This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1999.67 299.73 399.65 499.15 399.86 2597.22 5199.92 1499.77 10
Anonymous2023121198.55 1798.76 1397.94 10398.79 11994.37 15398.84 1199.15 2799.37 399.67 699.43 1195.61 12299.72 9298.12 2199.86 3099.73 17
DTE-MVSNet98.79 898.86 898.59 4899.55 2296.12 7498.48 3099.10 3499.36 499.29 2399.06 4397.27 3899.93 397.71 3699.91 1799.70 20
PEN-MVS98.75 1098.85 1098.44 5899.58 1795.67 9498.45 3199.15 2799.33 599.30 2199.00 4597.27 3899.92 597.64 3899.92 1499.75 15
ANet_high98.31 2998.94 696.41 21199.33 5089.64 25597.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3497.55 4199.98 299.77 10
VDDNet96.98 12896.84 13597.41 15399.40 4393.26 19397.94 6395.31 32299.26 798.39 8199.18 3087.85 28399.62 15895.13 15599.09 21799.35 104
PS-CasMVS98.73 1198.85 1098.39 6499.55 2295.47 10798.49 2899.13 3099.22 899.22 2798.96 4997.35 3499.92 597.79 3299.93 1099.79 9
LFMVS95.32 20894.88 21696.62 19598.03 20891.47 23197.65 8290.72 36099.11 997.89 14298.31 9779.20 32599.48 19893.91 20999.12 21398.93 189
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
UA-Net98.88 798.76 1399.22 299.11 8997.89 1499.47 399.32 1199.08 1097.87 14699.67 296.47 9099.92 597.88 2799.98 299.85 3
v7n98.73 1198.99 597.95 10299.64 1294.20 16298.67 1699.14 2999.08 1099.42 1599.23 2496.53 8599.91 1399.27 299.93 1099.73 17
CP-MVSNet98.42 2498.46 2598.30 7399.46 3595.22 12398.27 4498.84 10399.05 1399.01 3898.65 7295.37 13199.90 1497.57 4099.91 1799.77 10
WR-MVS_H98.65 1598.62 2198.75 3399.51 2996.61 5898.55 2399.17 2299.05 1399.17 2998.79 6095.47 12899.89 1897.95 2699.91 1799.75 15
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18898.58 1599.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.07 499.24 498.56 5099.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13297.75 3499.89 2699.62 29
DP-MVS97.87 6997.89 5397.81 11398.62 14294.82 13597.13 11498.79 12098.98 1798.74 5498.49 8295.80 11699.49 19595.04 15999.44 14299.11 161
FOURS199.59 1698.20 499.03 799.25 1598.96 1898.87 43
K. test v396.44 16496.28 16596.95 17699.41 4291.53 22997.65 8290.31 36398.89 1998.93 4199.36 1484.57 30399.92 597.81 3099.56 9899.39 92
TDRefinement98.90 598.86 899.02 999.54 2498.06 899.34 499.44 1098.85 2099.00 3999.20 2697.42 3299.59 16697.21 5299.76 4999.40 90
test_part196.77 14496.53 15497.47 14498.04 20792.92 20097.93 6498.85 9898.83 2199.30 2199.07 4279.25 32499.79 4797.59 3999.93 1099.69 22
Anonymous2024052997.96 5098.04 4197.71 12098.69 13494.28 15897.86 6998.31 19898.79 2299.23 2698.86 5895.76 11799.61 16495.49 12599.36 16799.23 133
Gipumacopyleft98.07 4498.31 3097.36 15699.76 596.28 6998.51 2799.10 3498.76 2396.79 20699.34 1896.61 8098.82 31196.38 7999.50 12496.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 6099.07 9495.87 8496.73 13799.05 4698.67 2498.84 4698.45 8597.58 2899.88 2096.45 7799.86 3099.54 44
test_040297.84 7297.97 4697.47 14499.19 7494.07 16596.71 13898.73 13398.66 2598.56 6598.41 8896.84 7099.69 12594.82 16799.81 3998.64 227
VDD-MVS97.37 10897.25 10997.74 11898.69 13494.50 14997.04 11995.61 31698.59 2698.51 6898.72 6592.54 21199.58 16896.02 9499.49 12899.12 158
LS3D97.77 7997.50 9598.57 4996.24 32097.58 2598.45 3198.85 9898.58 2797.51 15997.94 15295.74 11899.63 15095.19 14698.97 22898.51 239
MIMVSNet198.51 2098.45 2798.67 4199.72 696.71 5298.76 1298.89 8398.49 2899.38 1799.14 3695.44 13099.84 3196.47 7699.80 4299.47 68
FC-MVSNet-test98.16 3598.37 2897.56 13199.49 3393.10 19698.35 3599.21 1798.43 2998.89 4298.83 5994.30 16799.81 4097.87 2899.91 1799.77 10
VPA-MVSNet98.27 3098.46 2597.70 12299.06 9593.80 17697.76 7599.00 6398.40 3099.07 3698.98 4796.89 6499.75 7297.19 5599.79 4399.55 43
IS-MVSNet96.93 13096.68 14497.70 12299.25 5894.00 16898.57 2196.74 29598.36 3198.14 11397.98 14688.23 27699.71 10893.10 22899.72 6099.38 94
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4499.21 7197.35 3797.96 6299.16 2398.34 3298.78 5098.52 8097.32 3599.45 20894.08 19999.67 7099.13 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
nrg03098.54 1898.62 2198.32 6999.22 6495.66 9597.90 6799.08 4098.31 3399.02 3798.74 6497.68 2499.61 16497.77 3399.85 3399.70 20
SixPastTwentyTwo97.49 9997.57 8997.26 16299.56 2092.33 20998.28 4296.97 28698.30 3499.45 1499.35 1688.43 27499.89 1898.01 2599.76 4999.54 44
bld_raw_conf00598.51 2098.52 2498.47 5699.57 1895.91 8398.75 1399.27 1498.28 3599.17 2999.27 2193.85 17899.83 3498.63 1299.91 1799.66 23
tfpnnormal97.72 8297.97 4696.94 17799.26 5592.23 21297.83 7198.45 17598.25 3699.13 3398.66 7096.65 7799.69 12593.92 20899.62 7898.91 194
TransMVSNet (Re)98.38 2698.67 1797.51 13699.51 2993.39 19198.20 5098.87 9198.23 3799.48 1299.27 2198.47 899.55 17996.52 7399.53 11099.60 31
ACMH+93.58 1098.23 3398.31 3097.98 10199.39 4495.22 12397.55 8999.20 1998.21 3899.25 2598.51 8198.21 1199.40 22594.79 16999.72 6099.32 107
Baseline_NR-MVSNet97.72 8297.79 6197.50 13999.56 2093.29 19295.44 20198.86 9498.20 3998.37 8299.24 2394.69 15299.55 17995.98 9899.79 4399.65 26
3Dnovator+96.13 397.73 8197.59 8798.15 8798.11 20595.60 9798.04 5998.70 14398.13 4096.93 20098.45 8595.30 13599.62 15895.64 11898.96 22999.24 132
CS-MVS-test97.91 6497.84 5698.14 8898.52 15496.03 7998.38 3499.67 398.11 4195.50 26696.92 24396.81 7299.87 2296.87 6599.76 4998.51 239
UniMVSNet_NR-MVSNet97.83 7397.65 7698.37 6598.72 12795.78 8795.66 19199.02 5598.11 4198.31 9597.69 18194.65 15699.85 2897.02 6199.71 6399.48 65
CS-MVS98.09 4298.01 4498.32 6998.45 16796.69 5498.52 2699.69 298.07 4396.07 24497.19 22396.88 6699.86 2597.50 4399.73 5698.41 246
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4698.05 4499.61 1199.52 593.72 18399.88 2098.72 999.88 2899.65 26
FIs97.93 6098.07 3797.48 14399.38 4592.95 19998.03 6199.11 3298.04 4598.62 5898.66 7093.75 18299.78 5197.23 5099.84 3499.73 17
RRT_MVS97.95 5497.79 6198.43 6099.67 1095.56 9898.86 1096.73 29797.99 4699.15 3199.35 1689.84 25899.90 1498.64 1199.90 2499.82 6
Regformer-497.53 9797.47 9897.71 12097.35 28293.91 17095.26 21898.14 22197.97 4798.34 8897.89 15795.49 12699.71 10897.41 4699.42 15399.51 50
PMVScopyleft89.60 1796.71 15096.97 12795.95 23099.51 2997.81 1797.42 10097.49 26897.93 4895.95 24998.58 7496.88 6696.91 36789.59 29699.36 16793.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPP-MVSNet96.84 13696.58 14897.65 12699.18 7593.78 17898.68 1596.34 30097.91 4997.30 17198.06 13788.46 27399.85 2893.85 21099.40 16099.32 107
NR-MVSNet97.96 5097.86 5598.26 7598.73 12595.54 10098.14 5398.73 13397.79 5099.42 1597.83 16594.40 16599.78 5195.91 10299.76 4999.46 70
SR-MVS-dyc-post98.14 3797.84 5699.02 998.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.60 8299.76 6595.49 12599.20 20099.26 126
RE-MVS-def97.88 5498.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.94 5895.49 12599.20 20099.26 126
VPNet97.26 11597.49 9696.59 19799.47 3490.58 24496.27 15498.53 16897.77 5198.46 7598.41 8894.59 15899.68 13294.61 17599.29 19099.52 48
abl_698.42 2498.19 3399.09 399.16 7698.10 697.73 8099.11 3297.76 5498.62 5898.27 11097.88 1999.80 4695.67 11499.50 12499.38 94
EI-MVSNet-UG-set97.32 11297.40 9997.09 17097.34 28692.01 22195.33 21297.65 26097.74 5598.30 9798.14 12395.04 14299.69 12597.55 4199.52 11599.58 33
EI-MVSNet-Vis-set97.32 11297.39 10097.11 16897.36 28192.08 21995.34 21197.65 26097.74 5598.29 9898.11 12895.05 14099.68 13297.50 4399.50 12499.56 41
Regformer-297.41 10597.24 11197.93 10497.21 29494.72 13894.85 24298.27 19997.74 5598.11 11597.50 19595.58 12499.69 12596.57 7299.31 18699.37 101
Anonymous20240521196.34 16795.98 17997.43 15198.25 18493.85 17496.74 13394.41 32997.72 5898.37 8298.03 14087.15 28799.53 18494.06 20099.07 22098.92 193
APD-MVS_3200maxsize98.13 4097.90 5098.79 3198.79 11997.31 3897.55 8998.92 8097.72 5898.25 10098.13 12497.10 4599.75 7295.44 13299.24 19899.32 107
mvsmamba98.16 3598.06 3998.44 5899.53 2795.87 8498.70 1498.94 7797.71 6098.85 4499.10 3891.35 23699.83 3498.47 1699.90 2499.64 28
VNet96.84 13696.83 13696.88 18198.06 20692.02 22096.35 15197.57 26797.70 6197.88 14397.80 17092.40 21699.54 18294.73 17498.96 22999.08 166
zzz-MVS98.01 4897.66 7499.06 499.44 3797.90 1295.66 19198.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
MTAPA98.14 3797.84 5699.06 499.44 3797.90 1297.25 10698.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
Regformer-397.25 11697.29 10697.11 16897.35 28292.32 21095.26 21897.62 26597.67 6498.17 10897.89 15795.05 14099.56 17597.16 5699.42 15399.46 70
Regformer-197.27 11497.16 11697.61 12997.21 29493.86 17394.85 24298.04 23697.62 6598.03 12797.50 19595.34 13299.63 15096.52 7399.31 18699.35 104
test117298.08 4397.76 6699.05 698.78 12198.07 797.41 10198.85 9897.57 6698.15 11197.96 14796.60 8299.76 6595.30 14099.18 20499.33 106
pm-mvs198.47 2298.67 1797.86 11099.52 2894.58 14598.28 4299.00 6397.57 6699.27 2499.22 2598.32 999.50 19397.09 5899.75 5499.50 51
DU-MVS97.79 7797.60 8698.36 6698.73 12595.78 8795.65 19498.87 9197.57 6698.31 9597.83 16594.69 15299.85 2897.02 6199.71 6399.46 70
DROMVSNet97.90 6697.94 4997.79 11498.66 13695.14 12698.31 3999.66 497.57 6695.95 24997.01 23796.99 5599.82 3797.66 3799.64 7598.39 249
PatchT93.75 26893.57 26494.29 29995.05 35087.32 30296.05 16792.98 34197.54 7094.25 29498.72 6575.79 34599.24 26595.92 10195.81 34396.32 343
UniMVSNet (Re)97.83 7397.65 7698.35 6898.80 11895.86 8695.92 18099.04 5297.51 7198.22 10397.81 16994.68 15499.78 5197.14 5799.75 5499.41 89
alignmvs96.01 18195.52 19597.50 13997.77 24894.71 13996.07 16696.84 28997.48 7296.78 21094.28 33485.50 29699.40 22596.22 8398.73 25898.40 247
RPMNet94.68 23794.60 23294.90 27395.44 34588.15 28296.18 16198.86 9497.43 7394.10 29898.49 8279.40 32399.76 6595.69 11295.81 34396.81 333
canonicalmvs97.23 11897.21 11497.30 15997.65 26294.39 15197.84 7099.05 4697.42 7496.68 21393.85 33797.63 2699.33 24696.29 8298.47 27498.18 274
XVS97.96 5097.63 8198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23197.64 18396.49 8899.72 9295.66 11699.37 16499.45 75
X-MVStestdata92.86 28790.83 31198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23136.50 37796.49 8899.72 9295.66 11699.37 16499.45 75
FMVSNet197.95 5498.08 3697.56 13199.14 8793.67 18198.23 4598.66 15397.41 7799.00 3999.19 2795.47 12899.73 8795.83 10799.76 4999.30 113
ACMH93.61 998.44 2398.76 1397.51 13699.43 3993.54 18798.23 4599.05 4697.40 7899.37 1899.08 4198.79 599.47 20197.74 3599.71 6399.50 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_297.12 12097.99 4594.51 29299.11 8984.00 34397.75 7699.65 597.38 7999.14 3298.42 8795.16 13899.96 295.52 12499.78 4699.58 33
WR-MVS96.90 13396.81 13797.16 16598.56 15092.20 21594.33 25998.12 22497.34 8098.20 10497.33 21492.81 20099.75 7294.79 16999.81 3999.54 44
SR-MVS98.00 4997.66 7499.01 1198.77 12397.93 1197.38 10298.83 11097.32 8198.06 12397.85 16496.65 7799.77 6095.00 16299.11 21499.32 107
Vis-MVSNetpermissive98.27 3098.34 2998.07 9399.33 5095.21 12598.04 5999.46 997.32 8197.82 15199.11 3796.75 7499.86 2597.84 2999.36 16799.15 148
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 9198.06 3996.23 21798.71 13089.44 25997.43 9998.82 11897.29 8398.74 5499.10 3893.86 17799.68 13298.61 1399.94 899.56 41
test_low_dy_conf_00198.18 3498.04 4198.60 4699.62 1496.14 7398.66 1997.66 25797.24 8498.78 5099.33 1992.47 21499.87 2298.71 1099.89 2699.80 8
casdiffmvs97.50 9897.81 6096.56 20198.51 15691.04 23595.83 18499.09 3997.23 8598.33 9298.30 10197.03 5299.37 23696.58 7199.38 16399.28 121
test_one_060199.05 9995.50 10598.87 9197.21 8698.03 12798.30 10196.93 60
Anonymous2024052197.07 12297.51 9395.76 23899.35 4888.18 28197.78 7298.40 18597.11 8798.34 8899.04 4489.58 26199.79 4798.09 2399.93 1099.30 113
KD-MVS_self_test97.86 7198.07 3797.25 16399.22 6492.81 20297.55 8998.94 7797.10 8898.85 4498.88 5695.03 14399.67 13797.39 4899.65 7399.26 126
IterMVS-SCA-FT95.86 18796.19 16894.85 27697.68 25885.53 32392.42 32097.63 26496.99 8998.36 8598.54 7987.94 27899.75 7297.07 6099.08 21899.27 125
EI-MVSNet96.63 15596.93 13095.74 23997.26 29188.13 28495.29 21697.65 26096.99 8997.94 13798.19 11992.55 20999.58 16896.91 6399.56 9899.50 51
IterMVS-LS96.92 13197.29 10695.79 23798.51 15688.13 28495.10 22598.66 15396.99 8998.46 7598.68 6992.55 20999.74 8296.91 6399.79 4399.50 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss98.53 1998.63 1998.21 8399.68 994.82 13598.10 5599.21 1796.91 9299.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
thres100view90091.76 30591.26 30493.26 31598.21 18884.50 33896.39 14790.39 36196.87 9396.33 23093.08 34473.44 35799.42 21478.85 36597.74 29995.85 347
3Dnovator96.53 297.61 9097.64 7997.50 13997.74 25493.65 18598.49 2898.88 8996.86 9497.11 18298.55 7895.82 11099.73 8795.94 10099.42 15399.13 153
test20.0396.58 15896.61 14696.48 20598.49 16091.72 22795.68 19097.69 25496.81 9598.27 9997.92 15594.18 17198.71 32290.78 27099.66 7299.00 177
thres600view792.03 30191.43 29993.82 30498.19 19084.61 33796.27 15490.39 36196.81 9596.37 22993.11 34073.44 35799.49 19580.32 36197.95 29197.36 314
LCM-MVSNet-Re97.33 11197.33 10497.32 15898.13 20393.79 17796.99 12299.65 596.74 9799.47 1398.93 5296.91 6399.84 3190.11 28899.06 22398.32 258
EPNet93.72 26992.62 28797.03 17487.61 38292.25 21196.27 15491.28 35496.74 9787.65 36897.39 20785.00 29999.64 14892.14 23899.48 13299.20 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DVP-MVS++97.96 5097.90 5098.12 9097.75 25195.40 10899.03 798.89 8396.62 9998.62 5898.30 10196.97 5699.75 7295.70 11099.25 19599.21 135
test_0728_THIRD96.62 9998.40 7998.28 10697.10 4599.71 10895.70 11099.62 7899.58 33
bld_raw_dy_0_6497.69 8497.61 8597.91 10599.54 2494.27 15998.06 5898.60 16196.60 10198.79 4998.95 5089.62 25999.84 3198.43 1899.91 1799.62 29
v1097.55 9497.97 4696.31 21598.60 14589.64 25597.44 9799.02 5596.60 10198.72 5699.16 3393.48 18799.72 9298.76 699.92 1499.58 33
Patchmtry95.03 22194.59 23496.33 21394.83 35290.82 23996.38 14997.20 27596.59 10397.49 16198.57 7577.67 33299.38 23392.95 23199.62 7898.80 210
h-mvs3396.29 16895.63 19198.26 7598.50 15996.11 7596.90 12497.09 28196.58 10497.21 17598.19 11984.14 30499.78 5195.89 10396.17 34198.89 198
hse-mvs295.77 18995.09 20597.79 11497.84 22995.51 10295.66 19195.43 32196.58 10497.21 17596.16 28584.14 30499.54 18295.89 10396.92 32498.32 258
SteuartSystems-ACMMP98.02 4797.76 6698.79 3199.43 3997.21 4397.15 11198.90 8296.58 10498.08 12197.87 16397.02 5399.76 6595.25 14399.59 9099.40 90
Skip Steuart: Steuart Systems R&D Blog.
baseline97.44 10397.78 6596.43 20798.52 15490.75 24296.84 12699.03 5396.51 10797.86 14798.02 14196.67 7699.36 23897.09 5899.47 13499.19 140
MVSFormer96.14 17596.36 16295.49 25197.68 25887.81 29198.67 1699.02 5596.50 10894.48 29196.15 28686.90 28899.92 598.73 799.13 21098.74 218
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1699.02 5596.50 10899.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
Vis-MVSNet (Re-imp)95.11 21694.85 21795.87 23599.12 8889.17 26397.54 9494.92 32496.50 10896.58 21897.27 21883.64 30899.48 19888.42 31399.67 7098.97 181
UGNet96.81 14196.56 15097.58 13096.64 31093.84 17597.75 7697.12 28096.47 11193.62 31598.88 5693.22 19299.53 18495.61 12099.69 6799.36 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
JIA-IIPM91.79 30490.69 31395.11 26493.80 36590.98 23694.16 26991.78 35296.38 11290.30 35799.30 2072.02 36098.90 30588.28 31590.17 36895.45 355
test111194.53 24694.81 22193.72 30699.06 9581.94 35598.31 3983.87 37696.37 11398.49 7199.17 3281.49 31399.73 8796.64 6799.86 3099.49 59
HQP_MVS96.66 15496.33 16497.68 12598.70 13294.29 15596.50 14398.75 12996.36 11496.16 24196.77 25391.91 23099.46 20492.59 23499.20 20099.28 121
plane_prior296.50 14396.36 114
CSCG97.40 10697.30 10597.69 12498.95 10594.83 13497.28 10598.99 6696.35 11698.13 11495.95 29895.99 10399.66 14394.36 19099.73 5698.59 233
MP-MVScopyleft97.64 8797.18 11599.00 1299.32 5297.77 1897.49 9598.73 13396.27 11795.59 26497.75 17496.30 9899.78 5193.70 21699.48 13299.45 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
tfpn200view991.55 30791.00 30693.21 31898.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29997.36 314
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2499.22 1696.23 12099.71 499.48 798.77 699.93 398.89 399.95 599.84 5
test250689.86 32489.16 32991.97 33898.95 10576.83 37098.54 2461.07 38496.20 12197.07 18899.16 3355.19 38399.69 12596.43 7899.83 3699.38 94
ECVR-MVScopyleft94.37 25194.48 23994.05 30398.95 10583.10 34798.31 3982.48 37796.20 12198.23 10299.16 3381.18 31699.66 14395.95 9999.83 3699.38 94
RPSCF97.87 6997.51 9398.95 1799.15 7998.43 397.56 8899.06 4496.19 12398.48 7298.70 6794.72 15199.24 26594.37 18799.33 18299.17 144
test_yl94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
DCV-MVSNet94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
SED-MVS97.94 5797.90 5098.07 9399.22 6495.35 11396.79 13098.83 11096.11 12699.08 3498.24 11297.87 2099.72 9295.44 13299.51 12099.14 151
test_241102_TWO98.83 11096.11 12698.62 5898.24 11296.92 6299.72 9295.44 13299.49 12899.49 59
CP-MVS97.92 6197.56 9098.99 1398.99 10397.82 1697.93 6498.96 7496.11 12696.89 20397.45 19996.85 6999.78 5195.19 14699.63 7799.38 94
HFP-MVS97.94 5797.64 7998.83 2699.15 7997.50 3097.59 8698.84 10396.05 12997.49 16197.54 19097.07 4899.70 11795.61 12099.46 13799.30 113
ACMMPR97.95 5497.62 8398.94 1899.20 7297.56 2697.59 8698.83 11096.05 12997.46 16797.63 18496.77 7399.76 6595.61 12099.46 13799.49 59
test_241102_ONE99.22 6495.35 11398.83 11096.04 13199.08 3498.13 12497.87 2099.33 246
mPP-MVS97.91 6497.53 9199.04 799.22 6497.87 1597.74 7898.78 12496.04 13197.10 18397.73 17796.53 8599.78 5195.16 15099.50 12499.46 70
Fast-Effi-MVS+-dtu96.44 16496.12 17197.39 15597.18 29694.39 15195.46 20098.73 13396.03 13394.72 28294.92 32196.28 10099.69 12593.81 21197.98 29098.09 276
region2R97.92 6197.59 8798.92 2299.22 6497.55 2797.60 8598.84 10396.00 13497.22 17397.62 18596.87 6899.76 6595.48 12899.43 15099.46 70
MDA-MVSNet-bldmvs95.69 19095.67 18995.74 23998.48 16288.76 27392.84 30997.25 27396.00 13497.59 15597.95 15191.38 23599.46 20493.16 22796.35 33898.99 180
GST-MVS97.82 7597.49 9698.81 2999.23 6197.25 4097.16 11098.79 12095.96 13697.53 15797.40 20396.93 6099.77 6095.04 15999.35 17299.42 87
APDe-MVS98.14 3798.03 4398.47 5698.72 12796.04 7798.07 5799.10 3495.96 13698.59 6398.69 6896.94 5899.81 4096.64 6799.58 9299.57 38
SD-MVS97.37 10897.70 6996.35 21298.14 20095.13 12796.54 14298.92 8095.94 13899.19 2898.08 13097.74 2295.06 37395.24 14499.54 10798.87 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft97.78 7897.65 7698.16 8499.24 5995.51 10296.74 13398.23 20495.92 13998.40 7998.28 10697.06 5099.71 10895.48 12899.52 11599.26 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5995.51 10296.89 12598.89 8395.92 13998.64 5798.31 9797.06 50
v14896.58 15896.97 12795.42 25598.63 14187.57 29595.09 22697.90 24095.91 14198.24 10197.96 14793.42 18899.39 23096.04 9299.52 11599.29 120
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2497.48 3298.35 3599.03 5395.88 14297.88 14398.22 11798.15 1299.74 8296.50 7599.62 7899.42 87
ETV-MVS96.13 17695.90 18396.82 18597.76 24993.89 17195.40 20698.95 7695.87 14395.58 26591.00 36896.36 9799.72 9293.36 22098.83 24796.85 329
Effi-MVS+-dtu96.81 14196.09 17398.99 1396.90 30798.69 296.42 14698.09 22795.86 14495.15 27395.54 30994.26 16899.81 4094.06 20098.51 27398.47 243
mvs-test196.20 17295.50 19698.32 6996.90 30798.16 595.07 22998.09 22795.86 14493.63 31494.32 33394.26 16899.71 10894.06 20097.27 32297.07 319
DPE-MVScopyleft97.64 8797.35 10398.50 5398.85 11496.18 7095.21 22298.99 6695.84 14698.78 5098.08 13096.84 7099.81 4093.98 20699.57 9599.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3199.12 3195.83 14799.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
tttt051793.31 28192.56 28895.57 24598.71 13087.86 28897.44 9787.17 37195.79 14897.47 16696.84 24764.12 37399.81 4096.20 8499.32 18499.02 176
ZNCC-MVS97.92 6197.62 8398.83 2699.32 5297.24 4197.45 9698.84 10395.76 14996.93 20097.43 20197.26 4099.79 4796.06 8999.53 11099.45 75
UnsupCasMVSNet_eth95.91 18495.73 18896.44 20698.48 16291.52 23095.31 21498.45 17595.76 14997.48 16497.54 19089.53 26498.69 32494.43 18394.61 35699.13 153
GeoE97.75 8097.70 6997.89 10798.88 11294.53 14697.10 11598.98 6995.75 15197.62 15497.59 18797.61 2799.77 6096.34 8199.44 14299.36 102
ACMMPcopyleft98.05 4597.75 6898.93 2199.23 6197.60 2398.09 5698.96 7495.75 15197.91 13998.06 13796.89 6499.76 6595.32 13999.57 9599.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS97.45 10296.92 13299.03 899.26 5597.70 1997.66 8198.89 8395.65 15398.51 6896.46 27192.15 21999.81 4095.14 15398.58 27099.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ITE_SJBPF97.85 11198.64 13796.66 5698.51 17195.63 15497.22 17397.30 21795.52 12598.55 33890.97 26398.90 23798.34 257
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 2099.19 2195.62 15599.35 1999.37 1297.38 3399.90 1498.59 1499.91 1799.77 10
API-MVS95.09 21895.01 21095.31 25896.61 31194.02 16796.83 12797.18 27795.60 15695.79 25694.33 33294.54 16198.37 35085.70 33798.52 27193.52 364
GBi-Net96.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
test196.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
FMVSNet296.72 14896.67 14596.87 18297.96 21791.88 22397.15 11198.06 23495.59 15798.50 7098.62 7389.51 26599.65 14594.99 16399.60 8899.07 168
HPM-MVS++copyleft96.99 12596.38 16198.81 2998.64 13797.59 2495.97 17498.20 20995.51 16095.06 27496.53 26794.10 17299.70 11794.29 19199.15 20699.13 153
IterMVS95.42 20495.83 18494.20 30097.52 27083.78 34592.41 32197.47 27095.49 16198.06 12398.49 8287.94 27899.58 16896.02 9499.02 22599.23 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+96.19 17396.01 17696.71 19197.43 27892.19 21696.12 16499.10 3495.45 16293.33 32794.71 32497.23 4399.56 17593.21 22697.54 31198.37 251
PGM-MVS97.88 6897.52 9298.96 1699.20 7297.62 2297.09 11699.06 4495.45 16297.55 15697.94 15297.11 4499.78 5194.77 17299.46 13799.48 65
HPM-MVScopyleft98.11 4197.83 5998.92 2299.42 4197.46 3398.57 2199.05 4695.43 16497.41 16997.50 19597.98 1599.79 4795.58 12399.57 9599.50 51
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC96.52 16095.99 17898.10 9197.81 23395.68 9395.00 23598.20 20995.39 16595.40 26996.36 27793.81 18099.45 20893.55 21998.42 27599.17 144
wuyk23d93.25 28395.20 20087.40 35796.07 33195.38 11097.04 11994.97 32395.33 16699.70 598.11 12898.14 1391.94 37577.76 36899.68 6974.89 375
SF-MVS97.60 9197.39 10098.22 8098.93 10895.69 9197.05 11899.10 3495.32 16797.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
MSDG95.33 20795.13 20395.94 23297.40 28091.85 22491.02 34698.37 18995.30 16896.31 23395.99 29394.51 16298.38 34889.59 29697.65 30897.60 308
plane_prior394.51 14795.29 16996.16 241
ACMM93.33 1198.05 4597.79 6198.85 2599.15 7997.55 2796.68 13998.83 11095.21 17098.36 8598.13 12498.13 1499.62 15896.04 9299.54 10799.39 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR97.38 10797.07 12298.30 7399.01 10297.41 3694.66 24999.02 5595.20 17198.15 11197.52 19398.83 498.43 34494.87 16596.41 33799.07 168
XVG-OURS97.12 12096.74 14198.26 7598.99 10397.45 3493.82 28599.05 4695.19 17298.32 9397.70 17995.22 13798.41 34594.27 19298.13 28598.93 189
v2v48296.78 14397.06 12395.95 23098.57 14988.77 27295.36 20998.26 20195.18 17397.85 14898.23 11492.58 20899.63 15097.80 3199.69 6799.45 75
LPG-MVS_test97.94 5797.67 7398.74 3599.15 7997.02 4497.09 11699.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
LGP-MVS_train98.74 3599.15 7997.02 4499.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
thres20091.00 31390.42 31792.77 32897.47 27683.98 34494.01 27791.18 35695.12 17695.44 26791.21 36673.93 35099.31 25077.76 36897.63 30995.01 357
testgi96.07 17796.50 15894.80 27999.26 5587.69 29495.96 17598.58 16595.08 17798.02 12996.25 28197.92 1697.60 36488.68 31098.74 25599.11 161
ACMMP_NAP97.89 6797.63 8198.67 4199.35 4896.84 4996.36 15098.79 12095.07 17897.88 14398.35 9397.24 4299.72 9296.05 9199.58 9299.45 75
XVG-ACMP-BASELINE97.58 9397.28 10898.49 5499.16 7696.90 4896.39 14798.98 6995.05 17998.06 12398.02 14195.86 10699.56 17594.37 18799.64 7599.00 177
MVS_030495.50 19795.05 20996.84 18496.28 31993.12 19597.00 12196.16 30295.03 18089.22 36397.70 17990.16 25499.48 19894.51 18199.34 17597.93 293
xxxxxxxxxxxxxcwj97.24 11797.03 12597.89 10798.48 16294.71 13994.53 25499.07 4395.02 18197.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
save fliter98.48 16294.71 13994.53 25498.41 18395.02 181
CANet95.86 18795.65 19096.49 20496.41 31690.82 23994.36 25898.41 18394.94 18392.62 34196.73 25692.68 20499.71 10895.12 15699.60 8898.94 185
MVS_Test96.27 16996.79 14094.73 28296.94 30586.63 31296.18 16198.33 19594.94 18396.07 24498.28 10695.25 13699.26 26297.21 5297.90 29498.30 262
XXY-MVS97.54 9597.70 6997.07 17199.46 3592.21 21397.22 10999.00 6394.93 18598.58 6498.92 5397.31 3699.41 22394.44 18299.43 15099.59 32
new-patchmatchnet95.67 19296.58 14892.94 32697.48 27280.21 36192.96 30898.19 21494.83 18698.82 4798.79 6093.31 19099.51 19295.83 10799.04 22499.12 158
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18793.71 31193.11 34075.31 34696.81 36885.81 33696.81 32991.77 370
MVS_111021_HR96.73 14796.54 15397.27 16098.35 17493.66 18493.42 29798.36 19094.74 18896.58 21896.76 25596.54 8498.99 29794.87 16599.27 19399.15 148
MSLP-MVS++96.42 16696.71 14295.57 24597.82 23290.56 24695.71 18698.84 10394.72 18996.71 21297.39 20794.91 14998.10 35995.28 14199.02 22598.05 286
baseline193.14 28592.64 28694.62 28597.34 28687.20 30496.67 14093.02 34094.71 19096.51 22395.83 30181.64 31298.60 33490.00 29188.06 37198.07 279
EIA-MVS96.04 17995.77 18796.85 18397.80 23792.98 19896.12 16499.16 2394.65 19193.77 30991.69 36295.68 11999.67 13794.18 19598.85 24597.91 294
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19292.63 34091.81 36076.30 34297.02 36683.83 35396.90 32691.48 371
V4297.04 12397.16 11696.68 19498.59 14791.05 23496.33 15298.36 19094.60 19397.99 13098.30 10193.32 18999.62 15897.40 4799.53 11099.38 94
CNVR-MVS96.92 13196.55 15198.03 9998.00 21595.54 10094.87 24098.17 21594.60 19396.38 22897.05 23395.67 12099.36 23895.12 15699.08 21899.19 140
MVS_111021_LR96.82 14096.55 15197.62 12898.27 18195.34 11593.81 28798.33 19594.59 19596.56 22096.63 26296.61 8098.73 32094.80 16899.34 17598.78 213
OPM-MVS97.54 9597.25 10998.41 6299.11 8996.61 5895.24 22098.46 17494.58 19698.10 11898.07 13297.09 4799.39 23095.16 15099.44 14299.21 135
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 8497.79 6197.40 15499.06 9593.52 18895.96 17598.97 7394.55 19798.82 4798.76 6397.31 3699.29 25797.20 5499.44 14299.38 94
ab-mvs96.59 15696.59 14796.60 19698.64 13792.21 21398.35 3597.67 25594.45 19896.99 19598.79 6094.96 14799.49 19590.39 28599.07 22098.08 277
CNLPA95.04 21994.47 24096.75 18997.81 23395.25 11994.12 27497.89 24194.41 19994.57 28695.69 30390.30 25198.35 35186.72 33298.76 25396.64 337
TinyColmap96.00 18296.34 16394.96 27097.90 22387.91 28794.13 27398.49 17294.41 19998.16 10997.76 17196.29 9998.68 32790.52 28199.42 15398.30 262
AllTest97.20 11996.92 13298.06 9599.08 9296.16 7197.14 11399.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
TestCases98.06 9599.08 9296.16 7199.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
plane_prior94.29 15595.42 20394.31 20398.93 235
testtj96.69 15196.13 17098.36 6698.46 16696.02 8096.44 14598.70 14394.26 20496.79 20697.13 22594.07 17399.75 7290.53 28098.80 24999.31 112
#test#97.62 8997.22 11398.83 2699.15 7997.50 3096.81 12898.84 10394.25 20597.49 16197.54 19097.07 4899.70 11794.37 18799.46 13799.30 113
v114496.84 13697.08 12196.13 22398.42 16989.28 26295.41 20598.67 15194.21 20697.97 13498.31 9793.06 19499.65 14598.06 2499.62 7899.45 75
test_prior395.91 18495.39 19797.46 14797.79 24394.26 16093.33 30298.42 18194.21 20694.02 30296.25 28193.64 18499.34 24391.90 24298.96 22998.79 211
test_prior293.33 30294.21 20694.02 30296.25 28193.64 18491.90 24298.96 229
DELS-MVS96.17 17496.23 16695.99 22697.55 26990.04 25092.38 32298.52 16994.13 20996.55 22297.06 23294.99 14599.58 16895.62 11999.28 19198.37 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 15696.93 13095.55 24898.88 11287.12 30594.47 25699.30 1294.12 21096.65 21698.41 8894.98 14699.87 2295.81 10999.78 4699.66 23
FMVSNet395.26 21194.94 21196.22 21996.53 31390.06 24995.99 17297.66 25794.11 21197.99 13097.91 15680.22 32299.63 15094.60 17699.44 14298.96 182
diffmvs96.04 17996.23 16695.46 25397.35 28288.03 28693.42 29799.08 4094.09 21296.66 21496.93 24193.85 17899.29 25796.01 9698.67 26099.06 170
thisisatest053092.71 29091.76 29795.56 24798.42 16988.23 27996.03 16987.35 37094.04 21396.56 22095.47 31164.03 37499.77 6094.78 17199.11 21498.68 226
PMMVS293.66 27294.07 25392.45 33497.57 26680.67 36086.46 36796.00 30693.99 21497.10 18397.38 20989.90 25697.82 36188.76 30799.47 13498.86 205
BH-untuned94.69 23594.75 22494.52 29197.95 22087.53 29694.07 27597.01 28493.99 21497.10 18395.65 30592.65 20698.95 30487.60 32396.74 33197.09 318
DeepC-MVS95.41 497.82 7597.70 6998.16 8498.78 12195.72 8996.23 15999.02 5593.92 21698.62 5898.99 4697.69 2399.62 15896.18 8699.87 2999.15 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf_final94.54 24593.91 25996.43 20797.23 29390.41 24896.81 12898.10 22593.87 21796.80 20597.89 15768.02 36999.72 9296.73 6699.77 4899.18 143
PM-MVS97.36 11097.10 11998.14 8898.91 11096.77 5196.20 16098.63 15993.82 21898.54 6698.33 9593.98 17599.05 29095.99 9799.45 14198.61 232
testdata192.77 31193.78 219
v119296.83 13997.06 12396.15 22298.28 17989.29 26195.36 20998.77 12593.73 22098.11 11598.34 9493.02 19899.67 13798.35 1999.58 9299.50 51
ACMP92.54 1397.47 10197.10 11998.55 5199.04 10096.70 5396.24 15898.89 8393.71 22197.97 13497.75 17497.44 3099.63 15093.22 22599.70 6699.32 107
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet94.56 24394.44 24394.91 27197.57 26687.44 29993.78 28896.26 30193.69 22296.41 22796.50 27092.10 22299.00 29585.96 33597.71 30298.31 260
Patchmatch-test93.60 27593.25 27094.63 28496.14 32987.47 29796.04 16894.50 32893.57 22396.47 22496.97 23876.50 34098.61 33290.67 27798.41 27697.81 300
PHI-MVS96.96 12996.53 15498.25 7897.48 27296.50 6196.76 13298.85 9893.52 22496.19 24096.85 24695.94 10499.42 21493.79 21299.43 15098.83 207
miper_lstm_enhance94.81 22894.80 22294.85 27696.16 32686.45 31491.14 34398.20 20993.49 22597.03 19297.37 21184.97 30099.26 26295.28 14199.56 9898.83 207
c3_l95.20 21295.32 19894.83 27896.19 32486.43 31591.83 33098.35 19493.47 22697.36 17097.26 21988.69 27199.28 25995.41 13899.36 16798.78 213
eth_miper_zixun_eth94.89 22494.93 21394.75 28195.99 33286.12 31891.35 33698.49 17293.40 22797.12 18197.25 22086.87 29099.35 24195.08 15898.82 24898.78 213
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22881.74 37694.90 32281.36 31599.11 28388.28 31598.87 24198.21 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D-3000-0.196.89 13596.46 15998.16 8498.62 14295.69 9195.96 17598.98 6993.36 22997.04 19097.31 21694.93 14899.63 15092.60 23299.34 17599.17 144
cl____94.73 23094.64 22895.01 26895.85 33587.00 30791.33 33798.08 22993.34 23097.10 18397.33 21484.01 30799.30 25395.14 15399.56 9898.71 223
DIV-MVS_self_test94.73 23094.64 22895.01 26895.86 33487.00 30791.33 33798.08 22993.34 23097.10 18397.34 21384.02 30699.31 25095.15 15299.55 10498.72 221
mvs_anonymous95.36 20696.07 17593.21 31896.29 31881.56 35694.60 25197.66 25793.30 23296.95 19998.91 5493.03 19799.38 23396.60 6997.30 32198.69 224
TSAR-MVS + GP.96.47 16396.12 17197.49 14297.74 25495.23 12094.15 27096.90 28893.26 23398.04 12696.70 25894.41 16498.89 30694.77 17299.14 20798.37 251
9.1496.69 14398.53 15396.02 17098.98 6993.23 23497.18 17797.46 19896.47 9099.62 15892.99 22999.32 184
v192192096.72 14896.96 12995.99 22698.21 18888.79 27195.42 20398.79 12093.22 23598.19 10798.26 11192.68 20499.70 11798.34 2099.55 10499.49 59
CANet_DTU94.65 23994.21 24995.96 22895.90 33389.68 25493.92 28297.83 24793.19 23690.12 35895.64 30688.52 27299.57 17493.27 22499.47 13498.62 230
HQP-NCC97.85 22594.26 26093.18 23792.86 333
ACMP_Plane97.85 22594.26 26093.18 23792.86 333
HQP-MVS95.17 21594.58 23596.92 17897.85 22592.47 20794.26 26098.43 17893.18 23792.86 33395.08 31590.33 24899.23 26790.51 28298.74 25599.05 172
DeepC-MVS_fast94.34 796.74 14596.51 15797.44 15097.69 25794.15 16396.02 17098.43 17893.17 24097.30 17197.38 20995.48 12799.28 25993.74 21399.34 17598.88 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v124096.74 14597.02 12695.91 23398.18 19388.52 27495.39 20798.88 8993.15 24198.46 7598.40 9192.80 20199.71 10898.45 1799.49 12899.49 59
AdaColmapbinary95.11 21694.62 23196.58 19897.33 28894.45 15094.92 23898.08 22993.15 24193.98 30595.53 31094.34 16699.10 28585.69 33898.61 26796.20 345
CL-MVSNet_self_test95.04 21994.79 22395.82 23697.51 27189.79 25391.14 34396.82 29193.05 24396.72 21196.40 27590.82 24299.16 27691.95 24198.66 26298.50 241
v14419296.69 15196.90 13496.03 22598.25 18488.92 26695.49 19998.77 12593.05 24398.09 11998.29 10592.51 21399.70 11798.11 2299.56 9899.47 68
TSAR-MVS + MP.97.42 10497.23 11298.00 10099.38 4595.00 13097.63 8498.20 20993.00 24598.16 10998.06 13795.89 10599.72 9295.67 11499.10 21699.28 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
PAPM_NR94.61 24194.17 25195.96 22898.36 17391.23 23295.93 17997.95 23792.98 24693.42 32594.43 33190.53 24598.38 34887.60 32396.29 33998.27 266
APD-MVScopyleft97.00 12496.53 15498.41 6298.55 15196.31 6796.32 15398.77 12592.96 25097.44 16897.58 18995.84 10799.74 8291.96 24099.35 17299.19 140
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 15196.08 17498.49 5498.89 11196.64 5797.25 10698.77 12592.89 25196.01 24897.13 22592.23 21899.67 13792.24 23799.34 17599.17 144
DeepPCF-MVS94.58 596.90 13396.43 16098.31 7297.48 27297.23 4292.56 31798.60 16192.84 25298.54 6697.40 20396.64 7998.78 31594.40 18699.41 15998.93 189
FMVSNet593.39 27992.35 28996.50 20395.83 33690.81 24197.31 10398.27 19992.74 25396.27 23598.28 10662.23 37699.67 13790.86 26699.36 16799.03 174
iter_conf0593.65 27393.05 27295.46 25396.13 33087.45 29895.95 17898.22 20592.66 25497.04 19097.89 15763.52 37599.72 9296.19 8599.82 3899.21 135
YYNet194.73 23094.84 21894.41 29597.47 27685.09 33290.29 35295.85 31192.52 25597.53 15797.76 17191.97 22599.18 27193.31 22296.86 32798.95 183
MDA-MVSNet_test_wron94.73 23094.83 22094.42 29497.48 27285.15 33090.28 35395.87 31092.52 25597.48 16497.76 17191.92 22999.17 27593.32 22196.80 33098.94 185
MG-MVS94.08 26294.00 25594.32 29797.09 29985.89 32093.19 30695.96 30892.52 25594.93 28097.51 19489.54 26298.77 31687.52 32697.71 30298.31 260
MP-MVS-pluss97.69 8497.36 10298.70 3999.50 3296.84 4995.38 20898.99 6692.45 25898.11 11598.31 9797.25 4199.77 6096.60 6999.62 7899.48 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSTER94.21 25693.93 25895.05 26795.83 33686.46 31395.18 22397.65 26092.41 25997.94 13798.00 14572.39 35999.58 16896.36 8099.56 9899.12 158
LF4IMVS96.07 17795.63 19197.36 15698.19 19095.55 9995.44 20198.82 11892.29 26095.70 26296.55 26592.63 20798.69 32491.75 24999.33 18297.85 296
MIMVSNet93.42 27892.86 27795.10 26598.17 19588.19 28098.13 5493.69 33292.07 26195.04 27798.21 11880.95 31999.03 29481.42 35998.06 28898.07 279
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26289.97 35990.77 36973.92 35198.57 33591.88 24497.36 31796.92 324
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26294.71 28391.14 36773.92 35194.48 37483.75 35592.94 36197.16 317
xiu_mvs_v2_base94.22 25494.63 23092.99 32497.32 28984.84 33592.12 32597.84 24591.96 26494.17 29693.43 33896.07 10299.71 10891.27 25697.48 31494.42 360
PS-MVSNAJ94.10 26094.47 24093.00 32397.35 28284.88 33491.86 32997.84 24591.96 26494.17 29692.50 35495.82 11099.71 10891.27 25697.48 31494.40 361
OMC-MVS96.48 16296.00 17797.91 10598.30 17696.01 8194.86 24198.60 16191.88 26697.18 17797.21 22296.11 10199.04 29190.49 28499.34 17598.69 224
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30391.83 26794.05 30194.57 32576.01 34498.97 30392.46 23697.34 31998.36 256
miper_ehance_all_eth94.69 23594.70 22594.64 28395.77 33886.22 31791.32 33998.24 20391.67 26897.05 18996.65 26188.39 27599.22 26994.88 16498.34 27798.49 242
SMA-MVScopyleft97.48 10097.11 11898.60 4698.83 11596.67 5596.74 13398.73 13391.61 26998.48 7298.36 9296.53 8599.68 13295.17 14899.54 10799.45 75
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+95.49 19895.07 20696.75 18997.67 26192.82 20194.22 26698.60 16191.61 26993.42 32592.90 34796.73 7599.70 11792.60 23297.89 29597.74 301
SCA93.38 28093.52 26592.96 32596.24 32081.40 35793.24 30494.00 33191.58 27194.57 28696.97 23887.94 27899.42 21489.47 29897.66 30798.06 283
Patchmatch-RL test94.66 23894.49 23895.19 26298.54 15288.91 26792.57 31698.74 13191.46 27298.32 9397.75 17477.31 33798.81 31396.06 8999.61 8497.85 296
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
ETH3D cwj APD-0.1696.23 17195.61 19398.09 9297.91 22195.65 9694.94 23798.74 13191.31 27596.02 24797.08 23094.05 17499.69 12591.51 25298.94 23398.93 189
AUN-MVS93.95 26692.69 28497.74 11897.80 23795.38 11095.57 19895.46 32091.26 27692.64 33996.10 29174.67 34899.55 17993.72 21596.97 32398.30 262
CLD-MVS95.47 20195.07 20696.69 19398.27 18192.53 20691.36 33598.67 15191.22 27795.78 25894.12 33595.65 12198.98 29990.81 26899.72 6098.57 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.49 19894.94 21197.16 16598.31 17593.41 19095.07 22996.82 29191.09 27897.51 15997.82 16889.96 25599.42 21488.42 31399.44 14298.64 227
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27991.91 34796.26 28077.19 33898.86 31089.38 30089.85 36996.56 340
cl2293.25 28392.84 27994.46 29394.30 35886.00 31991.09 34596.64 29990.74 28095.79 25696.31 27978.24 32998.77 31694.15 19798.34 27798.62 230
ZD-MVS98.43 16895.94 8298.56 16790.72 28196.66 21497.07 23195.02 14499.74 8291.08 26098.93 235
our_test_394.20 25894.58 23593.07 32096.16 32681.20 35890.42 35196.84 28990.72 28197.14 17997.13 22590.47 24699.11 28394.04 20498.25 28198.91 194
ppachtmachnet_test94.49 24794.84 21893.46 31296.16 32682.10 35290.59 34997.48 26990.53 28397.01 19497.59 18791.01 23999.36 23893.97 20799.18 20498.94 185
MVP-Stereo95.69 19095.28 19996.92 17898.15 19993.03 19795.64 19698.20 20990.39 28496.63 21797.73 17791.63 23399.10 28591.84 24697.31 32098.63 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld94.72 23494.26 24696.08 22498.62 14290.54 24793.38 30098.05 23590.30 28597.02 19396.80 25289.54 26299.16 27688.44 31296.18 34098.56 235
DP-MVS Recon95.55 19695.13 20396.80 18698.51 15693.99 16994.60 25198.69 14690.20 28695.78 25896.21 28492.73 20398.98 29990.58 27998.86 24397.42 313
MCST-MVS96.24 17095.80 18597.56 13198.75 12494.13 16494.66 24998.17 21590.17 28796.21 23996.10 29195.14 13999.43 21394.13 19898.85 24599.13 153
CDS-MVSNet94.88 22594.12 25297.14 16797.64 26393.57 18693.96 28197.06 28390.05 28896.30 23496.55 26586.10 29299.47 20190.10 28999.31 18698.40 247
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32589.96 28994.95 27893.87 33690.24 25398.61 33281.18 36094.88 35395.45 355
pmmvs-eth3d96.49 16196.18 16997.42 15298.25 18494.29 15594.77 24698.07 23389.81 29097.97 13498.33 9593.11 19399.08 28795.46 13199.84 3498.89 198
D2MVS95.18 21395.17 20295.21 26197.76 24987.76 29394.15 27097.94 23889.77 29196.99 19597.68 18287.45 28599.14 27895.03 16199.81 3998.74 218
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 33099.18 27190.84 26794.57 35898.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet95.18 21394.23 24798.06 9597.85 22596.55 6092.49 31891.63 35389.34 29398.09 11997.41 20290.33 24899.06 28991.58 25199.31 18698.56 235
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31389.33 29494.21 29592.74 35089.60 26098.24 35481.68 35894.66 35594.66 359
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25296.41 31689.15 26591.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21194.16 19696.61 33497.82 298
WTY-MVS93.55 27693.00 27595.19 26297.81 23387.86 28893.89 28396.00 30689.02 29694.07 30095.44 31286.27 29199.33 24687.69 32196.82 32898.39 249
F-COLMAP95.30 20994.38 24498.05 9898.64 13796.04 7795.61 19798.66 15389.00 29793.22 32896.40 27592.90 19999.35 24187.45 32797.53 31298.77 216
PVSNet_BlendedMVS95.02 22294.93 21395.27 25997.79 24387.40 30094.14 27298.68 14888.94 29894.51 28998.01 14393.04 19599.30 25389.77 29499.49 12899.11 161
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36299.33 24686.01 33494.60 35797.72 302
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36199.30 25391.25 25893.87 35997.87 295
MS-PatchMatch94.83 22694.91 21594.57 28996.81 30987.10 30694.23 26597.34 27288.74 30197.14 17997.11 22891.94 22798.23 35592.99 22997.92 29298.37 251
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36598.10 35990.75 27189.32 37096.98 322
QAPM95.88 18695.57 19496.80 18697.90 22391.84 22598.18 5298.73 13388.41 30396.42 22698.13 12494.73 15099.75 7288.72 30898.94 23398.81 209
PVSNet_Blended_VisFu95.95 18395.80 18596.42 20999.28 5490.62 24395.31 21499.08 4088.40 30496.97 19898.17 12292.11 22199.78 5193.64 21799.21 19998.86 205
sss94.22 25493.72 26295.74 23997.71 25689.95 25293.84 28496.98 28588.38 30593.75 31095.74 30287.94 27898.89 30691.02 26298.10 28698.37 251
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16890.59 27898.67 26097.50 311
PatchMatch-RL94.61 24193.81 26197.02 17598.19 19095.72 8993.66 29097.23 27488.17 30794.94 27995.62 30791.43 23498.57 33587.36 32897.68 30596.76 335
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33288.01 30892.32 34496.86 24577.45 33498.82 31191.04 26187.01 37297.04 321
Anonymous2023120695.27 21095.06 20895.88 23498.72 12789.37 26095.70 18797.85 24388.00 30996.98 19797.62 18591.95 22699.34 24389.21 30199.53 11098.94 185
FPMVS89.92 32388.63 33193.82 30498.37 17296.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36491.13 37671.91 37496.16 34293.39 366
MAR-MVS94.21 25693.03 27497.76 11696.94 30597.44 3596.97 12397.15 27887.89 31192.00 34692.73 35192.14 22099.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16687.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft94.22 895.48 20095.20 20096.32 21497.16 29791.96 22297.74 7898.84 10387.26 31394.36 29398.01 14393.95 17699.67 13790.70 27698.75 25497.35 316
PC_three_145287.24 31498.37 8297.44 20097.00 5496.78 37092.01 23999.25 19599.21 135
agg_prior195.39 20594.60 23297.75 11797.80 23794.96 13193.39 29998.36 19087.20 31593.49 32095.97 29694.65 15699.53 18491.69 25098.86 24398.77 216
pmmvs594.63 24094.34 24595.50 25097.63 26488.34 27894.02 27697.13 27987.15 31695.22 27297.15 22487.50 28499.27 26193.99 20599.26 19498.88 202
train_agg95.46 20294.66 22697.88 10997.84 22995.23 12093.62 29198.39 18687.04 31793.78 30795.99 29394.58 15999.52 18891.76 24898.90 23798.89 198
test_897.81 23395.07 12993.54 29498.38 18887.04 31793.71 31195.96 29794.58 15999.52 188
TEST997.84 22995.23 12093.62 29198.39 18686.81 31993.78 30795.99 29394.68 15499.52 188
pmmvs494.82 22794.19 25096.70 19297.42 27992.75 20492.09 32796.76 29386.80 32095.73 26197.22 22189.28 26898.89 30693.28 22399.14 20798.46 245
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34198.55 33888.85 30696.43 336
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24497.36 31796.92 324
PLCcopyleft91.02 1694.05 26392.90 27697.51 13698.00 21595.12 12894.25 26398.25 20286.17 32391.48 34995.25 31391.01 23999.19 27085.02 34696.69 33298.22 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20287.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
USDC94.56 24394.57 23794.55 29097.78 24786.43 31592.75 31298.65 15885.96 32596.91 20297.93 15490.82 24298.74 31990.71 27599.59 9098.47 243
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26897.31 10394.62 32685.92 32690.50 35596.84 24785.05 29899.40 22583.77 35495.78 34696.43 342
原ACMM196.58 19898.16 19792.12 21798.15 22085.90 32793.49 32096.43 27292.47 21499.38 23387.66 32298.62 26698.23 269
PAPR92.22 29791.27 30395.07 26695.73 34088.81 27091.97 32897.87 24285.80 32890.91 35192.73 35191.16 23798.33 35279.48 36295.76 34798.08 277
IU-MVS99.22 6495.40 10898.14 22185.77 32998.36 8595.23 14599.51 12099.49 59
1112_ss94.12 25993.42 26696.23 21798.59 14790.85 23894.24 26498.85 9885.49 33092.97 33194.94 31986.01 29399.64 14891.78 24797.92 29298.20 272
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26596.92 32496.64 337
ETH3 D test640094.77 22993.87 26097.47 14498.12 20493.73 17994.56 25398.70 14385.45 33394.70 28495.93 30091.77 23299.63 15086.45 33399.14 20799.05 172
131492.38 29492.30 29092.64 33095.42 34785.15 33095.86 18196.97 28685.40 33490.62 35293.06 34591.12 23897.80 36286.74 33195.49 35094.97 358
jason94.39 25094.04 25495.41 25798.29 17787.85 29092.74 31496.75 29485.38 33595.29 27096.15 28688.21 27799.65 14594.24 19399.34 17598.74 218
jason: jason.
EU-MVSNet94.25 25394.47 24093.60 30998.14 20082.60 35097.24 10892.72 34585.08 33698.48 7298.94 5182.59 31198.76 31897.47 4599.53 11099.44 85
miper_enhance_ethall93.14 28592.78 28294.20 30093.65 36685.29 32789.97 35597.85 24385.05 33796.15 24394.56 32685.74 29499.14 27893.74 21398.34 27798.17 275
CDPH-MVS95.45 20394.65 22797.84 11298.28 17994.96 13193.73 28998.33 19585.03 33895.44 26796.60 26395.31 13499.44 21190.01 29099.13 21099.11 161
DPM-MVS93.68 27192.77 28396.42 20997.91 22192.54 20591.17 34297.47 27084.99 33993.08 33094.74 32389.90 25699.00 29587.54 32598.09 28797.72 302
CR-MVSNet93.29 28292.79 28094.78 28095.44 34588.15 28296.18 16197.20 27584.94 34094.10 29898.57 7577.67 33299.39 23095.17 14895.81 34396.81 333
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26878.04 36587.17 36694.60 32784.65 34192.34 34392.20 35687.37 28698.47 34285.17 34597.69 30497.96 291
lupinMVS93.77 26793.28 26895.24 26097.68 25887.81 29192.12 32596.05 30484.52 34294.48 29195.06 31786.90 28899.63 15093.62 21899.13 21098.27 266
PVSNet_Blended93.96 26493.65 26394.91 27197.79 24387.40 30091.43 33498.68 14884.50 34394.51 28994.48 33093.04 19599.30 25389.77 29498.61 26798.02 289
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 4084.72 30298.23 35582.52 35796.59 33590.69 373
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26492.27 32392.88 34284.39 34595.29 27096.35 27885.66 29596.74 37184.53 34997.56 31097.05 320
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31283.46 34692.69 33696.84 24779.15 32699.41 22385.66 33990.52 36698.04 287
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32698.70 32385.66 33990.52 36698.04 287
HyFIR lowres test93.72 26992.65 28596.91 18098.93 10891.81 22691.23 34198.52 16982.69 34896.46 22596.52 26980.38 32199.90 1490.36 28698.79 25099.03 174
Test_1112_low_res93.53 27792.86 27795.54 24998.60 14588.86 26992.75 31298.69 14682.66 34992.65 33896.92 24384.75 30199.56 17590.94 26497.76 29898.19 273
CVMVSNet92.33 29692.79 28090.95 34397.26 29175.84 37395.29 21692.33 34881.86 35096.27 23598.19 11981.44 31498.46 34394.23 19498.29 28098.55 237
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
OpenMVS_ROBcopyleft91.80 1493.64 27493.05 27295.42 25597.31 29091.21 23395.08 22896.68 29881.56 35296.88 20496.41 27390.44 24799.25 26485.39 34297.67 30695.80 349
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36398.89 30688.59 31192.63 36396.87 327
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 28181.44 35487.44 36993.15 33973.99 34999.47 20188.69 30999.07 22096.52 341
TAPA-MVS93.32 1294.93 22394.23 24797.04 17398.18 19394.51 14795.22 22198.73 13381.22 35596.25 23795.95 29893.80 18198.98 29989.89 29298.87 24197.62 306
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
无先验93.20 30597.91 23980.78 35699.40 22587.71 31997.94 292
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32885.50 34197.82 298
testdata95.70 24298.16 19790.58 24497.72 25280.38 35895.62 26397.02 23592.06 22498.98 29989.06 30598.52 27197.54 309
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18893.57 36894.67 14394.21 26797.67 25580.36 35993.61 31696.60 26382.85 31097.35 36584.86 34798.78 25198.29 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268894.10 26093.41 26796.18 22199.16 7690.04 25092.15 32498.68 14879.90 36096.22 23897.83 16587.92 28299.42 21489.18 30299.65 7399.08 166
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31779.52 36183.82 37393.05 34680.57 32098.41 34562.29 37792.79 36295.71 350
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 16079.32 36292.16 34591.44 36489.22 26998.12 35890.80 26997.47 31696.82 332
PMMVS92.39 29391.08 30596.30 21693.12 37092.81 20290.58 35095.96 30879.17 36391.85 34892.27 35590.29 25298.66 32989.85 29396.68 33397.43 312
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30498.03 28995.92 346
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30996.63 37273.44 37266.86 37893.40 365
新几何197.25 16398.29 17794.70 14297.73 25177.98 36694.83 28196.67 26092.08 22399.45 20888.17 31798.65 26497.61 307
112194.26 25293.26 26997.27 16098.26 18394.73 13795.86 18197.71 25377.96 36794.53 28896.71 25791.93 22899.40 22587.71 31998.64 26597.69 304
旧先验293.35 30177.95 36895.77 26098.67 32890.74 274
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33476.97 37092.54 34299.18 3089.20 27098.55 33883.88 35298.60 26997.51 310
test22298.17 19593.24 19492.74 31497.61 26675.17 37194.65 28596.69 25990.96 24198.66 26297.66 305
PCF-MVS89.43 1892.12 30090.64 31496.57 20097.80 23793.48 18989.88 35998.45 17574.46 37296.04 24695.68 30490.71 24499.31 25073.73 37199.01 22796.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t93.96 26493.22 27196.19 22099.06 9590.97 23795.99 17298.94 7773.88 37393.43 32496.93 24192.38 21799.37 23689.09 30399.28 19198.25 268
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 33073.84 37489.26 36295.61 30873.64 35398.30 35384.13 35086.20 37395.57 354
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29564.72 37590.62 35292.77 34992.54 21198.39 34779.30 36395.56 34992.12 368
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34770.63 37959.23 37884.94 37475.62 374
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30514.32 37864.27 37991.69 36273.45 35688.05 37776.06 37066.94 37793.54 363
EGC-MVSNET83.08 34377.93 34698.53 5299.57 1897.55 2798.33 3898.57 1664.71 37910.38 38098.90 5595.60 12399.50 19395.69 11299.61 8498.55 237
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2250.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
MSC_two_6792asdad98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
No_MVS98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
eth-test20.00 387
eth-test0.00 387
OPU-MVS97.64 12798.01 21195.27 11896.79 13097.35 21296.97 5698.51 34191.21 25999.25 19599.14 151
test_0728_SECOND98.25 7899.23 6195.49 10696.74 13398.89 8399.75 7295.48 12899.52 11599.53 47
GSMVS98.06 283
test_part299.03 10196.07 7698.08 121
sam_mvs177.80 33198.06 283
sam_mvs77.38 335
ambc96.56 20198.23 18791.68 22897.88 6898.13 22398.42 7898.56 7794.22 17099.04 29194.05 20399.35 17298.95 183
MTGPAbinary98.73 133
test_post194.98 23610.37 38176.21 34399.04 29189.47 298
test_post10.87 38076.83 33999.07 288
patchmatchnet-post96.84 24777.36 33699.42 214
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
MTMP96.55 14174.60 380
test9_res91.29 25598.89 24099.00 177
agg_prior290.34 28798.90 23799.10 165
agg_prior97.80 23794.96 13198.36 19093.49 32099.53 184
test_prior495.38 11093.61 293
test_prior97.46 14797.79 24394.26 16098.42 18199.34 24398.79 211
新几何293.43 296
旧先验197.80 23793.87 17297.75 25097.04 23493.57 18698.68 25998.72 221
原ACMM292.82 310
testdata299.46 20487.84 318
segment_acmp95.34 132
test1297.46 14797.61 26594.07 16597.78 24993.57 31893.31 19099.42 21498.78 25198.89 198
plane_prior798.70 13294.67 143
plane_prior698.38 17194.37 15391.91 230
plane_prior598.75 12999.46 20492.59 23499.20 20099.28 121
plane_prior496.77 253
plane_prior198.49 160
n20.00 388
nn0.00 388
door-mid98.17 215
lessismore_v097.05 17299.36 4792.12 21784.07 37598.77 5398.98 4785.36 29799.74 8297.34 4999.37 16499.30 113
test1198.08 229
door97.81 248
HQP5-MVS92.47 207
BP-MVS90.51 282
HQP4-MVS92.87 33299.23 26799.06 170
HQP3-MVS98.43 17898.74 255
HQP2-MVS90.33 248
NP-MVS98.14 20093.72 18095.08 315
ACMMP++_ref99.52 115
ACMMP++99.55 104
Test By Simon94.51 162