This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 9100.00 199.85 19
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 699.99 599.99 1
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20299.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1199.99 599.96 5
test_cas_vis1_n_192098.33 15798.68 9497.27 30199.69 5792.29 34898.03 16899.85 1597.62 18499.96 499.62 3493.98 27399.74 23299.52 2999.86 7999.79 28
mvsany_test398.87 7798.92 6798.74 17699.38 13996.94 22198.58 10499.10 22396.49 26499.96 499.81 598.18 7699.45 33598.97 6299.79 11399.83 22
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8097.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 499.99 599.29 212
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3499.31 39100.00 199.82 23
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13597.68 21399.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1699.98 1299.89 11
test_fmvsmvis_n_192099.26 3299.49 1298.54 20299.66 6596.97 21798.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 306
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4399.48 3299.92 899.71 1798.07 8499.96 1299.53 28100.00 199.93 8
test_vis3_rt99.14 4499.17 4199.07 12199.78 2698.38 10998.92 7699.94 297.80 17299.91 1199.67 2597.15 15298.91 37999.76 1499.56 20899.92 9
fmvsm_s_conf0.1_n99.16 4399.33 2698.64 18099.71 4896.10 24297.87 19299.85 1598.56 12099.90 1299.68 2098.69 3999.85 12099.72 1999.98 1299.97 3
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3199.27 5899.90 1299.74 1399.68 499.97 499.55 2799.99 599.88 14
wuyk23d96.06 29697.62 21491.38 37698.65 29298.57 9698.85 8296.95 34796.86 25099.90 1299.16 12399.18 1798.40 38689.23 37599.77 12277.18 394
test_vis1_n_192098.40 14998.92 6796.81 32399.74 3890.76 36998.15 15299.91 798.33 12899.89 1599.55 4895.07 24299.88 8299.76 1499.93 4299.79 28
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4299.09 8299.89 1599.68 2099.53 799.97 499.50 3099.99 599.87 16
fmvsm_s_conf0.1_n_a99.17 4099.30 3298.80 15999.75 3696.59 23197.97 18099.86 1398.22 13999.88 1799.71 1798.59 4799.84 13799.73 1799.98 1299.98 2
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5299.90 299.86 1899.78 899.58 699.95 2399.00 6099.95 3099.78 31
fmvsm_s_conf0.5_n99.09 5299.26 3598.61 18899.55 9296.09 24597.74 20799.81 2398.55 12199.85 1999.55 4898.60 4699.84 13799.69 2299.98 1299.89 11
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 9999.36 3699.92 5399.64 62
test_fmvs399.12 4999.41 1998.25 22999.76 3295.07 28099.05 6599.94 297.78 17499.82 2199.84 298.56 5099.71 24599.96 199.96 2599.97 3
fmvsm_s_conf0.5_n_a99.10 5199.20 3998.78 16599.55 9296.59 23197.79 19999.82 2298.21 14099.81 2299.53 5498.46 5699.84 13799.70 2099.97 2099.90 10
Anonymous2023121199.27 3099.27 3499.26 9199.29 15798.18 12699.49 899.51 8299.70 899.80 2399.68 2096.84 16899.83 15499.21 4799.91 6199.77 33
test_vis1_n98.31 16098.50 11997.73 27099.76 3294.17 30598.68 9599.91 796.31 27199.79 2499.57 4292.85 29299.42 34099.79 1199.84 8499.60 73
test_f98.67 11398.87 7098.05 24699.72 4595.59 25898.51 11699.81 2396.30 27399.78 2599.82 496.14 20298.63 38499.82 699.93 4299.95 6
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5299.44 3899.78 2599.76 1096.39 19399.92 4999.44 3499.92 5399.68 53
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2599.67 2599.48 999.81 17799.30 4199.97 2099.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 5999.39 4399.75 2899.62 3499.17 1899.83 15499.06 5599.62 18599.66 57
test_fmvs298.70 10298.97 6497.89 25499.54 9794.05 30798.55 10799.92 696.78 25399.72 2999.78 896.60 18599.67 26499.91 299.90 6899.94 7
NR-MVSNet98.95 6898.82 7699.36 6499.16 18998.72 8799.22 4299.20 19699.10 7999.72 2998.76 21696.38 19599.86 10898.00 12199.82 9499.50 122
mvsany_test197.60 21997.54 21797.77 26297.72 35395.35 26995.36 34497.13 34194.13 32999.71 3199.33 9097.93 9699.30 35797.60 14398.94 30498.67 314
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5099.59 2399.71 3199.57 4297.12 15399.90 6399.21 4799.87 7699.54 107
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6699.11 7299.70 3399.73 1599.00 2299.97 499.26 4299.98 1299.89 11
SixPastTwentyTwo98.75 9498.62 10399.16 10699.83 2097.96 15699.28 3798.20 31299.37 4599.70 3399.65 3092.65 29599.93 3999.04 5799.84 8499.60 73
new-patchmatchnet98.35 15598.74 8297.18 30499.24 16592.23 35096.42 29999.48 9398.30 13199.69 3599.53 5497.44 13699.82 16498.84 6999.77 12299.49 126
LCM-MVSNet-Re98.64 11798.48 12499.11 11398.85 25098.51 10298.49 11999.83 2098.37 12599.69 3599.46 6698.21 7499.92 4994.13 31299.30 25698.91 279
test_fmvs1_n98.09 18298.28 15397.52 28799.68 5993.47 32898.63 9899.93 495.41 30199.68 3799.64 3291.88 30499.48 32999.82 699.87 7699.62 66
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 4899.66 1399.68 3799.66 2798.44 5799.95 2399.73 1799.96 2599.75 41
SSC-MVS98.71 9898.74 8298.62 18599.72 4596.08 24798.74 8698.64 29399.74 699.67 3999.24 10694.57 25899.95 2399.11 5199.24 26599.82 23
SED-MVS98.91 7298.72 8699.49 4899.49 11499.17 3998.10 15899.31 15798.03 15599.66 4099.02 15198.36 6199.88 8296.91 18599.62 18599.41 163
test_241102_ONE99.49 11499.17 3999.31 15797.98 15799.66 4098.90 18798.36 6199.48 329
dcpmvs_298.78 8999.11 5097.78 26199.56 8893.67 32599.06 6399.86 1399.50 3099.66 4099.26 10197.21 15099.99 298.00 12199.91 6199.68 53
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3498.93 9799.65 4399.72 1698.93 2699.95 2399.11 51100.00 199.82 23
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4499.30 5599.65 4399.60 3999.16 2099.82 16499.07 5499.83 9199.56 96
ACMH96.65 799.25 3399.24 3799.26 9199.72 4598.38 10999.07 6299.55 7098.30 13199.65 4399.45 7099.22 1599.76 22098.44 9699.77 12299.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SDMVSNet99.23 3899.32 2898.96 13999.68 5997.35 19798.84 8499.48 9399.69 999.63 4699.68 2099.03 2199.96 1297.97 12399.92 5399.57 90
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16599.69 999.63 4699.68 2099.25 1499.96 1297.25 16099.92 5399.57 90
SD-MVS98.40 14998.68 9497.54 28598.96 22797.99 14997.88 18999.36 13498.20 14499.63 4699.04 14898.76 3395.33 39696.56 22199.74 13799.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
KD-MVS_self_test99.25 3399.18 4099.44 5799.63 7399.06 6498.69 9499.54 7599.31 5399.62 4999.53 5497.36 14099.86 10899.24 4699.71 15299.39 175
RRT_MVS99.09 5298.94 6599.55 2399.87 1298.82 7899.48 998.16 31599.49 3199.59 5099.65 3094.79 25499.95 2399.45 3399.96 2599.88 14
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7599.62 2099.56 5199.42 7498.16 8099.96 1298.78 7199.93 4299.77 33
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8299.64 1599.56 5199.46 6698.23 6999.97 498.78 7199.93 4299.72 44
casdiffmvs_mvgpermissive99.12 4999.16 4398.99 13599.43 13397.73 17898.00 17499.62 4599.22 6199.55 5399.22 11098.93 2699.75 22798.66 8299.81 9899.50 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs197.72 21197.94 18897.07 31098.66 29092.39 34597.68 21399.81 2395.20 30599.54 5499.44 7191.56 30699.41 34199.78 1399.77 12299.40 172
Anonymous2024052998.93 7098.87 7099.12 11199.19 17998.22 12599.01 6798.99 24599.25 5999.54 5499.37 8097.04 15799.80 18497.89 12699.52 22099.35 194
EU-MVSNet97.66 21698.50 11995.13 35699.63 7385.84 38698.35 13598.21 31198.23 13899.54 5499.46 6695.02 24399.68 26198.24 10599.87 7699.87 16
DeepC-MVS97.60 498.97 6598.93 6699.10 11599.35 15097.98 15298.01 17399.46 10297.56 19299.54 5499.50 5998.97 2399.84 13798.06 11699.92 5399.49 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3199.38 4499.53 5899.61 3798.64 4199.80 18498.24 10599.84 8499.52 117
ACMH+96.62 999.08 5599.00 6099.33 7899.71 4898.83 7698.60 10299.58 5299.11 7299.53 5899.18 11798.81 3299.67 26496.71 20999.77 12299.50 122
WB-MVS98.52 13898.55 11298.43 21499.65 6695.59 25898.52 11198.77 28099.65 1499.52 6099.00 16394.34 26499.93 3998.65 8398.83 30999.76 37
v899.01 5999.16 4398.57 19499.47 12396.31 23998.90 7799.47 10099.03 8899.52 6099.57 4296.93 16499.81 17799.60 2399.98 1299.60 73
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11498.36 11499.00 6999.45 10599.63 1799.52 6099.44 7198.25 6799.88 8299.09 5399.84 8499.62 66
K. test v398.00 18897.66 21099.03 13199.79 2597.56 18699.19 4992.47 38399.62 2099.52 6099.66 2789.61 31899.96 1299.25 4499.81 9899.56 96
tfpnnormal98.90 7498.90 6998.91 14699.67 6397.82 16999.00 6999.44 10999.45 3699.51 6499.24 10698.20 7599.86 10895.92 25799.69 16099.04 255
WR-MVS_H99.33 2699.22 3899.65 599.71 4899.24 2599.32 2399.55 7099.46 3599.50 6599.34 8897.30 14299.93 3998.90 6599.93 4299.77 33
v1098.97 6599.11 5098.55 19999.44 12896.21 24198.90 7799.55 7098.73 10799.48 6699.60 3996.63 18499.83 15499.70 2099.99 599.61 72
DP-MVS98.93 7098.81 7899.28 8699.21 17298.45 10698.46 12499.33 15099.63 1799.48 6699.15 12797.23 14899.75 22797.17 16399.66 17699.63 65
N_pmnet97.63 21897.17 23898.99 13599.27 16097.86 16395.98 31793.41 38095.25 30399.47 6898.90 18795.63 22599.85 12096.91 18599.73 14099.27 215
test111196.49 28696.82 25895.52 35099.42 13487.08 38399.22 4287.14 39599.11 7299.46 6999.58 4188.69 32499.86 10898.80 7099.95 3099.62 66
nrg03099.40 2199.35 2399.54 2799.58 7699.13 5598.98 7299.48 9399.68 1199.46 6999.26 10198.62 4499.73 23799.17 5099.92 5399.76 37
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 7899.53 2999.46 6999.41 7798.23 6999.95 2398.89 6799.95 3099.81 26
v124098.55 13198.62 10398.32 22399.22 17095.58 26097.51 23699.45 10597.16 23699.45 7299.24 10696.12 20499.85 12099.60 2399.88 7399.55 103
DPE-MVScopyleft98.59 12598.26 15699.57 1699.27 16099.15 4797.01 26899.39 12497.67 18099.44 7398.99 16497.53 12799.89 7395.40 27999.68 16599.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
testf199.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
APD_test299.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
FMVSNet199.17 4099.17 4199.17 10399.55 9298.24 12099.20 4599.44 10999.21 6399.43 7499.55 4897.82 10399.86 10898.42 9899.89 7299.41 163
pmmvs-eth3d98.47 14298.34 14698.86 15199.30 15697.76 17497.16 26399.28 17695.54 29499.42 7799.19 11497.27 14599.63 28697.89 12699.97 2099.20 229
IU-MVS99.49 11499.15 4798.87 26092.97 34599.41 7896.76 20299.62 18599.66 57
IterMVS-SCA-FT97.85 20498.18 16496.87 31999.27 16091.16 36595.53 33799.25 18599.10 7999.41 7899.35 8493.10 28599.96 1298.65 8399.94 3899.49 126
test20.0398.78 8998.77 8198.78 16599.46 12497.20 20797.78 20099.24 19099.04 8799.41 7898.90 18797.65 11399.76 22097.70 14099.79 11399.39 175
PC_three_145293.27 34199.40 8198.54 25098.22 7297.00 39295.17 28299.45 23499.49 126
FC-MVSNet-test99.27 3099.25 3699.34 7399.77 2998.37 11199.30 3299.57 5999.61 2299.40 8199.50 5997.12 15399.85 12099.02 5999.94 3899.80 27
mvsmamba99.24 3799.15 4899.49 4899.83 2098.85 7499.41 1399.55 7099.54 2799.40 8199.52 5795.86 22099.91 5899.32 3899.95 3099.70 50
EG-PatchMatch MVS98.99 6199.01 5998.94 14299.50 10797.47 19098.04 16799.59 5098.15 15199.40 8199.36 8398.58 4999.76 22098.78 7199.68 16599.59 79
bld_raw_dy_0_6499.07 5699.00 6099.29 8499.85 1798.18 12699.11 5899.40 12199.33 5099.38 8599.44 7195.21 23799.97 499.31 3999.98 1299.73 43
v192192098.54 13398.60 10898.38 21999.20 17695.76 25797.56 23099.36 13497.23 23199.38 8599.17 12196.02 20899.84 13799.57 2599.90 6899.54 107
IterMVS-LS98.55 13198.70 9198.09 23999.48 12194.73 28897.22 25999.39 12498.97 9399.38 8599.31 9496.00 21099.93 3998.58 8699.97 2099.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lessismore_v098.97 13899.73 3997.53 18886.71 39699.37 8899.52 5789.93 31699.92 4998.99 6199.72 14799.44 153
XXY-MVS99.14 4499.15 4899.10 11599.76 3297.74 17698.85 8299.62 4598.48 12399.37 8899.49 6398.75 3499.86 10898.20 10899.80 10899.71 45
ECVR-MVScopyleft96.42 28896.61 27395.85 34299.38 13988.18 37999.22 4286.00 39799.08 8499.36 9099.57 4288.47 32999.82 16498.52 9299.95 3099.54 107
TranMVSNet+NR-MVSNet99.17 4099.07 5699.46 5699.37 14598.87 7398.39 13199.42 11899.42 4199.36 9099.06 13998.38 6099.95 2398.34 10199.90 6899.57 90
APDe-MVScopyleft98.99 6198.79 7999.60 1199.21 17299.15 4798.87 7999.48 9397.57 19099.35 9299.24 10697.83 10099.89 7397.88 12999.70 15799.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
casdiffmvspermissive98.95 6899.00 6098.81 15799.38 13997.33 19897.82 19799.57 5999.17 7099.35 9299.17 12198.35 6499.69 25298.46 9599.73 14099.41 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS98.82 8398.72 8699.12 11199.64 7098.54 10097.98 17799.68 3997.62 18499.34 9499.18 11797.54 12599.77 21497.79 13499.74 13799.04 255
Anonymous2024052198.69 10598.87 7098.16 23799.77 2995.11 27999.08 5999.44 10999.34 4999.33 9599.55 4894.10 27299.94 3499.25 4499.96 2599.42 160
v119298.60 12398.66 9798.41 21699.27 16095.88 25297.52 23499.36 13497.41 20999.33 9599.20 11396.37 19699.82 16499.57 2599.92 5399.55 103
CP-MVSNet99.21 3999.09 5399.56 2199.65 6698.96 7099.13 5599.34 14599.42 4199.33 9599.26 10197.01 16199.94 3498.74 7599.93 4299.79 28
IterMVS97.73 21098.11 17396.57 32799.24 16590.28 37095.52 33999.21 19498.86 10299.33 9599.33 9093.11 28499.94 3498.49 9499.94 3899.48 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS96.93 598.32 15898.01 18299.23 9898.39 32198.97 6695.03 35299.18 20496.88 24999.33 9598.78 21298.16 8099.28 36196.74 20499.62 18599.44 153
COLMAP_ROBcopyleft96.50 1098.99 6198.85 7499.41 6099.58 7699.10 6098.74 8699.56 6699.09 8299.33 9599.19 11498.40 5999.72 24495.98 25599.76 13399.42 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 13398.57 11198.45 21199.21 17295.98 24997.63 22199.36 13497.15 23899.32 10199.18 11795.84 22199.84 13799.50 3099.91 6199.54 107
v14898.45 14498.60 10898.00 24999.44 12894.98 28197.44 24299.06 22898.30 13199.32 10198.97 17096.65 18399.62 28898.37 9999.85 8099.39 175
MSP-MVS98.40 14998.00 18399.61 999.57 8099.25 2498.57 10599.35 13997.55 19499.31 10397.71 31694.61 25799.88 8296.14 24999.19 27499.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 7798.83 7599.01 13399.70 5597.62 18598.43 12799.35 13999.47 3499.28 10499.05 14696.72 18099.82 16498.09 11499.36 24599.59 79
v2v48298.56 12798.62 10398.37 22099.42 13495.81 25597.58 22899.16 21197.90 16599.28 10499.01 16095.98 21499.79 19799.33 3799.90 6899.51 119
ambc98.24 23198.82 25695.97 25098.62 10099.00 24499.27 10699.21 11196.99 16299.50 32596.55 22499.50 22999.26 218
Patchmatch-RL test97.26 24397.02 24697.99 25099.52 10295.53 26296.13 31499.71 3197.47 20099.27 10699.16 12384.30 35799.62 28897.89 12699.77 12298.81 292
v114498.60 12398.66 9798.41 21699.36 14695.90 25197.58 22899.34 14597.51 19699.27 10699.15 12796.34 19899.80 18499.47 3299.93 4299.51 119
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10699.48 6498.82 3199.95 2398.94 6399.93 4299.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVS++98.90 7498.70 9199.51 4398.43 31699.15 4799.43 1199.32 15298.17 14799.26 11099.02 15198.18 7699.88 8297.07 17399.45 23499.49 126
FOURS199.73 3999.67 299.43 1199.54 7599.43 4099.26 110
test_241102_TWO99.30 16598.03 15599.26 11099.02 15197.51 13099.88 8296.91 18599.60 19299.66 57
test072699.50 10799.21 2898.17 15199.35 13997.97 15899.26 11099.06 13997.61 119
V4298.78 8998.78 8098.76 16999.44 12897.04 21498.27 14099.19 20097.87 16799.25 11499.16 12396.84 16899.78 20899.21 4799.84 8499.46 145
TSAR-MVS + MP.98.63 11998.49 12399.06 12799.64 7097.90 16098.51 11698.94 24796.96 24499.24 11598.89 19397.83 10099.81 17796.88 19299.49 23099.48 136
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs99.14 4499.09 5399.29 8499.70 5598.28 11799.13 5599.52 8199.48 3299.24 11599.41 7796.79 17499.82 16498.69 8099.88 7399.76 37
TSAR-MVS + GP.98.18 17597.98 18498.77 16898.71 27397.88 16196.32 30498.66 29096.33 26999.23 11798.51 25497.48 13599.40 34297.16 16499.46 23299.02 258
ppachtmachnet_test97.50 22497.74 20296.78 32598.70 27791.23 36494.55 36799.05 23196.36 26899.21 11898.79 21196.39 19399.78 20896.74 20499.82 9499.34 196
Baseline_NR-MVSNet98.98 6498.86 7399.36 6499.82 2298.55 9797.47 24099.57 5999.37 4599.21 11899.61 3796.76 17799.83 15498.06 11699.83 9199.71 45
EI-MVSNet-UG-set98.69 10598.71 8898.62 18599.10 20096.37 23697.23 25698.87 26099.20 6599.19 12098.99 16497.30 14299.85 12098.77 7499.79 11399.65 61
testgi98.32 15898.39 13998.13 23899.57 8095.54 26197.78 20099.49 9197.37 21399.19 12097.65 32098.96 2499.49 32696.50 22898.99 29899.34 196
baseline98.96 6799.02 5898.76 16999.38 13997.26 20298.49 11999.50 8498.86 10299.19 12099.06 13998.23 6999.69 25298.71 7899.76 13399.33 201
FMVSNet298.49 14098.40 13698.75 17298.90 23997.14 21398.61 10199.13 21898.59 11599.19 12099.28 9794.14 26899.82 16497.97 12399.80 10899.29 212
EI-MVSNet-Vis-set98.68 11098.70 9198.63 18499.09 20396.40 23597.23 25698.86 26599.20 6599.18 12498.97 17097.29 14499.85 12098.72 7799.78 11899.64 62
TAMVS98.24 17098.05 17998.80 15999.07 20797.18 20997.88 18998.81 27496.66 25999.17 12599.21 11194.81 25199.77 21496.96 18399.88 7399.44 153
UniMVSNet (Re)98.87 7798.71 8899.35 7099.24 16598.73 8597.73 20999.38 12698.93 9799.12 12698.73 21996.77 17599.86 10898.63 8599.80 10899.46 145
Anonymous20240521197.90 19397.50 22099.08 11998.90 23998.25 11998.53 11096.16 35998.87 10199.11 12798.86 19790.40 31499.78 20897.36 15499.31 25399.19 234
VDD-MVS98.56 12798.39 13999.07 12199.13 19698.07 14298.59 10397.01 34399.59 2399.11 12799.27 9994.82 24999.79 19798.34 10199.63 18299.34 196
XVG-OURS-SEG-HR98.49 14098.28 15399.14 10999.49 11498.83 7696.54 29299.48 9397.32 21899.11 12798.61 24499.33 1399.30 35796.23 24298.38 32999.28 214
LPG-MVS_test98.71 9898.46 12899.47 5499.57 8098.97 6698.23 14399.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
LGP-MVS_train99.47 5499.57 8098.97 6699.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
DVP-MVScopyleft98.77 9298.52 11699.52 3999.50 10799.21 2898.02 17098.84 26997.97 15899.08 13299.02 15197.61 11999.88 8296.99 17999.63 18299.48 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 14799.08 13299.02 15197.89 9799.88 8297.07 17399.71 15299.70 50
EI-MVSNet98.40 14998.51 11798.04 24799.10 20094.73 28897.20 26098.87 26098.97 9399.06 13499.02 15196.00 21099.80 18498.58 8699.82 9499.60 73
UniMVSNet_NR-MVSNet98.86 8098.68 9499.40 6299.17 18798.74 8297.68 21399.40 12199.14 7199.06 13498.59 24696.71 18199.93 3998.57 8899.77 12299.53 114
DU-MVS98.82 8398.63 10199.39 6399.16 18998.74 8297.54 23299.25 18598.84 10599.06 13498.76 21696.76 17799.93 3998.57 8899.77 12299.50 122
MVSTER96.86 27096.55 27797.79 26097.91 34694.21 30397.56 23098.87 26097.49 19999.06 13499.05 14680.72 37099.80 18498.44 9699.82 9499.37 184
TinyColmap97.89 19597.98 18497.60 27898.86 24794.35 30096.21 30999.44 10997.45 20799.06 13498.88 19497.99 9399.28 36194.38 30699.58 20199.18 236
test_part299.36 14699.10 6099.05 139
XVG-OURS98.53 13598.34 14699.11 11399.50 10798.82 7895.97 31899.50 8497.30 22099.05 13998.98 16899.35 1299.32 35495.72 26899.68 16599.18 236
our_test_397.39 23497.73 20496.34 33198.70 27789.78 37294.61 36598.97 24696.50 26399.04 14198.85 20095.98 21499.84 13797.26 15999.67 17199.41 163
UA-Net99.47 1399.40 2099.70 299.49 11499.29 1999.80 399.72 3099.82 399.04 14199.81 598.05 8799.96 1298.85 6899.99 599.86 18
ACMM96.08 1298.91 7298.73 8499.48 5199.55 9299.14 5298.07 16299.37 13097.62 18499.04 14198.96 17398.84 3099.79 19797.43 15199.65 17799.49 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD-MVS_3200maxsize98.84 8198.61 10799.53 3499.19 17999.27 2298.49 11999.33 15098.64 10999.03 14498.98 16897.89 9799.85 12096.54 22599.42 23899.46 145
HyFIR lowres test97.19 25096.60 27598.96 13999.62 7597.28 20195.17 34899.50 8494.21 32799.01 14598.32 27786.61 33699.99 297.10 17199.84 8499.60 73
CVMVSNet96.25 29397.21 23793.38 37399.10 20080.56 40097.20 26098.19 31496.94 24699.00 14699.02 15189.50 32099.80 18496.36 23699.59 19699.78 31
PVSNet_Blended_VisFu98.17 17798.15 16998.22 23299.73 3995.15 27697.36 24699.68 3994.45 32298.99 14799.27 9996.87 16799.94 3497.13 16999.91 6199.57 90
APD_test198.83 8298.66 9799.34 7399.78 2699.47 698.42 12999.45 10598.28 13698.98 14899.19 11497.76 10699.58 30396.57 21799.55 21198.97 267
SMA-MVScopyleft98.40 14998.03 18199.51 4399.16 18999.21 2898.05 16599.22 19394.16 32898.98 14899.10 13697.52 12999.79 19796.45 23199.64 17999.53 114
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE98.56 12798.34 14699.22 9999.54 9798.59 9497.71 21099.46 10297.25 22598.98 14898.99 16497.54 12599.84 13795.88 25899.74 13799.23 224
IS-MVSNet98.19 17497.90 19299.08 11999.57 8097.97 15399.31 2798.32 30799.01 9098.98 14899.03 15091.59 30599.79 19795.49 27799.80 10899.48 136
MP-MVS-pluss98.57 12698.23 15999.60 1199.69 5799.35 1297.16 26399.38 12694.87 31298.97 15298.99 16498.01 8999.88 8297.29 15799.70 15799.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDDNet98.21 17297.95 18699.01 13399.58 7697.74 17699.01 6797.29 33899.67 1298.97 15299.50 5990.45 31399.80 18497.88 12999.20 27199.48 136
USDC97.41 23397.40 22597.44 29498.94 22993.67 32595.17 34899.53 7894.03 33298.97 15299.10 13695.29 23599.34 35195.84 26499.73 14099.30 210
MM98.91 14696.97 21797.89 18894.44 37299.54 2798.95 15599.14 13093.50 28099.92 4999.80 1099.96 2599.85 19
SR-MVS-dyc-post98.81 8598.55 11299.57 1699.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.49 13499.86 10896.56 22199.39 24199.45 149
RE-MVS-def98.58 11099.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.75 10796.56 22199.39 24199.45 149
GBi-Net98.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
test198.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
FMVSNet397.50 22497.24 23598.29 22798.08 33995.83 25497.86 19498.91 25497.89 16698.95 15598.95 17787.06 33399.81 17797.77 13599.69 16099.23 224
test_040298.76 9398.71 8898.93 14399.56 8898.14 13198.45 12699.34 14599.28 5798.95 15598.91 18498.34 6599.79 19795.63 27299.91 6198.86 285
HPM-MVS_fast99.01 5998.82 7699.57 1699.71 4899.35 1299.00 6999.50 8497.33 21698.94 16298.86 19798.75 3499.82 16497.53 14799.71 15299.56 96
Anonymous2023120698.21 17298.21 16098.20 23399.51 10495.43 26798.13 15399.32 15296.16 27698.93 16398.82 20696.00 21099.83 15497.32 15699.73 14099.36 190
YYNet197.60 21997.67 20797.39 29799.04 21593.04 33595.27 34598.38 30697.25 22598.92 16498.95 17795.48 23299.73 23796.99 17998.74 31399.41 163
GeoE99.05 5798.99 6399.25 9499.44 12898.35 11598.73 8999.56 6698.42 12498.91 16598.81 20898.94 2599.91 5898.35 10099.73 14099.49 126
SteuartSystems-ACMMP98.79 8798.54 11499.54 2799.73 3999.16 4398.23 14399.31 15797.92 16398.90 16698.90 18798.00 9099.88 8296.15 24899.72 14799.58 85
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.62 12198.36 14399.42 5899.65 6699.42 798.55 10799.57 5997.72 17898.90 16699.26 10196.12 20499.52 32095.72 26899.71 15299.32 203
D2MVS97.84 20597.84 19797.83 25799.14 19494.74 28796.94 27298.88 25895.84 28798.89 16898.96 17394.40 26299.69 25297.55 14499.95 3099.05 251
MTAPA98.88 7698.64 10099.61 999.67 6399.36 1198.43 12799.20 19698.83 10698.89 16898.90 18796.98 16399.92 4997.16 16499.70 15799.56 96
iter_conf0596.54 28296.07 28897.92 25197.90 34794.50 29597.87 19299.14 21797.73 17698.89 16898.95 17775.75 38899.87 9998.50 9399.92 5399.40 172
WR-MVS98.40 14998.19 16399.03 13199.00 22097.65 18296.85 27898.94 24798.57 11898.89 16898.50 25895.60 22699.85 12097.54 14699.85 8099.59 79
SR-MVS98.71 9898.43 13299.57 1699.18 18699.35 1298.36 13499.29 17398.29 13498.88 17298.85 20097.53 12799.87 9996.14 24999.31 25399.48 136
AllTest98.44 14598.20 16199.16 10699.50 10798.55 9798.25 14299.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
TestCases99.16 10699.50 10798.55 9799.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
MDA-MVSNet_test_wron97.60 21997.66 21097.41 29699.04 21593.09 33195.27 34598.42 30397.26 22498.88 17298.95 17795.43 23399.73 23797.02 17698.72 31599.41 163
tt080598.69 10598.62 10398.90 14999.75 3699.30 1799.15 5396.97 34598.86 10298.87 17697.62 32398.63 4398.96 37699.41 3598.29 33298.45 325
iter_conf_final97.10 25596.65 27298.45 21198.53 30796.08 24798.30 13799.11 22198.10 15298.85 17798.95 17779.38 37899.87 9998.68 8199.91 6199.40 172
VNet98.42 14698.30 15198.79 16298.79 26397.29 20098.23 14398.66 29099.31 5398.85 17798.80 20994.80 25299.78 20898.13 11199.13 28299.31 207
CSCG98.68 11098.50 11999.20 10099.45 12798.63 8998.56 10699.57 5997.87 16798.85 17798.04 29897.66 11299.84 13796.72 20799.81 9899.13 244
CHOSEN 1792x268897.49 22697.14 24298.54 20299.68 5996.09 24596.50 29499.62 4591.58 36098.84 18098.97 17092.36 29799.88 8296.76 20299.95 3099.67 56
SF-MVS98.53 13598.27 15599.32 8099.31 15398.75 8198.19 14799.41 11996.77 25498.83 18198.90 18797.80 10499.82 16495.68 27199.52 22099.38 182
mvs_anonymous97.83 20798.16 16896.87 31998.18 33391.89 35297.31 25098.90 25597.37 21398.83 18199.46 6696.28 19999.79 19798.90 6598.16 33998.95 270
MDA-MVSNet-bldmvs97.94 19297.91 19198.06 24499.44 12894.96 28296.63 29099.15 21698.35 12698.83 18199.11 13494.31 26599.85 12096.60 21498.72 31599.37 184
PMMVS298.07 18498.08 17798.04 24799.41 13694.59 29494.59 36699.40 12197.50 19798.82 18498.83 20396.83 17099.84 13797.50 14999.81 9899.71 45
ACMMPcopyleft98.75 9498.50 11999.52 3999.56 8899.16 4398.87 7999.37 13097.16 23698.82 18499.01 16097.71 10999.87 9996.29 24099.69 16099.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMP95.32 1598.41 14798.09 17499.36 6499.51 10498.79 8097.68 21399.38 12695.76 28998.81 18698.82 20698.36 6199.82 16494.75 29099.77 12299.48 136
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMP_NAP98.75 9498.48 12499.57 1699.58 7699.29 1997.82 19799.25 18596.94 24698.78 18799.12 13398.02 8899.84 13797.13 16999.67 17199.59 79
LFMVS97.20 24996.72 26498.64 18098.72 27096.95 22098.93 7594.14 37899.74 698.78 18799.01 16084.45 35499.73 23797.44 15099.27 26099.25 219
Patchmtry97.35 23696.97 24798.50 20797.31 37196.47 23498.18 14898.92 25298.95 9698.78 18799.37 8085.44 34899.85 12095.96 25699.83 9199.17 240
test250692.39 35291.89 35593.89 36799.38 13982.28 39799.32 2366.03 40399.08 8498.77 19099.57 4266.26 39899.84 13798.71 7899.95 3099.54 107
c3_l97.36 23597.37 22897.31 29898.09 33893.25 33095.01 35399.16 21197.05 24098.77 19098.72 22192.88 29099.64 28396.93 18499.76 13399.05 251
UnsupCasMVSNet_eth97.89 19597.60 21598.75 17299.31 15397.17 21097.62 22299.35 13998.72 10898.76 19298.68 22892.57 29699.74 23297.76 13995.60 38299.34 196
OPM-MVS98.56 12798.32 15099.25 9499.41 13698.73 8597.13 26599.18 20497.10 23998.75 19398.92 18398.18 7699.65 28096.68 21199.56 20899.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS_fast96.85 698.30 16198.15 16998.75 17298.61 29397.23 20397.76 20599.09 22597.31 21998.75 19398.66 23397.56 12399.64 28396.10 25299.55 21199.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance97.18 25197.16 23997.25 30398.16 33492.85 33795.15 35099.31 15797.25 22598.74 19598.78 21290.07 31599.78 20897.19 16299.80 10899.11 246
APD-MVScopyleft98.10 17997.67 20799.42 5899.11 19898.93 7197.76 20599.28 17694.97 30998.72 19698.77 21497.04 15799.85 12093.79 32299.54 21399.49 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_ehance_all_eth97.06 25997.03 24597.16 30797.83 34993.06 33294.66 36299.09 22595.99 28398.69 19798.45 26392.73 29499.61 29496.79 19899.03 29298.82 288
PGM-MVS98.66 11498.37 14299.55 2399.53 10099.18 3898.23 14399.49 9197.01 24398.69 19798.88 19498.00 9099.89 7395.87 26199.59 19699.58 85
GST-MVS98.61 12298.30 15199.52 3999.51 10499.20 3498.26 14199.25 18597.44 20898.67 19998.39 26797.68 11099.85 12096.00 25399.51 22299.52 117
tttt051795.64 30994.98 31897.64 27699.36 14693.81 32198.72 9090.47 39198.08 15498.67 19998.34 27473.88 39099.92 4997.77 13599.51 22299.20 229
test_one_060199.39 13899.20 3499.31 15798.49 12298.66 20199.02 15197.64 116
OpenMVS_ROBcopyleft95.38 1495.84 30495.18 31597.81 25998.41 32097.15 21297.37 24598.62 29483.86 38898.65 20298.37 27094.29 26699.68 26188.41 37698.62 32496.60 379
MS-PatchMatch97.68 21497.75 20197.45 29398.23 33193.78 32297.29 25298.84 26996.10 27898.64 20398.65 23596.04 20799.36 34796.84 19699.14 28099.20 229
cl____97.02 26296.83 25797.58 28097.82 35094.04 30994.66 36299.16 21197.04 24198.63 20498.71 22288.68 32699.69 25297.00 17799.81 9899.00 262
DIV-MVS_self_test97.02 26296.84 25697.58 28097.82 35094.03 31094.66 36299.16 21197.04 24198.63 20498.71 22288.69 32499.69 25297.00 17799.81 9899.01 259
pmmvs597.64 21797.49 22198.08 24299.14 19495.12 27896.70 28799.05 23193.77 33598.62 20698.83 20393.23 28199.75 22798.33 10399.76 13399.36 190
ab-mvs98.41 14798.36 14398.59 19199.19 17997.23 20399.32 2398.81 27497.66 18198.62 20699.40 7996.82 17199.80 18495.88 25899.51 22298.75 303
pmmvs497.58 22297.28 23398.51 20598.84 25196.93 22295.40 34398.52 29993.60 33798.61 20898.65 23595.10 24199.60 29596.97 18299.79 11398.99 263
HPM-MVScopyleft98.79 8798.53 11599.59 1599.65 6699.29 1999.16 5199.43 11596.74 25598.61 20898.38 26998.62 4499.87 9996.47 22999.67 17199.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CL-MVSNet_self_test97.44 23197.22 23698.08 24298.57 30295.78 25694.30 37298.79 27796.58 26298.60 21098.19 28694.74 25699.64 28396.41 23398.84 30898.82 288
Gipumacopyleft99.03 5899.16 4398.64 18099.94 298.51 10299.32 2399.75 2999.58 2598.60 21099.62 3498.22 7299.51 32497.70 14099.73 14097.89 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CDS-MVSNet97.69 21397.35 23098.69 17798.73 26897.02 21696.92 27698.75 28495.89 28698.59 21298.67 23092.08 30299.74 23296.72 20799.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet98.30 16198.04 18099.07 12199.56 8897.83 16699.29 3398.07 31999.03 8898.59 21299.13 13192.16 30099.90 6396.87 19399.68 16599.49 126
h-mvs3397.77 20897.33 23299.10 11599.21 17297.84 16598.35 13598.57 29699.11 7298.58 21499.02 15188.65 32799.96 1298.11 11296.34 37499.49 126
hse-mvs297.46 22897.07 24398.64 18098.73 26897.33 19897.45 24197.64 33199.11 7298.58 21497.98 30188.65 32799.79 19798.11 11297.39 35898.81 292
HFP-MVS98.71 9898.44 13199.51 4399.49 11499.16 4398.52 11199.31 15797.47 20098.58 21498.50 25897.97 9499.85 12096.57 21799.59 19699.53 114
eth_miper_zixun_eth97.23 24797.25 23497.17 30598.00 34292.77 33994.71 35999.18 20497.27 22398.56 21798.74 21891.89 30399.69 25297.06 17599.81 9899.05 251
ACMMPR98.70 10298.42 13499.54 2799.52 10299.14 5298.52 11199.31 15797.47 20098.56 21798.54 25097.75 10799.88 8296.57 21799.59 19699.58 85
new_pmnet96.99 26696.76 26297.67 27298.72 27094.89 28395.95 32298.20 31292.62 35198.55 21998.54 25094.88 24899.52 32093.96 31699.44 23798.59 320
3Dnovator98.27 298.81 8598.73 8499.05 12898.76 26497.81 17199.25 4099.30 16598.57 11898.55 21999.33 9097.95 9599.90 6397.16 16499.67 17199.44 153
9.1497.78 19999.07 20797.53 23399.32 15295.53 29598.54 22198.70 22597.58 12199.76 22094.32 30799.46 232
diffmvspermissive98.22 17198.24 15898.17 23599.00 22095.44 26696.38 30199.58 5297.79 17398.53 22298.50 25896.76 17799.74 23297.95 12599.64 17999.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS97.88 19797.49 22199.04 13098.89 24498.63 8996.94 27299.25 18595.02 30798.53 22298.51 25497.27 14599.47 33293.50 32999.51 22299.01 259
jason97.45 23097.35 23097.76 26599.24 16593.93 31595.86 32698.42 30394.24 32698.50 22498.13 28894.82 24999.91 5897.22 16199.73 14099.43 157
jason: jason.
patch_mono-298.51 13998.63 10198.17 23599.38 13994.78 28597.36 24699.69 3498.16 15098.49 22599.29 9697.06 15699.97 498.29 10499.91 6199.76 37
FA-MVS(test-final)96.99 26696.82 25897.50 28998.70 27794.78 28599.34 2096.99 34495.07 30698.48 22699.33 9088.41 33099.65 28096.13 25198.92 30698.07 343
MVP-Stereo98.08 18397.92 19098.57 19498.96 22796.79 22597.90 18699.18 20496.41 26798.46 22798.95 17795.93 21799.60 29596.51 22798.98 30099.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DELS-MVS98.27 16598.20 16198.48 20898.86 24796.70 22995.60 33599.20 19697.73 17698.45 22898.71 22297.50 13199.82 16498.21 10799.59 19698.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 10598.40 13699.54 2799.53 10099.17 3998.52 11199.31 15797.46 20598.44 22998.51 25497.83 10099.88 8296.46 23099.58 20199.58 85
BH-untuned96.83 27196.75 26397.08 30898.74 26793.33 32996.71 28698.26 30996.72 25698.44 22997.37 33795.20 23899.47 33291.89 35197.43 35798.44 327
LS3D98.63 11998.38 14199.36 6497.25 37299.38 899.12 5799.32 15299.21 6398.44 22998.88 19497.31 14199.80 18496.58 21599.34 24998.92 276
xiu_mvs_v1_base_debu97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base_debi97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
Patchmatch-test96.55 28196.34 28297.17 30598.35 32293.06 33298.40 13097.79 32497.33 21698.41 23298.67 23083.68 36199.69 25295.16 28399.31 25398.77 300
baseline195.96 30195.44 30597.52 28798.51 31093.99 31398.39 13196.09 36198.21 14098.40 23697.76 31486.88 33499.63 28695.42 27889.27 39498.95 270
MSDG97.71 21297.52 21998.28 22898.91 23896.82 22494.42 36999.37 13097.65 18298.37 23798.29 27997.40 13899.33 35394.09 31399.22 26898.68 313
MVS_030498.10 17997.88 19498.76 16998.82 25696.50 23397.90 18691.35 38999.56 2698.32 23899.13 13196.06 20699.93 3999.84 599.97 2099.85 19
miper_enhance_ethall96.01 29895.74 29396.81 32396.41 38792.27 34993.69 38198.89 25791.14 36798.30 23997.35 33990.58 31299.58 30396.31 23899.03 29298.60 318
CP-MVS98.70 10298.42 13499.52 3999.36 14699.12 5798.72 9099.36 13497.54 19598.30 23998.40 26697.86 9999.89 7396.53 22699.72 14799.56 96
UnsupCasMVSNet_bld97.30 24096.92 25098.45 21199.28 15896.78 22896.20 31099.27 17995.42 29898.28 24198.30 27893.16 28399.71 24594.99 28597.37 35998.87 284
ITE_SJBPF98.87 15099.22 17098.48 10499.35 13997.50 19798.28 24198.60 24597.64 11699.35 35093.86 32099.27 26098.79 298
thisisatest053095.27 31694.45 32597.74 26899.19 17994.37 29997.86 19490.20 39297.17 23598.22 24397.65 32073.53 39199.90 6396.90 19099.35 24798.95 270
CS-MVS99.13 4799.10 5299.24 9699.06 21199.15 4799.36 1999.88 1199.36 4898.21 24498.46 26298.68 4099.93 3999.03 5899.85 8098.64 315
test_yl96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
DCV-MVSNet96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
CS-MVS-test99.13 4799.09 5399.26 9199.13 19698.97 6699.31 2799.88 1199.44 3898.16 24798.51 25498.64 4199.93 3998.91 6499.85 8098.88 283
MVSFormer98.26 16798.43 13297.77 26298.88 24593.89 31999.39 1799.56 6699.11 7298.16 24798.13 28893.81 27699.97 499.26 4299.57 20599.43 157
lupinMVS97.06 25996.86 25497.65 27498.88 24593.89 31995.48 34097.97 32193.53 33898.16 24797.58 32493.81 27699.91 5896.77 20199.57 20599.17 240
Vis-MVSNet (Re-imp)97.46 22897.16 23998.34 22299.55 9296.10 24298.94 7498.44 30298.32 13098.16 24798.62 24288.76 32399.73 23793.88 31999.79 11399.18 236
TAPA-MVS96.21 1196.63 27995.95 29098.65 17998.93 23198.09 13696.93 27499.28 17683.58 38998.13 25197.78 31296.13 20399.40 34293.52 32799.29 25898.45 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EC-MVSNet99.09 5299.05 5799.20 10099.28 15898.93 7199.24 4199.84 1899.08 8498.12 25298.37 27098.72 3699.90 6399.05 5699.77 12298.77 300
ZNCC-MVS98.68 11098.40 13699.54 2799.57 8099.21 2898.46 12499.29 17397.28 22298.11 25398.39 26798.00 9099.87 9996.86 19599.64 17999.55 103
MVS_111021_LR98.30 16198.12 17298.83 15499.16 18998.03 14796.09 31599.30 16597.58 18998.10 25498.24 28198.25 6799.34 35196.69 21099.65 17799.12 245
mPP-MVS98.64 11798.34 14699.54 2799.54 9799.17 3998.63 9899.24 19097.47 20098.09 25598.68 22897.62 11899.89 7396.22 24399.62 18599.57 90
3Dnovator+97.89 398.69 10598.51 11799.24 9698.81 25998.40 10799.02 6699.19 20098.99 9198.07 25699.28 9797.11 15599.84 13796.84 19699.32 25199.47 143
PHI-MVS98.29 16497.95 18699.34 7398.44 31599.16 4398.12 15599.38 12696.01 28298.06 25798.43 26497.80 10499.67 26495.69 27099.58 20199.20 229
CLD-MVS97.49 22697.16 23998.48 20899.07 20797.03 21594.71 35999.21 19494.46 32098.06 25797.16 34297.57 12299.48 32994.46 29999.78 11898.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.01 21998.84 7599.07 22794.10 33098.05 25998.12 29096.36 19799.86 10892.70 34499.19 274
MVS_Test98.18 17598.36 14397.67 27298.48 31194.73 28898.18 14899.02 23997.69 17998.04 26099.11 13497.22 14999.56 30898.57 8898.90 30798.71 306
FMVSNet596.01 29895.20 31498.41 21697.53 36396.10 24298.74 8699.50 8497.22 23498.03 26199.04 14869.80 39299.88 8297.27 15899.71 15299.25 219
MVS_111021_HR98.25 16998.08 17798.75 17299.09 20397.46 19195.97 31899.27 17997.60 18897.99 26298.25 28098.15 8299.38 34696.87 19399.57 20599.42 160
FE-MVS95.66 30894.95 32097.77 26298.53 30795.28 27199.40 1696.09 36193.11 34497.96 26399.26 10179.10 38099.77 21492.40 34898.71 31798.27 334
MCST-MVS98.00 18897.63 21399.10 11599.24 16598.17 12896.89 27798.73 28795.66 29097.92 26497.70 31897.17 15199.66 27596.18 24799.23 26799.47 143
MG-MVS96.77 27496.61 27397.26 30298.31 32593.06 33295.93 32398.12 31896.45 26697.92 26498.73 21993.77 27899.39 34491.19 36499.04 29199.33 201
MSLP-MVS++98.02 18698.14 17197.64 27698.58 30095.19 27597.48 23899.23 19297.47 20097.90 26698.62 24297.04 15798.81 38297.55 14499.41 23998.94 274
cl2295.79 30595.39 30896.98 31396.77 38292.79 33894.40 37098.53 29894.59 31797.89 26798.17 28782.82 36699.24 36396.37 23499.03 29298.92 276
test_vis1_rt97.75 20997.72 20597.83 25798.81 25996.35 23797.30 25199.69 3494.61 31697.87 26898.05 29796.26 20098.32 38798.74 7598.18 33698.82 288
BH-RMVSNet96.83 27196.58 27697.58 28098.47 31294.05 30796.67 28897.36 33496.70 25897.87 26897.98 30195.14 24099.44 33790.47 37098.58 32699.25 219
MIMVSNet96.62 28096.25 28797.71 27199.04 21594.66 29199.16 5196.92 34997.23 23197.87 26899.10 13686.11 34299.65 28091.65 35499.21 27098.82 288
LF4IMVS97.90 19397.69 20698.52 20499.17 18797.66 18197.19 26299.47 10096.31 27197.85 27198.20 28596.71 18199.52 32094.62 29499.72 14798.38 330
CPTT-MVS97.84 20597.36 22999.27 8999.31 15398.46 10598.29 13899.27 17994.90 31197.83 27298.37 27094.90 24599.84 13793.85 32199.54 21399.51 119
CMPMVSbinary75.91 2396.29 29195.44 30598.84 15396.25 38998.69 8897.02 26799.12 21988.90 37997.83 27298.86 19789.51 31998.90 38091.92 35099.51 22298.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN94.17 33294.37 32793.58 37096.86 37985.71 38890.11 39097.07 34298.17 14797.82 27497.19 34184.62 35398.94 37789.77 37297.68 35396.09 386
CDPH-MVS97.26 24396.66 27099.07 12199.00 22098.15 12996.03 31699.01 24291.21 36697.79 27597.85 31096.89 16699.69 25292.75 34299.38 24499.39 175
HQP_MVS97.99 19197.67 20798.93 14399.19 17997.65 18297.77 20299.27 17998.20 14497.79 27597.98 30194.90 24599.70 24894.42 30299.51 22299.45 149
plane_prior397.78 17397.41 20997.79 275
MDTV_nov1_ep13_2view74.92 40297.69 21290.06 37597.75 27885.78 34493.52 32798.69 310
pmmvs395.03 32094.40 32696.93 31597.70 35792.53 34295.08 35197.71 32788.57 38097.71 27998.08 29579.39 37799.82 16496.19 24599.11 28698.43 328
DP-MVS Recon97.33 23896.92 25098.57 19499.09 20397.99 14996.79 28099.35 13993.18 34297.71 27998.07 29695.00 24499.31 35593.97 31599.13 28298.42 329
QAPM97.31 23996.81 26098.82 15598.80 26297.49 18999.06 6399.19 20090.22 37297.69 28199.16 12396.91 16599.90 6390.89 36899.41 23999.07 249
SCA96.41 28996.66 27095.67 34698.24 32988.35 37795.85 32896.88 35096.11 27797.67 28298.67 23093.10 28599.85 12094.16 30899.22 26898.81 292
Effi-MVS+-dtu98.26 16797.90 19299.35 7098.02 34199.49 598.02 17099.16 21198.29 13497.64 28397.99 30096.44 19299.95 2396.66 21298.93 30598.60 318
CNVR-MVS98.17 17797.87 19599.07 12198.67 28598.24 12097.01 26898.93 24997.25 22597.62 28498.34 27497.27 14599.57 30596.42 23299.33 25099.39 175
PVSNet_BlendedMVS97.55 22397.53 21897.60 27898.92 23593.77 32396.64 28999.43 11594.49 31897.62 28499.18 11796.82 17199.67 26494.73 29199.93 4299.36 190
PVSNet_Blended96.88 26996.68 26797.47 29298.92 23593.77 32394.71 35999.43 11590.98 36897.62 28497.36 33896.82 17199.67 26494.73 29199.56 20898.98 264
alignmvs97.35 23696.88 25398.78 16598.54 30598.09 13697.71 21097.69 32899.20 6597.59 28795.90 36588.12 33299.55 31198.18 10998.96 30298.70 309
MP-MVScopyleft98.46 14398.09 17499.54 2799.57 8099.22 2798.50 11899.19 20097.61 18797.58 28898.66 23397.40 13899.88 8294.72 29399.60 19299.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DSMNet-mixed97.42 23297.60 21596.87 31999.15 19391.46 35698.54 10999.12 21992.87 34897.58 28899.63 3396.21 20199.90 6395.74 26799.54 21399.27 215
test0.0.03 194.51 32593.69 33496.99 31296.05 39093.61 32794.97 35493.49 37996.17 27497.57 29094.88 38282.30 36799.01 37593.60 32594.17 38998.37 332
PCF-MVS92.86 1894.36 32793.00 34498.42 21598.70 27797.56 18693.16 38499.11 22179.59 39297.55 29197.43 33392.19 29999.73 23779.85 39399.45 23497.97 348
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVS98.72 9798.45 12999.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29298.63 24097.50 13199.83 15496.79 19899.53 21799.56 96
X-MVStestdata94.32 32892.59 34699.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29245.85 39597.50 13199.83 15496.79 19899.53 21799.56 96
旧先验295.76 33088.56 38197.52 29499.66 27594.48 298
PMVScopyleft91.26 2097.86 19997.94 18897.65 27499.71 4897.94 15898.52 11198.68 28998.99 9197.52 29499.35 8497.41 13798.18 38891.59 35699.67 17196.82 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETV-MVS98.03 18597.86 19698.56 19898.69 28298.07 14297.51 23699.50 8498.10 15297.50 29695.51 37198.41 5899.88 8296.27 24199.24 26597.71 361
PS-MVSNAJ97.08 25897.39 22696.16 33998.56 30392.46 34395.24 34798.85 26897.25 22597.49 29795.99 36298.07 8499.90 6396.37 23498.67 32196.12 385
xiu_mvs_v2_base97.16 25397.49 22196.17 33798.54 30592.46 34395.45 34198.84 26997.25 22597.48 29896.49 35398.31 6699.90 6396.34 23798.68 32096.15 384
canonicalmvs98.34 15698.26 15698.58 19298.46 31397.82 16998.96 7399.46 10299.19 6997.46 29995.46 37498.59 4799.46 33498.08 11598.71 31798.46 323
testdata98.09 23998.93 23195.40 26898.80 27690.08 37497.45 30098.37 27095.26 23699.70 24893.58 32698.95 30399.17 240
thres600view794.45 32693.83 33296.29 33399.06 21191.53 35597.99 17694.24 37698.34 12797.44 30195.01 37879.84 37399.67 26484.33 38598.23 33397.66 362
EMVS93.83 33894.02 33093.23 37496.83 38184.96 38989.77 39196.32 35897.92 16397.43 30296.36 35986.17 34098.93 37887.68 37997.73 35295.81 387
thres100view90094.19 33193.67 33595.75 34599.06 21191.35 35998.03 16894.24 37698.33 12897.40 30394.98 38079.84 37399.62 28883.05 38798.08 34496.29 380
Fast-Effi-MVS+-dtu98.27 16598.09 17498.81 15798.43 31698.11 13397.61 22499.50 8498.64 10997.39 30497.52 32898.12 8399.95 2396.90 19098.71 31798.38 330
API-MVS97.04 26196.91 25297.42 29597.88 34898.23 12498.18 14898.50 30097.57 19097.39 30496.75 34996.77 17599.15 37090.16 37199.02 29594.88 390
PatchMatch-RL97.24 24696.78 26198.61 18899.03 21897.83 16696.36 30299.06 22893.49 34097.36 30697.78 31295.75 22299.49 32693.44 33098.77 31298.52 321
sss97.21 24896.93 24898.06 24498.83 25395.22 27496.75 28498.48 30194.49 31897.27 30797.90 30792.77 29399.80 18496.57 21799.32 25199.16 243
KD-MVS_2432*160092.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
miper_refine_blended92.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
WTY-MVS96.67 27796.27 28697.87 25598.81 25994.61 29396.77 28297.92 32394.94 31097.12 31097.74 31591.11 30999.82 16493.89 31898.15 34099.18 236
tfpn200view994.03 33593.44 33795.78 34498.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34496.29 380
thres40094.14 33393.44 33796.24 33598.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34497.66 362
PatchmatchNetpermissive95.58 31095.67 29795.30 35597.34 37087.32 38297.65 21996.65 35295.30 30297.07 31398.69 22684.77 35199.75 22794.97 28698.64 32298.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNLPA97.17 25296.71 26598.55 19998.56 30398.05 14696.33 30398.93 24996.91 24897.06 31497.39 33594.38 26399.45 33591.66 35399.18 27698.14 339
NCCC97.86 19997.47 22499.05 12898.61 29398.07 14296.98 27098.90 25597.63 18397.04 31597.93 30695.99 21399.66 27595.31 28098.82 31199.43 157
TR-MVS95.55 31195.12 31696.86 32297.54 36293.94 31496.49 29596.53 35694.36 32597.03 31696.61 35194.26 26799.16 36986.91 38196.31 37597.47 368
MDTV_nov1_ep1395.22 31397.06 37783.20 39597.74 20796.16 35994.37 32496.99 31798.83 20383.95 35999.53 31693.90 31797.95 350
CANet97.87 19897.76 20098.19 23497.75 35295.51 26396.76 28399.05 23197.74 17596.93 31898.21 28495.59 22799.89 7397.86 13199.93 4299.19 234
EPMVS93.72 34093.27 33995.09 35896.04 39187.76 38098.13 15385.01 39894.69 31596.92 31998.64 23878.47 38599.31 35595.04 28496.46 37398.20 336
AdaColmapbinary97.14 25496.71 26598.46 21098.34 32397.80 17296.95 27198.93 24995.58 29396.92 31997.66 31995.87 21999.53 31690.97 36599.14 28098.04 344
thisisatest051594.12 33493.16 34196.97 31498.60 29592.90 33693.77 38090.61 39094.10 33096.91 32195.87 36674.99 38999.80 18494.52 29799.12 28598.20 336
CR-MVSNet96.28 29295.95 29097.28 30097.71 35594.22 30198.11 15698.92 25292.31 35496.91 32199.37 8085.44 34899.81 17797.39 15397.36 36197.81 354
RPMNet97.02 26296.93 24897.30 29997.71 35594.22 30198.11 15699.30 16599.37 4596.91 32199.34 8886.72 33599.87 9997.53 14797.36 36197.81 354
HPM-MVS++copyleft98.10 17997.64 21299.48 5199.09 20399.13 5597.52 23498.75 28497.46 20596.90 32497.83 31196.01 20999.84 13795.82 26599.35 24799.46 145
PatchT96.65 27896.35 28197.54 28597.40 36895.32 27097.98 17796.64 35399.33 5096.89 32599.42 7484.32 35699.81 17797.69 14297.49 35497.48 367
1112_ss97.29 24296.86 25498.58 19299.34 15296.32 23896.75 28499.58 5293.14 34396.89 32597.48 33092.11 30199.86 10896.91 18599.54 21399.57 90
test22298.92 23596.93 22295.54 33698.78 27985.72 38696.86 32798.11 29194.43 26099.10 28799.23 224
thres20093.72 34093.14 34295.46 35398.66 29091.29 36196.61 29194.63 37197.39 21196.83 32893.71 38879.88 37299.56 30882.40 39098.13 34195.54 389
UGNet98.53 13598.45 12998.79 16297.94 34496.96 21999.08 5998.54 29799.10 7996.82 32999.47 6596.55 18799.84 13798.56 9199.94 3899.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Test_1112_low_res96.99 26696.55 27798.31 22599.35 15095.47 26595.84 32999.53 7891.51 36296.80 33098.48 26191.36 30799.83 15496.58 21599.53 21799.62 66
testing393.51 34292.09 35097.75 26698.60 29594.40 29897.32 24995.26 36897.56 19296.79 33195.50 37253.57 40299.77 21495.26 28198.97 30199.08 247
新几何198.91 14698.94 22997.76 17498.76 28187.58 38396.75 33298.10 29294.80 25299.78 20892.73 34399.00 29799.20 229
Effi-MVS+98.02 18697.82 19898.62 18598.53 30797.19 20897.33 24899.68 3997.30 22096.68 33397.46 33298.56 5099.80 18496.63 21398.20 33598.86 285
GA-MVS95.86 30395.32 31197.49 29098.60 29594.15 30693.83 37997.93 32295.49 29696.68 33397.42 33483.21 36299.30 35796.22 24398.55 32799.01 259
EIA-MVS98.00 18897.74 20298.80 15998.72 27098.09 13698.05 16599.60 4997.39 21196.63 33595.55 37097.68 11099.80 18496.73 20699.27 26098.52 321
F-COLMAP97.30 24096.68 26799.14 10999.19 17998.39 10897.27 25599.30 16592.93 34696.62 33698.00 29995.73 22399.68 26192.62 34598.46 32899.35 194
PAPM_NR96.82 27396.32 28398.30 22699.07 20796.69 23097.48 23898.76 28195.81 28896.61 33796.47 35594.12 27199.17 36890.82 36997.78 35199.06 250
dmvs_re95.98 30095.39 30897.74 26898.86 24797.45 19298.37 13395.69 36697.95 16096.56 33895.95 36390.70 31197.68 39088.32 37796.13 37898.11 340
test1298.93 14398.58 30097.83 16698.66 29096.53 33995.51 23099.69 25299.13 28299.27 215
BH-w/o95.13 31894.89 32295.86 34198.20 33291.31 36095.65 33397.37 33393.64 33696.52 34095.70 36893.04 28899.02 37388.10 37895.82 38197.24 371
ADS-MVSNet295.43 31494.98 31896.76 32698.14 33591.74 35397.92 18397.76 32590.23 37096.51 34198.91 18485.61 34599.85 12092.88 33796.90 36798.69 310
ADS-MVSNet95.24 31794.93 32196.18 33698.14 33590.10 37197.92 18397.32 33790.23 37096.51 34198.91 18485.61 34599.74 23292.88 33796.90 36798.69 310
114514_t96.50 28595.77 29298.69 17799.48 12197.43 19497.84 19699.55 7081.42 39196.51 34198.58 24795.53 22899.67 26493.41 33199.58 20198.98 264
PVSNet93.40 1795.67 30795.70 29595.57 34998.83 25388.57 37592.50 38697.72 32692.69 35096.49 34496.44 35693.72 27999.43 33893.61 32499.28 25998.71 306
DPM-MVS96.32 29095.59 30098.51 20598.76 26497.21 20694.54 36898.26 30991.94 35796.37 34597.25 34093.06 28799.43 33891.42 35998.74 31398.89 280
tpmrst95.07 31995.46 30393.91 36697.11 37484.36 39397.62 22296.96 34694.98 30896.35 34698.80 20985.46 34799.59 29995.60 27396.23 37697.79 357
OpenMVScopyleft96.65 797.09 25796.68 26798.32 22398.32 32497.16 21198.86 8199.37 13089.48 37696.29 34799.15 12796.56 18699.90 6392.90 33699.20 27197.89 349
Fast-Effi-MVS+97.67 21597.38 22798.57 19498.71 27397.43 19497.23 25699.45 10594.82 31396.13 34896.51 35298.52 5299.91 5896.19 24598.83 30998.37 332
test_prior295.74 33196.48 26596.11 34997.63 32295.92 21894.16 30899.20 271
dp93.47 34393.59 33693.13 37596.64 38381.62 39997.66 21796.42 35792.80 34996.11 34998.64 23878.55 38499.59 29993.31 33292.18 39398.16 338
原ACMM198.35 22198.90 23996.25 24098.83 27392.48 35296.07 35198.10 29295.39 23499.71 24592.61 34698.99 29899.08 247
PMMVS96.51 28395.98 28998.09 23997.53 36395.84 25394.92 35598.84 26991.58 36096.05 35295.58 36995.68 22499.66 27595.59 27498.09 34398.76 302
tpm94.67 32494.34 32895.66 34797.68 35988.42 37697.88 18994.90 36994.46 32096.03 35398.56 24978.66 38199.79 19795.88 25895.01 38598.78 299
TEST998.71 27398.08 14095.96 32099.03 23691.40 36395.85 35497.53 32696.52 18899.76 220
train_agg97.10 25596.45 28099.07 12198.71 27398.08 14095.96 32099.03 23691.64 35895.85 35497.53 32696.47 19099.76 22093.67 32399.16 27799.36 190
test_898.67 28598.01 14895.91 32599.02 23991.64 35895.79 35697.50 32996.47 19099.76 220
agg_prior98.68 28497.99 14999.01 24295.59 35799.77 214
PLCcopyleft94.65 1696.51 28395.73 29498.85 15298.75 26697.91 15996.42 29999.06 22890.94 36995.59 35797.38 33694.41 26199.59 29990.93 36698.04 34999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP4-MVS95.56 35999.54 31499.32 203
HQP-NCC98.67 28596.29 30596.05 27995.55 360
ACMP_Plane98.67 28596.29 30596.05 27995.55 360
HQP-MVS97.00 26596.49 27998.55 19998.67 28596.79 22596.29 30599.04 23496.05 27995.55 36096.84 34793.84 27499.54 31492.82 33999.26 26399.32 203
MAR-MVS96.47 28795.70 29598.79 16297.92 34599.12 5798.28 13998.60 29592.16 35695.54 36396.17 36094.77 25599.52 32089.62 37398.23 33397.72 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS96.24 29495.45 30498.60 19098.70 27797.22 20597.38 24497.65 32995.95 28495.53 36497.96 30582.11 36999.79 19796.31 23897.44 35698.80 297
tpmvs95.02 32195.25 31294.33 36296.39 38885.87 38598.08 16096.83 35195.46 29795.51 36598.69 22685.91 34399.53 31694.16 30896.23 37697.58 365
MVS-HIRNet94.32 32895.62 29890.42 37798.46 31375.36 40196.29 30589.13 39495.25 30395.38 36699.75 1192.88 29099.19 36794.07 31499.39 24196.72 378
PAPR95.29 31594.47 32497.75 26697.50 36795.14 27794.89 35698.71 28891.39 36495.35 36795.48 37394.57 25899.14 37184.95 38497.37 35998.97 267
HY-MVS95.94 1395.90 30295.35 31097.55 28497.95 34394.79 28498.81 8596.94 34892.28 35595.17 36898.57 24889.90 31799.75 22791.20 36397.33 36398.10 341
CANet_DTU97.26 24397.06 24497.84 25697.57 36094.65 29296.19 31198.79 27797.23 23195.14 36998.24 28193.22 28299.84 13797.34 15599.84 8499.04 255
cascas94.79 32394.33 32996.15 34096.02 39292.36 34792.34 38899.26 18485.34 38795.08 37094.96 38192.96 28998.53 38594.41 30598.59 32597.56 366
CostFormer93.97 33693.78 33394.51 36197.53 36385.83 38797.98 17795.96 36389.29 37894.99 37198.63 24078.63 38299.62 28894.54 29696.50 37298.09 342
Syy-MVS96.04 29795.56 30197.49 29097.10 37594.48 29696.18 31296.58 35495.65 29194.77 37292.29 39291.27 30899.36 34798.17 11098.05 34798.63 316
myMVS_eth3d91.92 35790.45 36096.30 33297.10 37590.90 36796.18 31296.58 35495.65 29194.77 37292.29 39253.88 40199.36 34789.59 37498.05 34798.63 316
CHOSEN 280x42095.51 31395.47 30295.65 34898.25 32888.27 37893.25 38398.88 25893.53 33894.65 37497.15 34386.17 34099.93 3997.41 15299.93 4298.73 305
JIA-IIPM95.52 31295.03 31797.00 31196.85 38094.03 31096.93 27495.82 36499.20 6594.63 37599.71 1783.09 36399.60 29594.42 30294.64 38697.36 370
MVS93.19 34692.09 35096.50 32996.91 37894.03 31098.07 16298.06 32068.01 39394.56 37696.48 35495.96 21699.30 35783.84 38696.89 36996.17 382
131495.74 30695.60 29996.17 33797.53 36392.75 34098.07 16298.31 30891.22 36594.25 37796.68 35095.53 22899.03 37291.64 35597.18 36496.74 377
tpm cat193.29 34593.13 34393.75 36897.39 36984.74 39097.39 24397.65 32983.39 39094.16 37898.41 26582.86 36599.39 34491.56 35795.35 38497.14 372
test-LLR93.90 33793.85 33194.04 36496.53 38484.62 39194.05 37692.39 38496.17 27494.12 37995.07 37682.30 36799.67 26495.87 26198.18 33697.82 352
test-mter92.33 35491.76 35794.04 36496.53 38484.62 39194.05 37692.39 38494.00 33394.12 37995.07 37665.63 40099.67 26495.87 26198.18 33697.82 352
tpm293.09 34792.58 34794.62 36097.56 36186.53 38497.66 21795.79 36586.15 38594.07 38198.23 28375.95 38699.53 31690.91 36796.86 37097.81 354
dmvs_testset92.94 34892.21 34995.13 35698.59 29890.99 36697.65 21992.09 38696.95 24594.00 38293.55 38992.34 29896.97 39372.20 39692.52 39197.43 369
TESTMET0.1,192.19 35691.77 35693.46 37196.48 38682.80 39694.05 37691.52 38894.45 32294.00 38294.88 38266.65 39799.56 30895.78 26698.11 34298.02 345
PVSNet_089.98 2191.15 35990.30 36293.70 36997.72 35384.34 39490.24 38997.42 33290.20 37393.79 38493.09 39090.90 31098.89 38186.57 38272.76 39697.87 351
FPMVS93.44 34492.23 34897.08 30899.25 16497.86 16395.61 33497.16 34092.90 34793.76 38598.65 23575.94 38795.66 39479.30 39497.49 35497.73 359
EPNet96.14 29595.44 30598.25 22990.76 39995.50 26497.92 18394.65 37098.97 9392.98 38698.85 20089.12 32299.87 9995.99 25499.68 16599.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline293.73 33992.83 34596.42 33097.70 35791.28 36296.84 27989.77 39393.96 33492.44 38795.93 36479.14 37999.77 21492.94 33596.76 37198.21 335
IB-MVS91.63 1992.24 35590.90 35996.27 33497.22 37391.24 36394.36 37193.33 38192.37 35392.24 38894.58 38566.20 39999.89 7393.16 33494.63 38797.66 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune92.37 35391.20 35895.85 34295.80 39392.38 34699.31 2781.84 40099.75 591.83 38999.74 1368.29 39399.02 37387.15 38097.12 36596.16 383
DeepMVS_CXcopyleft93.44 37298.24 32994.21 30394.34 37364.28 39491.34 39094.87 38489.45 32192.77 39777.54 39593.14 39093.35 392
PAPM91.88 35890.34 36196.51 32898.06 34092.56 34192.44 38797.17 33986.35 38490.38 39196.01 36186.61 33699.21 36670.65 39795.43 38397.75 358
ET-MVSNet_ETH3D94.30 33093.21 34097.58 28098.14 33594.47 29794.78 35893.24 38294.72 31489.56 39295.87 36678.57 38399.81 17796.91 18597.11 36698.46 323
EPNet_dtu94.93 32294.78 32395.38 35493.58 39687.68 38196.78 28195.69 36697.35 21589.14 39398.09 29488.15 33199.49 32694.95 28799.30 25698.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND94.76 35994.54 39592.13 35199.31 2780.47 40188.73 39491.01 39467.59 39698.16 38982.30 39194.53 38893.98 391
tmp_tt78.77 36278.73 36578.90 37958.45 40174.76 40394.20 37378.26 40239.16 39586.71 39592.82 39180.50 37175.19 39886.16 38392.29 39286.74 393
MVEpermissive83.40 2292.50 35191.92 35494.25 36398.83 25391.64 35492.71 38583.52 39995.92 28586.46 39695.46 37495.20 23895.40 39580.51 39298.64 32295.73 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method79.78 36179.50 36480.62 37880.21 40045.76 40470.82 39298.41 30531.08 39680.89 39797.71 31684.85 35097.37 39191.51 35880.03 39598.75 303
EGC-MVSNET85.24 36080.54 36399.34 7399.77 2999.20 3499.08 5999.29 17312.08 39720.84 39899.42 7497.55 12499.85 12097.08 17299.72 14798.96 269
testmvs17.12 36420.53 3676.87 38112.05 4024.20 40693.62 3826.73 4044.62 39910.41 39924.33 3968.28 4043.56 4009.69 39915.07 39712.86 396
test12317.04 36520.11 3687.82 38010.25 4034.91 40594.80 3574.47 4054.93 39810.00 40024.28 3979.69 4033.64 39910.14 39812.43 39814.92 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.66 36332.88 3660.00 3820.00 4040.00 4070.00 39399.10 2230.00 4000.00 40197.58 32499.21 160.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas8.17 36610.90 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40098.07 840.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.12 36710.83 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.48 3300.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS90.90 36791.37 360
MSC_two_6792asdad99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
No_MVS99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
eth-test20.00 404
eth-test0.00 404
OPU-MVS98.82 15598.59 29898.30 11698.10 15898.52 25398.18 7698.75 38394.62 29499.48 23199.41 163
save fliter99.11 19897.97 15396.53 29399.02 23998.24 137
test_0728_SECOND99.60 1199.50 10799.23 2698.02 17099.32 15299.88 8296.99 17999.63 18299.68 53
GSMVS98.81 292
sam_mvs184.74 35298.81 292
sam_mvs84.29 358
MTGPAbinary99.20 196
test_post197.59 22720.48 39983.07 36499.66 27594.16 308
test_post21.25 39883.86 36099.70 248
patchmatchnet-post98.77 21484.37 35599.85 120
MTMP97.93 18191.91 387
gm-plane-assit94.83 39481.97 39888.07 38294.99 37999.60 29591.76 352
test9_res93.28 33399.15 27999.38 182
agg_prior292.50 34799.16 27799.37 184
test_prior497.97 15395.86 326
test_prior98.95 14198.69 28297.95 15799.03 23699.59 29999.30 210
新几何295.93 323
旧先验198.82 25697.45 19298.76 28198.34 27495.50 23199.01 29699.23 224
无先验95.74 33198.74 28689.38 37799.73 23792.38 34999.22 228
原ACMM295.53 337
testdata299.79 19792.80 341
segment_acmp97.02 160
testdata195.44 34296.32 270
plane_prior799.19 17997.87 162
plane_prior698.99 22397.70 18094.90 245
plane_prior599.27 17999.70 24894.42 30299.51 22299.45 149
plane_prior497.98 301
plane_prior297.77 20298.20 144
plane_prior199.05 214
plane_prior97.65 18297.07 26696.72 25699.36 245
n20.00 406
nn0.00 406
door-mid99.57 59
test1198.87 260
door99.41 119
HQP5-MVS96.79 225
BP-MVS92.82 339
HQP3-MVS99.04 23499.26 263
HQP2-MVS93.84 274
NP-MVS98.84 25197.39 19696.84 347
ACMMP++_ref99.77 122
ACMMP++99.68 165
Test By Simon96.52 188