| LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 2 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
| UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 42 | 99.77 5 | 96.34 65 | 99.18 5 | 99.20 35 | 99.67 2 | 99.73 3 | 99.65 5 | 99.15 3 | 99.86 24 | 97.22 67 | 99.92 16 | 99.77 12 |
|
| Anonymous20231211 | | | 98.55 20 | 98.76 13 | 97.94 99 | 98.79 131 | 94.37 148 | 98.84 11 | 99.15 44 | 99.37 3 | 99.67 7 | 99.43 15 | 95.61 136 | 99.72 87 | 98.12 34 | 99.86 31 | 99.73 22 |
|
| DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 46 | 99.55 23 | 96.12 72 | 98.48 30 | 99.10 52 | 99.36 4 | 99.29 28 | 99.06 52 | 97.27 47 | 99.93 3 | 97.71 52 | 99.91 19 | 99.70 26 |
|
| PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 19 | 95.67 90 | 98.45 31 | 99.15 44 | 99.33 5 | 99.30 27 | 99.00 55 | 97.27 47 | 99.92 5 | 97.64 56 | 99.92 16 | 99.75 19 |
|
| ANet_high | | | 98.31 31 | 98.94 6 | 96.41 212 | 99.33 53 | 89.64 262 | 97.92 66 | 99.56 16 | 99.27 6 | 99.66 9 | 99.50 9 | 97.67 31 | 99.83 32 | 97.55 58 | 99.98 2 | 99.77 12 |
|
| VDDNet | | | 96.98 137 | 96.84 145 | 97.41 143 | 99.40 45 | 93.26 189 | 97.94 64 | 95.31 330 | 99.26 7 | 98.39 100 | 99.18 39 | 87.85 294 | 99.62 149 | 95.13 171 | 99.09 225 | 99.35 114 |
|
| PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 61 | 99.55 23 | 95.47 102 | 98.49 28 | 99.13 48 | 99.22 8 | 99.22 33 | 98.96 61 | 97.35 43 | 99.92 5 | 97.79 48 | 99.93 11 | 99.79 10 |
|
| LFMVS | | | 95.32 219 | 94.88 231 | 96.62 197 | 98.03 221 | 91.47 235 | 97.65 84 | 90.72 380 | 99.11 9 | 97.89 158 | 98.31 124 | 79.20 345 | 99.48 194 | 93.91 225 | 99.12 221 | 98.93 193 |
|
| gg-mvs-nofinetune | | | 88.28 358 | 86.96 364 | 92.23 360 | 92.84 401 | 84.44 354 | 98.19 52 | 74.60 408 | 99.08 10 | 87.01 399 | 99.47 11 | 56.93 399 | 98.23 371 | 78.91 390 | 95.61 373 | 94.01 390 |
|
| UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 94 | 97.89 13 | 99.47 3 | 99.32 25 | 99.08 10 | 97.87 162 | 99.67 2 | 96.47 99 | 99.92 5 | 97.88 42 | 99.98 2 | 99.85 3 |
|
| v7n | | | 98.73 11 | 98.99 5 | 97.95 98 | 99.64 14 | 94.20 156 | 98.67 15 | 99.14 47 | 99.08 10 | 99.42 20 | 99.23 33 | 96.53 94 | 99.91 13 | 99.27 5 | 99.93 11 | 99.73 22 |
|
| CP-MVSNet | | | 98.42 26 | 98.46 27 | 98.30 68 | 99.46 36 | 95.22 118 | 98.27 44 | 98.84 122 | 99.05 13 | 99.01 44 | 98.65 91 | 95.37 143 | 99.90 14 | 97.57 57 | 99.91 19 | 99.77 12 |
|
| WR-MVS_H | | | 98.65 15 | 98.62 22 | 98.75 31 | 99.51 30 | 96.61 56 | 98.55 22 | 99.17 39 | 99.05 13 | 99.17 35 | 98.79 75 | 95.47 140 | 99.89 18 | 97.95 41 | 99.91 19 | 99.75 19 |
|
| LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 37 | 99.71 9 | 96.99 44 | 99.69 2 | 99.57 14 | 99.02 15 | 99.62 12 | 99.36 21 | 98.53 9 | 99.52 181 | 98.58 29 | 99.95 5 | 99.66 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 48 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 27 | 99.01 16 | 99.63 11 | 99.66 3 | 99.27 2 | 99.68 122 | 97.75 50 | 99.89 26 | 99.62 36 |
|
| DP-MVS | | | 97.87 74 | 97.89 62 | 97.81 106 | 98.62 155 | 94.82 129 | 97.13 117 | 98.79 138 | 98.98 17 | 98.74 70 | 98.49 105 | 95.80 130 | 99.49 191 | 95.04 175 | 99.44 155 | 99.11 164 |
|
| FOURS1 | | | | | | 99.59 18 | 98.20 7 | 99.03 7 | 99.25 31 | 98.96 18 | 98.87 56 | | | | | | |
|
| SSC-MVS | | | 95.92 192 | 97.03 134 | 92.58 353 | 99.28 57 | 78.39 389 | 96.68 145 | 95.12 332 | 98.90 19 | 99.11 39 | 98.66 88 | 91.36 243 | 99.68 122 | 95.00 178 | 99.16 214 | 99.67 28 |
|
| K. test v3 | | | 96.44 172 | 96.28 178 | 96.95 175 | 99.41 42 | 91.53 233 | 97.65 84 | 90.31 384 | 98.89 20 | 98.93 50 | 99.36 21 | 84.57 319 | 99.92 5 | 97.81 46 | 99.56 111 | 99.39 104 |
|
| TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 6 | 99.54 26 | 98.06 8 | 99.34 4 | 99.44 20 | 98.85 21 | 99.00 46 | 99.20 35 | 97.42 41 | 99.59 159 | 97.21 68 | 99.76 58 | 99.40 100 |
|
| Anonymous20240529 | | | 97.96 54 | 98.04 49 | 97.71 112 | 98.69 146 | 94.28 154 | 97.86 69 | 98.31 211 | 98.79 22 | 99.23 32 | 98.86 73 | 95.76 131 | 99.61 156 | 95.49 141 | 99.36 177 | 99.23 138 |
|
| Gipuma |  | | 98.07 47 | 98.31 35 | 97.36 146 | 99.76 7 | 96.28 68 | 98.51 27 | 99.10 52 | 98.76 23 | 96.79 222 | 99.34 25 | 96.61 90 | 98.82 319 | 96.38 94 | 99.50 139 | 96.98 346 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| TranMVSNet+NR-MVSNet | | | 98.33 29 | 98.30 37 | 98.43 57 | 99.07 100 | 95.87 81 | 96.73 142 | 99.05 66 | 98.67 24 | 98.84 59 | 98.45 110 | 97.58 37 | 99.88 20 | 96.45 92 | 99.86 31 | 99.54 53 |
|
| test_0402 | | | 97.84 77 | 97.97 55 | 97.47 136 | 99.19 79 | 94.07 159 | 96.71 143 | 98.73 150 | 98.66 25 | 98.56 82 | 98.41 114 | 96.84 80 | 99.69 117 | 94.82 185 | 99.81 48 | 98.64 232 |
|
| WB-MVS | | | 95.50 208 | 96.62 156 | 92.11 362 | 99.21 75 | 77.26 397 | 96.12 180 | 95.40 329 | 98.62 26 | 98.84 59 | 98.26 138 | 91.08 247 | 99.50 186 | 93.37 237 | 98.70 267 | 99.58 39 |
|
| VDD-MVS | | | 97.37 118 | 97.25 120 | 97.74 110 | 98.69 146 | 94.50 143 | 97.04 122 | 95.61 323 | 98.59 27 | 98.51 85 | 98.72 82 | 92.54 220 | 99.58 161 | 96.02 111 | 99.49 142 | 99.12 161 |
|
| SDMVSNet | | | 97.97 52 | 98.26 39 | 97.11 163 | 99.41 42 | 92.21 214 | 96.92 127 | 98.60 175 | 98.58 28 | 98.78 64 | 99.39 16 | 97.80 25 | 99.62 149 | 94.98 181 | 99.86 31 | 99.52 58 |
|
| sd_testset | | | 97.97 52 | 98.12 41 | 97.51 127 | 99.41 42 | 93.44 182 | 97.96 62 | 98.25 214 | 98.58 28 | 98.78 64 | 99.39 16 | 98.21 14 | 99.56 168 | 92.65 251 | 99.86 31 | 99.52 58 |
|
| LS3D | | | 97.77 86 | 97.50 108 | 98.57 47 | 96.24 336 | 97.58 24 | 98.45 31 | 98.85 119 | 98.58 28 | 97.51 175 | 97.94 179 | 95.74 132 | 99.63 144 | 95.19 162 | 98.97 236 | 98.51 246 |
|
| MIMVSNet1 | | | 98.51 23 | 98.45 29 | 98.67 40 | 99.72 8 | 96.71 50 | 98.76 12 | 98.89 104 | 98.49 31 | 99.38 22 | 99.14 46 | 95.44 142 | 99.84 30 | 96.47 91 | 99.80 51 | 99.47 79 |
|
| FC-MVSNet-test | | | 98.16 37 | 98.37 33 | 97.56 122 | 99.49 34 | 93.10 192 | 98.35 35 | 99.21 33 | 98.43 32 | 98.89 54 | 98.83 74 | 94.30 175 | 99.81 36 | 97.87 43 | 99.91 19 | 99.77 12 |
|
| VPA-MVSNet | | | 98.27 33 | 98.46 27 | 97.70 113 | 99.06 101 | 93.80 169 | 97.76 76 | 99.00 85 | 98.40 33 | 99.07 42 | 98.98 58 | 96.89 74 | 99.75 67 | 97.19 71 | 99.79 53 | 99.55 52 |
|
| IS-MVSNet | | | 96.93 139 | 96.68 154 | 97.70 113 | 99.25 62 | 94.00 162 | 98.57 20 | 96.74 302 | 98.36 34 | 98.14 131 | 97.98 175 | 88.23 287 | 99.71 102 | 93.10 247 | 99.72 71 | 99.38 106 |
|
| COLMAP_ROB |  | 94.48 6 | 98.25 35 | 98.11 42 | 98.64 43 | 99.21 75 | 97.35 35 | 97.96 62 | 99.16 40 | 98.34 35 | 98.78 64 | 98.52 102 | 97.32 44 | 99.45 203 | 94.08 216 | 99.67 84 | 99.13 156 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| tt0805 | | | 97.44 112 | 97.56 101 | 97.11 163 | 99.55 23 | 96.36 63 | 98.66 18 | 95.66 319 | 98.31 36 | 97.09 205 | 95.45 325 | 97.17 53 | 98.50 353 | 98.67 25 | 97.45 333 | 96.48 366 |
|
| nrg030 | | | 98.54 21 | 98.62 22 | 98.32 65 | 99.22 68 | 95.66 91 | 97.90 67 | 99.08 58 | 98.31 36 | 99.02 43 | 98.74 81 | 97.68 30 | 99.61 156 | 97.77 49 | 99.85 38 | 99.70 26 |
|
| SixPastTwentyTwo | | | 97.49 108 | 97.57 100 | 97.26 154 | 99.56 21 | 92.33 209 | 98.28 42 | 96.97 293 | 98.30 38 | 99.45 18 | 99.35 23 | 88.43 285 | 99.89 18 | 98.01 39 | 99.76 58 | 99.54 53 |
|
| tfpnnormal | | | 97.72 90 | 97.97 55 | 96.94 176 | 99.26 59 | 92.23 213 | 97.83 72 | 98.45 189 | 98.25 39 | 99.13 38 | 98.66 88 | 96.65 87 | 99.69 117 | 93.92 224 | 99.62 92 | 98.91 197 |
|
| TransMVSNet (Re) | | | 98.38 28 | 98.67 18 | 97.51 127 | 99.51 30 | 93.39 185 | 98.20 51 | 98.87 112 | 98.23 40 | 99.48 16 | 99.27 30 | 98.47 11 | 99.55 173 | 96.52 89 | 99.53 125 | 99.60 37 |
|
| ACMH+ | | 93.58 10 | 98.23 36 | 98.31 35 | 97.98 97 | 99.39 46 | 95.22 118 | 97.55 92 | 99.20 35 | 98.21 41 | 99.25 31 | 98.51 104 | 98.21 14 | 99.40 221 | 94.79 187 | 99.72 71 | 99.32 115 |
|
| Baseline_NR-MVSNet | | | 97.72 90 | 97.79 73 | 97.50 131 | 99.56 21 | 93.29 187 | 95.44 224 | 98.86 115 | 98.20 42 | 98.37 101 | 99.24 32 | 94.69 161 | 99.55 173 | 95.98 115 | 99.79 53 | 99.65 33 |
|
| 3Dnovator+ | | 96.13 3 | 97.73 88 | 97.59 98 | 98.15 81 | 98.11 219 | 95.60 92 | 98.04 59 | 98.70 159 | 98.13 43 | 96.93 217 | 98.45 110 | 95.30 146 | 99.62 149 | 95.64 134 | 98.96 237 | 99.24 137 |
|
| CS-MVS-test | | | 97.91 69 | 97.84 66 | 98.14 82 | 98.52 168 | 96.03 77 | 98.38 34 | 99.67 6 | 98.11 44 | 95.50 285 | 96.92 259 | 96.81 82 | 99.87 22 | 96.87 82 | 99.76 58 | 98.51 246 |
|
| UniMVSNet_NR-MVSNet | | | 97.83 78 | 97.65 88 | 98.37 62 | 98.72 139 | 95.78 84 | 95.66 212 | 99.02 76 | 98.11 44 | 98.31 113 | 97.69 203 | 94.65 165 | 99.85 27 | 97.02 77 | 99.71 74 | 99.48 76 |
|
| CS-MVS | | | 98.09 44 | 98.01 52 | 98.32 65 | 98.45 179 | 96.69 52 | 98.52 26 | 99.69 5 | 98.07 46 | 96.07 264 | 97.19 241 | 96.88 76 | 99.86 24 | 97.50 60 | 99.73 67 | 98.41 253 |
|
| OurMVSNet-221017-0 | | | 98.61 16 | 98.61 24 | 98.63 44 | 99.77 5 | 96.35 64 | 99.17 6 | 99.05 66 | 98.05 47 | 99.61 13 | 99.52 7 | 93.72 190 | 99.88 20 | 98.72 24 | 99.88 27 | 99.65 33 |
|
| FIs | | | 97.93 65 | 98.07 45 | 97.48 135 | 99.38 48 | 92.95 195 | 98.03 61 | 99.11 50 | 98.04 48 | 98.62 76 | 98.66 88 | 93.75 189 | 99.78 47 | 97.23 66 | 99.84 40 | 99.73 22 |
|
| RRT_MVS | | | 97.95 58 | 97.79 73 | 98.43 57 | 99.67 12 | 95.56 93 | 98.86 10 | 96.73 304 | 97.99 49 | 99.15 36 | 99.35 23 | 89.84 268 | 99.90 14 | 98.64 26 | 99.90 24 | 99.82 6 |
|
| PMVS |  | 89.60 17 | 96.71 158 | 96.97 137 | 95.95 232 | 99.51 30 | 97.81 16 | 97.42 103 | 97.49 275 | 97.93 50 | 95.95 268 | 98.58 96 | 96.88 76 | 96.91 390 | 89.59 315 | 99.36 177 | 93.12 395 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| EPP-MVSNet | | | 96.84 145 | 96.58 160 | 97.65 117 | 99.18 80 | 93.78 171 | 98.68 14 | 96.34 307 | 97.91 51 | 97.30 186 | 98.06 166 | 88.46 284 | 99.85 27 | 93.85 226 | 99.40 171 | 99.32 115 |
|
| MM | | | 96.87 144 | 96.62 156 | 97.62 119 | 97.72 268 | 93.30 186 | 96.39 156 | 92.61 362 | 97.90 52 | 96.76 227 | 98.64 92 | 90.46 256 | 99.81 36 | 99.16 9 | 99.94 8 | 99.76 17 |
|
| NR-MVSNet | | | 97.96 54 | 97.86 65 | 98.26 70 | 98.73 137 | 95.54 95 | 98.14 54 | 98.73 150 | 97.79 53 | 99.42 20 | 97.83 188 | 94.40 173 | 99.78 47 | 95.91 119 | 99.76 58 | 99.46 81 |
|
| SR-MVS-dyc-post | | | 98.14 39 | 97.84 66 | 99.02 6 | 98.81 127 | 98.05 9 | 97.55 92 | 98.86 115 | 97.77 54 | 98.20 122 | 98.07 161 | 96.60 92 | 99.76 61 | 95.49 141 | 99.20 208 | 99.26 132 |
|
| RE-MVS-def | | | | 97.88 64 | | 98.81 127 | 98.05 9 | 97.55 92 | 98.86 115 | 97.77 54 | 98.20 122 | 98.07 161 | 96.94 68 | | 95.49 141 | 99.20 208 | 99.26 132 |
|
| VPNet | | | 97.26 124 | 97.49 109 | 96.59 199 | 99.47 35 | 90.58 251 | 96.27 166 | 98.53 182 | 97.77 54 | 98.46 93 | 98.41 114 | 94.59 166 | 99.68 122 | 94.61 195 | 99.29 198 | 99.52 58 |
|
| EI-MVSNet-UG-set | | | 97.32 122 | 97.40 111 | 97.09 167 | 97.34 302 | 92.01 225 | 95.33 236 | 97.65 268 | 97.74 57 | 98.30 115 | 98.14 151 | 95.04 152 | 99.69 117 | 97.55 58 | 99.52 130 | 99.58 39 |
|
| EI-MVSNet-Vis-set | | | 97.32 122 | 97.39 112 | 97.11 163 | 97.36 299 | 92.08 223 | 95.34 235 | 97.65 268 | 97.74 57 | 98.29 116 | 98.11 157 | 95.05 151 | 99.68 122 | 97.50 60 | 99.50 139 | 99.56 50 |
|
| Anonymous202405211 | | | 96.34 176 | 95.98 191 | 97.43 140 | 98.25 196 | 93.85 167 | 96.74 138 | 94.41 340 | 97.72 59 | 98.37 101 | 98.03 169 | 87.15 300 | 99.53 178 | 94.06 217 | 99.07 228 | 98.92 196 |
|
| APD-MVS_3200maxsize | | | 98.13 42 | 97.90 59 | 98.79 29 | 98.79 131 | 97.31 36 | 97.55 92 | 98.92 101 | 97.72 59 | 98.25 118 | 98.13 153 | 97.10 55 | 99.75 67 | 95.44 148 | 99.24 206 | 99.32 115 |
|
| mvsmamba | | | 98.16 37 | 98.06 47 | 98.44 55 | 99.53 28 | 95.87 81 | 98.70 13 | 98.94 98 | 97.71 61 | 98.85 57 | 99.10 48 | 91.35 244 | 99.83 32 | 98.47 30 | 99.90 24 | 99.64 35 |
|
| VNet | | | 96.84 145 | 96.83 146 | 96.88 181 | 98.06 220 | 92.02 224 | 96.35 162 | 97.57 274 | 97.70 62 | 97.88 159 | 97.80 193 | 92.40 225 | 99.54 176 | 94.73 192 | 98.96 237 | 99.08 169 |
|
| testf1 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 22 | 97.69 63 | 98.92 51 | 98.77 78 | 97.80 25 | 99.25 265 | 96.27 99 | 99.69 78 | 98.76 219 |
|
| APD_test2 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 81 | 99.42 22 | 97.69 63 | 98.92 51 | 98.77 78 | 97.80 25 | 99.25 265 | 96.27 99 | 99.69 78 | 98.76 219 |
|
| MTAPA | | | 98.14 39 | 97.84 66 | 99.06 3 | 99.44 38 | 97.90 12 | 97.25 108 | 98.73 150 | 97.69 63 | 97.90 157 | 97.96 176 | 95.81 129 | 99.82 34 | 96.13 105 | 99.61 98 | 99.45 85 |
|
| casdiffmvs_mvg |  | | 97.83 78 | 98.11 42 | 97.00 174 | 98.57 161 | 92.10 222 | 95.97 192 | 99.18 38 | 97.67 66 | 99.00 46 | 98.48 109 | 97.64 33 | 99.50 186 | 96.96 79 | 99.54 121 | 99.40 100 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| pm-mvs1 | | | 98.47 24 | 98.67 18 | 97.86 103 | 99.52 29 | 94.58 139 | 98.28 42 | 99.00 85 | 97.57 67 | 99.27 29 | 99.22 34 | 98.32 12 | 99.50 186 | 97.09 74 | 99.75 65 | 99.50 62 |
|
| DU-MVS | | | 97.79 84 | 97.60 97 | 98.36 63 | 98.73 137 | 95.78 84 | 95.65 214 | 98.87 112 | 97.57 67 | 98.31 113 | 97.83 188 | 94.69 161 | 99.85 27 | 97.02 77 | 99.71 74 | 99.46 81 |
|
| EC-MVSNet | | | 97.90 71 | 97.94 58 | 97.79 107 | 98.66 148 | 95.14 121 | 98.31 39 | 99.66 8 | 97.57 67 | 95.95 268 | 97.01 253 | 96.99 65 | 99.82 34 | 97.66 55 | 99.64 89 | 98.39 256 |
|
| PatchT | | | 93.75 282 | 93.57 278 | 94.29 312 | 95.05 376 | 87.32 315 | 96.05 184 | 92.98 355 | 97.54 70 | 94.25 313 | 98.72 82 | 75.79 365 | 99.24 269 | 95.92 118 | 95.81 367 | 96.32 368 |
|
| MVS_0304 | | | 96.62 163 | 96.40 173 | 97.28 151 | 97.91 234 | 92.30 210 | 96.47 154 | 89.74 389 | 97.52 71 | 95.38 289 | 98.63 93 | 92.76 209 | 99.81 36 | 99.28 4 | 99.93 11 | 99.75 19 |
|
| UniMVSNet (Re) | | | 97.83 78 | 97.65 88 | 98.35 64 | 98.80 129 | 95.86 83 | 95.92 198 | 99.04 73 | 97.51 72 | 98.22 121 | 97.81 192 | 94.68 163 | 99.78 47 | 97.14 72 | 99.75 65 | 99.41 99 |
|
| alignmvs | | | 96.01 189 | 95.52 210 | 97.50 131 | 97.77 260 | 94.71 131 | 96.07 183 | 96.84 296 | 97.48 73 | 96.78 226 | 94.28 348 | 85.50 312 | 99.40 221 | 96.22 101 | 98.73 265 | 98.40 254 |
|
| RPMNet | | | 94.68 250 | 94.60 247 | 94.90 283 | 95.44 368 | 88.15 293 | 96.18 174 | 98.86 115 | 97.43 74 | 94.10 317 | 98.49 105 | 79.40 344 | 99.76 61 | 95.69 129 | 95.81 367 | 96.81 357 |
|
| MGCFI-Net | | | 97.23 125 | 97.21 123 | 97.30 149 | 97.65 276 | 94.39 145 | 97.84 70 | 99.05 66 | 97.42 75 | 96.68 230 | 93.85 352 | 97.63 34 | 99.33 245 | 96.29 97 | 98.47 284 | 98.18 281 |
|
| canonicalmvs | | | 97.23 125 | 97.21 123 | 97.30 149 | 97.65 276 | 94.39 145 | 97.84 70 | 99.05 66 | 97.42 75 | 96.68 230 | 93.85 352 | 97.63 34 | 99.33 245 | 96.29 97 | 98.47 284 | 98.18 281 |
|
| XVS | | | 97.96 54 | 97.63 93 | 98.94 15 | 99.15 85 | 97.66 19 | 97.77 74 | 98.83 128 | 97.42 75 | 96.32 250 | 97.64 205 | 96.49 97 | 99.72 87 | 95.66 132 | 99.37 174 | 99.45 85 |
|
| X-MVStestdata | | | 92.86 303 | 90.83 330 | 98.94 15 | 99.15 85 | 97.66 19 | 97.77 74 | 98.83 128 | 97.42 75 | 96.32 250 | 36.50 405 | 96.49 97 | 99.72 87 | 95.66 132 | 99.37 174 | 99.45 85 |
|
| FMVSNet1 | | | 97.95 58 | 98.08 44 | 97.56 122 | 99.14 92 | 93.67 173 | 98.23 46 | 98.66 167 | 97.41 79 | 99.00 46 | 99.19 36 | 95.47 140 | 99.73 82 | 95.83 124 | 99.76 58 | 99.30 120 |
|
| ACMH | | 93.61 9 | 98.44 25 | 98.76 13 | 97.51 127 | 99.43 39 | 93.54 179 | 98.23 46 | 99.05 66 | 97.40 80 | 99.37 23 | 99.08 51 | 98.79 6 | 99.47 196 | 97.74 51 | 99.71 74 | 99.50 62 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| dcpmvs_2 | | | 97.12 128 | 97.99 54 | 94.51 303 | 99.11 94 | 84.00 359 | 97.75 77 | 99.65 9 | 97.38 81 | 99.14 37 | 98.42 113 | 95.16 149 | 99.96 2 | 95.52 140 | 99.78 56 | 99.58 39 |
|
| WR-MVS | | | 96.90 142 | 96.81 147 | 97.16 159 | 98.56 163 | 92.20 217 | 94.33 277 | 98.12 237 | 97.34 82 | 98.20 122 | 97.33 233 | 92.81 207 | 99.75 67 | 94.79 187 | 99.81 48 | 99.54 53 |
|
| SR-MVS | | | 98.00 51 | 97.66 87 | 99.01 8 | 98.77 135 | 97.93 11 | 97.38 104 | 98.83 128 | 97.32 83 | 98.06 141 | 97.85 187 | 96.65 87 | 99.77 56 | 95.00 178 | 99.11 222 | 99.32 115 |
|
| Vis-MVSNet |  | | 98.27 33 | 98.34 34 | 98.07 86 | 99.33 53 | 95.21 120 | 98.04 59 | 99.46 18 | 97.32 83 | 97.82 166 | 99.11 47 | 96.75 84 | 99.86 24 | 97.84 45 | 99.36 177 | 99.15 151 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| v8 | | | 97.60 100 | 98.06 47 | 96.23 218 | 98.71 142 | 89.44 266 | 97.43 102 | 98.82 136 | 97.29 85 | 98.74 70 | 99.10 48 | 93.86 185 | 99.68 122 | 98.61 27 | 99.94 8 | 99.56 50 |
|
| casdiffmvs |  | | 97.50 107 | 97.81 71 | 96.56 203 | 98.51 170 | 91.04 242 | 95.83 203 | 99.09 57 | 97.23 86 | 98.33 110 | 98.30 128 | 97.03 62 | 99.37 234 | 96.58 88 | 99.38 173 | 99.28 127 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_one_0601 | | | | | | 99.05 105 | 95.50 100 | | 98.87 112 | 97.21 87 | 98.03 145 | 98.30 128 | 96.93 70 | | | | |
|
| Anonymous20240521 | | | 97.07 130 | 97.51 106 | 95.76 240 | 99.35 51 | 88.18 292 | 97.78 73 | 98.40 198 | 97.11 88 | 98.34 107 | 99.04 53 | 89.58 270 | 99.79 44 | 98.09 36 | 99.93 11 | 99.30 120 |
|
| KD-MVS_self_test | | | 97.86 76 | 98.07 45 | 97.25 155 | 99.22 68 | 92.81 197 | 97.55 92 | 98.94 98 | 97.10 89 | 98.85 57 | 98.88 71 | 95.03 153 | 99.67 128 | 97.39 64 | 99.65 87 | 99.26 132 |
|
| IterMVS-SCA-FT | | | 95.86 195 | 96.19 181 | 94.85 286 | 97.68 271 | 85.53 337 | 92.42 344 | 97.63 272 | 96.99 90 | 98.36 104 | 98.54 101 | 87.94 289 | 99.75 67 | 97.07 76 | 99.08 226 | 99.27 131 |
|
| EI-MVSNet | | | 96.63 162 | 96.93 140 | 95.74 241 | 97.26 307 | 88.13 295 | 95.29 240 | 97.65 268 | 96.99 90 | 97.94 154 | 98.19 147 | 92.55 218 | 99.58 161 | 96.91 80 | 99.56 111 | 99.50 62 |
|
| IterMVS-LS | | | 96.92 140 | 97.29 118 | 95.79 239 | 98.51 170 | 88.13 295 | 95.10 247 | 98.66 167 | 96.99 90 | 98.46 93 | 98.68 87 | 92.55 218 | 99.74 76 | 96.91 80 | 99.79 53 | 99.50 62 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PS-MVSNAJss | | | 98.53 22 | 98.63 20 | 98.21 78 | 99.68 11 | 94.82 129 | 98.10 56 | 99.21 33 | 96.91 93 | 99.75 2 | 99.45 13 | 95.82 125 | 99.92 5 | 98.80 19 | 99.96 4 | 99.89 1 |
|
| thres100view900 | | | 91.76 323 | 91.26 323 | 93.26 331 | 98.21 200 | 84.50 353 | 96.39 156 | 90.39 381 | 96.87 94 | 96.33 249 | 93.08 360 | 73.44 377 | 99.42 210 | 78.85 391 | 97.74 315 | 95.85 373 |
|
| 3Dnovator | | 96.53 2 | 97.61 99 | 97.64 91 | 97.50 131 | 97.74 266 | 93.65 177 | 98.49 28 | 98.88 110 | 96.86 95 | 97.11 199 | 98.55 100 | 95.82 125 | 99.73 82 | 95.94 117 | 99.42 166 | 99.13 156 |
|
| test20.03 | | | 96.58 166 | 96.61 158 | 96.48 207 | 98.49 174 | 91.72 231 | 95.68 211 | 97.69 263 | 96.81 96 | 98.27 117 | 97.92 182 | 94.18 178 | 98.71 331 | 90.78 290 | 99.66 86 | 99.00 180 |
|
| thres600view7 | | | 92.03 319 | 91.43 316 | 93.82 320 | 98.19 203 | 84.61 352 | 96.27 166 | 90.39 381 | 96.81 96 | 96.37 248 | 93.11 356 | 73.44 377 | 99.49 191 | 80.32 386 | 97.95 306 | 97.36 335 |
|
| LCM-MVSNet-Re | | | 97.33 121 | 97.33 116 | 97.32 148 | 98.13 218 | 93.79 170 | 96.99 124 | 99.65 9 | 96.74 98 | 99.47 17 | 98.93 64 | 96.91 73 | 99.84 30 | 90.11 307 | 99.06 231 | 98.32 265 |
|
| EPNet | | | 93.72 283 | 92.62 302 | 97.03 172 | 87.61 410 | 92.25 212 | 96.27 166 | 91.28 374 | 96.74 98 | 87.65 396 | 97.39 226 | 85.00 315 | 99.64 140 | 92.14 260 | 99.48 146 | 99.20 144 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| DVP-MVS++ | | | 97.96 54 | 97.90 59 | 98.12 84 | 97.75 263 | 95.40 103 | 99.03 7 | 98.89 104 | 96.62 100 | 98.62 76 | 98.30 128 | 96.97 66 | 99.75 67 | 95.70 127 | 99.25 203 | 99.21 140 |
|
| test_0728_THIRD | | | | | | | | | | 96.62 100 | 98.40 98 | 98.28 133 | 97.10 55 | 99.71 102 | 95.70 127 | 99.62 92 | 99.58 39 |
|
| v10 | | | 97.55 104 | 97.97 55 | 96.31 216 | 98.60 157 | 89.64 262 | 97.44 100 | 99.02 76 | 96.60 102 | 98.72 72 | 99.16 43 | 93.48 194 | 99.72 87 | 98.76 21 | 99.92 16 | 99.58 39 |
|
| Patchmtry | | | 95.03 234 | 94.59 249 | 96.33 214 | 94.83 379 | 90.82 246 | 96.38 159 | 97.20 282 | 96.59 103 | 97.49 177 | 98.57 97 | 77.67 352 | 99.38 228 | 92.95 250 | 99.62 92 | 98.80 213 |
|
| h-mvs33 | | | 96.29 177 | 95.63 207 | 98.26 70 | 98.50 173 | 96.11 73 | 96.90 128 | 97.09 288 | 96.58 104 | 97.21 191 | 98.19 147 | 84.14 321 | 99.78 47 | 95.89 120 | 96.17 364 | 98.89 201 |
|
| hse-mvs2 | | | 95.77 198 | 95.09 220 | 97.79 107 | 97.84 243 | 95.51 97 | 95.66 212 | 95.43 328 | 96.58 104 | 97.21 191 | 96.16 299 | 84.14 321 | 99.54 176 | 95.89 120 | 96.92 341 | 98.32 265 |
|
| SteuartSystems-ACMMP | | | 98.02 50 | 97.76 78 | 98.79 29 | 99.43 39 | 97.21 41 | 97.15 114 | 98.90 103 | 96.58 104 | 98.08 138 | 97.87 186 | 97.02 63 | 99.76 61 | 95.25 159 | 99.59 103 | 99.40 100 |
| Skip Steuart: Steuart Systems R&D Blog. |
| APD_test1 | | | 97.95 58 | 97.68 85 | 98.75 31 | 99.60 17 | 98.60 5 | 97.21 112 | 99.08 58 | 96.57 107 | 98.07 140 | 98.38 118 | 96.22 114 | 99.14 283 | 94.71 194 | 99.31 195 | 98.52 245 |
|
| baseline | | | 97.44 112 | 97.78 77 | 96.43 209 | 98.52 168 | 90.75 249 | 96.84 130 | 99.03 74 | 96.51 108 | 97.86 163 | 98.02 170 | 96.67 86 | 99.36 237 | 97.09 74 | 99.47 148 | 99.19 145 |
|
| MVSFormer | | | 96.14 183 | 96.36 175 | 95.49 254 | 97.68 271 | 87.81 304 | 98.67 15 | 99.02 76 | 96.50 109 | 94.48 310 | 96.15 300 | 86.90 301 | 99.92 5 | 98.73 22 | 99.13 218 | 98.74 221 |
|
| test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 39 | 99.63 15 | 96.30 67 | 98.67 15 | 99.02 76 | 96.50 109 | 99.32 26 | 99.44 14 | 97.43 40 | 99.92 5 | 98.73 22 | 99.95 5 | 99.86 2 |
|
| Vis-MVSNet (Re-imp) | | | 95.11 229 | 94.85 232 | 95.87 237 | 99.12 93 | 89.17 270 | 97.54 97 | 94.92 335 | 96.50 109 | 96.58 237 | 97.27 236 | 83.64 325 | 99.48 194 | 88.42 332 | 99.67 84 | 98.97 185 |
|
| UGNet | | | 96.81 150 | 96.56 162 | 97.58 121 | 96.64 325 | 93.84 168 | 97.75 77 | 97.12 287 | 96.47 112 | 93.62 333 | 98.88 71 | 93.22 199 | 99.53 178 | 95.61 136 | 99.69 78 | 99.36 112 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| JIA-IIPM | | | 91.79 322 | 90.69 332 | 95.11 270 | 93.80 393 | 90.98 243 | 94.16 287 | 91.78 369 | 96.38 113 | 90.30 381 | 99.30 28 | 72.02 380 | 98.90 313 | 88.28 334 | 90.17 395 | 95.45 381 |
|
| test1111 | | | 94.53 258 | 94.81 236 | 93.72 322 | 99.06 101 | 81.94 374 | 98.31 39 | 83.87 403 | 96.37 114 | 98.49 88 | 99.17 42 | 81.49 334 | 99.73 82 | 96.64 84 | 99.86 31 | 99.49 70 |
|
| HQP_MVS | | | 96.66 161 | 96.33 177 | 97.68 116 | 98.70 144 | 94.29 151 | 96.50 152 | 98.75 147 | 96.36 115 | 96.16 261 | 96.77 269 | 91.91 238 | 99.46 199 | 92.59 253 | 99.20 208 | 99.28 127 |
|
| plane_prior2 | | | | | | | | 96.50 152 | | 96.36 115 | | | | | | | |
|
| CSCG | | | 97.40 115 | 97.30 117 | 97.69 115 | 98.95 112 | 94.83 128 | 97.28 107 | 98.99 88 | 96.35 117 | 98.13 132 | 95.95 311 | 95.99 118 | 99.66 134 | 94.36 207 | 99.73 67 | 98.59 238 |
|
| MP-MVS |  | | 97.64 96 | 97.18 125 | 99.00 9 | 99.32 55 | 97.77 17 | 97.49 98 | 98.73 150 | 96.27 118 | 95.59 283 | 97.75 197 | 96.30 109 | 99.78 47 | 93.70 232 | 99.48 146 | 99.45 85 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| tfpn200view9 | | | 91.55 325 | 91.00 325 | 93.21 335 | 98.02 222 | 84.35 355 | 95.70 208 | 90.79 378 | 96.26 119 | 95.90 273 | 92.13 376 | 73.62 374 | 99.42 210 | 78.85 391 | 97.74 315 | 95.85 373 |
|
| thres400 | | | 91.68 324 | 91.00 325 | 93.71 323 | 98.02 222 | 84.35 355 | 95.70 208 | 90.79 378 | 96.26 119 | 95.90 273 | 92.13 376 | 73.62 374 | 99.42 210 | 78.85 391 | 97.74 315 | 97.36 335 |
|
| mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 31 | 99.69 10 | 96.48 60 | 98.54 23 | 99.22 32 | 96.23 121 | 99.71 4 | 99.48 10 | 98.77 7 | 99.93 3 | 98.89 17 | 99.95 5 | 99.84 5 |
|
| test2506 | | | 89.86 343 | 89.16 348 | 91.97 363 | 98.95 112 | 76.83 398 | 98.54 23 | 61.07 412 | 96.20 122 | 97.07 206 | 99.16 43 | 55.19 406 | 99.69 117 | 96.43 93 | 99.83 43 | 99.38 106 |
|
| ECVR-MVS |  | | 94.37 264 | 94.48 254 | 94.05 318 | 98.95 112 | 83.10 364 | 98.31 39 | 82.48 405 | 96.20 122 | 98.23 120 | 99.16 43 | 81.18 337 | 99.66 134 | 95.95 116 | 99.83 43 | 99.38 106 |
|
| RPSCF | | | 97.87 74 | 97.51 106 | 98.95 14 | 99.15 85 | 98.43 6 | 97.56 91 | 99.06 62 | 96.19 124 | 98.48 90 | 98.70 85 | 94.72 160 | 99.24 269 | 94.37 205 | 99.33 190 | 99.17 148 |
|
| test_yl | | | 94.40 261 | 94.00 270 | 95.59 246 | 96.95 318 | 89.52 264 | 94.75 266 | 95.55 325 | 96.18 125 | 96.79 222 | 96.14 302 | 81.09 338 | 99.18 276 | 90.75 291 | 97.77 312 | 98.07 288 |
|
| DCV-MVSNet | | | 94.40 261 | 94.00 270 | 95.59 246 | 96.95 318 | 89.52 264 | 94.75 266 | 95.55 325 | 96.18 125 | 96.79 222 | 96.14 302 | 81.09 338 | 99.18 276 | 90.75 291 | 97.77 312 | 98.07 288 |
|
| SED-MVS | | | 97.94 62 | 97.90 59 | 98.07 86 | 99.22 68 | 95.35 108 | 96.79 135 | 98.83 128 | 96.11 127 | 99.08 40 | 98.24 140 | 97.87 23 | 99.72 87 | 95.44 148 | 99.51 135 | 99.14 154 |
|
| test_241102_TWO | | | | | | | | | 98.83 128 | 96.11 127 | 98.62 76 | 98.24 140 | 96.92 72 | 99.72 87 | 95.44 148 | 99.49 142 | 99.49 70 |
|
| CP-MVS | | | 97.92 66 | 97.56 101 | 98.99 10 | 98.99 110 | 97.82 15 | 97.93 65 | 98.96 95 | 96.11 127 | 96.89 220 | 97.45 218 | 96.85 79 | 99.78 47 | 95.19 162 | 99.63 91 | 99.38 106 |
|
| HFP-MVS | | | 97.94 62 | 97.64 91 | 98.83 25 | 99.15 85 | 97.50 29 | 97.59 89 | 98.84 122 | 96.05 130 | 97.49 177 | 97.54 212 | 97.07 58 | 99.70 110 | 95.61 136 | 99.46 151 | 99.30 120 |
|
| ACMMPR | | | 97.95 58 | 97.62 95 | 98.94 15 | 99.20 77 | 97.56 25 | 97.59 89 | 98.83 128 | 96.05 130 | 97.46 182 | 97.63 206 | 96.77 83 | 99.76 61 | 95.61 136 | 99.46 151 | 99.49 70 |
|
| test_241102_ONE | | | | | | 99.22 68 | 95.35 108 | | 98.83 128 | 96.04 132 | 99.08 40 | 98.13 153 | 97.87 23 | 99.33 245 | | | |
|
| mPP-MVS | | | 97.91 69 | 97.53 104 | 99.04 4 | 99.22 68 | 97.87 14 | 97.74 79 | 98.78 142 | 96.04 132 | 97.10 200 | 97.73 200 | 96.53 94 | 99.78 47 | 95.16 166 | 99.50 139 | 99.46 81 |
|
| Fast-Effi-MVS+-dtu | | | 96.44 172 | 96.12 183 | 97.39 145 | 97.18 310 | 94.39 145 | 95.46 223 | 98.73 150 | 96.03 134 | 94.72 303 | 94.92 335 | 96.28 112 | 99.69 117 | 93.81 227 | 97.98 304 | 98.09 285 |
|
| region2R | | | 97.92 66 | 97.59 98 | 98.92 21 | 99.22 68 | 97.55 26 | 97.60 87 | 98.84 122 | 96.00 135 | 97.22 189 | 97.62 207 | 96.87 78 | 99.76 61 | 95.48 144 | 99.43 163 | 99.46 81 |
|
| MDA-MVSNet-bldmvs | | | 95.69 200 | 95.67 204 | 95.74 241 | 98.48 176 | 88.76 283 | 92.84 328 | 97.25 280 | 96.00 135 | 97.59 171 | 97.95 178 | 91.38 242 | 99.46 199 | 93.16 246 | 96.35 359 | 98.99 183 |
|
| GST-MVS | | | 97.82 81 | 97.49 109 | 98.81 27 | 99.23 65 | 97.25 38 | 97.16 113 | 98.79 138 | 95.96 137 | 97.53 173 | 97.40 222 | 96.93 70 | 99.77 56 | 95.04 175 | 99.35 182 | 99.42 97 |
|
| APDe-MVS |  | | 98.14 39 | 98.03 50 | 98.47 54 | 98.72 139 | 96.04 75 | 98.07 58 | 99.10 52 | 95.96 137 | 98.59 80 | 98.69 86 | 96.94 68 | 99.81 36 | 96.64 84 | 99.58 105 | 99.57 46 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SD-MVS | | | 97.37 118 | 97.70 81 | 96.35 213 | 98.14 215 | 95.13 122 | 96.54 151 | 98.92 101 | 95.94 139 | 99.19 34 | 98.08 159 | 97.74 28 | 95.06 397 | 95.24 160 | 99.54 121 | 98.87 207 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DVP-MVS |  | | 97.78 85 | 97.65 88 | 98.16 79 | 99.24 63 | 95.51 97 | 96.74 138 | 98.23 217 | 95.92 140 | 98.40 98 | 98.28 133 | 97.06 59 | 99.71 102 | 95.48 144 | 99.52 130 | 99.26 132 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.24 63 | 95.51 97 | 96.89 129 | 98.89 104 | 95.92 140 | 98.64 74 | 98.31 124 | 97.06 59 | | | | |
|
| v148 | | | 96.58 166 | 96.97 137 | 95.42 258 | 98.63 153 | 87.57 308 | 95.09 248 | 97.90 250 | 95.91 142 | 98.24 119 | 97.96 176 | 93.42 195 | 99.39 225 | 96.04 109 | 99.52 130 | 99.29 126 |
|
| HPM-MVS_fast | | | 98.32 30 | 98.13 40 | 98.88 23 | 99.54 26 | 97.48 30 | 98.35 35 | 99.03 74 | 95.88 143 | 97.88 159 | 98.22 145 | 98.15 16 | 99.74 76 | 96.50 90 | 99.62 92 | 99.42 97 |
|
| ETV-MVS | | | 96.13 184 | 95.90 196 | 96.82 186 | 97.76 261 | 93.89 165 | 95.40 229 | 98.95 97 | 95.87 144 | 95.58 284 | 91.00 387 | 96.36 107 | 99.72 87 | 93.36 238 | 98.83 254 | 96.85 353 |
|
| Effi-MVS+-dtu | | | 96.81 150 | 96.09 185 | 98.99 10 | 96.90 322 | 98.69 4 | 96.42 155 | 98.09 239 | 95.86 145 | 95.15 293 | 95.54 322 | 94.26 176 | 99.81 36 | 94.06 217 | 98.51 283 | 98.47 250 |
|
| DPE-MVS |  | | 97.64 96 | 97.35 115 | 98.50 51 | 98.85 125 | 96.18 69 | 95.21 244 | 98.99 88 | 95.84 146 | 98.78 64 | 98.08 159 | 96.84 80 | 99.81 36 | 93.98 222 | 99.57 108 | 99.52 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 34 | 99.66 13 | 96.48 60 | 98.45 31 | 99.12 49 | 95.83 147 | 99.67 7 | 99.37 19 | 98.25 13 | 99.92 5 | 98.77 20 | 99.94 8 | 99.82 6 |
|
| tttt0517 | | | 93.31 296 | 92.56 303 | 95.57 248 | 98.71 142 | 87.86 301 | 97.44 100 | 87.17 397 | 95.79 148 | 97.47 181 | 96.84 263 | 64.12 393 | 99.81 36 | 96.20 102 | 99.32 192 | 99.02 179 |
|
| ZNCC-MVS | | | 97.92 66 | 97.62 95 | 98.83 25 | 99.32 55 | 97.24 39 | 97.45 99 | 98.84 122 | 95.76 149 | 96.93 217 | 97.43 220 | 97.26 49 | 99.79 44 | 96.06 106 | 99.53 125 | 99.45 85 |
|
| UnsupCasMVSNet_eth | | | 95.91 193 | 95.73 203 | 96.44 208 | 98.48 176 | 91.52 234 | 95.31 238 | 98.45 189 | 95.76 149 | 97.48 179 | 97.54 212 | 89.53 273 | 98.69 334 | 94.43 201 | 94.61 382 | 99.13 156 |
|
| GeoE | | | 97.75 87 | 97.70 81 | 97.89 101 | 98.88 122 | 94.53 140 | 97.10 118 | 98.98 91 | 95.75 151 | 97.62 170 | 97.59 209 | 97.61 36 | 99.77 56 | 96.34 96 | 99.44 155 | 99.36 112 |
|
| ACMMP |  | | 98.05 48 | 97.75 80 | 98.93 18 | 99.23 65 | 97.60 22 | 98.09 57 | 98.96 95 | 95.75 151 | 97.91 156 | 98.06 166 | 96.89 74 | 99.76 61 | 95.32 156 | 99.57 108 | 99.43 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| test_fmvsm_n_1920 | | | 98.08 45 | 98.29 38 | 97.43 140 | 98.88 122 | 93.95 164 | 96.17 178 | 99.57 14 | 95.66 153 | 99.52 15 | 98.71 84 | 97.04 61 | 99.64 140 | 99.21 7 | 99.87 29 | 98.69 228 |
|
| MSP-MVS | | | 97.45 111 | 96.92 142 | 99.03 5 | 99.26 59 | 97.70 18 | 97.66 83 | 98.89 104 | 95.65 154 | 98.51 85 | 96.46 286 | 92.15 228 | 99.81 36 | 95.14 169 | 98.58 279 | 99.58 39 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| ITE_SJBPF | | | | | 97.85 104 | 98.64 149 | 96.66 54 | | 98.51 185 | 95.63 155 | 97.22 189 | 97.30 235 | 95.52 138 | 98.55 349 | 90.97 283 | 98.90 244 | 98.34 264 |
|
| anonymousdsp | | | 98.72 14 | 98.63 20 | 98.99 10 | 99.62 16 | 97.29 37 | 98.65 19 | 99.19 37 | 95.62 156 | 99.35 25 | 99.37 19 | 97.38 42 | 99.90 14 | 98.59 28 | 99.91 19 | 99.77 12 |
|
| API-MVS | | | 95.09 231 | 95.01 224 | 95.31 261 | 96.61 326 | 94.02 161 | 96.83 131 | 97.18 284 | 95.60 157 | 95.79 275 | 94.33 347 | 94.54 169 | 98.37 364 | 85.70 358 | 98.52 281 | 93.52 392 |
|
| test_fmvsmvis_n_1920 | | | 98.08 45 | 98.47 26 | 96.93 177 | 99.03 107 | 93.29 187 | 96.32 164 | 99.65 9 | 95.59 158 | 99.71 4 | 99.01 54 | 97.66 32 | 99.60 158 | 99.44 2 | 99.83 43 | 97.90 306 |
|
| GBi-Net | | | 96.99 134 | 96.80 148 | 97.56 122 | 97.96 230 | 93.67 173 | 98.23 46 | 98.66 167 | 95.59 158 | 97.99 147 | 99.19 36 | 89.51 274 | 99.73 82 | 94.60 196 | 99.44 155 | 99.30 120 |
|
| test1 | | | 96.99 134 | 96.80 148 | 97.56 122 | 97.96 230 | 93.67 173 | 98.23 46 | 98.66 167 | 95.59 158 | 97.99 147 | 99.19 36 | 89.51 274 | 99.73 82 | 94.60 196 | 99.44 155 | 99.30 120 |
|
| FMVSNet2 | | | 96.72 156 | 96.67 155 | 96.87 182 | 97.96 230 | 91.88 227 | 97.15 114 | 98.06 245 | 95.59 158 | 98.50 87 | 98.62 94 | 89.51 274 | 99.65 136 | 94.99 180 | 99.60 101 | 99.07 171 |
|
| HPM-MVS++ |  | | 96.99 134 | 96.38 174 | 98.81 27 | 98.64 149 | 97.59 23 | 95.97 192 | 98.20 222 | 95.51 162 | 95.06 295 | 96.53 282 | 94.10 179 | 99.70 110 | 94.29 208 | 99.15 215 | 99.13 156 |
|
| IterMVS | | | 95.42 215 | 95.83 199 | 94.20 314 | 97.52 286 | 83.78 361 | 92.41 345 | 97.47 277 | 95.49 163 | 98.06 141 | 98.49 105 | 87.94 289 | 99.58 161 | 96.02 111 | 99.02 233 | 99.23 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+ | | | 96.19 181 | 96.01 188 | 96.71 193 | 97.43 295 | 92.19 218 | 96.12 180 | 99.10 52 | 95.45 164 | 93.33 344 | 94.71 338 | 97.23 52 | 99.56 168 | 93.21 245 | 97.54 327 | 98.37 258 |
|
| PGM-MVS | | | 97.88 73 | 97.52 105 | 98.96 13 | 99.20 77 | 97.62 21 | 97.09 119 | 99.06 62 | 95.45 164 | 97.55 172 | 97.94 179 | 97.11 54 | 99.78 47 | 94.77 190 | 99.46 151 | 99.48 76 |
|
| test_fmvsmconf0.01_n | | | 98.57 17 | 98.74 16 | 98.06 88 | 99.39 46 | 94.63 136 | 96.70 144 | 99.82 1 | 95.44 166 | 99.64 10 | 99.52 7 | 98.96 4 | 99.74 76 | 99.38 3 | 99.86 31 | 99.81 8 |
|
| HPM-MVS |  | | 98.11 43 | 97.83 69 | 98.92 21 | 99.42 41 | 97.46 31 | 98.57 20 | 99.05 66 | 95.43 167 | 97.41 184 | 97.50 216 | 97.98 19 | 99.79 44 | 95.58 139 | 99.57 108 | 99.50 62 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| NCCC | | | 96.52 168 | 95.99 190 | 98.10 85 | 97.81 247 | 95.68 89 | 95.00 256 | 98.20 222 | 95.39 168 | 95.40 288 | 96.36 292 | 93.81 187 | 99.45 203 | 93.55 235 | 98.42 288 | 99.17 148 |
|
| wuyk23d | | | 93.25 298 | 95.20 214 | 87.40 385 | 96.07 348 | 95.38 105 | 97.04 122 | 94.97 334 | 95.33 169 | 99.70 6 | 98.11 157 | 98.14 17 | 91.94 403 | 77.76 394 | 99.68 82 | 74.89 403 |
|
| SF-MVS | | | 97.60 100 | 97.39 112 | 98.22 75 | 98.93 116 | 95.69 88 | 97.05 121 | 99.10 52 | 95.32 170 | 97.83 165 | 97.88 185 | 96.44 102 | 99.72 87 | 94.59 199 | 99.39 172 | 99.25 136 |
|
| MSDG | | | 95.33 218 | 95.13 218 | 95.94 234 | 97.40 297 | 91.85 228 | 91.02 373 | 98.37 202 | 95.30 171 | 96.31 252 | 95.99 307 | 94.51 170 | 98.38 362 | 89.59 315 | 97.65 324 | 97.60 326 |
|
| plane_prior3 | | | | | | | 94.51 141 | | | 95.29 172 | 96.16 261 | | | | | | |
|
| ACMM | | 93.33 11 | 98.05 48 | 97.79 73 | 98.85 24 | 99.15 85 | 97.55 26 | 96.68 145 | 98.83 128 | 95.21 173 | 98.36 104 | 98.13 153 | 98.13 18 | 99.62 149 | 96.04 109 | 99.54 121 | 99.39 104 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XVG-OURS-SEG-HR | | | 97.38 116 | 97.07 131 | 98.30 68 | 99.01 109 | 97.41 34 | 94.66 269 | 99.02 76 | 95.20 174 | 98.15 130 | 97.52 214 | 98.83 5 | 98.43 358 | 94.87 183 | 96.41 357 | 99.07 171 |
|
| XVG-OURS | | | 97.12 128 | 96.74 151 | 98.26 70 | 98.99 110 | 97.45 32 | 93.82 304 | 99.05 66 | 95.19 175 | 98.32 111 | 97.70 202 | 95.22 148 | 98.41 359 | 94.27 209 | 98.13 299 | 98.93 193 |
|
| v2v482 | | | 96.78 152 | 97.06 132 | 95.95 232 | 98.57 161 | 88.77 282 | 95.36 232 | 98.26 213 | 95.18 176 | 97.85 164 | 98.23 142 | 92.58 216 | 99.63 144 | 97.80 47 | 99.69 78 | 99.45 85 |
|
| LPG-MVS_test | | | 97.94 62 | 97.67 86 | 98.74 34 | 99.15 85 | 97.02 42 | 97.09 119 | 99.02 76 | 95.15 177 | 98.34 107 | 98.23 142 | 97.91 21 | 99.70 110 | 94.41 202 | 99.73 67 | 99.50 62 |
|
| LGP-MVS_train | | | | | 98.74 34 | 99.15 85 | 97.02 42 | | 99.02 76 | 95.15 177 | 98.34 107 | 98.23 142 | 97.91 21 | 99.70 110 | 94.41 202 | 99.73 67 | 99.50 62 |
|
| thres200 | | | 91.00 332 | 90.42 336 | 92.77 349 | 97.47 293 | 83.98 360 | 94.01 295 | 91.18 376 | 95.12 179 | 95.44 286 | 91.21 385 | 73.93 370 | 99.31 250 | 77.76 394 | 97.63 325 | 95.01 384 |
|
| testgi | | | 96.07 185 | 96.50 169 | 94.80 289 | 99.26 59 | 87.69 307 | 95.96 194 | 98.58 179 | 95.08 180 | 98.02 146 | 96.25 296 | 97.92 20 | 97.60 383 | 88.68 329 | 98.74 262 | 99.11 164 |
|
| ACMMP_NAP | | | 97.89 72 | 97.63 93 | 98.67 40 | 99.35 51 | 96.84 47 | 96.36 161 | 98.79 138 | 95.07 181 | 97.88 159 | 98.35 120 | 97.24 51 | 99.72 87 | 96.05 108 | 99.58 105 | 99.45 85 |
|
| test_fmvsmconf0.1_n | | | 98.41 27 | 98.54 25 | 98.03 93 | 99.16 82 | 94.61 137 | 96.18 174 | 99.73 3 | 95.05 182 | 99.60 14 | 99.34 25 | 98.68 8 | 99.72 87 | 99.21 7 | 99.85 38 | 99.76 17 |
|
| XVG-ACMP-BASELINE | | | 97.58 103 | 97.28 119 | 98.49 52 | 99.16 82 | 96.90 46 | 96.39 156 | 98.98 91 | 95.05 182 | 98.06 141 | 98.02 170 | 95.86 121 | 99.56 168 | 94.37 205 | 99.64 89 | 99.00 180 |
|
| save fliter | | | | | | 98.48 176 | 94.71 131 | 94.53 273 | 98.41 196 | 95.02 184 | | | | | | | |
|
| test_fmvsmconf_n | | | 98.30 32 | 98.41 32 | 97.99 96 | 98.94 115 | 94.60 138 | 96.00 189 | 99.64 12 | 94.99 185 | 99.43 19 | 99.18 39 | 98.51 10 | 99.71 102 | 99.13 10 | 99.84 40 | 99.67 28 |
|
| CANet | | | 95.86 195 | 95.65 206 | 96.49 206 | 96.41 333 | 90.82 246 | 94.36 276 | 98.41 196 | 94.94 186 | 92.62 362 | 96.73 272 | 92.68 212 | 99.71 102 | 95.12 172 | 99.60 101 | 98.94 189 |
|
| MVS_Test | | | 96.27 178 | 96.79 150 | 94.73 293 | 96.94 320 | 86.63 326 | 96.18 174 | 98.33 207 | 94.94 186 | 96.07 264 | 98.28 133 | 95.25 147 | 99.26 263 | 97.21 68 | 97.90 309 | 98.30 269 |
|
| XXY-MVS | | | 97.54 105 | 97.70 81 | 97.07 168 | 99.46 36 | 92.21 214 | 97.22 111 | 99.00 85 | 94.93 188 | 98.58 81 | 98.92 65 | 97.31 45 | 99.41 219 | 94.44 200 | 99.43 163 | 99.59 38 |
|
| new-patchmatchnet | | | 95.67 202 | 96.58 160 | 92.94 344 | 97.48 289 | 80.21 384 | 92.96 326 | 98.19 227 | 94.83 189 | 98.82 61 | 98.79 75 | 93.31 197 | 99.51 185 | 95.83 124 | 99.04 232 | 99.12 161 |
|
| E-PMN | | | 89.52 348 | 89.78 340 | 88.73 379 | 93.14 397 | 77.61 393 | 83.26 399 | 92.02 366 | 94.82 190 | 93.71 330 | 93.11 356 | 75.31 366 | 96.81 391 | 85.81 357 | 96.81 348 | 91.77 398 |
|
| MVS_111021_HR | | | 96.73 155 | 96.54 165 | 97.27 152 | 98.35 187 | 93.66 176 | 93.42 316 | 98.36 203 | 94.74 191 | 96.58 237 | 96.76 271 | 96.54 93 | 98.99 305 | 94.87 183 | 99.27 201 | 99.15 151 |
|
| MSLP-MVS++ | | | 96.42 174 | 96.71 152 | 95.57 248 | 97.82 246 | 90.56 253 | 95.71 207 | 98.84 122 | 94.72 192 | 96.71 229 | 97.39 226 | 94.91 158 | 98.10 375 | 95.28 157 | 99.02 233 | 98.05 295 |
|
| baseline1 | | | 93.14 300 | 92.64 301 | 94.62 296 | 97.34 302 | 87.20 317 | 96.67 147 | 93.02 354 | 94.71 193 | 96.51 242 | 95.83 314 | 81.64 333 | 98.60 345 | 90.00 310 | 88.06 399 | 98.07 288 |
|
| testing3 | | | 89.72 345 | 88.26 354 | 94.10 317 | 97.66 275 | 84.30 357 | 94.80 262 | 88.25 394 | 94.66 194 | 95.07 294 | 92.51 371 | 41.15 412 | 99.43 208 | 91.81 268 | 98.44 287 | 98.55 242 |
|
| EIA-MVS | | | 96.04 187 | 95.77 202 | 96.85 183 | 97.80 251 | 92.98 194 | 96.12 180 | 99.16 40 | 94.65 195 | 93.77 328 | 91.69 381 | 95.68 133 | 99.67 128 | 94.18 212 | 98.85 251 | 97.91 305 |
|
| EMVS | | | 89.06 351 | 89.22 343 | 88.61 380 | 93.00 399 | 77.34 395 | 82.91 400 | 90.92 377 | 94.64 196 | 92.63 361 | 91.81 379 | 76.30 362 | 97.02 388 | 83.83 375 | 96.90 343 | 91.48 399 |
|
| V42 | | | 97.04 131 | 97.16 126 | 96.68 196 | 98.59 159 | 91.05 241 | 96.33 163 | 98.36 203 | 94.60 197 | 97.99 147 | 98.30 128 | 93.32 196 | 99.62 149 | 97.40 63 | 99.53 125 | 99.38 106 |
|
| CNVR-MVS | | | 96.92 140 | 96.55 163 | 98.03 93 | 98.00 228 | 95.54 95 | 94.87 260 | 98.17 228 | 94.60 197 | 96.38 247 | 97.05 249 | 95.67 134 | 99.36 237 | 95.12 172 | 99.08 226 | 99.19 145 |
|
| MVS_111021_LR | | | 96.82 149 | 96.55 163 | 97.62 119 | 98.27 194 | 95.34 110 | 93.81 306 | 98.33 207 | 94.59 199 | 96.56 239 | 96.63 277 | 96.61 90 | 98.73 328 | 94.80 186 | 99.34 185 | 98.78 215 |
|
| OPM-MVS | | | 97.54 105 | 97.25 120 | 98.41 59 | 99.11 94 | 96.61 56 | 95.24 242 | 98.46 188 | 94.58 200 | 98.10 135 | 98.07 161 | 97.09 57 | 99.39 225 | 95.16 166 | 99.44 155 | 99.21 140 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EG-PatchMatch MVS | | | 97.69 92 | 97.79 73 | 97.40 144 | 99.06 101 | 93.52 180 | 95.96 194 | 98.97 94 | 94.55 201 | 98.82 61 | 98.76 80 | 97.31 45 | 99.29 257 | 97.20 70 | 99.44 155 | 99.38 106 |
|
| ab-mvs | | | 96.59 164 | 96.59 159 | 96.60 198 | 98.64 149 | 92.21 214 | 98.35 35 | 97.67 264 | 94.45 202 | 96.99 212 | 98.79 75 | 94.96 157 | 99.49 191 | 90.39 304 | 99.07 228 | 98.08 286 |
|
| CNLPA | | | 95.04 232 | 94.47 255 | 96.75 191 | 97.81 247 | 95.25 114 | 94.12 292 | 97.89 251 | 94.41 203 | 94.57 306 | 95.69 316 | 90.30 262 | 98.35 365 | 86.72 354 | 98.76 260 | 96.64 361 |
|
| TinyColmap | | | 96.00 190 | 96.34 176 | 94.96 280 | 97.90 236 | 87.91 300 | 94.13 291 | 98.49 186 | 94.41 203 | 98.16 128 | 97.76 194 | 96.29 111 | 98.68 337 | 90.52 300 | 99.42 166 | 98.30 269 |
|
| AllTest | | | 97.20 127 | 96.92 142 | 98.06 88 | 99.08 98 | 96.16 70 | 97.14 116 | 99.16 40 | 94.35 205 | 97.78 167 | 98.07 161 | 95.84 122 | 99.12 287 | 91.41 273 | 99.42 166 | 98.91 197 |
|
| TestCases | | | | | 98.06 88 | 99.08 98 | 96.16 70 | | 99.16 40 | 94.35 205 | 97.78 167 | 98.07 161 | 95.84 122 | 99.12 287 | 91.41 273 | 99.42 166 | 98.91 197 |
|
| plane_prior | | | | | | | 94.29 151 | 95.42 226 | | 94.31 207 | | | | | | 98.93 242 | |
|
| v1144 | | | 96.84 145 | 97.08 130 | 96.13 225 | 98.42 182 | 89.28 269 | 95.41 228 | 98.67 165 | 94.21 208 | 97.97 151 | 98.31 124 | 93.06 201 | 99.65 136 | 98.06 38 | 99.62 92 | 99.45 85 |
|
| test_prior2 | | | | | | | | 93.33 320 | | 94.21 208 | 94.02 322 | 96.25 296 | 93.64 191 | | 91.90 264 | 98.96 237 | |
|
| fmvsm_s_conf0.1_n | | | 97.73 88 | 98.02 51 | 96.85 183 | 99.09 97 | 91.43 237 | 96.37 160 | 99.11 50 | 94.19 210 | 99.01 44 | 99.25 31 | 96.30 109 | 99.38 228 | 99.00 14 | 99.88 27 | 99.73 22 |
|
| fmvsm_s_conf0.5_n | | | 97.62 98 | 97.89 62 | 96.80 187 | 98.79 131 | 91.44 236 | 96.14 179 | 99.06 62 | 94.19 210 | 98.82 61 | 98.98 58 | 96.22 114 | 99.38 228 | 98.98 16 | 99.86 31 | 99.58 39 |
|
| DELS-MVS | | | 96.17 182 | 96.23 179 | 95.99 228 | 97.55 285 | 90.04 256 | 92.38 347 | 98.52 183 | 94.13 212 | 96.55 241 | 97.06 248 | 94.99 155 | 99.58 161 | 95.62 135 | 99.28 199 | 98.37 258 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| patch_mono-2 | | | 96.59 164 | 96.93 140 | 95.55 251 | 98.88 122 | 87.12 318 | 94.47 274 | 99.30 27 | 94.12 213 | 96.65 235 | 98.41 114 | 94.98 156 | 99.87 22 | 95.81 126 | 99.78 56 | 99.66 30 |
|
| dmvs_re | | | 92.08 318 | 91.27 321 | 94.51 303 | 97.16 311 | 92.79 200 | 95.65 214 | 92.64 361 | 94.11 214 | 92.74 356 | 90.98 388 | 83.41 327 | 94.44 401 | 80.72 385 | 94.07 385 | 96.29 369 |
|
| FMVSNet3 | | | 95.26 222 | 94.94 225 | 96.22 220 | 96.53 330 | 90.06 255 | 95.99 190 | 97.66 266 | 94.11 214 | 97.99 147 | 97.91 183 | 80.22 343 | 99.63 144 | 94.60 196 | 99.44 155 | 98.96 186 |
|
| diffmvs |  | | 96.04 187 | 96.23 179 | 95.46 256 | 97.35 300 | 88.03 298 | 93.42 316 | 99.08 58 | 94.09 216 | 96.66 233 | 96.93 257 | 93.85 186 | 99.29 257 | 96.01 113 | 98.67 269 | 99.06 173 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| thisisatest0530 | | | 92.71 306 | 91.76 314 | 95.56 250 | 98.42 182 | 88.23 290 | 96.03 186 | 87.35 396 | 94.04 217 | 96.56 239 | 95.47 324 | 64.03 394 | 99.77 56 | 94.78 189 | 99.11 222 | 98.68 231 |
|
| PMMVS2 | | | 93.66 286 | 94.07 268 | 92.45 357 | 97.57 282 | 80.67 382 | 86.46 395 | 96.00 312 | 93.99 218 | 97.10 200 | 97.38 228 | 89.90 266 | 97.82 379 | 88.76 326 | 99.47 148 | 98.86 208 |
|
| BH-untuned | | | 94.69 248 | 94.75 239 | 94.52 302 | 97.95 233 | 87.53 309 | 94.07 293 | 97.01 291 | 93.99 218 | 97.10 200 | 95.65 318 | 92.65 214 | 98.95 312 | 87.60 342 | 96.74 350 | 97.09 341 |
|
| DeepC-MVS | | 95.41 4 | 97.82 81 | 97.70 81 | 98.16 79 | 98.78 134 | 95.72 86 | 96.23 172 | 99.02 76 | 93.92 220 | 98.62 76 | 98.99 57 | 97.69 29 | 99.62 149 | 96.18 104 | 99.87 29 | 99.15 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PM-MVS | | | 97.36 120 | 97.10 128 | 98.14 82 | 98.91 120 | 96.77 49 | 96.20 173 | 98.63 173 | 93.82 221 | 98.54 83 | 98.33 122 | 93.98 182 | 99.05 298 | 95.99 114 | 99.45 154 | 98.61 237 |
|
| testdata1 | | | | | | | | 92.77 330 | | 93.78 222 | | | | | | | |
|
| v1192 | | | 96.83 148 | 97.06 132 | 96.15 224 | 98.28 192 | 89.29 268 | 95.36 232 | 98.77 143 | 93.73 223 | 98.11 133 | 98.34 121 | 93.02 205 | 99.67 128 | 98.35 32 | 99.58 105 | 99.50 62 |
|
| testing91 | | | 89.67 346 | 88.55 351 | 93.04 338 | 95.90 351 | 81.80 375 | 92.71 335 | 93.71 344 | 93.71 224 | 90.18 382 | 90.15 393 | 57.11 398 | 99.22 273 | 87.17 351 | 96.32 360 | 98.12 284 |
|
| ACMP | | 92.54 13 | 97.47 110 | 97.10 128 | 98.55 49 | 99.04 106 | 96.70 51 | 96.24 171 | 98.89 104 | 93.71 224 | 97.97 151 | 97.75 197 | 97.44 39 | 99.63 144 | 93.22 244 | 99.70 77 | 99.32 115 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| BH-RMVSNet | | | 94.56 256 | 94.44 258 | 94.91 281 | 97.57 282 | 87.44 312 | 93.78 307 | 96.26 308 | 93.69 226 | 96.41 246 | 96.50 285 | 92.10 231 | 99.00 303 | 85.96 356 | 97.71 318 | 98.31 267 |
|
| fmvsm_s_conf0.1_n_a | | | 97.80 83 | 98.01 52 | 97.18 158 | 99.17 81 | 92.51 205 | 96.57 149 | 99.15 44 | 93.68 227 | 98.89 54 | 99.30 28 | 96.42 103 | 99.37 234 | 99.03 13 | 99.83 43 | 99.66 30 |
|
| fmvsm_s_conf0.5_n_a | | | 97.65 95 | 97.83 69 | 97.13 162 | 98.80 129 | 92.51 205 | 96.25 170 | 99.06 62 | 93.67 228 | 98.64 74 | 99.00 55 | 96.23 113 | 99.36 237 | 98.99 15 | 99.80 51 | 99.53 56 |
|
| Patchmatch-test | | | 93.60 289 | 93.25 284 | 94.63 295 | 96.14 346 | 87.47 310 | 96.04 185 | 94.50 339 | 93.57 229 | 96.47 243 | 96.97 254 | 76.50 360 | 98.61 343 | 90.67 297 | 98.41 289 | 97.81 314 |
|
| PHI-MVS | | | 96.96 138 | 96.53 166 | 98.25 73 | 97.48 289 | 96.50 59 | 96.76 137 | 98.85 119 | 93.52 230 | 96.19 260 | 96.85 262 | 95.94 119 | 99.42 210 | 93.79 228 | 99.43 163 | 98.83 210 |
|
| miper_lstm_enhance | | | 94.81 242 | 94.80 237 | 94.85 286 | 96.16 342 | 86.45 328 | 91.14 370 | 98.20 222 | 93.49 231 | 97.03 209 | 97.37 230 | 84.97 316 | 99.26 263 | 95.28 157 | 99.56 111 | 98.83 210 |
|
| c3_l | | | 95.20 224 | 95.32 211 | 94.83 288 | 96.19 340 | 86.43 329 | 91.83 356 | 98.35 206 | 93.47 232 | 97.36 185 | 97.26 237 | 88.69 280 | 99.28 259 | 95.41 154 | 99.36 177 | 98.78 215 |
|
| eth_miper_zixun_eth | | | 94.89 238 | 94.93 227 | 94.75 292 | 95.99 349 | 86.12 332 | 91.35 363 | 98.49 186 | 93.40 233 | 97.12 198 | 97.25 238 | 86.87 303 | 99.35 241 | 95.08 174 | 98.82 255 | 98.78 215 |
|
| EPNet_dtu | | | 91.39 328 | 90.75 331 | 93.31 330 | 90.48 407 | 82.61 368 | 94.80 262 | 92.88 356 | 93.39 234 | 81.74 404 | 94.90 336 | 81.36 336 | 99.11 290 | 88.28 334 | 98.87 248 | 98.21 278 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_l_conf0.5_n | | | 97.68 94 | 97.81 71 | 97.27 152 | 98.92 118 | 92.71 202 | 95.89 200 | 99.41 24 | 93.36 235 | 99.00 46 | 98.44 112 | 96.46 101 | 99.65 136 | 99.09 11 | 99.76 58 | 99.45 85 |
|
| cl____ | | | 94.73 243 | 94.64 243 | 95.01 276 | 95.85 355 | 87.00 320 | 91.33 364 | 98.08 240 | 93.34 236 | 97.10 200 | 97.33 233 | 84.01 324 | 99.30 253 | 95.14 169 | 99.56 111 | 98.71 227 |
|
| DIV-MVS_self_test | | | 94.73 243 | 94.64 243 | 95.01 276 | 95.86 354 | 87.00 320 | 91.33 364 | 98.08 240 | 93.34 236 | 97.10 200 | 97.34 232 | 84.02 323 | 99.31 250 | 95.15 168 | 99.55 118 | 98.72 224 |
|
| mvs_anonymous | | | 95.36 216 | 96.07 187 | 93.21 335 | 96.29 335 | 81.56 376 | 94.60 271 | 97.66 266 | 93.30 238 | 96.95 216 | 98.91 68 | 93.03 204 | 99.38 228 | 96.60 86 | 97.30 338 | 98.69 228 |
|
| TSAR-MVS + GP. | | | 96.47 171 | 96.12 183 | 97.49 134 | 97.74 266 | 95.23 115 | 94.15 288 | 96.90 295 | 93.26 239 | 98.04 144 | 96.70 273 | 94.41 172 | 98.89 314 | 94.77 190 | 99.14 216 | 98.37 258 |
|
| 9.14 | | | | 96.69 153 | | 98.53 167 | | 96.02 187 | 98.98 91 | 93.23 240 | 97.18 194 | 97.46 217 | 96.47 99 | 99.62 149 | 92.99 248 | 99.32 192 | |
|
| fmvsm_l_conf0.5_n_a | | | 97.60 100 | 97.76 78 | 97.11 163 | 98.92 118 | 92.28 211 | 95.83 203 | 99.32 25 | 93.22 241 | 98.91 53 | 98.49 105 | 96.31 108 | 99.64 140 | 99.07 12 | 99.76 58 | 99.40 100 |
|
| v1921920 | | | 96.72 156 | 96.96 139 | 95.99 228 | 98.21 200 | 88.79 281 | 95.42 226 | 98.79 138 | 93.22 241 | 98.19 126 | 98.26 138 | 92.68 212 | 99.70 110 | 98.34 33 | 99.55 118 | 99.49 70 |
|
| testing99 | | | 89.21 350 | 88.04 356 | 92.70 351 | 95.78 359 | 81.00 381 | 92.65 336 | 92.03 365 | 93.20 243 | 89.90 386 | 90.08 395 | 55.25 404 | 99.14 283 | 87.54 344 | 95.95 366 | 97.97 301 |
|
| CANet_DTU | | | 94.65 252 | 94.21 264 | 95.96 230 | 95.90 351 | 89.68 261 | 93.92 301 | 97.83 257 | 93.19 244 | 90.12 383 | 95.64 319 | 88.52 283 | 99.57 167 | 93.27 243 | 99.47 148 | 98.62 235 |
|
| HQP-NCC | | | | | | 97.85 238 | | 94.26 278 | | 93.18 245 | 92.86 353 | | | | | | |
|
| ACMP_Plane | | | | | | 97.85 238 | | 94.26 278 | | 93.18 245 | 92.86 353 | | | | | | |
|
| HQP-MVS | | | 95.17 227 | 94.58 250 | 96.92 178 | 97.85 238 | 92.47 207 | 94.26 278 | 98.43 192 | 93.18 245 | 92.86 353 | 95.08 329 | 90.33 259 | 99.23 271 | 90.51 301 | 98.74 262 | 99.05 175 |
|
| DeepC-MVS_fast | | 94.34 7 | 96.74 153 | 96.51 168 | 97.44 139 | 97.69 270 | 94.15 157 | 96.02 187 | 98.43 192 | 93.17 248 | 97.30 186 | 97.38 228 | 95.48 139 | 99.28 259 | 93.74 229 | 99.34 185 | 98.88 205 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v1240 | | | 96.74 153 | 97.02 135 | 95.91 235 | 98.18 206 | 88.52 284 | 95.39 230 | 98.88 110 | 93.15 249 | 98.46 93 | 98.40 117 | 92.80 208 | 99.71 102 | 98.45 31 | 99.49 142 | 99.49 70 |
|
| AdaColmap |  | | 95.11 229 | 94.62 246 | 96.58 200 | 97.33 304 | 94.45 144 | 94.92 258 | 98.08 240 | 93.15 249 | 93.98 324 | 95.53 323 | 94.34 174 | 99.10 293 | 85.69 359 | 98.61 276 | 96.20 371 |
|
| CL-MVSNet_self_test | | | 95.04 232 | 94.79 238 | 95.82 238 | 97.51 287 | 89.79 260 | 91.14 370 | 96.82 298 | 93.05 251 | 96.72 228 | 96.40 290 | 90.82 251 | 99.16 281 | 91.95 263 | 98.66 271 | 98.50 248 |
|
| v144192 | | | 96.69 159 | 96.90 144 | 96.03 227 | 98.25 196 | 88.92 276 | 95.49 222 | 98.77 143 | 93.05 251 | 98.09 136 | 98.29 132 | 92.51 223 | 99.70 110 | 98.11 35 | 99.56 111 | 99.47 79 |
|
| TSAR-MVS + MP. | | | 97.42 114 | 97.23 122 | 98.00 95 | 99.38 48 | 95.00 125 | 97.63 86 | 98.20 222 | 93.00 253 | 98.16 128 | 98.06 166 | 95.89 120 | 99.72 87 | 95.67 131 | 99.10 224 | 99.28 127 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| xiu_mvs_v1_base_debu | | | 95.62 204 | 95.96 192 | 94.60 297 | 98.01 224 | 88.42 285 | 93.99 296 | 98.21 219 | 92.98 254 | 95.91 270 | 94.53 341 | 96.39 104 | 99.72 87 | 95.43 151 | 98.19 296 | 95.64 377 |
|
| xiu_mvs_v1_base | | | 95.62 204 | 95.96 192 | 94.60 297 | 98.01 224 | 88.42 285 | 93.99 296 | 98.21 219 | 92.98 254 | 95.91 270 | 94.53 341 | 96.39 104 | 99.72 87 | 95.43 151 | 98.19 296 | 95.64 377 |
|
| xiu_mvs_v1_base_debi | | | 95.62 204 | 95.96 192 | 94.60 297 | 98.01 224 | 88.42 285 | 93.99 296 | 98.21 219 | 92.98 254 | 95.91 270 | 94.53 341 | 96.39 104 | 99.72 87 | 95.43 151 | 98.19 296 | 95.64 377 |
|
| PAPM_NR | | | 94.61 254 | 94.17 266 | 95.96 230 | 98.36 186 | 91.23 239 | 95.93 197 | 97.95 247 | 92.98 254 | 93.42 342 | 94.43 346 | 90.53 254 | 98.38 362 | 87.60 342 | 96.29 361 | 98.27 273 |
|
| APD-MVS |  | | 97.00 133 | 96.53 166 | 98.41 59 | 98.55 164 | 96.31 66 | 96.32 164 | 98.77 143 | 92.96 258 | 97.44 183 | 97.58 211 | 95.84 122 | 99.74 76 | 91.96 262 | 99.35 182 | 99.19 145 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CPTT-MVS | | | 96.69 159 | 96.08 186 | 98.49 52 | 98.89 121 | 96.64 55 | 97.25 108 | 98.77 143 | 92.89 259 | 96.01 267 | 97.13 243 | 92.23 227 | 99.67 128 | 92.24 257 | 99.34 185 | 99.17 148 |
|
| DeepPCF-MVS | | 94.58 5 | 96.90 142 | 96.43 171 | 98.31 67 | 97.48 289 | 97.23 40 | 92.56 338 | 98.60 175 | 92.84 260 | 98.54 83 | 97.40 222 | 96.64 89 | 98.78 323 | 94.40 204 | 99.41 170 | 98.93 193 |
|
| testing222 | | | 87.35 365 | 85.50 372 | 92.93 345 | 95.79 358 | 82.83 365 | 92.40 346 | 90.10 387 | 92.80 261 | 88.87 391 | 89.02 396 | 48.34 410 | 98.70 332 | 75.40 397 | 96.74 350 | 97.27 339 |
|
| FMVSNet5 | | | 93.39 294 | 92.35 304 | 96.50 205 | 95.83 356 | 90.81 248 | 97.31 105 | 98.27 212 | 92.74 262 | 96.27 254 | 98.28 133 | 62.23 396 | 99.67 128 | 90.86 286 | 99.36 177 | 99.03 176 |
|
| test_vis1_n_1920 | | | 95.77 198 | 96.41 172 | 93.85 319 | 98.55 164 | 84.86 349 | 95.91 199 | 99.71 4 | 92.72 263 | 97.67 169 | 98.90 69 | 87.44 297 | 98.73 328 | 97.96 40 | 98.85 251 | 97.96 302 |
|
| iter_conf05 | | | 93.65 287 | 93.05 286 | 95.46 256 | 96.13 347 | 87.45 311 | 95.95 196 | 98.22 218 | 92.66 264 | 97.04 208 | 97.89 184 | 63.52 395 | 99.72 87 | 96.19 103 | 99.82 47 | 99.21 140 |
|
| dmvs_testset | | | 87.30 366 | 86.99 363 | 88.24 382 | 96.71 324 | 77.48 394 | 94.68 268 | 86.81 399 | 92.64 265 | 89.61 387 | 87.01 401 | 85.91 308 | 93.12 402 | 61.04 406 | 88.49 398 | 94.13 389 |
|
| YYNet1 | | | 94.73 243 | 94.84 233 | 94.41 307 | 97.47 293 | 85.09 346 | 90.29 380 | 95.85 317 | 92.52 266 | 97.53 173 | 97.76 194 | 91.97 234 | 99.18 276 | 93.31 241 | 96.86 344 | 98.95 187 |
|
| MDA-MVSNet_test_wron | | | 94.73 243 | 94.83 235 | 94.42 306 | 97.48 289 | 85.15 344 | 90.28 381 | 95.87 316 | 92.52 266 | 97.48 179 | 97.76 194 | 91.92 237 | 99.17 280 | 93.32 240 | 96.80 349 | 98.94 189 |
|
| MG-MVS | | | 94.08 274 | 94.00 270 | 94.32 310 | 97.09 314 | 85.89 334 | 93.19 324 | 95.96 314 | 92.52 266 | 94.93 301 | 97.51 215 | 89.54 271 | 98.77 324 | 87.52 346 | 97.71 318 | 98.31 267 |
|
| MP-MVS-pluss | | | 97.69 92 | 97.36 114 | 98.70 38 | 99.50 33 | 96.84 47 | 95.38 231 | 98.99 88 | 92.45 269 | 98.11 133 | 98.31 124 | 97.25 50 | 99.77 56 | 96.60 86 | 99.62 92 | 99.48 76 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MVSTER | | | 94.21 268 | 93.93 273 | 95.05 274 | 95.83 356 | 86.46 327 | 95.18 245 | 97.65 268 | 92.41 270 | 97.94 154 | 98.00 174 | 72.39 379 | 99.58 161 | 96.36 95 | 99.56 111 | 99.12 161 |
|
| FA-MVS(test-final) | | | 94.91 237 | 94.89 230 | 94.99 278 | 97.51 287 | 88.11 297 | 98.27 44 | 95.20 331 | 92.40 271 | 96.68 230 | 98.60 95 | 83.44 326 | 99.28 259 | 93.34 239 | 98.53 280 | 97.59 327 |
|
| LF4IMVS | | | 96.07 185 | 95.63 207 | 97.36 146 | 98.19 203 | 95.55 94 | 95.44 224 | 98.82 136 | 92.29 272 | 95.70 281 | 96.55 280 | 92.63 215 | 98.69 334 | 91.75 271 | 99.33 190 | 97.85 310 |
|
| MIMVSNet | | | 93.42 293 | 92.86 292 | 95.10 272 | 98.17 209 | 88.19 291 | 98.13 55 | 93.69 345 | 92.07 273 | 95.04 298 | 98.21 146 | 80.95 340 | 99.03 302 | 81.42 383 | 98.06 302 | 98.07 288 |
|
| test-LLR | | | 89.97 341 | 89.90 339 | 90.16 373 | 94.24 387 | 74.98 402 | 89.89 384 | 89.06 390 | 92.02 274 | 89.97 384 | 90.77 389 | 73.92 371 | 98.57 346 | 91.88 265 | 97.36 334 | 96.92 348 |
|
| test0.0.03 1 | | | 90.11 337 | 89.21 344 | 92.83 347 | 93.89 392 | 86.87 323 | 91.74 357 | 88.74 393 | 92.02 274 | 94.71 304 | 91.14 386 | 73.92 371 | 94.48 400 | 83.75 377 | 92.94 388 | 97.16 340 |
|
| xiu_mvs_v2_base | | | 94.22 266 | 94.63 245 | 92.99 342 | 97.32 305 | 84.84 350 | 92.12 350 | 97.84 255 | 91.96 276 | 94.17 315 | 93.43 354 | 96.07 117 | 99.71 102 | 91.27 276 | 97.48 330 | 94.42 387 |
|
| PS-MVSNAJ | | | 94.10 272 | 94.47 255 | 93.00 341 | 97.35 300 | 84.88 348 | 91.86 355 | 97.84 255 | 91.96 276 | 94.17 315 | 92.50 372 | 95.82 125 | 99.71 102 | 91.27 276 | 97.48 330 | 94.40 388 |
|
| OMC-MVS | | | 96.48 170 | 96.00 189 | 97.91 100 | 98.30 189 | 96.01 78 | 94.86 261 | 98.60 175 | 91.88 278 | 97.18 194 | 97.21 240 | 96.11 116 | 99.04 299 | 90.49 303 | 99.34 185 | 98.69 228 |
|
| GA-MVS | | | 92.83 304 | 92.15 308 | 94.87 285 | 96.97 317 | 87.27 316 | 90.03 382 | 96.12 309 | 91.83 279 | 94.05 320 | 94.57 339 | 76.01 364 | 98.97 311 | 92.46 256 | 97.34 336 | 98.36 263 |
|
| miper_ehance_all_eth | | | 94.69 248 | 94.70 240 | 94.64 294 | 95.77 360 | 86.22 331 | 91.32 366 | 98.24 216 | 91.67 280 | 97.05 207 | 96.65 276 | 88.39 286 | 99.22 273 | 94.88 182 | 98.34 290 | 98.49 249 |
|
| testing11 | | | 88.93 352 | 87.63 360 | 92.80 348 | 95.87 353 | 81.49 377 | 92.48 340 | 91.54 371 | 91.62 281 | 88.27 394 | 90.24 391 | 55.12 407 | 99.11 290 | 87.30 349 | 96.28 362 | 97.81 314 |
|
| SMA-MVS |  | | 97.48 109 | 97.11 127 | 98.60 45 | 98.83 126 | 96.67 53 | 96.74 138 | 98.73 150 | 91.61 282 | 98.48 90 | 98.36 119 | 96.53 94 | 99.68 122 | 95.17 164 | 99.54 121 | 99.45 85 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| Fast-Effi-MVS+ | | | 95.49 209 | 95.07 221 | 96.75 191 | 97.67 274 | 92.82 196 | 94.22 284 | 98.60 175 | 91.61 282 | 93.42 342 | 92.90 363 | 96.73 85 | 99.70 110 | 92.60 252 | 97.89 310 | 97.74 318 |
|
| SCA | | | 93.38 295 | 93.52 279 | 92.96 343 | 96.24 336 | 81.40 378 | 93.24 322 | 94.00 343 | 91.58 284 | 94.57 306 | 96.97 254 | 87.94 289 | 99.42 210 | 89.47 317 | 97.66 323 | 98.06 292 |
|
| Patchmatch-RL test | | | 94.66 251 | 94.49 253 | 95.19 266 | 98.54 166 | 88.91 277 | 92.57 337 | 98.74 149 | 91.46 285 | 98.32 111 | 97.75 197 | 77.31 357 | 98.81 321 | 96.06 106 | 99.61 98 | 97.85 310 |
|
| ETVMVS | | | 87.62 363 | 85.75 370 | 93.22 334 | 96.15 345 | 83.26 363 | 92.94 327 | 90.37 383 | 91.39 286 | 90.37 379 | 88.45 397 | 51.93 409 | 98.64 340 | 73.76 398 | 96.38 358 | 97.75 317 |
|
| KD-MVS_2432*1600 | | | 88.93 352 | 87.74 357 | 92.49 354 | 88.04 408 | 81.99 372 | 89.63 389 | 95.62 321 | 91.35 287 | 95.06 295 | 93.11 356 | 56.58 400 | 98.63 341 | 85.19 365 | 95.07 376 | 96.85 353 |
|
| miper_refine_blended | | | 88.93 352 | 87.74 357 | 92.49 354 | 88.04 408 | 81.99 372 | 89.63 389 | 95.62 321 | 91.35 287 | 95.06 295 | 93.11 356 | 56.58 400 | 98.63 341 | 85.19 365 | 95.07 376 | 96.85 353 |
|
| AUN-MVS | | | 93.95 279 | 92.69 299 | 97.74 110 | 97.80 251 | 95.38 105 | 95.57 221 | 95.46 327 | 91.26 289 | 92.64 360 | 96.10 305 | 74.67 368 | 99.55 173 | 93.72 231 | 96.97 340 | 98.30 269 |
|
| CLD-MVS | | | 95.47 212 | 95.07 221 | 96.69 195 | 98.27 194 | 92.53 204 | 91.36 362 | 98.67 165 | 91.22 290 | 95.78 277 | 94.12 349 | 95.65 135 | 98.98 307 | 90.81 288 | 99.72 71 | 98.57 239 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| TAMVS | | | 95.49 209 | 94.94 225 | 97.16 159 | 98.31 188 | 93.41 184 | 95.07 251 | 96.82 298 | 91.09 291 | 97.51 175 | 97.82 191 | 89.96 265 | 99.42 210 | 88.42 332 | 99.44 155 | 98.64 232 |
|
| tpmvs | | | 90.79 334 | 90.87 328 | 90.57 372 | 92.75 402 | 76.30 399 | 95.79 205 | 93.64 349 | 91.04 292 | 91.91 368 | 96.26 295 | 77.19 358 | 98.86 318 | 89.38 319 | 89.85 396 | 96.56 364 |
|
| test_fmvs3 | | | 97.38 116 | 97.56 101 | 96.84 185 | 98.63 153 | 92.81 197 | 97.60 87 | 99.61 13 | 90.87 293 | 98.76 69 | 99.66 3 | 94.03 181 | 97.90 377 | 99.24 6 | 99.68 82 | 99.81 8 |
|
| cl22 | | | 93.25 298 | 92.84 294 | 94.46 305 | 94.30 385 | 86.00 333 | 91.09 372 | 96.64 306 | 90.74 294 | 95.79 275 | 96.31 294 | 78.24 349 | 98.77 324 | 94.15 214 | 98.34 290 | 98.62 235 |
|
| ZD-MVS | | | | | | 98.43 181 | 95.94 79 | | 98.56 181 | 90.72 295 | 96.66 233 | 97.07 247 | 95.02 154 | 99.74 76 | 91.08 280 | 98.93 242 | |
|
| our_test_3 | | | 94.20 270 | 94.58 250 | 93.07 337 | 96.16 342 | 81.20 379 | 90.42 379 | 96.84 296 | 90.72 295 | 97.14 196 | 97.13 243 | 90.47 255 | 99.11 290 | 94.04 220 | 98.25 294 | 98.91 197 |
|
| Syy-MVS | | | 92.09 317 | 91.80 313 | 92.93 345 | 95.19 373 | 82.65 367 | 92.46 341 | 91.35 372 | 90.67 297 | 91.76 370 | 87.61 399 | 85.64 311 | 98.50 353 | 94.73 192 | 96.84 345 | 97.65 322 |
|
| myMVS_eth3d | | | 87.16 368 | 85.61 371 | 91.82 364 | 95.19 373 | 79.32 386 | 92.46 341 | 91.35 372 | 90.67 297 | 91.76 370 | 87.61 399 | 41.96 411 | 98.50 353 | 82.66 379 | 96.84 345 | 97.65 322 |
|
| ppachtmachnet_test | | | 94.49 260 | 94.84 233 | 93.46 328 | 96.16 342 | 82.10 371 | 90.59 377 | 97.48 276 | 90.53 299 | 97.01 211 | 97.59 209 | 91.01 248 | 99.36 237 | 93.97 223 | 99.18 212 | 98.94 189 |
|
| test_cas_vis1_n_1920 | | | 95.34 217 | 95.67 204 | 94.35 309 | 98.21 200 | 86.83 324 | 95.61 218 | 99.26 30 | 90.45 300 | 98.17 127 | 98.96 61 | 84.43 320 | 98.31 367 | 96.74 83 | 99.17 213 | 97.90 306 |
|
| MVP-Stereo | | | 95.69 200 | 95.28 212 | 96.92 178 | 98.15 213 | 93.03 193 | 95.64 217 | 98.20 222 | 90.39 301 | 96.63 236 | 97.73 200 | 91.63 240 | 99.10 293 | 91.84 267 | 97.31 337 | 98.63 234 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_vis3_rt | | | 97.04 131 | 96.98 136 | 97.23 157 | 98.44 180 | 95.88 80 | 96.82 132 | 99.67 6 | 90.30 302 | 99.27 29 | 99.33 27 | 94.04 180 | 96.03 396 | 97.14 72 | 97.83 311 | 99.78 11 |
|
| UnsupCasMVSNet_bld | | | 94.72 247 | 94.26 261 | 96.08 226 | 98.62 155 | 90.54 254 | 93.38 318 | 98.05 246 | 90.30 302 | 97.02 210 | 96.80 268 | 89.54 271 | 99.16 281 | 88.44 331 | 96.18 363 | 98.56 240 |
|
| DP-MVS Recon | | | 95.55 207 | 95.13 218 | 96.80 187 | 98.51 170 | 93.99 163 | 94.60 271 | 98.69 160 | 90.20 304 | 95.78 277 | 96.21 298 | 92.73 211 | 98.98 307 | 90.58 299 | 98.86 250 | 97.42 334 |
|
| MCST-MVS | | | 96.24 179 | 95.80 200 | 97.56 122 | 98.75 136 | 94.13 158 | 94.66 269 | 98.17 228 | 90.17 305 | 96.21 258 | 96.10 305 | 95.14 150 | 99.43 208 | 94.13 215 | 98.85 251 | 99.13 156 |
|
| iter_conf05_11 | | | 93.77 280 | 93.29 282 | 95.24 263 | 96.54 327 | 89.14 273 | 91.55 359 | 95.02 333 | 90.16 306 | 93.21 346 | 93.94 350 | 87.37 298 | 99.56 168 | 92.24 257 | 99.56 111 | 97.03 344 |
|
| CDS-MVSNet | | | 94.88 239 | 94.12 267 | 97.14 161 | 97.64 278 | 93.57 178 | 93.96 300 | 97.06 290 | 90.05 307 | 96.30 253 | 96.55 280 | 86.10 306 | 99.47 196 | 90.10 308 | 99.31 195 | 98.40 254 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TR-MVS | | | 92.54 308 | 92.20 307 | 93.57 326 | 96.49 331 | 86.66 325 | 93.51 314 | 94.73 336 | 89.96 308 | 94.95 299 | 93.87 351 | 90.24 264 | 98.61 343 | 81.18 384 | 94.88 379 | 95.45 381 |
|
| FE-MVS | | | 92.95 302 | 92.22 306 | 95.11 270 | 97.21 309 | 88.33 289 | 98.54 23 | 93.66 348 | 89.91 309 | 96.21 258 | 98.14 151 | 70.33 386 | 99.50 186 | 87.79 338 | 98.24 295 | 97.51 330 |
|
| pmmvs-eth3d | | | 96.49 169 | 96.18 182 | 97.42 142 | 98.25 196 | 94.29 151 | 94.77 265 | 98.07 244 | 89.81 310 | 97.97 151 | 98.33 122 | 93.11 200 | 99.08 295 | 95.46 147 | 99.84 40 | 98.89 201 |
|
| D2MVS | | | 95.18 225 | 95.17 216 | 95.21 265 | 97.76 261 | 87.76 306 | 94.15 288 | 97.94 248 | 89.77 311 | 96.99 212 | 97.68 204 | 87.45 296 | 99.14 283 | 95.03 177 | 99.81 48 | 98.74 221 |
|
| bld_raw_dy_0_64 | | | 95.16 228 | 95.16 217 | 95.15 269 | 96.54 327 | 89.06 275 | 96.63 148 | 99.54 17 | 89.68 312 | 98.72 72 | 94.50 344 | 88.64 282 | 99.38 228 | 92.24 257 | 99.93 11 | 97.03 344 |
|
| PatchmatchNet |  | | 91.98 320 | 91.87 310 | 92.30 359 | 94.60 382 | 79.71 385 | 95.12 246 | 93.59 350 | 89.52 313 | 93.61 334 | 97.02 251 | 77.94 350 | 99.18 276 | 90.84 287 | 94.57 384 | 98.01 299 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| N_pmnet | | | 95.18 225 | 94.23 262 | 98.06 88 | 97.85 238 | 96.55 58 | 92.49 339 | 91.63 370 | 89.34 314 | 98.09 136 | 97.41 221 | 90.33 259 | 99.06 297 | 91.58 272 | 99.31 195 | 98.56 240 |
|
| BH-w/o | | | 92.14 315 | 91.94 309 | 92.73 350 | 97.13 313 | 85.30 340 | 92.46 341 | 95.64 320 | 89.33 315 | 94.21 314 | 92.74 367 | 89.60 269 | 98.24 370 | 81.68 382 | 94.66 381 | 94.66 386 |
|
| test_fmvs2 | | | 96.38 175 | 96.45 170 | 96.16 223 | 97.85 238 | 91.30 238 | 96.81 133 | 99.45 19 | 89.24 316 | 98.49 88 | 99.38 18 | 88.68 281 | 97.62 382 | 98.83 18 | 99.32 192 | 99.57 46 |
|
| mvsany_test3 | | | 96.21 180 | 95.93 195 | 97.05 169 | 97.40 297 | 94.33 150 | 95.76 206 | 94.20 342 | 89.10 317 | 99.36 24 | 99.60 6 | 93.97 183 | 97.85 378 | 95.40 155 | 98.63 274 | 98.99 183 |
|
| ET-MVSNet_ETH3D | | | 91.12 329 | 89.67 341 | 95.47 255 | 96.41 333 | 89.15 272 | 91.54 360 | 90.23 385 | 89.07 318 | 86.78 400 | 92.84 365 | 69.39 388 | 99.44 206 | 94.16 213 | 96.61 354 | 97.82 312 |
|
| WTY-MVS | | | 93.55 290 | 93.00 290 | 95.19 266 | 97.81 247 | 87.86 301 | 93.89 302 | 96.00 312 | 89.02 319 | 94.07 319 | 95.44 326 | 86.27 305 | 99.33 245 | 87.69 340 | 96.82 347 | 98.39 256 |
|
| F-COLMAP | | | 95.30 220 | 94.38 259 | 98.05 92 | 98.64 149 | 96.04 75 | 95.61 218 | 98.66 167 | 89.00 320 | 93.22 345 | 96.40 290 | 92.90 206 | 99.35 241 | 87.45 347 | 97.53 328 | 98.77 218 |
|
| PVSNet_BlendedMVS | | | 95.02 235 | 94.93 227 | 95.27 262 | 97.79 256 | 87.40 313 | 94.14 290 | 98.68 162 | 88.94 321 | 94.51 308 | 98.01 172 | 93.04 202 | 99.30 253 | 89.77 313 | 99.49 142 | 99.11 164 |
|
| baseline2 | | | 89.65 347 | 88.44 353 | 93.25 332 | 95.62 364 | 82.71 366 | 93.82 304 | 85.94 400 | 88.89 322 | 87.35 398 | 92.54 370 | 71.23 382 | 99.33 245 | 86.01 355 | 94.60 383 | 97.72 319 |
|
| tpm | | | 91.08 331 | 90.85 329 | 91.75 365 | 95.33 371 | 78.09 390 | 95.03 255 | 91.27 375 | 88.75 323 | 93.53 337 | 97.40 222 | 71.24 381 | 99.30 253 | 91.25 278 | 93.87 386 | 97.87 309 |
|
| MS-PatchMatch | | | 94.83 240 | 94.91 229 | 94.57 300 | 96.81 323 | 87.10 319 | 94.23 283 | 97.34 279 | 88.74 324 | 97.14 196 | 97.11 245 | 91.94 236 | 98.23 371 | 92.99 248 | 97.92 307 | 98.37 258 |
|
| UWE-MVS | | | 87.57 364 | 86.72 366 | 90.13 375 | 95.21 372 | 73.56 405 | 91.94 354 | 83.78 404 | 88.73 325 | 93.00 350 | 92.87 364 | 55.22 405 | 99.25 265 | 81.74 381 | 97.96 305 | 97.59 327 |
|
| EPMVS | | | 89.26 349 | 88.55 351 | 91.39 367 | 92.36 403 | 79.11 388 | 95.65 214 | 79.86 406 | 88.60 326 | 93.12 348 | 96.53 282 | 70.73 385 | 98.10 375 | 90.75 291 | 89.32 397 | 96.98 346 |
|
| WB-MVSnew | | | 91.50 326 | 91.29 319 | 92.14 361 | 94.85 378 | 80.32 383 | 93.29 321 | 88.77 392 | 88.57 327 | 94.03 321 | 92.21 374 | 92.56 217 | 98.28 369 | 80.21 387 | 97.08 339 | 97.81 314 |
|
| QAPM | | | 95.88 194 | 95.57 209 | 96.80 187 | 97.90 236 | 91.84 229 | 98.18 53 | 98.73 150 | 88.41 328 | 96.42 245 | 98.13 153 | 94.73 159 | 99.75 67 | 88.72 327 | 98.94 240 | 98.81 212 |
|
| PVSNet_Blended_VisFu | | | 95.95 191 | 95.80 200 | 96.42 210 | 99.28 57 | 90.62 250 | 95.31 238 | 99.08 58 | 88.40 329 | 96.97 215 | 98.17 150 | 92.11 230 | 99.78 47 | 93.64 233 | 99.21 207 | 98.86 208 |
|
| sss | | | 94.22 266 | 93.72 275 | 95.74 241 | 97.71 269 | 89.95 258 | 93.84 303 | 96.98 292 | 88.38 330 | 93.75 329 | 95.74 315 | 87.94 289 | 98.89 314 | 91.02 282 | 98.10 300 | 98.37 258 |
|
| thisisatest0515 | | | 90.43 335 | 89.18 347 | 94.17 316 | 97.07 315 | 85.44 338 | 89.75 388 | 87.58 395 | 88.28 331 | 93.69 332 | 91.72 380 | 65.27 392 | 99.58 161 | 90.59 298 | 98.67 269 | 97.50 332 |
|
| test_vis1_n | | | 95.67 202 | 95.89 197 | 95.03 275 | 98.18 206 | 89.89 259 | 96.94 126 | 99.28 29 | 88.25 332 | 98.20 122 | 98.92 65 | 86.69 304 | 97.19 385 | 97.70 54 | 98.82 255 | 98.00 300 |
|
| PatchMatch-RL | | | 94.61 254 | 93.81 274 | 97.02 173 | 98.19 203 | 95.72 86 | 93.66 309 | 97.23 281 | 88.17 333 | 94.94 300 | 95.62 320 | 91.43 241 | 98.57 346 | 87.36 348 | 97.68 321 | 96.76 359 |
|
| tpmrst | | | 90.31 336 | 90.61 334 | 89.41 377 | 94.06 390 | 72.37 408 | 95.06 252 | 93.69 345 | 88.01 334 | 92.32 365 | 96.86 261 | 77.45 354 | 98.82 319 | 91.04 281 | 87.01 400 | 97.04 343 |
|
| Anonymous20231206 | | | 95.27 221 | 95.06 223 | 95.88 236 | 98.72 139 | 89.37 267 | 95.70 208 | 97.85 253 | 88.00 335 | 96.98 214 | 97.62 207 | 91.95 235 | 99.34 243 | 89.21 320 | 99.53 125 | 98.94 189 |
|
| FPMVS | | | 89.92 342 | 88.63 350 | 93.82 320 | 98.37 185 | 96.94 45 | 91.58 358 | 93.34 352 | 88.00 335 | 90.32 380 | 97.10 246 | 70.87 384 | 91.13 404 | 71.91 402 | 96.16 365 | 93.39 394 |
|
| MAR-MVS | | | 94.21 268 | 93.03 288 | 97.76 109 | 96.94 320 | 97.44 33 | 96.97 125 | 97.15 285 | 87.89 337 | 92.00 367 | 92.73 368 | 92.14 229 | 99.12 287 | 83.92 373 | 97.51 329 | 96.73 360 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| IB-MVS | | 85.98 20 | 88.63 355 | 86.95 365 | 93.68 324 | 95.12 375 | 84.82 351 | 90.85 374 | 90.17 386 | 87.55 338 | 88.48 393 | 91.34 384 | 58.01 397 | 99.59 159 | 87.24 350 | 93.80 387 | 96.63 363 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| OpenMVS |  | 94.22 8 | 95.48 211 | 95.20 214 | 96.32 215 | 97.16 311 | 91.96 226 | 97.74 79 | 98.84 122 | 87.26 339 | 94.36 312 | 98.01 172 | 93.95 184 | 99.67 128 | 90.70 296 | 98.75 261 | 97.35 337 |
|
| PC_three_1452 | | | | | | | | | | 87.24 340 | 98.37 101 | 97.44 219 | 97.00 64 | 96.78 393 | 92.01 261 | 99.25 203 | 99.21 140 |
|
| pmmvs5 | | | 94.63 253 | 94.34 260 | 95.50 253 | 97.63 279 | 88.34 288 | 94.02 294 | 97.13 286 | 87.15 341 | 95.22 292 | 97.15 242 | 87.50 295 | 99.27 262 | 93.99 221 | 99.26 202 | 98.88 205 |
|
| train_agg | | | 95.46 213 | 94.66 241 | 97.88 102 | 97.84 243 | 95.23 115 | 93.62 310 | 98.39 199 | 87.04 342 | 93.78 326 | 95.99 307 | 94.58 167 | 99.52 181 | 91.76 270 | 98.90 244 | 98.89 201 |
|
| test_8 | | | | | | 97.81 247 | 95.07 124 | 93.54 313 | 98.38 201 | 87.04 342 | 93.71 330 | 95.96 310 | 94.58 167 | 99.52 181 | | | |
|
| test_f | | | 95.82 197 | 95.88 198 | 95.66 245 | 97.61 280 | 93.21 191 | 95.61 218 | 98.17 228 | 86.98 344 | 98.42 96 | 99.47 11 | 90.46 256 | 94.74 399 | 97.71 52 | 98.45 286 | 99.03 176 |
|
| test_fmvs1_n | | | 95.21 223 | 95.28 212 | 94.99 278 | 98.15 213 | 89.13 274 | 96.81 133 | 99.43 21 | 86.97 345 | 97.21 191 | 98.92 65 | 83.00 329 | 97.13 386 | 98.09 36 | 98.94 240 | 98.72 224 |
|
| TEST9 | | | | | | 97.84 243 | 95.23 115 | 93.62 310 | 98.39 199 | 86.81 346 | 93.78 326 | 95.99 307 | 94.68 163 | 99.52 181 | | | |
|
| pmmvs4 | | | 94.82 241 | 94.19 265 | 96.70 194 | 97.42 296 | 92.75 201 | 92.09 352 | 96.76 300 | 86.80 347 | 95.73 280 | 97.22 239 | 89.28 277 | 98.89 314 | 93.28 242 | 99.14 216 | 98.46 252 |
|
| MDTV_nov1_ep13 | | | | 91.28 320 | | 94.31 384 | 73.51 406 | 94.80 262 | 93.16 353 | 86.75 348 | 93.45 340 | 97.40 222 | 76.37 361 | 98.55 349 | 88.85 325 | 96.43 356 | |
|
| test_fmvs1 | | | 94.51 259 | 94.60 247 | 94.26 313 | 95.91 350 | 87.92 299 | 95.35 234 | 99.02 76 | 86.56 349 | 96.79 222 | 98.52 102 | 82.64 331 | 97.00 389 | 97.87 43 | 98.71 266 | 97.88 308 |
|
| test-mter | | | 87.92 361 | 87.17 362 | 90.16 373 | 94.24 387 | 74.98 402 | 89.89 384 | 89.06 390 | 86.44 350 | 89.97 384 | 90.77 389 | 54.96 408 | 98.57 346 | 91.88 265 | 97.36 334 | 96.92 348 |
|
| PLC |  | 91.02 16 | 94.05 275 | 92.90 291 | 97.51 127 | 98.00 228 | 95.12 123 | 94.25 281 | 98.25 214 | 86.17 351 | 91.48 372 | 95.25 327 | 91.01 248 | 99.19 275 | 85.02 368 | 96.69 352 | 98.22 277 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MVE |  | 73.61 22 | 86.48 369 | 85.92 368 | 88.18 383 | 96.23 338 | 85.28 342 | 81.78 401 | 75.79 407 | 86.01 352 | 82.53 403 | 91.88 378 | 92.74 210 | 87.47 406 | 71.42 403 | 94.86 380 | 91.78 397 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| USDC | | | 94.56 256 | 94.57 252 | 94.55 301 | 97.78 259 | 86.43 329 | 92.75 331 | 98.65 172 | 85.96 353 | 96.91 219 | 97.93 181 | 90.82 251 | 98.74 327 | 90.71 295 | 99.59 103 | 98.47 250 |
|
| HY-MVS | | 91.43 15 | 92.58 307 | 91.81 312 | 94.90 283 | 96.49 331 | 88.87 278 | 97.31 105 | 94.62 337 | 85.92 354 | 90.50 378 | 96.84 263 | 85.05 314 | 99.40 221 | 83.77 376 | 95.78 370 | 96.43 367 |
|
| 原ACMM1 | | | | | 96.58 200 | 98.16 211 | 92.12 219 | | 98.15 234 | 85.90 355 | 93.49 338 | 96.43 287 | 92.47 224 | 99.38 228 | 87.66 341 | 98.62 275 | 98.23 276 |
|
| PAPR | | | 92.22 313 | 91.27 321 | 95.07 273 | 95.73 363 | 88.81 280 | 91.97 353 | 97.87 252 | 85.80 356 | 90.91 374 | 92.73 368 | 91.16 245 | 98.33 366 | 79.48 388 | 95.76 371 | 98.08 286 |
|
| IU-MVS | | | | | | 99.22 68 | 95.40 103 | | 98.14 235 | 85.77 357 | 98.36 104 | | | | 95.23 161 | 99.51 135 | 99.49 70 |
|
| 1112_ss | | | 94.12 271 | 93.42 280 | 96.23 218 | 98.59 159 | 90.85 245 | 94.24 282 | 98.85 119 | 85.49 358 | 92.97 351 | 94.94 333 | 86.01 307 | 99.64 140 | 91.78 269 | 97.92 307 | 98.20 279 |
|
| dp | | | 88.08 359 | 88.05 355 | 88.16 384 | 92.85 400 | 68.81 410 | 94.17 286 | 92.88 356 | 85.47 359 | 91.38 373 | 96.14 302 | 68.87 389 | 98.81 321 | 86.88 352 | 83.80 403 | 96.87 351 |
|
| TESTMET0.1,1 | | | 87.20 367 | 86.57 367 | 89.07 378 | 93.62 395 | 72.84 407 | 89.89 384 | 87.01 398 | 85.46 360 | 89.12 390 | 90.20 392 | 56.00 403 | 97.72 381 | 90.91 285 | 96.92 341 | 96.64 361 |
|
| 1314 | | | 92.38 310 | 92.30 305 | 92.64 352 | 95.42 370 | 85.15 344 | 95.86 201 | 96.97 293 | 85.40 361 | 90.62 375 | 93.06 361 | 91.12 246 | 97.80 380 | 86.74 353 | 95.49 375 | 94.97 385 |
|
| jason | | | 94.39 263 | 94.04 269 | 95.41 260 | 98.29 190 | 87.85 303 | 92.74 333 | 96.75 301 | 85.38 362 | 95.29 290 | 96.15 300 | 88.21 288 | 99.65 136 | 94.24 210 | 99.34 185 | 98.74 221 |
| jason: jason. |
| EU-MVSNet | | | 94.25 265 | 94.47 255 | 93.60 325 | 98.14 215 | 82.60 369 | 97.24 110 | 92.72 359 | 85.08 363 | 98.48 90 | 98.94 63 | 82.59 332 | 98.76 326 | 97.47 62 | 99.53 125 | 99.44 95 |
|
| miper_enhance_ethall | | | 93.14 300 | 92.78 297 | 94.20 314 | 93.65 394 | 85.29 341 | 89.97 383 | 97.85 253 | 85.05 364 | 96.15 263 | 94.56 340 | 85.74 309 | 99.14 283 | 93.74 229 | 98.34 290 | 98.17 283 |
|
| CDPH-MVS | | | 95.45 214 | 94.65 242 | 97.84 105 | 98.28 192 | 94.96 126 | 93.73 308 | 98.33 207 | 85.03 365 | 95.44 286 | 96.60 278 | 95.31 145 | 99.44 206 | 90.01 309 | 99.13 218 | 99.11 164 |
|
| mvsany_test1 | | | 93.47 292 | 93.03 288 | 94.79 290 | 94.05 391 | 92.12 219 | 90.82 375 | 90.01 388 | 85.02 366 | 97.26 188 | 98.28 133 | 93.57 192 | 97.03 387 | 92.51 255 | 95.75 372 | 95.23 383 |
|
| DPM-MVS | | | 93.68 285 | 92.77 298 | 96.42 210 | 97.91 234 | 92.54 203 | 91.17 369 | 97.47 277 | 84.99 367 | 93.08 349 | 94.74 337 | 89.90 266 | 99.00 303 | 87.54 344 | 98.09 301 | 97.72 319 |
|
| CR-MVSNet | | | 93.29 297 | 92.79 295 | 94.78 291 | 95.44 368 | 88.15 293 | 96.18 174 | 97.20 282 | 84.94 368 | 94.10 317 | 98.57 97 | 77.67 352 | 99.39 225 | 95.17 164 | 95.81 367 | 96.81 357 |
|
| test_vis1_rt | | | 94.03 276 | 93.65 276 | 95.17 268 | 95.76 361 | 93.42 183 | 93.97 299 | 98.33 207 | 84.68 369 | 93.17 347 | 95.89 313 | 92.53 222 | 94.79 398 | 93.50 236 | 94.97 378 | 97.31 338 |
|
| PVSNet | | 86.72 19 | 91.10 330 | 90.97 327 | 91.49 366 | 97.56 284 | 78.04 391 | 87.17 394 | 94.60 338 | 84.65 370 | 92.34 364 | 92.20 375 | 87.37 298 | 98.47 356 | 85.17 367 | 97.69 320 | 97.96 302 |
|
| lupinMVS | | | 93.77 280 | 93.28 283 | 95.24 263 | 97.68 271 | 87.81 304 | 92.12 350 | 96.05 310 | 84.52 371 | 94.48 310 | 95.06 331 | 86.90 301 | 99.63 144 | 93.62 234 | 99.13 218 | 98.27 273 |
|
| PVSNet_Blended | | | 93.96 277 | 93.65 276 | 94.91 281 | 97.79 256 | 87.40 313 | 91.43 361 | 98.68 162 | 84.50 372 | 94.51 308 | 94.48 345 | 93.04 202 | 99.30 253 | 89.77 313 | 98.61 276 | 98.02 298 |
|
| MVS-HIRNet | | | 88.40 357 | 90.20 338 | 82.99 386 | 97.01 316 | 60.04 411 | 93.11 325 | 85.61 401 | 84.45 373 | 88.72 392 | 99.09 50 | 84.72 318 | 98.23 371 | 82.52 380 | 96.59 355 | 90.69 401 |
|
| new_pmnet | | | 92.34 311 | 91.69 315 | 94.32 310 | 96.23 338 | 89.16 271 | 92.27 348 | 92.88 356 | 84.39 374 | 95.29 290 | 96.35 293 | 85.66 310 | 96.74 394 | 84.53 371 | 97.56 326 | 97.05 342 |
|
| ADS-MVSNet2 | | | 91.47 327 | 90.51 335 | 94.36 308 | 95.51 366 | 85.63 335 | 95.05 253 | 95.70 318 | 83.46 375 | 92.69 357 | 96.84 263 | 79.15 346 | 99.41 219 | 85.66 360 | 90.52 393 | 98.04 296 |
|
| ADS-MVSNet | | | 90.95 333 | 90.26 337 | 93.04 338 | 95.51 366 | 82.37 370 | 95.05 253 | 93.41 351 | 83.46 375 | 92.69 357 | 96.84 263 | 79.15 346 | 98.70 332 | 85.66 360 | 90.52 393 | 98.04 296 |
|
| HyFIR lowres test | | | 93.72 283 | 92.65 300 | 96.91 180 | 98.93 116 | 91.81 230 | 91.23 368 | 98.52 183 | 82.69 377 | 96.46 244 | 96.52 284 | 80.38 342 | 99.90 14 | 90.36 305 | 98.79 257 | 99.03 176 |
|
| Test_1112_low_res | | | 93.53 291 | 92.86 292 | 95.54 252 | 98.60 157 | 88.86 279 | 92.75 331 | 98.69 160 | 82.66 378 | 92.65 359 | 96.92 259 | 84.75 317 | 99.56 168 | 90.94 284 | 97.76 314 | 98.19 280 |
|
| CVMVSNet | | | 92.33 312 | 92.79 295 | 90.95 369 | 97.26 307 | 75.84 401 | 95.29 240 | 92.33 364 | 81.86 379 | 96.27 254 | 98.19 147 | 81.44 335 | 98.46 357 | 94.23 211 | 98.29 293 | 98.55 242 |
|
| gm-plane-assit | | | | | | 91.79 404 | 71.40 409 | | | 81.67 380 | | 90.11 394 | | 98.99 305 | 84.86 369 | | |
|
| OpenMVS_ROB |  | 91.80 14 | 93.64 288 | 93.05 286 | 95.42 258 | 97.31 306 | 91.21 240 | 95.08 250 | 96.68 305 | 81.56 381 | 96.88 221 | 96.41 288 | 90.44 258 | 99.25 265 | 85.39 364 | 97.67 322 | 95.80 375 |
|
| CostFormer | | | 89.75 344 | 89.25 342 | 91.26 368 | 94.69 381 | 78.00 392 | 95.32 237 | 91.98 367 | 81.50 382 | 90.55 377 | 96.96 256 | 71.06 383 | 98.89 314 | 88.59 330 | 92.63 390 | 96.87 351 |
|
| CHOSEN 280x420 | | | 89.98 340 | 89.19 346 | 92.37 358 | 95.60 365 | 81.13 380 | 86.22 396 | 97.09 288 | 81.44 383 | 87.44 397 | 93.15 355 | 73.99 369 | 99.47 196 | 88.69 328 | 99.07 228 | 96.52 365 |
|
| TAPA-MVS | | 93.32 12 | 94.93 236 | 94.23 262 | 97.04 171 | 98.18 206 | 94.51 141 | 95.22 243 | 98.73 150 | 81.22 384 | 96.25 256 | 95.95 311 | 93.80 188 | 98.98 307 | 89.89 311 | 98.87 248 | 97.62 324 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| 无先验 | | | | | | | | 93.20 323 | 97.91 249 | 80.78 385 | | | | 99.40 221 | 87.71 339 | | 97.94 304 |
|
| MDTV_nov1_ep13_2view | | | | | | | 57.28 412 | 94.89 259 | | 80.59 386 | 94.02 322 | | 78.66 348 | | 85.50 362 | | 97.82 312 |
|
| testdata | | | | | 95.70 244 | 98.16 211 | 90.58 251 | | 97.72 262 | 80.38 387 | 95.62 282 | 97.02 251 | 92.06 233 | 98.98 307 | 89.06 324 | 98.52 281 | 97.54 329 |
|
| CMPMVS |  | 73.10 23 | 92.74 305 | 91.39 317 | 96.77 190 | 93.57 396 | 94.67 134 | 94.21 285 | 97.67 264 | 80.36 388 | 93.61 334 | 96.60 278 | 82.85 330 | 97.35 384 | 84.86 369 | 98.78 258 | 98.29 272 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| CHOSEN 1792x2688 | | | 94.10 272 | 93.41 281 | 96.18 222 | 99.16 82 | 90.04 256 | 92.15 349 | 98.68 162 | 79.90 389 | 96.22 257 | 97.83 188 | 87.92 293 | 99.42 210 | 89.18 321 | 99.65 87 | 99.08 169 |
|
| PAPM | | | 87.64 362 | 85.84 369 | 93.04 338 | 96.54 327 | 84.99 347 | 88.42 393 | 95.57 324 | 79.52 390 | 83.82 401 | 93.05 362 | 80.57 341 | 98.41 359 | 62.29 405 | 92.79 389 | 95.71 376 |
|
| cascas | | | 91.89 321 | 91.35 318 | 93.51 327 | 94.27 386 | 85.60 336 | 88.86 392 | 98.61 174 | 79.32 391 | 92.16 366 | 91.44 383 | 89.22 278 | 98.12 374 | 90.80 289 | 97.47 332 | 96.82 356 |
|
| PMMVS | | | 92.39 309 | 91.08 324 | 96.30 217 | 93.12 398 | 92.81 197 | 90.58 378 | 95.96 314 | 79.17 392 | 91.85 369 | 92.27 373 | 90.29 263 | 98.66 339 | 89.85 312 | 96.68 353 | 97.43 333 |
|
| pmmvs3 | | | 90.00 339 | 88.90 349 | 93.32 329 | 94.20 389 | 85.34 339 | 91.25 367 | 92.56 363 | 78.59 393 | 93.82 325 | 95.17 328 | 67.36 391 | 98.69 334 | 89.08 323 | 98.03 303 | 95.92 372 |
|
| PVSNet_0 | | 81.89 21 | 84.49 370 | 83.21 373 | 88.34 381 | 95.76 361 | 74.97 404 | 83.49 398 | 92.70 360 | 78.47 394 | 87.94 395 | 86.90 402 | 83.38 328 | 96.63 395 | 73.44 400 | 66.86 406 | 93.40 393 |
|
| 新几何1 | | | | | 97.25 155 | 98.29 190 | 94.70 133 | | 97.73 261 | 77.98 395 | 94.83 302 | 96.67 275 | 92.08 232 | 99.45 203 | 88.17 336 | 98.65 273 | 97.61 325 |
|
| 旧先验2 | | | | | | | | 93.35 319 | | 77.95 396 | 95.77 279 | | | 98.67 338 | 90.74 294 | | |
|
| tpm2 | | | 88.47 356 | 87.69 359 | 90.79 370 | 94.98 377 | 77.34 395 | 95.09 248 | 91.83 368 | 77.51 397 | 89.40 388 | 96.41 288 | 67.83 390 | 98.73 328 | 83.58 378 | 92.60 391 | 96.29 369 |
|
| DSMNet-mixed | | | 92.19 314 | 91.83 311 | 93.25 332 | 96.18 341 | 83.68 362 | 96.27 166 | 93.68 347 | 76.97 398 | 92.54 363 | 99.18 39 | 89.20 279 | 98.55 349 | 83.88 374 | 98.60 278 | 97.51 330 |
|
| test222 | | | | | | 98.17 209 | 93.24 190 | 92.74 333 | 97.61 273 | 75.17 399 | 94.65 305 | 96.69 274 | 90.96 250 | | | 98.66 271 | 97.66 321 |
|
| PCF-MVS | | 89.43 18 | 92.12 316 | 90.64 333 | 96.57 202 | 97.80 251 | 93.48 181 | 89.88 387 | 98.45 189 | 74.46 400 | 96.04 266 | 95.68 317 | 90.71 253 | 99.31 250 | 73.73 399 | 99.01 235 | 96.91 350 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| 114514_t | | | 93.96 277 | 93.22 285 | 96.19 221 | 99.06 101 | 90.97 244 | 95.99 190 | 98.94 98 | 73.88 401 | 93.43 341 | 96.93 257 | 92.38 226 | 99.37 234 | 89.09 322 | 99.28 199 | 98.25 275 |
|
| tpm cat1 | | | 88.01 360 | 87.33 361 | 90.05 376 | 94.48 383 | 76.28 400 | 94.47 274 | 94.35 341 | 73.84 402 | 89.26 389 | 95.61 321 | 73.64 373 | 98.30 368 | 84.13 372 | 86.20 401 | 95.57 380 |
|
| MVS | | | 90.02 338 | 89.20 345 | 92.47 356 | 94.71 380 | 86.90 322 | 95.86 201 | 96.74 302 | 64.72 403 | 90.62 375 | 92.77 366 | 92.54 220 | 98.39 361 | 79.30 389 | 95.56 374 | 92.12 396 |
|
| DeepMVS_CX |  | | | | 77.17 387 | 90.94 406 | 85.28 342 | | 74.08 410 | 52.51 404 | 80.87 405 | 88.03 398 | 75.25 367 | 70.63 407 | 59.23 407 | 84.94 402 | 75.62 402 |
|
| tmp_tt | | | 57.23 373 | 62.50 376 | 41.44 389 | 34.77 412 | 49.21 413 | 83.93 397 | 60.22 413 | 15.31 405 | 71.11 406 | 79.37 404 | 70.09 387 | 44.86 408 | 64.76 404 | 82.93 404 | 30.25 404 |
|
| test_method | | | 66.88 372 | 66.13 375 | 69.11 388 | 62.68 411 | 25.73 414 | 49.76 402 | 96.04 311 | 14.32 406 | 64.27 407 | 91.69 381 | 73.45 376 | 88.05 405 | 76.06 396 | 66.94 405 | 93.54 391 |
|
| EGC-MVSNET | | | 83.08 371 | 77.93 374 | 98.53 50 | 99.57 20 | 97.55 26 | 98.33 38 | 98.57 180 | 4.71 407 | 10.38 408 | 98.90 69 | 95.60 137 | 99.50 186 | 95.69 129 | 99.61 98 | 98.55 242 |
|
| test123 | | | 12.59 375 | 15.49 378 | 3.87 390 | 6.07 413 | 2.55 415 | 90.75 376 | 2.59 415 | 2.52 408 | 5.20 410 | 13.02 407 | 4.96 413 | 1.85 410 | 5.20 408 | 9.09 407 | 7.23 405 |
|
| testmvs | | | 12.33 376 | 15.23 379 | 3.64 391 | 5.77 414 | 2.23 416 | 88.99 391 | 3.62 414 | 2.30 409 | 5.29 409 | 13.09 406 | 4.52 414 | 1.95 409 | 5.16 409 | 8.32 408 | 6.75 406 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| cdsmvs_eth3d_5k | | | 24.22 374 | 32.30 377 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 98.10 238 | 0.00 410 | 0.00 411 | 95.06 331 | 97.54 38 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| pcd_1.5k_mvsjas | | | 7.98 377 | 10.65 380 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 95.82 125 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| ab-mvs-re | | | 7.91 378 | 10.55 381 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 94.94 333 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| WAC-MVS | | | | | | | 79.32 386 | | | | | | | | 85.41 363 | | |
|
| MSC_two_6792asdad | | | | | 98.22 75 | 97.75 263 | 95.34 110 | | 98.16 232 | | | | | 99.75 67 | 95.87 122 | 99.51 135 | 99.57 46 |
|
| No_MVS | | | | | 98.22 75 | 97.75 263 | 95.34 110 | | 98.16 232 | | | | | 99.75 67 | 95.87 122 | 99.51 135 | 99.57 46 |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 97.64 118 | 98.01 224 | 95.27 113 | 96.79 135 | | | | 97.35 231 | 96.97 66 | 98.51 352 | 91.21 279 | 99.25 203 | 99.14 154 |
|
| test_0728_SECOND | | | | | 98.25 73 | 99.23 65 | 95.49 101 | 96.74 138 | 98.89 104 | | | | | 99.75 67 | 95.48 144 | 99.52 130 | 99.53 56 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.06 292 |
|
| test_part2 | | | | | | 99.03 107 | 96.07 74 | | | | 98.08 138 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 77.80 351 | | | | 98.06 292 |
|
| sam_mvs | | | | | | | | | | | | | 77.38 355 | | | | |
|
| ambc | | | | | 96.56 203 | 98.23 199 | 91.68 232 | 97.88 68 | 98.13 236 | | 98.42 96 | 98.56 99 | 94.22 177 | 99.04 299 | 94.05 219 | 99.35 182 | 98.95 187 |
|
| MTGPA |  | | | | | | | | 98.73 150 | | | | | | | | |
|
| test_post1 | | | | | | | | 94.98 257 | | | | 10.37 409 | 76.21 363 | 99.04 299 | 89.47 317 | | |
|
| test_post | | | | | | | | | | | | 10.87 408 | 76.83 359 | 99.07 296 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 96.84 263 | 77.36 356 | 99.42 210 | | | |
|
| GG-mvs-BLEND | | | | | 90.60 371 | 91.00 405 | 84.21 358 | 98.23 46 | 72.63 411 | | 82.76 402 | 84.11 403 | 56.14 402 | 96.79 392 | 72.20 401 | 92.09 392 | 90.78 400 |
|
| MTMP | | | | | | | | 96.55 150 | 74.60 408 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 91.29 275 | 98.89 247 | 99.00 180 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.34 306 | 98.90 244 | 99.10 168 |
|
| agg_prior | | | | | | 97.80 251 | 94.96 126 | | 98.36 203 | | 93.49 338 | | | 99.53 178 | | | |
|
| test_prior4 | | | | | | | 95.38 105 | 93.61 312 | | | | | | | | | |
|
| test_prior | | | | | 97.46 137 | 97.79 256 | 94.26 155 | | 98.42 195 | | | | | 99.34 243 | | | 98.79 214 |
|
| 新几何2 | | | | | | | | 93.43 315 | | | | | | | | | |
|
| 旧先验1 | | | | | | 97.80 251 | 93.87 166 | | 97.75 260 | | | 97.04 250 | 93.57 192 | | | 98.68 268 | 98.72 224 |
|
| 原ACMM2 | | | | | | | | 92.82 329 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.46 199 | 87.84 337 | | |
|
| segment_acmp | | | | | | | | | | | | | 95.34 144 | | | | |
|
| test12 | | | | | 97.46 137 | 97.61 280 | 94.07 159 | | 97.78 259 | | 93.57 336 | | 93.31 197 | 99.42 210 | | 98.78 258 | 98.89 201 |
|
| plane_prior7 | | | | | | 98.70 144 | 94.67 134 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.38 184 | 94.37 148 | | | | | | 91.91 238 | | | | |
|
| plane_prior5 | | | | | | | | | 98.75 147 | | | | | 99.46 199 | 92.59 253 | 99.20 208 | 99.28 127 |
|
| plane_prior4 | | | | | | | | | | | | 96.77 269 | | | | | |
|
| plane_prior1 | | | | | | 98.49 174 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.17 228 | | | | | | | | |
|
| lessismore_v0 | | | | | 97.05 169 | 99.36 50 | 92.12 219 | | 84.07 402 | | 98.77 68 | 98.98 58 | 85.36 313 | 99.74 76 | 97.34 65 | 99.37 174 | 99.30 120 |
|
| test11 | | | | | | | | | 98.08 240 | | | | | | | | |
|
| door | | | | | | | | | 97.81 258 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 92.47 207 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 90.51 301 | | |
|
| HQP4-MVS | | | | | | | | | | | 92.87 352 | | | 99.23 271 | | | 99.06 173 |
|
| HQP3-MVS | | | | | | | | | 98.43 192 | | | | | | | 98.74 262 | |
|
| HQP2-MVS | | | | | | | | | | | | | 90.33 259 | | | | |
|
| NP-MVS | | | | | | 98.14 215 | 93.72 172 | | | | | 95.08 329 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 130 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.55 118 | |
|
| Test By Simon | | | | | | | | | | | | | 94.51 170 | | | | |
|