LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
PS-MVSNAJss | | | 98.53 21 | 98.63 19 | 98.21 78 | 99.68 11 | 94.82 129 | 98.10 56 | 99.21 24 | 96.91 86 | 99.75 2 | 99.45 12 | 95.82 111 | 99.92 5 | 98.80 6 | 99.96 4 | 99.89 1 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 42 | 99.77 5 | 96.34 65 | 99.18 5 | 99.20 26 | 99.67 2 | 99.73 3 | 99.65 5 | 99.15 3 | 99.86 24 | 97.22 55 | 99.92 13 | 99.77 11 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 31 | 99.69 10 | 96.48 60 | 98.54 23 | 99.22 23 | 96.23 115 | 99.71 4 | 99.48 9 | 98.77 6 | 99.93 3 | 98.89 4 | 99.95 5 | 99.84 5 |
|
wuyk23d | | | 93.25 280 | 95.20 196 | 87.40 355 | 96.07 326 | 95.38 105 | 97.04 121 | 94.97 318 | 95.33 160 | 99.70 5 | 98.11 140 | 98.14 13 | 91.94 373 | 77.76 366 | 99.68 68 | 74.89 373 |
|
Anonymous20231211 | | | 98.55 19 | 98.76 13 | 97.94 96 | 98.79 118 | 94.37 144 | 98.84 11 | 99.15 35 | 99.37 3 | 99.67 6 | 99.43 14 | 95.61 122 | 99.72 85 | 98.12 22 | 99.86 27 | 99.73 18 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 34 | 99.66 13 | 96.48 60 | 98.45 31 | 99.12 39 | 95.83 141 | 99.67 6 | 99.37 16 | 98.25 10 | 99.92 5 | 98.77 7 | 99.94 8 | 99.82 6 |
|
ANet_high | | | 98.31 29 | 98.94 6 | 96.41 199 | 99.33 51 | 89.64 248 | 97.92 66 | 99.56 11 | 99.27 6 | 99.66 8 | 99.50 8 | 97.67 26 | 99.83 33 | 97.55 46 | 99.98 2 | 99.77 11 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 48 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 19 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 119 | 97.75 38 | 99.89 24 | 99.62 28 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 37 | 99.71 9 | 96.99 44 | 99.69 2 | 99.57 10 | 99.02 15 | 99.62 10 | 99.36 18 | 98.53 7 | 99.52 170 | 98.58 16 | 99.95 5 | 99.66 23 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 44 | 99.77 5 | 96.35 64 | 99.17 6 | 99.05 53 | 98.05 43 | 99.61 11 | 99.52 7 | 93.72 176 | 99.88 20 | 98.72 11 | 99.88 25 | 99.65 25 |
|
TransMVSNet (Re) | | | 98.38 26 | 98.67 17 | 97.51 124 | 99.51 31 | 93.39 180 | 98.20 51 | 98.87 98 | 98.23 36 | 99.48 12 | 99.27 25 | 98.47 8 | 99.55 162 | 96.52 77 | 99.53 110 | 99.60 30 |
|
LCM-MVSNet-Re | | | 97.33 109 | 97.33 104 | 97.32 143 | 98.13 203 | 93.79 166 | 96.99 124 | 99.65 7 | 96.74 91 | 99.47 13 | 98.93 54 | 96.91 65 | 99.84 30 | 90.11 287 | 99.06 215 | 98.32 250 |
|
SixPastTwentyTwo | | | 97.49 96 | 97.57 88 | 97.26 146 | 99.56 21 | 92.33 199 | 98.28 42 | 96.97 279 | 98.30 34 | 99.45 14 | 99.35 20 | 88.43 267 | 99.89 18 | 98.01 27 | 99.76 46 | 99.54 44 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 95 | 99.64 14 | 94.20 153 | 98.67 15 | 99.14 37 | 99.08 10 | 99.42 15 | 99.23 27 | 96.53 86 | 99.91 13 | 99.27 2 | 99.93 10 | 99.73 18 |
|
NR-MVSNet | | | 97.96 47 | 97.86 55 | 98.26 70 | 98.73 123 | 95.54 95 | 98.14 54 | 98.73 136 | 97.79 48 | 99.42 15 | 97.83 172 | 94.40 159 | 99.78 46 | 95.91 106 | 99.76 46 | 99.46 69 |
|
MIMVSNet1 | | | 98.51 22 | 98.45 26 | 98.67 40 | 99.72 8 | 96.71 50 | 98.76 12 | 98.89 90 | 98.49 27 | 99.38 17 | 99.14 39 | 95.44 128 | 99.84 30 | 96.47 79 | 99.80 39 | 99.47 67 |
|
ACMH | | 93.61 9 | 98.44 24 | 98.76 13 | 97.51 124 | 99.43 40 | 93.54 175 | 98.23 46 | 99.05 53 | 97.40 73 | 99.37 18 | 99.08 44 | 98.79 5 | 99.47 185 | 97.74 39 | 99.71 60 | 99.50 50 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvsany_test3 | | | 96.21 165 | 95.93 178 | 97.05 157 | 97.40 278 | 94.33 146 | 95.76 190 | 94.20 326 | 89.10 289 | 99.36 19 | 99.60 6 | 93.97 169 | 97.85 350 | 95.40 142 | 98.63 257 | 98.99 170 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 10 | 99.62 16 | 97.29 37 | 98.65 19 | 99.19 28 | 95.62 149 | 99.35 20 | 99.37 16 | 97.38 35 | 99.90 14 | 98.59 15 | 99.91 16 | 99.77 11 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 39 | 99.63 15 | 96.30 67 | 98.67 15 | 99.02 62 | 96.50 103 | 99.32 21 | 99.44 13 | 97.43 33 | 99.92 5 | 98.73 9 | 99.95 5 | 99.86 2 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 19 | 95.67 90 | 98.45 31 | 99.15 35 | 99.33 5 | 99.30 22 | 99.00 47 | 97.27 40 | 99.92 5 | 97.64 44 | 99.92 13 | 99.75 16 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 46 | 99.55 23 | 96.12 72 | 98.48 30 | 99.10 41 | 99.36 4 | 99.29 23 | 99.06 45 | 97.27 40 | 99.93 3 | 97.71 40 | 99.91 16 | 99.70 21 |
|
test_vis3_rt | | | 97.04 118 | 96.98 122 | 97.23 149 | 98.44 166 | 95.88 80 | 96.82 131 | 99.67 4 | 90.30 276 | 99.27 24 | 99.33 23 | 94.04 166 | 96.03 368 | 97.14 60 | 97.83 291 | 99.78 10 |
|
pm-mvs1 | | | 98.47 23 | 98.67 17 | 97.86 101 | 99.52 30 | 94.58 136 | 98.28 42 | 99.00 71 | 97.57 62 | 99.27 24 | 99.22 28 | 98.32 9 | 99.50 175 | 97.09 62 | 99.75 51 | 99.50 50 |
|
ACMH+ | | 93.58 10 | 98.23 33 | 98.31 31 | 97.98 94 | 99.39 45 | 95.22 118 | 97.55 91 | 99.20 26 | 98.21 37 | 99.25 26 | 98.51 90 | 98.21 11 | 99.40 209 | 94.79 172 | 99.72 57 | 99.32 101 |
|
Anonymous20240529 | | | 97.96 47 | 98.04 42 | 97.71 110 | 98.69 132 | 94.28 150 | 97.86 69 | 98.31 197 | 98.79 21 | 99.23 27 | 98.86 63 | 95.76 117 | 99.61 148 | 95.49 128 | 99.36 162 | 99.23 124 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 61 | 99.55 23 | 95.47 102 | 98.49 28 | 99.13 38 | 99.22 8 | 99.22 28 | 98.96 51 | 97.35 36 | 99.92 5 | 97.79 36 | 99.93 10 | 99.79 9 |
|
SD-MVS | | | 97.37 106 | 97.70 68 | 96.35 200 | 98.14 200 | 95.13 122 | 96.54 147 | 98.92 87 | 95.94 133 | 99.19 29 | 98.08 142 | 97.74 23 | 95.06 369 | 95.24 147 | 99.54 106 | 98.87 194 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 31 | 99.51 31 | 96.61 56 | 98.55 22 | 99.17 30 | 99.05 13 | 99.17 30 | 98.79 65 | 95.47 126 | 99.89 18 | 97.95 29 | 99.91 16 | 99.75 16 |
|
RRT_MVS | | | 97.95 51 | 97.79 61 | 98.43 57 | 99.67 12 | 95.56 93 | 98.86 10 | 96.73 290 | 97.99 45 | 99.15 31 | 99.35 20 | 89.84 250 | 99.90 14 | 98.64 13 | 99.90 22 | 99.82 6 |
|
dcpmvs_2 | | | 97.12 115 | 97.99 45 | 94.51 288 | 99.11 88 | 84.00 341 | 97.75 76 | 99.65 7 | 97.38 74 | 99.14 32 | 98.42 97 | 95.16 135 | 99.96 2 | 95.52 127 | 99.78 43 | 99.58 32 |
|
tfpnnormal | | | 97.72 81 | 97.97 46 | 96.94 164 | 99.26 56 | 92.23 201 | 97.83 71 | 98.45 175 | 98.25 35 | 99.13 33 | 98.66 77 | 96.65 79 | 99.69 114 | 93.92 209 | 99.62 78 | 98.91 184 |
|
SED-MVS | | | 97.94 55 | 97.90 50 | 98.07 86 | 99.22 65 | 95.35 108 | 96.79 135 | 98.83 114 | 96.11 121 | 99.08 34 | 98.24 123 | 97.87 19 | 99.72 85 | 95.44 135 | 99.51 120 | 99.14 141 |
|
test_241102_ONE | | | | | | 99.22 65 | 95.35 108 | | 98.83 114 | 96.04 126 | 99.08 34 | 98.13 136 | 97.87 19 | 99.33 228 | | | |
|
VPA-MVSNet | | | 98.27 30 | 98.46 24 | 97.70 111 | 99.06 94 | 93.80 165 | 97.76 75 | 99.00 71 | 98.40 29 | 99.07 36 | 98.98 49 | 96.89 66 | 99.75 66 | 97.19 59 | 99.79 40 | 99.55 43 |
|
nrg030 | | | 98.54 20 | 98.62 21 | 98.32 65 | 99.22 65 | 95.66 91 | 97.90 67 | 99.08 47 | 98.31 32 | 99.02 37 | 98.74 71 | 97.68 25 | 99.61 148 | 97.77 37 | 99.85 30 | 99.70 21 |
|
CP-MVSNet | | | 98.42 25 | 98.46 24 | 98.30 68 | 99.46 37 | 95.22 118 | 98.27 44 | 98.84 108 | 99.05 13 | 99.01 38 | 98.65 79 | 95.37 129 | 99.90 14 | 97.57 45 | 99.91 16 | 99.77 11 |
|
casdiffmvs_mvg |  | | 97.83 71 | 98.11 35 | 97.00 162 | 98.57 147 | 92.10 209 | 95.97 178 | 99.18 29 | 97.67 61 | 99.00 39 | 98.48 94 | 97.64 27 | 99.50 175 | 96.96 67 | 99.54 106 | 99.40 87 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
FMVSNet1 | | | 97.95 51 | 98.08 37 | 97.56 119 | 99.14 86 | 93.67 169 | 98.23 46 | 98.66 153 | 97.41 72 | 99.00 39 | 99.19 30 | 95.47 126 | 99.73 80 | 95.83 111 | 99.76 46 | 99.30 106 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 6 | 99.54 26 | 98.06 8 | 99.34 4 | 99.44 14 | 98.85 20 | 99.00 39 | 99.20 29 | 97.42 34 | 99.59 150 | 97.21 56 | 99.76 46 | 99.40 87 |
|
K. test v3 | | | 96.44 157 | 96.28 161 | 96.95 163 | 99.41 43 | 91.53 220 | 97.65 83 | 90.31 360 | 98.89 19 | 98.93 42 | 99.36 18 | 84.57 298 | 99.92 5 | 97.81 34 | 99.56 97 | 99.39 90 |
|
testf1 | | | 98.57 17 | 98.45 26 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 80 | 99.42 16 | 97.69 58 | 98.92 43 | 98.77 68 | 97.80 21 | 99.25 247 | 96.27 86 | 99.69 64 | 98.76 206 |
|
APD_test2 | | | 98.57 17 | 98.45 26 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 80 | 99.42 16 | 97.69 58 | 98.92 43 | 98.77 68 | 97.80 21 | 99.25 247 | 96.27 86 | 99.69 64 | 98.76 206 |
|
FC-MVSNet-test | | | 98.16 34 | 98.37 29 | 97.56 119 | 99.49 35 | 93.10 186 | 98.35 35 | 99.21 24 | 98.43 28 | 98.89 45 | 98.83 64 | 94.30 161 | 99.81 37 | 97.87 31 | 99.91 16 | 99.77 11 |
|
FOURS1 | | | | | | 99.59 18 | 98.20 7 | 99.03 7 | 99.25 22 | 98.96 18 | 98.87 46 | | | | | | |
|
KD-MVS_self_test | | | 97.86 69 | 98.07 38 | 97.25 147 | 99.22 65 | 92.81 191 | 97.55 91 | 98.94 84 | 97.10 82 | 98.85 47 | 98.88 61 | 95.03 139 | 99.67 124 | 97.39 52 | 99.65 73 | 99.26 118 |
|
mvsmamba | | | 98.16 34 | 98.06 40 | 98.44 55 | 99.53 29 | 95.87 81 | 98.70 13 | 98.94 84 | 97.71 56 | 98.85 47 | 99.10 41 | 91.35 227 | 99.83 33 | 98.47 17 | 99.90 22 | 99.64 27 |
|
TranMVSNet+NR-MVSNet | | | 98.33 27 | 98.30 33 | 98.43 57 | 99.07 93 | 95.87 81 | 96.73 142 | 99.05 53 | 98.67 23 | 98.84 49 | 98.45 95 | 97.58 30 | 99.88 20 | 96.45 80 | 99.86 27 | 99.54 44 |
|
new-patchmatchnet | | | 95.67 186 | 96.58 144 | 92.94 324 | 97.48 270 | 80.21 359 | 92.96 305 | 98.19 212 | 94.83 179 | 98.82 50 | 98.79 65 | 93.31 183 | 99.51 174 | 95.83 111 | 99.04 216 | 99.12 148 |
|
EG-PatchMatch MVS | | | 97.69 83 | 97.79 61 | 97.40 139 | 99.06 94 | 93.52 176 | 95.96 180 | 98.97 80 | 94.55 190 | 98.82 50 | 98.76 70 | 97.31 38 | 99.29 239 | 97.20 58 | 99.44 140 | 99.38 92 |
|
bld_raw_dy_0_64 | | | 97.69 83 | 97.61 84 | 97.91 97 | 99.54 26 | 94.27 151 | 98.06 59 | 98.60 161 | 96.60 95 | 98.79 52 | 98.95 52 | 89.62 251 | 99.84 30 | 98.43 19 | 99.91 16 | 99.62 28 |
|
DPE-MVS |  | | 97.64 86 | 97.35 103 | 98.50 51 | 98.85 113 | 96.18 69 | 95.21 226 | 98.99 74 | 95.84 140 | 98.78 53 | 98.08 142 | 96.84 72 | 99.81 37 | 93.98 207 | 99.57 94 | 99.52 48 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
COLMAP_ROB |  | 94.48 6 | 98.25 32 | 98.11 35 | 98.64 43 | 99.21 72 | 97.35 35 | 97.96 63 | 99.16 31 | 98.34 31 | 98.78 53 | 98.52 88 | 97.32 37 | 99.45 192 | 94.08 201 | 99.67 70 | 99.13 143 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
lessismore_v0 | | | | | 97.05 157 | 99.36 48 | 92.12 206 | | 84.07 373 | | 98.77 55 | 98.98 49 | 85.36 292 | 99.74 75 | 97.34 53 | 99.37 159 | 99.30 106 |
|
test_fmvs3 | | | 97.38 104 | 97.56 89 | 96.84 171 | 98.63 139 | 92.81 191 | 97.60 86 | 99.61 9 | 90.87 270 | 98.76 56 | 99.66 3 | 94.03 167 | 97.90 349 | 99.24 3 | 99.68 68 | 99.81 8 |
|
v8 | | | 97.60 89 | 98.06 40 | 96.23 205 | 98.71 128 | 89.44 252 | 97.43 101 | 98.82 122 | 97.29 78 | 98.74 57 | 99.10 41 | 93.86 171 | 99.68 119 | 98.61 14 | 99.94 8 | 99.56 41 |
|
DP-MVS | | | 97.87 67 | 97.89 53 | 97.81 104 | 98.62 141 | 94.82 129 | 97.13 116 | 98.79 124 | 98.98 17 | 98.74 57 | 98.49 91 | 95.80 116 | 99.49 179 | 95.04 162 | 99.44 140 | 99.11 151 |
|
v10 | | | 97.55 92 | 97.97 46 | 96.31 203 | 98.60 143 | 89.64 248 | 97.44 99 | 99.02 62 | 96.60 95 | 98.72 59 | 99.16 36 | 93.48 180 | 99.72 85 | 98.76 8 | 99.92 13 | 99.58 32 |
|
test0726 | | | | | | 99.24 60 | 95.51 97 | 96.89 128 | 98.89 90 | 95.92 134 | 98.64 60 | 98.31 108 | 97.06 52 | | | | |
|
DVP-MVS++ | | | 97.96 47 | 97.90 50 | 98.12 84 | 97.75 247 | 95.40 103 | 99.03 7 | 98.89 90 | 96.62 93 | 98.62 61 | 98.30 112 | 96.97 58 | 99.75 66 | 95.70 114 | 99.25 189 | 99.21 126 |
|
test_241102_TWO | | | | | | | | | 98.83 114 | 96.11 121 | 98.62 61 | 98.24 123 | 96.92 64 | 99.72 85 | 95.44 135 | 99.49 127 | 99.49 58 |
|
FIs | | | 97.93 58 | 98.07 38 | 97.48 131 | 99.38 46 | 92.95 189 | 98.03 62 | 99.11 40 | 98.04 44 | 98.62 61 | 98.66 77 | 93.75 175 | 99.78 46 | 97.23 54 | 99.84 31 | 99.73 18 |
|
DeepC-MVS | | 95.41 4 | 97.82 74 | 97.70 68 | 98.16 79 | 98.78 120 | 95.72 86 | 96.23 163 | 99.02 62 | 93.92 206 | 98.62 61 | 98.99 48 | 97.69 24 | 99.62 142 | 96.18 91 | 99.87 26 | 99.15 138 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 98.14 36 | 98.03 43 | 98.47 54 | 98.72 125 | 96.04 75 | 98.07 58 | 99.10 41 | 95.96 131 | 98.59 65 | 98.69 75 | 96.94 60 | 99.81 37 | 96.64 72 | 99.58 91 | 99.57 37 |
|
XXY-MVS | | | 97.54 93 | 97.70 68 | 97.07 156 | 99.46 37 | 92.21 202 | 97.22 110 | 99.00 71 | 94.93 178 | 98.58 66 | 98.92 55 | 97.31 38 | 99.41 207 | 94.44 185 | 99.43 148 | 99.59 31 |
|
test_0402 | | | 97.84 70 | 97.97 46 | 97.47 132 | 99.19 75 | 94.07 156 | 96.71 143 | 98.73 136 | 98.66 24 | 98.56 67 | 98.41 98 | 96.84 72 | 99.69 114 | 94.82 170 | 99.81 36 | 98.64 218 |
|
PM-MVS | | | 97.36 108 | 97.10 115 | 98.14 82 | 98.91 109 | 96.77 49 | 96.20 164 | 98.63 159 | 93.82 208 | 98.54 68 | 98.33 106 | 93.98 168 | 99.05 276 | 95.99 101 | 99.45 139 | 98.61 223 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 129 | 96.43 155 | 98.31 67 | 97.48 270 | 97.23 40 | 92.56 314 | 98.60 161 | 92.84 241 | 98.54 68 | 97.40 207 | 96.64 81 | 98.78 301 | 94.40 189 | 99.41 155 | 98.93 180 |
|
MSP-MVS | | | 97.45 99 | 96.92 128 | 99.03 5 | 99.26 56 | 97.70 18 | 97.66 82 | 98.89 90 | 95.65 147 | 98.51 70 | 96.46 271 | 92.15 212 | 99.81 37 | 95.14 156 | 98.58 262 | 99.58 32 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
VDD-MVS | | | 97.37 106 | 97.25 108 | 97.74 108 | 98.69 132 | 94.50 140 | 97.04 121 | 95.61 310 | 98.59 25 | 98.51 70 | 98.72 72 | 92.54 204 | 99.58 152 | 96.02 98 | 99.49 127 | 99.12 148 |
|
FMVSNet2 | | | 96.72 142 | 96.67 141 | 96.87 169 | 97.96 215 | 91.88 214 | 97.15 113 | 98.06 231 | 95.59 151 | 98.50 72 | 98.62 80 | 89.51 257 | 99.65 132 | 94.99 166 | 99.60 87 | 99.07 158 |
|
test_fmvs2 | | | 96.38 160 | 96.45 154 | 96.16 210 | 97.85 222 | 91.30 223 | 96.81 132 | 99.45 13 | 89.24 288 | 98.49 73 | 99.38 15 | 88.68 264 | 97.62 354 | 98.83 5 | 99.32 178 | 99.57 37 |
|
test1111 | | | 94.53 241 | 94.81 218 | 93.72 304 | 99.06 94 | 81.94 353 | 98.31 39 | 83.87 374 | 96.37 108 | 98.49 73 | 99.17 35 | 81.49 311 | 99.73 80 | 96.64 72 | 99.86 27 | 99.49 58 |
|
SMA-MVS |  | | 97.48 97 | 97.11 114 | 98.60 45 | 98.83 114 | 96.67 53 | 96.74 138 | 98.73 136 | 91.61 260 | 98.48 75 | 98.36 103 | 96.53 86 | 99.68 119 | 95.17 151 | 99.54 106 | 99.45 73 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
EU-MVSNet | | | 94.25 248 | 94.47 237 | 93.60 307 | 98.14 200 | 82.60 348 | 97.24 109 | 92.72 342 | 85.08 333 | 98.48 75 | 98.94 53 | 82.59 309 | 98.76 304 | 97.47 50 | 99.53 110 | 99.44 82 |
|
RPSCF | | | 97.87 67 | 97.51 94 | 98.95 14 | 99.15 79 | 98.43 6 | 97.56 90 | 99.06 51 | 96.19 118 | 98.48 75 | 98.70 74 | 94.72 146 | 99.24 250 | 94.37 190 | 99.33 176 | 99.17 135 |
|
v1240 | | | 96.74 139 | 97.02 121 | 95.91 222 | 98.18 191 | 88.52 268 | 95.39 212 | 98.88 96 | 93.15 230 | 98.46 78 | 98.40 101 | 92.80 194 | 99.71 100 | 98.45 18 | 99.49 127 | 99.49 58 |
|
VPNet | | | 97.26 112 | 97.49 97 | 96.59 185 | 99.47 36 | 90.58 236 | 96.27 158 | 98.53 168 | 97.77 49 | 98.46 78 | 98.41 98 | 94.59 152 | 99.68 119 | 94.61 179 | 99.29 184 | 99.52 48 |
|
IterMVS-LS | | | 96.92 127 | 97.29 106 | 95.79 226 | 98.51 156 | 88.13 279 | 95.10 229 | 98.66 153 | 96.99 83 | 98.46 78 | 98.68 76 | 92.55 202 | 99.74 75 | 96.91 68 | 99.79 40 | 99.50 50 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test_f | | | 95.82 181 | 95.88 181 | 95.66 232 | 97.61 261 | 93.21 184 | 95.61 201 | 98.17 213 | 86.98 314 | 98.42 81 | 99.47 10 | 90.46 238 | 94.74 371 | 97.71 40 | 98.45 268 | 99.03 163 |
|
ambc | | | | | 96.56 189 | 98.23 185 | 91.68 219 | 97.88 68 | 98.13 221 | | 98.42 81 | 98.56 85 | 94.22 163 | 99.04 277 | 94.05 204 | 99.35 167 | 98.95 174 |
|
DVP-MVS |  | | 97.78 77 | 97.65 75 | 98.16 79 | 99.24 60 | 95.51 97 | 96.74 138 | 98.23 202 | 95.92 134 | 98.40 83 | 98.28 117 | 97.06 52 | 99.71 100 | 95.48 131 | 99.52 115 | 99.26 118 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 96.62 93 | 98.40 83 | 98.28 117 | 97.10 48 | 99.71 100 | 95.70 114 | 99.62 78 | 99.58 32 |
|
VDDNet | | | 96.98 124 | 96.84 131 | 97.41 138 | 99.40 44 | 93.26 182 | 97.94 64 | 95.31 316 | 99.26 7 | 98.39 85 | 99.18 33 | 87.85 276 | 99.62 142 | 95.13 158 | 99.09 209 | 99.35 100 |
|
PC_three_1452 | | | | | | | | | | 87.24 310 | 98.37 86 | 97.44 204 | 97.00 56 | 96.78 365 | 92.01 242 | 99.25 189 | 99.21 126 |
|
Anonymous202405211 | | | 96.34 161 | 95.98 174 | 97.43 136 | 98.25 182 | 93.85 163 | 96.74 138 | 94.41 324 | 97.72 54 | 98.37 86 | 98.03 152 | 87.15 281 | 99.53 167 | 94.06 202 | 99.07 212 | 98.92 183 |
|
Baseline_NR-MVSNet | | | 97.72 81 | 97.79 61 | 97.50 127 | 99.56 21 | 93.29 181 | 95.44 206 | 98.86 101 | 98.20 38 | 98.37 86 | 99.24 26 | 94.69 147 | 99.55 162 | 95.98 102 | 99.79 40 | 99.65 25 |
|
IU-MVS | | | | | | 99.22 65 | 95.40 103 | | 98.14 220 | 85.77 327 | 98.36 89 | | | | 95.23 148 | 99.51 120 | 99.49 58 |
|
IterMVS-SCA-FT | | | 95.86 179 | 96.19 164 | 94.85 271 | 97.68 254 | 85.53 320 | 92.42 317 | 97.63 258 | 96.99 83 | 98.36 89 | 98.54 87 | 87.94 271 | 99.75 66 | 97.07 64 | 99.08 210 | 99.27 117 |
|
ACMM | | 93.33 11 | 98.05 43 | 97.79 61 | 98.85 24 | 99.15 79 | 97.55 26 | 96.68 144 | 98.83 114 | 95.21 164 | 98.36 89 | 98.13 136 | 98.13 14 | 99.62 142 | 96.04 96 | 99.54 106 | 99.39 90 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240521 | | | 97.07 117 | 97.51 94 | 95.76 227 | 99.35 49 | 88.18 276 | 97.78 72 | 98.40 184 | 97.11 81 | 98.34 92 | 99.04 46 | 89.58 253 | 99.79 43 | 98.09 24 | 99.93 10 | 99.30 106 |
|
LPG-MVS_test | | | 97.94 55 | 97.67 73 | 98.74 34 | 99.15 79 | 97.02 42 | 97.09 118 | 99.02 62 | 95.15 168 | 98.34 92 | 98.23 125 | 97.91 17 | 99.70 107 | 94.41 187 | 99.73 53 | 99.50 50 |
|
LGP-MVS_train | | | | | 98.74 34 | 99.15 79 | 97.02 42 | | 99.02 62 | 95.15 168 | 98.34 92 | 98.23 125 | 97.91 17 | 99.70 107 | 94.41 187 | 99.73 53 | 99.50 50 |
|
casdiffmvs |  | | 97.50 95 | 97.81 60 | 96.56 189 | 98.51 156 | 91.04 227 | 95.83 188 | 99.09 46 | 97.23 79 | 98.33 95 | 98.30 112 | 97.03 54 | 99.37 219 | 96.58 76 | 99.38 158 | 99.28 113 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Patchmatch-RL test | | | 94.66 233 | 94.49 235 | 95.19 252 | 98.54 152 | 88.91 261 | 92.57 313 | 98.74 135 | 91.46 263 | 98.32 96 | 97.75 181 | 77.31 334 | 98.81 299 | 96.06 93 | 99.61 84 | 97.85 291 |
|
XVG-OURS | | | 97.12 115 | 96.74 137 | 98.26 70 | 98.99 102 | 97.45 32 | 93.82 284 | 99.05 53 | 95.19 166 | 98.32 96 | 97.70 186 | 95.22 134 | 98.41 333 | 94.27 194 | 98.13 280 | 98.93 180 |
|
UniMVSNet_NR-MVSNet | | | 97.83 71 | 97.65 75 | 98.37 62 | 98.72 125 | 95.78 84 | 95.66 196 | 99.02 62 | 98.11 40 | 98.31 98 | 97.69 188 | 94.65 151 | 99.85 27 | 97.02 65 | 99.71 60 | 99.48 64 |
|
DU-MVS | | | 97.79 76 | 97.60 85 | 98.36 63 | 98.73 123 | 95.78 84 | 95.65 198 | 98.87 98 | 97.57 62 | 98.31 98 | 97.83 172 | 94.69 147 | 99.85 27 | 97.02 65 | 99.71 60 | 99.46 69 |
|
EI-MVSNet-UG-set | | | 97.32 110 | 97.40 99 | 97.09 155 | 97.34 283 | 92.01 212 | 95.33 218 | 97.65 254 | 97.74 52 | 98.30 100 | 98.14 134 | 95.04 138 | 99.69 114 | 97.55 46 | 99.52 115 | 99.58 32 |
|
EI-MVSNet-Vis-set | | | 97.32 110 | 97.39 100 | 97.11 153 | 97.36 280 | 92.08 210 | 95.34 217 | 97.65 254 | 97.74 52 | 98.29 101 | 98.11 140 | 95.05 137 | 99.68 119 | 97.50 48 | 99.50 124 | 99.56 41 |
|
test20.03 | | | 96.58 151 | 96.61 142 | 96.48 193 | 98.49 160 | 91.72 218 | 95.68 195 | 97.69 249 | 96.81 89 | 98.27 102 | 97.92 165 | 94.18 164 | 98.71 309 | 90.78 270 | 99.66 72 | 99.00 167 |
|
APD-MVS_3200maxsize | | | 98.13 39 | 97.90 50 | 98.79 29 | 98.79 118 | 97.31 36 | 97.55 91 | 98.92 87 | 97.72 54 | 98.25 103 | 98.13 136 | 97.10 48 | 99.75 66 | 95.44 135 | 99.24 192 | 99.32 101 |
|
v148 | | | 96.58 151 | 96.97 123 | 95.42 245 | 98.63 139 | 87.57 292 | 95.09 230 | 97.90 236 | 95.91 136 | 98.24 104 | 97.96 159 | 93.42 181 | 99.39 213 | 96.04 96 | 99.52 115 | 99.29 112 |
|
ECVR-MVS |  | | 94.37 247 | 94.48 236 | 94.05 300 | 98.95 104 | 83.10 345 | 98.31 39 | 82.48 375 | 96.20 116 | 98.23 105 | 99.16 36 | 81.18 314 | 99.66 130 | 95.95 103 | 99.83 33 | 99.38 92 |
|
UniMVSNet (Re) | | | 97.83 71 | 97.65 75 | 98.35 64 | 98.80 117 | 95.86 83 | 95.92 184 | 99.04 59 | 97.51 66 | 98.22 106 | 97.81 176 | 94.68 149 | 99.78 46 | 97.14 60 | 99.75 51 | 99.41 86 |
|
test_vis1_n | | | 95.67 186 | 95.89 180 | 95.03 260 | 98.18 191 | 89.89 245 | 96.94 126 | 99.28 21 | 88.25 302 | 98.20 107 | 98.92 55 | 86.69 285 | 97.19 357 | 97.70 42 | 98.82 239 | 98.00 283 |
|
SR-MVS-dyc-post | | | 98.14 36 | 97.84 56 | 99.02 6 | 98.81 115 | 98.05 9 | 97.55 91 | 98.86 101 | 97.77 49 | 98.20 107 | 98.07 144 | 96.60 84 | 99.76 60 | 95.49 128 | 99.20 194 | 99.26 118 |
|
RE-MVS-def | | | | 97.88 54 | | 98.81 115 | 98.05 9 | 97.55 91 | 98.86 101 | 97.77 49 | 98.20 107 | 98.07 144 | 96.94 60 | | 95.49 128 | 99.20 194 | 99.26 118 |
|
WR-MVS | | | 96.90 129 | 96.81 133 | 97.16 150 | 98.56 149 | 92.20 204 | 94.33 257 | 98.12 222 | 97.34 75 | 98.20 107 | 97.33 218 | 92.81 193 | 99.75 66 | 94.79 172 | 99.81 36 | 99.54 44 |
|
v1921920 | | | 96.72 142 | 96.96 125 | 95.99 215 | 98.21 186 | 88.79 265 | 95.42 208 | 98.79 124 | 93.22 224 | 98.19 111 | 98.26 122 | 92.68 197 | 99.70 107 | 98.34 21 | 99.55 103 | 99.49 58 |
|
TSAR-MVS + MP. | | | 97.42 102 | 97.23 110 | 98.00 93 | 99.38 46 | 95.00 125 | 97.63 85 | 98.20 207 | 93.00 234 | 98.16 112 | 98.06 149 | 95.89 106 | 99.72 85 | 95.67 118 | 99.10 208 | 99.28 113 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TinyColmap | | | 96.00 175 | 96.34 159 | 94.96 265 | 97.90 220 | 87.91 284 | 94.13 271 | 98.49 172 | 94.41 192 | 98.16 112 | 97.76 178 | 96.29 99 | 98.68 314 | 90.52 280 | 99.42 151 | 98.30 254 |
|
XVG-OURS-SEG-HR | | | 97.38 104 | 97.07 118 | 98.30 68 | 99.01 101 | 97.41 34 | 94.66 249 | 99.02 62 | 95.20 165 | 98.15 114 | 97.52 199 | 98.83 4 | 98.43 332 | 94.87 168 | 96.41 333 | 99.07 158 |
|
IS-MVSNet | | | 96.93 126 | 96.68 140 | 97.70 111 | 99.25 59 | 94.00 159 | 98.57 20 | 96.74 288 | 98.36 30 | 98.14 115 | 97.98 158 | 88.23 269 | 99.71 100 | 93.10 231 | 99.72 57 | 99.38 92 |
|
CSCG | | | 97.40 103 | 97.30 105 | 97.69 113 | 98.95 104 | 94.83 128 | 97.28 106 | 98.99 74 | 96.35 111 | 98.13 116 | 95.95 296 | 95.99 104 | 99.66 130 | 94.36 192 | 99.73 53 | 98.59 224 |
|
MP-MVS-pluss | | | 97.69 83 | 97.36 102 | 98.70 38 | 99.50 34 | 96.84 47 | 95.38 213 | 98.99 74 | 92.45 248 | 98.11 117 | 98.31 108 | 97.25 43 | 99.77 55 | 96.60 74 | 99.62 78 | 99.48 64 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
v1192 | | | 96.83 134 | 97.06 119 | 96.15 211 | 98.28 178 | 89.29 254 | 95.36 214 | 98.77 129 | 93.73 210 | 98.11 117 | 98.34 105 | 93.02 191 | 99.67 124 | 98.35 20 | 99.58 91 | 99.50 50 |
|
OPM-MVS | | | 97.54 93 | 97.25 108 | 98.41 59 | 99.11 88 | 96.61 56 | 95.24 224 | 98.46 174 | 94.58 189 | 98.10 119 | 98.07 144 | 97.09 50 | 99.39 213 | 95.16 153 | 99.44 140 | 99.21 126 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
v144192 | | | 96.69 145 | 96.90 130 | 96.03 214 | 98.25 182 | 88.92 260 | 95.49 204 | 98.77 129 | 93.05 232 | 98.09 120 | 98.29 116 | 92.51 207 | 99.70 107 | 98.11 23 | 99.56 97 | 99.47 67 |
|
N_pmnet | | | 95.18 208 | 94.23 244 | 98.06 88 | 97.85 222 | 96.55 58 | 92.49 315 | 91.63 350 | 89.34 286 | 98.09 120 | 97.41 206 | 90.33 240 | 99.06 275 | 91.58 252 | 99.31 181 | 98.56 226 |
|
test_part2 | | | | | | 99.03 100 | 96.07 74 | | | | 98.08 122 | | | | | | |
|
SteuartSystems-ACMMP | | | 98.02 45 | 97.76 66 | 98.79 29 | 99.43 40 | 97.21 41 | 97.15 113 | 98.90 89 | 96.58 98 | 98.08 122 | 97.87 170 | 97.02 55 | 99.76 60 | 95.25 146 | 99.59 89 | 99.40 87 |
Skip Steuart: Steuart Systems R&D Blog. |
APD_test1 | | | 97.95 51 | 97.68 72 | 98.75 31 | 99.60 17 | 98.60 5 | 97.21 111 | 99.08 47 | 96.57 101 | 98.07 124 | 98.38 102 | 96.22 101 | 99.14 263 | 94.71 178 | 99.31 181 | 98.52 230 |
|
SR-MVS | | | 98.00 46 | 97.66 74 | 99.01 8 | 98.77 121 | 97.93 11 | 97.38 103 | 98.83 114 | 97.32 76 | 98.06 125 | 97.85 171 | 96.65 79 | 99.77 55 | 95.00 165 | 99.11 206 | 99.32 101 |
|
XVG-ACMP-BASELINE | | | 97.58 91 | 97.28 107 | 98.49 52 | 99.16 77 | 96.90 46 | 96.39 151 | 98.98 77 | 95.05 173 | 98.06 125 | 98.02 153 | 95.86 107 | 99.56 159 | 94.37 190 | 99.64 75 | 99.00 167 |
|
IterMVS | | | 95.42 199 | 95.83 182 | 94.20 297 | 97.52 267 | 83.78 343 | 92.41 318 | 97.47 263 | 95.49 155 | 98.06 125 | 98.49 91 | 87.94 271 | 99.58 152 | 96.02 98 | 99.02 217 | 99.23 124 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TSAR-MVS + GP. | | | 96.47 156 | 96.12 166 | 97.49 130 | 97.74 250 | 95.23 115 | 94.15 268 | 96.90 281 | 93.26 222 | 98.04 128 | 96.70 258 | 94.41 158 | 98.89 292 | 94.77 175 | 99.14 200 | 98.37 243 |
|
test_one_0601 | | | | | | 99.05 98 | 95.50 100 | | 98.87 98 | 97.21 80 | 98.03 129 | 98.30 112 | 96.93 62 | | | | |
|
testgi | | | 96.07 170 | 96.50 153 | 94.80 274 | 99.26 56 | 87.69 291 | 95.96 180 | 98.58 165 | 95.08 171 | 98.02 130 | 96.25 281 | 97.92 16 | 97.60 355 | 88.68 309 | 98.74 246 | 99.11 151 |
|
V42 | | | 97.04 118 | 97.16 113 | 96.68 182 | 98.59 145 | 91.05 226 | 96.33 156 | 98.36 189 | 94.60 186 | 97.99 131 | 98.30 112 | 93.32 182 | 99.62 142 | 97.40 51 | 99.53 110 | 99.38 92 |
|
GBi-Net | | | 96.99 121 | 96.80 134 | 97.56 119 | 97.96 215 | 93.67 169 | 98.23 46 | 98.66 153 | 95.59 151 | 97.99 131 | 99.19 30 | 89.51 257 | 99.73 80 | 94.60 180 | 99.44 140 | 99.30 106 |
|
test1 | | | 96.99 121 | 96.80 134 | 97.56 119 | 97.96 215 | 93.67 169 | 98.23 46 | 98.66 153 | 95.59 151 | 97.99 131 | 99.19 30 | 89.51 257 | 99.73 80 | 94.60 180 | 99.44 140 | 99.30 106 |
|
FMVSNet3 | | | 95.26 205 | 94.94 207 | 96.22 207 | 96.53 308 | 90.06 241 | 95.99 176 | 97.66 252 | 94.11 201 | 97.99 131 | 97.91 166 | 80.22 320 | 99.63 137 | 94.60 180 | 99.44 140 | 98.96 173 |
|
pmmvs-eth3d | | | 96.49 154 | 96.18 165 | 97.42 137 | 98.25 182 | 94.29 147 | 94.77 246 | 98.07 230 | 89.81 283 | 97.97 135 | 98.33 106 | 93.11 186 | 99.08 273 | 95.46 134 | 99.84 31 | 98.89 188 |
|
v1144 | | | 96.84 131 | 97.08 117 | 96.13 212 | 98.42 168 | 89.28 255 | 95.41 210 | 98.67 151 | 94.21 197 | 97.97 135 | 98.31 108 | 93.06 187 | 99.65 132 | 98.06 26 | 99.62 78 | 99.45 73 |
|
ACMP | | 92.54 13 | 97.47 98 | 97.10 115 | 98.55 49 | 99.04 99 | 96.70 51 | 96.24 162 | 98.89 90 | 93.71 211 | 97.97 135 | 97.75 181 | 97.44 32 | 99.63 137 | 93.22 228 | 99.70 63 | 99.32 101 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EI-MVSNet | | | 96.63 148 | 96.93 126 | 95.74 228 | 97.26 288 | 88.13 279 | 95.29 222 | 97.65 254 | 96.99 83 | 97.94 138 | 98.19 130 | 92.55 202 | 99.58 152 | 96.91 68 | 99.56 97 | 99.50 50 |
|
MVSTER | | | 94.21 251 | 93.93 255 | 95.05 259 | 95.83 332 | 86.46 310 | 95.18 227 | 97.65 254 | 92.41 249 | 97.94 138 | 98.00 157 | 72.39 356 | 99.58 152 | 96.36 83 | 99.56 97 | 99.12 148 |
|
ACMMP |  | | 98.05 43 | 97.75 67 | 98.93 18 | 99.23 62 | 97.60 22 | 98.09 57 | 98.96 81 | 95.75 145 | 97.91 140 | 98.06 149 | 96.89 66 | 99.76 60 | 95.32 143 | 99.57 94 | 99.43 83 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MTAPA | | | 98.14 36 | 97.84 56 | 99.06 3 | 99.44 39 | 97.90 12 | 97.25 107 | 98.73 136 | 97.69 58 | 97.90 141 | 97.96 159 | 95.81 115 | 99.82 35 | 96.13 92 | 99.61 84 | 99.45 73 |
|
LFMVS | | | 95.32 202 | 94.88 213 | 96.62 183 | 98.03 206 | 91.47 222 | 97.65 83 | 90.72 357 | 99.11 9 | 97.89 142 | 98.31 108 | 79.20 322 | 99.48 182 | 93.91 210 | 99.12 205 | 98.93 180 |
|
ACMMP_NAP | | | 97.89 65 | 97.63 80 | 98.67 40 | 99.35 49 | 96.84 47 | 96.36 154 | 98.79 124 | 95.07 172 | 97.88 143 | 98.35 104 | 97.24 44 | 99.72 85 | 96.05 95 | 99.58 91 | 99.45 73 |
|
VNet | | | 96.84 131 | 96.83 132 | 96.88 168 | 98.06 205 | 92.02 211 | 96.35 155 | 97.57 260 | 97.70 57 | 97.88 143 | 97.80 177 | 92.40 209 | 99.54 165 | 94.73 177 | 98.96 221 | 99.08 156 |
|
HPM-MVS_fast | | | 98.32 28 | 98.13 34 | 98.88 23 | 99.54 26 | 97.48 30 | 98.35 35 | 99.03 60 | 95.88 137 | 97.88 143 | 98.22 128 | 98.15 12 | 99.74 75 | 96.50 78 | 99.62 78 | 99.42 84 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 88 | 97.89 13 | 99.47 3 | 99.32 18 | 99.08 10 | 97.87 146 | 99.67 2 | 96.47 91 | 99.92 5 | 97.88 30 | 99.98 2 | 99.85 3 |
|
baseline | | | 97.44 100 | 97.78 65 | 96.43 195 | 98.52 154 | 90.75 234 | 96.84 129 | 99.03 60 | 96.51 102 | 97.86 147 | 98.02 153 | 96.67 78 | 99.36 221 | 97.09 62 | 99.47 133 | 99.19 131 |
|
v2v482 | | | 96.78 138 | 97.06 119 | 95.95 219 | 98.57 147 | 88.77 266 | 95.36 214 | 98.26 199 | 95.18 167 | 97.85 148 | 98.23 125 | 92.58 201 | 99.63 137 | 97.80 35 | 99.69 64 | 99.45 73 |
|
SF-MVS | | | 97.60 89 | 97.39 100 | 98.22 75 | 98.93 107 | 95.69 88 | 97.05 120 | 99.10 41 | 95.32 161 | 97.83 149 | 97.88 169 | 96.44 93 | 99.72 85 | 94.59 183 | 99.39 157 | 99.25 122 |
|
Vis-MVSNet |  | | 98.27 30 | 98.34 30 | 98.07 86 | 99.33 51 | 95.21 120 | 98.04 60 | 99.46 12 | 97.32 76 | 97.82 150 | 99.11 40 | 96.75 76 | 99.86 24 | 97.84 33 | 99.36 162 | 99.15 138 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
AllTest | | | 97.20 114 | 96.92 128 | 98.06 88 | 99.08 91 | 96.16 70 | 97.14 115 | 99.16 31 | 94.35 194 | 97.78 151 | 98.07 144 | 95.84 108 | 99.12 266 | 91.41 253 | 99.42 151 | 98.91 184 |
|
TestCases | | | | | 98.06 88 | 99.08 91 | 96.16 70 | | 99.16 31 | 94.35 194 | 97.78 151 | 98.07 144 | 95.84 108 | 99.12 266 | 91.41 253 | 99.42 151 | 98.91 184 |
|
test_vis1_n_1920 | | | 95.77 182 | 96.41 156 | 93.85 301 | 98.55 150 | 84.86 332 | 95.91 185 | 99.71 2 | 92.72 243 | 97.67 153 | 98.90 59 | 87.44 279 | 98.73 306 | 97.96 28 | 98.85 235 | 97.96 284 |
|
GeoE | | | 97.75 79 | 97.70 68 | 97.89 99 | 98.88 111 | 94.53 137 | 97.10 117 | 98.98 77 | 95.75 145 | 97.62 154 | 97.59 194 | 97.61 29 | 99.77 55 | 96.34 84 | 99.44 140 | 99.36 98 |
|
MDA-MVSNet-bldmvs | | | 95.69 184 | 95.67 187 | 95.74 228 | 98.48 162 | 88.76 267 | 92.84 306 | 97.25 266 | 96.00 129 | 97.59 155 | 97.95 161 | 91.38 226 | 99.46 188 | 93.16 230 | 96.35 334 | 98.99 170 |
|
PGM-MVS | | | 97.88 66 | 97.52 93 | 98.96 13 | 99.20 73 | 97.62 21 | 97.09 118 | 99.06 51 | 95.45 156 | 97.55 156 | 97.94 162 | 97.11 47 | 99.78 46 | 94.77 175 | 99.46 136 | 99.48 64 |
|
GST-MVS | | | 97.82 74 | 97.49 97 | 98.81 27 | 99.23 62 | 97.25 38 | 97.16 112 | 98.79 124 | 95.96 131 | 97.53 157 | 97.40 207 | 96.93 62 | 99.77 55 | 95.04 162 | 99.35 167 | 99.42 84 |
|
YYNet1 | | | 94.73 225 | 94.84 215 | 94.41 291 | 97.47 274 | 85.09 329 | 90.29 350 | 95.85 304 | 92.52 245 | 97.53 157 | 97.76 178 | 91.97 218 | 99.18 256 | 93.31 225 | 96.86 323 | 98.95 174 |
|
TAMVS | | | 95.49 193 | 94.94 207 | 97.16 150 | 98.31 174 | 93.41 179 | 95.07 233 | 96.82 284 | 91.09 268 | 97.51 159 | 97.82 175 | 89.96 247 | 99.42 198 | 88.42 312 | 99.44 140 | 98.64 218 |
|
LS3D | | | 97.77 78 | 97.50 96 | 98.57 47 | 96.24 315 | 97.58 24 | 98.45 31 | 98.85 105 | 98.58 26 | 97.51 159 | 97.94 162 | 95.74 118 | 99.63 137 | 95.19 149 | 98.97 220 | 98.51 231 |
|
HFP-MVS | | | 97.94 55 | 97.64 78 | 98.83 25 | 99.15 79 | 97.50 29 | 97.59 88 | 98.84 108 | 96.05 124 | 97.49 161 | 97.54 197 | 97.07 51 | 99.70 107 | 95.61 123 | 99.46 136 | 99.30 106 |
|
Patchmtry | | | 95.03 216 | 94.59 231 | 96.33 201 | 94.83 349 | 90.82 231 | 96.38 153 | 97.20 268 | 96.59 97 | 97.49 161 | 98.57 83 | 77.67 329 | 99.38 216 | 92.95 234 | 99.62 78 | 98.80 200 |
|
MDA-MVSNet_test_wron | | | 94.73 225 | 94.83 217 | 94.42 290 | 97.48 270 | 85.15 327 | 90.28 351 | 95.87 303 | 92.52 245 | 97.48 163 | 97.76 178 | 91.92 221 | 99.17 260 | 93.32 224 | 96.80 326 | 98.94 176 |
|
UnsupCasMVSNet_eth | | | 95.91 177 | 95.73 186 | 96.44 194 | 98.48 162 | 91.52 221 | 95.31 220 | 98.45 175 | 95.76 143 | 97.48 163 | 97.54 197 | 89.53 256 | 98.69 311 | 94.43 186 | 94.61 354 | 99.13 143 |
|
tttt0517 | | | 93.31 278 | 92.56 285 | 95.57 235 | 98.71 128 | 87.86 285 | 97.44 99 | 87.17 369 | 95.79 142 | 97.47 165 | 96.84 248 | 64.12 371 | 99.81 37 | 96.20 89 | 99.32 178 | 99.02 166 |
|
ACMMPR | | | 97.95 51 | 97.62 82 | 98.94 15 | 99.20 73 | 97.56 25 | 97.59 88 | 98.83 114 | 96.05 124 | 97.46 166 | 97.63 191 | 96.77 75 | 99.76 60 | 95.61 123 | 99.46 136 | 99.49 58 |
|
APD-MVS |  | | 97.00 120 | 96.53 150 | 98.41 59 | 98.55 150 | 96.31 66 | 96.32 157 | 98.77 129 | 92.96 239 | 97.44 167 | 97.58 196 | 95.84 108 | 99.74 75 | 91.96 243 | 99.35 167 | 99.19 131 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS |  | | 98.11 40 | 97.83 59 | 98.92 21 | 99.42 42 | 97.46 31 | 98.57 20 | 99.05 53 | 95.43 158 | 97.41 168 | 97.50 201 | 97.98 15 | 99.79 43 | 95.58 126 | 99.57 94 | 99.50 50 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
c3_l | | | 95.20 207 | 95.32 193 | 94.83 273 | 96.19 319 | 86.43 312 | 91.83 327 | 98.35 192 | 93.47 216 | 97.36 169 | 97.26 222 | 88.69 263 | 99.28 241 | 95.41 141 | 99.36 162 | 98.78 202 |
|
EPP-MVSNet | | | 96.84 131 | 96.58 144 | 97.65 115 | 99.18 76 | 93.78 167 | 98.68 14 | 96.34 293 | 97.91 47 | 97.30 170 | 98.06 149 | 88.46 266 | 99.85 27 | 93.85 211 | 99.40 156 | 99.32 101 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 139 | 96.51 152 | 97.44 135 | 97.69 253 | 94.15 154 | 96.02 174 | 98.43 178 | 93.17 229 | 97.30 170 | 97.38 213 | 95.48 125 | 99.28 241 | 93.74 214 | 99.34 170 | 98.88 192 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mvsany_test1 | | | 93.47 274 | 93.03 270 | 94.79 275 | 94.05 361 | 92.12 206 | 90.82 345 | 90.01 363 | 85.02 336 | 97.26 172 | 98.28 117 | 93.57 178 | 97.03 359 | 92.51 238 | 95.75 344 | 95.23 354 |
|
region2R | | | 97.92 59 | 97.59 86 | 98.92 21 | 99.22 65 | 97.55 26 | 97.60 86 | 98.84 108 | 96.00 129 | 97.22 173 | 97.62 192 | 96.87 70 | 99.76 60 | 95.48 131 | 99.43 148 | 99.46 69 |
|
ITE_SJBPF | | | | | 97.85 102 | 98.64 135 | 96.66 54 | | 98.51 171 | 95.63 148 | 97.22 173 | 97.30 220 | 95.52 124 | 98.55 325 | 90.97 263 | 98.90 228 | 98.34 249 |
|
test_fmvs1_n | | | 95.21 206 | 95.28 194 | 94.99 263 | 98.15 198 | 89.13 259 | 96.81 132 | 99.43 15 | 86.97 315 | 97.21 175 | 98.92 55 | 83.00 306 | 97.13 358 | 98.09 24 | 98.94 224 | 98.72 211 |
|
h-mvs33 | | | 96.29 162 | 95.63 189 | 98.26 70 | 98.50 159 | 96.11 73 | 96.90 127 | 97.09 274 | 96.58 98 | 97.21 175 | 98.19 130 | 84.14 299 | 99.78 46 | 95.89 107 | 96.17 337 | 98.89 188 |
|
hse-mvs2 | | | 95.77 182 | 95.09 201 | 97.79 105 | 97.84 227 | 95.51 97 | 95.66 196 | 95.43 315 | 96.58 98 | 97.21 175 | 96.16 284 | 84.14 299 | 99.54 165 | 95.89 107 | 96.92 320 | 98.32 250 |
|
9.14 | | | | 96.69 139 | | 98.53 153 | | 96.02 174 | 98.98 77 | 93.23 223 | 97.18 178 | 97.46 202 | 96.47 91 | 99.62 142 | 92.99 232 | 99.32 178 | |
|
OMC-MVS | | | 96.48 155 | 96.00 172 | 97.91 97 | 98.30 175 | 96.01 78 | 94.86 243 | 98.60 161 | 91.88 257 | 97.18 178 | 97.21 225 | 96.11 102 | 99.04 277 | 90.49 283 | 99.34 170 | 98.69 215 |
|
our_test_3 | | | 94.20 253 | 94.58 232 | 93.07 318 | 96.16 321 | 81.20 356 | 90.42 349 | 96.84 282 | 90.72 272 | 97.14 180 | 97.13 228 | 90.47 237 | 99.11 269 | 94.04 205 | 98.25 275 | 98.91 184 |
|
MS-PatchMatch | | | 94.83 222 | 94.91 211 | 94.57 285 | 96.81 304 | 87.10 303 | 94.23 263 | 97.34 265 | 88.74 296 | 97.14 180 | 97.11 230 | 91.94 220 | 98.23 343 | 92.99 232 | 97.92 287 | 98.37 243 |
|
eth_miper_zixun_eth | | | 94.89 220 | 94.93 209 | 94.75 277 | 95.99 327 | 86.12 315 | 91.35 333 | 98.49 172 | 93.40 217 | 97.12 182 | 97.25 223 | 86.87 284 | 99.35 224 | 95.08 161 | 98.82 239 | 98.78 202 |
|
3Dnovator | | 96.53 2 | 97.61 88 | 97.64 78 | 97.50 127 | 97.74 250 | 93.65 173 | 98.49 28 | 98.88 96 | 96.86 88 | 97.11 183 | 98.55 86 | 95.82 111 | 99.73 80 | 95.94 104 | 99.42 151 | 99.13 143 |
|
cl____ | | | 94.73 225 | 94.64 225 | 95.01 261 | 95.85 331 | 87.00 304 | 91.33 334 | 98.08 226 | 93.34 219 | 97.10 184 | 97.33 218 | 84.01 302 | 99.30 235 | 95.14 156 | 99.56 97 | 98.71 214 |
|
DIV-MVS_self_test | | | 94.73 225 | 94.64 225 | 95.01 261 | 95.86 330 | 87.00 304 | 91.33 334 | 98.08 226 | 93.34 219 | 97.10 184 | 97.34 217 | 84.02 301 | 99.31 232 | 95.15 155 | 99.55 103 | 98.72 211 |
|
PMMVS2 | | | 93.66 268 | 94.07 250 | 92.45 332 | 97.57 263 | 80.67 358 | 86.46 365 | 96.00 299 | 93.99 204 | 97.10 184 | 97.38 213 | 89.90 248 | 97.82 351 | 88.76 306 | 99.47 133 | 98.86 195 |
|
mPP-MVS | | | 97.91 62 | 97.53 92 | 99.04 4 | 99.22 65 | 97.87 14 | 97.74 78 | 98.78 128 | 96.04 126 | 97.10 184 | 97.73 184 | 96.53 86 | 99.78 46 | 95.16 153 | 99.50 124 | 99.46 69 |
|
BH-untuned | | | 94.69 230 | 94.75 221 | 94.52 287 | 97.95 218 | 87.53 293 | 94.07 273 | 97.01 277 | 93.99 204 | 97.10 184 | 95.65 303 | 92.65 199 | 98.95 290 | 87.60 322 | 96.74 327 | 97.09 315 |
|
tt0805 | | | 97.44 100 | 97.56 89 | 97.11 153 | 99.55 23 | 96.36 63 | 98.66 18 | 95.66 306 | 98.31 32 | 97.09 189 | 95.45 310 | 97.17 46 | 98.50 329 | 98.67 12 | 97.45 313 | 96.48 338 |
|
test2506 | | | 89.86 322 | 89.16 327 | 91.97 336 | 98.95 104 | 76.83 368 | 98.54 23 | 61.07 382 | 96.20 116 | 97.07 190 | 99.16 36 | 55.19 381 | 99.69 114 | 96.43 81 | 99.83 33 | 99.38 92 |
|
miper_ehance_all_eth | | | 94.69 230 | 94.70 222 | 94.64 279 | 95.77 334 | 86.22 314 | 91.32 336 | 98.24 201 | 91.67 259 | 97.05 191 | 96.65 261 | 88.39 268 | 99.22 254 | 94.88 167 | 98.34 271 | 98.49 234 |
|
iter_conf05 | | | 93.65 269 | 93.05 268 | 95.46 243 | 96.13 325 | 87.45 295 | 95.95 182 | 98.22 203 | 92.66 244 | 97.04 192 | 97.89 167 | 63.52 373 | 99.72 85 | 96.19 90 | 99.82 35 | 99.21 126 |
|
miper_lstm_enhance | | | 94.81 224 | 94.80 219 | 94.85 271 | 96.16 321 | 86.45 311 | 91.14 340 | 98.20 207 | 93.49 215 | 97.03 193 | 97.37 215 | 84.97 295 | 99.26 245 | 95.28 144 | 99.56 97 | 98.83 197 |
|
UnsupCasMVSNet_bld | | | 94.72 229 | 94.26 243 | 96.08 213 | 98.62 141 | 90.54 239 | 93.38 298 | 98.05 232 | 90.30 276 | 97.02 194 | 96.80 253 | 89.54 254 | 99.16 261 | 88.44 311 | 96.18 336 | 98.56 226 |
|
ppachtmachnet_test | | | 94.49 243 | 94.84 215 | 93.46 310 | 96.16 321 | 82.10 350 | 90.59 347 | 97.48 262 | 90.53 274 | 97.01 195 | 97.59 194 | 91.01 230 | 99.36 221 | 93.97 208 | 99.18 198 | 98.94 176 |
|
D2MVS | | | 95.18 208 | 95.17 198 | 95.21 251 | 97.76 245 | 87.76 290 | 94.15 268 | 97.94 234 | 89.77 284 | 96.99 196 | 97.68 189 | 87.45 278 | 99.14 263 | 95.03 164 | 99.81 36 | 98.74 208 |
|
ab-mvs | | | 96.59 149 | 96.59 143 | 96.60 184 | 98.64 135 | 92.21 202 | 98.35 35 | 97.67 250 | 94.45 191 | 96.99 196 | 98.79 65 | 94.96 143 | 99.49 179 | 90.39 284 | 99.07 212 | 98.08 269 |
|
Anonymous20231206 | | | 95.27 204 | 95.06 204 | 95.88 223 | 98.72 125 | 89.37 253 | 95.70 192 | 97.85 239 | 88.00 305 | 96.98 198 | 97.62 192 | 91.95 219 | 99.34 226 | 89.21 300 | 99.53 110 | 98.94 176 |
|
PVSNet_Blended_VisFu | | | 95.95 176 | 95.80 183 | 96.42 197 | 99.28 55 | 90.62 235 | 95.31 220 | 99.08 47 | 88.40 299 | 96.97 199 | 98.17 133 | 92.11 214 | 99.78 46 | 93.64 218 | 99.21 193 | 98.86 195 |
|
mvs_anonymous | | | 95.36 200 | 96.07 170 | 93.21 316 | 96.29 313 | 81.56 354 | 94.60 251 | 97.66 252 | 93.30 221 | 96.95 200 | 98.91 58 | 93.03 190 | 99.38 216 | 96.60 74 | 97.30 318 | 98.69 215 |
|
ZNCC-MVS | | | 97.92 59 | 97.62 82 | 98.83 25 | 99.32 53 | 97.24 39 | 97.45 98 | 98.84 108 | 95.76 143 | 96.93 201 | 97.43 205 | 97.26 42 | 99.79 43 | 96.06 93 | 99.53 110 | 99.45 73 |
|
3Dnovator+ | | 96.13 3 | 97.73 80 | 97.59 86 | 98.15 81 | 98.11 204 | 95.60 92 | 98.04 60 | 98.70 145 | 98.13 39 | 96.93 201 | 98.45 95 | 95.30 132 | 99.62 142 | 95.64 121 | 98.96 221 | 99.24 123 |
|
USDC | | | 94.56 238 | 94.57 234 | 94.55 286 | 97.78 243 | 86.43 312 | 92.75 309 | 98.65 158 | 85.96 323 | 96.91 203 | 97.93 164 | 90.82 233 | 98.74 305 | 90.71 275 | 99.59 89 | 98.47 235 |
|
CP-MVS | | | 97.92 59 | 97.56 89 | 98.99 10 | 98.99 102 | 97.82 15 | 97.93 65 | 98.96 81 | 96.11 121 | 96.89 204 | 97.45 203 | 96.85 71 | 99.78 46 | 95.19 149 | 99.63 77 | 99.38 92 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 270 | 93.05 268 | 95.42 245 | 97.31 287 | 91.21 225 | 95.08 232 | 96.68 291 | 81.56 351 | 96.88 205 | 96.41 273 | 90.44 239 | 99.25 247 | 85.39 340 | 97.67 302 | 95.80 346 |
|
iter_conf_final | | | 94.54 240 | 93.91 256 | 96.43 195 | 97.23 290 | 90.41 240 | 96.81 132 | 98.10 223 | 93.87 207 | 96.80 206 | 97.89 167 | 68.02 367 | 99.72 85 | 96.73 71 | 99.77 45 | 99.18 134 |
|
test_fmvs1 | | | 94.51 242 | 94.60 229 | 94.26 296 | 95.91 328 | 87.92 283 | 95.35 216 | 99.02 62 | 86.56 319 | 96.79 207 | 98.52 88 | 82.64 308 | 97.00 361 | 97.87 31 | 98.71 250 | 97.88 289 |
|
test_yl | | | 94.40 244 | 94.00 252 | 95.59 233 | 96.95 299 | 89.52 250 | 94.75 247 | 95.55 312 | 96.18 119 | 96.79 207 | 96.14 287 | 81.09 315 | 99.18 256 | 90.75 271 | 97.77 292 | 98.07 271 |
|
DCV-MVSNet | | | 94.40 244 | 94.00 252 | 95.59 233 | 96.95 299 | 89.52 250 | 94.75 247 | 95.55 312 | 96.18 119 | 96.79 207 | 96.14 287 | 81.09 315 | 99.18 256 | 90.75 271 | 97.77 292 | 98.07 271 |
|
Gipuma |  | | 98.07 42 | 98.31 31 | 97.36 141 | 99.76 7 | 96.28 68 | 98.51 27 | 99.10 41 | 98.76 22 | 96.79 207 | 99.34 22 | 96.61 82 | 98.82 297 | 96.38 82 | 99.50 124 | 96.98 318 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
alignmvs | | | 96.01 174 | 95.52 192 | 97.50 127 | 97.77 244 | 94.71 131 | 96.07 170 | 96.84 282 | 97.48 67 | 96.78 211 | 94.28 332 | 85.50 291 | 99.40 209 | 96.22 88 | 98.73 249 | 98.40 239 |
|
CL-MVSNet_self_test | | | 95.04 214 | 94.79 220 | 95.82 225 | 97.51 268 | 89.79 246 | 91.14 340 | 96.82 284 | 93.05 232 | 96.72 212 | 96.40 275 | 90.82 233 | 99.16 261 | 91.95 244 | 98.66 254 | 98.50 233 |
|
MSLP-MVS++ | | | 96.42 159 | 96.71 138 | 95.57 235 | 97.82 230 | 90.56 238 | 95.71 191 | 98.84 108 | 94.72 182 | 96.71 213 | 97.39 211 | 94.91 144 | 98.10 347 | 95.28 144 | 99.02 217 | 98.05 278 |
|
FA-MVS(test-final) | | | 94.91 219 | 94.89 212 | 94.99 263 | 97.51 268 | 88.11 281 | 98.27 44 | 95.20 317 | 92.40 250 | 96.68 214 | 98.60 81 | 83.44 304 | 99.28 241 | 93.34 223 | 98.53 263 | 97.59 303 |
|
canonicalmvs | | | 97.23 113 | 97.21 111 | 97.30 144 | 97.65 258 | 94.39 142 | 97.84 70 | 99.05 53 | 97.42 69 | 96.68 214 | 93.85 335 | 97.63 28 | 99.33 228 | 96.29 85 | 98.47 267 | 98.18 266 |
|
ZD-MVS | | | | | | 98.43 167 | 95.94 79 | | 98.56 167 | 90.72 272 | 96.66 216 | 97.07 232 | 95.02 140 | 99.74 75 | 91.08 260 | 98.93 226 | |
|
diffmvs |  | | 96.04 172 | 96.23 162 | 95.46 243 | 97.35 281 | 88.03 282 | 93.42 296 | 99.08 47 | 94.09 202 | 96.66 216 | 96.93 242 | 93.85 172 | 99.29 239 | 96.01 100 | 98.67 252 | 99.06 160 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
patch_mono-2 | | | 96.59 149 | 96.93 126 | 95.55 238 | 98.88 111 | 87.12 302 | 94.47 254 | 99.30 19 | 94.12 200 | 96.65 218 | 98.41 98 | 94.98 142 | 99.87 22 | 95.81 113 | 99.78 43 | 99.66 23 |
|
MVP-Stereo | | | 95.69 184 | 95.28 194 | 96.92 165 | 98.15 198 | 93.03 187 | 95.64 200 | 98.20 207 | 90.39 275 | 96.63 219 | 97.73 184 | 91.63 224 | 99.10 271 | 91.84 248 | 97.31 317 | 98.63 220 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Vis-MVSNet (Re-imp) | | | 95.11 211 | 94.85 214 | 95.87 224 | 99.12 87 | 89.17 256 | 97.54 96 | 94.92 319 | 96.50 103 | 96.58 220 | 97.27 221 | 83.64 303 | 99.48 182 | 88.42 312 | 99.67 70 | 98.97 172 |
|
MVS_111021_HR | | | 96.73 141 | 96.54 149 | 97.27 145 | 98.35 173 | 93.66 172 | 93.42 296 | 98.36 189 | 94.74 181 | 96.58 220 | 96.76 256 | 96.54 85 | 98.99 283 | 94.87 168 | 99.27 187 | 99.15 138 |
|
thisisatest0530 | | | 92.71 288 | 91.76 295 | 95.56 237 | 98.42 168 | 88.23 274 | 96.03 173 | 87.35 368 | 94.04 203 | 96.56 222 | 95.47 309 | 64.03 372 | 99.77 55 | 94.78 174 | 99.11 206 | 98.68 217 |
|
MVS_111021_LR | | | 96.82 135 | 96.55 147 | 97.62 117 | 98.27 180 | 95.34 110 | 93.81 286 | 98.33 193 | 94.59 188 | 96.56 222 | 96.63 262 | 96.61 82 | 98.73 306 | 94.80 171 | 99.34 170 | 98.78 202 |
|
DELS-MVS | | | 96.17 167 | 96.23 162 | 95.99 215 | 97.55 266 | 90.04 242 | 92.38 319 | 98.52 169 | 94.13 199 | 96.55 224 | 97.06 233 | 94.99 141 | 99.58 152 | 95.62 122 | 99.28 185 | 98.37 243 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
baseline1 | | | 93.14 282 | 92.64 283 | 94.62 281 | 97.34 283 | 87.20 301 | 96.67 145 | 93.02 337 | 94.71 183 | 96.51 225 | 95.83 299 | 81.64 310 | 98.60 321 | 90.00 290 | 88.06 369 | 98.07 271 |
|
Patchmatch-test | | | 93.60 271 | 93.25 266 | 94.63 280 | 96.14 324 | 87.47 294 | 96.04 172 | 94.50 323 | 93.57 213 | 96.47 226 | 96.97 239 | 76.50 337 | 98.61 319 | 90.67 277 | 98.41 270 | 97.81 295 |
|
HyFIR lowres test | | | 93.72 265 | 92.65 282 | 96.91 167 | 98.93 107 | 91.81 217 | 91.23 338 | 98.52 169 | 82.69 347 | 96.46 227 | 96.52 269 | 80.38 319 | 99.90 14 | 90.36 285 | 98.79 241 | 99.03 163 |
|
QAPM | | | 95.88 178 | 95.57 191 | 96.80 174 | 97.90 220 | 91.84 216 | 98.18 53 | 98.73 136 | 88.41 298 | 96.42 228 | 98.13 136 | 94.73 145 | 99.75 66 | 88.72 307 | 98.94 224 | 98.81 199 |
|
BH-RMVSNet | | | 94.56 238 | 94.44 240 | 94.91 266 | 97.57 263 | 87.44 296 | 93.78 287 | 96.26 294 | 93.69 212 | 96.41 229 | 96.50 270 | 92.10 215 | 99.00 281 | 85.96 333 | 97.71 298 | 98.31 252 |
|
CNVR-MVS | | | 96.92 127 | 96.55 147 | 98.03 92 | 98.00 213 | 95.54 95 | 94.87 242 | 98.17 213 | 94.60 186 | 96.38 230 | 97.05 234 | 95.67 120 | 99.36 221 | 95.12 159 | 99.08 210 | 99.19 131 |
|
thres600view7 | | | 92.03 299 | 91.43 297 | 93.82 302 | 98.19 188 | 84.61 335 | 96.27 158 | 90.39 358 | 96.81 89 | 96.37 231 | 93.11 338 | 73.44 354 | 99.49 179 | 80.32 359 | 97.95 286 | 97.36 310 |
|
thres100view900 | | | 91.76 303 | 91.26 302 | 93.26 313 | 98.21 186 | 84.50 336 | 96.39 151 | 90.39 358 | 96.87 87 | 96.33 232 | 93.08 342 | 73.44 354 | 99.42 198 | 78.85 363 | 97.74 295 | 95.85 344 |
|
XVS | | | 97.96 47 | 97.63 80 | 98.94 15 | 99.15 79 | 97.66 19 | 97.77 73 | 98.83 114 | 97.42 69 | 96.32 233 | 97.64 190 | 96.49 89 | 99.72 85 | 95.66 119 | 99.37 159 | 99.45 73 |
|
X-MVStestdata | | | 92.86 285 | 90.83 309 | 98.94 15 | 99.15 79 | 97.66 19 | 97.77 73 | 98.83 114 | 97.42 69 | 96.32 233 | 36.50 375 | 96.49 89 | 99.72 85 | 95.66 119 | 99.37 159 | 99.45 73 |
|
MSDG | | | 95.33 201 | 95.13 199 | 95.94 221 | 97.40 278 | 91.85 215 | 91.02 343 | 98.37 188 | 95.30 162 | 96.31 235 | 95.99 292 | 94.51 156 | 98.38 336 | 89.59 295 | 97.65 304 | 97.60 302 |
|
CDS-MVSNet | | | 94.88 221 | 94.12 249 | 97.14 152 | 97.64 259 | 93.57 174 | 93.96 280 | 97.06 276 | 90.05 280 | 96.30 236 | 96.55 265 | 86.10 287 | 99.47 185 | 90.10 288 | 99.31 181 | 98.40 239 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CVMVSNet | | | 92.33 294 | 92.79 277 | 90.95 341 | 97.26 288 | 75.84 371 | 95.29 222 | 92.33 345 | 81.86 349 | 96.27 237 | 98.19 130 | 81.44 312 | 98.46 331 | 94.23 196 | 98.29 274 | 98.55 228 |
|
FMVSNet5 | | | 93.39 276 | 92.35 286 | 96.50 191 | 95.83 332 | 90.81 233 | 97.31 104 | 98.27 198 | 92.74 242 | 96.27 237 | 98.28 117 | 62.23 374 | 99.67 124 | 90.86 266 | 99.36 162 | 99.03 163 |
|
TAPA-MVS | | 93.32 12 | 94.93 218 | 94.23 244 | 97.04 159 | 98.18 191 | 94.51 138 | 95.22 225 | 98.73 136 | 81.22 354 | 96.25 239 | 95.95 296 | 93.80 174 | 98.98 285 | 89.89 291 | 98.87 232 | 97.62 300 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CHOSEN 1792x2688 | | | 94.10 255 | 93.41 264 | 96.18 209 | 99.16 77 | 90.04 242 | 92.15 321 | 98.68 148 | 79.90 359 | 96.22 240 | 97.83 172 | 87.92 275 | 99.42 198 | 89.18 301 | 99.65 73 | 99.08 156 |
|
FE-MVS | | | 92.95 284 | 92.22 288 | 95.11 255 | 97.21 291 | 88.33 273 | 98.54 23 | 93.66 331 | 89.91 282 | 96.21 241 | 98.14 134 | 70.33 363 | 99.50 175 | 87.79 318 | 98.24 276 | 97.51 305 |
|
MCST-MVS | | | 96.24 164 | 95.80 183 | 97.56 119 | 98.75 122 | 94.13 155 | 94.66 249 | 98.17 213 | 90.17 279 | 96.21 241 | 96.10 290 | 95.14 136 | 99.43 197 | 94.13 200 | 98.85 235 | 99.13 143 |
|
PHI-MVS | | | 96.96 125 | 96.53 150 | 98.25 73 | 97.48 270 | 96.50 59 | 96.76 137 | 98.85 105 | 93.52 214 | 96.19 243 | 96.85 247 | 95.94 105 | 99.42 198 | 93.79 213 | 99.43 148 | 98.83 197 |
|
HQP_MVS | | | 96.66 147 | 96.33 160 | 97.68 114 | 98.70 130 | 94.29 147 | 96.50 148 | 98.75 133 | 96.36 109 | 96.16 244 | 96.77 254 | 91.91 222 | 99.46 188 | 92.59 236 | 99.20 194 | 99.28 113 |
|
plane_prior3 | | | | | | | 94.51 138 | | | 95.29 163 | 96.16 244 | | | | | | |
|
miper_enhance_ethall | | | 93.14 282 | 92.78 279 | 94.20 297 | 93.65 364 | 85.29 324 | 89.97 353 | 97.85 239 | 85.05 334 | 96.15 246 | 94.56 325 | 85.74 289 | 99.14 263 | 93.74 214 | 98.34 271 | 98.17 267 |
|
CS-MVS | | | 98.09 41 | 98.01 44 | 98.32 65 | 98.45 165 | 96.69 52 | 98.52 26 | 99.69 3 | 98.07 42 | 96.07 247 | 97.19 226 | 96.88 68 | 99.86 24 | 97.50 48 | 99.73 53 | 98.41 238 |
|
MVS_Test | | | 96.27 163 | 96.79 136 | 94.73 278 | 96.94 301 | 86.63 309 | 96.18 165 | 98.33 193 | 94.94 176 | 96.07 247 | 98.28 117 | 95.25 133 | 99.26 245 | 97.21 56 | 97.90 289 | 98.30 254 |
|
PCF-MVS | | 89.43 18 | 92.12 298 | 90.64 312 | 96.57 188 | 97.80 235 | 93.48 177 | 89.88 357 | 98.45 175 | 74.46 370 | 96.04 249 | 95.68 302 | 90.71 235 | 99.31 232 | 73.73 369 | 99.01 219 | 96.91 322 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CPTT-MVS | | | 96.69 145 | 96.08 169 | 98.49 52 | 98.89 110 | 96.64 55 | 97.25 107 | 98.77 129 | 92.89 240 | 96.01 250 | 97.13 228 | 92.23 211 | 99.67 124 | 92.24 240 | 99.34 170 | 99.17 135 |
|
DROMVSNet | | | 97.90 64 | 97.94 49 | 97.79 105 | 98.66 134 | 95.14 121 | 98.31 39 | 99.66 6 | 97.57 62 | 95.95 251 | 97.01 238 | 96.99 57 | 99.82 35 | 97.66 43 | 99.64 75 | 98.39 241 |
|
PMVS |  | 89.60 17 | 96.71 144 | 96.97 123 | 95.95 219 | 99.51 31 | 97.81 16 | 97.42 102 | 97.49 261 | 97.93 46 | 95.95 251 | 98.58 82 | 96.88 68 | 96.91 362 | 89.59 295 | 99.36 162 | 93.12 365 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
xiu_mvs_v1_base_debu | | | 95.62 188 | 95.96 175 | 94.60 282 | 98.01 209 | 88.42 269 | 93.99 276 | 98.21 204 | 92.98 235 | 95.91 253 | 94.53 326 | 96.39 94 | 99.72 85 | 95.43 138 | 98.19 277 | 95.64 348 |
|
xiu_mvs_v1_base | | | 95.62 188 | 95.96 175 | 94.60 282 | 98.01 209 | 88.42 269 | 93.99 276 | 98.21 204 | 92.98 235 | 95.91 253 | 94.53 326 | 96.39 94 | 99.72 85 | 95.43 138 | 98.19 277 | 95.64 348 |
|
xiu_mvs_v1_base_debi | | | 95.62 188 | 95.96 175 | 94.60 282 | 98.01 209 | 88.42 269 | 93.99 276 | 98.21 204 | 92.98 235 | 95.91 253 | 94.53 326 | 96.39 94 | 99.72 85 | 95.43 138 | 98.19 277 | 95.64 348 |
|
tfpn200view9 | | | 91.55 305 | 91.00 304 | 93.21 316 | 98.02 207 | 84.35 338 | 95.70 192 | 90.79 355 | 96.26 113 | 95.90 256 | 92.13 355 | 73.62 351 | 99.42 198 | 78.85 363 | 97.74 295 | 95.85 344 |
|
thres400 | | | 91.68 304 | 91.00 304 | 93.71 305 | 98.02 207 | 84.35 338 | 95.70 192 | 90.79 355 | 96.26 113 | 95.90 256 | 92.13 355 | 73.62 351 | 99.42 198 | 78.85 363 | 97.74 295 | 97.36 310 |
|
cl22 | | | 93.25 280 | 92.84 276 | 94.46 289 | 94.30 355 | 86.00 316 | 91.09 342 | 96.64 292 | 90.74 271 | 95.79 258 | 96.31 279 | 78.24 326 | 98.77 302 | 94.15 199 | 98.34 271 | 98.62 221 |
|
API-MVS | | | 95.09 213 | 95.01 206 | 95.31 248 | 96.61 306 | 94.02 158 | 96.83 130 | 97.18 270 | 95.60 150 | 95.79 258 | 94.33 331 | 94.54 155 | 98.37 338 | 85.70 335 | 98.52 264 | 93.52 362 |
|
DP-MVS Recon | | | 95.55 191 | 95.13 199 | 96.80 174 | 98.51 156 | 93.99 160 | 94.60 251 | 98.69 146 | 90.20 278 | 95.78 260 | 96.21 283 | 92.73 196 | 98.98 285 | 90.58 279 | 98.86 234 | 97.42 309 |
|
CLD-MVS | | | 95.47 196 | 95.07 202 | 96.69 181 | 98.27 180 | 92.53 196 | 91.36 332 | 98.67 151 | 91.22 267 | 95.78 260 | 94.12 333 | 95.65 121 | 98.98 285 | 90.81 268 | 99.72 57 | 98.57 225 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
旧先验2 | | | | | | | | 93.35 299 | | 77.95 366 | 95.77 262 | | | 98.67 315 | 90.74 274 | | |
|
pmmvs4 | | | 94.82 223 | 94.19 247 | 96.70 180 | 97.42 277 | 92.75 194 | 92.09 324 | 96.76 286 | 86.80 317 | 95.73 263 | 97.22 224 | 89.28 260 | 98.89 292 | 93.28 226 | 99.14 200 | 98.46 237 |
|
LF4IMVS | | | 96.07 170 | 95.63 189 | 97.36 141 | 98.19 188 | 95.55 94 | 95.44 206 | 98.82 122 | 92.29 251 | 95.70 264 | 96.55 265 | 92.63 200 | 98.69 311 | 91.75 251 | 99.33 176 | 97.85 291 |
|
testdata | | | | | 95.70 231 | 98.16 196 | 90.58 236 | | 97.72 248 | 80.38 357 | 95.62 265 | 97.02 236 | 92.06 217 | 98.98 285 | 89.06 304 | 98.52 264 | 97.54 304 |
|
MP-MVS |  | | 97.64 86 | 97.18 112 | 99.00 9 | 99.32 53 | 97.77 17 | 97.49 97 | 98.73 136 | 96.27 112 | 95.59 266 | 97.75 181 | 96.30 98 | 99.78 46 | 93.70 217 | 99.48 131 | 99.45 73 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ETV-MVS | | | 96.13 169 | 95.90 179 | 96.82 173 | 97.76 245 | 93.89 161 | 95.40 211 | 98.95 83 | 95.87 138 | 95.58 267 | 91.00 366 | 96.36 97 | 99.72 85 | 93.36 222 | 98.83 238 | 96.85 325 |
|
CS-MVS-test | | | 97.91 62 | 97.84 56 | 98.14 82 | 98.52 154 | 96.03 77 | 98.38 34 | 99.67 4 | 98.11 40 | 95.50 268 | 96.92 244 | 96.81 74 | 99.87 22 | 96.87 70 | 99.76 46 | 98.51 231 |
|
thres200 | | | 91.00 311 | 90.42 315 | 92.77 326 | 97.47 274 | 83.98 342 | 94.01 275 | 91.18 353 | 95.12 170 | 95.44 269 | 91.21 364 | 73.93 347 | 99.31 232 | 77.76 366 | 97.63 305 | 95.01 355 |
|
CDPH-MVS | | | 95.45 198 | 94.65 224 | 97.84 103 | 98.28 178 | 94.96 126 | 93.73 288 | 98.33 193 | 85.03 335 | 95.44 269 | 96.60 263 | 95.31 131 | 99.44 195 | 90.01 289 | 99.13 202 | 99.11 151 |
|
NCCC | | | 96.52 153 | 95.99 173 | 98.10 85 | 97.81 231 | 95.68 89 | 95.00 238 | 98.20 207 | 95.39 159 | 95.40 271 | 96.36 277 | 93.81 173 | 99.45 192 | 93.55 220 | 98.42 269 | 99.17 135 |
|
jason | | | 94.39 246 | 94.04 251 | 95.41 247 | 98.29 176 | 87.85 287 | 92.74 311 | 96.75 287 | 85.38 332 | 95.29 272 | 96.15 285 | 88.21 270 | 99.65 132 | 94.24 195 | 99.34 170 | 98.74 208 |
jason: jason. |
new_pmnet | | | 92.34 293 | 91.69 296 | 94.32 293 | 96.23 317 | 89.16 257 | 92.27 320 | 92.88 339 | 84.39 344 | 95.29 272 | 96.35 278 | 85.66 290 | 96.74 366 | 84.53 347 | 97.56 306 | 97.05 316 |
|
pmmvs5 | | | 94.63 235 | 94.34 242 | 95.50 240 | 97.63 260 | 88.34 272 | 94.02 274 | 97.13 272 | 87.15 311 | 95.22 274 | 97.15 227 | 87.50 277 | 99.27 244 | 93.99 206 | 99.26 188 | 98.88 192 |
|
Effi-MVS+-dtu | | | 96.81 136 | 96.09 168 | 98.99 10 | 96.90 303 | 98.69 4 | 96.42 150 | 98.09 225 | 95.86 139 | 95.15 275 | 95.54 307 | 94.26 162 | 99.81 37 | 94.06 202 | 98.51 266 | 98.47 235 |
|
KD-MVS_2432*1600 | | | 88.93 328 | 87.74 333 | 92.49 329 | 88.04 378 | 81.99 351 | 89.63 359 | 95.62 308 | 91.35 264 | 95.06 276 | 93.11 338 | 56.58 377 | 98.63 317 | 85.19 341 | 95.07 348 | 96.85 325 |
|
miper_refine_blended | | | 88.93 328 | 87.74 333 | 92.49 329 | 88.04 378 | 81.99 351 | 89.63 359 | 95.62 308 | 91.35 264 | 95.06 276 | 93.11 338 | 56.58 377 | 98.63 317 | 85.19 341 | 95.07 348 | 96.85 325 |
|
HPM-MVS++ |  | | 96.99 121 | 96.38 157 | 98.81 27 | 98.64 135 | 97.59 23 | 95.97 178 | 98.20 207 | 95.51 154 | 95.06 276 | 96.53 267 | 94.10 165 | 99.70 107 | 94.29 193 | 99.15 199 | 99.13 143 |
|
MIMVSNet | | | 93.42 275 | 92.86 274 | 95.10 257 | 98.17 194 | 88.19 275 | 98.13 55 | 93.69 328 | 92.07 252 | 95.04 279 | 98.21 129 | 80.95 317 | 99.03 280 | 81.42 357 | 98.06 283 | 98.07 271 |
|
TR-MVS | | | 92.54 290 | 92.20 289 | 93.57 308 | 96.49 309 | 86.66 308 | 93.51 294 | 94.73 320 | 89.96 281 | 94.95 280 | 93.87 334 | 90.24 245 | 98.61 319 | 81.18 358 | 94.88 351 | 95.45 352 |
|
PatchMatch-RL | | | 94.61 236 | 93.81 257 | 97.02 161 | 98.19 188 | 95.72 86 | 93.66 289 | 97.23 267 | 88.17 303 | 94.94 281 | 95.62 305 | 91.43 225 | 98.57 322 | 87.36 327 | 97.68 301 | 96.76 331 |
|
MG-MVS | | | 94.08 257 | 94.00 252 | 94.32 293 | 97.09 295 | 85.89 317 | 93.19 303 | 95.96 301 | 92.52 245 | 94.93 282 | 97.51 200 | 89.54 254 | 98.77 302 | 87.52 325 | 97.71 298 | 98.31 252 |
|
新几何1 | | | | | 97.25 147 | 98.29 176 | 94.70 133 | | 97.73 247 | 77.98 365 | 94.83 283 | 96.67 260 | 92.08 216 | 99.45 192 | 88.17 316 | 98.65 256 | 97.61 301 |
|
Fast-Effi-MVS+-dtu | | | 96.44 157 | 96.12 166 | 97.39 140 | 97.18 292 | 94.39 142 | 95.46 205 | 98.73 136 | 96.03 128 | 94.72 284 | 94.92 320 | 96.28 100 | 99.69 114 | 93.81 212 | 97.98 285 | 98.09 268 |
|
test0.0.03 1 | | | 90.11 316 | 89.21 323 | 92.83 325 | 93.89 362 | 86.87 307 | 91.74 328 | 88.74 366 | 92.02 253 | 94.71 285 | 91.14 365 | 73.92 348 | 94.48 372 | 83.75 353 | 92.94 359 | 97.16 314 |
|
test222 | | | | | | 98.17 194 | 93.24 183 | 92.74 311 | 97.61 259 | 75.17 369 | 94.65 286 | 96.69 259 | 90.96 232 | | | 98.66 254 | 97.66 299 |
|
SCA | | | 93.38 277 | 93.52 262 | 92.96 323 | 96.24 315 | 81.40 355 | 93.24 301 | 94.00 327 | 91.58 262 | 94.57 287 | 96.97 239 | 87.94 271 | 99.42 198 | 89.47 297 | 97.66 303 | 98.06 275 |
|
CNLPA | | | 95.04 214 | 94.47 237 | 96.75 177 | 97.81 231 | 95.25 114 | 94.12 272 | 97.89 237 | 94.41 192 | 94.57 287 | 95.69 301 | 90.30 243 | 98.35 339 | 86.72 331 | 98.76 244 | 96.64 333 |
|
PVSNet_BlendedMVS | | | 95.02 217 | 94.93 209 | 95.27 249 | 97.79 240 | 87.40 297 | 94.14 270 | 98.68 148 | 88.94 293 | 94.51 289 | 98.01 155 | 93.04 188 | 99.30 235 | 89.77 293 | 99.49 127 | 99.11 151 |
|
PVSNet_Blended | | | 93.96 260 | 93.65 259 | 94.91 266 | 97.79 240 | 87.40 297 | 91.43 331 | 98.68 148 | 84.50 342 | 94.51 289 | 94.48 329 | 93.04 188 | 99.30 235 | 89.77 293 | 98.61 259 | 98.02 281 |
|
MVSFormer | | | 96.14 168 | 96.36 158 | 95.49 241 | 97.68 254 | 87.81 288 | 98.67 15 | 99.02 62 | 96.50 103 | 94.48 291 | 96.15 285 | 86.90 282 | 99.92 5 | 98.73 9 | 99.13 202 | 98.74 208 |
|
lupinMVS | | | 93.77 263 | 93.28 265 | 95.24 250 | 97.68 254 | 87.81 288 | 92.12 322 | 96.05 297 | 84.52 341 | 94.48 291 | 95.06 316 | 86.90 282 | 99.63 137 | 93.62 219 | 99.13 202 | 98.27 258 |
|
OpenMVS |  | 94.22 8 | 95.48 195 | 95.20 196 | 96.32 202 | 97.16 293 | 91.96 213 | 97.74 78 | 98.84 108 | 87.26 309 | 94.36 293 | 98.01 155 | 93.95 170 | 99.67 124 | 90.70 276 | 98.75 245 | 97.35 312 |
|
PatchT | | | 93.75 264 | 93.57 261 | 94.29 295 | 95.05 347 | 87.32 299 | 96.05 171 | 92.98 338 | 97.54 65 | 94.25 294 | 98.72 72 | 75.79 342 | 99.24 250 | 95.92 105 | 95.81 339 | 96.32 340 |
|
BH-w/o | | | 92.14 297 | 91.94 291 | 92.73 327 | 97.13 294 | 85.30 323 | 92.46 316 | 95.64 307 | 89.33 287 | 94.21 295 | 92.74 348 | 89.60 252 | 98.24 342 | 81.68 356 | 94.66 353 | 94.66 357 |
|
xiu_mvs_v2_base | | | 94.22 249 | 94.63 227 | 92.99 322 | 97.32 286 | 84.84 333 | 92.12 322 | 97.84 241 | 91.96 255 | 94.17 296 | 93.43 336 | 96.07 103 | 99.71 100 | 91.27 256 | 97.48 310 | 94.42 358 |
|
PS-MVSNAJ | | | 94.10 255 | 94.47 237 | 93.00 321 | 97.35 281 | 84.88 331 | 91.86 326 | 97.84 241 | 91.96 255 | 94.17 296 | 92.50 352 | 95.82 111 | 99.71 100 | 91.27 256 | 97.48 310 | 94.40 359 |
|
CR-MVSNet | | | 93.29 279 | 92.79 277 | 94.78 276 | 95.44 342 | 88.15 277 | 96.18 165 | 97.20 268 | 84.94 338 | 94.10 298 | 98.57 83 | 77.67 329 | 99.39 213 | 95.17 151 | 95.81 339 | 96.81 329 |
|
RPMNet | | | 94.68 232 | 94.60 229 | 94.90 268 | 95.44 342 | 88.15 277 | 96.18 165 | 98.86 101 | 97.43 68 | 94.10 298 | 98.49 91 | 79.40 321 | 99.76 60 | 95.69 116 | 95.81 339 | 96.81 329 |
|
WTY-MVS | | | 93.55 272 | 93.00 272 | 95.19 252 | 97.81 231 | 87.86 285 | 93.89 282 | 96.00 299 | 89.02 291 | 94.07 300 | 95.44 311 | 86.27 286 | 99.33 228 | 87.69 320 | 96.82 324 | 98.39 241 |
|
GA-MVS | | | 92.83 286 | 92.15 290 | 94.87 270 | 96.97 298 | 87.27 300 | 90.03 352 | 96.12 296 | 91.83 258 | 94.05 301 | 94.57 324 | 76.01 341 | 98.97 289 | 92.46 239 | 97.34 316 | 98.36 248 |
|
test_prior2 | | | | | | | | 93.33 300 | | 94.21 197 | 94.02 302 | 96.25 281 | 93.64 177 | | 91.90 245 | 98.96 221 | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 381 | 94.89 241 | | 80.59 356 | 94.02 302 | | 78.66 325 | | 85.50 339 | | 97.82 293 |
|
AdaColmap |  | | 95.11 211 | 94.62 228 | 96.58 186 | 97.33 285 | 94.45 141 | 94.92 240 | 98.08 226 | 93.15 230 | 93.98 304 | 95.53 308 | 94.34 160 | 99.10 271 | 85.69 336 | 98.61 259 | 96.20 342 |
|
pmmvs3 | | | 90.00 318 | 88.90 328 | 93.32 311 | 94.20 359 | 85.34 322 | 91.25 337 | 92.56 344 | 78.59 363 | 93.82 305 | 95.17 313 | 67.36 369 | 98.69 311 | 89.08 303 | 98.03 284 | 95.92 343 |
|
TEST9 | | | | | | 97.84 227 | 95.23 115 | 93.62 290 | 98.39 185 | 86.81 316 | 93.78 306 | 95.99 292 | 94.68 149 | 99.52 170 | | | |
|
train_agg | | | 95.46 197 | 94.66 223 | 97.88 100 | 97.84 227 | 95.23 115 | 93.62 290 | 98.39 185 | 87.04 312 | 93.78 306 | 95.99 292 | 94.58 153 | 99.52 170 | 91.76 250 | 98.90 228 | 98.89 188 |
|
EIA-MVS | | | 96.04 172 | 95.77 185 | 96.85 170 | 97.80 235 | 92.98 188 | 96.12 168 | 99.16 31 | 94.65 184 | 93.77 308 | 91.69 360 | 95.68 119 | 99.67 124 | 94.18 197 | 98.85 235 | 97.91 288 |
|
sss | | | 94.22 249 | 93.72 258 | 95.74 228 | 97.71 252 | 89.95 244 | 93.84 283 | 96.98 278 | 88.38 300 | 93.75 309 | 95.74 300 | 87.94 271 | 98.89 292 | 91.02 262 | 98.10 281 | 98.37 243 |
|
test_8 | | | | | | 97.81 231 | 95.07 124 | 93.54 293 | 98.38 187 | 87.04 312 | 93.71 310 | 95.96 295 | 94.58 153 | 99.52 170 | | | |
|
E-PMN | | | 89.52 325 | 89.78 319 | 88.73 350 | 93.14 367 | 77.61 365 | 83.26 369 | 92.02 346 | 94.82 180 | 93.71 310 | 93.11 338 | 75.31 343 | 96.81 363 | 85.81 334 | 96.81 325 | 91.77 368 |
|
thisisatest0515 | | | 90.43 314 | 89.18 326 | 94.17 299 | 97.07 296 | 85.44 321 | 89.75 358 | 87.58 367 | 88.28 301 | 93.69 312 | 91.72 359 | 65.27 370 | 99.58 152 | 90.59 278 | 98.67 252 | 97.50 307 |
|
UGNet | | | 96.81 136 | 96.56 146 | 97.58 118 | 96.64 305 | 93.84 164 | 97.75 76 | 97.12 273 | 96.47 106 | 93.62 313 | 98.88 61 | 93.22 185 | 99.53 167 | 95.61 123 | 99.69 64 | 99.36 98 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PatchmatchNet |  | | 91.98 300 | 91.87 292 | 92.30 334 | 94.60 352 | 79.71 360 | 95.12 228 | 93.59 333 | 89.52 285 | 93.61 314 | 97.02 236 | 77.94 327 | 99.18 256 | 90.84 267 | 94.57 356 | 98.01 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CMPMVS |  | 73.10 23 | 92.74 287 | 91.39 298 | 96.77 176 | 93.57 366 | 94.67 134 | 94.21 265 | 97.67 250 | 80.36 358 | 93.61 314 | 96.60 263 | 82.85 307 | 97.35 356 | 84.86 345 | 98.78 242 | 98.29 257 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test12 | | | | | 97.46 133 | 97.61 261 | 94.07 156 | | 97.78 245 | | 93.57 316 | | 93.31 183 | 99.42 198 | | 98.78 242 | 98.89 188 |
|
tpm | | | 91.08 310 | 90.85 308 | 91.75 337 | 95.33 345 | 78.09 362 | 95.03 237 | 91.27 352 | 88.75 295 | 93.53 317 | 97.40 207 | 71.24 358 | 99.30 235 | 91.25 258 | 93.87 357 | 97.87 290 |
|
agg_prior | | | | | | 97.80 235 | 94.96 126 | | 98.36 189 | | 93.49 318 | | | 99.53 167 | | | |
|
原ACMM1 | | | | | 96.58 186 | 98.16 196 | 92.12 206 | | 98.15 219 | 85.90 325 | 93.49 318 | 96.43 272 | 92.47 208 | 99.38 216 | 87.66 321 | 98.62 258 | 98.23 261 |
|
MDTV_nov1_ep13 | | | | 91.28 300 | | 94.31 354 | 73.51 375 | 94.80 244 | 93.16 336 | 86.75 318 | 93.45 320 | 97.40 207 | 76.37 338 | 98.55 325 | 88.85 305 | 96.43 332 | |
|
114514_t | | | 93.96 260 | 93.22 267 | 96.19 208 | 99.06 94 | 90.97 229 | 95.99 176 | 98.94 84 | 73.88 371 | 93.43 321 | 96.93 242 | 92.38 210 | 99.37 219 | 89.09 302 | 99.28 185 | 98.25 260 |
|
Fast-Effi-MVS+ | | | 95.49 193 | 95.07 202 | 96.75 177 | 97.67 257 | 92.82 190 | 94.22 264 | 98.60 161 | 91.61 260 | 93.42 322 | 92.90 345 | 96.73 77 | 99.70 107 | 92.60 235 | 97.89 290 | 97.74 296 |
|
PAPM_NR | | | 94.61 236 | 94.17 248 | 95.96 217 | 98.36 172 | 91.23 224 | 95.93 183 | 97.95 233 | 92.98 235 | 93.42 322 | 94.43 330 | 90.53 236 | 98.38 336 | 87.60 322 | 96.29 335 | 98.27 258 |
|
Effi-MVS+ | | | 96.19 166 | 96.01 171 | 96.71 179 | 97.43 276 | 92.19 205 | 96.12 168 | 99.10 41 | 95.45 156 | 93.33 324 | 94.71 323 | 97.23 45 | 99.56 159 | 93.21 229 | 97.54 307 | 98.37 243 |
|
F-COLMAP | | | 95.30 203 | 94.38 241 | 98.05 91 | 98.64 135 | 96.04 75 | 95.61 201 | 98.66 153 | 89.00 292 | 93.22 325 | 96.40 275 | 92.90 192 | 99.35 224 | 87.45 326 | 97.53 308 | 98.77 205 |
|
test_vis1_rt | | | 94.03 259 | 93.65 259 | 95.17 254 | 95.76 335 | 93.42 178 | 93.97 279 | 98.33 193 | 84.68 339 | 93.17 326 | 95.89 298 | 92.53 206 | 94.79 370 | 93.50 221 | 94.97 350 | 97.31 313 |
|
EPMVS | | | 89.26 326 | 88.55 330 | 91.39 339 | 92.36 373 | 79.11 361 | 95.65 198 | 79.86 376 | 88.60 297 | 93.12 327 | 96.53 267 | 70.73 362 | 98.10 347 | 90.75 271 | 89.32 368 | 96.98 318 |
|
DPM-MVS | | | 93.68 267 | 92.77 280 | 96.42 197 | 97.91 219 | 92.54 195 | 91.17 339 | 97.47 263 | 84.99 337 | 93.08 328 | 94.74 322 | 89.90 248 | 99.00 281 | 87.54 324 | 98.09 282 | 97.72 297 |
|
1112_ss | | | 94.12 254 | 93.42 263 | 96.23 205 | 98.59 145 | 90.85 230 | 94.24 262 | 98.85 105 | 85.49 328 | 92.97 329 | 94.94 318 | 86.01 288 | 99.64 135 | 91.78 249 | 97.92 287 | 98.20 264 |
|
HQP4-MVS | | | | | | | | | | | 92.87 330 | | | 99.23 252 | | | 99.06 160 |
|
HQP-NCC | | | | | | 97.85 222 | | 94.26 258 | | 93.18 226 | 92.86 331 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 222 | | 94.26 258 | | 93.18 226 | 92.86 331 | | | | | | |
|
HQP-MVS | | | 95.17 210 | 94.58 232 | 96.92 165 | 97.85 222 | 92.47 197 | 94.26 258 | 98.43 178 | 93.18 226 | 92.86 331 | 95.08 314 | 90.33 240 | 99.23 252 | 90.51 281 | 98.74 246 | 99.05 162 |
|
ADS-MVSNet2 | | | 91.47 306 | 90.51 314 | 94.36 292 | 95.51 340 | 85.63 318 | 95.05 235 | 95.70 305 | 83.46 345 | 92.69 334 | 96.84 248 | 79.15 323 | 99.41 207 | 85.66 337 | 90.52 364 | 98.04 279 |
|
ADS-MVSNet | | | 90.95 312 | 90.26 316 | 93.04 319 | 95.51 340 | 82.37 349 | 95.05 235 | 93.41 334 | 83.46 345 | 92.69 334 | 96.84 248 | 79.15 323 | 98.70 310 | 85.66 337 | 90.52 364 | 98.04 279 |
|
Test_1112_low_res | | | 93.53 273 | 92.86 274 | 95.54 239 | 98.60 143 | 88.86 263 | 92.75 309 | 98.69 146 | 82.66 348 | 92.65 336 | 96.92 244 | 84.75 296 | 99.56 159 | 90.94 264 | 97.76 294 | 98.19 265 |
|
AUN-MVS | | | 93.95 262 | 92.69 281 | 97.74 108 | 97.80 235 | 95.38 105 | 95.57 203 | 95.46 314 | 91.26 266 | 92.64 337 | 96.10 290 | 74.67 345 | 99.55 162 | 93.72 216 | 96.97 319 | 98.30 254 |
|
EMVS | | | 89.06 327 | 89.22 322 | 88.61 351 | 93.00 369 | 77.34 366 | 82.91 370 | 90.92 354 | 94.64 185 | 92.63 338 | 91.81 358 | 76.30 339 | 97.02 360 | 83.83 351 | 96.90 322 | 91.48 369 |
|
CANet | | | 95.86 179 | 95.65 188 | 96.49 192 | 96.41 311 | 90.82 231 | 94.36 256 | 98.41 182 | 94.94 176 | 92.62 339 | 96.73 257 | 92.68 197 | 99.71 100 | 95.12 159 | 99.60 87 | 98.94 176 |
|
DSMNet-mixed | | | 92.19 296 | 91.83 293 | 93.25 314 | 96.18 320 | 83.68 344 | 96.27 158 | 93.68 330 | 76.97 368 | 92.54 340 | 99.18 33 | 89.20 262 | 98.55 325 | 83.88 350 | 98.60 261 | 97.51 305 |
|
PVSNet | | 86.72 19 | 91.10 309 | 90.97 306 | 91.49 338 | 97.56 265 | 78.04 363 | 87.17 364 | 94.60 322 | 84.65 340 | 92.34 341 | 92.20 354 | 87.37 280 | 98.47 330 | 85.17 343 | 97.69 300 | 97.96 284 |
|
tpmrst | | | 90.31 315 | 90.61 313 | 89.41 348 | 94.06 360 | 72.37 377 | 95.06 234 | 93.69 328 | 88.01 304 | 92.32 342 | 96.86 246 | 77.45 331 | 98.82 297 | 91.04 261 | 87.01 370 | 97.04 317 |
|
cascas | | | 91.89 301 | 91.35 299 | 93.51 309 | 94.27 356 | 85.60 319 | 88.86 362 | 98.61 160 | 79.32 361 | 92.16 343 | 91.44 362 | 89.22 261 | 98.12 346 | 90.80 269 | 97.47 312 | 96.82 328 |
|
MAR-MVS | | | 94.21 251 | 93.03 270 | 97.76 107 | 96.94 301 | 97.44 33 | 96.97 125 | 97.15 271 | 87.89 307 | 92.00 344 | 92.73 349 | 92.14 213 | 99.12 266 | 83.92 349 | 97.51 309 | 96.73 332 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
tpmvs | | | 90.79 313 | 90.87 307 | 90.57 344 | 92.75 372 | 76.30 369 | 95.79 189 | 93.64 332 | 91.04 269 | 91.91 345 | 96.26 280 | 77.19 335 | 98.86 296 | 89.38 299 | 89.85 367 | 96.56 336 |
|
PMMVS | | | 92.39 291 | 91.08 303 | 96.30 204 | 93.12 368 | 92.81 191 | 90.58 348 | 95.96 301 | 79.17 362 | 91.85 346 | 92.27 353 | 90.29 244 | 98.66 316 | 89.85 292 | 96.68 329 | 97.43 308 |
|
PLC |  | 91.02 16 | 94.05 258 | 92.90 273 | 97.51 124 | 98.00 213 | 95.12 123 | 94.25 261 | 98.25 200 | 86.17 321 | 91.48 347 | 95.25 312 | 91.01 230 | 99.19 255 | 85.02 344 | 96.69 328 | 98.22 262 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
dp | | | 88.08 334 | 88.05 332 | 88.16 354 | 92.85 370 | 68.81 379 | 94.17 266 | 92.88 339 | 85.47 329 | 91.38 348 | 96.14 287 | 68.87 366 | 98.81 299 | 86.88 329 | 83.80 373 | 96.87 323 |
|
PAPR | | | 92.22 295 | 91.27 301 | 95.07 258 | 95.73 337 | 88.81 264 | 91.97 325 | 97.87 238 | 85.80 326 | 90.91 349 | 92.73 349 | 91.16 228 | 98.33 340 | 79.48 360 | 95.76 343 | 98.08 269 |
|
1314 | | | 92.38 292 | 92.30 287 | 92.64 328 | 95.42 344 | 85.15 327 | 95.86 186 | 96.97 279 | 85.40 331 | 90.62 350 | 93.06 343 | 91.12 229 | 97.80 352 | 86.74 330 | 95.49 347 | 94.97 356 |
|
MVS | | | 90.02 317 | 89.20 324 | 92.47 331 | 94.71 350 | 86.90 306 | 95.86 186 | 96.74 288 | 64.72 373 | 90.62 350 | 92.77 347 | 92.54 204 | 98.39 335 | 79.30 361 | 95.56 346 | 92.12 366 |
|
CostFormer | | | 89.75 323 | 89.25 321 | 91.26 340 | 94.69 351 | 78.00 364 | 95.32 219 | 91.98 347 | 81.50 352 | 90.55 352 | 96.96 241 | 71.06 360 | 98.89 292 | 88.59 310 | 92.63 361 | 96.87 323 |
|
HY-MVS | | 91.43 15 | 92.58 289 | 91.81 294 | 94.90 268 | 96.49 309 | 88.87 262 | 97.31 104 | 94.62 321 | 85.92 324 | 90.50 353 | 96.84 248 | 85.05 293 | 99.40 209 | 83.77 352 | 95.78 342 | 96.43 339 |
|
FPMVS | | | 89.92 321 | 88.63 329 | 93.82 302 | 98.37 171 | 96.94 45 | 91.58 329 | 93.34 335 | 88.00 305 | 90.32 354 | 97.10 231 | 70.87 361 | 91.13 374 | 71.91 372 | 96.16 338 | 93.39 364 |
|
JIA-IIPM | | | 91.79 302 | 90.69 311 | 95.11 255 | 93.80 363 | 90.98 228 | 94.16 267 | 91.78 349 | 96.38 107 | 90.30 355 | 99.30 24 | 72.02 357 | 98.90 291 | 88.28 314 | 90.17 366 | 95.45 352 |
|
CANet_DTU | | | 94.65 234 | 94.21 246 | 95.96 217 | 95.90 329 | 89.68 247 | 93.92 281 | 97.83 243 | 93.19 225 | 90.12 356 | 95.64 304 | 88.52 265 | 99.57 158 | 93.27 227 | 99.47 133 | 98.62 221 |
|
test-LLR | | | 89.97 320 | 89.90 318 | 90.16 345 | 94.24 357 | 74.98 372 | 89.89 354 | 89.06 364 | 92.02 253 | 89.97 357 | 90.77 367 | 73.92 348 | 98.57 322 | 91.88 246 | 97.36 314 | 96.92 320 |
|
test-mter | | | 87.92 336 | 87.17 337 | 90.16 345 | 94.24 357 | 74.98 372 | 89.89 354 | 89.06 364 | 86.44 320 | 89.97 357 | 90.77 367 | 54.96 382 | 98.57 322 | 91.88 246 | 97.36 314 | 96.92 320 |
|
tpm2 | | | 88.47 331 | 87.69 335 | 90.79 342 | 94.98 348 | 77.34 366 | 95.09 230 | 91.83 348 | 77.51 367 | 89.40 359 | 96.41 273 | 67.83 368 | 98.73 306 | 83.58 354 | 92.60 362 | 96.29 341 |
|
tpm cat1 | | | 88.01 335 | 87.33 336 | 90.05 347 | 94.48 353 | 76.28 370 | 94.47 254 | 94.35 325 | 73.84 372 | 89.26 360 | 95.61 306 | 73.64 350 | 98.30 341 | 84.13 348 | 86.20 371 | 95.57 351 |
|
MVS_0304 | | | 95.50 192 | 95.05 205 | 96.84 171 | 96.28 314 | 93.12 185 | 97.00 123 | 96.16 295 | 95.03 174 | 89.22 361 | 97.70 186 | 90.16 246 | 99.48 182 | 94.51 184 | 99.34 170 | 97.93 287 |
|
TESTMET0.1,1 | | | 87.20 338 | 86.57 340 | 89.07 349 | 93.62 365 | 72.84 376 | 89.89 354 | 87.01 370 | 85.46 330 | 89.12 362 | 90.20 369 | 56.00 380 | 97.72 353 | 90.91 265 | 96.92 320 | 96.64 333 |
|
MVS-HIRNet | | | 88.40 332 | 90.20 317 | 82.99 356 | 97.01 297 | 60.04 380 | 93.11 304 | 85.61 372 | 84.45 343 | 88.72 363 | 99.09 43 | 84.72 297 | 98.23 343 | 82.52 355 | 96.59 331 | 90.69 371 |
|
IB-MVS | | 85.98 20 | 88.63 330 | 86.95 339 | 93.68 306 | 95.12 346 | 84.82 334 | 90.85 344 | 90.17 362 | 87.55 308 | 88.48 364 | 91.34 363 | 58.01 375 | 99.59 150 | 87.24 328 | 93.80 358 | 96.63 335 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet_0 | | 81.89 21 | 84.49 340 | 83.21 343 | 88.34 352 | 95.76 335 | 74.97 374 | 83.49 368 | 92.70 343 | 78.47 364 | 87.94 365 | 86.90 372 | 83.38 305 | 96.63 367 | 73.44 370 | 66.86 376 | 93.40 363 |
|
EPNet | | | 93.72 265 | 92.62 284 | 97.03 160 | 87.61 380 | 92.25 200 | 96.27 158 | 91.28 351 | 96.74 91 | 87.65 366 | 97.39 211 | 85.00 294 | 99.64 135 | 92.14 241 | 99.48 131 | 99.20 130 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 280x420 | | | 89.98 319 | 89.19 325 | 92.37 333 | 95.60 339 | 81.13 357 | 86.22 366 | 97.09 274 | 81.44 353 | 87.44 367 | 93.15 337 | 73.99 346 | 99.47 185 | 88.69 308 | 99.07 212 | 96.52 337 |
|
baseline2 | | | 89.65 324 | 88.44 331 | 93.25 314 | 95.62 338 | 82.71 346 | 93.82 284 | 85.94 371 | 88.89 294 | 87.35 368 | 92.54 351 | 71.23 359 | 99.33 228 | 86.01 332 | 94.60 355 | 97.72 297 |
|
gg-mvs-nofinetune | | | 88.28 333 | 86.96 338 | 92.23 335 | 92.84 371 | 84.44 337 | 98.19 52 | 74.60 378 | 99.08 10 | 87.01 369 | 99.47 10 | 56.93 376 | 98.23 343 | 78.91 362 | 95.61 345 | 94.01 360 |
|
ET-MVSNet_ETH3D | | | 91.12 308 | 89.67 320 | 95.47 242 | 96.41 311 | 89.15 258 | 91.54 330 | 90.23 361 | 89.07 290 | 86.78 370 | 92.84 346 | 69.39 365 | 99.44 195 | 94.16 198 | 96.61 330 | 97.82 293 |
|
PAPM | | | 87.64 337 | 85.84 342 | 93.04 319 | 96.54 307 | 84.99 330 | 88.42 363 | 95.57 311 | 79.52 360 | 83.82 371 | 93.05 344 | 80.57 318 | 98.41 333 | 62.29 375 | 92.79 360 | 95.71 347 |
|
GG-mvs-BLEND | | | | | 90.60 343 | 91.00 375 | 84.21 340 | 98.23 46 | 72.63 381 | | 82.76 372 | 84.11 373 | 56.14 379 | 96.79 364 | 72.20 371 | 92.09 363 | 90.78 370 |
|
MVE |  | 73.61 22 | 86.48 339 | 85.92 341 | 88.18 353 | 96.23 317 | 85.28 325 | 81.78 371 | 75.79 377 | 86.01 322 | 82.53 373 | 91.88 357 | 92.74 195 | 87.47 376 | 71.42 373 | 94.86 352 | 91.78 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EPNet_dtu | | | 91.39 307 | 90.75 310 | 93.31 312 | 90.48 377 | 82.61 347 | 94.80 244 | 92.88 339 | 93.39 218 | 81.74 374 | 94.90 321 | 81.36 313 | 99.11 269 | 88.28 314 | 98.87 232 | 98.21 263 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepMVS_CX |  | | | | 77.17 357 | 90.94 376 | 85.28 325 | | 74.08 380 | 52.51 374 | 80.87 375 | 88.03 371 | 75.25 344 | 70.63 377 | 59.23 376 | 84.94 372 | 75.62 372 |
|
tmp_tt | | | 57.23 343 | 62.50 346 | 41.44 359 | 34.77 382 | 49.21 382 | 83.93 367 | 60.22 383 | 15.31 375 | 71.11 376 | 79.37 374 | 70.09 364 | 44.86 378 | 64.76 374 | 82.93 374 | 30.25 374 |
|
test_method | | | 66.88 342 | 66.13 345 | 69.11 358 | 62.68 381 | 25.73 383 | 49.76 372 | 96.04 298 | 14.32 376 | 64.27 377 | 91.69 360 | 73.45 353 | 88.05 375 | 76.06 368 | 66.94 375 | 93.54 361 |
|
EGC-MVSNET | | | 83.08 341 | 77.93 344 | 98.53 50 | 99.57 20 | 97.55 26 | 98.33 38 | 98.57 166 | 4.71 377 | 10.38 378 | 98.90 59 | 95.60 123 | 99.50 175 | 95.69 116 | 99.61 84 | 98.55 228 |
|
testmvs | | | 12.33 346 | 15.23 349 | 3.64 361 | 5.77 384 | 2.23 385 | 88.99 361 | 3.62 384 | 2.30 379 | 5.29 379 | 13.09 376 | 4.52 384 | 1.95 379 | 5.16 378 | 8.32 378 | 6.75 376 |
|
test123 | | | 12.59 345 | 15.49 348 | 3.87 360 | 6.07 383 | 2.55 384 | 90.75 346 | 2.59 385 | 2.52 378 | 5.20 380 | 13.02 377 | 4.96 383 | 1.85 380 | 5.20 377 | 9.09 377 | 7.23 375 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 24.22 344 | 32.30 347 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 98.10 223 | 0.00 380 | 0.00 381 | 95.06 316 | 97.54 31 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 7.98 347 | 10.65 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 95.82 111 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 7.91 348 | 10.55 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 94.94 318 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
MSC_two_6792asdad | | | | | 98.22 75 | 97.75 247 | 95.34 110 | | 98.16 217 | | | | | 99.75 66 | 95.87 109 | 99.51 120 | 99.57 37 |
|
No_MVS | | | | | 98.22 75 | 97.75 247 | 95.34 110 | | 98.16 217 | | | | | 99.75 66 | 95.87 109 | 99.51 120 | 99.57 37 |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
OPU-MVS | | | | | 97.64 116 | 98.01 209 | 95.27 113 | 96.79 135 | | | | 97.35 216 | 96.97 58 | 98.51 328 | 91.21 259 | 99.25 189 | 99.14 141 |
|
save fliter | | | | | | 98.48 162 | 94.71 131 | 94.53 253 | 98.41 182 | 95.02 175 | | | | | | | |
|
test_0728_SECOND | | | | | 98.25 73 | 99.23 62 | 95.49 101 | 96.74 138 | 98.89 90 | | | | | 99.75 66 | 95.48 131 | 99.52 115 | 99.53 47 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 275 |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 328 | | | | 98.06 275 |
|
sam_mvs | | | | | | | | | | | | | 77.38 332 | | | | |
|
MTGPA |  | | | | | | | | 98.73 136 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 239 | | | | 10.37 379 | 76.21 340 | 99.04 277 | 89.47 297 | | |
|
test_post | | | | | | | | | | | | 10.87 378 | 76.83 336 | 99.07 274 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 248 | 77.36 333 | 99.42 198 | | | |
|
MTMP | | | | | | | | 96.55 146 | 74.60 378 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 374 | 71.40 378 | | | 81.67 350 | | 90.11 370 | | 98.99 283 | 84.86 345 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 255 | 98.89 231 | 99.00 167 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 286 | 98.90 228 | 99.10 155 |
|
test_prior4 | | | | | | | 95.38 105 | 93.61 292 | | | | | | | | | |
|
test_prior | | | | | 97.46 133 | 97.79 240 | 94.26 152 | | 98.42 181 | | | | | 99.34 226 | | | 98.79 201 |
|
新几何2 | | | | | | | | 93.43 295 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 235 | 93.87 162 | | 97.75 246 | | | 97.04 235 | 93.57 178 | | | 98.68 251 | 98.72 211 |
|
无先验 | | | | | | | | 93.20 302 | 97.91 235 | 80.78 355 | | | | 99.40 209 | 87.71 319 | | 97.94 286 |
|
原ACMM2 | | | | | | | | 92.82 307 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 188 | 87.84 317 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 130 | | | | |
|
testdata1 | | | | | | | | 92.77 308 | | 93.78 209 | | | | | | | |
|
plane_prior7 | | | | | | 98.70 130 | 94.67 134 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 170 | 94.37 144 | | | | | | 91.91 222 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 133 | | | | | 99.46 188 | 92.59 236 | 99.20 194 | 99.28 113 |
|
plane_prior4 | | | | | | | | | | | | 96.77 254 | | | | | |
|
plane_prior2 | | | | | | | | 96.50 148 | | 96.36 109 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 160 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 147 | 95.42 208 | | 94.31 196 | | | | | | 98.93 226 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 213 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 226 | | | | | | | | |
|
door | | | | | | | | | 97.81 244 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 197 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 281 | | |
|
HQP3-MVS | | | | | | | | | 98.43 178 | | | | | | | 98.74 246 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 240 | | | | |
|
NP-MVS | | | | | | 98.14 200 | 93.72 168 | | | | | 95.08 314 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 115 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 103 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 156 | | | | |
|