This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11484.80 3287.77 986.18 196.26 196.06 190.32 184.49 6768.08 8397.05 196.93 1
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
DTE-MVSNet80.35 4882.89 3572.74 14289.84 737.34 32177.16 10881.81 9680.45 390.92 392.95 774.57 4786.12 2863.65 12194.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 12789.83 839.02 30677.06 11182.61 8680.04 490.60 692.85 974.93 4485.21 5563.15 12895.15 1795.09 2
PS-CasMVS80.41 4782.86 3673.07 12989.93 639.21 30377.15 10981.28 10679.74 590.87 492.73 1175.03 4384.93 6063.83 12095.19 1595.07 3
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4166.91 9895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet79.48 5481.65 4572.98 13289.66 1239.06 30576.76 11280.46 12678.91 790.32 791.70 2568.49 9084.89 6163.40 12595.12 1895.01 4
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6474.51 4696.15 292.88 7
WR-MVS_H80.22 5082.17 4174.39 10689.46 1442.69 28078.24 9582.24 8978.21 989.57 992.10 1868.05 9585.59 4666.04 10195.62 994.88 5
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4778.11 2394.46 3684.89 92
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 92
LS3D80.99 4180.85 4981.41 2578.37 16171.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8585.26 5266.15 9991.24 9687.61 52
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3377.77 2693.58 6183.09 147
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11090.18 7459.80 16987.58 473.06 5591.34 9489.01 34
UA-Net81.56 3382.28 4079.40 4988.91 2869.16 7284.67 3380.01 13675.34 1579.80 11794.91 269.79 8280.25 13972.63 5894.46 3688.78 42
test_040278.17 6979.48 5974.24 10883.50 9159.15 15172.52 15574.60 20175.34 1588.69 1391.81 2275.06 4282.37 9965.10 10688.68 15581.20 180
test_one_060185.84 6161.45 12785.63 2775.27 1785.62 4890.38 6476.72 27
DP-MVS78.44 6679.29 6075.90 9281.86 12065.33 9779.05 8584.63 5474.83 1880.41 11286.27 15271.68 6483.45 8362.45 13292.40 7778.92 223
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 6877.73 2794.34 4785.93 74
PMVScopyleft70.70 681.70 3283.15 3177.36 7590.35 582.82 282.15 5479.22 14774.08 2087.16 2891.97 1984.80 276.97 19464.98 10893.61 6072.28 281
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++81.24 3582.74 3776.76 8083.14 9660.90 13591.64 185.49 2974.03 2184.93 5690.38 6466.82 10585.90 3677.43 3090.78 11483.49 134
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4377.43 3094.74 2984.31 118
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5679.45 1294.91 2488.15 47
DPE-MVScopyleft82.00 3083.02 3378.95 5785.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1074.56 4594.02 5582.62 161
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11281.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+66.64 1081.20 3682.48 3977.35 7681.16 12962.39 11980.51 6687.80 773.02 2687.57 2091.08 3680.28 982.44 9764.82 10996.10 487.21 57
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1878.84 1994.03 5384.64 101
X-MVStestdata76.81 7774.79 9982.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 37473.86 5286.31 1878.84 1994.03 5384.64 101
test_241102_ONE86.12 5361.06 13184.72 4872.64 2987.38 2489.47 8477.48 2385.74 42
SED-MVS81.78 3183.48 2476.67 8186.12 5361.06 13183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 3875.29 4094.39 4183.08 148
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 3875.29 4094.22 5283.25 144
DVP-MVScopyleft81.15 3783.12 3275.24 10186.16 5160.78 13783.77 4080.58 12472.48 3285.83 4390.41 5978.57 1785.69 4375.86 3794.39 4179.24 219
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 13783.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6179.30 1694.63 3382.35 166
UniMVSNet_ETH3D76.74 7879.02 6169.92 18289.27 1943.81 26874.47 14571.70 22272.33 3585.50 5093.65 377.98 2176.88 19754.60 19891.64 8689.08 32
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12272.08 3684.93 5690.79 4574.65 4684.42 7080.98 494.75 2880.82 192
APDe-MVS82.88 2384.14 1479.08 5284.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 877.93 2594.32 4883.47 137
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2579.24 1795.36 1282.49 164
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6578.41 2194.78 2782.74 159
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
gg-mvs-nofinetune55.75 28556.75 28452.72 31462.87 32028.04 36468.92 20541.36 36671.09 4050.80 35292.63 1220.74 37166.86 28829.97 35172.41 31363.25 338
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4185.85 4290.58 5178.77 1685.78 4079.37 1595.17 1684.62 103
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4285.64 4590.41 5975.55 3887.69 379.75 795.08 1985.36 83
Skip Steuart: Steuart Systems R&D Blog.
v7n79.37 5680.41 5276.28 8878.67 16055.81 17079.22 8482.51 8870.72 4387.54 2192.44 1468.00 9781.34 11472.84 5691.72 8491.69 10
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4485.14 5490.42 5878.99 1586.62 1280.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4584.47 6490.43 5776.79 2685.94 3379.58 1094.23 5182.82 156
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4584.49 6390.67 5075.15 4186.37 1779.58 1094.26 4984.18 121
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4783.86 7190.72 4975.20 4086.27 2079.41 1494.25 5083.95 125
IS-MVSNet75.10 9475.42 9674.15 11079.23 14748.05 23179.43 8078.04 16870.09 4879.17 12388.02 11953.04 21483.60 7958.05 17093.76 5990.79 19
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
APD-MVScopyleft81.13 3881.73 4479.36 5084.47 8070.53 5983.85 3883.70 7169.43 5183.67 7388.96 9975.89 3486.41 1572.62 5992.95 6981.14 182
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121175.54 8877.19 7870.59 16877.67 17345.70 25774.73 14180.19 13268.80 5282.95 8192.91 866.26 11276.76 19958.41 16892.77 7289.30 27
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5280.92 10688.52 10772.00 6382.39 9874.80 4293.04 6881.14 182
VDDNet71.60 14473.13 12667.02 22186.29 4741.11 29069.97 19266.50 26268.72 5474.74 18391.70 2559.90 16675.81 20548.58 24491.72 8484.15 122
TranMVSNet+NR-MVSNet76.13 8177.66 7471.56 15984.61 7842.57 28270.98 18278.29 16468.67 5583.04 7889.26 8872.99 5880.75 13155.58 19195.47 1091.35 13
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5684.14 6790.21 7373.37 5686.41 1579.09 1893.98 5684.30 120
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5784.91 5990.88 4275.59 3686.57 1378.16 2294.71 3083.82 126
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 5884.02 6890.39 6274.73 4586.46 1480.73 694.43 4084.60 106
Anonymous2024052972.56 13573.79 11468.86 19976.89 18445.21 25968.80 21077.25 17967.16 5976.89 15290.44 5665.95 11574.19 22750.75 22590.00 12887.18 59
XVG-OURS79.51 5379.82 5678.58 6286.11 5674.96 2876.33 12184.95 4366.89 6082.75 8588.99 9866.82 10578.37 17374.80 4290.76 11782.40 165
ITE_SJBPF80.35 3876.94 18173.60 3880.48 12566.87 6183.64 7486.18 15570.25 7779.90 14561.12 14388.95 15387.56 53
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6286.70 3089.99 7681.64 685.95 3274.35 4796.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6386.46 4674.79 2977.15 10985.39 3466.73 6380.39 11388.85 10174.43 5078.33 17574.73 4485.79 19582.35 166
UniMVSNet_NR-MVSNet74.90 10075.65 9272.64 14583.04 10245.79 25469.26 20178.81 15366.66 6481.74 9686.88 13063.26 13381.07 12256.21 18394.98 2091.05 15
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5687.01 3872.91 4380.23 7485.56 2866.56 6585.64 4589.57 8369.12 8680.55 13472.51 6093.37 6383.48 136
ACMM69.25 982.11 2983.31 2778.49 6388.17 3673.96 3483.11 4984.52 5666.40 6687.45 2289.16 9381.02 880.52 13574.27 4895.73 780.98 188
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM_NR73.91 10774.16 10873.16 12681.90 11953.50 18581.28 6081.40 10366.17 6773.30 20683.31 19759.96 16583.10 8958.45 16781.66 24882.87 154
K. test v373.67 10973.61 11773.87 11479.78 13855.62 17374.69 14362.04 29666.16 6884.76 6093.23 549.47 23580.97 12665.66 10386.67 18785.02 91
NCCC78.25 6778.04 7178.89 5885.61 6269.45 6679.80 7980.99 11565.77 6975.55 17486.25 15467.42 9985.42 4870.10 7190.88 11281.81 175
OPM-MVS80.99 4181.63 4679.07 5386.86 4369.39 6879.41 8284.00 6965.64 7085.54 4989.28 8776.32 3183.47 8274.03 4993.57 6284.35 117
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AdaColmapbinary74.22 10574.56 10173.20 12581.95 11860.97 13379.43 8080.90 11665.57 7172.54 21681.76 21670.98 7385.26 5247.88 25290.00 12873.37 269
APD_test175.04 9675.38 9774.02 11269.89 26670.15 6276.46 11579.71 13865.50 7282.99 8088.60 10666.94 10272.35 24459.77 15888.54 15679.56 213
HQP_MVS78.77 6078.78 6478.72 5985.18 6665.18 9982.74 5185.49 2965.45 7378.23 13289.11 9460.83 15986.15 2671.09 6690.94 10684.82 96
plane_prior282.74 5165.45 73
CNLPA73.44 11273.03 12974.66 10278.27 16275.29 2675.99 12678.49 16065.39 7575.67 17283.22 20261.23 15566.77 29153.70 20885.33 20181.92 174
AllTest77.66 7077.43 7578.35 6579.19 14970.81 5578.60 9088.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
TestCases78.35 6579.19 14970.81 5588.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
SF-MVS80.72 4381.80 4277.48 7382.03 11764.40 10783.41 4688.46 565.28 7884.29 6589.18 9173.73 5583.22 8676.01 3693.77 5884.81 98
DU-MVS74.91 9975.57 9472.93 13683.50 9145.79 25469.47 19880.14 13465.22 7981.74 9687.08 12461.82 14781.07 12256.21 18394.98 2091.93 8
LFMVS67.06 20367.89 19164.56 23978.02 16638.25 31270.81 18659.60 30365.18 8071.06 23686.56 14543.85 26575.22 21246.35 26389.63 13680.21 206
EPP-MVSNet73.86 10873.38 12075.31 9978.19 16353.35 18780.45 6777.32 17765.11 8176.47 16586.80 13149.47 23583.77 7553.89 20692.72 7488.81 41
WR-MVS71.20 14772.48 13767.36 21684.98 7135.70 33164.43 26968.66 25265.05 8281.49 9986.43 14957.57 19276.48 20150.36 22993.32 6589.90 23
testf175.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
APD_test275.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8581.05 10488.38 11157.10 19687.10 779.75 783.87 22184.31 118
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP82.33 2783.28 2879.46 4889.28 1869.09 7483.62 4284.98 4164.77 8683.97 6991.02 3875.53 3985.93 3582.00 294.36 4583.35 142
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13364.71 8778.11 13588.39 11065.46 12083.14 8777.64 2991.20 9778.94 222
SD-MVS80.28 4981.55 4776.47 8683.57 9067.83 8083.39 4785.35 3564.42 8886.14 3987.07 12674.02 5180.97 12677.70 2892.32 8080.62 199
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NR-MVSNet73.62 11074.05 10972.33 15383.50 9143.71 26965.65 25477.32 17764.32 8975.59 17387.08 12462.45 14081.34 11454.90 19495.63 891.93 8
Gipumacopyleft69.55 16772.83 13259.70 28463.63 31853.97 18280.08 7675.93 19064.24 9073.49 20288.93 10057.89 19062.46 30859.75 15991.55 9162.67 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 8376.34 8574.06 11181.69 12254.84 17576.47 11475.49 19464.10 9187.73 1792.24 1750.45 23081.30 11667.41 9191.46 9286.04 73
EI-MVSNet-Vis-set72.78 13171.87 14375.54 9774.77 21059.02 15272.24 15771.56 22563.92 9278.59 12771.59 31366.22 11378.60 16467.58 8980.32 25989.00 35
CNVR-MVS78.49 6478.59 6678.16 6785.86 6067.40 8478.12 9881.50 10063.92 9277.51 14386.56 14568.43 9284.82 6373.83 5091.61 8882.26 169
plane_prior365.67 9563.82 9478.23 132
tt080576.12 8278.43 6869.20 18981.32 12641.37 28876.72 11377.64 17363.78 9582.06 9087.88 12079.78 1179.05 15664.33 11392.40 7787.17 60
UniMVSNet (Re)75.00 9775.48 9573.56 12083.14 9647.92 23370.41 19081.04 11463.67 9679.54 11986.37 15062.83 13581.82 10857.10 17595.25 1490.94 17
ANet_high67.08 20269.94 16458.51 29357.55 34727.09 36658.43 31076.80 18363.56 9782.40 8891.93 2059.82 16864.98 29950.10 23188.86 15483.46 138
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 9884.23 6691.47 3072.02 6287.16 679.74 994.36 4584.61 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EI-MVSNet-UG-set72.63 13471.68 14775.47 9874.67 21258.64 15772.02 16171.50 22663.53 9878.58 12971.39 31665.98 11478.53 16567.30 9680.18 26189.23 29
pmmvs671.82 14273.66 11666.31 22875.94 19642.01 28466.99 23672.53 21763.45 10076.43 16692.78 1072.95 5969.69 26951.41 22090.46 12087.22 56
DROMVSNet77.08 7677.39 7676.14 9076.86 18556.87 16480.32 7287.52 1163.45 10074.66 18784.52 17869.87 8184.94 5969.76 7489.59 13886.60 67
ACMH63.62 1477.50 7280.11 5469.68 18379.61 14056.28 16678.81 8783.62 7263.41 10287.14 2990.23 7276.11 3273.32 23167.58 8994.44 3979.44 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521166.02 20866.89 20663.43 25274.22 22038.14 31359.00 30666.13 26463.33 10369.76 25185.95 16551.88 21970.50 26344.23 27587.52 16981.64 177
CANet73.00 12571.84 14476.48 8575.82 19761.28 12974.81 13780.37 12963.17 10462.43 30480.50 22961.10 15785.16 5864.00 11684.34 21783.01 151
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10485.38 5291.26 3376.33 3084.67 6683.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Vis-MVSNetpermissive74.85 10374.56 10175.72 9481.63 12364.64 10576.35 11979.06 14962.85 10673.33 20588.41 10962.54 13979.59 15063.94 11982.92 23082.94 152
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+72.10 14072.28 14071.58 15874.21 22150.33 20474.72 14282.73 8362.62 10770.77 23876.83 27369.96 8080.97 12660.20 15078.43 27883.45 139
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6284.76 4662.54 10881.77 9486.65 14171.46 6683.53 8167.95 8792.44 7689.60 24
API-MVS70.97 15171.51 15269.37 18575.20 20255.94 16880.99 6176.84 18262.48 10971.24 23477.51 26961.51 15180.96 12952.04 21585.76 19671.22 291
CSCG74.12 10674.39 10373.33 12379.35 14461.66 12577.45 10481.98 9462.47 11079.06 12480.19 23461.83 14678.79 16259.83 15787.35 17479.54 216
ETV-MVS72.72 13272.16 14274.38 10776.90 18355.95 16773.34 15284.67 5162.04 11172.19 22170.81 31765.90 11685.24 5458.64 16584.96 20981.95 173
OurMVSNet-221017-078.57 6278.53 6778.67 6080.48 13364.16 10880.24 7382.06 9261.89 11288.77 1293.32 457.15 19482.60 9670.08 7292.80 7189.25 28
plane_prior65.18 9980.06 7761.88 11389.91 132
UGNet70.20 15869.05 17373.65 11776.24 19063.64 11075.87 12872.53 21761.48 11460.93 31486.14 15852.37 21777.12 19350.67 22685.21 20380.17 207
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS70.81 15271.44 15368.91 19879.07 15446.51 24967.82 22370.83 24161.23 11574.07 19688.69 10359.86 16775.62 20851.11 22290.28 12284.61 104
FMVSNet171.06 14872.48 13766.81 22277.65 17440.68 29471.96 16473.03 20961.14 11679.45 12190.36 6760.44 16175.20 21350.20 23088.05 16284.54 109
TransMVSNet (Re)69.62 16571.63 14863.57 24976.51 18735.93 32965.75 25371.29 23261.05 11775.02 17989.90 7965.88 11770.41 26649.79 23289.48 14084.38 116
EPNet69.10 17467.32 19874.46 10368.33 27961.27 13077.56 10163.57 28660.95 11856.62 33282.75 20551.53 22381.24 11754.36 20290.20 12380.88 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG67.47 19867.48 19767.46 21570.70 25754.69 17766.90 23978.17 16560.88 11970.41 24174.76 28661.22 15673.18 23247.38 25576.87 28674.49 261
TSAR-MVS + GP.73.08 12071.60 15077.54 7278.99 15670.73 5774.96 13469.38 24860.73 12074.39 19178.44 25757.72 19182.78 9360.16 15289.60 13779.11 221
MSLP-MVS++74.48 10475.78 9170.59 16884.66 7662.40 11878.65 8984.24 6260.55 12177.71 14181.98 21263.12 13477.64 18962.95 12988.14 16071.73 286
CS-MVS76.51 7976.00 8978.06 7077.02 17864.77 10480.78 6382.66 8560.39 12274.15 19383.30 19869.65 8382.07 10569.27 7686.75 18687.36 55
Baseline_NR-MVSNet70.62 15473.19 12462.92 26076.97 18034.44 33968.84 20670.88 24060.25 12379.50 12090.53 5361.82 14769.11 27354.67 19795.27 1385.22 84
v875.07 9575.64 9373.35 12273.42 23147.46 24075.20 13281.45 10260.05 12485.64 4589.26 8858.08 18681.80 10969.71 7587.97 16590.79 19
9.1480.22 5380.68 13180.35 7187.69 1059.90 12583.00 7988.20 11474.57 4781.75 11073.75 5193.78 57
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 12680.91 10790.53 5372.19 6088.56 173.67 5294.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
F-COLMAP75.29 9073.99 11079.18 5181.73 12171.90 4681.86 5882.98 7959.86 12772.27 21884.00 18564.56 12883.07 9051.48 21987.19 18082.56 163
MVS_030462.51 24662.27 24363.25 25369.39 27248.47 22464.05 27362.48 29059.69 12854.10 34481.04 22245.71 25266.31 29441.38 29282.58 23474.96 258
casdiffmvs_mvgpermissive75.26 9176.18 8872.52 14772.87 24349.47 21672.94 15484.71 5059.49 12980.90 10888.81 10270.07 7879.71 14767.40 9288.39 15788.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF75.76 8474.37 10479.93 4074.81 20977.53 1677.53 10379.30 14659.44 13078.88 12589.80 8071.26 6973.09 23357.45 17280.89 25389.17 31
HQP-NCC82.37 11177.32 10559.08 13171.58 226
ACMP_Plane82.37 11177.32 10559.08 13171.58 226
HQP-MVS75.24 9275.01 9875.94 9182.37 11158.80 15477.32 10584.12 6559.08 13171.58 22685.96 16458.09 18485.30 5167.38 9489.16 14683.73 131
FA-MVS(test-final)71.27 14671.06 15671.92 15673.96 22452.32 19376.45 11676.12 18759.07 13474.04 19786.18 15552.18 21879.43 15259.75 15981.76 24384.03 123
v1075.69 8576.20 8774.16 10974.44 21848.69 22175.84 12982.93 8159.02 13585.92 4189.17 9258.56 17982.74 9470.73 6889.14 14991.05 15
test_prior275.57 13058.92 13676.53 16486.78 13367.83 9869.81 7392.76 73
ZD-MVS83.91 8769.36 6981.09 11258.91 13782.73 8689.11 9475.77 3586.63 1172.73 5792.93 70
CS-MVS-test74.89 10174.23 10776.86 7977.01 17962.94 11778.98 8684.61 5558.62 13870.17 24580.80 22466.74 10881.96 10661.74 13589.40 14485.69 81
MG-MVS70.47 15671.34 15467.85 21179.26 14640.42 29874.67 14475.15 19858.41 13968.74 26388.14 11856.08 20483.69 7859.90 15681.71 24779.43 218
EI-MVSNet69.61 16669.01 17571.41 16273.94 22549.90 21171.31 17771.32 23058.22 14075.40 17770.44 31958.16 18275.85 20362.51 13079.81 26588.48 44
IterMVS-LS73.01 12473.12 12772.66 14473.79 22749.90 21171.63 17178.44 16158.22 14080.51 11186.63 14258.15 18379.62 14862.51 13088.20 15988.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-RMVSNet68.69 18068.20 18870.14 17776.40 18853.90 18464.62 26673.48 20758.01 14273.91 19981.78 21459.09 17478.22 17748.59 24377.96 28378.31 229
test_yl65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
DCV-MVSNet65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
DP-MVS Recon73.57 11172.69 13476.23 8982.85 10663.39 11274.32 14682.96 8057.75 14570.35 24281.98 21264.34 13084.41 7149.69 23389.95 13080.89 190
Effi-MVS+-dtu75.43 8972.28 14084.91 277.05 17683.58 178.47 9277.70 17257.68 14674.89 18178.13 26364.80 12684.26 7256.46 18185.32 20286.88 62
MVS_111021_HR72.98 12772.97 13172.99 13180.82 13065.47 9668.81 20872.77 21457.67 14775.76 17182.38 20971.01 7277.17 19261.38 13886.15 19176.32 246
3Dnovator65.95 1171.50 14571.22 15572.34 15273.16 23563.09 11578.37 9378.32 16257.67 14772.22 22084.61 17654.77 20678.47 16760.82 14681.07 25275.45 252
FE-MVS68.29 18766.96 20572.26 15474.16 22254.24 18077.55 10273.42 20857.65 14972.66 21384.91 17432.02 32981.49 11348.43 24681.85 24181.04 184
FC-MVSNet-test73.32 11674.78 10068.93 19779.21 14836.57 32371.82 17079.54 14457.63 15082.57 8790.38 6459.38 17278.99 15857.91 17194.56 3491.23 14
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 12883.29 4880.34 13157.43 15186.65 3191.79 2350.52 22886.01 2971.36 6594.65 3291.62 11
FPMVS59.43 26960.07 26057.51 29677.62 17571.52 4962.33 28750.92 33957.40 15269.40 25380.00 23639.14 29561.92 31137.47 31866.36 34239.09 370
testdata168.34 21857.24 153
MIMVSNet166.57 20569.23 17158.59 29281.26 12837.73 31864.06 27257.62 30857.02 15478.40 13190.75 4662.65 13658.10 32141.77 28989.58 13979.95 208
MVS_111021_LR72.10 14071.82 14572.95 13379.53 14273.90 3670.45 18966.64 26156.87 15576.81 15681.76 21668.78 8771.76 25261.81 13383.74 22373.18 271
LCM-MVSNet-Re69.10 17471.57 15161.70 26870.37 26234.30 34161.45 29079.62 13956.81 15689.59 888.16 11768.44 9172.94 23442.30 28487.33 17577.85 239
BH-untuned69.39 17069.46 16769.18 19077.96 16856.88 16368.47 21777.53 17456.77 15777.79 13979.63 24160.30 16380.20 14246.04 26580.65 25670.47 297
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7783.75 7056.73 15874.88 18285.32 17065.54 11887.79 265.61 10491.14 10083.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 11984.05 6756.66 15980.27 11485.31 17168.56 8987.03 967.39 9391.26 9583.50 133
save fliter87.00 3967.23 8679.24 8377.94 17056.65 160
VPA-MVSNet68.71 17970.37 16263.72 24776.13 19238.06 31564.10 27171.48 22756.60 16174.10 19588.31 11264.78 12769.72 26847.69 25490.15 12583.37 141
GeoE73.14 11873.77 11571.26 16378.09 16552.64 19074.32 14679.56 14356.32 16276.35 16883.36 19670.76 7477.96 18363.32 12681.84 24283.18 146
FIs72.56 13573.80 11368.84 20078.74 15937.74 31771.02 18179.83 13756.12 16380.88 10989.45 8558.18 18178.28 17656.63 17793.36 6490.51 21
tfpnnormal66.48 20667.93 19062.16 26673.40 23236.65 32263.45 27864.99 27355.97 16472.82 21287.80 12157.06 19769.10 27448.31 24887.54 16880.72 197
baseline73.10 11973.96 11170.51 17071.46 25246.39 25272.08 16084.40 5855.95 16576.62 16086.46 14867.20 10078.03 18264.22 11487.27 17887.11 61
wuyk23d61.97 24966.25 20849.12 32858.19 34660.77 13966.32 24552.97 33455.93 16690.62 586.91 12973.07 5735.98 36920.63 37291.63 8750.62 359
Fast-Effi-MVS+-dtu70.00 16068.74 18073.77 11573.47 23064.53 10671.36 17578.14 16755.81 16768.84 26274.71 28865.36 12175.75 20652.00 21679.00 27281.03 185
casdiffmvspermissive73.06 12273.84 11270.72 16671.32 25346.71 24870.93 18384.26 6155.62 16877.46 14487.10 12367.09 10177.81 18563.95 11786.83 18487.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs168.40 18369.85 16664.04 24573.10 23939.94 30064.61 26770.50 24255.52 16973.97 19889.33 8663.91 13268.38 27749.68 23488.02 16383.81 127
v2v48272.55 13772.58 13672.43 15072.92 24246.72 24771.41 17479.13 14855.27 17081.17 10385.25 17255.41 20581.13 11967.25 9785.46 19789.43 26
thres100view90061.17 25661.09 25261.39 27272.14 24835.01 33565.42 25856.99 31555.23 17170.71 23979.90 23732.07 32772.09 24635.61 33081.73 24477.08 244
TAPA-MVS65.27 1275.16 9374.29 10677.77 7174.86 20868.08 7777.89 9984.04 6855.15 17276.19 17083.39 19266.91 10380.11 14360.04 15590.14 12685.13 87
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EG-PatchMatch MVS70.70 15370.88 15870.16 17682.64 11058.80 15471.48 17273.64 20554.98 17376.55 16281.77 21561.10 15778.94 15954.87 19580.84 25472.74 276
GBi-Net68.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
test168.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
FMVSNet267.48 19768.21 18765.29 23473.14 23638.94 30768.81 20871.21 23654.81 17476.73 15886.48 14748.63 24474.60 22147.98 25186.11 19382.35 166
v14869.38 17169.39 16869.36 18669.14 27544.56 26368.83 20772.70 21554.79 17778.59 12784.12 18354.69 20776.74 20059.40 16282.20 23686.79 63
thres600view761.82 25161.38 25063.12 25571.81 25034.93 33664.64 26556.99 31554.78 17870.33 24379.74 23932.07 32772.42 24338.61 30883.46 22782.02 171
tttt051769.46 16867.79 19374.46 10375.34 20052.72 18975.05 13363.27 28854.69 17978.87 12684.37 18026.63 35681.15 11863.95 11787.93 16689.51 25
RPMNet65.77 21065.08 22267.84 21266.37 29548.24 22770.93 18386.27 1954.66 18061.35 30886.77 13433.29 31785.67 4555.93 18570.17 32769.62 305
VNet64.01 23265.15 21860.57 27973.28 23435.61 33257.60 31467.08 25954.61 18166.76 27683.37 19456.28 20266.87 28742.19 28585.20 20479.23 220
PLCcopyleft62.01 1671.79 14370.28 16376.33 8780.31 13668.63 7578.18 9781.24 10754.57 18267.09 27580.63 22759.44 17081.74 11146.91 25984.17 21878.63 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
nrg03074.87 10275.99 9071.52 16074.90 20749.88 21574.10 14982.58 8754.55 18383.50 7589.21 9071.51 6575.74 20761.24 13992.34 7988.94 37
canonicalmvs72.29 13973.38 12069.04 19274.23 21947.37 24173.93 15083.18 7654.36 18476.61 16181.64 21872.03 6175.34 21157.12 17487.28 17784.40 115
h-mvs3373.08 12071.61 14977.48 7383.89 8972.89 4470.47 18871.12 23754.28 18577.89 13683.41 19149.04 23880.98 12563.62 12290.77 11678.58 226
hse-mvs272.32 13870.66 16177.31 7783.10 10171.77 4769.19 20371.45 22854.28 18577.89 13678.26 25949.04 23879.23 15363.62 12289.13 15080.92 189
test250661.23 25560.85 25562.38 26478.80 15727.88 36567.33 23237.42 37154.23 18767.55 27088.68 10417.87 37774.39 22446.33 26489.41 14284.86 94
ECVR-MVScopyleft64.82 21865.22 21463.60 24878.80 15731.14 35566.97 23756.47 31854.23 18769.94 24788.68 10437.23 30574.81 21945.28 27289.41 14284.86 94
CDPH-MVS77.33 7377.06 8078.14 6884.21 8463.98 10976.07 12583.45 7454.20 18977.68 14287.18 12269.98 7985.37 4968.01 8592.72 7485.08 89
VPNet65.58 21167.56 19459.65 28579.72 13930.17 35860.27 30062.14 29254.19 19071.24 23486.63 14258.80 17767.62 28244.17 27690.87 11381.18 181
PHI-MVS74.92 9874.36 10576.61 8276.40 18862.32 12080.38 6983.15 7754.16 19173.23 20780.75 22562.19 14483.86 7468.02 8490.92 10983.65 132
test111164.62 22165.19 21562.93 25979.01 15529.91 35965.45 25754.41 32654.09 19271.47 23388.48 10837.02 30674.29 22646.83 26189.94 13184.58 107
Patchmtry60.91 25763.01 23854.62 30666.10 30126.27 36967.47 22756.40 31954.05 19372.04 22286.66 13933.19 31860.17 31543.69 27787.45 17277.42 240
train_agg76.38 8076.55 8375.86 9385.47 6369.32 7076.42 11778.69 15654.00 19476.97 14886.74 13566.60 10981.10 12072.50 6191.56 9077.15 242
test_885.09 6967.89 7976.26 12278.66 15854.00 19476.89 15286.72 13766.60 10980.89 130
DELS-MVS68.83 17668.31 18370.38 17170.55 26148.31 22563.78 27682.13 9054.00 19468.96 25875.17 28458.95 17680.06 14458.55 16682.74 23282.76 157
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs70.54 15571.00 15769.15 19173.50 22948.04 23269.85 19579.62 13953.94 19776.54 16382.00 21159.00 17574.68 22057.32 17387.21 17984.72 99
v114473.29 11773.39 11973.01 13074.12 22348.11 22972.01 16281.08 11353.83 19881.77 9484.68 17558.07 18781.91 10768.10 8286.86 18388.99 36
TEST985.47 6369.32 7076.42 11778.69 15653.73 19976.97 14886.74 13566.84 10481.10 120
Vis-MVSNet (Re-imp)62.74 24363.21 23661.34 27372.19 24731.56 35267.31 23353.87 32753.60 20069.88 24983.37 19440.52 28670.98 25941.40 29186.78 18581.48 179
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 12680.58 6582.12 9153.54 20183.93 7091.03 3749.49 23485.97 3173.26 5493.08 6791.59 12
PS-MVSNAJss77.54 7177.35 7778.13 6984.88 7266.37 9278.55 9179.59 14253.48 20286.29 3692.43 1562.39 14180.25 13967.90 8890.61 11887.77 49
MDA-MVSNet-bldmvs62.34 24861.73 24464.16 24161.64 32649.90 21148.11 34357.24 31453.31 20380.95 10579.39 24449.00 24061.55 31245.92 26680.05 26281.03 185
TinyColmap67.98 19069.28 16964.08 24367.98 28346.82 24670.04 19175.26 19653.05 20477.36 14586.79 13259.39 17172.59 24145.64 26888.01 16472.83 274
tfpn200view960.35 26359.97 26161.51 27070.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24477.08 244
thres40060.77 26059.97 26163.15 25470.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24482.02 171
v119273.40 11473.42 11873.32 12474.65 21548.67 22272.21 15881.73 9752.76 20781.85 9284.56 17757.12 19582.24 10368.58 7887.33 17589.06 33
MVS_Test69.84 16370.71 16067.24 21767.49 28843.25 27669.87 19481.22 10952.69 20871.57 22986.68 13862.09 14574.51 22266.05 10078.74 27483.96 124
EIA-MVS68.59 18267.16 20072.90 13775.18 20355.64 17269.39 19981.29 10552.44 20964.53 28770.69 31860.33 16282.30 10154.27 20376.31 28980.75 195
MVSFormer69.93 16269.03 17472.63 14674.93 20559.19 14883.98 3675.72 19252.27 21063.53 30076.74 27443.19 26980.56 13272.28 6278.67 27678.14 233
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19252.27 21087.37 2692.25 1668.04 9680.56 13272.28 6291.15 9990.32 22
CLD-MVS72.88 12972.36 13974.43 10577.03 17754.30 17968.77 21183.43 7552.12 21276.79 15774.44 29169.54 8483.91 7355.88 18693.25 6685.09 88
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT53.35 29856.47 28643.99 34564.19 31417.46 37759.15 30443.10 35752.11 21354.74 34086.95 12829.97 34749.98 33243.62 27874.40 30464.53 336
CANet_DTU64.04 23163.83 22864.66 23868.39 27642.97 27873.45 15174.50 20252.05 21454.78 33975.44 28343.99 26470.42 26553.49 21078.41 27980.59 200
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6476.50 18551.98 21587.40 2391.86 2176.09 3378.53 16568.58 7890.20 12386.69 66
bld_raw_dy_0_6472.85 13072.76 13373.09 12885.08 7064.80 10378.72 8864.22 28251.92 21683.13 7790.26 7039.21 29469.91 26770.73 6891.60 8984.56 108
v124073.06 12273.14 12572.84 13974.74 21147.27 24371.88 16981.11 11051.80 21782.28 8984.21 18256.22 20382.34 10068.82 7787.17 18188.91 38
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10451.71 21877.15 14691.42 3265.49 11987.20 579.44 1387.17 18184.51 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v192192072.96 12872.98 13072.89 13874.67 21247.58 23871.92 16780.69 11951.70 21981.69 9883.89 18656.58 20182.25 10268.34 8087.36 17388.82 40
v14419272.99 12673.06 12872.77 14074.58 21647.48 23971.90 16880.44 12751.57 22081.46 10084.11 18458.04 18882.12 10467.98 8687.47 17188.70 43
FMVSNet365.00 21765.16 21664.52 24069.47 27137.56 32066.63 24270.38 24351.55 22174.72 18483.27 19937.89 30374.44 22347.12 25685.37 19881.57 178
c3_l69.82 16469.89 16569.61 18466.24 29843.48 27268.12 22079.61 14151.43 22277.72 14080.18 23554.61 20978.15 18163.62 12287.50 17087.20 58
V4271.06 14870.83 15971.72 15767.25 28947.14 24465.94 24880.35 13051.35 22383.40 7683.23 20059.25 17378.80 16165.91 10280.81 25589.23 29
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6876.12 18751.33 22487.19 2791.51 2973.79 5478.44 16968.27 8190.13 12786.49 68
GA-MVS62.91 24061.66 24566.66 22667.09 29144.49 26461.18 29469.36 24951.33 22469.33 25474.47 29036.83 30774.94 21650.60 22774.72 30180.57 201
CL-MVSNet_self_test62.44 24763.40 23359.55 28672.34 24632.38 34856.39 31864.84 27551.21 22667.46 27181.01 22350.75 22763.51 30638.47 31088.12 16182.75 158
PM-MVS64.49 22463.61 23167.14 22076.68 18675.15 2768.49 21642.85 35851.17 22777.85 13880.51 22845.76 25166.31 29452.83 21476.35 28859.96 350
原ACMM173.90 11385.90 5765.15 10181.67 9850.97 22874.25 19286.16 15761.60 14983.54 8056.75 17691.08 10473.00 272
JIA-IIPM54.03 29551.62 30961.25 27459.14 34155.21 17459.10 30547.72 34950.85 22950.31 35685.81 16720.10 37463.97 30236.16 32855.41 36764.55 335
KD-MVS_self_test66.38 20767.51 19562.97 25861.76 32534.39 34058.11 31275.30 19550.84 23077.12 14785.42 16956.84 19969.44 27051.07 22391.16 9885.08 89
eth_miper_zixun_eth69.42 16968.73 18171.50 16167.99 28246.42 25067.58 22578.81 15350.72 23178.13 13480.34 23150.15 23280.34 13760.18 15184.65 21187.74 50
Fast-Effi-MVS+68.81 17768.30 18470.35 17274.66 21448.61 22366.06 24778.32 16250.62 23271.48 23275.54 28068.75 8879.59 15050.55 22878.73 27582.86 155
iter_conf_final68.69 18067.00 20473.76 11673.68 22852.33 19275.96 12773.54 20650.56 23369.90 24882.85 20324.76 36583.73 7665.40 10586.33 19085.22 84
anonymousdsp78.60 6177.80 7281.00 3178.01 16774.34 3380.09 7576.12 18750.51 23489.19 1090.88 4271.45 6777.78 18773.38 5390.60 11990.90 18
dcpmvs_271.02 15072.65 13566.16 22976.06 19550.49 20271.97 16379.36 14550.34 23582.81 8483.63 18964.38 12967.27 28561.54 13783.71 22580.71 198
thres20057.55 27957.02 28159.17 28767.89 28534.93 33658.91 30857.25 31350.24 23664.01 29371.46 31532.49 32371.39 25631.31 34579.57 26971.19 293
thisisatest053067.05 20465.16 21672.73 14373.10 23950.55 20171.26 17963.91 28450.22 23774.46 19080.75 22526.81 35580.25 13959.43 16186.50 18887.37 54
test20.0355.74 28657.51 27950.42 32159.89 33732.09 35050.63 33749.01 34550.11 23865.07 28583.23 20045.61 25448.11 33930.22 34983.82 22271.07 294
BH-w/o64.81 21964.29 22566.36 22776.08 19454.71 17665.61 25575.23 19750.10 23971.05 23771.86 31254.33 21079.02 15738.20 31276.14 29065.36 328
cl____68.26 18968.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.42 20848.74 24275.38 20960.92 14589.81 13385.80 80
DIV-MVS_self_test68.27 18868.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.43 20748.74 24275.38 20960.94 14489.81 13385.81 76
EPNet_dtu58.93 27258.52 27160.16 28367.91 28447.70 23769.97 19258.02 30749.73 24247.28 36073.02 30538.14 29962.34 30936.57 32485.99 19470.43 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM69.18 17369.26 17068.94 19671.61 25152.58 19180.37 7078.79 15549.63 24373.51 20185.14 17353.66 21279.12 15555.11 19375.54 29475.11 257
PAPR69.20 17268.66 18270.82 16575.15 20447.77 23575.31 13181.11 11049.62 24466.33 27779.27 24661.53 15082.96 9148.12 25081.50 25081.74 176
TR-MVS64.59 22263.54 23267.73 21475.75 19950.83 20063.39 27970.29 24449.33 24571.55 23074.55 28950.94 22678.46 16840.43 29775.69 29273.89 266
cl2267.14 20166.51 20769.03 19363.20 31943.46 27366.88 24076.25 18649.22 24674.48 18977.88 26545.49 25577.40 19160.64 14784.59 21386.24 69
AUN-MVS70.22 15767.88 19277.22 7882.96 10571.61 4869.08 20471.39 22949.17 24771.70 22478.07 26437.62 30479.21 15461.81 13389.15 14880.82 192
miper_ehance_all_eth68.36 18468.16 18968.98 19465.14 30943.34 27467.07 23578.92 15249.11 24876.21 16977.72 26653.48 21377.92 18461.16 14184.59 21385.68 82
ab-mvs64.11 23065.13 21961.05 27571.99 24938.03 31667.59 22468.79 25149.08 24965.32 28386.26 15358.02 18966.85 28939.33 30179.79 26778.27 230
OpenMVScopyleft62.51 1568.76 17868.75 17968.78 20170.56 26053.91 18378.29 9477.35 17648.85 25070.22 24483.52 19052.65 21676.93 19555.31 19281.99 23875.49 251
MAR-MVS67.72 19466.16 20972.40 15174.45 21764.99 10274.87 13577.50 17548.67 25165.78 28168.58 33857.01 19877.79 18646.68 26281.92 23974.42 262
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu70.04 15968.88 17673.53 12182.71 10863.62 11174.81 13781.95 9548.53 25267.16 27479.18 24951.42 22478.38 17254.39 20179.72 26878.60 225
diffmvspermissive67.42 19967.50 19667.20 21862.26 32345.21 25964.87 26377.04 18048.21 25371.74 22379.70 24058.40 18071.17 25864.99 10780.27 26085.22 84
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-SCA-FT67.68 19566.07 21072.49 14973.34 23358.20 15963.80 27565.55 27048.10 25476.91 15182.64 20645.20 25678.84 16061.20 14077.89 28480.44 203
xiu_mvs_v1_base_debu67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base_debi67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
testdata64.13 24285.87 5963.34 11361.80 29747.83 25876.42 16786.60 14448.83 24162.31 31054.46 20081.26 25166.74 322
DPM-MVS69.98 16169.22 17272.26 15482.69 10958.82 15370.53 18781.23 10847.79 25964.16 29180.21 23251.32 22583.12 8860.14 15384.95 21074.83 259
无先验74.82 13670.94 23947.75 26076.85 19854.47 19972.09 283
IB-MVS49.67 1859.69 26756.96 28267.90 21068.19 28050.30 20561.42 29165.18 27247.57 26155.83 33667.15 34523.77 36879.60 14943.56 27979.97 26373.79 267
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs55.84 28455.45 29457.01 29760.33 33333.20 34665.89 24959.29 30547.52 26256.04 33473.60 29931.05 33968.06 27940.64 29664.64 34569.77 303
PatchMatch-RL58.68 27457.72 27761.57 26976.21 19173.59 3961.83 28849.00 34647.30 26361.08 31068.97 33250.16 23159.01 31836.06 32968.84 33452.10 358
Anonymous2024052163.55 23366.07 21055.99 30166.18 30044.04 26768.77 21168.80 25046.99 26472.57 21485.84 16639.87 29050.22 33153.40 21392.23 8173.71 268
PC_three_145246.98 26581.83 9386.28 15166.55 11184.47 6963.31 12790.78 11483.49 134
EMVS44.61 33144.45 33645.10 34148.91 37243.00 27737.92 36341.10 36846.75 26638.00 37348.43 37126.42 35746.27 34337.11 32175.38 29746.03 364
IterMVS63.12 23862.48 24265.02 23766.34 29752.86 18863.81 27462.25 29146.57 26771.51 23180.40 23044.60 26166.82 29051.38 22175.47 29575.38 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
E-PMN45.17 32745.36 33044.60 34250.07 36942.75 27938.66 36242.29 36246.39 26839.55 37151.15 36826.00 35945.37 34837.68 31576.41 28745.69 365
baseline157.82 27858.36 27456.19 30069.17 27430.76 35762.94 28555.21 32246.04 26963.83 29578.47 25641.20 28063.68 30439.44 30068.99 33374.13 263
MCST-MVS73.42 11373.34 12273.63 11981.28 12759.17 15074.80 13983.13 7845.50 27072.84 21183.78 18865.15 12380.99 12464.54 11089.09 15180.73 196
PVSNet_BlendedMVS65.38 21264.30 22468.61 20269.81 26849.36 21765.60 25678.96 15045.50 27059.98 31778.61 25551.82 22078.20 17844.30 27384.11 21978.27 230
IU-MVS86.12 5360.90 13580.38 12845.49 27281.31 10175.64 3994.39 4184.65 100
testgi54.00 29756.86 28345.45 33858.20 34525.81 37049.05 33949.50 34445.43 27367.84 26681.17 22151.81 22243.20 35729.30 35479.41 27067.34 317
PCF-MVS63.80 1372.70 13371.69 14675.72 9478.10 16460.01 14473.04 15381.50 10045.34 27479.66 11884.35 18165.15 12382.65 9548.70 24289.38 14584.50 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0567.34 20065.62 21272.50 14869.82 26747.06 24572.19 15976.86 18145.32 27572.86 21082.85 20320.53 37283.73 7661.13 14289.02 15286.70 65
TAMVS65.31 21363.75 22969.97 18182.23 11559.76 14666.78 24163.37 28745.20 27669.79 25079.37 24547.42 25072.17 24534.48 33585.15 20577.99 237
旧先验271.17 18045.11 27778.54 13061.28 31359.19 163
PS-MVSNAJ64.27 22963.73 23065.90 23277.82 17051.42 19663.33 28072.33 21945.09 27861.60 30668.04 33962.39 14173.95 22949.07 23873.87 30772.34 279
xiu_mvs_v2_base64.43 22663.96 22765.85 23377.72 17251.32 19763.63 27772.31 22045.06 27961.70 30569.66 32762.56 13773.93 23049.06 23973.91 30672.31 280
LF4IMVS67.50 19667.31 19968.08 20958.86 34261.93 12171.43 17375.90 19144.67 28072.42 21780.20 23357.16 19370.44 26458.99 16486.12 19271.88 284
CDS-MVSNet64.33 22862.66 24169.35 18780.44 13458.28 15865.26 25965.66 26844.36 28167.30 27375.54 28043.27 26871.77 25137.68 31584.44 21678.01 236
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_lstm_enhance61.97 24961.63 24762.98 25760.04 33445.74 25647.53 34570.95 23844.04 28273.06 20878.84 25439.72 29160.33 31455.82 18784.64 21282.88 153
新几何169.99 18088.37 3471.34 5162.08 29443.85 28374.99 18086.11 16052.85 21570.57 26250.99 22483.23 22968.05 313
114514_t73.40 11473.33 12373.64 11884.15 8657.11 16278.20 9680.02 13543.76 28472.55 21586.07 16264.00 13183.35 8560.14 15391.03 10580.45 202
OpenMVS_ROBcopyleft54.93 1763.23 23763.28 23463.07 25669.81 26845.34 25868.52 21567.14 25843.74 28570.61 24079.22 24747.90 24872.66 23748.75 24173.84 30871.21 292
FMVSNet555.08 29055.54 29353.71 30865.80 30233.50 34556.22 32052.50 33643.72 28661.06 31183.38 19325.46 36254.87 32430.11 35081.64 24972.75 275
MVP-Stereo61.56 25359.22 26568.58 20379.28 14560.44 14169.20 20271.57 22443.58 28756.42 33378.37 25839.57 29376.46 20234.86 33460.16 35668.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous65.08 21665.49 21363.83 24663.79 31637.60 31966.52 24469.82 24643.44 28873.46 20386.08 16158.79 17871.75 25351.90 21775.63 29382.15 170
test-LLR50.43 31450.69 31849.64 32460.76 33041.87 28553.18 33245.48 35443.41 28949.41 35760.47 35929.22 35044.73 35142.09 28672.14 31562.33 345
test0.0.03 147.72 32148.31 32345.93 33655.53 35729.39 36046.40 34941.21 36743.41 28955.81 33767.65 34029.22 35043.77 35625.73 36569.87 32964.62 334
SCA58.57 27558.04 27560.17 28270.17 26441.07 29165.19 26053.38 33243.34 29161.00 31373.48 30045.20 25669.38 27140.34 29870.31 32670.05 300
ET-MVSNet_ETH3D63.32 23560.69 25771.20 16470.15 26555.66 17165.02 26264.32 28043.28 29268.99 25772.05 31125.46 36278.19 18054.16 20582.80 23179.74 212
miper_enhance_ethall65.86 20965.05 22368.28 20861.62 32742.62 28164.74 26477.97 16942.52 29373.42 20472.79 30649.66 23377.68 18858.12 16984.59 21384.54 109
cascas64.59 22262.77 24070.05 17975.27 20150.02 20861.79 28971.61 22342.46 29463.68 29768.89 33449.33 23780.35 13647.82 25384.05 22079.78 211
PVSNet_Blended62.90 24161.64 24666.69 22569.81 26849.36 21761.23 29378.96 15042.04 29559.98 31768.86 33551.82 22078.20 17844.30 27377.77 28572.52 277
MVSTER63.29 23661.60 24868.36 20459.77 33846.21 25360.62 29771.32 23041.83 29675.40 17779.12 25030.25 34475.85 20356.30 18279.81 26583.03 150
MIMVSNet54.39 29356.12 28949.20 32672.57 24430.91 35659.98 30148.43 34841.66 29755.94 33583.86 18741.19 28150.42 33026.05 36275.38 29766.27 323
KD-MVS_2432*160052.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
miper_refine_blended52.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
patch_mono-262.73 24464.08 22658.68 29170.36 26355.87 16960.84 29664.11 28341.23 30064.04 29278.22 26060.00 16448.80 33454.17 20483.71 22571.37 288
new-patchmatchnet52.89 30055.76 29244.26 34459.94 3366.31 38037.36 36550.76 34141.10 30164.28 29079.82 23844.77 25948.43 33836.24 32787.61 16778.03 235
test22287.30 3769.15 7367.85 22259.59 30441.06 30273.05 20985.72 16848.03 24780.65 25666.92 318
Patchmatch-RL test59.95 26559.12 26662.44 26372.46 24554.61 17859.63 30347.51 35141.05 30374.58 18874.30 29331.06 33865.31 29651.61 21879.85 26467.39 315
thisisatest051560.48 26257.86 27668.34 20567.25 28946.42 25060.58 29862.14 29240.82 30463.58 29969.12 33026.28 35878.34 17448.83 24082.13 23780.26 205
ppachtmachnet_test60.26 26459.61 26462.20 26567.70 28644.33 26558.18 31160.96 29940.75 30565.80 28072.57 30741.23 27963.92 30346.87 26082.42 23578.33 228
PAPM61.79 25260.37 25966.05 23076.09 19341.87 28569.30 20076.79 18440.64 30653.80 34579.62 24244.38 26282.92 9229.64 35373.11 31173.36 270
our_test_356.46 28256.51 28556.30 29967.70 28639.66 30255.36 32652.34 33740.57 30763.85 29469.91 32640.04 28958.22 32043.49 28075.29 29971.03 295
PatchmatchNetpermissive54.60 29254.27 29755.59 30265.17 30839.08 30466.92 23851.80 33839.89 30858.39 32573.12 30431.69 33258.33 31943.01 28258.38 36269.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
D2MVS62.58 24561.05 25367.20 21863.85 31547.92 23356.29 31969.58 24739.32 30970.07 24678.19 26134.93 31272.68 23653.44 21183.74 22381.00 187
Patchmatch-test47.93 32049.96 32141.84 34857.42 34824.26 37248.75 34041.49 36539.30 31056.79 33173.48 30030.48 34333.87 37029.29 35572.61 31267.39 315
HY-MVS49.31 1957.96 27757.59 27859.10 28966.85 29436.17 32665.13 26165.39 27139.24 31154.69 34178.14 26244.28 26367.18 28633.75 33970.79 32273.95 265
baseline255.57 28852.74 30464.05 24465.26 30544.11 26662.38 28654.43 32539.03 31251.21 35067.35 34333.66 31672.45 24237.14 32064.22 34775.60 250
XXY-MVS55.19 28957.40 28048.56 33064.45 31334.84 33851.54 33653.59 32938.99 31363.79 29679.43 24356.59 20045.57 34536.92 32271.29 31965.25 329
pmmvs-eth3d64.41 22763.27 23567.82 21375.81 19860.18 14369.49 19762.05 29538.81 31474.13 19482.23 21043.76 26668.65 27542.53 28380.63 25874.63 260
MDA-MVSNet_test_wron52.57 30353.49 30249.81 32354.24 36136.47 32440.48 35946.58 35238.13 31575.47 17673.32 30241.05 28443.85 35540.98 29471.20 32069.10 311
YYNet152.58 30253.50 30049.85 32254.15 36236.45 32540.53 35846.55 35338.09 31675.52 17573.31 30341.08 28343.88 35441.10 29371.14 32169.21 309
1112_ss59.48 26858.99 26860.96 27777.84 16942.39 28361.42 29168.45 25437.96 31759.93 32067.46 34145.11 25865.07 29840.89 29571.81 31775.41 253
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32755.08 35833.67 34450.03 33858.79 30637.67 31863.43 30274.75 28741.82 27745.83 34438.59 30959.42 35867.98 314
tpm50.60 31352.42 30745.14 34065.18 30726.29 36860.30 29943.50 35637.41 31957.01 32979.09 25130.20 34642.32 35832.77 34266.36 34266.81 321
gm-plane-assit62.51 32133.91 34337.25 32062.71 35372.74 23538.70 306
CostFormer57.35 28056.14 28860.97 27663.76 31738.43 30967.50 22660.22 30137.14 32159.12 32476.34 27632.78 32171.99 24939.12 30469.27 33272.47 278
pmmvs460.78 25959.04 26766.00 23173.06 24157.67 16164.53 26860.22 30136.91 32265.96 27877.27 27039.66 29268.54 27638.87 30574.89 30071.80 285
PVSNet43.83 2151.56 31051.17 31352.73 31368.34 27838.27 31148.22 34253.56 33036.41 32354.29 34264.94 34934.60 31354.20 32730.34 34869.87 32965.71 326
tpmrst50.15 31551.38 31246.45 33556.05 35324.77 37164.40 27049.98 34236.14 32453.32 34669.59 32835.16 31148.69 33539.24 30258.51 36165.89 324
MS-PatchMatch55.59 28754.89 29557.68 29569.18 27349.05 22061.00 29562.93 28935.98 32558.36 32668.93 33336.71 30866.59 29237.62 31763.30 34957.39 354
MDTV_nov1_ep1354.05 29965.54 30429.30 36159.00 30655.22 32135.96 32652.44 34775.98 27730.77 34159.62 31638.21 31173.33 310
USDC62.80 24263.10 23761.89 26765.19 30643.30 27567.42 22874.20 20335.80 32772.25 21984.48 17945.67 25371.95 25037.95 31484.97 20670.42 299
jason64.47 22562.84 23969.34 18876.91 18259.20 14767.15 23465.67 26735.29 32865.16 28476.74 27444.67 26070.68 26054.74 19679.28 27178.14 233
jason: jason.
Anonymous2023120654.13 29455.82 29149.04 32970.89 25435.96 32851.73 33550.87 34034.86 32962.49 30379.22 24742.52 27544.29 35327.95 35981.88 24066.88 319
dp44.09 33244.88 33441.72 35058.53 34423.18 37354.70 32842.38 36134.80 33044.25 36865.61 34724.48 36744.80 35029.77 35249.42 36957.18 355
Test_1112_low_res58.78 27358.69 27059.04 29079.41 14338.13 31457.62 31366.98 26034.74 33159.62 32377.56 26842.92 27163.65 30538.66 30770.73 32375.35 255
EPMVS45.74 32546.53 32743.39 34654.14 36322.33 37455.02 32735.00 37434.69 33251.09 35170.20 32325.92 36042.04 36037.19 31955.50 36665.78 325
lupinMVS63.36 23461.49 24968.97 19574.93 20559.19 14865.80 25264.52 27934.68 33363.53 30074.25 29443.19 26970.62 26153.88 20778.67 27677.10 243
UnsupCasMVSNet_bld50.01 31651.03 31646.95 33158.61 34332.64 34748.31 34153.27 33334.27 33460.47 31571.53 31441.40 27847.07 34230.68 34760.78 35561.13 348
CMPMVSbinary48.73 2061.54 25460.89 25463.52 25061.08 32951.55 19568.07 22168.00 25633.88 33565.87 27981.25 22037.91 30267.71 28049.32 23782.60 23371.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WTY-MVS49.39 31750.31 32046.62 33461.22 32832.00 35146.61 34849.77 34333.87 33654.12 34369.55 32941.96 27645.40 34731.28 34664.42 34662.47 343
N_pmnet52.06 30651.11 31454.92 30359.64 33971.03 5337.42 36461.62 29833.68 33757.12 32872.10 30837.94 30131.03 37129.13 35871.35 31862.70 340
HyFIR lowres test63.01 23960.47 25870.61 16783.04 10254.10 18159.93 30272.24 22133.67 33869.00 25675.63 27938.69 29776.93 19536.60 32375.45 29680.81 194
tpm256.12 28354.64 29660.55 28066.24 29836.01 32768.14 21956.77 31733.60 33958.25 32775.52 28230.25 34474.33 22533.27 34069.76 33171.32 289
131459.83 26658.86 26962.74 26165.71 30344.78 26268.59 21372.63 21633.54 34061.05 31267.29 34443.62 26771.26 25749.49 23667.84 33972.19 282
CR-MVSNet58.96 27158.49 27260.36 28166.37 29548.24 22770.93 18356.40 31932.87 34161.35 30886.66 13933.19 31863.22 30748.50 24570.17 32769.62 305
MVS60.62 26159.97 26162.58 26268.13 28147.28 24268.59 21373.96 20432.19 34259.94 31968.86 33550.48 22977.64 18941.85 28875.74 29162.83 339
tpm cat154.02 29652.63 30558.19 29464.85 31239.86 30166.26 24657.28 31232.16 34356.90 33070.39 32132.75 32265.30 29734.29 33658.79 35969.41 307
pmmvs552.49 30452.58 30652.21 31654.99 35932.38 34855.45 32553.84 32832.15 34455.49 33874.81 28538.08 30057.37 32234.02 33774.40 30466.88 319
PMMVS237.74 33940.87 33928.36 35642.41 3785.35 38124.61 36927.75 37632.15 34447.85 35970.27 32235.85 31029.51 37319.08 37367.85 33850.22 360
sss47.59 32248.32 32245.40 33956.73 35233.96 34245.17 35148.51 34732.11 34652.37 34865.79 34640.39 28741.91 36131.85 34361.97 35260.35 349
test-mter48.56 31948.20 32449.64 32460.76 33041.87 28553.18 33245.48 35431.91 34749.41 35760.47 35918.34 37544.73 35142.09 28672.14 31562.33 345
MDTV_nov1_ep13_2view18.41 37653.74 33131.57 34844.89 36529.90 34832.93 34171.48 287
ADS-MVSNet248.76 31847.25 32653.29 31255.90 35540.54 29747.34 34654.99 32431.41 34950.48 35372.06 30931.23 33554.26 32625.93 36355.93 36465.07 330
ADS-MVSNet44.62 33045.58 32941.73 34955.90 35520.83 37547.34 34639.94 36931.41 34950.48 35372.06 30931.23 33539.31 36525.93 36355.93 36465.07 330
PVSNet_036.71 2241.12 33740.78 34042.14 34759.97 33540.13 29940.97 35742.24 36330.81 35144.86 36649.41 37040.70 28545.12 34923.15 36934.96 37341.16 369
test_vis1_n_192052.96 29953.50 30051.32 31959.15 34044.90 26156.13 32164.29 28130.56 35259.87 32160.68 35740.16 28847.47 34048.25 24962.46 35061.58 347
MVS-HIRNet45.53 32647.29 32540.24 35162.29 32226.82 36756.02 32237.41 37229.74 35343.69 37081.27 21933.96 31455.48 32324.46 36856.79 36338.43 371
CHOSEN 1792x268858.09 27656.30 28763.45 25179.95 13750.93 19954.07 33065.59 26928.56 35461.53 30774.33 29241.09 28266.52 29333.91 33867.69 34072.92 273
TESTMET0.1,145.17 32744.93 33345.89 33756.02 35438.31 31053.18 33241.94 36427.85 35544.86 36656.47 36317.93 37641.50 36238.08 31368.06 33657.85 352
test_fmvs356.78 28155.99 29059.12 28853.96 36448.09 23058.76 30966.22 26327.54 35676.66 15968.69 33725.32 36451.31 32853.42 21273.38 30977.97 238
CHOSEN 280x42041.62 33639.89 34146.80 33361.81 32451.59 19433.56 36835.74 37327.48 35737.64 37453.53 36423.24 36942.09 35927.39 36058.64 36046.72 363
EU-MVSNet60.82 25860.80 25660.86 27868.37 27741.16 28972.27 15668.27 25526.96 35869.08 25575.71 27832.09 32667.44 28355.59 19078.90 27373.97 264
CVMVSNet59.21 27058.44 27361.51 27073.94 22547.76 23671.31 17764.56 27826.91 35960.34 31670.44 31936.24 30967.65 28153.57 20968.66 33569.12 310
test_fmvs254.80 29154.11 29856.88 29851.76 36849.95 21056.70 31765.80 26626.22 36069.42 25265.25 34831.82 33049.98 33249.63 23570.36 32570.71 296
test_vis1_n51.27 31250.41 31953.83 30756.99 34950.01 20956.75 31660.53 30025.68 36159.74 32257.86 36229.40 34947.41 34143.10 28163.66 34864.08 337
new_pmnet37.55 34039.80 34230.79 35556.83 35016.46 37839.35 36130.65 37525.59 36245.26 36461.60 35624.54 36628.02 37421.60 37052.80 36847.90 362
test_fmvs1_n52.70 30152.01 30854.76 30453.83 36550.36 20355.80 32365.90 26524.96 36365.39 28260.64 35827.69 35348.46 33645.88 26767.99 33765.46 327
MVEpermissive27.91 2336.69 34135.64 34439.84 35243.37 37735.85 33019.49 37024.61 37824.68 36439.05 37262.63 35438.67 29827.10 37521.04 37147.25 37156.56 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_fmvs151.51 31150.86 31753.48 30949.72 37149.35 21954.11 32964.96 27424.64 36563.66 29859.61 36128.33 35248.45 33745.38 27167.30 34162.66 342
pmmvs346.71 32345.09 33251.55 31856.76 35148.25 22655.78 32439.53 37024.13 36650.35 35563.40 35015.90 38051.08 32929.29 35570.69 32455.33 357
test_vis3_rt51.94 30951.04 31554.65 30546.32 37550.13 20744.34 35478.17 16523.62 36768.95 25962.81 35221.41 37038.52 36741.49 29072.22 31475.30 256
mvsany_test343.76 33441.01 33852.01 31748.09 37357.74 16042.47 35623.85 38023.30 36864.80 28662.17 35527.12 35440.59 36329.17 35748.11 37057.69 353
PMMVS44.69 32943.95 33746.92 33250.05 37053.47 18648.08 34442.40 36022.36 36944.01 36953.05 36642.60 27445.49 34631.69 34461.36 35441.79 368
test_f43.79 33345.63 32838.24 35442.29 37938.58 30834.76 36747.68 35022.22 37067.34 27263.15 35131.82 33030.60 37239.19 30362.28 35145.53 366
test_vis1_rt46.70 32445.24 33151.06 32044.58 37651.04 19839.91 36067.56 25721.84 37151.94 34950.79 36933.83 31539.77 36435.25 33361.50 35362.38 344
mvsany_test137.88 33835.74 34344.28 34347.28 37449.90 21136.54 36624.37 37919.56 37245.76 36253.46 36532.99 32037.97 36826.17 36135.52 37244.99 367
DSMNet-mixed43.18 33544.66 33538.75 35354.75 36028.88 36357.06 31527.42 37713.47 37347.27 36177.67 26738.83 29639.29 36625.32 36760.12 35748.08 361
DeepMVS_CXcopyleft11.83 35815.51 38013.86 37911.25 3835.76 37420.85 37626.46 37317.06 3799.22 3779.69 37613.82 37612.42 373
test_method19.26 34219.12 34619.71 3579.09 3811.91 3837.79 37253.44 3311.42 37510.27 37735.80 37217.42 37825.11 37612.44 37424.38 37532.10 372
EGC-MVSNET64.77 22061.17 25175.60 9686.90 4274.47 3084.04 3568.62 2530.60 3761.13 37891.61 2865.32 12274.15 22864.01 11588.28 15878.17 232
tmp_tt11.98 34414.73 3473.72 3592.28 3824.62 38219.44 37114.50 3820.47 37721.55 3759.58 37525.78 3614.57 37811.61 37527.37 3741.96 374
test1234.43 3475.78 3500.39 3610.97 3830.28 38446.33 3500.45 3840.31 3780.62 3791.50 3780.61 3840.11 3800.56 3770.63 3770.77 376
testmvs4.06 3485.28 3510.41 3600.64 3840.16 38542.54 3550.31 3850.26 3790.50 3801.40 3790.77 3830.17 3790.56 3770.55 3780.90 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k17.71 34323.62 3450.00 3620.00 3850.00 3860.00 37370.17 2450.00 3800.00 38174.25 29468.16 940.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.20 3466.93 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38062.39 1410.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re5.62 3457.50 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38167.46 3410.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
No_MVS79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
eth-test20.00 385
eth-test0.00 385
OPU-MVS78.65 6183.44 9466.85 8983.62 4286.12 15966.82 10586.01 2961.72 13689.79 13583.08 148
test_0728_SECOND76.57 8386.20 4860.57 14083.77 4085.49 2985.90 3675.86 3794.39 4183.25 144
GSMVS70.05 300
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 33370.05 300
sam_mvs31.21 337
ambc70.10 17877.74 17150.21 20674.28 14877.93 17179.26 12288.29 11354.11 21179.77 14664.43 11191.10 10380.30 204
MTGPAbinary80.63 122
test_post166.63 2422.08 37630.66 34259.33 31740.34 298
test_post1.99 37730.91 34054.76 325
patchmatchnet-post68.99 33131.32 33469.38 271
GG-mvs-BLEND52.24 31560.64 33229.21 36269.73 19642.41 35945.47 36352.33 36720.43 37368.16 27825.52 36665.42 34459.36 351
MTMP84.83 3119.26 381
test9_res72.12 6491.37 9377.40 241
agg_prior270.70 7090.93 10878.55 227
agg_prior84.44 8266.02 9478.62 15976.95 15080.34 137
test_prior470.14 6377.57 100
test_prior75.27 10082.15 11659.85 14584.33 5983.39 8482.58 162
新几何271.33 176
旧先验184.55 7960.36 14263.69 28587.05 12754.65 20883.34 22869.66 304
原ACMM274.78 140
testdata267.30 28448.34 247
segment_acmp68.30 93
test1276.51 8482.28 11460.94 13481.64 9973.60 20064.88 12585.19 5790.42 12183.38 140
plane_prior785.18 6666.21 93
plane_prior684.18 8565.31 9860.83 159
plane_prior585.49 2986.15 2671.09 6690.94 10684.82 96
plane_prior489.11 94
plane_prior184.46 81
n20.00 386
nn0.00 386
door-mid55.02 323
lessismore_v072.75 14179.60 14156.83 16557.37 31183.80 7289.01 9747.45 24978.74 16364.39 11286.49 18982.69 160
test1182.71 84
door52.91 335
HQP5-MVS58.80 154
BP-MVS67.38 94
HQP4-MVS71.59 22585.31 5083.74 130
HQP3-MVS84.12 6589.16 146
HQP2-MVS58.09 184
NP-MVS83.34 9563.07 11685.97 163
ACMMP++_ref89.47 141
ACMMP++91.96 83
Test By Simon62.56 137