This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
mmdepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
test_blank8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas16.61 39122.14 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 199.28 680.00 4250.00 4240.00 4230.00 421
sosnet-low-res8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
sosnet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
Regformer8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3499.87 3199.99 16100.00 1
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3499.75 41100.00 199.84 39
MVS-HIRNet97.86 31798.22 28896.76 38899.28 31391.53 41598.38 32292.60 41899.13 20099.31 26999.96 1597.18 27899.68 36398.34 19599.83 17299.07 332
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28199.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 7999.95 1299.98 4199.94 16
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16399.65 5099.97 5599.69 88
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24099.79 1299.97 19100.00 199.43 23499.94 1999.64 2899.94 7999.83 3399.99 1699.98 4
gg-mvs-nofinetune95.87 37495.17 37997.97 36098.19 41096.95 36099.69 4289.23 42399.89 3796.24 41199.94 1981.19 40599.51 40293.99 40098.20 39097.44 409
test_f99.75 3499.88 799.37 22699.96 798.21 30699.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 7999.97 499.99 1699.97 9
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 5999.70 8999.92 4399.93 2199.45 4999.97 3499.36 89100.00 199.85 37
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 5999.80 6899.93 3899.93 2198.54 17099.93 9799.59 5599.98 4199.76 68
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 5999.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8499.73 7899.97 2099.92 2599.77 1999.98 2199.43 76100.00 199.90 24
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19698.93 15499.95 8199.60 159
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21499.98 1299.99 399.98 1399.91 2899.68 2699.93 9799.93 1999.99 1699.99 2
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 206100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
test_fmvs299.72 3899.85 1799.34 23399.91 3098.08 32099.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13799.91 2899.15 8399.97 3499.50 70100.00 199.90 24
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7299.84 5599.94 3599.91 2899.13 8899.96 5599.83 3399.99 1699.83 43
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22499.98 1299.99 399.98 1399.90 3399.88 899.92 12399.93 1999.99 1699.98 4
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 11999.82 6299.90 4999.90 3397.97 23399.86 22999.42 8199.96 6899.80 50
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33699.65 10599.89 5399.90 3396.20 31099.94 7999.42 8199.92 10599.67 102
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16499.71 13199.27 17299.93 3899.90 3399.70 2499.93 9798.99 14299.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ttmdpeth99.48 9199.55 7999.29 24899.76 11798.16 31199.33 13299.95 3099.79 7099.36 25399.89 3899.13 8899.77 32399.09 13499.64 26199.93 18
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8199.96 6899.65 119
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9099.97 1699.89 5399.89 3899.53 4599.99 899.36 8999.96 6899.65 119
test_cas_vis1_n_192099.76 3399.86 1399.45 19899.93 2498.40 29499.30 14399.98 1299.94 2399.99 799.89 3899.80 1599.97 3499.96 999.97 5599.97 9
test_fmvs1_n99.68 4799.81 2599.28 25199.95 1597.93 32999.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19699.98 1100.00 199.98 4
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13199.93 2599.95 3299.89 3899.71 2299.96 5599.51 6899.97 5599.84 39
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21099.59 5599.74 22399.71 79
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 9999.78 7299.93 3899.89 3897.94 23499.92 12399.65 5099.98 4199.62 145
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 23899.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_vis1_n99.68 4799.79 2999.36 23099.94 1898.18 30999.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5599.97 499.96 6899.95 13
Anonymous2024052199.44 10699.42 10299.49 18699.89 3898.96 24799.62 6499.76 10499.85 5299.82 8299.88 4796.39 30399.97 3499.59 5599.98 4199.55 181
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26699.86 5499.68 9499.65 15999.88 4797.67 25399.87 21099.03 13999.86 15599.76 68
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41099.78 7299.88 6299.88 4793.66 34099.97 3499.61 5399.95 8199.64 129
MVStest198.22 30498.09 29998.62 33099.04 35896.23 37699.20 17499.92 3499.44 14699.98 1399.87 5285.87 39999.67 36899.91 2499.57 28399.95 13
test111197.74 32298.16 29596.49 39399.60 18589.86 42399.71 3491.21 41999.89 3799.88 6299.87 5293.73 33999.90 16399.56 6099.99 1699.70 82
new-patchmatchnet99.35 13299.57 7398.71 32899.82 7296.62 36798.55 30399.75 10999.50 13199.88 6299.87 5299.31 6499.88 19699.43 76100.00 199.62 145
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21099.54 6399.92 10599.63 134
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 10999.60 12299.92 4399.87 5298.75 14199.86 22999.90 2599.99 1699.73 73
JIA-IIPM98.06 31297.92 31598.50 33798.59 39897.02 35998.80 27498.51 36999.88 4297.89 38499.87 5291.89 35799.90 16398.16 21497.68 40498.59 378
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6499.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSMamba_PlusPlus99.55 7799.58 6999.47 19299.68 16499.40 17599.52 8999.70 13699.92 2899.77 11199.86 5998.28 20599.96 5599.54 6399.90 11699.05 334
test250694.73 38394.59 38495.15 39999.59 19085.90 42599.75 2274.01 42799.89 3799.71 13799.86 5979.00 41699.90 16399.52 6799.99 1699.65 119
ECVR-MVScopyleft97.73 32398.04 30296.78 38799.59 19090.81 41999.72 3090.43 42199.89 3799.86 7199.86 5993.60 34199.89 18299.46 7399.99 1699.65 119
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 281
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25099.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9099.83 6099.88 6299.85 6398.42 18999.90 16399.60 5499.73 22899.49 216
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10499.64 10799.93 3899.85 6398.66 15499.84 26299.88 2999.99 1699.71 79
EU-MVSNet99.39 12299.62 5798.72 32699.88 4396.44 37099.56 8499.85 5999.90 3199.90 4999.85 6398.09 22399.83 27799.58 5899.95 8199.90 24
DSMNet-mixed99.48 9199.65 5298.95 29899.71 14497.27 35299.50 9699.82 7299.59 12499.41 24399.85 6399.62 33100.00 199.53 6699.89 12699.59 166
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9098.77 24899.80 9399.85 6399.64 2899.85 24798.70 17499.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23399.96 2599.99 399.97 2099.84 6999.58 3899.93 9799.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23399.96 2599.99 399.97 2099.84 6999.78 1799.92 12399.92 2199.99 1699.92 22
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18699.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7299.39 15799.82 8299.84 6999.38 5699.91 14599.38 8599.93 10199.80 50
EGC-MVSNET89.05 38685.52 38999.64 13299.89 3899.78 5199.56 8499.52 24524.19 42149.96 42299.83 7399.15 8399.92 12397.71 25599.85 15999.21 290
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9699.90 3199.82 8299.83 7398.45 18599.87 21099.51 6899.97 5599.86 34
lessismore_v099.64 13299.86 5399.38 18090.66 42099.89 5399.83 7394.56 33099.97 3499.56 6099.92 10599.57 176
GBi-Net99.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
test199.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13699.67 9899.82 8299.83 7398.98 11199.90 16399.24 10899.97 5599.53 194
TAMVS99.49 8999.45 9599.63 13999.48 25099.42 16899.45 10999.57 21499.66 10299.78 10399.83 7397.85 24199.86 22999.44 7599.96 6899.61 155
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18699.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_vis1_n_192099.72 3899.88 799.27 25499.93 2497.84 33299.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
mvsany_test199.44 10699.45 9599.40 21799.37 28298.64 27997.90 36999.59 20399.27 17299.92 4399.82 8099.74 2099.93 9799.55 6299.87 14799.63 134
RRT-MVS99.08 20099.00 20299.33 23699.27 31598.65 27799.62 6499.93 3299.66 10299.67 15299.82 8095.27 32399.93 9798.64 18099.09 34599.41 244
SD-MVS99.01 21999.30 13098.15 35499.50 24099.40 17598.94 25599.61 18699.22 18499.75 11999.82 8099.54 4395.51 42197.48 27799.87 14799.54 189
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ab-mvs99.33 14099.28 13799.47 19299.57 20599.39 17899.78 1499.43 27398.87 23199.57 19099.82 8098.06 22699.87 21098.69 17699.73 22899.15 305
PMVScopyleft92.94 2198.82 24598.81 23698.85 31499.84 6197.99 32399.20 17499.47 26299.71 8499.42 23799.82 8098.09 22399.47 40493.88 40199.85 15999.07 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_fmvs199.48 9199.65 5298.97 29599.54 22197.16 35599.11 21199.98 1299.78 7299.96 2499.81 8798.72 14699.97 3499.95 1299.97 5599.79 57
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14399.85 5299.80 9399.81 8798.81 12999.91 14599.47 7299.88 13599.70 82
UGNet99.38 12499.34 11899.49 18698.90 37098.90 25599.70 3599.35 29599.86 4698.57 35699.81 8798.50 18099.93 9799.38 8599.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
FE-MVS97.85 31897.42 33299.15 27299.44 26598.75 26699.77 1698.20 38495.85 38699.33 26199.80 9088.86 38599.88 19696.40 34599.12 34298.81 365
FA-MVS(test-final)98.52 27598.32 28099.10 28099.48 25098.67 27199.77 1698.60 36697.35 35699.63 16499.80 9093.07 34699.84 26297.92 23299.30 32898.78 368
ambc99.20 26699.35 28898.53 28599.17 18699.46 26599.67 15299.80 9098.46 18499.70 34597.92 23299.70 23999.38 250
VDDNet98.97 22598.82 23599.42 20899.71 14498.81 26099.62 6498.68 35999.81 6599.38 25199.80 9094.25 33299.85 24798.79 16499.32 32699.59 166
mvs_anonymous99.28 14699.39 10698.94 29999.19 33197.81 33499.02 23699.55 22599.78 7299.85 7499.80 9098.24 20999.86 22999.57 5999.50 30299.15 305
QAPM98.40 28997.99 30599.65 12599.39 27799.47 15099.67 5099.52 24591.70 40998.78 33899.80 9098.55 16899.95 6494.71 39099.75 21699.53 194
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27799.42 16899.70 3599.56 21999.23 18099.35 25599.80 9099.17 8199.95 6498.21 20699.84 16499.59 166
CMPMVSbinary77.52 2398.50 27898.19 29399.41 21598.33 40799.56 13799.01 23899.59 20395.44 39199.57 19099.80 9095.64 31699.46 40696.47 34299.92 10599.21 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20699.68 14699.49 13399.80 9399.79 10099.01 10699.93 9798.24 20399.82 18199.73 73
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8199.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 29999.86 34
MonoMVSNet98.23 30298.32 28097.99 35898.97 36696.62 36799.49 10098.42 37499.62 11299.40 24899.79 10095.51 32098.58 41797.68 26695.98 41598.76 371
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 22999.04 23099.87 5199.71 8499.47 22499.79 10098.24 20999.98 2199.38 8599.96 6899.83 43
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 10999.86 4699.74 12799.79 10098.27 20799.85 24799.37 8899.93 10199.83 43
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30299.76 6399.34 12999.97 1998.93 22399.91 4699.79 10098.68 14999.93 9796.80 32199.56 28499.30 272
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 27899.88 4998.66 25999.96 2499.79 10097.45 26399.93 9799.34 9399.99 1699.78 59
CR-MVSNet98.35 29498.20 29098.83 31899.05 35598.12 31399.30 14399.67 15197.39 35499.16 29399.79 10091.87 35899.91 14598.78 16898.77 36698.44 389
Patchmtry98.78 24898.54 26099.49 18698.89 37399.19 22199.32 13599.67 15199.65 10599.72 13299.79 10091.87 35899.95 6498.00 22699.97 5599.33 263
wuyk23d97.58 33099.13 15892.93 40099.69 15699.49 14799.52 8999.77 9997.97 32299.96 2499.79 10099.84 1299.94 7995.85 36999.82 18179.36 418
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28699.47 13899.76 11499.78 11098.13 22199.86 22998.70 17499.68 24899.49 216
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13199.72 8299.84 7799.78 11098.67 15299.97 3499.30 10199.95 8199.80 50
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15799.76 10499.32 16699.80 9399.78 11099.29 6699.87 21099.15 12499.91 11599.66 111
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7298.33 30199.50 21999.78 11097.90 23699.65 37996.78 32299.83 17299.44 234
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 28899.47 15099.62 6499.50 25499.44 14699.12 30099.78 11098.77 13899.94 7997.87 23999.72 23499.62 145
Gipumacopyleft99.57 7199.59 6699.49 18699.98 399.71 8599.72 3099.84 6599.81 6599.94 3599.78 11098.91 12199.71 34298.41 19099.95 8199.05 334
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9699.53 12899.67 15299.78 11099.19 7999.86 22997.32 28699.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC98.96 22898.93 21899.05 28999.54 22197.99 32397.07 40399.80 8498.21 30899.75 11999.77 11998.43 18799.64 38197.90 23499.88 13599.51 206
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32099.48 13499.56 19799.77 11994.89 32599.93 9798.72 17399.89 12699.63 134
OpenMVScopyleft98.12 1098.23 30297.89 31899.26 25799.19 33199.26 20599.65 5999.69 14391.33 41098.14 37699.77 11998.28 20599.96 5595.41 37999.55 28898.58 380
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 25999.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9399.96 6899.78 59
PatchT98.45 28498.32 28098.83 31898.94 36898.29 30199.24 16498.82 35299.84 5599.08 30499.76 12291.37 36199.94 7998.82 16099.00 35298.26 395
MIMVSNet98.43 28598.20 29099.11 27899.53 22798.38 29899.58 7998.61 36498.96 21799.33 26199.76 12290.92 36899.81 30297.38 28399.76 21499.15 305
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15099.61 18699.87 4399.74 12799.76 12298.69 14899.87 21098.20 20799.80 19899.75 71
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13599.77 9999.53 12899.77 11199.76 12299.26 7299.78 31597.77 24799.88 13599.60 159
reproduce_monomvs97.40 33697.46 33097.20 38399.05 35591.91 41199.20 17499.18 33199.84 5599.86 7199.75 12780.67 40699.83 27799.69 4599.95 8199.85 37
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13599.74 11599.18 18799.69 14499.75 12798.41 19099.84 26297.85 24299.70 23999.10 316
v124099.56 7499.58 6999.51 18299.80 8699.00 24199.00 24199.65 16699.15 19899.90 4999.75 12799.09 9299.88 19699.90 2599.96 6899.67 102
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9299.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RPMNet98.60 26598.53 26198.83 31899.05 35598.12 31399.30 14399.62 17999.86 4699.16 29399.74 13192.53 35299.92 12398.75 17098.77 36698.44 389
FMVSNet299.35 13299.28 13799.55 17199.49 24599.35 19099.45 10999.57 21499.44 14699.70 14199.74 13197.21 27499.87 21099.03 13999.94 9499.44 234
IterMVS98.97 22599.16 15298.42 34199.74 13595.64 38698.06 35199.83 6799.83 6099.85 7499.74 13196.10 31299.99 899.27 107100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft97.31 1797.36 33996.84 34998.89 31299.29 31099.45 15998.87 26099.48 25986.54 41599.44 23099.74 13197.34 26999.86 22991.61 40599.28 33197.37 411
IterMVS-SCA-FT99.00 22199.16 15298.51 33699.75 12995.90 38298.07 34999.84 6599.84 5599.89 5399.73 13596.01 31399.99 899.33 96100.00 199.63 134
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25399.53 24098.27 30599.53 20999.73 13598.75 14199.87 21097.70 25899.83 17299.68 94
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21499.61 18699.20 18599.84 7799.73 13598.67 15299.84 26299.86 3299.98 4199.64 129
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25399.86 5498.85 23499.81 8999.73 13598.40 19499.92 12398.36 19399.83 17299.17 301
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 11999.70 8999.84 7799.73 13598.56 16799.96 5599.29 10499.94 9499.83 43
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15099.90 4399.71 8499.79 9999.73 13599.54 4399.84 26299.36 8999.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20299.90 3698.66 27498.94 25599.91 3897.97 32299.79 9999.73 13599.05 10299.97 3499.15 12499.99 1699.68 94
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8199.82 6299.71 13799.72 14296.60 29399.98 2199.75 4199.23 33999.82 49
Patchmatch-RL test98.60 26598.36 27599.33 23699.77 11399.07 23798.27 32999.87 5198.91 22699.74 12799.72 14290.57 37599.79 31298.55 18499.85 15999.11 314
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21199.62 17999.18 18799.89 5399.72 14298.66 15499.87 21099.88 2999.97 5599.66 111
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23099.60 19799.18 18799.87 7099.72 14299.08 9599.85 24799.89 2899.98 4199.66 111
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20699.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
TestCases99.63 13999.78 10599.64 11299.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20299.85 5999.79 7099.76 11499.72 14299.33 6399.82 28799.21 11299.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20299.65 16698.99 21399.64 16099.72 14299.39 5299.86 22998.23 20499.81 19199.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
balanced_conf0399.50 8599.50 8699.50 18499.42 27399.49 14799.52 8999.75 10999.86 4699.78 10399.71 15098.20 21699.90 16399.39 8499.88 13599.10 316
v192192099.56 7499.57 7399.55 17199.75 12999.11 22999.05 22599.61 18699.15 19899.88 6299.71 15099.08 9599.87 21099.90 2599.97 5599.66 111
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14398.99 21399.75 11999.71 15098.79 13499.93 9798.46 18899.85 15999.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 11999.62 11299.84 7799.71 15098.62 15899.96 5599.30 10199.96 6899.86 34
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26699.72 12898.36 29199.60 18299.71 15098.92 11999.91 14597.08 30599.84 16499.40 246
PVSNet_BlendedMVS99.03 21199.01 19899.09 28199.54 22197.99 32398.58 29799.82 7297.62 34199.34 25999.71 15098.52 17799.77 32397.98 22799.97 5599.52 204
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33599.37 15999.61 17999.71 15094.73 32899.81 30297.70 25899.88 13599.58 171
LS3D99.24 15699.11 16599.61 15198.38 40599.79 4899.57 8299.68 14699.61 11699.15 29599.71 15098.70 14799.91 14597.54 27399.68 24899.13 313
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15799.35 29598.77 24899.57 19099.70 15899.27 7199.88 19697.71 25599.75 21699.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20399.24 17899.86 7199.70 15898.55 16899.82 28799.79 3999.95 8199.60 159
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28699.80 8697.83 33398.89 25899.72 12899.29 16899.63 16499.70 15896.47 29899.89 18298.17 21399.82 18199.50 211
mvsmamba99.08 20098.95 21699.45 19899.36 28599.18 22399.39 11798.81 35399.37 15999.35 25599.70 15896.36 30599.94 7998.66 17899.59 27999.22 287
CDS-MVSNet99.22 16599.13 15899.50 18499.35 28899.11 22998.96 25299.54 23199.46 14199.61 17999.70 15896.31 30699.83 27799.34 9399.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32499.75 6997.25 39799.47 26298.72 25399.66 15799.70 15899.29 6699.63 38298.07 22199.81 19199.62 145
TinyColmap98.97 22598.93 21899.07 28699.46 26098.19 30797.75 37499.75 10998.79 24499.54 20499.70 15898.97 11399.62 38396.63 33399.83 17299.41 244
D2MVS99.22 16599.19 14999.29 24899.69 15698.74 26798.81 27199.41 27698.55 27099.68 14799.69 16598.13 22199.87 21098.82 16099.98 4199.24 281
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28299.60 19798.55 27099.76 11499.69 16598.23 21399.92 12396.39 34699.75 21699.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9699.71 8499.90 4999.69 16598.85 12799.90 16397.25 29799.78 20899.15 305
tmp_tt95.75 37795.42 37196.76 38889.90 42694.42 39898.86 26197.87 39278.01 41799.30 27499.69 16597.70 24995.89 41999.29 10498.14 39599.95 13
VDD-MVS99.20 17299.11 16599.44 20299.43 26898.98 24399.50 9698.32 38199.80 6899.56 19799.69 16596.99 28499.85 24798.99 14299.73 22899.50 211
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 10999.58 12599.85 7499.69 16598.18 21999.94 7999.28 10699.95 8199.83 43
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19299.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8499.71 8499.72 13299.69 16599.15 8399.83 27799.32 9899.94 9499.53 194
FMVSNet597.80 32097.25 33799.42 20898.83 37998.97 24599.38 12099.80 8498.87 23199.25 27899.69 16580.60 40899.91 14598.96 14899.90 11699.38 250
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16698.07 31699.52 21199.69 16598.57 16599.92 12397.18 30299.79 20399.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVP-Stereo99.16 18599.08 17699.43 20699.48 25099.07 23799.08 22199.55 22598.63 26299.31 26999.68 17698.19 21799.78 31598.18 21199.58 28199.45 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13699.93 2599.78 10399.68 17699.10 9099.78 31599.45 7499.96 6899.83 43
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37099.74 11598.36 29199.66 15799.68 17699.71 2299.90 16396.84 31999.88 13599.43 240
N_pmnet98.73 25498.53 26199.35 23299.72 14198.67 27198.34 32494.65 41198.35 29699.79 9999.68 17698.03 22799.93 9798.28 19999.92 10599.44 234
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20699.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
EI-MVSNet99.38 12499.44 9899.21 26499.58 19598.09 31799.26 15799.46 26599.62 11299.75 11999.67 18098.54 17099.85 24799.15 12499.92 10599.68 94
CVMVSNet98.61 26298.88 22797.80 36799.58 19593.60 40499.26 15799.64 17499.66 10299.72 13299.67 18093.26 34399.93 9799.30 10199.81 19199.87 32
MVS_Test99.28 14699.31 12599.19 26799.35 28898.79 26399.36 12799.49 25899.17 19299.21 28799.67 18098.78 13699.66 37399.09 13499.66 25799.10 316
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18199.60 19798.55 27099.57 19099.67 18099.03 10599.94 7997.01 30799.80 19899.69 88
Skip Steuart: Steuart Systems R&D Blog.
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27199.66 15699.42 15699.75 11999.66 18599.20 7899.76 32698.98 14499.99 1699.36 256
EI-MVSNet-UG-set99.48 9199.50 8699.42 20899.57 20598.65 27799.24 16499.46 26599.68 9499.80 9399.66 18598.99 10999.89 18299.19 11699.90 11699.72 76
YYNet198.95 23198.99 20998.84 31699.64 17697.14 35798.22 33499.32 30098.92 22599.59 18599.66 18597.40 26599.83 27798.27 20099.90 11699.55 181
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31499.64 17697.16 35598.23 33399.33 29898.93 22399.56 19799.66 18597.39 26799.83 27798.29 19899.88 13599.55 181
MVSTER98.47 28298.22 28899.24 26299.06 35498.35 30099.08 22199.46 26599.27 17299.75 11999.66 18588.61 38699.85 24799.14 13099.92 10599.52 204
test072699.69 15699.80 4699.24 16499.57 21499.16 19499.73 13199.65 19098.35 198
EI-MVSNet-Vis-set99.47 9999.49 8899.42 20899.57 20598.66 27499.24 16499.46 26599.67 9899.79 9999.65 19098.97 11399.89 18299.15 12499.89 12699.71 79
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21199.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.41 19099.91 14597.27 29199.61 27299.54 189
RE-MVS-def99.13 15899.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.57 16597.27 29199.61 27299.54 189
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26099.73 7899.13 20299.52 24597.40 35399.57 19099.64 19298.93 11699.83 27797.61 26999.79 20399.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15599.61 18699.19 18699.57 19099.64 19298.76 13999.90 16397.29 28899.62 26599.56 178
ADS-MVSNet297.78 32197.66 32898.12 35699.14 33895.36 38999.22 17198.75 35696.97 36998.25 36899.64 19290.90 36999.94 7996.51 33899.56 28499.08 327
ADS-MVSNet97.72 32697.67 32797.86 36599.14 33894.65 39799.22 17198.86 34996.97 36998.25 36899.64 19290.90 36999.84 26296.51 33899.56 28499.08 327
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18699.54 12699.80 9399.64 19297.79 24599.95 6499.21 11299.94 9499.84 39
FMVSNet398.80 24798.63 24999.32 24199.13 34098.72 26899.10 21499.48 25999.23 18099.62 17399.64 19292.57 35099.86 22998.96 14899.90 11699.39 248
IterMVS-LS99.41 11699.47 8999.25 26099.81 8098.09 31798.85 26399.76 10499.62 11299.83 8199.64 19298.54 17099.97 3499.15 12499.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31399.22 21598.99 24699.40 28399.08 20599.58 18799.64 19298.90 12499.83 27797.44 27999.75 21699.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17499.54 23199.13 20099.82 8299.63 20398.91 12199.92 12397.85 24299.70 23999.58 171
test_241102_TWO99.54 23199.13 20099.76 11499.63 20398.32 20399.92 12397.85 24299.69 24399.75 71
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29799.48 25998.50 27799.52 21199.63 20399.14 8699.76 32697.89 23599.77 21299.51 206
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13299.53 24099.27 17299.42 23799.63 20398.21 21499.95 6497.83 24699.79 20399.65 119
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24099.62 11999.01 23899.57 21496.80 37599.54 20499.63 20398.29 20499.91 14595.24 38299.71 23799.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.52 27598.39 27298.94 29999.15 33797.39 35098.18 33599.21 32798.89 23099.23 28299.63 20397.37 26899.74 33394.22 39599.61 27299.69 88
FPMVS96.32 36295.50 37098.79 32299.60 18598.17 31098.46 31898.80 35497.16 36596.28 40999.63 20382.19 40499.09 41188.45 41198.89 36299.10 316
our_test_398.85 24399.09 17498.13 35599.66 17194.90 39697.72 37599.58 21299.07 20799.64 16099.62 21098.19 21799.93 9798.41 19099.95 8199.55 181
ppachtmachnet_test98.89 23999.12 16298.20 35399.66 17195.24 39297.63 37999.68 14699.08 20599.78 10399.62 21098.65 15699.88 19698.02 22299.96 6899.48 220
pmmvs599.19 17599.11 16599.42 20899.76 11798.88 25698.55 30399.73 11998.82 23999.72 13299.62 21096.56 29499.82 28799.32 9899.95 8199.56 178
patchmatchnet-post99.62 21090.58 37499.94 79
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19699.58 21299.25 17699.81 8999.62 21098.24 20999.84 26299.83 3399.97 5599.64 129
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23699.89 4599.60 12299.82 8299.62 21098.81 12999.89 18299.43 7699.86 15599.47 224
TSAR-MVS + GP.99.12 19399.04 19299.38 22399.34 29799.16 22498.15 33899.29 30898.18 31199.63 16499.62 21099.18 8099.68 36398.20 20799.74 22399.30 272
EPNet98.13 30897.77 32399.18 26994.57 42497.99 32399.24 16497.96 38899.74 7797.29 39799.62 21093.13 34599.97 3498.59 18299.83 17299.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS98.90 23698.72 24299.44 20299.39 27799.42 16898.58 29799.64 17497.31 35899.44 23099.62 21098.59 16299.69 35196.17 35699.79 20399.22 287
DVP-MVS++99.38 12499.25 14399.77 5999.03 35999.77 5699.74 2499.61 18699.18 18799.76 11499.61 21999.00 10799.92 12397.72 25399.60 27599.62 145
test_one_060199.63 17899.76 6399.55 22599.23 18099.31 26999.61 21998.59 162
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20299.65 16697.97 32299.42 23799.61 21998.86 12699.87 21096.45 34499.68 24899.49 216
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19699.31 30499.16 19499.62 17399.61 21998.35 19899.91 14597.88 23699.72 23499.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 18799.62 17399.61 21998.58 16499.91 14597.72 25399.80 19899.77 63
v14899.40 11899.41 10499.39 22099.76 11798.94 24999.09 21899.59 20399.17 19299.81 8999.61 21998.41 19099.69 35199.32 9899.94 9499.53 194
DELS-MVS99.34 13799.30 13099.48 19099.51 23499.36 18798.12 34299.53 24099.36 16299.41 24399.61 21999.22 7699.87 21099.21 11299.68 24899.20 294
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MDTV_nov1_ep1397.73 32498.70 39590.83 41899.15 19498.02 38798.51 27698.82 33199.61 21990.98 36799.66 37396.89 31598.92 357
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35899.72 8299.91 4699.60 22799.43 5099.81 30299.81 3899.53 29599.73 73
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19299.72 12897.99 32099.42 23799.60 22798.81 12999.93 9796.91 31399.74 22399.66 111
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 34999.83 6798.64 26199.89 5399.60 22792.57 350100.00 199.33 9699.97 5599.72 76
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 5998.79 24499.41 24399.60 22798.92 11999.92 12398.02 22299.92 10599.43 240
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 25999.66 15697.11 36899.47 22499.60 22799.07 9799.89 18296.18 35599.85 15999.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MM99.18 17999.05 18699.55 17199.35 28898.81 26099.05 22597.79 39399.99 399.48 22299.59 23296.29 30899.95 6499.94 1699.98 4199.88 28
dp96.86 34897.07 34196.24 39698.68 39690.30 42299.19 18098.38 37897.35 35698.23 37099.59 23287.23 38999.82 28796.27 35198.73 37398.59 378
EPMVS96.53 35696.32 35497.17 38598.18 41192.97 40799.39 11789.95 42298.21 30898.61 35199.59 23286.69 39799.72 33896.99 30899.23 33998.81 365
SR-MVS99.19 17599.00 20299.74 8199.51 23499.72 8399.18 18199.60 19798.85 23499.47 22499.58 23598.38 19599.92 12396.92 31299.54 29399.57 176
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29099.63 17696.84 37399.44 23099.58 23598.81 12999.91 14597.70 25899.82 18199.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 22198.97 21399.09 28199.11 34798.19 30798.76 28099.33 29898.49 27999.44 23099.58 23598.21 21499.69 35198.20 20799.62 26599.39 248
LFMVS98.46 28398.19 29399.26 25799.24 32198.52 28799.62 6496.94 40299.87 4399.31 26999.58 23591.04 36699.81 30298.68 17799.42 31399.45 229
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13699.81 6599.69 14499.58 23597.66 25799.86 22999.17 12199.44 30999.67 102
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24298.09 34699.90 4398.95 21999.78 10399.58 23599.57 4099.93 9799.48 7199.95 8199.79 57
PatchmatchNetpermissive97.65 32797.80 32097.18 38498.82 38292.49 40899.17 18698.39 37798.12 31298.79 33699.58 23590.71 37399.89 18297.23 29899.41 31499.16 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS_030498.61 26298.30 28399.52 17997.88 41698.95 24898.76 28094.11 41599.84 5599.32 26499.57 24295.57 31999.95 6499.68 4799.98 4199.68 94
SCA98.11 30998.36 27597.36 37899.20 32992.99 40698.17 33798.49 37198.24 30699.10 30399.57 24296.01 31399.94 7996.86 31699.62 26599.14 310
Patchmatch-test98.10 31097.98 30798.48 33899.27 31596.48 36999.40 11599.07 34098.81 24199.23 28299.57 24290.11 37999.87 21096.69 32699.64 26199.09 321
VNet99.18 17999.06 18299.56 16899.24 32199.36 18799.33 13299.31 30499.67 9899.47 22499.57 24296.48 29799.84 26299.15 12499.30 32899.47 224
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7299.46 14199.75 11999.56 24699.63 3099.95 6499.43 7699.88 13599.62 145
9.1498.64 24799.45 26498.81 27199.60 19797.52 34799.28 27599.56 24698.53 17499.83 27795.36 38199.64 261
MSLP-MVS++99.05 20799.09 17498.91 30599.21 32698.36 29998.82 27099.47 26298.85 23498.90 32299.56 24698.78 13699.09 41198.57 18399.68 24899.26 278
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14399.63 17699.61 11699.71 13799.56 24698.76 13999.96 5599.14 13099.92 10599.68 94
114514_t98.49 28098.11 29899.64 13299.73 13899.58 13499.24 16499.76 10489.94 41299.42 23799.56 24697.76 24899.86 22997.74 25299.82 18199.47 224
Vis-MVSNet (Re-imp)98.77 24998.58 25599.34 23399.78 10598.88 25699.61 7099.56 21999.11 20499.24 28199.56 24693.00 34899.78 31597.43 28099.89 12699.35 259
test_040299.22 16599.14 15699.45 19899.79 9899.43 16599.28 15299.68 14699.54 12699.40 24899.56 24699.07 9799.82 28796.01 36099.96 6899.11 314
tpmvs97.39 33797.69 32596.52 39298.41 40491.76 41299.30 14398.94 34897.74 33697.85 38799.55 25392.40 35599.73 33696.25 35298.73 37398.06 403
MSDG99.08 20098.98 21299.37 22699.60 18599.13 22797.54 38399.74 11598.84 23799.53 20999.55 25399.10 9099.79 31297.07 30699.86 15599.18 299
tpmrst97.73 32398.07 30196.73 39098.71 39492.00 41099.10 21498.86 34998.52 27598.92 31999.54 25591.90 35699.82 28798.02 22299.03 35098.37 391
new_pmnet98.88 24098.89 22698.84 31699.70 15297.62 34198.15 33899.50 25497.98 32199.62 17399.54 25598.15 22099.94 7997.55 27299.84 16498.95 349
Anonymous2023120699.35 13299.31 12599.47 19299.74 13599.06 23999.28 15299.74 11599.23 18099.72 13299.53 25797.63 25999.88 19699.11 13299.84 16499.48 220
ITE_SJBPF99.38 22399.63 17899.44 16199.73 11998.56 26999.33 26199.53 25798.88 12599.68 36396.01 36099.65 25999.02 343
test_method91.72 38492.32 38789.91 40293.49 42570.18 42890.28 41699.56 21961.71 42095.39 41599.52 25993.90 33499.94 7998.76 16998.27 38899.62 145
CHOSEN 280x42098.41 28798.41 27098.40 34299.34 29795.89 38396.94 40599.44 27098.80 24399.25 27899.52 25993.51 34299.98 2198.94 15399.98 4199.32 266
CANet_DTU98.91 23498.85 23099.09 28198.79 38598.13 31298.18 33599.31 30499.48 13498.86 32799.51 26196.56 29499.95 6499.05 13899.95 8199.19 297
pmmvs398.08 31197.80 32098.91 30599.41 27597.69 34097.87 37099.66 15695.87 38599.50 21999.51 26190.35 37799.97 3498.55 18499.47 30699.08 327
HY-MVS98.23 998.21 30697.95 30998.99 29399.03 35998.24 30299.61 7098.72 35796.81 37498.73 34199.51 26194.06 33399.86 22996.91 31398.20 39098.86 361
miper_lstm_enhance98.65 26198.60 25098.82 32199.20 32997.33 35197.78 37399.66 15699.01 21299.59 18599.50 26494.62 32999.85 24798.12 21699.90 11699.26 278
Anonymous20240521198.75 25198.46 26599.63 13999.34 29799.66 10399.47 10597.65 39499.28 17199.56 19799.50 26493.15 34499.84 26298.62 18199.58 28199.40 246
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23198.34 30099.01 31099.50 26498.53 17499.93 9797.18 30299.78 20899.66 111
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13698.35 29699.51 21799.50 26499.31 6499.88 19698.18 21199.84 16499.69 88
h-mvs3398.61 26298.34 27899.44 20299.60 18598.67 27199.27 15599.44 27099.68 9499.32 26499.49 26892.50 353100.00 199.24 10896.51 41299.65 119
test_241102_ONE99.69 15699.82 3799.54 23199.12 20399.82 8299.49 26898.91 12199.52 401
tttt051797.62 32897.20 33898.90 31199.76 11797.40 34999.48 10294.36 41299.06 20999.70 14199.49 26884.55 40299.94 7998.73 17299.65 25999.36 256
eth_miper_zixun_eth98.68 25998.71 24398.60 33299.10 34996.84 36497.52 38799.54 23198.94 22099.58 18799.48 27196.25 30999.76 32698.01 22599.93 10199.21 290
c3_l98.72 25598.71 24398.72 32699.12 34297.22 35497.68 37899.56 21998.90 22799.54 20499.48 27196.37 30499.73 33697.88 23699.88 13599.21 290
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13599.50 25498.35 29698.97 31299.48 27198.37 19699.92 12395.95 36699.75 21699.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.13 19199.03 19499.42 20899.58 19599.32 19597.91 36899.73 11998.68 25799.31 26999.48 27199.09 9299.66 37397.70 25899.77 21299.29 275
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33999.47 27598.47 18199.88 19697.62 26799.73 22899.67 102
EPNet_dtu97.62 32897.79 32297.11 38696.67 42192.31 40998.51 31098.04 38699.24 17895.77 41399.47 27593.78 33899.66 37398.98 14499.62 26599.37 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR99.12 19399.02 19599.40 21799.50 24099.11 22997.92 36699.71 13198.76 25199.08 30499.47 27599.17 8199.54 39697.85 24299.76 21499.54 189
cl____98.54 27398.41 27098.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.85 33699.78 31597.97 22999.89 12699.17 301
DIV-MVS_self_test98.54 27398.42 26998.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.87 33599.78 31597.97 22999.89 12699.18 299
tpm cat196.78 35096.98 34496.16 39798.85 37790.59 42199.08 22199.32 30092.37 40697.73 39399.46 27891.15 36599.69 35196.07 35898.80 36398.21 398
PHI-MVS99.11 19698.95 21699.59 15699.13 34099.59 13099.17 18699.65 16697.88 33099.25 27899.46 27898.97 11399.80 30997.26 29399.82 18199.37 253
pmmvs499.13 19199.06 18299.36 23099.57 20599.10 23498.01 35599.25 31798.78 24699.58 18799.44 28298.24 20999.76 32698.74 17199.93 10199.22 287
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33299.73 11998.39 28899.63 16499.43 28399.70 2499.90 16397.34 28598.64 37799.44 234
CNVR-MVS98.99 22498.80 23899.56 16899.25 31999.43 16598.54 30699.27 31298.58 26898.80 33499.43 28398.53 17499.70 34597.22 29999.59 27999.54 189
WBMVS97.50 33397.18 33998.48 33898.85 37795.89 38398.44 31999.52 24599.53 12899.52 21199.42 28580.10 40999.86 22999.24 10899.95 8199.68 94
PC_three_145297.56 34299.68 14799.41 28699.09 9297.09 41896.66 32999.60 27599.62 145
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 17999.41 28699.51 4799.95 6499.66 4899.89 12698.96 347
diffmvspermissive99.34 13799.32 12399.39 22099.67 17098.77 26598.57 30199.81 8199.61 11699.48 22299.41 28698.47 18199.86 22998.97 14699.90 11699.53 194
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LF4IMVS99.01 21998.92 22299.27 25499.71 14499.28 20198.59 29599.77 9998.32 30299.39 25099.41 28698.62 15899.84 26296.62 33499.84 16498.69 373
OPU-MVS99.29 24899.12 34299.44 16199.20 17499.40 29099.00 10798.84 41496.54 33699.60 27599.58 171
testdata99.42 20899.51 23498.93 25299.30 30796.20 38298.87 32699.40 29098.33 20299.89 18296.29 35099.28 33199.44 234
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34699.80 8497.14 36699.46 22899.40 29096.11 31199.89 18299.01 14199.84 16499.84 39
PCF-MVS96.03 1896.73 35295.86 36499.33 23699.44 26599.16 22496.87 40699.44 27086.58 41498.95 31499.40 29094.38 33199.88 19687.93 41299.80 19898.95 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验199.49 24599.29 19999.26 31499.39 29497.67 25399.36 32099.46 228
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21799.39 29499.57 4099.93 9799.64 5299.86 15599.20 294
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 21999.38 29699.57 4099.95 6499.69 4599.90 11699.15 305
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14099.59 20398.36 29199.35 25599.38 29698.61 16099.93 9797.43 28099.75 21699.67 102
miper_ehance_all_eth98.59 26898.59 25298.59 33398.98 36597.07 35897.49 38899.52 24598.50 27799.52 21199.37 29896.41 30299.71 34297.86 24099.62 26599.00 345
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14099.59 20398.36 29199.36 25399.37 29898.80 13399.91 14597.43 28099.75 21699.68 94
CPTT-MVS98.74 25298.44 26799.64 13299.61 18399.38 18099.18 18199.55 22596.49 37799.27 27699.37 29897.11 28099.92 12395.74 37399.67 25499.62 145
DP-MVS Recon98.50 27898.23 28799.31 24499.49 24599.46 15498.56 30299.63 17694.86 40098.85 32899.37 29897.81 24399.59 39096.08 35799.44 30998.88 359
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14099.59 20398.41 28599.32 26499.36 30298.73 14599.93 9797.29 28899.74 22399.67 102
DU-MVS99.33 14099.21 14799.71 10199.43 26899.56 13798.83 26699.53 24099.38 15899.67 15299.36 30297.67 25399.95 6499.17 12199.81 19199.63 134
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23499.58 13498.98 24999.60 19799.43 15299.70 14199.36 30297.70 24999.88 19699.20 11599.87 14799.59 166
NR-MVSNet99.40 11899.31 12599.68 10999.43 26899.55 14099.73 2799.50 25499.46 14199.88 6299.36 30297.54 26099.87 21098.97 14699.87 14799.63 134
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24699.67 15199.48 13499.55 20299.36 30294.92 32499.86 22998.95 15296.57 41199.45 229
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17499.55 22598.22 30799.32 26499.35 30798.65 15699.91 14596.86 31699.74 22399.62 145
UnsupCasMVSNet_bld98.55 27298.27 28699.40 21799.56 21699.37 18397.97 36299.68 14697.49 34999.08 30499.35 30795.41 32299.82 28797.70 25898.19 39299.01 344
sss98.90 23698.77 24099.27 25499.48 25098.44 29198.72 28499.32 30097.94 32699.37 25299.35 30796.31 30699.91 14598.85 15699.63 26499.47 224
CostFormer96.71 35396.79 35296.46 39498.90 37090.71 42099.41 11498.68 35994.69 40298.14 37699.34 31086.32 39899.80 30997.60 27098.07 39898.88 359
原ACMM199.37 22699.47 25698.87 25899.27 31296.74 37698.26 36799.32 31197.93 23599.82 28795.96 36599.38 31799.43 240
tpm97.15 34296.95 34597.75 36998.91 36994.24 39999.32 13597.96 38897.71 33898.29 36699.32 31186.72 39699.92 12398.10 22096.24 41499.09 321
test22299.51 23499.08 23697.83 37299.29 30895.21 39598.68 34699.31 31397.28 27199.38 31799.43 240
BH-RMVSNet98.41 28798.14 29699.21 26499.21 32698.47 28898.60 29298.26 38298.35 29698.93 31699.31 31397.20 27799.66 37394.32 39399.10 34499.51 206
thisisatest053097.45 33496.95 34598.94 29999.68 16497.73 33899.09 21894.19 41498.61 26699.56 19799.30 31584.30 40399.93 9798.27 20099.54 29399.16 303
MVSFormer99.41 11699.44 9899.31 24499.57 20598.40 29499.77 1699.80 8499.73 7899.63 16499.30 31598.02 22899.98 2199.43 7699.69 24399.55 181
jason99.16 18599.11 16599.32 24199.75 12998.44 29198.26 33199.39 28698.70 25699.74 12799.30 31598.54 17099.97 3498.48 18799.82 18199.55 181
jason: jason.
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15299.56 21998.19 31099.14 29799.29 31898.84 12899.92 12397.53 27599.80 19899.64 129
新几何199.52 17999.50 24099.22 21599.26 31495.66 39098.60 35299.28 31997.67 25399.89 18295.95 36699.32 32699.45 229
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25699.56 13798.97 25099.61 18699.43 15299.67 15299.28 31997.85 24199.95 6499.17 12199.81 19199.65 119
CL-MVSNet_self_test98.71 25698.56 25999.15 27299.22 32498.66 27497.14 40099.51 25098.09 31599.54 20499.27 32196.87 28799.74 33398.43 18998.96 35499.03 338
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 17998.38 28999.06 30899.27 32198.79 13499.94 7997.51 27699.82 18199.66 111
AdaColmapbinary98.60 26598.35 27799.38 22399.12 34299.22 21598.67 28799.42 27597.84 33498.81 33299.27 32197.32 27099.81 30295.14 38499.53 29599.10 316
NCCC98.82 24598.57 25699.58 15999.21 32699.31 19698.61 29099.25 31798.65 26098.43 36399.26 32497.86 23999.81 30296.55 33599.27 33499.61 155
TAPA-MVS97.92 1398.03 31397.55 32999.46 19599.47 25699.44 16198.50 31199.62 17986.79 41399.07 30799.26 32498.26 20899.62 38397.28 29099.73 22899.31 270
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29799.07 34098.40 28799.04 30999.25 32698.51 17999.80 30997.31 28799.51 29999.65 119
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27499.54 23198.94 22099.14 29799.25 32697.24 27299.82 28795.84 37099.78 20899.60 159
plane_prior499.25 326
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15197.72 33799.35 25599.25 32699.23 7599.92 12397.21 30099.82 18199.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PatchMatch-RL98.68 25998.47 26499.30 24799.44 26599.28 20198.14 34099.54 23197.12 36799.11 30199.25 32697.80 24499.70 34596.51 33899.30 32898.93 352
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37399.78 5199.15 19499.66 15699.34 16398.92 31999.24 33197.69 25199.98 2198.11 21799.28 33198.81 365
WTY-MVS98.59 26898.37 27499.26 25799.43 26898.40 29498.74 28299.13 33898.10 31399.21 28799.24 33194.82 32699.90 16397.86 24098.77 36699.49 216
cl2297.56 33197.28 33598.40 34298.37 40696.75 36597.24 39899.37 29197.31 35899.41 24399.22 33387.30 38899.37 40897.70 25899.62 26599.08 327
CANet99.11 19699.05 18699.28 25198.83 37998.56 28498.71 28699.41 27699.25 17699.23 28299.22 33397.66 25799.94 7999.19 11699.97 5599.33 263
baseline197.73 32397.33 33498.96 29699.30 30897.73 33899.40 11598.42 37499.33 16599.46 22899.21 33591.18 36499.82 28798.35 19491.26 41999.32 266
tpm296.35 36196.22 35696.73 39098.88 37591.75 41399.21 17398.51 36993.27 40597.89 38499.21 33584.83 40199.70 34596.04 35998.18 39398.75 372
WR-MVS99.11 19698.93 21899.66 11999.30 30899.42 16898.42 32099.37 29199.04 21099.57 19099.20 33796.89 28699.86 22998.66 17899.87 14799.70 82
F-COLMAP98.74 25298.45 26699.62 14899.57 20599.47 15098.84 26499.65 16696.31 38198.93 31699.19 33897.68 25299.87 21096.52 33799.37 31999.53 194
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 30999.82 7297.65 34099.43 23499.16 33996.42 30099.91 14599.07 13799.84 16499.80 50
ab-mvs-re8.26 40211.02 4050.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.16 3390.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.88 39033.17 3920.00 4060.00 4290.00 4310.00 41799.62 1790.00 4240.00 42599.13 34199.82 130.00 4250.00 4240.00 4230.00 421
lupinMVS98.96 22898.87 22899.24 26299.57 20598.40 29498.12 34299.18 33198.28 30499.63 16499.13 34198.02 22899.97 3498.22 20599.69 24399.35 259
PVSNet97.47 1598.42 28698.44 26798.35 34499.46 26096.26 37596.70 40899.34 29797.68 33999.00 31199.13 34197.40 26599.72 33897.59 27199.68 24899.08 327
CLD-MVS98.76 25098.57 25699.33 23699.57 20598.97 24597.53 38599.55 22596.41 37899.27 27699.13 34199.07 9799.78 31596.73 32599.89 12699.23 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_vis1_rt99.45 10499.46 9399.41 21599.71 14498.63 28098.99 24699.96 2599.03 21199.95 3299.12 34598.75 14199.84 26299.82 3799.82 18199.77 63
131498.00 31597.90 31798.27 35298.90 37097.45 34799.30 14399.06 34294.98 39797.21 39999.12 34598.43 18799.67 36895.58 37698.56 38097.71 407
E-PMN97.14 34497.43 33196.27 39598.79 38591.62 41495.54 41399.01 34699.44 14698.88 32399.12 34592.78 34999.68 36394.30 39499.03 35097.50 408
DPM-MVS98.28 29797.94 31399.32 24199.36 28599.11 22997.31 39598.78 35596.88 37198.84 32999.11 34897.77 24699.61 38894.03 39999.36 32099.23 285
CDPH-MVS98.56 27198.20 29099.61 15199.50 24099.46 15498.32 32699.41 27695.22 39499.21 28799.10 34998.34 20099.82 28795.09 38699.66 25799.56 178
MVS95.72 37894.63 38398.99 29398.56 39997.98 32899.30 14398.86 34972.71 41997.30 39699.08 35098.34 20099.74 33389.21 40998.33 38599.26 278
ZD-MVS99.43 26899.61 12599.43 27396.38 37999.11 30199.07 35197.86 23999.92 12394.04 39899.49 304
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23299.71 8598.86 26199.19 33098.47 28198.59 35399.06 35298.08 22599.91 14596.94 31199.60 27599.60 159
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20699.25 31999.69 9699.05 22599.82 7299.50 13198.97 31299.05 35398.98 11199.98 2198.20 20799.24 33798.62 375
test_prior297.95 36397.87 33198.05 37899.05 35397.90 23695.99 36399.49 304
hse-mvs298.52 27598.30 28399.16 27099.29 31098.60 28298.77 27999.02 34499.68 9499.32 26499.04 35592.50 35399.85 24799.24 10897.87 40299.03 338
KD-MVS_2432*160095.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
miper_refine_blended95.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
testgi99.29 14599.26 14199.37 22699.75 12998.81 26098.84 26499.89 4598.38 28999.75 11999.04 35599.36 6199.86 22999.08 13699.25 33599.45 229
AUN-MVS97.82 31997.38 33399.14 27599.27 31598.53 28598.72 28499.02 34498.10 31397.18 40099.03 35989.26 38499.85 24797.94 23197.91 40099.03 338
test_yl98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
DCV-MVSNet98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21498.54 27399.54 20498.99 36296.81 28899.93 9796.97 31099.53 29599.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.35 28899.35 19098.11 34499.41 27694.83 40197.92 38298.99 36298.02 22899.85 247
train_agg98.35 29497.95 30999.57 16599.35 28899.35 19098.11 34499.41 27694.90 39897.92 38298.99 36298.02 22899.85 24795.38 38099.44 30999.50 211
PVSNet_Blended98.70 25798.59 25299.02 29199.54 22197.99 32397.58 38299.82 7295.70 38999.34 25998.98 36598.52 17799.77 32397.98 22799.83 17299.30 272
CNLPA98.57 27098.34 27899.28 25199.18 33499.10 23498.34 32499.41 27698.48 28098.52 35898.98 36597.05 28299.78 31595.59 37599.50 30298.96 347
test_899.34 29799.31 19698.08 34899.40 28394.90 39897.87 38698.97 36798.02 22899.84 262
GA-MVS97.99 31697.68 32698.93 30299.52 23298.04 32197.19 39999.05 34398.32 30298.81 33298.97 36789.89 38299.41 40798.33 19699.05 34899.34 262
miper_enhance_ethall98.03 31397.94 31398.32 34798.27 40896.43 37196.95 40499.41 27696.37 38099.43 23498.96 36994.74 32799.69 35197.71 25599.62 26598.83 364
PLCcopyleft97.35 1698.36 29197.99 30599.48 19099.32 30399.24 21298.50 31199.51 25095.19 39698.58 35498.96 36996.95 28599.83 27795.63 37499.25 33599.37 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
Effi-MVS+99.06 20498.97 21399.34 23399.31 30498.98 24398.31 32799.91 3898.81 24198.79 33698.94 37199.14 8699.84 26298.79 16498.74 37099.20 294
xiu_mvs_v1_base99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
EIA-MVS99.12 19399.01 19899.45 19899.36 28599.62 11999.34 12999.79 9098.41 28598.84 32998.89 37598.75 14199.84 26298.15 21599.51 29998.89 358
EMVS96.96 34797.28 33595.99 39898.76 39091.03 41795.26 41598.61 36499.34 16398.92 31998.88 37693.79 33799.66 37392.87 40299.05 34897.30 412
thisisatest051596.98 34696.42 35398.66 32999.42 27397.47 34597.27 39694.30 41397.24 36099.15 29598.86 37785.01 40099.87 21097.10 30499.39 31698.63 374
NP-MVS99.40 27699.13 22798.83 378
HQP-MVS98.36 29198.02 30499.39 22099.31 30498.94 24997.98 35999.37 29197.45 35098.15 37298.83 37896.67 29199.70 34594.73 38899.67 25499.53 194
dongtai89.37 38588.91 38890.76 40199.19 33177.46 42695.47 41487.82 42592.28 40794.17 41898.82 38071.22 42495.54 42063.85 42097.34 40699.27 276
MAR-MVS98.24 30197.92 31599.19 26798.78 38799.65 10999.17 18699.14 33695.36 39298.04 37998.81 38197.47 26299.72 33895.47 37899.06 34698.21 398
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS98.38 29098.39 27298.35 34498.83 37999.26 20599.14 19699.18 33198.59 26798.66 34798.78 38298.61 16099.57 39294.14 39699.56 28496.21 415
BH-untuned98.22 30498.09 29998.58 33599.38 28097.24 35398.55 30398.98 34797.81 33599.20 29298.76 38397.01 28399.65 37994.83 38798.33 38598.86 361
Fast-Effi-MVS+99.02 21398.87 22899.46 19599.38 28099.50 14699.04 23099.79 9097.17 36498.62 35098.74 38499.34 6299.95 6498.32 19799.41 31498.92 354
dmvs_re98.69 25898.48 26399.31 24499.55 21999.42 16899.54 8798.38 37899.32 16698.72 34298.71 38596.76 29099.21 40996.01 36099.35 32299.31 270
MVEpermissive92.54 2296.66 35496.11 35898.31 34999.68 16497.55 34397.94 36495.60 40999.37 15990.68 42098.70 38696.56 29498.61 41686.94 41799.55 28898.77 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM95.61 38094.71 38298.31 34999.12 34296.63 36696.66 40998.46 37290.77 41196.25 41098.68 38793.01 34799.69 35181.60 41997.86 40398.62 375
test-LLR97.15 34296.95 34597.74 37098.18 41195.02 39497.38 39196.10 40498.00 31897.81 38998.58 38890.04 38099.91 14597.69 26498.78 36498.31 392
test-mter96.23 36595.73 36797.74 37098.18 41195.02 39497.38 39196.10 40497.90 32797.81 38998.58 38879.12 41599.91 14597.69 26498.78 36498.31 392
PAPM_NR98.36 29198.04 30299.33 23699.48 25098.93 25298.79 27799.28 31197.54 34598.56 35798.57 39097.12 27999.69 35194.09 39798.90 36199.38 250
TESTMET0.1,196.24 36495.84 36597.41 37798.24 40993.84 40297.38 39195.84 40898.43 28297.81 38998.56 39179.77 41299.89 18297.77 24798.77 36698.52 383
ETV-MVS99.18 17999.18 15099.16 27099.34 29799.28 20199.12 20699.79 9099.48 13498.93 31698.55 39299.40 5199.93 9798.51 18699.52 29898.28 394
xiu_mvs_v2_base99.02 21399.11 16598.77 32399.37 28298.09 31798.13 34199.51 25099.47 13899.42 23798.54 39399.38 5699.97 3498.83 15899.33 32498.24 396
TR-MVS97.44 33597.15 34098.32 34798.53 40097.46 34698.47 31497.91 39096.85 37298.21 37198.51 39496.42 30099.51 40292.16 40497.29 40797.98 404
PS-MVSNAJ99.00 22199.08 17698.76 32499.37 28298.10 31698.00 35799.51 25099.47 13899.41 24398.50 39599.28 6899.97 3498.83 15899.34 32398.20 400
ET-MVSNet_ETH3D96.78 35096.07 35998.91 30599.26 31897.92 33097.70 37796.05 40797.96 32592.37 41998.43 39687.06 39099.90 16398.27 20097.56 40598.91 355
baseline296.83 34996.28 35598.46 34099.09 35296.91 36298.83 26693.87 41797.23 36196.23 41298.36 39788.12 38799.90 16396.68 32798.14 39598.57 381
gm-plane-assit97.59 41889.02 42493.47 40498.30 39899.84 26296.38 347
DeepMVS_CXcopyleft97.98 35999.69 15696.95 36099.26 31475.51 41895.74 41498.28 39996.47 29899.62 38391.23 40797.89 40197.38 410
PAPR97.56 33197.07 34199.04 29098.80 38398.11 31597.63 37999.25 31794.56 40398.02 38098.25 40097.43 26499.68 36390.90 40898.74 37099.33 263
UWE-MVS96.21 36695.78 36697.49 37398.53 40093.83 40398.04 35293.94 41698.96 21798.46 36298.17 40179.86 41099.87 21096.99 30899.06 34698.78 368
PMMVS98.49 28098.29 28599.11 27898.96 36798.42 29397.54 38399.32 30097.53 34698.47 36198.15 40297.88 23899.82 28797.46 27899.24 33799.09 321
test0.0.03 197.37 33896.91 34898.74 32597.72 41797.57 34297.60 38197.36 40098.00 31899.21 28798.02 40390.04 38099.79 31298.37 19295.89 41698.86 361
BH-w/o97.20 34197.01 34397.76 36899.08 35395.69 38598.03 35498.52 36895.76 38897.96 38198.02 40395.62 31799.47 40492.82 40397.25 40898.12 402
WB-MVSnew98.34 29698.14 29698.96 29698.14 41497.90 33198.27 32997.26 40198.63 26298.80 33498.00 40597.77 24699.90 16397.37 28498.98 35399.09 321
testing396.48 35895.63 36999.01 29299.23 32397.81 33498.90 25799.10 33998.72 25397.84 38897.92 40672.44 42299.85 24797.21 30099.33 32499.35 259
alignmvs98.28 29797.96 30899.25 26099.12 34298.93 25299.03 23398.42 37499.64 10798.72 34297.85 40790.86 37199.62 38398.88 15599.13 34199.19 297
PVSNet_095.53 1995.85 37695.31 37697.47 37598.78 38793.48 40595.72 41299.40 28396.18 38397.37 39497.73 40895.73 31599.58 39195.49 37781.40 42099.36 256
dmvs_testset97.27 34096.83 35098.59 33399.46 26097.55 34399.25 16396.84 40398.78 24697.24 39897.67 40997.11 28098.97 41386.59 41898.54 38199.27 276
MGCFI-Net99.02 21399.01 19899.06 28899.11 34798.60 28299.63 6199.67 15199.63 10998.58 35497.65 41099.07 9799.57 39298.85 15698.92 35799.03 338
sasdasda99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
canonicalmvs99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
cascas96.99 34596.82 35197.48 37497.57 42095.64 38696.43 41099.56 21991.75 40897.13 40297.61 41395.58 31898.63 41596.68 32799.11 34398.18 401
IB-MVS95.41 2095.30 38294.46 38697.84 36698.76 39095.33 39097.33 39496.07 40696.02 38495.37 41697.41 41476.17 41799.96 5597.54 27395.44 41898.22 397
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view796.60 35596.16 35797.93 36299.63 17896.09 38099.18 18197.57 39598.77 24898.72 34297.32 41587.04 39199.72 33888.57 41098.62 37897.98 404
thres100view90096.39 36096.03 36097.47 37599.63 17895.93 38199.18 18197.57 39598.75 25298.70 34597.31 41687.04 39199.67 36887.62 41398.51 38296.81 413
GG-mvs-BLEND97.36 37897.59 41896.87 36399.70 3588.49 42494.64 41797.26 41780.66 40799.12 41091.50 40696.50 41396.08 417
tfpn200view996.30 36395.89 36297.53 37299.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38296.81 413
thres40096.40 35995.89 36297.92 36399.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38297.98 404
testing1196.05 37095.41 37297.97 36098.78 38795.27 39198.59 29598.23 38398.86 23396.56 40796.91 42075.20 41899.69 35197.26 29398.29 38798.93 352
kuosan85.65 38784.57 39088.90 40397.91 41577.11 42796.37 41187.62 42685.24 41685.45 42196.83 42169.94 42690.98 42245.90 42195.83 41798.62 375
thres20096.09 36895.68 36897.33 38099.48 25096.22 37798.53 30897.57 39598.06 31798.37 36596.73 42286.84 39599.61 38886.99 41698.57 37996.16 416
testing9196.00 37195.32 37598.02 35798.76 39095.39 38898.38 32298.65 36398.82 23996.84 40396.71 42375.06 41999.71 34296.46 34398.23 38998.98 346
testing9995.86 37595.19 37897.87 36498.76 39095.03 39398.62 28998.44 37398.68 25796.67 40696.66 42474.31 42099.69 35196.51 33898.03 39998.90 356
UBG96.53 35695.95 36198.29 35198.87 37696.31 37498.48 31398.07 38598.83 23897.32 39596.54 42579.81 41199.62 38396.84 31998.74 37098.95 349
testing22295.60 38194.59 38498.61 33198.66 39797.45 34798.54 30697.90 39198.53 27496.54 40896.47 42670.62 42599.81 30295.91 36898.15 39498.56 382
Syy-MVS98.17 30797.85 31999.15 27298.50 40298.79 26398.60 29299.21 32797.89 32896.76 40496.37 42795.47 32199.57 39299.10 13398.73 37399.09 321
myMVS_eth3d95.63 37994.73 38198.34 34698.50 40296.36 37298.60 29299.21 32797.89 32896.76 40496.37 42772.10 42399.57 39294.38 39298.73 37399.09 321
ETVMVS96.14 36795.22 37798.89 31298.80 38398.01 32298.66 28898.35 38098.71 25597.18 40096.31 42974.23 42199.75 33096.64 33298.13 39798.90 356
X-MVStestdata96.09 36894.87 38099.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33961.30 43098.47 18199.88 19697.62 26799.73 22899.67 102
test_post52.41 43190.25 37899.86 229
test_post199.14 19651.63 43289.54 38399.82 28796.86 316
testmvs28.94 38933.33 39115.79 40526.03 4279.81 43096.77 40715.67 42811.55 42323.87 42450.74 43319.03 4288.53 42423.21 42333.07 42129.03 420
test12329.31 38833.05 39318.08 40425.93 42812.24 42997.53 38510.93 42911.78 42224.21 42350.08 43421.04 4278.60 42323.51 42232.43 42233.39 419
WAC-MVS96.36 37295.20 383
FOURS199.83 6599.89 1099.74 2499.71 13199.69 9299.63 164
MSC_two_6792asdad99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
No_MVS99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
eth-test20.00 429
eth-test0.00 429
IU-MVS99.69 15699.77 5699.22 32497.50 34899.69 14497.75 25199.70 23999.77 63
save fliter99.53 22799.25 20898.29 32899.38 29099.07 207
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19699.61 18699.92 12397.88 23699.72 23499.77 63
GSMVS99.14 310
test_part299.62 18299.67 10199.55 202
sam_mvs190.81 37299.14 310
sam_mvs90.52 376
MTGPAbinary99.53 240
MTMP99.09 21898.59 367
test9_res95.10 38599.44 30999.50 211
agg_prior294.58 39199.46 30899.50 211
agg_prior99.35 28899.36 18799.39 28697.76 39299.85 247
test_prior499.19 22198.00 357
test_prior99.46 19599.35 28899.22 21599.39 28699.69 35199.48 220
旧先验297.94 36495.33 39398.94 31599.88 19696.75 323
新几何298.04 352
无先验98.01 35599.23 32195.83 38799.85 24795.79 37299.44 234
原ACMM297.92 366
testdata299.89 18295.99 363
segment_acmp98.37 196
testdata197.72 37597.86 333
test1299.54 17699.29 31099.33 19399.16 33498.43 36397.54 26099.82 28799.47 30699.48 220
plane_prior799.58 19599.38 180
plane_prior699.47 25699.26 20597.24 272
plane_prior599.54 23199.82 28795.84 37099.78 20899.60 159
plane_prior399.31 19698.36 29199.14 297
plane_prior298.80 27498.94 220
plane_prior199.51 234
plane_prior99.24 21298.42 32097.87 33199.71 237
n20.00 430
nn0.00 430
door-mid99.83 67
test1199.29 308
door99.77 99
HQP5-MVS98.94 249
HQP-NCC99.31 30497.98 35997.45 35098.15 372
ACMP_Plane99.31 30497.98 35997.45 35098.15 372
BP-MVS94.73 388
HQP4-MVS98.15 37299.70 34599.53 194
HQP3-MVS99.37 29199.67 254
HQP2-MVS96.67 291
MDTV_nov1_ep13_2view91.44 41699.14 19697.37 35599.21 28791.78 36096.75 32399.03 338
ACMMP++_ref99.94 94
ACMMP++99.79 203
Test By Simon98.41 190