This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20299.98 1199.99 299.98 1399.91 2499.68 2699.93 9399.93 1899.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21399.98 1199.99 299.98 1399.90 2999.88 899.92 11599.93 1899.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5799.82 3599.03 22199.96 2399.99 299.97 1999.84 6299.58 3499.93 9399.92 2099.98 3999.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5799.78 4999.03 22199.96 2399.99 299.97 1999.84 6299.78 1799.92 11599.92 2099.99 1699.92 18
MM99.55 16798.81 25299.05 21497.79 37399.99 299.48 21599.59 21796.29 29799.95 6299.94 1599.98 3999.88 25
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22699.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 23899.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1599.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4599.55 13799.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7199.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 45
test_vis1_n_192099.72 3499.88 699.27 24599.93 2697.84 32099.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
MVS_030499.17 17599.03 18599.59 15199.44 25898.90 24699.04 21795.32 38999.99 299.68 14199.57 22998.30 19599.97 3299.94 1599.98 3999.88 25
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 20100.00 199.87 28
SDMVSNet99.77 2899.77 3199.76 6399.80 8599.65 10799.63 6199.86 4699.97 1499.89 5299.89 3499.52 4299.99 899.42 7699.96 6999.65 111
sd_testset99.78 2599.78 3099.80 4499.80 8599.76 6299.80 1099.79 8399.97 1499.89 5299.89 3499.53 4199.99 899.36 8499.96 6999.65 111
UA-Net99.78 2599.76 3499.86 2599.72 13999.71 8499.91 399.95 2899.96 1699.71 13199.91 2499.15 7999.97 3299.50 65100.00 199.90 20
mvsmamba99.74 3399.70 3799.85 2799.93 2699.83 2999.76 1999.81 7399.96 1699.91 4299.81 7998.60 15199.94 7699.58 5299.98 3999.77 59
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27299.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
bld_raw_dy_0_6499.70 3899.65 4899.85 2799.95 1599.77 5499.66 5399.71 12399.95 1899.91 4299.77 10898.35 188100.00 199.54 5899.99 1699.79 52
dcpmvs_299.61 6699.64 5299.53 17399.79 9798.82 25199.58 7699.97 1899.95 1899.96 2399.76 11298.44 17699.99 899.34 8899.96 6999.78 55
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5199.95 1899.98 1399.92 2199.28 6499.98 1999.75 37100.00 199.94 13
test_cas_vis1_n_192099.76 2999.86 1299.45 19199.93 2698.40 28499.30 13599.98 1199.94 2299.99 799.89 3499.80 1599.97 3299.96 999.97 5499.97 7
test_f99.75 3099.88 699.37 21999.96 798.21 29699.51 90100.00 199.94 22100.00 199.93 1799.58 3499.94 7699.97 499.99 1699.97 7
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12399.93 2499.95 3099.89 3499.71 2299.96 5399.51 6399.97 5499.84 34
nrg03099.70 3899.66 4699.82 3699.76 11699.84 2499.61 6899.70 12999.93 2499.78 9999.68 16399.10 8599.78 30399.45 6999.96 6999.83 38
CS-MVS-test99.68 4499.70 3799.64 12799.57 20099.83 2999.78 1299.97 1899.92 2699.50 21299.38 28299.57 3699.95 6299.69 4199.90 11499.15 295
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4199.92 2699.98 1399.93 1799.94 499.98 1999.77 36100.00 199.92 18
test_fmvs299.72 3499.85 1699.34 22699.91 3298.08 30999.48 96100.00 199.90 2899.99 799.91 2499.50 4499.98 1999.98 199.99 1699.96 10
CS-MVS99.67 5099.70 3799.58 15599.53 22099.84 2499.79 1199.96 2399.90 2899.61 17399.41 27299.51 4399.95 6299.66 4399.89 12398.96 331
FC-MVSNet-test99.70 3899.65 4899.86 2599.88 4599.86 1899.72 3099.78 8999.90 2899.82 7999.83 6698.45 17599.87 20299.51 6399.97 5499.86 30
EU-MVSNet99.39 11499.62 5498.72 31499.88 4596.44 35699.56 8199.85 5199.90 2899.90 4899.85 5698.09 21399.83 26799.58 5299.95 8299.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 28100.00 199.97 1199.61 3199.97 3299.75 37100.00 199.84 34
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 2899.97 1999.87 4799.81 1499.95 6299.54 5899.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test250694.73 36094.59 36295.15 37799.59 18585.90 40399.75 2274.01 40399.89 3499.71 13199.86 5479.00 39999.90 15799.52 6299.99 1699.65 111
test111197.74 30898.16 28396.49 37199.60 18189.86 40199.71 3491.21 39799.89 3499.88 6099.87 4793.73 32599.90 15799.56 5599.99 1699.70 78
ECVR-MVScopyleft97.73 30998.04 28896.78 36599.59 18590.81 39799.72 3090.43 39999.89 3499.86 6999.86 5493.60 32799.89 17499.46 6899.99 1699.65 111
gg-mvs-nofinetune95.87 35395.17 35797.97 34298.19 38896.95 34799.69 4289.23 40199.89 3496.24 38999.94 1681.19 39299.51 38193.99 37898.20 37297.44 385
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4699.89 3499.98 1399.90 2999.94 499.98 1999.75 37100.00 199.90 20
JIA-IIPM98.06 29897.92 30198.50 32398.59 37797.02 34698.80 26298.51 35599.88 3997.89 36899.87 4791.89 34399.90 15798.16 20397.68 38398.59 355
SSC-MVS99.52 8099.42 9799.83 3299.86 5399.65 10799.52 8699.81 7399.87 4099.81 8699.79 9396.78 27999.99 899.83 3099.51 28999.86 30
RRT_MVS99.67 5099.59 6399.91 299.94 1999.88 1299.78 1299.27 30099.87 4099.91 4299.87 4798.04 21799.96 5399.68 4299.99 1699.90 20
LFMVS98.46 27198.19 28199.26 24899.24 31298.52 27799.62 6396.94 38199.87 4099.31 25799.58 22091.04 35299.81 29198.68 16999.42 30399.45 223
DP-MVS99.48 8699.39 10099.74 7899.57 20099.62 11699.29 14299.61 17399.87 4099.74 12199.76 11298.69 13799.87 20298.20 19699.80 19199.75 68
test_vis1_n99.68 4499.79 2799.36 22399.94 1998.18 29999.52 86100.00 199.86 44100.00 199.88 4298.99 10099.96 5399.97 499.96 6999.95 11
FIs99.65 5799.58 6799.84 3099.84 6099.85 1999.66 5399.75 10299.86 4499.74 12199.79 9398.27 19899.85 23799.37 8299.93 10099.83 38
RPMNet98.60 25398.53 25098.83 30699.05 34398.12 30299.30 13599.62 16699.86 4499.16 28199.74 12092.53 33899.92 11598.75 16298.77 35198.44 365
UGNet99.38 11699.34 11099.49 18098.90 35698.90 24699.70 3599.35 28399.86 4498.57 34199.81 7998.50 17099.93 9399.38 7999.98 3999.66 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet99.69 4199.69 4199.68 10599.71 14299.91 499.76 1999.96 2399.86 4499.51 21099.39 28099.57 3699.93 9399.64 4699.86 15199.20 284
Anonymous2024052199.44 9899.42 9799.49 18099.89 4098.96 23999.62 6399.76 9799.85 4999.82 7999.88 4296.39 29399.97 3299.59 4999.98 3999.55 173
pmmvs699.86 999.86 1299.83 3299.94 1999.90 799.83 699.91 3299.85 4999.94 3299.95 1399.73 2199.90 15799.65 4499.97 5499.69 82
VPA-MVSNet99.66 5299.62 5499.79 5099.68 16299.75 6899.62 6399.69 13599.85 4999.80 9099.81 7998.81 11899.91 13999.47 6799.88 13299.70 78
IterMVS-SCA-FT99.00 20999.16 14498.51 32299.75 12795.90 36698.07 32899.84 5799.84 5299.89 5299.73 12496.01 30299.99 899.33 91100.00 199.63 126
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6499.84 5299.94 3299.91 2499.13 8499.96 5399.83 3099.99 1699.83 38
PatchT98.45 27398.32 26998.83 30698.94 35498.29 29199.24 15798.82 34099.84 5299.08 29299.76 11291.37 34799.94 7698.82 15399.00 34098.26 371
KD-MVS_self_test99.63 5899.59 6399.76 6399.84 6099.90 799.37 11799.79 8399.83 5599.88 6099.85 5698.42 17999.90 15799.60 4899.73 22199.49 210
IterMVS98.97 21399.16 14498.42 32699.74 13395.64 36998.06 33099.83 5999.83 5599.85 7199.74 12096.10 30199.99 899.27 103100.00 199.63 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVS99.44 9899.32 11599.80 4499.81 7999.61 12299.47 9999.81 7399.82 5799.71 13199.72 13196.60 28399.98 1999.75 3799.23 32999.82 44
test_fmvs1_n99.68 4499.81 2399.28 24299.95 1597.93 31899.49 95100.00 199.82 5799.99 799.89 3499.21 7399.98 1999.97 499.98 3999.93 15
Anonymous2023121199.62 6499.57 7099.76 6399.61 17999.60 12599.81 999.73 11199.82 5799.90 4899.90 2997.97 22499.86 22099.42 7699.96 6999.80 45
VDDNet98.97 21398.82 22399.42 20099.71 14298.81 25299.62 6398.68 34699.81 6099.38 24299.80 8394.25 31899.85 23798.79 15799.32 31699.59 158
VPNet99.46 9499.37 10599.71 9899.82 7199.59 12799.48 9699.70 12999.81 6099.69 13899.58 22097.66 24799.86 22099.17 11699.44 29999.67 94
Gipumacopyleft99.57 6999.59 6399.49 18099.98 399.71 8499.72 3099.84 5799.81 6099.94 3299.78 10198.91 11099.71 32898.41 18099.95 8299.05 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
iter_conf_final98.75 23998.54 24899.40 20999.33 29398.75 25899.26 14999.59 19199.80 6399.76 10699.58 22090.17 36599.92 11599.37 8299.97 5499.54 181
VDD-MVS99.20 16499.11 15799.44 19499.43 26298.98 23599.50 9198.32 36499.80 6399.56 19199.69 15296.99 27499.85 23798.99 13699.73 22199.50 205
OurMVSNet-221017-099.75 3099.71 3699.84 3099.96 799.83 2999.83 699.85 5199.80 6399.93 3599.93 1798.54 16099.93 9399.59 4999.98 3999.76 65
iter_conf0598.46 27198.23 27499.15 26399.04 34597.99 31199.10 20299.61 17399.79 6699.76 10699.58 22087.88 37599.92 11599.31 9699.97 5499.53 187
casdiffmvspermissive99.63 5899.61 5899.67 10899.79 9799.59 12799.13 19399.85 5199.79 6699.76 10699.72 13199.33 5999.82 27699.21 10799.94 9399.59 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs199.48 8699.65 4898.97 28599.54 21497.16 34299.11 20099.98 1199.78 6899.96 2399.81 7998.72 13599.97 3299.95 1299.97 5499.79 52
mvs_anonymous99.28 13899.39 10098.94 28899.19 32297.81 32299.02 22499.55 21499.78 6899.85 7199.80 8398.24 20099.86 22099.57 5499.50 29299.15 295
K. test v398.87 22998.60 23899.69 10399.93 2699.46 15099.74 2494.97 39099.78 6899.88 6099.88 4293.66 32699.97 3299.61 4799.95 8299.64 121
MIMVSNet199.66 5299.62 5499.80 4499.94 1999.87 1599.69 4299.77 9299.78 6899.93 3599.89 3497.94 22599.92 11599.65 4499.98 3999.62 137
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 17799.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7699.95 1299.98 3999.94 13
EPNet98.13 29497.77 30999.18 26094.57 39997.99 31199.24 15797.96 36999.74 7397.29 38099.62 19593.13 33199.97 3298.59 17299.83 16899.58 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18899.98 1100.00 199.98 3
pm-mvs199.79 2499.79 2799.78 5399.91 3299.83 2999.76 1999.87 4399.73 7499.89 5299.87 4799.63 2899.87 20299.54 5899.92 10499.63 126
MVSFormer99.41 10899.44 9399.31 23699.57 20098.40 28499.77 1599.80 7799.73 7499.63 15899.30 30198.02 21999.98 1999.43 7199.69 23699.55 173
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7799.73 7499.97 1999.92 2199.77 1999.98 1999.43 71100.00 199.90 20
tt080599.63 5899.57 7099.81 3999.87 5099.88 1299.58 7698.70 34599.72 7899.91 4299.60 21299.43 4699.81 29199.81 3499.53 28599.73 70
DTE-MVSNet99.68 4499.61 5899.88 1799.80 8599.87 1599.67 4999.71 12399.72 7899.84 7499.78 10198.67 14199.97 3299.30 9799.95 8299.80 45
patch_mono-299.51 8199.46 8899.64 12799.70 15099.11 22299.04 21799.87 4399.71 8099.47 21799.79 9398.24 20099.98 1999.38 7999.96 6999.83 38
tfpnnormal99.43 10199.38 10299.60 14999.87 5099.75 6899.59 7499.78 8999.71 8099.90 4899.69 15298.85 11699.90 15797.25 28199.78 20199.15 295
casdiffmvs_mvgpermissive99.68 4499.68 4499.69 10399.81 7999.59 12799.29 14299.90 3599.71 8099.79 9599.73 12499.54 3999.84 25299.36 8499.96 6999.65 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 5899.62 5499.66 11599.80 8599.62 11699.44 10599.80 7799.71 8099.72 12699.69 15299.15 7999.83 26799.32 9399.94 9399.53 187
PMVScopyleft92.94 2198.82 23398.81 22498.85 30299.84 6097.99 31199.20 16799.47 25099.71 8099.42 22999.82 7398.09 21399.47 38393.88 37999.85 15599.07 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
anonymousdsp99.80 2399.77 3199.90 899.96 799.88 1299.73 2799.85 5199.70 8599.92 3999.93 1799.45 4599.97 3299.36 84100.00 199.85 33
PEN-MVS99.66 5299.59 6399.89 1199.83 6499.87 1599.66 5399.73 11199.70 8599.84 7499.73 12498.56 15799.96 5399.29 10099.94 9399.83 38
TransMVSNet (Re)99.78 2599.77 3199.81 3999.91 3299.85 1999.75 2299.86 4699.70 8599.91 4299.89 3499.60 3399.87 20299.59 4999.74 21699.71 75
FOURS199.83 6499.89 1099.74 2499.71 12399.69 8899.63 158
TDRefinement99.72 3499.70 3799.77 5699.90 3899.85 1999.86 599.92 2999.69 8899.78 9999.92 2199.37 5499.88 18898.93 14899.95 8299.60 151
h-mvs3398.61 25198.34 26799.44 19499.60 18198.67 26399.27 14799.44 25899.68 9099.32 25399.49 25592.50 339100.00 199.24 10496.51 39099.65 111
hse-mvs298.52 26398.30 27199.16 26199.29 30298.60 27398.77 26799.02 33299.68 9099.32 25399.04 34192.50 33999.85 23799.24 10497.87 38199.03 324
EI-MVSNet-UG-set99.48 8699.50 8299.42 20099.57 20098.65 26999.24 15799.46 25399.68 9099.80 9099.66 17198.99 10099.89 17499.19 11199.90 11499.72 72
Baseline_NR-MVSNet99.49 8499.37 10599.82 3699.91 3299.84 2498.83 25499.86 4699.68 9099.65 15399.88 4297.67 24399.87 20299.03 13399.86 15199.76 65
EI-MVSNet-Vis-set99.47 9399.49 8399.42 20099.57 20098.66 26699.24 15799.46 25399.67 9499.79 9599.65 17698.97 10499.89 17499.15 11999.89 12399.71 75
VNet99.18 17199.06 17499.56 16499.24 31299.36 18199.33 12599.31 29299.67 9499.47 21799.57 22996.48 28799.84 25299.15 11999.30 31899.47 218
FMVSNet199.66 5299.63 5399.73 8799.78 10499.77 5499.68 4599.70 12999.67 9499.82 7999.83 6698.98 10299.90 15799.24 10499.97 5499.53 187
Vis-MVSNetpermissive99.75 3099.74 3599.79 5099.88 4599.66 10299.69 4299.92 2999.67 9499.77 10499.75 11799.61 3199.98 1999.35 8799.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CVMVSNet98.61 25198.88 21597.80 34799.58 19093.60 38399.26 14999.64 16199.66 9899.72 12699.67 16793.26 32999.93 9399.30 9799.81 18699.87 28
TAMVS99.49 8499.45 9099.63 13499.48 24399.42 16499.45 10399.57 20399.66 9899.78 9999.83 6697.85 23299.86 22099.44 7099.96 6999.61 147
SixPastTwentyTwo99.42 10499.30 12299.76 6399.92 3199.67 10099.70 3599.14 32499.65 10099.89 5299.90 2996.20 29999.94 7699.42 7699.92 10499.67 94
Patchmtry98.78 23698.54 24899.49 18098.89 35999.19 21599.32 12799.67 14299.65 10099.72 12699.79 9391.87 34499.95 6298.00 21399.97 5499.33 256
alignmvs98.28 28597.96 29499.25 25199.12 33298.93 24399.03 22198.42 35999.64 10298.72 32997.85 39090.86 35799.62 36598.88 14999.13 33199.19 287
v899.68 4499.69 4199.65 12099.80 8599.40 17099.66 5399.76 9799.64 10299.93 3599.85 5698.66 14399.84 25299.88 2799.99 1699.71 75
canonicalmvs99.02 20399.00 19399.09 27399.10 33898.70 26299.61 6899.66 14699.63 10498.64 33597.65 39399.04 9699.54 37698.79 15798.92 34499.04 323
EI-MVSNet99.38 11699.44 9399.21 25599.58 19098.09 30699.26 14999.46 25399.62 10599.75 11399.67 16798.54 16099.85 23799.15 11999.92 10499.68 88
PS-CasMVS99.66 5299.58 6799.89 1199.80 8599.85 1999.66 5399.73 11199.62 10599.84 7499.71 13998.62 14799.96 5399.30 9799.96 6999.86 30
IterMVS-LS99.41 10899.47 8499.25 25199.81 7998.09 30698.85 25199.76 9799.62 10599.83 7899.64 17898.54 16099.97 3299.15 11999.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xiu_mvs_v1_base_debu99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base_debi99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
diffmvspermissive99.34 12999.32 11599.39 21399.67 16798.77 25798.57 28599.81 7399.61 10899.48 21599.41 27298.47 17199.86 22098.97 14099.90 11499.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet99.54 7799.47 8499.76 6399.58 19099.64 11099.30 13599.63 16399.61 10899.71 13199.56 23398.76 12899.96 5399.14 12599.92 10499.68 88
LS3D99.24 14899.11 15799.61 14698.38 38399.79 4699.57 7999.68 13899.61 10899.15 28399.71 13998.70 13699.91 13997.54 25999.68 24199.13 303
v1099.69 4199.69 4199.66 11599.81 7999.39 17299.66 5399.75 10299.60 11499.92 3999.87 4798.75 13099.86 22099.90 2399.99 1699.73 70
test20.0399.55 7599.54 7699.58 15599.79 9799.37 17799.02 22499.89 3799.60 11499.82 7999.62 19598.81 11899.89 17499.43 7199.86 15199.47 218
DSMNet-mixed99.48 8699.65 4898.95 28799.71 14297.27 33999.50 9199.82 6499.59 11699.41 23599.85 5699.62 30100.00 199.53 6199.89 12399.59 158
WR-MVS_H99.61 6699.53 8099.87 2199.80 8599.83 2999.67 4999.75 10299.58 11799.85 7199.69 15298.18 20999.94 7699.28 10299.95 8299.83 38
CP-MVSNet99.54 7799.43 9599.87 2199.76 11699.82 3599.57 7999.61 17399.54 11899.80 9099.64 17897.79 23699.95 6299.21 10799.94 9399.84 34
test_040299.22 15799.14 14899.45 19199.79 9799.43 16199.28 14499.68 13899.54 11899.40 24099.56 23399.07 9299.82 27696.01 33999.96 6999.11 304
ACMH+98.40 899.50 8299.43 9599.71 9899.86 5399.76 6299.32 12799.77 9299.53 12099.77 10499.76 11299.26 6899.78 30397.77 23499.88 13299.60 151
COLMAP_ROBcopyleft98.06 1299.45 9699.37 10599.70 10299.83 6499.70 9199.38 11399.78 8999.53 12099.67 14799.78 10199.19 7599.86 22097.32 27199.87 14399.55 173
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 16499.12 15499.43 19899.25 31099.69 9599.05 21499.82 6499.50 12298.97 30099.05 33998.98 10299.98 1998.20 19699.24 32798.62 353
new-patchmatchnet99.35 12499.57 7098.71 31699.82 7196.62 35498.55 28799.75 10299.50 12299.88 6099.87 4799.31 6099.88 18899.43 71100.00 199.62 137
ETV-MVS99.18 17199.18 14299.16 26199.34 28899.28 19599.12 19799.79 8399.48 12498.93 30498.55 37799.40 4799.93 9398.51 17699.52 28898.28 370
CANet_DTU98.91 22298.85 21899.09 27398.79 36898.13 30198.18 31499.31 29299.48 12498.86 31599.51 24896.56 28499.95 6299.05 13299.95 8299.19 287
UnsupCasMVSNet_eth98.83 23298.57 24499.59 15199.68 16299.45 15598.99 23499.67 14299.48 12499.55 19699.36 28894.92 31099.86 22098.95 14696.57 38999.45 223
EPP-MVSNet99.17 17599.00 19399.66 11599.80 8599.43 16199.70 3599.24 30999.48 12499.56 19199.77 10894.89 31199.93 9398.72 16599.89 12399.63 126
Anonymous2024052999.42 10499.34 11099.65 12099.53 22099.60 12599.63 6199.39 27499.47 12899.76 10699.78 10198.13 21199.86 22098.70 16699.68 24199.49 210
xiu_mvs_v2_base99.02 20399.11 15798.77 31199.37 27598.09 30698.13 32099.51 23899.47 12899.42 22998.54 37899.38 5299.97 3298.83 15199.33 31498.24 372
PS-MVSNAJ99.00 20999.08 16898.76 31299.37 27598.10 30598.00 33599.51 23899.47 12899.41 23598.50 38099.28 6499.97 3298.83 15199.34 31398.20 376
GeoE99.69 4199.66 4699.78 5399.76 11699.76 6299.60 7399.82 6499.46 13199.75 11399.56 23399.63 2899.95 6299.43 7199.88 13299.62 137
NR-MVSNet99.40 11099.31 11799.68 10599.43 26299.55 13799.73 2799.50 24299.46 13199.88 6099.36 28897.54 25099.87 20298.97 14099.87 14399.63 126
CDS-MVSNet99.22 15799.13 15099.50 17999.35 28099.11 22298.96 24099.54 22099.46 13199.61 17399.70 14696.31 29599.83 26799.34 8899.88 13299.55 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
E-PMN97.14 32897.43 31696.27 37398.79 36891.62 39295.54 39099.01 33499.44 13498.88 31199.12 33192.78 33599.68 34694.30 37299.03 33897.50 384
GBi-Net99.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
test199.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
FMVSNet299.35 12499.28 12999.55 16799.49 23899.35 18499.45 10399.57 20399.44 13499.70 13599.74 12097.21 26499.87 20299.03 13399.94 9399.44 228
3Dnovator+98.92 399.35 12499.24 13799.67 10899.35 28099.47 14699.62 6399.50 24299.44 13499.12 28899.78 10198.77 12799.94 7697.87 22699.72 22799.62 137
testf199.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
APD_test299.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
UniMVSNet_NR-MVSNet99.37 11999.25 13599.72 9399.47 24999.56 13498.97 23899.61 17399.43 13999.67 14799.28 30597.85 23299.95 6299.17 11699.81 18699.65 111
UniMVSNet (Re)99.37 11999.26 13399.68 10599.51 22799.58 13198.98 23799.60 18599.43 13999.70 13599.36 28897.70 23999.88 18899.20 11099.87 14399.59 158
pmmvs-eth3d99.48 8699.47 8499.51 17799.77 11299.41 16998.81 25999.66 14699.42 14399.75 11399.66 17199.20 7499.76 31398.98 13899.99 1699.36 249
XXY-MVS99.71 3799.67 4599.81 3999.89 4099.72 8299.59 7499.82 6499.39 14499.82 7999.84 6299.38 5299.91 13999.38 7999.93 10099.80 45
DU-MVS99.33 13299.21 13999.71 9899.43 26299.56 13498.83 25499.53 22999.38 14599.67 14799.36 28897.67 24399.95 6299.17 11699.81 18699.63 126
IS-MVSNet99.03 20198.85 21899.55 16799.80 8599.25 20299.73 2799.15 32399.37 14699.61 17399.71 13994.73 31499.81 29197.70 24599.88 13299.58 163
MVEpermissive92.54 2296.66 33896.11 34298.31 33499.68 16297.55 33197.94 34295.60 38899.37 14690.68 39798.70 37196.56 28498.61 39586.94 39599.55 27898.77 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DELS-MVS99.34 12999.30 12299.48 18499.51 22799.36 18198.12 32199.53 22999.36 14899.41 23599.61 20499.22 7299.87 20299.21 10799.68 24199.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu99.07 19398.92 21099.52 17598.89 35999.78 4999.15 18599.66 14699.34 14998.92 30799.24 31797.69 24199.98 1998.11 20699.28 32198.81 345
EMVS96.96 33197.28 32095.99 37698.76 37291.03 39595.26 39198.61 35099.34 14998.92 30798.88 36293.79 32399.66 35592.87 38099.05 33697.30 388
baseline197.73 30997.33 31998.96 28699.30 30097.73 32699.40 10998.42 35999.33 15199.46 22199.21 32191.18 35099.82 27698.35 18491.26 39599.32 259
dmvs_re98.69 24798.48 25299.31 23699.55 21299.42 16499.54 8498.38 36299.32 15298.72 32998.71 37096.76 28099.21 38896.01 33999.35 31299.31 263
EG-PatchMatch MVS99.57 6999.56 7599.62 14399.77 11299.33 18799.26 14999.76 9799.32 15299.80 9099.78 10199.29 6299.87 20299.15 11999.91 11399.66 103
XVS99.27 14299.11 15799.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32699.47 26298.47 17199.88 18897.62 25399.73 22199.67 94
X-MVStestdata96.09 34994.87 35899.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32661.30 40498.47 17199.88 18897.62 25399.73 22199.67 94
MDA-MVSNet-bldmvs99.06 19499.05 17899.07 27799.80 8597.83 32198.89 24699.72 12099.29 15499.63 15899.70 14696.47 28899.89 17498.17 20299.82 17799.50 205
Anonymous20240521198.75 23998.46 25499.63 13499.34 28899.66 10299.47 9997.65 37499.28 15799.56 19199.50 25193.15 33099.84 25298.62 17199.58 27299.40 239
mvsany_test199.44 9899.45 9099.40 20999.37 27598.64 27097.90 34799.59 19199.27 15899.92 3999.82 7399.74 2099.93 9399.55 5799.87 14399.63 126
MTAPA99.35 12499.20 14099.80 4499.81 7999.81 4099.33 12599.53 22999.27 15899.42 22999.63 18898.21 20599.95 6297.83 23399.79 19699.65 111
MVSTER98.47 27098.22 27699.24 25399.06 34298.35 29099.08 21099.46 25399.27 15899.75 11399.66 17188.61 37399.85 23799.14 12599.92 10499.52 198
DeepC-MVS98.90 499.62 6499.61 5899.67 10899.72 13999.44 15799.24 15799.71 12399.27 15899.93 3599.90 2999.70 2499.93 9398.99 13699.99 1699.64 121
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.11 18899.05 17899.28 24298.83 36398.56 27498.71 27399.41 26499.25 16299.23 27099.22 31997.66 24799.94 7699.19 11199.97 5499.33 256
v2v48299.50 8299.47 8499.58 15599.78 10499.25 20299.14 18799.58 20199.25 16299.81 8699.62 19598.24 20099.84 25299.83 3099.97 5499.64 121
V4299.56 7299.54 7699.63 13499.79 9799.46 15099.39 11199.59 19199.24 16499.86 6999.70 14698.55 15899.82 27699.79 3599.95 8299.60 151
EPNet_dtu97.62 31497.79 30897.11 36496.67 39692.31 38898.51 29398.04 36799.24 16495.77 39199.47 26293.78 32499.66 35598.98 13899.62 25799.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_one_060199.63 17499.76 6299.55 21499.23 16699.31 25799.61 20498.59 152
Anonymous2023120699.35 12499.31 11799.47 18699.74 13399.06 23299.28 14499.74 10799.23 16699.72 12699.53 24497.63 24999.88 18899.11 12799.84 16099.48 214
FMVSNet398.80 23598.63 23799.32 23399.13 33098.72 26199.10 20299.48 24799.23 16699.62 16799.64 17892.57 33699.86 22098.96 14299.90 11499.39 241
3Dnovator99.15 299.43 10199.36 10899.65 12099.39 27099.42 16499.70 3599.56 20899.23 16699.35 24599.80 8399.17 7799.95 6298.21 19599.84 16099.59 158
SD-MVS99.01 20799.30 12298.15 33899.50 23399.40 17098.94 24399.61 17399.22 17099.75 11399.82 7399.54 3995.51 39897.48 26399.87 14399.54 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v114499.54 7799.53 8099.59 15199.79 9799.28 19599.10 20299.61 17399.20 17199.84 7499.73 12498.67 14199.84 25299.86 2999.98 3999.64 121
APD-MVS_3200maxsize99.31 13599.16 14499.74 7899.53 22099.75 6899.27 14799.61 17399.19 17299.57 18499.64 17898.76 12899.90 15797.29 27399.62 25799.56 170
APD_test199.36 12299.28 12999.61 14699.89 4099.89 1099.32 12799.74 10799.18 17399.69 13899.75 11798.41 18099.84 25297.85 22999.70 23299.10 306
DVP-MVS++99.38 11699.25 13599.77 5699.03 34699.77 5499.74 2499.61 17399.18 17399.76 10699.61 20499.00 9899.92 11597.72 24099.60 26799.62 137
test_0728_THIRD99.18 17399.62 16799.61 20498.58 15499.91 13997.72 24099.80 19199.77 59
v14419299.55 7599.54 7699.58 15599.78 10499.20 21499.11 20099.62 16699.18 17399.89 5299.72 13198.66 14399.87 20299.88 2799.97 5499.66 103
v119299.57 6999.57 7099.57 16199.77 11299.22 20999.04 21799.60 18599.18 17399.87 6899.72 13199.08 9099.85 23799.89 2699.98 3999.66 103
v14899.40 11099.41 9999.39 21399.76 11698.94 24099.09 20799.59 19199.17 17899.81 8699.61 20498.41 18099.69 33699.32 9399.94 9399.53 187
MVS_Test99.28 13899.31 11799.19 25899.35 28098.79 25599.36 12099.49 24699.17 17899.21 27599.67 16798.78 12599.66 35599.09 12999.66 25099.10 306
SR-MVS-dyc-post99.27 14299.11 15799.73 8799.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.41 18099.91 13997.27 27699.61 26499.54 181
RE-MVS-def99.13 15099.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.57 15597.27 27699.61 26499.54 181
DVP-MVScopyleft99.32 13499.17 14399.77 5699.69 15499.80 4499.14 18799.31 29299.16 18099.62 16799.61 20498.35 18899.91 13997.88 22399.72 22799.61 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15499.80 4499.24 15799.57 20399.16 18099.73 12599.65 17698.35 188
v192192099.56 7299.57 7099.55 16799.75 12799.11 22299.05 21499.61 17399.15 18499.88 6099.71 13999.08 9099.87 20299.90 2399.97 5499.66 103
v124099.56 7299.58 6799.51 17799.80 8599.00 23399.00 22999.65 15599.15 18499.90 4899.75 11799.09 8799.88 18899.90 2399.96 6999.67 94
SED-MVS99.40 11099.28 12999.77 5699.69 15499.82 3599.20 16799.54 22099.13 18699.82 7999.63 18898.91 11099.92 11597.85 22999.70 23299.58 163
test_241102_TWO99.54 22099.13 18699.76 10699.63 18898.32 19499.92 11597.85 22999.69 23699.75 68
MVS-HIRNet97.86 30398.22 27696.76 36699.28 30591.53 39398.38 30392.60 39699.13 18699.31 25799.96 1297.18 26899.68 34698.34 18599.83 16899.07 320
test_241102_ONE99.69 15499.82 3599.54 22099.12 18999.82 7999.49 25598.91 11099.52 380
Vis-MVSNet (Re-imp)98.77 23798.58 24399.34 22699.78 10498.88 24899.61 6899.56 20899.11 19099.24 26999.56 23393.00 33499.78 30397.43 26699.89 12399.35 252
ppachtmachnet_test98.89 22799.12 15498.20 33799.66 16895.24 37397.63 35799.68 13899.08 19199.78 9999.62 19598.65 14599.88 18898.02 20999.96 6999.48 214
DeepC-MVS_fast98.47 599.23 14999.12 15499.56 16499.28 30599.22 20998.99 23499.40 27199.08 19199.58 18199.64 17898.90 11399.83 26797.44 26599.75 20999.63 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.53 22099.25 20298.29 30899.38 27899.07 193
our_test_398.85 23199.09 16698.13 33999.66 16894.90 37697.72 35399.58 20199.07 19399.64 15499.62 19598.19 20799.93 9398.41 18099.95 8299.55 173
tttt051797.62 31497.20 32398.90 30099.76 11697.40 33699.48 9694.36 39299.06 19599.70 13599.49 25584.55 38999.94 7698.73 16499.65 25299.36 249
WR-MVS99.11 18898.93 20699.66 11599.30 30099.42 16498.42 30199.37 27999.04 19699.57 18499.20 32396.89 27699.86 22098.66 17099.87 14399.70 78
test_vis1_rt99.45 9699.46 8899.41 20799.71 14298.63 27198.99 23499.96 2399.03 19799.95 3099.12 33198.75 13099.84 25299.82 3399.82 17799.77 59
miper_lstm_enhance98.65 25098.60 23898.82 30999.20 32097.33 33897.78 35199.66 14699.01 19899.59 17999.50 25194.62 31599.85 23798.12 20599.90 11499.26 270
APDe-MVScopyleft99.48 8699.36 10899.85 2799.55 21299.81 4099.50 9199.69 13598.99 19999.75 11399.71 13998.79 12399.93 9398.46 17899.85 15599.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMM98.09 1199.46 9499.38 10299.72 9399.80 8599.69 9599.13 19399.65 15598.99 19999.64 15499.72 13199.39 4899.86 22098.23 19399.81 18699.60 151
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_yl98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
DCV-MVSNet98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
MIMVSNet98.43 27498.20 27899.11 27099.53 22098.38 28899.58 7698.61 35098.96 20399.33 25099.76 11290.92 35499.81 29197.38 26999.76 20799.15 295
PMMVS299.48 8699.45 9099.57 16199.76 11698.99 23498.09 32599.90 3598.95 20499.78 9999.58 22099.57 3699.93 9399.48 6699.95 8299.79 52
eth_miper_zixun_eth98.68 24898.71 23198.60 31899.10 33896.84 35197.52 36599.54 22098.94 20599.58 18199.48 25896.25 29899.76 31398.01 21299.93 10099.21 280
HQP_MVS98.90 22498.68 23499.55 16799.58 19099.24 20698.80 26299.54 22098.94 20599.14 28599.25 31297.24 26299.82 27695.84 34899.78 20199.60 151
plane_prior298.80 26298.94 205
LCM-MVSNet-Re99.28 13899.15 14799.67 10899.33 29399.76 6299.34 12299.97 1898.93 20899.91 4299.79 9398.68 13899.93 9396.80 30399.56 27499.30 265
MDA-MVSNet_test_wron98.95 21998.99 19898.85 30299.64 17297.16 34298.23 31299.33 28698.93 20899.56 19199.66 17197.39 25799.83 26798.29 18899.88 13299.55 173
YYNet198.95 21998.99 19898.84 30499.64 17297.14 34498.22 31399.32 28898.92 21099.59 17999.66 17197.40 25599.83 26798.27 19099.90 11499.55 173
Patchmatch-RL test98.60 25398.36 26499.33 22999.77 11299.07 23098.27 30999.87 4398.91 21199.74 12199.72 13190.57 36199.79 30098.55 17499.85 15599.11 304
cl____98.54 26198.41 25998.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.85 32299.78 30397.97 21699.89 12399.17 291
DIV-MVS_self_test98.54 26198.42 25898.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.87 32199.78 30397.97 21699.89 12399.18 289
c3_l98.72 24498.71 23198.72 31499.12 33297.22 34197.68 35699.56 20898.90 21299.54 19899.48 25896.37 29499.73 32297.88 22399.88 13299.21 280
MG-MVS98.52 26398.39 26198.94 28899.15 32797.39 33798.18 31499.21 31698.89 21599.23 27099.63 18897.37 25899.74 31994.22 37399.61 26499.69 82
FMVSNet597.80 30697.25 32299.42 20098.83 36398.97 23799.38 11399.80 7798.87 21699.25 26699.69 15280.60 39499.91 13998.96 14299.90 11499.38 243
ab-mvs99.33 13299.28 12999.47 18699.57 20099.39 17299.78 1299.43 26198.87 21699.57 18499.82 7398.06 21699.87 20298.69 16899.73 22199.15 295
SR-MVS99.19 16799.00 19399.74 7899.51 22799.72 8299.18 17299.60 18598.85 21899.47 21799.58 22098.38 18599.92 11596.92 29599.54 28399.57 168
MSLP-MVS++99.05 19799.09 16698.91 29499.21 31798.36 28998.82 25899.47 25098.85 21898.90 31099.56 23398.78 12599.09 39098.57 17399.68 24199.26 270
PM-MVS99.36 12299.29 12799.58 15599.83 6499.66 10298.95 24199.86 4698.85 21899.81 8699.73 12498.40 18499.92 11598.36 18399.83 16899.17 291
MSDG99.08 19298.98 20199.37 21999.60 18199.13 22097.54 36199.74 10798.84 22199.53 20399.55 24099.10 8599.79 30097.07 29099.86 15199.18 289
pmmvs599.19 16799.11 15799.42 20099.76 11698.88 24898.55 28799.73 11198.82 22299.72 12699.62 19596.56 28499.82 27699.32 9399.95 8299.56 170
Effi-MVS+99.06 19498.97 20299.34 22699.31 29698.98 23598.31 30799.91 3298.81 22398.79 32398.94 35799.14 8299.84 25298.79 15798.74 35599.20 284
Patchmatch-test98.10 29697.98 29398.48 32499.27 30796.48 35599.40 10999.07 32898.81 22399.23 27099.57 22990.11 36699.87 20296.69 30899.64 25499.09 310
CHOSEN 280x42098.41 27698.41 25998.40 32799.34 28895.89 36796.94 38399.44 25898.80 22599.25 26699.52 24693.51 32899.98 1998.94 14799.98 3999.32 259
CSCG99.37 11999.29 12799.60 14999.71 14299.46 15099.43 10799.85 5198.79 22699.41 23599.60 21298.92 10899.92 11598.02 20999.92 10499.43 234
TinyColmap98.97 21398.93 20699.07 27799.46 25398.19 29797.75 35299.75 10298.79 22699.54 19899.70 14698.97 10499.62 36596.63 31499.83 16899.41 238
dmvs_testset97.27 32496.83 33498.59 31999.46 25397.55 33199.25 15696.84 38298.78 22897.24 38197.67 39297.11 27098.97 39286.59 39698.54 36599.27 269
pmmvs499.13 18399.06 17499.36 22399.57 20099.10 22798.01 33399.25 30698.78 22899.58 18199.44 26998.24 20099.76 31398.74 16399.93 10099.22 278
TSAR-MVS + MP.99.34 12999.24 13799.63 13499.82 7199.37 17799.26 14999.35 28398.77 23099.57 18499.70 14699.27 6799.88 18897.71 24299.75 20999.65 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thres600view796.60 33996.16 34197.93 34399.63 17496.09 36499.18 17297.57 37598.77 23098.72 32997.32 39687.04 37999.72 32488.57 38898.62 36297.98 380
ACMH98.42 699.59 6899.54 7699.72 9399.86 5399.62 11699.56 8199.79 8398.77 23099.80 9099.85 5699.64 2799.85 23798.70 16699.89 12399.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_HR99.12 18599.02 18799.40 20999.50 23399.11 22297.92 34499.71 12398.76 23399.08 29299.47 26299.17 7799.54 37697.85 22999.76 20799.54 181
thres100view90096.39 34396.03 34497.47 35499.63 17495.93 36599.18 17297.57 37598.75 23498.70 33297.31 39787.04 37999.67 35187.62 39198.51 36696.81 389
testing396.48 34195.63 35199.01 28299.23 31497.81 32298.90 24599.10 32798.72 23597.84 37297.92 38972.44 40199.85 23797.21 28499.33 31499.35 252
DeepPCF-MVS98.42 699.18 17199.02 18799.67 10899.22 31599.75 6897.25 37599.47 25098.72 23599.66 15199.70 14699.29 6299.63 36498.07 20899.81 18699.62 137
jason99.16 17799.11 15799.32 23399.75 12798.44 28198.26 31099.39 27498.70 23799.74 12199.30 30198.54 16099.97 3298.48 17799.82 17799.55 173
jason: jason.
MVS_111021_LR99.13 18399.03 18599.42 20099.58 19099.32 18997.91 34699.73 11198.68 23899.31 25799.48 25899.09 8799.66 35597.70 24599.77 20599.29 268
CHOSEN 1792x268899.39 11499.30 12299.65 12099.88 4599.25 20298.78 26699.88 4198.66 23999.96 2399.79 9397.45 25399.93 9399.34 8899.99 1699.78 55
NCCC98.82 23398.57 24499.58 15599.21 31799.31 19098.61 27599.25 30698.65 24098.43 34799.26 31097.86 23099.81 29196.55 31699.27 32499.61 147
HyFIR lowres test98.91 22298.64 23599.73 8799.85 5799.47 14698.07 32899.83 5998.64 24199.89 5299.60 21292.57 336100.00 199.33 9199.97 5499.72 72
MVP-Stereo99.16 17799.08 16899.43 19899.48 24399.07 23099.08 21099.55 21498.63 24299.31 25799.68 16398.19 20799.78 30398.18 20099.58 27299.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest99.21 16299.07 17299.63 13499.78 10499.64 11099.12 19799.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
TestCases99.63 13499.78 10499.64 11099.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
thisisatest053097.45 31996.95 32998.94 28899.68 16297.73 32699.09 20794.19 39498.61 24599.56 19199.30 30184.30 39099.93 9398.27 19099.54 28399.16 293
API-MVS98.38 27998.39 26198.35 32998.83 36399.26 19999.14 18799.18 32098.59 24698.66 33498.78 36798.61 14999.57 37394.14 37499.56 27496.21 391
CNVR-MVS98.99 21298.80 22699.56 16499.25 31099.43 16198.54 29099.27 30098.58 24798.80 32299.43 27098.53 16499.70 33097.22 28399.59 27199.54 181
ITE_SJBPF99.38 21699.63 17499.44 15799.73 11198.56 24899.33 25099.53 24498.88 11499.68 34696.01 33999.65 25299.02 328
D2MVS99.22 15799.19 14199.29 24099.69 15498.74 26098.81 25999.41 26498.55 24999.68 14199.69 15298.13 21199.87 20298.82 15399.98 3999.24 273
DPE-MVScopyleft99.14 18198.92 21099.82 3699.57 20099.77 5498.74 26999.60 18598.55 24999.76 10699.69 15298.23 20499.92 11596.39 32599.75 20999.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP99.30 13699.14 14899.76 6399.87 5099.66 10299.18 17299.60 18598.55 24999.57 18499.67 16799.03 9799.94 7697.01 29199.80 19199.69 82
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.04 20098.79 22799.81 3999.78 10499.73 7799.35 12199.57 20398.54 25299.54 19898.99 34896.81 27899.93 9396.97 29399.53 28599.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tpmrst97.73 30998.07 28796.73 36898.71 37492.00 38999.10 20298.86 33798.52 25398.92 30799.54 24291.90 34299.82 27698.02 20999.03 33898.37 367
MDTV_nov1_ep1397.73 31098.70 37590.83 39699.15 18598.02 36898.51 25498.82 31999.61 20490.98 35399.66 35596.89 29898.92 344
miper_ehance_all_eth98.59 25698.59 24098.59 31998.98 35297.07 34597.49 36699.52 23498.50 25599.52 20599.37 28496.41 29299.71 32897.86 22799.62 25799.00 330
OPM-MVS99.26 14499.13 15099.63 13499.70 15099.61 12298.58 28199.48 24798.50 25599.52 20599.63 18899.14 8299.76 31397.89 22299.77 20599.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch99.00 20998.97 20299.09 27399.11 33798.19 29798.76 26899.33 28698.49 25799.44 22399.58 22098.21 20599.69 33698.20 19699.62 25799.39 241
CNLPA98.57 25898.34 26799.28 24299.18 32499.10 22798.34 30499.41 26498.48 25898.52 34398.98 35197.05 27299.78 30395.59 35399.50 29298.96 331
HPM-MVS++copyleft98.96 21698.70 23399.74 7899.52 22599.71 8498.86 24999.19 31998.47 25998.59 33999.06 33898.08 21599.91 13996.94 29499.60 26799.60 151
tfpn200view996.30 34695.89 34597.53 35299.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36696.81 389
TESTMET0.1,196.24 34795.84 34897.41 35698.24 38793.84 38297.38 36995.84 38798.43 26097.81 37398.56 37679.77 39599.89 17497.77 23498.77 35198.52 359
thres40096.40 34295.89 34597.92 34499.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36697.98 380
EIA-MVS99.12 18599.01 19099.45 19199.36 27899.62 11699.34 12299.79 8398.41 26398.84 31798.89 36198.75 13099.84 25298.15 20499.51 28998.89 338
region2R99.23 14999.05 17899.77 5699.76 11699.70 9199.31 13299.59 19198.41 26399.32 25399.36 28898.73 13499.93 9397.29 27399.74 21699.67 94
MCST-MVS99.02 20398.81 22499.65 12099.58 19099.49 14498.58 28199.07 32898.40 26599.04 29799.25 31298.51 16999.80 29797.31 27299.51 28999.65 111
XVG-OURS-SEG-HR99.16 17798.99 19899.66 11599.84 6099.64 11098.25 31199.73 11198.39 26699.63 15899.43 27099.70 2499.90 15797.34 27098.64 36199.44 228
testgi99.29 13799.26 13399.37 21999.75 12798.81 25298.84 25299.89 3798.38 26799.75 11399.04 34199.36 5799.86 22099.08 13099.25 32599.45 223
CP-MVS99.23 14999.05 17899.75 7399.66 16899.66 10299.38 11399.62 16698.38 26799.06 29699.27 30798.79 12399.94 7697.51 26299.82 17799.66 103
HFP-MVS99.25 14599.08 16899.76 6399.73 13699.70 9199.31 13299.59 19198.36 26999.36 24499.37 28498.80 12299.91 13997.43 26699.75 20999.68 88
ACMMPR99.23 14999.06 17499.76 6399.74 13399.69 9599.31 13299.59 19198.36 26999.35 24599.38 28298.61 14999.93 9397.43 26699.75 20999.67 94
plane_prior399.31 19098.36 26999.14 285
XVG-OURS99.21 16299.06 17499.65 12099.82 7199.62 11697.87 34899.74 10798.36 26999.66 15199.68 16399.71 2299.90 15796.84 30299.88 13299.43 234
XVG-ACMP-BASELINE99.23 14999.10 16599.63 13499.82 7199.58 13198.83 25499.72 12098.36 26999.60 17699.71 13998.92 10899.91 13997.08 28999.84 16099.40 239
MP-MVScopyleft99.06 19498.83 22299.76 6399.76 11699.71 8499.32 12799.50 24298.35 27498.97 30099.48 25898.37 18699.92 11595.95 34599.75 20999.63 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.43 10199.30 12299.80 4499.83 6499.81 4099.52 8699.70 12998.35 27499.51 21099.50 25199.31 6099.88 18898.18 20099.84 16099.69 82
N_pmnet98.73 24398.53 25099.35 22599.72 13998.67 26398.34 30494.65 39198.35 27499.79 9599.68 16398.03 21899.93 9398.28 18999.92 10499.44 228
BH-RMVSNet98.41 27698.14 28499.21 25599.21 31798.47 27898.60 27798.26 36598.35 27498.93 30499.31 29997.20 26799.66 35594.32 37199.10 33499.51 200
mPP-MVS99.19 16799.00 19399.76 6399.76 11699.68 9899.38 11399.54 22098.34 27899.01 29899.50 25198.53 16499.93 9397.18 28699.78 20199.66 103
RPSCF99.18 17199.02 18799.64 12799.83 6499.85 1999.44 10599.82 6498.33 27999.50 21299.78 10197.90 22799.65 36196.78 30499.83 16899.44 228
GA-MVS97.99 30297.68 31298.93 29199.52 22598.04 31097.19 37799.05 33198.32 28098.81 32098.97 35389.89 36999.41 38698.33 18699.05 33699.34 255
LF4IMVS99.01 20798.92 21099.27 24599.71 14299.28 19598.59 28099.77 9298.32 28099.39 24199.41 27298.62 14799.84 25296.62 31599.84 16098.69 351
lupinMVS98.96 21698.87 21699.24 25399.57 20098.40 28498.12 32199.18 32098.28 28299.63 15899.13 32798.02 21999.97 3298.22 19499.69 23699.35 252
ACMMP_NAP99.28 13899.11 15799.79 5099.75 12799.81 4098.95 24199.53 22998.27 28399.53 20399.73 12498.75 13099.87 20297.70 24599.83 16899.68 88
SCA98.11 29598.36 26497.36 35799.20 32092.99 38598.17 31698.49 35798.24 28499.10 29199.57 22996.01 30299.94 7696.86 29999.62 25799.14 300
GST-MVS99.16 17798.96 20499.75 7399.73 13699.73 7799.20 16799.55 21498.22 28599.32 25399.35 29398.65 14599.91 13996.86 29999.74 21699.62 137
EPMVS96.53 34096.32 33897.17 36398.18 38992.97 38699.39 11189.95 40098.21 28698.61 33799.59 21786.69 38599.72 32496.99 29299.23 32998.81 345
USDC98.96 21698.93 20699.05 27999.54 21497.99 31197.07 38199.80 7798.21 28699.75 11399.77 10898.43 17799.64 36397.90 22199.88 13299.51 200
ZNCC-MVS99.22 15799.04 18399.77 5699.76 11699.73 7799.28 14499.56 20898.19 28899.14 28599.29 30498.84 11799.92 11597.53 26199.80 19199.64 121
TSAR-MVS + GP.99.12 18599.04 18399.38 21699.34 28899.16 21798.15 31799.29 29698.18 28999.63 15899.62 19599.18 7699.68 34698.20 19699.74 21699.30 265
PatchmatchNetpermissive97.65 31397.80 30697.18 36298.82 36692.49 38799.17 17798.39 36198.12 29098.79 32399.58 22090.71 35999.89 17497.23 28299.41 30499.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AUN-MVS97.82 30597.38 31899.14 26799.27 30798.53 27598.72 27199.02 33298.10 29197.18 38399.03 34589.26 37199.85 23797.94 21897.91 37999.03 324
WTY-MVS98.59 25698.37 26399.26 24899.43 26298.40 28498.74 26999.13 32698.10 29199.21 27599.24 31794.82 31299.90 15797.86 22798.77 35199.49 210
CL-MVSNet_self_test98.71 24598.56 24799.15 26399.22 31598.66 26697.14 37899.51 23898.09 29399.54 19899.27 30796.87 27799.74 31998.43 17998.96 34199.03 324
ACMMPcopyleft99.25 14599.08 16899.74 7899.79 9799.68 9899.50 9199.65 15598.07 29499.52 20599.69 15298.57 15599.92 11597.18 28699.79 19699.63 126
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres20096.09 34995.68 35097.33 35999.48 24396.22 36198.53 29197.57 37598.06 29598.37 34996.73 40186.84 38399.61 36986.99 39498.57 36396.16 392
test-LLR97.15 32696.95 32997.74 35098.18 38995.02 37497.38 36996.10 38398.00 29697.81 37398.58 37390.04 36799.91 13997.69 25198.78 34998.31 368
test0.0.03 197.37 32296.91 33298.74 31397.72 39297.57 33097.60 35997.36 38098.00 29699.21 27598.02 38790.04 36799.79 30098.37 18295.89 39398.86 341
PGM-MVS99.20 16499.01 19099.77 5699.75 12799.71 8499.16 18399.72 12097.99 29899.42 22999.60 21298.81 11899.93 9396.91 29699.74 21699.66 103
new_pmnet98.88 22898.89 21498.84 30499.70 15097.62 32998.15 31799.50 24297.98 29999.62 16799.54 24298.15 21099.94 7697.55 25899.84 16098.95 333
SF-MVS99.10 19198.93 20699.62 14399.58 19099.51 14299.13 19399.65 15597.97 30099.42 22999.61 20498.86 11599.87 20296.45 32399.68 24199.49 210
PVSNet_Blended_VisFu99.40 11099.38 10299.44 19499.90 3898.66 26698.94 24399.91 3297.97 30099.79 9599.73 12499.05 9599.97 3299.15 11999.99 1699.68 88
wuyk23d97.58 31699.13 15092.93 37899.69 15499.49 14499.52 8699.77 9297.97 30099.96 2399.79 9399.84 1299.94 7695.85 34799.82 17779.36 394
ET-MVSNet_ETH3D96.78 33496.07 34398.91 29499.26 30997.92 31997.70 35596.05 38697.96 30392.37 39698.43 38187.06 37899.90 15798.27 19097.56 38498.91 337
sss98.90 22498.77 22899.27 24599.48 24398.44 28198.72 27199.32 28897.94 30499.37 24399.35 29396.31 29599.91 13998.85 15099.63 25699.47 218
test-mter96.23 34895.73 34997.74 35098.18 38995.02 37497.38 36996.10 38397.90 30597.81 37398.58 37379.12 39899.91 13997.69 25198.78 34998.31 368
Syy-MVS98.17 29397.85 30599.15 26398.50 38098.79 25598.60 27799.21 31697.89 30696.76 38596.37 40295.47 30899.57 37399.10 12898.73 35799.09 310
myMVS_eth3d95.63 35794.73 35998.34 33198.50 38096.36 35898.60 27799.21 31697.89 30696.76 38596.37 40272.10 40299.57 37394.38 37098.73 35799.09 310
PHI-MVS99.11 18898.95 20599.59 15199.13 33099.59 12799.17 17799.65 15597.88 30899.25 26699.46 26598.97 10499.80 29797.26 27899.82 17799.37 246
test_prior297.95 34197.87 30998.05 36299.05 33997.90 22795.99 34299.49 294
plane_prior99.24 20698.42 30197.87 30999.71 230
testdata197.72 35397.86 311
AdaColmapbinary98.60 25398.35 26699.38 21699.12 33299.22 20998.67 27499.42 26397.84 31298.81 32099.27 30797.32 26099.81 29195.14 36299.53 28599.10 306
BH-untuned98.22 29198.09 28698.58 32199.38 27397.24 34098.55 28798.98 33597.81 31399.20 28098.76 36897.01 27399.65 36194.83 36598.33 36998.86 341
tpmvs97.39 32197.69 31196.52 37098.41 38291.76 39099.30 13598.94 33697.74 31497.85 37199.55 24092.40 34199.73 32296.25 33198.73 35798.06 379
HPM-MVScopyleft99.25 14599.07 17299.78 5399.81 7999.75 6899.61 6899.67 14297.72 31599.35 24599.25 31299.23 7199.92 11597.21 28499.82 17799.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 32696.95 32997.75 34998.91 35594.24 37999.32 12797.96 36997.71 31698.29 35099.32 29786.72 38499.92 11598.10 20796.24 39299.09 310
PVSNet97.47 1598.42 27598.44 25698.35 32999.46 25396.26 36096.70 38699.34 28597.68 31799.00 29999.13 32797.40 25599.72 32497.59 25799.68 24199.08 315
1112_ss99.05 19798.84 22099.67 10899.66 16899.29 19398.52 29299.82 6497.65 31899.43 22799.16 32596.42 29099.91 13999.07 13199.84 16099.80 45
PVSNet_BlendedMVS99.03 20199.01 19099.09 27399.54 21497.99 31198.58 28199.82 6497.62 31999.34 24899.71 13998.52 16799.77 31197.98 21499.97 5499.52 198
PC_three_145297.56 32099.68 14199.41 27299.09 8797.09 39696.66 31199.60 26799.62 137
LPG-MVS_test99.22 15799.05 17899.74 7899.82 7199.63 11499.16 18399.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
LGP-MVS_train99.74 7899.82 7199.63 11499.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
PAPM_NR98.36 28098.04 28899.33 22999.48 24398.93 24398.79 26599.28 29997.54 32398.56 34298.57 37597.12 26999.69 33694.09 37598.90 34699.38 243
PMMVS98.49 26898.29 27299.11 27098.96 35398.42 28397.54 36199.32 28897.53 32498.47 34698.15 38697.88 22999.82 27697.46 26499.24 32799.09 310
9.1498.64 23599.45 25798.81 25999.60 18597.52 32599.28 26399.56 23398.53 16499.83 26795.36 35999.64 254
IU-MVS99.69 15499.77 5499.22 31397.50 32699.69 13897.75 23899.70 23299.77 59
UnsupCasMVSNet_bld98.55 26098.27 27399.40 20999.56 21199.37 17797.97 34099.68 13897.49 32799.08 29299.35 29395.41 30999.82 27697.70 24598.19 37499.01 329
HQP-NCC99.31 29697.98 33797.45 32898.15 356
ACMP_Plane99.31 29697.98 33797.45 32898.15 356
HQP-MVS98.36 28098.02 29099.39 21399.31 29698.94 24097.98 33799.37 27997.45 32898.15 35698.83 36496.67 28199.70 33094.73 36699.67 24799.53 187
SMA-MVScopyleft99.19 16799.00 19399.73 8799.46 25399.73 7799.13 19399.52 23497.40 33199.57 18499.64 17898.93 10799.83 26797.61 25599.79 19699.63 126
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet98.35 28398.20 27898.83 30699.05 34398.12 30299.30 13599.67 14297.39 33299.16 28199.79 9391.87 34499.91 13998.78 16098.77 35198.44 365
MDTV_nov1_ep13_2view91.44 39499.14 18797.37 33399.21 27591.78 34696.75 30599.03 324
FA-MVS(test-final)98.52 26398.32 26999.10 27299.48 24398.67 26399.77 1598.60 35297.35 33499.63 15899.80 8393.07 33299.84 25297.92 21999.30 31898.78 348
dp96.86 33297.07 32596.24 37498.68 37690.30 40099.19 17198.38 36297.35 33498.23 35499.59 21787.23 37799.82 27696.27 33098.73 35798.59 355
cl2297.56 31797.28 32098.40 32798.37 38496.75 35297.24 37699.37 27997.31 33699.41 23599.22 31987.30 37699.37 38797.70 24599.62 25799.08 315
OMC-MVS98.90 22498.72 23099.44 19499.39 27099.42 16498.58 28199.64 16197.31 33699.44 22399.62 19598.59 15299.69 33696.17 33599.79 19699.22 278
thisisatest051596.98 33096.42 33798.66 31799.42 26797.47 33397.27 37494.30 39397.24 33899.15 28398.86 36385.01 38799.87 20297.10 28899.39 30698.63 352
KD-MVS_2432*160095.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
miper_refine_blended95.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
baseline296.83 33396.28 33998.46 32599.09 34096.91 34998.83 25493.87 39597.23 33996.23 39098.36 38288.12 37499.90 15796.68 30998.14 37698.57 358
Fast-Effi-MVS+99.02 20398.87 21699.46 18899.38 27399.50 14399.04 21799.79 8397.17 34298.62 33698.74 36999.34 5899.95 6298.32 18799.41 30498.92 336
FPMVS96.32 34595.50 35298.79 31099.60 18198.17 30098.46 30098.80 34197.16 34396.28 38799.63 18882.19 39199.09 39088.45 38998.89 34799.10 306
Test_1112_low_res98.95 21998.73 22999.63 13499.68 16299.15 21998.09 32599.80 7797.14 34499.46 22199.40 27696.11 30099.89 17499.01 13599.84 16099.84 34
PatchMatch-RL98.68 24898.47 25399.30 23999.44 25899.28 19598.14 31999.54 22097.12 34599.11 28999.25 31297.80 23599.70 33096.51 31999.30 31898.93 335
ACMP97.51 1499.05 19798.84 22099.67 10899.78 10499.55 13798.88 24799.66 14697.11 34699.47 21799.60 21299.07 9299.89 17496.18 33499.85 15599.58 163
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet297.78 30797.66 31498.12 34099.14 32895.36 37199.22 16498.75 34396.97 34798.25 35299.64 17890.90 35599.94 7696.51 31999.56 27499.08 315
ADS-MVSNet97.72 31297.67 31397.86 34599.14 32894.65 37799.22 16498.86 33796.97 34798.25 35299.64 17890.90 35599.84 25296.51 31999.56 27499.08 315
DPM-MVS98.28 28597.94 29999.32 23399.36 27899.11 22297.31 37398.78 34296.88 34998.84 31799.11 33497.77 23799.61 36994.03 37799.36 31099.23 276
TR-MVS97.44 32097.15 32498.32 33298.53 37997.46 33498.47 29697.91 37196.85 35098.21 35598.51 37996.42 29099.51 38192.16 38297.29 38597.98 380
MP-MVS-pluss99.14 18198.92 21099.80 4499.83 6499.83 2998.61 27599.63 16396.84 35199.44 22399.58 22098.81 11899.91 13997.70 24599.82 17799.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HY-MVS98.23 998.21 29297.95 29598.99 28399.03 34698.24 29299.61 6898.72 34496.81 35298.73 32899.51 24894.06 31999.86 22096.91 29698.20 37298.86 341
APD-MVScopyleft98.87 22998.59 24099.71 9899.50 23399.62 11699.01 22699.57 20396.80 35399.54 19899.63 18898.29 19699.91 13995.24 36099.71 23099.61 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
原ACMM199.37 21999.47 24998.87 25099.27 30096.74 35498.26 35199.32 29797.93 22699.82 27695.96 34499.38 30799.43 234
CPTT-MVS98.74 24198.44 25699.64 12799.61 17999.38 17499.18 17299.55 21496.49 35599.27 26499.37 28497.11 27099.92 11595.74 35199.67 24799.62 137
CLD-MVS98.76 23898.57 24499.33 22999.57 20098.97 23797.53 36399.55 21496.41 35699.27 26499.13 32799.07 9299.78 30396.73 30799.89 12399.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.43 26299.61 12299.43 26196.38 35799.11 28999.07 33797.86 23099.92 11594.04 37699.49 294
miper_enhance_ethall98.03 29997.94 29998.32 33298.27 38696.43 35796.95 38299.41 26496.37 35899.43 22798.96 35594.74 31399.69 33697.71 24299.62 25798.83 344
F-COLMAP98.74 24198.45 25599.62 14399.57 20099.47 14698.84 25299.65 15596.31 35998.93 30499.19 32497.68 24299.87 20296.52 31899.37 30999.53 187
testdata99.42 20099.51 22798.93 24399.30 29596.20 36098.87 31499.40 27698.33 19399.89 17496.29 32999.28 32199.44 228
PVSNet_095.53 1995.85 35495.31 35697.47 35498.78 37093.48 38495.72 38999.40 27196.18 36197.37 37897.73 39195.73 30499.58 37295.49 35581.40 39699.36 249
IB-MVS95.41 2095.30 35994.46 36397.84 34698.76 37295.33 37297.33 37296.07 38596.02 36295.37 39497.41 39576.17 40099.96 5397.54 25995.44 39498.22 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs398.08 29797.80 30698.91 29499.41 26897.69 32897.87 34899.66 14695.87 36399.50 21299.51 24890.35 36399.97 3298.55 17499.47 29699.08 315
FE-MVS97.85 30497.42 31799.15 26399.44 25898.75 25899.77 1598.20 36695.85 36499.33 25099.80 8388.86 37299.88 18896.40 32499.12 33298.81 345
无先验98.01 33399.23 31095.83 36599.85 23795.79 35099.44 228
BH-w/o97.20 32597.01 32797.76 34899.08 34195.69 36898.03 33298.52 35495.76 36697.96 36598.02 38795.62 30699.47 38392.82 38197.25 38698.12 378
PVSNet_Blended98.70 24698.59 24099.02 28199.54 21497.99 31197.58 36099.82 6495.70 36799.34 24898.98 35198.52 16799.77 31197.98 21499.83 16899.30 265
新几何199.52 17599.50 23399.22 20999.26 30395.66 36898.60 33899.28 30597.67 24399.89 17495.95 34599.32 31699.45 223
CMPMVSbinary77.52 2398.50 26698.19 28199.41 20798.33 38599.56 13499.01 22699.59 19195.44 36999.57 18499.80 8395.64 30599.46 38596.47 32299.92 10499.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MAR-MVS98.24 28997.92 30199.19 25898.78 37099.65 10799.17 17799.14 32495.36 37098.04 36398.81 36697.47 25299.72 32495.47 35699.06 33598.21 374
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验297.94 34295.33 37198.94 30399.88 18896.75 305
CDPH-MVS98.56 25998.20 27899.61 14699.50 23399.46 15098.32 30699.41 26495.22 37299.21 27599.10 33598.34 19199.82 27695.09 36499.66 25099.56 170
test22299.51 22799.08 22997.83 35099.29 29695.21 37398.68 33399.31 29997.28 26199.38 30799.43 234
PLCcopyleft97.35 1698.36 28097.99 29199.48 18499.32 29599.24 20698.50 29499.51 23895.19 37498.58 34098.96 35596.95 27599.83 26795.63 35299.25 32599.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131498.00 30197.90 30398.27 33698.90 35697.45 33599.30 13599.06 33094.98 37597.21 38299.12 33198.43 17799.67 35195.58 35498.56 36497.71 383
train_agg98.35 28397.95 29599.57 16199.35 28099.35 18498.11 32399.41 26494.90 37697.92 36698.99 34898.02 21999.85 23795.38 35899.44 29999.50 205
test_899.34 28899.31 19098.08 32799.40 27194.90 37697.87 37098.97 35398.02 21999.84 252
DP-MVS Recon98.50 26698.23 27499.31 23699.49 23899.46 15098.56 28699.63 16394.86 37898.85 31699.37 28497.81 23499.59 37196.08 33699.44 29998.88 339
TEST999.35 28099.35 18498.11 32399.41 26494.83 37997.92 36698.99 34898.02 21999.85 237
CostFormer96.71 33796.79 33696.46 37298.90 35690.71 39899.41 10898.68 34694.69 38098.14 36099.34 29686.32 38699.80 29797.60 25698.07 37898.88 339
PAPR97.56 31797.07 32599.04 28098.80 36798.11 30497.63 35799.25 30694.56 38198.02 36498.25 38597.43 25499.68 34690.90 38698.74 35599.33 256
gm-plane-assit97.59 39389.02 40293.47 38298.30 38399.84 25296.38 326
tpm296.35 34496.22 34096.73 36898.88 36191.75 39199.21 16698.51 35593.27 38397.89 36899.21 32184.83 38899.70 33096.04 33898.18 37598.75 350
tpm cat196.78 33496.98 32896.16 37598.85 36290.59 39999.08 21099.32 28892.37 38497.73 37799.46 26591.15 35199.69 33696.07 33798.80 34898.21 374
cascas96.99 32996.82 33597.48 35397.57 39595.64 36996.43 38899.56 20891.75 38597.13 38497.61 39495.58 30798.63 39496.68 30999.11 33398.18 377
QAPM98.40 27897.99 29199.65 12099.39 27099.47 14699.67 4999.52 23491.70 38698.78 32599.80 8398.55 15899.95 6294.71 36899.75 20999.53 187
OpenMVScopyleft98.12 1098.23 29097.89 30499.26 24899.19 32299.26 19999.65 5999.69 13591.33 38798.14 36099.77 10898.28 19799.96 5395.41 35799.55 27898.58 357
PAPM95.61 35894.71 36098.31 33499.12 33296.63 35396.66 38798.46 35890.77 38896.25 38898.68 37293.01 33399.69 33681.60 39797.86 38298.62 353
114514_t98.49 26898.11 28599.64 12799.73 13699.58 13199.24 15799.76 9789.94 38999.42 22999.56 23397.76 23899.86 22097.74 23999.82 17799.47 218
TAPA-MVS97.92 1398.03 29997.55 31599.46 18899.47 24999.44 15798.50 29499.62 16686.79 39099.07 29599.26 31098.26 19999.62 36597.28 27599.73 22199.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS96.03 1896.73 33695.86 34799.33 22999.44 25899.16 21796.87 38499.44 25886.58 39198.95 30299.40 27694.38 31799.88 18887.93 39099.80 19198.95 333
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 32396.84 33398.89 30199.29 30299.45 15598.87 24899.48 24786.54 39299.44 22399.74 12097.34 25999.86 22091.61 38399.28 32197.37 387
tmp_tt95.75 35595.42 35396.76 36689.90 40194.42 37898.86 24997.87 37278.01 39399.30 26299.69 15297.70 23995.89 39799.29 10098.14 37699.95 11
DeepMVS_CXcopyleft97.98 34199.69 15496.95 34799.26 30375.51 39495.74 39298.28 38496.47 28899.62 36591.23 38597.89 38097.38 386
MVS95.72 35694.63 36198.99 28398.56 37897.98 31799.30 13598.86 33772.71 39597.30 37999.08 33698.34 19199.74 31989.21 38798.33 36999.26 270
test_method91.72 36192.32 36489.91 37993.49 40070.18 40490.28 39299.56 20861.71 39695.39 39399.52 24693.90 32099.94 7698.76 16198.27 37199.62 137
EGC-MVSNET89.05 36285.52 36599.64 12799.89 4099.78 4999.56 8199.52 23424.19 39749.96 39899.83 6699.15 7999.92 11597.71 24299.85 15599.21 280
test12329.31 36333.05 36818.08 38025.93 40312.24 40597.53 36310.93 40511.78 39824.21 39950.08 40821.04 4038.60 39923.51 39832.43 39833.39 395
testmvs28.94 36433.33 36615.79 38126.03 4029.81 40696.77 38515.67 40411.55 39923.87 40050.74 40719.03 4048.53 40023.21 39933.07 39729.03 396
test_blank8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.88 36533.17 3670.00 3820.00 4040.00 4070.00 39399.62 1660.00 4000.00 40199.13 32799.82 130.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas16.61 36622.14 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 199.28 640.00 4010.00 4000.00 3990.00 397
sosnet-low-res8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
sosnet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
Regformer8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.26 37511.02 3780.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.16 3250.00 4050.00 4010.00 4000.00 3990.00 397
uanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS96.36 35895.20 361
MSC_two_6792asdad99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
No_MVS99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
eth-test20.00 404
eth-test0.00 404
OPU-MVS99.29 24099.12 33299.44 15799.20 16799.40 27699.00 9898.84 39396.54 31799.60 26799.58 163
test_0728_SECOND99.83 3299.70 15099.79 4699.14 18799.61 17399.92 11597.88 22399.72 22799.77 59
GSMVS99.14 300
test_part299.62 17899.67 10099.55 196
sam_mvs190.81 35899.14 300
sam_mvs90.52 362
ambc99.20 25799.35 28098.53 27599.17 17799.46 25399.67 14799.80 8398.46 17499.70 33097.92 21999.70 23299.38 243
MTGPAbinary99.53 229
test_post199.14 18751.63 40689.54 37099.82 27696.86 299
test_post52.41 40590.25 36499.86 220
patchmatchnet-post99.62 19590.58 36099.94 76
GG-mvs-BLEND97.36 35797.59 39396.87 35099.70 3588.49 40294.64 39597.26 39880.66 39399.12 38991.50 38496.50 39196.08 393
MTMP99.09 20798.59 353
test9_res95.10 36399.44 29999.50 205
agg_prior294.58 36999.46 29899.50 205
agg_prior99.35 28099.36 18199.39 27497.76 37699.85 237
test_prior499.19 21598.00 335
test_prior99.46 18899.35 28099.22 20999.39 27499.69 33699.48 214
新几何298.04 331
旧先验199.49 23899.29 19399.26 30399.39 28097.67 24399.36 31099.46 222
原ACMM297.92 344
testdata299.89 17495.99 342
segment_acmp98.37 186
test1299.54 17299.29 30299.33 18799.16 32298.43 34797.54 25099.82 27699.47 29699.48 214
plane_prior799.58 19099.38 174
plane_prior699.47 24999.26 19997.24 262
plane_prior599.54 22099.82 27695.84 34899.78 20199.60 151
plane_prior499.25 312
plane_prior199.51 227
n20.00 406
nn0.00 406
door-mid99.83 59
lessismore_v099.64 12799.86 5399.38 17490.66 39899.89 5299.83 6694.56 31699.97 3299.56 5599.92 10499.57 168
test1199.29 296
door99.77 92
HQP5-MVS98.94 240
BP-MVS94.73 366
HQP4-MVS98.15 35699.70 33099.53 187
HQP3-MVS99.37 27999.67 247
HQP2-MVS96.67 281
NP-MVS99.40 26999.13 22098.83 364
ACMMP++_ref99.94 93
ACMMP++99.79 196
Test By Simon98.41 180