This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
bld_raw_dy_0_6482.84 11080.75 13089.09 1493.74 5272.16 1593.16 10977.36 35889.69 174.55 16896.48 2732.35 34897.56 6292.21 2477.24 21097.53 6
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5296.26 3272.84 2699.38 192.64 1995.93 997.08 11
MM90.87 291.52 288.92 1592.12 9671.10 2797.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 14
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30788.32 492.60 596.57 2332.61 34697.45 6692.21 2495.80 1097.53 6
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5394.91 7074.11 1998.91 1787.26 6195.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 890.50 988.53 2290.14 14270.94 2896.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 44
EPNet87.84 2388.38 1986.23 7993.30 6566.05 13695.26 3394.84 2987.09 788.06 3594.53 7966.79 5997.34 7583.89 9191.68 7395.29 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet89.61 1289.99 1288.46 2394.39 3969.71 4996.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 20
patch_mono-289.71 1190.99 685.85 8996.04 2463.70 19995.04 4195.19 1986.74 991.53 1595.15 6473.86 2097.58 5993.38 1492.00 6896.28 34
DeepPCF-MVS81.17 189.72 1091.38 484.72 13093.00 7458.16 30296.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
CANet_DTU84.09 8783.52 8185.81 9090.30 13966.82 11891.87 16589.01 26385.27 1186.09 4993.74 10347.71 26696.98 10077.90 13789.78 9693.65 137
CLD-MVS82.73 11282.35 11183.86 15887.90 20167.65 9795.45 2992.18 13385.06 1272.58 19192.27 13652.46 22295.78 14684.18 8779.06 19088.16 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNVR-MVS90.32 690.89 788.61 2196.76 870.65 3196.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 37
NCCC89.07 1589.46 1587.91 2796.60 1069.05 6196.38 1694.64 3984.42 1486.74 4496.20 3466.56 6298.76 2389.03 4894.56 3395.92 43
test_fmvsm_n_192087.69 2588.50 1885.27 11087.05 22263.55 20693.69 8891.08 18384.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 111
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21197.89 4391.10 3393.31 5294.54 103
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3095.86 2768.32 7795.74 2294.11 6083.82 1783.49 7496.19 3564.53 8498.44 3183.42 9494.88 2596.61 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n86.58 4287.17 3384.82 12385.28 25362.55 23094.26 5789.78 22883.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 82
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12076.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21597.68 5091.07 3492.62 5994.54 103
test_fmvsmconf0.1_n85.71 5886.08 5084.62 13780.83 30662.33 23493.84 8188.81 27183.50 2087.00 4396.01 3963.36 10196.93 10794.04 1287.29 11794.61 99
TSAR-MVS + MP.88.11 1988.64 1786.54 6991.73 10968.04 8790.36 22593.55 7982.89 2191.29 1692.89 12172.27 3196.03 14087.99 5294.77 2695.54 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS90.70 390.52 891.24 189.68 15176.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9597.64 297.94 1
iter_conf0583.27 10282.70 10484.98 11893.32 6471.84 1794.16 5981.76 34882.74 2373.83 17888.40 19872.77 2794.61 19482.10 10175.21 22288.48 236
WTY-MVS86.32 4585.81 5487.85 2892.82 7969.37 5595.20 3595.25 1782.71 2481.91 8594.73 7467.93 5297.63 5679.55 12282.25 16096.54 21
lupinMVS87.74 2487.77 2687.63 3789.24 16671.18 2496.57 1292.90 10682.70 2587.13 4095.27 5864.99 7595.80 14589.34 4391.80 7195.93 42
fmvsm_s_conf0.5_n86.39 4486.91 3784.82 12387.36 21563.54 20794.74 4890.02 22282.52 2690.14 2596.92 1362.93 10997.84 4695.28 882.26 15993.07 154
HPM-MVS++copyleft89.37 1489.95 1387.64 3395.10 3068.23 8395.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 38
test_fmvsmconf0.01_n83.70 9783.52 8184.25 15175.26 35761.72 24892.17 14787.24 30682.36 2884.91 6295.41 5055.60 18796.83 11192.85 1785.87 13294.21 113
PVSNet_Blended86.73 4086.86 3986.31 7893.76 4967.53 10196.33 1793.61 7682.34 2981.00 9593.08 11563.19 10497.29 7887.08 6391.38 7994.13 118
MSP-MVS90.38 591.87 185.88 8692.83 7764.03 18993.06 11294.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM85.89 5585.46 5987.18 4788.20 19472.42 1492.41 14192.77 10982.11 3180.34 10493.07 11668.27 4795.02 17878.39 13493.59 4894.09 120
jason86.40 4386.17 4787.11 4986.16 23870.54 3395.71 2592.19 13282.00 3284.58 6594.34 8961.86 11895.53 16587.76 5490.89 8595.27 69
jason: jason.
baseline181.84 12781.03 12784.28 15091.60 11266.62 12491.08 20391.66 15881.87 3374.86 16591.67 15069.98 4194.92 18471.76 18264.75 29991.29 199
CHOSEN 1792x268884.98 7083.45 8689.57 1089.94 14675.14 592.07 15492.32 12481.87 3375.68 15588.27 20160.18 13498.60 2780.46 11690.27 9294.96 81
fmvsm_s_conf0.1_n85.61 6185.93 5284.68 13382.95 29063.48 20994.03 6989.46 24081.69 3589.86 2696.74 2061.85 11997.75 4994.74 982.01 16592.81 162
test_vis1_n_192081.66 12982.01 11480.64 23982.24 29555.09 33094.76 4786.87 30981.67 3684.40 6794.63 7738.17 31594.67 19391.98 2883.34 15092.16 183
casdiffmvs_mvgpermissive85.66 6085.18 6387.09 5088.22 19369.35 5693.74 8791.89 14481.47 3780.10 10691.45 15364.80 8096.35 12687.23 6287.69 11295.58 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3383.01 10782.56 10784.35 14789.34 15862.02 24092.72 12493.76 6981.45 3882.73 8092.25 13860.11 13597.13 8987.69 5562.96 31193.91 129
hse-mvs281.12 13881.11 12681.16 22686.52 23057.48 31189.40 25191.16 17681.45 3882.73 8090.49 16960.11 13594.58 19587.69 5560.41 33891.41 193
ET-MVSNet_ETH3D84.01 8883.15 9686.58 6790.78 13270.89 2994.74 4894.62 4081.44 4058.19 32793.64 10673.64 2392.35 28082.66 9778.66 19596.50 26
fmvsm_s_conf0.5_n_a85.75 5786.09 4984.72 13085.73 24763.58 20493.79 8489.32 24681.42 4190.21 2396.91 1462.41 11397.67 5194.48 1080.56 17892.90 160
test_fmvsmvis_n_192083.80 9383.48 8484.77 12782.51 29263.72 19791.37 18983.99 33881.42 4177.68 13595.74 4458.37 15397.58 5993.38 1486.87 12093.00 157
testing1186.71 4186.44 4287.55 3993.54 5971.35 2193.65 9095.58 1181.36 4380.69 9892.21 13972.30 3096.46 12585.18 7883.43 14994.82 90
casdiffmvspermissive85.37 6384.87 6986.84 5688.25 19169.07 6093.04 11491.76 15181.27 4480.84 9792.07 14164.23 8696.06 13884.98 8187.43 11695.39 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS86.01 5186.11 4885.70 9690.21 14167.02 11593.43 10391.92 14181.21 4584.13 7194.07 9860.93 12895.63 15689.28 4489.81 9494.46 109
DeepC-MVS77.85 385.52 6285.24 6286.37 7588.80 17666.64 12392.15 14893.68 7481.07 4676.91 14693.64 10662.59 11198.44 3185.50 7492.84 5894.03 124
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline85.01 6984.44 7386.71 6188.33 18868.73 6890.24 23091.82 15081.05 4781.18 9192.50 12863.69 9496.08 13784.45 8686.71 12695.32 64
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2195.36 1496.47 27
diffmvspermissive84.28 8083.83 7885.61 9887.40 21368.02 8890.88 20989.24 24980.54 5081.64 8792.52 12759.83 13994.52 20287.32 6085.11 13694.29 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10486.95 22364.37 17994.30 5588.45 28480.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 97
fmvsm_s_conf0.1_n_a84.76 7284.84 7084.53 13980.23 31663.50 20892.79 12188.73 27580.46 5289.84 2796.65 2260.96 12797.57 6193.80 1380.14 18092.53 169
VPNet78.82 18077.53 18282.70 18584.52 26666.44 12893.93 7392.23 12780.46 5272.60 19088.38 19949.18 25193.13 24672.47 17563.97 30888.55 235
testing9986.01 5185.47 5887.63 3793.62 5571.25 2393.47 10195.23 1880.42 5480.60 10091.95 14371.73 3596.50 12380.02 11982.22 16195.13 75
testing22285.18 6684.69 7186.63 6492.91 7669.91 4292.61 13295.80 980.31 5580.38 10392.27 13668.73 4495.19 17575.94 14783.27 15194.81 91
testing9185.93 5385.31 6187.78 3193.59 5771.47 1993.50 9895.08 2580.26 5680.53 10191.93 14470.43 3896.51 12280.32 11782.13 16395.37 59
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10887.10 22064.19 18694.41 5388.14 29380.24 5892.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 100
CS-MVS-test86.14 4987.01 3583.52 16792.63 8559.36 29095.49 2891.92 14180.09 5985.46 5795.53 4961.82 12095.77 14886.77 6793.37 5195.41 56
CS-MVS85.80 5686.65 4183.27 17592.00 10158.92 29595.31 3291.86 14679.97 6084.82 6395.40 5162.26 11495.51 16686.11 7192.08 6795.37 59
MVSTER82.47 11682.05 11283.74 16092.68 8469.01 6291.90 16493.21 9179.83 6172.14 19985.71 24174.72 1694.72 18975.72 14872.49 24487.50 247
HQP-NCC87.54 20994.06 6479.80 6274.18 171
ACMP_Plane87.54 20994.06 6479.80 6274.18 171
HQP-MVS81.14 13680.64 13482.64 18787.54 20963.66 20294.06 6491.70 15679.80 6274.18 17190.30 17351.63 22995.61 15877.63 13878.90 19188.63 232
baseline283.68 9883.42 8984.48 14287.37 21466.00 13890.06 23495.93 879.71 6569.08 23490.39 17177.92 696.28 12878.91 12981.38 17191.16 201
EI-MVSNet-Vis-set83.77 9483.67 8084.06 15492.79 8263.56 20591.76 17294.81 3179.65 6677.87 13394.09 9663.35 10297.90 4279.35 12379.36 18790.74 205
ETVMVS84.22 8483.71 7985.76 9392.58 8768.25 8292.45 14095.53 1479.54 6779.46 11491.64 15170.29 3994.18 21569.16 20682.76 15794.84 87
EIA-MVS84.84 7184.88 6884.69 13291.30 12162.36 23393.85 7892.04 13679.45 6879.33 11794.28 9262.42 11296.35 12680.05 11891.25 8295.38 58
dmvs_re76.93 21275.36 21581.61 21687.78 20660.71 26880.00 34387.99 29779.42 6969.02 23689.47 18646.77 26994.32 20663.38 26074.45 22789.81 217
plane_prior62.42 23193.85 7879.38 7078.80 193
dcpmvs_287.37 3087.55 2986.85 5595.04 3268.20 8490.36 22590.66 19579.37 7181.20 9093.67 10574.73 1596.55 12090.88 3692.00 6895.82 46
alignmvs87.28 3186.97 3688.24 2691.30 12171.14 2695.61 2693.56 7879.30 7287.07 4295.25 6068.43 4696.93 10787.87 5384.33 14396.65 16
TESTMET0.1,182.41 11781.98 11583.72 16388.08 19563.74 19592.70 12693.77 6879.30 7277.61 13787.57 21658.19 15694.08 21973.91 16386.68 12793.33 146
EI-MVSNet-UG-set83.14 10582.96 9783.67 16592.28 9163.19 21591.38 18894.68 3779.22 7476.60 14893.75 10262.64 11097.76 4878.07 13678.01 19890.05 214
PVSNet73.49 880.05 15878.63 16584.31 14890.92 12864.97 16492.47 13991.05 18679.18 7572.43 19690.51 16837.05 33094.06 22168.06 21586.00 13193.90 131
HY-MVS76.49 584.28 8083.36 9287.02 5392.22 9367.74 9484.65 30194.50 4379.15 7682.23 8387.93 21066.88 5896.94 10580.53 11582.20 16296.39 30
PVSNet_BlendedMVS83.38 10083.43 8783.22 17693.76 4967.53 10194.06 6493.61 7679.13 7781.00 9585.14 24463.19 10497.29 7887.08 6373.91 23384.83 302
plane_prior361.95 24379.09 7872.53 192
MVS_111021_HR86.19 4885.80 5587.37 4393.17 7069.79 4693.99 7093.76 6979.08 7978.88 12493.99 9962.25 11598.15 3685.93 7391.15 8394.15 117
test_cas_vis1_n_192080.45 15080.61 13579.97 25878.25 34257.01 31894.04 6888.33 28779.06 8082.81 7993.70 10438.65 31091.63 29590.82 3779.81 18291.27 200
MSLP-MVS++86.27 4685.91 5387.35 4492.01 10068.97 6495.04 4192.70 11179.04 8181.50 8896.50 2658.98 15096.78 11283.49 9393.93 4096.29 32
IB-MVS77.80 482.18 12080.46 13987.35 4489.14 16870.28 3695.59 2795.17 2178.85 8270.19 22285.82 23970.66 3797.67 5172.19 17966.52 28494.09 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator73.91 682.69 11580.82 12988.31 2589.57 15371.26 2292.60 13394.39 5178.84 8367.89 25592.48 13148.42 25798.52 2868.80 21194.40 3595.15 74
HQP_MVS80.34 15279.75 14882.12 20586.94 22462.42 23193.13 11091.31 17078.81 8472.53 19289.14 19150.66 23695.55 16376.74 14178.53 19688.39 239
plane_prior293.13 11078.81 84
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8683.87 7392.94 11964.34 8596.94 10575.19 15294.09 3795.66 49
gm-plane-assit88.42 18467.04 11478.62 8791.83 14697.37 7276.57 143
VNet86.20 4785.65 5787.84 2993.92 4669.99 3895.73 2495.94 778.43 8886.00 5093.07 11658.22 15597.00 9685.22 7684.33 14396.52 22
tpm78.58 18777.03 19183.22 17685.94 24364.56 16883.21 31591.14 17978.31 8973.67 17979.68 31664.01 8892.09 28666.07 23971.26 25493.03 155
save fliter93.84 4867.89 9195.05 4092.66 11478.19 90
TSAR-MVS + GP.87.96 2088.37 2086.70 6293.51 6165.32 15495.15 3793.84 6578.17 9185.93 5194.80 7375.80 1398.21 3489.38 4288.78 10296.59 18
FIs79.47 16879.41 15579.67 26585.95 24159.40 28791.68 17693.94 6378.06 9268.96 23888.28 20066.61 6191.77 29266.20 23874.99 22387.82 244
sss82.71 11482.38 11083.73 16289.25 16359.58 28592.24 14594.89 2877.96 9379.86 10992.38 13356.70 17497.05 9177.26 14080.86 17594.55 101
PMMVS81.98 12682.04 11381.78 21289.76 15056.17 32291.13 20290.69 19277.96 9380.09 10793.57 10846.33 27694.99 18081.41 10887.46 11594.17 115
EC-MVSNet84.53 7685.04 6683.01 17989.34 15861.37 25494.42 5291.09 18177.91 9583.24 7594.20 9458.37 15395.40 16785.35 7591.41 7892.27 179
test111180.84 14380.02 14283.33 17387.87 20260.76 26592.62 13186.86 31077.86 9675.73 15491.39 15646.35 27494.70 19272.79 17088.68 10494.52 105
MVS_Test84.16 8683.20 9387.05 5291.56 11469.82 4589.99 23992.05 13577.77 9782.84 7886.57 22963.93 9096.09 13474.91 15789.18 10095.25 72
SteuartSystems-ACMMP86.82 3986.90 3886.58 6790.42 13666.38 12996.09 1893.87 6477.73 9884.01 7295.66 4563.39 10097.94 4087.40 5993.55 4995.42 55
Skip Steuart: Steuart Systems R&D Blog.
EPNet_dtu78.80 18179.26 15977.43 29488.06 19649.71 35491.96 16291.95 14077.67 9976.56 14991.28 15858.51 15290.20 31656.37 29680.95 17492.39 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test250683.29 10182.92 9984.37 14688.39 18663.18 21692.01 15791.35 16977.66 10078.49 12991.42 15464.58 8395.09 17773.19 16489.23 9894.85 84
ECVR-MVScopyleft81.29 13480.38 14084.01 15688.39 18661.96 24292.56 13886.79 31177.66 10076.63 14791.42 15446.34 27595.24 17474.36 16189.23 9894.85 84
tpmrst80.57 14679.14 16184.84 12290.10 14368.28 7981.70 32589.72 23577.63 10275.96 15279.54 31864.94 7792.71 26375.43 15077.28 20993.55 139
testdata189.21 25577.55 103
UniMVSNet_NR-MVSNet78.15 19477.55 18179.98 25684.46 26860.26 27592.25 14493.20 9377.50 10468.88 23986.61 22866.10 6492.13 28466.38 23562.55 31587.54 246
UA-Net80.02 15979.65 14981.11 22889.33 16057.72 30686.33 29489.00 26677.44 10581.01 9489.15 19059.33 14695.90 14361.01 27684.28 14589.73 220
PVSNet_Blended_VisFu83.97 8983.50 8385.39 10490.02 14466.59 12693.77 8591.73 15277.43 10677.08 14589.81 18363.77 9396.97 10279.67 12188.21 10792.60 166
dmvs_testset65.55 32166.45 29762.86 36279.87 31922.35 40576.55 35771.74 37577.42 10755.85 33887.77 21351.39 23180.69 37731.51 38765.92 28885.55 292
NR-MVSNet76.05 22774.59 22380.44 24182.96 28862.18 23890.83 21191.73 15277.12 10860.96 31286.35 23159.28 14791.80 29160.74 27761.34 33087.35 253
FC-MVSNet-test77.99 19678.08 17377.70 28984.89 26155.51 32790.27 22893.75 7276.87 10966.80 27187.59 21565.71 6990.23 31562.89 26673.94 23287.37 251
SD-MVS87.49 2787.49 3087.50 4193.60 5668.82 6793.90 7592.63 11776.86 11087.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 39
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsmamba76.85 21575.71 21180.25 24783.07 28759.16 29291.44 18080.64 35376.84 11167.95 25186.33 23346.17 27994.24 21376.06 14672.92 24087.36 252
UGNet79.87 16278.68 16483.45 17289.96 14561.51 25192.13 14990.79 19076.83 11278.85 12686.33 23338.16 31696.17 13167.93 21887.17 11892.67 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 12581.52 11983.51 16988.42 18462.88 22589.77 24388.93 26776.78 11375.55 15993.10 11350.31 23995.38 16983.82 9287.02 11992.26 180
SDMVSNet80.26 15378.88 16384.40 14489.25 16367.63 9885.35 29793.02 10076.77 11470.84 21387.12 22347.95 26396.09 13485.04 7974.55 22489.48 224
sd_testset77.08 21175.37 21482.20 20189.25 16362.11 23982.06 32289.09 25976.77 11470.84 21387.12 22341.43 30095.01 17967.23 22574.55 22489.48 224
TranMVSNet+NR-MVSNet75.86 23274.52 22679.89 26082.44 29360.64 27191.37 18991.37 16876.63 11667.65 25886.21 23552.37 22391.55 29761.84 27260.81 33387.48 248
PAPR85.15 6784.47 7287.18 4796.02 2568.29 7891.85 16793.00 10376.59 11779.03 12095.00 6561.59 12197.61 5878.16 13589.00 10195.63 50
UniMVSNet (Re)77.58 20376.78 19579.98 25684.11 27460.80 26291.76 17293.17 9576.56 11869.93 22884.78 24963.32 10392.36 27964.89 25162.51 31786.78 263
DU-MVS76.86 21375.84 20879.91 25982.96 28860.26 27591.26 19591.54 16176.46 11968.88 23986.35 23156.16 18092.13 28466.38 23562.55 31587.35 253
OPM-MVS79.00 17578.09 17281.73 21383.52 28263.83 19291.64 17890.30 20976.36 12071.97 20189.93 18246.30 27795.17 17675.10 15377.70 20186.19 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS76.76 21875.74 21079.82 26284.60 26462.27 23792.60 13392.51 12176.06 12167.87 25685.34 24256.76 17290.24 31462.20 27063.69 31086.94 261
GA-MVS78.33 19276.23 20284.65 13483.65 28066.30 13291.44 18090.14 21676.01 12270.32 22084.02 25742.50 29694.72 18970.98 18777.00 21292.94 158
PVSNet_068.08 1571.81 27568.32 29182.27 19784.68 26262.31 23688.68 26490.31 20875.84 12357.93 33280.65 30337.85 32194.19 21469.94 19729.05 39590.31 211
CDS-MVSNet81.43 13280.74 13183.52 16786.26 23564.45 17392.09 15290.65 19675.83 12473.95 17789.81 18363.97 8992.91 25671.27 18582.82 15493.20 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UWE-MVS80.81 14481.01 12880.20 24989.33 16057.05 31691.91 16394.71 3575.67 12575.01 16489.37 18763.13 10691.44 30367.19 22682.80 15692.12 184
CostFormer82.33 11881.15 12285.86 8889.01 17168.46 7482.39 32193.01 10175.59 12680.25 10581.57 28672.03 3394.96 18179.06 12777.48 20694.16 116
nrg03080.93 14179.86 14684.13 15383.69 27968.83 6693.23 10791.20 17475.55 12775.06 16388.22 20563.04 10894.74 18881.88 10366.88 28188.82 230
VDD-MVS83.06 10681.81 11786.81 5890.86 13067.70 9595.40 3091.50 16475.46 12881.78 8692.34 13540.09 30497.13 8986.85 6682.04 16495.60 51
Effi-MVS+-dtu76.14 22375.28 21778.72 28083.22 28455.17 32989.87 24087.78 30075.42 12967.98 25081.43 28845.08 28792.52 27375.08 15471.63 24988.48 236
test_prior295.10 3975.40 13085.25 6195.61 4767.94 5187.47 5894.77 26
MTAPA83.91 9083.38 9185.50 10091.89 10665.16 15981.75 32492.23 12775.32 13180.53 10195.21 6256.06 18397.16 8784.86 8392.55 6194.18 114
EPMVS78.49 18975.98 20686.02 8291.21 12369.68 5080.23 33991.20 17475.25 13272.48 19478.11 32654.65 19793.69 23757.66 29383.04 15294.69 93
miper_enhance_ethall78.86 17977.97 17581.54 21888.00 19965.17 15891.41 18289.15 25575.19 13368.79 24183.98 25867.17 5692.82 25872.73 17165.30 29086.62 268
v2v48277.42 20575.65 21282.73 18480.38 31267.13 11191.85 16790.23 21375.09 13469.37 23083.39 26453.79 20994.44 20471.77 18165.00 29686.63 267
VPA-MVSNet79.03 17478.00 17482.11 20885.95 24164.48 17293.22 10894.66 3875.05 13574.04 17684.95 24652.17 22493.52 24074.90 15867.04 28088.32 241
ACMMP_NAP86.05 5085.80 5586.80 5991.58 11367.53 10191.79 16993.49 8374.93 13684.61 6495.30 5559.42 14497.92 4186.13 7094.92 2094.94 83
thres20079.66 16478.33 16883.66 16692.54 8865.82 14493.06 11296.31 374.90 13773.30 18288.66 19359.67 14195.61 15847.84 33078.67 19489.56 223
TAMVS80.37 15179.45 15483.13 17885.14 25663.37 21091.23 19790.76 19174.81 13872.65 18988.49 19560.63 13092.95 25169.41 20281.95 16693.08 153
MP-MVS-pluss85.24 6585.13 6485.56 9991.42 11865.59 14891.54 17992.51 12174.56 13980.62 9995.64 4659.15 14897.00 9686.94 6593.80 4294.07 122
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous81.36 13379.99 14485.46 10190.39 13868.40 7586.88 29190.61 19774.41 14070.31 22184.67 25063.79 9292.32 28173.13 16585.70 13395.67 48
MAR-MVS84.18 8583.43 8786.44 7296.25 2165.93 14194.28 5694.27 5674.41 14079.16 11995.61 4753.99 20698.88 2169.62 20093.26 5394.50 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
BH-w/o80.49 14979.30 15884.05 15590.83 13164.36 18193.60 9389.42 24374.35 14269.09 23390.15 17855.23 19195.61 15864.61 25286.43 13092.17 182
thisisatest051583.41 9982.49 10886.16 8089.46 15768.26 8093.54 9694.70 3674.31 14375.75 15390.92 16172.62 2896.52 12169.64 19881.50 17093.71 135
Vis-MVSNet (Re-imp)79.24 17179.57 15078.24 28688.46 18252.29 34190.41 22389.12 25774.24 14469.13 23291.91 14565.77 6890.09 31859.00 28888.09 10892.33 173
SMA-MVScopyleft88.14 1788.29 2187.67 3293.21 6868.72 6993.85 7894.03 6274.18 14591.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 45
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AUN-MVS78.37 19077.43 18381.17 22586.60 22957.45 31289.46 25091.16 17674.11 14674.40 17090.49 16955.52 18894.57 19774.73 16060.43 33791.48 191
3Dnovator+73.60 782.10 12480.60 13686.60 6590.89 12966.80 12095.20 3593.44 8574.05 14767.42 26192.49 13049.46 24797.65 5570.80 18991.68 7395.33 62
XVS83.87 9183.47 8585.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13094.31 9155.25 18997.41 7079.16 12591.58 7593.95 127
X-MVStestdata76.86 21374.13 23385.05 11593.22 6663.78 19392.92 11892.66 11473.99 14878.18 13010.19 40555.25 18997.41 7079.16 12591.58 7593.95 127
MS-PatchMatch77.90 20076.50 19882.12 20585.99 24069.95 4191.75 17492.70 11173.97 15062.58 30684.44 25441.11 30195.78 14663.76 25892.17 6580.62 349
LCM-MVSNet-Re72.93 26471.84 26376.18 30888.49 18048.02 36180.07 34270.17 37873.96 15152.25 35180.09 31249.98 24288.24 33067.35 22284.23 14692.28 176
Vis-MVSNetpermissive80.92 14279.98 14583.74 16088.48 18161.80 24493.44 10288.26 29273.96 15177.73 13491.76 14749.94 24394.76 18665.84 24190.37 9194.65 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-mter79.96 16079.38 15781.72 21486.93 22661.17 25592.70 12691.54 16173.85 15375.62 15686.94 22549.84 24592.38 27772.21 17784.76 14091.60 188
OMC-MVS78.67 18677.91 17780.95 23585.76 24657.40 31388.49 26788.67 27873.85 15372.43 19692.10 14049.29 25094.55 20072.73 17177.89 19990.91 204
Fast-Effi-MVS+81.14 13680.01 14384.51 14190.24 14065.86 14294.12 6389.15 25573.81 15575.37 16188.26 20257.26 16394.53 20166.97 22984.92 13793.15 150
ZNCC-MVS85.33 6485.08 6586.06 8193.09 7365.65 14693.89 7693.41 8773.75 15679.94 10894.68 7660.61 13198.03 3882.63 9893.72 4594.52 105
V4276.46 22174.55 22582.19 20279.14 33067.82 9290.26 22989.42 24373.75 15668.63 24481.89 27951.31 23294.09 21871.69 18364.84 29784.66 303
v114476.73 21974.88 21982.27 19780.23 31666.60 12591.68 17690.21 21573.69 15869.06 23581.89 27952.73 22094.40 20569.21 20565.23 29385.80 286
v14876.19 22274.47 22781.36 22180.05 31864.44 17491.75 17490.23 21373.68 15967.13 26580.84 29955.92 18593.86 23568.95 20961.73 32685.76 289
CR-MVSNet73.79 25770.82 27282.70 18583.15 28567.96 8970.25 36984.00 33673.67 16069.97 22672.41 35557.82 15989.48 32252.99 31073.13 23790.64 207
XXY-MVS77.94 19876.44 19982.43 19182.60 29164.44 17492.01 15791.83 14973.59 16170.00 22585.82 23954.43 20294.76 18669.63 19968.02 27488.10 243
tfpn200view978.79 18277.43 18382.88 18192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20388.83 228
thres40078.68 18477.43 18382.43 19192.21 9464.49 17092.05 15596.28 473.48 16271.75 20488.26 20260.07 13795.32 17045.16 34177.58 20387.48 248
FMVSNet377.73 20176.04 20582.80 18291.20 12468.99 6391.87 16591.99 13873.35 16467.04 26683.19 26656.62 17692.14 28359.80 28469.34 26187.28 255
GST-MVS84.63 7584.29 7585.66 9792.82 7965.27 15593.04 11493.13 9773.20 16578.89 12194.18 9559.41 14597.85 4581.45 10792.48 6293.86 132
USDC67.43 31264.51 31376.19 30777.94 34655.29 32878.38 35085.00 32773.17 16648.36 36680.37 30621.23 37692.48 27552.15 31164.02 30780.81 347
MP-MVScopyleft85.02 6884.97 6785.17 11492.60 8664.27 18493.24 10692.27 12673.13 16779.63 11294.43 8261.90 11797.17 8585.00 8092.56 6094.06 123
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xiu_mvs_v1_base_debu82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
xiu_mvs_v1_base_debi82.16 12181.12 12385.26 11186.42 23168.72 6992.59 13590.44 20273.12 16884.20 6894.36 8438.04 31895.73 15084.12 8886.81 12191.33 194
D2MVS73.80 25672.02 26179.15 27679.15 32962.97 21988.58 26690.07 21872.94 17159.22 32178.30 32342.31 29892.70 26565.59 24572.00 24781.79 338
BH-RMVSNet79.46 16977.65 17984.89 12091.68 11165.66 14593.55 9588.09 29572.93 17273.37 18191.12 16046.20 27896.12 13356.28 29785.61 13592.91 159
Syy-MVS69.65 29169.52 28370.03 34687.87 20243.21 37988.07 27289.01 26372.91 17363.11 29988.10 20645.28 28585.54 34922.07 39269.23 26481.32 341
myMVS_eth3d72.58 27372.74 25172.10 33987.87 20249.45 35688.07 27289.01 26372.91 17363.11 29988.10 20663.63 9585.54 34932.73 38169.23 26481.32 341
IS-MVSNet80.14 15679.41 15582.33 19587.91 20060.08 27991.97 16188.27 29072.90 17571.44 20991.73 14961.44 12293.66 23862.47 26986.53 12893.24 147
PS-MVSNAJss77.26 20776.31 20180.13 25180.64 31059.16 29290.63 22091.06 18572.80 17668.58 24584.57 25253.55 21193.96 22972.97 16671.96 24887.27 256
9.1487.63 2793.86 4794.41 5394.18 5772.76 17786.21 4796.51 2566.64 6097.88 4490.08 4094.04 38
v119275.98 22973.92 23682.15 20379.73 32066.24 13491.22 19889.75 23072.67 17868.49 24681.42 28949.86 24494.27 21067.08 22765.02 29585.95 283
Effi-MVS+83.82 9282.76 10286.99 5489.56 15469.40 5291.35 19186.12 31872.59 17983.22 7692.81 12559.60 14296.01 14281.76 10487.80 11195.56 53
UnsupCasMVSNet_eth65.79 31963.10 32173.88 32370.71 37250.29 35281.09 33189.88 22672.58 18049.25 36474.77 35032.57 34787.43 34155.96 29841.04 38083.90 309
1112_ss80.56 14779.83 14782.77 18388.65 17860.78 26392.29 14388.36 28672.58 18072.46 19594.95 6665.09 7493.42 24366.38 23577.71 20094.10 119
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7194.37 5272.48 18292.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
test_0728_THIRD72.48 18290.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 28
cl2277.94 19876.78 19581.42 22087.57 20864.93 16690.67 21688.86 27072.45 18467.63 25982.68 27164.07 8792.91 25671.79 18065.30 29086.44 269
thres600view778.00 19576.66 19782.03 21091.93 10363.69 20091.30 19496.33 172.43 18570.46 21787.89 21160.31 13294.92 18442.64 35376.64 21487.48 248
IterMVS-LS76.49 22075.18 21880.43 24284.49 26762.74 22790.64 21888.80 27272.40 18665.16 27981.72 28260.98 12692.27 28267.74 21964.65 30186.29 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 17678.22 17181.25 22385.33 25162.73 22889.53 24893.21 9172.39 18772.14 19990.13 17960.99 12594.72 18967.73 22072.49 24486.29 271
miper_ehance_all_eth77.60 20276.44 19981.09 23285.70 24864.41 17790.65 21788.64 28072.31 18867.37 26482.52 27264.77 8192.64 27070.67 19165.30 29086.24 273
v14419276.05 22774.03 23482.12 20579.50 32466.55 12791.39 18689.71 23672.30 18968.17 24881.33 29151.75 22794.03 22667.94 21764.19 30385.77 287
thres100view90078.37 19077.01 19282.46 19091.89 10663.21 21491.19 20196.33 172.28 19070.45 21887.89 21160.31 13295.32 17045.16 34177.58 20388.83 228
PatchmatchNetpermissive77.46 20474.63 22285.96 8489.55 15570.35 3579.97 34489.55 23872.23 19170.94 21176.91 33757.03 16692.79 26154.27 30481.17 17294.74 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
HFP-MVS84.73 7384.40 7485.72 9593.75 5165.01 16393.50 9893.19 9472.19 19279.22 11894.93 6859.04 14997.67 5181.55 10592.21 6394.49 108
ACMMPR84.37 7784.06 7685.28 10993.56 5864.37 17993.50 9893.15 9672.19 19278.85 12694.86 7156.69 17597.45 6681.55 10592.20 6494.02 125
131480.70 14578.95 16285.94 8587.77 20767.56 9987.91 27692.55 12072.17 19467.44 26093.09 11450.27 24097.04 9471.68 18487.64 11393.23 148
region2R84.36 7884.03 7785.36 10693.54 5964.31 18293.43 10392.95 10472.16 19578.86 12594.84 7256.97 17097.53 6481.38 10992.11 6694.24 112
Test_1112_low_res79.56 16678.60 16682.43 19188.24 19260.39 27492.09 15287.99 29772.10 19671.84 20287.42 21864.62 8293.04 24765.80 24277.30 20893.85 133
v192192075.63 23773.49 24282.06 20979.38 32566.35 13091.07 20589.48 23971.98 19767.99 24981.22 29449.16 25393.90 23266.56 23164.56 30285.92 285
DVP-MVScopyleft89.41 1389.73 1488.45 2496.40 1569.99 3896.64 1094.52 4271.92 19890.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3896.76 894.33 5471.92 19891.89 1197.11 673.77 21
Fast-Effi-MVS+-dtu75.04 24373.37 24380.07 25280.86 30559.52 28691.20 20085.38 32371.90 20065.20 27884.84 24841.46 29992.97 25066.50 23472.96 23987.73 245
LFMVS84.34 7982.73 10389.18 1294.76 3373.25 994.99 4391.89 14471.90 20082.16 8493.49 11047.98 26297.05 9182.55 9984.82 13897.25 9
eth_miper_zixun_eth75.96 23174.40 22880.66 23884.66 26363.02 21889.28 25388.27 29071.88 20265.73 27481.65 28359.45 14392.81 25968.13 21460.53 33586.14 276
train_agg87.21 3287.42 3186.60 6594.18 4167.28 10694.16 5993.51 8071.87 20385.52 5595.33 5368.19 4897.27 8289.09 4694.90 2295.25 72
test_894.19 4067.19 10894.15 6293.42 8671.87 20385.38 5895.35 5268.19 4896.95 104
MDTV_nov1_ep1372.61 25489.06 16968.48 7380.33 33790.11 21771.84 20571.81 20375.92 34553.01 21793.92 23148.04 32773.38 235
ab-mvs80.18 15578.31 16985.80 9188.44 18365.49 15383.00 31892.67 11371.82 20677.36 14085.01 24554.50 19896.59 11676.35 14575.63 22095.32 64
ACMMPcopyleft81.49 13180.67 13383.93 15791.71 11062.90 22492.13 14992.22 13071.79 20771.68 20693.49 11050.32 23896.96 10378.47 13384.22 14791.93 186
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS86.83 3886.85 4086.78 6093.47 6265.55 15095.39 3195.10 2271.77 20885.69 5496.52 2462.07 11698.77 2286.06 7295.60 1296.03 40
TEST994.18 4167.28 10694.16 5993.51 8071.75 20985.52 5595.33 5368.01 5097.27 82
WB-MVSnew77.14 20976.18 20480.01 25586.18 23763.24 21391.26 19594.11 6071.72 21073.52 18087.29 22145.14 28693.00 24956.98 29479.42 18583.80 310
c3_l76.83 21775.47 21380.93 23685.02 25964.18 18790.39 22488.11 29471.66 21166.65 27281.64 28463.58 9992.56 27169.31 20462.86 31286.04 280
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5396.89 694.44 4671.65 21292.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_TWO94.41 4871.65 21292.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 18
test_241102_ONE96.45 1269.38 5394.44 4671.65 21292.11 797.05 776.79 999.11 6
v875.35 23973.26 24481.61 21680.67 30966.82 11889.54 24789.27 24871.65 21263.30 29880.30 30854.99 19594.06 22167.33 22462.33 31883.94 308
v124075.21 24272.98 24781.88 21179.20 32766.00 13890.75 21489.11 25871.63 21667.41 26281.22 29447.36 26793.87 23365.46 24764.72 30085.77 287
SCA75.82 23372.76 25085.01 11786.63 22870.08 3781.06 33289.19 25271.60 21770.01 22477.09 33545.53 28290.25 31160.43 27973.27 23694.68 94
BH-untuned78.68 18477.08 19083.48 17189.84 14763.74 19592.70 12688.59 28171.57 21866.83 27088.65 19451.75 22795.39 16859.03 28784.77 13991.32 197
IterMVS72.65 27270.83 27078.09 28782.17 29662.96 22087.64 28186.28 31471.56 21960.44 31478.85 32145.42 28486.66 34463.30 26261.83 32384.65 304
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mPP-MVS82.96 10982.44 10984.52 14092.83 7762.92 22392.76 12291.85 14871.52 22075.61 15894.24 9353.48 21496.99 9978.97 12890.73 8693.64 138
test-LLR80.10 15779.56 15181.72 21486.93 22661.17 25592.70 12691.54 16171.51 22175.62 15686.94 22553.83 20792.38 27772.21 17784.76 14091.60 188
test0.0.03 172.76 26772.71 25372.88 33180.25 31547.99 36291.22 19889.45 24171.51 22162.51 30787.66 21453.83 20785.06 35350.16 31767.84 27785.58 290
test_one_060196.32 1869.74 4894.18 5771.42 22390.67 1996.85 1674.45 18
PGM-MVS83.25 10382.70 10484.92 11992.81 8164.07 18890.44 22192.20 13171.28 22477.23 14294.43 8255.17 19397.31 7779.33 12491.38 7993.37 143
thisisatest053081.15 13580.07 14184.39 14588.26 19065.63 14791.40 18494.62 4071.27 22570.93 21289.18 18972.47 2996.04 13965.62 24476.89 21391.49 190
cl____76.07 22474.67 22080.28 24585.15 25561.76 24690.12 23288.73 27571.16 22665.43 27681.57 28661.15 12392.95 25166.54 23262.17 31986.13 278
DIV-MVS_self_test76.07 22474.67 22080.28 24585.14 25661.75 24790.12 23288.73 27571.16 22665.42 27781.60 28561.15 12392.94 25566.54 23262.16 32186.14 276
dp75.01 24472.09 26083.76 15989.28 16266.22 13579.96 34589.75 23071.16 22667.80 25777.19 33451.81 22692.54 27250.39 31571.44 25392.51 170
FA-MVS(test-final)79.12 17377.23 18984.81 12690.54 13463.98 19081.35 33091.71 15471.09 22974.85 16682.94 26752.85 21897.05 9167.97 21681.73 16993.41 142
CP-MVS83.71 9683.40 9084.65 13493.14 7163.84 19194.59 5092.28 12571.03 23077.41 13994.92 6955.21 19296.19 13081.32 11090.70 8793.91 129
v1074.77 24672.54 25681.46 21980.33 31466.71 12289.15 25789.08 26070.94 23163.08 30179.86 31352.52 22194.04 22465.70 24362.17 31983.64 311
CDPH-MVS85.71 5885.46 5986.46 7194.75 3467.19 10893.89 7692.83 10870.90 23283.09 7795.28 5663.62 9697.36 7380.63 11494.18 3694.84 87
GBi-Net75.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
test175.65 23573.83 23781.10 22988.85 17365.11 16090.01 23690.32 20570.84 23367.04 26680.25 30948.03 25991.54 29859.80 28469.34 26186.64 264
FMVSNet276.07 22474.01 23582.26 19988.85 17367.66 9691.33 19291.61 15970.84 23365.98 27382.25 27548.03 25992.00 28858.46 28968.73 26987.10 258
SF-MVS87.03 3487.09 3486.84 5692.70 8367.45 10493.64 9193.76 6970.78 23686.25 4696.44 2866.98 5797.79 4788.68 5094.56 3395.28 68
ZD-MVS96.63 965.50 15293.50 8270.74 23785.26 6095.19 6364.92 7897.29 7887.51 5793.01 55
HyFIR lowres test81.03 14079.56 15185.43 10287.81 20568.11 8690.18 23190.01 22370.65 23872.95 18586.06 23763.61 9794.50 20375.01 15579.75 18493.67 136
RRT_MVS74.44 24872.97 24878.84 27982.36 29457.66 30889.83 24288.79 27470.61 23964.58 28484.89 24739.24 30692.65 26970.11 19666.34 28586.21 274
MVP-Stereo77.12 21076.23 20279.79 26381.72 30066.34 13189.29 25290.88 18970.56 24062.01 30982.88 26849.34 24894.13 21665.55 24693.80 4278.88 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP71.68 1075.58 23874.23 23179.62 26784.97 26059.64 28390.80 21289.07 26170.39 24162.95 30287.30 22038.28 31493.87 23372.89 16771.45 25285.36 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft83.25 10382.95 9884.17 15292.25 9262.88 22590.91 20691.86 14670.30 24277.12 14393.96 10056.75 17396.28 12882.04 10291.34 8193.34 144
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GeoE78.90 17877.43 18383.29 17488.95 17262.02 24092.31 14286.23 31670.24 24371.34 21089.27 18854.43 20294.04 22463.31 26180.81 17793.81 134
tpm279.80 16377.95 17685.34 10788.28 18968.26 8081.56 32791.42 16770.11 24477.59 13880.50 30467.40 5594.26 21267.34 22377.35 20793.51 140
TR-MVS78.77 18377.37 18882.95 18090.49 13560.88 26193.67 8990.07 21870.08 24574.51 16991.37 15745.69 28195.70 15560.12 28280.32 17992.29 175
CL-MVSNet_self_test69.92 28868.09 29275.41 31173.25 36455.90 32590.05 23589.90 22569.96 24661.96 31076.54 33851.05 23487.64 33749.51 32150.59 36582.70 329
PAPM_NR82.97 10881.84 11686.37 7594.10 4466.76 12187.66 28092.84 10769.96 24674.07 17593.57 10863.10 10797.50 6570.66 19290.58 8994.85 84
PCF-MVS73.15 979.29 17077.63 18084.29 14986.06 23965.96 14087.03 28791.10 18069.86 24869.79 22990.64 16457.54 16296.59 11664.37 25482.29 15890.32 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_lstm_enhance73.05 26271.73 26577.03 29983.80 27758.32 30181.76 32388.88 26869.80 24961.01 31178.23 32557.19 16487.51 34065.34 24859.53 34085.27 299
MIMVSNet71.64 27668.44 28981.23 22481.97 29964.44 17473.05 36588.80 27269.67 25064.59 28374.79 34932.79 34487.82 33453.99 30576.35 21691.42 192
LPG-MVS_test75.82 23374.58 22479.56 26984.31 27159.37 28890.44 22189.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
LGP-MVS_train79.56 26984.31 27159.37 28889.73 23369.49 25164.86 28088.42 19638.65 31094.30 20872.56 17372.76 24185.01 300
APDe-MVScopyleft87.54 2687.84 2586.65 6396.07 2366.30 13294.84 4693.78 6669.35 25388.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
tttt051779.50 16778.53 16782.41 19487.22 21761.43 25389.75 24494.76 3269.29 25467.91 25388.06 20972.92 2595.63 15662.91 26573.90 23490.16 212
Patchmatch-RL test68.17 30464.49 31479.19 27371.22 36953.93 33570.07 37171.54 37769.22 25556.79 33662.89 37756.58 17788.61 32569.53 20152.61 36095.03 80
test_yl84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
DCV-MVSNet84.28 8083.16 9487.64 3394.52 3769.24 5795.78 1995.09 2369.19 25681.09 9292.88 12257.00 16897.44 6881.11 11281.76 16796.23 35
jajsoiax73.05 26271.51 26777.67 29077.46 34854.83 33188.81 26290.04 22169.13 25862.85 30483.51 26231.16 35592.75 26270.83 18869.80 25785.43 295
DP-MVS Recon82.73 11281.65 11885.98 8397.31 467.06 11295.15 3791.99 13869.08 25976.50 15093.89 10154.48 20198.20 3570.76 19085.66 13492.69 163
Baseline_NR-MVSNet73.99 25472.83 24977.48 29380.78 30759.29 29191.79 16984.55 33168.85 26068.99 23780.70 30056.16 18092.04 28762.67 26760.98 33281.11 343
CHOSEN 280x42077.35 20676.95 19478.55 28187.07 22162.68 22969.71 37282.95 34568.80 26171.48 20887.27 22266.03 6584.00 35976.47 14482.81 15588.95 227
DPE-MVScopyleft88.77 1689.21 1687.45 4296.26 2067.56 9994.17 5894.15 5968.77 26290.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 31
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets72.71 26971.11 26877.52 29177.41 34954.52 33388.45 26889.76 22968.76 26362.70 30583.26 26529.49 35992.71 26370.51 19469.62 25985.34 297
MVS84.66 7482.86 10190.06 290.93 12774.56 687.91 27695.54 1368.55 26472.35 19894.71 7559.78 14098.90 1981.29 11194.69 3296.74 15
EPP-MVSNet81.79 12881.52 11982.61 18888.77 17760.21 27793.02 11693.66 7568.52 26572.90 18690.39 17172.19 3294.96 18174.93 15679.29 18992.67 164
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3093.83 8395.33 1668.48 26677.63 13694.35 8873.04 2498.45 3084.92 8293.71 4696.92 13
testing370.38 28570.83 27069.03 35085.82 24543.93 37890.72 21590.56 19868.06 26760.24 31586.82 22764.83 7984.12 35526.33 38864.10 30579.04 362
CP-MVSNet70.50 28369.91 28072.26 33680.71 30851.00 34887.23 28690.30 20967.84 26859.64 31882.69 27050.23 24182.30 37151.28 31259.28 34183.46 316
pmmvs573.35 25971.52 26678.86 27878.64 33860.61 27291.08 20386.90 30867.69 26963.32 29783.64 26044.33 29090.53 30862.04 27166.02 28785.46 294
pm-mvs172.89 26571.09 26978.26 28579.10 33157.62 30990.80 21289.30 24767.66 27062.91 30381.78 28149.11 25492.95 25160.29 28158.89 34384.22 306
MDTV_nov1_ep13_2view59.90 28180.13 34167.65 27172.79 18754.33 20459.83 28392.58 167
pmmvs473.92 25571.81 26480.25 24779.17 32865.24 15687.43 28387.26 30567.64 27263.46 29683.91 25948.96 25591.53 30162.94 26465.49 28983.96 307
WR-MVS_H70.59 28269.94 27972.53 33381.03 30451.43 34587.35 28492.03 13767.38 27360.23 31680.70 30055.84 18683.45 36346.33 33758.58 34582.72 327
KD-MVS_2432*160069.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
miper_refine_blended69.03 29666.37 29977.01 30085.56 24961.06 25881.44 32890.25 21167.27 27458.00 33076.53 33954.49 19987.63 33848.04 32735.77 38782.34 333
PS-CasMVS69.86 29069.13 28572.07 34080.35 31350.57 35087.02 28889.75 23067.27 27459.19 32282.28 27446.58 27282.24 37250.69 31459.02 34283.39 318
PEN-MVS69.46 29368.56 28772.17 33879.27 32649.71 35486.90 29089.24 24967.24 27759.08 32382.51 27347.23 26883.54 36248.42 32557.12 34683.25 319
cascas78.18 19375.77 20985.41 10387.14 21969.11 5992.96 11791.15 17866.71 27870.47 21686.07 23637.49 32496.48 12470.15 19579.80 18390.65 206
APD-MVScopyleft85.93 5385.99 5185.76 9395.98 2665.21 15793.59 9492.58 11966.54 27986.17 4895.88 4163.83 9197.00 9686.39 6992.94 5695.06 77
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft70.45 1178.54 18875.92 20786.41 7485.93 24471.68 1892.74 12392.51 12166.49 28064.56 28591.96 14243.88 29198.10 3754.61 30290.65 8889.44 226
DTE-MVSNet68.46 30267.33 29571.87 34277.94 34649.00 35986.16 29588.58 28266.36 28158.19 32782.21 27646.36 27383.87 36044.97 34455.17 35382.73 326
IterMVS-SCA-FT71.55 27869.97 27876.32 30681.48 30160.67 27087.64 28185.99 31966.17 28259.50 31978.88 32045.53 28283.65 36162.58 26861.93 32284.63 305
TransMVSNet (Re)70.07 28767.66 29377.31 29780.62 31159.13 29491.78 17184.94 32865.97 28360.08 31780.44 30550.78 23591.87 28948.84 32345.46 37380.94 345
MVSFormer83.75 9582.88 10086.37 7589.24 16671.18 2489.07 25890.69 19265.80 28487.13 4094.34 8964.99 7592.67 26672.83 16891.80 7195.27 69
test_djsdf73.76 25872.56 25577.39 29577.00 35153.93 33589.07 25890.69 19265.80 28463.92 29182.03 27843.14 29592.67 26672.83 16868.53 27085.57 291
API-MVS82.28 11980.53 13787.54 4096.13 2270.59 3293.63 9291.04 18765.72 28675.45 16092.83 12456.11 18298.89 2064.10 25589.75 9793.15 150
原ACMM184.42 14393.21 6864.27 18493.40 8865.39 28779.51 11392.50 12858.11 15796.69 11465.27 24993.96 3992.32 174
testgi64.48 32662.87 32469.31 34971.24 36840.62 38485.49 29679.92 35565.36 28854.18 34483.49 26323.74 37284.55 35441.60 35560.79 33482.77 325
QAPM79.95 16177.39 18787.64 3389.63 15271.41 2093.30 10593.70 7365.34 28967.39 26391.75 14847.83 26498.96 1657.71 29289.81 9492.54 168
HPM-MVS_fast80.25 15479.55 15382.33 19591.55 11559.95 28091.32 19389.16 25465.23 29074.71 16793.07 11647.81 26595.74 14974.87 15988.23 10691.31 198
tfpnnormal70.10 28667.36 29478.32 28383.45 28360.97 26088.85 26192.77 10964.85 29160.83 31378.53 32243.52 29393.48 24131.73 38461.70 32780.52 350
FE-MVS75.97 23073.02 24684.82 12389.78 14865.56 14977.44 35591.07 18464.55 29272.66 18879.85 31446.05 28096.69 11454.97 30180.82 17692.21 181
SR-MVS82.81 11182.58 10683.50 17093.35 6361.16 25792.23 14691.28 17364.48 29381.27 8995.28 5653.71 21095.86 14482.87 9688.77 10393.49 141
K. test v363.09 33259.61 33673.53 32676.26 35449.38 35883.27 31277.15 36064.35 29447.77 36872.32 35728.73 36187.79 33549.93 31936.69 38683.41 317
v7n71.31 27968.65 28679.28 27276.40 35360.77 26486.71 29289.45 24164.17 29558.77 32678.24 32444.59 28993.54 23957.76 29161.75 32583.52 314
FMVSNet172.71 26969.91 28081.10 22983.60 28165.11 16090.01 23690.32 20563.92 29663.56 29580.25 30936.35 33391.54 29854.46 30366.75 28286.64 264
XVG-OURS74.25 25172.46 25779.63 26678.45 34057.59 31080.33 33787.39 30263.86 29768.76 24289.62 18540.50 30391.72 29369.00 20874.25 22989.58 221
UniMVSNet_ETH3D72.74 26870.53 27579.36 27178.62 33956.64 32085.01 29989.20 25163.77 29864.84 28284.44 25434.05 34191.86 29063.94 25670.89 25689.57 222
test_fmvs174.07 25273.69 23975.22 31278.91 33447.34 36689.06 26074.69 36863.68 29979.41 11591.59 15224.36 36987.77 33685.22 7676.26 21790.55 209
114514_t79.17 17277.67 17883.68 16495.32 2965.53 15192.85 12091.60 16063.49 30067.92 25290.63 16646.65 27195.72 15467.01 22883.54 14889.79 218
test_fmvs1_n72.69 27171.92 26274.99 31571.15 37047.08 36887.34 28575.67 36363.48 30178.08 13291.17 15920.16 38087.87 33384.65 8475.57 22190.01 215
APD-MVS_3200maxsize81.64 13081.32 12182.59 18992.36 8958.74 29791.39 18691.01 18863.35 30279.72 11194.62 7851.82 22596.14 13279.71 12087.93 11092.89 161
test20.0363.83 32962.65 32567.38 35770.58 37439.94 38586.57 29384.17 33363.29 30351.86 35277.30 33137.09 32982.47 36938.87 36654.13 35779.73 356
XVG-OURS-SEG-HR74.70 24773.08 24579.57 26878.25 34257.33 31480.49 33587.32 30363.22 30468.76 24290.12 18144.89 28891.59 29670.55 19374.09 23189.79 218
test_vis1_n71.63 27770.73 27374.31 32269.63 37647.29 36786.91 28972.11 37363.21 30575.18 16290.17 17720.40 37885.76 34884.59 8574.42 22889.87 216
ACMM69.62 1374.34 24972.73 25279.17 27484.25 27357.87 30490.36 22589.93 22463.17 30665.64 27586.04 23837.79 32294.10 21765.89 24071.52 25185.55 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmvs72.88 26669.76 28282.22 20090.98 12667.05 11378.22 35288.30 28863.10 30764.35 29074.98 34855.09 19494.27 21043.25 34769.57 26085.34 297
SixPastTwentyTwo64.92 32361.78 33074.34 32178.74 33649.76 35383.42 31179.51 35762.86 30850.27 35977.35 33030.92 35790.49 30945.89 33947.06 37082.78 324
SR-MVS-dyc-post81.06 13980.70 13282.15 20392.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8051.26 23395.61 15878.77 13186.77 12492.28 176
RE-MVS-def80.48 13892.02 9858.56 29990.90 20790.45 19962.76 30978.89 12194.46 8049.30 24978.77 13186.77 12492.28 176
TAPA-MVS70.22 1274.94 24573.53 24179.17 27490.40 13752.07 34289.19 25689.61 23762.69 31170.07 22392.67 12648.89 25694.32 20638.26 36779.97 18191.12 202
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous20240521177.96 19775.33 21685.87 8793.73 5464.52 16994.85 4585.36 32462.52 31276.11 15190.18 17629.43 36097.29 7868.51 21377.24 21095.81 47
pmmvs-eth3d65.53 32262.32 32775.19 31369.39 37759.59 28482.80 31983.43 34162.52 31251.30 35672.49 35332.86 34387.16 34355.32 30050.73 36478.83 364
AdaColmapbinary78.94 17777.00 19384.76 12896.34 1765.86 14292.66 13087.97 29962.18 31470.56 21592.37 13443.53 29297.35 7464.50 25382.86 15391.05 203
FOURS193.95 4561.77 24593.96 7191.92 14162.14 31586.57 45
无先验92.71 12592.61 11862.03 31697.01 9566.63 23093.97 126
XVG-ACMP-BASELINE68.04 30565.53 30575.56 31074.06 36252.37 34078.43 34985.88 32062.03 31658.91 32581.21 29620.38 37991.15 30560.69 27868.18 27283.16 321
anonymousdsp71.14 28069.37 28476.45 30572.95 36554.71 33284.19 30388.88 26861.92 31862.15 30879.77 31538.14 31791.44 30368.90 21067.45 27883.21 320
tpm cat175.30 24072.21 25984.58 13888.52 17967.77 9378.16 35388.02 29661.88 31968.45 24776.37 34160.65 12994.03 22653.77 30774.11 23091.93 186
FMVSNet568.04 30565.66 30475.18 31484.43 26957.89 30383.54 30786.26 31561.83 32053.64 34773.30 35237.15 32885.08 35248.99 32261.77 32482.56 332
Anonymous2023120667.53 31065.78 30172.79 33274.95 35847.59 36488.23 27087.32 30361.75 32158.07 32977.29 33237.79 32287.29 34242.91 34963.71 30983.48 315
PatchMatch-RL72.06 27469.98 27778.28 28489.51 15655.70 32683.49 30883.39 34361.24 32263.72 29482.76 26934.77 33893.03 24853.37 30977.59 20286.12 279
tt080573.07 26170.73 27380.07 25278.37 34157.05 31687.78 27892.18 13361.23 32367.04 26686.49 23031.35 35494.58 19565.06 25067.12 27988.57 234
PLCcopyleft68.80 1475.23 24173.68 24079.86 26192.93 7558.68 29890.64 21888.30 28860.90 32464.43 28990.53 16742.38 29794.57 19756.52 29576.54 21586.33 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH63.93 1768.62 29964.81 30980.03 25485.22 25463.25 21287.72 27984.66 33060.83 32551.57 35479.43 31927.29 36594.96 18141.76 35464.84 29781.88 337
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 30065.41 30677.96 28878.69 33762.93 22189.86 24189.17 25360.55 32650.27 35977.73 32922.60 37494.06 22147.18 33372.65 24376.88 371
VDDNet80.50 14878.26 17087.21 4686.19 23669.79 4694.48 5191.31 17060.42 32779.34 11690.91 16238.48 31396.56 11982.16 10081.05 17395.27 69
CPTT-MVS79.59 16579.16 16080.89 23791.54 11659.80 28292.10 15188.54 28360.42 32772.96 18493.28 11248.27 25892.80 26078.89 13086.50 12990.06 213
our_test_368.29 30364.69 31179.11 27778.92 33264.85 16788.40 26985.06 32660.32 32952.68 34976.12 34340.81 30289.80 32144.25 34655.65 35182.67 331
ITE_SJBPF70.43 34574.44 36047.06 36977.32 35960.16 33054.04 34583.53 26123.30 37384.01 35843.07 34861.58 32980.21 355
ppachtmachnet_test67.72 30763.70 31879.77 26478.92 33266.04 13788.68 26482.90 34660.11 33155.45 33975.96 34439.19 30790.55 30739.53 36252.55 36182.71 328
new-patchmatchnet59.30 34356.48 34567.79 35465.86 38344.19 37582.47 32081.77 34759.94 33243.65 38066.20 37227.67 36481.68 37439.34 36341.40 37977.50 370
mvsany_test168.77 29868.56 28769.39 34873.57 36345.88 37380.93 33360.88 39159.65 33371.56 20790.26 17543.22 29475.05 38174.26 16262.70 31487.25 257
新几何184.73 12992.32 9064.28 18391.46 16659.56 33479.77 11092.90 12056.95 17196.57 11863.40 25992.91 5793.34 144
旧先验292.00 16059.37 33587.54 3993.47 24275.39 151
PM-MVS59.40 34256.59 34467.84 35363.63 38441.86 38076.76 35663.22 38859.01 33651.07 35772.27 35811.72 39183.25 36561.34 27450.28 36678.39 367
LTVRE_ROB59.60 1966.27 31663.54 31974.45 31984.00 27651.55 34467.08 37983.53 34058.78 33754.94 34180.31 30734.54 33993.23 24540.64 36068.03 27378.58 366
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata81.34 22289.02 17057.72 30689.84 22758.65 33885.32 5994.09 9657.03 16693.28 24469.34 20390.56 9093.03 155
ACMH+65.35 1667.65 30864.55 31276.96 30284.59 26557.10 31588.08 27180.79 35158.59 33953.00 34881.09 29826.63 36792.95 25146.51 33561.69 32880.82 346
ADS-MVSNet266.90 31363.44 32077.26 29888.06 19660.70 26968.01 37675.56 36557.57 34064.48 28669.87 36538.68 30884.10 35640.87 35867.89 27586.97 259
ADS-MVSNet68.54 30164.38 31681.03 23388.06 19666.90 11768.01 37684.02 33557.57 34064.48 28669.87 36538.68 30889.21 32440.87 35867.89 27586.97 259
MDA-MVSNet-bldmvs61.54 33757.70 34173.05 32979.53 32357.00 31983.08 31681.23 34957.57 34034.91 38872.45 35432.79 34486.26 34735.81 37141.95 37875.89 373
KD-MVS_self_test60.87 33858.60 33867.68 35566.13 38239.93 38675.63 36284.70 32957.32 34349.57 36268.45 36829.55 35882.87 36748.09 32647.94 36980.25 354
UnsupCasMVSNet_bld61.60 33657.71 34073.29 32868.73 37851.64 34378.61 34889.05 26257.20 34446.11 36961.96 38028.70 36288.60 32650.08 31838.90 38479.63 357
MSDG69.54 29265.73 30280.96 23485.11 25863.71 19884.19 30383.28 34456.95 34554.50 34284.03 25631.50 35296.03 14042.87 35169.13 26683.14 322
F-COLMAP70.66 28168.44 28977.32 29686.37 23455.91 32488.00 27486.32 31356.94 34657.28 33588.07 20833.58 34292.49 27451.02 31368.37 27183.55 312
test22289.77 14961.60 25089.55 24689.42 24356.83 34777.28 14192.43 13252.76 21991.14 8493.09 152
CNLPA74.31 25072.30 25880.32 24391.49 11761.66 24990.85 21080.72 35256.67 34863.85 29390.64 16446.75 27090.84 30653.79 30675.99 21988.47 238
OurMVSNet-221017-064.68 32462.17 32872.21 33776.08 35647.35 36580.67 33481.02 35056.19 34951.60 35379.66 31727.05 36688.56 32753.60 30853.63 35880.71 348
YYNet163.76 33160.14 33474.62 31878.06 34560.19 27883.46 31083.99 33856.18 35039.25 38471.56 36237.18 32783.34 36442.90 35048.70 36880.32 352
MDA-MVSNet_test_wron63.78 33060.16 33374.64 31778.15 34460.41 27383.49 30884.03 33456.17 35139.17 38571.59 36137.22 32683.24 36642.87 35148.73 36780.26 353
OpenMVS_ROBcopyleft61.12 1866.39 31562.92 32376.80 30476.51 35257.77 30589.22 25483.41 34255.48 35253.86 34677.84 32826.28 36893.95 23034.90 37468.76 26878.68 365
MIMVSNet160.16 34157.33 34268.67 35169.71 37544.13 37678.92 34784.21 33255.05 35344.63 37771.85 35923.91 37181.54 37532.63 38255.03 35480.35 351
test_fmvs265.78 32064.84 30868.60 35266.54 38141.71 38183.27 31269.81 37954.38 35467.91 25384.54 25315.35 38581.22 37675.65 14966.16 28682.88 323
CVMVSNet74.04 25374.27 23073.33 32785.33 25143.94 37789.53 24888.39 28554.33 35570.37 21990.13 17949.17 25284.05 35761.83 27379.36 18791.99 185
Anonymous2024052976.84 21674.15 23284.88 12191.02 12564.95 16593.84 8191.09 18153.57 35673.00 18387.42 21835.91 33497.32 7669.14 20772.41 24692.36 172
pmmvs667.57 30964.76 31076.00 30972.82 36753.37 33788.71 26386.78 31253.19 35757.58 33478.03 32735.33 33792.41 27655.56 29954.88 35582.21 335
TinyColmap60.32 33956.42 34672.00 34178.78 33553.18 33878.36 35175.64 36452.30 35841.59 38375.82 34614.76 38888.35 32935.84 37054.71 35674.46 375
test_040264.54 32561.09 33174.92 31684.10 27560.75 26687.95 27579.71 35652.03 35952.41 35077.20 33332.21 35091.64 29423.14 39061.03 33172.36 379
test_vis1_rt59.09 34457.31 34364.43 36068.44 37946.02 37283.05 31748.63 40051.96 36049.57 36263.86 37616.30 38380.20 37871.21 18662.79 31367.07 385
Anonymous2023121173.08 26070.39 27681.13 22790.62 13363.33 21191.40 18490.06 22051.84 36164.46 28880.67 30236.49 33294.07 22063.83 25764.17 30485.98 282
AllTest61.66 33558.06 33972.46 33479.57 32151.42 34680.17 34068.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
TestCases72.46 33479.57 32151.42 34668.61 38151.25 36245.88 37081.23 29219.86 38186.58 34538.98 36457.01 34879.39 358
PatchT69.11 29565.37 30780.32 24382.07 29863.68 20167.96 37887.62 30150.86 36469.37 23065.18 37357.09 16588.53 32841.59 35666.60 28388.74 231
Anonymous2024052162.09 33459.08 33771.10 34367.19 38048.72 36083.91 30585.23 32550.38 36547.84 36771.22 36420.74 37785.51 35146.47 33658.75 34479.06 361
DP-MVS69.90 28966.48 29680.14 25095.36 2862.93 22189.56 24576.11 36150.27 36657.69 33385.23 24339.68 30595.73 15033.35 37771.05 25581.78 339
gg-mvs-nofinetune77.18 20874.31 22985.80 9191.42 11868.36 7671.78 36694.72 3449.61 36777.12 14345.92 39077.41 893.98 22867.62 22193.16 5495.05 78
JIA-IIPM66.06 31762.45 32676.88 30381.42 30354.45 33457.49 39188.67 27849.36 36863.86 29246.86 38956.06 18390.25 31149.53 32068.83 26785.95 283
N_pmnet50.55 35049.11 35354.88 37077.17 3504.02 41384.36 3022.00 41148.59 36945.86 37268.82 36732.22 34982.80 36831.58 38551.38 36377.81 369
ANet_high40.27 36135.20 36455.47 36834.74 40834.47 39363.84 38371.56 37648.42 37018.80 39741.08 3969.52 39564.45 39720.18 3938.66 40467.49 384
COLMAP_ROBcopyleft57.96 2062.98 33359.65 33572.98 33081.44 30253.00 33983.75 30675.53 36648.34 37148.81 36581.40 29024.14 37090.30 31032.95 37960.52 33675.65 374
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry67.53 31063.93 31778.34 28282.12 29764.38 17868.72 37384.00 33648.23 37259.24 32072.41 35557.82 15989.27 32346.10 33856.68 35081.36 340
LS3D69.17 29466.40 29877.50 29291.92 10456.12 32385.12 29880.37 35446.96 37356.50 33787.51 21737.25 32593.71 23632.52 38379.40 18682.68 330
RPSCF64.24 32761.98 32971.01 34476.10 35545.00 37475.83 36175.94 36246.94 37458.96 32484.59 25131.40 35382.00 37347.76 33160.33 33986.04 280
RPMNet70.42 28465.68 30384.63 13683.15 28567.96 8970.25 36990.45 19946.83 37569.97 22665.10 37456.48 17995.30 17335.79 37273.13 23790.64 207
WB-MVS46.23 35444.94 35650.11 37462.13 38821.23 40776.48 35855.49 39345.89 37635.78 38661.44 38235.54 33572.83 3859.96 40121.75 39656.27 389
CMPMVSbinary48.56 2166.77 31464.41 31573.84 32470.65 37350.31 35177.79 35485.73 32245.54 37744.76 37682.14 27735.40 33690.14 31763.18 26374.54 22681.07 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet64.01 32863.01 32267.02 35874.40 36138.86 38983.27 31286.19 31745.11 37854.27 34381.15 29736.91 33180.01 37948.79 32457.02 34782.19 336
TDRefinement55.28 34851.58 35166.39 35959.53 39146.15 37176.23 35972.80 37144.60 37942.49 38176.28 34215.29 38682.39 37033.20 37843.75 37570.62 381
Patchmatch-test65.86 31860.94 33280.62 24083.75 27858.83 29658.91 39075.26 36744.50 38050.95 35877.09 33558.81 15187.90 33235.13 37364.03 30695.12 76
test_fmvs356.82 34554.86 34862.69 36353.59 39435.47 39175.87 36065.64 38643.91 38155.10 34071.43 3636.91 39974.40 38468.64 21252.63 35978.20 368
mvsany_test348.86 35246.35 35556.41 36646.00 40031.67 39662.26 38447.25 40143.71 38245.54 37468.15 36910.84 39264.44 39857.95 29035.44 38973.13 376
SSC-MVS44.51 35643.35 35847.99 37861.01 39018.90 40974.12 36454.36 39443.42 38334.10 38960.02 38334.42 34070.39 3889.14 40319.57 39754.68 390
LF4IMVS54.01 34952.12 35059.69 36462.41 38739.91 38768.59 37468.28 38342.96 38444.55 37875.18 34714.09 39068.39 39041.36 35751.68 36270.78 380
DSMNet-mixed56.78 34654.44 34963.79 36163.21 38529.44 40064.43 38264.10 38742.12 38551.32 35571.60 36031.76 35175.04 38236.23 36965.20 29486.87 262
pmmvs355.51 34751.50 35267.53 35657.90 39250.93 34980.37 33673.66 37040.63 38644.15 37964.75 37516.30 38378.97 38044.77 34540.98 38272.69 377
new_pmnet49.31 35146.44 35457.93 36562.84 38640.74 38368.47 37562.96 38936.48 38735.09 38757.81 38414.97 38772.18 38632.86 38046.44 37160.88 387
MVS-HIRNet60.25 34055.55 34774.35 32084.37 27056.57 32171.64 36774.11 36934.44 38845.54 37442.24 39531.11 35689.81 31940.36 36176.10 21876.67 372
test_f46.58 35343.45 35755.96 36745.18 40132.05 39561.18 38549.49 39933.39 38942.05 38262.48 3797.00 39865.56 39447.08 33443.21 37770.27 382
test_vis3_rt40.46 36037.79 36148.47 37744.49 40233.35 39466.56 38032.84 40832.39 39029.65 39039.13 3983.91 40668.65 38950.17 31640.99 38143.40 393
DeepMVS_CXcopyleft34.71 38451.45 39624.73 40428.48 41031.46 39117.49 40052.75 3865.80 40142.60 40518.18 39419.42 39836.81 397
FPMVS45.64 35543.10 35953.23 37251.42 39736.46 39064.97 38171.91 37429.13 39227.53 39261.55 3819.83 39465.01 39616.00 39855.58 35258.22 388
PMMVS237.93 36333.61 36650.92 37346.31 39924.76 40360.55 38850.05 39728.94 39320.93 39547.59 3884.41 40565.13 39525.14 38918.55 39962.87 386
LCM-MVSNet40.54 35835.79 36354.76 37136.92 40730.81 39751.41 39469.02 38022.07 39424.63 39445.37 3914.56 40365.81 39333.67 37634.50 39067.67 383
APD_test140.50 35937.31 36250.09 37551.88 39535.27 39259.45 38952.59 39621.64 39526.12 39357.80 3854.56 40366.56 39222.64 39139.09 38348.43 391
PMVScopyleft26.43 2231.84 36728.16 37042.89 38025.87 41027.58 40150.92 39549.78 39821.37 39614.17 40240.81 3972.01 40966.62 3919.61 40238.88 38534.49 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.91 36431.44 36745.30 37970.99 37139.64 38819.85 40172.56 37220.10 39716.16 40121.47 4025.08 40271.16 38713.07 39943.70 37625.08 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
APD_test232.77 36529.47 36842.67 38141.89 40430.81 39752.07 39243.45 40215.45 39818.52 39844.82 3922.12 40758.38 39916.05 39630.87 39338.83 394
E-PMN24.61 36824.00 37226.45 38543.74 40318.44 41060.86 38639.66 40415.11 4009.53 40422.10 4016.52 40046.94 4038.31 40410.14 40113.98 401
EMVS23.76 37023.20 37425.46 38641.52 40616.90 41160.56 38738.79 40714.62 4018.99 40520.24 4047.35 39745.82 4047.25 4059.46 40213.64 402
MVEpermissive24.84 2324.35 36919.77 37538.09 38334.56 40926.92 40226.57 39938.87 40611.73 40211.37 40327.44 3991.37 41050.42 40211.41 40014.60 40036.93 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method38.59 36235.16 36548.89 37654.33 39321.35 40645.32 39753.71 3957.41 40328.74 39151.62 3878.70 39652.87 40133.73 37532.89 39172.47 378
wuyk23d11.30 37310.95 37612.33 38848.05 39819.89 40825.89 4001.92 4123.58 4043.12 4061.37 4060.64 41115.77 4076.23 4067.77 4051.35 403
tmp_tt22.26 37123.75 37317.80 3875.23 41112.06 41235.26 39839.48 4052.82 40518.94 39644.20 39422.23 37524.64 40636.30 3689.31 40316.69 400
EGC-MVSNET42.35 35738.09 36055.11 36974.57 35946.62 37071.63 36855.77 3920.04 4060.24 40762.70 37814.24 38974.91 38317.59 39546.06 37243.80 392
testmvs7.23 3759.62 3780.06 3900.04 4120.02 41584.98 3000.02 4130.03 4070.18 4081.21 4070.01 4130.02 4080.14 4070.01 4060.13 405
test1236.92 3769.21 3790.08 3890.03 4130.05 41481.65 3260.01 4140.02 4080.14 4090.85 4080.03 4120.02 4080.12 4080.00 4070.16 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
cdsmvs_eth3d_5k19.86 37226.47 3710.00 3910.00 4140.00 4160.00 40293.45 840.00 4090.00 41095.27 5849.56 2460.00 4100.00 4090.00 4070.00 406
pcd_1.5k_mvsjas4.46 3775.95 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40953.55 2110.00 4100.00 4090.00 4070.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
ab-mvs-re7.91 37410.55 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.95 660.00 4140.00 4100.00 4090.00 4070.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4070.00 406
WAC-MVS49.45 35631.56 386
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 23
eth-test20.00 414
eth-test0.00 414
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1896.45 1270.43 3496.64 1094.37 5299.15 291.91 2994.90 2296.51 23
GSMVS94.68 94
test_part296.29 1968.16 8590.78 17
sam_mvs157.85 15894.68 94
sam_mvs54.91 196
ambc69.61 34761.38 38941.35 38249.07 39685.86 32150.18 36166.40 37110.16 39388.14 33145.73 34044.20 37479.32 360
MTGPAbinary92.23 127
test_post178.95 34620.70 40353.05 21691.50 30260.43 279
test_post23.01 40056.49 17892.67 266
patchmatchnet-post67.62 37057.62 16190.25 311
GG-mvs-BLEND86.53 7091.91 10569.67 5175.02 36394.75 3378.67 12890.85 16377.91 794.56 19972.25 17693.74 4495.36 61
MTMP93.77 8532.52 409
test9_res89.41 4194.96 1995.29 66
agg_prior286.41 6894.75 3095.33 62
agg_prior94.16 4366.97 11693.31 8984.49 6696.75 113
test_prior467.18 11093.92 74
test_prior86.42 7394.71 3567.35 10593.10 9996.84 11095.05 78
新几何291.41 182
旧先验191.94 10260.74 26791.50 16494.36 8465.23 7391.84 7094.55 101
原ACMM292.01 157
testdata296.09 13461.26 275
segment_acmp65.94 66
test1287.09 5094.60 3668.86 6592.91 10582.67 8265.44 7197.55 6393.69 4794.84 87
plane_prior786.94 22461.51 251
plane_prior687.23 21662.32 23550.66 236
plane_prior591.31 17095.55 16376.74 14178.53 19688.39 239
plane_prior489.14 191
plane_prior187.15 218
n20.00 415
nn0.00 415
door-mid66.01 385
lessismore_v073.72 32572.93 36647.83 36361.72 39045.86 37273.76 35128.63 36389.81 31947.75 33231.37 39283.53 313
test1193.01 101
door66.57 384
HQP5-MVS63.66 202
BP-MVS77.63 138
HQP4-MVS74.18 17195.61 15888.63 232
HQP3-MVS91.70 15678.90 191
HQP2-MVS51.63 229
NP-MVS87.41 21263.04 21790.30 173
ACMMP++_ref71.63 249
ACMMP++69.72 258
Test By Simon54.21 205