This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24099.79 1299.97 19100.00 199.43 23499.94 1999.64 2899.94 7999.83 3399.99 1699.98 4
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 206100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21499.98 1299.99 399.98 1399.91 2899.68 2699.93 9799.93 1999.99 1699.99 2
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22499.98 1299.99 399.98 1399.90 3399.88 899.92 12399.93 1999.99 1699.98 4
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23399.96 2599.99 399.97 2099.84 6999.58 3899.93 9799.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23399.96 2599.99 399.97 2099.84 6999.78 1799.92 12399.92 2199.99 1699.92 22
MM99.18 17999.05 18699.55 17199.35 28898.81 26099.05 22597.79 39399.99 399.48 22299.59 23296.29 30899.95 6499.94 1699.98 4199.88 28
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 23899.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25099.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18699.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18699.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_vis1_n_192099.72 3899.88 799.27 25499.93 2497.84 33299.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20699.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21199.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3499.87 3199.99 16100.00 1
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8199.96 6899.65 119
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9099.97 1699.89 5399.89 3899.53 4599.99 899.36 8999.96 6899.65 119
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13799.91 2899.15 8399.97 3499.50 70100.00 199.90 24
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28199.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 25999.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9399.96 6899.78 59
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 5999.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
test_cas_vis1_n_192099.76 3399.86 1399.45 19899.93 2498.40 29499.30 14399.98 1299.94 2399.99 799.89 3899.80 1599.97 3499.96 999.97 5599.97 9
test_f99.75 3499.88 799.37 22699.96 798.21 30699.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 7999.97 499.99 1699.97 9
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13199.93 2599.95 3299.89 3899.71 2299.96 5599.51 6899.97 5599.84 39
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13699.93 2599.78 10399.68 17699.10 9099.78 31599.45 7499.96 6899.83 43
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 281
MVSMamba_PlusPlus99.55 7799.58 6999.47 19299.68 16499.40 17599.52 8999.70 13699.92 2899.77 11199.86 5998.28 20599.96 5599.54 6399.90 11699.05 334
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 21999.38 29699.57 4099.95 6499.69 4599.90 11699.15 305
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
test_fmvs299.72 3899.85 1799.34 23399.91 3098.08 32099.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 17999.41 28699.51 4799.95 6499.66 4899.89 12698.96 347
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9699.90 3199.82 8299.83 7398.45 18599.87 21099.51 6899.97 5599.86 34
EU-MVSNet99.39 12299.62 5798.72 32699.88 4396.44 37099.56 8499.85 5999.90 3199.90 4999.85 6398.09 22399.83 27799.58 5899.95 8199.90 24
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3499.75 41100.00 199.84 39
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6499.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test250694.73 38394.59 38495.15 39999.59 19085.90 42599.75 2274.01 42799.89 3799.71 13799.86 5979.00 41699.90 16399.52 6799.99 1699.65 119
test111197.74 32298.16 29596.49 39399.60 18589.86 42399.71 3491.21 41999.89 3799.88 6299.87 5293.73 33999.90 16399.56 6099.99 1699.70 82
ECVR-MVScopyleft97.73 32398.04 30296.78 38799.59 19090.81 41999.72 3090.43 42199.89 3799.86 7199.86 5993.60 34199.89 18299.46 7399.99 1699.65 119
gg-mvs-nofinetune95.87 37495.17 37997.97 36098.19 41096.95 36099.69 4289.23 42399.89 3796.24 41199.94 1981.19 40599.51 40293.99 40098.20 39097.44 409
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
JIA-IIPM98.06 31297.92 31598.50 33798.59 39897.02 35998.80 27498.51 36999.88 4297.89 38499.87 5291.89 35799.90 16398.16 21497.68 40498.59 378
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8199.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 29999.86 34
LFMVS98.46 28398.19 29399.26 25799.24 32198.52 28799.62 6496.94 40299.87 4399.31 26999.58 23591.04 36699.81 30298.68 17799.42 31399.45 229
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15099.61 18699.87 4399.74 12799.76 12298.69 14899.87 21098.20 20799.80 19899.75 71
test_vis1_n99.68 4799.79 2999.36 23099.94 1898.18 30999.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5599.97 499.96 6899.95 13
balanced_conf0399.50 8599.50 8699.50 18499.42 27399.49 14799.52 8999.75 10999.86 4699.78 10399.71 15098.20 21699.90 16399.39 8499.88 13599.10 316
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 10999.86 4699.74 12799.79 10098.27 20799.85 24799.37 8899.93 10199.83 43
RPMNet98.60 26598.53 26198.83 31899.05 35598.12 31399.30 14399.62 17999.86 4699.16 29399.74 13192.53 35299.92 12398.75 17098.77 36698.44 389
UGNet99.38 12499.34 11899.49 18698.90 37098.90 25599.70 3599.35 29599.86 4698.57 35699.81 8798.50 18099.93 9799.38 8599.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21799.39 29499.57 4099.93 9799.64 5299.86 15599.20 294
Anonymous2024052199.44 10699.42 10299.49 18699.89 3898.96 24799.62 6499.76 10499.85 5299.82 8299.88 4796.39 30399.97 3499.59 5599.98 4199.55 181
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16399.65 5099.97 5599.69 88
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14399.85 5299.80 9399.81 8798.81 12999.91 14599.47 7299.88 13599.70 82
reproduce_monomvs97.40 33697.46 33097.20 38399.05 35591.91 41199.20 17499.18 33199.84 5599.86 7199.75 12780.67 40699.83 27799.69 4599.95 8199.85 37
MVS_030498.61 26298.30 28399.52 17997.88 41698.95 24898.76 28094.11 41599.84 5599.32 26499.57 24295.57 31999.95 6499.68 4799.98 4199.68 94
IterMVS-SCA-FT99.00 22199.16 15298.51 33699.75 12995.90 38298.07 34999.84 6599.84 5599.89 5399.73 13596.01 31399.99 899.33 96100.00 199.63 134
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7299.84 5599.94 3599.91 2899.13 8899.96 5599.83 3399.99 1699.83 43
PatchT98.45 28498.32 28098.83 31898.94 36898.29 30199.24 16498.82 35299.84 5599.08 30499.76 12291.37 36199.94 7998.82 16099.00 35298.26 395
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9099.83 6099.88 6299.85 6398.42 18999.90 16399.60 5499.73 22899.49 216
IterMVS98.97 22599.16 15298.42 34199.74 13595.64 38698.06 35199.83 6799.83 6099.85 7499.74 13196.10 31299.99 899.27 107100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8199.82 6299.71 13799.72 14296.60 29399.98 2199.75 4199.23 33999.82 49
test_fmvs1_n99.68 4799.81 2599.28 25199.95 1597.93 32999.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 11999.82 6299.90 4999.90 3397.97 23399.86 22999.42 8199.96 6899.80 50
VDDNet98.97 22598.82 23599.42 20899.71 14498.81 26099.62 6498.68 35999.81 6599.38 25199.80 9094.25 33299.85 24798.79 16499.32 32699.59 166
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13699.81 6599.69 14499.58 23597.66 25799.86 22999.17 12199.44 30999.67 102
Gipumacopyleft99.57 7199.59 6699.49 18699.98 399.71 8599.72 3099.84 6599.81 6599.94 3599.78 11098.91 12199.71 34298.41 19099.95 8199.05 334
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
VDD-MVS99.20 17299.11 16599.44 20299.43 26898.98 24399.50 9698.32 38199.80 6899.56 19799.69 16596.99 28499.85 24798.99 14299.73 22899.50 211
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 5999.80 6899.93 3899.93 2198.54 17099.93 9799.59 5599.98 4199.76 68
ttmdpeth99.48 9199.55 7999.29 24899.76 11798.16 31199.33 13299.95 3099.79 7099.36 25399.89 3899.13 8899.77 32399.09 13499.64 26199.93 18
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20299.85 5999.79 7099.76 11499.72 14299.33 6399.82 28799.21 11299.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs199.48 9199.65 5298.97 29599.54 22197.16 35599.11 21199.98 1299.78 7299.96 2499.81 8798.72 14699.97 3499.95 1299.97 5599.79 57
mvs_anonymous99.28 14699.39 10698.94 29999.19 33197.81 33499.02 23699.55 22599.78 7299.85 7499.80 9098.24 20999.86 22999.57 5999.50 30299.15 305
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41099.78 7299.88 6299.88 4793.66 34099.97 3499.61 5399.95 8199.64 129
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 9999.78 7299.93 3899.89 3897.94 23499.92 12399.65 5099.98 4199.62 145
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 7999.95 1299.98 4199.94 16
EPNet98.13 30897.77 32399.18 26994.57 42497.99 32399.24 16497.96 38899.74 7797.29 39799.62 21093.13 34599.97 3498.59 18299.83 17299.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19699.98 1100.00 199.98 4
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21099.54 6399.92 10599.63 134
MVSFormer99.41 11699.44 9899.31 24499.57 20598.40 29499.77 1699.80 8499.73 7899.63 16499.30 31598.02 22899.98 2199.43 7699.69 24399.55 181
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8499.73 7899.97 2099.92 2599.77 1999.98 2199.43 76100.00 199.90 24
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35899.72 8299.91 4699.60 22799.43 5099.81 30299.81 3899.53 29599.73 73
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13199.72 8299.84 7799.78 11098.67 15299.97 3499.30 10199.95 8199.80 50
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 22999.04 23099.87 5199.71 8499.47 22499.79 10098.24 20999.98 2199.38 8599.96 6899.83 43
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9699.71 8499.90 4999.69 16598.85 12799.90 16397.25 29799.78 20899.15 305
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15099.90 4399.71 8499.79 9999.73 13599.54 4399.84 26299.36 8999.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8499.71 8499.72 13299.69 16599.15 8399.83 27799.32 9899.94 9499.53 194
PMVScopyleft92.94 2198.82 24598.81 23698.85 31499.84 6197.99 32399.20 17499.47 26299.71 8499.42 23799.82 8098.09 22399.47 40493.88 40199.85 15999.07 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 5999.70 8999.92 4399.93 2199.45 4999.97 3499.36 89100.00 199.85 37
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 11999.70 8999.84 7799.73 13598.56 16799.96 5599.29 10499.94 9499.83 43
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21099.59 5599.74 22399.71 79
FOURS199.83 6599.89 1099.74 2499.71 13199.69 9299.63 164
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19698.93 15499.95 8199.60 159
h-mvs3398.61 26298.34 27899.44 20299.60 18598.67 27199.27 15599.44 27099.68 9499.32 26499.49 26892.50 353100.00 199.24 10896.51 41299.65 119
hse-mvs298.52 27598.30 28399.16 27099.29 31098.60 28298.77 27999.02 34499.68 9499.32 26499.04 35592.50 35399.85 24799.24 10897.87 40299.03 338
EI-MVSNet-UG-set99.48 9199.50 8699.42 20899.57 20598.65 27799.24 16499.46 26599.68 9499.80 9399.66 18598.99 10999.89 18299.19 11699.90 11699.72 76
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26699.86 5499.68 9499.65 15999.88 4797.67 25399.87 21099.03 13999.86 15599.76 68
EI-MVSNet-Vis-set99.47 9999.49 8899.42 20899.57 20598.66 27499.24 16499.46 26599.67 9899.79 9999.65 19098.97 11399.89 18299.15 12499.89 12699.71 79
VNet99.18 17999.06 18299.56 16899.24 32199.36 18799.33 13299.31 30499.67 9899.47 22499.57 24296.48 29799.84 26299.15 12499.30 32899.47 224
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13699.67 9899.82 8299.83 7398.98 11199.90 16399.24 10899.97 5599.53 194
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9299.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT-MVS99.08 20099.00 20299.33 23699.27 31598.65 27799.62 6499.93 3299.66 10299.67 15299.82 8095.27 32399.93 9798.64 18099.09 34599.41 244
CVMVSNet98.61 26298.88 22797.80 36799.58 19593.60 40499.26 15799.64 17499.66 10299.72 13299.67 18093.26 34399.93 9799.30 10199.81 19199.87 32
TAMVS99.49 8999.45 9599.63 13999.48 25099.42 16899.45 10999.57 21499.66 10299.78 10399.83 7397.85 24199.86 22999.44 7599.96 6899.61 155
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33699.65 10599.89 5399.90 3396.20 31099.94 7999.42 8199.92 10599.67 102
Patchmtry98.78 24898.54 26099.49 18698.89 37399.19 22199.32 13599.67 15199.65 10599.72 13299.79 10091.87 35899.95 6498.00 22699.97 5599.33 263
alignmvs98.28 29797.96 30899.25 26099.12 34298.93 25299.03 23398.42 37499.64 10798.72 34297.85 40790.86 37199.62 38398.88 15599.13 34199.19 297
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10499.64 10799.93 3899.85 6398.66 15499.84 26299.88 2999.99 1699.71 79
MGCFI-Net99.02 21399.01 19899.06 28899.11 34798.60 28299.63 6199.67 15199.63 10998.58 35497.65 41099.07 9799.57 39298.85 15698.92 35799.03 338
sasdasda99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
canonicalmvs99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
MonoMVSNet98.23 30298.32 28097.99 35898.97 36696.62 36799.49 10098.42 37499.62 11299.40 24899.79 10095.51 32098.58 41797.68 26695.98 41598.76 371
EI-MVSNet99.38 12499.44 9899.21 26499.58 19598.09 31799.26 15799.46 26599.62 11299.75 11999.67 18098.54 17099.85 24799.15 12499.92 10599.68 94
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 11999.62 11299.84 7799.71 15098.62 15899.96 5599.30 10199.96 6899.86 34
IterMVS-LS99.41 11699.47 8999.25 26099.81 8098.09 31798.85 26399.76 10499.62 11299.83 8199.64 19298.54 17099.97 3499.15 12499.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
diffmvspermissive99.34 13799.32 12399.39 22099.67 17098.77 26598.57 30199.81 8199.61 11699.48 22299.41 28698.47 18199.86 22998.97 14699.90 11699.53 194
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14399.63 17699.61 11699.71 13799.56 24698.76 13999.96 5599.14 13099.92 10599.68 94
LS3D99.24 15699.11 16599.61 15198.38 40599.79 4899.57 8299.68 14699.61 11699.15 29599.71 15098.70 14799.91 14597.54 27399.68 24899.13 313
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 10999.60 12299.92 4399.87 5298.75 14199.86 22999.90 2599.99 1699.73 73
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23699.89 4599.60 12299.82 8299.62 21098.81 12999.89 18299.43 7699.86 15599.47 224
DSMNet-mixed99.48 9199.65 5298.95 29899.71 14497.27 35299.50 9699.82 7299.59 12499.41 24399.85 6399.62 33100.00 199.53 6699.89 12699.59 166
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 10999.58 12599.85 7499.69 16598.18 21999.94 7999.28 10699.95 8199.83 43
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18699.54 12699.80 9399.64 19297.79 24599.95 6499.21 11299.94 9499.84 39
test_040299.22 16599.14 15699.45 19899.79 9899.43 16599.28 15299.68 14699.54 12699.40 24899.56 24699.07 9799.82 28796.01 36099.96 6899.11 314
WBMVS97.50 33397.18 33998.48 33898.85 37795.89 38398.44 31999.52 24599.53 12899.52 21199.42 28580.10 40999.86 22999.24 10899.95 8199.68 94
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13599.77 9999.53 12899.77 11199.76 12299.26 7299.78 31597.77 24799.88 13599.60 159
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9699.53 12899.67 15299.78 11099.19 7999.86 22997.32 28699.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20699.25 31999.69 9699.05 22599.82 7299.50 13198.97 31299.05 35398.98 11199.98 2198.20 20799.24 33798.62 375
new-patchmatchnet99.35 13299.57 7398.71 32899.82 7296.62 36798.55 30399.75 10999.50 13199.88 6299.87 5299.31 6499.88 19699.43 76100.00 199.62 145
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20699.68 14699.49 13399.80 9399.79 10099.01 10699.93 9798.24 20399.82 18199.73 73
ETV-MVS99.18 17999.18 15099.16 27099.34 29799.28 20199.12 20699.79 9099.48 13498.93 31698.55 39299.40 5199.93 9798.51 18699.52 29898.28 394
CANet_DTU98.91 23498.85 23099.09 28198.79 38598.13 31298.18 33599.31 30499.48 13498.86 32799.51 26196.56 29499.95 6499.05 13899.95 8199.19 297
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24699.67 15199.48 13499.55 20299.36 30294.92 32499.86 22998.95 15296.57 41199.45 229
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32099.48 13499.56 19799.77 11994.89 32599.93 9798.72 17399.89 12699.63 134
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28699.47 13899.76 11499.78 11098.13 22199.86 22998.70 17499.68 24899.49 216
xiu_mvs_v2_base99.02 21399.11 16598.77 32399.37 28298.09 31798.13 34199.51 25099.47 13899.42 23798.54 39399.38 5699.97 3498.83 15899.33 32498.24 396
PS-MVSNAJ99.00 22199.08 17698.76 32499.37 28298.10 31698.00 35799.51 25099.47 13899.41 24398.50 39599.28 6899.97 3498.83 15899.34 32398.20 400
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7299.46 14199.75 11999.56 24699.63 3099.95 6499.43 7699.88 13599.62 145
NR-MVSNet99.40 11899.31 12599.68 10999.43 26899.55 14099.73 2799.50 25499.46 14199.88 6299.36 30297.54 26099.87 21098.97 14699.87 14799.63 134
CDS-MVSNet99.22 16599.13 15899.50 18499.35 28899.11 22998.96 25299.54 23199.46 14199.61 17999.70 15896.31 30699.83 27799.34 9399.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
MVStest198.22 30498.09 29998.62 33099.04 35896.23 37699.20 17499.92 3499.44 14699.98 1399.87 5285.87 39999.67 36899.91 2499.57 28399.95 13
E-PMN97.14 34497.43 33196.27 39598.79 38591.62 41495.54 41399.01 34699.44 14698.88 32399.12 34592.78 34999.68 36394.30 39499.03 35097.50 408
GBi-Net99.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
test199.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
FMVSNet299.35 13299.28 13799.55 17199.49 24599.35 19099.45 10999.57 21499.44 14699.70 14199.74 13197.21 27499.87 21099.03 13999.94 9499.44 234
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 28899.47 15099.62 6499.50 25499.44 14699.12 30099.78 11098.77 13899.94 7997.87 23999.72 23499.62 145
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25699.56 13798.97 25099.61 18699.43 15299.67 15299.28 31997.85 24199.95 6499.17 12199.81 19199.65 119
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23499.58 13498.98 24999.60 19799.43 15299.70 14199.36 30297.70 24999.88 19699.20 11599.87 14799.59 166
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27199.66 15699.42 15699.75 11999.66 18599.20 7899.76 32698.98 14499.99 1699.36 256
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7299.39 15799.82 8299.84 6999.38 5699.91 14599.38 8599.93 10199.80 50
DU-MVS99.33 14099.21 14799.71 10199.43 26899.56 13798.83 26699.53 24099.38 15899.67 15299.36 30297.67 25399.95 6499.17 12199.81 19199.63 134
mvsmamba99.08 20098.95 21699.45 19899.36 28599.18 22399.39 11798.81 35399.37 15999.35 25599.70 15896.36 30599.94 7998.66 17899.59 27999.22 287
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33599.37 15999.61 17999.71 15094.73 32899.81 30297.70 25899.88 13599.58 171
MVEpermissive92.54 2296.66 35496.11 35898.31 34999.68 16497.55 34397.94 36495.60 40999.37 15990.68 42098.70 38696.56 29498.61 41686.94 41799.55 28898.77 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DELS-MVS99.34 13799.30 13099.48 19099.51 23499.36 18798.12 34299.53 24099.36 16299.41 24399.61 21999.22 7699.87 21099.21 11299.68 24899.20 294
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37399.78 5199.15 19499.66 15699.34 16398.92 31999.24 33197.69 25199.98 2198.11 21799.28 33198.81 365
EMVS96.96 34797.28 33595.99 39898.76 39091.03 41795.26 41598.61 36499.34 16398.92 31998.88 37693.79 33799.66 37392.87 40299.05 34897.30 412
baseline197.73 32397.33 33498.96 29699.30 30897.73 33899.40 11598.42 37499.33 16599.46 22899.21 33591.18 36499.82 28798.35 19491.26 41999.32 266
dmvs_re98.69 25898.48 26399.31 24499.55 21999.42 16899.54 8798.38 37899.32 16698.72 34298.71 38596.76 29099.21 40996.01 36099.35 32299.31 270
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15799.76 10499.32 16699.80 9399.78 11099.29 6699.87 21099.15 12499.91 11599.66 111
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33999.47 27598.47 18199.88 19697.62 26799.73 22899.67 102
X-MVStestdata96.09 36894.87 38099.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33961.30 43098.47 18199.88 19697.62 26799.73 22899.67 102
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28699.80 8697.83 33398.89 25899.72 12899.29 16899.63 16499.70 15896.47 29899.89 18298.17 21399.82 18199.50 211
Anonymous20240521198.75 25198.46 26599.63 13999.34 29799.66 10399.47 10597.65 39499.28 17199.56 19799.50 26493.15 34499.84 26298.62 18199.58 28199.40 246
mvsany_test199.44 10699.45 9599.40 21799.37 28298.64 27997.90 36999.59 20399.27 17299.92 4399.82 8099.74 2099.93 9799.55 6299.87 14799.63 134
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13299.53 24099.27 17299.42 23799.63 20398.21 21499.95 6497.83 24699.79 20399.65 119
MVSTER98.47 28298.22 28899.24 26299.06 35498.35 30099.08 22199.46 26599.27 17299.75 11999.66 18588.61 38699.85 24799.14 13099.92 10599.52 204
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16499.71 13199.27 17299.93 3899.90 3399.70 2499.93 9798.99 14299.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.11 19699.05 18699.28 25198.83 37998.56 28498.71 28699.41 27699.25 17699.23 28299.22 33397.66 25799.94 7999.19 11699.97 5599.33 263
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19699.58 21299.25 17699.81 8999.62 21098.24 20999.84 26299.83 3399.97 5599.64 129
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20399.24 17899.86 7199.70 15898.55 16899.82 28799.79 3999.95 8199.60 159
EPNet_dtu97.62 32897.79 32297.11 38696.67 42192.31 40998.51 31098.04 38699.24 17895.77 41399.47 27593.78 33899.66 37398.98 14499.62 26599.37 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_one_060199.63 17899.76 6399.55 22599.23 18099.31 26999.61 21998.59 162
Anonymous2023120699.35 13299.31 12599.47 19299.74 13599.06 23999.28 15299.74 11599.23 18099.72 13299.53 25797.63 25999.88 19699.11 13299.84 16499.48 220
FMVSNet398.80 24798.63 24999.32 24199.13 34098.72 26899.10 21499.48 25999.23 18099.62 17399.64 19292.57 35099.86 22998.96 14899.90 11699.39 248
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27799.42 16899.70 3599.56 21999.23 18099.35 25599.80 9099.17 8199.95 6498.21 20699.84 16499.59 166
SD-MVS99.01 21999.30 13098.15 35499.50 24099.40 17598.94 25599.61 18699.22 18499.75 11999.82 8099.54 4395.51 42197.48 27799.87 14799.54 189
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21499.61 18699.20 18599.84 7799.73 13598.67 15299.84 26299.86 3299.98 4199.64 129
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15599.61 18699.19 18699.57 19099.64 19298.76 13999.90 16397.29 28899.62 26599.56 178
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13599.74 11599.18 18799.69 14499.75 12798.41 19099.84 26297.85 24299.70 23999.10 316
DVP-MVS++99.38 12499.25 14399.77 5999.03 35999.77 5699.74 2499.61 18699.18 18799.76 11499.61 21999.00 10799.92 12397.72 25399.60 27599.62 145
test_0728_THIRD99.18 18799.62 17399.61 21998.58 16499.91 14597.72 25399.80 19899.77 63
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21199.62 17999.18 18799.89 5399.72 14298.66 15499.87 21099.88 2999.97 5599.66 111
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23099.60 19799.18 18799.87 7099.72 14299.08 9599.85 24799.89 2899.98 4199.66 111
v14899.40 11899.41 10499.39 22099.76 11798.94 24999.09 21899.59 20399.17 19299.81 8999.61 21998.41 19099.69 35199.32 9899.94 9499.53 194
MVS_Test99.28 14699.31 12599.19 26799.35 28898.79 26399.36 12799.49 25899.17 19299.21 28799.67 18098.78 13699.66 37399.09 13499.66 25799.10 316
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.41 19099.91 14597.27 29199.61 27299.54 189
RE-MVS-def99.13 15899.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.57 16597.27 29199.61 27299.54 189
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19699.31 30499.16 19499.62 17399.61 21998.35 19899.91 14597.88 23699.72 23499.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15699.80 4699.24 16499.57 21499.16 19499.73 13199.65 19098.35 198
v192192099.56 7499.57 7399.55 17199.75 12999.11 22999.05 22599.61 18699.15 19899.88 6299.71 15099.08 9599.87 21099.90 2599.97 5599.66 111
v124099.56 7499.58 6999.51 18299.80 8699.00 24199.00 24199.65 16699.15 19899.90 4999.75 12799.09 9299.88 19699.90 2599.96 6899.67 102
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17499.54 23199.13 20099.82 8299.63 20398.91 12199.92 12397.85 24299.70 23999.58 171
test_241102_TWO99.54 23199.13 20099.76 11499.63 20398.32 20399.92 12397.85 24299.69 24399.75 71
MVS-HIRNet97.86 31798.22 28896.76 38899.28 31391.53 41598.38 32292.60 41899.13 20099.31 26999.96 1597.18 27899.68 36398.34 19599.83 17299.07 332
test_241102_ONE99.69 15699.82 3799.54 23199.12 20399.82 8299.49 26898.91 12199.52 401
Vis-MVSNet (Re-imp)98.77 24998.58 25599.34 23399.78 10598.88 25699.61 7099.56 21999.11 20499.24 28199.56 24693.00 34899.78 31597.43 28099.89 12699.35 259
ppachtmachnet_test98.89 23999.12 16298.20 35399.66 17195.24 39297.63 37999.68 14699.08 20599.78 10399.62 21098.65 15699.88 19698.02 22299.96 6899.48 220
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31399.22 21598.99 24699.40 28399.08 20599.58 18799.64 19298.90 12499.83 27797.44 27999.75 21699.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.53 22799.25 20898.29 32899.38 29099.07 207
our_test_398.85 24399.09 17498.13 35599.66 17194.90 39697.72 37599.58 21299.07 20799.64 16099.62 21098.19 21799.93 9798.41 19099.95 8199.55 181
tttt051797.62 32897.20 33898.90 31199.76 11797.40 34999.48 10294.36 41299.06 20999.70 14199.49 26884.55 40299.94 7998.73 17299.65 25999.36 256
WR-MVS99.11 19698.93 21899.66 11999.30 30899.42 16898.42 32099.37 29199.04 21099.57 19099.20 33796.89 28699.86 22998.66 17899.87 14799.70 82
test_vis1_rt99.45 10499.46 9399.41 21599.71 14498.63 28098.99 24699.96 2599.03 21199.95 3299.12 34598.75 14199.84 26299.82 3799.82 18199.77 63
miper_lstm_enhance98.65 26198.60 25098.82 32199.20 32997.33 35197.78 37399.66 15699.01 21299.59 18599.50 26494.62 32999.85 24798.12 21699.90 11699.26 278
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14398.99 21399.75 11999.71 15098.79 13499.93 9798.46 18899.85 15999.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20299.65 16698.99 21399.64 16099.72 14299.39 5299.86 22998.23 20499.81 19199.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_yl98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
DCV-MVSNet98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
UWE-MVS96.21 36695.78 36697.49 37398.53 40093.83 40398.04 35293.94 41698.96 21798.46 36298.17 40179.86 41099.87 21096.99 30899.06 34698.78 368
MIMVSNet98.43 28598.20 29099.11 27899.53 22798.38 29899.58 7998.61 36498.96 21799.33 26199.76 12290.92 36899.81 30297.38 28399.76 21499.15 305
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24298.09 34699.90 4398.95 21999.78 10399.58 23599.57 4099.93 9799.48 7199.95 8199.79 57
eth_miper_zixun_eth98.68 25998.71 24398.60 33299.10 34996.84 36497.52 38799.54 23198.94 22099.58 18799.48 27196.25 30999.76 32698.01 22599.93 10199.21 290
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27499.54 23198.94 22099.14 29799.25 32697.24 27299.82 28795.84 37099.78 20899.60 159
plane_prior298.80 27498.94 220
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30299.76 6399.34 12999.97 1998.93 22399.91 4699.79 10098.68 14999.93 9796.80 32199.56 28499.30 272
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31499.64 17697.16 35598.23 33399.33 29898.93 22399.56 19799.66 18597.39 26799.83 27798.29 19899.88 13599.55 181
YYNet198.95 23198.99 20998.84 31699.64 17697.14 35798.22 33499.32 30098.92 22599.59 18599.66 18597.40 26599.83 27798.27 20099.90 11699.55 181
Patchmatch-RL test98.60 26598.36 27599.33 23699.77 11399.07 23798.27 32999.87 5198.91 22699.74 12799.72 14290.57 37599.79 31298.55 18499.85 15999.11 314
cl____98.54 27398.41 27098.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.85 33699.78 31597.97 22999.89 12699.17 301
DIV-MVS_self_test98.54 27398.42 26998.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.87 33599.78 31597.97 22999.89 12699.18 299
c3_l98.72 25598.71 24398.72 32699.12 34297.22 35497.68 37899.56 21998.90 22799.54 20499.48 27196.37 30499.73 33697.88 23699.88 13599.21 290
MG-MVS98.52 27598.39 27298.94 29999.15 33797.39 35098.18 33599.21 32798.89 23099.23 28299.63 20397.37 26899.74 33394.22 39599.61 27299.69 88
FMVSNet597.80 32097.25 33799.42 20898.83 37998.97 24599.38 12099.80 8498.87 23199.25 27899.69 16580.60 40899.91 14598.96 14899.90 11699.38 250
ab-mvs99.33 14099.28 13799.47 19299.57 20599.39 17899.78 1499.43 27398.87 23199.57 19099.82 8098.06 22699.87 21098.69 17699.73 22899.15 305
testing1196.05 37095.41 37297.97 36098.78 38795.27 39198.59 29598.23 38398.86 23396.56 40796.91 42075.20 41899.69 35197.26 29398.29 38798.93 352
SR-MVS99.19 17599.00 20299.74 8199.51 23499.72 8399.18 18199.60 19798.85 23499.47 22499.58 23598.38 19599.92 12396.92 31299.54 29399.57 176
MSLP-MVS++99.05 20799.09 17498.91 30599.21 32698.36 29998.82 27099.47 26298.85 23498.90 32299.56 24698.78 13699.09 41198.57 18399.68 24899.26 278
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25399.86 5498.85 23499.81 8999.73 13598.40 19499.92 12398.36 19399.83 17299.17 301
MSDG99.08 20098.98 21299.37 22699.60 18599.13 22797.54 38399.74 11598.84 23799.53 20999.55 25399.10 9099.79 31297.07 30699.86 15599.18 299
UBG96.53 35695.95 36198.29 35198.87 37696.31 37498.48 31398.07 38598.83 23897.32 39596.54 42579.81 41199.62 38396.84 31998.74 37098.95 349
testing9196.00 37195.32 37598.02 35798.76 39095.39 38898.38 32298.65 36398.82 23996.84 40396.71 42375.06 41999.71 34296.46 34398.23 38998.98 346
pmmvs599.19 17599.11 16599.42 20899.76 11798.88 25698.55 30399.73 11998.82 23999.72 13299.62 21096.56 29499.82 28799.32 9899.95 8199.56 178
Effi-MVS+99.06 20498.97 21399.34 23399.31 30498.98 24398.31 32799.91 3898.81 24198.79 33698.94 37199.14 8699.84 26298.79 16498.74 37099.20 294
Patchmatch-test98.10 31097.98 30798.48 33899.27 31596.48 36999.40 11599.07 34098.81 24199.23 28299.57 24290.11 37999.87 21096.69 32699.64 26199.09 321
CHOSEN 280x42098.41 28798.41 27098.40 34299.34 29795.89 38396.94 40599.44 27098.80 24399.25 27899.52 25993.51 34299.98 2198.94 15399.98 4199.32 266
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 5998.79 24499.41 24399.60 22798.92 11999.92 12398.02 22299.92 10599.43 240
TinyColmap98.97 22598.93 21899.07 28699.46 26098.19 30797.75 37499.75 10998.79 24499.54 20499.70 15898.97 11399.62 38396.63 33399.83 17299.41 244
dmvs_testset97.27 34096.83 35098.59 33399.46 26097.55 34399.25 16396.84 40398.78 24697.24 39897.67 40997.11 28098.97 41386.59 41898.54 38199.27 276
pmmvs499.13 19199.06 18299.36 23099.57 20599.10 23498.01 35599.25 31798.78 24699.58 18799.44 28298.24 20999.76 32698.74 17199.93 10199.22 287
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15799.35 29598.77 24899.57 19099.70 15899.27 7199.88 19697.71 25599.75 21699.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thres600view796.60 35596.16 35797.93 36299.63 17896.09 38099.18 18197.57 39598.77 24898.72 34297.32 41587.04 39199.72 33888.57 41098.62 37897.98 404
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9098.77 24899.80 9399.85 6399.64 2899.85 24798.70 17499.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_HR99.12 19399.02 19599.40 21799.50 24099.11 22997.92 36699.71 13198.76 25199.08 30499.47 27599.17 8199.54 39697.85 24299.76 21499.54 189
thres100view90096.39 36096.03 36097.47 37599.63 17895.93 38199.18 18197.57 39598.75 25298.70 34597.31 41687.04 39199.67 36887.62 41398.51 38296.81 413
testing396.48 35895.63 36999.01 29299.23 32397.81 33498.90 25799.10 33998.72 25397.84 38897.92 40672.44 42299.85 24797.21 30099.33 32499.35 259
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32499.75 6997.25 39799.47 26298.72 25399.66 15799.70 15899.29 6699.63 38298.07 22199.81 19199.62 145
ETVMVS96.14 36795.22 37798.89 31298.80 38398.01 32298.66 28898.35 38098.71 25597.18 40096.31 42974.23 42199.75 33096.64 33298.13 39798.90 356
jason99.16 18599.11 16599.32 24199.75 12998.44 29198.26 33199.39 28698.70 25699.74 12799.30 31598.54 17099.97 3498.48 18799.82 18199.55 181
jason: jason.
testing9995.86 37595.19 37897.87 36498.76 39095.03 39398.62 28998.44 37398.68 25796.67 40696.66 42474.31 42099.69 35196.51 33898.03 39998.90 356
MVS_111021_LR99.13 19199.03 19499.42 20899.58 19599.32 19597.91 36899.73 11998.68 25799.31 26999.48 27199.09 9299.66 37397.70 25899.77 21299.29 275
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 27899.88 4998.66 25999.96 2499.79 10097.45 26399.93 9799.34 9399.99 1699.78 59
NCCC98.82 24598.57 25699.58 15999.21 32699.31 19698.61 29099.25 31798.65 26098.43 36399.26 32497.86 23999.81 30296.55 33599.27 33499.61 155
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 34999.83 6798.64 26199.89 5399.60 22792.57 350100.00 199.33 9699.97 5599.72 76
WB-MVSnew98.34 29698.14 29698.96 29698.14 41497.90 33198.27 32997.26 40198.63 26298.80 33498.00 40597.77 24699.90 16397.37 28498.98 35399.09 321
MVP-Stereo99.16 18599.08 17699.43 20699.48 25099.07 23799.08 22199.55 22598.63 26299.31 26999.68 17698.19 21799.78 31598.18 21199.58 28199.45 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20699.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
TestCases99.63 13999.78 10599.64 11299.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
thisisatest053097.45 33496.95 34598.94 29999.68 16497.73 33899.09 21894.19 41498.61 26699.56 19799.30 31584.30 40399.93 9798.27 20099.54 29399.16 303
API-MVS98.38 29098.39 27298.35 34498.83 37999.26 20599.14 19699.18 33198.59 26798.66 34798.78 38298.61 16099.57 39294.14 39699.56 28496.21 415
CNVR-MVS98.99 22498.80 23899.56 16899.25 31999.43 16598.54 30699.27 31298.58 26898.80 33499.43 28398.53 17499.70 34597.22 29999.59 27999.54 189
ITE_SJBPF99.38 22399.63 17899.44 16199.73 11998.56 26999.33 26199.53 25798.88 12599.68 36396.01 36099.65 25999.02 343
D2MVS99.22 16599.19 14999.29 24899.69 15698.74 26798.81 27199.41 27698.55 27099.68 14799.69 16598.13 22199.87 21098.82 16099.98 4199.24 281
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28299.60 19798.55 27099.76 11499.69 16598.23 21399.92 12396.39 34699.75 21699.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18199.60 19798.55 27099.57 19099.67 18099.03 10599.94 7997.01 30799.80 19899.69 88
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21498.54 27399.54 20498.99 36296.81 28899.93 9796.97 31099.53 29599.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testing22295.60 38194.59 38498.61 33198.66 39797.45 34798.54 30697.90 39198.53 27496.54 40896.47 42670.62 42599.81 30295.91 36898.15 39498.56 382
tpmrst97.73 32398.07 30196.73 39098.71 39492.00 41099.10 21498.86 34998.52 27598.92 31999.54 25591.90 35699.82 28798.02 22299.03 35098.37 391
MDTV_nov1_ep1397.73 32498.70 39590.83 41899.15 19498.02 38798.51 27698.82 33199.61 21990.98 36799.66 37396.89 31598.92 357
miper_ehance_all_eth98.59 26898.59 25298.59 33398.98 36597.07 35897.49 38899.52 24598.50 27799.52 21199.37 29896.41 30299.71 34297.86 24099.62 26599.00 345
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29799.48 25998.50 27799.52 21199.63 20399.14 8699.76 32697.89 23599.77 21299.51 206
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch99.00 22198.97 21399.09 28199.11 34798.19 30798.76 28099.33 29898.49 27999.44 23099.58 23598.21 21499.69 35198.20 20799.62 26599.39 248
CNLPA98.57 27098.34 27899.28 25199.18 33499.10 23498.34 32499.41 27698.48 28098.52 35898.98 36597.05 28299.78 31595.59 37599.50 30298.96 347
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23299.71 8598.86 26199.19 33098.47 28198.59 35399.06 35298.08 22599.91 14596.94 31199.60 27599.60 159
tfpn200view996.30 36395.89 36297.53 37299.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38296.81 413
TESTMET0.1,196.24 36495.84 36597.41 37798.24 40993.84 40297.38 39195.84 40898.43 28297.81 38998.56 39179.77 41299.89 18297.77 24798.77 36698.52 383
thres40096.40 35995.89 36297.92 36399.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38297.98 404
EIA-MVS99.12 19399.01 19899.45 19899.36 28599.62 11999.34 12999.79 9098.41 28598.84 32998.89 37598.75 14199.84 26298.15 21599.51 29998.89 358
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14099.59 20398.41 28599.32 26499.36 30298.73 14599.93 9797.29 28899.74 22399.67 102
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29799.07 34098.40 28799.04 30999.25 32698.51 17999.80 30997.31 28799.51 29999.65 119
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33299.73 11998.39 28899.63 16499.43 28399.70 2499.90 16397.34 28598.64 37799.44 234
testgi99.29 14599.26 14199.37 22699.75 12998.81 26098.84 26499.89 4598.38 28999.75 11999.04 35599.36 6199.86 22999.08 13699.25 33599.45 229
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 17998.38 28999.06 30899.27 32198.79 13499.94 7997.51 27699.82 18199.66 111
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14099.59 20398.36 29199.36 25399.37 29898.80 13399.91 14597.43 28099.75 21699.68 94
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14099.59 20398.36 29199.35 25599.38 29698.61 16099.93 9797.43 28099.75 21699.67 102
plane_prior399.31 19698.36 29199.14 297
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37099.74 11598.36 29199.66 15799.68 17699.71 2299.90 16396.84 31999.88 13599.43 240
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26699.72 12898.36 29199.60 18299.71 15098.92 11999.91 14597.08 30599.84 16499.40 246
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13599.50 25498.35 29698.97 31299.48 27198.37 19699.92 12395.95 36699.75 21699.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13698.35 29699.51 21799.50 26499.31 6499.88 19698.18 21199.84 16499.69 88
N_pmnet98.73 25498.53 26199.35 23299.72 14198.67 27198.34 32494.65 41198.35 29699.79 9999.68 17698.03 22799.93 9798.28 19999.92 10599.44 234
BH-RMVSNet98.41 28798.14 29699.21 26499.21 32698.47 28898.60 29298.26 38298.35 29698.93 31699.31 31397.20 27799.66 37394.32 39399.10 34499.51 206
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23198.34 30099.01 31099.50 26498.53 17499.93 9797.18 30299.78 20899.66 111
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7298.33 30199.50 21999.78 11097.90 23699.65 37996.78 32299.83 17299.44 234
GA-MVS97.99 31697.68 32698.93 30299.52 23298.04 32197.19 39999.05 34398.32 30298.81 33298.97 36789.89 38299.41 40798.33 19699.05 34899.34 262
LF4IMVS99.01 21998.92 22299.27 25499.71 14499.28 20198.59 29599.77 9998.32 30299.39 25099.41 28698.62 15899.84 26296.62 33499.84 16498.69 373
lupinMVS98.96 22898.87 22899.24 26299.57 20598.40 29498.12 34299.18 33198.28 30499.63 16499.13 34198.02 22899.97 3498.22 20599.69 24399.35 259
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25399.53 24098.27 30599.53 20999.73 13598.75 14199.87 21097.70 25899.83 17299.68 94
SCA98.11 30998.36 27597.36 37899.20 32992.99 40698.17 33798.49 37198.24 30699.10 30399.57 24296.01 31399.94 7996.86 31699.62 26599.14 310
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17499.55 22598.22 30799.32 26499.35 30798.65 15699.91 14596.86 31699.74 22399.62 145
EPMVS96.53 35696.32 35497.17 38598.18 41192.97 40799.39 11789.95 42298.21 30898.61 35199.59 23286.69 39799.72 33896.99 30899.23 33998.81 365
USDC98.96 22898.93 21899.05 28999.54 22197.99 32397.07 40399.80 8498.21 30899.75 11999.77 11998.43 18799.64 38197.90 23499.88 13599.51 206
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15299.56 21998.19 31099.14 29799.29 31898.84 12899.92 12397.53 27599.80 19899.64 129
TSAR-MVS + GP.99.12 19399.04 19299.38 22399.34 29799.16 22498.15 33899.29 30898.18 31199.63 16499.62 21099.18 8099.68 36398.20 20799.74 22399.30 272
PatchmatchNetpermissive97.65 32797.80 32097.18 38498.82 38292.49 40899.17 18698.39 37798.12 31298.79 33699.58 23590.71 37399.89 18297.23 29899.41 31499.16 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AUN-MVS97.82 31997.38 33399.14 27599.27 31598.53 28598.72 28499.02 34498.10 31397.18 40099.03 35989.26 38499.85 24797.94 23197.91 40099.03 338
WTY-MVS98.59 26898.37 27499.26 25799.43 26898.40 29498.74 28299.13 33898.10 31399.21 28799.24 33194.82 32699.90 16397.86 24098.77 36699.49 216
CL-MVSNet_self_test98.71 25698.56 25999.15 27299.22 32498.66 27497.14 40099.51 25098.09 31599.54 20499.27 32196.87 28799.74 33398.43 18998.96 35499.03 338
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16698.07 31699.52 21199.69 16598.57 16599.92 12397.18 30299.79 20399.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres20096.09 36895.68 36897.33 38099.48 25096.22 37798.53 30897.57 39598.06 31798.37 36596.73 42286.84 39599.61 38886.99 41698.57 37996.16 416
test-LLR97.15 34296.95 34597.74 37098.18 41195.02 39497.38 39196.10 40498.00 31897.81 38998.58 38890.04 38099.91 14597.69 26498.78 36498.31 392
test0.0.03 197.37 33896.91 34898.74 32597.72 41797.57 34297.60 38197.36 40098.00 31899.21 28798.02 40390.04 38099.79 31298.37 19295.89 41698.86 361
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19299.72 12897.99 32099.42 23799.60 22798.81 12999.93 9796.91 31399.74 22399.66 111
new_pmnet98.88 24098.89 22698.84 31699.70 15297.62 34198.15 33899.50 25497.98 32199.62 17399.54 25598.15 22099.94 7997.55 27299.84 16498.95 349
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20299.65 16697.97 32299.42 23799.61 21998.86 12699.87 21096.45 34499.68 24899.49 216
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20299.90 3698.66 27498.94 25599.91 3897.97 32299.79 9999.73 13599.05 10299.97 3499.15 12499.99 1699.68 94
wuyk23d97.58 33099.13 15892.93 40099.69 15699.49 14799.52 8999.77 9997.97 32299.96 2499.79 10099.84 1299.94 7995.85 36999.82 18179.36 418
ET-MVSNet_ETH3D96.78 35096.07 35998.91 30599.26 31897.92 33097.70 37796.05 40797.96 32592.37 41998.43 39687.06 39099.90 16398.27 20097.56 40598.91 355
sss98.90 23698.77 24099.27 25499.48 25098.44 29198.72 28499.32 30097.94 32699.37 25299.35 30796.31 30699.91 14598.85 15699.63 26499.47 224
test-mter96.23 36595.73 36797.74 37098.18 41195.02 39497.38 39196.10 40497.90 32797.81 38998.58 38879.12 41599.91 14597.69 26498.78 36498.31 392
Syy-MVS98.17 30797.85 31999.15 27298.50 40298.79 26398.60 29299.21 32797.89 32896.76 40496.37 42795.47 32199.57 39299.10 13398.73 37399.09 321
myMVS_eth3d95.63 37994.73 38198.34 34698.50 40296.36 37298.60 29299.21 32797.89 32896.76 40496.37 42772.10 42399.57 39294.38 39298.73 37399.09 321
PHI-MVS99.11 19698.95 21699.59 15699.13 34099.59 13099.17 18699.65 16697.88 33099.25 27899.46 27898.97 11399.80 30997.26 29399.82 18199.37 253
test_prior297.95 36397.87 33198.05 37899.05 35397.90 23695.99 36399.49 304
plane_prior99.24 21298.42 32097.87 33199.71 237
testdata197.72 37597.86 333
AdaColmapbinary98.60 26598.35 27799.38 22399.12 34299.22 21598.67 28799.42 27597.84 33498.81 33299.27 32197.32 27099.81 30295.14 38499.53 29599.10 316
BH-untuned98.22 30498.09 29998.58 33599.38 28097.24 35398.55 30398.98 34797.81 33599.20 29298.76 38397.01 28399.65 37994.83 38798.33 38598.86 361
tpmvs97.39 33797.69 32596.52 39298.41 40491.76 41299.30 14398.94 34897.74 33697.85 38799.55 25392.40 35599.73 33696.25 35298.73 37398.06 403
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15197.72 33799.35 25599.25 32699.23 7599.92 12397.21 30099.82 18199.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 34296.95 34597.75 36998.91 36994.24 39999.32 13597.96 38897.71 33898.29 36699.32 31186.72 39699.92 12398.10 22096.24 41499.09 321
PVSNet97.47 1598.42 28698.44 26798.35 34499.46 26096.26 37596.70 40899.34 29797.68 33999.00 31199.13 34197.40 26599.72 33897.59 27199.68 24899.08 327
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 30999.82 7297.65 34099.43 23499.16 33996.42 30099.91 14599.07 13799.84 16499.80 50
PVSNet_BlendedMVS99.03 21199.01 19899.09 28199.54 22197.99 32398.58 29799.82 7297.62 34199.34 25999.71 15098.52 17799.77 32397.98 22799.97 5599.52 204
PC_three_145297.56 34299.68 14799.41 28699.09 9297.09 41896.66 32999.60 27599.62 145
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19299.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
PAPM_NR98.36 29198.04 30299.33 23699.48 25098.93 25298.79 27799.28 31197.54 34598.56 35798.57 39097.12 27999.69 35194.09 39798.90 36199.38 250
PMMVS98.49 28098.29 28599.11 27898.96 36798.42 29397.54 38399.32 30097.53 34698.47 36198.15 40297.88 23899.82 28797.46 27899.24 33799.09 321
9.1498.64 24799.45 26498.81 27199.60 19797.52 34799.28 27599.56 24698.53 17499.83 27795.36 38199.64 261
IU-MVS99.69 15699.77 5699.22 32497.50 34899.69 14497.75 25199.70 23999.77 63
UnsupCasMVSNet_bld98.55 27298.27 28699.40 21799.56 21699.37 18397.97 36299.68 14697.49 34999.08 30499.35 30795.41 32299.82 28797.70 25898.19 39299.01 344
HQP-NCC99.31 30497.98 35997.45 35098.15 372
ACMP_Plane99.31 30497.98 35997.45 35098.15 372
HQP-MVS98.36 29198.02 30499.39 22099.31 30498.94 24997.98 35999.37 29197.45 35098.15 37298.83 37896.67 29199.70 34594.73 38899.67 25499.53 194
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26099.73 7899.13 20299.52 24597.40 35399.57 19099.64 19298.93 11699.83 27797.61 26999.79 20399.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet98.35 29498.20 29098.83 31899.05 35598.12 31399.30 14399.67 15197.39 35499.16 29399.79 10091.87 35899.91 14598.78 16898.77 36698.44 389
MDTV_nov1_ep13_2view91.44 41699.14 19697.37 35599.21 28791.78 36096.75 32399.03 338
FA-MVS(test-final)98.52 27598.32 28099.10 28099.48 25098.67 27199.77 1698.60 36697.35 35699.63 16499.80 9093.07 34699.84 26297.92 23299.30 32898.78 368
dp96.86 34897.07 34196.24 39698.68 39690.30 42299.19 18098.38 37897.35 35698.23 37099.59 23287.23 38999.82 28796.27 35198.73 37398.59 378
cl2297.56 33197.28 33598.40 34298.37 40696.75 36597.24 39899.37 29197.31 35899.41 24399.22 33387.30 38899.37 40897.70 25899.62 26599.08 327
OMC-MVS98.90 23698.72 24299.44 20299.39 27799.42 16898.58 29799.64 17497.31 35899.44 23099.62 21098.59 16299.69 35196.17 35699.79 20399.22 287
thisisatest051596.98 34696.42 35398.66 32999.42 27397.47 34597.27 39694.30 41397.24 36099.15 29598.86 37785.01 40099.87 21097.10 30499.39 31698.63 374
KD-MVS_2432*160095.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
miper_refine_blended95.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
baseline296.83 34996.28 35598.46 34099.09 35296.91 36298.83 26693.87 41797.23 36196.23 41298.36 39788.12 38799.90 16396.68 32798.14 39598.57 381
Fast-Effi-MVS+99.02 21398.87 22899.46 19599.38 28099.50 14699.04 23099.79 9097.17 36498.62 35098.74 38499.34 6299.95 6498.32 19799.41 31498.92 354
FPMVS96.32 36295.50 37098.79 32299.60 18598.17 31098.46 31898.80 35497.16 36596.28 40999.63 20382.19 40499.09 41188.45 41198.89 36299.10 316
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34699.80 8497.14 36699.46 22899.40 29096.11 31199.89 18299.01 14199.84 16499.84 39
PatchMatch-RL98.68 25998.47 26499.30 24799.44 26599.28 20198.14 34099.54 23197.12 36799.11 30199.25 32697.80 24499.70 34596.51 33899.30 32898.93 352
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 25999.66 15697.11 36899.47 22499.60 22799.07 9799.89 18296.18 35599.85 15999.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet297.78 32197.66 32898.12 35699.14 33895.36 38999.22 17198.75 35696.97 36998.25 36899.64 19290.90 36999.94 7996.51 33899.56 28499.08 327
ADS-MVSNet97.72 32697.67 32797.86 36599.14 33894.65 39799.22 17198.86 34996.97 36998.25 36899.64 19290.90 36999.84 26296.51 33899.56 28499.08 327
DPM-MVS98.28 29797.94 31399.32 24199.36 28599.11 22997.31 39598.78 35596.88 37198.84 32999.11 34897.77 24699.61 38894.03 39999.36 32099.23 285
TR-MVS97.44 33597.15 34098.32 34798.53 40097.46 34698.47 31497.91 39096.85 37298.21 37198.51 39496.42 30099.51 40292.16 40497.29 40797.98 404
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29099.63 17696.84 37399.44 23099.58 23598.81 12999.91 14597.70 25899.82 18199.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HY-MVS98.23 998.21 30697.95 30998.99 29399.03 35998.24 30299.61 7098.72 35796.81 37498.73 34199.51 26194.06 33399.86 22996.91 31398.20 39098.86 361
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24099.62 11999.01 23899.57 21496.80 37599.54 20499.63 20398.29 20499.91 14595.24 38299.71 23799.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
原ACMM199.37 22699.47 25698.87 25899.27 31296.74 37698.26 36799.32 31197.93 23599.82 28795.96 36599.38 31799.43 240
CPTT-MVS98.74 25298.44 26799.64 13299.61 18399.38 18099.18 18199.55 22596.49 37799.27 27699.37 29897.11 28099.92 12395.74 37399.67 25499.62 145
CLD-MVS98.76 25098.57 25699.33 23699.57 20598.97 24597.53 38599.55 22596.41 37899.27 27699.13 34199.07 9799.78 31596.73 32599.89 12699.23 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.43 26899.61 12599.43 27396.38 37999.11 30199.07 35197.86 23999.92 12394.04 39899.49 304
miper_enhance_ethall98.03 31397.94 31398.32 34798.27 40896.43 37196.95 40499.41 27696.37 38099.43 23498.96 36994.74 32799.69 35197.71 25599.62 26598.83 364
F-COLMAP98.74 25298.45 26699.62 14899.57 20599.47 15098.84 26499.65 16696.31 38198.93 31699.19 33897.68 25299.87 21096.52 33799.37 31999.53 194
testdata99.42 20899.51 23498.93 25299.30 30796.20 38298.87 32699.40 29098.33 20299.89 18296.29 35099.28 33199.44 234
PVSNet_095.53 1995.85 37695.31 37697.47 37598.78 38793.48 40595.72 41299.40 28396.18 38397.37 39497.73 40895.73 31599.58 39195.49 37781.40 42099.36 256
IB-MVS95.41 2095.30 38294.46 38697.84 36698.76 39095.33 39097.33 39496.07 40696.02 38495.37 41697.41 41476.17 41799.96 5597.54 27395.44 41898.22 397
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs398.08 31197.80 32098.91 30599.41 27597.69 34097.87 37099.66 15695.87 38599.50 21999.51 26190.35 37799.97 3498.55 18499.47 30699.08 327
FE-MVS97.85 31897.42 33299.15 27299.44 26598.75 26699.77 1698.20 38495.85 38699.33 26199.80 9088.86 38599.88 19696.40 34599.12 34298.81 365
无先验98.01 35599.23 32195.83 38799.85 24795.79 37299.44 234
BH-w/o97.20 34197.01 34397.76 36899.08 35395.69 38598.03 35498.52 36895.76 38897.96 38198.02 40395.62 31799.47 40492.82 40397.25 40898.12 402
PVSNet_Blended98.70 25798.59 25299.02 29199.54 22197.99 32397.58 38299.82 7295.70 38999.34 25998.98 36598.52 17799.77 32397.98 22799.83 17299.30 272
新几何199.52 17999.50 24099.22 21599.26 31495.66 39098.60 35299.28 31997.67 25399.89 18295.95 36699.32 32699.45 229
CMPMVSbinary77.52 2398.50 27898.19 29399.41 21598.33 40799.56 13799.01 23899.59 20395.44 39199.57 19099.80 9095.64 31699.46 40696.47 34299.92 10599.21 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MAR-MVS98.24 30197.92 31599.19 26798.78 38799.65 10999.17 18699.14 33695.36 39298.04 37998.81 38197.47 26299.72 33895.47 37899.06 34698.21 398
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验297.94 36495.33 39398.94 31599.88 19696.75 323
CDPH-MVS98.56 27198.20 29099.61 15199.50 24099.46 15498.32 32699.41 27695.22 39499.21 28799.10 34998.34 20099.82 28795.09 38699.66 25799.56 178
test22299.51 23499.08 23697.83 37299.29 30895.21 39598.68 34699.31 31397.28 27199.38 31799.43 240
PLCcopyleft97.35 1698.36 29197.99 30599.48 19099.32 30399.24 21298.50 31199.51 25095.19 39698.58 35498.96 36996.95 28599.83 27795.63 37499.25 33599.37 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131498.00 31597.90 31798.27 35298.90 37097.45 34799.30 14399.06 34294.98 39797.21 39999.12 34598.43 18799.67 36895.58 37698.56 38097.71 407
train_agg98.35 29497.95 30999.57 16599.35 28899.35 19098.11 34499.41 27694.90 39897.92 38298.99 36298.02 22899.85 24795.38 38099.44 30999.50 211
test_899.34 29799.31 19698.08 34899.40 28394.90 39897.87 38698.97 36798.02 22899.84 262
DP-MVS Recon98.50 27898.23 28799.31 24499.49 24599.46 15498.56 30299.63 17694.86 40098.85 32899.37 29897.81 24399.59 39096.08 35799.44 30998.88 359
TEST999.35 28899.35 19098.11 34499.41 27694.83 40197.92 38298.99 36298.02 22899.85 247
CostFormer96.71 35396.79 35296.46 39498.90 37090.71 42099.41 11498.68 35994.69 40298.14 37699.34 31086.32 39899.80 30997.60 27098.07 39898.88 359
PAPR97.56 33197.07 34199.04 29098.80 38398.11 31597.63 37999.25 31794.56 40398.02 38098.25 40097.43 26499.68 36390.90 40898.74 37099.33 263
gm-plane-assit97.59 41889.02 42493.47 40498.30 39899.84 26296.38 347
tpm296.35 36196.22 35696.73 39098.88 37591.75 41399.21 17398.51 36993.27 40597.89 38499.21 33584.83 40199.70 34596.04 35998.18 39398.75 372
tpm cat196.78 35096.98 34496.16 39798.85 37790.59 42199.08 22199.32 30092.37 40697.73 39399.46 27891.15 36599.69 35196.07 35898.80 36398.21 398
dongtai89.37 38588.91 38890.76 40199.19 33177.46 42695.47 41487.82 42592.28 40794.17 41898.82 38071.22 42495.54 42063.85 42097.34 40699.27 276
cascas96.99 34596.82 35197.48 37497.57 42095.64 38696.43 41099.56 21991.75 40897.13 40297.61 41395.58 31898.63 41596.68 32799.11 34398.18 401
QAPM98.40 28997.99 30599.65 12599.39 27799.47 15099.67 5099.52 24591.70 40998.78 33899.80 9098.55 16899.95 6494.71 39099.75 21699.53 194
OpenMVScopyleft98.12 1098.23 30297.89 31899.26 25799.19 33199.26 20599.65 5999.69 14391.33 41098.14 37699.77 11998.28 20599.96 5595.41 37999.55 28898.58 380
PAPM95.61 38094.71 38298.31 34999.12 34296.63 36696.66 40998.46 37290.77 41196.25 41098.68 38793.01 34799.69 35181.60 41997.86 40398.62 375
114514_t98.49 28098.11 29899.64 13299.73 13899.58 13499.24 16499.76 10489.94 41299.42 23799.56 24697.76 24899.86 22997.74 25299.82 18199.47 224
TAPA-MVS97.92 1398.03 31397.55 32999.46 19599.47 25699.44 16198.50 31199.62 17986.79 41399.07 30799.26 32498.26 20899.62 38397.28 29099.73 22899.31 270
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS96.03 1896.73 35295.86 36499.33 23699.44 26599.16 22496.87 40699.44 27086.58 41498.95 31499.40 29094.38 33199.88 19687.93 41299.80 19898.95 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 33996.84 34998.89 31299.29 31099.45 15998.87 26099.48 25986.54 41599.44 23099.74 13197.34 26999.86 22991.61 40599.28 33197.37 411
kuosan85.65 38784.57 39088.90 40397.91 41577.11 42796.37 41187.62 42685.24 41685.45 42196.83 42169.94 42690.98 42245.90 42195.83 41798.62 375
tmp_tt95.75 37795.42 37196.76 38889.90 42694.42 39898.86 26197.87 39278.01 41799.30 27499.69 16597.70 24995.89 41999.29 10498.14 39599.95 13
DeepMVS_CXcopyleft97.98 35999.69 15696.95 36099.26 31475.51 41895.74 41498.28 39996.47 29899.62 38391.23 40797.89 40197.38 410
MVS95.72 37894.63 38398.99 29398.56 39997.98 32899.30 14398.86 34972.71 41997.30 39699.08 35098.34 20099.74 33389.21 40998.33 38599.26 278
test_method91.72 38492.32 38789.91 40293.49 42570.18 42890.28 41699.56 21961.71 42095.39 41599.52 25993.90 33499.94 7998.76 16998.27 38899.62 145
EGC-MVSNET89.05 38685.52 38999.64 13299.89 3899.78 5199.56 8499.52 24524.19 42149.96 42299.83 7399.15 8399.92 12397.71 25599.85 15999.21 290
test12329.31 38833.05 39318.08 40425.93 42812.24 42997.53 38510.93 42911.78 42224.21 42350.08 43421.04 4278.60 42323.51 42232.43 42233.39 419
testmvs28.94 38933.33 39115.79 40526.03 4279.81 43096.77 40715.67 42811.55 42323.87 42450.74 43319.03 4288.53 42423.21 42333.07 42129.03 420
mmdepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
test_blank8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.88 39033.17 3920.00 4060.00 4290.00 4310.00 41799.62 1790.00 4240.00 42599.13 34199.82 130.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas16.61 39122.14 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 199.28 680.00 4250.00 4240.00 4230.00 421
sosnet-low-res8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
sosnet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
Regformer8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.26 40211.02 4050.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.16 3390.00 4290.00 4250.00 4240.00 4230.00 421
uanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS96.36 37295.20 383
MSC_two_6792asdad99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
No_MVS99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
eth-test20.00 429
eth-test0.00 429
OPU-MVS99.29 24899.12 34299.44 16199.20 17499.40 29099.00 10798.84 41496.54 33699.60 27599.58 171
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19699.61 18699.92 12397.88 23699.72 23499.77 63
GSMVS99.14 310
test_part299.62 18299.67 10199.55 202
sam_mvs190.81 37299.14 310
sam_mvs90.52 376
ambc99.20 26699.35 28898.53 28599.17 18699.46 26599.67 15299.80 9098.46 18499.70 34597.92 23299.70 23999.38 250
MTGPAbinary99.53 240
test_post199.14 19651.63 43289.54 38399.82 28796.86 316
test_post52.41 43190.25 37899.86 229
patchmatchnet-post99.62 21090.58 37499.94 79
GG-mvs-BLEND97.36 37897.59 41896.87 36399.70 3588.49 42494.64 41797.26 41780.66 40799.12 41091.50 40696.50 41396.08 417
MTMP99.09 21898.59 367
test9_res95.10 38599.44 30999.50 211
agg_prior294.58 39199.46 30899.50 211
agg_prior99.35 28899.36 18799.39 28697.76 39299.85 247
test_prior499.19 22198.00 357
test_prior99.46 19599.35 28899.22 21599.39 28699.69 35199.48 220
新几何298.04 352
旧先验199.49 24599.29 19999.26 31499.39 29497.67 25399.36 32099.46 228
原ACMM297.92 366
testdata299.89 18295.99 363
segment_acmp98.37 196
test1299.54 17699.29 31099.33 19399.16 33498.43 36397.54 26099.82 28799.47 30699.48 220
plane_prior799.58 19599.38 180
plane_prior699.47 25699.26 20597.24 272
plane_prior599.54 23199.82 28795.84 37099.78 20899.60 159
plane_prior499.25 326
plane_prior199.51 234
n20.00 430
nn0.00 430
door-mid99.83 67
lessismore_v099.64 13299.86 5399.38 18090.66 42099.89 5399.83 7394.56 33099.97 3499.56 6099.92 10599.57 176
test1199.29 308
door99.77 99
HQP5-MVS98.94 249
BP-MVS94.73 388
HQP4-MVS98.15 37299.70 34599.53 194
HQP3-MVS99.37 29199.67 254
HQP2-MVS96.67 291
NP-MVS99.40 27699.13 22798.83 378
ACMMP++_ref99.94 94
ACMMP++99.79 203
Test By Simon98.41 190