This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2699.67 299.73 399.65 599.15 399.86 2497.22 5599.92 1399.77 11
Anonymous2023121198.55 1998.76 1397.94 9698.79 11894.37 14498.84 1199.15 3599.37 399.67 699.43 1495.61 12299.72 8598.12 2299.86 2799.73 18
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4199.36 499.29 2399.06 4597.27 4099.93 397.71 4099.91 1699.70 21
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3599.33 599.30 2299.00 4797.27 4099.92 597.64 4499.92 1399.75 16
ANet_high98.31 2998.94 696.41 19999.33 5189.64 24897.92 6699.56 1199.27 699.66 899.50 897.67 2699.83 3397.55 4699.98 299.77 11
VDDNet96.98 12496.84 13197.41 13899.40 4493.26 18297.94 6495.31 31699.26 798.39 8599.18 3387.85 27699.62 14295.13 15899.09 20999.35 100
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 3899.22 899.22 2898.96 5197.35 3699.92 597.79 3699.93 1099.79 9
LFMVS95.32 20294.88 21396.62 18398.03 20691.47 22297.65 8390.72 35799.11 997.89 14298.31 10879.20 32299.48 18293.91 21099.12 20598.93 180
gg-mvs-nofinetune88.28 33386.96 33892.23 33592.84 37184.44 33798.19 5274.60 37899.08 1087.01 36999.47 1056.93 37698.23 34378.91 36295.61 34594.01 360
UA-Net98.88 798.76 1399.22 299.11 8897.89 1399.47 399.32 1899.08 1097.87 14699.67 296.47 9199.92 597.88 3099.98 299.85 3
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 3799.08 1099.42 1599.23 2796.53 8699.91 1399.27 299.93 1099.73 18
CP-MVSNet98.42 2598.46 2498.30 6899.46 3795.22 11898.27 4498.84 10899.05 1399.01 3898.65 7995.37 12999.90 1497.57 4599.91 1699.77 11
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3099.05 1399.17 3098.79 6595.47 12699.89 1897.95 2999.91 1699.75 16
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1099.02 1599.62 1099.36 1898.53 799.52 17098.58 1699.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 1999.01 1699.63 999.66 399.27 299.68 11997.75 3899.89 2499.62 28
DP-MVS97.87 6797.89 5397.81 10498.62 14194.82 12997.13 11698.79 12498.98 1798.74 5798.49 9195.80 11699.49 17995.04 16299.44 14099.11 151
FOURS199.59 1898.20 799.03 799.25 2298.96 1898.87 46
K. test v396.44 15796.28 16196.95 16399.41 4391.53 22097.65 8390.31 36098.89 1998.93 4299.36 1884.57 29899.92 597.81 3499.56 9799.39 90
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1498.85 2099.00 3999.20 2997.42 3499.59 15097.21 5699.76 4699.40 87
Anonymous2024052997.96 4798.04 4297.71 11098.69 13294.28 15097.86 6998.31 19798.79 2199.23 2798.86 6395.76 11799.61 14895.49 12899.36 16299.23 124
Gipumacopyleft98.07 4298.31 3197.36 14199.76 796.28 6898.51 2799.10 4198.76 2296.79 20799.34 2296.61 8298.82 29796.38 8299.50 12496.98 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2798.30 3398.43 5799.07 9395.87 8196.73 14299.05 5398.67 2398.84 4998.45 9597.58 3099.88 2096.45 8099.86 2799.54 44
test_040297.84 7097.97 4697.47 13299.19 7594.07 15696.71 14398.73 13698.66 2498.56 6798.41 9896.84 7299.69 11494.82 17099.81 3698.64 218
VDD-MVS97.37 10697.25 10897.74 10898.69 13294.50 14097.04 12195.61 31098.59 2598.51 7098.72 7292.54 20499.58 15296.02 9899.49 12799.12 148
LS3D97.77 7897.50 9698.57 4796.24 31597.58 2498.45 3198.85 10598.58 2697.51 15997.94 16295.74 11899.63 13795.19 14998.97 22098.51 231
MIMVSNet198.51 2298.45 2698.67 4099.72 896.71 5098.76 1298.89 9098.49 2799.38 1799.14 3995.44 12899.84 3096.47 7999.80 3999.47 67
FC-MVSNet-test98.16 3498.37 2997.56 11999.49 3593.10 18698.35 3599.21 2498.43 2898.89 4598.83 6494.30 16199.81 3797.87 3199.91 1699.77 11
VPA-MVSNet98.27 3098.46 2497.70 11199.06 9493.80 16597.76 7599.00 7198.40 2999.07 3698.98 4996.89 6699.75 6697.19 5999.79 4099.55 43
IS-MVSNet96.93 12696.68 14097.70 11199.25 5994.00 15998.57 2096.74 28898.36 3098.14 11597.98 15888.23 26999.71 10093.10 23199.72 5799.38 92
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4399.21 7297.35 3597.96 6399.16 3198.34 3198.78 5398.52 8897.32 3799.45 19294.08 20199.67 7099.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tt080597.44 10097.56 8997.11 15399.55 2396.36 6398.66 1895.66 30698.31 3297.09 18995.45 31097.17 4698.50 32998.67 1297.45 31396.48 338
nrg03098.54 2098.62 2198.32 6599.22 6595.66 9197.90 6799.08 4798.31 3299.02 3798.74 7197.68 2599.61 14897.77 3799.85 3099.70 21
SixPastTwentyTwo97.49 9697.57 8897.26 14699.56 2192.33 19998.28 4296.97 27998.30 3499.45 1499.35 2088.43 26799.89 1898.01 2799.76 4699.54 44
tfpnnormal97.72 8197.97 4696.94 16499.26 5692.23 20197.83 7198.45 17598.25 3599.13 3398.66 7796.65 7999.69 11493.92 20999.62 7898.91 184
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18098.20 5198.87 9898.23 3699.48 1299.27 2598.47 899.55 16296.52 7799.53 11099.60 30
ACMH+93.58 1098.23 3398.31 3197.98 9499.39 4595.22 11897.55 9199.20 2698.21 3799.25 2698.51 9098.21 1199.40 20994.79 17299.72 5799.32 101
Baseline_NR-MVSNet97.72 8197.79 6197.50 12799.56 2193.29 18195.44 20698.86 10198.20 3898.37 8699.24 2694.69 14799.55 16295.98 10299.79 4099.65 25
3Dnovator+96.13 397.73 8097.59 8698.15 8198.11 20495.60 9298.04 6098.70 14598.13 3996.93 20198.45 9595.30 13299.62 14295.64 12198.96 22199.24 123
CS-MVS-test97.91 6297.84 5698.14 8298.52 15496.03 7798.38 3499.67 498.11 4095.50 26896.92 24496.81 7499.87 2296.87 7099.76 4698.51 231
UniMVSNet_NR-MVSNet97.83 7197.65 7598.37 6298.72 12595.78 8495.66 19699.02 6298.11 4098.31 9897.69 18894.65 15199.85 2797.02 6599.71 6099.48 64
CS-MVS98.09 4198.01 4498.32 6598.45 16596.69 5298.52 2699.69 398.07 4296.07 24797.19 22696.88 6899.86 2497.50 4899.73 5398.41 238
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5398.05 4399.61 1199.52 793.72 17699.88 2098.72 1199.88 2599.65 25
FIs97.93 5898.07 3897.48 13199.38 4692.95 18998.03 6299.11 4098.04 4498.62 6198.66 7793.75 17599.78 4697.23 5499.84 3199.73 18
RRT_MVS97.95 5197.79 6198.43 5799.67 1295.56 9398.86 1096.73 29097.99 4599.15 3199.35 2089.84 25099.90 1498.64 1399.90 2299.82 6
PMVScopyleft89.60 1796.71 14496.97 12395.95 21999.51 3197.81 1697.42 10297.49 26197.93 4695.95 25198.58 8296.88 6896.91 36289.59 29599.36 16293.12 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPP-MVSNet96.84 13196.58 14497.65 11599.18 7693.78 16798.68 1496.34 29397.91 4797.30 17098.06 14988.46 26699.85 2793.85 21199.40 15699.32 101
NR-MVSNet97.96 4797.86 5598.26 7098.73 12395.54 9598.14 5498.73 13697.79 4899.42 1597.83 17294.40 15999.78 4695.91 10699.76 4699.46 69
SR-MVS-dyc-post98.14 3697.84 5699.02 698.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.60 8499.76 6095.49 12899.20 19499.26 118
RE-MVS-def97.88 5498.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.94 6095.49 12899.20 19499.26 118
VPNet97.26 11297.49 9796.59 18599.47 3690.58 23696.27 15898.53 16897.77 4998.46 7898.41 9894.59 15299.68 11994.61 17999.29 18499.52 48
EI-MVSNet-UG-set97.32 11097.40 9997.09 15597.34 28392.01 21295.33 21897.65 25497.74 5298.30 10098.14 13495.04 13899.69 11497.55 4699.52 11599.58 32
EI-MVSNet-Vis-set97.32 11097.39 10097.11 15397.36 28092.08 21095.34 21797.65 25497.74 5298.29 10198.11 14095.05 13799.68 11997.50 4899.50 12499.56 41
Anonymous20240521196.34 16195.98 17497.43 13698.25 18293.85 16396.74 13894.41 32497.72 5498.37 8698.03 15287.15 28199.53 16794.06 20299.07 21298.92 183
APD-MVS_3200maxsize98.13 3997.90 5098.79 2998.79 11897.31 3697.55 9198.92 8797.72 5498.25 10398.13 13697.10 4899.75 6695.44 13599.24 19299.32 101
mvsmamba98.16 3498.06 4098.44 5599.53 2995.87 8198.70 1398.94 8497.71 5698.85 4799.10 4191.35 22799.83 3398.47 1799.90 2299.64 27
VNet96.84 13196.83 13296.88 16898.06 20592.02 21196.35 15597.57 26097.70 5797.88 14397.80 17792.40 20999.54 16594.73 17798.96 22199.08 156
testf198.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
APD_test298.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
MTAPA98.14 3697.84 5699.06 399.44 3997.90 1297.25 10798.73 13697.69 5897.90 14197.96 15995.81 11599.82 3596.13 9299.61 8499.45 73
casdiffmvs_mvgpermissive97.83 7198.11 3597.00 16298.57 14792.10 20995.97 17899.18 2997.67 6199.00 3998.48 9497.64 2799.50 17596.96 6799.54 10699.40 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7197.57 6299.27 2499.22 2898.32 999.50 17597.09 6299.75 5199.50 50
DU-MVS97.79 7697.60 8598.36 6398.73 12395.78 8495.65 19898.87 9897.57 6298.31 9897.83 17294.69 14799.85 2797.02 6599.71 6099.46 69
DROMVSNet97.90 6497.94 4997.79 10598.66 13495.14 12198.31 3999.66 697.57 6295.95 25197.01 23896.99 5799.82 3597.66 4399.64 7598.39 241
PatchT93.75 26493.57 26194.29 29595.05 34787.32 29996.05 17192.98 33897.54 6594.25 29498.72 7275.79 34299.24 25095.92 10595.81 33996.32 340
UniMVSNet (Re)97.83 7197.65 7598.35 6498.80 11795.86 8395.92 18499.04 5997.51 6698.22 10697.81 17694.68 14999.78 4697.14 6099.75 5199.41 86
alignmvs96.01 17495.52 19297.50 12797.77 24494.71 13196.07 17096.84 28297.48 6796.78 21194.28 33285.50 29199.40 20996.22 8898.73 24998.40 239
RPMNet94.68 23294.60 22994.90 26895.44 34288.15 27796.18 16598.86 10197.43 6894.10 29898.49 9179.40 32199.76 6095.69 11695.81 33996.81 329
canonicalmvs97.23 11397.21 11197.30 14497.65 25894.39 14297.84 7099.05 5397.42 6996.68 21493.85 33597.63 2899.33 22896.29 8598.47 26798.18 266
XVS97.96 4797.63 8098.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23397.64 19096.49 8999.72 8595.66 11999.37 15999.45 73
X-MVStestdata92.86 28590.83 30998.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23336.50 37596.49 8999.72 8595.66 11999.37 15999.45 73
FMVSNet197.95 5198.08 3797.56 11999.14 8693.67 16998.23 4698.66 15397.41 7299.00 3999.19 3095.47 12699.73 8095.83 11199.76 4699.30 106
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17598.23 4699.05 5397.40 7399.37 1899.08 4498.79 599.47 18597.74 3999.71 6099.50 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_297.12 11597.99 4594.51 28899.11 8884.00 34197.75 7699.65 797.38 7499.14 3298.42 9795.16 13599.96 295.52 12799.78 4399.58 32
WR-MVS96.90 12996.81 13397.16 15098.56 14992.20 20494.33 25798.12 22297.34 7598.20 10797.33 21892.81 19399.75 6694.79 17299.81 3699.54 44
SR-MVS98.00 4697.66 7499.01 898.77 12197.93 1197.38 10398.83 11497.32 7698.06 12597.85 17196.65 7999.77 5595.00 16599.11 20699.32 101
Vis-MVSNetpermissive98.27 3098.34 3098.07 8699.33 5195.21 12098.04 6099.46 1297.32 7697.82 15099.11 4096.75 7699.86 2497.84 3399.36 16299.15 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 8998.06 4096.23 20598.71 12889.44 25297.43 10198.82 12297.29 7898.74 5799.10 4193.86 17199.68 11998.61 1499.94 899.56 41
casdiffmvspermissive97.50 9597.81 6096.56 18998.51 15691.04 22795.83 18899.09 4697.23 7998.33 9598.30 11297.03 5499.37 21996.58 7699.38 15899.28 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060199.05 9895.50 10098.87 9897.21 8098.03 12998.30 11296.93 62
Anonymous2024052197.07 11797.51 9495.76 22799.35 4988.18 27697.78 7298.40 18497.11 8198.34 9299.04 4689.58 25399.79 4398.09 2499.93 1099.30 106
KD-MVS_self_test97.86 6998.07 3897.25 14799.22 6592.81 19197.55 9198.94 8497.10 8298.85 4798.88 6195.03 13999.67 12497.39 5299.65 7399.26 118
IterMVS-SCA-FT95.86 17996.19 16494.85 27197.68 25485.53 32092.42 31797.63 25896.99 8398.36 8998.54 8787.94 27199.75 6697.07 6499.08 21099.27 117
EI-MVSNet96.63 14896.93 12695.74 22897.26 28888.13 27995.29 22297.65 25496.99 8397.94 13898.19 13092.55 20299.58 15296.91 6899.56 9799.50 50
IterMVS-LS96.92 12797.29 10695.79 22698.51 15688.13 27995.10 22998.66 15396.99 8398.46 7898.68 7692.55 20299.74 7596.91 6899.79 4099.50 50
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2496.91 8699.75 299.45 1295.82 11199.92 598.80 699.96 499.89 1
thres100view90091.76 30391.26 30293.26 31398.21 18684.50 33696.39 15190.39 35896.87 8796.33 23293.08 34273.44 35499.42 19878.85 36397.74 29595.85 344
3Dnovator96.53 297.61 8897.64 7897.50 12797.74 25093.65 17398.49 2898.88 9696.86 8897.11 18398.55 8695.82 11199.73 8095.94 10499.42 15199.13 143
test20.0396.58 15196.61 14296.48 19398.49 16091.72 21895.68 19597.69 24996.81 8998.27 10297.92 16594.18 16498.71 30990.78 27099.66 7299.00 167
thres600view792.03 29991.43 29793.82 30298.19 18884.61 33596.27 15890.39 35896.81 8996.37 23193.11 33873.44 35499.49 17980.32 35997.95 28697.36 310
LCM-MVSNet-Re97.33 10997.33 10497.32 14398.13 20393.79 16696.99 12499.65 796.74 9199.47 1398.93 5496.91 6599.84 3090.11 28799.06 21598.32 250
EPNet93.72 26592.62 28497.03 16087.61 38092.25 20096.27 15891.28 35196.74 9187.65 36697.39 21185.00 29499.64 13592.14 24199.48 13199.20 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DVP-MVS++97.96 4797.90 5098.12 8497.75 24795.40 10399.03 798.89 9096.62 9398.62 6198.30 11296.97 5899.75 6695.70 11499.25 18999.21 126
test_0728_THIRD96.62 9398.40 8398.28 11797.10 4899.71 10095.70 11499.62 7899.58 32
bld_raw_dy_0_6497.69 8397.61 8497.91 9799.54 2694.27 15198.06 5998.60 16196.60 9598.79 5298.95 5289.62 25199.84 3098.43 1999.91 1699.62 28
v1097.55 9297.97 4696.31 20398.60 14389.64 24897.44 9999.02 6296.60 9598.72 5999.16 3693.48 18099.72 8598.76 899.92 1399.58 32
Patchmtry95.03 21694.59 23196.33 20194.83 34990.82 23196.38 15397.20 26896.59 9797.49 16198.57 8377.67 32999.38 21692.95 23499.62 7898.80 200
h-mvs3396.29 16295.63 18998.26 7098.50 15996.11 7396.90 12797.09 27496.58 9897.21 17598.19 13084.14 29999.78 4695.89 10796.17 33798.89 188
hse-mvs295.77 18295.09 20197.79 10597.84 22795.51 9795.66 19695.43 31596.58 9897.21 17596.16 28484.14 29999.54 16595.89 10796.92 32098.32 250
SteuartSystems-ACMMP98.02 4597.76 6698.79 2999.43 4097.21 4197.15 11398.90 8996.58 9898.08 12297.87 17097.02 5599.76 6095.25 14699.59 8999.40 87
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 5197.68 7298.75 3199.60 1798.60 597.21 11199.08 4796.57 10198.07 12498.38 10296.22 10199.14 26394.71 17899.31 18198.52 230
baseline97.44 10097.78 6596.43 19598.52 15490.75 23496.84 12999.03 6096.51 10297.86 14798.02 15396.67 7899.36 22197.09 6299.47 13399.19 131
MVSFormer96.14 16896.36 15895.49 24197.68 25487.81 28898.67 1599.02 6296.50 10394.48 29196.15 28586.90 28299.92 598.73 999.13 20298.74 208
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6296.50 10399.32 2199.44 1397.43 3399.92 598.73 999.95 599.86 2
Vis-MVSNet (Re-imp)95.11 21194.85 21495.87 22499.12 8789.17 25697.54 9694.92 31996.50 10396.58 22097.27 22183.64 30399.48 18288.42 31299.67 7098.97 172
UGNet96.81 13696.56 14697.58 11896.64 30593.84 16497.75 7697.12 27396.47 10693.62 31398.88 6193.22 18599.53 16795.61 12399.69 6499.36 98
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
JIA-IIPM91.79 30290.69 31195.11 25593.80 36390.98 22894.16 26791.78 34996.38 10790.30 35599.30 2472.02 35798.90 29188.28 31490.17 36695.45 352
test111194.53 24194.81 21893.72 30499.06 9481.94 35398.31 3983.87 37496.37 10898.49 7399.17 3581.49 31199.73 8096.64 7299.86 2799.49 58
HQP_MVS96.66 14796.33 16097.68 11498.70 13094.29 14796.50 14898.75 13396.36 10996.16 24496.77 25491.91 22299.46 18892.59 23699.20 19499.28 113
plane_prior296.50 14896.36 109
CSCG97.40 10397.30 10597.69 11398.95 10494.83 12897.28 10698.99 7496.35 11198.13 11695.95 29695.99 10499.66 13094.36 19299.73 5398.59 224
MP-MVScopyleft97.64 8697.18 11299.00 999.32 5397.77 1797.49 9798.73 13696.27 11295.59 26697.75 18196.30 9899.78 4693.70 21799.48 13199.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
tfpn200view991.55 30591.00 30493.21 31698.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29595.85 344
thres40091.68 30491.00 30493.71 30598.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29597.36 310
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2396.23 11599.71 499.48 998.77 699.93 398.89 499.95 599.84 5
test250689.86 32289.16 32791.97 33698.95 10476.83 36898.54 2361.07 38296.20 11697.07 19099.16 3655.19 38199.69 11496.43 8199.83 3399.38 92
ECVR-MVScopyleft94.37 24794.48 23694.05 30098.95 10483.10 34598.31 3982.48 37596.20 11698.23 10599.16 3681.18 31499.66 13095.95 10399.83 3399.38 92
RPSCF97.87 6797.51 9498.95 1499.15 7998.43 697.56 9099.06 5196.19 11898.48 7598.70 7494.72 14699.24 25094.37 19099.33 17699.17 135
test_yl94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
DCV-MVSNet94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
SED-MVS97.94 5597.90 5098.07 8699.22 6595.35 10896.79 13598.83 11496.11 12199.08 3498.24 12397.87 1999.72 8595.44 13599.51 12099.14 141
test_241102_TWO98.83 11496.11 12198.62 6198.24 12396.92 6499.72 8595.44 13599.49 12799.49 58
CP-MVS97.92 5997.56 8998.99 1098.99 10297.82 1597.93 6598.96 8196.11 12196.89 20497.45 20396.85 7199.78 4695.19 14999.63 7799.38 92
HFP-MVS97.94 5597.64 7898.83 2599.15 7997.50 2997.59 8898.84 10896.05 12497.49 16197.54 19797.07 5199.70 10795.61 12399.46 13699.30 106
ACMMPR97.95 5197.62 8298.94 1599.20 7397.56 2597.59 8898.83 11496.05 12497.46 16697.63 19196.77 7599.76 6095.61 12399.46 13699.49 58
test_241102_ONE99.22 6595.35 10898.83 11496.04 12699.08 3498.13 13697.87 1999.33 228
mPP-MVS97.91 6297.53 9299.04 499.22 6597.87 1497.74 7898.78 12896.04 12697.10 18497.73 18496.53 8699.78 4695.16 15399.50 12499.46 69
Fast-Effi-MVS+-dtu96.44 15796.12 16697.39 14097.18 29294.39 14295.46 20598.73 13696.03 12894.72 28494.92 32096.28 10099.69 11493.81 21297.98 28598.09 268
region2R97.92 5997.59 8698.92 2199.22 6597.55 2697.60 8698.84 10896.00 12997.22 17397.62 19296.87 7099.76 6095.48 13199.43 14899.46 69
MDA-MVSNet-bldmvs95.69 18495.67 18795.74 22898.48 16288.76 26792.84 30697.25 26696.00 12997.59 15597.95 16191.38 22699.46 18893.16 23096.35 33498.99 170
GST-MVS97.82 7497.49 9798.81 2799.23 6297.25 3897.16 11298.79 12495.96 13197.53 15797.40 20796.93 6299.77 5595.04 16299.35 16799.42 84
APDe-MVS98.14 3698.03 4398.47 5498.72 12596.04 7598.07 5899.10 4195.96 13198.59 6598.69 7596.94 6099.81 3796.64 7299.58 9199.57 37
SD-MVS97.37 10697.70 6896.35 20098.14 20095.13 12296.54 14798.92 8795.94 13399.19 2998.08 14297.74 2395.06 36995.24 14799.54 10698.87 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft97.78 7797.65 7598.16 7999.24 6095.51 9796.74 13898.23 20295.92 13498.40 8398.28 11797.06 5299.71 10095.48 13199.52 11599.26 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6095.51 9796.89 12898.89 9095.92 13498.64 6098.31 10897.06 52
v14896.58 15196.97 12395.42 24598.63 13987.57 29295.09 23097.90 23695.91 13698.24 10497.96 15993.42 18199.39 21396.04 9699.52 11599.29 112
HPM-MVS_fast98.32 2898.13 3498.88 2399.54 2697.48 3098.35 3599.03 6095.88 13797.88 14398.22 12898.15 1299.74 7596.50 7899.62 7899.42 84
ETV-MVS96.13 16995.90 17996.82 17397.76 24593.89 16195.40 21198.95 8395.87 13895.58 26791.00 36696.36 9799.72 8593.36 22298.83 23896.85 325
Effi-MVS+-dtu96.81 13696.09 16898.99 1096.90 30398.69 496.42 15098.09 22595.86 13995.15 27595.54 30794.26 16299.81 3794.06 20298.51 26698.47 235
DPE-MVScopyleft97.64 8697.35 10398.50 5198.85 11396.18 6995.21 22698.99 7495.84 14098.78 5398.08 14296.84 7299.81 3793.98 20799.57 9499.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 3995.83 14199.67 699.37 1698.25 1099.92 598.77 799.94 899.82 6
tttt051793.31 27892.56 28595.57 23598.71 12887.86 28597.44 9987.17 36995.79 14297.47 16596.84 24864.12 37199.81 3796.20 8999.32 17899.02 166
ZNCC-MVS97.92 5997.62 8298.83 2599.32 5397.24 3997.45 9898.84 10895.76 14396.93 20197.43 20597.26 4299.79 4396.06 9399.53 11099.45 73
UnsupCasMVSNet_eth95.91 17795.73 18696.44 19498.48 16291.52 22195.31 22098.45 17595.76 14397.48 16397.54 19789.53 25698.69 31194.43 18694.61 35499.13 143
GeoE97.75 7997.70 6897.89 9998.88 11194.53 13797.10 11798.98 7795.75 14597.62 15497.59 19497.61 2999.77 5596.34 8499.44 14099.36 98
ACMMPcopyleft98.05 4397.75 6798.93 1899.23 6297.60 2298.09 5798.96 8195.75 14597.91 14098.06 14996.89 6699.76 6095.32 14399.57 9499.43 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS97.45 9996.92 12899.03 599.26 5697.70 1897.66 8298.89 9095.65 14798.51 7096.46 27192.15 21299.81 3795.14 15698.58 26299.58 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ITE_SJBPF97.85 10298.64 13596.66 5498.51 17195.63 14897.22 17397.30 22095.52 12498.55 32590.97 26398.90 22898.34 249
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 2895.62 14999.35 2099.37 1697.38 3599.90 1498.59 1599.91 1699.77 11
API-MVS95.09 21395.01 20695.31 24896.61 30694.02 15896.83 13097.18 27095.60 15095.79 25894.33 33194.54 15598.37 33885.70 33598.52 26493.52 362
GBi-Net96.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
test196.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
FMVSNet296.72 14296.67 14196.87 16997.96 21591.88 21497.15 11398.06 23195.59 15198.50 7298.62 8089.51 25799.65 13294.99 16699.60 8799.07 158
HPM-MVS++copyleft96.99 12196.38 15798.81 2798.64 13597.59 2395.97 17898.20 20795.51 15495.06 27696.53 26794.10 16599.70 10794.29 19399.15 19999.13 143
IterMVS95.42 19995.83 18294.20 29797.52 26783.78 34392.41 31897.47 26395.49 15598.06 12598.49 9187.94 27199.58 15296.02 9899.02 21799.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+96.19 16696.01 17196.71 17997.43 27692.19 20596.12 16899.10 4195.45 15693.33 32494.71 32397.23 4599.56 15993.21 22997.54 30798.37 243
PGM-MVS97.88 6697.52 9398.96 1399.20 7397.62 2197.09 11899.06 5195.45 15697.55 15697.94 16297.11 4799.78 4694.77 17599.46 13699.48 64
HPM-MVScopyleft98.11 4097.83 5998.92 2199.42 4297.46 3198.57 2099.05 5395.43 15897.41 16897.50 20197.98 1599.79 4395.58 12699.57 9499.50 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC96.52 15395.99 17398.10 8597.81 23195.68 8995.00 23898.20 20795.39 15995.40 27196.36 27793.81 17399.45 19293.55 22098.42 26999.17 135
wuyk23d93.25 28095.20 19687.40 35596.07 32695.38 10597.04 12194.97 31895.33 16099.70 598.11 14098.14 1391.94 37377.76 36699.68 6874.89 373
SF-MVS97.60 8997.39 10098.22 7598.93 10795.69 8897.05 12099.10 4195.32 16197.83 14997.88 16996.44 9399.72 8594.59 18399.39 15799.25 122
MSDG95.33 20195.13 19995.94 22197.40 27891.85 21591.02 34398.37 18895.30 16296.31 23595.99 29294.51 15698.38 33689.59 29597.65 30497.60 302
plane_prior394.51 13895.29 16396.16 244
ACMM93.33 1198.05 4397.79 6198.85 2499.15 7997.55 2696.68 14498.83 11495.21 16498.36 8998.13 13698.13 1499.62 14296.04 9699.54 10699.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR97.38 10497.07 11898.30 6899.01 10197.41 3494.66 24999.02 6295.20 16598.15 11497.52 19998.83 498.43 33294.87 16896.41 33399.07 158
XVG-OURS97.12 11596.74 13798.26 7098.99 10297.45 3293.82 28499.05 5395.19 16698.32 9697.70 18695.22 13498.41 33394.27 19498.13 28098.93 180
v2v48296.78 13897.06 11995.95 21998.57 14788.77 26695.36 21498.26 19995.18 16797.85 14898.23 12592.58 20199.63 13797.80 3599.69 6499.45 73
LPG-MVS_test97.94 5597.67 7398.74 3499.15 7997.02 4297.09 11899.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
LGP-MVS_train98.74 3499.15 7997.02 4299.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
thres20091.00 31190.42 31592.77 32697.47 27483.98 34294.01 27591.18 35395.12 17095.44 26991.21 36473.93 34799.31 23277.76 36697.63 30595.01 355
testgi96.07 17096.50 15394.80 27499.26 5687.69 29195.96 18098.58 16595.08 17198.02 13096.25 28197.92 1697.60 35588.68 30998.74 24699.11 151
ACMMP_NAP97.89 6597.63 8098.67 4099.35 4996.84 4796.36 15498.79 12495.07 17297.88 14398.35 10497.24 4499.72 8596.05 9599.58 9199.45 73
XVG-ACMP-BASELINE97.58 9197.28 10798.49 5299.16 7796.90 4696.39 15198.98 7795.05 17398.06 12598.02 15395.86 10799.56 15994.37 19099.64 7599.00 167
MVS_030495.50 19295.05 20596.84 17196.28 31493.12 18597.00 12396.16 29595.03 17489.22 36197.70 18690.16 24699.48 18294.51 18499.34 17097.93 287
save fliter98.48 16294.71 13194.53 25398.41 18295.02 175
CANet95.86 17995.65 18896.49 19296.41 31190.82 23194.36 25698.41 18294.94 17692.62 33996.73 25792.68 19799.71 10095.12 15999.60 8798.94 176
MVS_Test96.27 16396.79 13694.73 27896.94 30186.63 30996.18 16598.33 19394.94 17696.07 24798.28 11795.25 13399.26 24597.21 5697.90 28998.30 254
XXY-MVS97.54 9397.70 6897.07 15699.46 3792.21 20297.22 11099.00 7194.93 17898.58 6698.92 5597.31 3899.41 20794.44 18599.43 14899.59 31
new-patchmatchnet95.67 18696.58 14492.94 32497.48 27080.21 35992.96 30598.19 21294.83 17998.82 5098.79 6593.31 18399.51 17495.83 11199.04 21699.12 148
E-PMN89.52 32589.78 31988.73 35093.14 36777.61 36583.26 36992.02 34694.82 18093.71 31093.11 33875.31 34396.81 36385.81 33496.81 32591.77 368
MVS_111021_HR96.73 14196.54 14997.27 14598.35 17393.66 17293.42 29698.36 18994.74 18196.58 22096.76 25696.54 8598.99 28394.87 16899.27 18799.15 138
MSLP-MVS++96.42 15996.71 13895.57 23597.82 23090.56 23895.71 19198.84 10894.72 18296.71 21397.39 21194.91 14498.10 34795.28 14499.02 21798.05 278
baseline193.14 28292.64 28394.62 28197.34 28387.20 30196.67 14593.02 33794.71 18396.51 22595.83 29981.64 31098.60 32190.00 29088.06 36998.07 271
EIA-MVS96.04 17295.77 18596.85 17097.80 23592.98 18896.12 16899.16 3194.65 18493.77 30891.69 36095.68 11999.67 12494.18 19798.85 23597.91 288
EMVS89.06 32789.22 32288.61 35193.00 36977.34 36682.91 37090.92 35494.64 18592.63 33891.81 35876.30 33997.02 36083.83 35196.90 32291.48 369
V4297.04 11897.16 11396.68 18298.59 14591.05 22696.33 15698.36 18994.60 18697.99 13198.30 11293.32 18299.62 14297.40 5199.53 11099.38 92
CNVR-MVS96.92 12796.55 14798.03 9298.00 21395.54 9594.87 24298.17 21394.60 18696.38 23097.05 23495.67 12099.36 22195.12 15999.08 21099.19 131
MVS_111021_LR96.82 13596.55 14797.62 11798.27 18095.34 11093.81 28698.33 19394.59 18896.56 22296.63 26296.61 8298.73 30694.80 17199.34 17098.78 202
OPM-MVS97.54 9397.25 10898.41 5999.11 8896.61 5695.24 22498.46 17494.58 18998.10 11998.07 14497.09 5099.39 21395.16 15399.44 14099.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 8397.79 6197.40 13999.06 9493.52 17695.96 18098.97 8094.55 19098.82 5098.76 7097.31 3899.29 23997.20 5899.44 14099.38 92
ab-mvs96.59 14996.59 14396.60 18498.64 13592.21 20298.35 3597.67 25094.45 19196.99 19698.79 6594.96 14399.49 17990.39 28499.07 21298.08 269
CNLPA95.04 21494.47 23796.75 17797.81 23195.25 11494.12 27297.89 23794.41 19294.57 28795.69 30190.30 24398.35 33986.72 33198.76 24496.64 333
TinyColmap96.00 17596.34 15994.96 26597.90 22087.91 28494.13 27198.49 17294.41 19298.16 11297.76 17896.29 9998.68 31490.52 28099.42 15198.30 254
AllTest97.20 11496.92 12898.06 8899.08 9196.16 7097.14 11599.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
TestCases98.06 8899.08 9196.16 7099.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
plane_prior94.29 14795.42 20894.31 19698.93 226
v114496.84 13197.08 11796.13 21298.42 16889.28 25595.41 21098.67 15194.21 19797.97 13598.31 10893.06 18799.65 13298.06 2699.62 7899.45 73
test_prior293.33 30094.21 19794.02 30296.25 28193.64 17791.90 24598.96 221
DELS-MVS96.17 16796.23 16295.99 21597.55 26690.04 24292.38 31998.52 16994.13 19996.55 22497.06 23394.99 14199.58 15295.62 12299.28 18598.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 14996.93 12695.55 23898.88 11187.12 30294.47 25499.30 1994.12 20096.65 21898.41 9894.98 14299.87 2295.81 11399.78 4399.66 23
FMVSNet395.26 20594.94 20796.22 20796.53 30890.06 24195.99 17697.66 25294.11 20197.99 13197.91 16680.22 32099.63 13794.60 18099.44 14098.96 173
diffmvspermissive96.04 17296.23 16295.46 24397.35 28188.03 28293.42 29699.08 4794.09 20296.66 21696.93 24293.85 17299.29 23996.01 10098.67 25299.06 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053092.71 28891.76 29595.56 23798.42 16888.23 27496.03 17387.35 36894.04 20396.56 22295.47 30964.03 37299.77 5594.78 17499.11 20698.68 217
PMMVS293.66 26894.07 25092.45 33297.57 26380.67 35886.46 36596.00 29993.99 20497.10 18497.38 21389.90 24897.82 35188.76 30699.47 13398.86 195
BH-untuned94.69 23094.75 22194.52 28797.95 21887.53 29394.07 27397.01 27793.99 20497.10 18495.65 30392.65 19998.95 29087.60 32296.74 32797.09 315
DeepC-MVS95.41 497.82 7497.70 6898.16 7998.78 12095.72 8696.23 16399.02 6293.92 20698.62 6198.99 4897.69 2499.62 14296.18 9199.87 2699.15 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf_final94.54 24093.91 25696.43 19597.23 29090.41 24096.81 13298.10 22393.87 20796.80 20697.89 16768.02 36799.72 8596.73 7199.77 4599.18 134
PM-MVS97.36 10897.10 11598.14 8298.91 10996.77 4996.20 16498.63 15993.82 20898.54 6898.33 10693.98 16899.05 27695.99 10199.45 13998.61 223
testdata192.77 30893.78 209
v119296.83 13497.06 11996.15 21198.28 17889.29 25495.36 21498.77 12993.73 21098.11 11798.34 10593.02 19199.67 12498.35 2099.58 9199.50 50
ACMP92.54 1397.47 9897.10 11598.55 4999.04 9996.70 5196.24 16298.89 9093.71 21197.97 13597.75 18197.44 3299.63 13793.22 22899.70 6399.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet94.56 23894.44 24094.91 26697.57 26387.44 29693.78 28796.26 29493.69 21296.41 22996.50 27092.10 21599.00 28185.96 33397.71 29898.31 252
Patchmatch-test93.60 27193.25 26694.63 28096.14 32487.47 29496.04 17294.50 32393.57 21396.47 22696.97 23976.50 33798.61 31990.67 27798.41 27097.81 295
PHI-MVS96.96 12596.53 15098.25 7397.48 27096.50 5996.76 13798.85 10593.52 21496.19 24396.85 24795.94 10599.42 19893.79 21399.43 14898.83 197
miper_lstm_enhance94.81 22494.80 21994.85 27196.16 32186.45 31191.14 34098.20 20793.49 21597.03 19397.37 21584.97 29599.26 24595.28 14499.56 9798.83 197
c3_l95.20 20795.32 19394.83 27396.19 31986.43 31291.83 32798.35 19293.47 21697.36 16997.26 22288.69 26399.28 24195.41 14199.36 16298.78 202
eth_miper_zixun_eth94.89 22094.93 20994.75 27795.99 32786.12 31591.35 33398.49 17293.40 21797.12 18297.25 22386.87 28499.35 22495.08 16198.82 23998.78 202
EPNet_dtu91.39 30790.75 31093.31 31290.48 37782.61 34794.80 24492.88 33993.39 21881.74 37494.90 32181.36 31399.11 26988.28 31498.87 23298.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cl____94.73 22594.64 22595.01 26195.85 33187.00 30491.33 33498.08 22693.34 21997.10 18497.33 21884.01 30299.30 23595.14 15699.56 9798.71 214
DIV-MVS_self_test94.73 22594.64 22595.01 26195.86 33087.00 30491.33 33498.08 22693.34 21997.10 18497.34 21784.02 30199.31 23295.15 15599.55 10398.72 211
mvs_anonymous95.36 20096.07 17093.21 31696.29 31381.56 35494.60 25197.66 25293.30 22196.95 20098.91 5893.03 19099.38 21696.60 7497.30 31898.69 215
TSAR-MVS + GP.96.47 15696.12 16697.49 13097.74 25095.23 11594.15 26896.90 28193.26 22298.04 12896.70 25894.41 15898.89 29294.77 17599.14 20098.37 243
9.1496.69 13998.53 15396.02 17498.98 7793.23 22397.18 17897.46 20296.47 9199.62 14292.99 23299.32 178
v192192096.72 14296.96 12595.99 21598.21 18688.79 26595.42 20898.79 12493.22 22498.19 11198.26 12292.68 19799.70 10798.34 2199.55 10399.49 58
CANet_DTU94.65 23494.21 24695.96 21795.90 32989.68 24793.92 28197.83 24393.19 22590.12 35695.64 30488.52 26599.57 15893.27 22799.47 13398.62 221
HQP-NCC97.85 22294.26 25893.18 22692.86 331
ACMP_Plane97.85 22294.26 25893.18 22692.86 331
HQP-MVS95.17 21094.58 23296.92 16597.85 22292.47 19794.26 25898.43 17893.18 22692.86 33195.08 31490.33 24099.23 25290.51 28198.74 24699.05 162
DeepC-MVS_fast94.34 796.74 13996.51 15297.44 13597.69 25394.15 15496.02 17498.43 17893.17 22997.30 17097.38 21395.48 12599.28 24193.74 21499.34 17098.88 192
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v124096.74 13997.02 12195.91 22298.18 19188.52 26895.39 21298.88 9693.15 23098.46 7898.40 10192.80 19499.71 10098.45 1899.49 12799.49 58
AdaColmapbinary95.11 21194.62 22896.58 18697.33 28594.45 14194.92 24098.08 22693.15 23093.98 30495.53 30894.34 16099.10 27185.69 33698.61 25996.20 342
CL-MVSNet_self_test95.04 21494.79 22095.82 22597.51 26889.79 24691.14 34096.82 28493.05 23296.72 21296.40 27590.82 23399.16 26191.95 24498.66 25498.50 233
v14419296.69 14596.90 13096.03 21498.25 18288.92 26095.49 20498.77 12993.05 23298.09 12098.29 11692.51 20799.70 10798.11 2399.56 9799.47 67
TSAR-MVS + MP.97.42 10297.23 11098.00 9399.38 4695.00 12597.63 8598.20 20793.00 23498.16 11298.06 14995.89 10699.72 8595.67 11899.10 20899.28 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base_debi95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
PAPM_NR94.61 23694.17 24895.96 21798.36 17291.23 22495.93 18397.95 23392.98 23593.42 32294.43 33090.53 23698.38 33687.60 32296.29 33598.27 258
APD-MVScopyleft97.00 12096.53 15098.41 5998.55 15096.31 6696.32 15798.77 12992.96 23997.44 16797.58 19695.84 10899.74 7591.96 24399.35 16799.19 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 14596.08 16998.49 5298.89 11096.64 5597.25 10798.77 12992.89 24096.01 25097.13 22892.23 21199.67 12492.24 24099.34 17099.17 135
DeepPCF-MVS94.58 596.90 12996.43 15598.31 6797.48 27097.23 4092.56 31498.60 16192.84 24198.54 6897.40 20796.64 8198.78 30194.40 18999.41 15598.93 180
FMVSNet593.39 27692.35 28696.50 19195.83 33290.81 23397.31 10498.27 19892.74 24296.27 23798.28 11762.23 37499.67 12490.86 26699.36 16299.03 163
test_vis1_n_192095.77 18296.41 15693.85 30198.55 15084.86 33295.91 18599.71 292.72 24397.67 15398.90 5987.44 27998.73 30697.96 2898.85 23597.96 284
iter_conf0593.65 26993.05 26895.46 24396.13 32587.45 29595.95 18298.22 20392.66 24497.04 19297.89 16763.52 37399.72 8596.19 9099.82 3599.21 126
YYNet194.73 22594.84 21594.41 29197.47 27485.09 32990.29 35095.85 30492.52 24597.53 15797.76 17891.97 21899.18 25693.31 22596.86 32398.95 174
MDA-MVSNet_test_wron94.73 22594.83 21794.42 29097.48 27085.15 32790.28 35195.87 30392.52 24597.48 16397.76 17891.92 22199.17 26093.32 22496.80 32698.94 176
MG-MVS94.08 25794.00 25294.32 29397.09 29585.89 31793.19 30395.96 30192.52 24594.93 28297.51 20089.54 25498.77 30287.52 32597.71 29898.31 252
MP-MVS-pluss97.69 8397.36 10298.70 3899.50 3496.84 4795.38 21398.99 7492.45 24898.11 11798.31 10897.25 4399.77 5596.60 7499.62 7899.48 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSTER94.21 25193.93 25595.05 25995.83 33286.46 31095.18 22797.65 25492.41 24997.94 13898.00 15772.39 35699.58 15296.36 8399.56 9799.12 148
FA-MVS(test-final)94.91 21994.89 21294.99 26397.51 26888.11 28198.27 4495.20 31792.40 25096.68 21498.60 8183.44 30499.28 24193.34 22398.53 26397.59 303
LF4IMVS96.07 17095.63 18997.36 14198.19 18895.55 9495.44 20698.82 12292.29 25195.70 26496.55 26592.63 20098.69 31191.75 25199.33 17697.85 291
MIMVSNet93.42 27592.86 27495.10 25798.17 19488.19 27598.13 5593.69 32892.07 25295.04 27998.21 12980.95 31799.03 28081.42 35798.06 28398.07 271
test-LLR89.97 32089.90 31890.16 34594.24 35774.98 37289.89 35489.06 36492.02 25389.97 35790.77 36773.92 34898.57 32291.88 24697.36 31496.92 320
test0.0.03 190.11 31689.21 32392.83 32593.89 36286.87 30791.74 32888.74 36692.02 25394.71 28591.14 36573.92 34894.48 37283.75 35392.94 35997.16 314
xiu_mvs_v2_base94.22 24994.63 22792.99 32297.32 28684.84 33392.12 32297.84 24191.96 25594.17 29693.43 33696.07 10399.71 10091.27 25697.48 31094.42 358
PS-MVSNAJ94.10 25594.47 23793.00 32197.35 28184.88 33191.86 32697.84 24191.96 25594.17 29692.50 35295.82 11199.71 10091.27 25697.48 31094.40 359
OMC-MVS96.48 15596.00 17297.91 9798.30 17596.01 7894.86 24398.60 16191.88 25797.18 17897.21 22596.11 10299.04 27790.49 28399.34 17098.69 215
GA-MVS92.83 28692.15 29094.87 27096.97 29887.27 30090.03 35296.12 29691.83 25894.05 30194.57 32476.01 34198.97 28992.46 23997.34 31698.36 248
miper_ehance_all_eth94.69 23094.70 22294.64 27995.77 33486.22 31491.32 33698.24 20191.67 25997.05 19196.65 26188.39 26899.22 25494.88 16798.34 27198.49 234
SMA-MVScopyleft97.48 9797.11 11498.60 4598.83 11496.67 5396.74 13898.73 13691.61 26098.48 7598.36 10396.53 8699.68 11995.17 15199.54 10699.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+95.49 19395.07 20296.75 17797.67 25792.82 19094.22 26498.60 16191.61 26093.42 32292.90 34596.73 7799.70 10792.60 23597.89 29097.74 296
SCA93.38 27793.52 26292.96 32396.24 31581.40 35593.24 30194.00 32791.58 26294.57 28796.97 23987.94 27199.42 19889.47 29797.66 30398.06 275
Patchmatch-RL test94.66 23394.49 23595.19 25298.54 15288.91 26192.57 31398.74 13591.46 26398.32 9697.75 18177.31 33498.81 29996.06 9399.61 8497.85 291
KD-MVS_2432*160088.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
miper_refine_blended88.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
AUN-MVS93.95 26292.69 28197.74 10897.80 23595.38 10595.57 20395.46 31491.26 26692.64 33796.10 29074.67 34599.55 16293.72 21696.97 31998.30 254
CLD-MVS95.47 19695.07 20296.69 18198.27 18092.53 19691.36 33298.67 15191.22 26795.78 26094.12 33395.65 12198.98 28590.81 26899.72 5798.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.49 19394.94 20797.16 15098.31 17493.41 17995.07 23396.82 28491.09 26897.51 15997.82 17589.96 24799.42 19888.42 31299.44 14098.64 218
tpmvs90.79 31390.87 30790.57 34492.75 37276.30 36995.79 18993.64 33291.04 26991.91 34596.26 28077.19 33598.86 29689.38 29989.85 36796.56 336
test_fmvs397.38 10497.56 8996.84 17198.63 13992.81 19197.60 8699.61 990.87 27098.76 5699.66 394.03 16797.90 34999.24 399.68 6899.81 8
cl2293.25 28092.84 27694.46 28994.30 35586.00 31691.09 34296.64 29290.74 27195.79 25896.31 27978.24 32698.77 30294.15 19998.34 27198.62 221
ZD-MVS98.43 16795.94 7998.56 16790.72 27296.66 21697.07 23295.02 14099.74 7591.08 26098.93 226
our_test_394.20 25394.58 23293.07 31896.16 32181.20 35690.42 34996.84 28290.72 27297.14 18097.13 22890.47 23799.11 26994.04 20598.25 27598.91 184
ppachtmachnet_test94.49 24394.84 21593.46 31096.16 32182.10 35090.59 34797.48 26290.53 27497.01 19597.59 19491.01 23099.36 22193.97 20899.18 19898.94 176
MVP-Stereo95.69 18495.28 19496.92 16598.15 19893.03 18795.64 20098.20 20790.39 27596.63 21997.73 18491.63 22499.10 27191.84 24897.31 31798.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_vis3_rt97.04 11896.98 12297.23 14998.44 16695.88 8096.82 13199.67 490.30 27699.27 2499.33 2394.04 16696.03 36897.14 6097.83 29199.78 10
UnsupCasMVSNet_bld94.72 22994.26 24396.08 21398.62 14190.54 23993.38 29898.05 23290.30 27697.02 19496.80 25389.54 25499.16 26188.44 31196.18 33698.56 226
DP-MVS Recon95.55 19195.13 19996.80 17498.51 15693.99 16094.60 25198.69 14690.20 27895.78 26096.21 28392.73 19698.98 28590.58 27998.86 23497.42 309
MCST-MVS96.24 16495.80 18397.56 11998.75 12294.13 15594.66 24998.17 21390.17 27996.21 24196.10 29095.14 13699.43 19794.13 20098.85 23599.13 143
CDS-MVSNet94.88 22194.12 24997.14 15297.64 25993.57 17493.96 28097.06 27690.05 28096.30 23696.55 26586.10 28799.47 18590.10 28899.31 18198.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TR-MVS92.54 29092.20 28993.57 30896.49 30986.66 30893.51 29494.73 32089.96 28194.95 28093.87 33490.24 24598.61 31981.18 35894.88 35195.45 352
FE-MVS92.95 28492.22 28895.11 25597.21 29188.33 27398.54 2393.66 33189.91 28296.21 24198.14 13470.33 36399.50 17587.79 31898.24 27697.51 305
pmmvs-eth3d96.49 15496.18 16597.42 13798.25 18294.29 14794.77 24698.07 23089.81 28397.97 13598.33 10693.11 18699.08 27395.46 13499.84 3198.89 188
D2MVS95.18 20895.17 19895.21 25197.76 24587.76 29094.15 26897.94 23489.77 28496.99 19697.68 18987.45 27899.14 26395.03 16499.81 3698.74 208
PatchmatchNetpermissive91.98 30091.87 29292.30 33494.60 35279.71 36095.12 22893.59 33389.52 28593.61 31497.02 23677.94 32799.18 25690.84 26794.57 35698.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet95.18 20894.23 24498.06 8897.85 22296.55 5892.49 31591.63 35089.34 28698.09 12097.41 20690.33 24099.06 27591.58 25299.31 18198.56 226
BH-w/o92.14 29791.94 29192.73 32797.13 29485.30 32392.46 31695.64 30789.33 28794.21 29592.74 34889.60 25298.24 34281.68 35694.66 35394.66 357
test_fmvs296.38 16096.45 15496.16 21097.85 22291.30 22396.81 13299.45 1389.24 28898.49 7399.38 1588.68 26497.62 35498.83 599.32 17899.57 37
mvsany_test396.21 16595.93 17897.05 15797.40 27894.33 14695.76 19094.20 32689.10 28999.36 1999.60 693.97 16997.85 35095.40 14298.63 25798.99 170
ET-MVSNet_ETH3D91.12 30889.67 32095.47 24296.41 31189.15 25891.54 33090.23 36189.07 29086.78 37092.84 34669.39 36599.44 19594.16 19896.61 33097.82 293
WTY-MVS93.55 27293.00 27295.19 25297.81 23187.86 28593.89 28296.00 29989.02 29194.07 30095.44 31186.27 28699.33 22887.69 32096.82 32498.39 241
F-COLMAP95.30 20394.38 24198.05 9198.64 13596.04 7595.61 20198.66 15389.00 29293.22 32596.40 27592.90 19299.35 22487.45 32697.53 30898.77 205
PVSNet_BlendedMVS95.02 21794.93 20995.27 24997.79 24087.40 29794.14 27098.68 14888.94 29394.51 28998.01 15593.04 18899.30 23589.77 29399.49 12799.11 151
baseline289.65 32488.44 33193.25 31495.62 33882.71 34693.82 28485.94 37188.89 29487.35 36892.54 35171.23 35999.33 22886.01 33294.60 35597.72 297
tpm91.08 31090.85 30891.75 33795.33 34578.09 36295.03 23791.27 35288.75 29593.53 31797.40 20771.24 35899.30 23591.25 25893.87 35797.87 290
MS-PatchMatch94.83 22294.91 21194.57 28596.81 30487.10 30394.23 26397.34 26588.74 29697.14 18097.11 23091.94 22098.23 34392.99 23297.92 28798.37 243
EPMVS89.26 32688.55 33091.39 33992.36 37379.11 36195.65 19879.86 37688.60 29793.12 32796.53 26770.73 36298.10 34790.75 27189.32 36896.98 318
QAPM95.88 17895.57 19196.80 17497.90 22091.84 21698.18 5398.73 13688.41 29896.42 22898.13 13694.73 14599.75 6688.72 30798.94 22498.81 199
PVSNet_Blended_VisFu95.95 17695.80 18396.42 19799.28 5590.62 23595.31 22099.08 4788.40 29996.97 19998.17 13392.11 21499.78 4693.64 21899.21 19398.86 195
sss94.22 24993.72 25895.74 22897.71 25289.95 24493.84 28396.98 27888.38 30093.75 30995.74 30087.94 27198.89 29291.02 26298.10 28198.37 243
thisisatest051590.43 31489.18 32694.17 29997.07 29685.44 32189.75 35887.58 36788.28 30193.69 31291.72 35965.27 37099.58 15290.59 27898.67 25297.50 307
test_vis1_n95.67 18695.89 18095.03 26098.18 19189.89 24596.94 12699.28 2188.25 30298.20 10798.92 5586.69 28597.19 35797.70 4298.82 23998.00 283
PatchMatch-RL94.61 23693.81 25797.02 16198.19 18895.72 8693.66 28997.23 26788.17 30394.94 28195.62 30591.43 22598.57 32287.36 32797.68 30196.76 331
tpmrst90.31 31590.61 31389.41 34894.06 36072.37 37795.06 23493.69 32888.01 30492.32 34296.86 24677.45 33198.82 29791.04 26187.01 37097.04 317
Anonymous2023120695.27 20495.06 20495.88 22398.72 12589.37 25395.70 19297.85 23988.00 30596.98 19897.62 19291.95 21999.34 22689.21 30099.53 11098.94 176
FPMVS89.92 32188.63 32993.82 30298.37 17196.94 4591.58 32993.34 33588.00 30590.32 35497.10 23170.87 36191.13 37471.91 37296.16 33893.39 364
MAR-MVS94.21 25193.03 27097.76 10796.94 30197.44 3396.97 12597.15 27187.89 30792.00 34492.73 34992.14 21399.12 26683.92 34997.51 30996.73 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IB-MVS85.98 2088.63 33086.95 33993.68 30695.12 34684.82 33490.85 34490.17 36287.55 30888.48 36491.34 36358.01 37599.59 15087.24 32893.80 35896.63 335
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft94.22 895.48 19595.20 19696.32 20297.16 29391.96 21397.74 7898.84 10887.26 30994.36 29398.01 15593.95 17099.67 12490.70 27698.75 24597.35 312
PC_three_145287.24 31098.37 8697.44 20497.00 5696.78 36592.01 24299.25 18999.21 126
pmmvs594.63 23594.34 24295.50 24097.63 26088.34 27294.02 27497.13 27287.15 31195.22 27497.15 22787.50 27799.27 24493.99 20699.26 18898.88 192
train_agg95.46 19794.66 22397.88 10097.84 22795.23 11593.62 29098.39 18587.04 31293.78 30695.99 29294.58 15399.52 17091.76 25098.90 22898.89 188
test_897.81 23195.07 12493.54 29398.38 18787.04 31293.71 31095.96 29594.58 15399.52 170
test_f95.82 18195.88 18195.66 23297.61 26193.21 18495.61 20198.17 21386.98 31498.42 8199.47 1090.46 23894.74 37197.71 4098.45 26899.03 163
test_fmvs1_n95.21 20695.28 19494.99 26398.15 19889.13 25996.81 13299.43 1586.97 31597.21 17598.92 5583.00 30697.13 35898.09 2498.94 22498.72 211
TEST997.84 22795.23 11593.62 29098.39 18586.81 31693.78 30695.99 29294.68 14999.52 170
pmmvs494.82 22394.19 24796.70 18097.42 27792.75 19492.09 32496.76 28686.80 31795.73 26397.22 22489.28 26098.89 29293.28 22699.14 20098.46 237
MDTV_nov1_ep1391.28 30094.31 35473.51 37594.80 24493.16 33686.75 31893.45 32097.40 20776.37 33898.55 32588.85 30596.43 332
test_fmvs194.51 24294.60 22994.26 29695.91 32887.92 28395.35 21699.02 6286.56 31996.79 20798.52 8882.64 30897.00 36197.87 3198.71 25097.88 289
test-mter87.92 33687.17 33790.16 34594.24 35774.98 37289.89 35489.06 36486.44 32089.97 35790.77 36754.96 38298.57 32291.88 24697.36 31496.92 320
PLCcopyleft91.02 1694.05 25892.90 27397.51 12498.00 21395.12 12394.25 26198.25 20086.17 32191.48 34795.25 31291.01 23099.19 25585.02 34496.69 32898.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVEpermissive73.61 2286.48 33985.92 34188.18 35396.23 31785.28 32581.78 37175.79 37786.01 32282.53 37391.88 35792.74 19587.47 37671.42 37394.86 35291.78 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
USDC94.56 23894.57 23494.55 28697.78 24386.43 31292.75 30998.65 15885.96 32396.91 20397.93 16490.82 23398.74 30590.71 27599.59 8998.47 235
HY-MVS91.43 1592.58 28991.81 29494.90 26896.49 30988.87 26297.31 10494.62 32185.92 32490.50 35396.84 24885.05 29399.40 20983.77 35295.78 34296.43 339
原ACMM196.58 18698.16 19692.12 20698.15 21985.90 32593.49 31896.43 27292.47 20899.38 21687.66 32198.62 25898.23 261
PAPR92.22 29591.27 30195.07 25895.73 33788.81 26491.97 32597.87 23885.80 32690.91 34992.73 34991.16 22898.33 34079.48 36095.76 34398.08 269
IU-MVS99.22 6595.40 10398.14 22085.77 32798.36 8995.23 14899.51 12099.49 58
1112_ss94.12 25493.42 26396.23 20598.59 14590.85 23094.24 26298.85 10585.49 32892.97 32994.94 31886.01 28899.64 13591.78 24997.92 28798.20 264
dp88.08 33488.05 33288.16 35492.85 37068.81 37994.17 26692.88 33985.47 32991.38 34896.14 28768.87 36698.81 29986.88 32983.80 37396.87 323
TESTMET0.1,187.20 33886.57 34089.07 34993.62 36572.84 37689.89 35487.01 37085.46 33089.12 36290.20 36956.00 38097.72 35390.91 26596.92 32096.64 333
131492.38 29292.30 28792.64 32895.42 34485.15 32795.86 18696.97 27985.40 33190.62 35093.06 34391.12 22997.80 35286.74 33095.49 34794.97 356
jason94.39 24694.04 25195.41 24798.29 17687.85 28792.74 31196.75 28785.38 33295.29 27296.15 28588.21 27099.65 13294.24 19599.34 17098.74 208
jason: jason.
EU-MVSNet94.25 24894.47 23793.60 30798.14 20082.60 34897.24 10992.72 34285.08 33398.48 7598.94 5382.59 30998.76 30497.47 5099.53 11099.44 82
miper_enhance_ethall93.14 28292.78 27994.20 29793.65 36485.29 32489.97 35397.85 23985.05 33496.15 24694.56 32585.74 28999.14 26393.74 21498.34 27198.17 267
CDPH-MVS95.45 19894.65 22497.84 10398.28 17894.96 12693.73 28898.33 19385.03 33595.44 26996.60 26395.31 13199.44 19590.01 28999.13 20299.11 151
mvsany_test193.47 27493.03 27094.79 27594.05 36192.12 20690.82 34590.01 36385.02 33697.26 17298.28 11793.57 17897.03 35992.51 23895.75 34495.23 354
DPM-MVS93.68 26792.77 28096.42 19797.91 21992.54 19591.17 33997.47 26384.99 33793.08 32894.74 32289.90 24899.00 28187.54 32498.09 28297.72 297
CR-MVSNet93.29 27992.79 27794.78 27695.44 34288.15 27796.18 16597.20 26884.94 33894.10 29898.57 8377.67 32999.39 21395.17 15195.81 33996.81 329
test_vis1_rt94.03 25993.65 25995.17 25495.76 33593.42 17893.97 27998.33 19384.68 33993.17 32695.89 29892.53 20694.79 37093.50 22194.97 35097.31 313
PVSNet86.72 1991.10 30990.97 30691.49 33897.56 26578.04 36387.17 36494.60 32284.65 34092.34 34192.20 35487.37 28098.47 33085.17 34397.69 30097.96 284
lupinMVS93.77 26393.28 26595.24 25097.68 25487.81 28892.12 32296.05 29784.52 34194.48 29195.06 31686.90 28299.63 13793.62 21999.13 20298.27 258
PVSNet_Blended93.96 26093.65 25994.91 26697.79 24087.40 29791.43 33198.68 14884.50 34294.51 28994.48 32993.04 18899.30 23589.77 29398.61 25998.02 281
MVS-HIRNet88.40 33290.20 31782.99 35697.01 29760.04 38093.11 30485.61 37284.45 34388.72 36399.09 4384.72 29798.23 34382.52 35596.59 33190.69 371
new_pmnet92.34 29391.69 29694.32 29396.23 31789.16 25792.27 32092.88 33984.39 34495.29 27296.35 27885.66 29096.74 36684.53 34797.56 30697.05 316
ADS-MVSNet291.47 30690.51 31494.36 29295.51 34085.63 31895.05 23595.70 30583.46 34592.69 33496.84 24879.15 32399.41 20785.66 33790.52 36498.04 279
ADS-MVSNet90.95 31290.26 31693.04 31995.51 34082.37 34995.05 23593.41 33483.46 34592.69 33496.84 24879.15 32398.70 31085.66 33790.52 36498.04 279
HyFIR lowres test93.72 26592.65 28296.91 16798.93 10791.81 21791.23 33898.52 16982.69 34796.46 22796.52 26980.38 31999.90 1490.36 28598.79 24199.03 163
Test_1112_low_res93.53 27392.86 27495.54 23998.60 14388.86 26392.75 30998.69 14682.66 34892.65 33696.92 24484.75 29699.56 15990.94 26497.76 29498.19 265
CVMVSNet92.33 29492.79 27790.95 34197.26 28875.84 37195.29 22292.33 34581.86 34996.27 23798.19 13081.44 31298.46 33194.23 19698.29 27498.55 228
gm-plane-assit91.79 37471.40 37881.67 35090.11 37098.99 28384.86 345
OpenMVS_ROBcopyleft91.80 1493.64 27093.05 26895.42 24597.31 28791.21 22595.08 23296.68 29181.56 35196.88 20596.41 27390.44 23999.25 24785.39 34097.67 30295.80 346
CostFormer89.75 32389.25 32191.26 34094.69 35178.00 36495.32 21991.98 34781.50 35290.55 35296.96 24171.06 36098.89 29288.59 31092.63 36196.87 323
CHOSEN 280x42089.98 31989.19 32592.37 33395.60 33981.13 35786.22 36697.09 27481.44 35387.44 36793.15 33773.99 34699.47 18588.69 30899.07 21296.52 337
TAPA-MVS93.32 1294.93 21894.23 24497.04 15998.18 19194.51 13895.22 22598.73 13681.22 35496.25 23995.95 29693.80 17498.98 28589.89 29198.87 23297.62 300
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
无先验93.20 30297.91 23580.78 35599.40 20987.71 31997.94 286
MDTV_nov1_ep13_2view57.28 38194.89 24180.59 35694.02 30278.66 32585.50 33997.82 293
testdata95.70 23198.16 19690.58 23697.72 24880.38 35795.62 26597.02 23692.06 21798.98 28589.06 30498.52 26497.54 304
CMPMVSbinary73.10 2392.74 28791.39 29896.77 17693.57 36694.67 13494.21 26597.67 25080.36 35893.61 31496.60 26382.85 30797.35 35684.86 34598.78 24298.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268894.10 25593.41 26496.18 20999.16 7790.04 24292.15 32198.68 14879.90 35996.22 24097.83 17287.92 27599.42 19889.18 30199.65 7399.08 156
PAPM87.64 33785.84 34293.04 31996.54 30784.99 33088.42 36395.57 31179.52 36083.82 37193.05 34480.57 31898.41 33362.29 37592.79 36095.71 347
cascas91.89 30191.35 29993.51 30994.27 35685.60 31988.86 36298.61 16079.32 36192.16 34391.44 36289.22 26198.12 34690.80 26997.47 31296.82 328
PMMVS92.39 29191.08 30396.30 20493.12 36892.81 19190.58 34895.96 30179.17 36291.85 34692.27 35390.29 24498.66 31689.85 29296.68 32997.43 308
pmmvs390.00 31888.90 32893.32 31194.20 35985.34 32291.25 33792.56 34478.59 36393.82 30595.17 31367.36 36998.69 31189.08 30398.03 28495.92 343
PVSNet_081.89 2184.49 34083.21 34388.34 35295.76 33574.97 37483.49 36892.70 34378.47 36487.94 36586.90 37283.38 30596.63 36773.44 37066.86 37693.40 363
新几何197.25 14798.29 17694.70 13397.73 24777.98 36594.83 28396.67 26092.08 21699.45 19288.17 31698.65 25697.61 301
旧先验293.35 29977.95 36695.77 26298.67 31590.74 274
tpm288.47 33187.69 33590.79 34294.98 34877.34 36695.09 23091.83 34877.51 36789.40 35996.41 27367.83 36898.73 30683.58 35492.60 36296.29 341
DSMNet-mixed92.19 29691.83 29393.25 31496.18 32083.68 34496.27 15893.68 33076.97 36892.54 34099.18 3389.20 26298.55 32583.88 35098.60 26197.51 305
test22298.17 19493.24 18392.74 31197.61 25975.17 36994.65 28696.69 25990.96 23298.66 25497.66 299
PCF-MVS89.43 1892.12 29890.64 31296.57 18897.80 23593.48 17789.88 35798.45 17574.46 37096.04 24995.68 30290.71 23599.31 23273.73 36999.01 21996.91 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t93.96 26093.22 26796.19 20899.06 9490.97 22995.99 17698.94 8473.88 37193.43 32196.93 24292.38 21099.37 21989.09 30299.28 18598.25 260
tpm cat188.01 33587.33 33690.05 34794.48 35376.28 37094.47 25494.35 32573.84 37289.26 36095.61 30673.64 35098.30 34184.13 34886.20 37195.57 351
MVS90.02 31789.20 32492.47 33194.71 35086.90 30695.86 18696.74 28864.72 37390.62 35092.77 34792.54 20498.39 33579.30 36195.56 34692.12 366
DeepMVS_CXcopyleft77.17 35790.94 37685.28 32574.08 38052.51 37480.87 37588.03 37175.25 34470.63 37759.23 37684.94 37275.62 372
tmp_tt57.23 34362.50 34641.44 35934.77 38249.21 38283.93 36760.22 38315.31 37571.11 37679.37 37470.09 36444.86 37864.76 37482.93 37430.25 374
test_method66.88 34266.13 34569.11 35862.68 38125.73 38349.76 37296.04 29814.32 37664.27 37791.69 36073.45 35388.05 37576.06 36866.94 37593.54 361
EGC-MVSNET83.08 34177.93 34498.53 5099.57 2097.55 2698.33 3898.57 1664.71 37710.38 37898.90 5995.60 12399.50 17595.69 11699.61 8498.55 228
test12312.59 34515.49 3483.87 3606.07 3832.55 38490.75 3462.59 3852.52 3785.20 38013.02 3774.96 3831.85 3805.20 3779.09 3777.23 375
testmvs12.33 34615.23 3493.64 3615.77 3842.23 38588.99 3613.62 3842.30 3795.29 37913.09 3764.52 3841.95 3795.16 3788.32 3786.75 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.22 34432.30 3470.00 3620.00 3850.00 3860.00 37398.10 2230.00 3800.00 38195.06 31697.54 310.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.98 34710.65 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38095.82 1110.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.91 34810.55 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.94 3180.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
No_MVS98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
eth-test20.00 385
eth-test0.00 385
OPU-MVS97.64 11698.01 20995.27 11396.79 13597.35 21696.97 5898.51 32891.21 25999.25 18999.14 141
test_0728_SECOND98.25 7399.23 6295.49 10196.74 13898.89 9099.75 6695.48 13199.52 11599.53 47
GSMVS98.06 275
test_part299.03 10096.07 7498.08 122
sam_mvs177.80 32898.06 275
sam_mvs77.38 332
ambc96.56 18998.23 18591.68 21997.88 6898.13 22198.42 8198.56 8594.22 16399.04 27794.05 20499.35 16798.95 174
MTGPAbinary98.73 136
test_post194.98 23910.37 37976.21 34099.04 27789.47 297
test_post10.87 37876.83 33699.07 274
patchmatchnet-post96.84 24877.36 33399.42 198
GG-mvs-BLEND90.60 34391.00 37584.21 34098.23 4672.63 38182.76 37284.11 37356.14 37996.79 36472.20 37192.09 36390.78 370
MTMP96.55 14674.60 378
test9_res91.29 25598.89 23199.00 167
agg_prior290.34 28698.90 22899.10 155
agg_prior97.80 23594.96 12698.36 18993.49 31899.53 167
test_prior495.38 10593.61 292
test_prior97.46 13397.79 24094.26 15298.42 18199.34 22698.79 201
新几何293.43 295
旧先验197.80 23593.87 16297.75 24697.04 23593.57 17898.68 25198.72 211
原ACMM292.82 307
testdata299.46 18887.84 317
segment_acmp95.34 130
test1297.46 13397.61 26194.07 15697.78 24593.57 31693.31 18399.42 19898.78 24298.89 188
plane_prior798.70 13094.67 134
plane_prior698.38 17094.37 14491.91 222
plane_prior598.75 13399.46 18892.59 23699.20 19499.28 113
plane_prior496.77 254
plane_prior198.49 160
n20.00 386
nn0.00 386
door-mid98.17 213
lessismore_v097.05 15799.36 4892.12 20684.07 37398.77 5598.98 4985.36 29299.74 7597.34 5399.37 15999.30 106
test1198.08 226
door97.81 244
HQP5-MVS92.47 197
BP-MVS90.51 281
HQP4-MVS92.87 33099.23 25299.06 160
HQP3-MVS98.43 17898.74 246
HQP2-MVS90.33 240
NP-MVS98.14 20093.72 16895.08 314
ACMMP++_ref99.52 115
ACMMP++99.55 103
Test By Simon94.51 156