This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 13999.73 1399.59 13
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19296.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7599.82 799.62 10
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19396.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8799.83 599.68 4
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20396.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7099.84 399.72 2
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20696.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8399.81 899.70 3
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 7899.74 1299.50 17
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4099.84 399.66 6
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3299.53 3898.99 56
LS3D96.11 4795.83 6396.95 3694.75 27494.20 1997.34 1397.98 7597.31 1195.32 15096.77 13793.08 9799.20 8091.79 11598.16 20697.44 214
VDDNet94.03 13194.27 12793.31 17198.87 2182.36 22795.51 8691.78 31697.19 1296.32 9698.60 2284.24 23598.75 14787.09 22898.83 13898.81 84
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14299.23 493.45 8299.57 1495.34 2899.89 299.63 9
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14598.84 13397.57 204
test_040295.73 6196.22 4094.26 13598.19 7685.77 17893.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12499.29 7497.88 177
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27098.85 1291.77 12695.49 33491.72 11799.08 10295.02 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16299.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17395.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20199.04 11198.78 88
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 26896.48 2195.38 14593.63 28194.89 5597.94 23495.38 2796.92 26795.17 300
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 21896.47 2293.40 21597.46 8795.31 3595.47 33586.18 24598.78 14489.11 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 34181.02 34385.34 34787.46 38371.04 36094.74 11167.56 39796.44 2379.43 38798.99 645.24 39496.15 32067.18 38292.17 36188.85 376
ANet_high94.83 10096.28 3790.47 27196.65 17073.16 34894.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 14899.68 1899.53 15
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26796.24 2596.28 10196.36 16882.88 24799.35 6088.19 20599.52 4198.96 64
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 17897.23 10691.33 13599.16 8393.25 7698.30 19298.46 126
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15399.60 2698.72 97
K. test v393.37 14793.27 15793.66 15798.05 8582.62 22394.35 12686.62 35396.05 2997.51 4398.85 1276.59 30999.65 393.21 7798.20 20498.73 96
LFMVS91.33 20391.16 20891.82 22296.27 20279.36 27595.01 10485.61 36396.04 3094.82 17497.06 11972.03 32798.46 18884.96 26198.70 15397.65 200
SSC-MVS90.16 23292.96 16081.78 36697.88 9948.48 39890.75 24987.69 34596.02 3196.70 8297.63 7285.60 22797.80 24785.73 24998.60 16399.06 50
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13799.76 1099.38 22
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12194.85 5699.42 3393.49 6098.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12195.40 2993.49 6098.84 13398.00 161
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12095.63 2399.39 4993.31 7298.88 12898.75 92
WB-MVS89.44 25092.15 18281.32 36797.73 11048.22 39989.73 28487.98 34395.24 3696.05 11396.99 12585.18 22996.95 29582.45 28497.97 22198.78 88
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14495.09 4799.43 3292.99 8698.71 15198.50 122
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20697.84 8894.91 4096.80 7895.78 20090.42 15999.41 3991.60 12199.58 3399.29 29
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21595.93 6794.84 25494.86 4198.49 1598.74 1681.45 26399.60 994.69 3199.39 5899.15 39
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18696.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 2999.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18796.49 15594.56 6499.39 4993.57 5699.05 10698.93 68
X-MVStestdata90.70 21288.45 25997.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18726.89 39594.56 6499.39 4993.57 5699.05 10698.93 68
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17193.97 14493.28 28794.49 4596.24 10397.78 6387.99 18998.79 14088.92 19399.14 9998.34 132
MM95.22 9487.21 13894.31 13190.92 32494.48 4692.80 23997.52 8185.27 22899.49 2496.58 899.57 3598.97 62
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12793.56 7999.37 5794.29 3999.42 5298.99 56
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25094.79 24393.56 7999.49 2493.47 6399.05 10697.89 176
EPP-MVSNet93.91 13793.68 14394.59 12298.08 8285.55 18397.44 1294.03 27394.22 5094.94 16996.19 17982.07 25899.57 1487.28 22598.89 12698.65 107
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18699.57 1495.86 1599.69 1499.46 18
Anonymous20240521192.58 17492.50 17592.83 18896.55 17883.22 21492.43 19691.64 31894.10 5295.59 13496.64 14981.88 26297.50 26885.12 25798.52 17197.77 190
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28393.73 27993.52 8199.55 1891.81 11499.45 4797.58 203
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19190.10 16699.41 3991.60 12199.58 3399.26 30
TransMVSNet (Re)95.27 8796.04 5292.97 17998.37 6581.92 23195.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5881.77 23295.90 6998.32 2493.93 5697.53 4297.56 7688.48 17999.40 4692.91 8899.83 599.68 4
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24194.52 25393.95 7699.49 2493.62 5599.22 8997.51 209
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19190.10 16699.33 6890.11 16299.66 2199.26 30
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5780.82 24892.08 21096.68 17993.82 5996.29 9998.56 2490.10 16697.75 25590.10 16499.66 2199.24 32
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15499.05 9986.43 24199.60 2699.10 47
tfpnnormal94.27 12094.87 10392.48 20397.71 11280.88 24794.55 12295.41 23893.70 6196.67 8497.72 6691.40 13498.18 21387.45 22199.18 9498.36 131
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32085.98 17292.44 19594.69 26093.70 6196.12 11195.81 19691.24 13898.86 12693.76 5398.22 20198.98 60
WR-MVS93.49 14493.72 14092.80 18997.57 12380.03 25890.14 27195.68 22293.70 6196.62 8695.39 22087.21 20199.04 10287.50 22099.64 2499.33 26
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32185.87 17592.42 19794.69 26093.67 6496.13 11095.84 19591.20 14198.86 12693.78 5098.23 19999.03 52
SDMVSNet94.43 11495.02 9892.69 19297.93 9682.88 22191.92 21995.99 21493.65 6595.51 13798.63 2094.60 6396.48 31087.57 21999.35 6198.70 101
sd_testset93.94 13594.39 11992.61 19897.93 9683.24 21293.17 16995.04 24893.65 6595.51 13798.63 2094.49 6795.89 32781.72 29299.35 6198.70 101
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19090.14 16399.34 6392.11 10399.64 2499.16 38
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10683.15 21694.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17299.59 2899.08 48
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26188.20 20498.66 15997.79 188
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15394.99 5299.36 5893.48 6299.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4698.68 15598.04 156
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4699.42 5298.89 75
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26493.12 7397.94 2798.54 2581.19 26999.63 695.48 2399.69 1499.60 12
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 3899.38 5998.92 72
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20583.23 21392.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10198.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs94.90 9795.35 8393.55 16198.28 6981.76 23395.33 9098.14 4993.05 7697.07 6397.18 11187.65 19399.29 7091.72 11799.69 1499.61 11
MVS_030493.92 13693.68 14394.64 11795.94 22985.83 17794.34 12788.14 34192.98 7791.09 28297.68 6786.73 21299.36 5896.64 799.59 2898.72 97
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21296.72 14594.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 4899.49 4299.36 24
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28791.92 12398.78 14389.11 18999.24 8596.92 237
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16596.39 16594.77 5899.42 3393.17 7999.44 5098.58 119
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14096.68 14794.50 6699.42 3393.10 8199.26 8298.99 56
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3499.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21397.78 6391.21 14097.77 25291.06 13097.06 25998.80 86
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19695.99 6396.56 18692.38 8597.03 6798.53 2690.12 16498.98 10788.78 19799.16 9798.65 107
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12695.14 4299.51 2091.74 11699.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19098.07 4592.02 12099.44 2993.38 7197.67 23797.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13396.47 15695.37 3099.27 7493.78 5099.14 9998.48 125
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13596.61 15194.93 5499.41 3993.78 5099.15 9899.00 54
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16096.71 899.42 3393.99 4599.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15396.57 15395.02 5099.41 3993.63 5499.11 10198.94 66
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13595.10 4699.40 4693.47 6399.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PatchT87.51 29288.17 27285.55 34590.64 35466.91 37492.02 21386.09 35792.20 9389.05 31697.16 11264.15 36196.37 31689.21 18792.98 35393.37 348
VNet92.67 17292.96 16091.79 22396.27 20280.15 25291.95 21594.98 25092.19 9494.52 18496.07 18587.43 19797.39 27784.83 26298.38 18397.83 183
thres100view90087.35 29686.89 29588.72 30896.14 21373.09 34993.00 17385.31 36692.13 9593.26 22190.96 33463.42 36598.28 20271.27 36996.54 27994.79 315
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12896.28 17495.22 4099.42 3393.17 7999.06 10398.88 77
LCM-MVSNet-Re94.20 12694.58 11693.04 17695.91 23083.13 21793.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29698.54 16996.96 236
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7399.29 7497.95 169
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7399.25 8398.49 124
ITE_SJBPF95.95 5997.34 13593.36 4096.55 18991.93 10094.82 17495.39 22091.99 12197.08 29185.53 25197.96 22297.41 215
RPMNet90.31 22990.14 23190.81 26491.01 35178.93 28292.52 19098.12 5191.91 10189.10 31496.89 13168.84 33699.41 3990.17 16092.70 35594.08 329
thres600view787.66 28787.10 29389.36 29796.05 21973.17 34792.72 18185.31 36691.89 10293.29 21890.97 33363.42 36598.39 19173.23 35796.99 26696.51 252
v894.65 10795.29 8792.74 19096.65 17079.77 26794.59 11697.17 14391.86 10397.47 4797.93 5588.16 18499.08 9494.32 3799.47 4399.38 22
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12196.48 1098.95 114
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6699.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14794.37 7099.32 6992.41 9999.05 10698.64 112
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 18995.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 25890.17 16099.42 5298.99 56
VPNet93.08 15793.76 13991.03 25398.60 3975.83 32991.51 23295.62 22391.84 10795.74 12897.10 11789.31 17498.32 20085.07 26099.06 10398.93 68
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25287.06 14296.63 3197.28 13791.82 11094.34 18997.41 8890.60 15798.65 16792.47 9898.11 21097.70 196
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
EI-MVSNet92.99 16093.26 15892.19 21092.12 33079.21 28092.32 20294.67 26291.77 11395.24 15795.85 19387.14 20398.49 18391.99 10898.26 19598.86 78
IterMVS-LS93.78 13994.28 12592.27 20796.27 20279.21 28091.87 22396.78 17391.77 11396.57 8997.07 11887.15 20298.74 15091.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 14996.36 16895.68 2199.44 2994.41 3699.28 7998.97 62
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21695.59 20786.93 20798.95 11489.26 18498.51 17398.60 117
plane_prior294.56 12091.74 115
ETV-MVS92.99 16092.74 16793.72 15695.86 23286.30 16592.33 20197.84 8891.70 11892.81 23886.17 37692.22 11699.19 8188.03 21297.73 23295.66 291
wuyk23d87.83 28390.79 21578.96 37290.46 35988.63 11092.72 18190.67 32791.65 11998.68 1197.64 7196.06 1577.53 39459.84 38999.41 5670.73 392
alignmvs93.26 15192.85 16494.50 12695.70 24187.45 13393.45 16095.76 21991.58 12095.25 15692.42 31381.96 26098.72 15291.61 12097.87 22797.33 223
canonicalmvs94.59 10894.69 11194.30 13495.60 24987.03 14395.59 8198.24 3491.56 12195.21 15992.04 31994.95 5398.66 16591.45 12597.57 24197.20 228
IterMVS-SCA-FT91.65 19591.55 19591.94 21993.89 29879.22 27987.56 32593.51 28391.53 12295.37 14796.62 15078.65 28498.90 11891.89 11294.95 31497.70 196
casdiffmvspermissive94.32 11994.80 10592.85 18796.05 21981.44 23992.35 20098.05 6491.53 12295.75 12796.80 13693.35 8798.49 18391.01 13398.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12596.87 13295.26 3799.45 2792.77 8999.21 9099.00 54
Effi-MVS+92.79 16792.74 16792.94 18395.10 26283.30 21194.00 14297.53 11491.36 12589.35 31390.65 34194.01 7598.66 16587.40 22395.30 30796.88 241
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16195.15 22686.60 21599.50 2193.43 6996.81 27198.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS95.19 8895.73 6793.55 16196.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16195.42 2894.36 35392.72 9399.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 23999.45 2795.52 2199.66 2199.36 24
Vis-MVSNet (Re-imp)90.42 22090.16 22891.20 24997.66 11877.32 30794.33 12887.66 34691.20 12992.99 23295.13 22875.40 31498.28 20277.86 32799.19 9297.99 164
API-MVS91.52 19991.61 19491.26 24594.16 29086.26 16794.66 11494.82 25591.17 13092.13 26591.08 33290.03 16997.06 29279.09 32297.35 25190.45 373
EPNet89.80 24588.25 26794.45 13083.91 39586.18 16893.87 14687.07 35191.16 13180.64 38494.72 24578.83 28198.89 12085.17 25398.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25595.22 22591.03 14799.25 7592.11 10398.69 15497.90 174
test_yl90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
DCV-MVSNet90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
tfpn200view987.05 30486.52 30388.67 30995.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27994.79 315
thres40087.20 30086.52 30389.24 30195.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27996.51 252
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13396.25 1499.00 10693.10 8199.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline94.26 12294.80 10592.64 19496.08 21780.99 24593.69 15398.04 6890.80 13894.89 17296.32 17093.19 9298.48 18791.68 11998.51 17398.43 128
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23398.17 4590.72 13995.30 15196.47 15687.94 19096.98 29491.41 12697.61 24098.30 136
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20496.25 17798.03 297.02 29392.08 10595.55 29898.45 127
v1094.68 10695.27 8992.90 18596.57 17680.15 25294.65 11597.57 11090.68 14197.43 4898.00 5188.18 18399.15 8494.84 3099.55 3799.41 20
NCCC94.08 13093.54 15095.70 7596.49 18489.90 8392.39 19996.91 16490.64 14292.33 26194.60 25090.58 15898.96 11290.21 15997.70 23598.23 140
UGNet93.08 15792.50 17594.79 10893.87 29987.99 12595.07 10194.26 27090.64 14287.33 34497.67 6986.89 20998.49 18388.10 20898.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MSDG90.82 20890.67 21891.26 24594.16 29083.08 21886.63 34696.19 20590.60 14491.94 26891.89 32089.16 17695.75 32980.96 30194.51 32594.95 308
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 13992.91 10298.72 15291.19 12899.42 5298.32 133
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3599.34 6498.80 86
MDA-MVSNet-bldmvs91.04 20690.88 21191.55 23394.68 27980.16 25185.49 35692.14 31090.41 14994.93 17095.79 19785.10 23096.93 29885.15 25594.19 33497.57 204
plane_prior388.43 11990.35 15093.31 216
Patchmtry90.11 23589.92 23490.66 26790.35 36077.00 31192.96 17492.81 29490.25 15194.74 17896.93 12867.11 34397.52 26785.17 25398.98 11497.46 211
CNLPA91.72 19491.20 20593.26 17396.17 21091.02 6791.14 24095.55 23190.16 15290.87 28493.56 28586.31 21794.40 35279.92 31497.12 25794.37 325
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13395.04 4898.56 17792.77 8999.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu93.90 13892.60 17397.77 394.74 27596.67 594.00 14295.41 23889.94 15491.93 26992.13 31790.12 16498.97 11187.68 21897.48 24497.67 199
test20.0390.80 20990.85 21390.63 26895.63 24779.24 27889.81 28292.87 29389.90 15594.39 18696.40 16185.77 22295.27 34273.86 35499.05 10697.39 219
tttt051789.81 24488.90 25392.55 20197.00 14979.73 26895.03 10383.65 37589.88 15695.30 15194.79 24353.64 38899.39 4991.99 10898.79 14398.54 120
CANet92.38 18191.99 18693.52 16693.82 30183.46 20991.14 24097.00 15589.81 15786.47 34894.04 26787.90 19199.21 7889.50 17698.27 19497.90 174
dcpmvs_293.96 13495.01 9990.82 26397.60 12074.04 34393.68 15498.85 789.80 15897.82 2997.01 12491.14 14599.21 7890.56 14398.59 16499.19 36
v14892.87 16593.29 15491.62 23196.25 20577.72 30291.28 23895.05 24789.69 15995.93 11896.04 18687.34 19898.38 19490.05 16597.99 22098.78 88
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22796.80 17289.66 16093.90 20295.44 21592.80 10698.72 15292.74 9198.52 17198.32 133
Fast-Effi-MVS+-dtu92.77 16992.16 18094.58 12494.66 28088.25 12092.05 21196.65 18189.62 16190.08 29991.23 32992.56 11098.60 17286.30 24396.27 28496.90 238
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11879.49 27394.86 10897.12 14889.59 16296.87 7497.65 7090.40 16198.34 19989.08 19099.35 6198.75 92
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15695.85 1899.12 9190.45 14599.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test111190.39 22390.61 21989.74 29098.04 8871.50 35995.59 8179.72 38889.41 16495.94 11798.14 3970.79 33198.81 13688.52 20299.32 6898.90 74
Anonymous2024052192.86 16693.57 14890.74 26596.57 17675.50 33194.15 13695.60 22489.38 16595.90 12097.90 6180.39 27397.96 23292.60 9699.68 1898.75 92
MSLP-MVS++93.25 15393.88 13591.37 23996.34 19582.81 22293.11 17097.74 9889.37 16694.08 19295.29 22490.40 16196.35 31790.35 15098.25 19794.96 307
test_prior290.21 26889.33 16790.77 28694.81 24090.41 16088.21 20398.55 167
h-mvs3392.89 16391.99 18695.58 7796.97 15090.55 7693.94 14594.01 27689.23 16893.95 19996.19 17976.88 30599.14 8691.02 13195.71 29597.04 233
hse-mvs292.24 18691.20 20595.38 8396.16 21190.65 7592.52 19092.01 31489.23 16893.95 19992.99 29776.88 30598.69 16191.02 13196.03 28796.81 243
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14296.17 18293.42 8599.34 6389.30 18098.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 21995.46 21388.89 17798.98 10789.80 16998.82 13997.80 187
test250685.42 31584.57 31887.96 32397.81 10366.53 37796.14 5856.35 40089.04 17293.55 21198.10 4242.88 40098.68 16388.09 20999.18 9498.67 105
ECVR-MVScopyleft90.12 23490.16 22890.00 28697.81 10372.68 35395.76 7578.54 39189.04 17295.36 14898.10 4270.51 33298.64 16887.10 22799.18 9498.67 105
plane_prior88.12 12293.01 17288.98 17498.06 214
MVSFormer92.18 18792.23 17992.04 21894.74 27580.06 25697.15 1597.37 12388.98 17488.83 31792.79 30277.02 30299.60 996.41 996.75 27496.46 257
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
JIA-IIPM85.08 31883.04 32991.19 25087.56 38186.14 16989.40 29584.44 37388.98 17482.20 37697.95 5456.82 38296.15 32076.55 34083.45 38691.30 368
AdaColmapbinary91.63 19691.36 20292.47 20495.56 25086.36 16392.24 20896.27 19988.88 17889.90 30492.69 30591.65 12998.32 20077.38 33497.64 23892.72 357
MVS_Test92.57 17693.29 15490.40 27493.53 30575.85 32792.52 19096.96 15888.73 17992.35 25896.70 14690.77 15098.37 19892.53 9795.49 30096.99 235
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15099.60 995.43 2699.53 3899.57 14
GeoE94.55 11094.68 11394.15 13797.23 13985.11 18894.14 13897.34 13088.71 18195.26 15495.50 21294.65 6199.12 9190.94 13498.40 17998.23 140
GBi-Net93.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
test193.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
FMVSNet292.78 16892.73 16992.95 18195.40 25481.98 23094.18 13595.53 23388.63 18296.05 11397.37 9181.31 26598.81 13687.38 22498.67 15798.06 153
thres20085.85 31285.18 31387.88 32694.44 28572.52 35489.08 30386.21 35588.57 18591.44 27488.40 36364.22 36098.00 22868.35 37895.88 29393.12 350
v2v48293.29 14993.63 14592.29 20696.35 19478.82 28791.77 22996.28 19888.45 18695.70 13296.26 17686.02 22198.90 11893.02 8498.81 14199.14 40
testdata188.96 30588.44 187
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23188.41 18897.09 6198.08 4478.69 28398.87 12595.63 1799.53 3898.81 84
testgi90.38 22491.34 20387.50 32997.49 12771.54 35889.43 29395.16 24588.38 18994.54 18394.68 24792.88 10493.09 36371.60 36797.85 22897.88 177
MVS_111021_HR93.63 14293.42 15394.26 13596.65 17086.96 14689.30 29896.23 20288.36 19093.57 21094.60 25093.45 8297.77 25290.23 15898.38 18398.03 159
BH-RMVSNet90.47 21990.44 22390.56 27095.21 26178.65 29189.15 30293.94 27888.21 19192.74 24294.22 26186.38 21697.88 23978.67 32495.39 30495.14 303
PAPM_NR91.03 20790.81 21491.68 22996.73 16581.10 24493.72 15296.35 19788.19 19288.77 32392.12 31885.09 23197.25 28182.40 28593.90 33796.68 248
testing383.66 32882.52 33387.08 33295.84 23365.84 37989.80 28377.17 39488.17 19390.84 28588.63 36030.95 40298.11 21884.05 26997.19 25597.28 226
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21496.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12198.12 20998.03 159
TSAR-MVS + GP.93.07 15992.41 17795.06 9995.82 23490.87 7290.97 24492.61 30288.04 19594.61 18193.79 27888.08 18597.81 24689.41 17798.39 18296.50 255
BH-untuned90.68 21390.90 21090.05 28595.98 22579.57 27190.04 27494.94 25287.91 19694.07 19393.00 29687.76 19297.78 25179.19 32195.17 31092.80 356
MVS_111021_LR93.66 14193.28 15694.80 10796.25 20590.95 6990.21 26895.43 23787.91 19693.74 20694.40 25592.88 10496.38 31590.39 14798.28 19397.07 230
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PHI-MVS94.34 11893.80 13795.95 5995.65 24591.67 6294.82 10997.86 8587.86 19993.04 23194.16 26491.58 13098.78 14390.27 15598.96 12197.41 215
FA-MVS(test-final)91.81 19291.85 19091.68 22994.95 26579.99 26096.00 6293.44 28587.80 20094.02 19797.29 10277.60 29398.45 18988.04 21197.49 24396.61 249
EMVS80.35 35280.28 35180.54 36984.73 39469.07 37072.54 38880.73 38487.80 20081.66 38181.73 38662.89 36789.84 37875.79 34594.65 32382.71 388
E-PMN80.72 35080.86 34580.29 37085.11 39268.77 37172.96 38681.97 37987.76 20283.25 37283.01 38562.22 37189.17 38377.15 33694.31 33082.93 387
EIA-MVS92.35 18292.03 18493.30 17295.81 23683.97 20492.80 17998.17 4587.71 20389.79 30787.56 36691.17 14499.18 8287.97 21397.27 25296.77 245
TinyColmap92.00 19092.76 16689.71 29195.62 24877.02 31090.72 25196.17 20787.70 20495.26 15496.29 17292.54 11196.45 31281.77 29098.77 14595.66 291
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
save fliter97.46 13088.05 12492.04 21297.08 15087.63 206
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14596.03 18794.66 6099.08 9490.70 14098.97 119
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9299.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS92.05 18992.16 18091.72 22694.44 28580.13 25487.62 32297.25 13887.34 21092.22 26393.18 29489.54 17398.73 15189.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4293.43 14693.58 14792.97 17995.34 25881.22 24292.67 18496.49 19187.25 21196.20 10796.37 16787.32 19998.85 12892.39 10098.21 20298.85 81
HQP-NCC96.36 19191.37 23487.16 21288.81 319
ACMP_Plane96.36 19191.37 23487.16 21288.81 319
HQP-MVS92.09 18891.49 19993.88 15096.36 19184.89 19091.37 23497.31 13287.16 21288.81 31993.40 28884.76 23298.60 17286.55 23897.73 23298.14 149
OMC-MVS94.22 12593.69 14295.81 6997.25 13891.27 6492.27 20597.40 12287.10 21594.56 18295.42 21693.74 7798.11 21886.62 23598.85 13298.06 153
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
v114493.50 14393.81 13692.57 20096.28 20179.61 27091.86 22596.96 15886.95 21795.91 11996.32 17087.65 19398.96 11293.51 5998.88 12899.13 41
ab-mvs92.40 18092.62 17291.74 22597.02 14881.65 23495.84 7195.50 23486.95 21792.95 23597.56 7690.70 15597.50 26879.63 31597.43 24796.06 272
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 5899.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thisisatest053088.69 27187.52 28292.20 20996.33 19679.36 27592.81 17884.01 37486.44 22093.67 20792.68 30653.62 38999.25 7589.65 17498.45 17798.00 161
IterMVS90.18 23190.16 22890.21 28093.15 31075.98 32687.56 32592.97 29286.43 22194.09 19196.40 16178.32 28897.43 27387.87 21594.69 32297.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive91.74 19391.93 18891.15 25193.06 31278.17 29588.77 31197.51 11786.28 22292.42 25493.96 27288.04 18797.46 27190.69 14196.67 27697.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
baseline187.62 28987.31 28488.54 31294.71 27874.27 34193.10 17188.20 33986.20 22492.18 26493.04 29573.21 32195.52 33279.32 31985.82 38295.83 282
new-patchmatchnet88.97 26290.79 21583.50 36194.28 28955.83 39685.34 35893.56 28286.18 22595.47 14095.73 20383.10 24496.51 30985.40 25298.06 21498.16 147
FMVSNet390.78 21090.32 22792.16 21493.03 31479.92 26292.54 18994.95 25186.17 22695.10 16296.01 18869.97 33498.75 14786.74 23198.38 18397.82 185
v119293.49 14493.78 13892.62 19796.16 21179.62 26991.83 22697.22 14186.07 22796.10 11296.38 16687.22 20099.02 10494.14 4298.88 12899.22 33
CANet_DTU89.85 24389.17 24591.87 22092.20 32780.02 25990.79 24895.87 21786.02 22882.53 37591.77 32280.01 27498.57 17685.66 25097.70 23597.01 234
XXY-MVS92.58 17493.16 15990.84 26297.75 10779.84 26391.87 22396.22 20485.94 22995.53 13697.68 6792.69 10894.48 34983.21 27597.51 24298.21 142
PM-MVS93.33 14892.67 17195.33 8696.58 17594.06 2192.26 20692.18 30785.92 23096.22 10596.61 15185.64 22695.99 32690.35 15098.23 19995.93 277
MG-MVS89.54 24789.80 23788.76 30794.88 26672.47 35589.60 28792.44 30585.82 23189.48 31195.98 18982.85 24997.74 25781.87 28995.27 30896.08 271
UnsupCasMVSNet_eth90.33 22790.34 22690.28 27694.64 28280.24 25089.69 28695.88 21685.77 23293.94 20195.69 20481.99 25992.98 36484.21 26891.30 36697.62 201
c3_l91.32 20491.42 20091.00 25692.29 32376.79 31787.52 32896.42 19485.76 23394.72 18093.89 27582.73 25198.16 21590.93 13598.55 16798.04 156
Patchmatch-test86.10 31186.01 30886.38 34290.63 35574.22 34289.57 28886.69 35285.73 23489.81 30692.83 30065.24 35791.04 37277.82 33095.78 29493.88 337
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
CL-MVSNet_self_test90.04 24089.90 23590.47 27195.24 26077.81 30086.60 34892.62 30185.64 23693.25 22393.92 27383.84 23796.06 32479.93 31298.03 21797.53 208
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26195.70 1698.48 17697.74 194
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
iter_conf_final90.23 23089.32 24392.95 18194.65 28181.46 23894.32 13095.40 24085.61 23892.84 23795.37 22254.58 38599.13 8892.16 10298.94 12498.25 139
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11694.11 7497.75 25596.26 1198.72 14996.89 239
cl____90.65 21490.56 22190.91 26091.85 33776.98 31386.75 34295.36 24185.53 24194.06 19494.89 23777.36 29997.98 23190.27 15598.98 11497.76 191
DeepC-MVS_fast89.96 793.73 14093.44 15294.60 12196.14 21387.90 12693.36 16497.14 14585.53 24193.90 20295.45 21491.30 13798.59 17489.51 17598.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_self_test90.65 21490.56 22190.91 26091.85 33776.99 31286.75 34295.36 24185.52 24394.06 19494.89 23777.37 29897.99 23090.28 15498.97 11997.76 191
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17797.12 11591.85 12499.40 4693.45 6598.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
eth_miper_zixun_eth90.72 21190.61 21991.05 25292.04 33376.84 31686.91 33796.67 18085.21 24594.41 18593.92 27379.53 27798.26 20689.76 17197.02 26198.06 153
v192192093.26 15193.61 14692.19 21096.04 22378.31 29391.88 22297.24 13985.17 24696.19 10996.19 17986.76 21199.05 9994.18 4198.84 13399.22 33
DeepPCF-MVS90.46 694.20 12693.56 14996.14 5295.96 22692.96 4389.48 29197.46 11885.14 24796.23 10495.42 21693.19 9298.08 22090.37 14998.76 14697.38 221
v124093.29 14993.71 14192.06 21796.01 22477.89 29991.81 22797.37 12385.12 24896.69 8396.40 16186.67 21399.07 9894.51 3398.76 14699.22 33
GA-MVS87.70 28586.82 29690.31 27593.27 30877.22 30984.72 36492.79 29685.11 24989.82 30590.07 34266.80 34697.76 25484.56 26694.27 33195.96 275
LF4IMVS92.72 17092.02 18594.84 10695.65 24591.99 5492.92 17596.60 18385.08 25092.44 25393.62 28286.80 21096.35 31786.81 23098.25 19796.18 268
Fast-Effi-MVS+91.28 20590.86 21292.53 20295.45 25382.53 22489.25 30196.52 19085.00 25189.91 30388.55 36292.94 10098.84 12984.72 26595.44 30296.22 266
v14419293.20 15693.54 15092.16 21496.05 21978.26 29491.95 21597.14 14584.98 25295.96 11596.11 18387.08 20499.04 10293.79 4998.84 13399.17 37
DP-MVS Recon92.31 18391.88 18993.60 15997.18 14386.87 14791.10 24297.37 12384.92 25392.08 26694.08 26688.59 17898.20 21083.50 27298.14 20895.73 286
FE-MVS89.06 25788.29 26491.36 24094.78 27279.57 27196.77 2890.99 32284.87 25492.96 23496.29 17260.69 37698.80 13980.18 30797.11 25895.71 287
miper_lstm_enhance89.90 24289.80 23790.19 28291.37 34777.50 30483.82 37295.00 24984.84 25593.05 23094.96 23576.53 31095.20 34389.96 16798.67 15797.86 179
EPNet_dtu85.63 31384.37 31989.40 29686.30 38874.33 34091.64 23088.26 33784.84 25572.96 39389.85 34371.27 33097.69 25976.60 33997.62 23996.18 268
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS91.82 19191.41 20193.04 17696.37 18983.65 20886.82 34197.29 13584.65 25792.27 26289.67 35092.20 11897.85 24583.95 27099.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 16996.69 16784.37 19493.38 16395.13 24684.50 25895.40 14497.55 8091.77 12697.20 28495.59 1997.79 23098.69 104
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14184.37 19493.73 15195.26 24384.45 25995.76 12598.00 5191.85 12497.21 28395.62 1897.82 22998.98 60
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17695.79 19792.76 10799.39 4988.72 19998.40 179
dmvs_re84.69 32283.94 32486.95 33592.24 32482.93 22089.51 29087.37 34884.38 26185.37 35385.08 38072.44 32386.59 38768.05 37991.03 37091.33 367
PMMVS281.31 34483.44 32674.92 37590.52 35746.49 40169.19 38985.23 36984.30 26287.95 33694.71 24676.95 30484.36 39264.07 38698.09 21293.89 336
F-COLMAP92.28 18491.06 20995.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32594.04 26788.41 18198.55 17980.17 30895.99 28997.39 219
QAPM92.88 16492.77 16593.22 17495.82 23483.31 21096.45 3997.35 12983.91 26493.75 20496.77 13789.25 17598.88 12184.56 26697.02 26197.49 210
patch_mono-292.46 17892.72 17091.71 22796.65 17078.91 28588.85 30897.17 14383.89 26592.45 25296.76 13989.86 17097.09 29090.24 15798.59 16499.12 43
mvs_anonymous90.37 22591.30 20487.58 32892.17 32968.00 37289.84 28194.73 25983.82 26693.22 22597.40 8987.54 19597.40 27687.94 21495.05 31297.34 222
miper_ehance_all_eth90.48 21890.42 22490.69 26691.62 34476.57 32086.83 34096.18 20683.38 26794.06 19492.66 30782.20 25698.04 22289.79 17097.02 26197.45 212
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 17993.65 15595.23 24483.30 26895.13 16097.56 7692.22 11697.17 28795.51 2297.41 24898.64 112
FMVSNet587.82 28486.56 30191.62 23192.31 32279.81 26693.49 15894.81 25783.26 26991.36 27596.93 12852.77 39097.49 27076.07 34298.03 21797.55 207
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18094.15 13695.44 23583.25 27095.51 13798.05 4692.54 11197.19 28695.55 2097.46 24698.94 66
xiu_mvs_v1_base_debu91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base_debi91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
FPMVS84.50 32383.28 32788.16 32196.32 19794.49 1685.76 35485.47 36483.09 27485.20 35594.26 25963.79 36486.58 38863.72 38791.88 36583.40 386
test-LLR83.58 32983.17 32884.79 35289.68 36766.86 37583.08 37384.52 37183.07 27582.85 37384.78 38162.86 36893.49 36082.85 27794.86 31694.03 332
test0.0.03 182.48 33681.47 34085.48 34689.70 36673.57 34684.73 36281.64 38083.07 27588.13 33486.61 37262.86 36889.10 38466.24 38490.29 37293.77 339
cl2289.02 25888.50 25890.59 26989.76 36576.45 32186.62 34794.03 27382.98 27792.65 24492.49 30872.05 32697.53 26688.93 19297.02 26197.78 189
tpmvs84.22 32583.97 32384.94 35087.09 38565.18 38191.21 23988.35 33682.87 27885.21 35490.96 33465.24 35796.75 30379.60 31885.25 38392.90 355
iter_conf0588.94 26488.09 27491.50 23692.74 31776.97 31492.80 17995.92 21582.82 27993.65 20895.37 22249.41 39299.13 8890.82 13699.28 7998.40 130
dmvs_testset78.23 35878.99 35575.94 37491.99 33555.34 39788.86 30778.70 39082.69 28081.64 38279.46 38975.93 31185.74 38948.78 39582.85 38886.76 382
KD-MVS_2432*160082.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
miper_refine_blended82.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
MDA-MVSNet_test_wron88.16 27988.23 26987.93 32492.22 32573.71 34480.71 38288.84 33282.52 28394.88 17395.14 22782.70 25293.61 35983.28 27493.80 33996.46 257
YYNet188.17 27888.24 26887.93 32492.21 32673.62 34580.75 38188.77 33382.51 28494.99 16895.11 22982.70 25293.70 35883.33 27393.83 33896.48 256
OpenMVScopyleft89.45 892.27 18592.13 18392.68 19394.53 28484.10 20295.70 7697.03 15382.44 28591.14 28196.42 15988.47 18098.38 19485.95 24697.47 24595.55 295
MVSTER89.32 25288.75 25591.03 25390.10 36376.62 31990.85 24694.67 26282.27 28695.24 15795.79 19761.09 37498.49 18390.49 14498.26 19597.97 168
SCA87.43 29487.21 28888.10 32292.01 33471.98 35789.43 29388.11 34282.26 28788.71 32492.83 30078.65 28497.59 26479.61 31693.30 34694.75 317
AUN-MVS90.05 23988.30 26395.32 8896.09 21690.52 7792.42 19792.05 31382.08 28888.45 32992.86 29965.76 35398.69 16188.91 19496.07 28696.75 247
TR-MVS87.70 28587.17 28989.27 29994.11 29279.26 27788.69 31391.86 31581.94 28990.69 28889.79 34782.82 25097.42 27472.65 36191.98 36391.14 369
BH-w/o87.21 29987.02 29487.79 32794.77 27377.27 30887.90 32093.21 29081.74 29089.99 30288.39 36483.47 24096.93 29871.29 36892.43 35989.15 374
MIMVSNet87.13 30386.54 30288.89 30596.05 21976.11 32494.39 12588.51 33581.37 29188.27 33296.75 14172.38 32495.52 33265.71 38595.47 30195.03 305
Syy-MVS84.81 32084.93 31484.42 35591.71 34163.36 38985.89 35281.49 38181.03 29285.13 35681.64 38777.44 29595.00 34485.94 24794.12 33594.91 311
myMVS_eth3d79.62 35478.26 35883.72 35991.71 34161.25 39185.89 35281.49 38181.03 29285.13 35681.64 38732.12 40195.00 34471.17 37294.12 33594.91 311
MAR-MVS90.32 22888.87 25494.66 11594.82 26991.85 5794.22 13494.75 25880.91 29487.52 34288.07 36586.63 21497.87 24276.67 33896.21 28594.25 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base89.00 26189.19 24488.46 31694.86 26874.63 33586.97 33595.60 22480.88 29587.83 33788.62 36191.04 14698.81 13682.51 28394.38 32791.93 363
PS-MVSNAJ88.86 26688.99 25088.48 31594.88 26674.71 33386.69 34495.60 22480.88 29587.83 33787.37 36990.77 15098.82 13182.52 28294.37 32891.93 363
TAMVS90.16 23289.05 24793.49 16896.49 18486.37 16290.34 26592.55 30380.84 29792.99 23294.57 25281.94 26198.20 21073.51 35598.21 20295.90 280
PatchMatch-RL89.18 25388.02 27692.64 19495.90 23192.87 4588.67 31591.06 32180.34 29890.03 30191.67 32483.34 24194.42 35176.35 34194.84 31890.64 372
MCST-MVS92.91 16292.51 17494.10 14097.52 12585.72 18091.36 23797.13 14780.33 29992.91 23694.24 26091.23 13998.72 15289.99 16697.93 22497.86 179
PLCcopyleft85.34 1590.40 22188.92 25194.85 10596.53 18290.02 8191.58 23196.48 19280.16 30086.14 35092.18 31585.73 22398.25 20776.87 33794.61 32496.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVP-Stereo90.07 23888.92 25193.54 16396.31 19886.49 15790.93 24595.59 22879.80 30191.48 27395.59 20780.79 27097.39 27778.57 32591.19 36796.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
our_test_387.55 29187.59 28187.44 33091.76 33970.48 36383.83 37190.55 32879.79 30292.06 26792.17 31678.63 28695.63 33084.77 26394.73 32096.22 266
CDS-MVSNet89.55 24688.22 27093.53 16495.37 25786.49 15789.26 29993.59 28079.76 30391.15 28092.31 31477.12 30098.38 19477.51 33297.92 22595.71 287
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS77.21 1983.11 33181.05 34289.29 29891.15 34975.85 32785.66 35586.00 35879.70 30482.02 37986.61 37248.26 39398.39 19177.84 32892.22 36093.63 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_vis1_n_192089.45 24989.85 23688.28 31893.59 30476.71 31890.67 25397.78 9679.67 30590.30 29696.11 18376.62 30892.17 36790.31 15293.57 34295.96 275
ET-MVSNet_ETH3D86.15 31084.27 32191.79 22393.04 31381.28 24087.17 33386.14 35679.57 30683.65 36788.66 35957.10 38098.18 21387.74 21795.40 30395.90 280
PVSNet_BlendedMVS90.35 22689.96 23391.54 23494.81 27078.80 28990.14 27196.93 16079.43 30788.68 32695.06 23286.27 21898.15 21680.27 30498.04 21697.68 198
train_agg92.71 17191.83 19195.35 8496.45 18789.46 9090.60 25596.92 16279.37 30890.49 29094.39 25691.20 14198.88 12188.66 20098.43 17897.72 195
test_896.37 18989.14 10090.51 25896.89 16579.37 30890.42 29294.36 25891.20 14198.82 131
N_pmnet88.90 26587.25 28793.83 15494.40 28793.81 3584.73 36287.09 35079.36 31093.26 22192.43 31279.29 27991.68 36977.50 33397.22 25496.00 274
UnsupCasMVSNet_bld88.50 27388.03 27589.90 28795.52 25178.88 28687.39 32994.02 27579.32 31193.06 22994.02 26980.72 27194.27 35475.16 34793.08 35196.54 250
ppachtmachnet_test88.61 27288.64 25688.50 31491.76 33970.99 36284.59 36592.98 29179.30 31292.38 25693.53 28679.57 27697.45 27286.50 24097.17 25697.07 230
TEST996.45 18789.46 9090.60 25596.92 16279.09 31390.49 29094.39 25691.31 13698.88 121
baseline283.38 33081.54 33988.90 30491.38 34672.84 35288.78 31081.22 38378.97 31479.82 38687.56 36661.73 37297.80 24774.30 35290.05 37396.05 273
D2MVS89.93 24189.60 24290.92 25894.03 29578.40 29288.69 31394.85 25378.96 31593.08 22895.09 23074.57 31696.94 29688.19 20598.96 12197.41 215
PatchmatchNetpermissive85.22 31684.64 31686.98 33489.51 37069.83 36990.52 25787.34 34978.87 31687.22 34592.74 30466.91 34596.53 30781.77 29086.88 38094.58 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet_Blended_VisFu91.63 19691.20 20592.94 18397.73 11083.95 20592.14 20997.46 11878.85 31792.35 25894.98 23484.16 23699.08 9486.36 24296.77 27395.79 284
Patchmatch-RL test88.81 26788.52 25789.69 29295.33 25979.94 26186.22 35192.71 29878.46 31895.80 12494.18 26366.25 35195.33 34089.22 18698.53 17093.78 338
WTY-MVS86.93 30686.50 30588.24 31994.96 26474.64 33487.19 33292.07 31278.29 31988.32 33191.59 32678.06 29094.27 35474.88 34893.15 34995.80 283
pmmvs-eth3d91.54 19890.73 21793.99 14295.76 23987.86 12890.83 24793.98 27778.23 32094.02 19796.22 17882.62 25496.83 30186.57 23698.33 18997.29 225
TAPA-MVS88.58 1092.49 17791.75 19394.73 11096.50 18389.69 8692.91 17697.68 10178.02 32192.79 24094.10 26590.85 14997.96 23284.76 26498.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sss87.23 29886.82 29688.46 31693.96 29677.94 29686.84 33992.78 29777.59 32287.61 34191.83 32178.75 28291.92 36877.84 32894.20 33295.52 296
CDPH-MVS92.67 17291.83 19195.18 9696.94 15288.46 11890.70 25297.07 15177.38 32392.34 26095.08 23192.67 10998.88 12185.74 24898.57 16698.20 143
thisisatest051584.72 32182.99 33089.90 28792.96 31575.33 33284.36 36783.42 37677.37 32488.27 33286.65 37153.94 38798.72 15282.56 28197.40 24995.67 290
EPMVS81.17 34780.37 34983.58 36085.58 39165.08 38390.31 26671.34 39677.31 32585.80 35291.30 32859.38 37792.70 36579.99 30982.34 38992.96 354
tpm84.38 32484.08 32285.30 34890.47 35863.43 38889.34 29685.63 36277.24 32687.62 34095.03 23361.00 37597.30 28079.26 32091.09 36995.16 301
OpenMVS_ROBcopyleft85.12 1689.52 24889.05 24790.92 25894.58 28381.21 24391.10 24293.41 28677.03 32793.41 21393.99 27183.23 24397.80 24779.93 31294.80 31993.74 340
test_fmvs392.42 17992.40 17892.46 20593.80 30287.28 13693.86 14797.05 15276.86 32896.25 10298.66 1882.87 24891.26 37195.44 2596.83 27098.82 82
原ACMM192.87 18696.91 15584.22 19997.01 15476.84 32989.64 31094.46 25488.00 18898.70 15981.53 29498.01 21995.70 289
PAPR87.65 28886.77 29890.27 27792.85 31677.38 30688.56 31696.23 20276.82 33084.98 35989.75 34986.08 22097.16 28872.33 36293.35 34596.26 265
mvsany_test389.11 25688.21 27191.83 22191.30 34890.25 7988.09 31978.76 38976.37 33196.43 9198.39 3383.79 23890.43 37686.57 23694.20 33294.80 314
miper_enhance_ethall88.42 27487.87 27790.07 28388.67 37775.52 33085.10 35995.59 22875.68 33292.49 24989.45 35378.96 28097.88 23987.86 21697.02 26196.81 243
HY-MVS82.50 1886.81 30785.93 30989.47 29393.63 30377.93 29794.02 14191.58 31975.68 33283.64 36893.64 28077.40 29697.42 27471.70 36692.07 36293.05 353
tpmrst82.85 33582.93 33182.64 36387.65 38058.99 39490.14 27187.90 34475.54 33483.93 36691.63 32566.79 34895.36 33881.21 29881.54 39093.57 347
MS-PatchMatch88.05 28087.75 27888.95 30393.28 30777.93 29787.88 32192.49 30475.42 33592.57 24893.59 28480.44 27294.24 35681.28 29692.75 35494.69 320
DPM-MVS89.35 25188.40 26092.18 21396.13 21584.20 20086.96 33696.15 20875.40 33687.36 34391.55 32783.30 24298.01 22782.17 28896.62 27794.32 327
PC_three_145275.31 33795.87 12295.75 20292.93 10196.34 31987.18 22698.68 15598.04 156
test_cas_vis1_n_192088.25 27788.27 26688.20 32092.19 32878.92 28489.45 29295.44 23575.29 33893.23 22495.65 20671.58 32890.23 37788.05 21093.55 34395.44 297
PVSNet_Blended88.74 26988.16 27390.46 27394.81 27078.80 28986.64 34596.93 16074.67 33988.68 32689.18 35786.27 21898.15 21680.27 30496.00 28894.44 324
pmmvs488.95 26387.70 28092.70 19194.30 28885.60 18287.22 33192.16 30974.62 34089.75 30994.19 26277.97 29196.41 31382.71 27996.36 28396.09 270
test_fmvs290.62 21690.40 22591.29 24491.93 33685.46 18492.70 18396.48 19274.44 34194.91 17197.59 7475.52 31390.57 37393.44 6696.56 27897.84 182
131486.46 30986.33 30686.87 33691.65 34374.54 33691.94 21794.10 27274.28 34284.78 36187.33 37083.03 24695.00 34478.72 32391.16 36891.06 370
Anonymous2023120688.77 26888.29 26490.20 28196.31 19878.81 28889.56 28993.49 28474.26 34392.38 25695.58 21082.21 25595.43 33772.07 36398.75 14896.34 261
MDTV_nov1_ep1383.88 32589.42 37161.52 39088.74 31287.41 34773.99 34484.96 36094.01 27065.25 35695.53 33178.02 32693.16 348
test-mter81.21 34680.01 35384.79 35289.68 36766.86 37583.08 37384.52 37173.85 34582.85 37384.78 38143.66 39793.49 36082.85 27794.86 31694.03 332
pmmvs587.87 28287.14 29090.07 28393.26 30976.97 31488.89 30692.18 30773.71 34688.36 33093.89 27576.86 30796.73 30480.32 30396.81 27196.51 252
1112_ss88.42 27487.41 28391.45 23796.69 16780.99 24589.72 28596.72 17873.37 34787.00 34690.69 33977.38 29798.20 21081.38 29593.72 34095.15 302
test_vis3_rt90.40 22190.03 23291.52 23592.58 31888.95 10390.38 26397.72 10073.30 34897.79 3097.51 8477.05 30187.10 38689.03 19194.89 31598.50 122
USDC89.02 25889.08 24688.84 30695.07 26374.50 33888.97 30496.39 19573.21 34993.27 22096.28 17482.16 25796.39 31477.55 33198.80 14295.62 294
CR-MVSNet87.89 28187.12 29290.22 27991.01 35178.93 28292.52 19092.81 29473.08 35089.10 31496.93 12867.11 34397.64 26388.80 19692.70 35594.08 329
test_vis1_n89.01 26089.01 24989.03 30292.57 31982.46 22692.62 18796.06 20973.02 35190.40 29395.77 20174.86 31589.68 37990.78 13894.98 31394.95 308
dp79.28 35578.62 35781.24 36885.97 39056.45 39586.91 33785.26 36872.97 35281.45 38389.17 35856.01 38495.45 33673.19 35876.68 39291.82 366
IU-MVS98.51 5186.66 15496.83 17072.74 35395.83 12393.00 8599.29 7498.64 112
ADS-MVSNet284.01 32682.20 33689.41 29589.04 37376.37 32387.57 32390.98 32372.71 35484.46 36292.45 30968.08 33996.48 31070.58 37483.97 38495.38 298
ADS-MVSNet82.25 33781.55 33884.34 35689.04 37365.30 38087.57 32385.13 37072.71 35484.46 36292.45 30968.08 33992.33 36670.58 37483.97 38495.38 298
jason89.17 25488.32 26291.70 22895.73 24080.07 25588.10 31893.22 28871.98 35690.09 29892.79 30278.53 28798.56 17787.43 22297.06 25996.46 257
jason: jason.
testdata91.03 25396.87 15782.01 22994.28 26971.55 35792.46 25195.42 21685.65 22597.38 27982.64 28097.27 25293.70 341
PVSNet76.22 2082.89 33482.37 33484.48 35493.96 29664.38 38678.60 38488.61 33471.50 35884.43 36486.36 37574.27 31794.60 34869.87 37693.69 34194.46 323
gm-plane-assit87.08 38659.33 39371.22 35983.58 38397.20 28473.95 353
test_fmvs1_n88.73 27088.38 26189.76 28992.06 33282.53 22492.30 20496.59 18571.14 36092.58 24795.41 21968.55 33789.57 38191.12 12995.66 29697.18 229
lupinMVS88.34 27687.31 28491.45 23794.74 27580.06 25687.23 33092.27 30671.10 36188.83 31791.15 33077.02 30298.53 18086.67 23496.75 27495.76 285
cascas87.02 30586.28 30789.25 30091.56 34576.45 32184.33 36896.78 17371.01 36286.89 34785.91 37781.35 26496.94 29683.09 27695.60 29794.35 326
new_pmnet81.22 34581.01 34481.86 36590.92 35370.15 36584.03 36980.25 38770.83 36385.97 35189.78 34867.93 34284.65 39167.44 38191.90 36490.78 371
无先验89.94 27795.75 22070.81 36498.59 17481.17 29994.81 313
mvsany_test183.91 32782.93 33186.84 33786.18 38985.93 17381.11 38075.03 39570.80 36588.57 32894.63 24883.08 24587.38 38580.39 30286.57 38187.21 381
test_fmvs187.59 29087.27 28688.54 31288.32 37881.26 24190.43 26295.72 22170.55 36691.70 27194.63 24868.13 33889.42 38290.59 14295.34 30694.94 310
CostFormer83.09 33282.21 33585.73 34489.27 37267.01 37390.35 26486.47 35470.42 36783.52 37093.23 29361.18 37396.85 30077.21 33588.26 37893.34 349
TESTMET0.1,179.09 35678.04 35982.25 36487.52 38264.03 38783.08 37380.62 38570.28 36880.16 38583.22 38444.13 39690.56 37479.95 31093.36 34492.15 361
CMPMVSbinary68.83 2287.28 29785.67 31192.09 21688.77 37685.42 18590.31 26694.38 26670.02 36988.00 33593.30 29073.78 32094.03 35775.96 34496.54 27996.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f86.65 30887.13 29185.19 34990.28 36186.11 17086.52 35091.66 31769.76 37095.73 13097.21 11069.51 33581.28 39389.15 18894.40 32688.17 379
Test_1112_low_res87.50 29386.58 30090.25 27896.80 16477.75 30187.53 32796.25 20069.73 37186.47 34893.61 28375.67 31297.88 23979.95 31093.20 34795.11 304
PAPM81.91 34280.11 35287.31 33193.87 29972.32 35684.02 37093.22 28869.47 37276.13 39189.84 34472.15 32597.23 28253.27 39389.02 37592.37 360
MVS-HIRNet78.83 35780.60 34873.51 37693.07 31147.37 40087.10 33478.00 39268.94 37377.53 38997.26 10371.45 32994.62 34763.28 38888.74 37678.55 391
旧先验290.00 27668.65 37492.71 24396.52 30885.15 255
PCF-MVS84.52 1789.12 25587.71 27993.34 17096.06 21885.84 17686.58 34997.31 13268.46 37593.61 20993.89 27587.51 19698.52 18167.85 38098.11 21095.66 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何193.17 17597.16 14487.29 13594.43 26567.95 37691.29 27694.94 23686.97 20698.23 20881.06 30097.75 23193.98 334
MVEpermissive59.87 2373.86 36072.65 36377.47 37387.00 38774.35 33961.37 39160.93 39967.27 37769.69 39486.49 37481.24 26872.33 39556.45 39283.45 38685.74 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MDTV_nov1_ep13_2view42.48 40288.45 31767.22 37883.56 36966.80 34672.86 36094.06 331
test_vis1_rt85.58 31484.58 31788.60 31187.97 37986.76 14985.45 35793.59 28066.43 37987.64 33989.20 35679.33 27885.38 39081.59 29389.98 37493.66 342
CHOSEN 280x42080.04 35377.97 36086.23 34390.13 36274.53 33772.87 38789.59 33166.38 38076.29 39085.32 37956.96 38195.36 33869.49 37794.72 32188.79 377
HyFIR lowres test87.19 30185.51 31292.24 20897.12 14780.51 24985.03 36096.06 20966.11 38191.66 27292.98 29870.12 33399.14 8675.29 34695.23 30997.07 230
114514_t90.51 21789.80 23792.63 19698.00 9182.24 22893.40 16297.29 13565.84 38289.40 31294.80 24286.99 20598.75 14783.88 27198.61 16196.89 239
tpm281.46 34380.35 35084.80 35189.90 36465.14 38290.44 25985.36 36565.82 38382.05 37892.44 31157.94 37996.69 30570.71 37388.49 37792.56 358
test22296.95 15185.27 18788.83 30993.61 27965.09 38490.74 28794.85 23984.62 23497.36 25093.91 335
CHOSEN 1792x268887.19 30185.92 31091.00 25697.13 14679.41 27484.51 36695.60 22464.14 38590.07 30094.81 24078.26 28997.14 28973.34 35695.38 30596.46 257
pmmvs380.83 34978.96 35686.45 33987.23 38477.48 30584.87 36182.31 37863.83 38685.03 35889.50 35249.66 39193.10 36273.12 35995.10 31188.78 378
PVSNet_070.34 2174.58 35972.96 36279.47 37190.63 35566.24 37873.26 38583.40 37763.67 38778.02 38878.35 39172.53 32289.59 38056.68 39160.05 39582.57 389
tpm cat180.61 35179.46 35484.07 35888.78 37565.06 38489.26 29988.23 33862.27 38881.90 38089.66 35162.70 37095.29 34171.72 36580.60 39191.86 365
PMMVS83.00 33381.11 34188.66 31083.81 39686.44 16082.24 37785.65 36161.75 38982.07 37785.64 37879.75 27591.59 37075.99 34393.09 35087.94 380
MVS84.98 31984.30 32087.01 33391.03 35077.69 30391.94 21794.16 27159.36 39084.23 36587.50 36885.66 22496.80 30271.79 36493.05 35286.54 383
EU-MVSNet87.39 29586.71 29989.44 29493.40 30676.11 32494.93 10790.00 33057.17 39195.71 13197.37 9164.77 35997.68 26092.67 9494.37 32894.52 322
CVMVSNet85.16 31784.72 31586.48 33892.12 33070.19 36492.32 20288.17 34056.15 39290.64 28995.85 19367.97 34196.69 30588.78 19790.52 37192.56 358
DSMNet-mixed82.21 33881.56 33784.16 35789.57 36970.00 36890.65 25477.66 39354.99 39383.30 37197.57 7577.89 29290.50 37566.86 38395.54 29991.97 362
DeepMVS_CXcopyleft53.83 37870.38 39964.56 38548.52 40233.01 39465.50 39574.21 39356.19 38346.64 39738.45 39770.07 39350.30 393
test_method50.44 36148.94 36454.93 37739.68 40012.38 40428.59 39290.09 3296.82 39541.10 39778.41 39054.41 38670.69 39650.12 39451.26 39681.72 390
tmp_tt37.97 36244.33 36518.88 37911.80 40121.54 40363.51 39045.66 4034.23 39651.34 39650.48 39459.08 37822.11 39844.50 39668.35 39413.00 394
EGC-MVSNET80.97 34875.73 36196.67 4298.85 2494.55 1596.83 2396.60 1832.44 3975.32 39898.25 3792.24 11598.02 22691.85 11399.21 9097.45 212
test1239.49 36412.01 3671.91 3802.87 4021.30 40582.38 3761.34 4051.36 3982.84 3996.56 3972.45 4030.97 3992.73 3985.56 3973.47 395
testmvs9.02 36511.42 3681.81 3812.77 4031.13 40679.44 3831.90 4041.18 3992.65 4006.80 3961.95 4040.87 4002.62 3993.45 3983.44 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k23.35 36331.13 3660.00 3820.00 4040.00 4070.00 39395.58 2300.00 4000.00 40191.15 33093.43 840.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.56 36610.09 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40090.77 1500.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.56 36610.08 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40190.69 3390.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS61.25 39174.55 349
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
eth-test20.00 404
eth-test0.00 404
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20593.12 9598.06 22186.28 24498.61 16197.95 169
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6699.31 6998.53 121
GSMVS94.75 317
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 34994.75 317
sam_mvs66.41 350
ambc92.98 17896.88 15683.01 21995.92 6896.38 19696.41 9297.48 8688.26 18297.80 24789.96 16798.93 12598.12 151
MTGPAbinary97.62 105
test_post190.21 2685.85 39965.36 35596.00 32579.61 316
test_post6.07 39865.74 35495.84 328
patchmatchnet-post91.71 32366.22 35297.59 264
GG-mvs-BLEND83.24 36285.06 39371.03 36194.99 10665.55 39874.09 39275.51 39244.57 39594.46 35059.57 39087.54 37984.24 385
MTMP94.82 10954.62 401
test9_res88.16 20798.40 17997.83 183
agg_prior287.06 22998.36 18897.98 165
agg_prior96.20 20888.89 10696.88 16690.21 29798.78 143
test_prior489.91 8290.74 250
test_prior94.61 11895.95 22787.23 13797.36 12898.68 16397.93 171
新几何290.02 275
旧先验196.20 20884.17 20194.82 25595.57 21189.57 17297.89 22696.32 262
原ACMM289.34 296
testdata298.03 22380.24 306
segment_acmp92.14 119
test1294.43 13195.95 22786.75 15096.24 20189.76 30889.79 17198.79 14097.95 22397.75 193
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 207
plane_prior597.81 9198.95 11489.26 18498.51 17398.60 117
plane_prior495.59 207
plane_prior197.38 132
n20.00 406
nn0.00 406
door-mid92.13 311
lessismore_v093.87 15198.05 8583.77 20780.32 38697.13 6097.91 5977.49 29499.11 9392.62 9598.08 21398.74 95
test1196.65 181
door91.26 320
HQP5-MVS84.89 190
BP-MVS86.55 238
HQP4-MVS88.81 31998.61 17098.15 148
HQP3-MVS97.31 13297.73 232
HQP2-MVS84.76 232
NP-MVS96.82 16287.10 14193.40 288
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 156