This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9176.01 4193.77 6184.81 100
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11095.46 1287.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10264.82 12396.10 587.21 56
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11781.53 492.15 8488.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9197.05 296.93 1
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11573.75 5893.78 60
EC-MVSNet77.08 7977.39 8176.14 9476.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19269.87 8784.94 6469.76 8189.59 13986.60 65
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 73
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 46
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 93
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 93
RPMNet65.77 23165.08 24567.84 22966.37 32948.24 24370.93 19986.27 2054.66 19161.35 34086.77 14533.29 34885.67 4955.93 20370.17 36569.62 340
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 33
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 108
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11291.24 9787.61 51
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 13972.51 6893.37 6683.48 142
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 140
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 151
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7390.94 10784.82 98
plane_prior585.49 3286.15 2971.09 7390.94 10784.82 98
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 130
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18174.73 4985.79 20482.35 178
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 184
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13177.70 3292.32 8280.62 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 156
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 122
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 143
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23384.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 173
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 149
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 17974.80 4790.76 11882.40 177
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 151
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 84
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9592.44 7889.60 23
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 157
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15572.87 25649.47 23272.94 16684.71 5459.49 13880.90 11088.81 10670.07 8479.71 15267.40 10188.39 16188.40 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS72.72 14072.16 15374.38 11476.90 18955.95 18273.34 16384.67 5562.04 12072.19 23870.81 34765.90 12685.24 5958.64 18184.96 21981.95 187
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 103
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 41873.86 5586.31 2178.84 2394.03 5684.64 103
DP-MVS78.44 7079.29 6475.90 9681.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8862.45 14792.40 7978.92 242
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26380.80 24466.74 11781.96 11161.74 15089.40 14685.69 80
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14074.27 5495.73 880.98 204
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 176
baseline73.10 12773.96 11770.51 17971.46 26746.39 27072.08 17484.40 6255.95 17576.62 16686.46 15967.20 10778.03 18864.22 12887.27 18487.11 60
test_prior75.27 10482.15 11859.85 15784.33 6383.39 8982.58 174
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 165
casdiffmvspermissive73.06 13073.84 11870.72 17571.32 26846.71 26670.93 19984.26 6555.62 17877.46 14987.10 13367.09 10977.81 19163.95 13286.83 19287.64 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++74.48 10975.78 9570.59 17784.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 22963.12 14777.64 19562.95 14488.14 16471.73 318
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 128
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 123
HQP3-MVS84.12 6989.16 148
HQP-MVS75.24 9775.01 10275.94 9582.37 11358.80 16877.32 11184.12 6959.08 14071.58 24385.96 17558.09 20485.30 5567.38 10489.16 14883.73 135
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16880.27 11685.31 18268.56 9587.03 1267.39 10291.26 9683.50 139
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21768.08 8177.89 10584.04 7255.15 18376.19 18083.39 20766.91 11180.11 14860.04 17090.14 12785.13 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8774.03 5693.57 6584.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16774.88 19585.32 18165.54 12987.79 365.61 11991.14 10183.35 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 198
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH63.62 1477.50 7680.11 5869.68 19579.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24267.58 9794.44 4279.44 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 168
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20377.68 14787.18 13269.98 8585.37 5368.01 9392.72 7685.08 90
CLD-MVS72.88 13872.36 15074.43 11277.03 18254.30 19468.77 23183.43 7952.12 22676.79 16274.44 32069.54 9083.91 7955.88 20493.25 6985.09 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sasdasda72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
canonicalmvs72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
PHI-MVS74.92 10374.36 11076.61 8676.40 19562.32 12980.38 7583.15 8254.16 20573.23 22480.75 24562.19 15983.86 8068.02 9290.92 11083.65 136
MCST-MVS73.42 12073.34 13073.63 12581.28 12959.17 16274.80 14683.13 8345.50 29172.84 22783.78 20365.15 13580.99 12964.54 12489.09 15480.73 212
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23584.00 19964.56 14083.07 9551.48 24187.19 18782.56 175
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15482.96 8557.75 15470.35 25981.98 22964.34 14284.41 7649.69 25689.95 13180.89 206
v1075.69 8976.20 9174.16 11674.44 22748.69 23875.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 9970.73 7589.14 15191.05 14
MVSMamba_PlusPlus76.88 8078.21 7472.88 14680.83 13248.71 23783.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7786.15 19985.99 72
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 178
Effi-MVS+72.10 15072.28 15171.58 16774.21 23150.33 22074.72 14982.73 8962.62 11670.77 25576.83 30069.96 8680.97 13160.20 16478.43 29783.45 145
test1182.71 90
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9160.39 13274.15 20883.30 21369.65 8982.07 11069.27 8486.75 19487.36 54
PEN-MVS80.46 5082.91 3873.11 13589.83 939.02 33177.06 11782.61 9280.04 590.60 792.85 1074.93 4785.21 6063.15 14395.15 2195.09 2
nrg03074.87 10775.99 9471.52 16974.90 21649.88 23174.10 15882.58 9354.55 19583.50 7789.21 9271.51 7075.74 21361.24 15492.34 8188.94 36
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9470.72 4987.54 2592.44 1568.00 10381.34 11972.84 6491.72 8691.69 11
MGCFI-Net71.70 15473.10 13667.49 23273.23 24543.08 29772.06 17582.43 9554.58 19375.97 18182.00 22772.42 6375.22 21957.84 18887.34 17984.18 123
WR-MVS_H80.22 5482.17 4574.39 11389.46 1542.69 30178.24 10182.24 9678.21 1389.57 1092.10 1968.05 10185.59 5066.04 11595.62 1094.88 5
balanced_conf0373.59 11774.06 11472.17 16377.48 17947.72 25481.43 6582.20 9754.38 19679.19 12587.68 12854.41 23383.57 8463.98 13185.78 20585.22 85
DELS-MVS68.83 19068.31 19770.38 18070.55 28048.31 24163.78 29682.13 9854.00 20868.96 27875.17 31358.95 19580.06 14958.55 18282.74 24582.76 166
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 9961.89 12188.77 1693.32 557.15 21582.60 10170.08 7992.80 7389.25 27
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10068.80 5880.92 10888.52 11372.00 6882.39 10374.80 4793.04 7081.14 198
CSCG74.12 11174.39 10873.33 13079.35 14761.66 13577.45 11081.98 10162.47 11979.06 12880.19 25561.83 16178.79 16759.83 17287.35 17879.54 234
PVSNet_Blended_VisFu70.04 17168.88 18973.53 12882.71 11063.62 12074.81 14481.95 10248.53 26867.16 30279.18 27451.42 25078.38 17854.39 22379.72 28578.60 244
test_fmvsmvis_n_192072.36 14672.49 14671.96 16471.29 26964.06 11772.79 16781.82 10340.23 33981.25 10481.04 24170.62 8068.69 28769.74 8283.60 23983.14 155
DTE-MVSNet80.35 5282.89 3972.74 15089.84 837.34 34877.16 11481.81 10480.45 490.92 492.95 874.57 5086.12 3163.65 13694.68 3594.76 6
v119273.40 12173.42 12573.32 13174.65 22448.67 23972.21 17281.73 10552.76 22081.85 9384.56 19057.12 21682.24 10868.58 8687.33 18089.06 32
原ACMM173.90 12085.90 6065.15 11081.67 10650.97 24374.25 20786.16 16861.60 16483.54 8556.75 19491.08 10573.00 303
test1276.51 8882.28 11660.94 14681.64 10773.60 21764.88 13785.19 6290.42 12283.38 147
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10863.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 182
PCF-MVS63.80 1372.70 14171.69 15775.72 9878.10 16760.01 15673.04 16581.50 10845.34 29679.66 12084.35 19565.15 13582.65 10048.70 26789.38 14784.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v875.07 10075.64 9773.35 12973.42 24147.46 25875.20 13881.45 11060.05 13485.64 4889.26 9058.08 20681.80 11469.71 8387.97 16990.79 18
PAPM_NR73.91 11274.16 11373.16 13381.90 12153.50 20181.28 6681.40 11166.17 7473.30 22383.31 21259.96 18483.10 9458.45 18381.66 26082.87 163
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11251.71 23177.15 15191.42 3665.49 13087.20 779.44 1787.17 18884.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EIA-MVS68.59 19667.16 21772.90 14475.18 21255.64 18769.39 21881.29 11352.44 22364.53 31670.69 34860.33 18182.30 10654.27 22576.31 31480.75 211
PS-CasMVS80.41 5182.86 4073.07 13689.93 739.21 32877.15 11581.28 11479.74 690.87 592.73 1275.03 4684.93 6563.83 13595.19 1995.07 3
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11554.57 19467.09 30380.63 24759.44 18981.74 11646.91 28584.17 23078.63 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS69.98 17369.22 18572.26 16182.69 11158.82 16770.53 20481.23 11647.79 27564.16 32080.21 25351.32 25183.12 9360.14 16884.95 22074.83 285
MVS_Test69.84 17570.71 17267.24 23567.49 31943.25 29669.87 21381.22 11752.69 22171.57 24686.68 14962.09 16074.51 23066.05 11478.74 29283.96 127
v124073.06 13073.14 13372.84 14774.74 22047.27 26271.88 18481.11 11851.80 23082.28 9084.21 19656.22 22682.34 10568.82 8587.17 18888.91 37
PAPR69.20 18568.66 19570.82 17475.15 21347.77 25275.31 13781.11 11849.62 25966.33 30579.27 27161.53 16582.96 9648.12 27581.50 26281.74 192
ZD-MVS83.91 9069.36 7381.09 12058.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
v114473.29 12473.39 12673.01 13774.12 23348.11 24572.01 17781.08 12153.83 21281.77 9584.68 18758.07 20781.91 11268.10 9086.86 19088.99 35
UniMVSNet (Re)75.00 10275.48 9973.56 12783.14 9947.92 24970.41 20781.04 12263.67 10479.54 12186.37 16162.83 15081.82 11357.10 19395.25 1590.94 16
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12365.77 7675.55 18586.25 16567.42 10685.42 5270.10 7890.88 11381.81 189
AdaColmapbinary74.22 11074.56 10673.20 13281.95 12060.97 14579.43 8680.90 12465.57 7872.54 23281.76 23370.98 7885.26 5747.88 27890.00 12973.37 299
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
No_MVS79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
v192192072.96 13672.98 13972.89 14574.67 22147.58 25671.92 18280.69 12751.70 23281.69 9983.89 20156.58 22282.25 10768.34 8887.36 17788.82 39
testf175.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
APD_test275.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
MTGPAbinary80.63 130
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13072.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 208
DVP-MVScopyleft81.15 4183.12 3675.24 10586.16 5260.78 14983.77 4480.58 13272.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 237
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13366.87 6883.64 7686.18 16670.25 8379.90 15061.12 15788.95 15687.56 52
CP-MVSNet79.48 5881.65 4972.98 13989.66 1339.06 33076.76 11880.46 13478.91 990.32 891.70 2968.49 9684.89 6663.40 14095.12 2295.01 4
v14419272.99 13473.06 13772.77 14874.58 22547.48 25771.90 18380.44 13551.57 23381.46 10184.11 19858.04 20882.12 10967.98 9487.47 17588.70 42
IU-MVS86.12 5460.90 14780.38 13645.49 29381.31 10275.64 4494.39 4484.65 102
CANet73.00 13371.84 15576.48 8975.82 20561.28 13974.81 14480.37 13763.17 11262.43 33680.50 24961.10 17485.16 6364.00 13084.34 22983.01 160
V4271.06 15970.83 17071.72 16667.25 32147.14 26365.94 26980.35 13851.35 23883.40 7883.23 21659.25 19278.80 16665.91 11680.81 26889.23 28
Anonymous2023121175.54 9277.19 8370.59 17777.67 17645.70 27674.73 14880.19 13968.80 5882.95 8292.91 966.26 12276.76 20558.41 18492.77 7489.30 26
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14064.71 9578.11 14088.39 11665.46 13183.14 9277.64 3391.20 9878.94 241
DU-MVS74.91 10475.57 9872.93 14383.50 9445.79 27369.47 21780.14 14165.22 8681.74 9787.08 13461.82 16281.07 12756.21 20194.98 2491.93 9
114514_t73.40 12173.33 13173.64 12484.15 8957.11 17678.20 10280.02 14243.76 30872.55 23186.07 17364.00 14383.35 9060.14 16891.03 10680.45 219
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14375.34 1979.80 11994.91 269.79 8880.25 14472.63 6694.46 3988.78 41
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10669.79 29566.25 9775.90 13379.90 14446.03 28776.48 17485.02 18567.96 10473.97 23774.47 5287.22 18583.90 129
FIs72.56 14373.80 11968.84 21678.74 16237.74 34471.02 19779.83 14556.12 17280.88 11189.45 8758.18 20078.28 18256.63 19593.36 6790.51 20
APD_test175.04 10175.38 10174.02 11969.89 29170.15 6676.46 12179.71 14665.50 7982.99 8188.60 11266.94 11072.35 25559.77 17388.54 15979.56 231
alignmvs70.54 16671.00 16869.15 20573.50 23948.04 24869.85 21479.62 14753.94 21176.54 17182.00 22759.00 19474.68 22857.32 19087.21 18684.72 101
LCM-MVSNet-Re69.10 18771.57 16261.70 28770.37 28334.30 36861.45 31079.62 14756.81 16489.59 988.16 12368.44 9772.94 24542.30 31387.33 18077.85 258
c3_l69.82 17669.89 17869.61 19666.24 33243.48 29268.12 24179.61 14951.43 23577.72 14580.18 25654.61 23278.15 18763.62 13787.50 17487.20 57
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15053.48 21586.29 3992.43 1662.39 15680.25 14467.90 9690.61 11987.77 48
GeoE73.14 12673.77 12171.26 17278.09 16852.64 20674.32 15479.56 15156.32 17176.35 17883.36 21170.76 7977.96 18963.32 14181.84 25483.18 154
FC-MVSNet-test73.32 12374.78 10468.93 21379.21 15136.57 35071.82 18579.54 15257.63 15982.57 8890.38 6759.38 19178.99 16357.91 18794.56 3791.23 13
dcpmvs_271.02 16172.65 14466.16 24776.06 20350.49 21871.97 17879.36 15350.34 24982.81 8583.63 20464.38 14167.27 30261.54 15283.71 23780.71 214
test_fmvsmconf0.1_n73.26 12572.82 14274.56 10869.10 30166.18 9974.65 15279.34 15445.58 29075.54 18683.91 20067.19 10873.88 24073.26 6186.86 19083.63 137
RPSCF75.76 8874.37 10979.93 4474.81 21877.53 1877.53 10979.30 15559.44 13978.88 12989.80 8271.26 7473.09 24457.45 18980.89 26589.17 30
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15674.08 2487.16 3291.97 2184.80 276.97 20064.98 12293.61 6372.28 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v2v48272.55 14572.58 14572.43 15772.92 25546.72 26571.41 19079.13 15755.27 18181.17 10585.25 18355.41 22881.13 12467.25 10885.46 20789.43 25
Vis-MVSNetpermissive74.85 10874.56 10675.72 9881.63 12564.64 11376.35 12579.06 15862.85 11573.33 22288.41 11562.54 15479.59 15563.94 13482.92 24382.94 161
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PVSNet_BlendedMVS65.38 23364.30 24768.61 21969.81 29249.36 23365.60 27778.96 15945.50 29159.98 34978.61 28151.82 24678.20 18444.30 30284.11 23178.27 249
PVSNet_Blended62.90 26361.64 27066.69 24369.81 29249.36 23361.23 31378.96 15942.04 32059.98 34968.86 36951.82 24678.20 18444.30 30277.77 30672.52 309
miper_ehance_all_eth68.36 19868.16 20368.98 21065.14 34443.34 29467.07 25678.92 16149.11 26476.21 17977.72 29253.48 23877.92 19061.16 15684.59 22585.68 81
eth_miper_zixun_eth69.42 18268.73 19471.50 17067.99 31346.42 26867.58 24678.81 16250.72 24678.13 13980.34 25250.15 25780.34 14260.18 16584.65 22387.74 49
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15383.04 10445.79 27369.26 22178.81 16266.66 7181.74 9786.88 14163.26 14681.07 12756.21 20194.98 2491.05 14
test_fmvsmconf_n72.91 13772.40 14974.46 10968.62 30566.12 10074.21 15778.80 16445.64 28974.62 20183.25 21566.80 11673.86 24172.97 6386.66 19683.39 146
QAPM69.18 18669.26 18368.94 21271.61 26552.58 20780.37 7678.79 16549.63 25873.51 21885.14 18453.66 23779.12 16055.11 21275.54 32075.11 284
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16671.22 4572.40 23488.70 10760.51 17987.70 477.40 3689.13 15285.48 83
TEST985.47 6769.32 7476.42 12378.69 16753.73 21376.97 15386.74 14666.84 11281.10 125
train_agg76.38 8476.55 8875.86 9785.47 6769.32 7476.42 12378.69 16754.00 20876.97 15386.74 14666.60 11881.10 12572.50 6991.56 9177.15 265
test_885.09 7367.89 8376.26 12878.66 16954.00 20876.89 15786.72 14866.60 11880.89 135
agg_prior84.44 8566.02 10178.62 17076.95 15580.34 142
CNLPA73.44 11973.03 13874.66 10778.27 16575.29 3075.99 13278.49 17165.39 8275.67 18383.22 21861.23 17066.77 31153.70 23085.33 21181.92 188
IterMVS-LS73.01 13273.12 13572.66 15273.79 23749.90 22771.63 18778.44 17258.22 14980.51 11386.63 15358.15 20279.62 15362.51 14588.20 16388.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsm_n_192069.63 17768.45 19673.16 13370.56 27865.86 10270.26 20878.35 17337.69 35674.29 20678.89 27961.10 17468.10 29365.87 11779.07 28985.53 82
Fast-Effi-MVS+68.81 19168.30 19870.35 18274.66 22348.61 24066.06 26878.32 17450.62 24771.48 24975.54 30868.75 9479.59 15550.55 25178.73 29382.86 164
3Dnovator65.95 1171.50 15671.22 16672.34 15973.16 24663.09 12478.37 9878.32 17457.67 15672.22 23784.61 18954.77 22978.47 17360.82 16081.07 26475.45 279
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 16884.61 8142.57 30370.98 19878.29 17668.67 6183.04 7989.26 9072.99 6180.75 13655.58 21095.47 1191.35 12
test_vis3_rt51.94 34551.04 35154.65 33546.32 41750.13 22344.34 39778.17 17723.62 41168.95 27962.81 39121.41 40638.52 41041.49 32072.22 35075.30 283
MSDG67.47 21367.48 21367.46 23370.70 27454.69 19266.90 26078.17 17760.88 12870.41 25874.76 31561.22 17273.18 24347.38 28176.87 31074.49 290
Fast-Effi-MVS+-dtu70.00 17268.74 19373.77 12273.47 24064.53 11471.36 19178.14 17955.81 17768.84 28574.71 31765.36 13275.75 21252.00 23879.00 29081.03 201
IS-MVSNet75.10 9975.42 10074.15 11779.23 15048.05 24779.43 8678.04 18070.09 5479.17 12688.02 12553.04 24083.60 8358.05 18693.76 6290.79 18
miper_enhance_ethall65.86 23065.05 24668.28 22561.62 36342.62 30264.74 28577.97 18142.52 31873.42 22172.79 33549.66 25877.68 19458.12 18584.59 22584.54 110
save fliter87.00 4067.23 9079.24 8977.94 18256.65 169
ambc70.10 18977.74 17450.21 22274.28 15677.93 18379.26 12488.29 11954.11 23679.77 15164.43 12591.10 10480.30 222
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18457.68 15574.89 19478.13 28964.80 13884.26 7756.46 19985.32 21286.88 61
tt080576.12 8678.43 7269.20 20381.32 12841.37 30976.72 11977.64 18563.78 10382.06 9187.88 12679.78 1179.05 16164.33 12792.40 7987.17 59
BH-untuned69.39 18369.46 18069.18 20477.96 17156.88 17768.47 23877.53 18656.77 16577.79 14479.63 26460.30 18280.20 14746.04 29380.65 27070.47 331
MAR-MVS67.72 20866.16 22772.40 15874.45 22664.99 11174.87 14277.50 18748.67 26765.78 30968.58 37257.01 21977.79 19246.68 28881.92 25174.42 292
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft62.51 1568.76 19268.75 19268.78 21770.56 27853.91 19878.29 9977.35 18848.85 26670.22 26183.52 20552.65 24276.93 20155.31 21181.99 25075.49 278
NR-MVSNet73.62 11674.05 11572.33 16083.50 9443.71 28965.65 27577.32 18964.32 9775.59 18487.08 13462.45 15581.34 11954.90 21495.63 991.93 9
EPP-MVSNet73.86 11473.38 12775.31 10378.19 16653.35 20380.45 7377.32 18965.11 8976.47 17586.80 14249.47 26083.77 8153.89 22892.72 7688.81 40
Anonymous2024052972.56 14373.79 12068.86 21576.89 19045.21 27968.80 23077.25 19167.16 6676.89 15790.44 5965.95 12574.19 23550.75 24890.00 12987.18 58
MVS_030475.45 9374.66 10577.83 7475.58 20861.53 13678.29 9977.18 19263.15 11469.97 26687.20 13157.54 21387.05 1074.05 5588.96 15584.89 93
diffmvspermissive67.42 21467.50 21267.20 23662.26 35945.21 27964.87 28477.04 19348.21 26971.74 24079.70 26358.40 19971.17 26964.99 12180.27 27485.22 85
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
API-MVS70.97 16271.51 16369.37 19875.20 21155.94 18380.99 6776.84 19462.48 11871.24 25177.51 29561.51 16680.96 13452.04 23785.76 20671.22 324
ANet_high67.08 21769.94 17758.51 31657.55 38727.09 39958.43 33676.80 19563.56 10582.40 8991.93 2359.82 18764.98 32350.10 25488.86 15783.46 144
PAPM61.79 27460.37 28366.05 24876.09 20041.87 30669.30 22076.79 19640.64 33753.80 38479.62 26544.38 28982.92 9729.64 38973.11 34373.36 300
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19751.98 22987.40 2791.86 2676.09 3678.53 17168.58 8690.20 12486.69 64
cl2267.14 21666.51 22469.03 20963.20 35443.46 29366.88 26176.25 19849.22 26274.48 20377.88 29145.49 28277.40 19760.64 16184.59 22586.24 67
FA-MVS(test-final)71.27 15771.06 16771.92 16573.96 23452.32 20876.45 12276.12 19959.07 14374.04 21386.18 16652.18 24479.43 15759.75 17481.76 25584.03 126
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 19950.51 24889.19 1190.88 4571.45 7277.78 19373.38 6090.60 12090.90 17
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 19951.33 23987.19 3191.51 3373.79 5778.44 17568.27 8990.13 12886.49 66
Gipumacopyleft69.55 18072.83 14159.70 30663.63 35353.97 19780.08 8275.93 20264.24 9873.49 21988.93 10457.89 21062.46 33259.75 17491.55 9262.67 380
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS67.50 21067.31 21568.08 22658.86 38161.93 13171.43 18975.90 20344.67 30272.42 23380.20 25457.16 21470.44 27558.99 17986.12 20171.88 316
MVSFormer69.93 17469.03 18772.63 15474.93 21459.19 16083.98 4075.72 20452.27 22463.53 33076.74 30143.19 29680.56 13772.28 7078.67 29478.14 252
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20452.27 22487.37 3092.25 1768.04 10280.56 13772.28 7091.15 10090.32 21
SixPastTwentyTwo75.77 8776.34 8974.06 11881.69 12454.84 19076.47 12075.49 20664.10 9987.73 2192.24 1850.45 25581.30 12167.41 10091.46 9386.04 71
KD-MVS_self_test66.38 22567.51 21162.97 27661.76 36134.39 36758.11 33975.30 20750.84 24577.12 15285.42 18056.84 22069.44 28151.07 24691.16 9985.08 90
TinyColmap67.98 20469.28 18264.08 26167.98 31446.82 26470.04 20975.26 20853.05 21777.36 15086.79 14359.39 19072.59 25245.64 29688.01 16872.83 306
BH-w/o64.81 24064.29 24866.36 24576.08 20254.71 19165.61 27675.23 20950.10 25471.05 25471.86 34154.33 23479.02 16238.20 34276.14 31565.36 366
MG-MVS70.47 16771.34 16567.85 22879.26 14940.42 32274.67 15175.15 21058.41 14868.74 28788.14 12456.08 22783.69 8259.90 17181.71 25979.43 236
RRT-MVS70.33 16870.73 17169.14 20671.93 26345.24 27875.10 13975.08 21160.85 12978.62 13187.36 13049.54 25978.64 16960.16 16677.90 30483.55 138
cl____68.26 20368.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.42 22448.74 26875.38 21560.92 15989.81 13485.80 79
DIV-MVS_self_test68.27 20268.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.43 22348.74 26875.38 21560.94 15889.81 13485.81 75
test_040278.17 7279.48 6374.24 11583.50 9459.15 16372.52 16874.60 21475.34 1988.69 1791.81 2775.06 4582.37 10465.10 12088.68 15881.20 196
CANet_DTU64.04 25263.83 25264.66 25668.39 30642.97 29973.45 16274.50 21552.05 22854.78 37975.44 31143.99 29170.42 27653.49 23278.41 29880.59 217
mvsmamba68.87 18967.30 21673.57 12676.58 19353.70 20084.43 3774.25 21645.38 29576.63 16584.55 19135.85 34085.27 5649.54 25978.49 29681.75 191
USDC62.80 26463.10 26261.89 28565.19 34143.30 29567.42 24974.20 21735.80 36872.25 23684.48 19345.67 28071.95 26137.95 34484.97 21670.42 333
MVS60.62 28459.97 28562.58 28068.13 31247.28 26168.59 23473.96 21832.19 38459.94 35168.86 36950.48 25477.64 19541.85 31875.74 31762.83 378
EG-PatchMatch MVS70.70 16470.88 16970.16 18782.64 11258.80 16871.48 18873.64 21954.98 18476.55 17081.77 23261.10 17478.94 16454.87 21580.84 26772.74 308
BH-RMVSNet68.69 19568.20 20270.14 18876.40 19553.90 19964.62 28773.48 22058.01 15173.91 21581.78 23159.09 19378.22 18348.59 26877.96 30378.31 248
FE-MVS68.29 20166.96 22172.26 16174.16 23254.24 19577.55 10873.42 22157.65 15872.66 22984.91 18632.02 36081.49 11848.43 27181.85 25381.04 200
GBi-Net68.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
test168.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
FMVSNet171.06 15972.48 14766.81 24077.65 17740.68 31871.96 17973.03 22261.14 12579.45 12390.36 7060.44 18075.20 22150.20 25388.05 16684.54 110
test_yl65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
DCV-MVSNet65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
MVS_111021_HR72.98 13572.97 14072.99 13880.82 13365.47 10468.81 22872.77 22757.67 15675.76 18282.38 22571.01 7777.17 19861.38 15386.15 19976.32 273
v14869.38 18469.39 18169.36 19969.14 30044.56 28368.83 22772.70 22854.79 18878.59 13284.12 19754.69 23076.74 20659.40 17782.20 24886.79 62
131459.83 29058.86 29362.74 27965.71 33744.78 28268.59 23472.63 22933.54 38261.05 34467.29 38043.62 29471.26 26849.49 26067.84 37972.19 314
pmmvs671.82 15273.66 12266.31 24675.94 20442.01 30566.99 25772.53 23063.45 10876.43 17692.78 1172.95 6269.69 28051.41 24390.46 12187.22 55
UGNet70.20 17069.05 18673.65 12376.24 19763.64 11975.87 13472.53 23061.48 12360.93 34686.14 16952.37 24377.12 19950.67 24985.21 21380.17 225
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PS-MVSNAJ64.27 25063.73 25465.90 25077.82 17351.42 21163.33 30072.33 23245.09 29961.60 33868.04 37462.39 15673.95 23849.07 26373.87 33872.34 311
xiu_mvs_v2_base64.43 24763.96 25165.85 25177.72 17551.32 21263.63 29772.31 23345.06 30061.70 33769.66 36062.56 15273.93 23949.06 26473.91 33772.31 312
HyFIR lowres test63.01 26160.47 28270.61 17683.04 10454.10 19659.93 32472.24 23433.67 38069.00 27675.63 30738.69 32576.93 20136.60 35575.45 32280.81 210
UniMVSNet_ETH3D76.74 8279.02 6569.92 19389.27 2043.81 28874.47 15371.70 23572.33 4085.50 5393.65 477.98 2376.88 20354.60 21991.64 8889.08 31
cascas64.59 24362.77 26570.05 19075.27 21050.02 22461.79 30971.61 23642.46 31963.68 32768.89 36849.33 26280.35 14147.82 27984.05 23279.78 229
MVP-Stereo61.56 27659.22 28968.58 22079.28 14860.44 15369.20 22271.57 23743.58 31156.42 37178.37 28439.57 32076.46 20834.86 36760.16 39768.86 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10174.77 21959.02 16672.24 17171.56 23863.92 10078.59 13271.59 34266.22 12378.60 17067.58 9780.32 27389.00 34
EI-MVSNet-UG-set72.63 14271.68 15875.47 10274.67 22158.64 17172.02 17671.50 23963.53 10678.58 13471.39 34665.98 12478.53 17167.30 10780.18 27689.23 28
VPA-MVSNet68.71 19470.37 17563.72 26576.13 19938.06 34264.10 29271.48 24056.60 17074.10 21088.31 11864.78 13969.72 27947.69 28090.15 12683.37 148
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22371.45 24154.28 19977.89 14178.26 28549.04 26479.23 15863.62 13789.13 15280.92 205
AUN-MVS70.22 16967.88 20777.22 8282.96 10771.61 5269.08 22471.39 24249.17 26371.70 24178.07 29037.62 33379.21 15961.81 14889.15 15080.82 208
SDMVSNet66.36 22667.85 20861.88 28673.04 25346.14 27258.54 33471.36 24351.42 23668.93 28182.72 22065.62 12862.22 33554.41 22284.67 22177.28 261
EI-MVSNet69.61 17969.01 18871.41 17173.94 23549.90 22771.31 19371.32 24458.22 14975.40 18970.44 34958.16 20175.85 20962.51 14579.81 28288.48 43
MVSTER63.29 25861.60 27268.36 22159.77 37646.21 27160.62 31871.32 24441.83 32275.40 18979.12 27530.25 37575.85 20956.30 20079.81 28283.03 159
TransMVSNet (Re)69.62 17871.63 15963.57 26776.51 19435.93 35665.75 27471.29 24661.05 12675.02 19289.90 8165.88 12770.41 27749.79 25589.48 14284.38 118
xiu_mvs_v1_base_debu67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base_debi67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
mmtdpeth68.76 19270.55 17463.40 27167.06 32756.26 18168.73 23371.22 25055.47 18070.09 26488.64 11165.29 13456.89 35558.94 18089.50 14177.04 270
FMVSNet267.48 21168.21 20165.29 25273.14 24738.94 33268.81 22871.21 25154.81 18576.73 16386.48 15848.63 27074.60 22947.98 27786.11 20282.35 178
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20571.12 25254.28 19977.89 14183.41 20649.04 26480.98 13063.62 13790.77 11778.58 245
miper_lstm_enhance61.97 27161.63 27162.98 27560.04 37045.74 27547.53 38770.95 25344.04 30473.06 22578.84 28039.72 31860.33 34055.82 20684.64 22482.88 162
无先验74.82 14370.94 25447.75 27676.85 20454.47 22072.09 315
Baseline_NR-MVSNet70.62 16573.19 13262.92 27876.97 18534.44 36668.84 22670.88 25560.25 13379.50 12290.53 5661.82 16269.11 28454.67 21895.27 1485.22 85
VDD-MVS70.81 16371.44 16468.91 21479.07 15746.51 26767.82 24470.83 25661.23 12474.07 21188.69 10859.86 18675.62 21451.11 24590.28 12384.61 106
MonoMVSNet62.75 26563.42 25760.73 30065.60 33840.77 31672.49 16970.56 25752.49 22275.07 19179.42 26839.52 32169.97 27846.59 28969.06 37171.44 320
pm-mvs168.40 19769.85 17964.04 26373.10 25039.94 32564.61 28870.50 25855.52 17973.97 21489.33 8863.91 14468.38 29049.68 25788.02 16783.81 131
FMVSNet365.00 23865.16 23964.52 25869.47 29737.56 34766.63 26370.38 25951.55 23474.72 19783.27 21437.89 33174.44 23147.12 28285.37 20881.57 194
TR-MVS64.59 24363.54 25667.73 23175.75 20750.83 21663.39 29970.29 26049.33 26171.55 24774.55 31850.94 25278.46 17440.43 32775.69 31873.89 296
cdsmvs_eth3d_5k17.71 38723.62 3880.00 4060.00 4290.00 4310.00 41770.17 2610.00 4240.00 42574.25 32368.16 1000.00 4250.00 4240.00 4230.00 421
fmvsm_l_conf0.5_n67.48 21166.88 22369.28 20267.41 32062.04 13070.69 20369.85 26239.46 34269.59 27181.09 24058.15 20268.73 28667.51 9978.16 30277.07 269
mvs_anonymous65.08 23765.49 23463.83 26463.79 35137.60 34666.52 26569.82 26343.44 31373.46 22086.08 17258.79 19771.75 26451.90 23975.63 31982.15 183
D2MVS62.58 26861.05 27767.20 23663.85 35047.92 24956.29 34869.58 26439.32 34370.07 26578.19 28734.93 34372.68 24753.44 23383.74 23581.00 203
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26560.73 13074.39 20578.44 28357.72 21182.78 9860.16 16689.60 13879.11 239
GA-MVS62.91 26261.66 26966.66 24467.09 32344.49 28461.18 31469.36 26651.33 23969.33 27474.47 31936.83 33674.94 22450.60 25074.72 32780.57 218
mvs5depth66.35 22767.98 20461.47 29162.43 35751.05 21369.38 21969.24 26756.74 16673.62 21689.06 10046.96 27758.63 34855.87 20588.49 16074.73 286
fmvsm_l_conf0.5_n_a66.66 22165.97 23168.72 21867.09 32361.38 13870.03 21069.15 26838.59 35068.41 28880.36 25156.56 22368.32 29166.10 11377.45 30776.46 271
Anonymous2024052163.55 25466.07 22955.99 32966.18 33444.04 28768.77 23168.80 26946.99 28072.57 23085.84 17739.87 31750.22 37053.40 23592.23 8373.71 298
ab-mvs64.11 25165.13 24261.05 29671.99 26238.03 34367.59 24568.79 27049.08 26565.32 31286.26 16458.02 20966.85 30939.33 33179.79 28478.27 249
WR-MVS71.20 15872.48 14767.36 23484.98 7435.70 35864.43 29068.66 27165.05 9081.49 10086.43 16057.57 21276.48 20750.36 25293.32 6889.90 22
EGC-MVSNET64.77 24161.17 27575.60 10086.90 4374.47 3484.04 3968.62 2720.60 4201.13 42291.61 3265.32 13374.15 23664.01 12988.28 16278.17 251
1112_ss59.48 29258.99 29260.96 29877.84 17242.39 30461.42 31168.45 27337.96 35459.93 35267.46 37745.11 28565.07 32240.89 32571.81 35375.41 280
EU-MVSNet60.82 28160.80 28060.86 29968.37 30741.16 31072.27 17068.27 27426.96 40069.08 27575.71 30632.09 35767.44 30055.59 20978.90 29173.97 294
CMPMVSbinary48.73 2061.54 27760.89 27863.52 26861.08 36551.55 21068.07 24268.00 27533.88 37765.87 30781.25 23837.91 33067.71 29549.32 26282.60 24671.31 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_rt46.70 36545.24 37351.06 35444.58 41851.04 21439.91 40467.56 27621.84 41551.94 39050.79 41133.83 34639.77 40735.25 36661.50 39462.38 383
OpenMVS_ROBcopyleft54.93 1763.23 25963.28 25963.07 27469.81 29245.34 27768.52 23667.14 27743.74 30970.61 25779.22 27247.90 27472.66 24848.75 26673.84 33971.21 325
VNet64.01 25365.15 24160.57 30173.28 24435.61 35957.60 34167.08 27854.61 19266.76 30483.37 20956.28 22566.87 30742.19 31585.20 21479.23 238
Test_1112_low_res58.78 29858.69 29459.04 31379.41 14638.13 34157.62 34066.98 27934.74 37359.62 35577.56 29442.92 29863.65 32938.66 33770.73 36175.35 282
MVS_111021_LR72.10 15071.82 15672.95 14079.53 14573.90 4070.45 20666.64 28056.87 16376.81 16181.76 23368.78 9371.76 26361.81 14883.74 23573.18 301
VDDNet71.60 15573.13 13467.02 23986.29 4841.11 31169.97 21166.50 28168.72 6074.74 19691.70 2959.90 18575.81 21148.58 26991.72 8684.15 125
test_fmvs356.78 30755.99 31659.12 31153.96 40648.09 24658.76 33366.22 28227.54 39876.66 16468.69 37125.32 39551.31 36753.42 23473.38 34177.97 257
Anonymous20240521166.02 22966.89 22263.43 27074.22 23038.14 34059.00 32966.13 28363.33 11169.76 27085.95 17651.88 24570.50 27444.23 30487.52 17381.64 193
test_fmvs1_n52.70 33752.01 34454.76 33453.83 40750.36 21955.80 35365.90 28424.96 40765.39 31060.64 39927.69 38448.46 37645.88 29567.99 37765.46 365
test_fmvs254.80 32154.11 33156.88 32551.76 41049.95 22656.70 34665.80 28526.22 40369.42 27265.25 38531.82 36149.98 37149.63 25870.36 36370.71 330
jason64.47 24662.84 26469.34 20176.91 18759.20 15967.15 25565.67 28635.29 36965.16 31376.74 30144.67 28770.68 27154.74 21779.28 28878.14 252
jason: jason.
CDS-MVSNet64.33 24962.66 26669.35 20080.44 13758.28 17265.26 28065.66 28744.36 30367.30 30175.54 30843.27 29571.77 26237.68 34584.44 22878.01 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268858.09 30256.30 31363.45 26979.95 14050.93 21554.07 36565.59 28828.56 39661.53 33974.33 32141.09 30966.52 31333.91 37167.69 38072.92 304
IterMVS-SCA-FT67.68 20966.07 22972.49 15673.34 24358.20 17363.80 29565.55 28948.10 27076.91 15682.64 22245.20 28378.84 16561.20 15577.89 30580.44 220
sd_testset63.55 25465.38 23558.07 31873.04 25338.83 33457.41 34265.44 29051.42 23668.93 28182.72 22063.76 14558.11 35141.05 32384.67 22177.28 261
HY-MVS49.31 1957.96 30357.59 30459.10 31266.85 32836.17 35365.13 28265.39 29139.24 34654.69 38178.14 28844.28 29067.18 30433.75 37370.79 36073.95 295
IB-MVS49.67 1859.69 29156.96 30867.90 22768.19 31150.30 22161.42 31165.18 29247.57 27755.83 37467.15 38123.77 39979.60 15443.56 30879.97 27873.79 297
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal66.48 22467.93 20562.16 28473.40 24236.65 34963.45 29864.99 29355.97 17472.82 22887.80 12757.06 21869.10 28548.31 27387.54 17280.72 213
test_fmvs151.51 34750.86 35453.48 34049.72 41349.35 23554.11 36464.96 29424.64 40963.66 32859.61 40228.33 38348.45 37745.38 30067.30 38162.66 381
CL-MVSNet_self_test62.44 26963.40 25859.55 30872.34 25932.38 37556.39 34764.84 29551.21 24167.46 29981.01 24250.75 25363.51 33038.47 34088.12 16582.75 167
KD-MVS_2432*160052.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
miper_refine_blended52.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
CVMVSNet59.21 29458.44 29761.51 28973.94 23547.76 25371.31 19364.56 29826.91 40260.34 34870.44 34936.24 33967.65 29653.57 23168.66 37469.12 345
lupinMVS63.36 25661.49 27368.97 21174.93 21459.19 16065.80 27364.52 29934.68 37563.53 33074.25 32343.19 29670.62 27253.88 22978.67 29477.10 266
ET-MVSNet_ETH3D63.32 25760.69 28171.20 17370.15 28955.66 18665.02 28364.32 30043.28 31768.99 27772.05 34025.46 39378.19 18654.16 22782.80 24479.74 230
test_vis1_n_192052.96 33453.50 33351.32 35259.15 37944.90 28156.13 35164.29 30130.56 39459.87 35360.68 39840.16 31547.47 38048.25 27462.46 39161.58 386
patch_mono-262.73 26764.08 25058.68 31470.36 28455.87 18460.84 31664.11 30241.23 32764.04 32178.22 28660.00 18348.80 37454.17 22683.71 23771.37 321
thisisatest053067.05 21965.16 23972.73 15173.10 25050.55 21771.26 19563.91 30350.22 25274.46 20480.75 24526.81 38680.25 14459.43 17686.50 19787.37 53
旧先验184.55 8260.36 15463.69 30487.05 13754.65 23183.34 24169.66 339
EPNet69.10 18767.32 21474.46 10968.33 30961.27 14077.56 10763.57 30560.95 12756.62 37082.75 21951.53 24981.24 12254.36 22490.20 12480.88 207
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
reproduce_monomvs58.94 29658.14 30061.35 29359.70 37740.98 31360.24 32263.51 30645.85 28868.95 27975.31 31218.27 41465.82 31651.47 24279.97 27877.26 264
TAMVS65.31 23463.75 25369.97 19282.23 11759.76 15866.78 26263.37 30745.20 29769.79 26979.37 27047.42 27672.17 25634.48 36885.15 21577.99 256
tttt051769.46 18167.79 20974.46 10975.34 20952.72 20575.05 14063.27 30854.69 19078.87 13084.37 19426.63 38781.15 12363.95 13287.93 17089.51 24
MS-PatchMatch55.59 31554.89 32557.68 32069.18 29849.05 23661.00 31562.93 30935.98 36658.36 35968.93 36736.71 33766.59 31237.62 34763.30 38957.39 395
IterMVS63.12 26062.48 26765.02 25566.34 33152.86 20463.81 29462.25 31046.57 28371.51 24880.40 25044.60 28866.82 31051.38 24475.47 32175.38 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest051560.48 28557.86 30268.34 22267.25 32146.42 26860.58 31962.14 31140.82 33363.58 32969.12 36326.28 38978.34 18048.83 26582.13 24980.26 223
VPNet65.58 23267.56 21059.65 30779.72 14230.17 38860.27 32162.14 31154.19 20471.24 25186.63 15358.80 19667.62 29744.17 30590.87 11481.18 197
新几何169.99 19188.37 3571.34 5562.08 31343.85 30574.99 19386.11 17152.85 24170.57 27350.99 24783.23 24268.05 351
pmmvs-eth3d64.41 24863.27 26067.82 23075.81 20660.18 15569.49 21662.05 31438.81 34974.13 20982.23 22643.76 29368.65 28842.53 31280.63 27274.63 287
K. test v373.67 11573.61 12473.87 12179.78 14155.62 18874.69 15062.04 31566.16 7584.76 6393.23 649.47 26080.97 13165.66 11886.67 19585.02 92
testdata64.13 26085.87 6263.34 12261.80 31647.83 27476.42 17786.60 15548.83 26762.31 33454.46 22181.26 26366.74 360
N_pmnet52.06 34251.11 35054.92 33359.64 37871.03 5737.42 40861.62 31733.68 37957.12 36372.10 33737.94 32931.03 41429.13 39571.35 35662.70 379
ppachtmachnet_test60.26 28759.61 28862.20 28367.70 31744.33 28558.18 33860.96 31840.75 33565.80 30872.57 33641.23 30663.92 32746.87 28682.42 24778.33 247
test_vis1_n51.27 34850.41 35853.83 33756.99 38950.01 22556.75 34560.53 31925.68 40559.74 35457.86 40329.40 38047.41 38143.10 31063.66 38864.08 376
pmmvs460.78 28259.04 29166.00 24973.06 25257.67 17564.53 28960.22 32036.91 36265.96 30677.27 29639.66 31968.54 28938.87 33574.89 32671.80 317
CostFormer57.35 30656.14 31460.97 29763.76 35238.43 33667.50 24760.22 32037.14 36159.12 35776.34 30332.78 35271.99 26039.12 33469.27 37072.47 310
LFMVS67.06 21867.89 20664.56 25778.02 16938.25 33970.81 20259.60 32265.18 8771.06 25386.56 15643.85 29275.22 21946.35 29089.63 13780.21 224
test22287.30 3869.15 7767.85 24359.59 32341.06 32973.05 22685.72 17948.03 27380.65 27066.92 356
tpmvs55.84 31155.45 32057.01 32360.33 36933.20 37365.89 27059.29 32447.52 27856.04 37273.60 32831.05 37068.06 29440.64 32664.64 38569.77 338
UnsupCasMVSNet_eth52.26 34153.29 33649.16 36455.08 39933.67 37150.03 38058.79 32537.67 35763.43 33274.75 31641.82 30445.83 38438.59 33959.42 39967.98 352
EPNet_dtu58.93 29758.52 29560.16 30567.91 31547.70 25569.97 21158.02 32649.73 25747.28 40373.02 33438.14 32762.34 33336.57 35685.99 20370.43 332
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MIMVSNet166.57 22369.23 18458.59 31581.26 13037.73 34564.06 29357.62 32757.02 16278.40 13690.75 4962.65 15158.10 35241.77 31989.58 14079.95 226
tfpn200view960.35 28659.97 28561.51 28970.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25677.08 267
thres40060.77 28359.97 28563.15 27270.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25682.02 185
lessismore_v072.75 14979.60 14456.83 17957.37 33083.80 7489.01 10147.45 27578.74 16864.39 12686.49 19882.69 171
tpm cat154.02 32752.63 33958.19 31764.85 34739.86 32666.26 26757.28 33132.16 38556.90 36670.39 35132.75 35365.30 32134.29 36958.79 40069.41 342
thres20057.55 30557.02 30759.17 31067.89 31634.93 36358.91 33257.25 33250.24 25164.01 32271.46 34432.49 35471.39 26731.31 38179.57 28671.19 326
MDA-MVSNet-bldmvs62.34 27061.73 26864.16 25961.64 36249.90 22748.11 38557.24 33353.31 21680.95 10779.39 26949.00 26661.55 33745.92 29480.05 27781.03 201
fmvsm_s_conf0.1_n_a67.37 21566.36 22570.37 18170.86 27161.17 14174.00 15957.18 33440.77 33468.83 28680.88 24363.11 14867.61 29866.94 10974.72 32782.33 181
thres100view90061.17 27961.09 27661.39 29272.14 26135.01 36265.42 27956.99 33555.23 18270.71 25679.90 26032.07 35872.09 25735.61 36381.73 25677.08 267
thres600view761.82 27361.38 27463.12 27371.81 26434.93 36364.64 28656.99 33554.78 18970.33 26079.74 26232.07 35872.42 25438.61 33883.46 24082.02 185
fmvsm_s_conf0.5_n_a67.00 22065.95 23270.17 18669.72 29661.16 14273.34 16356.83 33740.96 33168.36 28980.08 25862.84 14967.57 29966.90 11174.50 33181.78 190
tpm256.12 31054.64 32760.55 30266.24 33236.01 35468.14 24056.77 33833.60 38158.25 36075.52 31030.25 37574.33 23333.27 37469.76 36971.32 322
fmvsm_s_conf0.1_n66.60 22265.54 23369.77 19468.99 30259.15 16372.12 17356.74 33940.72 33668.25 29280.14 25761.18 17366.92 30567.34 10674.40 33283.23 153
fmvsm_s_conf0.5_n66.34 22865.27 23669.57 19768.20 31059.14 16571.66 18656.48 34040.92 33267.78 29479.46 26661.23 17066.90 30667.39 10274.32 33582.66 172
ECVR-MVScopyleft64.82 23965.22 23763.60 26678.80 16031.14 38366.97 25856.47 34154.23 20169.94 26788.68 10937.23 33474.81 22745.28 30189.41 14484.86 96
CR-MVSNet58.96 29558.49 29660.36 30366.37 32948.24 24370.93 19956.40 34232.87 38361.35 34086.66 15033.19 34963.22 33148.50 27070.17 36569.62 340
Patchmtry60.91 28063.01 26354.62 33666.10 33526.27 40567.47 24856.40 34254.05 20772.04 23986.66 15033.19 34960.17 34143.69 30687.45 17677.42 259
testing9155.74 31355.29 32357.08 32270.63 27530.85 38554.94 36056.31 34450.34 24957.08 36470.10 35624.50 39765.86 31536.98 35376.75 31174.53 289
MDTV_nov1_ep1354.05 33265.54 33929.30 39259.00 32955.22 34535.96 36752.44 38775.98 30430.77 37259.62 34338.21 34173.33 342
baseline157.82 30458.36 29956.19 32869.17 29930.76 38662.94 30555.21 34646.04 28663.83 32578.47 28241.20 30763.68 32839.44 33068.99 37274.13 293
door-mid55.02 347
ADS-MVSNet248.76 35947.25 36853.29 34355.90 39540.54 32147.34 38854.99 34831.41 39150.48 39572.06 33831.23 36654.26 36225.93 40155.93 40565.07 369
test_cas_vis1_n_192050.90 34950.92 35350.83 35554.12 40547.80 25151.44 37654.61 34926.95 40163.95 32360.85 39737.86 33244.97 39045.53 29762.97 39059.72 390
baseline255.57 31652.74 33764.05 26265.26 34044.11 28662.38 30654.43 35039.03 34751.21 39267.35 37933.66 34772.45 25337.14 35064.22 38775.60 277
test111164.62 24265.19 23862.93 27779.01 15829.91 38965.45 27854.41 35154.09 20671.47 25088.48 11437.02 33574.29 23446.83 28789.94 13284.58 109
testing9955.16 31954.56 32856.98 32470.13 29030.58 38754.55 36354.11 35249.53 26056.76 36870.14 35522.76 40465.79 31736.99 35276.04 31674.57 288
Vis-MVSNet (Re-imp)62.74 26663.21 26161.34 29472.19 26031.56 38067.31 25453.87 35353.60 21469.88 26883.37 20940.52 31370.98 27041.40 32186.78 19381.48 195
pmmvs552.49 34052.58 34052.21 34754.99 40032.38 37555.45 35553.84 35432.15 38655.49 37674.81 31438.08 32857.37 35434.02 37074.40 33266.88 357
XXY-MVS55.19 31857.40 30648.56 36964.45 34834.84 36551.54 37553.59 35538.99 34863.79 32679.43 26756.59 22145.57 38536.92 35471.29 35765.25 367
dmvs_re49.91 35650.77 35547.34 37159.98 37138.86 33353.18 36853.58 35639.75 34155.06 37761.58 39636.42 33844.40 39429.15 39468.23 37558.75 392
PVSNet43.83 2151.56 34651.17 34952.73 34468.34 30838.27 33848.22 38453.56 35736.41 36354.29 38264.94 38634.60 34454.20 36330.34 38469.87 36765.71 364
test_method19.26 38619.12 39019.71 4009.09 4251.91 4287.79 41653.44 3581.42 41910.27 42135.80 41517.42 41725.11 41912.44 41824.38 41732.10 414
SCA58.57 30058.04 30160.17 30470.17 28741.07 31265.19 28153.38 35943.34 31661.00 34573.48 32945.20 28369.38 28240.34 32870.31 36470.05 334
UnsupCasMVSNet_bld50.01 35551.03 35246.95 37258.61 38232.64 37448.31 38353.27 36034.27 37660.47 34771.53 34341.40 30547.07 38230.68 38360.78 39661.13 387
wuyk23d61.97 27166.25 22649.12 36558.19 38660.77 15166.32 26652.97 36155.93 17690.62 686.91 14073.07 6035.98 41220.63 41591.63 8950.62 401
door52.91 362
FMVSNet555.08 32055.54 31953.71 33865.80 33633.50 37256.22 34952.50 36343.72 31061.06 34383.38 20825.46 39354.87 36030.11 38681.64 26172.75 307
testing1153.13 33352.26 34355.75 33170.44 28231.73 37954.75 36152.40 36444.81 30152.36 38968.40 37321.83 40565.74 31832.64 37772.73 34569.78 337
our_test_356.46 30856.51 31156.30 32767.70 31739.66 32755.36 35652.34 36540.57 33863.85 32469.91 35940.04 31658.22 35043.49 30975.29 32571.03 329
testing22253.37 33152.50 34155.98 33070.51 28129.68 39056.20 35051.85 36646.19 28556.76 36868.94 36619.18 41265.39 31925.87 40376.98 30972.87 305
PatchmatchNetpermissive54.60 32254.27 32955.59 33265.17 34339.08 32966.92 25951.80 36739.89 34058.39 35873.12 33331.69 36358.33 34943.01 31158.38 40369.38 343
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WBMVS53.38 33054.14 33051.11 35370.16 28826.66 40150.52 37951.64 36839.32 34363.08 33377.16 29723.53 40055.56 35731.99 37879.88 28071.11 327
FPMVS59.43 29360.07 28457.51 32177.62 17871.52 5362.33 30750.92 36957.40 16069.40 27380.00 25939.14 32361.92 33637.47 34866.36 38239.09 412
Anonymous2023120654.13 32455.82 31749.04 36670.89 27035.96 35551.73 37450.87 37034.86 37062.49 33579.22 27242.52 30244.29 39527.95 39681.88 25266.88 357
new-patchmatchnet52.89 33655.76 31844.26 38559.94 3746.31 42537.36 40950.76 37141.10 32864.28 31979.82 26144.77 28648.43 37836.24 35987.61 17178.03 254
WB-MVSnew53.94 32954.76 32651.49 35171.53 26628.05 39558.22 33750.36 37237.94 35559.16 35670.17 35449.21 26351.94 36624.49 40771.80 35474.47 291
tpmrst50.15 35451.38 34846.45 37656.05 39324.77 40864.40 29149.98 37336.14 36553.32 38669.59 36135.16 34248.69 37539.24 33258.51 40265.89 362
WTY-MVS49.39 35750.31 35946.62 37561.22 36432.00 37846.61 39049.77 37433.87 37854.12 38369.55 36241.96 30345.40 38731.28 38264.42 38662.47 382
ttmdpeth56.40 30955.45 32059.25 30955.63 39740.69 31758.94 33149.72 37536.22 36465.39 31086.97 13823.16 40256.69 35642.30 31380.74 26980.36 221
UWE-MVS52.94 33552.70 33853.65 33973.56 23827.49 39857.30 34349.57 37638.56 35162.79 33471.42 34519.49 41160.41 33924.33 40977.33 30873.06 302
testgi54.00 32856.86 30945.45 37958.20 38525.81 40749.05 38149.50 37745.43 29467.84 29381.17 23951.81 24843.20 39929.30 39079.41 28767.34 355
test20.0355.74 31357.51 30550.42 35659.89 37532.09 37750.63 37749.01 37850.11 25365.07 31483.23 21645.61 28148.11 37930.22 38583.82 23471.07 328
PatchMatch-RL58.68 29957.72 30361.57 28876.21 19873.59 4361.83 30849.00 37947.30 27961.08 34268.97 36550.16 25659.01 34536.06 36268.84 37352.10 399
sss47.59 36348.32 36345.40 38056.73 39233.96 36945.17 39348.51 38032.11 38852.37 38865.79 38340.39 31441.91 40331.85 37961.97 39360.35 388
MIMVSNet54.39 32356.12 31549.20 36372.57 25730.91 38459.98 32348.43 38141.66 32355.94 37383.86 20241.19 30850.42 36926.05 40075.38 32366.27 361
JIA-IIPM54.03 32651.62 34561.25 29559.14 38055.21 18959.10 32847.72 38250.85 24450.31 39885.81 17820.10 40963.97 32636.16 36055.41 40864.55 374
test_f43.79 37545.63 37038.24 39642.29 42238.58 33534.76 41147.68 38322.22 41467.34 30063.15 39031.82 36130.60 41539.19 33362.28 39245.53 408
Patchmatch-RL test59.95 28959.12 29062.44 28172.46 25854.61 19359.63 32547.51 38441.05 33074.58 20274.30 32231.06 36965.31 32051.61 24079.85 28167.39 353
SSC-MVS61.79 27466.08 22848.89 36776.91 18710.00 42453.56 36747.37 38568.20 6376.56 16989.21 9254.13 23557.59 35354.75 21674.07 33679.08 240
MVStest155.38 31754.97 32456.58 32643.72 41940.07 32459.13 32747.09 38634.83 37176.53 17284.65 18813.55 42353.30 36555.04 21380.23 27576.38 272
WB-MVS60.04 28864.19 24947.59 37076.09 20010.22 42352.44 37246.74 38765.17 8874.07 21187.48 12953.48 23855.28 35949.36 26172.84 34477.28 261
MDA-MVSNet_test_wron52.57 33953.49 33549.81 36054.24 40236.47 35140.48 40346.58 38838.13 35275.47 18873.32 33141.05 31143.85 39740.98 32471.20 35869.10 346
YYNet152.58 33853.50 33349.85 35954.15 40336.45 35240.53 40246.55 38938.09 35375.52 18773.31 33241.08 31043.88 39641.10 32271.14 35969.21 344
UBG49.18 35849.35 36248.66 36870.36 28426.56 40350.53 37845.61 39037.43 35853.37 38565.97 38223.03 40354.20 36326.29 39871.54 35565.20 368
test-LLR50.43 35150.69 35649.64 36160.76 36641.87 30653.18 36845.48 39143.41 31449.41 39960.47 40029.22 38144.73 39242.09 31672.14 35162.33 384
test-mter48.56 36048.20 36549.64 36160.76 36641.87 30653.18 36845.48 39131.91 38949.41 39960.47 40018.34 41344.73 39242.09 31672.14 35162.33 384
Syy-MVS54.13 32455.45 32050.18 35768.77 30323.59 41055.02 35744.55 39343.80 30658.05 36164.07 38746.22 27858.83 34646.16 29272.36 34868.12 349
myMVS_eth3d50.36 35250.52 35749.88 35868.77 30322.69 41255.02 35744.55 39343.80 30658.05 36164.07 38714.16 42258.83 34633.90 37272.36 34868.12 349
ETVMVS50.32 35349.87 36151.68 34970.30 28626.66 40152.33 37343.93 39543.54 31254.91 37867.95 37520.01 41060.17 34122.47 41173.40 34068.22 348
tpm50.60 35052.42 34245.14 38165.18 34226.29 40460.30 32043.50 39637.41 35957.01 36579.09 27630.20 37742.32 40032.77 37666.36 38266.81 359
dmvs_testset45.26 36847.51 36638.49 39559.96 37314.71 41958.50 33543.39 39741.30 32651.79 39156.48 40439.44 32249.91 37321.42 41355.35 40950.85 400
PatchT53.35 33256.47 31243.99 38664.19 34917.46 41759.15 32643.10 39852.11 22754.74 38086.95 13929.97 37849.98 37143.62 30774.40 33264.53 375
testing358.28 30158.38 29858.00 31977.45 18026.12 40660.78 31743.00 39956.02 17370.18 26275.76 30513.27 42467.24 30348.02 27680.89 26580.65 215
PM-MVS64.49 24563.61 25567.14 23876.68 19275.15 3168.49 23742.85 40051.17 24277.85 14380.51 24845.76 27966.31 31452.83 23676.35 31359.96 389
GG-mvs-BLEND52.24 34660.64 36829.21 39369.73 21542.41 40145.47 40652.33 40920.43 40868.16 29225.52 40565.42 38459.36 391
PMMVS44.69 37143.95 37946.92 37350.05 41253.47 20248.08 38642.40 40222.36 41344.01 41253.05 40842.60 30145.49 38631.69 38061.36 39541.79 410
dp44.09 37444.88 37641.72 39158.53 38423.18 41154.70 36242.38 40334.80 37244.25 41165.61 38424.48 39844.80 39129.77 38849.42 41157.18 396
E-PMN45.17 36945.36 37244.60 38350.07 41142.75 30038.66 40642.29 40446.39 28439.55 41451.15 41026.00 39045.37 38837.68 34576.41 31245.69 407
PVSNet_036.71 2241.12 37940.78 38242.14 38859.97 37240.13 32340.97 40142.24 40530.81 39344.86 40949.41 41240.70 31245.12 38923.15 41034.96 41541.16 411
TESTMET0.1,145.17 36944.93 37545.89 37856.02 39438.31 33753.18 36841.94 40627.85 39744.86 40956.47 40517.93 41541.50 40538.08 34368.06 37657.85 393
Patchmatch-test47.93 36149.96 36041.84 38957.42 38824.26 40948.75 38241.49 40739.30 34556.79 36773.48 32930.48 37433.87 41329.29 39172.61 34667.39 353
gg-mvs-nofinetune55.75 31256.75 31052.72 34562.87 35528.04 39668.92 22541.36 40871.09 4650.80 39492.63 1320.74 40766.86 30829.97 38772.41 34763.25 377
test0.0.03 147.72 36248.31 36445.93 37755.53 39829.39 39146.40 39141.21 40943.41 31455.81 37567.65 37629.22 38143.77 39825.73 40469.87 36764.62 373
EMVS44.61 37344.45 37845.10 38248.91 41443.00 29837.92 40741.10 41046.75 28238.00 41648.43 41326.42 38846.27 38337.11 35175.38 32346.03 406
ADS-MVSNet44.62 37245.58 37141.73 39055.90 39520.83 41547.34 38839.94 41131.41 39150.48 39572.06 33831.23 36639.31 40825.93 40155.93 40565.07 369
pmmvs346.71 36445.09 37451.55 35056.76 39148.25 24255.78 35439.53 41224.13 41050.35 39763.40 38915.90 41951.08 36829.29 39170.69 36255.33 398
test250661.23 27860.85 27962.38 28278.80 16027.88 39767.33 25337.42 41354.23 20167.55 29888.68 10917.87 41674.39 23246.33 29189.41 14484.86 96
MVS-HIRNet45.53 36747.29 36740.24 39262.29 35826.82 40056.02 35237.41 41429.74 39543.69 41381.27 23733.96 34555.48 35824.46 40856.79 40438.43 413
CHOSEN 280x42041.62 37839.89 38346.80 37461.81 36051.59 20933.56 41235.74 41527.48 39937.64 41753.53 40623.24 40142.09 40127.39 39758.64 40146.72 405
EPMVS45.74 36646.53 36943.39 38754.14 40422.33 41455.02 35735.00 41634.69 37451.09 39370.20 35325.92 39142.04 40237.19 34955.50 40765.78 363
new_pmnet37.55 38239.80 38430.79 39756.83 39016.46 41839.35 40530.65 41725.59 40645.26 40761.60 39524.54 39628.02 41721.60 41252.80 41047.90 404
PMMVS237.74 38140.87 38128.36 39842.41 4215.35 42624.61 41327.75 41832.15 38647.85 40270.27 35235.85 34029.51 41619.08 41667.85 37850.22 402
DSMNet-mixed43.18 37744.66 37738.75 39454.75 40128.88 39457.06 34427.42 41913.47 41747.27 40477.67 29338.83 32439.29 40925.32 40660.12 39848.08 403
MVEpermissive27.91 2336.69 38335.64 38639.84 39343.37 42035.85 35719.49 41424.61 42024.68 40839.05 41562.63 39338.67 32627.10 41821.04 41447.25 41356.56 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test137.88 38035.74 38544.28 38447.28 41649.90 22736.54 41024.37 42119.56 41645.76 40553.46 40732.99 35137.97 41126.17 39935.52 41444.99 409
mvsany_test343.76 37641.01 38052.01 34848.09 41557.74 17442.47 39923.85 42223.30 41264.80 31562.17 39427.12 38540.59 40629.17 39348.11 41257.69 394
MTMP84.83 3419.26 423
tmp_tt11.98 38814.73 3913.72 4032.28 4264.62 42719.44 41514.50 4240.47 42121.55 4199.58 41925.78 3924.57 42211.61 41927.37 4161.96 418
dongtai31.66 38432.98 38727.71 39958.58 38312.61 42145.02 39414.24 42541.90 32147.93 40143.91 41410.65 42541.81 40414.06 41720.53 41828.72 415
kuosan22.02 38523.52 38917.54 40141.56 42311.24 42241.99 40013.39 42626.13 40428.87 41830.75 4169.72 42621.94 4204.77 42114.49 41919.43 416
DeepMVS_CXcopyleft11.83 40215.51 42413.86 42011.25 4275.76 41820.85 42026.46 41717.06 4189.22 4219.69 42013.82 42012.42 417
test1234.43 3915.78 3940.39 4050.97 4270.28 42946.33 3920.45 4280.31 4220.62 4231.50 4220.61 4280.11 4240.56 4220.63 4210.77 420
testmvs4.06 3925.28 3950.41 4040.64 4280.16 43042.54 3980.31 4290.26 4230.50 4241.40 4230.77 4270.17 4230.56 4220.55 4220.90 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.20 3906.93 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42462.39 1560.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
n20.00 430
nn0.00 430
ab-mvs-re5.62 3897.50 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42567.46 3770.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS22.69 41236.10 361
PC_three_145246.98 28181.83 9486.28 16266.55 12184.47 7463.31 14290.78 11583.49 140
eth-test20.00 429
eth-test0.00 429
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15189.79 13683.08 157
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 120
GSMVS70.05 334
test_part285.90 6066.44 9584.61 65
sam_mvs131.41 36470.05 334
sam_mvs31.21 368
test_post166.63 2632.08 42030.66 37359.33 34440.34 328
test_post1.99 42130.91 37154.76 361
patchmatchnet-post68.99 36431.32 36569.38 282
gm-plane-assit62.51 35633.91 37037.25 36062.71 39272.74 24638.70 336
test9_res72.12 7291.37 9477.40 260
agg_prior270.70 7690.93 10978.55 246
test_prior470.14 6777.57 106
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8092.76 75
旧先验271.17 19645.11 29878.54 13561.28 33859.19 178
新几何271.33 192
原ACMM274.78 147
testdata267.30 30148.34 272
segment_acmp68.30 99
testdata168.34 23957.24 161
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior489.11 97
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
HQP5-MVS58.80 168
HQP-NCC82.37 11377.32 11159.08 14071.58 243
ACMP_Plane82.37 11377.32 11159.08 14071.58 243
BP-MVS67.38 104
HQP4-MVS71.59 24285.31 5483.74 134
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
MDTV_nov1_ep13_2view18.41 41653.74 36631.57 39044.89 40829.90 37932.93 37571.48 319
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152