupCasMVSNet_eth97.89 17097.60 18798.75 16399.31 11897.17 20397.62 18399.35 11298.72 8998.76 16298.68 19392.57 27399.74 21797.76 10595.60 34999.34 172
SCA96.41 26696.66 24595.67 31598.24 29588.35 34395.85 29596.88 32596.11 24797.67 24698.67 19593.10 26399.85 10594.16 27299.22 23998.81 267
Patchmatch-test96.55 26096.34 25897.17 27898.35 28893.06 30498.40 10497.79 30297.33 18998.41 20198.67 19583.68 33199.69 23695.16 24699.31 22598.77 275
CDS-MVSNet97.69 18897.35 20398.69 16798.73 24097.02 20996.92 24098.75 26295.89 25698.59 18198.67 19592.08 27899.74 21796.72 16999.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 12098.09 14899.54 2999.57 5599.22 2598.50 9399.19 17397.61 16097.58 25398.66 19897.40 11899.88 6794.72 25799.60 16299.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 13698.15 14398.75 16398.61 26597.23 19597.76 17099.09 19997.31 19298.75 16398.66 19897.56 10299.64 26396.10 21599.55 18199.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 18997.75 17397.45 26798.23 29793.78 29697.29 21398.84 24696.10 24898.64 17298.65 20096.04 18799.36 32496.84 15899.14 25399.20 207
pmmvs497.58 19797.28 20798.51 19598.84 22396.93 21295.40 31298.52 27793.60 30398.61 17798.65 20095.10 22299.60 27596.97 14499.79 8298.99 241
FPMVS93.44 31892.23 32397.08 28199.25 12897.86 15695.61 30397.16 31892.90 31193.76 35198.65 20075.94 35795.66 36179.30 36197.49 32297.73 326
Regformer-198.55 10898.44 10398.87 14398.85 22097.29 19196.91 24198.99 22398.97 7498.99 11998.64 20397.26 12999.81 15997.79 9999.57 17499.51 96
Regformer-298.60 9998.46 9999.02 12698.85 22097.71 17296.91 24199.09 19998.98 7399.01 11598.64 20397.37 12099.84 12297.75 10699.57 17499.52 93
dp93.47 31793.59 31193.13 34396.64 34881.62 36497.66 17996.42 33092.80 31396.11 31698.64 20378.55 35499.59 27993.31 30092.18 36098.16 305
EPMVS93.72 31593.27 31495.09 32696.04 35787.76 34598.13 12585.01 36594.69 28296.92 28698.64 20378.47 35599.31 33095.04 24796.46 34198.20 303
XVS98.72 7598.45 10199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25898.63 20797.50 10999.83 13696.79 16099.53 18699.56 71
CostFormer93.97 31193.78 30894.51 33097.53 32985.83 35397.98 14895.96 33589.29 34494.99 34098.63 20778.63 35299.62 26894.54 26096.50 34098.09 308
ETH3D-3000-0.198.03 15897.62 18599.29 7799.11 16298.80 7397.47 20199.32 12595.54 26398.43 20098.62 20996.61 16699.77 19993.95 28299.49 20099.30 187
MSLP-MVS++98.02 16098.14 14597.64 25398.58 27095.19 25797.48 19999.23 16497.47 17297.90 23198.62 20997.04 13798.81 35497.55 11099.41 20998.94 251
Vis-MVSNet (Re-imp)97.46 20597.16 21498.34 21099.55 6596.10 23198.94 5798.44 28098.32 11098.16 21498.62 20988.76 29699.73 22193.88 28599.79 8299.18 214
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 25999.48 6797.32 19199.11 9598.61 21299.33 899.30 33296.23 20698.38 30099.28 192
ITE_SJBPF98.87 14399.22 13498.48 9999.35 11297.50 16998.28 20998.60 21397.64 9699.35 32593.86 28699.27 23298.79 273
UniMVSNet_NR-MVSNet98.86 5798.68 6699.40 6299.17 15298.74 7697.68 17799.40 9499.14 5499.06 10498.59 21496.71 16299.93 2898.57 5799.77 9099.53 89
114514_t96.50 26395.77 26898.69 16799.48 9297.43 18697.84 16199.55 4481.42 35996.51 30798.58 21595.53 20999.67 24893.41 29899.58 17098.98 242
HY-MVS95.94 1395.90 27795.35 28597.55 26197.95 31094.79 26598.81 6696.94 32392.28 31995.17 33798.57 21689.90 28999.75 21391.20 33197.33 33198.10 307
tpm94.67 29994.34 30395.66 31697.68 32588.42 34297.88 15694.90 34094.46 28696.03 32198.56 21778.66 35199.79 18195.88 22195.01 35298.78 274
ACMMPR98.70 7998.42 10799.54 2999.52 7299.14 4898.52 8899.31 13097.47 17298.56 18798.54 21897.75 8799.88 6796.57 18099.59 16499.58 61
new_pmnet96.99 24496.76 23797.67 24998.72 24294.89 26495.95 28998.20 29092.62 31598.55 18998.54 21894.88 22899.52 30093.96 28199.44 20798.59 289
OPU-MVS98.82 14998.59 26998.30 10898.10 13098.52 22098.18 5898.75 35594.62 25899.48 20299.41 141
region2R98.69 8198.40 10999.54 2999.53 7099.17 3698.52 8899.31 13097.46 17798.44 19798.51 22197.83 8099.88 6796.46 19299.58 17099.58 61
TSAR-MVS + GP.98.18 15097.98 15898.77 16098.71 24597.88 15496.32 27398.66 26996.33 24099.23 8398.51 22197.48 11499.40 31997.16 12999.46 20499.02 236
OMC-MVS97.88 17297.49 19299.04 12298.89 21498.63 8496.94 23699.25 15795.02 27498.53 19298.51 22197.27 12699.47 31193.50 29699.51 19299.01 237
testtj97.79 18497.25 20899.42 5799.03 18398.85 6897.78 16599.18 17795.83 25898.12 21898.50 22495.50 21299.86 9192.23 31899.07 26299.54 83
HFP-MVS98.71 7698.44 10399.51 4599.49 8499.16 4098.52 8899.31 13097.47 17298.58 18398.50 22497.97 7499.85 10596.57 18099.59 16499.53 89
#test#98.50 11698.16 14199.51 4599.49 8499.16 4098.03 14099.31 13096.30 24398.58 18398.50 22497.97 7499.85 10595.68 23499.59 16499.53 89
diffmvs98.22 14698.24 13098.17 22399.00 18895.44 24996.38 27099.58 2697.79 14998.53 19298.50 22496.76 15899.74 21797.95 9299.64 14799.34 172
WR-MVS98.40 12798.19 13699.03 12399.00 18897.65 17596.85 24498.94 22698.57 10098.89 14098.50 22495.60 20799.85 10597.54 11299.85 5499.59 55
Test_1112_low_res96.99 24496.55 25298.31 21399.35 11595.47 24895.84 29699.53 5191.51 32896.80 29798.48 22991.36 28199.83 13696.58 17899.53 18699.62 44
miper_ehance_all_eth97.06 23697.03 22097.16 28097.83 31693.06 30494.66 33099.09 19995.99 25398.69 16798.45 23092.73 27199.61 27496.79 16099.03 26798.82 264
PHI-MVS98.29 13997.95 16099.34 7298.44 28499.16 4098.12 12799.38 9896.01 25298.06 22398.43 23197.80 8499.67 24895.69 23399.58 17099.20 207
tpm cat193.29 31993.13 31893.75 33697.39 33584.74 35697.39 20597.65 30783.39 35894.16 34598.41 23282.86 33599.39 32191.56 32695.35 35197.14 339
ETH3D cwj APD-0.1697.55 19897.00 22299.19 9398.51 27898.64 8396.85 24499.13 19394.19 29497.65 24798.40 23395.78 20299.81 15993.37 29999.16 24999.12 223
CP-MVS98.70 7998.42 10799.52 4199.36 11199.12 5398.72 7199.36 10697.54 16798.30 20798.40 23397.86 7999.89 5896.53 18899.72 11399.56 71
ZNCC-MVS98.68 8598.40 10999.54 2999.57 5599.21 2698.46 9999.29 14697.28 19598.11 21998.39 23598.00 7099.87 8396.86 15799.64 14799.55 79
GST-MVS98.61 9698.30 12499.52 4199.51 7499.20 3298.26 11499.25 15797.44 18098.67 16998.39 23597.68 9099.85 10596.00 21699.51 19299.52 93
bset_n11_16_dypcd96.99 24496.56 25198.27 21799.00 18895.25 25392.18 35794.05 34998.75 8799.01 11598.38 23788.98 29599.93 2898.77 4799.92 3499.64 39
HPM-MVScopyleft98.79 6398.53 8599.59 1799.65 4399.29 1799.16 3899.43 8796.74 22698.61 17798.38 23798.62 2999.87 8396.47 19199.67 13999.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 22698.93 20195.40 25198.80 25490.08 34097.45 26698.37 23995.26 21899.70 23293.58 29398.95 27899.17 218
CPTT-MVS97.84 18097.36 20299.27 8299.31 11898.46 10098.29 11199.27 15194.90 27897.83 23698.37 23994.90 22599.84 12293.85 28799.54 18299.51 96
OpenMVS_ROBcopyleft95.38 1495.84 27995.18 29097.81 24298.41 28697.15 20597.37 20798.62 27283.86 35698.65 17198.37 23994.29 24499.68 24588.41 34498.62 29596.60 346
tttt051795.64 28394.98 29497.64 25399.36 11193.81 29598.72 7190.47 36098.08 13098.67 16998.34 24273.88 35999.92 3597.77 10199.51 19299.20 207
旧先验198.82 22897.45 18598.76 25998.34 24295.50 21299.01 27299.23 202
CNVR-MVS98.17 15297.87 16799.07 11398.67 25898.24 11297.01 23298.93 22897.25 19897.62 24998.34 24297.27 12699.57 28596.42 19699.33 22299.39 150
HyFIR lowres test97.19 22796.60 24898.96 13199.62 5097.28 19395.17 31699.50 5794.21 29399.01 11598.32 24586.61 30699.99 297.10 13599.84 5699.60 49
UnsupCasMVSNet_bld97.30 21796.92 22798.45 20199.28 12396.78 21896.20 27999.27 15195.42 26898.28 20998.30 24693.16 26199.71 23094.99 24997.37 32798.87 260
MSDG97.71 18797.52 19098.28 21698.91 20896.82 21494.42 33799.37 10297.65 15698.37 20698.29 24797.40 11899.33 32894.09 27899.22 23998.68 286
MVS_111021_HR98.25 14498.08 15198.75 16399.09 16997.46 18495.97 28599.27 15197.60 16197.99 22898.25 24898.15 6299.38 32396.87 15599.57 17499.42 138
CANet_DTU97.26 22097.06 21997.84 24097.57 32694.65 27196.19 28098.79 25597.23 20495.14 33898.24 24993.22 26099.84 12297.34 12199.84 5699.04 233
MVS_111021_LR98.30 13698.12 14698.83 14899.16 15498.03 13796.09 28299.30 13997.58 16298.10 22098.24 24998.25 5099.34 32696.69 17299.65 14599.12 223
tpm293.09 32192.58 32294.62 32997.56 32786.53 35097.66 17995.79 33786.15 35394.07 34898.23 25175.95 35699.53 29690.91 33596.86 33897.81 321
CANet97.87 17397.76 17298.19 22297.75 31995.51 24696.76 25099.05 20797.74 15096.93 28598.21 25295.59 20899.89 5897.86 9899.93 2599.19 212
LF4IMVS97.90 16897.69 17798.52 19399.17 15297.66 17497.19 22499.47 7396.31 24297.85 23598.20 25396.71 16299.52 30094.62 25899.72 11398.38 298
CL-MVSNet_2432*160097.44 20897.22 21198.08 22998.57 27295.78 24194.30 34098.79 25596.58 23398.60 17998.19 25494.74 23599.64 26396.41 19798.84 28198.82 264
cl-mvsnet295.79 28095.39 28496.98 28596.77 34792.79 31094.40 33898.53 27694.59 28397.89 23298.17 25582.82 33699.24 33796.37 19899.03 26798.92 253
112196.73 25396.00 26498.91 13898.95 19897.76 16798.07 13398.73 26587.65 35096.54 30498.13 25694.52 23899.73 22192.38 31699.02 27099.24 201
MVSFormer98.26 14298.43 10597.77 24498.88 21593.89 29399.39 1199.56 4099.11 5698.16 21498.13 25693.81 25399.97 399.26 1899.57 17499.43 135
jason97.45 20797.35 20397.76 24599.24 12993.93 28995.86 29398.42 28194.24 29298.50 19498.13 25694.82 22999.91 4597.22 12699.73 10699.43 135
jason: jason.
ZD-MVS99.01 18798.84 6999.07 20294.10 29698.05 22598.12 25996.36 18099.86 9192.70 31299.19 246
test22298.92 20596.93 21295.54 30598.78 25785.72 35496.86 29498.11 26094.43 23999.10 26199.23 202
新几何198.91 13898.94 19997.76 16798.76 25987.58 35196.75 29898.10 26194.80 23299.78 19392.73 31199.00 27399.20 207
原ACMM198.35 20998.90 20996.25 22998.83 25192.48 31696.07 31998.10 26195.39 21699.71 23092.61 31498.99 27499.08 226
EPNet_dtu94.93 29794.78 29895.38 32393.58 36387.68 34696.78 24895.69 33897.35 18889.14 36198.09 26388.15 30199.49 30694.95 25199.30 22898.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 29594.40 30196.93 28797.70 32392.53 31495.08 31997.71 30588.57 34797.71 24398.08 26479.39 34999.82 14696.19 20999.11 26098.43 296
DP-MVS Recon97.33 21596.92 22798.57 18499.09 16997.99 13996.79 24799.35 11293.18 30797.71 24398.07 26595.00 22499.31 33093.97 28099.13 25698.42 297
CSCG98.68 8598.50 9099.20 9299.45 9898.63 8498.56 8499.57 3397.87 14398.85 14898.04 26697.66 9299.84 12296.72 16999.81 6999.13 222
F-COLMAP97.30 21796.68 24299.14 10099.19 14398.39 10397.27 21699.30 13992.93 31096.62 30298.00 26795.73 20499.68 24592.62 31398.46 29999.35 170
Effi-MVS+-dtu98.26 14297.90 16599.35 6998.02 30799.49 298.02 14299.16 18698.29 11497.64 24897.99 26896.44 17499.95 1596.66 17498.93 27998.60 287
hse-mvs297.46 20597.07 21898.64 17198.73 24097.33 18997.45 20397.64 30999.11 5698.58 18397.98 26988.65 29999.79 18198.11 8097.39 32698.81 267
HQP_MVS97.99 16597.67 17898.93 13599.19 14397.65 17597.77 16899.27 15198.20 12397.79 23997.98 26994.90 22599.70 23294.42 26699.51 19299.45 126
plane_prior497.98 269
BH-RMVSNet96.83 24996.58 24997.58 25798.47 28194.05 28296.67 25597.36 31296.70 22997.87 23397.98 26995.14 22199.44 31690.47 33898.58 29799.25 198
AUN-MVS96.24 27195.45 28098.60 17998.70 24997.22 19797.38 20697.65 30795.95 25495.53 33397.96 27382.11 34199.79 18196.31 20297.44 32498.80 272
NCCC97.86 17497.47 19699.05 12098.61 26598.07 13396.98 23498.90 23497.63 15797.04 28297.93 27495.99 19399.66 25695.31 24598.82 28399.43 135
sss97.21 22596.93 22598.06 23198.83 22595.22 25696.75 25198.48 27994.49 28497.27 27397.90 27592.77 27099.80 16896.57 18099.32 22399.16 221
test_yl96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
DCV-MVSNet96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
CDPH-MVS97.26 22096.66 24599.07 11399.00 18898.15 12396.03 28399.01 21991.21 33297.79 23997.85 27896.89 14799.69 23692.75 31099.38 21599.39 150
HPM-MVS++copyleft98.10 15497.64 18399.48 5099.09 16999.13 5197.52 19598.75 26297.46 17796.90 29197.83 27996.01 18999.84 12295.82 22899.35 21999.46 122
ETH3 D test640096.46 26595.59 27699.08 11098.88 21598.21 11896.53 26099.18 17788.87 34697.08 27997.79 28093.64 25899.77 19988.92 34399.40 21199.28 192
PatchMatch-RL97.24 22396.78 23698.61 17899.03 18397.83 15996.36 27199.06 20393.49 30697.36 27297.78 28195.75 20399.49 30693.44 29798.77 28498.52 290
TAPA-MVS96.21 1196.63 25895.95 26698.65 16998.93 20198.09 12796.93 23899.28 14883.58 35798.13 21797.78 28196.13 18499.40 31993.52 29499.29 23098.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 27695.44 28197.52 26498.51 27893.99 28798.39 10596.09 33498.21 12098.40 20597.76 28386.88 30499.63 26695.42 24389.27 36198.95 247
WTY-MVS96.67 25696.27 26297.87 23998.81 23194.61 27296.77 24997.92 30194.94 27797.12 27697.74 28491.11 28299.82 14693.89 28498.15 30999.18 214
test_method79.78 33279.50 33580.62 34680.21 36745.76 36970.82 36198.41 28331.08 36480.89 36597.71 28584.85 32097.37 36091.51 32780.03 36298.75 277
MSP-MVS98.40 12798.00 15799.61 999.57 5599.25 2298.57 8399.35 11297.55 16699.31 7097.71 28594.61 23699.88 6796.14 21399.19 24699.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 16297.63 18499.10 10699.24 12998.17 12296.89 24398.73 26595.66 26197.92 22997.70 28797.17 13399.66 25696.18 21199.23 23899.47 120
CS-MVS98.61 9698.60 7898.65 16998.82 22898.21 11898.79 6799.77 698.34 10797.55 25697.69 28898.27 4999.87 8398.52 6199.62 15397.88 316
AdaColmapbinary97.14 23196.71 24098.46 20098.34 28997.80 16596.95 23598.93 22895.58 26296.92 28697.66 28995.87 20099.53 29690.97 33399.14 25398.04 309
thisisatest053095.27 29094.45 30097.74 24799.19 14394.37 27597.86 15990.20 36197.17 20898.22 21197.65 29073.53 36099.90 4996.90 15299.35 21998.95 247
testgi98.32 13498.39 11298.13 22599.57 5595.54 24497.78 16599.49 6597.37 18699.19 8697.65 29098.96 1799.49 30696.50 19098.99 27499.34 172
test_prior397.48 20497.00 22298.95 13298.69 25397.95 14995.74 29999.03 21296.48 23596.11 31697.63 29295.92 19899.59 27994.16 27299.20 24299.30 187
test_prior295.74 29996.48 23596.11 31697.63 29295.92 19894.16 27299.20 242
cdsmvs_eth3d_5k24.66 33432.88 3370.00 3500.00 3710.00 3720.00 36299.10 1980.00 3670.00 36897.58 29499.21 100.00 3680.00 3660.00 3660.00 364
lupinMVS97.06 23696.86 23197.65 25198.88 21593.89 29395.48 30997.97 29993.53 30498.16 21497.58 29493.81 25399.91 4596.77 16399.57 17499.17 218
TEST998.71 24598.08 13195.96 28799.03 21291.40 32995.85 32297.53 29696.52 16999.76 206
train_agg97.10 23296.45 25599.07 11398.71 24598.08 13195.96 28799.03 21291.64 32495.85 32297.53 29696.47 17299.76 20693.67 29099.16 24999.36 166
Fast-Effi-MVS+-dtu98.27 14098.09 14898.81 15198.43 28598.11 12697.61 18599.50 5798.64 9097.39 27097.52 29898.12 6399.95 1596.90 15298.71 28998.38 298
test_898.67 25898.01 13895.91 29299.02 21691.64 32495.79 32497.50 29996.47 17299.76 206
agg_prior197.06 23696.40 25699.03 12398.68 25697.99 13995.76 29799.01 21991.73 32395.59 32597.50 29996.49 17199.77 19993.71 28999.14 25399.34 172
1112_ss97.29 21996.86 23198.58 18199.34 11796.32 22796.75 25199.58 2693.14 30896.89 29297.48 30192.11 27799.86 9196.91 14799.54 18299.57 66
ab-mvs-re8.12 33810.83 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36897.48 3010.00 3730.00 3680.00 3660.00 3660.00 364
Effi-MVS+98.02 16097.82 17098.62 17698.53 27797.19 20197.33 21099.68 1497.30 19396.68 29997.46 30398.56 3399.80 16896.63 17698.20 30598.86 261
PCF-MVS92.86 1894.36 30293.00 31998.42 20398.70 24997.56 17993.16 35299.11 19779.59 36097.55 25697.43 30492.19 27599.73 22179.85 36099.45 20697.97 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 27895.32 28697.49 26598.60 26794.15 28193.83 34797.93 30095.49 26696.68 29997.42 30583.21 33299.30 33296.22 20798.55 29899.01 237
CNLPA97.17 22996.71 24098.55 18998.56 27398.05 13696.33 27298.93 22896.91 22097.06 28197.39 30694.38 24299.45 31591.66 32299.18 24898.14 306
PLCcopyleft94.65 1696.51 26195.73 27098.85 14698.75 23897.91 15296.42 26899.06 20390.94 33595.59 32597.38 30794.41 24099.59 27990.93 33498.04 31699.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 24996.75 23897.08 28198.74 23993.33 30196.71 25398.26 28796.72 22798.44 19797.37 30895.20 21999.47 31191.89 32097.43 32598.44 295
PVSNet_Blended96.88 24796.68 24297.47 26698.92 20593.77 29794.71 32799.43 8790.98 33497.62 24997.36 30996.82 15299.67 24894.73 25599.56 17998.98 242
miper_enhance_ethall96.01 27495.74 26996.81 29596.41 35392.27 31993.69 34998.89 23691.14 33398.30 20797.35 31090.58 28499.58 28496.31 20299.03 26798.60 287
DPM-MVS96.32 26795.59 27698.51 19598.76 23697.21 19994.54 33698.26 28791.94 32296.37 31297.25 31193.06 26599.43 31791.42 32898.74 28598.89 257
E-PMN94.17 30794.37 30293.58 33896.86 34485.71 35490.11 35997.07 31998.17 12697.82 23897.19 31284.62 32398.94 35089.77 34097.68 32196.09 353
mvs-test197.83 18297.48 19598.89 14198.02 30799.20 3297.20 22199.16 18698.29 11496.46 31197.17 31396.44 17499.92 3596.66 17497.90 31897.54 334
CLD-MVS97.49 20297.16 21498.48 19899.07 17397.03 20894.71 32799.21 16694.46 28698.06 22397.16 31497.57 10199.48 30994.46 26399.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 28795.47 27895.65 31798.25 29488.27 34493.25 35198.88 23793.53 30494.65 34197.15 31586.17 31099.93 2897.41 11899.93 2598.73 279
xiu_mvs_v1_base_debu97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base_debi97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
NP-MVS98.84 22397.39 18896.84 319
HQP-MVS97.00 24396.49 25498.55 18998.67 25896.79 21596.29 27499.04 21096.05 24995.55 32996.84 31993.84 25199.54 29492.82 30799.26 23599.32 180
API-MVS97.04 23996.91 22997.42 26997.88 31498.23 11698.18 12198.50 27897.57 16397.39 27096.75 32196.77 15699.15 34490.16 33999.02 27094.88 357
131495.74 28195.60 27596.17 30797.53 32992.75 31298.07 13398.31 28691.22 33194.25 34496.68 32295.53 20999.03 34691.64 32497.18 33296.74 344
TR-MVS95.55 28595.12 29296.86 29497.54 32893.94 28896.49 26496.53 32994.36 29197.03 28396.61 32394.26 24599.16 34386.91 34896.31 34397.47 336
Fast-Effi-MVS+97.67 19097.38 20098.57 18498.71 24597.43 18697.23 21799.45 7894.82 28096.13 31596.51 32498.52 3599.91 4596.19 20998.83 28298.37 300
xiu_mvs_v2_base97.16 23097.49 19296.17 30798.54 27592.46 31595.45 31098.84 24697.25 19897.48 26496.49 32598.31 4899.90 4996.34 20198.68 29196.15 351
MVS93.19 32092.09 32496.50 30096.91 34394.03 28498.07 13398.06 29768.01 36194.56 34396.48 32695.96 19699.30 33283.84 35396.89 33796.17 349
PAPM_NR96.82 25196.32 25998.30 21499.07 17396.69 22097.48 19998.76 25995.81 25996.61 30396.47 32794.12 24999.17 34290.82 33797.78 31999.06 228
KD-MVS_2432*160092.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
miper_refine_blended92.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
PVSNet93.40 1795.67 28295.70 27195.57 31898.83 22588.57 34192.50 35497.72 30492.69 31496.49 31096.44 32893.72 25699.43 31793.61 29199.28 23198.71 280
EMVS93.83 31394.02 30593.23 34296.83 34684.96 35589.77 36096.32 33197.92 13997.43 26896.36 33186.17 31098.93 35187.68 34697.73 32095.81 354
MAR-MVS96.47 26495.70 27198.79 15597.92 31299.12 5398.28 11298.60 27392.16 32195.54 33296.17 33294.77 23499.52 30089.62 34198.23 30397.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 33090.34 33396.51 29998.06 30692.56 31392.44 35597.17 31786.35 35290.38 35996.01 33386.61 30699.21 34070.65 36395.43 35097.75 325
PS-MVSNAJ97.08 23497.39 19996.16 30998.56 27392.46 31595.24 31598.85 24597.25 19897.49 26395.99 33498.07 6499.90 4996.37 19898.67 29296.12 352
baseline293.73 31492.83 32096.42 30197.70 32391.28 33296.84 24689.77 36293.96 30092.44 35595.93 33579.14 35099.77 19992.94 30396.76 33998.21 302
alignmvs97.35 21396.88 23098.78 15898.54 27598.09 12797.71 17497.69 30699.20 4897.59 25295.90 33688.12 30299.55 29198.18 7898.96 27798.70 282
ET-MVSNet_ETH3D94.30 30593.21 31597.58 25798.14 30194.47 27494.78 32693.24 35394.72 28189.56 36095.87 33778.57 35399.81 15996.91 14797.11 33498.46 292
thisisatest051594.12 30993.16 31696.97 28698.60 26792.90 30893.77 34890.61 35994.10 29696.91 28895.87 33774.99 35899.80 16894.52 26199.12 25998.20 303
BH-w/o95.13 29394.89 29795.86 31198.20 29891.31 33095.65 30297.37 31193.64 30296.52 30695.70 33993.04 26699.02 34788.10 34595.82 34897.24 338
PMMVS96.51 26195.98 26598.09 22697.53 32995.84 23894.92 32398.84 24691.58 32696.05 32095.58 34095.68 20599.66 25695.59 23998.09 31298.76 276
EIA-MVS98.00 16297.74 17498.80 15398.72 24298.09 12798.05 13799.60 2397.39 18496.63 30195.55 34197.68 9099.80 16896.73 16899.27 23298.52 290
ETV-MVS98.03 15897.86 16898.56 18898.69 25398.07 13397.51 19799.50 5798.10 12997.50 26295.51 34298.41 4099.88 6796.27 20599.24 23797.71 328
PAPR95.29 28994.47 29997.75 24697.50 33395.14 25994.89 32498.71 26791.39 33095.35 33695.48 34394.57 23799.14 34584.95 35197.37 32798.97 246
canonicalmvs98.34 13398.26 12898.58 18198.46 28297.82 16298.96 5699.46 7599.19 5297.46 26595.46 34498.59 3199.46 31398.08 8498.71 28998.46 292
MVEpermissive83.40 2292.50 32591.92 32894.25 33298.83 22591.64 32492.71 35383.52 36695.92 25586.46 36495.46 34495.20 21995.40 36280.51 35998.64 29395.73 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 31293.85 30694.04 33396.53 34984.62 35794.05 34492.39 35596.17 24494.12 34695.07 34682.30 33799.67 24895.87 22498.18 30697.82 319
test-mter92.33 32791.76 33094.04 33396.53 34984.62 35794.05 34492.39 35594.00 29994.12 34695.07 34665.63 37099.67 24895.87 22498.18 30697.82 319
thres600view794.45 30193.83 30796.29 30399.06 17791.53 32597.99 14694.24 34698.34 10797.44 26795.01 34879.84 34599.67 24884.33 35298.23 30397.66 329
gm-plane-assit94.83 36181.97 36388.07 34994.99 34999.60 27591.76 321
thres100view90094.19 30693.67 31095.75 31499.06 17791.35 32998.03 14094.24 34698.33 10997.40 26994.98 35079.84 34599.62 26883.05 35498.08 31396.29 347
cascas94.79 29894.33 30496.15 31096.02 35892.36 31892.34 35699.26 15685.34 35595.08 33994.96 35192.96 26798.53 35694.41 26998.59 29697.56 333
TESTMET0.1,192.19 32991.77 32993.46 33996.48 35182.80 36294.05 34491.52 35894.45 28894.00 34994.88 35266.65 36899.56 28895.78 22998.11 31198.02 310
test0.0.03 194.51 30093.69 30996.99 28496.05 35693.61 30094.97 32293.49 35096.17 24497.57 25594.88 35282.30 33799.01 34993.60 29294.17 35798.37 300
DeepMVS_CXcopyleft93.44 34098.24 29594.21 27994.34 34364.28 36291.34 35894.87 35489.45 29392.77 36477.54 36293.14 35893.35 359
IB-MVS91.63 1992.24 32890.90 33296.27 30497.22 34091.24 33394.36 33993.33 35292.37 31792.24 35694.58 35566.20 36999.89 5893.16 30294.63 35497.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 31093.44 31295.78 31398.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31396.29 347
thres40094.14 30893.44 31296.24 30598.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31397.66 329
DWT-MVSNet_test92.75 32492.05 32594.85 32796.48 35187.21 34897.83 16294.99 33992.22 32092.72 35494.11 35870.75 36199.46 31395.01 24894.33 35697.87 317
thres20093.72 31593.14 31795.46 32298.66 26391.29 33196.61 25894.63 34297.39 18496.83 29593.71 35979.88 34499.56 28882.40 35798.13 31095.54 356
PVSNet_089.98 2191.15 33190.30 33493.70 33797.72 32084.34 36090.24 35897.42 31090.20 33993.79 35093.09 36090.90 28398.89 35386.57 34972.76 36397.87 317
tmp_tt78.77 33378.73 33678.90 34758.45 36874.76 36894.20 34178.26 36939.16 36386.71 36392.82 36180.50 34375.19 36586.16 35092.29 35986.74 360
GG-mvs-BLEND94.76 32894.54 36292.13 32199.31 1880.47 36888.73 36291.01 36267.59 36698.16 35982.30 35894.53 35593.98 358
X-MVStestdata94.32 30392.59 32199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25845.85 36397.50 10999.83 13696.79 16099.53 18699.56 71
testmvs17.12 33520.53 3386.87 34912.05 3694.20 37193.62 3506.73 3704.62 36610.41 36624.33 3648.28 3723.56 3679.69 36515.07 36412.86 363
test12317.04 33620.11 3397.82 34810.25 3704.91 37094.80 3254.47 3714.93 36510.00 36724.28 3659.69 3713.64 36610.14 36412.43 36514.92 362
test_post21.25 36683.86 33099.70 232
test_post197.59 18820.48 36783.07 33499.66 25694.16 272
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas8.17 33710.90 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36898.07 640.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
IU-MVS99.49 8499.15 4598.87 23992.97 30999.41 4996.76 16499.62 15399.66 34
save fliter99.11 16297.97 14496.53 26099.02 21698.24 117
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14299.32 12599.88 6796.99 14199.63 15099.68 31
GSMVS98.81 267
test_part299.36 11199.10 5699.05 109
sam_mvs184.74 32298.81 267
sam_mvs84.29 328
MTGPAbinary99.20 168
MTMP97.93 15191.91 357
test9_res93.28 30199.15 25299.38 157
agg_prior292.50 31599.16 24999.37 160
agg_prior98.68 25697.99 13999.01 21995.59 32599.77 199
test_prior497.97 14495.86 293
test_prior98.95 13298.69 25397.95 14999.03 21299.59 27999.30 187
旧先验295.76 29788.56 34897.52 26099.66 25694.48 262
新几何295.93 290
无先验95.74 29998.74 26489.38 34399.73 22192.38 31699.22 206
原ACMM295.53 306
testdata299.79 18192.80 309
segment_acmp97.02 140
testdata195.44 31196.32 241
test1298.93 13598.58 27097.83 15998.66 26996.53 30595.51 21199.69 23699.13 25699.27 194
plane_prior799.19 14397.87 155
plane_prior698.99 19297.70 17394.90 225
plane_prior599.27 15199.70 23294.42 26699.51 19299.45 126
plane_prior397.78 16697.41 18297.79 239
plane_prior297.77 16898.20 123
plane_prior199.05 179
plane_prior97.65 17597.07 23096.72 22799.36 217
n20.00 372
nn0.00 372
door-mid99.57 33
test1198.87 239
door99.41 91
HQP5-MVS96.79 215
HQP-NCC98.67 25896.29 27496.05 24995.55 329
ACMP_Plane98.67 25896.29 27496.05 24995.55 329
BP-MVS92.82 307
HQP4-MVS95.56 32899.54 29499.32 180
HQP3-MVS99.04 21099.26 235
HQP2-MVS93.84 251
MDTV_nov1_ep13_2view74.92 36797.69 17690.06 34197.75 24285.78 31493.52 29498.69 283
ACMMP++_ref99.77 90
ACMMP++99.68 133
Test By Simon96.52 169