This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13699.72 8798.12 3499.86 3199.73 22
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4799.93 397.71 5299.91 1999.70 26
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4799.92 597.64 5699.92 1699.75 19
ANet_high98.31 3198.94 696.41 21299.33 5389.64 26297.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
VDDNet96.98 13796.84 14597.41 14399.40 4593.26 18997.94 6495.31 33099.26 798.39 10099.18 3987.85 29499.62 14995.13 17199.09 22599.35 114
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4399.92 597.79 4899.93 1199.79 10
LFMVS95.32 21994.88 23196.62 19798.03 22191.47 23597.65 8490.72 38099.11 997.89 15898.31 12479.20 34599.48 19493.91 22599.12 22198.93 193
gg-mvs-nofinetune88.28 35886.96 36492.23 36092.84 40184.44 35498.19 5274.60 40899.08 1087.01 39999.47 1156.93 39998.23 37178.91 39095.61 37394.01 390
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9999.92 597.88 4299.98 299.85 3
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9499.91 1399.27 599.93 1199.73 22
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12299.05 1399.01 4498.65 9195.37 14399.90 1497.57 5799.91 1999.77 12
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14099.89 1897.95 4199.91 1999.75 19
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11798.79 13898.98 1798.74 7098.49 10595.80 13099.49 19195.04 17599.44 15599.11 164
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
SSC-MVS95.92 19297.03 13492.58 35399.28 5778.39 38996.68 14595.12 33298.90 1999.11 3998.66 8891.36 24399.68 12295.00 17899.16 21499.67 28
K. test v396.44 17296.28 17896.95 17599.41 4291.53 23397.65 8490.31 38498.89 2098.93 5099.36 2184.57 31999.92 597.81 4699.56 11199.39 104
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4199.59 15997.21 6899.76 5899.40 100
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21198.79 2299.23 3298.86 7395.76 13199.61 15695.49 14199.36 17799.23 138
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9098.82 31996.38 9499.50 13996.98 346
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14299.05 6698.67 2498.84 5998.45 11097.58 3799.88 2096.45 9299.86 3199.54 53
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14398.73 15098.66 2598.56 8298.41 11496.84 8099.69 11794.82 18599.81 4898.64 232
WB-MVS95.50 20896.62 15692.11 36299.21 7577.26 39796.12 18095.40 32998.62 2698.84 5998.26 13891.08 24799.50 18693.37 23798.70 26799.58 39
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12295.61 32398.59 2798.51 8598.72 8292.54 22099.58 16196.02 11199.49 14299.12 161
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21496.92 12798.60 17598.58 2898.78 6499.39 1697.80 2599.62 14994.98 18199.86 3199.52 58
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18297.96 6298.25 21498.58 2898.78 6499.39 1698.21 1499.56 16892.65 25199.86 3199.52 58
LS3D97.77 8697.50 10898.57 4796.24 33697.58 2498.45 3198.85 11998.58 2897.51 17597.94 17995.74 13299.63 14495.19 16298.97 23698.51 246
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10498.49 3199.38 2299.14 4695.44 14299.84 3096.47 9199.80 5199.47 79
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19298.35 3599.21 3398.43 3298.89 5498.83 7494.30 17599.81 3697.87 4399.91 1999.77 12
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7699.00 8598.40 3399.07 4298.98 5896.89 7499.75 6797.19 7199.79 5399.55 52
IS-MVSNet96.93 13996.68 15497.70 11399.25 6294.00 16298.57 2096.74 30298.36 3498.14 13197.98 17588.23 28799.71 10293.10 24799.72 7199.38 106
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4499.45 20394.08 21699.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32597.17 5398.50 35398.67 2597.45 33396.48 366
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28599.89 1898.01 3999.76 5899.54 53
tfpnnormal97.72 9097.97 5596.94 17699.26 5992.23 21397.83 7298.45 18998.25 3999.13 3898.66 8896.65 8799.69 11793.92 22499.62 9298.91 197
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18598.20 5198.87 11298.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9299.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18799.72 7199.32 115
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18795.44 22498.86 11598.20 4298.37 10199.24 3294.69 16199.55 17395.98 11599.79 5399.65 33
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15998.13 4396.93 21798.45 11095.30 14699.62 14995.64 13498.96 23799.24 137
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28596.92 25996.81 8299.87 2296.87 8299.76 5898.51 246
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21299.02 7698.11 4498.31 11397.69 20394.65 16599.85 2797.02 7799.71 7499.48 76
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26497.19 24196.88 7699.86 2497.50 6099.73 6798.41 253
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 19099.88 2098.72 2499.88 2799.65 33
FIs97.93 6598.07 4597.48 13599.38 4892.95 19598.03 6199.11 5098.04 4898.62 7698.66 8893.75 18999.78 4797.23 6699.84 4099.73 22
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26899.90 1498.64 2699.90 2499.82 6
PMVScopyleft89.60 1796.71 15896.97 13795.95 23299.51 3097.81 1697.42 10397.49 27597.93 5095.95 26898.58 9696.88 7696.91 39089.59 31599.36 17793.12 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPP-MVSNet96.84 14596.58 16097.65 11799.18 8093.78 17198.68 1496.34 30797.91 5197.30 18698.06 16688.46 28499.85 2793.85 22699.40 17199.32 115
MM96.87 14496.62 15697.62 11997.72 26893.30 18696.39 15692.61 36297.90 5296.76 22798.64 9290.46 25699.81 3699.16 999.94 899.76 17
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15097.79 5399.42 2097.83 18894.40 17399.78 4795.91 11999.76 5899.46 81
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.60 9299.76 6195.49 14199.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.94 6895.49 14199.20 20899.26 132
VPNet97.26 12497.49 10996.59 19999.47 3590.58 25196.27 16698.53 18297.77 5498.46 9398.41 11494.59 16699.68 12294.61 19599.29 19899.52 58
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30292.01 22595.33 23697.65 26897.74 5798.30 11598.14 15195.04 15299.69 11797.55 5899.52 13099.58 39
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 29992.08 22395.34 23597.65 26897.74 5798.29 11698.11 15795.05 15199.68 12297.50 6099.50 13999.56 50
Anonymous20240521196.34 17695.98 19197.43 14098.25 19693.85 16796.74 13894.41 34097.72 5998.37 10198.03 16987.15 30099.53 17894.06 21799.07 22898.92 196
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9298.92 10197.72 5998.25 11898.13 15397.10 5599.75 6795.44 14899.24 20699.32 115
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9897.71 6198.85 5799.10 4891.35 24499.83 3298.47 3099.90 2499.64 35
VNet96.84 14596.83 14696.88 18198.06 22092.02 22496.35 16297.57 27497.70 6297.88 15997.80 19392.40 22599.54 17694.73 19298.96 23799.08 169
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10898.73 15097.69 6397.90 15797.96 17695.81 12999.82 3496.13 10599.61 9899.45 85
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16192.10 22295.97 19299.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8597.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21498.87 11297.57 6798.31 11397.83 18894.69 16199.85 2797.02 7799.71 7499.46 81
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26897.01 25396.99 6599.82 3497.66 5599.64 8998.39 256
PatchT93.75 28293.57 27894.29 31295.05 37687.32 31596.05 18492.98 35597.54 7094.25 31398.72 8275.79 36599.24 26995.92 11895.81 36796.32 368
MVS_030496.62 16396.40 17397.28 15197.91 23492.30 21096.47 15489.74 38997.52 7195.38 28998.63 9392.76 20999.81 3699.28 499.93 1199.75 19
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19899.04 7397.51 7298.22 12197.81 19294.68 16399.78 4797.14 7299.75 6599.41 99
alignmvs96.01 18995.52 21097.50 13197.77 26094.71 13196.07 18396.84 29697.48 7396.78 22694.28 34885.50 31299.40 22196.22 10198.73 26598.40 254
RPMNet94.68 25094.60 24794.90 28395.44 36888.15 29396.18 17498.86 11597.43 7494.10 31798.49 10579.40 34499.76 6195.69 12995.81 36796.81 357
MGCFI-Net97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25097.64 20596.49 9799.72 8795.66 13299.37 17499.45 85
X-MVStestdata92.86 30390.83 33098.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25036.50 40596.49 9799.72 8795.66 13299.37 17499.45 85
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17398.23 4698.66 16797.41 7999.00 4699.19 3695.47 14099.73 8295.83 12499.76 5899.30 120
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17998.23 4699.05 6697.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_297.12 12897.99 5494.51 30399.11 9484.00 35997.75 7799.65 997.38 8199.14 3798.42 11395.16 14999.96 295.52 14099.78 5699.58 39
WR-MVS96.90 14296.81 14797.16 15998.56 16392.20 21794.33 27798.12 23797.34 8298.20 12297.33 23392.81 20799.75 6794.79 18799.81 4899.54 53
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10498.83 12897.32 8398.06 14197.85 18796.65 8799.77 5695.00 17899.11 22299.32 115
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8397.82 16699.11 4796.75 8499.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 10098.06 4796.23 21898.71 14289.44 26697.43 10298.82 13697.29 8598.74 7099.10 4893.86 18599.68 12298.61 2799.94 899.56 50
casdiffmvspermissive97.50 10797.81 7196.56 20398.51 17091.04 24295.83 20399.09 5797.23 8698.33 11098.30 12897.03 6299.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060199.05 10595.50 10098.87 11297.21 8798.03 14598.30 12896.93 70
Anonymous2024052197.07 13097.51 10695.76 24099.35 5188.18 29297.78 7398.40 19897.11 8898.34 10799.04 5389.58 27099.79 4498.09 3699.93 1199.30 120
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19797.55 9298.94 9897.10 8998.85 5798.88 7195.03 15399.67 12897.39 6499.65 8799.26 132
IterMVS-SCA-FT95.86 19596.19 18194.85 28697.68 27185.53 33792.42 34497.63 27296.99 9098.36 10498.54 10187.94 28999.75 6797.07 7699.08 22699.27 131
EI-MVSNet96.63 16296.93 14095.74 24197.26 30788.13 29595.29 24097.65 26896.99 9097.94 15498.19 14792.55 21899.58 16196.91 8099.56 11199.50 62
IterMVS-LS96.92 14097.29 11895.79 23998.51 17088.13 29595.10 24798.66 16796.99 9098.46 9398.68 8792.55 21899.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9399.75 299.45 1395.82 12599.92 598.80 1999.96 499.89 1
thres100view90091.76 32391.26 32393.26 33198.21 20084.50 35396.39 15690.39 38196.87 9496.33 24993.08 36073.44 37799.42 21078.85 39197.74 31595.85 373
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17798.49 2898.88 11096.86 9597.11 19998.55 10095.82 12599.73 8295.94 11799.42 16699.13 156
test20.0396.58 16696.61 15896.48 20798.49 17491.72 23195.68 21197.69 26396.81 9698.27 11797.92 18294.18 17898.71 33190.78 29099.66 8699.00 180
thres600view792.03 31991.43 31693.82 32098.19 20384.61 35296.27 16690.39 38196.81 9696.37 24893.11 35673.44 37799.49 19180.32 38697.95 30697.36 335
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12499.65 996.74 9899.47 1798.93 6496.91 7399.84 3090.11 30799.06 23198.32 265
EPNet93.72 28392.62 30297.03 17287.61 41092.25 21296.27 16691.28 37496.74 9887.65 39697.39 22685.00 31599.64 14092.14 26099.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10496.62 10098.62 7698.30 12896.97 6699.75 6795.70 12799.25 20399.21 140
test_0728_THIRD96.62 10098.40 9898.28 13397.10 5599.71 10295.70 12799.62 9299.58 39
v1097.55 10497.97 5596.31 21698.60 15789.64 26297.44 10099.02 7696.60 10298.72 7299.16 4393.48 19499.72 8798.76 2199.92 1699.58 39
Patchmtry95.03 23494.59 24996.33 21494.83 37990.82 24696.38 15997.20 28296.59 10397.49 17798.57 9777.67 35299.38 22892.95 25099.62 9298.80 213
h-mvs3396.29 17795.63 20798.26 7098.50 17396.11 7396.90 12897.09 28896.58 10497.21 19198.19 14784.14 32199.78 4795.89 12096.17 36498.89 201
hse-mvs295.77 19895.09 22097.79 10797.84 24395.51 9795.66 21295.43 32896.58 10497.21 19196.16 29984.14 32199.54 17695.89 12096.92 34198.32 265
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11498.90 10396.58 10498.08 13897.87 18697.02 6399.76 6195.25 15999.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5896.57 10798.07 14098.38 11896.22 11499.14 28394.71 19499.31 19598.52 245
baseline97.44 11297.78 7796.43 20998.52 16890.75 24996.84 13099.03 7496.51 10897.86 16398.02 17096.67 8699.36 23797.09 7499.47 14899.19 145
MVSFormer96.14 18396.36 17595.49 25497.68 27187.81 30498.67 1599.02 7696.50 10994.48 31096.15 30086.90 30199.92 598.73 2299.13 21898.74 221
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7696.50 10999.32 2699.44 1497.43 4099.92 598.73 2299.95 599.86 2
Vis-MVSNet (Re-imp)95.11 22994.85 23295.87 23799.12 9389.17 27097.54 9794.92 33596.50 10996.58 23797.27 23683.64 32599.48 19488.42 33299.67 8498.97 185
UGNet96.81 15096.56 16297.58 12196.64 32593.84 16897.75 7797.12 28796.47 11293.62 33398.88 7193.22 19999.53 17895.61 13699.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
JIA-IIPM91.79 32290.69 33295.11 27093.80 39390.98 24394.16 28791.78 36996.38 11390.30 38199.30 2872.02 38098.90 31388.28 33490.17 39595.45 381
test111194.53 25894.81 23693.72 32299.06 10181.94 37498.31 3983.87 40396.37 11498.49 8899.17 4281.49 33499.73 8296.64 8499.86 3199.49 70
HQP_MVS96.66 16196.33 17797.68 11698.70 14494.29 15196.50 15298.75 14796.36 11596.16 26196.77 26991.91 23899.46 19992.59 25399.20 20899.28 127
plane_prior296.50 15296.36 115
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10798.99 8896.35 11798.13 13295.95 31195.99 11899.66 13494.36 20799.73 6798.59 238
MP-MVScopyleft97.64 9697.18 12599.00 999.32 5597.77 1797.49 9898.73 15096.27 11895.59 28397.75 19796.30 10999.78 4793.70 23299.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
tfpn200view991.55 32591.00 32593.21 33598.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31595.85 373
thres40091.68 32491.00 32593.71 32398.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31597.36 335
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
test250689.86 34389.16 34891.97 36398.95 11276.83 39898.54 2361.07 41296.20 12297.07 20699.16 4355.19 40699.69 11796.43 9399.83 4399.38 106
ECVR-MVScopyleft94.37 26494.48 25494.05 31898.95 11283.10 36498.31 3982.48 40596.20 12298.23 12099.16 4381.18 33799.66 13495.95 11699.83 4399.38 106
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9199.06 6296.19 12498.48 9098.70 8594.72 16099.24 26994.37 20599.33 19099.17 148
test_yl94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
DCV-MVSNet94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13598.83 12896.11 12799.08 4098.24 14097.87 2399.72 8795.44 14899.51 13599.14 154
test_241102_TWO98.83 12896.11 12798.62 7698.24 14096.92 7299.72 8795.44 14899.49 14299.49 70
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9596.11 12796.89 22097.45 21896.85 7999.78 4795.19 16299.63 9199.38 106
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8998.84 12296.05 13097.49 17797.54 21297.07 5899.70 11095.61 13699.46 15199.30 120
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8998.83 12896.05 13097.46 18297.63 20696.77 8399.76 6195.61 13699.46 15199.49 70
test_241102_ONE99.22 6895.35 10898.83 12896.04 13299.08 4098.13 15397.87 2399.33 245
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7998.78 14296.04 13297.10 20097.73 20096.53 9499.78 4795.16 16699.50 13999.46 81
Fast-Effi-MVS+-dtu96.44 17296.12 18397.39 14597.18 31094.39 14595.46 22398.73 15096.03 13494.72 30394.92 33596.28 11299.69 11793.81 22797.98 30498.09 285
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8798.84 12296.00 13597.22 18997.62 20796.87 7899.76 6195.48 14499.43 16399.46 81
MDA-MVSNet-bldmvs95.69 20095.67 20495.74 24198.48 17688.76 28392.84 32897.25 28096.00 13597.59 17197.95 17891.38 24299.46 19993.16 24696.35 35998.99 183
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11398.79 13895.96 13797.53 17397.40 22296.93 7099.77 5695.04 17599.35 18299.42 97
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13798.59 8098.69 8696.94 6899.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS97.37 11897.70 8196.35 21398.14 21595.13 12296.54 15198.92 10195.94 13999.19 3498.08 15997.74 2895.06 39795.24 16099.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13898.23 21795.92 14098.40 9898.28 13397.06 5999.71 10295.48 14499.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6395.51 9796.89 12998.89 10495.92 14098.64 7498.31 12497.06 59
v14896.58 16696.97 13795.42 25898.63 15387.57 30895.09 24897.90 25095.91 14298.24 11997.96 17693.42 19599.39 22596.04 10999.52 13099.29 126
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7495.88 14397.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
ETV-MVS96.13 18495.90 19696.82 18697.76 26193.89 16595.40 22998.95 9795.87 14495.58 28491.00 38796.36 10799.72 8793.36 23898.83 25496.85 353
Effi-MVS+-dtu96.81 15096.09 18598.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32294.26 17699.81 3694.06 21798.51 28398.47 250
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24498.99 8895.84 14698.78 6498.08 15996.84 8099.81 3693.98 22299.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
tttt051793.31 29692.56 30395.57 24898.71 14287.86 30197.44 10087.17 39795.79 14897.47 18196.84 26364.12 39399.81 3696.20 10299.32 19299.02 179
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9998.84 12295.76 14996.93 21797.43 22097.26 4999.79 4496.06 10699.53 12599.45 85
UnsupCasMVSNet_eth95.91 19395.73 20396.44 20898.48 17691.52 23495.31 23898.45 18995.76 14997.48 17997.54 21289.53 27398.69 33494.43 20194.61 38299.13 156
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11898.98 9195.75 15197.62 17097.59 20997.61 3699.77 5696.34 9699.44 15599.36 112
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9595.75 15197.91 15698.06 16696.89 7499.76 6195.32 15699.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17899.57 1495.66 15399.52 1598.71 8497.04 6199.64 14099.21 799.87 2998.69 228
MSP-MVS97.45 11196.92 14299.03 599.26 5997.70 1897.66 8398.89 10495.65 15498.51 8596.46 28692.15 22899.81 3695.14 16998.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18595.63 15597.22 18997.30 23595.52 13898.55 34990.97 28398.90 24498.34 264
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15699.35 2599.37 1997.38 4299.90 1498.59 2899.91 1999.77 12
API-MVS95.09 23195.01 22495.31 26196.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34794.54 16998.37 36485.70 35898.52 28193.52 392
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10793.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 306
GBi-Net96.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
test196.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
FMVSNet296.72 15696.67 15596.87 18297.96 23091.88 22797.15 11498.06 24595.59 15898.50 8798.62 9489.51 27499.65 13694.99 18099.60 10199.07 171
HPM-MVS++copyleft96.99 13496.38 17498.81 2798.64 14997.59 2395.97 19298.20 22295.51 16295.06 29596.53 28294.10 17999.70 11094.29 20899.15 21599.13 156
IterMVS95.42 21595.83 19994.20 31497.52 28683.78 36192.41 34597.47 27795.49 16398.06 14198.49 10587.94 28999.58 16196.02 11199.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+96.19 18196.01 18896.71 19397.43 29592.19 21896.12 18099.10 5295.45 16493.33 34494.71 33897.23 5299.56 16893.21 24597.54 32798.37 258
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11999.06 6295.45 16497.55 17297.94 17997.11 5499.78 4794.77 19099.46 15199.48 76
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14499.82 195.44 16699.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16797.41 18497.50 21697.98 1999.79 4495.58 13999.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC96.52 16895.99 19098.10 8597.81 24795.68 8995.00 25698.20 22295.39 16895.40 28896.36 29293.81 18799.45 20393.55 23598.42 28899.17 148
wuyk23d93.25 29895.20 21487.40 38596.07 34895.38 10597.04 12294.97 33495.33 16999.70 698.11 15798.14 1791.94 40377.76 39499.68 8274.89 403
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12199.10 5295.32 17097.83 16597.88 18596.44 10299.72 8794.59 19999.39 17299.25 136
MSDG95.33 21895.13 21895.94 23497.40 29791.85 22891.02 37398.37 20295.30 17196.31 25295.99 30794.51 17098.38 36289.59 31597.65 32497.60 326
plane_prior394.51 14195.29 17296.16 261
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14598.83 12895.21 17398.36 10498.13 15398.13 1899.62 14996.04 10999.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR97.38 11697.07 13198.30 6899.01 10997.41 3494.66 26999.02 7695.20 17498.15 13097.52 21498.83 598.43 35894.87 18396.41 35799.07 171
XVG-OURS97.12 12896.74 15198.26 7098.99 11097.45 3293.82 30499.05 6695.19 17598.32 11197.70 20295.22 14898.41 35994.27 20998.13 29998.93 193
v2v48296.78 15297.06 13295.95 23298.57 16188.77 28295.36 23298.26 21395.18 17697.85 16498.23 14292.58 21699.63 14497.80 4799.69 7899.45 85
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11999.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
thres20091.00 33290.42 33692.77 34997.47 29383.98 36094.01 29591.18 37695.12 17995.44 28691.21 38573.93 37099.31 25077.76 39497.63 32595.01 384
testgi96.07 18596.50 16994.80 28999.26 5987.69 30795.96 19498.58 17995.08 18098.02 14696.25 29697.92 2097.60 38388.68 32998.74 26299.11 164
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16198.79 13895.07 18197.88 15998.35 12097.24 5199.72 8796.05 10899.58 10599.45 85
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15698.98 9195.05 18298.06 14198.02 17095.86 12199.56 16894.37 20599.64 8999.00 180
save fliter98.48 17694.71 13194.53 27398.41 19695.02 184
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
CANet95.86 19595.65 20696.49 20696.41 33390.82 24694.36 27698.41 19694.94 18692.62 36296.73 27292.68 21299.71 10295.12 17299.60 10198.94 189
MVS_Test96.27 17896.79 15094.73 29396.94 32086.63 32696.18 17498.33 20794.94 18696.07 26498.28 13395.25 14799.26 26397.21 6897.90 30998.30 269
XXY-MVS97.54 10597.70 8197.07 16899.46 3692.21 21497.22 11199.00 8594.93 18898.58 8198.92 6597.31 4599.41 21994.44 20099.43 16399.59 38
new-patchmatchnet95.67 20296.58 16092.94 34497.48 28980.21 38492.96 32698.19 22794.83 18998.82 6198.79 7593.31 19799.51 18595.83 12499.04 23299.12 161
E-PMN89.52 34889.78 34088.73 37993.14 39777.61 39383.26 39992.02 36694.82 19093.71 33093.11 35675.31 36696.81 39185.81 35796.81 34891.77 398
MVS_111021_HR96.73 15596.54 16597.27 15298.35 18793.66 17693.42 31698.36 20394.74 19196.58 23796.76 27196.54 9398.99 30594.87 18399.27 20199.15 151
MSLP-MVS++96.42 17496.71 15295.57 24897.82 24690.56 25395.71 20798.84 12294.72 19296.71 22997.39 22694.91 15898.10 37595.28 15799.02 23398.05 295
baseline193.14 30092.64 30194.62 29697.34 30287.20 31796.67 14793.02 35494.71 19396.51 24295.83 31481.64 33398.60 34590.00 31088.06 39998.07 288
testing389.72 34588.26 35494.10 31797.66 27584.30 35794.80 26288.25 39494.66 19495.07 29492.51 37141.15 41299.43 20891.81 26898.44 28798.55 242
EIA-MVS96.04 18795.77 20296.85 18397.80 25192.98 19496.12 18099.16 4094.65 19593.77 32891.69 38195.68 13399.67 12894.18 21298.85 25197.91 305
EMVS89.06 35189.22 34388.61 38093.00 39977.34 39582.91 40090.92 37794.64 19692.63 36191.81 37976.30 36297.02 38883.83 37596.90 34391.48 399
V4297.04 13197.16 12696.68 19698.59 15991.05 24196.33 16398.36 20394.60 19797.99 14798.30 12893.32 19699.62 14997.40 6399.53 12599.38 106
CNVR-MVS96.92 14096.55 16398.03 9398.00 22895.54 9594.87 26098.17 22894.60 19796.38 24797.05 24995.67 13499.36 23795.12 17299.08 22699.19 145
MVS_111021_LR96.82 14996.55 16397.62 11998.27 19495.34 11093.81 30698.33 20794.59 19996.56 23996.63 27796.61 9098.73 32894.80 18699.34 18598.78 215
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24298.46 18894.58 20098.10 13598.07 16197.09 5799.39 22595.16 16699.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18095.96 19498.97 9494.55 20198.82 6198.76 8097.31 4599.29 25797.20 7099.44 15599.38 106
ab-mvs96.59 16496.59 15996.60 19898.64 14992.21 21498.35 3597.67 26494.45 20296.99 21298.79 7594.96 15799.49 19190.39 30499.07 22898.08 286
CNLPA95.04 23294.47 25596.75 19197.81 24795.25 11494.12 29297.89 25194.41 20394.57 30695.69 31690.30 26298.35 36586.72 35498.76 26096.64 361
TinyColmap96.00 19096.34 17694.96 28097.90 23687.91 30094.13 29198.49 18694.41 20398.16 12897.76 19496.29 11198.68 33790.52 30099.42 16698.30 269
AllTest97.20 12796.92 14298.06 8899.08 9896.16 7097.14 11699.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
plane_prior94.29 15195.42 22694.31 20798.93 242
v114496.84 14597.08 13096.13 22598.42 18289.28 26995.41 22898.67 16594.21 20897.97 15198.31 12493.06 20199.65 13698.06 3899.62 9299.45 85
test_prior293.33 32094.21 20894.02 32296.25 29693.64 19191.90 26498.96 237
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9791.43 23796.37 16099.11 5094.19 21099.01 4499.25 3196.30 10999.38 22899.00 1499.88 2799.73 22
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18798.79 13191.44 23696.14 17999.06 6294.19 21098.82 6198.98 5896.22 11499.38 22898.98 1699.86 3199.58 39
DELS-MVS96.17 18296.23 17995.99 22897.55 28590.04 25692.38 34798.52 18394.13 21296.55 24197.06 24894.99 15599.58 16195.62 13599.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 16496.93 14095.55 25198.88 12287.12 31894.47 27499.30 2794.12 21396.65 23598.41 11494.98 15699.87 2295.81 12699.78 5699.66 30
dmvs_re92.08 31891.27 32194.51 30397.16 31192.79 20095.65 21492.64 36194.11 21492.74 35690.98 38883.41 32794.44 40180.72 38594.07 38596.29 369
FMVSNet395.26 22294.94 22596.22 22096.53 33090.06 25595.99 19097.66 26694.11 21497.99 14797.91 18380.22 34399.63 14494.60 19699.44 15598.96 186
diffmvspermissive96.04 18796.23 17995.46 25697.35 30088.03 29893.42 31699.08 5894.09 21696.66 23396.93 25793.85 18699.29 25796.01 11398.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053092.71 30691.76 31495.56 25098.42 18288.23 29096.03 18687.35 39694.04 21796.56 23995.47 32464.03 39499.77 5694.78 18999.11 22298.68 231
PMMVS293.66 28694.07 26892.45 35797.57 28280.67 38286.46 39596.00 31293.99 21897.10 20097.38 22889.90 26697.82 37988.76 32699.47 14898.86 208
BH-untuned94.69 24894.75 23994.52 30297.95 23387.53 30994.07 29397.01 29193.99 21897.10 20095.65 31892.65 21498.95 31287.60 34296.74 35097.09 341
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17299.02 7693.92 22098.62 7698.99 5797.69 2999.62 14996.18 10499.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 12097.10 12898.14 8298.91 12096.77 4996.20 17398.63 17393.82 22198.54 8398.33 12293.98 18299.05 29895.99 11499.45 15498.61 237
testdata192.77 33093.78 222
v119296.83 14897.06 13296.15 22498.28 19289.29 26895.36 23298.77 14393.73 22398.11 13398.34 12193.02 20599.67 12898.35 3299.58 10599.50 62
testing9189.67 34688.55 35193.04 33895.90 35181.80 37592.71 33593.71 34493.71 22490.18 38290.15 39357.11 39899.22 27387.17 35196.32 36098.12 284
ACMP92.54 1397.47 11097.10 12898.55 4999.04 10696.70 5196.24 17198.89 10493.71 22497.97 15197.75 19797.44 3999.63 14493.22 24499.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet94.56 25694.44 25894.91 28197.57 28287.44 31293.78 30796.26 30893.69 22696.41 24696.50 28592.10 23199.00 30385.96 35697.71 31898.31 267
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20596.57 14999.15 4493.68 22798.89 5499.30 2896.42 10399.37 23499.03 1399.83 4399.66 30
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20596.25 17099.06 6293.67 22898.64 7499.00 5596.23 11399.36 23798.99 1599.80 5199.53 56
Patchmatch-test93.60 28993.25 28494.63 29596.14 34687.47 31096.04 18594.50 33993.57 22996.47 24396.97 25476.50 36098.61 34390.67 29798.41 28997.81 314
PHI-MVS96.96 13896.53 16698.25 7397.48 28996.50 5996.76 13798.85 11993.52 23096.19 26096.85 26295.94 11999.42 21093.79 22899.43 16398.83 210
miper_lstm_enhance94.81 24294.80 23794.85 28696.16 34286.45 32891.14 37098.20 22293.49 23197.03 20997.37 23084.97 31699.26 26395.28 15799.56 11198.83 210
c3_l95.20 22495.32 21194.83 28896.19 34086.43 32991.83 35698.35 20693.47 23297.36 18597.26 23788.69 28099.28 25995.41 15499.36 17798.78 215
eth_miper_zixun_eth94.89 23894.93 22794.75 29295.99 34986.12 33291.35 36398.49 18693.40 23397.12 19897.25 23886.87 30399.35 24195.08 17498.82 25598.78 215
EPNet_dtu91.39 32890.75 33193.31 33090.48 40782.61 36894.80 26292.88 35693.39 23481.74 40494.90 33681.36 33699.11 29088.28 33498.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20295.89 20099.41 2493.36 23599.00 4698.44 11296.46 10199.65 13699.09 1199.76 5899.45 85
cl____94.73 24394.64 24395.01 27695.85 35587.00 32091.33 36498.08 24093.34 23697.10 20097.33 23384.01 32499.30 25395.14 16999.56 11198.71 227
DIV-MVS_self_test94.73 24394.64 24395.01 27695.86 35487.00 32091.33 36498.08 24093.34 23697.10 20097.34 23284.02 32399.31 25095.15 16899.55 11898.72 224
mvs_anonymous95.36 21696.07 18793.21 33596.29 33581.56 37694.60 27197.66 26693.30 23896.95 21698.91 6893.03 20499.38 22896.60 8697.30 33898.69 228
TSAR-MVS + GP.96.47 17196.12 18397.49 13497.74 26695.23 11594.15 28896.90 29593.26 23998.04 14496.70 27394.41 17298.89 31494.77 19099.14 21698.37 258
9.1496.69 15398.53 16796.02 18798.98 9193.23 24097.18 19497.46 21796.47 9999.62 14992.99 24899.32 192
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21195.83 20399.32 2593.22 24198.91 5398.49 10596.31 10899.64 14099.07 1299.76 5899.40 100
v192192096.72 15696.96 13995.99 22898.21 20088.79 28195.42 22698.79 13893.22 24198.19 12698.26 13892.68 21299.70 11098.34 3399.55 11899.49 70
testing9989.21 35088.04 35692.70 35195.78 35981.00 38192.65 33692.03 36593.20 24389.90 38690.08 39555.25 40499.14 28387.54 34495.95 36697.97 301
CANet_DTU94.65 25294.21 26495.96 23095.90 35189.68 26193.92 30197.83 25793.19 24490.12 38395.64 31988.52 28399.57 16793.27 24399.47 14898.62 235
HQP-NCC97.85 23894.26 27893.18 24592.86 353
ACMP_Plane97.85 23894.26 27893.18 24592.86 353
HQP-MVS95.17 22794.58 25096.92 17897.85 23892.47 20794.26 27898.43 19293.18 24592.86 35395.08 32990.33 25999.23 27190.51 30198.74 26299.05 175
DeepC-MVS_fast94.34 796.74 15396.51 16897.44 13997.69 27094.15 15796.02 18798.43 19293.17 24897.30 18697.38 22895.48 13999.28 25993.74 22999.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v124096.74 15397.02 13595.91 23598.18 20688.52 28495.39 23098.88 11093.15 24998.46 9398.40 11792.80 20899.71 10298.45 3199.49 14299.49 70
AdaColmapbinary95.11 22994.62 24696.58 20097.33 30494.45 14494.92 25898.08 24093.15 24993.98 32495.53 32394.34 17499.10 29385.69 35998.61 27696.20 371
CL-MVSNet_self_test95.04 23294.79 23895.82 23897.51 28789.79 26091.14 37096.82 29893.05 25196.72 22896.40 29090.82 25199.16 28191.95 26398.66 27198.50 248
v14419296.69 15996.90 14496.03 22798.25 19688.92 27695.49 22298.77 14393.05 25198.09 13698.29 13292.51 22399.70 11098.11 3599.56 11199.47 79
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8698.20 22293.00 25398.16 12898.06 16695.89 12099.72 8795.67 13199.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base_debi95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
PAPM_NR94.61 25494.17 26695.96 23098.36 18691.23 23995.93 19797.95 24792.98 25493.42 34294.43 34690.53 25498.38 36287.60 34296.29 36198.27 273
APD-MVScopyleft97.00 13396.53 16698.41 5998.55 16496.31 6696.32 16498.77 14392.96 25897.44 18397.58 21195.84 12299.74 7691.96 26299.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 15996.08 18698.49 5298.89 12196.64 5597.25 10898.77 14392.89 25996.01 26797.13 24392.23 22799.67 12892.24 25799.34 18599.17 148
DeepPCF-MVS94.58 596.90 14296.43 17198.31 6797.48 28997.23 4092.56 33898.60 17592.84 26098.54 8397.40 22296.64 8998.78 32394.40 20499.41 17098.93 193
testing22287.35 36585.50 37292.93 34595.79 35882.83 36592.40 34690.10 38792.80 26188.87 39189.02 39648.34 41098.70 33275.40 39796.74 35097.27 339
FMVSNet593.39 29492.35 30496.50 20595.83 35690.81 24897.31 10598.27 21292.74 26296.27 25498.28 13362.23 39699.67 12890.86 28699.36 17799.03 176
test_vis1_n_192095.77 19896.41 17293.85 31998.55 16484.86 34995.91 19999.71 492.72 26397.67 16998.90 6987.44 29798.73 32897.96 4098.85 25197.96 302
iter_conf0593.65 28793.05 28695.46 25696.13 34787.45 31195.95 19698.22 21892.66 26497.04 20897.89 18463.52 39599.72 8796.19 10399.82 4799.21 140
dmvs_testset87.30 36686.99 36388.24 38296.71 32477.48 39494.68 26886.81 39992.64 26589.61 38787.01 40185.91 30893.12 40261.04 40688.49 39894.13 389
YYNet194.73 24394.84 23394.41 30797.47 29385.09 34690.29 38095.85 31792.52 26697.53 17397.76 19491.97 23499.18 27693.31 24196.86 34498.95 187
MDA-MVSNet_test_wron94.73 24394.83 23594.42 30697.48 28985.15 34490.28 38195.87 31692.52 26697.48 17997.76 19491.92 23799.17 28093.32 24096.80 34998.94 189
MG-MVS94.08 27494.00 27094.32 31097.09 31485.89 33493.19 32495.96 31492.52 26694.93 30197.51 21589.54 27198.77 32487.52 34697.71 31898.31 267
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23198.99 8892.45 26998.11 13398.31 12497.25 5099.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSTER94.21 26893.93 27395.05 27495.83 35686.46 32795.18 24597.65 26892.41 27097.94 15498.00 17472.39 37999.58 16196.36 9599.56 11199.12 161
FA-MVS(test-final)94.91 23794.89 23094.99 27897.51 28788.11 29798.27 4495.20 33192.40 27196.68 23098.60 9583.44 32699.28 25993.34 23998.53 28097.59 327
LF4IMVS96.07 18595.63 20797.36 14698.19 20395.55 9495.44 22498.82 13692.29 27295.70 28196.55 28092.63 21598.69 33491.75 27199.33 19097.85 310
MIMVSNet93.42 29392.86 29295.10 27298.17 20988.19 29198.13 5593.69 34592.07 27395.04 29898.21 14680.95 34099.03 30281.42 38398.06 30298.07 288
test-LLR89.97 34189.90 33990.16 37394.24 38774.98 40289.89 38489.06 39092.02 27489.97 38490.77 38973.92 37198.57 34691.88 26597.36 33496.92 348
test0.0.03 190.11 33789.21 34492.83 34793.89 39286.87 32391.74 35788.74 39392.02 27494.71 30491.14 38673.92 37194.48 40083.75 37792.94 38897.16 340
xiu_mvs_v2_base94.22 26694.63 24592.99 34297.32 30584.84 35092.12 35097.84 25591.96 27694.17 31593.43 35496.07 11799.71 10291.27 27697.48 33094.42 387
PS-MVSNAJ94.10 27294.47 25593.00 34197.35 30084.88 34891.86 35597.84 25591.96 27694.17 31592.50 37295.82 12599.71 10291.27 27697.48 33094.40 388
OMC-MVS96.48 17096.00 18997.91 10098.30 18996.01 7894.86 26198.60 17591.88 27897.18 19497.21 24096.11 11699.04 29990.49 30399.34 18598.69 228
GA-MVS92.83 30492.15 30894.87 28596.97 31787.27 31690.03 38296.12 30991.83 27994.05 32094.57 33976.01 36498.97 31192.46 25697.34 33698.36 263
miper_ehance_all_eth94.69 24894.70 24094.64 29495.77 36086.22 33191.32 36698.24 21691.67 28097.05 20796.65 27688.39 28699.22 27394.88 18298.34 29098.49 249
testing1188.93 35287.63 36092.80 34895.87 35381.49 37792.48 34091.54 37191.62 28188.27 39490.24 39155.12 40799.11 29087.30 34996.28 36297.81 314
SMA-MVScopyleft97.48 10997.11 12798.60 4598.83 12696.67 5396.74 13898.73 15091.61 28298.48 9098.36 11996.53 9499.68 12295.17 16499.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+95.49 20995.07 22196.75 19197.67 27492.82 19694.22 28498.60 17591.61 28293.42 34292.90 36396.73 8599.70 11092.60 25297.89 31097.74 318
SCA93.38 29593.52 27992.96 34396.24 33681.40 37893.24 32294.00 34391.58 28494.57 30696.97 25487.94 28999.42 21089.47 31797.66 32398.06 292
Patchmatch-RL test94.66 25194.49 25395.19 26698.54 16688.91 27792.57 33798.74 14991.46 28598.32 11197.75 19777.31 35798.81 32196.06 10699.61 9897.85 310
ETVMVS87.62 36385.75 37093.22 33496.15 34583.26 36392.94 32790.37 38391.39 28690.37 37988.45 39751.93 40998.64 34073.76 39896.38 35897.75 317
KD-MVS_2432*160088.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
miper_refine_blended88.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
AUN-MVS93.95 27992.69 29997.74 11097.80 25195.38 10595.57 22195.46 32791.26 28992.64 36096.10 30574.67 36899.55 17393.72 23196.97 34098.30 269
CLD-MVS95.47 21295.07 22196.69 19598.27 19492.53 20491.36 36298.67 16591.22 29095.78 27794.12 34995.65 13598.98 30790.81 28899.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.49 20994.94 22597.16 15998.31 18893.41 18495.07 25196.82 29891.09 29197.51 17597.82 19189.96 26599.42 21088.42 33299.44 15598.64 232
tpmvs90.79 33490.87 32890.57 37292.75 40276.30 39995.79 20593.64 34991.04 29291.91 36896.26 29577.19 35898.86 31889.38 31989.85 39696.56 364
test_fmvs397.38 11697.56 10196.84 18598.63 15392.81 19797.60 8799.61 1390.87 29398.76 6999.66 394.03 18197.90 37799.24 699.68 8299.81 8
cl2293.25 29892.84 29494.46 30594.30 38586.00 33391.09 37296.64 30690.74 29495.79 27596.31 29478.24 34998.77 32494.15 21498.34 29098.62 235
ZD-MVS98.43 18195.94 7998.56 18190.72 29596.66 23397.07 24795.02 15499.74 7691.08 28098.93 242
our_test_394.20 27094.58 25093.07 33796.16 34281.20 37990.42 37996.84 29690.72 29597.14 19697.13 24390.47 25599.11 29094.04 22098.25 29498.91 197
Syy-MVS92.09 31791.80 31392.93 34595.19 37382.65 36792.46 34191.35 37290.67 29791.76 37087.61 39985.64 31198.50 35394.73 19296.84 34597.65 322
myMVS_eth3d87.16 36885.61 37191.82 36495.19 37379.32 38692.46 34191.35 37290.67 29791.76 37087.61 39941.96 41198.50 35382.66 37996.84 34597.65 322
ppachtmachnet_test94.49 26094.84 23393.46 32896.16 34282.10 37190.59 37797.48 27690.53 29997.01 21197.59 20991.01 24899.36 23793.97 22399.18 21298.94 189
test_cas_vis1_n_192095.34 21795.67 20494.35 30998.21 20086.83 32495.61 21899.26 3090.45 30098.17 12798.96 6184.43 32098.31 36796.74 8399.17 21397.90 306
MVP-Stereo95.69 20095.28 21296.92 17898.15 21393.03 19395.64 21798.20 22290.39 30196.63 23697.73 20091.63 24099.10 29391.84 26797.31 33798.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_vis3_rt97.04 13196.98 13697.23 15798.44 18095.88 8096.82 13299.67 690.30 30299.27 2999.33 2794.04 18096.03 39697.14 7297.83 31199.78 11
UnsupCasMVSNet_bld94.72 24794.26 26196.08 22698.62 15590.54 25493.38 31898.05 24690.30 30297.02 21096.80 26889.54 27199.16 28188.44 33196.18 36398.56 240
DP-MVS Recon95.55 20795.13 21896.80 18798.51 17093.99 16394.60 27198.69 16090.20 30495.78 27796.21 29892.73 21198.98 30790.58 29998.86 25097.42 334
MCST-MVS96.24 17995.80 20097.56 12298.75 13694.13 15894.66 26998.17 22890.17 30596.21 25896.10 30595.14 15099.43 20894.13 21598.85 25199.13 156
iter_conf05_1193.77 28093.29 28295.24 26396.54 32789.14 27391.55 35995.02 33390.16 30693.21 34693.94 35087.37 29899.56 16892.24 25799.56 11197.03 344
CDS-MVSNet94.88 23994.12 26797.14 16197.64 27893.57 17893.96 30097.06 29090.05 30796.30 25396.55 28086.10 30699.47 19690.10 30899.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TR-MVS92.54 30892.20 30793.57 32696.49 33186.66 32593.51 31494.73 33689.96 30894.95 29993.87 35190.24 26498.61 34381.18 38494.88 37995.45 381
FE-MVS92.95 30292.22 30695.11 27097.21 30988.33 28998.54 2393.66 34889.91 30996.21 25898.14 15170.33 38699.50 18687.79 33898.24 29597.51 330
pmmvs-eth3d96.49 16996.18 18297.42 14298.25 19694.29 15194.77 26598.07 24489.81 31097.97 15198.33 12293.11 20099.08 29595.46 14799.84 4098.89 201
D2MVS95.18 22595.17 21695.21 26597.76 26187.76 30694.15 28897.94 24889.77 31196.99 21297.68 20487.45 29699.14 28395.03 17799.81 4898.74 221
bld_raw_dy_0_6495.16 22895.16 21795.15 26996.54 32789.06 27596.63 14899.54 1789.68 31298.72 7294.50 34488.64 28299.38 22892.24 25799.93 1197.03 344
PatchmatchNetpermissive91.98 32091.87 31092.30 35994.60 38279.71 38595.12 24693.59 35089.52 31393.61 33497.02 25177.94 35099.18 27690.84 28794.57 38498.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet95.18 22594.23 26298.06 8897.85 23896.55 5892.49 33991.63 37089.34 31498.09 13697.41 22190.33 25999.06 29791.58 27299.31 19598.56 240
BH-w/o92.14 31591.94 30992.73 35097.13 31385.30 34092.46 34195.64 32089.33 31594.21 31492.74 36789.60 26998.24 37081.68 38294.66 38194.66 386
test_fmvs296.38 17596.45 17096.16 22397.85 23891.30 23896.81 13399.45 1989.24 31698.49 8899.38 1888.68 28197.62 38298.83 1899.32 19299.57 46
mvsany_test396.21 18095.93 19597.05 16997.40 29794.33 15095.76 20694.20 34289.10 31799.36 2499.60 693.97 18397.85 37895.40 15598.63 27498.99 183
ET-MVSNet_ETH3D91.12 32989.67 34195.47 25596.41 33389.15 27291.54 36090.23 38589.07 31886.78 40092.84 36569.39 38899.44 20694.16 21396.61 35497.82 312
WTY-MVS93.55 29093.00 29095.19 26697.81 24787.86 30193.89 30296.00 31289.02 31994.07 31995.44 32686.27 30599.33 24587.69 34096.82 34798.39 256
F-COLMAP95.30 22094.38 25998.05 9298.64 14996.04 7595.61 21898.66 16789.00 32093.22 34596.40 29092.90 20699.35 24187.45 34797.53 32898.77 218
PVSNet_BlendedMVS95.02 23594.93 22795.27 26297.79 25687.40 31394.14 29098.68 16288.94 32194.51 30898.01 17293.04 20299.30 25389.77 31399.49 14299.11 164
baseline289.65 34788.44 35393.25 33295.62 36482.71 36693.82 30485.94 40088.89 32287.35 39892.54 37071.23 38299.33 24586.01 35594.60 38397.72 319
tpm91.08 33190.85 32991.75 36595.33 37178.09 39095.03 25591.27 37588.75 32393.53 33797.40 22271.24 38199.30 25391.25 27893.87 38697.87 309
MS-PatchMatch94.83 24094.91 22994.57 30096.81 32387.10 31994.23 28397.34 27988.74 32497.14 19697.11 24591.94 23698.23 37192.99 24897.92 30798.37 258
UWE-MVS87.57 36486.72 36690.13 37595.21 37273.56 40591.94 35483.78 40488.73 32593.00 35092.87 36455.22 40599.25 26581.74 38197.96 30597.59 327
EPMVS89.26 34988.55 35191.39 36792.36 40379.11 38895.65 21479.86 40688.60 32693.12 34896.53 28270.73 38598.10 37590.75 29189.32 39796.98 346
WB-MVSnew91.50 32691.29 31992.14 36194.85 37880.32 38393.29 32188.77 39288.57 32794.03 32192.21 37492.56 21798.28 36980.21 38797.08 33997.81 314
QAPM95.88 19495.57 20996.80 18797.90 23691.84 22998.18 5398.73 15088.41 32896.42 24598.13 15394.73 15999.75 6788.72 32798.94 24098.81 212
PVSNet_Blended_VisFu95.95 19195.80 20096.42 21099.28 5790.62 25095.31 23899.08 5888.40 32996.97 21598.17 15092.11 23099.78 4793.64 23399.21 20798.86 208
sss94.22 26693.72 27595.74 24197.71 26989.95 25893.84 30396.98 29288.38 33093.75 32995.74 31587.94 28998.89 31491.02 28298.10 30098.37 258
thisisatest051590.43 33589.18 34794.17 31697.07 31585.44 33889.75 38887.58 39588.28 33193.69 33291.72 38065.27 39299.58 16190.59 29898.67 26997.50 332
test_vis1_n95.67 20295.89 19795.03 27598.18 20689.89 25996.94 12699.28 2988.25 33298.20 12298.92 6586.69 30497.19 38597.70 5498.82 25598.00 300
PatchMatch-RL94.61 25493.81 27497.02 17398.19 20395.72 8693.66 30997.23 28188.17 33394.94 30095.62 32091.43 24198.57 34687.36 34897.68 32196.76 359
tpmrst90.31 33690.61 33489.41 37794.06 39072.37 40895.06 25293.69 34588.01 33492.32 36596.86 26177.45 35498.82 31991.04 28187.01 40097.04 343
Anonymous2023120695.27 22195.06 22395.88 23698.72 13989.37 26795.70 20897.85 25388.00 33596.98 21497.62 20791.95 23599.34 24389.21 32099.53 12598.94 189
FPMVS89.92 34288.63 35093.82 32098.37 18596.94 4591.58 35893.34 35288.00 33590.32 38097.10 24670.87 38491.13 40471.91 40296.16 36593.39 394
MAR-MVS94.21 26893.03 28897.76 10996.94 32097.44 3396.97 12597.15 28587.89 33792.00 36792.73 36892.14 22999.12 28783.92 37397.51 32996.73 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IB-MVS85.98 2088.63 35586.95 36593.68 32495.12 37584.82 35190.85 37490.17 38687.55 33888.48 39391.34 38458.01 39799.59 15987.24 35093.80 38796.63 363
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft94.22 895.48 21195.20 21496.32 21597.16 31191.96 22697.74 7998.84 12287.26 33994.36 31298.01 17293.95 18499.67 12890.70 29698.75 26197.35 337
PC_three_145287.24 34098.37 10197.44 21997.00 6496.78 39392.01 26199.25 20399.21 140
pmmvs594.63 25394.34 26095.50 25397.63 27988.34 28894.02 29497.13 28687.15 34195.22 29297.15 24287.50 29599.27 26293.99 22199.26 20298.88 205
train_agg95.46 21394.66 24197.88 10297.84 24395.23 11593.62 31098.39 19987.04 34293.78 32695.99 30794.58 16799.52 18191.76 27098.90 24498.89 201
test_897.81 24795.07 12493.54 31398.38 20187.04 34293.71 33095.96 31094.58 16799.52 181
test_f95.82 19795.88 19895.66 24597.61 28093.21 19195.61 21898.17 22886.98 34498.42 9699.47 1190.46 25694.74 39997.71 5298.45 28699.03 176
test_fmvs1_n95.21 22395.28 21294.99 27898.15 21389.13 27496.81 13399.43 2186.97 34597.21 19198.92 6583.00 32997.13 38698.09 3698.94 24098.72 224
TEST997.84 24395.23 11593.62 31098.39 19986.81 34693.78 32695.99 30794.68 16399.52 181
pmmvs494.82 24194.19 26596.70 19497.42 29692.75 20192.09 35296.76 30086.80 34795.73 28097.22 23989.28 27798.89 31493.28 24299.14 21698.46 252
MDTV_nov1_ep1391.28 32094.31 38473.51 40694.80 26293.16 35386.75 34893.45 34097.40 22276.37 36198.55 34988.85 32596.43 356
test_fmvs194.51 25994.60 24794.26 31395.91 35087.92 29995.35 23499.02 7686.56 34996.79 22298.52 10282.64 33197.00 38997.87 4398.71 26697.88 308
test-mter87.92 36187.17 36290.16 37394.24 38774.98 40289.89 38489.06 39086.44 35089.97 38490.77 38954.96 40898.57 34691.88 26597.36 33496.92 348
PLCcopyleft91.02 1694.05 27592.90 29197.51 12798.00 22895.12 12394.25 28198.25 21486.17 35191.48 37295.25 32791.01 24899.19 27585.02 36896.69 35298.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVEpermissive73.61 2286.48 36985.92 36888.18 38396.23 33885.28 34281.78 40175.79 40786.01 35282.53 40391.88 37892.74 21087.47 40671.42 40394.86 38091.78 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
USDC94.56 25694.57 25294.55 30197.78 25986.43 32992.75 33198.65 17285.96 35396.91 21997.93 18190.82 25198.74 32790.71 29599.59 10398.47 250
HY-MVS91.43 1592.58 30791.81 31294.90 28396.49 33188.87 27897.31 10594.62 33785.92 35490.50 37896.84 26385.05 31499.40 22183.77 37695.78 37096.43 367
原ACMM196.58 20098.16 21192.12 21998.15 23485.90 35593.49 33896.43 28792.47 22499.38 22887.66 34198.62 27598.23 276
PAPR92.22 31391.27 32195.07 27395.73 36388.81 28091.97 35397.87 25285.80 35690.91 37492.73 36891.16 24598.33 36679.48 38895.76 37198.08 286
IU-MVS99.22 6895.40 10398.14 23585.77 35798.36 10495.23 16199.51 13599.49 70
1112_ss94.12 27193.42 28096.23 21898.59 15990.85 24594.24 28298.85 11985.49 35892.97 35194.94 33386.01 30799.64 14091.78 26997.92 30798.20 279
dp88.08 35988.05 35588.16 38492.85 40068.81 41094.17 28692.88 35685.47 35991.38 37396.14 30268.87 38998.81 32186.88 35283.80 40396.87 351
TESTMET0.1,187.20 36786.57 36789.07 37893.62 39572.84 40789.89 38487.01 39885.46 36089.12 39090.20 39256.00 40397.72 38190.91 28596.92 34196.64 361
131492.38 31092.30 30592.64 35295.42 37085.15 34495.86 20196.97 29385.40 36190.62 37593.06 36191.12 24697.80 38086.74 35395.49 37594.97 385
jason94.39 26394.04 26995.41 26098.29 19087.85 30392.74 33396.75 30185.38 36295.29 29096.15 30088.21 28899.65 13694.24 21099.34 18598.74 221
jason: jason.
EU-MVSNet94.25 26594.47 25593.60 32598.14 21582.60 36997.24 11092.72 35985.08 36398.48 9098.94 6382.59 33298.76 32697.47 6299.53 12599.44 95
miper_enhance_ethall93.14 30092.78 29794.20 31493.65 39485.29 34189.97 38397.85 25385.05 36496.15 26394.56 34085.74 30999.14 28393.74 22998.34 29098.17 283
CDPH-MVS95.45 21494.65 24297.84 10598.28 19294.96 12693.73 30898.33 20785.03 36595.44 28696.60 27895.31 14599.44 20690.01 30999.13 21899.11 164
mvsany_test193.47 29293.03 28894.79 29094.05 39192.12 21990.82 37590.01 38885.02 36697.26 18898.28 13393.57 19297.03 38792.51 25595.75 37295.23 383
DPM-MVS93.68 28592.77 29896.42 21097.91 23492.54 20391.17 36997.47 27784.99 36793.08 34994.74 33789.90 26699.00 30387.54 34498.09 30197.72 319
CR-MVSNet93.29 29792.79 29594.78 29195.44 36888.15 29396.18 17497.20 28284.94 36894.10 31798.57 9777.67 35299.39 22595.17 16495.81 36796.81 357
test_vis1_rt94.03 27693.65 27695.17 26895.76 36193.42 18393.97 29998.33 20784.68 36993.17 34795.89 31392.53 22294.79 39893.50 23694.97 37897.31 338
PVSNet86.72 1991.10 33090.97 32791.49 36697.56 28478.04 39187.17 39494.60 33884.65 37092.34 36492.20 37587.37 29898.47 35685.17 36797.69 32097.96 302
lupinMVS93.77 28093.28 28395.24 26397.68 27187.81 30492.12 35096.05 31084.52 37194.48 31095.06 33186.90 30199.63 14493.62 23499.13 21898.27 273
PVSNet_Blended93.96 27793.65 27694.91 28197.79 25687.40 31391.43 36198.68 16284.50 37294.51 30894.48 34593.04 20299.30 25389.77 31398.61 27698.02 298
MVS-HIRNet88.40 35790.20 33882.99 38697.01 31660.04 41193.11 32585.61 40184.45 37388.72 39299.09 5084.72 31898.23 37182.52 38096.59 35590.69 401
new_pmnet92.34 31191.69 31594.32 31096.23 33889.16 27192.27 34892.88 35684.39 37495.29 29096.35 29385.66 31096.74 39484.53 37197.56 32697.05 342
ADS-MVSNet291.47 32790.51 33594.36 30895.51 36685.63 33595.05 25395.70 31883.46 37592.69 35796.84 26379.15 34699.41 21985.66 36090.52 39398.04 296
ADS-MVSNet90.95 33390.26 33793.04 33895.51 36682.37 37095.05 25393.41 35183.46 37592.69 35796.84 26379.15 34698.70 33285.66 36090.52 39398.04 296
HyFIR lowres test93.72 28392.65 30096.91 18098.93 11691.81 23091.23 36898.52 18382.69 37796.46 24496.52 28480.38 34299.90 1490.36 30598.79 25799.03 176
Test_1112_low_res93.53 29192.86 29295.54 25298.60 15788.86 27992.75 33198.69 16082.66 37892.65 35996.92 25984.75 31799.56 16890.94 28497.76 31498.19 280
CVMVSNet92.33 31292.79 29590.95 36997.26 30775.84 40195.29 24092.33 36481.86 37996.27 25498.19 14781.44 33598.46 35794.23 21198.29 29398.55 242
gm-plane-assit91.79 40471.40 40981.67 38090.11 39498.99 30584.86 369
OpenMVS_ROBcopyleft91.80 1493.64 28893.05 28695.42 25897.31 30691.21 24095.08 25096.68 30581.56 38196.88 22196.41 28890.44 25899.25 26585.39 36497.67 32295.80 375
CostFormer89.75 34489.25 34291.26 36894.69 38178.00 39295.32 23791.98 36781.50 38290.55 37796.96 25671.06 38398.89 31488.59 33092.63 39096.87 351
CHOSEN 280x42089.98 34089.19 34692.37 35895.60 36581.13 38086.22 39697.09 28881.44 38387.44 39793.15 35573.99 36999.47 19688.69 32899.07 22896.52 365
TAPA-MVS93.32 1294.93 23694.23 26297.04 17198.18 20694.51 14195.22 24398.73 15081.22 38496.25 25695.95 31193.80 18898.98 30789.89 31198.87 24897.62 324
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
无先验93.20 32397.91 24980.78 38599.40 22187.71 33997.94 304
MDTV_nov1_ep13_2view57.28 41294.89 25980.59 38694.02 32278.66 34885.50 36297.82 312
testdata95.70 24498.16 21190.58 25197.72 26280.38 38795.62 28297.02 25192.06 23398.98 30789.06 32498.52 28197.54 329
CMPMVSbinary73.10 2392.74 30591.39 31796.77 19093.57 39694.67 13494.21 28597.67 26480.36 38893.61 33496.60 27882.85 33097.35 38484.86 36998.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268894.10 27293.41 28196.18 22299.16 8290.04 25692.15 34998.68 16279.90 38996.22 25797.83 18887.92 29399.42 21089.18 32199.65 8799.08 169
PAPM87.64 36285.84 36993.04 33896.54 32784.99 34788.42 39395.57 32479.52 39083.82 40193.05 36280.57 34198.41 35962.29 40592.79 38995.71 376
cascas91.89 32191.35 31893.51 32794.27 38685.60 33688.86 39298.61 17479.32 39192.16 36691.44 38389.22 27898.12 37490.80 28997.47 33296.82 356
PMMVS92.39 30991.08 32496.30 21793.12 39892.81 19790.58 37895.96 31479.17 39291.85 36992.27 37390.29 26398.66 33989.85 31296.68 35397.43 333
pmmvs390.00 33988.90 34993.32 32994.20 38985.34 33991.25 36792.56 36378.59 39393.82 32595.17 32867.36 39198.69 33489.08 32398.03 30395.92 372
PVSNet_081.89 2184.49 37083.21 37388.34 38195.76 36174.97 40483.49 39892.70 36078.47 39487.94 39586.90 40283.38 32896.63 39573.44 40066.86 40693.40 393
新几何197.25 15598.29 19094.70 13397.73 26177.98 39594.83 30296.67 27592.08 23299.45 20388.17 33698.65 27397.61 325
旧先验293.35 31977.95 39695.77 27998.67 33890.74 294
tpm288.47 35687.69 35990.79 37094.98 37777.34 39595.09 24891.83 36877.51 39789.40 38896.41 28867.83 39098.73 32883.58 37892.60 39196.29 369
DSMNet-mixed92.19 31491.83 31193.25 33296.18 34183.68 36296.27 16693.68 34776.97 39892.54 36399.18 3989.20 27998.55 34983.88 37498.60 27897.51 330
test22298.17 20993.24 19092.74 33397.61 27375.17 39994.65 30596.69 27490.96 25098.66 27197.66 321
PCF-MVS89.43 1892.12 31690.64 33396.57 20297.80 25193.48 18189.88 38798.45 18974.46 40096.04 26695.68 31790.71 25399.31 25073.73 39999.01 23596.91 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t93.96 27793.22 28596.19 22199.06 10190.97 24495.99 19098.94 9873.88 40193.43 34196.93 25792.38 22699.37 23489.09 32299.28 19998.25 275
tpm cat188.01 36087.33 36190.05 37694.48 38376.28 40094.47 27494.35 34173.84 40289.26 38995.61 32173.64 37398.30 36884.13 37286.20 40195.57 380
MVS90.02 33889.20 34592.47 35694.71 38086.90 32295.86 20196.74 30264.72 40390.62 37592.77 36692.54 22098.39 36179.30 38995.56 37492.12 396
DeepMVS_CXcopyleft77.17 38790.94 40685.28 34274.08 41052.51 40480.87 40588.03 39875.25 36770.63 40759.23 40784.94 40275.62 402
tmp_tt57.23 37362.50 37641.44 38934.77 41249.21 41383.93 39760.22 41315.31 40571.11 40679.37 40470.09 38744.86 40864.76 40482.93 40430.25 404
test_method66.88 37266.13 37569.11 38862.68 41125.73 41449.76 40296.04 31114.32 40664.27 40791.69 38173.45 37688.05 40576.06 39666.94 40593.54 391
EGC-MVSNET83.08 37177.93 37498.53 5099.57 2097.55 2698.33 3898.57 1804.71 40710.38 40898.90 6995.60 13799.50 18695.69 12999.61 9898.55 242
test12312.59 37515.49 3783.87 3906.07 4132.55 41590.75 3762.59 4152.52 4085.20 41013.02 4074.96 4131.85 4105.20 4089.09 4077.23 405
testmvs12.33 37615.23 3793.64 3915.77 4142.23 41688.99 3913.62 4142.30 4095.29 40913.09 4064.52 4141.95 4095.16 4098.32 4086.75 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.22 37432.30 3770.00 3920.00 4150.00 4170.00 40398.10 2380.00 4100.00 41195.06 33197.54 380.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas7.98 37710.65 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41095.82 1250.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re7.91 37810.55 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.94 3330.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS79.32 38685.41 363
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
eth-test20.00 415
eth-test0.00 415
OPU-MVS97.64 11898.01 22495.27 11396.79 13597.35 23196.97 6698.51 35291.21 27999.25 20399.14 154
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13898.89 10499.75 6795.48 14499.52 13099.53 56
GSMVS98.06 292
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35198.06 292
sam_mvs77.38 355
ambc96.56 20398.23 19991.68 23297.88 6898.13 23698.42 9698.56 9994.22 17799.04 29994.05 21999.35 18298.95 187
MTGPAbinary98.73 150
test_post194.98 25710.37 40976.21 36399.04 29989.47 317
test_post10.87 40876.83 35999.07 296
patchmatchnet-post96.84 26377.36 35699.42 210
GG-mvs-BLEND90.60 37191.00 40584.21 35898.23 4672.63 41182.76 40284.11 40356.14 40296.79 39272.20 40192.09 39290.78 400
MTMP96.55 15074.60 408
test9_res91.29 27598.89 24799.00 180
agg_prior290.34 30698.90 24499.10 168
agg_prior97.80 25194.96 12698.36 20393.49 33899.53 178
test_prior495.38 10593.61 312
test_prior97.46 13797.79 25694.26 15598.42 19599.34 24398.79 214
新几何293.43 315
旧先验197.80 25193.87 16697.75 26097.04 25093.57 19298.68 26898.72 224
原ACMM292.82 329
testdata299.46 19987.84 337
segment_acmp95.34 144
test1297.46 13797.61 28094.07 15997.78 25993.57 33693.31 19799.42 21098.78 25898.89 201
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14891.91 238
plane_prior598.75 14799.46 19992.59 25399.20 20899.28 127
plane_prior496.77 269
plane_prior198.49 174
n20.00 416
nn0.00 416
door-mid98.17 228
lessismore_v097.05 16999.36 5092.12 21984.07 40298.77 6898.98 5885.36 31399.74 7697.34 6599.37 17499.30 120
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
BP-MVS90.51 301
HQP4-MVS92.87 35299.23 27199.06 173
HQP3-MVS98.43 19298.74 262
HQP2-MVS90.33 259
NP-MVS98.14 21593.72 17295.08 329
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 170