This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9399.75 299.45 1395.82 12599.92 598.80 1999.96 499.89 1
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10793.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 306
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
wuyk23d93.25 29895.20 21487.40 38596.07 34895.38 10597.04 12294.97 33495.33 16999.70 698.11 15798.14 1791.94 40377.76 39499.68 8274.89 403
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13699.72 8798.12 3499.86 3199.73 22
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
ANet_high98.31 3198.94 696.41 21299.33 5389.64 26297.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14499.82 195.44 16699.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 19099.88 2098.72 2499.88 2799.65 33
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17899.57 1495.66 15399.52 1598.71 8497.04 6199.64 14099.21 799.87 2998.69 228
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18598.20 5198.87 11298.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12499.65 996.74 9899.47 1798.93 6496.91 7399.84 3090.11 30799.06 23198.32 265
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28599.89 1898.01 3999.76 5899.54 53
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9499.91 1399.27 599.93 1199.73 22
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15097.79 5399.42 2097.83 18894.40 17399.78 4795.91 11999.76 5899.46 81
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10498.49 3199.38 2299.14 4695.44 14299.84 3096.47 9199.80 5199.47 79
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17998.23 4699.05 6697.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsany_test396.21 18095.93 19597.05 16997.40 29794.33 15095.76 20694.20 34289.10 31799.36 2499.60 693.97 18397.85 37895.40 15598.63 27498.99 183
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15699.35 2599.37 1997.38 4299.90 1498.59 2899.91 1999.77 12
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7696.50 10999.32 2699.44 1497.43 4099.92 598.73 2299.95 599.86 2
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4799.92 597.64 5699.92 1699.75 19
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4799.93 397.71 5299.91 1999.70 26
test_vis3_rt97.04 13196.98 13697.23 15798.44 18095.88 8096.82 13299.67 690.30 30299.27 2999.33 2794.04 18096.03 39697.14 7297.83 31199.78 11
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8597.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9299.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18799.72 7199.32 115
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21198.79 2299.23 3298.86 7395.76 13199.61 15695.49 14199.36 17799.23 138
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4399.92 597.79 4899.93 1199.79 10
SD-MVS97.37 11897.70 8196.35 21398.14 21595.13 12296.54 15198.92 10195.94 13999.19 3498.08 15997.74 2895.06 39795.24 16099.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14099.89 1897.95 4199.91 1999.75 19
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26899.90 1498.64 2699.90 2499.82 6
dcpmvs_297.12 12897.99 5494.51 30399.11 9484.00 35997.75 7799.65 997.38 8199.14 3798.42 11395.16 14999.96 295.52 14099.78 5699.58 39
tfpnnormal97.72 9097.97 5596.94 17699.26 5992.23 21397.83 7298.45 18998.25 3999.13 3898.66 8896.65 8799.69 11793.92 22499.62 9298.91 197
SSC-MVS95.92 19297.03 13492.58 35399.28 5778.39 38996.68 14595.12 33298.90 1999.11 3998.66 8891.36 24399.68 12295.00 17899.16 21499.67 28
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13598.83 12896.11 12799.08 4098.24 14097.87 2399.72 8795.44 14899.51 13599.14 154
test_241102_ONE99.22 6895.35 10898.83 12896.04 13299.08 4098.13 15397.87 2399.33 245
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7699.00 8598.40 3399.07 4298.98 5896.89 7499.75 6797.19 7199.79 5399.55 52
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9791.43 23796.37 16099.11 5094.19 21099.01 4499.25 3196.30 10999.38 22899.00 1499.88 2799.73 22
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12299.05 1399.01 4498.65 9195.37 14399.90 1497.57 5799.91 1999.77 12
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20295.89 20099.41 2493.36 23599.00 4698.44 11296.46 10199.65 13699.09 1199.76 5899.45 85
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16192.10 22295.97 19299.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17398.23 4698.66 16797.41 7999.00 4699.19 3695.47 14099.73 8295.83 12499.76 5899.30 120
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4199.59 15997.21 6899.76 5899.40 100
K. test v396.44 17296.28 17896.95 17599.41 4291.53 23397.65 8490.31 38498.89 2098.93 5099.36 2184.57 31999.92 597.81 4699.56 11199.39 104
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21195.83 20399.32 2593.22 24198.91 5398.49 10596.31 10899.64 14099.07 1299.76 5899.40 100
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20596.57 14999.15 4493.68 22798.89 5499.30 2896.42 10399.37 23499.03 1399.83 4399.66 30
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19298.35 3599.21 3398.43 3298.89 5498.83 7494.30 17599.81 3697.87 4399.91 1999.77 12
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19797.55 9298.94 9897.10 8998.85 5798.88 7195.03 15399.67 12897.39 6499.65 8799.26 132
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9897.71 6198.85 5799.10 4891.35 24499.83 3298.47 3099.90 2499.64 35
WB-MVS95.50 20896.62 15692.11 36299.21 7577.26 39796.12 18095.40 32998.62 2698.84 5998.26 13891.08 24799.50 18693.37 23798.70 26799.58 39
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14299.05 6698.67 2498.84 5998.45 11097.58 3799.88 2096.45 9299.86 3199.54 53
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18798.79 13191.44 23696.14 17999.06 6294.19 21098.82 6198.98 5896.22 11499.38 22898.98 1699.86 3199.58 39
new-patchmatchnet95.67 20296.58 16092.94 34497.48 28980.21 38492.96 32698.19 22794.83 18998.82 6198.79 7593.31 19799.51 18595.83 12499.04 23299.12 161
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18095.96 19498.97 9494.55 20198.82 6198.76 8097.31 4599.29 25797.20 7099.44 15599.38 106
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21496.92 12798.60 17598.58 2898.78 6499.39 1697.80 2599.62 14994.98 18199.86 3199.52 58
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18297.96 6298.25 21498.58 2898.78 6499.39 1698.21 1499.56 16892.65 25199.86 3199.52 58
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24498.99 8895.84 14698.78 6498.08 15996.84 8099.81 3693.98 22299.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4499.45 20394.08 21699.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lessismore_v097.05 16999.36 5092.12 21984.07 40298.77 6898.98 5885.36 31399.74 7697.34 6599.37 17499.30 120
test_fmvs397.38 11697.56 10196.84 18598.63 15392.81 19797.60 8799.61 1390.87 29398.76 6999.66 394.03 18197.90 37799.24 699.68 8299.81 8
v897.60 10098.06 4796.23 21898.71 14289.44 26697.43 10298.82 13697.29 8598.74 7099.10 4893.86 18599.68 12298.61 2799.94 899.56 50
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11798.79 13898.98 1798.74 7098.49 10595.80 13099.49 19195.04 17599.44 15599.11 164
bld_raw_dy_0_6495.16 22895.16 21795.15 26996.54 32789.06 27596.63 14899.54 1789.68 31298.72 7294.50 34488.64 28299.38 22892.24 25799.93 1197.03 344
v1097.55 10497.97 5596.31 21698.60 15789.64 26297.44 10099.02 7696.60 10298.72 7299.16 4393.48 19499.72 8798.76 2199.92 1699.58 39
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20596.25 17099.06 6293.67 22898.64 7499.00 5596.23 11399.36 23798.99 1599.80 5199.53 56
test072699.24 6395.51 9796.89 12998.89 10495.92 14098.64 7498.31 12497.06 59
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10496.62 10098.62 7698.30 12896.97 6699.75 6795.70 12799.25 20399.21 140
test_241102_TWO98.83 12896.11 12798.62 7698.24 14096.92 7299.72 8795.44 14899.49 14299.49 70
FIs97.93 6598.07 4597.48 13599.38 4892.95 19598.03 6199.11 5098.04 4898.62 7698.66 8893.75 18999.78 4797.23 6699.84 4099.73 22
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17299.02 7693.92 22098.62 7698.99 5797.69 2999.62 14996.18 10499.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13798.59 8098.69 8696.94 6899.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
XXY-MVS97.54 10597.70 8197.07 16899.46 3692.21 21497.22 11199.00 8594.93 18898.58 8198.92 6597.31 4599.41 21994.44 20099.43 16399.59 38
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14398.73 15098.66 2598.56 8298.41 11496.84 8099.69 11794.82 18599.81 4898.64 232
PM-MVS97.36 12097.10 12898.14 8298.91 12096.77 4996.20 17398.63 17393.82 22198.54 8398.33 12293.98 18299.05 29895.99 11499.45 15498.61 237
DeepPCF-MVS94.58 596.90 14296.43 17198.31 6797.48 28997.23 4092.56 33898.60 17592.84 26098.54 8397.40 22296.64 8998.78 32394.40 20499.41 17098.93 193
MSP-MVS97.45 11196.92 14299.03 599.26 5997.70 1897.66 8398.89 10495.65 15498.51 8596.46 28692.15 22899.81 3695.14 16998.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12295.61 32398.59 2798.51 8598.72 8292.54 22099.58 16196.02 11199.49 14299.12 161
FMVSNet296.72 15696.67 15596.87 18297.96 23091.88 22797.15 11498.06 24595.59 15898.50 8798.62 9489.51 27499.65 13694.99 18099.60 10199.07 171
test_fmvs296.38 17596.45 17096.16 22397.85 23891.30 23896.81 13399.45 1989.24 31698.49 8899.38 1888.68 28197.62 38298.83 1899.32 19299.57 46
test111194.53 25894.81 23693.72 32299.06 10181.94 37498.31 3983.87 40396.37 11498.49 8899.17 4281.49 33499.73 8296.64 8499.86 3199.49 70
SMA-MVScopyleft97.48 10997.11 12798.60 4598.83 12696.67 5396.74 13898.73 15091.61 28298.48 9098.36 11996.53 9499.68 12295.17 16499.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EU-MVSNet94.25 26594.47 25593.60 32598.14 21582.60 36997.24 11092.72 35985.08 36398.48 9098.94 6382.59 33298.76 32697.47 6299.53 12599.44 95
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9199.06 6296.19 12498.48 9098.70 8594.72 16099.24 26994.37 20599.33 19099.17 148
v124096.74 15397.02 13595.91 23598.18 20688.52 28495.39 23098.88 11093.15 24998.46 9398.40 11792.80 20899.71 10298.45 3199.49 14299.49 70
VPNet97.26 12497.49 10996.59 19999.47 3590.58 25196.27 16698.53 18297.77 5498.46 9398.41 11494.59 16699.68 12294.61 19599.29 19899.52 58
IterMVS-LS96.92 14097.29 11895.79 23998.51 17088.13 29595.10 24798.66 16796.99 9098.46 9398.68 8792.55 21899.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_f95.82 19795.88 19895.66 24597.61 28093.21 19195.61 21898.17 22886.98 34498.42 9699.47 1190.46 25694.74 39997.71 5298.45 28699.03 176
ambc96.56 20398.23 19991.68 23297.88 6898.13 23698.42 9698.56 9994.22 17799.04 29994.05 21999.35 18298.95 187
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13898.23 21795.92 14098.40 9898.28 13397.06 5999.71 10295.48 14499.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 10098.40 9898.28 13397.10 5599.71 10295.70 12799.62 9299.58 39
VDDNet96.98 13796.84 14597.41 14399.40 4593.26 18997.94 6495.31 33099.26 798.39 10099.18 3987.85 29499.62 14995.13 17199.09 22599.35 114
PC_three_145287.24 34098.37 10197.44 21997.00 6496.78 39392.01 26199.25 20399.21 140
Anonymous20240521196.34 17695.98 19197.43 14098.25 19693.85 16796.74 13894.41 34097.72 5998.37 10198.03 16987.15 30099.53 17894.06 21799.07 22898.92 196
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18795.44 22498.86 11598.20 4298.37 10199.24 3294.69 16199.55 17395.98 11599.79 5399.65 33
IU-MVS99.22 6895.40 10398.14 23585.77 35798.36 10495.23 16199.51 13599.49 70
IterMVS-SCA-FT95.86 19596.19 18194.85 28697.68 27185.53 33792.42 34497.63 27296.99 9098.36 10498.54 10187.94 28999.75 6797.07 7699.08 22699.27 131
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14598.83 12895.21 17398.36 10498.13 15398.13 1899.62 14996.04 10999.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052197.07 13097.51 10695.76 24099.35 5188.18 29297.78 7398.40 19897.11 8898.34 10799.04 5389.58 27099.79 4498.09 3699.93 1199.30 120
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11999.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
casdiffmvspermissive97.50 10797.81 7196.56 20398.51 17091.04 24295.83 20399.09 5797.23 8698.33 11098.30 12897.03 6299.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Patchmatch-RL test94.66 25194.49 25395.19 26698.54 16688.91 27792.57 33798.74 14991.46 28598.32 11197.75 19777.31 35798.81 32196.06 10699.61 9897.85 310
XVG-OURS97.12 12896.74 15198.26 7098.99 11097.45 3293.82 30499.05 6695.19 17598.32 11197.70 20295.22 14898.41 35994.27 20998.13 29998.93 193
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21299.02 7698.11 4498.31 11397.69 20394.65 16599.85 2797.02 7799.71 7499.48 76
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21498.87 11297.57 6798.31 11397.83 18894.69 16199.85 2797.02 7799.71 7499.46 81
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30292.01 22595.33 23697.65 26897.74 5798.30 11598.14 15195.04 15299.69 11797.55 5899.52 13099.58 39
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 29992.08 22395.34 23597.65 26897.74 5798.29 11698.11 15795.05 15199.68 12297.50 6099.50 13999.56 50
test20.0396.58 16696.61 15896.48 20798.49 17491.72 23195.68 21197.69 26396.81 9698.27 11797.92 18294.18 17898.71 33190.78 29099.66 8699.00 180
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9298.92 10197.72 5998.25 11898.13 15397.10 5599.75 6795.44 14899.24 20699.32 115
v14896.58 16696.97 13795.42 25898.63 15387.57 30895.09 24897.90 25095.91 14298.24 11997.96 17693.42 19599.39 22596.04 10999.52 13099.29 126
ECVR-MVScopyleft94.37 26494.48 25494.05 31898.95 11283.10 36498.31 3982.48 40596.20 12298.23 12099.16 4381.18 33799.66 13495.95 11699.83 4399.38 106
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19899.04 7397.51 7298.22 12197.81 19294.68 16399.78 4797.14 7299.75 6599.41 99
test_vis1_n95.67 20295.89 19795.03 27598.18 20689.89 25996.94 12699.28 2988.25 33298.20 12298.92 6586.69 30497.19 38597.70 5498.82 25598.00 300
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.60 9299.76 6195.49 14199.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.94 6895.49 14199.20 20899.26 132
WR-MVS96.90 14296.81 14797.16 15998.56 16392.20 21794.33 27798.12 23797.34 8298.20 12297.33 23392.81 20799.75 6794.79 18799.81 4899.54 53
v192192096.72 15696.96 13995.99 22898.21 20088.79 28195.42 22698.79 13893.22 24198.19 12698.26 13892.68 21299.70 11098.34 3399.55 11899.49 70
test_cas_vis1_n_192095.34 21795.67 20494.35 30998.21 20086.83 32495.61 21899.26 3090.45 30098.17 12798.96 6184.43 32098.31 36796.74 8399.17 21397.90 306
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8698.20 22293.00 25398.16 12898.06 16695.89 12099.72 8795.67 13199.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TinyColmap96.00 19096.34 17694.96 28097.90 23687.91 30094.13 29198.49 18694.41 20398.16 12897.76 19496.29 11198.68 33790.52 30099.42 16698.30 269
XVG-OURS-SEG-HR97.38 11697.07 13198.30 6899.01 10997.41 3494.66 26999.02 7695.20 17498.15 13097.52 21498.83 598.43 35894.87 18396.41 35799.07 171
IS-MVSNet96.93 13996.68 15497.70 11399.25 6294.00 16298.57 2096.74 30298.36 3498.14 13197.98 17588.23 28799.71 10293.10 24799.72 7199.38 106
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10798.99 8896.35 11798.13 13295.95 31195.99 11899.66 13494.36 20799.73 6798.59 238
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23198.99 8892.45 26998.11 13398.31 12497.25 5099.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 14897.06 13296.15 22498.28 19289.29 26895.36 23298.77 14393.73 22398.11 13398.34 12193.02 20599.67 12898.35 3299.58 10599.50 62
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24298.46 18894.58 20098.10 13598.07 16197.09 5799.39 22595.16 16699.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419296.69 15996.90 14496.03 22798.25 19688.92 27695.49 22298.77 14393.05 25198.09 13698.29 13292.51 22399.70 11098.11 3599.56 11199.47 79
N_pmnet95.18 22594.23 26298.06 8897.85 23896.55 5892.49 33991.63 37089.34 31498.09 13697.41 22190.33 25999.06 29791.58 27299.31 19598.56 240
test_part299.03 10796.07 7498.08 138
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11498.90 10396.58 10498.08 13897.87 18697.02 6399.76 6195.25 15999.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5896.57 10798.07 14098.38 11896.22 11499.14 28394.71 19499.31 19598.52 245
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10498.83 12897.32 8398.06 14197.85 18796.65 8799.77 5695.00 17899.11 22299.32 115
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15698.98 9195.05 18298.06 14198.02 17095.86 12199.56 16894.37 20599.64 8999.00 180
IterMVS95.42 21595.83 19994.20 31497.52 28683.78 36192.41 34597.47 27795.49 16398.06 14198.49 10587.94 28999.58 16196.02 11199.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TSAR-MVS + GP.96.47 17196.12 18397.49 13497.74 26695.23 11594.15 28896.90 29593.26 23998.04 14496.70 27394.41 17298.89 31494.77 19099.14 21698.37 258
test_one_060199.05 10595.50 10098.87 11297.21 8798.03 14598.30 12896.93 70
testgi96.07 18596.50 16994.80 28999.26 5987.69 30795.96 19498.58 17995.08 18098.02 14696.25 29697.92 2097.60 38388.68 32998.74 26299.11 164
V4297.04 13197.16 12696.68 19698.59 15991.05 24196.33 16398.36 20394.60 19797.99 14798.30 12893.32 19699.62 14997.40 6399.53 12599.38 106
GBi-Net96.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
test196.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
FMVSNet395.26 22294.94 22596.22 22096.53 33090.06 25595.99 19097.66 26694.11 21497.99 14797.91 18380.22 34399.63 14494.60 19699.44 15598.96 186
pmmvs-eth3d96.49 16996.18 18297.42 14298.25 19694.29 15194.77 26598.07 24489.81 31097.97 15198.33 12293.11 20099.08 29595.46 14799.84 4098.89 201
v114496.84 14597.08 13096.13 22598.42 18289.28 26995.41 22898.67 16594.21 20897.97 15198.31 12493.06 20199.65 13698.06 3899.62 9299.45 85
ACMP92.54 1397.47 11097.10 12898.55 4999.04 10696.70 5196.24 17198.89 10493.71 22497.97 15197.75 19797.44 3999.63 14493.22 24499.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EI-MVSNet96.63 16296.93 14095.74 24197.26 30788.13 29595.29 24097.65 26896.99 9097.94 15498.19 14792.55 21899.58 16196.91 8099.56 11199.50 62
MVSTER94.21 26893.93 27395.05 27495.83 35686.46 32795.18 24597.65 26892.41 27097.94 15498.00 17472.39 37999.58 16196.36 9599.56 11199.12 161
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9595.75 15197.91 15698.06 16696.89 7499.76 6195.32 15699.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10898.73 15097.69 6397.90 15797.96 17695.81 12999.82 3496.13 10599.61 9899.45 85
LFMVS95.32 21994.88 23196.62 19798.03 22191.47 23597.65 8490.72 38099.11 997.89 15898.31 12479.20 34599.48 19493.91 22599.12 22198.93 193
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16198.79 13895.07 18197.88 15998.35 12097.24 5199.72 8796.05 10899.58 10599.45 85
VNet96.84 14596.83 14696.88 18198.06 22092.02 22496.35 16297.57 27497.70 6297.88 15997.80 19392.40 22599.54 17694.73 19298.96 23799.08 169
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7495.88 14397.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9999.92 597.88 4299.98 299.85 3
baseline97.44 11297.78 7796.43 20998.52 16890.75 24996.84 13099.03 7496.51 10897.86 16398.02 17096.67 8699.36 23797.09 7499.47 14899.19 145
v2v48296.78 15297.06 13295.95 23298.57 16188.77 28295.36 23298.26 21395.18 17697.85 16498.23 14292.58 21699.63 14497.80 4799.69 7899.45 85
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12199.10 5295.32 17097.83 16597.88 18596.44 10299.72 8794.59 19999.39 17299.25 136
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8397.82 16699.11 4796.75 8499.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AllTest97.20 12796.92 14298.06 8899.08 9896.16 7097.14 11699.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
test_vis1_n_192095.77 19896.41 17293.85 31998.55 16484.86 34995.91 19999.71 492.72 26397.67 16998.90 6987.44 29798.73 32897.96 4098.85 25197.96 302
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11898.98 9195.75 15197.62 17097.59 20997.61 3699.77 5696.34 9699.44 15599.36 112
MDA-MVSNet-bldmvs95.69 20095.67 20495.74 24198.48 17688.76 28392.84 32897.25 28096.00 13597.59 17197.95 17891.38 24299.46 19993.16 24696.35 35998.99 183
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11999.06 6295.45 16497.55 17297.94 17997.11 5499.78 4794.77 19099.46 15199.48 76
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11398.79 13895.96 13797.53 17397.40 22296.93 7099.77 5695.04 17599.35 18299.42 97
YYNet194.73 24394.84 23394.41 30797.47 29385.09 34690.29 38095.85 31792.52 26697.53 17397.76 19491.97 23499.18 27693.31 24196.86 34498.95 187
TAMVS95.49 20994.94 22597.16 15998.31 18893.41 18495.07 25196.82 29891.09 29197.51 17597.82 19189.96 26599.42 21088.42 33299.44 15598.64 232
LS3D97.77 8697.50 10898.57 4796.24 33697.58 2498.45 3198.85 11998.58 2897.51 17597.94 17995.74 13299.63 14495.19 16298.97 23698.51 246
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8998.84 12296.05 13097.49 17797.54 21297.07 5899.70 11095.61 13699.46 15199.30 120
Patchmtry95.03 23494.59 24996.33 21494.83 37990.82 24696.38 15997.20 28296.59 10397.49 17798.57 9777.67 35299.38 22892.95 25099.62 9298.80 213
MDA-MVSNet_test_wron94.73 24394.83 23594.42 30697.48 28985.15 34490.28 38195.87 31692.52 26697.48 17997.76 19491.92 23799.17 28093.32 24096.80 34998.94 189
UnsupCasMVSNet_eth95.91 19395.73 20396.44 20898.48 17691.52 23495.31 23898.45 18995.76 14997.48 17997.54 21289.53 27398.69 33494.43 20194.61 38299.13 156
tttt051793.31 29692.56 30395.57 24898.71 14287.86 30197.44 10087.17 39795.79 14897.47 18196.84 26364.12 39399.81 3696.20 10299.32 19299.02 179
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8998.83 12896.05 13097.46 18297.63 20696.77 8399.76 6195.61 13699.46 15199.49 70
APD-MVScopyleft97.00 13396.53 16698.41 5998.55 16496.31 6696.32 16498.77 14392.96 25897.44 18397.58 21195.84 12299.74 7691.96 26299.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16797.41 18497.50 21697.98 1999.79 4495.58 13999.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
c3_l95.20 22495.32 21194.83 28896.19 34086.43 32991.83 35698.35 20693.47 23297.36 18597.26 23788.69 28099.28 25995.41 15499.36 17798.78 215
EPP-MVSNet96.84 14596.58 16097.65 11799.18 8093.78 17198.68 1496.34 30797.91 5197.30 18698.06 16688.46 28499.85 2793.85 22699.40 17199.32 115
DeepC-MVS_fast94.34 796.74 15396.51 16897.44 13997.69 27094.15 15796.02 18798.43 19293.17 24897.30 18697.38 22895.48 13999.28 25993.74 22999.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test193.47 29293.03 28894.79 29094.05 39192.12 21990.82 37590.01 38885.02 36697.26 18898.28 13393.57 19297.03 38792.51 25595.75 37295.23 383
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8798.84 12296.00 13597.22 18997.62 20796.87 7899.76 6195.48 14499.43 16399.46 81
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18595.63 15597.22 18997.30 23595.52 13898.55 34990.97 28398.90 24498.34 264
test_fmvs1_n95.21 22395.28 21294.99 27898.15 21389.13 27496.81 13399.43 2186.97 34597.21 19198.92 6583.00 32997.13 38698.09 3698.94 24098.72 224
h-mvs3396.29 17795.63 20798.26 7098.50 17396.11 7396.90 12897.09 28896.58 10497.21 19198.19 14784.14 32199.78 4795.89 12096.17 36498.89 201
hse-mvs295.77 19895.09 22097.79 10797.84 24395.51 9795.66 21295.43 32896.58 10497.21 19196.16 29984.14 32199.54 17695.89 12096.92 34198.32 265
9.1496.69 15398.53 16796.02 18798.98 9193.23 24097.18 19497.46 21796.47 9999.62 14992.99 24899.32 192
OMC-MVS96.48 17096.00 18997.91 10098.30 18996.01 7894.86 26198.60 17591.88 27897.18 19497.21 24096.11 11699.04 29990.49 30399.34 18598.69 228
our_test_394.20 27094.58 25093.07 33796.16 34281.20 37990.42 37996.84 29690.72 29597.14 19697.13 24390.47 25599.11 29094.04 22098.25 29498.91 197
MS-PatchMatch94.83 24094.91 22994.57 30096.81 32387.10 31994.23 28397.34 27988.74 32497.14 19697.11 24591.94 23698.23 37192.99 24897.92 30798.37 258
eth_miper_zixun_eth94.89 23894.93 22794.75 29295.99 34986.12 33291.35 36398.49 18693.40 23397.12 19897.25 23886.87 30399.35 24195.08 17498.82 25598.78 215
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17798.49 2898.88 11096.86 9597.11 19998.55 10095.82 12599.73 8295.94 11799.42 16699.13 156
cl____94.73 24394.64 24395.01 27695.85 35587.00 32091.33 36498.08 24093.34 23697.10 20097.33 23384.01 32499.30 25395.14 16999.56 11198.71 227
DIV-MVS_self_test94.73 24394.64 24395.01 27695.86 35487.00 32091.33 36498.08 24093.34 23697.10 20097.34 23284.02 32399.31 25095.15 16899.55 11898.72 224
PMMVS293.66 28694.07 26892.45 35797.57 28280.67 38286.46 39596.00 31293.99 21897.10 20097.38 22889.90 26697.82 37988.76 32699.47 14898.86 208
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7998.78 14296.04 13297.10 20097.73 20096.53 9499.78 4795.16 16699.50 13999.46 81
BH-untuned94.69 24894.75 23994.52 30297.95 23387.53 30994.07 29397.01 29193.99 21897.10 20095.65 31892.65 21498.95 31287.60 34296.74 35097.09 341
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32597.17 5398.50 35398.67 2597.45 33396.48 366
test250689.86 34389.16 34891.97 36398.95 11276.83 39898.54 2361.07 41296.20 12297.07 20699.16 4355.19 40699.69 11796.43 9399.83 4399.38 106
miper_ehance_all_eth94.69 24894.70 24094.64 29495.77 36086.22 33191.32 36698.24 21691.67 28097.05 20796.65 27688.39 28699.22 27394.88 18298.34 29098.49 249
iter_conf0593.65 28793.05 28695.46 25696.13 34787.45 31195.95 19698.22 21892.66 26497.04 20897.89 18463.52 39599.72 8796.19 10399.82 4799.21 140
miper_lstm_enhance94.81 24294.80 23794.85 28696.16 34286.45 32891.14 37098.20 22293.49 23197.03 20997.37 23084.97 31699.26 26395.28 15799.56 11198.83 210
UnsupCasMVSNet_bld94.72 24794.26 26196.08 22698.62 15590.54 25493.38 31898.05 24690.30 30297.02 21096.80 26889.54 27199.16 28188.44 33196.18 36398.56 240
ppachtmachnet_test94.49 26094.84 23393.46 32896.16 34282.10 37190.59 37797.48 27690.53 29997.01 21197.59 20991.01 24899.36 23793.97 22399.18 21298.94 189
D2MVS95.18 22595.17 21695.21 26597.76 26187.76 30694.15 28897.94 24889.77 31196.99 21297.68 20487.45 29699.14 28395.03 17799.81 4898.74 221
ab-mvs96.59 16496.59 15996.60 19898.64 14992.21 21498.35 3597.67 26494.45 20296.99 21298.79 7594.96 15799.49 19190.39 30499.07 22898.08 286
Anonymous2023120695.27 22195.06 22395.88 23698.72 13989.37 26795.70 20897.85 25388.00 33596.98 21497.62 20791.95 23599.34 24389.21 32099.53 12598.94 189
PVSNet_Blended_VisFu95.95 19195.80 20096.42 21099.28 5790.62 25095.31 23899.08 5888.40 32996.97 21598.17 15092.11 23099.78 4793.64 23399.21 20798.86 208
mvs_anonymous95.36 21696.07 18793.21 33596.29 33581.56 37694.60 27197.66 26693.30 23896.95 21698.91 6893.03 20499.38 22896.60 8697.30 33898.69 228
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9998.84 12295.76 14996.93 21797.43 22097.26 4999.79 4496.06 10699.53 12599.45 85
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15998.13 4396.93 21798.45 11095.30 14699.62 14995.64 13498.96 23799.24 137
USDC94.56 25694.57 25294.55 30197.78 25986.43 32992.75 33198.65 17285.96 35396.91 21997.93 18190.82 25198.74 32790.71 29599.59 10398.47 250
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9596.11 12796.89 22097.45 21896.85 7999.78 4795.19 16299.63 9199.38 106
OpenMVS_ROBcopyleft91.80 1493.64 28893.05 28695.42 25897.31 30691.21 24095.08 25096.68 30581.56 38196.88 22196.41 28890.44 25899.25 26585.39 36497.67 32295.80 375
test_fmvs194.51 25994.60 24794.26 31395.91 35087.92 29995.35 23499.02 7686.56 34996.79 22298.52 10282.64 33197.00 38997.87 4398.71 26697.88 308
test_yl94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
DCV-MVSNet94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9098.82 31996.38 9499.50 13996.98 346
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
alignmvs96.01 18995.52 21097.50 13197.77 26094.71 13196.07 18396.84 29697.48 7396.78 22694.28 34885.50 31299.40 22196.22 10198.73 26598.40 254
MM96.87 14496.62 15697.62 11997.72 26893.30 18696.39 15692.61 36297.90 5296.76 22798.64 9290.46 25699.81 3699.16 999.94 899.76 17
CL-MVSNet_self_test95.04 23294.79 23895.82 23897.51 28789.79 26091.14 37096.82 29893.05 25196.72 22896.40 29090.82 25199.16 28191.95 26398.66 27198.50 248
MSLP-MVS++96.42 17496.71 15295.57 24897.82 24690.56 25395.71 20798.84 12294.72 19296.71 22997.39 22694.91 15898.10 37595.28 15799.02 23398.05 295
MGCFI-Net97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
FA-MVS(test-final)94.91 23794.89 23094.99 27897.51 28788.11 29798.27 4495.20 33192.40 27196.68 23098.60 9583.44 32699.28 25993.34 23998.53 28097.59 327
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
ZD-MVS98.43 18195.94 7998.56 18190.72 29596.66 23397.07 24795.02 15499.74 7691.08 28098.93 242
diffmvspermissive96.04 18796.23 17995.46 25697.35 30088.03 29893.42 31699.08 5894.09 21696.66 23396.93 25793.85 18699.29 25796.01 11398.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-296.59 16496.93 14095.55 25198.88 12287.12 31894.47 27499.30 2794.12 21396.65 23598.41 11494.98 15699.87 2295.81 12699.78 5699.66 30
MVP-Stereo95.69 20095.28 21296.92 17898.15 21393.03 19395.64 21798.20 22290.39 30196.63 23697.73 20091.63 24099.10 29391.84 26797.31 33798.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)95.11 22994.85 23295.87 23799.12 9389.17 27097.54 9794.92 33596.50 10996.58 23797.27 23683.64 32599.48 19488.42 33299.67 8498.97 185
MVS_111021_HR96.73 15596.54 16597.27 15298.35 18793.66 17693.42 31698.36 20394.74 19196.58 23796.76 27196.54 9398.99 30594.87 18399.27 20199.15 151
thisisatest053092.71 30691.76 31495.56 25098.42 18288.23 29096.03 18687.35 39694.04 21796.56 23995.47 32464.03 39499.77 5694.78 18999.11 22298.68 231
MVS_111021_LR96.82 14996.55 16397.62 11998.27 19495.34 11093.81 30698.33 20794.59 19996.56 23996.63 27796.61 9098.73 32894.80 18699.34 18598.78 215
DELS-MVS96.17 18296.23 17995.99 22897.55 28590.04 25692.38 34798.52 18394.13 21296.55 24197.06 24894.99 15599.58 16195.62 13599.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline193.14 30092.64 30194.62 29697.34 30287.20 31796.67 14793.02 35494.71 19396.51 24295.83 31481.64 33398.60 34590.00 31088.06 39998.07 288
Patchmatch-test93.60 28993.25 28494.63 29596.14 34687.47 31096.04 18594.50 33993.57 22996.47 24396.97 25476.50 36098.61 34390.67 29798.41 28997.81 314
HyFIR lowres test93.72 28392.65 30096.91 18098.93 11691.81 23091.23 36898.52 18382.69 37796.46 24496.52 28480.38 34299.90 1490.36 30598.79 25799.03 176
QAPM95.88 19495.57 20996.80 18797.90 23691.84 22998.18 5398.73 15088.41 32896.42 24598.13 15394.73 15999.75 6788.72 32798.94 24098.81 212
BH-RMVSNet94.56 25694.44 25894.91 28197.57 28287.44 31293.78 30796.26 30893.69 22696.41 24696.50 28592.10 23199.00 30385.96 35697.71 31898.31 267
CNVR-MVS96.92 14096.55 16398.03 9398.00 22895.54 9594.87 26098.17 22894.60 19796.38 24797.05 24995.67 13499.36 23795.12 17299.08 22699.19 145
thres600view792.03 31991.43 31693.82 32098.19 20384.61 35296.27 16690.39 38196.81 9696.37 24893.11 35673.44 37799.49 19180.32 38697.95 30697.36 335
thres100view90091.76 32391.26 32393.26 33198.21 20084.50 35396.39 15690.39 38196.87 9496.33 24993.08 36073.44 37799.42 21078.85 39197.74 31595.85 373
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25097.64 20596.49 9799.72 8795.66 13299.37 17499.45 85
X-MVStestdata92.86 30390.83 33098.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25036.50 40596.49 9799.72 8795.66 13299.37 17499.45 85
MSDG95.33 21895.13 21895.94 23497.40 29791.85 22891.02 37398.37 20295.30 17196.31 25295.99 30794.51 17098.38 36289.59 31597.65 32497.60 326
CDS-MVSNet94.88 23994.12 26797.14 16197.64 27893.57 17893.96 30097.06 29090.05 30796.30 25396.55 28086.10 30699.47 19690.10 30899.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet92.33 31292.79 29590.95 36997.26 30775.84 40195.29 24092.33 36481.86 37996.27 25498.19 14781.44 33598.46 35794.23 21198.29 29398.55 242
FMVSNet593.39 29492.35 30496.50 20595.83 35690.81 24897.31 10598.27 21292.74 26296.27 25498.28 13362.23 39699.67 12890.86 28699.36 17799.03 176
TAPA-MVS93.32 1294.93 23694.23 26297.04 17198.18 20694.51 14195.22 24398.73 15081.22 38496.25 25695.95 31193.80 18898.98 30789.89 31198.87 24897.62 324
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.10 27293.41 28196.18 22299.16 8290.04 25692.15 34998.68 16279.90 38996.22 25797.83 18887.92 29399.42 21089.18 32199.65 8799.08 169
FE-MVS92.95 30292.22 30695.11 27097.21 30988.33 28998.54 2393.66 34889.91 30996.21 25898.14 15170.33 38699.50 18687.79 33898.24 29597.51 330
MCST-MVS96.24 17995.80 20097.56 12298.75 13694.13 15894.66 26998.17 22890.17 30596.21 25896.10 30595.14 15099.43 20894.13 21598.85 25199.13 156
PHI-MVS96.96 13896.53 16698.25 7397.48 28996.50 5996.76 13798.85 11993.52 23096.19 26096.85 26295.94 11999.42 21093.79 22899.43 16398.83 210
HQP_MVS96.66 16196.33 17797.68 11698.70 14494.29 15196.50 15298.75 14796.36 11596.16 26196.77 26991.91 23899.46 19992.59 25399.20 20899.28 127
plane_prior394.51 14195.29 17296.16 261
miper_enhance_ethall93.14 30092.78 29794.20 31493.65 39485.29 34189.97 38397.85 25385.05 36496.15 26394.56 34085.74 30999.14 28393.74 22998.34 29098.17 283
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26497.19 24196.88 7699.86 2497.50 6099.73 6798.41 253
MVS_Test96.27 17896.79 15094.73 29396.94 32086.63 32696.18 17498.33 20794.94 18696.07 26498.28 13395.25 14799.26 26397.21 6897.90 30998.30 269
PCF-MVS89.43 1892.12 31690.64 33396.57 20297.80 25193.48 18189.88 38798.45 18974.46 40096.04 26695.68 31790.71 25399.31 25073.73 39999.01 23596.91 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CPTT-MVS96.69 15996.08 18698.49 5298.89 12196.64 5597.25 10898.77 14392.89 25996.01 26797.13 24392.23 22799.67 12892.24 25799.34 18599.17 148
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26897.01 25396.99 6599.82 3497.66 5599.64 8998.39 256
PMVScopyleft89.60 1796.71 15896.97 13795.95 23299.51 3097.81 1697.42 10397.49 27597.93 5095.95 26898.58 9696.88 7696.91 39089.59 31599.36 17793.12 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
xiu_mvs_v1_base_debu95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base_debi95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
tfpn200view991.55 32591.00 32593.21 33598.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31595.85 373
thres40091.68 32491.00 32593.71 32398.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31597.36 335
cl2293.25 29892.84 29494.46 30594.30 38586.00 33391.09 37296.64 30690.74 29495.79 27596.31 29478.24 34998.77 32494.15 21498.34 29098.62 235
API-MVS95.09 23195.01 22495.31 26196.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34794.54 16998.37 36485.70 35898.52 28193.52 392
DP-MVS Recon95.55 20795.13 21896.80 18798.51 17093.99 16394.60 27198.69 16090.20 30495.78 27796.21 29892.73 21198.98 30790.58 29998.86 25097.42 334
CLD-MVS95.47 21295.07 22196.69 19598.27 19492.53 20491.36 36298.67 16591.22 29095.78 27794.12 34995.65 13598.98 30790.81 28899.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
旧先验293.35 31977.95 39695.77 27998.67 33890.74 294
pmmvs494.82 24194.19 26596.70 19497.42 29692.75 20192.09 35296.76 30086.80 34795.73 28097.22 23989.28 27798.89 31493.28 24299.14 21698.46 252
LF4IMVS96.07 18595.63 20797.36 14698.19 20395.55 9495.44 22498.82 13692.29 27295.70 28196.55 28092.63 21598.69 33491.75 27199.33 19097.85 310
testdata95.70 24498.16 21190.58 25197.72 26280.38 38795.62 28297.02 25192.06 23398.98 30789.06 32498.52 28197.54 329
MP-MVScopyleft97.64 9697.18 12599.00 999.32 5597.77 1797.49 9898.73 15096.27 11895.59 28397.75 19796.30 10999.78 4793.70 23299.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS96.13 18495.90 19696.82 18697.76 26193.89 16595.40 22998.95 9795.87 14495.58 28491.00 38796.36 10799.72 8793.36 23898.83 25496.85 353
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28596.92 25996.81 8299.87 2296.87 8299.76 5898.51 246
thres20091.00 33290.42 33692.77 34997.47 29383.98 36094.01 29591.18 37695.12 17995.44 28691.21 38573.93 37099.31 25077.76 39497.63 32595.01 384
CDPH-MVS95.45 21494.65 24297.84 10598.28 19294.96 12693.73 30898.33 20785.03 36595.44 28696.60 27895.31 14599.44 20690.01 30999.13 21899.11 164
NCCC96.52 16895.99 19098.10 8597.81 24795.68 8995.00 25698.20 22295.39 16895.40 28896.36 29293.81 18799.45 20393.55 23598.42 28899.17 148
MVS_030496.62 16396.40 17397.28 15197.91 23492.30 21096.47 15489.74 38997.52 7195.38 28998.63 9392.76 20999.81 3699.28 499.93 1199.75 19
jason94.39 26394.04 26995.41 26098.29 19087.85 30392.74 33396.75 30185.38 36295.29 29096.15 30088.21 28899.65 13694.24 21099.34 18598.74 221
jason: jason.
new_pmnet92.34 31191.69 31594.32 31096.23 33889.16 27192.27 34892.88 35684.39 37495.29 29096.35 29385.66 31096.74 39484.53 37197.56 32697.05 342
pmmvs594.63 25394.34 26095.50 25397.63 27988.34 28894.02 29497.13 28687.15 34195.22 29297.15 24287.50 29599.27 26293.99 22199.26 20298.88 205
Effi-MVS+-dtu96.81 15096.09 18598.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32294.26 17699.81 3694.06 21798.51 28398.47 250
testing389.72 34588.26 35494.10 31797.66 27584.30 35794.80 26288.25 39494.66 19495.07 29492.51 37141.15 41299.43 20891.81 26898.44 28798.55 242
KD-MVS_2432*160088.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
miper_refine_blended88.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
HPM-MVS++copyleft96.99 13496.38 17498.81 2798.64 14997.59 2395.97 19298.20 22295.51 16295.06 29596.53 28294.10 17999.70 11094.29 20899.15 21599.13 156
MIMVSNet93.42 29392.86 29295.10 27298.17 20988.19 29198.13 5593.69 34592.07 27395.04 29898.21 14680.95 34099.03 30281.42 38398.06 30298.07 288
TR-MVS92.54 30892.20 30793.57 32696.49 33186.66 32593.51 31494.73 33689.96 30894.95 29993.87 35190.24 26498.61 34381.18 38494.88 37995.45 381
PatchMatch-RL94.61 25493.81 27497.02 17398.19 20395.72 8693.66 30997.23 28188.17 33394.94 30095.62 32091.43 24198.57 34687.36 34897.68 32196.76 359
MG-MVS94.08 27494.00 27094.32 31097.09 31485.89 33493.19 32495.96 31492.52 26694.93 30197.51 21589.54 27198.77 32487.52 34697.71 31898.31 267
新几何197.25 15598.29 19094.70 13397.73 26177.98 39594.83 30296.67 27592.08 23299.45 20388.17 33698.65 27397.61 325
Fast-Effi-MVS+-dtu96.44 17296.12 18397.39 14597.18 31094.39 14595.46 22398.73 15096.03 13494.72 30394.92 33596.28 11299.69 11793.81 22797.98 30498.09 285
test0.0.03 190.11 33789.21 34492.83 34793.89 39286.87 32391.74 35788.74 39392.02 27494.71 30491.14 38673.92 37194.48 40083.75 37792.94 38897.16 340
test22298.17 20993.24 19092.74 33397.61 27375.17 39994.65 30596.69 27490.96 25098.66 27197.66 321
SCA93.38 29593.52 27992.96 34396.24 33681.40 37893.24 32294.00 34391.58 28494.57 30696.97 25487.94 28999.42 21089.47 31797.66 32398.06 292
CNLPA95.04 23294.47 25596.75 19197.81 24795.25 11494.12 29297.89 25194.41 20394.57 30695.69 31690.30 26298.35 36586.72 35498.76 26096.64 361
PVSNet_BlendedMVS95.02 23594.93 22795.27 26297.79 25687.40 31394.14 29098.68 16288.94 32194.51 30898.01 17293.04 20299.30 25389.77 31399.49 14299.11 164
PVSNet_Blended93.96 27793.65 27694.91 28197.79 25687.40 31391.43 36198.68 16284.50 37294.51 30894.48 34593.04 20299.30 25389.77 31398.61 27698.02 298
MVSFormer96.14 18396.36 17595.49 25497.68 27187.81 30498.67 1599.02 7696.50 10994.48 31096.15 30086.90 30199.92 598.73 2299.13 21898.74 221
lupinMVS93.77 28093.28 28395.24 26397.68 27187.81 30492.12 35096.05 31084.52 37194.48 31095.06 33186.90 30199.63 14493.62 23499.13 21898.27 273
OpenMVScopyleft94.22 895.48 21195.20 21496.32 21597.16 31191.96 22697.74 7998.84 12287.26 33994.36 31298.01 17293.95 18499.67 12890.70 29698.75 26197.35 337
PatchT93.75 28293.57 27894.29 31295.05 37687.32 31596.05 18492.98 35597.54 7094.25 31398.72 8275.79 36599.24 26995.92 11895.81 36796.32 368
BH-w/o92.14 31591.94 30992.73 35097.13 31385.30 34092.46 34195.64 32089.33 31594.21 31492.74 36789.60 26998.24 37081.68 38294.66 38194.66 386
xiu_mvs_v2_base94.22 26694.63 24592.99 34297.32 30584.84 35092.12 35097.84 25591.96 27694.17 31593.43 35496.07 11799.71 10291.27 27697.48 33094.42 387
PS-MVSNAJ94.10 27294.47 25593.00 34197.35 30084.88 34891.86 35597.84 25591.96 27694.17 31592.50 37295.82 12599.71 10291.27 27697.48 33094.40 388
CR-MVSNet93.29 29792.79 29594.78 29195.44 36888.15 29396.18 17497.20 28284.94 36894.10 31798.57 9777.67 35299.39 22595.17 16495.81 36796.81 357
RPMNet94.68 25094.60 24794.90 28395.44 36888.15 29396.18 17498.86 11597.43 7494.10 31798.49 10579.40 34499.76 6195.69 12995.81 36796.81 357
WTY-MVS93.55 29093.00 29095.19 26697.81 24787.86 30193.89 30296.00 31289.02 31994.07 31995.44 32686.27 30599.33 24587.69 34096.82 34798.39 256
GA-MVS92.83 30492.15 30894.87 28596.97 31787.27 31690.03 38296.12 30991.83 27994.05 32094.57 33976.01 36498.97 31192.46 25697.34 33698.36 263
WB-MVSnew91.50 32691.29 31992.14 36194.85 37880.32 38393.29 32188.77 39288.57 32794.03 32192.21 37492.56 21798.28 36980.21 38797.08 33997.81 314
test_prior293.33 32094.21 20894.02 32296.25 29693.64 19191.90 26498.96 237
MDTV_nov1_ep13_2view57.28 41294.89 25980.59 38694.02 32278.66 34885.50 36297.82 312
AdaColmapbinary95.11 22994.62 24696.58 20097.33 30494.45 14494.92 25898.08 24093.15 24993.98 32495.53 32394.34 17499.10 29385.69 35998.61 27696.20 371
pmmvs390.00 33988.90 34993.32 32994.20 38985.34 33991.25 36792.56 36378.59 39393.82 32595.17 32867.36 39198.69 33489.08 32398.03 30395.92 372
TEST997.84 24395.23 11593.62 31098.39 19986.81 34693.78 32695.99 30794.68 16399.52 181
train_agg95.46 21394.66 24197.88 10297.84 24395.23 11593.62 31098.39 19987.04 34293.78 32695.99 30794.58 16799.52 18191.76 27098.90 24498.89 201
EIA-MVS96.04 18795.77 20296.85 18397.80 25192.98 19496.12 18099.16 4094.65 19593.77 32891.69 38195.68 13399.67 12894.18 21298.85 25197.91 305
sss94.22 26693.72 27595.74 24197.71 26989.95 25893.84 30396.98 29288.38 33093.75 32995.74 31587.94 28998.89 31491.02 28298.10 30098.37 258
test_897.81 24795.07 12493.54 31398.38 20187.04 34293.71 33095.96 31094.58 16799.52 181
E-PMN89.52 34889.78 34088.73 37993.14 39777.61 39383.26 39992.02 36694.82 19093.71 33093.11 35675.31 36696.81 39185.81 35796.81 34891.77 398
thisisatest051590.43 33589.18 34794.17 31697.07 31585.44 33889.75 38887.58 39588.28 33193.69 33291.72 38065.27 39299.58 16190.59 29898.67 26997.50 332
UGNet96.81 15096.56 16297.58 12196.64 32593.84 16897.75 7797.12 28796.47 11293.62 33398.88 7193.22 19999.53 17895.61 13699.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive91.98 32091.87 31092.30 35994.60 38279.71 38595.12 24693.59 35089.52 31393.61 33497.02 25177.94 35099.18 27690.84 28794.57 38498.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CMPMVSbinary73.10 2392.74 30591.39 31796.77 19093.57 39694.67 13494.21 28597.67 26480.36 38893.61 33496.60 27882.85 33097.35 38484.86 36998.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test1297.46 13797.61 28094.07 15997.78 25993.57 33693.31 19799.42 21098.78 25898.89 201
tpm91.08 33190.85 32991.75 36595.33 37178.09 39095.03 25591.27 37588.75 32393.53 33797.40 22271.24 38199.30 25391.25 27893.87 38697.87 309
agg_prior97.80 25194.96 12698.36 20393.49 33899.53 178
原ACMM196.58 20098.16 21192.12 21998.15 23485.90 35593.49 33896.43 28792.47 22499.38 22887.66 34198.62 27598.23 276
MDTV_nov1_ep1391.28 32094.31 38473.51 40694.80 26293.16 35386.75 34893.45 34097.40 22276.37 36198.55 34988.85 32596.43 356
114514_t93.96 27793.22 28596.19 22199.06 10190.97 24495.99 19098.94 9873.88 40193.43 34196.93 25792.38 22699.37 23489.09 32299.28 19998.25 275
Fast-Effi-MVS+95.49 20995.07 22196.75 19197.67 27492.82 19694.22 28498.60 17591.61 28293.42 34292.90 36396.73 8599.70 11092.60 25297.89 31097.74 318
PAPM_NR94.61 25494.17 26695.96 23098.36 18691.23 23995.93 19797.95 24792.98 25493.42 34294.43 34690.53 25498.38 36287.60 34296.29 36198.27 273
Effi-MVS+96.19 18196.01 18896.71 19397.43 29592.19 21896.12 18099.10 5295.45 16493.33 34494.71 33897.23 5299.56 16893.21 24597.54 32798.37 258
F-COLMAP95.30 22094.38 25998.05 9298.64 14996.04 7595.61 21898.66 16789.00 32093.22 34596.40 29092.90 20699.35 24187.45 34797.53 32898.77 218
iter_conf05_1193.77 28093.29 28295.24 26396.54 32789.14 27391.55 35995.02 33390.16 30693.21 34693.94 35087.37 29899.56 16892.24 25799.56 11197.03 344
test_vis1_rt94.03 27693.65 27695.17 26895.76 36193.42 18393.97 29998.33 20784.68 36993.17 34795.89 31392.53 22294.79 39893.50 23694.97 37897.31 338
EPMVS89.26 34988.55 35191.39 36792.36 40379.11 38895.65 21479.86 40688.60 32693.12 34896.53 28270.73 38598.10 37590.75 29189.32 39796.98 346
DPM-MVS93.68 28592.77 29896.42 21097.91 23492.54 20391.17 36997.47 27784.99 36793.08 34994.74 33789.90 26699.00 30387.54 34498.09 30197.72 319
UWE-MVS87.57 36486.72 36690.13 37595.21 37273.56 40591.94 35483.78 40488.73 32593.00 35092.87 36455.22 40599.25 26581.74 38197.96 30597.59 327
1112_ss94.12 27193.42 28096.23 21898.59 15990.85 24594.24 28298.85 11985.49 35892.97 35194.94 33386.01 30799.64 14091.78 26997.92 30798.20 279
HQP4-MVS92.87 35299.23 27199.06 173
HQP-NCC97.85 23894.26 27893.18 24592.86 353
ACMP_Plane97.85 23894.26 27893.18 24592.86 353
HQP-MVS95.17 22794.58 25096.92 17897.85 23892.47 20794.26 27898.43 19293.18 24592.86 35395.08 32990.33 25999.23 27190.51 30198.74 26299.05 175
dmvs_re92.08 31891.27 32194.51 30397.16 31192.79 20095.65 21492.64 36194.11 21492.74 35690.98 38883.41 32794.44 40180.72 38594.07 38596.29 369
ADS-MVSNet291.47 32790.51 33594.36 30895.51 36685.63 33595.05 25395.70 31883.46 37592.69 35796.84 26379.15 34699.41 21985.66 36090.52 39398.04 296
ADS-MVSNet90.95 33390.26 33793.04 33895.51 36682.37 37095.05 25393.41 35183.46 37592.69 35796.84 26379.15 34698.70 33285.66 36090.52 39398.04 296
Test_1112_low_res93.53 29192.86 29295.54 25298.60 15788.86 27992.75 33198.69 16082.66 37892.65 35996.92 25984.75 31799.56 16890.94 28497.76 31498.19 280
AUN-MVS93.95 27992.69 29997.74 11097.80 25195.38 10595.57 22195.46 32791.26 28992.64 36096.10 30574.67 36899.55 17393.72 23196.97 34098.30 269
EMVS89.06 35189.22 34388.61 38093.00 39977.34 39582.91 40090.92 37794.64 19692.63 36191.81 37976.30 36297.02 38883.83 37596.90 34391.48 399
CANet95.86 19595.65 20696.49 20696.41 33390.82 24694.36 27698.41 19694.94 18692.62 36296.73 27292.68 21299.71 10295.12 17299.60 10198.94 189
DSMNet-mixed92.19 31491.83 31193.25 33296.18 34183.68 36296.27 16693.68 34776.97 39892.54 36399.18 3989.20 27998.55 34983.88 37498.60 27897.51 330
PVSNet86.72 1991.10 33090.97 32791.49 36697.56 28478.04 39187.17 39494.60 33884.65 37092.34 36492.20 37587.37 29898.47 35685.17 36797.69 32097.96 302
tpmrst90.31 33690.61 33489.41 37794.06 39072.37 40895.06 25293.69 34588.01 33492.32 36596.86 26177.45 35498.82 31991.04 28187.01 40097.04 343
cascas91.89 32191.35 31893.51 32794.27 38685.60 33688.86 39298.61 17479.32 39192.16 36691.44 38389.22 27898.12 37490.80 28997.47 33296.82 356
MAR-MVS94.21 26893.03 28897.76 10996.94 32097.44 3396.97 12597.15 28587.89 33792.00 36792.73 36892.14 22999.12 28783.92 37397.51 32996.73 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmvs90.79 33490.87 32890.57 37292.75 40276.30 39995.79 20593.64 34991.04 29291.91 36896.26 29577.19 35898.86 31889.38 31989.85 39696.56 364
PMMVS92.39 30991.08 32496.30 21793.12 39892.81 19790.58 37895.96 31479.17 39291.85 36992.27 37390.29 26398.66 33989.85 31296.68 35397.43 333
Syy-MVS92.09 31791.80 31392.93 34595.19 37382.65 36792.46 34191.35 37290.67 29791.76 37087.61 39985.64 31198.50 35394.73 19296.84 34597.65 322
myMVS_eth3d87.16 36885.61 37191.82 36495.19 37379.32 38692.46 34191.35 37290.67 29791.76 37087.61 39941.96 41198.50 35382.66 37996.84 34597.65 322
PLCcopyleft91.02 1694.05 27592.90 29197.51 12798.00 22895.12 12394.25 28198.25 21486.17 35191.48 37295.25 32791.01 24899.19 27585.02 36896.69 35298.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.08 35988.05 35588.16 38492.85 40068.81 41094.17 28692.88 35685.47 35991.38 37396.14 30268.87 38998.81 32186.88 35283.80 40396.87 351
PAPR92.22 31391.27 32195.07 27395.73 36388.81 28091.97 35397.87 25285.80 35690.91 37492.73 36891.16 24598.33 36679.48 38895.76 37198.08 286
131492.38 31092.30 30592.64 35295.42 37085.15 34495.86 20196.97 29385.40 36190.62 37593.06 36191.12 24697.80 38086.74 35395.49 37594.97 385
MVS90.02 33889.20 34592.47 35694.71 38086.90 32295.86 20196.74 30264.72 40390.62 37592.77 36692.54 22098.39 36179.30 38995.56 37492.12 396
CostFormer89.75 34489.25 34291.26 36894.69 38178.00 39295.32 23791.98 36781.50 38290.55 37796.96 25671.06 38398.89 31488.59 33092.63 39096.87 351
HY-MVS91.43 1592.58 30791.81 31294.90 28396.49 33188.87 27897.31 10594.62 33785.92 35490.50 37896.84 26385.05 31499.40 22183.77 37695.78 37096.43 367
ETVMVS87.62 36385.75 37093.22 33496.15 34583.26 36392.94 32790.37 38391.39 28690.37 37988.45 39751.93 40998.64 34073.76 39896.38 35897.75 317
FPMVS89.92 34288.63 35093.82 32098.37 18596.94 4591.58 35893.34 35288.00 33590.32 38097.10 24670.87 38491.13 40471.91 40296.16 36593.39 394
JIA-IIPM91.79 32290.69 33295.11 27093.80 39390.98 24394.16 28791.78 36996.38 11390.30 38199.30 2872.02 38098.90 31388.28 33490.17 39595.45 381
testing9189.67 34688.55 35193.04 33895.90 35181.80 37592.71 33593.71 34493.71 22490.18 38290.15 39357.11 39899.22 27387.17 35196.32 36098.12 284
CANet_DTU94.65 25294.21 26495.96 23095.90 35189.68 26193.92 30197.83 25793.19 24490.12 38395.64 31988.52 28399.57 16793.27 24399.47 14898.62 235
test-LLR89.97 34189.90 33990.16 37394.24 38774.98 40289.89 38489.06 39092.02 27489.97 38490.77 38973.92 37198.57 34691.88 26597.36 33496.92 348
test-mter87.92 36187.17 36290.16 37394.24 38774.98 40289.89 38489.06 39086.44 35089.97 38490.77 38954.96 40898.57 34691.88 26597.36 33496.92 348
testing9989.21 35088.04 35692.70 35195.78 35981.00 38192.65 33692.03 36593.20 24389.90 38690.08 39555.25 40499.14 28387.54 34495.95 36697.97 301
dmvs_testset87.30 36686.99 36388.24 38296.71 32477.48 39494.68 26886.81 39992.64 26589.61 38787.01 40185.91 30893.12 40261.04 40688.49 39894.13 389
tpm288.47 35687.69 35990.79 37094.98 37777.34 39595.09 24891.83 36877.51 39789.40 38896.41 28867.83 39098.73 32883.58 37892.60 39196.29 369
tpm cat188.01 36087.33 36190.05 37694.48 38376.28 40094.47 27494.35 34173.84 40289.26 38995.61 32173.64 37398.30 36884.13 37286.20 40195.57 380
TESTMET0.1,187.20 36786.57 36789.07 37893.62 39572.84 40789.89 38487.01 39885.46 36089.12 39090.20 39256.00 40397.72 38190.91 28596.92 34196.64 361
testing22287.35 36585.50 37292.93 34595.79 35882.83 36592.40 34690.10 38792.80 26188.87 39189.02 39648.34 41098.70 33275.40 39796.74 35097.27 339
MVS-HIRNet88.40 35790.20 33882.99 38697.01 31660.04 41193.11 32585.61 40184.45 37388.72 39299.09 5084.72 31898.23 37182.52 38096.59 35590.69 401
IB-MVS85.98 2088.63 35586.95 36593.68 32495.12 37584.82 35190.85 37490.17 38687.55 33888.48 39391.34 38458.01 39799.59 15987.24 35093.80 38796.63 363
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1188.93 35287.63 36092.80 34895.87 35381.49 37792.48 34091.54 37191.62 28188.27 39490.24 39155.12 40799.11 29087.30 34996.28 36297.81 314
PVSNet_081.89 2184.49 37083.21 37388.34 38195.76 36174.97 40483.49 39892.70 36078.47 39487.94 39586.90 40283.38 32896.63 39573.44 40066.86 40693.40 393
EPNet93.72 28392.62 30297.03 17287.61 41092.25 21296.27 16691.28 37496.74 9887.65 39697.39 22685.00 31599.64 14092.14 26099.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42089.98 34089.19 34692.37 35895.60 36581.13 38086.22 39697.09 28881.44 38387.44 39793.15 35573.99 36999.47 19688.69 32899.07 22896.52 365
baseline289.65 34788.44 35393.25 33295.62 36482.71 36693.82 30485.94 40088.89 32287.35 39892.54 37071.23 38299.33 24586.01 35594.60 38397.72 319
gg-mvs-nofinetune88.28 35886.96 36492.23 36092.84 40184.44 35498.19 5274.60 40899.08 1087.01 39999.47 1156.93 39998.23 37178.91 39095.61 37394.01 390
ET-MVSNet_ETH3D91.12 32989.67 34195.47 25596.41 33389.15 27291.54 36090.23 38589.07 31886.78 40092.84 36569.39 38899.44 20694.16 21396.61 35497.82 312
PAPM87.64 36285.84 36993.04 33896.54 32784.99 34788.42 39395.57 32479.52 39083.82 40193.05 36280.57 34198.41 35962.29 40592.79 38995.71 376
GG-mvs-BLEND90.60 37191.00 40584.21 35898.23 4672.63 41182.76 40284.11 40356.14 40296.79 39272.20 40192.09 39290.78 400
MVEpermissive73.61 2286.48 36985.92 36888.18 38396.23 33885.28 34281.78 40175.79 40786.01 35282.53 40391.88 37892.74 21087.47 40671.42 40394.86 38091.78 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu91.39 32890.75 33193.31 33090.48 40782.61 36894.80 26292.88 35693.39 23481.74 40494.90 33681.36 33699.11 29088.28 33498.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft77.17 38790.94 40685.28 34274.08 41052.51 40480.87 40588.03 39875.25 36770.63 40759.23 40784.94 40275.62 402
tmp_tt57.23 37362.50 37641.44 38934.77 41249.21 41383.93 39760.22 41315.31 40571.11 40679.37 40470.09 38744.86 40864.76 40482.93 40430.25 404
test_method66.88 37266.13 37569.11 38862.68 41125.73 41449.76 40296.04 31114.32 40664.27 40791.69 38173.45 37688.05 40576.06 39666.94 40593.54 391
EGC-MVSNET83.08 37177.93 37498.53 5099.57 2097.55 2698.33 3898.57 1804.71 40710.38 40898.90 6995.60 13799.50 18695.69 12999.61 9898.55 242
testmvs12.33 37615.23 3793.64 3915.77 4142.23 41688.99 3913.62 4142.30 4095.29 40913.09 4064.52 4141.95 4095.16 4098.32 4086.75 406
test12312.59 37515.49 3783.87 3906.07 4132.55 41590.75 3762.59 4152.52 4085.20 41013.02 4074.96 4131.85 4105.20 4089.09 4077.23 405
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.22 37432.30 3770.00 3920.00 4150.00 4170.00 40398.10 2380.00 4100.00 41195.06 33197.54 380.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas7.98 37710.65 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41095.82 1250.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re7.91 37810.55 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.94 3330.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS79.32 38685.41 363
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
eth-test20.00 415
eth-test0.00 415
OPU-MVS97.64 11898.01 22495.27 11396.79 13597.35 23196.97 6698.51 35291.21 27999.25 20399.14 154
save fliter98.48 17694.71 13194.53 27398.41 19695.02 184
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13898.89 10499.75 6795.48 14499.52 13099.53 56
GSMVS98.06 292
sam_mvs177.80 35198.06 292
sam_mvs77.38 355
MTGPAbinary98.73 150
test_post194.98 25710.37 40976.21 36399.04 29989.47 317
test_post10.87 40876.83 35999.07 296
patchmatchnet-post96.84 26377.36 35699.42 210
MTMP96.55 15074.60 408
gm-plane-assit91.79 40471.40 40981.67 38090.11 39498.99 30584.86 369
test9_res91.29 27598.89 24799.00 180
agg_prior290.34 30698.90 24499.10 168
test_prior495.38 10593.61 312
test_prior97.46 13797.79 25694.26 15598.42 19599.34 24398.79 214
新几何293.43 315
旧先验197.80 25193.87 16697.75 26097.04 25093.57 19298.68 26898.72 224
无先验93.20 32397.91 24980.78 38599.40 22187.71 33997.94 304
原ACMM292.82 329
testdata299.46 19987.84 337
segment_acmp95.34 144
testdata192.77 33093.78 222
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14891.91 238
plane_prior598.75 14799.46 19992.59 25399.20 20899.28 127
plane_prior496.77 269
plane_prior296.50 15296.36 115
plane_prior198.49 174
plane_prior94.29 15195.42 22694.31 20798.93 242
n20.00 416
nn0.00 416
door-mid98.17 228
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
BP-MVS90.51 301
HQP3-MVS98.43 19298.74 262
HQP2-MVS90.33 259
NP-MVS98.14 21593.72 17295.08 329
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 170