This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 119
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12298.16 398.94 399.33 397.84 499.08 9890.73 14799.73 1399.59 14
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9198.14 498.67 1398.32 3795.04 5099.69 493.27 8199.82 799.62 12
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7298.06 598.64 1498.25 4095.01 5399.65 592.95 9399.83 599.68 6
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8597.91 698.64 1498.13 4395.24 4099.65 593.39 7699.84 399.72 4
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12497.60 898.34 2097.52 8691.98 12799.63 893.08 8999.81 899.70 5
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 8993.18 8499.74 1299.50 18
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6597.42 1098.48 1797.86 6591.76 13499.63 894.23 4599.84 399.66 8
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13294.64 3699.53 3798.99 56
LS3D96.11 5195.83 6996.95 4094.75 28494.20 2397.34 1397.98 8397.31 1295.32 15596.77 14693.08 10299.20 8591.79 12298.16 20997.44 220
VDDNet94.03 13894.27 13493.31 17898.87 2182.36 23495.51 9391.78 32797.19 1396.32 9898.60 2584.24 24698.75 15087.09 23898.83 14098.81 84
MVSMamba_PlusPlus94.82 10595.89 6491.62 23897.82 10478.88 29396.52 3597.60 11897.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 276
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17496.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11296.94 1796.58 9097.32 10793.07 10398.72 15590.45 15498.84 13597.57 210
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17497.24 14996.88 1897.69 3697.77 7194.12 7899.13 9391.54 13299.29 7597.88 182
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8896.69 1991.78 28298.85 1491.77 13295.49 35191.72 12499.08 10295.02 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 14990.11 17199.44 4898.31 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18596.64 2197.61 4198.05 4793.23 9698.79 14388.60 21199.04 11198.78 87
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 122
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6896.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27796.48 2495.38 15093.63 29294.89 5997.94 24095.38 2796.92 27695.17 318
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 22996.47 2593.40 22797.46 9395.31 3795.47 35286.18 25598.78 14789.11 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
mvs5depth95.28 8895.82 7193.66 16296.42 19283.08 22497.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23294.06 4898.93 12599.87 1
gg-mvs-nofinetune82.10 35981.02 36185.34 36687.46 40571.04 37194.74 12167.56 41996.44 2679.43 40998.99 845.24 41096.15 33567.18 39992.17 38288.85 398
ANet_high94.83 10496.28 4190.47 27996.65 17373.16 35894.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16290.38 15799.68 1799.53 16
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27696.24 3196.28 10396.36 17882.88 25899.35 6288.19 21599.52 3998.96 64
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 9996.13 3294.74 18797.23 11291.33 14199.16 8893.25 8298.30 19598.46 127
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9496.10 3398.14 2899.28 597.94 398.21 21491.38 13699.69 1499.42 20
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17390.30 16299.60 2598.72 96
K. test v393.37 15693.27 16693.66 16298.05 8682.62 23094.35 13686.62 36796.05 3597.51 4698.85 1476.59 32099.65 593.21 8398.20 20798.73 95
LFMVS91.33 21491.16 21991.82 22996.27 20679.36 28295.01 11485.61 37996.04 3694.82 18397.06 12872.03 33998.46 19384.96 27198.70 15697.65 206
SSC-MVS90.16 24392.96 17081.78 38897.88 10048.48 42090.75 26287.69 35896.02 3796.70 8497.63 7785.60 23697.80 25485.73 25998.60 16699.06 50
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15897.86 9495.96 3897.48 4897.14 12195.33 3699.44 3290.79 14599.76 1099.38 23
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6698.84 13598.00 164
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6698.84 13598.00 164
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7898.88 13098.75 91
WB-MVS89.44 26192.15 19381.32 38997.73 11248.22 42189.73 29787.98 35695.24 4296.05 11696.99 13485.18 23996.95 30882.45 29697.97 22798.78 87
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6895.17 4396.82 7996.73 15395.09 4999.43 3592.99 9298.71 15498.50 123
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29094.49 3899.01 11399.80 3
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21697.84 9794.91 4796.80 8095.78 21390.42 16699.41 4291.60 12899.58 3199.29 29
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22195.93 7194.84 26394.86 4898.49 1698.74 1881.45 27599.60 1094.69 3599.39 5699.15 39
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23494.87 3399.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19696.49 16494.56 6999.39 5293.57 6299.05 10698.93 68
X-MVStestdata90.70 22388.45 27197.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19626.89 41994.56 6999.39 5293.57 6299.05 10698.93 68
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15293.28 29794.49 5296.24 10597.78 6787.99 19898.79 14388.92 20399.14 9998.34 135
MM94.41 12294.14 13895.22 9795.84 23887.21 14194.31 13990.92 33594.48 5392.80 25097.52 8685.27 23899.49 2896.58 899.57 3398.97 62
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11494.46 5496.29 10196.94 13693.56 8499.37 6094.29 4499.42 5098.99 56
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26194.79 25493.56 8499.49 2893.47 6999.05 10697.89 181
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28294.22 5794.94 17896.19 19082.07 27099.57 1587.28 23598.89 12898.65 106
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8094.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
Anonymous20240521192.58 18492.50 18592.83 19496.55 18183.22 22092.43 20591.64 32994.10 5995.59 13996.64 15881.88 27497.50 27685.12 26798.52 17497.77 196
CS-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29593.73 29093.52 8699.55 1991.81 12199.45 4597.58 209
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19697.81 10093.99 6096.80 8095.90 20390.10 17599.41 4291.60 12899.58 3199.26 30
TransMVSNet (Re)95.27 9196.04 5692.97 18698.37 6381.92 23995.07 11196.76 18693.97 6297.77 3498.57 2695.72 2097.90 24188.89 20599.23 8699.08 48
FC-MVSNet-test95.32 8495.88 6593.62 16498.49 5681.77 24095.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9499.83 599.68 6
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25294.52 26493.95 8199.49 2893.62 6199.22 8997.51 215
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13393.92 6597.65 3795.90 20390.10 17599.33 7090.11 17199.66 2199.26 30
Baseline_NR-MVSNet94.47 11995.09 10292.60 20698.50 5580.82 25592.08 22096.68 19093.82 6696.29 10198.56 2790.10 17597.75 26290.10 17399.66 2199.24 32
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17793.73 6797.87 3198.49 3190.73 16199.05 10386.43 25199.60 2599.10 47
tfpnnormal94.27 12894.87 10892.48 21097.71 11480.88 25494.55 13295.41 24893.70 6896.67 8697.72 7291.40 14098.18 21887.45 23199.18 9498.36 132
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33485.98 17792.44 20494.69 27093.70 6896.12 11495.81 20991.24 14498.86 12993.76 5998.22 20498.98 60
WR-MVS93.49 15293.72 14992.80 19597.57 12580.03 26590.14 28495.68 23393.70 6896.62 8895.39 23387.21 21099.04 10687.50 23099.64 2399.33 26
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33785.87 18092.42 20694.69 27093.67 7196.13 11395.84 20791.20 14798.86 12993.78 5698.23 20299.03 52
SDMVSNet94.43 12195.02 10392.69 19897.93 9782.88 22891.92 22995.99 22693.65 7295.51 14298.63 2394.60 6796.48 32587.57 22999.35 5998.70 100
sd_testset93.94 14294.39 12692.61 20597.93 9783.24 21893.17 17795.04 25793.65 7295.51 14298.63 2394.49 7295.89 34481.72 30499.35 5998.70 100
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18498.07 6893.46 7496.31 9995.97 20290.14 17299.34 6592.11 11099.64 2399.16 38
VPA-MVSNet95.14 9395.67 7793.58 16697.76 10883.15 22294.58 12897.58 11993.39 7597.05 6798.04 4993.25 9598.51 18789.75 18199.59 2799.08 48
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11293.38 7695.89 12497.23 11293.35 9297.66 26988.20 21498.66 16297.79 194
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8093.34 7796.64 8796.57 16294.99 5499.36 6193.48 6899.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5298.68 15898.04 159
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5299.42 5098.89 75
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4399.38 5798.92 72
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17096.25 20983.23 21992.66 19398.19 4793.06 8197.49 4797.15 12094.78 6198.71 16192.27 10898.72 15298.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs94.90 10195.35 8993.55 16798.28 6981.76 24195.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7391.72 12499.69 1499.61 13
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10592.73 8393.48 22296.72 15494.23 7699.42 3691.99 11599.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 11893.85 5499.49 4099.36 25
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12092.68 8496.20 10993.44 29891.92 12898.78 14689.11 19999.24 8596.92 247
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6592.67 8695.08 17396.39 17594.77 6299.42 3693.17 8599.44 4898.58 118
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10792.59 8795.47 14596.68 15694.50 7199.42 3693.10 8799.26 8298.99 56
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 3999.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12492.42 8993.41 22497.78 6791.21 14697.77 25991.06 13997.06 26898.80 85
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19892.38 9097.03 6898.53 2890.12 17398.98 11188.78 20799.16 9798.65 106
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16798.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12399.28 8098.41 131
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7797.67 24497.85 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8392.35 9395.63 13796.47 16595.37 3299.27 7893.78 5699.14 9998.48 126
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8692.35 9395.57 14096.61 16094.93 5899.41 4293.78 5699.15 9899.00 54
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5199.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8692.26 9695.28 15996.57 16295.02 5299.41 4293.63 6099.11 10198.94 66
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 6999.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
RRT-MVS92.28 19493.01 16990.07 29194.06 30473.01 36095.36 9597.88 9292.24 9895.16 16797.52 8678.51 29899.29 7390.55 15295.83 30697.92 177
PatchT87.51 30388.17 28485.55 36490.64 37466.91 39092.02 22386.09 37192.20 9989.05 33097.16 11964.15 37596.37 33189.21 19792.98 37493.37 369
VNet92.67 18292.96 17091.79 23096.27 20680.15 25991.95 22594.98 25992.19 10094.52 19396.07 19787.43 20697.39 28584.83 27298.38 18697.83 189
thres100view90087.35 30786.89 30788.72 31796.14 21873.09 35993.00 18185.31 38292.13 10193.26 23390.96 34863.42 37998.28 20771.27 38696.54 28994.79 336
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8092.08 10295.74 13296.28 18495.22 4299.42 3693.17 8599.06 10398.88 77
LCM-MVSNet-Re94.20 13394.58 12393.04 18395.91 23583.13 22393.79 15799.19 692.00 10398.84 698.04 4993.64 8399.02 10881.28 30998.54 17296.96 246
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6291.95 10497.63 3897.25 11096.48 1099.35 6293.29 7999.29 7597.95 172
test_241102_TWO98.10 6291.95 10497.54 4397.25 11095.37 3299.35 6293.29 7999.25 8398.49 125
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20191.93 10694.82 18395.39 23391.99 12697.08 30385.53 26197.96 22897.41 221
RPMNet90.31 24090.14 24290.81 27291.01 37078.93 28992.52 19898.12 5991.91 10789.10 32896.89 14068.84 34999.41 4290.17 16992.70 37694.08 350
thres600view787.66 29887.10 30489.36 30696.05 22573.17 35792.72 18985.31 38291.89 10893.29 23090.97 34763.42 37998.39 19673.23 37496.99 27596.51 262
v894.65 11295.29 9392.74 19696.65 17379.77 27494.59 12697.17 15391.86 10997.47 4997.93 5788.16 19399.08 9894.32 4299.47 4199.38 23
test_241102_ONE98.51 4986.97 14898.10 6291.85 11097.63 3897.03 13096.48 1098.95 118
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16591.85 11097.40 5497.35 10395.58 2499.34 6593.44 7299.31 7098.13 153
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10699.05 10698.64 111
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15891.84 11397.28 5898.46 3395.30 3897.71 26690.17 16999.42 5098.99 56
VPNet93.08 16693.76 14891.03 26198.60 3875.83 33791.51 24295.62 23491.84 11395.74 13297.10 12689.31 18398.32 20585.07 27099.06 10398.93 68
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26287.06 14596.63 3197.28 14791.82 11694.34 19897.41 9490.60 16498.65 17192.47 10598.11 21397.70 202
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
EI-MVSNet92.99 16993.26 16792.19 21792.12 34779.21 28792.32 21194.67 27291.77 11995.24 16395.85 20587.14 21298.49 18891.99 11598.26 19898.86 78
IterMVS-LS93.78 14694.28 13292.27 21496.27 20679.21 28791.87 23396.78 18391.77 11996.57 9197.07 12787.15 21198.74 15391.99 11599.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4199.28 8098.97 62
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10091.74 12193.31 22895.59 22086.93 21798.95 11889.26 19498.51 17698.60 116
plane_prior294.56 13091.74 121
ETV-MVS92.99 16992.74 17793.72 16195.86 23786.30 16992.33 21097.84 9791.70 12492.81 24986.17 39292.22 12199.19 8688.03 22297.73 23995.66 307
wuyk23d87.83 29490.79 22678.96 39490.46 38088.63 11292.72 18990.67 33891.65 12598.68 1297.64 7696.06 1577.53 41659.84 41099.41 5470.73 414
alignmvs93.26 16092.85 17494.50 12895.70 24887.45 13693.45 16895.76 23091.58 12695.25 16292.42 32581.96 27298.72 15591.61 12797.87 23497.33 229
sasdasda94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
canonicalmvs94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
MGCFI-Net94.44 12094.67 12093.75 15995.56 25885.47 18995.25 10398.24 4091.53 12995.04 17492.21 32794.94 5798.54 18491.56 13197.66 24597.24 233
IterMVS-SCA-FT91.65 20691.55 20691.94 22693.89 30879.22 28687.56 33993.51 29391.53 12995.37 15296.62 15978.65 29498.90 12291.89 11994.95 32997.70 202
casdiffmvspermissive94.32 12794.80 11092.85 19396.05 22581.44 24692.35 20998.05 7291.53 12995.75 13196.80 14593.35 9298.49 18891.01 14298.32 19498.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9599.21 9099.00 54
Effi-MVS+92.79 17792.74 17792.94 18995.10 27283.30 21794.00 15097.53 12491.36 13389.35 32790.65 35594.01 8098.66 16887.40 23395.30 32096.88 251
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13495.12 16995.15 23786.60 22499.50 2293.43 7596.81 28098.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS95.19 9295.73 7493.55 16796.62 17788.88 10994.67 12398.05 7291.26 13497.25 6096.40 17195.42 3094.36 37292.72 9999.19 9297.40 224
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 23190.16 23991.20 25797.66 12077.32 31694.33 13787.66 35991.20 13692.99 24495.13 23975.40 32598.28 20777.86 34099.19 9297.99 167
API-MVS91.52 21091.61 20591.26 25394.16 29986.26 17094.66 12494.82 26491.17 13792.13 27791.08 34690.03 17897.06 30579.09 33597.35 26090.45 395
EPNet89.80 25688.25 27994.45 13283.91 41786.18 17293.87 15487.07 36591.16 13880.64 40694.72 25678.83 29298.89 12485.17 26398.89 12898.28 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14896.99 16791.05 13992.40 26695.22 23691.03 15399.25 7992.11 11098.69 15797.90 179
test_yl90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
DCV-MVSNet90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
tfpn200view987.05 31686.52 31688.67 31895.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28994.79 336
thres40087.20 31186.52 31689.24 31095.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28996.51 262
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7790.82 14497.15 6196.85 14296.25 1499.00 11093.10 8799.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline94.26 12994.80 11092.64 20096.08 22380.99 25293.69 16198.04 7690.80 14594.89 18196.32 18093.19 9798.48 19291.68 12698.51 17698.43 130
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24498.17 5390.72 14695.30 15696.47 16587.94 19996.98 30791.41 13597.61 24898.30 139
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20298.13 5890.69 14793.75 21596.25 18898.03 297.02 30692.08 11295.55 31198.45 128
v1094.68 11195.27 9592.90 19196.57 17980.15 25994.65 12597.57 12090.68 14897.43 5098.00 5288.18 19299.15 8994.84 3499.55 3599.41 21
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 20896.91 17490.64 14992.33 27294.60 26190.58 16598.96 11690.21 16897.70 24298.23 143
UGNet93.08 16692.50 18594.79 11193.87 30987.99 12895.07 11194.26 27990.64 14987.33 36097.67 7486.89 21998.49 18888.10 21898.71 15497.91 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MSDG90.82 21990.67 22991.26 25394.16 29983.08 22486.63 36096.19 21790.60 15191.94 28091.89 33489.16 18595.75 34680.96 31494.51 34094.95 329
MVS_030492.88 17392.27 18994.69 11692.35 33886.03 17692.88 18689.68 34290.53 15291.52 28596.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7290.45 15596.31 9996.76 14892.91 10798.72 15591.19 13799.42 5098.32 136
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7790.42 15696.37 9597.35 10395.68 2199.25 7994.44 4099.34 6398.80 85
MDA-MVSNet-bldmvs91.04 21790.88 22291.55 24194.68 28980.16 25885.49 37692.14 32190.41 15794.93 17995.79 21085.10 24096.93 31185.15 26594.19 35097.57 210
plane_prior388.43 12290.35 15893.31 228
Patchmtry90.11 24689.92 24590.66 27590.35 38177.00 32092.96 18292.81 30490.25 15994.74 18796.93 13767.11 35697.52 27585.17 26398.98 11597.46 217
CNLPA91.72 20591.20 21693.26 18096.17 21491.02 7191.14 25295.55 24290.16 16090.87 29693.56 29686.31 22694.40 37179.92 32797.12 26694.37 346
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19497.33 14190.05 16196.77 8296.85 14295.04 5098.56 18192.77 9599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28596.67 694.00 15095.41 24889.94 16291.93 28192.13 33090.12 17398.97 11587.68 22897.48 25397.67 205
test20.0390.80 22090.85 22490.63 27695.63 25479.24 28589.81 29592.87 30389.90 16394.39 19596.40 17185.77 23195.27 35973.86 37199.05 10697.39 225
tttt051789.81 25588.90 26592.55 20897.00 15179.73 27595.03 11383.65 39289.88 16495.30 15694.79 25453.64 40199.39 5291.99 11598.79 14698.54 119
CANet92.38 19191.99 19793.52 17293.82 31183.46 21591.14 25297.00 16589.81 16586.47 36494.04 27887.90 20099.21 8289.50 18598.27 19797.90 179
dcpmvs_293.96 14195.01 10490.82 27197.60 12274.04 35393.68 16298.85 1089.80 16697.82 3297.01 13391.14 15199.21 8290.56 15198.59 16799.19 36
v14892.87 17593.29 16391.62 23896.25 20977.72 31191.28 24995.05 25689.69 16795.93 12196.04 19887.34 20798.38 19990.05 17497.99 22598.78 87
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23796.80 18289.66 16893.90 21395.44 22892.80 11198.72 15592.74 9798.52 17498.32 136
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29088.25 12392.05 22196.65 19289.62 16990.08 31291.23 34392.56 11598.60 17686.30 25396.27 29696.90 248
KD-MVS_self_test94.10 13694.73 11592.19 21797.66 12079.49 28094.86 11897.12 15889.59 17096.87 7597.65 7590.40 16898.34 20489.08 20099.35 5998.75 91
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6589.46 17196.61 8996.47 16595.85 1899.12 9490.45 15499.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test111190.39 23490.61 23089.74 29998.04 8971.50 37095.59 8579.72 40989.41 17295.94 12098.14 4270.79 34398.81 13988.52 21299.32 6998.90 74
Anonymous2024052192.86 17693.57 15790.74 27396.57 17975.50 33994.15 14495.60 23589.38 17395.90 12397.90 6480.39 28497.96 23892.60 10299.68 1798.75 91
MSLP-MVS++93.25 16293.88 14391.37 24696.34 19982.81 22993.11 17897.74 10789.37 17494.08 20395.29 23590.40 16896.35 33290.35 15998.25 20094.96 328
test_prior290.21 28189.33 17590.77 29894.81 25190.41 16788.21 21398.55 170
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15394.01 28589.23 17693.95 21096.19 19076.88 31699.14 9191.02 14095.71 30897.04 243
hse-mvs292.24 19791.20 21695.38 8596.16 21590.65 7992.52 19892.01 32589.23 17693.95 21092.99 30976.88 31698.69 16491.02 14096.03 29996.81 253
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10089.22 17895.46 14796.17 19393.42 9099.34 6589.30 19098.87 13397.56 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11189.21 17993.28 23195.46 22688.89 18698.98 11189.80 17898.82 14197.80 193
test250685.42 32884.57 33187.96 33297.81 10566.53 39396.14 6156.35 42289.04 18093.55 22198.10 4442.88 41998.68 16688.09 21999.18 9498.67 104
ECVR-MVScopyleft90.12 24590.16 23990.00 29597.81 10572.68 36495.76 7978.54 41289.04 18095.36 15398.10 4470.51 34598.64 17287.10 23799.18 9498.67 104
plane_prior88.12 12593.01 18088.98 18298.06 218
MVSFormer92.18 19892.23 19092.04 22594.74 28580.06 26397.15 1597.37 13388.98 18288.83 33192.79 31477.02 31399.60 1096.41 996.75 28396.46 268
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13388.98 18298.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
JIA-IIPM85.08 33183.04 34591.19 25887.56 40386.14 17389.40 30884.44 39088.98 18282.20 39797.95 5656.82 39696.15 33576.55 35483.45 40891.30 390
AdaColmapbinary91.63 20791.36 21392.47 21195.56 25886.36 16792.24 21896.27 21188.88 18689.90 31792.69 31791.65 13598.32 20577.38 34797.64 24692.72 379
MVS_Test92.57 18693.29 16390.40 28293.53 31575.85 33592.52 19896.96 16888.73 18792.35 26996.70 15590.77 15798.37 20392.53 10395.49 31396.99 245
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9288.72 18898.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14088.71 18995.26 16095.50 22594.65 6599.12 9490.94 14398.40 18298.23 143
GBi-Net93.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
test193.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
FMVSNet292.78 17892.73 17992.95 18895.40 26481.98 23894.18 14395.53 24388.63 19096.05 11697.37 9781.31 27798.81 13987.38 23498.67 16098.06 156
thres20085.85 32585.18 32687.88 33694.44 29472.52 36589.08 31686.21 36988.57 19391.44 28788.40 37764.22 37498.00 23468.35 39595.88 30593.12 371
balanced_conf0393.45 15494.17 13791.28 25295.81 24278.40 30096.20 6097.48 12888.56 19495.29 15897.20 11785.56 23799.21 8292.52 10498.91 12796.24 279
v2v48293.29 15893.63 15392.29 21396.35 19878.82 29591.77 23996.28 21088.45 19595.70 13696.26 18786.02 23098.90 12293.02 9098.81 14399.14 40
testdata188.96 31888.44 196
MonoMVSNet88.46 28489.28 25585.98 36090.52 37770.07 37995.31 10194.81 26688.38 19793.47 22396.13 19473.21 33295.07 36182.61 29289.12 39692.81 377
testgi90.38 23591.34 21487.50 34097.49 12971.54 36989.43 30695.16 25488.38 19794.54 19294.68 25892.88 10993.09 38371.60 38497.85 23597.88 182
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31196.23 21488.36 19993.57 22094.60 26193.45 8797.77 25990.23 16798.38 18698.03 162
BH-RMVSNet90.47 23090.44 23490.56 27895.21 27178.65 29989.15 31593.94 28788.21 20092.74 25394.22 27286.38 22597.88 24578.67 33795.39 31795.14 321
PAPM_NR91.03 21890.81 22591.68 23696.73 16881.10 25193.72 16096.35 20988.19 20188.77 33792.12 33185.09 24197.25 29182.40 29793.90 35596.68 258
testing383.66 34482.52 34987.08 34395.84 23865.84 39889.80 29677.17 41688.17 20290.84 29788.63 37430.95 42498.11 22384.05 28097.19 26497.28 232
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22496.74 18788.16 20396.93 7397.61 7893.04 10497.90 24191.60 12898.12 21298.03 162
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24090.87 7690.97 25792.61 31288.04 20494.61 19093.79 28988.08 19497.81 25389.41 18798.39 18596.50 265
BH-untuned90.68 22490.90 22190.05 29495.98 23179.57 27890.04 28794.94 26187.91 20594.07 20493.00 30887.76 20197.78 25879.19 33495.17 32492.80 378
MVS_111021_LR93.66 14893.28 16594.80 11096.25 20990.95 7390.21 28195.43 24787.91 20593.74 21794.40 26692.88 10996.38 33090.39 15698.28 19697.07 239
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17398.32 3087.89 20796.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PHI-MVS94.34 12693.80 14695.95 6195.65 25291.67 6694.82 11997.86 9487.86 20893.04 24394.16 27591.58 13698.78 14690.27 16498.96 12297.41 221
FA-MVS(test-final)91.81 20391.85 20191.68 23694.95 27579.99 26796.00 6693.44 29587.80 20994.02 20897.29 10877.60 30498.45 19488.04 22197.49 25296.61 259
EMVS80.35 37280.28 37080.54 39184.73 41669.07 38272.54 41280.73 40587.80 20981.66 40281.73 40862.89 38189.84 39975.79 36094.65 33882.71 410
E-PMN80.72 36980.86 36380.29 39285.11 41468.77 38372.96 41081.97 39887.76 21183.25 39183.01 40762.22 38589.17 40477.15 34994.31 34582.93 409
EIA-MVS92.35 19292.03 19593.30 17995.81 24283.97 21092.80 18898.17 5387.71 21289.79 32087.56 38291.17 15099.18 8787.97 22397.27 26196.77 255
TinyColmap92.00 20192.76 17689.71 30095.62 25577.02 31990.72 26496.17 21987.70 21395.26 16096.29 18292.54 11696.45 32781.77 30298.77 14895.66 307
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11687.68 21498.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
save fliter97.46 13288.05 12792.04 22297.08 16087.63 215
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11687.57 21698.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
9.1494.81 10997.49 12994.11 14798.37 2687.56 21795.38 15096.03 19994.66 6499.08 9890.70 14898.97 120
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15598.02 7987.35 21896.22 10797.99 5494.48 7399.05 10392.73 9899.68 1797.93 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS92.05 20092.16 19191.72 23394.44 29480.13 26187.62 33697.25 14887.34 21992.22 27493.18 30689.54 18298.73 15489.67 18298.20 20796.30 274
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4293.43 15593.58 15692.97 18695.34 26881.22 24992.67 19296.49 20387.25 22096.20 10996.37 17787.32 20898.85 13192.39 10798.21 20598.85 81
HQP-NCC96.36 19591.37 24587.16 22188.81 333
ACMP_Plane96.36 19591.37 24587.16 22188.81 333
HQP-MVS92.09 19991.49 21093.88 15396.36 19584.89 19691.37 24597.31 14287.16 22188.81 33393.40 29984.76 24398.60 17686.55 24897.73 23998.14 152
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21597.40 13287.10 22494.56 19195.42 22993.74 8298.11 22386.62 24598.85 13498.06 156
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13186.96 22598.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
v114493.50 15193.81 14492.57 20796.28 20579.61 27791.86 23596.96 16886.95 22695.91 12296.32 18087.65 20298.96 11693.51 6598.88 13099.13 41
ab-mvs92.40 19092.62 18291.74 23297.02 15081.65 24295.84 7695.50 24486.95 22692.95 24797.56 8190.70 16297.50 27679.63 32897.43 25696.06 287
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10486.48 22897.42 5297.51 9094.47 7499.29 7393.55 6499.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thisisatest053088.69 28187.52 29392.20 21696.33 20079.36 28292.81 18784.01 39186.44 22993.67 21892.68 31853.62 40299.25 7989.65 18398.45 18098.00 164
IterMVS90.18 24290.16 23990.21 28893.15 32075.98 33487.56 33992.97 30286.43 23094.09 20296.40 17178.32 29997.43 28187.87 22594.69 33797.23 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive91.74 20491.93 19991.15 25993.06 32278.17 30488.77 32497.51 12786.28 23192.42 26593.96 28388.04 19697.46 27990.69 14996.67 28697.82 191
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23297.56 4298.66 2195.73 1998.44 19597.35 398.99 11498.27 141
testing9183.56 34682.45 35086.91 34892.92 32767.29 38786.33 36688.07 35586.22 23384.26 38185.76 39448.15 40797.17 29776.27 35694.08 35496.27 277
baseline187.62 30087.31 29588.54 32194.71 28874.27 35093.10 17988.20 35286.20 23492.18 27593.04 30773.21 33295.52 34979.32 33285.82 40495.83 298
new-patchmatchnet88.97 27390.79 22683.50 38394.28 29855.83 41885.34 37893.56 29286.18 23595.47 14595.73 21683.10 25596.51 32485.40 26298.06 21898.16 150
FMVSNet390.78 22190.32 23892.16 22193.03 32479.92 26992.54 19794.95 26086.17 23695.10 17096.01 20069.97 34798.75 15086.74 24198.38 18697.82 191
v119293.49 15293.78 14792.62 20496.16 21579.62 27691.83 23697.22 15186.07 23796.10 11596.38 17687.22 20999.02 10894.14 4798.88 13099.22 33
CANet_DTU89.85 25489.17 25791.87 22792.20 34480.02 26690.79 26195.87 22886.02 23882.53 39691.77 33680.01 28598.57 18085.66 26097.70 24297.01 244
XXY-MVS92.58 18493.16 16890.84 27097.75 10979.84 27091.87 23396.22 21685.94 23995.53 14197.68 7392.69 11394.48 36883.21 28697.51 25198.21 145
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21692.18 31885.92 24096.22 10796.61 16085.64 23595.99 34290.35 15998.23 20295.93 293
reproduce_monomvs87.13 31486.90 30687.84 33790.92 37268.15 38591.19 25193.75 28885.84 24194.21 20095.83 20842.99 41697.10 30189.46 18697.88 23398.26 142
MG-MVS89.54 25889.80 24888.76 31694.88 27672.47 36689.60 30092.44 31585.82 24289.48 32495.98 20182.85 26097.74 26481.87 30195.27 32196.08 286
UnsupCasMVSNet_eth90.33 23890.34 23790.28 28494.64 29180.24 25789.69 29995.88 22785.77 24393.94 21295.69 21781.99 27192.98 38484.21 27991.30 38797.62 207
c3_l91.32 21591.42 21191.00 26492.29 34076.79 32587.52 34296.42 20685.76 24494.72 18993.89 28682.73 26298.16 22090.93 14498.55 17098.04 159
Patchmatch-test86.10 32486.01 32186.38 35790.63 37574.22 35289.57 30186.69 36685.73 24589.81 31992.83 31265.24 37191.04 39277.82 34395.78 30793.88 358
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16598.60 1685.68 24697.42 5298.30 3895.34 3598.39 19696.85 498.98 11598.19 147
CL-MVSNet_self_test90.04 25189.90 24690.47 27995.24 27077.81 30986.60 36292.62 31185.64 24793.25 23593.92 28483.84 24996.06 33979.93 32598.03 22197.53 214
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20488.62 11393.19 17698.07 6885.63 24897.08 6397.35 10390.86 15497.66 26995.70 1698.48 17997.74 200
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17598.36 2785.61 24996.92 7498.02 5195.23 4198.38 19996.69 798.95 12498.09 155
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 16998.49 1985.57 25098.27 2197.11 12494.11 7997.75 26296.26 1198.72 15296.89 249
cl____90.65 22590.56 23290.91 26891.85 35576.98 32286.75 35695.36 25085.53 25194.06 20594.89 24877.36 31097.98 23790.27 16498.98 11597.76 197
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 21887.90 12993.36 17297.14 15585.53 25193.90 21395.45 22791.30 14398.59 17889.51 18498.62 16397.31 230
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_self_test90.65 22590.56 23290.91 26891.85 35576.99 32186.75 35695.36 25085.52 25394.06 20594.89 24877.37 30997.99 23690.28 16398.97 12097.76 197
testing9982.94 35181.72 35486.59 35192.55 33466.53 39386.08 37085.70 37585.47 25483.95 38385.70 39545.87 40997.07 30476.58 35393.56 36196.17 284
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18185.23 25594.75 18697.12 12391.85 12999.40 4993.45 7198.33 19298.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
eth_miper_zixun_eth90.72 22290.61 23091.05 26092.04 35076.84 32486.91 35196.67 19185.21 25694.41 19493.92 28479.53 28898.26 21189.76 18097.02 27098.06 156
v192192093.26 16093.61 15592.19 21796.04 22978.31 30291.88 23297.24 14985.17 25796.19 11296.19 19086.76 22199.05 10394.18 4698.84 13599.22 33
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23292.96 4789.48 30497.46 12985.14 25896.23 10695.42 22993.19 9798.08 22590.37 15898.76 14997.38 227
v124093.29 15893.71 15092.06 22496.01 23077.89 30891.81 23797.37 13385.12 25996.69 8596.40 17186.67 22299.07 10294.51 3798.76 14999.22 33
GA-MVS87.70 29686.82 30890.31 28393.27 31877.22 31884.72 38492.79 30685.11 26089.82 31890.07 35666.80 35997.76 26184.56 27694.27 34695.96 291
LF4IMVS92.72 18092.02 19694.84 10995.65 25291.99 5892.92 18396.60 19485.08 26192.44 26493.62 29386.80 22096.35 33286.81 24098.25 20096.18 282
Fast-Effi-MVS+91.28 21690.86 22392.53 20995.45 26382.53 23189.25 31496.52 20285.00 26289.91 31688.55 37692.94 10598.84 13284.72 27595.44 31596.22 280
v14419293.20 16593.54 15992.16 22196.05 22578.26 30391.95 22597.14 15584.98 26395.96 11896.11 19587.08 21399.04 10693.79 5598.84 13599.17 37
DP-MVS Recon92.31 19391.88 20093.60 16597.18 14586.87 15191.10 25497.37 13384.92 26492.08 27894.08 27788.59 18798.20 21583.50 28398.14 21195.73 302
FE-MVS89.06 26888.29 27691.36 24794.78 28279.57 27896.77 2790.99 33384.87 26592.96 24696.29 18260.69 39098.80 14280.18 32097.11 26795.71 303
miper_lstm_enhance89.90 25389.80 24890.19 29091.37 36677.50 31383.82 39395.00 25884.84 26693.05 24294.96 24676.53 32195.20 36089.96 17698.67 16097.86 185
EPNet_dtu85.63 32684.37 33289.40 30586.30 41074.33 34991.64 24088.26 35084.84 26672.96 41589.85 35771.27 34297.69 26776.60 35297.62 24796.18 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS91.82 20291.41 21293.04 18396.37 19383.65 21486.82 35597.29 14584.65 26892.27 27389.67 36492.20 12397.85 25183.95 28199.47 4197.62 207
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17696.69 17084.37 20093.38 17195.13 25584.50 26995.40 14997.55 8591.77 13297.20 29495.59 1897.79 23798.69 103
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17297.22 14384.37 20093.73 15995.26 25284.45 27095.76 12998.00 5291.85 12997.21 29395.62 1797.82 23698.98 60
ZD-MVS97.23 14190.32 8297.54 12284.40 27194.78 18595.79 21092.76 11299.39 5288.72 20998.40 182
dmvs_re84.69 33683.94 33886.95 34792.24 34182.93 22789.51 30387.37 36184.38 27285.37 36985.08 39972.44 33586.59 40968.05 39691.03 39191.33 389
PMMVS281.31 36383.44 34274.92 39790.52 37746.49 42369.19 41385.23 38584.30 27387.95 35194.71 25776.95 31584.36 41464.07 40598.09 21693.89 357
F-COLMAP92.28 19491.06 22095.95 6197.52 12791.90 6093.53 16497.18 15283.98 27488.70 33994.04 27888.41 19098.55 18380.17 32195.99 30197.39 225
QAPM92.88 17392.77 17593.22 18195.82 24083.31 21696.45 4197.35 13983.91 27593.75 21596.77 14689.25 18498.88 12584.56 27697.02 27097.49 216
patch_mono-292.46 18892.72 18091.71 23496.65 17378.91 29288.85 32197.17 15383.89 27692.45 26396.76 14889.86 17997.09 30290.24 16698.59 16799.12 43
mvs_anonymous90.37 23691.30 21587.58 33992.17 34668.00 38689.84 29494.73 26983.82 27793.22 23797.40 9587.54 20497.40 28487.94 22495.05 32797.34 228
testing22280.54 37178.53 37986.58 35292.54 33668.60 38486.24 36782.72 39683.78 27882.68 39584.24 40239.25 42295.94 34360.25 40995.09 32695.20 317
miper_ehance_all_eth90.48 22990.42 23590.69 27491.62 36276.57 32886.83 35496.18 21883.38 27994.06 20592.66 31982.20 26898.04 22789.79 17997.02 27097.45 218
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16395.23 25383.30 28095.13 16897.56 8192.22 12197.17 29795.51 2297.41 25798.64 111
FMVSNet587.82 29586.56 31491.62 23892.31 33979.81 27393.49 16694.81 26683.26 28191.36 28896.93 13752.77 40397.49 27876.07 35798.03 22197.55 213
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24583.25 28295.51 14298.05 4792.54 11697.19 29695.55 2197.46 25598.94 66
xiu_mvs_v1_base_debu91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base_debi91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
FPMVS84.50 33783.28 34388.16 33096.32 20194.49 2085.76 37485.47 38083.09 28685.20 37194.26 27063.79 37886.58 41063.72 40691.88 38683.40 408
test-LLR83.58 34583.17 34484.79 37289.68 38866.86 39183.08 39584.52 38883.07 28782.85 39284.78 40062.86 38293.49 37982.85 28894.86 33194.03 353
test0.0.03 182.48 35481.47 35885.48 36589.70 38773.57 35684.73 38281.64 39983.07 28788.13 34886.61 38862.86 38289.10 40566.24 40190.29 39393.77 360
cl2289.02 26988.50 27090.59 27789.76 38676.45 32986.62 36194.03 28282.98 28992.65 25592.49 32072.05 33897.53 27488.93 20297.02 27097.78 195
tpmvs84.22 33983.97 33784.94 37087.09 40765.18 40091.21 25088.35 34982.87 29085.21 37090.96 34865.24 37196.75 31879.60 33185.25 40592.90 376
dmvs_testset78.23 38178.99 37575.94 39691.99 35255.34 41988.86 32078.70 41182.69 29181.64 40379.46 41175.93 32285.74 41148.78 41782.85 41086.76 404
KD-MVS_2432*160082.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
miper_refine_blended82.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
MDA-MVSNet_test_wron88.16 29088.23 28187.93 33392.22 34273.71 35480.71 40488.84 34582.52 29494.88 18295.14 23882.70 26393.61 37883.28 28593.80 35796.46 268
YYNet188.17 28988.24 28087.93 33392.21 34373.62 35580.75 40388.77 34682.51 29594.99 17795.11 24082.70 26393.70 37783.33 28493.83 35696.48 266
OpenMVScopyleft89.45 892.27 19692.13 19492.68 19994.53 29384.10 20895.70 8097.03 16382.44 29691.14 29496.42 16988.47 18998.38 19985.95 25697.47 25495.55 312
MVSTER89.32 26388.75 26791.03 26190.10 38476.62 32790.85 25994.67 27282.27 29795.24 16395.79 21061.09 38898.49 18890.49 15398.26 19897.97 171
SCA87.43 30587.21 29988.10 33192.01 35171.98 36889.43 30688.11 35482.26 29888.71 33892.83 31278.65 29497.59 27279.61 32993.30 36694.75 338
testing1181.98 36080.52 36786.38 35792.69 33167.13 38885.79 37384.80 38782.16 29981.19 40585.41 39745.24 41096.88 31474.14 36993.24 36795.14 321
AUN-MVS90.05 25088.30 27595.32 9096.09 22290.52 8192.42 20692.05 32482.08 30088.45 34392.86 31165.76 36698.69 16488.91 20496.07 29896.75 257
TR-MVS87.70 29687.17 30089.27 30894.11 30179.26 28488.69 32691.86 32681.94 30190.69 30189.79 36182.82 26197.42 28272.65 37891.98 38491.14 391
mvsmamba90.24 24189.43 25492.64 20095.52 26082.36 23496.64 3092.29 31681.77 30292.14 27696.28 18470.59 34499.10 9784.44 27895.22 32396.47 267
BH-w/o87.21 31087.02 30587.79 33894.77 28377.27 31787.90 33493.21 30081.74 30389.99 31588.39 37883.47 25196.93 31171.29 38592.43 38089.15 396
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16096.16 21586.26 17092.46 20296.72 18881.69 30495.77 12897.11 12490.83 15697.82 25295.58 1997.99 22597.11 238
ETVMVS79.85 37677.94 38385.59 36292.97 32566.20 39686.13 36980.99 40481.41 30583.52 38883.89 40341.81 42094.98 36556.47 41394.25 34795.61 311
MIMVSNet87.13 31486.54 31588.89 31496.05 22576.11 33294.39 13588.51 34881.37 30688.27 34696.75 15072.38 33695.52 34965.71 40295.47 31495.03 326
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17496.10 22185.66 18692.32 21196.57 19781.32 30795.63 13797.14 12190.19 17197.73 26595.37 2898.03 22197.07 239
Syy-MVS84.81 33384.93 32784.42 37591.71 35963.36 40885.89 37181.49 40081.03 30885.13 37281.64 40977.44 30695.00 36285.94 25794.12 35194.91 332
myMVS_eth3d79.62 37778.26 38083.72 38191.71 35961.25 41285.89 37181.49 40081.03 30885.13 37281.64 40932.12 42395.00 36271.17 38994.12 35194.91 332
MAR-MVS90.32 23988.87 26694.66 11994.82 27991.85 6194.22 14294.75 26880.91 31087.52 35888.07 38086.63 22397.87 24876.67 35196.21 29794.25 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base89.00 27289.19 25688.46 32594.86 27874.63 34486.97 34995.60 23580.88 31187.83 35288.62 37591.04 15298.81 13982.51 29594.38 34291.93 385
PS-MVSNAJ88.86 27688.99 26288.48 32494.88 27674.71 34286.69 35895.60 23580.88 31187.83 35287.37 38590.77 15798.82 13482.52 29494.37 34391.93 385
TAMVS90.16 24389.05 25993.49 17496.49 18786.37 16690.34 27892.55 31380.84 31392.99 24494.57 26381.94 27398.20 21573.51 37298.21 20595.90 296
PatchMatch-RL89.18 26488.02 28792.64 20095.90 23692.87 4988.67 32891.06 33280.34 31490.03 31491.67 33883.34 25294.42 37076.35 35594.84 33390.64 394
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 24897.13 15780.33 31592.91 24894.24 27191.23 14598.72 15589.99 17597.93 23097.86 185
PLCcopyleft85.34 1590.40 23288.92 26394.85 10896.53 18590.02 8591.58 24196.48 20480.16 31686.14 36692.18 32885.73 23298.25 21276.87 35094.61 33996.30 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ttmdpeth86.91 31986.57 31387.91 33589.68 38874.24 35191.49 24387.09 36379.84 31789.46 32597.86 6565.42 36891.04 39281.57 30696.74 28598.44 129
MVP-Stereo90.07 24988.92 26393.54 16996.31 20286.49 16190.93 25895.59 23979.80 31891.48 28695.59 22080.79 28197.39 28578.57 33891.19 38896.76 256
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
our_test_387.55 30287.59 29287.44 34191.76 35770.48 37483.83 39290.55 33979.79 31992.06 27992.17 32978.63 29695.63 34784.77 27394.73 33596.22 280
CDS-MVSNet89.55 25788.22 28293.53 17095.37 26786.49 16189.26 31293.59 29079.76 32091.15 29392.31 32677.12 31198.38 19977.51 34597.92 23195.71 303
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS77.21 1983.11 34881.05 36089.29 30791.15 36875.85 33585.66 37586.00 37279.70 32182.02 40086.61 38848.26 40598.39 19677.84 34192.22 38193.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_vis1_n_192089.45 26089.85 24788.28 32793.59 31476.71 32690.67 26697.78 10579.67 32290.30 30996.11 19576.62 31992.17 38790.31 16193.57 36095.96 291
ET-MVSNet_ETH3D86.15 32384.27 33491.79 23093.04 32381.28 24787.17 34786.14 37079.57 32383.65 38588.66 37357.10 39498.18 21887.74 22795.40 31695.90 296
WBMVS84.00 34283.48 34185.56 36392.71 33061.52 41083.82 39389.38 34479.56 32490.74 29993.20 30548.21 40697.28 28975.63 36198.10 21597.88 182
PVSNet_BlendedMVS90.35 23789.96 24491.54 24294.81 28078.80 29790.14 28496.93 17079.43 32588.68 34095.06 24386.27 22798.15 22180.27 31798.04 22097.68 204
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 26896.92 17279.37 32690.49 30394.39 26791.20 14798.88 12588.66 21098.43 18197.72 201
test_896.37 19389.14 10390.51 27196.89 17579.37 32690.42 30594.36 26991.20 14798.82 134
N_pmnet88.90 27587.25 29893.83 15794.40 29693.81 3984.73 38287.09 36379.36 32893.26 23392.43 32479.29 29091.68 38977.50 34697.22 26396.00 289
UnsupCasMVSNet_bld88.50 28388.03 28689.90 29695.52 26078.88 29387.39 34394.02 28479.32 32993.06 24194.02 28080.72 28294.27 37375.16 36393.08 37296.54 260
ppachtmachnet_test88.61 28288.64 26888.50 32391.76 35770.99 37384.59 38592.98 30179.30 33092.38 26793.53 29779.57 28797.45 28086.50 25097.17 26597.07 239
TEST996.45 19089.46 9390.60 26896.92 17279.09 33190.49 30394.39 26791.31 14298.88 125
baseline283.38 34781.54 35788.90 31391.38 36572.84 36388.78 32381.22 40278.97 33279.82 40887.56 38261.73 38697.80 25474.30 36890.05 39496.05 288
D2MVS89.93 25289.60 25390.92 26694.03 30578.40 30088.69 32694.85 26278.96 33393.08 24095.09 24174.57 32796.94 30988.19 21598.96 12297.41 221
PatchmatchNetpermissive85.22 32984.64 32986.98 34589.51 39269.83 38190.52 27087.34 36278.87 33487.22 36192.74 31666.91 35896.53 32281.77 30286.88 40294.58 342
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet_Blended_VisFu91.63 20791.20 21692.94 18997.73 11283.95 21192.14 21997.46 12978.85 33592.35 26994.98 24584.16 24799.08 9886.36 25296.77 28295.79 300
Patchmatch-RL test88.81 27788.52 26989.69 30195.33 26979.94 26886.22 36892.71 30878.46 33695.80 12794.18 27466.25 36495.33 35789.22 19698.53 17393.78 359
WTY-MVS86.93 31886.50 31888.24 32894.96 27474.64 34387.19 34692.07 32378.29 33788.32 34591.59 34078.06 30194.27 37374.88 36493.15 37095.80 299
pmmvs-eth3d91.54 20990.73 22893.99 14595.76 24687.86 13190.83 26093.98 28678.23 33894.02 20896.22 18982.62 26596.83 31686.57 24698.33 19297.29 231
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18497.68 11078.02 33992.79 25194.10 27690.85 15597.96 23884.76 27498.16 20996.54 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVStest184.79 33484.06 33686.98 34577.73 42274.76 34191.08 25685.63 37777.70 34096.86 7697.97 5541.05 42188.24 40692.22 10996.28 29597.94 174
sss87.23 30986.82 30888.46 32593.96 30677.94 30586.84 35392.78 30777.59 34187.61 35791.83 33578.75 29391.92 38877.84 34194.20 34895.52 313
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26597.07 16177.38 34292.34 27195.08 24292.67 11498.88 12585.74 25898.57 16998.20 146
thisisatest051584.72 33582.99 34689.90 29692.96 32675.33 34084.36 38783.42 39377.37 34388.27 34686.65 38753.94 40098.72 15582.56 29397.40 25895.67 306
UBG80.28 37478.94 37784.31 37792.86 32861.77 40983.87 39183.31 39577.33 34482.78 39483.72 40447.60 40896.06 33965.47 40393.48 36395.11 324
EPMVS81.17 36680.37 36883.58 38285.58 41365.08 40290.31 27971.34 41877.31 34585.80 36891.30 34259.38 39192.70 38579.99 32282.34 41192.96 375
tpm84.38 33884.08 33585.30 36790.47 37963.43 40789.34 30985.63 37777.24 34687.62 35695.03 24461.00 38997.30 28879.26 33391.09 39095.16 319
OpenMVS_ROBcopyleft85.12 1689.52 25989.05 25990.92 26694.58 29281.21 25091.10 25493.41 29677.03 34793.41 22493.99 28283.23 25497.80 25479.93 32594.80 33493.74 361
test_fmvs392.42 18992.40 18892.46 21293.80 31287.28 13993.86 15597.05 16276.86 34896.25 10498.66 2182.87 25991.26 39195.44 2496.83 27998.82 82
原ACMM192.87 19296.91 15784.22 20597.01 16476.84 34989.64 32394.46 26588.00 19798.70 16281.53 30798.01 22495.70 305
PAPR87.65 29986.77 31090.27 28592.85 32977.38 31588.56 32996.23 21476.82 35084.98 37589.75 36386.08 22997.16 29972.33 37993.35 36596.26 278
mvsany_test389.11 26788.21 28391.83 22891.30 36790.25 8388.09 33378.76 41076.37 35196.43 9398.39 3683.79 25090.43 39786.57 24694.20 34894.80 335
WB-MVSnew84.20 34083.89 33985.16 36991.62 36266.15 39788.44 33181.00 40376.23 35287.98 35087.77 38184.98 24293.35 38162.85 40894.10 35395.98 290
miper_enhance_ethall88.42 28587.87 28890.07 29188.67 39975.52 33885.10 37995.59 23975.68 35392.49 26089.45 36778.96 29197.88 24587.86 22697.02 27096.81 253
HY-MVS82.50 1886.81 32085.93 32289.47 30293.63 31377.93 30694.02 14991.58 33075.68 35383.64 38693.64 29177.40 30797.42 28271.70 38392.07 38393.05 374
tpmrst82.85 35382.93 34782.64 38587.65 40258.99 41690.14 28487.90 35775.54 35583.93 38491.63 33966.79 36195.36 35581.21 31181.54 41293.57 368
MS-PatchMatch88.05 29187.75 28988.95 31293.28 31777.93 30687.88 33592.49 31475.42 35692.57 25993.59 29580.44 28394.24 37581.28 30992.75 37594.69 341
UWE-MVS80.29 37379.10 37483.87 38091.97 35359.56 41486.50 36577.43 41575.40 35787.79 35488.10 37944.08 41496.90 31364.23 40496.36 29395.14 321
DPM-MVS89.35 26288.40 27292.18 22096.13 22084.20 20686.96 35096.15 22075.40 35787.36 35991.55 34183.30 25398.01 23282.17 30096.62 28794.32 348
PC_three_145275.31 35995.87 12595.75 21592.93 10696.34 33487.18 23698.68 15898.04 159
test_cas_vis1_n_192088.25 28888.27 27888.20 32992.19 34578.92 29189.45 30595.44 24575.29 36093.23 23695.65 21971.58 34090.23 39888.05 22093.55 36295.44 314
PVSNet_Blended88.74 27988.16 28590.46 28194.81 28078.80 29786.64 35996.93 17074.67 36188.68 34089.18 37186.27 22798.15 22180.27 31796.00 30094.44 345
pmmvs488.95 27487.70 29192.70 19794.30 29785.60 18787.22 34592.16 32074.62 36289.75 32294.19 27377.97 30296.41 32882.71 29096.36 29396.09 285
test_fmvs290.62 22790.40 23691.29 25191.93 35485.46 19092.70 19196.48 20474.44 36394.91 18097.59 7975.52 32490.57 39493.44 7296.56 28897.84 188
131486.46 32286.33 31986.87 34991.65 36174.54 34591.94 22794.10 28174.28 36484.78 37787.33 38683.03 25795.00 36278.72 33691.16 38991.06 392
Anonymous2023120688.77 27888.29 27690.20 28996.31 20278.81 29689.56 30293.49 29474.26 36592.38 26795.58 22382.21 26795.43 35472.07 38098.75 15196.34 272
MDTV_nov1_ep1383.88 34089.42 39361.52 41088.74 32587.41 36073.99 36684.96 37694.01 28165.25 37095.53 34878.02 33993.16 369
test-mter81.21 36580.01 37284.79 37289.68 38866.86 39183.08 39584.52 38873.85 36782.85 39284.78 40043.66 41593.49 37982.85 28894.86 33194.03 353
pmmvs587.87 29387.14 30190.07 29193.26 31976.97 32388.89 31992.18 31873.71 36888.36 34493.89 28676.86 31896.73 31980.32 31696.81 28096.51 262
1112_ss88.42 28587.41 29491.45 24496.69 17080.99 25289.72 29896.72 18873.37 36987.00 36290.69 35377.38 30898.20 21581.38 30893.72 35895.15 320
test_vis3_rt90.40 23290.03 24391.52 24392.58 33288.95 10690.38 27697.72 10973.30 37097.79 3397.51 9077.05 31287.10 40889.03 20194.89 33098.50 123
USDC89.02 26989.08 25888.84 31595.07 27374.50 34788.97 31796.39 20773.21 37193.27 23296.28 18482.16 26996.39 32977.55 34498.80 14495.62 310
CR-MVSNet87.89 29287.12 30390.22 28791.01 37078.93 28992.52 19892.81 30473.08 37289.10 32896.93 13767.11 35697.64 27188.80 20692.70 37694.08 350
test_vis1_n89.01 27189.01 26189.03 31192.57 33382.46 23392.62 19596.06 22173.02 37390.40 30695.77 21474.86 32689.68 40090.78 14694.98 32894.95 329
dp79.28 37878.62 37881.24 39085.97 41256.45 41786.91 35185.26 38472.97 37481.45 40489.17 37256.01 39895.45 35373.19 37576.68 41491.82 388
IU-MVS98.51 4986.66 15896.83 18072.74 37595.83 12693.00 9199.29 7598.64 111
ADS-MVSNet284.01 34182.20 35389.41 30489.04 39576.37 33187.57 33790.98 33472.71 37684.46 37892.45 32168.08 35296.48 32570.58 39183.97 40695.38 315
ADS-MVSNet82.25 35581.55 35684.34 37689.04 39565.30 39987.57 33785.13 38672.71 37684.46 37892.45 32168.08 35292.33 38670.58 39183.97 40695.38 315
jason89.17 26588.32 27491.70 23595.73 24780.07 26288.10 33293.22 29871.98 37890.09 31192.79 31478.53 29798.56 18187.43 23297.06 26896.46 268
jason: jason.
dongtai53.72 38453.79 38753.51 40179.69 42136.70 42577.18 40732.53 42771.69 37968.63 41760.79 41626.65 42573.11 41730.67 42036.29 41950.73 415
testdata91.03 26196.87 16082.01 23794.28 27871.55 38092.46 26295.42 22985.65 23497.38 28782.64 29197.27 26193.70 362
PVSNet76.22 2082.89 35282.37 35184.48 37493.96 30664.38 40578.60 40688.61 34771.50 38184.43 38086.36 39174.27 32894.60 36769.87 39393.69 35994.46 344
gm-plane-assit87.08 40859.33 41571.22 38283.58 40597.20 29473.95 370
test_fmvs1_n88.73 28088.38 27389.76 29892.06 34982.53 23192.30 21496.59 19671.14 38392.58 25895.41 23268.55 35089.57 40291.12 13895.66 30997.18 237
lupinMVS88.34 28787.31 29591.45 24494.74 28580.06 26387.23 34492.27 31771.10 38488.83 33191.15 34477.02 31398.53 18586.67 24496.75 28395.76 301
cascas87.02 31786.28 32089.25 30991.56 36476.45 32984.33 38896.78 18371.01 38586.89 36385.91 39381.35 27696.94 30983.09 28795.60 31094.35 347
new_pmnet81.22 36481.01 36281.86 38790.92 37270.15 37684.03 38980.25 40870.83 38685.97 36789.78 36267.93 35584.65 41367.44 39891.90 38590.78 393
无先验89.94 29095.75 23170.81 38798.59 17881.17 31294.81 334
mvsany_test183.91 34382.93 34786.84 35086.18 41185.93 17881.11 40275.03 41770.80 38888.57 34294.63 25983.08 25687.38 40780.39 31586.57 40387.21 403
test_fmvs187.59 30187.27 29788.54 32188.32 40081.26 24890.43 27595.72 23270.55 38991.70 28394.63 25968.13 35189.42 40390.59 15095.34 31994.94 331
CostFormer83.09 34982.21 35285.73 36189.27 39467.01 38990.35 27786.47 36870.42 39083.52 38893.23 30461.18 38796.85 31577.21 34888.26 40093.34 370
TESTMET0.1,179.09 37978.04 38182.25 38687.52 40464.03 40683.08 39580.62 40670.28 39180.16 40783.22 40644.13 41390.56 39579.95 32393.36 36492.15 383
CMPMVSbinary68.83 2287.28 30885.67 32492.09 22388.77 39885.42 19190.31 27994.38 27570.02 39288.00 34993.30 30173.78 33194.03 37675.96 35996.54 28996.83 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f86.65 32187.13 30285.19 36890.28 38286.11 17486.52 36491.66 32869.76 39395.73 13497.21 11669.51 34881.28 41589.15 19894.40 34188.17 401
Test_1112_low_res87.50 30486.58 31290.25 28696.80 16777.75 31087.53 34196.25 21269.73 39486.47 36493.61 29475.67 32397.88 24579.95 32393.20 36895.11 324
PAPM81.91 36180.11 37187.31 34293.87 30972.32 36784.02 39093.22 29869.47 39576.13 41389.84 35872.15 33797.23 29253.27 41589.02 39792.37 382
MVS-HIRNet78.83 38080.60 36673.51 39893.07 32147.37 42287.10 34878.00 41368.94 39677.53 41197.26 10971.45 34194.62 36663.28 40788.74 39878.55 413
旧先验290.00 28968.65 39792.71 25496.52 32385.15 265
PCF-MVS84.52 1789.12 26687.71 29093.34 17796.06 22485.84 18186.58 36397.31 14268.46 39893.61 21993.89 28687.51 20598.52 18667.85 39798.11 21395.66 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何193.17 18297.16 14687.29 13894.43 27467.95 39991.29 28994.94 24786.97 21698.23 21381.06 31397.75 23893.98 355
MVEpermissive59.87 2373.86 38372.65 38677.47 39587.00 40974.35 34861.37 41560.93 42167.27 40069.69 41686.49 39081.24 28072.33 41856.45 41483.45 40885.74 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MDTV_nov1_ep13_2view42.48 42488.45 33067.22 40183.56 38766.80 35972.86 37794.06 352
test_vis1_rt85.58 32784.58 33088.60 32087.97 40186.76 15385.45 37793.59 29066.43 40287.64 35589.20 37079.33 28985.38 41281.59 30589.98 39593.66 363
CHOSEN 280x42080.04 37577.97 38286.23 35990.13 38374.53 34672.87 41189.59 34366.38 40376.29 41285.32 39856.96 39595.36 35569.49 39494.72 33688.79 399
HyFIR lowres test87.19 31285.51 32592.24 21597.12 14980.51 25685.03 38096.06 22166.11 40491.66 28492.98 31070.12 34699.14 9175.29 36295.23 32297.07 239
114514_t90.51 22889.80 24892.63 20398.00 9282.24 23693.40 17097.29 14565.84 40589.40 32694.80 25386.99 21598.75 15083.88 28298.61 16496.89 249
tpm281.46 36280.35 36984.80 37189.90 38565.14 40190.44 27285.36 38165.82 40682.05 39992.44 32357.94 39396.69 32070.71 39088.49 39992.56 380
test22296.95 15385.27 19388.83 32293.61 28965.09 40790.74 29994.85 25084.62 24597.36 25993.91 356
CHOSEN 1792x268887.19 31285.92 32391.00 26497.13 14879.41 28184.51 38695.60 23564.14 40890.07 31394.81 25178.26 30097.14 30073.34 37395.38 31896.46 268
pmmvs380.83 36878.96 37686.45 35487.23 40677.48 31484.87 38182.31 39763.83 40985.03 37489.50 36649.66 40493.10 38273.12 37695.10 32588.78 400
PVSNet_070.34 2174.58 38272.96 38579.47 39390.63 37566.24 39573.26 40983.40 39463.67 41078.02 41078.35 41372.53 33489.59 40156.68 41260.05 41782.57 411
tpm cat180.61 37079.46 37384.07 37988.78 39765.06 40389.26 31288.23 35162.27 41181.90 40189.66 36562.70 38495.29 35871.72 38280.60 41391.86 387
PMMVS83.00 35081.11 35988.66 31983.81 41886.44 16482.24 39985.65 37661.75 41282.07 39885.64 39679.75 28691.59 39075.99 35893.09 37187.94 402
MVS84.98 33284.30 33387.01 34491.03 36977.69 31291.94 22794.16 28059.36 41384.23 38287.50 38485.66 23396.80 31771.79 38193.05 37386.54 405
EU-MVSNet87.39 30686.71 31189.44 30393.40 31676.11 33294.93 11790.00 34157.17 41495.71 13597.37 9764.77 37397.68 26892.67 10094.37 34394.52 343
CVMVSNet85.16 33084.72 32886.48 35392.12 34770.19 37592.32 21188.17 35356.15 41590.64 30295.85 20567.97 35496.69 32088.78 20790.52 39292.56 380
DSMNet-mixed82.21 35681.56 35584.16 37889.57 39170.00 38090.65 26777.66 41454.99 41683.30 39097.57 8077.89 30390.50 39666.86 40095.54 31291.97 384
kuosan43.63 38644.25 39041.78 40266.04 42434.37 42675.56 40832.62 42653.25 41750.46 42051.18 41725.28 42649.13 42013.44 42130.41 42041.84 417
DeepMVS_CXcopyleft53.83 40070.38 42364.56 40448.52 42433.01 41865.50 41874.21 41556.19 39746.64 42138.45 41970.07 41550.30 416
test_method50.44 38548.94 38854.93 39939.68 42512.38 42828.59 41690.09 3406.82 41941.10 42178.41 41254.41 39970.69 41950.12 41651.26 41881.72 412
tmp_tt37.97 38744.33 38918.88 40311.80 42621.54 42763.51 41445.66 4254.23 42051.34 41950.48 41859.08 39222.11 42244.50 41868.35 41613.00 418
EGC-MVSNET80.97 36775.73 38496.67 4698.85 2394.55 1996.83 2296.60 1942.44 4215.32 42298.25 4092.24 12098.02 23191.85 12099.21 9097.45 218
test1239.49 38912.01 3921.91 4042.87 4271.30 42982.38 3981.34 4291.36 4222.84 4236.56 4212.45 4270.97 4232.73 4225.56 4213.47 419
testmvs9.02 39011.42 3931.81 4052.77 4281.13 43079.44 4051.90 4281.18 4232.65 4246.80 4201.95 4280.87 4242.62 4233.45 4223.44 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k23.35 38831.13 3910.00 4060.00 4290.00 4310.00 41795.58 2410.00 4240.00 42591.15 34493.43 890.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.56 39110.09 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42490.77 1570.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.56 39110.08 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42590.69 3530.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS61.25 41274.55 365
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
No_MVS95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
eth-test20.00 429
eth-test0.00 429
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22686.28 25498.61 16497.95 172
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7299.31 7098.53 121
GSMVS94.75 338
test_part298.21 7689.41 9696.72 83
sam_mvs166.64 36294.75 338
sam_mvs66.41 363
ambc92.98 18596.88 15983.01 22695.92 7296.38 20896.41 9497.48 9288.26 19197.80 25489.96 17698.93 12598.12 154
MTGPAbinary97.62 114
test_post190.21 2815.85 42365.36 36996.00 34179.61 329
test_post6.07 42265.74 36795.84 345
patchmatchnet-post91.71 33766.22 36597.59 272
GG-mvs-BLEND83.24 38485.06 41571.03 37294.99 11665.55 42074.09 41475.51 41444.57 41294.46 36959.57 41187.54 40184.24 407
MTMP94.82 11954.62 423
test9_res88.16 21798.40 18297.83 189
agg_prior287.06 23998.36 19197.98 168
agg_prior96.20 21288.89 10896.88 17690.21 31098.78 146
test_prior489.91 8690.74 263
test_prior94.61 12095.95 23387.23 14097.36 13898.68 16697.93 175
新几何290.02 288
旧先验196.20 21284.17 20794.82 26495.57 22489.57 18197.89 23296.32 273
原ACMM289.34 309
testdata298.03 22880.24 319
segment_acmp92.14 124
test1294.43 13395.95 23386.75 15496.24 21389.76 32189.79 18098.79 14397.95 22997.75 199
plane_prior797.71 11488.68 111
plane_prior697.21 14488.23 12486.93 217
plane_prior597.81 10098.95 11889.26 19498.51 17698.60 116
plane_prior495.59 220
plane_prior197.38 134
n20.00 430
nn0.00 430
door-mid92.13 322
lessismore_v093.87 15498.05 8683.77 21380.32 40797.13 6297.91 6277.49 30599.11 9692.62 10198.08 21798.74 94
test1196.65 192
door91.26 331
HQP5-MVS84.89 196
BP-MVS86.55 248
HQP4-MVS88.81 33398.61 17498.15 151
HQP3-MVS97.31 14297.73 239
HQP2-MVS84.76 243
NP-MVS96.82 16587.10 14493.40 299
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163