This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11398.16 298.94 299.33 297.84 499.08 9390.73 13999.73 1399.59 13
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7394.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 16996.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet-Re94.20 12694.58 11693.04 17795.91 23183.13 21893.79 14899.19 392.00 9798.84 598.04 4793.64 7899.02 10381.28 29898.54 16996.96 236
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8397.88 8588.72 18098.81 698.86 1090.77 15199.60 995.43 2699.53 3999.57 14
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10887.57 20698.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16497.11 1998.24 3597.58 898.72 898.97 793.15 9499.15 8493.18 7999.74 1299.50 17
ACMH88.36 1296.59 2797.43 594.07 14098.56 4285.33 18796.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 22894.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12286.96 21598.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18090.67 32991.65 11998.68 1197.64 7096.06 1577.53 40359.84 39799.41 5670.73 401
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19396.51 3597.94 8498.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20496.61 3297.97 7897.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19496.54 3498.05 6598.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
SixPastTwentyTwo94.91 9695.21 9093.98 14298.52 4983.19 21695.93 6794.84 25594.86 4198.49 1598.74 1681.45 26799.60 994.69 3299.39 5899.15 39
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5897.42 998.48 1697.86 6191.76 12899.63 694.23 4199.84 399.66 6
v7n96.82 997.31 1095.33 8698.54 4786.81 14896.83 2398.07 6196.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 10887.68 20498.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 8091.98 12299.63 693.08 8499.81 899.70 3
test_fmvsmvis_n_192095.08 9195.40 8194.13 13896.66 16887.75 13093.44 16098.49 1685.57 23998.27 2097.11 11694.11 7497.75 25696.26 1198.72 14896.89 239
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12488.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16890.30 15399.60 2798.72 96
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8696.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
ANet_high94.83 10096.28 3790.47 27296.65 16973.16 35094.33 12798.74 1296.39 2498.09 2598.93 893.37 8698.70 15890.38 14899.68 1899.53 15
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26593.12 7397.94 2798.54 2581.19 27399.63 695.48 2399.69 1499.60 12
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16893.73 6097.87 2898.49 2990.73 15599.05 9886.43 24199.60 2799.10 47
dcpmvs_293.96 13495.01 9990.82 26397.60 11974.04 34593.68 15398.85 889.80 15897.82 2997.01 12591.14 14599.21 7890.56 14398.59 16499.19 36
test_vis3_rt90.40 22490.03 23591.52 23592.58 32488.95 10390.38 26497.72 10173.30 35797.79 3097.51 8377.05 30587.10 39589.03 19194.89 31998.50 121
TransMVSNet (Re)95.27 8796.04 5292.97 18098.37 6481.92 23295.07 10096.76 17793.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 15898.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040295.73 6196.22 4094.26 13498.19 7585.77 17893.24 16597.24 14096.88 1697.69 3397.77 6494.12 7399.13 8891.54 12499.29 7497.88 175
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 9997.37 12493.92 5897.65 3495.90 19290.10 16899.33 6890.11 16299.66 2199.26 30
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14495.21 9398.10 5591.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
test_241102_ONE98.51 5086.97 14498.10 5591.85 10497.63 3597.03 12296.48 1098.95 114
test072698.51 5086.69 15295.34 8898.18 4291.85 10497.63 3597.37 9095.58 24
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17395.19 9796.77 17696.64 1997.61 3898.05 4593.23 9198.79 13988.60 20199.04 11198.78 87
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13098.76 1186.25 22297.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 137
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15498.45 498.22 3793.26 7197.54 4097.36 9393.12 9599.38 5593.88 4798.68 15598.04 154
test_241102_TWO98.10 5591.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5781.77 23395.90 6998.32 2593.93 5697.53 4297.56 7588.48 18199.40 4692.91 8999.83 599.68 4
K. test v393.37 14993.27 15993.66 15798.05 8482.62 22494.35 12586.62 35696.05 2997.51 4398.85 1276.59 31399.65 393.21 7898.20 20498.73 95
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12191.25 12897.49 4498.14 3983.49 24299.45 2795.52 2199.66 2199.36 24
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20483.23 21492.66 18498.19 4093.06 7597.49 4497.15 11294.78 5798.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 14997.86 8695.96 3297.48 4697.14 11395.33 3499.44 2990.79 13799.76 1099.38 22
v894.65 10795.29 8792.74 19096.65 16979.77 26794.59 11597.17 14491.86 10397.47 4797.93 5488.16 18699.08 9394.32 3899.47 4399.38 22
v1094.68 10695.27 8992.90 18596.57 17580.15 25294.65 11497.57 11190.68 14197.43 4898.00 5088.18 18599.15 8494.84 3199.55 3899.41 20
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15698.60 1485.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 142
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 9897.79 9686.48 21897.42 5097.51 8394.47 6999.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15295.20 9597.00 15691.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7197.40 5297.35 9694.69 5999.34 6393.88 4799.42 5298.89 75
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
pm-mvs195.43 7395.94 5593.93 14798.38 6285.08 19095.46 8697.12 14991.84 10797.28 5698.46 3095.30 3697.71 26090.17 16099.42 5298.99 56
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6298.84 12894.64 3399.53 3998.99 56
SD-MVS95.19 8895.73 6793.55 16196.62 17388.88 10794.67 11298.05 6591.26 12697.25 5896.40 16295.42 2894.36 36192.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11098.03 7090.82 13797.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v093.87 15098.05 8483.77 20880.32 39497.13 6097.91 5877.49 29899.11 9292.62 9698.08 21398.74 94
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16798.07 6185.63 23797.08 6197.35 9690.86 14897.66 26395.70 1698.48 17697.74 192
FIs94.90 9795.35 8393.55 16198.28 6881.76 23495.33 8998.14 5093.05 7697.07 6297.18 11087.65 19599.29 7091.72 11799.69 1499.61 11
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 8998.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10583.15 21794.58 11797.58 11093.39 6897.05 6598.04 4793.25 9098.51 18289.75 17299.59 2999.08 48
bld_raw_dy_0_6490.86 21090.99 21290.47 27293.95 29977.88 30193.99 14298.93 777.75 32897.03 6690.61 34281.82 26698.58 17585.18 25399.61 2694.95 315
FMVSNet194.84 9995.13 9493.97 14397.60 11984.29 19795.99 6396.56 18992.38 8597.03 6698.53 2690.12 16698.98 10688.78 19799.16 9798.65 106
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12294.85 5699.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
test_one_060198.26 7087.14 14098.18 4294.25 4896.99 7097.36 9395.13 43
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
EG-PatchMatch MVS94.54 11194.67 11494.14 13797.87 10086.50 15692.00 21596.74 17888.16 19396.93 7297.61 7293.04 9997.90 23591.60 12198.12 20998.03 157
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16698.36 2285.61 23896.92 7398.02 4995.23 3998.38 19496.69 698.95 12398.09 150
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11779.49 27394.86 10797.12 14989.59 16296.87 7497.65 6990.40 16298.34 19989.08 19099.35 6198.75 91
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16498.32 2587.89 19796.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16299.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6195.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20797.84 8994.91 4096.80 7895.78 20190.42 16099.41 3991.60 12199.58 3499.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18797.81 9293.99 5396.80 7895.90 19290.10 16899.41 3991.60 12199.58 3499.26 30
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18597.33 13290.05 15396.77 8096.85 13495.04 4898.56 17792.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_part298.21 7489.41 9396.72 81
SSC-MVS90.16 23492.96 16281.78 37597.88 9848.48 40790.75 25087.69 34896.02 3196.70 8297.63 7185.60 22997.80 24885.73 24998.60 16399.06 50
v124093.29 15193.71 14292.06 21796.01 22577.89 30091.81 22897.37 12485.12 24896.69 8396.40 16286.67 21599.07 9794.51 3498.76 14599.22 33
tfpnnormal94.27 12194.87 10392.48 20397.71 11180.88 24794.55 12195.41 24093.70 6196.67 8497.72 6591.40 13498.18 21387.45 22199.18 9498.36 130
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7393.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
WR-MVS93.49 14693.72 14192.80 18997.57 12280.03 25890.14 27295.68 22593.70 6196.62 8695.39 22187.21 20399.04 10187.50 22099.64 2499.33 26
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13098.08 5889.46 16396.61 8796.47 15795.85 1899.12 9090.45 14599.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12297.64 10496.94 1596.58 8897.32 10093.07 9898.72 15190.45 14598.84 13297.57 202
IterMVS-LS93.78 14094.28 12592.27 20796.27 20179.21 28091.87 22496.78 17491.77 11396.57 8997.07 11987.15 20498.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4693.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
mvsany_test389.11 25888.21 27491.83 22191.30 35890.25 7988.09 32178.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23694.20 33794.80 323
ambc92.98 17996.88 15583.01 22095.92 6896.38 19996.41 9297.48 8588.26 18497.80 24889.96 16798.93 12498.12 149
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11898.03 7090.42 14896.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8298.56 1591.84 10796.36 9496.68 14894.37 7099.32 6992.41 10099.05 10698.64 111
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4292.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VDDNet94.03 13194.27 12793.31 17298.87 2182.36 22895.51 8591.78 31897.19 1296.32 9698.60 2284.24 23898.75 14687.09 22898.83 13798.81 84
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17598.07 6193.46 6796.31 9795.97 19190.14 16599.34 6392.11 10399.64 2499.16 38
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12298.05 6590.45 14796.31 9796.76 14092.91 10298.72 15191.19 12899.42 5298.32 132
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10694.46 4796.29 9996.94 12893.56 7999.37 5794.29 4099.42 5298.99 56
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5680.82 24892.08 21196.68 18193.82 5996.29 9998.56 2490.10 16897.75 25690.10 16499.66 2199.24 32
IS-MVSNet94.49 11294.35 12394.92 10298.25 7286.46 15997.13 1894.31 26896.24 2596.28 10196.36 16982.88 25099.35 6088.19 20599.52 4198.96 64
test_fmvs392.42 18192.40 18092.46 20593.80 30587.28 13693.86 14697.05 15376.86 33596.25 10298.66 1882.87 25191.26 38095.44 2596.83 27298.82 82
VDD-MVS94.37 11694.37 12194.40 13197.49 12686.07 17193.97 14393.28 28894.49 4596.24 10397.78 6287.99 19198.79 13988.92 19399.14 9998.34 131
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22792.96 4389.48 29297.46 11985.14 24796.23 10495.42 21793.19 9298.08 22090.37 14998.76 14597.38 219
PM-MVS93.33 15092.67 17395.33 8696.58 17494.06 2192.26 20792.18 30985.92 23096.22 10596.61 15285.64 22895.99 33290.35 15098.23 19995.93 280
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14698.02 7287.35 20896.22 10597.99 5294.48 6899.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
V4293.43 14893.58 14992.97 18095.34 26081.22 24292.67 18396.49 19487.25 21096.20 10796.37 16887.32 20198.85 12792.39 10198.21 20298.85 81
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10397.57 11192.68 7996.20 10793.44 28791.92 12398.78 14289.11 18999.24 8596.92 237
v192192093.26 15393.61 14892.19 21096.04 22478.31 29391.88 22397.24 14085.17 24696.19 10996.19 18086.76 21399.05 9894.18 4298.84 13299.22 33
EI-MVSNet-UG-set94.35 11894.27 12794.59 12192.46 32985.87 17592.42 19794.69 26193.67 6496.13 11095.84 19691.20 14198.86 12593.78 5198.23 19999.03 52
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11792.55 32685.98 17292.44 19594.69 26193.70 6196.12 11195.81 19791.24 13898.86 12593.76 5498.22 20198.98 60
v119293.49 14693.78 13992.62 19796.16 21079.62 26991.83 22797.22 14286.07 22796.10 11296.38 16787.22 20299.02 10394.14 4398.88 12799.22 33
WB-MVS89.44 25292.15 18481.32 37697.73 10948.22 40889.73 28587.98 34695.24 3696.05 11396.99 12685.18 23196.95 29982.45 28697.97 22398.78 87
FMVSNet292.78 17092.73 17192.95 18295.40 25681.98 23194.18 13395.53 23588.63 18296.05 11397.37 9081.31 26998.81 13587.38 22498.67 15798.06 151
v14419293.20 15893.54 15292.16 21496.05 22078.26 29491.95 21697.14 14684.98 25295.96 11596.11 18487.08 20699.04 10193.79 5098.84 13299.17 37
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test111190.39 22690.61 22289.74 29298.04 8771.50 36195.59 8079.72 39689.41 16495.94 11798.14 3970.79 33598.81 13588.52 20299.32 6898.90 74
v14892.87 16793.29 15691.62 23196.25 20477.72 30491.28 23995.05 24889.69 15995.93 11896.04 18787.34 20098.38 19490.05 16597.99 22198.78 87
v114493.50 14593.81 13692.57 20096.28 20079.61 27091.86 22696.96 15986.95 21695.91 11996.32 17187.65 19598.96 11193.51 6098.88 12799.13 41
Anonymous2024052192.86 16893.57 15090.74 26596.57 17575.50 33394.15 13495.60 22789.38 16595.90 12097.90 6080.39 27797.96 23292.60 9799.68 1898.75 91
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10493.38 6995.89 12197.23 10593.35 8797.66 26388.20 20498.66 15997.79 186
PC_three_145275.31 34695.87 12295.75 20392.93 10196.34 32587.18 22698.68 15598.04 154
IU-MVS98.51 5086.66 15496.83 17172.74 36295.83 12393.00 8699.29 7498.64 111
Patchmatch-RL test88.81 27088.52 25989.69 29495.33 26179.94 26186.22 35792.71 30078.46 32495.80 12494.18 26366.25 35595.33 34789.22 18698.53 17093.78 347
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15596.16 21086.26 16692.46 19396.72 17981.69 29395.77 12597.11 11690.83 15097.82 24695.58 1997.99 22197.11 228
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14084.37 19593.73 15095.26 24484.45 25995.76 12698.00 5091.85 12497.21 28595.62 1797.82 23198.98 60
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 8998.30 2891.40 12495.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
casdiffmvspermissive94.32 12094.80 10592.85 18796.05 22081.44 23992.35 20098.05 6591.53 12295.75 12896.80 13793.35 8798.49 18391.01 13398.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7392.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
VPNet93.08 15993.76 14091.03 25398.60 3975.83 33191.51 23395.62 22691.84 10795.74 12997.10 11889.31 17698.32 20085.07 26299.06 10398.93 68
test_f86.65 31187.13 29485.19 35690.28 37186.11 17086.52 35391.66 31969.76 37995.73 13197.21 10969.51 33981.28 40289.15 18894.40 33088.17 388
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10690.00 33257.17 40095.71 13297.37 9064.77 36397.68 26292.67 9594.37 33294.52 331
v2v48293.29 15193.63 14692.29 20696.35 19378.82 28791.77 23096.28 20188.45 18695.70 13396.26 17786.02 22398.90 11893.02 8598.81 14099.14 40
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16896.10 21685.66 18292.32 20296.57 18881.32 29695.63 13497.14 11390.19 16497.73 25995.37 2898.03 21797.07 229
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7692.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
Anonymous20240521192.58 17692.50 17792.83 18896.55 17783.22 21592.43 19691.64 32094.10 5295.59 13696.64 15081.88 26597.50 27085.12 25998.52 17197.77 188
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7992.35 8895.57 13796.61 15294.93 5499.41 3993.78 5199.15 9899.00 54
XXY-MVS92.58 17693.16 16190.84 26297.75 10679.84 26391.87 22496.22 20785.94 22995.53 13897.68 6692.69 10894.48 35783.21 27797.51 24498.21 140
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14697.36 13385.72 18094.15 13495.44 23783.25 27195.51 13998.05 4592.54 11197.19 28895.55 2097.46 24898.94 66
SDMVSNet94.43 11495.02 9892.69 19297.93 9582.88 22291.92 22095.99 21793.65 6595.51 13998.63 2094.60 6396.48 31687.57 21999.35 6198.70 100
sd_testset93.94 13594.39 11992.61 19897.93 9583.24 21393.17 16895.04 24993.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 100
new-patchmatchnet88.97 26490.79 21883.50 37094.28 29055.83 40585.34 36793.56 28386.18 22595.47 14295.73 20483.10 24796.51 31585.40 25298.06 21498.16 145
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9992.59 8295.47 14296.68 14894.50 6699.42 3393.10 8299.26 8298.99 56
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4096.95 1495.46 14499.23 493.45 8299.57 1495.34 2999.89 299.63 9
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11597.81 9289.22 17095.46 14496.17 18393.42 8599.34 6389.30 18098.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17096.69 16684.37 19593.38 16295.13 24784.50 25895.40 14697.55 7991.77 12697.20 28695.59 1897.79 23298.69 103
tt080595.42 7695.93 5793.86 15198.75 3288.47 11797.68 994.29 26996.48 2195.38 14793.63 28194.89 5597.94 23495.38 2796.92 26995.17 305
9.1494.81 10497.49 12694.11 13798.37 2187.56 20795.38 14796.03 18894.66 6099.08 9390.70 14098.97 119
IterMVS-SCA-FT91.65 19791.55 19791.94 21993.89 30179.22 27987.56 32793.51 28491.53 12295.37 14996.62 15178.65 28898.90 11891.89 11294.95 31897.70 194
ECVR-MVScopyleft90.12 23690.16 23190.00 28897.81 10272.68 35595.76 7478.54 39989.04 17295.36 15098.10 4270.51 33698.64 16787.10 22799.18 9498.67 104
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4991.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7697.31 1195.32 15296.77 13893.08 9799.20 8091.79 11598.16 20697.44 212
tttt051789.81 24688.90 25592.55 20197.00 14879.73 26895.03 10283.65 38089.88 15695.30 15394.79 24353.64 39199.39 4991.99 10898.79 14298.54 119
XVG-OURS94.72 10394.12 13196.50 4798.00 9094.23 1891.48 23498.17 4690.72 13995.30 15396.47 15787.94 19296.98 29891.41 12697.61 24298.30 135
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7992.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
GeoE94.55 11094.68 11394.15 13697.23 13885.11 18994.14 13697.34 13188.71 18195.26 15695.50 21394.65 6199.12 9090.94 13498.40 17998.23 138
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25296.17 21087.70 20395.26 15696.29 17392.54 11196.45 31881.77 29298.77 14495.66 294
alignmvs93.26 15392.85 16694.50 12595.70 24387.45 13393.45 15995.76 22291.58 12095.25 15892.42 31381.96 26398.72 15191.61 12097.87 22997.33 221
EI-MVSNet92.99 16293.26 16092.19 21092.12 33879.21 28092.32 20294.67 26391.77 11395.24 15995.85 19487.14 20598.49 18391.99 10898.26 19598.86 78
MVSTER89.32 25488.75 25791.03 25390.10 37376.62 32190.85 24794.67 26382.27 28795.24 15995.79 19861.09 37898.49 18390.49 14498.26 19597.97 166
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 31994.95 5398.66 16491.45 12597.57 24397.20 226
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15296.72 16585.73 17993.65 15495.23 24583.30 26995.13 16297.56 7592.22 11697.17 28995.51 2297.41 25098.64 111
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4291.26 12695.12 16395.15 22686.60 21799.50 2193.43 7096.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GBi-Net93.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
test193.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
FMVSNet390.78 21390.32 23092.16 21493.03 31779.92 26292.54 18894.95 25286.17 22695.10 16496.01 18969.97 33898.75 14686.74 23198.38 18397.82 183
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 5892.67 8195.08 16796.39 16694.77 5899.42 3393.17 8099.44 5098.58 118
AllTest94.88 9894.51 11796.00 5698.02 8892.17 5095.26 9298.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28594.99 17095.11 22982.70 25593.70 36683.33 27593.83 34596.48 256
EPP-MVSNet93.91 13793.68 14494.59 12198.08 8185.55 18497.44 1294.03 27494.22 5094.94 17196.19 18082.07 26199.57 1487.28 22598.89 12598.65 106
MDA-MVSNet-bldmvs91.04 20890.88 21491.55 23394.68 28180.16 25185.49 36592.14 31290.41 14994.93 17295.79 19885.10 23296.93 30285.15 25794.19 33997.57 202
test_fmvs290.62 21990.40 22891.29 24491.93 34585.46 18592.70 18296.48 19574.44 35094.91 17397.59 7375.52 31790.57 38293.44 6796.56 28097.84 180
baseline94.26 12294.80 10592.64 19496.08 21880.99 24593.69 15298.04 6990.80 13894.89 17496.32 17193.19 9298.48 18791.68 11998.51 17398.43 127
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28494.88 17595.14 22782.70 25593.61 36783.28 27693.80 34696.46 257
LFMVS91.33 20591.16 21091.82 22296.27 20179.36 27595.01 10385.61 36796.04 3094.82 17697.06 12072.03 33198.46 18884.96 26398.70 15297.65 198
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19291.93 10094.82 17695.39 22191.99 12197.08 29485.53 25197.96 22497.41 213
ZD-MVS97.23 13890.32 7897.54 11384.40 26094.78 17895.79 19892.76 10799.39 4988.72 19998.40 179
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17285.23 24494.75 17997.12 11591.85 12499.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Patchmtry90.11 23789.92 23790.66 26790.35 37077.00 31392.96 17392.81 29690.25 15194.74 18096.93 12967.11 34797.52 26985.17 25598.98 11497.46 209
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9196.13 2694.74 18097.23 10591.33 13599.16 8393.25 7798.30 19298.46 125
c3_l91.32 20691.42 20291.00 25692.29 33176.79 31987.52 33096.42 19785.76 23394.72 18293.89 27582.73 25498.16 21590.93 13598.55 16798.04 154
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24592.61 30488.04 19494.61 18393.79 27888.08 18797.81 24789.41 17798.39 18296.50 255
OMC-MVS94.22 12593.69 14395.81 6997.25 13791.27 6492.27 20697.40 12387.10 21494.56 18495.42 21793.74 7798.11 21886.62 23598.85 13198.06 151
testgi90.38 22791.34 20587.50 33197.49 12671.54 36089.43 29495.16 24688.38 18894.54 18594.68 24792.88 10493.09 37271.60 37297.85 23097.88 175
VNet92.67 17492.96 16291.79 22396.27 20180.15 25291.95 21694.98 25192.19 9494.52 18696.07 18687.43 19997.39 27984.83 26498.38 18397.83 181
eth_miper_zixun_eth90.72 21490.61 22291.05 25292.04 34176.84 31886.91 34096.67 18285.21 24594.41 18793.92 27379.53 28298.26 20689.76 17197.02 26398.06 151
test20.0390.80 21290.85 21690.63 26995.63 24979.24 27889.81 28392.87 29589.90 15594.39 18896.40 16285.77 22495.27 34973.86 35999.05 10697.39 217
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18996.49 15694.56 6499.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21588.45 26197.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18926.89 40494.56 6499.39 4993.57 5799.05 10698.93 68
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25487.06 14296.63 3197.28 13891.82 11094.34 19197.41 8790.60 15898.65 16692.47 9998.11 21097.70 194
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8798.22 3792.36 8794.11 19298.07 4492.02 12099.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS90.18 23390.16 23190.21 28293.15 31375.98 32887.56 32792.97 29486.43 22094.09 19396.40 16278.32 29297.43 27587.87 21594.69 32697.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++93.25 15593.88 13591.37 23996.34 19482.81 22393.11 16997.74 9989.37 16694.08 19495.29 22490.40 16296.35 32390.35 15098.25 19794.96 314
BH-untuned90.68 21690.90 21390.05 28795.98 22679.57 27190.04 27594.94 25387.91 19594.07 19593.00 29687.76 19497.78 25279.19 32395.17 31392.80 365
miper_ehance_all_eth90.48 22190.42 22790.69 26691.62 35376.57 32286.83 34396.18 20983.38 26894.06 19692.66 30782.20 25998.04 22289.79 17097.02 26397.45 210
cl____90.65 21790.56 22490.91 26091.85 34676.98 31586.75 34595.36 24285.53 24094.06 19694.89 23777.36 30397.98 23190.27 15598.98 11497.76 189
DIV-MVS_self_test90.65 21790.56 22490.91 26091.85 34676.99 31486.75 34595.36 24285.52 24294.06 19694.89 23777.37 30297.99 23090.28 15498.97 11997.76 189
FA-MVS(test-final)91.81 19491.85 19291.68 22994.95 26779.99 26096.00 6293.44 28687.80 19994.02 19997.29 10177.60 29798.45 18988.04 21197.49 24596.61 249
pmmvs-eth3d91.54 20090.73 22093.99 14195.76 24187.86 12890.83 24893.98 27878.23 32694.02 19996.22 17982.62 25796.83 30786.57 23698.33 18997.29 223
h-mvs3392.89 16591.99 18895.58 7796.97 14990.55 7693.94 14494.01 27789.23 16893.95 20196.19 18076.88 30999.14 8691.02 13195.71 29897.04 233
hse-mvs292.24 18891.20 20795.38 8396.16 21090.65 7592.52 18992.01 31689.23 16893.95 20192.99 29776.88 30998.69 16091.02 13196.03 29096.81 243
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28380.24 25089.69 28795.88 21985.77 23293.94 20395.69 20581.99 26292.98 37384.21 27091.30 37597.62 199
CNVR-MVS94.58 10994.29 12495.46 8296.94 15189.35 9691.81 22896.80 17389.66 16093.90 20495.44 21692.80 10698.72 15192.74 9298.52 17198.32 132
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12096.14 21387.90 12693.36 16397.14 14685.53 24093.90 20495.45 21591.30 13798.59 17389.51 17598.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19398.13 5190.69 14093.75 20696.25 17898.03 297.02 29792.08 10595.55 30198.45 126
QAPM92.88 16692.77 16793.22 17595.82 23683.31 21196.45 3997.35 13083.91 26493.75 20696.77 13889.25 17798.88 12184.56 26897.02 26397.49 208
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20490.95 6990.21 26995.43 23987.91 19593.74 20894.40 25592.88 10496.38 32190.39 14798.28 19397.07 229
thisisatest053088.69 27487.52 28592.20 20996.33 19579.36 27592.81 17784.01 37986.44 21993.67 20992.68 30653.62 39299.25 7589.65 17498.45 17798.00 159
iter_conf0588.94 26688.09 27791.50 23692.74 32276.97 31692.80 17895.92 21882.82 28093.65 21095.37 22349.41 39599.13 8890.82 13699.28 7998.40 129
PCF-MVS84.52 1789.12 25787.71 28293.34 17196.06 21985.84 17686.58 35297.31 13368.46 38493.61 21193.89 27587.51 19898.52 18167.85 38598.11 21095.66 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR93.63 14393.42 15594.26 13496.65 16986.96 14689.30 29996.23 20588.36 18993.57 21294.60 25093.45 8297.77 25390.23 15898.38 18398.03 157
test250685.42 31884.57 32187.96 32597.81 10266.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16288.09 20999.18 9498.67 104
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9792.73 7893.48 21496.72 14694.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11592.42 8493.41 21597.78 6291.21 14097.77 25391.06 13097.06 26198.80 85
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 25894.58 28481.21 24391.10 24393.41 28777.03 33493.41 21593.99 27183.23 24697.80 24879.93 31494.80 32393.74 349
PMVScopyleft87.21 1494.97 9495.33 8593.91 14898.97 1797.16 295.54 8495.85 22196.47 2293.40 21797.46 8695.31 3595.47 34286.18 24598.78 14389.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP_MVS94.26 12293.93 13495.23 9397.71 11188.12 12294.56 11997.81 9291.74 11593.31 21895.59 20886.93 20998.95 11489.26 18498.51 17398.60 116
plane_prior388.43 11990.35 15093.31 218
thres600view787.66 29087.10 29689.36 29996.05 22073.17 34992.72 18085.31 37091.89 10293.29 22090.97 33363.42 36998.39 19173.23 36296.99 26896.51 252
CPTT-MVS94.74 10294.12 13196.60 4398.15 7793.01 4295.84 7197.66 10389.21 17193.28 22195.46 21488.89 17998.98 10689.80 16998.82 13897.80 185
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30596.39 19873.21 35893.27 22296.28 17582.16 26096.39 32077.55 33398.80 14195.62 297
thres100view90087.35 29986.89 29888.72 31096.14 21373.09 35193.00 17285.31 37092.13 9593.26 22390.96 33463.42 36998.28 20271.27 37496.54 28194.79 324
N_pmnet88.90 26887.25 29093.83 15394.40 28893.81 3584.73 37187.09 35379.36 31593.26 22392.43 31279.29 28491.68 37877.50 33597.22 25696.00 276
CL-MVSNet_self_test90.04 24289.90 23890.47 27295.24 26277.81 30286.60 35192.62 30385.64 23693.25 22593.92 27383.84 24096.06 33079.93 31498.03 21797.53 206
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28489.45 29395.44 23775.29 34793.23 22695.65 20771.58 33290.23 38688.05 21093.55 35195.44 301
mvs_anonymous90.37 22891.30 20687.58 33092.17 33768.00 37589.84 28294.73 26083.82 26693.22 22797.40 8887.54 19797.40 27887.94 21495.05 31697.34 220
test_yl90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
DCV-MVSNet90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
D2MVS89.93 24389.60 24590.92 25894.03 29678.40 29288.69 31494.85 25478.96 32193.08 23095.09 23074.57 32096.94 30088.19 20598.96 12197.41 213
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25378.88 28687.39 33194.02 27679.32 31793.06 23194.02 26980.72 27594.27 36275.16 35193.08 36096.54 250
miper_lstm_enhance89.90 24489.80 24090.19 28491.37 35777.50 30683.82 38195.00 25084.84 25593.05 23294.96 23576.53 31495.20 35089.96 16798.67 15797.86 177
PHI-MVS94.34 11993.80 13895.95 5995.65 24791.67 6294.82 10897.86 8687.86 19893.04 23394.16 26491.58 13098.78 14290.27 15598.96 12197.41 213
TAMVS90.16 23489.05 24993.49 16896.49 18386.37 16290.34 26692.55 30580.84 30292.99 23494.57 25281.94 26498.20 21073.51 36098.21 20295.90 283
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 24997.66 11777.32 30994.33 12787.66 34991.20 12992.99 23495.13 22875.40 31898.28 20277.86 32999.19 9297.99 162
FE-MVS89.06 25988.29 26791.36 24094.78 27479.57 27196.77 2890.99 32484.87 25492.96 23696.29 17360.69 38098.80 13880.18 30997.11 26095.71 290
ab-mvs92.40 18292.62 17491.74 22597.02 14781.65 23595.84 7195.50 23686.95 21692.95 23797.56 7590.70 15697.50 27079.63 31797.43 24996.06 274
MCST-MVS92.91 16492.51 17694.10 13997.52 12485.72 18091.36 23897.13 14880.33 30492.91 23894.24 26091.23 13998.72 15189.99 16697.93 22697.86 177
ETV-MVS92.99 16292.74 16993.72 15695.86 23386.30 16592.33 20197.84 8991.70 11892.81 23986.17 38092.22 11699.19 8188.03 21297.73 23495.66 294
MM94.41 11594.14 13095.22 9495.84 23487.21 13894.31 12990.92 32694.48 4692.80 24097.52 8085.27 23099.49 2496.58 899.57 3698.97 62
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18289.69 8692.91 17597.68 10278.02 32792.79 24194.10 26590.85 14997.96 23284.76 26698.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24294.52 25393.95 7699.49 2493.62 5699.22 8997.51 207
BH-RMVSNet90.47 22290.44 22690.56 27195.21 26378.65 29189.15 30393.94 27988.21 19092.74 24394.22 26186.38 21897.88 23978.67 32695.39 30795.14 308
旧先验290.00 27768.65 38392.71 24496.52 31485.15 257
cl2289.02 26088.50 26090.59 27089.76 37576.45 32386.62 35094.03 27482.98 27892.65 24592.49 30872.05 33097.53 26888.93 19297.02 26397.78 187
tfpn200view987.05 30786.52 30688.67 31195.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28194.79 324
thres40087.20 30386.52 30689.24 30395.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28196.51 252
test_fmvs1_n88.73 27388.38 26389.76 29192.06 34082.53 22592.30 20596.59 18771.14 36992.58 24895.41 22068.55 34189.57 39091.12 12995.66 29997.18 227
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29887.88 32392.49 30675.42 34392.57 24993.59 28480.44 27694.24 36481.28 29892.75 36394.69 329
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23175.68 34092.49 25089.45 35578.96 28597.88 23987.86 21697.02 26396.81 243
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25194.79 24393.56 7999.49 2493.47 6499.05 10697.89 174
testdata91.03 25396.87 15682.01 23094.28 27071.55 36692.46 25295.42 21785.65 22797.38 28182.64 28297.27 25493.70 350
patch_mono-292.46 18092.72 17291.71 22796.65 16978.91 28588.85 30997.17 14483.89 26592.45 25396.76 14089.86 17297.09 29390.24 15798.59 16499.12 43
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17496.60 18585.08 25092.44 25493.62 28286.80 21296.35 32386.81 23098.25 19796.18 269
diffmvspermissive91.74 19591.93 19091.15 25193.06 31578.17 29588.77 31297.51 11886.28 22192.42 25593.96 27288.04 18997.46 27390.69 14196.67 27897.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9893.58 3794.09 13896.99 15891.05 13292.40 25695.22 22591.03 14799.25 7592.11 10398.69 15397.90 172
ppachtmachnet_test88.61 27588.64 25888.50 31691.76 34870.99 36484.59 37492.98 29379.30 31892.38 25793.53 28679.57 28197.45 27486.50 24097.17 25897.07 229
Anonymous2023120688.77 27188.29 26790.20 28396.31 19778.81 28889.56 29093.49 28574.26 35292.38 25795.58 21182.21 25895.43 34472.07 36898.75 14796.34 261
MVS_Test92.57 17893.29 15690.40 27693.53 30875.85 32992.52 18996.96 15988.73 17992.35 25996.70 14790.77 15198.37 19892.53 9895.49 30396.99 235
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18397.73 10983.95 20692.14 21097.46 11978.85 32392.35 25994.98 23484.16 23999.08 9386.36 24296.77 27595.79 287
CDPH-MVS92.67 17491.83 19395.18 9696.94 15188.46 11890.70 25397.07 15277.38 33092.34 26195.08 23192.67 10998.88 12185.74 24898.57 16698.20 141
NCCC94.08 13093.54 15295.70 7596.49 18389.90 8392.39 19996.91 16590.64 14292.33 26294.60 25090.58 15998.96 11190.21 15997.70 23798.23 138
CLD-MVS91.82 19391.41 20393.04 17796.37 18883.65 20986.82 34497.29 13684.65 25792.27 26389.67 35292.20 11897.85 24583.95 27299.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS92.05 19192.16 18291.72 22694.44 28680.13 25487.62 32497.25 13987.34 20992.22 26493.18 29489.54 17598.73 15089.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 29287.31 28788.54 31494.71 28074.27 34393.10 17088.20 34186.20 22492.18 26593.04 29573.21 32595.52 33979.32 32185.82 39195.83 285
API-MVS91.52 20191.61 19691.26 24594.16 29186.26 16694.66 11394.82 25691.17 13092.13 26691.08 33290.03 17197.06 29679.09 32497.35 25390.45 382
DP-MVS Recon92.31 18591.88 19193.60 15997.18 14286.87 14791.10 24397.37 12484.92 25392.08 26794.08 26688.59 18098.20 21083.50 27498.14 20895.73 289
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30792.06 26892.17 31678.63 29095.63 33784.77 26594.73 32496.22 267
MSDG90.82 21190.67 22191.26 24594.16 29183.08 21986.63 34996.19 20890.60 14491.94 26991.89 32089.16 17895.75 33680.96 30394.51 32994.95 315
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14095.41 24089.94 15491.93 27092.13 31790.12 16698.97 11087.68 21897.48 24697.67 197
Gipumacopyleft95.31 8495.80 6593.81 15497.99 9390.91 7096.42 4297.95 8196.69 1791.78 27198.85 1291.77 12695.49 34191.72 11799.08 10295.02 313
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24190.43 26395.72 22470.55 37591.70 27294.63 24868.13 34289.42 39190.59 14295.34 30994.94 319
HyFIR lowres test87.19 30485.51 31592.24 20897.12 14680.51 24985.03 36996.06 21266.11 39091.66 27392.98 29870.12 33799.14 8675.29 35095.23 31297.07 229
MVP-Stereo90.07 24088.92 25393.54 16396.31 19786.49 15790.93 24695.59 23179.80 30691.48 27495.59 20880.79 27497.39 27978.57 32791.19 37696.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20085.85 31585.18 31687.88 32894.44 28672.52 35689.08 30486.21 35888.57 18591.44 27588.40 36564.22 36498.00 22868.35 38395.88 29693.12 359
FMVSNet587.82 28786.56 30491.62 23192.31 33079.81 26693.49 15794.81 25883.26 27091.36 27696.93 12952.77 39397.49 27276.07 34698.03 21797.55 205
新几何193.17 17697.16 14387.29 13594.43 26667.95 38591.29 27794.94 23686.97 20898.23 20881.06 30297.75 23393.98 343
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
CDS-MVSNet89.55 24888.22 27393.53 16495.37 25986.49 15789.26 30093.59 28179.76 30891.15 28192.31 31477.12 30498.38 19477.51 33497.92 22795.71 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19394.53 28584.10 20395.70 7597.03 15482.44 28691.14 28296.42 16088.47 18298.38 19485.95 24697.47 24795.55 299
MVS_030493.92 13693.68 14494.64 11695.94 23085.83 17794.34 12688.14 34392.98 7791.09 28397.68 6686.73 21499.36 5896.64 799.59 2998.72 96
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28493.73 27993.52 8199.55 1891.81 11499.45 4797.58 201
CNLPA91.72 19691.20 20793.26 17496.17 20991.02 6791.14 24195.55 23490.16 15290.87 28593.56 28586.31 21994.40 36079.92 31697.12 25994.37 334
testing383.66 33282.52 33787.08 33495.84 23465.84 38789.80 28477.17 40388.17 19290.84 28688.63 36230.95 41198.11 21884.05 27197.19 25797.28 224
test_prior290.21 26989.33 16790.77 28794.81 24090.41 16188.21 20398.55 167
test22296.95 15085.27 18888.83 31093.61 28065.09 39390.74 28894.85 23984.62 23797.36 25293.91 344
TR-MVS87.70 28887.17 29289.27 30194.11 29379.26 27788.69 31491.86 31781.94 29190.69 28989.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20288.17 34256.15 40190.64 29095.85 19467.97 34596.69 31188.78 19790.52 38092.56 367
TEST996.45 18689.46 9090.60 25696.92 16379.09 31990.49 29194.39 25691.31 13698.88 121
train_agg92.71 17391.83 19395.35 8496.45 18689.46 9090.60 25696.92 16379.37 31390.49 29194.39 25691.20 14198.88 12188.66 20098.43 17897.72 193
test_896.37 18889.14 10090.51 25996.89 16679.37 31390.42 29394.36 25891.20 14198.82 130
test_vis1_n89.01 26289.01 25189.03 30492.57 32582.46 22792.62 18696.06 21273.02 36090.40 29495.77 20274.86 31989.68 38890.78 13894.98 31794.95 315
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
test_vis1_n_192089.45 25189.85 23988.28 32093.59 30776.71 32090.67 25497.78 9779.67 31090.30 29796.11 18476.62 31292.17 37690.31 15293.57 34995.96 278
agg_prior96.20 20788.89 10696.88 16790.21 29898.78 142
jason89.17 25688.32 26491.70 22895.73 24280.07 25588.10 32093.22 28971.98 36590.09 29992.79 30278.53 29198.56 17787.43 22297.06 26196.46 257
jason: jason.
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12394.66 28288.25 12092.05 21296.65 18389.62 16190.08 30091.23 32992.56 11098.60 17186.30 24396.27 28796.90 238
CHOSEN 1792x268887.19 30485.92 31391.00 25697.13 14579.41 27484.51 37595.60 22764.14 39490.07 30194.81 24078.26 29397.14 29273.34 36195.38 30896.46 257
PatchMatch-RL89.18 25588.02 27992.64 19495.90 23292.87 4588.67 31691.06 32380.34 30390.03 30291.67 32483.34 24494.42 35976.35 34494.84 32290.64 381
BH-w/o87.21 30287.02 29787.79 32994.77 27577.27 31087.90 32293.21 29181.74 29289.99 30388.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
Fast-Effi-MVS+91.28 20790.86 21592.53 20295.45 25582.53 22589.25 30296.52 19385.00 25189.91 30488.55 36492.94 10098.84 12884.72 26795.44 30596.22 267
AdaColmapbinary91.63 19891.36 20492.47 20495.56 25286.36 16392.24 20996.27 20288.88 17889.90 30592.69 30591.65 12998.32 20077.38 33697.64 24092.72 366
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 24989.82 30690.07 34366.80 35097.76 25584.56 26894.27 33595.96 278
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 28986.69 35585.73 23489.81 30792.83 30065.24 36191.04 38177.82 33295.78 29793.88 346
EIA-MVS92.35 18492.03 18693.30 17395.81 23883.97 20592.80 17898.17 4687.71 20289.79 30887.56 37091.17 14499.18 8287.97 21397.27 25496.77 245
test1294.43 13095.95 22886.75 15096.24 20489.76 30989.79 17398.79 13997.95 22597.75 191
pmmvs488.95 26587.70 28392.70 19194.30 28985.60 18387.22 33392.16 31174.62 34989.75 31094.19 26277.97 29596.41 31982.71 28196.36 28596.09 272
原ACMM192.87 18696.91 15484.22 20097.01 15576.84 33689.64 31194.46 25488.00 19098.70 15881.53 29698.01 22095.70 292
MG-MVS89.54 24989.80 24088.76 30994.88 26872.47 35789.60 28892.44 30785.82 23189.48 31295.98 19082.85 25297.74 25881.87 29195.27 31196.08 273
114514_t90.51 22089.80 24092.63 19698.00 9082.24 22993.40 16197.29 13665.84 39189.40 31394.80 24286.99 20798.75 14683.88 27398.61 16196.89 239
Effi-MVS+92.79 16992.74 16992.94 18395.10 26483.30 21294.00 14097.53 11591.36 12589.35 31490.65 34194.01 7598.66 16487.40 22395.30 31096.88 241
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28292.52 18992.81 29673.08 35989.10 31596.93 12967.11 34797.64 26588.80 19692.70 36494.08 338
RPMNet90.31 23290.14 23490.81 26491.01 36178.93 28292.52 18998.12 5291.91 10189.10 31596.89 13268.84 34099.41 3990.17 16092.70 36494.08 338
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21486.09 36092.20 9389.05 31797.16 11164.15 36596.37 32289.21 18792.98 36293.37 357
MVSFormer92.18 18992.23 18192.04 21894.74 27780.06 25697.15 1597.37 12488.98 17488.83 31892.79 30277.02 30699.60 996.41 996.75 27696.46 257
lupinMVS88.34 27987.31 28791.45 23794.74 27780.06 25687.23 33292.27 30871.10 37088.83 31891.15 33077.02 30698.53 18086.67 23496.75 27695.76 288
HQP-NCC96.36 19091.37 23587.16 21188.81 320
ACMP_Plane96.36 19091.37 23587.16 21188.81 320
HQP4-MVS88.81 32098.61 16998.15 146
HQP-MVS92.09 19091.49 20193.88 14996.36 19084.89 19191.37 23597.31 13387.16 21188.81 32093.40 28884.76 23598.60 17186.55 23897.73 23498.14 147
PAPM_NR91.03 20990.81 21791.68 22996.73 16481.10 24493.72 15196.35 20088.19 19188.77 32492.12 31885.09 23397.25 28382.40 28793.90 34496.68 248
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29488.11 34482.26 28888.71 32592.83 30078.65 28897.59 26679.61 31893.30 35494.75 326
F-COLMAP92.28 18691.06 21195.95 5997.52 12491.90 5693.53 15597.18 14383.98 26388.70 32694.04 26788.41 18398.55 17980.17 31095.99 29297.39 217
PVSNet_BlendedMVS90.35 22989.96 23691.54 23494.81 27278.80 28990.14 27296.93 16179.43 31288.68 32795.06 23286.27 22098.15 21680.27 30698.04 21697.68 196
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27278.80 28986.64 34896.93 16174.67 34888.68 32789.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17381.11 38975.03 40470.80 37488.57 32994.63 24883.08 24887.38 39480.39 30486.57 39087.21 390
AUN-MVS90.05 24188.30 26695.32 8896.09 21790.52 7792.42 19792.05 31582.08 29088.45 33092.86 29965.76 35798.69 16088.91 19496.07 28996.75 247
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30792.18 30973.71 35588.36 33193.89 27576.86 31196.73 31080.32 30596.81 27396.51 252
WTY-MVS86.93 30986.50 30888.24 32194.96 26674.64 33687.19 33492.07 31478.29 32588.32 33291.59 32678.06 29494.27 36274.88 35293.15 35895.80 286
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33386.65 37553.94 39098.72 15182.56 28397.40 25195.67 293
MIMVSNet87.13 30686.54 30588.89 30796.05 22076.11 32694.39 12488.51 33781.37 29588.27 33396.75 14272.38 32895.52 33965.71 39095.47 30495.03 312
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27688.13 33586.61 37662.86 37289.10 39366.24 38990.29 38193.77 348
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21688.77 38685.42 18690.31 26794.38 26770.02 37888.00 33693.30 29073.78 32494.03 36575.96 34896.54 28196.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 31981.00 39076.23 33987.98 33787.77 36984.98 23493.35 37062.85 39594.10 34295.98 277
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26287.95 33894.71 24676.95 30884.36 40164.07 39298.09 21293.89 345
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33895.60 22780.88 30087.83 33988.62 36391.04 14698.81 13582.51 28594.38 33191.93 372
PS-MVSNAJ88.86 26988.99 25288.48 31794.88 26874.71 33586.69 34795.60 22780.88 30087.83 33987.37 37390.77 15198.82 13082.52 28494.37 33291.93 372
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34188.10 36744.08 40396.90 30464.23 39196.36 28595.14 308
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28166.43 38887.64 34289.20 35879.33 28385.38 39981.59 29589.98 38393.66 351
iter_conf05_1188.91 26788.32 26490.66 26793.95 29978.09 29686.98 33793.06 29279.35 31687.64 34289.80 34680.25 27898.96 11185.18 25398.69 15394.95 315
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29785.63 36677.24 33387.62 34495.03 23361.00 37997.30 28279.26 32291.09 37895.16 306
sss87.23 30186.82 29988.46 31893.96 29777.94 29786.84 34292.78 29977.59 32987.61 34591.83 32178.75 28791.92 37777.84 33094.20 33795.52 300
MAR-MVS90.32 23188.87 25694.66 11594.82 27191.85 5794.22 13294.75 25980.91 29987.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS89.35 25388.40 26292.18 21396.13 21584.20 20186.96 33996.15 21175.40 34487.36 34791.55 32783.30 24598.01 22782.17 29096.62 27994.32 336
UGNet93.08 15992.50 17794.79 10893.87 30287.99 12595.07 10094.26 27190.64 14287.33 34897.67 6886.89 21198.49 18388.10 20898.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25887.34 35278.87 32287.22 34992.74 30466.91 34996.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
1112_ss88.42 27787.41 28691.45 23796.69 16680.99 24589.72 28696.72 17973.37 35687.00 35090.69 33977.38 30198.20 21081.38 29793.72 34795.15 307
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17471.01 37186.89 35185.91 38181.35 26896.94 30083.09 27895.60 30094.35 335
CANet92.38 18391.99 18893.52 16693.82 30483.46 21091.14 24197.00 15689.81 15786.47 35294.04 26787.90 19399.21 7889.50 17698.27 19497.90 172
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16377.75 30387.53 32996.25 20369.73 38086.47 35293.61 28375.67 31697.88 23979.95 31293.20 35695.11 311
PLCcopyleft85.34 1590.40 22488.92 25394.85 10596.53 18190.02 8191.58 23296.48 19580.16 30586.14 35492.18 31585.73 22598.25 20776.87 33994.61 32896.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34684.65 40067.44 38691.90 37390.78 380
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26771.34 40577.31 33285.80 35691.30 32859.38 38192.70 37479.99 31182.34 39892.96 363
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22189.51 29187.37 35184.38 26185.37 35785.08 38772.44 32786.59 39668.05 38491.03 37991.33 376
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24088.35 33882.87 27985.21 35890.96 33465.24 36196.75 30979.60 32085.25 39292.90 364
FPMVS84.50 32683.28 33188.16 32396.32 19694.49 1685.76 36385.47 36883.09 27585.20 35994.26 25963.79 36886.58 39763.72 39391.88 37483.40 395
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29785.13 36081.64 39677.44 29995.00 35185.94 24794.12 34094.91 320
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29785.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31796.23 20576.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 266
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31387.41 35073.99 35384.96 36494.01 27065.25 36095.53 33878.02 32893.16 357
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21894.10 27374.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32590.98 32572.71 36384.46 36692.45 30968.08 34396.48 31670.58 37983.97 39395.38 302
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32585.13 37472.71 36384.46 36692.45 30968.08 34392.33 37570.58 37983.97 39395.38 302
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29764.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32194.60 35669.87 38193.69 34894.46 332
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22384.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 265
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21894.16 27259.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24383.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 271
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27287.90 34775.54 34283.93 37291.63 32566.79 35295.36 34581.21 30081.54 39993.57 356
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22393.04 31681.28 24087.17 33586.14 35979.57 31183.65 37388.66 36157.10 38498.18 21387.74 21795.40 30695.90 283
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29894.02 13991.58 32175.68 34083.64 37493.64 28077.40 30097.42 27671.70 37192.07 37193.05 362
MDTV_nov1_ep13_2view42.48 41188.45 31867.22 38783.56 37566.80 35072.86 36594.06 340
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29483.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 298
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26586.47 35770.42 37683.52 37693.23 29361.18 37796.85 30677.21 33788.26 38793.34 358
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25577.66 40154.99 40283.30 37897.57 7477.89 29690.50 38466.86 38895.54 30291.97 371
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20183.25 37983.01 39462.22 37589.17 39277.15 33894.31 33482.93 396
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27682.85 38084.78 38862.86 37293.49 36882.85 27994.86 32094.03 341
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26782.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 304
CANet_DTU89.85 24589.17 24791.87 22092.20 33580.02 25990.79 24995.87 22086.02 22882.53 38391.77 32280.01 27998.57 17685.66 25097.70 23797.01 234
JIA-IIPM85.08 32183.04 33391.19 25087.56 39186.14 16989.40 29684.44 37888.98 17482.20 38497.95 5356.82 38696.15 32676.55 34383.45 39591.30 377
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 28091.59 37975.99 34793.09 35987.94 389
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26085.36 36965.82 39282.05 38692.44 31157.94 38396.69 31170.71 37888.49 38692.56 367
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 30982.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30088.23 34062.27 39781.90 38889.66 35362.70 37495.29 34871.72 37080.60 40091.86 374
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 19981.66 38981.73 39562.89 37189.84 38775.79 34994.65 32782.71 397
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30878.70 39882.69 28181.64 39079.46 39875.93 31585.74 39848.78 40482.85 39786.76 391
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38895.45 34373.19 36376.68 40191.82 375
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 28981.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 308
EPNet89.80 24788.25 27094.45 12983.91 40586.18 16893.87 14587.07 35491.16 13180.64 39394.72 24578.83 28698.89 12085.17 25598.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31181.22 38978.97 32079.82 39587.56 37061.73 37697.80 24874.30 35690.05 38296.05 275
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11067.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32689.59 38956.68 39960.05 40482.57 398
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33678.00 40068.94 38277.53 39897.26 10271.45 33394.62 35563.28 39488.74 38578.55 400
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38595.36 34569.49 38294.72 32588.79 386
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 28969.47 38176.13 40089.84 34572.15 32997.23 28453.27 40289.02 38492.37 369
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10565.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23188.26 33984.84 25572.96 40289.85 34471.27 33497.69 26176.60 34197.62 24196.18 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27272.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38746.64 40638.45 40670.07 40250.30 402
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38222.11 40744.50 40568.35 40313.00 403
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1852.44 4065.32 40798.25 3792.24 11598.02 22691.85 11399.21 9097.45 210
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2330.00 4090.00 41091.15 33093.43 840.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3390.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS61.25 39974.55 353
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
eth-test20.00 414
eth-test0.00 414
OPU-MVS95.15 9796.84 15989.43 9295.21 9395.66 20693.12 9598.06 22186.28 24498.61 16197.95 167
save fliter97.46 12988.05 12492.04 21397.08 15187.63 205
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9598.22 3799.38 5593.44 6799.31 6998.53 120
GSMVS94.75 326
sam_mvs166.64 35394.75 326
sam_mvs66.41 354
MTGPAbinary97.62 106
test_post190.21 2695.85 40865.36 35996.00 33179.61 318
test_post6.07 40765.74 35895.84 335
patchmatchnet-post91.71 32366.22 35697.59 266
MTMP94.82 10854.62 410
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
test9_res88.16 20798.40 17997.83 181
agg_prior287.06 22998.36 18897.98 163
test_prior489.91 8290.74 251
test_prior94.61 11795.95 22887.23 13797.36 12998.68 16297.93 169
新几何290.02 276
旧先验196.20 20784.17 20294.82 25695.57 21289.57 17497.89 22896.32 262
无先验89.94 27895.75 22370.81 37398.59 17381.17 30194.81 322
原ACMM289.34 297
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata188.96 30688.44 187
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 209
plane_prior597.81 9298.95 11489.26 18498.51 17398.60 116
plane_prior495.59 208
plane_prior294.56 11991.74 115
plane_prior197.38 131
plane_prior88.12 12293.01 17188.98 17498.06 214
n20.00 415
nn0.00 415
door-mid92.13 313
test1196.65 183
door91.26 322
HQP5-MVS84.89 191
BP-MVS86.55 238
HQP3-MVS97.31 13397.73 234
HQP2-MVS84.76 235
NP-MVS96.82 16187.10 14193.40 288
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 157