| mamv4 | | | 90.28 1 | 88.75 1 | 94.85 1 | 93.34 1 | 96.17 1 | 82.69 57 | 91.63 1 | 86.34 1 | 97.97 1 | 94.77 3 | 66.57 120 | 95.38 1 | 87.74 1 | 97.72 1 | 93.00 7 |
|
| LCM-MVSNet | | | 86.90 2 | 88.67 2 | 81.57 25 | 91.50 2 | 63.30 123 | 84.80 35 | 87.77 10 | 86.18 2 | 96.26 2 | 96.06 1 | 90.32 1 | 84.49 72 | 68.08 91 | 97.05 2 | 96.93 1 |
|
| FOURS1 | | | | | | 89.19 24 | 77.84 14 | 91.64 1 | 89.11 3 | 84.05 3 | 91.57 3 | | | | | | |
|
| DTE-MVSNet | | | 80.35 52 | 82.89 39 | 72.74 150 | 89.84 8 | 37.34 348 | 77.16 114 | 81.81 104 | 80.45 4 | 90.92 4 | 92.95 8 | 74.57 50 | 86.12 31 | 63.65 136 | 94.68 35 | 94.76 6 |
|
| PEN-MVS | | | 80.46 50 | 82.91 38 | 73.11 135 | 89.83 9 | 39.02 331 | 77.06 117 | 82.61 92 | 80.04 5 | 90.60 7 | 92.85 10 | 74.93 47 | 85.21 60 | 63.15 143 | 95.15 21 | 95.09 2 |
|
| PS-CasMVS | | | 80.41 51 | 82.86 40 | 73.07 136 | 89.93 7 | 39.21 328 | 77.15 115 | 81.28 114 | 79.74 6 | 90.87 5 | 92.73 12 | 75.03 46 | 84.93 65 | 63.83 135 | 95.19 19 | 95.07 3 |
|
| reproduce_model | | | 84.87 6 | 85.80 6 | 82.05 23 | 85.52 66 | 78.14 13 | 87.69 6 | 85.36 38 | 79.26 7 | 89.12 12 | 92.10 19 | 77.52 25 | 85.92 39 | 80.47 8 | 95.20 18 | 82.10 184 |
|
| COLMAP_ROB |  | 72.78 3 | 83.75 15 | 84.11 19 | 82.68 13 | 82.97 106 | 74.39 36 | 87.18 11 | 88.18 7 | 78.98 8 | 86.11 43 | 91.47 34 | 79.70 14 | 85.76 45 | 66.91 110 | 95.46 12 | 87.89 47 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CP-MVSNet | | | 79.48 58 | 81.65 49 | 72.98 139 | 89.66 13 | 39.06 330 | 76.76 118 | 80.46 134 | 78.91 9 | 90.32 8 | 91.70 29 | 68.49 96 | 84.89 66 | 63.40 140 | 95.12 22 | 95.01 4 |
|
| reproduce-ours | | | 84.97 4 | 85.93 4 | 82.10 21 | 86.11 57 | 77.53 18 | 87.08 13 | 85.81 28 | 78.70 10 | 88.94 13 | 91.88 24 | 79.74 12 | 86.05 32 | 79.90 9 | 95.21 16 | 82.72 169 |
|
| our_new_method | | | 84.97 4 | 85.93 4 | 82.10 21 | 86.11 57 | 77.53 18 | 87.08 13 | 85.81 28 | 78.70 10 | 88.94 13 | 91.88 24 | 79.74 12 | 86.05 32 | 79.90 9 | 95.21 16 | 82.72 169 |
|
| TDRefinement | | | 86.32 3 | 86.33 3 | 86.29 2 | 88.64 32 | 81.19 5 | 88.84 4 | 90.72 2 | 78.27 12 | 87.95 18 | 92.53 14 | 79.37 15 | 84.79 69 | 74.51 51 | 96.15 3 | 92.88 8 |
|
| WR-MVS_H | | | 80.22 54 | 82.17 45 | 74.39 113 | 89.46 15 | 42.69 301 | 78.24 101 | 82.24 96 | 78.21 13 | 89.57 10 | 92.10 19 | 68.05 101 | 85.59 50 | 66.04 115 | 95.62 10 | 94.88 5 |
|
| SR-MVS-dyc-post | | | 84.75 7 | 85.26 9 | 83.21 4 | 86.19 50 | 79.18 7 | 87.23 9 | 86.27 20 | 77.51 14 | 87.65 22 | 90.73 50 | 79.20 16 | 85.58 51 | 78.11 27 | 94.46 39 | 84.89 93 |
|
| RE-MVS-def | | | | 85.50 7 | | 86.19 50 | 79.18 7 | 87.23 9 | 86.27 20 | 77.51 14 | 87.65 22 | 90.73 50 | 81.38 7 | | 78.11 27 | 94.46 39 | 84.89 93 |
|
| LS3D | | | 80.99 45 | 80.85 53 | 81.41 29 | 78.37 164 | 71.37 54 | 87.45 8 | 85.87 27 | 77.48 16 | 81.98 92 | 89.95 80 | 69.14 91 | 85.26 57 | 66.15 112 | 91.24 97 | 87.61 51 |
|
| SR-MVS | | | 84.51 9 | 85.27 8 | 82.25 19 | 88.52 34 | 77.71 15 | 86.81 19 | 85.25 40 | 77.42 17 | 86.15 41 | 90.24 73 | 81.69 5 | 85.94 36 | 77.77 30 | 93.58 64 | 83.09 156 |
|
| 3Dnovator+ | | 73.19 2 | 81.08 43 | 80.48 55 | 82.87 8 | 81.41 127 | 72.03 49 | 84.38 38 | 86.23 23 | 77.28 18 | 80.65 112 | 90.18 76 | 59.80 188 | 87.58 6 | 73.06 62 | 91.34 95 | 89.01 33 |
|
| UA-Net | | | 81.56 37 | 82.28 44 | 79.40 52 | 88.91 29 | 69.16 76 | 84.67 36 | 80.01 143 | 75.34 19 | 79.80 119 | 94.91 2 | 69.79 88 | 80.25 144 | 72.63 66 | 94.46 39 | 88.78 41 |
|
| test_0402 | | | 78.17 72 | 79.48 63 | 74.24 115 | 83.50 94 | 59.15 163 | 72.52 168 | 74.60 214 | 75.34 19 | 88.69 17 | 91.81 27 | 75.06 45 | 82.37 104 | 65.10 120 | 88.68 158 | 81.20 196 |
|
| test_one_0601 | | | | | | 85.84 64 | 61.45 137 | | 85.63 30 | 75.27 21 | 85.62 51 | 90.38 67 | 76.72 30 | | | | |
|
| DP-MVS | | | 78.44 70 | 79.29 64 | 75.90 96 | 81.86 122 | 65.33 106 | 79.05 91 | 84.63 58 | 74.83 22 | 80.41 114 | 86.27 163 | 71.68 69 | 83.45 88 | 62.45 147 | 92.40 79 | 78.92 242 |
|
| APD-MVS_3200maxsize | | | 83.57 17 | 84.33 16 | 81.31 32 | 82.83 109 | 73.53 44 | 85.50 30 | 87.45 13 | 74.11 23 | 86.45 38 | 90.52 58 | 80.02 10 | 84.48 73 | 77.73 31 | 94.34 50 | 85.93 73 |
|
| PMVS |  | 70.70 6 | 81.70 36 | 83.15 35 | 77.36 79 | 90.35 6 | 82.82 3 | 82.15 59 | 79.22 156 | 74.08 24 | 87.16 32 | 91.97 21 | 84.80 2 | 76.97 200 | 64.98 122 | 93.61 63 | 72.28 313 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DVP-MVS++ | | | 81.24 39 | 82.74 41 | 76.76 84 | 83.14 99 | 60.90 147 | 91.64 1 | 85.49 32 | 74.03 25 | 84.93 59 | 90.38 67 | 66.82 113 | 85.90 40 | 77.43 34 | 90.78 115 | 83.49 140 |
|
| test_0728_THIRD | | | | | | | | | | 74.03 25 | 85.83 46 | 90.41 62 | 75.58 40 | 85.69 47 | 77.43 34 | 94.74 33 | 84.31 120 |
|
| HPM-MVS_fast | | | 84.59 8 | 85.10 10 | 83.06 5 | 88.60 33 | 75.83 27 | 86.27 27 | 86.89 16 | 73.69 27 | 86.17 40 | 91.70 29 | 78.23 21 | 85.20 61 | 79.45 16 | 94.91 28 | 88.15 46 |
|
| DPE-MVS |  | | 82.00 34 | 83.02 37 | 78.95 60 | 85.36 69 | 67.25 89 | 82.91 54 | 84.98 45 | 73.52 28 | 85.43 54 | 90.03 77 | 76.37 32 | 86.97 13 | 74.56 50 | 94.02 58 | 82.62 173 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| LTVRE_ROB | | 75.46 1 | 84.22 10 | 84.98 11 | 81.94 24 | 84.82 76 | 75.40 29 | 91.60 3 | 87.80 8 | 73.52 28 | 88.90 15 | 93.06 7 | 71.39 73 | 81.53 117 | 81.53 4 | 92.15 84 | 88.91 37 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 80 | 81.16 131 | 62.39 128 | 80.51 72 | 87.80 8 | 73.02 30 | 87.57 24 | 91.08 40 | 80.28 9 | 82.44 102 | 64.82 123 | 96.10 5 | 87.21 56 |
|
| MVSMamba_PlusPlus | | | 76.88 80 | 78.21 74 | 72.88 146 | 80.83 132 | 48.71 237 | 83.28 52 | 82.79 87 | 72.78 31 | 79.17 126 | 91.94 22 | 56.47 224 | 83.95 78 | 70.51 77 | 86.15 199 | 85.99 72 |
|
| XVS | | | 83.51 19 | 83.73 24 | 82.85 9 | 89.43 16 | 77.61 16 | 86.80 20 | 84.66 56 | 72.71 32 | 82.87 83 | 90.39 65 | 73.86 55 | 86.31 21 | 78.84 23 | 94.03 56 | 84.64 103 |
|
| X-MVStestdata | | | 76.81 81 | 74.79 103 | 82.85 9 | 89.43 16 | 77.61 16 | 86.80 20 | 84.66 56 | 72.71 32 | 82.87 83 | 9.95 418 | 73.86 55 | 86.31 21 | 78.84 23 | 94.03 56 | 84.64 103 |
|
| test_241102_ONE | | | | | | 86.12 54 | 61.06 143 | | 84.72 52 | 72.64 34 | 87.38 28 | 89.47 86 | 77.48 26 | 85.74 46 | | | |
|
| SED-MVS | | | 81.78 35 | 83.48 28 | 76.67 85 | 86.12 54 | 61.06 143 | 83.62 46 | 84.72 52 | 72.61 35 | 87.38 28 | 89.70 83 | 77.48 26 | 85.89 42 | 75.29 45 | 94.39 44 | 83.08 157 |
|
| test_241102_TWO | | | | | | | | | 84.80 48 | 72.61 35 | 84.93 59 | 89.70 83 | 77.73 24 | 85.89 42 | 75.29 45 | 94.22 55 | 83.25 151 |
|
| DVP-MVS |  | | 81.15 41 | 83.12 36 | 75.24 105 | 86.16 52 | 60.78 149 | 83.77 44 | 80.58 132 | 72.48 37 | 85.83 46 | 90.41 62 | 78.57 19 | 85.69 47 | 75.86 42 | 94.39 44 | 79.24 237 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 86.16 52 | 60.78 149 | 83.81 43 | 85.10 43 | 72.48 37 | 85.27 56 | 89.96 79 | 78.57 19 | | | | |
|
| mPP-MVS | | | 84.01 14 | 84.39 15 | 82.88 7 | 90.65 4 | 81.38 4 | 87.08 13 | 82.79 87 | 72.41 39 | 85.11 58 | 90.85 47 | 76.65 31 | 84.89 66 | 79.30 20 | 94.63 36 | 82.35 178 |
|
| UniMVSNet_ETH3D | | | 76.74 82 | 79.02 65 | 69.92 193 | 89.27 20 | 43.81 288 | 74.47 153 | 71.70 235 | 72.33 40 | 85.50 53 | 93.65 4 | 77.98 23 | 76.88 203 | 54.60 219 | 91.64 88 | 89.08 31 |
|
| MTAPA | | | 83.19 22 | 83.87 22 | 81.13 34 | 91.16 3 | 78.16 12 | 84.87 33 | 80.63 130 | 72.08 41 | 84.93 59 | 90.79 48 | 74.65 49 | 84.42 75 | 80.98 5 | 94.75 32 | 80.82 208 |
|
| APDe-MVS |  | | 82.88 27 | 84.14 18 | 79.08 55 | 84.80 78 | 66.72 94 | 86.54 23 | 85.11 42 | 72.00 42 | 86.65 35 | 91.75 28 | 78.20 22 | 87.04 11 | 77.93 29 | 94.32 51 | 83.47 143 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CP-MVS | | | 84.12 12 | 84.55 14 | 82.80 11 | 89.42 18 | 79.74 6 | 88.19 5 | 84.43 61 | 71.96 43 | 84.70 64 | 90.56 55 | 77.12 28 | 86.18 28 | 79.24 21 | 95.36 13 | 82.49 176 |
|
| MP-MVS |  | | 83.19 22 | 83.54 27 | 82.14 20 | 90.54 5 | 79.00 9 | 86.42 25 | 83.59 77 | 71.31 44 | 81.26 103 | 90.96 42 | 74.57 50 | 84.69 70 | 78.41 25 | 94.78 31 | 82.74 168 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MM | | | 78.15 73 | 77.68 78 | 79.55 50 | 80.10 139 | 65.47 104 | 80.94 68 | 78.74 166 | 71.22 45 | 72.40 234 | 88.70 107 | 60.51 179 | 87.70 4 | 77.40 36 | 89.13 152 | 85.48 83 |
|
| gg-mvs-nofinetune | | | 55.75 312 | 56.75 310 | 52.72 345 | 62.87 355 | 28.04 396 | 68.92 225 | 41.36 408 | 71.09 46 | 50.80 394 | 92.63 13 | 20.74 407 | 66.86 308 | 29.97 387 | 72.41 347 | 63.25 377 |
|
| ACMMP |  | | 84.22 10 | 84.84 12 | 82.35 18 | 89.23 22 | 76.66 26 | 87.65 7 | 85.89 26 | 71.03 47 | 85.85 45 | 90.58 54 | 78.77 18 | 85.78 44 | 79.37 19 | 95.17 20 | 84.62 105 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SteuartSystems-ACMMP | | | 83.07 25 | 83.64 26 | 81.35 30 | 85.14 72 | 71.00 58 | 85.53 29 | 84.78 49 | 70.91 48 | 85.64 48 | 90.41 62 | 75.55 41 | 87.69 5 | 79.75 11 | 95.08 23 | 85.36 84 |
| Skip Steuart: Steuart Systems R&D Blog. |
| v7n | | | 79.37 60 | 80.41 56 | 76.28 92 | 78.67 163 | 55.81 185 | 79.22 90 | 82.51 94 | 70.72 49 | 87.54 25 | 92.44 15 | 68.00 103 | 81.34 119 | 72.84 64 | 91.72 86 | 91.69 11 |
|
| HPM-MVS |  | | 84.12 12 | 84.63 13 | 82.60 14 | 88.21 36 | 74.40 35 | 85.24 31 | 87.21 14 | 70.69 50 | 85.14 57 | 90.42 61 | 78.99 17 | 86.62 15 | 80.83 6 | 94.93 27 | 86.79 62 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| HFP-MVS | | | 83.39 21 | 84.03 20 | 81.48 27 | 89.25 21 | 75.69 28 | 87.01 17 | 84.27 64 | 70.23 51 | 84.47 67 | 90.43 60 | 76.79 29 | 85.94 36 | 79.58 14 | 94.23 54 | 82.82 165 |
|
| ACMMPR | | | 83.62 16 | 83.93 21 | 82.69 12 | 89.78 11 | 77.51 22 | 87.01 17 | 84.19 68 | 70.23 51 | 84.49 66 | 90.67 53 | 75.15 44 | 86.37 20 | 79.58 14 | 94.26 52 | 84.18 123 |
|
| region2R | | | 83.54 18 | 83.86 23 | 82.58 15 | 89.82 10 | 77.53 18 | 87.06 16 | 84.23 67 | 70.19 53 | 83.86 73 | 90.72 52 | 75.20 43 | 86.27 23 | 79.41 18 | 94.25 53 | 83.95 128 |
|
| IS-MVSNet | | | 75.10 99 | 75.42 100 | 74.15 117 | 79.23 150 | 48.05 247 | 79.43 86 | 78.04 180 | 70.09 54 | 79.17 126 | 88.02 125 | 53.04 240 | 83.60 83 | 58.05 186 | 93.76 62 | 90.79 18 |
|
| LPG-MVS_test | | | 83.47 20 | 84.33 16 | 80.90 36 | 87.00 40 | 70.41 64 | 82.04 61 | 86.35 17 | 69.77 55 | 87.75 19 | 91.13 38 | 81.83 3 | 86.20 26 | 77.13 39 | 95.96 6 | 86.08 69 |
|
| LGP-MVS_train | | | | | 80.90 36 | 87.00 40 | 70.41 64 | | 86.35 17 | 69.77 55 | 87.75 19 | 91.13 38 | 81.83 3 | 86.20 26 | 77.13 39 | 95.96 6 | 86.08 69 |
|
| APD-MVS |  | | 81.13 42 | 81.73 48 | 79.36 53 | 84.47 83 | 70.53 63 | 83.85 42 | 83.70 75 | 69.43 57 | 83.67 75 | 88.96 103 | 75.89 37 | 86.41 18 | 72.62 67 | 92.95 71 | 81.14 198 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 177 | 77.67 176 | 45.70 276 | 74.73 148 | 80.19 139 | 68.80 58 | 82.95 82 | 92.91 9 | 66.26 122 | 76.76 205 | 58.41 184 | 92.77 74 | 89.30 26 |
|
| CPTT-MVS | | | 81.51 38 | 81.76 47 | 80.76 38 | 89.20 23 | 78.75 10 | 86.48 24 | 82.03 100 | 68.80 58 | 80.92 108 | 88.52 113 | 72.00 68 | 82.39 103 | 74.80 47 | 93.04 70 | 81.14 198 |
|
| VDDNet | | | 71.60 155 | 73.13 134 | 67.02 239 | 86.29 48 | 41.11 311 | 69.97 211 | 66.50 281 | 68.72 60 | 74.74 196 | 91.70 29 | 59.90 185 | 75.81 211 | 48.58 269 | 91.72 86 | 84.15 125 |
|
| TranMVSNet+NR-MVSNet | | | 76.13 85 | 77.66 79 | 71.56 168 | 84.61 81 | 42.57 303 | 70.98 198 | 78.29 176 | 68.67 61 | 83.04 79 | 89.26 90 | 72.99 61 | 80.75 136 | 55.58 210 | 95.47 11 | 91.35 12 |
|
| GST-MVS | | | 82.79 28 | 83.27 33 | 81.34 31 | 88.99 27 | 73.29 45 | 85.94 28 | 85.13 41 | 68.58 62 | 84.14 70 | 90.21 75 | 73.37 59 | 86.41 18 | 79.09 22 | 93.98 59 | 84.30 122 |
|
| SSC-MVS | | | 61.79 274 | 66.08 228 | 48.89 367 | 76.91 187 | 10.00 424 | 53.56 367 | 47.37 385 | 68.20 63 | 76.56 169 | 89.21 92 | 54.13 235 | 57.59 353 | 54.75 216 | 74.07 336 | 79.08 240 |
|
| PGM-MVS | | | 83.07 25 | 83.25 34 | 82.54 16 | 89.57 14 | 77.21 24 | 82.04 61 | 85.40 36 | 67.96 64 | 84.91 62 | 90.88 45 | 75.59 39 | 86.57 16 | 78.16 26 | 94.71 34 | 83.82 130 |
|
| ZNCC-MVS | | | 83.12 24 | 83.68 25 | 81.45 28 | 89.14 25 | 73.28 46 | 86.32 26 | 85.97 25 | 67.39 65 | 84.02 71 | 90.39 65 | 74.73 48 | 86.46 17 | 80.73 7 | 94.43 43 | 84.60 108 |
|
| Anonymous20240529 | | | 72.56 143 | 73.79 120 | 68.86 215 | 76.89 190 | 45.21 279 | 68.80 230 | 77.25 191 | 67.16 66 | 76.89 157 | 90.44 59 | 65.95 125 | 74.19 235 | 50.75 248 | 90.00 129 | 87.18 58 |
|
| XVG-OURS | | | 79.51 57 | 79.82 60 | 78.58 65 | 86.11 57 | 74.96 32 | 76.33 127 | 84.95 47 | 66.89 67 | 82.75 86 | 88.99 102 | 66.82 113 | 78.37 179 | 74.80 47 | 90.76 118 | 82.40 177 |
|
| ITE_SJBPF | | | | | 80.35 42 | 76.94 186 | 73.60 42 | | 80.48 133 | 66.87 68 | 83.64 76 | 86.18 166 | 70.25 83 | 79.90 150 | 61.12 157 | 88.95 156 | 87.56 52 |
|
| ACMP | | 69.50 8 | 82.64 29 | 83.38 30 | 80.40 41 | 86.50 46 | 69.44 71 | 82.30 58 | 86.08 24 | 66.80 69 | 86.70 34 | 89.99 78 | 81.64 6 | 85.95 35 | 74.35 53 | 96.11 4 | 85.81 75 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-OURS-SEG-HR | | | 79.62 56 | 79.99 59 | 78.49 66 | 86.46 47 | 74.79 33 | 77.15 115 | 85.39 37 | 66.73 70 | 80.39 115 | 88.85 105 | 74.43 53 | 78.33 181 | 74.73 49 | 85.79 204 | 82.35 178 |
|
| UniMVSNet_NR-MVSNet | | | 74.90 105 | 75.65 96 | 72.64 153 | 83.04 104 | 45.79 273 | 69.26 221 | 78.81 162 | 66.66 71 | 81.74 97 | 86.88 141 | 63.26 146 | 81.07 127 | 56.21 201 | 94.98 24 | 91.05 14 |
|
| XVG-ACMP-BASELINE | | | 80.54 48 | 81.06 52 | 78.98 59 | 87.01 39 | 72.91 47 | 80.23 80 | 85.56 31 | 66.56 72 | 85.64 48 | 89.57 85 | 69.12 92 | 80.55 139 | 72.51 68 | 93.37 66 | 83.48 142 |
|
| ACMM | | 69.25 9 | 82.11 33 | 83.31 31 | 78.49 66 | 88.17 37 | 73.96 38 | 83.11 53 | 84.52 60 | 66.40 73 | 87.45 26 | 89.16 96 | 81.02 8 | 80.52 140 | 74.27 54 | 95.73 8 | 80.98 204 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PAPM_NR | | | 73.91 112 | 74.16 113 | 73.16 133 | 81.90 121 | 53.50 201 | 81.28 66 | 81.40 111 | 66.17 74 | 73.30 223 | 83.31 212 | 59.96 184 | 83.10 94 | 58.45 183 | 81.66 260 | 82.87 163 |
|
| K. test v3 | | | 73.67 115 | 73.61 124 | 73.87 121 | 79.78 141 | 55.62 188 | 74.69 150 | 62.04 315 | 66.16 75 | 84.76 63 | 93.23 6 | 49.47 260 | 80.97 131 | 65.66 118 | 86.67 195 | 85.02 92 |
|
| NCCC | | | 78.25 71 | 78.04 76 | 78.89 61 | 85.61 65 | 69.45 70 | 79.80 85 | 80.99 123 | 65.77 76 | 75.55 185 | 86.25 165 | 67.42 106 | 85.42 52 | 70.10 78 | 90.88 113 | 81.81 189 |
|
| OPM-MVS | | | 80.99 45 | 81.63 50 | 79.07 56 | 86.86 44 | 69.39 72 | 79.41 88 | 84.00 73 | 65.64 77 | 85.54 52 | 89.28 89 | 76.32 34 | 83.47 87 | 74.03 56 | 93.57 65 | 84.35 119 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| AdaColmap |  | | 74.22 110 | 74.56 106 | 73.20 132 | 81.95 120 | 60.97 145 | 79.43 86 | 80.90 124 | 65.57 78 | 72.54 232 | 81.76 233 | 70.98 78 | 85.26 57 | 47.88 278 | 90.00 129 | 73.37 299 |
|
| APD_test1 | | | 75.04 101 | 75.38 101 | 74.02 119 | 69.89 291 | 70.15 66 | 76.46 121 | 79.71 146 | 65.50 79 | 82.99 81 | 88.60 112 | 66.94 110 | 72.35 255 | 59.77 173 | 88.54 159 | 79.56 231 |
|
| HQP_MVS | | | 78.77 64 | 78.78 68 | 78.72 62 | 85.18 70 | 65.18 108 | 82.74 55 | 85.49 32 | 65.45 80 | 78.23 137 | 89.11 97 | 60.83 177 | 86.15 29 | 71.09 73 | 90.94 107 | 84.82 98 |
|
| plane_prior2 | | | | | | | | 82.74 55 | | 65.45 80 | | | | | | | |
|
| CNLPA | | | 73.44 119 | 73.03 138 | 74.66 107 | 78.27 165 | 75.29 30 | 75.99 132 | 78.49 171 | 65.39 82 | 75.67 183 | 83.22 218 | 61.23 170 | 66.77 311 | 53.70 230 | 85.33 211 | 81.92 188 |
|
| AllTest | | | 77.66 74 | 77.43 80 | 78.35 68 | 79.19 152 | 70.81 59 | 78.60 95 | 88.64 4 | 65.37 83 | 80.09 117 | 88.17 121 | 70.33 81 | 78.43 176 | 55.60 207 | 90.90 111 | 85.81 75 |
|
| TestCases | | | | | 78.35 68 | 79.19 152 | 70.81 59 | | 88.64 4 | 65.37 83 | 80.09 117 | 88.17 121 | 70.33 81 | 78.43 176 | 55.60 207 | 90.90 111 | 85.81 75 |
|
| SF-MVS | | | 80.72 47 | 81.80 46 | 77.48 77 | 82.03 119 | 64.40 115 | 83.41 50 | 88.46 6 | 65.28 85 | 84.29 68 | 89.18 94 | 73.73 58 | 83.22 91 | 76.01 41 | 93.77 61 | 84.81 100 |
|
| DU-MVS | | | 74.91 104 | 75.57 98 | 72.93 143 | 83.50 94 | 45.79 273 | 69.47 217 | 80.14 141 | 65.22 86 | 81.74 97 | 87.08 134 | 61.82 162 | 81.07 127 | 56.21 201 | 94.98 24 | 91.93 9 |
|
| LFMVS | | | 67.06 218 | 67.89 206 | 64.56 257 | 78.02 169 | 38.25 339 | 70.81 202 | 59.60 322 | 65.18 87 | 71.06 253 | 86.56 156 | 43.85 292 | 75.22 219 | 46.35 290 | 89.63 137 | 80.21 224 |
|
| WB-MVS | | | 60.04 288 | 64.19 249 | 47.59 370 | 76.09 200 | 10.22 423 | 52.44 372 | 46.74 387 | 65.17 88 | 74.07 211 | 87.48 129 | 53.48 238 | 55.28 359 | 49.36 261 | 72.84 344 | 77.28 261 |
|
| EPP-MVSNet | | | 73.86 114 | 73.38 127 | 75.31 103 | 78.19 166 | 53.35 203 | 80.45 73 | 77.32 189 | 65.11 89 | 76.47 175 | 86.80 142 | 49.47 260 | 83.77 81 | 53.89 228 | 92.72 76 | 88.81 40 |
|
| WR-MVS | | | 71.20 158 | 72.48 147 | 67.36 234 | 84.98 74 | 35.70 358 | 64.43 290 | 68.66 271 | 65.05 90 | 81.49 100 | 86.43 160 | 57.57 212 | 76.48 207 | 50.36 252 | 93.32 68 | 89.90 22 |
|
| testf1 | | | 75.66 90 | 76.57 86 | 72.95 140 | 67.07 325 | 67.62 85 | 76.10 129 | 80.68 128 | 64.95 91 | 86.58 36 | 90.94 43 | 71.20 75 | 71.68 265 | 60.46 162 | 91.13 102 | 79.56 231 |
|
| APD_test2 | | | 75.66 90 | 76.57 86 | 72.95 140 | 67.07 325 | 67.62 85 | 76.10 129 | 80.68 128 | 64.95 91 | 86.58 36 | 90.94 43 | 71.20 75 | 71.68 265 | 60.46 162 | 91.13 102 | 79.56 231 |
|
| MSP-MVS | | | 80.49 49 | 79.67 62 | 82.96 6 | 89.70 12 | 77.46 23 | 87.16 12 | 85.10 43 | 64.94 93 | 81.05 106 | 88.38 117 | 57.10 217 | 87.10 9 | 79.75 11 | 83.87 233 | 84.31 120 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| ACMMP_NAP | | | 82.33 31 | 83.28 32 | 79.46 51 | 89.28 19 | 69.09 78 | 83.62 46 | 84.98 45 | 64.77 94 | 83.97 72 | 91.02 41 | 75.53 42 | 85.93 38 | 82.00 3 | 94.36 48 | 83.35 149 |
|
| HPM-MVS++ |  | | 79.89 55 | 79.80 61 | 80.18 43 | 89.02 26 | 78.44 11 | 83.49 49 | 80.18 140 | 64.71 95 | 78.11 140 | 88.39 116 | 65.46 131 | 83.14 92 | 77.64 33 | 91.20 98 | 78.94 241 |
|
| SD-MVS | | | 80.28 53 | 81.55 51 | 76.47 90 | 83.57 93 | 67.83 84 | 83.39 51 | 85.35 39 | 64.42 96 | 86.14 42 | 87.07 136 | 74.02 54 | 80.97 131 | 77.70 32 | 92.32 82 | 80.62 216 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NR-MVSNet | | | 73.62 116 | 74.05 115 | 72.33 160 | 83.50 94 | 43.71 289 | 65.65 275 | 77.32 189 | 64.32 97 | 75.59 184 | 87.08 134 | 62.45 155 | 81.34 119 | 54.90 214 | 95.63 9 | 91.93 9 |
|
| Gipuma |  | | 69.55 180 | 72.83 141 | 59.70 306 | 63.63 353 | 53.97 197 | 80.08 82 | 75.93 202 | 64.24 98 | 73.49 219 | 88.93 104 | 57.89 210 | 62.46 332 | 59.75 174 | 91.55 92 | 62.67 380 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| SixPastTwentyTwo | | | 75.77 87 | 76.34 89 | 74.06 118 | 81.69 124 | 54.84 190 | 76.47 120 | 75.49 206 | 64.10 99 | 87.73 21 | 92.24 18 | 50.45 255 | 81.30 121 | 67.41 100 | 91.46 93 | 86.04 71 |
|
| EI-MVSNet-Vis-set | | | 72.78 139 | 71.87 154 | 75.54 101 | 74.77 219 | 59.02 166 | 72.24 171 | 71.56 238 | 63.92 100 | 78.59 132 | 71.59 342 | 66.22 123 | 78.60 170 | 67.58 97 | 80.32 273 | 89.00 34 |
|
| CNVR-MVS | | | 78.49 68 | 78.59 70 | 78.16 70 | 85.86 63 | 67.40 88 | 78.12 104 | 81.50 108 | 63.92 100 | 77.51 148 | 86.56 156 | 68.43 98 | 84.82 68 | 73.83 57 | 91.61 90 | 82.26 182 |
|
| plane_prior3 | | | | | | | 65.67 103 | | | 63.82 102 | 78.23 137 | | | | | | |
|
| tt0805 | | | 76.12 86 | 78.43 72 | 69.20 203 | 81.32 128 | 41.37 309 | 76.72 119 | 77.64 185 | 63.78 103 | 82.06 91 | 87.88 126 | 79.78 11 | 79.05 161 | 64.33 127 | 92.40 79 | 87.17 59 |
|
| UniMVSNet (Re) | | | 75.00 102 | 75.48 99 | 73.56 127 | 83.14 99 | 47.92 249 | 70.41 207 | 81.04 122 | 63.67 104 | 79.54 121 | 86.37 161 | 62.83 150 | 81.82 113 | 57.10 193 | 95.25 15 | 90.94 16 |
|
| ANet_high | | | 67.08 217 | 69.94 177 | 58.51 316 | 57.55 387 | 27.09 399 | 58.43 336 | 76.80 195 | 63.56 105 | 82.40 89 | 91.93 23 | 59.82 187 | 64.98 323 | 50.10 254 | 88.86 157 | 83.46 144 |
|
| SMA-MVS |  | | 82.12 32 | 82.68 42 | 80.43 40 | 88.90 30 | 69.52 69 | 85.12 32 | 84.76 50 | 63.53 106 | 84.23 69 | 91.47 34 | 72.02 67 | 87.16 8 | 79.74 13 | 94.36 48 | 84.61 106 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| EI-MVSNet-UG-set | | | 72.63 142 | 71.68 158 | 75.47 102 | 74.67 221 | 58.64 171 | 72.02 176 | 71.50 239 | 63.53 106 | 78.58 134 | 71.39 346 | 65.98 124 | 78.53 171 | 67.30 107 | 80.18 276 | 89.23 28 |
|
| pmmvs6 | | | 71.82 152 | 73.66 122 | 66.31 246 | 75.94 204 | 42.01 305 | 66.99 257 | 72.53 230 | 63.45 108 | 76.43 176 | 92.78 11 | 72.95 62 | 69.69 280 | 51.41 243 | 90.46 121 | 87.22 55 |
|
| EC-MVSNet | | | 77.08 79 | 77.39 81 | 76.14 94 | 76.86 191 | 56.87 178 | 80.32 78 | 87.52 12 | 63.45 108 | 74.66 200 | 84.52 192 | 69.87 87 | 84.94 64 | 69.76 81 | 89.59 139 | 86.60 65 |
|
| ACMH | | 63.62 14 | 77.50 76 | 80.11 58 | 69.68 195 | 79.61 143 | 56.28 180 | 78.81 93 | 83.62 76 | 63.41 110 | 87.14 33 | 90.23 74 | 76.11 35 | 73.32 242 | 67.58 97 | 94.44 42 | 79.44 235 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous202405211 | | | 66.02 229 | 66.89 222 | 63.43 270 | 74.22 230 | 38.14 340 | 59.00 329 | 66.13 283 | 63.33 111 | 69.76 270 | 85.95 176 | 51.88 245 | 70.50 274 | 44.23 304 | 87.52 173 | 81.64 193 |
|
| CANet | | | 73.00 133 | 71.84 155 | 76.48 89 | 75.82 205 | 61.28 139 | 74.81 144 | 80.37 137 | 63.17 112 | 62.43 336 | 80.50 249 | 61.10 174 | 85.16 63 | 64.00 130 | 84.34 229 | 83.01 160 |
|
| MP-MVS-pluss | | | 82.54 30 | 83.46 29 | 79.76 45 | 88.88 31 | 68.44 80 | 81.57 64 | 86.33 19 | 63.17 112 | 85.38 55 | 91.26 37 | 76.33 33 | 84.67 71 | 83.30 2 | 94.96 26 | 86.17 68 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MVS_0304 | | | 75.45 93 | 74.66 105 | 77.83 74 | 75.58 208 | 61.53 136 | 78.29 99 | 77.18 192 | 63.15 114 | 69.97 266 | 87.20 131 | 57.54 213 | 87.05 10 | 74.05 55 | 88.96 155 | 84.89 93 |
|
| Vis-MVSNet |  | | 74.85 108 | 74.56 106 | 75.72 98 | 81.63 125 | 64.64 113 | 76.35 125 | 79.06 158 | 62.85 115 | 73.33 222 | 88.41 115 | 62.54 154 | 79.59 155 | 63.94 134 | 82.92 243 | 82.94 161 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Effi-MVS+ | | | 72.10 150 | 72.28 151 | 71.58 167 | 74.21 231 | 50.33 220 | 74.72 149 | 82.73 89 | 62.62 116 | 70.77 255 | 76.83 300 | 69.96 86 | 80.97 131 | 60.20 164 | 78.43 297 | 83.45 145 |
|
| OMC-MVS | | | 79.41 59 | 78.79 67 | 81.28 33 | 80.62 135 | 70.71 62 | 80.91 69 | 84.76 50 | 62.54 117 | 81.77 95 | 86.65 152 | 71.46 71 | 83.53 86 | 67.95 95 | 92.44 78 | 89.60 23 |
|
| API-MVS | | | 70.97 162 | 71.51 163 | 69.37 198 | 75.20 211 | 55.94 183 | 80.99 67 | 76.84 194 | 62.48 118 | 71.24 251 | 77.51 295 | 61.51 166 | 80.96 134 | 52.04 237 | 85.76 206 | 71.22 324 |
|
| CSCG | | | 74.12 111 | 74.39 108 | 73.33 130 | 79.35 147 | 61.66 135 | 77.45 110 | 81.98 101 | 62.47 119 | 79.06 128 | 80.19 255 | 61.83 161 | 78.79 167 | 59.83 172 | 87.35 178 | 79.54 234 |
|
| ETV-MVS | | | 72.72 140 | 72.16 153 | 74.38 114 | 76.90 189 | 55.95 182 | 73.34 163 | 84.67 55 | 62.04 120 | 72.19 238 | 70.81 347 | 65.90 126 | 85.24 59 | 58.64 181 | 84.96 219 | 81.95 187 |
|
| OurMVSNet-221017-0 | | | 78.57 66 | 78.53 71 | 78.67 63 | 80.48 136 | 64.16 116 | 80.24 79 | 82.06 99 | 61.89 121 | 88.77 16 | 93.32 5 | 57.15 215 | 82.60 101 | 70.08 79 | 92.80 73 | 89.25 27 |
|
| plane_prior | | | | | | | 65.18 108 | 80.06 83 | | 61.88 122 | | | | | | 89.91 133 | |
|
| UGNet | | | 70.20 170 | 69.05 186 | 73.65 123 | 76.24 197 | 63.64 119 | 75.87 134 | 72.53 230 | 61.48 123 | 60.93 346 | 86.14 169 | 52.37 243 | 77.12 199 | 50.67 249 | 85.21 213 | 80.17 225 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VDD-MVS | | | 70.81 163 | 71.44 164 | 68.91 214 | 79.07 157 | 46.51 267 | 67.82 244 | 70.83 256 | 61.23 124 | 74.07 211 | 88.69 108 | 59.86 186 | 75.62 214 | 51.11 245 | 90.28 123 | 84.61 106 |
|
| FMVSNet1 | | | 71.06 159 | 72.48 147 | 66.81 240 | 77.65 177 | 40.68 318 | 71.96 179 | 73.03 222 | 61.14 125 | 79.45 123 | 90.36 70 | 60.44 180 | 75.20 221 | 50.20 253 | 88.05 166 | 84.54 110 |
|
| TransMVSNet (Re) | | | 69.62 178 | 71.63 159 | 63.57 267 | 76.51 194 | 35.93 356 | 65.75 274 | 71.29 246 | 61.05 126 | 75.02 192 | 89.90 81 | 65.88 127 | 70.41 277 | 49.79 255 | 89.48 142 | 84.38 118 |
|
| EPNet | | | 69.10 187 | 67.32 214 | 74.46 109 | 68.33 309 | 61.27 140 | 77.56 107 | 63.57 305 | 60.95 127 | 56.62 370 | 82.75 219 | 51.53 249 | 81.24 122 | 54.36 224 | 90.20 124 | 80.88 207 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MSDG | | | 67.47 213 | 67.48 213 | 67.46 233 | 70.70 274 | 54.69 192 | 66.90 260 | 78.17 177 | 60.88 128 | 70.41 258 | 74.76 315 | 61.22 172 | 73.18 243 | 47.38 281 | 76.87 310 | 74.49 290 |
|
| RRT-MVS | | | 70.33 168 | 70.73 171 | 69.14 206 | 71.93 263 | 45.24 278 | 75.10 139 | 75.08 211 | 60.85 129 | 78.62 131 | 87.36 130 | 49.54 259 | 78.64 169 | 60.16 166 | 77.90 304 | 83.55 138 |
|
| TSAR-MVS + GP. | | | 73.08 128 | 71.60 161 | 77.54 76 | 78.99 159 | 70.73 61 | 74.96 141 | 69.38 265 | 60.73 130 | 74.39 205 | 78.44 283 | 57.72 211 | 82.78 98 | 60.16 166 | 89.60 138 | 79.11 239 |
|
| MSLP-MVS++ | | | 74.48 109 | 75.78 95 | 70.59 177 | 84.66 79 | 62.40 127 | 78.65 94 | 84.24 66 | 60.55 131 | 77.71 146 | 81.98 229 | 63.12 147 | 77.64 195 | 62.95 144 | 88.14 164 | 71.73 318 |
|
| CS-MVS | | | 76.51 83 | 76.00 93 | 78.06 73 | 77.02 183 | 64.77 112 | 80.78 70 | 82.66 91 | 60.39 132 | 74.15 208 | 83.30 213 | 69.65 89 | 82.07 110 | 69.27 84 | 86.75 194 | 87.36 54 |
|
| Baseline_NR-MVSNet | | | 70.62 165 | 73.19 132 | 62.92 278 | 76.97 185 | 34.44 366 | 68.84 226 | 70.88 255 | 60.25 133 | 79.50 122 | 90.53 56 | 61.82 162 | 69.11 284 | 54.67 218 | 95.27 14 | 85.22 85 |
|
| v8 | | | 75.07 100 | 75.64 97 | 73.35 129 | 73.42 241 | 47.46 258 | 75.20 138 | 81.45 110 | 60.05 134 | 85.64 48 | 89.26 90 | 58.08 206 | 81.80 114 | 69.71 83 | 87.97 169 | 90.79 18 |
|
| 9.14 | | | | 80.22 57 | | 80.68 134 | | 80.35 77 | 87.69 11 | 59.90 135 | 83.00 80 | 88.20 120 | 74.57 50 | 81.75 115 | 73.75 58 | 93.78 60 | |
|
| DeepC-MVS | | 72.44 4 | 81.00 44 | 80.83 54 | 81.50 26 | 86.70 45 | 70.03 68 | 82.06 60 | 87.00 15 | 59.89 136 | 80.91 109 | 90.53 56 | 72.19 64 | 88.56 2 | 73.67 59 | 94.52 38 | 85.92 74 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| F-COLMAP | | | 75.29 95 | 73.99 116 | 79.18 54 | 81.73 123 | 71.90 50 | 81.86 63 | 82.98 84 | 59.86 137 | 72.27 235 | 84.00 199 | 64.56 140 | 83.07 95 | 51.48 241 | 87.19 187 | 82.56 175 |
|
| casdiffmvs_mvg |  | | 75.26 96 | 76.18 92 | 72.52 155 | 72.87 256 | 49.47 232 | 72.94 166 | 84.71 54 | 59.49 138 | 80.90 110 | 88.81 106 | 70.07 84 | 79.71 152 | 67.40 101 | 88.39 161 | 88.40 45 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| RPSCF | | | 75.76 88 | 74.37 109 | 79.93 44 | 74.81 218 | 77.53 18 | 77.53 109 | 79.30 155 | 59.44 139 | 78.88 129 | 89.80 82 | 71.26 74 | 73.09 244 | 57.45 189 | 80.89 265 | 89.17 30 |
|
| HQP-NCC | | | | | | 82.37 113 | | 77.32 111 | | 59.08 140 | 71.58 243 | | | | | | |
|
| ACMP_Plane | | | | | | 82.37 113 | | 77.32 111 | | 59.08 140 | 71.58 243 | | | | | | |
|
| HQP-MVS | | | 75.24 97 | 75.01 102 | 75.94 95 | 82.37 113 | 58.80 168 | 77.32 111 | 84.12 69 | 59.08 140 | 71.58 243 | 85.96 175 | 58.09 204 | 85.30 55 | 67.38 104 | 89.16 148 | 83.73 135 |
|
| FA-MVS(test-final) | | | 71.27 157 | 71.06 167 | 71.92 165 | 73.96 234 | 52.32 208 | 76.45 122 | 76.12 199 | 59.07 143 | 74.04 213 | 86.18 166 | 52.18 244 | 79.43 157 | 59.75 174 | 81.76 255 | 84.03 126 |
|
| v10 | | | 75.69 89 | 76.20 91 | 74.16 116 | 74.44 227 | 48.69 238 | 75.84 135 | 82.93 86 | 59.02 144 | 85.92 44 | 89.17 95 | 58.56 198 | 82.74 99 | 70.73 75 | 89.14 151 | 91.05 14 |
|
| test_prior2 | | | | | | | | 75.57 136 | | 58.92 145 | 76.53 172 | 86.78 144 | 67.83 105 | | 69.81 80 | 92.76 75 | |
|
| ZD-MVS | | | | | | 83.91 90 | 69.36 73 | | 81.09 120 | 58.91 146 | 82.73 87 | 89.11 97 | 75.77 38 | 86.63 14 | 72.73 65 | 92.93 72 | |
|
| SPE-MVS-test | | | 74.89 106 | 74.23 112 | 76.86 83 | 77.01 184 | 62.94 126 | 78.98 92 | 84.61 59 | 58.62 147 | 70.17 263 | 80.80 244 | 66.74 117 | 81.96 111 | 61.74 150 | 89.40 146 | 85.69 80 |
|
| MG-MVS | | | 70.47 167 | 71.34 165 | 67.85 228 | 79.26 149 | 40.42 322 | 74.67 151 | 75.15 210 | 58.41 148 | 68.74 287 | 88.14 124 | 56.08 227 | 83.69 82 | 59.90 171 | 81.71 259 | 79.43 236 |
|
| EI-MVSNet | | | 69.61 179 | 69.01 188 | 71.41 171 | 73.94 235 | 49.90 227 | 71.31 193 | 71.32 244 | 58.22 149 | 75.40 189 | 70.44 349 | 58.16 201 | 75.85 209 | 62.51 145 | 79.81 282 | 88.48 43 |
|
| IterMVS-LS | | | 73.01 132 | 73.12 135 | 72.66 152 | 73.79 237 | 49.90 227 | 71.63 187 | 78.44 172 | 58.22 149 | 80.51 113 | 86.63 153 | 58.15 202 | 79.62 153 | 62.51 145 | 88.20 163 | 88.48 43 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| BH-RMVSNet | | | 68.69 195 | 68.20 202 | 70.14 188 | 76.40 195 | 53.90 199 | 64.62 287 | 73.48 220 | 58.01 151 | 73.91 215 | 81.78 231 | 59.09 193 | 78.22 183 | 48.59 268 | 77.96 303 | 78.31 248 |
|
| test_yl | | | 65.11 235 | 65.09 243 | 65.18 253 | 70.59 276 | 40.86 314 | 63.22 303 | 72.79 225 | 57.91 152 | 68.88 283 | 79.07 277 | 42.85 299 | 74.89 225 | 45.50 298 | 84.97 216 | 79.81 227 |
|
| DCV-MVSNet | | | 65.11 235 | 65.09 243 | 65.18 253 | 70.59 276 | 40.86 314 | 63.22 303 | 72.79 225 | 57.91 152 | 68.88 283 | 79.07 277 | 42.85 299 | 74.89 225 | 45.50 298 | 84.97 216 | 79.81 227 |
|
| DP-MVS Recon | | | 73.57 118 | 72.69 143 | 76.23 93 | 82.85 108 | 63.39 121 | 74.32 154 | 82.96 85 | 57.75 154 | 70.35 259 | 81.98 229 | 64.34 142 | 84.41 76 | 49.69 256 | 89.95 131 | 80.89 206 |
|
| Effi-MVS+-dtu | | | 75.43 94 | 72.28 151 | 84.91 3 | 77.05 181 | 83.58 2 | 78.47 97 | 77.70 184 | 57.68 155 | 74.89 194 | 78.13 289 | 64.80 138 | 84.26 77 | 56.46 199 | 85.32 212 | 86.88 61 |
|
| MVS_111021_HR | | | 72.98 135 | 72.97 140 | 72.99 138 | 80.82 133 | 65.47 104 | 68.81 228 | 72.77 227 | 57.67 156 | 75.76 182 | 82.38 225 | 71.01 77 | 77.17 198 | 61.38 153 | 86.15 199 | 76.32 273 |
|
| 3Dnovator | | 65.95 11 | 71.50 156 | 71.22 166 | 72.34 159 | 73.16 246 | 63.09 124 | 78.37 98 | 78.32 174 | 57.67 156 | 72.22 237 | 84.61 189 | 54.77 229 | 78.47 173 | 60.82 160 | 81.07 264 | 75.45 279 |
|
| FE-MVS | | | 68.29 201 | 66.96 221 | 72.26 161 | 74.16 232 | 54.24 195 | 77.55 108 | 73.42 221 | 57.65 158 | 72.66 229 | 84.91 186 | 32.02 360 | 81.49 118 | 48.43 271 | 81.85 253 | 81.04 200 |
|
| FC-MVSNet-test | | | 73.32 123 | 74.78 104 | 68.93 213 | 79.21 151 | 36.57 350 | 71.82 185 | 79.54 152 | 57.63 159 | 82.57 88 | 90.38 67 | 59.38 191 | 78.99 163 | 57.91 187 | 94.56 37 | 91.23 13 |
|
| FPMVS | | | 59.43 293 | 60.07 284 | 57.51 321 | 77.62 178 | 71.52 53 | 62.33 307 | 50.92 369 | 57.40 160 | 69.40 273 | 80.00 259 | 39.14 323 | 61.92 336 | 37.47 348 | 66.36 382 | 39.09 412 |
|
| testdata1 | | | | | | | | 68.34 239 | | 57.24 161 | | | | | | | |
|
| MIMVSNet1 | | | 66.57 223 | 69.23 184 | 58.59 315 | 81.26 130 | 37.73 345 | 64.06 293 | 57.62 327 | 57.02 162 | 78.40 136 | 90.75 49 | 62.65 151 | 58.10 352 | 41.77 319 | 89.58 140 | 79.95 226 |
|
| MVS_111021_LR | | | 72.10 150 | 71.82 156 | 72.95 140 | 79.53 145 | 73.90 40 | 70.45 206 | 66.64 280 | 56.87 163 | 76.81 161 | 81.76 233 | 68.78 93 | 71.76 263 | 61.81 148 | 83.74 235 | 73.18 301 |
|
| LCM-MVSNet-Re | | | 69.10 187 | 71.57 162 | 61.70 287 | 70.37 283 | 34.30 368 | 61.45 310 | 79.62 147 | 56.81 164 | 89.59 9 | 88.16 123 | 68.44 97 | 72.94 245 | 42.30 313 | 87.33 180 | 77.85 258 |
|
| BH-untuned | | | 69.39 183 | 69.46 180 | 69.18 204 | 77.96 171 | 56.88 177 | 68.47 238 | 77.53 186 | 56.77 165 | 77.79 144 | 79.63 264 | 60.30 182 | 80.20 147 | 46.04 293 | 80.65 270 | 70.47 331 |
|
| mvs5depth | | | 66.35 227 | 67.98 204 | 61.47 291 | 62.43 357 | 51.05 213 | 69.38 219 | 69.24 267 | 56.74 166 | 73.62 216 | 89.06 100 | 46.96 277 | 58.63 348 | 55.87 205 | 88.49 160 | 74.73 286 |
|
| DeepC-MVS_fast | | 69.89 7 | 77.17 78 | 76.33 90 | 79.70 48 | 83.90 91 | 67.94 82 | 80.06 83 | 83.75 74 | 56.73 167 | 74.88 195 | 85.32 181 | 65.54 129 | 87.79 3 | 65.61 119 | 91.14 101 | 83.35 149 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepPCF-MVS | | 71.07 5 | 78.48 69 | 77.14 84 | 82.52 17 | 84.39 86 | 77.04 25 | 76.35 125 | 84.05 71 | 56.66 168 | 80.27 116 | 85.31 182 | 68.56 95 | 87.03 12 | 67.39 102 | 91.26 96 | 83.50 139 |
|
| save fliter | | | | | | 87.00 40 | 67.23 90 | 79.24 89 | 77.94 182 | 56.65 169 | | | | | | | |
|
| VPA-MVSNet | | | 68.71 194 | 70.37 175 | 63.72 265 | 76.13 199 | 38.06 342 | 64.10 292 | 71.48 240 | 56.60 170 | 74.10 210 | 88.31 118 | 64.78 139 | 69.72 279 | 47.69 280 | 90.15 126 | 83.37 148 |
|
| GeoE | | | 73.14 126 | 73.77 121 | 71.26 172 | 78.09 168 | 52.64 206 | 74.32 154 | 79.56 151 | 56.32 171 | 76.35 178 | 83.36 211 | 70.76 79 | 77.96 189 | 63.32 141 | 81.84 254 | 83.18 154 |
|
| FIs | | | 72.56 143 | 73.80 119 | 68.84 216 | 78.74 162 | 37.74 344 | 71.02 197 | 79.83 145 | 56.12 172 | 80.88 111 | 89.45 87 | 58.18 200 | 78.28 182 | 56.63 195 | 93.36 67 | 90.51 20 |
|
| testing3 | | | 58.28 301 | 58.38 298 | 58.00 319 | 77.45 180 | 26.12 406 | 60.78 317 | 43.00 399 | 56.02 173 | 70.18 262 | 75.76 305 | 13.27 424 | 67.24 303 | 48.02 276 | 80.89 265 | 80.65 215 |
|
| tfpnnormal | | | 66.48 224 | 67.93 205 | 62.16 284 | 73.40 242 | 36.65 349 | 63.45 298 | 64.99 293 | 55.97 174 | 72.82 228 | 87.80 127 | 57.06 218 | 69.10 285 | 48.31 273 | 87.54 172 | 80.72 213 |
|
| baseline | | | 73.10 127 | 73.96 117 | 70.51 179 | 71.46 267 | 46.39 270 | 72.08 174 | 84.40 62 | 55.95 175 | 76.62 166 | 86.46 159 | 67.20 107 | 78.03 188 | 64.22 128 | 87.27 184 | 87.11 60 |
|
| wuyk23d | | | 61.97 271 | 66.25 226 | 49.12 365 | 58.19 386 | 60.77 151 | 66.32 266 | 52.97 361 | 55.93 176 | 90.62 6 | 86.91 140 | 73.07 60 | 35.98 412 | 20.63 415 | 91.63 89 | 50.62 401 |
|
| Fast-Effi-MVS+-dtu | | | 70.00 172 | 68.74 193 | 73.77 122 | 73.47 240 | 64.53 114 | 71.36 191 | 78.14 179 | 55.81 177 | 68.84 285 | 74.71 317 | 65.36 132 | 75.75 212 | 52.00 238 | 79.00 290 | 81.03 201 |
|
| casdiffmvs |  | | 73.06 130 | 73.84 118 | 70.72 175 | 71.32 268 | 46.71 266 | 70.93 199 | 84.26 65 | 55.62 178 | 77.46 149 | 87.10 133 | 67.09 109 | 77.81 191 | 63.95 132 | 86.83 192 | 87.64 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| pm-mvs1 | | | 68.40 197 | 69.85 179 | 64.04 263 | 73.10 250 | 39.94 325 | 64.61 288 | 70.50 258 | 55.52 179 | 73.97 214 | 89.33 88 | 63.91 144 | 68.38 290 | 49.68 257 | 88.02 167 | 83.81 131 |
|
| mmtdpeth | | | 68.76 192 | 70.55 174 | 63.40 271 | 67.06 327 | 56.26 181 | 68.73 233 | 71.22 250 | 55.47 180 | 70.09 264 | 88.64 111 | 65.29 134 | 56.89 355 | 58.94 180 | 89.50 141 | 77.04 270 |
|
| v2v482 | | | 72.55 145 | 72.58 145 | 72.43 157 | 72.92 255 | 46.72 265 | 71.41 190 | 79.13 157 | 55.27 181 | 81.17 105 | 85.25 183 | 55.41 228 | 81.13 124 | 67.25 108 | 85.46 207 | 89.43 25 |
|
| thres100view900 | | | 61.17 279 | 61.09 276 | 61.39 292 | 72.14 261 | 35.01 362 | 65.42 279 | 56.99 335 | 55.23 182 | 70.71 256 | 79.90 260 | 32.07 358 | 72.09 257 | 35.61 363 | 81.73 256 | 77.08 267 |
|
| TAPA-MVS | | 65.27 12 | 75.16 98 | 74.29 111 | 77.77 75 | 74.86 217 | 68.08 81 | 77.89 105 | 84.04 72 | 55.15 183 | 76.19 180 | 83.39 207 | 66.91 111 | 80.11 148 | 60.04 170 | 90.14 127 | 85.13 88 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| EG-PatchMatch MVS | | | 70.70 164 | 70.88 169 | 70.16 187 | 82.64 112 | 58.80 168 | 71.48 188 | 73.64 219 | 54.98 184 | 76.55 170 | 81.77 232 | 61.10 174 | 78.94 164 | 54.87 215 | 80.84 267 | 72.74 308 |
|
| GBi-Net | | | 68.30 199 | 68.79 190 | 66.81 240 | 73.14 247 | 40.68 318 | 71.96 179 | 73.03 222 | 54.81 185 | 74.72 197 | 90.36 70 | 48.63 270 | 75.20 221 | 47.12 282 | 85.37 208 | 84.54 110 |
|
| test1 | | | 68.30 199 | 68.79 190 | 66.81 240 | 73.14 247 | 40.68 318 | 71.96 179 | 73.03 222 | 54.81 185 | 74.72 197 | 90.36 70 | 48.63 270 | 75.20 221 | 47.12 282 | 85.37 208 | 84.54 110 |
|
| FMVSNet2 | | | 67.48 211 | 68.21 201 | 65.29 252 | 73.14 247 | 38.94 332 | 68.81 228 | 71.21 251 | 54.81 185 | 76.73 163 | 86.48 158 | 48.63 270 | 74.60 229 | 47.98 277 | 86.11 202 | 82.35 178 |
|
| v148 | | | 69.38 184 | 69.39 181 | 69.36 199 | 69.14 300 | 44.56 283 | 68.83 227 | 72.70 228 | 54.79 188 | 78.59 132 | 84.12 197 | 54.69 230 | 76.74 206 | 59.40 177 | 82.20 248 | 86.79 62 |
|
| thres600view7 | | | 61.82 273 | 61.38 274 | 63.12 273 | 71.81 264 | 34.93 363 | 64.64 286 | 56.99 335 | 54.78 189 | 70.33 260 | 79.74 262 | 32.07 358 | 72.42 254 | 38.61 338 | 83.46 240 | 82.02 185 |
|
| tttt0517 | | | 69.46 181 | 67.79 209 | 74.46 109 | 75.34 209 | 52.72 205 | 75.05 140 | 63.27 308 | 54.69 190 | 78.87 130 | 84.37 194 | 26.63 387 | 81.15 123 | 63.95 132 | 87.93 170 | 89.51 24 |
|
| RPMNet | | | 65.77 231 | 65.08 245 | 67.84 229 | 66.37 329 | 48.24 243 | 70.93 199 | 86.27 20 | 54.66 191 | 61.35 340 | 86.77 145 | 33.29 348 | 85.67 49 | 55.93 203 | 70.17 365 | 69.62 340 |
|
| VNet | | | 64.01 253 | 65.15 241 | 60.57 301 | 73.28 244 | 35.61 359 | 57.60 341 | 67.08 278 | 54.61 192 | 66.76 304 | 83.37 209 | 56.28 225 | 66.87 307 | 42.19 315 | 85.20 214 | 79.23 238 |
|
| MGCFI-Net | | | 71.70 154 | 73.10 136 | 67.49 232 | 73.23 245 | 43.08 297 | 72.06 175 | 82.43 95 | 54.58 193 | 75.97 181 | 82.00 227 | 72.42 63 | 75.22 219 | 57.84 188 | 87.34 179 | 84.18 123 |
|
| PLC |  | 62.01 16 | 71.79 153 | 70.28 176 | 76.33 91 | 80.31 138 | 68.63 79 | 78.18 103 | 81.24 115 | 54.57 194 | 67.09 303 | 80.63 247 | 59.44 189 | 81.74 116 | 46.91 285 | 84.17 230 | 78.63 243 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| nrg030 | | | 74.87 107 | 75.99 94 | 71.52 169 | 74.90 216 | 49.88 231 | 74.10 158 | 82.58 93 | 54.55 195 | 83.50 77 | 89.21 92 | 71.51 70 | 75.74 213 | 61.24 154 | 92.34 81 | 88.94 36 |
|
| balanced_conf03 | | | 73.59 117 | 74.06 114 | 72.17 163 | 77.48 179 | 47.72 254 | 81.43 65 | 82.20 97 | 54.38 196 | 79.19 125 | 87.68 128 | 54.41 233 | 83.57 84 | 63.98 131 | 85.78 205 | 85.22 85 |
|
| sasdasda | | | 72.29 148 | 73.38 127 | 69.04 207 | 74.23 228 | 47.37 259 | 73.93 160 | 83.18 80 | 54.36 197 | 76.61 167 | 81.64 235 | 72.03 65 | 75.34 217 | 57.12 191 | 87.28 182 | 84.40 116 |
|
| canonicalmvs | | | 72.29 148 | 73.38 127 | 69.04 207 | 74.23 228 | 47.37 259 | 73.93 160 | 83.18 80 | 54.36 197 | 76.61 167 | 81.64 235 | 72.03 65 | 75.34 217 | 57.12 191 | 87.28 182 | 84.40 116 |
|
| h-mvs33 | | | 73.08 128 | 71.61 160 | 77.48 77 | 83.89 92 | 72.89 48 | 70.47 205 | 71.12 252 | 54.28 199 | 77.89 141 | 83.41 206 | 49.04 264 | 80.98 130 | 63.62 137 | 90.77 117 | 78.58 245 |
|
| hse-mvs2 | | | 72.32 147 | 70.66 173 | 77.31 81 | 83.10 103 | 71.77 51 | 69.19 223 | 71.45 241 | 54.28 199 | 77.89 141 | 78.26 285 | 49.04 264 | 79.23 158 | 63.62 137 | 89.13 152 | 80.92 205 |
|
| test2506 | | | 61.23 278 | 60.85 279 | 62.38 282 | 78.80 160 | 27.88 397 | 67.33 253 | 37.42 413 | 54.23 201 | 67.55 298 | 88.68 109 | 17.87 416 | 74.39 232 | 46.33 291 | 89.41 144 | 84.86 96 |
|
| ECVR-MVS |  | | 64.82 239 | 65.22 237 | 63.60 266 | 78.80 160 | 31.14 383 | 66.97 258 | 56.47 341 | 54.23 201 | 69.94 267 | 88.68 109 | 37.23 334 | 74.81 227 | 45.28 301 | 89.41 144 | 84.86 96 |
|
| CDPH-MVS | | | 77.33 77 | 77.06 85 | 78.14 71 | 84.21 87 | 63.98 118 | 76.07 131 | 83.45 78 | 54.20 203 | 77.68 147 | 87.18 132 | 69.98 85 | 85.37 53 | 68.01 93 | 92.72 76 | 85.08 90 |
|
| VPNet | | | 65.58 232 | 67.56 210 | 59.65 307 | 79.72 142 | 30.17 388 | 60.27 321 | 62.14 311 | 54.19 204 | 71.24 251 | 86.63 153 | 58.80 196 | 67.62 297 | 44.17 305 | 90.87 114 | 81.18 197 |
|
| PHI-MVS | | | 74.92 103 | 74.36 110 | 76.61 86 | 76.40 195 | 62.32 129 | 80.38 75 | 83.15 82 | 54.16 205 | 73.23 224 | 80.75 245 | 62.19 159 | 83.86 80 | 68.02 92 | 90.92 110 | 83.65 136 |
|
| test1111 | | | 64.62 242 | 65.19 238 | 62.93 277 | 79.01 158 | 29.91 389 | 65.45 278 | 54.41 351 | 54.09 206 | 71.47 250 | 88.48 114 | 37.02 335 | 74.29 234 | 46.83 287 | 89.94 132 | 84.58 109 |
|
| Patchmtry | | | 60.91 280 | 63.01 263 | 54.62 336 | 66.10 335 | 26.27 405 | 67.47 248 | 56.40 342 | 54.05 207 | 72.04 239 | 86.66 150 | 33.19 349 | 60.17 341 | 43.69 306 | 87.45 176 | 77.42 259 |
|
| train_agg | | | 76.38 84 | 76.55 88 | 75.86 97 | 85.47 67 | 69.32 74 | 76.42 123 | 78.69 167 | 54.00 208 | 76.97 153 | 86.74 146 | 66.60 118 | 81.10 125 | 72.50 69 | 91.56 91 | 77.15 265 |
|
| test_8 | | | | | | 85.09 73 | 67.89 83 | 76.26 128 | 78.66 169 | 54.00 208 | 76.89 157 | 86.72 148 | 66.60 118 | 80.89 135 | | | |
|
| DELS-MVS | | | 68.83 190 | 68.31 197 | 70.38 180 | 70.55 280 | 48.31 241 | 63.78 296 | 82.13 98 | 54.00 208 | 68.96 278 | 75.17 313 | 58.95 195 | 80.06 149 | 58.55 182 | 82.74 245 | 82.76 166 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| alignmvs | | | 70.54 166 | 71.00 168 | 69.15 205 | 73.50 239 | 48.04 248 | 69.85 214 | 79.62 147 | 53.94 211 | 76.54 171 | 82.00 227 | 59.00 194 | 74.68 228 | 57.32 190 | 87.21 186 | 84.72 101 |
|
| v1144 | | | 73.29 124 | 73.39 126 | 73.01 137 | 74.12 233 | 48.11 245 | 72.01 177 | 81.08 121 | 53.83 212 | 81.77 95 | 84.68 187 | 58.07 207 | 81.91 112 | 68.10 90 | 86.86 190 | 88.99 35 |
|
| TEST9 | | | | | | 85.47 67 | 69.32 74 | 76.42 123 | 78.69 167 | 53.73 213 | 76.97 153 | 86.74 146 | 66.84 112 | 81.10 125 | | | |
|
| Vis-MVSNet (Re-imp) | | | 62.74 266 | 63.21 261 | 61.34 294 | 72.19 260 | 31.56 380 | 67.31 254 | 53.87 353 | 53.60 214 | 69.88 268 | 83.37 209 | 40.52 313 | 70.98 270 | 41.40 321 | 86.78 193 | 81.48 195 |
|
| PS-MVSNAJss | | | 77.54 75 | 77.35 82 | 78.13 72 | 84.88 75 | 66.37 96 | 78.55 96 | 79.59 150 | 53.48 215 | 86.29 39 | 92.43 16 | 62.39 156 | 80.25 144 | 67.90 96 | 90.61 119 | 87.77 48 |
|
| MDA-MVSNet-bldmvs | | | 62.34 270 | 61.73 268 | 64.16 259 | 61.64 362 | 49.90 227 | 48.11 385 | 57.24 333 | 53.31 216 | 80.95 107 | 79.39 269 | 49.00 266 | 61.55 337 | 45.92 294 | 80.05 277 | 81.03 201 |
|
| TinyColmap | | | 67.98 204 | 69.28 182 | 64.08 261 | 67.98 314 | 46.82 264 | 70.04 209 | 75.26 208 | 53.05 217 | 77.36 150 | 86.79 143 | 59.39 190 | 72.59 252 | 45.64 296 | 88.01 168 | 72.83 306 |
|
| tfpn200view9 | | | 60.35 286 | 59.97 285 | 61.51 289 | 70.78 272 | 35.35 360 | 63.27 301 | 57.47 328 | 53.00 218 | 68.31 290 | 77.09 298 | 32.45 355 | 72.09 257 | 35.61 363 | 81.73 256 | 77.08 267 |
|
| thres400 | | | 60.77 283 | 59.97 285 | 63.15 272 | 70.78 272 | 35.35 360 | 63.27 301 | 57.47 328 | 53.00 218 | 68.31 290 | 77.09 298 | 32.45 355 | 72.09 257 | 35.61 363 | 81.73 256 | 82.02 185 |
|
| v1192 | | | 73.40 121 | 73.42 125 | 73.32 131 | 74.65 224 | 48.67 239 | 72.21 172 | 81.73 105 | 52.76 220 | 81.85 93 | 84.56 190 | 57.12 216 | 82.24 108 | 68.58 86 | 87.33 180 | 89.06 32 |
|
| MVS_Test | | | 69.84 175 | 70.71 172 | 67.24 235 | 67.49 319 | 43.25 296 | 69.87 213 | 81.22 117 | 52.69 221 | 71.57 246 | 86.68 149 | 62.09 160 | 74.51 230 | 66.05 114 | 78.74 292 | 83.96 127 |
|
| MonoMVSNet | | | 62.75 265 | 63.42 257 | 60.73 300 | 65.60 338 | 40.77 316 | 72.49 169 | 70.56 257 | 52.49 222 | 75.07 191 | 79.42 268 | 39.52 321 | 69.97 278 | 46.59 289 | 69.06 371 | 71.44 320 |
|
| EIA-MVS | | | 68.59 196 | 67.16 217 | 72.90 144 | 75.18 212 | 55.64 187 | 69.39 218 | 81.29 113 | 52.44 223 | 64.53 316 | 70.69 348 | 60.33 181 | 82.30 106 | 54.27 225 | 76.31 314 | 80.75 211 |
|
| MVSFormer | | | 69.93 174 | 69.03 187 | 72.63 154 | 74.93 214 | 59.19 160 | 83.98 40 | 75.72 204 | 52.27 224 | 63.53 330 | 76.74 301 | 43.19 296 | 80.56 137 | 72.28 70 | 78.67 294 | 78.14 252 |
|
| test_djsdf | | | 78.88 63 | 78.27 73 | 80.70 39 | 81.42 126 | 71.24 56 | 83.98 40 | 75.72 204 | 52.27 224 | 87.37 30 | 92.25 17 | 68.04 102 | 80.56 137 | 72.28 70 | 91.15 100 | 90.32 21 |
|
| CLD-MVS | | | 72.88 138 | 72.36 150 | 74.43 112 | 77.03 182 | 54.30 194 | 68.77 231 | 83.43 79 | 52.12 226 | 76.79 162 | 74.44 320 | 69.54 90 | 83.91 79 | 55.88 204 | 93.25 69 | 85.09 89 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 53.35 332 | 56.47 312 | 43.99 386 | 64.19 349 | 17.46 417 | 59.15 326 | 43.10 398 | 52.11 227 | 54.74 380 | 86.95 139 | 29.97 378 | 49.98 371 | 43.62 307 | 74.40 332 | 64.53 375 |
|
| CANet_DTU | | | 64.04 252 | 63.83 252 | 64.66 256 | 68.39 306 | 42.97 299 | 73.45 162 | 74.50 215 | 52.05 228 | 54.78 379 | 75.44 311 | 43.99 291 | 70.42 276 | 53.49 232 | 78.41 298 | 80.59 217 |
|
| mvs_tets | | | 78.93 62 | 78.67 69 | 79.72 47 | 84.81 77 | 73.93 39 | 80.65 71 | 76.50 197 | 51.98 229 | 87.40 27 | 91.86 26 | 76.09 36 | 78.53 171 | 68.58 86 | 90.20 124 | 86.69 64 |
|
| v1240 | | | 73.06 130 | 73.14 133 | 72.84 147 | 74.74 220 | 47.27 262 | 71.88 184 | 81.11 118 | 51.80 230 | 82.28 90 | 84.21 196 | 56.22 226 | 82.34 105 | 68.82 85 | 87.17 188 | 88.91 37 |
|
| TSAR-MVS + MP. | | | 79.05 61 | 78.81 66 | 79.74 46 | 88.94 28 | 67.52 87 | 86.61 22 | 81.38 112 | 51.71 231 | 77.15 151 | 91.42 36 | 65.49 130 | 87.20 7 | 79.44 17 | 87.17 188 | 84.51 114 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| v1921920 | | | 72.96 136 | 72.98 139 | 72.89 145 | 74.67 221 | 47.58 256 | 71.92 182 | 80.69 127 | 51.70 232 | 81.69 99 | 83.89 201 | 56.58 222 | 82.25 107 | 68.34 88 | 87.36 177 | 88.82 39 |
|
| v144192 | | | 72.99 134 | 73.06 137 | 72.77 148 | 74.58 225 | 47.48 257 | 71.90 183 | 80.44 135 | 51.57 233 | 81.46 101 | 84.11 198 | 58.04 208 | 82.12 109 | 67.98 94 | 87.47 175 | 88.70 42 |
|
| FMVSNet3 | | | 65.00 238 | 65.16 239 | 64.52 258 | 69.47 297 | 37.56 347 | 66.63 263 | 70.38 259 | 51.55 234 | 74.72 197 | 83.27 214 | 37.89 331 | 74.44 231 | 47.12 282 | 85.37 208 | 81.57 194 |
|
| c3_l | | | 69.82 176 | 69.89 178 | 69.61 196 | 66.24 332 | 43.48 292 | 68.12 241 | 79.61 149 | 51.43 235 | 77.72 145 | 80.18 256 | 54.61 232 | 78.15 187 | 63.62 137 | 87.50 174 | 87.20 57 |
|
| SDMVSNet | | | 66.36 226 | 67.85 208 | 61.88 286 | 73.04 253 | 46.14 272 | 58.54 334 | 71.36 243 | 51.42 236 | 68.93 281 | 82.72 220 | 65.62 128 | 62.22 335 | 54.41 222 | 84.67 221 | 77.28 261 |
|
| sd_testset | | | 63.55 254 | 65.38 235 | 58.07 318 | 73.04 253 | 38.83 334 | 57.41 342 | 65.44 290 | 51.42 236 | 68.93 281 | 82.72 220 | 63.76 145 | 58.11 351 | 41.05 323 | 84.67 221 | 77.28 261 |
|
| V42 | | | 71.06 159 | 70.83 170 | 71.72 166 | 67.25 321 | 47.14 263 | 65.94 269 | 80.35 138 | 51.35 238 | 83.40 78 | 83.23 216 | 59.25 192 | 78.80 166 | 65.91 116 | 80.81 268 | 89.23 28 |
|
| jajsoiax | | | 78.51 67 | 78.16 75 | 79.59 49 | 84.65 80 | 73.83 41 | 80.42 74 | 76.12 199 | 51.33 239 | 87.19 31 | 91.51 33 | 73.79 57 | 78.44 175 | 68.27 89 | 90.13 128 | 86.49 66 |
|
| GA-MVS | | | 62.91 262 | 61.66 269 | 66.66 244 | 67.09 323 | 44.49 284 | 61.18 314 | 69.36 266 | 51.33 239 | 69.33 274 | 74.47 319 | 36.83 336 | 74.94 224 | 50.60 250 | 74.72 327 | 80.57 218 |
|
| CL-MVSNet_self_test | | | 62.44 269 | 63.40 258 | 59.55 308 | 72.34 259 | 32.38 375 | 56.39 347 | 64.84 295 | 51.21 241 | 67.46 299 | 81.01 242 | 50.75 253 | 63.51 330 | 38.47 340 | 88.12 165 | 82.75 167 |
|
| PM-MVS | | | 64.49 245 | 63.61 255 | 67.14 238 | 76.68 192 | 75.15 31 | 68.49 237 | 42.85 400 | 51.17 242 | 77.85 143 | 80.51 248 | 45.76 279 | 66.31 314 | 52.83 236 | 76.35 313 | 59.96 389 |
|
| 原ACMM1 | | | | | 73.90 120 | 85.90 60 | 65.15 110 | | 81.67 106 | 50.97 243 | 74.25 207 | 86.16 168 | 61.60 164 | 83.54 85 | 56.75 194 | 91.08 105 | 73.00 303 |
|
| JIA-IIPM | | | 54.03 326 | 51.62 345 | 61.25 295 | 59.14 380 | 55.21 189 | 59.10 328 | 47.72 382 | 50.85 244 | 50.31 398 | 85.81 178 | 20.10 409 | 63.97 326 | 36.16 360 | 55.41 408 | 64.55 374 |
|
| KD-MVS_self_test | | | 66.38 225 | 67.51 211 | 62.97 276 | 61.76 361 | 34.39 367 | 58.11 339 | 75.30 207 | 50.84 245 | 77.12 152 | 85.42 180 | 56.84 220 | 69.44 281 | 51.07 246 | 91.16 99 | 85.08 90 |
|
| eth_miper_zixun_eth | | | 69.42 182 | 68.73 194 | 71.50 170 | 67.99 313 | 46.42 268 | 67.58 246 | 78.81 162 | 50.72 246 | 78.13 139 | 80.34 252 | 50.15 257 | 80.34 142 | 60.18 165 | 84.65 223 | 87.74 49 |
|
| Fast-Effi-MVS+ | | | 68.81 191 | 68.30 198 | 70.35 182 | 74.66 223 | 48.61 240 | 66.06 268 | 78.32 174 | 50.62 247 | 71.48 249 | 75.54 308 | 68.75 94 | 79.59 155 | 50.55 251 | 78.73 293 | 82.86 164 |
|
| anonymousdsp | | | 78.60 65 | 77.80 77 | 81.00 35 | 78.01 170 | 74.34 37 | 80.09 81 | 76.12 199 | 50.51 248 | 89.19 11 | 90.88 45 | 71.45 72 | 77.78 193 | 73.38 60 | 90.60 120 | 90.90 17 |
|
| testing91 | | | 55.74 313 | 55.29 323 | 57.08 322 | 70.63 275 | 30.85 385 | 54.94 360 | 56.31 344 | 50.34 249 | 57.08 364 | 70.10 356 | 24.50 397 | 65.86 315 | 36.98 353 | 76.75 311 | 74.53 289 |
|
| dcpmvs_2 | | | 71.02 161 | 72.65 144 | 66.16 247 | 76.06 203 | 50.49 218 | 71.97 178 | 79.36 153 | 50.34 249 | 82.81 85 | 83.63 204 | 64.38 141 | 67.27 302 | 61.54 152 | 83.71 237 | 80.71 214 |
|
| thres200 | | | 57.55 305 | 57.02 307 | 59.17 310 | 67.89 316 | 34.93 363 | 58.91 332 | 57.25 332 | 50.24 251 | 64.01 322 | 71.46 344 | 32.49 354 | 71.39 267 | 31.31 381 | 79.57 286 | 71.19 326 |
|
| thisisatest0530 | | | 67.05 219 | 65.16 239 | 72.73 151 | 73.10 250 | 50.55 217 | 71.26 195 | 63.91 303 | 50.22 252 | 74.46 204 | 80.75 245 | 26.81 386 | 80.25 144 | 59.43 176 | 86.50 197 | 87.37 53 |
|
| test20.03 | | | 55.74 313 | 57.51 305 | 50.42 356 | 59.89 375 | 32.09 377 | 50.63 377 | 49.01 378 | 50.11 253 | 65.07 314 | 83.23 216 | 45.61 281 | 48.11 379 | 30.22 385 | 83.82 234 | 71.07 328 |
|
| BH-w/o | | | 64.81 240 | 64.29 248 | 66.36 245 | 76.08 202 | 54.71 191 | 65.61 276 | 75.23 209 | 50.10 254 | 71.05 254 | 71.86 341 | 54.33 234 | 79.02 162 | 38.20 342 | 76.14 315 | 65.36 366 |
|
| cl____ | | | 68.26 203 | 68.26 199 | 68.29 223 | 64.98 345 | 43.67 290 | 65.89 270 | 74.67 212 | 50.04 255 | 76.86 159 | 82.42 224 | 48.74 268 | 75.38 215 | 60.92 159 | 89.81 134 | 85.80 79 |
|
| DIV-MVS_self_test | | | 68.27 202 | 68.26 199 | 68.29 223 | 64.98 345 | 43.67 290 | 65.89 270 | 74.67 212 | 50.04 255 | 76.86 159 | 82.43 223 | 48.74 268 | 75.38 215 | 60.94 158 | 89.81 134 | 85.81 75 |
|
| EPNet_dtu | | | 58.93 297 | 58.52 295 | 60.16 305 | 67.91 315 | 47.70 255 | 69.97 211 | 58.02 326 | 49.73 257 | 47.28 403 | 73.02 334 | 38.14 327 | 62.34 333 | 36.57 356 | 85.99 203 | 70.43 332 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| QAPM | | | 69.18 186 | 69.26 183 | 68.94 212 | 71.61 265 | 52.58 207 | 80.37 76 | 78.79 165 | 49.63 258 | 73.51 218 | 85.14 184 | 53.66 237 | 79.12 160 | 55.11 212 | 75.54 320 | 75.11 284 |
|
| PAPR | | | 69.20 185 | 68.66 195 | 70.82 174 | 75.15 213 | 47.77 252 | 75.31 137 | 81.11 118 | 49.62 259 | 66.33 305 | 79.27 271 | 61.53 165 | 82.96 96 | 48.12 275 | 81.50 262 | 81.74 192 |
|
| testing99 | | | 55.16 319 | 54.56 328 | 56.98 324 | 70.13 290 | 30.58 387 | 54.55 363 | 54.11 352 | 49.53 260 | 56.76 368 | 70.14 355 | 22.76 404 | 65.79 317 | 36.99 352 | 76.04 316 | 74.57 288 |
|
| TR-MVS | | | 64.59 243 | 63.54 256 | 67.73 231 | 75.75 207 | 50.83 216 | 63.39 299 | 70.29 260 | 49.33 261 | 71.55 247 | 74.55 318 | 50.94 252 | 78.46 174 | 40.43 327 | 75.69 318 | 73.89 296 |
|
| cl22 | | | 67.14 216 | 66.51 224 | 69.03 209 | 63.20 354 | 43.46 293 | 66.88 261 | 76.25 198 | 49.22 262 | 74.48 203 | 77.88 291 | 45.49 282 | 77.40 197 | 60.64 161 | 84.59 225 | 86.24 67 |
|
| AUN-MVS | | | 70.22 169 | 67.88 207 | 77.22 82 | 82.96 107 | 71.61 52 | 69.08 224 | 71.39 242 | 49.17 263 | 71.70 241 | 78.07 290 | 37.62 333 | 79.21 159 | 61.81 148 | 89.15 150 | 80.82 208 |
|
| miper_ehance_all_eth | | | 68.36 198 | 68.16 203 | 68.98 210 | 65.14 344 | 43.34 294 | 67.07 256 | 78.92 161 | 49.11 264 | 76.21 179 | 77.72 292 | 53.48 238 | 77.92 190 | 61.16 156 | 84.59 225 | 85.68 81 |
|
| ab-mvs | | | 64.11 251 | 65.13 242 | 61.05 296 | 71.99 262 | 38.03 343 | 67.59 245 | 68.79 270 | 49.08 265 | 65.32 312 | 86.26 164 | 58.02 209 | 66.85 309 | 39.33 331 | 79.79 284 | 78.27 249 |
|
| OpenMVS |  | 62.51 15 | 68.76 192 | 68.75 192 | 68.78 217 | 70.56 278 | 53.91 198 | 78.29 99 | 77.35 188 | 48.85 266 | 70.22 261 | 83.52 205 | 52.65 242 | 76.93 201 | 55.31 211 | 81.99 250 | 75.49 278 |
|
| MAR-MVS | | | 67.72 208 | 66.16 227 | 72.40 158 | 74.45 226 | 64.99 111 | 74.87 142 | 77.50 187 | 48.67 267 | 65.78 309 | 68.58 372 | 57.01 219 | 77.79 192 | 46.68 288 | 81.92 251 | 74.42 292 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PVSNet_Blended_VisFu | | | 70.04 171 | 68.88 189 | 73.53 128 | 82.71 110 | 63.62 120 | 74.81 144 | 81.95 102 | 48.53 268 | 67.16 302 | 79.18 274 | 51.42 250 | 78.38 178 | 54.39 223 | 79.72 285 | 78.60 244 |
|
| diffmvs |  | | 67.42 214 | 67.50 212 | 67.20 236 | 62.26 359 | 45.21 279 | 64.87 284 | 77.04 193 | 48.21 269 | 71.74 240 | 79.70 263 | 58.40 199 | 71.17 269 | 64.99 121 | 80.27 274 | 85.22 85 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IterMVS-SCA-FT | | | 67.68 209 | 66.07 229 | 72.49 156 | 73.34 243 | 58.20 173 | 63.80 295 | 65.55 289 | 48.10 270 | 76.91 156 | 82.64 222 | 45.20 283 | 78.84 165 | 61.20 155 | 77.89 305 | 80.44 220 |
|
| xiu_mvs_v1_base_debu | | | 67.87 205 | 67.07 218 | 70.26 183 | 79.13 154 | 61.90 132 | 67.34 250 | 71.25 247 | 47.98 271 | 67.70 295 | 74.19 325 | 61.31 167 | 72.62 249 | 56.51 196 | 78.26 299 | 76.27 274 |
|
| xiu_mvs_v1_base | | | 67.87 205 | 67.07 218 | 70.26 183 | 79.13 154 | 61.90 132 | 67.34 250 | 71.25 247 | 47.98 271 | 67.70 295 | 74.19 325 | 61.31 167 | 72.62 249 | 56.51 196 | 78.26 299 | 76.27 274 |
|
| xiu_mvs_v1_base_debi | | | 67.87 205 | 67.07 218 | 70.26 183 | 79.13 154 | 61.90 132 | 67.34 250 | 71.25 247 | 47.98 271 | 67.70 295 | 74.19 325 | 61.31 167 | 72.62 249 | 56.51 196 | 78.26 299 | 76.27 274 |
|
| testdata | | | | | 64.13 260 | 85.87 62 | 63.34 122 | | 61.80 316 | 47.83 274 | 76.42 177 | 86.60 155 | 48.83 267 | 62.31 334 | 54.46 221 | 81.26 263 | 66.74 360 |
|
| DPM-MVS | | | 69.98 173 | 69.22 185 | 72.26 161 | 82.69 111 | 58.82 167 | 70.53 204 | 81.23 116 | 47.79 275 | 64.16 320 | 80.21 253 | 51.32 251 | 83.12 93 | 60.14 168 | 84.95 220 | 74.83 285 |
|
| 无先验 | | | | | | | | 74.82 143 | 70.94 254 | 47.75 276 | | | | 76.85 204 | 54.47 220 | | 72.09 315 |
|
| IB-MVS | | 49.67 18 | 59.69 291 | 56.96 308 | 67.90 227 | 68.19 311 | 50.30 221 | 61.42 311 | 65.18 292 | 47.57 277 | 55.83 374 | 67.15 381 | 23.77 399 | 79.60 154 | 43.56 308 | 79.97 278 | 73.79 297 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| tpmvs | | | 55.84 311 | 55.45 320 | 57.01 323 | 60.33 369 | 33.20 373 | 65.89 270 | 59.29 324 | 47.52 278 | 56.04 372 | 73.60 328 | 31.05 370 | 68.06 294 | 40.64 326 | 64.64 385 | 69.77 338 |
|
| PatchMatch-RL | | | 58.68 299 | 57.72 303 | 61.57 288 | 76.21 198 | 73.59 43 | 61.83 308 | 49.00 379 | 47.30 279 | 61.08 342 | 68.97 365 | 50.16 256 | 59.01 345 | 36.06 362 | 68.84 373 | 52.10 399 |
|
| Anonymous20240521 | | | 63.55 254 | 66.07 229 | 55.99 329 | 66.18 334 | 44.04 287 | 68.77 231 | 68.80 269 | 46.99 280 | 72.57 230 | 85.84 177 | 39.87 317 | 50.22 370 | 53.40 235 | 92.23 83 | 73.71 298 |
|
| PC_three_1452 | | | | | | | | | | 46.98 281 | 81.83 94 | 86.28 162 | 66.55 121 | 84.47 74 | 63.31 142 | 90.78 115 | 83.49 140 |
|
| EMVS | | | 44.61 373 | 44.45 378 | 45.10 382 | 48.91 414 | 43.00 298 | 37.92 407 | 41.10 410 | 46.75 282 | 38.00 416 | 48.43 413 | 26.42 388 | 46.27 383 | 37.11 351 | 75.38 323 | 46.03 406 |
|
| IterMVS | | | 63.12 260 | 62.48 267 | 65.02 255 | 66.34 331 | 52.86 204 | 63.81 294 | 62.25 310 | 46.57 283 | 71.51 248 | 80.40 250 | 44.60 288 | 66.82 310 | 51.38 244 | 75.47 321 | 75.38 281 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| E-PMN | | | 45.17 369 | 45.36 372 | 44.60 383 | 50.07 411 | 42.75 300 | 38.66 406 | 42.29 404 | 46.39 284 | 39.55 414 | 51.15 410 | 26.00 390 | 45.37 388 | 37.68 345 | 76.41 312 | 45.69 407 |
|
| testing222 | | | 53.37 331 | 52.50 341 | 55.98 330 | 70.51 281 | 29.68 390 | 56.20 350 | 51.85 366 | 46.19 285 | 56.76 368 | 68.94 366 | 19.18 412 | 65.39 319 | 25.87 403 | 76.98 309 | 72.87 305 |
|
| baseline1 | | | 57.82 304 | 58.36 299 | 56.19 328 | 69.17 299 | 30.76 386 | 62.94 305 | 55.21 346 | 46.04 286 | 63.83 325 | 78.47 282 | 41.20 307 | 63.68 328 | 39.44 330 | 68.99 372 | 74.13 293 |
|
| test_fmvsmconf0.01_n | | | 73.91 112 | 73.64 123 | 74.71 106 | 69.79 295 | 66.25 97 | 75.90 133 | 79.90 144 | 46.03 287 | 76.48 174 | 85.02 185 | 67.96 104 | 73.97 237 | 74.47 52 | 87.22 185 | 83.90 129 |
|
| reproduce_monomvs | | | 58.94 296 | 58.14 300 | 61.35 293 | 59.70 377 | 40.98 313 | 60.24 322 | 63.51 306 | 45.85 288 | 68.95 279 | 75.31 312 | 18.27 414 | 65.82 316 | 51.47 242 | 79.97 278 | 77.26 264 |
|
| test_fmvsmconf_n | | | 72.91 137 | 72.40 149 | 74.46 109 | 68.62 305 | 66.12 100 | 74.21 157 | 78.80 164 | 45.64 289 | 74.62 201 | 83.25 215 | 66.80 116 | 73.86 241 | 72.97 63 | 86.66 196 | 83.39 146 |
|
| test_fmvsmconf0.1_n | | | 73.26 125 | 72.82 142 | 74.56 108 | 69.10 301 | 66.18 99 | 74.65 152 | 79.34 154 | 45.58 290 | 75.54 186 | 83.91 200 | 67.19 108 | 73.88 240 | 73.26 61 | 86.86 190 | 83.63 137 |
|
| MCST-MVS | | | 73.42 120 | 73.34 130 | 73.63 125 | 81.28 129 | 59.17 162 | 74.80 146 | 83.13 83 | 45.50 291 | 72.84 227 | 83.78 203 | 65.15 135 | 80.99 129 | 64.54 124 | 89.09 154 | 80.73 212 |
|
| PVSNet_BlendedMVS | | | 65.38 233 | 64.30 247 | 68.61 219 | 69.81 292 | 49.36 233 | 65.60 277 | 78.96 159 | 45.50 291 | 59.98 349 | 78.61 281 | 51.82 246 | 78.20 184 | 44.30 302 | 84.11 231 | 78.27 249 |
|
| IU-MVS | | | | | | 86.12 54 | 60.90 147 | | 80.38 136 | 45.49 293 | 81.31 102 | | | | 75.64 44 | 94.39 44 | 84.65 102 |
|
| testgi | | | 54.00 328 | 56.86 309 | 45.45 379 | 58.20 385 | 25.81 407 | 49.05 381 | 49.50 377 | 45.43 294 | 67.84 293 | 81.17 239 | 51.81 248 | 43.20 399 | 29.30 390 | 79.41 287 | 67.34 355 |
|
| mvsmamba | | | 68.87 189 | 67.30 216 | 73.57 126 | 76.58 193 | 53.70 200 | 84.43 37 | 74.25 216 | 45.38 295 | 76.63 165 | 84.55 191 | 35.85 340 | 85.27 56 | 49.54 259 | 78.49 296 | 81.75 191 |
|
| PCF-MVS | | 63.80 13 | 72.70 141 | 71.69 157 | 75.72 98 | 78.10 167 | 60.01 156 | 73.04 165 | 81.50 108 | 45.34 296 | 79.66 120 | 84.35 195 | 65.15 135 | 82.65 100 | 48.70 267 | 89.38 147 | 84.50 115 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TAMVS | | | 65.31 234 | 63.75 253 | 69.97 192 | 82.23 117 | 59.76 158 | 66.78 262 | 63.37 307 | 45.20 297 | 69.79 269 | 79.37 270 | 47.42 276 | 72.17 256 | 34.48 368 | 85.15 215 | 77.99 256 |
|
| 旧先验2 | | | | | | | | 71.17 196 | | 45.11 298 | 78.54 135 | | | 61.28 338 | 59.19 178 | | |
|
| PS-MVSNAJ | | | 64.27 250 | 63.73 254 | 65.90 250 | 77.82 173 | 51.42 211 | 63.33 300 | 72.33 232 | 45.09 299 | 61.60 338 | 68.04 374 | 62.39 156 | 73.95 238 | 49.07 263 | 73.87 338 | 72.34 311 |
|
| xiu_mvs_v2_base | | | 64.43 247 | 63.96 251 | 65.85 251 | 77.72 175 | 51.32 212 | 63.63 297 | 72.31 233 | 45.06 300 | 61.70 337 | 69.66 360 | 62.56 152 | 73.93 239 | 49.06 264 | 73.91 337 | 72.31 312 |
|
| testing11 | | | 53.13 333 | 52.26 343 | 55.75 331 | 70.44 282 | 31.73 379 | 54.75 361 | 52.40 364 | 44.81 301 | 52.36 389 | 68.40 373 | 21.83 405 | 65.74 318 | 32.64 377 | 72.73 345 | 69.78 337 |
|
| LF4IMVS | | | 67.50 210 | 67.31 215 | 68.08 226 | 58.86 381 | 61.93 131 | 71.43 189 | 75.90 203 | 44.67 302 | 72.42 233 | 80.20 254 | 57.16 214 | 70.44 275 | 58.99 179 | 86.12 201 | 71.88 316 |
|
| CDS-MVSNet | | | 64.33 249 | 62.66 266 | 69.35 200 | 80.44 137 | 58.28 172 | 65.26 280 | 65.66 287 | 44.36 303 | 67.30 301 | 75.54 308 | 43.27 295 | 71.77 262 | 37.68 345 | 84.44 228 | 78.01 255 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| miper_lstm_enhance | | | 61.97 271 | 61.63 271 | 62.98 275 | 60.04 370 | 45.74 275 | 47.53 387 | 70.95 253 | 44.04 304 | 73.06 225 | 78.84 280 | 39.72 318 | 60.33 340 | 55.82 206 | 84.64 224 | 82.88 162 |
|
| 新几何1 | | | | | 69.99 191 | 88.37 35 | 71.34 55 | | 62.08 313 | 43.85 305 | 74.99 193 | 86.11 171 | 52.85 241 | 70.57 273 | 50.99 247 | 83.23 242 | 68.05 351 |
|
| Syy-MVS | | | 54.13 324 | 55.45 320 | 50.18 357 | 68.77 303 | 23.59 410 | 55.02 357 | 44.55 393 | 43.80 306 | 58.05 361 | 64.07 387 | 46.22 278 | 58.83 346 | 46.16 292 | 72.36 348 | 68.12 349 |
|
| myMVS_eth3d | | | 50.36 352 | 50.52 357 | 49.88 358 | 68.77 303 | 22.69 412 | 55.02 357 | 44.55 393 | 43.80 306 | 58.05 361 | 64.07 387 | 14.16 422 | 58.83 346 | 33.90 372 | 72.36 348 | 68.12 349 |
|
| 114514_t | | | 73.40 121 | 73.33 131 | 73.64 124 | 84.15 89 | 57.11 176 | 78.20 102 | 80.02 142 | 43.76 308 | 72.55 231 | 86.07 173 | 64.00 143 | 83.35 90 | 60.14 168 | 91.03 106 | 80.45 219 |
|
| OpenMVS_ROB |  | 54.93 17 | 63.23 259 | 63.28 259 | 63.07 274 | 69.81 292 | 45.34 277 | 68.52 236 | 67.14 277 | 43.74 309 | 70.61 257 | 79.22 272 | 47.90 274 | 72.66 248 | 48.75 266 | 73.84 339 | 71.21 325 |
|
| FMVSNet5 | | | 55.08 320 | 55.54 319 | 53.71 338 | 65.80 336 | 33.50 372 | 56.22 349 | 52.50 363 | 43.72 310 | 61.06 343 | 83.38 208 | 25.46 393 | 54.87 360 | 30.11 386 | 81.64 261 | 72.75 307 |
|
| MVP-Stereo | | | 61.56 276 | 59.22 289 | 68.58 220 | 79.28 148 | 60.44 153 | 69.20 222 | 71.57 237 | 43.58 311 | 56.42 371 | 78.37 284 | 39.57 320 | 76.46 208 | 34.86 367 | 60.16 397 | 68.86 347 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| ETVMVS | | | 50.32 353 | 49.87 361 | 51.68 349 | 70.30 286 | 26.66 401 | 52.33 373 | 43.93 395 | 43.54 312 | 54.91 378 | 67.95 375 | 20.01 410 | 60.17 341 | 22.47 411 | 73.40 340 | 68.22 348 |
|
| mvs_anonymous | | | 65.08 237 | 65.49 234 | 63.83 264 | 63.79 351 | 37.60 346 | 66.52 265 | 69.82 263 | 43.44 313 | 73.46 220 | 86.08 172 | 58.79 197 | 71.75 264 | 51.90 239 | 75.63 319 | 82.15 183 |
|
| test-LLR | | | 50.43 351 | 50.69 356 | 49.64 361 | 60.76 366 | 41.87 306 | 53.18 368 | 45.48 391 | 43.41 314 | 49.41 399 | 60.47 400 | 29.22 381 | 44.73 392 | 42.09 316 | 72.14 351 | 62.33 384 |
|
| test0.0.03 1 | | | 47.72 362 | 48.31 364 | 45.93 377 | 55.53 398 | 29.39 391 | 46.40 391 | 41.21 409 | 43.41 314 | 55.81 375 | 67.65 376 | 29.22 381 | 43.77 398 | 25.73 404 | 69.87 367 | 64.62 373 |
|
| SCA | | | 58.57 300 | 58.04 301 | 60.17 304 | 70.17 287 | 41.07 312 | 65.19 281 | 53.38 359 | 43.34 316 | 61.00 345 | 73.48 329 | 45.20 283 | 69.38 282 | 40.34 328 | 70.31 364 | 70.05 334 |
|
| ET-MVSNet_ETH3D | | | 63.32 257 | 60.69 281 | 71.20 173 | 70.15 289 | 55.66 186 | 65.02 283 | 64.32 300 | 43.28 317 | 68.99 277 | 72.05 340 | 25.46 393 | 78.19 186 | 54.16 227 | 82.80 244 | 79.74 230 |
|
| miper_enhance_ethall | | | 65.86 230 | 65.05 246 | 68.28 225 | 61.62 363 | 42.62 302 | 64.74 285 | 77.97 181 | 42.52 318 | 73.42 221 | 72.79 335 | 49.66 258 | 77.68 194 | 58.12 185 | 84.59 225 | 84.54 110 |
|
| cascas | | | 64.59 243 | 62.77 265 | 70.05 190 | 75.27 210 | 50.02 224 | 61.79 309 | 71.61 236 | 42.46 319 | 63.68 327 | 68.89 368 | 49.33 262 | 80.35 141 | 47.82 279 | 84.05 232 | 79.78 229 |
|
| PVSNet_Blended | | | 62.90 263 | 61.64 270 | 66.69 243 | 69.81 292 | 49.36 233 | 61.23 313 | 78.96 159 | 42.04 320 | 59.98 349 | 68.86 369 | 51.82 246 | 78.20 184 | 44.30 302 | 77.77 306 | 72.52 309 |
|
| dongtai | | | 31.66 384 | 32.98 387 | 27.71 399 | 58.58 383 | 12.61 421 | 45.02 394 | 14.24 425 | 41.90 321 | 47.93 401 | 43.91 414 | 10.65 425 | 41.81 404 | 14.06 417 | 20.53 418 | 28.72 415 |
|
| MVSTER | | | 63.29 258 | 61.60 272 | 68.36 221 | 59.77 376 | 46.21 271 | 60.62 318 | 71.32 244 | 41.83 322 | 75.40 189 | 79.12 275 | 30.25 375 | 75.85 209 | 56.30 200 | 79.81 282 | 83.03 159 |
|
| MIMVSNet | | | 54.39 323 | 56.12 315 | 49.20 363 | 72.57 257 | 30.91 384 | 59.98 323 | 48.43 381 | 41.66 323 | 55.94 373 | 83.86 202 | 41.19 308 | 50.42 369 | 26.05 400 | 75.38 323 | 66.27 361 |
|
| KD-MVS_2432*1600 | | | 52.05 343 | 51.58 346 | 53.44 341 | 52.11 408 | 31.20 381 | 44.88 395 | 64.83 296 | 41.53 324 | 64.37 317 | 70.03 357 | 15.61 420 | 64.20 324 | 36.25 357 | 74.61 329 | 64.93 371 |
|
| miper_refine_blended | | | 52.05 343 | 51.58 346 | 53.44 341 | 52.11 408 | 31.20 381 | 44.88 395 | 64.83 296 | 41.53 324 | 64.37 317 | 70.03 357 | 15.61 420 | 64.20 324 | 36.25 357 | 74.61 329 | 64.93 371 |
|
| dmvs_testset | | | 45.26 368 | 47.51 366 | 38.49 395 | 59.96 373 | 14.71 419 | 58.50 335 | 43.39 397 | 41.30 326 | 51.79 391 | 56.48 404 | 39.44 322 | 49.91 373 | 21.42 413 | 55.35 409 | 50.85 400 |
|
| patch_mono-2 | | | 62.73 267 | 64.08 250 | 58.68 314 | 70.36 284 | 55.87 184 | 60.84 316 | 64.11 302 | 41.23 327 | 64.04 321 | 78.22 286 | 60.00 183 | 48.80 374 | 54.17 226 | 83.71 237 | 71.37 321 |
|
| new-patchmatchnet | | | 52.89 336 | 55.76 318 | 44.26 385 | 59.94 374 | 6.31 425 | 37.36 409 | 50.76 371 | 41.10 328 | 64.28 319 | 79.82 261 | 44.77 286 | 48.43 378 | 36.24 359 | 87.61 171 | 78.03 254 |
|
| test222 | | | | | | 87.30 38 | 69.15 77 | 67.85 243 | 59.59 323 | 41.06 329 | 73.05 226 | 85.72 179 | 48.03 273 | | | 80.65 270 | 66.92 356 |
|
| Patchmatch-RL test | | | 59.95 289 | 59.12 290 | 62.44 281 | 72.46 258 | 54.61 193 | 59.63 325 | 47.51 384 | 41.05 330 | 74.58 202 | 74.30 322 | 31.06 369 | 65.31 320 | 51.61 240 | 79.85 281 | 67.39 353 |
|
| fmvsm_s_conf0.5_n_a | | | 67.00 220 | 65.95 232 | 70.17 186 | 69.72 296 | 61.16 142 | 73.34 163 | 56.83 337 | 40.96 331 | 68.36 289 | 80.08 258 | 62.84 149 | 67.57 299 | 66.90 111 | 74.50 331 | 81.78 190 |
|
| fmvsm_s_conf0.5_n | | | 66.34 228 | 65.27 236 | 69.57 197 | 68.20 310 | 59.14 165 | 71.66 186 | 56.48 340 | 40.92 332 | 67.78 294 | 79.46 266 | 61.23 170 | 66.90 306 | 67.39 102 | 74.32 335 | 82.66 172 |
|
| thisisatest0515 | | | 60.48 285 | 57.86 302 | 68.34 222 | 67.25 321 | 46.42 268 | 60.58 319 | 62.14 311 | 40.82 333 | 63.58 329 | 69.12 363 | 26.28 389 | 78.34 180 | 48.83 265 | 82.13 249 | 80.26 223 |
|
| fmvsm_s_conf0.1_n_a | | | 67.37 215 | 66.36 225 | 70.37 181 | 70.86 271 | 61.17 141 | 74.00 159 | 57.18 334 | 40.77 334 | 68.83 286 | 80.88 243 | 63.11 148 | 67.61 298 | 66.94 109 | 74.72 327 | 82.33 181 |
|
| ppachtmachnet_test | | | 60.26 287 | 59.61 288 | 62.20 283 | 67.70 317 | 44.33 285 | 58.18 338 | 60.96 318 | 40.75 335 | 65.80 308 | 72.57 336 | 41.23 306 | 63.92 327 | 46.87 286 | 82.42 247 | 78.33 247 |
|
| fmvsm_s_conf0.1_n | | | 66.60 222 | 65.54 233 | 69.77 194 | 68.99 302 | 59.15 163 | 72.12 173 | 56.74 339 | 40.72 336 | 68.25 292 | 80.14 257 | 61.18 173 | 66.92 305 | 67.34 106 | 74.40 332 | 83.23 153 |
|
| PAPM | | | 61.79 274 | 60.37 283 | 66.05 248 | 76.09 200 | 41.87 306 | 69.30 220 | 76.79 196 | 40.64 337 | 53.80 384 | 79.62 265 | 44.38 289 | 82.92 97 | 29.64 389 | 73.11 343 | 73.36 300 |
|
| our_test_3 | | | 56.46 308 | 56.51 311 | 56.30 327 | 67.70 317 | 39.66 327 | 55.36 356 | 52.34 365 | 40.57 338 | 63.85 324 | 69.91 359 | 40.04 316 | 58.22 350 | 43.49 309 | 75.29 325 | 71.03 329 |
|
| test_fmvsmvis_n_1920 | | | 72.36 146 | 72.49 146 | 71.96 164 | 71.29 269 | 64.06 117 | 72.79 167 | 81.82 103 | 40.23 339 | 81.25 104 | 81.04 241 | 70.62 80 | 68.69 287 | 69.74 82 | 83.60 239 | 83.14 155 |
|
| PatchmatchNet |  | | 54.60 322 | 54.27 329 | 55.59 332 | 65.17 343 | 39.08 329 | 66.92 259 | 51.80 367 | 39.89 340 | 58.39 358 | 73.12 333 | 31.69 363 | 58.33 349 | 43.01 311 | 58.38 403 | 69.38 343 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| dmvs_re | | | 49.91 356 | 50.77 355 | 47.34 371 | 59.98 371 | 38.86 333 | 53.18 368 | 53.58 356 | 39.75 341 | 55.06 377 | 61.58 396 | 36.42 338 | 44.40 394 | 29.15 394 | 68.23 375 | 58.75 392 |
|
| fmvsm_l_conf0.5_n | | | 67.48 211 | 66.88 223 | 69.28 202 | 67.41 320 | 62.04 130 | 70.69 203 | 69.85 262 | 39.46 342 | 69.59 271 | 81.09 240 | 58.15 202 | 68.73 286 | 67.51 99 | 78.16 302 | 77.07 269 |
|
| WBMVS | | | 53.38 330 | 54.14 330 | 51.11 353 | 70.16 288 | 26.66 401 | 50.52 379 | 51.64 368 | 39.32 343 | 63.08 333 | 77.16 297 | 23.53 400 | 55.56 357 | 31.99 378 | 79.88 280 | 71.11 327 |
|
| D2MVS | | | 62.58 268 | 61.05 277 | 67.20 236 | 63.85 350 | 47.92 249 | 56.29 348 | 69.58 264 | 39.32 343 | 70.07 265 | 78.19 287 | 34.93 343 | 72.68 247 | 53.44 233 | 83.74 235 | 81.00 203 |
|
| Patchmatch-test | | | 47.93 361 | 49.96 360 | 41.84 389 | 57.42 388 | 24.26 409 | 48.75 382 | 41.49 407 | 39.30 345 | 56.79 367 | 73.48 329 | 30.48 374 | 33.87 413 | 29.29 391 | 72.61 346 | 67.39 353 |
|
| HY-MVS | | 49.31 19 | 57.96 303 | 57.59 304 | 59.10 312 | 66.85 328 | 36.17 353 | 65.13 282 | 65.39 291 | 39.24 346 | 54.69 381 | 78.14 288 | 44.28 290 | 67.18 304 | 33.75 373 | 70.79 360 | 73.95 295 |
|
| baseline2 | | | 55.57 316 | 52.74 337 | 64.05 262 | 65.26 340 | 44.11 286 | 62.38 306 | 54.43 350 | 39.03 347 | 51.21 392 | 67.35 379 | 33.66 347 | 72.45 253 | 37.14 350 | 64.22 387 | 75.60 277 |
|
| XXY-MVS | | | 55.19 318 | 57.40 306 | 48.56 369 | 64.45 348 | 34.84 365 | 51.54 375 | 53.59 355 | 38.99 348 | 63.79 326 | 79.43 267 | 56.59 221 | 45.57 385 | 36.92 354 | 71.29 357 | 65.25 367 |
|
| pmmvs-eth3d | | | 64.41 248 | 63.27 260 | 67.82 230 | 75.81 206 | 60.18 155 | 69.49 216 | 62.05 314 | 38.81 349 | 74.13 209 | 82.23 226 | 43.76 293 | 68.65 288 | 42.53 312 | 80.63 272 | 74.63 287 |
|
| fmvsm_l_conf0.5_n_a | | | 66.66 221 | 65.97 231 | 68.72 218 | 67.09 323 | 61.38 138 | 70.03 210 | 69.15 268 | 38.59 350 | 68.41 288 | 80.36 251 | 56.56 223 | 68.32 291 | 66.10 113 | 77.45 307 | 76.46 271 |
|
| UWE-MVS | | | 52.94 335 | 52.70 338 | 53.65 339 | 73.56 238 | 27.49 398 | 57.30 343 | 49.57 376 | 38.56 351 | 62.79 334 | 71.42 345 | 19.49 411 | 60.41 339 | 24.33 409 | 77.33 308 | 73.06 302 |
|
| MDA-MVSNet_test_wron | | | 52.57 339 | 53.49 335 | 49.81 360 | 54.24 402 | 36.47 351 | 40.48 403 | 46.58 388 | 38.13 352 | 75.47 188 | 73.32 331 | 41.05 311 | 43.85 397 | 40.98 324 | 71.20 358 | 69.10 346 |
|
| YYNet1 | | | 52.58 338 | 53.50 333 | 49.85 359 | 54.15 403 | 36.45 352 | 40.53 402 | 46.55 389 | 38.09 353 | 75.52 187 | 73.31 332 | 41.08 310 | 43.88 396 | 41.10 322 | 71.14 359 | 69.21 344 |
|
| 1112_ss | | | 59.48 292 | 58.99 292 | 60.96 298 | 77.84 172 | 42.39 304 | 61.42 311 | 68.45 273 | 37.96 354 | 59.93 352 | 67.46 377 | 45.11 285 | 65.07 322 | 40.89 325 | 71.81 353 | 75.41 280 |
|
| WB-MVSnew | | | 53.94 329 | 54.76 326 | 51.49 351 | 71.53 266 | 28.05 395 | 58.22 337 | 50.36 372 | 37.94 355 | 59.16 356 | 70.17 354 | 49.21 263 | 51.94 366 | 24.49 407 | 71.80 354 | 74.47 291 |
|
| test_fmvsm_n_1920 | | | 69.63 177 | 68.45 196 | 73.16 133 | 70.56 278 | 65.86 102 | 70.26 208 | 78.35 173 | 37.69 356 | 74.29 206 | 78.89 279 | 61.10 174 | 68.10 293 | 65.87 117 | 79.07 289 | 85.53 82 |
|
| UnsupCasMVSNet_eth | | | 52.26 341 | 53.29 336 | 49.16 364 | 55.08 399 | 33.67 371 | 50.03 380 | 58.79 325 | 37.67 357 | 63.43 332 | 74.75 316 | 41.82 304 | 45.83 384 | 38.59 339 | 59.42 399 | 67.98 352 |
|
| UBG | | | 49.18 358 | 49.35 362 | 48.66 368 | 70.36 284 | 26.56 403 | 50.53 378 | 45.61 390 | 37.43 358 | 53.37 385 | 65.97 382 | 23.03 403 | 54.20 363 | 26.29 398 | 71.54 355 | 65.20 368 |
|
| tpm | | | 50.60 350 | 52.42 342 | 45.14 381 | 65.18 342 | 26.29 404 | 60.30 320 | 43.50 396 | 37.41 359 | 57.01 365 | 79.09 276 | 30.20 377 | 42.32 400 | 32.77 376 | 66.36 382 | 66.81 359 |
|
| gm-plane-assit | | | | | | 62.51 356 | 33.91 370 | | | 37.25 360 | | 62.71 392 | | 72.74 246 | 38.70 336 | | |
|
| CostFormer | | | 57.35 306 | 56.14 314 | 60.97 297 | 63.76 352 | 38.43 336 | 67.50 247 | 60.22 320 | 37.14 361 | 59.12 357 | 76.34 303 | 32.78 352 | 71.99 260 | 39.12 334 | 69.27 370 | 72.47 310 |
|
| pmmvs4 | | | 60.78 282 | 59.04 291 | 66.00 249 | 73.06 252 | 57.67 175 | 64.53 289 | 60.22 320 | 36.91 362 | 65.96 306 | 77.27 296 | 39.66 319 | 68.54 289 | 38.87 335 | 74.89 326 | 71.80 317 |
|
| PVSNet | | 43.83 21 | 51.56 346 | 51.17 349 | 52.73 344 | 68.34 308 | 38.27 338 | 48.22 384 | 53.56 357 | 36.41 363 | 54.29 382 | 64.94 386 | 34.60 344 | 54.20 363 | 30.34 384 | 69.87 367 | 65.71 364 |
|
| ttmdpeth | | | 56.40 309 | 55.45 320 | 59.25 309 | 55.63 397 | 40.69 317 | 58.94 331 | 49.72 375 | 36.22 364 | 65.39 310 | 86.97 138 | 23.16 402 | 56.69 356 | 42.30 313 | 80.74 269 | 80.36 221 |
|
| tpmrst | | | 50.15 354 | 51.38 348 | 46.45 376 | 56.05 393 | 24.77 408 | 64.40 291 | 49.98 373 | 36.14 365 | 53.32 386 | 69.59 361 | 35.16 342 | 48.69 375 | 39.24 332 | 58.51 402 | 65.89 362 |
|
| MS-PatchMatch | | | 55.59 315 | 54.89 325 | 57.68 320 | 69.18 298 | 49.05 236 | 61.00 315 | 62.93 309 | 35.98 366 | 58.36 359 | 68.93 367 | 36.71 337 | 66.59 312 | 37.62 347 | 63.30 389 | 57.39 395 |
|
| MDTV_nov1_ep13 | | | | 54.05 332 | | 65.54 339 | 29.30 392 | 59.00 329 | 55.22 345 | 35.96 367 | 52.44 387 | 75.98 304 | 30.77 372 | 59.62 343 | 38.21 341 | 73.33 342 | |
|
| USDC | | | 62.80 264 | 63.10 262 | 61.89 285 | 65.19 341 | 43.30 295 | 67.42 249 | 74.20 217 | 35.80 368 | 72.25 236 | 84.48 193 | 45.67 280 | 71.95 261 | 37.95 344 | 84.97 216 | 70.42 333 |
|
| jason | | | 64.47 246 | 62.84 264 | 69.34 201 | 76.91 187 | 59.20 159 | 67.15 255 | 65.67 286 | 35.29 369 | 65.16 313 | 76.74 301 | 44.67 287 | 70.68 271 | 54.74 217 | 79.28 288 | 78.14 252 |
| jason: jason. |
| Anonymous20231206 | | | 54.13 324 | 55.82 317 | 49.04 366 | 70.89 270 | 35.96 355 | 51.73 374 | 50.87 370 | 34.86 370 | 62.49 335 | 79.22 272 | 42.52 302 | 44.29 395 | 27.95 396 | 81.88 252 | 66.88 357 |
|
| MVStest1 | | | 55.38 317 | 54.97 324 | 56.58 326 | 43.72 419 | 40.07 324 | 59.13 327 | 47.09 386 | 34.83 371 | 76.53 172 | 84.65 188 | 13.55 423 | 53.30 365 | 55.04 213 | 80.23 275 | 76.38 272 |
|
| dp | | | 44.09 374 | 44.88 376 | 41.72 391 | 58.53 384 | 23.18 411 | 54.70 362 | 42.38 403 | 34.80 372 | 44.25 411 | 65.61 384 | 24.48 398 | 44.80 391 | 29.77 388 | 49.42 411 | 57.18 396 |
|
| Test_1112_low_res | | | 58.78 298 | 58.69 294 | 59.04 313 | 79.41 146 | 38.13 341 | 57.62 340 | 66.98 279 | 34.74 373 | 59.62 355 | 77.56 294 | 42.92 298 | 63.65 329 | 38.66 337 | 70.73 361 | 75.35 282 |
|
| EPMVS | | | 45.74 366 | 46.53 369 | 43.39 387 | 54.14 404 | 22.33 414 | 55.02 357 | 35.00 416 | 34.69 374 | 51.09 393 | 70.20 353 | 25.92 391 | 42.04 402 | 37.19 349 | 55.50 407 | 65.78 363 |
|
| lupinMVS | | | 63.36 256 | 61.49 273 | 68.97 211 | 74.93 214 | 59.19 160 | 65.80 273 | 64.52 299 | 34.68 375 | 63.53 330 | 74.25 323 | 43.19 296 | 70.62 272 | 53.88 229 | 78.67 294 | 77.10 266 |
|
| UnsupCasMVSNet_bld | | | 50.01 355 | 51.03 352 | 46.95 372 | 58.61 382 | 32.64 374 | 48.31 383 | 53.27 360 | 34.27 376 | 60.47 347 | 71.53 343 | 41.40 305 | 47.07 382 | 30.68 383 | 60.78 396 | 61.13 387 |
|
| CMPMVS |  | 48.73 20 | 61.54 277 | 60.89 278 | 63.52 268 | 61.08 365 | 51.55 210 | 68.07 242 | 68.00 275 | 33.88 377 | 65.87 307 | 81.25 238 | 37.91 330 | 67.71 295 | 49.32 262 | 82.60 246 | 71.31 323 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| WTY-MVS | | | 49.39 357 | 50.31 359 | 46.62 375 | 61.22 364 | 32.00 378 | 46.61 390 | 49.77 374 | 33.87 378 | 54.12 383 | 69.55 362 | 41.96 303 | 45.40 387 | 31.28 382 | 64.42 386 | 62.47 382 |
|
| N_pmnet | | | 52.06 342 | 51.11 350 | 54.92 333 | 59.64 378 | 71.03 57 | 37.42 408 | 61.62 317 | 33.68 379 | 57.12 363 | 72.10 337 | 37.94 329 | 31.03 414 | 29.13 395 | 71.35 356 | 62.70 379 |
|
| HyFIR lowres test | | | 63.01 261 | 60.47 282 | 70.61 176 | 83.04 104 | 54.10 196 | 59.93 324 | 72.24 234 | 33.67 380 | 69.00 276 | 75.63 307 | 38.69 325 | 76.93 201 | 36.60 355 | 75.45 322 | 80.81 210 |
|
| tpm2 | | | 56.12 310 | 54.64 327 | 60.55 302 | 66.24 332 | 36.01 354 | 68.14 240 | 56.77 338 | 33.60 381 | 58.25 360 | 75.52 310 | 30.25 375 | 74.33 233 | 33.27 374 | 69.76 369 | 71.32 322 |
|
| 1314 | | | 59.83 290 | 58.86 293 | 62.74 279 | 65.71 337 | 44.78 282 | 68.59 234 | 72.63 229 | 33.54 382 | 61.05 344 | 67.29 380 | 43.62 294 | 71.26 268 | 49.49 260 | 67.84 379 | 72.19 314 |
|
| CR-MVSNet | | | 58.96 295 | 58.49 296 | 60.36 303 | 66.37 329 | 48.24 243 | 70.93 199 | 56.40 342 | 32.87 383 | 61.35 340 | 86.66 150 | 33.19 349 | 63.22 331 | 48.50 270 | 70.17 365 | 69.62 340 |
|
| MVS | | | 60.62 284 | 59.97 285 | 62.58 280 | 68.13 312 | 47.28 261 | 68.59 234 | 73.96 218 | 32.19 384 | 59.94 351 | 68.86 369 | 50.48 254 | 77.64 195 | 41.85 318 | 75.74 317 | 62.83 378 |
|
| tpm cat1 | | | 54.02 327 | 52.63 339 | 58.19 317 | 64.85 347 | 39.86 326 | 66.26 267 | 57.28 331 | 32.16 385 | 56.90 366 | 70.39 351 | 32.75 353 | 65.30 321 | 34.29 369 | 58.79 400 | 69.41 342 |
|
| pmmvs5 | | | 52.49 340 | 52.58 340 | 52.21 347 | 54.99 400 | 32.38 375 | 55.45 355 | 53.84 354 | 32.15 386 | 55.49 376 | 74.81 314 | 38.08 328 | 57.37 354 | 34.02 370 | 74.40 332 | 66.88 357 |
|
| PMMVS2 | | | 37.74 381 | 40.87 381 | 28.36 398 | 42.41 421 | 5.35 426 | 24.61 413 | 27.75 418 | 32.15 386 | 47.85 402 | 70.27 352 | 35.85 340 | 29.51 416 | 19.08 416 | 67.85 378 | 50.22 402 |
|
| sss | | | 47.59 363 | 48.32 363 | 45.40 380 | 56.73 392 | 33.96 369 | 45.17 393 | 48.51 380 | 32.11 388 | 52.37 388 | 65.79 383 | 40.39 314 | 41.91 403 | 31.85 379 | 61.97 393 | 60.35 388 |
|
| test-mter | | | 48.56 360 | 48.20 365 | 49.64 361 | 60.76 366 | 41.87 306 | 53.18 368 | 45.48 391 | 31.91 389 | 49.41 399 | 60.47 400 | 18.34 413 | 44.73 392 | 42.09 316 | 72.14 351 | 62.33 384 |
|
| MDTV_nov1_ep13_2view | | | | | | | 18.41 416 | 53.74 366 | | 31.57 390 | 44.89 408 | | 29.90 379 | | 32.93 375 | | 71.48 319 |
|
| ADS-MVSNet2 | | | 48.76 359 | 47.25 368 | 53.29 343 | 55.90 395 | 40.54 321 | 47.34 388 | 54.99 348 | 31.41 391 | 50.48 395 | 72.06 338 | 31.23 366 | 54.26 362 | 25.93 401 | 55.93 405 | 65.07 369 |
|
| ADS-MVSNet | | | 44.62 372 | 45.58 371 | 41.73 390 | 55.90 395 | 20.83 415 | 47.34 388 | 39.94 411 | 31.41 391 | 50.48 395 | 72.06 338 | 31.23 366 | 39.31 408 | 25.93 401 | 55.93 405 | 65.07 369 |
|
| PVSNet_0 | | 36.71 22 | 41.12 379 | 40.78 382 | 42.14 388 | 59.97 372 | 40.13 323 | 40.97 401 | 42.24 405 | 30.81 393 | 44.86 409 | 49.41 412 | 40.70 312 | 45.12 389 | 23.15 410 | 34.96 415 | 41.16 411 |
|
| test_vis1_n_1920 | | | 52.96 334 | 53.50 333 | 51.32 352 | 59.15 379 | 44.90 281 | 56.13 351 | 64.29 301 | 30.56 394 | 59.87 353 | 60.68 398 | 40.16 315 | 47.47 380 | 48.25 274 | 62.46 391 | 61.58 386 |
|
| MVS-HIRNet | | | 45.53 367 | 47.29 367 | 40.24 392 | 62.29 358 | 26.82 400 | 56.02 352 | 37.41 414 | 29.74 395 | 43.69 413 | 81.27 237 | 33.96 345 | 55.48 358 | 24.46 408 | 56.79 404 | 38.43 413 |
|
| CHOSEN 1792x2688 | | | 58.09 302 | 56.30 313 | 63.45 269 | 79.95 140 | 50.93 215 | 54.07 365 | 65.59 288 | 28.56 396 | 61.53 339 | 74.33 321 | 41.09 309 | 66.52 313 | 33.91 371 | 67.69 380 | 72.92 304 |
|
| TESTMET0.1,1 | | | 45.17 369 | 44.93 375 | 45.89 378 | 56.02 394 | 38.31 337 | 53.18 368 | 41.94 406 | 27.85 397 | 44.86 409 | 56.47 405 | 17.93 415 | 41.50 405 | 38.08 343 | 68.06 376 | 57.85 393 |
|
| test_fmvs3 | | | 56.78 307 | 55.99 316 | 59.12 311 | 53.96 406 | 48.09 246 | 58.76 333 | 66.22 282 | 27.54 398 | 76.66 164 | 68.69 371 | 25.32 395 | 51.31 367 | 53.42 234 | 73.38 341 | 77.97 257 |
|
| CHOSEN 280x420 | | | 41.62 378 | 39.89 383 | 46.80 374 | 61.81 360 | 51.59 209 | 33.56 412 | 35.74 415 | 27.48 399 | 37.64 417 | 53.53 406 | 23.24 401 | 42.09 401 | 27.39 397 | 58.64 401 | 46.72 405 |
|
| EU-MVSNet | | | 60.82 281 | 60.80 280 | 60.86 299 | 68.37 307 | 41.16 310 | 72.27 170 | 68.27 274 | 26.96 400 | 69.08 275 | 75.71 306 | 32.09 357 | 67.44 300 | 55.59 209 | 78.90 291 | 73.97 294 |
|
| test_cas_vis1_n_1920 | | | 50.90 349 | 50.92 353 | 50.83 355 | 54.12 405 | 47.80 251 | 51.44 376 | 54.61 349 | 26.95 401 | 63.95 323 | 60.85 397 | 37.86 332 | 44.97 390 | 45.53 297 | 62.97 390 | 59.72 390 |
|
| CVMVSNet | | | 59.21 294 | 58.44 297 | 61.51 289 | 73.94 235 | 47.76 253 | 71.31 193 | 64.56 298 | 26.91 402 | 60.34 348 | 70.44 349 | 36.24 339 | 67.65 296 | 53.57 231 | 68.66 374 | 69.12 345 |
|
| test_fmvs2 | | | 54.80 321 | 54.11 331 | 56.88 325 | 51.76 410 | 49.95 226 | 56.70 346 | 65.80 285 | 26.22 403 | 69.42 272 | 65.25 385 | 31.82 361 | 49.98 371 | 49.63 258 | 70.36 363 | 70.71 330 |
|
| kuosan | | | 22.02 385 | 23.52 389 | 17.54 401 | 41.56 423 | 11.24 422 | 41.99 400 | 13.39 426 | 26.13 404 | 28.87 418 | 30.75 416 | 9.72 426 | 21.94 420 | 4.77 421 | 14.49 419 | 19.43 416 |
|
| test_vis1_n | | | 51.27 348 | 50.41 358 | 53.83 337 | 56.99 389 | 50.01 225 | 56.75 345 | 60.53 319 | 25.68 405 | 59.74 354 | 57.86 403 | 29.40 380 | 47.41 381 | 43.10 310 | 63.66 388 | 64.08 376 |
|
| new_pmnet | | | 37.55 382 | 39.80 384 | 30.79 397 | 56.83 390 | 16.46 418 | 39.35 405 | 30.65 417 | 25.59 406 | 45.26 407 | 61.60 395 | 24.54 396 | 28.02 417 | 21.60 412 | 52.80 410 | 47.90 404 |
|
| test_fmvs1_n | | | 52.70 337 | 52.01 344 | 54.76 334 | 53.83 407 | 50.36 219 | 55.80 353 | 65.90 284 | 24.96 407 | 65.39 310 | 60.64 399 | 27.69 384 | 48.46 376 | 45.88 295 | 67.99 377 | 65.46 365 |
|
| MVE |  | 27.91 23 | 36.69 383 | 35.64 386 | 39.84 393 | 43.37 420 | 35.85 357 | 19.49 414 | 24.61 420 | 24.68 408 | 39.05 415 | 62.63 393 | 38.67 326 | 27.10 418 | 21.04 414 | 47.25 413 | 56.56 397 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_fmvs1 | | | 51.51 347 | 50.86 354 | 53.48 340 | 49.72 413 | 49.35 235 | 54.11 364 | 64.96 294 | 24.64 409 | 63.66 328 | 59.61 402 | 28.33 383 | 48.45 377 | 45.38 300 | 67.30 381 | 62.66 381 |
|
| pmmvs3 | | | 46.71 364 | 45.09 374 | 51.55 350 | 56.76 391 | 48.25 242 | 55.78 354 | 39.53 412 | 24.13 410 | 50.35 397 | 63.40 389 | 15.90 419 | 51.08 368 | 29.29 391 | 70.69 362 | 55.33 398 |
|
| test_vis3_rt | | | 51.94 345 | 51.04 351 | 54.65 335 | 46.32 417 | 50.13 223 | 44.34 397 | 78.17 177 | 23.62 411 | 68.95 279 | 62.81 391 | 21.41 406 | 38.52 410 | 41.49 320 | 72.22 350 | 75.30 283 |
|
| mvsany_test3 | | | 43.76 376 | 41.01 380 | 52.01 348 | 48.09 415 | 57.74 174 | 42.47 399 | 23.85 422 | 23.30 412 | 64.80 315 | 62.17 394 | 27.12 385 | 40.59 406 | 29.17 393 | 48.11 412 | 57.69 394 |
|
| PMMVS | | | 44.69 371 | 43.95 379 | 46.92 373 | 50.05 412 | 53.47 202 | 48.08 386 | 42.40 402 | 22.36 413 | 44.01 412 | 53.05 408 | 42.60 301 | 45.49 386 | 31.69 380 | 61.36 395 | 41.79 410 |
|
| test_f | | | 43.79 375 | 45.63 370 | 38.24 396 | 42.29 422 | 38.58 335 | 34.76 411 | 47.68 383 | 22.22 414 | 67.34 300 | 63.15 390 | 31.82 361 | 30.60 415 | 39.19 333 | 62.28 392 | 45.53 408 |
|
| test_vis1_rt | | | 46.70 365 | 45.24 373 | 51.06 354 | 44.58 418 | 51.04 214 | 39.91 404 | 67.56 276 | 21.84 415 | 51.94 390 | 50.79 411 | 33.83 346 | 39.77 407 | 35.25 366 | 61.50 394 | 62.38 383 |
|
| mvsany_test1 | | | 37.88 380 | 35.74 385 | 44.28 384 | 47.28 416 | 49.90 227 | 36.54 410 | 24.37 421 | 19.56 416 | 45.76 405 | 53.46 407 | 32.99 351 | 37.97 411 | 26.17 399 | 35.52 414 | 44.99 409 |
|
| DSMNet-mixed | | | 43.18 377 | 44.66 377 | 38.75 394 | 54.75 401 | 28.88 394 | 57.06 344 | 27.42 419 | 13.47 417 | 47.27 404 | 77.67 293 | 38.83 324 | 39.29 409 | 25.32 406 | 60.12 398 | 48.08 403 |
|
| DeepMVS_CX |  | | | | 11.83 402 | 15.51 424 | 13.86 420 | | 11.25 427 | 5.76 418 | 20.85 420 | 26.46 417 | 17.06 418 | 9.22 421 | 9.69 420 | 13.82 420 | 12.42 417 |
|
| test_method | | | 19.26 386 | 19.12 390 | 19.71 400 | 9.09 425 | 1.91 428 | 7.79 416 | 53.44 358 | 1.42 419 | 10.27 421 | 35.80 415 | 17.42 417 | 25.11 419 | 12.44 418 | 24.38 417 | 32.10 414 |
|
| EGC-MVSNET | | | 64.77 241 | 61.17 275 | 75.60 100 | 86.90 43 | 74.47 34 | 84.04 39 | 68.62 272 | 0.60 420 | 1.13 422 | 91.61 32 | 65.32 133 | 74.15 236 | 64.01 129 | 88.28 162 | 78.17 251 |
|
| tmp_tt | | | 11.98 388 | 14.73 391 | 3.72 403 | 2.28 426 | 4.62 427 | 19.44 415 | 14.50 424 | 0.47 421 | 21.55 419 | 9.58 419 | 25.78 392 | 4.57 422 | 11.61 419 | 27.37 416 | 1.96 418 |
|
| test123 | | | 4.43 391 | 5.78 394 | 0.39 405 | 0.97 427 | 0.28 429 | 46.33 392 | 0.45 428 | 0.31 422 | 0.62 423 | 1.50 422 | 0.61 428 | 0.11 424 | 0.56 422 | 0.63 421 | 0.77 420 |
|
| testmvs | | | 4.06 392 | 5.28 395 | 0.41 404 | 0.64 428 | 0.16 430 | 42.54 398 | 0.31 429 | 0.26 423 | 0.50 424 | 1.40 423 | 0.77 427 | 0.17 423 | 0.56 422 | 0.55 422 | 0.90 419 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 17.71 387 | 23.62 388 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 70.17 261 | 0.00 424 | 0.00 425 | 74.25 323 | 68.16 100 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 5.20 390 | 6.93 393 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 62.39 156 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs-re | | | 5.62 389 | 7.50 392 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 67.46 377 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| WAC-MVS | | | | | | | 22.69 412 | | | | | | | | 36.10 361 | | |
|
| MSC_two_6792asdad | | | | | 79.02 57 | 83.14 99 | 67.03 91 | | 80.75 125 | | | | | 86.24 24 | 77.27 37 | 94.85 29 | 83.78 132 |
|
| No_MVS | | | | | 79.02 57 | 83.14 99 | 67.03 91 | | 80.75 125 | | | | | 86.24 24 | 77.27 37 | 94.85 29 | 83.78 132 |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 78.65 64 | 83.44 97 | 66.85 93 | 83.62 46 | | | | 86.12 170 | 66.82 113 | 86.01 34 | 61.72 151 | 89.79 136 | 83.08 157 |
|
| test_0728_SECOND | | | | | 76.57 87 | 86.20 49 | 60.57 152 | 83.77 44 | 85.49 32 | | | | | 85.90 40 | 75.86 42 | 94.39 44 | 83.25 151 |
|
| GSMVS | | | | | | | | | | | | | | | | | 70.05 334 |
|
| test_part2 | | | | | | 85.90 60 | 66.44 95 | | | | 84.61 65 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 31.41 364 | | | | 70.05 334 |
|
| sam_mvs | | | | | | | | | | | | | 31.21 368 | | | | |
|
| ambc | | | | | 70.10 189 | 77.74 174 | 50.21 222 | 74.28 156 | 77.93 183 | | 79.26 124 | 88.29 119 | 54.11 236 | 79.77 151 | 64.43 125 | 91.10 104 | 80.30 222 |
|
| MTGPA |  | | | | | | | | 80.63 130 | | | | | | | | |
|
| test_post1 | | | | | | | | 66.63 263 | | | | 2.08 420 | 30.66 373 | 59.33 344 | 40.34 328 | | |
|
| test_post | | | | | | | | | | | | 1.99 421 | 30.91 371 | 54.76 361 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 68.99 364 | 31.32 365 | 69.38 282 | | | |
|
| GG-mvs-BLEND | | | | | 52.24 346 | 60.64 368 | 29.21 393 | 69.73 215 | 42.41 401 | | 45.47 406 | 52.33 409 | 20.43 408 | 68.16 292 | 25.52 405 | 65.42 384 | 59.36 391 |
|
| MTMP | | | | | | | | 84.83 34 | 19.26 423 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 72.12 72 | 91.37 94 | 77.40 260 |
|
| agg_prior2 | | | | | | | | | | | | | | | 70.70 76 | 90.93 109 | 78.55 246 |
|
| agg_prior | | | | | | 84.44 85 | 66.02 101 | | 78.62 170 | | 76.95 155 | | | 80.34 142 | | | |
|
| test_prior4 | | | | | | | 70.14 67 | 77.57 106 | | | | | | | | | |
|
| test_prior | | | | | 75.27 104 | 82.15 118 | 59.85 157 | | 84.33 63 | | | | | 83.39 89 | | | 82.58 174 |
|
| 新几何2 | | | | | | | | 71.33 192 | | | | | | | | | |
|
| 旧先验1 | | | | | | 84.55 82 | 60.36 154 | | 63.69 304 | | | 87.05 137 | 54.65 231 | | | 83.34 241 | 69.66 339 |
|
| 原ACMM2 | | | | | | | | 74.78 147 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 67.30 301 | 48.34 272 | | |
|
| segment_acmp | | | | | | | | | | | | | 68.30 99 | | | | |
|
| test12 | | | | | 76.51 88 | 82.28 116 | 60.94 146 | | 81.64 107 | | 73.60 217 | | 64.88 137 | 85.19 62 | | 90.42 122 | 83.38 147 |
|
| plane_prior7 | | | | | | 85.18 70 | 66.21 98 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 84.18 88 | 65.31 107 | | | | | | 60.83 177 | | | | |
|
| plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 29 | 71.09 73 | 90.94 107 | 84.82 98 |
|
| plane_prior4 | | | | | | | | | | | | 89.11 97 | | | | | |
|
| plane_prior1 | | | | | | 84.46 84 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 55.02 347 | | | | | | | | |
|
| lessismore_v0 | | | | | 72.75 149 | 79.60 144 | 56.83 179 | | 57.37 330 | | 83.80 74 | 89.01 101 | 47.45 275 | 78.74 168 | 64.39 126 | 86.49 198 | 82.69 171 |
|
| test11 | | | | | | | | | 82.71 90 | | | | | | | | |
|
| door | | | | | | | | | 52.91 362 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 58.80 168 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.38 104 | | |
|
| HQP4-MVS | | | | | | | | | | | 71.59 242 | | | 85.31 54 | | | 83.74 134 |
|
| HQP3-MVS | | | | | | | | | 84.12 69 | | | | | | | 89.16 148 | |
|
| HQP2-MVS | | | | | | | | | | | | | 58.09 204 | | | | |
|
| NP-MVS | | | | | | 83.34 98 | 63.07 125 | | | | | 85.97 174 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 143 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.96 85 | |
|
| Test By Simon | | | | | | | | | | | | | 62.56 152 | | | | |
|