This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10199.91 2099.15 5599.97 1799.50 33100.00 199.90 4
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3499.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3199.97 3099.84 14
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5599.70 10099.93 499.78 6899.68 12599.10 6099.78 27899.45 3699.96 4299.83 18
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2299.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2299.78 6099.90 799.82 5099.83 4498.45 15399.87 17499.51 3199.97 3099.86 11
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 6799.85 2699.90 799.90 2299.85 3898.09 18899.83 24199.58 2499.95 4999.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 47100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2799.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gg-mvs-nofinetune95.87 33095.17 33497.97 31698.19 36196.95 32299.69 3189.23 37599.89 1196.24 36399.94 1381.19 36699.51 35693.99 34998.20 34497.44 358
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2599.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
JIA-IIPM98.06 27797.92 27898.50 29898.59 35197.02 32198.80 23098.51 33499.88 1397.89 34399.87 3291.89 31999.90 13298.16 17097.68 35698.59 325
LFMVS98.46 25198.19 25899.26 22999.24 28498.52 26199.62 5096.94 35899.87 1499.31 22499.58 18791.04 32899.81 26798.68 13499.42 27999.45 201
DP-MVS99.48 5499.39 6999.74 6399.57 16799.62 10199.29 11899.61 14799.87 1499.74 9099.76 7798.69 11699.87 17498.20 16399.80 15699.75 42
test_part198.63 22798.26 25099.75 5799.40 23999.49 12899.67 3899.68 10999.86 1699.88 3299.86 3786.73 35799.93 7199.34 5299.97 3099.81 23
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4299.75 7599.86 1699.74 9099.79 6198.27 17399.85 21399.37 4999.93 7099.83 18
RPMNet98.60 23198.53 22598.83 28299.05 31498.12 28499.30 11199.62 14099.86 1699.16 25199.74 8492.53 31399.92 9198.75 12798.77 32598.44 336
UGNet99.38 8499.34 7999.49 16498.90 32798.90 23899.70 2599.35 26699.86 1698.57 31299.81 5398.50 14899.93 7199.38 4799.98 2199.66 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1699.51 17799.39 24999.57 2099.93 7199.64 1899.86 11699.20 260
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5099.76 6899.85 2199.82 5099.88 2996.39 27099.97 1799.59 2199.98 2199.55 149
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2199.94 1199.95 1299.73 899.90 13299.65 1699.97 3099.69 54
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5099.69 10699.85 2199.80 6099.81 5398.81 9699.91 11299.47 3599.88 10099.70 51
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 29999.84 3299.84 2499.89 2699.73 8896.01 27999.99 599.33 55100.00 199.63 97
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2499.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
PatchT98.45 25298.32 24698.83 28298.94 32598.29 27599.24 13298.82 32199.84 2499.08 26399.76 7791.37 32399.94 5798.82 12099.00 31498.26 343
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9399.79 5599.83 2799.88 3299.85 3898.42 15699.90 13299.60 2099.73 19299.49 185
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30199.83 3499.83 2799.85 4099.74 8496.10 27899.99 599.27 66100.00 199.63 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 2999.90 2299.90 2297.97 19999.86 19499.42 4399.96 4299.80 24
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5098.68 32699.81 3099.38 20999.80 5594.25 29699.85 21398.79 12299.32 29399.59 132
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7599.70 10099.81 3099.69 10699.58 18797.66 22599.86 19499.17 8099.44 27499.67 67
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2299.84 3299.81 3099.94 1199.78 6798.91 8699.71 30398.41 14599.95 4999.05 294
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
VDD-MVS99.20 13699.11 12899.44 17999.43 23098.98 22499.50 7198.32 34299.80 3399.56 15899.69 11496.99 25499.85 21398.99 10199.73 19299.50 180
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3399.93 1499.93 1498.54 13899.93 7199.59 2199.98 2199.76 39
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 16999.85 2699.79 3599.76 7599.72 9499.33 3699.82 25199.21 7099.94 6299.59 132
mvs_anonymous99.28 10999.39 6998.94 26499.19 29397.81 30099.02 19199.55 18899.78 3699.85 4099.80 5598.24 17599.86 19499.57 2599.50 26699.15 271
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1694.97 36699.78 3699.88 3299.88 2993.66 30399.97 1799.61 1999.95 4999.64 92
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3199.77 6399.78 3699.93 1499.89 2697.94 20099.92 9199.65 1699.98 2199.62 108
EPNet98.13 27397.77 28699.18 24294.57 37397.99 29299.24 13297.96 34699.74 3997.29 35599.62 16193.13 30799.97 1798.59 13799.83 13499.58 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4099.89 2699.87 3299.63 1499.87 17499.54 2799.92 7499.63 97
MVSFormer99.41 7499.44 5999.31 21999.57 16798.40 26999.77 1199.80 4999.73 4099.63 12799.30 27198.02 19499.98 799.43 3899.69 20799.55 149
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4099.97 699.92 1799.77 799.98 799.43 38100.00 199.90 4
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 3899.71 9599.72 4399.84 4399.78 6798.67 12099.97 1799.30 6099.95 4999.80 24
CS-MVS99.40 7799.43 6299.29 22299.44 22799.72 6799.36 9699.91 1099.71 4499.28 23098.83 33999.22 4899.86 19499.40 4599.77 17198.29 341
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6299.78 6099.71 4499.90 2299.69 11498.85 9499.90 13297.25 24799.78 16799.15 271
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36196.80 35999.71 4499.73 9499.54 20795.14 28799.96 3599.39 4699.95 4999.79 30
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8199.80 4999.71 4499.72 9699.69 11499.15 5599.83 24199.32 5799.94 6299.53 162
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14299.47 22999.71 4499.42 19499.82 5098.09 18899.47 35893.88 35099.85 12099.07 292
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 1999.85 2699.70 4999.92 1899.93 1499.45 2399.97 1799.36 50100.00 199.85 13
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4299.73 8399.70 4999.84 4399.73 8898.56 13599.96 3599.29 6399.94 6299.83 18
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 4999.91 2099.89 2699.60 1999.87 17499.59 2199.74 18599.71 48
FOURS199.83 3899.89 899.74 1699.71 9599.69 5299.63 127
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5299.78 6899.92 1799.37 3199.88 16198.93 11399.95 4999.60 123
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12299.44 23899.68 5499.32 22099.49 22492.50 314100.00 199.24 6796.51 36399.65 85
hse-mvs298.52 24398.30 24799.16 24399.29 27498.60 25798.77 23599.02 31399.68 5499.32 22099.04 31392.50 31499.85 21399.24 6797.87 35499.03 296
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 16798.65 25599.24 13299.46 23399.68 5499.80 6099.66 13598.99 7699.89 14799.19 7599.90 8499.72 45
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22299.86 2299.68 5499.65 12199.88 2997.67 22199.87 17499.03 9899.86 11699.76 39
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 16798.66 25299.24 13299.46 23399.67 5899.79 6599.65 14098.97 7999.89 14799.15 8499.89 9299.71 48
VNet99.18 14399.06 14599.56 14499.24 28499.36 16599.33 10199.31 27599.67 5899.47 18399.57 19596.48 26499.84 23099.15 8499.30 29599.47 195
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3499.70 10099.67 5899.82 5099.83 4498.98 7799.90 13299.24 6799.97 3099.53 162
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3199.92 799.67 5899.77 7399.75 8199.61 1799.98 799.35 5199.98 2199.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CVMVSNet98.61 22998.88 18897.80 32199.58 15793.60 35699.26 12499.64 13599.66 6299.72 9699.67 13193.26 30599.93 7199.30 6099.81 15199.87 9
TAMVS99.49 5299.45 5799.63 11599.48 21299.42 14999.45 7899.57 17799.66 6299.78 6899.83 4497.85 20999.86 19499.44 3799.96 4299.61 119
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2599.14 30699.65 6499.89 2699.90 2296.20 27599.94 5799.42 4399.92 7499.67 67
Patchmtry98.78 21198.54 22399.49 16498.89 33099.19 20499.32 10499.67 11499.65 6499.72 9699.79 6191.87 32099.95 4598.00 18199.97 3099.33 235
alignmvs98.28 26597.96 27199.25 23299.12 30398.93 23499.03 19098.42 33899.64 6698.72 30197.85 36490.86 33399.62 34298.88 11699.13 30699.19 263
Regformer-499.45 6399.44 5999.50 16199.52 18998.94 23099.17 15399.53 20399.64 6699.76 7599.60 17998.96 8299.90 13298.91 11499.84 12499.67 67
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4299.76 6899.64 6699.93 1499.85 3898.66 12299.84 23099.88 699.99 1299.71 48
canonicalmvs99.02 17699.00 16499.09 25199.10 30998.70 24899.61 5599.66 11899.63 6998.64 30697.65 36699.04 7299.54 35198.79 12298.92 31899.04 295
Regformer-399.41 7499.41 6699.40 19599.52 18998.70 24899.17 15399.44 23899.62 7099.75 8199.60 17998.90 8999.85 21398.89 11599.84 12499.65 85
EI-MVSNet99.38 8499.44 5999.21 23799.58 15798.09 28899.26 12499.46 23399.62 7099.75 8199.67 13198.54 13899.85 21399.15 8499.92 7499.68 60
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4299.73 8399.62 7099.84 4399.71 10198.62 12699.96 3599.30 6099.96 4299.86 11
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 21999.76 6899.62 7099.83 4899.64 14298.54 13899.97 1799.15 8499.99 1299.68 60
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25399.81 4899.61 7499.48 18199.41 24298.47 14999.86 19498.97 10599.90 8499.53 162
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 15799.64 9599.30 11199.63 13799.61 7499.71 10199.56 19898.76 10999.96 3599.14 9099.92 7499.68 60
LS3D99.24 11999.11 12899.61 12798.38 35699.79 3899.57 6599.68 10999.61 7499.15 25399.71 10198.70 11599.91 11297.54 22599.68 21299.13 278
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4299.75 7599.60 8099.92 1899.87 3298.75 11199.86 19499.90 299.99 1299.73 44
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19199.89 1599.60 8099.82 5099.62 16198.81 9699.89 14799.43 3899.86 11699.47 195
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7199.82 3999.59 8299.41 20299.85 3899.62 16100.00 199.53 2999.89 9299.59 132
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 3899.75 7599.58 8399.85 4099.69 11498.18 18499.94 5799.28 6599.95 4999.83 18
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6599.61 14799.54 8499.80 6099.64 14297.79 21399.95 4599.21 7099.94 6299.84 14
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 11999.68 10999.54 8499.40 20799.56 19899.07 6899.82 25196.01 30899.96 4299.11 279
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10499.77 6399.53 8699.77 7399.76 7799.26 4599.78 27897.77 20199.88 10099.60 123
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 8999.78 6099.53 8699.67 11399.78 6799.19 5199.86 19497.32 23799.87 10999.55 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS-test99.43 6699.40 6899.53 15399.51 19499.84 1999.60 6099.94 699.52 8899.10 26198.89 33599.24 4699.90 13299.11 9299.66 22398.84 315
RRT_test8_iter0597.35 30197.25 29897.63 32698.81 34093.13 35899.26 12499.89 1599.51 8999.83 4899.68 12579.03 37499.88 16199.53 2999.72 19899.89 8
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28299.69 8199.05 18699.82 3999.50 9098.97 27199.05 31098.98 7799.98 798.20 16399.24 30398.62 323
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25599.75 7599.50 9099.88 3299.87 3299.31 3799.88 16199.43 38100.00 199.62 108
ETV-MVS99.18 14399.18 11299.16 24399.34 26199.28 18099.12 17399.79 5599.48 9298.93 27598.55 35299.40 2499.93 7198.51 14199.52 26398.28 342
CANet_DTU98.91 19598.85 19199.09 25198.79 34298.13 28398.18 28599.31 27599.48 9298.86 28699.51 21696.56 26199.95 4599.05 9799.95 4999.19 263
Regformer-199.32 10399.27 10099.47 17099.41 23698.95 22998.99 20099.48 22599.48 9299.66 11799.52 21298.78 10599.87 17498.36 14899.74 18599.60 123
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20099.67 11499.48 9299.55 16399.36 25794.92 28899.86 19498.95 11196.57 36299.45 201
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2599.24 29299.48 9299.56 15899.77 7494.89 28999.93 7198.72 13099.89 9299.63 97
Anonymous2024052999.42 7099.34 7999.65 10499.53 18499.60 10999.63 4999.39 25599.47 9799.76 7599.78 6798.13 18699.86 19498.70 13199.68 21299.49 185
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 24798.09 28898.13 29199.51 21499.47 9799.42 19498.54 35399.38 2999.97 1798.83 11899.33 29298.24 344
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 24798.10 28798.00 30699.51 21499.47 9799.41 20298.50 35599.28 4199.97 1798.83 11899.34 29098.20 348
Regformer-299.34 9799.27 10099.53 15399.41 23699.10 21598.99 20099.53 20399.47 9799.66 11799.52 21298.80 10099.89 14798.31 15499.74 18599.60 123
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6099.82 3999.46 10199.75 8199.56 19899.63 1499.95 4599.43 3899.88 10099.62 108
NR-MVSNet99.40 7799.31 8599.68 8999.43 23099.55 12199.73 1999.50 21899.46 10199.88 3299.36 25797.54 22999.87 17498.97 10599.87 10999.63 97
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25199.11 21198.96 20799.54 19499.46 10199.61 14199.70 10896.31 27299.83 24199.34 5299.88 10099.55 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
E-PMN97.14 30597.43 29396.27 34798.79 34291.62 36795.54 36399.01 31599.44 10498.88 28299.12 30392.78 31099.68 32294.30 34399.03 31297.50 357
GBi-Net99.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
test199.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
FMVSNet299.35 9299.28 9799.55 14799.49 20699.35 16999.45 7899.57 17799.44 10499.70 10399.74 8497.21 24499.87 17499.03 9899.94 6299.44 206
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25199.47 13199.62 5099.50 21899.44 10499.12 25899.78 6798.77 10899.94 5797.87 19399.72 19899.62 108
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 21799.56 11898.97 20699.61 14799.43 10999.67 11399.28 27697.85 20999.95 4599.17 8099.81 15199.65 85
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19499.58 11598.98 20499.60 15999.43 10999.70 10399.36 25797.70 21699.88 16199.20 7399.87 10999.59 132
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 22799.66 11899.42 11199.75 8199.66 13599.20 5099.76 28898.98 10399.99 1299.36 229
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6299.82 3999.39 11299.82 5099.84 4399.38 2999.91 11299.38 4799.93 7099.80 24
DU-MVS99.33 10199.21 10999.71 8399.43 23099.56 11898.83 22299.53 20399.38 11399.67 11399.36 25797.67 22199.95 4599.17 8099.81 15199.63 97
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 1999.15 30599.37 11499.61 14199.71 10194.73 29299.81 26797.70 21199.88 10099.58 137
MVEpermissive92.54 2296.66 31596.11 31998.31 30899.68 13297.55 30897.94 31595.60 36599.37 11490.68 37198.70 34696.56 26198.61 36886.94 36899.55 25398.77 319
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DELS-MVS99.34 9799.30 9099.48 16899.51 19499.36 16598.12 29299.53 20399.36 11699.41 20299.61 17099.22 4899.87 17499.21 7099.68 21299.20 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33099.78 4199.15 16199.66 11899.34 11798.92 27899.24 28897.69 21899.98 798.11 17399.28 29798.81 317
mvs-test198.83 20698.70 20799.22 23698.89 33099.65 9398.88 21399.66 11899.34 11798.29 32398.94 33097.69 21899.96 3598.11 17398.54 33798.04 352
EMVS96.96 30897.28 29695.99 35098.76 34691.03 37095.26 36498.61 33099.34 11798.92 27898.88 33793.79 30199.66 33192.87 35299.05 31097.30 361
baseline197.73 28797.33 29598.96 26299.30 27297.73 30399.40 8598.42 33899.33 12099.46 18699.21 29291.18 32699.82 25198.35 15091.26 36899.32 238
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12499.76 6899.32 12199.80 6099.78 6799.29 3999.87 17499.15 8499.91 8399.66 77
RRT_MVS98.75 21598.54 22399.41 19398.14 36598.61 25698.98 20499.66 11899.31 12299.84 4399.75 8191.98 31799.98 799.20 7399.95 4999.62 108
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29899.47 23298.47 14999.88 16197.62 21999.73 19299.67 67
X-MVStestdata96.09 32594.87 33599.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29861.30 37698.47 14999.88 16197.62 21999.73 19299.67 67
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21299.72 9299.29 12399.63 12799.70 10896.47 26599.89 14798.17 16999.82 14399.50 180
Anonymous20240521198.75 21598.46 22999.63 11599.34 26199.66 8899.47 7797.65 35199.28 12699.56 15899.50 21993.15 30699.84 23098.62 13699.58 24799.40 218
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24099.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10199.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
MVSTER98.47 25098.22 25399.24 23499.06 31398.35 27499.08 18399.46 23399.27 12799.75 8199.66 13588.61 34799.85 21399.14 9099.92 7499.52 172
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13299.71 9599.27 12799.93 1499.90 2299.70 1199.93 7198.99 10199.99 1299.64 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.11 16099.05 14999.28 22598.83 33698.56 25898.71 24399.41 24599.25 13199.23 23899.22 29097.66 22599.94 5799.19 7599.97 3099.33 235
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16399.58 17599.25 13199.81 5799.62 16198.24 17599.84 23099.83 999.97 3099.64 92
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 8799.59 16699.24 13399.86 3999.70 10898.55 13699.82 25199.79 1199.95 4999.60 123
EPNet_dtu97.62 29197.79 28597.11 33996.67 37092.31 36298.51 26198.04 34499.24 13395.77 36599.47 23293.78 30299.66 33198.98 10399.62 23299.37 226
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_one_060199.63 14499.76 5099.55 18899.23 13599.31 22499.61 17098.59 130
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 11999.74 8099.23 13599.72 9699.53 21097.63 22799.88 16199.11 9299.84 12499.48 190
FMVSNet398.80 21098.63 21299.32 21699.13 30198.72 24799.10 17699.48 22599.23 13599.62 13599.64 14292.57 31199.86 19498.96 10799.90 8499.39 221
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24199.42 14999.70 2599.56 18299.23 13599.35 21399.80 5599.17 5399.95 4598.21 16299.84 12499.59 132
SD-MVS99.01 18099.30 9098.15 31299.50 20199.40 15498.94 21099.61 14799.22 13999.75 8199.82 5099.54 2295.51 37197.48 22999.87 10999.54 157
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17699.61 14799.20 14099.84 4399.73 8898.67 12099.84 23099.86 899.98 2199.64 92
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18499.75 5499.27 12299.61 14799.19 14199.57 15199.64 14298.76 10999.90 13297.29 23999.62 23299.56 146
DVP-MVS++.99.38 8499.25 10499.77 4099.03 31799.77 4399.74 1699.61 14799.18 14299.76 7599.61 17099.00 7499.92 9197.72 20799.60 24299.62 108
test_0728_THIRD99.18 14299.62 13599.61 17098.58 13299.91 11297.72 20799.80 15699.77 35
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17599.62 14099.18 14299.89 2699.72 9498.66 12299.87 17499.88 699.97 3099.66 77
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 18899.60 15999.18 14299.87 3899.72 9499.08 6699.85 21399.89 599.98 2199.66 77
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18099.59 16699.17 14699.81 5799.61 17098.41 15799.69 31199.32 5799.94 6299.53 162
MVS_Test99.28 10999.31 8599.19 24099.35 25198.79 24499.36 9699.49 22399.17 14699.21 24499.67 13198.78 10599.66 33199.09 9499.66 22399.10 281
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.41 15799.91 11297.27 24299.61 23999.54 157
RE-MVS-def99.13 12199.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.57 13397.27 24299.61 23999.54 157
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16399.31 27599.16 14899.62 13599.61 17098.35 16599.91 11297.88 19099.72 19899.61 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12399.80 3699.24 13299.57 17799.16 14899.73 9499.65 14098.35 165
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18699.61 14799.15 15299.88 3299.71 10199.08 6699.87 17499.90 299.97 3099.66 77
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19599.65 12999.15 15299.90 2299.75 8199.09 6299.88 16199.90 299.96 4299.67 67
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14299.54 19499.13 15499.82 5099.63 15298.91 8699.92 9197.85 19699.70 20499.58 137
test_241102_TWO99.54 19499.13 15499.76 7599.63 15298.32 17099.92 9197.85 19699.69 20799.75 42
MVS-HIRNet97.86 28298.22 25396.76 34099.28 27791.53 36898.38 27292.60 37299.13 15499.31 22499.96 1197.18 24899.68 32298.34 15199.83 13499.07 292
test_241102_ONE99.69 12399.82 2899.54 19499.12 15799.82 5099.49 22498.91 8699.52 355
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5599.56 18299.11 15899.24 23799.56 19893.00 30999.78 27897.43 23299.89 9299.35 232
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 32999.68 10999.08 15999.78 6899.62 16198.65 12499.88 16198.02 17799.96 4299.48 190
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 27799.22 19798.99 20099.40 25299.08 15999.58 14899.64 14298.90 8999.83 24197.44 23199.75 17799.63 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18499.25 18898.29 27899.76 6899.07 16199.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
save fliter99.53 18499.25 18898.29 27899.38 26199.07 161
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32599.58 17599.07 16199.64 12399.62 16198.19 18299.93 7198.41 14599.95 4999.55 149
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10199.76 6899.07 16199.65 12199.63 15299.09 6299.92 9197.13 25599.76 17499.58 137
tttt051797.62 29197.20 30098.90 27699.76 8597.40 31299.48 7594.36 36899.06 16599.70 10399.49 22484.55 36399.94 5798.73 12999.65 22799.36 229
WR-MVS99.11 16098.93 17899.66 9999.30 27299.42 14998.42 27099.37 26299.04 16699.57 15199.20 29496.89 25699.86 19498.66 13599.87 10999.70 51
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29197.33 31497.78 32399.66 11899.01 16799.59 14699.50 21994.62 29399.85 21398.12 17299.90 8499.26 247
APDe-MVS99.48 5499.36 7799.85 1899.55 17899.81 3199.50 7199.69 10698.99 16899.75 8199.71 10198.79 10399.93 7198.46 14399.85 12099.80 24
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 16999.65 12998.99 16899.64 12399.72 9499.39 2599.86 19498.23 16099.81 15199.60 123
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test117299.23 12099.05 14999.74 6399.52 18999.75 5499.20 14299.61 14798.97 17099.48 18199.58 18798.41 15799.91 11297.15 25499.55 25399.57 143
test_yl98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
DCV-MVSNet98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
MIMVSNet98.43 25398.20 25599.11 24999.53 18498.38 27299.58 6498.61 33098.96 17399.33 21899.76 7790.92 33099.81 26797.38 23599.76 17499.15 271
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29699.90 1498.95 17499.78 6899.58 18799.57 2099.93 7199.48 3499.95 4999.79 30
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 30996.84 32697.52 33799.54 19498.94 17599.58 14899.48 22796.25 27499.76 28898.01 18099.93 7099.21 257
HQP_MVS98.90 19798.68 20999.55 14799.58 15799.24 19398.80 23099.54 19498.94 17599.14 25599.25 28397.24 24299.82 25195.84 31799.78 16799.60 123
plane_prior298.80 23098.94 175
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26699.76 5099.34 9999.97 298.93 17899.91 2099.79 6198.68 11799.93 7196.80 27299.56 24999.30 241
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28399.33 26998.93 17899.56 15899.66 13597.39 23699.83 24198.29 15599.88 10099.55 149
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28499.32 27198.92 18099.59 14699.66 13597.40 23499.83 24198.27 15799.90 8499.55 149
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28099.87 2098.91 18199.74 9099.72 9490.57 33799.79 27598.55 13999.85 12099.11 279
cl____98.54 24198.41 23598.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.85 30099.78 27897.97 18499.89 9299.17 267
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.87 29999.78 27897.97 18499.89 9299.18 265
c3_l98.72 22098.71 20498.72 29099.12 30397.22 31797.68 32899.56 18298.90 18299.54 16599.48 22796.37 27199.73 29797.88 19099.88 10099.21 257
MG-MVS98.52 24398.39 23798.94 26499.15 29897.39 31398.18 28599.21 30098.89 18599.23 23899.63 15297.37 23899.74 29494.22 34499.61 23999.69 54
FMVSNet597.80 28497.25 29899.42 18598.83 33698.97 22699.38 8999.80 4998.87 18699.25 23499.69 11480.60 36999.91 11298.96 10799.90 8499.38 223
ab-mvs99.33 10199.28 9799.47 17099.57 16799.39 15699.78 1099.43 24298.87 18699.57 15199.82 5098.06 19199.87 17498.69 13399.73 19299.15 271
SR-MVS99.19 13999.00 16499.74 6399.51 19499.72 6799.18 14899.60 15998.85 18899.47 18399.58 18798.38 16299.92 9196.92 26399.54 25999.57 143
MSLP-MVS++99.05 17099.09 13798.91 27099.21 28898.36 27398.82 22699.47 22998.85 18898.90 28199.56 19898.78 10599.09 36498.57 13899.68 21299.26 247
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 20899.86 2298.85 18899.81 5799.73 8898.40 16199.92 9198.36 14899.83 13499.17 267
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33399.74 8098.84 19199.53 17099.55 20599.10 6099.79 27597.07 25899.86 11699.18 265
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25599.73 8398.82 19299.72 9699.62 16196.56 26199.82 25199.32 5799.95 4999.56 146
Effi-MVS+99.06 16798.97 17399.34 21099.31 26898.98 22498.31 27799.91 1098.81 19398.79 29498.94 33099.14 5799.84 23098.79 12298.74 32999.20 260
Patchmatch-test98.10 27597.98 27098.48 29999.27 27996.48 33099.40 8599.07 30998.81 19399.23 23899.57 19590.11 34199.87 17496.69 27799.64 22999.09 284
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26195.89 34096.94 35599.44 23898.80 19599.25 23499.52 21293.51 30499.98 798.94 11299.98 2199.32 238
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8399.85 2698.79 19699.41 20299.60 17998.92 8499.92 9198.02 17799.92 7499.43 212
TinyColmap98.97 18698.93 17899.07 25599.46 22298.19 28097.75 32499.75 7598.79 19699.54 16599.70 10898.97 7999.62 34296.63 28399.83 13499.41 216
pmmvs499.13 15499.06 14599.36 20899.57 16799.10 21598.01 30499.25 28998.78 19899.58 14899.44 23998.24 17599.76 28898.74 12899.93 7099.22 255
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12499.35 26698.77 19999.57 15199.70 10899.27 4499.88 16197.71 20999.75 17799.65 85
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thres600view796.60 31696.16 31897.93 31799.63 14496.09 33799.18 14897.57 35298.77 19998.72 30197.32 37087.04 35299.72 29988.57 36198.62 33497.98 353
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 6799.79 5598.77 19999.80 6099.85 3899.64 1399.85 21398.70 13199.89 9299.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20199.11 21197.92 31799.71 9598.76 20299.08 26399.47 23299.17 5399.54 35197.85 19699.76 17499.54 157
thres100view90096.39 31996.03 32197.47 32999.63 14495.93 33899.18 14897.57 35298.75 20398.70 30397.31 37187.04 35299.67 32787.62 36498.51 33896.81 362
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28699.75 5497.25 34799.47 22998.72 20499.66 11799.70 10899.29 3999.63 34198.07 17699.81 15199.62 108
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28199.39 25598.70 20599.74 9099.30 27198.54 13899.97 1798.48 14299.82 14399.55 149
jason: jason.
MVS_111021_LR99.13 15499.03 15799.42 18599.58 15799.32 17497.91 31999.73 8398.68 20699.31 22499.48 22799.09 6299.66 33197.70 21199.77 17199.29 244
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23499.88 1898.66 20799.96 899.79 6197.45 23299.93 7199.34 5299.99 1299.78 32
NCCC98.82 20898.57 21999.58 13599.21 28899.31 17598.61 24599.25 28998.65 20898.43 32099.26 28197.86 20799.81 26796.55 28599.27 30099.61 119
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 29999.83 3498.64 20999.89 2699.60 17992.57 311100.00 199.33 5599.97 3099.72 45
MVP-Stereo99.16 14899.08 13999.43 18399.48 21299.07 21999.08 18399.55 18898.63 21099.31 22499.68 12598.19 18299.78 27898.18 16799.58 24799.45 201
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17399.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
thisisatest053097.45 29696.95 30798.94 26499.68 13297.73 30399.09 18094.19 37098.61 21399.56 15899.30 27184.30 36499.93 7198.27 15799.54 25999.16 269
API-MVS98.38 25898.39 23798.35 30498.83 33699.26 18499.14 16399.18 30298.59 21498.66 30598.78 34398.61 12899.57 35094.14 34599.56 24996.21 364
CNVR-MVS98.99 18598.80 19999.56 14499.25 28299.43 14698.54 25899.27 28498.58 21598.80 29399.43 24098.53 14299.70 30597.22 24999.59 24699.54 157
MVS_030498.88 20198.71 20499.39 19898.85 33498.91 23799.45 7899.30 27898.56 21697.26 35699.68 12596.18 27699.96 3599.17 8099.94 6299.29 244
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21699.33 21899.53 21098.88 9199.68 32296.01 30899.65 22799.02 300
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 22799.41 24598.55 21899.68 10899.69 11498.13 18699.87 17498.82 12099.98 2199.24 250
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 16799.77 4398.74 23899.60 15998.55 21899.76 7599.69 11498.23 17899.92 9196.39 29499.75 17799.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 14899.60 15998.55 21899.57 15199.67 13199.03 7399.94 5797.01 25999.80 15699.69 54
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 9899.57 17798.54 22199.54 16598.99 32096.81 25899.93 7196.97 26199.53 26199.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tpmrst97.73 28798.07 26596.73 34298.71 34892.00 36399.10 17698.86 31898.52 22298.92 27899.54 20791.90 31899.82 25198.02 17799.03 31298.37 338
MDTV_nov1_ep1397.73 28798.70 34990.83 37199.15 16198.02 34598.51 22398.82 29099.61 17090.98 32999.66 33196.89 26698.92 318
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32397.07 32097.49 33899.52 21198.50 22499.52 17299.37 25296.41 26999.71 30397.86 19499.62 23299.00 302
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 24999.48 22598.50 22499.52 17299.63 15299.14 5799.76 28897.89 18999.77 17199.51 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch99.00 18298.97 17399.09 25199.11 30898.19 28098.76 23799.33 26998.49 22699.44 18899.58 18798.21 17999.69 31198.20 16399.62 23299.39 221
CNLPA98.57 23698.34 24399.28 22599.18 29599.10 21598.34 27399.41 24598.48 22798.52 31598.98 32397.05 25299.78 27895.59 32399.50 26698.96 303
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 18999.71 7098.86 21799.19 30198.47 22898.59 31099.06 30998.08 19099.91 11296.94 26299.60 24299.60 123
tfpn200view996.30 32295.89 32297.53 32799.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33896.81 362
TESTMET0.1,196.24 32395.84 32597.41 33198.24 36093.84 35597.38 34195.84 36498.43 22997.81 34798.56 35179.77 37099.89 14797.77 20198.77 32598.52 330
thres40096.40 31895.89 32297.92 31899.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33897.98 353
EIA-MVS99.12 15699.01 16199.45 17799.36 24999.62 10199.34 9999.79 5598.41 23298.84 28898.89 33598.75 11199.84 23098.15 17199.51 26498.89 309
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 10899.59 16698.41 23299.32 22099.36 25798.73 11499.93 7197.29 23999.74 18599.67 67
MCST-MVS99.02 17698.81 19799.65 10499.58 15799.49 12898.58 24999.07 30998.40 23499.04 26899.25 28398.51 14799.80 27297.31 23899.51 26499.65 85
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28299.73 8398.39 23599.63 12799.43 24099.70 1199.90 13297.34 23698.64 33399.44 206
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22099.89 1598.38 23699.75 8199.04 31399.36 3499.86 19499.08 9599.25 30199.45 201
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 8999.62 14098.38 23699.06 26799.27 27898.79 10399.94 5797.51 22899.82 14399.66 77
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 10899.59 16698.36 23899.36 21199.37 25298.80 10099.91 11297.43 23299.75 17799.68 60
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 10899.59 16698.36 23899.35 21399.38 25198.61 12899.93 7197.43 23299.75 17799.67 67
plane_prior399.31 17598.36 23899.14 255
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32099.74 8098.36 23899.66 11799.68 12599.71 999.90 13296.84 27099.88 10099.43 212
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22299.72 9298.36 23899.60 14399.71 10198.92 8499.91 11297.08 25799.84 12499.40 218
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10499.50 21898.35 24398.97 27199.48 22798.37 16399.92 9195.95 31499.75 17799.63 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 6999.70 10098.35 24399.51 17799.50 21999.31 3799.88 16198.18 16799.84 12499.69 54
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27394.65 36798.35 24399.79 6599.68 12598.03 19299.93 7198.28 15699.92 7499.44 206
BH-RMVSNet98.41 25598.14 26299.21 23799.21 28898.47 26398.60 24798.26 34398.35 24398.93 27599.31 26997.20 24799.66 33194.32 34299.10 30899.51 174
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 8999.54 19498.34 24799.01 26999.50 21998.53 14299.93 7197.18 25299.78 16799.66 77
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8199.82 3998.33 24899.50 17999.78 6797.90 20399.65 33896.78 27399.83 13499.44 206
GA-MVS97.99 28197.68 28998.93 26799.52 18998.04 29197.19 34999.05 31298.32 24998.81 29198.97 32689.89 34499.41 36198.33 15299.05 31099.34 234
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 24899.77 6398.32 24999.39 20899.41 24298.62 12699.84 23096.62 28499.84 12498.69 321
lupinMVS98.96 18998.87 18999.24 23499.57 16798.40 26998.12 29299.18 30298.28 25199.63 12799.13 29998.02 19499.97 1798.22 16199.69 20799.35 232
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 20899.53 20398.27 25299.53 17099.73 8898.75 11199.87 17497.70 21199.83 13499.68 60
SCA98.11 27498.36 24097.36 33299.20 29192.99 35998.17 28798.49 33698.24 25399.10 26199.57 19596.01 27999.94 5796.86 26799.62 23299.14 275
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14299.55 18898.22 25499.32 22099.35 26298.65 12499.91 11296.86 26799.74 18599.62 108
EPMVS96.53 31796.32 31597.17 33898.18 36292.97 36099.39 8789.95 37498.21 25598.61 30899.59 18586.69 35999.72 29996.99 26099.23 30598.81 317
USDC98.96 18998.93 17899.05 25799.54 17997.99 29297.07 35399.80 4998.21 25599.75 8199.77 7498.43 15499.64 34097.90 18899.88 10099.51 174
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 11999.56 18298.19 25799.14 25599.29 27498.84 9599.92 9197.53 22799.80 15699.64 92
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26199.16 20698.15 28899.29 28098.18 25899.63 12799.62 16199.18 5299.68 32298.20 16399.74 18599.30 241
PatchmatchNetpermissive97.65 29097.80 28397.18 33798.82 33992.49 36199.17 15398.39 34098.12 25998.79 29499.58 18790.71 33599.89 14797.23 24899.41 28099.16 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AUN-MVS97.82 28397.38 29499.14 24699.27 27998.53 25998.72 24199.02 31398.10 26097.18 35899.03 31789.26 34699.85 21397.94 18697.91 35299.03 296
WTY-MVS98.59 23498.37 23999.26 22999.43 23098.40 26998.74 23899.13 30898.10 26099.21 24499.24 28894.82 29099.90 13297.86 19498.77 32599.49 185
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28698.66 25297.14 35099.51 21498.09 26299.54 16599.27 27896.87 25799.74 29498.43 14498.96 31599.03 296
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7199.65 12998.07 26399.52 17299.69 11498.57 13399.92 9197.18 25299.79 16199.63 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres20096.09 32595.68 32897.33 33499.48 21296.22 33498.53 25997.57 35298.06 26498.37 32296.73 37586.84 35699.61 34686.99 36798.57 33596.16 365
test-LLR97.15 30396.95 30797.74 32498.18 36295.02 34797.38 34196.10 36098.00 26597.81 34798.58 34890.04 34299.91 11297.69 21798.78 32398.31 339
test0.0.03 197.37 29996.91 31098.74 28997.72 36697.57 30797.60 33197.36 35798.00 26599.21 24498.02 36290.04 34299.79 27598.37 14795.89 36698.86 312
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 15999.72 9297.99 26799.42 19499.60 17998.81 9699.93 7196.91 26499.74 18599.66 77
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 28899.50 21897.98 26899.62 13599.54 20798.15 18599.94 5797.55 22499.84 12498.95 304
SF-MVS99.10 16498.93 17899.62 12499.58 15799.51 12699.13 16999.65 12997.97 26999.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21099.91 1097.97 26999.79 6599.73 8899.05 7199.97 1799.15 8499.99 1299.68 60
wuyk23d97.58 29399.13 12192.93 35199.69 12399.49 12899.52 6999.77 6397.97 26999.96 899.79 6199.84 399.94 5795.85 31699.82 14379.36 367
ET-MVSNet_ETH3D96.78 31196.07 32098.91 27099.26 28197.92 29897.70 32796.05 36397.96 27292.37 37098.43 35687.06 35199.90 13298.27 15797.56 35798.91 308
sss98.90 19798.77 20199.27 22799.48 21298.44 26698.72 24199.32 27197.94 27399.37 21099.35 26296.31 27299.91 11298.85 11799.63 23199.47 195
test-mter96.23 32495.73 32797.74 32498.18 36295.02 34797.38 34196.10 36097.90 27497.81 34798.58 34879.12 37399.91 11297.69 21798.78 32398.31 339
PHI-MVS99.11 16098.95 17799.59 13199.13 30199.59 11299.17 15399.65 12997.88 27599.25 23499.46 23598.97 7999.80 27297.26 24499.82 14399.37 226
test_prior398.62 22898.34 24399.46 17399.35 25199.22 19797.95 31399.39 25597.87 27698.05 33699.05 31097.90 20399.69 31195.99 31099.49 26899.48 190
test_prior297.95 31397.87 27698.05 33699.05 31097.90 20395.99 31099.49 268
plane_prior99.24 19398.42 27097.87 27699.71 202
testdata197.72 32597.86 279
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30399.22 19798.67 24499.42 24497.84 28098.81 29199.27 27897.32 24099.81 26795.14 33299.53 26199.10 281
BH-untuned98.22 27198.09 26498.58 29699.38 24497.24 31698.55 25598.98 31697.81 28199.20 24998.76 34497.01 25399.65 33894.83 33698.33 34198.86 312
tpmvs97.39 29897.69 28896.52 34598.41 35591.76 36599.30 11198.94 31797.74 28297.85 34699.55 20592.40 31699.73 29796.25 30098.73 33198.06 351
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5599.67 11497.72 28399.35 21399.25 28399.23 4799.92 9197.21 25099.82 14399.67 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 30396.95 30797.75 32398.91 32694.24 35299.32 10497.96 34697.71 28498.29 32399.32 26786.72 35899.92 9198.10 17596.24 36599.09 284
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22296.26 33396.70 35899.34 26897.68 28599.00 27099.13 29997.40 23499.72 29997.59 22399.68 21299.08 287
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26099.82 3997.65 28699.43 19299.16 29796.42 26799.91 11299.07 9699.84 12499.80 24
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 17997.99 29298.58 24999.82 3997.62 28799.34 21699.71 10198.52 14599.77 28697.98 18299.97 3099.52 172
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17699.59 16697.60 28899.36 21199.37 25298.80 10099.91 11296.84 27099.75 17799.68 60
PC_three_145297.56 28999.68 10899.41 24299.09 6297.09 36996.66 28099.60 24299.62 108
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 15999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
PAPM_NR98.36 25998.04 26699.33 21299.48 21298.93 23498.79 23399.28 28397.54 29298.56 31398.57 35097.12 24999.69 31194.09 34698.90 32099.38 223
PMMVS98.49 24898.29 24899.11 24998.96 32498.42 26897.54 33399.32 27197.53 29398.47 31998.15 36197.88 20699.82 25197.46 23099.24 30399.09 284
9.1498.64 21099.45 22598.81 22799.60 15997.52 29499.28 23099.56 19898.53 14299.83 24195.36 33099.64 229
IU-MVS99.69 12399.77 4399.22 29697.50 29599.69 10697.75 20599.70 20499.77 35
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 17799.37 16297.97 31299.68 10997.49 29699.08 26399.35 26295.41 28699.82 25197.70 21198.19 34699.01 301
HQP-NCC99.31 26897.98 30997.45 29798.15 330
ACMP_Plane99.31 26897.98 30997.45 29798.15 330
HQP-MVS98.36 25998.02 26799.39 19899.31 26898.94 23097.98 30999.37 26297.45 29798.15 33098.83 33996.67 25999.70 30594.73 33799.67 21999.53 162
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22299.73 6399.13 16999.52 21197.40 30099.57 15199.64 14298.93 8399.83 24197.61 22199.79 16199.63 97
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet98.35 26298.20 25598.83 28299.05 31498.12 28499.30 11199.67 11497.39 30199.16 25199.79 6191.87 32099.91 11298.78 12598.77 32598.44 336
MDTV_nov1_ep13_2view91.44 36999.14 16397.37 30299.21 24491.78 32296.75 27499.03 296
dp96.86 30997.07 30396.24 34898.68 35090.30 37499.19 14798.38 34197.35 30398.23 32899.59 18587.23 35099.82 25196.27 29998.73 33198.59 325
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 21799.53 12398.77 23599.60 15997.33 30499.23 23899.50 21997.91 20299.83 24195.02 33599.67 21999.41 216
cl2297.56 29497.28 29698.40 30298.37 35796.75 32797.24 34899.37 26297.31 30599.41 20299.22 29087.30 34999.37 36297.70 21199.62 23299.08 287
OMC-MVS98.90 19798.72 20399.44 17999.39 24199.42 14998.58 24999.64 13597.31 30599.44 18899.62 16198.59 13099.69 31196.17 30499.79 16199.22 255
thisisatest051596.98 30796.42 31498.66 29399.42 23597.47 30997.27 34694.30 36997.24 30799.15 25398.86 33885.01 36199.87 17497.10 25699.39 28298.63 322
KD-MVS_2432*160095.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
miper_refine_blended95.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
baseline296.83 31096.28 31698.46 30099.09 31196.91 32498.83 22293.87 37197.23 30896.23 36498.36 35788.12 34899.90 13296.68 27898.14 34898.57 328
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24499.50 12799.04 18899.79 5597.17 31198.62 30798.74 34599.34 3599.95 4598.32 15399.41 28098.92 307
FPMVS96.32 32195.50 32998.79 28699.60 15198.17 28298.46 26998.80 32297.16 31296.28 36199.63 15282.19 36599.09 36488.45 36298.89 32199.10 281
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29699.80 4997.14 31399.46 18699.40 24596.11 27799.89 14799.01 10099.84 12499.84 14
PatchMatch-RL98.68 22498.47 22899.30 22199.44 22799.28 18098.14 29099.54 19497.12 31499.11 25999.25 28397.80 21299.70 30596.51 28899.30 29598.93 306
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21399.66 11897.11 31599.47 18399.60 17999.07 6899.89 14796.18 30399.85 12099.58 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet297.78 28597.66 29198.12 31499.14 29995.36 34499.22 13998.75 32496.97 31698.25 32699.64 14290.90 33199.94 5796.51 28899.56 24999.08 287
ADS-MVSNet97.72 28997.67 29097.86 31999.14 29994.65 35099.22 13998.86 31896.97 31698.25 32699.64 14290.90 33199.84 23096.51 28899.56 24999.08 287
testtj98.56 23798.17 26099.72 7999.45 22599.60 10998.88 21399.50 21896.88 31899.18 25099.48 22797.08 25199.92 9193.69 35199.38 28399.63 97
DPM-MVS98.28 26597.94 27699.32 21699.36 24999.11 21197.31 34598.78 32396.88 31898.84 28899.11 30597.77 21499.61 34694.03 34899.36 28899.23 253
TR-MVS97.44 29797.15 30298.32 30698.53 35397.46 31098.47 26497.91 34896.85 32098.21 32998.51 35496.42 26799.51 35692.16 35497.29 35897.98 353
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24599.63 13796.84 32199.44 18899.58 18798.81 9699.91 11297.70 21199.82 14399.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HY-MVS98.23 998.21 27297.95 27298.99 26099.03 31798.24 27699.61 5598.72 32596.81 32298.73 30099.51 21694.06 29799.86 19496.91 26498.20 34498.86 312
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20199.62 10199.01 19399.57 17796.80 32399.54 16599.63 15298.29 17199.91 11295.24 33199.71 20299.61 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
原ACMM199.37 20599.47 21798.87 24199.27 28496.74 32498.26 32599.32 26797.93 20199.82 25195.96 31399.38 28399.43 212
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31699.39 15698.47 26499.47 22996.70 32598.78 29699.33 26697.62 22899.86 19494.69 34099.38 28399.28 246
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 14899.55 18896.49 32699.27 23299.37 25297.11 25099.92 9195.74 32199.67 21999.62 108
CLD-MVS98.76 21498.57 21999.33 21299.57 16798.97 22697.53 33599.55 18896.41 32799.27 23299.13 29999.07 6899.78 27896.73 27699.89 9299.23 253
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.43 23099.61 10799.43 24296.38 32899.11 25999.07 30897.86 20799.92 9194.04 34799.49 268
miper_enhance_ethall98.03 27897.94 27698.32 30698.27 35996.43 33296.95 35499.41 24596.37 32999.43 19298.96 32894.74 29199.69 31197.71 20999.62 23298.83 316
F-COLMAP98.74 21798.45 23099.62 12499.57 16799.47 13198.84 22099.65 12996.31 33098.93 27599.19 29697.68 22099.87 17496.52 28799.37 28799.53 162
testdata99.42 18599.51 19498.93 23499.30 27896.20 33198.87 28599.40 24598.33 16999.89 14796.29 29899.28 29799.44 206
PVSNet_095.53 1995.85 33195.31 33397.47 32998.78 34493.48 35795.72 36299.40 25296.18 33297.37 35397.73 36595.73 28299.58 34995.49 32581.40 36999.36 229
IB-MVS95.41 2095.30 33594.46 33897.84 32098.76 34695.33 34597.33 34496.07 36296.02 33395.37 36897.41 36976.17 37599.96 3597.54 22595.44 36798.22 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test96.03 32795.80 32696.71 34498.50 35491.93 36499.25 13197.87 34995.99 33496.81 36097.61 36781.02 36799.66 33197.20 25197.98 35198.54 329
pmmvs398.08 27697.80 28398.91 27099.41 23697.69 30597.87 32099.66 11895.87 33599.50 17999.51 21690.35 33999.97 1798.55 13999.47 27199.08 287
无先验98.01 30499.23 29395.83 33699.85 21395.79 31999.44 206
112198.56 23798.24 25199.52 15599.49 20699.24 19399.30 11199.22 29695.77 33798.52 31599.29 27497.39 23699.85 21395.79 31999.34 29099.46 199
BH-w/o97.20 30297.01 30597.76 32299.08 31295.69 34198.03 30398.52 33395.76 33897.96 34098.02 36295.62 28499.47 35892.82 35397.25 35998.12 350
PVSNet_Blended98.70 22298.59 21599.02 25999.54 17997.99 29297.58 33299.82 3995.70 33999.34 21698.98 32398.52 14599.77 28697.98 18299.83 13499.30 241
新几何199.52 15599.50 20199.22 19799.26 28695.66 34098.60 30999.28 27697.67 22199.89 14795.95 31499.32 29399.45 201
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 35899.56 11899.01 19399.59 16695.44 34199.57 15199.80 5595.64 28399.46 36096.47 29199.92 7499.21 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MAR-MVS98.24 26997.92 27899.19 24098.78 34499.65 9399.17 15399.14 30695.36 34298.04 33898.81 34297.47 23199.72 29995.47 32799.06 30998.21 346
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验297.94 31595.33 34398.94 27499.88 16196.75 274
CDPH-MVS98.56 23798.20 25599.61 12799.50 20199.46 13598.32 27699.41 24595.22 34499.21 24499.10 30698.34 16799.82 25195.09 33499.66 22399.56 146
test22299.51 19499.08 21897.83 32299.29 28095.21 34598.68 30499.31 26997.28 24199.38 28399.43 212
PLCcopyleft97.35 1698.36 25997.99 26899.48 16899.32 26799.24 19398.50 26299.51 21495.19 34698.58 31198.96 32896.95 25599.83 24195.63 32299.25 30199.37 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131498.00 28097.90 28198.27 31098.90 32797.45 31199.30 11199.06 31194.98 34797.21 35799.12 30398.43 15499.67 32795.58 32498.56 33697.71 356
train_agg98.35 26297.95 27299.57 14099.35 25199.35 16998.11 29499.41 24594.90 34897.92 34198.99 32098.02 19499.85 21395.38 32999.44 27499.50 180
test_899.34 26199.31 17598.08 29899.40 25294.90 34897.87 34598.97 32698.02 19499.84 230
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20699.46 13598.56 25499.63 13794.86 35098.85 28799.37 25297.81 21199.59 34896.08 30599.44 27498.88 310
agg_prior198.33 26497.92 27899.57 14099.35 25199.36 16597.99 30899.39 25594.85 35197.76 35098.98 32398.03 19299.85 21395.49 32599.44 27499.51 174
TEST999.35 25199.35 16998.11 29499.41 24594.83 35297.92 34198.99 32098.02 19499.85 213
CostFormer96.71 31496.79 31396.46 34698.90 32790.71 37299.41 8498.68 32694.69 35398.14 33499.34 26586.32 36099.80 27297.60 22298.07 35098.88 310
PAPR97.56 29497.07 30399.04 25898.80 34198.11 28697.63 32999.25 28994.56 35498.02 33998.25 36097.43 23399.68 32290.90 35998.74 32999.33 235
gm-plane-assit97.59 36789.02 37593.47 35598.30 35899.84 23096.38 295
tpm296.35 32096.22 31796.73 34298.88 33391.75 36699.21 14198.51 33493.27 35697.89 34399.21 29284.83 36299.70 30596.04 30798.18 34798.75 320
ETH3 D test640097.76 28697.19 30199.50 16199.38 24499.26 18498.34 27399.49 22392.99 35798.54 31499.20 29495.92 28199.82 25191.14 35899.66 22399.40 218
tpm cat196.78 31196.98 30696.16 34998.85 33490.59 37399.08 18399.32 27192.37 35897.73 35299.46 23591.15 32799.69 31196.07 30698.80 32298.21 346
cascas96.99 30696.82 31297.48 32897.57 36995.64 34296.43 36099.56 18291.75 35997.13 35997.61 36795.58 28598.63 36796.68 27899.11 30798.18 349
QAPM98.40 25797.99 26899.65 10499.39 24199.47 13199.67 3899.52 21191.70 36098.78 29699.80 5598.55 13699.95 4594.71 33999.75 17799.53 162
OpenMVScopyleft98.12 1098.23 27097.89 28299.26 22999.19 29399.26 18499.65 4799.69 10691.33 36198.14 33499.77 7498.28 17299.96 3595.41 32899.55 25398.58 327
PAPM95.61 33494.71 33698.31 30899.12 30396.63 32896.66 35998.46 33790.77 36296.25 36298.68 34793.01 30899.69 31181.60 36997.86 35598.62 323
114514_t98.49 24898.11 26399.64 11199.73 10599.58 11599.24 13299.76 6889.94 36399.42 19499.56 19897.76 21599.86 19497.74 20699.82 14399.47 195
TAPA-MVS97.92 1398.03 27897.55 29299.46 17399.47 21799.44 14298.50 26299.62 14086.79 36499.07 26699.26 28198.26 17499.62 34297.28 24199.73 19299.31 240
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS96.03 1896.73 31395.86 32499.33 21299.44 22799.16 20696.87 35699.44 23886.58 36598.95 27399.40 24594.38 29599.88 16187.93 36399.80 15698.95 304
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 30096.84 31198.89 27799.29 27499.45 14098.87 21699.48 22586.54 36699.44 18899.74 8497.34 23999.86 19491.61 35599.28 29797.37 360
tmp_tt95.75 33295.42 33096.76 34089.90 37594.42 35198.86 21797.87 34978.01 36799.30 22999.69 11497.70 21695.89 37099.29 6398.14 34899.95 1
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 36895.74 36698.28 35996.47 26599.62 34291.23 35797.89 35397.38 359
MVS95.72 33394.63 33798.99 26098.56 35297.98 29799.30 11198.86 31872.71 36997.30 35499.08 30798.34 16799.74 29489.21 36098.33 34199.26 247
test_method91.72 33692.32 33989.91 35293.49 37470.18 37690.28 36599.56 18261.71 37095.39 36799.52 21293.90 29899.94 5798.76 12698.27 34399.62 108
test12329.31 33733.05 34218.08 35325.93 37712.24 37797.53 33510.93 37811.78 37124.21 37250.08 38021.04 3768.60 37223.51 37032.43 37133.39 368
testmvs28.94 33833.33 34015.79 35426.03 3769.81 37896.77 35715.67 37711.55 37223.87 37350.74 37919.03 3778.53 37323.21 37133.07 37029.03 369
test_blank8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.88 33933.17 3410.00 3550.00 3780.00 3790.00 36699.62 1400.00 3730.00 37499.13 29999.82 40.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas16.61 34022.14 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 199.28 410.00 3740.00 3720.00 3720.00 370
sosnet-low-res8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
sosnet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
Regformer8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.26 34811.02 3510.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.16 2970.00 3780.00 3740.00 3720.00 3720.00 370
uanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
MSC_two_6792asdad99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
No_MVS99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
eth-test20.00 378
eth-test0.00 378
OPU-MVS99.29 22299.12 30399.44 14299.20 14299.40 24599.00 7498.84 36696.54 28699.60 24299.58 137
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16399.61 14799.92 9197.88 19099.72 19899.77 35
GSMVS99.14 275
test_part299.62 14899.67 8699.55 163
sam_mvs190.81 33499.14 275
sam_mvs90.52 338
ambc99.20 23999.35 25198.53 25999.17 15399.46 23399.67 11399.80 5598.46 15299.70 30597.92 18799.70 20499.38 223
MTGPAbinary99.53 203
test_post199.14 16351.63 37889.54 34599.82 25196.86 267
test_post52.41 37790.25 34099.86 194
patchmatchnet-post99.62 16190.58 33699.94 57
GG-mvs-BLEND97.36 33297.59 36796.87 32599.70 2588.49 37694.64 36997.26 37280.66 36899.12 36391.50 35696.50 36496.08 366
MTMP99.09 18098.59 332
test9_res95.10 33399.44 27499.50 180
agg_prior294.58 34199.46 27399.50 180
agg_prior99.35 25199.36 16599.39 25597.76 35099.85 213
test_prior499.19 20498.00 306
test_prior99.46 17399.35 25199.22 19799.39 25599.69 31199.48 190
新几何298.04 302
旧先验199.49 20699.29 17899.26 28699.39 24997.67 22199.36 28899.46 199
原ACMM297.92 317
testdata299.89 14795.99 310
segment_acmp98.37 163
test1299.54 15199.29 27499.33 17299.16 30498.43 32097.54 22999.82 25199.47 27199.48 190
plane_prior799.58 15799.38 159
plane_prior699.47 21799.26 18497.24 242
plane_prior599.54 19499.82 25195.84 31799.78 16799.60 123
plane_prior499.25 283
plane_prior199.51 194
n20.00 379
nn0.00 379
door-mid99.83 34
lessismore_v099.64 11199.86 3099.38 15990.66 37399.89 2699.83 4494.56 29499.97 1799.56 2699.92 7499.57 143
test1199.29 280
door99.77 63
HQP5-MVS98.94 230
BP-MVS94.73 337
HQP4-MVS98.15 33099.70 30599.53 162
HQP3-MVS99.37 26299.67 219
HQP2-MVS96.67 259
NP-MVS99.40 23999.13 20998.83 339
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 157