This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
LCM-MVSNet-Re99.28 10699.15 11499.67 8899.33 26299.76 4799.34 9599.97 298.93 17399.91 2099.79 6098.68 11399.93 7196.80 26799.56 24399.30 237
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6599.91 399.95 499.96 299.71 10099.91 1999.15 5399.97 1799.50 32100.00 199.90 4
CS-MVS99.52 4999.54 4499.47 16599.51 19199.85 1299.62 4799.93 599.75 3899.34 21299.13 29499.39 2499.91 10899.43 3799.75 17598.66 316
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8399.69 2899.92 699.67 5699.77 7399.75 8099.61 1799.98 799.35 5099.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1299.86 599.92 699.69 5199.78 6899.92 1699.37 3199.88 15798.93 11199.95 4999.60 119
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Effi-MVS+99.06 16498.97 17099.34 20699.31 26498.98 21798.31 27399.91 998.81 18898.79 28898.94 32699.14 5599.84 22598.79 12098.74 32399.20 256
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
PVSNet_Blended_VisFu99.40 7699.38 6999.44 17599.90 1998.66 24598.94 20699.91 997.97 26499.79 6599.73 8799.05 6899.97 1799.15 8399.99 1299.68 58
PMMVS299.48 5499.45 5799.57 13699.76 8498.99 21698.09 29299.90 1298.95 16999.78 6899.58 18499.57 2099.93 7199.48 3399.95 4999.79 30
testgi99.29 10599.26 10099.37 20199.75 9598.81 23598.84 21699.89 1398.38 23199.75 8099.04 30999.36 3499.86 19099.08 9399.25 29599.45 197
test20.0399.55 4499.54 4499.58 13199.79 6699.37 15599.02 18799.89 1399.60 7899.82 5099.62 16098.81 9299.89 14399.43 3799.86 11699.47 191
RRT_test8_iter0597.35 29897.25 29597.63 32198.81 33393.13 35199.26 12099.89 1399.51 8699.83 4899.68 12479.03 36999.88 15799.53 2899.72 19799.89 8
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1699.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
CHOSEN 1792x268899.39 8099.30 8899.65 10099.88 2499.25 18198.78 23099.88 1698.66 20299.96 899.79 6097.45 22799.93 7199.34 5199.99 1299.78 32
Patchmatch-RL test98.60 22898.36 23799.33 20899.77 8099.07 21298.27 27699.87 1898.91 17699.74 8999.72 9390.57 33299.79 27098.55 13799.85 11999.11 274
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 1899.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2099.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
PM-MVS99.36 8799.29 9399.58 13199.83 3899.66 8398.95 20499.86 2098.85 18399.81 5799.73 8798.40 15699.92 9098.36 14699.83 13399.17 262
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 2099.70 4899.91 2099.89 2599.60 1999.87 17099.59 2099.74 18499.71 46
Baseline_NR-MVSNet99.49 5299.37 7299.82 2399.91 1599.84 1898.83 21899.86 2099.68 5299.65 11999.88 2897.67 21699.87 17099.03 9699.86 11699.76 37
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2499.70 4899.92 1899.93 1399.45 2299.97 1799.36 49100.00 199.85 13
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4199.68 3199.85 2499.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
EU-MVSNet99.39 8099.62 2698.72 28599.88 2496.44 32499.56 6499.85 2499.90 799.90 2299.85 3798.09 18399.83 23699.58 2399.95 4999.90 4
casdiffmvs99.63 3199.61 3099.67 8899.79 6699.59 10799.13 16599.85 2499.79 3499.76 7599.72 9399.33 3699.82 24699.21 6999.94 6299.59 128
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2499.80 3299.93 1499.93 1398.54 13399.93 7199.59 2099.98 2199.76 37
CSCG99.37 8499.29 9399.60 12599.71 11199.46 12899.43 8099.85 2498.79 19199.41 19899.60 17698.92 8099.92 9098.02 17599.92 7499.43 208
IterMVS-SCA-FT99.00 17999.16 11198.51 29299.75 9595.90 33298.07 29599.84 3099.84 2399.89 2699.73 8796.01 27499.99 599.33 54100.00 199.63 95
Gipumacopyleft99.57 3899.59 3399.49 15999.98 399.71 6599.72 1999.84 3099.81 2999.94 1199.78 6698.91 8299.71 29898.41 14399.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
AllTest99.21 13199.07 14099.63 11199.78 7299.64 9099.12 16999.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
TestCases99.63 11199.78 7299.64 9099.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
door-mid99.83 32
IterMVS98.97 18399.16 11198.42 29699.74 10195.64 33598.06 29799.83 3299.83 2699.85 4099.74 8396.10 27399.99 599.27 65100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test98.91 19298.64 20799.73 7099.85 3399.47 12498.07 29599.83 3298.64 20499.89 2699.60 17692.57 306100.00 199.33 5499.97 3099.72 43
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4799.60 5899.82 3799.46 9899.75 8099.56 19599.63 1499.95 4599.43 3799.88 10099.62 106
Fast-Effi-MVS+-dtu99.20 13399.12 12299.43 17999.25 27899.69 7699.05 18299.82 3799.50 8798.97 26599.05 30698.98 7399.98 798.20 16199.24 29798.62 318
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3799.84 2399.94 1199.91 1999.13 5799.96 3599.83 999.99 1299.83 18
DSMNet-mixed99.48 5499.65 2398.95 25899.71 11197.27 30899.50 6899.82 3799.59 8099.41 19899.85 3799.62 16100.00 199.53 2899.89 9299.59 128
PVSNet_BlendedMVS99.03 17199.01 15899.09 24699.54 17697.99 28598.58 24599.82 3797.62 28299.34 21299.71 10098.52 14099.77 28197.98 18099.97 3099.52 168
PVSNet_Blended98.70 21998.59 21299.02 25499.54 17697.99 28597.58 32899.82 3795.70 33399.34 21298.98 31998.52 14099.77 28197.98 18099.83 13399.30 237
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6399.59 5999.82 3799.39 10999.82 5099.84 4299.38 2999.91 10899.38 4699.93 7099.80 24
1112_ss99.05 16798.84 19099.67 8899.66 13699.29 17198.52 25699.82 3797.65 28199.43 18899.16 29296.42 26299.91 10899.07 9499.84 12399.80 24
RPSCF99.18 14099.02 15599.64 10799.83 3899.85 1299.44 7899.82 3798.33 24399.50 17599.78 6697.90 19899.65 33396.78 26899.83 13399.44 202
diffmvs99.34 9499.32 8299.39 19499.67 13598.77 23898.57 24999.81 4699.61 7299.48 17799.41 23998.47 14499.86 19098.97 10399.90 8499.53 158
MVSFormer99.41 7399.44 5999.31 21599.57 16498.40 26299.77 1199.80 4799.73 4099.63 12599.30 26698.02 18999.98 799.43 3799.69 20699.55 145
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4799.73 4099.97 699.92 1699.77 799.98 799.43 37100.00 199.90 4
baseline99.63 3199.62 2699.66 9599.80 5699.62 9699.44 7899.80 4799.71 4499.72 9599.69 11399.15 5399.83 23699.32 5699.94 6299.53 158
FMVSNet597.80 28197.25 29599.42 18198.83 32998.97 21999.38 8699.80 4798.87 18199.25 22999.69 11380.60 36499.91 10898.96 10599.90 8499.38 219
Test_1112_low_res98.95 18998.73 19999.63 11199.68 13099.15 20198.09 29299.80 4797.14 30799.46 18299.40 24196.11 27299.89 14399.01 9899.84 12399.84 14
USDC98.96 18698.93 17599.05 25299.54 17697.99 28597.07 34999.80 4798.21 25099.75 8099.77 7398.43 14999.64 33597.90 18699.88 10099.51 170
DIV-MVS_2432*160099.63 3199.59 3399.76 4699.84 3499.90 499.37 9099.79 5399.83 2699.88 3299.85 3798.42 15199.90 12999.60 1999.73 19199.49 181
EIA-MVS99.12 15399.01 15899.45 17399.36 24599.62 9699.34 9599.79 5398.41 22798.84 28298.89 33198.75 10799.84 22598.15 16999.51 25898.89 304
ETV-MVS99.18 14099.18 10999.16 23899.34 25799.28 17399.12 16999.79 5399.48 8998.93 26998.55 34699.40 2399.93 7198.51 13999.52 25798.28 336
Fast-Effi-MVS+99.02 17398.87 18699.46 16999.38 24099.50 12099.04 18499.79 5397.17 30598.62 30198.74 33999.34 3599.95 4598.32 15199.41 27498.92 302
ACMH98.42 699.59 3799.54 4499.72 7699.86 3099.62 9699.56 6499.79 5398.77 19499.80 6099.85 3799.64 1399.85 20898.70 12999.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal99.43 6699.38 6999.60 12599.87 2899.75 5099.59 5999.78 5899.71 4499.90 2299.69 11398.85 9099.90 12997.25 24299.78 16699.15 266
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1199.72 1999.78 5899.90 799.82 5099.83 4398.45 14899.87 17099.51 3099.97 3099.86 11
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7299.70 8499.83 3899.70 7299.38 8699.78 5899.53 8499.67 11199.78 6699.19 4999.86 19097.32 23299.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
door99.77 61
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 899.69 2899.77 6199.78 3599.93 1499.89 2597.94 19599.92 9099.65 1699.98 2199.62 106
wuyk23d97.58 29099.13 11892.93 34699.69 12199.49 12199.52 6699.77 6197.97 26499.96 899.79 6099.84 399.94 5795.85 31099.82 14279.36 361
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4799.32 10099.77 6199.53 8499.77 7399.76 7699.26 4599.78 27397.77 19999.88 10099.60 119
LF4IMVS99.01 17798.92 17999.27 22299.71 11199.28 17398.59 24499.77 6198.32 24499.39 20499.41 23998.62 12299.84 22596.62 27899.84 12398.69 315
Anonymous2024052199.44 6599.42 6499.49 15999.89 2198.96 22199.62 4799.76 6699.85 2099.82 5099.88 2896.39 26599.97 1799.59 2099.98 2199.55 145
xxxxxxxxxxxxxcwj99.11 15798.96 17299.54 14799.53 18199.25 18198.29 27499.76 6699.07 15699.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
v899.68 2399.69 1899.65 10099.80 5699.40 14799.66 3999.76 6699.64 6499.93 1499.85 3798.66 11899.84 22599.88 699.99 1299.71 46
abl_699.36 8799.23 10599.75 5699.71 11199.74 5699.33 9799.76 6699.07 15699.65 11999.63 15199.09 6099.92 9097.13 25099.76 17299.58 133
114514_t98.49 24598.11 26099.64 10799.73 10499.58 11099.24 12899.76 6689.94 35799.42 19099.56 19597.76 21099.86 19097.74 20299.82 14299.47 191
EG-PatchMatch MVS99.57 3899.56 4399.62 12099.77 8099.33 16599.26 12099.76 6699.32 11899.80 6099.78 6699.29 3999.87 17099.15 8399.91 8399.66 75
IterMVS-LS99.41 7399.47 5399.25 22799.81 5198.09 28198.85 21599.76 6699.62 6899.83 4899.64 14198.54 13399.97 1799.15 8399.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
new-patchmatchnet99.35 8999.57 3998.71 28799.82 4496.62 32298.55 25199.75 7399.50 8799.88 3299.87 3199.31 3799.88 15799.43 37100.00 199.62 106
FIs99.65 3099.58 3699.84 1999.84 3499.85 1299.66 3999.75 7399.86 1699.74 8999.79 6098.27 16899.85 20899.37 4899.93 7099.83 18
v1099.69 2199.69 1899.66 9599.81 5199.39 14999.66 3999.75 7399.60 7899.92 1899.87 3198.75 10799.86 19099.90 299.99 1299.73 42
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3599.75 7399.58 8199.85 4099.69 11398.18 17999.94 5799.28 6499.95 4999.83 18
TinyColmap98.97 18398.93 17599.07 25099.46 21998.19 27397.75 32099.75 7398.79 19199.54 16299.70 10798.97 7599.62 33796.63 27799.83 13399.41 212
Anonymous2023120699.35 8999.31 8399.47 16599.74 10199.06 21499.28 11599.74 7899.23 13299.72 9599.53 20797.63 22299.88 15799.11 9199.84 12399.48 186
XVG-OURS99.21 13199.06 14299.65 10099.82 4499.62 9697.87 31699.74 7898.36 23399.66 11599.68 12499.71 999.90 12996.84 26599.88 10099.43 208
MSDG99.08 16298.98 16999.37 20199.60 14899.13 20297.54 32999.74 7898.84 18699.53 16799.55 20299.10 5899.79 27097.07 25399.86 11699.18 260
pmmvs599.19 13699.11 12599.42 18199.76 8498.88 23298.55 25199.73 8198.82 18799.72 9599.62 16096.56 25699.82 24699.32 5699.95 4999.56 142
Anonymous2023121199.62 3499.57 3999.76 4699.61 14699.60 10499.81 999.73 8199.82 2899.90 2299.90 2197.97 19499.86 19099.42 4399.96 4299.80 24
PS-CasMVS99.66 2599.58 3699.89 799.80 5699.85 1299.66 3999.73 8199.62 6899.84 4399.71 10098.62 12299.96 3599.30 5999.96 4299.86 11
PEN-MVS99.66 2599.59 3399.89 799.83 3899.87 899.66 3999.73 8199.70 4899.84 4399.73 8798.56 13099.96 3599.29 6299.94 6299.83 18
XVG-OURS-SEG-HR99.16 14598.99 16699.66 9599.84 3499.64 9098.25 27899.73 8198.39 23099.63 12599.43 23799.70 1199.90 12997.34 23198.64 32799.44 202
LPG-MVS_test99.22 12699.05 14699.74 6299.82 4499.63 9499.16 15599.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
LGP-MVS_train99.74 6299.82 4499.63 9499.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
MVS_111021_LR99.13 15199.03 15499.42 18199.58 15499.32 16797.91 31599.73 8198.68 20199.31 22199.48 22499.09 6099.66 32697.70 20699.77 17099.29 240
ITE_SJBPF99.38 19899.63 14299.44 13599.73 8198.56 21199.33 21599.53 20798.88 8799.68 31796.01 30299.65 22399.02 295
PGM-MVS99.20 13399.01 15899.77 4099.75 9599.71 6599.16 15599.72 9097.99 26299.42 19099.60 17698.81 9299.93 7196.91 25999.74 18499.66 75
MDA-MVSNet-bldmvs99.06 16499.05 14699.07 25099.80 5697.83 29298.89 20899.72 9099.29 12099.63 12599.70 10796.47 26099.89 14398.17 16799.82 14299.50 176
XVG-ACMP-BASELINE99.23 11799.10 13399.63 11199.82 4499.58 11098.83 21899.72 9098.36 23399.60 14099.71 10098.92 8099.91 10897.08 25299.84 12399.40 214
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9399.93 499.95 1099.89 2599.71 999.96 3599.51 3099.97 3099.84 14
DTE-MVSNet99.68 2399.61 3099.88 1199.80 5699.87 899.67 3599.71 9399.72 4399.84 4399.78 6698.67 11699.97 1799.30 5999.95 4999.80 24
MVS_111021_HR99.12 15399.02 15599.40 19199.50 19899.11 20497.92 31399.71 9398.76 19799.08 25799.47 22999.17 5199.54 34697.85 19499.76 17299.54 153
DeepC-MVS98.90 499.62 3499.61 3099.67 8899.72 10899.44 13599.24 12899.71 9399.27 12499.93 1499.90 2199.70 1199.93 7198.99 9999.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9799.93 499.78 6899.68 12499.10 5899.78 27399.45 3599.96 4299.83 18
VPNet99.46 6199.37 7299.71 8099.82 4499.59 10799.48 7299.70 9799.81 2999.69 10599.58 18497.66 22099.86 19099.17 7999.44 26899.67 65
HPM-MVS_fast99.43 6699.30 8899.80 2999.83 3899.81 2999.52 6699.70 9798.35 23899.51 17499.50 21699.31 3799.88 15798.18 16599.84 12399.69 52
GBi-Net99.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
test199.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4199.68 3199.70 9799.67 5699.82 5099.83 4398.98 7399.90 12999.24 6699.97 3099.53 158
APDe-MVS99.48 5499.36 7599.85 1899.55 17599.81 2999.50 6899.69 10398.99 16399.75 8099.71 10098.79 9999.93 7198.46 14199.85 11999.80 24
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5099.62 4799.69 10399.85 2099.80 6099.81 5298.81 9299.91 10899.47 3499.88 10099.70 49
OpenMVScopyleft98.12 1098.23 26797.89 27999.26 22499.19 28999.26 17799.65 4499.69 10391.33 35598.14 32899.77 7398.28 16799.96 3595.41 32299.55 24798.58 322
ppachtmachnet_test98.89 19799.12 12298.20 30699.66 13695.24 33997.63 32599.68 10699.08 15499.78 6899.62 16098.65 12099.88 15798.02 17599.96 4299.48 186
test_part198.63 22498.26 24799.75 5699.40 23599.49 12199.67 3599.68 10699.86 1699.88 3299.86 3686.73 35299.93 7199.34 5199.97 3099.81 23
UnsupCasMVSNet_bld98.55 23798.27 24699.40 19199.56 17499.37 15597.97 30899.68 10697.49 29099.08 25799.35 25795.41 28199.82 24697.70 20698.19 34099.01 296
test_040299.22 12699.14 11599.45 17399.79 6699.43 13999.28 11599.68 10699.54 8299.40 20399.56 19599.07 6599.82 24696.01 30299.96 4299.11 274
LS3D99.24 11699.11 12599.61 12398.38 34999.79 3699.57 6299.68 10699.61 7299.15 24899.71 10098.70 11199.91 10897.54 22099.68 20999.13 273
HPM-MVScopyleft99.25 11399.07 14099.78 3799.81 5199.75 5099.61 5399.67 11197.72 27899.35 20999.25 27899.23 4699.92 9097.21 24599.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CR-MVSNet98.35 25998.20 25298.83 27799.05 31098.12 27799.30 10799.67 11197.39 29599.16 24699.79 6091.87 31599.91 10898.78 12398.77 31998.44 331
Patchmtry98.78 20898.54 22099.49 15998.89 32399.19 19799.32 10099.67 11199.65 6299.72 9599.79 6091.87 31599.95 4598.00 17999.97 3099.33 231
UnsupCasMVSNet_eth98.83 20398.57 21699.59 12799.68 13099.45 13398.99 19699.67 11199.48 8999.55 16099.36 25294.92 28399.86 19098.95 10996.57 35699.45 197
miper_lstm_enhance98.65 22398.60 21098.82 28099.20 28797.33 30797.78 31999.66 11599.01 16299.59 14399.50 21694.62 28899.85 20898.12 17099.90 8499.26 243
Effi-MVS+-dtu99.07 16398.92 17999.52 15098.89 32399.78 3999.15 15799.66 11599.34 11498.92 27299.24 28397.69 21399.98 798.11 17199.28 29198.81 311
xiu_mvs_v1_base_debu99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
mvs-test198.83 20398.70 20499.22 23198.89 32399.65 8898.88 20999.66 11599.34 11498.29 31798.94 32697.69 21399.96 3598.11 17198.54 33198.04 346
xiu_mvs_v1_base99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
pmmvs-eth3d99.48 5499.47 5399.51 15399.77 8099.41 14698.81 22399.66 11599.42 10899.75 8099.66 13499.20 4899.76 28398.98 10199.99 1299.36 225
xiu_mvs_v1_base_debi99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
canonicalmvs99.02 17399.00 16199.09 24699.10 30598.70 24199.61 5399.66 11599.63 6798.64 30097.65 36099.04 6999.54 34698.79 12098.92 31299.04 290
RRT_MVS98.75 21298.54 22099.41 18998.14 35898.61 24998.98 20099.66 11599.31 11999.84 4399.75 8091.98 31299.98 799.20 7299.95 4999.62 106
pmmvs398.08 27397.80 28098.91 26599.41 23297.69 29897.87 31699.66 11595.87 32999.50 17599.51 21390.35 33499.97 1798.55 13799.47 26599.08 282
ACMP97.51 1499.05 16798.84 19099.67 8899.78 7299.55 11698.88 20999.66 11597.11 30999.47 17999.60 17699.07 6599.89 14396.18 29799.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SF-MVS99.10 16198.93 17599.62 12099.58 15499.51 11999.13 16599.65 12697.97 26499.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
v124099.56 4199.58 3699.51 15399.80 5699.00 21599.00 19199.65 12699.15 14799.90 2299.75 8099.09 6099.88 15799.90 299.96 4299.67 65
ACMMPcopyleft99.25 11399.08 13699.74 6299.79 6699.68 7999.50 6899.65 12698.07 25899.52 16999.69 11398.57 12899.92 9097.18 24799.79 16099.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS99.11 15798.95 17499.59 12799.13 29799.59 10799.17 14999.65 12697.88 27099.25 22999.46 23298.97 7599.80 26797.26 23999.82 14299.37 222
F-COLMAP98.74 21498.45 22799.62 12099.57 16499.47 12498.84 21699.65 12696.31 32498.93 26999.19 29197.68 21599.87 17096.52 28199.37 28199.53 158
ACMM98.09 1199.46 6199.38 6999.72 7699.80 5699.69 7699.13 16599.65 12698.99 16399.64 12199.72 9399.39 2499.86 19098.23 15899.81 15099.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CVMVSNet98.61 22698.88 18597.80 31699.58 15493.60 34999.26 12099.64 13299.66 6099.72 9599.67 13093.26 30099.93 7199.30 5999.81 15099.87 9
OMC-MVS98.90 19498.72 20099.44 17599.39 23799.42 14298.58 24599.64 13297.31 29999.44 18499.62 16098.59 12699.69 30696.17 29899.79 16099.22 251
MP-MVS-pluss99.14 14998.92 17999.80 2999.83 3899.83 2298.61 24199.63 13496.84 31599.44 18499.58 18498.81 9299.91 10897.70 20699.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet99.54 4699.47 5399.76 4699.58 15499.64 9099.30 10799.63 13499.61 7299.71 10099.56 19598.76 10599.96 3599.14 8999.92 7499.68 58
DP-MVS Recon98.50 24298.23 24999.31 21599.49 20399.46 12898.56 25099.63 13494.86 34498.85 28199.37 24797.81 20699.59 34396.08 29999.44 26898.88 305
SR-MVS-dyc-post99.27 11099.11 12599.73 7099.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.41 15299.91 10897.27 23799.61 23599.54 153
RE-MVS-def99.13 11899.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.57 12897.27 23799.61 23599.54 153
cdsmvs_eth3d_5k24.88 33633.17 3380.00 3500.00 3710.00 3720.00 36299.62 1370.00 3670.00 36899.13 29499.82 40.00 3680.00 3660.00 3660.00 364
v14419299.55 4499.54 4499.58 13199.78 7299.20 19699.11 17199.62 13799.18 13899.89 2699.72 9398.66 11899.87 17099.88 699.97 3099.66 75
CP-MVS99.23 11799.05 14699.75 5699.66 13699.66 8399.38 8699.62 13798.38 23199.06 26199.27 27398.79 9999.94 5797.51 22399.82 14299.66 75
RPMNet98.60 22898.53 22298.83 27799.05 31098.12 27799.30 10799.62 13799.86 1699.16 24699.74 8392.53 30899.92 9098.75 12598.77 31998.44 331
TAPA-MVS97.92 1398.03 27597.55 28999.46 16999.47 21499.44 13598.50 25899.62 13786.79 35899.07 26099.26 27698.26 16999.62 33797.28 23699.73 19199.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test117299.23 11799.05 14699.74 6299.52 18699.75 5099.20 13899.61 14498.97 16599.48 17799.58 18498.41 15299.91 10897.15 24999.55 24799.57 139
test_0728_SECOND99.83 2199.70 11899.79 3699.14 15999.61 14499.92 9097.88 18899.72 19799.77 33
v192192099.56 4199.57 3999.55 14399.75 9599.11 20499.05 18299.61 14499.15 14799.88 3299.71 10099.08 6399.87 17099.90 299.97 3099.66 75
v114499.54 4699.53 4999.59 12799.79 6699.28 17399.10 17299.61 14499.20 13699.84 4399.73 8798.67 11699.84 22599.86 899.98 2199.64 90
XVS99.27 11099.11 12599.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29299.47 22998.47 14499.88 15797.62 21499.73 19199.67 65
X-MVStestdata96.09 32294.87 33299.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29261.30 37098.47 14499.88 15797.62 21499.73 19199.67 65
SD-MVS99.01 17799.30 8898.15 30799.50 19899.40 14798.94 20699.61 14499.22 13599.75 8099.82 4999.54 2195.51 36597.48 22499.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize99.31 10299.16 11199.74 6299.53 18199.75 5099.27 11899.61 14499.19 13799.57 14899.64 14198.76 10599.90 12997.29 23499.62 22899.56 142
UniMVSNet_NR-MVSNet99.37 8499.25 10299.72 7699.47 21499.56 11398.97 20299.61 14499.43 10699.67 11199.28 27197.85 20499.95 4599.17 7999.81 15099.65 83
CP-MVSNet99.54 4699.43 6299.87 1499.76 8499.82 2699.57 6299.61 14499.54 8299.80 6099.64 14197.79 20899.95 4599.21 6999.94 6299.84 14
DP-MVS99.48 5499.39 6799.74 6299.57 16499.62 9699.29 11499.61 14499.87 1499.74 8999.76 7698.69 11299.87 17098.20 16199.80 15599.75 40
9.1498.64 20799.45 22298.81 22399.60 15597.52 28899.28 22699.56 19598.53 13799.83 23695.36 32499.64 225
ETH3D-3000-0.198.77 20998.50 22499.59 12799.47 21499.53 11898.77 23199.60 15597.33 29899.23 23399.50 21697.91 19799.83 23695.02 32999.67 21699.41 212
SR-MVS99.19 13699.00 16199.74 6299.51 19199.72 6399.18 14499.60 15598.85 18399.47 17999.58 18498.38 15799.92 9096.92 25899.54 25399.57 139
DPE-MVScopyleft99.14 14998.92 17999.82 2399.57 16499.77 4198.74 23499.60 15598.55 21399.76 7599.69 11398.23 17399.92 9096.39 28899.75 17599.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
v119299.57 3899.57 3999.57 13699.77 8099.22 19099.04 18499.60 15599.18 13899.87 3899.72 9399.08 6399.85 20899.89 599.98 2199.66 75
UniMVSNet (Re)99.37 8499.26 10099.68 8699.51 19199.58 11098.98 20099.60 15599.43 10699.70 10299.36 25297.70 21199.88 15799.20 7299.87 10999.59 128
SteuartSystems-ACMMP99.30 10399.14 11599.76 4699.87 2899.66 8399.18 14499.60 15598.55 21399.57 14899.67 13099.03 7099.94 5797.01 25499.80 15599.69 52
Skip Steuart: Steuart Systems R&D Blog.
cl-mvsnet____98.54 23898.41 23298.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.85 29599.78 27397.97 18299.89 9299.17 262
cl-mvsnet198.54 23898.42 23198.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.87 29499.78 27397.97 18299.89 9299.18 260
HFP-MVS99.25 11399.08 13699.76 4699.73 10499.70 7299.31 10499.59 16298.36 23399.36 20799.37 24798.80 9699.91 10897.43 22799.75 17599.68 58
v14899.40 7699.41 6599.39 19499.76 8498.94 22399.09 17699.59 16299.17 14199.81 5799.61 16998.41 15299.69 30699.32 5699.94 6299.53 158
region2R99.23 11799.05 14699.77 4099.76 8499.70 7299.31 10499.59 16298.41 22799.32 21799.36 25298.73 11099.93 7197.29 23499.74 18499.67 65
#test#99.12 15398.90 18399.76 4699.73 10499.70 7299.10 17299.59 16297.60 28399.36 20799.37 24798.80 9699.91 10896.84 26599.75 17599.68 58
V4299.56 4199.54 4499.63 11199.79 6699.46 12899.39 8499.59 16299.24 13099.86 3999.70 10798.55 13199.82 24699.79 1199.95 4999.60 119
ACMMPR99.23 11799.06 14299.76 4699.74 10199.69 7699.31 10499.59 16298.36 23399.35 20999.38 24698.61 12499.93 7197.43 22799.75 17599.67 65
CMPMVSbinary77.52 2398.50 24298.19 25599.41 18998.33 35199.56 11399.01 18999.59 16295.44 33599.57 14899.80 5495.64 27899.46 35596.47 28599.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
our_test_398.85 20299.09 13498.13 30899.66 13694.90 34297.72 32199.58 17199.07 15699.64 12199.62 16098.19 17799.93 7198.41 14399.95 4999.55 145
v2v48299.50 5099.47 5399.58 13199.78 7299.25 18199.14 15999.58 17199.25 12899.81 5799.62 16098.24 17099.84 22599.83 999.97 3099.64 90
test072699.69 12199.80 3499.24 12899.57 17399.16 14399.73 9399.65 13998.35 160
MSP-MVS99.04 17098.79 19799.81 2699.78 7299.73 5999.35 9499.57 17398.54 21699.54 16298.99 31696.81 25399.93 7196.97 25699.53 25599.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 20098.59 21299.71 8099.50 19899.62 9699.01 18999.57 17396.80 31799.54 16299.63 15198.29 16699.91 10895.24 32599.71 20199.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet299.35 8999.28 9599.55 14399.49 20399.35 16299.45 7599.57 17399.44 10199.70 10299.74 8397.21 23999.87 17099.03 9699.94 6299.44 202
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14299.45 7599.57 17399.66 6099.78 6899.83 4397.85 20499.86 19099.44 3699.96 4299.61 115
test_method91.72 33392.32 33689.91 34793.49 36770.18 36990.28 36199.56 17861.71 36495.39 36199.52 20993.90 29399.94 5798.76 12498.27 33799.62 106
ZNCC-MVS99.22 12699.04 15299.77 4099.76 8499.73 5999.28 11599.56 17898.19 25299.14 25099.29 26998.84 9199.92 9097.53 22299.80 15599.64 90
cl_fuxian98.72 21798.71 20198.72 28599.12 29997.22 31097.68 32499.56 17898.90 17799.54 16299.48 22496.37 26699.73 29297.88 18899.88 10099.21 253
cascas96.99 30396.82 30997.48 32397.57 36295.64 33596.43 35699.56 17891.75 35397.13 35397.61 36195.58 28098.63 36296.68 27399.11 30198.18 343
Vis-MVSNet (Re-imp)98.77 20998.58 21599.34 20699.78 7298.88 23299.61 5399.56 17899.11 15399.24 23299.56 19593.00 30499.78 27397.43 22799.89 9299.35 228
3Dnovator99.15 299.43 6699.36 7599.65 10099.39 23799.42 14299.70 2299.56 17899.23 13299.35 20999.80 5499.17 5199.95 4598.21 16099.84 12399.59 128
GST-MVS99.16 14598.96 17299.75 5699.73 10499.73 5999.20 13899.55 18498.22 24999.32 21799.35 25798.65 12099.91 10896.86 26299.74 18499.62 106
MVP-Stereo99.16 14599.08 13699.43 17999.48 20999.07 21299.08 17999.55 18498.63 20599.31 22199.68 12498.19 17799.78 27398.18 16599.58 24199.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous99.28 10699.39 6798.94 25999.19 28997.81 29399.02 18799.55 18499.78 3599.85 4099.80 5498.24 17099.86 19099.57 2499.50 26099.15 266
CPTT-MVS98.74 21498.44 22999.64 10799.61 14699.38 15299.18 14499.55 18496.49 32099.27 22799.37 24797.11 24599.92 9095.74 31599.67 21699.62 106
CLD-MVS98.76 21198.57 21699.33 20899.57 16498.97 21997.53 33199.55 18496.41 32199.27 22799.13 29499.07 6599.78 27396.73 27199.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SED-MVS99.40 7699.28 9599.77 4099.69 12199.82 2699.20 13899.54 18999.13 14999.82 5099.63 15198.91 8299.92 9097.85 19499.70 20399.58 133
test_241102_TWO99.54 18999.13 14999.76 7599.63 15198.32 16599.92 9097.85 19499.69 20699.75 40
test_241102_ONE99.69 12199.82 2699.54 18999.12 15299.82 5099.49 22198.91 8299.52 350
eth_miper_zixun_eth98.68 22198.71 20198.60 28999.10 30596.84 31997.52 33399.54 18998.94 17099.58 14599.48 22496.25 26999.76 28398.01 17899.93 7099.21 253
HQP_MVS98.90 19498.68 20699.55 14399.58 15499.24 18698.80 22699.54 18998.94 17099.14 25099.25 27897.24 23799.82 24695.84 31199.78 16699.60 119
plane_prior599.54 18999.82 24695.84 31199.78 16699.60 119
mPP-MVS99.19 13699.00 16199.76 4699.76 8499.68 7999.38 8699.54 18998.34 24299.01 26399.50 21698.53 13799.93 7197.18 24799.78 16699.66 75
CDS-MVSNet99.22 12699.13 11899.50 15699.35 24799.11 20498.96 20399.54 18999.46 9899.61 13899.70 10796.31 26799.83 23699.34 5199.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PatchMatch-RL98.68 22198.47 22599.30 21799.44 22499.28 17398.14 28699.54 18997.12 30899.11 25499.25 27897.80 20799.70 30096.51 28299.30 28998.93 301
ACMMP_NAP99.28 10699.11 12599.79 3499.75 9599.81 2998.95 20499.53 19898.27 24799.53 16799.73 8798.75 10799.87 17097.70 20699.83 13399.68 58
zzz-MVS99.30 10399.14 11599.80 2999.81 5199.81 2998.73 23699.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
MTGPAbinary99.53 198
MTAPA99.35 8999.20 10799.80 2999.81 5199.81 2999.33 9799.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
Regformer-499.45 6399.44 5999.50 15699.52 18698.94 22399.17 14999.53 19899.64 6499.76 7599.60 17698.96 7899.90 12998.91 11299.84 12399.67 65
Regformer-299.34 9499.27 9899.53 14999.41 23299.10 20898.99 19699.53 19899.47 9499.66 11599.52 20998.80 9699.89 14398.31 15299.74 18499.60 119
DU-MVS99.33 9899.21 10699.71 8099.43 22699.56 11398.83 21899.53 19899.38 11099.67 11199.36 25297.67 21699.95 4599.17 7999.81 15099.63 95
DELS-MVS99.34 9499.30 8899.48 16399.51 19199.36 15898.12 28899.53 19899.36 11399.41 19899.61 16999.22 4799.87 17099.21 6999.68 20999.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
miper_ehance_all_eth98.59 23198.59 21298.59 29098.98 31697.07 31397.49 33499.52 20698.50 21999.52 16999.37 24796.41 26499.71 29897.86 19299.62 22899.00 297
SMA-MVScopyleft99.19 13699.00 16199.73 7099.46 21999.73 5999.13 16599.52 20697.40 29499.57 14899.64 14198.93 7999.83 23697.61 21699.79 16099.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
QAPM98.40 25497.99 26599.65 10099.39 23799.47 12499.67 3599.52 20691.70 35498.78 29099.80 5498.55 13199.95 4594.71 33399.75 17599.53 158
CL-MVSNet_2432*160098.71 21898.56 21999.15 24099.22 28298.66 24597.14 34699.51 20998.09 25799.54 16299.27 27396.87 25299.74 28998.43 14298.96 30999.03 291
xiu_mvs_v2_base99.02 17399.11 12598.77 28299.37 24398.09 28198.13 28799.51 20999.47 9499.42 19098.54 34799.38 2999.97 1798.83 11699.33 28698.24 338
PS-MVSNAJ99.00 17999.08 13698.76 28399.37 24398.10 28098.00 30299.51 20999.47 9499.41 19898.50 34999.28 4199.97 1798.83 11699.34 28498.20 342
PLCcopyleft97.35 1698.36 25697.99 26599.48 16399.32 26399.24 18698.50 25899.51 20995.19 34098.58 30598.96 32496.95 25099.83 23695.63 31699.25 29599.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testtj98.56 23498.17 25799.72 7699.45 22299.60 10498.88 20999.50 21396.88 31299.18 24599.48 22497.08 24699.92 9093.69 34599.38 27799.63 95
MP-MVScopyleft99.06 16498.83 19299.76 4699.76 8499.71 6599.32 10099.50 21398.35 23898.97 26599.48 22498.37 15899.92 9095.95 30899.75 17599.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NR-MVSNet99.40 7699.31 8399.68 8699.43 22699.55 11699.73 1699.50 21399.46 9899.88 3299.36 25297.54 22499.87 17098.97 10399.87 10999.63 95
new_pmnet98.88 19898.89 18498.84 27599.70 11897.62 29998.15 28499.50 21397.98 26399.62 13299.54 20498.15 18099.94 5797.55 21999.84 12398.95 299
3Dnovator+98.92 399.35 8999.24 10399.67 8899.35 24799.47 12499.62 4799.50 21399.44 10199.12 25399.78 6698.77 10499.94 5797.87 19199.72 19799.62 106
ETH3 D test640097.76 28397.19 29899.50 15699.38 24099.26 17798.34 26999.49 21892.99 35198.54 30899.20 28995.92 27699.82 24691.14 35299.66 22099.40 214
MVS_Test99.28 10699.31 8399.19 23599.35 24798.79 23799.36 9399.49 21899.17 14199.21 23999.67 13098.78 10199.66 32699.09 9299.66 22099.10 276
OPM-MVS99.26 11299.13 11899.63 11199.70 11899.61 10298.58 24599.48 22098.50 21999.52 16999.63 15199.14 5599.76 28397.89 18799.77 17099.51 170
Regformer-199.32 10099.27 9899.47 16599.41 23298.95 22298.99 19699.48 22099.48 8999.66 11599.52 20998.78 10199.87 17098.36 14699.74 18499.60 119
FMVSNet398.80 20798.63 20999.32 21299.13 29798.72 24099.10 17299.48 22099.23 13299.62 13299.64 14192.57 30699.86 19098.96 10599.90 8499.39 217
OpenMVS_ROBcopyleft97.31 1797.36 29796.84 30898.89 27299.29 27099.45 13398.87 21299.48 22086.54 36099.44 18499.74 8397.34 23499.86 19091.61 34999.28 29197.37 354
ETH3D cwj APD-0.1698.50 24298.16 25899.51 15399.04 31299.39 14998.47 26099.47 22496.70 31998.78 29099.33 26197.62 22399.86 19094.69 33499.38 27799.28 242
MSLP-MVS++99.05 16799.09 13498.91 26599.21 28498.36 26698.82 22299.47 22498.85 18398.90 27599.56 19598.78 10199.09 35998.57 13699.68 20999.26 243
DeepPCF-MVS98.42 699.18 14099.02 15599.67 8899.22 28299.75 5097.25 34399.47 22498.72 19999.66 11599.70 10799.29 3999.63 33698.07 17499.81 15099.62 106
PMVScopyleft92.94 2198.82 20598.81 19498.85 27399.84 3497.99 28599.20 13899.47 22499.71 4499.42 19099.82 4998.09 18399.47 35393.88 34499.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc99.20 23499.35 24798.53 25299.17 14999.46 22899.67 11199.80 5498.46 14799.70 30097.92 18599.70 20399.38 219
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16498.65 24899.24 12899.46 22899.68 5299.80 6099.66 13498.99 7299.89 14399.19 7499.90 8499.72 43
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16498.66 24599.24 12899.46 22899.67 5699.79 6599.65 13998.97 7599.89 14399.15 8399.89 9299.71 46
EI-MVSNet99.38 8299.44 5999.21 23299.58 15498.09 28199.26 12099.46 22899.62 6899.75 8099.67 13098.54 13399.85 20899.15 8399.92 7499.68 58
MVSTER98.47 24798.22 25099.24 22999.06 30998.35 26799.08 17999.46 22899.27 12499.75 8099.66 13488.61 34299.85 20899.14 8999.92 7499.52 168
hse-mvs398.61 22698.34 24099.44 17599.60 14898.67 24399.27 11899.44 23399.68 5299.32 21799.49 22192.50 309100.00 199.24 6696.51 35799.65 83
CHOSEN 280x42098.41 25298.41 23298.40 29799.34 25795.89 33396.94 35199.44 23398.80 19099.25 22999.52 20993.51 29999.98 798.94 11099.98 2199.32 234
Regformer-399.41 7399.41 6599.40 19199.52 18698.70 24199.17 14999.44 23399.62 6899.75 8099.60 17698.90 8599.85 20898.89 11399.84 12399.65 83
PCF-MVS96.03 1896.73 31095.86 32199.33 20899.44 22499.16 19996.87 35299.44 23386.58 35998.95 26799.40 24194.38 29099.88 15787.93 35799.80 15598.95 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 22699.61 10299.43 23796.38 32299.11 25499.07 30497.86 20299.92 9094.04 34199.49 262
ab-mvs99.33 9899.28 9599.47 16599.57 16499.39 14999.78 1099.43 23798.87 18199.57 14899.82 4998.06 18699.87 17098.69 13199.73 19199.15 266
AdaColmapbinary98.60 22898.35 23999.38 19899.12 29999.22 19098.67 24099.42 23997.84 27598.81 28599.27 27397.32 23599.81 26295.14 32699.53 25599.10 276
miper_enhance_ethall98.03 27597.94 27398.32 30198.27 35296.43 32596.95 35099.41 24096.37 32399.43 18898.96 32494.74 28699.69 30697.71 20499.62 22898.83 310
D2MVS99.22 12699.19 10899.29 21899.69 12198.74 23998.81 22399.41 24098.55 21399.68 10799.69 11398.13 18199.87 17098.82 11899.98 2199.24 246
CANet99.11 15799.05 14699.28 22098.83 32998.56 25198.71 23999.41 24099.25 12899.23 23399.22 28597.66 22099.94 5799.19 7499.97 3099.33 231
TEST999.35 24799.35 16298.11 29099.41 24094.83 34697.92 33598.99 31698.02 18999.85 208
train_agg98.35 25997.95 26999.57 13699.35 24799.35 16298.11 29099.41 24094.90 34297.92 33598.99 31698.02 18999.85 20895.38 32399.44 26899.50 176
CDPH-MVS98.56 23498.20 25299.61 12399.50 19899.46 12898.32 27299.41 24095.22 33899.21 23999.10 30298.34 16299.82 24695.09 32899.66 22099.56 142
CNLPA98.57 23398.34 24099.28 22099.18 29199.10 20898.34 26999.41 24098.48 22298.52 30998.98 31997.05 24799.78 27395.59 31799.50 26098.96 298
test_899.34 25799.31 16898.08 29499.40 24794.90 34297.87 33998.97 32298.02 18999.84 225
PVSNet_095.53 1995.85 32895.31 33097.47 32498.78 33793.48 35095.72 35899.40 24796.18 32697.37 34797.73 35995.73 27799.58 34495.49 31981.40 36399.36 225
DeepC-MVS_fast98.47 599.23 11799.12 12299.56 14099.28 27399.22 19098.99 19699.40 24799.08 15499.58 14599.64 14198.90 8599.83 23697.44 22699.75 17599.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2024052999.42 6999.34 7799.65 10099.53 18199.60 10499.63 4699.39 25099.47 9499.76 7599.78 6698.13 18199.86 19098.70 12999.68 20999.49 181
agg_prior198.33 26197.92 27599.57 13699.35 24799.36 15897.99 30499.39 25094.85 34597.76 34498.98 31998.03 18799.85 20895.49 31999.44 26899.51 170
agg_prior99.35 24799.36 15899.39 25097.76 34499.85 208
test_prior398.62 22598.34 24099.46 16999.35 24799.22 19097.95 30999.39 25097.87 27198.05 33099.05 30697.90 19899.69 30695.99 30499.49 26299.48 186
test_prior99.46 16999.35 24799.22 19099.39 25099.69 30699.48 186
jason99.16 14599.11 12599.32 21299.75 9598.44 25998.26 27799.39 25098.70 20099.74 8999.30 26698.54 13399.97 1798.48 14099.82 14299.55 145
jason: jason.
save fliter99.53 18199.25 18198.29 27499.38 25699.07 156
cl-mvsnet297.56 29197.28 29398.40 29798.37 35096.75 32097.24 34499.37 25797.31 29999.41 19899.22 28587.30 34499.37 35797.70 20699.62 22899.08 282
WR-MVS99.11 15798.93 17599.66 9599.30 26899.42 14298.42 26699.37 25799.04 16199.57 14899.20 28996.89 25199.86 19098.66 13399.87 10999.70 49
HQP3-MVS99.37 25799.67 216
HQP-MVS98.36 25698.02 26499.39 19499.31 26498.94 22397.98 30599.37 25797.45 29198.15 32498.83 33496.67 25499.70 30094.73 33199.67 21699.53 158
TSAR-MVS + MP.99.34 9499.24 10399.63 11199.82 4499.37 15599.26 12099.35 26198.77 19499.57 14899.70 10799.27 4499.88 15797.71 20499.75 17599.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UGNet99.38 8299.34 7799.49 15998.90 32098.90 23199.70 2299.35 26199.86 1698.57 30699.81 5298.50 14399.93 7199.38 4699.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet97.47 1598.42 25198.44 22998.35 29999.46 21996.26 32696.70 35499.34 26397.68 28099.00 26499.13 29497.40 22999.72 29497.59 21899.68 20999.08 282
MS-PatchMatch99.00 17998.97 17099.09 24699.11 30498.19 27398.76 23399.33 26498.49 22199.44 18499.58 18498.21 17499.69 30698.20 16199.62 22899.39 217
MDA-MVSNet_test_wron98.95 18998.99 16698.85 27399.64 14097.16 31198.23 27999.33 26498.93 17399.56 15599.66 13497.39 23199.83 23698.29 15399.88 10099.55 145
YYNet198.95 18998.99 16698.84 27599.64 14097.14 31298.22 28099.32 26698.92 17599.59 14399.66 13497.40 22999.83 23698.27 15599.90 8499.55 145
tpm cat196.78 30896.98 30396.16 34498.85 32790.59 36699.08 17999.32 26692.37 35297.73 34699.46 23291.15 32299.69 30696.07 30098.80 31698.21 340
sss98.90 19498.77 19899.27 22299.48 20998.44 25998.72 23799.32 26697.94 26899.37 20699.35 25796.31 26799.91 10898.85 11599.63 22799.47 191
PMMVS98.49 24598.29 24599.11 24498.96 31798.42 26197.54 32999.32 26697.53 28798.47 31398.15 35597.88 20199.82 24697.46 22599.24 29799.09 279
DVP-MVS99.32 10099.17 11099.77 4099.69 12199.80 3499.14 15999.31 27099.16 14399.62 13299.61 16998.35 16099.91 10897.88 18899.72 19799.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet_DTU98.91 19298.85 18899.09 24698.79 33598.13 27698.18 28199.31 27099.48 8998.86 28099.51 21396.56 25699.95 4599.05 9599.95 4999.19 258
VNet99.18 14099.06 14299.56 14099.24 28099.36 15899.33 9799.31 27099.67 5699.47 17999.57 19296.48 25999.84 22599.15 8399.30 28999.47 191
MVS_030498.88 19898.71 20199.39 19498.85 32798.91 23099.45 7599.30 27398.56 21197.26 35099.68 12496.18 27199.96 3599.17 7999.94 6299.29 240
testdata99.42 18199.51 19198.93 22799.30 27396.20 32598.87 27999.40 24198.33 16499.89 14396.29 29299.28 29199.44 202
test22299.51 19199.08 21197.83 31899.29 27595.21 33998.68 29899.31 26497.28 23699.38 27799.43 208
TSAR-MVS + GP.99.12 15399.04 15299.38 19899.34 25799.16 19998.15 28499.29 27598.18 25399.63 12599.62 16099.18 5099.68 31798.20 16199.74 18499.30 237
test1199.29 275
PAPM_NR98.36 25698.04 26399.33 20899.48 20998.93 22798.79 22999.28 27897.54 28698.56 30798.57 34497.12 24499.69 30694.09 34098.90 31499.38 219
原ACMM199.37 20199.47 21498.87 23499.27 27996.74 31898.26 31999.32 26297.93 19699.82 24695.96 30799.38 27799.43 208
CNVR-MVS98.99 18298.80 19699.56 14099.25 27899.43 13998.54 25499.27 27998.58 21098.80 28799.43 23798.53 13799.70 30097.22 24499.59 24099.54 153
新几何199.52 15099.50 19899.22 19099.26 28195.66 33498.60 30399.28 27197.67 21699.89 14395.95 30899.32 28799.45 197
旧先验199.49 20399.29 17199.26 28199.39 24597.67 21699.36 28299.46 195
DeepMVS_CXcopyleft97.98 31099.69 12196.95 31599.26 28175.51 36295.74 36098.28 35396.47 26099.62 33791.23 35197.89 34797.38 353
pmmvs499.13 15199.06 14299.36 20499.57 16499.10 20898.01 30099.25 28498.78 19399.58 14599.44 23698.24 17099.76 28398.74 12699.93 7099.22 251
NCCC98.82 20598.57 21699.58 13199.21 28499.31 16898.61 24199.25 28498.65 20398.43 31499.26 27697.86 20299.81 26296.55 27999.27 29499.61 115
PAPR97.56 29197.07 30099.04 25398.80 33498.11 27997.63 32599.25 28494.56 34898.02 33398.25 35497.43 22899.68 31790.90 35398.74 32399.33 231
EPP-MVSNet99.17 14499.00 16199.66 9599.80 5699.43 13999.70 2299.24 28799.48 8999.56 15599.77 7394.89 28499.93 7198.72 12899.89 9299.63 95
无先验98.01 30099.23 28895.83 33099.85 20895.79 31399.44 202
KD-MVS_2432*160095.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
IU-MVS99.69 12199.77 4199.22 28997.50 28999.69 10597.75 20199.70 20399.77 33
miper_refine_blended95.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
112198.56 23498.24 24899.52 15099.49 20399.24 18699.30 10799.22 28995.77 33198.52 30999.29 26997.39 23199.85 20895.79 31399.34 28499.46 195
MG-MVS98.52 24098.39 23498.94 25999.15 29497.39 30698.18 28199.21 29398.89 18099.23 23399.63 15197.37 23399.74 28994.22 33899.61 23599.69 52
HPM-MVS++copyleft98.96 18698.70 20499.74 6299.52 18699.71 6598.86 21399.19 29498.47 22398.59 30499.06 30598.08 18599.91 10896.94 25799.60 23899.60 119
lupinMVS98.96 18698.87 18699.24 22999.57 16498.40 26298.12 28899.18 29598.28 24699.63 12599.13 29498.02 18999.97 1798.22 15999.69 20699.35 228
API-MVS98.38 25598.39 23498.35 29998.83 32999.26 17799.14 15999.18 29598.59 20998.66 29998.78 33798.61 12499.57 34594.14 33999.56 24396.21 358
test1299.54 14799.29 27099.33 16599.16 29798.43 31497.54 22499.82 24699.47 26599.48 186
IS-MVSNet99.03 17198.85 18899.55 14399.80 5699.25 18199.73 1699.15 29899.37 11199.61 13899.71 10094.73 28799.81 26297.70 20699.88 10099.58 133
SixPastTwentyTwo99.42 6999.30 8899.76 4699.92 1499.67 8199.70 2299.14 29999.65 6299.89 2699.90 2196.20 27099.94 5799.42 4399.92 7499.67 65
MAR-MVS98.24 26697.92 27599.19 23598.78 33799.65 8899.17 14999.14 29995.36 33698.04 33298.81 33697.47 22699.72 29495.47 32199.06 30398.21 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS98.59 23198.37 23699.26 22499.43 22698.40 26298.74 23499.13 30198.10 25599.21 23999.24 28394.82 28599.90 12997.86 19298.77 31999.49 181
Patchmatch-test98.10 27297.98 26798.48 29499.27 27596.48 32399.40 8299.07 30298.81 18899.23 23399.57 19290.11 33699.87 17096.69 27299.64 22599.09 279
MCST-MVS99.02 17398.81 19499.65 10099.58 15499.49 12198.58 24599.07 30298.40 22999.04 26299.25 27898.51 14299.80 26797.31 23399.51 25899.65 83
131498.00 27797.90 27898.27 30598.90 32097.45 30499.30 10799.06 30494.98 34197.21 35199.12 29998.43 14999.67 32295.58 31898.56 33097.71 350
GA-MVS97.99 27897.68 28698.93 26299.52 18698.04 28497.19 34599.05 30598.32 24498.81 28598.97 32289.89 33999.41 35698.33 15099.05 30499.34 230
hse-mvs298.52 24098.30 24499.16 23899.29 27098.60 25098.77 23199.02 30699.68 5299.32 21799.04 30992.50 30999.85 20899.24 6697.87 34899.03 291
AUN-MVS97.82 28097.38 29199.14 24199.27 27598.53 25298.72 23799.02 30698.10 25597.18 35299.03 31389.26 34199.85 20897.94 18497.91 34699.03 291
E-PMN97.14 30297.43 29096.27 34298.79 33591.62 36095.54 35999.01 30899.44 10198.88 27699.12 29992.78 30599.68 31794.30 33799.03 30697.50 351
BH-untuned98.22 26898.09 26198.58 29199.38 24097.24 30998.55 25198.98 30997.81 27699.20 24498.76 33897.01 24899.65 33394.83 33098.33 33598.86 307
tpmvs97.39 29597.69 28596.52 34098.41 34891.76 35899.30 10798.94 31097.74 27797.85 34099.55 20292.40 31199.73 29296.25 29498.73 32598.06 345
MVS95.72 33094.63 33498.99 25598.56 34597.98 29099.30 10798.86 31172.71 36397.30 34899.08 30398.34 16299.74 28989.21 35498.33 33599.26 243
ADS-MVSNet97.72 28697.67 28797.86 31499.14 29594.65 34399.22 13598.86 31196.97 31098.25 32099.64 14190.90 32699.84 22596.51 28299.56 24399.08 282
tpmrst97.73 28498.07 26296.73 33798.71 34192.00 35699.10 17298.86 31198.52 21798.92 27299.54 20491.90 31399.82 24698.02 17599.03 30698.37 333
PatchT98.45 24998.32 24398.83 27798.94 31898.29 26899.24 12898.82 31499.84 2399.08 25799.76 7691.37 31899.94 5798.82 11899.00 30898.26 337
FPMVS96.32 31895.50 32698.79 28199.60 14898.17 27598.46 26598.80 31597.16 30696.28 35599.63 15182.19 36099.09 35988.45 35698.89 31599.10 276
DPM-MVS98.28 26297.94 27399.32 21299.36 24599.11 20497.31 34198.78 31696.88 31298.84 28299.11 30197.77 20999.61 34194.03 34299.36 28299.23 249
ADS-MVSNet297.78 28297.66 28898.12 30999.14 29595.36 33799.22 13598.75 31796.97 31098.25 32099.64 14190.90 32699.94 5796.51 28299.56 24399.08 282
HY-MVS98.23 998.21 26997.95 26998.99 25599.03 31398.24 26999.61 5398.72 31896.81 31698.73 29499.51 21394.06 29299.86 19096.91 25998.20 33898.86 307
VDDNet98.97 18398.82 19399.42 18199.71 11198.81 23599.62 4798.68 31999.81 2999.38 20599.80 5494.25 29199.85 20898.79 12099.32 28799.59 128
CostFormer96.71 31196.79 31096.46 34198.90 32090.71 36599.41 8198.68 31994.69 34798.14 32899.34 26086.32 35599.80 26797.60 21798.07 34498.88 305
test_yl98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
DCV-MVSNet98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
EMVS96.96 30597.28 29395.99 34598.76 33991.03 36395.26 36098.61 32399.34 11498.92 27298.88 33293.79 29699.66 32692.87 34699.05 30497.30 355
MIMVSNet98.43 25098.20 25299.11 24499.53 18198.38 26599.58 6198.61 32398.96 16899.33 21599.76 7690.92 32599.81 26297.38 23099.76 17299.15 266
MTMP99.09 17698.59 325
BH-w/o97.20 29997.01 30297.76 31799.08 30895.69 33498.03 29998.52 32695.76 33297.96 33498.02 35695.62 27999.47 35392.82 34797.25 35398.12 344
tpm296.35 31796.22 31496.73 33798.88 32691.75 35999.21 13798.51 32793.27 35097.89 33799.21 28784.83 35799.70 30096.04 30198.18 34198.75 314
JIA-IIPM98.06 27497.92 27598.50 29398.59 34497.02 31498.80 22698.51 32799.88 1397.89 33799.87 3191.89 31499.90 12998.16 16897.68 35098.59 320
SCA98.11 27198.36 23797.36 32799.20 28792.99 35298.17 28398.49 32998.24 24899.10 25699.57 19296.01 27499.94 5796.86 26299.62 22899.14 270
PAPM95.61 33194.71 33398.31 30399.12 29996.63 32196.66 35598.46 33090.77 35696.25 35698.68 34193.01 30399.69 30681.60 36397.86 34998.62 318
alignmvs98.28 26297.96 26899.25 22799.12 29998.93 22799.03 18698.42 33199.64 6498.72 29597.85 35890.86 32899.62 33798.88 11499.13 30099.19 258
baseline197.73 28497.33 29298.96 25799.30 26897.73 29699.40 8298.42 33199.33 11799.46 18299.21 28791.18 32199.82 24698.35 14891.26 36299.32 234
PatchmatchNetpermissive97.65 28797.80 28097.18 33298.82 33292.49 35499.17 14998.39 33398.12 25498.79 28899.58 18490.71 33099.89 14397.23 24399.41 27499.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dp96.86 30697.07 30096.24 34398.68 34390.30 36799.19 14398.38 33497.35 29798.23 32299.59 18287.23 34599.82 24696.27 29398.73 32598.59 320
VDD-MVS99.20 13399.11 12599.44 17599.43 22698.98 21799.50 6898.32 33599.80 3299.56 15599.69 11396.99 24999.85 20898.99 9999.73 19199.50 176
BH-RMVSNet98.41 25298.14 25999.21 23299.21 28498.47 25698.60 24398.26 33698.35 23898.93 26999.31 26497.20 24299.66 32694.32 33699.10 30299.51 170
EPNet_dtu97.62 28897.79 28297.11 33496.67 36392.31 35598.51 25798.04 33799.24 13095.77 35999.47 22993.78 29799.66 32698.98 10199.62 22899.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 28498.70 34290.83 36499.15 15798.02 33898.51 21898.82 28499.61 16990.98 32499.66 32696.89 26198.92 312
EPNet98.13 27097.77 28399.18 23794.57 36697.99 28599.24 12897.96 33999.74 3997.29 34999.62 16093.13 30299.97 1798.59 13599.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm97.15 30096.95 30497.75 31898.91 31994.24 34599.32 10097.96 33997.71 27998.29 31799.32 26286.72 35399.92 9098.10 17396.24 35999.09 279
TR-MVS97.44 29497.15 29998.32 30198.53 34697.46 30398.47 26097.91 34196.85 31498.21 32398.51 34896.42 26299.51 35192.16 34897.29 35297.98 347
tmp_tt95.75 32995.42 32796.76 33589.90 36894.42 34498.86 21397.87 34278.01 36199.30 22599.69 11397.70 21195.89 36499.29 6298.14 34299.95 1
DWT-MVSNet_test96.03 32495.80 32396.71 33998.50 34791.93 35799.25 12797.87 34295.99 32896.81 35497.61 36181.02 36299.66 32697.20 24697.98 34598.54 324
Anonymous20240521198.75 21298.46 22699.63 11199.34 25799.66 8399.47 7497.65 34499.28 12399.56 15599.50 21693.15 30199.84 22598.62 13499.58 24199.40 214
thres100view90096.39 31696.03 31897.47 32499.63 14295.93 33199.18 14497.57 34598.75 19898.70 29797.31 36587.04 34799.67 32287.62 35898.51 33296.81 356
thres600view796.60 31396.16 31597.93 31299.63 14296.09 33099.18 14497.57 34598.77 19498.72 29597.32 36487.04 34799.72 29488.57 35598.62 32897.98 347
thres20096.09 32295.68 32597.33 32999.48 20996.22 32798.53 25597.57 34598.06 25998.37 31696.73 36986.84 35199.61 34186.99 36198.57 32996.16 359
tfpn200view996.30 31995.89 31997.53 32299.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33296.81 356
thres40096.40 31595.89 31997.92 31399.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33297.98 347
test0.0.03 197.37 29696.91 30798.74 28497.72 35997.57 30097.60 32797.36 35098.00 26099.21 23998.02 35690.04 33799.79 27098.37 14595.89 36098.86 307
LFMVS98.46 24898.19 25599.26 22499.24 28098.52 25499.62 4796.94 35199.87 1499.31 22199.58 18491.04 32399.81 26298.68 13299.42 27399.45 197
bset_n11_16_dypcd98.69 22098.45 22799.42 18199.69 12198.52 25496.06 35796.80 35299.71 4499.73 9399.54 20495.14 28299.96 3599.39 4599.95 4999.79 30
test-LLR97.15 30096.95 30497.74 31998.18 35595.02 34097.38 33796.10 35398.00 26097.81 34198.58 34290.04 33799.91 10897.69 21298.78 31798.31 334
test-mter96.23 32195.73 32497.74 31998.18 35595.02 34097.38 33796.10 35397.90 26997.81 34198.58 34279.12 36899.91 10897.69 21298.78 31798.31 334
IB-MVS95.41 2095.30 33294.46 33597.84 31598.76 33995.33 33897.33 34096.07 35596.02 32795.37 36297.41 36376.17 37099.96 3597.54 22095.44 36198.22 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D96.78 30896.07 31798.91 26599.26 27797.92 29197.70 32396.05 35697.96 26792.37 36498.43 35087.06 34699.90 12998.27 15597.56 35198.91 303
TESTMET0.1,196.24 32095.84 32297.41 32698.24 35393.84 34897.38 33795.84 35798.43 22497.81 34198.56 34579.77 36599.89 14397.77 19998.77 31998.52 325
MVEpermissive92.54 2296.66 31296.11 31698.31 30399.68 13097.55 30197.94 31195.60 35899.37 11190.68 36598.70 34096.56 25698.61 36386.94 36299.55 24798.77 313
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
K. test v398.87 20098.60 21099.69 8599.93 1399.46 12899.74 1594.97 35999.78 3599.88 3299.88 2893.66 29899.97 1799.61 1899.95 4999.64 90
N_pmnet98.73 21698.53 22299.35 20599.72 10898.67 24398.34 26994.65 36098.35 23899.79 6599.68 12498.03 18799.93 7198.28 15499.92 7499.44 202
tttt051797.62 28897.20 29798.90 27199.76 8497.40 30599.48 7294.36 36199.06 16099.70 10299.49 22184.55 35899.94 5798.73 12799.65 22399.36 225
thisisatest051596.98 30496.42 31198.66 28899.42 23197.47 30297.27 34294.30 36297.24 30199.15 24898.86 33385.01 35699.87 17097.10 25199.39 27698.63 317
thisisatest053097.45 29396.95 30498.94 25999.68 13097.73 29699.09 17694.19 36398.61 20899.56 15599.30 26684.30 35999.93 7198.27 15599.54 25399.16 264
baseline296.83 30796.28 31398.46 29599.09 30796.91 31798.83 21893.87 36497.23 30296.23 35898.36 35188.12 34399.90 12996.68 27398.14 34298.57 323
MVS-HIRNet97.86 27998.22 25096.76 33599.28 27391.53 36198.38 26892.60 36599.13 14999.31 22199.96 1097.18 24399.68 31798.34 14999.83 13399.07 287
lessismore_v099.64 10799.86 3099.38 15290.66 36699.89 2699.83 4394.56 28999.97 1799.56 2599.92 7499.57 139
EPMVS96.53 31496.32 31297.17 33398.18 35592.97 35399.39 8489.95 36798.21 25098.61 30299.59 18286.69 35499.72 29496.99 25599.23 29998.81 311
gg-mvs-nofinetune95.87 32795.17 33197.97 31198.19 35496.95 31599.69 2889.23 36899.89 1196.24 35799.94 1281.19 36199.51 35193.99 34398.20 33897.44 352
GG-mvs-BLEND97.36 32797.59 36096.87 31899.70 2288.49 36994.64 36397.26 36680.66 36399.12 35891.50 35096.50 35896.08 360
testmvs28.94 33533.33 33715.79 34926.03 3699.81 37196.77 35315.67 37011.55 36623.87 36750.74 37319.03 3728.53 36723.21 36533.07 36429.03 363
test12329.31 33433.05 33918.08 34825.93 37012.24 37097.53 33110.93 37111.78 36524.21 36650.08 37421.04 3718.60 36623.51 36432.43 36533.39 362
uanet_test8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas16.61 33722.14 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 199.28 410.00 3680.00 3660.00 3660.00 364
sosnet-low-res8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
sosnet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
Regformer8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
n20.00 372
nn0.00 372
ab-mvs-re8.26 34411.02 3470.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.16 2920.00 3730.00 3680.00 3660.00 3660.00 364
uanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.29 21899.12 29999.44 13599.20 13899.40 24199.00 7198.84 36196.54 28099.60 23899.58 133
test_0728_THIRD99.18 13899.62 13299.61 16998.58 12799.91 10897.72 20399.80 15599.77 33
GSMVS99.14 270
test_part299.62 14599.67 8199.55 160
sam_mvs190.81 32999.14 270
sam_mvs90.52 333
test_post199.14 15951.63 37289.54 34099.82 24696.86 262
test_post52.41 37190.25 33599.86 190
patchmatchnet-post99.62 16090.58 33199.94 57
gm-plane-assit97.59 36089.02 36893.47 34998.30 35299.84 22596.38 289
test9_res95.10 32799.44 26899.50 176
agg_prior294.58 33599.46 26799.50 176
test_prior499.19 19798.00 302
test_prior297.95 30997.87 27198.05 33099.05 30697.90 19895.99 30499.49 262
旧先验297.94 31195.33 33798.94 26899.88 15796.75 269
新几何298.04 298
原ACMM297.92 313
testdata299.89 14395.99 304
segment_acmp98.37 158
testdata197.72 32197.86 274
plane_prior799.58 15499.38 152
plane_prior699.47 21499.26 17797.24 237
plane_prior499.25 278
plane_prior399.31 16898.36 23399.14 250
plane_prior298.80 22698.94 170
plane_prior199.51 191
plane_prior99.24 18698.42 26697.87 27199.71 201
HQP5-MVS98.94 223
HQP-NCC99.31 26497.98 30597.45 29198.15 324
ACMP_Plane99.31 26497.98 30597.45 29198.15 324
BP-MVS94.73 331
HQP4-MVS98.15 32499.70 30099.53 158
HQP2-MVS96.67 254
NP-MVS99.40 23599.13 20298.83 334
MDTV_nov1_ep13_2view91.44 36299.14 15997.37 29699.21 23991.78 31796.75 26999.03 291
ACMMP++_ref99.94 62
ACMMP++99.79 160
Test By Simon98.41 152