This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 10
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 57100.00 199.90 12100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 15
PS-MVSNAJss99.84 899.82 899.89 999.96 499.77 4999.68 4399.85 2899.95 599.98 399.92 1899.28 4399.98 999.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 999.96 499.78 4699.70 3499.86 2499.89 1799.98 399.90 2399.94 199.98 999.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 599.96 499.79 4399.72 2999.88 1999.92 1099.98 399.93 1599.94 199.98 999.77 12100.00 199.92 3
test_djsdf99.84 899.81 999.91 299.94 1199.84 2299.77 1499.80 5299.73 5399.97 699.92 1899.77 799.98 999.43 47100.00 199.90 4
LTVRE_ROB99.19 199.88 499.87 499.88 1399.91 2099.90 599.96 199.92 999.90 1299.97 699.87 3499.81 599.95 4799.54 3499.99 1299.80 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
dcpmvs_299.61 4499.64 3299.53 16299.79 7398.82 24999.58 7399.97 299.95 599.96 899.76 8898.44 15899.99 699.34 6199.96 5299.78 34
CHOSEN 1792x268899.39 8999.30 9799.65 10999.88 3099.25 19498.78 24499.88 1998.66 21699.96 899.79 7097.45 24099.93 7899.34 6199.99 1299.78 34
wuyk23d97.58 30299.13 12892.93 36099.69 13199.49 13499.52 8099.77 6697.97 27899.96 899.79 7099.84 399.94 6295.85 32599.82 15679.36 376
UniMVSNet_ETH3D99.85 799.83 799.90 599.89 2699.91 299.89 499.71 9899.93 899.95 1199.89 2799.71 999.96 3799.51 3999.97 3899.84 15
pmmvs699.86 699.86 699.83 2699.94 1199.90 599.83 699.91 1299.85 3299.94 1299.95 1399.73 899.90 14299.65 1999.97 3899.69 60
v7n99.82 1099.80 1099.88 1399.96 499.84 2299.82 899.82 4199.84 3599.94 1299.91 2199.13 6199.96 3799.83 999.99 1299.83 19
Gipumacopyleft99.57 4799.59 4199.49 17399.98 399.71 7699.72 2999.84 3499.81 4199.94 1299.78 7798.91 8899.71 31398.41 15499.95 6199.05 305
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.68 2899.69 2399.65 10999.80 6399.40 16099.66 5199.76 7199.64 7899.93 1599.85 4598.66 12599.84 24099.88 699.99 1299.71 53
OurMVSNet-221017-099.75 1699.71 1799.84 2499.96 499.83 2799.83 699.85 2899.80 4499.93 1599.93 1598.54 14299.93 7899.59 2499.98 2699.76 44
MIMVSNet199.66 3399.62 3499.80 3499.94 1199.87 1199.69 4099.77 6699.78 4999.93 1599.89 2797.94 20899.92 9899.65 1999.98 2699.62 116
DeepC-MVS98.90 499.62 4299.61 3899.67 9799.72 11699.44 14899.24 14199.71 9899.27 13699.93 1599.90 2399.70 1199.93 7898.99 11099.99 1299.64 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 999.73 2699.85 2899.70 6199.92 1999.93 1599.45 2599.97 1999.36 59100.00 199.85 14
v1099.69 2599.69 2399.66 10499.81 5899.39 16299.66 5199.75 7899.60 9299.92 1999.87 3498.75 11499.86 20599.90 299.99 1299.73 49
bld_raw_conf00599.81 1199.79 1199.86 1899.94 1199.85 1599.77 1499.90 1599.97 299.92 1999.86 4199.21 5099.94 6299.59 2499.98 2699.78 34
bld_raw_dy_0_6499.70 2299.65 2999.85 2199.95 1099.77 4999.66 5199.71 9899.95 599.91 2299.77 8498.35 170100.00 199.54 3499.99 1299.79 32
RRT_MVS99.67 3199.59 4199.91 299.94 1199.88 999.78 1199.27 29199.87 2499.91 2299.87 3498.04 19999.96 3799.68 1799.99 1299.90 4
LCM-MVSNet-Re99.28 11699.15 12499.67 9799.33 27699.76 5799.34 10999.97 298.93 18799.91 2299.79 7098.68 12099.93 7896.80 28199.56 25999.30 250
TransMVSNet (Re)99.78 1499.77 1399.81 3199.91 2099.85 1599.75 2099.86 2499.70 6199.91 2299.89 2799.60 1999.87 18599.59 2499.74 19799.71 53
mvsmamba99.74 1999.70 1899.85 2199.93 1799.83 2799.76 1799.81 5099.96 399.91 2299.81 6198.60 13399.94 6299.58 2999.98 2699.77 39
test_low_dy_conf_00199.75 1699.70 1899.90 599.94 1199.85 1599.74 2299.54 19999.88 2299.90 2799.89 2798.84 9799.95 4799.59 2499.98 2699.90 4
tfpnnormal99.43 7599.38 7899.60 13799.87 3499.75 6199.59 7199.78 6399.71 5799.90 2799.69 12598.85 9699.90 14297.25 25799.78 18099.15 281
Anonymous2023121199.62 4299.57 4899.76 5299.61 15699.60 11599.81 999.73 8699.82 4099.90 2799.90 2397.97 20799.86 20599.42 5299.96 5299.80 26
v124099.56 5099.58 4599.51 16799.80 6399.00 22999.00 20699.65 13299.15 16199.90 2799.75 9399.09 6499.88 17399.90 299.96 5299.67 73
EU-MVSNet99.39 8999.62 3498.72 29899.88 3096.44 33999.56 7799.85 2899.90 1299.90 2799.85 4598.09 19599.83 25199.58 2999.95 6199.90 4
IterMVS-SCA-FT99.00 18999.16 12198.51 30599.75 10395.90 34798.07 30999.84 3499.84 3599.89 3299.73 9996.01 28799.99 699.33 65100.00 199.63 105
v14419299.55 5399.54 5399.58 14399.78 8099.20 20999.11 18499.62 14399.18 15199.89 3299.72 10598.66 12599.87 18599.88 699.97 3899.66 83
pm-mvs199.79 1399.79 1199.78 4299.91 2099.83 2799.76 1799.87 2199.73 5399.89 3299.87 3499.63 1499.87 18599.54 3499.92 8499.63 105
lessismore_v099.64 11699.86 3699.38 16590.66 38099.89 3299.83 5194.56 30199.97 1999.56 3299.92 8499.57 150
SixPastTwentyTwo99.42 7899.30 9799.76 5299.92 1999.67 9299.70 3499.14 31499.65 7699.89 3299.90 2396.20 28399.94 6299.42 5299.92 8499.67 73
HyFIR lowres test98.91 20298.64 21799.73 7899.85 3999.47 13798.07 30999.83 3698.64 21899.89 3299.60 18992.57 320100.00 199.33 6599.97 3899.72 50
test111197.74 29498.16 26896.49 35399.60 15889.86 38299.71 3391.21 37999.89 1799.88 3899.87 3493.73 31099.90 14299.56 3299.99 1299.70 56
KD-MVS_self_test99.63 3999.59 4199.76 5299.84 4099.90 599.37 10499.79 5899.83 3899.88 3899.85 4598.42 16199.90 14299.60 2399.73 20499.49 194
test_part198.63 23398.26 25699.75 6299.40 24999.49 13499.67 4799.68 11399.86 2799.88 3899.86 4186.73 36799.93 7899.34 6199.97 3899.81 25
new-patchmatchnet99.35 9999.57 4898.71 30099.82 5196.62 33798.55 26599.75 7899.50 10099.88 3899.87 3499.31 3999.88 17399.43 47100.00 199.62 116
v192192099.56 5099.57 4899.55 15699.75 10399.11 21799.05 19699.61 15099.15 16199.88 3899.71 11299.08 6899.87 18599.90 299.97 3899.66 83
NR-MVSNet99.40 8599.31 9299.68 9499.43 24099.55 12799.73 2699.50 22599.46 11199.88 3899.36 27097.54 23799.87 18598.97 11499.87 12199.63 105
K. test v398.87 21098.60 22099.69 9399.93 1799.46 14199.74 2294.97 37299.78 4999.88 3899.88 3193.66 31199.97 1999.61 2299.95 6199.64 100
v119299.57 4799.57 4899.57 14999.77 8899.22 20399.04 19899.60 16399.18 15199.87 4599.72 10599.08 6899.85 22399.89 599.98 2699.66 83
ECVR-MVScopyleft97.73 29598.04 27496.78 34799.59 16290.81 37899.72 2990.43 38199.89 1799.86 4699.86 4193.60 31299.89 15899.46 4499.99 1299.65 91
V4299.56 5099.54 5399.63 12399.79 7399.46 14199.39 9899.59 17099.24 14299.86 4699.70 11998.55 14099.82 26199.79 1199.95 6199.60 130
mvs_anonymous99.28 11699.39 7698.94 27299.19 30497.81 30899.02 20299.55 19399.78 4999.85 4899.80 6498.24 18199.86 20599.57 3199.50 27699.15 281
WR-MVS_H99.61 4499.53 5799.87 1699.80 6399.83 2799.67 4799.75 7899.58 9599.85 4899.69 12598.18 19199.94 6299.28 7699.95 6199.83 19
IterMVS98.97 19399.16 12198.42 30999.74 10995.64 35098.06 31199.83 3699.83 3899.85 4899.74 9596.10 28699.99 699.27 77100.00 199.63 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114499.54 5599.53 5799.59 13999.79 7399.28 18699.10 18599.61 15099.20 14999.84 5199.73 9998.67 12399.84 24099.86 899.98 2699.64 100
PS-CasMVS99.66 3399.58 4599.89 999.80 6399.85 1599.66 5199.73 8699.62 8299.84 5199.71 11298.62 12999.96 3799.30 7199.96 5299.86 12
PEN-MVS99.66 3399.59 4199.89 999.83 4499.87 1199.66 5199.73 8699.70 6199.84 5199.73 9998.56 13999.96 3799.29 7499.94 7299.83 19
DTE-MVSNet99.68 2899.61 3899.88 1399.80 6399.87 1199.67 4799.71 9899.72 5699.84 5199.78 7798.67 12399.97 1999.30 7199.95 6199.80 26
IterMVS-LS99.41 8299.47 6199.25 23999.81 5898.09 29598.85 22999.76 7199.62 8299.83 5599.64 15298.54 14299.97 1999.15 9499.99 1299.68 66
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052199.44 7499.42 7399.49 17399.89 2698.96 23599.62 6099.76 7199.85 3299.82 5699.88 3196.39 27899.97 1999.59 2499.98 2699.55 156
SED-MVS99.40 8599.28 10499.77 4599.69 13199.82 3399.20 15199.54 19999.13 16399.82 5699.63 16298.91 8899.92 9897.85 20599.70 21599.58 144
test_241102_ONE99.69 13199.82 3399.54 19999.12 16699.82 5699.49 23598.91 8899.52 364
FC-MVSNet-test99.70 2299.65 2999.86 1899.88 3099.86 1499.72 2999.78 6399.90 1299.82 5699.83 5198.45 15799.87 18599.51 3999.97 3899.86 12
test20.0399.55 5399.54 5399.58 14399.79 7399.37 16899.02 20299.89 1799.60 9299.82 5699.62 17198.81 9999.89 15899.43 4799.86 12899.47 204
FMVSNet199.66 3399.63 3399.73 7899.78 8099.77 4999.68 4399.70 10499.67 7099.82 5699.83 5198.98 7999.90 14299.24 7899.97 3899.53 170
XXY-MVS99.71 2199.67 2699.81 3199.89 2699.72 7499.59 7199.82 4199.39 12299.82 5699.84 5099.38 3199.91 12299.38 5499.93 8099.80 26
v14899.40 8599.41 7499.39 20699.76 9298.94 23799.09 19099.59 17099.17 15599.81 6399.61 18098.41 16299.69 32199.32 6799.94 7299.53 170
v2v48299.50 5999.47 6199.58 14399.78 8099.25 19499.14 17299.58 18099.25 14099.81 6399.62 17198.24 18199.84 24099.83 999.97 3899.64 100
PM-MVS99.36 9799.29 10299.58 14399.83 4499.66 9498.95 21899.86 2498.85 19799.81 6399.73 9998.40 16699.92 9898.36 15799.83 14799.17 277
EI-MVSNet-UG-set99.48 6399.50 5999.42 19499.57 17798.65 26499.24 14199.46 24099.68 6699.80 6699.66 14598.99 7899.89 15899.19 8599.90 9499.72 50
VPA-MVSNet99.66 3399.62 3499.79 3999.68 13999.75 6199.62 6099.69 11099.85 3299.80 6699.81 6198.81 9999.91 12299.47 4399.88 11299.70 56
CP-MVSNet99.54 5599.43 7199.87 1699.76 9299.82 3399.57 7599.61 15099.54 9699.80 6699.64 15297.79 22199.95 4799.21 8199.94 7299.84 15
EG-PatchMatch MVS99.57 4799.56 5299.62 13299.77 8899.33 17899.26 13499.76 7199.32 13199.80 6699.78 7799.29 4199.87 18599.15 9499.91 9399.66 83
ACMH98.42 699.59 4699.54 5399.72 8499.86 3699.62 10799.56 7799.79 5898.77 20899.80 6699.85 4599.64 1399.85 22398.70 14099.89 10399.70 56
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set99.47 6999.49 6099.42 19499.57 17798.66 26199.24 14199.46 24099.67 7099.79 7199.65 15098.97 8199.89 15899.15 9499.89 10399.71 53
PVSNet_Blended_VisFu99.40 8599.38 7899.44 18899.90 2498.66 26198.94 22099.91 1297.97 27899.79 7199.73 9999.05 7399.97 1999.15 9499.99 1299.68 66
N_pmnet98.73 22698.53 23299.35 21799.72 11698.67 25998.34 28394.65 37398.35 25299.79 7199.68 13698.03 20099.93 7898.28 16599.92 8499.44 215
ppachtmachnet_test98.89 20799.12 13298.20 31999.66 14595.24 35497.63 33999.68 11399.08 16899.78 7499.62 17198.65 12799.88 17398.02 18699.96 5299.48 199
nrg03099.70 2299.66 2799.82 2899.76 9299.84 2299.61 6599.70 10499.93 899.78 7499.68 13699.10 6299.78 28899.45 4599.96 5299.83 19
PMMVS299.48 6399.45 6699.57 14999.76 9298.99 23098.09 30699.90 1598.95 18399.78 7499.58 19799.57 2099.93 7899.48 4299.95 6199.79 32
TAMVS99.49 6199.45 6699.63 12399.48 22399.42 15599.45 8999.57 18299.66 7499.78 7499.83 5197.85 21799.86 20599.44 4699.96 5299.61 126
TDRefinement99.72 2099.70 1899.77 4599.90 2499.85 1599.86 599.92 999.69 6499.78 7499.92 1899.37 3399.88 17398.93 12299.95 6199.60 130
Vis-MVSNetpermissive99.75 1699.74 1699.79 3999.88 3099.66 9499.69 4099.92 999.67 7099.77 7999.75 9399.61 1799.98 999.35 6099.98 2699.72 50
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+98.40 899.50 5999.43 7199.71 8899.86 3699.76 5799.32 11499.77 6699.53 9899.77 7999.76 8899.26 4799.78 28897.77 21099.88 11299.60 130
iter_conf_final98.75 22298.54 23099.40 20299.33 27698.75 25499.26 13499.59 17099.80 4499.76 8199.58 19790.17 34999.92 9899.37 5799.97 3899.54 164
DVP-MVS++99.38 9199.25 11199.77 4599.03 32999.77 4999.74 2299.61 15099.18 15199.76 8199.61 18099.00 7699.92 9897.72 21699.60 25299.62 116
test_241102_TWO99.54 19999.13 16399.76 8199.63 16298.32 17699.92 9897.85 20599.69 21899.75 47
Anonymous2024052999.42 7899.34 8699.65 10999.53 19599.60 11599.63 5999.39 26299.47 10799.76 8199.78 7798.13 19399.86 20598.70 14099.68 22399.49 194
DPE-MVScopyleft99.14 15998.92 18999.82 2899.57 17799.77 4998.74 24899.60 16398.55 22799.76 8199.69 12598.23 18599.92 9896.39 30399.75 18999.76 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0598.46 25798.23 25899.15 25299.04 32797.99 29999.10 18599.61 15099.79 4799.76 8199.58 19787.88 35899.92 9899.31 7099.97 3899.53 170
Regformer-499.45 7299.44 6899.50 17099.52 20198.94 23799.17 16299.53 20999.64 7899.76 8199.60 18998.96 8499.90 14298.91 12399.84 13799.67 73
casdiffmvs99.63 3999.61 3899.67 9799.79 7399.59 11899.13 17899.85 2899.79 4799.76 8199.72 10599.33 3899.82 26199.21 8199.94 7299.59 139
GeoE99.69 2599.66 2799.78 4299.76 9299.76 5799.60 7099.82 4199.46 11199.75 8999.56 21099.63 1499.95 4799.43 4799.88 11299.62 116
pmmvs-eth3d99.48 6399.47 6199.51 16799.77 8899.41 15998.81 23799.66 12299.42 12199.75 8999.66 14599.20 5199.76 29898.98 11299.99 1299.36 238
Regformer-399.41 8299.41 7499.40 20299.52 20198.70 25799.17 16299.44 24599.62 8299.75 8999.60 18998.90 9199.85 22398.89 12499.84 13799.65 91
SD-MVS99.01 18799.30 9798.15 32099.50 21299.40 16098.94 22099.61 15099.22 14899.75 8999.82 5899.54 2395.51 38097.48 23999.87 12199.54 164
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.48 6399.36 8499.85 2199.55 18999.81 3699.50 8299.69 11098.99 17799.75 8999.71 11298.79 10699.93 7898.46 15299.85 13299.80 26
EI-MVSNet99.38 9199.44 6899.21 24499.58 16798.09 29599.26 13499.46 24099.62 8299.75 8999.67 14198.54 14299.85 22399.15 9499.92 8499.68 66
testgi99.29 11599.26 10999.37 21399.75 10398.81 25098.84 23099.89 1798.38 24599.75 8999.04 32699.36 3699.86 20599.08 10499.25 31199.45 210
MVSTER98.47 25698.22 26099.24 24199.06 32498.35 28199.08 19399.46 24099.27 13699.75 8999.66 14588.61 35699.85 22399.14 10099.92 8499.52 181
USDC98.96 19698.93 18599.05 26599.54 19097.99 29997.07 36399.80 5298.21 26499.75 8999.77 8498.43 15999.64 34997.90 19799.88 11299.51 183
Patchmatch-RL test98.60 23798.36 24699.33 22099.77 8899.07 22698.27 29099.87 2198.91 19099.74 9899.72 10590.57 34599.79 28598.55 14899.85 13299.11 290
FIs99.65 3899.58 4599.84 2499.84 4099.85 1599.66 5199.75 7899.86 2799.74 9899.79 7098.27 17999.85 22399.37 5799.93 8099.83 19
jason99.16 15599.11 13599.32 22499.75 10398.44 27398.26 29199.39 26298.70 21499.74 9899.30 28498.54 14299.97 1998.48 15199.82 15699.55 156
jason: jason.
DP-MVS99.48 6399.39 7699.74 6899.57 17799.62 10799.29 12899.61 15099.87 2499.74 9899.76 8898.69 11999.87 18598.20 17299.80 16999.75 47
test072699.69 13199.80 4199.24 14199.57 18299.16 15799.73 10299.65 15098.35 170
pmmvs599.19 14699.11 13599.42 19499.76 9298.88 24698.55 26599.73 8698.82 20199.72 10399.62 17196.56 26999.82 26199.32 6799.95 6199.56 153
Anonymous2023120699.35 9999.31 9299.47 17999.74 10999.06 22899.28 12999.74 8399.23 14499.72 10399.53 22197.63 23599.88 17399.11 10299.84 13799.48 199
CVMVSNet98.61 23598.88 19597.80 32999.58 16793.60 36499.26 13499.64 13899.66 7499.72 10399.67 14193.26 31499.93 7899.30 7199.81 16499.87 10
baseline99.63 3999.62 3499.66 10499.80 6399.62 10799.44 9299.80 5299.71 5799.72 10399.69 12599.15 5699.83 25199.32 6799.94 7299.53 170
Patchmtry98.78 21898.54 23099.49 17398.89 34299.19 21099.32 11499.67 11899.65 7699.72 10399.79 7091.87 32899.95 4798.00 19099.97 3899.33 244
test250694.73 34394.59 34595.15 35999.59 16285.90 38499.75 2074.01 38599.89 1799.71 10899.86 4179.00 38399.90 14299.52 3899.99 1299.65 91
UA-Net99.78 1499.76 1599.86 1899.72 11699.71 7699.91 399.95 899.96 399.71 10899.91 2199.15 5699.97 1999.50 41100.00 199.90 4
TranMVSNet+NR-MVSNet99.54 5599.47 6199.76 5299.58 16799.64 10199.30 12199.63 14099.61 8699.71 10899.56 21098.76 11299.96 3799.14 10099.92 8499.68 66
tttt051797.62 30097.20 30898.90 28499.76 9297.40 32099.48 8694.36 37499.06 17499.70 11199.49 23584.55 37399.94 6298.73 13899.65 23799.36 238
UniMVSNet (Re)99.37 9499.26 10999.68 9499.51 20699.58 12198.98 21599.60 16399.43 11999.70 11199.36 27097.70 22499.88 17399.20 8499.87 12199.59 139
FMVSNet299.35 9999.28 10499.55 15699.49 21799.35 17599.45 8999.57 18299.44 11499.70 11199.74 9597.21 25299.87 18599.03 10799.94 7299.44 215
IU-MVS99.69 13199.77 4999.22 30497.50 30499.69 11497.75 21499.70 21599.77 39
VPNet99.46 7099.37 8199.71 8899.82 5199.59 11899.48 8699.70 10499.81 4199.69 11499.58 19797.66 23399.86 20599.17 9099.44 28499.67 73
PC_three_145297.56 29899.68 11699.41 25399.09 6497.09 37896.66 28999.60 25299.62 116
D2MVS99.22 13699.19 11899.29 23099.69 13198.74 25598.81 23799.41 25298.55 22799.68 11699.69 12598.13 19399.87 18598.82 12999.98 2699.24 259
xiu_mvs_v1_base_debu99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base_debi99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
ambc99.20 24699.35 26198.53 26799.17 16299.46 24099.67 12199.80 6498.46 15699.70 31597.92 19699.70 21599.38 232
UniMVSNet_NR-MVSNet99.37 9499.25 11199.72 8499.47 22899.56 12498.97 21699.61 15099.43 11999.67 12199.28 28997.85 21799.95 4799.17 9099.81 16499.65 91
DU-MVS99.33 10899.21 11699.71 8899.43 24099.56 12498.83 23299.53 20999.38 12399.67 12199.36 27097.67 22999.95 4799.17 9099.81 16499.63 105
COLMAP_ROBcopyleft98.06 1299.45 7299.37 8199.70 9299.83 4499.70 8399.38 10099.78 6399.53 9899.67 12199.78 7799.19 5299.86 20597.32 24799.87 12199.55 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Regformer-199.32 11099.27 10799.47 17999.41 24698.95 23698.99 21199.48 23299.48 10299.66 12599.52 22398.78 10899.87 18598.36 15799.74 19799.60 130
Regformer-299.34 10499.27 10799.53 16299.41 24699.10 22298.99 21199.53 20999.47 10799.66 12599.52 22398.80 10399.89 15898.31 16399.74 19799.60 130
XVG-OURS99.21 14199.06 15299.65 10999.82 5199.62 10797.87 33099.74 8398.36 24799.66 12599.68 13699.71 999.90 14296.84 27999.88 11299.43 221
DeepPCF-MVS98.42 699.18 15099.02 16599.67 9799.22 29799.75 6197.25 35799.47 23698.72 21399.66 12599.70 11999.29 4199.63 35098.07 18599.81 16499.62 116
Baseline_NR-MVSNet99.49 6199.37 8199.82 2899.91 2099.84 2298.83 23299.86 2499.68 6699.65 12999.88 3197.67 22999.87 18599.03 10799.86 12899.76 44
abl_699.36 9799.23 11599.75 6299.71 11999.74 6799.33 11199.76 7199.07 17099.65 12999.63 16299.09 6499.92 9897.13 26499.76 18699.58 144
our_test_398.85 21299.09 14498.13 32199.66 14594.90 35797.72 33599.58 18099.07 17099.64 13199.62 17198.19 18999.93 7898.41 15499.95 6199.55 156
LPG-MVS_test99.22 13699.05 15699.74 6899.82 5199.63 10599.16 16899.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
LGP-MVS_train99.74 6899.82 5199.63 10599.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
ACMM98.09 1199.46 7099.38 7899.72 8499.80 6399.69 8799.13 17899.65 13298.99 17799.64 13199.72 10599.39 2799.86 20598.23 16999.81 16499.60 130
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FOURS199.83 4499.89 899.74 2299.71 9899.69 6499.63 135
AllTest99.21 14199.07 15099.63 12399.78 8099.64 10199.12 18299.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
TestCases99.63 12399.78 8099.64 10199.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
MDA-MVSNet-bldmvs99.06 17499.05 15699.07 26399.80 6397.83 30798.89 22299.72 9599.29 13299.63 13599.70 11996.47 27399.89 15898.17 17899.82 15699.50 189
TSAR-MVS + GP.99.12 16399.04 16299.38 21099.34 27199.16 21298.15 29899.29 28798.18 26799.63 13599.62 17199.18 5399.68 33298.20 17299.74 19799.30 250
XVG-OURS-SEG-HR99.16 15598.99 17699.66 10499.84 4099.64 10198.25 29299.73 8698.39 24499.63 13599.43 25199.70 1199.90 14297.34 24698.64 34399.44 215
MVSFormer99.41 8299.44 6899.31 22799.57 17798.40 27699.77 1499.80 5299.73 5399.63 13599.30 28498.02 20299.98 999.43 4799.69 21899.55 156
lupinMVS98.96 19698.87 19699.24 24199.57 17798.40 27698.12 30299.18 31098.28 26099.63 13599.13 31298.02 20299.97 1998.22 17099.69 21899.35 241
DVP-MVScopyleft99.32 11099.17 12099.77 4599.69 13199.80 4199.14 17299.31 28299.16 15799.62 14399.61 18098.35 17099.91 12297.88 19999.72 21099.61 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 15199.62 14399.61 18098.58 13699.91 12297.72 21699.80 16999.77 39
GBi-Net99.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
test199.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
new_pmnet98.88 20898.89 19498.84 28899.70 12797.62 31498.15 29899.50 22597.98 27799.62 14399.54 21998.15 19299.94 6297.55 23499.84 13798.95 316
FMVSNet398.80 21798.63 21999.32 22499.13 31298.72 25699.10 18599.48 23299.23 14499.62 14399.64 15292.57 32099.86 20598.96 11699.90 9499.39 230
CS-MVS99.67 3199.70 1899.58 14399.53 19599.84 2299.79 1099.96 699.90 1299.61 14999.41 25399.51 2499.95 4799.66 1899.89 10398.96 314
CDS-MVSNet99.22 13699.13 12899.50 17099.35 26199.11 21798.96 21799.54 19999.46 11199.61 14999.70 11996.31 28099.83 25199.34 6199.88 11299.55 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 18198.85 19899.55 15699.80 6399.25 19499.73 2699.15 31399.37 12499.61 14999.71 11294.73 29999.81 27797.70 22199.88 11299.58 144
cl____98.54 24798.41 24198.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.85 30799.78 28897.97 19399.89 10399.17 277
DIV-MVS_self_test98.54 24798.42 24098.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.87 30699.78 28897.97 19399.89 10399.18 275
XVG-ACMP-BASELINE99.23 12799.10 14399.63 12399.82 5199.58 12198.83 23299.72 9598.36 24799.60 15299.71 11298.92 8699.91 12297.08 26699.84 13799.40 227
miper_lstm_enhance98.65 23298.60 22098.82 29399.20 30297.33 32297.78 33399.66 12299.01 17699.59 15599.50 23094.62 30099.85 22398.12 18199.90 9499.26 256
YYNet198.95 19998.99 17698.84 28899.64 14997.14 32798.22 29499.32 27898.92 18999.59 15599.66 14597.40 24299.83 25198.27 16699.90 9499.55 156
eth_miper_zixun_eth98.68 23098.71 21198.60 30299.10 32096.84 33497.52 34799.54 19998.94 18499.58 15799.48 23896.25 28299.76 29898.01 18999.93 8099.21 266
pmmvs499.13 16199.06 15299.36 21699.57 17799.10 22298.01 31499.25 29798.78 20799.58 15799.44 25098.24 18199.76 29898.74 13799.93 8099.22 264
DeepC-MVS_fast98.47 599.23 12799.12 13299.56 15399.28 28899.22 20398.99 21199.40 25999.08 16899.58 15799.64 15298.90 9199.83 25197.44 24199.75 18999.63 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.19 14699.00 17199.73 7899.46 23399.73 7099.13 17899.52 21797.40 30999.57 16099.64 15298.93 8599.83 25197.61 23199.79 17499.63 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.34 10499.24 11399.63 12399.82 5199.37 16899.26 13499.35 27398.77 20899.57 16099.70 11999.27 4699.88 17397.71 21899.75 18999.65 91
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize99.31 11299.16 12199.74 6899.53 19599.75 6199.27 13299.61 15099.19 15099.57 16099.64 15298.76 11299.90 14297.29 24999.62 24299.56 153
WR-MVS99.11 16798.93 18599.66 10499.30 28399.42 15598.42 28099.37 26999.04 17599.57 16099.20 30796.89 26499.86 20598.66 14499.87 12199.70 56
SteuartSystems-ACMMP99.30 11399.14 12599.76 5299.87 3499.66 9499.18 15799.60 16398.55 22799.57 16099.67 14199.03 7599.94 6297.01 26899.80 16999.69 60
Skip Steuart: Steuart Systems R&D Blog.
ab-mvs99.33 10899.28 10499.47 17999.57 17799.39 16299.78 1199.43 24998.87 19599.57 16099.82 5898.06 19899.87 18598.69 14299.73 20499.15 281
CMPMVSbinary77.52 2398.50 25198.19 26599.41 20198.33 36899.56 12499.01 20499.59 17095.44 34999.57 16099.80 6495.64 29199.46 36996.47 30099.92 8499.21 266
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053097.45 30596.95 31598.94 27299.68 13997.73 31199.09 19094.19 37698.61 22299.56 16799.30 28484.30 37499.93 7898.27 16699.54 26999.16 279
Anonymous20240521198.75 22298.46 23699.63 12399.34 27199.66 9499.47 8897.65 35899.28 13599.56 16799.50 23093.15 31599.84 24098.62 14599.58 25799.40 227
VDD-MVS99.20 14399.11 13599.44 18899.43 24098.98 23199.50 8298.32 35099.80 4499.56 16799.69 12596.99 26299.85 22398.99 11099.73 20499.50 189
MDA-MVSNet_test_wron98.95 19998.99 17698.85 28699.64 14997.16 32698.23 29399.33 27698.93 18799.56 16799.66 14597.39 24499.83 25198.29 16499.88 11299.55 156
EPP-MVSNet99.17 15499.00 17199.66 10499.80 6399.43 15299.70 3499.24 30099.48 10299.56 16799.77 8494.89 29699.93 7898.72 13999.89 10399.63 105
test_part299.62 15599.67 9299.55 172
UnsupCasMVSNet_eth98.83 21398.57 22699.59 13999.68 13999.45 14698.99 21199.67 11899.48 10299.55 17299.36 27094.92 29599.86 20598.95 12096.57 37199.45 210
CL-MVSNet_self_test98.71 22898.56 22999.15 25299.22 29798.66 26197.14 36099.51 22198.09 27199.54 17499.27 29196.87 26599.74 30498.43 15398.96 32599.03 307
c3_l98.72 22798.71 21198.72 29899.12 31497.22 32597.68 33899.56 18798.90 19199.54 17499.48 23896.37 27999.73 30797.88 19999.88 11299.21 266
MSP-MVS99.04 18098.79 20799.81 3199.78 8099.73 7099.35 10899.57 18298.54 23099.54 17498.99 33396.81 26699.93 7896.97 27099.53 27199.77 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 21098.59 22299.71 8899.50 21299.62 10799.01 20499.57 18296.80 33299.54 17499.63 16298.29 17799.91 12295.24 34099.71 21399.61 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TinyColmap98.97 19398.93 18599.07 26399.46 23398.19 28797.75 33499.75 7898.79 20599.54 17499.70 11998.97 8199.62 35196.63 29299.83 14799.41 225
ACMMP_NAP99.28 11699.11 13599.79 3999.75 10399.81 3698.95 21899.53 20998.27 26199.53 17999.73 9998.75 11499.87 18597.70 22199.83 14799.68 66
MSDG99.08 17298.98 17999.37 21399.60 15899.13 21597.54 34399.74 8398.84 20099.53 17999.55 21799.10 6299.79 28597.07 26799.86 12899.18 275
SR-MVS-dyc-post99.27 12099.11 13599.73 7899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.41 16299.91 12297.27 25299.61 24999.54 164
RE-MVS-def99.13 12899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.57 13797.27 25299.61 24999.54 164
miper_ehance_all_eth98.59 24098.59 22298.59 30398.98 33597.07 32897.49 34899.52 21798.50 23399.52 18199.37 26596.41 27799.71 31397.86 20399.62 24299.00 313
OPM-MVS99.26 12299.13 12899.63 12399.70 12799.61 11398.58 25999.48 23298.50 23399.52 18199.63 16299.14 5999.76 29897.89 19899.77 18499.51 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft99.25 12399.08 14699.74 6899.79 7399.68 9099.50 8299.65 13298.07 27299.52 18199.69 12598.57 13799.92 9897.18 26199.79 17499.63 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast99.43 7599.30 9799.80 3499.83 4499.81 3699.52 8099.70 10498.35 25299.51 18699.50 23099.31 3999.88 17398.18 17699.84 13799.69 60
DROMVSNet99.69 2599.69 2399.68 9499.71 11999.91 299.76 1799.96 699.86 2799.51 18699.39 26199.57 2099.93 7899.64 2199.86 12899.20 270
CS-MVS-test99.68 2899.70 1899.64 11699.57 17799.83 2799.78 1199.97 299.92 1099.50 18899.38 26399.57 2099.95 4799.69 1699.90 9499.15 281
pmmvs398.08 28397.80 29298.91 27899.41 24697.69 31397.87 33099.66 12295.87 34399.50 18899.51 22790.35 34799.97 1998.55 14899.47 28199.08 298
RPSCF99.18 15099.02 16599.64 11699.83 4499.85 1599.44 9299.82 4198.33 25799.50 18899.78 7797.90 21199.65 34796.78 28299.83 14799.44 215
test117299.23 12799.05 15699.74 6899.52 20199.75 6199.20 15199.61 15098.97 17999.48 19199.58 19798.41 16299.91 12297.15 26399.55 26399.57 150
diffmvs99.34 10499.32 9199.39 20699.67 14498.77 25398.57 26399.81 5099.61 8699.48 19199.41 25398.47 15399.86 20598.97 11499.90 9499.53 170
patch_mono-299.51 5899.46 6599.64 11699.70 12799.11 21799.04 19899.87 2199.71 5799.47 19399.79 7098.24 18199.98 999.38 5499.96 5299.83 19
SR-MVS99.19 14699.00 17199.74 6899.51 20699.72 7499.18 15799.60 16398.85 19799.47 19399.58 19798.38 16799.92 9896.92 27299.54 26999.57 150
VNet99.18 15099.06 15299.56 15399.24 29599.36 17199.33 11199.31 28299.67 7099.47 19399.57 20796.48 27299.84 24099.15 9499.30 30599.47 204
ACMP97.51 1499.05 17798.84 20099.67 9799.78 8099.55 12798.88 22399.66 12297.11 32499.47 19399.60 18999.07 7099.89 15896.18 31299.85 13299.58 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline197.73 29597.33 30498.96 27099.30 28397.73 31199.40 9698.42 34699.33 13099.46 19799.21 30591.18 33499.82 26198.35 15991.26 37799.32 247
Test_1112_low_res98.95 19998.73 20999.63 12399.68 13999.15 21498.09 30699.80 5297.14 32299.46 19799.40 25796.11 28599.89 15899.01 10999.84 13799.84 15
MP-MVS-pluss99.14 15998.92 18999.80 3499.83 4499.83 2798.61 25599.63 14096.84 33099.44 19999.58 19798.81 9999.91 12297.70 22199.82 15699.67 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 18998.97 18099.09 25999.11 31998.19 28798.76 24799.33 27698.49 23599.44 19999.58 19798.21 18699.69 32198.20 17299.62 24299.39 230
OMC-MVS98.90 20498.72 21099.44 18899.39 25199.42 15598.58 25999.64 13897.31 31499.44 19999.62 17198.59 13499.69 32196.17 31399.79 17499.22 264
OpenMVS_ROBcopyleft97.31 1797.36 30996.84 31998.89 28599.29 28599.45 14698.87 22699.48 23286.54 37499.44 19999.74 9597.34 24799.86 20591.61 36499.28 30797.37 369
miper_enhance_ethall98.03 28597.94 28598.32 31498.27 36996.43 34096.95 36499.41 25296.37 33899.43 20398.96 34194.74 29899.69 32197.71 21899.62 24298.83 327
1112_ss99.05 17798.84 20099.67 9799.66 14599.29 18498.52 27099.82 4197.65 29599.43 20399.16 31096.42 27599.91 12299.07 10599.84 13799.80 26
xxxxxxxxxxxxxcwj99.11 16798.96 18299.54 16099.53 19599.25 19498.29 28899.76 7199.07 17099.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
SF-MVS99.10 17198.93 18599.62 13299.58 16799.51 13299.13 17899.65 13297.97 27899.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
zzz-MVS99.30 11399.14 12599.80 3499.81 5899.81 3698.73 25099.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
xiu_mvs_v2_base99.02 18399.11 13598.77 29599.37 25798.09 29598.13 30199.51 22199.47 10799.42 20598.54 36499.38 3199.97 1998.83 12799.33 30298.24 353
MTAPA99.35 9999.20 11799.80 3499.81 5899.81 3699.33 11199.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
PGM-MVS99.20 14399.01 16899.77 4599.75 10399.71 7699.16 16899.72 9597.99 27699.42 20599.60 18998.81 9999.93 7896.91 27399.74 19799.66 83
114514_t98.49 25498.11 27199.64 11699.73 11299.58 12199.24 14199.76 7189.94 37199.42 20599.56 21097.76 22399.86 20597.74 21599.82 15699.47 204
PMVScopyleft92.94 2198.82 21598.81 20498.85 28699.84 4097.99 29999.20 15199.47 23699.71 5799.42 20599.82 5898.09 19599.47 36793.88 35999.85 13299.07 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cl2297.56 30397.28 30598.40 31098.37 36796.75 33597.24 35899.37 26997.31 31499.41 21399.22 30387.30 35999.37 37197.70 22199.62 24299.08 298
PS-MVSNAJ99.00 18999.08 14698.76 29699.37 25798.10 29498.00 31699.51 22199.47 10799.41 21398.50 36699.28 4399.97 1998.83 12799.34 30098.20 357
DSMNet-mixed99.48 6399.65 2998.95 27199.71 11997.27 32399.50 8299.82 4199.59 9499.41 21399.85 4599.62 16100.00 199.53 3799.89 10399.59 139
DELS-MVS99.34 10499.30 9799.48 17799.51 20699.36 17198.12 30299.53 20999.36 12699.41 21399.61 18099.22 4999.87 18599.21 8199.68 22399.20 270
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.37 9499.29 10299.60 13799.71 11999.46 14199.43 9499.85 2898.79 20599.41 21399.60 18998.92 8699.92 9898.02 18699.92 8499.43 221
test_040299.22 13699.14 12599.45 18699.79 7399.43 15299.28 12999.68 11399.54 9699.40 21899.56 21099.07 7099.82 26196.01 31799.96 5299.11 290
LF4IMVS99.01 18798.92 18999.27 23499.71 11999.28 18698.59 25899.77 6698.32 25899.39 21999.41 25398.62 12999.84 24096.62 29399.84 13798.69 332
VDDNet98.97 19398.82 20399.42 19499.71 11998.81 25099.62 6098.68 33499.81 4199.38 22099.80 6494.25 30399.85 22398.79 13199.32 30399.59 139
sss98.90 20498.77 20899.27 23499.48 22398.44 27398.72 25199.32 27897.94 28299.37 22199.35 27596.31 28099.91 12298.85 12699.63 24199.47 204
HFP-MVS99.25 12399.08 14699.76 5299.73 11299.70 8399.31 11899.59 17098.36 24799.36 22299.37 26598.80 10399.91 12297.43 24299.75 18999.68 66
#test#99.12 16398.90 19399.76 5299.73 11299.70 8399.10 18599.59 17097.60 29799.36 22299.37 26598.80 10399.91 12296.84 27999.75 18999.68 66
ACMMPR99.23 12799.06 15299.76 5299.74 10999.69 8799.31 11899.59 17098.36 24799.35 22499.38 26398.61 13199.93 7897.43 24299.75 18999.67 73
HPM-MVScopyleft99.25 12399.07 15099.78 4299.81 5899.75 6199.61 6599.67 11897.72 29299.35 22499.25 29699.23 4899.92 9897.21 26099.82 15699.67 73
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator99.15 299.43 7599.36 8499.65 10999.39 25199.42 15599.70 3499.56 18799.23 14499.35 22499.80 6499.17 5499.95 4798.21 17199.84 13799.59 139
PVSNet_BlendedMVS99.03 18199.01 16899.09 25999.54 19097.99 29998.58 25999.82 4197.62 29699.34 22799.71 11298.52 14999.77 29697.98 19199.97 3899.52 181
PVSNet_Blended98.70 22998.59 22299.02 26799.54 19097.99 29997.58 34299.82 4195.70 34799.34 22798.98 33698.52 14999.77 29697.98 19199.83 14799.30 250
MIMVSNet98.43 26098.20 26299.11 25799.53 19598.38 27999.58 7398.61 33898.96 18299.33 22999.76 8890.92 33899.81 27797.38 24599.76 18699.15 281
ITE_SJBPF99.38 21099.63 15199.44 14899.73 8698.56 22599.33 22999.53 22198.88 9399.68 33296.01 31799.65 23799.02 311
h-mvs3398.61 23598.34 24999.44 18899.60 15898.67 25999.27 13299.44 24599.68 6699.32 23199.49 23592.50 323100.00 199.24 7896.51 37299.65 91
hse-mvs298.52 24998.30 25399.16 25099.29 28598.60 26598.77 24599.02 32199.68 6699.32 23199.04 32692.50 32399.85 22399.24 7897.87 36399.03 307
GST-MVS99.16 15598.96 18299.75 6299.73 11299.73 7099.20 15199.55 19398.22 26399.32 23199.35 27598.65 12799.91 12296.86 27699.74 19799.62 116
region2R99.23 12799.05 15699.77 4599.76 9299.70 8399.31 11899.59 17098.41 24199.32 23199.36 27098.73 11799.93 7897.29 24999.74 19799.67 73
test_one_060199.63 15199.76 5799.55 19399.23 14499.31 23599.61 18098.59 134
MVP-Stereo99.16 15599.08 14699.43 19299.48 22399.07 22699.08 19399.55 19398.63 21999.31 23599.68 13698.19 18999.78 28898.18 17699.58 25799.45 210
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS98.46 25798.19 26599.26 23699.24 29598.52 26999.62 6096.94 36599.87 2499.31 23599.58 19791.04 33699.81 27798.68 14399.42 28999.45 210
MVS_111021_LR99.13 16199.03 16499.42 19499.58 16799.32 18097.91 32999.73 8698.68 21599.31 23599.48 23899.09 6499.66 34197.70 22199.77 18499.29 253
MVS-HIRNet97.86 28998.22 26096.76 34899.28 28891.53 37498.38 28292.60 37899.13 16399.31 23599.96 1297.18 25699.68 33298.34 16099.83 14799.07 303
tmp_tt95.75 33995.42 33796.76 34889.90 38494.42 35998.86 22797.87 35778.01 37599.30 24099.69 12597.70 22495.89 37999.29 7498.14 35899.95 1
9.1498.64 21799.45 23698.81 23799.60 16397.52 30399.28 24199.56 21098.53 14699.83 25195.36 33999.64 239
CPTT-MVS98.74 22498.44 23899.64 11699.61 15699.38 16599.18 15799.55 19396.49 33599.27 24299.37 26597.11 25899.92 9895.74 33099.67 23099.62 116
CLD-MVS98.76 22198.57 22699.33 22099.57 17798.97 23397.53 34599.55 19396.41 33699.27 24299.13 31299.07 7099.78 28896.73 28599.89 10399.23 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42098.41 26298.41 24198.40 31099.34 27195.89 34896.94 36599.44 24598.80 20499.25 24499.52 22393.51 31399.98 998.94 12199.98 2699.32 247
FMVSNet597.80 29197.25 30799.42 19498.83 34898.97 23399.38 10099.80 5298.87 19599.25 24499.69 12580.60 37899.91 12298.96 11699.90 9499.38 232
PHI-MVS99.11 16798.95 18499.59 13999.13 31299.59 11899.17 16299.65 13297.88 28499.25 24499.46 24698.97 8199.80 28297.26 25499.82 15699.37 235
Vis-MVSNet (Re-imp)98.77 21998.58 22599.34 21899.78 8098.88 24699.61 6599.56 18799.11 16799.24 24799.56 21093.00 31899.78 28897.43 24299.89 10399.35 241
ETH3D-3000-0.198.77 21998.50 23499.59 13999.47 22899.53 12998.77 24599.60 16397.33 31399.23 24899.50 23097.91 21099.83 25195.02 34499.67 23099.41 225
CANet99.11 16799.05 15699.28 23298.83 34898.56 26698.71 25399.41 25299.25 14099.23 24899.22 30397.66 23399.94 6299.19 8599.97 3899.33 244
Patchmatch-test98.10 28297.98 27998.48 30799.27 29096.48 33899.40 9699.07 31798.81 20299.23 24899.57 20790.11 35099.87 18596.69 28699.64 23999.09 295
MG-MVS98.52 24998.39 24398.94 27299.15 30997.39 32198.18 29599.21 30898.89 19499.23 24899.63 16297.37 24699.74 30494.22 35399.61 24999.69 60
test_yl98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
DCV-MVSNet98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
test0.0.03 197.37 30896.91 31898.74 29797.72 37597.57 31597.60 34197.36 36498.00 27499.21 25498.02 37390.04 35199.79 28598.37 15695.89 37598.86 324
MVS_Test99.28 11699.31 9299.19 24799.35 26198.79 25299.36 10799.49 23099.17 15599.21 25499.67 14198.78 10899.66 34199.09 10399.66 23499.10 292
CDPH-MVS98.56 24398.20 26299.61 13599.50 21299.46 14198.32 28699.41 25295.22 35299.21 25499.10 31998.34 17399.82 26195.09 34399.66 23499.56 153
WTY-MVS98.59 24098.37 24599.26 23699.43 24098.40 27698.74 24899.13 31698.10 26999.21 25499.24 30194.82 29799.90 14297.86 20398.77 33599.49 194
MDTV_nov1_ep13_2view91.44 37599.14 17297.37 31199.21 25491.78 33096.75 28399.03 307
BH-untuned98.22 27898.09 27298.58 30499.38 25497.24 32498.55 26598.98 32497.81 29099.20 25998.76 35597.01 26199.65 34794.83 34598.33 35198.86 324
testtj98.56 24398.17 26799.72 8499.45 23699.60 11598.88 22399.50 22596.88 32799.18 26099.48 23897.08 25999.92 9893.69 36099.38 29399.63 105
CR-MVSNet98.35 26998.20 26298.83 29099.05 32598.12 29199.30 12199.67 11897.39 31099.16 26199.79 7091.87 32899.91 12298.78 13498.77 33598.44 346
RPMNet98.60 23798.53 23298.83 29099.05 32598.12 29199.30 12199.62 14399.86 2799.16 26199.74 9592.53 32299.92 9898.75 13698.77 33598.44 346
thisisatest051596.98 31596.42 32298.66 30199.42 24597.47 31797.27 35694.30 37597.24 31699.15 26398.86 35085.01 37199.87 18597.10 26599.39 29298.63 333
LS3D99.24 12699.11 13599.61 13598.38 36699.79 4399.57 7599.68 11399.61 8699.15 26399.71 11298.70 11899.91 12297.54 23599.68 22399.13 289
ZNCC-MVS99.22 13699.04 16299.77 4599.76 9299.73 7099.28 12999.56 18798.19 26699.14 26599.29 28798.84 9799.92 9897.53 23799.80 16999.64 100
HQP_MVS98.90 20498.68 21699.55 15699.58 16799.24 19998.80 24099.54 19998.94 18499.14 26599.25 29697.24 25099.82 26195.84 32699.78 18099.60 130
plane_prior399.31 18198.36 24799.14 265
3Dnovator+98.92 399.35 9999.24 11399.67 9799.35 26199.47 13799.62 6099.50 22599.44 11499.12 26899.78 7798.77 11199.94 6297.87 20299.72 21099.62 116
ZD-MVS99.43 24099.61 11399.43 24996.38 33799.11 26999.07 32197.86 21599.92 9894.04 35699.49 278
PatchMatch-RL98.68 23098.47 23599.30 22999.44 23899.28 18698.14 30099.54 19997.12 32399.11 26999.25 29697.80 22099.70 31596.51 29799.30 30598.93 318
SCA98.11 28198.36 24697.36 33999.20 30292.99 36698.17 29798.49 34498.24 26299.10 27199.57 20796.01 28799.94 6296.86 27699.62 24299.14 286
PatchT98.45 25998.32 25298.83 29098.94 33798.29 28299.24 14198.82 32999.84 3599.08 27299.76 8891.37 33199.94 6298.82 12999.00 32498.26 352
UnsupCasMVSNet_bld98.55 24698.27 25599.40 20299.56 18899.37 16897.97 32299.68 11397.49 30599.08 27299.35 27595.41 29499.82 26197.70 22198.19 35699.01 312
MVS_111021_HR99.12 16399.02 16599.40 20299.50 21299.11 21797.92 32799.71 9898.76 21199.08 27299.47 24399.17 5499.54 36097.85 20599.76 18699.54 164
TAPA-MVS97.92 1398.03 28597.55 30199.46 18299.47 22899.44 14898.50 27299.62 14386.79 37299.07 27599.26 29498.26 18099.62 35197.28 25199.73 20499.31 249
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CP-MVS99.23 12799.05 15699.75 6299.66 14599.66 9499.38 10099.62 14398.38 24599.06 27699.27 29198.79 10699.94 6297.51 23899.82 15699.66 83
MCST-MVS99.02 18398.81 20499.65 10999.58 16799.49 13498.58 25999.07 31798.40 24399.04 27799.25 29698.51 15199.80 28297.31 24899.51 27499.65 91
mPP-MVS99.19 14699.00 17199.76 5299.76 9299.68 9099.38 10099.54 19998.34 25699.01 27899.50 23098.53 14699.93 7897.18 26199.78 18099.66 83
PVSNet97.47 1598.42 26198.44 23898.35 31299.46 23396.26 34196.70 36899.34 27597.68 29499.00 27999.13 31297.40 24299.72 30997.59 23399.68 22399.08 298
Fast-Effi-MVS+-dtu99.20 14399.12 13299.43 19299.25 29399.69 8799.05 19699.82 4199.50 10098.97 28099.05 32398.98 7999.98 998.20 17299.24 31398.62 334
MP-MVScopyleft99.06 17498.83 20299.76 5299.76 9299.71 7699.32 11499.50 22598.35 25298.97 28099.48 23898.37 16899.92 9895.95 32399.75 18999.63 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PCF-MVS96.03 1896.73 32195.86 33299.33 22099.44 23899.16 21296.87 36699.44 24586.58 37398.95 28299.40 25794.38 30299.88 17387.93 37299.80 16998.95 316
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验297.94 32595.33 35198.94 28399.88 17396.75 283
ETV-MVS99.18 15099.18 11999.16 25099.34 27199.28 18699.12 18299.79 5899.48 10298.93 28498.55 36399.40 2699.93 7898.51 15099.52 27398.28 351
BH-RMVSNet98.41 26298.14 27099.21 24499.21 29998.47 27098.60 25798.26 35198.35 25298.93 28499.31 28297.20 25599.66 34194.32 35199.10 31899.51 183
F-COLMAP98.74 22498.45 23799.62 13299.57 17799.47 13798.84 23099.65 13296.31 33998.93 28499.19 30997.68 22899.87 18596.52 29699.37 29799.53 170
Effi-MVS+-dtu99.07 17398.92 18999.52 16498.89 34299.78 4699.15 17099.66 12299.34 12798.92 28799.24 30197.69 22699.98 998.11 18299.28 30798.81 328
EMVS96.96 31697.28 30595.99 35898.76 35791.03 37695.26 37398.61 33899.34 12798.92 28798.88 34993.79 30899.66 34192.87 36199.05 32097.30 370
tpmrst97.73 29598.07 27396.73 35098.71 35992.00 37099.10 18598.86 32698.52 23198.92 28799.54 21991.90 32699.82 26198.02 18699.03 32298.37 348
MSLP-MVS++99.05 17799.09 14498.91 27899.21 29998.36 28098.82 23699.47 23698.85 19798.90 29099.56 21098.78 10899.09 37398.57 14799.68 22399.26 256
KD-MVS_2432*160095.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
miper_refine_blended95.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
E-PMN97.14 31397.43 30296.27 35598.79 35391.62 37395.54 37299.01 32399.44 11498.88 29199.12 31692.78 31999.68 33294.30 35299.03 32297.50 366
testdata99.42 19499.51 20698.93 24199.30 28596.20 34098.87 29499.40 25798.33 17599.89 15896.29 30799.28 30799.44 215
CANet_DTU98.91 20298.85 19899.09 25998.79 35398.13 29098.18 29599.31 28299.48 10298.86 29599.51 22796.56 26999.95 4799.05 10699.95 6199.19 273
DP-MVS Recon98.50 25198.23 25899.31 22799.49 21799.46 14198.56 26499.63 14094.86 35898.85 29699.37 26597.81 21999.59 35796.08 31499.44 28498.88 322
EIA-MVS99.12 16399.01 16899.45 18699.36 25999.62 10799.34 10999.79 5898.41 24198.84 29798.89 34898.75 11499.84 24098.15 18099.51 27498.89 321
DPM-MVS98.28 27297.94 28599.32 22499.36 25999.11 21797.31 35598.78 33196.88 32798.84 29799.11 31897.77 22299.61 35594.03 35799.36 29899.23 262
MDTV_nov1_ep1397.73 29698.70 36090.83 37799.15 17098.02 35398.51 23298.82 29999.61 18090.98 33799.66 34196.89 27598.92 328
GA-MVS97.99 28897.68 29898.93 27599.52 20198.04 29897.19 35999.05 32098.32 25898.81 30098.97 33989.89 35399.41 37098.33 16199.05 32099.34 243
AdaColmapbinary98.60 23798.35 24899.38 21099.12 31499.22 20398.67 25499.42 25197.84 28998.81 30099.27 29197.32 24899.81 27795.14 34199.53 27199.10 292
CNVR-MVS98.99 19298.80 20699.56 15399.25 29399.43 15298.54 26899.27 29198.58 22498.80 30299.43 25198.53 14699.70 31597.22 25999.59 25699.54 164
Effi-MVS+99.06 17498.97 18099.34 21899.31 27998.98 23198.31 28799.91 1298.81 20298.79 30398.94 34399.14 5999.84 24098.79 13198.74 33999.20 270
PatchmatchNetpermissive97.65 29997.80 29297.18 34498.82 35192.49 36899.17 16298.39 34898.12 26898.79 30399.58 19790.71 34399.89 15897.23 25899.41 29099.16 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETH3D cwj APD-0.1698.50 25198.16 26899.51 16799.04 32799.39 16298.47 27499.47 23696.70 33498.78 30599.33 27997.62 23699.86 20594.69 34999.38 29399.28 255
QAPM98.40 26497.99 27799.65 10999.39 25199.47 13799.67 4799.52 21791.70 36898.78 30599.80 6498.55 14099.95 4794.71 34899.75 18999.53 170
XVS99.27 12099.11 13599.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30799.47 24398.47 15399.88 17397.62 22999.73 20499.67 73
X-MVStestdata96.09 33394.87 34299.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30761.30 38698.47 15399.88 17397.62 22999.73 20499.67 73
HY-MVS98.23 998.21 27997.95 28198.99 26899.03 32998.24 28399.61 6598.72 33396.81 33198.73 30999.51 22794.06 30499.86 20596.91 27398.20 35498.86 324
alignmvs98.28 27297.96 28099.25 23999.12 31498.93 24199.03 20198.42 34699.64 7898.72 31097.85 37590.86 34199.62 35198.88 12599.13 31699.19 273
thres600view796.60 32496.16 32697.93 32599.63 15196.09 34599.18 15797.57 35998.77 20898.72 31097.32 38087.04 36299.72 30988.57 37098.62 34497.98 362
thres100view90096.39 32796.03 32997.47 33699.63 15195.93 34699.18 15797.57 35998.75 21298.70 31297.31 38187.04 36299.67 33787.62 37398.51 34896.81 371
test22299.51 20699.08 22597.83 33299.29 28795.21 35398.68 31399.31 28297.28 24999.38 29399.43 221
API-MVS98.38 26598.39 24398.35 31298.83 34899.26 19099.14 17299.18 31098.59 22398.66 31498.78 35498.61 13199.57 35994.14 35499.56 25996.21 373
canonicalmvs99.02 18399.00 17199.09 25999.10 32098.70 25799.61 6599.66 12299.63 8198.64 31597.65 37799.04 7499.54 36098.79 13198.92 32899.04 306
Fast-Effi-MVS+99.02 18398.87 19699.46 18299.38 25499.50 13399.04 19899.79 5897.17 32098.62 31698.74 35699.34 3799.95 4798.32 16299.41 29098.92 319
EPMVS96.53 32596.32 32397.17 34598.18 37292.97 36799.39 9889.95 38298.21 26498.61 31799.59 19586.69 36999.72 30996.99 26999.23 31598.81 328
新几何199.52 16499.50 21299.22 20399.26 29495.66 34898.60 31899.28 28997.67 22999.89 15895.95 32399.32 30399.45 210
HPM-MVS++copyleft98.96 19698.70 21499.74 6899.52 20199.71 7698.86 22799.19 30998.47 23798.59 31999.06 32298.08 19799.91 12296.94 27199.60 25299.60 130
PLCcopyleft97.35 1698.36 26697.99 27799.48 17799.32 27899.24 19998.50 27299.51 22195.19 35498.58 32098.96 34196.95 26399.83 25195.63 33199.25 31199.37 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet99.38 9199.34 8699.49 17398.90 33998.90 24599.70 3499.35 27399.86 2798.57 32199.81 6198.50 15299.93 7899.38 5499.98 2699.66 83
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM_NR98.36 26698.04 27499.33 22099.48 22398.93 24198.79 24399.28 29097.54 30198.56 32298.57 36197.12 25799.69 32194.09 35598.90 33099.38 232
ETH3 D test640097.76 29397.19 30999.50 17099.38 25499.26 19098.34 28399.49 23092.99 36598.54 32399.20 30795.92 28999.82 26191.14 36799.66 23499.40 227
tfpn200view996.30 33095.89 33097.53 33499.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34896.81 371
112198.56 24398.24 25799.52 16499.49 21799.24 19999.30 12199.22 30495.77 34598.52 32499.29 28797.39 24499.85 22395.79 32899.34 30099.46 208
thres40096.40 32695.89 33097.92 32699.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34897.98 362
CNLPA98.57 24298.34 24999.28 23299.18 30699.10 22298.34 28399.41 25298.48 23698.52 32498.98 33697.05 26099.78 28895.59 33299.50 27698.96 314
PMMVS98.49 25498.29 25499.11 25798.96 33698.42 27597.54 34399.32 27897.53 30298.47 32898.15 37297.88 21499.82 26197.46 24099.24 31399.09 295
test1299.54 16099.29 28599.33 17899.16 31298.43 32997.54 23799.82 26199.47 28199.48 199
NCCC98.82 21598.57 22699.58 14399.21 29999.31 18198.61 25599.25 29798.65 21798.43 32999.26 29497.86 21599.81 27796.55 29499.27 31099.61 126
thres20096.09 33395.68 33597.33 34199.48 22396.22 34298.53 26997.57 35998.06 27398.37 33196.73 38586.84 36699.61 35586.99 37698.57 34596.16 374
mvs-test198.83 21398.70 21499.22 24398.89 34299.65 9998.88 22399.66 12299.34 12798.29 33298.94 34397.69 22699.96 3798.11 18298.54 34798.04 361
tpm97.15 31196.95 31597.75 33198.91 33894.24 36099.32 11497.96 35497.71 29398.29 33299.32 28086.72 36899.92 9898.10 18496.24 37499.09 295
原ACMM199.37 21399.47 22898.87 24899.27 29196.74 33398.26 33499.32 28097.93 20999.82 26195.96 32299.38 29399.43 221
ADS-MVSNet297.78 29297.66 30098.12 32299.14 31095.36 35299.22 14898.75 33296.97 32598.25 33599.64 15290.90 33999.94 6296.51 29799.56 25999.08 298
ADS-MVSNet97.72 29897.67 29997.86 32799.14 31094.65 35899.22 14898.86 32696.97 32598.25 33599.64 15290.90 33999.84 24096.51 29799.56 25999.08 298
dp96.86 31797.07 31196.24 35698.68 36190.30 38199.19 15698.38 34997.35 31298.23 33799.59 19587.23 36099.82 26196.27 30898.73 34198.59 336
TR-MVS97.44 30697.15 31098.32 31498.53 36497.46 31898.47 27497.91 35696.85 32998.21 33898.51 36596.42 27599.51 36592.16 36397.29 36797.98 362
HQP-NCC99.31 27997.98 31997.45 30698.15 339
ACMP_Plane99.31 27997.98 31997.45 30698.15 339
HQP4-MVS98.15 33999.70 31599.53 170
HQP-MVS98.36 26698.02 27699.39 20699.31 27998.94 23797.98 31999.37 26997.45 30698.15 33998.83 35196.67 26799.70 31594.73 34699.67 23099.53 170
CostFormer96.71 32296.79 32196.46 35498.90 33990.71 37999.41 9598.68 33494.69 36198.14 34399.34 27886.32 37099.80 28297.60 23298.07 36098.88 322
OpenMVScopyleft98.12 1098.23 27797.89 29199.26 23699.19 30499.26 19099.65 5799.69 11091.33 36998.14 34399.77 8498.28 17899.96 3795.41 33799.55 26398.58 338
test_prior398.62 23498.34 24999.46 18299.35 26199.22 20397.95 32399.39 26297.87 28598.05 34599.05 32397.90 21199.69 32195.99 31999.49 27899.48 199
test_prior297.95 32397.87 28598.05 34599.05 32397.90 21195.99 31999.49 278
MAR-MVS98.24 27697.92 28799.19 24798.78 35599.65 9999.17 16299.14 31495.36 35098.04 34798.81 35397.47 23999.72 30995.47 33699.06 31998.21 355
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR97.56 30397.07 31199.04 26698.80 35298.11 29397.63 33999.25 29794.56 36298.02 34898.25 37197.43 24199.68 33290.90 36898.74 33999.33 244
BH-w/o97.20 31097.01 31397.76 33099.08 32395.69 34998.03 31398.52 34195.76 34697.96 34998.02 37395.62 29299.47 36792.82 36297.25 36898.12 359
TEST999.35 26199.35 17598.11 30499.41 25294.83 36097.92 35098.99 33398.02 20299.85 223
train_agg98.35 26997.95 28199.57 14999.35 26199.35 17598.11 30499.41 25294.90 35697.92 35098.99 33398.02 20299.85 22395.38 33899.44 28499.50 189
tpm296.35 32896.22 32596.73 35098.88 34591.75 37299.21 15098.51 34293.27 36497.89 35299.21 30584.83 37299.70 31596.04 31698.18 35798.75 331
JIA-IIPM98.06 28497.92 28798.50 30698.59 36297.02 32998.80 24098.51 34299.88 2297.89 35299.87 3491.89 32799.90 14298.16 17997.68 36598.59 336
test_899.34 27199.31 18198.08 30899.40 25994.90 35697.87 35498.97 33998.02 20299.84 240
tpmvs97.39 30797.69 29796.52 35298.41 36591.76 37199.30 12198.94 32597.74 29197.85 35599.55 21792.40 32599.73 30796.25 30998.73 34198.06 360
test-LLR97.15 31196.95 31597.74 33298.18 37295.02 35597.38 35196.10 36698.00 27497.81 35698.58 35990.04 35199.91 12297.69 22798.78 33398.31 349
TESTMET0.1,196.24 33195.84 33397.41 33898.24 37093.84 36397.38 35195.84 37098.43 23897.81 35698.56 36279.77 37999.89 15897.77 21098.77 33598.52 340
test-mter96.23 33295.73 33497.74 33298.18 37295.02 35597.38 35196.10 36697.90 28397.81 35698.58 35979.12 38299.91 12297.69 22798.78 33398.31 349
agg_prior198.33 27197.92 28799.57 14999.35 26199.36 17197.99 31899.39 26294.85 35997.76 35998.98 33698.03 20099.85 22395.49 33499.44 28499.51 183
agg_prior99.35 26199.36 17199.39 26297.76 35999.85 223
tpm cat196.78 31996.98 31496.16 35798.85 34690.59 38099.08 19399.32 27892.37 36697.73 36199.46 24691.15 33599.69 32196.07 31598.80 33298.21 355
PVSNet_095.53 1995.85 33895.31 34097.47 33698.78 35593.48 36595.72 37199.40 25996.18 34197.37 36297.73 37695.73 29099.58 35895.49 33481.40 37899.36 238
MVS95.72 34094.63 34498.99 26898.56 36397.98 30599.30 12198.86 32672.71 37797.30 36399.08 32098.34 17399.74 30489.21 36998.33 35199.26 256
EPNet98.13 28097.77 29599.18 24994.57 38297.99 29999.24 14197.96 35499.74 5297.29 36499.62 17193.13 31699.97 1998.59 14699.83 14799.58 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030498.88 20898.71 21199.39 20698.85 34698.91 24499.45 8999.30 28598.56 22597.26 36599.68 13696.18 28499.96 3799.17 9099.94 7299.29 253
131498.00 28797.90 29098.27 31898.90 33997.45 31999.30 12199.06 31994.98 35597.21 36699.12 31698.43 15999.67 33795.58 33398.56 34697.71 365
AUN-MVS97.82 29097.38 30399.14 25499.27 29098.53 26798.72 25199.02 32198.10 26997.18 36799.03 33089.26 35599.85 22397.94 19597.91 36199.03 307
cascas96.99 31496.82 32097.48 33597.57 37895.64 35096.43 37099.56 18791.75 36797.13 36897.61 37895.58 29398.63 37696.68 28799.11 31798.18 358
FPMVS96.32 32995.50 33698.79 29499.60 15898.17 28998.46 27998.80 33097.16 32196.28 36999.63 16282.19 37599.09 37388.45 37198.89 33199.10 292
PAPM95.61 34194.71 34398.31 31699.12 31496.63 33696.66 36998.46 34590.77 37096.25 37098.68 35893.01 31799.69 32181.60 37897.86 36498.62 334
gg-mvs-nofinetune95.87 33795.17 34197.97 32498.19 37196.95 33099.69 4089.23 38399.89 1796.24 37199.94 1481.19 37699.51 36593.99 35898.20 35497.44 367
baseline296.83 31896.28 32498.46 30899.09 32296.91 33298.83 23293.87 37797.23 31796.23 37298.36 36888.12 35799.90 14296.68 28798.14 35898.57 339
EPNet_dtu97.62 30097.79 29497.11 34696.67 37992.31 36998.51 27198.04 35299.24 14295.77 37399.47 24393.78 30999.66 34198.98 11299.62 24299.37 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft97.98 32399.69 13196.95 33099.26 29475.51 37695.74 37498.28 37096.47 27399.62 35191.23 36697.89 36297.38 368
test_method91.72 34492.32 34789.91 36193.49 38370.18 38590.28 37499.56 18761.71 37895.39 37599.52 22393.90 30599.94 6298.76 13598.27 35399.62 116
IB-MVS95.41 2095.30 34294.46 34697.84 32898.76 35795.33 35397.33 35496.07 36896.02 34295.37 37697.41 37976.17 38499.96 3797.54 23595.44 37698.22 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND97.36 33997.59 37696.87 33399.70 3488.49 38494.64 37797.26 38280.66 37799.12 37291.50 36596.50 37396.08 375
ET-MVSNet_ETH3D96.78 31996.07 32898.91 27899.26 29297.92 30697.70 33796.05 36997.96 28192.37 37898.43 36787.06 36199.90 14298.27 16697.56 36698.91 320
MVEpermissive92.54 2296.66 32396.11 32798.31 31699.68 13997.55 31697.94 32595.60 37199.37 12490.68 37998.70 35796.56 26998.61 37786.94 37799.55 26398.77 330
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EGC-MVSNET89.05 34585.52 34899.64 11699.89 2699.78 4699.56 7799.52 21724.19 37949.96 38099.83 5199.15 5699.92 9897.71 21899.85 13299.21 266
test12329.31 34633.05 35118.08 36225.93 38612.24 38697.53 34510.93 38711.78 38024.21 38150.08 39021.04 3858.60 38123.51 37932.43 38033.39 377
testmvs28.94 34733.33 34915.79 36326.03 3859.81 38796.77 36715.67 38611.55 38123.87 38250.74 38919.03 3868.53 38223.21 38033.07 37929.03 378
test_blank8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.88 34833.17 3500.00 3640.00 3870.00 3880.00 37599.62 1430.00 3820.00 38399.13 31299.82 40.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas16.61 34922.14 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 199.28 430.00 3830.00 3810.00 3810.00 379
sosnet-low-res8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
sosnet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
Regformer8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.26 35811.02 3610.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.16 3100.00 3870.00 3830.00 3810.00 3810.00 379
uanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
MSC_two_6792asdad99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
No_MVS99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
eth-test20.00 387
eth-test0.00 387
OPU-MVS99.29 23099.12 31499.44 14899.20 15199.40 25799.00 7698.84 37596.54 29599.60 25299.58 144
save fliter99.53 19599.25 19498.29 28899.38 26899.07 170
test_0728_SECOND99.83 2699.70 12799.79 4399.14 17299.61 15099.92 9897.88 19999.72 21099.77 39
GSMVS99.14 286
sam_mvs190.81 34299.14 286
sam_mvs90.52 346
MTGPAbinary99.53 209
test_post199.14 17251.63 38889.54 35499.82 26196.86 276
test_post52.41 38790.25 34899.86 205
patchmatchnet-post99.62 17190.58 34499.94 62
MTMP99.09 19098.59 340
gm-plane-assit97.59 37689.02 38393.47 36398.30 36999.84 24096.38 304
test9_res95.10 34299.44 28499.50 189
agg_prior294.58 35099.46 28399.50 189
test_prior499.19 21098.00 316
test_prior99.46 18299.35 26199.22 20399.39 26299.69 32199.48 199
新几何298.04 312
旧先验199.49 21799.29 18499.26 29499.39 26197.67 22999.36 29899.46 208
无先验98.01 31499.23 30195.83 34499.85 22395.79 32899.44 215
原ACMM297.92 327
testdata299.89 15895.99 319
segment_acmp98.37 168
testdata197.72 33597.86 288
plane_prior799.58 16799.38 165
plane_prior699.47 22899.26 19097.24 250
plane_prior599.54 19999.82 26195.84 32699.78 18099.60 130
plane_prior499.25 296
plane_prior298.80 24098.94 184
plane_prior199.51 206
plane_prior99.24 19998.42 28097.87 28599.71 213
n20.00 388
nn0.00 388
door-mid99.83 36
test1199.29 287
door99.77 66
HQP5-MVS98.94 237
BP-MVS94.73 346
HQP3-MVS99.37 26999.67 230
HQP2-MVS96.67 267
NP-MVS99.40 24999.13 21598.83 351
ACMMP++_ref99.94 72
ACMMP++99.79 174
Test By Simon98.41 162