This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2195.36 1496.47 27
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
MSP-MVS90.38 591.87 185.88 8692.83 7764.03 18993.06 11294.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10486.95 22364.37 17994.30 5588.45 28480.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 97
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30788.32 492.60 596.57 2332.61 34697.45 6692.21 2495.80 1097.53 6
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10887.10 22064.19 18694.41 5388.14 29380.24 5892.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 100
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5396.89 694.44 4671.65 21292.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_ONE96.45 1269.38 5394.44 4671.65 21292.11 797.05 776.79 999.11 6
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7194.37 5272.48 18292.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
test_241102_TWO94.41 4871.65 21292.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 18
test072696.40 1569.99 3896.76 894.33 5471.92 19891.89 1197.11 673.77 21
SMA-MVScopyleft88.14 1788.29 2187.67 3293.21 6868.72 6993.85 7894.03 6274.18 14591.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 45
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS90.70 390.52 891.24 189.68 15176.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9597.64 297.94 1
MM90.87 291.52 288.92 1592.12 9671.10 2797.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 14
patch_mono-289.71 1190.99 685.85 8996.04 2463.70 19995.04 4195.19 1986.74 991.53 1595.15 6473.86 2097.58 5993.38 1492.00 6896.28 34
TSAR-MVS + MP.88.11 1988.64 1786.54 6991.73 10968.04 8790.36 22593.55 7982.89 2191.29 1692.89 12172.27 3196.03 14087.99 5294.77 2695.54 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part296.29 1968.16 8590.78 17
DPE-MVScopyleft88.77 1689.21 1687.45 4296.26 2067.56 9994.17 5894.15 5968.77 26290.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 31
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060196.32 1869.74 4894.18 5771.42 22390.67 1996.85 1674.45 18
DVP-MVScopyleft89.41 1389.73 1488.45 2496.40 1569.99 3896.64 1094.52 4271.92 19890.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18290.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 28
DeepPCF-MVS81.17 189.72 1091.38 484.72 13093.00 7458.16 30296.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
fmvsm_s_conf0.5_n_a85.75 5786.09 4984.72 13085.73 24763.58 20493.79 8489.32 24681.42 4190.21 2396.91 1462.41 11397.67 5194.48 1080.56 17892.90 160
test_fmvsm_n_192087.69 2588.50 1885.27 11087.05 22263.55 20693.69 8891.08 18384.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 111
fmvsm_s_conf0.5_n86.39 4486.91 3784.82 12387.36 21563.54 20794.74 4890.02 22282.52 2690.14 2596.92 1362.93 10997.84 4695.28 882.26 15993.07 154
fmvsm_s_conf0.1_n85.61 6185.93 5284.68 13382.95 29063.48 20994.03 6989.46 24081.69 3589.86 2696.74 2061.85 11997.75 4994.74 982.01 16592.81 162
fmvsm_s_conf0.1_n_a84.76 7284.84 7084.53 13980.23 31663.50 20892.79 12188.73 27580.46 5289.84 2796.65 2260.96 12797.57 6193.80 1380.14 18092.53 169
CANet89.61 1289.99 1288.46 2394.39 3969.71 4996.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 20
MVS_030490.01 890.50 988.53 2290.14 14270.94 2896.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 44
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12076.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21597.68 5091.07 3492.62 5994.54 103
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21197.89 4391.10 3393.31 5294.54 103
CNVR-MVS90.32 690.89 788.61 2196.76 870.65 3196.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 37
HPM-MVS++copyleft89.37 1489.95 1387.64 3395.10 3068.23 8395.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 38
APDe-MVScopyleft87.54 2687.84 2586.65 6396.07 2366.30 13294.84 4693.78 6669.35 25388.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet87.84 2388.38 1986.23 7993.30 6566.05 13695.26 3394.84 2987.09 788.06 3594.53 7966.79 5997.34 7583.89 9191.68 7395.29 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS87.49 2787.49 3087.50 4193.60 5668.82 6793.90 7592.63 11776.86 11087.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 39
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf_n86.58 4287.17 3384.82 12385.28 25362.55 23094.26 5789.78 22883.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 82
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
旧先验292.00 16059.37 33587.54 3993.47 24275.39 151
MVSFormer83.75 9582.88 10086.37 7589.24 16671.18 2489.07 25890.69 19265.80 28487.13 4094.34 8964.99 7592.67 26672.83 16891.80 7195.27 69
lupinMVS87.74 2487.77 2687.63 3789.24 16671.18 2496.57 1292.90 10682.70 2587.13 4095.27 5864.99 7595.80 14589.34 4391.80 7195.93 42
alignmvs87.28 3186.97 3688.24 2691.30 12171.14 2695.61 2693.56 7879.30 7287.07 4295.25 6068.43 4696.93 10787.87 5384.33 14396.65 16
test_fmvsmconf0.1_n85.71 5886.08 5084.62 13780.83 30662.33 23493.84 8188.81 27183.50 2087.00 4396.01 3963.36 10196.93 10794.04 1287.29 11794.61 99
NCCC89.07 1589.46 1587.91 2796.60 1069.05 6196.38 1694.64 3984.42 1486.74 4496.20 3466.56 6298.76 2389.03 4894.56 3395.92 43
FOURS193.95 4561.77 24593.96 7191.92 14162.14 31586.57 45
SF-MVS87.03 3487.09 3486.84 5692.70 8367.45 10493.64 9193.76 6970.78 23686.25 4696.44 2866.98 5797.79 4788.68 5094.56 3395.28 68
9.1487.63 2793.86 4794.41 5394.18 5772.76 17786.21 4796.51 2566.64 6097.88 4490.08 4094.04 38
APD-MVScopyleft85.93 5385.99 5185.76 9395.98 2665.21 15793.59 9492.58 11966.54 27986.17 4895.88 4163.83 9197.00 9686.39 6992.94 5695.06 77
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet_DTU84.09 8783.52 8185.81 9090.30 13966.82 11891.87 16589.01 26385.27 1186.09 4993.74 10347.71 26696.98 10077.90 13789.78 9693.65 137
VNet86.20 4785.65 5787.84 2993.92 4669.99 3895.73 2495.94 778.43 8886.00 5093.07 11658.22 15597.00 9685.22 7684.33 14396.52 22
TSAR-MVS + GP.87.96 2088.37 2086.70 6293.51 6165.32 15495.15 3793.84 6578.17 9185.93 5194.80 7375.80 1398.21 3489.38 4288.78 10296.59 18
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5296.26 3272.84 2699.38 192.64 1995.93 997.08 11
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5394.91 7074.11 1998.91 1787.26 6195.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS86.83 3886.85 4086.78 6093.47 6265.55 15095.39 3195.10 2271.77 20885.69 5496.52 2462.07 11698.77 2286.06 7295.60 1296.03 40
TEST994.18 4167.28 10694.16 5993.51 8071.75 20985.52 5595.33 5368.01 5097.27 82
train_agg87.21 3287.42 3186.60 6594.18 4167.28 10694.16 5993.51 8071.87 20385.52 5595.33 5368.19 4897.27 8289.09 4694.90 2295.25 72
CS-MVS-test86.14 4987.01 3583.52 16792.63 8559.36 29095.49 2891.92 14180.09 5985.46 5795.53 4961.82 12095.77 14886.77 6793.37 5195.41 56
test_894.19 4067.19 10894.15 6293.42 8671.87 20385.38 5895.35 5268.19 4896.95 104
testdata81.34 22289.02 17057.72 30689.84 22758.65 33885.32 5994.09 9657.03 16693.28 24469.34 20390.56 9093.03 155
ZD-MVS96.63 965.50 15293.50 8270.74 23785.26 6095.19 6364.92 7897.29 7887.51 5793.01 55
test_prior295.10 3975.40 13085.25 6195.61 4767.94 5187.47 5894.77 26
test_fmvsmconf0.01_n83.70 9783.52 8184.25 15175.26 35761.72 24892.17 14787.24 30682.36 2884.91 6295.41 5055.60 18796.83 11192.85 1785.87 13294.21 113
CS-MVS85.80 5686.65 4183.27 17592.00 10158.92 29595.31 3291.86 14679.97 6084.82 6395.40 5162.26 11495.51 16686.11 7192.08 6795.37 59
ACMMP_NAP86.05 5085.80 5586.80 5991.58 11367.53 10191.79 16993.49 8374.93 13684.61 6495.30 5559.42 14497.92 4186.13 7094.92 2094.94 83
jason86.40 4386.17 4787.11 4986.16 23870.54 3395.71 2592.19 13282.00 3284.58 6594.34 8961.86 11895.53 16587.76 5490.89 8595.27 69
jason: jason.
agg_prior94.16 4366.97 11693.31 8984.49 6696.75 113
test_vis1_n_192081.66 12982.01 11480.64 23982.24 29555.09 33094.76 4786.87 30981.67 3684.40 6794.63 7738.17 31594.67 19391.98 2883.34 15092.16 183
xiu_mvs_v1_base_debu82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base_debi82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
ETV-MVS86.01 5186.11 4885.70 9690.21 14167.02 11593.43 10391.92 14181.21 4584.13 7194.07 9860.93 12895.63 15689.28 4489.81 9494.46 109
SteuartSystems-ACMMP86.82 3986.90 3886.58 6790.42 13666.38 12996.09 1893.87 6477.73 9884.01 7295.66 4563.39 10097.94 4087.40 5993.55 4995.42 55
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8683.87 7392.94 11964.34 8596.94 10575.19 15294.09 3795.66 49
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3095.86 2768.32 7795.74 2294.11 6083.82 1783.49 7496.19 3564.53 8498.44 3183.42 9494.88 2596.61 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 7685.04 6683.01 17989.34 15861.37 25494.42 5291.09 18177.91 9583.24 7594.20 9458.37 15395.40 16785.35 7591.41 7892.27 179
Effi-MVS+83.82 9282.76 10286.99 5489.56 15469.40 5291.35 19186.12 31872.59 17983.22 7692.81 12559.60 14296.01 14281.76 10487.80 11195.56 53
CDPH-MVS85.71 5885.46 5986.46 7194.75 3467.19 10893.89 7692.83 10870.90 23283.09 7795.28 5663.62 9697.36 7380.63 11494.18 3694.84 87
MVS_Test84.16 8683.20 9387.05 5291.56 11469.82 4589.99 23992.05 13577.77 9782.84 7886.57 22963.93 9096.09 13474.91 15789.18 10095.25 72
test_cas_vis1_n_192080.45 15080.61 13579.97 25878.25 34257.01 31894.04 6888.33 28779.06 8082.81 7993.70 10438.65 31091.63 29590.82 3779.81 18291.27 200
h-mvs3383.01 10782.56 10784.35 14789.34 15862.02 24092.72 12493.76 6981.45 3882.73 8092.25 13860.11 13597.13 8987.69 5562.96 31193.91 129
hse-mvs281.12 13881.11 12681.16 22686.52 23057.48 31189.40 25191.16 17681.45 3882.73 8090.49 16960.11 13594.58 19587.69 5560.41 33891.41 193
test1287.09 5094.60 3668.86 6592.91 10582.67 8265.44 7197.55 6393.69 4794.84 87
HY-MVS76.49 584.28 8083.36 9287.02 5392.22 9367.74 9484.65 30194.50 4379.15 7682.23 8387.93 21066.88 5896.94 10580.53 11582.20 16296.39 30
LFMVS84.34 7982.73 10389.18 1294.76 3373.25 994.99 4391.89 14471.90 20082.16 8493.49 11047.98 26297.05 9182.55 9984.82 13897.25 9
WTY-MVS86.32 4585.81 5487.85 2892.82 7969.37 5595.20 3595.25 1782.71 2481.91 8594.73 7467.93 5297.63 5679.55 12282.25 16096.54 21
VDD-MVS83.06 10681.81 11786.81 5890.86 13067.70 9595.40 3091.50 16475.46 12881.78 8692.34 13540.09 30497.13 8986.85 6682.04 16495.60 51
diffmvspermissive84.28 8083.83 7885.61 9887.40 21368.02 8890.88 20989.24 24980.54 5081.64 8792.52 12759.83 13994.52 20287.32 6085.11 13694.29 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++86.27 4685.91 5387.35 4492.01 10068.97 6495.04 4192.70 11179.04 8181.50 8896.50 2658.98 15096.78 11283.49 9393.93 4096.29 32
SR-MVS82.81 11182.58 10683.50 17093.35 6361.16 25792.23 14691.28 17364.48 29381.27 8995.28 5653.71 21095.86 14482.87 9688.77 10393.49 141
dcpmvs_287.37 3087.55 2986.85 5595.04 3268.20 8490.36 22590.66 19579.37 7181.20 9093.67 10574.73 1596.55 12090.88 3692.00 6895.82 46
baseline85.01 6984.44 7386.71 6188.33 18868.73 6890.24 23091.82 15081.05 4781.18 9192.50 12863.69 9496.08 13784.45 8686.71 12695.32 64
test_yl84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
DCV-MVSNet84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
UA-Net80.02 15979.65 14981.11 22889.33 16057.72 30686.33 29489.00 26677.44 10581.01 9489.15 19059.33 14695.90 14361.01 27684.28 14589.73 220
PVSNet_BlendedMVS83.38 10083.43 8783.22 17693.76 4967.53 10194.06 6493.61 7679.13 7781.00 9585.14 24463.19 10497.29 7887.08 6373.91 23384.83 302
PVSNet_Blended86.73 4086.86 3986.31 7893.76 4967.53 10196.33 1793.61 7682.34 2981.00 9593.08 11563.19 10497.29 7887.08 6391.38 7994.13 118
casdiffmvspermissive85.37 6384.87 6986.84 5688.25 19169.07 6093.04 11491.76 15181.27 4480.84 9792.07 14164.23 8696.06 13884.98 8187.43 11695.39 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing1186.71 4186.44 4287.55 3993.54 5971.35 2193.65 9095.58 1181.36 4380.69 9892.21 13972.30 3096.46 12585.18 7883.43 14994.82 90
MP-MVS-pluss85.24 6585.13 6485.56 9991.42 11865.59 14891.54 17992.51 12174.56 13980.62 9995.64 4659.15 14897.00 9686.94 6593.80 4294.07 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
testing9986.01 5185.47 5887.63 3793.62 5571.25 2393.47 10195.23 1880.42 5480.60 10091.95 14371.73 3596.50 12380.02 11982.22 16195.13 75
testing9185.93 5385.31 6187.78 3193.59 5771.47 1993.50 9895.08 2580.26 5680.53 10191.93 14470.43 3896.51 12280.32 11782.13 16395.37 59
MTAPA83.91 9083.38 9185.50 10091.89 10665.16 15981.75 32492.23 12775.32 13180.53 10195.21 6256.06 18397.16 8784.86 8392.55 6194.18 114
testing22285.18 6684.69 7186.63 6492.91 7669.91 4292.61 13295.80 980.31 5580.38 10392.27 13668.73 4495.19 17575.94 14783.27 15194.81 91
PAPM85.89 5585.46 5987.18 4788.20 19472.42 1492.41 14192.77 10982.11 3180.34 10493.07 11668.27 4795.02 17878.39 13493.59 4894.09 120
CostFormer82.33 11881.15 12285.86 8889.01 17168.46 7482.39 32193.01 10175.59 12680.25 10581.57 28672.03 3394.96 18179.06 12777.48 20694.16 116
casdiffmvs_mvgpermissive85.66 6085.18 6387.09 5088.22 19369.35 5693.74 8791.89 14481.47 3780.10 10691.45 15364.80 8096.35 12687.23 6287.69 11295.58 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS81.98 12682.04 11381.78 21289.76 15056.17 32291.13 20290.69 19277.96 9380.09 10793.57 10846.33 27694.99 18081.41 10887.46 11594.17 115
ZNCC-MVS85.33 6485.08 6586.06 8193.09 7365.65 14693.89 7693.41 8773.75 15679.94 10894.68 7660.61 13198.03 3882.63 9893.72 4594.52 105
sss82.71 11482.38 11083.73 16289.25 16359.58 28592.24 14594.89 2877.96 9379.86 10992.38 13356.70 17497.05 9177.26 14080.86 17594.55 101
新几何184.73 12992.32 9064.28 18391.46 16659.56 33479.77 11092.90 12056.95 17196.57 11863.40 25992.91 5793.34 144
APD-MVS_3200maxsize81.64 13081.32 12182.59 18992.36 8958.74 29791.39 18691.01 18863.35 30279.72 11194.62 7851.82 22596.14 13279.71 12087.93 11092.89 161
MP-MVScopyleft85.02 6884.97 6785.17 11492.60 8664.27 18493.24 10692.27 12673.13 16779.63 11294.43 8261.90 11797.17 8585.00 8092.56 6094.06 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM184.42 14393.21 6864.27 18493.40 8865.39 28779.51 11392.50 12858.11 15796.69 11465.27 24993.96 3992.32 174
ETVMVS84.22 8483.71 7985.76 9392.58 8768.25 8292.45 14095.53 1479.54 6779.46 11491.64 15170.29 3994.18 21569.16 20682.76 15794.84 87
test_fmvs174.07 25273.69 23975.22 31278.91 33447.34 36689.06 26074.69 36863.68 29979.41 11591.59 15224.36 36987.77 33685.22 7676.26 21790.55 209
VDDNet80.50 14878.26 17087.21 4686.19 23669.79 4694.48 5191.31 17060.42 32779.34 11690.91 16238.48 31396.56 11982.16 10081.05 17395.27 69
EIA-MVS84.84 7184.88 6884.69 13291.30 12162.36 23393.85 7892.04 13679.45 6879.33 11794.28 9262.42 11296.35 12680.05 11891.25 8295.38 58
HFP-MVS84.73 7384.40 7485.72 9593.75 5165.01 16393.50 9893.19 9472.19 19279.22 11894.93 6859.04 14997.67 5181.55 10592.21 6394.49 108
MAR-MVS84.18 8583.43 8786.44 7296.25 2165.93 14194.28 5694.27 5674.41 14079.16 11995.61 4753.99 20698.88 2169.62 20093.26 5394.50 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR85.15 6784.47 7287.18 4796.02 2568.29 7891.85 16793.00 10376.59 11779.03 12095.00 6561.59 12197.61 5878.16 13589.00 10195.63 50
SR-MVS-dyc-post81.06 13980.70 13282.15 20392.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8051.26 23395.61 15878.77 13186.77 12492.28 176
RE-MVS-def80.48 13892.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8049.30 24978.77 13186.77 12492.28 176
GST-MVS84.63 7584.29 7585.66 9792.82 7965.27 15593.04 11493.13 9773.20 16578.89 12194.18 9559.41 14597.85 4581.45 10792.48 6293.86 132
MVS_111021_HR86.19 4885.80 5587.37 4393.17 7069.79 4693.99 7093.76 6979.08 7978.88 12493.99 9962.25 11598.15 3685.93 7391.15 8394.15 117
region2R84.36 7884.03 7785.36 10693.54 5964.31 18293.43 10392.95 10472.16 19578.86 12594.84 7256.97 17097.53 6481.38 10992.11 6694.24 112
ACMMPR84.37 7784.06 7685.28 10993.56 5864.37 17993.50 9893.15 9672.19 19278.85 12694.86 7156.69 17597.45 6681.55 10592.20 6494.02 125
UGNet79.87 16278.68 16483.45 17289.96 14561.51 25192.13 14990.79 19076.83 11278.85 12686.33 23338.16 31696.17 13167.93 21887.17 11892.67 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND86.53 7091.91 10569.67 5175.02 36394.75 3378.67 12890.85 16377.91 794.56 19972.25 17693.74 4495.36 61
test250683.29 10182.92 9984.37 14688.39 18663.18 21692.01 15791.35 16977.66 10078.49 12991.42 15464.58 8395.09 17773.19 16489.23 9894.85 84
XVS83.87 9183.47 8585.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13094.31 9155.25 18997.41 7079.16 12591.58 7593.95 127
X-MVStestdata76.86 21374.13 23385.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13010.19 40555.25 18997.41 7079.16 12591.58 7593.95 127
test_fmvs1_n72.69 27171.92 26274.99 31571.15 37047.08 36887.34 28575.67 36363.48 30178.08 13291.17 15920.16 38087.87 33384.65 8475.57 22190.01 215
EI-MVSNet-Vis-set83.77 9483.67 8084.06 15492.79 8263.56 20591.76 17294.81 3179.65 6677.87 13394.09 9663.35 10297.90 4279.35 12379.36 18790.74 205
Vis-MVSNetpermissive80.92 14279.98 14583.74 16088.48 18161.80 24493.44 10288.26 29273.96 15177.73 13491.76 14749.94 24394.76 18665.84 24190.37 9194.65 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmvis_n_192083.80 9383.48 8484.77 12782.51 29263.72 19791.37 18983.99 33881.42 4177.68 13595.74 4458.37 15397.58 5993.38 1486.87 12093.00 157
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3093.83 8395.33 1668.48 26677.63 13694.35 8873.04 2498.45 3084.92 8293.71 4696.92 13
TESTMET0.1,182.41 11781.98 11583.72 16388.08 19563.74 19592.70 12693.77 6879.30 7277.61 13787.57 21658.19 15694.08 21973.91 16386.68 12793.33 146
tpm279.80 16377.95 17685.34 10788.28 18968.26 8081.56 32791.42 16770.11 24477.59 13880.50 30467.40 5594.26 21267.34 22377.35 20793.51 140
CP-MVS83.71 9683.40 9084.65 13493.14 7163.84 19194.59 5092.28 12571.03 23077.41 13994.92 6955.21 19296.19 13081.32 11090.70 8793.91 129
ab-mvs80.18 15578.31 16985.80 9188.44 18365.49 15383.00 31892.67 11371.82 20677.36 14085.01 24554.50 19896.59 11676.35 14575.63 22095.32 64
test22289.77 14961.60 25089.55 24689.42 24356.83 34777.28 14192.43 13252.76 21991.14 8493.09 152
PGM-MVS83.25 10382.70 10484.92 11992.81 8164.07 18890.44 22192.20 13171.28 22477.23 14294.43 8255.17 19397.31 7779.33 12491.38 7993.37 143
gg-mvs-nofinetune77.18 20874.31 22985.80 9191.42 11868.36 7671.78 36694.72 3449.61 36777.12 14345.92 39077.41 893.98 22867.62 22193.16 5495.05 78
HPM-MVScopyleft83.25 10382.95 9884.17 15292.25 9262.88 22590.91 20691.86 14670.30 24277.12 14393.96 10056.75 17396.28 12882.04 10291.34 8193.34 144
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu83.97 8983.50 8385.39 10490.02 14466.59 12693.77 8591.73 15277.43 10677.08 14589.81 18363.77 9396.97 10279.67 12188.21 10792.60 166
DeepC-MVS77.85 385.52 6285.24 6286.37 7588.80 17666.64 12392.15 14893.68 7481.07 4676.91 14693.64 10662.59 11198.44 3185.50 7492.84 5894.03 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ECVR-MVScopyleft81.29 13480.38 14084.01 15688.39 18661.96 24292.56 13886.79 31177.66 10076.63 14791.42 15446.34 27595.24 17474.36 16189.23 9894.85 84
EI-MVSNet-UG-set83.14 10582.96 9783.67 16592.28 9163.19 21591.38 18894.68 3779.22 7476.60 14893.75 10262.64 11097.76 4878.07 13678.01 19890.05 214
EPNet_dtu78.80 18179.26 15977.43 29488.06 19649.71 35491.96 16291.95 14077.67 9976.56 14991.28 15858.51 15290.20 31656.37 29680.95 17492.39 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon82.73 11281.65 11885.98 8397.31 467.06 11295.15 3791.99 13869.08 25976.50 15093.89 10154.48 20198.20 3570.76 19085.66 13492.69 163
Anonymous20240521177.96 19775.33 21685.87 8793.73 5464.52 16994.85 4585.36 32462.52 31276.11 15190.18 17629.43 36097.29 7868.51 21377.24 21095.81 47
tpmrst80.57 14679.14 16184.84 12290.10 14368.28 7981.70 32589.72 23577.63 10275.96 15279.54 31864.94 7792.71 26375.43 15077.28 20993.55 139
thisisatest051583.41 9982.49 10886.16 8089.46 15768.26 8093.54 9694.70 3674.31 14375.75 15390.92 16172.62 2896.52 12169.64 19881.50 17093.71 135
test111180.84 14380.02 14283.33 17387.87 20260.76 26592.62 13186.86 31077.86 9675.73 15491.39 15646.35 27494.70 19272.79 17088.68 10494.52 105
CHOSEN 1792x268884.98 7083.45 8689.57 1089.94 14675.14 592.07 15492.32 12481.87 3375.68 15588.27 20160.18 13498.60 2780.46 11690.27 9294.96 81
test-LLR80.10 15779.56 15181.72 21486.93 22661.17 25592.70 12691.54 16171.51 22175.62 15686.94 22553.83 20792.38 27772.21 17784.76 14091.60 188
test-mter79.96 16079.38 15781.72 21486.93 22661.17 25592.70 12691.54 16173.85 15375.62 15686.94 22549.84 24592.38 27772.21 17784.76 14091.60 188
mPP-MVS82.96 10982.44 10984.52 14092.83 7762.92 22392.76 12291.85 14871.52 22075.61 15894.24 9353.48 21496.99 9978.97 12890.73 8693.64 138
MVS_111021_LR82.02 12581.52 11983.51 16988.42 18462.88 22589.77 24388.93 26776.78 11375.55 15993.10 11350.31 23995.38 16983.82 9287.02 11992.26 180
API-MVS82.28 11980.53 13787.54 4096.13 2270.59 3293.63 9291.04 18765.72 28675.45 16092.83 12456.11 18298.89 2064.10 25589.75 9793.15 150
Fast-Effi-MVS+81.14 13680.01 14384.51 14190.24 14065.86 14294.12 6389.15 25573.81 15575.37 16188.26 20257.26 16394.53 20166.97 22984.92 13793.15 150
test_vis1_n71.63 27770.73 27374.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16290.17 17720.40 37885.76 34884.59 8574.42 22889.87 216
nrg03080.93 14179.86 14684.13 15383.69 27968.83 6693.23 10791.20 17475.55 12775.06 16388.22 20563.04 10894.74 18881.88 10366.88 28188.82 230
UWE-MVS80.81 14481.01 12880.20 24989.33 16057.05 31691.91 16394.71 3575.67 12575.01 16489.37 18763.13 10691.44 30367.19 22682.80 15692.12 184
baseline181.84 12781.03 12784.28 15091.60 11266.62 12491.08 20391.66 15881.87 3374.86 16591.67 15069.98 4194.92 18471.76 18264.75 29991.29 199
FA-MVS(test-final)79.12 17377.23 18984.81 12690.54 13463.98 19081.35 33091.71 15471.09 22974.85 16682.94 26752.85 21897.05 9167.97 21681.73 16993.41 142
HPM-MVS_fast80.25 15479.55 15382.33 19591.55 11559.95 28091.32 19389.16 25465.23 29074.71 16793.07 11647.81 26595.74 14974.87 15988.23 10691.31 198
bld_raw_dy_0_6482.84 11080.75 13089.09 1493.74 5272.16 1593.16 10977.36 35889.69 174.55 16896.48 2732.35 34897.56 6292.21 2477.24 21097.53 6
TR-MVS78.77 18377.37 18882.95 18090.49 13560.88 26193.67 8990.07 21870.08 24574.51 16991.37 15745.69 28195.70 15560.12 28280.32 17992.29 175
AUN-MVS78.37 19077.43 18381.17 22586.60 22957.45 31289.46 25091.16 17674.11 14674.40 17090.49 16955.52 18894.57 19774.73 16060.43 33791.48 191
HQP-NCC87.54 20994.06 6479.80 6274.18 171
ACMP_Plane87.54 20994.06 6479.80 6274.18 171
HQP4-MVS74.18 17195.61 15888.63 232
HQP-MVS81.14 13680.64 13482.64 18787.54 20963.66 20294.06 6491.70 15679.80 6274.18 17190.30 17351.63 22995.61 15877.63 13878.90 19188.63 232
PAPM_NR82.97 10881.84 11686.37 7594.10 4466.76 12187.66 28092.84 10769.96 24674.07 17593.57 10863.10 10797.50 6570.66 19290.58 8994.85 84
VPA-MVSNet79.03 17478.00 17482.11 20885.95 24164.48 17293.22 10894.66 3875.05 13574.04 17684.95 24652.17 22493.52 24074.90 15867.04 28088.32 241
CDS-MVSNet81.43 13280.74 13183.52 16786.26 23564.45 17392.09 15290.65 19675.83 12473.95 17789.81 18363.97 8992.91 25671.27 18582.82 15493.20 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf0583.27 10282.70 10484.98 11893.32 6471.84 1794.16 5981.76 34882.74 2373.83 17888.40 19872.77 2794.61 19482.10 10175.21 22288.48 236
tpm78.58 18777.03 19183.22 17685.94 24364.56 16883.21 31591.14 17978.31 8973.67 17979.68 31664.01 8892.09 28666.07 23971.26 25493.03 155
WB-MVSnew77.14 20976.18 20480.01 25586.18 23763.24 21391.26 19594.11 6071.72 21073.52 18087.29 22145.14 28693.00 24956.98 29479.42 18583.80 310
BH-RMVSNet79.46 16977.65 17984.89 12091.68 11165.66 14593.55 9588.09 29572.93 17273.37 18191.12 16046.20 27896.12 13356.28 29785.61 13592.91 159
thres20079.66 16478.33 16883.66 16692.54 8865.82 14493.06 11296.31 374.90 13773.30 18288.66 19359.67 14195.61 15847.84 33078.67 19489.56 223
Anonymous2024052976.84 21674.15 23284.88 12191.02 12564.95 16593.84 8191.09 18153.57 35673.00 18387.42 21835.91 33497.32 7669.14 20772.41 24692.36 172
CPTT-MVS79.59 16579.16 16080.89 23791.54 11659.80 28292.10 15188.54 28360.42 32772.96 18493.28 11248.27 25892.80 26078.89 13086.50 12990.06 213
HyFIR lowres test81.03 14079.56 15185.43 10287.81 20568.11 8690.18 23190.01 22370.65 23872.95 18586.06 23763.61 9794.50 20375.01 15579.75 18493.67 136
EPP-MVSNet81.79 12881.52 11982.61 18888.77 17760.21 27793.02 11693.66 7568.52 26572.90 18690.39 17172.19 3294.96 18174.93 15679.29 18992.67 164
MDTV_nov1_ep13_2view59.90 28180.13 34167.65 27172.79 18754.33 20459.83 28392.58 167
FE-MVS75.97 23073.02 24684.82 12389.78 14865.56 14977.44 35591.07 18464.55 29272.66 18879.85 31446.05 28096.69 11454.97 30180.82 17692.21 181
TAMVS80.37 15179.45 15483.13 17885.14 25663.37 21091.23 19790.76 19174.81 13872.65 18988.49 19560.63 13092.95 25169.41 20281.95 16693.08 153
VPNet78.82 18077.53 18282.70 18584.52 26666.44 12893.93 7392.23 12780.46 5272.60 19088.38 19949.18 25193.13 24672.47 17563.97 30888.55 235
CLD-MVS82.73 11282.35 11183.86 15887.90 20167.65 9795.45 2992.18 13385.06 1272.58 19192.27 13652.46 22295.78 14684.18 8779.06 19088.16 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS80.34 15279.75 14882.12 20586.94 22462.42 23193.13 11091.31 17078.81 8472.53 19289.14 19150.66 23695.55 16376.74 14178.53 19688.39 239
plane_prior361.95 24379.09 7872.53 192
EPMVS78.49 18975.98 20686.02 8291.21 12369.68 5080.23 33991.20 17475.25 13272.48 19478.11 32654.65 19793.69 23757.66 29383.04 15294.69 93
1112_ss80.56 14779.83 14782.77 18388.65 17860.78 26392.29 14388.36 28672.58 18072.46 19594.95 6665.09 7493.42 24366.38 23577.71 20094.10 119
PVSNet73.49 880.05 15878.63 16584.31 14890.92 12864.97 16492.47 13991.05 18679.18 7572.43 19690.51 16837.05 33094.06 22168.06 21586.00 13193.90 131
OMC-MVS78.67 18677.91 17780.95 23585.76 24657.40 31388.49 26788.67 27873.85 15372.43 19692.10 14049.29 25094.55 20072.73 17177.89 19990.91 204
MVS84.66 7482.86 10190.06 290.93 12774.56 687.91 27695.54 1368.55 26472.35 19894.71 7559.78 14098.90 1981.29 11194.69 3296.74 15
EI-MVSNet78.97 17678.22 17181.25 22385.33 25162.73 22889.53 24893.21 9172.39 18772.14 19990.13 17960.99 12594.72 18967.73 22072.49 24486.29 271
MVSTER82.47 11682.05 11283.74 16092.68 8469.01 6291.90 16493.21 9179.83 6172.14 19985.71 24174.72 1694.72 18975.72 14872.49 24487.50 247
OPM-MVS79.00 17578.09 17281.73 21383.52 28263.83 19291.64 17890.30 20976.36 12071.97 20189.93 18246.30 27795.17 17675.10 15377.70 20186.19 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Test_1112_low_res79.56 16678.60 16682.43 19188.24 19260.39 27492.09 15287.99 29772.10 19671.84 20287.42 21864.62 8293.04 24765.80 24277.30 20893.85 133
MDTV_nov1_ep1372.61 25489.06 16968.48 7380.33 33790.11 21771.84 20571.81 20375.92 34553.01 21793.92 23148.04 32773.38 235
tfpn200view978.79 18277.43 18382.88 18192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20388.83 228
thres40078.68 18477.43 18382.43 19192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20387.48 248
ACMMPcopyleft81.49 13180.67 13383.93 15791.71 11062.90 22492.13 14992.22 13071.79 20771.68 20693.49 11050.32 23896.96 10378.47 13384.22 14791.93 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20790.26 17543.22 29475.05 38174.26 16262.70 31487.25 257
CHOSEN 280x42077.35 20676.95 19478.55 28187.07 22162.68 22969.71 37282.95 34568.80 26171.48 20887.27 22266.03 6584.00 35976.47 14482.81 15588.95 227
IS-MVSNet80.14 15679.41 15582.33 19587.91 20060.08 27991.97 16188.27 29072.90 17571.44 20991.73 14961.44 12293.66 23862.47 26986.53 12893.24 147
GeoE78.90 17877.43 18383.29 17488.95 17262.02 24092.31 14286.23 31670.24 24371.34 21089.27 18854.43 20294.04 22463.31 26180.81 17793.81 134
PatchmatchNetpermissive77.46 20474.63 22285.96 8489.55 15570.35 3579.97 34489.55 23872.23 19170.94 21176.91 33757.03 16692.79 26154.27 30481.17 17294.74 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053081.15 13580.07 14184.39 14588.26 19065.63 14791.40 18494.62 4071.27 22570.93 21289.18 18972.47 2996.04 13965.62 24476.89 21391.49 190
SDMVSNet80.26 15378.88 16384.40 14489.25 16367.63 9885.35 29793.02 10076.77 11470.84 21387.12 22347.95 26396.09 13485.04 7974.55 22489.48 224
sd_testset77.08 21175.37 21482.20 20189.25 16362.11 23982.06 32289.09 25976.77 11470.84 21387.12 22341.43 30095.01 17967.23 22574.55 22489.48 224
AdaColmapbinary78.94 17777.00 19384.76 12896.34 1765.86 14292.66 13087.97 29962.18 31470.56 21592.37 13443.53 29297.35 7464.50 25382.86 15391.05 203
cascas78.18 19375.77 20985.41 10387.14 21969.11 5992.96 11791.15 17866.71 27870.47 21686.07 23637.49 32496.48 12470.15 19579.80 18390.65 206
thres600view778.00 19576.66 19782.03 21091.93 10363.69 20091.30 19496.33 172.43 18570.46 21787.89 21160.31 13294.92 18442.64 35376.64 21487.48 248
thres100view90078.37 19077.01 19282.46 19091.89 10663.21 21491.19 20196.33 172.28 19070.45 21887.89 21160.31 13295.32 17045.16 34177.58 20388.83 228
CVMVSNet74.04 25374.27 23073.33 32785.33 25143.94 37789.53 24888.39 28554.33 35570.37 21990.13 17949.17 25284.05 35761.83 27379.36 18791.99 185
GA-MVS78.33 19276.23 20284.65 13483.65 28066.30 13291.44 18090.14 21676.01 12270.32 22084.02 25742.50 29694.72 18970.98 18777.00 21292.94 158
mvs_anonymous81.36 13379.99 14485.46 10190.39 13868.40 7586.88 29190.61 19774.41 14070.31 22184.67 25063.79 9292.32 28173.13 16585.70 13395.67 48
IB-MVS77.80 482.18 12080.46 13987.35 4489.14 16870.28 3695.59 2795.17 2178.85 8270.19 22285.82 23970.66 3797.67 5172.19 17966.52 28494.09 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAPA-MVS70.22 1274.94 24573.53 24179.17 27490.40 13752.07 34289.19 25689.61 23762.69 31170.07 22392.67 12648.89 25694.32 20638.26 36779.97 18191.12 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA75.82 23372.76 25085.01 11786.63 22870.08 3781.06 33289.19 25271.60 21770.01 22477.09 33545.53 28290.25 31160.43 27973.27 23694.68 94
XXY-MVS77.94 19876.44 19982.43 19182.60 29164.44 17492.01 15791.83 14973.59 16170.00 22585.82 23954.43 20294.76 18669.63 19968.02 27488.10 243
CR-MVSNet73.79 25770.82 27282.70 18583.15 28567.96 8970.25 36984.00 33673.67 16069.97 22672.41 35557.82 15989.48 32252.99 31073.13 23790.64 207
RPMNet70.42 28465.68 30384.63 13683.15 28567.96 8970.25 36990.45 19946.83 37569.97 22665.10 37456.48 17995.30 17335.79 37273.13 23790.64 207
UniMVSNet (Re)77.58 20376.78 19579.98 25684.11 27460.80 26291.76 17293.17 9576.56 11869.93 22884.78 24963.32 10392.36 27964.89 25162.51 31786.78 263
PCF-MVS73.15 979.29 17077.63 18084.29 14986.06 23965.96 14087.03 28791.10 18069.86 24869.79 22990.64 16457.54 16296.59 11664.37 25482.29 15890.32 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48277.42 20575.65 21282.73 18480.38 31267.13 11191.85 16790.23 21375.09 13469.37 23083.39 26453.79 20994.44 20471.77 18165.00 29686.63 267
PatchT69.11 29565.37 30780.32 24382.07 29863.68 20167.96 37887.62 30150.86 36469.37 23065.18 37357.09 16588.53 32841.59 35666.60 28388.74 231
Vis-MVSNet (Re-imp)79.24 17179.57 15078.24 28688.46 18252.29 34190.41 22389.12 25774.24 14469.13 23291.91 14565.77 6890.09 31859.00 28888.09 10892.33 173
BH-w/o80.49 14979.30 15884.05 15590.83 13164.36 18193.60 9389.42 24374.35 14269.09 23390.15 17855.23 19195.61 15864.61 25286.43 13092.17 182
baseline283.68 9883.42 8984.48 14287.37 21466.00 13890.06 23495.93 879.71 6569.08 23490.39 17177.92 696.28 12878.91 12981.38 17191.16 201
v114476.73 21974.88 21982.27 19780.23 31666.60 12591.68 17690.21 21573.69 15869.06 23581.89 27952.73 22094.40 20569.21 20565.23 29385.80 286
dmvs_re76.93 21275.36 21581.61 21687.78 20660.71 26880.00 34387.99 29779.42 6969.02 23689.47 18646.77 26994.32 20663.38 26074.45 22789.81 217
Baseline_NR-MVSNet73.99 25472.83 24977.48 29380.78 30759.29 29191.79 16984.55 33168.85 26068.99 23780.70 30056.16 18092.04 28762.67 26760.98 33281.11 343
FIs79.47 16879.41 15579.67 26585.95 24159.40 28791.68 17693.94 6378.06 9268.96 23888.28 20066.61 6191.77 29266.20 23874.99 22387.82 244
UniMVSNet_NR-MVSNet78.15 19477.55 18179.98 25684.46 26860.26 27592.25 14493.20 9377.50 10468.88 23986.61 22866.10 6492.13 28466.38 23562.55 31587.54 246
DU-MVS76.86 21375.84 20879.91 25982.96 28860.26 27591.26 19591.54 16176.46 11968.88 23986.35 23156.16 18092.13 28466.38 23562.55 31587.35 253
miper_enhance_ethall78.86 17977.97 17581.54 21888.00 19965.17 15891.41 18289.15 25575.19 13368.79 24183.98 25867.17 5692.82 25872.73 17165.30 29086.62 268
XVG-OURS-SEG-HR74.70 24773.08 24579.57 26878.25 34257.33 31480.49 33587.32 30363.22 30468.76 24290.12 18144.89 28891.59 29670.55 19374.09 23189.79 218
XVG-OURS74.25 25172.46 25779.63 26678.45 34057.59 31080.33 33787.39 30263.86 29768.76 24289.62 18540.50 30391.72 29369.00 20874.25 22989.58 221
V4276.46 22174.55 22582.19 20279.14 33067.82 9290.26 22989.42 24373.75 15668.63 24481.89 27951.31 23294.09 21871.69 18364.84 29784.66 303
PS-MVSNAJss77.26 20776.31 20180.13 25180.64 31059.16 29290.63 22091.06 18572.80 17668.58 24584.57 25253.55 21193.96 22972.97 16671.96 24887.27 256
v119275.98 22973.92 23682.15 20379.73 32066.24 13491.22 19889.75 23072.67 17868.49 24681.42 28949.86 24494.27 21067.08 22765.02 29585.95 283
tpm cat175.30 24072.21 25984.58 13888.52 17967.77 9378.16 35388.02 29661.88 31968.45 24776.37 34160.65 12994.03 22653.77 30774.11 23091.93 186
v14419276.05 22774.03 23482.12 20579.50 32466.55 12791.39 18689.71 23672.30 18968.17 24881.33 29151.75 22794.03 22667.94 21764.19 30385.77 287
v192192075.63 23773.49 24282.06 20979.38 32566.35 13091.07 20589.48 23971.98 19767.99 24981.22 29449.16 25393.90 23266.56 23164.56 30285.92 285
Effi-MVS+-dtu76.14 22375.28 21778.72 28083.22 28455.17 32989.87 24087.78 30075.42 12967.98 25081.43 28845.08 28792.52 27375.08 15471.63 24988.48 236
mvsmamba76.85 21575.71 21180.25 24783.07 28759.16 29291.44 18080.64 35376.84 11167.95 25186.33 23346.17 27994.24 21376.06 14672.92 24087.36 252
114514_t79.17 17277.67 17883.68 16495.32 2965.53 15192.85 12091.60 16063.49 30067.92 25290.63 16646.65 27195.72 15467.01 22883.54 14889.79 218
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25384.54 25315.35 38581.22 37675.65 14966.16 28682.88 323
tttt051779.50 16778.53 16782.41 19487.22 21761.43 25389.75 24494.76 3269.29 25467.91 25388.06 20972.92 2595.63 15662.91 26573.90 23490.16 212
3Dnovator73.91 682.69 11580.82 12988.31 2589.57 15371.26 2292.60 13394.39 5178.84 8367.89 25592.48 13148.42 25798.52 2868.80 21194.40 3595.15 74
WR-MVS76.76 21875.74 21079.82 26284.60 26462.27 23792.60 13392.51 12176.06 12167.87 25685.34 24256.76 17290.24 31462.20 27063.69 31086.94 261
dp75.01 24472.09 26083.76 15989.28 16266.22 13579.96 34589.75 23071.16 22667.80 25777.19 33451.81 22692.54 27250.39 31571.44 25392.51 170
TranMVSNet+NR-MVSNet75.86 23274.52 22679.89 26082.44 29360.64 27191.37 18991.37 16876.63 11667.65 25886.21 23552.37 22391.55 29761.84 27260.81 33387.48 248
cl2277.94 19876.78 19581.42 22087.57 20864.93 16690.67 21688.86 27072.45 18467.63 25982.68 27164.07 8792.91 25671.79 18065.30 29086.44 269
131480.70 14578.95 16285.94 8587.77 20767.56 9987.91 27692.55 12072.17 19467.44 26093.09 11450.27 24097.04 9471.68 18487.64 11393.23 148
3Dnovator+73.60 782.10 12480.60 13686.60 6590.89 12966.80 12095.20 3593.44 8574.05 14767.42 26192.49 13049.46 24797.65 5570.80 18991.68 7395.33 62
v124075.21 24272.98 24781.88 21179.20 32766.00 13890.75 21489.11 25871.63 21667.41 26281.22 29447.36 26793.87 23365.46 24764.72 30085.77 287
QAPM79.95 16177.39 18787.64 3389.63 15271.41 2093.30 10593.70 7365.34 28967.39 26391.75 14847.83 26498.96 1657.71 29289.81 9492.54 168
miper_ehance_all_eth77.60 20276.44 19981.09 23285.70 24864.41 17790.65 21788.64 28072.31 18867.37 26482.52 27264.77 8192.64 27070.67 19165.30 29086.24 273
v14876.19 22274.47 22781.36 22180.05 31864.44 17491.75 17490.23 21373.68 15967.13 26580.84 29955.92 18593.86 23568.95 20961.73 32685.76 289
tt080573.07 26170.73 27380.07 25278.37 34157.05 31687.78 27892.18 13361.23 32367.04 26686.49 23031.35 35494.58 19565.06 25067.12 27988.57 234
GBi-Net75.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
test175.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
FMVSNet377.73 20176.04 20582.80 18291.20 12468.99 6391.87 16591.99 13873.35 16467.04 26683.19 26656.62 17692.14 28359.80 28469.34 26187.28 255
BH-untuned78.68 18477.08 19083.48 17189.84 14763.74 19592.70 12688.59 28171.57 21866.83 27088.65 19451.75 22795.39 16859.03 28784.77 13991.32 197
FC-MVSNet-test77.99 19678.08 17377.70 28984.89 26155.51 32790.27 22893.75 7276.87 10966.80 27187.59 21565.71 6990.23 31562.89 26673.94 23287.37 251
c3_l76.83 21775.47 21380.93 23685.02 25964.18 18790.39 22488.11 29471.66 21166.65 27281.64 28463.58 9992.56 27169.31 20462.86 31286.04 280
FMVSNet276.07 22474.01 23582.26 19988.85 17367.66 9691.33 19291.61 15970.84 23365.98 27382.25 27548.03 25992.00 28858.46 28968.73 26987.10 258
eth_miper_zixun_eth75.96 23174.40 22880.66 23884.66 26363.02 21889.28 25388.27 29071.88 20265.73 27481.65 28359.45 14392.81 25968.13 21460.53 33586.14 276
ACMM69.62 1374.34 24972.73 25279.17 27484.25 27357.87 30490.36 22589.93 22463.17 30665.64 27586.04 23837.79 32294.10 21765.89 24071.52 25185.55 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22474.67 22080.28 24585.15 25561.76 24690.12 23288.73 27571.16 22665.43 27681.57 28661.15 12392.95 25166.54 23262.17 31986.13 278
DIV-MVS_self_test76.07 22474.67 22080.28 24585.14 25661.75 24790.12 23288.73 27571.16 22665.42 27781.60 28561.15 12392.94 25566.54 23262.16 32186.14 276
Fast-Effi-MVS+-dtu75.04 24373.37 24380.07 25280.86 30559.52 28691.20 20085.38 32371.90 20065.20 27884.84 24841.46 29992.97 25066.50 23472.96 23987.73 245
IterMVS-LS76.49 22075.18 21880.43 24284.49 26762.74 22790.64 21888.80 27272.40 18665.16 27981.72 28260.98 12692.27 28267.74 21964.65 30186.29 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test75.82 23374.58 22479.56 26984.31 27159.37 28890.44 22189.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
LGP-MVS_train79.56 26984.31 27159.37 28889.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
UniMVSNet_ETH3D72.74 26870.53 27579.36 27178.62 33956.64 32085.01 29989.20 25163.77 29864.84 28284.44 25434.05 34191.86 29063.94 25670.89 25689.57 222
MIMVSNet71.64 27668.44 28981.23 22481.97 29964.44 17473.05 36588.80 27269.67 25064.59 28374.79 34932.79 34487.82 33453.99 30576.35 21691.42 192
RRT_MVS74.44 24872.97 24878.84 27982.36 29457.66 30889.83 24288.79 27470.61 23964.58 28484.89 24739.24 30692.65 26970.11 19666.34 28586.21 274
OpenMVScopyleft70.45 1178.54 18875.92 20786.41 7485.93 24471.68 1892.74 12392.51 12166.49 28064.56 28591.96 14243.88 29198.10 3754.61 30290.65 8889.44 226
ADS-MVSNet266.90 31363.44 32077.26 29888.06 19660.70 26968.01 37675.56 36557.57 34064.48 28669.87 36538.68 30884.10 35640.87 35867.89 27586.97 259
ADS-MVSNet68.54 30164.38 31681.03 23388.06 19666.90 11768.01 37684.02 33557.57 34064.48 28669.87 36538.68 30889.21 32440.87 35867.89 27586.97 259
Anonymous2023121173.08 26070.39 27681.13 22790.62 13363.33 21191.40 18490.06 22051.84 36164.46 28880.67 30236.49 33294.07 22063.83 25764.17 30485.98 282
PLCcopyleft68.80 1475.23 24173.68 24079.86 26192.93 7558.68 29890.64 21888.30 28860.90 32464.43 28990.53 16742.38 29794.57 19756.52 29576.54 21586.33 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpmvs72.88 26669.76 28282.22 20090.98 12667.05 11378.22 35288.30 28863.10 30764.35 29074.98 34855.09 19494.27 21043.25 34769.57 26085.34 297
test_djsdf73.76 25872.56 25577.39 29577.00 35153.93 33589.07 25890.69 19265.80 28463.92 29182.03 27843.14 29592.67 26672.83 16868.53 27085.57 291
JIA-IIPM66.06 31762.45 32676.88 30381.42 30354.45 33457.49 39188.67 27849.36 36863.86 29246.86 38956.06 18390.25 31149.53 32068.83 26785.95 283
CNLPA74.31 25072.30 25880.32 24391.49 11761.66 24990.85 21080.72 35256.67 34863.85 29390.64 16446.75 27090.84 30653.79 30675.99 21988.47 238
PatchMatch-RL72.06 27469.98 27778.28 28489.51 15655.70 32683.49 30883.39 34361.24 32263.72 29482.76 26934.77 33893.03 24853.37 30977.59 20286.12 279
FMVSNet172.71 26969.91 28081.10 22983.60 28165.11 16090.01 23690.32 20563.92 29663.56 29580.25 30936.35 33391.54 29854.46 30366.75 28286.64 264
pmmvs473.92 25571.81 26480.25 24779.17 32865.24 15687.43 28387.26 30567.64 27263.46 29683.91 25948.96 25591.53 30162.94 26465.49 28983.96 307
pmmvs573.35 25971.52 26678.86 27878.64 33860.61 27291.08 20386.90 30867.69 26963.32 29783.64 26044.33 29090.53 30862.04 27166.02 28785.46 294
v875.35 23973.26 24481.61 21680.67 30966.82 11889.54 24789.27 24871.65 21263.30 29880.30 30854.99 19594.06 22167.33 22462.33 31883.94 308
Syy-MVS69.65 29169.52 28370.03 34687.87 20243.21 37988.07 27289.01 26372.91 17363.11 29988.10 20645.28 28585.54 34922.07 39269.23 26481.32 341
myMVS_eth3d72.58 27372.74 25172.10 33987.87 20249.45 35688.07 27289.01 26372.91 17363.11 29988.10 20663.63 9585.54 34932.73 38169.23 26481.32 341
v1074.77 24672.54 25681.46 21980.33 31466.71 12289.15 25789.08 26070.94 23163.08 30179.86 31352.52 22194.04 22465.70 24362.17 31983.64 311
ACMP71.68 1075.58 23874.23 23179.62 26784.97 26059.64 28390.80 21289.07 26170.39 24162.95 30287.30 22038.28 31493.87 23372.89 16771.45 25285.36 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs172.89 26571.09 26978.26 28579.10 33157.62 30990.80 21289.30 24767.66 27062.91 30381.78 28149.11 25492.95 25160.29 28158.89 34384.22 306
jajsoiax73.05 26271.51 26777.67 29077.46 34854.83 33188.81 26290.04 22169.13 25862.85 30483.51 26231.16 35592.75 26270.83 18869.80 25785.43 295
mvs_tets72.71 26971.11 26877.52 29177.41 34954.52 33388.45 26889.76 22968.76 26362.70 30583.26 26529.49 35992.71 26370.51 19469.62 25985.34 297
MS-PatchMatch77.90 20076.50 19882.12 20585.99 24069.95 4191.75 17492.70 11173.97 15062.58 30684.44 25441.11 30195.78 14663.76 25892.17 6580.62 349
test0.0.03 172.76 26772.71 25372.88 33180.25 31547.99 36291.22 19889.45 24171.51 22162.51 30787.66 21453.83 20785.06 35350.16 31767.84 27785.58 290
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30879.77 31538.14 31791.44 30368.90 21067.45 27883.21 320
MVP-Stereo77.12 21076.23 20279.79 26381.72 30066.34 13189.29 25290.88 18970.56 24062.01 30982.88 26849.34 24894.13 21665.55 24693.80 4278.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23589.90 22569.96 24661.96 31076.54 33851.05 23487.64 33749.51 32150.59 36582.70 329
miper_lstm_enhance73.05 26271.73 26577.03 29983.80 27758.32 30181.76 32388.88 26869.80 24961.01 31178.23 32557.19 16487.51 34065.34 24859.53 34085.27 299
NR-MVSNet76.05 22774.59 22380.44 24182.96 28862.18 23890.83 21191.73 15277.12 10860.96 31286.35 23159.28 14791.80 29160.74 27761.34 33087.35 253
tfpnnormal70.10 28667.36 29478.32 28383.45 28360.97 26088.85 26192.77 10964.85 29160.83 31378.53 32243.52 29393.48 24131.73 38461.70 32780.52 350
IterMVS72.65 27270.83 27078.09 28782.17 29662.96 22087.64 28186.28 31471.56 21960.44 31478.85 32145.42 28486.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing370.38 28570.83 27069.03 35085.82 24543.93 37890.72 21590.56 19868.06 26760.24 31586.82 22764.83 7984.12 35526.33 38864.10 30579.04 362
WR-MVS_H70.59 28269.94 27972.53 33381.03 30451.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18683.45 36346.33 33758.58 34582.72 327
TransMVSNet (Re)70.07 28767.66 29377.31 29780.62 31159.13 29491.78 17184.94 32865.97 28360.08 31780.44 30550.78 23591.87 28948.84 32345.46 37380.94 345
CP-MVSNet70.50 28369.91 28072.26 33680.71 30851.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24182.30 37151.28 31259.28 34183.46 316
IterMVS-SCA-FT71.55 27869.97 27876.32 30681.48 30160.67 27087.64 28185.99 31966.17 28259.50 31978.88 32045.53 28283.65 36162.58 26861.93 32284.63 305
Patchmtry67.53 31063.93 31778.34 28282.12 29764.38 17868.72 37384.00 33648.23 37259.24 32072.41 35557.82 15989.27 32346.10 33856.68 35081.36 340
D2MVS73.80 25672.02 26179.15 27679.15 32962.97 21988.58 26690.07 21872.94 17159.22 32178.30 32342.31 29892.70 26565.59 24572.00 24781.79 338
PS-CasMVS69.86 29069.13 28572.07 34080.35 31350.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27282.24 37250.69 31459.02 34283.39 318
PEN-MVS69.46 29368.56 28772.17 33879.27 32649.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26883.54 36248.42 32557.12 34683.25 319
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36246.94 37458.96 32484.59 25131.40 35382.00 37347.76 33160.33 33986.04 280
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 32062.03 31658.91 32581.21 29620.38 37991.15 30560.69 27868.18 27283.16 321
v7n71.31 27968.65 28679.28 27276.40 35360.77 26486.71 29289.45 24164.17 29558.77 32678.24 32444.59 28993.54 23957.76 29161.75 32583.52 314
ET-MVSNet_ETH3D84.01 8883.15 9686.58 6790.78 13270.89 2994.74 4894.62 4081.44 4058.19 32793.64 10673.64 2392.35 28082.66 9778.66 19596.50 26
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34649.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27383.87 36044.97 34455.17 35382.73 326
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 27087.32 30361.75 32158.07 32977.29 33237.79 32287.29 34242.91 34963.71 30983.48 315
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
PVSNet_068.08 1571.81 27568.32 29182.27 19784.68 26262.31 23688.68 26490.31 20875.84 12357.93 33280.65 30337.85 32194.19 21469.94 19729.05 39590.31 211
DP-MVS69.90 28966.48 29680.14 25095.36 2862.93 22189.56 24576.11 36150.27 36657.69 33385.23 24339.68 30595.73 15033.35 37771.05 25581.78 339
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26386.78 31253.19 35757.58 33478.03 32735.33 33792.41 27655.56 29954.88 35582.21 335
F-COLMAP70.66 28168.44 28977.32 29686.37 23455.91 32488.00 27486.32 31356.94 34657.28 33588.07 20833.58 34292.49 27451.02 31368.37 27183.55 312
Patchmatch-RL test68.17 30464.49 31479.19 27371.22 36953.93 33570.07 37171.54 37769.22 25556.79 33662.89 37756.58 17788.61 32569.53 20152.61 36095.03 80
LS3D69.17 29466.40 29877.50 29291.92 10456.12 32385.12 29880.37 35446.96 37356.50 33787.51 21737.25 32593.71 23632.52 38379.40 18682.68 330
dmvs_testset65.55 32166.45 29762.86 36279.87 31922.35 40576.55 35771.74 37577.42 10755.85 33887.77 21351.39 23180.69 37731.51 38765.92 28885.55 292
ppachtmachnet_test67.72 30763.70 31879.77 26478.92 33266.04 13788.68 26482.90 34660.11 33155.45 33975.96 34439.19 30790.55 30739.53 36252.55 36182.71 328
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27651.55 34467.08 37983.53 34058.78 33754.94 34180.31 30734.54 33993.23 24540.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MSDG69.54 29265.73 30280.96 23485.11 25863.71 19884.19 30383.28 34456.95 34554.50 34284.03 25631.50 35296.03 14042.87 35169.13 26683.14 322
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31745.11 37854.27 34381.15 29736.91 33180.01 37948.79 32457.02 34782.19 336
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35960.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25483.41 34255.48 35253.86 34677.84 32826.28 36893.95 23034.90 37468.76 26878.68 365
FMVSNet568.04 30565.66 30475.18 31484.43 26957.89 30383.54 30786.26 31561.83 32053.64 34773.30 35237.15 32885.08 35248.99 32261.77 32482.56 332
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26557.10 31588.08 27180.79 35158.59 33953.00 34881.09 29826.63 36792.95 25146.51 33561.69 32880.82 346
our_test_368.29 30364.69 31179.11 27778.92 33264.85 16788.40 26985.06 32660.32 32952.68 34976.12 34340.81 30289.80 32144.25 34655.65 35182.67 331
test_040264.54 32561.09 33174.92 31684.10 27560.75 26687.95 27579.71 35652.03 35952.41 35077.20 33332.21 35091.64 29423.14 39061.03 33172.36 379
LCM-MVSNet-Re72.93 26471.84 26376.18 30888.49 18048.02 36180.07 34270.17 37873.96 15152.25 35180.09 31249.98 24288.24 33067.35 22284.23 14692.28 176
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33363.29 30351.86 35277.30 33137.09 32982.47 36938.87 36654.13 35779.73 356
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32753.60 30853.63 35880.71 348
ACMH63.93 1768.62 29964.81 30980.03 25485.22 25463.25 21287.72 27984.66 33060.83 32551.57 35479.43 31927.29 36594.96 18141.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 262
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28482.80 31983.43 34162.52 31251.30 35672.49 35332.86 34387.16 34355.32 30050.73 36478.83 364
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
Patchmatch-test65.86 31860.94 33280.62 24083.75 27858.83 29658.91 39075.26 36744.50 38050.95 35877.09 33558.81 15187.90 33235.13 37364.03 30695.12 76
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33649.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30945.89 33947.06 37082.78 324
EG-PatchMatch MVS68.55 30065.41 30677.96 28878.69 33762.93 22189.86 24189.17 25360.55 32650.27 35977.73 32922.60 37494.06 22147.18 33372.65 24376.88 371
ambc69.61 34761.38 38941.35 38249.07 39685.86 32150.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18662.79 31367.07 385
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32957.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 18049.25 36474.77 35032.57 34787.43 34155.96 29841.04 38083.90 309
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30253.00 33983.75 30675.53 36648.34 37148.81 36581.40 29024.14 37090.30 31032.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC67.43 31264.51 31376.19 30777.94 34655.29 32878.38 35085.00 32773.17 16648.36 36680.37 30621.23 37692.48 27552.15 31164.02 30780.81 347
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32550.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 36064.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32650.08 31838.90 38479.63 357
AllTest61.66 33558.06 33972.46 33479.57 32151.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32151.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31947.75 33231.37 39283.53 313
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
MVS-HIRNet60.25 34055.55 34774.35 32084.37 27056.57 32171.64 36774.11 36934.44 38845.54 37442.24 39531.11 35689.81 31940.36 36176.10 21876.67 372
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32245.54 37744.76 37682.14 27735.40 33690.14 31763.18 26374.54 22681.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33255.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 37040.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
TinyColmap60.32 33956.42 34672.00 34178.78 33553.18 33878.36 35175.64 36452.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
YYNet163.76 33160.14 33474.62 31878.06 34560.19 27883.46 31083.99 33856.18 35039.25 38471.56 36237.18 32783.34 36442.90 35048.70 36880.32 352
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34460.41 27383.49 30884.03 33456.17 35139.17 38571.59 36137.22 32683.24 36642.87 35148.73 36780.26 353
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33572.83 3859.96 40121.75 39656.27 389
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32357.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34486.26 34735.81 37141.95 37875.89 373
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34070.39 3889.14 40319.57 39754.68 390
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5849.56 2460.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2110.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 660.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
eth-test20.00 414
eth-test0.00 414
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
save fliter93.84 4867.89 9195.05 4092.66 11478.19 90
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2994.90 2296.51 23
GSMVS94.68 94
sam_mvs157.85 15894.68 94
sam_mvs54.91 196
MTGPAbinary92.23 127
test_post178.95 34620.70 40353.05 21691.50 30260.43 279
test_post23.01 40056.49 17892.67 266
patchmatchnet-post67.62 37057.62 16190.25 311
MTMP93.77 8532.52 409
gm-plane-assit88.42 18467.04 11478.62 8791.83 14697.37 7276.57 143
test9_res89.41 4194.96 1995.29 66
agg_prior286.41 6894.75 3095.33 62
test_prior467.18 11093.92 74
test_prior86.42 7394.71 3567.35 10593.10 9996.84 11095.05 78
新几何291.41 182
旧先验191.94 10260.74 26791.50 16494.36 8465.23 7391.84 7094.55 101
无先验92.71 12592.61 11862.03 31697.01 9566.63 23093.97 126
原ACMM292.01 157
testdata296.09 13461.26 275
segment_acmp65.94 66
testdata189.21 25577.55 103
plane_prior786.94 22461.51 251
plane_prior687.23 21662.32 23550.66 236
plane_prior591.31 17095.55 16376.74 14178.53 19688.39 239
plane_prior489.14 191
plane_prior293.13 11078.81 84
plane_prior187.15 218
plane_prior62.42 23193.85 7879.38 7078.80 193
n20.00 415
nn0.00 415
door-mid66.01 385
test1193.01 101
door66.57 384
HQP5-MVS63.66 202
BP-MVS77.63 138
HQP3-MVS91.70 15678.90 191
HQP2-MVS51.63 229
NP-MVS87.41 21263.04 21790.30 173
ACMMP++_ref71.63 249
ACMMP++69.72 258
Test By Simon54.21 205