This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10598.16 298.94 299.33 297.84 499.08 9490.73 12499.73 1499.59 12
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17899.57 1395.86 999.69 1599.46 18
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 17196.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet-Re94.20 11994.58 10493.04 17095.91 20783.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10581.28 26798.54 14996.96 214
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7788.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19798.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2797.58 798.72 898.97 793.15 8499.15 8393.18 6499.74 1399.50 16
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22594.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20698.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
wuyk23d87.83 26490.79 20378.96 34190.46 32888.63 10592.72 15690.67 30491.65 10998.68 1197.64 5396.06 1677.53 36159.84 35699.41 5270.73 359
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17896.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18896.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 17996.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23594.86 3898.49 1598.74 1681.45 24999.60 894.69 1699.39 5499.15 37
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 4897.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5196.59 1998.46 1798.43 2792.91 9099.52 1796.25 699.76 1199.65 8
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19498.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19196.31 4197.53 10797.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
test_part194.39 10894.55 10593.92 14496.14 18982.86 20495.54 6998.09 4795.36 3598.27 2098.36 2875.91 29099.44 2393.41 5499.84 399.47 17
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17090.30 13699.60 2598.72 90
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20891.38 11599.69 1599.42 19
ANet_high94.83 9396.28 3690.47 25596.65 15173.16 32194.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16190.38 13199.68 1899.53 14
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11793.85 3399.49 3899.36 24
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 15993.73 5697.87 2698.49 2490.73 14499.05 9986.43 21599.60 2599.10 44
TransMVSNet (Re)95.27 7896.04 5192.97 17398.37 5981.92 21295.07 8796.76 16693.97 5297.77 2798.57 1995.72 1897.90 23188.89 17399.23 7699.08 45
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2092.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13296.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8697.37 11593.92 5497.65 3095.90 15990.10 15899.33 6490.11 14499.66 2199.26 29
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 7998.10 4491.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
test_241102_ONE98.51 4586.97 13898.10 4491.85 9497.63 3197.03 9096.48 1198.95 117
test072698.51 4586.69 14595.34 7498.18 3291.85 9497.63 3197.37 6895.58 22
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8396.77 16596.64 1897.61 3498.05 3493.23 8198.79 14188.60 18099.04 9998.78 81
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6496.51 999.40 4094.06 3099.23 7698.85 75
test_241102_TWO98.10 4491.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
FC-MVSNet-test95.32 7395.88 5793.62 15398.49 5381.77 21395.90 5798.32 1793.93 5397.53 3797.56 5688.48 17199.40 4092.91 7599.83 699.68 4
K. test v393.37 13693.27 14693.66 15298.05 7882.62 20694.35 11486.62 32796.05 2797.51 3898.85 1276.59 28899.65 393.21 6398.20 19098.73 89
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 7895.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
v894.65 10095.29 7892.74 18496.65 15179.77 24694.59 10497.17 13691.86 9397.47 4097.93 4088.16 17699.08 9494.32 2299.47 3999.38 22
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10390.68 13297.43 4198.00 3788.18 17599.15 8394.84 1599.55 3499.41 20
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 21097.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8197.00 14691.85 9497.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17595.46 7297.12 14091.84 9797.28 4698.46 2595.30 3497.71 25190.17 14299.42 4798.99 53
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13294.64 1799.53 3598.99 53
SD-MVS95.19 7995.73 6593.55 15696.62 15488.88 10294.67 10198.05 5591.26 11897.25 4896.40 13195.42 2694.36 33492.72 8099.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6090.82 12897.15 4996.85 10196.25 1599.00 10993.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v093.87 14898.05 7883.77 19280.32 35997.13 5097.91 4277.49 27699.11 9192.62 8298.08 20198.74 87
FIs94.90 8795.35 7493.55 15698.28 6381.76 21495.33 7598.14 3993.05 6797.07 5197.18 8287.65 18599.29 6891.72 10599.69 1599.61 11
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
VPA-MVSNet95.14 8095.67 6793.58 15597.76 9483.15 20094.58 10697.58 10293.39 6397.05 5498.04 3593.25 8098.51 18489.75 15499.59 2799.08 45
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18195.99 5196.56 17592.38 7597.03 5598.53 2190.12 15598.98 11088.78 17599.16 8398.65 92
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11898.00 145
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9095.40 2793.49 4498.84 11898.00 145
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8995.63 2199.39 4593.31 5898.88 11398.75 84
EG-PatchMatch MVS94.54 10594.67 10194.14 13597.87 9186.50 14892.00 19296.74 16788.16 18396.93 5997.61 5493.04 8897.90 23191.60 10998.12 19798.03 143
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12698.53 107
DIV-MVS_2432*160094.10 12194.73 9792.19 20297.66 10579.49 25194.86 9597.12 14089.59 15496.87 6197.65 5290.40 15298.34 19889.08 16999.35 5798.75 84
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1787.89 18896.86 6297.38 6795.55 2499.39 4595.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5695.48 2598.77 14990.11 14499.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8294.91 3796.80 6595.78 16990.42 14999.41 3591.60 10999.58 3199.29 28
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8593.99 5096.80 6595.90 15990.10 15899.41 3591.60 10999.58 3199.26 29
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12490.05 14496.77 6796.85 10195.04 4498.56 17992.77 7699.06 9198.70 91
test_part298.21 6889.41 9196.72 68
v124093.29 13893.71 13092.06 20996.01 20177.89 27591.81 20797.37 11585.12 23596.69 6996.40 13186.67 20599.07 9894.51 1898.76 13299.22 32
tfpnnormal94.27 11594.87 9192.48 19697.71 9980.88 22794.55 11095.41 22293.70 5796.67 7097.72 4991.40 12498.18 21287.45 19899.18 8298.36 118
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25095.68 20993.70 5796.62 7295.39 19187.21 19399.04 10287.50 19799.64 2399.33 25
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 4889.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9696.94 1496.58 7497.32 7593.07 8798.72 15590.45 12898.84 11897.57 185
IterMVS-LS93.78 12894.28 11592.27 19996.27 17879.21 25891.87 20196.78 16391.77 10396.57 7597.07 8787.15 19498.74 15391.99 9599.03 10098.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
ambc92.98 17296.88 14283.01 20395.92 5696.38 18596.41 7797.48 6288.26 17497.80 24289.96 14998.93 11098.12 137
Regformer-494.90 8794.67 10195.59 7692.78 29489.02 9792.39 17395.91 20294.50 4296.41 7795.56 18092.10 10899.01 10794.23 2698.14 19498.74 87
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6090.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1287.63 19596.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 891.84 9796.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10495.10 4299.40 4093.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VDDNet94.03 12394.27 11793.31 16598.87 1982.36 20895.51 7191.78 29697.19 1196.32 8398.60 1884.24 22498.75 15087.09 20398.83 12398.81 78
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5193.46 6296.31 8495.97 15890.14 15499.34 5992.11 9099.64 2399.16 36
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5590.45 13896.31 8496.76 10892.91 9098.72 15591.19 11699.42 4798.32 120
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
Baseline_NR-MVSNet94.47 10795.09 8692.60 19198.50 5280.82 22892.08 18796.68 16993.82 5596.29 8698.56 2090.10 15897.75 24990.10 14699.66 2199.24 31
IS-MVSNet94.49 10694.35 11294.92 10298.25 6686.46 15197.13 1394.31 24996.24 2396.28 8996.36 13882.88 23399.35 5688.19 18499.52 3798.96 60
VDD-MVS94.37 10994.37 11194.40 12997.49 11486.07 16293.97 12893.28 26694.49 4396.24 9097.78 4687.99 18198.79 14188.92 17199.14 8598.34 119
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5195.96 20392.96 4389.48 26897.46 11185.14 23396.23 9195.42 18893.19 8298.08 21890.37 13298.76 13297.38 200
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28785.92 22196.22 9296.61 12085.64 21895.99 31090.35 13398.23 18595.93 254
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6287.35 19996.22 9297.99 3894.48 6199.05 9992.73 7999.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
V4293.43 13593.58 13592.97 17395.34 23581.22 22292.67 15996.49 18087.25 20196.20 9496.37 13787.32 19198.85 13192.39 8998.21 18898.85 75
CSCG94.69 9894.75 9594.52 12197.55 11187.87 12395.01 9097.57 10392.68 6996.20 9493.44 25791.92 11398.78 14589.11 16899.24 7596.92 215
v192192093.26 14193.61 13492.19 20296.04 20078.31 26991.88 20097.24 13285.17 23296.19 9696.19 14886.76 20499.05 9994.18 2898.84 11899.22 32
Regformer-294.86 9094.55 10595.77 6992.83 29289.98 8091.87 20196.40 18394.38 4696.19 9695.04 20392.47 10399.04 10293.49 4498.31 17498.28 124
EI-MVSNet-UG-set94.35 11194.27 11794.59 11892.46 29785.87 16592.42 17194.69 24293.67 6196.13 9895.84 16491.20 13398.86 12993.78 3598.23 18599.03 49
EI-MVSNet-Vis-set94.36 11094.28 11594.61 11392.55 29685.98 16392.44 16994.69 24293.70 5796.12 9995.81 16591.24 13098.86 12993.76 3898.22 18798.98 58
v119293.49 13393.78 12792.62 19096.16 18779.62 24891.83 20697.22 13486.07 21896.10 10096.38 13687.22 19299.02 10594.14 2998.88 11399.22 32
FMVSNet292.78 15992.73 15892.95 17595.40 23181.98 21194.18 11995.53 21988.63 17396.05 10197.37 6881.31 25198.81 13987.38 20198.67 14098.06 139
Regformer-394.28 11494.23 11994.46 12692.78 29486.28 15892.39 17394.70 24193.69 6095.97 10295.56 18091.34 12598.48 18993.45 4998.14 19498.62 100
v14419293.20 14693.54 13892.16 20696.05 19678.26 27091.95 19397.14 13784.98 23995.96 10396.11 15287.08 19699.04 10293.79 3498.84 11899.17 35
Regformer-194.55 10394.33 11395.19 9492.83 29288.54 11091.87 20195.84 20693.99 5095.95 10495.04 20392.00 11098.79 14193.14 6798.31 17498.23 127
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14892.87 15693.29 14391.62 22096.25 18177.72 27891.28 21995.05 22889.69 15095.93 10696.04 15487.34 19098.38 19490.05 14797.99 20898.78 81
v114493.50 13293.81 12592.57 19296.28 17779.61 24991.86 20596.96 14986.95 20795.91 10796.32 14087.65 18598.96 11593.51 4398.88 11399.13 39
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30594.15 12095.60 21189.38 15695.90 10897.90 4480.39 25897.96 22992.60 8399.68 1898.75 84
IU-MVS98.51 4586.66 14796.83 16072.74 32595.83 10993.00 7299.29 6598.64 96
Patchmatch-RL test88.81 24988.52 24289.69 27395.33 23679.94 24086.22 32392.71 27778.46 29695.80 11094.18 23466.25 32295.33 32389.22 16698.53 15093.78 309
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11196.87 10095.26 3599.45 2292.77 7699.21 7899.00 51
casdiffmvs94.32 11394.80 9392.85 18196.05 19681.44 21992.35 17698.05 5591.53 11295.75 11296.80 10593.35 7898.49 18591.01 12098.32 17398.64 96
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9198.88 71
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30391.51 21395.62 21091.84 9795.74 11397.10 8689.31 16598.32 19985.07 23299.06 9198.93 63
EU-MVSNet87.39 27586.71 27889.44 27593.40 28076.11 29894.93 9390.00 30757.17 35995.71 11597.37 6864.77 33097.68 25392.67 8194.37 30394.52 292
v2v48293.29 13893.63 13392.29 19896.35 17178.82 26391.77 20996.28 18788.45 17795.70 11696.26 14586.02 21398.90 12193.02 7198.81 12699.14 38
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15895.63 11796.47 12595.37 2899.27 7291.99 9599.14 8598.48 111
Anonymous20240521192.58 16692.50 16392.83 18296.55 15983.22 19892.43 17091.64 29794.10 4995.59 11996.64 11881.88 24897.50 25985.12 22998.52 15197.77 172
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 12096.61 12094.93 5099.41 3593.78 3599.15 8499.00 51
RRT_MVS91.36 19390.05 21895.29 9089.21 34188.15 11692.51 16794.89 23386.73 20995.54 12195.68 17261.82 34399.30 6794.91 1399.13 8898.43 115
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24291.87 20196.22 19385.94 22095.53 12297.68 5092.69 9694.48 33083.21 24897.51 22998.21 130
new-patchmatchnet88.97 24590.79 20383.50 33294.28 26555.83 36485.34 32793.56 26286.18 21695.47 12395.73 17083.10 23196.51 29585.40 22498.06 20298.16 132
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10497.81 8589.22 16395.46 12596.17 15193.42 7699.34 5989.30 16098.87 11697.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1494.81 9297.49 11494.11 12298.37 1487.56 19895.38 12796.03 15594.66 5599.08 9490.70 12598.97 106
IterMVS-SCA-FT91.65 18591.55 18291.94 21193.89 27479.22 25787.56 29893.51 26391.53 11295.37 12896.62 11978.65 26798.90 12191.89 10194.95 29197.70 177
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6797.31 1095.32 13096.77 10693.08 8699.20 7991.79 10298.16 19297.44 193
tttt051789.81 23288.90 23892.55 19397.00 13679.73 24795.03 8983.65 35089.88 14895.30 13194.79 21753.64 35899.39 4591.99 9598.79 12998.54 106
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21498.17 3590.72 13095.30 13196.47 12587.94 18296.98 28091.41 11497.61 22798.30 123
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13396.57 12295.02 4699.41 3593.63 3999.11 8998.94 62
GeoE94.55 10394.68 10094.15 13497.23 12585.11 17494.14 12197.34 12388.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 15998.23 127
TinyColmap92.00 18092.76 15589.71 27295.62 22577.02 28690.72 23196.17 19687.70 19395.26 13496.29 14292.54 10096.45 29781.77 26298.77 13195.66 267
alignmvs93.26 14192.85 15294.50 12295.70 21787.45 12793.45 14195.76 20791.58 11095.25 13692.42 28581.96 24698.72 15591.61 10897.87 21497.33 202
EI-MVSNet92.99 15193.26 14792.19 20292.12 30479.21 25892.32 17894.67 24491.77 10395.24 13795.85 16187.14 19598.49 18591.99 9598.26 17998.86 72
MVSTER89.32 23888.75 24091.03 23890.10 33176.62 29390.85 22794.67 24482.27 26595.24 13795.79 16661.09 34698.49 18590.49 12798.26 17997.97 152
canonicalmvs94.59 10194.69 9894.30 13195.60 22687.03 13795.59 6698.24 2791.56 11195.21 13992.04 29194.95 4998.66 16791.45 11397.57 22897.20 207
MSP-MVS95.34 7294.63 10397.48 1498.67 2794.05 2196.41 3598.18 3291.26 11895.12 14095.15 19686.60 20799.50 1993.43 5396.81 25198.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
FMVSNet390.78 20290.32 21392.16 20693.03 28979.92 24192.54 16294.95 23186.17 21795.10 14196.01 15669.97 30898.75 15086.74 20698.38 16497.82 168
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
ETH3D-3000-0.194.86 9094.55 10595.81 6597.61 10789.72 8594.05 12498.37 1488.09 18495.06 14595.85 16192.58 9899.10 9390.33 13598.99 10198.62 100
AllTest94.88 8994.51 10896.00 5598.02 8292.17 5095.26 7898.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
YYNet188.17 25988.24 25087.93 30092.21 30173.62 31880.75 35088.77 31082.51 26394.99 14895.11 19982.70 23793.70 33983.33 24693.83 31096.48 232
EPP-MVSNet93.91 12593.68 13294.59 11898.08 7585.55 17097.44 894.03 25494.22 4794.94 14996.19 14882.07 24499.57 1387.28 20298.89 11198.65 92
MDA-MVSNet-bldmvs91.04 19790.88 19991.55 22294.68 25680.16 23185.49 32692.14 29090.41 14094.93 15095.79 16685.10 21996.93 28385.15 22794.19 30897.57 185
testtj94.81 9494.42 10996.01 5497.23 12590.51 7694.77 9897.85 8191.29 11794.92 15195.66 17391.71 11799.40 4088.07 18898.25 18298.11 138
baseline94.26 11694.80 9392.64 18796.08 19480.99 22593.69 13598.04 5990.80 12994.89 15296.32 14093.19 8298.48 18991.68 10798.51 15398.43 115
MDA-MVSNet_test_wron88.16 26088.23 25187.93 30092.22 30073.71 31780.71 35188.84 30982.52 26294.88 15395.14 19782.70 23793.61 34083.28 24793.80 31196.46 233
LFMVS91.33 19491.16 19691.82 21396.27 17879.36 25395.01 9085.61 33896.04 2894.82 15497.06 8872.03 30498.46 19184.96 23398.70 13897.65 181
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17891.93 9094.82 15495.39 19191.99 11197.08 27785.53 22397.96 20997.41 194
ZD-MVS97.23 12590.32 7797.54 10584.40 24594.78 15695.79 16692.76 9599.39 4588.72 17898.40 159
TSAR-MVS + MP.94.96 8594.75 9595.57 7898.86 2088.69 10396.37 3696.81 16185.23 23094.75 15797.12 8591.85 11499.40 4093.45 4998.33 17198.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Patchmtry90.11 22289.92 22090.66 25190.35 32977.00 28792.96 15092.81 27390.25 14294.74 15896.93 9667.11 31497.52 25885.17 22598.98 10297.46 191
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8496.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17698.46 113
cl_fuxian91.32 19591.42 18791.00 24192.29 29976.79 29287.52 30196.42 18285.76 22494.72 16093.89 24682.73 23698.16 21490.93 12298.55 14698.04 142
TSAR-MVS + GP.93.07 14992.41 16595.06 9995.82 21090.87 7190.97 22592.61 28188.04 18594.61 16193.79 24988.08 17797.81 24189.41 15998.39 16296.50 231
OMC-MVS94.22 11893.69 13195.81 6597.25 12491.27 6392.27 18097.40 11487.10 20594.56 16295.42 18893.74 6998.11 21786.62 21098.85 11798.06 139
testgi90.38 21391.34 19087.50 30597.49 11471.54 33089.43 26995.16 22788.38 17994.54 16394.68 22092.88 9293.09 34471.60 33697.85 21597.88 161
VNet92.67 16392.96 14991.79 21496.27 17880.15 23291.95 19394.98 23092.19 8494.52 16496.07 15387.43 18997.39 26884.83 23498.38 16497.83 166
eth_miper_zixun_eth90.72 20390.61 20791.05 23792.04 30676.84 29186.91 31096.67 17085.21 23194.41 16593.92 24479.53 26298.26 20589.76 15397.02 24398.06 139
test20.0390.80 20190.85 20190.63 25295.63 22479.24 25689.81 26292.87 27289.90 14794.39 16696.40 13185.77 21495.27 32573.86 32399.05 9497.39 198
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16796.49 12494.56 5899.39 4593.57 4099.05 9498.93 63
X-MVStestdata90.70 20488.45 24497.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16726.89 36394.56 5899.39 4593.57 4099.05 9498.93 63
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13091.82 10094.34 16997.41 6590.60 14798.65 16992.47 8598.11 19897.70 177
RRT_test8_iter0588.21 25888.17 25388.33 29691.62 31366.82 34991.73 21096.60 17386.34 21394.14 17095.38 19347.72 36499.11 9191.78 10398.26 17999.06 47
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7398.22 2992.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22497.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS90.18 22090.16 21490.21 26493.15 28575.98 30087.56 29892.97 27186.43 21294.09 17296.40 13178.32 27197.43 26487.87 19294.69 29897.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17282.81 20593.11 14697.74 9189.37 15794.08 17395.29 19490.40 15296.35 30290.35 13398.25 18294.96 282
BH-untuned90.68 20590.90 19890.05 26995.98 20279.57 25090.04 25394.94 23287.91 18694.07 17493.00 26787.76 18497.78 24579.19 29195.17 28892.80 326
miper_ehance_all_eth90.48 20990.42 21190.69 25091.62 31376.57 29486.83 31396.18 19583.38 25094.06 17592.66 27882.20 24298.04 22089.79 15297.02 24397.45 192
cl-mvsnet____90.65 20690.56 20890.91 24591.85 30876.98 28986.75 31595.36 22585.53 22794.06 17594.89 21077.36 28097.98 22890.27 13898.98 10297.76 173
cl-mvsnet190.65 20690.56 20890.91 24591.85 30876.99 28886.75 31595.36 22585.52 22994.06 17594.89 21077.37 27997.99 22790.28 13798.97 10697.76 173
pmmvs-eth3d91.54 18890.73 20593.99 13895.76 21587.86 12490.83 22893.98 25878.23 29894.02 17896.22 14782.62 23996.83 28686.57 21198.33 17197.29 204
hse-mvs392.89 15491.99 17295.58 7796.97 13790.55 7493.94 12994.01 25789.23 16193.95 17996.19 14876.88 28599.14 8591.02 11895.71 27497.04 211
hse-mvs292.24 17691.20 19395.38 8396.16 18790.65 7392.52 16392.01 29489.23 16193.95 17992.99 26876.88 28598.69 16391.02 11896.03 26696.81 220
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26094.64 25880.24 23089.69 26495.88 20385.77 22393.94 18195.69 17181.99 24592.98 34584.21 24191.30 33697.62 183
CNVR-MVS94.58 10294.29 11495.46 8296.94 13989.35 9491.81 20796.80 16289.66 15193.90 18295.44 18792.80 9498.72 15592.74 7898.52 15198.32 120
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 18987.90 12293.36 14397.14 13785.53 22793.90 18295.45 18691.30 12898.59 17589.51 15798.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
bset_n11_16_dypcd89.99 22889.15 23192.53 19494.75 24981.34 22084.19 33887.56 32185.13 23493.77 18492.46 28072.82 29999.01 10792.46 8699.21 7897.23 205
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4090.69 13193.75 18596.25 14698.03 297.02 27992.08 9295.55 27798.45 114
QAPM92.88 15592.77 15493.22 16895.82 21083.31 19596.45 3197.35 12283.91 24893.75 18596.77 10689.25 16698.88 12484.56 23897.02 24397.49 190
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18190.95 6890.21 24695.43 22187.91 18693.74 18794.40 22692.88 9296.38 30090.39 13098.28 17797.07 208
thisisatest053088.69 25287.52 26392.20 20196.33 17379.36 25392.81 15484.01 34986.44 21193.67 18892.68 27753.62 35999.25 7489.65 15698.45 15798.00 145
ETH3D cwj APD-0.1693.99 12493.38 14295.80 6796.82 14589.92 8192.72 15698.02 6284.73 24393.65 18995.54 18291.68 11899.22 7788.78 17598.49 15698.26 126
PCF-MVS84.52 1789.12 24187.71 26093.34 16396.06 19585.84 16686.58 32297.31 12568.46 34393.61 19093.89 24687.51 18898.52 18367.85 34798.11 19895.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27496.23 19188.36 18093.57 19194.60 22193.45 7397.77 24690.23 14098.38 16498.03 143
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 19296.72 11394.23 6599.42 2891.99 9599.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 19397.78 4691.21 13297.77 24691.06 11797.06 24198.80 79
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23390.92 24394.58 25981.21 22391.10 22393.41 26577.03 30593.41 19393.99 24283.23 23097.80 24279.93 28294.80 29593.74 311
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 6995.85 20596.47 2093.40 19597.46 6395.31 3395.47 31886.18 21998.78 13089.11 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP_MVS94.26 11693.93 12395.23 9397.71 9988.12 11794.56 10897.81 8591.74 10593.31 19695.59 17586.93 19998.95 11789.26 16498.51 15398.60 103
plane_prior388.43 11390.35 14193.31 196
thres600view787.66 26887.10 27289.36 27896.05 19673.17 32092.72 15685.31 34191.89 9293.29 19890.97 30563.42 33698.39 19273.23 32696.99 24896.51 228
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9589.21 16493.28 19995.46 18588.89 16898.98 11089.80 15198.82 12497.80 170
USDC89.02 24289.08 23288.84 28695.07 24074.50 31288.97 28096.39 18473.21 32293.27 20096.28 14382.16 24396.39 29977.55 30198.80 12895.62 270
thres100view90087.35 27686.89 27488.72 28896.14 18973.09 32293.00 14985.31 34192.13 8593.26 20190.96 30663.42 33698.28 20171.27 33896.54 25894.79 285
N_pmnet88.90 24787.25 26793.83 14994.40 26393.81 3484.73 33187.09 32479.36 28793.26 20192.43 28479.29 26391.68 34977.50 30397.22 23896.00 251
CL-MVSNet_2432*160090.04 22789.90 22190.47 25595.24 23777.81 27686.60 32192.62 28085.64 22693.25 20393.92 24483.84 22696.06 30879.93 28298.03 20597.53 189
mvs_anonymous90.37 21491.30 19187.58 30492.17 30368.00 34389.84 26194.73 24083.82 24993.22 20497.40 6687.54 18797.40 26787.94 19195.05 29097.34 201
test_yl90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
DCV-MVSNet90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
D2MVS89.93 22989.60 22790.92 24394.03 27178.40 26888.69 28794.85 23478.96 29293.08 20795.09 20074.57 29396.94 28188.19 18498.96 10897.41 194
UnsupCasMVSNet_bld88.50 25488.03 25689.90 27095.52 22878.88 26287.39 30294.02 25679.32 28893.06 20894.02 24080.72 25694.27 33575.16 31793.08 32196.54 226
miper_lstm_enhance89.90 23089.80 22290.19 26691.37 31777.50 28083.82 34295.00 22984.84 24193.05 20994.96 20776.53 28995.20 32689.96 14998.67 14097.86 163
PHI-MVS94.34 11293.80 12695.95 5795.65 22191.67 6194.82 9697.86 7887.86 18993.04 21094.16 23591.58 12098.78 14590.27 13898.96 10897.41 194
TAMVS90.16 22189.05 23393.49 16196.49 16286.37 15490.34 24392.55 28280.84 27492.99 21194.57 22381.94 24798.20 20973.51 32498.21 18895.90 257
Vis-MVSNet (Re-imp)90.42 21190.16 21491.20 23497.66 10577.32 28394.33 11587.66 32091.20 12092.99 21195.13 19875.40 29298.28 20177.86 29799.19 8097.99 148
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22086.95 20792.95 21397.56 5690.70 14597.50 25979.63 28597.43 23296.06 249
MCST-MVS92.91 15392.51 16294.10 13697.52 11285.72 16891.36 21897.13 13980.33 27692.91 21494.24 23191.23 13198.72 15589.99 14897.93 21197.86 163
ETV-MVS92.99 15192.74 15693.72 15195.86 20986.30 15792.33 17797.84 8291.70 10892.81 21586.17 34792.22 10599.19 8088.03 18997.73 21895.66 267
TAPA-MVS88.58 1092.49 16991.75 18094.73 10996.50 16189.69 8692.91 15297.68 9478.02 29992.79 21694.10 23690.85 13997.96 22984.76 23698.16 19296.54 226
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-RMVSNet90.47 21090.44 21090.56 25495.21 23878.65 26789.15 27893.94 25988.21 18192.74 21794.22 23286.38 20897.88 23378.67 29495.39 28395.14 278
旧先验290.00 25568.65 34292.71 21896.52 29485.15 227
cl-mvsnet289.02 24288.50 24390.59 25389.76 33376.45 29586.62 32094.03 25482.98 25892.65 21992.49 27972.05 30397.53 25788.93 17097.02 24397.78 171
tfpn200view987.05 28486.52 28288.67 28995.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25894.79 285
thres40087.20 28086.52 28289.24 28295.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25896.51 228
MS-PatchMatch88.05 26187.75 25988.95 28393.28 28177.93 27387.88 29492.49 28375.42 31192.57 22293.59 25480.44 25794.24 33781.28 26792.75 32494.69 290
miper_enhance_ethall88.42 25587.87 25890.07 26788.67 34675.52 30485.10 32895.59 21575.68 30892.49 22389.45 32678.96 26497.88 23387.86 19397.02 24396.81 220
testdata91.03 23896.87 14382.01 21094.28 25071.55 32992.46 22495.42 18885.65 21797.38 27082.64 25397.27 23693.70 312
LF4IMVS92.72 16192.02 17194.84 10595.65 22191.99 5492.92 15196.60 17385.08 23792.44 22593.62 25286.80 20396.35 30286.81 20598.25 18296.18 245
diffmvs91.74 18391.93 17491.15 23693.06 28778.17 27188.77 28597.51 11086.28 21492.42 22693.96 24388.04 17997.46 26290.69 12696.67 25697.82 168
HPM-MVS++copyleft95.02 8294.39 11096.91 3897.88 9093.58 3694.09 12396.99 14891.05 12392.40 22795.22 19591.03 13899.25 7492.11 9098.69 13997.90 159
ppachtmachnet_test88.61 25388.64 24188.50 29291.76 31070.99 33384.59 33492.98 27079.30 28992.38 22893.53 25679.57 26197.45 26386.50 21497.17 23997.07 208
Anonymous2023120688.77 25088.29 24890.20 26596.31 17578.81 26489.56 26793.49 26474.26 31692.38 22895.58 17882.21 24195.43 32072.07 33298.75 13496.34 237
MVS_Test92.57 16893.29 14390.40 25893.53 27975.85 30192.52 16396.96 14988.73 17092.35 23096.70 11490.77 14098.37 19792.53 8495.49 27996.99 213
PVSNet_Blended_VisFu91.63 18691.20 19392.94 17797.73 9883.95 19092.14 18597.46 11178.85 29492.35 23094.98 20684.16 22599.08 9486.36 21696.77 25395.79 261
CDPH-MVS92.67 16391.83 17695.18 9596.94 13988.46 11290.70 23297.07 14377.38 30192.34 23295.08 20192.67 9798.88 12485.74 22198.57 14598.20 131
NCCC94.08 12293.54 13895.70 7496.49 16289.90 8392.39 17396.91 15590.64 13392.33 23394.60 22190.58 14898.96 11590.21 14197.70 22298.23 127
CLD-MVS91.82 18291.41 18893.04 17096.37 16683.65 19386.82 31497.29 12884.65 24492.27 23489.67 32392.20 10697.85 23983.95 24299.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS92.05 17992.16 16791.72 21794.44 26180.13 23487.62 29597.25 13187.34 20092.22 23593.18 26489.54 16498.73 15489.67 15598.20 19096.30 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 27087.31 26588.54 29194.71 25574.27 31593.10 14788.20 31686.20 21592.18 23693.04 26673.21 29895.52 31579.32 28985.82 34995.83 259
API-MVS91.52 18991.61 18191.26 23094.16 26686.26 15994.66 10294.82 23691.17 12192.13 23791.08 30490.03 16197.06 27879.09 29297.35 23590.45 343
DP-MVS Recon92.31 17391.88 17593.60 15497.18 12986.87 14191.10 22397.37 11584.92 24092.08 23894.08 23788.59 17098.20 20983.50 24598.14 19495.73 263
our_test_387.55 27187.59 26287.44 30691.76 31070.48 33483.83 34190.55 30579.79 27992.06 23992.17 28878.63 26995.63 31384.77 23594.73 29696.22 242
MSDG90.82 20090.67 20691.26 23094.16 26683.08 20286.63 31996.19 19490.60 13591.94 24091.89 29289.16 16795.75 31280.96 27394.51 30194.95 283
Effi-MVS+-dtu93.90 12792.60 16197.77 494.74 25196.67 394.00 12695.41 22289.94 14591.93 24192.13 28990.12 15598.97 11487.68 19597.48 23097.67 180
ETH3 D test640091.91 18191.25 19293.89 14696.59 15584.41 18092.10 18697.72 9378.52 29591.82 24293.78 25088.70 16999.13 8783.61 24498.39 16298.14 134
Gipumacopyleft95.31 7595.80 6393.81 15097.99 8790.91 6996.42 3497.95 7396.69 1691.78 24398.85 1291.77 11595.49 31791.72 10599.08 9095.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HyFIR lowres test87.19 28185.51 29192.24 20097.12 13480.51 22985.03 32996.06 19866.11 34991.66 24492.98 26970.12 30799.14 8575.29 31695.23 28797.07 208
MVP-Stereo90.07 22588.92 23693.54 15896.31 17586.49 14990.93 22695.59 21579.80 27891.48 24595.59 17580.79 25597.39 26878.57 29591.19 33796.76 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20085.85 29185.18 29287.88 30294.44 26172.52 32689.08 27986.21 32988.57 17691.44 24688.40 33464.22 33198.00 22568.35 34695.88 27293.12 320
FMVSNet587.82 26586.56 28091.62 22092.31 29879.81 24593.49 13994.81 23883.26 25191.36 24796.93 9652.77 36097.49 26176.07 31298.03 20597.55 188
CS-MVS93.91 12594.22 12092.95 17595.65 22183.25 19794.91 9498.87 491.32 11691.32 24893.07 26592.24 10499.37 5291.90 10098.73 13596.21 244
新几何193.17 16997.16 13087.29 13094.43 24667.95 34491.29 24994.94 20886.97 19898.23 20781.06 27297.75 21793.98 305
xiu_mvs_v1_base_debu91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base_debi91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
CDS-MVSNet89.55 23488.22 25293.53 15995.37 23486.49 14989.26 27593.59 26179.76 28091.15 25392.31 28677.12 28198.38 19477.51 30297.92 21295.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 17592.13 16992.68 18694.53 26084.10 18795.70 6297.03 14482.44 26491.14 25496.42 12988.47 17298.38 19485.95 22097.47 23195.55 271
112190.26 21989.23 22893.34 16397.15 13287.40 12891.94 19594.39 24767.88 34591.02 25594.91 20986.91 20198.59 17581.17 27097.71 22194.02 304
CNLPA91.72 18491.20 19393.26 16796.17 18691.02 6691.14 22195.55 21890.16 14390.87 25693.56 25586.31 20994.40 33379.92 28497.12 24094.37 295
test_prior393.29 13892.85 15294.61 11395.95 20487.23 13190.21 24697.36 12089.33 15990.77 25794.81 21390.41 15098.68 16588.21 18298.55 14697.93 155
test_prior290.21 24689.33 15990.77 25794.81 21390.41 15088.21 18298.55 146
test22296.95 13885.27 17388.83 28393.61 26065.09 35290.74 25994.85 21284.62 22397.36 23493.91 306
TR-MVS87.70 26687.17 26989.27 28094.11 26879.26 25588.69 28791.86 29581.94 26890.69 26089.79 32082.82 23597.42 26572.65 33091.98 33391.14 339
CVMVSNet85.16 29484.72 29386.48 31192.12 30470.19 33592.32 17888.17 31756.15 36090.64 26195.85 16167.97 31296.69 29088.78 17590.52 34092.56 329
TEST996.45 16489.46 8890.60 23496.92 15379.09 29090.49 26294.39 22791.31 12798.88 124
train_agg92.71 16291.83 17695.35 8496.45 16489.46 8890.60 23496.92 15379.37 28590.49 26294.39 22791.20 13398.88 12488.66 17998.43 15897.72 176
test_896.37 16689.14 9590.51 23796.89 15679.37 28590.42 26494.36 22991.20 13398.82 134
KD-MVS_2432*160082.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
miper_refine_blended82.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
agg_prior192.60 16591.76 17995.10 9896.20 18388.89 10090.37 24196.88 15779.67 28290.21 26794.41 22591.30 12898.78 14588.46 18198.37 16997.64 182
agg_prior96.20 18388.89 10096.88 15790.21 26798.78 145
jason89.17 24088.32 24691.70 21895.73 21680.07 23588.10 29293.22 26771.98 32890.09 26992.79 27378.53 27098.56 17987.43 19997.06 24196.46 233
jason: jason.
Fast-Effi-MVS+-dtu92.77 16092.16 16794.58 12094.66 25788.25 11492.05 18896.65 17189.62 15290.08 27091.23 30192.56 9998.60 17386.30 21796.27 26396.90 216
CHOSEN 1792x268887.19 28185.92 28991.00 24197.13 13379.41 25284.51 33595.60 21164.14 35390.07 27194.81 21378.26 27297.14 27673.34 32595.38 28496.46 233
PatchMatch-RL89.18 23988.02 25792.64 18795.90 20892.87 4588.67 28991.06 30080.34 27590.03 27291.67 29683.34 22894.42 33276.35 31194.84 29490.64 342
BH-w/o87.21 27987.02 27387.79 30394.77 24877.27 28487.90 29393.21 26981.74 26989.99 27388.39 33583.47 22796.93 28371.29 33792.43 32989.15 344
Fast-Effi-MVS+91.28 19690.86 20092.53 19495.45 23082.53 20789.25 27796.52 17985.00 23889.91 27488.55 33392.94 8998.84 13284.72 23795.44 28196.22 242
AdaColmapbinary91.63 18691.36 18992.47 19795.56 22786.36 15592.24 18396.27 18888.88 16989.90 27592.69 27691.65 11998.32 19977.38 30497.64 22592.72 328
mvs-test193.07 14991.80 17896.89 3994.74 25195.83 692.17 18495.41 22289.94 14589.85 27690.59 31490.12 15598.88 12487.68 19595.66 27595.97 252
GA-MVS87.70 26686.82 27590.31 25993.27 28277.22 28584.72 33392.79 27585.11 23689.82 27790.07 31566.80 31797.76 24884.56 23894.27 30695.96 253
Patchmatch-test86.10 29086.01 28786.38 31590.63 32474.22 31689.57 26686.69 32685.73 22589.81 27892.83 27165.24 32891.04 35177.82 30095.78 27393.88 308
EIA-MVS92.35 17292.03 17093.30 16695.81 21283.97 18992.80 15598.17 3587.71 19289.79 27987.56 33791.17 13699.18 8187.97 19097.27 23696.77 222
test1294.43 12895.95 20486.75 14396.24 19089.76 28089.79 16298.79 14197.95 21097.75 175
pmmvs488.95 24687.70 26192.70 18594.30 26485.60 16987.22 30492.16 28974.62 31489.75 28194.19 23377.97 27496.41 29882.71 25296.36 26296.09 247
原ACMM192.87 18096.91 14184.22 18497.01 14576.84 30689.64 28294.46 22488.00 18098.70 16181.53 26598.01 20795.70 265
MG-MVS89.54 23589.80 22288.76 28794.88 24272.47 32789.60 26592.44 28485.82 22289.48 28395.98 15782.85 23497.74 25081.87 26195.27 28696.08 248
114514_t90.51 20889.80 22292.63 18998.00 8482.24 20993.40 14297.29 12865.84 35089.40 28494.80 21686.99 19798.75 15083.88 24398.61 14396.89 217
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19694.00 12697.53 10791.36 11589.35 28590.65 31394.01 6898.66 16787.40 20095.30 28596.88 218
CR-MVSNet87.89 26287.12 27190.22 26391.01 32078.93 26092.52 16392.81 27373.08 32389.10 28696.93 9667.11 31497.64 25488.80 17492.70 32594.08 299
RPMNet90.31 21890.14 21790.81 24891.01 32078.93 26092.52 16398.12 4191.91 9189.10 28696.89 9968.84 30999.41 3590.17 14292.70 32594.08 299
PatchT87.51 27288.17 25385.55 31890.64 32366.91 34592.02 19186.09 33192.20 8389.05 28897.16 8364.15 33296.37 30189.21 16792.98 32393.37 318
MVSFormer92.18 17792.23 16692.04 21094.74 25180.06 23697.15 1197.37 11588.98 16588.83 28992.79 27377.02 28299.60 896.41 496.75 25496.46 233
lupinMVS88.34 25787.31 26591.45 22494.74 25180.06 23687.23 30392.27 28671.10 33288.83 28991.15 30277.02 28298.53 18286.67 20996.75 25495.76 262
HQP-NCC96.36 16891.37 21587.16 20288.81 291
ACMP_Plane96.36 16891.37 21587.16 20288.81 291
HQP4-MVS88.81 29198.61 17198.15 133
HQP-MVS92.09 17891.49 18693.88 14796.36 16884.89 17691.37 21597.31 12587.16 20288.81 29193.40 25884.76 22198.60 17386.55 21297.73 21898.14 134
PAPM_NR91.03 19890.81 20291.68 21996.73 14981.10 22493.72 13496.35 18688.19 18288.77 29592.12 29085.09 22097.25 27282.40 25793.90 30996.68 225
SCA87.43 27487.21 26888.10 29992.01 30771.98 32989.43 26988.11 31882.26 26688.71 29692.83 27178.65 26797.59 25579.61 28693.30 31694.75 287
F-COLMAP92.28 17491.06 19795.95 5797.52 11291.90 5693.53 13897.18 13583.98 24788.70 29794.04 23888.41 17398.55 18180.17 27895.99 26897.39 198
PVSNet_BlendedMVS90.35 21589.96 21991.54 22394.81 24678.80 26590.14 25096.93 15179.43 28488.68 29895.06 20286.27 21098.15 21580.27 27598.04 20497.68 179
PVSNet_Blended88.74 25188.16 25590.46 25794.81 24678.80 26586.64 31896.93 15174.67 31388.68 29889.18 32986.27 21098.15 21580.27 27596.00 26794.44 294
AUN-MVS90.05 22688.30 24795.32 8996.09 19390.52 7592.42 17192.05 29382.08 26788.45 30092.86 27065.76 32498.69 16388.91 17296.07 26596.75 224
pmmvs587.87 26387.14 27090.07 26793.26 28376.97 29088.89 28292.18 28773.71 32088.36 30193.89 24676.86 28796.73 28980.32 27496.81 25196.51 228
WTY-MVS86.93 28686.50 28488.24 29794.96 24174.64 30887.19 30592.07 29278.29 29788.32 30291.59 29878.06 27394.27 33574.88 31893.15 31995.80 260
thisisatest051584.72 29782.99 30589.90 27092.96 29075.33 30684.36 33683.42 35177.37 30288.27 30386.65 34253.94 35798.72 15582.56 25497.40 23395.67 266
MIMVSNet87.13 28386.54 28188.89 28596.05 19676.11 29894.39 11388.51 31281.37 27088.27 30396.75 10972.38 30195.52 31565.71 35295.47 28095.03 280
test0.0.03 182.48 30981.47 31385.48 31989.70 33473.57 31984.73 33181.64 35583.07 25688.13 30586.61 34362.86 33989.10 35766.24 35190.29 34193.77 310
CMPMVSbinary68.83 2287.28 27785.67 29092.09 20888.77 34585.42 17190.31 24494.38 24870.02 33888.00 30693.30 26073.78 29794.03 33875.96 31496.54 25896.83 219
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS281.31 31783.44 30174.92 34390.52 32646.49 36669.19 35885.23 34484.30 24687.95 30794.71 21976.95 28484.36 36064.07 35398.09 20093.89 307
xiu_mvs_v2_base89.00 24489.19 22988.46 29494.86 24474.63 30986.97 30895.60 21180.88 27287.83 30888.62 33291.04 13798.81 13982.51 25694.38 30291.93 334
PS-MVSNAJ88.86 24888.99 23588.48 29394.88 24274.71 30786.69 31795.60 21180.88 27287.83 30887.37 34090.77 14098.82 13482.52 25594.37 30391.93 334
tpm84.38 29984.08 29885.30 32290.47 32763.43 35989.34 27285.63 33777.24 30487.62 31095.03 20561.00 34797.30 27179.26 29091.09 33995.16 276
sss87.23 27886.82 27588.46 29493.96 27277.94 27286.84 31292.78 27677.59 30087.61 31191.83 29378.75 26691.92 34877.84 29894.20 30795.52 272
MAR-MVS90.32 21788.87 23994.66 11294.82 24591.85 5794.22 11894.75 23980.91 27187.52 31288.07 33686.63 20697.87 23676.67 30896.21 26494.25 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS89.35 23788.40 24592.18 20596.13 19284.20 18586.96 30996.15 19775.40 31287.36 31391.55 29983.30 22998.01 22482.17 26096.62 25794.32 297
UGNet93.08 14792.50 16394.79 10793.87 27587.99 12195.07 8794.26 25190.64 13387.33 31497.67 5186.89 20298.49 18588.10 18798.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive85.22 29384.64 29486.98 30989.51 33869.83 34090.52 23687.34 32378.87 29387.22 31592.74 27566.91 31696.53 29381.77 26286.88 34894.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
1112_ss88.42 25587.41 26491.45 22496.69 15080.99 22589.72 26396.72 16873.37 32187.00 31690.69 31177.38 27898.20 20981.38 26693.72 31295.15 277
cascas87.02 28586.28 28689.25 28191.56 31576.45 29584.33 33796.78 16371.01 33386.89 31785.91 34881.35 25096.94 28183.09 24995.60 27694.35 296
CANet92.38 17191.99 17293.52 16093.82 27783.46 19491.14 22197.00 14689.81 14986.47 31894.04 23887.90 18399.21 7889.50 15898.27 17897.90 159
Test_1112_low_res87.50 27386.58 27990.25 26296.80 14877.75 27787.53 30096.25 18969.73 33986.47 31893.61 25375.67 29197.88 23379.95 28093.20 31795.11 279
PLCcopyleft85.34 1590.40 21288.92 23694.85 10496.53 16090.02 7991.58 21296.48 18180.16 27786.14 32092.18 28785.73 21598.25 20676.87 30794.61 30096.30 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
new_pmnet81.22 31881.01 31781.86 33690.92 32270.15 33684.03 33980.25 36070.83 33485.97 32189.78 32167.93 31384.65 35967.44 34891.90 33490.78 341
EPMVS81.17 32080.37 32283.58 33185.58 35865.08 35490.31 24471.34 36377.31 30385.80 32291.30 30059.38 34892.70 34679.99 27982.34 35692.96 324
tpmvs84.22 30083.97 29984.94 32387.09 35365.18 35291.21 22088.35 31382.87 25985.21 32390.96 30665.24 32896.75 28879.60 28885.25 35092.90 325
FPMVS84.50 29883.28 30288.16 29896.32 17494.49 1485.76 32485.47 33983.09 25585.20 32494.26 23063.79 33586.58 35863.72 35491.88 33583.40 353
pmmvs380.83 32178.96 32986.45 31287.23 35277.48 28184.87 33082.31 35363.83 35485.03 32589.50 32549.66 36193.10 34373.12 32895.10 28988.78 348
PAPR87.65 26986.77 27790.27 26192.85 29177.38 28288.56 29096.23 19176.82 30784.98 32689.75 32286.08 21297.16 27572.33 33193.35 31596.26 241
MDTV_nov1_ep1383.88 30089.42 33961.52 36088.74 28687.41 32273.99 31884.96 32794.01 24165.25 32795.53 31478.02 29693.16 318
131486.46 28886.33 28586.87 31091.65 31274.54 31091.94 19594.10 25374.28 31584.78 32887.33 34183.03 23295.00 32778.72 29391.16 33891.06 340
ADS-MVSNet284.01 30182.20 30989.41 27689.04 34276.37 29787.57 29690.98 30172.71 32684.46 32992.45 28168.08 31096.48 29670.58 34283.97 35195.38 273
ADS-MVSNet82.25 31081.55 31184.34 32889.04 34265.30 35187.57 29685.13 34572.71 32684.46 32992.45 28168.08 31092.33 34770.58 34283.97 35195.38 273
PVSNet76.22 2082.89 30782.37 30784.48 32793.96 27264.38 35778.60 35388.61 31171.50 33084.43 33186.36 34674.27 29494.60 32969.87 34493.69 31394.46 293
MVS84.98 29684.30 29687.01 30891.03 31977.69 27991.94 19594.16 25259.36 35884.23 33287.50 33985.66 21696.80 28771.79 33393.05 32286.54 350
tpmrst82.85 30882.93 30682.64 33487.65 34758.99 36290.14 25087.90 31975.54 31083.93 33391.63 29766.79 31995.36 32181.21 26981.54 35793.57 317
ET-MVSNet_ETH3D86.15 28984.27 29791.79 21493.04 28881.28 22187.17 30686.14 33079.57 28383.65 33488.66 33157.10 35198.18 21287.74 19495.40 28295.90 257
HY-MVS82.50 1886.81 28785.93 28889.47 27493.63 27877.93 27394.02 12591.58 29875.68 30883.64 33593.64 25177.40 27797.42 26571.70 33592.07 33293.05 323
MDTV_nov1_ep13_2view42.48 36788.45 29167.22 34783.56 33666.80 31772.86 32994.06 301
CostFormer83.09 30582.21 30885.73 31789.27 34067.01 34490.35 24286.47 32870.42 33683.52 33793.23 26361.18 34596.85 28577.21 30588.26 34693.34 319
DSMNet-mixed82.21 31181.56 31084.16 32989.57 33770.00 33990.65 23377.66 36254.99 36183.30 33897.57 5577.89 27590.50 35366.86 35095.54 27891.97 333
E-PMN80.72 32380.86 31880.29 33985.11 35968.77 34272.96 35581.97 35487.76 19183.25 33983.01 35562.22 34289.17 35677.15 30694.31 30582.93 354
test-LLR83.58 30283.17 30384.79 32589.68 33566.86 34783.08 34384.52 34683.07 25682.85 34084.78 35162.86 33993.49 34182.85 25094.86 29294.03 302
test-mter81.21 31980.01 32684.79 32589.68 33566.86 34783.08 34384.52 34673.85 31982.85 34084.78 35143.66 36893.49 34182.85 25094.86 29294.03 302
CANet_DTU89.85 23189.17 23091.87 21292.20 30280.02 23990.79 22995.87 20486.02 21982.53 34291.77 29480.01 25998.57 17885.66 22297.70 22297.01 212
MVS_030490.96 19990.15 21693.37 16293.17 28487.06 13593.62 13792.43 28589.60 15382.25 34395.50 18382.56 24097.83 24084.41 24097.83 21695.22 275
JIA-IIPM85.08 29583.04 30491.19 23587.56 34886.14 16189.40 27184.44 34888.98 16582.20 34497.95 3956.82 35396.15 30476.55 31083.45 35391.30 338
PMMVS83.00 30681.11 31488.66 29083.81 36386.44 15282.24 34785.65 33661.75 35782.07 34585.64 34979.75 26091.59 35075.99 31393.09 32087.94 349
tpm281.46 31680.35 32384.80 32489.90 33265.14 35390.44 23885.36 34065.82 35182.05 34692.44 28357.94 35096.69 29070.71 34188.49 34592.56 329
IB-MVS77.21 1983.11 30481.05 31589.29 27991.15 31875.85 30185.66 32586.00 33379.70 28182.02 34786.61 34348.26 36398.39 19277.84 29892.22 33093.63 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat180.61 32479.46 32784.07 33088.78 34465.06 35589.26 27588.23 31562.27 35681.90 34889.66 32462.70 34195.29 32471.72 33480.60 35891.86 336
EMVS80.35 32580.28 32480.54 33884.73 36169.07 34172.54 35780.73 35787.80 19081.66 34981.73 35662.89 33889.84 35475.79 31594.65 29982.71 355
dp79.28 32778.62 33081.24 33785.97 35756.45 36386.91 31085.26 34372.97 32481.45 35089.17 33056.01 35595.45 31973.19 32776.68 35991.82 337
DWT-MVSNet_test80.74 32279.18 32885.43 32087.51 35066.87 34689.87 26086.01 33274.20 31780.86 35180.62 35748.84 36296.68 29281.54 26483.14 35592.75 327
EPNet89.80 23388.25 24994.45 12783.91 36286.18 16093.87 13087.07 32591.16 12280.64 35294.72 21878.83 26598.89 12385.17 22598.89 11198.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TESTMET0.1,179.09 32878.04 33182.25 33587.52 34964.03 35883.08 34380.62 35870.28 33780.16 35383.22 35444.13 36790.56 35279.95 28093.36 31492.15 332
baseline283.38 30381.54 31288.90 28491.38 31672.84 32588.78 28481.22 35678.97 29179.82 35487.56 33761.73 34497.80 24274.30 32190.05 34296.05 250
gg-mvs-nofinetune82.10 31481.02 31685.34 32187.46 35171.04 33194.74 9967.56 36496.44 2179.43 35598.99 645.24 36596.15 30467.18 34992.17 33188.85 346
PVSNet_070.34 2174.58 33072.96 33379.47 34090.63 32466.24 35073.26 35483.40 35263.67 35578.02 35678.35 35972.53 30089.59 35556.68 35860.05 36282.57 356
MVS-HIRNet78.83 32980.60 32173.51 34493.07 28647.37 36587.10 30778.00 36168.94 34177.53 35797.26 7671.45 30594.62 32863.28 35588.74 34478.55 358
CHOSEN 280x42080.04 32677.97 33286.23 31690.13 33074.53 31172.87 35689.59 30866.38 34876.29 35885.32 35056.96 35295.36 32169.49 34594.72 29788.79 347
PAPM81.91 31580.11 32587.31 30793.87 27572.32 32884.02 34093.22 26769.47 34076.13 35989.84 31772.15 30297.23 27353.27 36089.02 34392.37 331
GG-mvs-BLEND83.24 33385.06 36071.03 33294.99 9265.55 36574.09 36075.51 36044.57 36694.46 33159.57 35787.54 34784.24 352
EPNet_dtu85.63 29284.37 29589.40 27786.30 35674.33 31491.64 21188.26 31484.84 24172.96 36189.85 31671.27 30697.69 25276.60 30997.62 22696.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVEpermissive59.87 2373.86 33172.65 33477.47 34287.00 35574.35 31361.37 36060.93 36667.27 34669.69 36286.49 34581.24 25472.33 36256.45 35983.45 35385.74 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 34670.38 36664.56 35648.52 36833.01 36265.50 36374.21 36156.19 35446.64 36438.45 36370.07 36050.30 360
tmp_tt37.97 33344.33 33618.88 34711.80 36821.54 36863.51 35945.66 3694.23 36451.34 36450.48 36259.08 34922.11 36544.50 36268.35 36113.00 361
test_method50.44 33248.94 33554.93 34539.68 36712.38 36928.59 36190.09 3066.82 36341.10 36578.41 35854.41 35670.69 36350.12 36151.26 36381.72 357
test1239.49 33512.01 3381.91 3482.87 3691.30 37082.38 3461.34 3711.36 3652.84 3666.56 3652.45 3710.97 3662.73 3645.56 3643.47 362
testmvs9.02 33611.42 3391.81 3492.77 3701.13 37179.44 3521.90 3701.18 3662.65 3676.80 3641.95 3720.87 3672.62 3653.45 3653.44 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.35 33431.13 3370.00 3500.00 3710.00 3720.00 36295.58 2170.00 3670.00 36891.15 30293.43 750.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.56 33710.09 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36890.77 1400.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.56 33710.08 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36890.69 3110.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS95.15 9696.84 14489.43 9095.21 7995.66 17393.12 8598.06 21986.28 21898.61 14397.95 153
save fliter97.46 11788.05 11992.04 18997.08 14287.63 195
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8198.22 2999.38 5193.44 5199.31 6298.53 107
GSMVS94.75 287
sam_mvs166.64 32094.75 287
sam_mvs66.41 321
MTGPAbinary97.62 97
test_post190.21 2465.85 36765.36 32696.00 30979.61 286
test_post6.07 36665.74 32595.84 311
patchmatchnet-post91.71 29566.22 32397.59 255
MTMP94.82 9654.62 367
gm-plane-assit87.08 35459.33 36171.22 33183.58 35397.20 27473.95 322
test9_res88.16 18698.40 15997.83 166
agg_prior287.06 20498.36 17097.98 149
test_prior489.91 8290.74 230
test_prior94.61 11395.95 20487.23 13197.36 12098.68 16597.93 155
新几何290.02 254
旧先验196.20 18384.17 18694.82 23695.57 17989.57 16397.89 21396.32 238
无先验89.94 25695.75 20870.81 33598.59 17581.17 27094.81 284
原ACMM289.34 272
testdata298.03 22180.24 277
segment_acmp92.14 107
testdata188.96 28188.44 178
plane_prior797.71 9988.68 104
plane_prior697.21 12888.23 11586.93 199
plane_prior597.81 8598.95 11789.26 16498.51 15398.60 103
plane_prior495.59 175
plane_prior294.56 10891.74 105
plane_prior197.38 120
plane_prior88.12 11793.01 14888.98 16598.06 202
n20.00 372
nn0.00 372
door-mid92.13 291
test1196.65 171
door91.26 299
HQP5-MVS84.89 176
BP-MVS86.55 212
HQP3-MVS97.31 12597.73 218
HQP2-MVS84.76 221
NP-MVS96.82 14587.10 13493.40 258
ACMMP++_ref98.82 124
ACMMP++99.25 73
Test By Simon90.61 146