This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2591.50 163.30 12384.80 3487.77 1086.18 196.26 196.06 190.32 184.49 7068.08 9397.05 196.93 1
FOURS189.19 2577.84 1691.64 189.11 284.05 291.57 2
DTE-MVSNet80.35 5382.89 3872.74 15189.84 837.34 31777.16 11281.81 10480.45 490.92 392.95 774.57 5186.12 3063.65 13194.68 3394.76 6
PS-CasMVS80.41 5282.86 3973.07 14089.93 739.21 29977.15 11381.28 11479.74 690.87 492.73 1175.03 4584.93 6363.83 13095.19 1695.07 3
wuyk23d61.97 25366.25 21549.12 32358.19 34960.77 14566.32 24952.97 33155.93 17390.62 586.91 12673.07 6235.98 36320.63 36591.63 9550.62 354
PEN-MVS80.46 5182.91 3773.11 13989.83 939.02 30277.06 11582.61 9580.04 590.60 692.85 974.93 4785.21 5763.15 13995.15 1895.09 2
CP-MVSNet79.48 6081.65 5072.98 14389.66 1339.06 30176.76 11780.46 13378.91 890.32 791.70 2468.49 9784.89 6463.40 13695.12 1995.01 4
LCM-MVSNet-Re69.10 18371.57 15761.70 27270.37 26934.30 33761.45 29579.62 14456.81 16289.59 888.16 11368.44 9872.94 24342.30 28287.33 17577.85 240
WR-MVS_H80.22 5682.17 4574.39 11789.46 1542.69 27578.24 10082.24 9878.21 1089.57 992.10 1868.05 10285.59 4766.04 11195.62 994.88 5
anonymousdsp78.60 6877.80 8081.00 3778.01 17174.34 3780.09 7776.12 19150.51 23889.19 1090.88 3971.45 7477.78 19773.38 5890.60 12590.90 16
LTVRE_ROB75.46 184.22 884.98 981.94 2384.82 7775.40 3091.60 387.80 873.52 2688.90 1193.06 671.39 7581.53 12181.53 392.15 8988.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-078.57 6978.53 7578.67 6580.48 14064.16 11680.24 7582.06 10061.89 11888.77 1293.32 457.15 20282.60 10670.08 8092.80 7889.25 27
test_040278.17 7679.48 6674.24 12083.50 9759.15 15972.52 16074.60 20875.34 1788.69 1391.81 2275.06 4482.37 10965.10 11788.68 15781.20 185
abl_684.92 385.70 382.57 1786.72 4879.27 887.56 786.08 2877.48 1388.12 1491.53 2781.18 884.31 7678.12 2494.47 3784.15 120
TDRefinement86.32 286.33 286.29 188.64 3381.19 588.84 490.72 178.27 987.95 1592.53 1379.37 1384.79 6774.51 5196.15 292.88 7
LPG-MVS_test83.47 1884.33 1480.90 3887.00 4370.41 6582.04 5986.35 2069.77 5387.75 1691.13 3481.83 386.20 2577.13 3795.96 586.08 69
LGP-MVS_train80.90 3887.00 4370.41 6586.35 2069.77 5387.75 1691.13 3481.83 386.20 2577.13 3795.96 586.08 69
SixPastTwentyTwo75.77 9076.34 9174.06 12381.69 12954.84 18276.47 11875.49 19764.10 9887.73 1892.24 1750.45 23881.30 12467.41 10291.46 9986.04 71
SR-MVS-dyc-post84.75 585.26 783.21 386.19 5479.18 987.23 986.27 2377.51 1187.65 1990.73 4579.20 1485.58 4878.11 2594.46 3884.89 92
RE-MVS-def85.50 486.19 5479.18 987.23 986.27 2377.51 1187.65 1990.73 4581.38 778.11 2594.46 3884.89 92
ACMH+66.64 1081.20 4082.48 4377.35 8481.16 13562.39 12780.51 6787.80 873.02 2887.57 2191.08 3680.28 1082.44 10764.82 12096.10 487.21 56
v7n79.37 6280.41 5876.28 9678.67 16455.81 17779.22 8782.51 9770.72 4787.54 2292.44 1468.00 10481.34 12272.84 6191.72 9191.69 10
ACMM69.25 982.11 3383.31 3078.49 6888.17 4073.96 3883.11 5184.52 6466.40 7487.45 2389.16 9381.02 980.52 14474.27 5395.73 780.98 192
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 6578.67 7379.72 4984.81 7873.93 3980.65 6676.50 18951.98 22187.40 2491.86 2176.09 3578.53 17568.58 8890.20 12986.69 64
SED-MVS81.78 3583.48 2776.67 8986.12 5861.06 13783.62 4484.72 5572.61 3287.38 2589.70 8077.48 2485.89 3975.29 4594.39 4383.08 149
test_241102_ONE86.12 5861.06 13784.72 5572.64 3187.38 2589.47 8377.48 2485.74 43
test_djsdf78.88 6678.27 7680.70 4181.42 13171.24 5783.98 3875.72 19552.27 21687.37 2792.25 1668.04 10380.56 14172.28 6891.15 10790.32 20
test117284.85 485.39 583.21 388.34 3880.50 685.12 3085.22 4381.06 387.20 2890.28 6979.20 1485.58 4878.04 2794.08 5683.55 132
jajsoiax78.51 7078.16 7879.59 5284.65 8173.83 4180.42 6976.12 19151.33 22987.19 2991.51 2873.79 5878.44 17968.27 9190.13 13486.49 66
PMVScopyleft70.70 681.70 3683.15 3477.36 8390.35 682.82 282.15 5779.22 15174.08 2287.16 3091.97 1984.80 276.97 20564.98 11993.61 6572.28 282
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH63.62 1477.50 7980.11 6069.68 19079.61 14756.28 17478.81 9083.62 8263.41 10887.14 3190.23 7176.11 3473.32 24067.58 10094.44 4179.44 218
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP69.50 882.64 2883.38 2980.40 4386.50 5069.44 7382.30 5686.08 2866.80 6986.70 3289.99 7581.64 685.95 3274.35 5296.11 385.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APDe-MVS82.88 2684.14 1679.08 5784.80 7966.72 9586.54 2185.11 4572.00 4186.65 3391.75 2378.20 2187.04 977.93 2894.32 5083.47 137
APD-MVS_3200maxsize83.57 1584.33 1481.31 3382.83 11273.53 4485.50 2887.45 1474.11 2186.45 3490.52 5380.02 1184.48 7177.73 3094.34 4985.93 73
PS-MVSNAJss77.54 7877.35 8478.13 7584.88 7666.37 9878.55 9479.59 14753.48 20686.29 3592.43 1562.39 14980.25 14967.90 9990.61 12487.77 48
HPM-MVS_fast84.59 685.10 883.06 688.60 3475.83 2786.27 2586.89 1873.69 2586.17 3691.70 2478.23 2085.20 5879.45 1394.91 2588.15 45
SR-MVS84.51 785.27 682.25 2188.52 3577.71 1786.81 1785.25 4277.42 1586.15 3790.24 7081.69 585.94 3377.77 2993.58 6783.09 148
SD-MVS80.28 5581.55 5276.47 9483.57 9667.83 8683.39 5085.35 4164.42 9586.14 3887.07 12374.02 5580.97 13477.70 3192.32 8780.62 203
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft72.78 383.75 1384.11 1782.68 1482.97 10974.39 3687.18 1188.18 778.98 786.11 3991.47 2979.70 1285.76 4266.91 10895.46 1187.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1075.69 9376.20 9374.16 12174.44 22448.69 21875.84 12982.93 9159.02 14085.92 4089.17 9258.56 18782.74 10370.73 7689.14 15291.05 13
ACMMPcopyleft84.22 884.84 1082.35 2089.23 2376.66 2687.65 685.89 3171.03 4585.85 4190.58 4978.77 1785.78 4179.37 1695.17 1784.62 102
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 4283.12 3575.24 11086.16 5660.78 14383.77 4280.58 13172.48 3485.83 4290.41 5878.57 1885.69 4475.86 4294.39 4379.24 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2385.83 4290.41 5875.58 3985.69 4477.43 3394.74 3184.31 116
v875.07 10175.64 9873.35 13273.42 23647.46 23675.20 13481.45 11060.05 13185.64 4489.26 8758.08 19481.80 11869.71 8587.97 16490.79 17
XVG-ACMP-BASELINE80.54 4981.06 5378.98 6187.01 4272.91 4780.23 7685.56 3466.56 7385.64 4489.57 8269.12 9180.55 14372.51 6593.37 6983.48 136
SteuartSystems-ACMMP83.07 2383.64 2481.35 3185.14 7371.00 5985.53 2784.78 5270.91 4685.64 4490.41 5875.55 4087.69 379.75 895.08 2085.36 82
Skip Steuart: Steuart Systems R&D Blog.
test_one_060185.84 6661.45 13485.63 3375.27 1985.62 4790.38 6376.72 29
OPM-MVS80.99 4681.63 5179.07 5886.86 4769.39 7479.41 8484.00 7965.64 7885.54 4889.28 8676.32 3383.47 8974.03 5493.57 6884.35 115
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D76.74 8579.02 6869.92 18989.27 2043.81 26374.47 14771.70 22872.33 3785.50 4993.65 377.98 2276.88 20854.60 20591.64 9489.08 31
DPE-MVScopyleft82.00 3483.02 3678.95 6285.36 7067.25 8982.91 5284.98 4873.52 2685.43 5090.03 7476.37 3186.97 1174.56 5094.02 5982.62 164
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2983.46 2879.76 4788.88 3268.44 8281.57 6286.33 2263.17 11085.38 5191.26 3376.33 3284.67 6983.30 194.96 2386.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_part176.97 8378.21 7773.25 13677.87 17345.76 25178.27 9987.26 1566.69 7185.31 5291.43 3155.95 21384.24 7865.71 11395.43 1289.75 22
test072686.16 5660.78 14383.81 4185.10 4672.48 3485.27 5389.96 7678.57 18
HPM-MVScopyleft84.12 1084.63 1182.60 1588.21 3974.40 3585.24 2987.21 1670.69 4885.14 5490.42 5778.99 1686.62 1480.83 694.93 2486.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS84.01 1284.39 1382.88 890.65 481.38 487.08 1382.79 9272.41 3685.11 5590.85 4176.65 3084.89 6479.30 1794.63 3482.35 171
DVP-MVS++.81.24 3982.74 4076.76 8883.14 10260.90 14191.64 185.49 3574.03 2384.93 5690.38 6366.82 11385.90 3777.43 3390.78 12083.49 134
test_241102_TWO84.80 5172.61 3284.93 5689.70 8077.73 2385.89 3975.29 4594.22 5583.25 144
zzz-MVS83.01 2583.63 2581.13 3591.16 278.16 1482.72 5580.63 12872.08 3984.93 5690.79 4274.65 4984.42 7380.98 494.75 2980.82 196
MTAPA83.19 2083.87 2081.13 3591.16 278.16 1484.87 3280.63 12872.08 3984.93 5690.79 4274.65 4984.42 7380.98 494.75 2980.82 196
PGM-MVS83.07 2383.25 3382.54 1889.57 1477.21 2482.04 5985.40 3967.96 6284.91 6090.88 3975.59 3886.57 1578.16 2394.71 3283.82 124
K. test v373.67 11773.61 12473.87 12579.78 14555.62 18074.69 14562.04 29566.16 7684.76 6193.23 549.47 24280.97 13465.66 11486.67 18785.02 91
CP-MVS84.12 1084.55 1282.80 1289.42 1879.74 788.19 584.43 6571.96 4284.70 6290.56 5077.12 2686.18 2779.24 1895.36 1382.49 168
test_part285.90 6266.44 9784.61 63
ACMMPR83.62 1483.93 1982.69 1389.78 1177.51 2287.01 1584.19 7470.23 4984.49 6490.67 4875.15 4386.37 1979.58 1194.26 5184.18 119
HFP-MVS83.39 1984.03 1881.48 2789.25 2175.69 2887.01 1584.27 6970.23 4984.47 6590.43 5576.79 2785.94 3379.58 1194.23 5382.82 158
#test#82.40 3082.71 4181.48 2789.25 2175.69 2884.47 3684.27 6964.45 9484.47 6590.43 5576.79 2785.94 3376.01 3994.23 5382.82 158
xxxxxxxxxxxxxcwj80.31 5480.94 5478.42 7087.00 4367.23 9079.24 8588.61 556.65 16684.29 6789.18 9073.73 5983.22 9476.01 3993.77 6284.81 96
SF-MVS80.72 4881.80 4677.48 8082.03 12364.40 11583.41 4988.46 665.28 8584.29 6789.18 9073.73 5983.22 9476.01 3993.77 6284.81 96
SMA-MVScopyleft82.12 3282.68 4280.43 4288.90 3169.52 7185.12 3084.76 5363.53 10484.23 6991.47 2972.02 6787.16 779.74 1094.36 4784.61 103
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS82.79 2783.27 3281.34 3288.99 2873.29 4585.94 2685.13 4468.58 6084.14 7090.21 7273.37 6186.41 1779.09 1993.98 6084.30 118
ZNCC-MVS83.12 2283.68 2381.45 2989.14 2673.28 4686.32 2485.97 3067.39 6484.02 7190.39 6174.73 4886.46 1680.73 794.43 4284.60 105
ACMMP_NAP82.33 3183.28 3179.46 5389.28 1969.09 8083.62 4484.98 4864.77 9183.97 7291.02 3775.53 4185.93 3682.00 294.36 4783.35 142
region2R83.54 1683.86 2182.58 1689.82 1077.53 2087.06 1484.23 7370.19 5183.86 7390.72 4775.20 4286.27 2279.41 1594.25 5283.95 123
lessismore_v072.75 15079.60 14856.83 17357.37 31083.80 7489.01 9747.45 25678.74 17164.39 12386.49 18982.69 163
APD-MVScopyleft81.13 4381.73 4879.36 5584.47 8470.53 6483.85 4083.70 8169.43 5583.67 7588.96 9975.89 3686.41 1772.62 6492.95 7481.14 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF80.35 4476.94 18573.60 4280.48 13266.87 6783.64 7686.18 15470.25 8379.90 15661.12 15288.95 15587.56 52
nrg03074.87 10675.99 9571.52 16674.90 21149.88 21474.10 15182.58 9654.55 19083.50 7789.21 8971.51 7275.74 22061.24 14992.34 8688.94 36
V4271.06 15670.83 16571.72 16367.25 29347.14 24065.94 25280.35 13751.35 22883.40 7883.23 19859.25 18178.80 16965.91 11280.81 25889.23 28
TranMVSNet+NR-MVSNet76.13 8877.66 8171.56 16584.61 8242.57 27770.98 18578.29 16968.67 5983.04 7989.26 8772.99 6380.75 14055.58 19895.47 1091.35 11
9.1480.22 5980.68 13780.35 7287.69 1159.90 13283.00 8088.20 11074.57 5181.75 11973.75 5693.78 61
Anonymous2023121175.54 9477.19 8570.59 17477.67 17845.70 25374.73 14380.19 13868.80 5682.95 8192.91 866.26 12076.76 21158.41 17492.77 7989.30 26
XVS83.51 1783.73 2282.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 8290.39 6173.86 5686.31 2078.84 2094.03 5784.64 100
X-MVStestdata76.81 8474.79 10382.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 829.95 36773.86 5686.31 2078.84 2094.03 5784.64 100
testtj81.19 4181.70 4979.67 5183.95 9269.77 7083.58 4784.63 6072.13 3882.85 8488.36 10775.00 4686.79 1271.99 7292.84 7682.44 169
XVG-OURS79.51 5979.82 6278.58 6786.11 6174.96 3376.33 12384.95 5066.89 6682.75 8588.99 9866.82 11378.37 18374.80 4790.76 12382.40 170
ZD-MVS83.91 9369.36 7581.09 12058.91 14382.73 8689.11 9475.77 3786.63 1372.73 6292.93 75
FC-MVSNet-test73.32 12574.78 10468.93 20379.21 15536.57 31971.82 17379.54 14957.63 15582.57 8790.38 6359.38 18078.99 16657.91 17794.56 3591.23 12
ETH3D-3000-0.179.14 6379.80 6377.16 8780.67 13864.57 11280.26 7487.60 1260.74 12782.47 8888.03 11571.73 7081.81 11773.12 5993.61 6585.09 87
ANet_high67.08 20869.94 17158.51 29657.55 35027.09 35958.43 31376.80 18763.56 10382.40 8991.93 2059.82 17564.98 30450.10 23788.86 15683.46 138
v124073.06 13173.14 13272.84 14874.74 21547.27 23971.88 17281.11 11851.80 22282.28 9084.21 18256.22 21182.34 11068.82 8687.17 18188.91 37
LS3D80.99 4680.85 5581.41 3078.37 16571.37 5587.45 885.87 3277.48 1381.98 9189.95 7769.14 9085.26 5466.15 10991.24 10487.61 51
v119273.40 12373.42 12573.32 13474.65 22148.67 21972.21 16381.73 10552.76 21381.85 9284.56 17757.12 20382.24 11368.58 8887.33 17589.06 32
PC_three_145246.98 27081.83 9386.28 15066.55 11884.47 7263.31 13890.78 12083.49 134
v114473.29 12673.39 12673.01 14174.12 23048.11 22672.01 16681.08 12153.83 20381.77 9484.68 17558.07 19581.91 11568.10 9286.86 18388.99 35
OMC-MVS79.41 6178.79 7081.28 3480.62 13970.71 6380.91 6584.76 5362.54 11481.77 9486.65 14071.46 7383.53 8867.95 9892.44 8489.60 23
UniMVSNet_NR-MVSNet74.90 10575.65 9772.64 15483.04 10745.79 24969.26 20578.81 15766.66 7281.74 9686.88 12763.26 14181.07 13056.21 19094.98 2191.05 13
DU-MVS74.91 10475.57 9972.93 14583.50 9745.79 24969.47 20280.14 14065.22 8681.74 9687.08 12161.82 15581.07 13056.21 19094.98 2191.93 8
v192192072.96 13772.98 13772.89 14774.67 21847.58 23471.92 17080.69 12751.70 22481.69 9883.89 18656.58 20982.25 11268.34 9087.36 17388.82 39
WR-MVS71.20 15572.48 14267.36 22484.98 7535.70 32764.43 27268.66 25865.05 8981.49 9986.43 14857.57 20076.48 21350.36 23593.32 7189.90 21
v14419272.99 13573.06 13572.77 14974.58 22247.48 23571.90 17180.44 13451.57 22581.46 10084.11 18458.04 19682.12 11467.98 9687.47 17188.70 42
IU-MVS86.12 5860.90 14180.38 13545.49 27781.31 10175.64 4494.39 4384.65 99
MP-MVScopyleft83.19 2083.54 2682.14 2290.54 579.00 1186.42 2383.59 8371.31 4381.26 10290.96 3874.57 5184.69 6878.41 2294.78 2882.74 162
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v2v48272.55 14672.58 14172.43 15772.92 24846.72 24271.41 17779.13 15255.27 17781.17 10385.25 17255.41 21481.13 12767.25 10785.46 19789.43 25
MSP-MVS80.49 5079.67 6582.96 789.70 1277.46 2387.16 1285.10 4664.94 9081.05 10488.38 10657.10 20487.10 879.75 883.87 22484.31 116
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet-bldmvs62.34 25261.73 24964.16 24861.64 32949.90 21148.11 34157.24 31353.31 20780.95 10579.39 24049.00 24761.55 31745.92 26780.05 26581.03 189
ETH3D cwj APD-0.1678.38 7478.72 7277.38 8280.09 14366.16 10079.08 8886.13 2757.55 15680.93 10687.76 11871.98 6982.73 10472.11 7192.83 7783.25 144
CPTT-MVS81.51 3881.76 4780.76 4089.20 2478.75 1286.48 2282.03 10168.80 5680.92 10788.52 10372.00 6882.39 10874.80 4793.04 7381.14 187
DeepC-MVS72.44 481.00 4580.83 5681.50 2686.70 4970.03 6982.06 5887.00 1759.89 13380.91 10890.53 5172.19 6588.56 173.67 5794.52 3685.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs72.56 14473.80 11768.84 20678.74 16337.74 31371.02 18479.83 14356.12 17080.88 10989.45 8458.18 18978.28 18656.63 18393.36 7090.51 19
3Dnovator+73.19 281.08 4480.48 5782.87 981.41 13272.03 4984.38 3786.23 2677.28 1680.65 11090.18 7359.80 17687.58 473.06 6091.34 10289.01 33
IterMVS-LS73.01 13373.12 13472.66 15373.79 23349.90 21171.63 17478.44 16658.22 14580.51 11186.63 14158.15 19179.62 15862.51 14188.20 15888.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Regformer-275.32 9674.47 10777.88 7674.22 22666.65 9672.77 15877.54 17868.47 6180.44 11272.08 30870.60 8080.97 13470.08 8084.02 22286.01 72
DP-MVS78.44 7379.29 6775.90 10181.86 12665.33 10579.05 8984.63 6074.83 2080.41 11386.27 15171.68 7183.45 9062.45 14392.40 8578.92 224
XVG-OURS-SEG-HR79.62 5879.99 6178.49 6886.46 5174.79 3477.15 11385.39 4066.73 7080.39 11488.85 10174.43 5478.33 18574.73 4985.79 19482.35 171
DeepPCF-MVS71.07 578.48 7277.14 8782.52 1984.39 8877.04 2576.35 12184.05 7756.66 16580.27 11585.31 17168.56 9687.03 1067.39 10391.26 10383.50 133
Regformer-474.64 10873.67 12177.55 7874.74 21564.49 11472.91 15675.42 19967.45 6380.24 11672.07 31068.98 9280.19 15370.29 7880.91 25487.98 46
AllTest77.66 7777.43 8278.35 7179.19 15670.81 6078.60 9388.64 365.37 8380.09 11788.17 11170.33 8178.43 18055.60 19590.90 11685.81 75
TestCases78.35 7179.19 15670.81 6088.64 365.37 8380.09 11788.17 11170.33 8178.43 18055.60 19590.90 11685.81 75
UA-Net81.56 3782.28 4479.40 5488.91 3069.16 7884.67 3580.01 14275.34 1779.80 11994.91 269.79 8780.25 14972.63 6394.46 3888.78 41
PCF-MVS63.80 1372.70 14271.69 15275.72 10378.10 16860.01 15173.04 15581.50 10845.34 27979.66 12084.35 18165.15 13182.65 10548.70 24789.38 14884.50 111
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)75.00 10275.48 10073.56 13083.14 10247.92 22970.41 19381.04 12263.67 10279.54 12186.37 14962.83 14381.82 11657.10 18195.25 1590.94 15
Baseline_NR-MVSNet70.62 16173.19 13162.92 26576.97 18434.44 33568.84 21070.88 24660.25 13079.50 12290.53 5161.82 15569.11 27854.67 20495.27 1485.22 83
FMVSNet171.06 15672.48 14266.81 23077.65 17940.68 29071.96 16773.03 21461.14 12379.45 12390.36 6660.44 16975.20 22650.20 23688.05 16184.54 106
Regformer-174.28 11073.63 12376.21 9874.22 22664.12 11772.77 15875.46 19866.86 6879.27 12472.08 30869.29 8978.74 17168.73 8784.02 22285.77 80
ambc70.10 18577.74 17650.21 20974.28 15077.93 17579.26 12588.29 10954.11 22079.77 15764.43 12291.10 10980.30 208
IS-MVSNet75.10 10075.42 10174.15 12279.23 15448.05 22779.43 8278.04 17270.09 5279.17 12688.02 11653.04 22383.60 8558.05 17693.76 6490.79 17
CSCG74.12 11274.39 10873.33 13379.35 15161.66 13377.45 10881.98 10262.47 11679.06 12780.19 23061.83 15478.79 17059.83 16587.35 17479.54 217
RPSCF75.76 9174.37 10979.93 4674.81 21377.53 2077.53 10779.30 15059.44 13678.88 12889.80 7971.26 7673.09 24257.45 17880.89 25689.17 30
tttt051769.46 17567.79 20274.46 11475.34 20452.72 19675.05 13563.27 28654.69 18678.87 12984.37 18026.63 35281.15 12663.95 12787.93 16589.51 24
v14869.38 17869.39 17669.36 19369.14 27944.56 25868.83 21172.70 22054.79 18478.59 13084.12 18354.69 21676.74 21259.40 16882.20 23886.79 62
EI-MVSNet-Vis-set72.78 14071.87 14975.54 10574.77 21459.02 16072.24 16271.56 23163.92 9978.59 13071.59 31666.22 12178.60 17367.58 10080.32 26289.00 34
EI-MVSNet-UG-set72.63 14371.68 15375.47 10674.67 21858.64 16572.02 16571.50 23263.53 10478.58 13271.39 31965.98 12278.53 17567.30 10680.18 26489.23 28
旧先验271.17 18345.11 28178.54 13361.28 31859.19 169
Regformer-372.86 13972.28 14574.62 11374.74 21560.18 14972.91 15671.76 22764.74 9278.42 13472.07 31067.00 11076.28 21567.97 9780.91 25487.39 53
MIMVSNet166.57 21269.23 17958.59 29581.26 13437.73 31464.06 27557.62 30757.02 15978.40 13590.75 4462.65 14458.10 32641.77 28789.58 14579.95 212
HQP_MVS78.77 6778.78 7178.72 6485.18 7165.18 10782.74 5385.49 3565.45 8078.23 13689.11 9460.83 16786.15 2871.09 7490.94 11284.82 94
plane_prior365.67 10363.82 10178.23 136
eth_miper_zixun_eth69.42 17668.73 18971.50 16767.99 28646.42 24567.58 23078.81 15750.72 23678.13 13880.34 22750.15 24080.34 14660.18 15984.65 21287.74 49
HPM-MVS++copyleft79.89 5779.80 6380.18 4589.02 2778.44 1383.49 4880.18 13964.71 9378.11 13988.39 10565.46 12883.14 9677.64 3291.20 10578.94 223
h-mvs3373.08 12971.61 15577.48 8083.89 9572.89 4870.47 19171.12 24354.28 19377.89 14083.41 19049.04 24580.98 13363.62 13290.77 12278.58 227
hse-mvs272.32 14770.66 16877.31 8583.10 10671.77 5169.19 20771.45 23454.28 19377.89 14078.26 25649.04 24579.23 16263.62 13289.13 15380.92 193
PM-MVS64.49 22963.61 23667.14 22876.68 19075.15 3268.49 22142.85 35451.17 23277.85 14280.51 22445.76 25866.31 29952.83 22076.35 29159.96 346
RRT_MVS73.80 11671.19 16281.60 2471.04 25970.33 6778.78 9174.91 20556.96 16077.83 14385.56 16832.82 32387.39 571.16 7391.68 9387.07 60
BH-untuned69.39 17769.46 17569.18 19677.96 17256.88 17168.47 22277.53 17956.77 16377.79 14479.63 23760.30 17180.20 15246.04 26680.65 25970.47 296
c3_l69.82 17169.89 17269.61 19166.24 30143.48 26768.12 22579.61 14651.43 22777.72 14580.18 23154.61 21878.15 19163.62 13287.50 17087.20 57
MSLP-MVS++74.48 10975.78 9670.59 17484.66 8062.40 12678.65 9284.24 7260.55 12977.71 14681.98 20863.12 14277.64 19962.95 14088.14 15971.73 287
CDPH-MVS77.33 8077.06 8878.14 7484.21 8963.98 11876.07 12683.45 8454.20 19577.68 14787.18 11969.98 8485.37 5168.01 9592.72 8285.08 89
CNVR-MVS78.49 7178.59 7478.16 7385.86 6567.40 8878.12 10381.50 10863.92 9977.51 14886.56 14468.43 9984.82 6673.83 5591.61 9682.26 174
casdiffmvs73.06 13173.84 11670.72 17271.32 25846.71 24370.93 18684.26 7155.62 17577.46 14987.10 12067.09 10977.81 19563.95 12786.83 18487.64 50
TinyColmap67.98 19769.28 17764.08 25067.98 28746.82 24170.04 19475.26 20253.05 20977.36 15086.79 13059.39 17972.59 25045.64 26888.01 16372.83 275
ETH3 D test640075.73 9276.00 9474.92 11181.75 12756.93 17078.31 9784.60 6252.83 21277.15 15185.14 17368.59 9584.03 7965.44 11690.20 12983.82 124
TSAR-MVS + MP.79.05 6478.81 6979.74 4888.94 2967.52 8786.61 2081.38 11251.71 22377.15 15191.42 3265.49 12787.20 679.44 1487.17 18184.51 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
KD-MVS_self_test66.38 21467.51 20462.97 26461.76 32834.39 33658.11 31575.30 20150.84 23577.12 15385.42 16956.84 20769.44 27551.07 22991.16 10685.08 89
TEST985.47 6869.32 7676.42 11978.69 16053.73 20476.97 15486.74 13466.84 11281.10 128
train_agg76.38 8776.55 8975.86 10285.47 6869.32 7676.42 11978.69 16054.00 19976.97 15486.74 13466.60 11681.10 12872.50 6691.56 9777.15 243
agg_prior175.89 8976.41 9074.31 11984.44 8666.02 10176.12 12578.62 16354.40 19176.95 15686.85 12866.44 11980.34 14672.45 6791.42 10076.57 247
agg_prior84.44 8666.02 10178.62 16376.95 15680.34 146
IterMVS-SCA-FT67.68 20266.07 21772.49 15673.34 23858.20 16763.80 27865.55 27248.10 25976.91 15882.64 20245.20 26378.84 16861.20 15077.89 28780.44 207
Anonymous2024052972.56 14473.79 11868.86 20576.89 18845.21 25568.80 21477.25 18467.16 6576.89 15990.44 5465.95 12374.19 23750.75 23190.00 13587.18 58
test_885.09 7467.89 8576.26 12478.66 16254.00 19976.89 15986.72 13666.60 11680.89 139
cl____68.26 19668.26 19368.29 21264.98 31343.67 26565.89 25374.67 20650.04 24376.86 16182.42 20448.74 24975.38 22260.92 15489.81 13985.80 79
DIV-MVS_self_test68.27 19568.26 19368.29 21264.98 31343.67 26565.89 25374.67 20650.04 24376.86 16182.43 20348.74 24975.38 22260.94 15389.81 13985.81 75
MVS_111021_LR72.10 14971.82 15172.95 14479.53 14973.90 4070.45 19266.64 26656.87 16176.81 16381.76 21268.78 9371.76 26061.81 14483.74 22673.18 272
CLD-MVS72.88 13872.36 14474.43 11677.03 18354.30 18668.77 21583.43 8552.12 21876.79 16474.44 28969.54 8883.91 8055.88 19393.25 7285.09 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FMVSNet267.48 20468.21 19665.29 24173.14 24138.94 30368.81 21271.21 24254.81 18176.73 16586.48 14648.63 25174.60 23347.98 25486.11 19282.35 171
baseline73.10 12873.96 11570.51 17671.46 25746.39 24772.08 16484.40 6655.95 17276.62 16686.46 14767.20 10878.03 19264.22 12487.27 17887.11 59
canonicalmvs72.29 14873.38 12769.04 19874.23 22547.37 23773.93 15283.18 8654.36 19276.61 16781.64 21472.03 6675.34 22457.12 18087.28 17784.40 113
EG-PatchMatch MVS70.70 16070.88 16470.16 18282.64 11558.80 16271.48 17573.64 21254.98 18076.55 16881.77 21161.10 16578.94 16754.87 20280.84 25772.74 277
alignmvs70.54 16271.00 16369.15 19773.50 23448.04 22869.85 19879.62 14453.94 20276.54 16982.00 20759.00 18374.68 23257.32 17987.21 17984.72 98
test_prior376.71 8677.19 8575.27 10882.15 12159.85 15275.57 13084.33 6758.92 14176.53 17086.78 13167.83 10583.39 9169.81 8292.76 8082.58 165
test_prior275.57 13058.92 14176.53 17086.78 13167.83 10569.81 8292.76 80
EPP-MVSNet73.86 11473.38 12775.31 10778.19 16753.35 19480.45 6877.32 18265.11 8876.47 17286.80 12949.47 24283.77 8253.89 21392.72 8288.81 40
pmmvs671.82 15173.66 12266.31 23675.94 19942.01 28066.99 24172.53 22263.45 10676.43 17392.78 1072.95 6469.69 27451.41 22690.46 12687.22 55
testdata64.13 24985.87 6463.34 12261.80 29647.83 26376.42 17486.60 14348.83 24862.31 31554.46 20881.26 25166.74 323
GeoE73.14 12773.77 11971.26 16978.09 16952.64 19774.32 14879.56 14856.32 16976.35 17583.36 19570.76 7977.96 19363.32 13781.84 24383.18 147
miper_ehance_all_eth68.36 19268.16 19868.98 20065.14 31243.34 26967.07 24078.92 15649.11 25276.21 17677.72 26253.48 22277.92 19461.16 15184.59 21485.68 81
TAPA-MVS65.27 1275.16 9974.29 11177.77 7774.86 21268.08 8377.89 10484.04 7855.15 17976.19 17783.39 19166.91 11180.11 15460.04 16390.14 13385.13 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_HR72.98 13672.97 13872.99 14280.82 13665.47 10468.81 21272.77 21957.67 15375.76 17882.38 20571.01 7777.17 20361.38 14886.15 19076.32 248
CNLPA73.44 12173.03 13674.66 11278.27 16675.29 3175.99 12778.49 16565.39 8275.67 17983.22 20061.23 16366.77 29653.70 21585.33 20181.92 179
NR-MVSNet73.62 11974.05 11372.33 16083.50 9743.71 26465.65 25877.32 18264.32 9675.59 18087.08 12162.45 14881.34 12254.90 20195.63 891.93 8
NCCC78.25 7578.04 7978.89 6385.61 6769.45 7279.80 8180.99 12365.77 7775.55 18186.25 15367.42 10785.42 5070.10 7990.88 11881.81 180
YYNet152.58 30253.50 30149.85 31754.15 36436.45 32140.53 35446.55 34938.09 32175.52 18273.31 30241.08 29043.88 35241.10 29071.14 32269.21 309
MDA-MVSNet_test_wron52.57 30353.49 30249.81 31854.24 36336.47 32040.48 35546.58 34838.13 32075.47 18373.32 30141.05 29143.85 35340.98 29171.20 32169.10 311
EI-MVSNet69.61 17369.01 18371.41 16873.94 23149.90 21171.31 18071.32 23658.22 14575.40 18470.44 32258.16 19075.85 21662.51 14179.81 26888.48 43
MVSTER63.29 24161.60 25368.36 21059.77 34246.21 24860.62 30171.32 23641.83 30175.40 18479.12 24730.25 34475.85 21656.30 18979.81 26883.03 152
TransMVSNet (Re)69.62 17271.63 15463.57 25576.51 19135.93 32565.75 25771.29 23861.05 12475.02 18689.90 7865.88 12570.41 27249.79 23889.48 14684.38 114
新几何169.99 18788.37 3671.34 5662.08 29243.85 28774.99 18786.11 15952.85 22570.57 26850.99 23083.23 23168.05 314
Effi-MVS+-dtu75.43 9572.28 14584.91 277.05 18183.58 178.47 9577.70 17657.68 15174.89 18878.13 25964.80 13484.26 7756.46 18785.32 20286.88 61
DeepC-MVS_fast69.89 777.17 8176.33 9279.70 5083.90 9467.94 8480.06 7983.75 8056.73 16474.88 18985.32 17065.54 12687.79 265.61 11591.14 10883.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
112169.23 18068.26 19372.12 16288.36 3771.40 5468.59 21762.06 29343.80 28874.75 19086.18 15452.92 22476.85 20954.47 20683.27 23068.12 313
VDDNet71.60 15373.13 13367.02 22986.29 5241.11 28569.97 19566.50 26768.72 5874.74 19191.70 2459.90 17375.81 21848.58 24991.72 9184.15 120
GBi-Net68.30 19368.79 18566.81 23073.14 24140.68 29071.96 16773.03 21454.81 18174.72 19290.36 6648.63 25175.20 22647.12 25985.37 19884.54 106
test168.30 19368.79 18566.81 23073.14 24140.68 29071.96 16773.03 21454.81 18174.72 19290.36 6648.63 25175.20 22647.12 25985.37 19884.54 106
FMVSNet365.00 22565.16 22164.52 24769.47 27537.56 31666.63 24670.38 24951.55 22674.72 19283.27 19737.89 30974.44 23547.12 25985.37 19881.57 183
DROMVSNet77.08 8277.39 8376.14 9976.86 18956.87 17280.32 7387.52 1363.45 10674.66 19584.52 17869.87 8684.94 6269.76 8489.59 14486.60 65
Patchmatch-RL test59.95 26859.12 26962.44 26872.46 25054.61 18559.63 30747.51 34741.05 30774.58 19674.30 29131.06 33865.31 30151.61 22479.85 26767.39 316
cl2267.14 20766.51 21469.03 19963.20 32243.46 26866.88 24476.25 19049.22 25074.48 19777.88 26145.49 26277.40 20160.64 15684.59 21486.24 67
thisisatest053067.05 21065.16 22172.73 15273.10 24450.55 20671.26 18263.91 28250.22 24074.46 19880.75 22126.81 35180.25 14959.43 16786.50 18887.37 54
TSAR-MVS + GP.73.08 12971.60 15677.54 7978.99 16270.73 6274.96 13669.38 25460.73 12874.39 19978.44 25457.72 19982.78 10260.16 16089.60 14379.11 222
原ACMM173.90 12485.90 6265.15 10981.67 10650.97 23374.25 20086.16 15661.60 15783.54 8756.75 18291.08 11073.00 273
pmmvs-eth3d64.41 23263.27 24067.82 22075.81 20160.18 14969.49 20162.05 29438.81 31874.13 20182.23 20643.76 27368.65 28042.53 28180.63 26174.63 261
VPA-MVSNet68.71 18870.37 16963.72 25476.13 19638.06 31164.10 27471.48 23356.60 16874.10 20288.31 10864.78 13669.72 27347.69 25790.15 13283.37 141
VDD-MVS70.81 15971.44 15968.91 20479.07 16146.51 24467.82 22870.83 24761.23 12274.07 20388.69 10259.86 17475.62 22151.11 22890.28 12884.61 103
pm-mvs168.40 19169.85 17364.04 25273.10 24439.94 29664.61 27070.50 24855.52 17673.97 20489.33 8563.91 14068.38 28249.68 24088.02 16283.81 126
BH-RMVSNet68.69 18968.20 19770.14 18376.40 19253.90 19064.62 26973.48 21358.01 14773.91 20581.78 21059.09 18278.22 18748.59 24877.96 28678.31 230
test1276.51 9282.28 11960.94 14081.64 10773.60 20664.88 13385.19 5990.42 12783.38 140
QAPM69.18 18269.26 17868.94 20271.61 25652.58 19880.37 7178.79 15949.63 24773.51 20785.14 17353.66 22179.12 16455.11 20075.54 29775.11 258
Gipumacopyleft69.55 17472.83 13959.70 28863.63 32153.97 18880.08 7875.93 19364.24 9773.49 20888.93 10057.89 19862.46 31359.75 16691.55 9862.67 340
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs_anonymous65.08 22465.49 22063.83 25363.79 31937.60 31566.52 24869.82 25243.44 29373.46 20986.08 16058.79 18671.75 26151.90 22375.63 29682.15 175
miper_enhance_ethall65.86 21665.05 22968.28 21461.62 33042.62 27664.74 26777.97 17342.52 29873.42 21072.79 30549.66 24177.68 19858.12 17584.59 21484.54 106
Vis-MVSNetpermissive74.85 10774.56 10575.72 10381.63 13064.64 11176.35 12179.06 15362.85 11273.33 21188.41 10462.54 14779.59 16063.94 12982.92 23282.94 154
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR73.91 11374.16 11273.16 13881.90 12553.50 19281.28 6381.40 11166.17 7573.30 21283.31 19659.96 17283.10 9858.45 17381.66 24882.87 156
PHI-MVS74.92 10374.36 11076.61 9076.40 19262.32 12880.38 7083.15 8754.16 19773.23 21380.75 22162.19 15283.86 8168.02 9490.92 11583.65 131
miper_lstm_enhance61.97 25361.63 25262.98 26360.04 33845.74 25247.53 34370.95 24444.04 28673.06 21478.84 25139.72 29860.33 31955.82 19484.64 21382.88 155
test22287.30 4169.15 7967.85 22759.59 30241.06 30673.05 21585.72 16748.03 25480.65 25966.92 319
MCST-MVS73.42 12273.34 12973.63 12981.28 13359.17 15874.80 14183.13 8845.50 27572.84 21683.78 18865.15 13180.99 13264.54 12189.09 15480.73 201
tfpnnormal66.48 21367.93 19962.16 27073.40 23736.65 31863.45 28264.99 27555.97 17172.82 21787.80 11757.06 20569.10 27948.31 25287.54 16880.72 202
RRT_test8_iter0565.80 21765.13 22467.80 22167.02 29640.85 28967.13 23975.33 20049.73 24572.69 21881.32 21524.45 36277.37 20261.69 14786.82 18585.18 85
Anonymous2024052163.55 23866.07 21755.99 30366.18 30344.04 26268.77 21568.80 25646.99 26972.57 21985.84 16539.87 29750.22 33553.40 21992.23 8873.71 269
114514_t73.40 12373.33 13073.64 12884.15 9157.11 16978.20 10180.02 14143.76 28972.55 22086.07 16164.00 13983.35 9360.14 16191.03 11180.45 206
bset_n11_16_dypcd66.91 21165.84 21970.12 18472.95 24753.54 19163.64 28068.65 25948.54 25672.54 22174.28 29240.58 29378.54 17463.52 13587.82 16678.29 231
AdaColmapbinary74.22 11174.56 10573.20 13781.95 12460.97 13979.43 8280.90 12465.57 7972.54 22181.76 21270.98 7885.26 5447.88 25590.00 13573.37 270
LF4IMVS67.50 20367.31 20868.08 21558.86 34561.93 12971.43 17675.90 19444.67 28472.42 22380.20 22957.16 20170.44 27058.99 17086.12 19171.88 285
F-COLMAP75.29 9773.99 11479.18 5681.73 12871.90 5081.86 6182.98 8959.86 13472.27 22484.00 18564.56 13783.07 9951.48 22587.19 18082.56 167
USDC62.80 24763.10 24261.89 27165.19 30943.30 27067.42 23374.20 21035.80 33272.25 22584.48 17945.67 26071.95 25837.95 31084.97 20670.42 298
3Dnovator65.95 1171.50 15471.22 16172.34 15973.16 24063.09 12478.37 9678.32 16757.67 15372.22 22684.61 17654.77 21578.47 17760.82 15581.07 25375.45 254
ETV-MVS72.72 14172.16 14874.38 11876.90 18755.95 17573.34 15484.67 5762.04 11772.19 22770.81 32065.90 12485.24 5658.64 17184.96 20981.95 178
Patchmtry60.91 26063.01 24354.62 30666.10 30426.27 36267.47 23256.40 31754.05 19872.04 22886.66 13833.19 32160.17 32043.69 27687.45 17277.42 241
diffmvs67.42 20667.50 20567.20 22662.26 32645.21 25564.87 26677.04 18548.21 25871.74 22979.70 23658.40 18871.17 26464.99 11880.27 26385.22 83
AUN-MVS70.22 16467.88 20177.22 8682.96 11071.61 5269.08 20871.39 23549.17 25171.70 23078.07 26037.62 31079.21 16361.81 14489.15 15180.82 196
HQP4-MVS71.59 23185.31 5283.74 129
HQP-NCC82.37 11677.32 10959.08 13771.58 232
ACMP_Plane82.37 11677.32 10959.08 13771.58 232
HQP-MVS75.24 9875.01 10275.94 10082.37 11658.80 16277.32 10984.12 7559.08 13771.58 23285.96 16358.09 19285.30 5367.38 10489.16 14983.73 130
MVS_Test69.84 17070.71 16667.24 22567.49 29243.25 27169.87 19781.22 11752.69 21471.57 23586.68 13762.09 15374.51 23466.05 11078.74 27783.96 122
TR-MVS64.59 22763.54 23767.73 22275.75 20350.83 20563.39 28370.29 25049.33 24971.55 23674.55 28750.94 23578.46 17840.43 29475.69 29573.89 267
IterMVS63.12 24362.48 24765.02 24466.34 30052.86 19563.81 27762.25 28946.57 27271.51 23780.40 22644.60 26866.82 29551.38 22775.47 29875.38 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+68.81 18668.30 19270.35 17874.66 22048.61 22066.06 25178.32 16750.62 23771.48 23875.54 27768.75 9479.59 16050.55 23478.73 27882.86 157
VPNet65.58 21967.56 20359.65 28979.72 14630.17 35360.27 30462.14 29054.19 19671.24 23986.63 14158.80 18567.62 28744.17 27590.87 11981.18 186
API-MVS70.97 15871.51 15869.37 19275.20 20655.94 17680.99 6476.84 18662.48 11571.24 23977.51 26561.51 15980.96 13852.04 22185.76 19571.22 291
mvs-test173.81 11570.69 16783.18 577.05 18181.39 375.39 13277.70 17657.68 15171.19 24174.72 28564.80 13483.66 8456.46 18781.19 25284.50 111
LFMVS67.06 20967.89 20064.56 24678.02 17038.25 30870.81 18959.60 30165.18 8771.06 24286.56 14443.85 27275.22 22546.35 26589.63 14280.21 210
BH-w/o64.81 22664.29 23166.36 23576.08 19854.71 18365.61 25975.23 20350.10 24271.05 24371.86 31554.33 21979.02 16538.20 30876.14 29365.36 328
Effi-MVS+72.10 14972.28 14571.58 16474.21 22950.33 20774.72 14482.73 9362.62 11370.77 24476.83 26969.96 8580.97 13460.20 15878.43 28183.45 139
thres100view90061.17 25961.09 25661.39 27672.14 25335.01 33165.42 26156.99 31455.23 17870.71 24579.90 23332.07 33072.09 25435.61 32681.73 24477.08 245
OpenMVS_ROBcopyleft54.93 1763.23 24263.28 23963.07 26269.81 27245.34 25468.52 22067.14 26343.74 29070.61 24679.22 24447.90 25572.66 24648.75 24673.84 31171.21 292
MSDG67.47 20567.48 20667.46 22370.70 26354.69 18466.90 24378.17 17060.88 12670.41 24774.76 28361.22 16473.18 24147.38 25876.87 28974.49 262
DP-MVS Recon73.57 12072.69 14076.23 9782.85 11163.39 12174.32 14882.96 9057.75 15070.35 24881.98 20864.34 13884.41 7549.69 23989.95 13780.89 194
thres600view761.82 25561.38 25563.12 26171.81 25534.93 33264.64 26856.99 31454.78 18570.33 24979.74 23532.07 33072.42 25238.61 30483.46 22882.02 176
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 20770.56 26753.91 18978.29 9877.35 18148.85 25470.22 25083.52 18952.65 22676.93 20655.31 19981.99 24075.49 253
D2MVS62.58 24961.05 25767.20 22663.85 31847.92 22956.29 32069.58 25339.32 31370.07 25178.19 25734.93 31672.68 24553.44 21883.74 22681.00 191
Vis-MVSNet (Re-imp)62.74 24863.21 24161.34 27772.19 25231.56 34867.31 23753.87 32453.60 20569.88 25283.37 19340.52 29470.98 26541.40 28886.78 18681.48 184
TAMVS65.31 22163.75 23469.97 18882.23 12059.76 15466.78 24563.37 28545.20 28069.79 25379.37 24147.42 25772.17 25334.48 33085.15 20577.99 239
Anonymous20240521166.02 21566.89 21363.43 25874.22 22638.14 30959.00 31066.13 26863.33 10969.76 25485.95 16451.88 22870.50 26944.23 27487.52 16981.64 182
FPMVS59.43 27260.07 26357.51 29977.62 18071.52 5362.33 29150.92 33657.40 15769.40 25580.00 23239.14 30161.92 31637.47 31466.36 34039.09 363
GA-MVS62.91 24561.66 25066.66 23467.09 29544.49 25961.18 29969.36 25551.33 22969.33 25674.47 28836.83 31174.94 22950.60 23374.72 30480.57 205
EU-MVSNet60.82 26160.80 25960.86 28268.37 28141.16 28472.27 16168.27 26126.96 36169.08 25775.71 27532.09 32967.44 28855.59 19778.90 27673.97 265
HyFIR lowres test63.01 24460.47 26170.61 17383.04 10754.10 18759.93 30672.24 22633.67 34369.00 25875.63 27638.69 30376.93 20636.60 31975.45 29980.81 199
ET-MVSNet_ETH3D63.32 24060.69 26071.20 17070.15 27155.66 17865.02 26564.32 28143.28 29768.99 25972.05 31425.46 35878.19 19054.16 21282.80 23379.74 216
DELS-MVS68.83 18568.31 19170.38 17770.55 26848.31 22263.78 27982.13 9954.00 19968.96 26075.17 28158.95 18480.06 15558.55 17282.74 23482.76 160
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_yl65.11 22265.09 22665.18 24270.59 26440.86 28763.22 28772.79 21757.91 14868.88 26179.07 24942.85 27974.89 23045.50 26984.97 20679.81 213
DCV-MVSNet65.11 22265.09 22665.18 24270.59 26440.86 28763.22 28772.79 21757.91 14868.88 26179.07 24942.85 27974.89 23045.50 26984.97 20679.81 213
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12673.47 23564.53 11371.36 17878.14 17155.81 17468.84 26374.71 28665.36 13075.75 21952.00 22279.00 27581.03 189
MG-MVS70.47 16371.34 16067.85 21879.26 15340.42 29474.67 14675.15 20458.41 14468.74 26488.14 11456.08 21283.69 8359.90 16481.71 24779.43 219
CS-MVS-test73.63 11873.74 12073.30 13575.80 20251.70 19977.02 11686.83 1961.29 12168.47 26579.23 24365.42 12985.14 6164.04 12585.55 19683.07 151
tfpn200view960.35 26659.97 26461.51 27470.78 26135.35 32963.27 28557.47 30853.00 21068.31 26677.09 26732.45 32772.09 25435.61 32681.73 24477.08 245
thres40060.77 26359.97 26463.15 26070.78 26135.35 32963.27 28557.47 30853.00 21068.31 26677.09 26732.45 32772.09 25435.61 32681.73 24482.02 176
CS-MVS69.29 17969.70 17468.07 21670.59 26442.36 27969.70 20084.56 6353.13 20867.96 26876.74 27059.41 17883.56 8660.33 15784.84 21178.28 232
testgi54.00 29856.86 28645.45 33358.20 34825.81 36349.05 33749.50 34145.43 27867.84 26981.17 21851.81 23143.20 35529.30 34979.41 27367.34 318
xiu_mvs_v1_base_debu67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
xiu_mvs_v1_base67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
xiu_mvs_v1_base_debi67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
CL-MVSNet_self_test62.44 25163.40 23859.55 29072.34 25132.38 34456.39 31964.84 27651.21 23167.46 27381.01 22050.75 23663.51 31138.47 30688.12 16082.75 161
CDS-MVSNet64.33 23362.66 24669.35 19480.44 14158.28 16665.26 26265.66 27044.36 28567.30 27475.54 27743.27 27571.77 25937.68 31184.44 21778.01 238
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu70.04 16668.88 18473.53 13182.71 11363.62 12074.81 13981.95 10348.53 25767.16 27579.18 24651.42 23378.38 18254.39 20979.72 27178.60 226
PLCcopyleft62.01 1671.79 15270.28 17076.33 9580.31 14268.63 8178.18 10281.24 11554.57 18967.09 27680.63 22359.44 17781.74 12046.91 26284.17 21978.63 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet64.01 23765.15 22360.57 28373.28 23935.61 32857.60 31767.08 26454.61 18866.76 27783.37 19356.28 21066.87 29242.19 28385.20 20479.23 221
PAPR69.20 18168.66 19070.82 17175.15 20847.77 23175.31 13381.11 11849.62 24866.33 27879.27 24261.53 15882.96 10048.12 25381.50 25081.74 181
pmmvs460.78 26259.04 27066.00 23873.06 24657.67 16864.53 27160.22 29936.91 32765.96 27977.27 26639.66 29968.54 28138.87 30174.89 30371.80 286
CMPMVSbinary48.73 2061.54 25860.89 25863.52 25661.08 33351.55 20168.07 22668.00 26233.88 34065.87 28081.25 21737.91 30867.71 28549.32 24282.60 23571.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 26759.61 26762.20 26967.70 29044.33 26058.18 31460.96 29840.75 30965.80 28172.57 30641.23 28663.92 30846.87 26382.42 23778.33 229
MAR-MVS67.72 20166.16 21672.40 15874.45 22364.99 11074.87 13777.50 18048.67 25565.78 28268.58 34057.01 20677.79 19646.68 26481.92 24174.42 263
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ab-mvs64.11 23565.13 22461.05 27971.99 25438.03 31267.59 22968.79 25749.08 25365.32 28386.26 15258.02 19766.85 29439.33 29879.79 27078.27 233
jason64.47 23062.84 24469.34 19576.91 18659.20 15567.15 23865.67 26935.29 33365.16 28476.74 27044.67 26770.68 26654.74 20379.28 27478.14 235
jason: jason.
test20.0355.74 28857.51 28250.42 31659.89 34132.09 34650.63 33549.01 34250.11 24165.07 28583.23 19845.61 26148.11 33930.22 34483.82 22571.07 294
EIA-MVS68.59 19067.16 20972.90 14675.18 20755.64 17969.39 20381.29 11352.44 21564.53 28670.69 32160.33 17082.30 11154.27 21176.31 29280.75 200
KD-MVS_2432*160052.05 30751.58 30953.44 30852.11 36631.20 34944.88 35064.83 27741.53 30364.37 28770.03 32715.61 37464.20 30536.25 32174.61 30564.93 332
miper_refine_blended52.05 30751.58 30953.44 30852.11 36631.20 34944.88 35064.83 27741.53 30364.37 28770.03 32715.61 37464.20 30536.25 32174.61 30564.93 332
new-patchmatchnet52.89 30155.76 29444.26 33859.94 3406.31 37337.36 36050.76 33841.10 30564.28 28979.82 23444.77 26648.43 33836.24 32387.61 16778.03 237
DPM-MVS69.98 16869.22 18072.26 16182.69 11458.82 16170.53 19081.23 11647.79 26464.16 29080.21 22851.32 23483.12 9760.14 16184.95 21074.83 260
thres20057.55 28257.02 28459.17 29167.89 28934.93 33258.91 31257.25 31250.24 23964.01 29171.46 31832.49 32671.39 26231.31 34079.57 27271.19 293
our_test_356.46 28456.51 28856.30 30167.70 29039.66 29855.36 32552.34 33440.57 31163.85 29269.91 32940.04 29658.22 32543.49 27975.29 30271.03 295
baseline157.82 28158.36 27756.19 30269.17 27830.76 35262.94 28955.21 32046.04 27463.83 29378.47 25341.20 28763.68 30939.44 29768.99 33374.13 264
XXY-MVS55.19 29157.40 28348.56 32564.45 31634.84 33451.54 33453.59 32638.99 31763.79 29479.43 23956.59 20845.57 34336.92 31871.29 32065.25 329
cascas64.59 22762.77 24570.05 18675.27 20550.02 21061.79 29471.61 22942.46 29963.68 29568.89 33749.33 24480.35 14547.82 25684.05 22179.78 215
thisisatest051560.48 26557.86 27968.34 21167.25 29346.42 24560.58 30262.14 29040.82 30863.58 29669.12 33326.28 35478.34 18448.83 24582.13 23980.26 209
MVSFormer69.93 16969.03 18272.63 15574.93 20959.19 15683.98 3875.72 19552.27 21663.53 29776.74 27043.19 27680.56 14172.28 6878.67 27978.14 235
lupinMVS63.36 23961.49 25468.97 20174.93 20959.19 15665.80 25664.52 28034.68 33863.53 29774.25 29343.19 27670.62 26753.88 21478.67 27977.10 244
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32255.08 36033.67 34050.03 33658.79 30437.67 32363.43 29974.75 28441.82 28445.83 34238.59 30559.42 35367.98 315
Anonymous2023120654.13 29555.82 29349.04 32470.89 26035.96 32451.73 33350.87 33734.86 33462.49 30079.22 24442.52 28244.29 35127.95 35381.88 24266.88 320
CANet73.00 13471.84 15076.48 9375.82 20061.28 13574.81 13980.37 13663.17 11062.43 30180.50 22561.10 16585.16 6064.00 12684.34 21883.01 153
xiu_mvs_v2_base64.43 23163.96 23265.85 24077.72 17751.32 20363.63 28172.31 22545.06 28361.70 30269.66 33062.56 14573.93 23949.06 24473.91 30972.31 281
PS-MVSNAJ64.27 23463.73 23565.90 23977.82 17551.42 20263.33 28472.33 22445.09 28261.60 30368.04 34162.39 14973.95 23849.07 24373.87 31072.34 280
CHOSEN 1792x268858.09 27956.30 29063.45 25779.95 14450.93 20454.07 32865.59 27128.56 35861.53 30474.33 29041.09 28966.52 29833.91 33367.69 33972.92 274
CR-MVSNet58.96 27458.49 27560.36 28566.37 29848.24 22470.93 18656.40 31732.87 34661.35 30586.66 13833.19 32163.22 31248.50 25070.17 32769.62 305
RPMNet65.77 21865.08 22867.84 21966.37 29848.24 22470.93 18686.27 2354.66 18761.35 30586.77 13333.29 32085.67 4655.93 19270.17 32769.62 305
PatchMatch-RL58.68 27757.72 28061.57 27376.21 19573.59 4361.83 29349.00 34347.30 26861.08 30768.97 33550.16 23959.01 32336.06 32568.84 33452.10 353
FMVSNet555.08 29255.54 29553.71 30765.80 30533.50 34156.22 32152.50 33343.72 29161.06 30883.38 19225.46 35854.87 32930.11 34581.64 24972.75 276
131459.83 26958.86 27262.74 26665.71 30644.78 25768.59 21772.63 22133.54 34561.05 30967.29 34643.62 27471.26 26349.49 24167.84 33872.19 283
SCA58.57 27858.04 27860.17 28670.17 27041.07 28665.19 26353.38 32943.34 29661.00 31073.48 29945.20 26369.38 27640.34 29570.31 32670.05 300
UGNet70.20 16569.05 18173.65 12776.24 19463.64 11975.87 12872.53 22261.48 12060.93 31186.14 15752.37 22777.12 20450.67 23285.21 20380.17 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UnsupCasMVSNet_bld50.01 31351.03 31546.95 32658.61 34632.64 34348.31 33953.27 33034.27 33960.47 31271.53 31741.40 28547.07 34030.68 34260.78 35061.13 344
CVMVSNet59.21 27358.44 27661.51 27473.94 23147.76 23271.31 18064.56 27926.91 36260.34 31370.44 32236.24 31367.65 28653.57 21668.66 33569.12 310
PVSNet_BlendedMVS65.38 22064.30 23068.61 20869.81 27249.36 21565.60 26078.96 15445.50 27559.98 31478.61 25251.82 22978.20 18844.30 27284.11 22078.27 233
PVSNet_Blended62.90 24661.64 25166.69 23369.81 27249.36 21561.23 29878.96 15442.04 30059.98 31468.86 33851.82 22978.20 18844.30 27277.77 28872.52 278
MVS60.62 26459.97 26462.58 26768.13 28547.28 23868.59 21773.96 21132.19 34759.94 31668.86 33850.48 23777.64 19941.85 28675.74 29462.83 338
1112_ss59.48 27158.99 27160.96 28177.84 17442.39 27861.42 29668.45 26037.96 32259.93 31767.46 34345.11 26565.07 30340.89 29271.81 31875.41 255
Test_1112_low_res58.78 27658.69 27359.04 29379.41 15038.13 31057.62 31666.98 26534.74 33659.62 31877.56 26442.92 27863.65 31038.66 30370.73 32475.35 257
CostFormer57.35 28356.14 29160.97 28063.76 32038.43 30567.50 23160.22 29937.14 32659.12 31976.34 27332.78 32471.99 25739.12 30069.27 33272.47 279
PatchmatchNetpermissive54.60 29354.27 29955.59 30465.17 31139.08 30066.92 24251.80 33539.89 31258.39 32073.12 30331.69 33258.33 32443.01 28058.38 35769.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MS-PatchMatch55.59 28954.89 29757.68 29869.18 27749.05 21761.00 30062.93 28735.98 33058.36 32168.93 33636.71 31266.59 29737.62 31363.30 34757.39 349
tpm256.12 28554.64 29860.55 28466.24 30136.01 32368.14 22456.77 31633.60 34458.25 32275.52 27930.25 34474.33 23633.27 33569.76 33171.32 289
N_pmnet52.06 30651.11 31454.92 30559.64 34371.03 5837.42 35961.62 29733.68 34257.12 32372.10 30737.94 30731.03 36529.13 35271.35 31962.70 339
tpm50.60 31052.42 30745.14 33565.18 31026.29 36160.30 30343.50 35237.41 32457.01 32479.09 24830.20 34642.32 35632.77 33766.36 34066.81 322
tpm cat154.02 29752.63 30558.19 29764.85 31539.86 29766.26 25057.28 31132.16 34856.90 32570.39 32432.75 32565.30 30234.29 33158.79 35469.41 307
Patchmatch-test47.93 31749.96 31841.84 34257.42 35124.26 36548.75 33841.49 36139.30 31456.79 32673.48 29930.48 34333.87 36429.29 35072.61 31467.39 316
EPNet69.10 18367.32 20774.46 11468.33 28361.27 13677.56 10663.57 28460.95 12556.62 32782.75 20151.53 23281.24 12554.36 21090.20 12980.88 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo61.56 25759.22 26868.58 20979.28 15260.44 14769.20 20671.57 23043.58 29256.42 32878.37 25539.57 30076.46 21434.86 32960.16 35168.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs55.84 28655.45 29657.01 30060.33 33733.20 34265.89 25359.29 30347.52 26756.04 32973.60 29831.05 33968.06 28440.64 29364.64 34369.77 303
MIMVSNet54.39 29456.12 29249.20 32172.57 24930.91 35159.98 30548.43 34541.66 30255.94 33083.86 18741.19 28850.42 33426.05 35575.38 30066.27 324
IB-MVS49.67 1859.69 27056.96 28567.90 21768.19 28450.30 20861.42 29665.18 27447.57 26655.83 33167.15 34723.77 36379.60 15943.56 27879.97 26673.79 268
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 147.72 31848.31 32045.93 33155.53 35929.39 35446.40 34741.21 36343.41 29455.81 33267.65 34229.22 34943.77 35425.73 35869.87 32964.62 334
pmmvs552.49 30452.58 30652.21 31454.99 36132.38 34455.45 32453.84 32532.15 34955.49 33374.81 28238.08 30657.37 32734.02 33274.40 30766.88 320
CANet_DTU64.04 23663.83 23364.66 24568.39 28042.97 27373.45 15374.50 20952.05 22054.78 33475.44 28043.99 27170.42 27153.49 21778.41 28280.59 204
PatchT53.35 29956.47 28943.99 33964.19 31717.46 37059.15 30843.10 35352.11 21954.74 33586.95 12529.97 34749.98 33643.62 27774.40 30764.53 336
HY-MVS49.31 1957.96 28057.59 28159.10 29266.85 29736.17 32265.13 26465.39 27339.24 31554.69 33678.14 25844.28 27067.18 29133.75 33470.79 32373.95 266
PVSNet43.83 2151.56 30951.17 31252.73 31168.34 28238.27 30748.22 34053.56 32736.41 32854.29 33764.94 35034.60 31754.20 33230.34 34369.87 32965.71 327
WTY-MVS49.39 31450.31 31746.62 32961.22 33232.00 34746.61 34649.77 34033.87 34154.12 33869.55 33241.96 28345.40 34531.28 34164.42 34462.47 341
MVS_030462.51 25062.27 24863.25 25969.39 27648.47 22164.05 27662.48 28859.69 13554.10 33981.04 21945.71 25966.31 29941.38 28982.58 23674.96 259
PAPM61.79 25660.37 26266.05 23776.09 19741.87 28169.30 20476.79 18840.64 31053.80 34079.62 23844.38 26982.92 10129.64 34873.11 31373.36 271
tpmrst50.15 31251.38 31146.45 33056.05 35524.77 36464.40 27349.98 33936.14 32953.32 34169.59 33135.16 31548.69 33739.24 29958.51 35665.89 325
MDTV_nov1_ep1354.05 30065.54 30729.30 35559.00 31055.22 31935.96 33152.44 34275.98 27430.77 34159.62 32138.21 30773.33 312
sss47.59 31948.32 31945.40 33456.73 35433.96 33845.17 34948.51 34432.11 35152.37 34365.79 34840.39 29541.91 35931.85 33861.97 34860.35 345
DWT-MVSNet_test53.04 30051.12 31358.77 29461.23 33138.67 30462.16 29257.74 30638.24 31951.76 34459.07 35721.36 36567.40 28944.80 27163.76 34670.25 299
baseline255.57 29052.74 30464.05 25165.26 30844.11 26162.38 29054.43 32339.03 31651.21 34567.35 34533.66 31972.45 25137.14 31664.22 34575.60 252
EPMVS45.74 32146.53 32443.39 34054.14 36522.33 36755.02 32635.00 36934.69 33751.09 34670.20 32625.92 35642.04 35837.19 31555.50 36165.78 326
gg-mvs-nofinetune55.75 28756.75 28752.72 31262.87 32328.04 35868.92 20941.36 36271.09 4450.80 34792.63 1220.74 36666.86 29329.97 34672.41 31563.25 337
ADS-MVSNet248.76 31547.25 32353.29 31055.90 35740.54 29347.34 34454.99 32231.41 35450.48 34872.06 31231.23 33554.26 33125.93 35655.93 35965.07 330
ADS-MVSNet44.62 32645.58 32541.73 34355.90 35720.83 36847.34 34439.94 36531.41 35450.48 34872.06 31231.23 33539.31 36125.93 35655.93 35965.07 330
pmmvs346.71 32045.09 32751.55 31556.76 35348.25 22355.78 32339.53 36624.13 36550.35 35063.40 35115.90 37351.08 33329.29 35070.69 32555.33 352
JIA-IIPM54.03 29651.62 30861.25 27859.14 34455.21 18159.10 30947.72 34650.85 23450.31 35185.81 16620.10 36863.97 30736.16 32455.41 36264.55 335
test-LLR50.43 31150.69 31649.64 31960.76 33441.87 28153.18 33045.48 35043.41 29449.41 35260.47 35529.22 34944.73 34942.09 28472.14 31662.33 342
test-mter48.56 31648.20 32149.64 31960.76 33441.87 28153.18 33045.48 35031.91 35249.41 35260.47 35518.34 36944.73 34942.09 28472.14 31662.33 342
PMMVS237.74 33240.87 33328.36 34942.41 3725.35 37424.61 36227.75 37132.15 34947.85 35470.27 32535.85 31429.51 36619.08 36667.85 33750.22 355
EPNet_dtu58.93 27558.52 27460.16 28767.91 28847.70 23369.97 19558.02 30549.73 24547.28 35573.02 30438.14 30562.34 31436.57 32085.99 19370.43 297
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed43.18 32944.66 33038.75 34754.75 36228.88 35757.06 31827.42 37213.47 36747.27 35677.67 26338.83 30239.29 36225.32 36060.12 35248.08 356
GG-mvs-BLEND52.24 31360.64 33629.21 35669.73 19942.41 35545.47 35752.33 36120.43 36768.16 28325.52 35965.42 34259.36 347
new_pmnet37.55 33339.80 33630.79 34856.83 35216.46 37139.35 35630.65 37025.59 36345.26 35861.60 35424.54 36028.02 36721.60 36352.80 36347.90 357
MDTV_nov1_ep13_2view18.41 36953.74 32931.57 35344.89 35929.90 34832.93 33671.48 288
TESTMET0.1,145.17 32344.93 32845.89 33256.02 35638.31 30653.18 33041.94 36027.85 35944.86 36056.47 35817.93 37041.50 36038.08 30968.06 33657.85 348
PVSNet_036.71 2241.12 33140.78 33442.14 34159.97 33940.13 29540.97 35342.24 35930.81 35644.86 36049.41 36340.70 29245.12 34723.15 36234.96 36641.16 362
dp44.09 32844.88 32941.72 34458.53 34723.18 36654.70 32742.38 35734.80 33544.25 36265.61 34924.48 36144.80 34829.77 34749.42 36457.18 350
PMMVS44.69 32543.95 33246.92 32750.05 36953.47 19348.08 34242.40 35622.36 36644.01 36353.05 36042.60 28145.49 34431.69 33961.36 34941.79 361
MVS-HIRNet45.53 32247.29 32240.24 34562.29 32526.82 36056.02 32237.41 36729.74 35743.69 36481.27 21633.96 31855.48 32824.46 36156.79 35838.43 364
E-PMN45.17 32345.36 32644.60 33750.07 36842.75 27438.66 35742.29 35846.39 27339.55 36551.15 36226.00 35545.37 34637.68 31176.41 29045.69 360
MVEpermissive27.91 2336.69 33435.64 33739.84 34643.37 37135.85 32619.49 36324.61 37324.68 36439.05 36662.63 35338.67 30427.10 36821.04 36447.25 36556.56 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS44.61 32744.45 33145.10 33648.91 37043.00 27237.92 35841.10 36446.75 27138.00 36748.43 36426.42 35346.27 34137.11 31775.38 30046.03 359
CHOSEN 280x42041.62 33039.89 33546.80 32861.81 32751.59 20033.56 36135.74 36827.48 36037.64 36853.53 35923.24 36442.09 35727.39 35458.64 35546.72 358
tmp_tt11.98 33714.73 3403.72 3522.28 3754.62 37519.44 36414.50 3750.47 37021.55 3699.58 36825.78 3574.57 37111.61 36827.37 3671.96 367
DeepMVS_CXcopyleft11.83 35115.51 37313.86 37211.25 3765.76 36820.85 37026.46 36617.06 3729.22 3709.69 36913.82 36912.42 366
test_method19.26 33519.12 33919.71 3509.09 3741.91 3767.79 36553.44 3281.42 36910.27 37135.80 36517.42 37125.11 36912.44 36724.38 36832.10 365
test1234.43 3405.78 3430.39 3540.97 3760.28 37746.33 3480.45 3770.31 3710.62 3721.50 3710.61 3770.11 3730.56 3700.63 3700.77 369
testmvs4.06 3415.28 3440.41 3530.64 3770.16 37842.54 3520.31 3780.26 3720.50 3731.40 3720.77 3760.17 3720.56 3700.55 3710.90 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k17.71 33623.62 3380.00 3550.00 3780.00 3790.00 36670.17 2510.00 3730.00 37474.25 29368.16 1010.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas5.20 3396.93 3420.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37362.39 1490.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re5.62 3387.50 3410.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37467.46 3430.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
MSC_two_6792asdad79.02 5983.14 10267.03 9280.75 12586.24 2377.27 3594.85 2683.78 127
No_MVS79.02 5983.14 10267.03 9280.75 12586.24 2377.27 3594.85 2683.78 127
eth-test20.00 378
eth-test0.00 378
OPU-MVS78.65 6683.44 10066.85 9483.62 4486.12 15866.82 11386.01 3161.72 14689.79 14183.08 149
save fliter87.00 4367.23 9079.24 8577.94 17456.65 166
test_0728_SECOND76.57 9186.20 5360.57 14683.77 4285.49 3585.90 3775.86 4294.39 4383.25 144
GSMVS70.05 300
sam_mvs131.41 33370.05 300
sam_mvs31.21 337
MTGPAbinary80.63 128
test_post166.63 2462.08 36930.66 34259.33 32240.34 295
test_post1.99 37030.91 34054.76 330
patchmatchnet-post68.99 33431.32 33469.38 276
MTMP84.83 3319.26 374
gm-plane-assit62.51 32433.91 33937.25 32562.71 35272.74 24438.70 302
test9_res72.12 7091.37 10177.40 242
agg_prior270.70 7790.93 11478.55 228
test_prior470.14 6877.57 105
test_prior75.27 10882.15 12159.85 15284.33 6783.39 9182.58 165
新几何271.33 179
旧先验184.55 8360.36 14863.69 28387.05 12454.65 21783.34 22969.66 304
无先验74.82 13870.94 24547.75 26576.85 20954.47 20672.09 284
原ACMM274.78 142
testdata267.30 29048.34 251
segment_acmp68.30 100
testdata168.34 22357.24 158
plane_prior785.18 7166.21 99
plane_prior684.18 9065.31 10660.83 167
plane_prior585.49 3586.15 2871.09 7490.94 11284.82 94
plane_prior489.11 94
plane_prior282.74 5365.45 80
plane_prior184.46 85
plane_prior65.18 10780.06 7961.88 11989.91 138
n20.00 379
nn0.00 379
door-mid55.02 321
test1182.71 94
door52.91 332
HQP5-MVS58.80 162
BP-MVS67.38 104
HQP3-MVS84.12 7589.16 149
HQP2-MVS58.09 192
NP-MVS83.34 10163.07 12585.97 162
ACMMP++_ref89.47 147
ACMMP++91.96 90
Test By Simon62.56 145