LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 64 | 99.18 5 | 99.20 16 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 46 | 99.92 14 | 99.77 8 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 96 | 98.79 108 | 94.37 146 | 98.84 10 | 99.15 24 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 120 | 99.72 85 | 98.12 16 | 99.86 25 | 99.73 15 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 18 | 96.12 71 | 98.48 24 | 99.10 31 | 99.36 4 | 99.29 23 | 99.06 36 | 97.27 38 | 99.93 2 | 97.71 32 | 99.91 17 | 99.70 18 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 15 | 95.67 88 | 98.45 25 | 99.15 24 | 99.33 5 | 99.30 21 | 99.00 38 | 97.27 38 | 99.92 4 | 97.64 34 | 99.92 14 | 99.75 13 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 204 | 99.33 44 | 89.64 250 | 97.92 55 | 99.56 5 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 37 | 99.98 2 | 99.77 8 |
|
VDDNet | | | 96.98 120 | 96.84 126 | 97.41 145 | 99.40 37 | 93.26 185 | 97.94 52 | 95.31 314 | 99.26 7 | 98.39 74 | 99.18 27 | 87.85 275 | 99.62 148 | 95.13 145 | 99.09 207 | 99.35 95 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 59 | 99.55 18 | 95.47 100 | 98.49 22 | 99.13 27 | 99.22 8 | 99.22 27 | 98.96 42 | 97.35 34 | 99.92 4 | 97.79 28 | 99.93 10 | 99.79 7 |
|
LFMVS | | | 95.32 201 | 94.88 209 | 96.62 189 | 98.03 195 | 91.47 225 | 97.65 70 | 90.72 354 | 99.11 9 | 97.89 135 | 98.31 86 | 79.20 316 | 99.48 188 | 93.91 199 | 99.12 203 | 98.93 180 |
|
gg-mvs-nofinetune | | | 88.28 326 | 86.96 331 | 92.23 328 | 92.84 364 | 84.44 332 | 98.19 41 | 74.60 372 | 99.08 10 | 87.01 363 | 99.47 8 | 56.93 370 | 98.23 346 | 78.91 355 | 95.61 338 | 94.01 353 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 83 | 97.89 14 | 99.47 3 | 99.32 10 | 99.08 10 | 97.87 139 | 99.67 2 | 96.47 88 | 99.92 4 | 97.88 23 | 99.98 2 | 99.85 3 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 95 | 99.64 11 | 94.20 154 | 98.67 13 | 99.14 26 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 83 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 67 | 99.46 29 | 95.22 116 | 98.27 34 | 98.84 99 | 99.05 13 | 99.01 35 | 98.65 63 | 95.37 129 | 99.90 13 | 97.57 36 | 99.91 17 | 99.77 8 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 23 | 96.61 56 | 98.55 19 | 99.17 19 | 99.05 13 | 99.17 29 | 98.79 51 | 95.47 126 | 99.89 16 | 97.95 21 | 99.91 17 | 99.75 13 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 45 | 99.69 2 | 99.57 4 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 179 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 11 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 123 | 97.75 30 | 99.89 22 | 99.62 25 |
|
DP-MVS | | | 97.87 63 | 97.89 48 | 97.81 105 | 98.62 131 | 94.82 128 | 97.13 103 | 98.79 116 | 98.98 17 | 98.74 48 | 98.49 73 | 95.80 114 | 99.49 185 | 95.04 149 | 99.44 129 | 99.11 152 |
|
FOURS1 | | | | | | 99.59 14 | 98.20 4 | 99.03 7 | 99.25 12 | 98.96 18 | 98.87 40 | | | | | | |
|
K. test v3 | | | 96.44 156 | 96.28 157 | 96.95 169 | 99.41 36 | 91.53 223 | 97.65 70 | 90.31 357 | 98.89 19 | 98.93 38 | 99.36 14 | 84.57 295 | 99.92 4 | 97.81 26 | 99.56 85 | 99.39 85 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 20 | 98.06 8 | 99.34 4 | 99.44 8 | 98.85 20 | 99.00 36 | 99.20 23 | 97.42 32 | 99.59 157 | 97.21 48 | 99.76 39 | 99.40 83 |
|
test_part1 | | | 96.77 136 | 96.53 146 | 97.47 136 | 98.04 194 | 92.92 194 | 97.93 53 | 98.85 94 | 98.83 21 | 99.30 21 | 99.07 35 | 79.25 315 | 99.79 39 | 97.59 35 | 99.93 10 | 99.69 20 |
|
Anonymous20240529 | | | 97.96 46 | 98.04 39 | 97.71 112 | 98.69 123 | 94.28 151 | 97.86 58 | 98.31 193 | 98.79 22 | 99.23 26 | 98.86 49 | 95.76 115 | 99.61 155 | 95.49 114 | 99.36 155 | 99.23 124 |
|
Gipuma |  | | 98.07 40 | 98.31 29 | 97.36 149 | 99.76 5 | 96.28 67 | 98.51 21 | 99.10 31 | 98.76 23 | 96.79 198 | 99.34 17 | 96.61 78 | 98.82 302 | 96.38 72 | 99.50 111 | 96.98 311 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 56 | 99.07 87 | 95.87 79 | 96.73 125 | 99.05 43 | 98.67 24 | 98.84 42 | 98.45 76 | 97.58 28 | 99.88 18 | 96.45 71 | 99.86 25 | 99.54 38 |
|
test_0402 | | | 97.84 66 | 97.97 41 | 97.47 136 | 99.19 68 | 94.07 157 | 96.71 126 | 98.73 129 | 98.66 25 | 98.56 59 | 98.41 78 | 96.84 69 | 99.69 116 | 94.82 157 | 99.81 30 | 98.64 218 |
|
VDD-MVS | | | 97.37 101 | 97.25 101 | 97.74 110 | 98.69 123 | 94.50 142 | 97.04 108 | 95.61 308 | 98.59 26 | 98.51 62 | 98.72 56 | 92.54 207 | 99.58 159 | 96.02 87 | 99.49 115 | 99.12 148 |
|
LS3D | | | 97.77 73 | 97.50 87 | 98.57 48 | 96.24 309 | 97.58 25 | 98.45 25 | 98.85 94 | 98.58 27 | 97.51 152 | 97.94 141 | 95.74 116 | 99.63 140 | 95.19 136 | 98.97 218 | 98.51 229 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 51 | 98.76 11 | 98.89 79 | 98.49 28 | 99.38 17 | 99.14 30 | 95.44 128 | 99.84 25 | 96.47 70 | 99.80 33 | 99.47 61 |
|
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 123 | 99.49 27 | 93.10 190 | 98.35 28 | 99.21 14 | 98.43 29 | 98.89 39 | 98.83 50 | 94.30 164 | 99.81 32 | 97.87 24 | 99.91 17 | 99.77 8 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 114 | 99.06 88 | 93.80 168 | 97.76 64 | 99.00 60 | 98.40 30 | 99.07 33 | 98.98 40 | 96.89 64 | 99.75 65 | 97.19 51 | 99.79 35 | 99.55 37 |
|
IS-MVSNet | | | 96.93 122 | 96.68 135 | 97.70 114 | 99.25 52 | 94.00 160 | 98.57 17 | 96.74 288 | 98.36 31 | 98.14 106 | 97.98 135 | 88.23 268 | 99.71 99 | 93.10 218 | 99.72 48 | 99.38 87 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 65 | 97.35 36 | 97.96 51 | 99.16 20 | 98.34 32 | 98.78 45 | 98.52 71 | 97.32 35 | 99.45 198 | 94.08 189 | 99.67 58 | 99.13 143 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 64 | 99.22 58 | 95.66 89 | 97.90 56 | 99.08 37 | 98.31 33 | 99.02 34 | 98.74 55 | 97.68 24 | 99.61 155 | 97.77 29 | 99.85 27 | 99.70 18 |
|
SixPastTwentyTwo | | | 97.49 92 | 97.57 81 | 97.26 155 | 99.56 16 | 92.33 203 | 98.28 32 | 96.97 279 | 98.30 34 | 99.45 14 | 99.35 16 | 88.43 266 | 99.89 16 | 98.01 20 | 99.76 39 | 99.54 38 |
|
tfpnnormal | | | 97.72 76 | 97.97 41 | 96.94 170 | 99.26 49 | 92.23 206 | 97.83 60 | 98.45 170 | 98.25 35 | 99.13 30 | 98.66 61 | 96.65 75 | 99.69 116 | 93.92 198 | 99.62 66 | 98.91 185 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 128 | 99.51 23 | 93.39 183 | 98.20 40 | 98.87 87 | 98.23 36 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 170 | 96.52 67 | 99.53 97 | 99.60 26 |
|
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 94 | 99.39 38 | 95.22 116 | 97.55 77 | 99.20 16 | 98.21 37 | 99.25 25 | 98.51 72 | 98.21 11 | 99.40 215 | 94.79 159 | 99.72 48 | 99.32 98 |
|
Baseline_NR-MVSNet | | | 97.72 76 | 97.79 55 | 97.50 131 | 99.56 16 | 93.29 184 | 95.44 190 | 98.86 90 | 98.20 38 | 98.37 75 | 99.24 20 | 94.69 149 | 99.55 170 | 95.98 91 | 99.79 35 | 99.65 23 |
|
3Dnovator+ | | 96.13 3 | 97.73 75 | 97.59 79 | 98.15 81 | 98.11 192 | 95.60 91 | 98.04 48 | 98.70 139 | 98.13 39 | 96.93 193 | 98.45 76 | 95.30 133 | 99.62 148 | 95.64 108 | 98.96 219 | 99.24 123 |
|
UniMVSNet_NR-MVSNet | | | 97.83 67 | 97.65 69 | 98.37 60 | 98.72 116 | 95.78 81 | 95.66 180 | 99.02 52 | 98.11 40 | 98.31 88 | 97.69 170 | 94.65 153 | 99.85 22 | 97.02 57 | 99.71 51 | 99.48 58 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 63 | 99.17 6 | 99.05 43 | 98.05 41 | 99.61 11 | 99.52 5 | 93.72 179 | 99.88 18 | 98.72 9 | 99.88 23 | 99.65 23 |
|
FIs | | | 97.93 55 | 98.07 36 | 97.48 135 | 99.38 39 | 92.95 193 | 98.03 50 | 99.11 29 | 98.04 42 | 98.62 52 | 98.66 61 | 93.75 178 | 99.78 43 | 97.23 45 | 99.84 28 | 99.73 15 |
|
Regformer-4 | | | 97.53 90 | 97.47 90 | 97.71 112 | 97.35 271 | 93.91 162 | 95.26 207 | 98.14 215 | 97.97 43 | 98.34 81 | 97.89 146 | 95.49 123 | 99.71 99 | 97.41 41 | 99.42 140 | 99.51 44 |
|
PMVS |  | 89.60 17 | 96.71 142 | 96.97 119 | 95.95 224 | 99.51 23 | 97.81 17 | 97.42 88 | 97.49 260 | 97.93 44 | 95.95 239 | 98.58 65 | 96.88 66 | 96.91 358 | 89.59 287 | 99.36 155 | 93.12 358 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EPP-MVSNet | | | 96.84 128 | 96.58 140 | 97.65 118 | 99.18 69 | 93.78 170 | 98.68 12 | 96.34 292 | 97.91 45 | 97.30 166 | 98.06 126 | 88.46 265 | 99.85 22 | 93.85 200 | 99.40 147 | 99.32 98 |
|
NR-MVSNet | | | 97.96 46 | 97.86 50 | 98.26 69 | 98.73 114 | 95.54 93 | 98.14 43 | 98.73 129 | 97.79 46 | 99.42 15 | 97.83 153 | 94.40 162 | 99.78 43 | 95.91 94 | 99.76 39 | 99.46 63 |
|
SR-MVS-dyc-post | | | 98.14 34 | 97.84 51 | 99.02 9 | 98.81 105 | 98.05 9 | 97.55 77 | 98.86 90 | 97.77 47 | 98.20 97 | 98.07 121 | 96.60 80 | 99.76 58 | 95.49 114 | 99.20 188 | 99.26 117 |
|
RE-MVS-def | | | | 97.88 49 | | 98.81 105 | 98.05 9 | 97.55 77 | 98.86 90 | 97.77 47 | 98.20 97 | 98.07 121 | 96.94 58 | | 95.49 114 | 99.20 188 | 99.26 117 |
|
VPNet | | | 97.26 108 | 97.49 88 | 96.59 191 | 99.47 28 | 90.58 238 | 96.27 142 | 98.53 163 | 97.77 47 | 98.46 68 | 98.41 78 | 94.59 155 | 99.68 123 | 94.61 165 | 99.29 178 | 99.52 42 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 70 | 98.10 6 | 97.73 68 | 99.11 29 | 97.76 50 | 98.62 52 | 98.27 99 | 97.88 19 | 99.80 38 | 95.67 104 | 99.50 111 | 99.38 87 |
|
EI-MVSNet-UG-set | | | 97.32 105 | 97.40 91 | 97.09 163 | 97.34 275 | 92.01 215 | 95.33 201 | 97.65 252 | 97.74 51 | 98.30 90 | 98.14 112 | 95.04 139 | 99.69 116 | 97.55 37 | 99.52 102 | 99.58 28 |
|
EI-MVSNet-Vis-set | | | 97.32 105 | 97.39 92 | 97.11 161 | 97.36 270 | 92.08 213 | 95.34 200 | 97.65 252 | 97.74 51 | 98.29 91 | 98.11 117 | 95.05 137 | 99.68 123 | 97.50 39 | 99.50 111 | 99.56 35 |
|
Regformer-2 | | | 97.41 98 | 97.24 103 | 97.93 97 | 97.21 283 | 94.72 131 | 94.85 233 | 98.27 194 | 97.74 51 | 98.11 108 | 97.50 184 | 95.58 121 | 99.69 116 | 96.57 66 | 99.31 174 | 99.37 92 |
|
Anonymous202405211 | | | 96.34 159 | 95.98 172 | 97.43 143 | 98.25 171 | 93.85 166 | 96.74 121 | 94.41 321 | 97.72 54 | 98.37 75 | 98.03 129 | 87.15 279 | 99.53 175 | 94.06 190 | 99.07 210 | 98.92 184 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 45 | 98.79 31 | 98.79 108 | 97.31 37 | 97.55 77 | 98.92 76 | 97.72 54 | 98.25 93 | 98.13 113 | 97.10 45 | 99.75 65 | 95.44 121 | 99.24 186 | 99.32 98 |
|
VNet | | | 96.84 128 | 96.83 127 | 96.88 174 | 98.06 193 | 92.02 214 | 96.35 139 | 97.57 259 | 97.70 56 | 97.88 136 | 97.80 158 | 92.40 211 | 99.54 173 | 94.73 164 | 98.96 219 | 99.08 157 |
|
zzz-MVS | | | 98.01 44 | 97.66 67 | 99.06 4 | 99.44 31 | 97.90 12 | 95.66 180 | 98.73 129 | 97.69 57 | 97.90 133 | 97.96 136 | 95.81 112 | 99.82 29 | 96.13 79 | 99.61 72 | 99.45 68 |
|
MTAPA | | | 98.14 34 | 97.84 51 | 99.06 4 | 99.44 31 | 97.90 12 | 97.25 94 | 98.73 129 | 97.69 57 | 97.90 133 | 97.96 136 | 95.81 112 | 99.82 29 | 96.13 79 | 99.61 72 | 99.45 68 |
|
Regformer-3 | | | 97.25 109 | 97.29 98 | 97.11 161 | 97.35 271 | 92.32 204 | 95.26 207 | 97.62 257 | 97.67 59 | 98.17 101 | 97.89 146 | 95.05 137 | 99.56 166 | 97.16 52 | 99.42 140 | 99.46 63 |
|
Regformer-1 | | | 97.27 107 | 97.16 108 | 97.61 121 | 97.21 283 | 93.86 165 | 94.85 233 | 98.04 229 | 97.62 60 | 98.03 120 | 97.50 184 | 95.34 130 | 99.63 140 | 96.52 67 | 99.31 174 | 99.35 95 |
|
test1172 | | | 98.08 39 | 97.76 59 | 99.05 6 | 98.78 110 | 98.07 7 | 97.41 89 | 98.85 94 | 97.57 61 | 98.15 104 | 97.96 136 | 96.60 80 | 99.76 58 | 95.30 130 | 99.18 193 | 99.33 97 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 102 | 99.52 22 | 94.58 138 | 98.28 32 | 99.00 60 | 97.57 61 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 184 | 97.09 54 | 99.75 43 | 99.50 45 |
|
DU-MVS | | | 97.79 71 | 97.60 78 | 98.36 61 | 98.73 114 | 95.78 81 | 95.65 183 | 98.87 87 | 97.57 61 | 98.31 88 | 97.83 153 | 94.69 149 | 99.85 22 | 97.02 57 | 99.71 51 | 99.46 63 |
|
DROMVSNet | | | 97.90 60 | 97.94 44 | 97.79 106 | 98.66 125 | 95.14 119 | 98.31 31 | 99.66 2 | 97.57 61 | 95.95 239 | 97.01 225 | 96.99 55 | 99.82 29 | 97.66 33 | 99.64 63 | 98.39 237 |
|
PatchT | | | 93.75 260 | 93.57 256 | 94.29 291 | 95.05 339 | 87.32 296 | 96.05 155 | 92.98 333 | 97.54 65 | 94.25 284 | 98.72 56 | 75.79 336 | 99.24 255 | 95.92 93 | 95.81 333 | 96.32 333 |
|
UniMVSNet (Re) | | | 97.83 67 | 97.65 69 | 98.35 63 | 98.80 107 | 95.86 80 | 95.92 167 | 99.04 49 | 97.51 66 | 98.22 96 | 97.81 157 | 94.68 151 | 99.78 43 | 97.14 53 | 99.75 43 | 99.41 82 |
|
alignmvs | | | 96.01 173 | 95.52 188 | 97.50 131 | 97.77 236 | 94.71 132 | 96.07 154 | 96.84 282 | 97.48 67 | 96.78 202 | 94.28 324 | 85.50 288 | 99.40 215 | 96.22 76 | 98.73 248 | 98.40 235 |
|
RPMNet | | | 94.68 231 | 94.60 224 | 94.90 266 | 95.44 333 | 88.15 277 | 96.18 149 | 98.86 90 | 97.43 68 | 94.10 288 | 98.49 73 | 79.40 314 | 99.76 58 | 95.69 103 | 95.81 333 | 96.81 322 |
|
canonicalmvs | | | 97.23 111 | 97.21 106 | 97.30 152 | 97.65 250 | 94.39 144 | 97.84 59 | 99.05 43 | 97.42 69 | 96.68 205 | 93.85 327 | 97.63 26 | 99.33 236 | 96.29 75 | 98.47 264 | 98.18 262 |
|
XVS | | | 97.96 46 | 97.63 74 | 98.94 18 | 99.15 73 | 97.66 20 | 97.77 62 | 98.83 106 | 97.42 69 | 96.32 222 | 97.64 172 | 96.49 86 | 99.72 85 | 95.66 106 | 99.37 152 | 99.45 68 |
|
X-MVStestdata | | | 92.86 278 | 90.83 303 | 98.94 18 | 99.15 73 | 97.66 20 | 97.77 62 | 98.83 106 | 97.42 69 | 96.32 222 | 36.50 368 | 96.49 86 | 99.72 85 | 95.66 106 | 99.37 152 | 99.45 68 |
|
FMVSNet1 | | | 97.95 50 | 98.08 35 | 97.56 123 | 99.14 81 | 93.67 173 | 98.23 35 | 98.66 149 | 97.41 72 | 99.00 36 | 99.19 24 | 95.47 126 | 99.73 81 | 95.83 99 | 99.76 39 | 99.30 104 |
|
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 128 | 99.43 33 | 93.54 179 | 98.23 35 | 99.05 43 | 97.40 73 | 99.37 18 | 99.08 34 | 98.79 5 | 99.47 191 | 97.74 31 | 99.71 51 | 99.50 45 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
WR-MVS | | | 96.90 125 | 96.81 128 | 97.16 158 | 98.56 139 | 92.20 209 | 94.33 249 | 98.12 218 | 97.34 74 | 98.20 97 | 97.33 203 | 92.81 196 | 99.75 65 | 94.79 159 | 99.81 30 | 99.54 38 |
|
SR-MVS | | | 98.00 45 | 97.66 67 | 99.01 11 | 98.77 112 | 97.93 11 | 97.38 90 | 98.83 106 | 97.32 75 | 98.06 116 | 97.85 151 | 96.65 75 | 99.77 53 | 95.00 152 | 99.11 204 | 99.32 98 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 86 | 99.33 44 | 95.21 118 | 98.04 48 | 99.46 7 | 97.32 75 | 97.82 144 | 99.11 31 | 96.75 72 | 99.86 20 | 97.84 25 | 99.36 155 | 99.15 137 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v8 | | | 97.60 84 | 98.06 38 | 96.23 211 | 98.71 119 | 89.44 254 | 97.43 87 | 98.82 114 | 97.29 77 | 98.74 48 | 99.10 32 | 93.86 174 | 99.68 123 | 98.61 10 | 99.94 8 | 99.56 35 |
|
casdiffmvs | | | 97.50 91 | 97.81 54 | 96.56 195 | 98.51 144 | 91.04 229 | 95.83 172 | 99.09 36 | 97.23 78 | 98.33 85 | 98.30 90 | 97.03 52 | 99.37 226 | 96.58 65 | 99.38 151 | 99.28 112 |
|
test_one_0601 | | | | | | 99.05 91 | 95.50 98 | | 98.87 87 | 97.21 79 | 98.03 120 | 98.30 90 | 96.93 60 | | | | |
|
Anonymous20240521 | | | 97.07 114 | 97.51 85 | 95.76 232 | 99.35 42 | 88.18 276 | 97.78 61 | 98.40 180 | 97.11 80 | 98.34 81 | 99.04 37 | 89.58 253 | 99.79 39 | 98.09 18 | 99.93 10 | 99.30 104 |
|
DIV-MVS_2432*1600 | | | 97.86 65 | 98.07 36 | 97.25 156 | 99.22 58 | 92.81 196 | 97.55 77 | 98.94 74 | 97.10 81 | 98.85 41 | 98.88 47 | 95.03 140 | 99.67 128 | 97.39 43 | 99.65 61 | 99.26 117 |
|
IterMVS-SCA-FT | | | 95.86 180 | 96.19 161 | 94.85 269 | 97.68 246 | 85.53 316 | 92.42 310 | 97.63 256 | 96.99 82 | 98.36 78 | 98.54 70 | 87.94 270 | 99.75 65 | 97.07 56 | 99.08 208 | 99.27 116 |
|
EI-MVSNet | | | 96.63 147 | 96.93 122 | 95.74 233 | 97.26 280 | 88.13 279 | 95.29 205 | 97.65 252 | 96.99 82 | 97.94 130 | 98.19 108 | 92.55 205 | 99.58 159 | 96.91 60 | 99.56 85 | 99.50 45 |
|
IterMVS-LS | | | 96.92 123 | 97.29 98 | 95.79 231 | 98.51 144 | 88.13 279 | 95.10 215 | 98.66 149 | 96.99 82 | 98.46 68 | 98.68 60 | 92.55 205 | 99.74 75 | 96.91 60 | 99.79 35 | 99.50 45 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 77 | 99.68 9 | 94.82 128 | 98.10 45 | 99.21 14 | 96.91 85 | 99.75 2 | 99.45 9 | 95.82 108 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
thres100view900 | | | 91.76 297 | 91.26 296 | 93.26 305 | 98.21 175 | 84.50 331 | 96.39 135 | 90.39 355 | 96.87 86 | 96.33 221 | 93.08 334 | 73.44 348 | 99.42 204 | 78.85 356 | 97.74 289 | 95.85 338 |
|
3Dnovator | | 96.53 2 | 97.61 83 | 97.64 72 | 97.50 131 | 97.74 242 | 93.65 177 | 98.49 22 | 98.88 85 | 96.86 87 | 97.11 177 | 98.55 69 | 95.82 108 | 99.73 81 | 95.94 92 | 99.42 140 | 99.13 143 |
|
test20.03 | | | 96.58 150 | 96.61 137 | 96.48 199 | 98.49 148 | 91.72 221 | 95.68 179 | 97.69 247 | 96.81 88 | 98.27 92 | 97.92 144 | 94.18 168 | 98.71 313 | 90.78 260 | 99.66 60 | 99.00 168 |
|
thres600view7 | | | 92.03 293 | 91.43 291 | 93.82 295 | 98.19 177 | 84.61 330 | 96.27 142 | 90.39 355 | 96.81 88 | 96.37 220 | 93.11 330 | 73.44 348 | 99.49 185 | 80.32 352 | 97.95 281 | 97.36 302 |
|
LCM-MVSNet-Re | | | 97.33 104 | 97.33 96 | 97.32 151 | 98.13 190 | 93.79 169 | 96.99 111 | 99.65 3 | 96.74 90 | 99.47 13 | 98.93 44 | 96.91 63 | 99.84 25 | 90.11 279 | 99.06 213 | 98.32 246 |
|
EPNet | | | 93.72 261 | 92.62 278 | 97.03 167 | 87.61 373 | 92.25 205 | 96.27 142 | 91.28 348 | 96.74 90 | 87.65 360 | 97.39 196 | 85.00 291 | 99.64 138 | 92.14 228 | 99.48 119 | 99.20 129 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DVP-MVS++. | | | 97.96 46 | 97.90 45 | 98.12 83 | 97.75 239 | 95.40 101 | 99.03 7 | 98.89 79 | 96.62 92 | 98.62 52 | 98.30 90 | 96.97 56 | 99.75 65 | 95.70 101 | 99.25 183 | 99.21 126 |
|
test_0728_THIRD | | | | | | | | | | 96.62 92 | 98.40 72 | 98.28 95 | 97.10 45 | 99.71 99 | 95.70 101 | 99.62 66 | 99.58 28 |
|
v10 | | | 97.55 87 | 97.97 41 | 96.31 208 | 98.60 134 | 89.64 250 | 97.44 85 | 99.02 52 | 96.60 94 | 98.72 50 | 99.16 29 | 93.48 183 | 99.72 85 | 98.76 6 | 99.92 14 | 99.58 28 |
|
Patchmtry | | | 95.03 214 | 94.59 226 | 96.33 206 | 94.83 341 | 90.82 233 | 96.38 137 | 97.20 268 | 96.59 95 | 97.49 155 | 98.57 66 | 77.67 323 | 99.38 223 | 92.95 221 | 99.62 66 | 98.80 201 |
|
hse-mvs3 | | | 96.29 160 | 95.63 184 | 98.26 69 | 98.50 147 | 96.11 72 | 96.90 113 | 97.09 274 | 96.58 96 | 97.21 170 | 98.19 108 | 84.14 296 | 99.78 43 | 95.89 95 | 96.17 331 | 98.89 189 |
|
hse-mvs2 | | | 95.77 182 | 95.09 198 | 97.79 106 | 97.84 217 | 95.51 95 | 95.66 180 | 95.43 313 | 96.58 96 | 97.21 170 | 96.16 273 | 84.14 296 | 99.54 173 | 95.89 95 | 96.92 314 | 98.32 246 |
|
SteuartSystems-ACMMP | | | 98.02 43 | 97.76 59 | 98.79 31 | 99.43 33 | 97.21 42 | 97.15 100 | 98.90 78 | 96.58 96 | 98.08 114 | 97.87 150 | 97.02 53 | 99.76 58 | 95.25 133 | 99.59 77 | 99.40 83 |
Skip Steuart: Steuart Systems R&D Blog. |
baseline | | | 97.44 96 | 97.78 58 | 96.43 201 | 98.52 143 | 90.75 236 | 96.84 115 | 99.03 50 | 96.51 99 | 97.86 140 | 98.02 130 | 96.67 74 | 99.36 228 | 97.09 54 | 99.47 121 | 99.19 130 |
|
MVSFormer | | | 96.14 167 | 96.36 154 | 95.49 244 | 97.68 246 | 87.81 286 | 98.67 13 | 99.02 52 | 96.50 100 | 94.48 280 | 96.15 274 | 86.90 280 | 99.92 4 | 98.73 7 | 99.13 200 | 98.74 209 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 66 | 98.67 13 | 99.02 52 | 96.50 100 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
Vis-MVSNet (Re-imp) | | | 95.11 209 | 94.85 210 | 95.87 229 | 99.12 82 | 89.17 258 | 97.54 82 | 94.92 316 | 96.50 100 | 96.58 209 | 97.27 207 | 83.64 300 | 99.48 188 | 88.42 304 | 99.67 58 | 98.97 172 |
|
UGNet | | | 96.81 133 | 96.56 142 | 97.58 122 | 96.64 299 | 93.84 167 | 97.75 65 | 97.12 273 | 96.47 103 | 93.62 306 | 98.88 47 | 93.22 188 | 99.53 175 | 95.61 110 | 99.69 55 | 99.36 93 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
JIA-IIPM | | | 91.79 296 | 90.69 305 | 95.11 257 | 93.80 354 | 90.98 230 | 94.16 259 | 91.78 344 | 96.38 104 | 90.30 348 | 99.30 18 | 72.02 352 | 98.90 295 | 88.28 306 | 90.17 358 | 95.45 346 |
|
HQP_MVS | | | 96.66 146 | 96.33 156 | 97.68 117 | 98.70 121 | 94.29 148 | 96.50 131 | 98.75 125 | 96.36 105 | 96.16 232 | 96.77 240 | 91.91 225 | 99.46 194 | 92.59 224 | 99.20 188 | 99.28 112 |
|
plane_prior2 | | | | | | | | 96.50 131 | | 96.36 105 | | | | | | | |
|
CSCG | | | 97.40 99 | 97.30 97 | 97.69 116 | 98.95 97 | 94.83 127 | 97.28 93 | 98.99 63 | 96.35 107 | 98.13 107 | 95.95 286 | 95.99 101 | 99.66 134 | 94.36 180 | 99.73 45 | 98.59 224 |
|
MP-MVS |  | | 97.64 80 | 97.18 107 | 99.00 12 | 99.32 46 | 97.77 18 | 97.49 83 | 98.73 129 | 96.27 108 | 95.59 254 | 97.75 162 | 96.30 96 | 99.78 43 | 93.70 206 | 99.48 119 | 99.45 68 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
tfpn200view9 | | | 91.55 299 | 91.00 298 | 93.21 308 | 98.02 196 | 84.35 333 | 95.70 176 | 90.79 352 | 96.26 109 | 95.90 244 | 92.13 347 | 73.62 345 | 99.42 204 | 78.85 356 | 97.74 289 | 95.85 338 |
|
thres400 | | | 91.68 298 | 91.00 298 | 93.71 297 | 98.02 196 | 84.35 333 | 95.70 176 | 90.79 352 | 96.26 109 | 95.90 244 | 92.13 347 | 73.62 345 | 99.42 204 | 78.85 356 | 97.74 289 | 97.36 302 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 60 | 98.54 20 | 99.22 13 | 96.23 111 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
RPSCF | | | 97.87 63 | 97.51 85 | 98.95 17 | 99.15 73 | 98.43 3 | 97.56 76 | 99.06 41 | 96.19 112 | 98.48 65 | 98.70 58 | 94.72 148 | 99.24 255 | 94.37 177 | 99.33 170 | 99.17 133 |
|
test_yl | | | 94.40 241 | 94.00 247 | 95.59 237 | 96.95 292 | 89.52 252 | 94.75 238 | 95.55 310 | 96.18 113 | 96.79 198 | 96.14 276 | 81.09 308 | 99.18 261 | 90.75 261 | 97.77 286 | 98.07 267 |
|
DCV-MVSNet | | | 94.40 241 | 94.00 247 | 95.59 237 | 96.95 292 | 89.52 252 | 94.75 238 | 95.55 310 | 96.18 113 | 96.79 198 | 96.14 276 | 81.09 308 | 99.18 261 | 90.75 261 | 97.77 286 | 98.07 267 |
|
SED-MVS | | | 97.94 52 | 97.90 45 | 98.07 86 | 99.22 58 | 95.35 106 | 96.79 118 | 98.83 106 | 96.11 115 | 99.08 31 | 98.24 101 | 97.87 20 | 99.72 85 | 95.44 121 | 99.51 107 | 99.14 140 |
|
test_241102_TWO | | | | | | | | | 98.83 106 | 96.11 115 | 98.62 52 | 98.24 101 | 96.92 62 | 99.72 85 | 95.44 121 | 99.49 115 | 99.49 53 |
|
CP-MVS | | | 97.92 56 | 97.56 82 | 98.99 13 | 98.99 95 | 97.82 16 | 97.93 53 | 98.96 71 | 96.11 115 | 96.89 196 | 97.45 188 | 96.85 68 | 99.78 43 | 95.19 136 | 99.63 65 | 99.38 87 |
|
HFP-MVS | | | 97.94 52 | 97.64 72 | 98.83 26 | 99.15 73 | 97.50 29 | 97.59 74 | 98.84 99 | 96.05 118 | 97.49 155 | 97.54 179 | 97.07 48 | 99.70 108 | 95.61 110 | 99.46 124 | 99.30 104 |
|
ACMMPR | | | 97.95 50 | 97.62 76 | 98.94 18 | 99.20 66 | 97.56 26 | 97.59 74 | 98.83 106 | 96.05 118 | 97.46 161 | 97.63 173 | 96.77 71 | 99.76 58 | 95.61 110 | 99.46 124 | 99.49 53 |
|
test_241102_ONE | | | | | | 99.22 58 | 95.35 106 | | 98.83 106 | 96.04 120 | 99.08 31 | 98.13 113 | 97.87 20 | 99.33 236 | | | |
|
mPP-MVS | | | 97.91 59 | 97.53 83 | 99.04 7 | 99.22 58 | 97.87 15 | 97.74 66 | 98.78 120 | 96.04 120 | 97.10 178 | 97.73 165 | 96.53 83 | 99.78 43 | 95.16 140 | 99.50 111 | 99.46 63 |
|
Fast-Effi-MVS+-dtu | | | 96.44 156 | 96.12 164 | 97.39 147 | 97.18 285 | 94.39 144 | 95.46 189 | 98.73 129 | 96.03 122 | 94.72 271 | 94.92 311 | 96.28 98 | 99.69 116 | 93.81 201 | 97.98 280 | 98.09 264 |
|
region2R | | | 97.92 56 | 97.59 79 | 98.92 22 | 99.22 58 | 97.55 27 | 97.60 73 | 98.84 99 | 96.00 123 | 97.22 168 | 97.62 174 | 96.87 67 | 99.76 58 | 95.48 117 | 99.43 137 | 99.46 63 |
|
MDA-MVSNet-bldmvs | | | 95.69 183 | 95.67 182 | 95.74 233 | 98.48 150 | 88.76 268 | 92.84 299 | 97.25 266 | 96.00 123 | 97.59 148 | 97.95 140 | 91.38 230 | 99.46 194 | 93.16 217 | 96.35 328 | 98.99 171 |
|
GST-MVS | | | 97.82 69 | 97.49 88 | 98.81 29 | 99.23 55 | 97.25 39 | 97.16 99 | 98.79 116 | 95.96 125 | 97.53 150 | 97.40 192 | 96.93 60 | 99.77 53 | 95.04 149 | 99.35 160 | 99.42 80 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 54 | 98.72 116 | 96.04 74 | 98.07 47 | 99.10 31 | 95.96 125 | 98.59 57 | 98.69 59 | 96.94 58 | 99.81 32 | 96.64 62 | 99.58 79 | 99.57 32 |
|
SD-MVS | | | 97.37 101 | 97.70 62 | 96.35 205 | 98.14 187 | 95.13 120 | 96.54 130 | 98.92 76 | 95.94 127 | 99.19 28 | 98.08 119 | 97.74 22 | 95.06 364 | 95.24 134 | 99.54 94 | 98.87 195 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DVP-MVS |  | | 97.78 72 | 97.65 69 | 98.16 78 | 99.24 53 | 95.51 95 | 96.74 121 | 98.23 199 | 95.92 128 | 98.40 72 | 98.28 95 | 97.06 50 | 99.71 99 | 95.48 117 | 99.52 102 | 99.26 117 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.24 53 | 95.51 95 | 96.89 114 | 98.89 79 | 95.92 128 | 98.64 51 | 98.31 86 | 97.06 50 | | | | |
|
v148 | | | 96.58 150 | 96.97 119 | 95.42 247 | 98.63 130 | 87.57 290 | 95.09 217 | 97.90 233 | 95.91 130 | 98.24 95 | 97.96 136 | 93.42 184 | 99.39 220 | 96.04 85 | 99.52 102 | 99.29 111 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 20 | 97.48 31 | 98.35 28 | 99.03 50 | 95.88 131 | 97.88 136 | 98.22 106 | 98.15 12 | 99.74 75 | 96.50 69 | 99.62 66 | 99.42 80 |
|
ETV-MVS | | | 96.13 168 | 95.90 176 | 96.82 178 | 97.76 237 | 93.89 163 | 95.40 195 | 98.95 73 | 95.87 132 | 95.58 255 | 91.00 358 | 96.36 95 | 99.72 85 | 93.36 210 | 98.83 237 | 96.85 318 |
|
Effi-MVS+-dtu | | | 96.81 133 | 96.09 166 | 98.99 13 | 96.90 296 | 98.69 2 | 96.42 134 | 98.09 220 | 95.86 133 | 95.15 262 | 95.54 297 | 94.26 165 | 99.81 32 | 94.06 190 | 98.51 263 | 98.47 232 |
|
mvs-test1 | | | 96.20 164 | 95.50 189 | 98.32 64 | 96.90 296 | 98.16 5 | 95.07 220 | 98.09 220 | 95.86 133 | 93.63 305 | 94.32 323 | 94.26 165 | 99.71 99 | 94.06 190 | 97.27 312 | 97.07 308 |
|
DPE-MVS |  | | 97.64 80 | 97.35 95 | 98.50 51 | 98.85 103 | 96.18 68 | 95.21 212 | 98.99 63 | 95.84 135 | 98.78 45 | 98.08 119 | 96.84 69 | 99.81 32 | 93.98 196 | 99.57 82 | 99.52 42 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 60 | 98.45 25 | 99.12 28 | 95.83 136 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
tttt0517 | | | 93.31 272 | 92.56 279 | 95.57 239 | 98.71 119 | 87.86 283 | 97.44 85 | 87.17 365 | 95.79 137 | 97.47 160 | 96.84 234 | 64.12 364 | 99.81 32 | 96.20 77 | 99.32 172 | 99.02 167 |
|
ZNCC-MVS | | | 97.92 56 | 97.62 76 | 98.83 26 | 99.32 46 | 97.24 40 | 97.45 84 | 98.84 99 | 95.76 138 | 96.93 193 | 97.43 190 | 97.26 40 | 99.79 39 | 96.06 82 | 99.53 97 | 99.45 68 |
|
UnsupCasMVSNet_eth | | | 95.91 177 | 95.73 181 | 96.44 200 | 98.48 150 | 91.52 224 | 95.31 203 | 98.45 170 | 95.76 138 | 97.48 158 | 97.54 179 | 89.53 256 | 98.69 315 | 94.43 173 | 94.61 346 | 99.13 143 |
|
GeoE | | | 97.75 74 | 97.70 62 | 97.89 99 | 98.88 102 | 94.53 139 | 97.10 104 | 98.98 66 | 95.75 140 | 97.62 147 | 97.59 176 | 97.61 27 | 99.77 53 | 96.34 74 | 99.44 129 | 99.36 93 |
|
ACMMP |  | | 98.05 41 | 97.75 61 | 98.93 21 | 99.23 55 | 97.60 23 | 98.09 46 | 98.96 71 | 95.75 140 | 97.91 132 | 98.06 126 | 96.89 64 | 99.76 58 | 95.32 129 | 99.57 82 | 99.43 79 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MSP-MVS | | | 97.45 95 | 96.92 123 | 99.03 8 | 99.26 49 | 97.70 19 | 97.66 69 | 98.89 79 | 95.65 142 | 98.51 62 | 96.46 258 | 92.15 214 | 99.81 32 | 95.14 143 | 98.58 260 | 99.58 28 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ITE_SJBPF | | | | | 97.85 103 | 98.64 126 | 96.66 54 | | 98.51 166 | 95.63 143 | 97.22 168 | 97.30 206 | 95.52 122 | 98.55 329 | 90.97 253 | 98.90 227 | 98.34 245 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 38 | 98.65 16 | 99.19 18 | 95.62 144 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 13 | 98.59 11 | 99.91 17 | 99.77 8 |
|
CS-MVS-test | | | 96.62 148 | 96.59 138 | 96.69 186 | 97.88 212 | 93.16 188 | 97.21 98 | 99.53 6 | 95.61 145 | 93.72 301 | 95.33 301 | 95.49 123 | 99.69 116 | 95.37 128 | 99.19 192 | 97.22 305 |
|
API-MVS | | | 95.09 211 | 95.01 203 | 95.31 250 | 96.61 300 | 94.02 159 | 96.83 116 | 97.18 270 | 95.60 146 | 95.79 246 | 94.33 322 | 94.54 158 | 98.37 341 | 85.70 328 | 98.52 261 | 93.52 355 |
|
GBi-Net | | | 96.99 117 | 96.80 129 | 97.56 123 | 97.96 204 | 93.67 173 | 98.23 35 | 98.66 149 | 95.59 147 | 97.99 123 | 99.19 24 | 89.51 257 | 99.73 81 | 94.60 166 | 99.44 129 | 99.30 104 |
|
test1 | | | 96.99 117 | 96.80 129 | 97.56 123 | 97.96 204 | 93.67 173 | 98.23 35 | 98.66 149 | 95.59 147 | 97.99 123 | 99.19 24 | 89.51 257 | 99.73 81 | 94.60 166 | 99.44 129 | 99.30 104 |
|
FMVSNet2 | | | 96.72 140 | 96.67 136 | 96.87 175 | 97.96 204 | 91.88 217 | 97.15 100 | 98.06 227 | 95.59 147 | 98.50 64 | 98.62 64 | 89.51 257 | 99.65 135 | 94.99 153 | 99.60 75 | 99.07 159 |
|
HPM-MVS++ |  | | 96.99 117 | 96.38 153 | 98.81 29 | 98.64 126 | 97.59 24 | 95.97 162 | 98.20 203 | 95.51 150 | 95.06 263 | 96.53 254 | 94.10 169 | 99.70 108 | 94.29 181 | 99.15 195 | 99.13 143 |
|
IterMVS | | | 95.42 197 | 95.83 177 | 94.20 292 | 97.52 259 | 83.78 337 | 92.41 311 | 97.47 263 | 95.49 151 | 98.06 116 | 98.49 73 | 87.94 270 | 99.58 159 | 96.02 87 | 99.02 215 | 99.23 124 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+ | | | 96.19 165 | 96.01 169 | 96.71 184 | 97.43 267 | 92.19 210 | 96.12 152 | 99.10 31 | 95.45 152 | 93.33 318 | 94.71 314 | 97.23 43 | 99.56 166 | 93.21 216 | 97.54 301 | 98.37 239 |
|
PGM-MVS | | | 97.88 62 | 97.52 84 | 98.96 16 | 99.20 66 | 97.62 22 | 97.09 105 | 99.06 41 | 95.45 152 | 97.55 149 | 97.94 141 | 97.11 44 | 99.78 43 | 94.77 162 | 99.46 124 | 99.48 58 |
|
HPM-MVS |  | | 98.11 38 | 97.83 53 | 98.92 22 | 99.42 35 | 97.46 32 | 98.57 17 | 99.05 43 | 95.43 154 | 97.41 164 | 97.50 184 | 97.98 15 | 99.79 39 | 95.58 113 | 99.57 82 | 99.50 45 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
NCCC | | | 96.52 152 | 95.99 171 | 98.10 84 | 97.81 221 | 95.68 87 | 95.00 226 | 98.20 203 | 95.39 155 | 95.40 258 | 96.36 265 | 93.81 176 | 99.45 198 | 93.55 209 | 98.42 265 | 99.17 133 |
|
wuyk23d | | | 93.25 274 | 95.20 193 | 87.40 348 | 96.07 319 | 95.38 103 | 97.04 108 | 94.97 315 | 95.33 156 | 99.70 5 | 98.11 117 | 98.14 13 | 91.94 366 | 77.76 359 | 99.68 57 | 74.89 366 |
|
SF-MVS | | | 97.60 84 | 97.39 92 | 98.22 74 | 98.93 98 | 95.69 85 | 97.05 107 | 99.10 31 | 95.32 157 | 97.83 142 | 97.88 148 | 96.44 90 | 99.72 85 | 94.59 169 | 99.39 149 | 99.25 121 |
|
MSDG | | | 95.33 200 | 95.13 196 | 95.94 226 | 97.40 269 | 91.85 218 | 91.02 336 | 98.37 184 | 95.30 158 | 96.31 224 | 95.99 281 | 94.51 159 | 98.38 339 | 89.59 287 | 97.65 298 | 97.60 296 |
|
plane_prior3 | | | | | | | 94.51 140 | | | 95.29 159 | 96.16 232 | | | | | | |
|
ACMM | | 93.33 11 | 98.05 41 | 97.79 55 | 98.85 25 | 99.15 73 | 97.55 27 | 96.68 127 | 98.83 106 | 95.21 160 | 98.36 78 | 98.13 113 | 98.13 14 | 99.62 148 | 96.04 85 | 99.54 94 | 99.39 85 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVG-OURS-SEG-HR | | | 97.38 100 | 97.07 114 | 98.30 67 | 99.01 94 | 97.41 35 | 94.66 240 | 99.02 52 | 95.20 161 | 98.15 104 | 97.52 182 | 98.83 4 | 98.43 335 | 94.87 155 | 96.41 327 | 99.07 159 |
|
XVG-OURS | | | 97.12 113 | 96.74 132 | 98.26 69 | 98.99 95 | 97.45 33 | 93.82 275 | 99.05 43 | 95.19 162 | 98.32 86 | 97.70 168 | 95.22 135 | 98.41 336 | 94.27 182 | 98.13 275 | 98.93 180 |
|
v2v482 | | | 96.78 135 | 97.06 115 | 95.95 224 | 98.57 138 | 88.77 267 | 95.36 198 | 98.26 196 | 95.18 163 | 97.85 141 | 98.23 103 | 92.58 204 | 99.63 140 | 97.80 27 | 99.69 55 | 99.45 68 |
|
LPG-MVS_test | | | 97.94 52 | 97.67 66 | 98.74 35 | 99.15 73 | 97.02 43 | 97.09 105 | 99.02 52 | 95.15 164 | 98.34 81 | 98.23 103 | 97.91 17 | 99.70 108 | 94.41 174 | 99.73 45 | 99.50 45 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 73 | 97.02 43 | | 99.02 52 | 95.15 164 | 98.34 81 | 98.23 103 | 97.91 17 | 99.70 108 | 94.41 174 | 99.73 45 | 99.50 45 |
|
thres200 | | | 91.00 305 | 90.42 309 | 92.77 318 | 97.47 265 | 83.98 336 | 94.01 267 | 91.18 350 | 95.12 166 | 95.44 256 | 91.21 356 | 73.93 341 | 99.31 240 | 77.76 359 | 97.63 299 | 95.01 348 |
|
testgi | | | 96.07 169 | 96.50 150 | 94.80 272 | 99.26 49 | 87.69 289 | 95.96 163 | 98.58 160 | 95.08 167 | 98.02 122 | 96.25 269 | 97.92 16 | 97.60 355 | 88.68 301 | 98.74 245 | 99.11 152 |
|
ACMMP_NAP | | | 97.89 61 | 97.63 74 | 98.67 41 | 99.35 42 | 96.84 48 | 96.36 138 | 98.79 116 | 95.07 168 | 97.88 136 | 98.35 82 | 97.24 42 | 99.72 85 | 96.05 84 | 99.58 79 | 99.45 68 |
|
XVG-ACMP-BASELINE | | | 97.58 86 | 97.28 100 | 98.49 52 | 99.16 70 | 96.90 47 | 96.39 135 | 98.98 66 | 95.05 169 | 98.06 116 | 98.02 130 | 95.86 104 | 99.56 166 | 94.37 177 | 99.64 63 | 99.00 168 |
|
MVS_0304 | | | 95.50 190 | 95.05 202 | 96.84 177 | 96.28 308 | 93.12 189 | 97.00 110 | 96.16 294 | 95.03 170 | 89.22 354 | 97.70 168 | 90.16 248 | 99.48 188 | 94.51 171 | 99.34 163 | 97.93 281 |
|
xxxxxxxxxxxxxcwj | | | 97.24 110 | 97.03 117 | 97.89 99 | 98.48 150 | 94.71 132 | 94.53 245 | 99.07 40 | 95.02 171 | 97.83 142 | 97.88 148 | 96.44 90 | 99.72 85 | 94.59 169 | 99.39 149 | 99.25 121 |
|
save fliter | | | | | | 98.48 150 | 94.71 132 | 94.53 245 | 98.41 178 | 95.02 171 | | | | | | | |
|
CANet | | | 95.86 180 | 95.65 183 | 96.49 198 | 96.41 305 | 90.82 233 | 94.36 248 | 98.41 178 | 94.94 173 | 92.62 332 | 96.73 243 | 92.68 200 | 99.71 99 | 95.12 146 | 99.60 75 | 98.94 176 |
|
MVS_Test | | | 96.27 161 | 96.79 131 | 94.73 275 | 96.94 294 | 86.63 305 | 96.18 149 | 98.33 190 | 94.94 173 | 96.07 235 | 98.28 95 | 95.25 134 | 99.26 252 | 97.21 48 | 97.90 284 | 98.30 250 |
|
XXY-MVS | | | 97.54 88 | 97.70 62 | 97.07 164 | 99.46 29 | 92.21 207 | 97.22 97 | 99.00 60 | 94.93 175 | 98.58 58 | 98.92 45 | 97.31 36 | 99.41 213 | 94.44 172 | 99.43 137 | 99.59 27 |
|
bset_n11_16_dypcd | | | 94.53 239 | 93.95 250 | 96.25 210 | 97.56 256 | 89.85 247 | 88.52 355 | 91.32 347 | 94.90 176 | 97.51 152 | 96.38 264 | 82.34 304 | 99.78 43 | 97.22 46 | 99.80 33 | 99.12 148 |
|
new-patchmatchnet | | | 95.67 185 | 96.58 140 | 92.94 316 | 97.48 261 | 80.21 351 | 92.96 298 | 98.19 208 | 94.83 177 | 98.82 43 | 98.79 51 | 93.31 186 | 99.51 183 | 95.83 99 | 99.04 214 | 99.12 148 |
|
E-PMN | | | 89.52 318 | 89.78 313 | 88.73 343 | 93.14 360 | 77.61 358 | 83.26 362 | 92.02 341 | 94.82 178 | 93.71 302 | 93.11 330 | 75.31 337 | 96.81 359 | 85.81 327 | 96.81 319 | 91.77 361 |
|
MVS_111021_HR | | | 96.73 139 | 96.54 145 | 97.27 153 | 98.35 161 | 93.66 176 | 93.42 287 | 98.36 185 | 94.74 179 | 96.58 209 | 96.76 242 | 96.54 82 | 98.99 287 | 94.87 155 | 99.27 181 | 99.15 137 |
|
MSLP-MVS++ | | | 96.42 158 | 96.71 133 | 95.57 239 | 97.82 220 | 90.56 240 | 95.71 175 | 98.84 99 | 94.72 180 | 96.71 204 | 97.39 196 | 94.91 145 | 98.10 350 | 95.28 131 | 99.02 215 | 98.05 274 |
|
baseline1 | | | 93.14 276 | 92.64 277 | 94.62 278 | 97.34 275 | 87.20 298 | 96.67 128 | 93.02 332 | 94.71 181 | 96.51 214 | 95.83 289 | 81.64 305 | 98.60 325 | 90.00 282 | 88.06 361 | 98.07 267 |
|
EIA-MVS | | | 96.04 171 | 95.77 180 | 96.85 176 | 97.80 225 | 92.98 192 | 96.12 152 | 99.16 20 | 94.65 182 | 93.77 299 | 91.69 352 | 95.68 117 | 99.67 128 | 94.18 185 | 98.85 235 | 97.91 282 |
|
EMVS | | | 89.06 320 | 89.22 316 | 88.61 344 | 93.00 362 | 77.34 360 | 82.91 363 | 90.92 351 | 94.64 183 | 92.63 331 | 91.81 350 | 76.30 333 | 97.02 357 | 83.83 344 | 96.90 316 | 91.48 362 |
|
V42 | | | 97.04 115 | 97.16 108 | 96.68 188 | 98.59 136 | 91.05 228 | 96.33 140 | 98.36 185 | 94.60 184 | 97.99 123 | 98.30 90 | 93.32 185 | 99.62 148 | 97.40 42 | 99.53 97 | 99.38 87 |
|
CNVR-MVS | | | 96.92 123 | 96.55 143 | 98.03 92 | 98.00 202 | 95.54 93 | 94.87 231 | 98.17 209 | 94.60 184 | 96.38 219 | 97.05 221 | 95.67 118 | 99.36 228 | 95.12 146 | 99.08 208 | 99.19 130 |
|
MVS_111021_LR | | | 96.82 132 | 96.55 143 | 97.62 120 | 98.27 168 | 95.34 108 | 93.81 277 | 98.33 190 | 94.59 186 | 96.56 211 | 96.63 249 | 96.61 78 | 98.73 311 | 94.80 158 | 99.34 163 | 98.78 204 |
|
OPM-MVS | | | 97.54 88 | 97.25 101 | 98.41 57 | 99.11 83 | 96.61 56 | 95.24 210 | 98.46 169 | 94.58 187 | 98.10 111 | 98.07 121 | 97.09 47 | 99.39 220 | 95.16 140 | 99.44 129 | 99.21 126 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
EG-PatchMatch MVS | | | 97.69 78 | 97.79 55 | 97.40 146 | 99.06 88 | 93.52 180 | 95.96 163 | 98.97 70 | 94.55 188 | 98.82 43 | 98.76 54 | 97.31 36 | 99.29 247 | 97.20 50 | 99.44 129 | 99.38 87 |
|
ab-mvs | | | 96.59 149 | 96.59 138 | 96.60 190 | 98.64 126 | 92.21 207 | 98.35 28 | 97.67 248 | 94.45 189 | 96.99 188 | 98.79 51 | 94.96 143 | 99.49 185 | 90.39 276 | 99.07 210 | 98.08 265 |
|
RRT_test8_iter05 | | | 92.46 284 | 92.52 280 | 92.29 327 | 95.33 336 | 77.43 359 | 95.73 174 | 98.55 162 | 94.41 190 | 97.46 161 | 97.72 167 | 57.44 369 | 99.74 75 | 96.92 59 | 99.14 196 | 99.69 20 |
|
CNLPA | | | 95.04 212 | 94.47 231 | 96.75 182 | 97.81 221 | 95.25 112 | 94.12 264 | 97.89 234 | 94.41 190 | 94.57 275 | 95.69 291 | 90.30 245 | 98.35 342 | 86.72 323 | 98.76 243 | 96.64 327 |
|
TinyColmap | | | 96.00 174 | 96.34 155 | 94.96 263 | 97.90 210 | 87.91 282 | 94.13 263 | 98.49 167 | 94.41 190 | 98.16 102 | 97.76 159 | 96.29 97 | 98.68 318 | 90.52 272 | 99.42 140 | 98.30 250 |
|
AllTest | | | 97.20 112 | 96.92 123 | 98.06 88 | 99.08 85 | 96.16 69 | 97.14 102 | 99.16 20 | 94.35 193 | 97.78 145 | 98.07 121 | 95.84 105 | 99.12 270 | 91.41 243 | 99.42 140 | 98.91 185 |
|
TestCases | | | | | 98.06 88 | 99.08 85 | 96.16 69 | | 99.16 20 | 94.35 193 | 97.78 145 | 98.07 121 | 95.84 105 | 99.12 270 | 91.41 243 | 99.42 140 | 98.91 185 |
|
plane_prior | | | | | | | 94.29 148 | 95.42 192 | | 94.31 195 | | | | | | 98.93 225 | |
|
testtj | | | 96.69 143 | 96.13 163 | 98.36 61 | 98.46 154 | 96.02 76 | 96.44 133 | 98.70 139 | 94.26 196 | 96.79 198 | 97.13 213 | 94.07 170 | 99.75 65 | 90.53 271 | 98.80 239 | 99.31 103 |
|
#test# | | | 97.62 82 | 97.22 105 | 98.83 26 | 99.15 73 | 97.50 29 | 96.81 117 | 98.84 99 | 94.25 197 | 97.49 155 | 97.54 179 | 97.07 48 | 99.70 108 | 94.37 177 | 99.46 124 | 99.30 104 |
|
v1144 | | | 96.84 128 | 97.08 113 | 96.13 217 | 98.42 156 | 89.28 257 | 95.41 194 | 98.67 147 | 94.21 198 | 97.97 127 | 98.31 86 | 93.06 190 | 99.65 135 | 98.06 19 | 99.62 66 | 99.45 68 |
|
test_prior3 | | | 95.91 177 | 95.39 190 | 97.46 139 | 97.79 231 | 94.26 152 | 93.33 292 | 98.42 176 | 94.21 198 | 94.02 292 | 96.25 269 | 93.64 180 | 99.34 233 | 91.90 232 | 98.96 219 | 98.79 202 |
|
test_prior2 | | | | | | | | 93.33 292 | | 94.21 198 | 94.02 292 | 96.25 269 | 93.64 180 | | 91.90 232 | 98.96 219 | |
|
DELS-MVS | | | 96.17 166 | 96.23 159 | 95.99 220 | 97.55 258 | 90.04 243 | 92.38 312 | 98.52 164 | 94.13 201 | 96.55 213 | 97.06 220 | 94.99 142 | 99.58 159 | 95.62 109 | 99.28 179 | 98.37 239 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
FMVSNet3 | | | 95.26 204 | 94.94 204 | 96.22 213 | 96.53 302 | 90.06 242 | 95.99 160 | 97.66 250 | 94.11 202 | 97.99 123 | 97.91 145 | 80.22 313 | 99.63 140 | 94.60 166 | 99.44 129 | 98.96 173 |
|
diffmvs | | | 96.04 171 | 96.23 159 | 95.46 246 | 97.35 271 | 88.03 281 | 93.42 287 | 99.08 37 | 94.09 203 | 96.66 206 | 96.93 229 | 93.85 175 | 99.29 247 | 96.01 89 | 98.67 250 | 99.06 161 |
|
thisisatest0530 | | | 92.71 281 | 91.76 289 | 95.56 241 | 98.42 156 | 88.23 274 | 96.03 157 | 87.35 364 | 94.04 204 | 96.56 211 | 95.47 299 | 64.03 365 | 99.77 53 | 94.78 161 | 99.11 204 | 98.68 217 |
|
PMMVS2 | | | 93.66 264 | 94.07 244 | 92.45 324 | 97.57 254 | 80.67 350 | 86.46 358 | 96.00 298 | 93.99 205 | 97.10 178 | 97.38 198 | 89.90 250 | 97.82 352 | 88.76 298 | 99.47 121 | 98.86 196 |
|
BH-untuned | | | 94.69 229 | 94.75 216 | 94.52 284 | 97.95 207 | 87.53 291 | 94.07 265 | 97.01 277 | 93.99 205 | 97.10 178 | 95.65 293 | 92.65 202 | 98.95 294 | 87.60 314 | 96.74 321 | 97.09 307 |
|
RRT_MVS | | | 94.90 217 | 94.07 244 | 97.39 147 | 93.18 358 | 93.21 187 | 95.26 207 | 97.49 260 | 93.94 207 | 98.25 93 | 97.85 151 | 72.96 350 | 99.84 25 | 97.90 22 | 99.78 38 | 99.14 140 |
|
DeepC-MVS | | 95.41 4 | 97.82 69 | 97.70 62 | 98.16 78 | 98.78 110 | 95.72 83 | 96.23 147 | 99.02 52 | 93.92 208 | 98.62 52 | 98.99 39 | 97.69 23 | 99.62 148 | 96.18 78 | 99.87 24 | 99.15 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CS-MVS | | | 95.98 175 | 96.24 158 | 95.20 254 | 97.26 280 | 89.88 246 | 95.84 171 | 99.39 9 | 93.89 209 | 94.28 283 | 95.15 304 | 94.81 146 | 99.62 148 | 96.11 81 | 99.40 147 | 96.10 336 |
|
PM-MVS | | | 97.36 103 | 97.10 111 | 98.14 82 | 98.91 100 | 96.77 50 | 96.20 148 | 98.63 155 | 93.82 210 | 98.54 60 | 98.33 84 | 93.98 172 | 99.05 280 | 95.99 90 | 99.45 128 | 98.61 223 |
|
testdata1 | | | | | | | | 92.77 301 | | 93.78 211 | | | | | | | |
|
v1192 | | | 96.83 131 | 97.06 115 | 96.15 216 | 98.28 166 | 89.29 256 | 95.36 198 | 98.77 121 | 93.73 212 | 98.11 108 | 98.34 83 | 93.02 194 | 99.67 128 | 98.35 14 | 99.58 79 | 99.50 45 |
|
ACMP | | 92.54 13 | 97.47 94 | 97.10 111 | 98.55 50 | 99.04 92 | 96.70 52 | 96.24 146 | 98.89 79 | 93.71 213 | 97.97 127 | 97.75 162 | 97.44 30 | 99.63 140 | 93.22 215 | 99.70 54 | 99.32 98 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
BH-RMVSNet | | | 94.56 237 | 94.44 234 | 94.91 264 | 97.57 254 | 87.44 293 | 93.78 278 | 96.26 293 | 93.69 214 | 96.41 218 | 96.50 257 | 92.10 217 | 99.00 285 | 85.96 326 | 97.71 292 | 98.31 248 |
|
Patchmatch-test | | | 93.60 266 | 93.25 262 | 94.63 277 | 96.14 318 | 87.47 292 | 96.04 156 | 94.50 320 | 93.57 215 | 96.47 215 | 96.97 226 | 76.50 331 | 98.61 323 | 90.67 267 | 98.41 266 | 97.81 288 |
|
PHI-MVS | | | 96.96 121 | 96.53 146 | 98.25 72 | 97.48 261 | 96.50 59 | 96.76 120 | 98.85 94 | 93.52 216 | 96.19 231 | 96.85 233 | 95.94 102 | 99.42 204 | 93.79 202 | 99.43 137 | 98.83 198 |
|
miper_lstm_enhance | | | 94.81 222 | 94.80 214 | 94.85 269 | 96.16 315 | 86.45 307 | 91.14 333 | 98.20 203 | 93.49 217 | 97.03 185 | 97.37 200 | 84.97 292 | 99.26 252 | 95.28 131 | 99.56 85 | 98.83 198 |
|
cl_fuxian | | | 95.20 205 | 95.32 191 | 94.83 271 | 96.19 313 | 86.43 308 | 91.83 320 | 98.35 189 | 93.47 218 | 97.36 165 | 97.26 208 | 88.69 263 | 99.28 249 | 95.41 127 | 99.36 155 | 98.78 204 |
|
eth_miper_zixun_eth | | | 94.89 218 | 94.93 206 | 94.75 274 | 95.99 320 | 86.12 311 | 91.35 326 | 98.49 167 | 93.40 219 | 97.12 176 | 97.25 209 | 86.87 282 | 99.35 231 | 95.08 148 | 98.82 238 | 98.78 204 |
|
EPNet_dtu | | | 91.39 301 | 90.75 304 | 93.31 304 | 90.48 370 | 82.61 340 | 94.80 235 | 92.88 334 | 93.39 220 | 81.74 368 | 94.90 312 | 81.36 307 | 99.11 273 | 88.28 306 | 98.87 231 | 98.21 259 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETH3D-3000-0.1 | | | 96.89 127 | 96.46 151 | 98.16 78 | 98.62 131 | 95.69 85 | 95.96 163 | 98.98 66 | 93.36 221 | 97.04 184 | 97.31 205 | 94.93 144 | 99.63 140 | 92.60 222 | 99.34 163 | 99.17 133 |
|
cl-mvsnet____ | | | 94.73 224 | 94.64 220 | 95.01 261 | 95.85 323 | 87.00 300 | 91.33 327 | 98.08 222 | 93.34 222 | 97.10 178 | 97.33 203 | 84.01 299 | 99.30 243 | 95.14 143 | 99.56 85 | 98.71 214 |
|
cl-mvsnet1 | | | 94.73 224 | 94.64 220 | 95.01 261 | 95.86 322 | 87.00 300 | 91.33 327 | 98.08 222 | 93.34 222 | 97.10 178 | 97.34 202 | 84.02 298 | 99.31 240 | 95.15 142 | 99.55 91 | 98.72 212 |
|
mvs_anonymous | | | 95.36 199 | 96.07 168 | 93.21 308 | 96.29 307 | 81.56 346 | 94.60 242 | 97.66 250 | 93.30 224 | 96.95 192 | 98.91 46 | 93.03 193 | 99.38 223 | 96.60 63 | 97.30 311 | 98.69 215 |
|
TSAR-MVS + GP. | | | 96.47 155 | 96.12 164 | 97.49 134 | 97.74 242 | 95.23 113 | 94.15 260 | 96.90 281 | 93.26 225 | 98.04 119 | 96.70 245 | 94.41 161 | 98.89 297 | 94.77 162 | 99.14 196 | 98.37 239 |
|
9.14 | | | | 96.69 134 | | 98.53 142 | | 96.02 158 | 98.98 66 | 93.23 226 | 97.18 172 | 97.46 187 | 96.47 88 | 99.62 148 | 92.99 219 | 99.32 172 | |
|
v1921920 | | | 96.72 140 | 96.96 121 | 95.99 220 | 98.21 175 | 88.79 266 | 95.42 192 | 98.79 116 | 93.22 227 | 98.19 100 | 98.26 100 | 92.68 200 | 99.70 108 | 98.34 15 | 99.55 91 | 99.49 53 |
|
CANet_DTU | | | 94.65 233 | 94.21 240 | 95.96 222 | 95.90 321 | 89.68 249 | 93.92 272 | 97.83 240 | 93.19 228 | 90.12 349 | 95.64 294 | 88.52 264 | 99.57 165 | 93.27 214 | 99.47 121 | 98.62 221 |
|
HQP-NCC | | | | | | 97.85 213 | | 94.26 250 | | 93.18 229 | 92.86 324 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 213 | | 94.26 250 | | 93.18 229 | 92.86 324 | | | | | | |
|
HQP-MVS | | | 95.17 208 | 94.58 227 | 96.92 171 | 97.85 213 | 92.47 201 | 94.26 250 | 98.43 173 | 93.18 229 | 92.86 324 | 95.08 305 | 90.33 242 | 99.23 257 | 90.51 273 | 98.74 245 | 99.05 163 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 137 | 96.51 149 | 97.44 142 | 97.69 245 | 94.15 155 | 96.02 158 | 98.43 173 | 93.17 232 | 97.30 166 | 97.38 198 | 95.48 125 | 99.28 249 | 93.74 203 | 99.34 163 | 98.88 193 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v1240 | | | 96.74 137 | 97.02 118 | 95.91 227 | 98.18 180 | 88.52 269 | 95.39 196 | 98.88 85 | 93.15 233 | 98.46 68 | 98.40 80 | 92.80 197 | 99.71 99 | 98.45 13 | 99.49 115 | 99.49 53 |
|
AdaColmap |  | | 95.11 209 | 94.62 223 | 96.58 192 | 97.33 277 | 94.45 143 | 94.92 229 | 98.08 222 | 93.15 233 | 93.98 295 | 95.53 298 | 94.34 163 | 99.10 275 | 85.69 329 | 98.61 257 | 96.20 335 |
|
CL-MVSNet_2432*1600 | | | 95.04 212 | 94.79 215 | 95.82 230 | 97.51 260 | 89.79 248 | 91.14 333 | 96.82 284 | 93.05 235 | 96.72 203 | 96.40 262 | 90.82 236 | 99.16 266 | 91.95 231 | 98.66 252 | 98.50 230 |
|
v144192 | | | 96.69 143 | 96.90 125 | 96.03 219 | 98.25 171 | 88.92 261 | 95.49 188 | 98.77 121 | 93.05 235 | 98.09 112 | 98.29 94 | 92.51 209 | 99.70 108 | 98.11 17 | 99.56 85 | 99.47 61 |
|
TSAR-MVS + MP. | | | 97.42 97 | 97.23 104 | 98.00 93 | 99.38 39 | 95.00 123 | 97.63 72 | 98.20 203 | 93.00 237 | 98.16 102 | 98.06 126 | 95.89 103 | 99.72 85 | 95.67 104 | 99.10 206 | 99.28 112 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v1_base_debu | | | 95.62 186 | 95.96 173 | 94.60 279 | 98.01 198 | 88.42 270 | 93.99 268 | 98.21 200 | 92.98 238 | 95.91 241 | 94.53 317 | 96.39 92 | 99.72 85 | 95.43 124 | 98.19 272 | 95.64 342 |
|
xiu_mvs_v1_base | | | 95.62 186 | 95.96 173 | 94.60 279 | 98.01 198 | 88.42 270 | 93.99 268 | 98.21 200 | 92.98 238 | 95.91 241 | 94.53 317 | 96.39 92 | 99.72 85 | 95.43 124 | 98.19 272 | 95.64 342 |
|
xiu_mvs_v1_base_debi | | | 95.62 186 | 95.96 173 | 94.60 279 | 98.01 198 | 88.42 270 | 93.99 268 | 98.21 200 | 92.98 238 | 95.91 241 | 94.53 317 | 96.39 92 | 99.72 85 | 95.43 124 | 98.19 272 | 95.64 342 |
|
PAPM_NR | | | 94.61 235 | 94.17 242 | 95.96 222 | 98.36 160 | 91.23 226 | 95.93 166 | 97.95 230 | 92.98 238 | 93.42 316 | 94.43 321 | 90.53 239 | 98.38 339 | 87.60 314 | 96.29 329 | 98.27 254 |
|
APD-MVS |  | | 97.00 116 | 96.53 146 | 98.41 57 | 98.55 140 | 96.31 65 | 96.32 141 | 98.77 121 | 92.96 242 | 97.44 163 | 97.58 178 | 95.84 105 | 99.74 75 | 91.96 230 | 99.35 160 | 99.19 130 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CPTT-MVS | | | 96.69 143 | 96.08 167 | 98.49 52 | 98.89 101 | 96.64 55 | 97.25 94 | 98.77 121 | 92.89 243 | 96.01 238 | 97.13 213 | 92.23 213 | 99.67 128 | 92.24 227 | 99.34 163 | 99.17 133 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 125 | 96.43 152 | 98.31 66 | 97.48 261 | 97.23 41 | 92.56 307 | 98.60 157 | 92.84 244 | 98.54 60 | 97.40 192 | 96.64 77 | 98.78 306 | 94.40 176 | 99.41 146 | 98.93 180 |
|
FMVSNet5 | | | 93.39 270 | 92.35 281 | 96.50 197 | 95.83 324 | 90.81 235 | 97.31 91 | 98.27 194 | 92.74 245 | 96.27 226 | 98.28 95 | 62.23 366 | 99.67 128 | 90.86 256 | 99.36 155 | 99.03 165 |
|
YYNet1 | | | 94.73 224 | 94.84 211 | 94.41 287 | 97.47 265 | 85.09 325 | 90.29 342 | 95.85 303 | 92.52 246 | 97.53 150 | 97.76 159 | 91.97 220 | 99.18 261 | 93.31 212 | 96.86 317 | 98.95 174 |
|
MDA-MVSNet_test_wron | | | 94.73 224 | 94.83 213 | 94.42 286 | 97.48 261 | 85.15 323 | 90.28 343 | 95.87 302 | 92.52 246 | 97.48 158 | 97.76 159 | 91.92 224 | 99.17 265 | 93.32 211 | 96.80 320 | 98.94 176 |
|
MG-MVS | | | 94.08 254 | 94.00 247 | 94.32 289 | 97.09 288 | 85.89 313 | 93.19 296 | 95.96 300 | 92.52 246 | 94.93 269 | 97.51 183 | 89.54 254 | 98.77 307 | 87.52 317 | 97.71 292 | 98.31 248 |
|
MP-MVS-pluss | | | 97.69 78 | 97.36 94 | 98.70 39 | 99.50 26 | 96.84 48 | 95.38 197 | 98.99 63 | 92.45 249 | 98.11 108 | 98.31 86 | 97.25 41 | 99.77 53 | 96.60 63 | 99.62 66 | 99.48 58 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MVSTER | | | 94.21 248 | 93.93 251 | 95.05 260 | 95.83 324 | 86.46 306 | 95.18 213 | 97.65 252 | 92.41 250 | 97.94 130 | 98.00 134 | 72.39 351 | 99.58 159 | 96.36 73 | 99.56 85 | 99.12 148 |
|
LF4IMVS | | | 96.07 169 | 95.63 184 | 97.36 149 | 98.19 177 | 95.55 92 | 95.44 190 | 98.82 114 | 92.29 251 | 95.70 252 | 96.55 252 | 92.63 203 | 98.69 315 | 91.75 239 | 99.33 170 | 97.85 284 |
|
MIMVSNet | | | 93.42 269 | 92.86 268 | 95.10 258 | 98.17 182 | 88.19 275 | 98.13 44 | 93.69 324 | 92.07 252 | 95.04 266 | 98.21 107 | 80.95 310 | 99.03 284 | 81.42 350 | 98.06 278 | 98.07 267 |
|
test-LLR | | | 89.97 314 | 89.90 312 | 90.16 338 | 94.24 349 | 74.98 365 | 89.89 346 | 89.06 360 | 92.02 253 | 89.97 350 | 90.77 359 | 73.92 342 | 98.57 326 | 91.88 234 | 97.36 307 | 96.92 313 |
|
test0.0.03 1 | | | 90.11 310 | 89.21 317 | 92.83 317 | 93.89 353 | 86.87 303 | 91.74 321 | 88.74 362 | 92.02 253 | 94.71 272 | 91.14 357 | 73.92 342 | 94.48 365 | 83.75 346 | 92.94 351 | 97.16 306 |
|
xiu_mvs_v2_base | | | 94.22 246 | 94.63 222 | 92.99 314 | 97.32 278 | 84.84 328 | 92.12 315 | 97.84 238 | 91.96 255 | 94.17 286 | 93.43 328 | 96.07 100 | 99.71 99 | 91.27 246 | 97.48 304 | 94.42 351 |
|
PS-MVSNAJ | | | 94.10 252 | 94.47 231 | 93.00 313 | 97.35 271 | 84.88 327 | 91.86 319 | 97.84 238 | 91.96 255 | 94.17 286 | 92.50 344 | 95.82 108 | 99.71 99 | 91.27 246 | 97.48 304 | 94.40 352 |
|
OMC-MVS | | | 96.48 154 | 96.00 170 | 97.91 98 | 98.30 163 | 96.01 77 | 94.86 232 | 98.60 157 | 91.88 257 | 97.18 172 | 97.21 211 | 96.11 99 | 99.04 281 | 90.49 275 | 99.34 163 | 98.69 215 |
|
GA-MVS | | | 92.83 279 | 92.15 284 | 94.87 268 | 96.97 291 | 87.27 297 | 90.03 344 | 96.12 295 | 91.83 258 | 94.05 291 | 94.57 315 | 76.01 335 | 98.97 293 | 92.46 226 | 97.34 309 | 98.36 244 |
|
miper_ehance_all_eth | | | 94.69 229 | 94.70 217 | 94.64 276 | 95.77 326 | 86.22 310 | 91.32 329 | 98.24 198 | 91.67 259 | 97.05 183 | 96.65 248 | 88.39 267 | 99.22 259 | 94.88 154 | 98.34 267 | 98.49 231 |
|
SMA-MVS |  | | 97.48 93 | 97.11 110 | 98.60 46 | 98.83 104 | 96.67 53 | 96.74 121 | 98.73 129 | 91.61 260 | 98.48 65 | 98.36 81 | 96.53 83 | 99.68 123 | 95.17 138 | 99.54 94 | 99.45 68 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
Fast-Effi-MVS+ | | | 95.49 191 | 95.07 199 | 96.75 182 | 97.67 249 | 92.82 195 | 94.22 256 | 98.60 157 | 91.61 260 | 93.42 316 | 92.90 337 | 96.73 73 | 99.70 108 | 92.60 222 | 97.89 285 | 97.74 289 |
|
SCA | | | 93.38 271 | 93.52 257 | 92.96 315 | 96.24 309 | 81.40 347 | 93.24 294 | 94.00 323 | 91.58 262 | 94.57 275 | 96.97 226 | 87.94 270 | 99.42 204 | 89.47 289 | 97.66 297 | 98.06 271 |
|
Patchmatch-RL test | | | 94.66 232 | 94.49 230 | 95.19 255 | 98.54 141 | 88.91 262 | 92.57 306 | 98.74 127 | 91.46 263 | 98.32 86 | 97.75 162 | 77.31 328 | 98.81 304 | 96.06 82 | 99.61 72 | 97.85 284 |
|
KD-MVS_2432*1600 | | | 88.93 321 | 87.74 326 | 92.49 321 | 88.04 371 | 81.99 344 | 89.63 351 | 95.62 306 | 91.35 264 | 95.06 263 | 93.11 330 | 56.58 371 | 98.63 321 | 85.19 334 | 95.07 341 | 96.85 318 |
|
miper_refine_blended | | | 88.93 321 | 87.74 326 | 92.49 321 | 88.04 371 | 81.99 344 | 89.63 351 | 95.62 306 | 91.35 264 | 95.06 263 | 93.11 330 | 56.58 371 | 98.63 321 | 85.19 334 | 95.07 341 | 96.85 318 |
|
ETH3D cwj APD-0.16 | | | 96.23 163 | 95.61 186 | 98.09 85 | 97.91 208 | 95.65 90 | 94.94 228 | 98.74 127 | 91.31 266 | 96.02 237 | 97.08 218 | 94.05 171 | 99.69 116 | 91.51 242 | 98.94 223 | 98.93 180 |
|
AUN-MVS | | | 93.95 258 | 92.69 275 | 97.74 110 | 97.80 225 | 95.38 103 | 95.57 187 | 95.46 312 | 91.26 267 | 92.64 330 | 96.10 279 | 74.67 339 | 99.55 170 | 93.72 205 | 96.97 313 | 98.30 250 |
|
CLD-MVS | | | 95.47 194 | 95.07 199 | 96.69 186 | 98.27 168 | 92.53 200 | 91.36 325 | 98.67 147 | 91.22 268 | 95.78 248 | 94.12 325 | 95.65 119 | 98.98 289 | 90.81 258 | 99.72 48 | 98.57 225 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TAMVS | | | 95.49 191 | 94.94 204 | 97.16 158 | 98.31 162 | 93.41 182 | 95.07 220 | 96.82 284 | 91.09 269 | 97.51 152 | 97.82 156 | 89.96 249 | 99.42 204 | 88.42 304 | 99.44 129 | 98.64 218 |
|
tpmvs | | | 90.79 307 | 90.87 301 | 90.57 337 | 92.75 365 | 76.30 362 | 95.79 173 | 93.64 327 | 91.04 270 | 91.91 338 | 96.26 268 | 77.19 329 | 98.86 301 | 89.38 291 | 89.85 359 | 96.56 330 |
|
cl-mvsnet2 | | | 93.25 274 | 92.84 270 | 94.46 285 | 94.30 347 | 86.00 312 | 91.09 335 | 96.64 291 | 90.74 271 | 95.79 246 | 96.31 267 | 78.24 320 | 98.77 307 | 94.15 187 | 98.34 267 | 98.62 221 |
|
ZD-MVS | | | | | | 98.43 155 | 95.94 78 | | 98.56 161 | 90.72 272 | 96.66 206 | 97.07 219 | 95.02 141 | 99.74 75 | 91.08 250 | 98.93 225 | |
|
our_test_3 | | | 94.20 250 | 94.58 227 | 93.07 310 | 96.16 315 | 81.20 348 | 90.42 341 | 96.84 282 | 90.72 272 | 97.14 174 | 97.13 213 | 90.47 240 | 99.11 273 | 94.04 194 | 98.25 271 | 98.91 185 |
|
ppachtmachnet_test | | | 94.49 240 | 94.84 211 | 93.46 302 | 96.16 315 | 82.10 343 | 90.59 339 | 97.48 262 | 90.53 274 | 97.01 187 | 97.59 176 | 91.01 233 | 99.36 228 | 93.97 197 | 99.18 193 | 98.94 176 |
|
MVP-Stereo | | | 95.69 183 | 95.28 192 | 96.92 171 | 98.15 186 | 93.03 191 | 95.64 185 | 98.20 203 | 90.39 275 | 96.63 208 | 97.73 165 | 91.63 228 | 99.10 275 | 91.84 236 | 97.31 310 | 98.63 220 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UnsupCasMVSNet_bld | | | 94.72 228 | 94.26 237 | 96.08 218 | 98.62 131 | 90.54 241 | 93.38 290 | 98.05 228 | 90.30 276 | 97.02 186 | 96.80 239 | 89.54 254 | 99.16 266 | 88.44 303 | 96.18 330 | 98.56 226 |
|
DP-MVS Recon | | | 95.55 189 | 95.13 196 | 96.80 179 | 98.51 144 | 93.99 161 | 94.60 242 | 98.69 142 | 90.20 277 | 95.78 248 | 96.21 272 | 92.73 199 | 98.98 289 | 90.58 270 | 98.86 233 | 97.42 301 |
|
MCST-MVS | | | 96.24 162 | 95.80 178 | 97.56 123 | 98.75 113 | 94.13 156 | 94.66 240 | 98.17 209 | 90.17 278 | 96.21 230 | 96.10 279 | 95.14 136 | 99.43 203 | 94.13 188 | 98.85 235 | 99.13 143 |
|
CDS-MVSNet | | | 94.88 219 | 94.12 243 | 97.14 160 | 97.64 251 | 93.57 178 | 93.96 271 | 97.06 276 | 90.05 279 | 96.30 225 | 96.55 252 | 86.10 284 | 99.47 191 | 90.10 280 | 99.31 174 | 98.40 235 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TR-MVS | | | 92.54 283 | 92.20 283 | 93.57 300 | 96.49 303 | 86.66 304 | 93.51 285 | 94.73 317 | 89.96 280 | 94.95 267 | 93.87 326 | 90.24 247 | 98.61 323 | 81.18 351 | 94.88 343 | 95.45 346 |
|
pmmvs-eth3d | | | 96.49 153 | 96.18 162 | 97.42 144 | 98.25 171 | 94.29 148 | 94.77 237 | 98.07 226 | 89.81 281 | 97.97 127 | 98.33 84 | 93.11 189 | 99.08 277 | 95.46 120 | 99.84 28 | 98.89 189 |
|
D2MVS | | | 95.18 206 | 95.17 195 | 95.21 253 | 97.76 237 | 87.76 288 | 94.15 260 | 97.94 231 | 89.77 282 | 96.99 188 | 97.68 171 | 87.45 277 | 99.14 268 | 95.03 151 | 99.81 30 | 98.74 209 |
|
PatchmatchNet |  | | 91.98 294 | 91.87 286 | 92.30 326 | 94.60 344 | 79.71 352 | 95.12 214 | 93.59 328 | 89.52 283 | 93.61 307 | 97.02 223 | 77.94 321 | 99.18 261 | 90.84 257 | 94.57 348 | 98.01 278 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
N_pmnet | | | 95.18 206 | 94.23 238 | 98.06 88 | 97.85 213 | 96.55 58 | 92.49 308 | 91.63 345 | 89.34 284 | 98.09 112 | 97.41 191 | 90.33 242 | 99.06 279 | 91.58 241 | 99.31 174 | 98.56 226 |
|
BH-w/o | | | 92.14 291 | 91.94 285 | 92.73 319 | 97.13 287 | 85.30 319 | 92.46 309 | 95.64 305 | 89.33 285 | 94.21 285 | 92.74 340 | 89.60 252 | 98.24 345 | 81.68 349 | 94.66 345 | 94.66 350 |
|
ET-MVSNet_ETH3D | | | 91.12 302 | 89.67 314 | 95.47 245 | 96.41 305 | 89.15 260 | 91.54 323 | 90.23 358 | 89.07 286 | 86.78 364 | 92.84 338 | 69.39 359 | 99.44 201 | 94.16 186 | 96.61 324 | 97.82 286 |
|
WTY-MVS | | | 93.55 267 | 93.00 266 | 95.19 255 | 97.81 221 | 87.86 283 | 93.89 273 | 96.00 298 | 89.02 287 | 94.07 290 | 95.44 300 | 86.27 283 | 99.33 236 | 87.69 312 | 96.82 318 | 98.39 237 |
|
F-COLMAP | | | 95.30 202 | 94.38 235 | 98.05 91 | 98.64 126 | 96.04 74 | 95.61 186 | 98.66 149 | 89.00 288 | 93.22 319 | 96.40 262 | 92.90 195 | 99.35 231 | 87.45 318 | 97.53 302 | 98.77 207 |
|
PVSNet_BlendedMVS | | | 95.02 215 | 94.93 206 | 95.27 251 | 97.79 231 | 87.40 294 | 94.14 262 | 98.68 144 | 88.94 289 | 94.51 278 | 98.01 132 | 93.04 191 | 99.30 243 | 89.77 285 | 99.49 115 | 99.11 152 |
|
baseline2 | | | 89.65 317 | 88.44 324 | 93.25 306 | 95.62 329 | 82.71 339 | 93.82 275 | 85.94 367 | 88.89 290 | 87.35 362 | 92.54 343 | 71.23 354 | 99.33 236 | 86.01 325 | 94.60 347 | 97.72 290 |
|
tpm | | | 91.08 304 | 90.85 302 | 91.75 329 | 95.33 336 | 78.09 355 | 95.03 225 | 91.27 349 | 88.75 291 | 93.53 310 | 97.40 192 | 71.24 353 | 99.30 243 | 91.25 248 | 93.87 349 | 97.87 283 |
|
MS-PatchMatch | | | 94.83 220 | 94.91 208 | 94.57 282 | 96.81 298 | 87.10 299 | 94.23 255 | 97.34 265 | 88.74 292 | 97.14 174 | 97.11 216 | 91.94 222 | 98.23 346 | 92.99 219 | 97.92 282 | 98.37 239 |
|
EPMVS | | | 89.26 319 | 88.55 323 | 91.39 331 | 92.36 366 | 79.11 353 | 95.65 183 | 79.86 370 | 88.60 293 | 93.12 320 | 96.53 254 | 70.73 357 | 98.10 350 | 90.75 261 | 89.32 360 | 96.98 311 |
|
QAPM | | | 95.88 179 | 95.57 187 | 96.80 179 | 97.90 210 | 91.84 219 | 98.18 42 | 98.73 129 | 88.41 294 | 96.42 217 | 98.13 113 | 94.73 147 | 99.75 65 | 88.72 299 | 98.94 223 | 98.81 200 |
|
PVSNet_Blended_VisFu | | | 95.95 176 | 95.80 178 | 96.42 202 | 99.28 48 | 90.62 237 | 95.31 203 | 99.08 37 | 88.40 295 | 96.97 191 | 98.17 111 | 92.11 216 | 99.78 43 | 93.64 207 | 99.21 187 | 98.86 196 |
|
sss | | | 94.22 246 | 93.72 254 | 95.74 233 | 97.71 244 | 89.95 245 | 93.84 274 | 96.98 278 | 88.38 296 | 93.75 300 | 95.74 290 | 87.94 270 | 98.89 297 | 91.02 252 | 98.10 276 | 98.37 239 |
|
thisisatest0515 | | | 90.43 308 | 89.18 320 | 94.17 294 | 97.07 289 | 85.44 317 | 89.75 350 | 87.58 363 | 88.28 297 | 93.69 304 | 91.72 351 | 65.27 363 | 99.58 159 | 90.59 269 | 98.67 250 | 97.50 299 |
|
PatchMatch-RL | | | 94.61 235 | 93.81 253 | 97.02 168 | 98.19 177 | 95.72 83 | 93.66 280 | 97.23 267 | 88.17 298 | 94.94 268 | 95.62 295 | 91.43 229 | 98.57 326 | 87.36 319 | 97.68 295 | 96.76 324 |
|
tpmrst | | | 90.31 309 | 90.61 307 | 89.41 341 | 94.06 352 | 72.37 370 | 95.06 222 | 93.69 324 | 88.01 299 | 92.32 335 | 96.86 232 | 77.45 325 | 98.82 302 | 91.04 251 | 87.01 363 | 97.04 310 |
|
Anonymous20231206 | | | 95.27 203 | 95.06 201 | 95.88 228 | 98.72 116 | 89.37 255 | 95.70 176 | 97.85 236 | 88.00 300 | 96.98 190 | 97.62 174 | 91.95 221 | 99.34 233 | 89.21 292 | 99.53 97 | 98.94 176 |
|
FPMVS | | | 89.92 315 | 88.63 322 | 93.82 295 | 98.37 159 | 96.94 46 | 91.58 322 | 93.34 330 | 88.00 300 | 90.32 347 | 97.10 217 | 70.87 356 | 91.13 367 | 71.91 365 | 96.16 332 | 93.39 357 |
|
MAR-MVS | | | 94.21 248 | 93.03 265 | 97.76 108 | 96.94 294 | 97.44 34 | 96.97 112 | 97.15 271 | 87.89 302 | 92.00 337 | 92.73 341 | 92.14 215 | 99.12 270 | 83.92 342 | 97.51 303 | 96.73 325 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IB-MVS | | 85.98 20 | 88.63 323 | 86.95 332 | 93.68 298 | 95.12 338 | 84.82 329 | 90.85 337 | 90.17 359 | 87.55 303 | 88.48 357 | 91.34 355 | 58.01 368 | 99.59 157 | 87.24 320 | 93.80 350 | 96.63 329 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
OpenMVS |  | 94.22 8 | 95.48 193 | 95.20 193 | 96.32 207 | 97.16 286 | 91.96 216 | 97.74 66 | 98.84 99 | 87.26 304 | 94.36 282 | 98.01 132 | 93.95 173 | 99.67 128 | 90.70 266 | 98.75 244 | 97.35 304 |
|
PC_three_1452 | | | | | | | | | | 87.24 305 | 98.37 75 | 97.44 189 | 97.00 54 | 96.78 361 | 92.01 229 | 99.25 183 | 99.21 126 |
|
agg_prior1 | | | 95.39 198 | 94.60 224 | 97.75 109 | 97.80 225 | 94.96 124 | 93.39 289 | 98.36 185 | 87.20 306 | 93.49 311 | 95.97 284 | 94.65 153 | 99.53 175 | 91.69 240 | 98.86 233 | 98.77 207 |
|
pmmvs5 | | | 94.63 234 | 94.34 236 | 95.50 243 | 97.63 252 | 88.34 273 | 94.02 266 | 97.13 272 | 87.15 307 | 95.22 261 | 97.15 212 | 87.50 276 | 99.27 251 | 93.99 195 | 99.26 182 | 98.88 193 |
|
train_agg | | | 95.46 195 | 94.66 218 | 97.88 101 | 97.84 217 | 95.23 113 | 93.62 281 | 98.39 181 | 87.04 308 | 93.78 297 | 95.99 281 | 94.58 156 | 99.52 179 | 91.76 238 | 98.90 227 | 98.89 189 |
|
test_8 | | | | | | 97.81 221 | 95.07 122 | 93.54 284 | 98.38 183 | 87.04 308 | 93.71 302 | 95.96 285 | 94.58 156 | 99.52 179 | | | |
|
TEST9 | | | | | | 97.84 217 | 95.23 113 | 93.62 281 | 98.39 181 | 86.81 310 | 93.78 297 | 95.99 281 | 94.68 151 | 99.52 179 | | | |
|
pmmvs4 | | | 94.82 221 | 94.19 241 | 96.70 185 | 97.42 268 | 92.75 198 | 92.09 317 | 96.76 286 | 86.80 311 | 95.73 251 | 97.22 210 | 89.28 260 | 98.89 297 | 93.28 213 | 99.14 196 | 98.46 234 |
|
MDTV_nov1_ep13 | | | | 91.28 294 | | 94.31 346 | 73.51 368 | 94.80 235 | 93.16 331 | 86.75 312 | 93.45 314 | 97.40 192 | 76.37 332 | 98.55 329 | 88.85 297 | 96.43 326 | |
|
test-mter | | | 87.92 329 | 87.17 330 | 90.16 338 | 94.24 349 | 74.98 365 | 89.89 346 | 89.06 360 | 86.44 313 | 89.97 350 | 90.77 359 | 54.96 375 | 98.57 326 | 91.88 234 | 97.36 307 | 96.92 313 |
|
PLC |  | 91.02 16 | 94.05 255 | 92.90 267 | 97.51 128 | 98.00 202 | 95.12 121 | 94.25 253 | 98.25 197 | 86.17 314 | 91.48 340 | 95.25 302 | 91.01 233 | 99.19 260 | 85.02 337 | 96.69 322 | 98.22 258 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVE |  | 73.61 22 | 86.48 333 | 85.92 335 | 88.18 346 | 96.23 311 | 85.28 321 | 81.78 364 | 75.79 371 | 86.01 315 | 82.53 367 | 91.88 349 | 92.74 198 | 87.47 369 | 71.42 366 | 94.86 344 | 91.78 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
USDC | | | 94.56 237 | 94.57 229 | 94.55 283 | 97.78 235 | 86.43 308 | 92.75 302 | 98.65 154 | 85.96 316 | 96.91 195 | 97.93 143 | 90.82 236 | 98.74 310 | 90.71 265 | 99.59 77 | 98.47 232 |
|
HY-MVS | | 91.43 15 | 92.58 282 | 91.81 288 | 94.90 266 | 96.49 303 | 88.87 263 | 97.31 91 | 94.62 318 | 85.92 317 | 90.50 346 | 96.84 234 | 85.05 290 | 99.40 215 | 83.77 345 | 95.78 336 | 96.43 332 |
|
原ACMM1 | | | | | 96.58 192 | 98.16 184 | 92.12 211 | | 98.15 214 | 85.90 318 | 93.49 311 | 96.43 259 | 92.47 210 | 99.38 223 | 87.66 313 | 98.62 256 | 98.23 257 |
|
PAPR | | | 92.22 289 | 91.27 295 | 95.07 259 | 95.73 328 | 88.81 265 | 91.97 318 | 97.87 235 | 85.80 319 | 90.91 342 | 92.73 341 | 91.16 231 | 98.33 343 | 79.48 353 | 95.76 337 | 98.08 265 |
|
IU-MVS | | | | | | 99.22 58 | 95.40 101 | | 98.14 215 | 85.77 320 | 98.36 78 | | | | 95.23 135 | 99.51 107 | 99.49 53 |
|
DWT-MVSNet_test | | | 87.92 329 | 86.77 333 | 91.39 331 | 93.18 358 | 78.62 354 | 95.10 215 | 91.42 346 | 85.58 321 | 88.00 358 | 88.73 363 | 60.60 367 | 98.90 295 | 90.60 268 | 87.70 362 | 96.65 326 |
|
1112_ss | | | 94.12 251 | 93.42 258 | 96.23 211 | 98.59 136 | 90.85 232 | 94.24 254 | 98.85 94 | 85.49 322 | 92.97 322 | 94.94 309 | 86.01 285 | 99.64 138 | 91.78 237 | 97.92 282 | 98.20 260 |
|
dp | | | 88.08 327 | 88.05 325 | 88.16 347 | 92.85 363 | 68.81 372 | 94.17 258 | 92.88 334 | 85.47 323 | 91.38 341 | 96.14 276 | 68.87 360 | 98.81 304 | 86.88 321 | 83.80 366 | 96.87 316 |
|
TESTMET0.1,1 | | | 87.20 332 | 86.57 334 | 89.07 342 | 93.62 356 | 72.84 369 | 89.89 346 | 87.01 366 | 85.46 324 | 89.12 355 | 90.20 361 | 56.00 374 | 97.72 354 | 90.91 255 | 96.92 314 | 96.64 327 |
|
ETH3 D test6400 | | | 94.77 223 | 93.87 252 | 97.47 136 | 98.12 191 | 93.73 171 | 94.56 244 | 98.70 139 | 85.45 325 | 94.70 273 | 95.93 288 | 91.77 227 | 99.63 140 | 86.45 324 | 99.14 196 | 99.05 163 |
|
1314 | | | 92.38 286 | 92.30 282 | 92.64 320 | 95.42 335 | 85.15 323 | 95.86 168 | 96.97 279 | 85.40 326 | 90.62 343 | 93.06 335 | 91.12 232 | 97.80 353 | 86.74 322 | 95.49 340 | 94.97 349 |
|
jason | | | 94.39 243 | 94.04 246 | 95.41 249 | 98.29 164 | 87.85 285 | 92.74 304 | 96.75 287 | 85.38 327 | 95.29 259 | 96.15 274 | 88.21 269 | 99.65 135 | 94.24 183 | 99.34 163 | 98.74 209 |
jason: jason. |
EU-MVSNet | | | 94.25 245 | 94.47 231 | 93.60 299 | 98.14 187 | 82.60 341 | 97.24 96 | 92.72 337 | 85.08 328 | 98.48 65 | 98.94 43 | 82.59 303 | 98.76 309 | 97.47 40 | 99.53 97 | 99.44 78 |
|
miper_enhance_ethall | | | 93.14 276 | 92.78 273 | 94.20 292 | 93.65 355 | 85.29 320 | 89.97 345 | 97.85 236 | 85.05 329 | 96.15 234 | 94.56 316 | 85.74 286 | 99.14 268 | 93.74 203 | 98.34 267 | 98.17 263 |
|
CDPH-MVS | | | 95.45 196 | 94.65 219 | 97.84 104 | 98.28 166 | 94.96 124 | 93.73 279 | 98.33 190 | 85.03 330 | 95.44 256 | 96.60 250 | 95.31 132 | 99.44 201 | 90.01 281 | 99.13 200 | 99.11 152 |
|
DPM-MVS | | | 93.68 263 | 92.77 274 | 96.42 202 | 97.91 208 | 92.54 199 | 91.17 332 | 97.47 263 | 84.99 331 | 93.08 321 | 94.74 313 | 89.90 250 | 99.00 285 | 87.54 316 | 98.09 277 | 97.72 290 |
|
CR-MVSNet | | | 93.29 273 | 92.79 271 | 94.78 273 | 95.44 333 | 88.15 277 | 96.18 149 | 97.20 268 | 84.94 332 | 94.10 288 | 98.57 66 | 77.67 323 | 99.39 220 | 95.17 138 | 95.81 333 | 96.81 322 |
|
PVSNet | | 86.72 19 | 91.10 303 | 90.97 300 | 91.49 330 | 97.56 256 | 78.04 356 | 87.17 357 | 94.60 319 | 84.65 333 | 92.34 334 | 92.20 346 | 87.37 278 | 98.47 333 | 85.17 336 | 97.69 294 | 97.96 279 |
|
lupinMVS | | | 93.77 259 | 93.28 260 | 95.24 252 | 97.68 246 | 87.81 286 | 92.12 315 | 96.05 296 | 84.52 334 | 94.48 280 | 95.06 307 | 86.90 280 | 99.63 140 | 93.62 208 | 99.13 200 | 98.27 254 |
|
PVSNet_Blended | | | 93.96 256 | 93.65 255 | 94.91 264 | 97.79 231 | 87.40 294 | 91.43 324 | 98.68 144 | 84.50 335 | 94.51 278 | 94.48 320 | 93.04 191 | 99.30 243 | 89.77 285 | 98.61 257 | 98.02 277 |
|
MVS-HIRNet | | | 88.40 325 | 90.20 311 | 82.99 349 | 97.01 290 | 60.04 373 | 93.11 297 | 85.61 368 | 84.45 336 | 88.72 356 | 99.09 33 | 84.72 294 | 98.23 346 | 82.52 348 | 96.59 325 | 90.69 364 |
|
new_pmnet | | | 92.34 287 | 91.69 290 | 94.32 289 | 96.23 311 | 89.16 259 | 92.27 313 | 92.88 334 | 84.39 337 | 95.29 259 | 96.35 266 | 85.66 287 | 96.74 362 | 84.53 340 | 97.56 300 | 97.05 309 |
|
ADS-MVSNet2 | | | 91.47 300 | 90.51 308 | 94.36 288 | 95.51 331 | 85.63 314 | 95.05 223 | 95.70 304 | 83.46 338 | 92.69 327 | 96.84 234 | 79.15 317 | 99.41 213 | 85.66 330 | 90.52 356 | 98.04 275 |
|
ADS-MVSNet | | | 90.95 306 | 90.26 310 | 93.04 311 | 95.51 331 | 82.37 342 | 95.05 223 | 93.41 329 | 83.46 338 | 92.69 327 | 96.84 234 | 79.15 317 | 98.70 314 | 85.66 330 | 90.52 356 | 98.04 275 |
|
HyFIR lowres test | | | 93.72 261 | 92.65 276 | 96.91 173 | 98.93 98 | 91.81 220 | 91.23 331 | 98.52 164 | 82.69 340 | 96.46 216 | 96.52 256 | 80.38 312 | 99.90 13 | 90.36 277 | 98.79 240 | 99.03 165 |
|
Test_1112_low_res | | | 93.53 268 | 92.86 268 | 95.54 242 | 98.60 134 | 88.86 264 | 92.75 302 | 98.69 142 | 82.66 341 | 92.65 329 | 96.92 231 | 84.75 293 | 99.56 166 | 90.94 254 | 97.76 288 | 98.19 261 |
|
CVMVSNet | | | 92.33 288 | 92.79 271 | 90.95 334 | 97.26 280 | 75.84 364 | 95.29 205 | 92.33 340 | 81.86 342 | 96.27 226 | 98.19 108 | 81.44 306 | 98.46 334 | 94.23 184 | 98.29 270 | 98.55 228 |
|
gm-plane-assit | | | | | | 91.79 367 | 71.40 371 | | | 81.67 343 | | 90.11 362 | | 98.99 287 | 84.86 338 | | |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 265 | 93.05 264 | 95.42 247 | 97.31 279 | 91.21 227 | 95.08 219 | 96.68 290 | 81.56 344 | 96.88 197 | 96.41 260 | 90.44 241 | 99.25 254 | 85.39 333 | 97.67 296 | 95.80 340 |
|
CostFormer | | | 89.75 316 | 89.25 315 | 91.26 333 | 94.69 343 | 78.00 357 | 95.32 202 | 91.98 342 | 81.50 345 | 90.55 345 | 96.96 228 | 71.06 355 | 98.89 297 | 88.59 302 | 92.63 353 | 96.87 316 |
|
CHOSEN 280x420 | | | 89.98 313 | 89.19 319 | 92.37 325 | 95.60 330 | 81.13 349 | 86.22 359 | 97.09 274 | 81.44 346 | 87.44 361 | 93.15 329 | 73.99 340 | 99.47 191 | 88.69 300 | 99.07 210 | 96.52 331 |
|
TAPA-MVS | | 93.32 12 | 94.93 216 | 94.23 238 | 97.04 166 | 98.18 180 | 94.51 140 | 95.22 211 | 98.73 129 | 81.22 347 | 96.25 228 | 95.95 286 | 93.80 177 | 98.98 289 | 89.89 283 | 98.87 231 | 97.62 294 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
无先验 | | | | | | | | 93.20 295 | 97.91 232 | 80.78 348 | | | | 99.40 215 | 87.71 310 | | 97.94 280 |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 374 | 94.89 230 | | 80.59 349 | 94.02 292 | | 78.66 319 | | 85.50 332 | | 97.82 286 |
|
testdata | | | | | 95.70 236 | 98.16 184 | 90.58 238 | | 97.72 245 | 80.38 350 | 95.62 253 | 97.02 223 | 92.06 219 | 98.98 289 | 89.06 296 | 98.52 261 | 97.54 297 |
|
CMPMVS |  | 73.10 23 | 92.74 280 | 91.39 292 | 96.77 181 | 93.57 357 | 94.67 136 | 94.21 257 | 97.67 248 | 80.36 351 | 93.61 307 | 96.60 250 | 82.85 302 | 97.35 356 | 84.86 338 | 98.78 241 | 98.29 253 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CHOSEN 1792x2688 | | | 94.10 252 | 93.41 259 | 96.18 215 | 99.16 70 | 90.04 243 | 92.15 314 | 98.68 144 | 79.90 352 | 96.22 229 | 97.83 153 | 87.92 274 | 99.42 204 | 89.18 293 | 99.65 61 | 99.08 157 |
|
PAPM | | | 87.64 331 | 85.84 336 | 93.04 311 | 96.54 301 | 84.99 326 | 88.42 356 | 95.57 309 | 79.52 353 | 83.82 365 | 93.05 336 | 80.57 311 | 98.41 336 | 62.29 368 | 92.79 352 | 95.71 341 |
|
cascas | | | 91.89 295 | 91.35 293 | 93.51 301 | 94.27 348 | 85.60 315 | 88.86 354 | 98.61 156 | 79.32 354 | 92.16 336 | 91.44 354 | 89.22 261 | 98.12 349 | 90.80 259 | 97.47 306 | 96.82 321 |
|
PMMVS | | | 92.39 285 | 91.08 297 | 96.30 209 | 93.12 361 | 92.81 196 | 90.58 340 | 95.96 300 | 79.17 355 | 91.85 339 | 92.27 345 | 90.29 246 | 98.66 320 | 89.85 284 | 96.68 323 | 97.43 300 |
|
pmmvs3 | | | 90.00 312 | 88.90 321 | 93.32 303 | 94.20 351 | 85.34 318 | 91.25 330 | 92.56 339 | 78.59 356 | 93.82 296 | 95.17 303 | 67.36 362 | 98.69 315 | 89.08 295 | 98.03 279 | 95.92 337 |
|
PVSNet_0 | | 81.89 21 | 84.49 334 | 83.21 337 | 88.34 345 | 95.76 327 | 74.97 367 | 83.49 361 | 92.70 338 | 78.47 357 | 87.94 359 | 86.90 365 | 83.38 301 | 96.63 363 | 73.44 363 | 66.86 369 | 93.40 356 |
|
新几何1 | | | | | 97.25 156 | 98.29 164 | 94.70 135 | | 97.73 244 | 77.98 358 | 94.83 270 | 96.67 247 | 92.08 218 | 99.45 198 | 88.17 308 | 98.65 254 | 97.61 295 |
|
1121 | | | 94.26 244 | 93.26 261 | 97.27 153 | 98.26 170 | 94.73 130 | 95.86 168 | 97.71 246 | 77.96 359 | 94.53 277 | 96.71 244 | 91.93 223 | 99.40 215 | 87.71 310 | 98.64 255 | 97.69 292 |
|
旧先验2 | | | | | | | | 93.35 291 | | 77.95 360 | 95.77 250 | | | 98.67 319 | 90.74 264 | | |
|
tpm2 | | | 88.47 324 | 87.69 328 | 90.79 335 | 94.98 340 | 77.34 360 | 95.09 217 | 91.83 343 | 77.51 361 | 89.40 352 | 96.41 260 | 67.83 361 | 98.73 311 | 83.58 347 | 92.60 354 | 96.29 334 |
|
DSMNet-mixed | | | 92.19 290 | 91.83 287 | 93.25 306 | 96.18 314 | 83.68 338 | 96.27 142 | 93.68 326 | 76.97 362 | 92.54 333 | 99.18 27 | 89.20 262 | 98.55 329 | 83.88 343 | 98.60 259 | 97.51 298 |
|
test222 | | | | | | 98.17 182 | 93.24 186 | 92.74 304 | 97.61 258 | 75.17 363 | 94.65 274 | 96.69 246 | 90.96 235 | | | 98.66 252 | 97.66 293 |
|
PCF-MVS | | 89.43 18 | 92.12 292 | 90.64 306 | 96.57 194 | 97.80 225 | 93.48 181 | 89.88 349 | 98.45 170 | 74.46 364 | 96.04 236 | 95.68 292 | 90.71 238 | 99.31 240 | 73.73 362 | 99.01 217 | 96.91 315 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 93.96 256 | 93.22 263 | 96.19 214 | 99.06 88 | 90.97 231 | 95.99 160 | 98.94 74 | 73.88 365 | 93.43 315 | 96.93 229 | 92.38 212 | 99.37 226 | 89.09 294 | 99.28 179 | 98.25 256 |
|
tpm cat1 | | | 88.01 328 | 87.33 329 | 90.05 340 | 94.48 345 | 76.28 363 | 94.47 247 | 94.35 322 | 73.84 366 | 89.26 353 | 95.61 296 | 73.64 344 | 98.30 344 | 84.13 341 | 86.20 364 | 95.57 345 |
|
MVS | | | 90.02 311 | 89.20 318 | 92.47 323 | 94.71 342 | 86.90 302 | 95.86 168 | 96.74 288 | 64.72 367 | 90.62 343 | 92.77 339 | 92.54 207 | 98.39 338 | 79.30 354 | 95.56 339 | 92.12 359 |
|
DeepMVS_CX |  | | | | 77.17 350 | 90.94 369 | 85.28 321 | | 74.08 374 | 52.51 368 | 80.87 369 | 88.03 364 | 75.25 338 | 70.63 370 | 59.23 369 | 84.94 365 | 75.62 365 |
|
tmp_tt | | | 57.23 336 | 62.50 339 | 41.44 352 | 34.77 375 | 49.21 375 | 83.93 360 | 60.22 376 | 15.31 369 | 71.11 370 | 79.37 367 | 70.09 358 | 44.86 371 | 64.76 367 | 82.93 367 | 30.25 367 |
|
test_method | | | 66.88 335 | 66.13 338 | 69.11 351 | 62.68 374 | 25.73 376 | 49.76 365 | 96.04 297 | 14.32 370 | 64.27 371 | 91.69 352 | 73.45 347 | 88.05 368 | 76.06 361 | 66.94 368 | 93.54 354 |
|
test123 | | | 12.59 338 | 15.49 341 | 3.87 353 | 6.07 376 | 2.55 377 | 90.75 338 | 2.59 378 | 2.52 371 | 5.20 373 | 13.02 370 | 4.96 376 | 1.85 373 | 5.20 370 | 9.09 370 | 7.23 368 |
|
testmvs | | | 12.33 339 | 15.23 342 | 3.64 354 | 5.77 377 | 2.23 378 | 88.99 353 | 3.62 377 | 2.30 372 | 5.29 372 | 13.09 369 | 4.52 377 | 1.95 372 | 5.16 371 | 8.32 371 | 6.75 369 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
cdsmvs_eth3d_5k | | | 24.22 337 | 32.30 340 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 98.10 219 | 0.00 373 | 0.00 374 | 95.06 307 | 97.54 29 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 7.98 340 | 10.65 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 95.82 108 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
ab-mvs-re | | | 7.91 341 | 10.55 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 94.94 309 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
MSC_two_6792asdad | | | | | 98.22 74 | 97.75 239 | 95.34 108 | | 98.16 212 | | | | | 99.75 65 | 95.87 97 | 99.51 107 | 99.57 32 |
|
No_MVS | | | | | 98.22 74 | 97.75 239 | 95.34 108 | | 98.16 212 | | | | | 99.75 65 | 95.87 97 | 99.51 107 | 99.57 32 |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
OPU-MVS | | | | | 97.64 119 | 98.01 198 | 95.27 111 | 96.79 118 | | | | 97.35 201 | 96.97 56 | 98.51 332 | 91.21 249 | 99.25 183 | 99.14 140 |
|
test_0728_SECOND | | | | | 98.25 72 | 99.23 55 | 95.49 99 | 96.74 121 | 98.89 79 | | | | | 99.75 65 | 95.48 117 | 99.52 102 | 99.53 41 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 271 |
|
test_part2 | | | | | | 99.03 93 | 96.07 73 | | | | 98.08 114 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 322 | | | | 98.06 271 |
|
sam_mvs | | | | | | | | | | | | | 77.38 326 | | | | |
|
ambc | | | | | 96.56 195 | 98.23 174 | 91.68 222 | 97.88 57 | 98.13 217 | | 98.42 71 | 98.56 68 | 94.22 167 | 99.04 281 | 94.05 193 | 99.35 160 | 98.95 174 |
|
MTGPA |  | | | | | | | | 98.73 129 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 227 | | | | 10.37 372 | 76.21 334 | 99.04 281 | 89.47 289 | | |
|
test_post | | | | | | | | | | | | 10.87 371 | 76.83 330 | 99.07 278 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 234 | 77.36 327 | 99.42 204 | | | |
|
GG-mvs-BLEND | | | | | 90.60 336 | 91.00 368 | 84.21 335 | 98.23 35 | 72.63 375 | | 82.76 366 | 84.11 366 | 56.14 373 | 96.79 360 | 72.20 364 | 92.09 355 | 90.78 363 |
|
MTMP | | | | | | | | 96.55 129 | 74.60 372 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 245 | 98.89 230 | 99.00 168 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 278 | 98.90 227 | 99.10 156 |
|
agg_prior | | | | | | 97.80 225 | 94.96 124 | | 98.36 185 | | 93.49 311 | | | 99.53 175 | | | |
|
test_prior4 | | | | | | | 95.38 103 | 93.61 283 | | | | | | | | | |
|
test_prior | | | | | 97.46 139 | 97.79 231 | 94.26 152 | | 98.42 176 | | | | | 99.34 233 | | | 98.79 202 |
|
新几何2 | | | | | | | | 93.43 286 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 225 | 93.87 164 | | 97.75 243 | | | 97.04 222 | 93.57 182 | | | 98.68 249 | 98.72 212 |
|
原ACMM2 | | | | | | | | 92.82 300 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 194 | 87.84 309 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 130 | | | | |
|
test12 | | | | | 97.46 139 | 97.61 253 | 94.07 157 | | 97.78 242 | | 93.57 309 | | 93.31 186 | 99.42 204 | | 98.78 241 | 98.89 189 |
|
plane_prior7 | | | | | | 98.70 121 | 94.67 136 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 158 | 94.37 146 | | | | | | 91.91 225 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 125 | | | | | 99.46 194 | 92.59 224 | 99.20 188 | 99.28 112 |
|
plane_prior4 | | | | | | | | | | | | 96.77 240 | | | | | |
|
plane_prior1 | | | | | | 98.49 148 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 209 | | | | | | | | |
|
lessismore_v0 | | | | | 97.05 165 | 99.36 41 | 92.12 211 | | 84.07 369 | | 98.77 47 | 98.98 40 | 85.36 289 | 99.74 75 | 97.34 44 | 99.37 152 | 99.30 104 |
|
test11 | | | | | | | | | 98.08 222 | | | | | | | | |
|
door | | | | | | | | | 97.81 241 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 201 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 273 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 323 | | | 99.23 257 | | | 99.06 161 |
|
HQP3-MVS | | | | | | | | | 98.43 173 | | | | | | | 98.74 245 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 242 | | | | |
|
NP-MVS | | | | | | 98.14 187 | 93.72 172 | | | | | 95.08 305 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 102 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 91 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 159 | | | | |
|