This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3295.24 3699.65 393.39 5999.84 399.72 2
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 5991.98 11599.63 693.08 7499.81 999.70 3
Anonymous2023121196.60 2597.13 1295.00 10297.46 11986.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4591.76 12099.63 694.23 2699.84 399.66 6
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
LS3D96.11 4895.83 6296.95 3794.75 25594.20 1897.34 1197.98 7297.31 1195.32 13496.77 10893.08 8999.20 8391.79 10598.16 19897.44 198
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7491.78 30397.19 1296.32 8698.60 1884.24 22998.75 15587.09 20998.83 12698.81 78
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17696.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 12999.23 493.45 7599.57 1395.34 1299.89 299.63 9
DP-MVS95.62 6395.84 6194.97 10397.16 13288.62 10994.54 11497.64 10196.94 1596.58 7797.32 7793.07 9098.72 16090.45 13198.84 12197.57 189
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 14897.24 13796.88 1697.69 3097.77 4894.12 6899.13 9191.54 11599.29 6797.88 165
Gipumacopyleft95.31 7795.80 6493.81 15497.99 8990.91 7096.42 3797.95 7896.69 1791.78 24898.85 1291.77 11995.49 32391.72 10899.08 9395.02 286
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5695.48 2598.77 15490.11 14999.44 4598.31 124
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052995.50 6795.83 6294.50 12697.33 12585.93 17095.19 8696.77 17296.64 1997.61 3598.05 3493.23 8398.79 14688.60 18599.04 10298.78 81
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7295.85 21296.47 2193.40 19997.46 6395.31 3395.47 32486.18 22598.78 13389.11 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 31781.02 31985.34 32687.46 35871.04 33894.74 10167.56 37196.44 2279.43 36198.99 645.24 37096.15 31067.18 35592.17 33788.85 352
ANet_high94.83 9596.28 3790.47 26096.65 15473.16 32894.33 11898.74 896.39 2398.09 2598.93 893.37 7998.70 16690.38 13499.68 1899.53 14
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14082.88 23899.35 5988.19 18999.52 3798.96 60
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15090.79 7396.30 4697.82 8996.13 2594.74 16297.23 8191.33 13099.16 8693.25 6698.30 18298.46 115
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21391.38 11899.69 1599.42 19
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 6898.61 996.10 2698.16 2397.52 5996.90 798.62 17590.30 14099.60 2598.72 90
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 11786.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19698.73 89
LFMVS91.33 19791.16 19991.82 21796.27 18479.36 25995.01 9385.61 34596.04 2994.82 15897.06 9072.03 30998.46 19684.96 23998.70 14097.65 185
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13697.86 8395.96 3097.48 4197.14 8695.33 3299.44 2490.79 12699.76 1199.38 22
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6496.51 999.40 4394.06 3099.23 7898.85 75
test117296.79 1596.52 2797.60 998.03 8394.87 1096.07 5398.06 5995.76 3296.89 6396.85 10394.85 5299.42 2993.35 6198.81 12998.53 109
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9294.85 5299.42 2993.49 4898.84 12198.00 149
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9295.40 2793.49 4898.84 12198.00 149
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9093.82 3396.31 4498.25 2795.51 3596.99 6097.05 9195.63 2199.39 4893.31 6298.88 11698.75 84
test_part194.39 11094.55 10793.92 14896.14 19582.86 21095.54 7298.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5098.07 5695.17 3796.82 6796.73 11495.09 4499.43 2892.99 7798.71 13898.50 111
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10488.59 11092.26 18497.84 8794.91 3896.80 6895.78 17190.42 15399.41 3691.60 11299.58 3199.29 28
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5894.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23094.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17196.49 12694.56 5999.39 4893.57 4499.05 9798.93 63
X-MVStestdata90.70 20788.45 24797.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17126.89 36894.56 5999.39 4893.57 4499.05 9798.93 63
Regformer-494.90 8994.67 10395.59 7892.78 30189.02 10092.39 17695.91 20994.50 4396.41 8095.56 18392.10 11199.01 11294.23 2698.14 20098.74 87
VDD-MVS94.37 11194.37 11394.40 13397.49 11686.07 16893.97 13193.28 27394.49 4496.24 9397.78 4687.99 18698.79 14688.92 17699.14 8898.34 121
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 13897.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6197.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
Regformer-294.86 9294.55 10795.77 7192.83 29989.98 8191.87 20596.40 19094.38 4796.19 9995.04 20692.47 10799.04 10793.49 4898.31 18098.28 126
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7195.13 40
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15396.19 15082.07 24999.57 1387.28 20798.89 11498.65 94
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
Anonymous20240521192.58 16892.50 16692.83 18596.55 16283.22 20392.43 17391.64 30494.10 5195.59 12396.64 12081.88 25397.50 26485.12 23598.52 15697.77 176
Regformer-194.55 10594.33 11595.19 9692.83 29988.54 11391.87 20595.84 21393.99 5295.95 10795.04 20692.00 11398.79 14693.14 7198.31 18098.23 129
DU-MVS95.28 7895.12 8795.75 7397.75 9788.59 11092.58 16497.81 9093.99 5296.80 6895.90 16190.10 16299.41 3691.60 11299.58 3199.26 29
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9096.76 17393.97 5497.77 2898.57 1995.72 1897.90 23688.89 17899.23 7899.08 45
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6098.32 2093.93 5597.53 3997.56 5688.48 17699.40 4392.91 7999.83 699.68 4
DROMVSNet95.44 6995.62 6994.89 10596.93 14387.69 12996.48 3399.14 393.93 5592.77 22194.52 22793.95 7099.49 2293.62 4399.22 8097.51 194
NR-MVSNet95.28 7895.28 8195.26 9397.75 9787.21 13795.08 8997.37 12093.92 5797.65 3195.90 16190.10 16299.33 6790.11 14999.66 2199.26 29
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19096.68 17693.82 5896.29 8998.56 2090.10 16297.75 25490.10 15199.66 2199.24 31
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22199.60 2599.10 44
tfpnnormal94.27 11794.87 9392.48 20097.71 10180.88 23394.55 11295.41 22993.70 6096.67 7397.72 4991.40 12898.18 21787.45 20399.18 8598.36 120
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30385.98 16992.44 17294.69 24993.70 6096.12 10295.81 16791.24 13498.86 13493.76 4198.22 19398.98 58
WR-MVS93.49 13493.72 13092.80 18697.57 11280.03 24490.14 25495.68 21693.70 6096.62 7595.39 19487.21 19899.04 10787.50 20299.64 2399.33 25
Regformer-394.28 11694.23 12194.46 13092.78 30186.28 16492.39 17694.70 24893.69 6395.97 10595.56 18391.34 12998.48 19493.45 5398.14 20098.62 102
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30485.87 17192.42 17494.69 24993.67 6496.13 10195.84 16691.20 13798.86 13493.78 3898.23 19199.03 49
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9588.91 10292.91 15598.07 5693.46 6596.31 8795.97 16090.14 15899.34 6292.11 9499.64 2399.16 36
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9683.15 20594.58 10897.58 10793.39 6697.05 5698.04 3593.25 8298.51 18989.75 15999.59 2799.08 45
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6598.01 6993.34 6796.64 7496.57 12494.99 4999.36 5893.48 5199.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++.95.93 5396.34 3494.70 11496.54 16386.66 15298.45 498.22 3293.26 6897.54 3797.36 7193.12 8799.38 5493.88 3498.68 14298.04 144
test_0728_THIRD93.26 6897.40 4697.35 7494.69 5599.34 6293.88 3499.42 4798.89 69
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7196.92 699.34 6294.31 2399.38 5598.92 67
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 7898.14 4493.05 7197.07 5397.18 8487.65 19099.29 7191.72 10899.69 1599.61 11
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5197.78 9592.73 7293.48 19696.72 11594.23 6699.42 2991.99 9999.29 6799.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03096.32 4196.55 2695.62 7797.83 9488.55 11295.77 6498.29 2692.68 7398.03 2697.91 4295.13 4098.95 12293.85 3699.49 3899.36 24
CSCG94.69 10094.75 9794.52 12597.55 11387.87 12695.01 9397.57 10892.68 7396.20 9793.44 26191.92 11698.78 15089.11 17399.24 7796.92 220
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 14896.39 13794.77 5499.42 2993.17 6999.44 4598.58 107
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12796.68 11794.50 6199.42 2993.10 7299.26 7498.99 53
APDe-MVS96.46 3296.64 2295.93 6097.68 10589.38 9696.90 1998.41 1692.52 7797.43 4397.92 4195.11 4299.50 1994.45 1999.30 6498.92 67
RPSCF95.58 6594.89 9297.62 897.58 11196.30 495.97 5797.53 11292.42 7893.41 19797.78 4691.21 13697.77 25191.06 12097.06 24798.80 79
FMVSNet194.84 9495.13 8693.97 14497.60 11084.29 18795.99 5496.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8698.65 94
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9189.83 8593.46 14398.30 2392.37 8097.75 2996.95 9595.14 3999.51 1891.74 10799.28 7298.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7698.22 3292.36 8194.11 17598.07 3392.02 11299.44 2493.38 6097.67 23097.85 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12196.47 12795.37 2899.27 7593.78 3899.14 8898.48 113
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12496.61 12294.93 5199.41 3693.78 3899.15 8799.00 51
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13296.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13796.57 12495.02 4799.41 3693.63 4299.11 9298.94 62
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10695.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PatchT87.51 27588.17 25685.55 32390.64 33066.91 35292.02 19486.09 33892.20 8789.05 29497.16 8564.15 33796.37 30689.21 17292.98 32993.37 324
VNet92.67 16592.96 15191.79 21896.27 18480.15 23891.95 19794.98 23792.19 8894.52 16896.07 15587.43 19497.39 27384.83 24098.38 17097.83 170
thres100view90087.35 27986.89 27788.72 29396.14 19573.09 32993.00 15285.31 34892.13 8993.26 20590.96 31163.42 34198.28 20671.27 34496.54 26494.79 290
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6798.01 6992.08 9095.74 11796.28 14595.22 3799.42 2993.17 6999.06 9498.88 71
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21383.13 20693.79 13599.19 292.00 9198.84 598.04 3593.64 7299.02 11081.28 27398.54 15496.96 219
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8298.10 4991.95 9297.63 3297.25 7996.48 1199.35 5993.29 6399.29 6797.95 157
test_241102_TWO98.10 4991.95 9297.54 3797.25 7995.37 2899.35 5993.29 6399.25 7598.49 112
ITE_SJBPF95.95 5797.34 12493.36 4196.55 18591.93 9494.82 15895.39 19491.99 11497.08 28285.53 22997.96 21597.41 199
RPMNet90.31 22190.14 22090.81 25291.01 32778.93 26692.52 16698.12 4691.91 9589.10 29296.89 10168.84 31499.41 3690.17 14792.70 33194.08 305
thres600view787.66 27187.10 27589.36 28396.05 20273.17 32792.72 15985.31 34891.89 9693.29 20290.97 31063.42 34198.39 19773.23 33296.99 25496.51 233
v894.65 10295.29 8092.74 18796.65 15479.77 25294.59 10697.17 14191.86 9797.47 4297.93 4088.16 18199.08 9994.32 2299.47 3999.38 22
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9296.48 1198.95 122
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8497.00 15191.85 9897.40 4697.35 7495.58 2299.34 6293.44 5599.31 6298.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4686.69 15095.34 7798.18 3691.85 9897.63 3297.37 6895.58 22
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7098.56 1191.84 10196.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7597.12 14591.84 10197.28 4898.46 2595.30 3497.71 25690.17 14799.42 4798.99 53
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 21795.62 21791.84 10195.74 11797.10 8889.31 17098.32 20485.07 23899.06 9498.93 63
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23587.06 14096.63 2597.28 13591.82 10494.34 17397.41 6590.60 15198.65 17492.47 8998.11 20497.70 181
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 7898.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
EI-MVSNet92.99 15393.26 14992.19 20692.12 31179.21 26492.32 18194.67 25191.77 10795.24 14195.85 16387.14 20098.49 19091.99 9998.26 18598.86 72
IterMVS-LS93.78 12994.28 11792.27 20396.27 18479.21 26491.87 20596.78 17091.77 10796.57 7897.07 8987.15 19998.74 15891.99 9999.03 10398.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5298.16 4391.74 10995.34 13396.36 14095.68 1999.44 2494.41 2199.28 7298.97 59
HQP_MVS94.26 11893.93 12495.23 9597.71 10188.12 12094.56 11097.81 9091.74 10993.31 20095.59 17886.93 20498.95 12289.26 16998.51 15898.60 105
plane_prior294.56 11091.74 109
ETV-MVS92.99 15392.74 15893.72 15595.86 21586.30 16392.33 18097.84 8791.70 11292.81 21986.17 35292.22 10899.19 8488.03 19497.73 22495.66 272
wuyk23d87.83 26790.79 20678.96 34690.46 33588.63 10892.72 15990.67 31191.65 11398.68 1197.64 5396.06 1677.53 36759.84 36299.41 5270.73 365
alignmvs93.26 14392.85 15494.50 12695.70 22487.45 13193.45 14495.76 21491.58 11495.25 14092.42 28881.96 25198.72 16091.61 11197.87 22097.33 207
canonicalmvs94.59 10394.69 10094.30 13595.60 23287.03 14295.59 6998.24 3091.56 11595.21 14392.04 29494.95 5098.66 17291.45 11697.57 23497.20 212
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28179.22 26387.56 30293.51 27091.53 11695.37 13296.62 12178.65 27298.90 12691.89 10494.95 29797.70 181
casdiffmvs94.32 11594.80 9592.85 18496.05 20281.44 22592.35 17998.05 6091.53 11695.75 11696.80 10793.35 8098.49 19091.01 12398.32 17998.64 98
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 7898.30 2391.40 11895.76 11596.87 10295.26 3599.45 2392.77 8099.21 8199.00 51
Effi-MVS+92.79 16092.74 15892.94 18095.10 24583.30 20294.00 12997.53 11291.36 11989.35 29090.65 31894.01 6998.66 17287.40 20595.30 29196.88 223
testtj94.81 9694.42 11196.01 5497.23 12790.51 7794.77 10097.85 8691.29 12094.92 15595.66 17691.71 12199.40 4388.07 19398.25 18898.11 140
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14495.15 19986.60 21299.50 1993.43 5796.81 25798.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS95.19 8195.73 6693.55 16096.62 15788.88 10594.67 10398.05 6091.26 12197.25 5096.40 13395.42 2694.36 34092.72 8499.19 8397.40 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 21490.16 21791.20 23897.66 10777.32 29094.33 11887.66 32791.20 12392.99 21595.13 20175.40 29798.28 20677.86 30399.19 8397.99 152
API-MVS91.52 19291.61 18491.26 23494.16 27386.26 16594.66 10494.82 24391.17 12492.13 24291.08 30990.03 16597.06 28379.09 29897.35 24190.45 349
EPNet89.80 23688.25 25294.45 13183.91 36986.18 16693.87 13387.07 33291.16 12580.64 35894.72 22178.83 27098.89 12885.17 23198.89 11498.28 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9293.58 3794.09 12696.99 15391.05 12692.40 23295.22 19891.03 14299.25 7792.11 9498.69 14197.90 163
CS-MVS-test93.33 13893.53 14192.71 18895.74 22283.08 20794.55 11298.85 591.02 12789.30 29191.91 29591.79 11899.23 8090.23 14498.41 16495.82 264
test_yl90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
DCV-MVSNet90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
tfpn200view987.05 28786.52 28588.67 29495.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26494.79 290
thres40087.20 28386.52 28589.24 28795.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26496.51 233
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10198.03 6590.82 13297.15 5196.85 10396.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline94.26 11894.80 9592.64 19196.08 20080.99 23193.69 13898.04 6490.80 13394.89 15696.32 14293.19 8498.48 19491.68 11098.51 15898.43 117
XVG-OURS94.72 9994.12 12296.50 4898.00 8694.23 1791.48 21898.17 4090.72 13495.30 13596.47 12787.94 18796.98 28591.41 11797.61 23398.30 125
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17198.13 4590.69 13593.75 18996.25 14898.03 297.02 28492.08 9695.55 28398.45 116
v1094.68 10195.27 8292.90 18296.57 16080.15 23894.65 10597.57 10890.68 13697.43 4398.00 3788.18 18099.15 8794.84 1599.55 3499.41 20
NCCC94.08 12493.54 13995.70 7696.49 16889.90 8492.39 17696.91 16090.64 13792.33 23894.60 22490.58 15298.96 12090.21 14697.70 22898.23 129
UGNet93.08 14992.50 16694.79 11093.87 28287.99 12495.07 9094.26 25890.64 13787.33 32097.67 5186.89 20798.49 19088.10 19298.71 13897.91 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MSDG90.82 20390.67 20991.26 23494.16 27383.08 20786.63 32396.19 20190.60 13991.94 24591.89 29689.16 17295.75 31880.96 27994.51 30794.95 288
AllTest94.88 9194.51 11096.00 5598.02 8492.17 5195.26 8198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
TestCases96.00 5598.02 8492.17 5198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11498.05 6090.45 14296.31 8796.76 11092.91 9498.72 16091.19 11999.42 4798.32 122
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 10998.03 6590.42 14396.37 8297.35 7495.68 1999.25 7794.44 2099.34 5898.80 79
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26280.16 23785.49 33092.14 29790.41 14494.93 15495.79 16885.10 22496.93 28885.15 23394.19 31497.57 189
plane_prior388.43 11690.35 14593.31 200
Patchmtry90.11 22589.92 22390.66 25590.35 33677.00 29492.96 15392.81 28090.25 14694.74 16296.93 9867.11 31997.52 26385.17 23198.98 10597.46 196
CNLPA91.72 18791.20 19693.26 17196.17 19291.02 6791.14 22595.55 22590.16 14790.87 26093.56 25986.31 21494.40 33979.92 29097.12 24694.37 301
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16397.33 12990.05 14896.77 7096.85 10395.04 4598.56 18492.77 8099.06 9498.70 93
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 25796.67 394.00 12995.41 22989.94 14991.93 24692.13 29290.12 15998.97 11987.68 20097.48 23697.67 184
mvs-test193.07 15191.80 18196.89 3994.74 25795.83 692.17 18795.41 22989.94 14989.85 28190.59 31990.12 15998.88 12987.68 20095.66 28195.97 256
test20.0390.80 20490.85 20490.63 25695.63 23079.24 26289.81 26692.87 27989.90 15194.39 17096.40 13385.77 21995.27 33173.86 32999.05 9797.39 203
tttt051789.81 23588.90 24192.55 19797.00 13879.73 25395.03 9283.65 35789.88 15295.30 13594.79 22053.64 36399.39 4891.99 9998.79 13298.54 108
CANet92.38 17391.99 17593.52 16493.82 28483.46 20091.14 22597.00 15189.81 15386.47 32494.04 24287.90 18899.21 8289.50 16398.27 18497.90 163
v14892.87 15893.29 14591.62 22496.25 18777.72 28591.28 22395.05 23589.69 15495.93 10996.04 15687.34 19598.38 19990.05 15297.99 21498.78 81
CNVR-MVS94.58 10494.29 11695.46 8496.94 14189.35 9791.81 21196.80 16989.66 15593.90 18695.44 19092.80 9898.72 16092.74 8298.52 15698.32 122
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26388.25 11792.05 19196.65 17889.62 15690.08 27491.23 30692.56 10398.60 17886.30 22396.27 26996.90 221
MVS_030490.96 20290.15 21993.37 16693.17 29187.06 14093.62 14092.43 29289.60 15782.25 34995.50 18682.56 24597.83 24584.41 24697.83 22295.22 280
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 10779.49 25794.86 9797.12 14589.59 15896.87 6497.65 5290.40 15698.34 20389.08 17499.35 5798.75 84
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12098.08 5389.46 15996.61 7696.47 12795.85 1799.12 9390.45 13199.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052192.86 15993.57 13790.74 25396.57 16075.50 31294.15 12395.60 21889.38 16095.90 11197.90 4480.39 26397.96 23492.60 8799.68 1898.75 84
MSLP-MVS++93.25 14593.88 12591.37 23096.34 17882.81 21193.11 14997.74 9689.37 16194.08 17795.29 19790.40 15696.35 30790.35 13698.25 18894.96 287
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 8797.98 7289.34 16295.63 12196.47 12795.37 2899.27 7591.99 9999.14 8898.48 113
test_prior393.29 14092.85 15494.61 11795.95 21087.23 13590.21 25097.36 12589.33 16390.77 26194.81 21690.41 15498.68 17088.21 18798.55 15197.93 159
test_prior290.21 25089.33 16390.77 26194.81 21690.41 15488.21 18798.55 151
h-mvs3392.89 15691.99 17595.58 7996.97 13990.55 7593.94 13294.01 26489.23 16593.95 18396.19 15076.88 29099.14 8991.02 12195.71 28097.04 216
hse-mvs292.24 17891.20 19695.38 8596.16 19390.65 7492.52 16692.01 30189.23 16593.95 18392.99 27176.88 29098.69 16891.02 12196.03 27296.81 225
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12290.88 7194.59 10697.81 9089.22 16795.46 12996.17 15393.42 7899.34 6289.30 16598.87 11997.56 191
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6297.66 10089.21 16893.28 20395.46 18888.89 17398.98 11589.80 15698.82 12797.80 174
plane_prior88.12 12093.01 15188.98 16998.06 208
MVSFormer92.18 17992.23 16992.04 21494.74 25780.06 24297.15 1397.37 12088.98 16988.83 29592.79 27677.02 28799.60 896.41 496.75 26096.46 238
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 16998.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
JIA-IIPM85.08 29883.04 30791.19 23987.56 35586.14 16789.40 27584.44 35588.98 16982.20 35097.95 3956.82 35896.15 31076.55 31683.45 35991.30 344
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23386.36 16192.24 18696.27 19588.88 17389.90 28092.69 27991.65 12398.32 20477.38 31097.64 23192.72 334
MVS_Test92.57 17093.29 14590.40 26393.53 28675.85 30892.52 16696.96 15488.73 17492.35 23596.70 11690.77 14498.37 20292.53 8895.49 28596.99 218
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7197.88 8288.72 17598.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
GeoE94.55 10594.68 10294.15 13897.23 12785.11 18094.14 12497.34 12888.71 17695.26 13895.50 18694.65 5799.12 9390.94 12498.40 16598.23 129
GBi-Net93.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
test193.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
FMVSNet292.78 16192.73 16092.95 17995.40 23781.98 21794.18 12295.53 22688.63 17796.05 10497.37 6881.31 25698.81 14487.38 20698.67 14498.06 141
thres20085.85 29485.18 29587.88 30794.44 26872.52 33389.08 28386.21 33688.57 18091.44 25188.40 33964.22 33698.00 23068.35 35295.88 27893.12 326
v2v48293.29 14093.63 13492.29 20296.35 17778.82 26991.77 21396.28 19488.45 18195.70 12096.26 14786.02 21898.90 12693.02 7598.81 12999.14 38
testdata188.96 28588.44 182
testgi90.38 21691.34 19387.50 31097.49 11671.54 33789.43 27395.16 23488.38 18394.54 16794.68 22392.88 9693.09 35071.60 34297.85 22197.88 165
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15486.96 14589.30 27896.23 19888.36 18493.57 19594.60 22493.45 7597.77 25190.23 14498.38 17098.03 147
BH-RMVSNet90.47 21390.44 21390.56 25995.21 24478.65 27389.15 28293.94 26688.21 18592.74 22294.22 23686.38 21397.88 23878.67 30095.39 28995.14 283
PAPM_NR91.03 20190.81 20591.68 22396.73 15281.10 23093.72 13796.35 19388.19 18688.77 30192.12 29385.09 22597.25 27782.40 26393.90 31596.68 230
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9386.50 15492.00 19596.74 17488.16 18796.93 6297.61 5493.04 9197.90 23691.60 11298.12 20398.03 147
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 10989.72 8694.05 12798.37 1788.09 18895.06 14995.85 16392.58 10299.10 9790.33 13998.99 10498.62 102
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21690.87 7290.97 22992.61 28888.04 18994.61 16593.79 25388.08 18297.81 24689.41 16498.39 16896.50 236
BH-untuned90.68 20890.90 20190.05 27495.98 20879.57 25690.04 25794.94 23987.91 19094.07 17893.00 27087.76 18997.78 25079.19 29795.17 29492.80 332
MVS_111021_LR93.66 13193.28 14794.80 10996.25 18790.95 6990.21 25095.43 22887.91 19093.74 19194.40 23092.88 9696.38 30590.39 13398.28 18397.07 213
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 14798.32 2087.89 19296.86 6597.38 6795.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PHI-MVS94.34 11493.80 12795.95 5795.65 22891.67 6294.82 9897.86 8387.86 19393.04 21494.16 23991.58 12498.78 15090.27 14298.96 11197.41 199
EMVS80.35 32880.28 32780.54 34384.73 36869.07 34872.54 36180.73 36487.80 19481.66 35581.73 36162.89 34389.84 36075.79 32194.65 30582.71 361
E-PMN80.72 32680.86 32180.29 34485.11 36668.77 34972.96 35981.97 36187.76 19583.25 34583.01 36062.22 34789.17 36277.15 31294.31 31182.93 360
CS-MVS92.12 18092.62 16290.60 25794.57 26678.12 27892.00 19598.58 1087.75 19690.08 27491.88 29789.79 16699.10 9790.35 13698.60 14994.58 296
EIA-MVS92.35 17492.03 17393.30 17095.81 21883.97 19592.80 15898.17 4087.71 19789.79 28487.56 34291.17 14099.18 8587.97 19597.27 24296.77 227
TinyColmap92.00 18392.76 15789.71 27795.62 23177.02 29390.72 23596.17 20387.70 19895.26 13896.29 14492.54 10496.45 30281.77 26898.77 13495.66 272
anonymousdsp96.74 1796.42 2997.68 798.00 8694.03 2596.97 1797.61 10587.68 19998.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 11988.05 12292.04 19298.42 1587.63 20096.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
save fliter97.46 11988.05 12292.04 19297.08 14787.63 200
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20298.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
9.1494.81 9497.49 11694.11 12598.37 1787.56 20395.38 13196.03 15794.66 5699.08 9990.70 12898.97 109
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10690.17 7993.86 13498.02 6787.35 20496.22 9597.99 3894.48 6299.05 10492.73 8399.68 1897.93 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS92.05 18292.16 17091.72 22194.44 26880.13 24087.62 29997.25 13687.34 20592.22 24093.18 26889.54 16998.73 15989.67 16098.20 19696.30 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4293.43 13693.58 13692.97 17795.34 24181.22 22892.67 16296.49 18787.25 20696.20 9796.37 13987.32 19698.85 13692.39 9398.21 19498.85 75
HQP-NCC96.36 17491.37 21987.16 20788.81 297
ACMP_Plane96.36 17491.37 21987.16 20788.81 297
HQP-MVS92.09 18191.49 18993.88 15196.36 17484.89 18291.37 21997.31 13087.16 20788.81 29793.40 26284.76 22698.60 17886.55 21897.73 22498.14 136
OMC-MVS94.22 12093.69 13295.81 6797.25 12691.27 6492.27 18397.40 11987.10 21094.56 16695.42 19193.74 7198.11 22286.62 21698.85 12098.06 141
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21198.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
v114493.50 13393.81 12692.57 19696.28 18379.61 25591.86 20996.96 15486.95 21295.91 11096.32 14287.65 19098.96 12093.51 4798.88 11699.13 39
ab-mvs92.40 17292.62 16291.74 22097.02 13781.65 22195.84 6295.50 22786.95 21292.95 21797.56 5690.70 14997.50 26479.63 29197.43 23896.06 253
RRT_MVS91.36 19690.05 22195.29 9289.21 34888.15 11992.51 17094.89 24086.73 21495.54 12595.68 17561.82 34899.30 7094.91 1399.13 9198.43 117
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 8897.79 9486.48 21597.42 4597.51 6194.47 6399.29 7193.55 4699.29 6798.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thisisatest053088.69 25587.52 26692.20 20596.33 17979.36 25992.81 15784.01 35686.44 21693.67 19292.68 28053.62 36499.25 7789.65 16198.45 16298.00 149
IterMVS90.18 22390.16 21790.21 26993.15 29275.98 30787.56 30292.97 27886.43 21794.09 17696.40 13378.32 27697.43 26987.87 19794.69 30497.23 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_test8_iter0588.21 26188.17 25688.33 30191.62 32066.82 35691.73 21496.60 18086.34 21894.14 17495.38 19647.72 36999.11 9591.78 10698.26 18599.06 47
diffmvs91.74 18691.93 17791.15 24093.06 29478.17 27788.77 28997.51 11586.28 21992.42 23193.96 24788.04 18497.46 26790.69 12996.67 26297.82 172
baseline187.62 27387.31 26888.54 29694.71 26174.27 32293.10 15088.20 32386.20 22092.18 24193.04 26973.21 30395.52 32179.32 29585.82 35595.83 263
new-patchmatchnet88.97 24890.79 20683.50 33794.28 27255.83 37185.34 33193.56 26986.18 22195.47 12795.73 17383.10 23696.51 30085.40 23098.06 20898.16 134
FMVSNet390.78 20590.32 21692.16 21093.03 29679.92 24792.54 16594.95 23886.17 22295.10 14596.01 15869.97 31398.75 15586.74 21298.38 17097.82 172
v119293.49 13493.78 12892.62 19496.16 19379.62 25491.83 21097.22 13986.07 22396.10 10396.38 13887.22 19799.02 11094.14 2998.88 11699.22 32
CANet_DTU89.85 23489.17 23391.87 21692.20 30980.02 24590.79 23395.87 21186.02 22482.53 34891.77 29980.01 26498.57 18385.66 22897.70 22897.01 217
XXY-MVS92.58 16893.16 15090.84 25197.75 9779.84 24891.87 20596.22 20085.94 22595.53 12697.68 5092.69 10094.48 33683.21 25497.51 23598.21 132
PM-MVS93.33 13892.67 16195.33 8896.58 15994.06 2092.26 18492.18 29485.92 22696.22 9596.61 12285.64 22395.99 31690.35 13698.23 19195.93 258
MG-MVS89.54 23889.80 22588.76 29294.88 24872.47 33489.60 26992.44 29185.82 22789.48 28895.98 15982.85 23997.74 25581.87 26795.27 29296.08 252
UnsupCasMVSNet_eth90.33 21990.34 21590.28 26594.64 26480.24 23689.69 26895.88 21085.77 22893.94 18595.69 17481.99 25092.98 35184.21 24791.30 34297.62 187
c3_l91.32 19891.42 19091.00 24592.29 30676.79 29987.52 30596.42 18985.76 22994.72 16493.89 25082.73 24198.16 21990.93 12598.55 15198.04 144
Patchmatch-test86.10 29386.01 29086.38 32090.63 33174.22 32389.57 27086.69 33385.73 23089.81 28392.83 27465.24 33391.04 35777.82 30695.78 27993.88 314
CL-MVSNet_self_test90.04 23089.90 22490.47 26095.24 24377.81 28386.60 32592.62 28785.64 23193.25 20793.92 24883.84 23196.06 31479.93 28898.03 21197.53 193
cl____90.65 20990.56 21190.91 24991.85 31576.98 29686.75 31995.36 23285.53 23294.06 17994.89 21377.36 28597.98 23390.27 14298.98 10597.76 177
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19587.90 12593.36 14697.14 14285.53 23293.90 18695.45 18991.30 13298.59 18089.51 16298.62 14697.31 208
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_self_test90.65 20990.56 21190.91 24991.85 31576.99 29586.75 31995.36 23285.52 23494.06 17994.89 21377.37 28497.99 23290.28 14198.97 10997.76 177
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23594.75 16197.12 8791.85 11799.40 4393.45 5398.33 17798.62 102
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31376.84 29886.91 31496.67 17785.21 23694.41 16993.92 24879.53 26798.26 21089.76 15897.02 24998.06 141
v192192093.26 14393.61 13592.19 20696.04 20678.31 27591.88 20497.24 13785.17 23796.19 9996.19 15086.76 20999.05 10494.18 2898.84 12199.22 32
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 20992.96 4489.48 27297.46 11685.14 23896.23 9495.42 19193.19 8498.08 22390.37 13598.76 13597.38 205
bset_n11_16_dypcd89.99 23189.15 23492.53 19894.75 25581.34 22684.19 34287.56 32885.13 23993.77 18892.46 28372.82 30499.01 11292.46 9099.21 8197.23 210
v124093.29 14093.71 13192.06 21396.01 20777.89 28291.81 21197.37 12085.12 24096.69 7296.40 13386.67 21099.07 10394.51 1898.76 13599.22 32
GA-MVS87.70 26986.82 27890.31 26493.27 28977.22 29284.72 33792.79 28285.11 24189.82 28290.07 32066.80 32297.76 25384.56 24494.27 31295.96 257
LF4IMVS92.72 16392.02 17494.84 10895.65 22891.99 5592.92 15496.60 18085.08 24292.44 23093.62 25686.80 20896.35 30786.81 21198.25 18896.18 249
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23682.53 21389.25 28196.52 18685.00 24389.91 27988.55 33892.94 9298.84 13784.72 24395.44 28796.22 247
v14419293.20 14893.54 13992.16 21096.05 20278.26 27691.95 19797.14 14284.98 24495.96 10696.11 15487.08 20199.04 10793.79 3798.84 12199.17 35
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13186.87 14691.10 22797.37 12084.92 24592.08 24394.08 24188.59 17598.20 21483.50 25198.14 20095.73 268
miper_lstm_enhance89.90 23389.80 22590.19 27191.37 32477.50 28783.82 34695.00 23684.84 24693.05 21394.96 21076.53 29495.20 33289.96 15498.67 14497.86 167
EPNet_dtu85.63 29584.37 29889.40 28286.30 36374.33 32191.64 21588.26 32184.84 24672.96 36789.85 32171.27 31197.69 25776.60 31597.62 23296.18 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 14889.92 8292.72 15998.02 6784.73 24893.65 19395.54 18591.68 12299.22 8188.78 18098.49 16198.26 128
CLD-MVS91.82 18591.41 19193.04 17496.37 17283.65 19986.82 31897.29 13384.65 24992.27 23989.67 32892.20 10997.85 24483.95 24899.47 3997.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS97.23 12790.32 7897.54 11084.40 25094.78 16095.79 16892.76 9999.39 4888.72 18398.40 165
PMMVS281.31 32083.44 30474.92 34890.52 33346.49 37369.19 36285.23 35184.30 25187.95 31394.71 22276.95 28984.36 36664.07 35998.09 20693.89 313
F-COLMAP92.28 17691.06 20095.95 5797.52 11491.90 5793.53 14197.18 14083.98 25288.70 30394.04 24288.41 17898.55 18680.17 28495.99 27497.39 203
QAPM92.88 15792.77 15693.22 17295.82 21683.31 20196.45 3497.35 12783.91 25393.75 18996.77 10889.25 17198.88 12984.56 24497.02 24997.49 195
mvs_anonymous90.37 21791.30 19487.58 30992.17 31068.00 35089.84 26594.73 24783.82 25493.22 20897.40 6687.54 19297.40 27287.94 19695.05 29697.34 206
miper_ehance_all_eth90.48 21290.42 21490.69 25491.62 32076.57 30186.83 31796.18 20283.38 25594.06 17992.66 28182.20 24798.04 22589.79 15797.02 24997.45 197
FMVSNet587.82 26886.56 28391.62 22492.31 30579.81 25193.49 14294.81 24583.26 25691.36 25296.93 9852.77 36597.49 26676.07 31898.03 21197.55 192
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
FPMVS84.50 30183.28 30588.16 30396.32 18094.49 1585.76 32885.47 34683.09 26085.20 33094.26 23463.79 34086.58 36463.72 36091.88 34183.40 359
test-LLR83.58 30583.17 30684.79 33089.68 34266.86 35483.08 34784.52 35383.07 26182.85 34684.78 35662.86 34493.49 34782.85 25694.86 29894.03 308
test0.0.03 182.48 31281.47 31685.48 32489.70 34173.57 32684.73 33581.64 36283.07 26188.13 31186.61 34862.86 34489.10 36366.24 35790.29 34793.77 316
cl2289.02 24588.50 24690.59 25889.76 34076.45 30286.62 32494.03 26182.98 26392.65 22492.49 28272.05 30897.53 26288.93 17597.02 24997.78 175
tpmvs84.22 30383.97 30284.94 32887.09 36065.18 35991.21 22488.35 32082.87 26485.21 32990.96 31165.24 33396.75 29379.60 29485.25 35692.90 331
KD-MVS_2432*160082.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
miper_refine_blended82.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
MDA-MVSNet_test_wron88.16 26388.23 25487.93 30592.22 30773.71 32480.71 35588.84 31682.52 26794.88 15795.14 20082.70 24293.61 34683.28 25393.80 31796.46 238
YYNet188.17 26288.24 25387.93 30592.21 30873.62 32580.75 35488.77 31782.51 26894.99 15295.11 20282.70 24293.70 34583.33 25293.83 31696.48 237
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 26784.10 19395.70 6597.03 14982.44 26991.14 25896.42 13188.47 17798.38 19985.95 22697.47 23795.55 276
MVSTER89.32 24188.75 24391.03 24290.10 33876.62 30090.85 23194.67 25182.27 27095.24 14195.79 16861.09 35198.49 19090.49 13098.26 18597.97 156
SCA87.43 27787.21 27188.10 30492.01 31471.98 33689.43 27388.11 32582.26 27188.71 30292.83 27478.65 27297.59 26079.61 29293.30 32294.75 292
AUN-MVS90.05 22988.30 25095.32 9196.09 19990.52 7692.42 17492.05 30082.08 27288.45 30692.86 27365.76 32998.69 16888.91 17796.07 27196.75 229
TR-MVS87.70 26987.17 27289.27 28594.11 27579.26 26188.69 29191.86 30281.94 27390.69 26489.79 32582.82 24097.42 27072.65 33691.98 33991.14 345
BH-w/o87.21 28287.02 27687.79 30894.77 25477.27 29187.90 29793.21 27681.74 27489.99 27888.39 34083.47 23296.93 28871.29 34392.43 33589.15 350
MIMVSNet87.13 28686.54 28488.89 29096.05 20276.11 30594.39 11688.51 31981.37 27588.27 30996.75 11172.38 30695.52 32165.71 35895.47 28695.03 285
MAR-MVS90.32 22088.87 24294.66 11694.82 25191.85 5894.22 12194.75 24680.91 27687.52 31888.07 34186.63 21197.87 24176.67 31496.21 27094.25 304
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base89.00 24789.19 23288.46 29994.86 25074.63 31686.97 31295.60 21880.88 27787.83 31488.62 33791.04 14198.81 14482.51 26294.38 30891.93 340
PS-MVSNAJ88.86 25188.99 23888.48 29894.88 24874.71 31486.69 32195.60 21880.88 27787.83 31487.37 34590.77 14498.82 13982.52 26194.37 30991.93 340
TAMVS90.16 22489.05 23693.49 16596.49 16886.37 16090.34 24792.55 28980.84 27992.99 21594.57 22681.94 25298.20 21473.51 33098.21 19495.90 261
PatchMatch-RL89.18 24288.02 26092.64 19195.90 21492.87 4688.67 29391.06 30780.34 28090.03 27791.67 30183.34 23394.42 33876.35 31794.84 30090.64 348
MCST-MVS92.91 15592.51 16594.10 14097.52 11485.72 17491.36 22297.13 14480.33 28192.91 21894.24 23591.23 13598.72 16089.99 15397.93 21797.86 167
PLCcopyleft85.34 1590.40 21588.92 23994.85 10796.53 16690.02 8091.58 21696.48 18880.16 28286.14 32692.18 29085.73 22098.25 21176.87 31394.61 30696.30 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVP-Stereo90.07 22888.92 23993.54 16296.31 18186.49 15590.93 23095.59 22279.80 28391.48 25095.59 17880.79 26097.39 27378.57 30191.19 34396.76 228
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
our_test_387.55 27487.59 26587.44 31191.76 31770.48 34183.83 34590.55 31279.79 28492.06 24492.17 29178.63 27495.63 31984.77 24194.73 30296.22 247
CDS-MVSNet89.55 23788.22 25593.53 16395.37 24086.49 15589.26 27993.59 26879.76 28591.15 25792.31 28977.12 28698.38 19977.51 30897.92 21895.71 269
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS77.21 1983.11 30781.05 31889.29 28491.15 32575.85 30885.66 32986.00 34079.70 28682.02 35386.61 34848.26 36898.39 19777.84 30492.22 33693.63 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
agg_prior192.60 16791.76 18295.10 10096.20 18988.89 10390.37 24596.88 16279.67 28790.21 27194.41 22991.30 13298.78 15088.46 18698.37 17597.64 186
ET-MVSNet_ETH3D86.15 29284.27 30091.79 21893.04 29581.28 22787.17 31086.14 33779.57 28883.65 34088.66 33657.10 35698.18 21787.74 19995.40 28895.90 261
PVSNet_BlendedMVS90.35 21889.96 22291.54 22794.81 25278.80 27190.14 25496.93 15679.43 28988.68 30495.06 20586.27 21598.15 22080.27 28198.04 21097.68 183
train_agg92.71 16491.83 17995.35 8696.45 17089.46 9190.60 23896.92 15879.37 29090.49 26694.39 23191.20 13798.88 12988.66 18498.43 16397.72 180
test_896.37 17289.14 9890.51 24196.89 16179.37 29090.42 26894.36 23391.20 13798.82 139
N_pmnet88.90 25087.25 27093.83 15394.40 27093.81 3584.73 33587.09 33179.36 29293.26 20592.43 28779.29 26891.68 35577.50 30997.22 24496.00 255
UnsupCasMVSNet_bld88.50 25788.03 25989.90 27595.52 23478.88 26887.39 30694.02 26379.32 29393.06 21294.02 24480.72 26194.27 34175.16 32393.08 32796.54 231
ppachtmachnet_test88.61 25688.64 24488.50 29791.76 31770.99 34084.59 33892.98 27779.30 29492.38 23393.53 26079.57 26697.45 26886.50 22097.17 24597.07 213
TEST996.45 17089.46 9190.60 23896.92 15879.09 29590.49 26694.39 23191.31 13198.88 129
baseline283.38 30681.54 31588.90 28991.38 32372.84 33288.78 28881.22 36378.97 29679.82 36087.56 34261.73 34997.80 24774.30 32790.05 34896.05 254
D2MVS89.93 23289.60 23090.92 24794.03 27878.40 27488.69 29194.85 24178.96 29793.08 21195.09 20374.57 29896.94 28688.19 18998.96 11197.41 199
PatchmatchNetpermissive85.22 29684.64 29786.98 31489.51 34569.83 34790.52 24087.34 33078.87 29887.22 32192.74 27866.91 32196.53 29881.77 26886.88 35494.58 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10083.95 19692.14 18897.46 11678.85 29992.35 23594.98 20984.16 23099.08 9986.36 22296.77 25995.79 266
ETH3 D test640091.91 18491.25 19593.89 15096.59 15884.41 18692.10 18997.72 9878.52 30091.82 24793.78 25488.70 17499.13 9183.61 25098.39 16898.14 136
Patchmatch-RL test88.81 25288.52 24589.69 27895.33 24279.94 24686.22 32792.71 28478.46 30195.80 11494.18 23866.25 32795.33 32989.22 17198.53 15593.78 315
WTY-MVS86.93 28986.50 28788.24 30294.96 24774.64 31587.19 30992.07 29978.29 30288.32 30891.59 30378.06 27894.27 34174.88 32493.15 32595.80 265
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22187.86 12790.83 23293.98 26578.23 30394.02 18296.22 14982.62 24496.83 29186.57 21798.33 17797.29 209
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 16789.69 8792.91 15597.68 9978.02 30492.79 22094.10 24090.85 14397.96 23484.76 24298.16 19896.54 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sss87.23 28186.82 27888.46 29993.96 27977.94 27986.84 31692.78 28377.59 30587.61 31791.83 29878.75 27191.92 35477.84 30494.20 31395.52 277
CDPH-MVS92.67 16591.83 17995.18 9796.94 14188.46 11590.70 23697.07 14877.38 30692.34 23795.08 20492.67 10198.88 12985.74 22798.57 15098.20 133
thisisatest051584.72 30082.99 30889.90 27592.96 29775.33 31384.36 34083.42 35877.37 30788.27 30986.65 34753.94 36298.72 16082.56 26097.40 23995.67 271
EPMVS81.17 32380.37 32583.58 33685.58 36565.08 36190.31 24871.34 37077.31 30885.80 32891.30 30559.38 35392.70 35279.99 28582.34 36292.96 330
tpm84.38 30284.08 30185.30 32790.47 33463.43 36689.34 27685.63 34477.24 30987.62 31695.03 20861.00 35297.30 27679.26 29691.09 34595.16 281
OpenMVS_ROBcopyleft85.12 1689.52 23989.05 23690.92 24794.58 26581.21 22991.10 22793.41 27277.03 31093.41 19793.99 24683.23 23597.80 24779.93 28894.80 30193.74 317
原ACMM192.87 18396.91 14484.22 19097.01 15076.84 31189.64 28794.46 22888.00 18598.70 16681.53 27198.01 21395.70 270
PAPR87.65 27286.77 28090.27 26692.85 29877.38 28988.56 29496.23 19876.82 31284.98 33289.75 32786.08 21797.16 28072.33 33793.35 32196.26 246
miper_enhance_ethall88.42 25887.87 26190.07 27288.67 35375.52 31185.10 33295.59 22275.68 31392.49 22889.45 33178.96 26997.88 23887.86 19897.02 24996.81 225
HY-MVS82.50 1886.81 29085.93 29189.47 27993.63 28577.93 28094.02 12891.58 30575.68 31383.64 34193.64 25577.40 28297.42 27071.70 34192.07 33893.05 329
tpmrst82.85 31182.93 30982.64 33987.65 35458.99 36990.14 25487.90 32675.54 31583.93 33991.63 30266.79 32495.36 32781.21 27581.54 36393.57 323
MS-PatchMatch88.05 26487.75 26288.95 28893.28 28877.93 28087.88 29892.49 29075.42 31692.57 22793.59 25880.44 26294.24 34381.28 27392.75 33094.69 295
DPM-MVS89.35 24088.40 24892.18 20996.13 19884.20 19186.96 31396.15 20475.40 31787.36 31991.55 30483.30 23498.01 22982.17 26696.62 26394.32 303
PC_three_145275.31 31895.87 11295.75 17292.93 9396.34 30987.18 20898.68 14298.04 144
PVSNet_Blended88.74 25488.16 25890.46 26294.81 25278.80 27186.64 32296.93 15674.67 31988.68 30489.18 33486.27 21598.15 22080.27 28196.00 27394.44 300
pmmvs488.95 24987.70 26492.70 18994.30 27185.60 17587.22 30892.16 29674.62 32089.75 28694.19 23777.97 27996.41 30382.71 25896.36 26896.09 251
131486.46 29186.33 28886.87 31591.65 31974.54 31791.94 19994.10 26074.28 32184.78 33487.33 34683.03 23795.00 33378.72 29991.16 34491.06 346
Anonymous2023120688.77 25388.29 25190.20 27096.31 18178.81 27089.56 27193.49 27174.26 32292.38 23395.58 18182.21 24695.43 32672.07 33898.75 13796.34 242
DWT-MVSNet_test80.74 32579.18 33185.43 32587.51 35766.87 35389.87 26486.01 33974.20 32380.86 35780.62 36248.84 36796.68 29781.54 27083.14 36192.75 333
MDTV_nov1_ep1383.88 30389.42 34661.52 36788.74 29087.41 32973.99 32484.96 33394.01 24565.25 33295.53 32078.02 30293.16 324
test-mter81.21 32280.01 32984.79 33089.68 34266.86 35483.08 34784.52 35373.85 32582.85 34684.78 35643.66 37393.49 34782.85 25694.86 29894.03 308
pmmvs587.87 26687.14 27390.07 27293.26 29076.97 29788.89 28692.18 29473.71 32688.36 30793.89 25076.86 29296.73 29480.32 28096.81 25796.51 233
1112_ss88.42 25887.41 26791.45 22896.69 15380.99 23189.72 26796.72 17573.37 32787.00 32290.69 31677.38 28398.20 21481.38 27293.72 31895.15 282
USDC89.02 24589.08 23588.84 29195.07 24674.50 31988.97 28496.39 19173.21 32893.27 20496.28 14582.16 24896.39 30477.55 30798.80 13195.62 275
CR-MVSNet87.89 26587.12 27490.22 26891.01 32778.93 26692.52 16692.81 28073.08 32989.10 29296.93 9867.11 31997.64 25988.80 17992.70 33194.08 305
dp79.28 33078.62 33381.24 34285.97 36456.45 37086.91 31485.26 35072.97 33081.45 35689.17 33556.01 36095.45 32573.19 33376.68 36591.82 343
IU-MVS98.51 4686.66 15296.83 16772.74 33195.83 11393.00 7699.29 6798.64 98
ADS-MVSNet284.01 30482.20 31289.41 28189.04 34976.37 30487.57 30090.98 30872.71 33284.46 33592.45 28468.08 31596.48 30170.58 34883.97 35795.38 278
ADS-MVSNet82.25 31381.55 31484.34 33389.04 34965.30 35887.57 30085.13 35272.71 33284.46 33592.45 28468.08 31592.33 35370.58 34883.97 35795.38 278
jason89.17 24388.32 24991.70 22295.73 22380.07 24188.10 29693.22 27471.98 33490.09 27392.79 27678.53 27598.56 18487.43 20497.06 24796.46 238
jason: jason.
testdata91.03 24296.87 14682.01 21694.28 25771.55 33592.46 22995.42 19185.65 22297.38 27582.64 25997.27 24293.70 318
PVSNet76.22 2082.89 31082.37 31084.48 33293.96 27964.38 36478.60 35788.61 31871.50 33684.43 33786.36 35174.27 29994.60 33569.87 35093.69 31994.46 299
gm-plane-assit87.08 36159.33 36871.22 33783.58 35897.20 27973.95 328
lupinMVS88.34 26087.31 26891.45 22894.74 25780.06 24287.23 30792.27 29371.10 33888.83 29591.15 30777.02 28798.53 18786.67 21596.75 26095.76 267
cascas87.02 28886.28 28989.25 28691.56 32276.45 30284.33 34196.78 17071.01 33986.89 32385.91 35381.35 25596.94 28683.09 25595.60 28294.35 302
new_pmnet81.22 32181.01 32081.86 34190.92 32970.15 34384.03 34380.25 36770.83 34085.97 32789.78 32667.93 31884.65 36567.44 35491.90 34090.78 347
无先验89.94 26095.75 21570.81 34198.59 18081.17 27694.81 289
CostFormer83.09 30882.21 31185.73 32289.27 34767.01 35190.35 24686.47 33570.42 34283.52 34393.23 26761.18 35096.85 29077.21 31188.26 35293.34 325
TESTMET0.1,179.09 33178.04 33482.25 34087.52 35664.03 36583.08 34780.62 36570.28 34380.16 35983.22 35944.13 37290.56 35879.95 28693.36 32092.15 338
CMPMVSbinary68.83 2287.28 28085.67 29392.09 21288.77 35285.42 17790.31 24894.38 25570.02 34488.00 31293.30 26473.78 30294.03 34475.96 32096.54 26496.83 224
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Test_1112_low_res87.50 27686.58 28290.25 26796.80 15177.75 28487.53 30496.25 19669.73 34586.47 32493.61 25775.67 29697.88 23879.95 28693.20 32395.11 284
PAPM81.91 31880.11 32887.31 31293.87 28272.32 33584.02 34493.22 27469.47 34676.13 36589.84 32272.15 30797.23 27853.27 36689.02 34992.37 337
MVS-HIRNet78.83 33280.60 32473.51 34993.07 29347.37 37287.10 31178.00 36868.94 34777.53 36397.26 7871.45 31094.62 33463.28 36188.74 35078.55 364
旧先验290.00 25968.65 34892.71 22396.52 29985.15 233
PCF-MVS84.52 1789.12 24487.71 26393.34 16796.06 20185.84 17286.58 32697.31 13068.46 34993.61 19493.89 25087.51 19398.52 18867.85 35398.11 20495.66 272
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何193.17 17397.16 13287.29 13494.43 25367.95 35091.29 25394.94 21186.97 20398.23 21281.06 27897.75 22393.98 311
112190.26 22289.23 23193.34 16797.15 13487.40 13291.94 19994.39 25467.88 35191.02 25994.91 21286.91 20698.59 18081.17 27697.71 22794.02 310
MVEpermissive59.87 2373.86 33472.65 33777.47 34787.00 36274.35 32061.37 36460.93 37367.27 35269.69 36886.49 35081.24 25972.33 36856.45 36583.45 35985.74 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MDTV_nov1_ep13_2view42.48 37488.45 29567.22 35383.56 34266.80 32272.86 33594.06 307
CHOSEN 280x42080.04 32977.97 33586.23 32190.13 33774.53 31872.87 36089.59 31566.38 35476.29 36485.32 35556.96 35795.36 32769.49 35194.72 30388.79 353
HyFIR lowres test87.19 28485.51 29492.24 20497.12 13680.51 23585.03 33396.06 20566.11 35591.66 24992.98 27270.12 31299.14 8975.29 32295.23 29397.07 213
114514_t90.51 21189.80 22592.63 19398.00 8682.24 21593.40 14597.29 13365.84 35689.40 28994.80 21986.99 20298.75 15583.88 24998.61 14796.89 222
tpm281.46 31980.35 32684.80 32989.90 33965.14 36090.44 24285.36 34765.82 35782.05 35292.44 28657.94 35596.69 29570.71 34788.49 35192.56 335
test22296.95 14085.27 17988.83 28793.61 26765.09 35890.74 26394.85 21584.62 22897.36 24093.91 312
CHOSEN 1792x268887.19 28485.92 29291.00 24597.13 13579.41 25884.51 33995.60 21864.14 35990.07 27694.81 21678.26 27797.14 28173.34 33195.38 29096.46 238
pmmvs380.83 32478.96 33286.45 31787.23 35977.48 28884.87 33482.31 36063.83 36085.03 33189.50 33049.66 36693.10 34973.12 33495.10 29588.78 354
PVSNet_070.34 2174.58 33372.96 33679.47 34590.63 33166.24 35773.26 35883.40 35963.67 36178.02 36278.35 36472.53 30589.59 36156.68 36460.05 36882.57 362
tpm cat180.61 32779.46 33084.07 33588.78 35165.06 36289.26 27988.23 32262.27 36281.90 35489.66 32962.70 34695.29 33071.72 34080.60 36491.86 342
PMMVS83.00 30981.11 31788.66 29583.81 37086.44 15882.24 35185.65 34361.75 36382.07 35185.64 35479.75 26591.59 35675.99 31993.09 32687.94 355
MVS84.98 29984.30 29987.01 31391.03 32677.69 28691.94 19994.16 25959.36 36484.23 33887.50 34485.66 22196.80 29271.79 33993.05 32886.54 356
EU-MVSNet87.39 27886.71 28189.44 28093.40 28776.11 30594.93 9690.00 31457.17 36595.71 11997.37 6864.77 33597.68 25892.67 8594.37 30994.52 298
CVMVSNet85.16 29784.72 29686.48 31692.12 31170.19 34292.32 18188.17 32456.15 36690.64 26595.85 16367.97 31796.69 29588.78 18090.52 34692.56 335
DSMNet-mixed82.21 31481.56 31384.16 33489.57 34470.00 34690.65 23777.66 36954.99 36783.30 34497.57 5577.89 28090.50 35966.86 35695.54 28491.97 339
DeepMVS_CXcopyleft53.83 35170.38 37364.56 36348.52 37533.01 36865.50 36974.21 36656.19 35946.64 37038.45 36970.07 36650.30 366
test_method50.44 33548.94 33854.93 35039.68 37412.38 37628.59 36590.09 3136.82 36941.10 37178.41 36354.41 36170.69 36950.12 36751.26 36981.72 363
tmp_tt37.97 33644.33 33918.88 35211.80 37521.54 37563.51 36345.66 3764.23 37051.34 37050.48 36759.08 35422.11 37144.50 36868.35 36713.00 367
test1239.49 33812.01 3411.91 3532.87 3761.30 37782.38 3501.34 3781.36 3712.84 3726.56 3702.45 3760.97 3722.73 3705.56 3703.47 368
testmvs9.02 33911.42 3421.81 3542.77 3771.13 37879.44 3561.90 3771.18 3722.65 3736.80 3691.95 3770.87 3732.62 3713.45 3713.44 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.35 33731.13 3400.00 3550.00 3780.00 3790.00 36695.58 2240.00 3730.00 37491.15 30793.43 770.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.56 34010.09 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37390.77 1440.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.56 34010.08 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37490.69 3160.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
MSC_two_6792asdad95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
No_MVS95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
eth-test20.00 378
eth-test0.00 378
OPU-MVS95.15 9896.84 14789.43 9395.21 8295.66 17693.12 8798.06 22486.28 22498.61 14797.95 157
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8498.22 3299.38 5493.44 5599.31 6298.53 109
GSMVS94.75 292
test_part298.21 7089.41 9496.72 71
sam_mvs166.64 32594.75 292
sam_mvs66.41 326
ambc92.98 17696.88 14583.01 20995.92 5996.38 19296.41 8097.48 6288.26 17997.80 24789.96 15498.93 11398.12 139
MTGPAbinary97.62 102
test_post190.21 2505.85 37265.36 33196.00 31579.61 292
test_post6.07 37165.74 33095.84 317
patchmatchnet-post91.71 30066.22 32897.59 260
GG-mvs-BLEND83.24 33885.06 36771.03 33994.99 9565.55 37274.09 36675.51 36544.57 37194.46 33759.57 36387.54 35384.24 358
MTMP94.82 9854.62 374
test9_res88.16 19198.40 16597.83 170
agg_prior287.06 21098.36 17697.98 153
agg_prior96.20 18988.89 10396.88 16290.21 27198.78 150
test_prior489.91 8390.74 234
test_prior94.61 11795.95 21087.23 13597.36 12598.68 17097.93 159
新几何290.02 258
旧先验196.20 18984.17 19294.82 24395.57 18289.57 16897.89 21996.32 243
原ACMM289.34 276
testdata298.03 22680.24 283
segment_acmp92.14 110
test1294.43 13295.95 21086.75 14896.24 19789.76 28589.79 16698.79 14697.95 21697.75 179
plane_prior797.71 10188.68 107
plane_prior697.21 13088.23 11886.93 204
plane_prior597.81 9098.95 12289.26 16998.51 15898.60 105
plane_prior495.59 178
plane_prior197.38 122
n20.00 379
nn0.00 379
door-mid92.13 298
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4277.49 28199.11 9592.62 8698.08 20798.74 87
test1196.65 178
door91.26 306
HQP5-MVS84.89 182
BP-MVS86.55 218
HQP4-MVS88.81 29798.61 17698.15 135
HQP3-MVS97.31 13097.73 224
HQP2-MVS84.76 226
NP-MVS96.82 14887.10 13993.40 262
ACMMP++_ref98.82 127
ACMMP++99.25 75
Test By Simon90.61 150