This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33577.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 31877.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31577.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31776.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29278.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11195.62 994.88 5
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 10991.24 9687.61 52
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
test_040278.17 6979.48 5974.24 11383.50 9159.15 16072.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11788.68 15781.20 191
test_one_060185.84 6161.45 13385.63 2775.27 1785.62 4890.38 6476.72 27
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14392.40 7778.92 236
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 11993.61 6072.28 296
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14391.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12096.10 487.21 57
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39473.86 5286.31 1978.84 1994.03 5384.64 104
test_241102_ONE86.12 5361.06 13984.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 13983.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14683.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14683.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28074.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21091.64 8689.08 32
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
gg-mvs-nofinetune55.75 29956.75 29852.72 32762.87 33628.04 37868.92 21641.36 38671.09 4150.80 37292.63 1220.74 38966.86 30029.97 37072.41 32863.25 355
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
v7n79.37 5680.41 5276.28 9078.67 16155.81 18179.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24179.43 8278.04 17470.09 4979.17 12488.02 12253.04 22983.60 8158.05 18193.76 5990.79 19
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 26974.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 17992.77 7289.30 27
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
VDDNet71.60 14973.13 12867.02 23286.29 4741.11 30269.97 20366.50 27068.72 5574.74 18791.70 2559.90 17875.81 20748.58 25891.72 8484.15 125
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29470.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20295.47 1091.35 13
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
SSC-MVS61.79 26366.08 21848.89 34676.91 18410.00 40053.56 34847.37 36668.20 5876.56 16389.21 9054.13 22457.59 33754.75 20774.07 31979.08 234
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
Anonymous2024052972.56 13973.79 11568.86 21076.89 18745.21 27168.80 22177.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 23890.00 12887.18 59
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14580.18 7674.88 20566.93 6269.11 26488.95 10157.84 20386.12 2976.63 3789.77 13685.28 86
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15488.95 15587.56 53
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26669.26 21278.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19494.98 2091.05 15
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19681.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 17881.66 25582.87 162
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18474.69 14662.04 30466.16 7184.76 6093.23 549.47 25080.97 12865.66 11486.67 19185.02 94
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14179.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26790.00 12873.37 284
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 16988.54 15879.56 225
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior282.74 5165.45 76
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30353.70 22185.33 20681.92 184
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26669.47 20980.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19494.98 2091.93 8
LFMVS67.06 21067.89 19764.56 25078.02 16738.25 32670.81 19659.60 31165.18 8371.06 24486.56 14943.85 28075.22 21446.35 27889.63 13780.21 218
WB-MVS60.04 27764.19 23947.59 34876.09 19610.22 39952.44 35346.74 36765.17 8474.07 20287.48 12553.48 22755.28 34049.36 25072.84 32677.28 255
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 19880.45 6877.32 18365.11 8576.47 16886.80 13549.47 25083.77 7753.89 21992.72 7488.81 41
WR-MVS71.20 15272.48 14167.36 22784.98 7135.70 34564.43 28068.66 26065.05 8681.49 9986.43 15357.57 20576.48 20350.36 24293.32 6589.90 23
testf175.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 20987.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28165.65 26577.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20595.63 891.93 8
Gipumacopyleft69.55 17372.83 13459.70 29563.63 33453.97 19380.08 7875.93 19664.24 9473.49 20988.93 10257.89 20262.46 31959.75 17091.55 9162.67 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18676.47 11675.49 20064.10 9587.73 1792.24 1750.45 24581.30 11867.41 9791.46 9286.04 73
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16372.24 16571.56 23263.92 9678.59 12871.59 32866.22 11778.60 16667.58 9580.32 26789.00 35
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
plane_prior365.67 9963.82 9878.23 133
tt080576.12 8378.43 6869.20 20081.32 12641.37 30076.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12492.40 7787.17 60
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24370.41 20081.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18695.25 1490.94 17
ANet_high67.08 20969.94 16958.51 30457.55 36527.09 38058.43 32376.80 18963.56 10182.40 8891.93 2059.82 18064.98 31050.10 24488.86 15683.46 143
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16872.02 17071.50 23363.53 10278.58 13071.39 33165.98 11878.53 16767.30 10480.18 26989.23 29
pmmvs671.82 14773.66 11766.31 23975.94 20042.01 29666.99 24772.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23390.46 12087.22 56
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17580.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17778.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521166.02 21966.89 21363.43 26374.22 22438.14 32759.00 31766.13 27263.33 10769.76 26085.95 16951.88 23470.50 26844.23 29287.52 17181.64 188
CANet73.00 12871.84 14976.48 8775.82 20161.28 13574.81 14080.37 13063.17 10862.43 32180.50 23961.10 16785.16 6064.00 12784.34 22483.01 159
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13082.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21574.72 14582.73 8362.62 11170.77 24676.83 28769.96 8180.97 12860.20 16178.43 28783.45 144
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 17980.99 6176.84 18862.48 11371.24 24277.51 28361.51 15980.96 13152.04 22885.76 20171.22 306
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13177.45 10681.98 9462.47 11479.06 12580.19 24461.83 15478.79 16459.83 16887.35 17679.54 228
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17873.34 15884.67 5162.04 11572.19 22970.81 33265.90 12085.24 5658.64 17684.96 21481.95 183
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20782.60 9870.08 7792.80 7189.25 28
plane_prior65.18 10480.06 7961.88 11789.91 132
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33186.14 16252.37 23277.12 19550.67 23985.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS70.81 15771.44 15868.91 20979.07 15546.51 26067.82 23470.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23590.28 12284.61 107
FMVSNet171.06 15372.48 14166.81 23377.65 17540.68 30671.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24388.05 16484.54 112
TransMVSNet (Re)69.62 17171.63 15363.57 26076.51 19035.93 34365.75 26471.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24589.48 14184.38 119
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13677.56 10363.57 29560.95 12256.62 35182.75 21251.53 23881.24 11954.36 21590.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG67.47 20467.48 20467.46 22670.70 26554.69 18866.90 25078.17 17160.88 12370.41 24974.76 30161.22 16573.18 23747.38 27076.87 29574.49 276
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25660.73 12474.39 19678.44 27157.72 20482.78 9560.16 16389.60 13879.11 233
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14088.14 16271.73 301
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
Baseline_NR-MVSNet70.62 15973.19 12662.92 27076.97 18234.44 35368.84 21770.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 20995.27 1385.22 87
v875.07 9675.64 9473.35 12773.42 23547.46 25175.20 13581.45 10360.05 12885.64 4589.26 8858.08 19881.80 11169.71 8187.97 16790.79 19
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23287.19 18382.56 172
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22772.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18380.89 26089.17 31
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16577.32 10784.12 6559.08 13471.58 23485.96 16858.09 19685.30 5367.38 10189.16 14783.73 135
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20476.45 11876.12 19359.07 13774.04 20486.18 15952.18 23379.43 15459.75 17081.76 25084.03 126
v1075.69 8676.20 8774.16 11474.44 22248.69 23275.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23466.74 11281.96 10861.74 14689.40 14585.69 81
MG-MVS70.47 16171.34 15967.85 22279.26 14740.42 31074.67 14775.15 20458.41 14268.74 27688.14 12156.08 21783.69 8059.90 16781.71 25479.43 230
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22271.31 18771.32 23858.22 14375.40 18170.44 33458.16 19475.85 20562.51 14179.81 27388.48 44
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22271.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19564.62 27773.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25777.96 29278.31 242
test_yl65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
DCV-MVSNet65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24689.95 13080.89 201
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 21972.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 14986.15 19676.32 262
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 21978.47 16960.82 15781.07 25975.45 268
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19177.55 10473.42 21557.65 15272.66 22084.91 17932.02 34781.49 11548.43 26081.85 24881.04 195
FC-MVSNet-test73.32 11874.78 10168.93 20879.21 14936.57 33771.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18294.56 3491.23 14
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13483.29 4880.34 13257.43 15486.65 3191.79 2350.52 24386.01 3171.36 7094.65 3291.62 11
FPMVS59.43 28260.07 27357.51 30977.62 17671.52 4962.33 29750.92 35357.40 15569.40 26280.00 24839.14 31161.92 32337.47 33566.36 36039.09 390
testdata168.34 22957.24 156
MIMVSNet166.57 21469.23 17658.59 30381.26 12837.73 33264.06 28357.62 31657.02 15778.40 13290.75 4662.65 14458.10 33641.77 30689.58 14079.95 220
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 19966.64 26956.87 15876.81 15781.76 22568.78 8871.76 25761.81 14483.74 23073.18 286
LCM-MVSNet-Re69.10 18071.57 15661.70 27970.37 27134.30 35561.45 30079.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30187.33 17777.85 252
BH-untuned69.39 17669.46 17269.18 20177.96 16956.88 17468.47 22877.53 18056.77 16077.79 14079.63 25360.30 17580.20 14446.04 28180.65 26470.47 312
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11591.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 9991.26 9583.50 138
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
VPA-MVSNet68.71 18570.37 16763.72 25876.13 19538.06 32964.10 28271.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 26990.15 12583.37 147
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20174.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13781.84 24983.18 153
FIs72.56 13973.80 11468.84 21178.74 16037.74 33171.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 18893.36 6490.51 21
testing358.28 28958.38 28758.00 30777.45 17726.12 38460.78 30743.00 37756.02 16770.18 25375.76 29213.27 40267.24 29548.02 26580.89 26080.65 210
tfpnnormal66.48 21567.93 19662.16 27673.40 23636.65 33663.45 28864.99 28255.97 16872.82 21987.80 12457.06 21069.10 27948.31 26287.54 17080.72 208
baseline73.10 12273.96 11270.51 17771.46 25846.39 26372.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12587.27 18087.11 61
wuyk23d61.97 26066.25 21649.12 34458.19 36460.77 14866.32 25652.97 34855.93 17090.62 586.91 13373.07 5735.98 38920.63 39391.63 8750.62 379
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27474.71 30365.36 12675.75 20852.00 22979.00 28181.03 196
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 25970.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs168.40 18969.85 17164.04 25673.10 24339.94 31264.61 27870.50 25055.52 17373.97 20589.33 8663.91 13768.38 28349.68 24788.02 16583.81 131
v2v48272.55 14172.58 13972.43 15672.92 24846.72 25871.41 18479.13 15155.27 17481.17 10485.25 17655.41 21881.13 12167.25 10585.46 20289.43 26
thres100view90061.17 26861.09 26561.39 28372.14 25435.01 34965.42 26956.99 32455.23 17570.71 24779.90 24932.07 34572.09 25135.61 34881.73 25177.08 260
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16690.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16571.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20680.84 26272.74 291
GBi-Net68.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
test168.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
FMVSNet267.48 20368.21 19365.29 24573.14 24038.94 31968.81 21971.21 24454.81 17876.73 15986.48 15148.63 25974.60 22347.98 26686.11 19882.35 175
v14869.38 17769.39 17369.36 19769.14 28544.56 27568.83 21872.70 22254.79 18178.59 12884.12 18854.69 22076.74 20259.40 17382.20 24386.79 63
thres600view761.82 26261.38 26363.12 26571.81 25634.93 35064.64 27656.99 32454.78 18270.33 25179.74 25132.07 34572.42 24838.61 32583.46 23582.02 181
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20075.05 13663.27 29754.69 18378.87 12784.37 18526.63 37481.15 12063.95 12887.93 16889.51 25
RPMNet65.77 22165.08 23567.84 22366.37 31148.24 23770.93 19386.27 1954.66 18461.35 32586.77 13833.29 33585.67 4755.93 19670.17 34469.62 320
VNet64.01 24365.15 23160.57 29073.28 23835.61 34657.60 32767.08 26754.61 18566.76 29283.37 20056.28 21566.87 29942.19 30285.20 20979.23 232
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29180.63 23759.44 18281.74 11346.91 27484.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22674.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15092.34 7988.94 37
canonicalmvs72.29 14473.38 12269.04 20374.23 22347.37 25273.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18587.28 17984.40 118
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19871.12 24554.28 18977.89 13783.41 19749.04 25380.98 12763.62 13390.77 11678.58 239
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21471.45 23554.28 18977.89 13778.26 27349.04 25379.23 15563.62 13389.13 15180.92 200
test250661.23 26760.85 26862.38 27478.80 15827.88 37967.33 24337.42 39154.23 19167.55 28688.68 10717.87 39574.39 22646.33 27989.41 14384.86 97
ECVR-MVScopyleft64.82 22965.22 22763.60 25978.80 15831.14 36966.97 24856.47 33054.23 19169.94 25688.68 10737.23 32274.81 22145.28 28989.41 14384.86 97
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
VPNet65.58 22267.56 20159.65 29679.72 13930.17 37260.27 31162.14 30054.19 19471.24 24286.63 14658.80 18967.62 28944.17 29390.87 11381.18 192
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23562.19 15283.86 7668.02 9090.92 10983.65 136
test111164.62 23265.19 22862.93 26979.01 15629.91 37365.45 26854.41 33954.09 19671.47 24188.48 11137.02 32374.29 22846.83 27689.94 13184.58 110
Patchmtry60.91 26963.01 25254.62 31966.10 31726.27 38367.47 23856.40 33154.05 19772.04 23086.66 14333.19 33660.17 32743.69 29487.45 17477.42 253
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23563.78 28682.13 9054.00 19868.96 26875.17 29958.95 18880.06 14658.55 17782.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs70.54 16071.00 16269.15 20273.50 23348.04 24269.85 20679.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18487.21 18284.72 102
v114473.29 11973.39 12173.01 13674.12 22748.11 23972.01 17181.08 11453.83 20281.77 9484.68 18058.07 19981.91 10968.10 8886.86 18688.99 36
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
Vis-MVSNet (Re-imp)62.74 25563.21 25061.34 28472.19 25331.56 36667.31 24453.87 34053.60 20469.88 25883.37 20040.52 30170.98 26441.40 30886.78 18981.48 190
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13280.58 6682.12 9153.54 20583.93 7091.03 3749.49 24985.97 3373.26 5793.08 6791.59 12
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
MDA-MVSNet-bldmvs62.34 25961.73 25764.16 25261.64 34249.90 22248.11 36357.24 32253.31 20780.95 10679.39 25749.00 25561.55 32445.92 28280.05 27081.03 196
TinyColmap67.98 19669.28 17464.08 25467.98 29946.82 25770.04 20275.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28488.01 16672.83 289
tfpn200view960.35 27559.97 27461.51 28170.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25177.08 260
thres40060.77 27259.97 27463.15 26470.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25182.02 181
v119273.40 11673.42 12073.32 12974.65 21948.67 23372.21 16681.73 9852.76 21181.85 9284.56 18257.12 20882.24 10568.58 8487.33 17789.06 33
MVS_Test69.84 16870.71 16567.24 22867.49 30443.25 28869.87 20581.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11078.74 28383.96 127
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18369.39 21081.29 10652.44 21364.53 30370.69 33360.33 17482.30 10354.27 21676.31 29880.75 206
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15783.98 3675.72 19852.27 21463.53 31776.74 28843.19 28480.56 13472.28 6778.67 28578.14 246
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19068.77 22283.43 7552.12 21676.79 15874.44 30669.54 8583.91 7555.88 19793.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT53.35 31356.47 30043.99 36464.19 33017.46 39559.15 31543.10 37652.11 21754.74 36086.95 13229.97 36549.98 34943.62 29574.40 31564.53 353
CANet_DTU64.04 24263.83 24264.66 24968.39 29142.97 29073.45 15774.50 20952.05 21854.78 35975.44 29843.99 27970.42 27053.49 22378.41 28880.59 212
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29151.92 22083.13 7790.26 7039.21 31069.91 27270.73 7391.60 8984.56 111
v124073.06 12573.14 12772.84 14574.74 21547.27 25471.88 17881.11 11151.80 22182.28 8984.21 18756.22 21682.34 10268.82 8387.17 18488.91 38
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v192192072.96 13172.98 13272.89 14474.67 21647.58 24971.92 17680.69 12051.70 22381.69 9883.89 19256.58 21482.25 10468.34 8687.36 17588.82 40
v14419272.99 12973.06 13072.77 14674.58 22047.48 25071.90 17780.44 12851.57 22481.46 10084.11 18958.04 20082.12 10667.98 9287.47 17388.70 43
FMVSNet365.00 22865.16 22964.52 25169.47 28237.56 33466.63 25370.38 25151.55 22574.72 18883.27 20537.89 31974.44 22547.12 27185.37 20381.57 189
c3_l69.82 16969.89 17069.61 19466.24 31443.48 28468.12 23179.61 14351.43 22677.72 14180.18 24554.61 22278.15 18363.62 13387.50 17287.20 58
SDMVSNet66.36 21767.85 19961.88 27873.04 24646.14 26558.54 32171.36 23751.42 22768.93 27082.72 21365.62 12262.22 32254.41 21384.67 21677.28 255
sd_testset63.55 24465.38 22558.07 30673.04 24638.83 32157.41 32865.44 27951.42 22768.93 27082.72 21363.76 13858.11 33541.05 31084.67 21677.28 255
V4271.06 15370.83 16471.72 16467.25 30547.14 25565.94 25980.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11280.81 26389.23 29
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
GA-MVS62.91 25261.66 25866.66 23767.09 30744.49 27661.18 30469.36 25751.33 23069.33 26374.47 30536.83 32474.94 21850.60 24074.72 31080.57 213
CL-MVSNet_self_test62.44 25863.40 24759.55 29772.34 25232.38 36256.39 33264.84 28451.21 23267.46 28781.01 23250.75 24263.51 31738.47 32788.12 16382.75 166
PM-MVS64.49 23563.61 24567.14 23176.68 18975.15 2768.49 22742.85 37851.17 23377.85 13980.51 23845.76 26766.31 30652.83 22776.35 29759.96 367
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18791.08 10473.00 287
JIA-IIPM54.03 31051.62 32461.25 28559.14 35955.21 18559.10 31647.72 36350.85 23550.31 37685.81 17120.10 39263.97 31336.16 34555.41 38664.55 352
KD-MVS_self_test66.38 21667.51 20262.97 26861.76 34134.39 35458.11 32575.30 20150.84 23677.12 14885.42 17356.84 21269.44 27551.07 23691.16 9885.08 92
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26167.58 23678.81 15650.72 23778.13 13580.34 24150.15 24780.34 13960.18 16284.65 21887.74 50
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23466.06 25878.32 16850.62 23871.48 24075.54 29568.75 8979.59 15250.55 24178.73 28482.86 163
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20375.96 12973.54 21350.56 23969.90 25782.85 21024.76 38383.73 7865.40 11686.33 19585.22 87
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
dcpmvs_271.02 15572.65 13866.16 24076.06 19950.49 21371.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29461.54 14883.71 23280.71 209
thres20057.55 29357.02 29559.17 29867.89 30134.93 35058.91 31957.25 32150.24 24264.01 30971.46 33032.49 34171.39 26131.31 36479.57 27771.19 308
thisisatest053067.05 21165.16 22972.73 14973.10 24350.55 21271.26 18963.91 29350.22 24374.46 19580.75 23526.81 37380.25 14159.43 17286.50 19387.37 54
test20.0355.74 30057.51 29350.42 33559.89 35532.09 36450.63 35749.01 35950.11 24465.07 30183.23 20745.61 26948.11 35730.22 36883.82 22971.07 309
BH-w/o64.81 23064.29 23866.36 23876.08 19854.71 18765.61 26675.23 20350.10 24571.05 24571.86 32754.33 22379.02 15938.20 32976.14 29965.36 345
cl____68.26 19568.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.42 21748.74 25775.38 21160.92 15689.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.43 21648.74 25775.38 21160.94 15589.81 13385.81 76
EPNet_dtu58.93 28558.52 28460.16 29467.91 30047.70 24869.97 20358.02 31549.73 24847.28 38073.02 32038.14 31562.34 32036.57 34185.99 19970.43 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM69.18 17969.26 17568.94 20771.61 25752.58 20280.37 7178.79 15949.63 24973.51 20885.14 17753.66 22679.12 15755.11 20475.54 30375.11 273
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24675.31 13481.11 11149.62 25066.33 29379.27 25961.53 15882.96 9348.12 26481.50 25781.74 187
TR-MVS64.59 23363.54 24667.73 22575.75 20350.83 21163.39 28970.29 25249.33 25171.55 23874.55 30450.94 24178.46 17040.43 31475.69 30173.89 281
cl2267.14 20866.51 21469.03 20463.20 33543.46 28566.88 25176.25 19249.22 25274.48 19477.88 27945.49 27077.40 19360.64 15884.59 22086.24 69
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21571.39 23649.17 25371.70 23278.07 27837.62 32179.21 15661.81 14489.15 14980.82 203
miper_ehance_all_eth68.36 19068.16 19568.98 20565.14 32543.34 28667.07 24678.92 15549.11 25476.21 17277.72 28053.48 22777.92 18661.16 15284.59 22085.68 82
ab-mvs64.11 24165.13 23261.05 28671.99 25538.03 33067.59 23568.79 25949.08 25565.32 29986.26 15758.02 20166.85 30139.33 31879.79 27578.27 243
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21270.56 26853.91 19478.29 9677.35 18248.85 25670.22 25283.52 19652.65 23176.93 19755.31 20381.99 24575.49 267
MAR-MVS67.72 20066.16 21772.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29768.58 35357.01 21177.79 18846.68 27781.92 24674.42 277
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29079.18 26251.42 23978.38 17454.39 21479.72 27678.60 238
diffmvspermissive67.42 20567.50 20367.20 22962.26 33945.21 27164.87 27477.04 18648.21 25971.74 23179.70 25258.40 19271.17 26364.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-SCA-FT67.68 20166.07 21972.49 15573.34 23758.20 17063.80 28565.55 27848.10 26076.91 15282.64 21545.20 27178.84 16261.20 15177.89 29380.44 215
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
testdata64.13 25385.87 5963.34 11961.80 30547.83 26476.42 17086.60 14848.83 25662.31 32154.46 21281.26 25866.74 339
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16470.53 19781.23 10947.79 26564.16 30780.21 24251.32 24083.12 9060.14 16484.95 21574.83 274
无先验74.82 13970.94 24747.75 26676.85 20054.47 21172.09 298
IB-MVS49.67 1859.69 28056.96 29667.90 22168.19 29650.30 21661.42 30165.18 28147.57 26755.83 35567.15 36023.77 38679.60 15143.56 29679.97 27173.79 282
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs55.84 29855.45 30857.01 31060.33 34933.20 36065.89 26059.29 31347.52 26856.04 35373.60 31431.05 35768.06 28640.64 31364.64 36369.77 318
PatchMatch-RL58.68 28757.72 29161.57 28076.21 19473.59 3961.83 29849.00 36047.30 26961.08 32768.97 34750.16 24659.01 33036.06 34768.84 35152.10 377
Anonymous2024052163.55 24466.07 21955.99 31466.18 31644.04 27968.77 22268.80 25846.99 27072.57 22185.84 17039.87 30550.22 34853.40 22692.23 8173.71 283
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 13890.78 11483.49 139
EMVS44.61 35044.45 35545.10 36048.91 39143.00 28937.92 38341.10 38846.75 27238.00 39348.43 39126.42 37546.27 36137.11 33875.38 30646.03 384
IterMVS63.12 25062.48 25665.02 24866.34 31352.86 19963.81 28462.25 29946.57 27371.51 23980.40 24044.60 27666.82 30251.38 23475.47 30475.38 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
E-PMN45.17 34645.36 34944.60 36150.07 38842.75 29138.66 38242.29 38246.39 27439.55 39151.15 38826.00 37745.37 36637.68 33276.41 29645.69 385
baseline157.82 29258.36 28856.19 31369.17 28430.76 37162.94 29555.21 33446.04 27563.83 31278.47 27041.20 29563.68 31539.44 31768.99 35074.13 278
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 15974.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12189.09 15380.73 207
PVSNet_BlendedMVS65.38 22364.30 23768.61 21369.81 27749.36 22865.60 26778.96 15345.50 27959.98 33478.61 26951.82 23578.20 18044.30 29084.11 22678.27 243
IU-MVS86.12 5360.90 14380.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
testgi54.00 31256.86 29745.45 35758.20 36325.81 38549.05 35949.50 35845.43 28267.84 28181.17 23051.81 23743.20 37729.30 37379.41 27867.34 334
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15373.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25689.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0567.34 20765.62 22272.50 15469.82 27647.06 25672.19 16776.86 18745.32 28472.86 21782.85 21020.53 39083.73 7861.13 15389.02 15486.70 65
TAMVS65.31 22463.75 24369.97 19082.23 11559.76 15566.78 25263.37 29645.20 28569.79 25979.37 25847.42 26572.17 25034.48 35385.15 21077.99 250
旧先验271.17 19045.11 28678.54 13161.28 32559.19 174
PS-MVSNAJ64.27 24063.73 24465.90 24377.82 17151.42 20763.33 29072.33 22645.09 28761.60 32368.04 35462.39 14973.95 23249.07 25273.87 32172.34 294
xiu_mvs_v2_base64.43 23763.96 24165.85 24477.72 17351.32 20863.63 28772.31 22745.06 28861.70 32269.66 34262.56 14573.93 23349.06 25373.91 32072.31 295
LF4IMVS67.50 20267.31 20668.08 22058.86 36061.93 12771.43 18375.90 19744.67 28972.42 22480.20 24357.16 20670.44 26958.99 17586.12 19771.88 299
CDS-MVSNet64.33 23962.66 25569.35 19880.44 13458.28 16965.26 27065.66 27644.36 29067.30 28975.54 29543.27 28371.77 25637.68 33284.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_lstm_enhance61.97 26061.63 26062.98 26760.04 35045.74 26847.53 36570.95 24644.04 29173.06 21578.84 26839.72 30660.33 32655.82 19884.64 21982.88 161
新几何169.99 18988.37 3471.34 5162.08 30243.85 29274.99 18486.11 16452.85 23070.57 26750.99 23783.23 23768.05 330
Syy-MVS54.13 30855.45 30850.18 33668.77 28823.59 38855.02 34144.55 37243.80 29358.05 34564.07 36546.22 26658.83 33146.16 28072.36 32968.12 328
myMVS_eth3d50.36 33150.52 33649.88 33768.77 28822.69 39055.02 34144.55 37243.80 29358.05 34564.07 36514.16 40158.83 33133.90 35772.36 32968.12 328
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17378.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16491.03 10580.45 214
OpenMVS_ROBcopyleft54.93 1763.23 24963.28 24863.07 26669.81 27745.34 27068.52 22667.14 26643.74 29670.61 24879.22 26047.90 26372.66 24248.75 25573.84 32271.21 307
FMVSNet555.08 30455.54 30753.71 32165.80 31833.50 35956.22 33452.50 35043.72 29761.06 32883.38 19925.46 38054.87 34130.11 36981.64 25672.75 290
MVP-Stereo61.56 26559.22 27868.58 21479.28 14660.44 15069.20 21371.57 23143.58 29856.42 35278.37 27239.57 30876.46 20434.86 35260.16 37568.86 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous65.08 22765.49 22463.83 25763.79 33237.60 33366.52 25569.82 25443.44 29973.46 21086.08 16558.79 19071.75 25851.90 23075.63 30282.15 180
test-LLR50.43 33050.69 33549.64 34060.76 34641.87 29753.18 34945.48 37043.41 30049.41 37760.47 37829.22 36844.73 37042.09 30372.14 33262.33 362
test0.0.03 147.72 33948.31 34145.93 35555.53 37529.39 37446.40 36941.21 38743.41 30055.81 35667.65 35529.22 36843.77 37625.73 38569.87 34664.62 351
SCA58.57 28858.04 28960.17 29370.17 27341.07 30365.19 27153.38 34643.34 30261.00 33073.48 31545.20 27169.38 27640.34 31570.31 34370.05 315
ET-MVSNet_ETH3D63.32 24760.69 27071.20 17170.15 27455.66 18265.02 27364.32 28943.28 30368.99 26772.05 32625.46 38078.19 18254.16 21882.80 23979.74 224
miper_enhance_ethall65.86 22065.05 23668.28 21961.62 34342.62 29364.74 27577.97 17542.52 30473.42 21172.79 32149.66 24877.68 19058.12 18084.59 22084.54 112
cascas64.59 23362.77 25470.05 18875.27 20550.02 21961.79 29971.61 23042.46 30563.68 31468.89 34949.33 25280.35 13847.82 26884.05 22779.78 223
PVSNet_Blended62.90 25361.64 25966.69 23669.81 27749.36 22861.23 30378.96 15342.04 30659.98 33468.86 35051.82 23578.20 18044.30 29077.77 29472.52 292
MVSTER63.29 24861.60 26168.36 21559.77 35646.21 26460.62 30871.32 23841.83 30775.40 18179.12 26330.25 36275.85 20556.30 19379.81 27383.03 158
MIMVSNet54.39 30756.12 30349.20 34272.57 25030.91 37059.98 31248.43 36241.66 30855.94 35483.86 19341.19 29650.42 34726.05 38275.38 30666.27 340
KD-MVS_2432*160052.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
miper_refine_blended52.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
dmvs_testset45.26 34547.51 34338.49 37359.96 35314.71 39758.50 32243.39 37541.30 31151.79 36956.48 38239.44 30949.91 35121.42 39155.35 38750.85 378
patch_mono-262.73 25664.08 24058.68 30270.36 27255.87 18060.84 30664.11 29241.23 31264.04 30878.22 27460.00 17648.80 35254.17 21783.71 23271.37 303
new-patchmatchnet52.89 31555.76 30644.26 36359.94 3546.31 40137.36 38550.76 35541.10 31364.28 30679.82 25044.77 27448.43 35636.24 34487.61 16978.03 248
test22287.30 3769.15 7367.85 23359.59 31241.06 31473.05 21685.72 17248.03 26280.65 26466.92 335
Patchmatch-RL test59.95 27859.12 27962.44 27372.46 25154.61 18959.63 31447.51 36541.05 31574.58 19374.30 30831.06 35665.31 30751.61 23179.85 27267.39 332
fmvsm_s_conf0.5_n_a67.00 21265.95 22170.17 18469.72 28161.16 13873.34 15856.83 32640.96 31668.36 27780.08 24762.84 14267.57 29166.90 10874.50 31481.78 186
fmvsm_s_conf0.5_n66.34 21865.27 22669.57 19568.20 29559.14 16271.66 18056.48 32940.92 31767.78 28279.46 25561.23 16366.90 29867.39 9974.32 31882.66 169
thisisatest051560.48 27457.86 29068.34 21667.25 30546.42 26160.58 30962.14 30040.82 31863.58 31669.12 34526.28 37678.34 17648.83 25482.13 24480.26 217
fmvsm_s_conf0.1_n_a67.37 20666.36 21570.37 17970.86 26261.17 13774.00 15557.18 32340.77 31968.83 27580.88 23363.11 14167.61 29066.94 10674.72 31082.33 178
ppachtmachnet_test60.26 27659.61 27762.20 27567.70 30244.33 27758.18 32460.96 30740.75 32065.80 29672.57 32241.23 29463.92 31446.87 27582.42 24278.33 241
fmvsm_s_conf0.1_n66.60 21365.54 22369.77 19268.99 28759.15 16072.12 16856.74 32840.72 32168.25 28080.14 24661.18 16666.92 29767.34 10374.40 31583.23 152
PAPM61.79 26360.37 27266.05 24176.09 19641.87 29769.30 21176.79 19040.64 32253.80 36479.62 25444.38 27782.92 9429.64 37273.11 32573.36 285
our_test_356.46 29656.51 29956.30 31267.70 30239.66 31455.36 34052.34 35140.57 32363.85 31169.91 34140.04 30458.22 33443.49 29775.29 30871.03 310
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23170.62 7568.69 28069.74 8083.60 23483.14 154
PatchmatchNetpermissive54.60 30654.27 31255.59 31565.17 32439.08 31666.92 24951.80 35239.89 32558.39 34273.12 31931.69 35058.33 33343.01 29958.38 38169.38 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dmvs_re49.91 33450.77 33447.34 34959.98 35138.86 32053.18 34953.58 34339.75 32655.06 35861.58 37436.42 32644.40 37229.15 37768.23 35358.75 370
D2MVS62.58 25761.05 26667.20 22963.85 33147.92 24356.29 33369.58 25539.32 32770.07 25578.19 27534.93 33072.68 24153.44 22483.74 23081.00 198
Patchmatch-test47.93 33849.96 33941.84 36757.42 36624.26 38748.75 36041.49 38539.30 32856.79 35073.48 31530.48 36133.87 39029.29 37472.61 32767.39 332
HY-MVS49.31 1957.96 29157.59 29259.10 30066.85 31036.17 34065.13 27265.39 28039.24 32954.69 36178.14 27644.28 27867.18 29633.75 35870.79 33973.95 280
baseline255.57 30252.74 31964.05 25565.26 32144.11 27862.38 29654.43 33839.03 33051.21 37067.35 35833.66 33472.45 24737.14 33764.22 36575.60 266
XXY-MVS55.19 30357.40 29448.56 34764.45 32934.84 35251.54 35553.59 34238.99 33163.79 31379.43 25656.59 21345.57 36336.92 33971.29 33665.25 346
pmmvs-eth3d64.41 23863.27 24967.82 22475.81 20260.18 15269.49 20862.05 30338.81 33274.13 20082.23 21943.76 28168.65 28142.53 30080.63 26674.63 275
MDA-MVSNet_test_wron52.57 31853.49 31749.81 33954.24 37936.47 33840.48 37946.58 36838.13 33375.47 18073.32 31741.05 29943.85 37540.98 31171.20 33769.10 326
YYNet152.58 31753.50 31549.85 33854.15 38036.45 33940.53 37846.55 36938.09 33475.52 17973.31 31841.08 29843.88 37441.10 30971.14 33869.21 324
1112_ss59.48 28158.99 28160.96 28877.84 17042.39 29561.42 30168.45 26237.96 33559.93 33767.46 35645.11 27365.07 30940.89 31271.81 33475.41 269
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20178.35 16737.69 33674.29 19778.89 26761.10 16768.10 28565.87 11379.07 28085.53 83
UnsupCasMVSNet_eth52.26 32053.29 31849.16 34355.08 37633.67 35850.03 35858.79 31437.67 33763.43 31974.75 30241.82 29245.83 36238.59 32659.42 37767.98 331
tpm50.60 32952.42 32245.14 35965.18 32326.29 38260.30 31043.50 37437.41 33857.01 34879.09 26430.20 36442.32 37832.77 36166.36 36066.81 338
gm-plane-assit62.51 33733.91 35737.25 33962.71 37072.74 24038.70 323
CostFormer57.35 29456.14 30260.97 28763.76 33338.43 32367.50 23760.22 30937.14 34059.12 34176.34 29032.78 33971.99 25439.12 32169.27 34972.47 293
pmmvs460.78 27159.04 28066.00 24273.06 24557.67 17264.53 27960.22 30936.91 34165.96 29477.27 28439.66 30768.54 28238.87 32274.89 30971.80 300
PVSNet43.83 2151.56 32551.17 32852.73 32668.34 29338.27 32548.22 36253.56 34436.41 34254.29 36264.94 36434.60 33154.20 34430.34 36769.87 34665.71 343
tpmrst50.15 33251.38 32746.45 35456.05 37124.77 38664.40 28149.98 35636.14 34353.32 36569.59 34335.16 32948.69 35339.24 31958.51 38065.89 341
MS-PatchMatch55.59 30154.89 31057.68 30869.18 28349.05 23161.00 30562.93 29835.98 34458.36 34368.93 34836.71 32566.59 30437.62 33463.30 36757.39 373
MDTV_nov1_ep1354.05 31465.54 32029.30 37559.00 31755.22 33335.96 34552.44 36675.98 29130.77 35959.62 32838.21 32873.33 324
USDC62.80 25463.10 25161.89 27765.19 32243.30 28767.42 23974.20 21035.80 34672.25 22784.48 18445.67 26871.95 25537.95 33184.97 21170.42 314
jason64.47 23662.84 25369.34 19976.91 18459.20 15667.15 24565.67 27535.29 34765.16 30076.74 28844.67 27570.68 26554.74 20879.28 27978.14 246
jason: jason.
Anonymous2023120654.13 30855.82 30549.04 34570.89 26135.96 34251.73 35450.87 35434.86 34862.49 32079.22 26042.52 29044.29 37327.95 37981.88 24766.88 336
dp44.09 35144.88 35341.72 36958.53 36223.18 38954.70 34442.38 38134.80 34944.25 38865.61 36224.48 38544.80 36929.77 37149.42 38957.18 374
Test_1112_low_res58.78 28658.69 28359.04 30179.41 14338.13 32857.62 32666.98 26834.74 35059.62 34077.56 28242.92 28663.65 31638.66 32470.73 34075.35 271
EPMVS45.74 34346.53 34643.39 36554.14 38122.33 39255.02 34135.00 39434.69 35151.09 37170.20 33825.92 37842.04 38037.19 33655.50 38565.78 342
lupinMVS63.36 24661.49 26268.97 20674.93 20959.19 15765.80 26364.52 28834.68 35263.53 31774.25 30943.19 28470.62 26653.88 22078.67 28577.10 259
UnsupCasMVSNet_bld50.01 33351.03 33146.95 35058.61 36132.64 36148.31 36153.27 34734.27 35360.47 33271.53 32941.40 29347.07 36030.68 36660.78 37461.13 365
CMPMVSbinary48.73 2061.54 26660.89 26763.52 26161.08 34551.55 20668.07 23268.00 26433.88 35465.87 29581.25 22937.91 31867.71 28749.32 25182.60 24171.31 305
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WTY-MVS49.39 33550.31 33846.62 35361.22 34432.00 36546.61 36849.77 35733.87 35554.12 36369.55 34441.96 29145.40 36531.28 36564.42 36462.47 360
N_pmnet52.06 32151.11 32954.92 31659.64 35771.03 5337.42 38461.62 30633.68 35657.12 34772.10 32337.94 31731.03 39129.13 37871.35 33562.70 357
HyFIR lowres test63.01 25160.47 27170.61 17483.04 10254.10 19259.93 31372.24 22833.67 35769.00 26675.63 29438.69 31376.93 19736.60 34075.45 30580.81 205
tpm256.12 29754.64 31160.55 29166.24 31436.01 34168.14 23056.77 32733.60 35858.25 34475.52 29730.25 36274.33 22733.27 35969.76 34871.32 304
131459.83 27958.86 28262.74 27165.71 31944.78 27468.59 22472.63 22333.54 35961.05 32967.29 35943.62 28271.26 26249.49 24967.84 35772.19 297
CR-MVSNet58.96 28458.49 28560.36 29266.37 31148.24 23770.93 19356.40 33132.87 36061.35 32586.66 14333.19 33663.22 31848.50 25970.17 34469.62 320
MVS60.62 27359.97 27462.58 27268.13 29747.28 25368.59 22473.96 21132.19 36159.94 33668.86 35050.48 24477.64 19141.85 30575.74 30062.83 356
tpm cat154.02 31152.63 32058.19 30564.85 32839.86 31366.26 25757.28 32032.16 36256.90 34970.39 33632.75 34065.30 30834.29 35458.79 37869.41 322
pmmvs552.49 31952.58 32152.21 32954.99 37732.38 36255.45 33953.84 34132.15 36355.49 35774.81 30038.08 31657.37 33834.02 35574.40 31566.88 336
PMMVS237.74 35840.87 35828.36 37642.41 3975.35 40224.61 38927.75 39632.15 36347.85 37970.27 33735.85 32829.51 39319.08 39467.85 35650.22 380
sss47.59 34048.32 34045.40 35856.73 37033.96 35645.17 37148.51 36132.11 36552.37 36765.79 36140.39 30241.91 38131.85 36261.97 37160.35 366
test-mter48.56 33748.20 34249.64 34060.76 34641.87 29753.18 34945.48 37031.91 36649.41 37760.47 37818.34 39344.73 37042.09 30372.14 33262.33 362
MDTV_nov1_ep13_2view18.41 39453.74 34731.57 36744.89 38529.90 36632.93 36071.48 302
ADS-MVSNet248.76 33647.25 34553.29 32555.90 37340.54 30947.34 36654.99 33631.41 36850.48 37372.06 32431.23 35354.26 34325.93 38355.93 38365.07 347
ADS-MVSNet44.62 34945.58 34841.73 36855.90 37320.83 39347.34 36639.94 38931.41 36850.48 37372.06 32431.23 35339.31 38525.93 38355.93 38365.07 347
PVSNet_036.71 2241.12 35640.78 35942.14 36659.97 35240.13 31140.97 37742.24 38330.81 37044.86 38649.41 39040.70 30045.12 36723.15 38934.96 39341.16 389
test_vis1_n_192052.96 31453.50 31551.32 33259.15 35844.90 27356.13 33564.29 29030.56 37159.87 33860.68 37640.16 30347.47 35848.25 26362.46 36961.58 364
MVS-HIRNet45.53 34447.29 34440.24 37062.29 33826.82 38156.02 33637.41 39229.74 37243.69 39081.27 22833.96 33255.48 33924.46 38856.79 38238.43 391
CHOSEN 1792x268858.09 29056.30 30163.45 26279.95 13750.93 21054.07 34665.59 27728.56 37361.53 32474.33 30741.09 29766.52 30533.91 35667.69 35872.92 288
TESTMET0.1,145.17 34644.93 35245.89 35656.02 37238.31 32453.18 34941.94 38427.85 37444.86 38656.47 38317.93 39441.50 38238.08 33068.06 35457.85 371
test_fmvs356.78 29555.99 30459.12 29953.96 38348.09 24058.76 32066.22 27127.54 37576.66 16068.69 35225.32 38251.31 34553.42 22573.38 32377.97 251
CHOSEN 280x42041.62 35539.89 36046.80 35261.81 34051.59 20533.56 38835.74 39327.48 37637.64 39453.53 38423.24 38742.09 37927.39 38058.64 37946.72 383
EU-MVSNet60.82 27060.80 26960.86 28968.37 29241.16 30172.27 16468.27 26326.96 37769.08 26575.71 29332.09 34467.44 29255.59 20178.90 28273.97 279
test_cas_vis1_n_192050.90 32850.92 33250.83 33454.12 38247.80 24551.44 35654.61 33726.95 37863.95 31060.85 37537.86 32044.97 36845.53 28562.97 36859.72 368
CVMVSNet59.21 28358.44 28661.51 28173.94 22947.76 24771.31 18764.56 28726.91 37960.34 33370.44 33436.24 32767.65 28853.57 22268.66 35269.12 325
test_fmvs254.80 30554.11 31356.88 31151.76 38749.95 22156.70 33165.80 27426.22 38069.42 26165.25 36331.82 34849.98 34949.63 24870.36 34270.71 311
test_vis1_n51.27 32750.41 33753.83 32056.99 36750.01 22056.75 33060.53 30825.68 38159.74 33957.86 38129.40 36747.41 35943.10 29863.66 36664.08 354
new_pmnet37.55 35939.80 36130.79 37556.83 36816.46 39639.35 38130.65 39525.59 38245.26 38461.60 37324.54 38428.02 39421.60 39052.80 38847.90 382
test_fmvs1_n52.70 31652.01 32354.76 31753.83 38450.36 21455.80 33765.90 27324.96 38365.39 29860.64 37727.69 37148.46 35445.88 28367.99 35565.46 344
MVEpermissive27.91 2336.69 36035.64 36339.84 37143.37 39635.85 34419.49 39024.61 39824.68 38439.05 39262.63 37138.67 31427.10 39521.04 39247.25 39156.56 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_fmvs151.51 32650.86 33353.48 32249.72 39049.35 23054.11 34564.96 28324.64 38563.66 31559.61 38028.33 37048.45 35545.38 28867.30 35962.66 359
pmmvs346.71 34145.09 35151.55 33156.76 36948.25 23655.78 33839.53 39024.13 38650.35 37563.40 36715.90 39851.08 34629.29 37470.69 34155.33 376
test_vis3_rt51.94 32451.04 33054.65 31846.32 39450.13 21844.34 37478.17 17123.62 38768.95 26962.81 36921.41 38838.52 38741.49 30772.22 33175.30 272
mvsany_test343.76 35341.01 35752.01 33048.09 39257.74 17142.47 37623.85 40023.30 38864.80 30262.17 37227.12 37240.59 38329.17 37648.11 39057.69 372
PMMVS44.69 34843.95 35646.92 35150.05 38953.47 19748.08 36442.40 38022.36 38944.01 38953.05 38642.60 28945.49 36431.69 36361.36 37341.79 388
test_f43.79 35245.63 34738.24 37442.29 39838.58 32234.76 38747.68 36422.22 39067.34 28863.15 36831.82 34830.60 39239.19 32062.28 37045.53 386
test_vis1_rt46.70 34245.24 35051.06 33344.58 39551.04 20939.91 38067.56 26521.84 39151.94 36850.79 38933.83 33339.77 38435.25 35161.50 37262.38 361
mvsany_test137.88 35735.74 36244.28 36247.28 39349.90 22236.54 38624.37 39919.56 39245.76 38253.46 38532.99 33837.97 38826.17 38135.52 39244.99 387
DSMNet-mixed43.18 35444.66 35438.75 37254.75 37828.88 37757.06 32927.42 39713.47 39347.27 38177.67 28138.83 31239.29 38625.32 38760.12 37648.08 381
DeepMVS_CXcopyleft11.83 37815.51 39913.86 39811.25 4035.76 39420.85 39626.46 39317.06 3979.22 3979.69 39713.82 39612.42 393
test_method19.26 36119.12 36519.71 3779.09 4001.91 4047.79 39253.44 3451.42 39510.27 39735.80 39217.42 39625.11 39612.44 39524.38 39532.10 392
EGC-MVSNET64.77 23161.17 26475.60 9886.90 4274.47 3084.04 3568.62 2610.60 3961.13 39891.61 2865.32 12774.15 23064.01 12688.28 16078.17 245
tmp_tt11.98 36314.73 3663.72 3792.28 4014.62 40319.44 39114.50 4020.47 39721.55 3959.58 39525.78 3794.57 39811.61 39627.37 3941.96 394
test1234.43 3665.78 3690.39 3810.97 4020.28 40546.33 3700.45 4040.31 3980.62 3991.50 3980.61 4040.11 4000.56 3980.63 3970.77 396
testmvs4.06 3675.28 3700.41 3800.64 4030.16 40642.54 3750.31 4050.26 3990.50 4001.40 3990.77 4030.17 3990.56 3980.55 3980.90 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k17.71 36223.62 3640.00 3820.00 4040.00 4070.00 39370.17 2530.00 4000.00 40174.25 30968.16 950.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.20 3656.93 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40062.39 1490.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re5.62 3647.50 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40167.46 3560.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS22.69 39036.10 346
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
eth-test20.00 404
eth-test0.00 404
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14789.79 13583.08 156
test_0728_SECOND76.57 8586.20 4860.57 14983.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
GSMVS70.05 315
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35170.05 315
sam_mvs31.21 355
ambc70.10 18777.74 17250.21 21774.28 15277.93 17779.26 12388.29 11654.11 22579.77 14864.43 12291.10 10380.30 216
MTGPAbinary80.63 123
test_post166.63 2532.08 39630.66 36059.33 32940.34 315
test_post1.99 39730.91 35854.76 342
patchmatchnet-post68.99 34631.32 35269.38 276
GG-mvs-BLEND52.24 32860.64 34829.21 37669.73 20742.41 37945.47 38352.33 38720.43 39168.16 28425.52 38665.42 36259.36 369
MTMP84.83 3119.26 401
test9_res72.12 6991.37 9377.40 254
agg_prior270.70 7590.93 10878.55 240
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
test_prior470.14 6377.57 102
test_prior75.27 10282.15 11659.85 15484.33 5983.39 8682.58 171
新几何271.33 186
旧先验184.55 7960.36 15163.69 29487.05 13154.65 22183.34 23669.66 319
原ACMM274.78 143
testdata267.30 29348.34 261
segment_acmp68.30 94
test1276.51 8682.28 11460.94 14281.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior184.46 81
n20.00 406
nn0.00 406
door-mid55.02 335
lessismore_v072.75 14779.60 14156.83 17657.37 31983.80 7289.01 9847.45 26478.74 16564.39 12386.49 19482.69 168
test1182.71 84
door52.91 349
HQP5-MVS58.80 165
BP-MVS67.38 101
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 196
NP-MVS83.34 9563.07 12285.97 167
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145