This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2591.50 163.30 12384.80 3487.77 1086.18 196.26 196.06 190.32 184.49 7068.08 9397.05 196.93 1
FOURS189.19 2577.84 1691.64 189.11 284.05 291.57 2
test117284.85 485.39 583.21 388.34 3880.50 685.12 3085.22 4381.06 387.20 2890.28 6979.20 1485.58 4878.04 2794.08 5683.55 132
DTE-MVSNet80.35 5382.89 3872.74 15189.84 837.34 31777.16 11281.81 10480.45 490.92 392.95 774.57 5186.12 3063.65 13194.68 3394.76 6
PEN-MVS80.46 5182.91 3773.11 13989.83 939.02 30277.06 11582.61 9580.04 590.60 692.85 974.93 4785.21 5763.15 13995.15 1895.09 2
PS-CasMVS80.41 5282.86 3973.07 14089.93 739.21 29977.15 11381.28 11479.74 690.87 492.73 1175.03 4584.93 6363.83 13095.19 1695.07 3
COLMAP_ROBcopyleft72.78 383.75 1384.11 1782.68 1482.97 10974.39 3687.18 1188.18 778.98 786.11 3991.47 2979.70 1285.76 4266.91 10895.46 1187.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet79.48 6081.65 5072.98 14389.66 1339.06 30176.76 11780.46 13378.91 890.32 791.70 2468.49 9784.89 6463.40 13695.12 1995.01 4
TDRefinement86.32 286.33 286.29 188.64 3381.19 588.84 490.72 178.27 987.95 1592.53 1379.37 1384.79 6774.51 5196.15 292.88 7
WR-MVS_H80.22 5682.17 4574.39 11789.46 1542.69 27578.24 10082.24 9878.21 1089.57 992.10 1868.05 10285.59 4766.04 11195.62 994.88 5
SR-MVS-dyc-post84.75 585.26 783.21 386.19 5479.18 987.23 986.27 2377.51 1187.65 1990.73 4579.20 1485.58 4878.11 2594.46 3884.89 92
RE-MVS-def85.50 486.19 5479.18 987.23 986.27 2377.51 1187.65 1990.73 4581.38 778.11 2594.46 3884.89 92
abl_684.92 385.70 382.57 1786.72 4879.27 887.56 786.08 2877.48 1388.12 1491.53 2781.18 884.31 7678.12 2494.47 3784.15 120
LS3D80.99 4680.85 5581.41 3078.37 16571.37 5587.45 885.87 3277.48 1381.98 9189.95 7769.14 9085.26 5466.15 10991.24 10487.61 51
SR-MVS84.51 785.27 682.25 2188.52 3577.71 1786.81 1785.25 4277.42 1586.15 3790.24 7081.69 585.94 3377.77 2993.58 6783.09 148
3Dnovator+73.19 281.08 4480.48 5782.87 981.41 13272.03 4984.38 3786.23 2677.28 1680.65 11090.18 7359.80 17687.58 473.06 6091.34 10289.01 33
UA-Net81.56 3782.28 4479.40 5488.91 3069.16 7884.67 3580.01 14275.34 1779.80 11994.91 269.79 8780.25 14972.63 6394.46 3888.78 41
test_040278.17 7679.48 6674.24 12083.50 9759.15 15972.52 16074.60 20875.34 1788.69 1391.81 2275.06 4482.37 10965.10 11788.68 15781.20 185
test_one_060185.84 6661.45 13485.63 3375.27 1985.62 4790.38 6376.72 29
DP-MVS78.44 7379.29 6775.90 10181.86 12665.33 10579.05 8984.63 6074.83 2080.41 11386.27 15171.68 7183.45 9062.45 14392.40 8578.92 224
APD-MVS_3200maxsize83.57 1584.33 1481.31 3382.83 11273.53 4485.50 2887.45 1474.11 2186.45 3490.52 5380.02 1184.48 7177.73 3094.34 4985.93 73
PMVScopyleft70.70 681.70 3683.15 3477.36 8390.35 682.82 282.15 5779.22 15174.08 2287.16 3091.97 1984.80 276.97 20564.98 11993.61 6572.28 282
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++.81.24 3982.74 4076.76 8883.14 10260.90 14191.64 185.49 3574.03 2384.93 5690.38 6366.82 11385.90 3777.43 3390.78 12083.49 134
test_0728_THIRD74.03 2385.83 4290.41 5875.58 3985.69 4477.43 3394.74 3184.31 116
HPM-MVS_fast84.59 685.10 883.06 688.60 3475.83 2786.27 2586.89 1873.69 2586.17 3691.70 2478.23 2085.20 5879.45 1394.91 2588.15 45
DPE-MVScopyleft82.00 3483.02 3678.95 6285.36 7067.25 8982.91 5284.98 4873.52 2685.43 5090.03 7476.37 3186.97 1174.56 5094.02 5982.62 164
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LTVRE_ROB75.46 184.22 884.98 981.94 2384.82 7775.40 3091.60 387.80 873.52 2688.90 1193.06 671.39 7581.53 12181.53 392.15 8988.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+66.64 1081.20 4082.48 4377.35 8481.16 13562.39 12780.51 6787.80 873.02 2887.57 2191.08 3680.28 1082.44 10764.82 12096.10 487.21 56
XVS83.51 1783.73 2282.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 8290.39 6173.86 5686.31 2078.84 2094.03 5784.64 100
X-MVStestdata76.81 8474.79 10382.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 829.95 36773.86 5686.31 2078.84 2094.03 5784.64 100
test_241102_ONE86.12 5861.06 13784.72 5572.64 3187.38 2589.47 8377.48 2485.74 43
SED-MVS81.78 3583.48 2776.67 8986.12 5861.06 13783.62 4484.72 5572.61 3287.38 2589.70 8077.48 2485.89 3975.29 4594.39 4383.08 149
test_241102_TWO84.80 5172.61 3284.93 5689.70 8077.73 2385.89 3975.29 4594.22 5583.25 144
DVP-MVScopyleft81.15 4283.12 3575.24 11086.16 5660.78 14383.77 4280.58 13172.48 3485.83 4290.41 5878.57 1885.69 4475.86 4294.39 4379.24 220
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5660.78 14383.81 4185.10 4672.48 3485.27 5389.96 7678.57 18
mPP-MVS84.01 1284.39 1382.88 890.65 481.38 487.08 1382.79 9272.41 3685.11 5590.85 4176.65 3084.89 6479.30 1794.63 3482.35 171
UniMVSNet_ETH3D76.74 8579.02 6869.92 18989.27 2043.81 26374.47 14771.70 22872.33 3785.50 4993.65 377.98 2276.88 20854.60 20591.64 9489.08 31
testtj81.19 4181.70 4979.67 5183.95 9269.77 7083.58 4784.63 6072.13 3882.85 8488.36 10775.00 4686.79 1271.99 7292.84 7682.44 169
zzz-MVS83.01 2583.63 2581.13 3591.16 278.16 1482.72 5580.63 12872.08 3984.93 5690.79 4274.65 4984.42 7380.98 494.75 2980.82 196
MTAPA83.19 2083.87 2081.13 3591.16 278.16 1484.87 3280.63 12872.08 3984.93 5690.79 4274.65 4984.42 7380.98 494.75 2980.82 196
APDe-MVS82.88 2684.14 1679.08 5784.80 7966.72 9586.54 2185.11 4572.00 4186.65 3391.75 2378.20 2187.04 977.93 2894.32 5083.47 137
CP-MVS84.12 1084.55 1282.80 1289.42 1879.74 788.19 584.43 6571.96 4284.70 6290.56 5077.12 2686.18 2779.24 1895.36 1382.49 168
MP-MVScopyleft83.19 2083.54 2682.14 2290.54 579.00 1186.42 2383.59 8371.31 4381.26 10290.96 3874.57 5184.69 6878.41 2294.78 2882.74 162
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
gg-mvs-nofinetune55.75 28756.75 28752.72 31262.87 32328.04 35868.92 20941.36 36271.09 4450.80 34792.63 1220.74 36666.86 29329.97 34672.41 31563.25 337
ACMMPcopyleft84.22 884.84 1082.35 2089.23 2376.66 2687.65 685.89 3171.03 4585.85 4190.58 4978.77 1785.78 4179.37 1695.17 1784.62 102
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP83.07 2383.64 2481.35 3185.14 7371.00 5985.53 2784.78 5270.91 4685.64 4490.41 5875.55 4087.69 379.75 895.08 2085.36 82
Skip Steuart: Steuart Systems R&D Blog.
v7n79.37 6280.41 5876.28 9678.67 16455.81 17779.22 8782.51 9770.72 4787.54 2292.44 1468.00 10481.34 12272.84 6191.72 9191.69 10
HPM-MVScopyleft84.12 1084.63 1182.60 1588.21 3974.40 3585.24 2987.21 1670.69 4885.14 5490.42 5778.99 1686.62 1480.83 694.93 2486.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS83.39 1984.03 1881.48 2789.25 2175.69 2887.01 1584.27 6970.23 4984.47 6590.43 5576.79 2785.94 3379.58 1194.23 5382.82 158
ACMMPR83.62 1483.93 1982.69 1389.78 1177.51 2287.01 1584.19 7470.23 4984.49 6490.67 4875.15 4386.37 1979.58 1194.26 5184.18 119
region2R83.54 1683.86 2182.58 1689.82 1077.53 2087.06 1484.23 7370.19 5183.86 7390.72 4775.20 4286.27 2279.41 1594.25 5283.95 123
IS-MVSNet75.10 10075.42 10174.15 12279.23 15448.05 22779.43 8278.04 17270.09 5279.17 12688.02 11653.04 22383.60 8558.05 17693.76 6490.79 17
LPG-MVS_test83.47 1884.33 1480.90 3887.00 4370.41 6582.04 5986.35 2069.77 5387.75 1691.13 3481.83 386.20 2577.13 3795.96 586.08 69
LGP-MVS_train80.90 3887.00 4370.41 6586.35 2069.77 5387.75 1691.13 3481.83 386.20 2577.13 3795.96 586.08 69
APD-MVScopyleft81.13 4381.73 4879.36 5584.47 8470.53 6483.85 4083.70 8169.43 5583.67 7588.96 9975.89 3686.41 1772.62 6492.95 7481.14 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121175.54 9477.19 8570.59 17477.67 17845.70 25374.73 14380.19 13868.80 5682.95 8192.91 866.26 12076.76 21158.41 17492.77 7989.30 26
CPTT-MVS81.51 3881.76 4780.76 4089.20 2478.75 1286.48 2282.03 10168.80 5680.92 10788.52 10372.00 6882.39 10874.80 4793.04 7381.14 187
VDDNet71.60 15373.13 13367.02 22986.29 5241.11 28569.97 19566.50 26768.72 5874.74 19191.70 2459.90 17375.81 21848.58 24991.72 9184.15 120
TranMVSNet+NR-MVSNet76.13 8877.66 8171.56 16584.61 8242.57 27770.98 18578.29 16968.67 5983.04 7989.26 8772.99 6380.75 14055.58 19895.47 1091.35 11
GST-MVS82.79 2783.27 3281.34 3288.99 2873.29 4585.94 2685.13 4468.58 6084.14 7090.21 7273.37 6186.41 1779.09 1993.98 6084.30 118
Regformer-275.32 9674.47 10777.88 7674.22 22666.65 9672.77 15877.54 17868.47 6180.44 11272.08 30870.60 8080.97 13470.08 8084.02 22286.01 72
PGM-MVS83.07 2383.25 3382.54 1889.57 1477.21 2482.04 5985.40 3967.96 6284.91 6090.88 3975.59 3886.57 1578.16 2394.71 3283.82 124
Regformer-474.64 10873.67 12177.55 7874.74 21564.49 11472.91 15675.42 19967.45 6380.24 11672.07 31068.98 9280.19 15370.29 7880.91 25487.98 46
ZNCC-MVS83.12 2283.68 2381.45 2989.14 2673.28 4686.32 2485.97 3067.39 6484.02 7190.39 6174.73 4886.46 1680.73 794.43 4284.60 105
Anonymous2024052972.56 14473.79 11868.86 20576.89 18845.21 25568.80 21477.25 18467.16 6576.89 15990.44 5465.95 12374.19 23750.75 23190.00 13587.18 58
XVG-OURS79.51 5979.82 6278.58 6786.11 6174.96 3376.33 12384.95 5066.89 6682.75 8588.99 9866.82 11378.37 18374.80 4790.76 12382.40 170
ITE_SJBPF80.35 4476.94 18573.60 4280.48 13266.87 6783.64 7686.18 15470.25 8379.90 15661.12 15288.95 15587.56 52
Regformer-174.28 11073.63 12376.21 9874.22 22664.12 11772.77 15875.46 19866.86 6879.27 12472.08 30869.29 8978.74 17168.73 8784.02 22285.77 80
ACMP69.50 882.64 2883.38 2980.40 4386.50 5069.44 7382.30 5686.08 2866.80 6986.70 3289.99 7581.64 685.95 3274.35 5296.11 385.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5879.99 6178.49 6886.46 5174.79 3477.15 11385.39 4066.73 7080.39 11488.85 10174.43 5478.33 18574.73 4985.79 19482.35 171
test_part176.97 8378.21 7773.25 13677.87 17345.76 25178.27 9987.26 1566.69 7185.31 5291.43 3155.95 21384.24 7865.71 11395.43 1289.75 22
UniMVSNet_NR-MVSNet74.90 10575.65 9772.64 15483.04 10745.79 24969.26 20578.81 15766.66 7281.74 9686.88 12763.26 14181.07 13056.21 19094.98 2191.05 13
XVG-ACMP-BASELINE80.54 4981.06 5378.98 6187.01 4272.91 4780.23 7685.56 3466.56 7385.64 4489.57 8269.12 9180.55 14372.51 6593.37 6983.48 136
ACMM69.25 982.11 3383.31 3078.49 6888.17 4073.96 3883.11 5184.52 6466.40 7487.45 2389.16 9381.02 980.52 14474.27 5395.73 780.98 192
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM_NR73.91 11374.16 11273.16 13881.90 12553.50 19281.28 6381.40 11166.17 7573.30 21283.31 19659.96 17283.10 9858.45 17381.66 24882.87 156
K. test v373.67 11773.61 12473.87 12579.78 14555.62 18074.69 14562.04 29566.16 7684.76 6193.23 549.47 24280.97 13465.66 11486.67 18785.02 91
NCCC78.25 7578.04 7978.89 6385.61 6769.45 7279.80 8180.99 12365.77 7775.55 18186.25 15367.42 10785.42 5070.10 7990.88 11881.81 180
OPM-MVS80.99 4681.63 5179.07 5886.86 4769.39 7479.41 8484.00 7965.64 7885.54 4889.28 8676.32 3383.47 8974.03 5493.57 6884.35 115
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AdaColmapbinary74.22 11174.56 10573.20 13781.95 12460.97 13979.43 8280.90 12465.57 7972.54 22181.76 21270.98 7885.26 5447.88 25590.00 13573.37 270
HQP_MVS78.77 6778.78 7178.72 6485.18 7165.18 10782.74 5385.49 3565.45 8078.23 13689.11 9460.83 16786.15 2871.09 7490.94 11284.82 94
plane_prior282.74 5365.45 80
CNLPA73.44 12173.03 13674.66 11278.27 16675.29 3175.99 12778.49 16565.39 8275.67 17983.22 20061.23 16366.77 29653.70 21585.33 20181.92 179
AllTest77.66 7777.43 8278.35 7179.19 15670.81 6078.60 9388.64 365.37 8380.09 11788.17 11170.33 8178.43 18055.60 19590.90 11685.81 75
TestCases78.35 7179.19 15670.81 6088.64 365.37 8380.09 11788.17 11170.33 8178.43 18055.60 19590.90 11685.81 75
SF-MVS80.72 4881.80 4677.48 8082.03 12364.40 11583.41 4988.46 665.28 8584.29 6789.18 9073.73 5983.22 9476.01 3993.77 6284.81 96
DU-MVS74.91 10475.57 9972.93 14583.50 9745.79 24969.47 20280.14 14065.22 8681.74 9687.08 12161.82 15581.07 13056.21 19094.98 2191.93 8
LFMVS67.06 20967.89 20064.56 24678.02 17038.25 30870.81 18959.60 30165.18 8771.06 24286.56 14443.85 27275.22 22546.35 26589.63 14280.21 210
EPP-MVSNet73.86 11473.38 12775.31 10778.19 16753.35 19480.45 6877.32 18265.11 8876.47 17286.80 12949.47 24283.77 8253.89 21392.72 8288.81 40
WR-MVS71.20 15572.48 14267.36 22484.98 7535.70 32764.43 27268.66 25865.05 8981.49 9986.43 14857.57 20076.48 21350.36 23593.32 7189.90 21
MSP-MVS80.49 5079.67 6582.96 789.70 1277.46 2387.16 1285.10 4664.94 9081.05 10488.38 10657.10 20487.10 879.75 883.87 22484.31 116
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP82.33 3183.28 3179.46 5389.28 1969.09 8083.62 4484.98 4864.77 9183.97 7291.02 3775.53 4185.93 3682.00 294.36 4783.35 142
Regformer-372.86 13972.28 14574.62 11374.74 21560.18 14972.91 15671.76 22764.74 9278.42 13472.07 31067.00 11076.28 21567.97 9780.91 25487.39 53
HPM-MVS++copyleft79.89 5779.80 6380.18 4589.02 2778.44 1383.49 4880.18 13964.71 9378.11 13988.39 10565.46 12883.14 9677.64 3291.20 10578.94 223
#test#82.40 3082.71 4181.48 2789.25 2175.69 2884.47 3684.27 6964.45 9484.47 6590.43 5576.79 2785.94 3376.01 3994.23 5382.82 158
SD-MVS80.28 5581.55 5276.47 9483.57 9667.83 8683.39 5085.35 4164.42 9586.14 3887.07 12374.02 5580.97 13477.70 3192.32 8780.62 203
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NR-MVSNet73.62 11974.05 11372.33 16083.50 9743.71 26465.65 25877.32 18264.32 9675.59 18087.08 12162.45 14881.34 12254.90 20195.63 891.93 8
Gipumacopyleft69.55 17472.83 13959.70 28863.63 32153.97 18880.08 7875.93 19364.24 9773.49 20888.93 10057.89 19862.46 31359.75 16691.55 9862.67 340
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 9076.34 9174.06 12381.69 12954.84 18276.47 11875.49 19764.10 9887.73 1892.24 1750.45 23881.30 12467.41 10291.46 9986.04 71
EI-MVSNet-Vis-set72.78 14071.87 14975.54 10574.77 21459.02 16072.24 16271.56 23163.92 9978.59 13071.59 31666.22 12178.60 17367.58 10080.32 26289.00 34
CNVR-MVS78.49 7178.59 7478.16 7385.86 6567.40 8878.12 10381.50 10863.92 9977.51 14886.56 14468.43 9984.82 6673.83 5591.61 9682.26 174
plane_prior365.67 10363.82 10178.23 136
UniMVSNet (Re)75.00 10275.48 10073.56 13083.14 10247.92 22970.41 19381.04 12263.67 10279.54 12186.37 14962.83 14381.82 11657.10 18195.25 1590.94 15
ANet_high67.08 20869.94 17158.51 29657.55 35027.09 35958.43 31376.80 18763.56 10382.40 8991.93 2059.82 17564.98 30450.10 23788.86 15683.46 138
SMA-MVScopyleft82.12 3282.68 4280.43 4288.90 3169.52 7185.12 3084.76 5363.53 10484.23 6991.47 2972.02 6787.16 779.74 1094.36 4784.61 103
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EI-MVSNet-UG-set72.63 14371.68 15375.47 10674.67 21858.64 16572.02 16571.50 23263.53 10478.58 13271.39 31965.98 12278.53 17567.30 10680.18 26489.23 28
pmmvs671.82 15173.66 12266.31 23675.94 19942.01 28066.99 24172.53 22263.45 10676.43 17392.78 1072.95 6469.69 27451.41 22690.46 12687.22 55
DROMVSNet77.08 8277.39 8376.14 9976.86 18956.87 17280.32 7387.52 1363.45 10674.66 19584.52 17869.87 8684.94 6269.76 8489.59 14486.60 65
ACMH63.62 1477.50 7980.11 6069.68 19079.61 14756.28 17478.81 9083.62 8263.41 10887.14 3190.23 7176.11 3473.32 24067.58 10094.44 4179.44 218
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521166.02 21566.89 21363.43 25874.22 22638.14 30959.00 31066.13 26863.33 10969.76 25485.95 16451.88 22870.50 26944.23 27487.52 16981.64 182
CANet73.00 13471.84 15076.48 9375.82 20061.28 13574.81 13980.37 13663.17 11062.43 30180.50 22561.10 16585.16 6064.00 12684.34 21883.01 153
MP-MVS-pluss82.54 2983.46 2879.76 4788.88 3268.44 8281.57 6286.33 2263.17 11085.38 5191.26 3376.33 3284.67 6983.30 194.96 2386.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Vis-MVSNetpermissive74.85 10774.56 10575.72 10381.63 13064.64 11176.35 12179.06 15362.85 11273.33 21188.41 10462.54 14779.59 16063.94 12982.92 23282.94 154
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+72.10 14972.28 14571.58 16474.21 22950.33 20774.72 14482.73 9362.62 11370.77 24476.83 26969.96 8580.97 13460.20 15878.43 28183.45 139
OMC-MVS79.41 6178.79 7081.28 3480.62 13970.71 6380.91 6584.76 5362.54 11481.77 9486.65 14071.46 7383.53 8867.95 9892.44 8489.60 23
API-MVS70.97 15871.51 15869.37 19275.20 20655.94 17680.99 6476.84 18662.48 11571.24 23977.51 26561.51 15980.96 13852.04 22185.76 19571.22 291
CSCG74.12 11274.39 10873.33 13379.35 15161.66 13377.45 10881.98 10262.47 11679.06 12780.19 23061.83 15478.79 17059.83 16587.35 17479.54 217
ETV-MVS72.72 14172.16 14874.38 11876.90 18755.95 17573.34 15484.67 5762.04 11772.19 22770.81 32065.90 12485.24 5658.64 17184.96 20981.95 178
OurMVSNet-221017-078.57 6978.53 7578.67 6580.48 14064.16 11680.24 7582.06 10061.89 11888.77 1293.32 457.15 20282.60 10670.08 8092.80 7889.25 27
plane_prior65.18 10780.06 7961.88 11989.91 138
UGNet70.20 16569.05 18173.65 12776.24 19463.64 11975.87 12872.53 22261.48 12060.93 31186.14 15752.37 22777.12 20450.67 23285.21 20380.17 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS-test73.63 11873.74 12073.30 13575.80 20251.70 19977.02 11686.83 1961.29 12168.47 26579.23 24365.42 12985.14 6164.04 12585.55 19683.07 151
VDD-MVS70.81 15971.44 15968.91 20479.07 16146.51 24467.82 22870.83 24761.23 12274.07 20388.69 10259.86 17475.62 22151.11 22890.28 12884.61 103
FMVSNet171.06 15672.48 14266.81 23077.65 17940.68 29071.96 16773.03 21461.14 12379.45 12390.36 6660.44 16975.20 22650.20 23688.05 16184.54 106
TransMVSNet (Re)69.62 17271.63 15463.57 25576.51 19135.93 32565.75 25771.29 23861.05 12475.02 18689.90 7865.88 12570.41 27249.79 23889.48 14684.38 114
EPNet69.10 18367.32 20774.46 11468.33 28361.27 13677.56 10663.57 28460.95 12556.62 32782.75 20151.53 23281.24 12554.36 21090.20 12980.88 195
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG67.47 20567.48 20667.46 22370.70 26354.69 18466.90 24378.17 17060.88 12670.41 24774.76 28361.22 16473.18 24147.38 25876.87 28974.49 262
ETH3D-3000-0.179.14 6379.80 6377.16 8780.67 13864.57 11280.26 7487.60 1260.74 12782.47 8888.03 11571.73 7081.81 11773.12 5993.61 6585.09 87
TSAR-MVS + GP.73.08 12971.60 15677.54 7978.99 16270.73 6274.96 13669.38 25460.73 12874.39 19978.44 25457.72 19982.78 10260.16 16089.60 14379.11 222
MSLP-MVS++74.48 10975.78 9670.59 17484.66 8062.40 12678.65 9284.24 7260.55 12977.71 14681.98 20863.12 14277.64 19962.95 14088.14 15971.73 287
Baseline_NR-MVSNet70.62 16173.19 13162.92 26576.97 18434.44 33568.84 21070.88 24660.25 13079.50 12290.53 5161.82 15569.11 27854.67 20495.27 1485.22 83
v875.07 10175.64 9873.35 13273.42 23647.46 23675.20 13481.45 11060.05 13185.64 4489.26 8758.08 19481.80 11869.71 8587.97 16490.79 17
9.1480.22 5980.68 13780.35 7287.69 1159.90 13283.00 8088.20 11074.57 5181.75 11973.75 5693.78 61
DeepC-MVS72.44 481.00 4580.83 5681.50 2686.70 4970.03 6982.06 5887.00 1759.89 13380.91 10890.53 5172.19 6588.56 173.67 5794.52 3685.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
F-COLMAP75.29 9773.99 11479.18 5681.73 12871.90 5081.86 6182.98 8959.86 13472.27 22484.00 18564.56 13783.07 9951.48 22587.19 18082.56 167
MVS_030462.51 25062.27 24863.25 25969.39 27648.47 22164.05 27662.48 28859.69 13554.10 33981.04 21945.71 25966.31 29941.38 28982.58 23674.96 259
RPSCF75.76 9174.37 10979.93 4674.81 21377.53 2077.53 10779.30 15059.44 13678.88 12889.80 7971.26 7673.09 24257.45 17880.89 25689.17 30
HQP-NCC82.37 11677.32 10959.08 13771.58 232
ACMP_Plane82.37 11677.32 10959.08 13771.58 232
HQP-MVS75.24 9875.01 10275.94 10082.37 11658.80 16277.32 10984.12 7559.08 13771.58 23285.96 16358.09 19285.30 5367.38 10489.16 14983.73 130
v1075.69 9376.20 9374.16 12174.44 22448.69 21875.84 12982.93 9159.02 14085.92 4089.17 9258.56 18782.74 10370.73 7689.14 15291.05 13
test_prior376.71 8677.19 8575.27 10882.15 12159.85 15275.57 13084.33 6758.92 14176.53 17086.78 13167.83 10583.39 9169.81 8292.76 8082.58 165
test_prior275.57 13058.92 14176.53 17086.78 13167.83 10569.81 8292.76 80
ZD-MVS83.91 9369.36 7581.09 12058.91 14382.73 8689.11 9475.77 3786.63 1372.73 6292.93 75
MG-MVS70.47 16371.34 16067.85 21879.26 15340.42 29474.67 14675.15 20458.41 14468.74 26488.14 11456.08 21283.69 8359.90 16481.71 24779.43 219
EI-MVSNet69.61 17369.01 18371.41 16873.94 23149.90 21171.31 18071.32 23658.22 14575.40 18470.44 32258.16 19075.85 21662.51 14179.81 26888.48 43
IterMVS-LS73.01 13373.12 13472.66 15373.79 23349.90 21171.63 17478.44 16658.22 14580.51 11186.63 14158.15 19179.62 15862.51 14188.20 15888.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-RMVSNet68.69 18968.20 19770.14 18376.40 19253.90 19064.62 26973.48 21358.01 14773.91 20581.78 21059.09 18278.22 18748.59 24877.96 28678.31 230
test_yl65.11 22265.09 22665.18 24270.59 26440.86 28763.22 28772.79 21757.91 14868.88 26179.07 24942.85 27974.89 23045.50 26984.97 20679.81 213
DCV-MVSNet65.11 22265.09 22665.18 24270.59 26440.86 28763.22 28772.79 21757.91 14868.88 26179.07 24942.85 27974.89 23045.50 26984.97 20679.81 213
DP-MVS Recon73.57 12072.69 14076.23 9782.85 11163.39 12174.32 14882.96 9057.75 15070.35 24881.98 20864.34 13884.41 7549.69 23989.95 13780.89 194
Effi-MVS+-dtu75.43 9572.28 14584.91 277.05 18183.58 178.47 9577.70 17657.68 15174.89 18878.13 25964.80 13484.26 7756.46 18785.32 20286.88 61
mvs-test173.81 11570.69 16783.18 577.05 18181.39 375.39 13277.70 17657.68 15171.19 24174.72 28564.80 13483.66 8456.46 18781.19 25284.50 111
MVS_111021_HR72.98 13672.97 13872.99 14280.82 13665.47 10468.81 21272.77 21957.67 15375.76 17882.38 20571.01 7777.17 20361.38 14886.15 19076.32 248
3Dnovator65.95 1171.50 15471.22 16172.34 15973.16 24063.09 12478.37 9678.32 16757.67 15372.22 22684.61 17654.77 21578.47 17760.82 15581.07 25375.45 254
FC-MVSNet-test73.32 12574.78 10468.93 20379.21 15536.57 31971.82 17379.54 14957.63 15582.57 8790.38 6359.38 18078.99 16657.91 17794.56 3591.23 12
ETH3D cwj APD-0.1678.38 7478.72 7277.38 8280.09 14366.16 10079.08 8886.13 2757.55 15680.93 10687.76 11871.98 6982.73 10472.11 7192.83 7783.25 144
FPMVS59.43 27260.07 26357.51 29977.62 18071.52 5362.33 29150.92 33657.40 15769.40 25580.00 23239.14 30161.92 31637.47 31466.36 34039.09 363
testdata168.34 22357.24 158
MIMVSNet166.57 21269.23 17958.59 29581.26 13437.73 31464.06 27557.62 30757.02 15978.40 13590.75 4462.65 14458.10 32641.77 28789.58 14579.95 212
RRT_MVS73.80 11671.19 16281.60 2471.04 25970.33 6778.78 9174.91 20556.96 16077.83 14385.56 16832.82 32387.39 571.16 7391.68 9387.07 60
MVS_111021_LR72.10 14971.82 15172.95 14479.53 14973.90 4070.45 19266.64 26656.87 16176.81 16381.76 21268.78 9371.76 26061.81 14483.74 22673.18 272
LCM-MVSNet-Re69.10 18371.57 15761.70 27270.37 26934.30 33761.45 29579.62 14456.81 16289.59 888.16 11368.44 9872.94 24342.30 28287.33 17577.85 240
BH-untuned69.39 17769.46 17569.18 19677.96 17256.88 17168.47 22277.53 17956.77 16377.79 14479.63 23760.30 17180.20 15246.04 26680.65 25970.47 296
DeepC-MVS_fast69.89 777.17 8176.33 9279.70 5083.90 9467.94 8480.06 7983.75 8056.73 16474.88 18985.32 17065.54 12687.79 265.61 11591.14 10883.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 7277.14 8782.52 1984.39 8877.04 2576.35 12184.05 7756.66 16580.27 11585.31 17168.56 9687.03 1067.39 10391.26 10383.50 133
xxxxxxxxxxxxxcwj80.31 5480.94 5478.42 7087.00 4367.23 9079.24 8588.61 556.65 16684.29 6789.18 9073.73 5983.22 9476.01 3993.77 6284.81 96
save fliter87.00 4367.23 9079.24 8577.94 17456.65 166
VPA-MVSNet68.71 18870.37 16963.72 25476.13 19638.06 31164.10 27471.48 23356.60 16874.10 20288.31 10864.78 13669.72 27347.69 25790.15 13283.37 141
GeoE73.14 12773.77 11971.26 16978.09 16952.64 19774.32 14879.56 14856.32 16976.35 17583.36 19570.76 7977.96 19363.32 13781.84 24383.18 147
FIs72.56 14473.80 11768.84 20678.74 16337.74 31371.02 18479.83 14356.12 17080.88 10989.45 8458.18 18978.28 18656.63 18393.36 7090.51 19
tfpnnormal66.48 21367.93 19962.16 27073.40 23736.65 31863.45 28264.99 27555.97 17172.82 21787.80 11757.06 20569.10 27948.31 25287.54 16880.72 202
baseline73.10 12873.96 11570.51 17671.46 25746.39 24772.08 16484.40 6655.95 17276.62 16686.46 14767.20 10878.03 19264.22 12487.27 17887.11 59
wuyk23d61.97 25366.25 21549.12 32358.19 34960.77 14566.32 24952.97 33155.93 17390.62 586.91 12673.07 6235.98 36320.63 36591.63 9550.62 354
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12673.47 23564.53 11371.36 17878.14 17155.81 17468.84 26374.71 28665.36 13075.75 21952.00 22279.00 27581.03 189
casdiffmvs73.06 13173.84 11670.72 17271.32 25846.71 24370.93 18684.26 7155.62 17577.46 14987.10 12067.09 10977.81 19563.95 12786.83 18487.64 50
pm-mvs168.40 19169.85 17364.04 25273.10 24439.94 29664.61 27070.50 24855.52 17673.97 20489.33 8563.91 14068.38 28249.68 24088.02 16283.81 126
v2v48272.55 14672.58 14172.43 15772.92 24846.72 24271.41 17779.13 15255.27 17781.17 10385.25 17255.41 21481.13 12767.25 10785.46 19789.43 25
thres100view90061.17 25961.09 25661.39 27672.14 25335.01 33165.42 26156.99 31455.23 17870.71 24579.90 23332.07 33072.09 25435.61 32681.73 24477.08 245
TAPA-MVS65.27 1275.16 9974.29 11177.77 7774.86 21268.08 8377.89 10484.04 7855.15 17976.19 17783.39 19166.91 11180.11 15460.04 16390.14 13385.13 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EG-PatchMatch MVS70.70 16070.88 16470.16 18282.64 11558.80 16271.48 17573.64 21254.98 18076.55 16881.77 21161.10 16578.94 16754.87 20280.84 25772.74 277
GBi-Net68.30 19368.79 18566.81 23073.14 24140.68 29071.96 16773.03 21454.81 18174.72 19290.36 6648.63 25175.20 22647.12 25985.37 19884.54 106
test168.30 19368.79 18566.81 23073.14 24140.68 29071.96 16773.03 21454.81 18174.72 19290.36 6648.63 25175.20 22647.12 25985.37 19884.54 106
FMVSNet267.48 20468.21 19665.29 24173.14 24138.94 30368.81 21271.21 24254.81 18176.73 16586.48 14648.63 25174.60 23347.98 25486.11 19282.35 171
v14869.38 17869.39 17669.36 19369.14 27944.56 25868.83 21172.70 22054.79 18478.59 13084.12 18354.69 21676.74 21259.40 16882.20 23886.79 62
thres600view761.82 25561.38 25563.12 26171.81 25534.93 33264.64 26856.99 31454.78 18570.33 24979.74 23532.07 33072.42 25238.61 30483.46 22882.02 176
tttt051769.46 17567.79 20274.46 11475.34 20452.72 19675.05 13563.27 28654.69 18678.87 12984.37 18026.63 35281.15 12663.95 12787.93 16589.51 24
RPMNet65.77 21865.08 22867.84 21966.37 29848.24 22470.93 18686.27 2354.66 18761.35 30586.77 13333.29 32085.67 4655.93 19270.17 32769.62 305
VNet64.01 23765.15 22360.57 28373.28 23935.61 32857.60 31767.08 26454.61 18866.76 27783.37 19356.28 21066.87 29242.19 28385.20 20479.23 221
PLCcopyleft62.01 1671.79 15270.28 17076.33 9580.31 14268.63 8178.18 10281.24 11554.57 18967.09 27680.63 22359.44 17781.74 12046.91 26284.17 21978.63 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
nrg03074.87 10675.99 9571.52 16674.90 21149.88 21474.10 15182.58 9654.55 19083.50 7789.21 8971.51 7275.74 22061.24 14992.34 8688.94 36
agg_prior175.89 8976.41 9074.31 11984.44 8666.02 10176.12 12578.62 16354.40 19176.95 15686.85 12866.44 11980.34 14672.45 6791.42 10076.57 247
canonicalmvs72.29 14873.38 12769.04 19874.23 22547.37 23773.93 15283.18 8654.36 19276.61 16781.64 21472.03 6675.34 22457.12 18087.28 17784.40 113
h-mvs3373.08 12971.61 15577.48 8083.89 9572.89 4870.47 19171.12 24354.28 19377.89 14083.41 19049.04 24580.98 13363.62 13290.77 12278.58 227
hse-mvs272.32 14770.66 16877.31 8583.10 10671.77 5169.19 20771.45 23454.28 19377.89 14078.26 25649.04 24579.23 16263.62 13289.13 15380.92 193
CDPH-MVS77.33 8077.06 8878.14 7484.21 8963.98 11876.07 12683.45 8454.20 19577.68 14787.18 11969.98 8485.37 5168.01 9592.72 8285.08 89
VPNet65.58 21967.56 20359.65 28979.72 14630.17 35360.27 30462.14 29054.19 19671.24 23986.63 14158.80 18567.62 28744.17 27590.87 11981.18 186
PHI-MVS74.92 10374.36 11076.61 9076.40 19262.32 12880.38 7083.15 8754.16 19773.23 21380.75 22162.19 15283.86 8168.02 9490.92 11583.65 131
Patchmtry60.91 26063.01 24354.62 30666.10 30426.27 36267.47 23256.40 31754.05 19872.04 22886.66 13833.19 32160.17 32043.69 27687.45 17277.42 241
train_agg76.38 8776.55 8975.86 10285.47 6869.32 7676.42 11978.69 16054.00 19976.97 15486.74 13466.60 11681.10 12872.50 6691.56 9777.15 243
test_885.09 7467.89 8576.26 12478.66 16254.00 19976.89 15986.72 13666.60 11680.89 139
DELS-MVS68.83 18568.31 19170.38 17770.55 26848.31 22263.78 27982.13 9954.00 19968.96 26075.17 28158.95 18480.06 15558.55 17282.74 23482.76 160
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs70.54 16271.00 16369.15 19773.50 23448.04 22869.85 19879.62 14453.94 20276.54 16982.00 20759.00 18374.68 23257.32 17987.21 17984.72 98
v114473.29 12673.39 12673.01 14174.12 23048.11 22672.01 16681.08 12153.83 20381.77 9484.68 17558.07 19581.91 11568.10 9286.86 18388.99 35
TEST985.47 6869.32 7676.42 11978.69 16053.73 20476.97 15486.74 13466.84 11281.10 128
Vis-MVSNet (Re-imp)62.74 24863.21 24161.34 27772.19 25231.56 34867.31 23753.87 32453.60 20569.88 25283.37 19340.52 29470.98 26541.40 28886.78 18681.48 184
PS-MVSNAJss77.54 7877.35 8478.13 7584.88 7666.37 9878.55 9479.59 14753.48 20686.29 3592.43 1562.39 14980.25 14967.90 9990.61 12487.77 48
MDA-MVSNet-bldmvs62.34 25261.73 24964.16 24861.64 32949.90 21148.11 34157.24 31353.31 20780.95 10579.39 24049.00 24761.55 31745.92 26780.05 26581.03 189
CS-MVS69.29 17969.70 17468.07 21670.59 26442.36 27969.70 20084.56 6353.13 20867.96 26876.74 27059.41 17883.56 8660.33 15784.84 21178.28 232
TinyColmap67.98 19769.28 17764.08 25067.98 28746.82 24170.04 19475.26 20253.05 20977.36 15086.79 13059.39 17972.59 25045.64 26888.01 16372.83 275
tfpn200view960.35 26659.97 26461.51 27470.78 26135.35 32963.27 28557.47 30853.00 21068.31 26677.09 26732.45 32772.09 25435.61 32681.73 24477.08 245
thres40060.77 26359.97 26463.15 26070.78 26135.35 32963.27 28557.47 30853.00 21068.31 26677.09 26732.45 32772.09 25435.61 32681.73 24482.02 176
ETH3 D test640075.73 9276.00 9474.92 11181.75 12756.93 17078.31 9784.60 6252.83 21277.15 15185.14 17368.59 9584.03 7965.44 11690.20 12983.82 124
v119273.40 12373.42 12573.32 13474.65 22148.67 21972.21 16381.73 10552.76 21381.85 9284.56 17757.12 20382.24 11368.58 8887.33 17589.06 32
MVS_Test69.84 17070.71 16667.24 22567.49 29243.25 27169.87 19781.22 11752.69 21471.57 23586.68 13762.09 15374.51 23466.05 11078.74 27783.96 122
EIA-MVS68.59 19067.16 20972.90 14675.18 20755.64 17969.39 20381.29 11352.44 21564.53 28670.69 32160.33 17082.30 11154.27 21176.31 29280.75 200
MVSFormer69.93 16969.03 18272.63 15574.93 20959.19 15683.98 3875.72 19552.27 21663.53 29776.74 27043.19 27680.56 14172.28 6878.67 27978.14 235
test_djsdf78.88 6678.27 7680.70 4181.42 13171.24 5783.98 3875.72 19552.27 21687.37 2792.25 1668.04 10380.56 14172.28 6891.15 10790.32 20
CLD-MVS72.88 13872.36 14474.43 11677.03 18354.30 18668.77 21583.43 8552.12 21876.79 16474.44 28969.54 8883.91 8055.88 19393.25 7285.09 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT53.35 29956.47 28943.99 33964.19 31717.46 37059.15 30843.10 35352.11 21954.74 33586.95 12529.97 34749.98 33643.62 27774.40 30764.53 336
CANet_DTU64.04 23663.83 23364.66 24568.39 28042.97 27373.45 15374.50 20952.05 22054.78 33475.44 28043.99 27170.42 27153.49 21778.41 28280.59 204
mvs_tets78.93 6578.67 7379.72 4984.81 7873.93 3980.65 6676.50 18951.98 22187.40 2491.86 2176.09 3578.53 17568.58 8890.20 12986.69 64
v124073.06 13173.14 13272.84 14874.74 21547.27 23971.88 17281.11 11851.80 22282.28 9084.21 18256.22 21182.34 11068.82 8687.17 18188.91 37
TSAR-MVS + MP.79.05 6478.81 6979.74 4888.94 2967.52 8786.61 2081.38 11251.71 22377.15 15191.42 3265.49 12787.20 679.44 1487.17 18184.51 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v192192072.96 13772.98 13772.89 14774.67 21847.58 23471.92 17080.69 12751.70 22481.69 9883.89 18656.58 20982.25 11268.34 9087.36 17388.82 39
v14419272.99 13573.06 13572.77 14974.58 22247.48 23571.90 17180.44 13451.57 22581.46 10084.11 18458.04 19682.12 11467.98 9687.47 17188.70 42
FMVSNet365.00 22565.16 22164.52 24769.47 27537.56 31666.63 24670.38 24951.55 22674.72 19283.27 19737.89 30974.44 23547.12 25985.37 19881.57 183
c3_l69.82 17169.89 17269.61 19166.24 30143.48 26768.12 22579.61 14651.43 22777.72 14580.18 23154.61 21878.15 19163.62 13287.50 17087.20 57
V4271.06 15670.83 16571.72 16367.25 29347.14 24065.94 25280.35 13751.35 22883.40 7883.23 19859.25 18178.80 16965.91 11280.81 25889.23 28
jajsoiax78.51 7078.16 7879.59 5284.65 8173.83 4180.42 6976.12 19151.33 22987.19 2991.51 2873.79 5878.44 17968.27 9190.13 13486.49 66
GA-MVS62.91 24561.66 25066.66 23467.09 29544.49 25961.18 29969.36 25551.33 22969.33 25674.47 28836.83 31174.94 22950.60 23374.72 30480.57 205
CL-MVSNet_self_test62.44 25163.40 23859.55 29072.34 25132.38 34456.39 31964.84 27651.21 23167.46 27381.01 22050.75 23663.51 31138.47 30688.12 16082.75 161
PM-MVS64.49 22963.61 23667.14 22876.68 19075.15 3268.49 22142.85 35451.17 23277.85 14280.51 22445.76 25866.31 29952.83 22076.35 29159.96 346
原ACMM173.90 12485.90 6265.15 10981.67 10650.97 23374.25 20086.16 15661.60 15783.54 8756.75 18291.08 11073.00 273
JIA-IIPM54.03 29651.62 30861.25 27859.14 34455.21 18159.10 30947.72 34650.85 23450.31 35185.81 16620.10 36863.97 30736.16 32455.41 36264.55 335
KD-MVS_self_test66.38 21467.51 20462.97 26461.76 32834.39 33658.11 31575.30 20150.84 23577.12 15385.42 16956.84 20769.44 27551.07 22991.16 10685.08 89
eth_miper_zixun_eth69.42 17668.73 18971.50 16767.99 28646.42 24567.58 23078.81 15750.72 23678.13 13880.34 22750.15 24080.34 14660.18 15984.65 21287.74 49
Fast-Effi-MVS+68.81 18668.30 19270.35 17874.66 22048.61 22066.06 25178.32 16750.62 23771.48 23875.54 27768.75 9479.59 16050.55 23478.73 27882.86 157
anonymousdsp78.60 6877.80 8081.00 3778.01 17174.34 3780.09 7776.12 19150.51 23889.19 1090.88 3971.45 7477.78 19773.38 5890.60 12590.90 16
thres20057.55 28257.02 28459.17 29167.89 28934.93 33258.91 31257.25 31250.24 23964.01 29171.46 31832.49 32671.39 26231.31 34079.57 27271.19 293
thisisatest053067.05 21065.16 22172.73 15273.10 24450.55 20671.26 18263.91 28250.22 24074.46 19880.75 22126.81 35180.25 14959.43 16786.50 18887.37 54
test20.0355.74 28857.51 28250.42 31659.89 34132.09 34650.63 33549.01 34250.11 24165.07 28583.23 19845.61 26148.11 33930.22 34483.82 22571.07 294
BH-w/o64.81 22664.29 23166.36 23576.08 19854.71 18365.61 25975.23 20350.10 24271.05 24371.86 31554.33 21979.02 16538.20 30876.14 29365.36 328
cl____68.26 19668.26 19368.29 21264.98 31343.67 26565.89 25374.67 20650.04 24376.86 16182.42 20448.74 24975.38 22260.92 15489.81 13985.80 79
DIV-MVS_self_test68.27 19568.26 19368.29 21264.98 31343.67 26565.89 25374.67 20650.04 24376.86 16182.43 20348.74 24975.38 22260.94 15389.81 13985.81 75
RRT_test8_iter0565.80 21765.13 22467.80 22167.02 29640.85 28967.13 23975.33 20049.73 24572.69 21881.32 21524.45 36277.37 20261.69 14786.82 18585.18 85
EPNet_dtu58.93 27558.52 27460.16 28767.91 28847.70 23369.97 19558.02 30549.73 24547.28 35573.02 30438.14 30562.34 31436.57 32085.99 19370.43 297
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM69.18 18269.26 17868.94 20271.61 25652.58 19880.37 7178.79 15949.63 24773.51 20785.14 17353.66 22179.12 16455.11 20075.54 29775.11 258
PAPR69.20 18168.66 19070.82 17175.15 20847.77 23175.31 13381.11 11849.62 24866.33 27879.27 24261.53 15882.96 10048.12 25381.50 25081.74 181
TR-MVS64.59 22763.54 23767.73 22275.75 20350.83 20563.39 28370.29 25049.33 24971.55 23674.55 28750.94 23578.46 17840.43 29475.69 29573.89 267
cl2267.14 20766.51 21469.03 19963.20 32243.46 26866.88 24476.25 19049.22 25074.48 19777.88 26145.49 26277.40 20160.64 15684.59 21486.24 67
AUN-MVS70.22 16467.88 20177.22 8682.96 11071.61 5269.08 20871.39 23549.17 25171.70 23078.07 26037.62 31079.21 16361.81 14489.15 15180.82 196
miper_ehance_all_eth68.36 19268.16 19868.98 20065.14 31243.34 26967.07 24078.92 15649.11 25276.21 17677.72 26253.48 22277.92 19461.16 15184.59 21485.68 81
ab-mvs64.11 23565.13 22461.05 27971.99 25438.03 31267.59 22968.79 25749.08 25365.32 28386.26 15258.02 19766.85 29439.33 29879.79 27078.27 233
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 20770.56 26753.91 18978.29 9877.35 18148.85 25470.22 25083.52 18952.65 22676.93 20655.31 19981.99 24075.49 253
MAR-MVS67.72 20166.16 21672.40 15874.45 22364.99 11074.87 13777.50 18048.67 25565.78 28268.58 34057.01 20677.79 19646.68 26481.92 24174.42 263
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
bset_n11_16_dypcd66.91 21165.84 21970.12 18472.95 24753.54 19163.64 28068.65 25948.54 25672.54 22174.28 29240.58 29378.54 17463.52 13587.82 16678.29 231
PVSNet_Blended_VisFu70.04 16668.88 18473.53 13182.71 11363.62 12074.81 13981.95 10348.53 25767.16 27579.18 24651.42 23378.38 18254.39 20979.72 27178.60 226
diffmvs67.42 20667.50 20567.20 22662.26 32645.21 25564.87 26677.04 18548.21 25871.74 22979.70 23658.40 18871.17 26464.99 11880.27 26385.22 83
IterMVS-SCA-FT67.68 20266.07 21772.49 15673.34 23858.20 16763.80 27865.55 27248.10 25976.91 15882.64 20245.20 26378.84 16861.20 15077.89 28780.44 207
xiu_mvs_v1_base_debu67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
xiu_mvs_v1_base67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
xiu_mvs_v1_base_debi67.87 19867.07 21070.26 17979.13 15861.90 13067.34 23471.25 23947.98 26067.70 27074.19 29561.31 16072.62 24756.51 18478.26 28376.27 249
testdata64.13 24985.87 6463.34 12261.80 29647.83 26376.42 17486.60 14348.83 24862.31 31554.46 20881.26 25166.74 323
DPM-MVS69.98 16869.22 18072.26 16182.69 11458.82 16170.53 19081.23 11647.79 26464.16 29080.21 22851.32 23483.12 9760.14 16184.95 21074.83 260
无先验74.82 13870.94 24547.75 26576.85 20954.47 20672.09 284
IB-MVS49.67 1859.69 27056.96 28567.90 21768.19 28450.30 20861.42 29665.18 27447.57 26655.83 33167.15 34723.77 36379.60 15943.56 27879.97 26673.79 268
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs55.84 28655.45 29657.01 30060.33 33733.20 34265.89 25359.29 30347.52 26756.04 32973.60 29831.05 33968.06 28440.64 29364.64 34369.77 303
PatchMatch-RL58.68 27757.72 28061.57 27376.21 19573.59 4361.83 29349.00 34347.30 26861.08 30768.97 33550.16 23959.01 32336.06 32568.84 33452.10 353
Anonymous2024052163.55 23866.07 21755.99 30366.18 30344.04 26268.77 21568.80 25646.99 26972.57 21985.84 16539.87 29750.22 33553.40 21992.23 8873.71 269
PC_three_145246.98 27081.83 9386.28 15066.55 11884.47 7263.31 13890.78 12083.49 134
EMVS44.61 32744.45 33145.10 33648.91 37043.00 27237.92 35841.10 36446.75 27138.00 36748.43 36426.42 35346.27 34137.11 31775.38 30046.03 359
IterMVS63.12 24362.48 24765.02 24466.34 30052.86 19563.81 27762.25 28946.57 27271.51 23780.40 22644.60 26866.82 29551.38 22775.47 29875.38 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
E-PMN45.17 32345.36 32644.60 33750.07 36842.75 27438.66 35742.29 35846.39 27339.55 36551.15 36226.00 35545.37 34637.68 31176.41 29045.69 360
baseline157.82 28158.36 27756.19 30269.17 27830.76 35262.94 28955.21 32046.04 27463.83 29378.47 25341.20 28763.68 30939.44 29768.99 33374.13 264
MCST-MVS73.42 12273.34 12973.63 12981.28 13359.17 15874.80 14183.13 8845.50 27572.84 21683.78 18865.15 13180.99 13264.54 12189.09 15480.73 201
PVSNet_BlendedMVS65.38 22064.30 23068.61 20869.81 27249.36 21565.60 26078.96 15445.50 27559.98 31478.61 25251.82 22978.20 18844.30 27284.11 22078.27 233
IU-MVS86.12 5860.90 14180.38 13545.49 27781.31 10175.64 4494.39 4384.65 99
testgi54.00 29856.86 28645.45 33358.20 34825.81 36349.05 33749.50 34145.43 27867.84 26981.17 21851.81 23143.20 35529.30 34979.41 27367.34 318
PCF-MVS63.80 1372.70 14271.69 15275.72 10378.10 16860.01 15173.04 15581.50 10845.34 27979.66 12084.35 18165.15 13182.65 10548.70 24789.38 14884.50 111
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAMVS65.31 22163.75 23469.97 18882.23 12059.76 15466.78 24563.37 28545.20 28069.79 25379.37 24147.42 25772.17 25334.48 33085.15 20577.99 239
旧先验271.17 18345.11 28178.54 13361.28 31859.19 169
PS-MVSNAJ64.27 23463.73 23565.90 23977.82 17551.42 20263.33 28472.33 22445.09 28261.60 30368.04 34162.39 14973.95 23849.07 24373.87 31072.34 280
xiu_mvs_v2_base64.43 23163.96 23265.85 24077.72 17751.32 20363.63 28172.31 22545.06 28361.70 30269.66 33062.56 14573.93 23949.06 24473.91 30972.31 281
LF4IMVS67.50 20367.31 20868.08 21558.86 34561.93 12971.43 17675.90 19444.67 28472.42 22380.20 22957.16 20170.44 27058.99 17086.12 19171.88 285
CDS-MVSNet64.33 23362.66 24669.35 19480.44 14158.28 16665.26 26265.66 27044.36 28567.30 27475.54 27743.27 27571.77 25937.68 31184.44 21778.01 238
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_lstm_enhance61.97 25361.63 25262.98 26360.04 33845.74 25247.53 34370.95 24444.04 28673.06 21478.84 25139.72 29860.33 31955.82 19484.64 21382.88 155
新几何169.99 18788.37 3671.34 5662.08 29243.85 28774.99 18786.11 15952.85 22570.57 26850.99 23083.23 23168.05 314
112169.23 18068.26 19372.12 16288.36 3771.40 5468.59 21762.06 29343.80 28874.75 19086.18 15452.92 22476.85 20954.47 20683.27 23068.12 313
114514_t73.40 12373.33 13073.64 12884.15 9157.11 16978.20 10180.02 14143.76 28972.55 22086.07 16164.00 13983.35 9360.14 16191.03 11180.45 206
OpenMVS_ROBcopyleft54.93 1763.23 24263.28 23963.07 26269.81 27245.34 25468.52 22067.14 26343.74 29070.61 24679.22 24447.90 25572.66 24648.75 24673.84 31171.21 292
FMVSNet555.08 29255.54 29553.71 30765.80 30533.50 34156.22 32152.50 33343.72 29161.06 30883.38 19225.46 35854.87 32930.11 34581.64 24972.75 276
MVP-Stereo61.56 25759.22 26868.58 20979.28 15260.44 14769.20 20671.57 23043.58 29256.42 32878.37 25539.57 30076.46 21434.86 32960.16 35168.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous65.08 22465.49 22063.83 25363.79 31937.60 31566.52 24869.82 25243.44 29373.46 20986.08 16058.79 18671.75 26151.90 22375.63 29682.15 175
test-LLR50.43 31150.69 31649.64 31960.76 33441.87 28153.18 33045.48 35043.41 29449.41 35260.47 35529.22 34944.73 34942.09 28472.14 31662.33 342
test0.0.03 147.72 31848.31 32045.93 33155.53 35929.39 35446.40 34741.21 36343.41 29455.81 33267.65 34229.22 34943.77 35425.73 35869.87 32964.62 334
SCA58.57 27858.04 27860.17 28670.17 27041.07 28665.19 26353.38 32943.34 29661.00 31073.48 29945.20 26369.38 27640.34 29570.31 32670.05 300
ET-MVSNet_ETH3D63.32 24060.69 26071.20 17070.15 27155.66 17865.02 26564.32 28143.28 29768.99 25972.05 31425.46 35878.19 19054.16 21282.80 23379.74 216
miper_enhance_ethall65.86 21665.05 22968.28 21461.62 33042.62 27664.74 26777.97 17342.52 29873.42 21072.79 30549.66 24177.68 19858.12 17584.59 21484.54 106
cascas64.59 22762.77 24570.05 18675.27 20550.02 21061.79 29471.61 22942.46 29963.68 29568.89 33749.33 24480.35 14547.82 25684.05 22179.78 215
PVSNet_Blended62.90 24661.64 25166.69 23369.81 27249.36 21561.23 29878.96 15442.04 30059.98 31468.86 33851.82 22978.20 18844.30 27277.77 28872.52 278
MVSTER63.29 24161.60 25368.36 21059.77 34246.21 24860.62 30171.32 23641.83 30175.40 18479.12 24730.25 34475.85 21656.30 18979.81 26883.03 152
MIMVSNet54.39 29456.12 29249.20 32172.57 24930.91 35159.98 30548.43 34541.66 30255.94 33083.86 18741.19 28850.42 33426.05 35575.38 30066.27 324
KD-MVS_2432*160052.05 30751.58 30953.44 30852.11 36631.20 34944.88 35064.83 27741.53 30364.37 28770.03 32715.61 37464.20 30536.25 32174.61 30564.93 332
miper_refine_blended52.05 30751.58 30953.44 30852.11 36631.20 34944.88 35064.83 27741.53 30364.37 28770.03 32715.61 37464.20 30536.25 32174.61 30564.93 332
new-patchmatchnet52.89 30155.76 29444.26 33859.94 3406.31 37337.36 36050.76 33841.10 30564.28 28979.82 23444.77 26648.43 33836.24 32387.61 16778.03 237
test22287.30 4169.15 7967.85 22759.59 30241.06 30673.05 21585.72 16748.03 25480.65 25966.92 319
Patchmatch-RL test59.95 26859.12 26962.44 26872.46 25054.61 18559.63 30747.51 34741.05 30774.58 19674.30 29131.06 33865.31 30151.61 22479.85 26767.39 316
thisisatest051560.48 26557.86 27968.34 21167.25 29346.42 24560.58 30262.14 29040.82 30863.58 29669.12 33326.28 35478.34 18448.83 24582.13 23980.26 209
ppachtmachnet_test60.26 26759.61 26762.20 26967.70 29044.33 26058.18 31460.96 29840.75 30965.80 28172.57 30641.23 28663.92 30846.87 26382.42 23778.33 229
PAPM61.79 25660.37 26266.05 23776.09 19741.87 28169.30 20476.79 18840.64 31053.80 34079.62 23844.38 26982.92 10129.64 34873.11 31373.36 271
our_test_356.46 28456.51 28856.30 30167.70 29039.66 29855.36 32552.34 33440.57 31163.85 29269.91 32940.04 29658.22 32543.49 27975.29 30271.03 295
PatchmatchNetpermissive54.60 29354.27 29955.59 30465.17 31139.08 30066.92 24251.80 33539.89 31258.39 32073.12 30331.69 33258.33 32443.01 28058.38 35769.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
D2MVS62.58 24961.05 25767.20 22663.85 31847.92 22956.29 32069.58 25339.32 31370.07 25178.19 25734.93 31672.68 24553.44 21883.74 22681.00 191
Patchmatch-test47.93 31749.96 31841.84 34257.42 35124.26 36548.75 33841.49 36139.30 31456.79 32673.48 29930.48 34333.87 36429.29 35072.61 31467.39 316
HY-MVS49.31 1957.96 28057.59 28159.10 29266.85 29736.17 32265.13 26465.39 27339.24 31554.69 33678.14 25844.28 27067.18 29133.75 33470.79 32373.95 266
baseline255.57 29052.74 30464.05 25165.26 30844.11 26162.38 29054.43 32339.03 31651.21 34567.35 34533.66 31972.45 25137.14 31664.22 34575.60 252
XXY-MVS55.19 29157.40 28348.56 32564.45 31634.84 33451.54 33453.59 32638.99 31763.79 29479.43 23956.59 20845.57 34336.92 31871.29 32065.25 329
pmmvs-eth3d64.41 23263.27 24067.82 22075.81 20160.18 14969.49 20162.05 29438.81 31874.13 20182.23 20643.76 27368.65 28042.53 28180.63 26174.63 261
DWT-MVSNet_test53.04 30051.12 31358.77 29461.23 33138.67 30462.16 29257.74 30638.24 31951.76 34459.07 35721.36 36567.40 28944.80 27163.76 34670.25 299
MDA-MVSNet_test_wron52.57 30353.49 30249.81 31854.24 36336.47 32040.48 35546.58 34838.13 32075.47 18373.32 30141.05 29143.85 35340.98 29171.20 32169.10 311
YYNet152.58 30253.50 30149.85 31754.15 36436.45 32140.53 35446.55 34938.09 32175.52 18273.31 30241.08 29043.88 35241.10 29071.14 32269.21 309
1112_ss59.48 27158.99 27160.96 28177.84 17442.39 27861.42 29668.45 26037.96 32259.93 31767.46 34345.11 26565.07 30340.89 29271.81 31875.41 255
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32255.08 36033.67 34050.03 33658.79 30437.67 32363.43 29974.75 28441.82 28445.83 34238.59 30559.42 35367.98 315
tpm50.60 31052.42 30745.14 33565.18 31026.29 36160.30 30343.50 35237.41 32457.01 32479.09 24830.20 34642.32 35632.77 33766.36 34066.81 322
gm-plane-assit62.51 32433.91 33937.25 32562.71 35272.74 24438.70 302
CostFormer57.35 28356.14 29160.97 28063.76 32038.43 30567.50 23160.22 29937.14 32659.12 31976.34 27332.78 32471.99 25739.12 30069.27 33272.47 279
pmmvs460.78 26259.04 27066.00 23873.06 24657.67 16864.53 27160.22 29936.91 32765.96 27977.27 26639.66 29968.54 28138.87 30174.89 30371.80 286
PVSNet43.83 2151.56 30951.17 31252.73 31168.34 28238.27 30748.22 34053.56 32736.41 32854.29 33764.94 35034.60 31754.20 33230.34 34369.87 32965.71 327
tpmrst50.15 31251.38 31146.45 33056.05 35524.77 36464.40 27349.98 33936.14 32953.32 34169.59 33135.16 31548.69 33739.24 29958.51 35665.89 325
MS-PatchMatch55.59 28954.89 29757.68 29869.18 27749.05 21761.00 30062.93 28735.98 33058.36 32168.93 33636.71 31266.59 29737.62 31363.30 34757.39 349
MDTV_nov1_ep1354.05 30065.54 30729.30 35559.00 31055.22 31935.96 33152.44 34275.98 27430.77 34159.62 32138.21 30773.33 312
USDC62.80 24763.10 24261.89 27165.19 30943.30 27067.42 23374.20 21035.80 33272.25 22584.48 17945.67 26071.95 25837.95 31084.97 20670.42 298
jason64.47 23062.84 24469.34 19576.91 18659.20 15567.15 23865.67 26935.29 33365.16 28476.74 27044.67 26770.68 26654.74 20379.28 27478.14 235
jason: jason.
Anonymous2023120654.13 29555.82 29349.04 32470.89 26035.96 32451.73 33350.87 33734.86 33462.49 30079.22 24442.52 28244.29 35127.95 35381.88 24266.88 320
dp44.09 32844.88 32941.72 34458.53 34723.18 36654.70 32742.38 35734.80 33544.25 36265.61 34924.48 36144.80 34829.77 34749.42 36457.18 350
Test_1112_low_res58.78 27658.69 27359.04 29379.41 15038.13 31057.62 31666.98 26534.74 33659.62 31877.56 26442.92 27863.65 31038.66 30370.73 32475.35 257
EPMVS45.74 32146.53 32443.39 34054.14 36522.33 36755.02 32635.00 36934.69 33751.09 34670.20 32625.92 35642.04 35837.19 31555.50 36165.78 326
lupinMVS63.36 23961.49 25468.97 20174.93 20959.19 15665.80 25664.52 28034.68 33863.53 29774.25 29343.19 27670.62 26753.88 21478.67 27977.10 244
UnsupCasMVSNet_bld50.01 31351.03 31546.95 32658.61 34632.64 34348.31 33953.27 33034.27 33960.47 31271.53 31741.40 28547.07 34030.68 34260.78 35061.13 344
CMPMVSbinary48.73 2061.54 25860.89 25863.52 25661.08 33351.55 20168.07 22668.00 26233.88 34065.87 28081.25 21737.91 30867.71 28549.32 24282.60 23571.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WTY-MVS49.39 31450.31 31746.62 32961.22 33232.00 34746.61 34649.77 34033.87 34154.12 33869.55 33241.96 28345.40 34531.28 34164.42 34462.47 341
N_pmnet52.06 30651.11 31454.92 30559.64 34371.03 5837.42 35961.62 29733.68 34257.12 32372.10 30737.94 30731.03 36529.13 35271.35 31962.70 339
HyFIR lowres test63.01 24460.47 26170.61 17383.04 10754.10 18759.93 30672.24 22633.67 34369.00 25875.63 27638.69 30376.93 20636.60 31975.45 29980.81 199
tpm256.12 28554.64 29860.55 28466.24 30136.01 32368.14 22456.77 31633.60 34458.25 32275.52 27930.25 34474.33 23633.27 33569.76 33171.32 289
131459.83 26958.86 27262.74 26665.71 30644.78 25768.59 21772.63 22133.54 34561.05 30967.29 34643.62 27471.26 26349.49 24167.84 33872.19 283
CR-MVSNet58.96 27458.49 27560.36 28566.37 29848.24 22470.93 18656.40 31732.87 34661.35 30586.66 13833.19 32163.22 31248.50 25070.17 32769.62 305
MVS60.62 26459.97 26462.58 26768.13 28547.28 23868.59 21773.96 21132.19 34759.94 31668.86 33850.48 23777.64 19941.85 28675.74 29462.83 338
tpm cat154.02 29752.63 30558.19 29764.85 31539.86 29766.26 25057.28 31132.16 34856.90 32570.39 32432.75 32565.30 30234.29 33158.79 35469.41 307
pmmvs552.49 30452.58 30652.21 31454.99 36132.38 34455.45 32453.84 32532.15 34955.49 33374.81 28238.08 30657.37 32734.02 33274.40 30766.88 320
PMMVS237.74 33240.87 33328.36 34942.41 3725.35 37424.61 36227.75 37132.15 34947.85 35470.27 32535.85 31429.51 36619.08 36667.85 33750.22 355
sss47.59 31948.32 31945.40 33456.73 35433.96 33845.17 34948.51 34432.11 35152.37 34365.79 34840.39 29541.91 35931.85 33861.97 34860.35 345
test-mter48.56 31648.20 32149.64 31960.76 33441.87 28153.18 33045.48 35031.91 35249.41 35260.47 35518.34 36944.73 34942.09 28472.14 31662.33 342
MDTV_nov1_ep13_2view18.41 36953.74 32931.57 35344.89 35929.90 34832.93 33671.48 288
ADS-MVSNet248.76 31547.25 32353.29 31055.90 35740.54 29347.34 34454.99 32231.41 35450.48 34872.06 31231.23 33554.26 33125.93 35655.93 35965.07 330
ADS-MVSNet44.62 32645.58 32541.73 34355.90 35720.83 36847.34 34439.94 36531.41 35450.48 34872.06 31231.23 33539.31 36125.93 35655.93 35965.07 330
PVSNet_036.71 2241.12 33140.78 33442.14 34159.97 33940.13 29540.97 35342.24 35930.81 35644.86 36049.41 36340.70 29245.12 34723.15 36234.96 36641.16 362
MVS-HIRNet45.53 32247.29 32240.24 34562.29 32526.82 36056.02 32237.41 36729.74 35743.69 36481.27 21633.96 31855.48 32824.46 36156.79 35838.43 364
CHOSEN 1792x268858.09 27956.30 29063.45 25779.95 14450.93 20454.07 32865.59 27128.56 35861.53 30474.33 29041.09 28966.52 29833.91 33367.69 33972.92 274
TESTMET0.1,145.17 32344.93 32845.89 33256.02 35638.31 30653.18 33041.94 36027.85 35944.86 36056.47 35817.93 37041.50 36038.08 30968.06 33657.85 348
CHOSEN 280x42041.62 33039.89 33546.80 32861.81 32751.59 20033.56 36135.74 36827.48 36037.64 36853.53 35923.24 36442.09 35727.39 35458.64 35546.72 358
EU-MVSNet60.82 26160.80 25960.86 28268.37 28141.16 28472.27 16168.27 26126.96 36169.08 25775.71 27532.09 32967.44 28855.59 19778.90 27673.97 265
CVMVSNet59.21 27358.44 27661.51 27473.94 23147.76 23271.31 18064.56 27926.91 36260.34 31370.44 32236.24 31367.65 28653.57 21668.66 33569.12 310
new_pmnet37.55 33339.80 33630.79 34856.83 35216.46 37139.35 35630.65 37025.59 36345.26 35861.60 35424.54 36028.02 36721.60 36352.80 36347.90 357
MVEpermissive27.91 2336.69 33435.64 33739.84 34643.37 37135.85 32619.49 36324.61 37324.68 36439.05 36662.63 35338.67 30427.10 36821.04 36447.25 36556.56 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
pmmvs346.71 32045.09 32751.55 31556.76 35348.25 22355.78 32339.53 36624.13 36550.35 35063.40 35115.90 37351.08 33329.29 35070.69 32555.33 352
PMMVS44.69 32543.95 33246.92 32750.05 36953.47 19348.08 34242.40 35622.36 36644.01 36353.05 36042.60 28145.49 34431.69 33961.36 34941.79 361
DSMNet-mixed43.18 32944.66 33038.75 34754.75 36228.88 35757.06 31827.42 37213.47 36747.27 35677.67 26338.83 30239.29 36225.32 36060.12 35248.08 356
DeepMVS_CXcopyleft11.83 35115.51 37313.86 37211.25 3765.76 36820.85 37026.46 36617.06 3729.22 3709.69 36913.82 36912.42 366
test_method19.26 33519.12 33919.71 3509.09 3741.91 3767.79 36553.44 3281.42 36910.27 37135.80 36517.42 37125.11 36912.44 36724.38 36832.10 365
tmp_tt11.98 33714.73 3403.72 3522.28 3754.62 37519.44 36414.50 3750.47 37021.55 3699.58 36825.78 3574.57 37111.61 36827.37 3671.96 367
test1234.43 3405.78 3430.39 3540.97 3760.28 37746.33 3480.45 3770.31 3710.62 3721.50 3710.61 3770.11 3730.56 3700.63 3700.77 369
testmvs4.06 3415.28 3440.41 3530.64 3770.16 37842.54 3520.31 3780.26 3720.50 3731.40 3720.77 3760.17 3720.56 3700.55 3710.90 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k17.71 33623.62 3380.00 3550.00 3780.00 3790.00 36670.17 2510.00 3730.00 37474.25 29368.16 1010.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas5.20 3396.93 3420.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37362.39 1490.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re5.62 3387.50 3410.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37467.46 3430.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
MSC_two_6792asdad79.02 5983.14 10267.03 9280.75 12586.24 2377.27 3594.85 2683.78 127
No_MVS79.02 5983.14 10267.03 9280.75 12586.24 2377.27 3594.85 2683.78 127
eth-test20.00 378
eth-test0.00 378
OPU-MVS78.65 6683.44 10066.85 9483.62 4486.12 15866.82 11386.01 3161.72 14689.79 14183.08 149
test_0728_SECOND76.57 9186.20 5360.57 14683.77 4285.49 3585.90 3775.86 4294.39 4383.25 144
GSMVS70.05 300
test_part285.90 6266.44 9784.61 63
sam_mvs131.41 33370.05 300
sam_mvs31.21 337
ambc70.10 18577.74 17650.21 20974.28 15077.93 17579.26 12588.29 10954.11 22079.77 15764.43 12291.10 10980.30 208
MTGPAbinary80.63 128
test_post166.63 2462.08 36930.66 34259.33 32240.34 295
test_post1.99 37030.91 34054.76 330
patchmatchnet-post68.99 33431.32 33469.38 276
GG-mvs-BLEND52.24 31360.64 33629.21 35669.73 19942.41 35545.47 35752.33 36120.43 36768.16 28325.52 35965.42 34259.36 347
MTMP84.83 3319.26 374
test9_res72.12 7091.37 10177.40 242
agg_prior270.70 7790.93 11478.55 228
agg_prior84.44 8666.02 10178.62 16376.95 15680.34 146
test_prior470.14 6877.57 105
test_prior75.27 10882.15 12159.85 15284.33 6783.39 9182.58 165
新几何271.33 179
旧先验184.55 8360.36 14863.69 28387.05 12454.65 21783.34 22969.66 304
原ACMM274.78 142
testdata267.30 29048.34 251
segment_acmp68.30 100
test1276.51 9282.28 11960.94 14081.64 10773.60 20664.88 13385.19 5990.42 12783.38 140
plane_prior785.18 7166.21 99
plane_prior684.18 9065.31 10660.83 167
plane_prior585.49 3586.15 2871.09 7490.94 11284.82 94
plane_prior489.11 94
plane_prior184.46 85
n20.00 379
nn0.00 379
door-mid55.02 321
lessismore_v072.75 15079.60 14856.83 17357.37 31083.80 7489.01 9747.45 25678.74 17164.39 12386.49 18982.69 163
test1182.71 94
door52.91 332
HQP5-MVS58.80 162
BP-MVS67.38 104
HQP4-MVS71.59 23185.31 5283.74 129
HQP3-MVS84.12 7589.16 149
HQP2-MVS58.09 192
NP-MVS83.34 10163.07 12585.97 162
ACMMP++_ref89.47 147
ACMMP++91.96 90
Test By Simon62.56 145