LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 120 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 66 | 68.08 89 | 97.05 1 | 96.93 1 |
|
DTE-MVSNet | | | 80.35 52 | 82.89 38 | 72.74 146 | 89.84 8 | 37.34 310 | 77.16 109 | 81.81 99 | 80.45 3 | 90.92 2 | 92.95 7 | 74.57 50 | 86.12 28 | 63.65 127 | 94.68 31 | 94.76 6 |
|
PS-CasMVS | | | 80.41 51 | 82.86 39 | 73.07 135 | 89.93 7 | 39.21 292 | 77.15 110 | 81.28 109 | 79.74 5 | 90.87 3 | 92.73 11 | 75.03 44 | 84.93 58 | 63.83 126 | 95.19 16 | 95.07 3 |
|
wuyk23d | | | 61.97 250 | 66.25 212 | 49.12 318 | 58.19 342 | 60.77 140 | 66.32 245 | 52.97 324 | 55.93 169 | 90.62 4 | 86.91 124 | 73.07 61 | 35.98 357 | 20.63 359 | 91.63 93 | 50.62 348 |
|
PEN-MVS | | | 80.46 50 | 82.91 37 | 73.11 134 | 89.83 9 | 39.02 295 | 77.06 112 | 82.61 90 | 80.04 4 | 90.60 5 | 92.85 9 | 74.93 46 | 85.21 54 | 63.15 134 | 95.15 18 | 95.09 2 |
|
CP-MVSNet | | | 79.48 59 | 81.65 49 | 72.98 138 | 89.66 13 | 39.06 294 | 76.76 113 | 80.46 126 | 78.91 7 | 90.32 6 | 91.70 24 | 68.49 95 | 84.89 59 | 63.40 132 | 95.12 19 | 95.01 4 |
|
LCM-MVSNet-Re | | | 69.10 180 | 71.57 155 | 61.70 267 | 70.37 262 | 34.30 330 | 61.45 291 | 79.62 137 | 56.81 158 | 89.59 7 | 88.16 111 | 68.44 96 | 72.94 237 | 42.30 276 | 87.33 170 | 77.85 234 |
|
WR-MVS_H | | | 80.22 55 | 82.17 44 | 74.39 113 | 89.46 15 | 42.69 269 | 78.24 97 | 82.24 93 | 78.21 9 | 89.57 8 | 92.10 18 | 68.05 100 | 85.59 44 | 66.04 107 | 95.62 9 | 94.88 5 |
|
anonymousdsp | | | 78.60 67 | 77.80 79 | 81.00 37 | 78.01 166 | 74.34 36 | 80.09 74 | 76.12 184 | 50.51 233 | 89.19 9 | 90.88 39 | 71.45 73 | 77.78 191 | 73.38 55 | 90.60 121 | 90.90 16 |
|
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 75 | 75.40 29 | 91.60 1 | 87.80 7 | 73.52 23 | 88.90 10 | 93.06 6 | 71.39 74 | 81.53 115 | 81.53 3 | 92.15 87 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OurMVSNet-221017-0 | | | 78.57 68 | 78.53 74 | 78.67 63 | 80.48 135 | 64.16 113 | 80.24 72 | 82.06 95 | 61.89 114 | 88.77 11 | 93.32 4 | 57.15 197 | 82.60 100 | 70.08 77 | 92.80 76 | 89.25 27 |
|
test_0402 | | | 78.17 75 | 79.48 65 | 74.24 116 | 83.50 95 | 59.15 154 | 72.52 157 | 74.60 201 | 75.34 16 | 88.69 12 | 91.81 22 | 75.06 43 | 82.37 103 | 65.10 113 | 88.68 152 | 81.20 180 |
|
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 47 | 79.27 8 | 87.56 5 | 86.08 26 | 77.48 12 | 88.12 13 | 91.53 27 | 81.18 8 | 84.31 71 | 78.12 24 | 94.47 35 | 84.15 119 |
|
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 32 | 81.19 5 | 88.84 2 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 62 | 74.51 48 | 96.15 2 | 92.88 7 |
|
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 38 | 87.00 42 | 70.41 64 | 82.04 57 | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 42 | 70.41 64 | | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
SixPastTwentyTwo | | | 75.77 88 | 76.34 89 | 74.06 119 | 81.69 124 | 54.84 176 | 76.47 114 | 75.49 190 | 64.10 95 | 87.73 17 | 92.24 17 | 50.45 233 | 81.30 118 | 67.41 98 | 91.46 97 | 86.04 70 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 21 | 77.51 10 | 87.65 18 | 90.73 45 | 79.20 14 | 85.58 45 | 78.11 25 | 94.46 36 | 84.89 91 |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 21 | 77.51 10 | 87.65 18 | 90.73 45 | 81.38 7 | | 78.11 25 | 94.46 36 | 84.89 91 |
|
ACMH+ | | 66.64 10 | 81.20 39 | 82.48 42 | 77.35 82 | 81.16 130 | 62.39 124 | 80.51 65 | 87.80 7 | 73.02 25 | 87.57 20 | 91.08 36 | 80.28 10 | 82.44 101 | 64.82 116 | 96.10 4 | 87.21 56 |
|
v7n | | | 79.37 61 | 80.41 57 | 76.28 93 | 78.67 159 | 55.81 171 | 79.22 84 | 82.51 92 | 70.72 44 | 87.54 21 | 92.44 14 | 68.00 102 | 81.34 116 | 72.84 58 | 91.72 89 | 91.69 10 |
|
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 66 | 88.17 39 | 73.96 37 | 83.11 49 | 84.52 59 | 66.40 71 | 87.45 22 | 89.16 91 | 81.02 9 | 80.52 138 | 74.27 50 | 95.73 7 | 80.98 187 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvs_tets | | | 78.93 64 | 78.67 72 | 79.72 49 | 84.81 76 | 73.93 38 | 80.65 64 | 76.50 182 | 51.98 216 | 87.40 23 | 91.86 21 | 76.09 34 | 78.53 169 | 68.58 84 | 90.20 125 | 86.69 64 |
|
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 86 | 86.12 57 | 61.06 133 | 83.62 42 | 84.72 51 | 72.61 29 | 87.38 24 | 89.70 78 | 77.48 24 | 85.89 36 | 75.29 42 | 94.39 41 | 83.08 144 |
|
test_241102_ONE | | | | | | 86.12 57 | 61.06 133 | | 84.72 51 | 72.64 28 | 87.38 24 | 89.47 81 | 77.48 24 | 85.74 40 | | | |
|
test_djsdf | | | 78.88 65 | 78.27 75 | 80.70 41 | 81.42 126 | 71.24 56 | 83.98 36 | 75.72 188 | 52.27 211 | 87.37 26 | 92.25 16 | 68.04 101 | 80.56 135 | 72.28 65 | 91.15 105 | 90.32 20 |
|
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 37 | 80.50 6 | 85.12 28 | 85.22 39 | 81.06 2 | 87.20 27 | 90.28 67 | 79.20 14 | 85.58 45 | 78.04 27 | 94.08 54 | 83.55 129 |
|
jajsoiax | | | 78.51 69 | 78.16 77 | 79.59 52 | 84.65 79 | 73.83 40 | 80.42 67 | 76.12 184 | 51.33 224 | 87.19 28 | 91.51 28 | 73.79 57 | 78.44 173 | 68.27 87 | 90.13 130 | 86.49 65 |
|
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 81 | 90.35 6 | 82.82 2 | 82.15 55 | 79.22 144 | 74.08 20 | 87.16 29 | 91.97 19 | 84.80 2 | 76.97 199 | 64.98 115 | 93.61 63 | 72.28 276 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMH | | 63.62 14 | 77.50 78 | 80.11 59 | 69.68 186 | 79.61 142 | 56.28 168 | 78.81 87 | 83.62 77 | 63.41 104 | 87.14 30 | 90.23 69 | 76.11 33 | 73.32 234 | 67.58 96 | 94.44 39 | 79.44 213 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 43 | 86.50 49 | 69.44 72 | 82.30 54 | 86.08 26 | 66.80 66 | 86.70 31 | 89.99 73 | 81.64 6 | 85.95 30 | 74.35 49 | 96.11 3 | 85.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 57 | 84.80 77 | 66.72 92 | 86.54 19 | 85.11 41 | 72.00 38 | 86.65 32 | 91.75 23 | 78.20 21 | 87.04 9 | 77.93 28 | 94.32 48 | 83.47 132 |
|
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 33 | 82.83 107 | 73.53 43 | 85.50 26 | 87.45 12 | 74.11 19 | 86.45 33 | 90.52 53 | 80.02 11 | 84.48 67 | 77.73 30 | 94.34 47 | 85.93 72 |
|
PS-MVSNAJss | | | 77.54 77 | 77.35 82 | 78.13 73 | 84.88 74 | 66.37 95 | 78.55 91 | 79.59 140 | 53.48 202 | 86.29 34 | 92.43 15 | 62.39 145 | 80.25 143 | 67.90 95 | 90.61 120 | 87.77 48 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 33 | 75.83 26 | 86.27 23 | 86.89 16 | 73.69 22 | 86.17 35 | 91.70 24 | 78.23 20 | 85.20 55 | 79.45 13 | 94.91 25 | 88.15 45 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 34 | 77.71 16 | 86.81 15 | 85.25 38 | 77.42 14 | 86.15 36 | 90.24 68 | 81.69 5 | 85.94 31 | 77.77 29 | 93.58 65 | 83.09 143 |
|
SD-MVS | | | 80.28 54 | 81.55 51 | 76.47 91 | 83.57 94 | 67.83 85 | 83.39 48 | 85.35 37 | 64.42 92 | 86.14 37 | 87.07 121 | 74.02 54 | 80.97 128 | 77.70 31 | 92.32 85 | 80.62 198 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 104 | 74.39 35 | 87.18 9 | 88.18 6 | 78.98 6 | 86.11 38 | 91.47 29 | 79.70 12 | 85.76 39 | 66.91 104 | 95.46 11 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
v10 | | | 75.69 91 | 76.20 91 | 74.16 117 | 74.44 217 | 48.69 212 | 75.84 126 | 82.93 86 | 59.02 135 | 85.92 39 | 89.17 90 | 58.56 182 | 82.74 97 | 70.73 73 | 89.14 147 | 91.05 13 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 25 | 87.65 4 | 85.89 29 | 71.03 42 | 85.85 40 | 90.58 49 | 78.77 17 | 85.78 38 | 79.37 16 | 95.17 17 | 84.62 101 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DVP-MVS | | | 81.15 41 | 83.12 35 | 75.24 106 | 86.16 55 | 60.78 138 | 83.77 40 | 80.58 124 | 72.48 31 | 85.83 41 | 90.41 58 | 78.57 18 | 85.69 41 | 75.86 39 | 94.39 41 | 79.24 215 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 41 | 90.41 58 | 75.58 38 | 85.69 41 | 77.43 33 | 94.74 29 | 84.31 115 |
|
v8 | | | 75.07 99 | 75.64 96 | 73.35 128 | 73.42 229 | 47.46 230 | 75.20 131 | 81.45 105 | 60.05 126 | 85.64 43 | 89.26 85 | 58.08 189 | 81.80 112 | 69.71 81 | 87.97 159 | 90.79 17 |
|
XVG-ACMP-BASELINE | | | 80.54 48 | 81.06 52 | 78.98 59 | 87.01 41 | 72.91 46 | 80.23 73 | 85.56 31 | 66.56 70 | 85.64 43 | 89.57 80 | 69.12 89 | 80.55 137 | 72.51 62 | 93.37 67 | 83.48 131 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 31 | 85.14 71 | 71.00 58 | 85.53 25 | 84.78 48 | 70.91 43 | 85.64 43 | 90.41 58 | 75.55 39 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 81 |
Skip Steuart: Steuart Systems R&D Blog. |
OPM-MVS | | | 80.99 45 | 81.63 50 | 79.07 58 | 86.86 46 | 69.39 73 | 79.41 81 | 84.00 74 | 65.64 75 | 85.54 46 | 89.28 84 | 76.32 32 | 83.47 83 | 74.03 51 | 93.57 66 | 84.35 114 |
|
UniMVSNet_ETH3D | | | 76.74 83 | 79.02 67 | 69.92 185 | 89.27 20 | 43.81 257 | 74.47 144 | 71.70 221 | 72.33 34 | 85.50 47 | 93.65 3 | 77.98 22 | 76.88 202 | 54.60 199 | 91.64 92 | 89.08 31 |
|
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 60 | 85.36 68 | 67.25 88 | 82.91 50 | 84.98 44 | 73.52 23 | 85.43 48 | 90.03 72 | 76.37 30 | 86.97 11 | 74.56 47 | 94.02 57 | 82.62 158 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 47 | 88.88 31 | 68.44 81 | 81.57 60 | 86.33 19 | 63.17 106 | 85.38 49 | 91.26 33 | 76.33 31 | 84.67 64 | 83.30 1 | 94.96 23 | 86.17 67 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test_part1 | | | 76.97 81 | 78.21 76 | 73.25 131 | 77.87 168 | 45.76 245 | 78.27 96 | 87.26 13 | 66.69 68 | 85.31 50 | 91.43 31 | 55.95 208 | 84.24 73 | 65.71 109 | 95.43 12 | 89.75 22 |
|
test0726 | | | | | | 86.16 55 | 60.78 138 | 83.81 39 | 85.10 42 | 72.48 31 | 85.27 51 | 89.96 74 | 78.57 18 | | | | |
|
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 38 | 74.40 34 | 85.24 27 | 87.21 14 | 70.69 45 | 85.14 52 | 90.42 57 | 78.99 16 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 11 | 82.79 87 | 72.41 33 | 85.11 53 | 90.85 41 | 76.65 29 | 84.89 59 | 79.30 17 | 94.63 32 | 82.35 165 |
|
test_241102_TWO | | | | | | | | | 84.80 47 | 72.61 29 | 84.93 54 | 89.70 78 | 77.73 23 | 85.89 36 | 75.29 42 | 94.22 53 | 83.25 139 |
|
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 53 | 80.63 121 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 191 |
|
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 30 | 80.63 121 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 191 |
|
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 23 | 82.04 57 | 85.40 35 | 67.96 59 | 84.91 57 | 90.88 39 | 75.59 37 | 86.57 15 | 78.16 23 | 94.71 30 | 83.82 123 |
|
K. test v3 | | | 73.67 115 | 73.61 121 | 73.87 121 | 79.78 140 | 55.62 174 | 74.69 142 | 62.04 288 | 66.16 73 | 84.76 58 | 93.23 5 | 49.47 237 | 80.97 128 | 65.66 110 | 86.67 182 | 85.02 90 |
|
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 3 | 84.43 60 | 71.96 39 | 84.70 59 | 90.56 50 | 77.12 26 | 86.18 25 | 79.24 18 | 95.36 13 | 82.49 162 |
|
test_part2 | | | | | | 85.90 61 | 66.44 94 | | | | 84.61 60 | | | | | | |
|
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 21 | 87.01 13 | 84.19 69 | 70.23 46 | 84.49 61 | 90.67 48 | 75.15 42 | 86.37 19 | 79.58 11 | 94.26 49 | 84.18 118 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 27 | 89.25 21 | 75.69 27 | 87.01 13 | 84.27 64 | 70.23 46 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 79.58 11 | 94.23 51 | 82.82 152 |
|
#test# | | | 82.40 30 | 82.71 40 | 81.48 27 | 89.25 21 | 75.69 27 | 84.47 34 | 84.27 64 | 64.45 91 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 76.01 36 | 94.23 51 | 82.82 152 |
|
xxxxxxxxxxxxxcwj | | | 80.31 53 | 80.94 53 | 78.42 68 | 87.00 42 | 67.23 89 | 79.24 82 | 88.61 4 | 56.65 162 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
SF-MVS | | | 80.72 47 | 81.80 45 | 77.48 78 | 82.03 118 | 64.40 112 | 83.41 47 | 88.46 5 | 65.28 82 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
SMA-MVS |  | | 82.12 32 | 82.68 41 | 80.43 42 | 88.90 30 | 69.52 70 | 85.12 28 | 84.76 49 | 63.53 101 | 84.23 66 | 91.47 29 | 72.02 66 | 87.16 7 | 79.74 10 | 94.36 45 | 84.61 102 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 32 | 88.99 27 | 73.29 44 | 85.94 24 | 85.13 40 | 68.58 57 | 84.14 67 | 90.21 70 | 73.37 60 | 86.41 17 | 79.09 19 | 93.98 58 | 84.30 117 |
|
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 29 | 89.14 25 | 73.28 45 | 86.32 22 | 85.97 28 | 67.39 61 | 84.02 68 | 90.39 61 | 74.73 47 | 86.46 16 | 80.73 7 | 94.43 40 | 84.60 104 |
|
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 53 | 89.28 19 | 69.09 79 | 83.62 42 | 84.98 44 | 64.77 88 | 83.97 69 | 91.02 37 | 75.53 40 | 85.93 34 | 82.00 2 | 94.36 45 | 83.35 137 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 19 | 87.06 12 | 84.23 68 | 70.19 48 | 83.86 70 | 90.72 47 | 75.20 41 | 86.27 22 | 79.41 15 | 94.25 50 | 83.95 122 |
|
lessismore_v0 | | | | | 72.75 145 | 79.60 143 | 56.83 167 | | 57.37 303 | | 83.80 71 | 89.01 95 | 47.45 251 | 78.74 165 | 64.39 119 | 86.49 184 | 82.69 157 |
|
APD-MVS |  | | 81.13 42 | 81.73 47 | 79.36 55 | 84.47 82 | 70.53 63 | 83.85 38 | 83.70 76 | 69.43 52 | 83.67 72 | 88.96 97 | 75.89 35 | 86.41 17 | 72.62 61 | 92.95 72 | 81.14 182 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ITE_SJBPF | | | | | 80.35 44 | 76.94 180 | 73.60 41 | | 80.48 125 | 66.87 64 | 83.64 73 | 86.18 151 | 70.25 82 | 79.90 150 | 61.12 147 | 88.95 150 | 87.56 52 |
|
nrg030 | | | 74.87 104 | 75.99 93 | 71.52 162 | 74.90 204 | 49.88 208 | 74.10 148 | 82.58 91 | 54.55 186 | 83.50 74 | 89.21 87 | 71.51 71 | 75.74 214 | 61.24 144 | 92.34 84 | 88.94 36 |
|
V42 | | | 71.06 154 | 70.83 163 | 71.72 159 | 67.25 286 | 47.14 234 | 65.94 248 | 80.35 130 | 51.35 223 | 83.40 75 | 83.23 194 | 59.25 176 | 78.80 163 | 65.91 108 | 80.81 252 | 89.23 28 |
|
TranMVSNet+NR-MVSNet | | | 76.13 86 | 77.66 80 | 71.56 161 | 84.61 80 | 42.57 271 | 70.98 182 | 78.29 162 | 68.67 56 | 83.04 76 | 89.26 85 | 72.99 62 | 80.75 134 | 55.58 192 | 95.47 10 | 91.35 11 |
|
9.14 | | | | 80.22 58 | | 80.68 132 | | 80.35 70 | 87.69 10 | 59.90 127 | 83.00 77 | 88.20 108 | 74.57 50 | 81.75 113 | 73.75 53 | 93.78 59 | |
|
Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 170 | 77.67 173 | 45.70 247 | 74.73 140 | 80.19 131 | 68.80 53 | 82.95 78 | 92.91 8 | 66.26 116 | 76.76 205 | 58.41 168 | 92.77 77 | 89.30 26 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 26 | 82.87 79 | 90.39 61 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
X-MVStestdata | | | 76.81 82 | 74.79 101 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 26 | 82.87 79 | 9.95 362 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
testtj | | | 81.19 40 | 81.70 48 | 79.67 51 | 83.95 90 | 69.77 69 | 83.58 45 | 84.63 56 | 72.13 35 | 82.85 81 | 88.36 105 | 75.00 45 | 86.79 12 | 71.99 69 | 92.84 74 | 82.44 163 |
|
XVG-OURS | | | 79.51 58 | 79.82 61 | 78.58 65 | 86.11 60 | 74.96 32 | 76.33 119 | 84.95 46 | 66.89 63 | 82.75 82 | 88.99 96 | 66.82 111 | 78.37 177 | 74.80 44 | 90.76 119 | 82.40 164 |
|
ZD-MVS | | | | | | 83.91 91 | 69.36 74 | | 81.09 115 | 58.91 138 | 82.73 83 | 89.11 92 | 75.77 36 | 86.63 13 | 72.73 59 | 92.93 73 | |
|
FC-MVSNet-test | | | 73.32 122 | 74.78 102 | 68.93 199 | 79.21 150 | 36.57 312 | 71.82 170 | 79.54 142 | 57.63 151 | 82.57 84 | 90.38 63 | 59.38 175 | 78.99 160 | 57.91 171 | 94.56 33 | 91.23 12 |
|
ETH3D-3000-0.1 | | | 79.14 62 | 79.80 62 | 77.16 85 | 80.67 133 | 64.57 109 | 80.26 71 | 87.60 11 | 60.74 122 | 82.47 85 | 88.03 113 | 71.73 69 | 81.81 111 | 73.12 56 | 93.61 63 | 85.09 86 |
|
ANet_high | | | 67.08 205 | 69.94 169 | 58.51 291 | 57.55 343 | 27.09 352 | 58.43 309 | 76.80 180 | 63.56 100 | 82.40 86 | 91.93 20 | 59.82 171 | 64.98 298 | 50.10 231 | 88.86 151 | 83.46 133 |
|
v1240 | | | 73.06 128 | 73.14 129 | 72.84 143 | 74.74 208 | 47.27 233 | 71.88 169 | 81.11 113 | 51.80 217 | 82.28 87 | 84.21 178 | 56.22 206 | 82.34 104 | 68.82 82 | 87.17 176 | 88.91 37 |
|
LS3D | | | 80.99 45 | 80.85 54 | 81.41 30 | 78.37 160 | 71.37 54 | 87.45 6 | 85.87 30 | 77.48 12 | 81.98 88 | 89.95 75 | 69.14 88 | 85.26 51 | 66.15 105 | 91.24 102 | 87.61 51 |
|
v1192 | | | 73.40 120 | 73.42 122 | 73.32 130 | 74.65 214 | 48.67 213 | 72.21 160 | 81.73 100 | 52.76 208 | 81.85 89 | 84.56 174 | 57.12 198 | 82.24 107 | 68.58 84 | 87.33 170 | 89.06 32 |
|
v1144 | | | 73.29 123 | 73.39 123 | 73.01 136 | 74.12 223 | 48.11 220 | 72.01 163 | 81.08 116 | 53.83 199 | 81.77 90 | 84.68 172 | 58.07 190 | 81.91 109 | 68.10 88 | 86.86 178 | 88.99 35 |
|
OMC-MVS | | | 79.41 60 | 78.79 69 | 81.28 34 | 80.62 134 | 70.71 62 | 80.91 63 | 84.76 49 | 62.54 110 | 81.77 90 | 86.65 138 | 71.46 72 | 83.53 82 | 67.95 94 | 92.44 82 | 89.60 23 |
|
UniMVSNet_NR-MVSNet | | | 74.90 103 | 75.65 95 | 72.64 149 | 83.04 102 | 45.79 243 | 69.26 201 | 78.81 150 | 66.66 69 | 81.74 92 | 86.88 125 | 63.26 137 | 81.07 124 | 56.21 184 | 94.98 21 | 91.05 13 |
|
DU-MVS | | | 74.91 102 | 75.57 97 | 72.93 140 | 83.50 95 | 45.79 243 | 69.47 198 | 80.14 133 | 65.22 83 | 81.74 92 | 87.08 119 | 61.82 151 | 81.07 124 | 56.21 184 | 94.98 21 | 91.93 8 |
|
v1921920 | | | 72.96 134 | 72.98 135 | 72.89 142 | 74.67 211 | 47.58 228 | 71.92 167 | 80.69 120 | 51.70 219 | 81.69 94 | 83.89 182 | 56.58 204 | 82.25 106 | 68.34 86 | 87.36 168 | 88.82 39 |
|
WR-MVS | | | 71.20 153 | 72.48 140 | 67.36 219 | 84.98 73 | 35.70 320 | 64.43 268 | 68.66 251 | 65.05 86 | 81.49 95 | 86.43 146 | 57.57 195 | 76.48 207 | 50.36 229 | 93.32 69 | 89.90 21 |
|
v144192 | | | 72.99 132 | 73.06 132 | 72.77 144 | 74.58 215 | 47.48 229 | 71.90 168 | 80.44 127 | 51.57 220 | 81.46 96 | 84.11 180 | 58.04 191 | 82.12 108 | 67.98 92 | 87.47 166 | 88.70 42 |
|
IU-MVS | | | | | | 86.12 57 | 60.90 137 | | 80.38 128 | 45.49 271 | 81.31 97 | | | | 75.64 41 | 94.39 41 | 84.65 98 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 21 | 83.59 78 | 71.31 40 | 81.26 98 | 90.96 38 | 74.57 50 | 84.69 63 | 78.41 22 | 94.78 26 | 82.74 156 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v2v482 | | | 72.55 144 | 72.58 139 | 72.43 152 | 72.92 241 | 46.72 236 | 71.41 174 | 79.13 145 | 55.27 173 | 81.17 99 | 85.25 169 | 55.41 209 | 81.13 121 | 67.25 103 | 85.46 192 | 89.43 25 |
|
MSP-MVS | | | 80.49 49 | 79.67 64 | 82.96 7 | 89.70 12 | 77.46 22 | 87.16 10 | 85.10 42 | 64.94 87 | 81.05 100 | 88.38 104 | 57.10 199 | 87.10 8 | 79.75 8 | 83.87 218 | 84.31 115 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MDA-MVSNet-bldmvs | | | 62.34 249 | 61.73 246 | 64.16 243 | 61.64 322 | 49.90 205 | 48.11 337 | 57.24 306 | 53.31 203 | 80.95 101 | 79.39 236 | 49.00 242 | 61.55 311 | 45.92 261 | 80.05 259 | 81.03 184 |
|
ETH3D cwj APD-0.16 | | | 78.38 73 | 78.72 71 | 77.38 80 | 80.09 138 | 66.16 97 | 79.08 85 | 86.13 25 | 57.55 152 | 80.93 102 | 87.76 116 | 71.98 68 | 82.73 98 | 72.11 68 | 92.83 75 | 83.25 139 |
|
CPTT-MVS | | | 81.51 38 | 81.76 46 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 20 | 82.03 96 | 68.80 53 | 80.92 103 | 88.52 101 | 72.00 67 | 82.39 102 | 74.80 44 | 93.04 71 | 81.14 182 |
|
DeepC-MVS | | 72.44 4 | 81.00 44 | 80.83 55 | 81.50 26 | 86.70 48 | 70.03 68 | 82.06 56 | 87.00 15 | 59.89 128 | 80.91 104 | 90.53 51 | 72.19 64 | 88.56 1 | 73.67 54 | 94.52 34 | 85.92 73 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FIs | | | 72.56 142 | 73.80 115 | 68.84 202 | 78.74 158 | 37.74 306 | 71.02 181 | 79.83 136 | 56.12 166 | 80.88 105 | 89.45 82 | 58.18 184 | 78.28 180 | 56.63 177 | 93.36 68 | 90.51 19 |
|
3Dnovator+ | | 73.19 2 | 81.08 43 | 80.48 56 | 82.87 9 | 81.41 127 | 72.03 48 | 84.38 35 | 86.23 24 | 77.28 15 | 80.65 106 | 90.18 71 | 59.80 172 | 87.58 4 | 73.06 57 | 91.34 100 | 89.01 33 |
|
IterMVS-LS | | | 73.01 130 | 73.12 131 | 72.66 148 | 73.79 226 | 49.90 205 | 71.63 171 | 78.44 159 | 58.22 140 | 80.51 107 | 86.63 139 | 58.15 186 | 79.62 152 | 62.51 136 | 88.20 153 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Regformer-2 | | | 75.32 94 | 74.47 105 | 77.88 74 | 74.22 219 | 66.65 93 | 72.77 155 | 77.54 171 | 68.47 58 | 80.44 108 | 72.08 303 | 70.60 79 | 80.97 128 | 70.08 77 | 84.02 216 | 86.01 71 |
|
DP-MVS | | | 78.44 72 | 79.29 66 | 75.90 97 | 81.86 121 | 65.33 102 | 79.05 86 | 84.63 56 | 74.83 18 | 80.41 109 | 86.27 148 | 71.68 70 | 83.45 84 | 62.45 138 | 92.40 83 | 78.92 219 |
|
XVG-OURS-SEG-HR | | | 79.62 57 | 79.99 60 | 78.49 66 | 86.46 50 | 74.79 33 | 77.15 110 | 85.39 36 | 66.73 67 | 80.39 110 | 88.85 99 | 74.43 53 | 78.33 179 | 74.73 46 | 85.79 190 | 82.35 165 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 71 | 77.14 85 | 82.52 19 | 84.39 86 | 77.04 24 | 76.35 117 | 84.05 72 | 56.66 161 | 80.27 111 | 85.31 168 | 68.56 94 | 87.03 10 | 67.39 99 | 91.26 101 | 83.50 130 |
|
Regformer-4 | | | 74.64 106 | 73.67 118 | 77.55 76 | 74.74 208 | 64.49 111 | 72.91 153 | 75.42 192 | 67.45 60 | 80.24 112 | 72.07 305 | 68.98 90 | 80.19 147 | 70.29 75 | 80.91 248 | 87.98 46 |
|
AllTest | | | 77.66 76 | 77.43 81 | 78.35 69 | 79.19 151 | 70.81 59 | 78.60 90 | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 80 | 78.43 174 | 55.60 189 | 90.90 114 | 85.81 74 |
|
TestCases | | | | | 78.35 69 | 79.19 151 | 70.81 59 | | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 80 | 78.43 174 | 55.60 189 | 90.90 114 | 85.81 74 |
|
UA-Net | | | 81.56 37 | 82.28 43 | 79.40 54 | 88.91 29 | 69.16 77 | 84.67 33 | 80.01 135 | 75.34 16 | 79.80 115 | 94.91 2 | 69.79 85 | 80.25 143 | 72.63 60 | 94.46 36 | 88.78 41 |
|
PCF-MVS | | 63.80 13 | 72.70 140 | 71.69 150 | 75.72 99 | 78.10 163 | 60.01 146 | 73.04 152 | 81.50 103 | 45.34 273 | 79.66 116 | 84.35 177 | 65.15 127 | 82.65 99 | 48.70 241 | 89.38 143 | 84.50 110 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet (Re) | | | 75.00 100 | 75.48 98 | 73.56 126 | 83.14 100 | 47.92 223 | 70.41 190 | 81.04 117 | 63.67 99 | 79.54 117 | 86.37 147 | 62.83 139 | 81.82 110 | 57.10 175 | 95.25 15 | 90.94 15 |
|
Baseline_NR-MVSNet | | | 70.62 159 | 73.19 128 | 62.92 260 | 76.97 179 | 34.44 328 | 68.84 206 | 70.88 239 | 60.25 125 | 79.50 118 | 90.53 51 | 61.82 151 | 69.11 272 | 54.67 198 | 95.27 14 | 85.22 82 |
|
FMVSNet1 | | | 71.06 154 | 72.48 140 | 66.81 225 | 77.65 174 | 40.68 283 | 71.96 164 | 73.03 207 | 61.14 118 | 79.45 119 | 90.36 64 | 60.44 165 | 75.20 220 | 50.20 230 | 88.05 156 | 84.54 105 |
|
Regformer-1 | | | 74.28 108 | 73.63 120 | 76.21 95 | 74.22 219 | 64.12 114 | 72.77 155 | 75.46 191 | 66.86 65 | 79.27 120 | 72.08 303 | 69.29 87 | 78.74 165 | 68.73 83 | 84.02 216 | 85.77 79 |
|
ambc | | | | | 70.10 181 | 77.74 171 | 50.21 202 | 74.28 147 | 77.93 168 | | 79.26 121 | 88.29 107 | 54.11 215 | 79.77 151 | 64.43 118 | 91.10 107 | 80.30 203 |
|
IS-MVSNet | | | 75.10 98 | 75.42 99 | 74.15 118 | 79.23 149 | 48.05 221 | 79.43 79 | 78.04 165 | 70.09 49 | 79.17 122 | 88.02 114 | 53.04 218 | 83.60 80 | 58.05 170 | 93.76 62 | 90.79 17 |
|
CSCG | | | 74.12 110 | 74.39 106 | 73.33 129 | 79.35 146 | 61.66 130 | 77.45 105 | 81.98 97 | 62.47 112 | 79.06 123 | 80.19 226 | 61.83 150 | 78.79 164 | 59.83 159 | 87.35 169 | 79.54 212 |
|
RPSCF | | | 75.76 89 | 74.37 107 | 79.93 46 | 74.81 206 | 77.53 19 | 77.53 104 | 79.30 143 | 59.44 131 | 78.88 124 | 89.80 77 | 71.26 75 | 73.09 236 | 57.45 172 | 80.89 250 | 89.17 30 |
|
tttt0517 | | | 69.46 173 | 67.79 199 | 74.46 110 | 75.34 197 | 52.72 190 | 75.05 132 | 63.27 279 | 54.69 182 | 78.87 125 | 84.37 176 | 26.63 347 | 81.15 120 | 63.95 123 | 87.93 160 | 89.51 24 |
|
v148 | | | 69.38 176 | 69.39 173 | 69.36 189 | 69.14 272 | 44.56 252 | 68.83 207 | 72.70 213 | 54.79 180 | 78.59 126 | 84.12 179 | 54.69 211 | 76.74 206 | 59.40 162 | 82.20 232 | 86.79 62 |
|
EI-MVSNet-Vis-set | | | 72.78 138 | 71.87 147 | 75.54 101 | 74.77 207 | 59.02 155 | 72.24 159 | 71.56 224 | 63.92 96 | 78.59 126 | 71.59 311 | 66.22 117 | 78.60 167 | 67.58 96 | 80.32 256 | 89.00 34 |
|
EI-MVSNet-UG-set | | | 72.63 141 | 71.68 151 | 75.47 102 | 74.67 211 | 58.64 160 | 72.02 162 | 71.50 225 | 63.53 101 | 78.58 128 | 71.39 314 | 65.98 118 | 78.53 169 | 67.30 102 | 80.18 258 | 89.23 28 |
|
旧先验2 | | | | | | | | 71.17 180 | | 45.11 275 | 78.54 129 | | | 61.28 312 | 59.19 163 | | |
|
Regformer-3 | | | 72.86 136 | 72.28 143 | 74.62 109 | 74.74 208 | 60.18 144 | 72.91 153 | 71.76 220 | 64.74 89 | 78.42 130 | 72.07 305 | 67.00 108 | 76.28 209 | 67.97 93 | 80.91 248 | 87.39 53 |
|
MIMVSNet1 | | | 66.57 209 | 69.23 176 | 58.59 290 | 81.26 129 | 37.73 307 | 64.06 271 | 57.62 300 | 57.02 155 | 78.40 131 | 90.75 44 | 62.65 140 | 58.10 320 | 41.77 281 | 89.58 140 | 79.95 207 |
|
HQP_MVS | | | 78.77 66 | 78.78 70 | 78.72 62 | 85.18 69 | 65.18 104 | 82.74 51 | 85.49 32 | 65.45 77 | 78.23 132 | 89.11 92 | 60.83 163 | 86.15 26 | 71.09 71 | 90.94 110 | 84.82 93 |
|
plane_prior3 | | | | | | | 65.67 100 | | | 63.82 98 | 78.23 132 | | | | | | |
|
eth_miper_zixun_eth | | | 69.42 174 | 68.73 186 | 71.50 163 | 67.99 279 | 46.42 239 | 67.58 226 | 78.81 150 | 50.72 231 | 78.13 134 | 80.34 223 | 50.15 235 | 80.34 140 | 60.18 153 | 84.65 206 | 87.74 49 |
|
HPM-MVS++ |  | | 79.89 56 | 79.80 62 | 80.18 45 | 89.02 26 | 78.44 13 | 83.49 46 | 80.18 132 | 64.71 90 | 78.11 135 | 88.39 103 | 65.46 124 | 83.14 90 | 77.64 32 | 91.20 103 | 78.94 218 |
|
hse-mvs3 | | | 73.08 126 | 71.61 153 | 77.48 78 | 83.89 93 | 72.89 47 | 70.47 188 | 71.12 236 | 54.28 189 | 77.89 136 | 83.41 186 | 49.04 240 | 80.98 127 | 63.62 128 | 90.77 118 | 78.58 222 |
|
hse-mvs2 | | | 72.32 145 | 70.66 166 | 77.31 83 | 83.10 101 | 71.77 50 | 69.19 203 | 71.45 227 | 54.28 189 | 77.89 136 | 78.26 252 | 49.04 240 | 79.23 156 | 63.62 128 | 89.13 148 | 80.92 188 |
|
PM-MVS | | | 64.49 226 | 63.61 233 | 67.14 223 | 76.68 184 | 75.15 31 | 68.49 217 | 42.85 347 | 51.17 227 | 77.85 138 | 80.51 220 | 45.76 253 | 66.31 293 | 52.83 214 | 76.35 285 | 59.96 340 |
|
RRT_MVS | | | 73.80 114 | 71.19 160 | 81.60 24 | 71.04 253 | 70.33 66 | 78.78 88 | 74.91 198 | 56.96 156 | 77.83 139 | 85.56 165 | 32.82 318 | 87.39 5 | 71.16 70 | 91.68 91 | 87.07 60 |
|
BH-untuned | | | 69.39 175 | 69.46 172 | 69.18 192 | 77.96 167 | 56.88 166 | 68.47 218 | 77.53 172 | 56.77 159 | 77.79 140 | 79.63 233 | 60.30 167 | 80.20 146 | 46.04 260 | 80.65 253 | 70.47 290 |
|
cl_fuxian | | | 69.82 169 | 69.89 170 | 69.61 187 | 66.24 294 | 43.48 261 | 68.12 221 | 79.61 139 | 51.43 222 | 77.72 141 | 80.18 227 | 54.61 213 | 78.15 185 | 63.62 128 | 87.50 165 | 87.20 57 |
|
MSLP-MVS++ | | | 74.48 107 | 75.78 94 | 70.59 170 | 84.66 78 | 62.40 123 | 78.65 89 | 84.24 67 | 60.55 124 | 77.71 142 | 81.98 204 | 63.12 138 | 77.64 193 | 62.95 135 | 88.14 154 | 71.73 281 |
|
CDPH-MVS | | | 77.33 79 | 77.06 86 | 78.14 72 | 84.21 87 | 63.98 115 | 76.07 122 | 83.45 79 | 54.20 191 | 77.68 143 | 87.18 117 | 69.98 83 | 85.37 48 | 68.01 91 | 92.72 80 | 85.08 88 |
|
CNVR-MVS | | | 78.49 70 | 78.59 73 | 78.16 71 | 85.86 64 | 67.40 87 | 78.12 100 | 81.50 103 | 63.92 96 | 77.51 144 | 86.56 142 | 68.43 97 | 84.82 61 | 73.83 52 | 91.61 94 | 82.26 168 |
|
casdiffmvs | | | 73.06 128 | 73.84 114 | 70.72 168 | 71.32 252 | 46.71 237 | 70.93 183 | 84.26 66 | 55.62 171 | 77.46 145 | 87.10 118 | 67.09 107 | 77.81 189 | 63.95 123 | 86.83 179 | 87.64 50 |
|
TinyColmap | | | 67.98 194 | 69.28 174 | 64.08 245 | 67.98 280 | 46.82 235 | 70.04 191 | 75.26 195 | 53.05 204 | 77.36 146 | 86.79 128 | 59.39 174 | 72.59 244 | 45.64 262 | 88.01 158 | 72.83 269 |
|
ETH3 D test6400 | | | 75.73 90 | 76.00 92 | 74.92 107 | 81.75 122 | 56.93 165 | 78.31 94 | 84.60 58 | 52.83 207 | 77.15 147 | 85.14 170 | 68.59 93 | 84.03 74 | 65.44 112 | 90.20 125 | 83.82 123 |
|
TSAR-MVS + MP. | | | 79.05 63 | 78.81 68 | 79.74 48 | 88.94 28 | 67.52 86 | 86.61 18 | 81.38 107 | 51.71 218 | 77.15 147 | 91.42 32 | 65.49 123 | 87.20 6 | 79.44 14 | 87.17 176 | 84.51 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DIV-MVS_2432*1600 | | | 66.38 211 | 67.51 201 | 62.97 259 | 61.76 321 | 34.39 329 | 58.11 311 | 75.30 194 | 50.84 230 | 77.12 149 | 85.42 166 | 56.84 202 | 69.44 269 | 51.07 223 | 91.16 104 | 85.08 88 |
|
TEST9 | | | | | | 85.47 66 | 69.32 75 | 76.42 115 | 78.69 153 | 53.73 200 | 76.97 150 | 86.74 132 | 66.84 110 | 81.10 122 | | | |
|
train_agg | | | 76.38 85 | 76.55 87 | 75.86 98 | 85.47 66 | 69.32 75 | 76.42 115 | 78.69 153 | 54.00 195 | 76.97 150 | 86.74 132 | 66.60 113 | 81.10 122 | 72.50 63 | 91.56 95 | 77.15 237 |
|
agg_prior1 | | | 75.89 87 | 76.41 88 | 74.31 115 | 84.44 84 | 66.02 98 | 76.12 121 | 78.62 156 | 54.40 187 | 76.95 152 | 86.85 126 | 66.44 115 | 80.34 140 | 72.45 64 | 91.42 98 | 76.57 241 |
|
agg_prior | | | | | | 84.44 84 | 66.02 98 | | 78.62 156 | | 76.95 152 | | | 80.34 140 | | | |
|
IterMVS-SCA-FT | | | 67.68 199 | 66.07 214 | 72.49 151 | 73.34 231 | 58.20 162 | 63.80 274 | 65.55 265 | 48.10 254 | 76.91 154 | 82.64 198 | 45.20 258 | 78.84 162 | 61.20 145 | 77.89 281 | 80.44 202 |
|
Anonymous20240529 | | | 72.56 142 | 73.79 116 | 68.86 201 | 76.89 183 | 45.21 249 | 68.80 210 | 77.25 177 | 67.16 62 | 76.89 155 | 90.44 54 | 65.95 119 | 74.19 231 | 50.75 225 | 90.00 131 | 87.18 58 |
|
test_8 | | | | | | 85.09 72 | 67.89 84 | 76.26 120 | 78.66 155 | 54.00 195 | 76.89 155 | 86.72 134 | 66.60 113 | 80.89 133 | | | |
|
cl-mvsnet____ | | | 68.26 193 | 68.26 190 | 68.29 208 | 64.98 306 | 43.67 259 | 65.89 249 | 74.67 199 | 50.04 238 | 76.86 157 | 82.42 200 | 48.74 244 | 75.38 216 | 60.92 149 | 89.81 135 | 85.80 78 |
|
cl-mvsnet1 | | | 68.27 192 | 68.26 190 | 68.29 208 | 64.98 306 | 43.67 259 | 65.89 249 | 74.67 199 | 50.04 238 | 76.86 157 | 82.43 199 | 48.74 244 | 75.38 216 | 60.94 148 | 89.81 135 | 85.81 74 |
|
MVS_111021_LR | | | 72.10 147 | 71.82 149 | 72.95 139 | 79.53 144 | 73.90 39 | 70.45 189 | 66.64 259 | 56.87 157 | 76.81 159 | 81.76 208 | 68.78 91 | 71.76 254 | 61.81 139 | 83.74 220 | 73.18 266 |
|
CLD-MVS | | | 72.88 135 | 72.36 142 | 74.43 112 | 77.03 178 | 54.30 180 | 68.77 211 | 83.43 80 | 52.12 213 | 76.79 160 | 74.44 284 | 69.54 86 | 83.91 75 | 55.88 187 | 93.25 70 | 85.09 86 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FMVSNet2 | | | 67.48 201 | 68.21 193 | 65.29 236 | 73.14 234 | 38.94 296 | 68.81 208 | 71.21 235 | 54.81 177 | 76.73 161 | 86.48 144 | 48.63 246 | 74.60 227 | 47.98 248 | 86.11 187 | 82.35 165 |
|
baseline | | | 73.10 125 | 73.96 113 | 70.51 172 | 71.46 251 | 46.39 241 | 72.08 161 | 84.40 61 | 55.95 168 | 76.62 162 | 86.46 145 | 67.20 106 | 78.03 186 | 64.22 121 | 87.27 173 | 87.11 59 |
|
canonicalmvs | | | 72.29 146 | 73.38 124 | 69.04 194 | 74.23 218 | 47.37 231 | 73.93 149 | 83.18 81 | 54.36 188 | 76.61 163 | 81.64 210 | 72.03 65 | 75.34 218 | 57.12 174 | 87.28 172 | 84.40 112 |
|
EG-PatchMatch MVS | | | 70.70 158 | 70.88 162 | 70.16 178 | 82.64 110 | 58.80 157 | 71.48 172 | 73.64 205 | 54.98 176 | 76.55 164 | 81.77 207 | 61.10 161 | 78.94 161 | 54.87 196 | 80.84 251 | 72.74 271 |
|
alignmvs | | | 70.54 160 | 71.00 161 | 69.15 193 | 73.50 227 | 48.04 222 | 69.85 195 | 79.62 137 | 53.94 198 | 76.54 165 | 82.00 203 | 59.00 178 | 74.68 226 | 57.32 173 | 87.21 174 | 84.72 97 |
|
test_prior3 | | | 76.71 84 | 77.19 83 | 75.27 104 | 82.15 116 | 59.85 147 | 75.57 127 | 84.33 62 | 58.92 136 | 76.53 166 | 86.78 129 | 67.83 103 | 83.39 85 | 69.81 79 | 92.76 78 | 82.58 159 |
|
test_prior2 | | | | | | | | 75.57 127 | | 58.92 136 | 76.53 166 | 86.78 129 | 67.83 103 | | 69.81 79 | 92.76 78 | |
|
EPP-MVSNet | | | 73.86 112 | 73.38 124 | 75.31 103 | 78.19 162 | 53.35 188 | 80.45 66 | 77.32 175 | 65.11 85 | 76.47 168 | 86.80 127 | 49.47 237 | 83.77 77 | 53.89 207 | 92.72 80 | 88.81 40 |
|
pmmvs6 | | | 71.82 149 | 73.66 119 | 66.31 231 | 75.94 193 | 42.01 273 | 66.99 237 | 72.53 215 | 63.45 103 | 76.43 169 | 92.78 10 | 72.95 63 | 69.69 268 | 51.41 220 | 90.46 122 | 87.22 55 |
|
testdata | | | | | 64.13 244 | 85.87 63 | 63.34 119 | | 61.80 289 | 47.83 258 | 76.42 170 | 86.60 141 | 48.83 243 | 62.31 309 | 54.46 202 | 81.26 245 | 66.74 317 |
|
GeoE | | | 73.14 124 | 73.77 117 | 71.26 165 | 78.09 164 | 52.64 191 | 74.32 145 | 79.56 141 | 56.32 165 | 76.35 171 | 83.36 191 | 70.76 78 | 77.96 187 | 63.32 133 | 81.84 237 | 83.18 142 |
|
miper_ehance_all_eth | | | 68.36 189 | 68.16 195 | 68.98 196 | 65.14 305 | 43.34 263 | 67.07 236 | 78.92 149 | 49.11 247 | 76.21 172 | 77.72 258 | 53.48 217 | 77.92 188 | 61.16 146 | 84.59 208 | 85.68 80 |
|
TAPA-MVS | | 65.27 12 | 75.16 97 | 74.29 109 | 77.77 75 | 74.86 205 | 68.08 82 | 77.89 101 | 84.04 73 | 55.15 175 | 76.19 173 | 83.39 187 | 66.91 109 | 80.11 148 | 60.04 157 | 90.14 129 | 85.13 85 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MVS_111021_HR | | | 72.98 133 | 72.97 136 | 72.99 137 | 80.82 131 | 65.47 101 | 68.81 208 | 72.77 212 | 57.67 149 | 75.76 174 | 82.38 201 | 71.01 76 | 77.17 197 | 61.38 143 | 86.15 185 | 76.32 242 |
|
CNLPA | | | 73.44 118 | 73.03 134 | 74.66 108 | 78.27 161 | 75.29 30 | 75.99 123 | 78.49 158 | 65.39 79 | 75.67 175 | 83.22 196 | 61.23 159 | 66.77 290 | 53.70 209 | 85.33 196 | 81.92 174 |
|
NR-MVSNet | | | 73.62 116 | 74.05 111 | 72.33 155 | 83.50 95 | 43.71 258 | 65.65 254 | 77.32 175 | 64.32 93 | 75.59 176 | 87.08 119 | 62.45 144 | 81.34 116 | 54.90 195 | 95.63 8 | 91.93 8 |
|
NCCC | | | 78.25 74 | 78.04 78 | 78.89 61 | 85.61 65 | 69.45 71 | 79.80 78 | 80.99 118 | 65.77 74 | 75.55 177 | 86.25 150 | 67.42 105 | 85.42 47 | 70.10 76 | 90.88 116 | 81.81 175 |
|
YYNet1 | | | 52.58 299 | 53.50 298 | 49.85 312 | 54.15 357 | 36.45 314 | 40.53 350 | 46.55 342 | 38.09 315 | 75.52 178 | 73.31 297 | 41.08 285 | 43.88 346 | 41.10 284 | 71.14 316 | 69.21 303 |
|
MDA-MVSNet_test_wron | | | 52.57 300 | 53.49 299 | 49.81 313 | 54.24 356 | 36.47 313 | 40.48 351 | 46.58 341 | 38.13 314 | 75.47 179 | 73.32 296 | 41.05 286 | 43.85 347 | 40.98 285 | 71.20 315 | 69.10 305 |
|
EI-MVSNet | | | 69.61 171 | 69.01 180 | 71.41 164 | 73.94 224 | 49.90 205 | 71.31 177 | 71.32 229 | 58.22 140 | 75.40 180 | 70.44 317 | 58.16 185 | 75.85 210 | 62.51 136 | 79.81 262 | 88.48 43 |
|
MVSTER | | | 63.29 238 | 61.60 250 | 68.36 206 | 59.77 335 | 46.21 242 | 60.62 297 | 71.32 229 | 41.83 295 | 75.40 180 | 79.12 242 | 30.25 339 | 75.85 210 | 56.30 183 | 79.81 262 | 83.03 146 |
|
TransMVSNet (Re) | | | 69.62 170 | 71.63 152 | 63.57 250 | 76.51 185 | 35.93 318 | 65.75 253 | 71.29 231 | 61.05 119 | 75.02 182 | 89.90 76 | 65.88 121 | 70.41 266 | 49.79 232 | 89.48 141 | 84.38 113 |
|
新几何1 | | | | | 69.99 183 | 88.37 35 | 71.34 55 | | 62.08 285 | 43.85 281 | 74.99 183 | 86.11 156 | 52.85 220 | 70.57 262 | 50.99 224 | 83.23 225 | 68.05 308 |
|
Effi-MVS+-dtu | | | 75.43 93 | 72.28 143 | 84.91 2 | 77.05 176 | 83.58 1 | 78.47 92 | 77.70 169 | 57.68 147 | 74.89 184 | 78.13 255 | 64.80 130 | 84.26 72 | 56.46 181 | 85.32 197 | 86.88 61 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 80 | 76.33 90 | 79.70 50 | 83.90 92 | 67.94 83 | 80.06 76 | 83.75 75 | 56.73 160 | 74.88 185 | 85.32 167 | 65.54 122 | 87.79 2 | 65.61 111 | 91.14 106 | 83.35 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
1121 | | | 69.23 177 | 68.26 190 | 72.12 158 | 88.36 36 | 71.40 53 | 68.59 213 | 62.06 286 | 43.80 282 | 74.75 186 | 86.18 151 | 52.92 219 | 76.85 203 | 54.47 200 | 83.27 224 | 68.12 307 |
|
VDDNet | | | 71.60 151 | 73.13 130 | 67.02 224 | 86.29 51 | 41.11 278 | 69.97 192 | 66.50 260 | 68.72 55 | 74.74 187 | 91.70 24 | 59.90 169 | 75.81 212 | 48.58 243 | 91.72 89 | 84.15 119 |
|
GBi-Net | | | 68.30 190 | 68.79 182 | 66.81 225 | 73.14 234 | 40.68 283 | 71.96 164 | 73.03 207 | 54.81 177 | 74.72 188 | 90.36 64 | 48.63 246 | 75.20 220 | 47.12 253 | 85.37 193 | 84.54 105 |
|
test1 | | | 68.30 190 | 68.79 182 | 66.81 225 | 73.14 234 | 40.68 283 | 71.96 164 | 73.03 207 | 54.81 177 | 74.72 188 | 90.36 64 | 48.63 246 | 75.20 220 | 47.12 253 | 85.37 193 | 84.54 105 |
|
FMVSNet3 | | | 65.00 222 | 65.16 218 | 64.52 242 | 69.47 268 | 37.56 309 | 66.63 242 | 70.38 242 | 51.55 221 | 74.72 188 | 83.27 193 | 37.89 304 | 74.44 229 | 47.12 253 | 85.37 193 | 81.57 178 |
|
Patchmatch-RL test | | | 59.95 265 | 59.12 266 | 62.44 263 | 72.46 244 | 54.61 179 | 59.63 303 | 47.51 340 | 41.05 301 | 74.58 191 | 74.30 286 | 31.06 333 | 65.31 295 | 51.61 218 | 79.85 261 | 67.39 310 |
|
cl-mvsnet2 | | | 67.14 204 | 66.51 211 | 69.03 195 | 63.20 315 | 43.46 262 | 66.88 240 | 76.25 183 | 49.22 245 | 74.48 192 | 77.88 257 | 45.49 257 | 77.40 195 | 60.64 151 | 84.59 208 | 86.24 66 |
|
thisisatest0530 | | | 67.05 207 | 65.16 218 | 72.73 147 | 73.10 237 | 50.55 199 | 71.26 179 | 63.91 275 | 50.22 235 | 74.46 193 | 80.75 217 | 26.81 346 | 80.25 143 | 59.43 161 | 86.50 183 | 87.37 54 |
|
TSAR-MVS + GP. | | | 73.08 126 | 71.60 154 | 77.54 77 | 78.99 157 | 70.73 61 | 74.96 133 | 69.38 247 | 60.73 123 | 74.39 194 | 78.44 250 | 57.72 194 | 82.78 96 | 60.16 154 | 89.60 139 | 79.11 217 |
|
原ACMM1 | | | | | 73.90 120 | 85.90 61 | 65.15 106 | | 81.67 101 | 50.97 228 | 74.25 195 | 86.16 153 | 61.60 153 | 83.54 81 | 56.75 176 | 91.08 108 | 73.00 267 |
|
pmmvs-eth3d | | | 64.41 229 | 63.27 237 | 67.82 215 | 75.81 195 | 60.18 144 | 69.49 197 | 62.05 287 | 38.81 312 | 74.13 196 | 82.23 202 | 43.76 268 | 68.65 274 | 42.53 275 | 80.63 255 | 74.63 255 |
|
VPA-MVSNet | | | 68.71 185 | 70.37 167 | 63.72 249 | 76.13 190 | 38.06 304 | 64.10 270 | 71.48 226 | 56.60 164 | 74.10 197 | 88.31 106 | 64.78 132 | 69.72 267 | 47.69 251 | 90.15 128 | 83.37 136 |
|
VDD-MVS | | | 70.81 157 | 71.44 157 | 68.91 200 | 79.07 156 | 46.51 238 | 67.82 224 | 70.83 240 | 61.23 117 | 74.07 198 | 88.69 100 | 59.86 170 | 75.62 215 | 51.11 222 | 90.28 124 | 84.61 102 |
|
pm-mvs1 | | | 68.40 188 | 69.85 171 | 64.04 247 | 73.10 237 | 39.94 289 | 64.61 266 | 70.50 241 | 55.52 172 | 73.97 199 | 89.33 83 | 63.91 136 | 68.38 276 | 49.68 234 | 88.02 157 | 83.81 125 |
|
BH-RMVSNet | | | 68.69 186 | 68.20 194 | 70.14 179 | 76.40 186 | 53.90 184 | 64.62 265 | 73.48 206 | 58.01 143 | 73.91 200 | 81.78 206 | 59.09 177 | 78.22 181 | 48.59 242 | 77.96 280 | 78.31 225 |
|
test12 | | | | | 76.51 89 | 82.28 114 | 60.94 136 | | 81.64 102 | | 73.60 201 | | 64.88 129 | 85.19 56 | | 90.42 123 | 83.38 135 |
|
QAPM | | | 69.18 179 | 69.26 175 | 68.94 198 | 71.61 250 | 52.58 192 | 80.37 69 | 78.79 152 | 49.63 242 | 73.51 202 | 85.14 170 | 53.66 216 | 79.12 158 | 55.11 194 | 75.54 291 | 75.11 252 |
|
Gipuma |  | | 69.55 172 | 72.83 137 | 59.70 283 | 63.63 314 | 53.97 182 | 80.08 75 | 75.93 186 | 64.24 94 | 73.49 203 | 88.93 98 | 57.89 193 | 62.46 307 | 59.75 160 | 91.55 96 | 62.67 334 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
mvs_anonymous | | | 65.08 221 | 65.49 217 | 63.83 248 | 63.79 312 | 37.60 308 | 66.52 244 | 69.82 245 | 43.44 287 | 73.46 204 | 86.08 157 | 58.79 181 | 71.75 255 | 51.90 217 | 75.63 290 | 82.15 169 |
|
miper_enhance_ethall | | | 65.86 213 | 65.05 226 | 68.28 210 | 61.62 323 | 42.62 270 | 64.74 263 | 77.97 166 | 42.52 292 | 73.42 205 | 72.79 300 | 49.66 236 | 77.68 192 | 58.12 169 | 84.59 208 | 84.54 105 |
|
Vis-MVSNet |  | | 74.85 105 | 74.56 103 | 75.72 99 | 81.63 125 | 64.64 108 | 76.35 117 | 79.06 146 | 62.85 108 | 73.33 206 | 88.41 102 | 62.54 143 | 79.59 154 | 63.94 125 | 82.92 226 | 82.94 148 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PAPM_NR | | | 73.91 111 | 74.16 110 | 73.16 133 | 81.90 120 | 53.50 186 | 81.28 61 | 81.40 106 | 66.17 72 | 73.30 207 | 83.31 192 | 59.96 168 | 83.10 92 | 58.45 167 | 81.66 242 | 82.87 150 |
|
PHI-MVS | | | 74.92 101 | 74.36 108 | 76.61 87 | 76.40 186 | 62.32 125 | 80.38 68 | 83.15 82 | 54.16 193 | 73.23 208 | 80.75 217 | 62.19 148 | 83.86 76 | 68.02 90 | 90.92 113 | 83.65 128 |
|
miper_lstm_enhance | | | 61.97 250 | 61.63 249 | 62.98 258 | 60.04 331 | 45.74 246 | 47.53 339 | 70.95 237 | 44.04 280 | 73.06 209 | 78.84 247 | 39.72 293 | 60.33 313 | 55.82 188 | 84.64 207 | 82.88 149 |
|
test222 | | | | | | 87.30 40 | 69.15 78 | 67.85 223 | 59.59 295 | 41.06 300 | 73.05 210 | 85.72 164 | 48.03 249 | | | 80.65 253 | 66.92 313 |
|
MCST-MVS | | | 73.42 119 | 73.34 126 | 73.63 125 | 81.28 128 | 59.17 153 | 74.80 138 | 83.13 83 | 45.50 269 | 72.84 211 | 83.78 184 | 65.15 127 | 80.99 126 | 64.54 117 | 89.09 149 | 80.73 196 |
|
tfpnnormal | | | 66.48 210 | 67.93 196 | 62.16 265 | 73.40 230 | 36.65 311 | 63.45 278 | 64.99 268 | 55.97 167 | 72.82 212 | 87.80 115 | 57.06 200 | 69.10 273 | 48.31 246 | 87.54 163 | 80.72 197 |
|
RRT_test8_iter05 | | | 65.80 214 | 65.13 221 | 67.80 216 | 67.02 289 | 40.85 282 | 67.13 235 | 75.33 193 | 49.73 240 | 72.69 213 | 81.32 211 | 24.45 357 | 77.37 196 | 61.69 142 | 86.82 180 | 85.18 84 |
|
Anonymous20240521 | | | 63.55 235 | 66.07 214 | 55.99 298 | 66.18 296 | 44.04 256 | 68.77 211 | 68.80 249 | 46.99 264 | 72.57 214 | 85.84 162 | 39.87 292 | 50.22 329 | 53.40 213 | 92.23 86 | 73.71 263 |
|
114514_t | | | 73.40 120 | 73.33 127 | 73.64 124 | 84.15 89 | 57.11 164 | 78.20 98 | 80.02 134 | 43.76 283 | 72.55 215 | 86.07 158 | 64.00 135 | 83.35 87 | 60.14 155 | 91.03 109 | 80.45 201 |
|
bset_n11_16_dypcd | | | 66.91 208 | 65.84 216 | 70.12 180 | 72.95 240 | 53.54 185 | 63.64 276 | 68.65 252 | 48.54 251 | 72.54 216 | 74.28 287 | 40.58 288 | 78.54 168 | 63.52 131 | 87.82 161 | 78.29 226 |
|
AdaColmap |  | | 74.22 109 | 74.56 103 | 73.20 132 | 81.95 119 | 60.97 135 | 79.43 79 | 80.90 119 | 65.57 76 | 72.54 216 | 81.76 208 | 70.98 77 | 85.26 51 | 47.88 249 | 90.00 131 | 73.37 264 |
|
LF4IMVS | | | 67.50 200 | 67.31 205 | 68.08 211 | 58.86 338 | 61.93 126 | 71.43 173 | 75.90 187 | 44.67 278 | 72.42 218 | 80.20 225 | 57.16 196 | 70.44 264 | 58.99 164 | 86.12 186 | 71.88 279 |
|
F-COLMAP | | | 75.29 95 | 73.99 112 | 79.18 56 | 81.73 123 | 71.90 49 | 81.86 59 | 82.98 84 | 59.86 129 | 72.27 219 | 84.00 181 | 64.56 133 | 83.07 93 | 51.48 219 | 87.19 175 | 82.56 161 |
|
USDC | | | 62.80 244 | 63.10 239 | 61.89 266 | 65.19 302 | 43.30 264 | 67.42 229 | 74.20 203 | 35.80 326 | 72.25 220 | 84.48 175 | 45.67 255 | 71.95 252 | 37.95 304 | 84.97 201 | 70.42 292 |
|
3Dnovator | | 65.95 11 | 71.50 152 | 71.22 159 | 72.34 154 | 73.16 233 | 63.09 121 | 78.37 93 | 78.32 160 | 57.67 149 | 72.22 221 | 84.61 173 | 54.77 210 | 78.47 171 | 60.82 150 | 81.07 247 | 75.45 248 |
|
ETV-MVS | | | 72.72 139 | 72.16 146 | 74.38 114 | 76.90 182 | 55.95 169 | 73.34 151 | 84.67 53 | 62.04 113 | 72.19 222 | 70.81 315 | 65.90 120 | 85.24 53 | 58.64 165 | 84.96 204 | 81.95 173 |
|
Patchmtry | | | 60.91 257 | 63.01 240 | 54.62 301 | 66.10 297 | 26.27 355 | 67.47 228 | 56.40 310 | 54.05 194 | 72.04 223 | 86.66 136 | 33.19 316 | 60.17 314 | 43.69 270 | 87.45 167 | 77.42 235 |
|
diffmvs | | | 67.42 203 | 67.50 202 | 67.20 221 | 62.26 319 | 45.21 249 | 64.87 262 | 77.04 178 | 48.21 253 | 71.74 224 | 79.70 232 | 58.40 183 | 71.17 258 | 64.99 114 | 80.27 257 | 85.22 82 |
|
AUN-MVS | | | 70.22 162 | 67.88 198 | 77.22 84 | 82.96 105 | 71.61 51 | 69.08 204 | 71.39 228 | 49.17 246 | 71.70 225 | 78.07 256 | 37.62 305 | 79.21 157 | 61.81 139 | 89.15 146 | 80.82 191 |
|
HQP4-MVS | | | | | | | | | | | 71.59 226 | | | 85.31 49 | | | 83.74 126 |
|
HQP-NCC | | | | | | 82.37 111 | | 77.32 106 | | 59.08 132 | 71.58 227 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 111 | | 77.32 106 | | 59.08 132 | 71.58 227 | | | | | | |
|
HQP-MVS | | | 75.24 96 | 75.01 100 | 75.94 96 | 82.37 111 | 58.80 157 | 77.32 106 | 84.12 70 | 59.08 132 | 71.58 227 | 85.96 160 | 58.09 187 | 85.30 50 | 67.38 100 | 89.16 144 | 83.73 127 |
|
MVS_Test | | | 69.84 168 | 70.71 164 | 67.24 220 | 67.49 285 | 43.25 265 | 69.87 194 | 81.22 112 | 52.69 209 | 71.57 230 | 86.68 135 | 62.09 149 | 74.51 228 | 66.05 106 | 78.74 271 | 83.96 121 |
|
TR-MVS | | | 64.59 224 | 63.54 234 | 67.73 217 | 75.75 196 | 50.83 198 | 63.39 279 | 70.29 243 | 49.33 244 | 71.55 231 | 74.55 282 | 50.94 230 | 78.46 172 | 40.43 288 | 75.69 289 | 73.89 261 |
|
IterMVS | | | 63.12 240 | 62.48 244 | 65.02 239 | 66.34 293 | 52.86 189 | 63.81 273 | 62.25 282 | 46.57 266 | 71.51 232 | 80.40 222 | 44.60 263 | 66.82 289 | 51.38 221 | 75.47 292 | 75.38 250 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+ | | | 68.81 183 | 68.30 189 | 70.35 174 | 74.66 213 | 48.61 214 | 66.06 247 | 78.32 160 | 50.62 232 | 71.48 233 | 75.54 272 | 68.75 92 | 79.59 154 | 50.55 228 | 78.73 272 | 82.86 151 |
|
VPNet | | | 65.58 216 | 67.56 200 | 59.65 284 | 79.72 141 | 30.17 346 | 60.27 300 | 62.14 283 | 54.19 192 | 71.24 234 | 86.63 139 | 58.80 180 | 67.62 281 | 44.17 269 | 90.87 117 | 81.18 181 |
|
API-MVS | | | 70.97 156 | 71.51 156 | 69.37 188 | 75.20 199 | 55.94 170 | 80.99 62 | 76.84 179 | 62.48 111 | 71.24 234 | 77.51 261 | 61.51 155 | 80.96 132 | 52.04 215 | 85.76 191 | 71.22 285 |
|
mvs-test1 | | | 73.81 113 | 70.69 165 | 83.18 5 | 77.05 176 | 81.39 3 | 75.39 129 | 77.70 169 | 57.68 147 | 71.19 236 | 74.72 280 | 64.80 130 | 83.66 79 | 56.46 181 | 81.19 246 | 84.50 110 |
|
LFMVS | | | 67.06 206 | 67.89 197 | 64.56 241 | 78.02 165 | 38.25 301 | 70.81 186 | 59.60 294 | 65.18 84 | 71.06 237 | 86.56 142 | 43.85 267 | 75.22 219 | 46.35 259 | 89.63 138 | 80.21 205 |
|
BH-w/o | | | 64.81 223 | 64.29 228 | 66.36 230 | 76.08 192 | 54.71 177 | 65.61 255 | 75.23 196 | 50.10 237 | 71.05 238 | 71.86 310 | 54.33 214 | 79.02 159 | 38.20 302 | 76.14 287 | 65.36 322 |
|
Effi-MVS+ | | | 72.10 147 | 72.28 143 | 71.58 160 | 74.21 222 | 50.33 200 | 74.72 141 | 82.73 88 | 62.62 109 | 70.77 239 | 76.83 265 | 69.96 84 | 80.97 128 | 60.20 152 | 78.43 275 | 83.45 134 |
|
thres100view900 | | | 61.17 256 | 61.09 253 | 61.39 271 | 72.14 247 | 35.01 324 | 65.42 257 | 56.99 307 | 55.23 174 | 70.71 240 | 79.90 229 | 32.07 325 | 72.09 248 | 35.61 320 | 81.73 238 | 77.08 239 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 239 | 63.28 236 | 63.07 257 | 69.81 265 | 45.34 248 | 68.52 216 | 67.14 256 | 43.74 284 | 70.61 241 | 79.22 239 | 47.90 250 | 72.66 240 | 48.75 240 | 73.84 305 | 71.21 286 |
|
MSDG | | | 67.47 202 | 67.48 203 | 67.46 218 | 70.70 257 | 54.69 178 | 66.90 239 | 78.17 163 | 60.88 121 | 70.41 242 | 74.76 278 | 61.22 160 | 73.18 235 | 47.38 252 | 76.87 283 | 74.49 256 |
|
DP-MVS Recon | | | 73.57 117 | 72.69 138 | 76.23 94 | 82.85 106 | 63.39 118 | 74.32 145 | 82.96 85 | 57.75 146 | 70.35 243 | 81.98 204 | 64.34 134 | 84.41 70 | 49.69 233 | 89.95 133 | 80.89 189 |
|
thres600view7 | | | 61.82 252 | 61.38 252 | 63.12 256 | 71.81 249 | 34.93 325 | 64.64 264 | 56.99 307 | 54.78 181 | 70.33 244 | 79.74 231 | 32.07 325 | 72.42 246 | 38.61 298 | 83.46 222 | 82.02 171 |
|
OpenMVS |  | 62.51 15 | 68.76 184 | 68.75 184 | 68.78 203 | 70.56 260 | 53.91 183 | 78.29 95 | 77.35 174 | 48.85 249 | 70.22 245 | 83.52 185 | 52.65 221 | 76.93 200 | 55.31 193 | 81.99 234 | 75.49 247 |
|
D2MVS | | | 62.58 246 | 61.05 254 | 67.20 221 | 63.85 311 | 47.92 223 | 56.29 316 | 69.58 246 | 39.32 307 | 70.07 246 | 78.19 253 | 34.93 311 | 72.68 239 | 53.44 212 | 83.74 220 | 81.00 186 |
|
Vis-MVSNet (Re-imp) | | | 62.74 245 | 63.21 238 | 61.34 272 | 72.19 246 | 31.56 341 | 67.31 233 | 53.87 317 | 53.60 201 | 69.88 247 | 83.37 189 | 40.52 289 | 70.98 259 | 41.40 282 | 86.78 181 | 81.48 179 |
|
TAMVS | | | 65.31 218 | 63.75 231 | 69.97 184 | 82.23 115 | 59.76 149 | 66.78 241 | 63.37 278 | 45.20 274 | 69.79 248 | 79.37 237 | 47.42 252 | 72.17 247 | 34.48 324 | 85.15 200 | 77.99 233 |
|
CS-MVS | | | 72.86 136 | 73.06 132 | 72.24 157 | 72.87 242 | 50.11 203 | 75.90 124 | 86.28 20 | 58.16 142 | 69.77 249 | 79.12 242 | 65.24 126 | 84.56 65 | 64.26 120 | 85.95 189 | 82.05 170 |
|
Anonymous202405211 | | | 66.02 212 | 66.89 210 | 63.43 253 | 74.22 219 | 38.14 302 | 59.00 306 | 66.13 261 | 63.33 105 | 69.76 250 | 85.95 161 | 51.88 223 | 70.50 263 | 44.23 268 | 87.52 164 | 81.64 177 |
|
FPMVS | | | 59.43 269 | 60.07 260 | 57.51 294 | 77.62 175 | 71.52 52 | 62.33 287 | 50.92 329 | 57.40 153 | 69.40 251 | 80.00 228 | 39.14 296 | 61.92 310 | 37.47 308 | 66.36 334 | 39.09 357 |
|
GA-MVS | | | 62.91 242 | 61.66 247 | 66.66 229 | 67.09 288 | 44.49 253 | 61.18 295 | 69.36 248 | 51.33 224 | 69.33 252 | 74.47 283 | 36.83 306 | 74.94 223 | 50.60 227 | 74.72 298 | 80.57 200 |
|
EU-MVSNet | | | 60.82 258 | 60.80 256 | 60.86 277 | 68.37 274 | 41.16 277 | 72.27 158 | 68.27 254 | 26.96 355 | 69.08 253 | 75.71 270 | 32.09 324 | 67.44 282 | 55.59 191 | 78.90 270 | 73.97 259 |
|
HyFIR lowres test | | | 63.01 241 | 60.47 258 | 70.61 169 | 83.04 102 | 54.10 181 | 59.93 302 | 72.24 219 | 33.67 337 | 69.00 254 | 75.63 271 | 38.69 298 | 76.93 200 | 36.60 313 | 75.45 293 | 80.81 194 |
|
ET-MVSNet_ETH3D | | | 63.32 237 | 60.69 257 | 71.20 166 | 70.15 264 | 55.66 172 | 65.02 261 | 64.32 274 | 43.28 291 | 68.99 255 | 72.05 309 | 25.46 353 | 78.19 184 | 54.16 206 | 82.80 227 | 79.74 211 |
|
DELS-MVS | | | 68.83 182 | 68.31 188 | 70.38 173 | 70.55 261 | 48.31 216 | 63.78 275 | 82.13 94 | 54.00 195 | 68.96 256 | 75.17 276 | 58.95 179 | 80.06 149 | 58.55 166 | 82.74 228 | 82.76 154 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
test_yl | | | 65.11 219 | 65.09 223 | 65.18 237 | 70.59 258 | 40.86 280 | 63.22 283 | 72.79 210 | 57.91 144 | 68.88 257 | 79.07 245 | 42.85 274 | 74.89 224 | 45.50 263 | 84.97 201 | 79.81 208 |
|
DCV-MVSNet | | | 65.11 219 | 65.09 223 | 65.18 237 | 70.59 258 | 40.86 280 | 63.22 283 | 72.79 210 | 57.91 144 | 68.88 257 | 79.07 245 | 42.85 274 | 74.89 224 | 45.50 263 | 84.97 201 | 79.81 208 |
|
Fast-Effi-MVS+-dtu | | | 70.00 165 | 68.74 185 | 73.77 122 | 73.47 228 | 64.53 110 | 71.36 175 | 78.14 164 | 55.81 170 | 68.84 259 | 74.71 281 | 65.36 125 | 75.75 213 | 52.00 216 | 79.00 269 | 81.03 184 |
|
MG-MVS | | | 70.47 161 | 71.34 158 | 67.85 213 | 79.26 148 | 40.42 287 | 74.67 143 | 75.15 197 | 58.41 139 | 68.74 260 | 88.14 112 | 56.08 207 | 83.69 78 | 59.90 158 | 81.71 241 | 79.43 214 |
|
tfpn200view9 | | | 60.35 263 | 59.97 261 | 61.51 269 | 70.78 255 | 35.35 322 | 63.27 281 | 57.47 301 | 53.00 205 | 68.31 261 | 77.09 263 | 32.45 322 | 72.09 248 | 35.61 320 | 81.73 238 | 77.08 239 |
|
thres400 | | | 60.77 260 | 59.97 261 | 63.15 255 | 70.78 255 | 35.35 322 | 63.27 281 | 57.47 301 | 53.00 205 | 68.31 261 | 77.09 263 | 32.45 322 | 72.09 248 | 35.61 320 | 81.73 238 | 82.02 171 |
|
testgi | | | 54.00 295 | 56.86 283 | 45.45 328 | 58.20 341 | 25.81 356 | 49.05 333 | 49.50 334 | 45.43 272 | 67.84 263 | 81.17 214 | 51.81 226 | 43.20 349 | 29.30 343 | 79.41 267 | 67.34 312 |
|
xiu_mvs_v1_base_debu | | | 67.87 195 | 67.07 207 | 70.26 175 | 79.13 153 | 61.90 127 | 67.34 230 | 71.25 232 | 47.98 255 | 67.70 264 | 74.19 290 | 61.31 156 | 72.62 241 | 56.51 178 | 78.26 277 | 76.27 243 |
|
xiu_mvs_v1_base | | | 67.87 195 | 67.07 207 | 70.26 175 | 79.13 153 | 61.90 127 | 67.34 230 | 71.25 232 | 47.98 255 | 67.70 264 | 74.19 290 | 61.31 156 | 72.62 241 | 56.51 178 | 78.26 277 | 76.27 243 |
|
xiu_mvs_v1_base_debi | | | 67.87 195 | 67.07 207 | 70.26 175 | 79.13 153 | 61.90 127 | 67.34 230 | 71.25 232 | 47.98 255 | 67.70 264 | 74.19 290 | 61.31 156 | 72.62 241 | 56.51 178 | 78.26 277 | 76.27 243 |
|
CL-MVSNet_2432*1600 | | | 62.44 248 | 63.40 235 | 59.55 285 | 72.34 245 | 32.38 337 | 56.39 315 | 64.84 269 | 51.21 226 | 67.46 267 | 81.01 216 | 50.75 231 | 63.51 305 | 38.47 300 | 88.12 155 | 82.75 155 |
|
CDS-MVSNet | | | 64.33 230 | 62.66 243 | 69.35 190 | 80.44 136 | 58.28 161 | 65.26 258 | 65.66 263 | 44.36 279 | 67.30 268 | 75.54 272 | 43.27 270 | 71.77 253 | 37.68 305 | 84.44 211 | 78.01 232 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PVSNet_Blended_VisFu | | | 70.04 164 | 68.88 181 | 73.53 127 | 82.71 108 | 63.62 117 | 74.81 136 | 81.95 98 | 48.53 252 | 67.16 269 | 79.18 241 | 51.42 228 | 78.38 176 | 54.39 203 | 79.72 265 | 78.60 221 |
|
PLC |  | 62.01 16 | 71.79 150 | 70.28 168 | 76.33 92 | 80.31 137 | 68.63 80 | 78.18 99 | 81.24 110 | 54.57 185 | 67.09 270 | 80.63 219 | 59.44 173 | 81.74 114 | 46.91 256 | 84.17 213 | 78.63 220 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VNet | | | 64.01 234 | 65.15 220 | 60.57 278 | 73.28 232 | 35.61 321 | 57.60 313 | 67.08 257 | 54.61 184 | 66.76 271 | 83.37 189 | 56.28 205 | 66.87 286 | 42.19 277 | 85.20 199 | 79.23 216 |
|
PAPR | | | 69.20 178 | 68.66 187 | 70.82 167 | 75.15 201 | 47.77 225 | 75.31 130 | 81.11 113 | 49.62 243 | 66.33 272 | 79.27 238 | 61.53 154 | 82.96 94 | 48.12 247 | 81.50 244 | 81.74 176 |
|
pmmvs4 | | | 60.78 259 | 59.04 267 | 66.00 233 | 73.06 239 | 57.67 163 | 64.53 267 | 60.22 292 | 36.91 321 | 65.96 273 | 77.27 262 | 39.66 294 | 68.54 275 | 38.87 295 | 74.89 297 | 71.80 280 |
|
CMPMVS |  | 48.73 20 | 61.54 255 | 60.89 255 | 63.52 251 | 61.08 326 | 51.55 194 | 68.07 222 | 68.00 255 | 33.88 334 | 65.87 274 | 81.25 213 | 37.91 303 | 67.71 279 | 49.32 236 | 82.60 229 | 71.31 284 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ppachtmachnet_test | | | 60.26 264 | 59.61 264 | 62.20 264 | 67.70 283 | 44.33 254 | 58.18 310 | 60.96 291 | 40.75 303 | 65.80 275 | 72.57 301 | 41.23 281 | 63.92 302 | 46.87 257 | 82.42 231 | 78.33 224 |
|
MAR-MVS | | | 67.72 198 | 66.16 213 | 72.40 153 | 74.45 216 | 64.99 107 | 74.87 134 | 77.50 173 | 48.67 250 | 65.78 276 | 68.58 335 | 57.01 201 | 77.79 190 | 46.68 258 | 81.92 235 | 74.42 257 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ab-mvs | | | 64.11 232 | 65.13 221 | 61.05 274 | 71.99 248 | 38.03 305 | 67.59 225 | 68.79 250 | 49.08 248 | 65.32 277 | 86.26 149 | 58.02 192 | 66.85 288 | 39.33 292 | 79.79 264 | 78.27 227 |
|
jason | | | 64.47 227 | 62.84 241 | 69.34 191 | 76.91 181 | 59.20 150 | 67.15 234 | 65.67 262 | 35.29 327 | 65.16 278 | 76.74 266 | 44.67 262 | 70.68 260 | 54.74 197 | 79.28 268 | 78.14 229 |
jason: jason. |
test20.03 | | | 55.74 285 | 57.51 279 | 50.42 311 | 59.89 334 | 32.09 339 | 50.63 331 | 49.01 335 | 50.11 236 | 65.07 279 | 83.23 194 | 45.61 256 | 48.11 333 | 30.22 338 | 83.82 219 | 71.07 288 |
|
EIA-MVS | | | 68.59 187 | 67.16 206 | 72.90 141 | 75.18 200 | 55.64 173 | 69.39 199 | 81.29 108 | 52.44 210 | 64.53 280 | 70.69 316 | 60.33 166 | 82.30 105 | 54.27 205 | 76.31 286 | 80.75 195 |
|
KD-MVS_2432*1600 | | | 52.05 304 | 51.58 306 | 53.44 303 | 52.11 359 | 31.20 342 | 44.88 346 | 64.83 270 | 41.53 297 | 64.37 281 | 70.03 322 | 15.61 369 | 64.20 299 | 36.25 315 | 74.61 299 | 64.93 326 |
|
miper_refine_blended | | | 52.05 304 | 51.58 306 | 53.44 303 | 52.11 359 | 31.20 342 | 44.88 346 | 64.83 270 | 41.53 297 | 64.37 281 | 70.03 322 | 15.61 369 | 64.20 299 | 36.25 315 | 74.61 299 | 64.93 326 |
|
new-patchmatchnet | | | 52.89 298 | 55.76 291 | 44.26 333 | 59.94 333 | 6.31 366 | 37.36 356 | 50.76 331 | 41.10 299 | 64.28 283 | 79.82 230 | 44.77 261 | 48.43 332 | 36.24 317 | 87.61 162 | 78.03 231 |
|
DPM-MVS | | | 69.98 166 | 69.22 177 | 72.26 156 | 82.69 109 | 58.82 156 | 70.53 187 | 81.23 111 | 47.79 259 | 64.16 284 | 80.21 224 | 51.32 229 | 83.12 91 | 60.14 155 | 84.95 205 | 74.83 254 |
|
thres200 | | | 57.55 279 | 57.02 281 | 59.17 286 | 67.89 282 | 34.93 325 | 58.91 308 | 57.25 305 | 50.24 234 | 64.01 285 | 71.46 313 | 32.49 321 | 71.39 256 | 31.31 334 | 79.57 266 | 71.19 287 |
|
our_test_3 | | | 56.46 281 | 56.51 285 | 56.30 296 | 67.70 283 | 39.66 291 | 55.36 321 | 52.34 327 | 40.57 305 | 63.85 286 | 69.91 324 | 40.04 291 | 58.22 319 | 43.49 273 | 75.29 296 | 71.03 289 |
|
baseline1 | | | 57.82 278 | 58.36 274 | 56.19 297 | 69.17 271 | 30.76 345 | 62.94 285 | 55.21 313 | 46.04 268 | 63.83 287 | 78.47 249 | 41.20 282 | 63.68 303 | 39.44 291 | 68.99 327 | 74.13 258 |
|
XXY-MVS | | | 55.19 288 | 57.40 280 | 48.56 320 | 64.45 309 | 34.84 327 | 51.54 330 | 53.59 319 | 38.99 311 | 63.79 288 | 79.43 235 | 56.59 203 | 45.57 337 | 36.92 312 | 71.29 314 | 65.25 323 |
|
cascas | | | 64.59 224 | 62.77 242 | 70.05 182 | 75.27 198 | 50.02 204 | 61.79 290 | 71.61 222 | 42.46 293 | 63.68 289 | 68.89 332 | 49.33 239 | 80.35 139 | 47.82 250 | 84.05 215 | 79.78 210 |
|
thisisatest0515 | | | 60.48 262 | 57.86 276 | 68.34 207 | 67.25 286 | 46.42 239 | 60.58 298 | 62.14 283 | 40.82 302 | 63.58 290 | 69.12 328 | 26.28 349 | 78.34 178 | 48.83 239 | 82.13 233 | 80.26 204 |
|
MVSFormer | | | 69.93 167 | 69.03 179 | 72.63 150 | 74.93 202 | 59.19 151 | 83.98 36 | 75.72 188 | 52.27 211 | 63.53 291 | 76.74 266 | 43.19 271 | 80.56 135 | 72.28 65 | 78.67 273 | 78.14 229 |
|
lupinMVS | | | 63.36 236 | 61.49 251 | 68.97 197 | 74.93 202 | 59.19 151 | 65.80 252 | 64.52 273 | 34.68 332 | 63.53 291 | 74.25 288 | 43.19 271 | 70.62 261 | 53.88 208 | 78.67 273 | 77.10 238 |
|
UnsupCasMVSNet_eth | | | 52.26 302 | 53.29 300 | 49.16 317 | 55.08 353 | 33.67 333 | 50.03 332 | 58.79 297 | 37.67 317 | 63.43 293 | 74.75 279 | 41.82 279 | 45.83 336 | 38.59 299 | 59.42 347 | 67.98 309 |
|
Anonymous20231206 | | | 54.13 292 | 55.82 290 | 49.04 319 | 70.89 254 | 35.96 317 | 51.73 329 | 50.87 330 | 34.86 328 | 62.49 294 | 79.22 239 | 42.52 277 | 44.29 345 | 27.95 347 | 81.88 236 | 66.88 314 |
|
CANet | | | 73.00 131 | 71.84 148 | 76.48 90 | 75.82 194 | 61.28 131 | 74.81 136 | 80.37 129 | 63.17 106 | 62.43 295 | 80.50 221 | 61.10 161 | 85.16 57 | 64.00 122 | 84.34 212 | 83.01 147 |
|
xiu_mvs_v2_base | | | 64.43 228 | 63.96 229 | 65.85 235 | 77.72 172 | 51.32 196 | 63.63 277 | 72.31 218 | 45.06 277 | 61.70 296 | 69.66 325 | 62.56 141 | 73.93 233 | 49.06 238 | 73.91 303 | 72.31 275 |
|
PS-MVSNAJ | | | 64.27 231 | 63.73 232 | 65.90 234 | 77.82 170 | 51.42 195 | 63.33 280 | 72.33 217 | 45.09 276 | 61.60 297 | 68.04 336 | 62.39 145 | 73.95 232 | 49.07 237 | 73.87 304 | 72.34 274 |
|
CHOSEN 1792x2688 | | | 58.09 276 | 56.30 287 | 63.45 252 | 79.95 139 | 50.93 197 | 54.07 324 | 65.59 264 | 28.56 352 | 61.53 298 | 74.33 285 | 41.09 284 | 66.52 292 | 33.91 327 | 67.69 333 | 72.92 268 |
|
CR-MVSNet | | | 58.96 271 | 58.49 272 | 60.36 280 | 66.37 291 | 48.24 218 | 70.93 183 | 56.40 310 | 32.87 340 | 61.35 299 | 86.66 136 | 33.19 316 | 63.22 306 | 48.50 244 | 70.17 321 | 69.62 299 |
|
RPMNet | | | 65.77 215 | 65.08 225 | 67.84 214 | 66.37 291 | 48.24 218 | 70.93 183 | 86.27 21 | 54.66 183 | 61.35 299 | 86.77 131 | 33.29 315 | 85.67 43 | 55.93 186 | 70.17 321 | 69.62 299 |
|
PatchMatch-RL | | | 58.68 274 | 57.72 277 | 61.57 268 | 76.21 189 | 73.59 42 | 61.83 289 | 49.00 336 | 47.30 263 | 61.08 301 | 68.97 330 | 50.16 234 | 59.01 317 | 36.06 319 | 68.84 328 | 52.10 347 |
|
FMVSNet5 | | | 55.08 289 | 55.54 292 | 53.71 302 | 65.80 298 | 33.50 334 | 56.22 317 | 52.50 326 | 43.72 285 | 61.06 302 | 83.38 188 | 25.46 353 | 54.87 323 | 30.11 339 | 81.64 243 | 72.75 270 |
|
1314 | | | 59.83 266 | 58.86 269 | 62.74 261 | 65.71 299 | 44.78 251 | 68.59 213 | 72.63 214 | 33.54 339 | 61.05 303 | 67.29 341 | 43.62 269 | 71.26 257 | 49.49 235 | 67.84 332 | 72.19 277 |
|
SCA | | | 58.57 275 | 58.04 275 | 60.17 281 | 70.17 263 | 41.07 279 | 65.19 259 | 53.38 322 | 43.34 290 | 61.00 304 | 73.48 294 | 45.20 258 | 69.38 270 | 40.34 289 | 70.31 320 | 70.05 294 |
|
UGNet | | | 70.20 163 | 69.05 178 | 73.65 123 | 76.24 188 | 63.64 116 | 75.87 125 | 72.53 215 | 61.48 116 | 60.93 305 | 86.14 154 | 52.37 222 | 77.12 198 | 50.67 226 | 85.21 198 | 80.17 206 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
UnsupCasMVSNet_bld | | | 50.01 310 | 51.03 312 | 46.95 321 | 58.61 339 | 32.64 336 | 48.31 335 | 53.27 323 | 34.27 333 | 60.47 306 | 71.53 312 | 41.40 280 | 47.07 334 | 30.68 336 | 60.78 344 | 61.13 338 |
|
CVMVSNet | | | 59.21 270 | 58.44 273 | 61.51 269 | 73.94 224 | 47.76 226 | 71.31 177 | 64.56 272 | 26.91 356 | 60.34 307 | 70.44 317 | 36.24 308 | 67.65 280 | 53.57 210 | 68.66 329 | 69.12 304 |
|
PVSNet_BlendedMVS | | | 65.38 217 | 64.30 227 | 68.61 204 | 69.81 265 | 49.36 209 | 65.60 256 | 78.96 147 | 45.50 269 | 59.98 308 | 78.61 248 | 51.82 224 | 78.20 182 | 44.30 266 | 84.11 214 | 78.27 227 |
|
PVSNet_Blended | | | 62.90 243 | 61.64 248 | 66.69 228 | 69.81 265 | 49.36 209 | 61.23 294 | 78.96 147 | 42.04 294 | 59.98 308 | 68.86 333 | 51.82 224 | 78.20 182 | 44.30 266 | 77.77 282 | 72.52 272 |
|
MVS | | | 60.62 261 | 59.97 261 | 62.58 262 | 68.13 278 | 47.28 232 | 68.59 213 | 73.96 204 | 32.19 341 | 59.94 310 | 68.86 333 | 50.48 232 | 77.64 193 | 41.85 280 | 75.74 288 | 62.83 332 |
|
1112_ss | | | 59.48 268 | 58.99 268 | 60.96 276 | 77.84 169 | 42.39 272 | 61.42 292 | 68.45 253 | 37.96 316 | 59.93 311 | 67.46 338 | 45.11 260 | 65.07 297 | 40.89 286 | 71.81 312 | 75.41 249 |
|
Test_1112_low_res | | | 58.78 273 | 58.69 270 | 59.04 288 | 79.41 145 | 38.13 303 | 57.62 312 | 66.98 258 | 34.74 330 | 59.62 312 | 77.56 260 | 42.92 273 | 63.65 304 | 38.66 297 | 70.73 318 | 75.35 251 |
|
CostFormer | | | 57.35 280 | 56.14 288 | 60.97 275 | 63.76 313 | 38.43 298 | 67.50 227 | 60.22 292 | 37.14 320 | 59.12 313 | 76.34 268 | 32.78 319 | 71.99 251 | 39.12 294 | 69.27 326 | 72.47 273 |
|
PatchmatchNet |  | | 54.60 290 | 54.27 296 | 55.59 299 | 65.17 304 | 39.08 293 | 66.92 238 | 51.80 328 | 39.89 306 | 58.39 314 | 73.12 298 | 31.69 327 | 58.33 318 | 43.01 274 | 58.38 351 | 69.38 302 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MS-PatchMatch | | | 55.59 286 | 54.89 294 | 57.68 293 | 69.18 270 | 49.05 211 | 61.00 296 | 62.93 280 | 35.98 324 | 58.36 315 | 68.93 331 | 36.71 307 | 66.59 291 | 37.62 307 | 63.30 341 | 57.39 343 |
|
tpm2 | | | 56.12 282 | 54.64 295 | 60.55 279 | 66.24 294 | 36.01 316 | 68.14 220 | 56.77 309 | 33.60 338 | 58.25 316 | 75.52 274 | 30.25 339 | 74.33 230 | 33.27 329 | 69.76 325 | 71.32 283 |
|
N_pmnet | | | 52.06 303 | 51.11 311 | 54.92 300 | 59.64 336 | 71.03 57 | 37.42 355 | 61.62 290 | 33.68 336 | 57.12 317 | 72.10 302 | 37.94 302 | 31.03 359 | 29.13 346 | 71.35 313 | 62.70 333 |
|
tpm | | | 50.60 307 | 52.42 304 | 45.14 330 | 65.18 303 | 26.29 354 | 60.30 299 | 43.50 345 | 37.41 318 | 57.01 318 | 79.09 244 | 30.20 341 | 42.32 350 | 32.77 331 | 66.36 334 | 66.81 316 |
|
tpm cat1 | | | 54.02 294 | 52.63 302 | 58.19 292 | 64.85 308 | 39.86 290 | 66.26 246 | 57.28 304 | 32.16 342 | 56.90 319 | 70.39 319 | 32.75 320 | 65.30 296 | 34.29 325 | 58.79 348 | 69.41 301 |
|
Patchmatch-test | | | 47.93 314 | 49.96 315 | 41.84 337 | 57.42 344 | 24.26 358 | 48.75 334 | 41.49 354 | 39.30 308 | 56.79 320 | 73.48 294 | 30.48 338 | 33.87 358 | 29.29 344 | 72.61 308 | 67.39 310 |
|
EPNet | | | 69.10 180 | 67.32 204 | 74.46 110 | 68.33 276 | 61.27 132 | 77.56 103 | 63.57 277 | 60.95 120 | 56.62 321 | 82.75 197 | 51.53 227 | 81.24 119 | 54.36 204 | 90.20 125 | 80.88 190 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVP-Stereo | | | 61.56 254 | 59.22 265 | 68.58 205 | 79.28 147 | 60.44 142 | 69.20 202 | 71.57 223 | 43.58 286 | 56.42 322 | 78.37 251 | 39.57 295 | 76.46 208 | 34.86 323 | 60.16 345 | 68.86 306 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpmvs | | | 55.84 283 | 55.45 293 | 57.01 295 | 60.33 330 | 33.20 335 | 65.89 249 | 59.29 296 | 47.52 262 | 56.04 323 | 73.60 293 | 31.05 334 | 68.06 278 | 40.64 287 | 64.64 337 | 69.77 297 |
|
MIMVSNet | | | 54.39 291 | 56.12 289 | 49.20 316 | 72.57 243 | 30.91 344 | 59.98 301 | 48.43 338 | 41.66 296 | 55.94 324 | 83.86 183 | 41.19 283 | 50.42 328 | 26.05 349 | 75.38 294 | 66.27 318 |
|
IB-MVS | | 49.67 18 | 59.69 267 | 56.96 282 | 67.90 212 | 68.19 277 | 50.30 201 | 61.42 292 | 65.18 267 | 47.57 261 | 55.83 325 | 67.15 342 | 23.77 358 | 79.60 153 | 43.56 272 | 79.97 260 | 73.79 262 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test0.0.03 1 | | | 47.72 315 | 48.31 317 | 45.93 326 | 55.53 352 | 29.39 347 | 46.40 343 | 41.21 356 | 43.41 288 | 55.81 326 | 67.65 337 | 29.22 344 | 43.77 348 | 25.73 352 | 69.87 323 | 64.62 328 |
|
pmmvs5 | | | 52.49 301 | 52.58 303 | 52.21 309 | 54.99 354 | 32.38 337 | 55.45 320 | 53.84 318 | 32.15 343 | 55.49 327 | 74.81 277 | 38.08 301 | 57.37 321 | 34.02 326 | 74.40 301 | 66.88 314 |
|
CANet_DTU | | | 64.04 233 | 63.83 230 | 64.66 240 | 68.39 273 | 42.97 267 | 73.45 150 | 74.50 202 | 52.05 215 | 54.78 328 | 75.44 275 | 43.99 266 | 70.42 265 | 53.49 211 | 78.41 276 | 80.59 199 |
|
PatchT | | | 53.35 296 | 56.47 286 | 43.99 334 | 64.19 310 | 17.46 363 | 59.15 304 | 43.10 346 | 52.11 214 | 54.74 329 | 86.95 123 | 29.97 342 | 49.98 330 | 43.62 271 | 74.40 301 | 64.53 330 |
|
HY-MVS | | 49.31 19 | 57.96 277 | 57.59 278 | 59.10 287 | 66.85 290 | 36.17 315 | 65.13 260 | 65.39 266 | 39.24 309 | 54.69 330 | 78.14 254 | 44.28 265 | 67.18 285 | 33.75 328 | 70.79 317 | 73.95 260 |
|
PVSNet | | 43.83 21 | 51.56 306 | 51.17 309 | 52.73 306 | 68.34 275 | 38.27 300 | 48.22 336 | 53.56 320 | 36.41 322 | 54.29 331 | 64.94 345 | 34.60 312 | 54.20 326 | 30.34 337 | 69.87 323 | 65.71 321 |
|
WTY-MVS | | | 49.39 311 | 50.31 314 | 46.62 324 | 61.22 325 | 32.00 340 | 46.61 342 | 49.77 333 | 33.87 335 | 54.12 332 | 69.55 327 | 41.96 278 | 45.40 339 | 31.28 335 | 64.42 338 | 62.47 335 |
|
MVS_0304 | | | 62.51 247 | 62.27 245 | 63.25 254 | 69.39 269 | 48.47 215 | 64.05 272 | 62.48 281 | 59.69 130 | 54.10 333 | 81.04 215 | 45.71 254 | 66.31 293 | 41.38 283 | 82.58 230 | 74.96 253 |
|
PAPM | | | 61.79 253 | 60.37 259 | 66.05 232 | 76.09 191 | 41.87 274 | 69.30 200 | 76.79 181 | 40.64 304 | 53.80 334 | 79.62 234 | 44.38 264 | 82.92 95 | 29.64 342 | 73.11 307 | 73.36 265 |
|
tpmrst | | | 50.15 309 | 51.38 308 | 46.45 325 | 56.05 348 | 24.77 357 | 64.40 269 | 49.98 332 | 36.14 323 | 53.32 335 | 69.59 326 | 35.16 310 | 48.69 331 | 39.24 293 | 58.51 350 | 65.89 319 |
|
MDTV_nov1_ep13 | | | | 54.05 297 | | 65.54 300 | 29.30 348 | 59.00 306 | 55.22 312 | 35.96 325 | 52.44 336 | 75.98 269 | 30.77 336 | 59.62 315 | 38.21 301 | 73.33 306 | |
|
sss | | | 47.59 316 | 48.32 316 | 45.40 329 | 56.73 347 | 33.96 331 | 45.17 345 | 48.51 337 | 32.11 345 | 52.37 337 | 65.79 343 | 40.39 290 | 41.91 353 | 31.85 332 | 61.97 342 | 60.35 339 |
|
DWT-MVSNet_test | | | 53.04 297 | 51.12 310 | 58.77 289 | 61.23 324 | 38.67 297 | 62.16 288 | 57.74 299 | 38.24 313 | 51.76 338 | 59.07 352 | 21.36 360 | 67.40 283 | 44.80 265 | 63.76 340 | 70.25 293 |
|
baseline2 | | | 55.57 287 | 52.74 301 | 64.05 246 | 65.26 301 | 44.11 255 | 62.38 286 | 54.43 316 | 39.03 310 | 51.21 339 | 67.35 340 | 33.66 314 | 72.45 245 | 37.14 310 | 64.22 339 | 75.60 246 |
|
EPMVS | | | 45.74 318 | 46.53 321 | 43.39 335 | 54.14 358 | 22.33 360 | 55.02 322 | 35.00 362 | 34.69 331 | 51.09 340 | 70.20 321 | 25.92 351 | 42.04 352 | 37.19 309 | 55.50 355 | 65.78 320 |
|
gg-mvs-nofinetune | | | 55.75 284 | 56.75 284 | 52.72 307 | 62.87 316 | 28.04 351 | 68.92 205 | 41.36 355 | 71.09 41 | 50.80 341 | 92.63 12 | 20.74 361 | 66.86 287 | 29.97 340 | 72.41 309 | 63.25 331 |
|
ADS-MVSNet2 | | | 48.76 312 | 47.25 320 | 53.29 305 | 55.90 350 | 40.54 286 | 47.34 340 | 54.99 315 | 31.41 348 | 50.48 342 | 72.06 307 | 31.23 330 | 54.26 325 | 25.93 350 | 55.93 353 | 65.07 324 |
|
ADS-MVSNet | | | 44.62 323 | 45.58 322 | 41.73 338 | 55.90 350 | 20.83 361 | 47.34 340 | 39.94 358 | 31.41 348 | 50.48 342 | 72.06 307 | 31.23 330 | 39.31 355 | 25.93 350 | 55.93 353 | 65.07 324 |
|
pmmvs3 | | | 46.71 317 | 45.09 324 | 51.55 310 | 56.76 346 | 48.25 217 | 55.78 319 | 39.53 359 | 24.13 359 | 50.35 344 | 63.40 346 | 15.90 368 | 51.08 327 | 29.29 344 | 70.69 319 | 55.33 346 |
|
JIA-IIPM | | | 54.03 293 | 51.62 305 | 61.25 273 | 59.14 337 | 55.21 175 | 59.10 305 | 47.72 339 | 50.85 229 | 50.31 345 | 85.81 163 | 20.10 363 | 63.97 301 | 36.16 318 | 55.41 356 | 64.55 329 |
|
test-LLR | | | 50.43 308 | 50.69 313 | 49.64 314 | 60.76 327 | 41.87 274 | 53.18 326 | 45.48 343 | 43.41 288 | 49.41 346 | 60.47 350 | 29.22 344 | 44.73 343 | 42.09 278 | 72.14 310 | 62.33 336 |
|
test-mter | | | 48.56 313 | 48.20 318 | 49.64 314 | 60.76 327 | 41.87 274 | 53.18 326 | 45.48 343 | 31.91 346 | 49.41 346 | 60.47 350 | 18.34 364 | 44.73 343 | 42.09 278 | 72.14 310 | 62.33 336 |
|
PMMVS2 | | | 37.74 329 | 40.87 330 | 28.36 344 | 42.41 365 | 5.35 367 | 24.61 358 | 27.75 364 | 32.15 343 | 47.85 348 | 70.27 320 | 35.85 309 | 29.51 360 | 19.08 360 | 67.85 331 | 50.22 349 |
|
EPNet_dtu | | | 58.93 272 | 58.52 271 | 60.16 282 | 67.91 281 | 47.70 227 | 69.97 192 | 58.02 298 | 49.73 240 | 47.28 349 | 73.02 299 | 38.14 300 | 62.34 308 | 36.57 314 | 85.99 188 | 70.43 291 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DSMNet-mixed | | | 43.18 326 | 44.66 327 | 38.75 342 | 54.75 355 | 28.88 350 | 57.06 314 | 27.42 365 | 13.47 361 | 47.27 350 | 77.67 259 | 38.83 297 | 39.29 356 | 25.32 354 | 60.12 346 | 48.08 350 |
|
GG-mvs-BLEND | | | | | 52.24 308 | 60.64 329 | 29.21 349 | 69.73 196 | 42.41 348 | | 45.47 351 | 52.33 356 | 20.43 362 | 68.16 277 | 25.52 353 | 65.42 336 | 59.36 341 |
|
new_pmnet | | | 37.55 330 | 39.80 333 | 30.79 343 | 56.83 345 | 16.46 364 | 39.35 352 | 30.65 363 | 25.59 357 | 45.26 352 | 61.60 349 | 24.54 355 | 28.02 361 | 21.60 357 | 52.80 357 | 47.90 351 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 362 | 53.74 325 | | 31.57 347 | 44.89 353 | | 29.90 343 | | 32.93 330 | | 71.48 282 |
|
TESTMET0.1,1 | | | 45.17 320 | 44.93 325 | 45.89 327 | 56.02 349 | 38.31 299 | 53.18 326 | 41.94 353 | 27.85 353 | 44.86 354 | 56.47 353 | 17.93 365 | 41.50 354 | 38.08 303 | 68.06 330 | 57.85 342 |
|
PVSNet_0 | | 36.71 22 | 41.12 328 | 40.78 331 | 42.14 336 | 59.97 332 | 40.13 288 | 40.97 349 | 42.24 352 | 30.81 350 | 44.86 354 | 49.41 358 | 40.70 287 | 45.12 341 | 23.15 356 | 34.96 360 | 41.16 356 |
|
dp | | | 44.09 325 | 44.88 326 | 41.72 339 | 58.53 340 | 23.18 359 | 54.70 323 | 42.38 350 | 34.80 329 | 44.25 356 | 65.61 344 | 24.48 356 | 44.80 342 | 29.77 341 | 49.42 358 | 57.18 344 |
|
PMMVS | | | 44.69 322 | 43.95 329 | 46.92 322 | 50.05 362 | 53.47 187 | 48.08 338 | 42.40 349 | 22.36 360 | 44.01 357 | 53.05 355 | 42.60 276 | 45.49 338 | 31.69 333 | 61.36 343 | 41.79 355 |
|
MVS-HIRNet | | | 45.53 319 | 47.29 319 | 40.24 340 | 62.29 318 | 26.82 353 | 56.02 318 | 37.41 360 | 29.74 351 | 43.69 358 | 81.27 212 | 33.96 313 | 55.48 322 | 24.46 355 | 56.79 352 | 38.43 358 |
|
E-PMN | | | 45.17 320 | 45.36 323 | 44.60 332 | 50.07 361 | 42.75 268 | 38.66 353 | 42.29 351 | 46.39 267 | 39.55 359 | 51.15 357 | 26.00 350 | 45.37 340 | 37.68 305 | 76.41 284 | 45.69 354 |
|
MVE |  | 27.91 23 | 36.69 331 | 35.64 334 | 39.84 341 | 43.37 364 | 35.85 319 | 19.49 359 | 24.61 366 | 24.68 358 | 39.05 360 | 62.63 348 | 38.67 299 | 27.10 362 | 21.04 358 | 47.25 359 | 56.56 345 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 44.61 324 | 44.45 328 | 45.10 331 | 48.91 363 | 43.00 266 | 37.92 354 | 41.10 357 | 46.75 265 | 38.00 361 | 48.43 359 | 26.42 348 | 46.27 335 | 37.11 311 | 75.38 294 | 46.03 353 |
|
CHOSEN 280x420 | | | 41.62 327 | 39.89 332 | 46.80 323 | 61.81 320 | 51.59 193 | 33.56 357 | 35.74 361 | 27.48 354 | 37.64 362 | 53.53 354 | 23.24 359 | 42.09 351 | 27.39 348 | 58.64 349 | 46.72 352 |
|
tmp_tt | | | 11.98 334 | 14.73 337 | 3.72 347 | 2.28 368 | 4.62 368 | 19.44 360 | 14.50 368 | 0.47 364 | 21.55 363 | 9.58 363 | 25.78 352 | 4.57 365 | 11.61 362 | 27.37 361 | 1.96 361 |
|
DeepMVS_CX |  | | | | 11.83 346 | 15.51 366 | 13.86 365 | | 11.25 369 | 5.76 362 | 20.85 364 | 26.46 361 | 17.06 367 | 9.22 364 | 9.69 363 | 13.82 363 | 12.42 360 |
|
test_method | | | 19.26 332 | 19.12 336 | 19.71 345 | 9.09 367 | 1.91 369 | 7.79 361 | 53.44 321 | 1.42 363 | 10.27 365 | 35.80 360 | 17.42 366 | 25.11 363 | 12.44 361 | 24.38 362 | 32.10 359 |
|
test123 | | | 4.43 337 | 5.78 340 | 0.39 349 | 0.97 369 | 0.28 370 | 46.33 344 | 0.45 370 | 0.31 365 | 0.62 366 | 1.50 366 | 0.61 372 | 0.11 367 | 0.56 364 | 0.63 364 | 0.77 363 |
|
testmvs | | | 4.06 338 | 5.28 341 | 0.41 348 | 0.64 370 | 0.16 371 | 42.54 348 | 0.31 371 | 0.26 366 | 0.50 367 | 1.40 367 | 0.77 371 | 0.17 366 | 0.56 364 | 0.55 365 | 0.90 362 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 17.71 333 | 23.62 335 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 70.17 244 | 0.00 367 | 0.00 368 | 74.25 288 | 68.16 99 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 5.20 336 | 6.93 339 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 62.39 145 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 5.62 335 | 7.50 338 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 67.46 338 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
OPU-MVS | | | | | 78.65 64 | 83.44 98 | 66.85 91 | 83.62 42 | | | | 86.12 155 | 66.82 111 | 86.01 29 | 61.72 141 | 89.79 137 | 83.08 144 |
|
save fliter | | | | | | 87.00 42 | 67.23 89 | 79.24 82 | 77.94 167 | 56.65 162 | | | | | | | |
|
test_0728_SECOND | | | | | 76.57 88 | 86.20 52 | 60.57 141 | 83.77 40 | 85.49 32 | | | | | 85.90 35 | 75.86 39 | 94.39 41 | 83.25 139 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 294 |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 328 | | | | 70.05 294 |
|
sam_mvs | | | | | | | | | | | | | 31.21 332 | | | | |
|
MTGPA |  | | | | | | | | 80.63 121 | | | | | | | | |
|
test_post1 | | | | | | | | 66.63 242 | | | | 2.08 364 | 30.66 337 | 59.33 316 | 40.34 289 | | |
|
test_post | | | | | | | | | | | | 1.99 365 | 30.91 335 | 54.76 324 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 329 | 31.32 329 | 69.38 270 | | | |
|
MTMP | | | | | | | | 84.83 31 | 19.26 367 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 317 | 33.91 332 | | | 37.25 319 | | 62.71 347 | | 72.74 238 | 38.70 296 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 67 | 91.37 99 | 77.40 236 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 74 | 90.93 112 | 78.55 223 |
|
test_prior4 | | | | | | | 70.14 67 | 77.57 102 | | | | | | | | | |
|
test_prior | | | | | 75.27 104 | 82.15 116 | 59.85 147 | | 84.33 62 | | | | | 83.39 85 | | | 82.58 159 |
|
新几何2 | | | | | | | | 71.33 176 | | | | | | | | | |
|
旧先验1 | | | | | | 84.55 81 | 60.36 143 | | 63.69 276 | | | 87.05 122 | 54.65 212 | | | 83.34 223 | 69.66 298 |
|
无先验 | | | | | | | | 74.82 135 | 70.94 238 | 47.75 260 | | | | 76.85 203 | 54.47 200 | | 72.09 278 |
|
原ACMM2 | | | | | | | | 74.78 139 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 67.30 284 | 48.34 245 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 98 | | | | |
|
testdata1 | | | | | | | | 68.34 219 | | 57.24 154 | | | | | | | |
|
plane_prior7 | | | | | | 85.18 69 | 66.21 96 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 88 | 65.31 103 | | | | | | 60.83 163 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 26 | 71.09 71 | 90.94 110 | 84.82 93 |
|
plane_prior4 | | | | | | | | | | | | 89.11 92 | | | | | |
|
plane_prior2 | | | | | | | | 82.74 51 | | 65.45 77 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 83 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 104 | 80.06 76 | | 61.88 115 | | | | | | 89.91 134 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 314 | | | | | | | | |
|
test11 | | | | | | | | | 82.71 89 | | | | | | | | |
|
door | | | | | | | | | 52.91 325 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 157 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 100 | | |
|
HQP3-MVS | | | | | | | | | 84.12 70 | | | | | | | 89.16 144 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 187 | | | | |
|
NP-MVS | | | | | | 83.34 99 | 63.07 122 | | | | | 85.97 159 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 142 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 88 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 141 | | | | |
|