This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3799.67 299.73 499.65 699.15 399.86 2697.22 7099.92 1499.77 13
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 216
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4699.37 499.67 899.43 1795.61 14199.72 9398.12 3699.86 2899.73 22
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5599.36 599.29 2999.06 5697.27 4899.93 497.71 5599.91 1799.70 26
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4699.33 699.30 2899.00 5997.27 4899.92 697.64 5999.92 1499.75 20
mvs5depth98.06 5298.58 2696.51 20998.97 11489.65 26899.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
ANet_high98.31 3698.94 696.41 21799.33 5189.64 26997.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6199.98 299.77 13
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34099.26 998.39 10299.18 4287.85 30099.62 15695.13 18099.09 23099.35 120
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5099.22 1099.22 3498.96 6597.35 4499.92 697.79 5099.93 1199.79 11
MVSMamba_PlusPlus97.43 11897.98 6095.78 24698.88 12689.70 26698.03 6198.85 12699.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12197.73 330
LFMVS95.32 22794.88 23896.62 20198.03 22691.47 23997.65 9190.72 39399.11 1297.89 16298.31 13579.20 35499.48 20093.91 23499.12 22698.93 199
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8798.53 2999.86 2899.95 2
gg-mvs-nofinetune88.28 37086.96 37692.23 36992.84 41284.44 36298.19 5274.60 42099.08 1487.01 41199.47 1356.93 41098.23 38078.91 40295.61 38494.01 402
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4499.98 299.85 5
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 4999.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13099.05 1799.01 4598.65 9795.37 14999.90 1697.57 6099.91 1799.77 13
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4199.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18798.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12797.75 5399.89 2399.62 36
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14698.98 2198.74 7398.49 11395.80 13599.49 19795.04 18499.44 15999.11 170
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 59
SSC-MVS95.92 19897.03 14192.58 36199.28 5578.39 39896.68 15595.12 34298.90 2399.11 3998.66 9491.36 25199.68 12795.00 18799.16 21999.67 28
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23797.65 9190.31 39798.89 2498.93 5399.36 2384.57 32699.92 697.81 4899.56 11599.39 110
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16697.21 7199.76 5799.40 105
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 21998.79 2699.23 3398.86 7795.76 13699.61 16395.49 14999.36 18299.23 145
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5598.76 2796.79 22899.34 2696.61 9498.82 32896.38 10299.50 14396.98 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15299.05 7198.67 2898.84 6198.45 11897.58 3899.88 2196.45 9999.86 2899.54 54
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15398.73 15898.66 2998.56 8498.41 12396.84 8499.69 12294.82 19499.81 4798.64 240
WB-MVS95.50 21696.62 16392.11 37199.21 7377.26 40896.12 18895.40 33898.62 3098.84 6198.26 14991.08 25499.50 19293.37 24698.70 27299.58 39
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33298.59 3198.51 8798.72 8692.54 22799.58 16896.02 11999.49 14699.12 167
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18398.58 3298.78 6699.39 1897.80 2599.62 15694.98 19099.86 2899.52 60
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22298.58 3298.78 6699.39 1898.21 1499.56 17592.65 26099.86 2899.52 60
LS3D97.77 9097.50 11398.57 5196.24 34297.58 2898.45 3198.85 12698.58 3297.51 18097.94 19095.74 13799.63 15195.19 17198.97 24198.51 254
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11098.49 3599.38 2399.14 4995.44 14799.84 3296.47 9899.80 5099.47 84
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3598.43 3698.89 5798.83 7894.30 18199.81 4097.87 4599.91 1799.77 13
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6098.42 3799.03 4398.71 8996.93 7399.83 3497.09 7799.63 9099.56 50
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9298.40 3899.07 4298.98 6296.89 7899.75 7297.19 7499.79 5299.55 53
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31098.36 3998.14 13497.98 18688.23 29399.71 10793.10 25699.72 7099.38 112
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4298.34 4098.78 6698.52 11097.32 4599.45 21094.08 22599.67 8399.13 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32898.31 4197.09 21195.45 33797.17 5698.50 36298.67 2597.45 34396.48 377
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6398.31 4199.02 4498.74 8597.68 3099.61 16397.77 5299.85 3699.70 26
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30198.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19798.25 4699.13 3898.66 9496.65 9199.69 12293.92 23399.62 9298.91 203
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 11998.23 4799.48 1799.27 3198.47 1199.55 17996.52 9699.53 12999.60 37
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3798.21 4899.25 3298.51 11298.21 1499.40 22894.79 19699.72 7099.32 122
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23498.86 12298.20 4998.37 10399.24 3394.69 16799.55 17995.98 12399.79 5299.65 33
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22495.60 9598.04 5998.70 16798.13 5096.93 22298.45 11895.30 15299.62 15695.64 14298.96 24299.24 144
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29796.92 27096.81 8699.87 2496.87 8799.76 5798.51 254
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22299.02 8198.11 5198.31 11697.69 21494.65 17199.85 2997.02 8299.71 7399.48 81
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27397.19 25296.88 8099.86 2697.50 6399.73 6698.41 261
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7198.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5298.04 5598.62 7898.66 9493.75 19599.78 5197.23 6999.84 3899.73 22
PMVScopyleft89.60 1796.71 16596.97 14495.95 23899.51 2897.81 2097.42 11097.49 28297.93 5695.95 27798.58 10396.88 8096.91 39989.59 32699.36 18293.12 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31597.91 5797.30 19198.06 17788.46 28999.85 2993.85 23599.40 17699.32 122
MM96.87 15196.62 16397.62 12297.72 27293.30 19096.39 16492.61 37397.90 5896.76 23398.64 9890.46 26399.81 4099.16 999.94 899.76 18
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15897.79 5999.42 2197.83 19894.40 17999.78 5195.91 12799.76 5799.46 86
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.60 9699.76 6695.49 14999.20 21399.26 139
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.94 7195.49 14999.20 21399.26 139
VPNet97.26 12997.49 11496.59 20399.47 3390.58 25696.27 17498.53 19097.77 6098.46 9598.41 12394.59 17299.68 12794.61 20499.29 20399.52 60
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 30992.01 22995.33 24797.65 27597.74 6398.30 11898.14 16295.04 15899.69 12297.55 6199.52 13499.58 39
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30692.08 22795.34 24697.65 27597.74 6398.29 11998.11 16895.05 15799.68 12797.50 6399.50 14399.56 50
Anonymous20240521196.34 18295.98 19897.43 14398.25 20193.85 16996.74 14894.41 35197.72 6598.37 10398.03 18087.15 30599.53 18494.06 22699.07 23398.92 202
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10797.72 6598.25 12198.13 16497.10 5899.75 7295.44 15799.24 21199.32 122
VNet96.84 15296.83 15396.88 18598.06 22592.02 22896.35 17097.57 28197.70 6797.88 16397.80 20492.40 23299.54 18294.73 20198.96 24299.08 175
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15897.69 6897.90 16197.96 18795.81 13499.82 3696.13 11399.61 9899.45 90
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20199.18 4097.67 7199.00 4798.48 11797.64 3499.50 19296.96 8499.54 12599.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9297.57 7299.27 3099.22 3598.32 1299.50 19297.09 7799.75 6499.50 67
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22498.87 11997.57 7298.31 11697.83 19894.69 16799.85 2997.02 8299.71 7399.46 86
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27797.01 26496.99 6899.82 3697.66 5899.64 8898.39 264
PatchT93.75 29093.57 28894.29 31895.05 38587.32 32096.05 19292.98 36697.54 7594.25 32498.72 8675.79 37499.24 27695.92 12695.81 37896.32 379
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20699.04 7897.51 7698.22 12497.81 20394.68 16999.78 5197.14 7599.75 6499.41 104
alignmvs96.01 19595.52 21797.50 13497.77 26494.71 13396.07 19196.84 30497.48 7796.78 23294.28 35985.50 31999.40 22896.22 11098.73 27098.40 262
RPMNet94.68 25894.60 25494.90 28895.44 37688.15 29996.18 18298.86 12297.43 7894.10 32998.49 11379.40 35399.76 6695.69 13795.81 37896.81 368
sasdasda97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
canonicalmvs97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25897.64 21696.49 10199.72 9395.66 14099.37 17999.45 90
X-MVStestdata92.86 31190.83 34098.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25836.50 41996.49 10199.72 9395.66 14099.37 17999.45 90
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17597.41 8399.00 4799.19 3895.47 14599.73 8795.83 13299.76 5799.30 127
MGCFI-Net97.20 13297.23 12897.08 17197.68 27593.71 17597.79 7799.09 6097.40 8496.59 24493.96 36197.67 3199.35 24796.43 10098.50 29098.17 292
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7197.40 8499.37 2499.08 5598.79 699.47 20297.74 5499.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_297.12 13497.99 5994.51 30899.11 9284.00 36797.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 14899.78 5599.58 39
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 28898.12 24497.34 8798.20 12597.33 24492.81 21599.75 7294.79 19699.81 4799.54 54
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13697.32 8898.06 14497.85 19796.65 9199.77 6195.00 18799.11 22799.32 122
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4799.36 18299.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 10498.06 5396.23 22498.71 14789.44 27497.43 10998.82 14497.29 9098.74 7399.10 5293.86 19199.68 12798.61 2699.94 899.56 50
RRT-MVS95.78 20496.25 18594.35 31496.68 33284.47 36197.72 8699.11 5297.23 9197.27 19398.72 8686.39 31099.79 4795.49 14997.67 33198.80 220
casdiffmvspermissive97.50 11197.81 7796.56 20798.51 17591.04 24795.83 21199.09 6097.23 9198.33 11398.30 13997.03 6599.37 24096.58 9599.38 17899.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060199.05 10595.50 10298.87 11997.21 9398.03 14898.30 13996.93 73
Anonymous2024052197.07 13697.51 11195.76 24799.35 4988.18 29897.78 7898.40 20697.11 9498.34 11099.04 5789.58 27699.79 4798.09 3899.93 1199.30 127
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10597.10 9598.85 6098.88 7595.03 15999.67 13597.39 6799.65 8699.26 139
IterMVS-SCA-FT95.86 20196.19 18894.85 29197.68 27585.53 34292.42 35597.63 27996.99 9698.36 10698.54 10987.94 29599.75 7297.07 8099.08 23199.27 138
EI-MVSNet96.63 16996.93 14795.74 24897.26 31488.13 30195.29 25197.65 27596.99 9697.94 15898.19 15892.55 22599.58 16896.91 8599.56 11599.50 67
IterMVS-LS96.92 14697.29 12395.79 24598.51 17588.13 30195.10 25898.66 17596.99 9698.46 9598.68 9392.55 22599.74 8196.91 8599.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3596.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
thres100view90091.76 33391.26 33393.26 33898.21 20584.50 36096.39 16490.39 39496.87 10096.33 25793.08 37173.44 38699.42 21778.85 40397.74 32495.85 385
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27093.65 18098.49 2898.88 11796.86 10197.11 20598.55 10795.82 13099.73 8795.94 12599.42 17199.13 162
test20.0396.58 17296.61 16596.48 21298.49 17991.72 23595.68 22097.69 27096.81 10298.27 12097.92 19394.18 18498.71 34090.78 29999.66 8599.00 186
thres600view792.03 32891.43 32693.82 32698.19 20884.61 35996.27 17490.39 39496.81 10296.37 25693.11 36773.44 38699.49 19780.32 39897.95 31497.36 348
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22393.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31799.06 23698.32 273
EPNet93.72 29192.62 31097.03 17687.61 42292.25 21696.27 17491.28 38696.74 10487.65 40897.39 23785.00 32299.64 14792.14 26899.48 15099.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DVP-MVS++97.96 5997.90 6598.12 8697.75 26795.40 10599.03 898.89 11096.62 10698.62 7898.30 13996.97 6999.75 7295.70 13599.25 20899.21 147
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10795.70 13599.62 9299.58 39
v1097.55 10897.97 6196.31 22298.60 16289.64 26997.44 10799.02 8196.60 10898.72 7599.16 4693.48 20099.72 9398.76 2199.92 1499.58 39
Patchmtry95.03 24194.59 25696.33 22094.83 38990.82 25196.38 16797.20 28996.59 10997.49 18298.57 10477.67 36199.38 23592.95 25999.62 9298.80 220
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29596.58 11097.21 19798.19 15884.14 32899.78 5195.89 12896.17 37598.89 207
hse-mvs295.77 20595.09 22797.79 10997.84 24795.51 9995.66 22295.43 33796.58 11097.21 19796.16 31184.14 32899.54 18295.89 12896.92 35198.32 273
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 10996.58 11098.08 14197.87 19697.02 6699.76 6695.25 16899.59 10699.40 105
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6396.57 11398.07 14398.38 12796.22 11899.14 29094.71 20399.31 20098.52 253
baseline97.44 11697.78 8296.43 21498.52 17390.75 25496.84 13899.03 7996.51 11497.86 16798.02 18196.67 9099.36 24397.09 7799.47 15299.19 151
MVSFormer96.14 18996.36 18195.49 26297.68 27587.81 31098.67 1599.02 8196.50 11594.48 32196.15 31286.90 30699.92 698.73 2299.13 22398.74 229
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8196.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
Vis-MVSNet (Re-imp)95.11 23694.85 23995.87 24399.12 9189.17 27897.54 10494.92 34696.50 11596.58 24597.27 24783.64 33399.48 20088.42 34399.67 8398.97 191
UGNet96.81 15796.56 16997.58 12496.64 33393.84 17097.75 8297.12 29496.47 11893.62 34598.88 7593.22 20599.53 18495.61 14499.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
JIA-IIPM91.79 33290.69 34395.11 27593.80 40490.98 24894.16 29891.78 38096.38 11990.30 39299.30 2972.02 38998.90 32288.28 34590.17 40795.45 393
test111194.53 26694.81 24393.72 32999.06 10081.94 38298.31 3983.87 41596.37 12098.49 9099.17 4581.49 34399.73 8796.64 9199.86 2899.49 75
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16198.75 15596.36 12196.16 27096.77 28091.91 24699.46 20592.59 26299.20 21399.28 134
plane_prior296.50 16196.36 121
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9596.35 12398.13 13595.95 32395.99 12299.66 14194.36 21699.73 6698.59 246
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15896.27 12495.59 29497.75 20896.30 11399.78 5193.70 24199.48 15099.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
tfpn200view991.55 33591.00 33593.21 34298.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32495.85 385
thres40091.68 33491.00 33593.71 33098.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32497.36 348
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3496.23 12799.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
test250689.86 35489.16 35991.97 37298.95 11576.83 40998.54 2361.07 42496.20 12897.07 21299.16 4655.19 41899.69 12296.43 10099.83 4299.38 112
ECVR-MVScopyleft94.37 27294.48 26194.05 32498.95 11583.10 37298.31 3982.48 41796.20 12898.23 12399.16 4681.18 34699.66 14195.95 12499.83 4299.38 112
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6796.19 13098.48 9298.70 9194.72 16699.24 27694.37 21499.33 19599.17 154
test_yl94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
DCV-MVSNet94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13696.11 13399.08 4098.24 15197.87 2399.72 9395.44 15799.51 13999.14 160
test_241102_TWO98.83 13696.11 13398.62 7898.24 15196.92 7699.72 9395.44 15799.49 14699.49 75
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10296.11 13396.89 22597.45 22996.85 8399.78 5195.19 17199.63 9099.38 112
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13096.05 13697.49 18297.54 22397.07 6199.70 11595.61 14499.46 15599.30 127
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13696.05 13697.46 18797.63 21796.77 8799.76 6695.61 14499.46 15599.49 75
test_241102_ONE99.22 6695.35 11098.83 13696.04 13899.08 4098.13 16497.87 2399.33 252
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15096.04 13897.10 20697.73 21196.53 9899.78 5195.16 17599.50 14399.46 86
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31794.39 14795.46 23398.73 15896.03 14094.72 31494.92 34796.28 11699.69 12293.81 23697.98 31298.09 295
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13096.00 14197.22 19597.62 21896.87 8299.76 6695.48 15399.43 16899.46 86
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 24898.48 18188.76 28992.84 33997.25 28796.00 14197.59 17697.95 18991.38 25099.46 20593.16 25596.35 37098.99 189
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14695.96 14397.53 17897.40 23396.93 7399.77 6195.04 18499.35 18799.42 102
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5595.96 14398.59 8298.69 9296.94 7199.81 4096.64 9199.58 10999.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
balanced_conf0396.88 15097.29 12395.63 25397.66 28089.47 27397.95 6698.89 11095.94 14597.77 17398.55 10792.23 23499.68 12797.05 8199.61 9897.73 330
SD-MVS97.37 12397.70 8696.35 21998.14 22095.13 12496.54 16098.92 10795.94 14599.19 3598.08 17097.74 2895.06 40995.24 16999.54 12598.87 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14898.23 22595.92 14798.40 10098.28 14497.06 6299.71 10795.48 15399.52 13499.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6195.51 9996.89 13798.89 11095.92 14798.64 7698.31 13597.06 62
v14896.58 17296.97 14495.42 26598.63 15887.57 31495.09 25997.90 25795.91 14998.24 12297.96 18793.42 20199.39 23296.04 11799.52 13499.29 133
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 7995.88 15097.88 16398.22 15698.15 1699.74 8196.50 9799.62 9299.42 102
ETV-MVS96.13 19095.90 20396.82 19097.76 26593.89 16795.40 23998.95 10495.87 15195.58 29591.00 39896.36 11199.72 9393.36 24798.83 25996.85 364
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 32998.69 596.42 16398.09 24695.86 15295.15 30495.54 33494.26 18299.81 4094.06 22698.51 28998.47 258
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25598.99 9595.84 15398.78 6698.08 17096.84 8499.81 4093.98 23199.57 11299.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5195.83 15499.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
tttt051793.31 30392.56 31195.57 25698.71 14787.86 30797.44 10787.17 40995.79 15597.47 18696.84 27464.12 40299.81 4096.20 11199.32 19799.02 185
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13095.76 15696.93 22297.43 23197.26 5299.79 4796.06 11499.53 12999.45 90
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21398.48 18191.52 23895.31 24998.45 19795.76 15697.48 18497.54 22389.53 27998.69 34394.43 21094.61 39399.13 162
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9895.75 15897.62 17597.59 22097.61 3799.77 6196.34 10599.44 15999.36 118
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10295.75 15897.91 16098.06 17796.89 7899.76 6695.32 16599.57 11299.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18699.57 1795.66 16099.52 1698.71 8997.04 6499.64 14799.21 799.87 2698.69 236
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11095.65 16198.51 8796.46 29792.15 23699.81 4095.14 17898.58 28499.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19395.63 16297.22 19597.30 24695.52 14398.55 35890.97 29298.90 24998.34 272
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 3995.62 16399.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
API-MVS95.09 23895.01 23195.31 26896.61 33494.02 16396.83 13997.18 29195.60 16495.79 28594.33 35894.54 17598.37 37385.70 36998.52 28693.52 404
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17299.65 1295.59 16599.71 599.01 5897.66 3399.60 16599.44 299.83 4297.90 316
GBi-Net96.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
test196.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
FMVSNet296.72 16396.67 16296.87 18697.96 23591.88 23197.15 12198.06 25295.59 16598.50 8998.62 9989.51 28099.65 14394.99 18999.60 10499.07 177
MVS_030495.71 20795.18 22397.33 15194.85 38792.82 20095.36 24290.89 39095.51 16995.61 29397.82 20188.39 29199.78 5198.23 3599.91 1799.40 105
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20198.20 22995.51 16995.06 30696.53 29394.10 18599.70 11594.29 21799.15 22099.13 162
IterMVS95.42 22395.83 20694.20 32097.52 29383.78 36992.41 35697.47 28495.49 17198.06 14498.49 11387.94 29599.58 16896.02 11999.02 23899.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+96.19 18796.01 19596.71 19797.43 30292.19 22296.12 18899.10 5595.45 17293.33 35694.71 35097.23 5599.56 17593.21 25497.54 33798.37 266
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6795.45 17297.55 17797.94 19097.11 5799.78 5194.77 19999.46 15599.48 81
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15499.82 195.44 17499.64 1199.52 998.96 499.74 8199.38 399.86 2899.81 9
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7195.43 17597.41 18997.50 22797.98 1999.79 4795.58 14799.57 11299.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC96.52 17495.99 19798.10 8797.81 25195.68 9295.00 26798.20 22995.39 17695.40 30096.36 30493.81 19399.45 21093.55 24498.42 29599.17 154
MonoMVSNet93.30 30493.96 28291.33 37994.14 40081.33 38797.68 8996.69 31295.38 17796.32 25898.42 12184.12 33096.76 40390.78 29992.12 40395.89 384
wuyk23d93.25 30695.20 22187.40 39796.07 35495.38 10797.04 12994.97 34495.33 17899.70 798.11 16898.14 1791.94 41577.76 40699.68 8174.89 415
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5595.32 17997.83 16997.88 19596.44 10699.72 9394.59 20899.39 17799.25 143
MSDG95.33 22695.13 22595.94 24097.40 30491.85 23291.02 38598.37 21095.30 18096.31 26195.99 31994.51 17698.38 37189.59 32697.65 33497.60 339
plane_prior394.51 14395.29 18196.16 270
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15598.83 13695.21 18298.36 10698.13 16498.13 1899.62 15696.04 11799.54 12599.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28099.02 8195.20 18398.15 13397.52 22598.83 598.43 36794.87 19296.41 36899.07 177
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31599.05 7195.19 18498.32 11497.70 21395.22 15498.41 36894.27 21898.13 30798.93 199
v2v48296.78 15997.06 13995.95 23898.57 16688.77 28895.36 24298.26 22195.18 18597.85 16898.23 15392.58 22399.63 15197.80 4999.69 7799.45 90
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
thres20091.00 34390.42 34792.77 35797.47 30083.98 36894.01 30691.18 38895.12 18895.44 29891.21 39673.93 37999.31 25777.76 40697.63 33595.01 396
testgi96.07 19196.50 17694.80 29499.26 5787.69 31395.96 20398.58 18795.08 18998.02 14996.25 30897.92 2097.60 39288.68 34098.74 26799.11 170
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 16998.79 14695.07 19097.88 16398.35 13097.24 5499.72 9396.05 11699.58 10999.45 90
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18299.73 595.05 19199.60 1599.34 2698.68 899.72 9399.21 799.85 3699.76 18
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16498.98 9895.05 19198.06 14498.02 18195.86 12699.56 17594.37 21499.64 8899.00 186
save fliter98.48 18194.71 13394.53 28498.41 20495.02 193
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19799.64 1594.99 19499.43 2099.18 4298.51 1099.71 10799.13 1099.84 3899.67 28
CANet95.86 20195.65 21396.49 21196.41 33990.82 25194.36 28798.41 20494.94 19592.62 37396.73 28392.68 21999.71 10795.12 18199.60 10498.94 195
MVS_Test96.27 18496.79 15794.73 29896.94 32786.63 33196.18 18298.33 21594.94 19596.07 27398.28 14495.25 15399.26 27097.21 7197.90 31798.30 277
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9294.93 19798.58 8398.92 6997.31 4699.41 22694.44 20999.43 16899.59 38
new-patchmatchnet95.67 21096.58 16792.94 35297.48 29680.21 39392.96 33798.19 23494.83 19898.82 6398.79 7993.31 20399.51 19195.83 13299.04 23799.12 167
E-PMN89.52 35989.78 35188.73 39193.14 40877.61 40483.26 41392.02 37794.82 19993.71 34293.11 36775.31 37596.81 40085.81 36896.81 35891.77 410
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32798.36 21194.74 20096.58 24596.76 28296.54 9798.99 31394.87 19299.27 20699.15 157
MSLP-MVS++96.42 18096.71 15995.57 25697.82 25090.56 25895.71 21698.84 13094.72 20196.71 23597.39 23794.91 16498.10 38495.28 16699.02 23898.05 305
baseline193.14 30892.64 30994.62 30197.34 30987.20 32296.67 15793.02 36594.71 20296.51 25095.83 32681.64 34298.60 35490.00 32088.06 41198.07 298
testing389.72 35688.26 36594.10 32397.66 28084.30 36594.80 27388.25 40694.66 20395.07 30592.51 38241.15 42499.43 21591.81 27698.44 29498.55 250
EIA-MVS96.04 19395.77 20996.85 18797.80 25592.98 19896.12 18899.16 4294.65 20493.77 34091.69 39295.68 13899.67 13594.18 22198.85 25697.91 315
EMVS89.06 36289.22 35488.61 39293.00 41077.34 40682.91 41490.92 38994.64 20592.63 37291.81 39076.30 37197.02 39783.83 38696.90 35391.48 411
V4297.04 13797.16 13396.68 20098.59 16491.05 24696.33 17198.36 21194.60 20697.99 15098.30 13993.32 20299.62 15697.40 6699.53 12999.38 112
CNVR-MVS96.92 14696.55 17098.03 9598.00 23395.54 9794.87 27198.17 23594.60 20696.38 25597.05 26095.67 13999.36 24395.12 18199.08 23199.19 151
MVS_111021_LR96.82 15696.55 17097.62 12298.27 19995.34 11293.81 31798.33 21594.59 20896.56 24796.63 28896.61 9498.73 33794.80 19599.34 19098.78 223
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25398.46 19694.58 20998.10 13898.07 17297.09 6099.39 23295.16 17599.44 15999.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20398.97 10194.55 21098.82 6398.76 8497.31 4699.29 26497.20 7399.44 15999.38 112
reproduce_monomvs92.05 32792.26 31491.43 37795.42 37875.72 41395.68 22097.05 29894.47 21197.95 15798.35 13055.58 41599.05 30596.36 10399.44 15999.51 64
ab-mvs96.59 17096.59 16696.60 20298.64 15492.21 21898.35 3597.67 27194.45 21296.99 21798.79 7994.96 16399.49 19790.39 31499.07 23398.08 296
CNLPA95.04 23994.47 26296.75 19597.81 25195.25 11694.12 30397.89 25894.41 21394.57 31795.69 32890.30 26998.35 37486.72 36598.76 26596.64 372
TinyColmap96.00 19696.34 18294.96 28597.90 24087.91 30694.13 30298.49 19494.41 21398.16 13197.76 20596.29 11598.68 34690.52 31099.42 17198.30 277
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
TestCases98.06 9099.08 9696.16 7499.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
plane_prior94.29 15395.42 23694.31 21798.93 247
v114496.84 15297.08 13796.13 23198.42 18789.28 27795.41 23898.67 17394.21 21897.97 15498.31 13593.06 20899.65 14398.06 4099.62 9299.45 90
test_prior293.33 33194.21 21894.02 33496.25 30893.64 19791.90 27298.96 242
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18799.09 9591.43 24196.37 16899.11 5294.19 22099.01 4599.25 3296.30 11399.38 23599.00 1499.88 2499.73 22
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19198.79 13691.44 24096.14 18799.06 6794.19 22098.82 6398.98 6296.22 11899.38 23598.98 1699.86 2899.58 39
DELS-MVS96.17 18896.23 18695.99 23497.55 29290.04 26192.38 35898.52 19194.13 22296.55 24997.06 25994.99 16199.58 16895.62 14399.28 20498.37 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 17096.93 14795.55 25998.88 12687.12 32394.47 28599.30 2994.12 22396.65 24198.41 12394.98 16299.87 2495.81 13499.78 5599.66 30
dmvs_re92.08 32691.27 33194.51 30897.16 31892.79 20595.65 22492.64 37294.11 22492.74 36790.98 39983.41 33594.44 41380.72 39794.07 39696.29 380
FMVSNet395.26 23094.94 23296.22 22696.53 33690.06 26095.99 19997.66 27394.11 22497.99 15097.91 19480.22 35299.63 15194.60 20599.44 15998.96 192
diffmvspermissive96.04 19396.23 18695.46 26497.35 30788.03 30493.42 32799.08 6394.09 22696.66 23996.93 26893.85 19299.29 26496.01 12198.67 27499.06 179
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053092.71 31491.76 32395.56 25898.42 18788.23 29696.03 19487.35 40894.04 22796.56 24795.47 33664.03 40399.77 6194.78 19899.11 22798.68 239
PMMVS293.66 29494.07 27792.45 36597.57 28980.67 39186.46 40796.00 32093.99 22897.10 20697.38 23989.90 27397.82 38888.76 33799.47 15298.86 214
BH-untuned94.69 25694.75 24694.52 30797.95 23887.53 31594.07 30497.01 29993.99 22897.10 20695.65 33092.65 22198.95 32087.60 35396.74 36097.09 354
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18099.02 8193.92 23098.62 7898.99 6197.69 2999.62 15696.18 11299.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18198.63 18193.82 23198.54 8598.33 13393.98 18899.05 30595.99 12299.45 15898.61 245
testdata192.77 34193.78 232
v119296.83 15597.06 13996.15 23098.28 19789.29 27695.36 24298.77 15193.73 23398.11 13698.34 13293.02 21399.67 13598.35 3399.58 10999.50 67
testing9189.67 35788.55 36293.04 34695.90 35881.80 38392.71 34693.71 35593.71 23490.18 39390.15 40457.11 40999.22 28087.17 36296.32 37198.12 294
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 17998.89 11093.71 23497.97 15497.75 20897.44 4099.63 15193.22 25399.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet94.56 26494.44 26594.91 28697.57 28987.44 31793.78 31896.26 31693.69 23696.41 25496.50 29692.10 23999.00 31185.96 36797.71 32798.31 275
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15899.15 4693.68 23798.89 5799.30 2996.42 10799.37 24099.03 1399.83 4299.66 30
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 17899.06 6793.67 23898.64 7699.00 5996.23 11799.36 24398.99 1599.80 5099.53 57
Patchmatch-test93.60 29693.25 29394.63 30096.14 35287.47 31696.04 19394.50 35093.57 23996.47 25196.97 26576.50 36998.61 35290.67 30798.41 29697.81 324
PHI-MVS96.96 14496.53 17398.25 7597.48 29696.50 6396.76 14798.85 12693.52 24096.19 26996.85 27395.94 12399.42 21793.79 23799.43 16898.83 216
miper_lstm_enhance94.81 25094.80 24494.85 29196.16 34886.45 33391.14 38298.20 22993.49 24197.03 21497.37 24184.97 32399.26 27095.28 16699.56 11598.83 216
c3_l95.20 23295.32 21894.83 29396.19 34686.43 33491.83 36798.35 21493.47 24297.36 19097.26 24888.69 28699.28 26695.41 16399.36 18298.78 223
eth_miper_zixun_eth94.89 24694.93 23494.75 29795.99 35586.12 33791.35 37598.49 19493.40 24397.12 20497.25 24986.87 30899.35 24795.08 18398.82 26098.78 223
EPNet_dtu91.39 33890.75 34193.31 33790.48 41882.61 37694.80 27392.88 36793.39 24481.74 41694.90 34881.36 34599.11 29788.28 34598.87 25398.21 287
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 20899.41 2693.36 24599.00 4798.44 12096.46 10599.65 14399.09 1199.76 5799.45 90
cl____94.73 25194.64 25095.01 28195.85 36287.00 32591.33 37698.08 24793.34 24697.10 20697.33 24484.01 33299.30 26095.14 17899.56 11598.71 235
DIV-MVS_self_test94.73 25194.64 25095.01 28195.86 36187.00 32591.33 37698.08 24793.34 24697.10 20697.34 24384.02 33199.31 25795.15 17799.55 12198.72 232
mvs_anonymous95.36 22496.07 19493.21 34296.29 34181.56 38494.60 28297.66 27393.30 24896.95 22198.91 7293.03 21299.38 23596.60 9397.30 34898.69 236
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27095.23 11794.15 29996.90 30393.26 24998.04 14796.70 28494.41 17898.89 32394.77 19999.14 22198.37 266
9.1496.69 16098.53 17296.02 19598.98 9893.23 25097.18 20097.46 22896.47 10399.62 15692.99 25799.32 197
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21199.32 2793.22 25198.91 5698.49 11396.31 11299.64 14799.07 1299.76 5799.40 105
v192192096.72 16396.96 14695.99 23498.21 20588.79 28795.42 23698.79 14693.22 25198.19 12998.26 14992.68 21999.70 11598.34 3499.55 12199.49 75
testing9989.21 36188.04 36792.70 35995.78 36781.00 39092.65 34792.03 37693.20 25389.90 39790.08 40655.25 41699.14 29087.54 35595.95 37797.97 311
CANet_DTU94.65 26094.21 27295.96 23695.90 35889.68 26793.92 31297.83 26493.19 25490.12 39495.64 33188.52 28899.57 17493.27 25299.47 15298.62 243
HQP-NCC97.85 24294.26 28993.18 25592.86 364
ACMP_Plane97.85 24294.26 28993.18 25592.86 364
HQP-MVS95.17 23594.58 25796.92 18297.85 24292.47 21294.26 28998.43 20093.18 25592.86 36495.08 34190.33 26699.23 27890.51 31198.74 26799.05 181
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27494.15 15996.02 19598.43 20093.17 25897.30 19197.38 23995.48 14499.28 26693.74 23899.34 19098.88 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v124096.74 16097.02 14295.91 24198.18 21188.52 29095.39 24098.88 11793.15 25998.46 9598.40 12692.80 21699.71 10798.45 3199.49 14699.49 75
AdaColmapbinary95.11 23694.62 25396.58 20497.33 31194.45 14694.92 26998.08 24793.15 25993.98 33695.53 33594.34 18099.10 30085.69 37098.61 28196.20 382
CL-MVSNet_self_test95.04 23994.79 24595.82 24497.51 29489.79 26591.14 38296.82 30693.05 26196.72 23496.40 30290.82 25899.16 28891.95 27198.66 27698.50 256
v14419296.69 16696.90 15196.03 23398.25 20188.92 28295.49 23298.77 15193.05 26198.09 13998.29 14392.51 23099.70 11598.11 3799.56 11599.47 84
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 22993.00 26398.16 13198.06 17795.89 12599.72 9395.67 13999.10 22999.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
xiu_mvs_v1_base95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
PAPM_NR94.61 26294.17 27495.96 23698.36 19191.23 24495.93 20597.95 25492.98 26493.42 35494.43 35790.53 26198.38 37187.60 35396.29 37298.27 281
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17298.77 15192.96 26897.44 18897.58 22295.84 12799.74 8191.96 27099.35 18799.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15192.89 26996.01 27697.13 25492.23 23499.67 13592.24 26799.34 19099.17 154
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29697.23 4492.56 34998.60 18392.84 27098.54 8597.40 23396.64 9398.78 33294.40 21399.41 17598.93 199
testing22287.35 37785.50 38492.93 35395.79 36682.83 37392.40 35790.10 40092.80 27188.87 40389.02 40748.34 42298.70 34175.40 40996.74 36097.27 352
FMVSNet593.39 30192.35 31296.50 21095.83 36390.81 25397.31 11298.27 22092.74 27296.27 26398.28 14462.23 40499.67 13590.86 29599.36 18299.03 182
test_vis1_n_192095.77 20596.41 17993.85 32598.55 16984.86 35695.91 20799.71 692.72 27397.67 17498.90 7387.44 30398.73 33797.96 4298.85 25697.96 312
dmvs_testset87.30 37886.99 37588.24 39496.71 33177.48 40594.68 27986.81 41192.64 27489.61 39987.01 41385.91 31493.12 41461.04 41888.49 41094.13 401
YYNet194.73 25194.84 24094.41 31297.47 30085.09 35290.29 39295.85 32692.52 27597.53 17897.76 20591.97 24299.18 28393.31 25096.86 35498.95 193
MDA-MVSNet_test_wron94.73 25194.83 24294.42 31197.48 29685.15 35090.28 39395.87 32592.52 27597.48 18497.76 20591.92 24599.17 28793.32 24996.80 35998.94 195
MG-MVS94.08 28294.00 27994.32 31697.09 32185.89 33993.19 33595.96 32292.52 27594.93 31297.51 22689.54 27798.77 33387.52 35797.71 32798.31 275
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24198.99 9592.45 27898.11 13698.31 13597.25 5399.77 6196.60 9399.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSTER94.21 27693.93 28395.05 27995.83 36386.46 33295.18 25697.65 27592.41 27997.94 15898.00 18572.39 38899.58 16896.36 10399.56 11599.12 167
FA-MVS(test-final)94.91 24494.89 23794.99 28397.51 29488.11 30398.27 4495.20 34192.40 28096.68 23698.60 10283.44 33499.28 26693.34 24898.53 28597.59 340
LF4IMVS96.07 19195.63 21497.36 14998.19 20895.55 9695.44 23498.82 14492.29 28195.70 29196.55 29192.63 22298.69 34391.75 27999.33 19597.85 320
ttmdpeth94.05 28394.15 27593.75 32895.81 36585.32 34596.00 19794.93 34592.07 28294.19 32699.09 5385.73 31696.41 40690.98 29198.52 28699.53 57
MIMVSNet93.42 30092.86 30095.10 27798.17 21488.19 29798.13 5593.69 35692.07 28295.04 30998.21 15780.95 34999.03 31081.42 39498.06 31098.07 298
test-LLR89.97 35289.90 35090.16 38594.24 39774.98 41489.89 39689.06 40292.02 28489.97 39590.77 40073.92 38098.57 35591.88 27397.36 34496.92 359
test0.0.03 190.11 34889.21 35592.83 35593.89 40386.87 32891.74 36888.74 40592.02 28494.71 31591.14 39773.92 38094.48 41283.75 38892.94 39997.16 353
xiu_mvs_v2_base94.22 27494.63 25292.99 35097.32 31284.84 35792.12 36197.84 26291.96 28694.17 32793.43 36596.07 12199.71 10791.27 28497.48 34094.42 399
PS-MVSNAJ94.10 28094.47 26293.00 34997.35 30784.88 35491.86 36697.84 26291.96 28694.17 32792.50 38395.82 13099.71 10791.27 28497.48 34094.40 400
OMC-MVS96.48 17696.00 19697.91 10298.30 19496.01 8294.86 27298.60 18391.88 28897.18 20097.21 25196.11 12099.04 30790.49 31399.34 19098.69 236
GA-MVS92.83 31292.15 31794.87 29096.97 32487.27 32190.03 39496.12 31791.83 28994.05 33294.57 35176.01 37398.97 31992.46 26597.34 34698.36 271
miper_ehance_all_eth94.69 25694.70 24794.64 29995.77 36886.22 33691.32 37898.24 22491.67 29097.05 21396.65 28788.39 29199.22 28094.88 19198.34 29898.49 257
WBMVS91.11 34090.72 34292.26 36895.99 35577.98 40391.47 37295.90 32491.63 29195.90 28296.45 29859.60 40599.46 20589.97 32199.59 10699.33 121
testing1188.93 36387.63 37192.80 35695.87 36081.49 38592.48 35191.54 38291.62 29288.27 40690.24 40255.12 41999.11 29787.30 36096.28 37397.81 324
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14898.73 15891.61 29398.48 9298.36 12996.53 9899.68 12795.17 17399.54 12599.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+95.49 21795.07 22896.75 19597.67 27992.82 20094.22 29598.60 18391.61 29393.42 35492.90 37496.73 8999.70 11592.60 26197.89 31897.74 329
SCA93.38 30293.52 28992.96 35196.24 34281.40 38693.24 33394.00 35491.58 29594.57 31796.97 26587.94 29599.42 21789.47 32897.66 33398.06 302
MVStest191.89 33091.45 32593.21 34289.01 41984.87 35595.82 21395.05 34391.50 29698.75 7299.19 3857.56 40895.11 40897.78 5198.37 29799.64 35
mvsmamba94.91 24494.41 26696.40 21897.65 28291.30 24297.92 6995.32 33991.50 29695.54 29698.38 12783.06 33799.68 12792.46 26597.84 31998.23 284
Patchmatch-RL test94.66 25994.49 26095.19 27298.54 17188.91 28392.57 34898.74 15791.46 29898.32 11497.75 20877.31 36698.81 33096.06 11499.61 9897.85 320
ETVMVS87.62 37585.75 38293.22 34196.15 35183.26 37192.94 33890.37 39691.39 29990.37 39088.45 40951.93 42198.64 34973.76 41096.38 36997.75 328
KD-MVS_2432*160088.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
miper_refine_blended88.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
AUN-MVS93.95 28892.69 30797.74 11297.80 25595.38 10795.57 23195.46 33691.26 30292.64 37196.10 31774.67 37799.55 17993.72 24096.97 35098.30 277
CLD-MVS95.47 22095.07 22896.69 19998.27 19992.53 20991.36 37498.67 17391.22 30395.78 28794.12 36095.65 14098.98 31590.81 29799.72 7098.57 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.49 21794.94 23297.16 16298.31 19393.41 18895.07 26296.82 30691.09 30497.51 18097.82 20189.96 27299.42 21788.42 34399.44 15998.64 240
tpmvs90.79 34590.87 33890.57 38492.75 41376.30 41095.79 21493.64 36091.04 30591.91 37996.26 30777.19 36798.86 32789.38 33089.85 40896.56 375
test_fmvs397.38 12197.56 10696.84 18998.63 15892.81 20297.60 9499.61 1690.87 30698.76 7199.66 494.03 18797.90 38699.24 699.68 8199.81 9
cl2293.25 30692.84 30294.46 31094.30 39586.00 33891.09 38496.64 31490.74 30795.79 28596.31 30678.24 35898.77 33394.15 22398.34 29898.62 243
ZD-MVS98.43 18695.94 8398.56 18990.72 30896.66 23997.07 25895.02 16099.74 8191.08 28898.93 247
our_test_394.20 27894.58 25793.07 34596.16 34881.20 38890.42 39196.84 30490.72 30897.14 20297.13 25490.47 26299.11 29794.04 22998.25 30298.91 203
Syy-MVS92.09 32591.80 32292.93 35395.19 38282.65 37592.46 35291.35 38490.67 31091.76 38187.61 41185.64 31898.50 36294.73 20196.84 35597.65 335
myMVS_eth3d87.16 38085.61 38391.82 37395.19 38279.32 39592.46 35291.35 38490.67 31091.76 38187.61 41141.96 42398.50 36282.66 39096.84 35597.65 335
ppachtmachnet_test94.49 26894.84 24093.46 33596.16 34882.10 37990.59 38997.48 28390.53 31297.01 21697.59 22091.01 25599.36 24393.97 23299.18 21798.94 195
test_cas_vis1_n_192095.34 22595.67 21194.35 31498.21 20586.83 32995.61 22899.26 3290.45 31398.17 13098.96 6584.43 32798.31 37696.74 9099.17 21897.90 316
MVP-Stereo95.69 20895.28 21996.92 18298.15 21893.03 19795.64 22798.20 22990.39 31496.63 24297.73 21191.63 24899.10 30091.84 27597.31 34798.63 242
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31599.27 3099.33 2894.04 18696.03 40797.14 7597.83 32099.78 12
UnsupCasMVSNet_bld94.72 25594.26 26996.08 23298.62 16090.54 25993.38 32998.05 25390.30 31597.02 21596.80 27989.54 27799.16 28888.44 34296.18 37498.56 248
DP-MVS Recon95.55 21595.13 22596.80 19198.51 17593.99 16594.60 28298.69 16890.20 31795.78 28796.21 31092.73 21898.98 31590.58 30998.86 25597.42 347
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28098.17 23590.17 31896.21 26796.10 31795.14 15699.43 21594.13 22498.85 25699.13 162
CDS-MVSNet94.88 24794.12 27697.14 16497.64 28593.57 18193.96 31197.06 29790.05 31996.30 26296.55 29186.10 31299.47 20290.10 31899.31 20098.40 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TR-MVS92.54 31692.20 31693.57 33396.49 33786.66 33093.51 32594.73 34789.96 32094.95 31093.87 36290.24 27198.61 35281.18 39694.88 39095.45 393
FE-MVS92.95 31092.22 31595.11 27597.21 31688.33 29598.54 2393.66 35989.91 32196.21 26798.14 16270.33 39599.50 19287.79 34998.24 30397.51 343
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20194.29 15394.77 27698.07 25189.81 32297.97 15498.33 13393.11 20799.08 30295.46 15699.84 3898.89 207
D2MVS95.18 23395.17 22495.21 27197.76 26587.76 31294.15 29997.94 25589.77 32396.99 21797.68 21587.45 30299.14 29095.03 18699.81 4798.74 229
UBG88.29 36987.17 37391.63 37596.08 35378.21 39991.61 36991.50 38389.67 32489.71 39888.97 40859.01 40698.91 32181.28 39596.72 36297.77 327
PatchmatchNetpermissive91.98 32991.87 31992.30 36794.60 39279.71 39495.12 25793.59 36189.52 32593.61 34697.02 26277.94 35999.18 28390.84 29694.57 39598.01 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet95.18 23394.23 27098.06 9097.85 24296.55 6292.49 35091.63 38189.34 32698.09 13997.41 23290.33 26699.06 30491.58 28099.31 20098.56 248
BH-w/o92.14 32391.94 31892.73 35897.13 32085.30 34692.46 35295.64 32989.33 32794.21 32592.74 37889.60 27598.24 37981.68 39394.66 39294.66 398
test_fmvs296.38 18196.45 17796.16 22997.85 24291.30 24296.81 14199.45 2189.24 32898.49 9099.38 2088.68 28797.62 39198.83 1899.32 19799.57 46
mvsany_test396.21 18695.93 20297.05 17397.40 30494.33 15295.76 21594.20 35389.10 32999.36 2599.60 893.97 18997.85 38795.40 16498.63 27998.99 189
ET-MVSNet_ETH3D91.12 33989.67 35295.47 26396.41 33989.15 28091.54 37190.23 39889.07 33086.78 41292.84 37669.39 39799.44 21394.16 22296.61 36597.82 322
WTY-MVS93.55 29793.00 29895.19 27297.81 25187.86 30793.89 31396.00 32089.02 33194.07 33195.44 33886.27 31199.33 25287.69 35196.82 35798.39 264
F-COLMAP95.30 22894.38 26798.05 9498.64 15496.04 7995.61 22898.66 17589.00 33293.22 35796.40 30292.90 21499.35 24787.45 35897.53 33898.77 226
PVSNet_BlendedMVS95.02 24294.93 23495.27 26997.79 26087.40 31894.14 30198.68 17088.94 33394.51 31998.01 18393.04 20999.30 26089.77 32499.49 14699.11 170
baseline289.65 35888.44 36493.25 33995.62 37282.71 37493.82 31585.94 41288.89 33487.35 41092.54 38171.23 39199.33 25286.01 36694.60 39497.72 332
tpm91.08 34290.85 33991.75 37495.33 38078.09 40095.03 26691.27 38788.75 33593.53 34997.40 23371.24 39099.30 26091.25 28693.87 39797.87 319
MS-PatchMatch94.83 24894.91 23694.57 30596.81 33087.10 32494.23 29497.34 28688.74 33697.14 20297.11 25691.94 24498.23 38092.99 25797.92 31598.37 266
UWE-MVS87.57 37686.72 37890.13 38795.21 38173.56 41791.94 36583.78 41688.73 33793.00 36192.87 37555.22 41799.25 27281.74 39297.96 31397.59 340
EPMVS89.26 36088.55 36291.39 37892.36 41479.11 39795.65 22479.86 41888.60 33893.12 35996.53 29370.73 39498.10 38490.75 30189.32 40996.98 357
WB-MVSnew91.50 33691.29 32992.14 37094.85 38780.32 39293.29 33288.77 40488.57 33994.03 33392.21 38592.56 22498.28 37880.21 39997.08 34997.81 324
QAPM95.88 20095.57 21696.80 19197.90 24091.84 23398.18 5398.73 15888.41 34096.42 25398.13 16494.73 16599.75 7288.72 33898.94 24598.81 219
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21599.28 5590.62 25595.31 24999.08 6388.40 34196.97 22098.17 16192.11 23899.78 5193.64 24299.21 21298.86 214
sss94.22 27493.72 28595.74 24897.71 27389.95 26393.84 31496.98 30088.38 34293.75 34195.74 32787.94 29598.89 32391.02 29098.10 30898.37 266
thisisatest051590.43 34689.18 35894.17 32297.07 32285.44 34389.75 40087.58 40788.28 34393.69 34491.72 39165.27 40199.58 16890.59 30898.67 27497.50 345
test_vis1_n95.67 21095.89 20495.03 28098.18 21189.89 26496.94 13499.28 3188.25 34498.20 12598.92 6986.69 30997.19 39497.70 5798.82 26098.00 310
PatchMatch-RL94.61 26293.81 28497.02 17798.19 20895.72 8993.66 32097.23 28888.17 34594.94 31195.62 33291.43 24998.57 35587.36 35997.68 33096.76 370
tpmrst90.31 34790.61 34589.41 38994.06 40172.37 42095.06 26393.69 35688.01 34692.32 37696.86 27277.45 36398.82 32891.04 28987.01 41297.04 356
Anonymous2023120695.27 22995.06 23095.88 24298.72 14489.37 27595.70 21797.85 26088.00 34796.98 21997.62 21891.95 24399.34 25089.21 33199.53 12998.94 195
FPMVS89.92 35388.63 36193.82 32698.37 19096.94 4991.58 37093.34 36388.00 34790.32 39197.10 25770.87 39391.13 41671.91 41496.16 37693.39 406
MAR-MVS94.21 27693.03 29697.76 11196.94 32797.44 3796.97 13397.15 29287.89 34992.00 37892.73 37992.14 23799.12 29483.92 38497.51 33996.73 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IB-MVS85.98 2088.63 36686.95 37793.68 33195.12 38484.82 35890.85 38690.17 39987.55 35088.48 40591.34 39558.01 40799.59 16687.24 36193.80 39896.63 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22197.16 31891.96 23097.74 8498.84 13087.26 35194.36 32398.01 18393.95 19099.67 13590.70 30698.75 26697.35 350
PC_three_145287.24 35298.37 10397.44 23097.00 6796.78 40292.01 26999.25 20899.21 147
pmmvs594.63 26194.34 26895.50 26197.63 28688.34 29494.02 30597.13 29387.15 35395.22 30397.15 25387.50 30199.27 26993.99 23099.26 20798.88 211
train_agg95.46 22194.66 24897.88 10497.84 24795.23 11793.62 32198.39 20787.04 35493.78 33895.99 31994.58 17399.52 18791.76 27898.90 24998.89 207
test_897.81 25195.07 12693.54 32498.38 20987.04 35493.71 34295.96 32294.58 17399.52 187
test_f95.82 20395.88 20595.66 25297.61 28793.21 19595.61 22898.17 23586.98 35698.42 9899.47 1390.46 26394.74 41197.71 5598.45 29399.03 182
test_fmvs1_n95.21 23195.28 21994.99 28398.15 21889.13 28196.81 14199.43 2386.97 35797.21 19798.92 6983.00 33897.13 39598.09 3898.94 24598.72 232
TEST997.84 24795.23 11793.62 32198.39 20786.81 35893.78 33895.99 31994.68 16999.52 187
pmmvs494.82 24994.19 27396.70 19897.42 30392.75 20692.09 36396.76 30886.80 35995.73 29097.22 25089.28 28398.89 32393.28 25199.14 22198.46 260
MDTV_nov1_ep1391.28 33094.31 39473.51 41894.80 27393.16 36486.75 36093.45 35297.40 23376.37 37098.55 35888.85 33696.43 367
test_fmvs194.51 26794.60 25494.26 31995.91 35787.92 30595.35 24599.02 8186.56 36196.79 22898.52 11082.64 34097.00 39897.87 4598.71 27197.88 318
test-mter87.92 37387.17 37390.16 38594.24 39774.98 41489.89 39689.06 40286.44 36289.97 39590.77 40054.96 42098.57 35591.88 27397.36 34496.92 359
PLCcopyleft91.02 1694.05 28392.90 29997.51 13098.00 23395.12 12594.25 29298.25 22286.17 36391.48 38395.25 33991.01 25599.19 28285.02 37996.69 36398.22 286
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVEpermissive73.61 2286.48 38185.92 38088.18 39596.23 34485.28 34881.78 41575.79 41986.01 36482.53 41591.88 38992.74 21787.47 41871.42 41594.86 39191.78 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
USDC94.56 26494.57 25994.55 30697.78 26386.43 33492.75 34298.65 18085.96 36596.91 22497.93 19290.82 25898.74 33690.71 30599.59 10698.47 258
HY-MVS91.43 1592.58 31591.81 32194.90 28896.49 33788.87 28497.31 11294.62 34885.92 36690.50 38996.84 27485.05 32199.40 22883.77 38795.78 38196.43 378
原ACMM196.58 20498.16 21692.12 22398.15 24185.90 36793.49 35096.43 29992.47 23199.38 23587.66 35298.62 28098.23 284
PAPR92.22 32191.27 33195.07 27895.73 37188.81 28691.97 36497.87 25985.80 36890.91 38592.73 37991.16 25298.33 37579.48 40095.76 38298.08 296
IU-MVS99.22 6695.40 10598.14 24285.77 36998.36 10695.23 17099.51 13999.49 75
1112_ss94.12 27993.42 29096.23 22498.59 16490.85 25094.24 29398.85 12685.49 37092.97 36294.94 34586.01 31399.64 14791.78 27797.92 31598.20 288
dp88.08 37188.05 36688.16 39692.85 41168.81 42294.17 29792.88 36785.47 37191.38 38496.14 31468.87 39898.81 33086.88 36383.80 41596.87 362
TESTMET0.1,187.20 37986.57 37989.07 39093.62 40672.84 41989.89 39687.01 41085.46 37289.12 40290.20 40356.00 41497.72 39090.91 29496.92 35196.64 372
131492.38 31892.30 31392.64 36095.42 37885.15 35095.86 20996.97 30185.40 37390.62 38693.06 37291.12 25397.80 38986.74 36495.49 38694.97 397
jason94.39 27194.04 27895.41 26798.29 19587.85 30992.74 34496.75 30985.38 37495.29 30196.15 31288.21 29499.65 14394.24 21999.34 19098.74 229
jason: jason.
EU-MVSNet94.25 27394.47 26293.60 33298.14 22082.60 37797.24 11792.72 37085.08 37598.48 9298.94 6782.59 34198.76 33597.47 6599.53 12999.44 100
miper_enhance_ethall93.14 30892.78 30594.20 32093.65 40585.29 34789.97 39597.85 26085.05 37696.15 27294.56 35285.74 31599.14 29093.74 23898.34 29898.17 292
CDPH-MVS95.45 22294.65 24997.84 10798.28 19794.96 12893.73 31998.33 21585.03 37795.44 29896.60 28995.31 15199.44 21390.01 31999.13 22399.11 170
mvsany_test193.47 29993.03 29694.79 29594.05 40292.12 22390.82 38790.01 40185.02 37897.26 19498.28 14493.57 19897.03 39692.51 26495.75 38395.23 395
DPM-MVS93.68 29392.77 30696.42 21597.91 23992.54 20891.17 38197.47 28484.99 37993.08 36094.74 34989.90 27399.00 31187.54 35598.09 30997.72 332
CR-MVSNet93.29 30592.79 30394.78 29695.44 37688.15 29996.18 18297.20 28984.94 38094.10 32998.57 10477.67 36199.39 23295.17 17395.81 37896.81 368
test_vis1_rt94.03 28593.65 28695.17 27495.76 36993.42 18793.97 31098.33 21584.68 38193.17 35895.89 32592.53 22994.79 41093.50 24594.97 38997.31 351
PVSNet86.72 1991.10 34190.97 33791.49 37697.56 29178.04 40187.17 40694.60 34984.65 38292.34 37592.20 38687.37 30498.47 36585.17 37897.69 32997.96 312
lupinMVS93.77 28993.28 29295.24 27097.68 27587.81 31092.12 36196.05 31884.52 38394.48 32195.06 34386.90 30699.63 15193.62 24399.13 22398.27 281
PVSNet_Blended93.96 28693.65 28694.91 28697.79 26087.40 31891.43 37398.68 17084.50 38494.51 31994.48 35693.04 20999.30 26089.77 32498.61 28198.02 308
MVS-HIRNet88.40 36890.20 34982.99 39897.01 32360.04 42393.11 33685.61 41384.45 38588.72 40499.09 5384.72 32598.23 38082.52 39196.59 36690.69 413
new_pmnet92.34 31991.69 32494.32 31696.23 34489.16 27992.27 35992.88 36784.39 38695.29 30196.35 30585.66 31796.74 40484.53 38297.56 33697.05 355
ADS-MVSNet291.47 33790.51 34694.36 31395.51 37485.63 34095.05 26495.70 32783.46 38792.69 36896.84 27479.15 35599.41 22685.66 37190.52 40598.04 306
ADS-MVSNet90.95 34490.26 34893.04 34695.51 37482.37 37895.05 26493.41 36283.46 38792.69 36896.84 27479.15 35598.70 34185.66 37190.52 40598.04 306
HyFIR lowres test93.72 29192.65 30896.91 18498.93 12091.81 23491.23 38098.52 19182.69 38996.46 25296.52 29580.38 35199.90 1690.36 31598.79 26299.03 182
Test_1112_low_res93.53 29892.86 30095.54 26098.60 16288.86 28592.75 34298.69 16882.66 39092.65 37096.92 27084.75 32499.56 17590.94 29397.76 32398.19 289
CVMVSNet92.33 32092.79 30390.95 38197.26 31475.84 41295.29 25192.33 37581.86 39196.27 26398.19 15881.44 34498.46 36694.23 22098.29 30198.55 250
gm-plane-assit91.79 41571.40 42181.67 39290.11 40598.99 31384.86 380
OpenMVS_ROBcopyleft91.80 1493.64 29593.05 29595.42 26597.31 31391.21 24595.08 26196.68 31381.56 39396.88 22696.41 30090.44 26599.25 27285.39 37597.67 33195.80 387
CostFormer89.75 35589.25 35391.26 38094.69 39178.00 40295.32 24891.98 37881.50 39490.55 38896.96 26771.06 39298.89 32388.59 34192.63 40196.87 362
CHOSEN 280x42089.98 35189.19 35792.37 36695.60 37381.13 38986.22 40897.09 29581.44 39587.44 40993.15 36673.99 37899.47 20288.69 33999.07 23396.52 376
TAPA-MVS93.32 1294.93 24394.23 27097.04 17598.18 21194.51 14395.22 25498.73 15881.22 39696.25 26595.95 32393.80 19498.98 31589.89 32298.87 25397.62 337
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
无先验93.20 33497.91 25680.78 39799.40 22887.71 35097.94 314
MDTV_nov1_ep13_2view57.28 42494.89 27080.59 39894.02 33478.66 35785.50 37397.82 322
testdata95.70 25198.16 21690.58 25697.72 26980.38 39995.62 29297.02 26292.06 24198.98 31589.06 33598.52 28697.54 342
CMPMVSbinary73.10 2392.74 31391.39 32796.77 19493.57 40794.67 13694.21 29697.67 27180.36 40093.61 34696.60 28982.85 33997.35 39384.86 38098.78 26398.29 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268894.10 28093.41 29196.18 22899.16 8090.04 26192.15 36098.68 17079.90 40196.22 26697.83 19887.92 29999.42 21789.18 33299.65 8699.08 175
PAPM87.64 37485.84 38193.04 34696.54 33584.99 35388.42 40595.57 33379.52 40283.82 41393.05 37380.57 35098.41 36862.29 41792.79 40095.71 388
cascas91.89 33091.35 32893.51 33494.27 39685.60 34188.86 40498.61 18279.32 40392.16 37791.44 39489.22 28498.12 38390.80 29897.47 34296.82 367
PMMVS92.39 31791.08 33496.30 22393.12 40992.81 20290.58 39095.96 32279.17 40491.85 38092.27 38490.29 27098.66 34889.85 32396.68 36497.43 346
pmmvs390.00 35088.90 36093.32 33694.20 39985.34 34491.25 37992.56 37478.59 40593.82 33795.17 34067.36 40098.69 34389.08 33498.03 31195.92 383
PVSNet_081.89 2184.49 38283.21 38588.34 39395.76 36974.97 41683.49 41292.70 37178.47 40687.94 40786.90 41483.38 33696.63 40573.44 41266.86 41893.40 405
新几何197.25 15898.29 19594.70 13597.73 26877.98 40794.83 31396.67 28692.08 24099.45 21088.17 34798.65 27897.61 338
旧先验293.35 33077.95 40895.77 28998.67 34790.74 304
dongtai63.43 38563.37 38863.60 40183.91 42353.17 42585.14 40943.40 42777.91 40980.96 41779.17 41736.36 42577.10 41937.88 42045.63 41960.54 416
tpm288.47 36787.69 37090.79 38294.98 38677.34 40695.09 25991.83 37977.51 41089.40 40096.41 30067.83 39998.73 33783.58 38992.60 40296.29 380
DSMNet-mixed92.19 32291.83 32093.25 33996.18 34783.68 37096.27 17493.68 35876.97 41192.54 37499.18 4289.20 28598.55 35883.88 38598.60 28397.51 343
test22298.17 21493.24 19492.74 34497.61 28075.17 41294.65 31696.69 28590.96 25798.66 27697.66 334
PCF-MVS89.43 1892.12 32490.64 34496.57 20697.80 25593.48 18489.88 39998.45 19774.46 41396.04 27595.68 32990.71 26099.31 25773.73 41199.01 24096.91 361
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t93.96 28693.22 29496.19 22799.06 10090.97 24995.99 19998.94 10573.88 41493.43 35396.93 26892.38 23399.37 24089.09 33399.28 20498.25 283
tpm cat188.01 37287.33 37290.05 38894.48 39376.28 41194.47 28594.35 35273.84 41589.26 40195.61 33373.64 38298.30 37784.13 38386.20 41395.57 392
MVS90.02 34989.20 35692.47 36494.71 39086.90 32795.86 20996.74 31064.72 41690.62 38692.77 37792.54 22798.39 37079.30 40195.56 38592.12 408
kuosan54.81 38754.94 39054.42 40274.43 42450.03 42684.98 41044.27 42661.80 41762.49 42170.43 41835.16 42658.04 42119.30 42141.61 42055.19 417
DeepMVS_CXcopyleft77.17 39990.94 41785.28 34874.08 42252.51 41880.87 41888.03 41075.25 37670.63 42059.23 41984.94 41475.62 414
tmp_tt57.23 38662.50 38941.44 40334.77 42649.21 42783.93 41160.22 42515.31 41971.11 41979.37 41670.09 39644.86 42264.76 41682.93 41630.25 418
test_method66.88 38466.13 38769.11 40062.68 42525.73 42849.76 41696.04 31914.32 42064.27 42091.69 39273.45 38588.05 41776.06 40866.94 41793.54 403
EGC-MVSNET83.08 38377.93 38698.53 5499.57 1997.55 3098.33 3898.57 1884.71 42110.38 42298.90 7395.60 14299.50 19295.69 13799.61 9898.55 250
test12312.59 38915.49 3923.87 4046.07 4272.55 42990.75 3882.59 4292.52 4225.20 42413.02 4214.96 4271.85 4245.20 4229.09 4217.23 419
testmvs12.33 39015.23 3933.64 4055.77 4282.23 43088.99 4033.62 4282.30 4235.29 42313.09 4204.52 4281.95 4235.16 4238.32 4226.75 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.22 38832.30 3910.00 4060.00 4290.00 4310.00 41798.10 2450.00 4240.00 42595.06 34397.54 390.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.98 39110.65 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42495.82 1300.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.91 39210.55 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.94 3450.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.32 39585.41 374
MSC_two_6792asdad98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
No_MVS98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
eth-test20.00 429
eth-test0.00 429
OPU-MVS97.64 12198.01 22995.27 11596.79 14597.35 24296.97 6998.51 36191.21 28799.25 20899.14 160
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14898.89 11099.75 7295.48 15399.52 13499.53 57
GSMVS98.06 302
test_part299.03 10796.07 7898.08 141
sam_mvs177.80 36098.06 302
sam_mvs77.38 364
ambc96.56 20798.23 20491.68 23697.88 7298.13 24398.42 9898.56 10694.22 18399.04 30794.05 22899.35 18798.95 193
MTGPAbinary98.73 158
test_post194.98 26810.37 42376.21 37299.04 30789.47 328
test_post10.87 42276.83 36899.07 303
patchmatchnet-post96.84 27477.36 36599.42 217
GG-mvs-BLEND90.60 38391.00 41684.21 36698.23 4672.63 42382.76 41484.11 41556.14 41396.79 40172.20 41392.09 40490.78 412
MTMP96.55 15974.60 420
test9_res91.29 28398.89 25299.00 186
agg_prior290.34 31698.90 24999.10 174
agg_prior97.80 25594.96 12898.36 21193.49 35099.53 184
test_prior495.38 10793.61 323
test_prior97.46 14097.79 26094.26 15798.42 20399.34 25098.79 222
新几何293.43 326
旧先验197.80 25593.87 16897.75 26797.04 26193.57 19898.68 27398.72 232
原ACMM292.82 340
testdata299.46 20587.84 348
segment_acmp95.34 150
test1297.46 14097.61 28794.07 16197.78 26693.57 34893.31 20399.42 21798.78 26398.89 207
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior598.75 15599.46 20592.59 26299.20 21399.28 134
plane_prior496.77 280
plane_prior198.49 179
n20.00 430
nn0.00 430
door-mid98.17 235
lessismore_v097.05 17399.36 4892.12 22384.07 41498.77 7098.98 6285.36 32099.74 8197.34 6899.37 17999.30 127
test1198.08 247
door97.81 265
HQP5-MVS92.47 212
BP-MVS90.51 311
HQP4-MVS92.87 36399.23 27899.06 179
HQP3-MVS98.43 20098.74 267
HQP2-MVS90.33 266
NP-MVS98.14 22093.72 17495.08 341
ACMMP++_ref99.52 134
ACMMP++99.55 121
Test By Simon94.51 176