This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
ANet_high99.57 799.67 599.28 8299.89 698.09 13399.14 4399.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 12999.20 3599.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
mvs_tets99.63 599.67 599.49 4999.88 798.61 9199.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
wuyk23d96.06 27697.62 18891.38 34998.65 26798.57 9598.85 6796.95 32996.86 22799.90 499.16 8699.18 1198.40 36289.23 34899.77 9077.18 367
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9199.28 2999.66 1999.09 6699.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3499.64 41
Anonymous2023121199.27 2599.27 2499.26 8899.29 12498.18 12699.49 899.51 5899.70 899.80 999.68 1496.84 15499.83 13999.21 2399.91 4099.77 16
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6499.63 699.58 2899.44 2999.78 1099.76 696.39 18199.92 3599.44 1399.92 3499.68 33
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5899.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16399.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9499.27 3199.57 3599.39 3399.75 1299.62 2199.17 1299.83 13999.06 3099.62 15499.66 36
NR-MVSNet98.95 4898.82 5099.36 6599.16 15798.72 8599.22 3499.20 17399.10 6399.72 1398.76 18396.38 18399.86 9498.00 9199.82 6599.50 102
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3699.41 1299.59 2699.59 2099.71 1499.57 2797.12 13999.90 4999.21 2399.87 5299.54 85
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8099.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
SixPastTwentyTwo98.75 7398.62 7599.16 10199.83 1597.96 15499.28 2998.20 29799.37 3599.70 1599.65 1992.65 27799.93 2899.04 3299.84 5699.60 51
new-patchmatchnet98.35 13498.74 5797.18 28299.24 13292.23 32796.42 27299.48 7098.30 11399.69 1799.53 3397.44 12199.82 15098.84 4399.77 9099.49 106
LCM-MVSNet-Re98.64 9398.48 9699.11 10898.85 22398.51 10198.49 9799.83 498.37 10899.69 1799.46 4398.21 5799.92 3594.13 28399.30 23498.91 260
v7n99.53 899.57 899.41 6199.88 798.54 9999.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
SED-MVS98.91 5298.72 6099.49 4999.49 8599.17 3898.10 13399.31 13498.03 13599.66 2099.02 11598.36 4499.88 7096.91 15299.62 15499.41 145
test_241102_ONE99.49 8599.17 3899.31 13497.98 13799.66 2098.90 14898.36 4499.48 314
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6299.34 1599.69 1598.93 8199.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
pm-mvs199.44 1399.48 1199.33 7599.80 1798.63 8899.29 2599.63 2199.30 4299.65 2299.60 2599.16 1499.82 15099.07 2999.83 6299.56 73
ACMH96.65 799.25 2799.24 2699.26 8899.72 3098.38 10999.07 4999.55 4698.30 11399.65 2299.45 4799.22 999.76 21198.44 6599.77 9099.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part197.91 17097.46 20099.27 8598.80 23698.18 12699.07 4999.36 10999.75 599.63 2599.49 3982.20 34599.89 5998.87 4199.95 1699.74 24
SD-MVS98.40 12998.68 6897.54 26798.96 19997.99 14597.88 16099.36 10998.20 12599.63 2599.04 11198.76 2395.33 36996.56 18899.74 10499.31 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 4999.06 6398.69 7699.54 5099.31 4099.62 2799.53 3397.36 12699.86 9499.24 2299.71 11899.39 154
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 5199.29 2599.54 5099.62 1799.56 2899.42 4998.16 6299.96 898.78 4599.93 2599.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 3199.30 1799.31 2099.51 5899.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
Anonymous2024052998.93 5098.87 4599.12 10699.19 14698.22 12499.01 5398.99 22899.25 4599.54 3099.37 5497.04 14299.80 17297.89 9499.52 19299.35 174
EU-MVSNet97.66 19498.50 9195.13 33099.63 4985.84 35998.35 11298.21 29698.23 12199.54 3099.46 4395.02 22899.68 25098.24 7599.87 5299.87 4
DeepC-MVS97.60 498.97 4598.93 4399.10 11099.35 11797.98 14998.01 14999.46 7897.56 16999.54 3099.50 3698.97 1699.84 12598.06 8699.92 3499.49 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17298.24 7599.84 5699.52 95
ACMH+96.62 999.08 3599.00 4099.33 7599.71 3198.83 7498.60 8299.58 2899.11 5799.53 3399.18 8098.81 2299.67 25396.71 17699.77 9099.50 102
v899.01 3899.16 3098.57 18899.47 9596.31 23598.90 6299.47 7699.03 7099.52 3599.57 2796.93 15099.81 16399.60 499.98 999.60 51
VPA-MVSNet99.30 2499.30 2399.28 8299.49 8598.36 11399.00 5599.45 8199.63 1499.52 3599.44 4898.25 5099.88 7099.09 2899.84 5699.62 46
K. test v398.00 16597.66 18499.03 12799.79 1997.56 18599.19 3992.47 36199.62 1799.52 3599.66 1789.61 29599.96 899.25 2099.81 6999.56 73
tfpnnormal98.90 5498.90 4498.91 14299.67 4197.82 16899.00 5599.44 8499.45 2899.51 3899.24 7298.20 5899.86 9495.92 22599.69 12999.04 237
WR-MVS_H99.33 2399.22 2799.65 599.71 3199.24 2499.32 1799.55 4699.46 2799.50 3999.34 6097.30 12899.93 2898.90 3899.93 2599.77 16
v1098.97 4599.11 3398.55 19399.44 10196.21 23798.90 6299.55 4698.73 9099.48 4099.60 2596.63 17099.83 13999.70 399.99 599.61 50
DP-MVS98.93 5098.81 5299.28 8299.21 13998.45 10598.46 10299.33 12699.63 1499.48 4099.15 9097.23 13699.75 21897.17 13099.66 14599.63 45
N_pmnet97.63 19797.17 21698.99 13399.27 12797.86 16295.98 28893.41 35895.25 27799.47 4298.90 14895.63 21199.85 10896.91 15299.73 10799.27 198
nrg03099.40 1899.35 1799.54 2999.58 5299.13 5498.98 5899.48 7099.68 999.46 4399.26 6998.62 3099.73 22699.17 2699.92 3499.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3199.10 5999.29 2599.53 5499.53 2399.46 4399.41 5198.23 5299.95 1598.89 4099.95 1699.81 11
v124098.55 10998.62 7598.32 21599.22 13795.58 25097.51 20199.45 8197.16 21499.45 4599.24 7296.12 19099.85 10899.60 499.88 4999.55 81
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 12799.15 4797.01 23699.39 9997.67 15899.44 4698.99 12797.53 11099.89 5995.40 24999.68 13499.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FMVSNet199.17 3099.17 2999.17 9899.55 6698.24 11999.20 3599.44 8499.21 4699.43 4799.55 2997.82 8699.86 9498.42 6799.89 4899.41 145
pmmvs-eth3d98.47 12098.34 12098.86 14999.30 12397.76 17397.16 23199.28 15395.54 26899.42 4899.19 7897.27 13199.63 27197.89 9499.97 1199.20 211
IU-MVS99.49 8599.15 4798.87 24492.97 31599.41 4996.76 16999.62 15499.66 36
IterMVS-SCA-FT97.85 18298.18 14096.87 29699.27 12791.16 34295.53 31099.25 16299.10 6399.41 4999.35 5893.10 26899.96 898.65 5499.94 2199.49 106
test20.0398.78 6898.77 5698.78 16299.46 9697.20 20697.78 16999.24 16799.04 6999.41 4998.90 14897.65 9799.76 21197.70 10999.79 8299.39 154
PC_three_145293.27 31299.40 5298.54 22098.22 5597.00 36695.17 25199.45 21099.49 106
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11099.30 2499.57 3599.61 1999.40 5299.50 3697.12 13999.85 10899.02 3399.94 2199.80 12
EG-PatchMatch MVS98.99 4099.01 3998.94 13899.50 7897.47 18998.04 14399.59 2698.15 13199.40 5299.36 5798.58 3399.76 21198.78 4599.68 13499.59 57
v192192098.54 11298.60 8098.38 21199.20 14395.76 24997.56 19599.36 10997.23 20999.38 5599.17 8496.02 19399.84 12599.57 699.90 4499.54 85
IterMVS-LS98.55 10998.70 6598.09 23099.48 9394.73 27497.22 22499.39 9998.97 7699.38 5599.31 6496.00 19599.93 2898.58 5699.97 1199.60 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lessismore_v098.97 13499.73 2497.53 18786.71 37199.37 5799.52 3589.93 29399.92 3598.99 3599.72 11499.44 135
XXY-MVS99.14 3299.15 3299.10 11099.76 2297.74 17698.85 6799.62 2298.48 10599.37 5799.49 3998.75 2499.86 9498.20 7899.80 7799.71 26
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11298.87 7198.39 10899.42 9399.42 3199.36 5999.06 10198.38 4399.95 1598.34 7299.90 4499.57 68
APDe-MVS98.99 4098.79 5399.60 1399.21 13999.15 4798.87 6499.48 7097.57 16799.35 6099.24 7297.83 8399.89 5997.88 9799.70 12399.75 22
casdiffmvs98.95 4899.00 4098.81 15599.38 11097.33 19597.82 16799.57 3599.17 5499.35 6099.17 8498.35 4799.69 24198.46 6499.73 10799.41 145
PM-MVS98.82 6198.72 6099.12 10699.64 4798.54 9997.98 15299.68 1697.62 16299.34 6299.18 8097.54 10899.77 20497.79 10199.74 10499.04 237
Anonymous2024052198.69 8398.87 4598.16 22899.77 2095.11 26899.08 4799.44 8499.34 3899.33 6399.55 2994.10 25599.94 2399.25 2099.96 1499.42 142
v119298.60 10098.66 7198.41 20899.27 12795.88 24497.52 19999.36 10997.41 18799.33 6399.20 7796.37 18499.82 15099.57 699.92 3499.55 81
CP-MVSNet99.21 2999.09 3499.56 2499.65 4498.96 6899.13 4499.34 12199.42 3199.33 6399.26 6997.01 14699.94 2398.74 5099.93 2599.79 13
IterMVS97.73 18998.11 15096.57 30399.24 13290.28 34395.52 31299.21 17198.86 8499.33 6399.33 6293.11 26799.94 2398.49 6299.94 2199.48 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9398.39 29498.97 6595.03 32499.18 18296.88 22699.33 6398.78 17998.16 6299.28 34096.74 17199.62 15499.44 135
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5299.10 5998.74 7099.56 4299.09 6699.33 6399.19 7898.40 4299.72 23495.98 22399.76 10099.42 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 11298.57 8398.45 20599.21 13995.98 24197.63 18699.36 10997.15 21699.32 6999.18 8095.84 20699.84 12599.50 1099.91 4099.54 85
v14898.45 12298.60 8098.00 23999.44 10194.98 26997.44 20899.06 20898.30 11399.32 6998.97 13396.65 16999.62 27398.37 6999.85 5499.39 154
MSP-MVS98.40 12998.00 16099.61 999.57 5699.25 2398.57 8699.35 11597.55 17099.31 7197.71 28994.61 24199.88 7096.14 21899.19 25299.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 5798.83 4999.01 13199.70 3797.62 18498.43 10599.35 11599.47 2699.28 7299.05 10896.72 16699.82 15098.09 8499.36 22399.59 57
v2v48298.56 10598.62 7598.37 21299.42 10695.81 24797.58 19399.16 19197.90 14599.28 7299.01 12495.98 19999.79 18699.33 1599.90 4499.51 98
ambc98.24 22398.82 23295.97 24298.62 8099.00 22799.27 7499.21 7596.99 14799.50 31096.55 19199.50 20299.26 201
Patchmatch-RL test97.26 22397.02 22497.99 24099.52 7395.53 25296.13 28599.71 1197.47 17699.27 7499.16 8684.30 33299.62 27397.89 9499.77 9098.81 271
v114498.60 10098.66 7198.41 20899.36 11395.90 24397.58 19399.34 12197.51 17299.27 7499.15 9096.34 18699.80 17299.47 1299.93 2599.51 98
Vis-MVSNetpermissive99.34 2299.36 1699.27 8599.73 2498.26 11799.17 4099.78 699.11 5799.27 7499.48 4198.82 2199.95 1598.94 3699.93 2599.59 57
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVS++.98.90 5498.70 6599.51 4598.43 28999.15 4799.43 1099.32 12898.17 12899.26 7899.02 11598.18 5999.88 7097.07 14099.45 21099.49 106
FOURS199.73 2499.67 299.43 1099.54 5099.43 3099.26 78
test_241102_TWO99.30 14498.03 13599.26 7899.02 11597.51 11399.88 7096.91 15299.60 16399.66 36
test072699.50 7899.21 2798.17 12799.35 11597.97 13999.26 7899.06 10197.61 103
V4298.78 6898.78 5498.76 16599.44 10197.04 21398.27 11699.19 17897.87 14799.25 8299.16 8696.84 15499.78 19899.21 2399.84 5699.46 126
TSAR-MVS + MP.98.63 9598.49 9499.06 12299.64 4797.90 15998.51 9598.94 23196.96 22299.24 8398.89 15697.83 8399.81 16396.88 15999.49 20399.48 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs99.14 3299.09 3499.29 8099.70 3798.28 11699.13 4499.52 5799.48 2499.24 8399.41 5196.79 16099.82 15098.69 5399.88 4999.76 20
abl_698.99 4098.78 5499.61 999.45 9999.46 498.60 8299.50 6098.59 9899.24 8399.04 11198.54 3599.89 5996.45 19899.62 15499.50 102
TSAR-MVS + GP.98.18 15297.98 16198.77 16498.71 24897.88 16096.32 27798.66 27696.33 24599.23 8698.51 22497.48 11999.40 32497.16 13199.46 20799.02 240
ppachtmachnet_test97.50 20397.74 17796.78 30198.70 25291.23 34194.55 33999.05 21296.36 24499.21 8798.79 17896.39 18199.78 19896.74 17199.82 6599.34 176
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9697.47 20599.57 3599.37 3599.21 8799.61 2396.76 16399.83 13998.06 8699.83 6299.71 26
EI-MVSNet-UG-set98.69 8398.71 6298.62 18099.10 16996.37 23297.23 22198.87 24499.20 4999.19 8998.99 12797.30 12899.85 10898.77 4899.79 8299.65 40
testgi98.32 13698.39 11398.13 22999.57 5695.54 25197.78 16999.49 6897.37 19199.19 8997.65 29398.96 1799.49 31196.50 19598.99 28099.34 176
baseline98.96 4799.02 3898.76 16599.38 11097.26 20098.49 9799.50 6098.86 8499.19 8999.06 10198.23 5299.69 24198.71 5299.76 10099.33 182
FMVSNet298.49 11898.40 11098.75 16798.90 21297.14 21298.61 8199.13 19898.59 9899.19 8999.28 6594.14 25199.82 15097.97 9299.80 7799.29 195
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17899.09 17296.40 23197.23 22198.86 24999.20 4999.18 9398.97 13397.29 13099.85 10898.72 5199.78 8699.64 41
Regformer-498.73 7698.68 6898.89 14599.02 18897.22 20397.17 22999.06 20899.21 4699.17 9498.85 16497.45 12099.86 9498.48 6399.70 12399.60 51
TAMVS98.24 14798.05 15698.80 15799.07 17697.18 20897.88 16098.81 25996.66 23599.17 9499.21 7594.81 23699.77 20496.96 15099.88 4999.44 135
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13298.73 8397.73 17799.38 10198.93 8199.12 9698.73 18696.77 16199.86 9498.63 5599.80 7799.46 126
RRT_test8_iter0595.24 29495.13 29495.57 32397.32 34487.02 35697.99 15099.41 9498.06 13499.12 9699.05 10866.85 37299.85 10898.93 3799.47 20699.84 8
Anonymous20240521197.90 17197.50 19499.08 11498.90 21298.25 11898.53 9096.16 33998.87 8399.11 9898.86 16190.40 29199.78 19897.36 12299.31 23199.19 216
VDD-MVS98.56 10598.39 11399.07 11799.13 16498.07 13998.59 8497.01 32799.59 2099.11 9899.27 6794.82 23499.79 18698.34 7299.63 15199.34 176
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10499.49 8598.83 7496.54 26399.48 7097.32 19699.11 9898.61 21499.33 899.30 33796.23 21198.38 30699.28 196
Regformer-398.61 9898.61 7898.63 17899.02 18896.53 22997.17 22998.84 25399.13 5699.10 10198.85 16497.24 13599.79 18698.41 6899.70 12399.57 68
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5698.97 6598.23 11999.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
LGP-MVS_train99.47 5499.57 5698.97 6599.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7899.21 2798.02 14698.84 25397.97 13999.08 10499.02 11597.61 10399.88 7096.99 14699.63 15199.48 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 12899.08 10499.02 11597.89 7999.88 7097.07 14099.71 11899.70 31
RRT_MVS97.07 23896.57 25398.58 18595.89 36696.33 23397.36 21298.77 26597.85 14999.08 10499.12 9482.30 34299.96 898.82 4499.90 4499.45 130
EI-MVSNet98.40 12998.51 8998.04 23799.10 16994.73 27497.20 22598.87 24498.97 7699.06 10799.02 11596.00 19599.80 17298.58 5699.82 6599.60 51
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15598.74 8097.68 18199.40 9799.14 5599.06 10798.59 21696.71 16799.93 2898.57 5899.77 9099.53 91
DU-MVS98.82 6198.63 7499.39 6499.16 15798.74 8097.54 19799.25 16298.84 8699.06 10798.76 18396.76 16399.93 2898.57 5899.77 9099.50 102
MVSTER96.86 25196.55 25597.79 24897.91 32094.21 28697.56 19598.87 24497.49 17599.06 10799.05 10880.72 34799.80 17298.44 6599.82 6599.37 164
TinyColmap97.89 17397.98 16197.60 26098.86 22194.35 28396.21 28299.44 8497.45 18399.06 10798.88 15797.99 7599.28 34094.38 27699.58 17399.18 218
test_part299.36 11399.10 5999.05 112
XVG-OURS98.53 11498.34 12099.11 10899.50 7898.82 7695.97 28999.50 6097.30 19899.05 11298.98 13199.35 799.32 33495.72 23699.68 13499.18 218
our_test_397.39 21497.73 17996.34 30798.70 25289.78 34594.61 33798.97 23096.50 23999.04 11498.85 16495.98 19999.84 12597.26 12799.67 14099.41 145
UA-Net99.47 1199.40 1499.70 299.49 8599.29 1899.80 399.72 1099.82 399.04 11499.81 398.05 6999.96 898.85 4299.99 599.86 6
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6699.14 5198.07 13799.37 10597.62 16299.04 11498.96 13698.84 2099.79 18697.43 11999.65 14699.49 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 14699.27 2198.49 9799.33 12698.64 9299.03 11798.98 13197.89 7999.85 10896.54 19299.42 21499.46 126
bset_n11_16_dypcd96.99 24796.56 25498.27 22199.00 19195.25 26092.18 36194.05 35698.75 8999.01 11898.38 24088.98 30099.93 2898.77 4899.92 3499.64 41
Regformer-298.60 10098.46 10099.02 13098.85 22397.71 17896.91 24599.09 20498.98 7599.01 11898.64 20597.37 12599.84 12597.75 10899.57 17799.52 95
HyFIR lowres test97.19 23096.60 25198.96 13599.62 5197.28 19995.17 32099.50 6094.21 29899.01 11898.32 24986.61 31199.99 297.10 13999.84 5699.60 51
CVMVSNet96.25 27397.21 21593.38 34699.10 16980.56 37297.20 22598.19 29996.94 22399.00 12199.02 11589.50 29799.80 17296.36 20599.59 16799.78 14
Regformer-198.55 10998.44 10498.87 14798.85 22397.29 19796.91 24598.99 22898.97 7698.99 12298.64 20597.26 13499.81 16397.79 10199.57 17799.51 98
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22499.73 2495.15 26597.36 21299.68 1694.45 29398.99 12299.27 6796.87 15399.94 2397.13 13799.91 4099.57 68
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 15799.21 2798.05 14199.22 17094.16 30098.98 12499.10 9897.52 11299.79 18696.45 19899.64 14899.53 91
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9499.54 6998.59 9397.71 17899.46 7897.25 20398.98 12498.99 12797.54 10899.84 12595.88 22699.74 10499.23 206
IS-MVSNet98.19 15197.90 16899.08 11499.57 5697.97 15099.31 2098.32 29299.01 7298.98 12499.03 11491.59 28599.79 18695.49 24799.80 7799.48 116
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 3999.35 1297.16 23199.38 10194.87 28498.97 12798.99 12798.01 7199.88 7097.29 12599.70 12399.58 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDDNet98.21 14997.95 16399.01 13199.58 5297.74 17699.01 5397.29 32399.67 1098.97 12799.50 3690.45 29099.80 17297.88 9799.20 24899.48 116
USDC97.41 21397.40 20197.44 27398.94 20293.67 30695.17 32099.53 5494.03 30398.97 12799.10 9895.29 22299.34 33195.84 23299.73 10799.30 191
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.49 11799.86 9496.56 18899.39 21899.45 130
RE-MVS-def98.58 8299.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.75 9096.56 18899.39 21899.45 130
GBi-Net98.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
test198.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
FMVSNet397.50 20397.24 21398.29 21998.08 31295.83 24697.86 16398.91 23897.89 14698.95 13098.95 14087.06 30899.81 16397.77 10399.69 12999.23 206
test_040298.76 7198.71 6298.93 13999.56 6398.14 13198.45 10499.34 12199.28 4398.95 13098.91 14598.34 4899.79 18695.63 24299.91 4098.86 265
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3199.35 1299.00 5599.50 6097.33 19498.94 13698.86 16198.75 2499.82 15097.53 11599.71 11899.56 73
Anonymous2023120698.21 14998.21 13698.20 22599.51 7595.43 25798.13 12899.32 12896.16 25198.93 13798.82 17396.00 19599.83 13997.32 12499.73 10799.36 170
YYNet197.60 19897.67 18197.39 27699.04 18393.04 31495.27 31798.38 29197.25 20398.92 13898.95 14095.48 21999.73 22696.99 14698.74 29199.41 145
GeoE99.05 3698.99 4299.25 9099.44 10198.35 11498.73 7299.56 4298.42 10798.91 13998.81 17598.94 1899.91 4598.35 7199.73 10799.49 106
test117298.76 7198.49 9499.57 1899.18 15399.37 998.39 10899.31 13498.43 10698.90 14098.88 15797.49 11799.86 9496.43 20099.37 22299.48 116
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2499.16 4298.23 11999.31 13497.92 14398.90 14098.90 14898.00 7299.88 7096.15 21799.72 11499.58 63
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.62 9798.36 11799.42 5899.65 4499.42 598.55 8899.57 3597.72 15698.90 14099.26 6996.12 19099.52 30595.72 23699.71 11899.32 184
D2MVS97.84 18397.84 17297.83 24699.14 16294.74 27396.94 24098.88 24295.84 26298.89 14398.96 13694.40 24699.69 24197.55 11299.95 1699.05 233
zzz-MVS98.79 6598.52 8799.61 999.67 4199.36 1097.33 21499.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
MTAPA98.88 5698.64 7399.61 999.67 4199.36 1098.43 10599.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
WR-MVS98.40 12998.19 13999.03 12799.00 19197.65 18196.85 24898.94 23198.57 10298.89 14398.50 22795.60 21299.85 10897.54 11499.85 5499.59 57
SR-MVS98.71 7898.43 10699.57 1899.18 15399.35 1298.36 11199.29 15198.29 11698.88 14798.85 16497.53 11099.87 8796.14 21899.31 23199.48 116
AllTest98.44 12398.20 13799.16 10199.50 7898.55 9698.25 11899.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
TestCases99.16 10199.50 7898.55 9699.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27599.04 18393.09 31095.27 31798.42 28897.26 20298.88 14798.95 14095.43 22099.73 22697.02 14398.72 29399.41 145
VNet98.42 12598.30 12598.79 15998.79 23897.29 19798.23 11998.66 27699.31 4098.85 15198.80 17694.80 23799.78 19898.13 8099.13 26299.31 188
CSCG98.68 8798.50 9199.20 9599.45 9998.63 8898.56 8799.57 3597.87 14798.85 15198.04 27097.66 9699.84 12596.72 17499.81 6999.13 226
CHOSEN 1792x268897.49 20597.14 22098.54 19699.68 4096.09 24096.50 26799.62 2291.58 33298.84 15398.97 13392.36 27999.88 7096.76 16999.95 1699.67 35
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12299.11 16597.97 15096.53 26499.54 5098.24 11998.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
SF-MVS98.53 11498.27 12999.32 7799.31 12098.75 7998.19 12399.41 9496.77 23098.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
mvs_anonymous97.83 18598.16 14496.87 29698.18 30691.89 32997.31 21698.90 23997.37 19198.83 15499.46 4396.28 18799.79 18698.90 3898.16 31498.95 251
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23599.44 10194.96 27096.63 26199.15 19798.35 10998.83 15499.11 9694.31 24899.85 10896.60 18298.72 29399.37 164
PMMVS298.07 16098.08 15498.04 23799.41 10794.59 28094.59 33899.40 9797.50 17398.82 15898.83 17096.83 15699.84 12597.50 11799.81 6999.71 26
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6399.16 4298.87 6499.37 10597.16 21498.82 15899.01 12497.71 9399.87 8796.29 20999.69 12999.54 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7598.79 7897.68 18199.38 10195.76 26598.81 16098.82 17398.36 4499.82 15094.75 26099.77 9099.48 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5299.29 1897.82 16799.25 16296.94 22398.78 16199.12 9498.02 7099.84 12597.13 13799.67 14099.59 57
LFMVS97.20 22996.72 24298.64 17598.72 24596.95 21898.93 6194.14 35599.74 798.78 16199.01 12484.45 32999.73 22697.44 11899.27 23899.25 202
Patchmtry97.35 21696.97 22798.50 20197.31 34596.47 23098.18 12498.92 23698.95 8098.78 16199.37 5485.44 32399.85 10895.96 22499.83 6299.17 222
c3_l97.36 21597.37 20497.31 27798.09 31193.25 30995.01 32599.16 19197.05 21898.77 16498.72 18892.88 27399.64 26896.93 15199.76 10099.05 233
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16799.31 12097.17 20997.62 18799.35 11598.72 9198.76 16598.68 19592.57 27899.74 22297.76 10795.60 35599.34 176
OPM-MVS98.56 10598.32 12499.25 9099.41 10798.73 8397.13 23399.18 18297.10 21798.75 16698.92 14498.18 5999.65 26696.68 17899.56 18299.37 164
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16798.61 26897.23 20197.76 17499.09 20497.31 19798.75 16698.66 20097.56 10799.64 26896.10 22099.55 18499.39 154
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance97.18 23197.16 21797.25 28198.16 30792.85 31695.15 32299.31 13497.25 20398.74 16898.78 17990.07 29299.78 19897.19 12999.80 7799.11 229
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16598.93 6997.76 17499.28 15394.97 28198.72 16998.77 18197.04 14299.85 10893.79 29499.54 18599.49 106
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_ehance_all_eth97.06 23997.03 22397.16 28597.83 32393.06 31194.66 33499.09 20495.99 25898.69 17098.45 23392.73 27699.61 27996.79 16599.03 27398.82 268
PGM-MVS98.66 9098.37 11699.55 2699.53 7199.18 3798.23 11999.49 6897.01 22198.69 17098.88 15798.00 7299.89 5995.87 22999.59 16799.58 63
GST-MVS98.61 9898.30 12599.52 4199.51 7599.20 3398.26 11799.25 16297.44 18598.67 17298.39 23897.68 9499.85 10896.00 22199.51 19599.52 95
tttt051795.64 28694.98 29797.64 25899.36 11393.81 30298.72 7390.47 36798.08 13398.67 17298.34 24673.88 36499.92 3597.77 10399.51 19599.20 211
test_one_060199.39 10999.20 3399.31 13498.49 10498.66 17499.02 11597.64 100
OpenMVS_ROBcopyleft95.38 1495.84 28295.18 29397.81 24798.41 29397.15 21197.37 21198.62 27983.86 36298.65 17598.37 24294.29 24999.68 25088.41 35098.62 30196.60 352
MS-PatchMatch97.68 19297.75 17697.45 27298.23 30493.78 30397.29 21798.84 25396.10 25398.64 17698.65 20296.04 19299.36 32996.84 16399.14 25999.20 211
cl____97.02 24396.83 23797.58 26297.82 32494.04 29094.66 33499.16 19197.04 21998.63 17798.71 18988.68 30399.69 24197.00 14499.81 6999.00 244
DIV-MVS_self_test97.02 24396.84 23697.58 26297.82 32494.03 29194.66 33499.16 19197.04 21998.63 17798.71 18988.69 30299.69 24197.00 14499.81 6999.01 241
pmmvs597.64 19597.49 19598.08 23399.14 16295.12 26796.70 25899.05 21293.77 30698.62 17998.83 17093.23 26499.75 21898.33 7499.76 10099.36 170
ab-mvs98.41 12698.36 11798.59 18499.19 14697.23 20199.32 1798.81 25997.66 15998.62 17999.40 5396.82 15799.80 17295.88 22699.51 19598.75 282
pmmvs497.58 20097.28 21098.51 19998.84 22696.93 21995.40 31698.52 28493.60 30898.61 18198.65 20295.10 22799.60 28096.97 14999.79 8298.99 245
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4499.29 1899.16 4199.43 9096.74 23198.61 18198.38 24098.62 3099.87 8796.47 19699.67 14099.59 57
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CL-MVSNet_self_test97.44 21197.22 21498.08 23398.57 27595.78 24894.30 34498.79 26296.58 23898.60 18398.19 25894.74 24099.64 26896.41 20298.84 28798.82 268
Gipumacopyleft99.03 3799.16 3098.64 17599.94 298.51 10199.32 1799.75 999.58 2298.60 18399.62 2198.22 5599.51 30997.70 10999.73 10797.89 320
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CDS-MVSNet97.69 19197.35 20698.69 17298.73 24397.02 21596.92 24498.75 26995.89 26198.59 18598.67 19792.08 28399.74 22296.72 17499.81 6999.32 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet98.30 13898.04 15799.07 11799.56 6397.83 16599.29 2598.07 30399.03 7098.59 18599.13 9392.16 28199.90 4996.87 16099.68 13499.49 106
h-mvs3397.77 18897.33 20999.10 11099.21 13997.84 16498.35 11298.57 28199.11 5798.58 18799.02 11588.65 30499.96 898.11 8196.34 34899.49 106
hse-mvs297.46 20897.07 22198.64 17598.73 24397.33 19597.45 20797.64 31699.11 5798.58 18797.98 27388.65 30499.79 18698.11 8197.39 33298.81 271
HFP-MVS98.71 7898.44 10499.51 4599.49 8599.16 4298.52 9199.31 13497.47 17698.58 18798.50 22797.97 7699.85 10896.57 18599.59 16799.53 91
#test#98.50 11798.16 14499.51 4599.49 8599.16 4298.03 14499.31 13496.30 24898.58 18798.50 22797.97 7699.85 10895.68 23999.59 16799.53 91
eth_miper_zixun_eth97.23 22797.25 21197.17 28398.00 31692.77 31894.71 33199.18 18297.27 20198.56 19198.74 18591.89 28499.69 24197.06 14299.81 6999.05 233
ACMMPR98.70 8198.42 10899.54 2999.52 7399.14 5198.52 9199.31 13497.47 17698.56 19198.54 22097.75 9099.88 7096.57 18599.59 16799.58 63
new_pmnet96.99 24796.76 24097.67 25498.72 24594.89 27195.95 29398.20 29792.62 32198.55 19398.54 22094.88 23399.52 30593.96 28799.44 21398.59 294
3Dnovator98.27 298.81 6398.73 5899.05 12498.76 23997.81 17099.25 3299.30 14498.57 10298.55 19399.33 6297.95 7899.90 4997.16 13199.67 14099.44 135
9.1497.78 17499.07 17697.53 19899.32 12895.53 27098.54 19598.70 19297.58 10599.76 21194.32 27799.46 207
diffmvs98.22 14898.24 13298.17 22799.00 19195.44 25696.38 27499.58 2897.79 15398.53 19698.50 22796.76 16399.74 22297.95 9399.64 14899.34 176
OMC-MVS97.88 17597.49 19599.04 12698.89 21798.63 8896.94 24099.25 16295.02 27998.53 19698.51 22497.27 13199.47 31693.50 30299.51 19599.01 241
jason97.45 21097.35 20697.76 25099.24 13293.93 29695.86 29798.42 28894.24 29798.50 19898.13 26094.82 23499.91 4597.22 12899.73 10799.43 139
jason: jason.
MVP-Stereo98.08 15997.92 16698.57 18898.96 19996.79 22297.90 15999.18 18296.41 24398.46 19998.95 14095.93 20299.60 28096.51 19498.98 28299.31 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DELS-MVS98.27 14298.20 13798.48 20298.86 22196.70 22695.60 30899.20 17397.73 15598.45 20098.71 18997.50 11499.82 15098.21 7799.59 16798.93 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 8398.40 11099.54 2999.53 7199.17 3898.52 9199.31 13497.46 18198.44 20198.51 22497.83 8399.88 7096.46 19799.58 17399.58 63
BH-untuned96.83 25296.75 24197.08 28698.74 24293.33 30896.71 25798.26 29496.72 23298.44 20197.37 31295.20 22499.47 31691.89 32697.43 33198.44 300
LS3D98.63 9598.38 11599.36 6597.25 34699.38 699.12 4699.32 12899.21 4698.44 20198.88 15797.31 12799.80 17296.58 18399.34 22798.92 257
ETH3D-3000-0.198.03 16197.62 18899.29 8099.11 16598.80 7797.47 20599.32 12895.54 26898.43 20498.62 21196.61 17199.77 20493.95 28899.49 20399.30 191
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
Patchmatch-test96.55 26396.34 26197.17 28398.35 29593.06 31198.40 10797.79 30997.33 19498.41 20598.67 19783.68 33699.69 24195.16 25299.31 23198.77 279
baseline195.96 27995.44 28497.52 26998.51 28293.99 29498.39 10896.09 34198.21 12298.40 20997.76 28786.88 30999.63 27195.42 24889.27 36798.95 251
MSDG97.71 19097.52 19398.28 22098.91 21196.82 22194.42 34199.37 10597.65 16098.37 21098.29 25197.40 12399.33 33394.09 28499.22 24598.68 291
miper_enhance_ethall96.01 27795.74 27296.81 30096.41 36092.27 32693.69 35398.89 24191.14 33998.30 21197.35 31490.58 28999.58 28996.31 20799.03 27398.60 292
CP-MVS98.70 8198.42 10899.52 4199.36 11399.12 5698.72 7399.36 10997.54 17198.30 21198.40 23697.86 8199.89 5996.53 19399.72 11499.56 73
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20599.28 12596.78 22596.20 28399.27 15695.42 27398.28 21398.30 25093.16 26699.71 23594.99 25597.37 33398.87 264
ITE_SJBPF98.87 14799.22 13798.48 10399.35 11597.50 17398.28 21398.60 21597.64 10099.35 33093.86 29299.27 23898.79 277
thisisatest053095.27 29394.45 30397.74 25299.19 14694.37 28297.86 16390.20 36897.17 21398.22 21597.65 29373.53 36599.90 4996.90 15799.35 22598.95 251
test_yl96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
DCV-MVSNet96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
MVSFormer98.26 14498.43 10697.77 24998.88 21893.89 30099.39 1399.56 4299.11 5798.16 21898.13 26093.81 25899.97 399.26 1899.57 17799.43 139
lupinMVS97.06 23996.86 23497.65 25698.88 21893.89 30095.48 31397.97 30693.53 30998.16 21897.58 29793.81 25899.91 4596.77 16899.57 17799.17 222
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21499.55 6696.10 23898.94 6098.44 28798.32 11298.16 21898.62 21188.76 30199.73 22693.88 29199.79 8299.18 218
TAPA-MVS96.21 1196.63 26195.95 26998.65 17498.93 20498.09 13396.93 24299.28 15383.58 36398.13 22197.78 28596.13 18999.40 32493.52 30099.29 23698.45 299
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testtj97.79 18797.25 21199.42 5899.03 18698.85 7297.78 16999.18 18295.83 26398.12 22298.50 22795.50 21799.86 9492.23 32499.07 26899.54 85
DROMVSNet99.09 3499.05 3799.20 9599.28 12598.93 6999.24 3399.84 399.08 6898.12 22298.37 24298.72 2699.90 4999.05 3199.77 9098.77 279
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5699.21 2798.46 10299.29 15197.28 20098.11 22498.39 23898.00 7299.87 8796.86 16299.64 14899.55 81
MVS_111021_LR98.30 13898.12 14998.83 15299.16 15798.03 14396.09 28699.30 14497.58 16698.10 22598.24 25398.25 5099.34 33196.69 17799.65 14699.12 227
mPP-MVS98.64 9398.34 12099.54 2999.54 6999.17 3898.63 7999.24 16797.47 17698.09 22698.68 19597.62 10299.89 5996.22 21299.62 15499.57 68
3Dnovator+97.89 398.69 8398.51 8999.24 9298.81 23498.40 10699.02 5299.19 17898.99 7398.07 22799.28 6597.11 14199.84 12596.84 16399.32 22999.47 124
PHI-MVS98.29 14197.95 16399.34 7398.44 28899.16 4298.12 13099.38 10196.01 25798.06 22898.43 23497.80 8799.67 25395.69 23899.58 17399.20 211
CLD-MVS97.49 20597.16 21798.48 20299.07 17697.03 21494.71 33199.21 17194.46 29198.06 22897.16 31997.57 10699.48 31494.46 26999.78 8698.95 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.01 19098.84 7399.07 20794.10 30198.05 23098.12 26396.36 18599.86 9492.70 31899.19 252
MVS_Test98.18 15298.36 11797.67 25498.48 28494.73 27498.18 12499.02 22197.69 15798.04 23199.11 9697.22 13799.56 29398.57 5898.90 28698.71 285
FMVSNet596.01 27795.20 29298.41 20897.53 33696.10 23898.74 7099.50 6097.22 21298.03 23299.04 11169.80 36799.88 7097.27 12699.71 11899.25 202
MVS_111021_HR98.25 14698.08 15498.75 16799.09 17297.46 19095.97 28999.27 15697.60 16597.99 23398.25 25298.15 6499.38 32896.87 16099.57 17799.42 142
MCST-MVS98.00 16597.63 18799.10 11099.24 13298.17 12896.89 24798.73 27295.66 26697.92 23497.70 29197.17 13899.66 26196.18 21699.23 24499.47 124
MG-MVS96.77 25596.61 25097.26 28098.31 29893.06 31195.93 29498.12 30296.45 24297.92 23498.73 18693.77 26099.39 32691.19 33899.04 27299.33 182
MSLP-MVS++98.02 16398.14 14897.64 25898.58 27395.19 26497.48 20399.23 16997.47 17697.90 23698.62 21197.04 14298.81 35997.55 11299.41 21598.94 255
cl2295.79 28395.39 28796.98 29096.77 35492.79 31794.40 34298.53 28394.59 28897.89 23798.17 25982.82 34199.24 34296.37 20399.03 27398.92 257
BH-RMVSNet96.83 25296.58 25297.58 26298.47 28594.05 28996.67 25997.36 31996.70 23497.87 23897.98 27395.14 22699.44 32190.47 34498.58 30399.25 202
MIMVSNet96.62 26296.25 26697.71 25399.04 18394.66 27799.16 4196.92 33197.23 20997.87 23899.10 9886.11 31799.65 26691.65 32999.21 24798.82 268
LF4IMVS97.90 17197.69 18098.52 19799.17 15597.66 18097.19 22899.47 7696.31 24797.85 24098.20 25796.71 16799.52 30594.62 26499.72 11498.38 303
CPTT-MVS97.84 18397.36 20599.27 8599.31 12098.46 10498.29 11499.27 15694.90 28397.83 24198.37 24294.90 23099.84 12593.85 29399.54 18599.51 98
CMPMVSbinary75.91 2396.29 27195.44 28498.84 15196.25 36298.69 8697.02 23599.12 20088.90 35197.83 24198.86 16189.51 29698.90 35791.92 32599.51 19598.92 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN94.17 31094.37 30593.58 34396.86 35185.71 36190.11 36397.07 32698.17 12897.82 24397.19 31684.62 32898.94 35589.77 34697.68 32796.09 359
CDPH-MVS97.26 22396.66 24899.07 11799.00 19198.15 12996.03 28799.01 22491.21 33897.79 24497.85 28296.89 15299.69 24192.75 31699.38 22199.39 154
HQP_MVS97.99 16897.67 18198.93 13999.19 14697.65 18197.77 17299.27 15698.20 12597.79 24497.98 27394.90 23099.70 23794.42 27299.51 19599.45 130
plane_prior397.78 17297.41 18797.79 244
MDTV_nov1_ep13_2view74.92 37497.69 18090.06 34797.75 24785.78 31993.52 30098.69 288
pmmvs395.03 29894.40 30496.93 29297.70 33092.53 32195.08 32397.71 31288.57 35397.71 24898.08 26879.39 35499.82 15096.19 21499.11 26698.43 301
DP-MVS Recon97.33 21896.92 23098.57 18899.09 17297.99 14596.79 25199.35 11593.18 31397.71 24898.07 26995.00 22999.31 33593.97 28699.13 26298.42 302
QAPM97.31 21996.81 23898.82 15398.80 23697.49 18899.06 5199.19 17890.22 34497.69 25099.16 8696.91 15199.90 4990.89 34299.41 21599.07 231
SCA96.41 26996.66 24895.67 32098.24 30288.35 35095.85 29996.88 33296.11 25297.67 25198.67 19793.10 26899.85 10894.16 27899.22 24598.81 271
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9798.51 28298.64 8796.85 24899.13 19894.19 29997.65 25298.40 23695.78 20799.81 16393.37 30599.16 25599.12 227
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31499.49 398.02 14699.16 19198.29 11697.64 25397.99 27296.44 17999.95 1596.66 17998.93 28598.60 292
CNVR-MVS98.17 15497.87 17099.07 11798.67 26198.24 11997.01 23698.93 23397.25 20397.62 25498.34 24697.27 13199.57 29096.42 20199.33 22899.39 154
PVSNet_BlendedMVS97.55 20197.53 19297.60 26098.92 20893.77 30496.64 26099.43 9094.49 28997.62 25499.18 8096.82 15799.67 25394.73 26199.93 2599.36 170
PVSNet_Blended96.88 25096.68 24597.47 27198.92 20893.77 30494.71 33199.43 9090.98 34097.62 25497.36 31396.82 15799.67 25394.73 26199.56 18298.98 246
alignmvs97.35 21696.88 23398.78 16298.54 27998.09 13397.71 17897.69 31399.20 4997.59 25795.90 34188.12 30799.55 29698.18 7998.96 28398.70 287
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5699.22 2698.50 9699.19 17897.61 16497.58 25898.66 20097.40 12399.88 7094.72 26399.60 16399.54 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DSMNet-mixed97.42 21297.60 19096.87 29699.15 16191.46 33398.54 8999.12 20092.87 31897.58 25899.63 2096.21 18899.90 4995.74 23599.54 18599.27 198
test0.0.03 194.51 30393.69 31296.99 28996.05 36393.61 30794.97 32693.49 35796.17 24997.57 26094.88 35782.30 34299.01 35493.60 29894.17 36398.37 305
PCF-MVS92.86 1894.36 30593.00 32298.42 20798.70 25297.56 18593.16 35699.11 20279.59 36697.55 26197.43 30792.19 28099.73 22679.85 36699.45 21097.97 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVS98.72 7798.45 10299.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26298.63 20997.50 11499.83 13996.79 16599.53 18999.56 73
X-MVStestdata94.32 30692.59 32499.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26245.85 36897.50 11499.83 13996.79 16599.53 18999.56 73
旧先验295.76 30188.56 35497.52 26499.66 26194.48 268
PMVScopyleft91.26 2097.86 17797.94 16597.65 25699.71 3197.94 15798.52 9198.68 27598.99 7397.52 26499.35 5897.41 12298.18 36391.59 33199.67 14096.82 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETV-MVS98.03 16197.86 17198.56 19298.69 25698.07 13997.51 20199.50 6098.10 13297.50 26695.51 34798.41 4199.88 7096.27 21099.24 24397.71 333
PS-MVSNAJ97.08 23797.39 20296.16 31498.56 27692.46 32295.24 31998.85 25297.25 20397.49 26795.99 33998.07 6699.90 4996.37 20398.67 29896.12 358
xiu_mvs_v2_base97.16 23397.49 19596.17 31298.54 27992.46 32295.45 31498.84 25397.25 20397.48 26896.49 33098.31 4999.90 4996.34 20698.68 29796.15 357
canonicalmvs98.34 13598.26 13098.58 18598.46 28697.82 16898.96 5999.46 7899.19 5397.46 26995.46 34998.59 3299.46 31898.08 8598.71 29598.46 297
testdata98.09 23098.93 20495.40 25898.80 26190.08 34697.45 27098.37 24295.26 22399.70 23793.58 29998.95 28499.17 222
thres600view794.45 30493.83 31096.29 30899.06 18091.53 33297.99 15094.24 35398.34 11097.44 27195.01 35379.84 35099.67 25384.33 35898.23 30997.66 334
EMVS93.83 31694.02 30893.23 34796.83 35384.96 36289.77 36496.32 33897.92 14397.43 27296.36 33686.17 31598.93 35687.68 35297.73 32695.81 360
thres100view90094.19 30993.67 31395.75 31999.06 18091.35 33698.03 14494.24 35398.33 11197.40 27394.98 35579.84 35099.62 27383.05 36098.08 31996.29 353
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15598.43 28998.11 13297.61 18999.50 6098.64 9297.39 27497.52 30198.12 6599.95 1596.90 15798.71 29598.38 303
API-MVS97.04 24296.91 23297.42 27497.88 32198.23 12398.18 12498.50 28597.57 16797.39 27496.75 32696.77 16199.15 34990.16 34599.02 27694.88 363
PatchMatch-RL97.24 22696.78 23998.61 18299.03 18697.83 16596.36 27599.06 20893.49 31197.36 27697.78 28595.75 20899.49 31193.44 30398.77 29098.52 295
CS-MVS98.16 15698.22 13597.97 24198.56 27697.01 21698.10 13399.70 1497.45 18397.29 27797.19 31697.72 9299.80 17298.37 6999.62 15497.11 345
sss97.21 22896.93 22898.06 23598.83 22995.22 26396.75 25598.48 28694.49 28997.27 27897.90 27992.77 27599.80 17296.57 18599.32 22999.16 225
KD-MVS_2432*160092.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
miper_refine_blended92.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
WTY-MVS96.67 25996.27 26597.87 24498.81 23494.61 27996.77 25397.92 30894.94 28297.12 28197.74 28891.11 28799.82 15093.89 29098.15 31599.18 218
tfpn200view994.03 31393.44 31595.78 31898.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31996.29 353
thres40094.14 31193.44 31596.24 31098.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31997.66 334
ETH3 D test640096.46 26895.59 27999.08 11498.88 21898.21 12596.53 26499.18 18288.87 35297.08 28497.79 28493.64 26399.77 20488.92 34999.40 21799.28 196
PatchmatchNetpermissive95.58 28795.67 27695.30 32997.34 34387.32 35497.65 18596.65 33495.30 27697.07 28598.69 19384.77 32699.75 21894.97 25698.64 29998.83 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNLPA97.17 23296.71 24398.55 19398.56 27698.05 14296.33 27698.93 23396.91 22597.06 28697.39 30994.38 24799.45 32091.66 32899.18 25498.14 311
NCCC97.86 17797.47 19999.05 12498.61 26898.07 13996.98 23898.90 23997.63 16197.04 28797.93 27895.99 19899.66 26195.31 25098.82 28999.43 139
TR-MVS95.55 28895.12 29596.86 29997.54 33593.94 29596.49 26896.53 33694.36 29697.03 28896.61 32894.26 25099.16 34886.91 35496.31 34997.47 341
MDTV_nov1_ep1395.22 29197.06 34983.20 36897.74 17696.16 33994.37 29596.99 28998.83 17083.95 33499.53 30193.90 28997.95 323
CANet97.87 17697.76 17598.19 22697.75 32695.51 25396.76 25499.05 21297.74 15496.93 29098.21 25695.59 21399.89 5997.86 9999.93 2599.19 216
EPMVS93.72 31893.27 31795.09 33196.04 36487.76 35298.13 12885.01 37294.69 28796.92 29198.64 20578.47 36099.31 33595.04 25396.46 34798.20 308
AdaColmapbinary97.14 23496.71 24398.46 20498.34 29697.80 17196.95 23998.93 23395.58 26796.92 29197.66 29295.87 20599.53 30190.97 33999.14 25998.04 314
thisisatest051594.12 31293.16 31996.97 29198.60 27092.90 31593.77 35290.61 36694.10 30196.91 29395.87 34274.99 36399.80 17294.52 26799.12 26598.20 308
CR-MVSNet96.28 27295.95 26997.28 27997.71 32894.22 28498.11 13198.92 23692.31 32496.91 29399.37 5485.44 32399.81 16397.39 12197.36 33597.81 326
RPMNet97.02 24396.93 22897.30 27897.71 32894.22 28498.11 13199.30 14499.37 3596.91 29399.34 6086.72 31099.87 8797.53 11597.36 33597.81 326
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17299.13 5497.52 19998.75 26997.46 18196.90 29697.83 28396.01 19499.84 12595.82 23399.35 22599.46 126
PatchT96.65 26096.35 26097.54 26797.40 34195.32 25997.98 15296.64 33599.33 3996.89 29799.42 4984.32 33199.81 16397.69 11197.49 32897.48 340
1112_ss97.29 22296.86 23498.58 18599.34 11996.32 23496.75 25599.58 2893.14 31496.89 29797.48 30492.11 28299.86 9496.91 15299.54 18599.57 68
CS-MVS-test98.41 12698.30 12598.73 17198.84 22698.39 10798.71 7599.79 597.98 13796.86 29997.38 31097.86 8199.83 13997.81 10099.46 20797.97 318
test22298.92 20896.93 21995.54 30998.78 26485.72 36096.86 29998.11 26494.43 24499.10 26799.23 206
thres20093.72 31893.14 32095.46 32798.66 26691.29 33896.61 26294.63 34997.39 18996.83 30193.71 36479.88 34999.56 29382.40 36398.13 31695.54 362
UGNet98.53 11498.45 10298.79 15997.94 31896.96 21799.08 4798.54 28299.10 6396.82 30299.47 4296.55 17399.84 12598.56 6199.94 2199.55 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Test_1112_low_res96.99 24796.55 25598.31 21799.35 11795.47 25595.84 30099.53 5491.51 33496.80 30398.48 23291.36 28699.83 13996.58 18399.53 18999.62 46
新几何198.91 14298.94 20297.76 17398.76 26687.58 35796.75 30498.10 26594.80 23799.78 19892.73 31799.00 27999.20 211
Effi-MVS+98.02 16397.82 17398.62 18098.53 28197.19 20797.33 21499.68 1697.30 19896.68 30597.46 30698.56 3499.80 17296.63 18198.20 31198.86 265
GA-MVS95.86 28195.32 28997.49 27098.60 27094.15 28893.83 35197.93 30795.49 27196.68 30597.42 30883.21 33799.30 33796.22 21298.55 30499.01 241
EIA-MVS98.00 16597.74 17798.80 15798.72 24598.09 13398.05 14199.60 2597.39 18996.63 30795.55 34697.68 9499.80 17296.73 17399.27 23898.52 295
F-COLMAP97.30 22096.68 24599.14 10499.19 14698.39 10797.27 22099.30 14492.93 31696.62 30898.00 27195.73 20999.68 25092.62 31998.46 30599.35 174
PAPM_NR96.82 25496.32 26298.30 21899.07 17696.69 22797.48 20398.76 26695.81 26496.61 30996.47 33294.12 25499.17 34790.82 34397.78 32599.06 232
112196.73 25696.00 26798.91 14298.95 20197.76 17398.07 13798.73 27287.65 35696.54 31098.13 26094.52 24399.73 22692.38 32299.02 27699.24 205
test1298.93 13998.58 27397.83 16598.66 27696.53 31195.51 21699.69 24199.13 26299.27 198
BH-w/o95.13 29694.89 30095.86 31698.20 30591.31 33795.65 30697.37 31893.64 30796.52 31295.70 34493.04 27199.02 35288.10 35195.82 35497.24 343
ADS-MVSNet295.43 29194.98 29796.76 30298.14 30891.74 33097.92 15697.76 31090.23 34296.51 31398.91 14585.61 32099.85 10892.88 31196.90 34198.69 288
ADS-MVSNet95.24 29494.93 29996.18 31198.14 30890.10 34497.92 15697.32 32290.23 34296.51 31398.91 14585.61 32099.74 22292.88 31196.90 34198.69 288
114514_t96.50 26695.77 27198.69 17299.48 9397.43 19297.84 16599.55 4681.42 36596.51 31398.58 21795.53 21499.67 25393.41 30499.58 17398.98 246
PVSNet93.40 1795.67 28595.70 27495.57 32398.83 22988.57 34892.50 35897.72 31192.69 32096.49 31696.44 33393.72 26199.43 32293.61 29799.28 23798.71 285
mvs-test197.83 18597.48 19898.89 14598.02 31499.20 3397.20 22599.16 19198.29 11696.46 31797.17 31896.44 17999.92 3596.66 17997.90 32497.54 339
DPM-MVS96.32 27095.59 27998.51 19998.76 23997.21 20594.54 34098.26 29491.94 32896.37 31897.25 31593.06 27099.43 32291.42 33498.74 29198.89 261
tpmrst95.07 29795.46 28293.91 34097.11 34884.36 36697.62 18796.96 32894.98 28096.35 31998.80 17685.46 32299.59 28495.60 24396.23 35097.79 329
OpenMVScopyleft96.65 797.09 23696.68 24598.32 21598.32 29797.16 21098.86 6699.37 10589.48 34896.29 32099.15 9096.56 17299.90 4992.90 31099.20 24897.89 320
Fast-Effi-MVS+97.67 19397.38 20398.57 18898.71 24897.43 19297.23 22199.45 8194.82 28596.13 32196.51 32998.52 3699.91 4596.19 21498.83 28898.37 305
test_prior397.48 20797.00 22598.95 13698.69 25697.95 15595.74 30399.03 21796.48 24096.11 32297.63 29595.92 20399.59 28494.16 27899.20 24899.30 191
test_prior295.74 30396.48 24096.11 32297.63 29595.92 20394.16 27899.20 248
dp93.47 32093.59 31493.13 34896.64 35581.62 37197.66 18396.42 33792.80 31996.11 32298.64 20578.55 35999.59 28493.31 30692.18 36698.16 310
原ACMM198.35 21398.90 21296.25 23698.83 25892.48 32296.07 32598.10 26595.39 22199.71 23592.61 32098.99 28099.08 230
PMMVS96.51 26495.98 26898.09 23097.53 33695.84 24594.92 32798.84 25391.58 33296.05 32695.58 34595.68 21099.66 26195.59 24498.09 31898.76 281
tpm94.67 30294.34 30695.66 32197.68 33288.42 34997.88 16094.90 34794.46 29196.03 32798.56 21978.66 35699.79 18695.88 22695.01 35898.78 278
TEST998.71 24898.08 13795.96 29199.03 21791.40 33595.85 32897.53 29996.52 17499.76 211
train_agg97.10 23596.45 25899.07 11798.71 24898.08 13795.96 29199.03 21791.64 33095.85 32897.53 29996.47 17799.76 21193.67 29699.16 25599.36 170
test_898.67 26198.01 14495.91 29699.02 22191.64 33095.79 33097.50 30296.47 17799.76 211
agg_prior197.06 23996.40 25999.03 12798.68 25997.99 14595.76 30199.01 22491.73 32995.59 33197.50 30296.49 17699.77 20493.71 29599.14 25999.34 176
agg_prior98.68 25997.99 14599.01 22495.59 33199.77 204
PLCcopyleft94.65 1696.51 26495.73 27398.85 15098.75 24197.91 15896.42 27299.06 20890.94 34195.59 33197.38 31094.41 24599.59 28490.93 34098.04 32299.05 233
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP4-MVS95.56 33499.54 29999.32 184
HQP-NCC98.67 26196.29 27896.05 25495.55 335
ACMP_Plane98.67 26196.29 27896.05 25495.55 335
HQP-MVS97.00 24696.49 25798.55 19398.67 26196.79 22296.29 27899.04 21596.05 25495.55 33596.84 32493.84 25699.54 29992.82 31399.26 24199.32 184
MAR-MVS96.47 26795.70 27498.79 15997.92 31999.12 5698.28 11598.60 28092.16 32795.54 33896.17 33794.77 23999.52 30589.62 34798.23 30997.72 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS96.24 27495.45 28398.60 18398.70 25297.22 20397.38 21097.65 31495.95 25995.53 33997.96 27782.11 34699.79 18696.31 20797.44 33098.80 276
tpmvs95.02 29995.25 29094.33 33696.39 36185.87 35898.08 13696.83 33395.46 27295.51 34098.69 19385.91 31899.53 30194.16 27896.23 35097.58 337
MVS-HIRNet94.32 30695.62 27790.42 35098.46 28675.36 37396.29 27889.13 37095.25 27795.38 34199.75 792.88 27399.19 34694.07 28599.39 21896.72 351
PAPR95.29 29294.47 30297.75 25197.50 34095.14 26694.89 32898.71 27491.39 33695.35 34295.48 34894.57 24299.14 35084.95 35797.37 33398.97 250
HY-MVS95.94 1395.90 28095.35 28897.55 26697.95 31794.79 27298.81 6996.94 33092.28 32595.17 34398.57 21889.90 29499.75 21891.20 33797.33 33798.10 312
CANet_DTU97.26 22397.06 22297.84 24597.57 33394.65 27896.19 28498.79 26297.23 20995.14 34498.24 25393.22 26599.84 12597.34 12399.84 5699.04 237
cascas94.79 30194.33 30796.15 31596.02 36592.36 32592.34 36099.26 16185.34 36195.08 34594.96 35692.96 27298.53 36194.41 27598.59 30297.56 338
CostFormer93.97 31493.78 31194.51 33597.53 33685.83 36097.98 15295.96 34289.29 35094.99 34698.63 20978.63 35799.62 27394.54 26696.50 34698.09 313
CHOSEN 280x42095.51 29095.47 28195.65 32298.25 30188.27 35193.25 35598.88 24293.53 30994.65 34797.15 32086.17 31599.93 2897.41 12099.93 2598.73 284
JIA-IIPM95.52 28995.03 29697.00 28896.85 35294.03 29196.93 24295.82 34399.20 4994.63 34899.71 1283.09 33899.60 28094.42 27294.64 35997.36 342
MVS93.19 32392.09 32796.50 30596.91 35094.03 29198.07 13798.06 30468.01 36794.56 34996.48 33195.96 20199.30 33783.84 35996.89 34396.17 355
131495.74 28495.60 27896.17 31297.53 33692.75 31998.07 13798.31 29391.22 33794.25 35096.68 32795.53 21499.03 35191.64 33097.18 33896.74 350
tpm cat193.29 32293.13 32193.75 34197.39 34284.74 36397.39 20997.65 31483.39 36494.16 35198.41 23582.86 34099.39 32691.56 33295.35 35797.14 344
test-LLR93.90 31593.85 30994.04 33896.53 35684.62 36494.05 34892.39 36296.17 24994.12 35295.07 35182.30 34299.67 25395.87 22998.18 31297.82 324
test-mter92.33 33091.76 33394.04 33896.53 35684.62 36494.05 34892.39 36294.00 30494.12 35295.07 35165.63 37599.67 25395.87 22998.18 31297.82 324
tpm293.09 32492.58 32594.62 33497.56 33486.53 35797.66 18395.79 34486.15 35994.07 35498.23 25575.95 36199.53 30190.91 34196.86 34497.81 326
TESTMET0.1,192.19 33291.77 33293.46 34496.48 35882.80 36994.05 34891.52 36594.45 29394.00 35594.88 35766.65 37399.56 29395.78 23498.11 31798.02 315
PVSNet_089.98 2191.15 33490.30 33793.70 34297.72 32784.34 36790.24 36297.42 31790.20 34593.79 35693.09 36590.90 28898.89 35886.57 35572.76 36997.87 322
FPMVS93.44 32192.23 32697.08 28699.25 13197.86 16295.61 30797.16 32592.90 31793.76 35798.65 20275.94 36295.66 36779.30 36797.49 32897.73 331
MVS_030497.64 19597.35 20698.52 19797.87 32296.69 22798.59 8498.05 30597.44 18593.74 35898.85 16493.69 26299.88 7098.11 8199.81 6998.98 246
EPNet96.14 27595.44 28498.25 22290.76 37395.50 25497.92 15694.65 34898.97 7692.98 35998.85 16489.12 29999.87 8795.99 22299.68 13499.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DWT-MVSNet_test92.75 32792.05 32894.85 33296.48 35887.21 35597.83 16694.99 34692.22 32692.72 36094.11 36370.75 36699.46 31895.01 25494.33 36297.87 322
baseline293.73 31792.83 32396.42 30697.70 33091.28 33996.84 25089.77 36993.96 30592.44 36195.93 34079.14 35599.77 20492.94 30996.76 34598.21 307
IB-MVS91.63 1992.24 33190.90 33596.27 30997.22 34791.24 34094.36 34393.33 35992.37 32392.24 36294.58 36066.20 37499.89 5993.16 30894.63 36097.66 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune92.37 32991.20 33495.85 31795.80 36792.38 32499.31 2081.84 37499.75 591.83 36399.74 868.29 36899.02 35287.15 35397.12 33996.16 356
DeepMVS_CXcopyleft93.44 34598.24 30294.21 28694.34 35064.28 36891.34 36494.87 35989.45 29892.77 37077.54 36893.14 36493.35 365
PAPM91.88 33390.34 33696.51 30498.06 31392.56 32092.44 35997.17 32486.35 35890.38 36596.01 33886.61 31199.21 34570.65 36995.43 35697.75 330
ET-MVSNet_ETH3D94.30 30893.21 31897.58 26298.14 30894.47 28194.78 33093.24 36094.72 28689.56 36695.87 34278.57 35899.81 16396.91 15297.11 34098.46 297
EPNet_dtu94.93 30094.78 30195.38 32893.58 37087.68 35396.78 25295.69 34597.35 19389.14 36798.09 26788.15 30699.49 31194.95 25799.30 23498.98 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND94.76 33394.54 36992.13 32899.31 2080.47 37588.73 36891.01 36767.59 37198.16 36482.30 36494.53 36193.98 364
tmp_tt78.77 33678.73 33978.90 35258.45 37574.76 37594.20 34578.26 37639.16 36986.71 36992.82 36680.50 34875.19 37186.16 35692.29 36586.74 366
MVEpermissive83.40 2292.50 32891.92 33194.25 33798.83 22991.64 33192.71 35783.52 37395.92 26086.46 37095.46 34995.20 22495.40 36880.51 36598.64 29995.73 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method79.78 33579.50 33880.62 35180.21 37445.76 37670.82 36598.41 29031.08 37080.89 37197.71 28984.85 32597.37 36591.51 33380.03 36898.75 282
testmvs17.12 33820.53 3416.87 35412.05 3764.20 37893.62 3546.73 3774.62 37210.41 37224.33 3698.28 3773.56 3739.69 37115.07 37012.86 369
test12317.04 33920.11 3427.82 35310.25 3774.91 37794.80 3294.47 3784.93 37110.00 37324.28 3709.69 3763.64 37210.14 37012.43 37114.92 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.66 33732.88 3400.00 3550.00 3780.00 3790.00 36699.10 2030.00 3730.00 37497.58 29799.21 100.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas8.17 34010.90 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37398.07 660.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.12 34110.83 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.48 3040.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
MSC_two_6792asdad99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
No_MVS99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
eth-test20.00 378
eth-test0.00 378
OPU-MVS98.82 15398.59 27298.30 11598.10 13398.52 22398.18 5998.75 36094.62 26499.48 20599.41 145
save fliter99.11 16597.97 15096.53 26499.02 22198.24 119
test_0728_SECOND99.60 1399.50 7899.23 2598.02 14699.32 12899.88 7096.99 14699.63 15199.68 33
GSMVS98.81 271
sam_mvs184.74 32798.81 271
sam_mvs84.29 333
MTGPAbinary99.20 173
test_post197.59 19220.48 37283.07 33999.66 26194.16 278
test_post21.25 37183.86 33599.70 237
patchmatchnet-post98.77 18184.37 33099.85 108
MTMP97.93 15591.91 364
gm-plane-assit94.83 36881.97 37088.07 35594.99 35499.60 28091.76 327
test9_res93.28 30799.15 25899.38 161
agg_prior292.50 32199.16 25599.37 164
test_prior497.97 15095.86 297
test_prior98.95 13698.69 25697.95 15599.03 21799.59 28499.30 191
新几何295.93 294
旧先验198.82 23297.45 19198.76 26698.34 24695.50 21799.01 27899.23 206
无先验95.74 30398.74 27189.38 34999.73 22692.38 32299.22 210
原ACMM295.53 310
testdata299.79 18692.80 315
segment_acmp97.02 145
testdata195.44 31596.32 246
plane_prior799.19 14697.87 161
plane_prior698.99 19597.70 17994.90 230
plane_prior599.27 15699.70 23794.42 27299.51 19599.45 130
plane_prior497.98 273
plane_prior297.77 17298.20 125
plane_prior199.05 182
plane_prior97.65 18197.07 23496.72 23299.36 223
n20.00 379
nn0.00 379
door-mid99.57 35
test1198.87 244
door99.41 94
HQP5-MVS96.79 222
BP-MVS92.82 313
HQP3-MVS99.04 21599.26 241
HQP2-MVS93.84 256
NP-MVS98.84 22697.39 19496.84 324
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 174