This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 16899.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21499.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
test_cas_vis1_n_192098.33 16698.68 10197.27 31199.69 5492.29 36098.03 17699.85 1797.62 19699.96 499.62 3693.98 28399.74 24099.52 3399.86 8099.79 32
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23296.49 28299.96 499.81 698.18 8499.45 35498.97 6699.79 11599.83 24
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19199.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 218
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3699.31 42100.00 199.82 27
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22599.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
test_fmvsmvis_n_192099.26 3599.49 1398.54 20799.66 6296.97 22298.00 18299.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 315
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4899.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18599.91 1199.67 2797.15 16298.91 39899.76 1599.56 21599.92 11
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18499.71 4596.10 25197.87 20299.85 1798.56 13099.90 1299.68 2298.69 4199.85 12699.72 2099.98 1299.97 4
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
wuyk23d96.06 30897.62 22591.38 39898.65 30198.57 9898.85 8796.95 36196.86 26699.90 1299.16 13499.18 1798.40 40689.23 39599.77 12577.18 418
test_vis1_n_192098.40 15698.92 7196.81 33499.74 3590.76 38598.15 15899.91 998.33 14099.89 1599.55 5295.07 25399.88 8999.76 1599.93 4399.79 32
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4799.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24097.97 19099.86 1598.22 15199.88 1799.71 1998.59 5099.84 14499.73 1899.98 1299.98 3
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5899.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19299.55 9396.09 25497.74 21999.81 2598.55 13199.85 1999.55 5298.60 4999.84 14499.69 2399.98 1299.89 14
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10699.36 3999.92 5499.64 66
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20799.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
test_fmvs399.12 5499.41 2198.25 23899.76 2995.07 28999.05 6499.94 297.78 18799.82 2199.84 398.56 5499.71 25399.96 199.96 2399.97 4
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 266
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24097.79 21199.82 2498.21 15299.81 2499.53 5898.46 6099.84 14499.70 2199.97 1999.90 13
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8799.70 1299.80 2599.68 2296.84 17899.83 16199.21 5199.91 6199.77 37
test_vis1_n98.31 16998.50 12697.73 27899.76 2994.17 31398.68 10299.91 996.31 29099.79 2699.57 4592.85 30299.42 35999.79 1299.84 8599.60 79
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21099.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
test_f98.67 11998.87 7698.05 25599.72 4295.59 26698.51 12399.81 2596.30 29299.78 2799.82 596.14 21398.63 40499.82 799.93 4399.95 8
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5899.44 3999.78 2799.76 1296.39 20399.92 5199.44 3799.92 5499.68 56
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18599.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6599.39 4499.75 3199.62 3699.17 1899.83 16199.06 5999.62 19299.66 60
test_fmvs298.70 10898.97 6897.89 26299.54 9894.05 31698.55 11499.92 796.78 27099.72 3299.78 1096.60 19599.67 27399.91 299.90 6799.94 9
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20799.10 8399.72 3298.76 22796.38 20599.86 11498.00 12799.82 9599.50 130
mvsany_test197.60 23097.54 22897.77 27097.72 36395.35 27795.36 36697.13 35594.13 35199.71 3499.33 9597.93 10599.30 37697.60 15398.94 31498.67 323
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5699.59 2799.71 3499.57 4597.12 16399.90 6699.21 5199.87 7699.54 113
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7299.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32599.37 4699.70 3699.65 3392.65 30699.93 4299.04 6199.84 8599.60 79
new-patchmatchnet98.35 16298.74 8897.18 31499.24 17192.23 36296.42 31399.48 9898.30 14399.69 3899.53 5897.44 14699.82 17198.84 7499.77 12599.49 134
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25698.51 10498.49 12699.83 2298.37 13799.69 3899.46 7098.21 8299.92 5194.13 32699.30 26398.91 287
test_fmvs1_n98.09 19198.28 16097.52 29799.68 5693.47 33998.63 10599.93 595.41 32399.68 4099.64 3491.88 31599.48 34799.82 799.87 7699.62 70
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5499.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
SSC-MVS98.71 10498.74 8898.62 18999.72 4296.08 25698.74 9298.64 30599.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27299.82 27
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16699.31 16898.03 16699.66 4399.02 16398.36 6599.88 8996.91 19599.62 19299.41 171
test_241102_ONE99.49 11599.17 4399.31 16897.98 16999.66 4398.90 19798.36 6599.48 347
dcpmvs_298.78 9599.11 5497.78 26999.56 8993.67 33599.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12799.91 6199.68 56
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 3998.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5099.30 5599.65 4699.60 4199.16 2099.82 17199.07 5899.83 9299.56 102
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7698.30 14399.65 4699.45 7499.22 1599.76 22898.44 10099.77 12599.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9899.69 1399.63 4999.68 2299.03 2199.96 1297.97 12999.92 5499.57 96
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17699.69 1399.63 4999.68 2299.25 1499.96 1297.25 17099.92 5499.57 96
SD-MVS98.40 15698.68 10197.54 29598.96 23397.99 15097.88 19999.36 14598.20 15699.63 4999.04 16098.76 3595.33 41896.56 23399.74 14199.31 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8099.31 5399.62 5299.53 5897.36 15099.86 11499.24 5099.71 15799.39 181
MVStest195.86 31595.60 31196.63 33995.87 41591.70 36697.93 19198.94 25698.03 16699.56 5399.66 2971.83 40498.26 40899.35 4099.24 27299.91 12
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8099.62 2499.56 5399.42 7798.16 8899.96 1298.78 7699.93 4399.77 37
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8799.64 1999.56 5399.46 7098.23 7799.97 598.78 7699.93 4399.72 48
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18299.62 5199.22 6199.55 5699.22 12098.93 2699.75 23598.66 8799.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs197.72 22297.94 20097.07 32198.66 29792.39 35797.68 22599.81 2595.20 32799.54 5799.44 7591.56 31899.41 36099.78 1499.77 12599.40 180
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25499.25 5999.54 5799.37 8497.04 16799.80 19297.89 13299.52 22799.35 200
EU-MVSNet97.66 22798.50 12695.13 37699.63 7385.84 40698.35 14298.21 32498.23 15099.54 5799.46 7095.02 25499.68 27098.24 10999.87 7699.87 18
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18199.46 10997.56 20499.54 5799.50 6298.97 2399.84 14498.06 12299.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19298.24 10999.84 8599.52 124
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5899.11 7699.53 6199.18 12898.81 3299.67 27396.71 21999.77 12599.50 130
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 15899.47 10699.12 7599.52 6399.32 9998.31 7199.90 6697.78 14199.73 14499.66 60
WB-MVS98.52 14598.55 11998.43 22199.65 6395.59 26698.52 11898.77 29199.65 1899.52 6399.00 17594.34 27499.93 4298.65 8898.83 31999.76 42
v899.01 6499.16 4898.57 19999.47 12496.31 24898.90 8099.47 10699.03 9499.52 6399.57 4596.93 17499.81 18599.60 2599.98 1299.60 79
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11399.63 2199.52 6399.44 7598.25 7599.88 8999.09 5799.84 8599.62 70
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40499.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11799.45 3799.51 6899.24 11598.20 8399.86 11495.92 27099.69 16799.04 262
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7699.46 3699.50 6999.34 9397.30 15299.93 4298.90 6999.93 4399.77 37
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
v1098.97 7099.11 5498.55 20499.44 12996.21 25098.90 8099.55 7698.73 11499.48 7099.60 4196.63 19499.83 16199.70 2199.99 599.61 78
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16199.63 2199.48 7099.15 13897.23 15899.75 23597.17 17399.66 18399.63 69
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33693.41 40195.25 32599.47 7498.90 19795.63 23799.85 12696.91 19599.73 14499.27 221
test111196.49 29796.82 27195.52 36999.42 13587.08 40399.22 4287.14 41799.11 7699.46 7599.58 4388.69 33899.86 11498.80 7599.95 3099.62 70
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9899.68 1599.46 7599.26 11098.62 4799.73 24599.17 5499.92 5499.76 42
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8399.53 3199.46 7599.41 8198.23 7799.95 2498.89 7199.95 3099.81 30
v124098.55 13898.62 11098.32 23299.22 17695.58 26897.51 24899.45 11397.16 25099.45 7899.24 11596.12 21599.85 12699.60 2599.88 7399.55 109
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28199.39 13597.67 19299.44 7998.99 17697.53 13799.89 7795.40 29299.68 17299.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11799.21 6399.43 8099.55 5297.82 11299.86 11498.42 10299.89 7199.41 171
mvs5depth99.30 2999.59 998.44 22099.65 6395.35 27799.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27699.28 18795.54 31699.42 8399.19 12497.27 15599.63 29597.89 13299.97 1999.20 235
IU-MVS99.49 11599.15 5198.87 27192.97 36799.41 8596.76 21299.62 19299.66 60
IterMVS-SCA-FT97.85 21598.18 17396.87 33099.27 16491.16 37995.53 35899.25 19699.10 8399.41 8599.35 8993.10 29599.96 1298.65 8899.94 3899.49 134
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21299.24 20199.04 9399.41 8598.90 19797.65 12399.76 22897.70 14799.79 11599.39 181
PC_three_145293.27 36399.40 8898.54 26198.22 8097.00 41495.17 29599.45 24199.49 134
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6599.61 2699.40 8899.50 6297.12 16399.85 12699.02 6399.94 3899.80 31
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17599.59 5698.15 16399.40 8899.36 8898.58 5399.76 22898.78 7699.68 17299.59 85
v192192098.54 14098.60 11598.38 22699.20 18295.76 26597.56 24299.36 14597.23 24499.38 9199.17 13296.02 21899.84 14499.57 2799.90 6799.54 113
IterMVS-LS98.55 13898.70 9898.09 24899.48 12294.73 29797.22 27199.39 13598.97 10099.38 9199.31 10096.00 22099.93 4298.58 9199.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lessismore_v098.97 14099.73 3697.53 19186.71 41899.37 9399.52 6189.93 33099.92 5198.99 6599.72 15299.44 161
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5198.48 13499.37 9399.49 6798.75 3699.86 11498.20 11299.80 11099.71 49
ECVR-MVScopyleft96.42 29996.61 28595.85 36199.38 14088.18 39999.22 4286.00 41999.08 8899.36 9599.57 4588.47 34399.82 17198.52 9799.95 3099.54 113
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12699.42 4299.36 9599.06 15198.38 6499.95 2498.34 10599.90 6799.57 96
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9897.57 20299.35 9799.24 11597.83 10999.89 7797.88 13599.70 16499.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20799.57 6599.17 7299.35 9799.17 13298.35 6899.69 26198.46 9999.73 14499.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18799.68 4497.62 19699.34 9999.18 12897.54 13599.77 22297.79 14099.74 14199.04 262
Anonymous2024052198.69 11198.87 7698.16 24699.77 2695.11 28899.08 5899.44 11799.34 5099.33 10099.55 5294.10 28299.94 3699.25 4899.96 2399.42 168
v119298.60 13098.66 10498.41 22399.27 16495.88 26097.52 24699.36 14597.41 22299.33 10099.20 12396.37 20699.82 17199.57 2799.92 5499.55 109
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15699.42 4299.33 10099.26 11097.01 17199.94 3698.74 8199.93 4399.79 32
IterMVS97.73 22198.11 18296.57 34099.24 17190.28 38895.52 36099.21 20598.86 10999.33 10099.33 9593.11 29499.94 3698.49 9899.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33198.97 7095.03 37499.18 21596.88 26499.33 10098.78 22398.16 8899.28 38096.74 21499.62 19299.44 161
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7299.09 8699.33 10099.19 12498.40 6399.72 25295.98 26899.76 13799.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 14098.57 11898.45 21899.21 17895.98 25797.63 23399.36 14597.15 25299.32 10699.18 12895.84 23299.84 14499.50 3499.91 6199.54 113
v14898.45 15198.60 11598.00 25899.44 12994.98 29097.44 25499.06 23798.30 14399.32 10698.97 18296.65 19399.62 29898.37 10399.85 8199.39 181
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15097.55 20699.31 10897.71 32894.61 26799.88 8996.14 26299.19 28399.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
reproduce_monomvs95.00 33795.25 32694.22 38497.51 38383.34 41697.86 20398.44 31498.51 13299.29 10999.30 10167.68 41199.56 32098.89 7199.81 9999.77 37
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15099.47 3599.28 11099.05 15896.72 19099.82 17198.09 11999.36 25299.59 85
v2v48298.56 13498.62 11098.37 22899.42 13595.81 26397.58 24099.16 22297.90 17899.28 11099.01 17295.98 22599.79 20599.33 4199.90 6799.51 127
ambc98.24 24098.82 26295.97 25898.62 10799.00 25399.27 11299.21 12196.99 17299.50 34196.55 23699.50 23699.26 224
Patchmatch-RL test97.26 25697.02 25897.99 25999.52 10395.53 27096.13 33199.71 3697.47 21399.27 11299.16 13484.30 37199.62 29897.89 13299.77 12598.81 301
v114498.60 13098.66 10498.41 22399.36 14795.90 25997.58 24099.34 15697.51 20999.27 11299.15 13896.34 20899.80 19299.47 3699.93 4399.51 127
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6799.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVS++98.90 7998.70 9899.51 4698.43 32699.15 5199.43 1299.32 16398.17 15999.26 11699.02 16398.18 8499.88 8997.07 18399.45 24199.49 134
FOURS199.73 3699.67 399.43 1299.54 8099.43 4199.26 116
test_241102_TWO99.30 17698.03 16699.26 11699.02 16397.51 14099.88 8996.91 19599.60 19999.66 60
test072699.50 10899.21 3298.17 15799.35 15097.97 17099.26 11699.06 15197.61 129
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14699.19 21197.87 18099.25 12099.16 13496.84 17899.78 21699.21 5199.84 8599.46 153
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25696.96 25999.24 12198.89 20397.83 10999.81 18596.88 20299.49 23799.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8699.48 3399.24 12199.41 8196.79 18499.82 17198.69 8699.88 7399.76 42
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 27897.88 16296.32 31998.66 30296.33 28899.23 12398.51 26597.48 14599.40 36197.16 17499.46 23999.02 265
ppachtmachnet_test97.50 23697.74 21396.78 33698.70 28291.23 37894.55 38999.05 24096.36 28799.21 12498.79 22196.39 20399.78 21696.74 21499.82 9599.34 202
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25299.57 6599.37 4699.21 12499.61 3996.76 18799.83 16198.06 12299.83 9299.71 49
EI-MVSNet-UG-set98.69 11198.71 9598.62 18999.10 20696.37 24597.23 26898.87 27199.20 6599.19 12698.99 17697.30 15299.85 12698.77 7999.79 11599.65 65
testgi98.32 16798.39 14698.13 24799.57 8195.54 26997.78 21299.49 9697.37 22699.19 12697.65 33298.96 2499.49 34496.50 24098.99 30899.34 202
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 8998.86 10999.19 12699.06 15198.23 7799.69 26198.71 8499.76 13799.33 207
FMVSNet298.49 14798.40 14398.75 17598.90 24597.14 21798.61 10899.13 22898.59 12499.19 12699.28 10494.14 27899.82 17197.97 12999.80 11099.29 218
EI-MVSNet-Vis-set98.68 11698.70 9898.63 18899.09 20996.40 24497.23 26898.86 27699.20 6599.18 13098.97 18297.29 15499.85 12698.72 8399.78 12099.64 66
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 19998.81 28596.66 27699.17 13199.21 12194.81 26299.77 22296.96 19399.88 7399.44 161
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22199.38 13798.93 10499.12 13298.73 23096.77 18599.86 11498.63 9099.80 11099.46 153
Anonymous20240521197.90 20397.50 23199.08 12098.90 24598.25 12198.53 11796.16 37498.87 10899.11 13398.86 20790.40 32899.78 21697.36 16499.31 26099.19 240
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35799.59 2799.11 13399.27 10694.82 26099.79 20598.34 10599.63 18999.34 202
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30599.48 9897.32 23199.11 13398.61 25599.33 1399.30 37696.23 25598.38 34399.28 220
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 14999.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 17898.84 28097.97 17099.08 13899.02 16397.61 12999.88 8996.99 18999.63 18999.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 15999.08 13899.02 16397.89 10699.88 8997.07 18399.71 15799.70 54
EI-MVSNet98.40 15698.51 12498.04 25699.10 20694.73 29797.20 27298.87 27198.97 10099.06 14099.02 16396.00 22099.80 19298.58 9199.82 9599.60 79
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22599.40 13399.14 7499.06 14098.59 25796.71 19199.93 4298.57 9399.77 12599.53 121
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24499.25 19698.84 11299.06 14098.76 22796.76 18799.93 4298.57 9399.77 12599.50 130
MVSTER96.86 28296.55 28997.79 26897.91 35794.21 31197.56 24298.87 27197.49 21299.06 14099.05 15880.72 38499.80 19298.44 10099.82 9599.37 190
TinyColmap97.89 20597.98 19597.60 28798.86 25394.35 30896.21 32599.44 11797.45 22099.06 14098.88 20497.99 10299.28 38094.38 32099.58 20899.18 242
test_part299.36 14799.10 6499.05 145
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33799.50 8997.30 23399.05 14598.98 18099.35 1299.32 37395.72 28199.68 17299.18 242
our_test_397.39 24797.73 21596.34 34698.70 28289.78 39194.61 38798.97 25596.50 28199.04 14798.85 21095.98 22599.84 14497.26 16999.67 17899.41 171
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7399.99 599.86 21
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17099.37 14197.62 19699.04 14798.96 18598.84 3099.79 20597.43 16199.65 18499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16198.64 11899.03 15098.98 18097.89 10699.85 12696.54 23799.42 24599.46 153
HyFIR lowres test97.19 26396.60 28798.96 14199.62 7597.28 20495.17 37099.50 8994.21 34999.01 15198.32 28986.61 35099.99 297.10 18199.84 8599.60 79
CVMVSNet96.25 30497.21 24993.38 39599.10 20680.56 42297.20 27298.19 32796.94 26199.00 15299.02 16389.50 33499.80 19296.36 24999.59 20399.78 35
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24199.73 3695.15 28597.36 25899.68 4494.45 34498.99 15399.27 10696.87 17799.94 3697.13 17999.91 6199.57 96
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11398.28 14898.98 15499.19 12497.76 11699.58 31596.57 22999.55 21898.97 275
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17399.22 20494.16 35098.98 15499.10 14797.52 13999.79 20596.45 24399.64 18699.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22299.46 10997.25 23898.98 15498.99 17697.54 13599.84 14495.88 27199.74 14199.23 230
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32099.01 9698.98 15499.03 16291.59 31799.79 20595.49 29099.80 11099.48 144
balanced_conf0398.63 12598.72 9298.38 22698.66 29796.68 23998.90 8099.42 12698.99 9798.97 15899.19 12495.81 23399.85 12698.77 7999.77 12598.60 327
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27699.38 13794.87 33498.97 15898.99 17698.01 9899.88 8997.29 16799.70 16499.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35199.67 1698.97 15899.50 6290.45 32799.80 19297.88 13599.20 28099.48 144
USDC97.41 24697.40 23697.44 30498.94 23593.67 33595.17 37099.53 8394.03 35498.97 15899.10 14795.29 24799.34 37095.84 27799.73 14499.30 216
MM98.22 18097.99 19498.91 15098.66 29796.97 22297.89 19894.44 39299.54 3098.95 16299.14 14193.50 29099.92 5199.80 1199.96 2399.85 22
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.49 14499.86 11496.56 23399.39 24899.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.75 11796.56 23399.39 24899.45 157
GBi-Net98.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
test198.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
FMVSNet397.50 23697.24 24798.29 23698.08 35095.83 26297.86 20398.91 26497.89 17998.95 16298.95 18987.06 34799.81 18597.77 14299.69 16799.23 230
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15699.28 5798.95 16298.91 19498.34 6999.79 20595.63 28599.91 6198.86 294
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 8997.33 22998.94 16998.86 20798.75 3699.82 17197.53 15799.71 15799.56 102
Anonymous2023120698.21 18298.21 16998.20 24299.51 10595.43 27598.13 16099.32 16396.16 29598.93 17098.82 21696.00 22099.83 16197.32 16699.73 14499.36 196
YYNet197.60 23097.67 21897.39 30799.04 22193.04 34695.27 36798.38 31997.25 23898.92 17198.95 18995.48 24499.73 24596.99 18998.74 32399.41 171
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7298.42 13698.91 17298.81 21898.94 2599.91 6098.35 10499.73 14499.49 134
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 14999.31 16897.92 17698.90 17398.90 19798.00 9999.88 8996.15 26199.72 15299.58 91
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6597.72 19098.90 17399.26 11096.12 21599.52 33595.72 28199.71 15799.32 209
D2MVS97.84 21697.84 20897.83 26599.14 20094.74 29696.94 28598.88 26995.84 30898.89 17598.96 18594.40 27299.69 26197.55 15499.95 3099.05 258
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20798.83 11398.89 17598.90 19796.98 17399.92 5197.16 17499.70 16499.56 102
WR-MVS98.40 15698.19 17299.03 13299.00 22697.65 18496.85 29198.94 25698.57 12798.89 17598.50 26995.60 23899.85 12697.54 15699.85 8199.59 85
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18498.29 14698.88 17898.85 21097.53 13799.87 10696.14 26299.31 26099.48 144
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14899.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
TestCases99.16 10799.50 10898.55 9999.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30699.04 22193.09 34295.27 36798.42 31697.26 23798.88 17898.95 18995.43 24599.73 24597.02 18698.72 32599.41 171
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 35998.86 10998.87 18297.62 33598.63 4698.96 39599.41 3898.29 34798.45 338
VNet98.42 15398.30 15898.79 16698.79 26897.29 20398.23 14998.66 30299.31 5398.85 18398.80 21994.80 26399.78 21698.13 11699.13 29199.31 213
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6597.87 18098.85 18398.04 31097.66 12299.84 14496.72 21799.81 9999.13 251
CHOSEN 1792x268897.49 23897.14 25498.54 20799.68 5696.09 25496.50 30899.62 5191.58 38298.84 18598.97 18292.36 30899.88 8996.76 21299.95 3099.67 59
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15399.41 13096.77 27198.83 18698.90 19797.80 11499.82 17195.68 28499.52 22799.38 188
mvs_anonymous97.83 21898.16 17796.87 33098.18 34391.89 36497.31 26298.90 26597.37 22698.83 18699.46 7096.28 20999.79 20598.90 6998.16 35498.95 278
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25399.44 12994.96 29196.63 30399.15 22798.35 13898.83 18699.11 14494.31 27599.85 12696.60 22698.72 32599.37 190
PMMVS298.07 19398.08 18698.04 25699.41 13794.59 30394.59 38899.40 13397.50 21098.82 18998.83 21396.83 18099.84 14497.50 15999.81 9999.71 49
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14197.16 25098.82 18999.01 17297.71 11999.87 10696.29 25399.69 16799.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22599.38 13795.76 31098.81 19198.82 21698.36 6599.82 17194.75 30499.77 12599.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20799.25 19696.94 26198.78 19299.12 14398.02 9799.84 14497.13 17999.67 17899.59 85
LFMVS97.20 26296.72 27798.64 18498.72 27596.95 22598.93 7894.14 39899.74 1098.78 19299.01 17284.45 36899.73 24597.44 16099.27 26799.25 225
Patchmtry97.35 24996.97 26098.50 21497.31 38996.47 24398.18 15498.92 26298.95 10398.78 19299.37 8485.44 36299.85 12695.96 26999.83 9299.17 246
test250692.39 37391.89 37593.89 38999.38 14082.28 41999.32 2366.03 42599.08 8898.77 19599.57 4566.26 41599.84 14498.71 8499.95 3099.54 113
c3_l97.36 24897.37 23997.31 30898.09 34993.25 34195.01 37599.16 22297.05 25498.77 19598.72 23292.88 30099.64 29296.93 19499.76 13799.05 258
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23499.35 15098.72 11698.76 19798.68 23992.57 30799.74 24097.76 14695.60 40399.34 202
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 27899.18 21597.10 25398.75 19898.92 19398.18 8499.65 28996.68 22199.56 21599.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30297.23 20797.76 21799.09 23497.31 23298.75 19898.66 24497.56 13399.64 29296.10 26599.55 21899.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance97.18 26497.16 25197.25 31398.16 34492.85 34895.15 37299.31 16897.25 23898.74 20098.78 22390.07 32999.78 21697.19 17299.80 11099.11 253
MVSMamba_PlusPlus98.83 8798.98 6798.36 22999.32 15596.58 24298.90 8099.41 13099.75 898.72 20199.50 6296.17 21299.94 3699.27 4599.78 12098.57 331
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21799.28 18794.97 33198.72 20198.77 22597.04 16799.85 12693.79 33699.54 22099.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_ehance_all_eth97.06 27197.03 25797.16 31897.83 35993.06 34394.66 38499.09 23495.99 30398.69 20398.45 27492.73 30599.61 30496.79 20899.03 30198.82 297
RRT-MVS97.88 20797.98 19597.61 28698.15 34593.77 33298.97 7399.64 4999.16 7398.69 20399.42 7791.60 31699.89 7797.63 15098.52 34199.16 249
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 14999.49 9697.01 25898.69 20398.88 20498.00 9999.89 7795.87 27499.59 20399.58 91
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14799.25 19697.44 22198.67 20698.39 27997.68 12099.85 12696.00 26699.51 22999.52 124
tttt051795.64 32394.98 33397.64 28499.36 14793.81 33098.72 9790.47 41298.08 16598.67 20698.34 28673.88 40299.92 5197.77 14299.51 22999.20 235
test_one_060199.39 13999.20 3899.31 16898.49 13398.66 20899.02 16397.64 126
OpenMVS_ROBcopyleft95.38 1495.84 31795.18 33097.81 26798.41 33097.15 21697.37 25798.62 30683.86 41098.65 20998.37 28294.29 27699.68 27088.41 39698.62 33796.60 401
MS-PatchMatch97.68 22597.75 21297.45 30398.23 34193.78 33197.29 26498.84 28096.10 29798.64 21098.65 24696.04 21799.36 36696.84 20699.14 28999.20 235
cl____97.02 27496.83 27097.58 28997.82 36094.04 31894.66 38499.16 22297.04 25598.63 21198.71 23388.68 34099.69 26197.00 18799.81 9999.00 270
DIV-MVS_self_test97.02 27496.84 26997.58 28997.82 36094.03 31994.66 38499.16 22297.04 25598.63 21198.71 23388.69 33899.69 26197.00 18799.81 9999.01 266
pmmvs597.64 22897.49 23298.08 25199.14 20095.12 28796.70 30099.05 24093.77 35798.62 21398.83 21393.23 29199.75 23598.33 10799.76 13799.36 196
ab-mvs98.41 15498.36 15098.59 19599.19 18597.23 20799.32 2398.81 28597.66 19398.62 21399.40 8396.82 18199.80 19295.88 27199.51 22998.75 312
pmmvs497.58 23397.28 24498.51 21098.84 25796.93 22795.40 36598.52 31193.60 35998.61 21598.65 24695.10 25299.60 30596.97 19299.79 11598.99 271
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12396.74 27298.61 21598.38 28198.62 4799.87 10696.47 24199.67 17899.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CL-MVSNet_self_test97.44 24397.22 24898.08 25198.57 31195.78 26494.30 39498.79 28896.58 27998.60 21798.19 29894.74 26699.64 29296.41 24598.84 31898.82 297
Gipumacopyleft99.03 6399.16 4898.64 18499.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34097.70 14799.73 14497.89 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CDS-MVSNet97.69 22497.35 24198.69 18198.73 27397.02 22196.92 28998.75 29595.89 30798.59 21998.67 24192.08 31399.74 24096.72 21799.81 9999.32 209
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33199.03 9498.59 21999.13 14292.16 31199.90 6696.87 20399.68 17299.49 134
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30899.11 7698.58 22199.02 16388.65 34199.96 1298.11 11796.34 39599.49 134
hse-mvs297.46 24097.07 25598.64 18498.73 27397.33 20197.45 25397.64 34499.11 7698.58 22197.98 31388.65 34199.79 20598.11 11797.39 37898.81 301
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16897.47 21398.58 22198.50 26997.97 10399.85 12696.57 22999.59 20399.53 121
eth_miper_zixun_eth97.23 26097.25 24697.17 31698.00 35392.77 35094.71 38199.18 21597.27 23698.56 22498.74 22991.89 31499.69 26197.06 18599.81 9999.05 258
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16897.47 21398.56 22498.54 26197.75 11799.88 8996.57 22999.59 20399.58 91
new_pmnet96.99 27896.76 27597.67 28098.72 27594.89 29295.95 34198.20 32592.62 37398.55 22698.54 26194.88 25999.52 33593.96 33099.44 24498.59 330
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 26997.81 17399.25 4099.30 17698.57 12798.55 22699.33 9597.95 10499.90 6697.16 17499.67 17899.44 161
9.1497.78 21099.07 21397.53 24599.32 16395.53 31798.54 22898.70 23697.58 13199.76 22894.32 32199.46 239
diffmvspermissive98.22 18098.24 16798.17 24499.00 22695.44 27496.38 31599.58 5897.79 18698.53 22998.50 26996.76 18799.74 24097.95 13199.64 18699.34 202
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS97.88 20797.49 23299.04 13198.89 25098.63 9196.94 28599.25 19695.02 32998.53 22998.51 26597.27 15599.47 35093.50 34499.51 22999.01 266
jason97.45 24297.35 24197.76 27399.24 17193.93 32495.86 34698.42 31694.24 34898.50 23198.13 30094.82 26099.91 6097.22 17199.73 14499.43 165
jason: jason.
patch_mono-298.51 14698.63 10898.17 24499.38 14094.78 29497.36 25899.69 3998.16 16298.49 23299.29 10397.06 16699.97 598.29 10899.91 6199.76 42
FA-MVS(test-final)96.99 27896.82 27197.50 29998.70 28294.78 29499.34 2096.99 35895.07 32898.48 23399.33 9588.41 34499.65 28996.13 26498.92 31698.07 363
MVP-Stereo98.08 19297.92 20298.57 19998.96 23396.79 23197.90 19799.18 21596.41 28698.46 23498.95 18995.93 22999.60 30596.51 23998.98 31099.31 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DELS-MVS98.27 17498.20 17098.48 21598.86 25396.70 23795.60 35699.20 20797.73 18998.45 23598.71 23397.50 14199.82 17198.21 11199.59 20398.93 283
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16897.46 21898.44 23698.51 26597.83 10999.88 8996.46 24299.58 20899.58 91
BH-untuned96.83 28396.75 27697.08 31998.74 27293.33 34096.71 29998.26 32296.72 27398.44 23697.37 34995.20 24999.47 35091.89 36897.43 37698.44 341
LS3D98.63 12598.38 14899.36 6697.25 39099.38 1299.12 5799.32 16399.21 6398.44 23698.88 20497.31 15199.80 19296.58 22799.34 25698.92 284
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
Patchmatch-test96.55 29396.34 29597.17 31698.35 33293.06 34398.40 13797.79 33697.33 22998.41 23998.67 24183.68 37599.69 26195.16 29699.31 26098.77 309
baseline195.96 31395.44 31997.52 29798.51 31893.99 32298.39 13896.09 37698.21 15298.40 24397.76 32686.88 34899.63 29595.42 29189.27 41698.95 278
MSDG97.71 22397.52 23098.28 23798.91 24496.82 23094.42 39199.37 14197.65 19498.37 24498.29 29197.40 14899.33 37294.09 32799.22 27698.68 322
WBMVS95.18 33294.78 33896.37 34597.68 37189.74 39295.80 35098.73 29897.54 20798.30 24598.44 27570.06 40599.82 17196.62 22499.87 7699.54 113
miper_enhance_ethall96.01 31095.74 30596.81 33496.41 40992.27 36193.69 40398.89 26891.14 38998.30 24597.35 35190.58 32699.58 31596.31 25199.03 30198.60 327
MVS_030497.44 24397.01 25998.72 18096.42 40896.74 23597.20 27291.97 40898.46 13598.30 24598.79 22192.74 30499.91 6099.30 4399.94 3899.52 124
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14597.54 20798.30 24598.40 27897.86 10899.89 7796.53 23899.72 15299.56 102
UnsupCasMVSNet_bld97.30 25396.92 26398.45 21899.28 16296.78 23496.20 32699.27 19095.42 32098.28 24998.30 29093.16 29399.71 25394.99 29897.37 37998.87 293
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15097.50 21098.28 24998.60 25697.64 12699.35 36993.86 33499.27 26798.79 307
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25199.80 998.33 7099.91 6099.56 2999.95 3099.97 4
thisisatest053095.27 33094.45 34197.74 27699.19 18594.37 30797.86 20390.20 41397.17 24998.22 25297.65 33273.53 40399.90 6696.90 20099.35 25498.95 278
CS-MVS99.13 5299.10 5699.24 9799.06 21799.15 5199.36 1999.88 1399.36 4998.21 25398.46 27398.68 4299.93 4299.03 6299.85 8198.64 324
test_yl96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
DCV-MVSNet96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25698.51 26598.64 4499.93 4298.91 6899.85 8198.88 292
MVSFormer98.26 17698.43 13997.77 27098.88 25193.89 32899.39 1799.56 7299.11 7698.16 25698.13 30093.81 28699.97 599.26 4699.57 21299.43 165
lupinMVS97.06 27196.86 26797.65 28298.88 25193.89 32895.48 36197.97 33393.53 36098.16 25697.58 33693.81 28699.91 6096.77 21199.57 21299.17 246
Vis-MVSNet (Re-imp)97.46 24097.16 25198.34 23199.55 9396.10 25198.94 7798.44 31498.32 14298.16 25698.62 25388.76 33799.73 24593.88 33399.79 11599.18 242
TAPA-MVS96.21 1196.63 29195.95 30298.65 18398.93 23798.09 13796.93 28799.28 18783.58 41198.13 26097.78 32496.13 21499.40 36193.52 34299.29 26598.45 338
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26198.37 28298.72 3899.90 6699.05 6099.77 12598.77 309
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18497.28 23598.11 26298.39 27998.00 9999.87 10696.86 20599.64 18699.55 109
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33399.30 17697.58 20198.10 26398.24 29398.25 7599.34 37096.69 22099.65 18499.12 252
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20197.47 21398.09 26498.68 23997.62 12899.89 7796.22 25699.62 19299.57 96
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26498.40 10999.02 6699.19 21198.99 9798.07 26599.28 10497.11 16599.84 14496.84 20699.32 25899.47 151
PHI-MVS98.29 17397.95 19899.34 7598.44 32599.16 4798.12 16399.38 13796.01 30298.06 26698.43 27697.80 11499.67 27395.69 28399.58 20899.20 235
CLD-MVS97.49 23897.16 25198.48 21599.07 21397.03 22094.71 38199.21 20594.46 34298.06 26697.16 35497.57 13299.48 34794.46 31399.78 12098.95 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.01 22598.84 7899.07 23694.10 35298.05 26898.12 30296.36 20799.86 11492.70 36199.19 283
MVS_Test98.18 18598.36 15097.67 28098.48 31994.73 29798.18 15499.02 24897.69 19198.04 26999.11 14497.22 15999.56 32098.57 9398.90 31798.71 315
MonoMVSNet96.25 30496.53 29195.39 37396.57 40491.01 38098.82 9097.68 34198.57 12798.03 27099.37 8490.92 32397.78 41194.99 29893.88 41197.38 391
FMVSNet596.01 31095.20 32998.41 22397.53 37896.10 25198.74 9299.50 8997.22 24798.03 27099.04 16069.80 40699.88 8997.27 16899.71 15799.25 225
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33799.27 19097.60 20097.99 27298.25 29298.15 9099.38 36596.87 20399.57 21299.42 168
FE-MVS95.66 32294.95 33597.77 27098.53 31695.28 28099.40 1696.09 37693.11 36697.96 27399.26 11079.10 39399.77 22292.40 36598.71 32798.27 354
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29098.73 29895.66 31197.92 27497.70 33097.17 16199.66 28496.18 26099.23 27599.47 151
MG-MVS96.77 28696.61 28597.26 31298.31 33593.06 34395.93 34298.12 33096.45 28597.92 27498.73 23093.77 28899.39 36391.19 38299.04 30099.33 207
MSLP-MVS++98.02 19598.14 18097.64 28498.58 30995.19 28497.48 25099.23 20397.47 21397.90 27698.62 25397.04 16798.81 40197.55 15499.41 24698.94 282
cl2295.79 31895.39 32296.98 32496.77 40192.79 34994.40 39298.53 31094.59 33997.89 27798.17 29982.82 38099.24 38296.37 24799.03 30198.92 284
mvsmamba97.57 23497.26 24598.51 21098.69 28796.73 23698.74 9297.25 35297.03 25797.88 27899.23 11990.95 32299.87 10696.61 22599.00 30698.91 287
test_vis1_rt97.75 22097.72 21697.83 26598.81 26496.35 24697.30 26399.69 3994.61 33897.87 27998.05 30996.26 21098.32 40798.74 8198.18 35198.82 297
BH-RMVSNet96.83 28396.58 28897.58 28998.47 32094.05 31696.67 30197.36 34796.70 27597.87 27997.98 31395.14 25199.44 35690.47 39098.58 33999.25 225
MIMVSNet96.62 29296.25 30097.71 27999.04 22194.66 30099.16 5196.92 36397.23 24497.87 27999.10 14786.11 35699.65 28991.65 37299.21 27998.82 297
LF4IMVS97.90 20397.69 21798.52 20999.17 19397.66 18397.19 27599.47 10696.31 29097.85 28298.20 29796.71 19199.52 33594.62 30899.72 15298.38 348
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14499.27 19094.90 33397.83 28398.37 28294.90 25699.84 14493.85 33599.54 22099.51 127
CMPMVSbinary75.91 2396.29 30295.44 31998.84 15796.25 41198.69 9097.02 28099.12 22988.90 40197.83 28398.86 20789.51 33398.90 39991.92 36799.51 22998.92 284
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN94.17 34894.37 34393.58 39296.86 39885.71 40890.11 41497.07 35698.17 15997.82 28597.19 35384.62 36798.94 39689.77 39297.68 36996.09 408
CDPH-MVS97.26 25696.66 28399.07 12299.00 22698.15 13096.03 33599.01 25191.21 38897.79 28697.85 32296.89 17699.69 26192.75 35999.38 25199.39 181
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21499.27 19098.20 15697.79 28697.98 31394.90 25699.70 25794.42 31699.51 22999.45 157
plane_prior397.78 17597.41 22297.79 286
MDTV_nov1_ep13_2view74.92 42497.69 22490.06 39797.75 28985.78 35893.52 34298.69 319
pmmvs395.03 33594.40 34296.93 32697.70 36892.53 35495.08 37397.71 33988.57 40297.71 29098.08 30779.39 39199.82 17196.19 25899.11 29598.43 343
DP-MVS Recon97.33 25196.92 26398.57 19999.09 20997.99 15096.79 29399.35 15093.18 36497.71 29098.07 30895.00 25599.31 37493.97 32999.13 29198.42 345
QAPM97.31 25296.81 27398.82 15998.80 26797.49 19299.06 6299.19 21190.22 39497.69 29299.16 13496.91 17599.90 6690.89 38799.41 24699.07 256
SCA96.41 30096.66 28395.67 36598.24 33988.35 39795.85 34896.88 36496.11 29697.67 29398.67 24193.10 29599.85 12694.16 32299.22 27698.81 301
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35299.49 698.02 17899.16 22298.29 14697.64 29497.99 31296.44 20299.95 2496.66 22298.93 31598.60 327
CNVR-MVS98.17 18797.87 20699.07 12298.67 29298.24 12297.01 28198.93 25997.25 23897.62 29598.34 28697.27 15599.57 31796.42 24499.33 25799.39 181
PVSNet_BlendedMVS97.55 23597.53 22997.60 28798.92 24193.77 33296.64 30299.43 12394.49 34097.62 29599.18 12896.82 18199.67 27394.73 30599.93 4399.36 196
PVSNet_Blended96.88 28196.68 28097.47 30298.92 24193.77 33294.71 38199.43 12390.98 39097.62 29597.36 35096.82 18199.67 27394.73 30599.56 21598.98 272
alignmvs97.35 24996.88 26698.78 16998.54 31498.09 13797.71 22297.69 34099.20 6597.59 29895.90 37788.12 34699.55 32498.18 11398.96 31298.70 318
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21197.61 19997.58 29998.66 24497.40 14899.88 8994.72 30799.60 19999.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DSMNet-mixed97.42 24597.60 22696.87 33099.15 19991.46 36998.54 11699.12 22992.87 37097.58 29999.63 3596.21 21199.90 6695.74 28099.54 22099.27 221
test0.0.03 194.51 34193.69 35096.99 32396.05 41293.61 33894.97 37693.49 40096.17 29397.57 30194.88 39882.30 38199.01 39493.60 34094.17 41098.37 350
PCF-MVS92.86 1894.36 34393.00 36098.42 22298.70 28297.56 18993.16 40699.11 23179.59 41597.55 30297.43 34592.19 31099.73 24579.85 41599.45 24197.97 369
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30398.63 25197.50 14199.83 16196.79 20899.53 22499.56 102
X-MVStestdata94.32 34492.59 36299.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30345.85 41997.50 14199.83 16196.79 20899.53 22499.56 102
旧先验295.76 35188.56 40397.52 30599.66 28494.48 312
PMVScopyleft91.26 2097.86 21097.94 20097.65 28299.71 4597.94 15998.52 11898.68 30198.99 9797.52 30599.35 8997.41 14798.18 40991.59 37499.67 17896.82 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETV-MVS98.03 19497.86 20798.56 20398.69 28798.07 14397.51 24899.50 8998.10 16497.50 30795.51 38498.41 6299.88 8996.27 25499.24 27297.71 382
PS-MVSNAJ97.08 27097.39 23796.16 35798.56 31292.46 35595.24 36998.85 27997.25 23897.49 30895.99 37498.07 9399.90 6696.37 24798.67 33396.12 407
xiu_mvs_v2_base97.16 26697.49 23296.17 35598.54 31492.46 35595.45 36298.84 28097.25 23897.48 30996.49 36598.31 7199.90 6696.34 25098.68 33296.15 406
sasdasda98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
canonicalmvs98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
testdata98.09 24898.93 23795.40 27698.80 28790.08 39697.45 31298.37 28295.26 24899.70 25793.58 34198.95 31399.17 246
thres600view794.45 34293.83 34896.29 34899.06 21791.53 36897.99 18694.24 39698.34 13997.44 31395.01 39479.84 38799.67 27384.33 40798.23 34897.66 383
EMVS93.83 35494.02 34693.23 39696.83 40084.96 40989.77 41596.32 37397.92 17697.43 31496.36 37186.17 35498.93 39787.68 39997.73 36895.81 409
MGCFI-Net98.34 16398.28 16098.51 21098.47 32097.59 18898.96 7499.48 9899.18 7197.40 31595.50 38598.66 4399.50 34198.18 11398.71 32798.44 341
thres100view90094.19 34793.67 35195.75 36499.06 21791.35 37298.03 17694.24 39698.33 14097.40 31594.98 39679.84 38799.62 29883.05 40998.08 35996.29 402
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32698.11 13497.61 23699.50 8998.64 11897.39 31797.52 34098.12 9299.95 2496.90 20098.71 32798.38 348
API-MVS97.04 27396.91 26597.42 30597.88 35898.23 12698.18 15498.50 31297.57 20297.39 31796.75 36196.77 18599.15 38990.16 39199.02 30494.88 412
PatchMatch-RL97.24 25996.78 27498.61 19299.03 22497.83 16796.36 31699.06 23793.49 36297.36 31997.78 32495.75 23499.49 34493.44 34598.77 32298.52 333
ttmdpeth97.91 20298.02 19197.58 28998.69 28794.10 31598.13 16098.90 26597.95 17297.32 32099.58 4395.95 22898.75 40296.41 24599.22 27699.87 18
sss97.21 26196.93 26198.06 25398.83 25995.22 28396.75 29798.48 31394.49 34097.27 32197.90 31992.77 30399.80 19296.57 22999.32 25899.16 249
KD-MVS_2432*160092.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
miper_refine_blended92.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
WTY-MVS96.67 28996.27 29997.87 26398.81 26494.61 30296.77 29597.92 33594.94 33297.12 32497.74 32791.11 32199.82 17193.89 33298.15 35599.18 242
tfpn200view994.03 35193.44 35395.78 36398.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35996.29 402
thres40094.14 34993.44 35396.24 35198.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35997.66 383
PatchmatchNetpermissive95.58 32495.67 30995.30 37597.34 38887.32 40297.65 23196.65 36795.30 32497.07 32798.69 23784.77 36599.75 23594.97 30098.64 33498.83 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNLPA97.17 26596.71 27898.55 20498.56 31298.05 14796.33 31898.93 25996.91 26397.06 32897.39 34794.38 27399.45 35491.66 37199.18 28598.14 359
WB-MVSnew95.73 32095.57 31496.23 35296.70 40290.70 38696.07 33493.86 39995.60 31497.04 32995.45 39196.00 22099.55 32491.04 38398.31 34698.43 343
NCCC97.86 21097.47 23599.05 12998.61 30298.07 14396.98 28398.90 26597.63 19597.04 32997.93 31895.99 22499.66 28495.31 29398.82 32199.43 165
TR-MVS95.55 32595.12 33196.86 33397.54 37693.94 32396.49 30996.53 37194.36 34797.03 33196.61 36394.26 27799.16 38886.91 40396.31 39697.47 389
MDTV_nov1_ep1395.22 32897.06 39683.20 41797.74 21996.16 37494.37 34696.99 33298.83 21383.95 37399.53 33193.90 33197.95 366
CANet97.87 20997.76 21198.19 24397.75 36295.51 27196.76 29699.05 24097.74 18896.93 33398.21 29695.59 23999.89 7797.86 13799.93 4399.19 240
EPMVS93.72 35693.27 35595.09 37896.04 41387.76 40098.13 16085.01 42094.69 33796.92 33498.64 24978.47 39899.31 37495.04 29796.46 39498.20 356
AdaColmapbinary97.14 26796.71 27898.46 21798.34 33397.80 17496.95 28498.93 25995.58 31596.92 33497.66 33195.87 23199.53 33190.97 38499.14 28998.04 364
thisisatest051594.12 35093.16 35796.97 32598.60 30492.90 34793.77 40290.61 41194.10 35296.91 33695.87 37874.99 40199.80 19294.52 31199.12 29498.20 356
CR-MVSNet96.28 30395.95 30297.28 31097.71 36694.22 30998.11 16498.92 26292.31 37696.91 33699.37 8485.44 36299.81 18597.39 16397.36 38197.81 375
RPMNet97.02 27496.93 26197.30 30997.71 36694.22 30998.11 16499.30 17699.37 4696.91 33699.34 9386.72 34999.87 10697.53 15797.36 38197.81 375
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24698.75 29597.46 21896.90 33997.83 32396.01 21999.84 14495.82 27899.35 25499.46 153
PatchT96.65 29096.35 29497.54 29597.40 38695.32 27997.98 18796.64 36899.33 5196.89 34099.42 7784.32 37099.81 18597.69 14997.49 37297.48 388
1112_ss97.29 25596.86 26798.58 19699.34 15396.32 24796.75 29799.58 5893.14 36596.89 34097.48 34292.11 31299.86 11496.91 19599.54 22099.57 96
test22298.92 24196.93 22795.54 35798.78 29085.72 40896.86 34298.11 30394.43 27099.10 29699.23 230
thres20093.72 35693.14 35895.46 37298.66 29791.29 37496.61 30494.63 39197.39 22496.83 34393.71 40679.88 38699.56 32082.40 41298.13 35695.54 411
UGNet98.53 14298.45 13698.79 16697.94 35596.96 22499.08 5898.54 30999.10 8396.82 34499.47 6996.55 19799.84 14498.56 9699.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Test_1112_low_res96.99 27896.55 28998.31 23499.35 15195.47 27395.84 34999.53 8391.51 38496.80 34598.48 27291.36 31999.83 16196.58 22799.53 22499.62 70
testing393.51 35892.09 36897.75 27498.60 30494.40 30697.32 26195.26 38797.56 20496.79 34695.50 38553.57 42499.77 22295.26 29498.97 31199.08 254
新几何198.91 15098.94 23597.76 17698.76 29287.58 40596.75 34798.10 30494.80 26399.78 21692.73 36099.00 30699.20 235
Effi-MVS+98.02 19597.82 20998.62 18998.53 31697.19 21297.33 26099.68 4497.30 23396.68 34897.46 34498.56 5499.80 19296.63 22398.20 35098.86 294
GA-MVS95.86 31595.32 32597.49 30098.60 30494.15 31493.83 40197.93 33495.49 31896.68 34897.42 34683.21 37699.30 37696.22 25698.55 34099.01 266
EIA-MVS98.00 19797.74 21398.80 16398.72 27598.09 13798.05 17399.60 5597.39 22496.63 35095.55 38397.68 12099.80 19296.73 21699.27 26798.52 333
F-COLMAP97.30 25396.68 28099.14 11099.19 18598.39 11097.27 26799.30 17692.93 36896.62 35198.00 31195.73 23599.68 27092.62 36298.46 34299.35 200
PAPM_NR96.82 28596.32 29698.30 23599.07 21396.69 23897.48 25098.76 29295.81 30996.61 35296.47 36794.12 28199.17 38790.82 38897.78 36799.06 257
dmvs_re95.98 31295.39 32297.74 27698.86 25397.45 19598.37 14095.69 38597.95 17296.56 35395.95 37590.70 32597.68 41288.32 39796.13 39998.11 360
test1298.93 14698.58 30997.83 16798.66 30296.53 35495.51 24299.69 26199.13 29199.27 221
BH-w/o95.13 33394.89 33795.86 36098.20 34291.31 37395.65 35497.37 34693.64 35896.52 35595.70 38193.04 29899.02 39288.10 39895.82 40297.24 393
ADS-MVSNet295.43 32894.98 33396.76 33798.14 34691.74 36597.92 19497.76 33790.23 39296.51 35698.91 19485.61 35999.85 12692.88 35496.90 38898.69 319
ADS-MVSNet95.24 33194.93 33696.18 35498.14 34690.10 39097.92 19497.32 35090.23 39296.51 35698.91 19485.61 35999.74 24092.88 35496.90 38898.69 319
114514_t96.50 29695.77 30498.69 18199.48 12297.43 19797.84 20699.55 7681.42 41496.51 35698.58 25895.53 24099.67 27393.41 34699.58 20898.98 272
PVSNet93.40 1795.67 32195.70 30795.57 36898.83 25988.57 39592.50 40897.72 33892.69 37296.49 35996.44 36893.72 28999.43 35793.61 33999.28 26698.71 315
DPM-MVS96.32 30195.59 31398.51 21098.76 26997.21 21094.54 39098.26 32291.94 37996.37 36097.25 35293.06 29799.43 35791.42 37798.74 32398.89 289
tpmrst95.07 33495.46 31793.91 38897.11 39384.36 41497.62 23496.96 36094.98 33096.35 36198.80 21985.46 36199.59 30995.60 28696.23 39797.79 378
OpenMVScopyleft96.65 797.09 26996.68 28098.32 23298.32 33497.16 21598.86 8699.37 14189.48 39896.29 36299.15 13896.56 19699.90 6692.90 35399.20 28097.89 370
UWE-MVS92.38 37491.76 37794.21 38597.16 39284.65 41195.42 36488.45 41695.96 30496.17 36395.84 38066.36 41499.71 25391.87 36998.64 33498.28 353
Fast-Effi-MVS+97.67 22697.38 23898.57 19998.71 27897.43 19797.23 26899.45 11394.82 33596.13 36496.51 36498.52 5699.91 6096.19 25898.83 31998.37 350
test_prior295.74 35296.48 28396.11 36597.63 33495.92 23094.16 32299.20 280
dp93.47 35993.59 35293.13 39796.64 40381.62 42197.66 22996.42 37292.80 37196.11 36598.64 24978.55 39799.59 30993.31 34792.18 41598.16 358
原ACMM198.35 23098.90 24596.25 24998.83 28492.48 37496.07 36798.10 30495.39 24699.71 25392.61 36398.99 30899.08 254
PMMVS96.51 29495.98 30198.09 24897.53 37895.84 26194.92 37798.84 28091.58 38296.05 36895.58 38295.68 23699.66 28495.59 28798.09 35898.76 311
tpm94.67 34094.34 34495.66 36697.68 37188.42 39697.88 19994.90 38894.46 34296.03 36998.56 26078.66 39499.79 20595.88 27195.01 40698.78 308
TEST998.71 27898.08 14195.96 33999.03 24591.40 38595.85 37097.53 33896.52 19899.76 228
train_agg97.10 26896.45 29399.07 12298.71 27898.08 14195.96 33999.03 24591.64 38095.85 37097.53 33896.47 20099.76 22893.67 33899.16 28699.36 196
test_898.67 29298.01 14995.91 34599.02 24891.64 38095.79 37297.50 34196.47 20099.76 228
agg_prior98.68 29197.99 15099.01 25195.59 37399.77 222
PLCcopyleft94.65 1696.51 29495.73 30698.85 15698.75 27197.91 16096.42 31399.06 23790.94 39195.59 37397.38 34894.41 27199.59 30990.93 38598.04 36499.05 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP4-MVS95.56 37599.54 32999.32 209
HQP-NCC98.67 29296.29 32196.05 29895.55 376
ACMP_Plane98.67 29296.29 32196.05 29895.55 376
HQP-MVS97.00 27796.49 29298.55 20498.67 29296.79 23196.29 32199.04 24396.05 29895.55 37696.84 35993.84 28499.54 32992.82 35699.26 27099.32 209
MAR-MVS96.47 29895.70 30798.79 16697.92 35699.12 6198.28 14598.60 30792.16 37895.54 37996.17 37294.77 26599.52 33589.62 39398.23 34897.72 381
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS96.24 30695.45 31898.60 19498.70 28297.22 20997.38 25697.65 34295.95 30595.53 38097.96 31782.11 38399.79 20596.31 25197.44 37598.80 306
tpmvs95.02 33695.25 32694.33 38296.39 41085.87 40598.08 16896.83 36595.46 31995.51 38198.69 23785.91 35799.53 33194.16 32296.23 39797.58 386
MVS-HIRNet94.32 34495.62 31090.42 39998.46 32275.36 42396.29 32189.13 41595.25 32595.38 38299.75 1392.88 30099.19 38694.07 32899.39 24896.72 400
PAPR95.29 32994.47 34097.75 27497.50 38495.14 28694.89 37898.71 30091.39 38695.35 38395.48 38794.57 26899.14 39084.95 40697.37 37998.97 275
HY-MVS95.94 1395.90 31495.35 32497.55 29497.95 35494.79 29398.81 9196.94 36292.28 37795.17 38498.57 25989.90 33199.75 23591.20 38197.33 38398.10 361
CANet_DTU97.26 25697.06 25697.84 26497.57 37394.65 30196.19 32798.79 28897.23 24495.14 38598.24 29393.22 29299.84 14497.34 16599.84 8599.04 262
cascas94.79 33994.33 34596.15 35896.02 41492.36 35992.34 41099.26 19585.34 40995.08 38694.96 39792.96 29998.53 40594.41 31998.59 33897.56 387
CostFormer93.97 35293.78 34994.51 38197.53 37885.83 40797.98 18795.96 37889.29 40094.99 38798.63 25178.63 39599.62 29894.54 31096.50 39398.09 362
Syy-MVS96.04 30995.56 31597.49 30097.10 39494.48 30496.18 32896.58 36995.65 31294.77 38892.29 41591.27 32099.36 36698.17 11598.05 36298.63 325
myMVS_eth3d91.92 38090.45 38296.30 34797.10 39490.90 38296.18 32896.58 36995.65 31294.77 38892.29 41553.88 42399.36 36689.59 39498.05 36298.63 325
ETVMVS92.60 37191.08 38097.18 31497.70 36893.65 33796.54 30595.70 38396.51 28094.68 39092.39 41461.80 42199.50 34186.97 40197.41 37798.40 346
CHOSEN 280x42095.51 32795.47 31695.65 36798.25 33888.27 39893.25 40598.88 26993.53 36094.65 39197.15 35586.17 35499.93 4297.41 16299.93 4398.73 314
JIA-IIPM95.52 32695.03 33297.00 32296.85 39994.03 31996.93 28795.82 38199.20 6594.63 39299.71 1983.09 37799.60 30594.42 31694.64 40797.36 392
MVS93.19 36492.09 36896.50 34296.91 39794.03 31998.07 17098.06 33268.01 41794.56 39396.48 36695.96 22799.30 37683.84 40896.89 39096.17 404
131495.74 31995.60 31196.17 35597.53 37892.75 35198.07 17098.31 32191.22 38794.25 39496.68 36295.53 24099.03 39191.64 37397.18 38596.74 399
tpm cat193.29 36293.13 35993.75 39097.39 38784.74 41097.39 25597.65 34283.39 41294.16 39598.41 27782.86 37999.39 36391.56 37595.35 40597.14 394
test-LLR93.90 35393.85 34794.04 38696.53 40584.62 41294.05 39892.39 40596.17 29394.12 39695.07 39282.30 38199.67 27395.87 27498.18 35197.82 373
test-mter92.33 37691.76 37794.04 38696.53 40584.62 41294.05 39892.39 40594.00 35594.12 39695.07 39265.63 41799.67 27395.87 27498.18 35197.82 373
tpm293.09 36592.58 36394.62 38097.56 37486.53 40497.66 22995.79 38286.15 40794.07 39898.23 29575.95 39999.53 33190.91 38696.86 39197.81 375
dmvs_testset92.94 36892.21 36795.13 37698.59 30790.99 38197.65 23192.09 40796.95 26094.00 39993.55 40792.34 30996.97 41572.20 41892.52 41397.43 390
TESTMET0.1,192.19 37891.77 37693.46 39396.48 40782.80 41894.05 39891.52 41094.45 34494.00 39994.88 39866.65 41399.56 32095.78 27998.11 35798.02 365
UBG93.25 36392.32 36496.04 35997.72 36390.16 38995.92 34495.91 38096.03 30193.95 40193.04 41169.60 40799.52 33590.72 38997.98 36598.45 338
PVSNet_089.98 2191.15 38290.30 38593.70 39197.72 36384.34 41590.24 41297.42 34590.20 39593.79 40293.09 41090.90 32498.89 40086.57 40472.76 41997.87 372
FPMVS93.44 36092.23 36697.08 31999.25 17097.86 16495.61 35597.16 35492.90 36993.76 40398.65 24675.94 40095.66 41679.30 41697.49 37297.73 380
testing9193.32 36192.27 36596.47 34397.54 37691.25 37696.17 33096.76 36697.18 24893.65 40493.50 40865.11 41899.63 29593.04 35197.45 37498.53 332
testing9993.04 36791.98 37396.23 35297.53 37890.70 38696.35 31795.94 37996.87 26593.41 40593.43 40963.84 42099.59 30993.24 34997.19 38498.40 346
EPNet96.14 30795.44 31998.25 23890.76 42395.50 27297.92 19494.65 39098.97 10092.98 40698.85 21089.12 33699.87 10695.99 26799.68 17299.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing22291.96 37990.37 38396.72 33897.47 38592.59 35296.11 33294.76 38996.83 26792.90 40792.87 41257.92 42299.55 32486.93 40297.52 37198.00 368
testing1193.08 36692.02 37096.26 35097.56 37490.83 38496.32 31995.70 38396.47 28492.66 40893.73 40564.36 41999.59 30993.77 33797.57 37098.37 350
baseline293.73 35592.83 36196.42 34497.70 36891.28 37596.84 29289.77 41493.96 35692.44 40995.93 37679.14 39299.77 22292.94 35296.76 39298.21 355
IB-MVS91.63 1992.24 37790.90 38196.27 34997.22 39191.24 37794.36 39393.33 40292.37 37592.24 41094.58 40266.20 41699.89 7793.16 35094.63 40897.66 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune92.37 37591.20 37995.85 36195.80 41692.38 35899.31 2781.84 42299.75 891.83 41199.74 1568.29 40899.02 39287.15 40097.12 38696.16 405
DeepMVS_CXcopyleft93.44 39498.24 33994.21 31194.34 39364.28 41891.34 41294.87 40089.45 33592.77 41977.54 41793.14 41293.35 414
PAPM91.88 38190.34 38496.51 34198.06 35192.56 35392.44 40997.17 35386.35 40690.38 41396.01 37386.61 35099.21 38570.65 41995.43 40497.75 379
ET-MVSNet_ETH3D94.30 34693.21 35697.58 28998.14 34694.47 30594.78 38093.24 40394.72 33689.56 41495.87 37878.57 39699.81 18596.91 19597.11 38798.46 335
dongtai76.24 38675.95 38977.12 40292.39 42067.91 42690.16 41359.44 42782.04 41389.42 41594.67 40149.68 42581.74 42048.06 42077.66 41881.72 416
EPNet_dtu94.93 33894.78 33895.38 37493.58 41987.68 40196.78 29495.69 38597.35 22889.14 41698.09 30688.15 34599.49 34494.95 30199.30 26398.98 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND94.76 37994.54 41892.13 36399.31 2780.47 42388.73 41791.01 41767.59 41298.16 41082.30 41394.53 40993.98 413
tmp_tt78.77 38578.73 38878.90 40158.45 42674.76 42594.20 39578.26 42439.16 41986.71 41892.82 41380.50 38575.19 42186.16 40592.29 41486.74 415
MVEpermissive83.40 2292.50 37291.92 37494.25 38398.83 25991.64 36792.71 40783.52 42195.92 30686.46 41995.46 38895.20 24995.40 41780.51 41498.64 33495.73 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method79.78 38479.50 38780.62 40080.21 42545.76 42870.82 41698.41 31831.08 42080.89 42097.71 32884.85 36497.37 41391.51 37680.03 41798.75 312
kuosan69.30 38768.95 39070.34 40387.68 42465.00 42791.11 41159.90 42669.02 41674.46 42188.89 41848.58 42668.03 42228.61 42172.33 42077.99 417
EGC-MVSNET85.24 38380.54 38699.34 7599.77 2699.20 3899.08 5899.29 18412.08 42120.84 42299.42 7797.55 13499.85 12697.08 18299.72 15298.96 277
testmvs17.12 38920.53 3926.87 40512.05 4274.20 43093.62 4046.73 4284.62 42310.41 42324.33 4208.28 4283.56 4249.69 42315.07 42112.86 420
test12317.04 39020.11 3937.82 40410.25 4284.91 42994.80 3794.47 4294.93 42210.00 42424.28 4219.69 4273.64 42310.14 42212.43 42214.92 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.66 38832.88 3910.00 4060.00 4290.00 4310.00 41799.10 2320.00 4240.00 42597.58 33699.21 160.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.17 39110.90 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42498.07 930.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.12 39210.83 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.48 3420.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.90 38291.37 378
MSC_two_6792asdad99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
No_MVS99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
eth-test20.00 429
eth-test0.00 429
OPU-MVS98.82 15998.59 30798.30 11898.10 16698.52 26498.18 8498.75 40294.62 30899.48 23899.41 171
save fliter99.11 20497.97 15496.53 30799.02 24898.24 149
test_0728_SECOND99.60 1499.50 10899.23 3098.02 17899.32 16399.88 8996.99 18999.63 18999.68 56
GSMVS98.81 301
sam_mvs184.74 36698.81 301
sam_mvs84.29 372
MTGPAbinary99.20 207
test_post197.59 23920.48 42383.07 37899.66 28494.16 322
test_post21.25 42283.86 37499.70 257
patchmatchnet-post98.77 22584.37 36999.85 126
MTMP97.93 19191.91 409
gm-plane-assit94.83 41781.97 42088.07 40494.99 39599.60 30591.76 370
test9_res93.28 34899.15 28899.38 188
agg_prior292.50 36499.16 28699.37 190
test_prior497.97 15495.86 346
test_prior98.95 14398.69 28797.95 15899.03 24599.59 30999.30 216
新几何295.93 342
旧先验198.82 26297.45 19598.76 29298.34 28695.50 24399.01 30599.23 230
无先验95.74 35298.74 29789.38 39999.73 24592.38 36699.22 234
原ACMM295.53 358
testdata299.79 20592.80 358
segment_acmp97.02 170
testdata195.44 36396.32 289
plane_prior799.19 18597.87 163
plane_prior698.99 22997.70 18294.90 256
plane_prior599.27 19099.70 25794.42 31699.51 22999.45 157
plane_prior497.98 313
plane_prior297.77 21498.20 156
plane_prior199.05 220
plane_prior97.65 18497.07 27996.72 27399.36 252
n20.00 430
nn0.00 430
door-mid99.57 65
test1198.87 271
door99.41 130
HQP5-MVS96.79 231
BP-MVS92.82 356
HQP3-MVS99.04 24399.26 270
HQP2-MVS93.84 284
NP-MVS98.84 25797.39 19996.84 359
ACMMP++_ref99.77 125
ACMMP++99.68 172
Test By Simon96.52 198