| LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 2 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
| UA-Net | | | 98.88 8 | 98.76 14 | 99.22 3 | 99.11 94 | 97.89 14 | 99.47 3 | 99.32 26 | 99.08 14 | 97.87 163 | 99.67 2 | 96.47 100 | 99.92 7 | 97.88 45 | 99.98 2 | 99.85 3 |
|
| test_fmvs3 | | | 97.38 119 | 97.56 104 | 96.84 186 | 98.63 156 | 92.81 198 | 97.60 92 | 99.61 14 | 90.87 297 | 98.76 71 | 99.66 3 | 94.03 183 | 97.90 379 | 99.24 7 | 99.68 82 | 99.81 7 |
|
| pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 63 | 98.87 10 | 99.30 28 | 99.01 20 | 99.63 14 | 99.66 3 | 99.27 2 | 99.68 124 | 97.75 53 | 99.89 24 | 99.62 35 |
|
| UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 5 | 96.34 66 | 99.18 6 | 99.20 37 | 99.67 2 | 99.73 5 | 99.65 5 | 99.15 3 | 99.86 27 | 97.22 70 | 99.92 15 | 99.77 11 |
|
| mvsany_test3 | | | 96.21 185 | 95.93 200 | 97.05 170 | 97.40 302 | 94.33 150 | 95.76 209 | 94.20 344 | 89.10 319 | 99.36 27 | 99.60 6 | 93.97 185 | 97.85 380 | 95.40 159 | 98.63 275 | 98.99 182 |
|
| test_fmvsmconf0.01_n | | | 98.57 18 | 98.74 17 | 98.06 88 | 99.39 45 | 94.63 136 | 96.70 149 | 99.82 1 | 95.44 170 | 99.64 13 | 99.52 7 | 98.96 4 | 99.74 79 | 99.38 3 | 99.86 30 | 99.81 7 |
|
| OurMVSNet-221017-0 | | | 98.61 17 | 98.61 25 | 98.63 45 | 99.77 5 | 96.35 65 | 99.17 7 | 99.05 69 | 98.05 51 | 99.61 16 | 99.52 7 | 93.72 192 | 99.88 23 | 98.72 25 | 99.88 25 | 99.65 32 |
|
| ANet_high | | | 98.31 32 | 98.94 6 | 96.41 214 | 99.33 53 | 89.64 265 | 97.92 70 | 99.56 17 | 99.27 7 | 99.66 12 | 99.50 9 | 97.67 31 | 99.83 35 | 97.55 61 | 99.98 2 | 99.77 11 |
|
| mvs_tets | | | 98.90 6 | 98.94 6 | 98.75 32 | 99.69 10 | 96.48 61 | 98.54 24 | 99.22 34 | 96.23 125 | 99.71 7 | 99.48 10 | 98.77 7 | 99.93 4 | 98.89 18 | 99.95 5 | 99.84 5 |
|
| test_f | | | 95.82 202 | 95.88 203 | 95.66 250 | 97.61 285 | 93.21 192 | 95.61 221 | 98.17 232 | 86.98 346 | 98.42 97 | 99.47 11 | 90.46 262 | 94.74 401 | 97.71 55 | 98.45 288 | 99.03 175 |
|
| gg-mvs-nofinetune | | | 88.28 360 | 86.96 366 | 92.23 362 | 92.84 403 | 84.44 356 | 98.19 53 | 74.60 410 | 99.08 14 | 87.01 401 | 99.47 11 | 56.93 401 | 98.23 373 | 78.91 392 | 95.61 375 | 94.01 392 |
|
| PS-MVSNAJss | | | 98.53 23 | 98.63 21 | 98.21 78 | 99.68 11 | 94.82 129 | 98.10 57 | 99.21 35 | 96.91 97 | 99.75 3 | 99.45 13 | 95.82 127 | 99.92 7 | 98.80 20 | 99.96 4 | 99.89 1 |
|
| test_djsdf | | | 98.73 12 | 98.74 17 | 98.69 40 | 99.63 14 | 96.30 68 | 98.67 16 | 99.02 80 | 96.50 113 | 99.32 29 | 99.44 14 | 97.43 41 | 99.92 7 | 98.73 23 | 99.95 5 | 99.86 2 |
|
| Anonymous20231211 | | | 98.55 21 | 98.76 14 | 97.94 99 | 98.79 134 | 94.37 148 | 98.84 12 | 99.15 46 | 99.37 4 | 99.67 10 | 99.43 15 | 95.61 138 | 99.72 90 | 98.12 37 | 99.86 30 | 99.73 21 |
|
| SDMVSNet | | | 97.97 54 | 98.26 42 | 97.11 163 | 99.41 41 | 92.21 216 | 96.92 132 | 98.60 180 | 98.58 32 | 98.78 66 | 99.39 16 | 97.80 25 | 99.62 152 | 94.98 185 | 99.86 30 | 99.52 58 |
|
| sd_testset | | | 97.97 54 | 98.12 44 | 97.51 127 | 99.41 41 | 93.44 183 | 97.96 66 | 98.25 219 | 98.58 32 | 98.78 66 | 99.39 16 | 98.21 14 | 99.56 171 | 92.65 255 | 99.86 30 | 99.52 58 |
|
| test_fmvs2 | | | 96.38 180 | 96.45 175 | 96.16 226 | 97.85 241 | 91.30 240 | 96.81 138 | 99.45 19 | 89.24 318 | 98.49 89 | 99.38 18 | 88.68 286 | 97.62 384 | 98.83 19 | 99.32 193 | 99.57 46 |
|
| anonymousdsp | | | 98.72 15 | 98.63 21 | 98.99 11 | 99.62 15 | 97.29 38 | 98.65 20 | 99.19 39 | 95.62 160 | 99.35 28 | 99.37 19 | 97.38 43 | 99.90 18 | 98.59 28 | 99.91 18 | 99.77 11 |
|
| jajsoiax | | | 98.77 10 | 98.79 13 | 98.74 35 | 99.66 12 | 96.48 61 | 98.45 32 | 99.12 51 | 95.83 151 | 99.67 10 | 99.37 19 | 98.25 13 | 99.92 7 | 98.77 21 | 99.94 8 | 99.82 6 |
|
| K. test v3 | | | 96.44 177 | 96.28 183 | 96.95 176 | 99.41 41 | 91.53 235 | 97.65 89 | 90.31 386 | 98.89 24 | 98.93 52 | 99.36 21 | 84.57 322 | 99.92 7 | 97.81 49 | 99.56 112 | 99.39 104 |
|
| LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 9 | 96.99 45 | 99.69 2 | 99.57 15 | 99.02 19 | 99.62 15 | 99.36 21 | 98.53 9 | 99.52 183 | 98.58 29 | 99.95 5 | 99.66 29 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| SixPastTwentyTwo | | | 97.49 110 | 97.57 103 | 97.26 154 | 99.56 20 | 92.33 211 | 98.28 43 | 96.97 297 | 98.30 42 | 99.45 21 | 99.35 23 | 88.43 289 | 99.89 21 | 98.01 42 | 99.76 58 | 99.54 53 |
|
| test_fmvsmconf0.1_n | | | 98.41 28 | 98.54 27 | 98.03 93 | 99.16 82 | 94.61 137 | 96.18 178 | 99.73 3 | 95.05 186 | 99.60 17 | 99.34 24 | 98.68 8 | 99.72 90 | 99.21 8 | 99.85 37 | 99.76 16 |
|
| bld_raw_dy_0_64 | | | 98.03 51 | 98.57 26 | 96.38 215 | 99.35 50 | 89.63 267 | 99.26 5 | 99.26 31 | 99.27 7 | 99.74 4 | 99.34 24 | 92.88 211 | 99.93 4 | 98.20 36 | 99.87 27 | 99.60 36 |
|
| Gipuma |  | | 98.07 48 | 98.31 38 | 97.36 146 | 99.76 7 | 96.28 69 | 98.51 28 | 99.10 54 | 98.76 27 | 96.79 224 | 99.34 24 | 96.61 91 | 98.82 321 | 96.38 99 | 99.50 140 | 96.98 348 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_vis3_rt | | | 97.04 135 | 96.98 140 | 97.23 157 | 98.44 183 | 95.88 81 | 96.82 137 | 99.67 7 | 90.30 306 | 99.27 32 | 99.33 27 | 94.04 182 | 96.03 398 | 97.14 75 | 97.83 313 | 99.78 10 |
|
| fmvsm_s_conf0.1_n_a | | | 97.80 85 | 98.01 55 | 97.18 158 | 99.17 81 | 92.51 206 | 96.57 153 | 99.15 46 | 93.68 232 | 98.89 56 | 99.30 28 | 96.42 104 | 99.37 235 | 99.03 14 | 99.83 42 | 99.66 29 |
|
| JIA-IIPM | | | 91.79 324 | 90.69 334 | 95.11 272 | 93.80 395 | 90.98 245 | 94.16 290 | 91.78 371 | 96.38 117 | 90.30 383 | 99.30 28 | 72.02 383 | 98.90 315 | 88.28 336 | 90.17 397 | 95.45 383 |
|
| TransMVSNet (Re) | | | 98.38 29 | 98.67 19 | 97.51 127 | 99.51 29 | 93.39 186 | 98.20 52 | 98.87 116 | 98.23 44 | 99.48 19 | 99.27 30 | 98.47 11 | 99.55 175 | 96.52 93 | 99.53 126 | 99.60 36 |
|
| fmvsm_s_conf0.1_n | | | 97.73 90 | 98.02 54 | 96.85 184 | 99.09 97 | 91.43 239 | 96.37 164 | 99.11 52 | 94.19 215 | 99.01 46 | 99.25 31 | 96.30 110 | 99.38 230 | 99.00 15 | 99.88 25 | 99.73 21 |
|
| Baseline_NR-MVSNet | | | 97.72 92 | 97.79 77 | 97.50 131 | 99.56 20 | 93.29 188 | 95.44 227 | 98.86 119 | 98.20 46 | 98.37 102 | 99.24 32 | 94.69 163 | 99.55 175 | 95.98 119 | 99.79 52 | 99.65 32 |
|
| v7n | | | 98.73 12 | 98.99 5 | 97.95 98 | 99.64 13 | 94.20 156 | 98.67 16 | 99.14 49 | 99.08 14 | 99.42 23 | 99.23 33 | 96.53 95 | 99.91 15 | 99.27 6 | 99.93 11 | 99.73 21 |
|
| mamv4 | | | 99.05 5 | 98.91 8 | 99.46 2 | 98.94 115 | 99.62 2 | 97.98 65 | 99.70 5 | 99.49 3 | 99.78 2 | 99.22 34 | 95.92 121 | 99.95 3 | 99.31 4 | 99.83 42 | 98.83 209 |
|
| pm-mvs1 | | | 98.47 25 | 98.67 19 | 97.86 103 | 99.52 28 | 94.58 139 | 98.28 43 | 99.00 89 | 97.57 70 | 99.27 32 | 99.22 34 | 98.32 12 | 99.50 188 | 97.09 77 | 99.75 65 | 99.50 62 |
|
| TDRefinement | | | 98.90 6 | 98.86 9 | 99.02 7 | 99.54 25 | 98.06 9 | 99.34 4 | 99.44 20 | 98.85 25 | 99.00 48 | 99.20 36 | 97.42 42 | 99.59 162 | 97.21 71 | 99.76 58 | 99.40 100 |
|
| GBi-Net | | | 96.99 138 | 96.80 153 | 97.56 122 | 97.96 233 | 93.67 174 | 98.23 47 | 98.66 172 | 95.59 162 | 97.99 148 | 99.19 37 | 89.51 279 | 99.73 85 | 94.60 200 | 99.44 156 | 99.30 120 |
|
| test1 | | | 96.99 138 | 96.80 153 | 97.56 122 | 97.96 233 | 93.67 174 | 98.23 47 | 98.66 172 | 95.59 162 | 97.99 148 | 99.19 37 | 89.51 279 | 99.73 85 | 94.60 200 | 99.44 156 | 99.30 120 |
|
| FMVSNet1 | | | 97.95 60 | 98.08 47 | 97.56 122 | 99.14 92 | 93.67 174 | 98.23 47 | 98.66 172 | 97.41 82 | 99.00 48 | 99.19 37 | 95.47 142 | 99.73 85 | 95.83 128 | 99.76 58 | 99.30 120 |
|
| test_fmvsmconf_n | | | 98.30 33 | 98.41 35 | 97.99 96 | 98.94 115 | 94.60 138 | 96.00 193 | 99.64 13 | 94.99 189 | 99.43 22 | 99.18 40 | 98.51 10 | 99.71 104 | 99.13 11 | 99.84 39 | 99.67 27 |
|
| VDDNet | | | 96.98 141 | 96.84 150 | 97.41 143 | 99.40 44 | 93.26 190 | 97.94 68 | 95.31 333 | 99.26 9 | 98.39 101 | 99.18 40 | 87.85 298 | 99.62 152 | 95.13 175 | 99.09 226 | 99.35 114 |
|
| DSMNet-mixed | | | 92.19 316 | 91.83 313 | 93.25 334 | 96.18 344 | 83.68 364 | 96.27 170 | 93.68 349 | 76.97 401 | 92.54 365 | 99.18 40 | 89.20 284 | 98.55 351 | 83.88 376 | 98.60 279 | 97.51 334 |
|
| test1111 | | | 94.53 262 | 94.81 240 | 93.72 324 | 99.06 101 | 81.94 376 | 98.31 40 | 83.87 405 | 96.37 118 | 98.49 89 | 99.17 43 | 81.49 337 | 99.73 85 | 96.64 88 | 99.86 30 | 99.49 70 |
|
| test2506 | | | 89.86 345 | 89.16 350 | 91.97 365 | 98.95 112 | 76.83 400 | 98.54 24 | 61.07 414 | 96.20 126 | 97.07 207 | 99.16 44 | 55.19 408 | 99.69 119 | 96.43 97 | 99.83 42 | 99.38 106 |
|
| ECVR-MVS |  | | 94.37 268 | 94.48 258 | 94.05 320 | 98.95 112 | 83.10 366 | 98.31 40 | 82.48 407 | 96.20 126 | 98.23 121 | 99.16 44 | 81.18 340 | 99.66 136 | 95.95 120 | 99.83 42 | 99.38 106 |
|
| v10 | | | 97.55 106 | 97.97 59 | 96.31 219 | 98.60 160 | 89.64 265 | 97.44 105 | 99.02 80 | 96.60 106 | 98.72 74 | 99.16 44 | 93.48 196 | 99.72 90 | 98.76 22 | 99.92 15 | 99.58 39 |
|
| MIMVSNet1 | | | 98.51 24 | 98.45 32 | 98.67 41 | 99.72 8 | 96.71 51 | 98.76 13 | 98.89 108 | 98.49 35 | 99.38 25 | 99.14 47 | 95.44 144 | 99.84 33 | 96.47 95 | 99.80 50 | 99.47 79 |
|
| MVSMamba_PlusPlus | | | 97.43 116 | 97.98 58 | 95.78 244 | 98.88 123 | 89.70 263 | 98.03 62 | 98.85 123 | 99.18 11 | 96.84 222 | 99.12 48 | 93.04 204 | 99.91 15 | 98.38 32 | 99.55 118 | 97.73 322 |
|
| iter_conf05 | | | 97.83 79 | 98.49 28 | 95.84 241 | 98.88 123 | 89.05 278 | 98.87 10 | 99.42 22 | 99.18 11 | 99.73 5 | 99.12 48 | 93.04 204 | 99.91 15 | 98.38 32 | 99.78 55 | 98.58 239 |
|
| Vis-MVSNet |  | | 98.27 34 | 98.34 37 | 98.07 86 | 99.33 53 | 95.21 120 | 98.04 60 | 99.46 18 | 97.32 87 | 97.82 167 | 99.11 50 | 96.75 85 | 99.86 27 | 97.84 48 | 99.36 178 | 99.15 150 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| v8 | | | 97.60 102 | 98.06 50 | 96.23 221 | 98.71 145 | 89.44 270 | 97.43 107 | 98.82 141 | 97.29 89 | 98.74 72 | 99.10 51 | 93.86 187 | 99.68 124 | 98.61 27 | 99.94 8 | 99.56 50 |
|
| mvsmamba | | | 98.16 38 | 98.06 50 | 98.44 56 | 99.53 27 | 95.87 82 | 98.70 14 | 98.94 102 | 97.71 64 | 98.85 59 | 99.10 51 | 91.35 250 | 99.83 35 | 98.47 30 | 99.90 23 | 99.64 34 |
|
| MVS-HIRNet | | | 88.40 359 | 90.20 340 | 82.99 388 | 97.01 321 | 60.04 413 | 93.11 328 | 85.61 403 | 84.45 375 | 88.72 394 | 99.09 53 | 84.72 321 | 98.23 373 | 82.52 382 | 96.59 357 | 90.69 403 |
|
| ACMH | | 93.61 9 | 98.44 26 | 98.76 14 | 97.51 127 | 99.43 38 | 93.54 180 | 98.23 47 | 99.05 69 | 97.40 83 | 99.37 26 | 99.08 54 | 98.79 6 | 99.47 198 | 97.74 54 | 99.71 74 | 99.50 62 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DTE-MVSNet | | | 98.79 9 | 98.86 9 | 98.59 47 | 99.55 22 | 96.12 73 | 98.48 31 | 99.10 54 | 99.36 5 | 99.29 31 | 99.06 55 | 97.27 48 | 99.93 4 | 97.71 55 | 99.91 18 | 99.70 25 |
|
| Anonymous20240521 | | | 97.07 134 | 97.51 109 | 95.76 245 | 99.35 50 | 88.18 295 | 97.78 78 | 98.40 203 | 97.11 92 | 98.34 108 | 99.04 56 | 89.58 275 | 99.79 47 | 98.09 39 | 99.93 11 | 99.30 120 |
|
| test_fmvsmvis_n_1920 | | | 98.08 46 | 98.47 29 | 96.93 178 | 99.03 107 | 93.29 188 | 96.32 168 | 99.65 10 | 95.59 162 | 99.71 7 | 99.01 57 | 97.66 33 | 99.60 161 | 99.44 2 | 99.83 42 | 97.90 309 |
|
| fmvsm_s_conf0.5_n_a | | | 97.65 97 | 97.83 73 | 97.13 162 | 98.80 132 | 92.51 206 | 96.25 174 | 99.06 65 | 93.67 233 | 98.64 75 | 99.00 58 | 96.23 114 | 99.36 238 | 98.99 16 | 99.80 50 | 99.53 56 |
|
| PEN-MVS | | | 98.75 11 | 98.85 11 | 98.44 56 | 99.58 18 | 95.67 91 | 98.45 32 | 99.15 46 | 99.33 6 | 99.30 30 | 99.00 58 | 97.27 48 | 99.92 7 | 97.64 59 | 99.92 15 | 99.75 18 |
|
| DeepC-MVS | | 95.41 4 | 97.82 83 | 97.70 84 | 98.16 79 | 98.78 137 | 95.72 87 | 96.23 176 | 99.02 80 | 93.92 225 | 98.62 77 | 98.99 60 | 97.69 29 | 99.62 152 | 96.18 108 | 99.87 27 | 99.15 150 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| fmvsm_s_conf0.5_n | | | 97.62 100 | 97.89 66 | 96.80 188 | 98.79 134 | 91.44 238 | 96.14 183 | 99.06 65 | 94.19 215 | 98.82 63 | 98.98 61 | 96.22 115 | 99.38 230 | 98.98 17 | 99.86 30 | 99.58 39 |
|
| VPA-MVSNet | | | 98.27 34 | 98.46 30 | 97.70 113 | 99.06 101 | 93.80 169 | 97.76 81 | 99.00 89 | 98.40 37 | 99.07 44 | 98.98 61 | 96.89 75 | 99.75 70 | 97.19 74 | 99.79 52 | 99.55 52 |
|
| lessismore_v0 | | | | | 97.05 170 | 99.36 49 | 92.12 221 | | 84.07 404 | | 98.77 70 | 98.98 61 | 85.36 316 | 99.74 79 | 97.34 68 | 99.37 175 | 99.30 120 |
|
| test_cas_vis1_n_1920 | | | 95.34 222 | 95.67 209 | 94.35 311 | 98.21 203 | 86.83 326 | 95.61 221 | 99.26 31 | 90.45 304 | 98.17 128 | 98.96 64 | 84.43 323 | 98.31 369 | 96.74 86 | 99.17 214 | 97.90 309 |
|
| PS-CasMVS | | | 98.73 12 | 98.85 11 | 98.39 61 | 99.55 22 | 95.47 102 | 98.49 29 | 99.13 50 | 99.22 10 | 99.22 36 | 98.96 64 | 97.35 44 | 99.92 7 | 97.79 51 | 99.93 11 | 99.79 9 |
|
| EU-MVSNet | | | 94.25 269 | 94.47 259 | 93.60 327 | 98.14 218 | 82.60 371 | 97.24 115 | 92.72 361 | 85.08 365 | 98.48 91 | 98.94 66 | 82.59 335 | 98.76 328 | 97.47 65 | 99.53 126 | 99.44 95 |
|
| LCM-MVSNet-Re | | | 97.33 124 | 97.33 119 | 97.32 148 | 98.13 221 | 93.79 170 | 96.99 129 | 99.65 10 | 96.74 102 | 99.47 20 | 98.93 67 | 96.91 74 | 99.84 33 | 90.11 309 | 99.06 232 | 98.32 266 |
|
| test_vis1_n | | | 95.67 207 | 95.89 202 | 95.03 277 | 98.18 209 | 89.89 261 | 96.94 131 | 99.28 30 | 88.25 334 | 98.20 123 | 98.92 68 | 86.69 307 | 97.19 387 | 97.70 57 | 98.82 256 | 98.00 303 |
|
| test_fmvs1_n | | | 95.21 228 | 95.28 217 | 94.99 280 | 98.15 216 | 89.13 277 | 96.81 138 | 99.43 21 | 86.97 347 | 97.21 192 | 98.92 68 | 83.00 332 | 97.13 388 | 98.09 39 | 98.94 241 | 98.72 224 |
|
| XXY-MVS | | | 97.54 107 | 97.70 84 | 97.07 169 | 99.46 35 | 92.21 216 | 97.22 116 | 99.00 89 | 94.93 192 | 98.58 82 | 98.92 68 | 97.31 46 | 99.41 221 | 94.44 204 | 99.43 164 | 99.59 38 |
|
| mvs_anonymous | | | 95.36 221 | 96.07 192 | 93.21 337 | 96.29 338 | 81.56 378 | 94.60 274 | 97.66 270 | 93.30 243 | 96.95 216 | 98.91 71 | 93.03 208 | 99.38 230 | 96.60 90 | 97.30 340 | 98.69 228 |
|
| test_vis1_n_1920 | | | 95.77 203 | 96.41 177 | 93.85 321 | 98.55 167 | 84.86 351 | 95.91 202 | 99.71 4 | 92.72 268 | 97.67 170 | 98.90 72 | 87.44 301 | 98.73 330 | 97.96 43 | 98.85 252 | 97.96 305 |
|
| EGC-MVSNET | | | 83.08 373 | 77.93 376 | 98.53 51 | 99.57 19 | 97.55 27 | 98.33 39 | 98.57 185 | 4.71 411 | 10.38 412 | 98.90 72 | 95.60 139 | 99.50 188 | 95.69 133 | 99.61 99 | 98.55 243 |
|
| KD-MVS_self_test | | | 97.86 77 | 98.07 48 | 97.25 155 | 99.22 68 | 92.81 198 | 97.55 97 | 98.94 102 | 97.10 93 | 98.85 59 | 98.88 74 | 95.03 155 | 99.67 130 | 97.39 67 | 99.65 87 | 99.26 132 |
|
| UGNet | | | 96.81 155 | 96.56 167 | 97.58 121 | 96.64 330 | 93.84 168 | 97.75 82 | 97.12 291 | 96.47 116 | 93.62 336 | 98.88 74 | 93.22 201 | 99.53 180 | 95.61 140 | 99.69 78 | 99.36 112 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Anonymous20240529 | | | 97.96 56 | 98.04 52 | 97.71 112 | 98.69 149 | 94.28 154 | 97.86 73 | 98.31 216 | 98.79 26 | 99.23 35 | 98.86 76 | 95.76 133 | 99.61 159 | 95.49 145 | 99.36 178 | 99.23 138 |
|
| FC-MVSNet-test | | | 98.16 38 | 98.37 36 | 97.56 122 | 99.49 33 | 93.10 193 | 98.35 36 | 99.21 35 | 98.43 36 | 98.89 56 | 98.83 77 | 94.30 177 | 99.81 39 | 97.87 46 | 99.91 18 | 99.77 11 |
|
| new-patchmatchnet | | | 95.67 207 | 96.58 165 | 92.94 346 | 97.48 294 | 80.21 386 | 92.96 329 | 98.19 231 | 94.83 193 | 98.82 63 | 98.79 78 | 93.31 199 | 99.51 187 | 95.83 128 | 99.04 233 | 99.12 160 |
|
| WR-MVS_H | | | 98.65 16 | 98.62 23 | 98.75 32 | 99.51 29 | 96.61 57 | 98.55 23 | 99.17 41 | 99.05 17 | 99.17 38 | 98.79 78 | 95.47 142 | 99.89 21 | 97.95 44 | 99.91 18 | 99.75 18 |
|
| ab-mvs | | | 96.59 169 | 96.59 164 | 96.60 200 | 98.64 152 | 92.21 216 | 98.35 36 | 97.67 268 | 94.45 206 | 96.99 212 | 98.79 78 | 94.96 159 | 99.49 193 | 90.39 306 | 99.07 229 | 98.08 289 |
|
| testf1 | | | 98.57 18 | 98.45 32 | 98.93 19 | 99.79 3 | 98.78 3 | 97.69 86 | 99.42 22 | 97.69 66 | 98.92 53 | 98.77 81 | 97.80 25 | 99.25 267 | 96.27 104 | 99.69 78 | 98.76 219 |
|
| APD_test2 | | | 98.57 18 | 98.45 32 | 98.93 19 | 99.79 3 | 98.78 3 | 97.69 86 | 99.42 22 | 97.69 66 | 98.92 53 | 98.77 81 | 97.80 25 | 99.25 267 | 96.27 104 | 99.69 78 | 98.76 219 |
|
| EG-PatchMatch MVS | | | 97.69 94 | 97.79 77 | 97.40 144 | 99.06 101 | 93.52 181 | 95.96 198 | 98.97 98 | 94.55 205 | 98.82 63 | 98.76 83 | 97.31 46 | 99.29 259 | 97.20 73 | 99.44 156 | 99.38 106 |
|
| nrg030 | | | 98.54 22 | 98.62 23 | 98.32 65 | 99.22 68 | 95.66 92 | 97.90 71 | 99.08 61 | 98.31 40 | 99.02 45 | 98.74 84 | 97.68 30 | 99.61 159 | 97.77 52 | 99.85 37 | 99.70 25 |
|
| VDD-MVS | | | 97.37 121 | 97.25 123 | 97.74 110 | 98.69 149 | 94.50 143 | 97.04 127 | 95.61 326 | 98.59 31 | 98.51 86 | 98.72 85 | 92.54 225 | 99.58 164 | 96.02 115 | 99.49 143 | 99.12 160 |
|
| PatchT | | | 93.75 285 | 93.57 282 | 94.29 314 | 95.05 378 | 87.32 317 | 96.05 188 | 92.98 357 | 97.54 73 | 94.25 316 | 98.72 85 | 75.79 368 | 99.24 271 | 95.92 122 | 95.81 369 | 96.32 370 |
|
| test_fmvsm_n_1920 | | | 98.08 46 | 98.29 41 | 97.43 140 | 98.88 123 | 93.95 164 | 96.17 182 | 99.57 15 | 95.66 157 | 99.52 18 | 98.71 87 | 97.04 62 | 99.64 143 | 99.21 8 | 99.87 27 | 98.69 228 |
|
| RPSCF | | | 97.87 75 | 97.51 109 | 98.95 15 | 99.15 85 | 98.43 7 | 97.56 96 | 99.06 65 | 96.19 128 | 98.48 91 | 98.70 88 | 94.72 162 | 99.24 271 | 94.37 209 | 99.33 191 | 99.17 147 |
|
| APDe-MVS |  | | 98.14 40 | 98.03 53 | 98.47 55 | 98.72 142 | 96.04 76 | 98.07 59 | 99.10 54 | 95.96 141 | 98.59 81 | 98.69 89 | 96.94 69 | 99.81 39 | 96.64 88 | 99.58 106 | 99.57 46 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| IterMVS-LS | | | 96.92 144 | 97.29 121 | 95.79 243 | 98.51 173 | 88.13 298 | 95.10 250 | 98.66 172 | 96.99 94 | 98.46 94 | 98.68 90 | 92.55 223 | 99.74 79 | 96.91 83 | 99.79 52 | 99.50 62 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| SSC-MVS | | | 95.92 197 | 97.03 138 | 92.58 355 | 99.28 57 | 78.39 391 | 96.68 150 | 95.12 335 | 98.90 23 | 99.11 41 | 98.66 91 | 91.36 249 | 99.68 124 | 95.00 182 | 99.16 215 | 99.67 27 |
|
| tfpnnormal | | | 97.72 92 | 97.97 59 | 96.94 177 | 99.26 59 | 92.23 215 | 97.83 76 | 98.45 194 | 98.25 43 | 99.13 40 | 98.66 91 | 96.65 88 | 99.69 119 | 93.92 228 | 99.62 93 | 98.91 196 |
|
| FIs | | | 97.93 66 | 98.07 48 | 97.48 135 | 99.38 47 | 92.95 196 | 98.03 62 | 99.11 52 | 98.04 52 | 98.62 77 | 98.66 91 | 93.75 191 | 99.78 50 | 97.23 69 | 99.84 39 | 99.73 21 |
|
| CP-MVSNet | | | 98.42 27 | 98.46 30 | 98.30 68 | 99.46 35 | 95.22 118 | 98.27 45 | 98.84 127 | 99.05 17 | 99.01 46 | 98.65 94 | 95.37 145 | 99.90 18 | 97.57 60 | 99.91 18 | 99.77 11 |
|
| MM | | | 96.87 149 | 96.62 161 | 97.62 119 | 97.72 271 | 93.30 187 | 96.39 160 | 92.61 364 | 97.90 55 | 96.76 229 | 98.64 95 | 90.46 262 | 99.81 39 | 99.16 10 | 99.94 8 | 99.76 16 |
|
| MVS_0304 | | | 96.62 168 | 96.40 178 | 97.28 151 | 97.91 237 | 92.30 212 | 96.47 158 | 89.74 391 | 97.52 74 | 95.38 292 | 98.63 96 | 92.76 214 | 99.81 39 | 99.28 5 | 99.93 11 | 99.75 18 |
|
| FMVSNet2 | | | 96.72 161 | 96.67 160 | 96.87 183 | 97.96 233 | 91.88 229 | 97.15 119 | 98.06 249 | 95.59 162 | 98.50 88 | 98.62 97 | 89.51 279 | 99.65 138 | 94.99 184 | 99.60 102 | 99.07 170 |
|
| FA-MVS(test-final) | | | 94.91 241 | 94.89 234 | 94.99 280 | 97.51 292 | 88.11 300 | 98.27 45 | 95.20 334 | 92.40 275 | 96.68 232 | 98.60 98 | 83.44 329 | 99.28 261 | 93.34 243 | 98.53 281 | 97.59 331 |
|
| PMVS |  | 89.60 17 | 96.71 163 | 96.97 141 | 95.95 235 | 99.51 29 | 97.81 17 | 97.42 108 | 97.49 279 | 97.93 53 | 95.95 271 | 98.58 99 | 96.88 77 | 96.91 392 | 89.59 317 | 99.36 178 | 93.12 397 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| CR-MVSNet | | | 93.29 299 | 92.79 297 | 94.78 293 | 95.44 370 | 88.15 296 | 96.18 178 | 97.20 286 | 84.94 370 | 94.10 320 | 98.57 100 | 77.67 355 | 99.39 227 | 95.17 168 | 95.81 369 | 96.81 359 |
|
| Patchmtry | | | 95.03 238 | 94.59 253 | 96.33 217 | 94.83 381 | 90.82 248 | 96.38 163 | 97.20 286 | 96.59 107 | 97.49 178 | 98.57 100 | 77.67 355 | 99.38 230 | 92.95 254 | 99.62 93 | 98.80 213 |
|
| ambc | | | | | 96.56 205 | 98.23 202 | 91.68 234 | 97.88 72 | 98.13 240 | | 98.42 97 | 98.56 102 | 94.22 179 | 99.04 301 | 94.05 223 | 99.35 183 | 98.95 186 |
|
| 3Dnovator | | 96.53 2 | 97.61 101 | 97.64 94 | 97.50 131 | 97.74 269 | 93.65 178 | 98.49 29 | 98.88 114 | 96.86 99 | 97.11 200 | 98.55 103 | 95.82 127 | 99.73 85 | 95.94 121 | 99.42 167 | 99.13 155 |
|
| IterMVS-SCA-FT | | | 95.86 200 | 96.19 186 | 94.85 288 | 97.68 275 | 85.53 339 | 92.42 347 | 97.63 276 | 96.99 94 | 98.36 105 | 98.54 104 | 87.94 293 | 99.75 70 | 97.07 79 | 99.08 227 | 99.27 131 |
|
| test_fmvs1 | | | 94.51 263 | 94.60 251 | 94.26 315 | 95.91 352 | 87.92 302 | 95.35 237 | 99.02 80 | 86.56 351 | 96.79 224 | 98.52 105 | 82.64 334 | 97.00 391 | 97.87 46 | 98.71 267 | 97.88 311 |
|
| COLMAP_ROB |  | 94.48 6 | 98.25 36 | 98.11 45 | 98.64 44 | 99.21 75 | 97.35 36 | 97.96 66 | 99.16 42 | 98.34 39 | 98.78 66 | 98.52 105 | 97.32 45 | 99.45 205 | 94.08 220 | 99.67 84 | 99.13 155 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMH+ | | 93.58 10 | 98.23 37 | 98.31 38 | 97.98 97 | 99.39 45 | 95.22 118 | 97.55 97 | 99.20 37 | 98.21 45 | 99.25 34 | 98.51 107 | 98.21 14 | 99.40 223 | 94.79 191 | 99.72 71 | 99.32 115 |
|
| fmvsm_l_conf0.5_n_a | | | 97.60 102 | 97.76 81 | 97.11 163 | 98.92 119 | 92.28 213 | 95.83 206 | 99.32 26 | 93.22 246 | 98.91 55 | 98.49 108 | 96.31 109 | 99.64 143 | 99.07 13 | 99.76 58 | 99.40 100 |
|
| RPMNet | | | 94.68 254 | 94.60 251 | 94.90 285 | 95.44 370 | 88.15 296 | 96.18 178 | 98.86 119 | 97.43 77 | 94.10 320 | 98.49 108 | 79.40 347 | 99.76 64 | 95.69 133 | 95.81 369 | 96.81 359 |
|
| IterMVS | | | 95.42 220 | 95.83 204 | 94.20 316 | 97.52 291 | 83.78 363 | 92.41 348 | 97.47 281 | 95.49 167 | 98.06 142 | 98.49 108 | 87.94 293 | 99.58 164 | 96.02 115 | 99.02 234 | 99.23 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS | | | 97.87 75 | 97.89 66 | 97.81 106 | 98.62 158 | 94.82 129 | 97.13 122 | 98.79 143 | 98.98 21 | 98.74 72 | 98.49 108 | 95.80 132 | 99.49 193 | 95.04 179 | 99.44 156 | 99.11 163 |
|
| casdiffmvs_mvg |  | | 97.83 79 | 98.11 45 | 97.00 175 | 98.57 164 | 92.10 224 | 95.97 196 | 99.18 40 | 97.67 69 | 99.00 48 | 98.48 112 | 97.64 34 | 99.50 188 | 96.96 82 | 99.54 122 | 99.40 100 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TranMVSNet+NR-MVSNet | | | 98.33 30 | 98.30 40 | 98.43 58 | 99.07 100 | 95.87 82 | 96.73 147 | 99.05 69 | 98.67 28 | 98.84 61 | 98.45 113 | 97.58 38 | 99.88 23 | 96.45 96 | 99.86 30 | 99.54 53 |
|
| 3Dnovator+ | | 96.13 3 | 97.73 90 | 97.59 101 | 98.15 81 | 98.11 222 | 95.60 93 | 98.04 60 | 98.70 164 | 98.13 47 | 96.93 217 | 98.45 113 | 95.30 148 | 99.62 152 | 95.64 138 | 98.96 238 | 99.24 137 |
|
| fmvsm_l_conf0.5_n | | | 97.68 96 | 97.81 75 | 97.27 152 | 98.92 119 | 92.71 203 | 95.89 203 | 99.41 25 | 93.36 240 | 99.00 48 | 98.44 115 | 96.46 102 | 99.65 138 | 99.09 12 | 99.76 58 | 99.45 85 |
|
| iter_conf05_11 | | | 96.88 148 | 96.92 146 | 96.75 192 | 97.70 273 | 92.38 210 | 98.03 62 | 99.03 77 | 94.26 212 | 96.84 222 | 98.43 116 | 91.72 245 | 99.65 138 | 96.67 87 | 99.63 91 | 98.20 280 |
|
| dcpmvs_2 | | | 97.12 132 | 97.99 57 | 94.51 305 | 99.11 94 | 84.00 361 | 97.75 82 | 99.65 10 | 97.38 85 | 99.14 39 | 98.42 117 | 95.16 151 | 99.96 2 | 95.52 144 | 99.78 55 | 99.58 39 |
|
| patch_mono-2 | | | 96.59 169 | 96.93 144 | 95.55 256 | 98.88 123 | 87.12 320 | 94.47 277 | 99.30 28 | 94.12 218 | 96.65 237 | 98.41 118 | 94.98 158 | 99.87 25 | 95.81 130 | 99.78 55 | 99.66 29 |
|
| VPNet | | | 97.26 127 | 97.49 112 | 96.59 201 | 99.47 34 | 90.58 253 | 96.27 170 | 98.53 187 | 97.77 57 | 98.46 94 | 98.41 118 | 94.59 168 | 99.68 124 | 94.61 199 | 99.29 199 | 99.52 58 |
|
| test_0402 | | | 97.84 78 | 97.97 59 | 97.47 136 | 99.19 79 | 94.07 159 | 96.71 148 | 98.73 155 | 98.66 29 | 98.56 83 | 98.41 118 | 96.84 81 | 99.69 119 | 94.82 189 | 99.81 47 | 98.64 232 |
|
| v1240 | | | 96.74 158 | 97.02 139 | 95.91 238 | 98.18 209 | 88.52 287 | 95.39 233 | 98.88 114 | 93.15 254 | 98.46 94 | 98.40 121 | 92.80 213 | 99.71 104 | 98.45 31 | 99.49 143 | 99.49 70 |
|
| APD_test1 | | | 97.95 60 | 97.68 88 | 98.75 32 | 99.60 16 | 98.60 6 | 97.21 117 | 99.08 61 | 96.57 111 | 98.07 141 | 98.38 122 | 96.22 115 | 99.14 285 | 94.71 198 | 99.31 196 | 98.52 246 |
|
| SMA-MVS |  | | 97.48 111 | 97.11 131 | 98.60 46 | 98.83 129 | 96.67 54 | 96.74 143 | 98.73 155 | 91.61 286 | 98.48 91 | 98.36 123 | 96.53 95 | 99.68 124 | 95.17 168 | 99.54 122 | 99.45 85 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMMP_NAP | | | 97.89 73 | 97.63 96 | 98.67 41 | 99.35 50 | 96.84 48 | 96.36 165 | 98.79 143 | 95.07 185 | 97.88 160 | 98.35 124 | 97.24 52 | 99.72 90 | 96.05 112 | 99.58 106 | 99.45 85 |
|
| v1192 | | | 96.83 153 | 97.06 136 | 96.15 227 | 98.28 195 | 89.29 272 | 95.36 235 | 98.77 148 | 93.73 228 | 98.11 134 | 98.34 125 | 93.02 209 | 99.67 130 | 98.35 34 | 99.58 106 | 99.50 62 |
|
| pmmvs-eth3d | | | 96.49 174 | 96.18 187 | 97.42 142 | 98.25 199 | 94.29 151 | 94.77 268 | 98.07 248 | 89.81 313 | 97.97 152 | 98.33 126 | 93.11 202 | 99.08 297 | 95.46 151 | 99.84 39 | 98.89 200 |
|
| PM-MVS | | | 97.36 123 | 97.10 132 | 98.14 82 | 98.91 121 | 96.77 50 | 96.20 177 | 98.63 178 | 93.82 226 | 98.54 84 | 98.33 126 | 93.98 184 | 99.05 300 | 95.99 118 | 99.45 155 | 98.61 237 |
|
| test0726 | | | | | | 99.24 63 | 95.51 97 | 96.89 134 | 98.89 108 | 95.92 144 | 98.64 75 | 98.31 128 | 97.06 60 | | | | |
|
| MP-MVS-pluss | | | 97.69 94 | 97.36 117 | 98.70 39 | 99.50 32 | 96.84 48 | 95.38 234 | 98.99 92 | 92.45 273 | 98.11 134 | 98.31 128 | 97.25 51 | 99.77 59 | 96.60 90 | 99.62 93 | 99.48 76 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| v1144 | | | 96.84 150 | 97.08 134 | 96.13 228 | 98.42 185 | 89.28 273 | 95.41 231 | 98.67 170 | 94.21 213 | 97.97 152 | 98.31 128 | 93.06 203 | 99.65 138 | 98.06 41 | 99.62 93 | 99.45 85 |
|
| LFMVS | | | 95.32 224 | 94.88 235 | 96.62 199 | 98.03 224 | 91.47 237 | 97.65 89 | 90.72 382 | 99.11 13 | 97.89 159 | 98.31 128 | 79.20 348 | 99.48 196 | 93.91 229 | 99.12 222 | 98.93 192 |
|
| DVP-MVS++ | | | 97.96 56 | 97.90 63 | 98.12 84 | 97.75 266 | 95.40 103 | 99.03 8 | 98.89 108 | 96.62 104 | 98.62 77 | 98.30 132 | 96.97 67 | 99.75 70 | 95.70 131 | 99.25 204 | 99.21 140 |
|
| test_one_0601 | | | | | | 99.05 105 | 95.50 100 | | 98.87 116 | 97.21 91 | 98.03 146 | 98.30 132 | 96.93 71 | | | | |
|
| V42 | | | 97.04 135 | 97.16 130 | 96.68 198 | 98.59 162 | 91.05 243 | 96.33 167 | 98.36 208 | 94.60 201 | 97.99 148 | 98.30 132 | 93.32 198 | 99.62 152 | 97.40 66 | 99.53 126 | 99.38 106 |
|
| casdiffmvs |  | | 97.50 109 | 97.81 75 | 96.56 205 | 98.51 173 | 91.04 244 | 95.83 206 | 99.09 59 | 97.23 90 | 98.33 111 | 98.30 132 | 97.03 63 | 99.37 235 | 96.58 92 | 99.38 174 | 99.28 127 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| v144192 | | | 96.69 164 | 96.90 149 | 96.03 230 | 98.25 199 | 88.92 279 | 95.49 225 | 98.77 148 | 93.05 256 | 98.09 137 | 98.29 136 | 92.51 228 | 99.70 112 | 98.11 38 | 99.56 112 | 99.47 79 |
|
| mvsany_test1 | | | 93.47 294 | 93.03 290 | 94.79 292 | 94.05 393 | 92.12 221 | 90.82 377 | 90.01 390 | 85.02 368 | 97.26 189 | 98.28 137 | 93.57 194 | 97.03 389 | 92.51 259 | 95.75 374 | 95.23 385 |
|
| DVP-MVS |  | | 97.78 87 | 97.65 91 | 98.16 79 | 99.24 63 | 95.51 97 | 96.74 143 | 98.23 222 | 95.92 144 | 98.40 99 | 98.28 137 | 97.06 60 | 99.71 104 | 95.48 148 | 99.52 131 | 99.26 132 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 96.62 104 | 98.40 99 | 98.28 137 | 97.10 56 | 99.71 104 | 95.70 131 | 99.62 93 | 99.58 39 |
|
| MVS_Test | | | 96.27 183 | 96.79 155 | 94.73 295 | 96.94 325 | 86.63 328 | 96.18 178 | 98.33 212 | 94.94 190 | 96.07 267 | 98.28 137 | 95.25 149 | 99.26 265 | 97.21 71 | 97.90 311 | 98.30 270 |
|
| FMVSNet5 | | | 93.39 296 | 92.35 306 | 96.50 207 | 95.83 358 | 90.81 250 | 97.31 110 | 98.27 217 | 92.74 267 | 96.27 257 | 98.28 137 | 62.23 398 | 99.67 130 | 90.86 288 | 99.36 178 | 99.03 175 |
|
| WB-MVS | | | 95.50 213 | 96.62 161 | 92.11 364 | 99.21 75 | 77.26 399 | 96.12 184 | 95.40 332 | 98.62 30 | 98.84 61 | 98.26 142 | 91.08 253 | 99.50 188 | 93.37 241 | 98.70 268 | 99.58 39 |
|
| v1921920 | | | 96.72 161 | 96.96 143 | 95.99 231 | 98.21 203 | 88.79 284 | 95.42 229 | 98.79 143 | 93.22 246 | 98.19 127 | 98.26 142 | 92.68 217 | 99.70 112 | 98.34 35 | 99.55 118 | 99.49 70 |
|
| SED-MVS | | | 97.94 63 | 97.90 63 | 98.07 86 | 99.22 68 | 95.35 108 | 96.79 140 | 98.83 133 | 96.11 131 | 99.08 42 | 98.24 144 | 97.87 23 | 99.72 90 | 95.44 152 | 99.51 136 | 99.14 153 |
|
| test_241102_TWO | | | | | | | | | 98.83 133 | 96.11 131 | 98.62 77 | 98.24 144 | 96.92 73 | 99.72 90 | 95.44 152 | 99.49 143 | 99.49 70 |
|
| v2v482 | | | 96.78 157 | 97.06 136 | 95.95 235 | 98.57 164 | 88.77 285 | 95.36 235 | 98.26 218 | 95.18 180 | 97.85 165 | 98.23 146 | 92.58 221 | 99.63 147 | 97.80 50 | 99.69 78 | 99.45 85 |
|
| LPG-MVS_test | | | 97.94 63 | 97.67 89 | 98.74 35 | 99.15 85 | 97.02 43 | 97.09 124 | 99.02 80 | 95.15 181 | 98.34 108 | 98.23 146 | 97.91 21 | 99.70 112 | 94.41 206 | 99.73 67 | 99.50 62 |
|
| LGP-MVS_train | | | | | 98.74 35 | 99.15 85 | 97.02 43 | | 99.02 80 | 95.15 181 | 98.34 108 | 98.23 146 | 97.91 21 | 99.70 112 | 94.41 206 | 99.73 67 | 99.50 62 |
|
| HPM-MVS_fast | | | 98.32 31 | 98.13 43 | 98.88 24 | 99.54 25 | 97.48 31 | 98.35 36 | 99.03 77 | 95.88 147 | 97.88 160 | 98.22 149 | 98.15 16 | 99.74 79 | 96.50 94 | 99.62 93 | 99.42 97 |
|
| MIMVSNet | | | 93.42 295 | 92.86 294 | 95.10 274 | 98.17 212 | 88.19 294 | 98.13 56 | 93.69 347 | 92.07 277 | 95.04 301 | 98.21 150 | 80.95 343 | 99.03 304 | 81.42 385 | 98.06 304 | 98.07 291 |
|
| h-mvs33 | | | 96.29 182 | 95.63 212 | 98.26 70 | 98.50 176 | 96.11 74 | 96.90 133 | 97.09 292 | 96.58 108 | 97.21 192 | 98.19 151 | 84.14 324 | 99.78 50 | 95.89 124 | 96.17 366 | 98.89 200 |
|
| EI-MVSNet | | | 96.63 167 | 96.93 144 | 95.74 246 | 97.26 312 | 88.13 298 | 95.29 243 | 97.65 272 | 96.99 94 | 97.94 155 | 98.19 151 | 92.55 223 | 99.58 164 | 96.91 83 | 99.56 112 | 99.50 62 |
|
| CVMVSNet | | | 92.33 314 | 92.79 297 | 90.95 371 | 97.26 312 | 75.84 403 | 95.29 243 | 92.33 366 | 81.86 381 | 96.27 257 | 98.19 151 | 81.44 338 | 98.46 359 | 94.23 215 | 98.29 295 | 98.55 243 |
|
| PVSNet_Blended_VisFu | | | 95.95 196 | 95.80 205 | 96.42 212 | 99.28 57 | 90.62 252 | 95.31 241 | 99.08 61 | 88.40 331 | 96.97 215 | 98.17 154 | 92.11 235 | 99.78 50 | 93.64 237 | 99.21 208 | 98.86 207 |
|
| FE-MVS | | | 92.95 304 | 92.22 308 | 95.11 272 | 97.21 314 | 88.33 292 | 98.54 24 | 93.66 350 | 89.91 312 | 96.21 261 | 98.14 155 | 70.33 389 | 99.50 188 | 87.79 340 | 98.24 297 | 97.51 334 |
|
| EI-MVSNet-UG-set | | | 97.32 125 | 97.40 114 | 97.09 167 | 97.34 307 | 92.01 227 | 95.33 239 | 97.65 272 | 97.74 60 | 98.30 116 | 98.14 155 | 95.04 154 | 99.69 119 | 97.55 61 | 99.52 131 | 99.58 39 |
|
| test_241102_ONE | | | | | | 99.22 68 | 95.35 108 | | 98.83 133 | 96.04 136 | 99.08 42 | 98.13 157 | 97.87 23 | 99.33 247 | | | |
|
| APD-MVS_3200maxsize | | | 98.13 43 | 97.90 63 | 98.79 30 | 98.79 134 | 97.31 37 | 97.55 97 | 98.92 105 | 97.72 62 | 98.25 119 | 98.13 157 | 97.10 56 | 99.75 70 | 95.44 152 | 99.24 207 | 99.32 115 |
|
| QAPM | | | 95.88 199 | 95.57 214 | 96.80 188 | 97.90 239 | 91.84 231 | 98.18 54 | 98.73 155 | 88.41 330 | 96.42 248 | 98.13 157 | 94.73 161 | 99.75 70 | 88.72 329 | 98.94 241 | 98.81 212 |
|
| ACMM | | 93.33 11 | 98.05 49 | 97.79 77 | 98.85 25 | 99.15 85 | 97.55 27 | 96.68 150 | 98.83 133 | 95.21 177 | 98.36 105 | 98.13 157 | 98.13 18 | 99.62 152 | 96.04 113 | 99.54 122 | 99.39 104 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EI-MVSNet-Vis-set | | | 97.32 125 | 97.39 115 | 97.11 163 | 97.36 304 | 92.08 225 | 95.34 238 | 97.65 272 | 97.74 60 | 98.29 117 | 98.11 161 | 95.05 153 | 99.68 124 | 97.50 63 | 99.50 140 | 99.56 50 |
|
| wuyk23d | | | 93.25 300 | 95.20 219 | 87.40 387 | 96.07 350 | 95.38 105 | 97.04 127 | 94.97 336 | 95.33 173 | 99.70 9 | 98.11 161 | 98.14 17 | 91.94 405 | 77.76 396 | 99.68 82 | 74.89 405 |
|
| DPE-MVS |  | | 97.64 98 | 97.35 118 | 98.50 52 | 98.85 128 | 96.18 70 | 95.21 247 | 98.99 92 | 95.84 150 | 98.78 66 | 98.08 163 | 96.84 81 | 99.81 39 | 93.98 226 | 99.57 109 | 99.52 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SD-MVS | | | 97.37 121 | 97.70 84 | 96.35 216 | 98.14 218 | 95.13 122 | 96.54 155 | 98.92 105 | 95.94 143 | 99.19 37 | 98.08 163 | 97.74 28 | 95.06 399 | 95.24 164 | 99.54 122 | 98.87 206 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| SR-MVS-dyc-post | | | 98.14 40 | 97.84 70 | 99.02 7 | 98.81 130 | 98.05 10 | 97.55 97 | 98.86 119 | 97.77 57 | 98.20 123 | 98.07 165 | 96.60 93 | 99.76 64 | 95.49 145 | 99.20 209 | 99.26 132 |
|
| RE-MVS-def | | | | 97.88 68 | | 98.81 130 | 98.05 10 | 97.55 97 | 98.86 119 | 97.77 57 | 98.20 123 | 98.07 165 | 96.94 69 | | 95.49 145 | 99.20 209 | 99.26 132 |
|
| OPM-MVS | | | 97.54 107 | 97.25 123 | 98.41 59 | 99.11 94 | 96.61 57 | 95.24 245 | 98.46 193 | 94.58 204 | 98.10 136 | 98.07 165 | 97.09 58 | 99.39 227 | 95.16 170 | 99.44 156 | 99.21 140 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| AllTest | | | 97.20 130 | 96.92 146 | 98.06 88 | 99.08 98 | 96.16 71 | 97.14 121 | 99.16 42 | 94.35 209 | 97.78 168 | 98.07 165 | 95.84 124 | 99.12 289 | 91.41 275 | 99.42 167 | 98.91 196 |
|
| TestCases | | | | | 98.06 88 | 99.08 98 | 96.16 71 | | 99.16 42 | 94.35 209 | 97.78 168 | 98.07 165 | 95.84 124 | 99.12 289 | 91.41 275 | 99.42 167 | 98.91 196 |
|
| TSAR-MVS + MP. | | | 97.42 117 | 97.23 125 | 98.00 95 | 99.38 47 | 95.00 125 | 97.63 91 | 98.20 226 | 93.00 258 | 98.16 129 | 98.06 170 | 95.89 122 | 99.72 90 | 95.67 135 | 99.10 225 | 99.28 127 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| EPP-MVSNet | | | 96.84 150 | 96.58 165 | 97.65 117 | 99.18 80 | 93.78 171 | 98.68 15 | 96.34 310 | 97.91 54 | 97.30 187 | 98.06 170 | 88.46 288 | 99.85 30 | 93.85 230 | 99.40 172 | 99.32 115 |
|
| ACMMP |  | | 98.05 49 | 97.75 83 | 98.93 19 | 99.23 65 | 97.60 23 | 98.09 58 | 98.96 99 | 95.75 155 | 97.91 157 | 98.06 170 | 96.89 75 | 99.76 64 | 95.32 160 | 99.57 109 | 99.43 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| Anonymous202405211 | | | 96.34 181 | 95.98 196 | 97.43 140 | 98.25 199 | 93.85 167 | 96.74 143 | 94.41 342 | 97.72 62 | 98.37 102 | 98.03 173 | 87.15 303 | 99.53 180 | 94.06 221 | 99.07 229 | 98.92 195 |
|
| XVG-ACMP-BASELINE | | | 97.58 105 | 97.28 122 | 98.49 53 | 99.16 82 | 96.90 47 | 96.39 160 | 98.98 95 | 95.05 186 | 98.06 142 | 98.02 174 | 95.86 123 | 99.56 171 | 94.37 209 | 99.64 89 | 99.00 179 |
|
| baseline | | | 97.44 114 | 97.78 80 | 96.43 211 | 98.52 171 | 90.75 251 | 96.84 135 | 99.03 77 | 96.51 112 | 97.86 164 | 98.02 174 | 96.67 87 | 99.36 238 | 97.09 77 | 99.47 149 | 99.19 144 |
|
| PVSNet_BlendedMVS | | | 95.02 239 | 94.93 231 | 95.27 266 | 97.79 259 | 87.40 315 | 94.14 293 | 98.68 167 | 88.94 323 | 94.51 311 | 98.01 176 | 93.04 204 | 99.30 255 | 89.77 315 | 99.49 143 | 99.11 163 |
|
| OpenMVS |  | 94.22 8 | 95.48 216 | 95.20 219 | 96.32 218 | 97.16 316 | 91.96 228 | 97.74 84 | 98.84 127 | 87.26 341 | 94.36 315 | 98.01 176 | 93.95 186 | 99.67 130 | 90.70 298 | 98.75 262 | 97.35 341 |
|
| MVSTER | | | 94.21 272 | 93.93 277 | 95.05 276 | 95.83 358 | 86.46 329 | 95.18 248 | 97.65 272 | 92.41 274 | 97.94 155 | 98.00 178 | 72.39 382 | 99.58 164 | 96.36 100 | 99.56 112 | 99.12 160 |
|
| IS-MVSNet | | | 96.93 143 | 96.68 159 | 97.70 113 | 99.25 62 | 94.00 162 | 98.57 21 | 96.74 306 | 98.36 38 | 98.14 132 | 97.98 179 | 88.23 291 | 99.71 104 | 93.10 251 | 99.72 71 | 99.38 106 |
|
| MTAPA | | | 98.14 40 | 97.84 70 | 99.06 4 | 99.44 37 | 97.90 13 | 97.25 113 | 98.73 155 | 97.69 66 | 97.90 158 | 97.96 180 | 95.81 131 | 99.82 37 | 96.13 109 | 99.61 99 | 99.45 85 |
|
| v148 | | | 96.58 171 | 96.97 141 | 95.42 262 | 98.63 156 | 87.57 311 | 95.09 251 | 97.90 254 | 95.91 146 | 98.24 120 | 97.96 180 | 93.42 197 | 99.39 227 | 96.04 113 | 99.52 131 | 99.29 126 |
|
| MDA-MVSNet-bldmvs | | | 95.69 205 | 95.67 209 | 95.74 246 | 98.48 179 | 88.76 286 | 92.84 331 | 97.25 284 | 96.00 139 | 97.59 172 | 97.95 182 | 91.38 248 | 99.46 201 | 93.16 250 | 96.35 361 | 98.99 182 |
|
| PGM-MVS | | | 97.88 74 | 97.52 108 | 98.96 14 | 99.20 77 | 97.62 22 | 97.09 124 | 99.06 65 | 95.45 168 | 97.55 173 | 97.94 183 | 97.11 55 | 99.78 50 | 94.77 194 | 99.46 152 | 99.48 76 |
|
| LS3D | | | 97.77 88 | 97.50 111 | 98.57 48 | 96.24 339 | 97.58 25 | 98.45 32 | 98.85 123 | 98.58 32 | 97.51 176 | 97.94 183 | 95.74 134 | 99.63 147 | 95.19 166 | 98.97 237 | 98.51 247 |
|
| USDC | | | 94.56 260 | 94.57 256 | 94.55 303 | 97.78 262 | 86.43 331 | 92.75 334 | 98.65 177 | 85.96 355 | 96.91 219 | 97.93 185 | 90.82 257 | 98.74 329 | 90.71 297 | 99.59 104 | 98.47 251 |
|
| test20.03 | | | 96.58 171 | 96.61 163 | 96.48 209 | 98.49 177 | 91.72 233 | 95.68 214 | 97.69 267 | 96.81 100 | 98.27 118 | 97.92 186 | 94.18 180 | 98.71 333 | 90.78 292 | 99.66 86 | 99.00 179 |
|
| FMVSNet3 | | | 95.26 227 | 94.94 229 | 96.22 223 | 96.53 333 | 90.06 257 | 95.99 194 | 97.66 270 | 94.11 219 | 97.99 148 | 97.91 187 | 80.22 346 | 99.63 147 | 94.60 200 | 99.44 156 | 98.96 185 |
|
| SF-MVS | | | 97.60 102 | 97.39 115 | 98.22 75 | 98.93 117 | 95.69 89 | 97.05 126 | 99.10 54 | 95.32 174 | 97.83 166 | 97.88 188 | 96.44 103 | 99.72 90 | 94.59 203 | 99.39 173 | 99.25 136 |
|
| SteuartSystems-ACMMP | | | 98.02 52 | 97.76 81 | 98.79 30 | 99.43 38 | 97.21 42 | 97.15 119 | 98.90 107 | 96.58 108 | 98.08 139 | 97.87 189 | 97.02 64 | 99.76 64 | 95.25 163 | 99.59 104 | 99.40 100 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SR-MVS | | | 98.00 53 | 97.66 90 | 99.01 9 | 98.77 138 | 97.93 12 | 97.38 109 | 98.83 133 | 97.32 87 | 98.06 142 | 97.85 190 | 96.65 88 | 99.77 59 | 95.00 182 | 99.11 223 | 99.32 115 |
|
| DU-MVS | | | 97.79 86 | 97.60 100 | 98.36 63 | 98.73 140 | 95.78 85 | 95.65 217 | 98.87 116 | 97.57 70 | 98.31 114 | 97.83 191 | 94.69 163 | 99.85 30 | 97.02 80 | 99.71 74 | 99.46 81 |
|
| NR-MVSNet | | | 97.96 56 | 97.86 69 | 98.26 70 | 98.73 140 | 95.54 95 | 98.14 55 | 98.73 155 | 97.79 56 | 99.42 23 | 97.83 191 | 94.40 175 | 99.78 50 | 95.91 123 | 99.76 58 | 99.46 81 |
|
| CHOSEN 1792x2688 | | | 94.10 276 | 93.41 285 | 96.18 225 | 99.16 82 | 90.04 258 | 92.15 352 | 98.68 167 | 79.90 391 | 96.22 260 | 97.83 191 | 87.92 297 | 99.42 212 | 89.18 323 | 99.65 87 | 99.08 168 |
|
| TAMVS | | | 95.49 214 | 94.94 229 | 97.16 159 | 98.31 191 | 93.41 185 | 95.07 254 | 96.82 302 | 91.09 295 | 97.51 176 | 97.82 194 | 89.96 271 | 99.42 212 | 88.42 334 | 99.44 156 | 98.64 232 |
|
| UniMVSNet (Re) | | | 97.83 79 | 97.65 91 | 98.35 64 | 98.80 132 | 95.86 84 | 95.92 201 | 99.04 76 | 97.51 75 | 98.22 122 | 97.81 195 | 94.68 165 | 99.78 50 | 97.14 75 | 99.75 65 | 99.41 99 |
|
| VNet | | | 96.84 150 | 96.83 151 | 96.88 182 | 98.06 223 | 92.02 226 | 96.35 166 | 97.57 278 | 97.70 65 | 97.88 160 | 97.80 196 | 92.40 230 | 99.54 178 | 94.73 196 | 98.96 238 | 99.08 168 |
|
| YYNet1 | | | 94.73 247 | 94.84 237 | 94.41 309 | 97.47 298 | 85.09 348 | 90.29 382 | 95.85 320 | 92.52 270 | 97.53 174 | 97.76 197 | 91.97 239 | 99.18 278 | 93.31 245 | 96.86 346 | 98.95 186 |
|
| MDA-MVSNet_test_wron | | | 94.73 247 | 94.83 239 | 94.42 308 | 97.48 294 | 85.15 346 | 90.28 383 | 95.87 319 | 92.52 270 | 97.48 180 | 97.76 197 | 91.92 242 | 99.17 282 | 93.32 244 | 96.80 351 | 98.94 188 |
|
| TinyColmap | | | 96.00 195 | 96.34 181 | 94.96 282 | 97.90 239 | 87.91 303 | 94.13 294 | 98.49 191 | 94.41 207 | 98.16 129 | 97.76 197 | 96.29 112 | 98.68 339 | 90.52 302 | 99.42 167 | 98.30 270 |
|
| Patchmatch-RL test | | | 94.66 255 | 94.49 257 | 95.19 269 | 98.54 169 | 88.91 280 | 92.57 340 | 98.74 154 | 91.46 289 | 98.32 112 | 97.75 200 | 77.31 360 | 98.81 323 | 96.06 110 | 99.61 99 | 97.85 313 |
|
| MP-MVS |  | | 97.64 98 | 97.18 129 | 99.00 10 | 99.32 55 | 97.77 18 | 97.49 103 | 98.73 155 | 96.27 122 | 95.59 286 | 97.75 200 | 96.30 110 | 99.78 50 | 93.70 236 | 99.48 147 | 99.45 85 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| ACMP | | 92.54 13 | 97.47 112 | 97.10 132 | 98.55 50 | 99.04 106 | 96.70 52 | 96.24 175 | 98.89 108 | 93.71 229 | 97.97 152 | 97.75 200 | 97.44 40 | 99.63 147 | 93.22 248 | 99.70 77 | 99.32 115 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MVP-Stereo | | | 95.69 205 | 95.28 217 | 96.92 179 | 98.15 216 | 93.03 194 | 95.64 220 | 98.20 226 | 90.39 305 | 96.63 238 | 97.73 203 | 91.63 246 | 99.10 295 | 91.84 269 | 97.31 339 | 98.63 234 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| mPP-MVS | | | 97.91 70 | 97.53 107 | 99.04 5 | 99.22 68 | 97.87 15 | 97.74 84 | 98.78 147 | 96.04 136 | 97.10 201 | 97.73 203 | 96.53 95 | 99.78 50 | 95.16 170 | 99.50 140 | 99.46 81 |
|
| XVG-OURS | | | 97.12 132 | 96.74 156 | 98.26 70 | 98.99 110 | 97.45 33 | 93.82 307 | 99.05 69 | 95.19 179 | 98.32 112 | 97.70 205 | 95.22 150 | 98.41 361 | 94.27 213 | 98.13 301 | 98.93 192 |
|
| UniMVSNet_NR-MVSNet | | | 97.83 79 | 97.65 91 | 98.37 62 | 98.72 142 | 95.78 85 | 95.66 215 | 99.02 80 | 98.11 48 | 98.31 114 | 97.69 206 | 94.65 167 | 99.85 30 | 97.02 80 | 99.71 74 | 99.48 76 |
|
| D2MVS | | | 95.18 230 | 95.17 221 | 95.21 268 | 97.76 264 | 87.76 309 | 94.15 291 | 97.94 252 | 89.77 314 | 96.99 212 | 97.68 207 | 87.45 300 | 99.14 285 | 95.03 181 | 99.81 47 | 98.74 221 |
|
| XVS | | | 97.96 56 | 97.63 96 | 98.94 16 | 99.15 85 | 97.66 20 | 97.77 79 | 98.83 133 | 97.42 78 | 96.32 253 | 97.64 208 | 96.49 98 | 99.72 90 | 95.66 136 | 99.37 175 | 99.45 85 |
|
| ACMMPR | | | 97.95 60 | 97.62 98 | 98.94 16 | 99.20 77 | 97.56 26 | 97.59 94 | 98.83 133 | 96.05 134 | 97.46 183 | 97.63 209 | 96.77 84 | 99.76 64 | 95.61 140 | 99.46 152 | 99.49 70 |
|
| Anonymous20231206 | | | 95.27 226 | 95.06 227 | 95.88 239 | 98.72 142 | 89.37 271 | 95.70 211 | 97.85 257 | 88.00 337 | 96.98 214 | 97.62 210 | 91.95 240 | 99.34 245 | 89.21 322 | 99.53 126 | 98.94 188 |
|
| region2R | | | 97.92 67 | 97.59 101 | 98.92 22 | 99.22 68 | 97.55 27 | 97.60 92 | 98.84 127 | 96.00 139 | 97.22 190 | 97.62 210 | 96.87 79 | 99.76 64 | 95.48 148 | 99.43 164 | 99.46 81 |
|
| GeoE | | | 97.75 89 | 97.70 84 | 97.89 101 | 98.88 123 | 94.53 140 | 97.10 123 | 98.98 95 | 95.75 155 | 97.62 171 | 97.59 212 | 97.61 37 | 99.77 59 | 96.34 101 | 99.44 156 | 99.36 112 |
|
| ppachtmachnet_test | | | 94.49 264 | 94.84 237 | 93.46 330 | 96.16 345 | 82.10 373 | 90.59 379 | 97.48 280 | 90.53 303 | 97.01 211 | 97.59 212 | 91.01 254 | 99.36 238 | 93.97 227 | 99.18 213 | 98.94 188 |
|
| APD-MVS |  | | 97.00 137 | 96.53 171 | 98.41 59 | 98.55 167 | 96.31 67 | 96.32 168 | 98.77 148 | 92.96 263 | 97.44 184 | 97.58 214 | 95.84 124 | 99.74 79 | 91.96 264 | 99.35 183 | 99.19 144 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HFP-MVS | | | 97.94 63 | 97.64 94 | 98.83 26 | 99.15 85 | 97.50 30 | 97.59 94 | 98.84 127 | 96.05 134 | 97.49 178 | 97.54 215 | 97.07 59 | 99.70 112 | 95.61 140 | 99.46 152 | 99.30 120 |
|
| UnsupCasMVSNet_eth | | | 95.91 198 | 95.73 208 | 96.44 210 | 98.48 179 | 91.52 236 | 95.31 241 | 98.45 194 | 95.76 153 | 97.48 180 | 97.54 215 | 89.53 278 | 98.69 336 | 94.43 205 | 94.61 384 | 99.13 155 |
|
| XVG-OURS-SEG-HR | | | 97.38 119 | 97.07 135 | 98.30 68 | 99.01 109 | 97.41 35 | 94.66 272 | 99.02 80 | 95.20 178 | 98.15 131 | 97.52 217 | 98.83 5 | 98.43 360 | 94.87 187 | 96.41 359 | 99.07 170 |
|
| MG-MVS | | | 94.08 278 | 94.00 274 | 94.32 312 | 97.09 319 | 85.89 336 | 93.19 327 | 95.96 317 | 92.52 270 | 94.93 304 | 97.51 218 | 89.54 276 | 98.77 326 | 87.52 348 | 97.71 320 | 98.31 268 |
|
| HPM-MVS |  | | 98.11 44 | 97.83 73 | 98.92 22 | 99.42 40 | 97.46 32 | 98.57 21 | 99.05 69 | 95.43 171 | 97.41 185 | 97.50 219 | 97.98 19 | 99.79 47 | 95.58 143 | 99.57 109 | 99.50 62 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| 9.14 | | | | 96.69 158 | | 98.53 170 | | 96.02 191 | 98.98 95 | 93.23 245 | 97.18 195 | 97.46 220 | 96.47 100 | 99.62 152 | 92.99 252 | 99.32 193 | |
|
| CP-MVS | | | 97.92 67 | 97.56 104 | 98.99 11 | 98.99 110 | 97.82 16 | 97.93 69 | 98.96 99 | 96.11 131 | 96.89 220 | 97.45 221 | 96.85 80 | 99.78 50 | 95.19 166 | 99.63 91 | 99.38 106 |
|
| PC_three_1452 | | | | | | | | | | 87.24 342 | 98.37 102 | 97.44 222 | 97.00 65 | 96.78 395 | 92.01 263 | 99.25 204 | 99.21 140 |
|
| ZNCC-MVS | | | 97.92 67 | 97.62 98 | 98.83 26 | 99.32 55 | 97.24 40 | 97.45 104 | 98.84 127 | 95.76 153 | 96.93 217 | 97.43 223 | 97.26 50 | 99.79 47 | 96.06 110 | 99.53 126 | 99.45 85 |
|
| N_pmnet | | | 95.18 230 | 94.23 266 | 98.06 88 | 97.85 241 | 96.55 59 | 92.49 342 | 91.63 372 | 89.34 316 | 98.09 137 | 97.41 224 | 90.33 265 | 99.06 299 | 91.58 274 | 99.31 196 | 98.56 241 |
|
| GST-MVS | | | 97.82 83 | 97.49 112 | 98.81 28 | 99.23 65 | 97.25 39 | 97.16 118 | 98.79 143 | 95.96 141 | 97.53 174 | 97.40 225 | 96.93 71 | 99.77 59 | 95.04 179 | 99.35 183 | 99.42 97 |
|
| tpm | | | 91.08 333 | 90.85 331 | 91.75 367 | 95.33 373 | 78.09 392 | 95.03 258 | 91.27 377 | 88.75 325 | 93.53 340 | 97.40 225 | 71.24 384 | 99.30 255 | 91.25 280 | 93.87 388 | 97.87 312 |
|
| MDTV_nov1_ep13 | | | | 91.28 322 | | 94.31 386 | 73.51 408 | 94.80 265 | 93.16 355 | 86.75 350 | 93.45 343 | 97.40 225 | 76.37 364 | 98.55 351 | 88.85 327 | 96.43 358 | |
|
| DeepPCF-MVS | | 94.58 5 | 96.90 146 | 96.43 176 | 98.31 67 | 97.48 294 | 97.23 41 | 92.56 341 | 98.60 180 | 92.84 265 | 98.54 84 | 97.40 225 | 96.64 90 | 98.78 325 | 94.40 208 | 99.41 171 | 98.93 192 |
|
| MSLP-MVS++ | | | 96.42 179 | 96.71 157 | 95.57 253 | 97.82 249 | 90.56 255 | 95.71 210 | 98.84 127 | 94.72 196 | 96.71 231 | 97.39 229 | 94.91 160 | 98.10 377 | 95.28 161 | 99.02 234 | 98.05 298 |
|
| EPNet | | | 93.72 286 | 92.62 304 | 97.03 173 | 87.61 412 | 92.25 214 | 96.27 170 | 91.28 376 | 96.74 102 | 87.65 398 | 97.39 229 | 85.00 318 | 99.64 143 | 92.14 262 | 99.48 147 | 99.20 143 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PMMVS2 | | | 93.66 289 | 94.07 272 | 92.45 359 | 97.57 287 | 80.67 384 | 86.46 397 | 96.00 315 | 93.99 223 | 97.10 201 | 97.38 231 | 89.90 272 | 97.82 381 | 88.76 328 | 99.47 149 | 98.86 207 |
|
| DeepC-MVS_fast | | 94.34 7 | 96.74 158 | 96.51 173 | 97.44 139 | 97.69 274 | 94.15 157 | 96.02 191 | 98.43 197 | 93.17 253 | 97.30 187 | 97.38 231 | 95.48 141 | 99.28 261 | 93.74 233 | 99.34 186 | 98.88 204 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| miper_lstm_enhance | | | 94.81 246 | 94.80 241 | 94.85 288 | 96.16 345 | 86.45 330 | 91.14 372 | 98.20 226 | 93.49 236 | 97.03 209 | 97.37 233 | 84.97 319 | 99.26 265 | 95.28 161 | 99.56 112 | 98.83 209 |
|
| OPU-MVS | | | | | 97.64 118 | 98.01 227 | 95.27 113 | 96.79 140 | | | | 97.35 234 | 96.97 67 | 98.51 354 | 91.21 281 | 99.25 204 | 99.14 153 |
|
| DIV-MVS_self_test | | | 94.73 247 | 94.64 247 | 95.01 278 | 95.86 356 | 87.00 322 | 91.33 366 | 98.08 244 | 93.34 241 | 97.10 201 | 97.34 235 | 84.02 326 | 99.31 252 | 95.15 172 | 99.55 118 | 98.72 224 |
|
| cl____ | | | 94.73 247 | 94.64 247 | 95.01 278 | 95.85 357 | 87.00 322 | 91.33 366 | 98.08 244 | 93.34 241 | 97.10 201 | 97.33 236 | 84.01 327 | 99.30 255 | 95.14 173 | 99.56 112 | 98.71 227 |
|
| WR-MVS | | | 96.90 146 | 96.81 152 | 97.16 159 | 98.56 166 | 92.20 219 | 94.33 280 | 98.12 241 | 97.34 86 | 98.20 123 | 97.33 236 | 92.81 212 | 99.75 70 | 94.79 191 | 99.81 47 | 99.54 53 |
|
| ITE_SJBPF | | | | | 97.85 104 | 98.64 152 | 96.66 55 | | 98.51 190 | 95.63 159 | 97.22 190 | 97.30 238 | 95.52 140 | 98.55 351 | 90.97 285 | 98.90 245 | 98.34 265 |
|
| Vis-MVSNet (Re-imp) | | | 95.11 233 | 94.85 236 | 95.87 240 | 99.12 93 | 89.17 274 | 97.54 102 | 94.92 337 | 96.50 113 | 96.58 240 | 97.27 239 | 83.64 328 | 99.48 196 | 88.42 334 | 99.67 84 | 98.97 184 |
|
| c3_l | | | 95.20 229 | 95.32 216 | 94.83 290 | 96.19 343 | 86.43 331 | 91.83 359 | 98.35 211 | 93.47 237 | 97.36 186 | 97.26 240 | 88.69 285 | 99.28 261 | 95.41 158 | 99.36 178 | 98.78 215 |
|
| eth_miper_zixun_eth | | | 94.89 242 | 94.93 231 | 94.75 294 | 95.99 351 | 86.12 334 | 91.35 365 | 98.49 191 | 93.40 238 | 97.12 199 | 97.25 241 | 86.87 306 | 99.35 242 | 95.08 178 | 98.82 256 | 98.78 215 |
|
| pmmvs4 | | | 94.82 245 | 94.19 269 | 96.70 196 | 97.42 301 | 92.75 202 | 92.09 355 | 96.76 304 | 86.80 349 | 95.73 283 | 97.22 242 | 89.28 282 | 98.89 316 | 93.28 246 | 99.14 217 | 98.46 253 |
|
| OMC-MVS | | | 96.48 175 | 96.00 194 | 97.91 100 | 98.30 192 | 96.01 79 | 94.86 264 | 98.60 180 | 91.88 282 | 97.18 195 | 97.21 243 | 96.11 117 | 99.04 301 | 90.49 305 | 99.34 186 | 98.69 228 |
|
| CS-MVS | | | 98.09 45 | 98.01 55 | 98.32 65 | 98.45 182 | 96.69 53 | 98.52 27 | 99.69 6 | 98.07 50 | 96.07 267 | 97.19 244 | 96.88 77 | 99.86 27 | 97.50 63 | 99.73 67 | 98.41 254 |
|
| pmmvs5 | | | 94.63 257 | 94.34 264 | 95.50 258 | 97.63 284 | 88.34 291 | 94.02 297 | 97.13 290 | 87.15 343 | 95.22 295 | 97.15 245 | 87.50 299 | 99.27 264 | 93.99 225 | 99.26 203 | 98.88 204 |
|
| our_test_3 | | | 94.20 274 | 94.58 254 | 93.07 339 | 96.16 345 | 81.20 381 | 90.42 381 | 96.84 300 | 90.72 299 | 97.14 197 | 97.13 246 | 90.47 261 | 99.11 292 | 94.04 224 | 98.25 296 | 98.91 196 |
|
| CPTT-MVS | | | 96.69 164 | 96.08 191 | 98.49 53 | 98.89 122 | 96.64 56 | 97.25 113 | 98.77 148 | 92.89 264 | 96.01 270 | 97.13 246 | 92.23 232 | 99.67 130 | 92.24 261 | 99.34 186 | 99.17 147 |
|
| MS-PatchMatch | | | 94.83 244 | 94.91 233 | 94.57 302 | 96.81 328 | 87.10 321 | 94.23 286 | 97.34 283 | 88.74 326 | 97.14 197 | 97.11 248 | 91.94 241 | 98.23 373 | 92.99 252 | 97.92 309 | 98.37 259 |
|
| FPMVS | | | 89.92 344 | 88.63 352 | 93.82 322 | 98.37 188 | 96.94 46 | 91.58 361 | 93.34 354 | 88.00 337 | 90.32 382 | 97.10 249 | 70.87 387 | 91.13 406 | 71.91 404 | 96.16 367 | 93.39 396 |
|
| ZD-MVS | | | | | | 98.43 184 | 95.94 80 | | 98.56 186 | 90.72 299 | 96.66 235 | 97.07 250 | 95.02 156 | 99.74 79 | 91.08 282 | 98.93 243 | |
|
| DELS-MVS | | | 96.17 187 | 96.23 184 | 95.99 231 | 97.55 290 | 90.04 258 | 92.38 350 | 98.52 188 | 94.13 217 | 96.55 244 | 97.06 251 | 94.99 157 | 99.58 164 | 95.62 139 | 99.28 200 | 98.37 259 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CNVR-MVS | | | 96.92 144 | 96.55 168 | 98.03 93 | 98.00 231 | 95.54 95 | 94.87 263 | 98.17 232 | 94.60 201 | 96.38 250 | 97.05 252 | 95.67 136 | 99.36 238 | 95.12 176 | 99.08 227 | 99.19 144 |
|
| 旧先验1 | | | | | | 97.80 254 | 93.87 166 | | 97.75 264 | | | 97.04 253 | 93.57 194 | | | 98.68 269 | 98.72 224 |
|
| testdata | | | | | 95.70 249 | 98.16 214 | 90.58 253 | | 97.72 266 | 80.38 389 | 95.62 285 | 97.02 254 | 92.06 238 | 98.98 309 | 89.06 326 | 98.52 282 | 97.54 333 |
|
| PatchmatchNet |  | | 91.98 322 | 91.87 312 | 92.30 361 | 94.60 384 | 79.71 387 | 95.12 249 | 93.59 352 | 89.52 315 | 93.61 337 | 97.02 254 | 77.94 353 | 99.18 278 | 90.84 289 | 94.57 386 | 98.01 302 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EC-MVSNet | | | 97.90 72 | 97.94 62 | 97.79 107 | 98.66 151 | 95.14 121 | 98.31 40 | 99.66 9 | 97.57 70 | 95.95 271 | 97.01 256 | 96.99 66 | 99.82 37 | 97.66 58 | 99.64 89 | 98.39 257 |
|
| SCA | | | 93.38 297 | 93.52 283 | 92.96 345 | 96.24 339 | 81.40 380 | 93.24 325 | 94.00 345 | 91.58 288 | 94.57 309 | 96.97 257 | 87.94 293 | 99.42 212 | 89.47 319 | 97.66 325 | 98.06 295 |
|
| Patchmatch-test | | | 93.60 291 | 93.25 287 | 94.63 297 | 96.14 349 | 87.47 313 | 96.04 189 | 94.50 341 | 93.57 234 | 96.47 246 | 96.97 257 | 76.50 363 | 98.61 345 | 90.67 299 | 98.41 291 | 97.81 317 |
|
| CostFormer | | | 89.75 346 | 89.25 344 | 91.26 370 | 94.69 383 | 78.00 394 | 95.32 240 | 91.98 369 | 81.50 384 | 90.55 379 | 96.96 259 | 71.06 386 | 98.89 316 | 88.59 332 | 92.63 392 | 96.87 353 |
|
| diffmvs |  | | 96.04 192 | 96.23 184 | 95.46 261 | 97.35 305 | 88.03 301 | 93.42 319 | 99.08 61 | 94.09 221 | 96.66 235 | 96.93 260 | 93.85 188 | 99.29 259 | 96.01 117 | 98.67 270 | 99.06 172 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 114514_t | | | 93.96 281 | 93.22 288 | 96.19 224 | 99.06 101 | 90.97 246 | 95.99 194 | 98.94 102 | 73.88 404 | 93.43 344 | 96.93 260 | 92.38 231 | 99.37 235 | 89.09 324 | 99.28 200 | 98.25 276 |
|
| CS-MVS-test | | | 97.91 70 | 97.84 70 | 98.14 82 | 98.52 171 | 96.03 78 | 98.38 35 | 99.67 7 | 98.11 48 | 95.50 288 | 96.92 262 | 96.81 83 | 99.87 25 | 96.87 85 | 99.76 58 | 98.51 247 |
|
| Test_1112_low_res | | | 93.53 293 | 92.86 294 | 95.54 257 | 98.60 160 | 88.86 282 | 92.75 334 | 98.69 165 | 82.66 380 | 92.65 361 | 96.92 262 | 84.75 320 | 99.56 171 | 90.94 286 | 97.76 316 | 98.19 282 |
|
| tpmrst | | | 90.31 338 | 90.61 336 | 89.41 379 | 94.06 392 | 72.37 410 | 95.06 255 | 93.69 347 | 88.01 336 | 92.32 367 | 96.86 264 | 77.45 357 | 98.82 321 | 91.04 283 | 87.01 402 | 97.04 347 |
|
| PHI-MVS | | | 96.96 142 | 96.53 171 | 98.25 73 | 97.48 294 | 96.50 60 | 96.76 142 | 98.85 123 | 93.52 235 | 96.19 263 | 96.85 265 | 95.94 120 | 99.42 212 | 93.79 232 | 99.43 164 | 98.83 209 |
|
| tttt0517 | | | 93.31 298 | 92.56 305 | 95.57 253 | 98.71 145 | 87.86 304 | 97.44 105 | 87.17 399 | 95.79 152 | 97.47 182 | 96.84 266 | 64.12 396 | 99.81 39 | 96.20 107 | 99.32 193 | 99.02 178 |
|
| patchmatchnet-post | | | | | | | | | | | | 96.84 266 | 77.36 359 | 99.42 212 | | | |
|
| ADS-MVSNet2 | | | 91.47 329 | 90.51 337 | 94.36 310 | 95.51 368 | 85.63 337 | 95.05 256 | 95.70 321 | 83.46 377 | 92.69 359 | 96.84 266 | 79.15 349 | 99.41 221 | 85.66 362 | 90.52 395 | 98.04 299 |
|
| ADS-MVSNet | | | 90.95 335 | 90.26 339 | 93.04 340 | 95.51 368 | 82.37 372 | 95.05 256 | 93.41 353 | 83.46 377 | 92.69 359 | 96.84 266 | 79.15 349 | 98.70 334 | 85.66 362 | 90.52 395 | 98.04 299 |
|
| HY-MVS | | 91.43 15 | 92.58 309 | 91.81 314 | 94.90 285 | 96.49 334 | 88.87 281 | 97.31 110 | 94.62 339 | 85.92 356 | 90.50 380 | 96.84 266 | 85.05 317 | 99.40 223 | 83.77 378 | 95.78 372 | 96.43 369 |
|
| UnsupCasMVSNet_bld | | | 94.72 251 | 94.26 265 | 96.08 229 | 98.62 158 | 90.54 256 | 93.38 321 | 98.05 250 | 90.30 306 | 97.02 210 | 96.80 271 | 89.54 276 | 99.16 283 | 88.44 333 | 96.18 365 | 98.56 241 |
|
| HQP_MVS | | | 96.66 166 | 96.33 182 | 97.68 116 | 98.70 147 | 94.29 151 | 96.50 156 | 98.75 152 | 96.36 119 | 96.16 264 | 96.77 272 | 91.91 243 | 99.46 201 | 92.59 257 | 99.20 209 | 99.28 127 |
|
| plane_prior4 | | | | | | | | | | | | 96.77 272 | | | | | |
|
| MVS_111021_HR | | | 96.73 160 | 96.54 170 | 97.27 152 | 98.35 190 | 93.66 177 | 93.42 319 | 98.36 208 | 94.74 195 | 96.58 240 | 96.76 274 | 96.54 94 | 98.99 307 | 94.87 187 | 99.27 202 | 99.15 150 |
|
| CANet | | | 95.86 200 | 95.65 211 | 96.49 208 | 96.41 336 | 90.82 248 | 94.36 279 | 98.41 201 | 94.94 190 | 92.62 364 | 96.73 275 | 92.68 217 | 99.71 104 | 95.12 176 | 99.60 102 | 98.94 188 |
|
| TSAR-MVS + GP. | | | 96.47 176 | 96.12 188 | 97.49 134 | 97.74 269 | 95.23 115 | 94.15 291 | 96.90 299 | 93.26 244 | 98.04 145 | 96.70 276 | 94.41 174 | 98.89 316 | 94.77 194 | 99.14 217 | 98.37 259 |
|
| test222 | | | | | | 98.17 212 | 93.24 191 | 92.74 336 | 97.61 277 | 75.17 402 | 94.65 308 | 96.69 277 | 90.96 256 | | | 98.66 272 | 97.66 325 |
|
| æ–°å‡ ä½•1 | | | | | 97.25 155 | 98.29 193 | 94.70 133 | | 97.73 265 | 77.98 397 | 94.83 305 | 96.67 278 | 92.08 237 | 99.45 205 | 88.17 338 | 98.65 274 | 97.61 329 |
|
| miper_ehance_all_eth | | | 94.69 252 | 94.70 244 | 94.64 296 | 95.77 362 | 86.22 333 | 91.32 368 | 98.24 221 | 91.67 284 | 97.05 208 | 96.65 279 | 88.39 290 | 99.22 275 | 94.88 186 | 98.34 292 | 98.49 250 |
|
| MVS_111021_LR | | | 96.82 154 | 96.55 168 | 97.62 119 | 98.27 197 | 95.34 110 | 93.81 309 | 98.33 212 | 94.59 203 | 96.56 242 | 96.63 280 | 96.61 91 | 98.73 330 | 94.80 190 | 99.34 186 | 98.78 215 |
|
| CDPH-MVS | | | 95.45 219 | 94.65 246 | 97.84 105 | 98.28 195 | 94.96 126 | 93.73 311 | 98.33 212 | 85.03 367 | 95.44 289 | 96.60 281 | 95.31 147 | 99.44 208 | 90.01 311 | 99.13 219 | 99.11 163 |
|
| CMPMVS |  | 73.10 23 | 92.74 307 | 91.39 319 | 96.77 191 | 93.57 398 | 94.67 134 | 94.21 288 | 97.67 268 | 80.36 390 | 93.61 337 | 96.60 281 | 82.85 333 | 97.35 386 | 84.86 371 | 98.78 259 | 98.29 273 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CDS-MVSNet | | | 94.88 243 | 94.12 271 | 97.14 161 | 97.64 283 | 93.57 179 | 93.96 303 | 97.06 294 | 90.05 310 | 96.30 256 | 96.55 283 | 86.10 309 | 99.47 198 | 90.10 310 | 99.31 196 | 98.40 255 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| LF4IMVS | | | 96.07 190 | 95.63 212 | 97.36 146 | 98.19 206 | 95.55 94 | 95.44 227 | 98.82 141 | 92.29 276 | 95.70 284 | 96.55 283 | 92.63 220 | 98.69 336 | 91.75 273 | 99.33 191 | 97.85 313 |
|
| HPM-MVS++ |  | | 96.99 138 | 96.38 179 | 98.81 28 | 98.64 152 | 97.59 24 | 95.97 196 | 98.20 226 | 95.51 166 | 95.06 298 | 96.53 285 | 94.10 181 | 99.70 112 | 94.29 212 | 99.15 216 | 99.13 155 |
|
| EPMVS | | | 89.26 351 | 88.55 353 | 91.39 369 | 92.36 405 | 79.11 390 | 95.65 217 | 79.86 408 | 88.60 328 | 93.12 350 | 96.53 285 | 70.73 388 | 98.10 377 | 90.75 293 | 89.32 399 | 96.98 348 |
|
| HyFIR lowres test | | | 93.72 286 | 92.65 302 | 96.91 181 | 98.93 117 | 91.81 232 | 91.23 370 | 98.52 188 | 82.69 379 | 96.46 247 | 96.52 287 | 80.38 345 | 99.90 18 | 90.36 307 | 98.79 258 | 99.03 175 |
|
| BH-RMVSNet | | | 94.56 260 | 94.44 262 | 94.91 283 | 97.57 287 | 87.44 314 | 93.78 310 | 96.26 311 | 93.69 231 | 96.41 249 | 96.50 288 | 92.10 236 | 99.00 305 | 85.96 358 | 97.71 320 | 98.31 268 |
|
| MSP-MVS | | | 97.45 113 | 96.92 146 | 99.03 6 | 99.26 59 | 97.70 19 | 97.66 88 | 98.89 108 | 95.65 158 | 98.51 86 | 96.46 289 | 92.15 233 | 99.81 39 | 95.14 173 | 98.58 280 | 99.58 39 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| 原ACMM1 | | | | | 96.58 202 | 98.16 214 | 92.12 221 | | 98.15 238 | 85.90 357 | 93.49 341 | 96.43 290 | 92.47 229 | 99.38 230 | 87.66 343 | 98.62 276 | 98.23 277 |
|
| tpm2 | | | 88.47 358 | 87.69 361 | 90.79 372 | 94.98 379 | 77.34 397 | 95.09 251 | 91.83 370 | 77.51 400 | 89.40 390 | 96.41 291 | 67.83 393 | 98.73 330 | 83.58 380 | 92.60 393 | 96.29 371 |
|
| OpenMVS_ROB |  | 91.80 14 | 93.64 290 | 93.05 289 | 95.42 262 | 97.31 311 | 91.21 242 | 95.08 253 | 96.68 308 | 81.56 383 | 96.88 221 | 96.41 291 | 90.44 264 | 99.25 267 | 85.39 366 | 97.67 324 | 95.80 377 |
|
| CL-MVSNet_self_test | | | 95.04 236 | 94.79 242 | 95.82 242 | 97.51 292 | 89.79 262 | 91.14 372 | 96.82 302 | 93.05 256 | 96.72 230 | 96.40 293 | 90.82 257 | 99.16 283 | 91.95 265 | 98.66 272 | 98.50 249 |
|
| F-COLMAP | | | 95.30 225 | 94.38 263 | 98.05 92 | 98.64 152 | 96.04 76 | 95.61 221 | 98.66 172 | 89.00 322 | 93.22 348 | 96.40 293 | 92.90 210 | 99.35 242 | 87.45 349 | 97.53 330 | 98.77 218 |
|
| NCCC | | | 96.52 173 | 95.99 195 | 98.10 85 | 97.81 250 | 95.68 90 | 95.00 259 | 98.20 226 | 95.39 172 | 95.40 291 | 96.36 295 | 93.81 189 | 99.45 205 | 93.55 239 | 98.42 290 | 99.17 147 |
|
| new_pmnet | | | 92.34 313 | 91.69 317 | 94.32 312 | 96.23 341 | 89.16 275 | 92.27 351 | 92.88 358 | 84.39 376 | 95.29 293 | 96.35 296 | 85.66 313 | 96.74 396 | 84.53 373 | 97.56 328 | 97.05 346 |
|
| cl22 | | | 93.25 300 | 92.84 296 | 94.46 307 | 94.30 387 | 86.00 335 | 91.09 374 | 96.64 309 | 90.74 298 | 95.79 278 | 96.31 297 | 78.24 352 | 98.77 326 | 94.15 218 | 98.34 292 | 98.62 235 |
|
| tpmvs | | | 90.79 336 | 90.87 330 | 90.57 374 | 92.75 404 | 76.30 401 | 95.79 208 | 93.64 351 | 91.04 296 | 91.91 370 | 96.26 298 | 77.19 361 | 98.86 320 | 89.38 321 | 89.85 398 | 96.56 366 |
|
| test_prior2 | | | | | | | | 93.33 323 | | 94.21 213 | 94.02 325 | 96.25 299 | 93.64 193 | | 91.90 266 | 98.96 238 | |
|
| testgi | | | 96.07 190 | 96.50 174 | 94.80 291 | 99.26 59 | 87.69 310 | 95.96 198 | 98.58 184 | 95.08 184 | 98.02 147 | 96.25 299 | 97.92 20 | 97.60 385 | 88.68 331 | 98.74 263 | 99.11 163 |
|
| DP-MVS Recon | | | 95.55 212 | 95.13 222 | 96.80 188 | 98.51 173 | 93.99 163 | 94.60 274 | 98.69 165 | 90.20 308 | 95.78 280 | 96.21 301 | 92.73 216 | 98.98 309 | 90.58 301 | 98.86 251 | 97.42 338 |
|
| hse-mvs2 | | | 95.77 203 | 95.09 224 | 97.79 107 | 97.84 246 | 95.51 97 | 95.66 215 | 95.43 331 | 96.58 108 | 97.21 192 | 96.16 302 | 84.14 324 | 99.54 178 | 95.89 124 | 96.92 343 | 98.32 266 |
|
| MVSFormer | | | 96.14 188 | 96.36 180 | 95.49 259 | 97.68 275 | 87.81 307 | 98.67 16 | 99.02 80 | 96.50 113 | 94.48 313 | 96.15 303 | 86.90 304 | 99.92 7 | 98.73 23 | 99.13 219 | 98.74 221 |
|
| jason | | | 94.39 267 | 94.04 273 | 95.41 264 | 98.29 193 | 87.85 306 | 92.74 336 | 96.75 305 | 85.38 364 | 95.29 293 | 96.15 303 | 88.21 292 | 99.65 138 | 94.24 214 | 99.34 186 | 98.74 221 |
| jason: jason. |
| test_yl | | | 94.40 265 | 94.00 274 | 95.59 251 | 96.95 323 | 89.52 268 | 94.75 269 | 95.55 328 | 96.18 129 | 96.79 224 | 96.14 305 | 81.09 341 | 99.18 278 | 90.75 293 | 97.77 314 | 98.07 291 |
|
| DCV-MVSNet | | | 94.40 265 | 94.00 274 | 95.59 251 | 96.95 323 | 89.52 268 | 94.75 269 | 95.55 328 | 96.18 129 | 96.79 224 | 96.14 305 | 81.09 341 | 99.18 278 | 90.75 293 | 97.77 314 | 98.07 291 |
|
| dp | | | 88.08 361 | 88.05 357 | 88.16 386 | 92.85 402 | 68.81 412 | 94.17 289 | 92.88 358 | 85.47 361 | 91.38 375 | 96.14 305 | 68.87 392 | 98.81 323 | 86.88 354 | 83.80 405 | 96.87 353 |
|
| AUN-MVS | | | 93.95 283 | 92.69 301 | 97.74 110 | 97.80 254 | 95.38 105 | 95.57 224 | 95.46 330 | 91.26 293 | 92.64 362 | 96.10 308 | 74.67 371 | 99.55 175 | 93.72 235 | 96.97 342 | 98.30 270 |
|
| MCST-MVS | | | 96.24 184 | 95.80 205 | 97.56 122 | 98.75 139 | 94.13 158 | 94.66 272 | 98.17 232 | 90.17 309 | 96.21 261 | 96.10 308 | 95.14 152 | 99.43 210 | 94.13 219 | 98.85 252 | 99.13 155 |
|
| TEST9 | | | | | | 97.84 246 | 95.23 115 | 93.62 313 | 98.39 204 | 86.81 348 | 93.78 329 | 95.99 310 | 94.68 165 | 99.52 183 | | | |
|
| train_agg | | | 95.46 218 | 94.66 245 | 97.88 102 | 97.84 246 | 95.23 115 | 93.62 313 | 98.39 204 | 87.04 344 | 93.78 329 | 95.99 310 | 94.58 169 | 99.52 183 | 91.76 272 | 98.90 245 | 98.89 200 |
|
| MSDG | | | 95.33 223 | 95.13 222 | 95.94 237 | 97.40 302 | 91.85 230 | 91.02 375 | 98.37 207 | 95.30 175 | 96.31 255 | 95.99 310 | 94.51 172 | 98.38 364 | 89.59 317 | 97.65 326 | 97.60 330 |
|
| test_8 | | | | | | 97.81 250 | 95.07 124 | 93.54 316 | 98.38 206 | 87.04 344 | 93.71 333 | 95.96 313 | 94.58 169 | 99.52 183 | | | |
|
| CSCG | | | 97.40 118 | 97.30 120 | 97.69 115 | 98.95 112 | 94.83 128 | 97.28 112 | 98.99 92 | 96.35 121 | 98.13 133 | 95.95 314 | 95.99 119 | 99.66 136 | 94.36 211 | 99.73 67 | 98.59 238 |
|
| TAPA-MVS | | 93.32 12 | 94.93 240 | 94.23 266 | 97.04 172 | 98.18 209 | 94.51 141 | 95.22 246 | 98.73 155 | 81.22 386 | 96.25 259 | 95.95 314 | 93.80 190 | 98.98 309 | 89.89 313 | 98.87 249 | 97.62 328 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| test_vis1_rt | | | 94.03 280 | 93.65 280 | 95.17 271 | 95.76 363 | 93.42 184 | 93.97 302 | 98.33 212 | 84.68 371 | 93.17 349 | 95.89 316 | 92.53 227 | 94.79 400 | 93.50 240 | 94.97 380 | 97.31 342 |
|
| baseline1 | | | 93.14 302 | 92.64 303 | 94.62 298 | 97.34 307 | 87.20 319 | 96.67 152 | 93.02 356 | 94.71 197 | 96.51 245 | 95.83 317 | 81.64 336 | 98.60 347 | 90.00 312 | 88.06 401 | 98.07 291 |
|
| sss | | | 94.22 270 | 93.72 279 | 95.74 246 | 97.71 272 | 89.95 260 | 93.84 306 | 96.98 296 | 88.38 332 | 93.75 332 | 95.74 318 | 87.94 293 | 98.89 316 | 91.02 284 | 98.10 302 | 98.37 259 |
|
| CNLPA | | | 95.04 236 | 94.47 259 | 96.75 192 | 97.81 250 | 95.25 114 | 94.12 295 | 97.89 255 | 94.41 207 | 94.57 309 | 95.69 319 | 90.30 268 | 98.35 367 | 86.72 356 | 98.76 261 | 96.64 363 |
|
| PCF-MVS | | 89.43 18 | 92.12 318 | 90.64 335 | 96.57 204 | 97.80 254 | 93.48 182 | 89.88 389 | 98.45 194 | 74.46 403 | 96.04 269 | 95.68 320 | 90.71 259 | 99.31 252 | 73.73 401 | 99.01 236 | 96.91 352 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| BH-untuned | | | 94.69 252 | 94.75 243 | 94.52 304 | 97.95 236 | 87.53 312 | 94.07 296 | 97.01 295 | 93.99 223 | 97.10 201 | 95.65 321 | 92.65 219 | 98.95 314 | 87.60 344 | 96.74 352 | 97.09 345 |
|
| CANet_DTU | | | 94.65 256 | 94.21 268 | 95.96 233 | 95.90 353 | 89.68 264 | 93.92 304 | 97.83 261 | 93.19 249 | 90.12 385 | 95.64 322 | 88.52 287 | 99.57 170 | 93.27 247 | 99.47 149 | 98.62 235 |
|
| PatchMatch-RL | | | 94.61 258 | 93.81 278 | 97.02 174 | 98.19 206 | 95.72 87 | 93.66 312 | 97.23 285 | 88.17 335 | 94.94 303 | 95.62 323 | 91.43 247 | 98.57 348 | 87.36 350 | 97.68 323 | 96.76 361 |
|
| tpm cat1 | | | 88.01 362 | 87.33 363 | 90.05 378 | 94.48 385 | 76.28 402 | 94.47 277 | 94.35 343 | 73.84 405 | 89.26 391 | 95.61 324 | 73.64 376 | 98.30 370 | 84.13 374 | 86.20 403 | 95.57 382 |
|
| Effi-MVS+-dtu | | | 96.81 155 | 96.09 190 | 98.99 11 | 96.90 327 | 98.69 5 | 96.42 159 | 98.09 243 | 95.86 149 | 95.15 296 | 95.54 325 | 94.26 178 | 99.81 39 | 94.06 221 | 98.51 284 | 98.47 251 |
|
| AdaColmap |  | | 95.11 233 | 94.62 250 | 96.58 202 | 97.33 309 | 94.45 144 | 94.92 261 | 98.08 244 | 93.15 254 | 93.98 327 | 95.53 326 | 94.34 176 | 99.10 295 | 85.69 361 | 98.61 277 | 96.20 373 |
|
| thisisatest0530 | | | 92.71 308 | 91.76 316 | 95.56 255 | 98.42 185 | 88.23 293 | 96.03 190 | 87.35 398 | 94.04 222 | 96.56 242 | 95.47 327 | 64.03 397 | 99.77 59 | 94.78 193 | 99.11 223 | 98.68 231 |
|
| tt0805 | | | 97.44 114 | 97.56 104 | 97.11 163 | 99.55 22 | 96.36 64 | 98.66 19 | 95.66 322 | 98.31 40 | 97.09 206 | 95.45 328 | 97.17 54 | 98.50 355 | 98.67 26 | 97.45 335 | 96.48 368 |
|
| WTY-MVS | | | 93.55 292 | 93.00 292 | 95.19 269 | 97.81 250 | 87.86 304 | 93.89 305 | 96.00 315 | 89.02 321 | 94.07 322 | 95.44 329 | 86.27 308 | 99.33 247 | 87.69 342 | 96.82 349 | 98.39 257 |
|
| PLC |  | 91.02 16 | 94.05 279 | 92.90 293 | 97.51 127 | 98.00 231 | 95.12 123 | 94.25 284 | 98.25 219 | 86.17 353 | 91.48 374 | 95.25 330 | 91.01 254 | 99.19 277 | 85.02 370 | 96.69 354 | 98.22 278 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| pmmvs3 | | | 90.00 341 | 88.90 351 | 93.32 331 | 94.20 391 | 85.34 341 | 91.25 369 | 92.56 365 | 78.59 395 | 93.82 328 | 95.17 331 | 67.36 394 | 98.69 336 | 89.08 325 | 98.03 305 | 95.92 374 |
|
| NP-MVS | | | | | | 98.14 218 | 93.72 172 | | | | | 95.08 332 | | | | | |
|
| HQP-MVS | | | 95.17 232 | 94.58 254 | 96.92 179 | 97.85 241 | 92.47 208 | 94.26 281 | 98.43 197 | 93.18 250 | 92.86 355 | 95.08 332 | 90.33 265 | 99.23 273 | 90.51 303 | 98.74 263 | 99.05 174 |
|
| cdsmvs_eth3d_5k | | | 24.22 378 | 32.30 381 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 98.10 242 | 0.00 414 | 0.00 415 | 95.06 334 | 97.54 39 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| lupinMVS | | | 93.77 284 | 93.28 286 | 95.24 267 | 97.68 275 | 87.81 307 | 92.12 353 | 96.05 313 | 84.52 373 | 94.48 313 | 95.06 334 | 86.90 304 | 99.63 147 | 93.62 238 | 99.13 219 | 98.27 274 |
|
| 1112_ss | | | 94.12 275 | 93.42 284 | 96.23 221 | 98.59 162 | 90.85 247 | 94.24 285 | 98.85 123 | 85.49 360 | 92.97 353 | 94.94 336 | 86.01 310 | 99.64 143 | 91.78 271 | 97.92 309 | 98.20 280 |
|
| ab-mvs-re | | | 7.91 382 | 10.55 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 94.94 336 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Fast-Effi-MVS+-dtu | | | 96.44 177 | 96.12 188 | 97.39 145 | 97.18 315 | 94.39 145 | 95.46 226 | 98.73 155 | 96.03 138 | 94.72 306 | 94.92 338 | 96.28 113 | 99.69 119 | 93.81 231 | 97.98 306 | 98.09 288 |
|
| EPNet_dtu | | | 91.39 330 | 90.75 333 | 93.31 332 | 90.48 409 | 82.61 370 | 94.80 265 | 92.88 358 | 93.39 239 | 81.74 406 | 94.90 339 | 81.36 339 | 99.11 292 | 88.28 336 | 98.87 249 | 98.21 279 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DPM-MVS | | | 93.68 288 | 92.77 300 | 96.42 212 | 97.91 237 | 92.54 204 | 91.17 371 | 97.47 281 | 84.99 369 | 93.08 351 | 94.74 340 | 89.90 272 | 99.00 305 | 87.54 346 | 98.09 303 | 97.72 323 |
|
| Effi-MVS+ | | | 96.19 186 | 96.01 193 | 96.71 195 | 97.43 300 | 92.19 220 | 96.12 184 | 99.10 54 | 95.45 168 | 93.33 347 | 94.71 341 | 97.23 53 | 99.56 171 | 93.21 249 | 97.54 329 | 98.37 259 |
|
| GA-MVS | | | 92.83 306 | 92.15 310 | 94.87 287 | 96.97 322 | 87.27 318 | 90.03 384 | 96.12 312 | 91.83 283 | 94.05 323 | 94.57 342 | 76.01 367 | 98.97 313 | 92.46 260 | 97.34 338 | 98.36 264 |
|
| miper_enhance_ethall | | | 93.14 302 | 92.78 299 | 94.20 316 | 93.65 396 | 85.29 343 | 89.97 385 | 97.85 257 | 85.05 366 | 96.15 266 | 94.56 343 | 85.74 312 | 99.14 285 | 93.74 233 | 98.34 292 | 98.17 285 |
|
| xiu_mvs_v1_base_debu | | | 95.62 209 | 95.96 197 | 94.60 299 | 98.01 227 | 88.42 288 | 93.99 299 | 98.21 223 | 92.98 259 | 95.91 273 | 94.53 344 | 96.39 105 | 99.72 90 | 95.43 155 | 98.19 298 | 95.64 379 |
|
| xiu_mvs_v1_base | | | 95.62 209 | 95.96 197 | 94.60 299 | 98.01 227 | 88.42 288 | 93.99 299 | 98.21 223 | 92.98 259 | 95.91 273 | 94.53 344 | 96.39 105 | 99.72 90 | 95.43 155 | 98.19 298 | 95.64 379 |
|
| xiu_mvs_v1_base_debi | | | 95.62 209 | 95.96 197 | 94.60 299 | 98.01 227 | 88.42 288 | 93.99 299 | 98.21 223 | 92.98 259 | 95.91 273 | 94.53 344 | 96.39 105 | 99.72 90 | 95.43 155 | 98.19 298 | 95.64 379 |
|
| PVSNet_Blended | | | 93.96 281 | 93.65 280 | 94.91 283 | 97.79 259 | 87.40 315 | 91.43 363 | 98.68 167 | 84.50 374 | 94.51 311 | 94.48 347 | 93.04 204 | 99.30 255 | 89.77 315 | 98.61 277 | 98.02 301 |
|
| PAPM_NR | | | 94.61 258 | 94.17 270 | 95.96 233 | 98.36 189 | 91.23 241 | 95.93 200 | 97.95 251 | 92.98 259 | 93.42 345 | 94.43 348 | 90.53 260 | 98.38 364 | 87.60 344 | 96.29 363 | 98.27 274 |
|
| API-MVS | | | 95.09 235 | 95.01 228 | 95.31 265 | 96.61 331 | 94.02 161 | 96.83 136 | 97.18 288 | 95.60 161 | 95.79 278 | 94.33 349 | 94.54 171 | 98.37 366 | 85.70 360 | 98.52 282 | 93.52 394 |
|
| alignmvs | | | 96.01 194 | 95.52 215 | 97.50 131 | 97.77 263 | 94.71 131 | 96.07 187 | 96.84 300 | 97.48 76 | 96.78 228 | 94.28 350 | 85.50 315 | 99.40 223 | 96.22 106 | 98.73 266 | 98.40 255 |
|
| CLD-MVS | | | 95.47 217 | 95.07 225 | 96.69 197 | 98.27 197 | 92.53 205 | 91.36 364 | 98.67 170 | 91.22 294 | 95.78 280 | 94.12 351 | 95.65 137 | 98.98 309 | 90.81 290 | 99.72 71 | 98.57 240 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MGCFI-Net | | | 97.20 130 | 97.23 125 | 97.08 168 | 97.68 275 | 93.71 173 | 97.79 77 | 99.09 59 | 97.40 83 | 96.59 239 | 93.96 352 | 97.67 31 | 99.35 242 | 96.43 97 | 98.50 285 | 98.17 285 |
|
| TR-MVS | | | 92.54 310 | 92.20 309 | 93.57 328 | 96.49 334 | 86.66 327 | 93.51 317 | 94.73 338 | 89.96 311 | 94.95 302 | 93.87 353 | 90.24 270 | 98.61 345 | 81.18 386 | 94.88 381 | 95.45 383 |
|
| sasdasda | | | 97.23 128 | 97.21 127 | 97.30 149 | 97.65 281 | 94.39 145 | 97.84 74 | 99.05 69 | 97.42 78 | 96.68 232 | 93.85 354 | 97.63 35 | 99.33 247 | 96.29 102 | 98.47 286 | 98.18 283 |
|
| canonicalmvs | | | 97.23 128 | 97.21 127 | 97.30 149 | 97.65 281 | 94.39 145 | 97.84 74 | 99.05 69 | 97.42 78 | 96.68 232 | 93.85 354 | 97.63 35 | 99.33 247 | 96.29 102 | 98.47 286 | 98.18 283 |
|
| xiu_mvs_v2_base | | | 94.22 270 | 94.63 249 | 92.99 344 | 97.32 310 | 84.84 352 | 92.12 353 | 97.84 259 | 91.96 280 | 94.17 318 | 93.43 356 | 96.07 118 | 99.71 104 | 91.27 278 | 97.48 332 | 94.42 389 |
|
| CHOSEN 280x420 | | | 89.98 342 | 89.19 348 | 92.37 360 | 95.60 367 | 81.13 382 | 86.22 398 | 97.09 292 | 81.44 385 | 87.44 399 | 93.15 357 | 73.99 372 | 99.47 198 | 88.69 330 | 99.07 229 | 96.52 367 |
|
| KD-MVS_2432*1600 | | | 88.93 354 | 87.74 359 | 92.49 356 | 88.04 410 | 81.99 374 | 89.63 391 | 95.62 324 | 91.35 291 | 95.06 298 | 93.11 358 | 56.58 402 | 98.63 343 | 85.19 367 | 95.07 378 | 96.85 355 |
|
| miper_refine_blended | | | 88.93 354 | 87.74 359 | 92.49 356 | 88.04 410 | 81.99 374 | 89.63 391 | 95.62 324 | 91.35 291 | 95.06 298 | 93.11 358 | 56.58 402 | 98.63 343 | 85.19 367 | 95.07 378 | 96.85 355 |
|
| thres600view7 | | | 92.03 321 | 91.43 318 | 93.82 322 | 98.19 206 | 84.61 354 | 96.27 170 | 90.39 383 | 96.81 100 | 96.37 251 | 93.11 358 | 73.44 380 | 99.49 193 | 80.32 388 | 97.95 308 | 97.36 339 |
|
| E-PMN | | | 89.52 350 | 89.78 342 | 88.73 381 | 93.14 399 | 77.61 395 | 83.26 403 | 92.02 368 | 94.82 194 | 93.71 333 | 93.11 358 | 75.31 369 | 96.81 393 | 85.81 359 | 96.81 350 | 91.77 400 |
|
| thres100view900 | | | 91.76 325 | 91.26 325 | 93.26 333 | 98.21 203 | 84.50 355 | 96.39 160 | 90.39 383 | 96.87 98 | 96.33 252 | 93.08 362 | 73.44 380 | 99.42 212 | 78.85 393 | 97.74 317 | 95.85 375 |
|
| 1314 | | | 92.38 312 | 92.30 307 | 92.64 354 | 95.42 372 | 85.15 346 | 95.86 204 | 96.97 297 | 85.40 363 | 90.62 377 | 93.06 363 | 91.12 252 | 97.80 382 | 86.74 355 | 95.49 377 | 94.97 387 |
|
| PAPM | | | 87.64 364 | 85.84 371 | 93.04 340 | 96.54 332 | 84.99 349 | 88.42 395 | 95.57 327 | 79.52 392 | 83.82 403 | 93.05 364 | 80.57 344 | 98.41 361 | 62.29 407 | 92.79 391 | 95.71 378 |
|
| Fast-Effi-MVS+ | | | 95.49 214 | 95.07 225 | 96.75 192 | 97.67 279 | 92.82 197 | 94.22 287 | 98.60 180 | 91.61 286 | 93.42 345 | 92.90 365 | 96.73 86 | 99.70 112 | 92.60 256 | 97.89 312 | 97.74 321 |
|
| UWE-MVS | | | 87.57 366 | 86.72 368 | 90.13 377 | 95.21 374 | 73.56 407 | 91.94 357 | 83.78 406 | 88.73 327 | 93.00 352 | 92.87 366 | 55.22 407 | 99.25 267 | 81.74 383 | 97.96 307 | 97.59 331 |
|
| ET-MVSNet_ETH3D | | | 91.12 331 | 89.67 343 | 95.47 260 | 96.41 336 | 89.15 276 | 91.54 362 | 90.23 387 | 89.07 320 | 86.78 402 | 92.84 367 | 69.39 391 | 99.44 208 | 94.16 217 | 96.61 356 | 97.82 315 |
|
| MVS | | | 90.02 340 | 89.20 347 | 92.47 358 | 94.71 382 | 86.90 324 | 95.86 204 | 96.74 306 | 64.72 406 | 90.62 377 | 92.77 368 | 92.54 225 | 98.39 363 | 79.30 391 | 95.56 376 | 92.12 398 |
|
| BH-w/o | | | 92.14 317 | 91.94 311 | 92.73 352 | 97.13 318 | 85.30 342 | 92.46 344 | 95.64 323 | 89.33 317 | 94.21 317 | 92.74 369 | 89.60 274 | 98.24 372 | 81.68 384 | 94.66 383 | 94.66 388 |
|
| PAPR | | | 92.22 315 | 91.27 323 | 95.07 275 | 95.73 365 | 88.81 283 | 91.97 356 | 97.87 256 | 85.80 358 | 90.91 376 | 92.73 370 | 91.16 251 | 98.33 368 | 79.48 390 | 95.76 373 | 98.08 289 |
|
| MAR-MVS | | | 94.21 272 | 93.03 290 | 97.76 109 | 96.94 325 | 97.44 34 | 96.97 130 | 97.15 289 | 87.89 339 | 92.00 369 | 92.73 370 | 92.14 234 | 99.12 289 | 83.92 375 | 97.51 331 | 96.73 362 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| baseline2 | | | 89.65 349 | 88.44 355 | 93.25 334 | 95.62 366 | 82.71 368 | 93.82 307 | 85.94 402 | 88.89 324 | 87.35 400 | 92.54 372 | 71.23 385 | 99.33 247 | 86.01 357 | 94.60 385 | 97.72 323 |
|
| testing3 | | | 89.72 347 | 88.26 356 | 94.10 319 | 97.66 280 | 84.30 359 | 94.80 265 | 88.25 396 | 94.66 198 | 95.07 297 | 92.51 373 | 41.15 414 | 99.43 210 | 91.81 270 | 98.44 289 | 98.55 243 |
|
| PS-MVSNAJ | | | 94.10 276 | 94.47 259 | 93.00 343 | 97.35 305 | 84.88 350 | 91.86 358 | 97.84 259 | 91.96 280 | 94.17 318 | 92.50 374 | 95.82 127 | 99.71 104 | 91.27 278 | 97.48 332 | 94.40 390 |
|
| PMMVS | | | 92.39 311 | 91.08 326 | 96.30 220 | 93.12 400 | 92.81 198 | 90.58 380 | 95.96 317 | 79.17 394 | 91.85 371 | 92.27 375 | 90.29 269 | 98.66 341 | 89.85 314 | 96.68 355 | 97.43 337 |
|
| WB-MVSnew | | | 91.50 328 | 91.29 321 | 92.14 363 | 94.85 380 | 80.32 385 | 93.29 324 | 88.77 394 | 88.57 329 | 94.03 324 | 92.21 376 | 92.56 222 | 98.28 371 | 80.21 389 | 97.08 341 | 97.81 317 |
|
| PVSNet | | 86.72 19 | 91.10 332 | 90.97 329 | 91.49 368 | 97.56 289 | 78.04 393 | 87.17 396 | 94.60 340 | 84.65 372 | 92.34 366 | 92.20 377 | 87.37 302 | 98.47 358 | 85.17 369 | 97.69 322 | 97.96 305 |
|
| tfpn200view9 | | | 91.55 327 | 91.00 327 | 93.21 337 | 98.02 225 | 84.35 357 | 95.70 211 | 90.79 380 | 96.26 123 | 95.90 276 | 92.13 378 | 73.62 377 | 99.42 212 | 78.85 393 | 97.74 317 | 95.85 375 |
|
| thres400 | | | 91.68 326 | 91.00 327 | 93.71 325 | 98.02 225 | 84.35 357 | 95.70 211 | 90.79 380 | 96.26 123 | 95.90 276 | 92.13 378 | 73.62 377 | 99.42 212 | 78.85 393 | 97.74 317 | 97.36 339 |
|
| MVE |  | 73.61 22 | 86.48 371 | 85.92 370 | 88.18 385 | 96.23 341 | 85.28 344 | 81.78 405 | 75.79 409 | 86.01 354 | 82.53 405 | 91.88 380 | 92.74 215 | 87.47 408 | 71.42 405 | 94.86 382 | 91.78 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 89.06 353 | 89.22 345 | 88.61 382 | 93.00 401 | 77.34 397 | 82.91 404 | 90.92 379 | 94.64 200 | 92.63 363 | 91.81 381 | 76.30 365 | 97.02 390 | 83.83 377 | 96.90 345 | 91.48 401 |
|
| thisisatest0515 | | | 90.43 337 | 89.18 349 | 94.17 318 | 97.07 320 | 85.44 340 | 89.75 390 | 87.58 397 | 88.28 333 | 93.69 335 | 91.72 382 | 65.27 395 | 99.58 164 | 90.59 300 | 98.67 270 | 97.50 336 |
|
| test_method | | | 66.88 374 | 66.13 377 | 69.11 390 | 62.68 415 | 25.73 418 | 49.76 406 | 96.04 314 | 14.32 410 | 64.27 410 | 91.69 383 | 73.45 379 | 88.05 407 | 76.06 398 | 66.94 407 | 93.54 393 |
|
| EIA-MVS | | | 96.04 192 | 95.77 207 | 96.85 184 | 97.80 254 | 92.98 195 | 96.12 184 | 99.16 42 | 94.65 199 | 93.77 331 | 91.69 383 | 95.68 135 | 99.67 130 | 94.18 216 | 98.85 252 | 97.91 308 |
|
| cascas | | | 91.89 323 | 91.35 320 | 93.51 329 | 94.27 388 | 85.60 338 | 88.86 394 | 98.61 179 | 79.32 393 | 92.16 368 | 91.44 385 | 89.22 283 | 98.12 376 | 90.80 291 | 97.47 334 | 96.82 358 |
|
| IB-MVS | | 85.98 20 | 88.63 357 | 86.95 367 | 93.68 326 | 95.12 377 | 84.82 353 | 90.85 376 | 90.17 388 | 87.55 340 | 88.48 395 | 91.34 386 | 58.01 399 | 99.59 162 | 87.24 352 | 93.80 389 | 96.63 365 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| thres200 | | | 91.00 334 | 90.42 338 | 92.77 351 | 97.47 298 | 83.98 362 | 94.01 298 | 91.18 378 | 95.12 183 | 95.44 289 | 91.21 387 | 73.93 373 | 99.31 252 | 77.76 396 | 97.63 327 | 95.01 386 |
|
| test0.0.03 1 | | | 90.11 339 | 89.21 346 | 92.83 349 | 93.89 394 | 86.87 325 | 91.74 360 | 88.74 395 | 92.02 278 | 94.71 307 | 91.14 388 | 73.92 374 | 94.48 402 | 83.75 379 | 92.94 390 | 97.16 344 |
|
| ETV-MVS | | | 96.13 189 | 95.90 201 | 96.82 187 | 97.76 264 | 93.89 165 | 95.40 232 | 98.95 101 | 95.87 148 | 95.58 287 | 91.00 389 | 96.36 108 | 99.72 90 | 93.36 242 | 98.83 255 | 96.85 355 |
|
| dmvs_re | | | 92.08 320 | 91.27 323 | 94.51 305 | 97.16 316 | 92.79 201 | 95.65 217 | 92.64 363 | 94.11 219 | 92.74 358 | 90.98 390 | 83.41 330 | 94.44 403 | 80.72 387 | 94.07 387 | 96.29 371 |
|
| test-LLR | | | 89.97 343 | 89.90 341 | 90.16 375 | 94.24 389 | 74.98 404 | 89.89 386 | 89.06 392 | 92.02 278 | 89.97 386 | 90.77 391 | 73.92 374 | 98.57 348 | 91.88 267 | 97.36 336 | 96.92 350 |
|
| test-mter | | | 87.92 363 | 87.17 364 | 90.16 375 | 94.24 389 | 74.98 404 | 89.89 386 | 89.06 392 | 86.44 352 | 89.97 386 | 90.77 391 | 54.96 410 | 98.57 348 | 91.88 267 | 97.36 336 | 96.92 350 |
|
| testing11 | | | 88.93 354 | 87.63 362 | 92.80 350 | 95.87 355 | 81.49 379 | 92.48 343 | 91.54 373 | 91.62 285 | 88.27 396 | 90.24 393 | 55.12 409 | 99.11 292 | 87.30 351 | 96.28 364 | 97.81 317 |
|
| TESTMET0.1,1 | | | 87.20 369 | 86.57 369 | 89.07 380 | 93.62 397 | 72.84 409 | 89.89 386 | 87.01 400 | 85.46 362 | 89.12 392 | 90.20 394 | 56.00 405 | 97.72 383 | 90.91 287 | 96.92 343 | 96.64 363 |
|
| testing91 | | | 89.67 348 | 88.55 353 | 93.04 340 | 95.90 353 | 81.80 377 | 92.71 338 | 93.71 346 | 93.71 229 | 90.18 384 | 90.15 395 | 57.11 400 | 99.22 275 | 87.17 353 | 96.32 362 | 98.12 287 |
|
| gm-plane-assit | | | | | | 91.79 406 | 71.40 411 | | | 81.67 382 | | 90.11 396 | | 98.99 307 | 84.86 371 | | |
|
| testing99 | | | 89.21 352 | 88.04 358 | 92.70 353 | 95.78 361 | 81.00 383 | 92.65 339 | 92.03 367 | 93.20 248 | 89.90 388 | 90.08 397 | 55.25 406 | 99.14 285 | 87.54 346 | 95.95 368 | 97.97 304 |
|
| testing222 | | | 87.35 367 | 85.50 374 | 92.93 347 | 95.79 360 | 82.83 367 | 92.40 349 | 90.10 389 | 92.80 266 | 88.87 393 | 89.02 398 | 48.34 412 | 98.70 334 | 75.40 399 | 96.74 352 | 97.27 343 |
|
| ETVMVS | | | 87.62 365 | 85.75 372 | 93.22 336 | 96.15 348 | 83.26 365 | 92.94 330 | 90.37 385 | 91.39 290 | 90.37 381 | 88.45 399 | 51.93 411 | 98.64 342 | 73.76 400 | 96.38 360 | 97.75 320 |
|
| DeepMVS_CX |  | | | | 77.17 389 | 90.94 408 | 85.28 344 | | 74.08 412 | 52.51 408 | 80.87 408 | 88.03 400 | 75.25 370 | 70.63 410 | 59.23 409 | 84.94 404 | 75.62 404 |
|
| Syy-MVS | | | 92.09 319 | 91.80 315 | 92.93 347 | 95.19 375 | 82.65 369 | 92.46 344 | 91.35 374 | 90.67 301 | 91.76 372 | 87.61 401 | 85.64 314 | 98.50 355 | 94.73 196 | 96.84 347 | 97.65 326 |
|
| myMVS_eth3d | | | 87.16 370 | 85.61 373 | 91.82 366 | 95.19 375 | 79.32 388 | 92.46 344 | 91.35 374 | 90.67 301 | 91.76 372 | 87.61 401 | 41.96 413 | 98.50 355 | 82.66 381 | 96.84 347 | 97.65 326 |
|
| dmvs_testset | | | 87.30 368 | 86.99 365 | 88.24 384 | 96.71 329 | 77.48 396 | 94.68 271 | 86.81 401 | 92.64 269 | 89.61 389 | 87.01 403 | 85.91 311 | 93.12 404 | 61.04 408 | 88.49 400 | 94.13 391 |
|
| PVSNet_0 | | 81.89 21 | 84.49 372 | 83.21 375 | 88.34 383 | 95.76 363 | 74.97 406 | 83.49 402 | 92.70 362 | 78.47 396 | 87.94 397 | 86.90 404 | 83.38 331 | 96.63 397 | 73.44 402 | 66.86 408 | 93.40 395 |
|
| GG-mvs-BLEND | | | | | 90.60 373 | 91.00 407 | 84.21 360 | 98.23 47 | 72.63 413 | | 82.76 404 | 84.11 405 | 56.14 404 | 96.79 394 | 72.20 403 | 92.09 394 | 90.78 402 |
|
| tmp_tt | | | 57.23 376 | 62.50 379 | 41.44 393 | 34.77 416 | 49.21 417 | 83.93 401 | 60.22 415 | 15.31 409 | 71.11 409 | 79.37 406 | 70.09 390 | 44.86 412 | 64.76 406 | 82.93 406 | 30.25 408 |
|
| dongtai | | | 63.43 375 | 63.37 378 | 63.60 391 | 83.91 413 | 53.17 415 | 85.14 399 | 43.40 417 | 77.91 399 | 80.96 407 | 79.17 407 | 36.36 415 | 77.10 409 | 37.88 410 | 45.63 409 | 60.54 406 |
|
| kuosan | | | 54.81 377 | 54.94 380 | 54.42 392 | 74.43 414 | 50.03 416 | 84.98 400 | 44.27 416 | 61.80 407 | 62.49 411 | 70.43 408 | 35.16 416 | 58.04 411 | 19.30 411 | 41.61 410 | 55.19 407 |
|
| X-MVStestdata | | | 92.86 305 | 90.83 332 | 98.94 16 | 99.15 85 | 97.66 20 | 97.77 79 | 98.83 133 | 97.42 78 | 96.32 253 | 36.50 409 | 96.49 98 | 99.72 90 | 95.66 136 | 99.37 175 | 99.45 85 |
|
| testmvs | | | 12.33 380 | 15.23 383 | 3.64 395 | 5.77 418 | 2.23 420 | 88.99 393 | 3.62 418 | 2.30 413 | 5.29 413 | 13.09 410 | 4.52 418 | 1.95 413 | 5.16 413 | 8.32 412 | 6.75 410 |
|
| test123 | | | 12.59 379 | 15.49 382 | 3.87 394 | 6.07 417 | 2.55 419 | 90.75 378 | 2.59 419 | 2.52 412 | 5.20 414 | 13.02 411 | 4.96 417 | 1.85 414 | 5.20 412 | 9.09 411 | 7.23 409 |
|
| test_post | | | | | | | | | | | | 10.87 412 | 76.83 362 | 99.07 298 | | | |
|
| test_post1 | | | | | | | | 94.98 260 | | | | 10.37 413 | 76.21 366 | 99.04 301 | 89.47 319 | | |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 7.98 381 | 10.65 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 95.82 127 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 79.32 388 | | | | | | | | 85.41 365 | | |
|
| FOURS1 | | | | | | 99.59 17 | 98.20 8 | 99.03 8 | 99.25 33 | 98.96 22 | 98.87 58 | | | | | | |
|
| MSC_two_6792asdad | | | | | 98.22 75 | 97.75 266 | 95.34 110 | | 98.16 236 | | | | | 99.75 70 | 95.87 126 | 99.51 136 | 99.57 46 |
|
| No_MVS | | | | | 98.22 75 | 97.75 266 | 95.34 110 | | 98.16 236 | | | | | 99.75 70 | 95.87 126 | 99.51 136 | 99.57 46 |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 99.22 68 | 95.40 103 | | 98.14 239 | 85.77 359 | 98.36 105 | | | | 95.23 165 | 99.51 136 | 99.49 70 |
|
| save fliter | | | | | | 98.48 179 | 94.71 131 | 94.53 276 | 98.41 201 | 95.02 188 | | | | | | | |
|
| test_0728_SECOND | | | | | 98.25 73 | 99.23 65 | 95.49 101 | 96.74 143 | 98.89 108 | | | | | 99.75 70 | 95.48 148 | 99.52 131 | 99.53 56 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.06 295 |
|
| test_part2 | | | | | | 99.03 107 | 96.07 75 | | | | 98.08 139 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.80 354 | | | | 98.06 295 |
|
| sam_mvs | | | | | | | | | | | | | 77.38 358 | | | | |
|
| MTGPA |  | | | | | | | | 98.73 155 | | | | | | | | |
|
| MTMP | | | | | | | | 96.55 154 | 74.60 410 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 91.29 277 | 98.89 248 | 99.00 179 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.34 308 | 98.90 245 | 99.10 167 |
|
| agg_prior | | | | | | 97.80 254 | 94.96 126 | | 98.36 208 | | 93.49 341 | | | 99.53 180 | | | |
|
| test_prior4 | | | | | | | 95.38 105 | 93.61 315 | | | | | | | | | |
|
| test_prior | | | | | 97.46 137 | 97.79 259 | 94.26 155 | | 98.42 200 | | | | | 99.34 245 | | | 98.79 214 |
|
| 旧先验2 | | | | | | | | 93.35 322 | | 77.95 398 | 95.77 282 | | | 98.67 340 | 90.74 296 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 93.43 318 | | | | | | | | | |
|
| æ— å…ˆéªŒ | | | | | | | | 93.20 326 | 97.91 253 | 80.78 387 | | | | 99.40 223 | 87.71 341 | | 97.94 307 |
|
| 原ACMM2 | | | | | | | | 92.82 332 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.46 201 | 87.84 339 | | |
|
| segment_acmp | | | | | | | | | | | | | 95.34 146 | | | | |
|
| testdata1 | | | | | | | | 92.77 333 | | 93.78 227 | | | | | | | |
|
| test12 | | | | | 97.46 137 | 97.61 285 | 94.07 159 | | 97.78 263 | | 93.57 339 | | 93.31 199 | 99.42 212 | | 98.78 259 | 98.89 200 |
|
| plane_prior7 | | | | | | 98.70 147 | 94.67 134 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.38 187 | 94.37 148 | | | | | | 91.91 243 | | | | |
|
| plane_prior5 | | | | | | | | | 98.75 152 | | | | | 99.46 201 | 92.59 257 | 99.20 209 | 99.28 127 |
|
| plane_prior3 | | | | | | | 94.51 141 | | | 95.29 176 | 96.16 264 | | | | | | |
|
| plane_prior2 | | | | | | | | 96.50 156 | | 96.36 119 | | | | | | | |
|
| plane_prior1 | | | | | | 98.49 177 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 94.29 151 | 95.42 229 | | 94.31 211 | | | | | | 98.93 243 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.17 232 | | | | | | | | |
|
| test11 | | | | | | | | | 98.08 244 | | | | | | | | |
|
| door | | | | | | | | | 97.81 262 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 92.47 208 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.85 241 | | 94.26 281 | | 93.18 250 | 92.86 355 | | | | | | |
|
| ACMP_Plane | | | | | | 97.85 241 | | 94.26 281 | | 93.18 250 | 92.86 355 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 90.51 303 | | |
|
| HQP4-MVS | | | | | | | | | | | 92.87 354 | | | 99.23 273 | | | 99.06 172 |
|
| HQP3-MVS | | | | | | | | | 98.43 197 | | | | | | | 98.74 263 | |
|
| HQP2-MVS | | | | | | | | | | | | | 90.33 265 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 57.28 414 | 94.89 262 | | 80.59 388 | 94.02 325 | | 78.66 351 | | 85.50 364 | | 97.82 315 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 131 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.55 118 | |
|
| Test By Simon | | | | | | | | | | | | | 94.51 172 | | | | |
|