This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30299.52 86100.00 199.86 45100.00 199.88 4298.99 10399.96 5499.97 499.96 7099.95 11
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_f99.75 3299.88 699.37 21999.96 798.21 29999.51 90100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28799.30 13599.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32599.34 122100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32299.49 95100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31299.48 96100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20199.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_fmvs199.48 8799.65 5098.97 28899.54 21597.16 34899.11 20199.98 1199.78 6899.96 2399.81 7998.72 13899.97 3399.95 1299.97 5699.79 54
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7699.97 1899.95 2099.96 2399.76 11198.44 17999.99 799.34 8899.96 7099.78 56
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26899.88 4498.66 24799.96 2399.79 9397.45 25699.93 9499.34 8899.99 1699.78 56
wuyk23d97.58 32199.13 15192.93 38899.69 15599.49 14599.52 8699.77 9597.97 31099.96 2399.79 9399.84 1299.94 7795.85 35799.82 17979.36 404
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19799.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23699.96 2399.03 20099.95 3199.12 33198.75 13399.84 25599.82 3599.82 17999.77 60
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11399.71 33498.41 18199.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14699.84 25599.88 2999.99 1699.71 76
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16399.93 9499.59 5199.98 4199.76 66
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22799.92 11699.65 4699.98 4199.62 138
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15699.71 12699.27 15999.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35799.59 19499.27 15999.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11599.92 4199.87 4798.75 13399.86 22299.90 2599.99 1699.73 71
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7698.70 34799.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30299.87 4199.91 4499.87 4798.04 21999.96 5499.68 4499.99 1699.90 20
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12299.97 1898.93 21299.91 4499.79 9398.68 14199.93 9496.80 30999.56 27699.30 265
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15499.94 7799.58 5499.98 4199.77 60
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7499.78 9299.71 8099.90 4999.69 15198.85 11999.90 15797.25 28699.78 20399.15 295
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22699.86 22299.42 7799.96 7099.80 47
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23199.65 15899.15 18799.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
EU-MVSNet99.39 11599.62 5598.72 31999.88 4496.44 36299.56 8199.85 5499.90 2999.90 4999.85 5698.09 21599.83 27099.58 5499.95 8399.90 20
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
IterMVS-SCA-FT99.00 21299.16 14598.51 32899.75 12895.90 37298.07 33699.84 6099.84 5399.89 5399.73 12396.01 30599.99 799.33 91100.00 199.63 127
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20199.62 16999.18 17599.89 5399.72 13098.66 14699.87 20399.88 2999.97 5699.66 104
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
lessismore_v099.64 12899.86 5499.38 17590.66 40899.89 5399.83 6694.56 32199.97 3399.56 5799.92 10599.57 169
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32699.65 10099.89 5399.90 2996.20 30299.94 7799.42 7799.92 10599.67 95
HyFIR lowres test98.91 22698.64 23999.73 8899.85 5899.47 14798.07 33699.83 6298.64 24999.89 5399.60 21392.57 341100.00 199.33 9199.97 5699.72 73
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
test111197.74 31398.16 28796.49 38199.60 18289.86 41199.71 3491.21 40799.89 3599.88 6199.87 4793.73 33099.90 15799.56 5799.99 1699.70 79
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11799.79 8699.83 5699.88 6199.85 5698.42 18299.90 15799.60 5099.73 22399.49 210
new-patchmatchnet99.35 12599.57 7198.71 32199.82 7296.62 36098.55 29299.75 10599.50 12399.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21699.61 17699.15 18799.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24499.46 13299.88 6199.36 28897.54 25399.87 20398.97 14099.87 14599.63 127
K. test v398.87 23398.60 24299.69 10499.93 2599.46 15199.74 2494.97 39999.78 6899.88 6199.88 4293.66 33199.97 3399.61 4999.95 8399.64 122
bld_raw_dy_0_6498.97 21698.90 21799.17 26299.07 34499.24 20799.24 15699.93 2999.23 16799.87 6999.03 34595.48 31199.81 29498.29 18999.99 1698.47 373
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21999.60 18899.18 17599.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
ECVR-MVScopyleft97.73 31498.04 29396.78 37599.59 18690.81 40799.72 3090.43 40999.89 3599.86 7199.86 5493.60 33299.89 17599.46 6999.99 1699.65 112
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11199.59 19499.24 16599.86 7199.70 14598.55 16199.82 27999.79 3799.95 8399.60 152
mvs_anonymous99.28 13999.39 10198.94 29299.19 32397.81 32799.02 22699.55 21699.78 6899.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 295
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11899.85 7399.69 15198.18 21199.94 7799.28 10299.95 8399.83 40
IterMVS98.97 21699.16 14598.42 33299.74 13495.64 37598.06 33899.83 6299.83 5699.85 7399.74 11996.10 30499.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20499.61 17699.20 17399.84 7699.73 12398.67 14499.84 25599.86 3199.98 4199.64 122
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10699.84 7699.71 13898.62 15099.96 5499.30 9799.96 7099.86 32
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16099.96 5499.29 10099.94 9499.83 40
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14499.97 3399.30 9799.95 8399.80 47
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30998.85 25399.76 10099.62 10699.83 8099.64 17898.54 16399.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29699.97 3399.59 5199.98 4199.55 174
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16799.54 22299.13 18999.82 8199.63 18998.91 11399.92 11697.85 23299.70 23499.58 164
test_241102_ONE99.69 15599.82 3599.54 22299.12 19299.82 8199.49 25598.91 11399.52 390
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17899.87 20399.51 6499.97 5699.86 32
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22699.89 4099.60 11599.82 8199.62 19698.81 12199.89 17599.43 7299.86 15399.47 218
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10599.90 15799.24 10499.97 5699.53 187
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7499.82 6799.39 14599.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8699.81 7699.87 4199.81 8899.79 9396.78 28299.99 799.83 3299.51 29199.86 32
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20999.59 19499.17 18099.81 8899.61 20598.41 18399.69 34399.32 9399.94 9499.53 187
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18799.58 20399.25 16399.81 8899.62 19698.24 20299.84 25599.83 3299.97 5699.64 122
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24399.86 4998.85 22399.81 8899.73 12398.40 18799.92 11698.36 18499.83 17099.17 291
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15699.46 25599.68 9099.80 9299.66 17198.99 10399.89 17599.19 11199.90 11599.72 73
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12199.91 13999.47 6899.88 13499.70 79
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7999.61 17699.54 11999.80 9299.64 17897.79 23899.95 6399.21 10799.94 9499.84 36
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14999.76 10099.32 15399.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8199.79 8698.77 23699.80 9299.85 5699.64 2899.85 24098.70 16799.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15699.46 25599.67 9499.79 9799.65 17698.97 10799.89 17599.15 11999.89 12499.71 76
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14299.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24599.91 3397.97 31099.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
N_pmnet98.73 24698.53 25399.35 22599.72 14098.67 26698.34 31194.65 40098.35 28499.79 9799.68 16298.03 22099.93 9498.28 19299.92 10599.44 228
ppachtmachnet_test98.89 23199.12 15598.20 34399.66 16995.24 38197.63 36799.68 14099.08 19499.78 10199.62 19698.65 14899.88 18998.02 21299.96 7099.48 214
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33399.90 3898.95 20899.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10399.57 20599.66 9899.78 10199.83 6697.85 23499.86 22299.44 7199.96 7099.61 148
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12799.77 9599.53 12199.77 10699.76 11199.26 7099.78 30897.77 23799.88 13499.60 152
DVP-MVS++99.38 11799.25 13699.77 5799.03 35099.77 5499.74 2499.61 17699.18 17599.76 10899.61 20599.00 10199.92 11697.72 24399.60 26999.62 138
test_241102_TWO99.54 22299.13 18999.76 10899.63 18998.32 19699.92 11697.85 23299.69 23899.75 69
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27699.47 12999.76 10899.78 10198.13 21399.86 22298.70 16799.68 24399.49 210
DPE-MVScopyleft99.14 18398.92 21399.82 3799.57 20199.77 5498.74 27199.60 18898.55 25899.76 10899.69 15198.23 20699.92 11696.39 33499.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0598.46 27598.23 27899.15 26599.04 34997.99 31599.10 20499.61 17699.79 6699.76 10899.58 22187.88 37999.92 11699.31 9699.97 5699.53 187
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19399.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7399.82 6799.46 13299.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26199.66 14899.42 14499.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
SD-MVS99.01 21099.30 12398.15 34499.50 23499.40 17198.94 24599.61 17699.22 17299.75 11499.82 7399.54 4195.51 40897.48 26699.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9199.69 13798.99 20299.75 11499.71 13898.79 12699.93 9498.46 17999.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30999.26 14999.46 25599.62 10699.75 11499.67 16698.54 16399.85 24099.15 11999.92 10599.68 89
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25499.89 4098.38 27799.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
MVSTER98.47 27498.22 28099.24 25399.06 34698.35 29399.08 21299.46 25599.27 15999.75 11499.66 17188.61 37799.85 24099.14 12599.92 10599.52 198
USDC98.96 22098.93 20999.05 28299.54 21597.99 31597.07 39199.80 8098.21 29699.75 11499.77 10898.43 18099.64 37297.90 22499.88 13499.51 200
Patchmatch-RL test98.60 25698.36 26799.33 22999.77 11399.07 23398.27 31699.87 4698.91 21599.74 12299.72 13090.57 36699.79 30598.55 17599.85 15799.11 304
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20099.85 24099.37 8399.93 10199.83 40
jason99.16 17999.11 15899.32 23399.75 12898.44 28498.26 31899.39 27698.70 24499.74 12299.30 30198.54 16399.97 3398.48 17899.82 17999.55 174
jason: jason.
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14299.61 17699.87 4199.74 12299.76 11198.69 14099.87 20398.20 19999.80 19399.75 69
test072699.69 15599.80 4499.24 15699.57 20599.16 18399.73 12699.65 17698.35 191
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29299.73 11498.82 22799.72 12799.62 19696.56 28799.82 27999.32 9399.95 8399.56 171
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14499.74 11099.23 16799.72 12799.53 24497.63 25299.88 18999.11 12799.84 16299.48 214
CVMVSNet98.61 25498.88 21997.80 35699.58 19193.60 39399.26 14999.64 16499.66 9899.72 12799.67 16693.26 33499.93 9499.30 9799.81 18899.87 30
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10599.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
Patchmtry98.78 24098.54 25299.49 18198.89 36399.19 21899.32 12799.67 14499.65 10099.72 12799.79 9391.87 34999.95 6398.00 21699.97 5699.33 256
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9999.81 7699.82 5899.71 13299.72 13096.60 28699.98 2099.75 3999.23 33199.82 46
test250694.73 37194.59 37295.15 38799.59 18685.90 41399.75 2274.01 41399.89 3599.71 13299.86 5479.00 40499.90 15799.52 6399.99 1699.65 112
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13599.63 16699.61 10999.71 13299.56 23398.76 13199.96 5499.14 12599.92 10599.68 89
tttt051797.62 31997.20 32898.90 30499.76 11797.40 34299.48 9694.36 40199.06 19899.70 13699.49 25584.55 39399.94 7798.73 16599.65 25499.36 249
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23999.60 18899.43 14099.70 13699.36 28897.70 24299.88 18999.20 11099.87 14599.59 159
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10399.57 20599.44 13599.70 13699.74 11997.21 26799.87 20399.03 13399.94 9499.44 228
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12799.74 11099.18 17599.69 13999.75 11698.41 18399.84 25597.85 23299.70 23499.10 306
IU-MVS99.69 15599.77 5499.22 31597.50 33699.69 13997.75 24199.70 23499.77 60
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9699.70 13199.81 6199.69 13999.58 22197.66 25099.86 22299.17 11699.44 30199.67 95
PC_three_145297.56 33099.68 14299.41 27299.09 8997.09 40696.66 31799.60 26999.62 138
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26199.41 26698.55 25899.68 14299.69 15198.13 21399.87 20398.82 15399.98 4199.24 273
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21995.32 39899.99 299.68 14299.57 22998.30 19799.97 3399.94 1699.98 4199.88 25
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
ambc99.20 25799.35 28198.53 27899.17 17799.46 25599.67 14899.80 8398.46 17799.70 33797.92 22299.70 23499.38 243
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24099.61 17699.43 14099.67 14899.28 30597.85 23499.95 6399.17 11699.81 18899.65 112
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25699.53 23199.38 14699.67 14899.36 28897.67 24699.95 6399.17 11699.81 18899.63 127
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11399.78 9299.53 12199.67 14899.78 10199.19 7799.86 22297.32 27599.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35899.74 11098.36 27999.66 15299.68 16299.71 2299.90 15796.84 30899.88 13499.43 234
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38599.47 25298.72 24199.66 15299.70 14599.29 6499.63 37398.07 21199.81 18899.62 138
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25699.86 4999.68 9099.65 15499.88 4297.67 24699.87 20399.03 13399.86 15399.76 66
our_test_398.85 23599.09 16798.13 34599.66 16994.90 38597.72 36399.58 20399.07 19699.64 15599.62 19698.19 20999.93 9498.41 18199.95 8399.55 174
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18399.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19399.65 15898.99 20299.64 15599.72 13099.39 5099.86 22298.23 19699.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FA-MVS(test-final)98.52 26798.32 27399.10 27499.48 24498.67 26699.77 1598.60 35597.35 34499.63 15999.80 8393.07 33799.84 25597.92 22299.30 32098.78 354
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19799.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32698.89 24899.72 12399.29 15599.63 15999.70 14596.47 29199.89 17598.17 20599.82 17999.50 205
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32599.29 29898.18 29999.63 15999.62 19699.18 7899.68 35598.20 19999.74 21899.30 265
XVG-OURS-SEG-HR99.16 17998.99 20199.66 11699.84 6199.64 11098.25 31999.73 11498.39 27699.63 15999.43 27099.70 2499.90 15797.34 27498.64 36699.44 228
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28799.77 1599.80 8099.73 7499.63 15999.30 30198.02 22199.98 2099.43 7299.69 23899.55 174
lupinMVS98.96 22098.87 22099.24 25399.57 20198.40 28798.12 32999.18 32298.28 29299.63 15999.13 32798.02 22199.97 3398.22 19799.69 23899.35 252
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18799.31 29499.16 18399.62 16899.61 20598.35 19199.91 13997.88 22699.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 17599.62 16899.61 20598.58 15799.91 13997.72 24399.80 19399.77 60
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
new_pmnet98.88 23298.89 21898.84 30999.70 15197.62 33498.15 32599.50 24497.98 30999.62 16899.54 24298.15 21299.94 7797.55 26199.84 16298.95 336
FMVSNet398.80 23998.63 24199.32 23399.13 33198.72 26399.10 20499.48 24999.23 16799.62 16899.64 17892.57 34199.86 22298.96 14299.90 11599.39 241
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 334
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24299.54 22299.46 13299.61 17499.70 14596.31 29899.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 20398.85 22299.55 16899.80 8699.25 20399.73 2799.15 32599.37 14799.61 17499.71 13894.73 31999.81 29497.70 24899.88 13499.58 164
cl____98.54 26498.41 26298.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.85 32799.78 30897.97 21999.89 12499.17 291
DIV-MVS_self_test98.54 26498.42 26198.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.87 32699.78 30897.97 21999.89 12499.18 289
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25699.72 12398.36 27999.60 17799.71 13898.92 11199.91 13997.08 29499.84 16299.40 239
miper_lstm_enhance98.65 25398.60 24298.82 31499.20 32197.33 34497.78 36199.66 14899.01 20199.59 18099.50 25194.62 32099.85 24098.12 20899.90 11599.26 270
YYNet198.95 22398.99 20198.84 30999.64 17397.14 35098.22 32199.32 29098.92 21499.59 18099.66 17197.40 25899.83 27098.27 19399.90 11599.55 174
eth_miper_zixun_eth98.68 25198.71 23598.60 32499.10 33996.84 35797.52 37599.54 22298.94 20999.58 18299.48 25896.25 30199.76 31898.01 21599.93 10199.21 280
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34299.25 30898.78 23499.58 18299.44 26998.24 20299.76 31898.74 16499.93 10199.22 278
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23699.40 27399.08 19499.58 18299.64 17898.90 11699.83 27097.44 26899.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19399.52 23697.40 34199.57 18599.64 17898.93 11099.83 27097.61 25899.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14999.35 28598.77 23699.57 18599.70 14599.27 6999.88 18997.71 24599.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14799.61 17699.19 17499.57 18599.64 17898.76 13199.90 15797.29 27799.62 25999.56 171
WR-MVS99.11 19098.93 20999.66 11699.30 30199.42 16598.42 30799.37 28199.04 19999.57 18599.20 32396.89 27999.86 22298.66 17199.87 14599.70 79
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17299.60 18898.55 25899.57 18599.67 16699.03 10099.94 7797.01 29699.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26398.87 22099.57 18599.82 7398.06 21899.87 20398.69 16999.73 22399.15 295
CMPMVSbinary77.52 2398.50 27098.19 28599.41 20898.33 39599.56 13599.01 22899.59 19495.44 37999.57 18599.80 8395.64 30899.46 39596.47 33099.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053097.45 32496.95 33498.94 29299.68 16397.73 33199.09 20994.19 40398.61 25499.56 19299.30 30184.30 39499.93 9498.27 19399.54 28599.16 293
Anonymous20240521198.75 24398.46 25799.63 13599.34 29099.66 10199.47 9997.65 38199.28 15899.56 19299.50 25193.15 33599.84 25598.62 17299.58 27499.40 239
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9198.32 36999.80 6499.56 19299.69 15196.99 27799.85 24098.99 13699.73 22399.50 205
MDA-MVSNet_test_wron98.95 22398.99 20198.85 30799.64 17397.16 34898.23 32099.33 28898.93 21299.56 19299.66 17197.39 26099.83 27098.29 18999.88 13499.55 174
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31199.48 12599.56 19299.77 10894.89 31599.93 9498.72 16699.89 12499.63 127
test_part299.62 17999.67 9999.55 197
UnsupCasMVSNet_eth98.83 23698.57 24899.59 15299.68 16399.45 15698.99 23699.67 14499.48 12599.55 19799.36 28894.92 31499.86 22298.95 14696.57 39999.45 223
CL-MVSNet_self_test98.71 24898.56 25199.15 26599.22 31698.66 26997.14 38899.51 24098.09 30399.54 19999.27 30796.87 28099.74 32598.43 18098.96 34599.03 326
c3_l98.72 24798.71 23598.72 31999.12 33397.22 34797.68 36699.56 21098.90 21699.54 19999.48 25896.37 29799.73 32897.88 22699.88 13499.21 280
MSP-MVS99.04 20298.79 23199.81 4099.78 10599.73 7699.35 12199.57 20598.54 26199.54 19998.99 34996.81 28199.93 9496.97 29999.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 23398.59 24499.71 9999.50 23499.62 11799.01 22899.57 20596.80 36399.54 19999.63 18998.29 19899.91 13995.24 37099.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TinyColmap98.97 21698.93 20999.07 28099.46 25498.19 30097.75 36299.75 10598.79 23299.54 19999.70 14598.97 10799.62 37496.63 32199.83 17099.41 238
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24399.53 23198.27 29399.53 20499.73 12398.75 13399.87 20397.70 24899.83 17099.68 89
MSDG99.08 19498.98 20499.37 21999.60 18299.13 22397.54 37199.74 11098.84 22699.53 20499.55 24099.10 8799.79 30597.07 29599.86 15399.18 289
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.41 18399.91 13997.27 28099.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.57 15897.27 28099.61 26699.54 182
miper_ehance_all_eth98.59 25998.59 24498.59 32598.98 35697.07 35197.49 37699.52 23698.50 26599.52 20699.37 28496.41 29599.71 33497.86 23099.62 25999.00 332
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28699.48 24998.50 26599.52 20699.63 18999.14 8499.76 31897.89 22599.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9199.65 15898.07 30499.52 20699.69 15198.57 15899.92 11697.18 29199.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8699.70 13198.35 28499.51 21199.50 25199.31 6299.88 18998.18 20399.84 16299.69 83
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
pmmvs398.08 30297.80 31198.91 29899.41 26997.69 33397.87 35899.66 14895.87 37399.50 21399.51 24890.35 36899.97 3398.55 17599.47 29899.08 316
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10599.82 6798.33 28999.50 21399.78 10197.90 22999.65 37096.78 31099.83 17099.44 228
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21697.79 38099.99 299.48 21699.59 21896.29 30099.95 6399.94 1699.98 4199.88 25
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29099.81 7699.61 10999.48 21699.41 27298.47 17499.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21999.87 4699.71 8099.47 21899.79 9398.24 20299.98 2099.38 8099.96 7099.83 40
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17299.60 18898.85 22399.47 21899.58 22198.38 18899.92 11696.92 30199.54 28599.57 169
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12599.31 29499.67 9499.47 21899.57 22996.48 29099.84 25599.15 11999.30 32099.47 218
ACMP97.51 1499.05 19998.84 22499.67 10999.78 10599.55 13898.88 24999.66 14897.11 35699.47 21899.60 21399.07 9499.89 17596.18 34399.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline197.73 31497.33 32498.96 28999.30 30197.73 33199.40 10998.42 36399.33 15299.46 22299.21 32191.18 35599.82 27998.35 18591.26 40599.32 259
Test_1112_low_res98.95 22398.73 23399.63 13599.68 16399.15 22298.09 33399.80 8097.14 35499.46 22299.40 27696.11 30399.89 17599.01 13599.84 16299.84 36
MP-MVS-pluss99.14 18398.92 21399.80 4599.83 6599.83 2998.61 27999.63 16696.84 36199.44 22499.58 22198.81 12199.91 13997.70 24899.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 21298.97 20599.09 27599.11 33898.19 30098.76 27099.33 28898.49 26799.44 22499.58 22198.21 20799.69 34398.20 19999.62 25999.39 241
OMC-MVS98.90 22898.72 23499.44 19599.39 27199.42 16598.58 28699.64 16497.31 34699.44 22499.62 19698.59 15599.69 34396.17 34499.79 19899.22 278
OpenMVS_ROBcopyleft97.31 1797.36 32896.84 33898.89 30599.29 30399.45 15698.87 25099.48 24986.54 40299.44 22499.74 11997.34 26299.86 22291.61 39399.28 32397.37 397
miper_enhance_ethall98.03 30497.94 30498.32 33898.27 39696.43 36396.95 39299.41 26696.37 36899.43 22898.96 35694.74 31899.69 34397.71 24599.62 25998.83 350
1112_ss99.05 19998.84 22499.67 10999.66 16999.29 19498.52 29899.82 6797.65 32899.43 22899.16 32596.42 29399.91 13999.07 13199.84 16299.80 47
SF-MVS99.10 19398.93 20999.62 14499.58 19199.51 14399.13 19399.65 15897.97 31099.42 23099.61 20598.86 11899.87 20396.45 33299.68 24399.49 210
xiu_mvs_v2_base99.02 20599.11 15898.77 31699.37 27698.09 30998.13 32899.51 24099.47 12999.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 382
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12599.53 23199.27 15999.42 23099.63 18998.21 20799.95 6397.83 23699.79 19899.65 112
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18399.72 12397.99 30899.42 23099.60 21398.81 12199.93 9496.91 30299.74 21899.66 104
114514_t98.49 27298.11 29099.64 12899.73 13799.58 13299.24 15699.76 10089.94 39999.42 23099.56 23397.76 24199.86 22297.74 24299.82 17999.47 218
PMVScopyleft92.94 2198.82 23798.81 22898.85 30799.84 6197.99 31599.20 16799.47 25299.71 8099.42 23099.82 7398.09 21599.47 39393.88 38999.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cl2297.56 32297.28 32598.40 33398.37 39496.75 35897.24 38699.37 28197.31 34699.41 23699.22 31987.30 38099.37 39797.70 24899.62 25999.08 316
PS-MVSNAJ99.00 21299.08 16998.76 31799.37 27698.10 30898.00 34499.51 24099.47 12999.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 386
DSMNet-mixed99.48 8799.65 5098.95 29199.71 14397.27 34599.50 9199.82 6799.59 11799.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32999.53 23199.36 14999.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10799.85 5498.79 23299.41 23699.60 21398.92 11199.92 11698.02 21299.92 10599.43 234
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14499.68 14099.54 11999.40 24199.56 23399.07 9499.82 27996.01 34899.96 7099.11 304
LF4IMVS99.01 21098.92 21399.27 24599.71 14399.28 19698.59 28499.77 9598.32 29099.39 24299.41 27298.62 15099.84 25596.62 32299.84 16298.69 358
VDDNet98.97 21698.82 22799.42 20199.71 14398.81 25599.62 6298.68 34899.81 6199.38 24399.80 8394.25 32399.85 24098.79 15799.32 31899.59 159
sss98.90 22898.77 23299.27 24599.48 24498.44 28498.72 27399.32 29097.94 31499.37 24499.35 29396.31 29899.91 13998.85 15099.63 25899.47 218
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13299.59 19498.36 27999.36 24599.37 28498.80 12599.91 13997.43 26999.75 21199.68 89
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13299.59 19498.36 27999.35 24699.38 28298.61 15299.93 9497.43 26999.75 21199.67 95
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32599.35 24699.25 31299.23 7399.92 11697.21 28999.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21099.23 16799.35 24699.80 8399.17 7999.95 6398.21 19899.84 16299.59 159
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31598.58 28699.82 6797.62 32999.34 24999.71 13898.52 17099.77 31697.98 21799.97 5699.52 198
PVSNet_Blended98.70 24998.59 24499.02 28499.54 21597.99 31597.58 37099.82 6795.70 37799.34 24998.98 35298.52 17099.77 31697.98 21799.83 17099.30 265
FE-MVS97.85 30997.42 32299.15 26599.44 25998.75 26199.77 1598.20 37295.85 37499.33 25199.80 8388.86 37699.88 18996.40 33399.12 33498.81 351
MIMVSNet98.43 27898.20 28299.11 27299.53 22198.38 29199.58 7698.61 35398.96 20699.33 25199.76 11190.92 35999.81 29497.38 27299.76 20999.15 295
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25799.33 25199.53 24498.88 11799.68 35596.01 34899.65 25499.02 330
h-mvs3398.61 25498.34 27099.44 19599.60 18298.67 26699.27 14799.44 26099.68 9099.32 25499.49 25592.50 344100.00 199.24 10496.51 40099.65 112
hse-mvs298.52 26798.30 27599.16 26399.29 30398.60 27698.77 26999.02 33499.68 9099.32 25499.04 34192.50 34499.85 24099.24 10497.87 39199.03 326
GST-MVS99.16 17998.96 20799.75 7499.73 13799.73 7699.20 16799.55 21698.22 29599.32 25499.35 29398.65 14899.91 13996.86 30599.74 21899.62 138
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13299.59 19498.41 27399.32 25499.36 28898.73 13799.93 9497.29 27799.74 21899.67 95
test_one_060199.63 17599.76 6199.55 21699.23 16799.31 25899.61 20598.59 155
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21299.55 21698.63 25099.31 25899.68 16298.19 20999.78 30898.18 20399.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS98.46 27598.19 28599.26 24899.24 31398.52 28099.62 6296.94 39099.87 4199.31 25899.58 22191.04 35799.81 29498.68 17099.42 30599.45 223
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35699.73 11498.68 24599.31 25899.48 25899.09 8999.66 36497.70 24899.77 20799.29 268
MVS-HIRNet97.86 30898.22 28096.76 37699.28 30691.53 40398.38 30992.60 40699.13 18999.31 25899.96 1297.18 27199.68 35598.34 18699.83 17099.07 321
iter_conf05_1198.54 26498.33 27299.18 26099.07 34499.20 21697.94 35197.59 38299.17 18099.30 26398.92 36294.79 31799.86 22298.29 18999.89 12498.47 373
tmp_tt95.75 36595.42 35996.76 37689.90 41294.42 38798.86 25197.87 37978.01 40399.30 26399.69 15197.70 24295.89 40799.29 10098.14 38499.95 11
9.1498.64 23999.45 25898.81 26199.60 18897.52 33599.28 26599.56 23398.53 16799.83 27095.36 36999.64 256
CPTT-MVS98.74 24498.44 25999.64 12899.61 18099.38 17599.18 17299.55 21696.49 36599.27 26699.37 28497.11 27399.92 11695.74 36199.67 24999.62 138
CLD-MVS98.76 24298.57 24899.33 22999.57 20198.97 24097.53 37399.55 21696.41 36699.27 26699.13 32799.07 9499.78 30896.73 31399.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42098.41 28098.41 26298.40 33399.34 29095.89 37396.94 39399.44 26098.80 23199.25 26899.52 24693.51 33399.98 2098.94 14799.98 4199.32 259
FMVSNet597.80 31197.25 32799.42 20198.83 36798.97 24099.38 11399.80 8098.87 22099.25 26899.69 15180.60 39899.91 13998.96 14299.90 11599.38 243
PHI-MVS99.11 19098.95 20899.59 15299.13 33199.59 12899.17 17799.65 15897.88 31899.25 26899.46 26598.97 10799.80 30297.26 28299.82 17999.37 246
Vis-MVSNet (Re-imp)98.77 24198.58 24799.34 22699.78 10598.88 25199.61 6799.56 21099.11 19399.24 27199.56 23393.00 33999.78 30897.43 26999.89 12499.35 252
CANet99.11 19099.05 17999.28 24298.83 36798.56 27798.71 27599.41 26699.25 16399.23 27299.22 31997.66 25099.94 7799.19 11199.97 5699.33 256
Patchmatch-test98.10 30197.98 29898.48 33099.27 30896.48 36199.40 10999.07 33098.81 22999.23 27299.57 22990.11 37099.87 20396.69 31499.64 25699.09 310
MG-MVS98.52 26798.39 26498.94 29299.15 32897.39 34398.18 32299.21 31898.89 21999.23 27299.63 18997.37 26199.74 32594.22 38399.61 26699.69 83
test_yl98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
DCV-MVSNet98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
test0.0.03 197.37 32796.91 33798.74 31897.72 40397.57 33597.60 36997.36 38898.00 30699.21 27798.02 39090.04 37199.79 30598.37 18395.89 40398.86 347
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12099.49 24899.17 18099.21 27799.67 16698.78 12899.66 36499.09 12999.66 25299.10 306
CDPH-MVS98.56 26298.20 28299.61 14799.50 23499.46 15198.32 31399.41 26695.22 38299.21 27799.10 33598.34 19399.82 27995.09 37499.66 25299.56 171
WTY-MVS98.59 25998.37 26699.26 24899.43 26398.40 28798.74 27199.13 32898.10 30199.21 27799.24 31794.82 31699.90 15797.86 23098.77 35699.49 210
MDTV_nov1_ep13_2view91.44 40499.14 18797.37 34399.21 27791.78 35196.75 31199.03 326
BH-untuned98.22 29698.09 29198.58 32799.38 27497.24 34698.55 29298.98 33797.81 32399.20 28298.76 37097.01 27699.65 37094.83 37598.33 37498.86 347
CR-MVSNet98.35 28798.20 28298.83 31199.05 34798.12 30599.30 13599.67 14497.39 34299.16 28399.79 9391.87 34999.91 13998.78 16198.77 35698.44 375
RPMNet98.60 25698.53 25398.83 31199.05 34798.12 30599.30 13599.62 16999.86 4599.16 28399.74 11992.53 34399.92 11698.75 16398.77 35698.44 375
thisisatest051596.98 33596.42 34298.66 32299.42 26897.47 33897.27 38494.30 40297.24 34899.15 28598.86 36585.01 39199.87 20397.10 29399.39 30898.63 359
LS3D99.24 14999.11 15899.61 14798.38 39399.79 4699.57 7999.68 14099.61 10999.15 28599.71 13898.70 13999.91 13997.54 26299.68 24399.13 303
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14499.56 21098.19 29899.14 28799.29 30498.84 12099.92 11697.53 26499.80 19399.64 122
HQP_MVS98.90 22898.68 23899.55 16899.58 19199.24 20798.80 26499.54 22298.94 20999.14 28799.25 31297.24 26599.82 27995.84 35899.78 20399.60 152
plane_prior399.31 19198.36 27999.14 287
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24499.44 13599.12 29099.78 10198.77 13099.94 7797.87 22999.72 22999.62 138
ZD-MVS99.43 26399.61 12399.43 26396.38 36799.11 29199.07 33797.86 23299.92 11694.04 38699.49 296
PatchMatch-RL98.68 25198.47 25699.30 23999.44 25999.28 19698.14 32799.54 22297.12 35599.11 29199.25 31297.80 23799.70 33796.51 32699.30 32098.93 338
SCA98.11 30098.36 26797.36 36799.20 32192.99 39598.17 32498.49 36098.24 29499.10 29399.57 22996.01 30599.94 7796.86 30599.62 25999.14 300
PatchT98.45 27798.32 27398.83 31198.94 35898.29 29499.24 15698.82 34299.84 5399.08 29499.76 11191.37 35299.94 7798.82 15399.00 34398.26 381
UnsupCasMVSNet_bld98.55 26398.27 27799.40 21099.56 21299.37 17897.97 34999.68 14097.49 33799.08 29499.35 29395.41 31399.82 27997.70 24898.19 38199.01 331
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35499.71 12698.76 23999.08 29499.47 26299.17 7999.54 38597.85 23299.76 20999.54 182
TAPA-MVS97.92 1398.03 30497.55 32099.46 18999.47 25099.44 15898.50 30099.62 16986.79 40099.07 29799.26 31098.26 20199.62 37497.28 27999.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11399.62 16998.38 27799.06 29899.27 30798.79 12699.94 7797.51 26599.82 17999.66 104
MCST-MVS99.02 20598.81 22899.65 12199.58 19199.49 14598.58 28699.07 33098.40 27599.04 29999.25 31298.51 17299.80 30297.31 27699.51 29199.65 112
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11399.54 22298.34 28899.01 30099.50 25198.53 16799.93 9497.18 29199.78 20399.66 104
PVSNet97.47 1598.42 27998.44 25998.35 33599.46 25496.26 36696.70 39699.34 28797.68 32799.00 30199.13 32797.40 25899.72 33097.59 26099.68 24399.08 316
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21699.82 6799.50 12398.97 30299.05 33998.98 10599.98 2098.20 19999.24 32998.62 360
MP-MVScopyleft99.06 19698.83 22699.76 6499.76 11799.71 8399.32 12799.50 24498.35 28498.97 30299.48 25898.37 18999.92 11695.95 35499.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PCF-MVS96.03 1896.73 34195.86 35299.33 22999.44 25999.16 22096.87 39499.44 26086.58 40198.95 30499.40 27694.38 32299.88 18987.93 40099.80 19398.95 336
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验297.94 35195.33 38198.94 30599.88 18996.75 311
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19799.79 8699.48 12598.93 30698.55 37999.40 4999.93 9498.51 17799.52 29098.28 380
BH-RMVSNet98.41 28098.14 28899.21 25599.21 31898.47 28198.60 28198.26 37098.35 28498.93 30699.31 29997.20 27099.66 36494.32 38199.10 33699.51 200
F-COLMAP98.74 24498.45 25899.62 14499.57 20199.47 14798.84 25499.65 15896.31 36998.93 30699.19 32497.68 24599.87 20396.52 32599.37 31199.53 187
Effi-MVS+-dtu99.07 19598.92 21399.52 17698.89 36399.78 4999.15 18599.66 14899.34 15098.92 30999.24 31797.69 24499.98 2098.11 20999.28 32398.81 351
EMVS96.96 33697.28 32595.99 38698.76 37891.03 40595.26 40198.61 35399.34 15098.92 30998.88 36493.79 32899.66 36492.87 39099.05 33997.30 398
tpmrst97.73 31498.07 29296.73 37898.71 38292.00 39999.10 20498.86 33998.52 26398.92 30999.54 24291.90 34799.82 27998.02 21299.03 34198.37 377
MSLP-MVS++99.05 19999.09 16798.91 29899.21 31898.36 29298.82 26099.47 25298.85 22398.90 31299.56 23398.78 12899.09 40098.57 17499.68 24399.26 270
KD-MVS_2432*160095.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
miper_refine_blended95.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
E-PMN97.14 33397.43 32196.27 38398.79 37391.62 40295.54 40099.01 33699.44 13598.88 31399.12 33192.78 34099.68 35594.30 38299.03 34197.50 394
testdata99.42 20199.51 22898.93 24699.30 29796.20 37098.87 31699.40 27698.33 19599.89 17596.29 33899.28 32399.44 228
CANet_DTU98.91 22698.85 22299.09 27598.79 37398.13 30498.18 32299.31 29499.48 12598.86 31799.51 24896.56 28799.95 6399.05 13299.95 8399.19 287
DP-MVS Recon98.50 27098.23 27899.31 23699.49 23999.46 15198.56 29199.63 16694.86 38898.85 31899.37 28497.81 23699.59 38096.08 34599.44 30198.88 345
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12299.79 8698.41 27398.84 31998.89 36398.75 13399.84 25598.15 20799.51 29198.89 344
DPM-MVS98.28 29097.94 30499.32 23399.36 27999.11 22597.31 38398.78 34496.88 35998.84 31999.11 33497.77 23999.61 37894.03 38799.36 31299.23 276
MDTV_nov1_ep1397.73 31598.70 38390.83 40699.15 18598.02 37498.51 26498.82 32199.61 20590.98 35899.66 36496.89 30498.92 348
GA-MVS97.99 30797.68 31798.93 29599.52 22698.04 31397.19 38799.05 33398.32 29098.81 32298.97 35489.89 37399.41 39698.33 18799.05 33999.34 255
AdaColmapbinary98.60 25698.35 26999.38 21699.12 33399.22 21198.67 27699.42 26597.84 32298.81 32299.27 30797.32 26399.81 29495.14 37299.53 28799.10 306
WB-MVSnew98.34 28998.14 28898.96 28998.14 40297.90 32498.27 31697.26 38998.63 25098.80 32498.00 39297.77 23999.90 15797.37 27398.98 34499.09 310
CNVR-MVS98.99 21598.80 23099.56 16599.25 31199.43 16298.54 29599.27 30298.58 25698.80 32499.43 27098.53 16799.70 33797.22 28899.59 27399.54 182
Effi-MVS+99.06 19698.97 20599.34 22699.31 29798.98 23898.31 31499.91 3398.81 22998.79 32698.94 35899.14 8499.84 25598.79 15798.74 36099.20 284
PatchmatchNetpermissive97.65 31897.80 31197.18 37298.82 37092.49 39799.17 17798.39 36598.12 30098.79 32699.58 22190.71 36499.89 17597.23 28799.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM98.40 28297.99 29699.65 12199.39 27199.47 14799.67 4999.52 23691.70 39698.78 32899.80 8398.55 16199.95 6394.71 37899.75 21199.53 187
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32999.47 26298.47 17499.88 18997.62 25699.73 22399.67 95
X-MVStestdata96.09 35694.87 36899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32961.30 41498.47 17499.88 18997.62 25699.73 22399.67 95
HY-MVS98.23 998.21 29797.95 30098.99 28699.03 35098.24 29599.61 6798.72 34696.81 36298.73 33199.51 24894.06 32499.86 22296.91 30298.20 37998.86 347
dmvs_re98.69 25098.48 25599.31 23699.55 21399.42 16599.54 8498.38 36699.32 15398.72 33298.71 37296.76 28399.21 39896.01 34899.35 31499.31 263
alignmvs98.28 29097.96 29999.25 25199.12 33398.93 24699.03 22398.42 36399.64 10298.72 33297.85 39490.86 36299.62 37498.88 14999.13 33399.19 287
thres600view796.60 34496.16 34697.93 35199.63 17596.09 37099.18 17297.57 38398.77 23698.72 33297.32 40187.04 38399.72 33088.57 39898.62 36797.98 390
thres100view90096.39 34896.03 34997.47 36499.63 17595.93 37199.18 17297.57 38398.75 24098.70 33597.31 40287.04 38399.67 36087.62 40198.51 37196.81 399
test22299.51 22899.08 23297.83 36099.29 29895.21 38398.68 33699.31 29997.28 26499.38 30999.43 234
API-MVS98.38 28398.39 26498.35 33598.83 36799.26 20099.14 18799.18 32298.59 25598.66 33798.78 36998.61 15299.57 38294.14 38499.56 27696.21 401
MGCFI-Net99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
Fast-Effi-MVS+99.02 20598.87 22099.46 18999.38 27499.50 14499.04 21999.79 8697.17 35298.62 34098.74 37199.34 6099.95 6398.32 18899.41 30698.92 340
EPMVS96.53 34596.32 34397.17 37398.18 39992.97 39699.39 11189.95 41098.21 29698.61 34199.59 21886.69 38999.72 33096.99 29799.23 33198.81 351
新几何199.52 17699.50 23499.22 21199.26 30595.66 37898.60 34299.28 30597.67 24699.89 17595.95 35499.32 31899.45 223
HPM-MVS++copyleft98.96 22098.70 23799.74 7999.52 22699.71 8398.86 25199.19 32198.47 26998.59 34399.06 33898.08 21799.91 13996.94 30099.60 26999.60 152
PLCcopyleft97.35 1698.36 28497.99 29699.48 18599.32 29699.24 20798.50 30099.51 24095.19 38498.58 34498.96 35696.95 27899.83 27095.63 36299.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet99.38 11799.34 11199.49 18198.90 36098.90 24999.70 3599.35 28599.86 4598.57 34599.81 7998.50 17399.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM_NR98.36 28498.04 29399.33 22999.48 24498.93 24698.79 26799.28 30197.54 33398.56 34698.57 37797.12 27299.69 34394.09 38598.90 35199.38 243
tfpn200view996.30 35195.89 35097.53 36199.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37196.81 399
thres40096.40 34795.89 35097.92 35299.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37197.98 390
CNLPA98.57 26198.34 27099.28 24299.18 32599.10 23098.34 31199.41 26698.48 26898.52 34798.98 35297.05 27599.78 30895.59 36399.50 29498.96 334
PMMVS98.49 27298.29 27699.11 27298.96 35798.42 28697.54 37199.32 29097.53 33498.47 35098.15 38997.88 23199.82 27997.46 26799.24 32999.09 310
UWE-MVS96.21 35495.78 35497.49 36298.53 38893.83 39298.04 33993.94 40498.96 20698.46 35198.17 38879.86 39999.87 20396.99 29799.06 33798.78 354
test1299.54 17399.29 30399.33 18899.16 32498.43 35297.54 25399.82 27999.47 29899.48 214
NCCC98.82 23798.57 24899.58 15699.21 31899.31 19198.61 27999.25 30898.65 24898.43 35299.26 31097.86 23299.81 29496.55 32399.27 32699.61 148
thres20096.09 35695.68 35697.33 36999.48 24496.22 36798.53 29797.57 38398.06 30598.37 35496.73 40786.84 38799.61 37886.99 40498.57 36896.16 402
tpm97.15 33196.95 33497.75 35898.91 35994.24 38899.32 12797.96 37597.71 32698.29 35599.32 29786.72 38899.92 11698.10 21096.24 40299.09 310
原ACMM199.37 21999.47 25098.87 25399.27 30296.74 36498.26 35699.32 29797.93 22899.82 27995.96 35399.38 30999.43 234
ADS-MVSNet297.78 31297.66 31998.12 34699.14 32995.36 37899.22 16498.75 34596.97 35798.25 35799.64 17890.90 36099.94 7796.51 32699.56 27699.08 316
ADS-MVSNet97.72 31797.67 31897.86 35499.14 32994.65 38699.22 16498.86 33996.97 35798.25 35799.64 17890.90 36099.84 25596.51 32699.56 27699.08 316
dp96.86 33797.07 33096.24 38498.68 38490.30 41099.19 17198.38 36697.35 34498.23 35999.59 21887.23 38199.82 27996.27 33998.73 36298.59 362
TR-MVS97.44 32597.15 32998.32 33898.53 38897.46 33998.47 30297.91 37796.85 36098.21 36098.51 38196.42 29399.51 39192.16 39297.29 39597.98 390
HQP-NCC99.31 29797.98 34697.45 33898.15 361
ACMP_Plane99.31 29797.98 34697.45 33898.15 361
HQP4-MVS98.15 36199.70 33799.53 187
HQP-MVS98.36 28498.02 29599.39 21399.31 29798.94 24397.98 34699.37 28197.45 33898.15 36198.83 36696.67 28499.70 33794.73 37699.67 24999.53 187
CostFormer96.71 34296.79 34196.46 38298.90 36090.71 40899.41 10898.68 34894.69 39098.14 36599.34 29686.32 39099.80 30297.60 25998.07 38798.88 345
OpenMVScopyleft98.12 1098.23 29597.89 30999.26 24899.19 32399.26 20099.65 5899.69 13791.33 39798.14 36599.77 10898.28 19999.96 5495.41 36799.55 28098.58 364
test_prior297.95 35097.87 31998.05 36799.05 33997.90 22995.99 35199.49 296
MAR-MVS98.24 29497.92 30699.19 25898.78 37599.65 10799.17 17799.14 32695.36 38098.04 36898.81 36897.47 25599.72 33095.47 36699.06 33798.21 384
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR97.56 32297.07 33099.04 28398.80 37198.11 30797.63 36799.25 30894.56 39198.02 36998.25 38797.43 25799.68 35590.90 39698.74 36099.33 256
BH-w/o97.20 33097.01 33297.76 35799.08 34395.69 37498.03 34198.52 35795.76 37697.96 37098.02 39095.62 30999.47 39392.82 39197.25 39698.12 388
TEST999.35 28199.35 18598.11 33199.41 26694.83 38997.92 37198.99 34998.02 22199.85 240
train_agg98.35 28797.95 30099.57 16299.35 28199.35 18598.11 33199.41 26694.90 38697.92 37198.99 34998.02 22199.85 24095.38 36899.44 30199.50 205
tpm296.35 34996.22 34596.73 37898.88 36591.75 40199.21 16698.51 35893.27 39397.89 37399.21 32184.83 39299.70 33796.04 34798.18 38298.75 357
JIA-IIPM98.06 30397.92 30698.50 32998.59 38697.02 35298.80 26498.51 35899.88 4097.89 37399.87 4791.89 34899.90 15798.16 20697.68 39398.59 362
test_899.34 29099.31 19198.08 33599.40 27394.90 38697.87 37598.97 35498.02 22199.84 255
tpmvs97.39 32697.69 31696.52 38098.41 39291.76 40099.30 13598.94 33897.74 32497.85 37699.55 24092.40 34699.73 32896.25 34098.73 36298.06 389
testing396.48 34695.63 35799.01 28599.23 31597.81 32798.90 24799.10 32998.72 24197.84 37797.92 39372.44 41099.85 24097.21 28999.33 31699.35 252
test-LLR97.15 33196.95 33497.74 35998.18 39995.02 38397.38 37996.10 39298.00 30697.81 37898.58 37590.04 37199.91 13997.69 25498.78 35498.31 378
TESTMET0.1,196.24 35295.84 35397.41 36698.24 39793.84 39197.38 37995.84 39698.43 27097.81 37898.56 37879.77 40099.89 17597.77 23798.77 35698.52 367
test-mter96.23 35395.73 35597.74 35998.18 39995.02 38397.38 37996.10 39297.90 31597.81 37898.58 37579.12 40399.91 13997.69 25498.78 35498.31 378
agg_prior99.35 28199.36 18299.39 27697.76 38199.85 240
tpm cat196.78 33996.98 33396.16 38598.85 36690.59 40999.08 21299.32 29092.37 39497.73 38299.46 26591.15 35699.69 34396.07 34698.80 35398.21 384
PVSNet_095.53 1995.85 36495.31 36497.47 36498.78 37593.48 39495.72 39999.40 27396.18 37197.37 38397.73 39595.73 30799.58 38195.49 36581.40 40699.36 249
MVS95.72 36694.63 37198.99 28698.56 38797.98 32199.30 13598.86 33972.71 40597.30 38499.08 33698.34 19399.74 32589.21 39798.33 37499.26 270
EPNet98.13 29997.77 31499.18 26094.57 41097.99 31599.24 15697.96 37599.74 7397.29 38599.62 19693.13 33699.97 3398.59 17399.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dmvs_testset97.27 32996.83 33998.59 32599.46 25497.55 33699.25 15596.84 39198.78 23497.24 38697.67 39697.11 27398.97 40286.59 40698.54 37099.27 269
131498.00 30697.90 30898.27 34298.90 36097.45 34099.30 13599.06 33294.98 38597.21 38799.12 33198.43 18099.67 36095.58 36498.56 36997.71 393
ETVMVS96.14 35595.22 36598.89 30598.80 37198.01 31498.66 27798.35 36898.71 24397.18 38896.31 41374.23 40999.75 32296.64 32098.13 38698.90 342
AUN-MVS97.82 31097.38 32399.14 26999.27 30898.53 27898.72 27399.02 33498.10 30197.18 38899.03 34589.26 37599.85 24097.94 22197.91 38999.03 326
cascas96.99 33496.82 34097.48 36397.57 40695.64 37596.43 39899.56 21091.75 39597.13 39097.61 39995.58 31098.63 40496.68 31599.11 33598.18 387
testing9196.00 35995.32 36398.02 34798.76 37895.39 37798.38 30998.65 35298.82 22796.84 39196.71 40875.06 40799.71 33496.46 33198.23 37898.98 333
Syy-MVS98.17 29897.85 31099.15 26598.50 39098.79 25898.60 28199.21 31897.89 31696.76 39296.37 41195.47 31299.57 38299.10 12898.73 36299.09 310
myMVS_eth3d95.63 36794.73 36998.34 33798.50 39096.36 36498.60 28199.21 31897.89 31696.76 39296.37 41172.10 41199.57 38294.38 38098.73 36299.09 310
testing9995.86 36395.19 36697.87 35398.76 37895.03 38298.62 27898.44 36298.68 24596.67 39496.66 40974.31 40899.69 34396.51 32698.03 38898.90 342
testing1196.05 35895.41 36097.97 34998.78 37595.27 38098.59 28498.23 37198.86 22296.56 39596.91 40675.20 40699.69 34397.26 28298.29 37698.93 338
testing22295.60 36994.59 37298.61 32398.66 38597.45 34098.54 29597.90 37898.53 26296.54 39696.47 41070.62 41299.81 29495.91 35698.15 38398.56 366
FPMVS96.32 35095.50 35898.79 31599.60 18298.17 30398.46 30698.80 34397.16 35396.28 39799.63 18982.19 39599.09 40088.45 39998.89 35299.10 306
PAPM95.61 36894.71 37098.31 34099.12 33396.63 35996.66 39798.46 36190.77 39896.25 39898.68 37493.01 33899.69 34381.60 40797.86 39298.62 360
gg-mvs-nofinetune95.87 36295.17 36797.97 34998.19 39896.95 35399.69 4289.23 41199.89 3596.24 39999.94 1681.19 39699.51 39193.99 38898.20 37997.44 395
baseline296.83 33896.28 34498.46 33199.09 34296.91 35598.83 25693.87 40597.23 34996.23 40098.36 38488.12 37899.90 15796.68 31598.14 38498.57 365
EPNet_dtu97.62 31997.79 31397.11 37496.67 40792.31 39898.51 29998.04 37399.24 16595.77 40199.47 26293.78 32999.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft97.98 34899.69 15596.95 35399.26 30575.51 40495.74 40298.28 38696.47 29199.62 37491.23 39597.89 39097.38 396
test_method91.72 37292.32 37589.91 38993.49 41170.18 41490.28 40299.56 21061.71 40695.39 40399.52 24693.90 32599.94 7798.76 16298.27 37799.62 138
IB-MVS95.41 2095.30 37094.46 37497.84 35598.76 37895.33 37997.33 38296.07 39496.02 37295.37 40497.41 40076.17 40599.96 5497.54 26295.44 40498.22 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND97.36 36797.59 40496.87 35699.70 3588.49 41294.64 40597.26 40380.66 39799.12 39991.50 39496.50 40196.08 403
ET-MVSNet_ETH3D96.78 33996.07 34898.91 29899.26 31097.92 32397.70 36596.05 39597.96 31392.37 40698.43 38387.06 38299.90 15798.27 19397.56 39498.91 341
MVEpermissive92.54 2296.66 34396.11 34798.31 34099.68 16397.55 33697.94 35195.60 39799.37 14790.68 40798.70 37396.56 28798.61 40586.94 40599.55 28098.77 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EGC-MVSNET89.05 37385.52 37699.64 12899.89 3999.78 4999.56 8199.52 23624.19 40749.96 40899.83 6699.15 8199.92 11697.71 24599.85 15799.21 280
test12329.31 37433.05 37918.08 39025.93 41412.24 41597.53 37310.93 41511.78 40824.21 40950.08 41821.04 4138.60 40923.51 40832.43 40833.39 405
testmvs28.94 37533.33 37715.79 39126.03 4139.81 41696.77 39515.67 41411.55 40923.87 41050.74 41719.03 4148.53 41023.21 40933.07 40729.03 406
test_blank8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.88 37633.17 3780.00 3920.00 4150.00 4170.00 40399.62 1690.00 4100.00 41199.13 32799.82 130.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas16.61 37722.14 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 199.28 660.00 4110.00 4100.00 4090.00 407
sosnet-low-res8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
sosnet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
Regformer8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.26 38611.02 3890.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41199.16 3250.00 4150.00 4110.00 4100.00 4090.00 407
uanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS96.36 36495.20 371
MSC_two_6792asdad99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
No_MVS99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
eth-test20.00 415
eth-test0.00 415
OPU-MVS99.29 24099.12 33399.44 15899.20 16799.40 27699.00 10198.84 40396.54 32499.60 26999.58 164
save fliter99.53 22199.25 20398.29 31599.38 28099.07 196
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18799.61 17699.92 11697.88 22699.72 22999.77 60
GSMVS99.14 300
sam_mvs190.81 36399.14 300
sam_mvs90.52 367
MTGPAbinary99.53 231
test_post199.14 18751.63 41689.54 37499.82 27996.86 305
test_post52.41 41590.25 36999.86 222
patchmatchnet-post99.62 19690.58 36599.94 77
MTMP99.09 20998.59 356
gm-plane-assit97.59 40489.02 41293.47 39298.30 38599.84 25596.38 335
test9_res95.10 37399.44 30199.50 205
agg_prior294.58 37999.46 30099.50 205
test_prior499.19 21898.00 344
test_prior99.46 18999.35 28199.22 21199.39 27699.69 34399.48 214
新几何298.04 339
旧先验199.49 23999.29 19499.26 30599.39 28097.67 24699.36 31299.46 222
无先验98.01 34299.23 31295.83 37599.85 24095.79 36099.44 228
原ACMM297.92 354
testdata299.89 17595.99 351
segment_acmp98.37 189
testdata197.72 36397.86 321
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 265
plane_prior599.54 22299.82 27995.84 35899.78 20399.60 152
plane_prior499.25 312
plane_prior298.80 26498.94 209
plane_prior199.51 228
plane_prior99.24 20798.42 30797.87 31999.71 232
n20.00 416
nn0.00 416
door-mid99.83 62
test1199.29 298
door99.77 95
HQP5-MVS98.94 243
BP-MVS94.73 376
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 284
NP-MVS99.40 27099.13 22398.83 366
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 183