This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33777.16 10981.81 9880.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31777.15 11081.28 10879.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
wuyk23d61.97 26366.25 21749.12 35358.19 37460.77 14966.32 25752.97 35255.93 17090.62 586.91 13273.07 5735.98 39820.63 40291.63 8750.62 388
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32077.06 11282.61 8780.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 31976.76 11380.46 12878.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
LCM-MVSNet-Re69.10 18171.57 15661.70 28170.37 27734.30 35761.45 30279.62 14256.81 15989.59 888.16 11968.44 9272.94 24042.30 30387.33 17777.85 252
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9682.24 9078.21 989.57 992.10 1868.05 9685.59 4866.04 11295.62 994.88 5
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19550.51 23889.19 1090.88 4271.45 6777.78 19073.38 5690.60 11890.90 18
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9361.89 11688.77 1293.32 457.15 20882.60 9970.08 7692.80 7189.25 28
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16274.60 21075.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 191
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20264.10 9587.73 1792.24 1750.45 24781.30 11967.41 9791.46 9186.04 73
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 8970.72 4487.54 2192.44 1468.00 9881.34 11772.84 6191.72 8491.69 10
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19351.98 21987.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 154
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20052.27 21487.37 2692.25 1668.04 9780.56 13572.28 6791.15 9890.32 22
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19551.33 22987.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15174.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23767.58 9494.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13357.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 140
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testf175.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
APD_test275.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14553.48 20686.29 3692.43 1562.39 14980.25 14267.90 9390.61 11787.77 49
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 153
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8259.02 13885.92 4189.17 9258.56 19182.74 9770.73 7389.14 15091.05 15
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12672.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 119
v875.07 9775.64 9573.35 12673.42 23547.46 25175.20 13481.45 10460.05 12885.64 4589.26 8758.08 19981.80 11269.71 8087.97 16790.79 19
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8780.55 13772.51 6593.37 6383.48 139
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 118
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14871.70 23072.33 3585.50 5093.65 377.98 2176.88 20054.60 21291.64 8689.08 32
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8372.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11383.49 137
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 148
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12472.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 128
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30666.16 7184.76 6093.23 549.47 25280.97 12965.66 11586.67 19185.02 93
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
test_part285.90 5766.44 9184.61 62
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 122
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 162
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 121
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 146
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9253.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 126
lessismore_v072.75 14579.60 14156.83 17757.37 32183.80 7289.01 9747.45 26878.74 16664.39 12386.49 19482.69 166
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12766.87 6483.64 7486.18 15870.25 7879.90 14861.12 15488.95 15587.56 53
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8854.55 18783.50 7589.21 8971.51 6575.74 21061.24 15092.34 7988.94 37
V4271.06 15370.83 16471.72 16267.25 31447.14 25565.94 26180.35 13251.35 22883.40 7683.23 20659.25 18578.80 16465.91 11380.81 26389.23 29
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29670.98 19178.29 17168.67 5683.04 7789.26 8772.99 5880.75 13455.58 20495.47 1091.35 13
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11679.71 14165.50 7582.99 7988.60 10866.94 10572.35 25059.77 16988.54 15879.56 225
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27174.73 14380.19 13468.80 5382.95 8092.91 866.26 11676.76 20258.41 17992.77 7289.30 27
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40373.86 5286.31 1978.84 1994.03 5384.64 103
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21371.97 17179.36 14850.34 23982.81 8383.63 19464.38 13467.27 29661.54 14883.71 23280.71 209
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 10878.37 17674.80 4490.76 11682.40 174
ZD-MVS83.91 8669.36 6981.09 11458.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 14936.57 33971.82 17879.54 14757.63 15382.57 8690.38 6459.38 18478.99 16157.91 18294.56 3491.23 14
ANet_high67.08 21069.94 16958.51 30657.55 37527.09 38858.43 32576.80 19163.56 10182.40 8791.93 2059.82 18064.98 31650.10 24688.86 15683.46 141
v124073.06 12673.14 12872.84 14374.74 21547.27 25471.88 17781.11 11251.80 22082.28 8884.21 18656.22 21882.34 10368.82 8287.17 18488.91 38
tt080576.12 8478.43 6869.20 20181.32 12541.37 30276.72 11477.64 18063.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8685.26 5466.15 10991.24 9587.61 52
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16581.73 9952.76 21181.85 9184.56 18157.12 20982.24 10668.58 8387.33 17789.06 33
PC_three_145246.98 27181.83 9286.28 15466.55 11584.47 7163.31 13890.78 11383.49 137
v114473.29 12073.39 12273.01 13474.12 22748.11 23972.01 17081.08 11553.83 20281.77 9384.68 17958.07 20081.91 11068.10 8786.86 18688.99 36
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6683.53 8267.95 9292.44 7689.60 24
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26869.26 21378.81 15766.66 6781.74 9586.88 13363.26 13981.07 12556.21 19694.98 2091.05 15
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26869.47 21080.14 13665.22 8281.74 9587.08 12761.82 15581.07 12556.21 19694.98 2091.93 8
v192192072.96 13272.98 13372.89 14274.67 21647.58 24971.92 17580.69 12151.70 22281.69 9783.89 19156.58 21582.25 10568.34 8587.36 17588.82 40
WR-MVS71.20 15272.48 14167.36 22984.98 7035.70 34764.43 28268.66 26365.05 8681.49 9886.43 15257.57 20676.48 20450.36 24493.32 6589.90 23
v14419272.99 13073.06 13172.77 14474.58 22047.48 25071.90 17680.44 12951.57 22381.46 9984.11 18858.04 20182.12 10767.98 9187.47 17388.70 43
bld_raw_dy_0_6469.94 16769.64 17270.84 17173.28 23846.85 25875.82 13186.52 1640.43 32881.41 10074.77 30148.70 26283.01 9356.25 19489.59 13882.66 167
IU-MVS86.12 5360.90 14480.38 13045.49 28281.31 10175.64 4194.39 4184.65 102
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 165
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmvis_n_192072.36 14272.49 14071.96 16071.29 26364.06 11372.79 16181.82 9740.23 32981.25 10381.04 23070.62 7568.69 28169.74 7983.60 23483.14 152
v2v48272.55 14172.58 13972.43 15472.92 25046.72 26071.41 18379.13 15255.27 17481.17 10485.25 17555.41 22081.13 12267.25 10585.46 20289.43 26
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21087.10 879.75 783.87 22884.31 119
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22248.11 37257.24 32453.31 20780.95 10679.39 25749.00 25861.55 33045.92 28480.05 27081.03 196
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9468.80 5380.92 10788.52 10972.00 6382.39 10174.80 4493.04 6881.14 193
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25149.47 22772.94 16084.71 5159.49 13280.90 10988.81 10370.07 7979.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 13973.80 11568.84 21278.74 16037.74 33371.02 19079.83 14056.12 16680.88 11089.45 8458.18 19378.28 17956.63 18893.36 6490.51 21
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18187.58 573.06 5991.34 9389.01 34
IterMVS-LS73.01 12873.12 13072.66 14873.79 23149.90 22271.63 18078.44 16758.22 14380.51 11286.63 14558.15 19579.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6483.45 8462.45 14392.40 7778.92 236
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20082.35 175
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9087.03 1067.39 9991.26 9483.50 136
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13875.34 1579.80 11894.91 269.79 8380.25 14272.63 6394.46 3688.78 42
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15473.04 15981.50 10245.34 28479.66 11984.35 18565.15 12882.65 9848.70 25889.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20081.04 11663.67 10079.54 12086.37 15362.83 14381.82 11157.10 18695.25 1490.94 17
Baseline_NR-MVSNet70.62 15973.19 12762.92 27276.97 18234.44 35568.84 21870.88 24960.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17273.03 21761.14 12079.45 12290.36 6760.44 17375.20 21650.20 24588.05 16484.54 110
ambc70.10 18777.74 17250.21 21774.28 15177.93 17879.26 12388.29 11554.11 22779.77 14964.43 12291.10 10280.30 216
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17570.09 4979.17 12488.02 12153.04 23183.60 8058.05 18193.76 5990.79 19
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9562.47 11479.06 12580.19 24461.83 15478.79 16559.83 16887.35 17679.54 228
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15059.44 13378.88 12689.80 7971.26 6973.09 23957.45 18380.89 26089.17 31
tttt051769.46 17567.79 20174.46 10775.34 20452.72 20175.05 13563.27 29954.69 18378.87 12784.37 18426.63 37881.15 12163.95 12887.93 16889.51 25
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 21972.70 22354.79 18178.59 12884.12 18754.69 22276.74 20359.40 17382.20 24386.79 63
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16472.24 16471.56 23363.92 9678.59 12871.59 33066.22 11778.60 16767.58 9480.32 26789.00 35
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16972.02 16971.50 23463.53 10278.58 13071.39 33465.98 11878.53 16867.30 10480.18 26989.23 29
旧先验271.17 18945.11 28778.54 13161.28 33159.19 174
MIMVSNet166.57 21769.23 17758.59 30581.26 12737.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17086.15 2771.09 7190.94 10584.82 98
plane_prior365.67 9963.82 9878.23 133
eth_miper_zixun_eth69.42 17668.73 18771.50 16667.99 30646.42 26367.58 23778.81 15750.72 23678.13 13580.34 24150.15 24980.34 14060.18 16284.65 21887.74 50
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13564.71 9178.11 13688.39 11265.46 12583.14 8977.64 2991.20 9678.94 235
h-mvs3373.08 12471.61 15477.48 7483.89 8872.89 4470.47 19871.12 24654.28 18977.89 13783.41 19649.04 25680.98 12863.62 13390.77 11578.58 239
hse-mvs272.32 14370.66 16677.31 7983.10 10071.77 4769.19 21571.45 23654.28 18977.89 13778.26 27349.04 25679.23 15663.62 13389.13 15180.92 200
PM-MVS64.49 23863.61 24867.14 23376.68 18975.15 2768.49 22842.85 38751.17 23277.85 13980.51 23745.76 27266.31 30852.83 22976.35 30259.96 376
BH-untuned69.39 17769.46 17369.18 20277.96 16956.88 17568.47 22977.53 18156.77 16077.79 14079.63 25360.30 17580.20 14546.04 28380.65 26470.47 319
c3_l69.82 17069.89 17069.61 19466.24 32443.48 28668.12 23279.61 14451.43 22577.72 14180.18 24554.61 22478.15 18463.62 13387.50 17287.20 58
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 21963.12 14077.64 19262.95 14088.14 16271.73 308
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19377.68 14387.18 12569.98 8085.37 5168.01 9092.72 7485.08 91
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10263.92 9677.51 14486.56 14868.43 9384.82 6573.83 5391.61 8882.26 179
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19284.26 6255.62 17277.46 14587.10 12667.09 10477.81 18863.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TinyColmap67.98 19669.28 17564.08 25667.98 30746.82 25970.04 20275.26 20453.05 20877.36 14686.79 13559.39 18372.59 24745.64 28688.01 16672.83 296
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10651.71 22177.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20350.84 23577.12 14885.42 17256.84 21369.44 27551.07 23891.16 9785.08 91
TEST985.47 6369.32 7076.42 11878.69 16253.73 20376.97 14986.74 13866.84 10781.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16254.00 19876.97 14986.74 13866.60 11381.10 12372.50 6691.56 8977.15 258
agg_prior84.44 8166.02 9778.62 16576.95 15180.34 140
IterMVS-SCA-FT67.68 20166.07 22072.49 15373.34 23758.20 17163.80 28765.55 28148.10 26076.91 15282.64 21345.20 27678.84 16361.20 15177.89 29480.44 215
Anonymous2024052972.56 13973.79 11668.86 21176.89 18745.21 27368.80 22277.25 18667.16 6176.89 15390.44 5665.95 11974.19 23050.75 24090.00 12787.18 59
test_885.09 6967.89 7976.26 12378.66 16454.00 19876.89 15386.72 14066.60 11380.89 133
cl____68.26 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.42 21548.74 26075.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19468.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.43 21448.74 26075.38 21260.94 15589.81 13285.81 76
MVS_111021_LR72.10 14571.82 15072.95 13779.53 14273.90 3670.45 19966.64 27256.87 15876.81 15781.76 22368.78 8871.76 25861.81 14483.74 23073.18 291
CLD-MVS72.88 13472.36 14474.43 11077.03 17954.30 19168.77 22383.43 7652.12 21676.79 15874.44 30769.54 8583.91 7555.88 19993.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FMVSNet267.48 20368.21 19465.29 24773.14 24238.94 32168.81 22071.21 24554.81 17876.73 15986.48 15048.63 26374.60 22447.98 26886.11 19782.35 175
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24058.76 32266.22 27427.54 38476.66 16068.69 35925.32 38651.31 35453.42 22773.38 33077.97 251
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16884.40 5955.95 16976.62 16186.46 15167.20 10278.03 18564.22 12587.27 18087.11 61
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18876.61 16281.64 22572.03 6175.34 21457.12 18587.28 17984.40 116
SSC-MVS61.79 26666.08 21948.89 35576.91 18410.00 40953.56 35647.37 37468.20 5876.56 16389.21 8954.13 22657.59 34554.75 20974.07 32579.08 234
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 10958.80 16671.48 18173.64 21454.98 17776.55 16481.77 22261.10 16778.94 16254.87 20880.84 26272.74 298
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24269.85 20779.62 14253.94 20176.54 16582.00 21859.00 18774.68 22357.32 18487.21 18284.72 101
test_prior275.57 13258.92 13976.53 16686.78 13667.83 10069.81 7792.76 73
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 12879.90 13946.03 27776.48 16785.02 17767.96 9973.97 23274.47 4987.22 18183.90 127
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18465.11 8576.47 16886.80 13449.47 25283.77 7753.89 22192.72 7488.81 41
pmmvs671.82 14773.66 11866.31 24175.94 20042.01 29866.99 24872.53 22563.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 11987.22 56
testdata64.13 25585.87 5963.34 11861.80 30747.83 26476.42 17086.60 14748.83 25962.31 32754.46 21481.26 25866.74 348
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14656.32 16576.35 17183.36 20170.76 7477.96 18663.32 13781.84 24983.18 151
miper_ehance_all_eth68.36 19068.16 19668.98 20665.14 33543.34 28867.07 24778.92 15649.11 25476.21 17277.72 28053.48 22977.92 18761.16 15284.59 22085.68 82
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17383.39 19766.91 10680.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_HR72.98 13172.97 13472.99 13580.82 12965.47 10068.81 22072.77 22257.67 15075.76 17482.38 21671.01 7277.17 19561.38 14986.15 19576.32 264
CNLPA73.44 11573.03 13274.66 10578.27 16375.29 2675.99 12778.49 16665.39 7875.67 17583.22 20861.23 16366.77 30553.70 22385.33 20681.92 184
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28365.65 26777.32 18464.32 9375.59 17687.08 12762.45 14881.34 11754.90 20795.63 891.93 8
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11765.77 7275.55 17786.25 15767.42 10185.42 5070.10 7590.88 11181.81 185
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14779.34 14945.58 27975.54 17883.91 19067.19 10373.88 23573.26 5786.86 18683.63 135
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30343.88 38341.10 31171.14 34769.21 332
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30443.85 38440.98 31371.20 34669.10 334
EI-MVSNet69.61 17369.01 18171.41 16773.94 22949.90 22271.31 18671.32 23958.22 14375.40 18170.44 33758.16 19475.85 20662.51 14179.81 27388.48 44
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23941.83 31175.40 18179.12 26330.25 36675.85 20656.30 19379.81 27383.03 156
TransMVSNet (Re)69.62 17271.63 15363.57 26276.51 19035.93 34565.75 26671.29 24161.05 12175.02 18389.90 7865.88 12170.41 27249.79 24789.48 14184.38 117
新几何169.99 18988.37 3471.34 5162.08 30443.85 29474.99 18486.11 16352.85 23270.57 26850.99 23983.23 23768.05 339
Effi-MVS+-dtu75.43 9172.28 14584.91 277.05 17883.58 178.47 9377.70 17957.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18685.32 17365.54 12387.79 265.61 11691.14 9983.35 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet71.60 14973.13 12967.02 23486.29 4741.11 30469.97 20466.50 27368.72 5574.74 18791.70 2559.90 17875.81 20848.58 26091.72 8484.15 123
GBi-Net68.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
test168.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25470.38 25251.55 22474.72 18883.27 20437.89 32374.44 22647.12 27385.37 20381.57 189
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19184.52 18269.87 8284.94 6169.76 7889.59 13886.60 67
test_fmvsmconf_n72.91 13372.40 14374.46 10768.62 29866.12 9674.21 15278.80 15945.64 27874.62 19283.25 20566.80 11173.86 23672.97 6086.66 19283.39 143
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19059.63 31647.51 37341.05 31974.58 19374.30 30931.06 36065.31 31351.61 23379.85 27267.39 341
cl2267.14 20966.51 21569.03 20563.20 34543.46 28766.88 25276.25 19449.22 25274.48 19477.88 27945.49 27577.40 19460.64 15884.59 22086.24 69
thisisatest053067.05 21265.16 23272.73 14773.10 24550.55 21271.26 18863.91 29550.22 24274.46 19580.75 23426.81 37780.25 14259.43 17286.50 19387.37 54
TSAR-MVS + GP.73.08 12471.60 15577.54 7378.99 15770.73 5774.96 13669.38 25860.73 12474.39 19678.44 27157.72 20582.78 9660.16 16389.60 13779.11 233
test_fmvsm_n_192069.63 17168.45 18973.16 13070.56 27265.86 9870.26 20178.35 16837.69 34574.29 19778.89 26761.10 16768.10 28765.87 11479.07 28085.53 83
原ACMM173.90 11885.90 5765.15 10681.67 10050.97 23374.25 19886.16 16061.60 15783.54 8156.75 18791.08 10373.00 293
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8660.39 12674.15 19983.30 20369.65 8482.07 10869.27 8186.75 19087.36 55
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20260.18 15369.49 20962.05 30538.81 33874.13 20082.23 21743.76 28668.65 28242.53 30280.63 26674.63 277
VPA-MVSNet68.71 18670.37 16763.72 26076.13 19538.06 33164.10 28471.48 23556.60 16474.10 20188.31 11464.78 13269.72 27347.69 27190.15 12483.37 145
WB-MVS60.04 28064.19 24247.59 35776.09 19610.22 40852.44 36146.74 37565.17 8474.07 20287.48 12453.48 22955.28 34849.36 25272.84 33377.28 255
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23570.83 25061.23 11974.07 20288.69 10559.86 17975.62 21151.11 23790.28 12184.61 106
FA-MVS(test-final)71.27 15171.06 16171.92 16173.96 22852.32 20476.45 11776.12 19559.07 13774.04 20486.18 15852.18 23579.43 15559.75 17081.76 25084.03 124
pm-mvs168.40 18969.85 17164.04 25873.10 24539.94 31464.61 28070.50 25155.52 17373.97 20589.33 8563.91 13768.38 28449.68 24988.02 16583.81 129
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19153.90 19664.62 27973.48 21558.01 14573.91 20681.78 22159.09 18678.22 18048.59 25977.96 29378.31 242
test1276.51 8682.28 11360.94 14381.64 10173.60 20764.88 13085.19 5990.42 12083.38 144
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20380.37 7178.79 16049.63 24873.51 20885.14 17653.66 22879.12 15855.11 20675.54 30975.11 275
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19480.08 7875.93 19864.24 9473.49 20988.93 10157.89 20362.46 32559.75 17091.55 9062.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs_anonymous65.08 23065.49 22663.83 25963.79 34237.60 33566.52 25669.82 25643.44 30273.46 21086.08 16458.79 19071.75 25951.90 23275.63 30882.15 180
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17642.52 30873.42 21172.79 32349.66 25077.68 19158.12 18084.59 22084.54 110
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15362.85 11073.33 21288.41 11162.54 14779.59 15363.94 13082.92 23882.94 158
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10566.17 7073.30 21383.31 20259.96 17783.10 9158.45 17881.66 25582.87 160
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7854.16 19573.23 21480.75 23462.19 15283.86 7668.02 8990.92 10883.65 134
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24744.04 29373.06 21578.84 26839.72 31160.33 33355.82 20084.64 21982.88 159
test22287.30 3769.15 7367.85 23459.59 31441.06 31873.05 21685.72 17148.03 26680.65 26466.92 344
iter_conf0567.34 20865.62 22472.50 15269.82 28447.06 25672.19 16676.86 18945.32 28572.86 21782.85 20920.53 39683.73 7861.13 15389.02 15486.70 65
MCST-MVS73.42 11673.34 12573.63 12381.28 12659.17 16074.80 14183.13 7945.50 28072.84 21883.78 19365.15 12880.99 12764.54 12189.09 15380.73 207
tfpnnormal66.48 21867.93 19762.16 27873.40 23636.65 33863.45 29064.99 28555.97 16872.82 21987.80 12357.06 21169.10 27948.31 26487.54 17080.72 208
FE-MVS68.29 19366.96 21272.26 15874.16 22654.24 19277.55 10373.42 21657.65 15272.66 22084.91 17832.02 35181.49 11648.43 26281.85 24881.04 195
Anonymous2024052163.55 24766.07 22055.99 31866.18 32644.04 28168.77 22368.80 26146.99 27072.57 22185.84 16939.87 31050.22 35753.40 22892.23 8173.71 288
114514_t73.40 11773.33 12673.64 12284.15 8557.11 17478.20 9780.02 13743.76 29772.55 22286.07 16564.00 13683.35 8660.14 16491.03 10480.45 214
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 11865.57 7472.54 22381.76 22370.98 7385.26 5447.88 26990.00 12773.37 289
LF4IMVS67.50 20267.31 20768.08 22258.86 37061.93 12771.43 18275.90 19944.67 29172.42 22480.20 24357.16 20770.44 27058.99 17586.12 19671.88 306
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16171.22 4072.40 22588.70 10460.51 17287.70 377.40 3289.13 15185.48 84
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8059.86 13172.27 22684.00 18964.56 13383.07 9251.48 23487.19 18382.56 172
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24074.20 21235.80 35572.25 22784.48 18345.67 27371.95 25637.95 33384.97 21170.42 321
3Dnovator65.95 1171.50 15071.22 16072.34 15673.16 24163.09 12078.37 9478.32 16957.67 15072.22 22884.61 18054.77 22178.47 17060.82 15781.07 25975.45 270
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17973.34 15784.67 5262.04 11572.19 22970.81 33565.90 12085.24 5658.64 17684.96 21481.95 183
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 23956.40 33354.05 19772.04 23086.66 14233.19 34060.17 33443.69 29687.45 17477.42 253
diffmvspermissive67.42 20667.50 20467.20 23162.26 34945.21 27364.87 27677.04 18748.21 25971.74 23179.70 25258.40 19271.17 26464.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AUN-MVS70.22 16267.88 19977.22 8082.96 10471.61 4869.08 21671.39 23749.17 25371.70 23278.07 27837.62 32579.21 15761.81 14489.15 14980.82 203
HQP4-MVS71.59 23385.31 5283.74 132
HQP-NCC82.37 11077.32 10659.08 13471.58 234
ACMP_Plane82.37 11077.32 10659.08 13471.58 234
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23485.96 16758.09 19785.30 5367.38 10189.16 14783.73 133
MVS_Test69.84 16970.71 16567.24 23067.49 31243.25 29069.87 20681.22 11152.69 21271.57 23786.68 14162.09 15374.51 22566.05 11178.74 28383.96 125
TR-MVS64.59 23663.54 24967.73 22775.75 20350.83 21163.39 29170.29 25349.33 25171.55 23874.55 30550.94 24378.46 17140.43 31675.69 30773.89 286
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20063.81 28662.25 30146.57 27371.51 23980.40 23944.60 28166.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21848.61 23466.06 26078.32 16950.62 23771.48 24075.54 29568.75 8979.59 15350.55 24378.73 28482.86 161
test111164.62 23565.19 23162.93 27179.01 15629.91 37865.45 27054.41 34254.09 19671.47 24188.48 11037.02 32774.29 22946.83 27889.94 13084.58 109
VPNet65.58 22567.56 20259.65 29879.72 13930.17 37760.27 31362.14 30254.19 19471.24 24286.63 14558.80 18967.62 29144.17 29590.87 11281.18 192
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18080.99 6176.84 19062.48 11371.24 24277.51 28361.51 15980.96 13252.04 23085.76 20171.22 313
LFMVS67.06 21167.89 19864.56 25278.02 16738.25 32870.81 19559.60 31365.18 8371.06 24486.56 14843.85 28575.22 21546.35 28089.63 13680.21 218
BH-w/o64.81 23364.29 24166.36 24076.08 19854.71 18865.61 26875.23 20550.10 24471.05 24571.86 32954.33 22579.02 16038.20 33176.14 30465.36 354
Effi-MVS+72.10 14572.28 14571.58 16374.21 22550.33 21574.72 14482.73 8462.62 11170.77 24676.83 28769.96 8180.97 12960.20 16178.43 28783.45 142
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 24932.07 34972.09 25235.61 35281.73 25177.08 260
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22767.14 26943.74 29870.61 24879.22 26047.90 26772.66 24348.75 25773.84 32871.21 314
MSDG67.47 20567.48 20567.46 22870.70 26854.69 18966.90 25178.17 17260.88 12370.41 24974.76 30261.22 16573.18 23847.38 27276.87 29974.49 280
DP-MVS Recon73.57 11472.69 13776.23 9182.85 10563.39 11774.32 14982.96 8157.75 14870.35 25081.98 21964.34 13584.41 7349.69 24889.95 12980.89 201
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25132.07 34972.42 24938.61 32783.46 23582.02 181
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19578.29 9577.35 18348.85 25670.22 25283.52 19552.65 23376.93 19855.31 20581.99 24575.49 269
testing358.28 29258.38 29058.00 30977.45 17726.12 39360.78 30943.00 38656.02 16770.18 25375.76 29213.27 41167.24 29748.02 26780.89 26080.65 210
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25480.80 23366.74 11281.96 10961.74 14689.40 14585.69 81
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24356.29 33769.58 25739.32 33370.07 25578.19 27534.93 33472.68 24253.44 22683.74 23081.00 198
ECVR-MVScopyleft64.82 23265.22 22963.60 26178.80 15831.14 37266.97 24956.47 33254.23 19169.94 25688.68 10637.23 32674.81 22245.28 29189.41 14384.86 96
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24553.87 34453.60 20469.88 25783.37 19940.52 30670.98 26541.40 31086.78 18981.48 190
TAMVS65.31 22763.75 24669.97 19082.23 11459.76 15666.78 25363.37 29845.20 28669.79 25879.37 25847.42 26972.17 25134.48 35785.15 21077.99 250
Anonymous20240521166.02 22266.89 21363.43 26574.22 22438.14 32959.00 31966.13 27563.33 10769.76 25985.95 16851.88 23670.50 26944.23 29487.52 17181.64 188
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 31362.04 12670.69 19669.85 25539.46 33269.59 26081.09 22958.15 19568.73 28067.51 9678.16 29277.07 262
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22156.70 33565.80 27726.22 38969.42 26165.25 37231.82 35249.98 35849.63 25070.36 35170.71 318
FPMVS59.43 28560.07 27657.51 31177.62 17671.52 4962.33 29950.92 35957.40 15569.40 26280.00 24839.14 31561.92 32937.47 33766.36 36939.09 399
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25951.33 22969.33 26374.47 30636.83 32874.94 21950.60 24274.72 31680.57 213
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20766.93 6269.11 26488.95 10057.84 20486.12 2976.63 3789.77 13585.28 86
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16368.27 26626.96 38669.08 26575.71 29332.09 34867.44 29455.59 20378.90 28273.97 284
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10154.10 19359.93 31572.24 22933.67 36669.00 26675.63 29438.69 31776.93 19836.60 34475.45 31180.81 205
ET-MVSNet_ETH3D63.32 25060.69 27371.20 16970.15 28155.66 18365.02 27564.32 29243.28 30768.99 26772.05 32825.46 38478.19 18354.16 22082.80 23979.74 224
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23563.78 28882.13 9154.00 19868.96 26875.17 29958.95 18880.06 14758.55 17782.74 24082.76 163
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 21844.34 38378.17 17223.62 39668.95 26962.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23851.42 22668.93 27082.72 21165.62 12262.22 32854.41 21584.67 21677.28 255
sd_testset63.55 24765.38 22758.07 30873.04 24838.83 32357.41 33165.44 28251.42 22668.93 27082.72 21163.76 13858.11 34341.05 31284.67 21677.28 255
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
Fast-Effi-MVS+-dtu70.00 16568.74 18673.77 12073.47 23464.53 11071.36 18478.14 17455.81 17168.84 27474.71 30465.36 12675.75 20952.00 23179.00 28181.03 196
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26561.17 13874.00 15457.18 32540.77 32368.83 27580.88 23263.11 14167.61 29266.94 10674.72 31682.33 178
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14675.15 20658.41 14268.74 27688.14 12056.08 21983.69 7959.90 16781.71 25479.43 230
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 31661.38 13470.03 20369.15 26038.59 33968.41 27780.36 24056.56 21668.32 28566.10 11077.45 29676.46 263
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28961.16 13973.34 15756.83 32840.96 32068.36 27880.08 24762.84 14267.57 29366.90 10874.50 32081.78 186
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25177.08 260
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25182.02 181
fmvsm_s_conf0.1_n66.60 21665.54 22569.77 19268.99 29559.15 16172.12 16756.74 33040.72 32568.25 28180.14 24661.18 16666.92 29967.34 10374.40 32183.23 150
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28367.84 28281.17 22851.81 23943.20 38629.30 37879.41 27867.34 343
fmvsm_s_conf0.5_n66.34 22165.27 22869.57 19568.20 30359.14 16371.66 17956.48 33140.92 32167.78 28379.46 25561.23 16366.90 30067.39 9974.32 32482.66 167
xiu_mvs_v1_base_debu67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
test250661.23 27060.85 27162.38 27678.80 15827.88 38667.33 24437.42 40054.23 19167.55 28788.68 10617.87 40474.39 22746.33 28189.41 14384.86 96
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28751.21 23167.46 28881.01 23150.75 24463.51 32338.47 32988.12 16382.75 164
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 28963.15 37731.82 35230.60 40139.19 32262.28 37945.53 395
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13358.28 17065.26 27265.66 27944.36 29267.30 29075.54 29543.27 28871.77 25737.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu70.04 16468.88 18273.53 12582.71 10763.62 11674.81 13981.95 9648.53 25867.16 29179.18 26251.42 24178.38 17554.39 21679.72 27678.60 238
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13568.63 7578.18 9881.24 10954.57 18667.09 29280.63 23659.44 18281.74 11446.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet64.01 24665.15 23460.57 29273.28 23835.61 34857.60 33067.08 27054.61 18566.76 29383.37 19956.28 21766.87 30142.19 30485.20 20979.23 232
PAPR69.20 17968.66 18870.82 17275.15 20847.77 24675.31 13381.11 11249.62 24966.33 29479.27 25961.53 15882.96 9448.12 26681.50 25781.74 187
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17364.53 28160.22 31136.91 35065.96 29577.27 28439.66 31268.54 28338.87 32474.89 31571.80 307
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20668.07 23368.00 26733.88 36365.87 29681.25 22737.91 32267.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32465.80 29772.57 32441.23 29963.92 32046.87 27782.42 24278.33 241
MAR-MVS67.72 20066.16 21872.40 15574.45 22164.99 10774.87 13777.50 18248.67 25765.78 29868.58 36057.01 21277.79 18946.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21455.80 34265.90 27624.96 39265.39 29960.64 38627.69 37548.46 36345.88 28567.99 36465.46 353
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23668.79 26249.08 25565.32 30086.26 15658.02 20266.85 30339.33 32079.79 27578.27 243
jason64.47 23962.84 25669.34 19976.91 18459.20 15767.15 24665.67 27835.29 35665.16 30176.74 28844.67 28070.68 26654.74 21079.28 27978.14 246
jason: jason.
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24365.07 30283.23 20645.61 27448.11 36630.22 37383.82 22971.07 316
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17242.47 38523.85 40923.30 39764.80 30362.17 38127.12 37640.59 39229.17 38148.11 39957.69 381
EIA-MVS68.59 18867.16 20872.90 14175.18 20755.64 18469.39 21181.29 10752.44 21364.53 30470.69 33660.33 17482.30 10454.27 21876.31 30380.75 206
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31764.28 30779.82 25044.77 27948.43 36536.24 34887.61 16978.03 248
DPM-MVS69.98 16669.22 17872.26 15882.69 10858.82 16570.53 19781.23 11047.79 26564.16 30880.21 24251.32 24283.12 9060.14 16484.95 21574.83 276
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18160.84 30864.11 29441.23 31664.04 30978.22 27460.00 17648.80 36154.17 21983.71 23271.37 310
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24164.01 31071.46 33232.49 34571.39 26231.31 36979.57 27771.19 315
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24551.44 36554.61 34026.95 38763.95 31160.85 38437.86 32444.97 37745.53 28762.97 37759.72 377
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32763.85 31269.91 34740.04 30958.22 34243.49 29975.29 31471.03 317
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27663.83 31378.47 27041.20 30063.68 32139.44 31968.99 35974.13 283
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31479.43 25656.59 21445.57 37236.92 34371.29 34565.25 355
cascas64.59 23662.77 25770.05 18875.27 20550.02 21961.79 30171.61 23142.46 30963.68 31568.89 35649.33 25480.35 13947.82 27084.05 22779.78 223
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23054.11 35364.96 28624.64 39463.66 31659.61 38928.33 37448.45 36445.38 29067.30 36862.66 368
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32263.58 31769.12 35126.28 38078.34 17748.83 25682.13 24480.26 217
MVSFormer69.93 16869.03 18072.63 15074.93 20959.19 15883.98 3675.72 20052.27 21463.53 31876.74 28843.19 28980.56 13572.28 6778.67 28578.14 246
lupinMVS63.36 24961.49 26568.97 20774.93 20959.19 15865.80 26564.52 29134.68 36163.53 31874.25 31043.19 28970.62 26753.88 22278.67 28577.10 259
iter_conf05_1166.64 21565.20 23070.94 17073.28 23846.89 25766.09 25977.03 18843.44 30263.43 32074.09 31547.19 27083.26 8756.25 19486.01 19882.66 167
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32074.75 30341.82 29745.83 37138.59 32859.42 38667.98 340
UWE-MVS52.94 32352.70 32653.65 32873.56 23227.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26042.52 29544.29 38227.95 38481.88 24766.88 345
CANet73.00 12971.84 14976.48 8775.82 20161.28 13674.81 13980.37 13163.17 10862.43 32480.50 23861.10 16785.16 6064.00 12784.34 22483.01 157
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17351.32 20863.63 28972.31 22845.06 28961.70 32569.66 34862.56 14573.93 23449.06 25573.91 32672.31 302
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17151.42 20763.33 29272.33 22745.09 28861.60 32668.04 36262.39 14973.95 23349.07 25473.87 32772.34 301
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13750.93 21054.07 35465.59 28028.56 38261.53 32774.33 30841.09 30266.52 30733.91 36067.69 36772.92 294
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23770.93 19256.40 33332.87 36961.35 32886.66 14233.19 34063.22 32448.50 26170.17 35369.62 328
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23770.93 19286.27 2054.66 18461.35 32886.77 13733.29 33985.67 4755.93 19870.17 35369.62 328
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19473.59 3961.83 30049.00 36847.30 26961.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 29961.06 33183.38 19825.46 38454.87 34930.11 37481.64 25672.75 297
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22572.63 22433.54 36861.05 33267.29 36843.62 28771.26 26349.49 25167.84 36672.19 304
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30661.00 33373.48 31745.20 27669.38 27640.34 31770.31 35270.05 322
UGNet70.20 16369.05 17973.65 12176.24 19363.64 11575.87 12972.53 22561.48 11860.93 33486.14 16152.37 23477.12 19650.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29847.07 36930.68 37160.78 38361.13 374
CVMVSNet59.21 28658.44 28961.51 28373.94 22947.76 24771.31 18664.56 29026.91 38860.34 33670.44 33736.24 33167.65 29053.57 22468.66 36169.12 333
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 22865.60 26978.96 15445.50 28059.98 33778.61 26951.82 23778.20 18144.30 29284.11 22678.27 243
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 22861.23 30578.96 15442.04 31059.98 33768.86 35751.82 23778.20 18144.30 29277.77 29572.52 299
MVS60.62 27659.97 27762.58 27468.13 30547.28 25368.59 22573.96 21332.19 37059.94 33968.86 35750.48 24677.64 19241.85 30775.74 30662.83 365
1112_ss59.48 28458.99 28460.96 29077.84 17042.39 29761.42 30368.45 26537.96 34359.93 34067.46 36545.11 27865.07 31540.89 31471.81 34275.41 271
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29330.56 38059.87 34160.68 38540.16 30847.47 36748.25 26562.46 37861.58 373
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22056.75 33460.53 31025.68 39059.74 34257.86 39029.40 37147.41 36843.10 30063.66 37564.08 363
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14338.13 33057.62 32966.98 27134.74 35959.62 34377.56 28242.92 29163.65 32238.66 32670.73 34975.35 273
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23860.22 31137.14 34959.12 34576.34 29032.78 34371.99 25539.12 32369.27 35872.47 300
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25051.80 35839.89 33058.39 34673.12 32131.69 35458.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23161.00 30762.93 30035.98 35358.36 34768.93 35536.71 32966.59 30637.62 33663.30 37657.39 382
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23156.77 32933.60 36758.25 34875.52 29730.25 36674.33 22833.27 36369.76 35771.32 311
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29558.05 34964.07 37446.22 27158.83 33946.16 28272.36 33768.12 337
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29558.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32131.03 40029.13 38371.35 34462.70 366
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 23957.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26430.20 36842.32 38732.77 36566.36 36966.81 347
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25857.28 32232.16 37156.90 35470.39 33932.75 34465.30 31434.29 35858.79 38769.41 330
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36533.87 39929.29 37972.61 33567.39 341
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25056.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27556.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13777.56 10263.57 29760.95 12256.62 35882.75 21051.53 24081.24 12054.36 21790.20 12280.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo61.56 26859.22 28168.58 21679.28 14660.44 15169.20 21471.57 23243.58 30056.42 35978.37 27239.57 31376.46 20534.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 26856.04 36073.60 31631.05 36168.06 28840.64 31564.64 37269.77 326
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31255.94 36183.86 19241.19 30150.42 35626.05 38775.38 31266.27 349
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21661.42 30365.18 28447.57 26755.83 36267.15 36923.77 39079.60 15243.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30455.81 36367.65 36429.22 37243.77 38525.73 39169.87 35564.62 360
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30038.08 32057.37 34634.02 35974.40 32166.88 345
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 33044.40 38129.15 38268.23 36258.75 379
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30154.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15674.50 21152.05 21854.78 36775.44 29843.99 28470.42 27153.49 22578.41 28880.59 212
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13129.97 36949.98 35843.62 29774.40 32164.53 362
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28339.24 33554.69 36978.14 27644.28 28367.18 29833.75 36270.79 34873.95 285
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33554.20 35230.34 37269.87 35565.71 352
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29645.40 37431.28 37064.42 37362.47 369
PAPM61.79 26660.37 27566.05 24376.09 19641.87 29969.30 21276.79 19240.64 32653.80 37279.62 25444.38 28282.92 9529.64 37773.11 33273.36 290
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33348.69 36239.24 32158.51 38965.89 350
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29130.77 36359.62 33638.21 33073.33 331
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30741.91 39031.85 36761.97 38060.35 375
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29052.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 20939.91 38967.56 26821.84 40051.94 37750.79 39833.83 33739.77 39335.25 35561.50 38162.38 370
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31551.79 37856.48 39139.44 31449.91 36021.42 40055.35 39650.85 387
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33872.45 24837.14 33964.22 37475.60 268
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38242.04 38937.19 33855.50 39465.78 351
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21741.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35754.26 35125.93 38855.93 39265.07 356
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35739.31 39425.93 38855.93 39265.07 356
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23655.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18659.10 31847.72 37150.85 23450.31 38585.81 17020.10 39863.97 31936.16 34955.41 39564.55 361
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30449.41 38660.47 38729.22 37244.73 37942.09 30572.14 34062.33 371
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33229.51 40219.08 40367.85 36550.22 389
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 24869.97 20458.02 31749.73 24747.28 38973.02 32238.14 31962.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28138.83 31639.29 39525.32 39360.12 38548.08 390
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22236.54 39524.37 40819.56 40145.76 39153.46 39432.99 34237.97 39726.17 38635.52 40144.99 396
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20842.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 37032.93 36471.48 309
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30545.12 37623.15 39734.96 40241.16 398
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19848.08 37342.40 38922.36 39844.01 39853.05 39542.60 29445.49 37331.69 36861.36 38241.79 397
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22633.96 33655.48 34724.46 39556.79 39138.43 400
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27439.55 40051.15 39726.00 38145.37 37537.68 33476.41 30145.69 394
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31827.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27238.00 40248.43 40026.42 37946.27 37037.11 34075.38 31246.03 393
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20533.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3834.57 40711.61 40527.37 4031.96 403
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2640.60 4051.13 40791.61 2865.32 12774.15 23164.01 12688.28 16078.17 245
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2540.00 4090.00 41074.25 31068.16 950.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS22.69 39936.10 350
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
No_MVS79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
eth-test20.00 414
eth-test0.00 414
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 10886.01 3161.72 14789.79 13483.08 154
save fliter87.00 3967.23 8679.24 8577.94 17756.65 163
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 148
GSMVS70.05 322
sam_mvs131.41 35570.05 322
sam_mvs31.21 359
MTGPAbinary80.63 124
test_post166.63 2542.08 40530.66 36459.33 33740.34 317
test_post1.99 40630.91 36254.76 350
patchmatchnet-post68.99 35231.32 35669.38 276
MTMP84.83 3119.26 410
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24138.70 325
test9_res72.12 6991.37 9277.40 254
agg_prior270.70 7490.93 10778.55 240
test_prior470.14 6377.57 101
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 171
新几何271.33 185
旧先验184.55 7860.36 15263.69 29687.05 13054.65 22383.34 23669.66 327
无先验74.82 13870.94 24847.75 26676.85 20154.47 21372.09 305
原ACMM274.78 142
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata168.34 23057.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 170
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 415
nn0.00 415
door-mid55.02 338
test1182.71 85
door52.91 353
HQP5-MVS58.80 166
BP-MVS67.38 101
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9463.07 12185.97 166
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145