This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
test_part197.91 16797.46 19799.27 8298.80 23398.18 12099.07 4699.36 10699.75 599.63 2599.49 3982.20 34099.89 5898.87 4099.95 1699.74 24
gg-mvs-nofinetune92.37 32691.20 33195.85 31295.80 36092.38 31799.31 1881.84 36799.75 591.83 35799.74 868.29 36399.02 34787.15 34797.12 33396.16 350
LFMVS97.20 22696.72 23998.64 17198.72 24296.95 21198.93 5894.14 34899.74 798.78 15899.01 12284.45 32499.73 22197.44 11699.27 23299.25 198
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5599.70 899.80 999.68 1496.84 14999.83 13699.21 2399.91 4099.77 16
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6799.68 999.46 4399.26 6998.62 2999.73 22199.17 2699.92 3499.76 20
VDDNet98.21 14797.95 16099.01 12799.58 5197.74 17099.01 5097.29 31699.67 1098.97 12499.50 3690.45 28599.80 16897.88 9699.20 24299.48 112
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2299.66 1199.68 1999.66 1798.44 3999.95 1599.73 299.96 1499.75 22
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8399.36 1499.92 3499.64 39
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5599.64 1299.56 2899.46 4398.23 5299.97 398.78 4499.93 2599.72 25
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7899.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10198.46 9999.33 12399.63 1499.48 4099.15 9097.23 13199.75 21397.17 12899.66 14499.63 43
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4899.62 1799.56 2899.42 4998.16 6099.96 898.78 4499.93 2599.77 16
K. test v398.00 16297.66 18199.03 12399.79 1997.56 17999.19 3692.47 35499.62 1799.52 3599.66 1789.61 29099.96 899.25 2099.81 6999.56 71
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13499.85 10599.02 3299.94 2199.80 12
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32099.59 2099.11 9599.27 6794.82 22999.79 18198.34 7199.63 15099.34 172
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13499.90 4999.21 2399.87 5299.54 83
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9799.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30497.70 10799.73 10697.89 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5199.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
FIs99.14 3299.09 3499.29 7799.70 3698.28 10999.13 4199.52 5499.48 2499.24 8099.41 5196.79 15599.82 14698.69 5299.88 4999.76 20
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1899.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17898.43 10299.35 11299.47 2699.28 7199.05 10896.72 16199.82 14698.09 8399.36 21799.59 55
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4499.46 2799.50 3999.34 6097.30 12399.93 2898.90 3799.93 2599.77 16
tfpnnormal98.90 5398.90 4398.91 13899.67 4097.82 16299.00 5299.44 8199.45 2899.51 3899.24 7298.20 5799.86 9195.92 22099.69 12899.04 233
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17699.92 3599.44 1399.92 3499.68 31
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11899.42 3099.33 6299.26 6997.01 14199.94 2398.74 4999.93 2599.79 13
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9099.42 3099.36 5899.06 10198.38 4299.95 1598.34 7199.90 4499.57 66
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15399.66 34
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7499.84 5699.52 93
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9297.47 20199.57 3399.37 3499.21 8499.61 2396.76 15899.83 13698.06 8599.83 6299.71 26
SixPastTwentyTwo98.75 7198.62 7399.16 9799.83 1597.96 14899.28 2798.20 29099.37 3499.70 1599.65 1992.65 27299.93 2899.04 3199.84 5699.60 49
RPMNet97.02 24096.93 22597.30 27397.71 32194.22 27798.11 12899.30 13999.37 3496.91 28899.34 6086.72 30599.87 8397.53 11397.36 32997.81 321
Anonymous2024052198.69 8198.87 4498.16 22499.77 2095.11 26199.08 4499.44 8199.34 3799.33 6299.55 2994.10 25099.94 2399.25 2099.96 1499.42 138
PatchT96.65 25796.35 25797.54 26297.40 33495.32 25297.98 14896.64 32899.33 3896.89 29299.42 4984.32 32699.81 15997.69 10997.49 32297.48 335
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 4899.31 3999.62 2799.53 3397.36 12199.86 9199.24 2299.71 11799.39 150
VNet98.42 12498.30 12498.79 15598.79 23597.29 19198.23 11698.66 26999.31 3998.85 14898.80 17494.80 23299.78 19398.13 7999.13 25699.31 184
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1999.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
test_040298.76 6998.71 6198.93 13599.56 6298.14 12598.45 10199.34 11899.28 4298.95 12798.91 14398.34 4799.79 18195.63 23799.91 4098.86 261
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11799.01 5098.99 22399.25 4499.54 3099.37 5497.04 13799.80 16897.89 9399.52 18999.35 170
Regformer-498.73 7498.68 6698.89 14199.02 18597.22 19797.17 22599.06 20399.21 4599.17 9198.85 16297.45 11599.86 9198.48 6399.70 12299.60 49
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11299.20 3299.44 8199.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
LS3D98.63 9398.38 11499.36 6497.25 33999.38 599.12 4399.32 12599.21 4598.44 19798.88 15597.31 12299.80 16896.58 17899.34 22198.92 253
alignmvs97.35 21396.88 23098.78 15898.54 27598.09 12797.71 17497.69 30699.20 4897.59 25295.90 33688.12 30299.55 29198.18 7898.96 27798.70 282
EI-MVSNet-UG-set98.69 8198.71 6198.62 17699.10 16696.37 22597.23 21798.87 23999.20 4899.19 8698.99 12597.30 12399.85 10598.77 4799.79 8299.65 38
EI-MVSNet-Vis-set98.68 8598.70 6498.63 17499.09 16996.40 22497.23 21798.86 24499.20 4899.18 9098.97 13197.29 12599.85 10598.72 5099.78 8699.64 39
JIA-IIPM95.52 28695.03 29397.00 28396.85 34594.03 28496.93 23895.82 33699.20 4894.63 34299.71 1283.09 33399.60 27594.42 26694.64 35397.36 337
canonicalmvs98.34 13398.26 12898.58 18198.46 28297.82 16298.96 5699.46 7599.19 5297.46 26595.46 34498.59 3199.46 31398.08 8498.71 28998.46 292
casdiffmvs98.95 4799.00 3998.81 15199.38 10897.33 18997.82 16399.57 3399.17 5399.35 5999.17 8498.35 4699.69 23698.46 6499.73 10699.41 141
UniMVSNet_NR-MVSNet98.86 5798.68 6699.40 6299.17 15298.74 7697.68 17799.40 9499.14 5499.06 10498.59 21496.71 16299.93 2898.57 5799.77 9099.53 89
Regformer-398.61 9698.61 7698.63 17499.02 18596.53 22297.17 22598.84 24699.13 5599.10 9898.85 16297.24 13099.79 18198.41 6899.70 12299.57 66
hse-mvs397.77 18597.33 20699.10 10699.21 13697.84 15898.35 10998.57 27499.11 5698.58 18399.02 11588.65 29999.96 898.11 8096.34 34299.49 104
hse-mvs297.46 20597.07 21898.64 17198.73 24097.33 18997.45 20397.64 30999.11 5698.58 18397.98 26988.65 29999.79 18198.11 8097.39 32698.81 267
MVSFormer98.26 14298.43 10597.77 24498.88 21593.89 29399.39 1199.56 4099.11 5698.16 21498.13 25693.81 25399.97 399.26 1899.57 17499.43 135
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11099.17 3799.78 499.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2699.11 5699.53 3399.18 8098.81 2299.67 24896.71 17199.77 9099.50 100
IterMVS-SCA-FT97.85 17998.18 13796.87 29199.27 12491.16 33595.53 30699.25 15799.10 6299.41 4999.35 5893.10 26399.96 898.65 5399.94 2199.49 104
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 16899.10 6299.72 1398.76 18196.38 17899.86 9198.00 9099.82 6599.50 100
UGNet98.53 11398.45 10198.79 15597.94 31196.96 21099.08 4498.54 27599.10 6296.82 29699.47 4296.55 16899.84 12298.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1799.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4099.09 6599.33 6299.19 7898.40 4199.72 22995.98 21899.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0398.78 6698.77 5598.78 15899.46 9597.20 20097.78 16599.24 16299.04 6799.41 4998.90 14697.65 9399.76 20697.70 10799.79 8299.39 150
v899.01 3799.16 3098.57 18499.47 9496.31 22898.90 5999.47 7399.03 6899.52 3599.57 2796.93 14599.81 15999.60 499.98 999.60 49
EPP-MVSNet98.30 13698.04 15499.07 11399.56 6297.83 15999.29 2398.07 29699.03 6898.59 18199.13 9392.16 27699.90 4996.87 15599.68 13399.49 104
IS-MVSNet98.19 14997.90 16599.08 11099.57 5597.97 14499.31 1898.32 28599.01 7098.98 12199.03 11491.59 28099.79 18195.49 24299.80 7799.48 112
3Dnovator+97.89 398.69 8198.51 8899.24 8998.81 23198.40 10299.02 4999.19 17398.99 7198.07 22299.28 6597.11 13699.84 12296.84 15899.32 22399.47 120
PMVScopyleft91.26 2097.86 17497.94 16297.65 25199.71 3097.94 15198.52 8898.68 26898.99 7197.52 26099.35 5897.41 11798.18 35891.59 32599.67 13996.82 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-298.60 9998.46 9999.02 12698.85 22097.71 17296.91 24199.09 19998.98 7399.01 11598.64 20397.37 12099.84 12297.75 10699.57 17499.52 93
Regformer-198.55 10898.44 10398.87 14398.85 22097.29 19196.91 24198.99 22398.97 7498.99 11998.64 20397.26 12999.81 15997.79 9999.57 17499.51 96
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26797.20 22198.87 23998.97 7499.06 10499.02 11596.00 19099.80 16898.58 5599.82 6599.60 49
EPNet96.14 27295.44 28198.25 21890.76 36695.50 24797.92 15294.65 34198.97 7492.98 35398.85 16289.12 29499.87 8395.99 21799.68 13399.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS98.55 10898.70 6498.09 22699.48 9294.73 26797.22 22099.39 9698.97 7499.38 5499.31 6496.00 19099.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.35 21396.97 22498.50 19797.31 33896.47 22398.18 12198.92 23198.95 7898.78 15899.37 5485.44 31899.85 10595.96 21999.83 6299.17 218
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1398.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
UniMVSNet (Re)98.87 5598.71 6199.35 6999.24 12998.73 7997.73 17399.38 9898.93 7999.12 9398.73 18496.77 15699.86 9198.63 5499.80 7799.46 122
Anonymous20240521197.90 16897.50 19199.08 11098.90 20998.25 11198.53 8796.16 33298.87 8199.11 9598.86 15990.40 28699.78 19397.36 12099.31 22599.19 212
baseline98.96 4699.02 3798.76 16199.38 10897.26 19498.49 9499.50 5798.86 8299.19 8699.06 10198.23 5299.69 23698.71 5199.76 9999.33 178
IterMVS97.73 18698.11 14796.57 29899.24 12990.28 33695.52 30899.21 16698.86 8299.33 6299.33 6293.11 26299.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS98.82 5998.63 7299.39 6399.16 15498.74 7697.54 19399.25 15798.84 8499.06 10498.76 18196.76 15899.93 2898.57 5799.77 9099.50 100
zzz-MVS98.79 6398.52 8699.61 999.67 4099.36 997.33 21099.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
MTAPA98.88 5498.64 7199.61 999.67 4099.36 998.43 10299.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
bset_n11_16_dypcd96.99 24496.56 25198.27 21799.00 18895.25 25392.18 35794.05 34998.75 8799.01 11598.38 23788.98 29599.93 2898.77 4799.92 3499.64 39
v1098.97 4499.11 3398.55 18999.44 10096.21 23098.90 5999.55 4498.73 8899.48 4099.60 2596.63 16599.83 13699.70 399.99 599.61 48
UnsupCasMVSNet_eth97.89 17097.60 18798.75 16399.31 11897.17 20397.62 18399.35 11298.72 8998.76 16298.68 19392.57 27399.74 21797.76 10595.60 34999.34 172
SR-MVS-dyc-post98.81 6198.55 8399.57 1899.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.49 11299.86 9196.56 18399.39 21299.45 126
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.75 8796.56 18399.39 21299.45 126
Fast-Effi-MVS+-dtu98.27 14098.09 14898.81 15198.43 28598.11 12697.61 18599.50 5798.64 9097.39 27097.52 29898.12 6399.95 1596.90 15298.71 28998.38 298
APD-MVS_3200maxsize98.84 5898.61 7699.53 3699.19 14399.27 2098.49 9499.33 12398.64 9099.03 11498.98 12997.89 7799.85 10596.54 18799.42 20899.46 122
XVS98.72 7598.45 10199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25898.63 20797.50 10999.83 13696.79 16099.53 18699.56 71
X-MVStestdata94.32 30392.59 32199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25845.85 36397.50 10999.83 13696.79 16099.53 18699.56 71
abl_698.99 3998.78 5399.61 999.45 9899.46 398.60 7999.50 5798.59 9699.24 8099.04 11198.54 3499.89 5896.45 19399.62 15399.50 100
GBi-Net98.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
test198.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
FMVSNet298.49 11798.40 10998.75 16398.90 20997.14 20698.61 7899.13 19398.59 9699.19 8699.28 6594.14 24699.82 14697.97 9199.80 7799.29 191
WR-MVS98.40 12798.19 13699.03 12399.00 18897.65 17596.85 24498.94 22698.57 10098.89 14098.50 22495.60 20799.85 10597.54 11299.85 5499.59 55
3Dnovator98.27 298.81 6198.73 5799.05 12098.76 23697.81 16499.25 3099.30 13998.57 10098.55 18999.33 6297.95 7699.90 4997.16 12999.67 13999.44 131
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6499.62 2098.48 10299.37 5699.49 3998.75 2499.86 9198.20 7799.80 7799.71 26
test117298.76 6998.49 9399.57 1899.18 15099.37 898.39 10599.31 13098.43 10398.90 13798.88 15597.49 11299.86 9196.43 19599.37 21699.48 112
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10798.73 7099.56 4098.42 10498.91 13698.81 17398.94 1899.91 4598.35 7099.73 10699.49 104
LCM-MVSNet-Re98.64 9198.48 9599.11 10498.85 22098.51 9798.49 9499.83 398.37 10599.69 1799.46 4398.21 5699.92 3594.13 27799.30 22898.91 256
MDA-MVSNet-bldmvs97.94 16697.91 16498.06 23199.44 10094.96 26396.63 25799.15 19298.35 10698.83 15199.11 9694.31 24399.85 10596.60 17798.72 28799.37 160
CS-MVS98.61 9698.60 7898.65 16998.82 22898.21 11898.79 6799.77 698.34 10797.55 25697.69 28898.27 4999.87 8398.52 6199.62 15397.88 316
thres600view794.45 30193.83 30796.29 30399.06 17791.53 32597.99 14694.24 34698.34 10797.44 26795.01 34879.84 34599.67 24884.33 35298.23 30397.66 329
thres100view90094.19 30693.67 31095.75 31499.06 17791.35 32998.03 14094.24 34698.33 10997.40 26994.98 35079.84 34599.62 26883.05 35498.08 31396.29 347
Vis-MVSNet (Re-imp)97.46 20597.16 21498.34 21099.55 6596.10 23198.94 5798.44 28098.32 11098.16 21498.62 20988.76 29699.73 22193.88 28599.79 8299.18 214
new-patchmatchnet98.35 13298.74 5697.18 27799.24 12992.23 32096.42 26899.48 6798.30 11199.69 1799.53 3397.44 11699.82 14698.84 4299.77 9099.49 104
v14898.45 12198.60 7898.00 23599.44 10094.98 26297.44 20499.06 20398.30 11199.32 6898.97 13196.65 16499.62 26898.37 6999.85 5499.39 150
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4498.30 11199.65 2299.45 4799.22 999.76 20698.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS98.71 7698.43 10599.57 1899.18 15099.35 1198.36 10899.29 14698.29 11498.88 14498.85 16297.53 10599.87 8396.14 21399.31 22599.48 112
Effi-MVS+-dtu98.26 14297.90 16599.35 6998.02 30799.49 298.02 14299.16 18698.29 11497.64 24897.99 26896.44 17499.95 1596.66 17498.93 27998.60 287
mvs-test197.83 18297.48 19598.89 14198.02 30799.20 3297.20 22199.16 18698.29 11496.46 31197.17 31396.44 17499.92 3596.66 17497.90 31897.54 334
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26099.54 4898.24 11798.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
save fliter99.11 16297.97 14496.53 26099.02 21698.24 117
EU-MVSNet97.66 19198.50 9095.13 32599.63 4885.84 35298.35 10998.21 28998.23 11999.54 3099.46 4395.02 22399.68 24598.24 7499.87 5299.87 4
test_yl96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
DCV-MVSNet96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
baseline195.96 27695.44 28197.52 26498.51 27893.99 28798.39 10596.09 33498.21 12098.40 20597.76 28386.88 30499.63 26695.42 24389.27 36198.95 247
SD-MVS98.40 12798.68 6697.54 26298.96 19697.99 13997.88 15699.36 10698.20 12399.63 2599.04 11198.76 2395.33 36396.56 18399.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS97.99 16597.67 17898.93 13599.19 14397.65 17597.77 16899.27 15198.20 12397.79 23997.98 26994.90 22599.70 23294.42 26699.51 19299.45 126
plane_prior297.77 16898.20 123
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13699.71 11799.70 29
E-PMN94.17 30794.37 30293.58 33896.86 34485.71 35490.11 35997.07 31998.17 12697.82 23897.19 31284.62 32398.94 35089.77 34097.68 32196.09 353
EG-PatchMatch MVS98.99 3999.01 3898.94 13499.50 7797.47 18398.04 13999.59 2498.15 12899.40 5299.36 5798.58 3299.76 20698.78 4499.68 13399.59 55
ETV-MVS98.03 15897.86 16898.56 18898.69 25398.07 13397.51 19799.50 5798.10 12997.50 26295.51 34298.41 4099.88 6796.27 20599.24 23797.71 328
tttt051795.64 28394.98 29497.64 25399.36 11193.81 29598.72 7190.47 36098.08 13098.67 16998.34 24273.88 35999.92 3597.77 10199.51 19299.20 207
RRT_test8_iter0595.24 29195.13 29195.57 31897.32 33787.02 34997.99 14699.41 9198.06 13199.12 9399.05 10866.85 36799.85 10598.93 3699.47 20399.84 8
SED-MVS98.91 5198.72 5999.49 4899.49 8499.17 3698.10 13099.31 13098.03 13299.66 2099.02 11598.36 4399.88 6796.91 14799.62 15399.41 141
test_241102_TWO99.30 13998.03 13299.26 7799.02 11597.51 10899.88 6796.91 14799.60 16299.66 34
test_241102_ONE99.49 8499.17 3699.31 13097.98 13499.66 2098.90 14698.36 4399.48 309
DVP-MVS98.77 6898.52 8699.52 4199.50 7799.21 2698.02 14298.84 24697.97 13599.08 10199.02 11597.61 9899.88 6796.99 14199.63 15099.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 7799.21 2698.17 12499.35 11297.97 13599.26 7799.06 10197.61 98
tfpn200view994.03 31093.44 31295.78 31398.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31396.29 347
thres40094.14 30893.44 31296.24 30598.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31397.66 329
EMVS93.83 31394.02 30593.23 34296.83 34684.96 35589.77 36096.32 33197.92 13997.43 26896.36 33186.17 31098.93 35187.68 34697.73 32095.81 354
SteuartSystems-ACMMP98.79 6398.54 8499.54 2999.73 2499.16 4098.23 11699.31 13097.92 13998.90 13798.90 14698.00 7099.88 6796.15 21299.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
v2v48298.56 10498.62 7398.37 20899.42 10595.81 24097.58 18999.16 18697.90 14199.28 7199.01 12295.98 19499.79 18199.33 1599.90 4499.51 96
FMVSNet397.50 20097.24 21098.29 21598.08 30595.83 23997.86 15998.91 23397.89 14298.95 12798.95 13887.06 30399.81 15997.77 10199.69 12899.23 202
V4298.78 6698.78 5398.76 16199.44 10097.04 20798.27 11399.19 17397.87 14399.25 7999.16 8696.84 14999.78 19399.21 2399.84 5699.46 122
CSCG98.68 8598.50 9099.20 9299.45 9898.63 8498.56 8499.57 3397.87 14398.85 14898.04 26697.66 9299.84 12296.72 16999.81 6999.13 222
xiu_mvs_v1_base_debu97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base_debi97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
RRT_MVS97.07 23596.57 25098.58 18195.89 35996.33 22697.36 20898.77 25897.85 14599.08 10199.12 9482.30 33799.96 898.82 4399.90 4499.45 126
diffmvs98.22 14698.24 13098.17 22399.00 18895.44 24996.38 27099.58 2697.79 14998.53 19298.50 22496.76 15899.74 21797.95 9299.64 14799.34 172
CANet97.87 17397.76 17298.19 22297.75 31995.51 24696.76 25099.05 20797.74 15096.93 28598.21 25295.59 20899.89 5897.86 9899.93 2599.19 212
DELS-MVS98.27 14098.20 13498.48 19898.86 21896.70 21995.60 30499.20 16897.73 15198.45 19698.71 18797.50 10999.82 14698.21 7699.59 16498.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF98.62 9598.36 11699.42 5799.65 4399.42 498.55 8599.57 3397.72 15298.90 13799.26 6996.12 18599.52 30095.72 23199.71 11799.32 180
MVS_Test98.18 15098.36 11697.67 24998.48 28094.73 26798.18 12199.02 21697.69 15398.04 22699.11 9697.22 13299.56 28898.57 5798.90 28098.71 280
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23299.39 9697.67 15499.44 4698.99 12597.53 10599.89 5895.40 24499.68 13399.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19599.32 1598.81 25297.66 15598.62 17599.40 5396.82 15299.80 16895.88 22199.51 19298.75 277
MSDG97.71 18797.52 19098.28 21698.91 20896.82 21494.42 33799.37 10297.65 15698.37 20698.29 24797.40 11899.33 32894.09 27899.22 23998.68 286
NCCC97.86 17497.47 19699.05 12098.61 26598.07 13396.98 23498.90 23497.63 15797.04 28297.93 27495.99 19399.66 25695.31 24598.82 28399.43 135
PM-MVS98.82 5998.72 5999.12 10299.64 4698.54 9597.98 14899.68 1497.62 15899.34 6199.18 8097.54 10399.77 19997.79 9999.74 10399.04 233
ACMM96.08 1298.91 5198.73 5799.48 5099.55 6599.14 4898.07 13399.37 10297.62 15899.04 11198.96 13498.84 2099.79 18197.43 11799.65 14599.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft98.46 12098.09 14899.54 2999.57 5599.22 2598.50 9399.19 17397.61 16097.58 25398.66 19897.40 11899.88 6794.72 25799.60 16299.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR98.25 14498.08 15198.75 16399.09 16997.46 18495.97 28599.27 15197.60 16197.99 22898.25 24898.15 6299.38 32396.87 15599.57 17499.42 138
MVS_111021_LR98.30 13698.12 14698.83 14899.16 15498.03 13796.09 28299.30 13997.58 16298.10 22098.24 24998.25 5099.34 32696.69 17299.65 14599.12 223
APDe-MVS98.99 3998.79 5299.60 1399.21 13699.15 4598.87 6199.48 6797.57 16399.35 5999.24 7297.83 8099.89 5897.88 9699.70 12299.75 22
API-MVS97.04 23996.91 22997.42 26997.88 31498.23 11698.18 12198.50 27897.57 16397.39 27096.75 32196.77 15699.15 34490.16 33999.02 27094.88 357
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14599.46 7597.56 16599.54 3099.50 3698.97 1699.84 12298.06 8599.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.40 12798.00 15799.61 999.57 5599.25 2298.57 8399.35 11297.55 16699.31 7097.71 28594.61 23699.88 6796.14 21399.19 24699.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.70 7998.42 10799.52 4199.36 11199.12 5398.72 7199.36 10697.54 16798.30 20798.40 23397.86 7999.89 5896.53 18899.72 11399.56 71
v114498.60 9998.66 6998.41 20499.36 11195.90 23697.58 18999.34 11897.51 16899.27 7399.15 9096.34 18199.80 16899.47 1299.93 2599.51 96
PMMVS298.07 15798.08 15198.04 23399.41 10694.59 27394.59 33499.40 9497.50 16998.82 15598.83 16896.83 15199.84 12297.50 11599.81 6999.71 26
ITE_SJBPF98.87 14399.22 13498.48 9999.35 11297.50 16998.28 20998.60 21397.64 9699.35 32593.86 28699.27 23298.79 273
MVSTER96.86 24896.55 25297.79 24397.91 31394.21 27997.56 19198.87 23997.49 17199.06 10499.05 10880.72 34299.80 16898.44 6599.82 6599.37 160
Patchmatch-RL test97.26 22097.02 22197.99 23699.52 7295.53 24596.13 28199.71 1097.47 17299.27 7399.16 8684.30 32799.62 26897.89 9399.77 9098.81 267
HFP-MVS98.71 7698.44 10399.51 4599.49 8499.16 4098.52 8899.31 13097.47 17298.58 18398.50 22497.97 7499.85 10596.57 18099.59 16499.53 89
MSLP-MVS++98.02 16098.14 14597.64 25398.58 27095.19 25797.48 19999.23 16497.47 17297.90 23198.62 20997.04 13798.81 35497.55 11099.41 20998.94 251
ACMMPR98.70 7998.42 10799.54 2999.52 7299.14 4898.52 8899.31 13097.47 17298.56 18798.54 21897.75 8799.88 6796.57 18099.59 16499.58 61
mPP-MVS98.64 9198.34 11999.54 2999.54 6899.17 3698.63 7699.24 16297.47 17298.09 22198.68 19397.62 9799.89 5896.22 20799.62 15399.57 66
region2R98.69 8198.40 10999.54 2999.53 7099.17 3698.52 8899.31 13097.46 17798.44 19798.51 22197.83 8099.88 6796.46 19299.58 17099.58 61
HPM-MVS++copyleft98.10 15497.64 18399.48 5099.09 16999.13 5197.52 19598.75 26297.46 17796.90 29197.83 27996.01 18999.84 12295.82 22899.35 21999.46 122
TinyColmap97.89 17097.98 15897.60 25598.86 21894.35 27696.21 27899.44 8197.45 17999.06 10498.88 15597.99 7399.28 33594.38 27099.58 17099.18 214
GST-MVS98.61 9698.30 12499.52 4199.51 7499.20 3298.26 11499.25 15797.44 18098.67 16998.39 23597.68 9099.85 10596.00 21699.51 19299.52 93
MVS_030497.64 19297.35 20398.52 19397.87 31596.69 22098.59 8198.05 29897.44 18093.74 35298.85 16293.69 25799.88 6798.11 8099.81 6998.98 242
v119298.60 9998.66 6998.41 20499.27 12495.88 23797.52 19599.36 10697.41 18299.33 6299.20 7796.37 17999.82 14699.57 699.92 3499.55 79
plane_prior397.78 16697.41 18297.79 239
EIA-MVS98.00 16297.74 17498.80 15398.72 24298.09 12798.05 13799.60 2397.39 18496.63 30195.55 34197.68 9099.80 16896.73 16899.27 23298.52 290
thres20093.72 31593.14 31795.46 32298.66 26391.29 33196.61 25894.63 34297.39 18496.83 29593.71 35979.88 34499.56 28882.40 35798.13 31095.54 356
testgi98.32 13498.39 11298.13 22599.57 5595.54 24497.78 16599.49 6597.37 18699.19 8697.65 29098.96 1799.49 30696.50 19098.99 27499.34 172
mvs_anonymous97.83 18298.16 14196.87 29198.18 29991.89 32297.31 21298.90 23497.37 18698.83 15199.46 4396.28 18299.79 18198.90 3798.16 30898.95 247
EPNet_dtu94.93 29794.78 29895.38 32393.58 36387.68 34696.78 24895.69 33897.35 18889.14 36198.09 26388.15 30199.49 30694.95 25199.30 22898.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test96.55 26096.34 25897.17 27898.35 28893.06 30498.40 10497.79 30297.33 18998.41 20198.67 19583.68 33199.69 23695.16 24699.31 22598.77 275
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5797.33 18998.94 13398.86 15998.75 2499.82 14697.53 11399.71 11799.56 71
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 25999.48 6797.32 19199.11 9598.61 21299.33 899.30 33296.23 20698.38 30099.28 192
DeepC-MVS_fast96.85 698.30 13698.15 14398.75 16398.61 26597.23 19597.76 17099.09 19997.31 19298.75 16398.66 19897.56 10299.64 26396.10 21599.55 18199.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+98.02 16097.82 17098.62 17698.53 27797.19 20197.33 21099.68 1497.30 19396.68 29997.46 30398.56 3399.80 16896.63 17698.20 30598.86 261
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28599.50 5797.30 19399.05 10998.98 12999.35 799.32 32995.72 23199.68 13399.18 214
ZNCC-MVS98.68 8598.40 10999.54 2999.57 5599.21 2698.46 9999.29 14697.28 19598.11 21998.39 23598.00 7099.87 8396.86 15799.64 14799.55 79
eth_miper_zixun_eth97.23 22497.25 20897.17 27898.00 30992.77 31194.71 32799.18 17797.27 19698.56 18798.74 18391.89 27999.69 23697.06 13799.81 6999.05 229
MDA-MVSNet_test_wron97.60 19597.66 18197.41 27099.04 18093.09 30395.27 31398.42 28197.26 19798.88 14498.95 13895.43 21599.73 22197.02 13898.72 28799.41 141
miper_lstm_enhance97.18 22897.16 21497.25 27698.16 30092.85 30995.15 31899.31 13097.25 19898.74 16598.78 17790.07 28799.78 19397.19 12799.80 7799.11 225
xiu_mvs_v2_base97.16 23097.49 19296.17 30798.54 27592.46 31595.45 31098.84 24697.25 19897.48 26496.49 32598.31 4899.90 4996.34 20198.68 29196.15 351
PS-MVSNAJ97.08 23497.39 19996.16 30998.56 27392.46 31595.24 31598.85 24597.25 19897.49 26395.99 33498.07 6499.90 4996.37 19898.67 29296.12 352
YYNet197.60 19597.67 17897.39 27199.04 18093.04 30795.27 31398.38 28497.25 19898.92 13598.95 13895.48 21499.73 22196.99 14198.74 28599.41 141
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 8997.71 17499.46 7597.25 19898.98 12198.99 12597.54 10399.84 12295.88 22199.74 10399.23 202
CNVR-MVS98.17 15297.87 16799.07 11398.67 25898.24 11297.01 23298.93 22897.25 19897.62 24998.34 24297.27 12699.57 28596.42 19699.33 22299.39 150
CANet_DTU97.26 22097.06 21997.84 24097.57 32694.65 27196.19 28098.79 25597.23 20495.14 33898.24 24993.22 26099.84 12297.34 12199.84 5699.04 233
v192192098.54 11198.60 7898.38 20799.20 14095.76 24297.56 19199.36 10697.23 20499.38 5499.17 8496.02 18899.84 12299.57 699.90 4499.54 83
MIMVSNet96.62 25996.25 26397.71 24899.04 18094.66 27099.16 3896.92 32497.23 20497.87 23399.10 9886.11 31299.65 26191.65 32399.21 24198.82 264
FMVSNet596.01 27495.20 28998.41 20497.53 32996.10 23198.74 6899.50 5797.22 20798.03 22799.04 11169.80 36299.88 6797.27 12499.71 11799.25 198
thisisatest053095.27 29094.45 30097.74 24799.19 14394.37 27597.86 15990.20 36197.17 20898.22 21197.65 29073.53 36099.90 4996.90 15299.35 21998.95 247
v124098.55 10898.62 7398.32 21199.22 13495.58 24397.51 19799.45 7897.16 20999.45 4599.24 7296.12 18599.85 10599.60 499.88 4999.55 79
ACMMPcopyleft98.75 7198.50 9099.52 4199.56 6299.16 4098.87 6199.37 10297.16 20998.82 15599.01 12297.71 8999.87 8396.29 20499.69 12899.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14419298.54 11198.57 8298.45 20199.21 13695.98 23497.63 18299.36 10697.15 21199.32 6899.18 8095.84 20199.84 12299.50 1099.91 4099.54 83
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 22999.18 17797.10 21298.75 16398.92 14298.18 5899.65 26196.68 17399.56 17999.37 160
cl_fuxian97.36 21297.37 20197.31 27298.09 30493.25 30295.01 32199.16 18697.05 21398.77 16198.72 18692.88 26899.64 26396.93 14699.76 9999.05 229
cl-mvsnet____97.02 24096.83 23497.58 25797.82 31794.04 28394.66 33099.16 18697.04 21498.63 17398.71 18788.68 29899.69 23697.00 13999.81 6999.00 240
cl-mvsnet197.02 24096.84 23397.58 25797.82 31794.03 28494.66 33099.16 18697.04 21498.63 17398.71 18788.69 29799.69 23697.00 13999.81 6999.01 237
PGM-MVS98.66 8898.37 11599.55 2699.53 7099.18 3598.23 11699.49 6597.01 21698.69 16798.88 15598.00 7099.89 5895.87 22499.59 16499.58 61
TSAR-MVS + MP.98.63 9398.49 9399.06 11899.64 4697.90 15398.51 9298.94 22696.96 21799.24 8098.89 15497.83 8099.81 15996.88 15499.49 20099.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP98.75 7198.48 9599.57 1899.58 5199.29 1797.82 16399.25 15796.94 21898.78 15899.12 9498.02 6899.84 12297.13 13399.67 13999.59 55
CVMVSNet96.25 27097.21 21293.38 34199.10 16680.56 36597.20 22198.19 29296.94 21899.00 11899.02 11589.50 29299.80 16896.36 20099.59 16499.78 14
CNLPA97.17 22996.71 24098.55 18998.56 27398.05 13696.33 27298.93 22896.91 22097.06 28197.39 30694.38 24299.45 31591.66 32299.18 24898.14 306
DeepPCF-MVS96.93 598.32 13498.01 15699.23 9098.39 28798.97 6295.03 32099.18 17796.88 22199.33 6298.78 17798.16 6099.28 33596.74 16699.62 15399.44 131
wuyk23d96.06 27397.62 18591.38 34498.65 26498.57 9198.85 6496.95 32296.86 22299.90 499.16 8699.18 1198.40 35789.23 34299.77 9077.18 361
AllTest98.44 12298.20 13499.16 9799.50 7798.55 9298.25 11599.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
TestCases99.16 9799.50 7798.55 9299.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9196.77 22598.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
HPM-MVScopyleft98.79 6398.53 8599.59 1799.65 4399.29 1799.16 3899.43 8796.74 22698.61 17798.38 23798.62 2999.87 8396.47 19199.67 13999.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
plane_prior97.65 17597.07 23096.72 22799.36 217
BH-untuned96.83 24996.75 23897.08 28198.74 23993.33 30196.71 25398.26 28796.72 22798.44 19797.37 30895.20 21999.47 31191.89 32097.43 32598.44 295
BH-RMVSNet96.83 24996.58 24997.58 25798.47 28194.05 28296.67 25597.36 31296.70 22997.87 23397.98 26995.14 22199.44 31690.47 33898.58 29799.25 198
TAMVS98.24 14598.05 15398.80 15399.07 17397.18 20297.88 15698.81 25296.66 23099.17 9199.21 7594.81 23199.77 19996.96 14599.88 4999.44 131
LPG-MVS_test98.71 7698.46 9999.47 5399.57 5598.97 6298.23 11699.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
CL-MVSNet_2432*160097.44 20897.22 21198.08 22998.57 27295.78 24194.30 34098.79 25596.58 23398.60 17998.19 25494.74 23599.64 26396.41 19798.84 28198.82 264
our_test_397.39 21197.73 17696.34 30298.70 24989.78 33894.61 33398.97 22596.50 23499.04 11198.85 16295.98 19499.84 12297.26 12599.67 13999.41 141
test_prior397.48 20497.00 22298.95 13298.69 25397.95 14995.74 29999.03 21296.48 23596.11 31697.63 29295.92 19899.59 27994.16 27299.20 24299.30 187
test_prior295.74 29996.48 23596.11 31697.63 29295.92 19894.16 27299.20 242
MG-MVS96.77 25296.61 24797.26 27598.31 29193.06 30495.93 29098.12 29596.45 23797.92 22998.73 18493.77 25599.39 32191.19 33299.04 26699.33 178
MVP-Stereo98.08 15697.92 16398.57 18498.96 19696.79 21597.90 15599.18 17796.41 23898.46 19598.95 13895.93 19799.60 27596.51 18998.98 27699.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test97.50 20097.74 17496.78 29698.70 24991.23 33494.55 33599.05 20796.36 23999.21 8498.79 17696.39 17699.78 19396.74 16699.82 6599.34 172
TSAR-MVS + GP.98.18 15097.98 15898.77 16098.71 24597.88 15496.32 27398.66 26996.33 24099.23 8398.51 22197.48 11499.40 31997.16 12999.46 20499.02 236
testdata195.44 31196.32 241
LF4IMVS97.90 16897.69 17798.52 19399.17 15297.66 17497.19 22499.47 7396.31 24297.85 23598.20 25396.71 16299.52 30094.62 25899.72 11398.38 298
#test#98.50 11698.16 14199.51 4599.49 8499.16 4098.03 14099.31 13096.30 24398.58 18398.50 22497.97 7499.85 10595.68 23499.59 16499.53 89
test-LLR93.90 31293.85 30694.04 33396.53 34984.62 35794.05 34492.39 35596.17 24494.12 34695.07 34682.30 33799.67 24895.87 22498.18 30697.82 319
test0.0.03 194.51 30093.69 30996.99 28496.05 35693.61 30094.97 32293.49 35096.17 24497.57 25594.88 35282.30 33799.01 34993.60 29294.17 35798.37 300
Anonymous2023120698.21 14798.21 13398.20 22199.51 7495.43 25098.13 12599.32 12596.16 24698.93 13498.82 17196.00 19099.83 13697.32 12299.73 10699.36 166
SCA96.41 26696.66 24595.67 31598.24 29588.35 34395.85 29596.88 32596.11 24797.67 24698.67 19593.10 26399.85 10594.16 27299.22 23998.81 267
MS-PatchMatch97.68 18997.75 17397.45 26798.23 29793.78 29697.29 21398.84 24696.10 24898.64 17298.65 20096.04 18799.36 32496.84 15899.14 25399.20 207
HQP-NCC98.67 25896.29 27496.05 24995.55 329
ACMP_Plane98.67 25896.29 27496.05 24995.55 329
HQP-MVS97.00 24396.49 25498.55 18998.67 25896.79 21596.29 27499.04 21096.05 24995.55 32996.84 31993.84 25199.54 29492.82 30799.26 23599.32 180
PHI-MVS98.29 13997.95 16099.34 7298.44 28499.16 4098.12 12799.38 9896.01 25298.06 22398.43 23197.80 8499.67 24895.69 23399.58 17099.20 207
miper_ehance_all_eth97.06 23697.03 22097.16 28097.83 31693.06 30494.66 33099.09 19995.99 25398.69 16798.45 23092.73 27199.61 27496.79 16099.03 26798.82 264
AUN-MVS96.24 27195.45 28098.60 17998.70 24997.22 19797.38 20697.65 30795.95 25495.53 33397.96 27382.11 34199.79 18196.31 20297.44 32498.80 272
MVEpermissive83.40 2292.50 32591.92 32894.25 33298.83 22591.64 32492.71 35383.52 36695.92 25586.46 36495.46 34495.20 21995.40 36280.51 35998.64 29395.73 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CDS-MVSNet97.69 18897.35 20398.69 16798.73 24097.02 20996.92 24098.75 26295.89 25698.59 18198.67 19592.08 27899.74 21796.72 16999.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
D2MVS97.84 18097.84 16997.83 24199.14 15994.74 26696.94 23698.88 23795.84 25798.89 14098.96 13494.40 24199.69 23697.55 11099.95 1699.05 229
testtj97.79 18497.25 20899.42 5799.03 18398.85 6897.78 16599.18 17795.83 25898.12 21898.50 22495.50 21299.86 9192.23 31899.07 26299.54 83
PAPM_NR96.82 25196.32 25998.30 21499.07 17396.69 22097.48 19998.76 25995.81 25996.61 30396.47 32794.12 24999.17 34290.82 33797.78 31999.06 228
ACMP95.32 1598.41 12598.09 14899.36 6499.51 7498.79 7497.68 17799.38 9895.76 26098.81 15798.82 17198.36 4399.82 14694.75 25499.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 16297.63 18499.10 10699.24 12998.17 12296.89 24398.73 26595.66 26197.92 22997.70 28797.17 13399.66 25696.18 21199.23 23899.47 120
AdaColmapbinary97.14 23196.71 24098.46 20098.34 28997.80 16596.95 23598.93 22895.58 26296.92 28697.66 28995.87 20099.53 29690.97 33399.14 25398.04 309
ETH3D-3000-0.198.03 15897.62 18599.29 7799.11 16298.80 7397.47 20199.32 12595.54 26398.43 20098.62 20996.61 16699.77 19993.95 28299.49 20099.30 187
pmmvs-eth3d98.47 11998.34 11998.86 14599.30 12197.76 16797.16 22799.28 14895.54 26399.42 4899.19 7897.27 12699.63 26697.89 9399.97 1199.20 207
9.1497.78 17199.07 17397.53 19499.32 12595.53 26598.54 19198.70 19097.58 10099.76 20694.32 27199.46 204
GA-MVS95.86 27895.32 28697.49 26598.60 26794.15 28193.83 34797.93 30095.49 26696.68 29997.42 30583.21 33299.30 33296.22 20798.55 29899.01 237
tpmvs95.02 29695.25 28794.33 33196.39 35485.87 35198.08 13296.83 32695.46 26795.51 33498.69 19185.91 31399.53 29694.16 27296.23 34497.58 332
KD-MVS_2432*160092.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
miper_refine_blended92.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
UnsupCasMVSNet_bld97.30 21796.92 22798.45 20199.28 12396.78 21896.20 27999.27 15195.42 26898.28 20998.30 24693.16 26199.71 23094.99 24997.37 32798.87 260
PatchmatchNetpermissive95.58 28495.67 27395.30 32497.34 33687.32 34797.65 18196.65 32795.30 27197.07 28098.69 19184.77 32199.75 21394.97 25098.64 29398.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet97.63 19497.17 21398.99 12999.27 12497.86 15695.98 28493.41 35195.25 27299.47 4298.90 14695.63 20699.85 10596.91 14799.73 10699.27 194
MVS-HIRNet94.32 30395.62 27490.42 34598.46 28275.36 36696.29 27489.13 36395.25 27295.38 33599.75 792.88 26899.19 34194.07 27999.39 21296.72 345
OMC-MVS97.88 17297.49 19299.04 12298.89 21498.63 8496.94 23699.25 15795.02 27498.53 19298.51 22197.27 12699.47 31193.50 29699.51 19299.01 237
tpmrst95.07 29495.46 27993.91 33597.11 34184.36 35997.62 18396.96 32194.98 27596.35 31398.80 17485.46 31799.59 27995.60 23896.23 34497.79 324
APD-MVScopyleft98.10 15497.67 17899.42 5799.11 16298.93 6697.76 17099.28 14894.97 27698.72 16698.77 17997.04 13799.85 10593.79 28899.54 18299.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS96.67 25696.27 26297.87 23998.81 23194.61 27296.77 24997.92 30194.94 27797.12 27697.74 28491.11 28299.82 14693.89 28498.15 30999.18 214
CPTT-MVS97.84 18097.36 20299.27 8299.31 11898.46 10098.29 11199.27 15194.90 27897.83 23698.37 23994.90 22599.84 12293.85 28799.54 18299.51 96
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22799.38 9894.87 27998.97 12498.99 12598.01 6999.88 6797.29 12399.70 12299.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Fast-Effi-MVS+97.67 19097.38 20098.57 18498.71 24597.43 18697.23 21799.45 7894.82 28096.13 31596.51 32498.52 3599.91 4596.19 20998.83 28298.37 300
ET-MVSNet_ETH3D94.30 30593.21 31597.58 25798.14 30194.47 27494.78 32693.24 35394.72 28189.56 36095.87 33778.57 35399.81 15996.91 14797.11 33498.46 292
EPMVS93.72 31593.27 31495.09 32696.04 35787.76 34598.13 12585.01 36594.69 28296.92 28698.64 20378.47 35599.31 33095.04 24796.46 34198.20 303
cl-mvsnet295.79 28095.39 28496.98 28596.77 34792.79 31094.40 33898.53 27694.59 28397.89 23298.17 25582.82 33699.24 33796.37 19899.03 26798.92 253
PVSNet_BlendedMVS97.55 19897.53 18997.60 25598.92 20593.77 29796.64 25699.43 8794.49 28497.62 24999.18 8096.82 15299.67 24894.73 25599.93 2599.36 166
sss97.21 22596.93 22598.06 23198.83 22595.22 25696.75 25198.48 27994.49 28497.27 27397.90 27592.77 27099.80 16896.57 18099.32 22399.16 221
tpm94.67 29994.34 30395.66 31697.68 32588.42 34297.88 15694.90 34094.46 28696.03 32198.56 21778.66 35199.79 18195.88 22195.01 35298.78 274
CLD-MVS97.49 20297.16 21498.48 19899.07 17397.03 20894.71 32799.21 16694.46 28698.06 22397.16 31497.57 10199.48 30994.46 26399.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TESTMET0.1,192.19 32991.77 32993.46 33996.48 35182.80 36294.05 34491.52 35894.45 28894.00 34994.88 35266.65 36899.56 28895.78 22998.11 31198.02 310
PVSNet_Blended_VisFu98.17 15298.15 14398.22 22099.73 2495.15 25897.36 20899.68 1494.45 28898.99 11999.27 6796.87 14899.94 2397.13 13399.91 4099.57 66
MDTV_nov1_ep1395.22 28897.06 34283.20 36197.74 17296.16 33294.37 29096.99 28498.83 16883.95 32999.53 29693.90 28397.95 317
TR-MVS95.55 28595.12 29296.86 29497.54 32893.94 28896.49 26496.53 32994.36 29197.03 28396.61 32394.26 24599.16 34386.91 34896.31 34397.47 336
jason97.45 20797.35 20397.76 24599.24 12993.93 28995.86 29398.42 28194.24 29298.50 19498.13 25694.82 22999.91 4597.22 12699.73 10699.43 135
jason: jason.
HyFIR lowres test97.19 22796.60 24898.96 13199.62 5097.28 19395.17 31699.50 5794.21 29399.01 11598.32 24586.61 30699.99 297.10 13599.84 5699.60 49
ETH3D cwj APD-0.1697.55 19897.00 22299.19 9398.51 27898.64 8396.85 24499.13 19394.19 29497.65 24798.40 23395.78 20299.81 15993.37 29999.16 24999.12 223
SMA-MVScopyleft98.40 12798.03 15599.51 4599.16 15499.21 2698.05 13799.22 16594.16 29598.98 12199.10 9897.52 10799.79 18196.45 19399.64 14799.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.01 18798.84 6999.07 20294.10 29698.05 22598.12 25996.36 18099.86 9192.70 31299.19 246
thisisatest051594.12 30993.16 31696.97 28698.60 26792.90 30893.77 34890.61 35994.10 29696.91 28895.87 33774.99 35899.80 16894.52 26199.12 25998.20 303
USDC97.41 21097.40 19897.44 26898.94 19993.67 29995.17 31699.53 5194.03 29898.97 12499.10 9895.29 21799.34 32695.84 22799.73 10699.30 187
test-mter92.33 32791.76 33094.04 33396.53 34984.62 35794.05 34492.39 35594.00 29994.12 34695.07 34665.63 37099.67 24895.87 22498.18 30697.82 319
baseline293.73 31492.83 32096.42 30197.70 32391.28 33296.84 24689.77 36293.96 30092.44 35595.93 33579.14 35099.77 19992.94 30396.76 33998.21 302
pmmvs597.64 19297.49 19298.08 22999.14 15995.12 26096.70 25499.05 20793.77 30198.62 17598.83 16893.23 25999.75 21398.33 7399.76 9999.36 166
BH-w/o95.13 29394.89 29795.86 31198.20 29891.31 33095.65 30297.37 31193.64 30296.52 30695.70 33993.04 26699.02 34788.10 34595.82 34897.24 338
pmmvs497.58 19797.28 20798.51 19598.84 22396.93 21295.40 31298.52 27793.60 30398.61 17798.65 20095.10 22299.60 27596.97 14499.79 8298.99 241
CHOSEN 280x42095.51 28795.47 27895.65 31798.25 29488.27 34493.25 35198.88 23793.53 30494.65 34197.15 31586.17 31099.93 2897.41 11899.93 2598.73 279
lupinMVS97.06 23696.86 23197.65 25198.88 21593.89 29395.48 30997.97 29993.53 30498.16 21497.58 29493.81 25399.91 4596.77 16399.57 17499.17 218
PatchMatch-RL97.24 22396.78 23698.61 17899.03 18397.83 15996.36 27199.06 20393.49 30697.36 27297.78 28195.75 20399.49 30693.44 29798.77 28498.52 290
DP-MVS Recon97.33 21596.92 22798.57 18499.09 16997.99 13996.79 24799.35 11293.18 30797.71 24398.07 26595.00 22499.31 33093.97 28099.13 25698.42 297
1112_ss97.29 21996.86 23198.58 18199.34 11796.32 22796.75 25199.58 2693.14 30896.89 29297.48 30192.11 27799.86 9196.91 14799.54 18299.57 66
IU-MVS99.49 8499.15 4598.87 23992.97 30999.41 4996.76 16499.62 15399.66 34
F-COLMAP97.30 21796.68 24299.14 10099.19 14398.39 10397.27 21699.30 13992.93 31096.62 30298.00 26795.73 20499.68 24592.62 31398.46 29999.35 170
FPMVS93.44 31892.23 32397.08 28199.25 12897.86 15695.61 30397.16 31892.90 31193.76 35198.65 20075.94 35795.66 36179.30 36197.49 32297.73 326
DSMNet-mixed97.42 20997.60 18796.87 29199.15 15891.46 32698.54 8699.12 19592.87 31297.58 25399.63 2096.21 18399.90 4995.74 23099.54 18299.27 194
dp93.47 31793.59 31193.13 34396.64 34881.62 36497.66 17996.42 33092.80 31396.11 31698.64 20378.55 35499.59 27993.31 30092.18 36098.16 305
PVSNet93.40 1795.67 28295.70 27195.57 31898.83 22588.57 34192.50 35497.72 30492.69 31496.49 31096.44 32893.72 25699.43 31793.61 29199.28 23198.71 280
new_pmnet96.99 24496.76 23797.67 24998.72 24294.89 26495.95 28998.20 29092.62 31598.55 18998.54 21894.88 22899.52 30093.96 28199.44 20798.59 289
原ACMM198.35 20998.90 20996.25 22998.83 25192.48 31696.07 31998.10 26195.39 21699.71 23092.61 31498.99 27499.08 226
IB-MVS91.63 1992.24 32890.90 33296.27 30497.22 34091.24 33394.36 33993.33 35292.37 31792.24 35694.58 35566.20 36999.89 5893.16 30294.63 35497.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CR-MVSNet96.28 26995.95 26697.28 27497.71 32194.22 27798.11 12898.92 23192.31 31896.91 28899.37 5485.44 31899.81 15997.39 11997.36 32997.81 321
HY-MVS95.94 1395.90 27795.35 28597.55 26197.95 31094.79 26598.81 6696.94 32392.28 31995.17 33798.57 21689.90 28999.75 21391.20 33197.33 33198.10 307
DWT-MVSNet_test92.75 32492.05 32594.85 32796.48 35187.21 34897.83 16294.99 33992.22 32092.72 35494.11 35870.75 36199.46 31395.01 24894.33 35697.87 317
MAR-MVS96.47 26495.70 27198.79 15597.92 31299.12 5398.28 11298.60 27392.16 32195.54 33296.17 33294.77 23499.52 30089.62 34198.23 30397.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.32 26795.59 27698.51 19598.76 23697.21 19994.54 33698.26 28791.94 32296.37 31297.25 31193.06 26599.43 31791.42 32898.74 28598.89 257
agg_prior197.06 23696.40 25699.03 12398.68 25697.99 13995.76 29799.01 21991.73 32395.59 32597.50 29996.49 17199.77 19993.71 28999.14 25399.34 172
train_agg97.10 23296.45 25599.07 11398.71 24598.08 13195.96 28799.03 21291.64 32495.85 32297.53 29696.47 17299.76 20693.67 29099.16 24999.36 166
test_898.67 25898.01 13895.91 29299.02 21691.64 32495.79 32497.50 29996.47 17299.76 206
CHOSEN 1792x268897.49 20297.14 21798.54 19299.68 3996.09 23396.50 26399.62 2091.58 32698.84 15098.97 13192.36 27499.88 6796.76 16499.95 1699.67 33
PMMVS96.51 26195.98 26598.09 22697.53 32995.84 23894.92 32398.84 24691.58 32696.05 32095.58 34095.68 20599.66 25695.59 23998.09 31298.76 276
Test_1112_low_res96.99 24496.55 25298.31 21399.35 11595.47 24895.84 29699.53 5191.51 32896.80 29798.48 22991.36 28199.83 13696.58 17899.53 18699.62 44
TEST998.71 24598.08 13195.96 28799.03 21291.40 32995.85 32297.53 29696.52 16999.76 206
PAPR95.29 28994.47 29997.75 24697.50 33395.14 25994.89 32498.71 26791.39 33095.35 33695.48 34394.57 23799.14 34584.95 35197.37 32798.97 246
131495.74 28195.60 27596.17 30797.53 32992.75 31298.07 13398.31 28691.22 33194.25 34496.68 32295.53 20999.03 34691.64 32497.18 33296.74 344
CDPH-MVS97.26 22096.66 24599.07 11399.00 18898.15 12396.03 28399.01 21991.21 33297.79 23997.85 27896.89 14799.69 23692.75 31099.38 21599.39 150
miper_enhance_ethall96.01 27495.74 26996.81 29596.41 35392.27 31993.69 34998.89 23691.14 33398.30 20797.35 31090.58 28499.58 28496.31 20299.03 26798.60 287
PVSNet_Blended96.88 24796.68 24297.47 26698.92 20593.77 29794.71 32799.43 8790.98 33497.62 24997.36 30996.82 15299.67 24894.73 25599.56 17998.98 242
PLCcopyleft94.65 1696.51 26195.73 27098.85 14698.75 23897.91 15296.42 26899.06 20390.94 33595.59 32597.38 30794.41 24099.59 27990.93 33498.04 31699.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet295.43 28894.98 29496.76 29798.14 30191.74 32397.92 15297.76 30390.23 33696.51 30798.91 14385.61 31599.85 10592.88 30596.90 33598.69 283
ADS-MVSNet95.24 29194.93 29696.18 30698.14 30190.10 33797.92 15297.32 31590.23 33696.51 30798.91 14385.61 31599.74 21792.88 30596.90 33598.69 283
QAPM97.31 21696.81 23598.82 14998.80 23397.49 18299.06 4899.19 17390.22 33897.69 24599.16 8696.91 14699.90 4990.89 33699.41 20999.07 227
PVSNet_089.98 2191.15 33190.30 33493.70 33797.72 32084.34 36090.24 35897.42 31090.20 33993.79 35093.09 36090.90 28398.89 35386.57 34972.76 36397.87 317
testdata98.09 22698.93 20195.40 25198.80 25490.08 34097.45 26698.37 23995.26 21899.70 23293.58 29398.95 27899.17 218
MDTV_nov1_ep13_2view74.92 36797.69 17690.06 34197.75 24285.78 31493.52 29498.69 283
OpenMVScopyleft96.65 797.09 23396.68 24298.32 21198.32 29097.16 20498.86 6399.37 10289.48 34296.29 31499.15 9096.56 16799.90 4992.90 30499.20 24297.89 314
无先验95.74 29998.74 26489.38 34399.73 22192.38 31699.22 206
CostFormer93.97 31193.78 30894.51 33097.53 32985.83 35397.98 14895.96 33589.29 34494.99 34098.63 20778.63 35299.62 26894.54 26096.50 34098.09 308
CMPMVSbinary75.91 2396.29 26895.44 28198.84 14796.25 35598.69 8297.02 23199.12 19588.90 34597.83 23698.86 15989.51 29198.90 35291.92 31999.51 19298.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETH3 D test640096.46 26595.59 27699.08 11098.88 21598.21 11896.53 26099.18 17788.87 34697.08 27997.79 28093.64 25899.77 19988.92 34399.40 21199.28 192
pmmvs395.03 29594.40 30196.93 28797.70 32392.53 31495.08 31997.71 30588.57 34797.71 24398.08 26479.39 34999.82 14696.19 20999.11 26098.43 296
旧先验295.76 29788.56 34897.52 26099.66 25694.48 262
gm-plane-assit94.83 36181.97 36388.07 34994.99 34999.60 27591.76 321
112196.73 25396.00 26498.91 13898.95 19897.76 16798.07 13398.73 26587.65 35096.54 30498.13 25694.52 23899.73 22192.38 31699.02 27099.24 201
新几何198.91 13898.94 19997.76 16798.76 25987.58 35196.75 29898.10 26194.80 23299.78 19392.73 31199.00 27399.20 207
PAPM91.88 33090.34 33396.51 29998.06 30692.56 31392.44 35597.17 31786.35 35290.38 35996.01 33386.61 30699.21 34070.65 36395.43 35097.75 325
tpm293.09 32192.58 32294.62 32997.56 32786.53 35097.66 17995.79 33786.15 35394.07 34898.23 25175.95 35699.53 29690.91 33596.86 33897.81 321
test22298.92 20596.93 21295.54 30598.78 25785.72 35496.86 29498.11 26094.43 23999.10 26199.23 202
cascas94.79 29894.33 30496.15 31096.02 35892.36 31892.34 35699.26 15685.34 35595.08 33994.96 35192.96 26798.53 35694.41 26998.59 29697.56 333
OpenMVS_ROBcopyleft95.38 1495.84 27995.18 29097.81 24298.41 28697.15 20597.37 20798.62 27283.86 35698.65 17198.37 23994.29 24499.68 24588.41 34498.62 29596.60 346
TAPA-MVS96.21 1196.63 25895.95 26698.65 16998.93 20198.09 12796.93 23899.28 14883.58 35798.13 21797.78 28196.13 18499.40 31993.52 29499.29 23098.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 31993.13 31893.75 33697.39 33584.74 35697.39 20597.65 30783.39 35894.16 34598.41 23282.86 33599.39 32191.56 32695.35 35197.14 339
114514_t96.50 26395.77 26898.69 16799.48 9297.43 18697.84 16199.55 4481.42 35996.51 30798.58 21595.53 20999.67 24893.41 29899.58 17098.98 242
PCF-MVS92.86 1894.36 30293.00 31998.42 20398.70 24997.56 17993.16 35299.11 19779.59 36097.55 25697.43 30492.19 27599.73 22179.85 36099.45 20697.97 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS93.19 32092.09 32496.50 30096.91 34394.03 28498.07 13398.06 29768.01 36194.56 34396.48 32695.96 19699.30 33283.84 35396.89 33796.17 349
DeepMVS_CXcopyleft93.44 34098.24 29594.21 27994.34 34364.28 36291.34 35894.87 35489.45 29392.77 36477.54 36293.14 35893.35 359
tmp_tt78.77 33378.73 33678.90 34758.45 36874.76 36894.20 34178.26 36939.16 36386.71 36392.82 36180.50 34375.19 36586.16 35092.29 35986.74 360
test_method79.78 33279.50 33580.62 34680.21 36745.76 36970.82 36198.41 28331.08 36480.89 36597.71 28584.85 32097.37 36091.51 32780.03 36298.75 277
test12317.04 33620.11 3397.82 34810.25 3704.91 37094.80 3254.47 3714.93 36510.00 36724.28 3659.69 3713.64 36610.14 36412.43 36514.92 362
testmvs17.12 33520.53 3386.87 34912.05 3694.20 37193.62 3506.73 3704.62 36610.41 36624.33 3648.28 3723.56 3679.69 36515.07 36412.86 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.66 33432.88 3370.00 3500.00 3710.00 3720.00 36299.10 1980.00 3670.00 36897.58 29499.21 100.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas8.17 33710.90 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36898.07 640.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.12 33810.83 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36897.48 3010.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS98.82 14998.59 26998.30 10898.10 13098.52 22098.18 5898.75 35594.62 25899.48 20299.41 141
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14299.32 12599.88 6796.99 14199.63 15099.68 31
GSMVS98.81 267
test_part299.36 11199.10 5699.05 109
sam_mvs184.74 32298.81 267
sam_mvs84.29 328
ambc98.24 21998.82 22895.97 23598.62 7799.00 22299.27 7399.21 7596.99 14299.50 30596.55 18699.50 19999.26 197
MTGPAbinary99.20 168
test_post197.59 18820.48 36783.07 33499.66 25694.16 272
test_post21.25 36683.86 33099.70 232
patchmatchnet-post98.77 17984.37 32599.85 105
GG-mvs-BLEND94.76 32894.54 36292.13 32199.31 1880.47 36888.73 36291.01 36267.59 36698.16 35982.30 35894.53 35593.98 358
MTMP97.93 15191.91 357
test9_res93.28 30199.15 25299.38 157
agg_prior292.50 31599.16 24999.37 160
agg_prior98.68 25697.99 13999.01 21995.59 32599.77 199
test_prior497.97 14495.86 293
test_prior98.95 13298.69 25397.95 14999.03 21299.59 27999.30 187
新几何295.93 290
旧先验198.82 22897.45 18598.76 25998.34 24295.50 21299.01 27299.23 202
原ACMM295.53 306
testdata299.79 18192.80 309
segment_acmp97.02 140
test1298.93 13598.58 27097.83 15998.66 26996.53 30595.51 21199.69 23699.13 25699.27 194
plane_prior799.19 14397.87 155
plane_prior698.99 19297.70 17394.90 225
plane_prior599.27 15199.70 23294.42 26699.51 19299.45 126
plane_prior497.98 269
plane_prior199.05 179
n20.00 372
nn0.00 372
door-mid99.57 33
lessismore_v098.97 13099.73 2497.53 18186.71 36499.37 5699.52 3589.93 28899.92 3598.99 3499.72 11399.44 131
test1198.87 239
door99.41 91
HQP5-MVS96.79 215
BP-MVS92.82 307
HQP4-MVS95.56 32899.54 29499.32 180
HQP3-MVS99.04 21099.26 235
HQP2-MVS93.84 251
NP-MVS98.84 22397.39 18896.84 319
ACMMP++_ref99.77 90
ACMMP++99.68 133
Test By Simon96.52 169