This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 9100.00 199.85 19
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5299.90 299.86 1899.78 899.58 699.95 2399.00 6099.95 3099.78 31
UA-Net99.47 1399.40 2099.70 299.49 11499.29 1999.80 399.72 3099.82 399.04 14199.81 598.05 8799.96 1298.85 6899.99 599.86 18
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3499.31 39100.00 199.82 23
gg-mvs-nofinetune92.37 35391.20 35895.85 34295.80 39392.38 34699.31 2781.84 40099.75 591.83 38999.74 1368.29 39399.02 37387.15 38097.12 36596.16 383
SSC-MVS98.71 9898.74 8298.62 18599.72 4596.08 24798.74 8698.64 29399.74 699.67 3999.24 10694.57 25899.95 2399.11 5199.24 26599.82 23
LFMVS97.20 24996.72 26498.64 18098.72 27096.95 22098.93 7594.14 37899.74 698.78 18799.01 16084.45 35499.73 23797.44 15099.27 26099.25 219
Anonymous2023121199.27 3099.27 3499.26 9199.29 15798.18 12699.49 899.51 8299.70 899.80 2399.68 2096.84 16899.83 15499.21 4799.91 6199.77 33
SDMVSNet99.23 3899.32 2898.96 13999.68 5997.35 19798.84 8499.48 9399.69 999.63 4699.68 2099.03 2199.96 1297.97 12399.92 5399.57 90
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16599.69 999.63 4699.68 2099.25 1499.96 1297.25 16099.92 5399.57 90
nrg03099.40 2199.35 2399.54 2799.58 7699.13 5598.98 7299.48 9399.68 1199.46 6999.26 10198.62 4499.73 23799.17 5099.92 5399.76 37
VDDNet98.21 17297.95 18699.01 13399.58 7697.74 17699.01 6797.29 33899.67 1298.97 15299.50 5990.45 31399.80 18497.88 12999.20 27199.48 136
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 4899.66 1399.68 3799.66 2798.44 5799.95 2399.73 1799.96 2599.75 41
WB-MVS98.52 13898.55 11298.43 21499.65 6695.59 25898.52 11198.77 28099.65 1499.52 6099.00 16394.34 26499.93 3998.65 8398.83 30999.76 37
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 9999.36 3699.92 5399.64 62
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8299.64 1599.56 5199.46 6698.23 6999.97 498.78 7199.93 4299.72 44
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11498.36 11499.00 6999.45 10599.63 1799.52 6099.44 7198.25 6799.88 8299.09 5399.84 8499.62 66
DP-MVS98.93 7098.81 7899.28 8699.21 17298.45 10698.46 12499.33 15099.63 1799.48 6699.15 12797.23 14899.75 22797.17 16399.66 17699.63 65
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2599.67 2599.48 999.81 17799.30 4199.97 2099.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7599.62 2099.56 5199.42 7498.16 8099.96 1298.78 7199.93 4299.77 33
K. test v398.00 18897.66 21099.03 13199.79 2597.56 18699.19 4992.47 38399.62 2099.52 6099.66 2789.61 31899.96 1299.25 4499.81 9899.56 96
FC-MVSNet-test99.27 3099.25 3699.34 7399.77 2998.37 11199.30 3299.57 5999.61 2299.40 8199.50 5997.12 15399.85 12099.02 5999.94 3899.80 27
VDD-MVS98.56 12798.39 13999.07 12199.13 19698.07 14298.59 10397.01 34399.59 2399.11 12799.27 9994.82 24999.79 19798.34 10199.63 18299.34 196
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5099.59 2399.71 3199.57 4297.12 15399.90 6399.21 4799.87 7699.54 107
Gipumacopyleft99.03 5899.16 4398.64 18099.94 298.51 10299.32 2399.75 2999.58 2598.60 21099.62 3498.22 7299.51 32497.70 14099.73 14097.89 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030498.10 17997.88 19498.76 16998.82 25696.50 23397.90 18691.35 38999.56 2698.32 23899.13 13196.06 20699.93 3999.84 599.97 2099.85 19
MM98.91 14696.97 21797.89 18894.44 37299.54 2798.95 15599.14 13093.50 28099.92 4999.80 1099.96 2599.85 19
mvsmamba99.24 3799.15 4899.49 4899.83 2098.85 7499.41 1399.55 7099.54 2799.40 8199.52 5795.86 22099.91 5899.32 3899.95 3099.70 50
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 7899.53 2999.46 6999.41 7798.23 6999.95 2398.89 6799.95 3099.81 26
dcpmvs_298.78 8999.11 5097.78 26199.56 8893.67 32599.06 6399.86 1399.50 3099.66 4099.26 10197.21 15099.99 298.00 12199.91 6199.68 53
RRT_MVS99.09 5298.94 6599.55 2399.87 1298.82 7899.48 998.16 31599.49 3199.59 5099.65 3094.79 25499.95 2399.45 3399.96 2599.88 14
FIs99.14 4499.09 5399.29 8499.70 5598.28 11799.13 5599.52 8199.48 3299.24 11599.41 7796.79 17499.82 16498.69 8099.88 7399.76 37
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4399.48 3299.92 899.71 1798.07 8499.96 1299.53 28100.00 199.93 8
VPNet98.87 7798.83 7599.01 13399.70 5597.62 18598.43 12799.35 13999.47 3499.28 10499.05 14696.72 18099.82 16498.09 11499.36 24599.59 79
WR-MVS_H99.33 2699.22 3899.65 599.71 4899.24 2599.32 2399.55 7099.46 3599.50 6599.34 8897.30 14299.93 3998.90 6599.93 4299.77 33
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 699.99 599.99 1
tfpnnormal98.90 7498.90 6998.91 14699.67 6397.82 16999.00 6999.44 10999.45 3699.51 6499.24 10698.20 7599.86 10895.92 25799.69 16099.04 255
CS-MVS-test99.13 4799.09 5399.26 9199.13 19698.97 6699.31 2799.88 1199.44 3898.16 24798.51 25498.64 4199.93 3998.91 6499.85 8098.88 283
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5299.44 3899.78 2599.76 1096.39 19399.92 4999.44 3499.92 5399.68 53
FOURS199.73 3999.67 299.43 1199.54 7599.43 4099.26 110
CP-MVSNet99.21 3999.09 5399.56 2199.65 6698.96 7099.13 5599.34 14599.42 4199.33 9599.26 10197.01 16199.94 3498.74 7599.93 4299.79 28
TranMVSNet+NR-MVSNet99.17 4099.07 5699.46 5699.37 14598.87 7398.39 13199.42 11899.42 4199.36 9099.06 13998.38 6099.95 2398.34 10199.90 6899.57 90
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 5999.39 4399.75 2899.62 3499.17 1899.83 15499.06 5599.62 18599.66 57
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3199.38 4499.53 5899.61 3798.64 4199.80 18498.24 10599.84 8499.52 117
Baseline_NR-MVSNet98.98 6498.86 7399.36 6499.82 2298.55 9797.47 24099.57 5999.37 4599.21 11899.61 3796.76 17799.83 15498.06 11699.83 9199.71 45
SixPastTwentyTwo98.75 9498.62 10399.16 10699.83 2097.96 15699.28 3798.20 31299.37 4599.70 3399.65 3092.65 29599.93 3999.04 5799.84 8499.60 73
RPMNet97.02 26296.93 24897.30 29997.71 35594.22 30198.11 15699.30 16599.37 4596.91 32199.34 8886.72 33599.87 9997.53 14797.36 36197.81 354
CS-MVS99.13 4799.10 5299.24 9699.06 21199.15 4799.36 1999.88 1199.36 4898.21 24498.46 26298.68 4099.93 3999.03 5899.85 8098.64 315
Anonymous2024052198.69 10598.87 7098.16 23799.77 2995.11 27999.08 5999.44 10999.34 4999.33 9599.55 4894.10 27299.94 3499.25 4499.96 2599.42 160
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20299.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1199.99 599.96 5
bld_raw_dy_0_6499.07 5699.00 6099.29 8499.85 1798.18 12699.11 5899.40 12199.33 5099.38 8599.44 7195.21 23799.97 499.31 3999.98 1299.73 43
PatchT96.65 27896.35 28197.54 28597.40 36895.32 27097.98 17796.64 35399.33 5096.89 32599.42 7484.32 35699.81 17797.69 14297.49 35497.48 367
KD-MVS_self_test99.25 3399.18 4099.44 5799.63 7399.06 6498.69 9499.54 7599.31 5399.62 4999.53 5497.36 14099.86 10899.24 4699.71 15299.39 175
VNet98.42 14698.30 15198.79 16298.79 26397.29 20098.23 14398.66 29099.31 5398.85 17798.80 20994.80 25299.78 20898.13 11199.13 28299.31 207
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4499.30 5599.65 4399.60 3999.16 2099.82 16499.07 5499.83 9199.56 96
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13597.68 21399.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1699.98 1299.89 11
test_040298.76 9398.71 8898.93 14399.56 8898.14 13198.45 12699.34 14599.28 5798.95 15598.91 18498.34 6599.79 19795.63 27299.91 6198.86 285
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3199.27 5899.90 1299.74 1399.68 499.97 499.55 2799.99 599.88 14
Anonymous2024052998.93 7098.87 7099.12 11199.19 17998.22 12599.01 6798.99 24599.25 5999.54 5499.37 8097.04 15799.80 18497.89 12699.52 22099.35 194
test_fmvsmvis_n_192099.26 3299.49 1298.54 20299.66 6596.97 21798.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 306
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8097.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 499.99 599.29 212
casdiffmvs_mvgpermissive99.12 4999.16 4398.99 13599.43 13397.73 17898.00 17499.62 4599.22 6199.55 5399.22 11098.93 2699.75 22798.66 8299.81 9899.50 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet199.17 4099.17 4199.17 10399.55 9298.24 12099.20 4599.44 10999.21 6399.43 7499.55 4897.82 10399.86 10898.42 9899.89 7299.41 163
LS3D98.63 11998.38 14199.36 6497.25 37299.38 899.12 5799.32 15299.21 6398.44 22998.88 19497.31 14199.80 18496.58 21599.34 24998.92 276
alignmvs97.35 23696.88 25398.78 16598.54 30598.09 13697.71 21097.69 32899.20 6597.59 28795.90 36588.12 33299.55 31198.18 10998.96 30298.70 309
EI-MVSNet-UG-set98.69 10598.71 8898.62 18599.10 20096.37 23697.23 25698.87 26099.20 6599.19 12098.99 16497.30 14299.85 12098.77 7499.79 11399.65 61
EI-MVSNet-Vis-set98.68 11098.70 9198.63 18499.09 20396.40 23597.23 25698.86 26599.20 6599.18 12498.97 17097.29 14499.85 12098.72 7799.78 11899.64 62
JIA-IIPM95.52 31295.03 31797.00 31196.85 38094.03 31096.93 27495.82 36499.20 6594.63 37599.71 1783.09 36399.60 29594.42 30294.64 38697.36 370
canonicalmvs98.34 15698.26 15698.58 19298.46 31397.82 16998.96 7399.46 10299.19 6997.46 29995.46 37498.59 4799.46 33498.08 11598.71 31798.46 323
casdiffmvspermissive98.95 6899.00 6098.81 15799.38 13997.33 19897.82 19799.57 5999.17 7099.35 9299.17 12198.35 6499.69 25298.46 9599.73 14099.41 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet98.86 8098.68 9499.40 6299.17 18798.74 8297.68 21399.40 12199.14 7199.06 13498.59 24696.71 18199.93 3998.57 8899.77 12299.53 114
test111196.49 28696.82 25895.52 35099.42 13487.08 38399.22 4287.14 39599.11 7299.46 6999.58 4188.69 32499.86 10898.80 7099.95 3099.62 66
h-mvs3397.77 20897.33 23299.10 11599.21 17297.84 16598.35 13598.57 29699.11 7298.58 21499.02 15188.65 32799.96 1298.11 11296.34 37499.49 126
hse-mvs297.46 22897.07 24398.64 18098.73 26897.33 19897.45 24197.64 33199.11 7298.58 21497.98 30188.65 32799.79 19798.11 11297.39 35898.81 292
MVSFormer98.26 16798.43 13297.77 26298.88 24593.89 31999.39 1799.56 6699.11 7298.16 24798.13 28893.81 27699.97 499.26 4299.57 20599.43 157
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6699.11 7299.70 3399.73 1599.00 2299.97 499.26 4299.98 1299.89 11
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10699.48 6498.82 3199.95 2398.94 6399.93 4299.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 5599.00 6099.33 7899.71 4898.83 7698.60 10299.58 5299.11 7299.53 5899.18 11798.81 3299.67 26496.71 20999.77 12299.50 122
IterMVS-SCA-FT97.85 20498.18 16496.87 31999.27 16091.16 36595.53 33799.25 18599.10 7999.41 7899.35 8493.10 28599.96 1298.65 8399.94 3899.49 126
NR-MVSNet98.95 6898.82 7699.36 6499.16 18998.72 8799.22 4299.20 19699.10 7999.72 2998.76 21696.38 19599.86 10898.00 12199.82 9499.50 122
UGNet98.53 13598.45 12998.79 16297.94 34496.96 21999.08 5998.54 29799.10 7996.82 32999.47 6596.55 18799.84 13798.56 9199.94 3899.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4299.09 8299.89 1599.68 2099.53 799.97 499.50 3099.99 599.87 16
COLMAP_ROBcopyleft96.50 1098.99 6198.85 7499.41 6099.58 7699.10 6098.74 8699.56 6699.09 8299.33 9599.19 11498.40 5999.72 24495.98 25599.76 13399.42 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test250692.39 35291.89 35593.89 36799.38 13982.28 39799.32 2366.03 40399.08 8498.77 19099.57 4266.26 39899.84 13798.71 7899.95 3099.54 107
ECVR-MVScopyleft96.42 28896.61 27395.85 34299.38 13988.18 37999.22 4286.00 39799.08 8499.36 9099.57 4288.47 32999.82 16498.52 9299.95 3099.54 107
EC-MVSNet99.09 5299.05 5799.20 10099.28 15898.93 7199.24 4199.84 1899.08 8498.12 25298.37 27098.72 3699.90 6399.05 5699.77 12298.77 300
test20.0398.78 8998.77 8198.78 16599.46 12497.20 20797.78 20099.24 19099.04 8799.41 7898.90 18797.65 11399.76 22097.70 14099.79 11399.39 175
v899.01 5999.16 4398.57 19499.47 12396.31 23998.90 7799.47 10099.03 8899.52 6099.57 4296.93 16499.81 17799.60 2399.98 1299.60 73
EPP-MVSNet98.30 16198.04 18099.07 12199.56 8897.83 16699.29 3398.07 31999.03 8898.59 21299.13 13192.16 30099.90 6396.87 19399.68 16599.49 126
IS-MVSNet98.19 17497.90 19299.08 11999.57 8097.97 15399.31 2798.32 30799.01 9098.98 14899.03 15091.59 30599.79 19795.49 27799.80 10899.48 136
3Dnovator+97.89 398.69 10598.51 11799.24 9698.81 25998.40 10799.02 6699.19 20098.99 9198.07 25699.28 9797.11 15599.84 13796.84 19699.32 25199.47 143
PMVScopyleft91.26 2097.86 19997.94 18897.65 27499.71 4897.94 15898.52 11198.68 28998.99 9197.52 29499.35 8497.41 13798.18 38891.59 35699.67 17196.82 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EI-MVSNet98.40 14998.51 11798.04 24799.10 20094.73 28897.20 26098.87 26098.97 9399.06 13499.02 15196.00 21099.80 18498.58 8699.82 9499.60 73
EPNet96.14 29595.44 30598.25 22990.76 39995.50 26497.92 18394.65 37098.97 9392.98 38698.85 20089.12 32299.87 9995.99 25499.68 16599.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS98.55 13198.70 9198.09 23999.48 12194.73 28897.22 25999.39 12498.97 9399.38 8599.31 9496.00 21099.93 3998.58 8699.97 2099.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.35 23696.97 24798.50 20797.31 37196.47 23498.18 14898.92 25298.95 9698.78 18799.37 8085.44 34899.85 12095.96 25699.83 9199.17 240
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3498.93 9799.65 4399.72 1698.93 2699.95 2399.11 51100.00 199.82 23
UniMVSNet (Re)98.87 7798.71 8899.35 7099.24 16598.73 8597.73 20999.38 12698.93 9799.12 12698.73 21996.77 17599.86 10898.63 8599.80 10899.46 145
testf199.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
APD_test299.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
Anonymous20240521197.90 19397.50 22099.08 11998.90 23998.25 11998.53 11096.16 35998.87 10199.11 12798.86 19790.40 31499.78 20897.36 15499.31 25399.19 234
tt080598.69 10598.62 10398.90 14999.75 3699.30 1799.15 5396.97 34598.86 10298.87 17697.62 32398.63 4398.96 37699.41 3598.29 33298.45 325
baseline98.96 6799.02 5898.76 16999.38 13997.26 20298.49 11999.50 8498.86 10299.19 12099.06 13998.23 6999.69 25298.71 7899.76 13399.33 201
IterMVS97.73 21098.11 17396.57 32799.24 16590.28 37095.52 33999.21 19498.86 10299.33 9599.33 9093.11 28499.94 3498.49 9499.94 3899.48 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS98.82 8398.63 10199.39 6399.16 18998.74 8297.54 23299.25 18598.84 10599.06 13498.76 21696.76 17799.93 3998.57 8899.77 12299.50 122
MTAPA98.88 7698.64 10099.61 999.67 6399.36 1198.43 12799.20 19698.83 10698.89 16898.90 18796.98 16399.92 4997.16 16499.70 15799.56 96
v1098.97 6599.11 5098.55 19999.44 12896.21 24198.90 7799.55 7098.73 10799.48 6699.60 3996.63 18499.83 15499.70 2099.99 599.61 72
UnsupCasMVSNet_eth97.89 19597.60 21598.75 17299.31 15397.17 21097.62 22299.35 13998.72 10898.76 19298.68 22892.57 29699.74 23297.76 13995.60 38299.34 196
SR-MVS-dyc-post98.81 8598.55 11299.57 1699.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.49 13499.86 10896.56 22199.39 24199.45 149
RE-MVS-def98.58 11099.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.75 10796.56 22199.39 24199.45 149
Fast-Effi-MVS+-dtu98.27 16598.09 17498.81 15798.43 31698.11 13397.61 22499.50 8498.64 10997.39 30497.52 32898.12 8399.95 2396.90 19098.71 31798.38 330
APD-MVS_3200maxsize98.84 8198.61 10799.53 3499.19 17999.27 2298.49 11999.33 15098.64 10999.03 14498.98 16897.89 9799.85 12096.54 22599.42 23899.46 145
XVS98.72 9798.45 12999.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29298.63 24097.50 13199.83 15496.79 19899.53 21799.56 96
X-MVStestdata94.32 32892.59 34699.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29245.85 39597.50 13199.83 15496.79 19899.53 21799.56 96
GBi-Net98.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
test198.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
FMVSNet298.49 14098.40 13698.75 17298.90 23997.14 21398.61 10199.13 21898.59 11599.19 12099.28 9794.14 26899.82 16497.97 12399.80 10899.29 212
WR-MVS98.40 14998.19 16399.03 13199.00 22097.65 18296.85 27898.94 24798.57 11898.89 16898.50 25895.60 22699.85 12097.54 14699.85 8099.59 79
3Dnovator98.27 298.81 8598.73 8499.05 12898.76 26497.81 17199.25 4099.30 16598.57 11898.55 21999.33 9097.95 9599.90 6397.16 16499.67 17199.44 153
fmvsm_s_conf0.1_n99.16 4399.33 2698.64 18099.71 4896.10 24297.87 19299.85 1598.56 12099.90 1299.68 2098.69 3999.85 12099.72 1999.98 1299.97 3
fmvsm_s_conf0.5_n99.09 5299.26 3598.61 18899.55 9296.09 24597.74 20799.81 2398.55 12199.85 1999.55 4898.60 4699.84 13799.69 2299.98 1299.89 11
test_one_060199.39 13899.20 3499.31 15798.49 12298.66 20199.02 15197.64 116
XXY-MVS99.14 4499.15 4899.10 11599.76 3297.74 17698.85 8299.62 4598.48 12399.37 8899.49 6398.75 3499.86 10898.20 10899.80 10899.71 45
GeoE99.05 5798.99 6399.25 9499.44 12898.35 11598.73 8999.56 6698.42 12498.91 16598.81 20898.94 2599.91 5898.35 10099.73 14099.49 126
LCM-MVSNet-Re98.64 11798.48 12499.11 11398.85 25098.51 10298.49 11999.83 2098.37 12599.69 3599.46 6698.21 7499.92 4994.13 31299.30 25698.91 279
MDA-MVSNet-bldmvs97.94 19297.91 19198.06 24499.44 12894.96 28296.63 29099.15 21698.35 12698.83 18199.11 13494.31 26599.85 12096.60 21498.72 31599.37 184
thres600view794.45 32693.83 33296.29 33399.06 21191.53 35597.99 17694.24 37698.34 12797.44 30195.01 37879.84 37399.67 26484.33 38598.23 33397.66 362
test_vis1_n_192098.40 14998.92 6796.81 32399.74 3890.76 36998.15 15299.91 798.33 12899.89 1599.55 4895.07 24299.88 8299.76 1499.93 4299.79 28
thres100view90094.19 33193.67 33595.75 34599.06 21191.35 35998.03 16894.24 37698.33 12897.40 30394.98 38079.84 37399.62 28883.05 38798.08 34496.29 380
Vis-MVSNet (Re-imp)97.46 22897.16 23998.34 22299.55 9296.10 24298.94 7498.44 30298.32 13098.16 24798.62 24288.76 32399.73 23793.88 31999.79 11399.18 236
new-patchmatchnet98.35 15598.74 8297.18 30499.24 16592.23 35096.42 29999.48 9398.30 13199.69 3599.53 5497.44 13699.82 16498.84 6999.77 12299.49 126
v14898.45 14498.60 10898.00 24999.44 12894.98 28197.44 24299.06 22898.30 13199.32 10198.97 17096.65 18399.62 28898.37 9999.85 8099.39 175
ACMH96.65 799.25 3399.24 3799.26 9199.72 4598.38 10999.07 6299.55 7098.30 13199.65 4399.45 7099.22 1599.76 22098.44 9699.77 12299.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS98.71 9898.43 13299.57 1699.18 18699.35 1298.36 13499.29 17398.29 13498.88 17298.85 20097.53 12799.87 9996.14 24999.31 25399.48 136
Effi-MVS+-dtu98.26 16797.90 19299.35 7098.02 34199.49 598.02 17099.16 21198.29 13497.64 28397.99 30096.44 19299.95 2396.66 21298.93 30598.60 318
APD_test198.83 8298.66 9799.34 7399.78 2699.47 698.42 12999.45 10598.28 13698.98 14899.19 11497.76 10699.58 30396.57 21799.55 21198.97 267
save fliter99.11 19897.97 15396.53 29399.02 23998.24 137
EU-MVSNet97.66 21698.50 11995.13 35699.63 7385.84 38698.35 13598.21 31198.23 13899.54 5499.46 6695.02 24399.68 26198.24 10599.87 7699.87 16
fmvsm_s_conf0.1_n_a99.17 4099.30 3298.80 15999.75 3696.59 23197.97 18099.86 1398.22 13999.88 1799.71 1798.59 4799.84 13799.73 1799.98 1299.98 2
fmvsm_s_conf0.5_n_a99.10 5199.20 3998.78 16599.55 9296.59 23197.79 19999.82 2298.21 14099.81 2299.53 5498.46 5699.84 13799.70 2099.97 2099.90 10
test_yl96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
DCV-MVSNet96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
baseline195.96 30195.44 30597.52 28798.51 31093.99 31398.39 13196.09 36198.21 14098.40 23697.76 31486.88 33499.63 28695.42 27889.27 39498.95 270
SD-MVS98.40 14998.68 9497.54 28598.96 22797.99 14997.88 18999.36 13498.20 14499.63 4699.04 14898.76 3395.33 39696.56 22199.74 13799.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS97.99 19197.67 20798.93 14399.19 17997.65 18297.77 20299.27 17998.20 14497.79 27597.98 30194.90 24599.70 24894.42 30299.51 22299.45 149
plane_prior297.77 20298.20 144
DVP-MVS++98.90 7498.70 9199.51 4398.43 31699.15 4799.43 1199.32 15298.17 14799.26 11099.02 15198.18 7699.88 8297.07 17399.45 23499.49 126
test_0728_THIRD98.17 14799.08 13299.02 15197.89 9799.88 8297.07 17399.71 15299.70 50
E-PMN94.17 33294.37 32793.58 37096.86 37985.71 38890.11 39097.07 34298.17 14797.82 27497.19 34184.62 35398.94 37789.77 37297.68 35396.09 386
patch_mono-298.51 13998.63 10198.17 23599.38 13994.78 28597.36 24699.69 3498.16 15098.49 22599.29 9697.06 15699.97 498.29 10499.91 6199.76 37
EG-PatchMatch MVS98.99 6199.01 5998.94 14299.50 10797.47 19098.04 16799.59 5098.15 15199.40 8199.36 8398.58 4999.76 22098.78 7199.68 16599.59 79
iter_conf_final97.10 25596.65 27298.45 21198.53 30796.08 24798.30 13799.11 22198.10 15298.85 17798.95 17779.38 37899.87 9998.68 8199.91 6199.40 172
ETV-MVS98.03 18597.86 19698.56 19898.69 28298.07 14297.51 23699.50 8498.10 15297.50 29695.51 37198.41 5899.88 8296.27 24199.24 26597.71 361
tttt051795.64 30994.98 31897.64 27699.36 14693.81 32198.72 9090.47 39198.08 15498.67 19998.34 27473.88 39099.92 4997.77 13599.51 22299.20 229
SED-MVS98.91 7298.72 8699.49 4899.49 11499.17 3998.10 15899.31 15798.03 15599.66 4099.02 15198.36 6199.88 8296.91 18599.62 18599.41 163
test_241102_TWO99.30 16598.03 15599.26 11099.02 15197.51 13099.88 8296.91 18599.60 19299.66 57
test_241102_ONE99.49 11499.17 3999.31 15797.98 15799.66 4098.90 18798.36 6199.48 329
DVP-MVScopyleft98.77 9298.52 11699.52 3999.50 10799.21 2898.02 17098.84 26997.97 15899.08 13299.02 15197.61 11999.88 8296.99 17999.63 18299.48 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10799.21 2898.17 15199.35 13997.97 15899.26 11099.06 13997.61 119
dmvs_re95.98 30095.39 30897.74 26898.86 24797.45 19298.37 13395.69 36697.95 16096.56 33895.95 36390.70 31197.68 39088.32 37796.13 37898.11 340
tfpn200view994.03 33593.44 33795.78 34498.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34496.29 380
thres40094.14 33393.44 33796.24 33598.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34497.66 362
EMVS93.83 33894.02 33093.23 37496.83 38184.96 38989.77 39196.32 35897.92 16397.43 30296.36 35986.17 34098.93 37887.68 37997.73 35295.81 387
SteuartSystems-ACMMP98.79 8798.54 11499.54 2799.73 3999.16 4398.23 14399.31 15797.92 16398.90 16698.90 18798.00 9099.88 8296.15 24899.72 14799.58 85
Skip Steuart: Steuart Systems R&D Blog.
v2v48298.56 12798.62 10398.37 22099.42 13495.81 25597.58 22899.16 21197.90 16599.28 10499.01 16095.98 21499.79 19799.33 3799.90 6899.51 119
FMVSNet397.50 22497.24 23598.29 22798.08 33995.83 25497.86 19498.91 25497.89 16698.95 15598.95 17787.06 33399.81 17797.77 13599.69 16099.23 224
V4298.78 8998.78 8098.76 16999.44 12897.04 21498.27 14099.19 20097.87 16799.25 11499.16 12396.84 16899.78 20899.21 4799.84 8499.46 145
CSCG98.68 11098.50 11999.20 10099.45 12798.63 8998.56 10699.57 5997.87 16798.85 17798.04 29897.66 11299.84 13796.72 20799.81 9899.13 244
xiu_mvs_v1_base_debu97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base_debi97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
test_vis3_rt99.14 4499.17 4199.07 12199.78 2698.38 10998.92 7699.94 297.80 17299.91 1199.67 2597.15 15298.91 37999.76 1499.56 20899.92 9
diffmvspermissive98.22 17198.24 15898.17 23599.00 22095.44 26696.38 30199.58 5297.79 17398.53 22298.50 25896.76 17799.74 23297.95 12599.64 17999.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs399.12 4999.41 1998.25 22999.76 3295.07 28099.05 6599.94 297.78 17499.82 2199.84 298.56 5099.71 24599.96 199.96 2599.97 3
CANet97.87 19897.76 20098.19 23497.75 35295.51 26396.76 28399.05 23197.74 17596.93 31898.21 28495.59 22799.89 7397.86 13199.93 4299.19 234
iter_conf0596.54 28296.07 28897.92 25197.90 34794.50 29597.87 19299.14 21797.73 17698.89 16898.95 17775.75 38899.87 9998.50 9399.92 5399.40 172
DELS-MVS98.27 16598.20 16198.48 20898.86 24796.70 22995.60 33599.20 19697.73 17698.45 22898.71 22297.50 13199.82 16498.21 10799.59 19698.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF98.62 12198.36 14399.42 5899.65 6699.42 798.55 10799.57 5997.72 17898.90 16699.26 10196.12 20499.52 32095.72 26899.71 15299.32 203
MVS_Test98.18 17598.36 14397.67 27298.48 31194.73 28898.18 14899.02 23997.69 17998.04 26099.11 13497.22 14999.56 30898.57 8898.90 30798.71 306
DPE-MVScopyleft98.59 12598.26 15699.57 1699.27 16099.15 4797.01 26899.39 12497.67 18099.44 7398.99 16497.53 12799.89 7395.40 27999.68 16599.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ab-mvs98.41 14798.36 14398.59 19199.19 17997.23 20399.32 2398.81 27497.66 18198.62 20699.40 7996.82 17199.80 18495.88 25899.51 22298.75 303
MSDG97.71 21297.52 21998.28 22898.91 23896.82 22494.42 36999.37 13097.65 18298.37 23798.29 27997.40 13899.33 35394.09 31399.22 26898.68 313
NCCC97.86 19997.47 22499.05 12898.61 29398.07 14296.98 27098.90 25597.63 18397.04 31597.93 30695.99 21399.66 27595.31 28098.82 31199.43 157
test_cas_vis1_n_192098.33 15798.68 9497.27 30199.69 5792.29 34898.03 16899.85 1597.62 18499.96 499.62 3493.98 27399.74 23299.52 2999.86 7999.79 28
PM-MVS98.82 8398.72 8699.12 11199.64 7098.54 10097.98 17799.68 3997.62 18499.34 9499.18 11797.54 12599.77 21497.79 13499.74 13799.04 255
ACMM96.08 1298.91 7298.73 8499.48 5199.55 9299.14 5298.07 16299.37 13097.62 18499.04 14198.96 17398.84 3099.79 19797.43 15199.65 17799.49 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft98.46 14398.09 17499.54 2799.57 8099.22 2798.50 11899.19 20097.61 18797.58 28898.66 23397.40 13899.88 8294.72 29399.60 19299.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR98.25 16998.08 17798.75 17299.09 20397.46 19195.97 31899.27 17997.60 18897.99 26298.25 28098.15 8299.38 34696.87 19399.57 20599.42 160
MVS_111021_LR98.30 16198.12 17298.83 15499.16 18998.03 14796.09 31599.30 16597.58 18998.10 25498.24 28198.25 6799.34 35196.69 21099.65 17799.12 245
APDe-MVScopyleft98.99 6198.79 7999.60 1199.21 17299.15 4798.87 7999.48 9397.57 19099.35 9299.24 10697.83 10099.89 7397.88 12999.70 15799.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
API-MVS97.04 26196.91 25297.42 29597.88 34898.23 12498.18 14898.50 30097.57 19097.39 30496.75 34996.77 17599.15 37090.16 37199.02 29594.88 390
testing393.51 34292.09 35097.75 26698.60 29594.40 29897.32 24995.26 36897.56 19296.79 33195.50 37253.57 40299.77 21495.26 28198.97 30199.08 247
DeepC-MVS97.60 498.97 6598.93 6699.10 11599.35 15097.98 15298.01 17399.46 10297.56 19299.54 5499.50 5998.97 2399.84 13798.06 11699.92 5399.49 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.40 14998.00 18399.61 999.57 8099.25 2498.57 10599.35 13997.55 19499.31 10397.71 31694.61 25799.88 8296.14 24999.19 27499.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.70 10298.42 13499.52 3999.36 14699.12 5798.72 9099.36 13497.54 19598.30 23998.40 26697.86 9999.89 7396.53 22699.72 14799.56 96
v114498.60 12398.66 9798.41 21699.36 14695.90 25197.58 22899.34 14597.51 19699.27 10699.15 12796.34 19899.80 18499.47 3299.93 4299.51 119
PMMVS298.07 18498.08 17798.04 24799.41 13694.59 29494.59 36699.40 12197.50 19798.82 18498.83 20396.83 17099.84 13797.50 14999.81 9899.71 45
ITE_SJBPF98.87 15099.22 17098.48 10499.35 13997.50 19798.28 24198.60 24597.64 11699.35 35093.86 32099.27 26098.79 298
MVSTER96.86 27096.55 27797.79 26097.91 34694.21 30397.56 23098.87 26097.49 19999.06 13499.05 14680.72 37099.80 18498.44 9699.82 9499.37 184
Patchmatch-RL test97.26 24397.02 24697.99 25099.52 10295.53 26296.13 31499.71 3197.47 20099.27 10699.16 12384.30 35799.62 28897.89 12699.77 12298.81 292
HFP-MVS98.71 9898.44 13199.51 4399.49 11499.16 4398.52 11199.31 15797.47 20098.58 21498.50 25897.97 9499.85 12096.57 21799.59 19699.53 114
MSLP-MVS++98.02 18698.14 17197.64 27698.58 30095.19 27597.48 23899.23 19297.47 20097.90 26698.62 24297.04 15798.81 38297.55 14499.41 23998.94 274
ACMMPR98.70 10298.42 13499.54 2799.52 10299.14 5298.52 11199.31 15797.47 20098.56 21798.54 25097.75 10799.88 8296.57 21799.59 19699.58 85
mPP-MVS98.64 11798.34 14699.54 2799.54 9799.17 3998.63 9899.24 19097.47 20098.09 25598.68 22897.62 11899.89 7396.22 24399.62 18599.57 90
region2R98.69 10598.40 13699.54 2799.53 10099.17 3998.52 11199.31 15797.46 20598.44 22998.51 25497.83 10099.88 8296.46 23099.58 20199.58 85
HPM-MVS++copyleft98.10 17997.64 21299.48 5199.09 20399.13 5597.52 23498.75 28497.46 20596.90 32497.83 31196.01 20999.84 13795.82 26599.35 24799.46 145
TinyColmap97.89 19597.98 18497.60 27898.86 24794.35 30096.21 30999.44 10997.45 20799.06 13498.88 19497.99 9399.28 36194.38 30699.58 20199.18 236
GST-MVS98.61 12298.30 15199.52 3999.51 10499.20 3498.26 14199.25 18597.44 20898.67 19998.39 26797.68 11099.85 12096.00 25399.51 22299.52 117
v119298.60 12398.66 9798.41 21699.27 16095.88 25297.52 23499.36 13497.41 20999.33 9599.20 11396.37 19699.82 16499.57 2599.92 5399.55 103
plane_prior397.78 17397.41 20997.79 275
EIA-MVS98.00 18897.74 20298.80 15998.72 27098.09 13698.05 16599.60 4997.39 21196.63 33595.55 37097.68 11099.80 18496.73 20699.27 26098.52 321
thres20093.72 34093.14 34295.46 35398.66 29091.29 36196.61 29194.63 37197.39 21196.83 32893.71 38879.88 37299.56 30882.40 39098.13 34195.54 389
testgi98.32 15898.39 13998.13 23899.57 8095.54 26197.78 20099.49 9197.37 21399.19 12097.65 32098.96 2499.49 32696.50 22898.99 29899.34 196
mvs_anonymous97.83 20798.16 16896.87 31998.18 33391.89 35297.31 25098.90 25597.37 21398.83 18199.46 6696.28 19999.79 19798.90 6598.16 33998.95 270
EPNet_dtu94.93 32294.78 32395.38 35493.58 39687.68 38196.78 28195.69 36697.35 21589.14 39398.09 29488.15 33199.49 32694.95 28799.30 25698.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test96.55 28196.34 28297.17 30598.35 32293.06 33298.40 13097.79 32497.33 21698.41 23298.67 23083.68 36199.69 25295.16 28399.31 25398.77 300
HPM-MVS_fast99.01 5998.82 7699.57 1699.71 4899.35 1299.00 6999.50 8497.33 21698.94 16298.86 19798.75 3499.82 16497.53 14799.71 15299.56 96
XVG-OURS-SEG-HR98.49 14098.28 15399.14 10999.49 11498.83 7696.54 29299.48 9397.32 21899.11 12798.61 24499.33 1399.30 35796.23 24298.38 32999.28 214
DeepC-MVS_fast96.85 698.30 16198.15 16998.75 17298.61 29397.23 20397.76 20599.09 22597.31 21998.75 19398.66 23397.56 12399.64 28396.10 25299.55 21199.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+98.02 18697.82 19898.62 18598.53 30797.19 20897.33 24899.68 3997.30 22096.68 33397.46 33298.56 5099.80 18496.63 21398.20 33598.86 285
XVG-OURS98.53 13598.34 14699.11 11399.50 10798.82 7895.97 31899.50 8497.30 22099.05 13998.98 16899.35 1299.32 35495.72 26899.68 16599.18 236
ZNCC-MVS98.68 11098.40 13699.54 2799.57 8099.21 2898.46 12499.29 17397.28 22298.11 25398.39 26798.00 9099.87 9996.86 19599.64 17999.55 103
eth_miper_zixun_eth97.23 24797.25 23497.17 30598.00 34292.77 33994.71 35999.18 20497.27 22398.56 21798.74 21891.89 30399.69 25297.06 17599.81 9899.05 251
MDA-MVSNet_test_wron97.60 21997.66 21097.41 29699.04 21593.09 33195.27 34598.42 30397.26 22498.88 17298.95 17795.43 23399.73 23797.02 17698.72 31599.41 163
miper_lstm_enhance97.18 25197.16 23997.25 30398.16 33492.85 33795.15 35099.31 15797.25 22598.74 19598.78 21290.07 31599.78 20897.19 16299.80 10899.11 246
xiu_mvs_v2_base97.16 25397.49 22196.17 33798.54 30592.46 34395.45 34198.84 26997.25 22597.48 29896.49 35398.31 6699.90 6396.34 23798.68 32096.15 384
PS-MVSNAJ97.08 25897.39 22696.16 33998.56 30392.46 34395.24 34798.85 26897.25 22597.49 29795.99 36298.07 8499.90 6396.37 23498.67 32196.12 385
YYNet197.60 21997.67 20797.39 29799.04 21593.04 33595.27 34598.38 30697.25 22598.92 16498.95 17795.48 23299.73 23796.99 17998.74 31399.41 163
XVG-ACMP-BASELINE98.56 12798.34 14699.22 9999.54 9798.59 9497.71 21099.46 10297.25 22598.98 14898.99 16497.54 12599.84 13795.88 25899.74 13799.23 224
CNVR-MVS98.17 17797.87 19599.07 12198.67 28598.24 12097.01 26898.93 24997.25 22597.62 28498.34 27497.27 14599.57 30596.42 23299.33 25099.39 175
CANet_DTU97.26 24397.06 24497.84 25697.57 36094.65 29296.19 31198.79 27797.23 23195.14 36998.24 28193.22 28299.84 13797.34 15599.84 8499.04 255
v192192098.54 13398.60 10898.38 21999.20 17695.76 25797.56 23099.36 13497.23 23199.38 8599.17 12196.02 20899.84 13799.57 2599.90 6899.54 107
MIMVSNet96.62 28096.25 28797.71 27199.04 21594.66 29199.16 5196.92 34997.23 23197.87 26899.10 13686.11 34299.65 28091.65 35499.21 27098.82 288
FMVSNet596.01 29895.20 31498.41 21697.53 36396.10 24298.74 8699.50 8497.22 23498.03 26199.04 14869.80 39299.88 8297.27 15899.71 15299.25 219
thisisatest053095.27 31694.45 32597.74 26899.19 17994.37 29997.86 19490.20 39297.17 23598.22 24397.65 32073.53 39199.90 6396.90 19099.35 24798.95 270
v124098.55 13198.62 10398.32 22399.22 17095.58 26097.51 23699.45 10597.16 23699.45 7299.24 10696.12 20499.85 12099.60 2399.88 7399.55 103
ACMMPcopyleft98.75 9498.50 11999.52 3999.56 8899.16 4398.87 7999.37 13097.16 23698.82 18499.01 16097.71 10999.87 9996.29 24099.69 16099.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14419298.54 13398.57 11198.45 21199.21 17295.98 24997.63 22199.36 13497.15 23899.32 10199.18 11795.84 22199.84 13799.50 3099.91 6199.54 107
OPM-MVS98.56 12798.32 15099.25 9499.41 13698.73 8597.13 26599.18 20497.10 23998.75 19398.92 18398.18 7699.65 28096.68 21199.56 20899.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
c3_l97.36 23597.37 22897.31 29898.09 33893.25 33095.01 35399.16 21197.05 24098.77 19098.72 22192.88 29099.64 28396.93 18499.76 13399.05 251
cl____97.02 26296.83 25797.58 28097.82 35094.04 30994.66 36299.16 21197.04 24198.63 20498.71 22288.68 32699.69 25297.00 17799.81 9899.00 262
DIV-MVS_self_test97.02 26296.84 25697.58 28097.82 35094.03 31094.66 36299.16 21197.04 24198.63 20498.71 22288.69 32499.69 25297.00 17799.81 9899.01 259
PGM-MVS98.66 11498.37 14299.55 2399.53 10099.18 3898.23 14399.49 9197.01 24398.69 19798.88 19498.00 9099.89 7395.87 26199.59 19699.58 85
TSAR-MVS + MP.98.63 11998.49 12399.06 12799.64 7097.90 16098.51 11698.94 24796.96 24499.24 11598.89 19397.83 10099.81 17796.88 19299.49 23099.48 136
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dmvs_testset92.94 34892.21 34995.13 35698.59 29890.99 36697.65 21992.09 38696.95 24594.00 38293.55 38992.34 29896.97 39372.20 39692.52 39197.43 369
ACMMP_NAP98.75 9498.48 12499.57 1699.58 7699.29 1997.82 19799.25 18596.94 24698.78 18799.12 13398.02 8899.84 13797.13 16999.67 17199.59 79
CVMVSNet96.25 29397.21 23793.38 37399.10 20080.56 40097.20 26098.19 31496.94 24699.00 14699.02 15189.50 32099.80 18496.36 23699.59 19699.78 31
CNLPA97.17 25296.71 26598.55 19998.56 30398.05 14696.33 30398.93 24996.91 24897.06 31497.39 33594.38 26399.45 33591.66 35399.18 27698.14 339
DeepPCF-MVS96.93 598.32 15898.01 18299.23 9898.39 32198.97 6695.03 35299.18 20496.88 24999.33 9598.78 21298.16 8099.28 36196.74 20499.62 18599.44 153
wuyk23d96.06 29697.62 21491.38 37698.65 29298.57 9698.85 8296.95 34796.86 25099.90 1299.16 12399.18 1798.40 38689.23 37599.77 12277.18 394
AllTest98.44 14598.20 16199.16 10699.50 10798.55 9798.25 14299.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
TestCases99.16 10699.50 10798.55 9799.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
test_fmvs298.70 10298.97 6497.89 25499.54 9794.05 30798.55 10799.92 696.78 25399.72 2999.78 896.60 18599.67 26499.91 299.90 6899.94 7
SF-MVS98.53 13598.27 15599.32 8099.31 15398.75 8198.19 14799.41 11996.77 25498.83 18198.90 18797.80 10499.82 16495.68 27199.52 22099.38 182
HPM-MVScopyleft98.79 8798.53 11599.59 1599.65 6699.29 1999.16 5199.43 11596.74 25598.61 20898.38 26998.62 4499.87 9996.47 22999.67 17199.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
plane_prior97.65 18297.07 26696.72 25699.36 245
BH-untuned96.83 27196.75 26397.08 30898.74 26793.33 32996.71 28698.26 30996.72 25698.44 22997.37 33795.20 23899.47 33291.89 35197.43 35798.44 327
BH-RMVSNet96.83 27196.58 27697.58 28098.47 31294.05 30796.67 28897.36 33496.70 25897.87 26897.98 30195.14 24099.44 33790.47 37098.58 32699.25 219
TAMVS98.24 17098.05 17998.80 15999.07 20797.18 20997.88 18998.81 27496.66 25999.17 12599.21 11194.81 25199.77 21496.96 18399.88 7399.44 153
LPG-MVS_test98.71 9898.46 12899.47 5499.57 8098.97 6698.23 14399.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
LGP-MVS_train99.47 5499.57 8098.97 6699.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
CL-MVSNet_self_test97.44 23197.22 23698.08 24298.57 30295.78 25694.30 37298.79 27796.58 26298.60 21098.19 28694.74 25699.64 28396.41 23398.84 30898.82 288
our_test_397.39 23497.73 20496.34 33198.70 27789.78 37294.61 36598.97 24696.50 26399.04 14198.85 20095.98 21499.84 13797.26 15999.67 17199.41 163
mvsany_test398.87 7798.92 6798.74 17699.38 13996.94 22198.58 10499.10 22396.49 26499.96 499.81 598.18 7699.45 33598.97 6299.79 11399.83 22
test_prior295.74 33196.48 26596.11 34997.63 32295.92 21894.16 30899.20 271
MG-MVS96.77 27496.61 27397.26 30298.31 32593.06 33295.93 32398.12 31896.45 26697.92 26498.73 21993.77 27899.39 34491.19 36499.04 29199.33 201
MVP-Stereo98.08 18397.92 19098.57 19498.96 22796.79 22597.90 18699.18 20496.41 26798.46 22798.95 17795.93 21799.60 29596.51 22798.98 30099.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test97.50 22497.74 20296.78 32598.70 27791.23 36494.55 36799.05 23196.36 26899.21 11898.79 21196.39 19399.78 20896.74 20499.82 9499.34 196
TSAR-MVS + GP.98.18 17597.98 18498.77 16898.71 27397.88 16196.32 30498.66 29096.33 26999.23 11798.51 25497.48 13599.40 34297.16 16499.46 23299.02 258
testdata195.44 34296.32 270
test_vis1_n98.31 16098.50 11997.73 27099.76 3294.17 30598.68 9599.91 796.31 27199.79 2499.57 4292.85 29299.42 34099.79 1199.84 8499.60 73
LF4IMVS97.90 19397.69 20698.52 20499.17 18797.66 18197.19 26299.47 10096.31 27197.85 27198.20 28596.71 18199.52 32094.62 29499.72 14798.38 330
test_f98.67 11398.87 7098.05 24699.72 4595.59 25898.51 11699.81 2396.30 27399.78 2599.82 496.14 20298.63 38499.82 699.93 4299.95 6
test-LLR93.90 33793.85 33194.04 36496.53 38484.62 39194.05 37692.39 38496.17 27494.12 37995.07 37682.30 36799.67 26495.87 26198.18 33697.82 352
test0.0.03 194.51 32593.69 33496.99 31296.05 39093.61 32794.97 35493.49 37996.17 27497.57 29094.88 38282.30 36799.01 37593.60 32594.17 38998.37 332
Anonymous2023120698.21 17298.21 16098.20 23399.51 10495.43 26798.13 15399.32 15296.16 27698.93 16398.82 20696.00 21099.83 15497.32 15699.73 14099.36 190
SCA96.41 28996.66 27095.67 34698.24 32988.35 37795.85 32896.88 35096.11 27797.67 28298.67 23093.10 28599.85 12094.16 30899.22 26898.81 292
MS-PatchMatch97.68 21497.75 20197.45 29398.23 33193.78 32297.29 25298.84 26996.10 27898.64 20398.65 23596.04 20799.36 34796.84 19699.14 28099.20 229
HQP-NCC98.67 28596.29 30596.05 27995.55 360
ACMP_Plane98.67 28596.29 30596.05 27995.55 360
HQP-MVS97.00 26596.49 27998.55 19998.67 28596.79 22596.29 30599.04 23496.05 27995.55 36096.84 34793.84 27499.54 31492.82 33999.26 26399.32 203
PHI-MVS98.29 16497.95 18699.34 7398.44 31599.16 4398.12 15599.38 12696.01 28298.06 25798.43 26497.80 10499.67 26495.69 27099.58 20199.20 229
miper_ehance_all_eth97.06 25997.03 24597.16 30797.83 34993.06 33294.66 36299.09 22595.99 28398.69 19798.45 26392.73 29499.61 29496.79 19899.03 29298.82 288
AUN-MVS96.24 29495.45 30498.60 19098.70 27797.22 20597.38 24497.65 32995.95 28495.53 36497.96 30582.11 36999.79 19796.31 23897.44 35698.80 297
MVEpermissive83.40 2292.50 35191.92 35494.25 36398.83 25391.64 35492.71 38583.52 39995.92 28586.46 39695.46 37495.20 23895.40 39580.51 39298.64 32295.73 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CDS-MVSNet97.69 21397.35 23098.69 17798.73 26897.02 21696.92 27698.75 28495.89 28698.59 21298.67 23092.08 30299.74 23296.72 20799.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
D2MVS97.84 20597.84 19797.83 25799.14 19494.74 28796.94 27298.88 25895.84 28798.89 16898.96 17394.40 26299.69 25297.55 14499.95 3099.05 251
PAPM_NR96.82 27396.32 28398.30 22699.07 20796.69 23097.48 23898.76 28195.81 28896.61 33796.47 35594.12 27199.17 36890.82 36997.78 35199.06 250
ACMP95.32 1598.41 14798.09 17499.36 6499.51 10498.79 8097.68 21399.38 12695.76 28998.81 18698.82 20698.36 6199.82 16494.75 29099.77 12299.48 136
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 18897.63 21399.10 11599.24 16598.17 12896.89 27798.73 28795.66 29097.92 26497.70 31897.17 15199.66 27596.18 24799.23 26799.47 143
Syy-MVS96.04 29795.56 30197.49 29097.10 37594.48 29696.18 31296.58 35495.65 29194.77 37292.29 39291.27 30899.36 34798.17 11098.05 34798.63 316
myMVS_eth3d91.92 35790.45 36096.30 33297.10 37590.90 36796.18 31296.58 35495.65 29194.77 37292.29 39253.88 40199.36 34789.59 37498.05 34798.63 316
AdaColmapbinary97.14 25496.71 26598.46 21098.34 32397.80 17296.95 27198.93 24995.58 29396.92 31997.66 31995.87 21999.53 31690.97 36599.14 28098.04 344
pmmvs-eth3d98.47 14298.34 14698.86 15199.30 15697.76 17497.16 26399.28 17695.54 29499.42 7799.19 11497.27 14599.63 28697.89 12699.97 2099.20 229
9.1497.78 19999.07 20797.53 23399.32 15295.53 29598.54 22198.70 22597.58 12199.76 22094.32 30799.46 232
GA-MVS95.86 30395.32 31197.49 29098.60 29594.15 30693.83 37997.93 32295.49 29696.68 33397.42 33483.21 36299.30 35796.22 24398.55 32799.01 259
tpmvs95.02 32195.25 31294.33 36296.39 38885.87 38598.08 16096.83 35195.46 29795.51 36598.69 22685.91 34399.53 31694.16 30896.23 37697.58 365
KD-MVS_2432*160092.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
miper_refine_blended92.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
UnsupCasMVSNet_bld97.30 24096.92 25098.45 21199.28 15896.78 22896.20 31099.27 17995.42 29898.28 24198.30 27893.16 28399.71 24594.99 28597.37 35998.87 284
test_fmvs1_n98.09 18298.28 15397.52 28799.68 5993.47 32898.63 9899.93 495.41 30199.68 3799.64 3291.88 30499.48 32999.82 699.87 7699.62 66
PatchmatchNetpermissive95.58 31095.67 29795.30 35597.34 37087.32 38297.65 21996.65 35295.30 30297.07 31398.69 22684.77 35199.75 22794.97 28698.64 32298.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet97.63 21897.17 23898.99 13599.27 16097.86 16395.98 31793.41 38095.25 30399.47 6898.90 18795.63 22599.85 12096.91 18599.73 14099.27 215
MVS-HIRNet94.32 32895.62 29890.42 37798.46 31375.36 40196.29 30589.13 39495.25 30395.38 36699.75 1192.88 29099.19 36794.07 31499.39 24196.72 378
test_fmvs197.72 21197.94 18897.07 31098.66 29092.39 34597.68 21399.81 2395.20 30599.54 5499.44 7191.56 30699.41 34199.78 1399.77 12299.40 172
FA-MVS(test-final)96.99 26696.82 25897.50 28998.70 27794.78 28599.34 2096.99 34495.07 30698.48 22699.33 9088.41 33099.65 28096.13 25198.92 30698.07 343
OMC-MVS97.88 19797.49 22199.04 13098.89 24498.63 8996.94 27299.25 18595.02 30798.53 22298.51 25497.27 14599.47 33293.50 32999.51 22299.01 259
tpmrst95.07 31995.46 30393.91 36697.11 37484.36 39397.62 22296.96 34694.98 30896.35 34698.80 20985.46 34799.59 29995.60 27396.23 37697.79 357
APD-MVScopyleft98.10 17997.67 20799.42 5899.11 19898.93 7197.76 20599.28 17694.97 30998.72 19698.77 21497.04 15799.85 12093.79 32299.54 21399.49 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS96.67 27796.27 28697.87 25598.81 25994.61 29396.77 28297.92 32394.94 31097.12 31097.74 31591.11 30999.82 16493.89 31898.15 34099.18 236
CPTT-MVS97.84 20597.36 22999.27 8999.31 15398.46 10598.29 13899.27 17994.90 31197.83 27298.37 27094.90 24599.84 13793.85 32199.54 21399.51 119
MP-MVS-pluss98.57 12698.23 15999.60 1199.69 5799.35 1297.16 26399.38 12694.87 31298.97 15298.99 16498.01 8999.88 8297.29 15799.70 15799.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Fast-Effi-MVS+97.67 21597.38 22798.57 19498.71 27397.43 19497.23 25699.45 10594.82 31396.13 34896.51 35298.52 5299.91 5896.19 24598.83 30998.37 332
ET-MVSNet_ETH3D94.30 33093.21 34097.58 28098.14 33594.47 29794.78 35893.24 38294.72 31489.56 39295.87 36678.57 38399.81 17796.91 18597.11 36698.46 323
EPMVS93.72 34093.27 33995.09 35896.04 39187.76 38098.13 15385.01 39894.69 31596.92 31998.64 23878.47 38599.31 35595.04 28496.46 37398.20 336
test_vis1_rt97.75 20997.72 20597.83 25798.81 25996.35 23797.30 25199.69 3494.61 31697.87 26898.05 29796.26 20098.32 38798.74 7598.18 33698.82 288
cl2295.79 30595.39 30896.98 31396.77 38292.79 33894.40 37098.53 29894.59 31797.89 26798.17 28782.82 36699.24 36396.37 23499.03 29298.92 276
PVSNet_BlendedMVS97.55 22397.53 21897.60 27898.92 23593.77 32396.64 28999.43 11594.49 31897.62 28499.18 11796.82 17199.67 26494.73 29199.93 4299.36 190
sss97.21 24896.93 24898.06 24498.83 25395.22 27496.75 28498.48 30194.49 31897.27 30797.90 30792.77 29399.80 18496.57 21799.32 25199.16 243
tpm94.67 32494.34 32895.66 34797.68 35988.42 37697.88 18994.90 36994.46 32096.03 35398.56 24978.66 38199.79 19795.88 25895.01 38598.78 299
CLD-MVS97.49 22697.16 23998.48 20899.07 20797.03 21594.71 35999.21 19494.46 32098.06 25797.16 34297.57 12299.48 32994.46 29999.78 11898.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TESTMET0.1,192.19 35691.77 35693.46 37196.48 38682.80 39694.05 37691.52 38894.45 32294.00 38294.88 38266.65 39799.56 30895.78 26698.11 34298.02 345
PVSNet_Blended_VisFu98.17 17798.15 16998.22 23299.73 3995.15 27697.36 24699.68 3994.45 32298.99 14799.27 9996.87 16799.94 3497.13 16999.91 6199.57 90
MDTV_nov1_ep1395.22 31397.06 37783.20 39597.74 20796.16 35994.37 32496.99 31798.83 20383.95 35999.53 31693.90 31797.95 350
TR-MVS95.55 31195.12 31696.86 32297.54 36293.94 31496.49 29596.53 35694.36 32597.03 31696.61 35194.26 26799.16 36986.91 38196.31 37597.47 368
jason97.45 23097.35 23097.76 26599.24 16593.93 31595.86 32698.42 30394.24 32698.50 22498.13 28894.82 24999.91 5897.22 16199.73 14099.43 157
jason: jason.
HyFIR lowres test97.19 25096.60 27598.96 13999.62 7597.28 20195.17 34899.50 8494.21 32799.01 14598.32 27786.61 33699.99 297.10 17199.84 8499.60 73
SMA-MVScopyleft98.40 14998.03 18199.51 4399.16 18999.21 2898.05 16599.22 19394.16 32898.98 14899.10 13697.52 12999.79 19796.45 23199.64 17999.53 114
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mvsany_test197.60 21997.54 21797.77 26297.72 35395.35 26995.36 34497.13 34194.13 32999.71 3199.33 9097.93 9699.30 35797.60 14398.94 30498.67 314
ZD-MVS99.01 21998.84 7599.07 22794.10 33098.05 25998.12 29096.36 19799.86 10892.70 34499.19 274
thisisatest051594.12 33493.16 34196.97 31498.60 29592.90 33693.77 38090.61 39094.10 33096.91 32195.87 36674.99 38999.80 18494.52 29799.12 28598.20 336
USDC97.41 23397.40 22597.44 29498.94 22993.67 32595.17 34899.53 7894.03 33298.97 15299.10 13695.29 23599.34 35195.84 26499.73 14099.30 210
test-mter92.33 35491.76 35794.04 36496.53 38484.62 39194.05 37692.39 38494.00 33394.12 37995.07 37665.63 40099.67 26495.87 26198.18 33697.82 352
baseline293.73 33992.83 34596.42 33097.70 35791.28 36296.84 27989.77 39393.96 33492.44 38795.93 36479.14 37999.77 21492.94 33596.76 37198.21 335
pmmvs597.64 21797.49 22198.08 24299.14 19495.12 27896.70 28799.05 23193.77 33598.62 20698.83 20393.23 28199.75 22798.33 10399.76 13399.36 190
BH-w/o95.13 31894.89 32295.86 34198.20 33291.31 36095.65 33397.37 33393.64 33696.52 34095.70 36893.04 28899.02 37388.10 37895.82 38197.24 371
pmmvs497.58 22297.28 23398.51 20598.84 25196.93 22295.40 34398.52 29993.60 33798.61 20898.65 23595.10 24199.60 29596.97 18299.79 11398.99 263
CHOSEN 280x42095.51 31395.47 30295.65 34898.25 32888.27 37893.25 38398.88 25893.53 33894.65 37497.15 34386.17 34099.93 3997.41 15299.93 4298.73 305
lupinMVS97.06 25996.86 25497.65 27498.88 24593.89 31995.48 34097.97 32193.53 33898.16 24797.58 32493.81 27699.91 5896.77 20199.57 20599.17 240
PatchMatch-RL97.24 24696.78 26198.61 18899.03 21897.83 16696.36 30299.06 22893.49 34097.36 30697.78 31295.75 22299.49 32693.44 33098.77 31298.52 321
PC_three_145293.27 34199.40 8198.54 25098.22 7297.00 39295.17 28299.45 23499.49 126
DP-MVS Recon97.33 23896.92 25098.57 19499.09 20397.99 14996.79 28099.35 13993.18 34297.71 27998.07 29695.00 24499.31 35593.97 31599.13 28298.42 329
1112_ss97.29 24296.86 25498.58 19299.34 15296.32 23896.75 28499.58 5293.14 34396.89 32597.48 33092.11 30199.86 10896.91 18599.54 21399.57 90
FE-MVS95.66 30894.95 32097.77 26298.53 30795.28 27199.40 1696.09 36193.11 34497.96 26399.26 10179.10 38099.77 21492.40 34898.71 31798.27 334
IU-MVS99.49 11499.15 4798.87 26092.97 34599.41 7896.76 20299.62 18599.66 57
F-COLMAP97.30 24096.68 26799.14 10999.19 17998.39 10897.27 25599.30 16592.93 34696.62 33698.00 29995.73 22399.68 26192.62 34598.46 32899.35 194
FPMVS93.44 34492.23 34897.08 30899.25 16497.86 16395.61 33497.16 34092.90 34793.76 38598.65 23575.94 38795.66 39479.30 39497.49 35497.73 359
DSMNet-mixed97.42 23297.60 21596.87 31999.15 19391.46 35698.54 10999.12 21992.87 34897.58 28899.63 3396.21 20199.90 6395.74 26799.54 21399.27 215
dp93.47 34393.59 33693.13 37596.64 38381.62 39997.66 21796.42 35792.80 34996.11 34998.64 23878.55 38499.59 29993.31 33292.18 39398.16 338
PVSNet93.40 1795.67 30795.70 29595.57 34998.83 25388.57 37592.50 38697.72 32692.69 35096.49 34496.44 35693.72 27999.43 33893.61 32499.28 25998.71 306
new_pmnet96.99 26696.76 26297.67 27298.72 27094.89 28395.95 32298.20 31292.62 35198.55 21998.54 25094.88 24899.52 32093.96 31699.44 23798.59 320
原ACMM198.35 22198.90 23996.25 24098.83 27392.48 35296.07 35198.10 29295.39 23499.71 24592.61 34698.99 29899.08 247
IB-MVS91.63 1992.24 35590.90 35996.27 33497.22 37391.24 36394.36 37193.33 38192.37 35392.24 38894.58 38566.20 39999.89 7393.16 33494.63 38797.66 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CR-MVSNet96.28 29295.95 29097.28 30097.71 35594.22 30198.11 15698.92 25292.31 35496.91 32199.37 8085.44 34899.81 17797.39 15397.36 36197.81 354
HY-MVS95.94 1395.90 30295.35 31097.55 28497.95 34394.79 28498.81 8596.94 34892.28 35595.17 36898.57 24889.90 31799.75 22791.20 36397.33 36398.10 341
MAR-MVS96.47 28795.70 29598.79 16297.92 34599.12 5798.28 13998.60 29592.16 35695.54 36396.17 36094.77 25599.52 32089.62 37398.23 33397.72 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.32 29095.59 30098.51 20598.76 26497.21 20694.54 36898.26 30991.94 35796.37 34597.25 34093.06 28799.43 33891.42 35998.74 31398.89 280
train_agg97.10 25596.45 28099.07 12198.71 27398.08 14095.96 32099.03 23691.64 35895.85 35497.53 32696.47 19099.76 22093.67 32399.16 27799.36 190
test_898.67 28598.01 14895.91 32599.02 23991.64 35895.79 35697.50 32996.47 19099.76 220
CHOSEN 1792x268897.49 22697.14 24298.54 20299.68 5996.09 24596.50 29499.62 4591.58 36098.84 18098.97 17092.36 29799.88 8296.76 20299.95 3099.67 56
PMMVS96.51 28395.98 28998.09 23997.53 36395.84 25394.92 35598.84 26991.58 36096.05 35295.58 36995.68 22499.66 27595.59 27498.09 34398.76 302
Test_1112_low_res96.99 26696.55 27798.31 22599.35 15095.47 26595.84 32999.53 7891.51 36296.80 33098.48 26191.36 30799.83 15496.58 21599.53 21799.62 66
TEST998.71 27398.08 14095.96 32099.03 23691.40 36395.85 35497.53 32696.52 18899.76 220
PAPR95.29 31594.47 32497.75 26697.50 36795.14 27794.89 35698.71 28891.39 36495.35 36795.48 37394.57 25899.14 37184.95 38497.37 35998.97 267
131495.74 30695.60 29996.17 33797.53 36392.75 34098.07 16298.31 30891.22 36594.25 37796.68 35095.53 22899.03 37291.64 35597.18 36496.74 377
CDPH-MVS97.26 24396.66 27099.07 12199.00 22098.15 12996.03 31699.01 24291.21 36697.79 27597.85 31096.89 16699.69 25292.75 34299.38 24499.39 175
miper_enhance_ethall96.01 29895.74 29396.81 32396.41 38792.27 34993.69 38198.89 25791.14 36798.30 23997.35 33990.58 31299.58 30396.31 23899.03 29298.60 318
PVSNet_Blended96.88 26996.68 26797.47 29298.92 23593.77 32394.71 35999.43 11590.98 36897.62 28497.36 33896.82 17199.67 26494.73 29199.56 20898.98 264
PLCcopyleft94.65 1696.51 28395.73 29498.85 15298.75 26697.91 15996.42 29999.06 22890.94 36995.59 35797.38 33694.41 26199.59 29990.93 36698.04 34999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet295.43 31494.98 31896.76 32698.14 33591.74 35397.92 18397.76 32590.23 37096.51 34198.91 18485.61 34599.85 12092.88 33796.90 36798.69 310
ADS-MVSNet95.24 31794.93 32196.18 33698.14 33590.10 37197.92 18397.32 33790.23 37096.51 34198.91 18485.61 34599.74 23292.88 33796.90 36798.69 310
QAPM97.31 23996.81 26098.82 15598.80 26297.49 18999.06 6399.19 20090.22 37297.69 28199.16 12396.91 16599.90 6390.89 36899.41 23999.07 249
PVSNet_089.98 2191.15 35990.30 36293.70 36997.72 35384.34 39490.24 38997.42 33290.20 37393.79 38493.09 39090.90 31098.89 38186.57 38272.76 39697.87 351
testdata98.09 23998.93 23195.40 26898.80 27690.08 37497.45 30098.37 27095.26 23699.70 24893.58 32698.95 30399.17 240
MDTV_nov1_ep13_2view74.92 40297.69 21290.06 37597.75 27885.78 34493.52 32798.69 310
OpenMVScopyleft96.65 797.09 25796.68 26798.32 22398.32 32497.16 21198.86 8199.37 13089.48 37696.29 34799.15 12796.56 18699.90 6392.90 33699.20 27197.89 349
无先验95.74 33198.74 28689.38 37799.73 23792.38 34999.22 228
CostFormer93.97 33693.78 33394.51 36197.53 36385.83 38797.98 17795.96 36389.29 37894.99 37198.63 24078.63 38299.62 28894.54 29696.50 37298.09 342
CMPMVSbinary75.91 2396.29 29195.44 30598.84 15396.25 38998.69 8897.02 26799.12 21988.90 37997.83 27298.86 19789.51 31998.90 38091.92 35099.51 22298.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs395.03 32094.40 32696.93 31597.70 35792.53 34295.08 35197.71 32788.57 38097.71 27998.08 29579.39 37799.82 16496.19 24599.11 28698.43 328
旧先验295.76 33088.56 38197.52 29499.66 27594.48 298
gm-plane-assit94.83 39481.97 39888.07 38294.99 37999.60 29591.76 352
新几何198.91 14698.94 22997.76 17498.76 28187.58 38396.75 33298.10 29294.80 25299.78 20892.73 34399.00 29799.20 229
PAPM91.88 35890.34 36196.51 32898.06 34092.56 34192.44 38797.17 33986.35 38490.38 39196.01 36186.61 33699.21 36670.65 39795.43 38397.75 358
tpm293.09 34792.58 34794.62 36097.56 36186.53 38497.66 21795.79 36586.15 38594.07 38198.23 28375.95 38699.53 31690.91 36796.86 37097.81 354
test22298.92 23596.93 22295.54 33698.78 27985.72 38696.86 32798.11 29194.43 26099.10 28799.23 224
cascas94.79 32394.33 32996.15 34096.02 39292.36 34792.34 38899.26 18485.34 38795.08 37094.96 38192.96 28998.53 38594.41 30598.59 32597.56 366
OpenMVS_ROBcopyleft95.38 1495.84 30495.18 31597.81 25998.41 32097.15 21297.37 24598.62 29483.86 38898.65 20298.37 27094.29 26699.68 26188.41 37698.62 32496.60 379
TAPA-MVS96.21 1196.63 27995.95 29098.65 17998.93 23198.09 13696.93 27499.28 17683.58 38998.13 25197.78 31296.13 20399.40 34293.52 32799.29 25898.45 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 34593.13 34393.75 36897.39 36984.74 39097.39 24397.65 32983.39 39094.16 37898.41 26582.86 36599.39 34491.56 35795.35 38497.14 372
114514_t96.50 28595.77 29298.69 17799.48 12197.43 19497.84 19699.55 7081.42 39196.51 34198.58 24795.53 22899.67 26493.41 33199.58 20198.98 264
PCF-MVS92.86 1894.36 32793.00 34498.42 21598.70 27797.56 18693.16 38499.11 22179.59 39297.55 29197.43 33392.19 29999.73 23779.85 39399.45 23497.97 348
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS93.19 34692.09 35096.50 32996.91 37894.03 31098.07 16298.06 32068.01 39394.56 37696.48 35495.96 21699.30 35783.84 38696.89 36996.17 382
DeepMVS_CXcopyleft93.44 37298.24 32994.21 30394.34 37364.28 39491.34 39094.87 38489.45 32192.77 39777.54 39593.14 39093.35 392
tmp_tt78.77 36278.73 36578.90 37958.45 40174.76 40394.20 37378.26 40239.16 39586.71 39592.82 39180.50 37175.19 39886.16 38392.29 39286.74 393
test_method79.78 36179.50 36480.62 37880.21 40045.76 40470.82 39298.41 30531.08 39680.89 39797.71 31684.85 35097.37 39191.51 35880.03 39598.75 303
EGC-MVSNET85.24 36080.54 36399.34 7399.77 2999.20 3499.08 5999.29 17312.08 39720.84 39899.42 7497.55 12499.85 12097.08 17299.72 14798.96 269
test12317.04 36520.11 3687.82 38010.25 4034.91 40594.80 3574.47 4054.93 39810.00 40024.28 3979.69 4033.64 39910.14 39812.43 39814.92 395
testmvs17.12 36420.53 3676.87 38112.05 4024.20 40693.62 3826.73 4044.62 39910.41 39924.33 3968.28 4043.56 4009.69 39915.07 39712.86 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.66 36332.88 3660.00 3820.00 4040.00 4070.00 39399.10 2230.00 4000.00 40197.58 32499.21 160.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas8.17 36610.90 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40098.07 840.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.12 36710.83 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.48 3300.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS90.90 36791.37 360
MSC_two_6792asdad99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
No_MVS99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
eth-test20.00 404
eth-test0.00 404
OPU-MVS98.82 15598.59 29898.30 11698.10 15898.52 25398.18 7698.75 38394.62 29499.48 23199.41 163
test_0728_SECOND99.60 1199.50 10799.23 2698.02 17099.32 15299.88 8296.99 17999.63 18299.68 53
GSMVS98.81 292
test_part299.36 14699.10 6099.05 139
sam_mvs184.74 35298.81 292
sam_mvs84.29 358
ambc98.24 23198.82 25695.97 25098.62 10099.00 24499.27 10699.21 11196.99 16299.50 32596.55 22499.50 22999.26 218
MTGPAbinary99.20 196
test_post197.59 22720.48 39983.07 36499.66 27594.16 308
test_post21.25 39883.86 36099.70 248
patchmatchnet-post98.77 21484.37 35599.85 120
GG-mvs-BLEND94.76 35994.54 39592.13 35199.31 2780.47 40188.73 39491.01 39467.59 39698.16 38982.30 39194.53 38893.98 391
MTMP97.93 18191.91 387
test9_res93.28 33399.15 27999.38 182
agg_prior292.50 34799.16 27799.37 184
agg_prior98.68 28497.99 14999.01 24295.59 35799.77 214
test_prior497.97 15395.86 326
test_prior98.95 14198.69 28297.95 15799.03 23699.59 29999.30 210
新几何295.93 323
旧先验198.82 25697.45 19298.76 28198.34 27495.50 23199.01 29699.23 224
原ACMM295.53 337
testdata299.79 19792.80 341
segment_acmp97.02 160
test1298.93 14398.58 30097.83 16698.66 29096.53 33995.51 23099.69 25299.13 28299.27 215
plane_prior799.19 17997.87 162
plane_prior698.99 22397.70 18094.90 245
plane_prior599.27 17999.70 24894.42 30299.51 22299.45 149
plane_prior497.98 301
plane_prior199.05 214
n20.00 406
nn0.00 406
door-mid99.57 59
lessismore_v098.97 13899.73 3997.53 18886.71 39699.37 8899.52 5789.93 31699.92 4998.99 6199.72 14799.44 153
test1198.87 260
door99.41 119
HQP5-MVS96.79 225
BP-MVS92.82 339
HQP4-MVS95.56 35999.54 31499.32 203
HQP3-MVS99.04 23499.26 263
HQP2-MVS93.84 274
NP-MVS98.84 25197.39 19696.84 347
ACMMP++_ref99.77 122
ACMMP++99.68 165
Test By Simon96.52 188