This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 399.98 199.99 199.96 199.77 1100.00 199.81 3100.00 199.85 10
FMVS299.12 3999.41 1498.25 22999.76 2895.07 27799.05 6499.94 197.78 16399.82 1099.84 298.56 3899.71 24499.96 199.96 1599.97 1
pmmvs699.67 399.70 399.60 1399.90 499.27 2399.53 799.76 1299.64 1299.84 999.83 399.50 599.87 9299.36 1799.92 4299.64 48
FMVS98.67 10098.87 5598.05 24699.72 3795.59 25798.51 11099.81 996.30 25999.78 1299.82 496.14 19698.63 37499.82 299.93 3299.95 2
mvsany_test98.87 6598.92 5398.74 17999.38 12096.94 22598.58 10099.10 21396.49 25099.96 299.81 598.18 6499.45 33298.97 4299.79 9699.83 11
UA-Net99.47 1199.40 1599.70 299.49 9499.29 2099.80 399.72 1499.82 399.04 12399.81 598.05 7599.96 1198.85 4999.99 599.86 9
ANet_high99.57 799.67 599.28 8899.89 698.09 14099.14 5299.93 299.82 399.93 399.81 599.17 1299.94 2699.31 20100.00 199.82 12
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1799.69 499.58 3499.90 299.86 899.78 899.58 399.95 1799.00 4099.95 1999.78 17
OurMVSNet-221017-099.37 2199.31 2399.53 3799.91 398.98 6899.63 699.58 3499.44 3299.78 1299.76 996.39 18899.92 3999.44 1699.92 4299.68 39
MVS-HIRNet94.32 31995.62 29090.42 36498.46 30275.36 38796.29 29389.13 38195.25 28995.38 35599.75 1092.88 28499.19 35994.07 29899.39 23196.72 365
gg-mvs-nofinetune92.37 34291.20 34795.85 33095.80 38192.38 33799.31 2681.84 38799.75 591.83 37699.74 1168.29 38299.02 36587.15 36797.12 35496.16 370
mvs_tets99.63 599.67 599.49 5299.88 998.61 9899.34 1999.71 1599.27 5099.90 599.74 1199.68 299.97 499.55 1099.99 599.88 5
test_djsdf99.52 999.51 999.53 3799.86 1498.74 8799.39 1699.56 4899.11 6399.70 1899.73 1399.00 1599.97 499.26 2399.98 999.89 4
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6699.34 1999.69 1898.93 9099.65 2699.72 1498.93 1999.95 1799.11 32100.00 199.82 12
PS-MVSNAJss99.46 1299.49 1099.35 7499.90 498.15 13699.20 4499.65 2699.48 2799.92 499.71 1598.07 7299.96 1199.53 11100.00 199.93 3
JIA-IIPM95.52 30395.03 30897.00 30196.85 36894.03 30396.93 25795.82 35699.20 5594.63 36299.71 1583.09 35199.60 29394.42 28594.64 37497.36 357
Anonymous2023121199.27 2599.27 2599.26 9499.29 13898.18 13299.49 899.51 6599.70 899.80 1199.68 1796.84 16199.83 14899.21 2899.91 4899.77 19
jajsoiax99.58 699.61 799.48 5599.87 1298.61 9899.28 3699.66 2599.09 7399.89 799.68 1799.53 499.97 499.50 1299.99 599.87 7
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1699.11 6299.90 199.78 1099.63 1499.78 1299.67 1999.48 699.81 17299.30 2299.97 1299.77 19
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 899.57 899.41 6599.88 998.54 10699.45 1099.61 3099.66 1199.68 2299.66 2098.44 4599.95 1799.73 499.96 1599.75 26
K. test v398.00 17597.66 19499.03 13599.79 2497.56 19299.19 4892.47 37299.62 1799.52 4099.66 2089.61 30699.96 1199.25 2599.81 8199.56 80
RRT_MVS99.09 4098.94 5199.55 2699.87 1298.82 8299.48 998.16 31099.49 2699.59 3299.65 2294.79 24999.95 1799.45 1599.96 1599.88 5
SixPastTwentyTwo98.75 8398.62 8799.16 10999.83 1997.96 16199.28 3698.20 30799.37 3999.70 1899.65 2292.65 28899.93 3199.04 3799.84 6899.60 58
DSMNet-mixed97.42 22297.60 20096.87 30999.15 17591.46 34698.54 10499.12 20992.87 33297.58 27499.63 2496.21 19599.90 5495.74 24999.54 20099.27 208
TransMVSNet (Re)99.44 1399.47 1299.36 6999.80 2298.58 10199.27 3899.57 4199.39 3799.75 1599.62 2599.17 1299.83 14899.06 3599.62 17099.66 43
Gipumacopyleft99.03 4599.16 3198.64 18399.94 298.51 10899.32 2299.75 1399.58 2298.60 19499.62 2598.22 6099.51 32297.70 12199.73 12297.89 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 5298.86 5899.36 6999.82 2198.55 10397.47 22099.57 4199.37 3999.21 9899.61 2796.76 17099.83 14898.06 9699.83 7499.71 31
TDRefinement99.42 1699.38 1699.55 2699.76 2899.33 1899.68 599.71 1599.38 3899.53 3899.61 2798.64 3299.80 18198.24 8599.84 6899.52 104
pm-mvs199.44 1399.48 1199.33 8099.80 2298.63 9599.29 3299.63 2799.30 4899.65 2699.60 2999.16 1499.82 15899.07 3499.83 7499.56 80
v1098.97 5399.11 3798.55 20099.44 11096.21 24398.90 7599.55 5298.73 10099.48 4599.60 2996.63 17799.83 14899.70 599.99 599.61 57
test111196.49 27896.82 24895.52 33899.42 11587.08 36999.22 4187.14 38299.11 6399.46 4899.58 3188.69 31299.86 10198.80 5199.95 1999.62 52
test250692.39 34191.89 34493.89 35499.38 12082.28 38399.32 2266.03 39099.08 7598.77 17499.57 3266.26 38799.84 13398.71 5899.95 1999.54 92
ECVR-MVScopyleft96.42 28196.61 26395.85 33099.38 12088.18 36599.22 4186.00 38499.08 7599.36 6999.57 3288.47 31799.82 15898.52 7099.95 1999.54 92
v899.01 4699.16 3198.57 19599.47 10496.31 24198.90 7599.47 8399.03 7999.52 4099.57 3296.93 15799.81 17299.60 699.98 999.60 58
MIMVSNet199.38 2099.32 2299.55 2699.86 1499.19 3999.41 1399.59 3299.59 2099.71 1799.57 3297.12 14599.90 5499.21 2899.87 6299.54 92
Anonymous2024052198.69 9398.87 5598.16 23799.77 2595.11 27699.08 5799.44 9199.34 4399.33 7499.55 3694.10 26699.94 2699.25 2599.96 1599.42 150
GBi-Net98.65 10298.47 11099.17 10698.90 22798.24 12599.20 4499.44 9198.59 10898.95 13899.55 3694.14 26299.86 10197.77 11599.69 14599.41 153
test198.65 10298.47 11099.17 10698.90 22798.24 12599.20 4499.44 9198.59 10898.95 13899.55 3694.14 26299.86 10197.77 11599.69 14599.41 153
FMVSNet199.17 3399.17 3099.17 10699.55 7598.24 12599.20 4499.44 9199.21 5299.43 5399.55 3697.82 9199.86 10198.42 7799.89 5899.41 153
KD-MVS_self_test99.25 2799.18 2999.44 6199.63 5799.06 6798.69 9099.54 5799.31 4699.62 3199.53 4097.36 13199.86 10199.24 2799.71 13499.39 164
new-patchmatchnet98.35 14598.74 6897.18 29599.24 14692.23 34096.42 28799.48 7798.30 12399.69 2099.53 4097.44 12699.82 15898.84 5099.77 10599.49 115
mvsmamba99.24 3199.15 3599.49 5299.83 1998.85 7799.41 1399.55 5299.54 2399.40 6099.52 4295.86 21499.91 4999.32 1999.95 1999.70 36
lessismore_v098.97 14299.73 3197.53 19486.71 38399.37 6799.52 4289.93 30499.92 3998.99 4199.72 12999.44 143
FC-MVSNet-test99.27 2599.25 2699.34 7799.77 2598.37 11699.30 3199.57 4199.61 1999.40 6099.50 4497.12 14599.85 11699.02 3999.94 2899.80 15
VDDNet98.21 16097.95 17399.01 13999.58 6097.74 18399.01 6697.29 33499.67 1098.97 13599.50 4490.45 30199.80 18197.88 10899.20 26199.48 125
DeepC-MVS97.60 498.97 5398.93 5299.10 11899.35 13197.98 15698.01 16599.46 8597.56 18099.54 3599.50 4498.97 1699.84 13398.06 9699.92 4299.49 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_part197.91 18097.46 21099.27 9198.80 25098.18 13299.07 6099.36 11699.75 599.63 2999.49 4782.20 35799.89 6498.87 4899.95 1999.74 28
XXY-MVS99.14 3599.15 3599.10 11899.76 2897.74 18398.85 8099.62 2898.48 11599.37 6799.49 4798.75 2699.86 10198.20 8899.80 9199.71 31
Vis-MVSNetpermissive99.34 2299.36 1799.27 9199.73 3198.26 12399.17 4999.78 1099.11 6399.27 8599.48 4998.82 2399.95 1798.94 4399.93 3299.59 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 12598.45 11498.79 16797.94 33496.96 22399.08 5798.54 29299.10 7096.82 31699.47 5096.55 18099.84 13398.56 6999.94 2899.55 88
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 20498.50 10395.13 34499.63 5785.84 37298.35 12898.21 30698.23 13199.54 3599.46 5195.02 23899.68 26098.24 8599.87 6299.87 7
LCM-MVSNet-Re98.64 10498.48 10899.11 11698.85 23898.51 10898.49 11399.83 898.37 11899.69 2099.46 5198.21 6299.92 3994.13 29699.30 24798.91 273
mvs_anonymous97.83 19598.16 15496.87 30998.18 32291.89 34297.31 23198.90 25097.37 20198.83 16499.46 5196.28 19499.79 19498.90 4598.16 32998.95 264
DTE-MVSNet99.43 1599.35 1899.66 499.71 3999.30 1999.31 2699.51 6599.64 1299.56 3399.46 5198.23 5799.97 498.78 5299.93 3299.72 30
ACMH96.65 799.25 2799.24 2799.26 9499.72 3798.38 11599.07 6099.55 5298.30 12399.65 2699.45 5599.22 999.76 22098.44 7599.77 10599.64 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6499.07 4399.00 4799.29 8599.85 1698.18 13299.11 5699.40 10399.33 4499.38 6499.44 5695.21 23399.97 499.31 2099.98 999.73 29
VPA-MVSNet99.30 2499.30 2499.28 8899.49 9498.36 11999.00 6899.45 8899.63 1499.52 4099.44 5698.25 5599.88 7599.09 3399.84 6899.62 52
EGC-MVSNET85.24 34880.54 35199.34 7799.77 2599.20 3599.08 5799.29 15812.08 38420.84 38599.42 5897.55 11299.85 11697.08 15299.72 12998.96 263
PEN-MVS99.41 1799.34 2099.62 699.73 3199.14 5599.29 3299.54 5799.62 1799.56 3399.42 5898.16 6899.96 1198.78 5299.93 3299.77 19
PatchT96.65 27096.35 27297.54 27997.40 35895.32 26797.98 16796.64 34799.33 4496.89 31299.42 5884.32 34499.81 17297.69 12397.49 34397.48 355
FIs99.14 3599.09 4099.29 8599.70 4598.28 12299.13 5399.52 6499.48 2799.24 9499.41 6196.79 16799.82 15898.69 6099.88 5999.76 23
PS-CasMVS99.40 1899.33 2199.62 699.71 3999.10 6399.29 3299.53 6199.53 2499.46 4899.41 6198.23 5799.95 1798.89 4799.95 1999.81 14
ab-mvs98.41 13898.36 12998.59 19299.19 16097.23 20899.32 2298.81 27097.66 17098.62 19099.40 6396.82 16499.80 18195.88 24099.51 21098.75 296
Anonymous2024052998.93 5898.87 5599.12 11499.19 16098.22 13099.01 6698.99 23999.25 5199.54 3599.37 6497.04 14999.80 18197.89 10599.52 20799.35 184
CR-MVSNet96.28 28595.95 28297.28 29297.71 34594.22 29698.11 14898.92 24792.31 33896.91 30899.37 6485.44 33699.81 17297.39 13397.36 35097.81 341
Patchmtry97.35 22696.97 23798.50 20897.31 36196.47 23798.18 14198.92 24798.95 8998.78 17199.37 6485.44 33699.85 11695.96 23899.83 7499.17 234
EG-PatchMatch MVS98.99 4899.01 4698.94 14699.50 8797.47 19698.04 15999.59 3298.15 14299.40 6099.36 6798.58 3799.76 22098.78 5299.68 15099.59 64
FMVS199.25 2799.16 3199.51 4699.89 699.63 398.71 8899.69 1898.90 9299.43 5399.35 6898.86 2099.67 26397.81 11199.81 8199.24 215
APD_test99.25 2799.16 3199.51 4699.89 699.63 398.71 8899.69 1898.90 9299.43 5399.35 6898.86 2099.67 26397.81 11199.81 8199.24 215
IterMVS-SCA-FT97.85 19298.18 15096.87 30999.27 14191.16 35595.53 32599.25 17099.10 7099.41 5799.35 6893.10 27999.96 1198.65 6299.94 2899.49 115
PMVScopyleft91.26 2097.86 18797.94 17597.65 26899.71 3997.94 16498.52 10698.68 28598.99 8297.52 28099.35 6897.41 12798.18 37791.59 34599.67 15696.82 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2399.22 2899.65 599.71 3999.24 2699.32 2299.55 5299.46 3099.50 4499.34 7297.30 13399.93 3198.90 4599.93 3299.77 19
RPMNet97.02 25396.93 23897.30 29197.71 34594.22 29698.11 14899.30 15199.37 3996.91 30899.34 7286.72 32399.87 9297.53 12797.36 35097.81 341
FA-MVS(test-final)96.99 25796.82 24897.50 28298.70 26694.78 28299.34 1996.99 33995.07 29198.48 21199.33 7488.41 31899.65 27896.13 23398.92 29998.07 330
IterMVS97.73 19998.11 16096.57 31699.24 14690.28 35695.52 32799.21 17998.86 9599.33 7499.33 7493.11 27899.94 2698.49 7299.94 2899.48 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 7298.73 6999.05 13298.76 25397.81 17799.25 3999.30 15198.57 11298.55 20499.33 7497.95 8499.90 5497.16 14399.67 15699.44 143
IterMVS-LS98.55 12098.70 7698.09 23999.48 10294.73 28597.22 23999.39 10698.97 8599.38 6499.31 7796.00 20399.93 3198.58 6499.97 1299.60 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
patch_mono-298.51 12898.63 8598.17 23599.38 12094.78 28297.36 22799.69 1898.16 14198.49 21099.29 7897.06 14899.97 498.29 8499.91 4899.76 23
FMVSNet298.49 13098.40 12298.75 17598.90 22797.14 21998.61 9599.13 20798.59 10899.19 10099.28 7994.14 26299.82 15897.97 10399.80 9199.29 205
3Dnovator+97.89 398.69 9398.51 10199.24 9998.81 24898.40 11399.02 6599.19 18698.99 8298.07 24299.28 7997.11 14799.84 13396.84 17699.32 24299.47 133
VDD-MVS98.56 11698.39 12599.07 12599.13 17898.07 14698.59 9897.01 33899.59 2099.11 10899.27 8194.82 24499.79 19498.34 8199.63 16799.34 186
PVSNet_Blended_VisFu98.17 16598.15 15698.22 23299.73 3195.15 27397.36 22799.68 2294.45 30698.99 13099.27 8196.87 16099.94 2697.13 14999.91 4899.57 75
FE-MVS95.66 29994.95 31197.77 26098.53 29595.28 26899.40 1596.09 35393.11 32897.96 24999.26 8379.10 36999.77 21292.40 33598.71 30998.27 322
dcpmvs_298.78 7799.11 3797.78 25999.56 7193.67 31899.06 6299.86 699.50 2599.66 2399.26 8397.21 14399.99 298.00 10199.91 4899.68 39
nrg03099.40 1899.35 1899.54 3099.58 6099.13 5898.98 7199.48 7799.68 999.46 4899.26 8398.62 3499.73 23599.17 3199.92 4299.76 23
CP-MVSNet99.21 3299.09 4099.56 2499.65 5298.96 7399.13 5399.34 12899.42 3599.33 7499.26 8397.01 15399.94 2698.74 5699.93 3299.79 16
RPSCF98.62 10898.36 12999.42 6299.65 5299.42 798.55 10399.57 4197.72 16798.90 14899.26 8396.12 19899.52 31895.72 25099.71 13499.32 194
tfpnnormal98.90 6298.90 5498.91 15099.67 4997.82 17599.00 6899.44 9199.45 3199.51 4399.24 8898.20 6399.86 10195.92 23999.69 14599.04 249
v124098.55 12098.62 8798.32 22399.22 15195.58 25897.51 21699.45 8897.16 22499.45 5199.24 8896.12 19899.85 11699.60 699.88 5999.55 88
APDe-MVS98.99 4898.79 6499.60 1399.21 15399.15 5098.87 7799.48 7797.57 17899.35 7199.24 8897.83 8899.89 6497.88 10899.70 13999.75 26
ambc98.24 23198.82 24695.97 24998.62 9499.00 23899.27 8599.21 9196.99 15499.50 32396.55 20499.50 21799.26 211
TAMVS98.24 15898.05 16698.80 16599.07 19197.18 21597.88 17598.81 27096.66 24599.17 10599.21 9194.81 24699.77 21296.96 16399.88 5999.44 143
v119298.60 11198.66 8298.41 21699.27 14195.88 25197.52 21499.36 11697.41 19799.33 7499.20 9396.37 19199.82 15899.57 899.92 4299.55 88
pmmvs-eth3d98.47 13298.34 13298.86 15799.30 13797.76 18097.16 24699.28 16195.54 28099.42 5699.19 9497.27 13699.63 28497.89 10599.97 1299.20 223
COLMAP_ROBcopyleft96.50 1098.99 4898.85 5999.41 6599.58 6099.10 6398.74 8399.56 4899.09 7399.33 7499.19 9498.40 4799.72 24395.98 23799.76 11599.42 150
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 12398.57 9598.45 21299.21 15395.98 24897.63 20199.36 11697.15 22699.32 8099.18 9695.84 21599.84 13399.50 1299.91 4899.54 92
PM-MVS98.82 7098.72 7199.12 11499.64 5598.54 10697.98 16799.68 2297.62 17399.34 7399.18 9697.54 11399.77 21297.79 11399.74 11999.04 249
PVSNet_BlendedMVS97.55 21197.53 20297.60 27298.92 22393.77 31696.64 27599.43 9794.49 30297.62 27099.18 9696.82 16499.67 26394.73 27499.93 3299.36 180
ACMH+96.62 999.08 4299.00 4799.33 8099.71 3998.83 8098.60 9699.58 3499.11 6399.53 3899.18 9698.81 2499.67 26396.71 18999.77 10599.50 111
v192192098.54 12398.60 9298.38 21999.20 15795.76 25697.56 21099.36 11697.23 21999.38 6499.17 10096.02 20199.84 13399.57 899.90 5599.54 92
casdiffmvs98.95 5699.00 4798.81 16399.38 12097.33 20297.82 18299.57 4199.17 6099.35 7199.17 10098.35 5299.69 25198.46 7499.73 12299.41 153
Patchmatch-RL test97.26 23397.02 23497.99 25099.52 8295.53 26096.13 30099.71 1597.47 18799.27 8599.16 10284.30 34599.62 28697.89 10599.77 10598.81 285
V4298.78 7798.78 6598.76 17399.44 11097.04 22098.27 13399.19 18697.87 15799.25 9399.16 10296.84 16199.78 20699.21 2899.84 6899.46 135
QAPM97.31 22996.81 25098.82 16198.80 25097.49 19599.06 6299.19 18690.22 35797.69 26699.16 10296.91 15899.90 5490.89 35699.41 22899.07 243
wuyk23d96.06 28997.62 19891.38 36398.65 28298.57 10298.85 8096.95 34196.86 23799.90 599.16 10299.18 1198.40 37689.23 36299.77 10577.18 381
v114498.60 11198.66 8298.41 21699.36 12795.90 25097.58 20899.34 12897.51 18399.27 8599.15 10696.34 19399.80 18199.47 1499.93 3299.51 107
DP-MVS98.93 5898.81 6399.28 8899.21 15398.45 11298.46 11899.33 13399.63 1499.48 4599.15 10697.23 14199.75 22797.17 14299.66 16199.63 51
OpenMVScopyleft96.65 797.09 24796.68 25798.32 22398.32 31397.16 21798.86 7999.37 11289.48 36196.29 33499.15 10696.56 17999.90 5492.90 32399.20 26197.89 336
EPP-MVSNet98.30 14998.04 16799.07 12599.56 7197.83 17299.29 3298.07 31499.03 7998.59 19699.13 10992.16 29299.90 5496.87 17399.68 15099.49 115
ACMMP_NAP98.75 8398.48 10899.57 1899.58 6099.29 2097.82 18299.25 17096.94 23398.78 17199.12 11098.02 7699.84 13397.13 14999.67 15699.59 64
MVS_Test98.18 16398.36 12997.67 26698.48 30094.73 28598.18 14199.02 23297.69 16898.04 24699.11 11197.22 14299.56 30698.57 6698.90 30098.71 299
MDA-MVSNet-bldmvs97.94 17997.91 17798.06 24499.44 11094.96 27996.63 27699.15 20598.35 11998.83 16499.11 11194.31 25999.85 11696.60 19598.72 30799.37 174
SMA-MVScopyleft98.40 14098.03 16899.51 4699.16 17199.21 2998.05 15799.22 17894.16 31398.98 13299.10 11397.52 11799.79 19496.45 21199.64 16499.53 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 27296.25 27897.71 26599.04 19994.66 28899.16 5096.92 34397.23 21997.87 25499.10 11386.11 33099.65 27891.65 34399.21 26098.82 282
USDC97.41 22397.40 21197.44 28698.94 21793.67 31895.17 33599.53 6194.03 31698.97 13599.10 11395.29 23199.34 34495.84 24699.73 12299.30 201
test072699.50 8799.21 2998.17 14499.35 12297.97 14999.26 8999.06 11697.61 107
AllTest98.44 13598.20 14799.16 10999.50 8798.55 10398.25 13599.58 3496.80 23898.88 15699.06 11697.65 10199.57 30394.45 28399.61 17699.37 174
TestCases99.16 10999.50 8798.55 10399.58 3496.80 23898.88 15699.06 11697.65 10199.57 30394.45 28399.61 17699.37 174
TranMVSNet+NR-MVSNet99.17 3399.07 4399.46 6099.37 12698.87 7698.39 12499.42 10099.42 3599.36 6999.06 11698.38 4899.95 1798.34 8199.90 5599.57 75
LPG-MVS_test98.71 8898.46 11299.47 5899.57 6498.97 6998.23 13699.48 7796.60 24699.10 11199.06 11698.71 2999.83 14895.58 25999.78 10199.62 52
LGP-MVS_train99.47 5899.57 6498.97 6999.48 7796.60 24699.10 11199.06 11698.71 2999.83 14895.58 25999.78 10199.62 52
baseline98.96 5599.02 4598.76 17399.38 12097.26 20798.49 11399.50 6798.86 9599.19 10099.06 11698.23 5799.69 25198.71 5899.76 11599.33 192
VPNet98.87 6598.83 6099.01 13999.70 4597.62 19198.43 12199.35 12299.47 2999.28 8399.05 12396.72 17399.82 15898.09 9499.36 23699.59 64
MVSTER96.86 26196.55 26797.79 25897.91 33694.21 29897.56 21098.87 25597.49 18699.06 11699.05 12380.72 35999.80 18198.44 7599.82 7799.37 174
SD-MVS98.40 14098.68 7997.54 27998.96 21497.99 15297.88 17599.36 11698.20 13599.63 2999.04 12598.76 2595.33 38396.56 20199.74 11999.31 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_698.99 4898.78 6599.61 999.45 10899.46 698.60 9699.50 6798.59 10899.24 9499.04 12598.54 4099.89 6496.45 21199.62 17099.50 111
FMVSNet596.01 29095.20 30598.41 21697.53 35396.10 24498.74 8399.50 6797.22 22298.03 24799.04 12569.80 38199.88 7597.27 13899.71 13499.25 212
IS-MVSNet98.19 16297.90 17899.08 12299.57 6497.97 15799.31 2698.32 30299.01 8198.98 13299.03 12891.59 29699.79 19495.49 26199.80 9199.48 125
DVP-MVS++98.90 6298.70 7699.51 4698.43 30599.15 5099.43 1199.32 13598.17 13899.26 8999.02 12998.18 6499.88 7597.07 15399.45 22399.49 115
test_one_060199.39 11999.20 3599.31 14198.49 11498.66 18599.02 12997.64 104
h-mvs3397.77 19897.33 21999.10 11899.21 15397.84 17198.35 12898.57 29199.11 6398.58 19899.02 12988.65 31599.96 1198.11 9196.34 36399.49 115
SED-MVS98.91 6098.72 7199.49 5299.49 9499.17 4198.10 15099.31 14198.03 14699.66 2399.02 12998.36 4999.88 7596.91 16599.62 17099.41 153
test_241102_TWO99.30 15198.03 14699.26 8999.02 12997.51 11899.88 7596.91 16599.60 17899.66 43
DVP-MVScopyleft98.77 8098.52 9999.52 4299.50 8799.21 2998.02 16298.84 26497.97 14999.08 11499.02 12997.61 10799.88 7596.99 15999.63 16799.48 125
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 13899.08 11499.02 12997.89 8599.88 7597.07 15399.71 13499.70 36
EI-MVSNet98.40 14098.51 10198.04 24799.10 18494.73 28597.20 24098.87 25598.97 8599.06 11699.02 12996.00 20399.80 18198.58 6499.82 7799.60 58
CVMVSNet96.25 28697.21 22593.38 36099.10 18480.56 38697.20 24098.19 30996.94 23399.00 12999.02 12989.50 30899.80 18196.36 21899.59 18299.78 17
LFMVS97.20 23996.72 25498.64 18398.72 25996.95 22498.93 7494.14 36799.74 798.78 17199.01 13884.45 34299.73 23597.44 13099.27 25199.25 212
v2v48298.56 11698.62 8798.37 22099.42 11595.81 25497.58 20899.16 19997.90 15599.28 8399.01 13895.98 20799.79 19499.33 1899.90 5599.51 107
ACMMPcopyleft98.75 8398.50 10399.52 4299.56 7199.16 4598.87 7799.37 11297.16 22498.82 16899.01 13897.71 9799.87 9296.29 22299.69 14599.54 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 11498.26 14199.57 1899.27 14199.15 5097.01 25199.39 10697.67 16999.44 5298.99 14197.53 11599.89 6495.40 26399.68 15099.66 43
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 11598.23 14599.60 1399.69 4799.35 1497.16 24699.38 10894.87 29798.97 13598.99 14198.01 7799.88 7597.29 13799.70 13999.58 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 9398.71 7398.62 18899.10 18496.37 23997.23 23698.87 25599.20 5599.19 10098.99 14197.30 13399.85 11698.77 5599.79 9699.65 47
XVG-ACMP-BASELINE98.56 11698.34 13299.22 10299.54 7898.59 10097.71 19399.46 8597.25 21398.98 13298.99 14197.54 11399.84 13395.88 24099.74 11999.23 218
APD-MVS_3200maxsize98.84 6998.61 9099.53 3799.19 16099.27 2398.49 11399.33 13398.64 10299.03 12698.98 14597.89 8599.85 11696.54 20599.42 22799.46 135
XVG-OURS98.53 12598.34 13299.11 11699.50 8798.82 8295.97 30499.50 6797.30 20899.05 12198.98 14599.35 799.32 34795.72 25099.68 15099.18 230
v14898.45 13498.60 9298.00 24999.44 11094.98 27897.44 22399.06 21998.30 12399.32 8098.97 14796.65 17699.62 28698.37 7999.85 6499.39 164
EI-MVSNet-Vis-set98.68 9798.70 7698.63 18699.09 18796.40 23897.23 23698.86 26099.20 5599.18 10498.97 14797.29 13599.85 11698.72 5799.78 10199.64 48
CHOSEN 1792x268897.49 21597.14 23098.54 20399.68 4896.09 24696.50 28299.62 2891.58 34598.84 16398.97 14792.36 29099.88 7596.76 18299.95 1999.67 42
SR-MVS-dyc-post98.81 7298.55 9699.57 1899.20 15799.38 898.48 11699.30 15198.64 10298.95 13898.96 15097.49 12299.86 10196.56 20199.39 23199.45 139
RE-MVS-def98.58 9499.20 15799.38 898.48 11699.30 15198.64 10298.95 13898.96 15097.75 9596.56 20199.39 23199.45 139
D2MVS97.84 19397.84 18297.83 25699.14 17694.74 28496.94 25598.88 25395.84 27498.89 15198.96 15094.40 25799.69 25197.55 12499.95 1999.05 245
ACMM96.08 1298.91 6098.73 6999.48 5599.55 7599.14 5598.07 15399.37 11297.62 17399.04 12398.96 15098.84 2299.79 19497.43 13199.65 16299.49 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final97.10 24596.65 26298.45 21298.53 29596.08 24798.30 13099.11 21198.10 14398.85 16098.95 15479.38 36799.87 9298.68 6199.91 4899.40 162
MVP-Stereo98.08 16997.92 17698.57 19598.96 21496.79 22997.90 17499.18 19096.41 25498.46 21298.95 15495.93 21099.60 29396.51 20798.98 29599.31 198
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf0596.54 27496.07 27997.92 25197.90 33794.50 29297.87 17899.14 20697.73 16598.89 15198.95 15475.75 37799.87 9298.50 7199.92 4299.40 162
YYNet197.60 20897.67 19197.39 28999.04 19993.04 32795.27 33298.38 30197.25 21398.92 14698.95 15495.48 22899.73 23596.99 15998.74 30599.41 153
MDA-MVSNet_test_wron97.60 20897.66 19497.41 28899.04 19993.09 32395.27 33298.42 29897.26 21298.88 15698.95 15495.43 22999.73 23597.02 15698.72 30799.41 153
FMVSNet397.50 21397.24 22398.29 22798.08 32895.83 25397.86 17998.91 24997.89 15698.95 13898.95 15487.06 32199.81 17297.77 11599.69 14599.23 218
OPM-MVS98.56 11698.32 13699.25 9799.41 11798.73 9097.13 24899.18 19097.10 22798.75 17798.92 16098.18 6499.65 27896.68 19199.56 19799.37 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ADS-MVSNet295.43 30594.98 30996.76 31598.14 32491.74 34397.92 17197.76 32190.23 35596.51 32798.91 16185.61 33399.85 11692.88 32496.90 35698.69 302
ADS-MVSNet95.24 30894.93 31296.18 32498.14 32490.10 35797.92 17197.32 33390.23 35596.51 32798.91 16185.61 33399.74 23192.88 32496.90 35698.69 302
test_040298.76 8198.71 7398.93 14799.56 7198.14 13898.45 12099.34 12899.28 4998.95 13898.91 16198.34 5399.79 19495.63 25699.91 4898.86 279
test_241102_ONE99.49 9499.17 4199.31 14197.98 14899.66 2398.90 16498.36 4999.48 327
xxxxxxxxxxxxxcwj98.44 13598.24 14399.06 13099.11 18097.97 15796.53 27999.54 5798.24 12998.83 16498.90 16497.80 9299.82 15895.68 25399.52 20799.38 171
SF-MVS98.53 12598.27 14099.32 8299.31 13498.75 8698.19 14099.41 10196.77 24098.83 16498.90 16497.80 9299.82 15895.68 25399.52 20799.38 171
zzz-MVS98.79 7498.52 9999.61 999.67 4999.36 1297.33 22999.20 18198.83 9898.89 15198.90 16496.98 15599.92 3997.16 14399.70 13999.56 80
MTAPA98.88 6498.64 8499.61 999.67 4999.36 1298.43 12199.20 18198.83 9898.89 15198.90 16496.98 15599.92 3997.16 14399.70 13999.56 80
test20.0398.78 7798.77 6798.78 17099.46 10597.20 21397.78 18499.24 17599.04 7899.41 5798.90 16497.65 10199.76 22097.70 12199.79 9699.39 164
SteuartSystems-ACMMP98.79 7498.54 9799.54 3099.73 3199.16 4598.23 13699.31 14197.92 15398.90 14898.90 16498.00 7899.88 7596.15 23099.72 12999.58 70
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 20797.17 22698.99 14199.27 14197.86 16995.98 30393.41 36995.25 28999.47 4798.90 16495.63 22099.85 11696.91 16599.73 12299.27 208
TSAR-MVS + MP.98.63 10698.49 10699.06 13099.64 5597.90 16698.51 11098.94 24296.96 23299.24 9498.89 17297.83 8899.81 17296.88 17299.49 21899.48 125
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test117298.76 8198.49 10699.57 1899.18 16799.37 1198.39 12499.31 14198.43 11698.90 14898.88 17397.49 12299.86 10196.43 21399.37 23599.48 125
PGM-MVS98.66 10198.37 12899.55 2699.53 8099.18 4098.23 13699.49 7597.01 23198.69 18198.88 17398.00 7899.89 6495.87 24399.59 18299.58 70
TinyColmap97.89 18397.98 17197.60 27298.86 23694.35 29596.21 29799.44 9197.45 19499.06 11698.88 17397.99 8199.28 35394.38 28999.58 18899.18 230
LS3D98.63 10698.38 12799.36 6997.25 36299.38 899.12 5599.32 13599.21 5298.44 21498.88 17397.31 13299.80 18196.58 19699.34 24098.92 270
Anonymous20240521197.90 18197.50 20499.08 12298.90 22798.25 12498.53 10596.16 35198.87 9499.11 10898.86 17790.40 30299.78 20697.36 13499.31 24499.19 228
HPM-MVS_fast99.01 4698.82 6199.57 1899.71 3999.35 1499.00 6899.50 6797.33 20498.94 14498.86 17798.75 2699.82 15897.53 12799.71 13499.56 80
CMPMVSbinary75.91 2396.29 28495.44 29798.84 15996.25 37798.69 9397.02 25099.12 20988.90 36497.83 25798.86 17789.51 30798.90 37091.92 33999.51 21098.92 270
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 8898.43 11899.57 1899.18 16799.35 1498.36 12799.29 15898.29 12698.88 15698.85 18097.53 11599.87 9296.14 23199.31 24499.48 125
our_test_397.39 22497.73 18996.34 32098.70 26689.78 35894.61 35298.97 24196.50 24999.04 12398.85 18095.98 20799.84 13397.26 13999.67 15699.41 153
MVS_030497.64 20597.35 21698.52 20497.87 33996.69 23498.59 9898.05 31697.44 19593.74 37298.85 18093.69 27399.88 7598.11 9199.81 8198.98 258
Regformer-398.61 10998.61 9098.63 18699.02 20496.53 23697.17 24498.84 26499.13 6299.10 11198.85 18097.24 14099.79 19498.41 7899.70 13999.57 75
Regformer-498.73 8698.68 7998.89 15399.02 20497.22 21097.17 24499.06 21999.21 5299.17 10598.85 18097.45 12599.86 10198.48 7399.70 13999.60 58
EPNet96.14 28895.44 29798.25 22990.76 38795.50 26297.92 17194.65 36098.97 8592.98 37398.85 18089.12 31099.87 9295.99 23699.68 15099.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 20597.49 20598.08 24299.14 17695.12 27596.70 27399.05 22393.77 31998.62 19098.83 18693.23 27599.75 22798.33 8399.76 11599.36 180
PMMVS298.07 17098.08 16498.04 24799.41 11794.59 29194.59 35399.40 10397.50 18498.82 16898.83 18696.83 16399.84 13397.50 12999.81 8199.71 31
MDTV_nov1_ep1395.22 30497.06 36583.20 38197.74 19196.16 35194.37 30896.99 30498.83 18683.95 34799.53 31493.90 30297.95 338
Anonymous2023120698.21 16098.21 14698.20 23399.51 8495.43 26598.13 14599.32 13596.16 26398.93 14598.82 18996.00 20399.83 14897.32 13699.73 12299.36 180
ACMP95.32 1598.41 13898.09 16199.36 6999.51 8498.79 8597.68 19699.38 10895.76 27798.81 17098.82 18998.36 4999.82 15894.75 27399.77 10599.48 125
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE99.05 4498.99 5099.25 9799.44 11098.35 12098.73 8599.56 4898.42 11798.91 14798.81 19198.94 1899.91 4998.35 8099.73 12299.49 115
VNet98.42 13798.30 13798.79 16798.79 25297.29 20498.23 13698.66 28699.31 4698.85 16098.80 19294.80 24799.78 20698.13 9099.13 27599.31 198
tpmrst95.07 31095.46 29593.91 35397.11 36484.36 37997.62 20296.96 34094.98 29396.35 33398.80 19285.46 33599.59 29795.60 25796.23 36597.79 344
ppachtmachnet_test97.50 21397.74 18796.78 31498.70 26691.23 35494.55 35499.05 22396.36 25599.21 9898.79 19496.39 18899.78 20696.74 18499.82 7799.34 186
miper_lstm_enhance97.18 24197.16 22797.25 29498.16 32392.85 32995.15 33799.31 14197.25 21398.74 17998.78 19590.07 30399.78 20697.19 14199.80 9199.11 241
DeepPCF-MVS96.93 598.32 14798.01 16999.23 10198.39 31098.97 6995.03 33999.18 19096.88 23699.33 7498.78 19598.16 6899.28 35396.74 18499.62 17099.44 143
patchmatchnet-post98.77 19784.37 34399.85 116
APD-MVScopyleft98.10 16797.67 19199.42 6299.11 18098.93 7497.76 18999.28 16194.97 29498.72 18098.77 19797.04 14999.85 11693.79 30799.54 20099.49 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 7098.63 8599.39 6899.16 17198.74 8797.54 21299.25 17098.84 9799.06 11698.76 19996.76 17099.93 3198.57 6699.77 10599.50 111
NR-MVSNet98.95 5698.82 6199.36 6999.16 17198.72 9299.22 4199.20 18199.10 7099.72 1698.76 19996.38 19099.86 10198.00 10199.82 7799.50 111
eth_miper_zixun_eth97.23 23797.25 22197.17 29698.00 33292.77 33194.71 34699.18 19097.27 21198.56 20298.74 20191.89 29599.69 25197.06 15599.81 8199.05 245
UniMVSNet (Re)98.87 6598.71 7399.35 7499.24 14698.73 9097.73 19299.38 10898.93 9099.12 10798.73 20296.77 16899.86 10198.63 6399.80 9199.46 135
MG-MVS96.77 26596.61 26397.26 29398.31 31493.06 32495.93 30998.12 31396.45 25397.92 25098.73 20293.77 27199.39 33991.19 35299.04 28599.33 192
c3_l97.36 22597.37 21497.31 29098.09 32793.25 32295.01 34099.16 19997.05 22898.77 17498.72 20492.88 28499.64 28196.93 16499.76 11599.05 245
cl____97.02 25396.83 24797.58 27497.82 34194.04 30294.66 34999.16 19997.04 22998.63 18898.71 20588.68 31499.69 25197.00 15799.81 8199.00 256
DIV-MVS_self_test97.02 25396.84 24697.58 27497.82 34194.03 30394.66 34999.16 19997.04 22998.63 18898.71 20588.69 31299.69 25197.00 15799.81 8199.01 253
DELS-MVS98.27 15398.20 14798.48 20998.86 23696.70 23395.60 32399.20 18197.73 16598.45 21398.71 20597.50 11999.82 15898.21 8799.59 18298.93 269
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 18499.07 19197.53 21399.32 13595.53 28298.54 20698.70 20897.58 10999.76 22094.32 29099.46 221
tpmvs95.02 31295.25 30394.33 34996.39 37685.87 37198.08 15296.83 34595.46 28495.51 35498.69 20985.91 33199.53 31494.16 29196.23 36597.58 352
PatchmatchNetpermissive95.58 30195.67 28995.30 34397.34 36087.32 36897.65 20096.65 34695.30 28897.07 30098.69 20984.77 33999.75 22794.97 26998.64 31498.83 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 10498.34 13299.54 3099.54 7899.17 4198.63 9399.24 17597.47 18798.09 24198.68 21197.62 10699.89 6496.22 22599.62 17099.57 75
UnsupCasMVSNet_eth97.89 18397.60 20098.75 17599.31 13497.17 21697.62 20299.35 12298.72 10198.76 17698.68 21192.57 28999.74 23197.76 11995.60 37099.34 186
SCA96.41 28296.66 26095.67 33498.24 31888.35 36395.85 31496.88 34496.11 26497.67 26798.67 21393.10 27999.85 11694.16 29199.22 25898.81 285
Patchmatch-test96.55 27396.34 27397.17 29698.35 31193.06 32498.40 12397.79 32097.33 20498.41 21898.67 21383.68 34999.69 25195.16 26699.31 24498.77 293
CDS-MVSNet97.69 20197.35 21698.69 18098.73 25797.02 22296.92 25998.75 27995.89 27398.59 19698.67 21392.08 29499.74 23196.72 18799.81 8199.32 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 13398.09 16199.54 3099.57 6499.22 2898.50 11299.19 18697.61 17597.58 27498.66 21697.40 12899.88 7594.72 27699.60 17899.54 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 14998.15 15698.75 17598.61 28397.23 20897.76 18999.09 21597.31 20798.75 17798.66 21697.56 11199.64 28196.10 23499.55 19999.39 164
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 20297.75 18697.45 28598.23 32093.78 31597.29 23298.84 26496.10 26598.64 18798.65 21896.04 20099.36 34296.84 17699.14 27299.20 223
pmmvs497.58 21097.28 22098.51 20698.84 24196.93 22695.40 33198.52 29493.60 32198.61 19298.65 21895.10 23799.60 29396.97 16299.79 9698.99 257
FPMVS93.44 33492.23 33997.08 29999.25 14597.86 16995.61 32297.16 33692.90 33193.76 37198.65 21875.94 37695.66 38179.30 38197.49 34397.73 346
Regformer-198.55 12098.44 11698.87 15598.85 23897.29 20496.91 26098.99 23998.97 8598.99 13098.64 22197.26 13999.81 17297.79 11399.57 19299.51 107
Regformer-298.60 11198.46 11299.02 13898.85 23897.71 18596.91 26099.09 21598.98 8499.01 12798.64 22197.37 13099.84 13397.75 12099.57 19299.52 104
dp93.47 33393.59 32793.13 36296.64 37181.62 38597.66 19896.42 34992.80 33396.11 33698.64 22178.55 37399.59 29793.31 31992.18 38098.16 326
EPMVS93.72 33193.27 33095.09 34596.04 37987.76 36698.13 14585.01 38594.69 30096.92 30698.64 22178.47 37499.31 34895.04 26796.46 36298.20 324
XVS98.72 8798.45 11499.53 3799.46 10599.21 2998.65 9199.34 12898.62 10697.54 27898.63 22597.50 11999.83 14896.79 17899.53 20499.56 80
CostFormer93.97 32793.78 32494.51 34897.53 35385.83 37397.98 16795.96 35589.29 36394.99 36098.63 22578.63 37199.62 28694.54 27996.50 36198.09 329
ETH3D-3000-0.198.03 17197.62 19899.29 8599.11 18098.80 8497.47 22099.32 13595.54 28098.43 21798.62 22796.61 17899.77 21293.95 30199.49 21899.30 201
MSLP-MVS++98.02 17398.14 15897.64 27098.58 28895.19 27297.48 21899.23 17797.47 18797.90 25298.62 22797.04 14998.81 37297.55 12499.41 22898.94 268
Vis-MVSNet (Re-imp)97.46 21897.16 22798.34 22299.55 7596.10 24498.94 7398.44 29798.32 12298.16 23298.62 22788.76 31199.73 23593.88 30499.79 9699.18 230
XVG-OURS-SEG-HR98.49 13098.28 13999.14 11299.49 9498.83 8096.54 27899.48 7797.32 20699.11 10898.61 23099.33 899.30 35096.23 22498.38 32199.28 206
ITE_SJBPF98.87 15599.22 15198.48 11099.35 12297.50 18498.28 22698.60 23197.64 10499.35 34393.86 30599.27 25198.79 291
UniMVSNet_NR-MVSNet98.86 6898.68 7999.40 6799.17 16998.74 8797.68 19699.40 10399.14 6199.06 11698.59 23296.71 17499.93 3198.57 6699.77 10599.53 100
114514_t96.50 27795.77 28498.69 18099.48 10297.43 19997.84 18199.55 5281.42 37896.51 32798.58 23395.53 22399.67 26393.41 31799.58 18898.98 258
HY-MVS95.94 1395.90 29395.35 30197.55 27897.95 33394.79 28198.81 8296.94 34292.28 33995.17 35798.57 23489.90 30599.75 22791.20 35197.33 35298.10 328
tpm94.67 31594.34 31995.66 33597.68 34988.42 36297.88 17594.90 35994.46 30496.03 34198.56 23578.66 37099.79 19495.88 24095.01 37398.78 292
PC_three_145293.27 32599.40 6098.54 23698.22 6097.00 38095.17 26599.45 22399.49 115
ACMMPR98.70 9198.42 12099.54 3099.52 8299.14 5598.52 10699.31 14197.47 18798.56 20298.54 23697.75 9599.88 7596.57 19899.59 18299.58 70
new_pmnet96.99 25796.76 25297.67 26698.72 25994.89 28095.95 30898.20 30792.62 33598.55 20498.54 23694.88 24399.52 31893.96 30099.44 22698.59 309
OPU-MVS98.82 16198.59 28798.30 12198.10 15098.52 23998.18 6498.75 37394.62 27799.48 22099.41 153
CS-MVS-test99.13 3799.09 4099.26 9499.13 17898.97 6999.31 2699.88 499.44 3298.16 23298.51 24098.64 3299.93 3198.91 4499.85 6498.88 277
region2R98.69 9398.40 12299.54 3099.53 8099.17 4198.52 10699.31 14197.46 19298.44 21498.51 24097.83 8899.88 7596.46 21099.58 18899.58 70
TSAR-MVS + GP.98.18 16397.98 17198.77 17298.71 26297.88 16796.32 29298.66 28696.33 25699.23 9798.51 24097.48 12499.40 33797.16 14399.46 22199.02 252
OMC-MVS97.88 18597.49 20599.04 13498.89 23298.63 9596.94 25599.25 17095.02 29298.53 20798.51 24097.27 13699.47 32993.50 31599.51 21099.01 253
testtj97.79 19797.25 22199.42 6299.03 20298.85 7797.78 18499.18 19095.83 27598.12 23798.50 24495.50 22699.86 10192.23 33899.07 28199.54 92
HFP-MVS98.71 8898.44 11699.51 4699.49 9499.16 4598.52 10699.31 14197.47 18798.58 19898.50 24497.97 8299.85 11696.57 19899.59 18299.53 100
#test#98.50 12998.16 15499.51 4699.49 9499.16 4598.03 16099.31 14196.30 25998.58 19898.50 24497.97 8299.85 11695.68 25399.59 18299.53 100
diffmvs98.22 15998.24 14398.17 23599.00 20795.44 26496.38 28999.58 3497.79 16298.53 20798.50 24496.76 17099.74 23197.95 10499.64 16499.34 186
WR-MVS98.40 14098.19 14999.03 13599.00 20797.65 18896.85 26398.94 24298.57 11298.89 15198.50 24495.60 22199.85 11697.54 12699.85 6499.59 64
Test_1112_low_res96.99 25796.55 26798.31 22599.35 13195.47 26395.84 31599.53 6191.51 34796.80 31798.48 24991.36 29799.83 14896.58 19699.53 20499.62 52
CS-MVS99.13 3799.10 3999.24 9999.06 19599.15 5099.36 1899.88 499.36 4298.21 22998.46 25098.68 3199.93 3199.03 3899.85 6498.64 306
miper_ehance_all_eth97.06 24997.03 23397.16 29897.83 34093.06 32494.66 34999.09 21595.99 27098.69 18198.45 25192.73 28799.61 29296.79 17899.03 28698.82 282
PHI-MVS98.29 15297.95 17399.34 7798.44 30499.16 4598.12 14799.38 10896.01 26998.06 24398.43 25297.80 9299.67 26395.69 25299.58 18899.20 223
tpm cat193.29 33593.13 33493.75 35597.39 35984.74 37697.39 22497.65 32583.39 37794.16 36598.41 25382.86 35399.39 33991.56 34695.35 37297.14 359
ETH3D cwj APD-0.1697.55 21197.00 23599.19 10598.51 29898.64 9496.85 26399.13 20794.19 31297.65 26898.40 25495.78 21699.81 17293.37 31899.16 26899.12 239
CP-MVS98.70 9198.42 12099.52 4299.36 12799.12 6098.72 8699.36 11697.54 18298.30 22498.40 25497.86 8799.89 6496.53 20699.72 12999.56 80
ZNCC-MVS98.68 9798.40 12299.54 3099.57 6499.21 2998.46 11899.29 15897.28 21098.11 23998.39 25698.00 7899.87 9296.86 17599.64 16499.55 88
GST-MVS98.61 10998.30 13799.52 4299.51 8499.20 3598.26 13499.25 17097.44 19598.67 18398.39 25697.68 9899.85 11696.00 23599.51 21099.52 104
HPM-MVScopyleft98.79 7498.53 9899.59 1799.65 5299.29 2099.16 5099.43 9796.74 24198.61 19298.38 25898.62 3499.87 9296.47 20999.67 15699.59 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 23998.93 21995.40 26698.80 27290.08 35997.45 28698.37 25995.26 23299.70 24793.58 31298.95 29799.17 234
CPTT-MVS97.84 19397.36 21599.27 9199.31 13498.46 11198.29 13199.27 16494.90 29697.83 25798.37 25994.90 24099.84 13393.85 30699.54 20099.51 107
DROMVSNet99.09 4099.05 4499.20 10399.28 13998.93 7499.24 4099.84 799.08 7598.12 23798.37 25998.72 2899.90 5499.05 3699.77 10598.77 293
OpenMVS_ROBcopyleft95.38 1495.84 29595.18 30697.81 25798.41 30997.15 21897.37 22698.62 28983.86 37598.65 18698.37 25994.29 26099.68 26088.41 36498.62 31696.60 366
tttt051795.64 30094.98 30997.64 27099.36 12793.81 31498.72 8690.47 37898.08 14598.67 18398.34 26373.88 37999.92 3997.77 11599.51 21099.20 223
旧先验198.82 24697.45 19898.76 27698.34 26395.50 22699.01 29199.23 218
CNVR-MVS98.17 16597.87 18099.07 12598.67 27698.24 12597.01 25198.93 24497.25 21397.62 27098.34 26397.27 13699.57 30396.42 21499.33 24199.39 164
HyFIR lowres test97.19 24096.60 26598.96 14399.62 5997.28 20695.17 33599.50 6794.21 31199.01 12798.32 26686.61 32499.99 297.10 15199.84 6899.60 58
UnsupCasMVSNet_bld97.30 23096.92 24098.45 21299.28 13996.78 23296.20 29899.27 16495.42 28598.28 22698.30 26793.16 27799.71 24494.99 26897.37 34898.87 278
MSDG97.71 20097.52 20398.28 22898.91 22696.82 22894.42 35699.37 11297.65 17198.37 22398.29 26897.40 12899.33 34694.09 29799.22 25898.68 305
MVS_111021_HR98.25 15798.08 16498.75 17599.09 18797.46 19795.97 30499.27 16497.60 17697.99 24898.25 26998.15 7099.38 34196.87 17399.57 19299.42 150
CANet_DTU97.26 23397.06 23297.84 25597.57 35094.65 28996.19 29998.79 27397.23 21995.14 35898.24 27093.22 27699.84 13397.34 13599.84 6899.04 249
MVS_111021_LR98.30 14998.12 15998.83 16099.16 17198.03 15096.09 30199.30 15197.58 17798.10 24098.24 27098.25 5599.34 34496.69 19099.65 16299.12 239
tpm293.09 33792.58 33894.62 34797.56 35186.53 37097.66 19895.79 35786.15 37294.07 36898.23 27275.95 37599.53 31490.91 35596.86 35997.81 341
CANet97.87 18697.76 18598.19 23497.75 34395.51 26196.76 26999.05 22397.74 16496.93 30598.21 27395.59 22299.89 6497.86 11099.93 3299.19 228
LF4IMVS97.90 18197.69 19098.52 20499.17 16997.66 18797.19 24399.47 8396.31 25897.85 25698.20 27496.71 17499.52 31894.62 27799.72 12998.38 318
CL-MVSNet_self_test97.44 22197.22 22498.08 24298.57 29095.78 25594.30 35998.79 27396.58 24898.60 19498.19 27594.74 25199.64 28196.41 21598.84 30198.82 282
cl2295.79 29695.39 30096.98 30396.77 37092.79 33094.40 35798.53 29394.59 30197.89 25398.17 27682.82 35499.24 35596.37 21699.03 28698.92 270
112196.73 26696.00 28098.91 15098.95 21697.76 18098.07 15398.73 28287.65 36996.54 32498.13 27794.52 25499.73 23592.38 33699.02 28999.24 215
MVSFormer98.26 15598.43 11897.77 26098.88 23393.89 31299.39 1699.56 4899.11 6398.16 23298.13 27793.81 26999.97 499.26 2399.57 19299.43 147
jason97.45 22097.35 21697.76 26299.24 14693.93 30895.86 31298.42 29894.24 31098.50 20998.13 27794.82 24499.91 4997.22 14099.73 12299.43 147
jason: jason.
ZD-MVS99.01 20698.84 7999.07 21894.10 31498.05 24598.12 28096.36 19299.86 10192.70 33199.19 265
test22298.92 22396.93 22695.54 32498.78 27585.72 37396.86 31498.11 28194.43 25599.10 28099.23 218
新几何198.91 15098.94 21797.76 18098.76 27687.58 37096.75 31898.10 28294.80 24799.78 20692.73 33099.00 29299.20 223
原ACMM198.35 22198.90 22796.25 24298.83 26992.48 33696.07 33998.10 28295.39 23099.71 24492.61 33398.99 29399.08 242
EPNet_dtu94.93 31394.78 31495.38 34293.58 38487.68 36796.78 26795.69 35897.35 20389.14 38098.09 28488.15 31999.49 32494.95 27099.30 24798.98 258
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 31194.40 31796.93 30597.70 34792.53 33495.08 33897.71 32388.57 36697.71 26498.08 28579.39 36699.82 15896.19 22799.11 27998.43 316
DP-MVS Recon97.33 22896.92 24098.57 19599.09 18797.99 15296.79 26699.35 12293.18 32697.71 26498.07 28695.00 23999.31 34893.97 29999.13 27598.42 317
CSCG98.68 9798.50 10399.20 10399.45 10898.63 9598.56 10299.57 4197.87 15798.85 16098.04 28797.66 10099.84 13396.72 18799.81 8199.13 238
F-COLMAP97.30 23096.68 25799.14 11299.19 16098.39 11497.27 23599.30 15192.93 33096.62 32298.00 28895.73 21899.68 26092.62 33298.46 32099.35 184
Effi-MVS+-dtu98.26 15597.90 17899.35 7498.02 33099.49 598.02 16299.16 19998.29 12697.64 26997.99 28996.44 18699.95 1796.66 19298.93 29898.60 307
hse-mvs297.46 21897.07 23198.64 18398.73 25797.33 20297.45 22297.64 32799.11 6398.58 19897.98 29088.65 31599.79 19498.11 9197.39 34798.81 285
HQP_MVS97.99 17897.67 19198.93 14799.19 16097.65 18897.77 18799.27 16498.20 13597.79 26097.98 29094.90 24099.70 24794.42 28599.51 21099.45 139
plane_prior497.98 290
BH-RMVSNet96.83 26296.58 26697.58 27498.47 30194.05 30196.67 27497.36 33096.70 24497.87 25497.98 29095.14 23699.44 33490.47 35898.58 31899.25 212
AUN-MVS96.24 28795.45 29698.60 19198.70 26697.22 21097.38 22597.65 32595.95 27195.53 35397.96 29482.11 35899.79 19496.31 22097.44 34598.80 290
NCCC97.86 18797.47 20999.05 13298.61 28398.07 14696.98 25398.90 25097.63 17297.04 30297.93 29595.99 20699.66 27395.31 26498.82 30399.43 147
sss97.21 23896.93 23898.06 24498.83 24395.22 27196.75 27098.48 29694.49 30297.27 29397.90 29692.77 28699.80 18196.57 19899.32 24299.16 237
test_yl96.69 26796.29 27597.90 25298.28 31595.24 26997.29 23297.36 33098.21 13298.17 23097.86 29786.27 32699.55 30994.87 27198.32 32298.89 274
DCV-MVSNet96.69 26796.29 27597.90 25298.28 31595.24 26997.29 23297.36 33098.21 13298.17 23097.86 29786.27 32699.55 30994.87 27198.32 32298.89 274
CDPH-MVS97.26 23396.66 26099.07 12599.00 20798.15 13696.03 30299.01 23591.21 35197.79 26097.85 29996.89 15999.69 25192.75 32999.38 23499.39 164
HPM-MVS++copyleft98.10 16797.64 19699.48 5599.09 18799.13 5897.52 21498.75 27997.46 19296.90 31197.83 30096.01 20299.84 13395.82 24799.35 23899.46 135
ETH3 D test640096.46 28095.59 29299.08 12298.88 23398.21 13196.53 27999.18 19088.87 36597.08 29997.79 30193.64 27499.77 21288.92 36399.40 23099.28 206
PatchMatch-RL97.24 23696.78 25198.61 19099.03 20297.83 17296.36 29099.06 21993.49 32497.36 29297.78 30295.75 21799.49 32493.44 31698.77 30498.52 310
TAPA-MVS96.21 1196.63 27195.95 28298.65 18298.93 21998.09 14096.93 25799.28 16183.58 37698.13 23697.78 30296.13 19799.40 33793.52 31399.29 24998.45 314
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 29295.44 29797.52 28198.51 29893.99 30698.39 12496.09 35398.21 13298.40 22297.76 30486.88 32299.63 28495.42 26289.27 38198.95 264
WTY-MVS96.67 26996.27 27797.87 25498.81 24894.61 29096.77 26897.92 31994.94 29597.12 29697.74 30591.11 29899.82 15893.89 30398.15 33099.18 230
test_method79.78 34979.50 35280.62 36580.21 38845.76 39070.82 37998.41 30031.08 38380.89 38497.71 30684.85 33897.37 37991.51 34780.03 38298.75 296
MSP-MVS98.40 14098.00 17099.61 999.57 6499.25 2598.57 10199.35 12297.55 18199.31 8297.71 30694.61 25299.88 7596.14 23199.19 26599.70 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 17597.63 19799.10 11899.24 14698.17 13596.89 26298.73 28295.66 27897.92 25097.70 30897.17 14499.66 27396.18 22999.23 25799.47 133
AdaColmapbinary97.14 24496.71 25598.46 21198.34 31297.80 17896.95 25498.93 24495.58 27996.92 30697.66 30995.87 21399.53 31490.97 35399.14 27298.04 331
thisisatest053095.27 30794.45 31697.74 26499.19 16094.37 29497.86 17990.20 37997.17 22398.22 22897.65 31073.53 38099.90 5496.90 17099.35 23898.95 264
testgi98.32 14798.39 12598.13 23899.57 6495.54 25997.78 18499.49 7597.37 20199.19 10097.65 31098.96 1799.49 32496.50 20898.99 29399.34 186
test_prior397.48 21797.00 23598.95 14498.69 27197.95 16295.74 31899.03 22896.48 25196.11 33697.63 31295.92 21199.59 29794.16 29199.20 26199.30 201
test_prior295.74 31896.48 25196.11 33697.63 31295.92 21194.16 29199.20 261
cdsmvs_eth3d_5k24.66 35132.88 3540.00 3690.00 3920.00 3930.00 38099.10 2130.00 3870.00 38897.58 31499.21 100.00 3880.00 3860.00 3860.00 384
lupinMVS97.06 24996.86 24497.65 26898.88 23393.89 31295.48 32897.97 31793.53 32298.16 23297.58 31493.81 26999.91 4996.77 18199.57 19299.17 234
TEST998.71 26298.08 14495.96 30699.03 22891.40 34895.85 34297.53 31696.52 18199.76 220
train_agg97.10 24596.45 27099.07 12598.71 26298.08 14495.96 30699.03 22891.64 34395.85 34297.53 31696.47 18499.76 22093.67 30999.16 26899.36 180
Fast-Effi-MVS+-dtu98.27 15398.09 16198.81 16398.43 30598.11 13997.61 20499.50 6798.64 10297.39 29097.52 31898.12 7199.95 1796.90 17098.71 30998.38 318
test_898.67 27698.01 15195.91 31199.02 23291.64 34395.79 34497.50 31996.47 18499.76 220
agg_prior197.06 24996.40 27199.03 13598.68 27497.99 15295.76 31699.01 23591.73 34295.59 34597.50 31996.49 18399.77 21293.71 30899.14 27299.34 186
1112_ss97.29 23296.86 24498.58 19399.34 13396.32 24096.75 27099.58 3493.14 32796.89 31297.48 32192.11 29399.86 10196.91 16599.54 20099.57 75
ab-mvs-re8.12 35510.83 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.48 3210.00 3920.00 3880.00 3860.00 3860.00 384
Effi-MVS+98.02 17397.82 18398.62 18898.53 29597.19 21497.33 22999.68 2297.30 20896.68 31997.46 32398.56 3899.80 18196.63 19498.20 32698.86 279
PCF-MVS92.86 1894.36 31893.00 33598.42 21598.70 26697.56 19293.16 37199.11 21179.59 37997.55 27797.43 32492.19 29199.73 23579.85 38099.45 22397.97 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 29495.32 30297.49 28398.60 28594.15 30093.83 36697.93 31895.49 28396.68 31997.42 32583.21 35099.30 35096.22 22598.55 31999.01 253
CNLPA97.17 24296.71 25598.55 20098.56 29198.05 14996.33 29198.93 24496.91 23597.06 30197.39 32694.38 25899.45 33291.66 34299.18 26798.14 327
PLCcopyleft94.65 1696.51 27595.73 28698.85 15898.75 25597.91 16596.42 28799.06 21990.94 35495.59 34597.38 32794.41 25699.59 29790.93 35498.04 33799.05 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 26296.75 25397.08 29998.74 25693.33 32196.71 27298.26 30496.72 24298.44 21497.37 32895.20 23499.47 32991.89 34097.43 34698.44 315
PVSNet_Blended96.88 26096.68 25797.47 28498.92 22393.77 31694.71 34699.43 9790.98 35397.62 27097.36 32996.82 16499.67 26394.73 27499.56 19798.98 258
miper_enhance_ethall96.01 29095.74 28596.81 31396.41 37592.27 33993.69 36898.89 25291.14 35298.30 22497.35 33090.58 30099.58 30296.31 22099.03 28698.60 307
DPM-MVS96.32 28395.59 29298.51 20698.76 25397.21 21294.54 35598.26 30491.94 34196.37 33297.25 33193.06 28199.43 33591.42 34898.74 30598.89 274
E-PMN94.17 32394.37 31893.58 35796.86 36785.71 37490.11 37797.07 33798.17 13897.82 25997.19 33284.62 34198.94 36889.77 36097.68 34296.09 373
mvs-test197.83 19597.48 20898.89 15398.02 33099.20 3597.20 24099.16 19998.29 12696.46 33197.17 33396.44 18699.92 3996.66 19297.90 33997.54 354
CLD-MVS97.49 21597.16 22798.48 20999.07 19197.03 22194.71 34699.21 17994.46 30498.06 24397.16 33497.57 11099.48 32794.46 28299.78 10198.95 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 30495.47 29495.65 33698.25 31788.27 36493.25 37098.88 25393.53 32294.65 36197.15 33586.17 32899.93 3197.41 13299.93 3298.73 298
xiu_mvs_v1_base_debu97.86 18798.17 15196.92 30698.98 21193.91 30996.45 28499.17 19697.85 15998.41 21897.14 33698.47 4299.92 3998.02 9899.05 28296.92 360
xiu_mvs_v1_base97.86 18798.17 15196.92 30698.98 21193.91 30996.45 28499.17 19697.85 15998.41 21897.14 33698.47 4299.92 3998.02 9899.05 28296.92 360
xiu_mvs_v1_base_debi97.86 18798.17 15196.92 30698.98 21193.91 30996.45 28499.17 19697.85 15998.41 21897.14 33698.47 4299.92 3998.02 9899.05 28296.92 360
NP-MVS98.84 24197.39 20196.84 339
HQP-MVS97.00 25696.49 26998.55 20098.67 27696.79 22996.29 29399.04 22696.05 26695.55 34996.84 33993.84 26799.54 31292.82 32699.26 25499.32 194
API-MVS97.04 25296.91 24297.42 28797.88 33898.23 12998.18 14198.50 29597.57 17897.39 29096.75 34196.77 16899.15 36290.16 35999.02 28994.88 377
131495.74 29795.60 29196.17 32597.53 35392.75 33298.07 15398.31 30391.22 35094.25 36496.68 34295.53 22399.03 36491.64 34497.18 35396.74 364
TR-MVS95.55 30295.12 30796.86 31297.54 35293.94 30796.49 28396.53 34894.36 30997.03 30396.61 34394.26 26199.16 36186.91 36896.31 36497.47 356
Fast-Effi-MVS+97.67 20397.38 21398.57 19598.71 26297.43 19997.23 23699.45 8894.82 29896.13 33596.51 34498.52 4199.91 4996.19 22798.83 30298.37 320
xiu_mvs_v2_base97.16 24397.49 20596.17 32598.54 29392.46 33595.45 32998.84 26497.25 21397.48 28496.49 34598.31 5499.90 5496.34 21998.68 31296.15 371
MVS93.19 33692.09 34096.50 31896.91 36694.03 30398.07 15398.06 31568.01 38094.56 36396.48 34695.96 20999.30 35083.84 37396.89 35896.17 369
PAPM_NR96.82 26496.32 27498.30 22699.07 19196.69 23497.48 21898.76 27695.81 27696.61 32396.47 34794.12 26599.17 36090.82 35797.78 34099.06 244
KD-MVS_2432*160092.87 33891.99 34195.51 33991.37 38589.27 35994.07 36198.14 31195.42 28597.25 29496.44 34867.86 38399.24 35591.28 34996.08 36798.02 332
miper_refine_blended92.87 33891.99 34195.51 33991.37 38589.27 35994.07 36198.14 31195.42 28597.25 29496.44 34867.86 38399.24 35591.28 34996.08 36798.02 332
PVSNet93.40 1795.67 29895.70 28795.57 33798.83 24388.57 36192.50 37397.72 32292.69 33496.49 33096.44 34893.72 27299.43 33593.61 31099.28 25098.71 299
EMVS93.83 32994.02 32193.23 36196.83 36984.96 37589.77 37896.32 35097.92 15397.43 28896.36 35186.17 32898.93 36987.68 36697.73 34195.81 374
MAR-MVS96.47 27995.70 28798.79 16797.92 33599.12 6098.28 13298.60 29092.16 34095.54 35296.17 35294.77 25099.52 31889.62 36198.23 32497.72 347
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 34690.34 34996.51 31798.06 32992.56 33392.44 37497.17 33586.35 37190.38 37896.01 35386.61 32499.21 35870.65 38395.43 37197.75 345
PS-MVSNAJ97.08 24897.39 21296.16 32798.56 29192.46 33595.24 33498.85 26397.25 21397.49 28395.99 35498.07 7299.90 5496.37 21698.67 31396.12 372
baseline293.73 33092.83 33696.42 31997.70 34791.28 35296.84 26589.77 38093.96 31892.44 37495.93 35579.14 36899.77 21292.94 32296.76 36098.21 323
alignmvs97.35 22696.88 24398.78 17098.54 29398.09 14097.71 19397.69 32499.20 5597.59 27395.90 35688.12 32099.55 30998.18 8998.96 29698.70 301
ET-MVSNet_ETH3D94.30 32193.21 33197.58 27498.14 32494.47 29394.78 34593.24 37194.72 29989.56 37995.87 35778.57 37299.81 17296.91 16597.11 35598.46 312
thisisatest051594.12 32593.16 33296.97 30498.60 28592.90 32893.77 36790.61 37794.10 31496.91 30895.87 35774.99 37899.80 18194.52 28099.12 27898.20 324
BH-w/o95.13 30994.89 31395.86 32998.20 32191.31 35095.65 32197.37 32993.64 32096.52 32695.70 35993.04 28299.02 36588.10 36595.82 36997.24 358
PMMVS96.51 27595.98 28198.09 23997.53 35395.84 25294.92 34298.84 26491.58 34596.05 34095.58 36095.68 21999.66 27395.59 25898.09 33398.76 295
EIA-MVS98.00 17597.74 18798.80 16598.72 25998.09 14098.05 15799.60 3197.39 19996.63 32195.55 36197.68 9899.80 18196.73 18699.27 25198.52 310
ETV-MVS98.03 17197.86 18198.56 19998.69 27198.07 14697.51 21699.50 6798.10 14397.50 28295.51 36298.41 4699.88 7596.27 22399.24 25697.71 348
PAPR95.29 30694.47 31597.75 26397.50 35795.14 27494.89 34398.71 28491.39 34995.35 35695.48 36394.57 25399.14 36384.95 37197.37 34898.97 262
canonicalmvs98.34 14698.26 14198.58 19398.46 30297.82 17598.96 7299.46 8599.19 5997.46 28595.46 36498.59 3699.46 33198.08 9598.71 30998.46 312
MVEpermissive83.40 2292.50 34091.92 34394.25 35098.83 24391.64 34492.71 37283.52 38695.92 27286.46 38395.46 36495.20 23495.40 38280.51 37998.64 31495.73 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 32893.85 32294.04 35196.53 37284.62 37794.05 36392.39 37396.17 26194.12 36695.07 36682.30 35599.67 26395.87 24398.18 32797.82 339
test-mter92.33 34391.76 34694.04 35196.53 37284.62 37794.05 36392.39 37394.00 31794.12 36695.07 36665.63 38999.67 26395.87 24398.18 32797.82 339
thres600view794.45 31793.83 32396.29 32199.06 19591.53 34597.99 16694.24 36598.34 12097.44 28795.01 36879.84 36299.67 26384.33 37298.23 32497.66 349
gm-plane-assit94.83 38281.97 38488.07 36894.99 36999.60 29391.76 341
thres100view90094.19 32293.67 32695.75 33399.06 19591.35 34998.03 16094.24 36598.33 12197.40 28994.98 37079.84 36299.62 28683.05 37498.08 33496.29 367
cascas94.79 31494.33 32096.15 32896.02 38092.36 33892.34 37599.26 16985.34 37495.08 35994.96 37192.96 28398.53 37594.41 28898.59 31797.56 353
TESTMET0.1,192.19 34591.77 34593.46 35896.48 37482.80 38294.05 36391.52 37694.45 30694.00 36994.88 37266.65 38699.56 30695.78 24898.11 33298.02 332
test0.0.03 194.51 31693.69 32596.99 30296.05 37893.61 32094.97 34193.49 36896.17 26197.57 27694.88 37282.30 35599.01 36793.60 31194.17 37798.37 320
DeepMVS_CXcopyleft93.44 35998.24 31894.21 29894.34 36264.28 38191.34 37794.87 37489.45 30992.77 38477.54 38293.14 37893.35 379
IB-MVS91.63 1992.24 34490.90 34896.27 32297.22 36391.24 35394.36 35893.33 37092.37 33792.24 37594.58 37566.20 38899.89 6493.16 32194.63 37597.66 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 32693.44 32895.78 33298.93 21991.44 34797.60 20594.29 36397.94 15197.10 29794.31 37679.67 36499.62 28683.05 37498.08 33496.29 367
thres40094.14 32493.44 32896.24 32398.93 21991.44 34797.60 20594.29 36397.94 15197.10 29794.31 37679.67 36499.62 28683.05 37498.08 33497.66 349
thres20093.72 33193.14 33395.46 34198.66 28191.29 35196.61 27794.63 36197.39 19996.83 31593.71 37879.88 36199.56 30682.40 37798.13 33195.54 376
PVSNet_089.98 2191.15 34790.30 35093.70 35697.72 34484.34 38090.24 37697.42 32890.20 35893.79 37093.09 37990.90 29998.89 37186.57 36972.76 38397.87 338
tmp_tt78.77 35078.73 35378.90 36658.45 38974.76 38994.20 36078.26 38939.16 38286.71 38292.82 38080.50 36075.19 38586.16 37092.29 37986.74 380
GG-mvs-BLEND94.76 34694.54 38392.13 34199.31 2680.47 38888.73 38191.01 38167.59 38598.16 37882.30 37894.53 37693.98 378
X-MVStestdata94.32 31992.59 33799.53 3799.46 10599.21 2998.65 9199.34 12898.62 10697.54 27845.85 38297.50 11999.83 14896.79 17899.53 20499.56 80
testmvs17.12 35220.53 3556.87 36812.05 3904.20 39293.62 3696.73 3914.62 38610.41 38624.33 3838.28 3913.56 3879.69 38515.07 38412.86 383
test12317.04 35320.11 3567.82 36710.25 3914.91 39194.80 3444.47 3924.93 38510.00 38724.28 3849.69 3903.64 38610.14 38412.43 38514.92 382
test_post21.25 38583.86 34899.70 247
test_post197.59 20720.48 38683.07 35299.66 27394.16 291
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.17 35410.90 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38798.07 720.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.73 3199.67 299.43 1199.54 5799.43 3499.26 89
MSC_two_6792asdad99.32 8298.43 30598.37 11698.86 26099.89 6497.14 14799.60 17899.71 31
No_MVS99.32 8298.43 30598.37 11698.86 26099.89 6497.14 14799.60 17899.71 31
eth-test20.00 392
eth-test0.00 392
IU-MVS99.49 9499.15 5098.87 25592.97 32999.41 5796.76 18299.62 17099.66 43
save fliter99.11 18097.97 15796.53 27999.02 23298.24 129
test_0728_SECOND99.60 1399.50 8799.23 2798.02 16299.32 13599.88 7596.99 15999.63 16799.68 39
GSMVS98.81 285
test_part299.36 12799.10 6399.05 121
sam_mvs184.74 34098.81 285
sam_mvs84.29 346
MTGPAbinary99.20 181
MTMP97.93 17091.91 375
test9_res93.28 32099.15 27199.38 171
agg_prior292.50 33499.16 26899.37 174
agg_prior98.68 27497.99 15299.01 23595.59 34599.77 212
test_prior497.97 15795.86 312
test_prior98.95 14498.69 27197.95 16299.03 22899.59 29799.30 201
旧先验295.76 31688.56 36797.52 28099.66 27394.48 281
新几何295.93 309
无先验95.74 31898.74 28189.38 36299.73 23592.38 33699.22 222
原ACMM295.53 325
testdata299.79 19492.80 328
segment_acmp97.02 152
testdata195.44 33096.32 257
test1298.93 14798.58 28897.83 17298.66 28696.53 32595.51 22599.69 25199.13 27599.27 208
plane_prior799.19 16097.87 168
plane_prior698.99 21097.70 18694.90 240
plane_prior599.27 16499.70 24794.42 28599.51 21099.45 139
plane_prior397.78 17997.41 19797.79 260
plane_prior297.77 18798.20 135
plane_prior199.05 198
plane_prior97.65 18897.07 24996.72 24299.36 236
n20.00 393
nn0.00 393
door-mid99.57 41
test1198.87 255
door99.41 101
HQP5-MVS96.79 229
HQP-NCC98.67 27696.29 29396.05 26695.55 349
ACMP_Plane98.67 27696.29 29396.05 26695.55 349
BP-MVS92.82 326
HQP4-MVS95.56 34899.54 31299.32 194
HQP3-MVS99.04 22699.26 254
HQP2-MVS93.84 267
MDTV_nov1_ep13_2view74.92 38897.69 19590.06 36097.75 26385.78 33293.52 31398.69 302
ACMMP++_ref99.77 105
ACMMP++99.68 150
Test By Simon96.52 181