This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21697.79 38099.99 299.48 21699.59 21896.29 30099.95 6399.94 1699.98 4199.88 25
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32599.34 122100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21995.32 39899.99 299.68 14299.57 22998.30 19799.97 3399.94 1699.98 4199.88 25
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19799.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20199.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15499.94 7799.58 5499.98 4199.77 60
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7699.97 1899.95 2099.96 2399.76 11198.44 17999.99 799.34 8899.96 7099.78 56
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28799.30 13599.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
test_f99.75 3299.88 699.37 21999.96 798.21 29999.51 90100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31299.48 96100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 334
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17899.87 20399.51 6499.97 5699.86 32
EU-MVSNet99.39 11599.62 5598.72 31999.88 4496.44 36299.56 8199.85 5499.90 2999.90 4999.85 5698.09 21599.83 27099.58 5499.95 8399.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test250694.73 37194.59 37295.15 38799.59 18685.90 41399.75 2274.01 41399.89 3599.71 13299.86 5479.00 40499.90 15799.52 6399.99 1699.65 112
test111197.74 31398.16 28796.49 38199.60 18289.86 41199.71 3491.21 40799.89 3599.88 6199.87 4793.73 33099.90 15799.56 5799.99 1699.70 79
ECVR-MVScopyleft97.73 31498.04 29396.78 37599.59 18690.81 40799.72 3090.43 40999.89 3599.86 7199.86 5493.60 33299.89 17599.46 6999.99 1699.65 112
gg-mvs-nofinetune95.87 36295.17 36797.97 34998.19 39896.95 35399.69 4289.23 41199.89 3596.24 39999.94 1681.19 39699.51 39193.99 38898.20 37997.44 395
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
JIA-IIPM98.06 30397.92 30698.50 32998.59 38697.02 35298.80 26498.51 35899.88 4097.89 37399.87 4791.89 34899.90 15798.16 20697.68 39398.59 362
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8699.81 7699.87 4199.81 8899.79 9396.78 28299.99 799.83 3299.51 29199.86 32
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30299.87 4199.91 4499.87 4798.04 21999.96 5499.68 4499.99 1699.90 20
LFMVS98.46 27598.19 28599.26 24899.24 31398.52 28099.62 6296.94 39099.87 4199.31 25899.58 22191.04 35799.81 29498.68 17099.42 30599.45 223
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14299.61 17699.87 4199.74 12299.76 11198.69 14099.87 20398.20 19999.80 19399.75 69
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30299.52 86100.00 199.86 45100.00 199.88 4298.99 10399.96 5499.97 499.96 7099.95 11
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20099.85 24099.37 8399.93 10199.83 40
RPMNet98.60 25698.53 25398.83 31199.05 34798.12 30599.30 13599.62 16999.86 4599.16 28399.74 11992.53 34399.92 11698.75 16398.77 35698.44 375
UGNet99.38 11799.34 11199.49 18198.90 36098.90 24999.70 3599.35 28599.86 4598.57 34599.81 7998.50 17399.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29699.97 3399.59 5199.98 4199.55 174
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12199.91 13999.47 6899.88 13499.70 79
IterMVS-SCA-FT99.00 21299.16 14598.51 32899.75 12895.90 37298.07 33699.84 6099.84 5399.89 5399.73 12396.01 30599.99 799.33 91100.00 199.63 127
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
PatchT98.45 27798.32 27398.83 31198.94 35898.29 29499.24 15698.82 34299.84 5399.08 29499.76 11191.37 35299.94 7798.82 15399.00 34398.26 381
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11799.79 8699.83 5699.88 6199.85 5698.42 18299.90 15799.60 5099.73 22399.49 210
IterMVS98.97 21699.16 14598.42 33299.74 13495.64 37598.06 33899.83 6299.83 5699.85 7399.74 11996.10 30499.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9999.81 7699.82 5899.71 13299.72 13096.60 28699.98 2099.75 3999.23 33199.82 46
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32299.49 95100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22699.86 22299.42 7799.96 7099.80 47
VDDNet98.97 21698.82 22799.42 20199.71 14398.81 25599.62 6298.68 34899.81 6199.38 24399.80 8394.25 32399.85 24098.79 15799.32 31899.59 159
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9699.70 13199.81 6199.69 13999.58 22197.66 25099.86 22299.17 11699.44 30199.67 95
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11399.71 33498.41 18199.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9198.32 36999.80 6499.56 19299.69 15196.99 27799.85 24098.99 13699.73 22399.50 205
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16399.93 9499.59 5199.98 4199.76 66
iter_conf0598.46 27598.23 27899.15 26599.04 34997.99 31599.10 20499.61 17699.79 6699.76 10899.58 22187.88 37999.92 11699.31 9699.97 5699.53 187
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19399.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs199.48 8799.65 5098.97 28899.54 21597.16 34899.11 20199.98 1199.78 6899.96 2399.81 7998.72 13899.97 3399.95 1299.97 5699.79 54
mvs_anonymous99.28 13999.39 10198.94 29299.19 32397.81 32799.02 22699.55 21699.78 6899.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 295
K. test v398.87 23398.60 24299.69 10499.93 2599.46 15199.74 2494.97 39999.78 6899.88 6199.88 4293.66 33199.97 3399.61 4999.95 8399.64 122
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22799.92 11699.65 4699.98 4199.62 138
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
EPNet98.13 29997.77 31499.18 26094.57 41097.99 31599.24 15697.96 37599.74 7397.29 38599.62 19693.13 33699.97 3398.59 17399.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28799.77 1599.80 8099.73 7499.63 15999.30 30198.02 22199.98 2099.43 7299.69 23899.55 174
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7698.70 34799.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14499.97 3399.30 9799.95 8399.80 47
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21999.87 4699.71 8099.47 21899.79 9398.24 20299.98 2099.38 8099.96 7099.83 40
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7499.78 9299.71 8099.90 4999.69 15198.85 11999.90 15797.25 28699.78 20399.15 295
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14299.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10599.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
PMVScopyleft92.94 2198.82 23798.81 22898.85 30799.84 6197.99 31599.20 16799.47 25299.71 8099.42 23099.82 7398.09 21599.47 39393.88 38999.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16099.96 5499.29 10099.94 9499.83 40
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
h-mvs3398.61 25498.34 27099.44 19599.60 18298.67 26699.27 14799.44 26099.68 9099.32 25499.49 25592.50 344100.00 199.24 10496.51 40099.65 112
hse-mvs298.52 26798.30 27599.16 26399.29 30398.60 27698.77 26999.02 33499.68 9099.32 25499.04 34192.50 34499.85 24099.24 10497.87 39199.03 326
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15699.46 25599.68 9099.80 9299.66 17198.99 10399.89 17599.19 11199.90 11599.72 73
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25699.86 4999.68 9099.65 15499.88 4297.67 24699.87 20399.03 13399.86 15399.76 66
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15699.46 25599.67 9499.79 9799.65 17698.97 10799.89 17599.15 11999.89 12499.71 76
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12599.31 29499.67 9499.47 21899.57 22996.48 29099.84 25599.15 11999.30 32099.47 218
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10599.90 15799.24 10499.97 5699.53 187
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CVMVSNet98.61 25498.88 21997.80 35699.58 19193.60 39399.26 14999.64 16499.66 9899.72 12799.67 16693.26 33499.93 9499.30 9799.81 18899.87 30
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10399.57 20599.66 9899.78 10199.83 6697.85 23499.86 22299.44 7199.96 7099.61 148
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32699.65 10099.89 5399.90 2996.20 30299.94 7799.42 7799.92 10599.67 95
Patchmtry98.78 24098.54 25299.49 18198.89 36399.19 21899.32 12799.67 14499.65 10099.72 12799.79 9391.87 34999.95 6398.00 21699.97 5699.33 256
alignmvs98.28 29097.96 29999.25 25199.12 33398.93 24699.03 22398.42 36399.64 10298.72 33297.85 39490.86 36299.62 37498.88 14999.13 33399.19 287
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14699.84 25599.88 2999.99 1699.71 76
MGCFI-Net99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30999.26 14999.46 25599.62 10699.75 11499.67 16698.54 16399.85 24099.15 11999.92 10599.68 89
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10699.84 7699.71 13898.62 15099.96 5499.30 9799.96 7099.86 32
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30998.85 25399.76 10099.62 10699.83 8099.64 17898.54 16399.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29099.81 7699.61 10999.48 21699.41 27298.47 17499.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13599.63 16699.61 10999.71 13299.56 23398.76 13199.96 5499.14 12599.92 10599.68 89
LS3D99.24 14999.11 15899.61 14798.38 39399.79 4699.57 7999.68 14099.61 10999.15 28599.71 13898.70 13999.91 13997.54 26299.68 24399.13 303
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11599.92 4199.87 4798.75 13399.86 22299.90 2599.99 1699.73 71
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22699.89 4099.60 11599.82 8199.62 19698.81 12199.89 17599.43 7299.86 15399.47 218
DSMNet-mixed99.48 8799.65 5098.95 29199.71 14397.27 34599.50 9199.82 6799.59 11799.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11899.85 7399.69 15198.18 21199.94 7799.28 10299.95 8399.83 40
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7999.61 17699.54 11999.80 9299.64 17897.79 23899.95 6399.21 10799.94 9499.84 36
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14499.68 14099.54 11999.40 24199.56 23399.07 9499.82 27996.01 34899.96 7099.11 304
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12799.77 9599.53 12199.77 10699.76 11199.26 7099.78 30897.77 23799.88 13499.60 152
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11399.78 9299.53 12199.67 14899.78 10199.19 7799.86 22297.32 27599.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21699.82 6799.50 12398.97 30299.05 33998.98 10599.98 2098.20 19999.24 32998.62 360
new-patchmatchnet99.35 12599.57 7198.71 32199.82 7296.62 36098.55 29299.75 10599.50 12399.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19799.79 8699.48 12598.93 30698.55 37999.40 4999.93 9498.51 17799.52 29098.28 380
CANet_DTU98.91 22698.85 22299.09 27598.79 37398.13 30498.18 32299.31 29499.48 12598.86 31799.51 24896.56 28799.95 6399.05 13299.95 8399.19 287
UnsupCasMVSNet_eth98.83 23698.57 24899.59 15299.68 16399.45 15698.99 23699.67 14499.48 12599.55 19799.36 28894.92 31499.86 22298.95 14696.57 39999.45 223
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31199.48 12599.56 19299.77 10894.89 31599.93 9498.72 16699.89 12499.63 127
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27699.47 12999.76 10899.78 10198.13 21399.86 22298.70 16799.68 24399.49 210
xiu_mvs_v2_base99.02 20599.11 15898.77 31699.37 27698.09 30998.13 32899.51 24099.47 12999.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 382
PS-MVSNAJ99.00 21299.08 16998.76 31799.37 27698.10 30898.00 34499.51 24099.47 12999.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 386
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7399.82 6799.46 13299.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24499.46 13299.88 6199.36 28897.54 25399.87 20398.97 14099.87 14599.63 127
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24299.54 22299.46 13299.61 17499.70 14596.31 29899.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
E-PMN97.14 33397.43 32196.27 38398.79 37391.62 40295.54 40099.01 33699.44 13598.88 31399.12 33192.78 34099.68 35594.30 38299.03 34197.50 394
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10399.57 20599.44 13599.70 13699.74 11997.21 26799.87 20399.03 13399.94 9499.44 228
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24499.44 13599.12 29099.78 10198.77 13099.94 7797.87 22999.72 22999.62 138
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24099.61 17699.43 14099.67 14899.28 30597.85 23499.95 6399.17 11699.81 18899.65 112
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23999.60 18899.43 14099.70 13699.36 28897.70 24299.88 18999.20 11099.87 14599.59 159
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26199.66 14899.42 14499.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7499.82 6799.39 14599.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25699.53 23199.38 14699.67 14899.36 28897.67 24699.95 6399.17 11699.81 18899.63 127
IS-MVSNet99.03 20398.85 22299.55 16899.80 8699.25 20399.73 2799.15 32599.37 14799.61 17499.71 13894.73 31999.81 29497.70 24899.88 13499.58 164
MVEpermissive92.54 2296.66 34396.11 34798.31 34099.68 16397.55 33697.94 35195.60 39799.37 14790.68 40798.70 37396.56 28798.61 40586.94 40599.55 28098.77 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32999.53 23199.36 14999.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu99.07 19598.92 21399.52 17698.89 36399.78 4999.15 18599.66 14899.34 15098.92 30999.24 31797.69 24499.98 2098.11 20999.28 32398.81 351
EMVS96.96 33697.28 32595.99 38698.76 37891.03 40595.26 40198.61 35399.34 15098.92 30998.88 36493.79 32899.66 36492.87 39099.05 33997.30 398
baseline197.73 31497.33 32498.96 28999.30 30197.73 33199.40 10998.42 36399.33 15299.46 22299.21 32191.18 35599.82 27998.35 18591.26 40599.32 259
dmvs_re98.69 25098.48 25599.31 23699.55 21399.42 16599.54 8498.38 36699.32 15398.72 33298.71 37296.76 28399.21 39896.01 34899.35 31499.31 263
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14999.76 10099.32 15399.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32999.47 26298.47 17499.88 18997.62 25699.73 22399.67 95
X-MVStestdata96.09 35694.87 36899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32961.30 41498.47 17499.88 18997.62 25699.73 22399.67 95
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32698.89 24899.72 12399.29 15599.63 15999.70 14596.47 29199.89 17598.17 20599.82 17999.50 205
Anonymous20240521198.75 24398.46 25799.63 13599.34 29099.66 10199.47 9997.65 38199.28 15899.56 19299.50 25193.15 33599.84 25598.62 17299.58 27499.40 239
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35799.59 19499.27 15999.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12599.53 23199.27 15999.42 23099.63 18998.21 20799.95 6397.83 23699.79 19899.65 112
MVSTER98.47 27498.22 28099.24 25399.06 34698.35 29399.08 21299.46 25599.27 15999.75 11499.66 17188.61 37799.85 24099.14 12599.92 10599.52 198
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15699.71 12699.27 15999.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.11 19099.05 17999.28 24298.83 36798.56 27798.71 27599.41 26699.25 16399.23 27299.22 31997.66 25099.94 7799.19 11199.97 5699.33 256
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18799.58 20399.25 16399.81 8899.62 19698.24 20299.84 25599.83 3299.97 5699.64 122
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11199.59 19499.24 16599.86 7199.70 14598.55 16199.82 27999.79 3799.95 8399.60 152
EPNet_dtu97.62 31997.79 31397.11 37496.67 40792.31 39898.51 29998.04 37399.24 16595.77 40199.47 26293.78 32999.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bld_raw_dy_0_6498.97 21698.90 21799.17 26299.07 34499.24 20799.24 15699.93 2999.23 16799.87 6999.03 34595.48 31199.81 29498.29 18999.99 1698.47 373
test_one_060199.63 17599.76 6199.55 21699.23 16799.31 25899.61 20598.59 155
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14499.74 11099.23 16799.72 12799.53 24497.63 25299.88 18999.11 12799.84 16299.48 214
FMVSNet398.80 23998.63 24199.32 23399.13 33198.72 26399.10 20499.48 24999.23 16799.62 16899.64 17892.57 34199.86 22298.96 14299.90 11599.39 241
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21099.23 16799.35 24699.80 8399.17 7999.95 6398.21 19899.84 16299.59 159
SD-MVS99.01 21099.30 12398.15 34499.50 23499.40 17198.94 24599.61 17699.22 17299.75 11499.82 7399.54 4195.51 40897.48 26699.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20499.61 17699.20 17399.84 7699.73 12398.67 14499.84 25599.86 3199.98 4199.64 122
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14799.61 17699.19 17499.57 18599.64 17898.76 13199.90 15797.29 27799.62 25999.56 171
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12799.74 11099.18 17599.69 13999.75 11698.41 18399.84 25597.85 23299.70 23499.10 306
DVP-MVS++99.38 11799.25 13699.77 5799.03 35099.77 5499.74 2499.61 17699.18 17599.76 10899.61 20599.00 10199.92 11697.72 24399.60 26999.62 138
test_0728_THIRD99.18 17599.62 16899.61 20598.58 15799.91 13997.72 24399.80 19399.77 60
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20199.62 16999.18 17599.89 5399.72 13098.66 14699.87 20399.88 2999.97 5699.66 104
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21999.60 18899.18 17599.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
iter_conf05_1198.54 26498.33 27299.18 26099.07 34499.20 21697.94 35197.59 38299.17 18099.30 26398.92 36294.79 31799.86 22298.29 18999.89 12498.47 373
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20999.59 19499.17 18099.81 8899.61 20598.41 18399.69 34399.32 9399.94 9499.53 187
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12099.49 24899.17 18099.21 27799.67 16698.78 12899.66 36499.09 12999.66 25299.10 306
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.41 18399.91 13997.27 28099.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.57 15897.27 28099.61 26699.54 182
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18799.31 29499.16 18399.62 16899.61 20598.35 19199.91 13997.88 22699.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15599.80 4499.24 15699.57 20599.16 18399.73 12699.65 17698.35 191
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21699.61 17699.15 18799.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23199.65 15899.15 18799.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16799.54 22299.13 18999.82 8199.63 18998.91 11399.92 11697.85 23299.70 23499.58 164
test_241102_TWO99.54 22299.13 18999.76 10899.63 18998.32 19699.92 11697.85 23299.69 23899.75 69
MVS-HIRNet97.86 30898.22 28096.76 37699.28 30691.53 40398.38 30992.60 40699.13 18999.31 25899.96 1297.18 27199.68 35598.34 18699.83 17099.07 321
test_241102_ONE99.69 15599.82 3599.54 22299.12 19299.82 8199.49 25598.91 11399.52 390
Vis-MVSNet (Re-imp)98.77 24198.58 24799.34 22699.78 10598.88 25199.61 6799.56 21099.11 19399.24 27199.56 23393.00 33999.78 30897.43 26999.89 12499.35 252
ppachtmachnet_test98.89 23199.12 15598.20 34399.66 16995.24 38197.63 36799.68 14099.08 19499.78 10199.62 19698.65 14899.88 18998.02 21299.96 7099.48 214
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23699.40 27399.08 19499.58 18299.64 17898.90 11699.83 27097.44 26899.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.53 22199.25 20398.29 31599.38 28099.07 196
our_test_398.85 23599.09 16798.13 34599.66 16994.90 38597.72 36399.58 20399.07 19699.64 15599.62 19698.19 20999.93 9498.41 18199.95 8399.55 174
tttt051797.62 31997.20 32898.90 30499.76 11797.40 34299.48 9694.36 40199.06 19899.70 13699.49 25584.55 39399.94 7798.73 16599.65 25499.36 249
WR-MVS99.11 19098.93 20999.66 11699.30 30199.42 16598.42 30799.37 28199.04 19999.57 18599.20 32396.89 27999.86 22298.66 17199.87 14599.70 79
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23699.96 2399.03 20099.95 3199.12 33198.75 13399.84 25599.82 3599.82 17999.77 60
miper_lstm_enhance98.65 25398.60 24298.82 31499.20 32197.33 34497.78 36199.66 14899.01 20199.59 18099.50 25194.62 32099.85 24098.12 20899.90 11599.26 270
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9199.69 13798.99 20299.75 11499.71 13898.79 12699.93 9498.46 17999.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19399.65 15898.99 20299.64 15599.72 13099.39 5099.86 22298.23 19699.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_yl98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
DCV-MVSNet98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
UWE-MVS96.21 35495.78 35497.49 36298.53 38893.83 39298.04 33993.94 40498.96 20698.46 35198.17 38879.86 39999.87 20396.99 29799.06 33798.78 354
MIMVSNet98.43 27898.20 28299.11 27299.53 22198.38 29199.58 7698.61 35398.96 20699.33 25199.76 11190.92 35999.81 29497.38 27299.76 20999.15 295
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33399.90 3898.95 20899.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
eth_miper_zixun_eth98.68 25198.71 23598.60 32499.10 33996.84 35797.52 37599.54 22298.94 20999.58 18299.48 25896.25 30199.76 31898.01 21599.93 10199.21 280
HQP_MVS98.90 22898.68 23899.55 16899.58 19199.24 20798.80 26499.54 22298.94 20999.14 28799.25 31297.24 26599.82 27995.84 35899.78 20399.60 152
plane_prior298.80 26498.94 209
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12299.97 1898.93 21299.91 4499.79 9398.68 14199.93 9496.80 30999.56 27699.30 265
MDA-MVSNet_test_wron98.95 22398.99 20198.85 30799.64 17397.16 34898.23 32099.33 28898.93 21299.56 19299.66 17197.39 26099.83 27098.29 18999.88 13499.55 174
YYNet198.95 22398.99 20198.84 30999.64 17397.14 35098.22 32199.32 29098.92 21499.59 18099.66 17197.40 25899.83 27098.27 19399.90 11599.55 174
Patchmatch-RL test98.60 25698.36 26799.33 22999.77 11399.07 23398.27 31699.87 4698.91 21599.74 12299.72 13090.57 36699.79 30598.55 17599.85 15799.11 304
cl____98.54 26498.41 26298.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.85 32799.78 30897.97 21999.89 12499.17 291
DIV-MVS_self_test98.54 26498.42 26198.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.87 32699.78 30897.97 21999.89 12499.18 289
c3_l98.72 24798.71 23598.72 31999.12 33397.22 34797.68 36699.56 21098.90 21699.54 19999.48 25896.37 29799.73 32897.88 22699.88 13499.21 280
MG-MVS98.52 26798.39 26498.94 29299.15 32897.39 34398.18 32299.21 31898.89 21999.23 27299.63 18997.37 26199.74 32594.22 38399.61 26699.69 83
FMVSNet597.80 31197.25 32799.42 20198.83 36798.97 24099.38 11399.80 8098.87 22099.25 26899.69 15180.60 39899.91 13998.96 14299.90 11599.38 243
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26398.87 22099.57 18599.82 7398.06 21899.87 20398.69 16999.73 22399.15 295
testing1196.05 35895.41 36097.97 34998.78 37595.27 38098.59 28498.23 37198.86 22296.56 39596.91 40675.20 40699.69 34397.26 28298.29 37698.93 338
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17299.60 18898.85 22399.47 21899.58 22198.38 18899.92 11696.92 30199.54 28599.57 169
MSLP-MVS++99.05 19999.09 16798.91 29899.21 31898.36 29298.82 26099.47 25298.85 22398.90 31299.56 23398.78 12899.09 40098.57 17499.68 24399.26 270
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24399.86 4998.85 22399.81 8899.73 12398.40 18799.92 11698.36 18499.83 17099.17 291
MSDG99.08 19498.98 20499.37 21999.60 18299.13 22397.54 37199.74 11098.84 22699.53 20499.55 24099.10 8799.79 30597.07 29599.86 15399.18 289
testing9196.00 35995.32 36398.02 34798.76 37895.39 37798.38 30998.65 35298.82 22796.84 39196.71 40875.06 40799.71 33496.46 33198.23 37898.98 333
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29299.73 11498.82 22799.72 12799.62 19696.56 28799.82 27999.32 9399.95 8399.56 171
Effi-MVS+99.06 19698.97 20599.34 22699.31 29798.98 23898.31 31499.91 3398.81 22998.79 32698.94 35899.14 8499.84 25598.79 15798.74 36099.20 284
Patchmatch-test98.10 30197.98 29898.48 33099.27 30896.48 36199.40 10999.07 33098.81 22999.23 27299.57 22990.11 37099.87 20396.69 31499.64 25699.09 310
CHOSEN 280x42098.41 28098.41 26298.40 33399.34 29095.89 37396.94 39399.44 26098.80 23199.25 26899.52 24693.51 33399.98 2098.94 14799.98 4199.32 259
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10799.85 5498.79 23299.41 23699.60 21398.92 11199.92 11698.02 21299.92 10599.43 234
TinyColmap98.97 21698.93 20999.07 28099.46 25498.19 30097.75 36299.75 10598.79 23299.54 19999.70 14598.97 10799.62 37496.63 32199.83 17099.41 238
dmvs_testset97.27 32996.83 33998.59 32599.46 25497.55 33699.25 15596.84 39198.78 23497.24 38697.67 39697.11 27398.97 40286.59 40698.54 37099.27 269
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34299.25 30898.78 23499.58 18299.44 26998.24 20299.76 31898.74 16499.93 10199.22 278
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14999.35 28598.77 23699.57 18599.70 14599.27 6999.88 18997.71 24599.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thres600view796.60 34496.16 34697.93 35199.63 17596.09 37099.18 17297.57 38398.77 23698.72 33297.32 40187.04 38399.72 33088.57 39898.62 36797.98 390
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8199.79 8698.77 23699.80 9299.85 5699.64 2899.85 24098.70 16799.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35499.71 12698.76 23999.08 29499.47 26299.17 7999.54 38597.85 23299.76 20999.54 182
thres100view90096.39 34896.03 34997.47 36499.63 17595.93 37199.18 17297.57 38398.75 24098.70 33597.31 40287.04 38399.67 36087.62 40198.51 37196.81 399
testing396.48 34695.63 35799.01 28599.23 31597.81 32798.90 24799.10 32998.72 24197.84 37797.92 39372.44 41099.85 24097.21 28999.33 31699.35 252
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38599.47 25298.72 24199.66 15299.70 14599.29 6499.63 37398.07 21199.81 18899.62 138
ETVMVS96.14 35595.22 36598.89 30598.80 37198.01 31498.66 27798.35 36898.71 24397.18 38896.31 41374.23 40999.75 32296.64 32098.13 38698.90 342
jason99.16 17999.11 15899.32 23399.75 12898.44 28498.26 31899.39 27698.70 24499.74 12299.30 30198.54 16399.97 3398.48 17899.82 17999.55 174
jason: jason.
testing9995.86 36395.19 36697.87 35398.76 37895.03 38298.62 27898.44 36298.68 24596.67 39496.66 40974.31 40899.69 34396.51 32698.03 38898.90 342
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35699.73 11498.68 24599.31 25899.48 25899.09 8999.66 36497.70 24899.77 20799.29 268
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26899.88 4498.66 24799.96 2399.79 9397.45 25699.93 9499.34 8899.99 1699.78 56
NCCC98.82 23798.57 24899.58 15699.21 31899.31 19198.61 27999.25 30898.65 24898.43 35299.26 31097.86 23299.81 29496.55 32399.27 32699.61 148
HyFIR lowres test98.91 22698.64 23999.73 8899.85 5899.47 14798.07 33699.83 6298.64 24999.89 5399.60 21392.57 341100.00 199.33 9199.97 5699.72 73
WB-MVSnew98.34 28998.14 28898.96 28998.14 40297.90 32498.27 31697.26 38998.63 25098.80 32498.00 39297.77 23999.90 15797.37 27398.98 34499.09 310
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21299.55 21698.63 25099.31 25899.68 16298.19 20999.78 30898.18 20399.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19799.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
thisisatest053097.45 32496.95 33498.94 29299.68 16397.73 33199.09 20994.19 40398.61 25499.56 19299.30 30184.30 39499.93 9498.27 19399.54 28599.16 293
API-MVS98.38 28398.39 26498.35 33598.83 36799.26 20099.14 18799.18 32298.59 25598.66 33798.78 36998.61 15299.57 38294.14 38499.56 27696.21 401
CNVR-MVS98.99 21598.80 23099.56 16599.25 31199.43 16298.54 29599.27 30298.58 25698.80 32499.43 27098.53 16799.70 33797.22 28899.59 27399.54 182
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25799.33 25199.53 24498.88 11799.68 35596.01 34899.65 25499.02 330
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26199.41 26698.55 25899.68 14299.69 15198.13 21399.87 20398.82 15399.98 4199.24 273
DPE-MVScopyleft99.14 18398.92 21399.82 3799.57 20199.77 5498.74 27199.60 18898.55 25899.76 10899.69 15198.23 20699.92 11696.39 33499.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17299.60 18898.55 25899.57 18599.67 16699.03 10099.94 7797.01 29699.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.04 20298.79 23199.81 4099.78 10599.73 7699.35 12199.57 20598.54 26199.54 19998.99 34996.81 28199.93 9496.97 29999.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testing22295.60 36994.59 37298.61 32398.66 38597.45 34098.54 29597.90 37898.53 26296.54 39696.47 41070.62 41299.81 29495.91 35698.15 38398.56 366
tpmrst97.73 31498.07 29296.73 37898.71 38292.00 39999.10 20498.86 33998.52 26398.92 30999.54 24291.90 34799.82 27998.02 21299.03 34198.37 377
MDTV_nov1_ep1397.73 31598.70 38390.83 40699.15 18598.02 37498.51 26498.82 32199.61 20590.98 35899.66 36496.89 30498.92 348
miper_ehance_all_eth98.59 25998.59 24498.59 32598.98 35697.07 35197.49 37699.52 23698.50 26599.52 20699.37 28496.41 29599.71 33497.86 23099.62 25999.00 332
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28699.48 24998.50 26599.52 20699.63 18999.14 8499.76 31897.89 22599.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch99.00 21298.97 20599.09 27599.11 33898.19 30098.76 27099.33 28898.49 26799.44 22499.58 22198.21 20799.69 34398.20 19999.62 25999.39 241
CNLPA98.57 26198.34 27099.28 24299.18 32599.10 23098.34 31199.41 26698.48 26898.52 34798.98 35297.05 27599.78 30895.59 36399.50 29498.96 334
HPM-MVS++copyleft98.96 22098.70 23799.74 7999.52 22699.71 8398.86 25199.19 32198.47 26998.59 34399.06 33898.08 21799.91 13996.94 30099.60 26999.60 152
tfpn200view996.30 35195.89 35097.53 36199.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37196.81 399
TESTMET0.1,196.24 35295.84 35397.41 36698.24 39793.84 39197.38 37995.84 39698.43 27097.81 37898.56 37879.77 40099.89 17597.77 23798.77 35698.52 367
thres40096.40 34795.89 35097.92 35299.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37197.98 390
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12299.79 8698.41 27398.84 31998.89 36398.75 13399.84 25598.15 20799.51 29198.89 344
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13299.59 19498.41 27399.32 25499.36 28898.73 13799.93 9497.29 27799.74 21899.67 95
MCST-MVS99.02 20598.81 22899.65 12199.58 19199.49 14598.58 28699.07 33098.40 27599.04 29999.25 31298.51 17299.80 30297.31 27699.51 29199.65 112
XVG-OURS-SEG-HR99.16 17998.99 20199.66 11699.84 6199.64 11098.25 31999.73 11498.39 27699.63 15999.43 27099.70 2499.90 15797.34 27498.64 36699.44 228
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25499.89 4098.38 27799.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11399.62 16998.38 27799.06 29899.27 30798.79 12699.94 7797.51 26599.82 17999.66 104
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13299.59 19498.36 27999.36 24599.37 28498.80 12599.91 13997.43 26999.75 21199.68 89
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13299.59 19498.36 27999.35 24699.38 28298.61 15299.93 9497.43 26999.75 21199.67 95
plane_prior399.31 19198.36 27999.14 287
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35899.74 11098.36 27999.66 15299.68 16299.71 2299.90 15796.84 30899.88 13499.43 234
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25699.72 12398.36 27999.60 17799.71 13898.92 11199.91 13997.08 29499.84 16299.40 239
MP-MVScopyleft99.06 19698.83 22699.76 6499.76 11799.71 8399.32 12799.50 24498.35 28498.97 30299.48 25898.37 18999.92 11695.95 35499.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8699.70 13198.35 28499.51 21199.50 25199.31 6299.88 18998.18 20399.84 16299.69 83
N_pmnet98.73 24698.53 25399.35 22599.72 14098.67 26698.34 31194.65 40098.35 28499.79 9799.68 16298.03 22099.93 9498.28 19299.92 10599.44 228
BH-RMVSNet98.41 28098.14 28899.21 25599.21 31898.47 28198.60 28198.26 37098.35 28498.93 30699.31 29997.20 27099.66 36494.32 38199.10 33699.51 200
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11399.54 22298.34 28899.01 30099.50 25198.53 16799.93 9497.18 29199.78 20399.66 104
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10599.82 6798.33 28999.50 21399.78 10197.90 22999.65 37096.78 31099.83 17099.44 228
GA-MVS97.99 30797.68 31798.93 29599.52 22698.04 31397.19 38799.05 33398.32 29098.81 32298.97 35489.89 37399.41 39698.33 18799.05 33999.34 255
LF4IMVS99.01 21098.92 21399.27 24599.71 14399.28 19698.59 28499.77 9598.32 29099.39 24299.41 27298.62 15099.84 25596.62 32299.84 16298.69 358
lupinMVS98.96 22098.87 22099.24 25399.57 20198.40 28798.12 32999.18 32298.28 29299.63 15999.13 32798.02 22199.97 3398.22 19799.69 23899.35 252
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24399.53 23198.27 29399.53 20499.73 12398.75 13399.87 20397.70 24899.83 17099.68 89
SCA98.11 30098.36 26797.36 36799.20 32192.99 39598.17 32498.49 36098.24 29499.10 29399.57 22996.01 30599.94 7796.86 30599.62 25999.14 300
GST-MVS99.16 17998.96 20799.75 7499.73 13799.73 7699.20 16799.55 21698.22 29599.32 25499.35 29398.65 14899.91 13996.86 30599.74 21899.62 138
EPMVS96.53 34596.32 34397.17 37398.18 39992.97 39699.39 11189.95 41098.21 29698.61 34199.59 21886.69 38999.72 33096.99 29799.23 33198.81 351
USDC98.96 22098.93 20999.05 28299.54 21597.99 31597.07 39199.80 8098.21 29699.75 11499.77 10898.43 18099.64 37297.90 22499.88 13499.51 200
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14499.56 21098.19 29899.14 28799.29 30498.84 12099.92 11697.53 26499.80 19399.64 122
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32599.29 29898.18 29999.63 15999.62 19699.18 7899.68 35598.20 19999.74 21899.30 265
PatchmatchNetpermissive97.65 31897.80 31197.18 37298.82 37092.49 39799.17 17798.39 36598.12 30098.79 32699.58 22190.71 36499.89 17597.23 28799.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AUN-MVS97.82 31097.38 32399.14 26999.27 30898.53 27898.72 27399.02 33498.10 30197.18 38899.03 34589.26 37599.85 24097.94 22197.91 38999.03 326
WTY-MVS98.59 25998.37 26699.26 24899.43 26398.40 28798.74 27199.13 32898.10 30199.21 27799.24 31794.82 31699.90 15797.86 23098.77 35699.49 210
CL-MVSNet_self_test98.71 24898.56 25199.15 26599.22 31698.66 26997.14 38899.51 24098.09 30399.54 19999.27 30796.87 28099.74 32598.43 18098.96 34599.03 326
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9199.65 15898.07 30499.52 20699.69 15198.57 15899.92 11697.18 29199.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres20096.09 35695.68 35697.33 36999.48 24496.22 36798.53 29797.57 38398.06 30598.37 35496.73 40786.84 38799.61 37886.99 40498.57 36896.16 402
test-LLR97.15 33196.95 33497.74 35998.18 39995.02 38397.38 37996.10 39298.00 30697.81 37898.58 37590.04 37199.91 13997.69 25498.78 35498.31 378
test0.0.03 197.37 32796.91 33798.74 31897.72 40397.57 33597.60 36997.36 38898.00 30699.21 27798.02 39090.04 37199.79 30598.37 18395.89 40398.86 347
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18399.72 12397.99 30899.42 23099.60 21398.81 12199.93 9496.91 30299.74 21899.66 104
new_pmnet98.88 23298.89 21898.84 30999.70 15197.62 33498.15 32599.50 24497.98 30999.62 16899.54 24298.15 21299.94 7797.55 26199.84 16298.95 336
SF-MVS99.10 19398.93 20999.62 14499.58 19199.51 14399.13 19399.65 15897.97 31099.42 23099.61 20598.86 11899.87 20396.45 33299.68 24399.49 210
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24599.91 3397.97 31099.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
wuyk23d97.58 32199.13 15192.93 38899.69 15599.49 14599.52 8699.77 9597.97 31099.96 2399.79 9399.84 1299.94 7795.85 35799.82 17979.36 404
ET-MVSNet_ETH3D96.78 33996.07 34898.91 29899.26 31097.92 32397.70 36596.05 39597.96 31392.37 40698.43 38387.06 38299.90 15798.27 19397.56 39498.91 341
sss98.90 22898.77 23299.27 24599.48 24498.44 28498.72 27399.32 29097.94 31499.37 24499.35 29396.31 29899.91 13998.85 15099.63 25899.47 218
test-mter96.23 35395.73 35597.74 35998.18 39995.02 38397.38 37996.10 39297.90 31597.81 37898.58 37579.12 40399.91 13997.69 25498.78 35498.31 378
Syy-MVS98.17 29897.85 31099.15 26598.50 39098.79 25898.60 28199.21 31897.89 31696.76 39296.37 41195.47 31299.57 38299.10 12898.73 36299.09 310
myMVS_eth3d95.63 36794.73 36998.34 33798.50 39096.36 36498.60 28199.21 31897.89 31696.76 39296.37 41172.10 41199.57 38294.38 38098.73 36299.09 310
PHI-MVS99.11 19098.95 20899.59 15299.13 33199.59 12899.17 17799.65 15897.88 31899.25 26899.46 26598.97 10799.80 30297.26 28299.82 17999.37 246
test_prior297.95 35097.87 31998.05 36799.05 33997.90 22995.99 35199.49 296
plane_prior99.24 20798.42 30797.87 31999.71 232
testdata197.72 36397.86 321
AdaColmapbinary98.60 25698.35 26999.38 21699.12 33399.22 21198.67 27699.42 26597.84 32298.81 32299.27 30797.32 26399.81 29495.14 37299.53 28799.10 306
BH-untuned98.22 29698.09 29198.58 32799.38 27497.24 34698.55 29298.98 33797.81 32399.20 28298.76 37097.01 27699.65 37094.83 37598.33 37498.86 347
tpmvs97.39 32697.69 31696.52 38098.41 39291.76 40099.30 13598.94 33897.74 32497.85 37699.55 24092.40 34699.73 32896.25 34098.73 36298.06 389
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32599.35 24699.25 31299.23 7399.92 11697.21 28999.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 33196.95 33497.75 35898.91 35994.24 38899.32 12797.96 37597.71 32698.29 35599.32 29786.72 38899.92 11698.10 21096.24 40299.09 310
PVSNet97.47 1598.42 27998.44 25998.35 33599.46 25496.26 36696.70 39699.34 28797.68 32799.00 30199.13 32797.40 25899.72 33097.59 26099.68 24399.08 316
1112_ss99.05 19998.84 22499.67 10999.66 16999.29 19498.52 29899.82 6797.65 32899.43 22899.16 32596.42 29399.91 13999.07 13199.84 16299.80 47
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31598.58 28699.82 6797.62 32999.34 24999.71 13898.52 17099.77 31697.98 21799.97 5699.52 198
PC_three_145297.56 33099.68 14299.41 27299.09 8997.09 40696.66 31799.60 26999.62 138
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18399.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
PAPM_NR98.36 28498.04 29399.33 22999.48 24498.93 24698.79 26799.28 30197.54 33398.56 34698.57 37797.12 27299.69 34394.09 38598.90 35199.38 243
PMMVS98.49 27298.29 27699.11 27298.96 35798.42 28697.54 37199.32 29097.53 33498.47 35098.15 38997.88 23199.82 27997.46 26799.24 32999.09 310
9.1498.64 23999.45 25898.81 26199.60 18897.52 33599.28 26599.56 23398.53 16799.83 27095.36 36999.64 256
IU-MVS99.69 15599.77 5499.22 31597.50 33699.69 13997.75 24199.70 23499.77 60
UnsupCasMVSNet_bld98.55 26398.27 27799.40 21099.56 21299.37 17897.97 34999.68 14097.49 33799.08 29499.35 29395.41 31399.82 27997.70 24898.19 38199.01 331
HQP-NCC99.31 29797.98 34697.45 33898.15 361
ACMP_Plane99.31 29797.98 34697.45 33898.15 361
HQP-MVS98.36 28498.02 29599.39 21399.31 29798.94 24397.98 34699.37 28197.45 33898.15 36198.83 36696.67 28499.70 33794.73 37699.67 24999.53 187
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19399.52 23697.40 34199.57 18599.64 17898.93 11099.83 27097.61 25899.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet98.35 28798.20 28298.83 31199.05 34798.12 30599.30 13599.67 14497.39 34299.16 28399.79 9391.87 34999.91 13998.78 16198.77 35698.44 375
MDTV_nov1_ep13_2view91.44 40499.14 18797.37 34399.21 27791.78 35196.75 31199.03 326
FA-MVS(test-final)98.52 26798.32 27399.10 27499.48 24498.67 26699.77 1598.60 35597.35 34499.63 15999.80 8393.07 33799.84 25597.92 22299.30 32098.78 354
dp96.86 33797.07 33096.24 38498.68 38490.30 41099.19 17198.38 36697.35 34498.23 35999.59 21887.23 38199.82 27996.27 33998.73 36298.59 362
cl2297.56 32297.28 32598.40 33398.37 39496.75 35897.24 38699.37 28197.31 34699.41 23699.22 31987.30 38099.37 39797.70 24899.62 25999.08 316
OMC-MVS98.90 22898.72 23499.44 19599.39 27199.42 16598.58 28699.64 16497.31 34699.44 22499.62 19698.59 15599.69 34396.17 34499.79 19899.22 278
thisisatest051596.98 33596.42 34298.66 32299.42 26897.47 33897.27 38494.30 40297.24 34899.15 28598.86 36585.01 39199.87 20397.10 29399.39 30898.63 359
KD-MVS_2432*160095.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
miper_refine_blended95.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
baseline296.83 33896.28 34498.46 33199.09 34296.91 35598.83 25693.87 40597.23 34996.23 40098.36 38488.12 37899.90 15796.68 31598.14 38498.57 365
Fast-Effi-MVS+99.02 20598.87 22099.46 18999.38 27499.50 14499.04 21999.79 8697.17 35298.62 34098.74 37199.34 6099.95 6398.32 18899.41 30698.92 340
FPMVS96.32 35095.50 35898.79 31599.60 18298.17 30398.46 30698.80 34397.16 35396.28 39799.63 18982.19 39599.09 40088.45 39998.89 35299.10 306
Test_1112_low_res98.95 22398.73 23399.63 13599.68 16399.15 22298.09 33399.80 8097.14 35499.46 22299.40 27696.11 30399.89 17599.01 13599.84 16299.84 36
PatchMatch-RL98.68 25198.47 25699.30 23999.44 25999.28 19698.14 32799.54 22297.12 35599.11 29199.25 31297.80 23799.70 33796.51 32699.30 32098.93 338
ACMP97.51 1499.05 19998.84 22499.67 10999.78 10599.55 13898.88 24999.66 14897.11 35699.47 21899.60 21399.07 9499.89 17596.18 34399.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet297.78 31297.66 31998.12 34699.14 32995.36 37899.22 16498.75 34596.97 35798.25 35799.64 17890.90 36099.94 7796.51 32699.56 27699.08 316
ADS-MVSNet97.72 31797.67 31897.86 35499.14 32994.65 38699.22 16498.86 33996.97 35798.25 35799.64 17890.90 36099.84 25596.51 32699.56 27699.08 316
DPM-MVS98.28 29097.94 30499.32 23399.36 27999.11 22597.31 38398.78 34496.88 35998.84 31999.11 33497.77 23999.61 37894.03 38799.36 31299.23 276
TR-MVS97.44 32597.15 32998.32 33898.53 38897.46 33998.47 30297.91 37796.85 36098.21 36098.51 38196.42 29399.51 39192.16 39297.29 39597.98 390
MP-MVS-pluss99.14 18398.92 21399.80 4599.83 6599.83 2998.61 27999.63 16696.84 36199.44 22499.58 22198.81 12199.91 13997.70 24899.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HY-MVS98.23 998.21 29797.95 30098.99 28699.03 35098.24 29599.61 6798.72 34696.81 36298.73 33199.51 24894.06 32499.86 22296.91 30298.20 37998.86 347
APD-MVScopyleft98.87 23398.59 24499.71 9999.50 23499.62 11799.01 22899.57 20596.80 36399.54 19999.63 18998.29 19899.91 13995.24 37099.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
原ACMM199.37 21999.47 25098.87 25399.27 30296.74 36498.26 35699.32 29797.93 22899.82 27995.96 35399.38 30999.43 234
CPTT-MVS98.74 24498.44 25999.64 12899.61 18099.38 17599.18 17299.55 21696.49 36599.27 26699.37 28497.11 27399.92 11695.74 36199.67 24999.62 138
CLD-MVS98.76 24298.57 24899.33 22999.57 20198.97 24097.53 37399.55 21696.41 36699.27 26699.13 32799.07 9499.78 30896.73 31399.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.43 26399.61 12399.43 26396.38 36799.11 29199.07 33797.86 23299.92 11694.04 38699.49 296
miper_enhance_ethall98.03 30497.94 30498.32 33898.27 39696.43 36396.95 39299.41 26696.37 36899.43 22898.96 35694.74 31899.69 34397.71 24599.62 25998.83 350
F-COLMAP98.74 24498.45 25899.62 14499.57 20199.47 14798.84 25499.65 15896.31 36998.93 30699.19 32497.68 24599.87 20396.52 32599.37 31199.53 187
testdata99.42 20199.51 22898.93 24699.30 29796.20 37098.87 31699.40 27698.33 19599.89 17596.29 33899.28 32399.44 228
PVSNet_095.53 1995.85 36495.31 36497.47 36498.78 37593.48 39495.72 39999.40 27396.18 37197.37 38397.73 39595.73 30799.58 38195.49 36581.40 40699.36 249
IB-MVS95.41 2095.30 37094.46 37497.84 35598.76 37895.33 37997.33 38296.07 39496.02 37295.37 40497.41 40076.17 40599.96 5497.54 26295.44 40498.22 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs398.08 30297.80 31198.91 29899.41 26997.69 33397.87 35899.66 14895.87 37399.50 21399.51 24890.35 36899.97 3398.55 17599.47 29899.08 316
FE-MVS97.85 30997.42 32299.15 26599.44 25998.75 26199.77 1598.20 37295.85 37499.33 25199.80 8388.86 37699.88 18996.40 33399.12 33498.81 351
无先验98.01 34299.23 31295.83 37599.85 24095.79 36099.44 228
BH-w/o97.20 33097.01 33297.76 35799.08 34395.69 37498.03 34198.52 35795.76 37697.96 37098.02 39095.62 30999.47 39392.82 39197.25 39698.12 388
PVSNet_Blended98.70 24998.59 24499.02 28499.54 21597.99 31597.58 37099.82 6795.70 37799.34 24998.98 35298.52 17099.77 31697.98 21799.83 17099.30 265
新几何199.52 17699.50 23499.22 21199.26 30595.66 37898.60 34299.28 30597.67 24699.89 17595.95 35499.32 31899.45 223
CMPMVSbinary77.52 2398.50 27098.19 28599.41 20898.33 39599.56 13599.01 22899.59 19495.44 37999.57 18599.80 8395.64 30899.46 39596.47 33099.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MAR-MVS98.24 29497.92 30699.19 25898.78 37599.65 10799.17 17799.14 32695.36 38098.04 36898.81 36897.47 25599.72 33095.47 36699.06 33798.21 384
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验297.94 35195.33 38198.94 30599.88 18996.75 311
CDPH-MVS98.56 26298.20 28299.61 14799.50 23499.46 15198.32 31399.41 26695.22 38299.21 27799.10 33598.34 19399.82 27995.09 37499.66 25299.56 171
test22299.51 22899.08 23297.83 36099.29 29895.21 38398.68 33699.31 29997.28 26499.38 30999.43 234
PLCcopyleft97.35 1698.36 28497.99 29699.48 18599.32 29699.24 20798.50 30099.51 24095.19 38498.58 34498.96 35696.95 27899.83 27095.63 36299.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131498.00 30697.90 30898.27 34298.90 36097.45 34099.30 13599.06 33294.98 38597.21 38799.12 33198.43 18099.67 36095.58 36498.56 36997.71 393
train_agg98.35 28797.95 30099.57 16299.35 28199.35 18598.11 33199.41 26694.90 38697.92 37198.99 34998.02 22199.85 24095.38 36899.44 30199.50 205
test_899.34 29099.31 19198.08 33599.40 27394.90 38697.87 37598.97 35498.02 22199.84 255
DP-MVS Recon98.50 27098.23 27899.31 23699.49 23999.46 15198.56 29199.63 16694.86 38898.85 31899.37 28497.81 23699.59 38096.08 34599.44 30198.88 345
TEST999.35 28199.35 18598.11 33199.41 26694.83 38997.92 37198.99 34998.02 22199.85 240
CostFormer96.71 34296.79 34196.46 38298.90 36090.71 40899.41 10898.68 34894.69 39098.14 36599.34 29686.32 39099.80 30297.60 25998.07 38798.88 345
PAPR97.56 32297.07 33099.04 28398.80 37198.11 30797.63 36799.25 30894.56 39198.02 36998.25 38797.43 25799.68 35590.90 39698.74 36099.33 256
gm-plane-assit97.59 40489.02 41293.47 39298.30 38599.84 25596.38 335
tpm296.35 34996.22 34596.73 37898.88 36591.75 40199.21 16698.51 35893.27 39397.89 37399.21 32184.83 39299.70 33796.04 34798.18 38298.75 357
tpm cat196.78 33996.98 33396.16 38598.85 36690.59 40999.08 21299.32 29092.37 39497.73 38299.46 26591.15 35699.69 34396.07 34698.80 35398.21 384
cascas96.99 33496.82 34097.48 36397.57 40695.64 37596.43 39899.56 21091.75 39597.13 39097.61 39995.58 31098.63 40496.68 31599.11 33598.18 387
QAPM98.40 28297.99 29699.65 12199.39 27199.47 14799.67 4999.52 23691.70 39698.78 32899.80 8398.55 16199.95 6394.71 37899.75 21199.53 187
OpenMVScopyleft98.12 1098.23 29597.89 30999.26 24899.19 32399.26 20099.65 5899.69 13791.33 39798.14 36599.77 10898.28 19999.96 5495.41 36799.55 28098.58 364
PAPM95.61 36894.71 37098.31 34099.12 33396.63 35996.66 39798.46 36190.77 39896.25 39898.68 37493.01 33899.69 34381.60 40797.86 39298.62 360
114514_t98.49 27298.11 29099.64 12899.73 13799.58 13299.24 15699.76 10089.94 39999.42 23099.56 23397.76 24199.86 22297.74 24299.82 17999.47 218
TAPA-MVS97.92 1398.03 30497.55 32099.46 18999.47 25099.44 15898.50 30099.62 16986.79 40099.07 29799.26 31098.26 20199.62 37497.28 27999.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS96.03 1896.73 34195.86 35299.33 22999.44 25999.16 22096.87 39499.44 26086.58 40198.95 30499.40 27694.38 32299.88 18987.93 40099.80 19398.95 336
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 32896.84 33898.89 30599.29 30399.45 15698.87 25099.48 24986.54 40299.44 22499.74 11997.34 26299.86 22291.61 39399.28 32397.37 397
tmp_tt95.75 36595.42 35996.76 37689.90 41294.42 38798.86 25197.87 37978.01 40399.30 26399.69 15197.70 24295.89 40799.29 10098.14 38499.95 11
DeepMVS_CXcopyleft97.98 34899.69 15596.95 35399.26 30575.51 40495.74 40298.28 38696.47 29199.62 37491.23 39597.89 39097.38 396
MVS95.72 36694.63 37198.99 28698.56 38797.98 32199.30 13598.86 33972.71 40597.30 38499.08 33698.34 19399.74 32589.21 39798.33 37499.26 270
test_method91.72 37292.32 37589.91 38993.49 41170.18 41490.28 40299.56 21061.71 40695.39 40399.52 24693.90 32599.94 7798.76 16298.27 37799.62 138
EGC-MVSNET89.05 37385.52 37699.64 12899.89 3999.78 4999.56 8199.52 23624.19 40749.96 40899.83 6699.15 8199.92 11697.71 24599.85 15799.21 280
test12329.31 37433.05 37918.08 39025.93 41412.24 41597.53 37310.93 41511.78 40824.21 40950.08 41821.04 4138.60 40923.51 40832.43 40833.39 405
testmvs28.94 37533.33 37715.79 39126.03 4139.81 41696.77 39515.67 41411.55 40923.87 41050.74 41719.03 4148.53 41023.21 40933.07 40729.03 406
test_blank8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.88 37633.17 3780.00 3920.00 4150.00 4170.00 40399.62 1690.00 4100.00 41199.13 32799.82 130.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas16.61 37722.14 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 199.28 660.00 4110.00 4100.00 4090.00 407
sosnet-low-res8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
sosnet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
Regformer8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.26 38611.02 3890.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41199.16 3250.00 4150.00 4110.00 4100.00 4090.00 407
uanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS96.36 36495.20 371
MSC_two_6792asdad99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
No_MVS99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
eth-test20.00 415
eth-test0.00 415
OPU-MVS99.29 24099.12 33399.44 15899.20 16799.40 27699.00 10198.84 40396.54 32499.60 26999.58 164
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18799.61 17699.92 11697.88 22699.72 22999.77 60
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36399.14 300
sam_mvs90.52 367
ambc99.20 25799.35 28198.53 27899.17 17799.46 25599.67 14899.80 8398.46 17799.70 33797.92 22299.70 23499.38 243
MTGPAbinary99.53 231
test_post199.14 18751.63 41689.54 37499.82 27996.86 305
test_post52.41 41590.25 36999.86 222
patchmatchnet-post99.62 19690.58 36599.94 77
GG-mvs-BLEND97.36 36797.59 40496.87 35699.70 3588.49 41294.64 40597.26 40380.66 39799.12 39991.50 39496.50 40196.08 403
MTMP99.09 20998.59 356
test9_res95.10 37399.44 30199.50 205
agg_prior294.58 37999.46 30099.50 205
agg_prior99.35 28199.36 18299.39 27697.76 38199.85 240
test_prior499.19 21898.00 344
test_prior99.46 18999.35 28199.22 21199.39 27699.69 34399.48 214
新几何298.04 339
旧先验199.49 23999.29 19499.26 30599.39 28097.67 24699.36 31299.46 222
原ACMM297.92 354
testdata299.89 17595.99 351
segment_acmp98.37 189
test1299.54 17399.29 30399.33 18899.16 32498.43 35297.54 25399.82 27999.47 29899.48 214
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 265
plane_prior599.54 22299.82 27995.84 35899.78 20399.60 152
plane_prior499.25 312
plane_prior199.51 228
n20.00 416
nn0.00 416
door-mid99.83 62
lessismore_v099.64 12899.86 5499.38 17590.66 40899.89 5399.83 6694.56 32199.97 3399.56 5799.92 10599.57 169
test1199.29 298
door99.77 95
HQP5-MVS98.94 243
BP-MVS94.73 376
HQP4-MVS98.15 36199.70 33799.53 187
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 284
NP-MVS99.40 27099.13 22398.83 366
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 183