This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 9097.89 1399.47 399.32 2099.08 1097.87 15199.67 296.47 9599.92 597.88 3399.98 299.85 3
test_fmvs397.38 10897.56 9396.84 17698.63 14392.81 19397.60 8799.61 1090.87 27698.76 6099.66 394.03 17197.90 35499.24 599.68 7399.81 8
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2199.01 1699.63 1099.66 399.27 299.68 12097.75 4199.89 2599.62 29
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2999.67 299.73 399.65 599.15 399.86 2497.22 5899.92 1499.77 11
mvsany_test396.21 17095.93 18397.05 16197.40 28494.33 14695.76 19494.20 33089.10 29699.36 2199.60 693.97 17397.85 35595.40 14698.63 26298.99 173
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5698.05 4599.61 1299.52 793.72 18099.88 2098.72 1499.88 2699.65 26
ANet_high98.31 2998.94 696.41 20399.33 5389.64 25397.92 6799.56 1399.27 699.66 999.50 897.67 2899.83 3397.55 4999.98 299.77 11
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2696.23 11899.71 499.48 998.77 699.93 398.89 799.95 599.84 5
test_f95.82 18695.88 18695.66 23697.61 26793.21 18795.61 20698.17 21886.98 32198.42 8599.47 1090.46 24394.74 37697.71 4398.45 27399.03 166
gg-mvs-nofinetune88.28 33986.96 34592.23 34192.84 37884.44 34398.19 5274.60 38599.08 1087.01 37699.47 1056.93 38398.23 34878.91 36895.61 35094.01 367
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2796.91 8999.75 299.45 1295.82 11599.92 598.80 999.96 499.89 1
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6596.50 10699.32 2399.44 1397.43 3699.92 598.73 1299.95 599.86 2
Anonymous2023121198.55 1998.76 1397.94 9698.79 12294.37 14498.84 1199.15 3899.37 399.67 799.43 1495.61 12699.72 8698.12 2599.86 2999.73 19
SDMVSNet97.97 4998.26 3697.11 15699.41 4392.21 20696.92 12798.60 16498.58 2698.78 5599.39 1597.80 2299.62 14494.98 17199.86 2999.52 49
sd_testset97.97 4998.12 3897.51 12499.41 4393.44 17997.96 6398.25 20498.58 2698.78 5599.39 1598.21 1199.56 16392.65 23999.86 2999.52 49
test_fmvs296.38 16596.45 15896.16 21497.85 22891.30 22896.81 13399.45 1589.24 29598.49 7799.38 1788.68 26897.62 35998.83 899.32 18299.57 38
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 3195.62 15399.35 2299.37 1897.38 3899.90 1498.59 1899.91 1799.77 11
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4295.83 14499.67 799.37 1898.25 1099.92 598.77 1099.94 899.82 6
K. test v396.44 16296.28 16696.95 16799.41 4391.53 22597.65 8490.31 36598.89 1998.93 4499.36 2084.57 30399.92 597.81 3799.56 10299.39 93
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1199.02 1599.62 1199.36 2098.53 799.52 17598.58 1999.95 599.66 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_MVS97.95 5597.79 6598.43 5799.67 1295.56 9398.86 1096.73 29597.99 4799.15 3399.35 2289.84 25499.90 1498.64 1699.90 2399.82 6
SixPastTwentyTwo97.49 10097.57 9297.26 14999.56 2192.33 20298.28 4296.97 28498.30 3699.45 1699.35 2288.43 27199.89 1898.01 3099.76 5199.54 45
Gipumacopyleft98.07 4498.31 3297.36 14399.76 796.28 6898.51 2799.10 4498.76 2296.79 21299.34 2496.61 8698.82 30196.38 8699.50 12996.98 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt97.04 12296.98 12697.23 15298.44 17095.88 8096.82 13299.67 490.30 28399.27 2699.33 2594.04 17096.03 37397.14 6397.83 29699.78 10
JIA-IIPM91.79 30890.69 31795.11 25993.80 37090.98 23394.16 27491.78 35496.38 11090.30 36299.30 2672.02 36498.90 29588.28 31990.17 37295.45 358
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18298.20 5198.87 10198.23 3899.48 1499.27 2798.47 899.55 16796.52 8199.53 11599.60 31
Baseline_NR-MVSNet97.72 8597.79 6597.50 12899.56 2193.29 18395.44 21298.86 10498.20 4098.37 9099.24 2894.69 15199.55 16795.98 10699.79 4599.65 26
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 4099.08 1099.42 1799.23 2996.53 9099.91 1399.27 499.93 1099.73 19
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7497.57 6499.27 2699.22 3098.32 999.50 18097.09 6599.75 5699.50 53
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1698.85 2099.00 4199.20 3197.42 3799.59 15497.21 5999.76 5199.40 90
GBi-Net96.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
test196.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
FMVSNet197.95 5598.08 4197.56 11999.14 8893.67 17098.23 4698.66 15697.41 7599.00 4199.19 3295.47 13099.73 8195.83 11599.76 5199.30 109
VDDNet96.98 12896.84 13597.41 14099.40 4693.26 18597.94 6595.31 32099.26 798.39 8999.18 3587.85 28099.62 14495.13 16299.09 21499.35 103
DSMNet-mixed92.19 30191.83 29893.25 32096.18 32783.68 35096.27 16193.68 33476.97 37592.54 34799.18 3589.20 26698.55 32983.88 35598.60 26697.51 310
test111194.53 24694.81 22393.72 31099.06 9681.94 35998.31 3983.87 38196.37 11198.49 7799.17 3781.49 31899.73 8196.64 7699.86 2999.49 61
test250689.86 32889.16 33391.97 34298.95 10776.83 37598.54 2361.07 38996.20 11997.07 19599.16 3855.19 38899.69 11596.43 8599.83 3799.38 95
ECVR-MVScopyleft94.37 25294.48 24194.05 30698.95 10783.10 35198.31 3982.48 38296.20 11998.23 10999.16 3881.18 32199.66 13195.95 10799.83 3799.38 95
v1097.55 9697.97 5096.31 20798.60 14789.64 25397.44 10099.02 6596.60 9898.72 6399.16 3893.48 18499.72 8698.76 1199.92 1499.58 33
MIMVSNet198.51 2298.45 2798.67 4099.72 896.71 5098.76 1298.89 9398.49 2999.38 1999.14 4195.44 13299.84 3096.47 8399.80 4499.47 70
Vis-MVSNetpermissive98.27 3098.34 3198.07 8699.33 5395.21 12098.04 6099.46 1497.32 7997.82 15599.11 4296.75 8099.86 2497.84 3699.36 16799.15 141
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 9398.06 4496.23 20998.71 13289.44 25797.43 10298.82 12597.29 8198.74 6199.10 4393.86 17599.68 12098.61 1799.94 899.56 42
mvsmamba98.16 3498.06 4498.44 5599.53 2995.87 8198.70 1398.94 8797.71 5898.85 4999.10 4391.35 23299.83 3398.47 2099.90 2399.64 28
MVS-HIRNet88.40 33890.20 32382.99 36397.01 30460.04 38793.11 31185.61 37984.45 35088.72 37099.09 4584.72 30298.23 34882.52 36096.59 33690.69 378
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17698.23 4699.05 5697.40 7699.37 2099.08 4698.79 599.47 18997.74 4299.71 6599.50 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4499.36 499.29 2599.06 4797.27 4399.93 397.71 4399.91 1799.70 22
Anonymous2024052197.07 12197.51 9895.76 23199.35 5188.18 28197.78 7398.40 18897.11 8498.34 9699.04 4889.58 25799.79 4498.09 2799.93 1099.30 109
test_fmvsmvis_n_192098.08 4298.47 2496.93 16999.03 10293.29 18396.32 15999.65 795.59 15599.71 499.01 4997.66 2999.60 15399.44 299.83 3797.90 292
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3899.33 599.30 2499.00 5097.27 4399.92 597.64 4799.92 1499.75 16
DeepC-MVS95.41 497.82 7897.70 7298.16 7998.78 12495.72 8696.23 16699.02 6593.92 21198.62 6598.99 5197.69 2699.62 14496.18 9599.87 2799.15 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VPA-MVSNet98.27 3098.46 2597.70 11199.06 9693.80 16697.76 7699.00 7498.40 3199.07 3898.98 5296.89 7099.75 6797.19 6299.79 4599.55 44
lessismore_v097.05 16199.36 5092.12 21184.07 38098.77 5998.98 5285.36 29799.74 7697.34 5699.37 16499.30 109
test_cas_vis1_n_192095.34 20595.67 19294.35 29898.21 19086.83 31395.61 20699.26 2490.45 28198.17 11698.96 5484.43 30498.31 34596.74 7499.17 20397.90 292
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4199.22 899.22 3098.96 5497.35 3999.92 597.79 3999.93 1099.79 9
bld_raw_dy_0_6497.69 8797.61 8897.91 9799.54 2694.27 15198.06 5998.60 16496.60 9898.79 5498.95 5689.62 25599.84 3098.43 2299.91 1799.62 29
EU-MVSNet94.25 25394.47 24293.60 31398.14 20582.60 35497.24 11092.72 34685.08 34098.48 7998.94 5782.59 31698.76 30897.47 5399.53 11599.44 85
LCM-MVSNet-Re97.33 11397.33 10897.32 14598.13 20893.79 16796.99 12499.65 796.74 9499.47 1598.93 5896.91 6999.84 3090.11 29299.06 22098.32 254
test_vis1_n95.67 19195.89 18595.03 26498.18 19689.89 25096.94 12699.28 2388.25 30998.20 11198.92 5986.69 28997.19 36297.70 4598.82 24498.00 287
test_fmvs1_n95.21 21195.28 20094.99 26798.15 20389.13 26496.81 13399.43 1786.97 32297.21 18098.92 5983.00 31397.13 36398.09 2798.94 22998.72 214
XXY-MVS97.54 9797.70 7297.07 16099.46 3792.21 20697.22 11199.00 7494.93 18298.58 7098.92 5997.31 4199.41 21194.44 18999.43 15399.59 32
mvs_anonymous95.36 20496.07 17593.21 32296.29 32181.56 36094.60 25897.66 25793.30 22696.95 20598.91 6293.03 19499.38 22096.60 7897.30 32398.69 218
test_vis1_n_192095.77 18796.41 16093.85 30798.55 15484.86 33895.91 18999.71 292.72 24897.67 15898.90 6387.44 28398.73 31097.96 3198.85 24097.96 288
EGC-MVSNET83.08 34877.93 35198.53 5099.57 2097.55 2698.33 3898.57 1704.71 38410.38 38598.90 6395.60 12799.50 18095.69 12099.61 8998.55 232
KD-MVS_self_test97.86 7398.07 4297.25 15099.22 6792.81 19397.55 9298.94 8797.10 8598.85 4998.88 6595.03 14399.67 12597.39 5599.65 7899.26 121
UGNet96.81 14096.56 15097.58 11896.64 31393.84 16597.75 7797.12 27896.47 10993.62 31998.88 6593.22 18999.53 17295.61 12799.69 6999.36 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 5198.04 4697.71 11098.69 13694.28 15097.86 7098.31 20198.79 2199.23 2998.86 6795.76 12199.61 15195.49 13299.36 16799.23 127
FC-MVSNet-test98.16 3498.37 3097.56 11999.49 3593.10 18898.35 3599.21 2798.43 3098.89 4798.83 6894.30 16599.81 3797.87 3499.91 1799.77 11
new-patchmatchnet95.67 19196.58 14892.94 33097.48 27680.21 36592.96 31298.19 21794.83 18398.82 5298.79 6993.31 18799.51 17995.83 11599.04 22199.12 151
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3399.05 1399.17 3298.79 6995.47 13099.89 1897.95 3299.91 1799.75 16
ab-mvs96.59 15496.59 14796.60 18898.64 13992.21 20698.35 3597.67 25594.45 19596.99 20198.79 6994.96 14799.49 18490.39 28999.07 21798.08 273
testf198.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
APD_test298.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
EG-PatchMatch MVS97.69 8797.79 6597.40 14199.06 9693.52 17795.96 18498.97 8394.55 19498.82 5298.76 7497.31 4199.29 24397.20 6199.44 14599.38 95
nrg03098.54 2098.62 2198.32 6599.22 6795.66 9197.90 6899.08 5098.31 3499.02 3998.74 7597.68 2799.61 15197.77 4099.85 3499.70 22
VDD-MVS97.37 11097.25 11297.74 10898.69 13694.50 14097.04 12295.61 31498.59 2598.51 7498.72 7692.54 20999.58 15696.02 10299.49 13299.12 151
PatchT93.75 26993.57 26694.29 30195.05 35487.32 30496.05 17592.98 34297.54 6794.25 30098.72 7675.79 34999.24 25495.92 10995.81 34496.32 345
test_fmvsm_n_192098.08 4298.29 3597.43 13798.88 11493.95 16196.17 17199.57 1195.66 15099.52 1398.71 7897.04 5799.64 13699.21 699.87 2798.69 218
RPSCF97.87 7197.51 9898.95 1499.15 8198.43 697.56 9199.06 5496.19 12198.48 7998.70 7994.72 15099.24 25494.37 19499.33 18099.17 138
APDe-MVS98.14 3698.03 4798.47 5498.72 12996.04 7598.07 5899.10 4495.96 13498.59 6998.69 8096.94 6499.81 3796.64 7699.58 9699.57 38
IterMVS-LS96.92 13197.29 11095.79 23098.51 16088.13 28495.10 23598.66 15696.99 8698.46 8298.68 8192.55 20799.74 7696.91 7199.79 4599.50 53
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal97.72 8597.97 5096.94 16899.26 5892.23 20597.83 7298.45 17998.25 3799.13 3598.66 8296.65 8399.69 11593.92 21399.62 8398.91 187
FIs97.93 6298.07 4297.48 13299.38 4892.95 19198.03 6299.11 4398.04 4698.62 6598.66 8293.75 17999.78 4797.23 5799.84 3599.73 19
CP-MVSNet98.42 2598.46 2598.30 6899.46 3795.22 11898.27 4498.84 11199.05 1399.01 4098.65 8495.37 13399.90 1497.57 4899.91 1799.77 11
MVS_030496.62 15396.40 16197.28 14797.91 22492.30 20396.47 15189.74 36997.52 6895.38 27798.63 8592.76 19999.81 3799.28 399.93 1099.75 16
FMVSNet296.72 14696.67 14596.87 17497.96 22091.88 21997.15 11498.06 23695.59 15598.50 7698.62 8689.51 26199.65 13394.99 17099.60 9299.07 161
FA-MVS(test-final)94.91 22494.89 21794.99 26797.51 27488.11 28698.27 4495.20 32192.40 25696.68 21998.60 8783.44 31099.28 24593.34 22798.53 26897.59 308
PMVScopyleft89.60 1796.71 14896.97 12795.95 22399.51 3197.81 1697.42 10397.49 26697.93 4895.95 25698.58 8896.88 7296.91 36789.59 30099.36 16793.12 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 28492.79 28294.78 28095.44 34988.15 28296.18 16897.20 27384.94 34594.10 30498.57 8977.67 33699.39 21795.17 15595.81 34496.81 334
Patchmtry95.03 22194.59 23696.33 20594.83 35690.82 23696.38 15597.20 27396.59 10097.49 16698.57 8977.67 33699.38 22092.95 23899.62 8398.80 203
ambc96.56 19398.23 18991.68 22497.88 6998.13 22698.42 8598.56 9194.22 16799.04 28194.05 20899.35 17298.95 177
3Dnovator96.53 297.61 9297.64 8297.50 12897.74 25693.65 17498.49 2898.88 9996.86 9197.11 18898.55 9295.82 11599.73 8195.94 10899.42 15699.13 146
IterMVS-SCA-FT95.86 18496.19 16994.85 27597.68 26085.53 32692.42 32497.63 26396.99 8698.36 9398.54 9387.94 27599.75 6797.07 6799.08 21599.27 120
test_fmvs194.51 24794.60 23494.26 30295.91 33587.92 28895.35 22299.02 6586.56 32696.79 21298.52 9482.64 31597.00 36697.87 3498.71 25597.88 294
COLMAP_ROBcopyleft94.48 698.25 3298.11 3998.64 4399.21 7497.35 3597.96 6399.16 3498.34 3398.78 5598.52 9497.32 4099.45 19694.08 20599.67 7599.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3398.31 3297.98 9499.39 4795.22 11897.55 9299.20 2998.21 3999.25 2898.51 9698.21 1199.40 21394.79 17799.72 6299.32 104
RPMNet94.68 23794.60 23494.90 27295.44 34988.15 28296.18 16898.86 10497.43 7194.10 30498.49 9779.40 32899.76 6195.69 12095.81 34496.81 334
IterMVS95.42 20395.83 18794.20 30397.52 27383.78 34992.41 32597.47 26895.49 16098.06 13098.49 9787.94 27599.58 15696.02 10299.02 22299.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 7197.89 5797.81 10498.62 14594.82 12997.13 11798.79 12798.98 1798.74 6198.49 9795.80 12099.49 18495.04 16699.44 14599.11 154
casdiffmvs_mvgpermissive97.83 7598.11 3997.00 16698.57 15192.10 21495.97 18299.18 3297.67 6399.00 4198.48 10097.64 3099.50 18096.96 7099.54 11199.40 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet98.33 2798.30 3498.43 5799.07 9595.87 8196.73 14399.05 5698.67 2398.84 5198.45 10197.58 3399.88 2096.45 8499.86 2999.54 45
3Dnovator+96.13 397.73 8497.59 9098.15 8198.11 20995.60 9298.04 6098.70 14898.13 4196.93 20698.45 10195.30 13699.62 14495.64 12598.96 22699.24 126
dcpmvs_297.12 11997.99 4994.51 29299.11 9084.00 34797.75 7799.65 797.38 7799.14 3498.42 10395.16 13999.96 295.52 13199.78 4899.58 33
patch_mono-296.59 15496.93 13095.55 24298.88 11487.12 30794.47 26199.30 2194.12 20496.65 22398.41 10494.98 14699.87 2295.81 11799.78 4899.66 24
VPNet97.26 11697.49 10196.59 18999.47 3690.58 24196.27 16198.53 17297.77 5198.46 8298.41 10494.59 15699.68 12094.61 18499.29 18899.52 49
test_040297.84 7497.97 5097.47 13399.19 7794.07 15696.71 14498.73 13998.66 2498.56 7198.41 10496.84 7699.69 11594.82 17599.81 4198.64 222
v124096.74 14397.02 12595.91 22698.18 19688.52 27395.39 21898.88 9993.15 23598.46 8298.40 10792.80 19899.71 10198.45 2199.49 13299.49 61
APD_test197.95 5597.68 7698.75 3199.60 1798.60 597.21 11299.08 5096.57 10498.07 12998.38 10896.22 10599.14 26794.71 18399.31 18598.52 234
SMA-MVScopyleft97.48 10197.11 11898.60 4598.83 11896.67 5396.74 13998.73 13991.61 26698.48 7998.36 10996.53 9099.68 12095.17 15599.54 11199.45 76
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6997.63 8498.67 4099.35 5196.84 4796.36 15698.79 12795.07 17797.88 14898.35 11097.24 4799.72 8696.05 9999.58 9699.45 76
v119296.83 13897.06 12396.15 21598.28 18289.29 25995.36 22098.77 13293.73 21598.11 12298.34 11193.02 19599.67 12598.35 2399.58 9699.50 53
pmmvs-eth3d96.49 15996.18 17097.42 13998.25 18694.29 14794.77 25298.07 23589.81 29097.97 14098.33 11293.11 19099.08 27795.46 13899.84 3598.89 191
PM-MVS97.36 11297.10 11998.14 8298.91 11296.77 4996.20 16798.63 16293.82 21398.54 7298.33 11293.98 17299.05 28095.99 10599.45 14498.61 227
test072699.24 6295.51 9796.89 12998.89 9395.92 13798.64 6498.31 11497.06 55
MP-MVS-pluss97.69 8797.36 10698.70 3899.50 3496.84 4795.38 21998.99 7792.45 25498.11 12298.31 11497.25 4699.77 5696.60 7899.62 8399.48 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 13597.08 12196.13 21698.42 17289.28 26095.41 21698.67 15494.21 20197.97 14098.31 11493.06 19199.65 13398.06 2999.62 8399.45 76
LFMVS95.32 20794.88 21896.62 18798.03 21191.47 22797.65 8490.72 36299.11 997.89 14798.31 11479.20 32999.48 18793.91 21499.12 21098.93 183
DVP-MVS++97.96 5197.90 5498.12 8497.75 25395.40 10399.03 798.89 9396.62 9698.62 6598.30 11896.97 6299.75 6795.70 11899.25 19399.21 129
test_one_060199.05 10095.50 10098.87 10197.21 8398.03 13498.30 11896.93 66
V4297.04 12297.16 11796.68 18698.59 14991.05 23196.33 15898.36 19394.60 19097.99 13698.30 11893.32 18699.62 14497.40 5499.53 11599.38 95
casdiffmvspermissive97.50 9997.81 6496.56 19398.51 16091.04 23295.83 19299.09 4997.23 8298.33 9998.30 11897.03 5899.37 22396.58 8099.38 16399.28 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14419296.69 14996.90 13496.03 21898.25 18688.92 26595.49 21098.77 13293.05 23798.09 12598.29 12292.51 21299.70 10898.11 2699.56 10299.47 70
mvsany_test193.47 27993.03 27594.79 27994.05 36892.12 21190.82 35290.01 36885.02 34397.26 17798.28 12393.57 18297.03 36492.51 24395.75 34995.23 360
DVP-MVScopyleft97.78 8197.65 7998.16 7999.24 6295.51 9796.74 13998.23 20795.92 13798.40 8798.28 12397.06 5599.71 10195.48 13599.52 12099.26 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9698.40 8798.28 12397.10 5199.71 10195.70 11899.62 8399.58 33
MVS_Test96.27 16896.79 14094.73 28296.94 30886.63 31596.18 16898.33 19794.94 18096.07 25298.28 12395.25 13799.26 24997.21 5997.90 29498.30 258
FMVSNet593.39 28192.35 29196.50 19595.83 33990.81 23897.31 10598.27 20292.74 24796.27 24298.28 12362.23 38199.67 12590.86 27199.36 16799.03 166
v192192096.72 14696.96 12995.99 21998.21 19088.79 27095.42 21498.79 12793.22 22998.19 11598.26 12892.68 20299.70 10898.34 2499.55 10899.49 61
SED-MVS97.94 5997.90 5498.07 8699.22 6795.35 10896.79 13698.83 11796.11 12499.08 3698.24 12997.87 2099.72 8695.44 13999.51 12599.14 144
test_241102_TWO98.83 11796.11 12498.62 6598.24 12996.92 6899.72 8695.44 13999.49 13299.49 61
v2v48296.78 14297.06 12395.95 22398.57 15188.77 27195.36 22098.26 20395.18 17297.85 15398.23 13192.58 20699.63 13997.80 3899.69 6999.45 76
LPG-MVS_test97.94 5997.67 7798.74 3499.15 8197.02 4297.09 11999.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
LGP-MVS_train98.74 3499.15 8197.02 4299.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
HPM-MVS_fast98.32 2898.13 3798.88 2399.54 2697.48 3098.35 3599.03 6395.88 14097.88 14898.22 13498.15 1399.74 7696.50 8299.62 8399.42 87
MIMVSNet93.42 28092.86 27995.10 26198.17 19988.19 28098.13 5593.69 33292.07 25895.04 28598.21 13580.95 32499.03 28481.42 36298.06 28898.07 275
h-mvs3396.29 16795.63 19598.26 7098.50 16396.11 7396.90 12897.09 27996.58 10197.21 18098.19 13684.14 30599.78 4795.89 11196.17 34298.89 191
EI-MVSNet96.63 15296.93 13095.74 23297.26 29488.13 28495.29 22897.65 25996.99 8697.94 14398.19 13692.55 20799.58 15696.91 7199.56 10299.50 53
CVMVSNet92.33 29992.79 28290.95 34797.26 29475.84 37895.29 22892.33 35081.86 35696.27 24298.19 13681.44 31998.46 33594.23 20098.29 27998.55 232
PVSNet_Blended_VisFu95.95 18195.80 18896.42 20199.28 5790.62 24095.31 22699.08 5088.40 30696.97 20498.17 13992.11 21999.78 4793.64 22299.21 19798.86 198
FE-MVS92.95 28992.22 29395.11 25997.21 29788.33 27898.54 2393.66 33589.91 28996.21 24698.14 14070.33 37099.50 18087.79 32398.24 28197.51 310
EI-MVSNet-UG-set97.32 11497.40 10397.09 15997.34 28992.01 21795.33 22497.65 25997.74 5498.30 10498.14 14095.04 14299.69 11597.55 4999.52 12099.58 33
test_241102_ONE99.22 6795.35 10898.83 11796.04 12999.08 3698.13 14297.87 2099.33 232
APD-MVS_3200maxsize98.13 3997.90 5498.79 2998.79 12297.31 3697.55 9298.92 9097.72 5698.25 10798.13 14297.10 5199.75 6795.44 13999.24 19699.32 104
QAPM95.88 18395.57 19796.80 17897.90 22691.84 22198.18 5398.73 13988.41 30596.42 23398.13 14294.73 14999.75 6788.72 31298.94 22998.81 202
ACMM93.33 1198.05 4597.79 6598.85 2499.15 8197.55 2696.68 14598.83 11795.21 16998.36 9398.13 14298.13 1599.62 14496.04 10099.54 11199.39 93
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 11497.39 10497.11 15697.36 28692.08 21595.34 22397.65 25997.74 5498.29 10598.11 14695.05 14199.68 12097.50 5199.50 12999.56 42
wuyk23d93.25 28595.20 20287.40 36296.07 33395.38 10597.04 12294.97 32295.33 16599.70 698.11 14698.14 1491.94 38077.76 37299.68 7374.89 380
DPE-MVScopyleft97.64 9097.35 10798.50 5198.85 11796.18 6995.21 23298.99 7795.84 14398.78 5598.08 14896.84 7699.81 3793.98 21199.57 9999.52 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.37 11097.70 7296.35 20498.14 20595.13 12296.54 14898.92 9095.94 13699.19 3198.08 14897.74 2595.06 37495.24 15199.54 11198.87 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 3697.84 6099.02 698.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.60 8899.76 6195.49 13299.20 19899.26 121
RE-MVS-def97.88 5898.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.94 6495.49 13299.20 19899.26 121
OPM-MVS97.54 9797.25 11298.41 5999.11 9096.61 5695.24 23098.46 17894.58 19398.10 12498.07 15097.09 5399.39 21795.16 15799.44 14599.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest97.20 11896.92 13298.06 8899.08 9396.16 7097.14 11699.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
TestCases98.06 8899.08 9396.16 7099.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
TSAR-MVS + MP.97.42 10697.23 11498.00 9399.38 4895.00 12597.63 8698.20 21293.00 23998.16 11798.06 15595.89 11099.72 8695.67 12299.10 21399.28 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 13596.58 14897.65 11599.18 7893.78 16898.68 1496.34 29897.91 4997.30 17598.06 15588.46 27099.85 2793.85 21599.40 16199.32 104
ACMMPcopyleft98.05 4597.75 7198.93 1899.23 6497.60 2298.09 5798.96 8495.75 14897.91 14598.06 15596.89 7099.76 6195.32 14799.57 9999.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 16695.98 17997.43 13798.25 18693.85 16496.74 13994.41 32897.72 5698.37 9098.03 15887.15 28599.53 17294.06 20699.07 21798.92 186
XVG-ACMP-BASELINE97.58 9597.28 11198.49 5299.16 7996.90 4696.39 15398.98 8095.05 17898.06 13098.02 15995.86 11199.56 16394.37 19499.64 8099.00 170
baseline97.44 10497.78 6996.43 19998.52 15890.75 23996.84 13099.03 6396.51 10597.86 15298.02 15996.67 8299.36 22597.09 6599.47 13899.19 134
PVSNet_BlendedMVS95.02 22294.93 21495.27 25397.79 24687.40 30294.14 27798.68 15188.94 30094.51 29598.01 16193.04 19299.30 23989.77 29899.49 13299.11 154
OpenMVScopyleft94.22 895.48 19995.20 20296.32 20697.16 29991.96 21897.74 7998.84 11187.26 31694.36 29998.01 16193.95 17499.67 12590.70 28198.75 25097.35 317
MVSTER94.21 25693.93 26095.05 26395.83 33986.46 31695.18 23397.65 25992.41 25597.94 14398.00 16372.39 36399.58 15696.36 8799.56 10299.12 151
IS-MVSNet96.93 13096.68 14497.70 11199.25 6194.00 15998.57 2096.74 29398.36 3298.14 12097.98 16488.23 27399.71 10193.10 23599.72 6299.38 95
MTAPA98.14 3697.84 6099.06 399.44 3997.90 1297.25 10898.73 13997.69 6097.90 14697.96 16595.81 11999.82 3596.13 9699.61 8999.45 76
v14896.58 15696.97 12795.42 24998.63 14387.57 29795.09 23697.90 24195.91 13998.24 10897.96 16593.42 18599.39 21796.04 10099.52 12099.29 115
MDA-MVSNet-bldmvs95.69 18995.67 19295.74 23298.48 16688.76 27292.84 31397.25 27196.00 13297.59 16097.95 16791.38 23199.46 19293.16 23496.35 33998.99 173
PGM-MVS97.88 7097.52 9798.96 1399.20 7597.62 2197.09 11999.06 5495.45 16197.55 16197.94 16897.11 5099.78 4794.77 18099.46 14199.48 67
LS3D97.77 8297.50 10098.57 4796.24 32297.58 2498.45 3198.85 10898.58 2697.51 16497.94 16895.74 12299.63 13995.19 15398.97 22598.51 235
USDC94.56 24394.57 23994.55 29097.78 24986.43 31892.75 31698.65 16185.96 33096.91 20897.93 17090.82 23898.74 30990.71 28099.59 9498.47 239
test20.0396.58 15696.61 14696.48 19798.49 16491.72 22395.68 19997.69 25496.81 9298.27 10697.92 17194.18 16898.71 31390.78 27599.66 7799.00 170
FMVSNet395.26 21094.94 21296.22 21196.53 31690.06 24695.99 18097.66 25794.11 20597.99 13697.91 17280.22 32799.63 13994.60 18599.44 14598.96 176
iter_conf_final94.54 24593.91 26196.43 19997.23 29690.41 24596.81 13398.10 22893.87 21296.80 21197.89 17368.02 37499.72 8696.73 7599.77 5099.18 137
iter_conf0593.65 27493.05 27395.46 24796.13 33287.45 30095.95 18698.22 20892.66 24997.04 19797.89 17363.52 38099.72 8696.19 9499.82 4099.21 129
SF-MVS97.60 9397.39 10498.22 7598.93 11095.69 8897.05 12199.10 4495.32 16697.83 15497.88 17596.44 9799.72 8694.59 18899.39 16299.25 125
SteuartSystems-ACMMP98.02 4797.76 7098.79 2999.43 4097.21 4197.15 11498.90 9296.58 10198.08 12797.87 17697.02 5999.76 6195.25 15099.59 9499.40 90
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4897.66 7899.01 898.77 12597.93 1197.38 10498.83 11797.32 7998.06 13097.85 17796.65 8399.77 5695.00 16999.11 21199.32 104
DU-MVS97.79 8097.60 8998.36 6398.73 12795.78 8495.65 20298.87 10197.57 6498.31 10297.83 17894.69 15199.85 2797.02 6899.71 6599.46 72
NR-MVSNet97.96 5197.86 5998.26 7098.73 12795.54 9598.14 5498.73 13997.79 5099.42 1797.83 17894.40 16399.78 4795.91 11099.76 5199.46 72
CHOSEN 1792x268894.10 26093.41 26996.18 21399.16 7990.04 24792.15 32898.68 15179.90 36696.22 24597.83 17887.92 27999.42 20289.18 30699.65 7899.08 159
TAMVS95.49 19794.94 21297.16 15398.31 17893.41 18195.07 23996.82 28991.09 27497.51 16497.82 18189.96 25199.42 20288.42 31799.44 14598.64 222
UniMVSNet (Re)97.83 7597.65 7998.35 6498.80 12195.86 8395.92 18899.04 6297.51 6998.22 11097.81 18294.68 15399.78 4797.14 6399.75 5699.41 89
VNet96.84 13596.83 13696.88 17398.06 21092.02 21696.35 15797.57 26597.70 5997.88 14897.80 18392.40 21499.54 17094.73 18298.96 22699.08 159
YYNet194.73 23094.84 22094.41 29697.47 28085.09 33590.29 35795.85 30892.52 25197.53 16297.76 18491.97 22399.18 26093.31 22996.86 32898.95 177
MDA-MVSNet_test_wron94.73 23094.83 22294.42 29597.48 27685.15 33390.28 35895.87 30792.52 25197.48 16897.76 18491.92 22699.17 26493.32 22896.80 33198.94 179
TinyColmap96.00 18096.34 16494.96 26997.90 22687.91 28994.13 27898.49 17694.41 19698.16 11797.76 18496.29 10398.68 31890.52 28599.42 15698.30 258
Patchmatch-RL test94.66 23894.49 24095.19 25698.54 15688.91 26692.57 32098.74 13891.46 26998.32 10097.75 18777.31 34198.81 30396.06 9799.61 8997.85 296
MP-MVScopyleft97.64 9097.18 11699.00 999.32 5597.77 1797.49 9898.73 13996.27 11595.59 27197.75 18796.30 10299.78 4793.70 22199.48 13699.45 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 10297.10 11998.55 4999.04 10196.70 5196.24 16598.89 9393.71 21697.97 14097.75 18797.44 3599.63 13993.22 23299.70 6899.32 104
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 18995.28 20096.92 17098.15 20393.03 18995.64 20598.20 21290.39 28296.63 22497.73 19091.63 22999.10 27591.84 25397.31 32298.63 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 6697.53 9699.04 499.22 6797.87 1497.74 7998.78 13196.04 12997.10 18997.73 19096.53 9099.78 4795.16 15799.50 12999.46 72
XVG-OURS97.12 11996.74 14198.26 7098.99 10597.45 3293.82 29199.05 5695.19 17198.32 10097.70 19295.22 13898.41 33794.27 19898.13 28598.93 183
UniMVSNet_NR-MVSNet97.83 7597.65 7998.37 6298.72 12995.78 8495.66 20099.02 6598.11 4298.31 10297.69 19394.65 15599.85 2797.02 6899.71 6599.48 67
D2MVS95.18 21395.17 20495.21 25597.76 25187.76 29594.15 27597.94 23989.77 29196.99 20197.68 19487.45 28299.14 26795.03 16899.81 4198.74 211
XVS97.96 5197.63 8498.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23897.64 19596.49 9399.72 8695.66 12399.37 16499.45 76
ACMMPR97.95 5597.62 8698.94 1599.20 7597.56 2597.59 8998.83 11796.05 12797.46 17197.63 19696.77 7999.76 6195.61 12799.46 14199.49 61
Anonymous2023120695.27 20995.06 21095.88 22798.72 12989.37 25895.70 19697.85 24488.00 31296.98 20397.62 19791.95 22499.34 23089.21 30599.53 11598.94 179
region2R97.92 6397.59 9098.92 2199.22 6797.55 2697.60 8798.84 11196.00 13297.22 17897.62 19796.87 7499.76 6195.48 13599.43 15399.46 72
GeoE97.75 8397.70 7297.89 9998.88 11494.53 13797.10 11898.98 8095.75 14897.62 15997.59 19997.61 3299.77 5696.34 8899.44 14599.36 101
ppachtmachnet_test94.49 24894.84 22093.46 31696.16 32882.10 35690.59 35497.48 26790.53 28097.01 20097.59 19991.01 23599.36 22593.97 21299.18 20298.94 179
APD-MVScopyleft97.00 12496.53 15498.41 5998.55 15496.31 6696.32 15998.77 13292.96 24497.44 17297.58 20195.84 11299.74 7691.96 24899.35 17299.19 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 5997.64 8298.83 2599.15 8197.50 2997.59 8998.84 11196.05 12797.49 16697.54 20297.07 5499.70 10895.61 12799.46 14199.30 109
UnsupCasMVSNet_eth95.91 18295.73 19196.44 19898.48 16691.52 22695.31 22698.45 17995.76 14697.48 16897.54 20289.53 26098.69 31594.43 19094.61 35999.13 146
XVG-OURS-SEG-HR97.38 10897.07 12298.30 6899.01 10497.41 3494.66 25699.02 6595.20 17098.15 11997.52 20498.83 498.43 33694.87 17396.41 33899.07 161
MG-MVS94.08 26294.00 25794.32 29997.09 30285.89 32393.19 31095.96 30592.52 25194.93 28897.51 20589.54 25898.77 30687.52 33097.71 30398.31 256
HPM-MVScopyleft98.11 4097.83 6398.92 2199.42 4297.46 3198.57 2099.05 5695.43 16397.41 17397.50 20697.98 1699.79 4495.58 13099.57 9999.50 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 14398.53 15796.02 17898.98 8093.23 22897.18 18397.46 20796.47 9599.62 14492.99 23699.32 182
CP-MVS97.92 6397.56 9398.99 1098.99 10597.82 1597.93 6698.96 8496.11 12496.89 20997.45 20896.85 7599.78 4795.19 15399.63 8299.38 95
PC_three_145287.24 31798.37 9097.44 20997.00 6096.78 37092.01 24799.25 19399.21 129
ZNCC-MVS97.92 6397.62 8698.83 2599.32 5597.24 3997.45 9998.84 11195.76 14696.93 20697.43 21097.26 4599.79 4496.06 9799.53 11599.45 76
N_pmnet95.18 21394.23 24998.06 8897.85 22896.55 5892.49 32291.63 35589.34 29398.09 12597.41 21190.33 24599.06 27991.58 25799.31 18598.56 230
GST-MVS97.82 7897.49 10198.81 2799.23 6497.25 3897.16 11398.79 12795.96 13497.53 16297.40 21296.93 6699.77 5695.04 16699.35 17299.42 87
tpm91.08 31690.85 31491.75 34395.33 35278.09 36895.03 24391.27 35788.75 30293.53 32397.40 21271.24 36599.30 23991.25 26393.87 36397.87 295
MDTV_nov1_ep1391.28 30594.31 36173.51 38294.80 25093.16 34086.75 32593.45 32697.40 21276.37 34598.55 32988.85 31096.43 337
DeepPCF-MVS94.58 596.90 13396.43 15998.31 6797.48 27697.23 4092.56 32198.60 16492.84 24698.54 7297.40 21296.64 8598.78 30594.40 19399.41 16098.93 183
MSLP-MVS++96.42 16496.71 14295.57 23997.82 23690.56 24395.71 19598.84 11194.72 18696.71 21897.39 21694.91 14898.10 35295.28 14899.02 22298.05 282
EPNet93.72 27092.62 28997.03 16487.61 38792.25 20496.27 16191.28 35696.74 9487.65 37397.39 21685.00 29999.64 13692.14 24699.48 13699.20 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 27394.07 25592.45 33897.57 26980.67 36486.46 37296.00 30393.99 20997.10 18997.38 21889.90 25297.82 35688.76 31199.47 13898.86 198
DeepC-MVS_fast94.34 796.74 14396.51 15697.44 13697.69 25994.15 15496.02 17898.43 18293.17 23497.30 17597.38 21895.48 12999.28 24593.74 21899.34 17598.88 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 22994.80 22494.85 27596.16 32886.45 31791.14 34798.20 21293.49 22097.03 19897.37 22084.97 30099.26 24995.28 14899.56 10298.83 200
OPU-MVS97.64 11698.01 21495.27 11396.79 13697.35 22196.97 6298.51 33291.21 26499.25 19399.14 144
DIV-MVS_self_test94.73 23094.64 23095.01 26595.86 33787.00 30991.33 34198.08 23193.34 22497.10 18997.34 22284.02 30799.31 23695.15 15999.55 10898.72 214
cl____94.73 23094.64 23095.01 26595.85 33887.00 30991.33 34198.08 23193.34 22497.10 18997.33 22384.01 30899.30 23995.14 16099.56 10298.71 217
WR-MVS96.90 13396.81 13797.16 15398.56 15392.20 20994.33 26498.12 22797.34 7898.20 11197.33 22392.81 19799.75 6794.79 17799.81 4199.54 45
ITE_SJBPF97.85 10298.64 13996.66 5498.51 17595.63 15297.22 17897.30 22595.52 12898.55 32990.97 26898.90 23398.34 253
Vis-MVSNet (Re-imp)95.11 21694.85 21995.87 22899.12 8989.17 26197.54 9794.92 32396.50 10696.58 22597.27 22683.64 30999.48 18788.42 31799.67 7598.97 175
c3_l95.20 21295.32 19994.83 27796.19 32686.43 31891.83 33498.35 19693.47 22197.36 17497.26 22788.69 26799.28 24595.41 14599.36 16798.78 205
eth_miper_zixun_eth94.89 22594.93 21494.75 28195.99 33486.12 32191.35 34098.49 17693.40 22297.12 18797.25 22886.87 28899.35 22895.08 16598.82 24498.78 205
pmmvs494.82 22894.19 25296.70 18497.42 28392.75 19792.09 33196.76 29186.80 32495.73 26897.22 22989.28 26498.89 29693.28 23099.14 20598.46 241
OMC-MVS96.48 16096.00 17797.91 9798.30 17996.01 7894.86 24998.60 16491.88 26397.18 18397.21 23096.11 10699.04 28190.49 28899.34 17598.69 218
CS-MVS98.09 4198.01 4898.32 6598.45 16996.69 5298.52 2699.69 398.07 4496.07 25297.19 23196.88 7299.86 2497.50 5199.73 5898.41 242
pmmvs594.63 24094.34 24795.50 24497.63 26688.34 27794.02 28197.13 27787.15 31895.22 28097.15 23287.50 28199.27 24893.99 21099.26 19298.88 195
our_test_394.20 25894.58 23793.07 32496.16 32881.20 36290.42 35696.84 28790.72 27897.14 18597.13 23390.47 24299.11 27394.04 20998.25 28098.91 187
CPTT-MVS96.69 14996.08 17498.49 5298.89 11396.64 5597.25 10898.77 13292.89 24596.01 25597.13 23392.23 21699.67 12592.24 24599.34 17599.17 138
MS-PatchMatch94.83 22794.91 21694.57 28996.81 31187.10 30894.23 27097.34 27088.74 30397.14 18597.11 23591.94 22598.23 34892.99 23697.92 29298.37 247
FPMVS89.92 32788.63 33593.82 30898.37 17596.94 4591.58 33693.34 33988.00 31290.32 36197.10 23670.87 36891.13 38171.91 37896.16 34393.39 371
ZD-MVS98.43 17195.94 7998.56 17190.72 27896.66 22197.07 23795.02 14499.74 7691.08 26598.93 231
DELS-MVS96.17 17296.23 16795.99 21997.55 27290.04 24792.38 32698.52 17394.13 20396.55 22997.06 23894.99 14599.58 15695.62 12699.28 18998.37 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 13196.55 15198.03 9298.00 21895.54 9594.87 24898.17 21894.60 19096.38 23597.05 23995.67 12499.36 22595.12 16399.08 21599.19 134
旧先验197.80 24193.87 16397.75 25197.04 24093.57 18298.68 25698.72 214
testdata95.70 23598.16 20190.58 24197.72 25380.38 36495.62 27097.02 24192.06 22298.98 28989.06 30998.52 26997.54 309
PatchmatchNetpermissive91.98 30691.87 29792.30 34094.60 35979.71 36695.12 23493.59 33789.52 29293.61 32097.02 24177.94 33499.18 26090.84 27294.57 36198.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EC-MVSNet97.90 6897.94 5397.79 10598.66 13895.14 12198.31 3999.66 697.57 6495.95 25697.01 24396.99 6199.82 3597.66 4699.64 8098.39 245
SCA93.38 28293.52 26792.96 32996.24 32281.40 36193.24 30894.00 33191.58 26894.57 29396.97 24487.94 27599.42 20289.47 30297.66 30898.06 279
Patchmatch-test93.60 27693.25 27194.63 28496.14 33187.47 29996.04 17694.50 32793.57 21896.47 23196.97 24476.50 34498.61 32390.67 28298.41 27597.81 300
CostFormer89.75 32989.25 32791.26 34694.69 35878.00 37095.32 22591.98 35281.50 35990.55 35996.96 24671.06 36798.89 29688.59 31592.63 36796.87 328
diffmvspermissive96.04 17796.23 16795.46 24797.35 28788.03 28793.42 30399.08 5094.09 20796.66 22196.93 24793.85 17699.29 24396.01 10498.67 25799.06 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t93.96 26593.22 27296.19 21299.06 9690.97 23495.99 18098.94 8773.88 37893.43 32796.93 24792.38 21599.37 22389.09 30799.28 18998.25 264
CS-MVS-test97.91 6697.84 6098.14 8298.52 15896.03 7798.38 3499.67 498.11 4295.50 27396.92 24996.81 7899.87 2296.87 7399.76 5198.51 235
Test_1112_low_res93.53 27892.86 27995.54 24398.60 14788.86 26892.75 31698.69 14982.66 35592.65 34396.92 24984.75 30199.56 16390.94 26997.76 29998.19 269
tpmrst90.31 32190.61 31989.41 35494.06 36772.37 38495.06 24093.69 33288.01 31192.32 34996.86 25177.45 33898.82 30191.04 26687.01 37797.04 322
PHI-MVS96.96 12996.53 15498.25 7397.48 27696.50 5996.76 13898.85 10893.52 21996.19 24896.85 25295.94 10999.42 20293.79 21799.43 15398.83 200
tttt051793.31 28392.56 29095.57 23998.71 13287.86 29097.44 10087.17 37595.79 14597.47 17096.84 25364.12 37899.81 3796.20 9399.32 18299.02 169
patchmatchnet-post96.84 25377.36 34099.42 202
ADS-MVSNet291.47 31290.51 32094.36 29795.51 34785.63 32495.05 24195.70 30983.46 35292.69 34196.84 25379.15 33099.41 21185.66 34290.52 37098.04 283
ADS-MVSNet90.95 31890.26 32293.04 32595.51 34782.37 35595.05 24193.41 33883.46 35292.69 34196.84 25379.15 33098.70 31485.66 34290.52 37098.04 283
HY-MVS91.43 1592.58 29491.81 29994.90 27296.49 31788.87 26797.31 10594.62 32585.92 33190.50 36096.84 25385.05 29899.40 21383.77 35795.78 34796.43 344
UnsupCasMVSNet_bld94.72 23494.26 24896.08 21798.62 14590.54 24493.38 30598.05 23790.30 28397.02 19996.80 25889.54 25899.16 26588.44 31696.18 34198.56 230
HQP_MVS96.66 15196.33 16597.68 11498.70 13494.29 14796.50 14998.75 13696.36 11296.16 24996.77 25991.91 22799.46 19292.59 24199.20 19899.28 116
plane_prior496.77 259
MVS_111021_HR96.73 14596.54 15397.27 14898.35 17793.66 17393.42 30398.36 19394.74 18596.58 22596.76 26196.54 8998.99 28794.87 17399.27 19199.15 141
CANet95.86 18495.65 19496.49 19696.41 31990.82 23694.36 26398.41 18694.94 18092.62 34696.73 26292.68 20299.71 10195.12 16399.60 9298.94 179
TSAR-MVS + GP.96.47 16196.12 17197.49 13197.74 25695.23 11594.15 27596.90 28693.26 22798.04 13396.70 26394.41 16298.89 29694.77 18099.14 20598.37 247
test22298.17 19993.24 18692.74 31897.61 26475.17 37694.65 29296.69 26490.96 23798.66 25997.66 304
新几何197.25 15098.29 18094.70 13397.73 25277.98 37294.83 28996.67 26592.08 22199.45 19688.17 32198.65 26197.61 306
miper_ehance_all_eth94.69 23594.70 22794.64 28395.77 34186.22 32091.32 34398.24 20691.67 26597.05 19696.65 26688.39 27299.22 25894.88 17298.34 27698.49 238
MVS_111021_LR96.82 13996.55 15197.62 11798.27 18495.34 11093.81 29398.33 19794.59 19296.56 22796.63 26796.61 8698.73 31094.80 17699.34 17598.78 205
CDPH-MVS95.45 20294.65 22997.84 10398.28 18294.96 12693.73 29598.33 19785.03 34295.44 27496.60 26895.31 13599.44 19990.01 29499.13 20799.11 154
CMPMVSbinary73.10 2392.74 29291.39 30396.77 18093.57 37394.67 13494.21 27297.67 25580.36 36593.61 32096.60 26882.85 31497.35 36184.86 35098.78 24798.29 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 22694.12 25497.14 15597.64 26593.57 17593.96 28797.06 28190.05 28796.30 24196.55 27086.10 29199.47 18990.10 29399.31 18598.40 243
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 17595.63 19597.36 14398.19 19395.55 9495.44 21298.82 12592.29 25795.70 26996.55 27092.63 20598.69 31591.75 25699.33 18097.85 296
HPM-MVS++copyleft96.99 12596.38 16298.81 2798.64 13997.59 2395.97 18298.20 21295.51 15995.06 28296.53 27294.10 16999.70 10894.29 19799.15 20499.13 146
EPMVS89.26 33288.55 33691.39 34592.36 38079.11 36795.65 20279.86 38388.60 30493.12 33396.53 27270.73 36998.10 35290.75 27689.32 37496.98 323
HyFIR lowres test93.72 27092.65 28796.91 17298.93 11091.81 22291.23 34598.52 17382.69 35496.46 23296.52 27480.38 32699.90 1490.36 29098.79 24699.03 166
BH-RMVSNet94.56 24394.44 24594.91 27097.57 26987.44 30193.78 29496.26 29993.69 21796.41 23496.50 27592.10 22099.00 28585.96 33897.71 30398.31 256
MSP-MVS97.45 10396.92 13299.03 599.26 5897.70 1897.66 8398.89 9395.65 15198.51 7496.46 27692.15 21799.81 3795.14 16098.58 26799.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
原ACMM196.58 19098.16 20192.12 21198.15 22485.90 33293.49 32496.43 27792.47 21399.38 22087.66 32698.62 26398.23 265
tpm288.47 33787.69 34190.79 34894.98 35577.34 37395.09 23691.83 35377.51 37489.40 36796.41 27867.83 37598.73 31083.58 35992.60 36896.29 346
OpenMVS_ROBcopyleft91.80 1493.64 27593.05 27395.42 24997.31 29391.21 23095.08 23896.68 29681.56 35896.88 21096.41 27890.44 24499.25 25185.39 34597.67 30795.80 352
CL-MVSNet_self_test95.04 21994.79 22595.82 22997.51 27489.79 25191.14 34796.82 28993.05 23796.72 21796.40 28090.82 23899.16 26591.95 24998.66 25998.50 237
F-COLMAP95.30 20894.38 24698.05 9198.64 13996.04 7595.61 20698.66 15689.00 29993.22 33196.40 28092.90 19699.35 22887.45 33197.53 31398.77 208
NCCC96.52 15895.99 17898.10 8597.81 23795.68 8995.00 24498.20 21295.39 16495.40 27696.36 28293.81 17799.45 19693.55 22498.42 27499.17 138
new_pmnet92.34 29891.69 30194.32 29996.23 32489.16 26292.27 32792.88 34384.39 35195.29 27896.35 28385.66 29596.74 37184.53 35297.56 31197.05 321
cl2293.25 28592.84 28194.46 29494.30 36286.00 32291.09 34996.64 29790.74 27795.79 26396.31 28478.24 33398.77 30694.15 20398.34 27698.62 225
tpmvs90.79 31990.87 31390.57 35092.75 37976.30 37695.79 19393.64 33691.04 27591.91 35296.26 28577.19 34298.86 30089.38 30489.85 37396.56 341
test_prior293.33 30794.21 20194.02 30896.25 28693.64 18191.90 25098.96 226
testgi96.07 17596.50 15794.80 27899.26 5887.69 29695.96 18498.58 16995.08 17698.02 13596.25 28697.92 1797.60 36088.68 31498.74 25199.11 154
DP-MVS Recon95.55 19695.13 20596.80 17898.51 16093.99 16094.60 25898.69 14990.20 28595.78 26596.21 28892.73 20198.98 28990.58 28498.86 23997.42 314
hse-mvs295.77 18795.09 20797.79 10597.84 23395.51 9795.66 20095.43 31996.58 10197.21 18096.16 28984.14 30599.54 17095.89 11196.92 32598.32 254
MVSFormer96.14 17396.36 16395.49 24597.68 26087.81 29398.67 1599.02 6596.50 10694.48 29796.15 29086.90 28699.92 598.73 1299.13 20798.74 211
jason94.39 25194.04 25695.41 25198.29 18087.85 29292.74 31896.75 29285.38 33995.29 27896.15 29088.21 27499.65 13394.24 19999.34 17598.74 211
jason: jason.
test_yl94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
DCV-MVSNet94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
dp88.08 34088.05 33888.16 36192.85 37768.81 38694.17 27392.88 34385.47 33691.38 35596.14 29268.87 37398.81 30386.88 33483.80 38096.87 328
AUN-MVS93.95 26792.69 28697.74 10897.80 24195.38 10595.57 20995.46 31891.26 27292.64 34496.10 29574.67 35299.55 16793.72 22096.97 32498.30 258
MCST-MVS96.24 16995.80 18897.56 11998.75 12694.13 15594.66 25698.17 21890.17 28696.21 24696.10 29595.14 14099.43 20194.13 20498.85 24099.13 146
TEST997.84 23395.23 11593.62 29798.39 18986.81 32393.78 31295.99 29794.68 15399.52 175
train_agg95.46 20194.66 22897.88 10097.84 23395.23 11593.62 29798.39 18987.04 31993.78 31295.99 29794.58 15799.52 17591.76 25598.90 23398.89 191
MSDG95.33 20695.13 20595.94 22597.40 28491.85 22091.02 35098.37 19295.30 16796.31 24095.99 29794.51 16098.38 34089.59 30097.65 30997.60 307
test_897.81 23795.07 12493.54 30098.38 19187.04 31993.71 31695.96 30094.58 15799.52 175
CSCG97.40 10797.30 10997.69 11398.95 10794.83 12897.28 10798.99 7796.35 11498.13 12195.95 30195.99 10899.66 13194.36 19699.73 5898.59 228
TAPA-MVS93.32 1294.93 22394.23 24997.04 16398.18 19694.51 13895.22 23198.73 13981.22 36196.25 24495.95 30193.80 17898.98 28989.89 29698.87 23797.62 305
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_rt94.03 26493.65 26495.17 25895.76 34293.42 18093.97 28698.33 19784.68 34693.17 33295.89 30392.53 21194.79 37593.50 22594.97 35597.31 318
baseline193.14 28792.64 28894.62 28597.34 28987.20 30696.67 14693.02 34194.71 18796.51 23095.83 30481.64 31798.60 32590.00 29588.06 37698.07 275
sss94.22 25493.72 26395.74 23297.71 25889.95 24993.84 29096.98 28388.38 30793.75 31595.74 30587.94 27598.89 29691.02 26798.10 28698.37 247
CNLPA95.04 21994.47 24296.75 18197.81 23795.25 11494.12 27997.89 24294.41 19694.57 29395.69 30690.30 24898.35 34386.72 33698.76 24996.64 338
PCF-MVS89.43 1892.12 30390.64 31896.57 19297.80 24193.48 17889.88 36498.45 17974.46 37796.04 25495.68 30790.71 24099.31 23673.73 37599.01 22496.91 327
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 23594.75 22694.52 29197.95 22387.53 29894.07 28097.01 28293.99 20997.10 18995.65 30892.65 20498.95 29487.60 32796.74 33297.09 320
CANet_DTU94.65 23994.21 25195.96 22195.90 33689.68 25293.92 28897.83 24893.19 23090.12 36395.64 30988.52 26999.57 16293.27 23199.47 13898.62 225
PatchMatch-RL94.61 24193.81 26297.02 16598.19 19395.72 8693.66 29697.23 27288.17 31094.94 28795.62 31091.43 23098.57 32687.36 33297.68 30696.76 336
tpm cat188.01 34187.33 34290.05 35394.48 36076.28 37794.47 26194.35 32973.84 37989.26 36895.61 31173.64 35798.30 34684.13 35386.20 37895.57 357
Effi-MVS+-dtu96.81 14096.09 17398.99 1096.90 31098.69 496.42 15298.09 23095.86 14295.15 28195.54 31294.26 16699.81 3794.06 20698.51 27198.47 239
AdaColmapbinary95.11 21694.62 23396.58 19097.33 29194.45 14194.92 24698.08 23193.15 23593.98 31095.53 31394.34 16499.10 27585.69 34198.61 26496.20 348
thisisatest053092.71 29391.76 30095.56 24198.42 17288.23 27996.03 17787.35 37494.04 20896.56 22795.47 31464.03 37999.77 5694.78 17999.11 21198.68 221
tt080597.44 10497.56 9397.11 15699.55 2396.36 6398.66 1895.66 31098.31 3497.09 19495.45 31597.17 4998.50 33398.67 1597.45 31896.48 343
WTY-MVS93.55 27793.00 27795.19 25697.81 23787.86 29093.89 28996.00 30389.02 29894.07 30695.44 31686.27 29099.33 23287.69 32596.82 32998.39 245
PLCcopyleft91.02 1694.05 26392.90 27897.51 12498.00 21895.12 12394.25 26898.25 20486.17 32891.48 35495.25 31791.01 23599.19 25985.02 34996.69 33398.22 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 32488.90 33493.32 31794.20 36685.34 32891.25 34492.56 34978.59 37093.82 31195.17 31867.36 37698.69 31589.08 30898.03 28995.92 349
NP-MVS98.14 20593.72 16995.08 319
HQP-MVS95.17 21594.58 23796.92 17097.85 22892.47 20094.26 26598.43 18293.18 23192.86 33795.08 31990.33 24599.23 25690.51 28698.74 25199.05 165
cdsmvs_eth3d_5k24.22 35132.30 3540.00 3690.00 3920.00 3930.00 38098.10 2280.00 3870.00 38895.06 32197.54 340.00 3880.00 3860.00 3860.00 384
lupinMVS93.77 26893.28 27095.24 25497.68 26087.81 29392.12 32996.05 30184.52 34894.48 29795.06 32186.90 28699.63 13993.62 22399.13 20798.27 262
1112_ss94.12 25993.42 26896.23 20998.59 14990.85 23594.24 26998.85 10885.49 33592.97 33594.94 32386.01 29299.64 13691.78 25497.92 29298.20 268
ab-mvs-re7.91 35510.55 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.94 3230.00 3920.00 3880.00 3860.00 3860.00 384
Fast-Effi-MVS+-dtu96.44 16296.12 17197.39 14297.18 29894.39 14295.46 21198.73 13996.03 13194.72 29094.92 32596.28 10499.69 11593.81 21697.98 29098.09 272
EPNet_dtu91.39 31390.75 31693.31 31890.48 38482.61 35394.80 25092.88 34393.39 22381.74 38194.90 32681.36 32099.11 27388.28 31998.87 23798.21 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 27292.77 28596.42 20197.91 22492.54 19891.17 34697.47 26884.99 34493.08 33494.74 32789.90 25299.00 28587.54 32998.09 28797.72 302
Effi-MVS+96.19 17196.01 17696.71 18397.43 28292.19 21096.12 17299.10 4495.45 16193.33 33094.71 32897.23 4899.56 16393.21 23397.54 31298.37 247
GA-MVS92.83 29192.15 29594.87 27496.97 30587.27 30590.03 35996.12 30091.83 26494.05 30794.57 32976.01 34898.97 29392.46 24497.34 32198.36 252
miper_enhance_ethall93.14 28792.78 28494.20 30393.65 37185.29 33089.97 36097.85 24485.05 34196.15 25194.56 33085.74 29499.14 26793.74 21898.34 27698.17 271
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
PVSNet_Blended93.96 26593.65 26494.91 27097.79 24687.40 30291.43 33898.68 15184.50 34994.51 29594.48 33493.04 19299.30 23989.77 29898.61 26498.02 285
PAPM_NR94.61 24194.17 25395.96 22198.36 17691.23 22995.93 18797.95 23892.98 24093.42 32894.43 33590.53 24198.38 34087.60 32796.29 34098.27 262
API-MVS95.09 21895.01 21195.31 25296.61 31494.02 15896.83 13197.18 27595.60 15495.79 26394.33 33694.54 15998.37 34285.70 34098.52 26993.52 369
alignmvs96.01 17995.52 19897.50 12897.77 25094.71 13196.07 17496.84 28797.48 7096.78 21694.28 33785.50 29699.40 21396.22 9298.73 25498.40 243
CLD-MVS95.47 20095.07 20896.69 18598.27 18492.53 19991.36 33998.67 15491.22 27395.78 26594.12 33895.65 12598.98 28990.81 27399.72 6298.57 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS92.54 29592.20 29493.57 31496.49 31786.66 31493.51 30194.73 32489.96 28894.95 28693.87 33990.24 25098.61 32381.18 36394.88 35695.45 358
canonicalmvs97.23 11797.21 11597.30 14697.65 26494.39 14297.84 7199.05 5697.42 7296.68 21993.85 34097.63 3199.33 23296.29 8998.47 27298.18 270
xiu_mvs_v2_base94.22 25494.63 23292.99 32897.32 29284.84 33992.12 32997.84 24691.96 26194.17 30293.43 34196.07 10799.71 10191.27 26197.48 31594.42 364
CHOSEN 280x42089.98 32589.19 33192.37 33995.60 34681.13 36386.22 37397.09 27981.44 36087.44 37493.15 34273.99 35399.47 18988.69 31399.07 21796.52 342
KD-MVS_2432*160088.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
miper_refine_blended88.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
thres600view792.03 30591.43 30293.82 30898.19 19384.61 34196.27 16190.39 36396.81 9296.37 23693.11 34373.44 36199.49 18480.32 36597.95 29197.36 315
E-PMN89.52 33189.78 32588.73 35693.14 37477.61 37183.26 37692.02 35194.82 18493.71 31693.11 34375.31 35096.81 36885.81 33996.81 33091.77 375
thres100view90091.76 30991.26 30893.26 31998.21 19084.50 34296.39 15390.39 36396.87 9096.33 23793.08 34773.44 36199.42 20278.85 36997.74 30095.85 350
131492.38 29792.30 29292.64 33495.42 35185.15 33395.86 19096.97 28485.40 33890.62 35793.06 34891.12 23497.80 35786.74 33595.49 35294.97 362
PAPM87.64 34385.84 34993.04 32596.54 31584.99 33688.42 37095.57 31579.52 36783.82 37893.05 34980.57 32598.41 33762.29 38192.79 36695.71 353
Fast-Effi-MVS+95.49 19795.07 20896.75 18197.67 26392.82 19294.22 27198.60 16491.61 26693.42 32892.90 35096.73 8199.70 10892.60 24097.89 29597.74 301
ET-MVSNet_ETH3D91.12 31489.67 32695.47 24696.41 31989.15 26391.54 33790.23 36689.07 29786.78 37792.84 35169.39 37299.44 19994.16 20296.61 33597.82 298
MVS90.02 32389.20 33092.47 33794.71 35786.90 31195.86 19096.74 29364.72 38090.62 35792.77 35292.54 20998.39 33979.30 36795.56 35192.12 373
BH-w/o92.14 30291.94 29692.73 33397.13 30185.30 32992.46 32395.64 31189.33 29494.21 30192.74 35389.60 25698.24 34781.68 36194.66 35894.66 363
PAPR92.22 30091.27 30695.07 26295.73 34488.81 26991.97 33297.87 24385.80 33390.91 35692.73 35491.16 23398.33 34479.48 36695.76 34898.08 273
MAR-MVS94.21 25693.03 27597.76 10796.94 30897.44 3396.97 12597.15 27687.89 31492.00 35192.73 35492.14 21899.12 27083.92 35497.51 31496.73 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 33088.44 33793.25 32095.62 34582.71 35293.82 29185.94 37888.89 30187.35 37592.54 35671.23 36699.33 23286.01 33794.60 36097.72 302
PS-MVSNAJ94.10 26094.47 24293.00 32797.35 28784.88 33791.86 33397.84 24691.96 26194.17 30292.50 35795.82 11599.71 10191.27 26197.48 31594.40 365
PMMVS92.39 29691.08 30996.30 20893.12 37592.81 19390.58 35595.96 30579.17 36991.85 35392.27 35890.29 24998.66 32089.85 29796.68 33497.43 313
PVSNet86.72 1991.10 31590.97 31291.49 34497.56 27178.04 36987.17 37194.60 32684.65 34792.34 34892.20 35987.37 28498.47 33485.17 34897.69 30597.96 288
tfpn200view991.55 31191.00 31093.21 32298.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30095.85 350
thres40091.68 31091.00 31093.71 31198.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30097.36 315
MVEpermissive73.61 2286.48 34685.92 34888.18 36096.23 32485.28 33181.78 37875.79 38486.01 32982.53 38091.88 36292.74 20087.47 38371.42 37994.86 35791.78 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 33389.22 32888.61 35793.00 37677.34 37382.91 37790.92 35994.64 18992.63 34591.81 36376.30 34697.02 36583.83 35696.90 32791.48 376
thisisatest051590.43 32089.18 33294.17 30597.07 30385.44 32789.75 36587.58 37388.28 30893.69 31891.72 36465.27 37799.58 15690.59 28398.67 25797.50 312
test_method66.88 34966.13 35269.11 36562.68 38825.73 39049.76 37996.04 30214.32 38364.27 38491.69 36573.45 36088.05 38276.06 37466.94 38293.54 368
EIA-MVS96.04 17795.77 19096.85 17597.80 24192.98 19096.12 17299.16 3494.65 18893.77 31491.69 36595.68 12399.67 12594.18 20198.85 24097.91 291
cascas91.89 30791.35 30493.51 31594.27 36385.60 32588.86 36998.61 16379.32 36892.16 35091.44 36789.22 26598.12 35190.80 27497.47 31796.82 333
IB-MVS85.98 2088.63 33686.95 34693.68 31295.12 35384.82 34090.85 35190.17 36787.55 31588.48 37191.34 36858.01 38299.59 15487.24 33393.80 36496.63 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 31790.42 32192.77 33297.47 28083.98 34894.01 28291.18 35895.12 17595.44 27491.21 36973.93 35499.31 23677.76 37297.63 31095.01 361
test0.0.03 190.11 32289.21 32992.83 33193.89 36986.87 31291.74 33588.74 37292.02 25994.71 29191.14 37073.92 35594.48 37783.75 35892.94 36597.16 319
ETV-MVS96.13 17495.90 18496.82 17797.76 25193.89 16295.40 21798.95 8695.87 14195.58 27291.00 37196.36 10199.72 8693.36 22698.83 24396.85 330
dmvs_re92.08 30491.27 30694.51 29297.16 29992.79 19695.65 20292.64 34894.11 20592.74 34090.98 37283.41 31194.44 37880.72 36494.07 36296.29 346
test-LLR89.97 32689.90 32490.16 35194.24 36474.98 37989.89 36189.06 37092.02 25989.97 36490.77 37373.92 35598.57 32691.88 25197.36 31996.92 325
test-mter87.92 34287.17 34390.16 35194.24 36474.98 37989.89 36189.06 37086.44 32789.97 36490.77 37354.96 38998.57 32691.88 25197.36 31996.92 325
TESTMET0.1,187.20 34586.57 34789.07 35593.62 37272.84 38389.89 36187.01 37685.46 33789.12 36990.20 37556.00 38797.72 35890.91 27096.92 32596.64 338
gm-plane-assit91.79 38171.40 38581.67 35790.11 37698.99 28784.86 350
DeepMVS_CXcopyleft77.17 36490.94 38385.28 33174.08 38752.51 38180.87 38288.03 37775.25 35170.63 38459.23 38384.94 37975.62 379
dmvs_testset87.30 34486.99 34488.24 35996.71 31277.48 37294.68 25586.81 37792.64 25089.61 36687.01 37885.91 29393.12 37961.04 38288.49 37594.13 366
PVSNet_081.89 2184.49 34783.21 35088.34 35895.76 34274.97 38183.49 37592.70 34778.47 37187.94 37286.90 37983.38 31296.63 37273.44 37666.86 38393.40 370
GG-mvs-BLEND90.60 34991.00 38284.21 34698.23 4672.63 38882.76 37984.11 38056.14 38696.79 36972.20 37792.09 36990.78 377
tmp_tt57.23 35062.50 35341.44 36634.77 38949.21 38983.93 37460.22 39015.31 38271.11 38379.37 38170.09 37144.86 38564.76 38082.93 38130.25 381
X-MVStestdata92.86 29090.83 31598.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23836.50 38296.49 9399.72 8695.66 12399.37 16499.45 76
testmvs12.33 35315.23 3563.64 3685.77 3912.23 39288.99 3683.62 3912.30 3865.29 38613.09 3834.52 3911.95 3865.16 3858.32 3856.75 383
test12312.59 35215.49 3553.87 3676.07 3902.55 39190.75 3532.59 3922.52 3855.20 38713.02 3844.96 3901.85 3875.20 3849.09 3847.23 382
test_post10.87 38576.83 34399.07 278
test_post194.98 24510.37 38676.21 34799.04 28189.47 302
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.98 35410.65 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38795.82 1150.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.59 1898.20 799.03 799.25 2598.96 1898.87 48
MSC_two_6792asdad98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
No_MVS98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
eth-test20.00 392
eth-test0.00 392
IU-MVS99.22 6795.40 10398.14 22585.77 33498.36 9395.23 15299.51 12599.49 61
save fliter98.48 16694.71 13194.53 26098.41 18695.02 179
test_0728_SECOND98.25 7399.23 6495.49 10196.74 13998.89 9399.75 6795.48 13599.52 12099.53 48
GSMVS98.06 279
test_part299.03 10296.07 7498.08 127
sam_mvs177.80 33598.06 279
sam_mvs77.38 339
MTGPAbinary98.73 139
MTMP96.55 14774.60 385
test9_res91.29 26098.89 23699.00 170
agg_prior290.34 29198.90 23399.10 158
agg_prior97.80 24194.96 12698.36 19393.49 32499.53 172
test_prior495.38 10593.61 299
test_prior97.46 13497.79 24694.26 15298.42 18599.34 23098.79 204
旧先验293.35 30677.95 37395.77 26798.67 31990.74 279
新几何293.43 302
无先验93.20 30997.91 24080.78 36299.40 21387.71 32497.94 290
原ACMM292.82 314
testdata299.46 19287.84 322
segment_acmp95.34 134
testdata192.77 31593.78 214
test1297.46 13497.61 26794.07 15697.78 25093.57 32293.31 18799.42 20298.78 24798.89 191
plane_prior798.70 13494.67 134
plane_prior698.38 17494.37 14491.91 227
plane_prior598.75 13699.46 19292.59 24199.20 19899.28 116
plane_prior394.51 13895.29 16896.16 249
plane_prior296.50 14996.36 112
plane_prior198.49 164
plane_prior94.29 14795.42 21494.31 20098.93 231
n20.00 393
nn0.00 393
door-mid98.17 218
test1198.08 231
door97.81 249
HQP5-MVS92.47 200
HQP-NCC97.85 22894.26 26593.18 23192.86 337
ACMP_Plane97.85 22894.26 26593.18 23192.86 337
BP-MVS90.51 286
HQP4-MVS92.87 33699.23 25699.06 163
HQP3-MVS98.43 18298.74 251
HQP2-MVS90.33 245
MDTV_nov1_ep13_2view57.28 38894.89 24780.59 36394.02 30878.66 33285.50 34497.82 298
ACMMP++_ref99.52 120
ACMMP++99.55 108
Test By Simon94.51 160