This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10598.16 298.94 299.33 297.84 499.08 9490.73 12499.73 1499.59 12
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20891.38 11599.69 1599.42 19
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17899.57 1395.86 999.69 1599.46 18
gg-mvs-nofinetune82.10 31481.02 31685.34 32187.46 35171.04 33194.74 9967.56 36496.44 2179.43 35598.99 645.24 36596.15 30467.18 34992.17 33188.85 346
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2797.58 798.72 898.97 793.15 8499.15 8393.18 6499.74 1399.50 16
ANet_high94.83 9396.28 3690.47 25596.65 15173.16 32194.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16190.38 13199.68 1899.53 14
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19798.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7788.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
K. test v393.37 13693.27 14693.66 15298.05 7882.62 20694.35 11486.62 32796.05 2797.51 3898.85 1276.59 28899.65 393.21 6398.20 19098.73 89
Gipumacopyleft95.31 7595.80 6393.81 15097.99 8790.91 6996.42 3497.95 7396.69 1691.78 24398.85 1291.77 11595.49 31791.72 10599.08 9095.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 17196.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19498.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23594.86 3898.49 1598.74 1681.45 24999.60 894.69 1699.39 5499.15 37
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20698.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
VDDNet94.03 12394.27 11793.31 16598.87 1982.36 20895.51 7191.78 29697.19 1196.32 8398.60 1884.24 22498.75 15087.09 20398.83 12398.81 78
TransMVSNet (Re)95.27 7896.04 5192.97 17398.37 5981.92 21295.07 8796.76 16693.97 5297.77 2798.57 1995.72 1897.90 23188.89 17399.23 7699.08 45
Baseline_NR-MVSNet94.47 10795.09 8692.60 19198.50 5280.82 22892.08 18796.68 16993.82 5596.29 8698.56 2090.10 15897.75 24990.10 14699.66 2199.24 31
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18195.99 5196.56 17592.38 7597.03 5598.53 2190.12 15598.98 11088.78 17599.16 8398.65 92
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 15993.73 5697.87 2698.49 2490.73 14499.05 9986.43 21599.60 2599.10 44
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17595.46 7297.12 14091.84 9797.28 4698.46 2595.30 3497.71 25190.17 14299.42 4798.99 53
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13294.64 1799.53 3598.99 53
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5196.59 1998.46 1798.43 2792.91 9099.52 1796.25 699.76 1199.65 8
test_part194.39 10894.55 10593.92 14496.14 18982.86 20495.54 6998.09 4795.36 3598.27 2098.36 2875.91 29099.44 2393.41 5499.84 399.47 17
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17896.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22594.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 17996.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18896.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7398.22 2992.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22497.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8396.77 16596.64 1897.61 3498.05 3493.23 8198.79 14188.60 18099.04 9998.78 81
VPA-MVSNet95.14 8095.67 6793.58 15597.76 9483.15 20094.58 10697.58 10293.39 6397.05 5498.04 3593.25 8098.51 18489.75 15499.59 2799.08 45
LCM-MVSNet-Re94.20 11994.58 10493.04 17095.91 20783.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10581.28 26798.54 14996.96 214
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10390.68 13297.43 4198.00 3788.18 17599.15 8394.84 1599.55 3499.41 20
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6287.35 19996.22 9297.99 3894.48 6199.05 9992.73 7999.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
JIA-IIPM85.08 29583.04 30491.19 23587.56 34886.14 16189.40 27184.44 34888.98 16582.20 34497.95 3956.82 35396.15 30476.55 31083.45 35391.30 338
v894.65 10095.29 7892.74 18496.65 15179.77 24694.59 10497.17 13691.86 9397.47 4097.93 4088.16 17699.08 9494.32 2299.47 3999.38 22
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11793.85 3399.49 3899.36 24
lessismore_v093.87 14898.05 7883.77 19280.32 35997.13 5097.91 4277.49 27699.11 9192.62 8298.08 20198.74 87
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30594.15 12095.60 21189.38 15695.90 10897.90 4480.39 25897.96 22992.60 8399.68 1898.75 84
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 4897.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
VDD-MVS94.37 10994.37 11194.40 12997.49 11486.07 16293.97 12893.28 26694.49 4396.24 9097.78 4687.99 18198.79 14188.92 17199.14 8598.34 119
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 19397.78 4691.21 13297.77 24691.06 11797.06 24198.80 79
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13296.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
tfpnnormal94.27 11594.87 9192.48 19697.71 9980.88 22794.55 11095.41 22293.70 5796.67 7097.72 4991.40 12498.18 21287.45 19899.18 8298.36 118
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24291.87 20196.22 19385.94 22095.53 12297.68 5092.69 9694.48 33083.21 24897.51 22998.21 130
UGNet93.08 14792.50 16394.79 10793.87 27587.99 12195.07 8794.26 25190.64 13387.33 31497.67 5186.89 20298.49 18588.10 18798.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DIV-MVS_2432*160094.10 12194.73 9792.19 20297.66 10579.49 25194.86 9597.12 14089.59 15496.87 6197.65 5290.40 15298.34 19889.08 16999.35 5798.75 84
wuyk23d87.83 26490.79 20378.96 34190.46 32888.63 10592.72 15690.67 30491.65 10998.68 1197.64 5396.06 1677.53 36159.84 35699.41 5270.73 359
EG-PatchMatch MVS94.54 10594.67 10194.14 13597.87 9186.50 14892.00 19296.74 16788.16 18396.93 5997.61 5493.04 8897.90 23191.60 10998.12 19798.03 143
DSMNet-mixed82.21 31181.56 31084.16 32989.57 33770.00 33990.65 23377.66 36254.99 36183.30 33897.57 5577.89 27590.50 35366.86 35095.54 27891.97 333
FC-MVSNet-test95.32 7395.88 5793.62 15398.49 5381.77 21395.90 5798.32 1793.93 5397.53 3797.56 5688.48 17199.40 4092.91 7599.83 699.68 4
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22086.95 20792.95 21397.56 5690.70 14597.50 25979.63 28597.43 23296.06 249
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5695.48 2598.77 14990.11 14499.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19196.31 4197.53 10797.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17090.30 13699.60 2598.72 90
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 21097.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ambc92.98 17296.88 14283.01 20395.92 5696.38 18596.41 7797.48 6288.26 17497.80 24289.96 14998.93 11098.12 137
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 6995.85 20596.47 2093.40 19597.46 6395.31 3395.47 31886.18 21998.78 13089.11 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6496.51 999.40 4094.06 3099.23 7698.85 75
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13091.82 10094.34 16997.41 6590.60 14798.65 16992.47 8598.11 19897.70 177
mvs_anonymous90.37 21491.30 19187.58 30492.17 30368.00 34389.84 26194.73 24083.82 24993.22 20497.40 6687.54 18797.40 26787.94 19195.05 29097.34 201
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1787.89 18896.86 6297.38 6795.55 2499.39 4595.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072698.51 4586.69 14595.34 7498.18 3291.85 9497.63 3197.37 6895.58 22
EU-MVSNet87.39 27586.71 27889.44 27593.40 28076.11 29894.93 9390.00 30757.17 35995.71 11597.37 6864.77 33097.68 25392.67 8194.37 30394.52 292
FMVSNet292.78 15992.73 15892.95 17595.40 23181.98 21194.18 11995.53 21988.63 17396.05 10197.37 6881.31 25198.81 13987.38 20198.67 14098.06 139
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8197.00 14691.85 9497.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6090.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9696.94 1496.58 7497.32 7593.07 8798.72 15590.45 12898.84 11897.57 185
MVS-HIRNet78.83 32980.60 32173.51 34493.07 28647.37 36587.10 30778.00 36168.94 34177.53 35797.26 7671.45 30594.62 32863.28 35588.74 34478.55 358
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 7998.10 4491.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
test_241102_TWO98.10 4491.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8496.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17698.46 113
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
FIs94.90 8795.35 7493.55 15698.28 6381.76 21495.33 7598.14 3993.05 6797.07 5197.18 8287.65 18599.29 6891.72 10599.69 1599.61 11
PatchT87.51 27288.17 25385.55 31890.64 32366.91 34592.02 19186.09 33192.20 8389.05 28897.16 8364.15 33296.37 30189.21 16792.98 32393.37 318
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 7895.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
TSAR-MVS + MP.94.96 8594.75 9595.57 7898.86 2088.69 10396.37 3696.81 16185.23 23094.75 15797.12 8591.85 11499.40 4093.45 4998.33 17198.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30391.51 21395.62 21091.84 9795.74 11397.10 8689.31 16598.32 19985.07 23299.06 9198.93 63
IterMVS-LS93.78 12894.28 11592.27 19996.27 17879.21 25891.87 20196.78 16391.77 10396.57 7597.07 8787.15 19498.74 15391.99 9599.03 10098.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LFMVS91.33 19491.16 19691.82 21396.27 17879.36 25395.01 9085.61 33896.04 2894.82 15497.06 8872.03 30498.46 19184.96 23398.70 13897.65 181
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8995.63 2199.39 4593.31 5898.88 11398.75 84
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11898.00 145
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9095.40 2793.49 4498.84 11898.00 145
test_241102_ONE98.51 4586.97 13898.10 4491.85 9497.63 3197.03 9096.48 1198.95 117
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2092.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
CR-MVSNet87.89 26287.12 27190.22 26391.01 32078.93 26092.52 16392.81 27373.08 32389.10 28696.93 9667.11 31497.64 25488.80 17492.70 32594.08 299
Patchmtry90.11 22289.92 22090.66 25190.35 32977.00 28792.96 15092.81 27390.25 14294.74 15896.93 9667.11 31497.52 25885.17 22598.98 10297.46 191
FMVSNet587.82 26586.56 28091.62 22092.31 29879.81 24593.49 13994.81 23883.26 25191.36 24796.93 9652.77 36097.49 26176.07 31298.03 20597.55 188
RPMNet90.31 21890.14 21790.81 24891.01 32078.93 26092.52 16398.12 4191.91 9189.10 28696.89 9968.84 30999.41 3590.17 14292.70 32594.08 299
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11196.87 10095.26 3599.45 2292.77 7699.21 7899.00 51
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12698.53 107
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12490.05 14496.77 6796.85 10195.04 4498.56 17992.77 7699.06 9198.70 91
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6090.82 12897.15 4996.85 10196.25 1599.00 10993.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10495.10 4299.40 4093.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs94.32 11394.80 9392.85 18196.05 19681.44 21992.35 17698.05 5591.53 11295.75 11296.80 10593.35 7898.49 18591.01 12098.32 17398.64 96
QAPM92.88 15592.77 15493.22 16895.82 21083.31 19596.45 3197.35 12283.91 24893.75 18596.77 10689.25 16698.88 12484.56 23897.02 24397.49 190
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6797.31 1095.32 13096.77 10693.08 8699.20 7991.79 10298.16 19297.44 193
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5590.45 13896.31 8496.76 10892.91 9098.72 15591.19 11699.42 4798.32 120
MIMVSNet87.13 28386.54 28188.89 28596.05 19676.11 29894.39 11388.51 31281.37 27088.27 30396.75 10972.38 30195.52 31565.71 35295.47 28095.03 280
AllTest94.88 8994.51 10896.00 5598.02 8292.17 5095.26 7898.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 19296.72 11394.23 6599.42 2891.99 9599.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_Test92.57 16893.29 14390.40 25893.53 27975.85 30192.52 16396.96 14988.73 17092.35 23096.70 11490.77 14098.37 19792.53 8495.49 27996.99 213
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1287.63 19596.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 891.84 9796.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
Anonymous20240521192.58 16692.50 16392.83 18296.55 15983.22 19892.43 17091.64 29794.10 4995.59 11996.64 11881.88 24897.50 25985.12 22998.52 15197.77 172
IterMVS-SCA-FT91.65 18591.55 18291.94 21193.89 27479.22 25787.56 29893.51 26391.53 11295.37 12896.62 11978.65 26798.90 12191.89 10194.95 29197.70 177
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 12096.61 12094.93 5099.41 3593.78 3599.15 8499.00 51
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28785.92 22196.22 9296.61 12085.64 21895.99 31090.35 13398.23 18595.93 254
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13396.57 12295.02 4699.41 3593.63 3999.11 8998.94 62
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16796.49 12494.56 5899.39 4593.57 4099.05 9498.93 63
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15895.63 11796.47 12595.37 2899.27 7291.99 9599.14 8598.48 111
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21498.17 3590.72 13095.30 13196.47 12587.94 18296.98 28091.41 11497.61 22798.30 123
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 4889.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft89.45 892.27 17592.13 16992.68 18694.53 26084.10 18795.70 6297.03 14482.44 26491.14 25496.42 12988.47 17298.38 19485.95 22097.47 23195.55 271
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v124093.29 13893.71 13092.06 20996.01 20177.89 27591.81 20797.37 11585.12 23596.69 6996.40 13186.67 20599.07 9894.51 1898.76 13299.22 32
SD-MVS95.19 7995.73 6593.55 15696.62 15488.88 10294.67 10198.05 5591.26 11897.25 4896.40 13195.42 2694.36 33492.72 8099.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 20190.85 20190.63 25295.63 22479.24 25689.81 26292.87 27289.90 14794.39 16696.40 13185.77 21495.27 32573.86 32399.05 9497.39 198
IterMVS90.18 22090.16 21490.21 26493.15 28575.98 30087.56 29892.97 27186.43 21294.09 17296.40 13178.32 27197.43 26487.87 19294.69 29897.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
v119293.49 13393.78 12792.62 19096.16 18779.62 24891.83 20697.22 13486.07 21896.10 10096.38 13687.22 19299.02 10594.14 2998.88 11399.22 32
V4293.43 13593.58 13592.97 17395.34 23581.22 22292.67 15996.49 18087.25 20196.20 9496.37 13787.32 19198.85 13192.39 8998.21 18898.85 75
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
IS-MVSNet94.49 10694.35 11294.92 10298.25 6686.46 15197.13 1394.31 24996.24 2396.28 8996.36 13882.88 23399.35 5688.19 18499.52 3798.96 60
v114493.50 13293.81 12592.57 19296.28 17779.61 24991.86 20596.96 14986.95 20795.91 10796.32 14087.65 18598.96 11593.51 4398.88 11399.13 39
baseline94.26 11694.80 9392.64 18796.08 19480.99 22593.69 13598.04 5990.80 12994.89 15296.32 14093.19 8298.48 18991.68 10798.51 15398.43 115
TinyColmap92.00 18092.76 15589.71 27295.62 22577.02 28690.72 23196.17 19687.70 19395.26 13496.29 14292.54 10096.45 29781.77 26298.77 13195.66 267
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9198.88 71
USDC89.02 24289.08 23288.84 28695.07 24074.50 31288.97 28096.39 18473.21 32293.27 20096.28 14382.16 24396.39 29977.55 30198.80 12895.62 270
v2v48293.29 13893.63 13392.29 19896.35 17178.82 26391.77 20996.28 18788.45 17795.70 11696.26 14586.02 21398.90 12193.02 7198.81 12699.14 38
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4090.69 13193.75 18596.25 14698.03 297.02 27992.08 9295.55 27798.45 114
pmmvs-eth3d91.54 18890.73 20593.99 13895.76 21587.86 12490.83 22893.98 25878.23 29894.02 17896.22 14782.62 23996.83 28686.57 21198.33 17197.29 204
hse-mvs392.89 15491.99 17295.58 7796.97 13790.55 7493.94 12994.01 25789.23 16193.95 17996.19 14876.88 28599.14 8591.02 11895.71 27497.04 211
v192192093.26 14193.61 13492.19 20296.04 20078.31 26991.88 20097.24 13285.17 23296.19 9696.19 14886.76 20499.05 9994.18 2898.84 11899.22 32
EPP-MVSNet93.91 12593.68 13294.59 11898.08 7585.55 17097.44 894.03 25494.22 4794.94 14996.19 14882.07 24499.57 1387.28 20298.89 11198.65 92
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10497.81 8589.22 16395.46 12596.17 15193.42 7699.34 5989.30 16098.87 11697.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
v14419293.20 14693.54 13892.16 20696.05 19678.26 27091.95 19397.14 13784.98 23995.96 10396.11 15287.08 19699.04 10293.79 3498.84 11899.17 35
VNet92.67 16392.96 14991.79 21496.27 17880.15 23291.95 19394.98 23092.19 8494.52 16496.07 15387.43 18997.39 26884.83 23498.38 16497.83 166
v14892.87 15693.29 14391.62 22096.25 18177.72 27891.28 21995.05 22889.69 15095.93 10696.04 15487.34 19098.38 19490.05 14797.99 20898.78 81
9.1494.81 9297.49 11494.11 12298.37 1487.56 19895.38 12796.03 15594.66 5599.08 9490.70 12598.97 106
FMVSNet390.78 20290.32 21392.16 20693.03 28979.92 24192.54 16294.95 23186.17 21795.10 14196.01 15669.97 30898.75 15086.74 20698.38 16497.82 168
MG-MVS89.54 23589.80 22288.76 28794.88 24272.47 32789.60 26592.44 28485.82 22289.48 28395.98 15782.85 23497.74 25081.87 26195.27 28696.08 248
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5193.46 6296.31 8495.97 15890.14 15499.34 5992.11 9099.64 2399.16 36
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8593.99 5096.80 6595.90 15990.10 15899.41 3591.60 10999.58 3199.26 29
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8697.37 11593.92 5497.65 3095.90 15990.10 15899.33 6490.11 14499.66 2199.26 29
ETH3D-3000-0.194.86 9094.55 10595.81 6597.61 10789.72 8594.05 12498.37 1488.09 18495.06 14595.85 16192.58 9899.10 9390.33 13598.99 10198.62 100
EI-MVSNet92.99 15193.26 14792.19 20292.12 30479.21 25892.32 17894.67 24491.77 10395.24 13795.85 16187.14 19598.49 18591.99 9598.26 17998.86 72
CVMVSNet85.16 29484.72 29386.48 31192.12 30470.19 33592.32 17888.17 31756.15 36090.64 26195.85 16167.97 31296.69 29088.78 17590.52 34092.56 329
EI-MVSNet-UG-set94.35 11194.27 11794.59 11892.46 29785.87 16592.42 17194.69 24293.67 6196.13 9895.84 16491.20 13398.86 12993.78 3598.23 18599.03 49
EI-MVSNet-Vis-set94.36 11094.28 11594.61 11392.55 29685.98 16392.44 16994.69 24293.70 5796.12 9995.81 16591.24 13098.86 12993.76 3898.22 18798.98 58
ZD-MVS97.23 12590.32 7797.54 10584.40 24594.78 15695.79 16692.76 9599.39 4588.72 17898.40 159
MDA-MVSNet-bldmvs91.04 19790.88 19991.55 22294.68 25680.16 23185.49 32692.14 29090.41 14094.93 15095.79 16685.10 21996.93 28385.15 22794.19 30897.57 185
MVSTER89.32 23888.75 24091.03 23890.10 33176.62 29390.85 22794.67 24482.27 26595.24 13795.79 16661.09 34698.49 18590.49 12798.26 17997.97 152
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8294.91 3796.80 6595.78 16990.42 14999.41 3591.60 10999.58 3199.29 28
new-patchmatchnet88.97 24590.79 20383.50 33294.28 26555.83 36485.34 32793.56 26286.18 21695.47 12395.73 17083.10 23196.51 29585.40 22498.06 20298.16 132
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26094.64 25880.24 23089.69 26495.88 20385.77 22393.94 18195.69 17181.99 24592.98 34584.21 24191.30 33697.62 183
RRT_MVS91.36 19390.05 21895.29 9089.21 34188.15 11692.51 16794.89 23386.73 20995.54 12195.68 17261.82 34399.30 6794.91 1399.13 8898.43 115
OPU-MVS95.15 9696.84 14489.43 9095.21 7995.66 17393.12 8598.06 21986.28 21898.61 14397.95 153
testtj94.81 9494.42 10996.01 5497.23 12590.51 7694.77 9897.85 8191.29 11794.92 15195.66 17391.71 11799.40 4088.07 18898.25 18298.11 138
MVP-Stereo90.07 22588.92 23693.54 15896.31 17586.49 14990.93 22695.59 21579.80 27891.48 24595.59 17580.79 25597.39 26878.57 29591.19 33796.76 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS94.26 11693.93 12395.23 9397.71 9988.12 11794.56 10897.81 8591.74 10593.31 19695.59 17586.93 19998.95 11789.26 16498.51 15398.60 103
plane_prior495.59 175
Anonymous2023120688.77 25088.29 24890.20 26596.31 17578.81 26489.56 26793.49 26474.26 31692.38 22895.58 17882.21 24195.43 32072.07 33298.75 13496.34 237
旧先验196.20 18384.17 18694.82 23695.57 17989.57 16397.89 21396.32 238
Regformer-394.28 11494.23 11994.46 12692.78 29486.28 15892.39 17394.70 24193.69 6095.97 10295.56 18091.34 12598.48 18993.45 4998.14 19498.62 100
Regformer-494.90 8794.67 10195.59 7692.78 29489.02 9792.39 17395.91 20294.50 4296.41 7795.56 18092.10 10899.01 10794.23 2698.14 19498.74 87
ETH3D cwj APD-0.1693.99 12493.38 14295.80 6796.82 14589.92 8192.72 15698.02 6284.73 24393.65 18995.54 18291.68 11899.22 7788.78 17598.49 15698.26 126
GeoE94.55 10394.68 10094.15 13497.23 12585.11 17494.14 12197.34 12388.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 15998.23 127
MVS_030490.96 19990.15 21693.37 16293.17 28487.06 13593.62 13792.43 28589.60 15382.25 34395.50 18382.56 24097.83 24084.41 24097.83 21695.22 275
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9589.21 16493.28 19995.46 18588.89 16898.98 11089.80 15198.82 12497.80 170
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 18987.90 12293.36 14397.14 13785.53 22793.90 18295.45 18691.30 12898.59 17589.51 15798.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS94.58 10294.29 11495.46 8296.94 13989.35 9491.81 20796.80 16289.66 15193.90 18295.44 18792.80 9498.72 15592.74 7898.52 15198.32 120
testdata91.03 23896.87 14382.01 21094.28 25071.55 32992.46 22495.42 18885.65 21797.38 27082.64 25397.27 23693.70 312
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5195.96 20392.96 4389.48 26897.46 11185.14 23396.23 9195.42 18893.19 8298.08 21890.37 13298.76 13297.38 200
OMC-MVS94.22 11893.69 13195.81 6597.25 12491.27 6392.27 18097.40 11487.10 20594.56 16295.42 18893.74 6998.11 21786.62 21098.85 11798.06 139
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25095.68 20993.70 5796.62 7295.39 19187.21 19399.04 10287.50 19799.64 2399.33 25
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17891.93 9094.82 15495.39 19191.99 11197.08 27785.53 22397.96 20997.41 194
RRT_test8_iter0588.21 25888.17 25388.33 29691.62 31366.82 34991.73 21096.60 17386.34 21394.14 17095.38 19347.72 36499.11 9191.78 10398.26 17999.06 47
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17282.81 20593.11 14697.74 9189.37 15794.08 17395.29 19490.40 15296.35 30290.35 13398.25 18294.96 282
HPM-MVS++copyleft95.02 8294.39 11096.91 3897.88 9093.58 3694.09 12396.99 14891.05 12392.40 22795.22 19591.03 13899.25 7492.11 9098.69 13997.90 159
MSP-MVS95.34 7294.63 10397.48 1498.67 2794.05 2196.41 3598.18 3291.26 11895.12 14095.15 19686.60 20799.50 1993.43 5396.81 25198.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet_test_wron88.16 26088.23 25187.93 30092.22 30073.71 31780.71 35188.84 30982.52 26294.88 15395.14 19782.70 23793.61 34083.28 24793.80 31196.46 233
Vis-MVSNet (Re-imp)90.42 21190.16 21491.20 23497.66 10577.32 28394.33 11587.66 32091.20 12092.99 21195.13 19875.40 29298.28 20177.86 29799.19 8097.99 148
YYNet188.17 25988.24 25087.93 30092.21 30173.62 31880.75 35088.77 31082.51 26394.99 14895.11 19982.70 23793.70 33983.33 24693.83 31096.48 232
D2MVS89.93 22989.60 22790.92 24394.03 27178.40 26888.69 28794.85 23478.96 29293.08 20795.09 20074.57 29396.94 28188.19 18498.96 10897.41 194
CDPH-MVS92.67 16391.83 17695.18 9596.94 13988.46 11290.70 23297.07 14377.38 30192.34 23295.08 20192.67 9798.88 12485.74 22198.57 14598.20 131
PVSNet_BlendedMVS90.35 21589.96 21991.54 22394.81 24678.80 26590.14 25096.93 15179.43 28488.68 29895.06 20286.27 21098.15 21580.27 27598.04 20497.68 179
Regformer-194.55 10394.33 11395.19 9492.83 29288.54 11091.87 20195.84 20693.99 5095.95 10495.04 20392.00 11098.79 14193.14 6798.31 17498.23 127
Regformer-294.86 9094.55 10595.77 6992.83 29289.98 8091.87 20196.40 18394.38 4696.19 9695.04 20392.47 10399.04 10293.49 4498.31 17498.28 124
tpm84.38 29984.08 29885.30 32290.47 32763.43 35989.34 27285.63 33777.24 30487.62 31095.03 20561.00 34797.30 27179.26 29091.09 33995.16 276
PVSNet_Blended_VisFu91.63 18691.20 19392.94 17797.73 9883.95 19092.14 18597.46 11178.85 29492.35 23094.98 20684.16 22599.08 9486.36 21696.77 25395.79 261
miper_lstm_enhance89.90 23089.80 22290.19 26691.37 31777.50 28083.82 34295.00 22984.84 24193.05 20994.96 20776.53 28995.20 32689.96 14998.67 14097.86 163
新几何193.17 16997.16 13087.29 13094.43 24667.95 34491.29 24994.94 20886.97 19898.23 20781.06 27297.75 21793.98 305
112190.26 21989.23 22893.34 16397.15 13287.40 12891.94 19594.39 24767.88 34591.02 25594.91 20986.91 20198.59 17581.17 27097.71 22194.02 304
cl-mvsnet____90.65 20690.56 20890.91 24591.85 30876.98 28986.75 31595.36 22585.53 22794.06 17594.89 21077.36 28097.98 22890.27 13898.98 10297.76 173
cl-mvsnet190.65 20690.56 20890.91 24591.85 30876.99 28886.75 31595.36 22585.52 22994.06 17594.89 21077.37 27997.99 22790.28 13798.97 10697.76 173
test22296.95 13885.27 17388.83 28393.61 26065.09 35290.74 25994.85 21284.62 22397.36 23493.91 306
test_prior393.29 13892.85 15294.61 11395.95 20487.23 13190.21 24697.36 12089.33 15990.77 25794.81 21390.41 15098.68 16588.21 18298.55 14697.93 155
test_prior290.21 24689.33 15990.77 25794.81 21390.41 15088.21 18298.55 146
CHOSEN 1792x268887.19 28185.92 28991.00 24197.13 13379.41 25284.51 33595.60 21164.14 35390.07 27194.81 21378.26 27297.14 27673.34 32595.38 28496.46 233
114514_t90.51 20889.80 22292.63 18998.00 8482.24 20993.40 14297.29 12865.84 35089.40 28494.80 21686.99 19798.75 15083.88 24398.61 14396.89 217
tttt051789.81 23288.90 23892.55 19397.00 13679.73 24795.03 8983.65 35089.88 14895.30 13194.79 21753.64 35899.39 4591.99 9598.79 12998.54 106
EPNet89.80 23388.25 24994.45 12783.91 36286.18 16093.87 13087.07 32591.16 12280.64 35294.72 21878.83 26598.89 12385.17 22598.89 11198.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS281.31 31783.44 30174.92 34390.52 32646.49 36669.19 35885.23 34484.30 24687.95 30794.71 21976.95 28484.36 36064.07 35398.09 20093.89 307
testgi90.38 21391.34 19087.50 30597.49 11471.54 33089.43 26995.16 22788.38 17994.54 16394.68 22092.88 9293.09 34471.60 33697.85 21597.88 161
NCCC94.08 12293.54 13895.70 7496.49 16289.90 8392.39 17396.91 15590.64 13392.33 23394.60 22190.58 14898.96 11590.21 14197.70 22298.23 127
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27496.23 19188.36 18093.57 19194.60 22193.45 7397.77 24690.23 14098.38 16498.03 143
TAMVS90.16 22189.05 23393.49 16196.49 16286.37 15490.34 24392.55 28280.84 27492.99 21194.57 22381.94 24798.20 20973.51 32498.21 18895.90 257
原ACMM192.87 18096.91 14184.22 18497.01 14576.84 30689.64 28294.46 22488.00 18098.70 16181.53 26598.01 20795.70 265
agg_prior192.60 16591.76 17995.10 9896.20 18388.89 10090.37 24196.88 15779.67 28290.21 26794.41 22591.30 12898.78 14588.46 18198.37 16997.64 182
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18190.95 6890.21 24695.43 22187.91 18693.74 18794.40 22692.88 9296.38 30090.39 13098.28 17797.07 208
TEST996.45 16489.46 8890.60 23496.92 15379.09 29090.49 26294.39 22791.31 12798.88 124
train_agg92.71 16291.83 17695.35 8496.45 16489.46 8890.60 23496.92 15379.37 28590.49 26294.39 22791.20 13398.88 12488.66 17998.43 15897.72 176
test_896.37 16689.14 9590.51 23796.89 15679.37 28590.42 26494.36 22991.20 13398.82 134
FPMVS84.50 29883.28 30288.16 29896.32 17494.49 1485.76 32485.47 33983.09 25585.20 32494.26 23063.79 33586.58 35863.72 35491.88 33583.40 353
MCST-MVS92.91 15392.51 16294.10 13697.52 11285.72 16891.36 21897.13 13980.33 27692.91 21494.24 23191.23 13198.72 15589.99 14897.93 21197.86 163
BH-RMVSNet90.47 21090.44 21090.56 25495.21 23878.65 26789.15 27893.94 25988.21 18192.74 21794.22 23286.38 20897.88 23378.67 29495.39 28395.14 278
pmmvs488.95 24687.70 26192.70 18594.30 26485.60 16987.22 30492.16 28974.62 31489.75 28194.19 23377.97 27496.41 29882.71 25296.36 26296.09 247
Patchmatch-RL test88.81 24988.52 24289.69 27395.33 23679.94 24086.22 32392.71 27778.46 29695.80 11094.18 23466.25 32295.33 32389.22 16698.53 15093.78 309
PHI-MVS94.34 11293.80 12695.95 5795.65 22191.67 6194.82 9697.86 7887.86 18993.04 21094.16 23591.58 12098.78 14590.27 13898.96 10897.41 194
TAPA-MVS88.58 1092.49 16991.75 18094.73 10996.50 16189.69 8692.91 15297.68 9478.02 29992.79 21694.10 23690.85 13997.96 22984.76 23698.16 19296.54 226
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DP-MVS Recon92.31 17391.88 17593.60 15497.18 12986.87 14191.10 22397.37 11584.92 24092.08 23894.08 23788.59 17098.20 20983.50 24598.14 19495.73 263
CANet92.38 17191.99 17293.52 16093.82 27783.46 19491.14 22197.00 14689.81 14986.47 31894.04 23887.90 18399.21 7889.50 15898.27 17897.90 159
F-COLMAP92.28 17491.06 19795.95 5797.52 11291.90 5693.53 13897.18 13583.98 24788.70 29794.04 23888.41 17398.55 18180.17 27895.99 26897.39 198
UnsupCasMVSNet_bld88.50 25488.03 25689.90 27095.52 22878.88 26287.39 30294.02 25679.32 28893.06 20894.02 24080.72 25694.27 33575.16 31793.08 32196.54 226
MDTV_nov1_ep1383.88 30089.42 33961.52 36088.74 28687.41 32273.99 31884.96 32794.01 24165.25 32795.53 31478.02 29693.16 318
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23390.92 24394.58 25981.21 22391.10 22393.41 26577.03 30593.41 19393.99 24283.23 23097.80 24279.93 28294.80 29593.74 311
diffmvs91.74 18391.93 17491.15 23693.06 28778.17 27188.77 28597.51 11086.28 21492.42 22693.96 24388.04 17997.46 26290.69 12696.67 25697.82 168
CL-MVSNet_2432*160090.04 22789.90 22190.47 25595.24 23777.81 27686.60 32192.62 28085.64 22693.25 20393.92 24483.84 22696.06 30879.93 28298.03 20597.53 189
eth_miper_zixun_eth90.72 20390.61 20791.05 23792.04 30676.84 29186.91 31096.67 17085.21 23194.41 16593.92 24479.53 26298.26 20589.76 15397.02 24398.06 139
cl_fuxian91.32 19591.42 18791.00 24192.29 29976.79 29287.52 30196.42 18285.76 22494.72 16093.89 24682.73 23698.16 21490.93 12298.55 14698.04 142
pmmvs587.87 26387.14 27090.07 26793.26 28376.97 29088.89 28292.18 28773.71 32088.36 30193.89 24676.86 28796.73 28980.32 27496.81 25196.51 228
PCF-MVS84.52 1789.12 24187.71 26093.34 16396.06 19585.84 16686.58 32297.31 12568.46 34393.61 19093.89 24687.51 18898.52 18367.85 34798.11 19895.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.93.07 14992.41 16595.06 9995.82 21090.87 7190.97 22592.61 28188.04 18594.61 16193.79 24988.08 17797.81 24189.41 15998.39 16296.50 231
ETH3 D test640091.91 18191.25 19293.89 14696.59 15584.41 18092.10 18697.72 9378.52 29591.82 24293.78 25088.70 16999.13 8783.61 24498.39 16298.14 134
HY-MVS82.50 1886.81 28785.93 28889.47 27493.63 27877.93 27394.02 12591.58 29875.68 30883.64 33593.64 25177.40 27797.42 26571.70 33592.07 33293.05 323
LF4IMVS92.72 16192.02 17194.84 10595.65 22191.99 5492.92 15196.60 17385.08 23792.44 22593.62 25286.80 20396.35 30286.81 20598.25 18296.18 245
Test_1112_low_res87.50 27386.58 27990.25 26296.80 14877.75 27787.53 30096.25 18969.73 33986.47 31893.61 25375.67 29197.88 23379.95 28093.20 31795.11 279
MS-PatchMatch88.05 26187.75 25988.95 28393.28 28177.93 27387.88 29492.49 28375.42 31192.57 22293.59 25480.44 25794.24 33781.28 26792.75 32494.69 290
CNLPA91.72 18491.20 19393.26 16796.17 18691.02 6691.14 22195.55 21890.16 14390.87 25693.56 25586.31 20994.40 33379.92 28497.12 24094.37 295
ppachtmachnet_test88.61 25388.64 24188.50 29291.76 31070.99 33384.59 33492.98 27079.30 28992.38 22893.53 25679.57 26197.45 26386.50 21497.17 23997.07 208
CSCG94.69 9894.75 9594.52 12197.55 11187.87 12395.01 9097.57 10392.68 6996.20 9493.44 25791.92 11398.78 14589.11 16899.24 7596.92 215
NP-MVS96.82 14587.10 13493.40 258
HQP-MVS92.09 17891.49 18693.88 14796.36 16884.89 17691.37 21597.31 12587.16 20288.81 29193.40 25884.76 22198.60 17386.55 21297.73 21898.14 134
test_yl90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
DCV-MVSNet90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
CMPMVSbinary68.83 2287.28 27785.67 29092.09 20888.77 34585.42 17190.31 24494.38 24870.02 33888.00 30693.30 26073.78 29794.03 33875.96 31496.54 25896.83 219
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CostFormer83.09 30582.21 30885.73 31789.27 34067.01 34490.35 24286.47 32870.42 33683.52 33793.23 26361.18 34596.85 28577.21 30588.26 34693.34 319
DELS-MVS92.05 17992.16 16791.72 21794.44 26180.13 23487.62 29597.25 13187.34 20092.22 23593.18 26489.54 16498.73 15489.67 15598.20 19096.30 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS93.91 12594.22 12092.95 17595.65 22183.25 19794.91 9498.87 491.32 11691.32 24893.07 26592.24 10499.37 5291.90 10098.73 13596.21 244
baseline187.62 27087.31 26588.54 29194.71 25574.27 31593.10 14788.20 31686.20 21592.18 23693.04 26673.21 29895.52 31579.32 28985.82 34995.83 259
BH-untuned90.68 20590.90 19890.05 26995.98 20279.57 25090.04 25394.94 23287.91 18694.07 17493.00 26787.76 18497.78 24579.19 29195.17 28892.80 326
hse-mvs292.24 17691.20 19395.38 8396.16 18790.65 7392.52 16392.01 29489.23 16193.95 17992.99 26876.88 28598.69 16391.02 11896.03 26696.81 220
HyFIR lowres test87.19 28185.51 29192.24 20097.12 13480.51 22985.03 32996.06 19866.11 34991.66 24492.98 26970.12 30799.14 8575.29 31695.23 28797.07 208
AUN-MVS90.05 22688.30 24795.32 8996.09 19390.52 7592.42 17192.05 29382.08 26788.45 30092.86 27065.76 32498.69 16388.91 17296.07 26596.75 224
SCA87.43 27487.21 26888.10 29992.01 30771.98 32989.43 26988.11 31882.26 26688.71 29692.83 27178.65 26797.59 25579.61 28693.30 31694.75 287
Patchmatch-test86.10 29086.01 28786.38 31590.63 32474.22 31689.57 26686.69 32685.73 22589.81 27892.83 27165.24 32891.04 35177.82 30095.78 27393.88 308
MVSFormer92.18 17792.23 16692.04 21094.74 25180.06 23697.15 1197.37 11588.98 16588.83 28992.79 27377.02 28299.60 896.41 496.75 25496.46 233
jason89.17 24088.32 24691.70 21895.73 21680.07 23588.10 29293.22 26771.98 32890.09 26992.79 27378.53 27098.56 17987.43 19997.06 24196.46 233
jason: jason.
PatchmatchNetpermissive85.22 29384.64 29486.98 30989.51 33869.83 34090.52 23687.34 32378.87 29387.22 31592.74 27566.91 31696.53 29381.77 26286.88 34894.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AdaColmapbinary91.63 18691.36 18992.47 19795.56 22786.36 15592.24 18396.27 18888.88 16989.90 27592.69 27691.65 11998.32 19977.38 30497.64 22592.72 328
thisisatest053088.69 25287.52 26392.20 20196.33 17379.36 25392.81 15484.01 34986.44 21193.67 18892.68 27753.62 35999.25 7489.65 15698.45 15798.00 145
miper_ehance_all_eth90.48 20990.42 21190.69 25091.62 31376.57 29486.83 31396.18 19583.38 25094.06 17592.66 27882.20 24298.04 22089.79 15297.02 24397.45 192
cl-mvsnet289.02 24288.50 24390.59 25389.76 33376.45 29586.62 32094.03 25482.98 25892.65 21992.49 27972.05 30397.53 25788.93 17097.02 24397.78 171
bset_n11_16_dypcd89.99 22889.15 23192.53 19494.75 24981.34 22084.19 33887.56 32185.13 23493.77 18492.46 28072.82 29999.01 10792.46 8699.21 7897.23 205
ADS-MVSNet284.01 30182.20 30989.41 27689.04 34276.37 29787.57 29690.98 30172.71 32684.46 32992.45 28168.08 31096.48 29670.58 34283.97 35195.38 273
ADS-MVSNet82.25 31081.55 31184.34 32889.04 34265.30 35187.57 29685.13 34572.71 32684.46 32992.45 28168.08 31092.33 34770.58 34283.97 35195.38 273
tpm281.46 31680.35 32384.80 32489.90 33265.14 35390.44 23885.36 34065.82 35182.05 34692.44 28357.94 35096.69 29070.71 34188.49 34592.56 329
N_pmnet88.90 24787.25 26793.83 14994.40 26393.81 3484.73 33187.09 32479.36 28793.26 20192.43 28479.29 26391.68 34977.50 30397.22 23896.00 251
alignmvs93.26 14192.85 15294.50 12295.70 21787.45 12793.45 14195.76 20791.58 11095.25 13692.42 28581.96 24698.72 15591.61 10897.87 21497.33 202
CDS-MVSNet89.55 23488.22 25293.53 15995.37 23486.49 14989.26 27593.59 26179.76 28091.15 25392.31 28677.12 28198.38 19477.51 30297.92 21295.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft85.34 1590.40 21288.92 23694.85 10496.53 16090.02 7991.58 21296.48 18180.16 27786.14 32092.18 28785.73 21598.25 20676.87 30794.61 30096.30 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
our_test_387.55 27187.59 26287.44 30691.76 31070.48 33483.83 34190.55 30579.79 27992.06 23992.17 28878.63 26995.63 31384.77 23594.73 29696.22 242
Effi-MVS+-dtu93.90 12792.60 16197.77 494.74 25196.67 394.00 12695.41 22289.94 14591.93 24192.13 28990.12 15598.97 11487.68 19597.48 23097.67 180
PAPM_NR91.03 19890.81 20291.68 21996.73 14981.10 22493.72 13496.35 18688.19 18288.77 29592.12 29085.09 22097.25 27282.40 25793.90 30996.68 225
canonicalmvs94.59 10194.69 9894.30 13195.60 22687.03 13795.59 6698.24 2791.56 11195.21 13992.04 29194.95 4998.66 16791.45 11397.57 22897.20 207
MSDG90.82 20090.67 20691.26 23094.16 26683.08 20286.63 31996.19 19490.60 13591.94 24091.89 29289.16 16795.75 31280.96 27394.51 30194.95 283
sss87.23 27886.82 27588.46 29493.96 27277.94 27286.84 31292.78 27677.59 30087.61 31191.83 29378.75 26691.92 34877.84 29894.20 30795.52 272
CANet_DTU89.85 23189.17 23091.87 21292.20 30280.02 23990.79 22995.87 20486.02 21982.53 34291.77 29480.01 25998.57 17885.66 22297.70 22297.01 212
patchmatchnet-post91.71 29566.22 32397.59 255
PatchMatch-RL89.18 23988.02 25792.64 18795.90 20892.87 4588.67 28991.06 30080.34 27590.03 27291.67 29683.34 22894.42 33276.35 31194.84 29490.64 342
tpmrst82.85 30882.93 30682.64 33487.65 34758.99 36290.14 25087.90 31975.54 31083.93 33391.63 29766.79 31995.36 32181.21 26981.54 35793.57 317
WTY-MVS86.93 28686.50 28488.24 29794.96 24174.64 30887.19 30592.07 29278.29 29788.32 30291.59 29878.06 27394.27 33574.88 31893.15 31995.80 260
DPM-MVS89.35 23788.40 24592.18 20596.13 19284.20 18586.96 30996.15 19775.40 31287.36 31391.55 29983.30 22998.01 22482.17 26096.62 25794.32 297
EPMVS81.17 32080.37 32283.58 33185.58 35865.08 35490.31 24471.34 36377.31 30385.80 32291.30 30059.38 34892.70 34679.99 27982.34 35692.96 324
Fast-Effi-MVS+-dtu92.77 16092.16 16794.58 12094.66 25788.25 11492.05 18896.65 17189.62 15290.08 27091.23 30192.56 9998.60 17386.30 21796.27 26396.90 216
cdsmvs_eth3d_5k23.35 33431.13 3370.00 3500.00 3710.00 3720.00 36295.58 2170.00 3670.00 36891.15 30293.43 750.00 3680.00 3660.00 3660.00 364
lupinMVS88.34 25787.31 26591.45 22494.74 25180.06 23687.23 30392.27 28671.10 33288.83 28991.15 30277.02 28298.53 18286.67 20996.75 25495.76 262
API-MVS91.52 18991.61 18191.26 23094.16 26686.26 15994.66 10294.82 23691.17 12192.13 23791.08 30490.03 16197.06 27879.09 29297.35 23590.45 343
thres600view787.66 26887.10 27289.36 27896.05 19673.17 32092.72 15685.31 34191.89 9293.29 19890.97 30563.42 33698.39 19273.23 32696.99 24896.51 228
thres100view90087.35 27686.89 27488.72 28896.14 18973.09 32293.00 14985.31 34192.13 8593.26 20190.96 30663.42 33698.28 20171.27 33896.54 25894.79 285
tpmvs84.22 30083.97 29984.94 32387.09 35365.18 35291.21 22088.35 31382.87 25985.21 32390.96 30665.24 32896.75 28879.60 28885.25 35092.90 325
xiu_mvs_v1_base_debu91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base_debi91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
1112_ss88.42 25587.41 26491.45 22496.69 15080.99 22589.72 26396.72 16873.37 32187.00 31690.69 31177.38 27898.20 20981.38 26693.72 31295.15 277
ab-mvs-re7.56 33710.08 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36890.69 3110.00 3730.00 3680.00 3660.00 3660.00 364
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19694.00 12697.53 10791.36 11589.35 28590.65 31394.01 6898.66 16787.40 20095.30 28596.88 218
mvs-test193.07 14991.80 17896.89 3994.74 25195.83 692.17 18495.41 22289.94 14589.85 27690.59 31490.12 15598.88 12487.68 19595.66 27595.97 252
GA-MVS87.70 26686.82 27590.31 25993.27 28277.22 28584.72 33392.79 27585.11 23689.82 27790.07 31566.80 31797.76 24884.56 23894.27 30695.96 253
EPNet_dtu85.63 29284.37 29589.40 27786.30 35674.33 31491.64 21188.26 31484.84 24172.96 36189.85 31671.27 30697.69 25276.60 30997.62 22696.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM81.91 31580.11 32587.31 30793.87 27572.32 32884.02 34093.22 26769.47 34076.13 35989.84 31772.15 30297.23 27353.27 36089.02 34392.37 331
tfpn200view987.05 28486.52 28288.67 28995.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25894.79 285
thres40087.20 28086.52 28289.24 28295.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25896.51 228
TR-MVS87.70 26687.17 26989.27 28094.11 26879.26 25588.69 28791.86 29581.94 26890.69 26089.79 32082.82 23597.42 26572.65 33091.98 33391.14 339
new_pmnet81.22 31881.01 31781.86 33690.92 32270.15 33684.03 33980.25 36070.83 33485.97 32189.78 32167.93 31384.65 35967.44 34891.90 33490.78 341
PAPR87.65 26986.77 27790.27 26192.85 29177.38 28288.56 29096.23 19176.82 30784.98 32689.75 32286.08 21297.16 27572.33 33193.35 31596.26 241
CLD-MVS91.82 18291.41 18893.04 17096.37 16683.65 19386.82 31497.29 12884.65 24492.27 23489.67 32392.20 10697.85 23983.95 24299.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat180.61 32479.46 32784.07 33088.78 34465.06 35589.26 27588.23 31562.27 35681.90 34889.66 32462.70 34195.29 32471.72 33480.60 35891.86 336
pmmvs380.83 32178.96 32986.45 31287.23 35277.48 28184.87 33082.31 35363.83 35485.03 32589.50 32549.66 36193.10 34373.12 32895.10 28988.78 348
miper_enhance_ethall88.42 25587.87 25890.07 26788.67 34675.52 30485.10 32895.59 21575.68 30892.49 22389.45 32678.96 26497.88 23387.86 19397.02 24396.81 220
KD-MVS_2432*160082.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
miper_refine_blended82.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
PVSNet_Blended88.74 25188.16 25590.46 25794.81 24678.80 26586.64 31896.93 15174.67 31388.68 29889.18 32986.27 21098.15 21580.27 27596.00 26794.44 294
dp79.28 32778.62 33081.24 33785.97 35756.45 36386.91 31085.26 34372.97 32481.45 35089.17 33056.01 35595.45 31973.19 32776.68 35991.82 337
ET-MVSNet_ETH3D86.15 28984.27 29791.79 21493.04 28881.28 22187.17 30686.14 33079.57 28383.65 33488.66 33157.10 35198.18 21287.74 19495.40 28295.90 257
xiu_mvs_v2_base89.00 24489.19 22988.46 29494.86 24474.63 30986.97 30895.60 21180.88 27287.83 30888.62 33291.04 13798.81 13982.51 25694.38 30291.93 334
Fast-Effi-MVS+91.28 19690.86 20092.53 19495.45 23082.53 20789.25 27796.52 17985.00 23889.91 27488.55 33392.94 8998.84 13284.72 23795.44 28196.22 242
thres20085.85 29185.18 29287.88 30294.44 26172.52 32689.08 27986.21 32988.57 17691.44 24688.40 33464.22 33198.00 22568.35 34695.88 27293.12 320
BH-w/o87.21 27987.02 27387.79 30394.77 24877.27 28487.90 29393.21 26981.74 26989.99 27388.39 33583.47 22796.93 28371.29 33792.43 32989.15 344
MAR-MVS90.32 21788.87 23994.66 11294.82 24591.85 5794.22 11894.75 23980.91 27187.52 31288.07 33686.63 20697.87 23676.67 30896.21 26494.25 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS92.35 17292.03 17093.30 16695.81 21283.97 18992.80 15598.17 3587.71 19289.79 27987.56 33791.17 13699.18 8187.97 19097.27 23696.77 222
baseline283.38 30381.54 31288.90 28491.38 31672.84 32588.78 28481.22 35678.97 29179.82 35487.56 33761.73 34497.80 24274.30 32190.05 34296.05 250
MVS84.98 29684.30 29687.01 30891.03 31977.69 27991.94 19594.16 25259.36 35884.23 33287.50 33985.66 21696.80 28771.79 33393.05 32286.54 350
PS-MVSNAJ88.86 24888.99 23588.48 29394.88 24274.71 30786.69 31795.60 21180.88 27287.83 30887.37 34090.77 14098.82 13482.52 25594.37 30391.93 334
131486.46 28886.33 28586.87 31091.65 31274.54 31091.94 19594.10 25374.28 31584.78 32887.33 34183.03 23295.00 32778.72 29391.16 33891.06 340
thisisatest051584.72 29782.99 30589.90 27092.96 29075.33 30684.36 33683.42 35177.37 30288.27 30386.65 34253.94 35798.72 15582.56 25497.40 23395.67 266
test0.0.03 182.48 30981.47 31385.48 31989.70 33473.57 31984.73 33181.64 35583.07 25688.13 30586.61 34362.86 33989.10 35766.24 35190.29 34193.77 310
IB-MVS77.21 1983.11 30481.05 31589.29 27991.15 31875.85 30185.66 32586.00 33379.70 28182.02 34786.61 34348.26 36398.39 19277.84 29892.22 33093.63 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVEpermissive59.87 2373.86 33172.65 33477.47 34287.00 35574.35 31361.37 36060.93 36667.27 34669.69 36286.49 34581.24 25472.33 36256.45 35983.45 35385.74 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet76.22 2082.89 30782.37 30784.48 32793.96 27264.38 35778.60 35388.61 31171.50 33084.43 33186.36 34674.27 29494.60 32969.87 34493.69 31394.46 293
ETV-MVS92.99 15192.74 15693.72 15195.86 20986.30 15792.33 17797.84 8291.70 10892.81 21586.17 34792.22 10599.19 8088.03 18997.73 21895.66 267
cascas87.02 28586.28 28689.25 28191.56 31576.45 29584.33 33796.78 16371.01 33386.89 31785.91 34881.35 25096.94 28183.09 24995.60 27694.35 296
PMMVS83.00 30681.11 31488.66 29083.81 36386.44 15282.24 34785.65 33661.75 35782.07 34585.64 34979.75 26091.59 35075.99 31393.09 32087.94 349
CHOSEN 280x42080.04 32677.97 33286.23 31690.13 33074.53 31172.87 35689.59 30866.38 34876.29 35885.32 35056.96 35295.36 32169.49 34594.72 29788.79 347
test-LLR83.58 30283.17 30384.79 32589.68 33566.86 34783.08 34384.52 34683.07 25682.85 34084.78 35162.86 33993.49 34182.85 25094.86 29294.03 302
test-mter81.21 31980.01 32684.79 32589.68 33566.86 34783.08 34384.52 34673.85 31982.85 34084.78 35143.66 36893.49 34182.85 25094.86 29294.03 302
gm-plane-assit87.08 35459.33 36171.22 33183.58 35397.20 27473.95 322
TESTMET0.1,179.09 32878.04 33182.25 33587.52 34964.03 35883.08 34380.62 35870.28 33780.16 35383.22 35444.13 36790.56 35279.95 28093.36 31492.15 332
E-PMN80.72 32380.86 31880.29 33985.11 35968.77 34272.96 35581.97 35487.76 19183.25 33983.01 35562.22 34289.17 35677.15 30694.31 30582.93 354
EMVS80.35 32580.28 32480.54 33884.73 36169.07 34172.54 35780.73 35787.80 19081.66 34981.73 35662.89 33889.84 35475.79 31594.65 29982.71 355
DWT-MVSNet_test80.74 32279.18 32885.43 32087.51 35066.87 34689.87 26086.01 33274.20 31780.86 35180.62 35748.84 36296.68 29281.54 26483.14 35592.75 327
test_method50.44 33248.94 33554.93 34539.68 36712.38 36928.59 36190.09 3066.82 36341.10 36578.41 35854.41 35670.69 36350.12 36151.26 36381.72 357
PVSNet_070.34 2174.58 33072.96 33379.47 34090.63 32466.24 35073.26 35483.40 35263.67 35578.02 35678.35 35972.53 30089.59 35556.68 35860.05 36282.57 356
GG-mvs-BLEND83.24 33385.06 36071.03 33294.99 9265.55 36574.09 36075.51 36044.57 36694.46 33159.57 35787.54 34784.24 352
DeepMVS_CXcopyleft53.83 34670.38 36664.56 35648.52 36833.01 36265.50 36374.21 36156.19 35446.64 36438.45 36370.07 36050.30 360
tmp_tt37.97 33344.33 33618.88 34711.80 36821.54 36863.51 35945.66 3694.23 36451.34 36450.48 36259.08 34922.11 36544.50 36268.35 36113.00 361
X-MVStestdata90.70 20488.45 24497.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16726.89 36394.56 5899.39 4593.57 4099.05 9498.93 63
testmvs9.02 33611.42 3391.81 3492.77 3701.13 37179.44 3521.90 3701.18 3662.65 3676.80 3641.95 3720.87 3672.62 3653.45 3653.44 363
test1239.49 33512.01 3381.91 3482.87 3691.30 37082.38 3461.34 3711.36 3652.84 3666.56 3652.45 3710.97 3662.73 3645.56 3643.47 362
test_post6.07 36665.74 32595.84 311
test_post190.21 2465.85 36765.36 32696.00 30979.61 286
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.56 33710.09 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36890.77 1400.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
IU-MVS98.51 4586.66 14796.83 16072.74 32595.83 10993.00 7299.29 6598.64 96
save fliter97.46 11788.05 11992.04 18997.08 14287.63 195
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8198.22 2999.38 5193.44 5199.31 6298.53 107
GSMVS94.75 287
test_part298.21 6889.41 9196.72 68
sam_mvs166.64 32094.75 287
sam_mvs66.41 321
MTGPAbinary97.62 97
MTMP94.82 9654.62 367
test9_res88.16 18698.40 15997.83 166
agg_prior287.06 20498.36 17097.98 149
agg_prior96.20 18388.89 10096.88 15790.21 26798.78 145
test_prior489.91 8290.74 230
test_prior94.61 11395.95 20487.23 13197.36 12098.68 16597.93 155
旧先验290.00 25568.65 34292.71 21896.52 29485.15 227
新几何290.02 254
无先验89.94 25695.75 20870.81 33598.59 17581.17 27094.81 284
原ACMM289.34 272
testdata298.03 22180.24 277
segment_acmp92.14 107
testdata188.96 28188.44 178
test1294.43 12895.95 20486.75 14396.24 19089.76 28089.79 16298.79 14197.95 21097.75 175
plane_prior797.71 9988.68 104
plane_prior697.21 12888.23 11586.93 199
plane_prior597.81 8598.95 11789.26 16498.51 15398.60 103
plane_prior388.43 11390.35 14193.31 196
plane_prior294.56 10891.74 105
plane_prior197.38 120
plane_prior88.12 11793.01 14888.98 16598.06 202
n20.00 372
nn0.00 372
door-mid92.13 291
test1196.65 171
door91.26 299
HQP5-MVS84.89 176
HQP-NCC96.36 16891.37 21587.16 20288.81 291
ACMP_Plane96.36 16891.37 21587.16 20288.81 291
BP-MVS86.55 212
HQP4-MVS88.81 29198.61 17198.15 133
HQP3-MVS97.31 12597.73 218
HQP2-MVS84.76 221
MDTV_nov1_ep13_2view42.48 36788.45 29167.22 34783.56 33666.80 31772.86 32994.06 301
ACMMP++_ref98.82 124
ACMMP++99.25 73
Test By Simon90.61 146