This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8797.89 1499.47 399.32 1199.08 1097.87 14499.67 296.47 9099.92 597.88 2599.98 299.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13097.75 3299.89 2599.62 27
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1899.67 299.73 399.65 499.15 399.86 2497.22 4999.92 1499.77 9
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4598.05 4399.61 1199.52 593.72 18299.88 2098.72 999.88 2699.65 24
ANet_high98.31 2898.94 696.41 20999.33 4889.64 25397.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3397.55 3999.98 299.77 9
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2299.22 1596.23 11899.71 499.48 798.77 699.93 398.89 399.95 599.84 5
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
PS-MVSNAJss98.53 1998.63 1998.21 8199.68 994.82 13398.10 5599.21 1696.91 9099.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1599.02 5496.50 10699.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
Anonymous2023121198.55 1798.76 1397.94 10198.79 11794.37 15198.84 1199.15 2699.37 399.67 699.43 1195.61 12299.72 9098.12 1999.86 2899.73 16
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 1899.19 2095.62 15399.35 1999.37 1297.38 3399.90 1498.59 1299.91 1799.77 9
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3099.12 3095.83 14599.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
K. test v396.44 16296.28 16396.95 17499.41 4091.53 22797.65 8290.31 36398.89 1998.93 4099.36 1484.57 30199.92 597.81 2899.56 9699.39 90
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18698.58 1399.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_MVS97.95 5297.79 5998.43 5899.67 1095.56 9698.86 1096.73 29597.99 4599.15 3099.35 1689.84 25699.90 1498.64 1099.90 2399.82 6
SixPastTwentyTwo97.49 9797.57 8797.26 16099.56 1892.33 20798.28 4196.97 28498.30 3499.45 1499.35 1688.43 27299.89 1898.01 2399.76 4799.54 42
Gipumacopyleft98.07 4298.31 2997.36 15499.76 596.28 6998.51 2699.10 3398.76 2396.79 20499.34 1896.61 8098.82 31196.38 7799.50 12296.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM91.79 30490.69 31395.11 26293.80 36590.98 23494.16 26991.78 35296.38 11090.30 35799.30 1972.02 35998.90 30588.28 31490.17 36895.45 355
TransMVSNet (Re)98.38 2598.67 1797.51 13499.51 2793.39 18998.20 5098.87 9098.23 3699.48 1299.27 2098.47 899.55 17796.52 7199.53 10899.60 29
Baseline_NR-MVSNet97.72 8097.79 5997.50 13799.56 1893.29 19095.44 20198.86 9398.20 3898.37 8099.24 2194.69 15299.55 17795.98 9699.79 4199.65 24
v7n98.73 1198.99 597.95 10099.64 1294.20 16098.67 1599.14 2899.08 1099.42 1599.23 2296.53 8599.91 1399.27 299.93 1099.73 16
pm-mvs198.47 2198.67 1797.86 10899.52 2694.58 14398.28 4199.00 6297.57 6599.27 2499.22 2398.32 999.50 19197.09 5699.75 5299.50 49
TDRefinement98.90 598.86 899.02 999.54 2298.06 899.34 499.44 1098.85 2099.00 3899.20 2497.42 3299.59 16497.21 5099.76 4799.40 88
GBi-Net96.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
test196.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
FMVSNet197.95 5298.08 3597.56 12999.14 8593.67 17998.23 4598.66 15297.41 7699.00 3899.19 2595.47 12899.73 8595.83 10599.76 4799.30 111
VDDNet96.98 12696.84 13397.41 15199.40 4193.26 19197.94 6395.31 32099.26 798.39 7999.18 2887.85 28199.62 15695.13 15399.09 21599.35 102
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33376.97 37092.54 34299.18 2889.20 26898.55 33883.88 35298.60 26797.51 309
test111194.53 24594.81 22093.72 30699.06 9381.94 35598.31 3883.87 37696.37 11198.49 6999.17 3081.49 31299.73 8596.64 6599.86 2899.49 57
test250689.86 32489.16 32991.97 33898.95 10376.83 37098.54 2261.07 38496.20 11997.07 18699.16 3155.19 38399.69 12396.43 7699.83 3499.38 92
ECVR-MVScopyleft94.37 25094.48 23894.05 30398.95 10383.10 34798.31 3882.48 37796.20 11998.23 10099.16 3181.18 31599.66 14195.95 9799.83 3499.38 92
v1097.55 9297.97 4496.31 21398.60 14389.64 25397.44 9799.02 5496.60 9998.72 5499.16 3193.48 18699.72 9098.76 699.92 1499.58 31
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1298.89 8298.49 2899.38 1799.14 3495.44 13099.84 3096.47 7499.80 4099.47 66
Vis-MVSNetpermissive98.27 2998.34 2898.07 9199.33 4895.21 12398.04 5999.46 997.32 8097.82 14999.11 3596.75 7499.86 2497.84 2799.36 16599.15 146
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 8998.06 3896.23 21598.71 12889.44 25797.43 9998.82 11797.29 8298.74 5299.10 3693.86 17799.68 13098.61 1199.94 899.56 39
mvsmamba98.16 3398.06 3898.44 5699.53 2595.87 8298.70 1398.94 7697.71 5998.85 4399.10 3691.35 23499.83 3398.47 1499.90 2399.64 26
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 3884.72 30098.23 35582.52 35796.59 33590.69 373
ACMH93.61 998.44 2298.76 1397.51 13499.43 3793.54 18598.23 4599.05 4597.40 7799.37 1899.08 3998.79 599.47 20097.74 3399.71 6199.50 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part196.77 14296.53 15297.47 14298.04 20592.92 19897.93 6498.85 9798.83 2199.30 2199.07 4079.25 32399.79 4597.59 3799.93 1099.69 21
DTE-MVSNet98.79 898.86 898.59 4799.55 2096.12 7398.48 2999.10 3399.36 499.29 2399.06 4197.27 3899.93 397.71 3499.91 1799.70 19
Anonymous2024052197.07 12097.51 9195.76 23699.35 4688.18 28097.78 7298.40 18497.11 8598.34 8699.04 4289.58 25999.79 4598.09 2199.93 1099.30 111
PEN-MVS98.75 1098.85 1098.44 5699.58 1695.67 9298.45 3099.15 2699.33 599.30 2199.00 4397.27 3899.92 597.64 3699.92 1499.75 14
DeepC-MVS95.41 497.82 7397.70 6798.16 8298.78 11995.72 8796.23 15999.02 5493.92 21498.62 5698.99 4497.69 2399.62 15696.18 8499.87 2799.15 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VPA-MVSNet98.27 2998.46 2497.70 12099.06 9393.80 17497.76 7599.00 6298.40 3099.07 3598.98 4596.89 6499.75 7097.19 5399.79 4199.55 41
lessismore_v097.05 17099.36 4592.12 21584.07 37598.77 5198.98 4585.36 29599.74 8097.34 4799.37 16299.30 111
PS-CasMVS98.73 1198.85 1098.39 6299.55 2095.47 10598.49 2799.13 2999.22 899.22 2798.96 4797.35 3499.92 597.79 3099.93 1099.79 8
bld_raw_dy_0_6497.69 8297.61 8397.91 10399.54 2294.27 15798.06 5898.60 16096.60 9998.79 4898.95 4889.62 25799.84 3098.43 1699.91 1799.62 27
EU-MVSNet94.25 25294.47 23993.60 30998.14 19882.60 35097.24 10892.72 34585.08 33698.48 7098.94 4982.59 31098.76 31897.47 4399.53 10899.44 83
LCM-MVSNet-Re97.33 10997.33 10297.32 15698.13 20193.79 17596.99 12299.65 596.74 9599.47 1398.93 5096.91 6399.84 3090.11 28799.06 22198.32 256
XXY-MVS97.54 9397.70 6797.07 16999.46 3392.21 21197.22 10999.00 6294.93 18398.58 6298.92 5197.31 3699.41 22294.44 18099.43 14899.59 30
mvs_anonymous95.36 20496.07 17393.21 31896.29 31881.56 35694.60 25197.66 25693.30 23096.95 19798.91 5293.03 19699.38 23296.60 6797.30 32198.69 222
EGC-MVSNET83.08 34377.93 34698.53 5199.57 1797.55 2798.33 3798.57 1654.71 37910.38 38098.90 5395.60 12399.50 19195.69 11099.61 8298.55 235
KD-MVS_self_test97.86 6998.07 3697.25 16199.22 6292.81 20097.55 8998.94 7697.10 8698.85 4398.88 5495.03 14399.67 13597.39 4699.65 7199.26 124
UGNet96.81 13996.56 14897.58 12896.64 31093.84 17397.75 7697.12 27896.47 10993.62 31598.88 5493.22 19199.53 18295.61 11899.69 6599.36 100
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 4898.04 4097.71 11898.69 13294.28 15697.86 6998.31 19798.79 2299.23 2698.86 5695.76 11799.61 16295.49 12399.36 16599.23 131
FC-MVSNet-test98.16 3398.37 2797.56 12999.49 3193.10 19498.35 3499.21 1698.43 2998.89 4198.83 5794.30 16799.81 3897.87 2699.91 1799.77 9
new-patchmatchnet95.67 19096.58 14692.94 32697.48 27180.21 36192.96 30898.19 21394.83 18498.82 4698.79 5893.31 18999.51 19095.83 10599.04 22299.12 156
WR-MVS_H98.65 1598.62 2198.75 3399.51 2796.61 5898.55 2199.17 2199.05 1399.17 2998.79 5895.47 12899.89 1897.95 2499.91 1799.75 14
ab-mvs96.59 15496.59 14596.60 19498.64 13592.21 21198.35 3497.67 25494.45 19696.99 19398.79 5894.96 14799.49 19490.39 28499.07 21898.08 275
EG-PatchMatch MVS97.69 8297.79 5997.40 15299.06 9393.52 18695.96 17598.97 7294.55 19598.82 4698.76 6197.31 3699.29 25697.20 5299.44 14099.38 92
nrg03098.54 1898.62 2198.32 6799.22 6295.66 9397.90 6799.08 3998.31 3399.02 3698.74 6297.68 2499.61 16297.77 3199.85 3199.70 19
VDD-MVS97.37 10697.25 10797.74 11698.69 13294.50 14797.04 11995.61 31498.59 2698.51 6698.72 6392.54 21099.58 16696.02 9299.49 12699.12 156
PatchT93.75 26793.57 26394.29 29995.05 35087.32 30296.05 16792.98 34197.54 6994.25 29498.72 6375.79 34499.24 26595.92 9995.81 34396.32 343
RPSCF97.87 6797.51 9198.95 1799.15 7798.43 397.56 8899.06 4396.19 12198.48 7098.70 6594.72 15199.24 26594.37 18599.33 18099.17 142
APDe-MVS98.14 3598.03 4198.47 5598.72 12596.04 7698.07 5799.10 3395.96 13498.59 6198.69 6696.94 5899.81 3896.64 6599.58 9099.57 36
IterMVS-LS96.92 12997.29 10495.79 23598.51 15488.13 28395.10 22598.66 15296.99 8798.46 7398.68 6792.55 20899.74 8096.91 6199.79 4199.50 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal97.72 8097.97 4496.94 17599.26 5392.23 21097.83 7198.45 17498.25 3599.13 3298.66 6896.65 7799.69 12393.92 20699.62 7698.91 192
FIs97.93 5898.07 3697.48 14199.38 4392.95 19798.03 6199.11 3198.04 4498.62 5698.66 6893.75 18199.78 4997.23 4899.84 3299.73 16
CP-MVSNet98.42 2398.46 2498.30 7199.46 3395.22 12198.27 4398.84 10299.05 1399.01 3798.65 7095.37 13199.90 1497.57 3899.91 1799.77 9
FMVSNet296.72 14696.67 14396.87 18097.96 21591.88 22197.15 11198.06 23395.59 15598.50 6898.62 7189.51 26399.65 14394.99 16199.60 8699.07 166
FA-MVS(test-final)94.91 22294.89 21494.99 26997.51 26988.11 28598.27 4395.20 32192.40 25896.68 21198.60 7283.44 30799.28 25893.34 21998.53 26997.59 307
PMVScopyleft89.60 1796.71 14896.97 12595.95 22899.51 2797.81 1797.42 10097.49 26697.93 4795.95 24998.58 7396.88 6696.91 36789.59 29599.36 16593.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 28192.79 27994.78 28095.44 34588.15 28196.18 16197.20 27384.94 34094.10 29898.57 7477.67 33199.39 22995.17 14695.81 34396.81 333
Patchmtry95.03 21994.59 23396.33 21194.83 35290.82 23796.38 14997.20 27396.59 10197.49 15998.57 7477.67 33199.38 23292.95 23099.62 7698.80 208
ambc96.56 19998.23 18591.68 22697.88 6898.13 22298.42 7698.56 7694.22 17099.04 29194.05 20199.35 17098.95 181
3Dnovator96.53 297.61 8897.64 7797.50 13797.74 25293.65 18398.49 2798.88 8896.86 9297.11 18098.55 7795.82 11099.73 8595.94 9899.42 15199.13 151
IterMVS-SCA-FT95.86 18596.19 16694.85 27697.68 25685.53 32392.42 32097.63 26296.99 8798.36 8398.54 7887.94 27699.75 7097.07 5899.08 21699.27 123
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6997.35 3797.96 6299.16 2298.34 3298.78 4998.52 7997.32 3599.45 20794.08 19799.67 6899.13 151
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3298.31 2997.98 9999.39 4295.22 12197.55 8999.20 1898.21 3799.25 2598.51 8098.21 1199.40 22494.79 16799.72 5899.32 105
RPMNet94.68 23694.60 23194.90 27395.44 34588.15 28196.18 16198.86 9397.43 7294.10 29898.49 8179.40 32299.76 6395.69 11095.81 34396.81 333
IterMVS95.42 20295.83 18294.20 30097.52 26883.78 34592.41 32197.47 26895.49 15998.06 12198.49 8187.94 27699.58 16696.02 9299.02 22399.23 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 6797.89 5197.81 11198.62 14094.82 13397.13 11498.79 11998.98 1798.74 5298.49 8195.80 11699.49 19495.04 15799.44 14099.11 159
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5899.07 9295.87 8296.73 13799.05 4598.67 2498.84 4598.45 8497.58 2899.88 2096.45 7599.86 2899.54 42
3Dnovator+96.13 397.73 7997.59 8598.15 8598.11 20395.60 9598.04 5998.70 14298.13 3996.93 19898.45 8495.30 13599.62 15695.64 11698.96 22799.24 130
dcpmvs_297.12 11897.99 4394.51 29299.11 8784.00 34397.75 7699.65 597.38 7899.14 3198.42 8695.16 13899.96 295.52 12299.78 4499.58 31
patch_mono-296.59 15496.93 12895.55 24698.88 11087.12 30594.47 25699.30 1294.12 20896.65 21598.41 8794.98 14699.87 2295.81 10799.78 4499.66 22
VPNet97.26 11397.49 9496.59 19599.47 3290.58 24296.27 15498.53 16797.77 5098.46 7398.41 8794.59 15899.68 13094.61 17399.29 18899.52 46
test_040297.84 7097.97 4497.47 14299.19 7294.07 16396.71 13898.73 13298.66 2598.56 6398.41 8796.84 7099.69 12394.82 16599.81 3798.64 225
v124096.74 14397.02 12495.91 23198.18 19188.52 27295.39 20798.88 8893.15 23998.46 7398.40 9092.80 20099.71 10698.45 1599.49 12699.49 57
SMA-MVScopyleft97.48 9897.11 11698.60 4698.83 11396.67 5596.74 13398.73 13291.61 26898.48 7098.36 9196.53 8599.68 13095.17 14699.54 10599.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6597.63 7998.67 4199.35 4696.84 4996.36 15098.79 11995.07 17697.88 14198.35 9297.24 4299.72 9096.05 8999.58 9099.45 73
v119296.83 13797.06 12196.15 22098.28 17789.29 25995.36 20998.77 12493.73 21898.11 11398.34 9393.02 19799.67 13598.35 1799.58 9099.50 49
pmmvs-eth3d96.49 15996.18 16797.42 15098.25 18294.29 15394.77 24698.07 23289.81 29097.97 13298.33 9493.11 19299.08 28795.46 12999.84 3298.89 196
PM-MVS97.36 10897.10 11798.14 8698.91 10896.77 5196.20 16098.63 15893.82 21698.54 6498.33 9493.98 17599.05 29095.99 9599.45 13998.61 230
test072699.24 5795.51 10096.89 12598.89 8295.92 13798.64 5598.31 9697.06 50
MP-MVS-pluss97.69 8297.36 10098.70 3999.50 3096.84 4995.38 20898.99 6592.45 25698.11 11398.31 9697.25 4199.77 5896.60 6799.62 7699.48 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 13497.08 11996.13 22198.42 16789.28 26095.41 20598.67 15094.21 20497.97 13298.31 9693.06 19399.65 14398.06 2299.62 7699.45 73
LFMVS95.32 20694.88 21596.62 19398.03 20691.47 22997.65 8290.72 36099.11 997.89 14098.31 9679.20 32499.48 19793.91 20799.12 21198.93 187
DVP-MVS++97.96 4897.90 4898.12 8897.75 24995.40 10699.03 798.89 8296.62 9798.62 5698.30 10096.97 5699.75 7095.70 10899.25 19399.21 133
test_one_060199.05 9795.50 10398.87 9097.21 8498.03 12598.30 10096.93 60
V4297.04 12197.16 11496.68 19298.59 14591.05 23296.33 15298.36 18994.60 19197.99 12898.30 10093.32 18899.62 15697.40 4599.53 10899.38 92
casdiffmvs97.50 9697.81 5896.56 19998.51 15491.04 23395.83 18499.09 3897.23 8398.33 9098.30 10097.03 5299.37 23596.58 6999.38 16199.28 119
v14419296.69 14996.90 13296.03 22398.25 18288.92 26495.49 19998.77 12493.05 24198.09 11798.29 10492.51 21299.70 11598.11 2099.56 9699.47 66
DVP-MVScopyleft97.78 7697.65 7498.16 8299.24 5795.51 10096.74 13398.23 20395.92 13798.40 7798.28 10597.06 5099.71 10695.48 12699.52 11399.26 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9798.40 7798.28 10597.10 4599.71 10695.70 10899.62 7699.58 31
MVS_Test96.27 16796.79 13894.73 28296.94 30586.63 31296.18 16198.33 19494.94 18196.07 24498.28 10595.25 13699.26 26297.21 5097.90 29498.30 260
FMVSNet593.39 27892.35 28896.50 20195.83 33690.81 23997.31 10398.27 19892.74 25196.27 23498.28 10562.23 37699.67 13590.86 26599.36 16599.03 172
abl_698.42 2398.19 3299.09 399.16 7498.10 697.73 8099.11 3197.76 5398.62 5698.27 10997.88 1999.80 4495.67 11299.50 12299.38 92
v192192096.72 14696.96 12795.99 22498.21 18688.79 26995.42 20398.79 11993.22 23398.19 10598.26 11092.68 20399.70 11598.34 1899.55 10299.49 57
SED-MVS97.94 5597.90 4898.07 9199.22 6295.35 11196.79 13098.83 10996.11 12499.08 3398.24 11197.87 2099.72 9095.44 13099.51 11899.14 149
test_241102_TWO98.83 10996.11 12498.62 5698.24 11196.92 6299.72 9095.44 13099.49 12699.49 57
v2v48296.78 14197.06 12195.95 22898.57 14788.77 27095.36 20998.26 20095.18 17197.85 14698.23 11392.58 20799.63 14897.80 2999.69 6599.45 73
LPG-MVS_test97.94 5597.67 7198.74 3599.15 7797.02 4497.09 11699.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
LGP-MVS_train98.74 3599.15 7797.02 4499.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2297.48 3298.35 3499.03 5295.88 14097.88 14198.22 11698.15 1299.74 8096.50 7399.62 7699.42 85
MIMVSNet93.42 27792.86 27695.10 26498.17 19388.19 27998.13 5493.69 33192.07 26095.04 27798.21 11780.95 31899.03 29481.42 35998.06 28898.07 277
h-mvs3396.29 16695.63 18998.26 7398.50 15796.11 7496.90 12497.09 27996.58 10297.21 17398.19 11884.14 30299.78 4995.89 10196.17 34198.89 196
EI-MVSNet96.63 15396.93 12895.74 23797.26 29088.13 28395.29 21697.65 25896.99 8797.94 13598.19 11892.55 20899.58 16696.91 6199.56 9699.50 49
CVMVSNet92.33 29692.79 27990.95 34397.26 29075.84 37395.29 21692.33 34881.86 35096.27 23498.19 11881.44 31398.46 34394.23 19298.29 27998.55 235
PVSNet_Blended_VisFu95.95 18195.80 18396.42 20799.28 5290.62 24195.31 21499.08 3988.40 30496.97 19698.17 12192.11 21999.78 4993.64 21599.21 19798.86 203
FE-MVS92.95 28692.22 29095.11 26297.21 29388.33 27798.54 2293.66 33489.91 28996.21 23898.14 12270.33 36599.50 19187.79 31898.24 28197.51 309
EI-MVSNet-UG-set97.32 11097.40 9797.09 16897.34 28592.01 21995.33 21297.65 25897.74 5498.30 9598.14 12295.04 14299.69 12397.55 3999.52 11399.58 31
test_241102_ONE99.22 6295.35 11198.83 10996.04 12999.08 3398.13 12497.87 2099.33 245
APD-MVS_3200maxsize98.13 3897.90 4898.79 3198.79 11797.31 3897.55 8998.92 7997.72 5798.25 9898.13 12497.10 4599.75 7095.44 13099.24 19699.32 105
QAPM95.88 18495.57 19296.80 18497.90 22191.84 22398.18 5298.73 13288.41 30396.42 22598.13 12494.73 15099.75 7088.72 30798.94 23198.81 207
ACMM93.33 1198.05 4397.79 5998.85 2599.15 7797.55 2796.68 13998.83 10995.21 16898.36 8398.13 12498.13 1499.62 15696.04 9099.54 10599.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 11097.39 9897.11 16697.36 28092.08 21795.34 21197.65 25897.74 5498.29 9698.11 12895.05 14099.68 13097.50 4199.50 12299.56 39
wuyk23d93.25 28295.20 19887.40 35796.07 33195.38 10897.04 11994.97 32295.33 16499.70 598.11 12898.14 1391.94 37577.76 36899.68 6774.89 375
DPE-MVScopyleft97.64 8597.35 10198.50 5298.85 11296.18 7095.21 22298.99 6595.84 14498.78 4998.08 13096.84 7099.81 3893.98 20499.57 9399.52 46
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.37 10697.70 6796.35 21098.14 19895.13 12596.54 14298.92 7995.94 13699.19 2898.08 13097.74 2295.06 37395.24 14299.54 10598.87 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 3597.84 5499.02 998.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.60 8299.76 6395.49 12399.20 19899.26 124
RE-MVS-def97.88 5298.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.94 5895.49 12399.20 19899.26 124
OPM-MVS97.54 9397.25 10798.41 6099.11 8796.61 5895.24 22098.46 17394.58 19498.10 11698.07 13297.09 4799.39 22995.16 14899.44 14099.21 133
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest97.20 11796.92 13098.06 9399.08 9096.16 7197.14 11399.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
TestCases98.06 9399.08 9096.16 7199.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
TSAR-MVS + MP.97.42 10297.23 11098.00 9899.38 4395.00 12897.63 8498.20 20893.00 24398.16 10798.06 13795.89 10599.72 9095.67 11299.10 21499.28 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 13496.58 14697.65 12499.18 7393.78 17698.68 1496.34 29897.91 4897.30 16998.06 13788.46 27199.85 2793.85 20899.40 15899.32 105
ACMMPcopyleft98.05 4397.75 6698.93 2199.23 5997.60 2398.09 5698.96 7395.75 14997.91 13798.06 13796.89 6499.76 6395.32 13799.57 9399.43 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 16595.98 17797.43 14998.25 18293.85 17296.74 13394.41 32897.72 5798.37 8098.03 14087.15 28599.53 18294.06 19899.07 21898.92 191
XVG-ACMP-BASELINE97.58 9197.28 10698.49 5399.16 7496.90 4896.39 14798.98 6895.05 17798.06 12198.02 14195.86 10699.56 17394.37 18599.64 7399.00 175
baseline97.44 10197.78 6396.43 20598.52 15290.75 24096.84 12699.03 5296.51 10597.86 14598.02 14196.67 7699.36 23797.09 5699.47 13299.19 138
PVSNet_BlendedMVS95.02 22094.93 21195.27 25797.79 24187.40 30094.14 27298.68 14788.94 29894.51 28998.01 14393.04 19499.30 25289.77 29399.49 12699.11 159
OpenMVScopyleft94.22 895.48 19895.20 19896.32 21297.16 29791.96 22097.74 7898.84 10287.26 31394.36 29398.01 14393.95 17699.67 13590.70 27598.75 25297.35 316
MVSTER94.21 25593.93 25795.05 26695.83 33686.46 31395.18 22397.65 25892.41 25797.94 13598.00 14572.39 35899.58 16696.36 7899.56 9699.12 156
IS-MVSNet96.93 12896.68 14297.70 12099.25 5694.00 16698.57 1996.74 29398.36 3198.14 11197.98 14688.23 27499.71 10693.10 22799.72 5899.38 92
test117298.08 4197.76 6499.05 698.78 11998.07 797.41 10198.85 9797.57 6598.15 10997.96 14796.60 8299.76 6395.30 13899.18 20299.33 104
zzz-MVS98.01 4697.66 7299.06 499.44 3597.90 1295.66 19198.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
MTAPA98.14 3597.84 5499.06 499.44 3597.90 1297.25 10698.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
v14896.58 15696.97 12595.42 25398.63 13987.57 29595.09 22697.90 23995.91 13998.24 9997.96 14793.42 18799.39 22996.04 9099.52 11399.29 118
MDA-MVSNet-bldmvs95.69 18895.67 18795.74 23798.48 16088.76 27192.84 30997.25 27196.00 13297.59 15397.95 15191.38 23399.46 20393.16 22696.35 33898.99 178
PGM-MVS97.88 6697.52 9098.96 1699.20 7097.62 2297.09 11699.06 4395.45 16097.55 15497.94 15297.11 4499.78 4994.77 17099.46 13599.48 63
LS3D97.77 7797.50 9398.57 4896.24 32097.58 2598.45 3098.85 9798.58 2797.51 15797.94 15295.74 11899.63 14895.19 14498.97 22698.51 237
USDC94.56 24294.57 23694.55 29097.78 24586.43 31592.75 31298.65 15785.96 32596.91 20097.93 15490.82 24098.74 31990.71 27499.59 8898.47 241
test20.0396.58 15696.61 14496.48 20398.49 15891.72 22595.68 19097.69 25396.81 9398.27 9797.92 15594.18 17198.71 32290.78 26999.66 7099.00 175
FMVSNet395.26 20994.94 20996.22 21796.53 31390.06 24795.99 17297.66 25694.11 20997.99 12897.91 15680.22 32199.63 14894.60 17499.44 14098.96 180
iter_conf_final94.54 24493.91 25896.43 20597.23 29290.41 24696.81 12898.10 22493.87 21596.80 20397.89 15768.02 36999.72 9096.73 6499.77 4699.18 141
iter_conf0593.65 27293.05 27195.46 25196.13 33087.45 29895.95 17898.22 20492.66 25297.04 18897.89 15763.52 37599.72 9096.19 8399.82 3699.21 133
Regformer-397.25 11497.29 10497.11 16697.35 28192.32 20895.26 21897.62 26397.67 6398.17 10697.89 15795.05 14099.56 17397.16 5499.42 15199.46 68
Regformer-497.53 9597.47 9697.71 11897.35 28193.91 16895.26 21898.14 22097.97 4698.34 8697.89 15795.49 12699.71 10697.41 4499.42 15199.51 48
xxxxxxxxxxxxxcwj97.24 11597.03 12397.89 10598.48 16094.71 13794.53 25499.07 4295.02 17997.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
SF-MVS97.60 8997.39 9898.22 7898.93 10695.69 8997.05 11899.10 3395.32 16597.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
SteuartSystems-ACMMP98.02 4597.76 6498.79 3199.43 3797.21 4397.15 11198.90 8196.58 10298.08 11997.87 16397.02 5399.76 6395.25 14199.59 8899.40 88
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4797.66 7299.01 1198.77 12197.93 1197.38 10298.83 10997.32 8098.06 12197.85 16496.65 7799.77 5895.00 16099.11 21299.32 105
DU-MVS97.79 7597.60 8498.36 6498.73 12395.78 8595.65 19498.87 9097.57 6598.31 9397.83 16594.69 15299.85 2797.02 5999.71 6199.46 68
NR-MVSNet97.96 4897.86 5398.26 7398.73 12395.54 9898.14 5398.73 13297.79 4999.42 1597.83 16594.40 16599.78 4995.91 10099.76 4799.46 68
CHOSEN 1792x268894.10 25993.41 26696.18 21999.16 7490.04 24892.15 32498.68 14779.90 36096.22 23797.83 16587.92 28099.42 21389.18 30199.65 7199.08 164
TAMVS95.49 19694.94 20997.16 16398.31 17393.41 18895.07 22996.82 28991.09 27797.51 15797.82 16889.96 25399.42 21388.42 31299.44 14098.64 225
UniMVSNet (Re)97.83 7197.65 7498.35 6698.80 11695.86 8495.92 18099.04 5197.51 7098.22 10197.81 16994.68 15499.78 4997.14 5599.75 5299.41 87
VNet96.84 13496.83 13496.88 17998.06 20492.02 21896.35 15197.57 26597.70 6097.88 14197.80 17092.40 21499.54 18094.73 17298.96 22799.08 164
YYNet194.73 22994.84 21794.41 29597.47 27585.09 33290.29 35295.85 30992.52 25397.53 15597.76 17191.97 22399.18 27193.31 22196.86 32798.95 181
MDA-MVSNet_test_wron94.73 22994.83 21994.42 29497.48 27185.15 33090.28 35395.87 30892.52 25397.48 16297.76 17191.92 22799.17 27593.32 22096.80 33098.94 183
TinyColmap96.00 18096.34 16194.96 27097.90 22187.91 28794.13 27398.49 17194.41 19798.16 10797.76 17196.29 9998.68 32790.52 28099.42 15198.30 260
Patchmatch-RL test94.66 23794.49 23795.19 26098.54 15088.91 26592.57 31698.74 13091.46 27198.32 9197.75 17477.31 33698.81 31396.06 8799.61 8297.85 294
MP-MVScopyleft97.64 8597.18 11399.00 1299.32 5097.77 1897.49 9598.73 13296.27 11595.59 26497.75 17496.30 9899.78 4993.70 21499.48 13099.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 9997.10 11798.55 5099.04 9896.70 5396.24 15898.89 8293.71 21997.97 13297.75 17497.44 3099.63 14893.22 22499.70 6499.32 105
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 18895.28 19796.92 17698.15 19793.03 19595.64 19698.20 20890.39 28396.63 21697.73 17791.63 23199.10 28591.84 24597.31 32098.63 227
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 6297.53 8999.04 799.22 6297.87 1597.74 7898.78 12396.04 12997.10 18197.73 17796.53 8599.78 4995.16 14899.50 12299.46 68
MVS_030495.50 19595.05 20796.84 18296.28 31993.12 19397.00 12196.16 30095.03 17889.22 36397.70 17990.16 25299.48 19794.51 17999.34 17397.93 291
XVG-OURS97.12 11896.74 13998.26 7398.99 10197.45 3493.82 28599.05 4595.19 17098.32 9197.70 17995.22 13798.41 34594.27 19098.13 28598.93 187
UniMVSNet_NR-MVSNet97.83 7197.65 7498.37 6398.72 12595.78 8595.66 19199.02 5498.11 4098.31 9397.69 18194.65 15699.85 2797.02 5999.71 6199.48 63
D2MVS95.18 21195.17 20095.21 25997.76 24787.76 29394.15 27097.94 23789.77 29196.99 19397.68 18287.45 28399.14 27895.03 15999.81 3798.74 216
XVS97.96 4897.63 7998.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23097.64 18396.49 8899.72 9095.66 11499.37 16299.45 73
ACMMPR97.95 5297.62 8198.94 1899.20 7097.56 2697.59 8698.83 10996.05 12797.46 16597.63 18496.77 7399.76 6395.61 11899.46 13599.49 57
Anonymous2023120695.27 20895.06 20695.88 23298.72 12589.37 25895.70 18797.85 24288.00 30996.98 19597.62 18591.95 22499.34 24289.21 30099.53 10898.94 183
region2R97.92 5997.59 8598.92 2299.22 6297.55 2797.60 8598.84 10296.00 13297.22 17197.62 18596.87 6899.76 6395.48 12699.43 14899.46 68
GeoE97.75 7897.70 6797.89 10598.88 11094.53 14497.10 11598.98 6895.75 14997.62 15297.59 18797.61 2799.77 5896.34 7999.44 14099.36 100
ppachtmachnet_test94.49 24694.84 21793.46 31296.16 32682.10 35290.59 34997.48 26790.53 28297.01 19297.59 18791.01 23799.36 23793.97 20599.18 20298.94 183
APD-MVScopyleft97.00 12296.53 15298.41 6098.55 14996.31 6796.32 15398.77 12492.96 24897.44 16697.58 18995.84 10799.74 8091.96 23999.35 17099.19 138
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 5597.64 7798.83 2699.15 7797.50 3097.59 8698.84 10296.05 12797.49 15997.54 19097.07 4899.70 11595.61 11899.46 13599.30 111
#test#97.62 8797.22 11198.83 2699.15 7797.50 3096.81 12898.84 10294.25 20397.49 15997.54 19097.07 4899.70 11594.37 18599.46 13599.30 111
UnsupCasMVSNet_eth95.91 18295.73 18696.44 20498.48 16091.52 22895.31 21498.45 17495.76 14797.48 16297.54 19089.53 26298.69 32494.43 18194.61 35699.13 151
XVG-OURS-SEG-HR97.38 10597.07 12098.30 7199.01 10097.41 3694.66 24999.02 5495.20 16998.15 10997.52 19398.83 498.43 34494.87 16396.41 33799.07 166
MG-MVS94.08 26194.00 25494.32 29797.09 29985.89 32093.19 30695.96 30692.52 25394.93 28097.51 19489.54 26098.77 31687.52 32697.71 30298.31 258
Regformer-197.27 11297.16 11497.61 12797.21 29393.86 17194.85 24298.04 23597.62 6498.03 12597.50 19595.34 13299.63 14896.52 7199.31 18499.35 102
Regformer-297.41 10397.24 10997.93 10297.21 29394.72 13694.85 24298.27 19897.74 5498.11 11397.50 19595.58 12499.69 12396.57 7099.31 18499.37 99
HPM-MVScopyleft98.11 3997.83 5798.92 2299.42 3997.46 3398.57 1999.05 4595.43 16297.41 16797.50 19597.98 1599.79 4595.58 12199.57 9399.50 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 14198.53 15196.02 17098.98 6893.23 23297.18 17597.46 19896.47 9099.62 15692.99 22899.32 182
CP-MVS97.92 5997.56 8898.99 1398.99 10197.82 1697.93 6498.96 7396.11 12496.89 20197.45 19996.85 6999.78 4995.19 14499.63 7599.38 92
PC_three_145287.24 31498.37 8097.44 20097.00 5496.78 37092.01 23899.25 19399.21 133
ZNCC-MVS97.92 5997.62 8198.83 2699.32 5097.24 4197.45 9698.84 10295.76 14796.93 19897.43 20197.26 4099.79 4596.06 8799.53 10899.45 73
N_pmnet95.18 21194.23 24698.06 9397.85 22396.55 6092.49 31891.63 35389.34 29398.09 11797.41 20290.33 24699.06 28991.58 25099.31 18498.56 233
GST-MVS97.82 7397.49 9498.81 2999.23 5997.25 4097.16 11098.79 11995.96 13497.53 15597.40 20396.93 6099.77 5895.04 15799.35 17099.42 85
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36099.30 25291.25 25793.87 35997.87 293
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34098.55 33888.85 30596.43 336
DeepPCF-MVS94.58 596.90 13196.43 15898.31 7097.48 27197.23 4292.56 31798.60 16092.84 25098.54 6497.40 20396.64 7998.78 31594.40 18499.41 15798.93 187
MSLP-MVS++96.42 16496.71 14095.57 24397.82 23090.56 24495.71 18698.84 10294.72 18796.71 21097.39 20794.91 14998.10 35995.28 13999.02 22398.05 284
EPNet93.72 26892.62 28697.03 17287.61 38292.25 20996.27 15491.28 35496.74 9587.65 36897.39 20785.00 29799.64 14692.14 23799.48 13099.20 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 27194.07 25292.45 33497.57 26480.67 36086.46 36796.00 30493.99 21297.10 18197.38 20989.90 25497.82 36188.76 30699.47 13298.86 203
DeepC-MVS_fast94.34 796.74 14396.51 15597.44 14897.69 25594.15 16196.02 17098.43 17793.17 23897.30 16997.38 20995.48 12799.28 25893.74 21199.34 17398.88 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 22794.80 22194.85 27696.16 32686.45 31491.14 34398.20 20893.49 22397.03 19097.37 21184.97 29899.26 26295.28 13999.56 9698.83 205
OPU-MVS97.64 12598.01 20995.27 11696.79 13097.35 21296.97 5698.51 34191.21 25899.25 19399.14 149
DIV-MVS_self_test94.73 22994.64 22795.01 26795.86 33487.00 30791.33 33798.08 22893.34 22897.10 18197.34 21384.02 30499.31 24995.15 15099.55 10298.72 219
cl____94.73 22994.64 22795.01 26795.85 33587.00 30791.33 33798.08 22893.34 22897.10 18197.33 21484.01 30599.30 25295.14 15199.56 9698.71 221
WR-MVS96.90 13196.81 13597.16 16398.56 14892.20 21394.33 25998.12 22397.34 7998.20 10297.33 21492.81 19999.75 7094.79 16799.81 3799.54 42
ETH3D-3000-0.196.89 13396.46 15798.16 8298.62 14095.69 8995.96 17598.98 6893.36 22797.04 18897.31 21694.93 14899.63 14892.60 23199.34 17399.17 142
ITE_SJBPF97.85 10998.64 13596.66 5698.51 17095.63 15297.22 17197.30 21795.52 12598.55 33890.97 26298.90 23598.34 255
Vis-MVSNet (Re-imp)95.11 21494.85 21695.87 23399.12 8689.17 26197.54 9494.92 32396.50 10696.58 21797.27 21883.64 30699.48 19788.42 31299.67 6898.97 179
c3_l95.20 21095.32 19694.83 27896.19 32486.43 31591.83 33098.35 19393.47 22497.36 16897.26 21988.69 26999.28 25895.41 13699.36 16598.78 211
eth_miper_zixun_eth94.89 22394.93 21194.75 28195.99 33286.12 31891.35 33698.49 17193.40 22597.12 17997.25 22086.87 28899.35 24095.08 15698.82 24698.78 211
pmmvs494.82 22694.19 24996.70 19097.42 27892.75 20292.09 32796.76 29186.80 32095.73 26197.22 22189.28 26698.89 30693.28 22299.14 20598.46 243
OMC-MVS96.48 16096.00 17597.91 10398.30 17496.01 8094.86 24198.60 16091.88 26597.18 17597.21 22296.11 10199.04 29190.49 28399.34 17398.69 222
CS-MVS98.09 4098.01 4298.32 6798.45 16596.69 5498.52 2599.69 298.07 4296.07 24497.19 22396.88 6699.86 2497.50 4199.73 5498.41 244
pmmvs594.63 23994.34 24495.50 24897.63 26288.34 27694.02 27697.13 27787.15 31695.22 27297.15 22487.50 28299.27 26193.99 20399.26 19298.88 200
testtj96.69 14996.13 16898.36 6498.46 16496.02 7996.44 14598.70 14294.26 20296.79 20497.13 22594.07 17399.75 7090.53 27998.80 24799.31 110
our_test_394.20 25794.58 23493.07 32096.16 32681.20 35890.42 35196.84 28790.72 28097.14 17797.13 22590.47 24499.11 28394.04 20298.25 28098.91 192
CPTT-MVS96.69 14996.08 17298.49 5398.89 10996.64 5797.25 10698.77 12492.89 24996.01 24897.13 22592.23 21699.67 13592.24 23699.34 17399.17 142
MS-PatchMatch94.83 22594.91 21394.57 28996.81 30987.10 30694.23 26597.34 27088.74 30197.14 17797.11 22891.94 22598.23 35592.99 22897.92 29298.37 249
FPMVS89.92 32388.63 33193.82 30498.37 17096.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36391.13 37671.91 37496.16 34293.39 366
ETH3D cwj APD-0.1696.23 16995.61 19198.09 9097.91 21995.65 9494.94 23798.74 13091.31 27496.02 24797.08 23094.05 17499.69 12391.51 25198.94 23198.93 187
ZD-MVS98.43 16695.94 8198.56 16690.72 28096.66 21397.07 23195.02 14499.74 8091.08 25998.93 233
DELS-MVS96.17 17296.23 16495.99 22497.55 26790.04 24892.38 32298.52 16894.13 20796.55 22197.06 23294.99 14599.58 16695.62 11799.28 18998.37 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 12996.55 14998.03 9798.00 21395.54 9894.87 24098.17 21494.60 19196.38 22797.05 23395.67 12099.36 23795.12 15499.08 21699.19 138
旧先验197.80 23593.87 17097.75 24997.04 23493.57 18598.68 25798.72 219
testdata95.70 24098.16 19590.58 24297.72 25180.38 35895.62 26397.02 23592.06 22298.98 29989.06 30498.52 27097.54 308
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 32999.18 27190.84 26694.57 35898.01 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DROMVSNet97.90 6497.94 4797.79 11298.66 13495.14 12498.31 3899.66 497.57 6595.95 24997.01 23796.99 5599.82 3597.66 3599.64 7398.39 247
SCA93.38 27993.52 26492.96 32596.24 32081.40 35793.24 30494.00 33091.58 27094.57 28696.97 23887.94 27699.42 21389.47 29797.66 30798.06 281
Patchmatch-test93.60 27493.25 26994.63 28496.14 32987.47 29796.04 16894.50 32793.57 22196.47 22396.97 23876.50 33998.61 33290.67 27698.41 27597.81 298
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36298.89 30688.59 31092.63 36396.87 327
diffmvs96.04 17796.23 16495.46 25197.35 28188.03 28693.42 29799.08 3994.09 21096.66 21396.93 24193.85 17899.29 25696.01 9498.67 25899.06 168
114514_t93.96 26393.22 27096.19 21899.06 9390.97 23595.99 17298.94 7673.88 37393.43 32496.93 24192.38 21599.37 23589.09 30299.28 18998.25 266
CS-MVS-test97.91 6297.84 5498.14 8698.52 15296.03 7898.38 3399.67 398.11 4095.50 26696.92 24396.81 7299.87 2296.87 6399.76 4798.51 237
Test_1112_low_res93.53 27692.86 27695.54 24798.60 14388.86 26792.75 31298.69 14582.66 34992.65 33896.92 24384.75 29999.56 17390.94 26397.76 29898.19 271
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33188.01 30892.32 34496.86 24577.45 33398.82 31191.04 26087.01 37297.04 321
PHI-MVS96.96 12796.53 15298.25 7697.48 27196.50 6196.76 13298.85 9793.52 22296.19 24096.85 24695.94 10499.42 21393.79 21099.43 14898.83 205
tttt051793.31 28092.56 28795.57 24398.71 12887.86 28897.44 9787.17 37195.79 14697.47 16496.84 24764.12 37399.81 3896.20 8299.32 18299.02 174
patchmatchnet-post96.84 24777.36 33599.42 213
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31083.46 34692.69 33696.84 24779.15 32599.41 22285.66 33990.52 36698.04 285
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32598.70 32385.66 33990.52 36698.04 285
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26697.31 10394.62 32585.92 32690.50 35596.84 24785.05 29699.40 22483.77 35495.78 34696.43 342
UnsupCasMVSNet_bld94.72 23394.26 24596.08 22298.62 14090.54 24593.38 30098.05 23490.30 28497.02 19196.80 25289.54 26099.16 27688.44 31196.18 34098.56 233
HQP_MVS96.66 15296.33 16297.68 12398.70 13094.29 15396.50 14398.75 12896.36 11296.16 24196.77 25391.91 22899.46 20392.59 23399.20 19899.28 119
plane_prior496.77 253
MVS_111021_HR96.73 14596.54 15197.27 15898.35 17293.66 18293.42 29798.36 18994.74 18696.58 21796.76 25596.54 8498.99 29794.87 16399.27 19199.15 146
CANet95.86 18595.65 18896.49 20296.41 31690.82 23794.36 25898.41 18294.94 18192.62 34196.73 25692.68 20399.71 10695.12 15499.60 8698.94 183
112194.26 25193.26 26897.27 15898.26 18194.73 13595.86 18197.71 25277.96 36794.53 28896.71 25791.93 22699.40 22487.71 31998.64 26397.69 302
TSAR-MVS + GP.96.47 16196.12 16997.49 14097.74 25295.23 11894.15 27096.90 28693.26 23198.04 12496.70 25894.41 16498.89 30694.77 17099.14 20598.37 249
test22298.17 19393.24 19292.74 31497.61 26475.17 37194.65 28596.69 25990.96 23998.66 26097.66 303
新几何197.25 16198.29 17594.70 14097.73 25077.98 36694.83 28196.67 26092.08 22199.45 20788.17 31698.65 26297.61 305
miper_ehance_all_eth94.69 23494.70 22494.64 28395.77 33886.22 31791.32 33998.24 20291.67 26797.05 18796.65 26188.39 27399.22 26994.88 16298.34 27698.49 240
MVS_111021_LR96.82 13896.55 14997.62 12698.27 17995.34 11393.81 28798.33 19494.59 19396.56 21996.63 26296.61 8098.73 32094.80 16699.34 17398.78 211
CDPH-MVS95.45 20194.65 22697.84 11098.28 17794.96 12993.73 28998.33 19485.03 33895.44 26796.60 26395.31 13499.44 21090.01 28999.13 20899.11 159
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18693.57 36894.67 14194.21 26797.67 25480.36 35993.61 31696.60 26382.85 30997.35 36584.86 34798.78 24998.29 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 22494.12 25197.14 16597.64 26193.57 18493.96 28197.06 28190.05 28796.30 23396.55 26586.10 29099.47 20090.10 28899.31 18498.40 245
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 17595.63 18997.36 15498.19 18895.55 9795.44 20198.82 11792.29 25995.70 26296.55 26592.63 20698.69 32491.75 24899.33 18097.85 294
HPM-MVS++copyleft96.99 12396.38 15998.81 2998.64 13597.59 2495.97 17498.20 20895.51 15895.06 27496.53 26794.10 17299.70 11594.29 18999.15 20499.13 151
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36498.10 35990.75 27089.32 37096.98 322
HyFIR lowres test93.72 26892.65 28496.91 17898.93 10691.81 22491.23 34198.52 16882.69 34896.46 22496.52 26980.38 32099.90 1490.36 28598.79 24899.03 172
BH-RMVSNet94.56 24294.44 24294.91 27197.57 26487.44 29993.78 28896.26 29993.69 22096.41 22696.50 27092.10 22099.00 29585.96 33597.71 30298.31 258
MSP-MVS97.45 10096.92 13099.03 899.26 5397.70 1997.66 8198.89 8295.65 15198.51 6696.46 27192.15 21799.81 3895.14 15198.58 26899.58 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
原ACMM196.58 19698.16 19592.12 21598.15 21985.90 32793.49 32096.43 27292.47 21399.38 23287.66 32298.62 26498.23 267
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
OpenMVS_ROBcopyleft91.80 1493.64 27393.05 27195.42 25397.31 28991.21 23195.08 22896.68 29681.56 35296.88 20296.41 27390.44 24599.25 26485.39 34297.67 30695.80 349
CL-MVSNet_self_test95.04 21794.79 22295.82 23497.51 26989.79 25191.14 34396.82 28993.05 24196.72 20996.40 27590.82 24099.16 27691.95 24098.66 26098.50 239
F-COLMAP95.30 20794.38 24398.05 9698.64 13596.04 7695.61 19798.66 15289.00 29793.22 32896.40 27592.90 19899.35 24087.45 32797.53 31298.77 214
NCCC96.52 15895.99 17698.10 8997.81 23195.68 9195.00 23598.20 20895.39 16395.40 26996.36 27793.81 17999.45 20793.55 21798.42 27499.17 142
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26292.27 32392.88 34284.39 34595.29 27096.35 27885.66 29396.74 37184.53 34997.56 31097.05 320
cl2293.25 28292.84 27894.46 29394.30 35886.00 31991.09 34596.64 29790.74 27995.79 25696.31 27978.24 32898.77 31694.15 19598.34 27698.62 228
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27891.91 34796.26 28077.19 33798.86 31089.38 29989.85 36996.56 340
test_prior395.91 18295.39 19597.46 14597.79 24194.26 15893.33 30298.42 18094.21 20494.02 30296.25 28193.64 18399.34 24291.90 24198.96 22798.79 209
test_prior293.33 30294.21 20494.02 30296.25 28193.64 18391.90 24198.96 227
testgi96.07 17596.50 15694.80 27999.26 5387.69 29495.96 17598.58 16495.08 17598.02 12796.25 28197.92 1697.60 36488.68 30998.74 25399.11 159
DP-MVS Recon95.55 19495.13 20196.80 18498.51 15493.99 16794.60 25198.69 14590.20 28595.78 25896.21 28492.73 20298.98 29990.58 27898.86 24197.42 313
hse-mvs295.77 18795.09 20397.79 11297.84 22795.51 10095.66 19195.43 31996.58 10297.21 17396.16 28584.14 30299.54 18095.89 10196.92 32498.32 256
MVSFormer96.14 17396.36 16095.49 24997.68 25687.81 29198.67 1599.02 5496.50 10694.48 29196.15 28686.90 28699.92 598.73 799.13 20898.74 216
jason94.39 24994.04 25395.41 25598.29 17587.85 29092.74 31496.75 29285.38 33595.29 27096.15 28688.21 27599.65 14394.24 19199.34 17398.74 216
jason: jason.
test_yl94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
DCV-MVSNet94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
AUN-MVS93.95 26592.69 28397.74 11697.80 23595.38 10895.57 19895.46 31891.26 27592.64 33996.10 29174.67 34799.55 17793.72 21396.97 32398.30 260
MCST-MVS96.24 16895.80 18397.56 12998.75 12294.13 16294.66 24998.17 21490.17 28696.21 23896.10 29195.14 13999.43 21294.13 19698.85 24399.13 151
TEST997.84 22795.23 11893.62 29198.39 18586.81 31993.78 30795.99 29394.68 15499.52 186
train_agg95.46 20094.66 22597.88 10797.84 22795.23 11893.62 29198.39 18587.04 31793.78 30795.99 29394.58 15999.52 18691.76 24798.90 23598.89 196
MSDG95.33 20595.13 20195.94 23097.40 27991.85 22291.02 34698.37 18895.30 16696.31 23295.99 29394.51 16298.38 34889.59 29597.65 30897.60 306
agg_prior195.39 20394.60 23197.75 11597.80 23594.96 12993.39 29998.36 18987.20 31593.49 32095.97 29694.65 15699.53 18291.69 24998.86 24198.77 214
test_897.81 23195.07 12793.54 29498.38 18787.04 31793.71 31195.96 29794.58 15999.52 186
CSCG97.40 10497.30 10397.69 12298.95 10394.83 13297.28 10598.99 6596.35 11498.13 11295.95 29895.99 10399.66 14194.36 18899.73 5498.59 231
TAPA-MVS93.32 1294.93 22194.23 24697.04 17198.18 19194.51 14595.22 22198.73 13281.22 35596.25 23695.95 29893.80 18098.98 29989.89 29198.87 23997.62 304
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640094.77 22893.87 25997.47 14298.12 20293.73 17794.56 25398.70 14285.45 33394.70 28495.93 30091.77 23099.63 14886.45 33399.14 20599.05 170
baseline193.14 28492.64 28594.62 28597.34 28587.20 30496.67 14093.02 34094.71 18896.51 22295.83 30181.64 31198.60 33490.00 29088.06 37198.07 277
sss94.22 25393.72 26195.74 23797.71 25489.95 25093.84 28496.98 28388.38 30593.75 31095.74 30287.94 27698.89 30691.02 26198.10 28698.37 249
CNLPA95.04 21794.47 23996.75 18797.81 23195.25 11794.12 27497.89 24094.41 19794.57 28695.69 30390.30 24998.35 35186.72 33298.76 25196.64 337
PCF-MVS89.43 1892.12 30090.64 31496.57 19897.80 23593.48 18789.88 35998.45 17474.46 37296.04 24695.68 30490.71 24299.31 24973.73 37199.01 22596.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 23494.75 22394.52 29197.95 21887.53 29694.07 27597.01 28293.99 21297.10 18195.65 30592.65 20598.95 30487.60 32396.74 33197.09 318
CANet_DTU94.65 23894.21 24895.96 22695.90 33389.68 25293.92 28297.83 24693.19 23490.12 35895.64 30688.52 27099.57 17293.27 22399.47 13298.62 228
PatchMatch-RL94.61 24093.81 26097.02 17398.19 18895.72 8793.66 29097.23 27288.17 30794.94 27995.62 30791.43 23298.57 33587.36 32897.68 30596.76 335
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 32973.84 37489.26 36295.61 30873.64 35298.30 35384.13 35086.20 37395.57 354
Effi-MVS+-dtu96.81 13996.09 17198.99 1396.90 30798.69 296.42 14698.09 22695.86 14295.15 27395.54 30994.26 16899.81 3894.06 19898.51 27298.47 241
AdaColmapbinary95.11 21494.62 23096.58 19697.33 28794.45 14894.92 23898.08 22893.15 23993.98 30595.53 31094.34 16699.10 28585.69 33898.61 26596.20 345
thisisatest053092.71 29091.76 29795.56 24598.42 16788.23 27896.03 16987.35 37094.04 21196.56 21995.47 31164.03 37499.77 5894.78 16999.11 21298.68 224
WTY-MVS93.55 27593.00 27495.19 26097.81 23187.86 28893.89 28396.00 30489.02 29694.07 30095.44 31286.27 28999.33 24587.69 32196.82 32898.39 247
PLCcopyleft91.02 1694.05 26292.90 27597.51 13498.00 21395.12 12694.25 26398.25 20186.17 32391.48 34995.25 31391.01 23799.19 27085.02 34696.69 33298.22 268
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30398.03 28995.92 346
NP-MVS98.14 19893.72 17895.08 315
HQP-MVS95.17 21394.58 23496.92 17697.85 22392.47 20594.26 26098.43 17793.18 23592.86 33395.08 31590.33 24699.23 26790.51 28198.74 25399.05 170
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2240.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
lupinMVS93.77 26693.28 26795.24 25897.68 25687.81 29192.12 32596.05 30284.52 34294.48 29195.06 31786.90 28699.63 14893.62 21699.13 20898.27 264
1112_ss94.12 25893.42 26596.23 21598.59 14590.85 23694.24 26498.85 9785.49 33092.97 33194.94 31986.01 29199.64 14691.78 24697.92 29298.20 270
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
Fast-Effi-MVS+-dtu96.44 16296.12 16997.39 15397.18 29694.39 14995.46 20098.73 13296.03 13194.72 28294.92 32196.28 10099.69 12393.81 20997.98 29098.09 274
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22681.74 37694.90 32281.36 31499.11 28388.28 31498.87 23998.21 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 27092.77 28296.42 20797.91 21992.54 20391.17 34297.47 26884.99 33993.08 33094.74 32389.90 25499.00 29587.54 32598.09 28797.72 300
Effi-MVS+96.19 17196.01 17496.71 18997.43 27792.19 21496.12 16499.10 3395.45 16093.33 32794.71 32497.23 4399.56 17393.21 22597.54 31198.37 249
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30191.83 26694.05 30194.57 32576.01 34398.97 30392.46 23597.34 31998.36 254
miper_enhance_ethall93.14 28492.78 28194.20 30093.65 36685.29 32789.97 35597.85 24285.05 33796.15 24394.56 32685.74 29299.14 27893.74 21198.34 27698.17 273
xiu_mvs_v1_base_debu95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
PVSNet_Blended93.96 26393.65 26294.91 27197.79 24187.40 30091.43 33498.68 14784.50 34394.51 28994.48 33093.04 19499.30 25289.77 29398.61 26598.02 287
PAPM_NR94.61 24094.17 25095.96 22698.36 17191.23 23095.93 17997.95 23692.98 24493.42 32594.43 33190.53 24398.38 34887.60 32396.29 33998.27 264
API-MVS95.09 21695.01 20895.31 25696.61 31194.02 16596.83 12797.18 27595.60 15495.79 25694.33 33294.54 16198.37 35085.70 33798.52 27093.52 364
mvs-test196.20 17095.50 19498.32 6796.90 30798.16 595.07 22998.09 22695.86 14293.63 31494.32 33394.26 16899.71 10694.06 19897.27 32297.07 319
alignmvs96.01 17995.52 19397.50 13797.77 24694.71 13796.07 16696.84 28797.48 7196.78 20894.28 33485.50 29499.40 22496.22 8198.73 25698.40 245
CLD-MVS95.47 19995.07 20496.69 19198.27 17992.53 20491.36 33598.67 15091.22 27695.78 25894.12 33595.65 12198.98 29990.81 26799.72 5898.57 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32489.96 28894.95 27893.87 33690.24 25198.61 33281.18 36094.88 35395.45 355
canonicalmvs97.23 11697.21 11297.30 15797.65 26094.39 14997.84 7099.05 4597.42 7396.68 21193.85 33797.63 2699.33 24596.29 8098.47 27398.18 272
xiu_mvs_v2_base94.22 25394.63 22992.99 32497.32 28884.84 33592.12 32597.84 24491.96 26394.17 29693.43 33896.07 10299.71 10691.27 25597.48 31494.42 360
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 27981.44 35487.44 36993.15 33973.99 34899.47 20088.69 30899.07 21896.52 341
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
thres600view792.03 30191.43 29993.82 30498.19 18884.61 33796.27 15490.39 36196.81 9396.37 22893.11 34073.44 35699.49 19480.32 36197.95 29197.36 314
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18593.71 31193.11 34075.31 34596.81 36885.81 33696.81 32991.77 370
thres100view90091.76 30591.26 30493.26 31598.21 18684.50 33896.39 14790.39 36196.87 9196.33 22993.08 34473.44 35699.42 21378.85 36597.74 29995.85 347
131492.38 29492.30 28992.64 33095.42 34785.15 33095.86 18196.97 28485.40 33490.62 35293.06 34591.12 23697.80 36286.74 33195.49 35094.97 358
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31579.52 36183.82 37393.05 34680.57 31998.41 34562.29 37792.79 36295.71 350
Fast-Effi-MVS+95.49 19695.07 20496.75 18797.67 25992.82 19994.22 26698.60 16091.61 26893.42 32592.90 34796.73 7599.70 11592.60 23197.89 29597.74 299
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25096.41 31689.15 26391.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21094.16 19496.61 33497.82 296
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29364.72 37590.62 35292.77 34992.54 21098.39 34779.30 36395.56 34992.12 368
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31189.33 29494.21 29592.74 35089.60 25898.24 35481.68 35894.66 35594.66 359
PAPR92.22 29791.27 30395.07 26595.73 34088.81 26891.97 32897.87 24185.80 32890.91 35192.73 35191.16 23598.33 35279.48 36295.76 34798.08 275
MAR-MVS94.21 25593.03 27397.76 11496.94 30597.44 3596.97 12397.15 27687.89 31192.00 34692.73 35192.14 21899.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36199.33 24586.01 33494.60 35797.72 300
PS-MVSNAJ94.10 25994.47 23993.00 32397.35 28184.88 33491.86 32997.84 24491.96 26394.17 29692.50 35495.82 11099.71 10691.27 25597.48 31494.40 361
PMMVS92.39 29391.08 30596.30 21493.12 37092.81 20090.58 35095.96 30679.17 36391.85 34892.27 35590.29 25098.66 32989.85 29296.68 33397.43 312
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26678.04 36587.17 36694.60 32684.65 34192.34 34392.20 35687.37 28498.47 34285.17 34597.69 30497.96 289
tfpn200view991.55 30791.00 30693.21 31898.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29997.36 314
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20187.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19092.63 34091.81 36076.30 34197.02 36683.83 35396.90 32691.48 371
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16690.59 27798.67 25897.50 311
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30314.32 37864.27 37991.69 36273.45 35588.05 37776.06 37066.94 37793.54 363
EIA-MVS96.04 17795.77 18596.85 18197.80 23592.98 19696.12 16499.16 2294.65 18993.77 30991.69 36295.68 11999.67 13594.18 19398.85 24397.91 292
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 15979.32 36292.16 34591.44 36489.22 26798.12 35890.80 26897.47 31696.82 332
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16487.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 31390.42 31792.77 32897.47 27583.98 34494.01 27791.18 35695.12 17495.44 26791.21 36673.93 34999.31 24977.76 36897.63 30995.01 357
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26194.71 28391.14 36773.92 35094.48 37483.75 35592.94 36197.16 317
ETV-MVS96.13 17495.90 18196.82 18397.76 24793.89 16995.40 20698.95 7595.87 14195.58 26591.00 36896.36 9799.72 9093.36 21898.83 24596.85 329
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26189.97 35990.77 36973.92 35098.57 33591.88 24397.36 31796.92 324
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24397.36 31796.92 324
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26496.92 32496.64 337
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34670.63 37959.23 37884.94 37475.62 374
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30896.63 37273.44 37266.86 37893.40 365
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
X-MVStestdata92.86 28790.83 31198.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23036.50 37796.49 8899.72 9095.66 11499.37 16299.45 73
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
test_post10.87 38076.83 33899.07 288
test_post194.98 23610.37 38176.21 34299.04 29189.47 297
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.59 1598.20 499.03 799.25 1498.96 1898.87 42
MSC_two_6792asdad98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
No_MVS98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
eth-test20.00 387
eth-test0.00 387
IU-MVS99.22 6295.40 10698.14 22085.77 32998.36 8395.23 14399.51 11899.49 57
save fliter98.48 16094.71 13794.53 25498.41 18295.02 179
test_0728_SECOND98.25 7699.23 5995.49 10496.74 13398.89 8299.75 7095.48 12699.52 11399.53 45
GSMVS98.06 281
test_part299.03 9996.07 7598.08 119
sam_mvs177.80 33098.06 281
sam_mvs77.38 334
MTGPAbinary98.73 132
MTMP96.55 14174.60 380
test9_res91.29 25498.89 23899.00 175
agg_prior290.34 28698.90 23599.10 163
agg_prior97.80 23594.96 12998.36 18993.49 32099.53 182
test_prior495.38 10893.61 293
test_prior97.46 14597.79 24194.26 15898.42 18099.34 24298.79 209
旧先验293.35 30177.95 36895.77 26098.67 32890.74 273
新几何293.43 296
无先验93.20 30597.91 23880.78 35699.40 22487.71 31997.94 290
原ACMM292.82 310
testdata299.46 20387.84 317
segment_acmp95.34 132
testdata192.77 31193.78 217
test1297.46 14597.61 26394.07 16397.78 24893.57 31893.31 18999.42 21398.78 24998.89 196
plane_prior798.70 13094.67 141
plane_prior698.38 16994.37 15191.91 228
plane_prior598.75 12899.46 20392.59 23399.20 19899.28 119
plane_prior394.51 14595.29 16796.16 241
plane_prior296.50 14396.36 112
plane_prior198.49 158
plane_prior94.29 15395.42 20394.31 20198.93 233
n20.00 388
nn0.00 388
door-mid98.17 214
test1198.08 228
door97.81 247
HQP5-MVS92.47 205
HQP-NCC97.85 22394.26 26093.18 23592.86 333
ACMP_Plane97.85 22394.26 26093.18 23592.86 333
BP-MVS90.51 281
HQP4-MVS92.87 33299.23 26799.06 168
HQP3-MVS98.43 17798.74 253
HQP2-MVS90.33 246
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32785.50 34197.82 296
ACMMP++_ref99.52 113
ACMMP++99.55 102
Test By Simon94.51 162