This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 12997.70 897.54 10798.16 298.94 299.33 297.84 499.08 9290.73 12899.73 1399.59 13
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6794.15 4898.93 399.07 588.07 17599.57 1495.86 999.69 1499.46 18
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16896.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet-Re94.20 11994.58 11093.04 16695.91 21683.13 20693.79 14599.19 392.00 9198.84 598.04 4393.64 7299.02 10281.28 27998.54 16096.96 221
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11295.57 8497.88 7988.72 17598.81 698.86 1090.77 13999.60 995.43 1599.53 3699.57 14
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10287.57 20198.80 798.90 996.50 999.59 1396.15 799.47 4199.40 21
Anonymous2023121196.60 2597.13 1295.00 9697.46 12686.35 15997.11 1998.24 3097.58 898.72 898.97 793.15 8899.15 8293.18 6799.74 1299.50 17
ACMH88.36 1296.59 2797.43 594.07 13498.56 4285.33 17896.33 4798.30 2394.66 4098.72 898.30 3297.51 598.00 22294.87 1899.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11686.96 21098.71 1098.72 1795.36 3199.56 1795.92 899.45 4599.32 27
wuyk23d87.83 26990.79 20178.96 35390.46 34088.63 10792.72 17090.67 31591.65 11398.68 1197.64 6396.06 1577.53 37459.84 36999.41 5470.73 372
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18496.51 3597.94 7898.14 398.67 1298.32 3195.04 4599.69 293.27 6499.82 799.62 10
PS-CasMVS96.69 2097.43 594.49 12299.13 684.09 19396.61 3297.97 7297.91 598.64 1398.13 3795.24 3699.65 393.39 5999.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11299.16 484.50 18596.54 3498.05 5998.06 498.64 1398.25 3395.01 4899.65 392.95 7699.83 599.68 4
SixPastTwentyTwo94.91 9295.21 8693.98 13698.52 5083.19 20495.93 6794.84 24294.86 3998.49 1598.74 1681.45 24999.60 994.69 2099.39 5699.15 39
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15596.78 2798.08 5397.42 998.48 1697.86 5591.76 11899.63 694.23 2999.84 399.66 6
v7n96.82 997.31 1095.33 8698.54 4886.81 14396.83 2398.07 5696.59 2098.46 1798.43 2992.91 9699.52 1996.25 699.76 1099.65 8
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10287.68 19998.45 1898.77 1594.20 6799.50 2196.70 399.40 5599.53 15
CP-MVSNet96.19 4596.80 1694.38 12798.99 1683.82 19696.31 5097.53 10997.60 798.34 1997.52 7091.98 11499.63 693.08 7299.81 899.70 3
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 11888.98 16998.26 2198.86 1093.35 8199.60 996.41 499.45 4599.66 6
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2297.52 7096.90 798.62 16790.30 14299.60 2698.72 92
pmmvs696.80 1297.36 995.15 9399.12 887.82 12596.68 3097.86 8096.10 2798.14 2399.28 397.94 398.21 20491.38 11699.69 1499.42 19
ANet_high94.83 9696.28 3790.47 25996.65 15973.16 33494.33 12798.74 1096.39 2498.09 2498.93 893.37 8098.70 15790.38 13799.68 1899.53 15
nrg03096.32 4096.55 2595.62 7697.83 9988.55 11195.77 7498.29 2692.68 7398.03 2597.91 5295.13 4098.95 11293.85 3799.49 4099.36 24
RRT_MVS95.41 7495.20 8896.05 5598.86 2288.92 10197.49 1194.48 25293.12 6897.94 2698.54 2281.19 25599.63 695.48 1299.69 1499.60 12
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16293.73 5797.87 2798.49 2690.73 14399.05 9786.43 22899.60 2699.10 47
dcpmvs_293.96 12495.01 9490.82 25197.60 11674.04 32993.68 14998.85 789.80 15297.82 2897.01 11091.14 13599.21 7690.56 13298.59 15599.19 36
test_vis3_rt90.40 21090.03 21991.52 22392.58 30488.95 10090.38 25097.72 9573.30 32897.79 2997.51 7277.05 28687.10 36889.03 18094.89 30098.50 112
TransMVSNet (Re)95.27 8496.04 5192.97 16998.37 6581.92 21895.07 10196.76 17193.97 5297.77 3098.57 2095.72 1997.90 22988.89 18499.23 8299.08 48
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2392.37 8097.75 3196.95 11195.14 3999.51 2091.74 10599.28 7598.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040295.73 6096.22 4094.26 12998.19 7685.77 17293.24 15897.24 13496.88 1697.69 3297.77 5894.12 6899.13 8691.54 11399.29 7097.88 164
NR-MVSNet95.28 8295.28 8495.26 8997.75 10487.21 13395.08 10097.37 11893.92 5597.65 3395.90 17690.10 15599.33 6690.11 15199.66 2199.26 30
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 13995.21 9498.10 5091.95 9297.63 3497.25 9196.48 1099.35 5893.29 6299.29 7097.95 156
test_241102_ONE98.51 5186.97 13998.10 5091.85 9897.63 3497.03 10796.48 1098.95 112
test072698.51 5186.69 14795.34 8998.18 3791.85 9897.63 3497.37 7995.58 23
Anonymous2024052995.50 6895.83 6294.50 12097.33 13185.93 16895.19 9896.77 17096.64 1997.61 3798.05 4293.23 8598.79 13888.60 19099.04 10798.78 84
DVP-MVS++95.93 5296.34 3494.70 10896.54 16886.66 14998.45 498.22 3293.26 6697.54 3897.36 8293.12 8999.38 5493.88 3598.68 14798.04 143
test_241102_TWO98.10 5091.95 9297.54 3897.25 9195.37 2999.35 5893.29 6299.25 7998.49 114
FC-MVSNet-test95.32 7895.88 5893.62 14998.49 5881.77 21995.90 6998.32 2093.93 5397.53 4097.56 6788.48 16899.40 4592.91 7799.83 599.68 4
K. test v393.37 13593.27 14593.66 14898.05 8582.62 21094.35 12686.62 33796.05 2997.51 4198.85 1276.59 29499.65 393.21 6698.20 19498.73 91
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11591.25 12297.49 4298.14 3583.49 22499.45 2695.52 1199.66 2199.36 24
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15596.25 19283.23 20292.66 17498.19 3593.06 7097.49 4297.15 10094.78 5498.71 15692.27 9098.72 14298.65 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12693.75 14697.86 8095.96 3197.48 4497.14 10195.33 3299.44 2890.79 12699.76 1099.38 22
v894.65 10295.29 8392.74 18096.65 15979.77 25494.59 11697.17 13891.86 9797.47 4597.93 4888.16 17399.08 9294.32 2699.47 4199.38 22
v1094.68 10195.27 8592.90 17596.57 16580.15 23994.65 11597.57 10590.68 13597.43 4698.00 4588.18 17299.15 8294.84 1999.55 3599.41 20
APDe-MVS96.46 3196.64 2195.93 6297.68 11289.38 9596.90 2298.41 1692.52 7797.43 4697.92 5195.11 4299.50 2194.45 2399.30 6798.92 68
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9086.48 21397.42 4897.51 7294.47 6499.29 6893.55 4799.29 7098.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14795.20 9697.00 15091.85 9897.40 4997.35 8595.58 2399.34 6193.44 5599.31 6598.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6697.40 4997.35 8594.69 5699.34 6193.88 3599.42 5098.89 71
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
pm-mvs195.43 7195.94 5493.93 14098.38 6385.08 18195.46 8797.12 14391.84 10197.28 5398.46 2795.30 3497.71 25190.17 14999.42 5098.99 55
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5398.46 2794.62 5998.84 12794.64 2199.53 3698.99 55
SD-MVS95.19 8595.73 6693.55 15296.62 16388.88 10494.67 11398.05 5991.26 12097.25 5596.40 14695.42 2794.36 33692.72 8299.19 8897.40 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6490.82 13197.15 5696.85 11896.25 1499.00 10493.10 7099.33 6298.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v093.87 14398.05 8583.77 19780.32 36897.13 5797.91 5277.49 28099.11 9192.62 8498.08 20398.74 90
bld_raw_dy_0_6494.27 11494.15 12094.65 11198.55 4586.28 16195.80 7395.55 22588.41 18397.09 5898.08 4078.69 26998.87 12395.63 1099.53 3698.81 80
FIs94.90 9395.35 7993.55 15298.28 6981.76 22095.33 9098.14 4593.05 7197.07 5997.18 9887.65 18299.29 6891.72 10699.69 1499.61 11
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
VPA-MVSNet95.14 8695.67 6893.58 15197.76 10383.15 20594.58 11897.58 10493.39 6397.05 6298.04 4393.25 8498.51 18089.75 16199.59 2899.08 48
FMVSNet194.84 9595.13 9093.97 13797.60 11684.29 18695.99 6396.56 18192.38 7997.03 6398.53 2390.12 15398.98 10588.78 18699.16 9398.65 98
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10794.85 5399.42 3293.49 4998.84 12698.00 148
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10795.40 2893.49 4998.84 12698.00 148
test_one_060198.26 7187.14 13498.18 3794.25 4596.99 6697.36 8295.13 40
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2795.51 3496.99 6697.05 10695.63 2299.39 4893.31 6198.88 12198.75 87
EG-PatchMatch MVS94.54 10694.67 10894.14 13297.87 9886.50 15192.00 20396.74 17288.16 18896.93 6897.61 6493.04 9397.90 22991.60 11098.12 19998.03 146
KD-MVS_self_test94.10 12194.73 10492.19 19897.66 11479.49 26094.86 10897.12 14389.59 15796.87 6997.65 6290.40 15098.34 19489.08 17999.35 5998.75 87
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15798.32 2087.89 19296.86 7097.38 7895.55 2599.39 4895.47 1399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2096.69 1796.86 7097.56 6795.48 2698.77 14490.11 15199.44 4898.31 125
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5695.17 3596.82 7296.73 12995.09 4499.43 3192.99 7598.71 14398.50 112
UniMVSNet_NR-MVSNet95.35 7695.21 8695.76 7197.69 11188.59 10992.26 19597.84 8394.91 3896.80 7395.78 18590.42 14899.41 3891.60 11099.58 3299.29 29
DU-MVS95.28 8295.12 9195.75 7297.75 10488.59 10992.58 17797.81 8693.99 5096.80 7395.90 17690.10 15599.41 3891.60 11099.58 3299.26 30
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17597.33 12690.05 14796.77 7596.85 11895.04 4598.56 17592.77 7899.06 9998.70 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_part298.21 7589.41 9396.72 76
v124093.29 13793.71 13092.06 20596.01 21177.89 28591.81 21597.37 11885.12 23796.69 7796.40 14686.67 20199.07 9694.51 2298.76 13999.22 33
tfpnnormal94.27 11494.87 9892.48 19197.71 10880.88 23494.55 12295.41 23093.70 5896.67 7897.72 5991.40 12498.18 20887.45 20899.18 9098.36 121
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6793.34 6596.64 7996.57 13894.99 4999.36 5793.48 5199.34 6098.82 78
Skip Steuart: Steuart Systems R&D Blog.
WR-MVS93.49 13293.72 12992.80 17997.57 11980.03 24590.14 25895.68 21693.70 5896.62 8095.39 20587.21 19099.04 10087.50 20799.64 2499.33 26
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13098.08 5389.46 15896.61 8196.47 14195.85 1899.12 8990.45 13499.56 3498.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DP-MVS95.62 6395.84 6194.97 9797.16 13788.62 10894.54 12397.64 9896.94 1596.58 8297.32 8893.07 9298.72 15090.45 13498.84 12697.57 190
IterMVS-LS93.78 12794.28 11692.27 19596.27 18979.21 26791.87 21196.78 16891.77 10796.57 8397.07 10487.15 19198.74 14891.99 9799.03 10898.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4193.11 6996.48 8497.36 8296.92 699.34 6194.31 2799.38 5798.92 68
mvsany_test389.11 24388.21 25791.83 20991.30 32990.25 7988.09 30178.76 37176.37 31296.43 8598.39 3083.79 22390.43 35986.57 22394.20 31794.80 296
ambc92.98 16896.88 14983.01 20895.92 6896.38 19196.41 8697.48 7488.26 17197.80 24289.96 15698.93 11898.12 139
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6490.42 14296.37 8797.35 8595.68 2099.25 7394.44 2499.34 6098.80 82
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10196.36 8896.68 13294.37 6599.32 6792.41 8899.05 10298.64 103
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3792.26 8596.33 8996.84 12095.10 4399.40 4593.47 5299.33 6299.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VDDNet94.03 12394.27 11893.31 16198.87 2182.36 21495.51 8691.78 30597.19 1296.32 9098.60 1984.24 22098.75 14587.09 21598.83 13198.81 80
UniMVSNet (Re)95.32 7895.15 8995.80 7097.79 10288.91 10292.91 16598.07 5693.46 6296.31 9195.97 17590.14 15299.34 6192.11 9299.64 2499.16 38
XVG-ACMP-BASELINE95.68 6295.34 8096.69 4198.40 6193.04 4194.54 12398.05 5990.45 14196.31 9196.76 12492.91 9698.72 15091.19 11799.42 5098.32 123
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10094.46 4496.29 9396.94 11293.56 7399.37 5694.29 2899.42 5098.99 55
Baseline_NR-MVSNet94.47 10895.09 9392.60 18798.50 5780.82 23592.08 19996.68 17493.82 5696.29 9398.56 2190.10 15597.75 24990.10 15399.66 2199.24 32
IS-MVSNet94.49 10794.35 11494.92 9898.25 7386.46 15497.13 1894.31 25596.24 2596.28 9596.36 15382.88 23299.35 5888.19 19499.52 3998.96 61
test_fmvs392.42 16792.40 16592.46 19393.80 28787.28 13193.86 14397.05 14776.86 30996.25 9698.66 1882.87 23391.26 35495.44 1496.83 25598.82 78
VDD-MVS94.37 10994.37 11394.40 12697.49 12386.07 16693.97 14093.28 27594.49 4396.24 9797.78 5687.99 17898.79 13888.92 18299.14 9598.34 122
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5295.96 21392.96 4389.48 27597.46 11385.14 23696.23 9895.42 20193.19 8698.08 21490.37 13898.76 13997.38 207
PM-MVS93.33 13692.67 15895.33 8696.58 16494.06 2192.26 19592.18 29685.92 22396.22 9996.61 13685.64 21495.99 31290.35 13998.23 18995.93 261
DeepC-MVS91.39 495.43 7195.33 8195.71 7497.67 11390.17 8093.86 14398.02 6687.35 20396.22 9997.99 4694.48 6399.05 9792.73 8199.68 1897.93 158
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
V4293.43 13493.58 13592.97 16995.34 24381.22 22992.67 17396.49 18687.25 20596.20 10196.37 15287.32 18898.85 12692.39 8998.21 19298.85 77
CSCG94.69 10094.75 10294.52 11997.55 12087.87 12395.01 10497.57 10592.68 7396.20 10193.44 27291.92 11598.78 14189.11 17899.24 8196.92 222
v192192093.26 13993.61 13492.19 19896.04 21078.31 27991.88 21097.24 13485.17 23596.19 10396.19 16486.76 20099.05 9794.18 3098.84 12699.22 33
EI-MVSNet-UG-set94.35 11194.27 11894.59 11692.46 30785.87 17092.42 18694.69 24893.67 6196.13 10495.84 18091.20 13198.86 12493.78 3998.23 18999.03 51
EI-MVSNet-Vis-set94.36 11094.28 11694.61 11292.55 30685.98 16792.44 18494.69 24893.70 5896.12 10595.81 18191.24 12898.86 12493.76 4298.22 19198.98 59
v119293.49 13293.78 12792.62 18696.16 19879.62 25691.83 21497.22 13686.07 22096.10 10696.38 15187.22 18999.02 10294.14 3198.88 12199.22 33
FMVSNet292.78 15692.73 15692.95 17195.40 23981.98 21794.18 13295.53 22788.63 17796.05 10797.37 7981.31 25198.81 13487.38 21198.67 14998.06 140
v14419293.20 14493.54 13892.16 20296.05 20678.26 28091.95 20497.14 14084.98 24195.96 10896.11 16887.08 19399.04 10093.79 3898.84 12699.17 37
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1392.35 8295.95 10996.41 14596.71 899.42 3293.99 3499.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test111190.39 21290.61 20589.74 27898.04 8871.50 34595.59 8179.72 37089.41 15995.94 11098.14 3570.79 31398.81 13488.52 19199.32 6498.90 70
v14892.87 15393.29 14291.62 21996.25 19277.72 28891.28 22695.05 23689.69 15395.93 11196.04 17187.34 18798.38 19090.05 15497.99 21098.78 84
v114493.50 13193.81 12592.57 18896.28 18879.61 25791.86 21396.96 15386.95 21195.91 11296.32 15587.65 18298.96 11093.51 4898.88 12199.13 41
Anonymous2024052192.86 15493.57 13690.74 25396.57 16575.50 31794.15 13395.60 21889.38 16095.90 11397.90 5480.39 25997.96 22692.60 8599.68 1898.75 87
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 9893.38 6495.89 11497.23 9393.35 8197.66 25488.20 19398.66 15197.79 175
PC_three_145275.31 31895.87 11595.75 18792.93 9596.34 30587.18 21398.68 14798.04 143
IU-MVS98.51 5186.66 14996.83 16572.74 33395.83 11693.00 7499.29 7098.64 103
Patchmatch-RL test88.81 25488.52 24489.69 28095.33 24479.94 24886.22 33392.71 28678.46 29995.80 11794.18 24866.25 33395.33 32589.22 17598.53 16193.78 320
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2391.40 11895.76 11896.87 11795.26 3599.45 2692.77 7899.21 8699.00 53
casdiffmvspermissive94.32 11394.80 10092.85 17796.05 20681.44 22692.35 18998.05 5991.53 11695.75 11996.80 12193.35 8198.49 18191.01 12298.32 18198.64 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6792.08 9095.74 12096.28 15995.22 3799.42 3293.17 6899.06 9998.88 73
VPNet93.08 14593.76 12891.03 24198.60 3975.83 31591.51 22095.62 21791.84 10195.74 12097.10 10389.31 16398.32 19585.07 24599.06 9998.93 64
test_f86.65 29487.13 27785.19 33490.28 34286.11 16586.52 33291.66 30669.76 35095.73 12297.21 9769.51 31781.28 37389.15 17794.40 31188.17 360
EU-MVSNet87.39 28186.71 28589.44 28293.40 29176.11 31094.93 10790.00 31857.17 37195.71 12397.37 7964.77 34197.68 25392.67 8394.37 31394.52 304
v2v48293.29 13793.63 13392.29 19496.35 18278.82 27391.77 21796.28 19388.45 18195.70 12496.26 16186.02 20998.90 11693.02 7398.81 13499.14 40
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7092.35 8295.63 12596.47 14195.37 2999.27 7293.78 3999.14 9598.48 115
Anonymous20240521192.58 16292.50 16292.83 17896.55 16783.22 20392.43 18591.64 30794.10 4995.59 12696.64 13481.88 24897.50 26085.12 24298.52 16297.77 177
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7392.35 8295.57 12796.61 13694.93 5199.41 3893.78 3999.15 9499.00 53
XXY-MVS92.58 16293.16 14790.84 25097.75 10479.84 25091.87 21196.22 19985.94 22295.53 12897.68 6092.69 10294.48 33283.21 26097.51 23098.21 131
new-patchmatchnet88.97 24990.79 20183.50 34494.28 27455.83 37885.34 33893.56 27086.18 21895.47 12995.73 18883.10 22996.51 29685.40 23798.06 20498.16 135
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9392.59 7695.47 12996.68 13294.50 6299.42 3293.10 7099.26 7898.99 55
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3596.95 1495.46 13199.23 493.45 7699.57 1495.34 1799.89 299.63 9
APD-MVScopyleft95.00 8994.69 10595.93 6297.38 12890.88 7194.59 11697.81 8689.22 16595.46 13196.17 16793.42 7999.34 6189.30 16998.87 12497.56 192
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
tt080595.42 7395.93 5693.86 14498.75 3288.47 11397.68 994.29 25696.48 2195.38 13393.63 26694.89 5297.94 22895.38 1696.92 25295.17 284
9.1494.81 9997.49 12394.11 13598.37 1787.56 20295.38 13396.03 17294.66 5799.08 9290.70 12998.97 113
IterMVS-SCA-FT91.65 18391.55 18191.94 20793.89 28379.22 26687.56 30793.51 27191.53 11695.37 13596.62 13578.65 27098.90 11691.89 10194.95 29997.70 182
ECVR-MVScopyleft90.12 22290.16 21490.00 27497.81 10072.68 33995.76 7578.54 37289.04 16795.36 13698.10 3870.51 31498.64 16687.10 21499.18 9098.67 96
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4491.74 10995.34 13796.36 15395.68 2099.44 2894.41 2599.28 7598.97 60
LS3D96.11 4795.83 6296.95 3694.75 25994.20 1997.34 1397.98 7097.31 1195.32 13896.77 12293.08 9199.20 7891.79 10498.16 19697.44 200
tttt051789.81 23288.90 24092.55 18997.00 14279.73 25595.03 10383.65 35989.88 15095.30 13994.79 22853.64 37099.39 4891.99 9798.79 13698.54 110
XVG-OURS94.72 9994.12 12196.50 4798.00 9194.23 1891.48 22198.17 4190.72 13395.30 13996.47 14187.94 17996.98 28291.41 11597.61 22898.30 126
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7392.26 8595.28 14196.57 13895.02 4799.41 3893.63 4399.11 9798.94 63
GeoE94.55 10594.68 10794.15 13197.23 13385.11 18094.14 13497.34 12588.71 17695.26 14295.50 19694.65 5899.12 8990.94 12398.40 16998.23 129
TinyColmap92.00 17892.76 15389.71 27995.62 23377.02 29690.72 23896.17 20287.70 19895.26 14296.29 15792.54 10596.45 29881.77 27498.77 13895.66 275
alignmvs93.26 13992.85 15194.50 12095.70 22687.45 12893.45 15495.76 21391.58 11495.25 14492.42 29881.96 24698.72 15091.61 10997.87 21697.33 209
EI-MVSNet92.99 14893.26 14692.19 19892.12 31479.21 26792.32 19194.67 25091.77 10795.24 14595.85 17887.14 19298.49 18191.99 9798.26 18598.86 74
MVSTER89.32 23988.75 24291.03 24190.10 34476.62 30590.85 23494.67 25082.27 26995.24 14595.79 18261.09 35698.49 18190.49 13398.26 18597.97 155
canonicalmvs94.59 10394.69 10594.30 12895.60 23487.03 13895.59 8198.24 3091.56 11595.21 14792.04 30494.95 5098.66 16391.45 11497.57 22997.20 213
MSP-MVS95.34 7794.63 10997.48 1498.67 3394.05 2396.41 4398.18 3791.26 12095.12 14895.15 21186.60 20399.50 2193.43 5896.81 25698.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GBi-Net93.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
test193.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
FMVSNet390.78 19990.32 21392.16 20293.03 30079.92 24992.54 17894.95 23986.17 21995.10 14996.01 17369.97 31698.75 14586.74 21898.38 17397.82 172
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5392.67 7595.08 15296.39 15094.77 5599.42 3293.17 6899.44 4898.58 109
AllTest94.88 9494.51 11196.00 5698.02 8992.17 5095.26 9398.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
TestCases96.00 5698.02 8992.17 5098.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
YYNet188.17 26488.24 25487.93 31192.21 31173.62 33180.75 36188.77 32182.51 26794.99 15595.11 21482.70 23793.70 34183.33 25893.83 32196.48 240
EPP-MVSNet93.91 12593.68 13294.59 11698.08 8285.55 17597.44 1294.03 26194.22 4794.94 15696.19 16482.07 24499.57 1487.28 21298.89 11998.65 98
MDA-MVSNet-bldmvs91.04 19490.88 19791.55 22194.68 26480.16 23885.49 33692.14 29990.41 14394.93 15795.79 18285.10 21596.93 28585.15 24094.19 31997.57 190
test_fmvs290.62 20590.40 21191.29 23291.93 31985.46 17692.70 17296.48 18774.44 32194.91 15897.59 6575.52 29790.57 35693.44 5596.56 26397.84 169
baseline94.26 11694.80 10092.64 18396.08 20480.99 23293.69 14898.04 6390.80 13294.89 15996.32 15593.19 8698.48 18591.68 10898.51 16498.43 118
MDA-MVSNet_test_wron88.16 26588.23 25587.93 31192.22 31073.71 33080.71 36288.84 32082.52 26694.88 16095.14 21282.70 23793.61 34283.28 25993.80 32296.46 241
LFMVS91.33 19191.16 19491.82 21096.27 18979.36 26295.01 10485.61 34796.04 3094.82 16197.06 10572.03 31098.46 18684.96 24698.70 14597.65 186
ITE_SJBPF95.95 5997.34 13093.36 4096.55 18491.93 9494.82 16195.39 20591.99 11397.08 27985.53 23697.96 21197.41 201
ZD-MVS97.23 13390.32 7897.54 10784.40 24794.78 16395.79 18292.76 10199.39 4888.72 18898.40 169
TSAR-MVS + MP.94.96 9194.75 10295.57 7898.86 2288.69 10596.37 4496.81 16685.23 23394.75 16497.12 10291.85 11699.40 4593.45 5498.33 17998.62 106
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Patchmtry90.11 22389.92 22190.66 25590.35 34177.00 29792.96 16392.81 28290.25 14594.74 16596.93 11367.11 32597.52 25985.17 23898.98 10997.46 197
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15590.79 7396.30 5497.82 8596.13 2694.74 16597.23 9391.33 12599.16 8193.25 6598.30 18298.46 116
c3_l91.32 19291.42 18691.00 24492.29 30976.79 30387.52 31096.42 18985.76 22694.72 16793.89 26082.73 23698.16 21090.93 12498.55 15898.04 143
TSAR-MVS + GP.93.07 14792.41 16495.06 9595.82 21990.87 7290.97 23292.61 29088.04 18994.61 16893.79 26388.08 17497.81 24189.41 16698.39 17296.50 239
OMC-MVS94.22 11893.69 13195.81 6997.25 13291.27 6492.27 19497.40 11787.10 20994.56 16995.42 20193.74 7198.11 21386.62 22298.85 12598.06 140
testgi90.38 21391.34 18987.50 31697.49 12371.54 34489.43 27695.16 23588.38 18494.54 17094.68 23292.88 9893.09 34671.60 34997.85 21797.88 164
VNet92.67 16092.96 14891.79 21196.27 18980.15 23991.95 20494.98 23892.19 8894.52 17196.07 17087.43 18697.39 26984.83 24798.38 17397.83 170
eth_miper_zixun_eth90.72 20090.61 20591.05 24092.04 31776.84 30286.91 31996.67 17585.21 23494.41 17293.92 25879.53 26398.26 20189.76 16097.02 24698.06 140
test20.0390.80 19890.85 19990.63 25695.63 23279.24 26589.81 26992.87 28189.90 14994.39 17396.40 14685.77 21095.27 32773.86 33699.05 10297.39 205
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17496.49 14094.56 6099.39 4893.57 4599.05 10298.93 64
X-MVStestdata90.70 20188.45 24697.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17426.89 37594.56 6099.39 4893.57 4599.05 10298.93 64
3Dnovator92.54 394.80 9794.90 9694.47 12395.47 23787.06 13696.63 3197.28 13291.82 10494.34 17697.41 7690.60 14698.65 16592.47 8798.11 20097.70 182
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3292.36 8194.11 17798.07 4192.02 11299.44 2893.38 6097.67 22597.85 168
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS90.18 22090.16 21490.21 26893.15 29675.98 31287.56 30792.97 28086.43 21594.09 17896.40 14678.32 27497.43 26587.87 20394.69 30797.23 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++93.25 14193.88 12491.37 22796.34 18382.81 20993.11 15997.74 9389.37 16194.08 17995.29 20990.40 15096.35 30390.35 13998.25 18794.96 291
BH-untuned90.68 20290.90 19690.05 27395.98 21279.57 25890.04 26194.94 24087.91 19094.07 18093.00 28187.76 18197.78 24579.19 30495.17 29592.80 338
miper_ehance_all_eth90.48 20790.42 21090.69 25491.62 32576.57 30686.83 32296.18 20183.38 25394.06 18192.66 29282.20 24298.04 21689.79 15997.02 24697.45 198
cl____90.65 20390.56 20790.91 24891.85 32076.98 29986.75 32495.36 23385.53 23094.06 18194.89 22277.36 28497.98 22590.27 14498.98 10997.76 178
DIV-MVS_self_test90.65 20390.56 20790.91 24891.85 32076.99 29886.75 32495.36 23385.52 23294.06 18194.89 22277.37 28397.99 22490.28 14398.97 11397.76 178
FA-MVS(test-final)91.81 18091.85 17691.68 21794.95 25079.99 24796.00 6293.44 27387.80 19494.02 18497.29 8977.60 27998.45 18788.04 19997.49 23196.61 233
pmmvs-eth3d91.54 18690.73 20393.99 13595.76 22487.86 12490.83 23593.98 26578.23 30194.02 18496.22 16382.62 23996.83 28886.57 22398.33 17997.29 211
h-mvs3392.89 15191.99 17295.58 7796.97 14390.55 7693.94 14194.01 26489.23 16393.95 18696.19 16476.88 29099.14 8491.02 12095.71 28097.04 218
hse-mvs292.24 17491.20 19195.38 8396.16 19890.65 7592.52 17992.01 30389.23 16393.95 18692.99 28276.88 29098.69 15991.02 12096.03 27296.81 227
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26494.64 26780.24 23789.69 27195.88 21085.77 22593.94 18895.69 18981.99 24592.98 34784.21 25491.30 34897.62 187
CNVR-MVS94.58 10494.29 11595.46 8296.94 14589.35 9691.81 21596.80 16789.66 15493.90 18995.44 20092.80 10098.72 15092.74 8098.52 16298.32 123
DeepC-MVS_fast89.96 793.73 12893.44 14094.60 11596.14 20087.90 12293.36 15697.14 14085.53 23093.90 18995.45 19991.30 12798.59 17289.51 16498.62 15297.31 210
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS-SEG-HR95.38 7595.00 9596.51 4698.10 8194.07 2092.46 18398.13 4690.69 13493.75 19196.25 16298.03 297.02 28192.08 9495.55 28398.45 117
QAPM92.88 15292.77 15293.22 16495.82 21983.31 20096.45 3997.35 12483.91 25093.75 19196.77 12289.25 16498.88 11984.56 25197.02 24697.49 196
MVS_111021_LR93.66 12993.28 14494.80 10396.25 19290.95 6990.21 25595.43 22987.91 19093.74 19394.40 24092.88 9896.38 30190.39 13698.28 18397.07 215
thisisatest053088.69 25887.52 26892.20 19796.33 18479.36 26292.81 16784.01 35886.44 21493.67 19492.68 29153.62 37199.25 7389.65 16398.45 16798.00 148
iter_conf0588.94 25188.09 26091.50 22492.74 30376.97 30092.80 16895.92 20982.82 26393.65 19595.37 20749.41 37499.13 8690.82 12599.28 7598.40 120
PCF-MVS84.52 1789.12 24287.71 26593.34 16096.06 20585.84 17186.58 33197.31 12768.46 35593.61 19693.89 26087.51 18598.52 17967.85 36098.11 20095.66 275
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR93.63 13093.42 14194.26 12996.65 15986.96 14189.30 28196.23 19788.36 18593.57 19794.60 23593.45 7697.77 24690.23 14798.38 17398.03 146
test250685.42 30184.57 30387.96 31097.81 10066.53 36396.14 5856.35 38089.04 16793.55 19898.10 3842.88 38298.68 16188.09 19899.18 9098.67 96
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9192.73 7293.48 19996.72 13094.23 6699.42 3291.99 9799.29 7099.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
RPSCF95.58 6694.89 9797.62 797.58 11896.30 795.97 6697.53 10992.42 7893.41 20097.78 5691.21 13097.77 24691.06 11997.06 24498.80 82
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23490.92 24694.58 26881.21 23091.10 23093.41 27477.03 30893.41 20093.99 25683.23 22897.80 24279.93 29594.80 30493.74 322
PMVScopyleft87.21 1494.97 9095.33 8193.91 14198.97 1797.16 295.54 8595.85 21296.47 2293.40 20297.46 7595.31 3395.47 32086.18 23298.78 13789.11 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP_MVS94.26 11693.93 12395.23 9197.71 10888.12 11894.56 12097.81 8691.74 10993.31 20395.59 19186.93 19698.95 11289.26 17398.51 16498.60 107
plane_prior388.43 11590.35 14493.31 203
thres600view787.66 27387.10 27989.36 28596.05 20673.17 33392.72 17085.31 35091.89 9693.29 20590.97 31863.42 34798.39 18873.23 33996.99 25196.51 236
CPTT-MVS94.74 9894.12 12196.60 4398.15 7893.01 4295.84 7197.66 9789.21 16693.28 20695.46 19888.89 16698.98 10589.80 15898.82 13297.80 174
USDC89.02 24589.08 23388.84 29495.07 24874.50 32488.97 28796.39 19073.21 32993.27 20796.28 15982.16 24396.39 30077.55 31498.80 13595.62 278
thres100view90087.35 28286.89 28188.72 29696.14 20073.09 33593.00 16285.31 35092.13 8993.26 20890.96 31963.42 34798.28 19771.27 35196.54 26494.79 297
N_pmnet88.90 25287.25 27393.83 14594.40 27293.81 3584.73 34287.09 33479.36 29193.26 20892.43 29779.29 26591.68 35277.50 31697.22 24096.00 258
CL-MVSNet_self_test90.04 22889.90 22290.47 25995.24 24577.81 28686.60 33092.62 28985.64 22893.25 21093.92 25883.84 22296.06 31079.93 29598.03 20797.53 194
mvs_anonymous90.37 21491.30 19087.58 31592.17 31368.00 35889.84 26894.73 24783.82 25293.22 21197.40 7787.54 18497.40 26887.94 20295.05 29797.34 208
test_yl90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
DCV-MVSNet90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
D2MVS89.93 22989.60 22990.92 24694.03 28078.40 27888.69 29594.85 24178.96 29693.08 21495.09 21574.57 30096.94 28388.19 19498.96 11597.41 201
UnsupCasMVSNet_bld88.50 26088.03 26189.90 27595.52 23678.88 27287.39 31194.02 26379.32 29293.06 21594.02 25480.72 25794.27 33775.16 33093.08 33396.54 234
miper_lstm_enhance89.90 23089.80 22490.19 27091.37 32877.50 29083.82 35295.00 23784.84 24493.05 21694.96 22076.53 29595.20 32889.96 15698.67 14997.86 166
PHI-MVS94.34 11293.80 12695.95 5995.65 23091.67 6294.82 10997.86 8087.86 19393.04 21794.16 24991.58 12098.78 14190.27 14498.96 11597.41 201
TAMVS90.16 22189.05 23493.49 15896.49 17386.37 15790.34 25292.55 29180.84 27892.99 21894.57 23781.94 24798.20 20573.51 33798.21 19295.90 264
Vis-MVSNet (Re-imp)90.42 20990.16 21491.20 23797.66 11477.32 29394.33 12787.66 33191.20 12392.99 21895.13 21375.40 29898.28 19777.86 31099.19 8897.99 151
FE-MVS89.06 24488.29 25191.36 22894.78 25779.57 25896.77 2890.99 31184.87 24392.96 22096.29 15760.69 35898.80 13780.18 29097.11 24395.71 271
ab-mvs92.40 16892.62 15991.74 21397.02 14181.65 22195.84 7195.50 22886.95 21192.95 22197.56 6790.70 14497.50 26079.63 29897.43 23496.06 256
MCST-MVS92.91 15092.51 16194.10 13397.52 12185.72 17391.36 22597.13 14280.33 28092.91 22294.24 24591.23 12998.72 15089.99 15597.93 21397.86 166
iter_conf_final90.23 21989.32 23092.95 17194.65 26681.46 22594.32 12995.40 23285.61 22992.84 22395.37 20754.58 36799.13 8692.16 9198.94 11798.25 128
ETV-MVS92.99 14892.74 15493.72 14795.86 21886.30 16092.33 19097.84 8391.70 11292.81 22486.17 36092.22 10999.19 7988.03 20097.73 22095.66 275
TAPA-MVS88.58 1092.49 16591.75 17994.73 10696.50 17289.69 8692.91 16597.68 9678.02 30292.79 22594.10 25090.85 13897.96 22684.76 24998.16 19696.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DROMVSNet95.44 7095.62 6994.89 9996.93 14787.69 12696.48 3899.14 493.93 5392.77 22694.52 23893.95 7099.49 2493.62 4499.22 8597.51 195
BH-RMVSNet90.47 20890.44 20990.56 25895.21 24678.65 27789.15 28593.94 26688.21 18692.74 22794.22 24686.38 20497.88 23378.67 30795.39 28995.14 287
旧先验290.00 26368.65 35492.71 22896.52 29585.15 240
cl2289.02 24588.50 24590.59 25789.76 34676.45 30786.62 32994.03 26182.98 26192.65 22992.49 29372.05 30997.53 25888.93 18197.02 24697.78 176
tfpn200view987.05 29086.52 28988.67 29795.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26494.79 297
thres40087.20 28686.52 28989.24 28995.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26496.51 236
test_fmvs1_n88.73 25788.38 24889.76 27792.06 31682.53 21192.30 19396.59 18071.14 34092.58 23295.41 20468.55 31989.57 36391.12 11895.66 28197.18 214
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28387.88 30392.49 29275.42 31692.57 23393.59 26980.44 25894.24 33981.28 27992.75 33694.69 302
miper_enhance_ethall88.42 26187.87 26390.07 27188.67 35875.52 31685.10 33995.59 22275.68 31392.49 23489.45 33878.96 26697.88 23387.86 20497.02 24696.81 227
CS-MVS95.77 5895.58 7196.37 5096.84 15291.72 6196.73 2999.06 594.23 4692.48 23594.79 22893.56 7399.49 2493.47 5299.05 10297.89 163
testdata91.03 24196.87 15082.01 21694.28 25771.55 33792.46 23695.42 20185.65 21397.38 27182.64 26597.27 23893.70 323
patch_mono-292.46 16692.72 15791.71 21596.65 15978.91 27188.85 29097.17 13883.89 25192.45 23796.76 12489.86 15997.09 27890.24 14698.59 15599.12 43
LF4IMVS92.72 15892.02 17194.84 10295.65 23091.99 5492.92 16496.60 17885.08 23992.44 23893.62 26786.80 19996.35 30386.81 21798.25 18796.18 252
diffmvspermissive91.74 18191.93 17491.15 23993.06 29878.17 28188.77 29397.51 11286.28 21692.42 23993.96 25788.04 17697.46 26390.69 13096.67 26197.82 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft95.02 8894.39 11296.91 3797.88 9793.58 3794.09 13696.99 15291.05 12692.40 24095.22 21091.03 13799.25 7392.11 9298.69 14697.90 161
ppachtmachnet_test88.61 25988.64 24388.50 30291.76 32270.99 34884.59 34592.98 27979.30 29392.38 24193.53 27179.57 26297.45 26486.50 22797.17 24197.07 215
Anonymous2023120688.77 25588.29 25190.20 26996.31 18678.81 27489.56 27493.49 27274.26 32392.38 24195.58 19482.21 24195.43 32272.07 34598.75 14196.34 245
MVS_Test92.57 16493.29 14290.40 26293.53 29075.85 31392.52 17996.96 15388.73 17492.35 24396.70 13190.77 13998.37 19392.53 8695.49 28596.99 220
PVSNet_Blended_VisFu91.63 18491.20 19192.94 17397.73 10783.95 19592.14 19897.46 11378.85 29892.35 24394.98 21984.16 22199.08 9286.36 22996.77 25895.79 268
CDPH-MVS92.67 16091.83 17795.18 9296.94 14588.46 11490.70 23997.07 14677.38 30492.34 24595.08 21692.67 10398.88 11985.74 23498.57 15798.20 132
NCCC94.08 12293.54 13895.70 7596.49 17389.90 8392.39 18896.91 15990.64 13692.33 24694.60 23590.58 14798.96 11090.21 14897.70 22398.23 129
CLD-MVS91.82 17991.41 18793.04 16696.37 17783.65 19886.82 32397.29 13084.65 24692.27 24789.67 33592.20 11097.85 23983.95 25599.47 4197.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS92.05 17792.16 16791.72 21494.44 27080.13 24187.62 30497.25 13387.34 20492.22 24893.18 27989.54 16298.73 14989.67 16298.20 19496.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 27587.31 27088.54 30094.71 26374.27 32793.10 16088.20 32786.20 21792.18 24993.04 28073.21 30595.52 31779.32 30285.82 36395.83 266
API-MVS91.52 18791.61 18091.26 23394.16 27586.26 16294.66 11494.82 24391.17 12492.13 25091.08 31790.03 15897.06 28079.09 30597.35 23790.45 354
DP-MVS Recon92.31 17191.88 17593.60 15097.18 13686.87 14291.10 23097.37 11884.92 24292.08 25194.08 25188.59 16798.20 20583.50 25798.14 19895.73 270
our_test_387.55 27787.59 26787.44 31791.76 32270.48 34983.83 35190.55 31679.79 28392.06 25292.17 30178.63 27295.63 31584.77 24894.73 30596.22 250
MSDG90.82 19790.67 20491.26 23394.16 27583.08 20786.63 32896.19 20090.60 13891.94 25391.89 30589.16 16595.75 31480.96 28494.51 31094.95 292
Effi-MVS+-dtu93.90 12692.60 16097.77 394.74 26096.67 594.00 13895.41 23089.94 14891.93 25492.13 30290.12 15398.97 10987.68 20697.48 23297.67 185
Gipumacopyleft95.31 8195.80 6493.81 14697.99 9490.91 7096.42 4297.95 7596.69 1791.78 25598.85 1291.77 11795.49 31991.72 10699.08 9895.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs187.59 27687.27 27288.54 30088.32 35981.26 22890.43 24995.72 21570.55 34691.70 25694.63 23368.13 32089.42 36490.59 13195.34 29194.94 294
HyFIR lowres test87.19 28785.51 29892.24 19697.12 14080.51 23685.03 34096.06 20466.11 36191.66 25792.98 28370.12 31599.14 8475.29 32995.23 29497.07 215
MVP-Stereo90.07 22688.92 23893.54 15496.31 18686.49 15290.93 23395.59 22279.80 28291.48 25895.59 19180.79 25697.39 26978.57 30891.19 34996.76 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20085.85 29885.18 29987.88 31394.44 27072.52 34089.08 28686.21 33988.57 18091.44 25988.40 34764.22 34298.00 22268.35 35995.88 27893.12 332
FMVSNet587.82 27086.56 28791.62 21992.31 30879.81 25393.49 15294.81 24583.26 25491.36 26096.93 11352.77 37297.49 26276.07 32598.03 20797.55 193
新几何193.17 16597.16 13787.29 13094.43 25367.95 35691.29 26194.94 22186.97 19598.23 20381.06 28397.75 21993.98 316
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
CDS-MVSNet89.55 23488.22 25693.53 15595.37 24286.49 15289.26 28293.59 26879.76 28491.15 26592.31 29977.12 28598.38 19077.51 31597.92 21495.71 271
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 17392.13 16992.68 18294.53 26984.10 19295.70 7697.03 14882.44 26891.14 26696.42 14488.47 16998.38 19085.95 23397.47 23395.55 279
CS-MVS-test95.32 7895.10 9295.96 5896.86 15190.75 7496.33 4799.20 293.99 5091.03 26793.73 26493.52 7599.55 1891.81 10399.45 4597.58 189
CNLPA91.72 18291.20 19193.26 16396.17 19791.02 6791.14 22895.55 22590.16 14690.87 26893.56 27086.31 20594.40 33579.92 29797.12 24294.37 307
test_prior290.21 25589.33 16290.77 26994.81 22590.41 14988.21 19298.55 158
test22296.95 14485.27 17988.83 29193.61 26765.09 36490.74 27094.85 22484.62 21997.36 23693.91 317
TR-MVS87.70 27187.17 27589.27 28794.11 27779.26 26488.69 29591.86 30481.94 27290.69 27189.79 33282.82 23597.42 26672.65 34391.98 34591.14 350
CVMVSNet85.16 30384.72 30086.48 32392.12 31470.19 35092.32 19188.17 32856.15 37290.64 27295.85 17867.97 32396.69 29288.78 18690.52 35292.56 340
TEST996.45 17589.46 9090.60 24296.92 15779.09 29490.49 27394.39 24191.31 12698.88 119
train_agg92.71 15991.83 17795.35 8496.45 17589.46 9090.60 24296.92 15779.37 28990.49 27394.39 24191.20 13198.88 11988.66 18998.43 16897.72 181
test_896.37 17789.14 9790.51 24596.89 16079.37 28990.42 27594.36 24391.20 13198.82 129
test_vis1_n89.01 24789.01 23689.03 29092.57 30582.46 21392.62 17696.06 20473.02 33190.40 27695.77 18674.86 29989.68 36190.78 12794.98 29894.95 292
KD-MVS_2432*160082.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
miper_refine_blended82.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
test_vis1_n_192089.45 23789.85 22388.28 30693.59 28976.71 30490.67 24097.78 9179.67 28690.30 27996.11 16876.62 29392.17 35090.31 14193.57 32595.96 259
agg_prior96.20 19588.89 10396.88 16190.21 28098.78 141
jason89.17 24188.32 24991.70 21695.73 22580.07 24288.10 30093.22 27671.98 33690.09 28192.79 28778.53 27398.56 17587.43 20997.06 24496.46 241
jason: jason.
Fast-Effi-MVS+-dtu92.77 15792.16 16794.58 11894.66 26588.25 11692.05 20096.65 17689.62 15590.08 28291.23 31492.56 10498.60 17086.30 23096.27 26996.90 223
CHOSEN 1792x268887.19 28785.92 29691.00 24497.13 13979.41 26184.51 34695.60 21864.14 36590.07 28394.81 22578.26 27597.14 27773.34 33895.38 29096.46 241
PatchMatch-RL89.18 24088.02 26292.64 18395.90 21792.87 4588.67 29791.06 31080.34 27990.03 28491.67 30983.34 22694.42 33476.35 32494.84 30390.64 353
BH-w/o87.21 28587.02 28087.79 31494.77 25877.27 29487.90 30293.21 27881.74 27389.99 28588.39 34883.47 22596.93 28571.29 35092.43 34189.15 355
Fast-Effi-MVS+91.28 19390.86 19892.53 19095.45 23882.53 21189.25 28496.52 18585.00 24089.91 28688.55 34692.94 9498.84 12784.72 25095.44 28796.22 250
AdaColmapbinary91.63 18491.36 18892.47 19295.56 23586.36 15892.24 19796.27 19488.88 17389.90 28792.69 29091.65 11998.32 19577.38 31797.64 22692.72 339
GA-MVS87.70 27186.82 28290.31 26393.27 29377.22 29584.72 34492.79 28485.11 23889.82 28890.07 32766.80 32897.76 24884.56 25194.27 31695.96 259
Patchmatch-test86.10 29786.01 29486.38 32790.63 33674.22 32889.57 27386.69 33685.73 22789.81 28992.83 28565.24 33991.04 35577.82 31395.78 27993.88 319
EIA-MVS92.35 17092.03 17093.30 16295.81 22183.97 19492.80 16898.17 4187.71 19789.79 29087.56 35091.17 13499.18 8087.97 20197.27 23896.77 229
test1294.43 12595.95 21486.75 14596.24 19689.76 29189.79 16098.79 13897.95 21297.75 180
pmmvs488.95 25087.70 26692.70 18194.30 27385.60 17487.22 31392.16 29874.62 32089.75 29294.19 24777.97 27796.41 29982.71 26496.36 26896.09 254
原ACMM192.87 17696.91 14884.22 18997.01 14976.84 31089.64 29394.46 23988.00 17798.70 15781.53 27798.01 20995.70 273
MG-MVS89.54 23589.80 22488.76 29594.88 25172.47 34189.60 27292.44 29385.82 22489.48 29495.98 17482.85 23497.74 25081.87 27395.27 29396.08 255
114514_t90.51 20689.80 22492.63 18598.00 9182.24 21593.40 15597.29 13065.84 36289.40 29594.80 22786.99 19498.75 14583.88 25698.61 15396.89 224
Effi-MVS+92.79 15592.74 15492.94 17395.10 24783.30 20194.00 13897.53 10991.36 11989.35 29690.65 32694.01 6998.66 16387.40 21095.30 29296.88 225
CR-MVSNet87.89 26787.12 27890.22 26791.01 33278.93 26992.52 17992.81 28273.08 33089.10 29796.93 11367.11 32597.64 25588.80 18592.70 33794.08 311
RPMNet90.31 21890.14 21890.81 25291.01 33278.93 26992.52 17998.12 4791.91 9589.10 29796.89 11668.84 31899.41 3890.17 14992.70 33794.08 311
PatchT87.51 27888.17 25885.55 33090.64 33566.91 36092.02 20286.09 34192.20 8789.05 29997.16 9964.15 34396.37 30289.21 17692.98 33593.37 330
MVSFormer92.18 17592.23 16692.04 20694.74 26080.06 24397.15 1597.37 11888.98 16988.83 30092.79 28777.02 28799.60 996.41 496.75 25996.46 241
lupinMVS88.34 26387.31 27091.45 22594.74 26080.06 24387.23 31292.27 29571.10 34188.83 30091.15 31577.02 28798.53 17886.67 22196.75 25995.76 269
HQP-NCC96.36 17991.37 22287.16 20688.81 302
ACMP_Plane96.36 17991.37 22287.16 20688.81 302
HQP4-MVS88.81 30298.61 16898.15 136
HQP-MVS92.09 17691.49 18593.88 14296.36 17984.89 18291.37 22297.31 12787.16 20688.81 30293.40 27384.76 21798.60 17086.55 22597.73 22098.14 137
PAPM_NR91.03 19590.81 20091.68 21796.73 15781.10 23193.72 14796.35 19288.19 18788.77 30692.12 30385.09 21697.25 27382.40 26993.90 32096.68 232
SCA87.43 28087.21 27488.10 30992.01 31871.98 34389.43 27688.11 32982.26 27088.71 30792.83 28578.65 27097.59 25679.61 29993.30 32894.75 299
F-COLMAP92.28 17291.06 19595.95 5997.52 12191.90 5693.53 15197.18 13783.98 24988.70 30894.04 25288.41 17098.55 17780.17 29195.99 27497.39 205
PVSNet_BlendedMVS90.35 21589.96 22091.54 22294.81 25578.80 27590.14 25896.93 15579.43 28888.68 30995.06 21786.27 20698.15 21180.27 28798.04 20697.68 184
PVSNet_Blended88.74 25688.16 25990.46 26194.81 25578.80 27586.64 32796.93 15574.67 31988.68 30989.18 34286.27 20698.15 21180.27 28796.00 27394.44 306
mvsany_test183.91 31182.93 31586.84 32286.18 37085.93 16881.11 36075.03 37570.80 34588.57 31194.63 23383.08 23087.38 36780.39 28586.57 36287.21 362
AUN-MVS90.05 22788.30 25095.32 8896.09 20390.52 7792.42 18692.05 30282.08 27188.45 31292.86 28465.76 33598.69 15988.91 18396.07 27196.75 231
pmmvs587.87 26887.14 27690.07 27193.26 29476.97 30088.89 28992.18 29673.71 32688.36 31393.89 26076.86 29296.73 29180.32 28696.81 25696.51 236
WTY-MVS86.93 29286.50 29188.24 30794.96 24974.64 32087.19 31492.07 30178.29 30088.32 31491.59 31178.06 27694.27 33774.88 33193.15 33195.80 267
thisisatest051584.72 30682.99 31489.90 27592.96 30175.33 31884.36 34783.42 36077.37 30588.27 31586.65 35553.94 36998.72 15082.56 26697.40 23595.67 274
MIMVSNet87.13 28986.54 28888.89 29396.05 20676.11 31094.39 12588.51 32381.37 27488.27 31596.75 12672.38 30795.52 31765.71 36595.47 28695.03 289
test0.0.03 182.48 31981.47 32385.48 33189.70 34773.57 33284.73 34281.64 36483.07 25988.13 31786.61 35662.86 35089.10 36666.24 36490.29 35393.77 321
CMPMVSbinary68.83 2287.28 28385.67 29792.09 20488.77 35785.42 17790.31 25394.38 25470.02 34988.00 31893.30 27573.78 30494.03 34075.96 32796.54 26496.83 226
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS281.31 32783.44 31074.92 35590.52 33846.49 38069.19 36985.23 35384.30 24887.95 31994.71 23176.95 28984.36 37264.07 36698.09 20293.89 318
xiu_mvs_v2_base89.00 24889.19 23188.46 30494.86 25374.63 32186.97 31795.60 21880.88 27687.83 32088.62 34591.04 13698.81 13482.51 26894.38 31291.93 345
PS-MVSNAJ88.86 25388.99 23788.48 30394.88 25174.71 31986.69 32695.60 21880.88 27687.83 32087.37 35390.77 13998.82 12982.52 26794.37 31391.93 345
test_vis1_rt85.58 30084.58 30288.60 29987.97 36086.76 14485.45 33793.59 26866.43 35987.64 32289.20 34179.33 26485.38 37081.59 27689.98 35593.66 324
tpm84.38 30884.08 30785.30 33390.47 33963.43 37389.34 27985.63 34677.24 30787.62 32395.03 21861.00 35797.30 27279.26 30391.09 35195.16 285
sss87.23 28486.82 28288.46 30493.96 28177.94 28286.84 32192.78 28577.59 30387.61 32491.83 30678.75 26891.92 35177.84 31194.20 31795.52 280
MAR-MVS90.32 21788.87 24194.66 11094.82 25491.85 5794.22 13194.75 24680.91 27587.52 32588.07 34986.63 20297.87 23676.67 32196.21 27094.25 310
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS89.35 23888.40 24792.18 20196.13 20284.20 19086.96 31896.15 20375.40 31787.36 32691.55 31283.30 22798.01 22182.17 27296.62 26294.32 309
UGNet93.08 14592.50 16294.79 10493.87 28487.99 12195.07 10194.26 25890.64 13687.33 32797.67 6186.89 19898.49 18188.10 19798.71 14397.91 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive85.22 30284.64 30186.98 32089.51 35169.83 35590.52 24487.34 33378.87 29787.22 32892.74 28966.91 32796.53 29481.77 27486.88 36194.58 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
1112_ss88.42 26187.41 26991.45 22596.69 15880.99 23289.72 27096.72 17373.37 32787.00 32990.69 32477.38 28298.20 20581.38 27893.72 32395.15 286
cascas87.02 29186.28 29389.25 28891.56 32676.45 30784.33 34896.78 16871.01 34286.89 33085.91 36181.35 25096.94 28383.09 26195.60 28294.35 308
CANet92.38 16991.99 17293.52 15793.82 28683.46 19991.14 22897.00 15089.81 15186.47 33194.04 25287.90 18099.21 7689.50 16598.27 18497.90 161
Test_1112_low_res87.50 27986.58 28690.25 26696.80 15677.75 28787.53 30996.25 19569.73 35186.47 33193.61 26875.67 29697.88 23379.95 29393.20 32995.11 288
PLCcopyleft85.34 1590.40 21088.92 23894.85 10196.53 17190.02 8191.58 21996.48 18780.16 28186.14 33392.18 30085.73 21198.25 20276.87 32094.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
new_pmnet81.22 32881.01 32781.86 34890.92 33470.15 35184.03 34980.25 36970.83 34385.97 33489.78 33367.93 32484.65 37167.44 36191.90 34690.78 352
EPMVS81.17 33080.37 33283.58 34385.58 37265.08 36890.31 25371.34 37677.31 30685.80 33591.30 31359.38 35992.70 34879.99 29282.34 36992.96 336
tpmvs84.22 30983.97 30884.94 33587.09 36665.18 36691.21 22788.35 32482.87 26285.21 33690.96 31965.24 33996.75 29079.60 30185.25 36492.90 337
FPMVS84.50 30783.28 31188.16 30896.32 18594.49 1685.76 33485.47 34883.09 25885.20 33794.26 24463.79 34686.58 36963.72 36791.88 34783.40 366
pmmvs380.83 33278.96 33886.45 32487.23 36577.48 29184.87 34182.31 36263.83 36685.03 33889.50 33749.66 37393.10 34573.12 34195.10 29688.78 359
PAPR87.65 27486.77 28490.27 26592.85 30277.38 29288.56 29896.23 19776.82 31184.98 33989.75 33486.08 20897.16 27672.33 34493.35 32796.26 249
MDTV_nov1_ep1383.88 30989.42 35261.52 37488.74 29487.41 33273.99 32484.96 34094.01 25565.25 33895.53 31678.02 30993.16 330
131486.46 29586.33 29286.87 32191.65 32474.54 32291.94 20694.10 26074.28 32284.78 34187.33 35483.03 23195.00 32978.72 30691.16 35091.06 351
ADS-MVSNet284.01 31082.20 31989.41 28389.04 35476.37 30987.57 30590.98 31272.71 33484.46 34292.45 29468.08 32196.48 29770.58 35583.97 36595.38 281
ADS-MVSNet82.25 32081.55 32184.34 34089.04 35465.30 36587.57 30585.13 35472.71 33484.46 34292.45 29468.08 32192.33 34970.58 35583.97 36595.38 281
PVSNet76.22 2082.89 31782.37 31784.48 33993.96 28164.38 37178.60 36488.61 32271.50 33884.43 34486.36 35974.27 30194.60 33169.87 35793.69 32494.46 305
MVS84.98 30584.30 30587.01 31991.03 33177.69 28991.94 20694.16 25959.36 37084.23 34587.50 35285.66 21296.80 28971.79 34693.05 33486.54 363
tpmrst82.85 31882.93 31582.64 34687.65 36158.99 37690.14 25887.90 33075.54 31583.93 34691.63 31066.79 33095.36 32381.21 28181.54 37093.57 329
ET-MVSNet_ETH3D86.15 29684.27 30691.79 21193.04 29981.28 22787.17 31586.14 34079.57 28783.65 34788.66 34457.10 36298.18 20887.74 20595.40 28895.90 264
HY-MVS82.50 1886.81 29385.93 29589.47 28193.63 28877.93 28394.02 13791.58 30875.68 31383.64 34893.64 26577.40 28197.42 26671.70 34892.07 34493.05 335
MDTV_nov1_ep13_2view42.48 38188.45 29967.22 35883.56 34966.80 32872.86 34294.06 313
CostFormer83.09 31582.21 31885.73 32989.27 35367.01 35990.35 25186.47 33870.42 34783.52 35093.23 27861.18 35596.85 28777.21 31888.26 35993.34 331
DSMNet-mixed82.21 32181.56 32084.16 34189.57 35070.00 35490.65 24177.66 37454.99 37383.30 35197.57 6677.89 27890.50 35866.86 36395.54 28491.97 344
E-PMN80.72 33380.86 32880.29 35185.11 37368.77 35772.96 36681.97 36387.76 19683.25 35283.01 36862.22 35389.17 36577.15 31994.31 31582.93 367
test-LLR83.58 31283.17 31284.79 33789.68 34866.86 36183.08 35384.52 35583.07 25982.85 35384.78 36462.86 35093.49 34382.85 26294.86 30194.03 314
test-mter81.21 32980.01 33684.79 33789.68 34866.86 36183.08 35384.52 35573.85 32582.85 35384.78 36443.66 37993.49 34382.85 26294.86 30194.03 314
CANet_DTU89.85 23189.17 23291.87 20892.20 31280.02 24690.79 23695.87 21186.02 22182.53 35591.77 30780.01 26098.57 17485.66 23597.70 22397.01 219
MVS_030490.96 19690.15 21793.37 15993.17 29587.06 13693.62 15092.43 29489.60 15682.25 35695.50 19682.56 24097.83 24084.41 25397.83 21895.22 283
JIA-IIPM85.08 30483.04 31391.19 23887.56 36286.14 16489.40 27884.44 35788.98 16982.20 35797.95 4756.82 36496.15 30676.55 32383.45 36791.30 349
PMMVS83.00 31681.11 32488.66 29883.81 37786.44 15582.24 35785.65 34561.75 36982.07 35885.64 36279.75 26191.59 35375.99 32693.09 33287.94 361
tpm281.46 32680.35 33384.80 33689.90 34565.14 36790.44 24685.36 34965.82 36382.05 35992.44 29657.94 36196.69 29270.71 35488.49 35892.56 340
IB-MVS77.21 1983.11 31481.05 32589.29 28691.15 33075.85 31385.66 33586.00 34279.70 28582.02 36086.61 35648.26 37598.39 18877.84 31192.22 34293.63 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat180.61 33479.46 33784.07 34288.78 35665.06 36989.26 28288.23 32662.27 36881.90 36189.66 33662.70 35295.29 32671.72 34780.60 37191.86 347
EMVS80.35 33580.28 33480.54 35084.73 37569.07 35672.54 36880.73 36687.80 19481.66 36281.73 36962.89 34989.84 36075.79 32894.65 30882.71 368
dp79.28 33778.62 33981.24 34985.97 37156.45 37786.91 31985.26 35272.97 33281.45 36389.17 34356.01 36695.45 32173.19 34076.68 37291.82 348
EPNet89.80 23388.25 25394.45 12483.91 37686.18 16393.87 14287.07 33591.16 12580.64 36494.72 23078.83 26798.89 11885.17 23898.89 11998.28 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TESTMET0.1,179.09 33878.04 34082.25 34787.52 36364.03 37283.08 35380.62 36770.28 34880.16 36583.22 36744.13 37890.56 35779.95 29393.36 32692.15 343
baseline283.38 31381.54 32288.90 29291.38 32772.84 33888.78 29281.22 36578.97 29579.82 36687.56 35061.73 35497.80 24274.30 33490.05 35496.05 257
gg-mvs-nofinetune82.10 32481.02 32685.34 33287.46 36471.04 34694.74 11167.56 37796.44 2379.43 36798.99 645.24 37696.15 30667.18 36292.17 34388.85 357
PVSNet_070.34 2174.58 34072.96 34379.47 35290.63 33666.24 36473.26 36583.40 36163.67 36778.02 36878.35 37172.53 30689.59 36256.68 37160.05 37582.57 369
MVS-HIRNet78.83 33980.60 33173.51 35693.07 29747.37 37987.10 31678.00 37368.94 35377.53 36997.26 9071.45 31194.62 33063.28 36888.74 35778.55 371
CHOSEN 280x42080.04 33677.97 34186.23 32890.13 34374.53 32372.87 36789.59 31966.38 36076.29 37085.32 36356.96 36395.36 32369.49 35894.72 30688.79 358
PAPM81.91 32580.11 33587.31 31893.87 28472.32 34284.02 35093.22 27669.47 35276.13 37189.84 32972.15 30897.23 27453.27 37389.02 35692.37 342
GG-mvs-BLEND83.24 34585.06 37471.03 34794.99 10665.55 37874.09 37275.51 37244.57 37794.46 33359.57 37087.54 36084.24 365
EPNet_dtu85.63 29984.37 30489.40 28486.30 36974.33 32691.64 21888.26 32584.84 24472.96 37389.85 32871.27 31297.69 25276.60 32297.62 22796.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVEpermissive59.87 2373.86 34172.65 34477.47 35487.00 36874.35 32561.37 37160.93 37967.27 35769.69 37486.49 35881.24 25472.33 37556.45 37283.45 36785.74 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 35870.38 38064.56 37048.52 38233.01 37465.50 37574.21 37356.19 36546.64 37738.45 37670.07 37350.30 373
tmp_tt37.97 34344.33 34618.88 35911.80 38221.54 38263.51 37045.66 3834.23 37651.34 37650.48 37459.08 36022.11 37844.50 37568.35 37413.00 374
test_method50.44 34248.94 34554.93 35739.68 38112.38 38328.59 37290.09 3176.82 37541.10 37778.41 37054.41 36870.69 37650.12 37451.26 37681.72 370
EGC-MVSNET80.97 33175.73 34296.67 4298.85 2494.55 1596.83 2396.60 1782.44 3775.32 37898.25 3392.24 10898.02 22091.85 10299.21 8697.45 198
test1239.49 34512.01 3481.91 3602.87 3831.30 38482.38 3561.34 3851.36 3782.84 3796.56 3772.45 3830.97 3792.73 3775.56 3773.47 375
testmvs9.02 34611.42 3491.81 3612.77 3841.13 38579.44 3631.90 3841.18 3792.65 3806.80 3761.95 3840.87 3802.62 3783.45 3783.44 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.35 34431.13 3470.00 3620.00 3850.00 3860.00 37395.58 2240.00 3800.00 38191.15 31593.43 780.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.56 34710.09 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38090.77 1390.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.56 34710.08 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38190.69 3240.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
No_MVS95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
eth-test20.00 385
eth-test0.00 385
OPU-MVS95.15 9396.84 15289.43 9295.21 9495.66 19093.12 8998.06 21586.28 23198.61 15397.95 156
save fliter97.46 12688.05 12092.04 20197.08 14587.63 200
test_0728_SECOND94.88 10098.55 4586.72 14695.20 9698.22 3299.38 5493.44 5599.31 6598.53 111
GSMVS94.75 299
sam_mvs166.64 33194.75 299
sam_mvs66.41 332
MTGPAbinary97.62 100
test_post190.21 2555.85 37965.36 33796.00 31179.61 299
test_post6.07 37865.74 33695.84 313
patchmatchnet-post91.71 30866.22 33497.59 256
MTMP94.82 10954.62 381
gm-plane-assit87.08 36759.33 37571.22 33983.58 36697.20 27573.95 335
test9_res88.16 19698.40 16997.83 170
agg_prior287.06 21698.36 17897.98 152
test_prior489.91 8290.74 237
test_prior94.61 11295.95 21487.23 13297.36 12398.68 16197.93 158
新几何290.02 262
旧先验196.20 19584.17 19194.82 24395.57 19589.57 16197.89 21596.32 246
无先验89.94 26495.75 21470.81 34498.59 17281.17 28294.81 295
原ACMM289.34 279
testdata298.03 21780.24 289
segment_acmp92.14 111
testdata188.96 28888.44 182
plane_prior797.71 10888.68 106
plane_prior697.21 13588.23 11786.93 196
plane_prior597.81 8698.95 11289.26 17398.51 16498.60 107
plane_prior495.59 191
plane_prior294.56 12091.74 109
plane_prior197.38 128
plane_prior88.12 11893.01 16188.98 16998.06 204
n20.00 386
nn0.00 386
door-mid92.13 300
test1196.65 176
door91.26 309
HQP5-MVS84.89 182
BP-MVS86.55 225
HQP3-MVS97.31 12797.73 220
HQP2-MVS84.76 217
NP-MVS96.82 15487.10 13593.40 273
ACMMP++_ref98.82 132
ACMMP++99.25 79
Test By Simon90.61 145