This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9197.05 296.93 1
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
DTE-MVSNet80.35 5282.89 3972.74 15089.84 837.34 34877.16 11481.81 10480.45 490.92 492.95 874.57 5086.12 3163.65 13694.68 3594.76 6
PS-CasMVS80.41 5182.86 4073.07 13689.93 739.21 32877.15 11581.28 11479.74 690.87 592.73 1275.03 4684.93 6563.83 13595.19 1995.07 3
wuyk23d61.97 27166.25 22649.12 36558.19 38660.77 15166.32 26652.97 36155.93 17690.62 686.91 14073.07 6035.98 41220.63 41591.63 8950.62 401
PEN-MVS80.46 5082.91 3873.11 13589.83 939.02 33177.06 11782.61 9280.04 590.60 792.85 1074.93 4785.21 6063.15 14395.15 2195.09 2
CP-MVSNet79.48 5881.65 4972.98 13989.66 1339.06 33076.76 11880.46 13478.91 990.32 891.70 2968.49 9684.89 6663.40 14095.12 2295.01 4
LCM-MVSNet-Re69.10 18771.57 16261.70 28770.37 28334.30 36861.45 31079.62 14756.81 16489.59 988.16 12368.44 9772.94 24542.30 31387.33 18077.85 258
WR-MVS_H80.22 5482.17 4574.39 11389.46 1542.69 30178.24 10182.24 9678.21 1389.57 1092.10 1968.05 10185.59 5066.04 11595.62 1094.88 5
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 19950.51 24889.19 1190.88 4571.45 7277.78 19373.38 6090.60 12090.90 17
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 184
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11781.53 492.15 8488.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 9961.89 12188.77 1693.32 557.15 21582.60 10170.08 7992.80 7389.25 27
test_040278.17 7279.48 6374.24 11583.50 9459.15 16372.52 16874.60 21475.34 1988.69 1791.81 2775.06 4582.37 10465.10 12088.68 15881.20 196
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
SixPastTwentyTwo75.77 8776.34 8974.06 11881.69 12454.84 19076.47 12075.49 20664.10 9987.73 2192.24 1850.45 25581.30 12167.41 10091.46 9386.04 71
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 93
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 93
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10264.82 12396.10 587.21 56
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9470.72 4987.54 2592.44 1568.00 10381.34 11972.84 6491.72 8691.69 11
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14074.27 5495.73 880.98 204
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19751.98 22987.40 2791.86 2676.09 3678.53 17168.58 8690.20 12486.69 64
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 157
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20452.27 22487.37 3092.25 1768.04 10280.56 13772.28 7091.15 10090.32 21
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 19951.33 23987.19 3191.51 3373.79 5778.44 17568.27 8990.13 12886.49 66
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15674.08 2487.16 3291.97 2184.80 276.97 20064.98 12293.61 6372.28 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH63.62 1477.50 7680.11 5869.68 19579.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24267.58 9794.44 4279.44 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 143
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testf175.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
APD_test275.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 73
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15053.48 21586.29 3992.43 1662.39 15680.25 14467.90 9690.61 11987.77 48
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 46
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 156
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13177.70 3292.32 8280.62 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11095.46 1287.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1075.69 8976.20 9174.16 11674.44 22748.69 23875.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 9970.73 7589.14 15191.05 14
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 4183.12 3675.24 10586.16 5260.78 14983.77 4480.58 13272.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 237
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 120
v875.07 10075.64 9773.35 12973.42 24147.46 25875.20 13881.45 11060.05 13485.64 4889.26 9058.08 20681.80 11469.71 8387.97 16990.79 18
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 13972.51 6893.37 6683.48 142
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 84
Skip Steuart: Steuart Systems R&D Blog.
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8774.03 5693.57 6584.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D76.74 8279.02 6569.92 19389.27 2043.81 28874.47 15371.70 23572.33 4085.50 5393.65 477.98 2376.88 20354.60 21991.64 8889.08 31
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 173
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 178
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 140
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 151
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13072.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 208
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 130
K. test v373.67 11573.61 12473.87 12179.78 14155.62 18874.69 15062.04 31566.16 7584.76 6393.23 649.47 26080.97 13165.66 11886.67 19585.02 92
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 176
test_part285.90 6066.44 9584.61 65
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 123
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 165
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9176.01 4193.77 6184.81 100
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 122
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 108
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 149
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 128
lessismore_v072.75 14979.60 14456.83 17957.37 33083.80 7489.01 10147.45 27578.74 16864.39 12686.49 19882.69 171
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 198
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13366.87 6883.64 7686.18 16670.25 8379.90 15061.12 15788.95 15687.56 52
nrg03074.87 10775.99 9471.52 16974.90 21649.88 23174.10 15882.58 9354.55 19583.50 7789.21 9271.51 7075.74 21361.24 15492.34 8188.94 36
V4271.06 15970.83 17071.72 16667.25 32147.14 26365.94 26980.35 13851.35 23883.40 7883.23 21659.25 19278.80 16665.91 11680.81 26889.23 28
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 16884.61 8142.57 30370.98 19878.29 17668.67 6183.04 7989.26 9072.99 6180.75 13655.58 21095.47 1191.35 12
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11573.75 5893.78 60
APD_test175.04 10175.38 10174.02 11969.89 29170.15 6676.46 12179.71 14665.50 7982.99 8188.60 11266.94 11072.35 25559.77 17388.54 15979.56 231
Anonymous2023121175.54 9277.19 8370.59 17777.67 17645.70 27674.73 14880.19 13968.80 5882.95 8292.91 966.26 12276.76 20558.41 18492.77 7489.30 26
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 103
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 41873.86 5586.31 2178.84 2394.03 5684.64 103
dcpmvs_271.02 16172.65 14466.16 24776.06 20350.49 21871.97 17879.36 15350.34 24982.81 8583.63 20464.38 14167.27 30261.54 15283.71 23780.71 214
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 17974.80 4790.76 11882.40 177
ZD-MVS83.91 9069.36 7381.09 12058.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
FC-MVSNet-test73.32 12374.78 10468.93 21379.21 15136.57 35071.82 18579.54 15257.63 15982.57 8890.38 6759.38 19178.99 16357.91 18794.56 3791.23 13
ANet_high67.08 21769.94 17758.51 31657.55 38727.09 39958.43 33676.80 19563.56 10582.40 8991.93 2359.82 18764.98 32350.10 25488.86 15783.46 144
v124073.06 13073.14 13372.84 14774.74 22047.27 26271.88 18481.11 11851.80 23082.28 9084.21 19656.22 22682.34 10568.82 8587.17 18888.91 37
tt080576.12 8678.43 7269.20 20381.32 12841.37 30976.72 11977.64 18563.78 10382.06 9187.88 12679.78 1179.05 16164.33 12792.40 7987.17 59
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11291.24 9787.61 51
v119273.40 12173.42 12573.32 13174.65 22448.67 23972.21 17281.73 10552.76 22081.85 9384.56 19057.12 21682.24 10868.58 8687.33 18089.06 32
PC_three_145246.98 28181.83 9486.28 16266.55 12184.47 7463.31 14290.78 11583.49 140
v114473.29 12473.39 12673.01 13774.12 23348.11 24572.01 17781.08 12153.83 21281.77 9584.68 18758.07 20781.91 11268.10 9086.86 19088.99 35
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9592.44 7889.60 23
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15383.04 10445.79 27369.26 22178.81 16266.66 7181.74 9786.88 14163.26 14681.07 12756.21 20194.98 2491.05 14
DU-MVS74.91 10475.57 9872.93 14383.50 9445.79 27369.47 21780.14 14165.22 8681.74 9787.08 13461.82 16281.07 12756.21 20194.98 2491.93 9
v192192072.96 13672.98 13972.89 14574.67 22147.58 25671.92 18280.69 12751.70 23281.69 9983.89 20156.58 22282.25 10768.34 8887.36 17788.82 39
WR-MVS71.20 15872.48 14767.36 23484.98 7435.70 35864.43 29068.66 27165.05 9081.49 10086.43 16057.57 21276.48 20750.36 25293.32 6889.90 22
v14419272.99 13473.06 13772.77 14874.58 22547.48 25771.90 18380.44 13551.57 23381.46 10184.11 19858.04 20882.12 10967.98 9487.47 17588.70 42
IU-MVS86.12 5460.90 14780.38 13645.49 29381.31 10275.64 4494.39 4484.65 102
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 168
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmvis_n_192072.36 14672.49 14671.96 16471.29 26964.06 11772.79 16781.82 10340.23 33981.25 10481.04 24170.62 8068.69 28769.74 8283.60 23983.14 155
v2v48272.55 14572.58 14572.43 15772.92 25546.72 26571.41 19079.13 15755.27 18181.17 10585.25 18355.41 22881.13 12467.25 10885.46 20789.43 25
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23384.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet-bldmvs62.34 27061.73 26864.16 25961.64 36249.90 22748.11 38557.24 33353.31 21680.95 10779.39 26949.00 26661.55 33745.92 29480.05 27781.03 201
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10068.80 5880.92 10888.52 11372.00 6882.39 10374.80 4793.04 7081.14 198
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15572.87 25649.47 23272.94 16684.71 5459.49 13880.90 11088.81 10670.07 8479.71 15267.40 10188.39 16188.40 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 14373.80 11968.84 21678.74 16237.74 34471.02 19779.83 14556.12 17280.88 11189.45 8758.18 20078.28 18256.63 19593.36 6790.51 20
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 33
IterMVS-LS73.01 13273.12 13572.66 15273.79 23749.90 22771.63 18778.44 17258.22 14980.51 11386.63 15358.15 20279.62 15362.51 14588.20 16388.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS78.44 7079.29 6475.90 9681.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8862.45 14792.40 7978.92 242
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18174.73 4985.79 20482.35 178
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16880.27 11685.31 18268.56 9587.03 1267.39 10291.26 9683.50 139
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14375.34 1979.80 11994.91 269.79 8880.25 14472.63 6694.46 3988.78 41
PCF-MVS63.80 1372.70 14171.69 15775.72 9878.10 16760.01 15673.04 16581.50 10845.34 29679.66 12084.35 19565.15 13582.65 10048.70 26789.38 14784.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)75.00 10275.48 9973.56 12783.14 9947.92 24970.41 20781.04 12263.67 10479.54 12186.37 16162.83 15081.82 11357.10 19395.25 1590.94 16
Baseline_NR-MVSNet70.62 16573.19 13262.92 27876.97 18534.44 36668.84 22670.88 25560.25 13379.50 12290.53 5661.82 16269.11 28454.67 21895.27 1485.22 85
FMVSNet171.06 15972.48 14766.81 24077.65 17740.68 31871.96 17973.03 22261.14 12579.45 12390.36 7060.44 18075.20 22150.20 25388.05 16684.54 110
ambc70.10 18977.74 17450.21 22274.28 15677.93 18379.26 12488.29 11954.11 23679.77 15164.43 12591.10 10480.30 222
balanced_conf0373.59 11774.06 11472.17 16377.48 17947.72 25481.43 6582.20 9754.38 19679.19 12587.68 12854.41 23383.57 8463.98 13185.78 20585.22 85
MVSMamba_PlusPlus76.88 8078.21 7472.88 14680.83 13248.71 23783.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7786.15 19985.99 72
IS-MVSNet75.10 9975.42 10074.15 11779.23 15048.05 24779.43 8678.04 18070.09 5479.17 12688.02 12553.04 24083.60 8358.05 18693.76 6290.79 18
CSCG74.12 11174.39 10873.33 13079.35 14761.66 13577.45 11081.98 10162.47 11979.06 12880.19 25561.83 16178.79 16759.83 17287.35 17879.54 234
RPSCF75.76 8874.37 10979.93 4474.81 21877.53 1877.53 10979.30 15559.44 13978.88 12989.80 8271.26 7473.09 24457.45 18980.89 26589.17 30
tttt051769.46 18167.79 20974.46 10975.34 20952.72 20575.05 14063.27 30854.69 19078.87 13084.37 19426.63 38781.15 12363.95 13287.93 17089.51 24
RRT-MVS70.33 16870.73 17169.14 20671.93 26345.24 27875.10 13975.08 21160.85 12978.62 13187.36 13049.54 25978.64 16960.16 16677.90 30483.55 138
v14869.38 18469.39 18169.36 19969.14 30044.56 28368.83 22772.70 22854.79 18878.59 13284.12 19754.69 23076.74 20659.40 17782.20 24886.79 62
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10174.77 21959.02 16672.24 17171.56 23863.92 10078.59 13271.59 34266.22 12378.60 17067.58 9780.32 27389.00 34
EI-MVSNet-UG-set72.63 14271.68 15875.47 10274.67 22158.64 17172.02 17671.50 23963.53 10678.58 13471.39 34665.98 12478.53 17167.30 10780.18 27689.23 28
旧先验271.17 19645.11 29878.54 13561.28 33859.19 178
MIMVSNet166.57 22369.23 18458.59 31581.26 13037.73 34564.06 29357.62 32757.02 16278.40 13690.75 4962.65 15158.10 35241.77 31989.58 14079.95 226
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7390.94 10784.82 98
plane_prior365.67 10363.82 10278.23 137
eth_miper_zixun_eth69.42 18268.73 19471.50 17067.99 31346.42 26867.58 24678.81 16250.72 24678.13 13980.34 25250.15 25780.34 14260.18 16584.65 22387.74 49
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14064.71 9578.11 14088.39 11665.46 13183.14 9277.64 3391.20 9878.94 241
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20571.12 25254.28 19977.89 14183.41 20649.04 26480.98 13063.62 13790.77 11778.58 245
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22371.45 24154.28 19977.89 14178.26 28549.04 26479.23 15863.62 13789.13 15280.92 205
PM-MVS64.49 24563.61 25567.14 23876.68 19275.15 3168.49 23742.85 40051.17 24277.85 14380.51 24845.76 27966.31 31452.83 23676.35 31359.96 389
BH-untuned69.39 18369.46 18069.18 20477.96 17156.88 17768.47 23877.53 18656.77 16577.79 14479.63 26460.30 18280.20 14746.04 29380.65 27070.47 331
c3_l69.82 17669.89 17869.61 19666.24 33243.48 29268.12 24179.61 14951.43 23577.72 14580.18 25654.61 23278.15 18763.62 13787.50 17487.20 57
MSLP-MVS++74.48 10975.78 9570.59 17784.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 22963.12 14777.64 19562.95 14488.14 16471.73 318
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20377.68 14787.18 13269.98 8585.37 5368.01 9392.72 7685.08 90
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10863.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 182
casdiffmvspermissive73.06 13073.84 11870.72 17571.32 26846.71 26670.93 19984.26 6555.62 17877.46 14987.10 13367.09 10977.81 19163.95 13286.83 19287.64 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TinyColmap67.98 20469.28 18264.08 26167.98 31446.82 26470.04 20975.26 20853.05 21777.36 15086.79 14359.39 19072.59 25245.64 29688.01 16872.83 306
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11251.71 23177.15 15191.42 3665.49 13087.20 779.44 1787.17 18884.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
KD-MVS_self_test66.38 22567.51 21162.97 27661.76 36134.39 36758.11 33975.30 20750.84 24577.12 15285.42 18056.84 22069.44 28151.07 24691.16 9985.08 90
TEST985.47 6769.32 7476.42 12378.69 16753.73 21376.97 15386.74 14666.84 11281.10 125
train_agg76.38 8476.55 8875.86 9785.47 6769.32 7476.42 12378.69 16754.00 20876.97 15386.74 14666.60 11881.10 12572.50 6991.56 9177.15 265
agg_prior84.44 8566.02 10178.62 17076.95 15580.34 142
IterMVS-SCA-FT67.68 20966.07 22972.49 15673.34 24358.20 17363.80 29565.55 28948.10 27076.91 15682.64 22245.20 28378.84 16561.20 15577.89 30580.44 220
Anonymous2024052972.56 14373.79 12068.86 21576.89 19045.21 27968.80 23077.25 19167.16 6676.89 15790.44 5965.95 12574.19 23550.75 24890.00 12987.18 58
test_885.09 7367.89 8376.26 12878.66 16954.00 20876.89 15786.72 14866.60 11880.89 135
cl____68.26 20368.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.42 22448.74 26875.38 21560.92 15989.81 13485.80 79
DIV-MVS_self_test68.27 20268.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.43 22348.74 26875.38 21560.94 15889.81 13485.81 75
MVS_111021_LR72.10 15071.82 15672.95 14079.53 14573.90 4070.45 20666.64 28056.87 16376.81 16181.76 23368.78 9371.76 26361.81 14883.74 23573.18 301
CLD-MVS72.88 13872.36 15074.43 11277.03 18254.30 19468.77 23183.43 7952.12 22676.79 16274.44 32069.54 9083.91 7955.88 20493.25 6985.09 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FMVSNet267.48 21168.21 20165.29 25273.14 24738.94 33268.81 22871.21 25154.81 18576.73 16386.48 15848.63 27074.60 22947.98 27786.11 20282.35 178
test_fmvs356.78 30755.99 31659.12 31153.96 40648.09 24658.76 33366.22 28227.54 39876.66 16468.69 37125.32 39551.31 36753.42 23473.38 34177.97 257
mvsmamba68.87 18967.30 21673.57 12676.58 19353.70 20084.43 3774.25 21645.38 29576.63 16584.55 19135.85 34085.27 5649.54 25978.49 29681.75 191
baseline73.10 12773.96 11770.51 17971.46 26746.39 27072.08 17484.40 6255.95 17576.62 16686.46 15967.20 10778.03 18864.22 12887.27 18487.11 60
sasdasda72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
canonicalmvs72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
SSC-MVS61.79 27466.08 22848.89 36776.91 18710.00 42453.56 36747.37 38568.20 6376.56 16989.21 9254.13 23557.59 35354.75 21674.07 33679.08 240
EG-PatchMatch MVS70.70 16470.88 16970.16 18782.64 11258.80 16871.48 18873.64 21954.98 18476.55 17081.77 23261.10 17478.94 16454.87 21580.84 26772.74 308
alignmvs70.54 16671.00 16869.15 20573.50 23948.04 24869.85 21479.62 14753.94 21176.54 17182.00 22759.00 19474.68 22857.32 19087.21 18684.72 101
MVStest155.38 31754.97 32456.58 32643.72 41940.07 32459.13 32747.09 38634.83 37176.53 17284.65 18813.55 42353.30 36555.04 21380.23 27576.38 272
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8092.76 75
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10669.79 29566.25 9775.90 13379.90 14446.03 28776.48 17485.02 18567.96 10473.97 23774.47 5287.22 18583.90 129
EPP-MVSNet73.86 11473.38 12775.31 10378.19 16653.35 20380.45 7377.32 18965.11 8976.47 17586.80 14249.47 26083.77 8153.89 22892.72 7688.81 40
pmmvs671.82 15273.66 12266.31 24675.94 20442.01 30566.99 25772.53 23063.45 10876.43 17692.78 1172.95 6269.69 28051.41 24390.46 12187.22 55
testdata64.13 26085.87 6263.34 12261.80 31647.83 27476.42 17786.60 15548.83 26762.31 33454.46 22181.26 26366.74 360
GeoE73.14 12673.77 12171.26 17278.09 16852.64 20674.32 15479.56 15156.32 17176.35 17883.36 21170.76 7977.96 18963.32 14181.84 25483.18 154
miper_ehance_all_eth68.36 19868.16 20368.98 21065.14 34443.34 29467.07 25678.92 16149.11 26476.21 17977.72 29253.48 23877.92 19061.16 15684.59 22585.68 81
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21768.08 8177.89 10584.04 7255.15 18376.19 18083.39 20766.91 11180.11 14860.04 17090.14 12785.13 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net71.70 15473.10 13667.49 23273.23 24543.08 29772.06 17582.43 9554.58 19375.97 18182.00 22772.42 6375.22 21957.84 18887.34 17984.18 123
MVS_111021_HR72.98 13572.97 14072.99 13880.82 13365.47 10468.81 22872.77 22757.67 15675.76 18282.38 22571.01 7777.17 19861.38 15386.15 19976.32 273
CNLPA73.44 11973.03 13874.66 10778.27 16575.29 3075.99 13278.49 17165.39 8275.67 18383.22 21861.23 17066.77 31153.70 23085.33 21181.92 188
NR-MVSNet73.62 11674.05 11572.33 16083.50 9443.71 28965.65 27577.32 18964.32 9775.59 18487.08 13462.45 15581.34 11954.90 21495.63 991.93 9
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12365.77 7675.55 18586.25 16567.42 10685.42 5270.10 7890.88 11381.81 189
test_fmvsmconf0.1_n73.26 12572.82 14274.56 10869.10 30166.18 9974.65 15279.34 15445.58 29075.54 18683.91 20067.19 10873.88 24073.26 6186.86 19083.63 137
YYNet152.58 33853.50 33349.85 35954.15 40336.45 35240.53 40246.55 38938.09 35375.52 18773.31 33241.08 31043.88 39641.10 32271.14 35969.21 344
MDA-MVSNet_test_wron52.57 33953.49 33549.81 36054.24 40236.47 35140.48 40346.58 38838.13 35275.47 18873.32 33141.05 31143.85 39740.98 32471.20 35869.10 346
EI-MVSNet69.61 17969.01 18871.41 17173.94 23549.90 22771.31 19371.32 24458.22 14975.40 18970.44 34958.16 20175.85 20962.51 14579.81 28288.48 43
MVSTER63.29 25861.60 27268.36 22159.77 37646.21 27160.62 31871.32 24441.83 32275.40 18979.12 27530.25 37575.85 20956.30 20079.81 28283.03 159
MonoMVSNet62.75 26563.42 25760.73 30065.60 33840.77 31672.49 16970.56 25752.49 22275.07 19179.42 26839.52 32169.97 27846.59 28969.06 37171.44 320
TransMVSNet (Re)69.62 17871.63 15963.57 26776.51 19435.93 35665.75 27471.29 24661.05 12675.02 19289.90 8165.88 12770.41 27749.79 25589.48 14284.38 118
新几何169.99 19188.37 3571.34 5562.08 31343.85 30574.99 19386.11 17152.85 24170.57 27350.99 24783.23 24268.05 351
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18457.68 15574.89 19478.13 28964.80 13884.26 7756.46 19985.32 21286.88 61
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16774.88 19585.32 18165.54 12987.79 365.61 11991.14 10183.35 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet71.60 15573.13 13467.02 23986.29 4841.11 31169.97 21166.50 28168.72 6074.74 19691.70 2959.90 18575.81 21148.58 26991.72 8684.15 125
GBi-Net68.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
test168.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
FMVSNet365.00 23865.16 23964.52 25869.47 29737.56 34766.63 26370.38 25951.55 23474.72 19783.27 21437.89 33174.44 23147.12 28285.37 20881.57 194
EC-MVSNet77.08 7977.39 8176.14 9476.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19269.87 8784.94 6469.76 8189.59 13986.60 65
test_fmvsmconf_n72.91 13772.40 14974.46 10968.62 30566.12 10074.21 15778.80 16445.64 28974.62 20183.25 21566.80 11673.86 24172.97 6386.66 19683.39 146
Patchmatch-RL test59.95 28959.12 29062.44 28172.46 25854.61 19359.63 32547.51 38441.05 33074.58 20274.30 32231.06 36965.31 32051.61 24079.85 28167.39 353
cl2267.14 21666.51 22469.03 20963.20 35443.46 29366.88 26176.25 19849.22 26274.48 20377.88 29145.49 28277.40 19760.64 16184.59 22586.24 67
thisisatest053067.05 21965.16 23972.73 15173.10 25050.55 21771.26 19563.91 30350.22 25274.46 20480.75 24526.81 38680.25 14459.43 17686.50 19787.37 53
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26560.73 13074.39 20578.44 28357.72 21182.78 9860.16 16689.60 13879.11 239
test_fmvsm_n_192069.63 17768.45 19673.16 13370.56 27865.86 10270.26 20878.35 17337.69 35674.29 20678.89 27961.10 17468.10 29365.87 11779.07 28985.53 82
原ACMM173.90 12085.90 6065.15 11081.67 10650.97 24374.25 20786.16 16861.60 16483.54 8556.75 19491.08 10573.00 303
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9160.39 13274.15 20883.30 21369.65 8982.07 11069.27 8486.75 19487.36 54
pmmvs-eth3d64.41 24863.27 26067.82 23075.81 20660.18 15569.49 21662.05 31438.81 34974.13 20982.23 22643.76 29368.65 28842.53 31280.63 27274.63 287
VPA-MVSNet68.71 19470.37 17563.72 26576.13 19938.06 34264.10 29271.48 24056.60 17074.10 21088.31 11864.78 13969.72 27947.69 28090.15 12683.37 148
WB-MVS60.04 28864.19 24947.59 37076.09 20010.22 42352.44 37246.74 38765.17 8874.07 21187.48 12953.48 23855.28 35949.36 26172.84 34477.28 261
VDD-MVS70.81 16371.44 16468.91 21479.07 15746.51 26767.82 24470.83 25661.23 12474.07 21188.69 10859.86 18675.62 21451.11 24590.28 12384.61 106
FA-MVS(test-final)71.27 15771.06 16771.92 16573.96 23452.32 20876.45 12276.12 19959.07 14374.04 21386.18 16652.18 24479.43 15759.75 17481.76 25584.03 126
pm-mvs168.40 19769.85 17964.04 26373.10 25039.94 32564.61 28870.50 25855.52 17973.97 21489.33 8863.91 14468.38 29049.68 25788.02 16783.81 131
BH-RMVSNet68.69 19568.20 20270.14 18876.40 19553.90 19964.62 28773.48 22058.01 15173.91 21581.78 23159.09 19378.22 18348.59 26877.96 30378.31 248
mvs5depth66.35 22767.98 20461.47 29162.43 35751.05 21369.38 21969.24 26756.74 16673.62 21689.06 10046.96 27758.63 34855.87 20588.49 16074.73 286
test1276.51 8882.28 11660.94 14681.64 10773.60 21764.88 13785.19 6290.42 12283.38 147
QAPM69.18 18669.26 18368.94 21271.61 26552.58 20780.37 7678.79 16549.63 25873.51 21885.14 18453.66 23779.12 16055.11 21275.54 32075.11 284
Gipumacopyleft69.55 18072.83 14159.70 30663.63 35353.97 19780.08 8275.93 20264.24 9873.49 21988.93 10457.89 21062.46 33259.75 17491.55 9262.67 380
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs_anonymous65.08 23765.49 23463.83 26463.79 35137.60 34666.52 26569.82 26343.44 31373.46 22086.08 17258.79 19771.75 26451.90 23975.63 31982.15 183
miper_enhance_ethall65.86 23065.05 24668.28 22561.62 36342.62 30264.74 28577.97 18142.52 31873.42 22172.79 33549.66 25877.68 19458.12 18584.59 22584.54 110
Vis-MVSNetpermissive74.85 10874.56 10675.72 9881.63 12564.64 11376.35 12579.06 15862.85 11573.33 22288.41 11562.54 15479.59 15563.94 13482.92 24382.94 161
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR73.91 11274.16 11373.16 13381.90 12153.50 20181.28 6681.40 11166.17 7473.30 22383.31 21259.96 18483.10 9458.45 18381.66 26082.87 163
PHI-MVS74.92 10374.36 11076.61 8676.40 19562.32 12980.38 7583.15 8254.16 20573.23 22480.75 24562.19 15983.86 8068.02 9290.92 11083.65 136
miper_lstm_enhance61.97 27161.63 27162.98 27560.04 37045.74 27547.53 38770.95 25344.04 30473.06 22578.84 28039.72 31860.33 34055.82 20684.64 22482.88 162
test22287.30 3869.15 7767.85 24359.59 32341.06 32973.05 22685.72 17948.03 27380.65 27066.92 356
MCST-MVS73.42 12073.34 13073.63 12581.28 12959.17 16274.80 14683.13 8345.50 29172.84 22783.78 20365.15 13580.99 12964.54 12489.09 15480.73 212
tfpnnormal66.48 22467.93 20562.16 28473.40 24236.65 34963.45 29864.99 29355.97 17472.82 22887.80 12757.06 21869.10 28548.31 27387.54 17280.72 213
FE-MVS68.29 20166.96 22172.26 16174.16 23254.24 19577.55 10873.42 22157.65 15872.66 22984.91 18632.02 36081.49 11848.43 27181.85 25381.04 200
Anonymous2024052163.55 25466.07 22955.99 32966.18 33444.04 28768.77 23168.80 26946.99 28072.57 23085.84 17739.87 31750.22 37053.40 23592.23 8373.71 298
114514_t73.40 12173.33 13173.64 12484.15 8957.11 17678.20 10280.02 14243.76 30872.55 23186.07 17364.00 14383.35 9060.14 16891.03 10680.45 219
AdaColmapbinary74.22 11074.56 10673.20 13281.95 12060.97 14579.43 8680.90 12465.57 7872.54 23281.76 23370.98 7885.26 5747.88 27890.00 12973.37 299
LF4IMVS67.50 21067.31 21568.08 22658.86 38161.93 13171.43 18975.90 20344.67 30272.42 23380.20 25457.16 21470.44 27558.99 17986.12 20171.88 316
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16671.22 4572.40 23488.70 10760.51 17987.70 477.40 3689.13 15285.48 83
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23584.00 19964.56 14083.07 9551.48 24187.19 18782.56 175
USDC62.80 26463.10 26261.89 28565.19 34143.30 29567.42 24974.20 21735.80 36872.25 23684.48 19345.67 28071.95 26137.95 34484.97 21670.42 333
3Dnovator65.95 1171.50 15671.22 16672.34 15973.16 24663.09 12478.37 9878.32 17457.67 15672.22 23784.61 18954.77 22978.47 17360.82 16081.07 26475.45 279
ETV-MVS72.72 14072.16 15374.38 11476.90 18955.95 18273.34 16384.67 5562.04 12072.19 23870.81 34765.90 12685.24 5958.64 18184.96 21981.95 187
Patchmtry60.91 28063.01 26354.62 33666.10 33526.27 40567.47 24856.40 34254.05 20772.04 23986.66 15033.19 34960.17 34143.69 30687.45 17677.42 259
diffmvspermissive67.42 21467.50 21267.20 23662.26 35945.21 27964.87 28477.04 19348.21 26971.74 24079.70 26358.40 19971.17 26964.99 12180.27 27485.22 85
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AUN-MVS70.22 16967.88 20777.22 8282.96 10771.61 5269.08 22471.39 24249.17 26371.70 24178.07 29037.62 33379.21 15961.81 14889.15 15080.82 208
HQP4-MVS71.59 24285.31 5483.74 134
HQP-NCC82.37 11377.32 11159.08 14071.58 243
ACMP_Plane82.37 11377.32 11159.08 14071.58 243
HQP-MVS75.24 9775.01 10275.94 9582.37 11358.80 16877.32 11184.12 6959.08 14071.58 24385.96 17558.09 20485.30 5567.38 10489.16 14883.73 135
MVS_Test69.84 17570.71 17267.24 23567.49 31943.25 29669.87 21381.22 11752.69 22171.57 24686.68 14962.09 16074.51 23066.05 11478.74 29283.96 127
TR-MVS64.59 24363.54 25667.73 23175.75 20750.83 21663.39 29970.29 26049.33 26171.55 24774.55 31850.94 25278.46 17440.43 32775.69 31873.89 296
IterMVS63.12 26062.48 26765.02 25566.34 33152.86 20463.81 29462.25 31046.57 28371.51 24880.40 25044.60 28866.82 31051.38 24475.47 32175.38 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+68.81 19168.30 19870.35 18274.66 22348.61 24066.06 26878.32 17450.62 24771.48 24975.54 30868.75 9479.59 15550.55 25178.73 29382.86 164
test111164.62 24265.19 23862.93 27779.01 15829.91 38965.45 27854.41 35154.09 20671.47 25088.48 11437.02 33574.29 23446.83 28789.94 13284.58 109
VPNet65.58 23267.56 21059.65 30779.72 14230.17 38860.27 32162.14 31154.19 20471.24 25186.63 15358.80 19667.62 29744.17 30590.87 11481.18 197
API-MVS70.97 16271.51 16369.37 19875.20 21155.94 18380.99 6776.84 19462.48 11871.24 25177.51 29561.51 16680.96 13452.04 23785.76 20671.22 324
LFMVS67.06 21867.89 20664.56 25778.02 16938.25 33970.81 20259.60 32265.18 8771.06 25386.56 15643.85 29275.22 21946.35 29089.63 13780.21 224
BH-w/o64.81 24064.29 24866.36 24576.08 20254.71 19165.61 27675.23 20950.10 25471.05 25471.86 34154.33 23479.02 16238.20 34276.14 31565.36 366
Effi-MVS+72.10 15072.28 15171.58 16774.21 23150.33 22074.72 14982.73 8962.62 11670.77 25576.83 30069.96 8680.97 13160.20 16478.43 29783.45 145
thres100view90061.17 27961.09 27661.39 29272.14 26135.01 36265.42 27956.99 33555.23 18270.71 25679.90 26032.07 35872.09 25735.61 36381.73 25677.08 267
OpenMVS_ROBcopyleft54.93 1763.23 25963.28 25963.07 27469.81 29245.34 27768.52 23667.14 27743.74 30970.61 25779.22 27247.90 27472.66 24848.75 26673.84 33971.21 325
MSDG67.47 21367.48 21367.46 23370.70 27454.69 19266.90 26078.17 17760.88 12870.41 25874.76 31561.22 17273.18 24347.38 28176.87 31074.49 290
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15482.96 8557.75 15470.35 25981.98 22964.34 14284.41 7649.69 25689.95 13180.89 206
thres600view761.82 27361.38 27463.12 27371.81 26434.93 36364.64 28656.99 33554.78 18970.33 26079.74 26232.07 35872.42 25438.61 33883.46 24082.02 185
OpenMVScopyleft62.51 1568.76 19268.75 19268.78 21770.56 27853.91 19878.29 9977.35 18848.85 26670.22 26183.52 20552.65 24276.93 20155.31 21181.99 25075.49 278
testing358.28 30158.38 29858.00 31977.45 18026.12 40660.78 31743.00 39956.02 17370.18 26275.76 30513.27 42467.24 30348.02 27680.89 26580.65 215
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26380.80 24466.74 11781.96 11161.74 15089.40 14685.69 80
mmtdpeth68.76 19270.55 17463.40 27167.06 32756.26 18168.73 23371.22 25055.47 18070.09 26488.64 11165.29 13456.89 35558.94 18089.50 14177.04 270
D2MVS62.58 26861.05 27767.20 23663.85 35047.92 24956.29 34869.58 26439.32 34370.07 26578.19 28734.93 34372.68 24753.44 23383.74 23581.00 203
MVS_030475.45 9374.66 10577.83 7475.58 20861.53 13678.29 9977.18 19263.15 11469.97 26687.20 13157.54 21387.05 1074.05 5588.96 15584.89 93
ECVR-MVScopyleft64.82 23965.22 23763.60 26678.80 16031.14 38366.97 25856.47 34154.23 20169.94 26788.68 10937.23 33474.81 22745.28 30189.41 14484.86 96
Vis-MVSNet (Re-imp)62.74 26663.21 26161.34 29472.19 26031.56 38067.31 25453.87 35353.60 21469.88 26883.37 20940.52 31370.98 27041.40 32186.78 19381.48 195
TAMVS65.31 23463.75 25369.97 19282.23 11759.76 15866.78 26263.37 30745.20 29769.79 26979.37 27047.42 27672.17 25634.48 36885.15 21577.99 256
Anonymous20240521166.02 22966.89 22263.43 27074.22 23038.14 34059.00 32966.13 28363.33 11169.76 27085.95 17651.88 24570.50 27444.23 30487.52 17381.64 193
fmvsm_l_conf0.5_n67.48 21166.88 22369.28 20267.41 32062.04 13070.69 20369.85 26239.46 34269.59 27181.09 24058.15 20268.73 28667.51 9978.16 30277.07 269
test_fmvs254.80 32154.11 33156.88 32551.76 41049.95 22656.70 34665.80 28526.22 40369.42 27265.25 38531.82 36149.98 37149.63 25870.36 36370.71 330
FPMVS59.43 29360.07 28457.51 32177.62 17871.52 5362.33 30750.92 36957.40 16069.40 27380.00 25939.14 32361.92 33637.47 34866.36 38239.09 412
GA-MVS62.91 26261.66 26966.66 24467.09 32344.49 28461.18 31469.36 26651.33 23969.33 27474.47 31936.83 33674.94 22450.60 25074.72 32780.57 218
EU-MVSNet60.82 28160.80 28060.86 29968.37 30741.16 31072.27 17068.27 27426.96 40069.08 27575.71 30632.09 35767.44 30055.59 20978.90 29173.97 294
HyFIR lowres test63.01 26160.47 28270.61 17683.04 10454.10 19659.93 32472.24 23433.67 38069.00 27675.63 30738.69 32576.93 20136.60 35575.45 32280.81 210
ET-MVSNet_ETH3D63.32 25760.69 28171.20 17370.15 28955.66 18665.02 28364.32 30043.28 31768.99 27772.05 34025.46 39378.19 18654.16 22782.80 24479.74 230
DELS-MVS68.83 19068.31 19770.38 18070.55 28048.31 24163.78 29682.13 9854.00 20868.96 27875.17 31358.95 19580.06 14958.55 18282.74 24582.76 166
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
reproduce_monomvs58.94 29658.14 30061.35 29359.70 37740.98 31360.24 32263.51 30645.85 28868.95 27975.31 31218.27 41465.82 31651.47 24279.97 27877.26 264
test_vis3_rt51.94 34551.04 35154.65 33546.32 41750.13 22344.34 39778.17 17723.62 41168.95 27962.81 39121.41 40638.52 41041.49 32072.22 35075.30 283
SDMVSNet66.36 22667.85 20861.88 28673.04 25346.14 27258.54 33471.36 24351.42 23668.93 28182.72 22065.62 12862.22 33554.41 22284.67 22177.28 261
sd_testset63.55 25465.38 23558.07 31873.04 25338.83 33457.41 34265.44 29051.42 23668.93 28182.72 22063.76 14558.11 35141.05 32384.67 22177.28 261
test_yl65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
DCV-MVSNet65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
Fast-Effi-MVS+-dtu70.00 17268.74 19373.77 12273.47 24064.53 11471.36 19178.14 17955.81 17768.84 28574.71 31765.36 13275.75 21252.00 23879.00 29081.03 201
fmvsm_s_conf0.1_n_a67.37 21566.36 22570.37 18170.86 27161.17 14174.00 15957.18 33440.77 33468.83 28680.88 24363.11 14867.61 29866.94 10974.72 32782.33 181
MG-MVS70.47 16771.34 16567.85 22879.26 14940.42 32274.67 15175.15 21058.41 14868.74 28788.14 12456.08 22783.69 8259.90 17181.71 25979.43 236
fmvsm_l_conf0.5_n_a66.66 22165.97 23168.72 21867.09 32361.38 13870.03 21069.15 26838.59 35068.41 28880.36 25156.56 22368.32 29166.10 11377.45 30776.46 271
fmvsm_s_conf0.5_n_a67.00 22065.95 23270.17 18669.72 29661.16 14273.34 16356.83 33740.96 33168.36 28980.08 25862.84 14967.57 29966.90 11174.50 33181.78 190
tfpn200view960.35 28659.97 28561.51 28970.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25677.08 267
thres40060.77 28359.97 28563.15 27270.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25682.02 185
fmvsm_s_conf0.1_n66.60 22265.54 23369.77 19468.99 30259.15 16372.12 17356.74 33940.72 33668.25 29280.14 25761.18 17366.92 30567.34 10674.40 33283.23 153
testgi54.00 32856.86 30945.45 37958.20 38525.81 40749.05 38149.50 37745.43 29467.84 29381.17 23951.81 24843.20 39929.30 39079.41 28767.34 355
fmvsm_s_conf0.5_n66.34 22865.27 23669.57 19768.20 31059.14 16571.66 18656.48 34040.92 33267.78 29479.46 26661.23 17066.90 30667.39 10274.32 33582.66 172
xiu_mvs_v1_base_debu67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base_debi67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
test250661.23 27860.85 27962.38 28278.80 16027.88 39767.33 25337.42 41354.23 20167.55 29888.68 10917.87 41674.39 23246.33 29189.41 14484.86 96
CL-MVSNet_self_test62.44 26963.40 25859.55 30872.34 25932.38 37556.39 34764.84 29551.21 24167.46 29981.01 24250.75 25363.51 33038.47 34088.12 16582.75 167
test_f43.79 37545.63 37038.24 39642.29 42238.58 33534.76 41147.68 38322.22 41467.34 30063.15 39031.82 36130.60 41539.19 33362.28 39245.53 408
CDS-MVSNet64.33 24962.66 26669.35 20080.44 13758.28 17265.26 28065.66 28744.36 30367.30 30175.54 30843.27 29571.77 26237.68 34584.44 22878.01 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu70.04 17168.88 18973.53 12882.71 11063.62 12074.81 14481.95 10248.53 26867.16 30279.18 27451.42 25078.38 17854.39 22379.72 28578.60 244
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11554.57 19467.09 30380.63 24759.44 18981.74 11646.91 28584.17 23078.63 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet64.01 25365.15 24160.57 30173.28 24435.61 35957.60 34167.08 27854.61 19266.76 30483.37 20956.28 22566.87 30742.19 31585.20 21479.23 238
PAPR69.20 18568.66 19570.82 17475.15 21347.77 25275.31 13781.11 11849.62 25966.33 30579.27 27161.53 16582.96 9648.12 27581.50 26281.74 192
pmmvs460.78 28259.04 29166.00 24973.06 25257.67 17564.53 28960.22 32036.91 36265.96 30677.27 29639.66 31968.54 28938.87 33574.89 32671.80 317
CMPMVSbinary48.73 2061.54 27760.89 27863.52 26861.08 36551.55 21068.07 24268.00 27533.88 37765.87 30781.25 23837.91 33067.71 29549.32 26282.60 24671.31 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 28759.61 28862.20 28367.70 31744.33 28558.18 33860.96 31840.75 33565.80 30872.57 33641.23 30663.92 32746.87 28682.42 24778.33 247
MAR-MVS67.72 20866.16 22772.40 15874.45 22664.99 11174.87 14277.50 18748.67 26765.78 30968.58 37257.01 21977.79 19246.68 28881.92 25174.42 292
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ttmdpeth56.40 30955.45 32059.25 30955.63 39740.69 31758.94 33149.72 37536.22 36465.39 31086.97 13823.16 40256.69 35642.30 31380.74 26980.36 221
test_fmvs1_n52.70 33752.01 34454.76 33453.83 40750.36 21955.80 35365.90 28424.96 40765.39 31060.64 39927.69 38448.46 37645.88 29567.99 37765.46 365
ab-mvs64.11 25165.13 24261.05 29671.99 26238.03 34367.59 24568.79 27049.08 26565.32 31286.26 16458.02 20966.85 30939.33 33179.79 28478.27 249
jason64.47 24662.84 26469.34 20176.91 18759.20 15967.15 25565.67 28635.29 36965.16 31376.74 30144.67 28770.68 27154.74 21779.28 28878.14 252
jason: jason.
test20.0355.74 31357.51 30550.42 35659.89 37532.09 37750.63 37749.01 37850.11 25365.07 31483.23 21645.61 28148.11 37930.22 38583.82 23471.07 328
mvsany_test343.76 37641.01 38052.01 34848.09 41557.74 17442.47 39923.85 42223.30 41264.80 31562.17 39427.12 38540.59 40629.17 39348.11 41257.69 394
EIA-MVS68.59 19667.16 21772.90 14475.18 21255.64 18769.39 21881.29 11352.44 22364.53 31670.69 34860.33 18182.30 10654.27 22576.31 31480.75 211
KD-MVS_2432*160052.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
miper_refine_blended52.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
new-patchmatchnet52.89 33655.76 31844.26 38559.94 3746.31 42537.36 40950.76 37141.10 32864.28 31979.82 26144.77 28648.43 37836.24 35987.61 17178.03 254
DPM-MVS69.98 17369.22 18572.26 16182.69 11158.82 16770.53 20481.23 11647.79 27564.16 32080.21 25351.32 25183.12 9360.14 16884.95 22074.83 285
patch_mono-262.73 26764.08 25058.68 31470.36 28455.87 18460.84 31664.11 30241.23 32764.04 32178.22 28660.00 18348.80 37454.17 22683.71 23771.37 321
thres20057.55 30557.02 30759.17 31067.89 31634.93 36358.91 33257.25 33250.24 25164.01 32271.46 34432.49 35471.39 26731.31 38179.57 28671.19 326
test_cas_vis1_n_192050.90 34950.92 35350.83 35554.12 40547.80 25151.44 37654.61 34926.95 40163.95 32360.85 39737.86 33244.97 39045.53 29762.97 39059.72 390
our_test_356.46 30856.51 31156.30 32767.70 31739.66 32755.36 35652.34 36540.57 33863.85 32469.91 35940.04 31658.22 35043.49 30975.29 32571.03 329
baseline157.82 30458.36 29956.19 32869.17 29930.76 38662.94 30555.21 34646.04 28663.83 32578.47 28241.20 30763.68 32839.44 33068.99 37274.13 293
XXY-MVS55.19 31857.40 30648.56 36964.45 34834.84 36551.54 37553.59 35538.99 34863.79 32679.43 26756.59 22145.57 38536.92 35471.29 35765.25 367
cascas64.59 24362.77 26570.05 19075.27 21050.02 22461.79 30971.61 23642.46 31963.68 32768.89 36849.33 26280.35 14147.82 27984.05 23279.78 229
test_fmvs151.51 34750.86 35453.48 34049.72 41349.35 23554.11 36464.96 29424.64 40963.66 32859.61 40228.33 38348.45 37745.38 30067.30 38162.66 381
thisisatest051560.48 28557.86 30268.34 22267.25 32146.42 26860.58 31962.14 31140.82 33363.58 32969.12 36326.28 38978.34 18048.83 26582.13 24980.26 223
MVSFormer69.93 17469.03 18772.63 15474.93 21459.19 16083.98 4075.72 20452.27 22463.53 33076.74 30143.19 29680.56 13772.28 7078.67 29478.14 252
lupinMVS63.36 25661.49 27368.97 21174.93 21459.19 16065.80 27364.52 29934.68 37563.53 33074.25 32343.19 29670.62 27253.88 22978.67 29477.10 266
UnsupCasMVSNet_eth52.26 34153.29 33649.16 36455.08 39933.67 37150.03 38058.79 32537.67 35763.43 33274.75 31641.82 30445.83 38438.59 33959.42 39967.98 352
WBMVS53.38 33054.14 33051.11 35370.16 28826.66 40150.52 37951.64 36839.32 34363.08 33377.16 29723.53 40055.56 35731.99 37879.88 28071.11 327
UWE-MVS52.94 33552.70 33853.65 33973.56 23827.49 39857.30 34349.57 37638.56 35162.79 33471.42 34519.49 41160.41 33924.33 40977.33 30873.06 302
Anonymous2023120654.13 32455.82 31749.04 36670.89 27035.96 35551.73 37450.87 37034.86 37062.49 33579.22 27242.52 30244.29 39527.95 39681.88 25266.88 357
CANet73.00 13371.84 15576.48 8975.82 20561.28 13974.81 14480.37 13763.17 11262.43 33680.50 24961.10 17485.16 6364.00 13084.34 22983.01 160
xiu_mvs_v2_base64.43 24763.96 25165.85 25177.72 17551.32 21263.63 29772.31 23345.06 30061.70 33769.66 36062.56 15273.93 23949.06 26473.91 33772.31 312
PS-MVSNAJ64.27 25063.73 25465.90 25077.82 17351.42 21163.33 30072.33 23245.09 29961.60 33868.04 37462.39 15673.95 23849.07 26373.87 33872.34 311
CHOSEN 1792x268858.09 30256.30 31363.45 26979.95 14050.93 21554.07 36565.59 28828.56 39661.53 33974.33 32141.09 30966.52 31333.91 37167.69 38072.92 304
CR-MVSNet58.96 29558.49 29660.36 30366.37 32948.24 24370.93 19956.40 34232.87 38361.35 34086.66 15033.19 34963.22 33148.50 27070.17 36569.62 340
RPMNet65.77 23165.08 24567.84 22966.37 32948.24 24370.93 19986.27 2054.66 19161.35 34086.77 14533.29 34885.67 4955.93 20370.17 36569.62 340
PatchMatch-RL58.68 29957.72 30361.57 28876.21 19873.59 4361.83 30849.00 37947.30 27961.08 34268.97 36550.16 25659.01 34536.06 36268.84 37352.10 399
FMVSNet555.08 32055.54 31953.71 33865.80 33633.50 37256.22 34952.50 36343.72 31061.06 34383.38 20825.46 39354.87 36030.11 38681.64 26172.75 307
131459.83 29058.86 29362.74 27965.71 33744.78 28268.59 23472.63 22933.54 38261.05 34467.29 38043.62 29471.26 26849.49 26067.84 37972.19 314
SCA58.57 30058.04 30160.17 30470.17 28741.07 31265.19 28153.38 35943.34 31661.00 34573.48 32945.20 28369.38 28240.34 32870.31 36470.05 334
UGNet70.20 17069.05 18673.65 12376.24 19763.64 11975.87 13472.53 23061.48 12360.93 34686.14 16952.37 24377.12 19950.67 24985.21 21380.17 225
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UnsupCasMVSNet_bld50.01 35551.03 35246.95 37258.61 38232.64 37448.31 38353.27 36034.27 37660.47 34771.53 34341.40 30547.07 38230.68 38360.78 39661.13 387
CVMVSNet59.21 29458.44 29761.51 28973.94 23547.76 25371.31 19364.56 29826.91 40260.34 34870.44 34936.24 33967.65 29653.57 23168.66 37469.12 345
PVSNet_BlendedMVS65.38 23364.30 24768.61 21969.81 29249.36 23365.60 27778.96 15945.50 29159.98 34978.61 28151.82 24678.20 18444.30 30284.11 23178.27 249
PVSNet_Blended62.90 26361.64 27066.69 24369.81 29249.36 23361.23 31378.96 15942.04 32059.98 34968.86 36951.82 24678.20 18444.30 30277.77 30672.52 309
MVS60.62 28459.97 28562.58 28068.13 31247.28 26168.59 23473.96 21832.19 38459.94 35168.86 36950.48 25477.64 19541.85 31875.74 31762.83 378
1112_ss59.48 29258.99 29260.96 29877.84 17242.39 30461.42 31168.45 27337.96 35459.93 35267.46 37745.11 28565.07 32240.89 32571.81 35375.41 280
test_vis1_n_192052.96 33453.50 33351.32 35259.15 37944.90 28156.13 35164.29 30130.56 39459.87 35360.68 39840.16 31547.47 38048.25 27462.46 39161.58 386
test_vis1_n51.27 34850.41 35853.83 33756.99 38950.01 22556.75 34560.53 31925.68 40559.74 35457.86 40329.40 38047.41 38143.10 31063.66 38864.08 376
Test_1112_low_res58.78 29858.69 29459.04 31379.41 14638.13 34157.62 34066.98 27934.74 37359.62 35577.56 29442.92 29863.65 32938.66 33770.73 36175.35 282
WB-MVSnew53.94 32954.76 32651.49 35171.53 26628.05 39558.22 33750.36 37237.94 35559.16 35670.17 35449.21 26351.94 36624.49 40771.80 35474.47 291
CostFormer57.35 30656.14 31460.97 29763.76 35238.43 33667.50 24760.22 32037.14 36159.12 35776.34 30332.78 35271.99 26039.12 33469.27 37072.47 310
PatchmatchNetpermissive54.60 32254.27 32955.59 33265.17 34339.08 32966.92 25951.80 36739.89 34058.39 35873.12 33331.69 36358.33 34943.01 31158.38 40369.38 343
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MS-PatchMatch55.59 31554.89 32557.68 32069.18 29849.05 23661.00 31562.93 30935.98 36658.36 35968.93 36736.71 33766.59 31237.62 34763.30 38957.39 395
tpm256.12 31054.64 32760.55 30266.24 33236.01 35468.14 24056.77 33833.60 38158.25 36075.52 31030.25 37574.33 23333.27 37469.76 36971.32 322
Syy-MVS54.13 32455.45 32050.18 35768.77 30323.59 41055.02 35744.55 39343.80 30658.05 36164.07 38746.22 27858.83 34646.16 29272.36 34868.12 349
myMVS_eth3d50.36 35250.52 35749.88 35868.77 30322.69 41255.02 35744.55 39343.80 30658.05 36164.07 38714.16 42258.83 34633.90 37272.36 34868.12 349
N_pmnet52.06 34251.11 35054.92 33359.64 37871.03 5737.42 40861.62 31733.68 37957.12 36372.10 33737.94 32931.03 41429.13 39571.35 35662.70 379
testing9155.74 31355.29 32357.08 32270.63 27530.85 38554.94 36056.31 34450.34 24957.08 36470.10 35624.50 39765.86 31536.98 35376.75 31174.53 289
tpm50.60 35052.42 34245.14 38165.18 34226.29 40460.30 32043.50 39637.41 35957.01 36579.09 27630.20 37742.32 40032.77 37666.36 38266.81 359
tpm cat154.02 32752.63 33958.19 31764.85 34739.86 32666.26 26757.28 33132.16 38556.90 36670.39 35132.75 35365.30 32134.29 36958.79 40069.41 342
Patchmatch-test47.93 36149.96 36041.84 38957.42 38824.26 40948.75 38241.49 40739.30 34556.79 36773.48 32930.48 37433.87 41329.29 39172.61 34667.39 353
testing9955.16 31954.56 32856.98 32470.13 29030.58 38754.55 36354.11 35249.53 26056.76 36870.14 35522.76 40465.79 31736.99 35276.04 31674.57 288
testing22253.37 33152.50 34155.98 33070.51 28129.68 39056.20 35051.85 36646.19 28556.76 36868.94 36619.18 41265.39 31925.87 40376.98 30972.87 305
EPNet69.10 18767.32 21474.46 10968.33 30961.27 14077.56 10763.57 30560.95 12756.62 37082.75 21951.53 24981.24 12254.36 22490.20 12480.88 207
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo61.56 27659.22 28968.58 22079.28 14860.44 15369.20 22271.57 23743.58 31156.42 37178.37 28439.57 32076.46 20834.86 36760.16 39768.86 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs55.84 31155.45 32057.01 32360.33 36933.20 37365.89 27059.29 32447.52 27856.04 37273.60 32831.05 37068.06 29440.64 32664.64 38569.77 338
MIMVSNet54.39 32356.12 31549.20 36372.57 25730.91 38459.98 32348.43 38141.66 32355.94 37383.86 20241.19 30850.42 36926.05 40075.38 32366.27 361
IB-MVS49.67 1859.69 29156.96 30867.90 22768.19 31150.30 22161.42 31165.18 29247.57 27755.83 37467.15 38123.77 39979.60 15443.56 30879.97 27873.79 297
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 147.72 36248.31 36445.93 37755.53 39829.39 39146.40 39141.21 40943.41 31455.81 37567.65 37629.22 38143.77 39825.73 40469.87 36764.62 373
pmmvs552.49 34052.58 34052.21 34754.99 40032.38 37555.45 35553.84 35432.15 38655.49 37674.81 31438.08 32857.37 35434.02 37074.40 33266.88 357
dmvs_re49.91 35650.77 35547.34 37159.98 37138.86 33353.18 36853.58 35639.75 34155.06 37761.58 39636.42 33844.40 39429.15 39468.23 37558.75 392
ETVMVS50.32 35349.87 36151.68 34970.30 28626.66 40152.33 37343.93 39543.54 31254.91 37867.95 37520.01 41060.17 34122.47 41173.40 34068.22 348
CANet_DTU64.04 25263.83 25264.66 25668.39 30642.97 29973.45 16274.50 21552.05 22854.78 37975.44 31143.99 29170.42 27653.49 23278.41 29880.59 217
PatchT53.35 33256.47 31243.99 38664.19 34917.46 41759.15 32643.10 39852.11 22754.74 38086.95 13929.97 37849.98 37143.62 30774.40 33264.53 375
HY-MVS49.31 1957.96 30357.59 30459.10 31266.85 32836.17 35365.13 28265.39 29139.24 34654.69 38178.14 28844.28 29067.18 30433.75 37370.79 36073.95 295
PVSNet43.83 2151.56 34651.17 34952.73 34468.34 30838.27 33848.22 38453.56 35736.41 36354.29 38264.94 38634.60 34454.20 36330.34 38469.87 36765.71 364
WTY-MVS49.39 35750.31 35946.62 37561.22 36432.00 37846.61 39049.77 37433.87 37854.12 38369.55 36241.96 30345.40 38731.28 38264.42 38662.47 382
PAPM61.79 27460.37 28366.05 24876.09 20041.87 30669.30 22076.79 19640.64 33753.80 38479.62 26544.38 28982.92 9729.64 38973.11 34373.36 300
UBG49.18 35849.35 36248.66 36870.36 28426.56 40350.53 37845.61 39037.43 35853.37 38565.97 38223.03 40354.20 36326.29 39871.54 35565.20 368
tpmrst50.15 35451.38 34846.45 37656.05 39324.77 40864.40 29149.98 37336.14 36553.32 38669.59 36135.16 34248.69 37539.24 33258.51 40265.89 362
MDTV_nov1_ep1354.05 33265.54 33929.30 39259.00 32955.22 34535.96 36752.44 38775.98 30430.77 37259.62 34338.21 34173.33 342
sss47.59 36348.32 36345.40 38056.73 39233.96 36945.17 39348.51 38032.11 38852.37 38865.79 38340.39 31441.91 40331.85 37961.97 39360.35 388
testing1153.13 33352.26 34355.75 33170.44 28231.73 37954.75 36152.40 36444.81 30152.36 38968.40 37321.83 40565.74 31832.64 37772.73 34569.78 337
test_vis1_rt46.70 36545.24 37351.06 35444.58 41851.04 21439.91 40467.56 27621.84 41551.94 39050.79 41133.83 34639.77 40735.25 36661.50 39462.38 383
dmvs_testset45.26 36847.51 36638.49 39559.96 37314.71 41958.50 33543.39 39741.30 32651.79 39156.48 40439.44 32249.91 37321.42 41355.35 40950.85 400
baseline255.57 31652.74 33764.05 26265.26 34044.11 28662.38 30654.43 35039.03 34751.21 39267.35 37933.66 34772.45 25337.14 35064.22 38775.60 277
EPMVS45.74 36646.53 36943.39 38754.14 40422.33 41455.02 35735.00 41634.69 37451.09 39370.20 35325.92 39142.04 40237.19 34955.50 40765.78 363
gg-mvs-nofinetune55.75 31256.75 31052.72 34562.87 35528.04 39668.92 22541.36 40871.09 4650.80 39492.63 1320.74 40766.86 30829.97 38772.41 34763.25 377
ADS-MVSNet248.76 35947.25 36853.29 34355.90 39540.54 32147.34 38854.99 34831.41 39150.48 39572.06 33831.23 36654.26 36225.93 40155.93 40565.07 369
ADS-MVSNet44.62 37245.58 37141.73 39055.90 39520.83 41547.34 38839.94 41131.41 39150.48 39572.06 33831.23 36639.31 40825.93 40155.93 40565.07 369
pmmvs346.71 36445.09 37451.55 35056.76 39148.25 24255.78 35439.53 41224.13 41050.35 39763.40 38915.90 41951.08 36829.29 39170.69 36255.33 398
JIA-IIPM54.03 32651.62 34561.25 29559.14 38055.21 18959.10 32847.72 38250.85 24450.31 39885.81 17820.10 40963.97 32636.16 36055.41 40864.55 374
test-LLR50.43 35150.69 35649.64 36160.76 36641.87 30653.18 36845.48 39143.41 31449.41 39960.47 40029.22 38144.73 39242.09 31672.14 35162.33 384
test-mter48.56 36048.20 36549.64 36160.76 36641.87 30653.18 36845.48 39131.91 38949.41 39960.47 40018.34 41344.73 39242.09 31672.14 35162.33 384
dongtai31.66 38432.98 38727.71 39958.58 38312.61 42145.02 39414.24 42541.90 32147.93 40143.91 41410.65 42541.81 40414.06 41720.53 41828.72 415
PMMVS237.74 38140.87 38128.36 39842.41 4215.35 42624.61 41327.75 41832.15 38647.85 40270.27 35235.85 34029.51 41619.08 41667.85 37850.22 402
EPNet_dtu58.93 29758.52 29560.16 30567.91 31547.70 25569.97 21158.02 32649.73 25747.28 40373.02 33438.14 32762.34 33336.57 35685.99 20370.43 332
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed43.18 37744.66 37738.75 39454.75 40128.88 39457.06 34427.42 41913.47 41747.27 40477.67 29338.83 32439.29 40925.32 40660.12 39848.08 403
mvsany_test137.88 38035.74 38544.28 38447.28 41649.90 22736.54 41024.37 42119.56 41645.76 40553.46 40732.99 35137.97 41126.17 39935.52 41444.99 409
GG-mvs-BLEND52.24 34660.64 36829.21 39369.73 21542.41 40145.47 40652.33 40920.43 40868.16 29225.52 40565.42 38459.36 391
new_pmnet37.55 38239.80 38430.79 39756.83 39016.46 41839.35 40530.65 41725.59 40645.26 40761.60 39524.54 39628.02 41721.60 41252.80 41047.90 404
MDTV_nov1_ep13_2view18.41 41653.74 36631.57 39044.89 40829.90 37932.93 37571.48 319
TESTMET0.1,145.17 36944.93 37545.89 37856.02 39438.31 33753.18 36841.94 40627.85 39744.86 40956.47 40517.93 41541.50 40538.08 34368.06 37657.85 393
PVSNet_036.71 2241.12 37940.78 38242.14 38859.97 37240.13 32340.97 40142.24 40530.81 39344.86 40949.41 41240.70 31245.12 38923.15 41034.96 41541.16 411
dp44.09 37444.88 37641.72 39158.53 38423.18 41154.70 36242.38 40334.80 37244.25 41165.61 38424.48 39844.80 39129.77 38849.42 41157.18 396
PMMVS44.69 37143.95 37946.92 37350.05 41253.47 20248.08 38642.40 40222.36 41344.01 41253.05 40842.60 30145.49 38631.69 38061.36 39541.79 410
MVS-HIRNet45.53 36747.29 36740.24 39262.29 35826.82 40056.02 35237.41 41429.74 39543.69 41381.27 23733.96 34555.48 35824.46 40856.79 40438.43 413
E-PMN45.17 36945.36 37244.60 38350.07 41142.75 30038.66 40642.29 40446.39 28439.55 41451.15 41026.00 39045.37 38837.68 34576.41 31245.69 407
MVEpermissive27.91 2336.69 38335.64 38639.84 39343.37 42035.85 35719.49 41424.61 42024.68 40839.05 41562.63 39338.67 32627.10 41821.04 41447.25 41356.56 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS44.61 37344.45 37845.10 38248.91 41443.00 29837.92 40741.10 41046.75 28238.00 41648.43 41326.42 38846.27 38337.11 35175.38 32346.03 406
CHOSEN 280x42041.62 37839.89 38346.80 37461.81 36051.59 20933.56 41235.74 41527.48 39937.64 41753.53 40623.24 40142.09 40127.39 39758.64 40146.72 405
kuosan22.02 38523.52 38917.54 40141.56 42311.24 42241.99 40013.39 42626.13 40428.87 41830.75 4169.72 42621.94 4204.77 42114.49 41919.43 416
tmp_tt11.98 38814.73 3913.72 4032.28 4264.62 42719.44 41514.50 4240.47 42121.55 4199.58 41925.78 3924.57 42211.61 41927.37 4161.96 418
DeepMVS_CXcopyleft11.83 40215.51 42413.86 42011.25 4275.76 41820.85 42026.46 41717.06 4189.22 4219.69 42013.82 42012.42 417
test_method19.26 38619.12 39019.71 4009.09 4251.91 4287.79 41653.44 3581.42 41910.27 42135.80 41517.42 41725.11 41912.44 41824.38 41732.10 414
EGC-MVSNET64.77 24161.17 27575.60 10086.90 4374.47 3484.04 3968.62 2720.60 4201.13 42291.61 3265.32 13374.15 23664.01 12988.28 16278.17 251
test1234.43 3915.78 3940.39 4050.97 4270.28 42946.33 3920.45 4280.31 4220.62 4231.50 4220.61 4280.11 4240.56 4220.63 4210.77 420
testmvs4.06 3925.28 3950.41 4040.64 4280.16 43042.54 3980.31 4290.26 4230.50 4241.40 4230.77 4270.17 4230.56 4220.55 4220.90 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k17.71 38723.62 3880.00 4060.00 4290.00 4310.00 41770.17 2610.00 4240.00 42574.25 32368.16 1000.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.20 3906.93 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42462.39 1560.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re5.62 3897.50 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42567.46 3770.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS22.69 41236.10 361
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
No_MVS79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
eth-test20.00 429
eth-test0.00 429
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15189.79 13683.08 157
save fliter87.00 4067.23 9079.24 8977.94 18256.65 169
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 151
GSMVS70.05 334
sam_mvs131.41 36470.05 334
sam_mvs31.21 368
MTGPAbinary80.63 130
test_post166.63 2632.08 42030.66 37359.33 34440.34 328
test_post1.99 42130.91 37154.76 361
patchmatchnet-post68.99 36431.32 36569.38 282
MTMP84.83 3419.26 423
gm-plane-assit62.51 35633.91 37037.25 36062.71 39272.74 24638.70 336
test9_res72.12 7291.37 9477.40 260
agg_prior270.70 7690.93 10978.55 246
test_prior470.14 6777.57 106
test_prior75.27 10482.15 11859.85 15784.33 6383.39 8982.58 174
新几何271.33 192
旧先验184.55 8260.36 15463.69 30487.05 13754.65 23183.34 24169.66 339
无先验74.82 14370.94 25447.75 27676.85 20454.47 22072.09 315
原ACMM274.78 147
testdata267.30 30148.34 272
segment_acmp68.30 99
testdata168.34 23957.24 161
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior585.49 3286.15 2971.09 7390.94 10784.82 98
plane_prior489.11 97
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 430
nn0.00 430
door-mid55.02 347
test1182.71 90
door52.91 362
HQP5-MVS58.80 168
BP-MVS67.38 104
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152