This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n99.68 3299.79 1899.36 20899.94 1698.18 28299.52 83100.00 199.86 29100.00 199.88 3698.99 8899.96 4299.97 499.96 5799.95 6
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6299.70 34100.00 199.73 58100.00 199.89 3199.79 999.88 17399.98 1100.00 199.98 1
test_fmvs399.83 1299.93 299.53 15899.96 598.62 25699.67 48100.00 199.95 5100.00 199.95 1399.85 499.99 699.98 199.99 1399.98 1
test_f99.75 1899.88 699.37 20499.96 598.21 27999.51 86100.00 199.94 9100.00 199.93 1799.58 2599.94 6599.97 499.99 1399.97 3
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1199.99 1100.00 199.98 1099.78 10100.00 199.92 10100.00 199.87 17
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 58100.00 199.90 14100.00 199.97 1199.61 2299.97 2399.75 24100.00 199.84 22
test_vis1_n_192099.72 2299.88 699.27 22999.93 2397.84 30399.34 118100.00 199.99 199.99 799.82 6299.87 399.99 699.97 499.99 1399.97 3
test_fmvs1_n99.68 3299.81 1599.28 22699.95 1397.93 30199.49 91100.00 199.82 4299.99 799.89 3199.21 6199.98 1199.97 499.98 3199.93 10
test_fmvs299.72 2299.85 1299.34 21199.91 2798.08 29299.48 92100.00 199.90 1499.99 799.91 2499.50 3299.98 1199.98 199.99 1399.96 5
mvsany_test399.85 899.88 699.75 6099.95 1399.37 16399.53 8299.98 999.77 5699.99 799.95 1399.85 499.94 6599.95 899.98 3199.94 8
PS-MVSNAJss99.84 1099.82 1499.89 899.96 599.77 5099.68 4499.85 4099.95 599.98 1199.92 2199.28 5299.98 1199.75 24100.00 199.94 8
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3499.86 3699.89 2099.98 1199.90 2799.94 199.98 1199.75 24100.00 199.90 12
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 2999.88 3199.92 1299.98 1199.93 1799.94 199.98 1199.77 23100.00 199.92 11
test_djsdf99.84 1099.81 1599.91 299.94 1699.84 2499.77 1499.80 6499.73 5899.97 1499.92 2199.77 1199.98 1199.43 57100.00 199.90 12
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2799.90 799.96 199.92 1999.90 1499.97 1499.87 4099.81 899.95 5299.54 4499.99 1399.80 32
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs199.48 7399.65 3698.97 26799.54 19997.16 32399.11 19199.98 999.78 5299.96 1699.81 6798.72 12399.97 2399.95 899.97 4399.79 38
dcpmvs_299.61 5499.64 4099.53 15899.79 8398.82 23799.58 7499.97 1199.95 599.96 1699.76 9998.44 16499.99 699.34 7299.96 5799.78 41
CHOSEN 1792x268899.39 10099.30 10899.65 10799.88 3999.25 18898.78 24899.88 3198.66 22099.96 1699.79 8197.45 24099.93 8299.34 7299.99 1399.78 41
wuyk23d97.58 30099.13 13692.93 35899.69 14099.49 13199.52 8399.77 7897.97 28299.96 1699.79 8199.84 699.94 6595.85 32999.82 16479.36 374
test_vis1_rt99.45 8399.46 7699.41 19199.71 12898.63 25598.99 21899.96 1599.03 18099.95 2099.12 31698.75 11899.84 23699.82 2099.82 16499.77 45
UniMVSNet_ETH3D99.85 899.83 1399.90 599.89 3499.91 499.89 499.71 10999.93 1099.95 2099.89 3199.71 1499.96 4299.51 4999.97 4399.84 22
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2299.85 3499.94 2299.95 1399.73 1399.90 14299.65 3099.97 4399.69 68
v7n99.82 1399.80 1799.88 1299.96 599.84 2499.82 899.82 5399.84 3799.94 2299.91 2499.13 7299.96 4299.83 1899.99 1399.83 26
Gipumacopyleft99.57 5799.59 5199.49 16599.98 399.71 7699.72 2999.84 4699.81 4499.94 2299.78 8898.91 9899.71 31298.41 16499.95 6899.05 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.68 3299.69 2999.65 10799.80 7399.40 15699.66 5299.76 8399.64 8699.93 2599.85 4998.66 13199.84 23699.88 1599.99 1399.71 61
OurMVSNet-221017-099.75 1899.71 2499.84 2399.96 599.83 2999.83 699.85 4099.80 4799.93 2599.93 1798.54 14899.93 8299.59 3599.98 3199.76 51
MIMVSNet199.66 4099.62 4299.80 3499.94 1699.87 1599.69 4199.77 7899.78 5299.93 2599.89 3197.94 21299.92 10299.65 3099.98 3199.62 121
DeepC-MVS98.90 499.62 5299.61 4699.67 9599.72 12599.44 14499.24 15199.71 10999.27 14199.93 2599.90 2799.70 1699.93 8298.99 12099.99 1399.64 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 8599.45 7899.40 19399.37 25898.64 25497.90 32799.59 17799.27 14199.92 2999.82 6299.74 1299.93 8299.55 4399.87 13099.63 110
anonymousdsp99.80 1499.77 2099.90 599.96 599.88 1299.73 2699.85 4099.70 6999.92 2999.93 1799.45 3399.97 2399.36 69100.00 199.85 21
v1099.69 2999.69 2999.66 10299.81 6899.39 15899.66 5299.75 8899.60 9899.92 2999.87 4098.75 11899.86 20599.90 1199.99 1399.73 56
bld_raw_dy_0_6499.70 2699.65 3699.85 2099.95 1399.77 5099.66 5299.71 10999.95 599.91 3299.77 9598.35 176100.00 199.54 4499.99 1399.79 38
tt080599.63 4699.57 5899.81 3099.87 4399.88 1299.58 7498.70 32999.72 6299.91 3299.60 19999.43 3499.81 27599.81 2199.53 27299.73 56
RRT_MVS99.67 3899.59 5199.91 299.94 1699.88 1299.78 1199.27 28799.87 2699.91 3299.87 4098.04 20499.96 4299.68 2899.99 1399.90 12
LCM-MVSNet-Re99.28 12499.15 13399.67 9599.33 27699.76 5899.34 11899.97 1198.93 19199.91 3299.79 8198.68 12699.93 8296.80 28699.56 26199.30 247
TransMVSNet (Re)99.78 1699.77 2099.81 3099.91 2799.85 1999.75 2199.86 3699.70 6999.91 3299.89 3199.60 2499.87 18799.59 3599.74 20399.71 61
mvsmamba99.74 2199.70 2599.85 2099.93 2399.83 2999.76 1899.81 6299.96 399.91 3299.81 6798.60 13999.94 6599.58 3899.98 3199.77 45
tfpnnormal99.43 8799.38 8999.60 13699.87 4399.75 6299.59 7299.78 7599.71 6499.90 3899.69 13898.85 10499.90 14297.25 26599.78 18899.15 277
Anonymous2023121199.62 5299.57 5899.76 5199.61 16599.60 11399.81 999.73 9799.82 4299.90 3899.90 2797.97 21199.86 20599.42 6299.96 5799.80 32
v124099.56 6099.58 5599.51 16299.80 7399.00 21999.00 21399.65 14199.15 16799.90 3899.75 10499.09 7599.88 17399.90 1199.96 5799.67 80
EU-MVSNet99.39 10099.62 4298.72 29699.88 3996.44 33799.56 7999.85 4099.90 1499.90 3899.85 4998.09 20099.83 25199.58 3899.95 6899.90 12
IterMVS-SCA-FT99.00 19499.16 13098.51 30399.75 11395.90 34598.07 30899.84 4699.84 3799.89 4299.73 11196.01 28599.99 699.33 75100.00 199.63 110
v14419299.55 6399.54 6499.58 14199.78 9099.20 20099.11 19199.62 15299.18 15699.89 4299.72 11898.66 13199.87 18799.88 1599.97 4399.66 89
pm-mvs199.79 1599.79 1899.78 4199.91 2799.83 2999.76 1899.87 3399.73 5899.89 4299.87 4099.63 1999.87 18799.54 4499.92 9199.63 110
lessismore_v099.64 11499.86 4699.38 16090.66 37899.89 4299.83 5594.56 29899.97 2399.56 4199.92 9199.57 152
SixPastTwentyTwo99.42 9099.30 10899.76 5199.92 2699.67 9199.70 3499.14 30999.65 8499.89 4299.90 2796.20 28199.94 6599.42 6299.92 9199.67 80
HyFIR lowres test98.91 20798.64 22199.73 7499.85 4999.47 13398.07 30899.83 4898.64 22299.89 4299.60 19992.57 318100.00 199.33 7599.97 4399.72 58
testf199.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
APD_test299.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
test111197.74 29298.16 26896.49 35199.60 16789.86 38099.71 3391.21 37799.89 2099.88 4899.87 4093.73 30799.90 14299.56 4199.99 1399.70 64
KD-MVS_self_test99.63 4699.59 5199.76 5199.84 5099.90 799.37 11399.79 7099.83 4099.88 4899.85 4998.42 16799.90 14299.60 3499.73 20899.49 194
new-patchmatchnet99.35 11099.57 5898.71 29899.82 6196.62 33598.55 26799.75 8899.50 10699.88 4899.87 4099.31 4899.88 17399.43 57100.00 199.62 121
v192192099.56 6099.57 5899.55 15399.75 11399.11 20899.05 20399.61 15999.15 16799.88 4899.71 12599.08 7899.87 18799.90 1199.97 4399.66 89
NR-MVSNet99.40 9699.31 10399.68 9299.43 24599.55 12599.73 2699.50 22899.46 11599.88 4899.36 27397.54 23799.87 18798.97 12499.87 13099.63 110
K. test v398.87 21598.60 22499.69 9099.93 2399.46 13799.74 2394.97 37099.78 5299.88 4899.88 3693.66 30899.97 2399.61 3399.95 6899.64 105
v119299.57 5799.57 5899.57 14799.77 9899.22 19599.04 20599.60 17199.18 15699.87 5699.72 11899.08 7899.85 22299.89 1499.98 3199.66 89
ECVR-MVScopyleft97.73 29398.04 27396.78 34599.59 17190.81 37699.72 2990.43 37999.89 2099.86 5799.86 4793.60 30999.89 15999.46 5499.99 1399.65 97
V4299.56 6099.54 6499.63 12199.79 8399.46 13799.39 10799.59 17799.24 14799.86 5799.70 13298.55 14699.82 26099.79 2299.95 6899.60 135
mvs_anonymous99.28 12499.39 8798.94 27099.19 30497.81 30599.02 20999.55 20099.78 5299.85 5999.80 7198.24 18799.86 20599.57 4099.50 27899.15 277
WR-MVS_H99.61 5499.53 6899.87 1599.80 7399.83 2999.67 4899.75 8899.58 10199.85 5999.69 13898.18 19699.94 6599.28 8699.95 6899.83 26
IterMVS98.97 19899.16 13098.42 30799.74 11995.64 34898.06 31099.83 4899.83 4099.85 5999.74 10796.10 28499.99 699.27 87100.00 199.63 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114499.54 6599.53 6899.59 13899.79 8399.28 18199.10 19399.61 15999.20 15499.84 6299.73 11198.67 12999.84 23699.86 1799.98 3199.64 105
PS-CasMVS99.66 4099.58 5599.89 899.80 7399.85 1999.66 5299.73 9799.62 8999.84 6299.71 12598.62 13599.96 4299.30 8199.96 5799.86 19
PEN-MVS99.66 4099.59 5199.89 899.83 5499.87 1599.66 5299.73 9799.70 6999.84 6299.73 11198.56 14599.96 4299.29 8499.94 7999.83 26
DTE-MVSNet99.68 3299.61 4699.88 1299.80 7399.87 1599.67 4899.71 10999.72 6299.84 6299.78 8898.67 12999.97 2399.30 8199.95 6899.80 32
IterMVS-LS99.41 9499.47 7299.25 23599.81 6898.09 28998.85 23399.76 8399.62 8999.83 6699.64 16598.54 14899.97 2399.15 10499.99 1399.68 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052199.44 8599.42 8599.49 16599.89 3498.96 22599.62 6199.76 8399.85 3499.82 6799.88 3696.39 27699.97 2399.59 3599.98 3199.55 157
SED-MVS99.40 9699.28 11599.77 4499.69 14099.82 3599.20 16199.54 20699.13 16999.82 6799.63 17598.91 9899.92 10297.85 21399.70 21999.58 147
test_241102_ONE99.69 14099.82 3599.54 20699.12 17299.82 6799.49 24098.91 9899.52 362
FC-MVSNet-test99.70 2699.65 3699.86 1899.88 3999.86 1899.72 2999.78 7599.90 1499.82 6799.83 5598.45 16399.87 18799.51 4999.97 4399.86 19
test20.0399.55 6399.54 6499.58 14199.79 8399.37 16399.02 20999.89 2799.60 9899.82 6799.62 18298.81 10699.89 15999.43 5799.86 13899.47 202
FMVSNet199.66 4099.63 4199.73 7499.78 9099.77 5099.68 4499.70 11599.67 7899.82 6799.83 5598.98 9099.90 14299.24 8899.97 4399.53 171
XXY-MVS99.71 2599.67 3399.81 3099.89 3499.72 7499.59 7299.82 5399.39 12899.82 6799.84 5499.38 4099.91 12499.38 6499.93 8799.80 32
v14899.40 9699.41 8699.39 19799.76 10298.94 22699.09 19799.59 17799.17 16199.81 7499.61 19198.41 16899.69 32099.32 7799.94 7999.53 171
v2v48299.50 6999.47 7299.58 14199.78 9099.25 18899.14 17999.58 18799.25 14599.81 7499.62 18298.24 18799.84 23699.83 1899.97 4399.64 105
PM-MVS99.36 10899.29 11399.58 14199.83 5499.66 9398.95 22499.86 3698.85 20199.81 7499.73 11198.40 17299.92 10298.36 16799.83 15599.17 273
EI-MVSNet-UG-set99.48 7399.50 7099.42 18499.57 18698.65 25399.24 15199.46 23999.68 7499.80 7799.66 15898.99 8899.89 15999.19 9599.90 10199.72 58
VPA-MVSNet99.66 4099.62 4299.79 3899.68 14899.75 6299.62 6199.69 12199.85 3499.80 7799.81 6798.81 10699.91 12499.47 5399.88 11999.70 64
CP-MVSNet99.54 6599.43 8399.87 1599.76 10299.82 3599.57 7799.61 15999.54 10299.80 7799.64 16597.79 22399.95 5299.21 9199.94 7999.84 22
EG-PatchMatch MVS99.57 5799.56 6399.62 13099.77 9899.33 17399.26 14499.76 8399.32 13699.80 7799.78 8899.29 5099.87 18799.15 10499.91 10099.66 89
ACMH98.42 699.59 5699.54 6499.72 8099.86 4699.62 10599.56 7999.79 7098.77 21299.80 7799.85 4999.64 1899.85 22298.70 15099.89 11099.70 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set99.47 8099.49 7199.42 18499.57 18698.66 25099.24 15199.46 23999.67 7899.79 8299.65 16398.97 9299.89 15999.15 10499.89 11099.71 61
casdiffmvs_mvgpermissive99.68 3299.68 3299.69 9099.81 6899.59 11599.29 13799.90 2599.71 6499.79 8299.73 11199.54 2999.84 23699.36 6999.96 5799.65 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.40 9699.38 8999.44 17899.90 3298.66 25098.94 22699.91 2297.97 28299.79 8299.73 11199.05 8399.97 2399.15 10499.99 1399.68 74
N_pmnet98.73 22998.53 23699.35 21099.72 12598.67 24798.34 28494.65 37198.35 25699.79 8299.68 14998.03 20599.93 8298.28 17399.92 9199.44 212
ppachtmachnet_test98.89 21299.12 14098.20 31799.66 15495.24 35297.63 33799.68 12499.08 17499.78 8699.62 18298.65 13399.88 17398.02 19399.96 5799.48 198
nrg03099.70 2699.66 3499.82 2799.76 10299.84 2499.61 6699.70 11599.93 1099.78 8699.68 14999.10 7399.78 28799.45 5599.96 5799.83 26
PMMVS299.48 7399.45 7899.57 14799.76 10298.99 22098.09 30599.90 2598.95 18799.78 8699.58 20699.57 2699.93 8299.48 5299.95 6899.79 38
TAMVS99.49 7199.45 7899.63 12199.48 22899.42 15199.45 9899.57 18999.66 8299.78 8699.83 5597.85 21999.86 20599.44 5699.96 5799.61 131
TDRefinement99.72 2299.70 2599.77 4499.90 3299.85 1999.86 599.92 1999.69 7299.78 8699.92 2199.37 4299.88 17398.93 13299.95 6899.60 135
Vis-MVSNetpermissive99.75 1899.74 2399.79 3899.88 3999.66 9399.69 4199.92 1999.67 7899.77 9199.75 10499.61 2299.98 1199.35 7199.98 3199.72 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+98.40 899.50 6999.43 8399.71 8599.86 4699.76 5899.32 12399.77 7899.53 10499.77 9199.76 9999.26 5699.78 28797.77 21899.88 11999.60 135
iter_conf_final98.75 22598.54 23499.40 19399.33 27698.75 24299.26 14499.59 17799.80 4799.76 9399.58 20690.17 34799.92 10299.37 6799.97 4399.54 165
DVP-MVS++99.38 10299.25 12199.77 4499.03 32899.77 5099.74 2399.61 15999.18 15699.76 9399.61 19199.00 8699.92 10297.72 22499.60 25499.62 121
test_241102_TWO99.54 20699.13 16999.76 9399.63 17598.32 18299.92 10297.85 21399.69 22399.75 54
Anonymous2024052999.42 9099.34 9799.65 10799.53 20599.60 11399.63 6099.39 26099.47 11299.76 9399.78 8898.13 19899.86 20598.70 15099.68 22899.49 194
DPE-MVScopyleft99.14 16698.92 19599.82 2799.57 18699.77 5098.74 25199.60 17198.55 23199.76 9399.69 13898.23 19199.92 10296.39 30899.75 19699.76 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0598.46 25698.23 25999.15 24799.04 32797.99 29499.10 19399.61 15999.79 5099.76 9399.58 20687.88 35799.92 10299.31 8099.97 4399.53 171
casdiffmvspermissive99.63 4699.61 4699.67 9599.79 8399.59 11599.13 18599.85 4099.79 5099.76 9399.72 11899.33 4799.82 26099.21 9199.94 7999.59 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE99.69 2999.66 3499.78 4199.76 10299.76 5899.60 7199.82 5399.46 11599.75 10099.56 21899.63 1999.95 5299.43 5799.88 11999.62 121
pmmvs-eth3d99.48 7399.47 7299.51 16299.77 9899.41 15598.81 24199.66 13299.42 12799.75 10099.66 15899.20 6299.76 29798.98 12299.99 1399.36 233
SD-MVS99.01 19299.30 10898.15 31899.50 21899.40 15698.94 22699.61 15999.22 15399.75 10099.82 6299.54 2995.51 37897.48 24799.87 13099.54 165
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.48 7399.36 9599.85 2099.55 19899.81 3899.50 8799.69 12198.99 18299.75 10099.71 12598.79 11199.93 8298.46 16299.85 14299.80 32
EI-MVSNet99.38 10299.44 8199.21 23999.58 17698.09 28999.26 14499.46 23999.62 8999.75 10099.67 15498.54 14899.85 22299.15 10499.92 9199.68 74
testgi99.29 12399.26 11999.37 20499.75 11398.81 23898.84 23499.89 2798.38 24999.75 10099.04 32699.36 4599.86 20599.08 11499.25 30999.45 207
MVSTER98.47 25598.22 26199.24 23799.06 32498.35 27399.08 20099.46 23999.27 14199.75 10099.66 15888.61 35599.85 22299.14 11099.92 9199.52 182
USDC98.96 20198.93 19199.05 26299.54 19997.99 29497.07 36199.80 6498.21 26899.75 10099.77 9598.43 16599.64 34797.90 20599.88 11999.51 184
Patchmatch-RL test98.60 23898.36 24999.33 21499.77 9899.07 21698.27 28999.87 3398.91 19499.74 10899.72 11890.57 34399.79 28498.55 15899.85 14299.11 286
FIs99.65 4599.58 5599.84 2399.84 5099.85 1999.66 5299.75 8899.86 2999.74 10899.79 8198.27 18599.85 22299.37 6799.93 8799.83 26
jason99.16 16299.11 14399.32 21899.75 11398.44 26598.26 29099.39 26098.70 21899.74 10899.30 28698.54 14899.97 2398.48 16199.82 16499.55 157
jason: jason.
DP-MVS99.48 7399.39 8799.74 6599.57 18699.62 10599.29 13799.61 15999.87 2699.74 10899.76 9998.69 12599.87 18798.20 18099.80 17899.75 54
test072699.69 14099.80 4299.24 15199.57 18999.16 16399.73 11299.65 16398.35 176
pmmvs599.19 15399.11 14399.42 18499.76 10298.88 23498.55 26799.73 9798.82 20599.72 11399.62 18296.56 26799.82 26099.32 7799.95 6899.56 154
Anonymous2023120699.35 11099.31 10399.47 17199.74 11999.06 21899.28 13999.74 9399.23 14999.72 11399.53 22997.63 23699.88 17399.11 11299.84 14799.48 198
CVMVSNet98.61 23698.88 20097.80 32799.58 17693.60 36299.26 14499.64 14799.66 8299.72 11399.67 15493.26 31199.93 8299.30 8199.81 17399.87 17
baseline99.63 4699.62 4299.66 10299.80 7399.62 10599.44 10199.80 6499.71 6499.72 11399.69 13899.15 6799.83 25199.32 7799.94 7999.53 171
Patchmtry98.78 22298.54 23499.49 16598.89 34199.19 20199.32 12399.67 12899.65 8499.72 11399.79 8191.87 32699.95 5298.00 19799.97 4399.33 239
test250694.73 34194.59 34395.15 35799.59 17185.90 38299.75 2174.01 38399.89 2099.71 11899.86 4779.00 38199.90 14299.52 4899.99 1399.65 97
UA-Net99.78 1699.76 2299.86 1899.72 12599.71 7699.91 399.95 1899.96 399.71 11899.91 2499.15 6799.97 2399.50 51100.00 199.90 12
TranMVSNet+NR-MVSNet99.54 6599.47 7299.76 5199.58 17699.64 9999.30 13199.63 14999.61 9299.71 11899.56 21898.76 11699.96 4299.14 11099.92 9199.68 74
tttt051797.62 29897.20 30798.90 28299.76 10297.40 31799.48 9294.36 37299.06 17899.70 12199.49 24084.55 37199.94 6598.73 14899.65 23999.36 233
UniMVSNet (Re)99.37 10599.26 11999.68 9299.51 21299.58 11998.98 22199.60 17199.43 12399.70 12199.36 27397.70 22699.88 17399.20 9499.87 13099.59 142
FMVSNet299.35 11099.28 11599.55 15399.49 22399.35 17099.45 9899.57 18999.44 11899.70 12199.74 10797.21 25199.87 18799.03 11799.94 7999.44 212
APD_test199.36 10899.28 11599.61 13399.89 3499.89 1099.32 12399.74 9399.18 15699.69 12499.75 10498.41 16899.84 23697.85 21399.70 21999.10 288
IU-MVS99.69 14099.77 5099.22 30097.50 30699.69 12497.75 22299.70 21999.77 45
VPNet99.46 8199.37 9299.71 8599.82 6199.59 11599.48 9299.70 11599.81 4499.69 12499.58 20697.66 23499.86 20599.17 10099.44 28599.67 80
PC_three_145297.56 30099.68 12799.41 25799.09 7597.09 37696.66 29499.60 25499.62 121
D2MVS99.22 14399.19 12799.29 22499.69 14098.74 24498.81 24199.41 25098.55 23199.68 12799.69 13898.13 19899.87 18798.82 13799.98 3199.24 255
xiu_mvs_v1_base_debu99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v1_base99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v1_base_debi99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
ambc99.20 24199.35 26398.53 25999.17 17199.46 23999.67 13299.80 7198.46 16299.70 31497.92 20399.70 21999.38 227
UniMVSNet_NR-MVSNet99.37 10599.25 12199.72 8099.47 23499.56 12298.97 22299.61 15999.43 12399.67 13299.28 29097.85 21999.95 5299.17 10099.81 17399.65 97
DU-MVS99.33 11899.21 12599.71 8599.43 24599.56 12298.83 23699.53 21599.38 12999.67 13299.36 27397.67 23099.95 5299.17 10099.81 17399.63 110
COLMAP_ROBcopyleft98.06 1299.45 8399.37 9299.70 8999.83 5499.70 8399.38 10999.78 7599.53 10499.67 13299.78 8899.19 6399.86 20597.32 25599.87 13099.55 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS99.21 14899.06 16099.65 10799.82 6199.62 10597.87 32899.74 9398.36 25199.66 13699.68 14999.71 1499.90 14296.84 28599.88 11999.43 218
DeepPCF-MVS98.42 699.18 15799.02 17299.67 9599.22 29799.75 6297.25 35599.47 23698.72 21799.66 13699.70 13299.29 5099.63 34898.07 19299.81 17399.62 121
Baseline_NR-MVSNet99.49 7199.37 9299.82 2799.91 2799.84 2498.83 23699.86 3699.68 7499.65 13899.88 3697.67 23099.87 18799.03 11799.86 13899.76 51
our_test_398.85 21799.09 15298.13 31999.66 15494.90 35597.72 33399.58 18799.07 17699.64 13999.62 18298.19 19499.93 8298.41 16499.95 6899.55 157
LPG-MVS_test99.22 14399.05 16499.74 6599.82 6199.63 10399.16 17599.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
LGP-MVS_train99.74 6599.82 6199.63 10399.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
ACMM98.09 1199.46 8199.38 8999.72 8099.80 7399.69 8699.13 18599.65 14198.99 18299.64 13999.72 11899.39 3699.86 20598.23 17799.81 17399.60 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FA-MVS(test-final)98.52 24898.32 25499.10 25599.48 22898.67 24799.77 1498.60 33697.35 31499.63 14399.80 7193.07 31499.84 23697.92 20399.30 30298.78 328
FOURS199.83 5499.89 1099.74 2399.71 10999.69 7299.63 143
AllTest99.21 14899.07 15899.63 12199.78 9099.64 9999.12 18999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
TestCases99.63 12199.78 9099.64 9999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
MDA-MVSNet-bldmvs99.06 17999.05 16499.07 26099.80 7397.83 30498.89 22899.72 10699.29 13799.63 14399.70 13296.47 27199.89 15998.17 18699.82 16499.50 189
TSAR-MVS + GP.99.12 17099.04 16999.38 20199.34 27199.16 20398.15 29799.29 28398.18 27199.63 14399.62 18299.18 6499.68 33098.20 18099.74 20399.30 247
XVG-OURS-SEG-HR99.16 16298.99 18399.66 10299.84 5099.64 9998.25 29199.73 9798.39 24899.63 14399.43 25599.70 1699.90 14297.34 25498.64 34299.44 212
MVSFormer99.41 9499.44 8199.31 22199.57 18698.40 26899.77 1499.80 6499.73 5899.63 14399.30 28698.02 20699.98 1199.43 5799.69 22399.55 157
lupinMVS98.96 20198.87 20199.24 23799.57 18698.40 26898.12 30199.18 30598.28 26499.63 14399.13 31298.02 20699.97 2398.22 17899.69 22399.35 236
DVP-MVScopyleft99.32 12099.17 12999.77 4499.69 14099.80 4299.14 17999.31 27899.16 16399.62 15299.61 19198.35 17699.91 12497.88 20799.72 21499.61 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 15699.62 15299.61 19198.58 14299.91 12497.72 22499.80 17899.77 45
GBi-Net99.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
test199.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
new_pmnet98.88 21398.89 19998.84 28699.70 13697.62 31198.15 29799.50 22897.98 28199.62 15299.54 22798.15 19799.94 6597.55 24299.84 14798.95 313
FMVSNet398.80 22198.63 22399.32 21899.13 31298.72 24599.10 19399.48 23399.23 14999.62 15299.64 16592.57 31899.86 20598.96 12699.90 10199.39 225
CS-MVS99.67 3899.70 2599.58 14199.53 20599.84 2499.79 1099.96 1599.90 1499.61 15899.41 25799.51 3199.95 5299.66 2999.89 11098.96 311
CDS-MVSNet99.22 14399.13 13699.50 16499.35 26399.11 20898.96 22399.54 20699.46 11599.61 15899.70 13296.31 27899.83 25199.34 7299.88 11999.55 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 18698.85 20399.55 15399.80 7399.25 18899.73 2699.15 30899.37 13099.61 15899.71 12594.73 29699.81 27597.70 22999.88 11999.58 147
cl____98.54 24698.41 24498.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.85 30499.78 28797.97 20099.89 11099.17 273
DIV-MVS_self_test98.54 24698.42 24398.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.87 30399.78 28797.97 20099.89 11099.18 271
XVG-ACMP-BASELINE99.23 13599.10 15199.63 12199.82 6199.58 11998.83 23699.72 10698.36 25199.60 16199.71 12598.92 9699.91 12497.08 27299.84 14799.40 223
miper_lstm_enhance98.65 23598.60 22498.82 29199.20 30297.33 31997.78 33199.66 13299.01 18199.59 16499.50 23694.62 29799.85 22298.12 18999.90 10199.26 252
YYNet198.95 20498.99 18398.84 28699.64 15897.14 32598.22 29399.32 27498.92 19399.59 16499.66 15897.40 24299.83 25198.27 17499.90 10199.55 157
eth_miper_zixun_eth98.68 23398.71 21698.60 30099.10 32096.84 33297.52 34599.54 20698.94 18899.58 16699.48 24396.25 28099.76 29798.01 19699.93 8799.21 262
pmmvs499.13 16899.06 16099.36 20899.57 18699.10 21398.01 31399.25 29398.78 21199.58 16699.44 25498.24 18799.76 29798.74 14799.93 8799.22 260
DeepC-MVS_fast98.47 599.23 13599.12 14099.56 15099.28 28899.22 19598.99 21899.40 25799.08 17499.58 16699.64 16598.90 10199.83 25197.44 24999.75 19699.63 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.19 15399.00 17899.73 7499.46 23899.73 7099.13 18599.52 22097.40 31199.57 16999.64 16598.93 9599.83 25197.61 23999.79 18399.63 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.34 11599.24 12399.63 12199.82 6199.37 16399.26 14499.35 26998.77 21299.57 16999.70 13299.27 5599.88 17397.71 22699.75 19699.65 97
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize99.31 12199.16 13099.74 6599.53 20599.75 6299.27 14299.61 15999.19 15599.57 16999.64 16598.76 11699.90 14297.29 25799.62 24499.56 154
WR-MVS99.11 17398.93 19199.66 10299.30 28399.42 15198.42 28199.37 26599.04 17999.57 16999.20 30896.89 26299.86 20598.66 15499.87 13099.70 64
SteuartSystems-ACMMP99.30 12299.14 13499.76 5199.87 4399.66 9399.18 16699.60 17198.55 23199.57 16999.67 15499.03 8599.94 6597.01 27499.80 17899.69 68
Skip Steuart: Steuart Systems R&D Blog.
ab-mvs99.33 11899.28 11599.47 17199.57 18699.39 15899.78 1199.43 24798.87 19999.57 16999.82 6298.06 20399.87 18798.69 15299.73 20899.15 277
CMPMVSbinary77.52 2398.50 25198.19 26699.41 19198.33 36699.56 12299.01 21199.59 17795.44 34999.57 16999.80 7195.64 28899.46 36796.47 30599.92 9199.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053097.45 30396.95 31398.94 27099.68 14897.73 30899.09 19794.19 37498.61 22699.56 17699.30 28684.30 37299.93 8298.27 17499.54 27099.16 275
Anonymous20240521198.75 22598.46 23999.63 12199.34 27199.66 9399.47 9597.65 35699.28 14099.56 17699.50 23693.15 31299.84 23698.62 15599.58 25999.40 223
VDD-MVS99.20 15099.11 14399.44 17899.43 24598.98 22199.50 8798.32 34799.80 4799.56 17699.69 13896.99 26099.85 22298.99 12099.73 20899.50 189
MDA-MVSNet_test_wron98.95 20498.99 18398.85 28499.64 15897.16 32398.23 29299.33 27298.93 19199.56 17699.66 15897.39 24499.83 25198.29 17299.88 11999.55 157
EPP-MVSNet99.17 16199.00 17899.66 10299.80 7399.43 14899.70 3499.24 29699.48 10899.56 17699.77 9594.89 29399.93 8298.72 14999.89 11099.63 110
test_part299.62 16499.67 9199.55 181
UnsupCasMVSNet_eth98.83 21898.57 23099.59 13899.68 14899.45 14298.99 21899.67 12899.48 10899.55 18199.36 27394.92 29299.86 20598.95 13096.57 36999.45 207
CL-MVSNet_self_test98.71 23198.56 23399.15 24799.22 29798.66 25097.14 35899.51 22498.09 27599.54 18399.27 29296.87 26399.74 30398.43 16398.96 32499.03 304
c3_l98.72 23098.71 21698.72 29699.12 31497.22 32297.68 33699.56 19498.90 19599.54 18399.48 24396.37 27799.73 30697.88 20799.88 11999.21 262
MSP-MVS99.04 18598.79 21299.81 3099.78 9099.73 7099.35 11799.57 18998.54 23499.54 18398.99 33396.81 26499.93 8296.97 27699.53 27299.77 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 21598.59 22699.71 8599.50 21899.62 10599.01 21199.57 18996.80 33399.54 18399.63 17598.29 18399.91 12495.24 34299.71 21799.61 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TinyColmap98.97 19898.93 19199.07 26099.46 23898.19 28097.75 33299.75 8898.79 20999.54 18399.70 13298.97 9299.62 34996.63 29799.83 15599.41 222
ACMMP_NAP99.28 12499.11 14399.79 3899.75 11399.81 3898.95 22499.53 21598.27 26599.53 18899.73 11198.75 11899.87 18797.70 22999.83 15599.68 74
MSDG99.08 17798.98 18699.37 20499.60 16799.13 20697.54 34199.74 9398.84 20499.53 18899.55 22599.10 7399.79 28497.07 27399.86 13899.18 271
SR-MVS-dyc-post99.27 12899.11 14399.73 7499.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.41 16899.91 12497.27 26099.61 25199.54 165
RE-MVS-def99.13 13699.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.57 14397.27 26099.61 25199.54 165
miper_ehance_all_eth98.59 24198.59 22698.59 30198.98 33497.07 32697.49 34699.52 22098.50 23799.52 19099.37 26996.41 27599.71 31297.86 21199.62 24499.00 310
OPM-MVS99.26 13099.13 13699.63 12199.70 13699.61 11198.58 26199.48 23398.50 23799.52 19099.63 17599.14 7099.76 29797.89 20699.77 19299.51 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft99.25 13199.08 15499.74 6599.79 8399.68 8999.50 8799.65 14198.07 27699.52 19099.69 13898.57 14399.92 10297.18 26999.79 18399.63 110
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast99.43 8799.30 10899.80 3499.83 5499.81 3899.52 8399.70 11598.35 25699.51 19599.50 23699.31 4899.88 17398.18 18499.84 14799.69 68
DROMVSNet99.69 2999.69 2999.68 9299.71 12899.91 499.76 1899.96 1599.86 2999.51 19599.39 26599.57 2699.93 8299.64 3299.86 13899.20 266
CS-MVS-test99.68 3299.70 2599.64 11499.57 18699.83 2999.78 1199.97 1199.92 1299.50 19799.38 26799.57 2699.95 5299.69 2799.90 10199.15 277
pmmvs398.08 28197.80 29098.91 27699.41 25197.69 31097.87 32899.66 13295.87 34399.50 19799.51 23390.35 34599.97 2398.55 15899.47 28299.08 295
RPSCF99.18 15799.02 17299.64 11499.83 5499.85 1999.44 10199.82 5398.33 26199.50 19799.78 8897.90 21499.65 34596.78 28799.83 15599.44 212
diffmvspermissive99.34 11599.32 10299.39 19799.67 15398.77 24198.57 26599.81 6299.61 9299.48 20099.41 25798.47 15999.86 20598.97 12499.90 10199.53 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-299.51 6899.46 7699.64 11499.70 13699.11 20899.04 20599.87 3399.71 6499.47 20199.79 8198.24 18799.98 1199.38 6499.96 5799.83 26
SR-MVS99.19 15399.00 17899.74 6599.51 21299.72 7499.18 16699.60 17198.85 20199.47 20199.58 20698.38 17399.92 10296.92 27899.54 27099.57 152
VNet99.18 15799.06 16099.56 15099.24 29599.36 16799.33 12199.31 27899.67 7899.47 20199.57 21596.48 27099.84 23699.15 10499.30 30299.47 202
ACMP97.51 1499.05 18298.84 20599.67 9599.78 9099.55 12598.88 22999.66 13297.11 32699.47 20199.60 19999.07 8099.89 15996.18 31799.85 14299.58 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline197.73 29397.33 30398.96 26899.30 28397.73 30899.40 10598.42 34399.33 13599.46 20599.21 30691.18 33299.82 26098.35 16891.26 37599.32 242
Test_1112_low_res98.95 20498.73 21499.63 12199.68 14899.15 20598.09 30599.80 6497.14 32499.46 20599.40 26196.11 28399.89 15999.01 11999.84 14799.84 22
MP-MVS-pluss99.14 16698.92 19599.80 3499.83 5499.83 2998.61 25799.63 14996.84 33199.44 20799.58 20698.81 10699.91 12497.70 22999.82 16499.67 80
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 19498.97 18799.09 25699.11 31998.19 28098.76 25099.33 27298.49 23999.44 20799.58 20698.21 19299.69 32098.20 18099.62 24499.39 225
OMC-MVS98.90 20998.72 21599.44 17899.39 25399.42 15198.58 26199.64 14797.31 31699.44 20799.62 18298.59 14099.69 32096.17 31899.79 18399.22 260
OpenMVS_ROBcopyleft97.31 1797.36 30796.84 31798.89 28399.29 28599.45 14298.87 23099.48 23386.54 37299.44 20799.74 10797.34 24699.86 20591.61 36399.28 30597.37 367
miper_enhance_ethall98.03 28397.94 28498.32 31298.27 36796.43 33896.95 36299.41 25096.37 33899.43 21198.96 34094.74 29599.69 32097.71 22699.62 24498.83 324
1112_ss99.05 18298.84 20599.67 9599.66 15499.29 17998.52 27299.82 5397.65 29899.43 21199.16 31096.42 27399.91 12499.07 11599.84 14799.80 32
SF-MVS99.10 17698.93 19199.62 13099.58 17699.51 12999.13 18599.65 14197.97 28299.42 21399.61 19198.86 10399.87 18796.45 30699.68 22899.49 194
xiu_mvs_v2_base99.02 18899.11 14398.77 29399.37 25898.09 28998.13 30099.51 22499.47 11299.42 21398.54 36299.38 4099.97 2398.83 13599.33 29998.24 352
MTAPA99.35 11099.20 12699.80 3499.81 6899.81 3899.33 12199.53 21599.27 14199.42 21399.63 17598.21 19299.95 5297.83 21799.79 18399.65 97
PGM-MVS99.20 15099.01 17599.77 4499.75 11399.71 7699.16 17599.72 10697.99 28099.42 21399.60 19998.81 10699.93 8296.91 27999.74 20399.66 89
114514_t98.49 25398.11 27099.64 11499.73 12299.58 11999.24 15199.76 8389.94 36999.42 21399.56 21897.76 22599.86 20597.74 22399.82 16499.47 202
PMVScopyleft92.94 2198.82 21998.81 20998.85 28499.84 5097.99 29499.20 16199.47 23699.71 6499.42 21399.82 6298.09 20099.47 36593.88 35999.85 14299.07 300
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cl2297.56 30197.28 30498.40 30898.37 36596.75 33397.24 35699.37 26597.31 31699.41 21999.22 30487.30 35899.37 36997.70 22999.62 24499.08 295
PS-MVSNAJ99.00 19499.08 15498.76 29499.37 25898.10 28898.00 31599.51 22499.47 11299.41 21998.50 36499.28 5299.97 2398.83 13599.34 29898.20 356
DSMNet-mixed99.48 7399.65 3698.95 26999.71 12897.27 32099.50 8799.82 5399.59 10099.41 21999.85 4999.62 21100.00 199.53 4799.89 11099.59 142
DELS-MVS99.34 11599.30 10899.48 16999.51 21299.36 16798.12 30199.53 21599.36 13299.41 21999.61 19199.22 6099.87 18799.21 9199.68 22899.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.37 10599.29 11399.60 13699.71 12899.46 13799.43 10399.85 4098.79 20999.41 21999.60 19998.92 9699.92 10298.02 19399.92 9199.43 218
test_040299.22 14399.14 13499.45 17699.79 8399.43 14899.28 13999.68 12499.54 10299.40 22499.56 21899.07 8099.82 26096.01 32299.96 5799.11 286
LF4IMVS99.01 19298.92 19599.27 22999.71 12899.28 18198.59 26099.77 7898.32 26299.39 22599.41 25798.62 13599.84 23696.62 29899.84 14798.69 331
VDDNet98.97 19898.82 20899.42 18499.71 12898.81 23899.62 6198.68 33099.81 4499.38 22699.80 7194.25 30099.85 22298.79 14199.32 30099.59 142
sss98.90 20998.77 21399.27 22999.48 22898.44 26598.72 25399.32 27497.94 28699.37 22799.35 27896.31 27899.91 12498.85 13499.63 24399.47 202
HFP-MVS99.25 13199.08 15499.76 5199.73 12299.70 8399.31 12899.59 17798.36 25199.36 22899.37 26998.80 11099.91 12497.43 25099.75 19699.68 74
ACMMPR99.23 13599.06 16099.76 5199.74 11999.69 8699.31 12899.59 17798.36 25199.35 22999.38 26798.61 13799.93 8297.43 25099.75 19699.67 80
HPM-MVScopyleft99.25 13199.07 15899.78 4199.81 6899.75 6299.61 6699.67 12897.72 29599.35 22999.25 29799.23 5999.92 10297.21 26899.82 16499.67 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator99.15 299.43 8799.36 9599.65 10799.39 25399.42 15199.70 3499.56 19499.23 14999.35 22999.80 7199.17 6599.95 5298.21 17999.84 14799.59 142
PVSNet_BlendedMVS99.03 18699.01 17599.09 25699.54 19997.99 29498.58 26199.82 5397.62 29999.34 23299.71 12598.52 15599.77 29597.98 19899.97 4399.52 182
PVSNet_Blended98.70 23298.59 22699.02 26499.54 19997.99 29497.58 34099.82 5395.70 34799.34 23298.98 33698.52 15599.77 29597.98 19899.83 15599.30 247
FE-MVS97.85 28897.42 30199.15 24799.44 24298.75 24299.77 1498.20 34995.85 34499.33 23499.80 7188.86 35499.88 17396.40 30799.12 31598.81 325
MIMVSNet98.43 25998.20 26399.11 25399.53 20598.38 27199.58 7498.61 33498.96 18699.33 23499.76 9990.92 33699.81 27597.38 25399.76 19499.15 277
ITE_SJBPF99.38 20199.63 16099.44 14499.73 9798.56 22999.33 23499.53 22998.88 10299.68 33096.01 32299.65 23999.02 308
h-mvs3398.61 23698.34 25299.44 17899.60 16798.67 24799.27 14299.44 24499.68 7499.32 23799.49 24092.50 321100.00 199.24 8896.51 37099.65 97
hse-mvs298.52 24898.30 25699.16 24599.29 28598.60 25798.77 24999.02 31699.68 7499.32 23799.04 32692.50 32199.85 22299.24 8897.87 36199.03 304
GST-MVS99.16 16298.96 18999.75 6099.73 12299.73 7099.20 16199.55 20098.22 26799.32 23799.35 27898.65 13399.91 12496.86 28299.74 20399.62 121
region2R99.23 13599.05 16499.77 4499.76 10299.70 8399.31 12899.59 17798.41 24599.32 23799.36 27398.73 12299.93 8297.29 25799.74 20399.67 80
test_one_060199.63 16099.76 5899.55 20099.23 14999.31 24199.61 19198.59 140
MVP-Stereo99.16 16299.08 15499.43 18299.48 22899.07 21699.08 20099.55 20098.63 22399.31 24199.68 14998.19 19499.78 28798.18 18499.58 25999.45 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS98.46 25698.19 26699.26 23299.24 29598.52 26199.62 6196.94 36399.87 2699.31 24199.58 20691.04 33499.81 27598.68 15399.42 28999.45 207
MVS_111021_LR99.13 16899.03 17199.42 18499.58 17699.32 17597.91 32699.73 9798.68 21999.31 24199.48 24399.09 7599.66 33997.70 22999.77 19299.29 250
MVS-HIRNet97.86 28798.22 26196.76 34699.28 28891.53 37298.38 28392.60 37699.13 16999.31 24199.96 1297.18 25599.68 33098.34 16999.83 15599.07 300
tmp_tt95.75 33795.42 33596.76 34689.90 38294.42 35798.86 23197.87 35578.01 37399.30 24699.69 13897.70 22695.89 37799.29 8498.14 35699.95 6
9.1498.64 22199.45 24198.81 24199.60 17197.52 30599.28 24799.56 21898.53 15299.83 25195.36 34199.64 241
CPTT-MVS98.74 22798.44 24199.64 11499.61 16599.38 16099.18 16699.55 20096.49 33599.27 24899.37 26997.11 25799.92 10295.74 33399.67 23499.62 121
CLD-MVS98.76 22498.57 23099.33 21499.57 18698.97 22397.53 34399.55 20096.41 33699.27 24899.13 31299.07 8099.78 28796.73 29099.89 11099.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42098.41 26198.41 24498.40 30899.34 27195.89 34696.94 36399.44 24498.80 20899.25 25099.52 23193.51 31099.98 1198.94 13199.98 3199.32 242
FMVSNet597.80 29097.25 30699.42 18498.83 34698.97 22399.38 10999.80 6498.87 19999.25 25099.69 13880.60 37699.91 12498.96 12699.90 10199.38 227
PHI-MVS99.11 17398.95 19099.59 13899.13 31299.59 11599.17 17199.65 14197.88 28899.25 25099.46 25098.97 9299.80 28197.26 26299.82 16499.37 230
Vis-MVSNet (Re-imp)98.77 22398.58 22999.34 21199.78 9098.88 23499.61 6699.56 19499.11 17399.24 25399.56 21893.00 31699.78 28797.43 25099.89 11099.35 236
CANet99.11 17399.05 16499.28 22698.83 34698.56 25898.71 25599.41 25099.25 14599.23 25499.22 30497.66 23499.94 6599.19 9599.97 4399.33 239
Patchmatch-test98.10 28097.98 27898.48 30599.27 29096.48 33699.40 10599.07 31298.81 20699.23 25499.57 21590.11 34899.87 18796.69 29199.64 24199.09 292
MG-MVS98.52 24898.39 24698.94 27099.15 30997.39 31898.18 29499.21 30398.89 19899.23 25499.63 17597.37 24599.74 30394.22 35399.61 25199.69 68
test_yl98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
DCV-MVSNet98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
test0.0.03 197.37 30696.91 31698.74 29597.72 37397.57 31297.60 33997.36 36298.00 27899.21 25998.02 37190.04 34999.79 28498.37 16695.89 37398.86 321
MVS_Test99.28 12499.31 10399.19 24299.35 26398.79 24099.36 11699.49 23299.17 16199.21 25999.67 15498.78 11399.66 33999.09 11399.66 23799.10 288
CDPH-MVS98.56 24498.20 26399.61 13399.50 21899.46 13798.32 28699.41 25095.22 35299.21 25999.10 32098.34 17999.82 26095.09 34599.66 23799.56 154
WTY-MVS98.59 24198.37 24899.26 23299.43 24598.40 26898.74 25199.13 31198.10 27399.21 25999.24 30294.82 29499.90 14297.86 21198.77 33499.49 194
MDTV_nov1_ep13_2view91.44 37399.14 17997.37 31399.21 25991.78 32896.75 28899.03 304
BH-untuned98.22 27698.09 27198.58 30299.38 25697.24 32198.55 26798.98 31997.81 29399.20 26498.76 35397.01 25999.65 34594.83 34698.33 34998.86 321
CR-MVSNet98.35 26898.20 26398.83 28899.05 32598.12 28599.30 13199.67 12897.39 31299.16 26599.79 8191.87 32699.91 12498.78 14498.77 33498.44 345
RPMNet98.60 23898.53 23698.83 28899.05 32598.12 28599.30 13199.62 15299.86 2999.16 26599.74 10792.53 32099.92 10298.75 14698.77 33498.44 345
thisisatest051596.98 31396.42 32098.66 29999.42 25097.47 31497.27 35494.30 37397.24 31899.15 26798.86 34885.01 36999.87 18797.10 27199.39 29298.63 332
LS3D99.24 13499.11 14399.61 13398.38 36499.79 4499.57 7799.68 12499.61 9299.15 26799.71 12598.70 12499.91 12497.54 24399.68 22899.13 285
ZNCC-MVS99.22 14399.04 16999.77 4499.76 10299.73 7099.28 13999.56 19498.19 27099.14 26999.29 28998.84 10599.92 10297.53 24599.80 17899.64 105
HQP_MVS98.90 20998.68 22099.55 15399.58 17699.24 19298.80 24499.54 20698.94 18899.14 26999.25 29797.24 24999.82 26095.84 33099.78 18899.60 135
plane_prior399.31 17698.36 25199.14 269
3Dnovator+98.92 399.35 11099.24 12399.67 9599.35 26399.47 13399.62 6199.50 22899.44 11899.12 27299.78 8898.77 11599.94 6597.87 21099.72 21499.62 121
ZD-MVS99.43 24599.61 11199.43 24796.38 33799.11 27399.07 32297.86 21799.92 10294.04 35699.49 280
PatchMatch-RL98.68 23398.47 23899.30 22399.44 24299.28 18198.14 29999.54 20697.12 32599.11 27399.25 29797.80 22299.70 31496.51 30299.30 30298.93 315
SCA98.11 27998.36 24997.36 33799.20 30292.99 36498.17 29698.49 34198.24 26699.10 27599.57 21596.01 28599.94 6596.86 28299.62 24499.14 282
PatchT98.45 25898.32 25498.83 28898.94 33698.29 27499.24 15198.82 32499.84 3799.08 27699.76 9991.37 32999.94 6598.82 13799.00 32398.26 351
UnsupCasMVSNet_bld98.55 24598.27 25899.40 19399.56 19799.37 16397.97 32099.68 12497.49 30799.08 27699.35 27895.41 29199.82 26097.70 22998.19 35499.01 309
MVS_111021_HR99.12 17099.02 17299.40 19399.50 21899.11 20897.92 32499.71 10998.76 21599.08 27699.47 24799.17 6599.54 35897.85 21399.76 19499.54 165
TAPA-MVS97.92 1398.03 28397.55 29999.46 17399.47 23499.44 14498.50 27499.62 15286.79 37099.07 27999.26 29598.26 18699.62 34997.28 25999.73 20899.31 246
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CP-MVS99.23 13599.05 16499.75 6099.66 15499.66 9399.38 10999.62 15298.38 24999.06 28099.27 29298.79 11199.94 6597.51 24699.82 16499.66 89
MCST-MVS99.02 18898.81 20999.65 10799.58 17699.49 13198.58 26199.07 31298.40 24799.04 28199.25 29798.51 15799.80 28197.31 25699.51 27699.65 97
mPP-MVS99.19 15399.00 17899.76 5199.76 10299.68 8999.38 10999.54 20698.34 26099.01 28299.50 23698.53 15299.93 8297.18 26999.78 18899.66 89
PVSNet97.47 1598.42 26098.44 24198.35 31099.46 23896.26 33996.70 36699.34 27197.68 29799.00 28399.13 31297.40 24299.72 30897.59 24199.68 22899.08 295
Fast-Effi-MVS+-dtu99.20 15099.12 14099.43 18299.25 29399.69 8699.05 20399.82 5399.50 10698.97 28499.05 32498.98 9099.98 1198.20 18099.24 31198.62 333
MP-MVScopyleft99.06 17998.83 20799.76 5199.76 10299.71 7699.32 12399.50 22898.35 25698.97 28499.48 24398.37 17499.92 10295.95 32799.75 19699.63 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PCF-MVS96.03 1896.73 31995.86 33099.33 21499.44 24299.16 20396.87 36499.44 24486.58 37198.95 28699.40 26194.38 29999.88 17387.93 37099.80 17898.95 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验297.94 32295.33 35198.94 28799.88 17396.75 288
ETV-MVS99.18 15799.18 12899.16 24599.34 27199.28 18199.12 18999.79 7099.48 10898.93 28898.55 36199.40 3599.93 8298.51 16099.52 27598.28 350
BH-RMVSNet98.41 26198.14 26999.21 23999.21 29998.47 26298.60 25998.26 34898.35 25698.93 28899.31 28497.20 25499.66 33994.32 35199.10 31799.51 184
F-COLMAP98.74 22798.45 24099.62 13099.57 18699.47 13398.84 23499.65 14196.31 33998.93 28899.19 30997.68 22999.87 18796.52 30199.37 29599.53 171
Effi-MVS+-dtu99.07 17898.92 19599.52 16098.89 34199.78 4799.15 17799.66 13299.34 13398.92 29199.24 30297.69 22899.98 1198.11 19099.28 30598.81 325
EMVS96.96 31497.28 30495.99 35698.76 35591.03 37495.26 37198.61 33499.34 13398.92 29198.88 34793.79 30599.66 33992.87 36099.05 31997.30 368
tpmrst97.73 29398.07 27296.73 34898.71 35792.00 36899.10 19398.86 32198.52 23598.92 29199.54 22791.90 32499.82 26098.02 19399.03 32198.37 347
MSLP-MVS++99.05 18299.09 15298.91 27699.21 29998.36 27298.82 24099.47 23698.85 20198.90 29499.56 21898.78 11399.09 37198.57 15799.68 22899.26 252
KD-MVS_2432*160095.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
miper_refine_blended95.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
E-PMN97.14 31197.43 30096.27 35398.79 35191.62 37195.54 37099.01 31899.44 11898.88 29599.12 31692.78 31799.68 33094.30 35299.03 32197.50 364
testdata99.42 18499.51 21298.93 22999.30 28196.20 34098.87 29899.40 26198.33 18199.89 15996.29 31299.28 30599.44 212
CANet_DTU98.91 20798.85 20399.09 25698.79 35198.13 28498.18 29499.31 27899.48 10898.86 29999.51 23396.56 26799.95 5299.05 11699.95 6899.19 269
DP-MVS Recon98.50 25198.23 25999.31 22199.49 22399.46 13798.56 26699.63 14994.86 35898.85 30099.37 26997.81 22199.59 35596.08 31999.44 28598.88 319
EIA-MVS99.12 17099.01 17599.45 17699.36 26199.62 10599.34 11899.79 7098.41 24598.84 30198.89 34698.75 11899.84 23698.15 18899.51 27698.89 318
DPM-MVS98.28 27097.94 28499.32 21899.36 26199.11 20897.31 35398.78 32696.88 32998.84 30199.11 31997.77 22499.61 35394.03 35799.36 29699.23 258
MDTV_nov1_ep1397.73 29498.70 35890.83 37599.15 17798.02 35198.51 23698.82 30399.61 19190.98 33599.66 33996.89 28198.92 327
GA-MVS97.99 28697.68 29698.93 27399.52 21098.04 29397.19 35799.05 31598.32 26298.81 30498.97 33889.89 35199.41 36898.33 17099.05 31999.34 238
AdaColmapbinary98.60 23898.35 25199.38 20199.12 31499.22 19598.67 25699.42 24997.84 29298.81 30499.27 29297.32 24799.81 27595.14 34399.53 27299.10 288
CNVR-MVS98.99 19798.80 21199.56 15099.25 29399.43 14898.54 27099.27 28798.58 22898.80 30699.43 25598.53 15299.70 31497.22 26799.59 25899.54 165
Effi-MVS+99.06 17998.97 18799.34 21199.31 27998.98 22198.31 28799.91 2298.81 20698.79 30798.94 34299.14 7099.84 23698.79 14198.74 33899.20 266
PatchmatchNetpermissive97.65 29797.80 29097.18 34298.82 34992.49 36699.17 17198.39 34598.12 27298.79 30799.58 20690.71 34199.89 15997.23 26699.41 29099.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM98.40 26397.99 27699.65 10799.39 25399.47 13399.67 4899.52 22091.70 36698.78 30999.80 7198.55 14699.95 5294.71 34999.75 19699.53 171
XVS99.27 12899.11 14399.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31099.47 24798.47 15999.88 17397.62 23799.73 20899.67 80
X-MVStestdata96.09 33194.87 34099.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31061.30 38498.47 15999.88 17397.62 23799.73 20899.67 80
HY-MVS98.23 998.21 27797.95 28098.99 26599.03 32898.24 27599.61 6698.72 32896.81 33298.73 31299.51 23394.06 30199.86 20596.91 27998.20 35298.86 321
alignmvs98.28 27097.96 27999.25 23599.12 31498.93 22999.03 20898.42 34399.64 8698.72 31397.85 37390.86 33999.62 34998.88 13399.13 31499.19 269
thres600view796.60 32296.16 32497.93 32399.63 16096.09 34399.18 16697.57 35798.77 21298.72 31397.32 37887.04 36199.72 30888.57 36898.62 34397.98 360
thres100view90096.39 32596.03 32797.47 33499.63 16095.93 34499.18 16697.57 35798.75 21698.70 31597.31 37987.04 36199.67 33587.62 37198.51 34696.81 369
test22299.51 21299.08 21597.83 33099.29 28395.21 35398.68 31699.31 28497.28 24899.38 29399.43 218
API-MVS98.38 26498.39 24698.35 31098.83 34699.26 18599.14 17999.18 30598.59 22798.66 31798.78 35298.61 13799.57 35794.14 35499.56 26196.21 371
canonicalmvs99.02 18899.00 17899.09 25699.10 32098.70 24699.61 6699.66 13299.63 8898.64 31897.65 37599.04 8499.54 35898.79 14198.92 32799.04 303
Fast-Effi-MVS+99.02 18898.87 20199.46 17399.38 25699.50 13099.04 20599.79 7097.17 32298.62 31998.74 35499.34 4699.95 5298.32 17199.41 29098.92 316
EPMVS96.53 32396.32 32197.17 34398.18 37092.97 36599.39 10789.95 38098.21 26898.61 32099.59 20486.69 36799.72 30896.99 27599.23 31398.81 325
新几何199.52 16099.50 21899.22 19599.26 29095.66 34898.60 32199.28 29097.67 23099.89 15995.95 32799.32 30099.45 207
HPM-MVS++copyleft98.96 20198.70 21999.74 6599.52 21099.71 7698.86 23199.19 30498.47 24198.59 32299.06 32398.08 20299.91 12496.94 27799.60 25499.60 135
PLCcopyleft97.35 1698.36 26597.99 27699.48 16999.32 27899.24 19298.50 27499.51 22495.19 35498.58 32398.96 34096.95 26199.83 25195.63 33499.25 30999.37 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet99.38 10299.34 9799.49 16598.90 33898.90 23399.70 3499.35 26999.86 2998.57 32499.81 6798.50 15899.93 8299.38 6499.98 3199.66 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM_NR98.36 26598.04 27399.33 21499.48 22898.93 22998.79 24799.28 28697.54 30398.56 32598.57 35997.12 25699.69 32094.09 35598.90 32999.38 227
tfpn200view996.30 32895.89 32897.53 33299.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34696.81 369
thres40096.40 32495.89 32897.92 32499.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34697.98 360
CNLPA98.57 24398.34 25299.28 22699.18 30699.10 21398.34 28499.41 25098.48 24098.52 32698.98 33697.05 25899.78 28795.59 33599.50 27898.96 311
PMMVS98.49 25398.29 25799.11 25398.96 33598.42 26797.54 34199.32 27497.53 30498.47 32998.15 37097.88 21699.82 26097.46 24899.24 31199.09 292
test1299.54 15799.29 28599.33 17399.16 30798.43 33097.54 23799.82 26099.47 28299.48 198
NCCC98.82 21998.57 23099.58 14199.21 29999.31 17698.61 25799.25 29398.65 22198.43 33099.26 29597.86 21799.81 27596.55 29999.27 30899.61 131
thres20096.09 33195.68 33397.33 33999.48 22896.22 34098.53 27197.57 35798.06 27798.37 33296.73 38386.84 36599.61 35386.99 37498.57 34496.16 372
tpm97.15 30996.95 31397.75 32998.91 33794.24 35899.32 12397.96 35297.71 29698.29 33399.32 28286.72 36699.92 10298.10 19196.24 37299.09 292
原ACMM199.37 20499.47 23498.87 23699.27 28796.74 33498.26 33499.32 28297.93 21399.82 26095.96 32699.38 29399.43 218
ADS-MVSNet297.78 29197.66 29898.12 32099.14 31095.36 35099.22 15898.75 32796.97 32798.25 33599.64 16590.90 33799.94 6596.51 30299.56 26199.08 295
ADS-MVSNet97.72 29697.67 29797.86 32599.14 31094.65 35699.22 15898.86 32196.97 32798.25 33599.64 16590.90 33799.84 23696.51 30299.56 26199.08 295
dp96.86 31597.07 30996.24 35498.68 35990.30 37999.19 16598.38 34697.35 31498.23 33799.59 20487.23 35999.82 26096.27 31398.73 34098.59 335
TR-MVS97.44 30497.15 30898.32 31298.53 36297.46 31598.47 27697.91 35496.85 33098.21 33898.51 36396.42 27399.51 36392.16 36297.29 36597.98 360
HQP-NCC99.31 27997.98 31797.45 30898.15 339
ACMP_Plane99.31 27997.98 31797.45 30898.15 339
HQP4-MVS98.15 33999.70 31499.53 171
HQP-MVS98.36 26598.02 27599.39 19799.31 27998.94 22697.98 31799.37 26597.45 30898.15 33998.83 34996.67 26599.70 31494.73 34799.67 23499.53 171
CostFormer96.71 32096.79 31996.46 35298.90 33890.71 37799.41 10498.68 33094.69 36098.14 34399.34 28186.32 36899.80 28197.60 24098.07 35898.88 319
OpenMVScopyleft98.12 1098.23 27597.89 28999.26 23299.19 30499.26 18599.65 5899.69 12191.33 36798.14 34399.77 9598.28 18499.96 4295.41 33999.55 26598.58 337
test_prior297.95 32197.87 28998.05 34599.05 32497.90 21495.99 32499.49 280
MAR-MVS98.24 27497.92 28699.19 24298.78 35399.65 9899.17 17199.14 30995.36 35098.04 34698.81 35197.47 23999.72 30895.47 33899.06 31898.21 354
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR97.56 30197.07 30999.04 26398.80 35098.11 28797.63 33799.25 29394.56 36198.02 34798.25 36997.43 24199.68 33090.90 36698.74 33899.33 239
BH-w/o97.20 30897.01 31197.76 32899.08 32395.69 34798.03 31298.52 33895.76 34697.96 34898.02 37195.62 28999.47 36592.82 36197.25 36698.12 358
TEST999.35 26399.35 17098.11 30399.41 25094.83 35997.92 34998.99 33398.02 20699.85 222
train_agg98.35 26897.95 28099.57 14799.35 26399.35 17098.11 30399.41 25094.90 35697.92 34998.99 33398.02 20699.85 22295.38 34099.44 28599.50 189
tpm296.35 32696.22 32396.73 34898.88 34391.75 37099.21 16098.51 33993.27 36397.89 35199.21 30684.83 37099.70 31496.04 32198.18 35598.75 330
JIA-IIPM98.06 28297.92 28698.50 30498.59 36097.02 32798.80 24498.51 33999.88 2597.89 35199.87 4091.89 32599.90 14298.16 18797.68 36398.59 335
test_899.34 27199.31 17698.08 30799.40 25794.90 35697.87 35398.97 33898.02 20699.84 236
tpmvs97.39 30597.69 29596.52 35098.41 36391.76 36999.30 13198.94 32097.74 29497.85 35499.55 22592.40 32399.73 30696.25 31498.73 34098.06 359
test-LLR97.15 30996.95 31397.74 33098.18 37095.02 35397.38 34996.10 36498.00 27897.81 35598.58 35790.04 34999.91 12497.69 23598.78 33298.31 348
TESTMET0.1,196.24 32995.84 33197.41 33698.24 36893.84 36197.38 34995.84 36898.43 24297.81 35598.56 36079.77 37799.89 15997.77 21898.77 33498.52 339
test-mter96.23 33095.73 33297.74 33098.18 37095.02 35397.38 34996.10 36497.90 28797.81 35598.58 35779.12 38099.91 12497.69 23598.78 33298.31 348
agg_prior99.35 26399.36 16799.39 26097.76 35899.85 222
tpm cat196.78 31796.98 31296.16 35598.85 34490.59 37899.08 20099.32 27492.37 36497.73 35999.46 25091.15 33399.69 32096.07 32098.80 33198.21 354
PVSNet_095.53 1995.85 33695.31 33897.47 33498.78 35393.48 36395.72 36999.40 25796.18 34197.37 36097.73 37495.73 28799.58 35695.49 33781.40 37699.36 233
MVS95.72 33894.63 34298.99 26598.56 36197.98 30099.30 13198.86 32172.71 37597.30 36199.08 32198.34 17999.74 30389.21 36798.33 34999.26 252
EPNet98.13 27897.77 29399.18 24494.57 38097.99 29499.24 15197.96 35299.74 5797.29 36299.62 18293.13 31399.97 2398.59 15699.83 15599.58 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030498.88 21398.71 21699.39 19798.85 34498.91 23299.45 9899.30 28198.56 22997.26 36399.68 14996.18 28299.96 4299.17 10099.94 7999.29 250
131498.00 28597.90 28898.27 31698.90 33897.45 31699.30 13199.06 31494.98 35597.21 36499.12 31698.43 16599.67 33595.58 33698.56 34597.71 363
AUN-MVS97.82 28997.38 30299.14 25099.27 29098.53 25998.72 25399.02 31698.10 27397.18 36599.03 33089.26 35399.85 22297.94 20297.91 35999.03 304
cascas96.99 31296.82 31897.48 33397.57 37695.64 34896.43 36899.56 19491.75 36597.13 36697.61 37695.58 29098.63 37496.68 29299.11 31698.18 357
FPMVS96.32 32795.50 33498.79 29299.60 16798.17 28398.46 28098.80 32597.16 32396.28 36799.63 17582.19 37399.09 37188.45 36998.89 33099.10 288
PAPM95.61 33994.71 34198.31 31499.12 31496.63 33496.66 36798.46 34290.77 36896.25 36898.68 35693.01 31599.69 32081.60 37697.86 36298.62 333
gg-mvs-nofinetune95.87 33595.17 33997.97 32298.19 36996.95 32899.69 4189.23 38199.89 2096.24 36999.94 1681.19 37499.51 36393.99 35898.20 35297.44 365
baseline296.83 31696.28 32298.46 30699.09 32296.91 33098.83 23693.87 37597.23 31996.23 37098.36 36688.12 35699.90 14296.68 29298.14 35698.57 338
EPNet_dtu97.62 29897.79 29297.11 34496.67 37792.31 36798.51 27398.04 35099.24 14795.77 37199.47 24793.78 30699.66 33998.98 12299.62 24499.37 230
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft97.98 32199.69 14096.95 32899.26 29075.51 37495.74 37298.28 36896.47 27199.62 34991.23 36597.89 36097.38 366
test_method91.72 34292.32 34589.91 35993.49 38170.18 38390.28 37299.56 19461.71 37695.39 37399.52 23193.90 30299.94 6598.76 14598.27 35199.62 121
IB-MVS95.41 2095.30 34094.46 34497.84 32698.76 35595.33 35197.33 35296.07 36696.02 34295.37 37497.41 37776.17 38299.96 4297.54 24395.44 37498.22 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND97.36 33797.59 37496.87 33199.70 3488.49 38294.64 37597.26 38080.66 37599.12 37091.50 36496.50 37196.08 373
ET-MVSNet_ETH3D96.78 31796.07 32698.91 27699.26 29297.92 30297.70 33596.05 36797.96 28592.37 37698.43 36587.06 36099.90 14298.27 17497.56 36498.91 317
MVEpermissive92.54 2296.66 32196.11 32598.31 31499.68 14897.55 31397.94 32295.60 36999.37 13090.68 37798.70 35596.56 26798.61 37586.94 37599.55 26598.77 329
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EGC-MVSNET89.05 34385.52 34699.64 11499.89 3499.78 4799.56 7999.52 22024.19 37749.96 37899.83 5599.15 6799.92 10297.71 22699.85 14299.21 262
test12329.31 34433.05 34918.08 36025.93 38412.24 38497.53 34310.93 38511.78 37824.21 37950.08 38821.04 3838.60 37923.51 37732.43 37833.39 375
testmvs28.94 34533.33 34715.79 36126.03 3839.81 38596.77 36515.67 38411.55 37923.87 38050.74 38719.03 3848.53 38023.21 37833.07 37729.03 376
test_blank8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.88 34633.17 3480.00 3620.00 3850.00 3860.00 37399.62 1520.00 3800.00 38199.13 31299.82 70.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas16.61 34722.14 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 199.28 520.00 3810.00 3790.00 3790.00 377
sosnet-low-res8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
sosnet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
Regformer8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.26 35611.02 3590.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.16 3100.00 3850.00 3810.00 3790.00 3790.00 377
uanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
No_MVS99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
eth-test20.00 385
eth-test0.00 385
OPU-MVS99.29 22499.12 31499.44 14499.20 16199.40 26199.00 8698.84 37396.54 30099.60 25499.58 147
save fliter99.53 20599.25 18898.29 28899.38 26499.07 176
test_0728_SECOND99.83 2599.70 13699.79 4499.14 17999.61 15999.92 10297.88 20799.72 21499.77 45
GSMVS99.14 282
sam_mvs190.81 34099.14 282
sam_mvs90.52 344
MTGPAbinary99.53 215
test_post199.14 17951.63 38689.54 35299.82 26096.86 282
test_post52.41 38590.25 34699.86 205
patchmatchnet-post99.62 18290.58 34299.94 65
MTMP99.09 19798.59 337
gm-plane-assit97.59 37489.02 38193.47 36298.30 36799.84 23696.38 309
test9_res95.10 34499.44 28599.50 189
agg_prior294.58 35099.46 28499.50 189
test_prior499.19 20198.00 315
test_prior99.46 17399.35 26399.22 19599.39 26099.69 32099.48 198
新几何298.04 311
旧先验199.49 22399.29 17999.26 29099.39 26597.67 23099.36 29699.46 206
无先验98.01 31399.23 29795.83 34599.85 22295.79 33299.44 212
原ACMM297.92 324
testdata299.89 15995.99 324
segment_acmp98.37 174
testdata197.72 33397.86 291
plane_prior799.58 17699.38 160
plane_prior699.47 23499.26 18597.24 249
plane_prior599.54 20699.82 26095.84 33099.78 18899.60 135
plane_prior499.25 297
plane_prior298.80 24498.94 188
plane_prior199.51 212
plane_prior99.24 19298.42 28197.87 28999.71 217
n20.00 386
nn0.00 386
door-mid99.83 48
test1199.29 283
door99.77 78
HQP5-MVS98.94 226
BP-MVS94.73 347
HQP3-MVS99.37 26599.67 234
HQP2-MVS96.67 265
NP-MVS99.40 25299.13 20698.83 349
ACMMP++_ref99.94 79
ACMMP++99.79 183
Test By Simon98.41 168