This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 15999.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20399.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
test_cas_vis1_n_192098.33 15898.68 9597.27 30399.69 5692.29 35298.03 16799.85 1597.62 18499.96 499.62 3493.98 27599.74 23399.52 3199.86 8099.79 30
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22298.58 10399.10 22496.49 26899.96 499.81 598.18 7899.45 34498.97 6399.79 11499.83 22
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17797.93 18099.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21499.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
test_fmvsmvis_n_192099.26 3299.49 1298.54 20399.66 6496.97 21898.00 17399.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8699.96 1199.53 30100.00 199.93 8
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7599.94 297.80 17299.91 1199.67 2597.15 15498.91 38899.76 1699.56 21099.92 9
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24597.87 19199.85 1598.56 12199.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
wuyk23d96.06 29997.62 21691.38 38598.65 29498.57 9698.85 8196.95 34896.86 25299.90 1299.16 12299.18 1798.40 39589.23 38299.77 12477.18 403
test_vis1_n_192098.40 15098.92 6896.81 32699.74 3790.76 37598.15 15199.91 798.33 12999.89 1599.55 4895.07 24499.88 8399.76 1699.93 4499.79 30
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8199.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23297.97 17999.86 1398.22 14099.88 1799.71 1798.59 4999.84 13799.73 1999.98 1299.98 2
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 24897.74 20899.81 2498.55 12299.85 1999.55 4898.60 4899.84 13799.69 2499.98 1299.89 11
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20097.82 19699.76 2998.73 10699.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
test_fmvs399.12 5199.41 1998.25 22999.76 3195.07 28299.05 6499.94 297.78 17499.82 2199.84 298.56 5299.71 24699.96 199.96 2599.97 3
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23297.79 20099.82 2298.21 14199.81 2399.53 5498.46 5899.84 13799.70 2299.97 1999.90 10
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17099.83 15499.21 4899.91 6399.77 35
test_vis1_n98.31 16198.50 12097.73 27299.76 3194.17 30798.68 9499.91 796.31 27899.79 2599.57 4292.85 29499.42 34999.79 1399.84 8599.60 74
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21497.80 19999.76 2998.70 10999.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
test_f98.67 11498.87 7198.05 24699.72 4495.59 26098.51 11599.81 2496.30 28099.78 2699.82 496.14 20498.63 39399.82 899.93 4499.95 6
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19599.92 5099.44 3699.92 5599.68 54
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
test_fmvs298.70 10398.97 6597.89 25699.54 9894.05 30998.55 10699.92 696.78 25699.72 3199.78 896.60 18799.67 26799.91 299.90 6999.94 7
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 19899.10 7899.72 3198.76 21696.38 19799.86 10898.00 12199.82 9599.50 123
mvsany_test197.60 22297.54 21997.77 26497.72 35695.35 27195.36 35297.13 34294.13 33899.71 3399.33 8997.93 9899.30 36697.60 14398.94 30698.67 314
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15599.90 6499.21 4899.87 7799.54 108
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7199.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31399.37 4599.70 3599.65 3092.65 29799.93 4099.04 5899.84 8599.60 74
new-patchmatchnet98.35 15698.74 8397.18 30699.24 16692.23 35496.42 30199.48 9698.30 13299.69 3799.53 5497.44 13899.82 16498.84 7099.77 12499.49 127
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 11899.83 2098.37 12699.69 3799.46 6698.21 7699.92 5094.13 31499.30 25898.91 279
test_fmvs1_n98.09 18498.28 15497.52 28999.68 5893.47 33198.63 9799.93 495.41 31099.68 3999.64 3291.88 30799.48 33899.82 899.87 7799.62 67
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 5999.95 2299.73 1999.96 2599.75 43
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25098.74 8598.64 29499.74 699.67 4199.24 10594.57 26099.95 2299.11 5299.24 26799.82 25
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15799.31 15998.03 15599.66 4299.02 15298.36 6399.88 8396.91 18599.62 18799.41 164
test_241102_ONE99.49 11599.17 3999.31 15997.98 15799.66 4298.90 18798.36 6399.48 338
dcpmvs_298.78 9099.11 5297.78 26399.56 8993.67 32799.06 6299.86 1399.50 3099.66 4299.26 10097.21 15299.99 298.00 12199.91 6399.68 54
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9699.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13299.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19698.84 8399.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12399.92 5599.57 91
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1197.25 16099.92 5599.57 91
SD-MVS98.40 15098.68 9597.54 28798.96 22897.99 14897.88 18899.36 13698.20 14599.63 4899.04 14998.76 3595.33 40596.56 22199.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9399.54 7899.31 5299.62 5199.53 5497.36 14299.86 10899.24 4799.71 15499.39 175
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31699.49 3199.59 5299.65 3094.79 25699.95 2299.45 3599.96 2599.88 14
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8299.96 1198.78 7299.93 4499.77 35
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7199.97 498.78 7299.93 4499.72 45
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17798.00 17399.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs197.72 21397.94 19097.07 31398.66 29192.39 34997.68 21499.81 2495.20 31499.54 5699.44 7191.56 30999.41 35099.78 1599.77 12499.40 173
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24699.25 5899.54 5699.37 7997.04 15999.80 18497.89 12699.52 22299.35 194
EU-MVSNet97.66 21898.50 12095.13 36499.63 7485.84 39498.35 13498.21 31298.23 13999.54 5699.46 6695.02 24599.68 26498.24 10599.87 7799.87 16
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17299.46 10597.56 19299.54 5699.50 5998.97 2399.84 13798.06 11699.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4399.80 18498.24 10599.84 8599.52 118
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10199.58 5599.11 7199.53 6099.18 11698.81 3299.67 26796.71 20999.77 12499.50 123
WB-MVS98.52 13998.55 11398.43 21499.65 6595.59 26098.52 11098.77 28199.65 1499.52 6299.00 16494.34 26699.93 4098.65 8398.83 31199.76 39
v899.01 6099.16 4598.57 19599.47 12496.31 24098.90 7699.47 10399.03 8799.52 6299.57 4296.93 16699.81 17799.60 2599.98 1299.60 74
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 10899.63 1799.52 6299.44 7198.25 6999.88 8399.09 5499.84 8599.62 67
K. test v398.00 19097.66 21299.03 13099.79 2497.56 18599.19 4992.47 39199.62 2099.52 6299.66 2789.61 32299.96 1199.25 4599.81 9999.56 97
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11299.45 3699.51 6699.24 10598.20 7799.86 10895.92 25999.69 16299.04 255
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14499.93 4098.90 6699.93 4499.77 35
v1098.97 6699.11 5298.55 20099.44 12996.21 24498.90 7699.55 7398.73 10699.48 6899.60 3996.63 18699.83 15499.70 2299.99 599.61 73
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12399.33 15299.63 1799.48 6899.15 12697.23 15099.75 22897.17 16399.66 17899.63 66
N_pmnet97.63 22097.17 24198.99 13599.27 16197.86 16295.98 32493.41 38895.25 31299.47 7098.90 18795.63 22899.85 12096.91 18599.73 14299.27 215
test111196.49 28996.82 26195.52 35899.42 13587.08 39199.22 4287.14 40499.11 7199.46 7199.58 4188.69 32899.86 10898.80 7199.95 3299.62 67
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4699.73 23899.17 5199.92 5599.76 39
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7199.95 2298.89 6899.95 3299.81 28
v124098.55 13298.62 10498.32 22399.22 17195.58 26297.51 23799.45 10897.16 23799.45 7499.24 10596.12 20699.85 12099.60 2599.88 7499.55 104
DPE-MVScopyleft98.59 12698.26 15799.57 1699.27 16199.15 4797.01 26999.39 12697.67 18099.44 7598.99 16597.53 12999.89 7495.40 28199.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11299.21 6299.43 7699.55 4897.82 10599.86 10898.42 9899.89 7399.41 164
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17397.16 26499.28 17895.54 30399.42 7999.19 11397.27 14799.63 28997.89 12699.97 1999.20 229
IU-MVS99.49 11599.15 4798.87 26192.97 35499.41 8096.76 20299.62 18799.66 58
IterMVS-SCA-FT97.85 20698.18 16596.87 32299.27 16191.16 37095.53 34499.25 18799.10 7899.41 8099.35 8393.10 28799.96 1198.65 8399.94 4099.49 127
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20797.78 20199.24 19299.04 8699.41 8098.90 18797.65 11599.76 22197.70 14099.79 11499.39 175
PC_three_145293.27 35099.40 8398.54 25098.22 7497.00 40195.17 28499.45 23699.49 127
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15599.85 12099.02 6099.94 4099.80 29
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22399.91 5999.32 4099.95 3299.70 51
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 18998.04 16699.59 5398.15 15299.40 8399.36 8298.58 5199.76 22198.78 7299.68 16799.59 80
v192192098.54 13498.60 10998.38 21999.20 17795.76 25997.56 23199.36 13697.23 23199.38 8799.17 12096.02 21099.84 13799.57 2799.90 6999.54 108
IterMVS-LS98.55 13298.70 9298.09 23999.48 12294.73 29097.22 26099.39 12698.97 9299.38 8799.31 9396.00 21299.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bld_raw_dy_0_6497.62 22197.51 22297.96 25297.97 34496.28 24198.20 14599.82 2296.46 27199.37 8997.12 34792.42 29999.70 25096.27 24199.97 1997.90 356
lessismore_v098.97 13899.73 3897.53 18786.71 40599.37 8999.52 5789.93 32099.92 5098.99 6299.72 14999.44 154
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17598.85 8199.62 4898.48 12499.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
ECVR-MVScopyleft96.42 29196.61 27595.85 35099.38 14088.18 38799.22 4286.00 40699.08 8399.36 9299.57 4288.47 33399.82 16498.52 9299.95 3299.54 108
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13099.42 12199.42 4199.36 9299.06 14098.38 6299.95 2298.34 10199.90 6999.57 91
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 7899.48 9697.57 19099.35 9499.24 10597.83 10299.89 7497.88 12999.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19797.82 19699.57 6299.17 6999.35 9499.17 12098.35 6699.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17699.68 4297.62 18499.34 9699.18 11697.54 12799.77 21597.79 13499.74 13999.04 255
Anonymous2024052198.69 10698.87 7198.16 23799.77 2895.11 28199.08 5899.44 11299.34 4999.33 9799.55 4894.10 27499.94 3599.25 4599.96 2599.42 161
v119298.60 12498.66 9898.41 21699.27 16195.88 25497.52 23599.36 13697.41 20999.33 9799.20 11296.37 19899.82 16499.57 2799.92 5599.55 104
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14799.42 4199.33 9799.26 10097.01 16399.94 3598.74 7699.93 4499.79 30
IterMVS97.73 21298.11 17496.57 33199.24 16690.28 37895.52 34699.21 19698.86 10199.33 9799.33 8993.11 28699.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS96.93 598.32 15998.01 18399.23 9798.39 32298.97 6695.03 36099.18 20696.88 25099.33 9798.78 21298.16 8299.28 37096.74 20499.62 18799.44 154
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8599.56 6999.09 8199.33 9799.19 11398.40 6199.72 24595.98 25799.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 13498.57 11298.45 21299.21 17395.98 25197.63 22299.36 13697.15 23999.32 10399.18 11695.84 22499.84 13799.50 3299.91 6399.54 108
v14898.45 14598.60 10998.00 24999.44 12994.98 28397.44 24399.06 22998.30 13299.32 10398.97 17196.65 18599.62 29298.37 9999.85 8199.39 175
MSP-MVS98.40 15098.00 18499.61 999.57 8199.25 2498.57 10499.35 14197.55 19499.31 10597.71 31694.61 25999.88 8396.14 25199.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18498.43 12699.35 14199.47 3499.28 10699.05 14796.72 18299.82 16498.09 11499.36 24799.59 80
v2v48298.56 12898.62 10498.37 22099.42 13595.81 25797.58 22999.16 21397.90 16599.28 10699.01 16195.98 21799.79 19799.33 3999.90 6999.51 120
ambc98.24 23198.82 25795.97 25298.62 9999.00 24599.27 10899.21 11096.99 16499.50 33396.55 22499.50 23199.26 218
Patchmatch-RL test97.26 24697.02 24997.99 25099.52 10395.53 26496.13 31999.71 3497.47 20099.27 10899.16 12284.30 36199.62 29297.89 12699.77 12498.81 292
v114498.60 12498.66 9898.41 21699.36 14795.90 25397.58 22999.34 14797.51 19699.27 10899.15 12696.34 20099.80 18499.47 3499.93 4499.51 120
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7199.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVS++98.90 7598.70 9299.51 4398.43 31799.15 4799.43 1199.32 15498.17 14899.26 11299.02 15298.18 7899.88 8397.07 17399.45 23699.49 127
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
test_241102_TWO99.30 16798.03 15599.26 11299.02 15297.51 13299.88 8396.91 18599.60 19499.66 58
test072699.50 10899.21 2898.17 15099.35 14197.97 15899.26 11299.06 14097.61 121
V4298.78 9098.78 8198.76 17099.44 12997.04 21598.27 13899.19 20297.87 16799.25 11699.16 12296.84 17099.78 20899.21 4899.84 8599.46 146
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11598.94 24896.96 24599.24 11798.89 19397.83 10299.81 17796.88 19299.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17699.82 16498.69 8199.88 7499.76 39
TSAR-MVS + GP.98.18 17797.98 18698.77 16998.71 27497.88 16096.32 30798.66 29196.33 27699.23 11998.51 25497.48 13799.40 35197.16 16499.46 23499.02 258
ppachtmachnet_test97.50 22797.74 20496.78 32898.70 27891.23 36994.55 37699.05 23296.36 27599.21 12098.79 21196.39 19599.78 20896.74 20499.82 9599.34 196
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24199.57 6299.37 4599.21 12099.61 3796.76 17999.83 15498.06 11699.83 9299.71 46
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23797.23 25798.87 26199.20 6499.19 12298.99 16597.30 14499.85 12098.77 7599.79 11499.65 62
testgi98.32 15998.39 14098.13 23899.57 8195.54 26397.78 20199.49 9497.37 21399.19 12297.65 32098.96 2499.49 33596.50 22898.99 30099.34 196
baseline98.96 6899.02 6098.76 17099.38 14097.26 20298.49 11899.50 8798.86 10199.19 12299.06 14098.23 7199.69 25598.71 7999.76 13599.33 201
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21398.61 10099.13 22098.59 11699.19 12299.28 9694.14 27099.82 16497.97 12399.80 10999.29 212
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23697.23 25798.86 26699.20 6499.18 12698.97 17197.29 14699.85 12098.72 7899.78 11999.64 63
TAMVS98.24 17198.05 18098.80 16099.07 20897.18 20997.88 18898.81 27596.66 26299.17 12799.21 11094.81 25399.77 21596.96 18399.88 7499.44 154
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21099.38 12898.93 9699.12 12898.73 21996.77 17799.86 10898.63 8599.80 10999.46 146
Anonymous20240521197.90 19597.50 22399.08 11898.90 24098.25 11998.53 10996.16 36298.87 10099.11 12998.86 19790.40 31899.78 20897.36 15499.31 25599.19 234
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10297.01 34499.59 2399.11 12999.27 9894.82 25199.79 19798.34 10199.63 18499.34 196
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29399.48 9697.32 21899.11 12998.61 24499.33 1399.30 36696.23 24498.38 33299.28 214
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14199.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 16998.84 27097.97 15899.08 13499.02 15297.61 12199.88 8396.99 17999.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 14899.08 13499.02 15297.89 9999.88 8397.07 17399.71 15499.70 51
EI-MVSNet98.40 15098.51 11898.04 24799.10 20194.73 29097.20 26198.87 26198.97 9299.06 13699.02 15296.00 21299.80 18498.58 8699.82 9599.60 74
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21499.40 12499.14 7099.06 13698.59 24696.71 18399.93 4098.57 8899.77 12499.53 115
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23399.25 18798.84 10499.06 13698.76 21696.76 17999.93 4098.57 8899.77 12499.50 123
MVSTER96.86 27296.55 27997.79 26297.91 34994.21 30597.56 23198.87 26197.49 19999.06 13699.05 14780.72 37499.80 18498.44 9699.82 9599.37 184
TinyColmap97.89 19797.98 18697.60 28098.86 24894.35 30296.21 31399.44 11297.45 20799.06 13698.88 19497.99 9599.28 37094.38 30899.58 20399.18 236
test_part299.36 14799.10 6099.05 141
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32599.50 8797.30 22099.05 14198.98 16999.35 1299.32 36395.72 27099.68 16799.18 236
our_test_397.39 23797.73 20696.34 33698.70 27889.78 38094.61 37498.97 24796.50 26799.04 14398.85 20095.98 21799.84 13797.26 15999.67 17399.41 164
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 8999.96 1198.85 6999.99 599.86 18
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16199.37 13297.62 18499.04 14398.96 17498.84 3099.79 19797.43 15199.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 11899.33 15298.64 11099.03 14698.98 16997.89 9999.85 12096.54 22599.42 24099.46 146
HyFIR lowres test97.19 25396.60 27798.96 13999.62 7697.28 20095.17 35699.50 8794.21 33699.01 14798.32 27786.61 34099.99 297.10 17199.84 8599.60 74
CVMVSNet96.25 29697.21 24093.38 38299.10 20180.56 40997.20 26198.19 31596.94 24799.00 14899.02 15289.50 32499.80 18496.36 23699.59 19899.78 33
PVSNet_Blended_VisFu98.17 17998.15 17098.22 23299.73 3895.15 27897.36 24799.68 4294.45 33198.99 14999.27 9896.87 16999.94 3597.13 16999.91 6399.57 91
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 12899.45 10898.28 13798.98 15099.19 11397.76 10899.58 30996.57 21799.55 21398.97 267
SMA-MVScopyleft98.40 15098.03 18299.51 4399.16 19099.21 2898.05 16499.22 19594.16 33798.98 15099.10 13697.52 13199.79 19796.45 23199.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21199.46 10597.25 22598.98 15098.99 16597.54 12799.84 13795.88 26099.74 13999.23 224
IS-MVSNet98.19 17697.90 19499.08 11899.57 8197.97 15299.31 2798.32 30899.01 8998.98 15099.03 15191.59 30899.79 19795.49 27999.80 10999.48 137
MP-MVS-pluss98.57 12798.23 16099.60 1199.69 5699.35 1297.16 26499.38 12894.87 32198.97 15498.99 16598.01 9199.88 8397.29 15799.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDDNet98.21 17497.95 18899.01 13399.58 7797.74 17599.01 6697.29 33999.67 1298.97 15499.50 5990.45 31799.80 18497.88 12999.20 27399.48 137
USDC97.41 23697.40 22897.44 29698.94 23093.67 32795.17 35699.53 8194.03 34198.97 15499.10 13695.29 23899.34 36095.84 26699.73 14299.30 210
MM98.22 17297.99 18598.91 14798.66 29196.97 21897.89 18794.44 37999.54 2798.95 15799.14 12993.50 28299.92 5099.80 1299.96 2599.85 19
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.49 13699.86 10896.56 22199.39 24399.45 150
RE-MVS-def98.58 11199.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.75 10996.56 22199.39 24399.45 150
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
FMVSNet397.50 22797.24 23898.29 22798.08 34095.83 25697.86 19398.91 25597.89 16698.95 15798.95 17887.06 33799.81 17797.77 13599.69 16299.23 224
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12599.34 14799.28 5698.95 15798.91 18498.34 6799.79 19795.63 27499.91 6398.86 285
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21698.94 16498.86 19798.75 3699.82 16497.53 14799.71 15499.56 97
Anonymous2023120698.21 17498.21 16198.20 23399.51 10595.43 26998.13 15299.32 15496.16 28398.93 16598.82 20696.00 21299.83 15497.32 15699.73 14299.36 190
YYNet197.60 22297.67 20997.39 29999.04 21693.04 33895.27 35398.38 30797.25 22598.92 16698.95 17895.48 23599.73 23896.99 17998.74 31599.41 164
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 8899.56 6998.42 12598.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14199.31 15997.92 16398.90 16898.90 18798.00 9299.88 8396.15 25099.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10699.57 6297.72 17898.90 16899.26 10096.12 20699.52 32895.72 27099.71 15499.32 203
D2MVS97.84 20797.84 19997.83 25999.14 19594.74 28996.94 27398.88 25995.84 29598.89 17098.96 17494.40 26499.69 25597.55 14499.95 3299.05 251
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12699.20 19898.83 10598.89 17098.90 18796.98 16599.92 5097.16 16499.70 15999.56 97
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19199.14 21997.73 17698.89 17098.95 17875.75 39199.87 10098.50 9399.92 5599.40 173
WR-MVS98.40 15098.19 16499.03 13099.00 22197.65 18196.85 27998.94 24898.57 11998.89 17098.50 25895.60 22999.85 12097.54 14699.85 8199.59 80
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13399.29 17598.29 13598.88 17498.85 20097.53 12999.87 10096.14 25199.31 25599.48 137
AllTest98.44 14698.20 16299.16 10599.50 10898.55 9798.25 14099.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
MDA-MVSNet_test_wron97.60 22297.66 21297.41 29899.04 21693.09 33495.27 35398.42 30497.26 22498.88 17498.95 17895.43 23699.73 23897.02 17698.72 31799.41 164
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34698.86 10198.87 17897.62 32398.63 4598.96 38599.41 3798.29 33698.45 326
VNet98.42 14798.30 15298.79 16398.79 26497.29 19998.23 14198.66 29199.31 5298.85 17998.80 20994.80 25499.78 20898.13 11199.13 28499.31 207
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10599.57 6297.87 16798.85 17998.04 29897.66 11499.84 13796.72 20799.81 9999.13 244
CHOSEN 1792x268897.49 22997.14 24598.54 20399.68 5896.09 24896.50 29699.62 4891.58 36998.84 18198.97 17192.36 30099.88 8396.76 20299.95 3299.67 57
SF-MVS98.53 13698.27 15699.32 8099.31 15498.75 8198.19 14699.41 12296.77 25798.83 18298.90 18797.80 10699.82 16495.68 27399.52 22299.38 182
mvs_anonymous97.83 20998.16 16996.87 32298.18 33491.89 35697.31 25198.90 25697.37 21398.83 18299.46 6696.28 20199.79 19798.90 6698.16 34398.95 270
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24499.44 12994.96 28496.63 29199.15 21898.35 12798.83 18299.11 13394.31 26799.85 12096.60 21498.72 31799.37 184
PMMVS298.07 18698.08 17898.04 24799.41 13794.59 29694.59 37599.40 12497.50 19798.82 18598.83 20396.83 17299.84 13797.50 14999.81 9999.71 46
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 7899.37 13297.16 23798.82 18599.01 16197.71 11199.87 10096.29 24099.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMP95.32 1598.41 14898.09 17599.36 6499.51 10598.79 8097.68 21499.38 12895.76 29798.81 18798.82 20698.36 6399.82 16494.75 29299.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19699.25 18796.94 24798.78 18899.12 13298.02 9099.84 13797.13 16999.67 17399.59 80
LFMVS97.20 25296.72 26798.64 18198.72 27196.95 22198.93 7494.14 38599.74 698.78 18899.01 16184.45 35899.73 23897.44 15099.27 26299.25 219
Patchmtry97.35 23996.97 25098.50 20897.31 37996.47 23598.18 14798.92 25398.95 9598.78 18899.37 7985.44 35299.85 12095.96 25899.83 9299.17 240
test250692.39 36091.89 36293.89 37699.38 14082.28 40699.32 2366.03 41299.08 8398.77 19199.57 4266.26 40299.84 13798.71 7999.95 3299.54 108
c3_l97.36 23897.37 23197.31 30098.09 33993.25 33395.01 36199.16 21397.05 24198.77 19198.72 22192.88 29299.64 28696.93 18499.76 13599.05 251
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17399.31 15497.17 21097.62 22399.35 14198.72 10898.76 19398.68 22892.57 29899.74 23397.76 13995.60 39199.34 196
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26699.18 20697.10 24098.75 19498.92 18398.18 7899.65 28396.68 21199.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS_fast96.85 698.30 16298.15 17098.75 17398.61 29597.23 20397.76 20699.09 22697.31 21998.75 19498.66 23397.56 12599.64 28696.10 25499.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33592.85 34095.15 35899.31 15997.25 22598.74 19698.78 21290.07 31999.78 20897.19 16299.80 10999.11 246
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 19998.93 7197.76 20699.28 17894.97 31898.72 19798.77 21497.04 15999.85 12093.79 32499.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_ehance_all_eth97.06 26197.03 24897.16 31097.83 35293.06 33594.66 37199.09 22695.99 29098.69 19898.45 26392.73 29699.61 29896.79 19899.03 29498.82 288
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14199.49 9497.01 24498.69 19898.88 19498.00 9299.89 7495.87 26399.59 19899.58 86
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 13999.25 18797.44 20898.67 20098.39 26797.68 11299.85 12096.00 25599.51 22499.52 118
tttt051795.64 31394.98 32297.64 27899.36 14793.81 32398.72 8990.47 39998.08 15498.67 20098.34 27473.88 39399.92 5097.77 13599.51 22499.20 229
test_one_060199.39 13999.20 3499.31 15998.49 12398.66 20299.02 15297.64 118
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32197.15 21297.37 24698.62 29583.86 39798.65 20398.37 27094.29 26899.68 26488.41 38398.62 32796.60 388
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33293.78 32497.29 25398.84 27096.10 28598.64 20498.65 23596.04 20999.36 35696.84 19699.14 28299.20 229
cl____97.02 26496.83 26097.58 28297.82 35394.04 31194.66 37199.16 21397.04 24298.63 20598.71 22288.68 33099.69 25597.00 17799.81 9999.00 262
DIV-MVS_self_test97.02 26496.84 25997.58 28297.82 35394.03 31294.66 37199.16 21397.04 24298.63 20598.71 22288.69 32899.69 25597.00 17799.81 9999.01 259
pmmvs597.64 21997.49 22498.08 24299.14 19595.12 28096.70 28899.05 23293.77 34498.62 20798.83 20393.23 28399.75 22898.33 10399.76 13599.36 190
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20399.32 2398.81 27597.66 18198.62 20799.40 7896.82 17399.80 18495.88 26099.51 22498.75 303
pmmvs497.58 22597.28 23698.51 20698.84 25296.93 22395.40 35198.52 30093.60 34698.61 20998.65 23595.10 24399.60 29996.97 18299.79 11498.99 263
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 11896.74 25898.61 20998.38 26998.62 4699.87 10096.47 22999.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CL-MVSNet_self_test97.44 23497.22 23998.08 24298.57 30495.78 25894.30 38198.79 27896.58 26598.60 21198.19 28694.74 25899.64 28696.41 23398.84 31098.82 288
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7499.51 33297.70 14099.73 14297.89 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CDS-MVSNet97.69 21597.35 23398.69 17898.73 26997.02 21796.92 27798.75 28595.89 29498.59 21398.67 23092.08 30599.74 23396.72 20799.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet98.30 16298.04 18199.07 12099.56 8997.83 16599.29 3398.07 32099.03 8798.59 21399.13 13092.16 30399.90 6496.87 19399.68 16799.49 127
h-mvs3397.77 21097.33 23599.10 11499.21 17397.84 16498.35 13498.57 29799.11 7198.58 21599.02 15288.65 33199.96 1198.11 11296.34 38399.49 127
hse-mvs297.46 23197.07 24698.64 18198.73 26997.33 19797.45 24297.64 33299.11 7198.58 21597.98 30188.65 33199.79 19798.11 11297.39 36698.81 292
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11099.31 15997.47 20098.58 21598.50 25897.97 9699.85 12096.57 21799.59 19899.53 115
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34392.77 34294.71 36899.18 20697.27 22398.56 21898.74 21891.89 30699.69 25597.06 17599.81 9999.05 251
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11099.31 15997.47 20098.56 21898.54 25097.75 10999.88 8396.57 21799.59 19899.58 86
new_pmnet96.99 26896.76 26597.67 27498.72 27194.89 28595.95 32998.20 31392.62 36098.55 22098.54 25094.88 25099.52 32893.96 31899.44 23998.59 320
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17099.25 4099.30 16798.57 11998.55 22099.33 8997.95 9799.90 6497.16 16499.67 17399.44 154
9.1497.78 20199.07 20897.53 23499.32 15495.53 30498.54 22298.70 22597.58 12399.76 22194.32 30999.46 234
diffmvspermissive98.22 17298.24 15998.17 23599.00 22195.44 26896.38 30399.58 5597.79 17398.53 22398.50 25896.76 17999.74 23397.95 12599.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS97.88 19997.49 22499.04 12998.89 24598.63 8996.94 27399.25 18795.02 31698.53 22398.51 25497.27 14799.47 34193.50 33299.51 22499.01 259
jason97.45 23397.35 23397.76 26799.24 16693.93 31795.86 33398.42 30494.24 33598.50 22598.13 28894.82 25199.91 5997.22 16199.73 14299.43 158
jason: jason.
patch_mono-298.51 14098.63 10298.17 23599.38 14094.78 28797.36 24799.69 3798.16 15198.49 22699.29 9597.06 15899.97 498.29 10499.91 6399.76 39
FA-MVS(test-final)96.99 26896.82 26197.50 29198.70 27894.78 28799.34 2096.99 34595.07 31598.48 22799.33 8988.41 33499.65 28396.13 25398.92 30898.07 349
MVP-Stereo98.08 18597.92 19298.57 19598.96 22896.79 22697.90 18599.18 20696.41 27498.46 22898.95 17895.93 22099.60 29996.51 22798.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DELS-MVS98.27 16698.20 16298.48 20998.86 24896.70 23095.60 34299.20 19897.73 17698.45 22998.71 22297.50 13399.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11099.31 15997.46 20598.44 23098.51 25497.83 10299.88 8396.46 23099.58 20399.58 86
BH-untuned96.83 27396.75 26697.08 31198.74 26893.33 33296.71 28798.26 31096.72 25998.44 23097.37 33795.20 24099.47 34191.89 35697.43 36498.44 328
LS3D98.63 12098.38 14299.36 6497.25 38099.38 899.12 5799.32 15499.21 6298.44 23098.88 19497.31 14399.80 18496.58 21599.34 25198.92 276
xiu_mvs_v1_base_debu97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base_debi97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
Patchmatch-test96.55 28496.34 28497.17 30898.35 32393.06 33598.40 12997.79 32597.33 21698.41 23398.67 23083.68 36599.69 25595.16 28599.31 25598.77 300
baseline195.96 30495.44 30997.52 28998.51 31193.99 31598.39 13096.09 36498.21 14198.40 23797.76 31486.88 33899.63 28995.42 28089.27 40398.95 270
MSDG97.71 21497.52 22198.28 22898.91 23996.82 22594.42 37899.37 13297.65 18298.37 23898.29 27997.40 14099.33 36294.09 31599.22 27098.68 313
MVS_030498.10 18197.88 19698.76 17098.82 25796.50 23497.90 18591.35 39799.56 2698.32 23999.13 13096.06 20899.93 4099.84 799.97 1999.85 19
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39792.27 35393.69 39098.89 25891.14 37698.30 24097.35 33990.58 31699.58 30996.31 23899.03 29498.60 318
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 8999.36 13697.54 19598.30 24098.40 26697.86 10199.89 7496.53 22699.72 14999.56 97
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21299.28 15996.78 22996.20 31499.27 18195.42 30798.28 24298.30 27893.16 28599.71 24694.99 28797.37 36798.87 284
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14197.50 19798.28 24298.60 24597.64 11899.35 35993.86 32299.27 26298.79 298
thisisatest053095.27 32094.45 32997.74 27099.19 18094.37 30197.86 19390.20 40097.17 23698.22 24497.65 32073.53 39499.90 6496.90 19099.35 24998.95 270
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
test_yl96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4399.93 4098.91 6599.85 8198.88 283
MVSFormer98.26 16898.43 13397.77 26498.88 24693.89 32199.39 1799.56 6999.11 7198.16 24898.13 28893.81 27899.97 499.26 4399.57 20799.43 158
lupinMVS97.06 26196.86 25797.65 27698.88 24693.89 32195.48 34797.97 32293.53 34798.16 24897.58 32493.81 27899.91 5996.77 20199.57 20799.17 240
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22299.55 9396.10 24598.94 7398.44 30398.32 13198.16 24898.62 24288.76 32799.73 23893.88 32199.79 11499.18 236
TAPA-MVS96.21 1196.63 28295.95 29398.65 18098.93 23298.09 13596.93 27599.28 17883.58 39898.13 25297.78 31296.13 20599.40 35193.52 33099.29 26098.45 326
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8398.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12399.29 17597.28 22298.11 25498.39 26798.00 9299.87 10096.86 19599.64 18199.55 104
MVS_111021_LR98.30 16298.12 17398.83 15599.16 19098.03 14696.09 32199.30 16797.58 18998.10 25598.24 28198.25 6999.34 36096.69 21099.65 17999.12 245
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9799.24 19297.47 20098.09 25698.68 22897.62 12099.89 7496.22 24599.62 18799.57 91
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20298.99 9098.07 25799.28 9697.11 15799.84 13796.84 19699.32 25399.47 144
PHI-MVS98.29 16597.95 18899.34 7398.44 31699.16 4398.12 15499.38 12896.01 28998.06 25898.43 26497.80 10699.67 26795.69 27299.58 20399.20 229
CLD-MVS97.49 22997.16 24298.48 20999.07 20897.03 21694.71 36899.21 19694.46 32998.06 25897.16 34297.57 12499.48 33894.46 30199.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.01 22098.84 7599.07 22894.10 33998.05 26098.12 29096.36 19999.86 10892.70 34999.19 276
MVS_Test98.18 17798.36 14497.67 27498.48 31294.73 29098.18 14799.02 24097.69 17998.04 26199.11 13397.22 15199.56 31498.57 8898.90 30998.71 306
FMVSNet596.01 30195.20 31898.41 21697.53 36996.10 24598.74 8599.50 8797.22 23498.03 26299.04 14969.80 39599.88 8397.27 15899.71 15499.25 219
MVS_111021_HR98.25 17098.08 17898.75 17399.09 20497.46 19095.97 32599.27 18197.60 18897.99 26398.25 28098.15 8499.38 35596.87 19399.57 20799.42 161
FE-MVS95.66 31294.95 32497.77 26498.53 30995.28 27399.40 1696.09 36493.11 35397.96 26499.26 10079.10 38399.77 21592.40 35398.71 31998.27 340
MCST-MVS98.00 19097.63 21599.10 11499.24 16698.17 12796.89 27898.73 28895.66 29897.92 26597.70 31897.17 15399.66 27896.18 24999.23 26999.47 144
MG-MVS96.77 27696.61 27597.26 30498.31 32693.06 33595.93 33098.12 31996.45 27297.92 26598.73 21993.77 28099.39 35391.19 37099.04 29399.33 201
MSLP-MVS++98.02 18898.14 17297.64 27898.58 30295.19 27797.48 23999.23 19497.47 20097.90 26798.62 24297.04 15998.81 39197.55 14499.41 24198.94 274
cl2295.79 30895.39 31296.98 31696.77 39192.79 34194.40 37998.53 29994.59 32697.89 26898.17 28782.82 37099.24 37296.37 23499.03 29498.92 276
test_vis1_rt97.75 21197.72 20797.83 25998.81 26096.35 23897.30 25299.69 3794.61 32597.87 26998.05 29796.26 20298.32 39698.74 7698.18 34098.82 288
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31394.05 30996.67 28997.36 33596.70 26197.87 26997.98 30195.14 24299.44 34690.47 37798.58 32999.25 219
MIMVSNet96.62 28396.25 29097.71 27399.04 21694.66 29399.16 5196.92 35097.23 23197.87 26999.10 13686.11 34699.65 28391.65 36099.21 27298.82 288
LF4IMVS97.90 19597.69 20898.52 20599.17 18897.66 18097.19 26399.47 10396.31 27897.85 27298.20 28596.71 18399.52 32894.62 29699.72 14998.38 334
CPTT-MVS97.84 20797.36 23299.27 8899.31 15498.46 10598.29 13699.27 18194.90 32097.83 27398.37 27094.90 24799.84 13793.85 32399.54 21599.51 120
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15496.25 39998.69 8897.02 26899.12 22188.90 38897.83 27398.86 19789.51 32398.90 38991.92 35599.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN94.17 33694.37 33193.58 37996.86 38885.71 39690.11 39997.07 34398.17 14897.82 27597.19 34184.62 35798.94 38689.77 37997.68 35796.09 395
CDPH-MVS97.26 24696.66 27399.07 12099.00 22198.15 12896.03 32399.01 24391.21 37597.79 27697.85 31096.89 16899.69 25592.75 34799.38 24699.39 175
HQP_MVS97.99 19397.67 20998.93 14499.19 18097.65 18197.77 20399.27 18198.20 14597.79 27697.98 30194.90 24799.70 25094.42 30499.51 22499.45 150
plane_prior397.78 17297.41 20997.79 276
MDTV_nov1_ep13_2view74.92 41197.69 21390.06 38497.75 27985.78 34893.52 33098.69 310
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35997.71 32888.57 38997.71 28098.08 29579.39 38199.82 16496.19 24799.11 28898.43 329
DP-MVS Recon97.33 24196.92 25398.57 19599.09 20497.99 14896.79 28199.35 14193.18 35197.71 28098.07 29695.00 24699.31 36493.97 31799.13 28498.42 331
QAPM97.31 24296.81 26398.82 15698.80 26397.49 18899.06 6299.19 20290.22 38197.69 28299.16 12296.91 16799.90 6490.89 37599.41 24199.07 249
SCA96.41 29296.66 27395.67 35498.24 33088.35 38595.85 33596.88 35196.11 28497.67 28398.67 23093.10 28799.85 12094.16 31099.22 27098.81 292
Effi-MVS+-dtu98.26 16897.90 19499.35 7098.02 34299.49 598.02 16999.16 21398.29 13597.64 28497.99 30096.44 19499.95 2296.66 21298.93 30798.60 318
CNVR-MVS98.17 17997.87 19799.07 12098.67 28698.24 12097.01 26998.93 25097.25 22597.62 28598.34 27497.27 14799.57 31196.42 23299.33 25299.39 175
PVSNet_BlendedMVS97.55 22697.53 22097.60 28098.92 23693.77 32596.64 29099.43 11894.49 32797.62 28599.18 11696.82 17399.67 26794.73 29399.93 4499.36 190
PVSNet_Blended96.88 27196.68 27097.47 29498.92 23693.77 32594.71 36899.43 11890.98 37797.62 28597.36 33896.82 17399.67 26794.73 29399.56 21098.98 264
alignmvs97.35 23996.88 25698.78 16698.54 30798.09 13597.71 21197.69 32999.20 6497.59 28895.90 36788.12 33699.55 31798.18 10998.96 30498.70 309
MP-MVScopyleft98.46 14498.09 17599.54 2799.57 8199.22 2798.50 11799.19 20297.61 18797.58 28998.66 23397.40 14099.88 8394.72 29599.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DSMNet-mixed97.42 23597.60 21796.87 32299.15 19491.46 36098.54 10899.12 22192.87 35797.58 28999.63 3396.21 20399.90 6495.74 26999.54 21599.27 215
test0.0.03 194.51 32993.69 33896.99 31596.05 40093.61 33094.97 36393.49 38796.17 28197.57 29194.88 38682.30 37199.01 38493.60 32894.17 39898.37 336
PCF-MVS92.86 1894.36 33193.00 34898.42 21598.70 27897.56 18593.16 39399.11 22379.59 40197.55 29297.43 33392.19 30299.73 23879.85 40299.45 23697.97 355
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29398.63 24097.50 13399.83 15496.79 19899.53 21999.56 97
X-MVStestdata94.32 33292.59 35099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29345.85 40497.50 13399.83 15496.79 19899.53 21999.56 97
旧先验295.76 33788.56 39097.52 29599.66 27894.48 300
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4797.94 15798.52 11098.68 29098.99 9097.52 29599.35 8397.41 13998.18 39791.59 36299.67 17396.82 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETV-MVS98.03 18797.86 19898.56 19998.69 28398.07 14197.51 23799.50 8798.10 15397.50 29795.51 37498.41 6099.88 8396.27 24199.24 26797.71 370
PS-MVSNAJ97.08 26097.39 22996.16 34798.56 30592.46 34795.24 35598.85 26997.25 22597.49 29895.99 36498.07 8699.90 6496.37 23498.67 32396.12 394
xiu_mvs_v2_base97.16 25697.49 22496.17 34598.54 30792.46 34795.45 34898.84 27097.25 22597.48 29996.49 35598.31 6899.90 6496.34 23798.68 32296.15 393
canonicalmvs98.34 15798.26 15798.58 19398.46 31497.82 16898.96 7299.46 10599.19 6897.46 30095.46 37798.59 4999.46 34398.08 11598.71 31998.46 324
testdata98.09 23998.93 23295.40 27098.80 27790.08 38397.45 30198.37 27095.26 23999.70 25093.58 32998.95 30599.17 240
thres600view794.45 33093.83 33696.29 33899.06 21291.53 35997.99 17594.24 38398.34 12897.44 30295.01 38279.84 37799.67 26784.33 39498.23 33797.66 371
EMVS93.83 34294.02 33493.23 38396.83 39084.96 39789.77 40096.32 36097.92 16397.43 30396.36 36186.17 34498.93 38787.68 38697.73 35695.81 396
thres100view90094.19 33593.67 33995.75 35399.06 21291.35 36398.03 16794.24 38398.33 12997.40 30494.98 38479.84 37799.62 29283.05 39698.08 34896.29 389
Fast-Effi-MVS+-dtu98.27 16698.09 17598.81 15898.43 31798.11 13297.61 22599.50 8798.64 11097.39 30597.52 32898.12 8599.95 2296.90 19098.71 31998.38 334
API-MVS97.04 26396.91 25597.42 29797.88 35198.23 12498.18 14798.50 30197.57 19097.39 30596.75 35196.77 17799.15 37990.16 37899.02 29794.88 399
PatchMatch-RL97.24 24996.78 26498.61 18999.03 21997.83 16596.36 30499.06 22993.49 34997.36 30797.78 31295.75 22599.49 33593.44 33398.77 31498.52 322
sss97.21 25196.93 25198.06 24498.83 25495.22 27696.75 28598.48 30294.49 32797.27 30897.90 30792.77 29599.80 18496.57 21799.32 25399.16 243
KD-MVS_2432*160092.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
miper_refine_blended92.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
WTY-MVS96.67 28096.27 28997.87 25798.81 26094.61 29596.77 28397.92 32494.94 31997.12 31197.74 31591.11 31399.82 16493.89 32098.15 34499.18 236
tfpn200view994.03 33993.44 34195.78 35298.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34896.29 389
thres40094.14 33793.44 34196.24 34198.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34897.66 371
PatchmatchNetpermissive95.58 31495.67 30095.30 36397.34 37887.32 39097.65 22096.65 35495.30 31197.07 31498.69 22684.77 35599.75 22894.97 28898.64 32498.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNLPA97.17 25596.71 26898.55 20098.56 30598.05 14596.33 30698.93 25096.91 24997.06 31597.39 33594.38 26599.45 34491.66 35999.18 27898.14 345
WB-MVSnew95.73 31095.57 30496.23 34296.70 39290.70 37696.07 32293.86 38695.60 30197.04 31695.45 37996.00 21299.55 31791.04 37198.31 33598.43 329
NCCC97.86 20197.47 22799.05 12798.61 29598.07 14196.98 27198.90 25697.63 18397.04 31697.93 30695.99 21699.66 27895.31 28298.82 31399.43 158
TR-MVS95.55 31595.12 32096.86 32597.54 36793.94 31696.49 29796.53 35894.36 33497.03 31896.61 35394.26 26999.16 37886.91 39096.31 38497.47 377
MDTV_nov1_ep1395.22 31797.06 38683.20 40497.74 20896.16 36294.37 33396.99 31998.83 20383.95 36399.53 32493.90 31997.95 354
CANet97.87 20097.76 20298.19 23497.75 35595.51 26596.76 28499.05 23297.74 17596.93 32098.21 28495.59 23099.89 7497.86 13199.93 4499.19 234
EPMVS93.72 34493.27 34395.09 36696.04 40187.76 38898.13 15285.01 40794.69 32496.92 32198.64 23878.47 38899.31 36495.04 28696.46 38298.20 342
AdaColmapbinary97.14 25796.71 26898.46 21198.34 32497.80 17196.95 27298.93 25095.58 30296.92 32197.66 31995.87 22299.53 32490.97 37299.14 28298.04 350
thisisatest051594.12 33893.16 34596.97 31798.60 29792.90 33993.77 38990.61 39894.10 33996.91 32395.87 36874.99 39299.80 18494.52 29999.12 28798.20 342
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15598.92 25392.31 36396.91 32399.37 7985.44 35299.81 17797.39 15397.36 36997.81 363
RPMNet97.02 26496.93 25197.30 30197.71 35894.22 30398.11 15599.30 16799.37 4596.91 32399.34 8786.72 33999.87 10097.53 14797.36 36997.81 363
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20499.13 5597.52 23598.75 28597.46 20596.90 32697.83 31196.01 21199.84 13795.82 26799.35 24999.46 146
PatchT96.65 28196.35 28397.54 28797.40 37695.32 27297.98 17696.64 35599.33 5096.89 32799.42 7384.32 36099.81 17797.69 14297.49 36097.48 376
1112_ss97.29 24596.86 25798.58 19399.34 15396.32 23996.75 28599.58 5593.14 35296.89 32797.48 33092.11 30499.86 10896.91 18599.54 21599.57 91
test22298.92 23696.93 22395.54 34398.78 28085.72 39596.86 32998.11 29194.43 26299.10 28999.23 224
thres20093.72 34493.14 34695.46 36198.66 29191.29 36596.61 29294.63 37897.39 21196.83 33093.71 39379.88 37699.56 31482.40 39998.13 34595.54 398
UGNet98.53 13698.45 13098.79 16397.94 34796.96 22099.08 5898.54 29899.10 7896.82 33199.47 6596.55 18999.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Test_1112_low_res96.99 26896.55 27998.31 22599.35 15195.47 26795.84 33699.53 8191.51 37196.80 33298.48 26191.36 31199.83 15496.58 21599.53 21999.62 67
testing393.51 34692.09 35597.75 26898.60 29794.40 30097.32 25095.26 37497.56 19296.79 33395.50 37553.57 41199.77 21595.26 28398.97 30399.08 247
iter_conf05_1196.72 27796.30 28697.97 25197.97 34496.24 24394.99 36296.19 36196.45 27296.77 33496.84 34891.46 31099.78 20896.27 24199.78 11997.90 356
新几何198.91 14798.94 23097.76 17398.76 28287.58 39296.75 33598.10 29294.80 25499.78 20892.73 34899.00 29999.20 229
Effi-MVS+98.02 18897.82 20098.62 18698.53 30997.19 20897.33 24999.68 4297.30 22096.68 33697.46 33298.56 5299.80 18496.63 21398.20 33998.86 285
GA-MVS95.86 30695.32 31597.49 29298.60 29794.15 30893.83 38897.93 32395.49 30596.68 33697.42 33483.21 36699.30 36696.22 24598.55 33099.01 259
EIA-MVS98.00 19097.74 20498.80 16098.72 27198.09 13598.05 16499.60 5297.39 21196.63 33895.55 37397.68 11299.80 18496.73 20699.27 26298.52 322
F-COLMAP97.30 24396.68 27099.14 10899.19 18098.39 10897.27 25699.30 16792.93 35596.62 33998.00 29995.73 22699.68 26492.62 35098.46 33199.35 194
PAPM_NR96.82 27596.32 28598.30 22699.07 20896.69 23197.48 23998.76 28295.81 29696.61 34096.47 35794.12 27399.17 37790.82 37697.78 35599.06 250
dmvs_re95.98 30395.39 31297.74 27098.86 24897.45 19198.37 13295.69 37297.95 16096.56 34195.95 36590.70 31597.68 39988.32 38496.13 38798.11 346
test1298.93 14498.58 30297.83 16598.66 29196.53 34295.51 23399.69 25599.13 28499.27 215
BH-w/o95.13 32294.89 32695.86 34998.20 33391.31 36495.65 34097.37 33493.64 34596.52 34395.70 37193.04 29099.02 38288.10 38595.82 39097.24 380
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33691.74 35797.92 18297.76 32690.23 37996.51 34498.91 18485.61 34999.85 12092.88 34296.90 37698.69 310
ADS-MVSNet95.24 32194.93 32596.18 34498.14 33690.10 37997.92 18297.32 33890.23 37996.51 34498.91 18485.61 34999.74 23392.88 34296.90 37698.69 310
114514_t96.50 28895.77 29598.69 17899.48 12297.43 19397.84 19599.55 7381.42 40096.51 34498.58 24795.53 23199.67 26793.41 33499.58 20398.98 264
PVSNet93.40 1795.67 31195.70 29895.57 35798.83 25488.57 38392.50 39597.72 32792.69 35996.49 34796.44 35893.72 28199.43 34793.61 32799.28 26198.71 306
DPM-MVS96.32 29395.59 30398.51 20698.76 26597.21 20694.54 37798.26 31091.94 36696.37 34897.25 34093.06 28999.43 34791.42 36598.74 31598.89 280
tpmrst95.07 32395.46 30793.91 37597.11 38384.36 40297.62 22396.96 34794.98 31796.35 34998.80 20985.46 35199.59 30395.60 27596.23 38597.79 366
OpenMVScopyleft96.65 797.09 25996.68 27098.32 22398.32 32597.16 21198.86 8099.37 13289.48 38596.29 35099.15 12696.56 18899.90 6492.90 34199.20 27397.89 358
UWE-MVS92.38 36191.76 36494.21 37297.16 38284.65 39995.42 35088.45 40395.96 29196.17 35195.84 37066.36 40199.71 24691.87 35798.64 32498.28 339
Fast-Effi-MVS+97.67 21797.38 23098.57 19598.71 27497.43 19397.23 25799.45 10894.82 32296.13 35296.51 35498.52 5499.91 5996.19 24798.83 31198.37 336
test_prior295.74 33896.48 26996.11 35397.63 32295.92 22194.16 31099.20 273
dp93.47 34793.59 34093.13 38496.64 39381.62 40897.66 21896.42 35992.80 35896.11 35398.64 23878.55 38799.59 30393.31 33592.18 40298.16 344
原ACMM198.35 22198.90 24096.25 24298.83 27492.48 36196.07 35598.10 29295.39 23799.71 24692.61 35198.99 30099.08 247
PMMVS96.51 28695.98 29298.09 23997.53 36995.84 25594.92 36498.84 27091.58 36996.05 35695.58 37295.68 22799.66 27895.59 27698.09 34798.76 302
tpm94.67 32894.34 33295.66 35597.68 36388.42 38497.88 18894.90 37594.46 32996.03 35798.56 24978.66 38499.79 19795.88 26095.01 39498.78 299
TEST998.71 27498.08 13995.96 32799.03 23791.40 37295.85 35897.53 32696.52 19099.76 221
train_agg97.10 25896.45 28299.07 12098.71 27498.08 13995.96 32799.03 23791.64 36795.85 35897.53 32696.47 19299.76 22193.67 32699.16 27999.36 190
test_898.67 28698.01 14795.91 33299.02 24091.64 36795.79 36097.50 32996.47 19299.76 221
agg_prior98.68 28597.99 14899.01 24395.59 36199.77 215
PLCcopyleft94.65 1696.51 28695.73 29798.85 15398.75 26797.91 15896.42 30199.06 22990.94 37895.59 36197.38 33694.41 26399.59 30390.93 37398.04 35399.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP4-MVS95.56 36399.54 32299.32 203
HQP-NCC98.67 28696.29 30996.05 28695.55 364
ACMP_Plane98.67 28696.29 30996.05 28695.55 364
HQP-MVS97.00 26796.49 28198.55 20098.67 28696.79 22696.29 30999.04 23596.05 28695.55 36496.84 34893.84 27699.54 32292.82 34499.26 26599.32 203
MAR-MVS96.47 29095.70 29898.79 16397.92 34899.12 5798.28 13798.60 29692.16 36595.54 36796.17 36294.77 25799.52 32889.62 38098.23 33797.72 369
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS96.24 29795.45 30898.60 19198.70 27897.22 20597.38 24597.65 33095.95 29295.53 36897.96 30582.11 37399.79 19796.31 23897.44 36398.80 297
tpmvs95.02 32595.25 31694.33 37096.39 39885.87 39398.08 15996.83 35295.46 30695.51 36998.69 22685.91 34799.53 32494.16 31096.23 38597.58 374
MVS-HIRNet94.32 33295.62 30190.42 38698.46 31475.36 41096.29 30989.13 40295.25 31295.38 37099.75 1192.88 29299.19 37694.07 31699.39 24396.72 387
PAPR95.29 31994.47 32897.75 26897.50 37495.14 27994.89 36598.71 28991.39 37395.35 37195.48 37694.57 26099.14 38084.95 39397.37 36798.97 267
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8496.94 34992.28 36495.17 37298.57 24889.90 32199.75 22891.20 36997.33 37198.10 347
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31598.79 27897.23 23195.14 37398.24 28193.22 28499.84 13797.34 15599.84 8599.04 255
cascas94.79 32794.33 33396.15 34896.02 40292.36 35192.34 39799.26 18685.34 39695.08 37494.96 38592.96 29198.53 39494.41 30798.59 32897.56 375
CostFormer93.97 34093.78 33794.51 36997.53 36985.83 39597.98 17695.96 36689.29 38794.99 37598.63 24078.63 38599.62 29294.54 29896.50 38198.09 348
Syy-MVS96.04 30095.56 30597.49 29297.10 38494.48 29896.18 31696.58 35695.65 29994.77 37692.29 40191.27 31299.36 35698.17 11098.05 35198.63 316
myMVS_eth3d91.92 36790.45 36996.30 33797.10 38490.90 37296.18 31696.58 35695.65 29994.77 37692.29 40153.88 41099.36 35689.59 38198.05 35198.63 316
ETVMVS92.60 35891.08 36797.18 30697.70 36093.65 32996.54 29395.70 37096.51 26694.68 37892.39 40061.80 40899.50 33386.97 38897.41 36598.40 332
CHOSEN 280x42095.51 31795.47 30695.65 35698.25 32988.27 38693.25 39298.88 25993.53 34794.65 37997.15 34386.17 34499.93 4097.41 15299.93 4498.73 305
JIA-IIPM95.52 31695.03 32197.00 31496.85 38994.03 31296.93 27595.82 36899.20 6494.63 38099.71 1783.09 36799.60 29994.42 30494.64 39597.36 379
MVS93.19 35192.09 35596.50 33396.91 38794.03 31298.07 16198.06 32168.01 40294.56 38196.48 35695.96 21999.30 36683.84 39596.89 37896.17 391
131495.74 30995.60 30296.17 34597.53 36992.75 34398.07 16198.31 30991.22 37494.25 38296.68 35295.53 23199.03 38191.64 36197.18 37396.74 386
tpm cat193.29 35093.13 34793.75 37797.39 37784.74 39897.39 24497.65 33083.39 39994.16 38398.41 26582.86 36999.39 35391.56 36395.35 39397.14 381
test-LLR93.90 34193.85 33594.04 37396.53 39484.62 40094.05 38592.39 39296.17 28194.12 38495.07 38082.30 37199.67 26795.87 26398.18 34097.82 361
test-mter92.33 36391.76 36494.04 37396.53 39484.62 40094.05 38592.39 39294.00 34294.12 38495.07 38065.63 40499.67 26795.87 26398.18 34097.82 361
tpm293.09 35292.58 35194.62 36897.56 36586.53 39297.66 21895.79 36986.15 39494.07 38698.23 28375.95 38999.53 32490.91 37496.86 37997.81 363
dmvs_testset92.94 35592.21 35495.13 36498.59 30090.99 37197.65 22092.09 39496.95 24694.00 38793.55 39492.34 30196.97 40272.20 40592.52 40097.43 378
TESTMET0.1,192.19 36591.77 36393.46 38096.48 39682.80 40594.05 38591.52 39694.45 33194.00 38794.88 38666.65 40099.56 31495.78 26898.11 34698.02 351
PVSNet_089.98 2191.15 36990.30 37293.70 37897.72 35684.34 40390.24 39897.42 33390.20 38293.79 38993.09 39790.90 31498.89 39086.57 39172.76 40597.87 360
FPMVS93.44 34892.23 35397.08 31199.25 16597.86 16295.61 34197.16 34192.90 35693.76 39098.65 23575.94 39095.66 40379.30 40397.49 36097.73 368
testing9193.32 34992.27 35296.47 33497.54 36791.25 36796.17 31896.76 35397.18 23593.65 39193.50 39565.11 40599.63 28993.04 33997.45 36298.53 321
testing9993.04 35491.98 36096.23 34297.53 36990.70 37696.35 30595.94 36796.87 25193.41 39293.43 39663.84 40799.59 30393.24 33797.19 37298.40 332
EPNet96.14 29895.44 30998.25 22990.76 40995.50 26697.92 18294.65 37798.97 9292.98 39398.85 20089.12 32699.87 10095.99 25699.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing22291.96 36690.37 37096.72 33097.47 37592.59 34496.11 32094.76 37696.83 25392.90 39492.87 39857.92 40999.55 31786.93 38997.52 35998.00 354
testing1193.08 35392.02 35796.26 34097.56 36590.83 37496.32 30795.70 37096.47 27092.66 39593.73 39264.36 40699.59 30393.77 32597.57 35898.37 336
baseline293.73 34392.83 34996.42 33597.70 36091.28 36696.84 28089.77 40193.96 34392.44 39695.93 36679.14 38299.77 21592.94 34096.76 38098.21 341
IB-MVS91.63 1992.24 36490.90 36896.27 33997.22 38191.24 36894.36 38093.33 38992.37 36292.24 39794.58 38966.20 40399.89 7493.16 33894.63 39697.66 371
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune92.37 36291.20 36695.85 35095.80 40392.38 35099.31 2781.84 40999.75 591.83 39899.74 1368.29 39699.02 38287.15 38797.12 37496.16 392
DeepMVS_CXcopyleft93.44 38198.24 33094.21 30594.34 38064.28 40391.34 39994.87 38889.45 32592.77 40677.54 40493.14 39993.35 401
PAPM91.88 36890.34 37196.51 33298.06 34192.56 34592.44 39697.17 34086.35 39390.38 40096.01 36386.61 34099.21 37570.65 40695.43 39297.75 367
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33694.47 29994.78 36793.24 39094.72 32389.56 40195.87 36878.57 38699.81 17796.91 18597.11 37598.46 324
EPNet_dtu94.93 32694.78 32795.38 36293.58 40687.68 38996.78 28295.69 37297.35 21589.14 40298.09 29488.15 33599.49 33594.95 28999.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND94.76 36794.54 40592.13 35599.31 2780.47 41088.73 40391.01 40367.59 39998.16 39882.30 40094.53 39793.98 400
tmp_tt78.77 37278.73 37578.90 38858.45 41174.76 41294.20 38278.26 41139.16 40486.71 40492.82 39980.50 37575.19 40786.16 39292.29 40186.74 402
MVEpermissive83.40 2292.50 35991.92 36194.25 37198.83 25491.64 35892.71 39483.52 40895.92 29386.46 40595.46 37795.20 24095.40 40480.51 40198.64 32495.73 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method79.78 37179.50 37480.62 38780.21 41045.76 41370.82 40198.41 30631.08 40580.89 40697.71 31684.85 35497.37 40091.51 36480.03 40498.75 303
EGC-MVSNET85.24 37080.54 37399.34 7399.77 2899.20 3499.08 5899.29 17512.08 40620.84 40799.42 7397.55 12699.85 12097.08 17299.72 14998.96 269
testmvs17.12 37420.53 3776.87 39012.05 4124.20 41593.62 3916.73 4134.62 40810.41 40824.33 4058.28 4133.56 4099.69 40815.07 40612.86 405
test12317.04 37520.11 3787.82 38910.25 4134.91 41494.80 3664.47 4144.93 40710.00 40924.28 4069.69 4123.64 40810.14 40712.43 40714.92 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.66 37332.88 3760.00 3910.00 4140.00 4160.00 40299.10 2240.00 4090.00 41097.58 32499.21 160.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.17 37610.90 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40998.07 860.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.12 37710.83 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.48 3300.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.90 37291.37 366
MSC_two_6792asdad99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
No_MVS99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
eth-test20.00 414
eth-test0.00 414
OPU-MVS98.82 15698.59 30098.30 11698.10 15798.52 25398.18 7898.75 39294.62 29699.48 23399.41 164
save fliter99.11 19997.97 15296.53 29599.02 24098.24 138
test_0728_SECOND99.60 1199.50 10899.23 2698.02 16999.32 15499.88 8396.99 17999.63 18499.68 54
GSMVS98.81 292
sam_mvs184.74 35698.81 292
sam_mvs84.29 362
MTGPAbinary99.20 198
test_post197.59 22820.48 40883.07 36899.66 27894.16 310
test_post21.25 40783.86 36499.70 250
patchmatchnet-post98.77 21484.37 35999.85 120
MTMP97.93 18091.91 395
gm-plane-assit94.83 40481.97 40788.07 39194.99 38399.60 29991.76 358
test9_res93.28 33699.15 28199.38 182
agg_prior292.50 35299.16 27999.37 184
test_prior497.97 15295.86 333
test_prior98.95 14198.69 28397.95 15699.03 23799.59 30399.30 210
新几何295.93 330
旧先验198.82 25797.45 19198.76 28298.34 27495.50 23499.01 29899.23 224
无先验95.74 33898.74 28789.38 38699.73 23892.38 35499.22 228
原ACMM295.53 344
testdata299.79 19792.80 346
segment_acmp97.02 162
testdata195.44 34996.32 277
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 17994.90 247
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 150
plane_prior497.98 301
plane_prior297.77 20398.20 145
plane_prior199.05 215
plane_prior97.65 18197.07 26796.72 25999.36 247
n20.00 415
nn0.00 415
door-mid99.57 62
test1198.87 261
door99.41 122
HQP5-MVS96.79 226
BP-MVS92.82 344
HQP3-MVS99.04 23599.26 265
HQP2-MVS93.84 276
NP-MVS98.84 25297.39 19596.84 348
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190