This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25199.80 998.33 7099.91 6099.56 2999.95 3099.97 4
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5899.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
mvs5depth99.30 2999.59 998.44 22099.65 6395.35 27799.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7399.99 599.86 21
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3699.31 42100.00 199.82 27
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 266
MVSMamba_PlusPlus98.83 8798.98 6798.36 22999.32 15596.58 24298.90 8099.41 13099.75 898.72 20199.50 6296.17 21299.94 3699.27 4599.78 12098.57 331
gg-mvs-nofinetune92.37 37591.20 37995.85 36195.80 41692.38 35899.31 2781.84 42299.75 891.83 41199.74 1568.29 40899.02 39287.15 40097.12 38696.16 405
SSC-MVS98.71 10498.74 8898.62 18999.72 4296.08 25698.74 9298.64 30599.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27299.82 27
LFMVS97.20 26296.72 27798.64 18498.72 27596.95 22598.93 7894.14 39899.74 1098.78 19299.01 17284.45 36899.73 24597.44 16099.27 26799.25 225
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8799.70 1299.80 2599.68 2296.84 17899.83 16199.21 5199.91 6199.77 37
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9899.69 1399.63 4999.68 2299.03 2199.96 1297.97 12999.92 5499.57 96
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17699.69 1399.63 4999.68 2299.25 1499.96 1297.25 17099.92 5499.57 96
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9899.68 1599.46 7599.26 11098.62 4799.73 24599.17 5499.92 5499.76 42
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35199.67 1698.97 15899.50 6290.45 32799.80 19297.88 13599.20 28099.48 144
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5499.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
WB-MVS98.52 14598.55 11998.43 22199.65 6395.59 26698.52 11898.77 29199.65 1899.52 6399.00 17594.34 27499.93 4298.65 8898.83 31999.76 42
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10699.36 3999.92 5499.64 66
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8799.64 1999.56 5399.46 7098.23 7799.97 598.78 7699.93 4399.72 48
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11399.63 2199.52 6399.44 7598.25 7599.88 8999.09 5799.84 8599.62 70
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16199.63 2199.48 7099.15 13897.23 15899.75 23597.17 17399.66 18399.63 69
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18599.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8099.62 2499.56 5399.42 7798.16 8899.96 1298.78 7699.93 4399.77 37
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40499.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6599.61 2699.40 8899.50 6297.12 16399.85 12699.02 6399.94 3899.80 31
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35799.59 2799.11 13399.27 10694.82 26099.79 20598.34 10599.63 18999.34 202
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5699.59 2799.71 3499.57 4597.12 16399.90 6699.21 5199.87 7699.54 113
Gipumacopyleft99.03 6399.16 4898.64 18499.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34097.70 14799.73 14497.89 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MM98.22 18097.99 19498.91 15098.66 29796.97 22297.89 19894.44 39299.54 3098.95 16299.14 14193.50 29099.92 5199.80 1199.96 2399.85 22
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8399.53 3199.46 7599.41 8198.23 7799.95 2498.89 7199.95 3099.81 30
dcpmvs_298.78 9599.11 5497.78 26999.56 8993.67 33599.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12799.91 6199.68 56
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8699.48 3399.24 12199.41 8196.79 18499.82 17198.69 8699.88 7399.76 42
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4899.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15099.47 3599.28 11099.05 15896.72 19099.82 17198.09 11999.36 25299.59 85
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7699.46 3699.50 6999.34 9397.30 15299.93 4298.90 6999.93 4399.77 37
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 16899.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11799.45 3799.51 6899.24 11598.20 8399.86 11495.92 27099.69 16799.04 262
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25698.51 26598.64 4499.93 4298.91 6899.85 8198.88 292
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5899.44 3999.78 2799.76 1296.39 20399.92 5199.44 3799.92 5499.68 56
FOURS199.73 3699.67 399.43 1299.54 8099.43 4199.26 116
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15699.42 4299.33 10099.26 11097.01 17199.94 3698.74 8199.93 4399.79 32
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12699.42 4299.36 9599.06 15198.38 6499.95 2498.34 10599.90 6799.57 96
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6599.39 4499.75 3199.62 3699.17 1899.83 16199.06 5999.62 19299.66 60
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19298.24 10999.84 8599.52 124
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25299.57 6599.37 4699.21 12499.61 3996.76 18799.83 16198.06 12299.83 9299.71 49
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32599.37 4699.70 3699.65 3392.65 30699.93 4299.04 6199.84 8599.60 79
RPMNet97.02 27496.93 26197.30 30997.71 36694.22 30998.11 16499.30 17699.37 4696.91 33699.34 9386.72 34999.87 10697.53 15797.36 38197.81 375
CS-MVS99.13 5299.10 5699.24 9799.06 21799.15 5199.36 1999.88 1399.36 4998.21 25398.46 27398.68 4299.93 4299.03 6299.85 8198.64 324
Anonymous2024052198.69 11198.87 7698.16 24699.77 2695.11 28899.08 5899.44 11799.34 5099.33 10099.55 5294.10 28299.94 3699.25 4899.96 2399.42 168
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21499.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
PatchT96.65 29096.35 29497.54 29597.40 38695.32 27997.98 18796.64 36899.33 5196.89 34099.42 7784.32 37099.81 18597.69 14997.49 37297.48 388
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8099.31 5399.62 5299.53 5897.36 15099.86 11499.24 5099.71 15799.39 181
VNet98.42 15398.30 15898.79 16698.79 26897.29 20398.23 14998.66 30299.31 5398.85 18398.80 21994.80 26399.78 21698.13 11699.13 29199.31 213
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5099.30 5599.65 4699.60 4199.16 2099.82 17199.07 5899.83 9299.56 102
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22599.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15699.28 5798.95 16298.91 19498.34 6999.79 20595.63 28599.91 6198.86 294
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25499.25 5999.54 5799.37 8497.04 16799.80 19297.89 13299.52 22799.35 200
test_fmvsmvis_n_192099.26 3599.49 1398.54 20799.66 6296.97 22298.00 18299.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 315
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19199.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 218
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18299.62 5199.22 6199.55 5699.22 12098.93 2699.75 23598.66 8799.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11799.21 6399.43 8099.55 5297.82 11299.86 11498.42 10299.89 7199.41 171
LS3D98.63 12598.38 14899.36 6697.25 39099.38 1299.12 5799.32 16399.21 6398.44 23698.88 20497.31 15199.80 19296.58 22799.34 25698.92 284
alignmvs97.35 24996.88 26698.78 16998.54 31498.09 13797.71 22297.69 34099.20 6597.59 29895.90 37788.12 34699.55 32498.18 11398.96 31298.70 318
EI-MVSNet-UG-set98.69 11198.71 9598.62 18999.10 20696.37 24597.23 26898.87 27199.20 6599.19 12698.99 17697.30 15299.85 12698.77 7999.79 11599.65 65
EI-MVSNet-Vis-set98.68 11698.70 9898.63 18899.09 20996.40 24497.23 26898.86 27699.20 6599.18 13098.97 18297.29 15499.85 12698.72 8399.78 12099.64 66
JIA-IIPM95.52 32695.03 33297.00 32296.85 39994.03 31996.93 28795.82 38199.20 6594.63 39299.71 1983.09 37799.60 30594.42 31694.64 40797.36 392
sasdasda98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
canonicalmvs98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
MGCFI-Net98.34 16398.28 16098.51 21098.47 32097.59 18898.96 7499.48 9899.18 7197.40 31595.50 38598.66 4399.50 34198.18 11398.71 32798.44 341
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20799.57 6599.17 7299.35 9799.17 13298.35 6899.69 26198.46 9999.73 14499.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT-MVS97.88 20797.98 19597.61 28698.15 34593.77 33298.97 7399.64 4999.16 7398.69 20399.42 7791.60 31699.89 7797.63 15098.52 34199.16 249
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22599.40 13399.14 7499.06 14098.59 25796.71 19199.93 4298.57 9399.77 12599.53 121
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 15899.47 10699.12 7599.52 6399.32 9998.31 7199.90 6697.78 14199.73 14499.66 60
test111196.49 29796.82 27195.52 36999.42 13587.08 40399.22 4287.14 41799.11 7699.46 7599.58 4388.69 33899.86 11498.80 7599.95 3099.62 70
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30899.11 7698.58 22199.02 16388.65 34199.96 1298.11 11796.34 39599.49 134
hse-mvs297.46 24097.07 25598.64 18498.73 27397.33 20197.45 25397.64 34499.11 7698.58 22197.98 31388.65 34199.79 20598.11 11797.39 37898.81 301
MVSFormer98.26 17698.43 13997.77 27098.88 25193.89 32899.39 1799.56 7299.11 7698.16 25698.13 30093.81 28699.97 599.26 4699.57 21299.43 165
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7299.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6799.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5899.11 7699.53 6199.18 12898.81 3299.67 27396.71 21999.77 12599.50 130
IterMVS-SCA-FT97.85 21598.18 17396.87 33099.27 16491.16 37995.53 35899.25 19699.10 8399.41 8599.35 8993.10 29599.96 1298.65 8899.94 3899.49 134
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20799.10 8399.72 3298.76 22796.38 20599.86 11498.00 12799.82 9599.50 130
UGNet98.53 14298.45 13698.79 16697.94 35596.96 22499.08 5898.54 30999.10 8396.82 34499.47 6996.55 19799.84 14498.56 9699.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4799.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7299.09 8699.33 10099.19 12498.40 6399.72 25295.98 26899.76 13799.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test250692.39 37391.89 37593.89 38999.38 14082.28 41999.32 2366.03 42599.08 8898.77 19599.57 4566.26 41599.84 14498.71 8499.95 3099.54 113
ECVR-MVScopyleft96.42 29996.61 28595.85 36199.38 14088.18 39999.22 4286.00 41999.08 8899.36 9599.57 4588.47 34399.82 17198.52 9799.95 3099.54 113
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26198.37 28298.72 3899.90 6699.05 6099.77 12598.77 309
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21299.24 20199.04 9399.41 8598.90 19797.65 12399.76 22897.70 14799.79 11599.39 181
v899.01 6499.16 4898.57 19999.47 12496.31 24898.90 8099.47 10699.03 9499.52 6399.57 4596.93 17499.81 18599.60 2599.98 1299.60 79
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33199.03 9498.59 21999.13 14292.16 31199.90 6696.87 20399.68 17299.49 134
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32099.01 9698.98 15499.03 16291.59 31799.79 20595.49 29099.80 11099.48 144
balanced_conf0398.63 12598.72 9298.38 22698.66 29796.68 23998.90 8099.42 12698.99 9798.97 15899.19 12495.81 23399.85 12698.77 7999.77 12598.60 327
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26498.40 10999.02 6699.19 21198.99 9798.07 26599.28 10497.11 16599.84 14496.84 20699.32 25899.47 151
PMVScopyleft91.26 2097.86 21097.94 20097.65 28299.71 4597.94 15998.52 11898.68 30198.99 9797.52 30599.35 8997.41 14798.18 40991.59 37499.67 17896.82 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EI-MVSNet98.40 15698.51 12498.04 25699.10 20694.73 29797.20 27298.87 27198.97 10099.06 14099.02 16396.00 22099.80 19298.58 9199.82 9599.60 79
EPNet96.14 30795.44 31998.25 23890.76 42395.50 27297.92 19494.65 39098.97 10092.98 40698.85 21089.12 33699.87 10695.99 26799.68 17299.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS98.55 13898.70 9898.09 24899.48 12294.73 29797.22 27199.39 13598.97 10099.38 9199.31 10096.00 22099.93 4298.58 9199.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.35 24996.97 26098.50 21497.31 38996.47 24398.18 15498.92 26298.95 10398.78 19299.37 8485.44 36299.85 12695.96 26999.83 9299.17 246
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 3998.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22199.38 13798.93 10499.12 13298.73 23096.77 18599.86 11498.63 9099.80 11099.46 153
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
Anonymous20240521197.90 20397.50 23199.08 12098.90 24598.25 12198.53 11796.16 37498.87 10899.11 13398.86 20790.40 32899.78 21697.36 16499.31 26099.19 240
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 35998.86 10998.87 18297.62 33598.63 4698.96 39599.41 3898.29 34798.45 338
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 8998.86 10999.19 12699.06 15198.23 7799.69 26198.71 8499.76 13799.33 207
IterMVS97.73 22198.11 18296.57 34099.24 17190.28 38895.52 36099.21 20598.86 10999.33 10099.33 9593.11 29499.94 3698.49 9899.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24499.25 19698.84 11299.06 14098.76 22796.76 18799.93 4298.57 9399.77 12599.50 130
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20798.83 11398.89 17598.90 19796.98 17399.92 5197.16 17499.70 16499.56 102
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20799.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
v1098.97 7099.11 5498.55 20499.44 12996.21 25098.90 8099.55 7698.73 11499.48 7099.60 4196.63 19499.83 16199.70 2199.99 599.61 78
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23499.35 15098.72 11698.76 19798.68 23992.57 30799.74 24097.76 14695.60 40399.34 202
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21099.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.49 14499.86 11496.56 23399.39 24899.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.75 11796.56 23399.39 24899.45 157
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32698.11 13497.61 23699.50 8998.64 11897.39 31797.52 34098.12 9299.95 2496.90 20098.71 32798.38 348
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16198.64 11899.03 15098.98 18097.89 10699.85 12696.54 23799.42 24599.46 153
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30398.63 25197.50 14199.83 16196.79 20899.53 22499.56 102
X-MVStestdata94.32 34492.59 36299.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30345.85 41997.50 14199.83 16196.79 20899.53 22499.56 102
GBi-Net98.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
test198.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
FMVSNet298.49 14798.40 14398.75 17598.90 24597.14 21798.61 10899.13 22898.59 12499.19 12699.28 10494.14 27899.82 17197.97 12999.80 11099.29 218
MonoMVSNet96.25 30496.53 29195.39 37396.57 40491.01 38098.82 9097.68 34198.57 12798.03 27099.37 8490.92 32397.78 41194.99 29893.88 41197.38 391
WR-MVS98.40 15698.19 17299.03 13299.00 22697.65 18496.85 29198.94 25698.57 12798.89 17598.50 26995.60 23899.85 12697.54 15699.85 8199.59 85
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 26997.81 17399.25 4099.30 17698.57 12798.55 22699.33 9597.95 10499.90 6697.16 17499.67 17899.44 161
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18499.71 4596.10 25197.87 20299.85 1798.56 13099.90 1299.68 2298.69 4199.85 12699.72 2099.98 1299.97 4
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19299.55 9396.09 25497.74 21999.81 2598.55 13199.85 1999.55 5298.60 4999.84 14499.69 2399.98 1299.89 14
reproduce_monomvs95.00 33795.25 32694.22 38497.51 38383.34 41697.86 20398.44 31498.51 13299.29 10999.30 10167.68 41199.56 32098.89 7199.81 9999.77 37
test_one_060199.39 13999.20 3899.31 16898.49 13398.66 20899.02 16397.64 126
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5198.48 13499.37 9399.49 6798.75 3699.86 11498.20 11299.80 11099.71 49
MVS_030497.44 24397.01 25998.72 18096.42 40896.74 23597.20 27291.97 40898.46 13598.30 24598.79 22192.74 30499.91 6099.30 4399.94 3899.52 124
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7298.42 13698.91 17298.81 21898.94 2599.91 6098.35 10499.73 14499.49 134
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25698.51 10498.49 12699.83 2298.37 13799.69 3899.46 7098.21 8299.92 5194.13 32699.30 26398.91 287
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25399.44 12994.96 29196.63 30399.15 22798.35 13898.83 18699.11 14494.31 27599.85 12696.60 22698.72 32599.37 190
thres600view794.45 34293.83 34896.29 34899.06 21791.53 36897.99 18694.24 39698.34 13997.44 31395.01 39479.84 38799.67 27384.33 40798.23 34897.66 383
test_vis1_n_192098.40 15698.92 7196.81 33499.74 3590.76 38598.15 15899.91 998.33 14099.89 1599.55 5295.07 25399.88 8999.76 1599.93 4399.79 32
thres100view90094.19 34793.67 35195.75 36499.06 21791.35 37298.03 17694.24 39698.33 14097.40 31594.98 39679.84 38799.62 29883.05 40998.08 35996.29 402
Vis-MVSNet (Re-imp)97.46 24097.16 25198.34 23199.55 9396.10 25198.94 7798.44 31498.32 14298.16 25698.62 25388.76 33799.73 24593.88 33399.79 11599.18 242
new-patchmatchnet98.35 16298.74 8897.18 31499.24 17192.23 36296.42 31399.48 9898.30 14399.69 3899.53 5897.44 14699.82 17198.84 7499.77 12599.49 134
v14898.45 15198.60 11598.00 25899.44 12994.98 29097.44 25499.06 23798.30 14399.32 10698.97 18296.65 19399.62 29898.37 10399.85 8199.39 181
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7698.30 14399.65 4699.45 7499.22 1599.76 22898.44 10099.77 12599.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18498.29 14698.88 17898.85 21097.53 13799.87 10696.14 26299.31 26099.48 144
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35299.49 698.02 17899.16 22298.29 14697.64 29497.99 31296.44 20299.95 2496.66 22298.93 31598.60 327
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11398.28 14898.98 15499.19 12497.76 11699.58 31596.57 22999.55 21898.97 275
save fliter99.11 20497.97 15496.53 30799.02 24898.24 149
EU-MVSNet97.66 22798.50 12695.13 37699.63 7385.84 40698.35 14298.21 32498.23 15099.54 5799.46 7095.02 25499.68 27098.24 10999.87 7699.87 18
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24097.97 19099.86 1598.22 15199.88 1799.71 1998.59 5099.84 14499.73 1899.98 1299.98 3
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24097.79 21199.82 2498.21 15299.81 2499.53 5898.46 6099.84 14499.70 2199.97 1999.90 13
test_yl96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
DCV-MVSNet96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
baseline195.96 31395.44 31997.52 29798.51 31893.99 32298.39 13896.09 37698.21 15298.40 24397.76 32686.88 34899.63 29595.42 29189.27 41698.95 278
SD-MVS98.40 15698.68 10197.54 29598.96 23397.99 15097.88 19999.36 14598.20 15699.63 4999.04 16098.76 3595.33 41896.56 23399.74 14199.31 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21499.27 19098.20 15697.79 28697.98 31394.90 25699.70 25794.42 31699.51 22999.45 157
plane_prior297.77 21498.20 156
DVP-MVS++98.90 7998.70 9899.51 4698.43 32699.15 5199.43 1299.32 16398.17 15999.26 11699.02 16398.18 8499.88 8997.07 18399.45 24199.49 134
test_0728_THIRD98.17 15999.08 13899.02 16397.89 10699.88 8997.07 18399.71 15799.70 54
E-PMN94.17 34894.37 34393.58 39296.86 39885.71 40890.11 41497.07 35698.17 15997.82 28597.19 35384.62 36798.94 39689.77 39297.68 36996.09 408
patch_mono-298.51 14698.63 10898.17 24499.38 14094.78 29497.36 25899.69 3998.16 16298.49 23299.29 10397.06 16699.97 598.29 10899.91 6199.76 42
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17599.59 5698.15 16399.40 8899.36 8898.58 5399.76 22898.78 7699.68 17299.59 85
ETV-MVS98.03 19497.86 20798.56 20398.69 28798.07 14397.51 24899.50 8998.10 16497.50 30795.51 38498.41 6299.88 8996.27 25499.24 27297.71 382
tttt051795.64 32394.98 33397.64 28499.36 14793.81 33098.72 9790.47 41298.08 16598.67 20698.34 28673.88 40299.92 5197.77 14299.51 22999.20 235
MVStest195.86 31595.60 31196.63 33995.87 41591.70 36697.93 19198.94 25698.03 16699.56 5399.66 2971.83 40498.26 40899.35 4099.24 27299.91 12
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16699.31 16898.03 16699.66 4399.02 16398.36 6599.88 8996.91 19599.62 19299.41 171
test_241102_TWO99.30 17698.03 16699.26 11699.02 16397.51 14099.88 8996.91 19599.60 19999.66 60
test_241102_ONE99.49 11599.17 4399.31 16897.98 16999.66 4398.90 19798.36 6599.48 347
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 17898.84 28097.97 17099.08 13899.02 16397.61 12999.88 8996.99 18999.63 18999.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10899.21 3298.17 15799.35 15097.97 17099.26 11699.06 15197.61 129
ttmdpeth97.91 20298.02 19197.58 28998.69 28794.10 31598.13 16098.90 26597.95 17297.32 32099.58 4395.95 22898.75 40296.41 24599.22 27699.87 18
dmvs_re95.98 31295.39 32297.74 27698.86 25397.45 19598.37 14095.69 38597.95 17296.56 35395.95 37590.70 32597.68 41288.32 39796.13 39998.11 360
tfpn200view994.03 35193.44 35395.78 36398.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35996.29 402
thres40094.14 34993.44 35396.24 35198.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35997.66 383
EMVS93.83 35494.02 34693.23 39696.83 40084.96 40989.77 41596.32 37397.92 17697.43 31496.36 37186.17 35498.93 39787.68 39997.73 36895.81 409
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 14999.31 16897.92 17698.90 17398.90 19798.00 9999.88 8996.15 26199.72 15299.58 91
Skip Steuart: Steuart Systems R&D Blog.
v2v48298.56 13498.62 11098.37 22899.42 13595.81 26397.58 24099.16 22297.90 17899.28 11099.01 17295.98 22599.79 20599.33 4199.90 6799.51 127
FMVSNet397.50 23697.24 24798.29 23698.08 35095.83 26297.86 20398.91 26497.89 17998.95 16298.95 18987.06 34799.81 18597.77 14299.69 16799.23 230
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14699.19 21197.87 18099.25 12099.16 13496.84 17899.78 21699.21 5199.84 8599.46 153
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6597.87 18098.85 18398.04 31097.66 12299.84 14496.72 21799.81 9999.13 251
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18599.91 1199.67 2797.15 16298.91 39899.76 1599.56 21599.92 11
diffmvspermissive98.22 18098.24 16798.17 24499.00 22695.44 27496.38 31599.58 5897.79 18698.53 22998.50 26996.76 18799.74 24097.95 13199.64 18699.34 202
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs399.12 5499.41 2198.25 23899.76 2995.07 28999.05 6499.94 297.78 18799.82 2199.84 398.56 5499.71 25399.96 199.96 2399.97 4
CANet97.87 20997.76 21198.19 24397.75 36295.51 27196.76 29699.05 24097.74 18896.93 33398.21 29695.59 23999.89 7797.86 13799.93 4399.19 240
DELS-MVS98.27 17498.20 17098.48 21598.86 25396.70 23795.60 35699.20 20797.73 18998.45 23598.71 23397.50 14199.82 17198.21 11199.59 20398.93 283
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6597.72 19098.90 17399.26 11096.12 21599.52 33595.72 28199.71 15799.32 209
MVS_Test98.18 18598.36 15097.67 28098.48 31994.73 29798.18 15499.02 24897.69 19198.04 26999.11 14497.22 15999.56 32098.57 9398.90 31798.71 315
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28199.39 13597.67 19299.44 7998.99 17697.53 13799.89 7795.40 29299.68 17299.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ab-mvs98.41 15498.36 15098.59 19599.19 18597.23 20799.32 2398.81 28597.66 19398.62 21399.40 8396.82 18199.80 19295.88 27199.51 22998.75 312
MSDG97.71 22397.52 23098.28 23798.91 24496.82 23094.42 39199.37 14197.65 19498.37 24498.29 29197.40 14899.33 37294.09 32799.22 27698.68 322
NCCC97.86 21097.47 23599.05 12998.61 30298.07 14396.98 28398.90 26597.63 19597.04 32997.93 31895.99 22499.66 28495.31 29398.82 32199.43 165
test_cas_vis1_n_192098.33 16698.68 10197.27 31199.69 5492.29 36098.03 17699.85 1797.62 19699.96 499.62 3693.98 28399.74 24099.52 3399.86 8099.79 32
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18799.68 4497.62 19699.34 9999.18 12897.54 13599.77 22297.79 14099.74 14199.04 262
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17099.37 14197.62 19699.04 14798.96 18598.84 3099.79 20597.43 16199.65 18499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21197.61 19997.58 29998.66 24497.40 14899.88 8994.72 30799.60 19999.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33799.27 19097.60 20097.99 27298.25 29298.15 9099.38 36596.87 20399.57 21299.42 168
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33399.30 17697.58 20198.10 26398.24 29398.25 7599.34 37096.69 22099.65 18499.12 252
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9897.57 20299.35 9799.24 11597.83 10999.89 7797.88 13599.70 16499.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
API-MVS97.04 27396.91 26597.42 30597.88 35898.23 12698.18 15498.50 31297.57 20297.39 31796.75 36196.77 18599.15 38990.16 39199.02 30494.88 412
testing393.51 35892.09 36897.75 27498.60 30494.40 30697.32 26195.26 38797.56 20496.79 34695.50 38553.57 42499.77 22295.26 29498.97 31199.08 254
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18199.46 10997.56 20499.54 5799.50 6298.97 2399.84 14498.06 12299.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15097.55 20699.31 10897.71 32894.61 26799.88 8996.14 26299.19 28399.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
WBMVS95.18 33294.78 33896.37 34597.68 37189.74 39295.80 35098.73 29897.54 20798.30 24598.44 27570.06 40599.82 17196.62 22499.87 7699.54 113
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14597.54 20798.30 24598.40 27897.86 10899.89 7796.53 23899.72 15299.56 102
v114498.60 13098.66 10498.41 22399.36 14795.90 25997.58 24099.34 15697.51 20999.27 11299.15 13896.34 20899.80 19299.47 3699.93 4399.51 127
PMMVS298.07 19398.08 18698.04 25699.41 13794.59 30394.59 38899.40 13397.50 21098.82 18998.83 21396.83 18099.84 14497.50 15999.81 9999.71 49
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15097.50 21098.28 24998.60 25697.64 12699.35 36993.86 33499.27 26798.79 307
MVSTER96.86 28296.55 28997.79 26897.91 35794.21 31197.56 24298.87 27197.49 21299.06 14099.05 15880.72 38499.80 19298.44 10099.82 9599.37 190
Patchmatch-RL test97.26 25697.02 25897.99 25999.52 10395.53 27096.13 33199.71 3697.47 21399.27 11299.16 13484.30 37199.62 29897.89 13299.77 12598.81 301
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16897.47 21398.58 22198.50 26997.97 10399.85 12696.57 22999.59 20399.53 121
MSLP-MVS++98.02 19598.14 18097.64 28498.58 30995.19 28497.48 25099.23 20397.47 21397.90 27698.62 25397.04 16798.81 40197.55 15499.41 24698.94 282
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16897.47 21398.56 22498.54 26197.75 11799.88 8996.57 22999.59 20399.58 91
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20197.47 21398.09 26498.68 23997.62 12899.89 7796.22 25699.62 19299.57 96
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16897.46 21898.44 23698.51 26597.83 10999.88 8996.46 24299.58 20899.58 91
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24698.75 29597.46 21896.90 33997.83 32396.01 21999.84 14495.82 27899.35 25499.46 153
TinyColmap97.89 20597.98 19597.60 28798.86 25394.35 30896.21 32599.44 11797.45 22099.06 14098.88 20497.99 10299.28 38094.38 32099.58 20899.18 242
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14799.25 19697.44 22198.67 20698.39 27997.68 12099.85 12696.00 26699.51 22999.52 124
v119298.60 13098.66 10498.41 22399.27 16495.88 26097.52 24699.36 14597.41 22299.33 10099.20 12396.37 20699.82 17199.57 2799.92 5499.55 109
plane_prior397.78 17597.41 22297.79 286
EIA-MVS98.00 19797.74 21398.80 16398.72 27598.09 13798.05 17399.60 5597.39 22496.63 35095.55 38397.68 12099.80 19296.73 21699.27 26798.52 333
thres20093.72 35693.14 35895.46 37298.66 29791.29 37496.61 30494.63 39197.39 22496.83 34393.71 40679.88 38699.56 32082.40 41298.13 35695.54 411
testgi98.32 16798.39 14698.13 24799.57 8195.54 26997.78 21299.49 9697.37 22699.19 12697.65 33298.96 2499.49 34496.50 24098.99 30899.34 202
mvs_anonymous97.83 21898.16 17796.87 33098.18 34391.89 36497.31 26298.90 26597.37 22698.83 18699.46 7096.28 20999.79 20598.90 6998.16 35498.95 278
EPNet_dtu94.93 33894.78 33895.38 37493.58 41987.68 40196.78 29495.69 38597.35 22889.14 41698.09 30688.15 34599.49 34494.95 30199.30 26398.98 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test96.55 29396.34 29597.17 31698.35 33293.06 34398.40 13797.79 33697.33 22998.41 23998.67 24183.68 37599.69 26195.16 29699.31 26098.77 309
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 8997.33 22998.94 16998.86 20798.75 3699.82 17197.53 15799.71 15799.56 102
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30599.48 9897.32 23199.11 13398.61 25599.33 1399.30 37696.23 25598.38 34399.28 220
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30297.23 20797.76 21799.09 23497.31 23298.75 19898.66 24497.56 13399.64 29296.10 26599.55 21899.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+98.02 19597.82 20998.62 18998.53 31697.19 21297.33 26099.68 4497.30 23396.68 34897.46 34498.56 5499.80 19296.63 22398.20 35098.86 294
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33799.50 8997.30 23399.05 14598.98 18099.35 1299.32 37395.72 28199.68 17299.18 242
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18497.28 23598.11 26298.39 27998.00 9999.87 10696.86 20599.64 18699.55 109
eth_miper_zixun_eth97.23 26097.25 24697.17 31698.00 35392.77 35094.71 38199.18 21597.27 23698.56 22498.74 22991.89 31499.69 26197.06 18599.81 9999.05 258
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30699.04 22193.09 34295.27 36798.42 31697.26 23798.88 17898.95 18995.43 24599.73 24597.02 18698.72 32599.41 171
miper_lstm_enhance97.18 26497.16 25197.25 31398.16 34492.85 34895.15 37299.31 16897.25 23898.74 20098.78 22390.07 32999.78 21697.19 17299.80 11099.11 253
xiu_mvs_v2_base97.16 26697.49 23296.17 35598.54 31492.46 35595.45 36298.84 28097.25 23897.48 30996.49 36598.31 7199.90 6696.34 25098.68 33296.15 406
PS-MVSNAJ97.08 27097.39 23796.16 35798.56 31292.46 35595.24 36998.85 27997.25 23897.49 30895.99 37498.07 9399.90 6696.37 24798.67 33396.12 407
YYNet197.60 23097.67 21897.39 30799.04 22193.04 34695.27 36798.38 31997.25 23898.92 17198.95 18995.48 24499.73 24596.99 18998.74 32399.41 171
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22299.46 10997.25 23898.98 15498.99 17697.54 13599.84 14495.88 27199.74 14199.23 230
CNVR-MVS98.17 18797.87 20699.07 12298.67 29298.24 12297.01 28198.93 25997.25 23897.62 29598.34 28697.27 15599.57 31796.42 24499.33 25799.39 181
CANet_DTU97.26 25697.06 25697.84 26497.57 37394.65 30196.19 32798.79 28897.23 24495.14 38598.24 29393.22 29299.84 14497.34 16599.84 8599.04 262
v192192098.54 14098.60 11598.38 22699.20 18295.76 26597.56 24299.36 14597.23 24499.38 9199.17 13296.02 21899.84 14499.57 2799.90 6799.54 113
MIMVSNet96.62 29296.25 30097.71 27999.04 22194.66 30099.16 5196.92 36397.23 24497.87 27999.10 14786.11 35699.65 28991.65 37299.21 27998.82 297
FMVSNet596.01 31095.20 32998.41 22397.53 37896.10 25198.74 9299.50 8997.22 24798.03 27099.04 16069.80 40699.88 8997.27 16899.71 15799.25 225
testing9193.32 36192.27 36596.47 34397.54 37691.25 37696.17 33096.76 36697.18 24893.65 40493.50 40865.11 41899.63 29593.04 35197.45 37498.53 332
thisisatest053095.27 33094.45 34197.74 27699.19 18594.37 30797.86 20390.20 41397.17 24998.22 25297.65 33273.53 40399.90 6696.90 20099.35 25498.95 278
v124098.55 13898.62 11098.32 23299.22 17695.58 26897.51 24899.45 11397.16 25099.45 7899.24 11596.12 21599.85 12699.60 2599.88 7399.55 109
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14197.16 25098.82 18999.01 17297.71 11999.87 10696.29 25399.69 16799.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14419298.54 14098.57 11898.45 21899.21 17895.98 25797.63 23399.36 14597.15 25299.32 10699.18 12895.84 23299.84 14499.50 3499.91 6199.54 113
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 27899.18 21597.10 25398.75 19898.92 19398.18 8499.65 28996.68 22199.56 21599.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
c3_l97.36 24897.37 23997.31 30898.09 34993.25 34195.01 37599.16 22297.05 25498.77 19598.72 23292.88 30099.64 29296.93 19499.76 13799.05 258
cl____97.02 27496.83 27097.58 28997.82 36094.04 31894.66 38499.16 22297.04 25598.63 21198.71 23388.68 34099.69 26197.00 18799.81 9999.00 270
DIV-MVS_self_test97.02 27496.84 26997.58 28997.82 36094.03 31994.66 38499.16 22297.04 25598.63 21198.71 23388.69 33899.69 26197.00 18799.81 9999.01 266
mvsmamba97.57 23497.26 24598.51 21098.69 28796.73 23698.74 9297.25 35297.03 25797.88 27899.23 11990.95 32299.87 10696.61 22599.00 30698.91 287
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 14999.49 9697.01 25898.69 20398.88 20498.00 9999.89 7795.87 27499.59 20399.58 91
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25696.96 25999.24 12198.89 20397.83 10999.81 18596.88 20299.49 23799.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dmvs_testset92.94 36892.21 36795.13 37698.59 30790.99 38197.65 23192.09 40796.95 26094.00 39993.55 40792.34 30996.97 41572.20 41892.52 41397.43 390
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20799.25 19696.94 26198.78 19299.12 14398.02 9799.84 14497.13 17999.67 17899.59 85
CVMVSNet96.25 30497.21 24993.38 39599.10 20680.56 42297.20 27298.19 32796.94 26199.00 15299.02 16389.50 33499.80 19296.36 24999.59 20399.78 35
CNLPA97.17 26596.71 27898.55 20498.56 31298.05 14796.33 31898.93 25996.91 26397.06 32897.39 34794.38 27399.45 35491.66 37199.18 28598.14 359
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33198.97 7095.03 37499.18 21596.88 26499.33 10098.78 22398.16 8899.28 38096.74 21499.62 19299.44 161
testing9993.04 36791.98 37396.23 35297.53 37890.70 38696.35 31795.94 37996.87 26593.41 40593.43 40963.84 42099.59 30993.24 34997.19 38498.40 346
wuyk23d96.06 30897.62 22591.38 39898.65 30198.57 9898.85 8796.95 36196.86 26699.90 1299.16 13499.18 1798.40 40689.23 39599.77 12577.18 418
testing22291.96 37990.37 38396.72 33897.47 38592.59 35296.11 33294.76 38996.83 26792.90 40792.87 41257.92 42299.55 32486.93 40297.52 37198.00 368
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14899.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
TestCases99.16 10799.50 10898.55 9999.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
test_fmvs298.70 10898.97 6897.89 26299.54 9894.05 31698.55 11499.92 796.78 27099.72 3299.78 1096.60 19599.67 27399.91 299.90 6799.94 9
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15399.41 13096.77 27198.83 18698.90 19797.80 11499.82 17195.68 28499.52 22799.38 188
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12396.74 27298.61 21598.38 28198.62 4799.87 10696.47 24199.67 17899.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
plane_prior97.65 18497.07 27996.72 27399.36 252
BH-untuned96.83 28396.75 27697.08 31998.74 27293.33 34096.71 29998.26 32296.72 27398.44 23697.37 34995.20 24999.47 35091.89 36897.43 37698.44 341
BH-RMVSNet96.83 28396.58 28897.58 28998.47 32094.05 31696.67 30197.36 34796.70 27597.87 27997.98 31395.14 25199.44 35690.47 39098.58 33999.25 225
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 19998.81 28596.66 27699.17 13199.21 12194.81 26299.77 22296.96 19399.88 7399.44 161
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 14999.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
CL-MVSNet_self_test97.44 24397.22 24898.08 25198.57 31195.78 26494.30 39498.79 28896.58 27998.60 21798.19 29894.74 26699.64 29296.41 24598.84 31898.82 297
ETVMVS92.60 37191.08 38097.18 31497.70 36893.65 33796.54 30595.70 38396.51 28094.68 39092.39 41461.80 42199.50 34186.97 40197.41 37798.40 346
our_test_397.39 24797.73 21596.34 34698.70 28289.78 39194.61 38798.97 25596.50 28199.04 14798.85 21095.98 22599.84 14497.26 16999.67 17899.41 171
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23296.49 28299.96 499.81 698.18 8499.45 35498.97 6699.79 11599.83 24
test_prior295.74 35296.48 28396.11 36597.63 33495.92 23094.16 32299.20 280
testing1193.08 36692.02 37096.26 35097.56 37490.83 38496.32 31995.70 38396.47 28492.66 40893.73 40564.36 41999.59 30993.77 33797.57 37098.37 350
MG-MVS96.77 28696.61 28597.26 31298.31 33593.06 34395.93 34298.12 33096.45 28597.92 27498.73 23093.77 28899.39 36391.19 38299.04 30099.33 207
MVP-Stereo98.08 19297.92 20298.57 19998.96 23396.79 23197.90 19799.18 21596.41 28698.46 23498.95 18995.93 22999.60 30596.51 23998.98 31099.31 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test97.50 23697.74 21396.78 33698.70 28291.23 37894.55 38999.05 24096.36 28799.21 12498.79 22196.39 20399.78 21696.74 21499.82 9599.34 202
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 27897.88 16296.32 31998.66 30296.33 28899.23 12398.51 26597.48 14599.40 36197.16 17499.46 23999.02 265
testdata195.44 36396.32 289
test_vis1_n98.31 16998.50 12697.73 27899.76 2994.17 31398.68 10299.91 996.31 29099.79 2699.57 4592.85 30299.42 35999.79 1299.84 8599.60 79
LF4IMVS97.90 20397.69 21798.52 20999.17 19397.66 18397.19 27599.47 10696.31 29097.85 28298.20 29796.71 19199.52 33594.62 30899.72 15298.38 348
test_f98.67 11998.87 7698.05 25599.72 4295.59 26698.51 12399.81 2596.30 29299.78 2799.82 596.14 21398.63 40499.82 799.93 4399.95 8
test-LLR93.90 35393.85 34794.04 38696.53 40584.62 41294.05 39892.39 40596.17 29394.12 39695.07 39282.30 38199.67 27395.87 27498.18 35197.82 373
test0.0.03 194.51 34193.69 35096.99 32396.05 41293.61 33894.97 37693.49 40096.17 29397.57 30194.88 39882.30 38199.01 39493.60 34094.17 41098.37 350
Anonymous2023120698.21 18298.21 16998.20 24299.51 10595.43 27598.13 16099.32 16396.16 29598.93 17098.82 21696.00 22099.83 16197.32 16699.73 14499.36 196
SCA96.41 30096.66 28395.67 36598.24 33988.35 39795.85 34896.88 36496.11 29697.67 29398.67 24193.10 29599.85 12694.16 32299.22 27698.81 301
MS-PatchMatch97.68 22597.75 21297.45 30398.23 34193.78 33197.29 26498.84 28096.10 29798.64 21098.65 24696.04 21799.36 36696.84 20699.14 28999.20 235
HQP-NCC98.67 29296.29 32196.05 29895.55 376
ACMP_Plane98.67 29296.29 32196.05 29895.55 376
HQP-MVS97.00 27796.49 29298.55 20498.67 29296.79 23196.29 32199.04 24396.05 29895.55 37696.84 35993.84 28499.54 32992.82 35699.26 27099.32 209
UBG93.25 36392.32 36496.04 35997.72 36390.16 38995.92 34495.91 38096.03 30193.95 40193.04 41169.60 40799.52 33590.72 38997.98 36598.45 338
PHI-MVS98.29 17397.95 19899.34 7598.44 32599.16 4798.12 16399.38 13796.01 30298.06 26698.43 27697.80 11499.67 27395.69 28399.58 20899.20 235
miper_ehance_all_eth97.06 27197.03 25797.16 31897.83 35993.06 34394.66 38499.09 23495.99 30398.69 20398.45 27492.73 30599.61 30496.79 20899.03 30198.82 297
UWE-MVS92.38 37491.76 37794.21 38597.16 39284.65 41195.42 36488.45 41695.96 30496.17 36395.84 38066.36 41499.71 25391.87 36998.64 33498.28 353
AUN-MVS96.24 30695.45 31898.60 19498.70 28297.22 20997.38 25697.65 34295.95 30595.53 38097.96 31782.11 38399.79 20596.31 25197.44 37598.80 306
MVEpermissive83.40 2292.50 37291.92 37494.25 38398.83 25991.64 36792.71 40783.52 42195.92 30686.46 41995.46 38895.20 24995.40 41780.51 41498.64 33495.73 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CDS-MVSNet97.69 22497.35 24198.69 18198.73 27397.02 22196.92 28998.75 29595.89 30798.59 21998.67 24192.08 31399.74 24096.72 21799.81 9999.32 209
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
D2MVS97.84 21697.84 20897.83 26599.14 20094.74 29696.94 28598.88 26995.84 30898.89 17598.96 18594.40 27299.69 26197.55 15499.95 3099.05 258
PAPM_NR96.82 28596.32 29698.30 23599.07 21396.69 23897.48 25098.76 29295.81 30996.61 35296.47 36794.12 28199.17 38790.82 38897.78 36799.06 257
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22599.38 13795.76 31098.81 19198.82 21698.36 6599.82 17194.75 30499.77 12599.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29098.73 29895.66 31197.92 27497.70 33097.17 16199.66 28496.18 26099.23 27599.47 151
Syy-MVS96.04 30995.56 31597.49 30097.10 39494.48 30496.18 32896.58 36995.65 31294.77 38892.29 41591.27 32099.36 36698.17 11598.05 36298.63 325
myMVS_eth3d91.92 38090.45 38296.30 34797.10 39490.90 38296.18 32896.58 36995.65 31294.77 38892.29 41553.88 42399.36 36689.59 39498.05 36298.63 325
WB-MVSnew95.73 32095.57 31496.23 35296.70 40290.70 38696.07 33493.86 39995.60 31497.04 32995.45 39196.00 22099.55 32491.04 38398.31 34698.43 343
AdaColmapbinary97.14 26796.71 27898.46 21798.34 33397.80 17496.95 28498.93 25995.58 31596.92 33497.66 33195.87 23199.53 33190.97 38499.14 28998.04 364
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27699.28 18795.54 31699.42 8399.19 12497.27 15599.63 29597.89 13299.97 1999.20 235
9.1497.78 21099.07 21397.53 24599.32 16395.53 31798.54 22898.70 23697.58 13199.76 22894.32 32199.46 239
GA-MVS95.86 31595.32 32597.49 30098.60 30494.15 31493.83 40197.93 33495.49 31896.68 34897.42 34683.21 37699.30 37696.22 25698.55 34099.01 266
tpmvs95.02 33695.25 32694.33 38296.39 41085.87 40598.08 16896.83 36595.46 31995.51 38198.69 23785.91 35799.53 33194.16 32296.23 39797.58 386
KD-MVS_2432*160092.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
miper_refine_blended92.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
UnsupCasMVSNet_bld97.30 25396.92 26398.45 21899.28 16296.78 23496.20 32699.27 19095.42 32098.28 24998.30 29093.16 29399.71 25394.99 29897.37 37998.87 293
test_fmvs1_n98.09 19198.28 16097.52 29799.68 5693.47 33998.63 10599.93 595.41 32399.68 4099.64 3491.88 31599.48 34799.82 799.87 7699.62 70
PatchmatchNetpermissive95.58 32495.67 30995.30 37597.34 38887.32 40297.65 23196.65 36795.30 32497.07 32798.69 23784.77 36599.75 23594.97 30098.64 33498.83 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33693.41 40195.25 32599.47 7498.90 19795.63 23799.85 12696.91 19599.73 14499.27 221
MVS-HIRNet94.32 34495.62 31090.42 39998.46 32275.36 42396.29 32189.13 41595.25 32595.38 38299.75 1392.88 30099.19 38694.07 32899.39 24896.72 400
test_fmvs197.72 22297.94 20097.07 32198.66 29792.39 35797.68 22599.81 2595.20 32799.54 5799.44 7591.56 31899.41 36099.78 1499.77 12599.40 180
FA-MVS(test-final)96.99 27896.82 27197.50 29998.70 28294.78 29499.34 2096.99 35895.07 32898.48 23399.33 9588.41 34499.65 28996.13 26498.92 31698.07 363
OMC-MVS97.88 20797.49 23299.04 13198.89 25098.63 9196.94 28599.25 19695.02 32998.53 22998.51 26597.27 15599.47 35093.50 34499.51 22999.01 266
tpmrst95.07 33495.46 31793.91 38897.11 39384.36 41497.62 23496.96 36094.98 33096.35 36198.80 21985.46 36199.59 30995.60 28696.23 39797.79 378
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21799.28 18794.97 33198.72 20198.77 22597.04 16799.85 12693.79 33699.54 22099.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS96.67 28996.27 29997.87 26398.81 26494.61 30296.77 29597.92 33594.94 33297.12 32497.74 32791.11 32199.82 17193.89 33298.15 35599.18 242
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14499.27 19094.90 33397.83 28398.37 28294.90 25699.84 14493.85 33599.54 22099.51 127
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27699.38 13794.87 33498.97 15898.99 17698.01 9899.88 8997.29 16799.70 16499.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Fast-Effi-MVS+97.67 22697.38 23898.57 19998.71 27897.43 19797.23 26899.45 11394.82 33596.13 36496.51 36498.52 5699.91 6096.19 25898.83 31998.37 350
ET-MVSNet_ETH3D94.30 34693.21 35697.58 28998.14 34694.47 30594.78 38093.24 40394.72 33689.56 41495.87 37878.57 39699.81 18596.91 19597.11 38798.46 335
EPMVS93.72 35693.27 35595.09 37896.04 41387.76 40098.13 16085.01 42094.69 33796.92 33498.64 24978.47 39899.31 37495.04 29796.46 39498.20 356
test_vis1_rt97.75 22097.72 21697.83 26598.81 26496.35 24697.30 26399.69 3994.61 33897.87 27998.05 30996.26 21098.32 40798.74 8198.18 35198.82 297
cl2295.79 31895.39 32296.98 32496.77 40192.79 34994.40 39298.53 31094.59 33997.89 27798.17 29982.82 38099.24 38296.37 24799.03 30198.92 284
PVSNet_BlendedMVS97.55 23597.53 22997.60 28798.92 24193.77 33296.64 30299.43 12394.49 34097.62 29599.18 12896.82 18199.67 27394.73 30599.93 4399.36 196
sss97.21 26196.93 26198.06 25398.83 25995.22 28396.75 29798.48 31394.49 34097.27 32197.90 31992.77 30399.80 19296.57 22999.32 25899.16 249
tpm94.67 34094.34 34495.66 36697.68 37188.42 39697.88 19994.90 38894.46 34296.03 36998.56 26078.66 39499.79 20595.88 27195.01 40698.78 308
CLD-MVS97.49 23897.16 25198.48 21599.07 21397.03 22094.71 38199.21 20594.46 34298.06 26697.16 35497.57 13299.48 34794.46 31399.78 12098.95 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TESTMET0.1,192.19 37891.77 37693.46 39396.48 40782.80 41894.05 39891.52 41094.45 34494.00 39994.88 39866.65 41399.56 32095.78 27998.11 35798.02 365
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24199.73 3695.15 28597.36 25899.68 4494.45 34498.99 15399.27 10696.87 17799.94 3697.13 17999.91 6199.57 96
MDTV_nov1_ep1395.22 32897.06 39683.20 41797.74 21996.16 37494.37 34696.99 33298.83 21383.95 37399.53 33193.90 33197.95 366
TR-MVS95.55 32595.12 33196.86 33397.54 37693.94 32396.49 30996.53 37194.36 34797.03 33196.61 36394.26 27799.16 38886.91 40396.31 39697.47 389
jason97.45 24297.35 24197.76 27399.24 17193.93 32495.86 34698.42 31694.24 34898.50 23198.13 30094.82 26099.91 6097.22 17199.73 14499.43 165
jason: jason.
HyFIR lowres test97.19 26396.60 28798.96 14199.62 7597.28 20495.17 37099.50 8994.21 34999.01 15198.32 28986.61 35099.99 297.10 18199.84 8599.60 79
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17399.22 20494.16 35098.98 15499.10 14797.52 13999.79 20596.45 24399.64 18699.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mvsany_test197.60 23097.54 22897.77 27097.72 36395.35 27795.36 36697.13 35594.13 35199.71 3499.33 9597.93 10599.30 37697.60 15398.94 31498.67 323
ZD-MVS99.01 22598.84 7899.07 23694.10 35298.05 26898.12 30296.36 20799.86 11492.70 36199.19 283
thisisatest051594.12 35093.16 35796.97 32598.60 30492.90 34793.77 40290.61 41194.10 35296.91 33695.87 37874.99 40199.80 19294.52 31199.12 29498.20 356
USDC97.41 24697.40 23697.44 30498.94 23593.67 33595.17 37099.53 8394.03 35498.97 15899.10 14795.29 24799.34 37095.84 27799.73 14499.30 216
test-mter92.33 37691.76 37794.04 38696.53 40584.62 41294.05 39892.39 40594.00 35594.12 39695.07 39265.63 41799.67 27395.87 27498.18 35197.82 373
baseline293.73 35592.83 36196.42 34497.70 36891.28 37596.84 29289.77 41493.96 35692.44 40995.93 37679.14 39299.77 22292.94 35296.76 39298.21 355
pmmvs597.64 22897.49 23298.08 25199.14 20095.12 28796.70 30099.05 24093.77 35798.62 21398.83 21393.23 29199.75 23598.33 10799.76 13799.36 196
BH-w/o95.13 33394.89 33795.86 36098.20 34291.31 37395.65 35497.37 34693.64 35896.52 35595.70 38193.04 29899.02 39288.10 39895.82 40297.24 393
pmmvs497.58 23397.28 24498.51 21098.84 25796.93 22795.40 36598.52 31193.60 35998.61 21598.65 24695.10 25299.60 30596.97 19299.79 11598.99 271
CHOSEN 280x42095.51 32795.47 31695.65 36798.25 33888.27 39893.25 40598.88 26993.53 36094.65 39197.15 35586.17 35499.93 4297.41 16299.93 4398.73 314
lupinMVS97.06 27196.86 26797.65 28298.88 25193.89 32895.48 36197.97 33393.53 36098.16 25697.58 33693.81 28699.91 6096.77 21199.57 21299.17 246
PatchMatch-RL97.24 25996.78 27498.61 19299.03 22497.83 16796.36 31699.06 23793.49 36297.36 31997.78 32495.75 23499.49 34493.44 34598.77 32298.52 333
PC_three_145293.27 36399.40 8898.54 26198.22 8097.00 41495.17 29599.45 24199.49 134
DP-MVS Recon97.33 25196.92 26398.57 19999.09 20997.99 15096.79 29399.35 15093.18 36497.71 29098.07 30895.00 25599.31 37493.97 32999.13 29198.42 345
1112_ss97.29 25596.86 26798.58 19699.34 15396.32 24796.75 29799.58 5893.14 36596.89 34097.48 34292.11 31299.86 11496.91 19599.54 22099.57 96
FE-MVS95.66 32294.95 33597.77 27098.53 31695.28 28099.40 1696.09 37693.11 36697.96 27399.26 11079.10 39399.77 22292.40 36598.71 32798.27 354
IU-MVS99.49 11599.15 5198.87 27192.97 36799.41 8596.76 21299.62 19299.66 60
F-COLMAP97.30 25396.68 28099.14 11099.19 18598.39 11097.27 26799.30 17692.93 36896.62 35198.00 31195.73 23599.68 27092.62 36298.46 34299.35 200
FPMVS93.44 36092.23 36697.08 31999.25 17097.86 16495.61 35597.16 35492.90 36993.76 40398.65 24675.94 40095.66 41679.30 41697.49 37297.73 380
DSMNet-mixed97.42 24597.60 22696.87 33099.15 19991.46 36998.54 11699.12 22992.87 37097.58 29999.63 3596.21 21199.90 6695.74 28099.54 22099.27 221
dp93.47 35993.59 35293.13 39796.64 40381.62 42197.66 22996.42 37292.80 37196.11 36598.64 24978.55 39799.59 30993.31 34792.18 41598.16 358
PVSNet93.40 1795.67 32195.70 30795.57 36898.83 25988.57 39592.50 40897.72 33892.69 37296.49 35996.44 36893.72 28999.43 35793.61 33999.28 26698.71 315
new_pmnet96.99 27896.76 27597.67 28098.72 27594.89 29295.95 34198.20 32592.62 37398.55 22698.54 26194.88 25999.52 33593.96 33099.44 24498.59 330
原ACMM198.35 23098.90 24596.25 24998.83 28492.48 37496.07 36798.10 30495.39 24699.71 25392.61 36398.99 30899.08 254
IB-MVS91.63 1992.24 37790.90 38196.27 34997.22 39191.24 37794.36 39393.33 40292.37 37592.24 41094.58 40266.20 41699.89 7793.16 35094.63 40897.66 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CR-MVSNet96.28 30395.95 30297.28 31097.71 36694.22 30998.11 16498.92 26292.31 37696.91 33699.37 8485.44 36299.81 18597.39 16397.36 38197.81 375
HY-MVS95.94 1395.90 31495.35 32497.55 29497.95 35494.79 29398.81 9196.94 36292.28 37795.17 38498.57 25989.90 33199.75 23591.20 38197.33 38398.10 361
MAR-MVS96.47 29895.70 30798.79 16697.92 35699.12 6198.28 14598.60 30792.16 37895.54 37996.17 37294.77 26599.52 33589.62 39398.23 34897.72 381
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.32 30195.59 31398.51 21098.76 26997.21 21094.54 39098.26 32291.94 37996.37 36097.25 35293.06 29799.43 35791.42 37798.74 32398.89 289
train_agg97.10 26896.45 29399.07 12298.71 27898.08 14195.96 33999.03 24591.64 38095.85 37097.53 33896.47 20099.76 22893.67 33899.16 28699.36 196
test_898.67 29298.01 14995.91 34599.02 24891.64 38095.79 37297.50 34196.47 20099.76 228
CHOSEN 1792x268897.49 23897.14 25498.54 20799.68 5696.09 25496.50 30899.62 5191.58 38298.84 18598.97 18292.36 30899.88 8996.76 21299.95 3099.67 59
PMMVS96.51 29495.98 30198.09 24897.53 37895.84 26194.92 37798.84 28091.58 38296.05 36895.58 38295.68 23699.66 28495.59 28798.09 35898.76 311
Test_1112_low_res96.99 27896.55 28998.31 23499.35 15195.47 27395.84 34999.53 8391.51 38496.80 34598.48 27291.36 31999.83 16196.58 22799.53 22499.62 70
TEST998.71 27898.08 14195.96 33999.03 24591.40 38595.85 37097.53 33896.52 19899.76 228
PAPR95.29 32994.47 34097.75 27497.50 38495.14 28694.89 37898.71 30091.39 38695.35 38395.48 38794.57 26899.14 39084.95 40697.37 37998.97 275
131495.74 31995.60 31196.17 35597.53 37892.75 35198.07 17098.31 32191.22 38794.25 39496.68 36295.53 24099.03 39191.64 37397.18 38596.74 399
CDPH-MVS97.26 25696.66 28399.07 12299.00 22698.15 13096.03 33599.01 25191.21 38897.79 28697.85 32296.89 17699.69 26192.75 35999.38 25199.39 181
miper_enhance_ethall96.01 31095.74 30596.81 33496.41 40992.27 36193.69 40398.89 26891.14 38998.30 24597.35 35190.58 32699.58 31596.31 25199.03 30198.60 327
PVSNet_Blended96.88 28196.68 28097.47 30298.92 24193.77 33294.71 38199.43 12390.98 39097.62 29597.36 35096.82 18199.67 27394.73 30599.56 21598.98 272
PLCcopyleft94.65 1696.51 29495.73 30698.85 15698.75 27197.91 16096.42 31399.06 23790.94 39195.59 37397.38 34894.41 27199.59 30990.93 38598.04 36499.05 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet295.43 32894.98 33396.76 33798.14 34691.74 36597.92 19497.76 33790.23 39296.51 35698.91 19485.61 35999.85 12692.88 35496.90 38898.69 319
ADS-MVSNet95.24 33194.93 33696.18 35498.14 34690.10 39097.92 19497.32 35090.23 39296.51 35698.91 19485.61 35999.74 24092.88 35496.90 38898.69 319
QAPM97.31 25296.81 27398.82 15998.80 26797.49 19299.06 6299.19 21190.22 39497.69 29299.16 13496.91 17599.90 6690.89 38799.41 24699.07 256
PVSNet_089.98 2191.15 38290.30 38593.70 39197.72 36384.34 41590.24 41297.42 34590.20 39593.79 40293.09 41090.90 32498.89 40086.57 40472.76 41997.87 372
testdata98.09 24898.93 23795.40 27698.80 28790.08 39697.45 31298.37 28295.26 24899.70 25793.58 34198.95 31399.17 246
MDTV_nov1_ep13_2view74.92 42497.69 22490.06 39797.75 28985.78 35893.52 34298.69 319
OpenMVScopyleft96.65 797.09 26996.68 28098.32 23298.32 33497.16 21598.86 8699.37 14189.48 39896.29 36299.15 13896.56 19699.90 6692.90 35399.20 28097.89 370
无先验95.74 35298.74 29789.38 39999.73 24592.38 36699.22 234
CostFormer93.97 35293.78 34994.51 38197.53 37885.83 40797.98 18795.96 37889.29 40094.99 38798.63 25178.63 39599.62 29894.54 31096.50 39398.09 362
CMPMVSbinary75.91 2396.29 30295.44 31998.84 15796.25 41198.69 9097.02 28099.12 22988.90 40197.83 28398.86 20789.51 33398.90 39991.92 36799.51 22998.92 284
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs395.03 33594.40 34296.93 32697.70 36892.53 35495.08 37397.71 33988.57 40297.71 29098.08 30779.39 39199.82 17196.19 25899.11 29598.43 343
旧先验295.76 35188.56 40397.52 30599.66 28494.48 312
gm-plane-assit94.83 41781.97 42088.07 40494.99 39599.60 30591.76 370
新几何198.91 15098.94 23597.76 17698.76 29287.58 40596.75 34798.10 30494.80 26399.78 21692.73 36099.00 30699.20 235
PAPM91.88 38190.34 38496.51 34198.06 35192.56 35392.44 40997.17 35386.35 40690.38 41396.01 37386.61 35099.21 38570.65 41995.43 40497.75 379
tpm293.09 36592.58 36394.62 38097.56 37486.53 40497.66 22995.79 38286.15 40794.07 39898.23 29575.95 39999.53 33190.91 38696.86 39197.81 375
test22298.92 24196.93 22795.54 35798.78 29085.72 40896.86 34298.11 30394.43 27099.10 29699.23 230
cascas94.79 33994.33 34596.15 35896.02 41492.36 35992.34 41099.26 19585.34 40995.08 38694.96 39792.96 29998.53 40594.41 31998.59 33897.56 387
OpenMVS_ROBcopyleft95.38 1495.84 31795.18 33097.81 26798.41 33097.15 21697.37 25798.62 30683.86 41098.65 20998.37 28294.29 27699.68 27088.41 39698.62 33796.60 401
TAPA-MVS96.21 1196.63 29195.95 30298.65 18398.93 23798.09 13796.93 28799.28 18783.58 41198.13 26097.78 32496.13 21499.40 36193.52 34299.29 26598.45 338
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 36293.13 35993.75 39097.39 38784.74 41097.39 25597.65 34283.39 41294.16 39598.41 27782.86 37999.39 36391.56 37595.35 40597.14 394
dongtai76.24 38675.95 38977.12 40292.39 42067.91 42690.16 41359.44 42782.04 41389.42 41594.67 40149.68 42581.74 42048.06 42077.66 41881.72 416
114514_t96.50 29695.77 30498.69 18199.48 12297.43 19797.84 20699.55 7681.42 41496.51 35698.58 25895.53 24099.67 27393.41 34699.58 20898.98 272
PCF-MVS92.86 1894.36 34393.00 36098.42 22298.70 28297.56 18993.16 40699.11 23179.59 41597.55 30297.43 34592.19 31099.73 24579.85 41599.45 24197.97 369
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
kuosan69.30 38768.95 39070.34 40387.68 42465.00 42791.11 41159.90 42669.02 41674.46 42188.89 41848.58 42668.03 42228.61 42172.33 42077.99 417
MVS93.19 36492.09 36896.50 34296.91 39794.03 31998.07 17098.06 33268.01 41794.56 39396.48 36695.96 22799.30 37683.84 40896.89 39096.17 404
DeepMVS_CXcopyleft93.44 39498.24 33994.21 31194.34 39364.28 41891.34 41294.87 40089.45 33592.77 41977.54 41793.14 41293.35 414
tmp_tt78.77 38578.73 38878.90 40158.45 42674.76 42594.20 39578.26 42439.16 41986.71 41892.82 41380.50 38575.19 42186.16 40592.29 41486.74 415
test_method79.78 38479.50 38780.62 40080.21 42545.76 42870.82 41698.41 31831.08 42080.89 42097.71 32884.85 36497.37 41391.51 37680.03 41798.75 312
EGC-MVSNET85.24 38380.54 38699.34 7599.77 2699.20 3899.08 5899.29 18412.08 42120.84 42299.42 7797.55 13499.85 12697.08 18299.72 15298.96 277
test12317.04 39020.11 3937.82 40410.25 4284.91 42994.80 3794.47 4294.93 42210.00 42424.28 4219.69 4273.64 42310.14 42212.43 42214.92 419
testmvs17.12 38920.53 3926.87 40512.05 4274.20 43093.62 4046.73 4284.62 42310.41 42324.33 4208.28 4283.56 4249.69 42315.07 42112.86 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.66 38832.88 3910.00 4060.00 4290.00 4310.00 41799.10 2320.00 4240.00 42597.58 33699.21 160.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.17 39110.90 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42498.07 930.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.12 39210.83 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.48 3420.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.90 38291.37 378
MSC_two_6792asdad99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
No_MVS99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
eth-test20.00 429
eth-test0.00 429
OPU-MVS98.82 15998.59 30798.30 11898.10 16698.52 26498.18 8498.75 40294.62 30899.48 23899.41 171
test_0728_SECOND99.60 1499.50 10899.23 3098.02 17899.32 16399.88 8996.99 18999.63 18999.68 56
GSMVS98.81 301
test_part299.36 14799.10 6499.05 145
sam_mvs184.74 36698.81 301
sam_mvs84.29 372
ambc98.24 24098.82 26295.97 25898.62 10799.00 25399.27 11299.21 12196.99 17299.50 34196.55 23699.50 23699.26 224
MTGPAbinary99.20 207
test_post197.59 23920.48 42383.07 37899.66 28494.16 322
test_post21.25 42283.86 37499.70 257
patchmatchnet-post98.77 22584.37 36999.85 126
GG-mvs-BLEND94.76 37994.54 41892.13 36399.31 2780.47 42388.73 41791.01 41767.59 41298.16 41082.30 41394.53 40993.98 413
MTMP97.93 19191.91 409
test9_res93.28 34899.15 28899.38 188
agg_prior292.50 36499.16 28699.37 190
agg_prior98.68 29197.99 15099.01 25195.59 37399.77 222
test_prior497.97 15495.86 346
test_prior98.95 14398.69 28797.95 15899.03 24599.59 30999.30 216
新几何295.93 342
旧先验198.82 26297.45 19598.76 29298.34 28695.50 24399.01 30599.23 230
原ACMM295.53 358
testdata299.79 20592.80 358
segment_acmp97.02 170
test1298.93 14698.58 30997.83 16798.66 30296.53 35495.51 24299.69 26199.13 29199.27 221
plane_prior799.19 18597.87 163
plane_prior698.99 22997.70 18294.90 256
plane_prior599.27 19099.70 25794.42 31699.51 22999.45 157
plane_prior497.98 313
plane_prior199.05 220
n20.00 430
nn0.00 430
door-mid99.57 65
lessismore_v098.97 14099.73 3697.53 19186.71 41899.37 9399.52 6189.93 33099.92 5198.99 6599.72 15299.44 161
test1198.87 271
door99.41 130
HQP5-MVS96.79 231
BP-MVS92.82 356
HQP4-MVS95.56 37599.54 32999.32 209
HQP3-MVS99.04 24399.26 270
HQP2-MVS93.84 284
NP-MVS98.84 25797.39 19996.84 359
ACMMP++_ref99.77 125
ACMMP++99.68 172
Test By Simon96.52 198