This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 898.76 1499.22 399.11 9497.89 1499.47 399.32 2699.08 1497.87 16399.67 296.47 10099.92 797.88 4599.98 299.85 3
test_fmvs397.38 11997.56 10496.84 18698.63 15692.81 19897.60 9299.61 1490.87 29798.76 7199.66 394.03 18397.90 37999.24 799.68 8299.81 7
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 1099.30 2899.01 2099.63 1499.66 399.27 299.68 12497.75 5399.89 2499.62 35
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 596.34 6699.18 699.20 3799.67 299.73 599.65 599.15 399.86 2797.22 7099.92 1599.77 11
mvsany_test396.21 18595.93 20097.05 17097.40 30294.33 15095.76 20994.20 34489.10 31999.36 2799.60 693.97 18597.85 38095.40 15998.63 27598.99 182
test_fmvsmconf0.01_n98.57 1898.74 1798.06 8899.39 4594.63 13696.70 14999.82 195.44 17099.64 1399.52 798.96 499.74 7999.38 399.86 3099.81 7
OurMVSNet-221017-098.61 1798.61 2598.63 4599.77 596.35 6599.17 799.05 6998.05 5199.61 1699.52 793.72 19299.88 2398.72 2599.88 2599.65 32
ANet_high98.31 3298.94 696.41 21499.33 5389.64 26597.92 7099.56 1799.27 799.66 1299.50 997.67 3199.83 3597.55 6199.98 299.77 11
mvs_tets98.90 698.94 698.75 3299.69 1096.48 6198.54 2499.22 3496.23 12599.71 799.48 1098.77 799.93 498.89 1899.95 599.84 5
test_f95.82 20295.88 20395.66 25097.61 28593.21 19295.61 22198.17 23286.98 34698.42 9799.47 1190.46 26294.74 40197.71 5598.45 28899.03 175
gg-mvs-nofinetune88.28 36086.96 36692.23 36292.84 40384.44 35698.19 5374.60 41099.08 1487.01 40199.47 1156.93 40198.23 37378.91 39295.61 37594.01 392
PS-MVSNAJss98.53 2398.63 2198.21 7899.68 1194.82 12998.10 5799.21 3596.91 9799.75 399.45 1395.82 12799.92 798.80 2099.96 499.89 1
test_djsdf98.73 1298.74 1798.69 4099.63 1496.30 6898.67 1699.02 8096.50 11399.32 2999.44 1497.43 4199.92 798.73 2399.95 599.86 2
Anonymous2023121198.55 2198.76 1497.94 9998.79 13494.37 14898.84 1299.15 4699.37 499.67 1099.43 1595.61 13899.72 9098.12 3799.86 3099.73 21
SDMVSNet97.97 5498.26 4297.11 16399.41 4192.21 21696.92 13298.60 18098.58 3298.78 6699.39 1697.80 2599.62 15294.98 18599.86 3099.52 58
sd_testset97.97 5498.12 4497.51 12799.41 4193.44 18397.96 6698.25 21998.58 3298.78 6699.39 1698.21 1499.56 17192.65 25599.86 3099.52 58
test_fmvs296.38 18096.45 17596.16 22697.85 24191.30 24096.81 13899.45 1989.24 31898.49 8999.38 1888.68 28697.62 38498.83 1999.32 19399.57 46
anonymousdsp98.72 1598.63 2198.99 1199.62 1597.29 3898.65 2099.19 3995.62 16099.35 2899.37 1997.38 4399.90 1898.59 2899.91 1899.77 11
jajsoiax98.77 1098.79 1398.74 3599.66 1296.48 6198.45 3299.12 5195.83 15199.67 1099.37 1998.25 1399.92 798.77 2199.94 899.82 6
K. test v396.44 17796.28 18396.95 17699.41 4191.53 23597.65 8990.31 38698.89 2498.93 5299.36 2184.57 32299.92 797.81 4999.56 11299.39 104
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 996.99 4599.69 299.57 1599.02 1999.62 1599.36 2198.53 999.52 18398.58 2999.95 599.66 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo97.49 11097.57 10397.26 15499.56 2092.33 21198.28 4396.97 29798.30 4299.45 2199.35 2388.43 28999.89 2198.01 4299.76 5899.54 53
test_fmvsmconf0.1_n98.41 2898.54 2798.03 9399.16 8294.61 13796.18 17899.73 395.05 18699.60 1799.34 2498.68 899.72 9099.21 899.85 3799.76 16
bld_raw_dy_0_6498.03 5198.57 2696.38 21599.35 5089.63 26799.26 599.26 3199.27 799.74 499.34 2492.88 21199.93 498.20 3699.87 2799.60 36
Gipumacopyleft98.07 4898.31 3897.36 14699.76 796.28 6998.51 2899.10 5498.76 2796.79 22499.34 2496.61 9198.82 32196.38 9999.50 14096.98 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt97.04 13596.98 14097.23 15798.44 18395.88 8196.82 13799.67 790.30 30699.27 3299.33 2794.04 18296.03 39897.14 7597.83 31399.78 10
fmvsm_s_conf0.1_n_a97.80 8598.01 5597.18 15899.17 8192.51 20696.57 15399.15 4693.68 23298.89 5699.30 2896.42 10499.37 23599.03 1499.83 4299.66 29
JIA-IIPM91.79 32490.69 33495.11 27293.80 39590.98 24594.16 29091.78 37196.38 11790.30 38399.30 2872.02 38398.90 31588.28 33690.17 39795.45 383
TransMVSNet (Re)98.38 2998.67 1997.51 12799.51 2993.39 18698.20 5298.87 11698.23 4499.48 1999.27 3098.47 1199.55 17596.52 9399.53 12699.60 36
fmvsm_s_conf0.1_n97.73 9098.02 5496.85 18499.09 9791.43 23996.37 16499.11 5294.19 21599.01 4699.25 3196.30 11099.38 23099.00 1599.88 2599.73 21
Baseline_NR-MVSNet97.72 9297.79 7797.50 13199.56 2093.29 18895.44 22798.86 11998.20 4698.37 10299.24 3294.69 16399.55 17595.98 11999.79 5299.65 32
v7n98.73 1298.99 597.95 9899.64 1394.20 15698.67 1699.14 4999.08 1499.42 2399.23 3396.53 9599.91 1599.27 699.93 1199.73 21
mamv499.05 598.91 899.46 298.94 11599.62 297.98 6599.70 599.49 399.78 299.22 3495.92 12199.95 399.31 499.83 4298.83 209
pm-mvs198.47 2598.67 1997.86 10399.52 2894.58 13998.28 4399.00 8997.57 7099.27 3299.22 3498.32 1299.50 18897.09 7799.75 6599.50 62
TDRefinement98.90 698.86 999.02 799.54 2598.06 999.34 499.44 2098.85 2599.00 4899.20 3697.42 4299.59 16297.21 7199.76 5899.40 100
GBi-Net96.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
test196.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
FMVSNet197.95 6098.08 4797.56 12299.14 9293.67 17498.23 4798.66 17297.41 8299.00 4899.19 3795.47 14299.73 8595.83 12899.76 5899.30 120
test_fmvsmconf_n98.30 3398.41 3597.99 9698.94 11594.60 13896.00 19399.64 1394.99 18999.43 2299.18 4098.51 1099.71 10499.13 1199.84 3999.67 27
VDDNet96.98 14196.84 15097.41 14399.40 4493.26 19097.94 6895.31 33399.26 998.39 10199.18 4087.85 29899.62 15295.13 17599.09 22699.35 114
DSMNet-mixed92.19 31691.83 31393.25 33496.18 34483.68 36496.27 17093.68 34976.97 40192.54 36599.18 4089.20 28498.55 35183.88 37698.60 27997.51 334
test111194.53 26294.81 24093.72 32499.06 10181.94 37698.31 4083.87 40596.37 11898.49 8999.17 4381.49 33799.73 8596.64 8899.86 3099.49 70
test250689.86 34589.16 35091.97 36598.95 11276.83 40098.54 2461.07 41496.20 12697.07 20799.16 4455.19 40899.69 11996.43 9799.83 4299.38 106
ECVR-MVScopyleft94.37 26894.48 25894.05 32098.95 11283.10 36698.31 4082.48 40796.20 12698.23 12199.16 4481.18 34099.66 13695.95 12099.83 4299.38 106
v1097.55 10697.97 5996.31 21998.60 16089.64 26597.44 10599.02 8096.60 10698.72 7499.16 4493.48 19699.72 9098.76 2299.92 1599.58 39
MIMVSNet198.51 2498.45 3298.67 4199.72 896.71 5198.76 1398.89 10898.49 3599.38 2599.14 4795.44 14499.84 3396.47 9599.80 5099.47 79
MVSMamba_PlusPlus97.43 11697.98 5895.78 24498.88 12389.70 26398.03 6298.85 12399.18 1196.84 22299.12 4893.04 20499.91 1598.38 3299.55 11897.73 322
iter_conf0597.83 7998.49 2895.84 24198.88 12389.05 27898.87 1099.42 2299.18 1199.73 599.12 4893.04 20499.91 1598.38 3299.78 5598.58 239
Vis-MVSNetpermissive98.27 3498.34 3798.07 8699.33 5395.21 12098.04 6099.46 1897.32 8797.82 16799.11 5096.75 8599.86 2797.84 4899.36 17899.15 150
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 10298.06 5096.23 22198.71 14589.44 27097.43 10798.82 14197.29 8998.74 7299.10 5193.86 18799.68 12498.61 2799.94 899.56 50
mvsmamba98.16 3898.06 5098.44 5699.53 2795.87 8298.70 1498.94 10297.71 6498.85 5999.10 5191.35 25099.83 3598.47 3099.90 2399.64 34
MVS-HIRNet88.40 35990.20 34082.99 38897.01 32160.04 41393.11 32885.61 40384.45 37588.72 39499.09 5384.72 32198.23 37382.52 38296.59 35790.69 403
ACMH93.61 998.44 2698.76 1497.51 12799.43 3893.54 18098.23 4799.05 6997.40 8399.37 2699.08 5498.79 699.47 19897.74 5499.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 998.86 998.59 4799.55 2296.12 7398.48 3199.10 5499.36 599.29 3199.06 5597.27 4899.93 497.71 5599.91 1899.70 25
Anonymous2024052197.07 13497.51 10995.76 24599.35 5088.18 29597.78 7898.40 20397.11 9298.34 10899.04 5689.58 27599.79 4798.09 3999.93 1199.30 120
test_fmvsmvis_n_192098.08 4698.47 2996.93 17899.03 10793.29 18896.32 16899.65 1095.59 16299.71 799.01 5797.66 3399.60 16199.44 299.83 4297.90 309
fmvsm_s_conf0.5_n_a97.65 9797.83 7397.13 16298.80 13292.51 20696.25 17499.06 6593.67 23398.64 7599.00 5896.23 11499.36 23898.99 1699.80 5099.53 56
PEN-MVS98.75 1198.85 1198.44 5699.58 1895.67 9198.45 3299.15 4699.33 699.30 3099.00 5897.27 4899.92 797.64 5999.92 1599.75 18
DeepC-MVS95.41 497.82 8397.70 8498.16 7998.78 13795.72 8796.23 17699.02 8093.92 22598.62 7798.99 6097.69 2999.62 15296.18 10899.87 2799.15 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n97.62 10097.89 6696.80 18898.79 13491.44 23896.14 18399.06 6594.19 21598.82 6398.98 6196.22 11599.38 23098.98 1799.86 3099.58 39
VPA-MVSNet98.27 3498.46 3097.70 11399.06 10193.80 16997.76 8199.00 8998.40 3799.07 4498.98 6196.89 7599.75 7097.19 7499.79 5299.55 52
lessismore_v097.05 17099.36 4992.12 22184.07 40498.77 7098.98 6185.36 31699.74 7997.34 6899.37 17599.30 120
test_cas_vis1_n_192095.34 22295.67 20994.35 31198.21 20386.83 32695.61 22199.26 3190.45 30498.17 12898.96 6484.43 32398.31 36996.74 8699.17 21497.90 309
PS-CasMVS98.73 1298.85 1198.39 6199.55 2295.47 10298.49 2999.13 5099.22 1099.22 3698.96 6497.35 4499.92 797.79 5199.93 1199.79 9
EU-MVSNet94.25 26994.47 25993.60 32798.14 21882.60 37197.24 11592.72 36185.08 36598.48 9198.94 6682.59 33598.76 32897.47 6599.53 12699.44 95
LCM-MVSNet-Re97.33 12497.33 11997.32 14898.13 22193.79 17096.99 12999.65 1096.74 10299.47 2098.93 6796.91 7499.84 3390.11 30999.06 23298.32 266
test_vis1_n95.67 20795.89 20295.03 27798.18 20989.89 26196.94 13199.28 3088.25 33498.20 12398.92 6886.69 30797.19 38797.70 5798.82 25698.00 303
test_fmvs1_n95.21 22895.28 21794.99 28098.15 21689.13 27796.81 13899.43 2186.97 34797.21 19298.92 6883.00 33297.13 38898.09 3998.94 24198.72 224
XXY-MVS97.54 10797.70 8497.07 16999.46 3592.21 21697.22 11699.00 8994.93 19298.58 8298.92 6897.31 4699.41 22194.44 20499.43 16499.59 38
mvs_anonymous95.36 22196.07 19293.21 33796.29 33881.56 37894.60 27497.66 27093.30 24396.95 21698.91 7193.03 20899.38 23096.60 9097.30 34098.69 228
test_vis1_n_192095.77 20396.41 17793.85 32198.55 16784.86 35195.91 20299.71 492.72 26897.67 17098.90 7287.44 30198.73 33097.96 4398.85 25297.96 305
EGC-MVSNET83.08 37377.93 37698.53 5199.57 1997.55 2798.33 3998.57 1854.71 41110.38 41298.90 7295.60 13999.50 18895.69 13399.61 9998.55 243
KD-MVS_self_test97.86 7798.07 4897.25 15599.22 6892.81 19897.55 9798.94 10297.10 9398.85 5998.88 7495.03 15599.67 13097.39 6799.65 8799.26 132
UGNet96.81 15596.56 16797.58 12196.64 33093.84 16897.75 8297.12 29196.47 11693.62 33698.88 7493.22 20199.53 18095.61 14099.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 5698.04 5297.71 11298.69 14994.28 15497.86 7398.31 21698.79 2699.23 3598.86 7695.76 13399.61 15995.49 14599.36 17899.23 138
FC-MVSNet-test98.16 3898.37 3697.56 12299.49 3393.10 19398.35 3699.21 3598.43 3698.89 5698.83 7794.30 17799.81 3997.87 4699.91 1899.77 11
new-patchmatchnet95.67 20796.58 16592.94 34697.48 29480.21 38692.96 32998.19 23194.83 19398.82 6398.79 7893.31 19999.51 18795.83 12899.04 23399.12 160
WR-MVS_H98.65 1698.62 2398.75 3299.51 2996.61 5798.55 2399.17 4199.05 1799.17 3898.79 7895.47 14299.89 2197.95 4499.91 1899.75 18
ab-mvs96.59 16996.59 16496.60 20098.64 15292.21 21698.35 3697.67 26894.45 20696.99 21298.79 7894.96 15999.49 19390.39 30699.07 22998.08 289
testf198.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
APD_test298.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
EG-PatchMatch MVS97.69 9497.79 7797.40 14499.06 10193.52 18195.96 19898.97 9894.55 20598.82 6398.76 8397.31 4699.29 25997.20 7399.44 15699.38 106
nrg03098.54 2298.62 2398.32 6599.22 6895.66 9297.90 7199.08 6198.31 4099.02 4598.74 8497.68 3099.61 15997.77 5299.85 3799.70 25
VDD-MVS97.37 12197.25 12397.74 11098.69 14994.50 14397.04 12795.61 32698.59 3198.51 8698.72 8592.54 22599.58 16496.02 11599.49 14399.12 160
PatchT93.75 28593.57 28294.29 31495.05 37887.32 31796.05 18892.98 35797.54 7394.25 31698.72 8575.79 36899.24 27195.92 12295.81 36996.32 370
test_fmvsm_n_192098.08 4698.29 4197.43 14098.88 12393.95 16496.17 18299.57 1595.66 15799.52 1898.71 8797.04 6299.64 14399.21 899.87 2798.69 228
RPSCF97.87 7597.51 10998.95 1599.15 8598.43 797.56 9699.06 6596.19 12898.48 9198.70 8894.72 16299.24 27194.37 20999.33 19199.17 147
APDe-MVScopyleft98.14 4098.03 5398.47 5598.72 14296.04 7698.07 5999.10 5495.96 14198.59 8198.69 8996.94 6999.81 3996.64 8899.58 10699.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IterMVS-LS96.92 14497.29 12195.79 24398.51 17388.13 29895.10 25098.66 17296.99 9498.46 9498.68 9092.55 22399.74 7996.91 8399.79 5299.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS95.92 19797.03 13892.58 35599.28 5778.39 39196.68 15095.12 33598.90 2399.11 4198.66 9191.36 24999.68 12495.00 18299.16 21599.67 27
tfpnnormal97.72 9297.97 5996.94 17799.26 5992.23 21597.83 7698.45 19498.25 4399.13 4098.66 9196.65 8899.69 11993.92 22899.62 9398.91 196
FIs97.93 6698.07 4897.48 13599.38 4792.95 19698.03 6299.11 5298.04 5298.62 7798.66 9193.75 19199.78 5097.23 6999.84 3999.73 21
CP-MVSNet98.42 2798.46 3098.30 6899.46 3595.22 11898.27 4598.84 12799.05 1799.01 4698.65 9495.37 14599.90 1897.57 6099.91 1899.77 11
MM96.87 14996.62 16197.62 11997.72 27193.30 18796.39 16092.61 36497.90 5596.76 22998.64 9590.46 26299.81 3999.16 1099.94 899.76 16
MVS_030496.62 16896.40 17897.28 15197.91 23792.30 21296.47 15889.74 39197.52 7495.38 29298.63 9692.76 21499.81 3999.28 599.93 1199.75 18
FMVSNet296.72 16196.67 16096.87 18397.96 23391.88 22997.15 11998.06 24995.59 16298.50 8898.62 9789.51 27999.65 13894.99 18499.60 10299.07 170
FA-MVS(test-final)94.91 24194.89 23494.99 28097.51 29288.11 30098.27 4595.20 33492.40 27596.68 23298.60 9883.44 32999.28 26193.34 24398.53 28197.59 331
PMVScopyleft89.60 1796.71 16396.97 14195.95 23599.51 2997.81 1797.42 10897.49 27997.93 5395.95 27198.58 9996.88 7796.91 39289.59 31799.36 17893.12 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 29992.79 29794.78 29395.44 37088.15 29696.18 17897.20 28684.94 37094.10 32098.57 10077.67 35599.39 22795.17 16895.81 36996.81 359
Patchmtry95.03 23894.59 25396.33 21794.83 38190.82 24896.38 16397.20 28696.59 10797.49 17898.57 10077.67 35599.38 23092.95 25499.62 9398.80 213
ambc96.56 20598.23 20291.68 23497.88 7298.13 24098.42 9798.56 10294.22 17999.04 30194.05 22399.35 18398.95 186
3Dnovator96.53 297.61 10197.64 9497.50 13197.74 26993.65 17898.49 2998.88 11496.86 9997.11 20098.55 10395.82 12799.73 8595.94 12199.42 16799.13 155
IterMVS-SCA-FT95.86 20096.19 18694.85 28897.68 27585.53 33992.42 34797.63 27696.99 9498.36 10598.54 10487.94 29399.75 7097.07 7999.08 22799.27 131
test_fmvs194.51 26394.60 25194.26 31595.91 35287.92 30295.35 23799.02 8086.56 35196.79 22498.52 10582.64 33497.00 39197.87 4698.71 26797.88 311
COLMAP_ROBcopyleft94.48 698.25 3698.11 4598.64 4499.21 7597.35 3697.96 6699.16 4298.34 3998.78 6698.52 10597.32 4599.45 20594.08 22099.67 8499.13 155
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3798.31 3897.98 9799.39 4595.22 11897.55 9799.20 3798.21 4599.25 3498.51 10798.21 1499.40 22394.79 19199.72 7199.32 115
fmvsm_l_conf0.5_n_a97.60 10297.76 8197.11 16398.92 11992.28 21395.83 20699.32 2693.22 24698.91 5598.49 10896.31 10999.64 14399.07 1399.76 5899.40 100
RPMNet94.68 25494.60 25194.90 28595.44 37088.15 29696.18 17898.86 11997.43 7794.10 32098.49 10879.40 34799.76 6495.69 13395.81 36996.81 359
IterMVS95.42 22095.83 20494.20 31697.52 29183.78 36392.41 34897.47 28195.49 16798.06 14298.49 10887.94 29399.58 16496.02 11599.02 23499.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 7597.89 6697.81 10698.62 15894.82 12997.13 12298.79 14398.98 2198.74 7298.49 10895.80 13299.49 19395.04 17999.44 15699.11 163
casdiffmvs_mvgpermissive97.83 7998.11 4597.00 17598.57 16492.10 22495.97 19699.18 4097.67 6999.00 4898.48 11297.64 3499.50 18896.96 8299.54 12299.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet98.33 3098.30 4098.43 5899.07 10095.87 8296.73 14799.05 6998.67 2898.84 6198.45 11397.58 3899.88 2396.45 9699.86 3099.54 53
3Dnovator+96.13 397.73 9097.59 10198.15 8198.11 22295.60 9398.04 6098.70 16498.13 4796.93 21798.45 11395.30 14899.62 15295.64 13898.96 23899.24 137
fmvsm_l_conf0.5_n97.68 9697.81 7597.27 15298.92 11992.71 20395.89 20399.41 2593.36 24099.00 4898.44 11596.46 10299.65 13899.09 1299.76 5899.45 85
iter_conf05_1196.88 14896.92 14696.75 19297.70 27392.38 21098.03 6299.03 7794.26 21296.84 22298.43 11691.72 24599.65 13896.67 8799.63 9198.20 280
dcpmvs_297.12 13297.99 5794.51 30599.11 9484.00 36197.75 8299.65 1097.38 8599.14 3998.42 11795.16 15199.96 295.52 14499.78 5599.58 39
patch_mono-296.59 16996.93 14495.55 25698.88 12387.12 32094.47 27799.30 2894.12 21896.65 23798.41 11894.98 15899.87 2595.81 13099.78 5599.66 29
VPNet97.26 12797.49 11296.59 20199.47 3490.58 25396.27 17098.53 18797.77 5798.46 9498.41 11894.59 16899.68 12494.61 19999.29 19999.52 58
test_040297.84 7897.97 5997.47 13699.19 7994.07 15996.71 14898.73 15598.66 2998.56 8398.41 11896.84 8199.69 11994.82 18999.81 4798.64 232
v124096.74 15897.02 13995.91 23898.18 20988.52 28795.39 23398.88 11493.15 25498.46 9498.40 12192.80 21399.71 10498.45 3199.49 14399.49 70
APD_test197.95 6097.68 8898.75 3299.60 1698.60 697.21 11799.08 6196.57 11198.07 14198.38 12296.22 11599.14 28594.71 19899.31 19698.52 246
SMA-MVScopyleft97.48 11197.11 13198.60 4698.83 12996.67 5496.74 14398.73 15591.61 28698.48 9198.36 12396.53 9599.68 12495.17 16899.54 12299.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 7397.63 9698.67 4199.35 5096.84 4896.36 16598.79 14395.07 18597.88 16098.35 12497.24 5299.72 9096.05 11299.58 10699.45 85
v119296.83 15397.06 13696.15 22798.28 19589.29 27295.36 23598.77 14893.73 22898.11 13498.34 12593.02 20999.67 13098.35 3499.58 10699.50 62
pmmvs-eth3d96.49 17496.18 18797.42 14298.25 19994.29 15194.77 26898.07 24889.81 31397.97 15298.33 12693.11 20299.08 29795.46 15199.84 3998.89 200
PM-MVS97.36 12397.10 13298.14 8298.91 12196.77 5096.20 17798.63 17893.82 22698.54 8498.33 12693.98 18499.05 30095.99 11899.45 15598.61 237
test072699.24 6395.51 9796.89 13498.89 10895.92 14498.64 7598.31 12897.06 60
MP-MVS-pluss97.69 9497.36 11798.70 3999.50 3296.84 4895.38 23498.99 9292.45 27398.11 13498.31 12897.25 5199.77 5996.60 9099.62 9399.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 15097.08 13496.13 22898.42 18589.28 27395.41 23198.67 17094.21 21397.97 15298.31 12893.06 20399.65 13898.06 4199.62 9399.45 85
LFMVS95.32 22494.88 23596.62 19998.03 22491.47 23797.65 8990.72 38299.11 1397.89 15998.31 12879.20 34899.48 19693.91 22999.12 22298.93 192
DVP-MVS++97.96 5697.90 6398.12 8497.75 26695.40 10399.03 898.89 10896.62 10498.62 7798.30 13296.97 6799.75 7095.70 13199.25 20499.21 140
test_one_060199.05 10595.50 10098.87 11697.21 9198.03 14698.30 13296.93 71
V4297.04 13597.16 13096.68 19898.59 16291.05 24396.33 16798.36 20894.60 20197.99 14898.30 13293.32 19899.62 15297.40 6699.53 12699.38 106
casdiffmvspermissive97.50 10997.81 7596.56 20598.51 17391.04 24495.83 20699.09 5997.23 9098.33 11198.30 13297.03 6399.37 23596.58 9299.38 17499.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14419296.69 16496.90 14996.03 23098.25 19988.92 27995.49 22598.77 14893.05 25698.09 13798.29 13692.51 22899.70 11298.11 3899.56 11299.47 79
mvsany_test193.47 29493.03 29094.79 29294.05 39392.12 22190.82 37790.01 39085.02 36897.26 18998.28 13793.57 19497.03 38992.51 25995.75 37495.23 385
DVP-MVScopyleft97.78 8797.65 9198.16 7999.24 6395.51 9796.74 14398.23 22295.92 14498.40 9998.28 13797.06 6099.71 10495.48 14899.52 13199.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 10498.40 9998.28 13797.10 5699.71 10495.70 13199.62 9399.58 39
MVS_Test96.27 18396.79 15594.73 29596.94 32586.63 32896.18 17898.33 21294.94 19096.07 26798.28 13795.25 14999.26 26597.21 7197.90 31198.30 270
FMVSNet593.39 29692.35 30696.50 20795.83 35890.81 25097.31 11098.27 21792.74 26796.27 25798.28 13762.23 39899.67 13090.86 28899.36 17899.03 175
WB-MVS95.50 21396.62 16192.11 36499.21 7577.26 39996.12 18495.40 33298.62 3098.84 6198.26 14291.08 25399.50 18893.37 24198.70 26899.58 39
v192192096.72 16196.96 14395.99 23198.21 20388.79 28495.42 22998.79 14393.22 24698.19 12798.26 14292.68 21799.70 11298.34 3599.55 11899.49 70
SED-MVS97.94 6397.90 6398.07 8699.22 6895.35 10896.79 14098.83 13396.11 13199.08 4298.24 14497.87 2399.72 9095.44 15299.51 13699.14 153
test_241102_TWO98.83 13396.11 13198.62 7798.24 14496.92 7399.72 9095.44 15299.49 14399.49 70
v2v48296.78 15797.06 13695.95 23598.57 16488.77 28595.36 23598.26 21895.18 18097.85 16598.23 14692.58 22199.63 14797.80 5099.69 7899.45 85
LPG-MVS_test97.94 6397.67 8998.74 3599.15 8597.02 4397.09 12499.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
LGP-MVS_train98.74 3599.15 8597.02 4399.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
HPM-MVS_fast98.32 3198.13 4398.88 2499.54 2597.48 3198.35 3699.03 7795.88 14797.88 16098.22 14998.15 1699.74 7996.50 9499.62 9399.42 97
MIMVSNet93.42 29592.86 29495.10 27498.17 21288.19 29498.13 5693.69 34792.07 27795.04 30198.21 15080.95 34399.03 30481.42 38598.06 30498.07 291
h-mvs3396.29 18295.63 21298.26 7098.50 17696.11 7496.90 13397.09 29296.58 10897.21 19298.19 15184.14 32499.78 5095.89 12496.17 36698.89 200
EI-MVSNet96.63 16796.93 14495.74 24697.26 31288.13 29895.29 24397.65 27296.99 9497.94 15598.19 15192.55 22399.58 16496.91 8399.56 11299.50 62
CVMVSNet92.33 31492.79 29790.95 37197.26 31275.84 40395.29 24392.33 36681.86 38196.27 25798.19 15181.44 33898.46 35994.23 21598.29 29598.55 243
PVSNet_Blended_VisFu95.95 19695.80 20596.42 21299.28 5790.62 25295.31 24199.08 6188.40 33196.97 21598.17 15492.11 23599.78 5093.64 23799.21 20898.86 207
FE-MVS92.95 30492.22 30895.11 27297.21 31488.33 29298.54 2493.66 35089.91 31296.21 26198.14 15570.33 38999.50 18887.79 34098.24 29797.51 334
EI-MVSNet-UG-set97.32 12597.40 11497.09 16797.34 30792.01 22795.33 23997.65 27297.74 6098.30 11698.14 15595.04 15499.69 11997.55 6199.52 13199.58 39
test_241102_ONE99.22 6895.35 10898.83 13396.04 13699.08 4298.13 15797.87 2399.33 247
APD-MVS_3200maxsize98.13 4397.90 6398.79 3098.79 13497.31 3797.55 9798.92 10597.72 6298.25 11998.13 15797.10 5699.75 7095.44 15299.24 20799.32 115
QAPM95.88 19995.57 21496.80 18897.90 23991.84 23198.18 5498.73 15588.41 33096.42 24898.13 15794.73 16199.75 7088.72 32998.94 24198.81 212
ACMM93.33 1198.05 4997.79 7798.85 2599.15 8597.55 2796.68 15098.83 13395.21 17798.36 10598.13 15798.13 1899.62 15296.04 11399.54 12299.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 12597.39 11597.11 16397.36 30492.08 22595.34 23897.65 27297.74 6098.29 11798.11 16195.05 15399.68 12497.50 6399.50 14099.56 50
wuyk23d93.25 30095.20 21987.40 38796.07 35095.38 10597.04 12794.97 33695.33 17399.70 998.11 16198.14 1791.94 40577.76 39699.68 8274.89 405
DPE-MVScopyleft97.64 9897.35 11898.50 5298.85 12896.18 7095.21 24798.99 9295.84 15098.78 6698.08 16396.84 8199.81 3993.98 22699.57 10999.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.37 12197.70 8496.35 21698.14 21895.13 12296.54 15598.92 10595.94 14399.19 3798.08 16397.74 2895.06 39995.24 16499.54 12298.87 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 4097.84 7099.02 798.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.60 9399.76 6495.49 14599.20 20999.26 132
RE-MVS-def97.88 6898.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.94 6995.49 14599.20 20999.26 132
OPM-MVS97.54 10797.25 12398.41 5999.11 9496.61 5795.24 24598.46 19394.58 20498.10 13698.07 16597.09 5899.39 22795.16 17099.44 15699.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest97.20 13096.92 14698.06 8899.08 9896.16 7197.14 12199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
TestCases98.06 8899.08 9896.16 7199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
TSAR-MVS + MP.97.42 11797.23 12598.00 9599.38 4795.00 12597.63 9198.20 22693.00 25898.16 12998.06 17095.89 12299.72 9095.67 13599.10 22599.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 15096.58 16597.65 11799.18 8093.78 17198.68 1596.34 31097.91 5497.30 18798.06 17088.46 28899.85 3093.85 23099.40 17299.32 115
ACMMPcopyleft98.05 4997.75 8398.93 1999.23 6597.60 2398.09 5898.96 9995.75 15597.91 15798.06 17096.89 7599.76 6495.32 16099.57 10999.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 18195.98 19697.43 14098.25 19993.85 16796.74 14394.41 34297.72 6298.37 10298.03 17387.15 30399.53 18094.06 22199.07 22998.92 195
XVG-ACMP-BASELINE97.58 10597.28 12298.49 5399.16 8296.90 4796.39 16098.98 9595.05 18698.06 14298.02 17495.86 12399.56 17194.37 20999.64 8999.00 179
baseline97.44 11497.78 8096.43 21198.52 17190.75 25196.84 13599.03 7796.51 11297.86 16498.02 17496.67 8799.36 23897.09 7799.47 14999.19 144
PVSNet_BlendedMVS95.02 23994.93 23195.27 26697.79 25987.40 31594.14 29398.68 16788.94 32394.51 31198.01 17693.04 20499.30 25589.77 31599.49 14399.11 163
OpenMVScopyleft94.22 895.48 21695.20 21996.32 21897.16 31691.96 22897.74 8498.84 12787.26 34194.36 31598.01 17693.95 18699.67 13090.70 29898.75 26297.35 341
MVSTER94.21 27293.93 27795.05 27695.83 35886.46 32995.18 24897.65 27292.41 27497.94 15598.00 17872.39 38299.58 16496.36 10099.56 11299.12 160
IS-MVSNet96.93 14396.68 15997.70 11399.25 6294.00 16298.57 2196.74 30698.36 3898.14 13297.98 17988.23 29199.71 10493.10 25199.72 7199.38 106
MTAPA98.14 4097.84 7099.06 499.44 3797.90 1397.25 11398.73 15597.69 6697.90 15897.96 18095.81 13199.82 3796.13 10999.61 9999.45 85
v14896.58 17196.97 14195.42 26298.63 15687.57 31195.09 25197.90 25495.91 14698.24 12097.96 18093.42 19799.39 22796.04 11399.52 13199.29 126
MDA-MVSNet-bldmvs95.69 20595.67 20995.74 24698.48 17988.76 28692.84 33197.25 28496.00 13997.59 17297.95 18291.38 24899.46 20193.16 25096.35 36198.99 182
PGM-MVS97.88 7497.52 10898.96 1499.20 7797.62 2297.09 12499.06 6595.45 16897.55 17397.94 18397.11 5599.78 5094.77 19499.46 15299.48 76
LS3D97.77 8897.50 11198.57 4896.24 33997.58 2598.45 3298.85 12398.58 3297.51 17697.94 18395.74 13499.63 14795.19 16698.97 23798.51 247
USDC94.56 26094.57 25694.55 30397.78 26286.43 33192.75 33498.65 17785.96 35596.91 21997.93 18590.82 25798.74 32990.71 29799.59 10498.47 251
test20.0396.58 17196.61 16396.48 20998.49 17791.72 23395.68 21497.69 26796.81 10098.27 11897.92 18694.18 18098.71 33390.78 29299.66 8699.00 179
FMVSNet395.26 22794.94 22996.22 22396.53 33390.06 25795.99 19497.66 27094.11 21997.99 14897.91 18780.22 34699.63 14794.60 20099.44 15698.96 185
SF-MVS97.60 10297.39 11598.22 7598.93 11795.69 8997.05 12699.10 5495.32 17497.83 16697.88 18896.44 10399.72 9094.59 20399.39 17399.25 136
SteuartSystems-ACMMP98.02 5297.76 8198.79 3099.43 3897.21 4297.15 11998.90 10796.58 10898.08 13997.87 18997.02 6499.76 6495.25 16399.59 10499.40 100
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5397.66 9099.01 998.77 13897.93 1297.38 10998.83 13397.32 8798.06 14297.85 19096.65 8899.77 5995.00 18299.11 22399.32 115
DU-MVS97.79 8697.60 10098.36 6398.73 14095.78 8595.65 21798.87 11697.57 7098.31 11497.83 19194.69 16399.85 3097.02 8099.71 7499.46 81
NR-MVSNet97.96 5697.86 6998.26 7098.73 14095.54 9598.14 5598.73 15597.79 5699.42 2397.83 19194.40 17599.78 5095.91 12399.76 5899.46 81
CHOSEN 1792x268894.10 27693.41 28596.18 22599.16 8290.04 25892.15 35298.68 16779.90 39196.22 26097.83 19187.92 29799.42 21289.18 32399.65 8799.08 168
TAMVS95.49 21494.94 22997.16 15998.31 19193.41 18595.07 25496.82 30291.09 29597.51 17697.82 19489.96 27199.42 21288.42 33499.44 15698.64 232
UniMVSNet (Re)97.83 7997.65 9198.35 6498.80 13295.86 8495.92 20199.04 7697.51 7598.22 12297.81 19594.68 16599.78 5097.14 7599.75 6599.41 99
VNet96.84 15096.83 15196.88 18298.06 22392.02 22696.35 16697.57 27897.70 6597.88 16097.80 19692.40 23099.54 17894.73 19698.96 23899.08 168
YYNet194.73 24794.84 23794.41 30997.47 29885.09 34890.29 38295.85 32092.52 27097.53 17497.76 19791.97 23999.18 27893.31 24596.86 34698.95 186
MDA-MVSNet_test_wron94.73 24794.83 23994.42 30897.48 29485.15 34690.28 38395.87 31992.52 27097.48 18097.76 19791.92 24299.17 28293.32 24496.80 35198.94 188
TinyColmap96.00 19596.34 18194.96 28297.90 23987.91 30394.13 29498.49 19194.41 20798.16 12997.76 19796.29 11298.68 33990.52 30299.42 16798.30 270
Patchmatch-RL test94.66 25594.49 25795.19 26998.54 16988.91 28092.57 34098.74 15491.46 28998.32 11297.75 20077.31 36098.81 32396.06 11099.61 9997.85 313
MP-MVScopyleft97.64 9897.18 12999.00 1099.32 5597.77 1897.49 10398.73 15596.27 12295.59 28697.75 20096.30 11099.78 5093.70 23699.48 14799.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 11297.10 13298.55 5099.04 10696.70 5296.24 17598.89 10893.71 22997.97 15297.75 20097.44 4099.63 14793.22 24899.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 20595.28 21796.92 17998.15 21693.03 19495.64 22098.20 22690.39 30596.63 23897.73 20391.63 24699.10 29591.84 26997.31 33998.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 7097.53 10799.04 599.22 6897.87 1597.74 8498.78 14796.04 13697.10 20197.73 20396.53 9599.78 5095.16 17099.50 14099.46 81
XVG-OURS97.12 13296.74 15698.26 7098.99 11097.45 3393.82 30799.05 6995.19 17998.32 11297.70 20595.22 15098.41 36194.27 21398.13 30198.93 192
UniMVSNet_NR-MVSNet97.83 7997.65 9198.37 6298.72 14295.78 8595.66 21599.02 8098.11 4898.31 11497.69 20694.65 16799.85 3097.02 8099.71 7499.48 76
D2MVS95.18 23095.17 22195.21 26897.76 26487.76 30994.15 29197.94 25289.77 31496.99 21297.68 20787.45 30099.14 28595.03 18199.81 4798.74 221
XVS97.96 5697.63 9698.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25397.64 20896.49 9899.72 9095.66 13699.37 17599.45 85
ACMMPR97.95 6097.62 9898.94 1699.20 7797.56 2697.59 9498.83 13396.05 13497.46 18397.63 20996.77 8499.76 6495.61 14099.46 15299.49 70
Anonymous2023120695.27 22695.06 22795.88 23998.72 14289.37 27195.70 21197.85 25788.00 33796.98 21497.62 21091.95 24099.34 24589.21 32299.53 12698.94 188
region2R97.92 6797.59 10198.92 2299.22 6897.55 2797.60 9298.84 12796.00 13997.22 19097.62 21096.87 7999.76 6495.48 14899.43 16499.46 81
GeoE97.75 8997.70 8497.89 10198.88 12394.53 14097.10 12398.98 9595.75 15597.62 17197.59 21297.61 3799.77 5996.34 10199.44 15699.36 112
ppachtmachnet_test94.49 26494.84 23793.46 33096.16 34582.10 37390.59 37997.48 28090.53 30397.01 21197.59 21291.01 25499.36 23893.97 22799.18 21398.94 188
APD-MVScopyleft97.00 13796.53 17198.41 5998.55 16796.31 6796.32 16898.77 14892.96 26397.44 18497.58 21495.84 12499.74 7991.96 26499.35 18399.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 6397.64 9498.83 2699.15 8597.50 3097.59 9498.84 12796.05 13497.49 17897.54 21597.07 5999.70 11295.61 14099.46 15299.30 120
UnsupCasMVSNet_eth95.91 19895.73 20896.44 21098.48 17991.52 23695.31 24198.45 19495.76 15397.48 18097.54 21589.53 27898.69 33694.43 20594.61 38499.13 155
XVG-OURS-SEG-HR97.38 11997.07 13598.30 6899.01 10997.41 3594.66 27299.02 8095.20 17898.15 13197.52 21798.83 598.43 36094.87 18796.41 35999.07 170
MG-MVS94.08 27894.00 27494.32 31297.09 31985.89 33693.19 32795.96 31792.52 27094.93 30497.51 21889.54 27698.77 32687.52 34897.71 32098.31 268
HPM-MVScopyleft98.11 4497.83 7398.92 2299.42 4097.46 3298.57 2199.05 6995.43 17197.41 18597.50 21997.98 1999.79 4795.58 14399.57 10999.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 15898.53 17096.02 19198.98 9593.23 24597.18 19597.46 22096.47 10099.62 15292.99 25299.32 193
CP-MVS97.92 6797.56 10498.99 1198.99 11097.82 1697.93 6998.96 9996.11 13196.89 22097.45 22196.85 8099.78 5095.19 16699.63 9199.38 106
PC_three_145287.24 34298.37 10297.44 22297.00 6596.78 39592.01 26399.25 20499.21 140
ZNCC-MVS97.92 6797.62 9898.83 2699.32 5597.24 4097.45 10498.84 12795.76 15396.93 21797.43 22397.26 5099.79 4796.06 11099.53 12699.45 85
N_pmnet95.18 23094.23 26698.06 8897.85 24196.55 5992.49 34291.63 37289.34 31698.09 13797.41 22490.33 26599.06 29991.58 27499.31 19698.56 241
GST-MVS97.82 8397.49 11298.81 2899.23 6597.25 3997.16 11898.79 14395.96 14197.53 17497.40 22596.93 7199.77 5995.04 17999.35 18399.42 97
tpm91.08 33390.85 33191.75 36795.33 37378.09 39295.03 25891.27 37788.75 32593.53 34097.40 22571.24 38499.30 25591.25 28093.87 38897.87 312
MDTV_nov1_ep1391.28 32294.31 38673.51 40894.80 26593.16 35586.75 35093.45 34397.40 22576.37 36498.55 35188.85 32796.43 358
DeepPCF-MVS94.58 596.90 14696.43 17698.31 6797.48 29497.23 4192.56 34198.60 18092.84 26598.54 8497.40 22596.64 9098.78 32594.40 20899.41 17198.93 192
MSLP-MVS++96.42 17996.71 15795.57 25397.82 24990.56 25595.71 21098.84 12794.72 19696.71 23197.39 22994.91 16098.10 37795.28 16199.02 23498.05 298
EPNet93.72 28692.62 30497.03 17387.61 41292.25 21496.27 17091.28 37696.74 10287.65 39897.39 22985.00 31899.64 14392.14 26299.48 14799.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 28994.07 27292.45 35997.57 28780.67 38486.46 39796.00 31593.99 22397.10 20197.38 23189.90 27297.82 38188.76 32899.47 14998.86 207
DeepC-MVS_fast94.34 796.74 15896.51 17397.44 13997.69 27494.15 15796.02 19198.43 19793.17 25397.30 18797.38 23195.48 14199.28 26193.74 23399.34 18698.88 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 24694.80 24194.85 28896.16 34586.45 33091.14 37298.20 22693.49 23697.03 20997.37 23384.97 31999.26 26595.28 16199.56 11298.83 209
OPU-MVS97.64 11898.01 22795.27 11396.79 14097.35 23496.97 6798.51 35491.21 28199.25 20499.14 153
DIV-MVS_self_test94.73 24794.64 24795.01 27895.86 35687.00 32291.33 36698.08 24493.34 24197.10 20197.34 23584.02 32699.31 25295.15 17299.55 11898.72 224
cl____94.73 24794.64 24795.01 27895.85 35787.00 32291.33 36698.08 24493.34 24197.10 20197.33 23684.01 32799.30 25595.14 17399.56 11298.71 227
WR-MVS96.90 14696.81 15297.16 15998.56 16692.20 21994.33 28098.12 24197.34 8698.20 12397.33 23692.81 21299.75 7094.79 19199.81 4799.54 53
ITE_SJBPF97.85 10498.64 15296.66 5598.51 19095.63 15997.22 19097.30 23895.52 14098.55 35190.97 28598.90 24598.34 265
Vis-MVSNet (Re-imp)95.11 23394.85 23695.87 24099.12 9389.17 27497.54 10294.92 33796.50 11396.58 24097.27 23983.64 32899.48 19688.42 33499.67 8498.97 184
c3_l95.20 22995.32 21694.83 29096.19 34386.43 33191.83 35998.35 21193.47 23797.36 18697.26 24088.69 28599.28 26195.41 15899.36 17898.78 215
eth_miper_zixun_eth94.89 24294.93 23194.75 29495.99 35186.12 33491.35 36598.49 19193.40 23897.12 19997.25 24186.87 30699.35 24295.08 17898.82 25698.78 215
pmmvs494.82 24594.19 26996.70 19697.42 30192.75 20292.09 35596.76 30486.80 34995.73 28397.22 24289.28 28298.89 31693.28 24699.14 21798.46 253
OMC-MVS96.48 17596.00 19497.91 10098.30 19296.01 7994.86 26498.60 18091.88 28297.18 19597.21 24396.11 11799.04 30190.49 30599.34 18698.69 228
CS-MVS98.09 4598.01 5598.32 6598.45 18296.69 5398.52 2799.69 698.07 5096.07 26797.19 24496.88 7799.86 2797.50 6399.73 6798.41 254
pmmvs594.63 25794.34 26495.50 25897.63 28488.34 29194.02 29797.13 29087.15 34395.22 29597.15 24587.50 29999.27 26493.99 22599.26 20398.88 204
our_test_394.20 27494.58 25493.07 33996.16 34581.20 38190.42 38196.84 30090.72 29997.14 19797.13 24690.47 26199.11 29294.04 22498.25 29698.91 196
CPTT-MVS96.69 16496.08 19198.49 5398.89 12296.64 5697.25 11398.77 14892.89 26496.01 27097.13 24692.23 23299.67 13092.24 26199.34 18699.17 147
MS-PatchMatch94.83 24494.91 23394.57 30296.81 32887.10 32194.23 28697.34 28388.74 32697.14 19797.11 24891.94 24198.23 37392.99 25297.92 30998.37 259
FPMVS89.92 34488.63 35293.82 32298.37 18896.94 4691.58 36193.34 35488.00 33790.32 38297.10 24970.87 38791.13 40671.91 40496.16 36793.39 396
ZD-MVS98.43 18495.94 8098.56 18690.72 29996.66 23597.07 25095.02 15699.74 7991.08 28298.93 243
DELS-MVS96.17 18796.23 18495.99 23197.55 29090.04 25892.38 35098.52 18894.13 21796.55 24497.06 25194.99 15799.58 16495.62 13999.28 20098.37 259
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 14496.55 16898.03 9398.00 23195.54 9594.87 26398.17 23294.60 20196.38 25097.05 25295.67 13699.36 23895.12 17699.08 22799.19 144
旧先验197.80 25493.87 16697.75 26497.04 25393.57 19498.68 26998.72 224
testdata95.70 24998.16 21490.58 25397.72 26680.38 38995.62 28597.02 25492.06 23898.98 30989.06 32698.52 28297.54 333
PatchmatchNetpermissive91.98 32291.87 31292.30 36194.60 38479.71 38795.12 24993.59 35289.52 31593.61 33797.02 25477.94 35399.18 27890.84 28994.57 38698.01 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EC-MVSNet97.90 7297.94 6297.79 10798.66 15195.14 12198.31 4099.66 997.57 7095.95 27197.01 25696.99 6699.82 3797.66 5899.64 8998.39 257
SCA93.38 29793.52 28392.96 34596.24 33981.40 38093.24 32594.00 34591.58 28894.57 30996.97 25787.94 29399.42 21289.47 31997.66 32598.06 295
Patchmatch-test93.60 29193.25 28794.63 29796.14 34987.47 31396.04 18994.50 34193.57 23496.47 24696.97 25776.50 36398.61 34590.67 29998.41 29197.81 317
CostFormer89.75 34689.25 34491.26 37094.69 38378.00 39495.32 24091.98 36981.50 38490.55 37996.96 25971.06 38698.89 31688.59 33292.63 39296.87 353
diffmvspermissive96.04 19296.23 18495.46 26197.35 30588.03 30193.42 31999.08 6194.09 22196.66 23596.93 26093.85 18899.29 25996.01 11798.67 27099.06 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t93.96 28193.22 28896.19 22499.06 10190.97 24695.99 19498.94 10273.88 40493.43 34496.93 26092.38 23199.37 23589.09 32499.28 20098.25 276
CS-MVS-test97.91 7097.84 7098.14 8298.52 17196.03 7898.38 3599.67 798.11 4895.50 28896.92 26296.81 8399.87 2596.87 8599.76 5898.51 247
Test_1112_low_res93.53 29392.86 29495.54 25798.60 16088.86 28292.75 33498.69 16582.66 38092.65 36196.92 26284.75 32099.56 17190.94 28697.76 31698.19 282
tpmrst90.31 33890.61 33689.41 37994.06 39272.37 41095.06 25593.69 34788.01 33692.32 36796.86 26477.45 35798.82 32191.04 28387.01 40297.04 347
PHI-MVS96.96 14296.53 17198.25 7397.48 29496.50 6096.76 14298.85 12393.52 23596.19 26396.85 26595.94 12099.42 21293.79 23299.43 16498.83 209
tttt051793.31 29892.56 30595.57 25398.71 14587.86 30497.44 10587.17 39995.79 15297.47 18296.84 26664.12 39699.81 3996.20 10799.32 19399.02 178
patchmatchnet-post96.84 26677.36 35999.42 212
ADS-MVSNet291.47 32990.51 33794.36 31095.51 36885.63 33795.05 25695.70 32183.46 37792.69 35996.84 26679.15 34999.41 22185.66 36290.52 39598.04 299
ADS-MVSNet90.95 33590.26 33993.04 34095.51 36882.37 37295.05 25693.41 35383.46 37792.69 35996.84 26679.15 34998.70 33485.66 36290.52 39598.04 299
HY-MVS91.43 1592.58 30991.81 31494.90 28596.49 33488.87 28197.31 11094.62 33985.92 35690.50 38096.84 26685.05 31799.40 22383.77 37895.78 37296.43 369
UnsupCasMVSNet_bld94.72 25194.26 26596.08 22998.62 15890.54 25693.38 32198.05 25090.30 30697.02 21096.80 27189.54 27699.16 28388.44 33396.18 36598.56 241
HQP_MVS96.66 16696.33 18297.68 11698.70 14794.29 15196.50 15698.75 15296.36 11996.16 26496.77 27291.91 24399.46 20192.59 25799.20 20999.28 127
plane_prior496.77 272
MVS_111021_HR96.73 16096.54 17097.27 15298.35 19093.66 17793.42 31998.36 20894.74 19596.58 24096.76 27496.54 9498.99 30794.87 18799.27 20299.15 150
CANet95.86 20095.65 21196.49 20896.41 33690.82 24894.36 27998.41 20194.94 19092.62 36496.73 27592.68 21799.71 10495.12 17699.60 10298.94 188
TSAR-MVS + GP.96.47 17696.12 18897.49 13497.74 26995.23 11594.15 29196.90 29993.26 24498.04 14596.70 27694.41 17498.89 31694.77 19499.14 21798.37 259
test22298.17 21293.24 19192.74 33697.61 27775.17 40294.65 30896.69 27790.96 25698.66 27297.66 325
新几何197.25 15598.29 19394.70 13397.73 26577.98 39794.83 30596.67 27892.08 23799.45 20588.17 33898.65 27497.61 329
miper_ehance_all_eth94.69 25294.70 24494.64 29695.77 36286.22 33391.32 36898.24 22191.67 28497.05 20896.65 27988.39 29099.22 27594.88 18698.34 29298.49 250
MVS_111021_LR96.82 15496.55 16897.62 11998.27 19795.34 11093.81 30998.33 21294.59 20396.56 24296.63 28096.61 9198.73 33094.80 19099.34 18698.78 215
CDPH-MVS95.45 21994.65 24697.84 10598.28 19594.96 12693.73 31198.33 21285.03 36795.44 28996.60 28195.31 14799.44 20890.01 31199.13 21999.11 163
CMPMVSbinary73.10 2392.74 30791.39 31996.77 19193.57 39894.67 13494.21 28897.67 26880.36 39093.61 33796.60 28182.85 33397.35 38684.86 37198.78 25998.29 273
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 24394.12 27197.14 16197.64 28393.57 17993.96 30397.06 29490.05 31096.30 25696.55 28386.10 30999.47 19890.10 31099.31 19698.40 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 19095.63 21297.36 14698.19 20695.55 9495.44 22798.82 14192.29 27695.70 28496.55 28392.63 22098.69 33691.75 27399.33 19197.85 313
HPM-MVS++copyleft96.99 13896.38 17998.81 2898.64 15297.59 2495.97 19698.20 22695.51 16695.06 29896.53 28594.10 18199.70 11294.29 21299.15 21699.13 155
EPMVS89.26 35188.55 35391.39 36992.36 40579.11 39095.65 21779.86 40888.60 32893.12 35096.53 28570.73 38898.10 37790.75 29389.32 39996.98 348
HyFIR lowres test93.72 28692.65 30296.91 18198.93 11791.81 23291.23 37098.52 18882.69 37996.46 24796.52 28780.38 34599.90 1890.36 30798.79 25899.03 175
BH-RMVSNet94.56 26094.44 26294.91 28397.57 28787.44 31493.78 31096.26 31193.69 23196.41 24996.50 28892.10 23699.00 30585.96 35897.71 32098.31 268
MSP-MVS97.45 11396.92 14699.03 699.26 5997.70 1997.66 8898.89 10895.65 15898.51 8696.46 28992.15 23399.81 3995.14 17398.58 28099.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
原ACMM196.58 20298.16 21492.12 22198.15 23885.90 35793.49 34196.43 29092.47 22999.38 23087.66 34398.62 27698.23 277
tpm288.47 35887.69 36190.79 37294.98 37977.34 39795.09 25191.83 37077.51 40089.40 39096.41 29167.83 39398.73 33083.58 38092.60 39396.29 371
OpenMVS_ROBcopyleft91.80 1493.64 29093.05 28995.42 26297.31 31191.21 24295.08 25396.68 30881.56 38396.88 22196.41 29190.44 26499.25 26785.39 36697.67 32495.80 377
CL-MVSNet_self_test95.04 23694.79 24295.82 24297.51 29289.79 26291.14 37296.82 30293.05 25696.72 23096.40 29390.82 25799.16 28391.95 26598.66 27298.50 249
F-COLMAP95.30 22594.38 26398.05 9298.64 15296.04 7695.61 22198.66 17289.00 32293.22 34896.40 29392.90 21099.35 24287.45 34997.53 33098.77 218
NCCC96.52 17395.99 19598.10 8597.81 25095.68 9095.00 25998.20 22695.39 17295.40 29196.36 29593.81 18999.45 20593.55 23998.42 29099.17 147
new_pmnet92.34 31391.69 31794.32 31296.23 34189.16 27592.27 35192.88 35884.39 37695.29 29396.35 29685.66 31396.74 39684.53 37397.56 32897.05 346
cl2293.25 30092.84 29694.46 30794.30 38786.00 33591.09 37496.64 30990.74 29895.79 27896.31 29778.24 35298.77 32694.15 21898.34 29298.62 235
tpmvs90.79 33690.87 33090.57 37492.75 40476.30 40195.79 20893.64 35191.04 29691.91 37096.26 29877.19 36198.86 32089.38 32189.85 39896.56 366
test_prior293.33 32394.21 21394.02 32596.25 29993.64 19391.90 26698.96 238
testgi96.07 19096.50 17494.80 29199.26 5987.69 31095.96 19898.58 18495.08 18498.02 14796.25 29997.92 2097.60 38588.68 33198.74 26399.11 163
DP-MVS Recon95.55 21295.13 22296.80 18898.51 17393.99 16394.60 27498.69 16590.20 30895.78 28096.21 30192.73 21698.98 30990.58 30198.86 25197.42 338
hse-mvs295.77 20395.09 22497.79 10797.84 24695.51 9795.66 21595.43 33196.58 10897.21 19296.16 30284.14 32499.54 17895.89 12496.92 34398.32 266
MVSFormer96.14 18896.36 18095.49 25997.68 27587.81 30798.67 1699.02 8096.50 11394.48 31396.15 30386.90 30499.92 798.73 2399.13 21998.74 221
jason94.39 26794.04 27395.41 26498.29 19387.85 30692.74 33696.75 30585.38 36495.29 29396.15 30388.21 29299.65 13894.24 21499.34 18698.74 221
jason: jason.
test_yl94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
DCV-MVSNet94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
dp88.08 36188.05 35788.16 38692.85 40268.81 41294.17 28992.88 35885.47 36191.38 37596.14 30568.87 39298.81 32386.88 35483.80 40596.87 353
AUN-MVS93.95 28392.69 30197.74 11097.80 25495.38 10595.57 22495.46 33091.26 29392.64 36296.10 30874.67 37199.55 17593.72 23596.97 34298.30 270
MCST-MVS96.24 18495.80 20597.56 12298.75 13994.13 15894.66 27298.17 23290.17 30996.21 26196.10 30895.14 15299.43 21094.13 21998.85 25299.13 155
TEST997.84 24695.23 11593.62 31398.39 20486.81 34893.78 32995.99 31094.68 16599.52 183
train_agg95.46 21894.66 24597.88 10297.84 24695.23 11593.62 31398.39 20487.04 34493.78 32995.99 31094.58 16999.52 18391.76 27298.90 24598.89 200
MSDG95.33 22395.13 22295.94 23797.40 30291.85 23091.02 37598.37 20795.30 17596.31 25595.99 31094.51 17298.38 36489.59 31797.65 32697.60 330
test_897.81 25095.07 12493.54 31698.38 20687.04 34493.71 33395.96 31394.58 16999.52 183
CSCG97.40 11897.30 12097.69 11598.95 11294.83 12897.28 11298.99 9296.35 12198.13 13395.95 31495.99 11999.66 13694.36 21199.73 6798.59 238
TAPA-MVS93.32 1294.93 24094.23 26697.04 17298.18 20994.51 14195.22 24698.73 15581.22 38696.25 25995.95 31493.80 19098.98 30989.89 31398.87 24997.62 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_rt94.03 28093.65 28095.17 27195.76 36393.42 18493.97 30298.33 21284.68 37193.17 34995.89 31692.53 22794.79 40093.50 24094.97 38097.31 342
baseline193.14 30292.64 30394.62 29897.34 30787.20 31996.67 15293.02 35694.71 19796.51 24595.83 31781.64 33698.60 34790.00 31288.06 40198.07 291
sss94.22 27093.72 27995.74 24697.71 27289.95 26093.84 30696.98 29688.38 33293.75 33295.74 31887.94 29398.89 31691.02 28498.10 30298.37 259
CNLPA95.04 23694.47 25996.75 19297.81 25095.25 11494.12 29597.89 25594.41 20794.57 30995.69 31990.30 26898.35 36786.72 35698.76 26196.64 363
PCF-MVS89.43 1892.12 31890.64 33596.57 20497.80 25493.48 18289.88 38998.45 19474.46 40396.04 26995.68 32090.71 25999.31 25273.73 40199.01 23696.91 352
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 25294.75 24394.52 30497.95 23687.53 31294.07 29697.01 29593.99 22397.10 20195.65 32192.65 21998.95 31487.60 34496.74 35297.09 345
CANet_DTU94.65 25694.21 26895.96 23395.90 35389.68 26493.92 30497.83 26193.19 24990.12 38595.64 32288.52 28799.57 17093.27 24799.47 14998.62 235
PatchMatch-RL94.61 25893.81 27897.02 17498.19 20695.72 8793.66 31297.23 28588.17 33594.94 30395.62 32391.43 24798.57 34887.36 35097.68 32396.76 361
tpm cat188.01 36287.33 36390.05 37894.48 38576.28 40294.47 27794.35 34373.84 40589.26 39195.61 32473.64 37698.30 37084.13 37486.20 40395.57 382
Effi-MVS+-dtu96.81 15596.09 19098.99 1196.90 32798.69 596.42 15998.09 24395.86 14995.15 29695.54 32594.26 17899.81 3994.06 22198.51 28498.47 251
AdaColmapbinary95.11 23394.62 25096.58 20297.33 30994.45 14494.92 26198.08 24493.15 25493.98 32795.53 32694.34 17699.10 29585.69 36198.61 27796.20 373
thisisatest053092.71 30891.76 31695.56 25598.42 18588.23 29396.03 19087.35 39894.04 22296.56 24295.47 32764.03 39799.77 5994.78 19399.11 22398.68 231
tt080597.44 11497.56 10497.11 16399.55 2296.36 6498.66 1995.66 32298.31 4097.09 20695.45 32897.17 5498.50 35598.67 2697.45 33596.48 368
WTY-MVS93.55 29293.00 29295.19 26997.81 25087.86 30493.89 30596.00 31589.02 32194.07 32295.44 32986.27 30899.33 24787.69 34296.82 34998.39 257
PLCcopyleft91.02 1694.05 27992.90 29397.51 12798.00 23195.12 12394.25 28498.25 21986.17 35391.48 37495.25 33091.01 25499.19 27785.02 37096.69 35498.22 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 34188.90 35193.32 33194.20 39185.34 34191.25 36992.56 36578.59 39593.82 32895.17 33167.36 39498.69 33689.08 32598.03 30595.92 374
NP-MVS98.14 21893.72 17295.08 332
HQP-MVS95.17 23294.58 25496.92 17997.85 24192.47 20894.26 28198.43 19793.18 25092.86 35595.08 33290.33 26599.23 27390.51 30398.74 26399.05 174
cdsmvs_eth3d_5k24.22 37832.30 3810.00 3960.00 4190.00 4210.00 40798.10 2420.00 4140.00 41595.06 33497.54 390.00 4150.00 4140.00 4130.00 411
lupinMVS93.77 28493.28 28695.24 26797.68 27587.81 30792.12 35396.05 31384.52 37394.48 31395.06 33486.90 30499.63 14793.62 23899.13 21998.27 274
1112_ss94.12 27593.42 28496.23 22198.59 16290.85 24794.24 28598.85 12385.49 36092.97 35394.94 33686.01 31099.64 14391.78 27197.92 30998.20 280
ab-mvs-re7.91 38210.55 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.94 3360.00 4190.00 4150.00 4140.00 4130.00 411
Fast-Effi-MVS+-dtu96.44 17796.12 18897.39 14597.18 31594.39 14595.46 22698.73 15596.03 13894.72 30694.92 33896.28 11399.69 11993.81 23197.98 30698.09 288
EPNet_dtu91.39 33090.75 33393.31 33290.48 40982.61 37094.80 26592.88 35893.39 23981.74 40694.90 33981.36 33999.11 29288.28 33698.87 24998.21 279
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 28892.77 30096.42 21297.91 23792.54 20491.17 37197.47 28184.99 36993.08 35194.74 34089.90 27299.00 30587.54 34698.09 30397.72 323
Effi-MVS+96.19 18696.01 19396.71 19597.43 30092.19 22096.12 18499.10 5495.45 16893.33 34794.71 34197.23 5399.56 17193.21 24997.54 32998.37 259
GA-MVS92.83 30692.15 31094.87 28796.97 32287.27 31890.03 38496.12 31291.83 28394.05 32394.57 34276.01 36798.97 31392.46 26097.34 33898.36 264
miper_enhance_ethall93.14 30292.78 29994.20 31693.65 39685.29 34389.97 38597.85 25785.05 36696.15 26694.56 34385.74 31299.14 28593.74 23398.34 29298.17 285
xiu_mvs_v1_base_debu95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base_debi95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
PVSNet_Blended93.96 28193.65 28094.91 28397.79 25987.40 31591.43 36398.68 16784.50 37494.51 31194.48 34793.04 20499.30 25589.77 31598.61 27798.02 301
PAPM_NR94.61 25894.17 27095.96 23398.36 18991.23 24195.93 20097.95 25192.98 25993.42 34594.43 34890.53 26098.38 36487.60 34496.29 36398.27 274
API-MVS95.09 23595.01 22895.31 26596.61 33194.02 16196.83 13697.18 28895.60 16195.79 27894.33 34994.54 17198.37 36685.70 36098.52 28293.52 394
alignmvs96.01 19495.52 21597.50 13197.77 26394.71 13196.07 18796.84 30097.48 7696.78 22894.28 35085.50 31599.40 22396.22 10698.73 26698.40 255
CLD-MVS95.47 21795.07 22596.69 19798.27 19792.53 20591.36 36498.67 17091.22 29495.78 28094.12 35195.65 13798.98 30990.81 29099.72 7198.57 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MGCFI-Net97.20 13097.23 12597.08 16897.68 27593.71 17397.79 7799.09 5997.40 8396.59 23993.96 35297.67 3199.35 24296.43 9798.50 28598.17 285
TR-MVS92.54 31092.20 30993.57 32896.49 33486.66 32793.51 31794.73 33889.96 31194.95 30293.87 35390.24 27098.61 34581.18 38694.88 38195.45 383
sasdasda97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
canonicalmvs97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
xiu_mvs_v2_base94.22 27094.63 24992.99 34497.32 31084.84 35292.12 35397.84 25991.96 28094.17 31893.43 35696.07 11899.71 10491.27 27897.48 33294.42 389
CHOSEN 280x42089.98 34289.19 34892.37 36095.60 36781.13 38286.22 39897.09 29281.44 38587.44 39993.15 35773.99 37299.47 19888.69 33099.07 22996.52 367
KD-MVS_2432*160088.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
miper_refine_blended88.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
thres600view792.03 32191.43 31893.82 32298.19 20684.61 35496.27 17090.39 38396.81 10096.37 25193.11 35873.44 38099.49 19380.32 38897.95 30897.36 339
E-PMN89.52 35089.78 34288.73 38193.14 39977.61 39583.26 40392.02 36894.82 19493.71 33393.11 35875.31 36996.81 39385.81 35996.81 35091.77 400
thres100view90091.76 32591.26 32593.26 33398.21 20384.50 35596.39 16090.39 38396.87 9896.33 25293.08 36273.44 38099.42 21278.85 39397.74 31795.85 375
131492.38 31292.30 30792.64 35495.42 37285.15 34695.86 20496.97 29785.40 36390.62 37793.06 36391.12 25297.80 38286.74 35595.49 37794.97 387
PAPM87.64 36485.84 37193.04 34096.54 33284.99 34988.42 39595.57 32779.52 39283.82 40393.05 36480.57 34498.41 36162.29 40792.79 39195.71 378
Fast-Effi-MVS+95.49 21495.07 22596.75 19297.67 27992.82 19794.22 28798.60 18091.61 28693.42 34592.90 36596.73 8699.70 11292.60 25697.89 31297.74 321
UWE-MVS87.57 36686.72 36890.13 37795.21 37473.56 40791.94 35783.78 40688.73 32793.00 35292.87 36655.22 40799.25 26781.74 38397.96 30797.59 331
ET-MVSNet_ETH3D91.12 33189.67 34395.47 26096.41 33689.15 27691.54 36290.23 38789.07 32086.78 40292.84 36769.39 39199.44 20894.16 21796.61 35697.82 315
MVS90.02 34089.20 34792.47 35894.71 38286.90 32495.86 20496.74 30664.72 40690.62 37792.77 36892.54 22598.39 36379.30 39195.56 37692.12 398
BH-w/o92.14 31791.94 31192.73 35297.13 31885.30 34292.46 34495.64 32389.33 31794.21 31792.74 36989.60 27498.24 37281.68 38494.66 38394.66 388
PAPR92.22 31591.27 32395.07 27595.73 36588.81 28391.97 35697.87 25685.80 35890.91 37692.73 37091.16 25198.33 36879.48 39095.76 37398.08 289
MAR-MVS94.21 27293.03 29097.76 10996.94 32597.44 3496.97 13097.15 28987.89 33992.00 36992.73 37092.14 23499.12 28983.92 37597.51 33196.73 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 34988.44 35593.25 33495.62 36682.71 36893.82 30785.94 40288.89 32487.35 40092.54 37271.23 38599.33 24786.01 35794.60 38597.72 323
testing389.72 34788.26 35694.10 31997.66 28084.30 35994.80 26588.25 39694.66 19895.07 29792.51 37341.15 41499.43 21091.81 27098.44 28998.55 243
PS-MVSNAJ94.10 27694.47 25993.00 34397.35 30584.88 35091.86 35897.84 25991.96 28094.17 31892.50 37495.82 12799.71 10491.27 27897.48 33294.40 390
PMMVS92.39 31191.08 32696.30 22093.12 40092.81 19890.58 38095.96 31779.17 39491.85 37192.27 37590.29 26998.66 34189.85 31496.68 35597.43 337
WB-MVSnew91.50 32891.29 32192.14 36394.85 38080.32 38593.29 32488.77 39488.57 32994.03 32492.21 37692.56 22298.28 37180.21 38997.08 34197.81 317
PVSNet86.72 1991.10 33290.97 32991.49 36897.56 28978.04 39387.17 39694.60 34084.65 37292.34 36692.20 37787.37 30298.47 35885.17 36997.69 32297.96 305
tfpn200view991.55 32791.00 32793.21 33798.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31795.85 375
thres40091.68 32691.00 32793.71 32598.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31797.36 339
MVEpermissive73.61 2286.48 37185.92 37088.18 38596.23 34185.28 34481.78 40575.79 40986.01 35482.53 40591.88 38092.74 21587.47 40871.42 40594.86 38291.78 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 35389.22 34588.61 38293.00 40177.34 39782.91 40490.92 37994.64 20092.63 36391.81 38176.30 36597.02 39083.83 37796.90 34591.48 401
thisisatest051590.43 33789.18 34994.17 31897.07 32085.44 34089.75 39087.58 39788.28 33393.69 33591.72 38265.27 39599.58 16490.59 30098.67 27097.50 336
test_method66.88 37466.13 37769.11 39062.68 41525.73 41849.76 40696.04 31414.32 41064.27 41091.69 38373.45 37988.05 40776.06 39866.94 40793.54 393
EIA-MVS96.04 19295.77 20796.85 18497.80 25492.98 19596.12 18499.16 4294.65 19993.77 33191.69 38395.68 13599.67 13094.18 21698.85 25297.91 308
cascas91.89 32391.35 32093.51 32994.27 38885.60 33888.86 39498.61 17979.32 39392.16 36891.44 38589.22 28398.12 37690.80 29197.47 33496.82 358
IB-MVS85.98 2088.63 35786.95 36793.68 32695.12 37784.82 35390.85 37690.17 38887.55 34088.48 39591.34 38658.01 39999.59 16287.24 35293.80 38996.63 365
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 33490.42 33892.77 35197.47 29883.98 36294.01 29891.18 37895.12 18395.44 28991.21 38773.93 37399.31 25277.76 39697.63 32795.01 386
test0.0.03 190.11 33989.21 34692.83 34993.89 39486.87 32591.74 36088.74 39592.02 27894.71 30791.14 38873.92 37494.48 40283.75 37992.94 39097.16 344
ETV-MVS96.13 18995.90 20196.82 18797.76 26493.89 16595.40 23298.95 10195.87 14895.58 28791.00 38996.36 10899.72 9093.36 24298.83 25596.85 355
dmvs_re92.08 32091.27 32394.51 30597.16 31692.79 20195.65 21792.64 36394.11 21992.74 35890.98 39083.41 33094.44 40380.72 38794.07 38796.29 371
test-LLR89.97 34389.90 34190.16 37594.24 38974.98 40489.89 38689.06 39292.02 27889.97 38690.77 39173.92 37498.57 34891.88 26797.36 33696.92 350
test-mter87.92 36387.17 36490.16 37594.24 38974.98 40489.89 38689.06 39286.44 35289.97 38690.77 39154.96 41098.57 34891.88 26797.36 33696.92 350
testing1188.93 35487.63 36292.80 35095.87 35581.49 37992.48 34391.54 37391.62 28588.27 39690.24 39355.12 40999.11 29287.30 35196.28 36497.81 317
TESTMET0.1,187.20 36986.57 36989.07 38093.62 39772.84 40989.89 38687.01 40085.46 36289.12 39290.20 39456.00 40597.72 38390.91 28796.92 34396.64 363
testing9189.67 34888.55 35393.04 34095.90 35381.80 37792.71 33893.71 34693.71 22990.18 38490.15 39557.11 40099.22 27587.17 35396.32 36298.12 287
gm-plane-assit91.79 40671.40 41181.67 38290.11 39698.99 30784.86 371
testing9989.21 35288.04 35892.70 35395.78 36181.00 38392.65 33992.03 36793.20 24889.90 38890.08 39755.25 40699.14 28587.54 34695.95 36897.97 304
testing22287.35 36785.50 37492.93 34795.79 36082.83 36792.40 34990.10 38992.80 26688.87 39389.02 39848.34 41298.70 33475.40 39996.74 35297.27 343
ETVMVS87.62 36585.75 37293.22 33696.15 34883.26 36592.94 33090.37 38591.39 29090.37 38188.45 39951.93 41198.64 34273.76 40096.38 36097.75 320
DeepMVS_CXcopyleft77.17 38990.94 40885.28 34474.08 41252.51 40880.87 40888.03 40075.25 37070.63 41059.23 40984.94 40475.62 404
Syy-MVS92.09 31991.80 31592.93 34795.19 37582.65 36992.46 34491.35 37490.67 30191.76 37287.61 40185.64 31498.50 35594.73 19696.84 34797.65 326
myMVS_eth3d87.16 37085.61 37391.82 36695.19 37579.32 38892.46 34491.35 37490.67 30191.76 37287.61 40141.96 41398.50 35582.66 38196.84 34797.65 326
dmvs_testset87.30 36886.99 36588.24 38496.71 32977.48 39694.68 27186.81 40192.64 26989.61 38987.01 40385.91 31193.12 40461.04 40888.49 40094.13 391
PVSNet_081.89 2184.49 37283.21 37588.34 38395.76 36374.97 40683.49 40292.70 36278.47 39687.94 39786.90 40483.38 33196.63 39773.44 40266.86 40893.40 395
GG-mvs-BLEND90.60 37391.00 40784.21 36098.23 4772.63 41382.76 40484.11 40556.14 40496.79 39472.20 40392.09 39490.78 402
tmp_tt57.23 37662.50 37941.44 39334.77 41649.21 41783.93 40160.22 41515.31 40971.11 40979.37 40670.09 39044.86 41264.76 40682.93 40630.25 408
dongtai63.43 37563.37 37863.60 39183.91 41353.17 41585.14 39943.40 41777.91 39980.96 40779.17 40736.36 41577.10 40937.88 41045.63 40960.54 406
kuosan54.81 37754.94 38054.42 39274.43 41450.03 41684.98 40044.27 41661.80 40762.49 41170.43 40835.16 41658.04 41119.30 41141.61 41055.19 407
X-MVStestdata92.86 30590.83 33298.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25336.50 40996.49 9899.72 9095.66 13699.37 17599.45 85
testmvs12.33 38015.23 3833.64 3955.77 4182.23 42088.99 3933.62 4182.30 4135.29 41313.09 4104.52 4181.95 4135.16 4138.32 4126.75 410
test12312.59 37915.49 3823.87 3946.07 4172.55 41990.75 3782.59 4192.52 4125.20 41413.02 4114.96 4171.85 4145.20 4129.09 4117.23 409
test_post10.87 41276.83 36299.07 298
test_post194.98 26010.37 41376.21 36699.04 30189.47 319
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.98 38110.65 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41495.82 1270.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.32 38885.41 365
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 58
MSC_two_6792asdad98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
No_MVS98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
eth-test20.00 419
eth-test0.00 419
IU-MVS99.22 6895.40 10398.14 23985.77 35998.36 10595.23 16599.51 13699.49 70
save fliter98.48 17994.71 13194.53 27698.41 20195.02 188
test_0728_SECOND98.25 7399.23 6595.49 10196.74 14398.89 10899.75 7095.48 14899.52 13199.53 56
GSMVS98.06 295
test_part299.03 10796.07 7598.08 139
sam_mvs177.80 35498.06 295
sam_mvs77.38 358
MTGPAbinary98.73 155
MTMP96.55 15474.60 410
test9_res91.29 27798.89 24899.00 179
agg_prior290.34 30898.90 24599.10 167
agg_prior97.80 25494.96 12698.36 20893.49 34199.53 180
test_prior495.38 10593.61 315
test_prior97.46 13797.79 25994.26 15598.42 20099.34 24598.79 214
旧先验293.35 32277.95 39895.77 28298.67 34090.74 296
新几何293.43 318
无先验93.20 32697.91 25380.78 38799.40 22387.71 34197.94 307
原ACMM292.82 332
testdata299.46 20187.84 339
segment_acmp95.34 146
testdata192.77 33393.78 227
test1297.46 13797.61 28594.07 15997.78 26393.57 33993.31 19999.42 21298.78 25998.89 200
plane_prior798.70 14794.67 134
plane_prior698.38 18794.37 14891.91 243
plane_prior598.75 15299.46 20192.59 25799.20 20999.28 127
plane_prior394.51 14195.29 17696.16 264
plane_prior296.50 15696.36 119
plane_prior198.49 177
plane_prior94.29 15195.42 22994.31 21198.93 243
n20.00 420
nn0.00 420
door-mid98.17 232
test1198.08 244
door97.81 262
HQP5-MVS92.47 208
HQP-NCC97.85 24194.26 28193.18 25092.86 355
ACMP_Plane97.85 24194.26 28193.18 25092.86 355
BP-MVS90.51 303
HQP4-MVS92.87 35499.23 27399.06 172
HQP3-MVS98.43 19798.74 263
HQP2-MVS90.33 265
MDTV_nov1_ep13_2view57.28 41494.89 26280.59 38894.02 32578.66 35185.50 36497.82 315
ACMMP++_ref99.52 131
ACMMP++99.55 118
Test By Simon94.51 172