This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4599.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11199.71 499.48 798.77 699.93 298.89 399.95 599.84 5
wuyk23d93.25 27495.20 19387.40 34896.07 31995.38 10397.04 10894.97 31595.33 15699.70 598.11 11798.14 1391.94 36677.76 35999.68 5774.89 366
Anonymous2023121198.55 1798.76 1397.94 9698.79 10894.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8598.12 1699.86 2599.73 15
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2599.12 2895.83 13699.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5599.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12397.75 3099.89 2299.62 25
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 17998.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4098.87 8798.23 3699.48 1299.27 1998.47 899.55 17096.52 6799.53 9799.60 26
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19093.79 16996.99 11199.65 396.74 9099.47 1398.93 4496.91 6399.84 2590.11 27999.06 21398.32 246
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3296.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 3999.54 38
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
NR-MVSNet97.96 4697.86 5098.26 6998.73 11495.54 9398.14 4398.73 12997.79 4699.42 1597.83 15394.40 16299.78 4395.91 9499.76 3999.46 63
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3095.44 12899.84 2596.47 7099.80 3399.47 61
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3599.05 4397.40 7399.37 1899.08 3498.79 599.47 19197.74 3199.71 5199.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14499.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
test_part196.77 13696.53 14697.47 13698.04 19492.92 19497.93 5398.85 9498.83 2199.30 2199.07 3579.25 31599.79 3997.59 3599.93 1099.69 20
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2599.15 2499.33 599.30 2199.00 3897.27 3899.92 497.64 3499.92 1499.75 13
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2499.10 3199.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3299.00 6097.57 6199.27 2499.22 2298.32 999.50 18497.09 5499.75 4399.50 45
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 7799.20 1698.21 3799.25 2598.51 7298.21 1199.40 21594.79 15999.72 4899.32 98
Anonymous2024052997.96 4698.04 3997.71 11298.69 12394.28 15197.86 5898.31 19398.79 2299.23 2698.86 4995.76 11599.61 15595.49 11499.36 15599.23 124
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2299.13 2799.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
SD-MVS97.37 10197.70 6296.35 20598.14 18795.13 12096.54 13098.92 7695.94 12799.19 2898.08 11997.74 2295.06 36495.24 13499.54 9498.87 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5195.47 12699.89 1697.95 2199.91 1799.75 13
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6098.45 17098.25 3599.13 3098.66 6196.65 7599.69 11693.92 19899.62 6698.91 185
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 11898.83 10696.11 11599.08 3198.24 10197.87 2099.72 8595.44 12199.51 10799.14 140
test_241102_ONE99.22 5895.35 10698.83 10696.04 12099.08 3198.13 11397.87 2099.33 236
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6499.00 6098.40 3099.07 3398.98 4096.89 6499.75 6597.19 5199.79 3599.55 37
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5699.08 3798.31 3399.02 3498.74 5597.68 2499.61 15597.77 2999.85 2799.70 18
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3498.84 9999.05 1399.01 3598.65 6395.37 12999.90 1397.57 3699.91 1799.77 8
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3598.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 9999.76 3999.30 104
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 15797.21 4899.76 3999.40 83
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7090.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8599.39 85
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2899.21 1498.43 2998.89 3998.83 5094.30 16499.81 3297.87 2499.91 1799.77 8
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 7798.94 7497.10 8198.85 4198.88 4795.03 14099.67 12897.39 4399.65 6199.26 117
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12599.05 4398.67 2498.84 4298.45 7697.58 2899.88 1896.45 7199.86 2599.54 38
new-patchmatchnet95.67 18596.58 14092.94 31697.48 26180.21 35192.96 29898.19 20894.83 17798.82 4398.79 5193.31 18699.51 18395.83 9999.04 21499.12 148
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16398.97 7094.55 18898.82 4398.76 5497.31 3699.29 24797.20 5099.44 12999.38 87
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10396.18 6895.21 21298.99 6395.84 13598.78 4598.08 11996.84 6999.81 3293.98 19699.57 8299.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5199.16 2098.34 3298.78 4598.52 7197.32 3599.45 19894.08 18999.67 5899.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4085.36 28999.74 7597.34 4499.37 15299.30 104
v897.60 8498.06 3896.23 21198.71 11989.44 25497.43 8798.82 11497.29 7798.74 4899.10 3293.86 17499.68 12398.61 1099.94 899.56 35
DP-MVS97.87 6397.89 4897.81 10598.62 13194.82 12897.13 10398.79 11698.98 1798.74 4898.49 7395.80 11499.49 18595.04 14999.44 12999.11 152
v1097.55 8797.97 4196.31 20898.60 13489.64 25097.44 8599.02 5296.60 9498.72 5099.16 2993.48 18399.72 8598.76 699.92 1499.58 28
test072699.24 5395.51 9596.89 11498.89 7995.92 12898.64 5198.31 8697.06 50
DVP-MVS++.97.96 4697.90 4598.12 8397.75 23995.40 10199.03 798.89 7996.62 9298.62 5298.30 9096.97 5699.75 6595.70 10199.25 18399.21 126
test_241102_TWO98.83 10696.11 11598.62 5298.24 10196.92 6299.72 8595.44 12199.49 11599.49 53
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5099.11 2998.04 4298.62 5298.66 6193.75 17899.78 4397.23 4599.84 2899.73 15
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 6899.11 2997.76 5098.62 5298.27 9997.88 1999.80 3895.67 10499.50 11199.38 87
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11095.72 8396.23 14799.02 5293.92 20898.62 5298.99 3997.69 2399.62 14896.18 7899.87 2499.15 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS98.14 3498.03 4098.47 5498.72 11696.04 7498.07 4799.10 3195.96 12598.59 5798.69 5996.94 5899.81 3296.64 6299.58 7999.57 32
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 9799.00 6094.93 17598.58 5898.92 4597.31 3699.41 21394.44 17299.43 13799.59 27
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12698.73 12998.66 2598.56 5998.41 7896.84 6999.69 11694.82 15799.81 3098.64 218
PM-MVS97.36 10397.10 11198.14 8298.91 10096.77 5096.20 14898.63 15593.82 21098.54 6098.33 8493.98 17299.05 28095.99 9099.45 12898.61 223
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26197.23 4192.56 30798.60 15792.84 24498.54 6097.40 19296.64 7798.78 30694.40 17699.41 14698.93 180
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 6998.89 7995.65 14298.51 6296.46 25892.15 21499.81 3295.14 14398.58 26099.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDD-MVS97.37 10197.25 10197.74 11098.69 12394.50 14297.04 10895.61 30898.59 2698.51 6298.72 5692.54 20799.58 15996.02 8799.49 11599.12 148
FMVSNet296.72 14096.67 13696.87 17597.96 20491.88 21797.15 10098.06 22795.59 14798.50 6498.62 6489.51 25799.65 13594.99 15399.60 7599.07 159
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10496.67 5396.74 12198.73 12991.61 26098.48 6598.36 8196.53 8399.68 12395.17 13899.54 9499.45 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EU-MVSNet94.25 24594.47 23193.60 29998.14 18782.60 34197.24 9692.72 33785.08 32898.48 6598.94 4382.59 30398.76 30997.47 4099.53 9799.44 78
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7699.06 4196.19 11298.48 6598.70 5894.72 14899.24 25594.37 17799.33 17099.17 133
v124096.74 13797.02 11895.91 22798.18 18088.52 26995.39 19698.88 8593.15 23398.46 6898.40 8092.80 19799.71 9998.45 1399.49 11599.49 53
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14298.53 16397.77 4798.46 6898.41 7894.59 15599.68 12394.61 16599.29 17899.52 42
IterMVS-LS96.92 12397.29 9895.79 23198.51 14488.13 27995.10 21598.66 14996.99 8298.46 6898.68 6092.55 20599.74 7596.91 6099.79 3599.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ambc96.56 19598.23 17491.68 22297.88 5798.13 21798.42 7198.56 6894.22 16799.04 28194.05 19399.35 16098.95 174
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12198.23 19995.92 12898.40 7298.28 9597.06 5099.71 9995.48 11799.52 10299.26 117
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9298.40 7298.28 9597.10 4599.71 9995.70 10199.62 6699.58 28
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5295.31 31499.26 798.39 7499.18 2787.85 27599.62 14895.13 14599.09 20799.35 95
PC_three_145287.24 30598.37 7597.44 18997.00 5496.78 36192.01 22999.25 18399.21 126
Anonymous20240521196.34 15995.98 17297.43 14398.25 17193.85 16696.74 12194.41 32197.72 5498.37 7598.03 12987.15 27999.53 17594.06 19099.07 21098.92 184
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19098.86 9098.20 3898.37 7599.24 2094.69 14999.55 17095.98 9199.79 3599.65 23
IU-MVS99.22 5895.40 10198.14 21585.77 32098.36 7895.23 13599.51 10799.49 53
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24685.53 31692.42 31097.63 25696.99 8298.36 7898.54 7087.94 27099.75 6597.07 5699.08 20899.27 116
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 12798.83 10695.21 16098.36 7898.13 11398.13 1499.62 14896.04 8599.54 9499.39 85
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6198.40 18097.11 8098.34 8199.04 3789.58 25399.79 3998.09 1899.93 1099.30 104
Regformer-497.53 9097.47 9097.71 11297.35 27193.91 16295.26 20798.14 21597.97 4398.34 8197.89 14695.49 12399.71 9997.41 4199.42 14099.51 44
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10599.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
casdiffmvs97.50 9197.81 5496.56 19598.51 14491.04 22995.83 17299.09 3697.23 7898.33 8598.30 9097.03 5299.37 22696.58 6599.38 15199.28 112
Patchmatch-RL test94.66 23294.49 23095.19 25598.54 14188.91 26292.57 30698.74 12791.46 26398.32 8697.75 16277.31 32898.81 30496.06 8299.61 7297.85 284
XVG-OURS97.12 11396.74 13298.26 6998.99 9597.45 3393.82 27599.05 4395.19 16298.32 8697.70 16895.22 13598.41 33694.27 18298.13 27598.93 180
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11695.78 8195.66 18099.02 5298.11 4098.31 8897.69 17094.65 15399.85 2297.02 5799.71 5199.48 58
DU-MVS97.79 7197.60 7898.36 6198.73 11495.78 8195.65 18398.87 8797.57 6198.31 8897.83 15394.69 14999.85 2297.02 5799.71 5199.46 63
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27592.01 21595.33 20197.65 25297.74 5198.30 9098.14 11295.04 13999.69 11697.55 3799.52 10299.58 28
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27092.08 21395.34 20097.65 25297.74 5198.29 9198.11 11795.05 13799.68 12397.50 3999.50 11199.56 35
test20.0396.58 15096.61 13796.48 19998.49 14891.72 22195.68 17997.69 24796.81 8898.27 9297.92 14494.18 16898.71 31390.78 26099.66 6099.00 168
RRT_MVS94.90 21794.07 24497.39 14793.18 35893.21 18795.26 20797.49 26093.94 20798.25 9397.85 15172.96 35099.84 2597.90 2299.78 3899.14 140
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 10897.31 3797.55 7798.92 7697.72 5498.25 9398.13 11397.10 4599.75 6595.44 12199.24 18699.32 98
v14896.58 15096.97 11995.42 24798.63 13087.57 29095.09 21797.90 23395.91 13098.24 9597.96 13693.42 18499.39 22096.04 8599.52 10299.29 111
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 10795.86 8095.92 16799.04 4997.51 6698.22 9697.81 15794.68 15199.78 4397.14 5399.75 4399.41 82
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.60 8099.76 5895.49 11499.20 18899.26 117
RE-MVS-def97.88 4998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.94 5895.49 11499.20 18899.26 117
WR-MVS96.90 12596.81 12897.16 15898.56 13992.20 20994.33 24998.12 21897.34 7498.20 9797.33 20392.81 19699.75 6594.79 15999.81 3099.54 38
v192192096.72 14096.96 12195.99 22098.21 17588.79 26695.42 19298.79 11693.22 22798.19 10098.26 10092.68 20099.70 10898.34 1599.55 9199.49 53
Regformer-397.25 10997.29 9897.11 16197.35 27192.32 20495.26 20797.62 25797.67 5998.17 10197.89 14695.05 13799.56 16697.16 5299.42 14099.46 63
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7298.20 20393.00 23798.16 10298.06 12695.89 10399.72 8595.67 10499.10 20699.28 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TinyColmap96.00 17496.34 15594.96 26397.90 21087.91 28294.13 26398.49 16794.41 19098.16 10297.76 15996.29 9798.68 31890.52 27299.42 14098.30 250
test117298.08 3997.76 5999.05 698.78 11098.07 797.41 8998.85 9497.57 6198.15 10497.96 13696.60 8099.76 5895.30 13099.18 19399.33 97
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9497.41 3594.66 24099.02 5295.20 16198.15 10497.52 18298.83 498.43 33594.87 15596.41 32799.07 159
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10697.98 13588.23 26899.71 9993.10 21899.72 4899.38 87
CSCG97.40 9997.30 9797.69 11698.95 9794.83 12797.28 9398.99 6396.35 10798.13 10795.95 28695.99 10199.66 13494.36 18099.73 4598.59 224
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 19798.99 6392.45 24998.11 10898.31 8697.25 4199.77 5396.60 6399.62 6699.48 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 13197.06 11596.15 21698.28 16689.29 25695.36 19898.77 12193.73 21298.11 10898.34 8393.02 19499.67 12898.35 1499.58 7999.50 45
Regformer-297.41 9897.24 10397.93 9797.21 28394.72 13194.85 23398.27 19497.74 5198.11 10897.50 18495.58 12199.69 11696.57 6699.31 17499.37 92
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21098.46 16994.58 18798.10 11198.07 12197.09 4799.39 22095.16 14099.44 12999.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419296.69 14396.90 12596.03 21998.25 17188.92 26195.49 18898.77 12193.05 23598.09 11298.29 9492.51 20999.70 10898.11 1799.56 8599.47 61
N_pmnet95.18 20694.23 23898.06 8897.85 21396.55 5892.49 30891.63 34589.34 28498.09 11297.41 19190.33 24299.06 27991.58 24199.31 17498.56 226
test_part299.03 9396.07 7398.08 114
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10098.90 7896.58 9698.08 11497.87 15097.02 5399.76 5895.25 13399.59 7799.40 83
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4597.66 6799.01 1198.77 11297.93 1197.38 9098.83 10697.32 7598.06 11697.85 15196.65 7599.77 5395.00 15299.11 20499.32 98
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13598.98 6695.05 16998.06 11698.02 13095.86 10499.56 16694.37 17799.64 6399.00 168
IterMVS95.42 19795.83 17794.20 29297.52 25983.78 33792.41 31197.47 26395.49 15198.06 11698.49 7387.94 27099.58 15996.02 8799.02 21599.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24295.23 11394.15 26096.90 28193.26 22598.04 11996.70 24594.41 16198.89 29794.77 16299.14 19698.37 239
test_one_060199.05 9195.50 9898.87 8797.21 7998.03 12098.30 9096.93 60
Regformer-197.27 10797.16 10897.61 12197.21 28393.86 16594.85 23398.04 22997.62 6098.03 12097.50 18495.34 13099.63 14096.52 6799.31 17499.35 95
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16398.58 16095.08 16798.02 12296.25 26997.92 1697.60 35588.68 30198.74 24599.11 152
V4297.04 11597.16 10896.68 18898.59 13691.05 22896.33 14098.36 18594.60 18497.99 12398.30 9093.32 18599.62 14897.40 4299.53 9799.38 87
GBi-Net96.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
test196.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
FMVSNet395.26 20494.94 20496.22 21396.53 30290.06 24295.99 16097.66 25094.11 20297.99 12397.91 14580.22 31399.63 14094.60 16699.44 12998.96 173
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17194.29 14894.77 23798.07 22689.81 28197.97 12798.33 8493.11 18999.08 27795.46 12099.84 2898.89 189
v114496.84 12897.08 11396.13 21798.42 15689.28 25795.41 19498.67 14794.21 19897.97 12798.31 8693.06 19099.65 13598.06 1999.62 6699.45 68
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9296.70 5296.24 14698.89 7993.71 21397.97 12797.75 16297.44 3099.63 14093.22 21599.70 5499.32 98
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EI-MVSNet96.63 14796.93 12295.74 23397.26 28088.13 27995.29 20597.65 25296.99 8297.94 13098.19 10892.55 20599.58 15996.91 6099.56 8599.50 45
MVSTER94.21 24893.93 25195.05 26095.83 32486.46 30695.18 21397.65 25292.41 25097.94 13098.00 13472.39 35199.58 15996.36 7399.56 8599.12 148
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4698.96 7195.75 14097.91 13298.06 12696.89 6499.76 5895.32 12999.57 8299.43 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18098.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9498.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
LFMVS95.32 20194.88 20996.62 18998.03 19591.47 22597.65 7090.72 35499.11 997.89 13598.31 8679.20 31699.48 18893.91 19999.12 20398.93 180
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 13898.79 11695.07 16897.88 13698.35 8297.24 4299.72 8596.05 8499.58 7999.45 68
VNet96.84 12896.83 12796.88 17498.06 19392.02 21496.35 13997.57 25997.70 5697.88 13697.80 15892.40 21199.54 17394.73 16498.96 21999.08 157
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2899.03 5095.88 13197.88 13698.22 10698.15 1299.74 7596.50 6999.62 6699.42 80
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 13999.67 296.47 8899.92 497.88 2399.98 299.85 3
baseline97.44 9697.78 5896.43 20198.52 14390.75 23696.84 11599.03 5096.51 9997.86 14098.02 13096.67 7499.36 22897.09 5499.47 12199.19 130
v2v48296.78 13597.06 11595.95 22498.57 13888.77 26795.36 19898.26 19695.18 16397.85 14198.23 10392.58 20499.63 14097.80 2799.69 5599.45 68
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15094.71 13294.53 24599.07 4095.02 17197.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
SF-MVS97.60 8497.39 9298.22 7498.93 9895.69 8597.05 10799.10 3195.32 15797.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 4899.46 797.32 7597.82 14499.11 3196.75 7299.86 2097.84 2599.36 15599.15 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10299.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
GeoE97.75 7497.70 6297.89 9998.88 10294.53 13997.10 10498.98 6695.75 14097.62 14797.59 17697.61 2799.77 5396.34 7499.44 12999.36 93
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15088.76 26892.84 29997.25 26696.00 12397.59 14897.95 14091.38 23099.46 19493.16 21796.35 32898.99 171
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10599.06 4195.45 15297.55 14997.94 14197.11 4499.78 4394.77 16299.46 12499.48 58
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 9998.79 11695.96 12597.53 15097.40 19296.93 6099.77 5395.04 14999.35 16099.42 80
YYNet194.73 22494.84 21194.41 28797.47 26585.09 32590.29 34295.85 30392.52 24697.53 15097.76 15991.97 22099.18 26193.31 21296.86 31798.95 174
bset_n11_16_dypcd94.53 23993.95 25096.25 21097.56 25689.85 24788.52 35591.32 34794.90 17697.51 15296.38 26482.34 30499.78 4397.22 4699.80 3399.12 148
TAMVS95.49 19194.94 20497.16 15898.31 16293.41 18295.07 22096.82 28491.09 26997.51 15297.82 15689.96 24999.42 20488.42 30499.44 12998.64 218
LS3D97.77 7397.50 8798.57 4896.24 30997.58 2598.45 2598.85 9498.58 2797.51 15297.94 14195.74 11699.63 14095.19 13698.97 21898.51 229
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7498.84 9996.05 11897.49 15597.54 17997.07 4899.70 10895.61 11099.46 12499.30 104
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 11798.84 9994.25 19797.49 15597.54 17997.07 4899.70 10894.37 17799.46 12499.30 104
Patchmtry95.03 21494.59 22696.33 20694.83 34190.82 23396.38 13797.20 26896.59 9597.49 15598.57 6677.67 32399.38 22392.95 22199.62 6698.80 201
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26185.15 32390.28 34395.87 30292.52 24697.48 15897.76 15991.92 22499.17 26593.32 21196.80 32098.94 176
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15091.52 22495.31 20398.45 17095.76 13897.48 15897.54 17989.53 25698.69 31594.43 17394.61 34699.13 143
tttt051793.31 27292.56 27995.57 23998.71 11987.86 28397.44 8587.17 36595.79 13797.47 16096.84 23464.12 36499.81 3296.20 7799.32 17299.02 167
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7498.83 10696.05 11897.46 16197.63 17396.77 7199.76 5895.61 11099.46 12499.49 53
RRT_test8_iter0592.46 28492.52 28092.29 32795.33 33677.43 35995.73 17498.55 16294.41 19097.46 16197.72 16757.44 36999.74 7596.92 5999.14 19699.69 20
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14096.31 6596.32 14198.77 12192.96 24297.44 16397.58 17895.84 10599.74 7591.96 23099.35 16099.19 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15497.41 16497.50 18497.98 1599.79 3995.58 11399.57 8299.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
c3_l95.20 20595.32 19194.83 27196.19 31386.43 30891.83 32098.35 18993.47 21897.36 16597.26 20888.69 26399.28 24995.41 12799.36 15598.78 204
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16698.06 12688.46 26599.85 2293.85 20099.40 14799.32 98
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24594.15 15596.02 15898.43 17393.17 23297.30 16697.38 19895.48 12599.28 24993.74 20399.34 16398.88 193
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7398.84 9996.00 12397.22 16897.62 17496.87 6799.76 5895.48 11799.43 13799.46 63
ITE_SJBPF97.85 10398.64 12696.66 5498.51 16695.63 14397.22 16897.30 20695.52 12298.55 32990.97 25398.90 22798.34 245
h-mvs3396.29 16095.63 18498.26 6998.50 14796.11 7296.90 11397.09 27496.58 9697.21 17098.19 10884.14 29699.78 4395.89 9596.17 33198.89 189
hse-mvs295.77 18295.09 19897.79 10697.84 21795.51 9595.66 18095.43 31396.58 9697.21 17096.16 27384.14 29699.54 17395.89 9596.92 31498.32 246
9.1496.69 13498.53 14296.02 15898.98 6693.23 22697.18 17297.46 18796.47 8899.62 14892.99 21999.32 172
OMC-MVS96.48 15496.00 17097.91 9898.30 16396.01 7794.86 23298.60 15791.88 25797.18 17297.21 21196.11 9999.04 28190.49 27599.34 16398.69 215
our_test_394.20 25094.58 22793.07 31096.16 31581.20 34890.42 34196.84 28290.72 27297.14 17497.13 21390.47 24099.11 27394.04 19498.25 27198.91 185
MS-PatchMatch94.83 22094.91 20894.57 28296.81 29887.10 29994.23 25597.34 26588.74 29297.14 17497.11 21691.94 22298.23 34692.99 21997.92 28298.37 239
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32086.12 31191.35 32698.49 16793.40 21997.12 17697.25 20986.87 28299.35 23195.08 14898.82 23898.78 204
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24293.65 17798.49 2298.88 8596.86 8797.11 17798.55 6995.82 10899.73 8195.94 9299.42 14099.13 143
cl____94.73 22494.64 22095.01 26195.85 32387.00 30091.33 32798.08 22293.34 22297.10 17897.33 20384.01 29999.30 24395.14 14399.56 8598.71 214
DIV-MVS_self_test94.73 22494.64 22095.01 26195.86 32287.00 30091.33 32798.08 22293.34 22297.10 17897.34 20284.02 29899.31 24095.15 14299.55 9198.72 212
PMMVS293.66 26494.07 24492.45 32497.57 25480.67 35086.46 35896.00 29893.99 20597.10 17897.38 19889.90 25097.82 35288.76 29899.47 12198.86 196
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6698.78 12096.04 12097.10 17897.73 16596.53 8399.78 4395.16 14099.50 11199.46 63
BH-untuned94.69 22994.75 21694.52 28497.95 20787.53 29194.07 26597.01 27793.99 20597.10 17895.65 29392.65 20298.95 29487.60 31496.74 32197.09 307
miper_ehance_all_eth94.69 22994.70 21794.64 27695.77 32686.22 31091.32 32998.24 19891.67 25997.05 18396.65 24888.39 26799.22 25994.88 15498.34 26798.49 231
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13195.69 8595.96 16398.98 6693.36 22197.04 18497.31 20594.93 14499.63 14092.60 22299.34 16399.17 133
miper_lstm_enhance94.81 22294.80 21494.85 26996.16 31586.45 30791.14 33398.20 20393.49 21797.03 18597.37 20084.97 29299.26 25295.28 13199.56 8598.83 198
UnsupCasMVSNet_bld94.72 22894.26 23796.08 21898.62 13190.54 24193.38 29098.05 22890.30 27697.02 18696.80 23989.54 25499.16 26688.44 30396.18 33098.56 226
ppachtmachnet_test94.49 24094.84 21193.46 30296.16 31582.10 34390.59 33997.48 26290.53 27497.01 18797.59 17691.01 23399.36 22893.97 19799.18 19398.94 176
D2MVS95.18 20695.17 19595.21 25397.76 23787.76 28894.15 26097.94 23189.77 28296.99 18897.68 17187.45 27799.14 26895.03 15199.81 3098.74 209
ab-mvs96.59 14996.59 13896.60 19098.64 12692.21 20798.35 2897.67 24894.45 18996.99 18898.79 5194.96 14399.49 18590.39 27699.07 21098.08 265
Anonymous2023120695.27 20395.06 20195.88 22898.72 11689.37 25595.70 17697.85 23688.00 30096.98 19097.62 17491.95 22199.34 23389.21 29299.53 9798.94 176
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20399.08 3788.40 29596.97 19198.17 11192.11 21699.78 4393.64 20799.21 18798.86 196
mvs_anonymous95.36 19996.07 16893.21 30896.29 30781.56 34694.60 24297.66 25093.30 22496.95 19298.91 4693.03 19399.38 22396.60 6397.30 31198.69 215
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8498.84 9995.76 13896.93 19397.43 19097.26 4099.79 3996.06 8299.53 9799.45 68
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19295.60 9198.04 4898.70 13998.13 3996.93 19398.45 7695.30 13399.62 14895.64 10898.96 21999.24 123
USDC94.56 23794.57 22994.55 28397.78 23586.43 30892.75 30298.65 15485.96 31696.91 19597.93 14390.82 23698.74 31090.71 26599.59 7798.47 232
CP-MVS97.92 5697.56 8298.99 1398.99 9597.82 1697.93 5398.96 7196.11 11596.89 19697.45 18896.85 6899.78 4395.19 13699.63 6599.38 87
OpenMVS_ROBcopyleft91.80 1493.64 26593.05 26495.42 24797.31 27991.21 22795.08 21996.68 29081.56 34496.88 19796.41 26090.44 24199.25 25485.39 33397.67 29695.80 340
testtj96.69 14396.13 16398.36 6198.46 15496.02 7696.44 13398.70 13994.26 19696.79 19897.13 21394.07 17099.75 6590.53 27198.80 23999.31 103
test_yl94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
DCV-MVSNet94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2199.10 3198.76 2396.79 19899.34 1796.61 7898.82 30296.38 7299.50 11196.98 311
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
alignmvs96.01 17395.52 18897.50 13197.77 23694.71 13296.07 15496.84 28297.48 6796.78 20294.28 32485.50 28899.40 21596.22 7698.73 24898.40 235
CL-MVSNet_self_test95.04 21294.79 21595.82 23097.51 26089.79 24891.14 33396.82 28493.05 23596.72 20396.40 26290.82 23699.16 26691.95 23198.66 25298.50 230
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22090.56 24095.71 17598.84 9994.72 18096.71 20497.39 19694.91 14598.10 35095.28 13199.02 21598.05 274
canonicalmvs97.23 11197.21 10697.30 15297.65 25094.39 14497.84 5999.05 4397.42 6996.68 20593.85 32797.63 2699.33 23696.29 7598.47 26498.18 262
ZD-MVS98.43 15595.94 7898.56 16190.72 27296.66 20697.07 21995.02 14199.74 7591.08 25098.93 225
diffmvs96.04 17196.23 15995.46 24697.35 27188.03 28193.42 28799.08 3794.09 20396.66 20696.93 22993.85 17599.29 24796.01 8998.67 25099.06 161
MVP-Stereo95.69 18395.28 19296.92 17198.15 18693.03 19195.64 18598.20 20390.39 27596.63 20897.73 16591.63 22899.10 27591.84 23697.31 31098.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8294.92 31696.50 10096.58 20997.27 20783.64 30099.48 18888.42 30499.67 5898.97 172
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16193.66 17693.42 28798.36 18594.74 17996.58 20996.76 24296.54 8298.99 28794.87 15599.27 18199.15 137
thisisatest053092.71 28191.76 28995.56 24198.42 15688.23 27496.03 15787.35 36494.04 20496.56 21195.47 29964.03 36599.77 5394.78 16199.11 20498.68 217
MVS_111021_LR96.82 13296.55 14397.62 12098.27 16895.34 10893.81 27798.33 19094.59 18696.56 21196.63 24996.61 7898.73 31194.80 15899.34 16398.78 204
DELS-MVS96.17 16696.23 15995.99 22097.55 25890.04 24392.38 31298.52 16494.13 20196.55 21397.06 22094.99 14299.58 15995.62 10999.28 17998.37 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline193.14 27692.64 27794.62 27897.34 27587.20 29896.67 12893.02 33294.71 18196.51 21495.83 28981.64 30598.60 32590.00 28288.06 36198.07 267
Patchmatch-test93.60 26693.25 26294.63 27796.14 31887.47 29296.04 15694.50 32093.57 21596.47 21596.97 22676.50 33198.61 32390.67 26798.41 26697.81 288
HyFIR lowres test93.72 26192.65 27696.91 17398.93 9891.81 22091.23 33198.52 16482.69 34096.46 21696.52 25680.38 31299.90 1390.36 27798.79 24099.03 165
QAPM95.88 17995.57 18796.80 17997.90 21091.84 21998.18 4298.73 12988.41 29496.42 21798.13 11394.73 14799.75 6588.72 29998.94 22398.81 200
BH-RMVSNet94.56 23794.44 23494.91 26497.57 25487.44 29393.78 27896.26 29393.69 21496.41 21896.50 25792.10 21799.00 28585.96 32697.71 29298.31 248
CNVR-MVS96.92 12396.55 14398.03 9298.00 20295.54 9394.87 23198.17 20994.60 18496.38 21997.05 22195.67 11899.36 22895.12 14699.08 20899.19 130
thres600view792.03 29391.43 29193.82 29598.19 17784.61 33096.27 14290.39 35596.81 8896.37 22093.11 33073.44 34899.49 18580.32 35297.95 28197.36 302
thres100view90091.76 29791.26 29693.26 30598.21 17584.50 33196.39 13590.39 35596.87 8696.33 22193.08 33473.44 34899.42 20478.85 35697.74 28995.85 338
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22297.64 17296.49 8699.72 8595.66 10699.37 15299.45 68
X-MVStestdata92.86 27890.83 30398.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22236.50 36896.49 8699.72 8595.66 10699.37 15299.45 68
MSDG95.33 20095.13 19695.94 22697.40 26991.85 21891.02 33698.37 18495.30 15896.31 22495.99 28194.51 15998.38 33989.59 28797.65 29897.60 296
CDS-MVSNet94.88 21994.12 24397.14 16097.64 25193.57 17893.96 27197.06 27690.05 27996.30 22596.55 25286.10 28499.47 19190.10 28099.31 17498.40 235
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet92.33 28892.79 27190.95 33497.26 28075.84 36495.29 20592.33 34081.86 34296.27 22698.19 10881.44 30698.46 33494.23 18498.29 27098.55 228
FMVSNet593.39 27092.35 28196.50 19795.83 32490.81 23597.31 9198.27 19492.74 24596.27 22698.28 9562.23 36699.67 12890.86 25699.36 15599.03 165
TAPA-MVS93.32 1294.93 21694.23 23897.04 16698.18 18094.51 14095.22 21198.73 12981.22 34796.25 22895.95 28693.80 17798.98 28989.89 28398.87 23197.62 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.10 25293.41 25996.18 21599.16 7090.04 24392.15 31498.68 14479.90 35296.22 22997.83 15387.92 27499.42 20489.18 29399.65 6199.08 157
MCST-MVS96.24 16295.80 17897.56 12398.75 11394.13 15694.66 24098.17 20990.17 27896.21 23096.10 27995.14 13699.43 20394.13 18898.85 23599.13 143
PHI-MVS96.96 12196.53 14698.25 7297.48 26196.50 5996.76 12098.85 9493.52 21696.19 23196.85 23395.94 10299.42 20493.79 20299.43 13798.83 198
HQP_MVS96.66 14696.33 15697.68 11798.70 12194.29 14896.50 13198.75 12596.36 10596.16 23296.77 24091.91 22599.46 19492.59 22499.20 18899.28 112
plane_prior394.51 14095.29 15996.16 232
miper_enhance_ethall93.14 27692.78 27394.20 29293.65 35585.29 32089.97 34597.85 23685.05 32996.15 23494.56 31685.74 28699.14 26893.74 20398.34 26798.17 263
MVS_Test96.27 16196.79 13194.73 27596.94 29486.63 30596.18 14998.33 19094.94 17396.07 23598.28 9595.25 13499.26 25297.21 4897.90 28498.30 250
PCF-MVS89.43 1892.12 29290.64 30696.57 19497.80 22593.48 18189.88 34998.45 17074.46 36496.04 23695.68 29290.71 23899.31 24073.73 36299.01 21796.91 315
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 20895.65 9094.94 22898.74 12791.31 26696.02 23797.08 21894.05 17199.69 11691.51 24298.94 22398.93 180
CPTT-MVS96.69 14396.08 16798.49 5298.89 10196.64 5597.25 9498.77 12192.89 24396.01 23897.13 21392.23 21399.67 12892.24 22799.34 16399.17 133
DROMVSNet97.90 6097.94 4497.79 10698.66 12595.14 11998.31 3199.66 297.57 6195.95 23997.01 22596.99 5599.82 2997.66 3399.64 6398.39 237
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 8897.49 26097.93 4495.95 23998.58 6596.88 6696.91 35889.59 28799.36 15593.12 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
tfpn200view991.55 29991.00 29893.21 30898.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28995.85 338
thres40091.68 29891.00 29893.71 29798.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28997.36 302
cl2293.25 27492.84 27094.46 28594.30 34786.00 31291.09 33596.64 29190.74 27195.79 24696.31 26778.24 32098.77 30794.15 18798.34 26798.62 221
API-MVS95.09 21195.01 20395.31 25096.61 30094.02 15996.83 11697.18 27095.60 14695.79 24694.33 32294.54 15898.37 34185.70 32898.52 26193.52 355
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14493.99 16194.60 24298.69 14290.20 27795.78 24896.21 27292.73 19998.98 28990.58 27098.86 23397.42 301
CLD-MVS95.47 19495.07 19996.69 18698.27 16892.53 20091.36 32598.67 14791.22 26895.78 24894.12 32595.65 11998.98 28990.81 25899.72 4898.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
旧先验293.35 29177.95 36095.77 25098.67 31990.74 264
pmmvs494.82 22194.19 24196.70 18597.42 26892.75 19892.09 31796.76 28686.80 31195.73 25197.22 21089.28 26098.89 29793.28 21399.14 19698.46 234
LF4IMVS96.07 16995.63 18497.36 14998.19 17795.55 9295.44 19098.82 11492.29 25195.70 25296.55 25292.63 20398.69 31591.75 23999.33 17097.85 284
testdata95.70 23698.16 18490.58 23897.72 24580.38 35095.62 25397.02 22392.06 21998.98 28989.06 29698.52 26197.54 297
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8398.73 12996.27 10895.59 25497.75 16296.30 9699.78 4393.70 20699.48 11999.45 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS96.13 16895.90 17696.82 17897.76 23793.89 16395.40 19598.95 7395.87 13295.58 25591.00 35896.36 9599.72 8593.36 21098.83 23796.85 318
thres20091.00 30590.42 30992.77 31897.47 26583.98 33694.01 26791.18 35095.12 16695.44 25691.21 35673.93 34199.31 24077.76 35997.63 29995.01 348
CDPH-MVS95.45 19694.65 21997.84 10498.28 16694.96 12493.73 27998.33 19085.03 33095.44 25696.60 25095.31 13299.44 20190.01 28199.13 20099.11 152
NCCC96.52 15295.99 17198.10 8497.81 22195.68 8795.00 22698.20 20395.39 15595.40 25896.36 26593.81 17699.45 19893.55 20998.42 26599.17 133
jason94.39 24394.04 24695.41 24998.29 16487.85 28592.74 30496.75 28785.38 32795.29 25996.15 27488.21 26999.65 13594.24 18399.34 16398.74 209
jason: jason.
new_pmnet92.34 28791.69 29094.32 28996.23 31189.16 25992.27 31392.88 33484.39 33795.29 25996.35 26685.66 28796.74 36284.53 34097.56 30097.05 309
pmmvs594.63 23494.34 23695.50 24397.63 25288.34 27394.02 26697.13 27287.15 30795.22 26197.15 21287.50 27699.27 25193.99 19599.26 18298.88 193
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29698.69 296.42 13498.09 22095.86 13395.15 26295.54 29794.26 16599.81 3294.06 19098.51 26398.47 232
KD-MVS_2432*160088.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
miper_refine_blended88.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12697.59 2495.97 16298.20 20395.51 15095.06 26396.53 25494.10 16999.70 10894.29 18199.15 19599.13 143
MIMVSNet93.42 26992.86 26895.10 25898.17 18288.19 27598.13 4493.69 32492.07 25295.04 26698.21 10780.95 31099.03 28481.42 35098.06 27898.07 267
TR-MVS92.54 28392.20 28393.57 30096.49 30386.66 30493.51 28594.73 31789.96 28094.95 26793.87 32690.24 24798.61 32381.18 35194.88 34395.45 346
PatchMatch-RL94.61 23593.81 25397.02 16898.19 17795.72 8393.66 28097.23 26788.17 29894.94 26895.62 29591.43 22998.57 32687.36 31997.68 29596.76 324
MG-MVS94.08 25494.00 24794.32 28997.09 28885.89 31393.19 29695.96 30092.52 24694.93 26997.51 18389.54 25498.77 30787.52 31797.71 29298.31 248
新几何197.25 15698.29 16494.70 13597.73 24477.98 35894.83 27096.67 24792.08 21899.45 19888.17 30898.65 25497.61 295
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28594.39 14495.46 18998.73 12996.03 12294.72 27194.92 31196.28 9899.69 11693.81 20197.98 28098.09 264
test0.0.03 190.11 31089.21 31792.83 31793.89 35386.87 30391.74 32188.74 36292.02 25394.71 27291.14 35773.92 34294.48 36583.75 34692.94 35197.16 306
ETH3 D test640094.77 22393.87 25297.47 13698.12 19193.73 17194.56 24498.70 13985.45 32594.70 27395.93 28891.77 22799.63 14086.45 32499.14 19699.05 163
test22298.17 18293.24 18692.74 30497.61 25875.17 36394.65 27496.69 24690.96 23598.66 25297.66 293
SCA93.38 27193.52 25792.96 31596.24 30981.40 34793.24 29494.00 32391.58 26294.57 27596.97 22687.94 27099.42 20489.47 28997.66 29798.06 271
CNLPA95.04 21294.47 23196.75 18297.81 22195.25 11294.12 26497.89 23494.41 19094.57 27595.69 29190.30 24598.35 34286.72 32398.76 24396.64 327
112194.26 24493.26 26197.27 15398.26 17094.73 13095.86 16897.71 24677.96 35994.53 27796.71 24491.93 22399.40 21587.71 31098.64 25597.69 292
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23187.40 29494.14 26298.68 14488.94 28994.51 27898.01 13293.04 19199.30 24389.77 28599.49 11599.11 152
PVSNet_Blended93.96 25693.65 25594.91 26497.79 23187.40 29491.43 32498.68 14484.50 33594.51 27894.48 32093.04 19199.30 24389.77 28598.61 25798.02 277
MVSFormer96.14 16796.36 15495.49 24497.68 24687.81 28698.67 1399.02 5296.50 10094.48 28096.15 27486.90 28099.92 498.73 799.13 20098.74 209
lupinMVS93.77 25993.28 26095.24 25297.68 24687.81 28692.12 31596.05 29684.52 33494.48 28095.06 30786.90 28099.63 14093.62 20899.13 20098.27 254
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28691.96 21697.74 6698.84 9987.26 30494.36 28298.01 13293.95 17399.67 12890.70 26698.75 24497.35 304
CS-MVS95.98 17596.24 15895.20 25497.26 28089.88 24695.84 17199.39 993.89 20994.28 28395.15 30494.81 14699.62 14896.11 8199.40 14796.10 336
PatchT93.75 26093.57 25694.29 29195.05 33987.32 29696.05 15592.98 33397.54 6594.25 28498.72 5675.79 33699.24 25595.92 9395.81 33396.32 333
BH-w/o92.14 29191.94 28592.73 31997.13 28785.30 31992.46 30995.64 30589.33 28594.21 28592.74 34089.60 25298.24 34581.68 34994.66 34594.66 350
xiu_mvs_v2_base94.22 24694.63 22292.99 31497.32 27884.84 32892.12 31597.84 23891.96 25594.17 28693.43 32896.07 10099.71 9991.27 24697.48 30494.42 351
PS-MVSNAJ94.10 25294.47 23193.00 31397.35 27184.88 32791.86 31997.84 23891.96 25594.17 28692.50 34495.82 10899.71 9991.27 24697.48 30494.40 352
CR-MVSNet93.29 27392.79 27194.78 27395.44 33388.15 27796.18 14997.20 26884.94 33294.10 28898.57 6677.67 32399.39 22095.17 13895.81 33396.81 322
RPMNet94.68 23194.60 22494.90 26695.44 33388.15 27796.18 14998.86 9097.43 6894.10 28898.49 7379.40 31499.76 5895.69 10395.81 33396.81 322
WTY-MVS93.55 26793.00 26695.19 25597.81 22187.86 28393.89 27396.00 29889.02 28794.07 29095.44 30086.27 28399.33 23687.69 31296.82 31898.39 237
GA-MVS92.83 27992.15 28494.87 26896.97 29187.27 29790.03 34496.12 29591.83 25894.05 29194.57 31576.01 33598.97 29392.46 22697.34 30998.36 244
test_prior395.91 17795.39 19097.46 13997.79 23194.26 15293.33 29298.42 17694.21 19894.02 29296.25 26993.64 18099.34 23391.90 23298.96 21998.79 202
test_prior293.33 29294.21 19894.02 29296.25 26993.64 18091.90 23298.96 219
MDTV_nov1_ep13_2view57.28 37494.89 23080.59 34994.02 29278.66 31985.50 33297.82 286
AdaColmapbinary95.11 20994.62 22396.58 19297.33 27794.45 14394.92 22998.08 22293.15 23393.98 29595.53 29894.34 16399.10 27585.69 32998.61 25796.20 335
pmmvs390.00 31288.90 32193.32 30394.20 35185.34 31891.25 33092.56 33978.59 35693.82 29695.17 30367.36 36298.69 31589.08 29598.03 27995.92 337
TEST997.84 21795.23 11393.62 28198.39 18186.81 31093.78 29795.99 28194.68 15199.52 179
train_agg95.46 19594.66 21897.88 10197.84 21795.23 11393.62 28198.39 18187.04 30893.78 29795.99 28194.58 15699.52 17991.76 23898.90 22798.89 189
EIA-MVS96.04 17195.77 18096.85 17697.80 22592.98 19296.12 15299.16 2094.65 18293.77 29991.69 35295.68 11799.67 12894.18 18598.85 23597.91 282
sss94.22 24693.72 25495.74 23397.71 24489.95 24593.84 27496.98 27888.38 29693.75 30095.74 29087.94 27098.89 29791.02 25298.10 27698.37 239
CS-MVS-test96.62 14896.59 13896.69 18697.88 21293.16 18897.21 9899.53 695.61 14593.72 30195.33 30195.49 12399.69 11695.37 12899.19 19297.22 305
test_897.81 22195.07 12293.54 28498.38 18387.04 30893.71 30295.96 28594.58 15699.52 179
E-PMN89.52 31889.78 31388.73 34393.14 36077.61 35883.26 36292.02 34194.82 17893.71 30293.11 33075.31 33796.81 35985.81 32796.81 31991.77 361
thisisatest051590.43 30889.18 32094.17 29497.07 28985.44 31789.75 35087.58 36388.28 29793.69 30491.72 35165.27 36399.58 15990.59 26998.67 25097.50 299
mvs-test196.20 16495.50 18998.32 6496.90 29698.16 595.07 22098.09 22095.86 13393.63 30594.32 32394.26 16599.71 9994.06 19097.27 31297.07 308
UGNet96.81 13396.56 14297.58 12296.64 29993.84 16797.75 6597.12 27396.47 10393.62 30698.88 4793.22 18899.53 17595.61 11099.69 5599.36 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive91.98 29491.87 28692.30 32694.60 34479.71 35295.12 21493.59 32889.52 28393.61 30797.02 22377.94 32199.18 26190.84 25794.57 34898.01 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CMPMVSbinary73.10 2392.74 28091.39 29296.77 18193.57 35794.67 13694.21 25797.67 24880.36 35193.61 30796.60 25082.85 30297.35 35684.86 33898.78 24198.29 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test1297.46 13997.61 25394.07 15797.78 24293.57 30993.31 18699.42 20498.78 24198.89 189
tpm91.08 30490.85 30291.75 32995.33 33678.09 35595.03 22591.27 34988.75 29193.53 31097.40 19271.24 35399.30 24391.25 24893.87 34997.87 283
agg_prior195.39 19894.60 22497.75 10997.80 22594.96 12493.39 28998.36 18587.20 30693.49 31195.97 28494.65 15399.53 17591.69 24098.86 23398.77 207
agg_prior97.80 22594.96 12498.36 18593.49 31199.53 175
原ACMM196.58 19298.16 18492.12 21198.15 21485.90 31893.49 31196.43 25992.47 21099.38 22387.66 31398.62 25698.23 257
MDTV_nov1_ep1391.28 29494.31 34673.51 36894.80 23593.16 33186.75 31293.45 31497.40 19276.37 33298.55 32988.85 29796.43 326
114514_t93.96 25693.22 26396.19 21499.06 8890.97 23195.99 16098.94 7473.88 36593.43 31596.93 22992.38 21299.37 22689.09 29499.28 17998.25 256
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 24992.82 19594.22 25698.60 15791.61 26093.42 31692.90 33796.73 7399.70 10892.60 22297.89 28597.74 289
PAPM_NR94.61 23594.17 24295.96 22298.36 16091.23 22695.93 16697.95 23092.98 23893.42 31694.43 32190.53 23998.38 33987.60 31496.29 32998.27 254
Effi-MVS+96.19 16596.01 16996.71 18497.43 26792.19 21096.12 15299.10 3195.45 15293.33 31894.71 31497.23 4399.56 16693.21 21697.54 30198.37 239
F-COLMAP95.30 20294.38 23598.05 9198.64 12696.04 7495.61 18698.66 14989.00 28893.22 31996.40 26292.90 19599.35 23187.45 31897.53 30298.77 207
EPMVS89.26 31988.55 32391.39 33192.36 36679.11 35395.65 18379.86 37088.60 29393.12 32096.53 25470.73 35798.10 35090.75 26189.32 36096.98 311
DPM-MVS93.68 26392.77 27496.42 20297.91 20892.54 19991.17 33297.47 26384.99 33193.08 32194.74 31389.90 25099.00 28587.54 31698.09 27797.72 290
1112_ss94.12 25193.42 25896.23 21198.59 13690.85 23294.24 25498.85 9485.49 32292.97 32294.94 30986.01 28599.64 13891.78 23797.92 28298.20 260
HQP4-MVS92.87 32399.23 25799.06 161
HQP-NCC97.85 21394.26 25093.18 22992.86 324
ACMP_Plane97.85 21394.26 25093.18 22992.86 324
HQP-MVS95.17 20894.58 22796.92 17197.85 21392.47 20194.26 25098.43 17393.18 22992.86 32495.08 30590.33 24299.23 25790.51 27398.74 24599.05 163
ADS-MVSNet291.47 30090.51 30894.36 28895.51 33185.63 31495.05 22395.70 30483.46 33892.69 32796.84 23479.15 31799.41 21385.66 33090.52 35698.04 275
ADS-MVSNet90.95 30690.26 31093.04 31195.51 33182.37 34295.05 22393.41 32983.46 33892.69 32796.84 23479.15 31798.70 31485.66 33090.52 35698.04 275
Test_1112_low_res93.53 26892.86 26895.54 24298.60 13488.86 26492.75 30298.69 14282.66 34192.65 32996.92 23184.75 29399.56 16690.94 25497.76 28898.19 261
AUN-MVS93.95 25892.69 27597.74 11097.80 22595.38 10395.57 18795.46 31291.26 26792.64 33096.10 27974.67 33999.55 17093.72 20596.97 31398.30 250
EMVS89.06 32089.22 31688.61 34493.00 36277.34 36082.91 36390.92 35194.64 18392.63 33191.81 35076.30 33397.02 35783.83 34496.90 31691.48 362
CANet95.86 18095.65 18396.49 19896.41 30590.82 23394.36 24898.41 17894.94 17392.62 33296.73 24392.68 20099.71 9995.12 14699.60 7598.94 176
DSMNet-mixed92.19 29091.83 28793.25 30696.18 31483.68 33896.27 14293.68 32676.97 36292.54 33399.18 2789.20 26298.55 32983.88 34398.60 25997.51 298
PVSNet86.72 1991.10 30390.97 30091.49 33097.56 25678.04 35687.17 35794.60 31984.65 33392.34 33492.20 34687.37 27898.47 33385.17 33697.69 29497.96 279
tpmrst90.31 30990.61 30789.41 34194.06 35272.37 37095.06 22293.69 32488.01 29992.32 33596.86 23277.45 32598.82 30291.04 25187.01 36397.04 310
cascas91.89 29591.35 29393.51 30194.27 34885.60 31588.86 35498.61 15679.32 35492.16 33691.44 35489.22 26198.12 34990.80 25997.47 30696.82 321
MAR-MVS94.21 24893.03 26597.76 10896.94 29497.44 3496.97 11297.15 27187.89 30292.00 33792.73 34192.14 21599.12 27083.92 34297.51 30396.73 325
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmvs90.79 30790.87 30190.57 33792.75 36576.30 36295.79 17393.64 32791.04 27091.91 33896.26 26877.19 32998.86 30189.38 29189.85 35996.56 330
PMMVS92.39 28591.08 29796.30 20993.12 36192.81 19690.58 34095.96 30079.17 35591.85 33992.27 34590.29 24698.66 32089.85 28496.68 32397.43 300
PLCcopyleft91.02 1694.05 25592.90 26797.51 12898.00 20295.12 12194.25 25398.25 19786.17 31491.48 34095.25 30291.01 23399.19 26085.02 33796.69 32298.22 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.08 32788.05 32588.16 34792.85 36368.81 37294.17 25892.88 33485.47 32391.38 34196.14 27668.87 36098.81 30486.88 32183.80 36696.87 316
PAPR92.22 28991.27 29595.07 25995.73 32888.81 26591.97 31897.87 23585.80 31990.91 34292.73 34191.16 23198.33 34379.48 35395.76 33798.08 265
131492.38 28692.30 28292.64 32095.42 33585.15 32395.86 16896.97 27985.40 32690.62 34393.06 33591.12 23297.80 35386.74 32295.49 34094.97 349
MVS90.02 31189.20 31892.47 32394.71 34286.90 30295.86 16896.74 28864.72 36790.62 34392.77 33992.54 20798.39 33879.30 35495.56 33992.12 359
CostFormer89.75 31689.25 31591.26 33394.69 34378.00 35795.32 20291.98 34281.50 34590.55 34596.96 22871.06 35598.89 29788.59 30292.63 35396.87 316
HY-MVS91.43 1592.58 28291.81 28894.90 26696.49 30388.87 26397.31 9194.62 31885.92 31790.50 34696.84 23485.05 29099.40 21583.77 34595.78 33696.43 332
FPMVS89.92 31588.63 32293.82 29598.37 15996.94 4691.58 32293.34 33088.00 30090.32 34797.10 21770.87 35691.13 36771.91 36596.16 33293.39 357
JIA-IIPM91.79 29690.69 30595.11 25793.80 35490.98 23094.16 25991.78 34496.38 10490.30 34899.30 1872.02 35298.90 29588.28 30690.17 35895.45 346
CANet_DTU94.65 23394.21 24095.96 22295.90 32189.68 24993.92 27297.83 24093.19 22890.12 34995.64 29488.52 26499.57 16593.27 21499.47 12198.62 221
test-LLR89.97 31489.90 31290.16 33894.24 34974.98 36589.89 34689.06 36092.02 25389.97 35090.77 35973.92 34298.57 32691.88 23497.36 30796.92 313
test-mter87.92 32987.17 33090.16 33894.24 34974.98 36589.89 34689.06 36086.44 31389.97 35090.77 35954.96 37598.57 32691.88 23497.36 30796.92 313
tpm288.47 32487.69 32890.79 33594.98 34077.34 36095.09 21791.83 34377.51 36189.40 35296.41 26067.83 36198.73 31183.58 34792.60 35496.29 334
tpm cat188.01 32887.33 32990.05 34094.48 34576.28 36394.47 24794.35 32273.84 36689.26 35395.61 29673.64 34498.30 34484.13 34186.20 36495.57 345
MVS_030495.50 19095.05 20296.84 17796.28 30893.12 18997.00 11096.16 29495.03 17089.22 35497.70 16890.16 24899.48 18894.51 17199.34 16397.93 281
TESTMET0.1,187.20 33286.57 33489.07 34293.62 35672.84 36989.89 34687.01 36685.46 32489.12 35590.20 36156.00 37497.72 35490.91 25596.92 31496.64 327
MVS-HIRNet88.40 32590.20 31182.99 34997.01 29060.04 37393.11 29785.61 36884.45 33688.72 35699.09 3384.72 29498.23 34682.52 34896.59 32590.69 364
IB-MVS85.98 2088.63 32386.95 33293.68 29895.12 33884.82 32990.85 33790.17 35987.55 30388.48 35791.34 35558.01 36899.59 15787.24 32093.80 35096.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test87.92 32986.77 33391.39 33193.18 35878.62 35495.10 21591.42 34685.58 32188.00 35888.73 36360.60 36798.90 29590.60 26887.70 36296.65 326
PVSNet_081.89 2184.49 33483.21 33788.34 34595.76 32774.97 36783.49 36192.70 33878.47 35787.94 35986.90 36583.38 30196.63 36373.44 36366.86 36993.40 356
EPNet93.72 26192.62 27897.03 16787.61 37392.25 20596.27 14291.28 34896.74 9087.65 36097.39 19685.00 29199.64 13892.14 22899.48 11999.20 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42089.98 31389.19 31992.37 32595.60 33081.13 34986.22 35997.09 27481.44 34687.44 36193.15 32973.99 34099.47 19188.69 30099.07 21096.52 331
baseline289.65 31788.44 32493.25 30695.62 32982.71 33993.82 27585.94 36788.89 29087.35 36292.54 34371.23 35499.33 23686.01 32594.60 34797.72 290
gg-mvs-nofinetune88.28 32686.96 33192.23 32892.84 36484.44 33298.19 4174.60 37299.08 1087.01 36399.47 856.93 37098.23 34678.91 35595.61 33894.01 353
ET-MVSNet_ETH3D91.12 30289.67 31495.47 24596.41 30589.15 26091.54 32390.23 35889.07 28686.78 36492.84 33869.39 35999.44 20194.16 18696.61 32497.82 286
PAPM87.64 33185.84 33693.04 31196.54 30184.99 32688.42 35695.57 30979.52 35383.82 36593.05 33680.57 31198.41 33662.29 36892.79 35295.71 341
GG-mvs-BLEND90.60 33691.00 36884.21 33598.23 3572.63 37582.76 36684.11 36656.14 37396.79 36072.20 36492.09 35590.78 363
MVEpermissive73.61 2286.48 33385.92 33588.18 34696.23 31185.28 32181.78 36475.79 37186.01 31582.53 36791.88 34992.74 19887.47 36971.42 36694.86 34491.78 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu91.39 30190.75 30493.31 30490.48 37082.61 34094.80 23592.88 33493.39 22081.74 36894.90 31281.36 30799.11 27388.28 30698.87 23198.21 259
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft77.17 35090.94 36985.28 32174.08 37452.51 36880.87 36988.03 36475.25 33870.63 37059.23 36984.94 36575.62 365
tmp_tt57.23 33662.50 33941.44 35234.77 37549.21 37583.93 36060.22 37615.31 36971.11 37079.37 36770.09 35844.86 37164.76 36782.93 36730.25 367
test_method66.88 33566.13 33869.11 35162.68 37425.73 37649.76 36596.04 29714.32 37064.27 37191.69 35273.45 34788.05 36876.06 36166.94 36893.54 354
testmvs12.33 33915.23 3423.64 3545.77 3772.23 37888.99 3533.62 3772.30 3725.29 37213.09 3694.52 3771.95 3725.16 3718.32 3716.75 369
test12312.59 33815.49 3413.87 3536.07 3762.55 37790.75 3382.59 3782.52 3715.20 37313.02 3704.96 3761.85 3735.20 3709.09 3707.23 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.22 33732.30 3400.00 3550.00 3780.00 3790.00 36698.10 2190.00 3730.00 37495.06 30797.54 290.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.98 34010.65 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37395.82 1080.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.91 34110.55 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37494.94 3090.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
MSC_two_6792asdad98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
No_MVS98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
eth-test20.00 378
eth-test0.00 378
OPU-MVS97.64 11998.01 19895.27 11196.79 11897.35 20196.97 5698.51 33291.21 24999.25 18399.14 140
save fliter98.48 15094.71 13294.53 24598.41 17895.02 171
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12198.89 7999.75 6595.48 11799.52 10299.53 41
GSMVS98.06 271
sam_mvs177.80 32298.06 271
sam_mvs77.38 326
MTGPAbinary98.73 129
test_post194.98 22710.37 37276.21 33499.04 28189.47 289
test_post10.87 37176.83 33099.07 278
patchmatchnet-post96.84 23477.36 32799.42 204
MTMP96.55 12974.60 372
gm-plane-assit91.79 36771.40 37181.67 34390.11 36298.99 28784.86 338
test9_res91.29 24598.89 23099.00 168
agg_prior290.34 27898.90 22799.10 156
test_prior495.38 10393.61 283
test_prior97.46 13997.79 23194.26 15298.42 17699.34 23398.79 202
新几何293.43 286
旧先验197.80 22593.87 16497.75 24397.04 22293.57 18298.68 24998.72 212
无先验93.20 29597.91 23280.78 34899.40 21587.71 31097.94 280
原ACMM292.82 300
testdata299.46 19487.84 309
segment_acmp95.34 130
testdata192.77 30193.78 211
plane_prior798.70 12194.67 136
plane_prior698.38 15894.37 14691.91 225
plane_prior598.75 12599.46 19492.59 22499.20 18899.28 112
plane_prior496.77 240
plane_prior296.50 13196.36 105
plane_prior198.49 148
plane_prior94.29 14895.42 19294.31 19598.93 225
n20.00 379
nn0.00 379
door-mid98.17 209
test1198.08 222
door97.81 241
HQP5-MVS92.47 201
BP-MVS90.51 273
HQP3-MVS98.43 17398.74 245
HQP2-MVS90.33 242
NP-MVS98.14 18793.72 17295.08 305
ACMMP++_ref99.52 102
ACMMP++99.55 91
Test By Simon94.51 159