This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
mvs5depth95.28 8895.82 7193.66 16296.42 19283.08 22497.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23294.06 4898.93 12599.87 1
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12298.16 398.94 399.33 397.84 499.08 9890.73 14799.73 1399.59 14
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29094.49 3899.01 11399.80 3
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9496.10 3398.14 2899.28 597.94 398.21 21491.38 13699.69 1499.42 20
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8094.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
gg-mvs-nofinetune82.10 35981.02 36185.34 36687.46 40571.04 37194.74 12167.56 41996.44 2679.43 40998.99 845.24 41096.15 33567.18 39992.17 38288.85 398
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 8993.18 8499.74 1299.50 18
ANet_high94.83 10496.28 4190.47 27996.65 17373.16 35894.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16290.38 15799.68 1799.53 16
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11687.57 21698.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9288.72 18898.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13388.98 18298.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
K. test v393.37 15693.27 16693.66 16298.05 8682.62 23094.35 13686.62 36796.05 3597.51 4698.85 1476.59 32099.65 593.21 8398.20 20798.73 95
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8896.69 1991.78 28298.85 1491.77 13295.49 35191.72 12499.08 10295.02 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17496.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11687.68 21498.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22195.93 7194.84 26394.86 4898.49 1698.74 1881.45 27599.60 1094.69 3599.39 5699.15 39
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13186.96 22598.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 119
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23297.56 4298.66 2195.73 1998.44 19597.35 398.99 11498.27 141
test_fmvs392.42 18992.40 18892.46 21293.80 31287.28 13993.86 15597.05 16276.86 34896.25 10498.66 2182.87 25991.26 39195.44 2496.83 27998.82 82
SDMVSNet94.43 12195.02 10392.69 19897.93 9782.88 22891.92 22995.99 22693.65 7295.51 14298.63 2394.60 6796.48 32587.57 22999.35 5998.70 100
sd_testset93.94 14294.39 12692.61 20597.93 9783.24 21893.17 17795.04 25793.65 7295.51 14298.63 2394.49 7295.89 34481.72 30499.35 5998.70 100
VDDNet94.03 13894.27 13493.31 17898.87 2182.36 23495.51 9391.78 32797.19 1396.32 9898.60 2584.24 24698.75 15087.09 23898.83 14098.81 84
TransMVSNet (Re)95.27 9196.04 5692.97 18698.37 6381.92 23995.07 11196.76 18693.97 6297.77 3498.57 2695.72 2097.90 24188.89 20599.23 8699.08 48
Baseline_NR-MVSNet94.47 11995.09 10292.60 20698.50 5580.82 25592.08 22096.68 19093.82 6696.29 10198.56 2790.10 17597.75 26290.10 17399.66 2199.24 32
GBi-Net93.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
test193.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19892.38 9097.03 6898.53 2890.12 17398.98 11188.78 20799.16 9798.65 106
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17793.73 6797.87 3198.49 3190.73 16199.05 10386.43 25199.60 2599.10 47
MVSMamba_PlusPlus94.82 10595.89 6491.62 23897.82 10478.88 29396.52 3597.60 11897.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 276
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15891.84 11397.28 5898.46 3395.30 3897.71 26690.17 16999.42 5098.99 56
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13294.64 3699.53 3798.99 56
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6896.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
mvsany_test389.11 26788.21 28391.83 22891.30 36790.25 8388.09 33378.76 41076.37 35196.43 9398.39 3683.79 25090.43 39786.57 24694.20 34894.80 335
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9198.14 498.67 1398.32 3795.04 5099.69 493.27 8199.82 799.62 12
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16598.60 1685.68 24697.42 5298.30 3895.34 3598.39 19696.85 498.98 11598.19 147
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23494.87 3399.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EGC-MVSNET80.97 36775.73 38496.67 4698.85 2394.55 1996.83 2296.60 1942.44 4215.32 42298.25 4092.24 12098.02 23191.85 12099.21 9097.45 218
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7298.06 598.64 1498.25 4095.01 5399.65 592.95 9399.83 599.68 6
test111190.39 23490.61 23089.74 29998.04 8971.50 37095.59 8579.72 40989.41 17295.94 12098.14 4270.79 34398.81 13988.52 21299.32 6998.90 74
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8597.91 698.64 1498.13 4395.24 4099.65 593.39 7699.84 399.72 4
test250685.42 32884.57 33187.96 33297.81 10566.53 39396.14 6156.35 42289.04 18093.55 22198.10 4442.88 41998.68 16688.09 21999.18 9498.67 104
ECVR-MVScopyleft90.12 24590.16 23990.00 29597.81 10572.68 36495.76 7978.54 41289.04 18095.36 15398.10 4470.51 34598.64 17287.10 23799.18 9498.67 104
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7797.67 24497.85 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24583.25 28295.51 14298.05 4792.54 11697.19 29695.55 2197.46 25598.94 66
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18596.64 2197.61 4198.05 4793.23 9698.79 14388.60 21199.04 11198.78 87
VPA-MVSNet95.14 9395.67 7793.58 16697.76 10883.15 22294.58 12897.58 11993.39 7597.05 6798.04 4993.25 9598.51 18789.75 18199.59 2799.08 48
LCM-MVSNet-Re94.20 13394.58 12393.04 18395.91 23583.13 22393.79 15799.19 692.00 10398.84 698.04 4993.64 8399.02 10881.28 30998.54 17296.96 246
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17598.36 2785.61 24996.92 7498.02 5195.23 4198.38 19996.69 798.95 12498.09 155
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17297.22 14384.37 20093.73 15995.26 25284.45 27095.76 12998.00 5291.85 12997.21 29395.62 1797.82 23698.98 60
v1094.68 11195.27 9592.90 19196.57 17980.15 25994.65 12597.57 12090.68 14897.43 5098.00 5288.18 19299.15 8994.84 3499.55 3599.41 21
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15598.02 7987.35 21896.22 10797.99 5494.48 7399.05 10392.73 9899.68 1797.93 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVStest184.79 33484.06 33686.98 34577.73 42274.76 34191.08 25685.63 37777.70 34096.86 7697.97 5541.05 42188.24 40692.22 10996.28 29597.94 174
JIA-IIPM85.08 33183.04 34591.19 25887.56 40386.14 17389.40 30884.44 39088.98 18282.20 39797.95 5656.82 39696.15 33576.55 35483.45 40891.30 390
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 122
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
v894.65 11295.29 9392.74 19696.65 17379.77 27494.59 12697.17 15391.86 10997.47 4997.93 5788.16 19399.08 9894.32 4299.47 4199.38 23
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 3999.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 11893.85 5499.49 4099.36 25
lessismore_v093.87 15498.05 8683.77 21380.32 40797.13 6297.91 6277.49 30599.11 9692.62 10198.08 21798.74 94
Anonymous2024052192.86 17693.57 15790.74 27396.57 17975.50 33994.15 14495.60 23589.38 17395.90 12397.90 6480.39 28497.96 23892.60 10299.68 1798.75 91
ttmdpeth86.91 31986.57 31387.91 33589.68 38874.24 35191.49 24387.09 36379.84 31789.46 32597.86 6565.42 36891.04 39281.57 30696.74 28598.44 129
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6597.42 1098.48 1797.86 6591.76 13499.63 894.23 4599.84 399.66 8
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15293.28 29794.49 5296.24 10597.78 6787.99 19898.79 14388.92 20399.14 9998.34 135
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12492.42 8993.41 22497.78 6791.21 14697.77 25991.06 13997.06 26898.80 85
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17497.24 14996.88 1897.69 3697.77 7194.12 7899.13 9391.54 13299.29 7597.88 182
tfpnnormal94.27 12894.87 10892.48 21097.71 11480.88 25494.55 13295.41 24893.70 6896.67 8697.72 7291.40 14098.18 21887.45 23199.18 9498.36 132
XXY-MVS92.58 18493.16 16890.84 27097.75 10979.84 27091.87 23396.22 21685.94 23995.53 14197.68 7392.69 11394.48 36883.21 28697.51 25198.21 145
UGNet93.08 16692.50 18594.79 11193.87 30987.99 12895.07 11194.26 27990.64 14987.33 36097.67 7486.89 21998.49 18888.10 21898.71 15497.91 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
KD-MVS_self_test94.10 13694.73 11592.19 21797.66 12079.49 28094.86 11897.12 15889.59 17096.87 7597.65 7590.40 16898.34 20489.08 20099.35 5998.75 91
wuyk23d87.83 29490.79 22678.96 39490.46 38088.63 11292.72 18990.67 33891.65 12598.68 1297.64 7696.06 1577.53 41659.84 41099.41 5470.73 414
SSC-MVS90.16 24392.96 17081.78 38897.88 10048.48 42090.75 26287.69 35896.02 3796.70 8497.63 7785.60 23697.80 25485.73 25998.60 16699.06 50
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22496.74 18788.16 20396.93 7397.61 7893.04 10497.90 24191.60 12898.12 21298.03 162
test_fmvs290.62 22790.40 23691.29 25191.93 35485.46 19092.70 19196.48 20474.44 36394.91 18097.59 7975.52 32490.57 39493.44 7296.56 28897.84 188
DSMNet-mixed82.21 35681.56 35584.16 37889.57 39170.00 38090.65 26777.66 41454.99 41683.30 39097.57 8077.89 30390.50 39666.86 40095.54 31291.97 384
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16395.23 25383.30 28095.13 16897.56 8192.22 12197.17 29795.51 2297.41 25798.64 111
FC-MVSNet-test95.32 8495.88 6593.62 16498.49 5681.77 24095.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9499.83 599.68 6
ab-mvs92.40 19092.62 18291.74 23297.02 15081.65 24295.84 7695.50 24486.95 22692.95 24797.56 8190.70 16297.50 27679.63 32897.43 25696.06 287
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 14990.11 17199.44 4898.31 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17696.69 17084.37 20093.38 17195.13 25584.50 26995.40 14997.55 8591.77 13297.20 29495.59 1897.79 23798.69 103
MM94.41 12294.14 13895.22 9795.84 23887.21 14194.31 13990.92 33594.48 5392.80 25097.52 8685.27 23899.49 2896.58 899.57 3398.97 62
RRT-MVS92.28 19493.01 16990.07 29194.06 30473.01 36095.36 9597.88 9292.24 9895.16 16797.52 8678.51 29899.29 7390.55 15295.83 30697.92 177
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12497.60 898.34 2097.52 8691.98 12799.63 893.08 8999.81 899.70 5
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17390.30 16299.60 2598.72 96
test_vis3_rt90.40 23290.03 24391.52 24392.58 33288.95 10690.38 27697.72 10973.30 37097.79 3397.51 9077.05 31287.10 40889.03 20194.89 33098.50 123
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10486.48 22897.42 5297.51 9094.47 7499.29 7393.55 6499.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ambc92.98 18596.88 15983.01 22695.92 7296.38 20896.41 9497.48 9288.26 19197.80 25489.96 17698.93 12598.12 154
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 22996.47 2593.40 22797.46 9395.31 3795.47 35286.18 25598.78 14789.11 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26287.06 14596.63 3197.28 14791.82 11694.34 19897.41 9490.60 16498.65 17192.47 10598.11 21397.70 202
mvs_anonymous90.37 23691.30 21587.58 33992.17 34668.00 38689.84 29494.73 26983.82 27793.22 23797.40 9587.54 20497.40 28487.94 22495.05 32797.34 228
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17398.32 3087.89 20796.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
EU-MVSNet87.39 30686.71 31189.44 30393.40 31676.11 33294.93 11790.00 34157.17 41495.71 13597.37 9764.77 37397.68 26892.67 10094.37 34394.52 343
FMVSNet292.78 17892.73 17992.95 18895.40 26481.98 23894.18 14395.53 24388.63 19096.05 11697.37 9781.31 27798.81 13987.38 23498.67 16098.06 156
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5298.68 15898.04 159
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4399.38 5798.92 72
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20488.62 11393.19 17698.07 6885.63 24897.08 6397.35 10390.86 15497.66 26995.70 1698.48 17997.74 200
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16591.85 11097.40 5497.35 10395.58 2499.34 6593.44 7299.31 7098.13 153
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5299.42 5098.89 75
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7790.42 15696.37 9597.35 10395.68 2199.25 7994.44 4099.34 6398.80 85
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11296.94 1796.58 9097.32 10793.07 10398.72 15590.45 15498.84 13597.57 210
FA-MVS(test-final)91.81 20391.85 20191.68 23694.95 27579.99 26796.00 6693.44 29587.80 20994.02 20897.29 10877.60 30498.45 19488.04 22197.49 25296.61 259
MVS-HIRNet78.83 38080.60 36673.51 39893.07 32147.37 42287.10 34878.00 41368.94 39677.53 41197.26 10971.45 34194.62 36663.28 40788.74 39878.55 413
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6291.95 10497.63 3897.25 11096.48 1099.35 6293.29 7999.29 7597.95 172
test_241102_TWO98.10 6291.95 10497.54 4397.25 11095.37 3299.35 6293.29 7999.25 8398.49 125
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11293.38 7695.89 12497.23 11293.35 9297.66 26988.20 21498.66 16297.79 194
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 9996.13 3294.74 18797.23 11291.33 14199.16 8893.25 8298.30 19598.46 127
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
test_f86.65 32187.13 30285.19 36890.28 38286.11 17486.52 36491.66 32869.76 39395.73 13497.21 11669.51 34881.28 41589.15 19894.40 34188.17 401
balanced_conf0393.45 15494.17 13791.28 25295.81 24278.40 30096.20 6097.48 12888.56 19495.29 15897.20 11785.56 23799.21 8292.52 10498.91 12796.24 279
FIs94.90 10195.35 8993.55 16798.28 6981.76 24195.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7391.72 12499.69 1499.61 13
PatchT87.51 30388.17 28485.55 36490.64 37466.91 39092.02 22386.09 37192.20 9989.05 33097.16 11964.15 37596.37 33189.21 19792.98 37493.37 369
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17096.25 20983.23 21992.66 19398.19 4793.06 8197.49 4797.15 12094.78 6198.71 16192.27 10898.72 15298.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17496.10 22185.66 18692.32 21196.57 19781.32 30795.63 13797.14 12190.19 17197.73 26595.37 2898.03 22197.07 239
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15897.86 9495.96 3897.48 4897.14 12195.33 3699.44 3290.79 14599.76 1099.38 23
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18185.23 25594.75 18697.12 12391.85 12999.40 4993.45 7198.33 19298.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16096.16 21586.26 17092.46 20296.72 18881.69 30495.77 12897.11 12490.83 15697.82 25295.58 1997.99 22597.11 238
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 16998.49 1985.57 25098.27 2197.11 12494.11 7997.75 26296.26 1198.72 15296.89 249
VPNet93.08 16693.76 14891.03 26198.60 3875.83 33791.51 24295.62 23491.84 11395.74 13297.10 12689.31 18398.32 20585.07 27099.06 10398.93 68
IterMVS-LS93.78 14694.28 13292.27 21496.27 20679.21 28791.87 23396.78 18391.77 11996.57 9197.07 12787.15 21198.74 15391.99 11599.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LFMVS91.33 21491.16 21991.82 22996.27 20679.36 28295.01 11485.61 37996.04 3694.82 18397.06 12872.03 33998.46 19384.96 27198.70 15697.65 206
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7898.88 13098.75 91
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6698.84 13598.00 164
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6698.84 13598.00 164
test_241102_ONE98.51 4986.97 14898.10 6291.85 11097.63 3897.03 13096.48 1098.95 118
dcpmvs_293.96 14195.01 10490.82 27197.60 12274.04 35393.68 16298.85 1089.80 16697.82 3297.01 13391.14 15199.21 8290.56 15198.59 16799.19 36
WB-MVS89.44 26192.15 19381.32 38997.73 11248.22 42189.73 29787.98 35695.24 4296.05 11696.99 13485.18 23996.95 30882.45 29697.97 22798.78 87
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16798.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12399.28 8098.41 131
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11494.46 5496.29 10196.94 13693.56 8499.37 6094.29 4499.42 5098.99 56
CR-MVSNet87.89 29287.12 30390.22 28791.01 37078.93 28992.52 19892.81 30473.08 37289.10 32896.93 13767.11 35697.64 27188.80 20692.70 37694.08 350
Patchmtry90.11 24689.92 24590.66 27590.35 38177.00 32092.96 18292.81 30490.25 15994.74 18796.93 13767.11 35697.52 27585.17 26398.98 11597.46 217
FMVSNet587.82 29586.56 31491.62 23892.31 33979.81 27393.49 16694.81 26683.26 28191.36 28896.93 13752.77 40397.49 27876.07 35798.03 22197.55 213
RPMNet90.31 24090.14 24290.81 27291.01 37078.93 28992.52 19898.12 5991.91 10789.10 32896.89 14068.84 34999.41 4290.17 16992.70 37694.08 350
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9599.21 9099.00 54
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19497.33 14190.05 16196.77 8296.85 14295.04 5098.56 18192.77 9599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7790.82 14497.15 6196.85 14296.25 1499.00 11093.10 8799.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 6999.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvspermissive94.32 12794.80 11092.85 19396.05 22581.44 24692.35 20998.05 7291.53 12995.75 13196.80 14593.35 9298.49 18891.01 14298.32 19498.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
QAPM92.88 17392.77 17593.22 18195.82 24083.31 21696.45 4197.35 13983.91 27593.75 21596.77 14689.25 18498.88 12584.56 27697.02 27097.49 216
LS3D96.11 5195.83 6996.95 4094.75 28494.20 2397.34 1397.98 8397.31 1295.32 15596.77 14693.08 10299.20 8591.79 12298.16 20997.44 220
patch_mono-292.46 18892.72 18091.71 23496.65 17378.91 29288.85 32197.17 15383.89 27692.45 26396.76 14889.86 17997.09 30290.24 16698.59 16799.12 43
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7290.45 15596.31 9996.76 14892.91 10798.72 15591.19 13799.42 5098.32 136
MIMVSNet87.13 31486.54 31588.89 31496.05 22576.11 33294.39 13588.51 34881.37 30688.27 34696.75 15072.38 33695.52 34965.71 40295.47 31495.03 326
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6895.17 4396.82 7996.73 15395.09 4999.43 3592.99 9298.71 15498.50 123
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10592.73 8393.48 22296.72 15494.23 7699.42 3691.99 11599.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_Test92.57 18693.29 16390.40 28293.53 31575.85 33592.52 19896.96 16888.73 18792.35 26996.70 15590.77 15798.37 20392.53 10395.49 31396.99 245
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10699.05 10698.64 111
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10792.59 8795.47 14596.68 15694.50 7199.42 3693.10 8799.26 8298.99 56
Anonymous20240521192.58 18492.50 18592.83 19496.55 18183.22 22092.43 20591.64 32994.10 5995.59 13996.64 15881.88 27497.50 27685.12 26798.52 17497.77 196
IterMVS-SCA-FT91.65 20691.55 20691.94 22693.89 30879.22 28687.56 33993.51 29391.53 12995.37 15296.62 15978.65 29498.90 12291.89 11994.95 32997.70 202
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8692.35 9395.57 14096.61 16094.93 5899.41 4293.78 5699.15 9899.00 54
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21692.18 31885.92 24096.22 10796.61 16085.64 23595.99 34290.35 15998.23 20295.93 293
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8692.26 9695.28 15996.57 16295.02 5299.41 4293.63 6099.11 10198.94 66
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8093.34 7796.64 8796.57 16294.99 5499.36 6193.48 6899.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19696.49 16494.56 6999.39 5293.57 6299.05 10698.93 68
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8392.35 9395.63 13796.47 16595.37 3299.27 7893.78 5699.14 9998.48 126
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24498.17 5390.72 14695.30 15696.47 16587.94 19996.98 30791.41 13597.61 24898.30 139
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6589.46 17196.61 8996.47 16595.85 1899.12 9490.45 15499.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030492.88 17392.27 18994.69 11692.35 33886.03 17692.88 18689.68 34290.53 15291.52 28596.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
OpenMVScopyleft89.45 892.27 19692.13 19492.68 19994.53 29384.10 20895.70 8097.03 16382.44 29691.14 29496.42 16988.47 18998.38 19985.95 25697.47 25495.55 312
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5199.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v124093.29 15893.71 15092.06 22496.01 23077.89 30891.81 23797.37 13385.12 25996.69 8596.40 17186.67 22299.07 10294.51 3798.76 14999.22 33
SD-MVS95.19 9295.73 7493.55 16796.62 17788.88 10994.67 12398.05 7291.26 13497.25 6096.40 17195.42 3094.36 37292.72 9999.19 9297.40 224
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 22090.85 22490.63 27695.63 25479.24 28589.81 29592.87 30389.90 16394.39 19596.40 17185.77 23195.27 35973.86 37199.05 10697.39 225
IterMVS90.18 24290.16 23990.21 28893.15 32075.98 33487.56 33992.97 30286.43 23094.09 20296.40 17178.32 29997.43 28187.87 22594.69 33797.23 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6592.67 8695.08 17396.39 17594.77 6299.42 3693.17 8599.44 4898.58 118
v119293.49 15293.78 14792.62 20496.16 21579.62 27691.83 23697.22 15186.07 23796.10 11596.38 17687.22 20999.02 10894.14 4798.88 13099.22 33
V4293.43 15593.58 15692.97 18695.34 26881.22 24992.67 19296.49 20387.25 22096.20 10996.37 17787.32 20898.85 13192.39 10798.21 20598.85 81
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4199.28 8098.97 62
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27696.24 3196.28 10396.36 17882.88 25899.35 6288.19 21599.52 3998.96 64
v114493.50 15193.81 14492.57 20796.28 20579.61 27791.86 23596.96 16886.95 22695.91 12296.32 18087.65 20298.96 11693.51 6598.88 13099.13 41
baseline94.26 12994.80 11092.64 20096.08 22380.99 25293.69 16198.04 7690.80 14594.89 18196.32 18093.19 9798.48 19291.68 12698.51 17698.43 130
FE-MVS89.06 26888.29 27691.36 24794.78 28279.57 27896.77 2790.99 33384.87 26592.96 24696.29 18260.69 39098.80 14280.18 32097.11 26795.71 303
TinyColmap92.00 20192.76 17689.71 30095.62 25577.02 31990.72 26496.17 21987.70 21395.26 16096.29 18292.54 11696.45 32781.77 30298.77 14895.66 307
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8092.08 10295.74 13296.28 18495.22 4299.42 3693.17 8599.06 10398.88 77
mvsmamba90.24 24189.43 25492.64 20095.52 26082.36 23496.64 3092.29 31681.77 30292.14 27696.28 18470.59 34499.10 9784.44 27895.22 32396.47 267
USDC89.02 26989.08 25888.84 31595.07 27374.50 34788.97 31796.39 20773.21 37193.27 23296.28 18482.16 26996.39 32977.55 34498.80 14495.62 310
v2v48293.29 15893.63 15392.29 21396.35 19878.82 29591.77 23996.28 21088.45 19595.70 13696.26 18786.02 23098.90 12293.02 9098.81 14399.14 40
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20298.13 5890.69 14793.75 21596.25 18898.03 297.02 30692.08 11295.55 31198.45 128
pmmvs-eth3d91.54 20990.73 22893.99 14595.76 24687.86 13190.83 26093.98 28678.23 33894.02 20896.22 18982.62 26596.83 31686.57 24698.33 19297.29 231
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15394.01 28589.23 17693.95 21096.19 19076.88 31699.14 9191.02 14095.71 30897.04 243
v192192093.26 16093.61 15592.19 21796.04 22978.31 30291.88 23297.24 14985.17 25796.19 11296.19 19086.76 22199.05 10394.18 4698.84 13599.22 33
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28294.22 5794.94 17896.19 19082.07 27099.57 1587.28 23598.89 12898.65 106
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10089.22 17895.46 14796.17 19393.42 9099.34 6589.30 19098.87 13397.56 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MonoMVSNet88.46 28489.28 25585.98 36090.52 37770.07 37995.31 10194.81 26688.38 19793.47 22396.13 19473.21 33295.07 36182.61 29289.12 39692.81 377
test_vis1_n_192089.45 26089.85 24788.28 32793.59 31476.71 32690.67 26697.78 10579.67 32290.30 30996.11 19576.62 31992.17 38790.31 16193.57 36095.96 291
v14419293.20 16593.54 15992.16 22196.05 22578.26 30391.95 22597.14 15584.98 26395.96 11896.11 19587.08 21399.04 10693.79 5598.84 13599.17 37
VNet92.67 18292.96 17091.79 23096.27 20680.15 25991.95 22594.98 25992.19 10094.52 19396.07 19787.43 20697.39 28584.83 27298.38 18697.83 189
v14892.87 17593.29 16391.62 23896.25 20977.72 31191.28 24995.05 25689.69 16795.93 12196.04 19887.34 20798.38 19990.05 17497.99 22598.78 87
9.1494.81 10997.49 12994.11 14798.37 2687.56 21795.38 15096.03 19994.66 6499.08 9890.70 14898.97 120
FMVSNet390.78 22190.32 23892.16 22193.03 32479.92 26992.54 19794.95 26086.17 23695.10 17096.01 20069.97 34798.75 15086.74 24198.38 18697.82 191
MG-MVS89.54 25889.80 24888.76 31694.88 27672.47 36689.60 30092.44 31585.82 24289.48 32495.98 20182.85 26097.74 26481.87 30195.27 32196.08 286
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18498.07 6893.46 7496.31 9995.97 20290.14 17299.34 6592.11 11099.64 2399.16 38
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19697.81 10093.99 6096.80 8095.90 20390.10 17599.41 4291.60 12899.58 3199.26 30
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13393.92 6597.65 3795.90 20390.10 17599.33 7090.11 17199.66 2199.26 30
EI-MVSNet92.99 16993.26 16792.19 21792.12 34779.21 28792.32 21194.67 27291.77 11995.24 16395.85 20587.14 21298.49 18891.99 11598.26 19898.86 78
CVMVSNet85.16 33084.72 32886.48 35392.12 34770.19 37592.32 21188.17 35356.15 41590.64 30295.85 20567.97 35496.69 32088.78 20790.52 39292.56 380
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33785.87 18092.42 20694.69 27093.67 7196.13 11395.84 20791.20 14798.86 12993.78 5698.23 20299.03 52
reproduce_monomvs87.13 31486.90 30687.84 33790.92 37268.15 38591.19 25193.75 28885.84 24194.21 20095.83 20842.99 41697.10 30189.46 18697.88 23398.26 142
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33485.98 17792.44 20494.69 27093.70 6896.12 11495.81 20991.24 14498.86 12993.76 5998.22 20498.98 60
ZD-MVS97.23 14190.32 8297.54 12284.40 27194.78 18595.79 21092.76 11299.39 5288.72 20998.40 182
MDA-MVSNet-bldmvs91.04 21790.88 22291.55 24194.68 28980.16 25885.49 37692.14 32190.41 15794.93 17995.79 21085.10 24096.93 31185.15 26594.19 35097.57 210
MVSTER89.32 26388.75 26791.03 26190.10 38476.62 32790.85 25994.67 27282.27 29795.24 16395.79 21061.09 38898.49 18890.49 15398.26 19897.97 171
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21697.84 9794.91 4796.80 8095.78 21390.42 16699.41 4291.60 12899.58 3199.29 29
test_vis1_n89.01 27189.01 26189.03 31192.57 33382.46 23392.62 19596.06 22173.02 37390.40 30695.77 21474.86 32689.68 40090.78 14694.98 32894.95 329
PC_three_145275.31 35995.87 12595.75 21592.93 10696.34 33487.18 23698.68 15898.04 159
new-patchmatchnet88.97 27390.79 22683.50 38394.28 29855.83 41885.34 37893.56 29286.18 23595.47 14595.73 21683.10 25596.51 32485.40 26298.06 21898.16 150
UnsupCasMVSNet_eth90.33 23890.34 23790.28 28494.64 29180.24 25789.69 29995.88 22785.77 24393.94 21295.69 21781.99 27192.98 38484.21 27991.30 38797.62 207
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22686.28 25498.61 16497.95 172
test_cas_vis1_n_192088.25 28888.27 27888.20 32992.19 34578.92 29189.45 30595.44 24575.29 36093.23 23695.65 21971.58 34090.23 39888.05 22093.55 36295.44 314
MVP-Stereo90.07 24988.92 26393.54 16996.31 20286.49 16190.93 25895.59 23979.80 31891.48 28695.59 22080.79 28197.39 28578.57 33891.19 38896.76 256
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10091.74 12193.31 22895.59 22086.93 21798.95 11889.26 19498.51 17698.60 116
plane_prior495.59 220
Anonymous2023120688.77 27888.29 27690.20 28996.31 20278.81 29689.56 30293.49 29474.26 36592.38 26795.58 22382.21 26795.43 35472.07 38098.75 15196.34 272
旧先验196.20 21284.17 20794.82 26495.57 22489.57 18197.89 23296.32 273
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14088.71 18995.26 16095.50 22594.65 6599.12 9490.94 14398.40 18298.23 143
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11189.21 17993.28 23195.46 22688.89 18698.98 11189.80 17898.82 14197.80 193
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 21887.90 12993.36 17297.14 15585.53 25193.90 21395.45 22791.30 14398.59 17889.51 18498.62 16397.31 230
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23796.80 18289.66 16893.90 21395.44 22892.80 11198.72 15592.74 9798.52 17498.32 136
testdata91.03 26196.87 16082.01 23794.28 27871.55 38092.46 26295.42 22985.65 23497.38 28782.64 29197.27 26193.70 362
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23292.96 4789.48 30497.46 12985.14 25896.23 10695.42 22993.19 9798.08 22590.37 15898.76 14997.38 227
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21597.40 13287.10 22494.56 19195.42 22993.74 8298.11 22386.62 24598.85 13498.06 156
test_fmvs1_n88.73 28088.38 27389.76 29892.06 34982.53 23192.30 21496.59 19671.14 38392.58 25895.41 23268.55 35089.57 40291.12 13895.66 30997.18 237
WR-MVS93.49 15293.72 14992.80 19597.57 12580.03 26590.14 28495.68 23393.70 6896.62 8895.39 23387.21 21099.04 10687.50 23099.64 2399.33 26
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20191.93 10694.82 18395.39 23391.99 12697.08 30385.53 26197.96 22897.41 221
MSLP-MVS++93.25 16293.88 14391.37 24696.34 19982.81 22993.11 17897.74 10789.37 17494.08 20395.29 23590.40 16896.35 33290.35 15998.25 20094.96 328
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14896.99 16791.05 13992.40 26695.22 23691.03 15399.25 7992.11 11098.69 15797.90 179
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13495.12 16995.15 23786.60 22499.50 2293.43 7596.81 28098.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet_test_wron88.16 29088.23 28187.93 33392.22 34273.71 35480.71 40488.84 34582.52 29494.88 18295.14 23882.70 26393.61 37883.28 28593.80 35796.46 268
Vis-MVSNet (Re-imp)90.42 23190.16 23991.20 25797.66 12077.32 31694.33 13787.66 35991.20 13692.99 24495.13 23975.40 32598.28 20777.86 34099.19 9297.99 167
YYNet188.17 28988.24 28087.93 33392.21 34373.62 35580.75 40388.77 34682.51 29594.99 17795.11 24082.70 26393.70 37783.33 28493.83 35696.48 266
D2MVS89.93 25289.60 25390.92 26694.03 30578.40 30088.69 32694.85 26278.96 33393.08 24095.09 24174.57 32796.94 30988.19 21598.96 12297.41 221
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26597.07 16177.38 34292.34 27195.08 24292.67 11498.88 12585.74 25898.57 16998.20 146
PVSNet_BlendedMVS90.35 23789.96 24491.54 24294.81 28078.80 29790.14 28496.93 17079.43 32588.68 34095.06 24386.27 22798.15 22180.27 31798.04 22097.68 204
tpm84.38 33884.08 33585.30 36790.47 37963.43 40789.34 30985.63 37777.24 34687.62 35695.03 24461.00 38997.30 28879.26 33391.09 39095.16 319
PVSNet_Blended_VisFu91.63 20791.20 21692.94 18997.73 11283.95 21192.14 21997.46 12978.85 33592.35 26994.98 24584.16 24799.08 9886.36 25296.77 28295.79 300
miper_lstm_enhance89.90 25389.80 24890.19 29091.37 36677.50 31383.82 39395.00 25884.84 26693.05 24294.96 24676.53 32195.20 36089.96 17698.67 16097.86 185
新几何193.17 18297.16 14687.29 13894.43 27467.95 39991.29 28994.94 24786.97 21698.23 21381.06 31397.75 23893.98 355
cl____90.65 22590.56 23290.91 26891.85 35576.98 32286.75 35695.36 25085.53 25194.06 20594.89 24877.36 31097.98 23790.27 16498.98 11597.76 197
DIV-MVS_self_test90.65 22590.56 23290.91 26891.85 35576.99 32186.75 35695.36 25085.52 25394.06 20594.89 24877.37 30997.99 23690.28 16398.97 12097.76 197
test22296.95 15385.27 19388.83 32293.61 28965.09 40790.74 29994.85 25084.62 24597.36 25993.91 356
test_prior290.21 28189.33 17590.77 29894.81 25190.41 16788.21 21398.55 170
CHOSEN 1792x268887.19 31285.92 32391.00 26497.13 14879.41 28184.51 38695.60 23564.14 40890.07 31394.81 25178.26 30097.14 30073.34 37395.38 31896.46 268
114514_t90.51 22889.80 24892.63 20398.00 9282.24 23693.40 17097.29 14565.84 40589.40 32694.80 25386.99 21598.75 15083.88 28298.61 16496.89 249
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26194.79 25493.56 8499.49 2893.47 6999.05 10697.89 181
tttt051789.81 25588.90 26592.55 20897.00 15179.73 27595.03 11383.65 39289.88 16495.30 15694.79 25453.64 40199.39 5291.99 11598.79 14698.54 119
EPNet89.80 25688.25 27994.45 13283.91 41786.18 17293.87 15487.07 36591.16 13880.64 40694.72 25678.83 29298.89 12485.17 26398.89 12898.28 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS281.31 36383.44 34274.92 39790.52 37746.49 42369.19 41385.23 38584.30 27387.95 35194.71 25776.95 31584.36 41464.07 40598.09 21693.89 357
testgi90.38 23591.34 21487.50 34097.49 12971.54 36989.43 30695.16 25488.38 19794.54 19294.68 25892.88 10993.09 38371.60 38497.85 23597.88 182
mvsany_test183.91 34382.93 34786.84 35086.18 41185.93 17881.11 40275.03 41770.80 38888.57 34294.63 25983.08 25687.38 40780.39 31586.57 40387.21 403
test_fmvs187.59 30187.27 29788.54 32188.32 40081.26 24890.43 27595.72 23270.55 38991.70 28394.63 25968.13 35189.42 40390.59 15095.34 31994.94 331
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 20896.91 17490.64 14992.33 27294.60 26190.58 16598.96 11690.21 16897.70 24298.23 143
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31196.23 21488.36 19993.57 22094.60 26193.45 8797.77 25990.23 16798.38 18698.03 162
TAMVS90.16 24389.05 25993.49 17496.49 18786.37 16690.34 27892.55 31380.84 31392.99 24494.57 26381.94 27398.20 21573.51 37298.21 20595.90 296
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25294.52 26493.95 8199.49 2893.62 6199.22 8997.51 215
原ACMM192.87 19296.91 15784.22 20597.01 16476.84 34989.64 32394.46 26588.00 19798.70 16281.53 30798.01 22495.70 305
MVS_111021_LR93.66 14893.28 16594.80 11096.25 20990.95 7390.21 28195.43 24787.91 20593.74 21794.40 26692.88 10996.38 33090.39 15698.28 19697.07 239
TEST996.45 19089.46 9390.60 26896.92 17279.09 33190.49 30394.39 26791.31 14298.88 125
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 26896.92 17279.37 32690.49 30394.39 26791.20 14798.88 12588.66 21098.43 18197.72 201
test_896.37 19389.14 10390.51 27196.89 17579.37 32690.42 30594.36 26991.20 14798.82 134
FPMVS84.50 33783.28 34388.16 33096.32 20194.49 2085.76 37485.47 38083.09 28685.20 37194.26 27063.79 37886.58 41063.72 40691.88 38683.40 408
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 24897.13 15780.33 31592.91 24894.24 27191.23 14598.72 15589.99 17597.93 23097.86 185
BH-RMVSNet90.47 23090.44 23490.56 27895.21 27178.65 29989.15 31593.94 28788.21 20092.74 25394.22 27286.38 22597.88 24578.67 33795.39 31795.14 321
pmmvs488.95 27487.70 29192.70 19794.30 29785.60 18787.22 34592.16 32074.62 36289.75 32294.19 27377.97 30296.41 32882.71 29096.36 29396.09 285
Patchmatch-RL test88.81 27788.52 26989.69 30195.33 26979.94 26886.22 36892.71 30878.46 33695.80 12794.18 27466.25 36495.33 35789.22 19698.53 17393.78 359
PHI-MVS94.34 12693.80 14695.95 6195.65 25291.67 6694.82 11997.86 9487.86 20893.04 24394.16 27591.58 13698.78 14690.27 16498.96 12297.41 221
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18497.68 11078.02 33992.79 25194.10 27690.85 15597.96 23884.76 27498.16 20996.54 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DP-MVS Recon92.31 19391.88 20093.60 16597.18 14586.87 15191.10 25497.37 13384.92 26492.08 27894.08 27788.59 18798.20 21583.50 28398.14 21195.73 302
CANet92.38 19191.99 19793.52 17293.82 31183.46 21591.14 25297.00 16589.81 16586.47 36494.04 27887.90 20099.21 8289.50 18598.27 19797.90 179
F-COLMAP92.28 19491.06 22095.95 6197.52 12791.90 6093.53 16497.18 15283.98 27488.70 33994.04 27888.41 19098.55 18380.17 32195.99 30197.39 225
UnsupCasMVSNet_bld88.50 28388.03 28689.90 29695.52 26078.88 29387.39 34394.02 28479.32 32993.06 24194.02 28080.72 28294.27 37375.16 36393.08 37296.54 260
MDTV_nov1_ep1383.88 34089.42 39361.52 41088.74 32587.41 36073.99 36684.96 37694.01 28165.25 37095.53 34878.02 33993.16 369
OpenMVS_ROBcopyleft85.12 1689.52 25989.05 25990.92 26694.58 29281.21 25091.10 25493.41 29677.03 34793.41 22493.99 28283.23 25497.80 25479.93 32594.80 33493.74 361
diffmvspermissive91.74 20491.93 19991.15 25993.06 32278.17 30488.77 32497.51 12786.28 23192.42 26593.96 28388.04 19697.46 27990.69 14996.67 28697.82 191
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CL-MVSNet_self_test90.04 25189.90 24690.47 27995.24 27077.81 30986.60 36292.62 31185.64 24793.25 23593.92 28483.84 24996.06 33979.93 32598.03 22197.53 214
eth_miper_zixun_eth90.72 22290.61 23091.05 26092.04 35076.84 32486.91 35196.67 19185.21 25694.41 19493.92 28479.53 28898.26 21189.76 18097.02 27098.06 156
c3_l91.32 21591.42 21191.00 26492.29 34076.79 32587.52 34296.42 20685.76 24494.72 18993.89 28682.73 26298.16 22090.93 14498.55 17098.04 159
pmmvs587.87 29387.14 30190.07 29193.26 31976.97 32388.89 31992.18 31873.71 36888.36 34493.89 28676.86 31896.73 31980.32 31696.81 28096.51 262
PCF-MVS84.52 1789.12 26687.71 29093.34 17796.06 22485.84 18186.58 36397.31 14268.46 39893.61 21993.89 28687.51 20598.52 18667.85 39798.11 21395.66 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24090.87 7690.97 25792.61 31288.04 20494.61 19093.79 28988.08 19497.81 25389.41 18798.39 18596.50 265
SPE-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29593.73 29093.52 8699.55 1991.81 12199.45 4597.58 209
HY-MVS82.50 1886.81 32085.93 32289.47 30293.63 31377.93 30694.02 14991.58 33075.68 35383.64 38693.64 29177.40 30797.42 28271.70 38392.07 38393.05 374
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27796.48 2495.38 15093.63 29294.89 5997.94 24095.38 2796.92 27695.17 318
LF4IMVS92.72 18092.02 19694.84 10995.65 25291.99 5892.92 18396.60 19485.08 26192.44 26493.62 29386.80 22096.35 33286.81 24098.25 20096.18 282
Test_1112_low_res87.50 30486.58 31290.25 28696.80 16777.75 31087.53 34196.25 21269.73 39486.47 36493.61 29475.67 32397.88 24579.95 32393.20 36895.11 324
MS-PatchMatch88.05 29187.75 28988.95 31293.28 31777.93 30687.88 33592.49 31475.42 35692.57 25993.59 29580.44 28394.24 37581.28 30992.75 37594.69 341
CNLPA91.72 20591.20 21693.26 18096.17 21491.02 7191.14 25295.55 24290.16 16090.87 29693.56 29686.31 22694.40 37179.92 32797.12 26694.37 346
ppachtmachnet_test88.61 28288.64 26888.50 32391.76 35770.99 37384.59 38592.98 30179.30 33092.38 26793.53 29779.57 28797.45 28086.50 25097.17 26597.07 239
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12092.68 8496.20 10993.44 29891.92 12898.78 14689.11 19999.24 8596.92 247
NP-MVS96.82 16587.10 14493.40 299
HQP-MVS92.09 19991.49 21093.88 15396.36 19584.89 19691.37 24597.31 14287.16 22188.81 33393.40 29984.76 24398.60 17686.55 24897.73 23998.14 152
test_yl90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
DCV-MVSNet90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
CMPMVSbinary68.83 2287.28 30885.67 32492.09 22388.77 39885.42 19190.31 27994.38 27570.02 39288.00 34993.30 30173.78 33194.03 37675.96 35996.54 28996.83 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CostFormer83.09 34982.21 35285.73 36189.27 39467.01 38990.35 27786.47 36870.42 39083.52 38893.23 30461.18 38796.85 31577.21 34888.26 40093.34 370
WBMVS84.00 34283.48 34185.56 36392.71 33061.52 41083.82 39389.38 34479.56 32490.74 29993.20 30548.21 40697.28 28975.63 36198.10 21597.88 182
DELS-MVS92.05 20092.16 19191.72 23394.44 29480.13 26187.62 33697.25 14887.34 21992.22 27493.18 30689.54 18298.73 15489.67 18298.20 20796.30 274
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 30087.31 29588.54 32194.71 28874.27 35093.10 17988.20 35286.20 23492.18 27593.04 30773.21 33295.52 34979.32 33285.82 40495.83 298
BH-untuned90.68 22490.90 22190.05 29495.98 23179.57 27890.04 28794.94 26187.91 20594.07 20493.00 30887.76 20197.78 25879.19 33495.17 32492.80 378
hse-mvs292.24 19791.20 21695.38 8596.16 21590.65 7992.52 19892.01 32589.23 17693.95 21092.99 30976.88 31698.69 16491.02 14096.03 29996.81 253
HyFIR lowres test87.19 31285.51 32592.24 21597.12 14980.51 25685.03 38096.06 22166.11 40491.66 28492.98 31070.12 34699.14 9175.29 36295.23 32297.07 239
AUN-MVS90.05 25088.30 27595.32 9096.09 22290.52 8192.42 20692.05 32482.08 30088.45 34392.86 31165.76 36698.69 16488.91 20496.07 29896.75 257
SCA87.43 30587.21 29988.10 33192.01 35171.98 36889.43 30688.11 35482.26 29888.71 33892.83 31278.65 29497.59 27279.61 32993.30 36694.75 338
Patchmatch-test86.10 32486.01 32186.38 35790.63 37574.22 35289.57 30186.69 36685.73 24589.81 31992.83 31265.24 37191.04 39277.82 34395.78 30793.88 358
MVSFormer92.18 19892.23 19092.04 22594.74 28580.06 26397.15 1597.37 13388.98 18288.83 33192.79 31477.02 31399.60 1096.41 996.75 28396.46 268
jason89.17 26588.32 27491.70 23595.73 24780.07 26288.10 33293.22 29871.98 37890.09 31192.79 31478.53 29798.56 18187.43 23297.06 26896.46 268
jason: jason.
PatchmatchNetpermissive85.22 32984.64 32986.98 34589.51 39269.83 38190.52 27087.34 36278.87 33487.22 36192.74 31666.91 35896.53 32281.77 30286.88 40294.58 342
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AdaColmapbinary91.63 20791.36 21392.47 21195.56 25886.36 16792.24 21896.27 21188.88 18689.90 31792.69 31791.65 13598.32 20577.38 34797.64 24692.72 379
thisisatest053088.69 28187.52 29392.20 21696.33 20079.36 28292.81 18784.01 39186.44 22993.67 21892.68 31853.62 40299.25 7989.65 18398.45 18098.00 164
miper_ehance_all_eth90.48 22990.42 23590.69 27491.62 36276.57 32886.83 35496.18 21883.38 27994.06 20592.66 31982.20 26898.04 22789.79 17997.02 27097.45 218
cl2289.02 26988.50 27090.59 27789.76 38676.45 32986.62 36194.03 28282.98 28992.65 25592.49 32072.05 33897.53 27488.93 20297.02 27097.78 195
ADS-MVSNet284.01 34182.20 35389.41 30489.04 39576.37 33187.57 33790.98 33472.71 37684.46 37892.45 32168.08 35296.48 32570.58 39183.97 40695.38 315
ADS-MVSNet82.25 35581.55 35684.34 37689.04 39565.30 39987.57 33785.13 38672.71 37684.46 37892.45 32168.08 35292.33 38670.58 39183.97 40695.38 315
tpm281.46 36280.35 36984.80 37189.90 38565.14 40190.44 27285.36 38165.82 40682.05 39992.44 32357.94 39396.69 32070.71 39088.49 39992.56 380
N_pmnet88.90 27587.25 29893.83 15794.40 29693.81 3984.73 38287.09 36379.36 32893.26 23392.43 32479.29 29091.68 38977.50 34697.22 26396.00 289
alignmvs93.26 16092.85 17494.50 12895.70 24887.45 13693.45 16895.76 23091.58 12695.25 16292.42 32581.96 27298.72 15591.61 12797.87 23497.33 229
CDS-MVSNet89.55 25788.22 28293.53 17095.37 26786.49 16189.26 31293.59 29079.76 32091.15 29392.31 32677.12 31198.38 19977.51 34597.92 23195.71 303
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MGCFI-Net94.44 12094.67 12093.75 15995.56 25885.47 18995.25 10398.24 4091.53 12995.04 17492.21 32794.94 5798.54 18491.56 13197.66 24597.24 233
PLCcopyleft85.34 1590.40 23288.92 26394.85 10896.53 18590.02 8591.58 24196.48 20480.16 31686.14 36692.18 32885.73 23298.25 21276.87 35094.61 33996.30 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
our_test_387.55 30287.59 29287.44 34191.76 35770.48 37483.83 39290.55 33979.79 31992.06 27992.17 32978.63 29695.63 34784.77 27394.73 33596.22 280
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28596.67 694.00 15095.41 24889.94 16291.93 28192.13 33090.12 17398.97 11587.68 22897.48 25397.67 205
PAPM_NR91.03 21890.81 22591.68 23696.73 16881.10 25193.72 16096.35 20988.19 20188.77 33792.12 33185.09 24197.25 29182.40 29793.90 35596.68 258
sasdasda94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
canonicalmvs94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
MSDG90.82 21990.67 22991.26 25394.16 29983.08 22486.63 36096.19 21790.60 15191.94 28091.89 33489.16 18595.75 34680.96 31494.51 34094.95 329
sss87.23 30986.82 30888.46 32593.96 30677.94 30586.84 35392.78 30777.59 34187.61 35791.83 33578.75 29391.92 38877.84 34194.20 34895.52 313
CANet_DTU89.85 25489.17 25791.87 22792.20 34480.02 26690.79 26195.87 22886.02 23882.53 39691.77 33680.01 28598.57 18085.66 26097.70 24297.01 244
patchmatchnet-post91.71 33766.22 36597.59 272
PatchMatch-RL89.18 26488.02 28792.64 20095.90 23692.87 4988.67 32891.06 33280.34 31490.03 31491.67 33883.34 25294.42 37076.35 35594.84 33390.64 394
tpmrst82.85 35382.93 34782.64 38587.65 40258.99 41690.14 28487.90 35775.54 35583.93 38491.63 33966.79 36195.36 35581.21 31181.54 41293.57 368
WTY-MVS86.93 31886.50 31888.24 32894.96 27474.64 34387.19 34692.07 32378.29 33788.32 34591.59 34078.06 30194.27 37374.88 36493.15 37095.80 299
DPM-MVS89.35 26288.40 27292.18 22096.13 22084.20 20686.96 35096.15 22075.40 35787.36 35991.55 34183.30 25398.01 23282.17 30096.62 28794.32 348
EPMVS81.17 36680.37 36883.58 38285.58 41365.08 40290.31 27971.34 41877.31 34585.80 36891.30 34259.38 39192.70 38579.99 32282.34 41192.96 375
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29088.25 12392.05 22196.65 19289.62 16990.08 31291.23 34392.56 11598.60 17686.30 25396.27 29696.90 248
cdsmvs_eth3d_5k23.35 38831.13 3910.00 4060.00 4290.00 4310.00 41795.58 2410.00 4240.00 42591.15 34493.43 890.00 4250.00 4240.00 4230.00 421
lupinMVS88.34 28787.31 29591.45 24494.74 28580.06 26387.23 34492.27 31771.10 38488.83 33191.15 34477.02 31398.53 18586.67 24496.75 28395.76 301
API-MVS91.52 21091.61 20591.26 25394.16 29986.26 17094.66 12494.82 26491.17 13792.13 27791.08 34690.03 17897.06 30579.09 33597.35 26090.45 395
thres600view787.66 29887.10 30489.36 30696.05 22573.17 35792.72 18985.31 38291.89 10893.29 23090.97 34763.42 37998.39 19673.23 37496.99 27596.51 262
thres100view90087.35 30786.89 30788.72 31796.14 21873.09 35993.00 18185.31 38292.13 10193.26 23390.96 34863.42 37998.28 20771.27 38696.54 28994.79 336
tpmvs84.22 33983.97 33784.94 37087.09 40765.18 40091.21 25088.35 34982.87 29085.21 37090.96 34865.24 37196.75 31879.60 33185.25 40592.90 376
xiu_mvs_v1_base_debu91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base_debi91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
1112_ss88.42 28587.41 29491.45 24496.69 17080.99 25289.72 29896.72 18873.37 36987.00 36290.69 35377.38 30898.20 21581.38 30893.72 35895.15 320
ab-mvs-re7.56 39110.08 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42590.69 3530.00 4290.00 4250.00 4240.00 4230.00 421
Effi-MVS+92.79 17792.74 17792.94 18995.10 27283.30 21794.00 15097.53 12491.36 13389.35 32790.65 35594.01 8098.66 16887.40 23395.30 32096.88 251
GA-MVS87.70 29686.82 30890.31 28393.27 31877.22 31884.72 38492.79 30685.11 26089.82 31890.07 35666.80 35997.76 26184.56 27694.27 34695.96 291
EPNet_dtu85.63 32684.37 33289.40 30586.30 41074.33 34991.64 24088.26 35084.84 26672.96 41589.85 35771.27 34297.69 26776.60 35297.62 24796.18 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM81.91 36180.11 37187.31 34293.87 30972.32 36784.02 39093.22 29869.47 39576.13 41389.84 35872.15 33797.23 29253.27 41589.02 39792.37 382
tfpn200view987.05 31686.52 31688.67 31895.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28994.79 336
thres40087.20 31186.52 31689.24 31095.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28996.51 262
TR-MVS87.70 29687.17 30089.27 30894.11 30179.26 28488.69 32691.86 32681.94 30190.69 30189.79 36182.82 26197.42 28272.65 37891.98 38491.14 391
new_pmnet81.22 36481.01 36281.86 38790.92 37270.15 37684.03 38980.25 40870.83 38685.97 36789.78 36267.93 35584.65 41367.44 39891.90 38590.78 393
PAPR87.65 29986.77 31090.27 28592.85 32977.38 31588.56 32996.23 21476.82 35084.98 37589.75 36386.08 22997.16 29972.33 37993.35 36596.26 278
CLD-MVS91.82 20291.41 21293.04 18396.37 19383.65 21486.82 35597.29 14584.65 26892.27 27389.67 36492.20 12397.85 25183.95 28199.47 4197.62 207
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat180.61 37079.46 37384.07 37988.78 39765.06 40389.26 31288.23 35162.27 41181.90 40189.66 36562.70 38495.29 35871.72 38280.60 41391.86 387
pmmvs380.83 36878.96 37686.45 35487.23 40677.48 31484.87 38182.31 39763.83 40985.03 37489.50 36649.66 40493.10 38273.12 37695.10 32588.78 400
miper_enhance_ethall88.42 28587.87 28890.07 29188.67 39975.52 33885.10 37995.59 23975.68 35392.49 26089.45 36778.96 29197.88 24587.86 22697.02 27096.81 253
KD-MVS_2432*160082.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
miper_refine_blended82.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
test_vis1_rt85.58 32784.58 33088.60 32087.97 40186.76 15385.45 37793.59 29066.43 40287.64 35589.20 37079.33 28985.38 41281.59 30589.98 39593.66 363
PVSNet_Blended88.74 27988.16 28590.46 28194.81 28078.80 29786.64 35996.93 17074.67 36188.68 34089.18 37186.27 22798.15 22180.27 31796.00 30094.44 345
dp79.28 37878.62 37881.24 39085.97 41256.45 41786.91 35185.26 38472.97 37481.45 40489.17 37256.01 39895.45 35373.19 37576.68 41491.82 388
ET-MVSNet_ETH3D86.15 32384.27 33491.79 23093.04 32381.28 24787.17 34786.14 37079.57 32383.65 38588.66 37357.10 39498.18 21887.74 22795.40 31695.90 296
testing383.66 34482.52 34987.08 34395.84 23865.84 39889.80 29677.17 41688.17 20290.84 29788.63 37430.95 42498.11 22384.05 28097.19 26497.28 232
xiu_mvs_v2_base89.00 27289.19 25688.46 32594.86 27874.63 34486.97 34995.60 23580.88 31187.83 35288.62 37591.04 15298.81 13982.51 29594.38 34291.93 385
Fast-Effi-MVS+91.28 21690.86 22392.53 20995.45 26382.53 23189.25 31496.52 20285.00 26289.91 31688.55 37692.94 10598.84 13284.72 27595.44 31596.22 280
thres20085.85 32585.18 32687.88 33694.44 29472.52 36589.08 31686.21 36988.57 19391.44 28788.40 37764.22 37498.00 23468.35 39595.88 30593.12 371
BH-w/o87.21 31087.02 30587.79 33894.77 28377.27 31787.90 33493.21 30081.74 30389.99 31588.39 37883.47 25196.93 31171.29 38592.43 38089.15 396
UWE-MVS80.29 37379.10 37483.87 38091.97 35359.56 41486.50 36577.43 41575.40 35787.79 35488.10 37944.08 41496.90 31364.23 40496.36 29395.14 321
MAR-MVS90.32 23988.87 26694.66 11994.82 27991.85 6194.22 14294.75 26880.91 31087.52 35888.07 38086.63 22397.87 24876.67 35196.21 29794.25 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WB-MVSnew84.20 34083.89 33985.16 36991.62 36266.15 39788.44 33181.00 40376.23 35287.98 35087.77 38184.98 24293.35 38162.85 40894.10 35395.98 290
EIA-MVS92.35 19292.03 19593.30 17995.81 24283.97 21092.80 18898.17 5387.71 21289.79 32087.56 38291.17 15099.18 8787.97 22397.27 26196.77 255
baseline283.38 34781.54 35788.90 31391.38 36572.84 36388.78 32381.22 40278.97 33279.82 40887.56 38261.73 38697.80 25474.30 36890.05 39496.05 288
MVS84.98 33284.30 33387.01 34491.03 36977.69 31291.94 22794.16 28059.36 41384.23 38287.50 38485.66 23396.80 31771.79 38193.05 37386.54 405
PS-MVSNAJ88.86 27688.99 26288.48 32494.88 27674.71 34286.69 35895.60 23580.88 31187.83 35287.37 38590.77 15798.82 13482.52 29494.37 34391.93 385
131486.46 32286.33 31986.87 34991.65 36174.54 34591.94 22794.10 28174.28 36484.78 37787.33 38683.03 25795.00 36278.72 33691.16 38991.06 392
thisisatest051584.72 33582.99 34689.90 29692.96 32675.33 34084.36 38783.42 39377.37 34388.27 34686.65 38753.94 40098.72 15582.56 29397.40 25895.67 306
test0.0.03 182.48 35481.47 35885.48 36589.70 38773.57 35684.73 38281.64 39983.07 28788.13 34886.61 38862.86 38289.10 40566.24 40190.29 39393.77 360
IB-MVS77.21 1983.11 34881.05 36089.29 30791.15 36875.85 33585.66 37586.00 37279.70 32182.02 40086.61 38848.26 40598.39 19677.84 34192.22 38193.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVEpermissive59.87 2373.86 38372.65 38677.47 39587.00 40974.35 34861.37 41560.93 42167.27 40069.69 41686.49 39081.24 28072.33 41856.45 41483.45 40885.74 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet76.22 2082.89 35282.37 35184.48 37493.96 30664.38 40578.60 40688.61 34771.50 38184.43 38086.36 39174.27 32894.60 36769.87 39393.69 35994.46 344
ETV-MVS92.99 16992.74 17793.72 16195.86 23786.30 16992.33 21097.84 9791.70 12492.81 24986.17 39292.22 12199.19 8688.03 22297.73 23995.66 307
cascas87.02 31786.28 32089.25 30991.56 36476.45 32984.33 38896.78 18371.01 38586.89 36385.91 39381.35 27696.94 30983.09 28795.60 31094.35 347
testing9183.56 34682.45 35086.91 34892.92 32767.29 38786.33 36688.07 35586.22 23384.26 38185.76 39448.15 40797.17 29776.27 35694.08 35496.27 277
testing9982.94 35181.72 35486.59 35192.55 33466.53 39386.08 37085.70 37585.47 25483.95 38385.70 39545.87 40997.07 30476.58 35393.56 36196.17 284
PMMVS83.00 35081.11 35988.66 31983.81 41886.44 16482.24 39985.65 37661.75 41282.07 39885.64 39679.75 28691.59 39075.99 35893.09 37187.94 402
testing1181.98 36080.52 36786.38 35792.69 33167.13 38885.79 37384.80 38782.16 29981.19 40585.41 39745.24 41096.88 31474.14 36993.24 36795.14 321
CHOSEN 280x42080.04 37577.97 38286.23 35990.13 38374.53 34672.87 41189.59 34366.38 40376.29 41285.32 39856.96 39595.36 35569.49 39494.72 33688.79 399
dmvs_re84.69 33683.94 33886.95 34792.24 34182.93 22789.51 30387.37 36184.38 27285.37 36985.08 39972.44 33586.59 40968.05 39691.03 39191.33 389
test-LLR83.58 34583.17 34484.79 37289.68 38866.86 39183.08 39584.52 38883.07 28782.85 39284.78 40062.86 38293.49 37982.85 28894.86 33194.03 353
test-mter81.21 36580.01 37284.79 37289.68 38866.86 39183.08 39584.52 38873.85 36782.85 39284.78 40043.66 41593.49 37982.85 28894.86 33194.03 353
testing22280.54 37178.53 37986.58 35292.54 33668.60 38486.24 36782.72 39683.78 27882.68 39584.24 40239.25 42295.94 34360.25 40995.09 32695.20 317
ETVMVS79.85 37677.94 38385.59 36292.97 32566.20 39686.13 36980.99 40481.41 30583.52 38883.89 40341.81 42094.98 36556.47 41394.25 34795.61 311
UBG80.28 37478.94 37784.31 37792.86 32861.77 40983.87 39183.31 39577.33 34482.78 39483.72 40447.60 40896.06 33965.47 40393.48 36395.11 324
gm-plane-assit87.08 40859.33 41571.22 38283.58 40597.20 29473.95 370
TESTMET0.1,179.09 37978.04 38182.25 38687.52 40464.03 40683.08 39580.62 40670.28 39180.16 40783.22 40644.13 41390.56 39579.95 32393.36 36492.15 383
E-PMN80.72 36980.86 36380.29 39285.11 41468.77 38372.96 41081.97 39887.76 21183.25 39183.01 40762.22 38589.17 40477.15 34994.31 34582.93 409
EMVS80.35 37280.28 37080.54 39184.73 41669.07 38272.54 41280.73 40587.80 20981.66 40281.73 40862.89 38189.84 39975.79 36094.65 33882.71 410
Syy-MVS84.81 33384.93 32784.42 37591.71 35963.36 40885.89 37181.49 40081.03 30885.13 37281.64 40977.44 30695.00 36285.94 25794.12 35194.91 332
myMVS_eth3d79.62 37778.26 38083.72 38191.71 35961.25 41285.89 37181.49 40081.03 30885.13 37281.64 40932.12 42395.00 36271.17 38994.12 35194.91 332
dmvs_testset78.23 38178.99 37575.94 39691.99 35255.34 41988.86 32078.70 41182.69 29181.64 40379.46 41175.93 32285.74 41148.78 41782.85 41086.76 404
test_method50.44 38548.94 38854.93 39939.68 42512.38 42828.59 41690.09 3406.82 41941.10 42178.41 41254.41 39970.69 41950.12 41651.26 41881.72 412
PVSNet_070.34 2174.58 38272.96 38579.47 39390.63 37566.24 39573.26 40983.40 39463.67 41078.02 41078.35 41372.53 33489.59 40156.68 41260.05 41782.57 411
GG-mvs-BLEND83.24 38485.06 41571.03 37294.99 11665.55 42074.09 41475.51 41444.57 41294.46 36959.57 41187.54 40184.24 407
DeepMVS_CXcopyleft53.83 40070.38 42364.56 40448.52 42433.01 41865.50 41874.21 41556.19 39746.64 42138.45 41970.07 41550.30 416
dongtai53.72 38453.79 38753.51 40179.69 42136.70 42577.18 40732.53 42771.69 37968.63 41760.79 41626.65 42573.11 41730.67 42036.29 41950.73 415
kuosan43.63 38644.25 39041.78 40266.04 42434.37 42675.56 40832.62 42653.25 41750.46 42051.18 41725.28 42649.13 42013.44 42130.41 42041.84 417
tmp_tt37.97 38744.33 38918.88 40311.80 42621.54 42763.51 41445.66 4254.23 42051.34 41950.48 41859.08 39222.11 42244.50 41868.35 41613.00 418
X-MVStestdata90.70 22388.45 27197.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19626.89 41994.56 6999.39 5293.57 6299.05 10698.93 68
testmvs9.02 39011.42 3931.81 4052.77 4281.13 43079.44 4051.90 4281.18 4232.65 4246.80 4201.95 4280.87 4242.62 4233.45 4223.44 420
test1239.49 38912.01 3921.91 4042.87 4271.30 42982.38 3981.34 4291.36 4222.84 4236.56 4212.45 4270.97 4232.73 4225.56 4213.47 419
test_post6.07 42265.74 36795.84 345
test_post190.21 2815.85 42365.36 36996.00 34179.61 329
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.56 39110.09 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42490.77 1570.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS61.25 41274.55 365
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
No_MVS95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
eth-test20.00 429
eth-test0.00 429
IU-MVS98.51 4986.66 15896.83 18072.74 37595.83 12693.00 9199.29 7598.64 111
save fliter97.46 13288.05 12792.04 22297.08 16087.63 215
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7299.31 7098.53 121
GSMVS94.75 338
test_part298.21 7689.41 9696.72 83
sam_mvs166.64 36294.75 338
sam_mvs66.41 363
MTGPAbinary97.62 114
MTMP94.82 11954.62 423
test9_res88.16 21798.40 18297.83 189
agg_prior287.06 23998.36 19197.98 168
agg_prior96.20 21288.89 10896.88 17690.21 31098.78 146
test_prior489.91 8690.74 263
test_prior94.61 12095.95 23387.23 14097.36 13898.68 16697.93 175
旧先验290.00 28968.65 39792.71 25496.52 32385.15 265
新几何290.02 288
无先验89.94 29095.75 23170.81 38798.59 17881.17 31294.81 334
原ACMM289.34 309
testdata298.03 22880.24 319
segment_acmp92.14 124
testdata188.96 31888.44 196
test1294.43 13395.95 23386.75 15496.24 21389.76 32189.79 18098.79 14397.95 22997.75 199
plane_prior797.71 11488.68 111
plane_prior697.21 14488.23 12486.93 217
plane_prior597.81 10098.95 11889.26 19498.51 17698.60 116
plane_prior388.43 12290.35 15893.31 228
plane_prior294.56 13091.74 121
plane_prior197.38 134
plane_prior88.12 12593.01 18088.98 18298.06 218
n20.00 430
nn0.00 430
door-mid92.13 322
test1196.65 192
door91.26 331
HQP5-MVS84.89 196
HQP-NCC96.36 19591.37 24587.16 22188.81 333
ACMP_Plane96.36 19591.37 24587.16 22188.81 333
BP-MVS86.55 248
HQP4-MVS88.81 33398.61 17498.15 151
HQP3-MVS97.31 14297.73 239
HQP2-MVS84.76 243
MDTV_nov1_ep13_2view42.48 42488.45 33067.22 40183.56 38766.80 35972.86 37794.06 352
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163