| TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 31 | 81.19 4 | 88.84 4 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 66 | 74.51 48 | 96.15 2 | 92.88 7 |
|
| FOURS1 | | | | | | 89.19 23 | 77.84 12 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
| AllTest | | | 77.66 70 | 77.43 75 | 78.35 66 | 79.19 150 | 70.81 55 | 78.60 92 | 88.64 3 | 65.37 79 | 80.09 116 | 88.17 118 | 70.33 76 | 78.43 172 | 55.60 199 | 90.90 110 | 85.81 76 |
|
| TestCases | | | | | 78.35 66 | 79.19 150 | 70.81 55 | | 88.64 3 | 65.37 79 | 80.09 116 | 88.17 118 | 70.33 76 | 78.43 172 | 55.60 199 | 90.90 110 | 85.81 76 |
|
| SF-MVS | | | 80.72 43 | 81.80 42 | 77.48 74 | 82.03 117 | 64.40 112 | 83.41 46 | 88.46 5 | 65.28 81 | 84.29 65 | 89.18 92 | 73.73 55 | 83.22 88 | 76.01 38 | 93.77 58 | 84.81 101 |
|
| COLMAP_ROB |  | 72.78 3 | 83.75 11 | 84.11 15 | 82.68 12 | 82.97 104 | 74.39 32 | 87.18 10 | 88.18 6 | 78.98 6 | 86.11 40 | 91.47 30 | 79.70 12 | 85.76 43 | 66.91 107 | 95.46 11 | 87.89 48 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMH+ | | 66.64 10 | 81.20 36 | 82.48 39 | 77.35 78 | 81.16 129 | 62.39 125 | 80.51 67 | 87.80 7 | 73.02 26 | 87.57 20 | 91.08 36 | 80.28 9 | 82.44 99 | 64.82 120 | 96.10 4 | 87.21 57 |
|
| LTVRE_ROB | | 75.46 1 | 84.22 6 | 84.98 7 | 81.94 20 | 84.82 73 | 75.40 25 | 91.60 3 | 87.80 7 | 73.52 24 | 88.90 11 | 93.06 6 | 71.39 68 | 81.53 114 | 81.53 3 | 92.15 82 | 88.91 38 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 21 | 91.50 1 | 63.30 120 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 69 | 68.08 89 | 97.05 1 | 96.93 1 |
|
| 9.14 | | | | 80.22 53 | | 80.68 131 | | 80.35 72 | 87.69 10 | 59.90 129 | 83.00 79 | 88.20 117 | 74.57 47 | 81.75 112 | 73.75 54 | 93.78 57 | |
|
| EC-MVSNet | | | 77.08 76 | 77.39 76 | 76.14 92 | 76.86 188 | 56.87 175 | 80.32 73 | 87.52 11 | 63.45 104 | 74.66 191 | 84.52 183 | 69.87 82 | 84.94 61 | 69.76 79 | 89.59 139 | 86.60 67 |
|
| APD-MVS_3200maxsize | | | 83.57 13 | 84.33 12 | 81.31 28 | 82.83 107 | 73.53 40 | 85.50 27 | 87.45 12 | 74.11 19 | 86.45 35 | 90.52 55 | 80.02 10 | 84.48 70 | 77.73 27 | 94.34 47 | 85.93 74 |
|
| HPM-MVS |  | | 84.12 8 | 84.63 9 | 82.60 13 | 88.21 35 | 74.40 31 | 85.24 28 | 87.21 13 | 70.69 45 | 85.14 54 | 90.42 58 | 78.99 15 | 86.62 13 | 80.83 5 | 94.93 23 | 86.79 63 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DeepC-MVS | | 72.44 4 | 81.00 40 | 80.83 50 | 81.50 22 | 86.70 44 | 70.03 64 | 82.06 55 | 87.00 14 | 59.89 130 | 80.91 108 | 90.53 53 | 72.19 60 | 88.56 1 | 73.67 55 | 94.52 35 | 85.92 75 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| HPM-MVS_fast | | | 84.59 4 | 85.10 6 | 83.06 4 | 88.60 32 | 75.83 23 | 86.27 24 | 86.89 15 | 73.69 23 | 86.17 37 | 91.70 25 | 78.23 19 | 85.20 58 | 79.45 12 | 94.91 24 | 88.15 47 |
|
| LPG-MVS_test | | | 83.47 16 | 84.33 12 | 80.90 32 | 87.00 39 | 70.41 60 | 82.04 56 | 86.35 16 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 24 | 77.13 35 | 95.96 5 | 86.08 71 |
|
| LGP-MVS_train | | | | | 80.90 32 | 87.00 39 | 70.41 60 | | 86.35 16 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 24 | 77.13 35 | 95.96 5 | 86.08 71 |
|
| MP-MVS-pluss | | | 82.54 26 | 83.46 25 | 79.76 41 | 88.88 30 | 68.44 76 | 81.57 59 | 86.33 18 | 63.17 108 | 85.38 52 | 91.26 33 | 76.33 30 | 84.67 68 | 83.30 1 | 94.96 22 | 86.17 70 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| SR-MVS-dyc-post | | | 84.75 3 | 85.26 5 | 83.21 3 | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 19 | 77.51 10 | 87.65 18 | 90.73 47 | 79.20 14 | 85.58 49 | 78.11 23 | 94.46 36 | 84.89 95 |
|
| RE-MVS-def | | | | 85.50 3 | | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 19 | 77.51 10 | 87.65 18 | 90.73 47 | 81.38 7 | | 78.11 23 | 94.46 36 | 84.89 95 |
|
| RPMNet | | | 65.77 221 | 65.08 235 | 67.84 223 | 66.37 311 | 48.24 237 | 70.93 193 | 86.27 19 | 54.66 184 | 61.35 325 | 86.77 138 | 33.29 335 | 85.67 47 | 55.93 196 | 70.17 344 | 69.62 320 |
|
| 3Dnovator+ | | 73.19 2 | 81.08 39 | 80.48 51 | 82.87 7 | 81.41 125 | 72.03 45 | 84.38 34 | 86.23 22 | 77.28 14 | 80.65 111 | 90.18 74 | 59.80 181 | 87.58 5 | 73.06 59 | 91.34 94 | 89.01 34 |
|
| ACMP | | 69.50 8 | 82.64 25 | 83.38 26 | 80.40 37 | 86.50 45 | 69.44 67 | 82.30 53 | 86.08 23 | 66.80 65 | 86.70 30 | 89.99 76 | 81.64 6 | 85.95 34 | 74.35 50 | 96.11 3 | 85.81 76 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ZNCC-MVS | | | 83.12 20 | 83.68 21 | 81.45 24 | 89.14 24 | 73.28 42 | 86.32 23 | 85.97 24 | 67.39 60 | 84.02 68 | 90.39 62 | 74.73 45 | 86.46 15 | 80.73 6 | 94.43 40 | 84.60 109 |
|
| ACMMP |  | | 84.22 6 | 84.84 8 | 82.35 17 | 89.23 21 | 76.66 22 | 87.65 6 | 85.89 25 | 71.03 42 | 85.85 42 | 90.58 51 | 78.77 16 | 85.78 42 | 79.37 15 | 95.17 16 | 84.62 106 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| LS3D | | | 80.99 41 | 80.85 49 | 81.41 25 | 78.37 162 | 71.37 50 | 87.45 7 | 85.87 26 | 77.48 12 | 81.98 91 | 89.95 78 | 69.14 86 | 85.26 54 | 66.15 109 | 91.24 96 | 87.61 52 |
|
| test_one_0601 | | | | | | 85.84 61 | 61.45 133 | | 85.63 27 | 75.27 17 | 85.62 48 | 90.38 64 | 76.72 27 | | | | |
|
| XVG-ACMP-BASELINE | | | 80.54 44 | 81.06 48 | 78.98 57 | 87.01 38 | 72.91 43 | 80.23 75 | 85.56 28 | 66.56 68 | 85.64 45 | 89.57 83 | 69.12 87 | 80.55 136 | 72.51 65 | 93.37 63 | 83.48 141 |
|
| DVP-MVS++ | | | 81.24 35 | 82.74 37 | 76.76 82 | 83.14 96 | 60.90 143 | 91.64 1 | 85.49 29 | 74.03 21 | 84.93 56 | 90.38 64 | 66.82 108 | 85.90 38 | 77.43 30 | 90.78 114 | 83.49 139 |
|
| test_0728_SECOND | | | | | 76.57 85 | 86.20 48 | 60.57 149 | 83.77 40 | 85.49 29 | | | | | 85.90 38 | 75.86 39 | 94.39 41 | 83.25 150 |
|
| HQP_MVS | | | 78.77 60 | 78.78 64 | 78.72 60 | 85.18 66 | 65.18 104 | 82.74 51 | 85.49 29 | 65.45 76 | 78.23 133 | 89.11 95 | 60.83 170 | 86.15 27 | 71.09 71 | 90.94 106 | 84.82 99 |
|
| plane_prior5 | | | | | | | | | 85.49 29 | | | | | 86.15 27 | 71.09 71 | 90.94 106 | 84.82 99 |
|
| PGM-MVS | | | 83.07 21 | 83.25 30 | 82.54 15 | 89.57 13 | 77.21 20 | 82.04 56 | 85.40 33 | 67.96 59 | 84.91 59 | 90.88 42 | 75.59 36 | 86.57 14 | 78.16 22 | 94.71 30 | 83.82 130 |
|
| XVG-OURS-SEG-HR | | | 79.62 52 | 79.99 55 | 78.49 64 | 86.46 46 | 74.79 29 | 77.15 111 | 85.39 34 | 66.73 66 | 80.39 114 | 88.85 103 | 74.43 50 | 78.33 177 | 74.73 46 | 85.79 200 | 82.35 175 |
|
| SD-MVS | | | 80.28 49 | 81.55 47 | 76.47 88 | 83.57 90 | 67.83 80 | 83.39 47 | 85.35 35 | 64.42 92 | 86.14 39 | 87.07 130 | 74.02 51 | 80.97 128 | 77.70 28 | 92.32 80 | 80.62 211 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| SR-MVS | | | 84.51 5 | 85.27 4 | 82.25 18 | 88.52 33 | 77.71 13 | 86.81 16 | 85.25 36 | 77.42 13 | 86.15 38 | 90.24 71 | 81.69 5 | 85.94 35 | 77.77 26 | 93.58 61 | 83.09 155 |
|
| GST-MVS | | | 82.79 24 | 83.27 29 | 81.34 27 | 88.99 26 | 73.29 41 | 85.94 25 | 85.13 37 | 68.58 57 | 84.14 67 | 90.21 73 | 73.37 56 | 86.41 16 | 79.09 18 | 93.98 56 | 84.30 123 |
|
| APDe-MVS |  | | 82.88 23 | 84.14 14 | 79.08 53 | 84.80 75 | 66.72 90 | 86.54 20 | 85.11 38 | 72.00 37 | 86.65 31 | 91.75 24 | 78.20 20 | 87.04 9 | 77.93 25 | 94.32 48 | 83.47 142 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test0726 | | | | | | 86.16 51 | 60.78 146 | 83.81 39 | 85.10 39 | 72.48 32 | 85.27 53 | 89.96 77 | 78.57 17 | | | | |
|
| MSP-MVS | | | 80.49 45 | 79.67 58 | 82.96 5 | 89.70 11 | 77.46 19 | 87.16 11 | 85.10 39 | 64.94 89 | 81.05 105 | 88.38 114 | 57.10 209 | 87.10 8 | 79.75 7 | 83.87 228 | 84.31 121 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 82.00 30 | 83.02 33 | 78.95 58 | 85.36 65 | 67.25 85 | 82.91 50 | 84.98 41 | 73.52 24 | 85.43 51 | 90.03 75 | 76.37 29 | 86.97 11 | 74.56 47 | 94.02 55 | 82.62 170 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| ACMMP_NAP | | | 82.33 27 | 83.28 28 | 79.46 49 | 89.28 18 | 69.09 74 | 83.62 42 | 84.98 41 | 64.77 90 | 83.97 69 | 91.02 38 | 75.53 39 | 85.93 37 | 82.00 2 | 94.36 45 | 83.35 148 |
|
| XVG-OURS | | | 79.51 53 | 79.82 56 | 78.58 63 | 86.11 56 | 74.96 28 | 76.33 123 | 84.95 43 | 66.89 63 | 82.75 85 | 88.99 99 | 66.82 108 | 78.37 175 | 74.80 44 | 90.76 117 | 82.40 174 |
|
| test_241102_TWO | | | | | | | | | 84.80 44 | 72.61 30 | 84.93 56 | 89.70 81 | 77.73 22 | 85.89 40 | 75.29 42 | 94.22 52 | 83.25 150 |
|
| SteuartSystems-ACMMP | | | 83.07 21 | 83.64 22 | 81.35 26 | 85.14 68 | 71.00 54 | 85.53 26 | 84.78 45 | 70.91 43 | 85.64 45 | 90.41 59 | 75.55 38 | 87.69 4 | 79.75 7 | 95.08 19 | 85.36 85 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SMA-MVS |  | | 82.12 28 | 82.68 38 | 80.43 36 | 88.90 29 | 69.52 65 | 85.12 29 | 84.76 46 | 63.53 102 | 84.23 66 | 91.47 30 | 72.02 62 | 87.16 7 | 79.74 9 | 94.36 45 | 84.61 107 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| OMC-MVS | | | 79.41 55 | 78.79 63 | 81.28 29 | 80.62 132 | 70.71 58 | 80.91 63 | 84.76 46 | 62.54 112 | 81.77 94 | 86.65 145 | 71.46 66 | 83.53 83 | 67.95 93 | 92.44 76 | 89.60 24 |
|
| SED-MVS | | | 81.78 31 | 83.48 24 | 76.67 83 | 86.12 53 | 61.06 139 | 83.62 42 | 84.72 48 | 72.61 30 | 87.38 24 | 89.70 81 | 77.48 23 | 85.89 40 | 75.29 42 | 94.39 41 | 83.08 156 |
|
| test_241102_ONE | | | | | | 86.12 53 | 61.06 139 | | 84.72 48 | 72.64 29 | 87.38 24 | 89.47 84 | 77.48 23 | 85.74 44 | | | |
|
| casdiffmvs_mvg |  | | 75.26 92 | 76.18 88 | 72.52 153 | 72.87 249 | 49.47 227 | 72.94 161 | 84.71 50 | 59.49 132 | 80.90 109 | 88.81 104 | 70.07 79 | 79.71 149 | 67.40 98 | 88.39 159 | 88.40 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ETV-MVS | | | 72.72 136 | 72.16 147 | 74.38 112 | 76.90 186 | 55.95 178 | 73.34 158 | 84.67 51 | 62.04 115 | 72.19 229 | 70.81 332 | 65.90 120 | 85.24 56 | 58.64 176 | 84.96 214 | 81.95 183 |
|
| XVS | | | 83.51 15 | 83.73 20 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 52 | 72.71 27 | 82.87 82 | 90.39 62 | 73.86 52 | 86.31 19 | 78.84 19 | 94.03 53 | 84.64 104 |
|
| X-MVStestdata | | | 76.81 77 | 74.79 100 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 52 | 72.71 27 | 82.87 82 | 9.95 394 | 73.86 52 | 86.31 19 | 78.84 19 | 94.03 53 | 84.64 104 |
|
| DP-MVS | | | 78.44 66 | 79.29 60 | 75.90 94 | 81.86 120 | 65.33 102 | 79.05 87 | 84.63 54 | 74.83 18 | 80.41 113 | 86.27 156 | 71.68 64 | 83.45 85 | 62.45 143 | 92.40 77 | 78.92 236 |
|
| CS-MVS-test | | | 74.89 102 | 74.23 108 | 76.86 81 | 77.01 181 | 62.94 123 | 78.98 88 | 84.61 55 | 58.62 141 | 70.17 254 | 80.80 234 | 66.74 112 | 81.96 108 | 61.74 146 | 89.40 145 | 85.69 81 |
|
| ACMM | | 69.25 9 | 82.11 29 | 83.31 27 | 78.49 64 | 88.17 36 | 73.96 34 | 83.11 49 | 84.52 56 | 66.40 69 | 87.45 22 | 89.16 94 | 81.02 8 | 80.52 137 | 74.27 51 | 95.73 7 | 80.98 199 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CP-MVS | | | 84.12 8 | 84.55 10 | 82.80 10 | 89.42 17 | 79.74 5 | 88.19 5 | 84.43 57 | 71.96 38 | 84.70 61 | 90.56 52 | 77.12 25 | 86.18 26 | 79.24 17 | 95.36 12 | 82.49 173 |
|
| baseline | | | 73.10 122 | 73.96 112 | 70.51 177 | 71.46 258 | 46.39 263 | 72.08 169 | 84.40 58 | 55.95 169 | 76.62 161 | 86.46 152 | 67.20 102 | 78.03 184 | 64.22 125 | 87.27 180 | 87.11 61 |
|
| test_prior | | | | | 75.27 102 | 82.15 116 | 59.85 154 | | 84.33 59 | | | | | 83.39 86 | | | 82.58 171 |
|
| HFP-MVS | | | 83.39 17 | 84.03 16 | 81.48 23 | 89.25 20 | 75.69 24 | 87.01 14 | 84.27 60 | 70.23 46 | 84.47 64 | 90.43 57 | 76.79 26 | 85.94 35 | 79.58 10 | 94.23 51 | 82.82 164 |
|
| casdiffmvs |  | | 73.06 125 | 73.84 113 | 70.72 173 | 71.32 259 | 46.71 259 | 70.93 193 | 84.26 61 | 55.62 172 | 77.46 145 | 87.10 127 | 67.09 104 | 77.81 187 | 63.95 128 | 86.83 188 | 87.64 51 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MSLP-MVS++ | | | 74.48 105 | 75.78 92 | 70.59 175 | 84.66 76 | 62.40 124 | 78.65 91 | 84.24 62 | 60.55 125 | 77.71 142 | 81.98 221 | 63.12 140 | 77.64 191 | 62.95 140 | 88.14 162 | 71.73 301 |
|
| region2R | | | 83.54 14 | 83.86 19 | 82.58 14 | 89.82 9 | 77.53 16 | 87.06 13 | 84.23 63 | 70.19 48 | 83.86 71 | 90.72 49 | 75.20 40 | 86.27 21 | 79.41 14 | 94.25 50 | 83.95 128 |
|
| ACMMPR | | | 83.62 12 | 83.93 17 | 82.69 11 | 89.78 10 | 77.51 18 | 87.01 14 | 84.19 64 | 70.23 46 | 84.49 63 | 90.67 50 | 75.15 41 | 86.37 18 | 79.58 10 | 94.26 49 | 84.18 124 |
|
| HQP3-MVS | | | | | | | | | 84.12 65 | | | | | | | 89.16 147 | |
|
| HQP-MVS | | | 75.24 93 | 75.01 99 | 75.94 93 | 82.37 111 | 58.80 165 | 77.32 107 | 84.12 65 | 59.08 134 | 71.58 234 | 85.96 168 | 58.09 196 | 85.30 53 | 67.38 101 | 89.16 147 | 83.73 135 |
|
| DeepPCF-MVS | | 71.07 5 | 78.48 65 | 77.14 79 | 82.52 16 | 84.39 83 | 77.04 21 | 76.35 121 | 84.05 67 | 56.66 162 | 80.27 115 | 85.31 175 | 68.56 90 | 87.03 10 | 67.39 99 | 91.26 95 | 83.50 138 |
|
| TAPA-MVS | | 65.27 12 | 75.16 94 | 74.29 107 | 77.77 72 | 74.86 212 | 68.08 77 | 77.89 101 | 84.04 68 | 55.15 176 | 76.19 173 | 83.39 198 | 66.91 106 | 80.11 145 | 60.04 166 | 90.14 126 | 85.13 90 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| OPM-MVS | | | 80.99 41 | 81.63 46 | 79.07 54 | 86.86 43 | 69.39 68 | 79.41 84 | 84.00 69 | 65.64 73 | 85.54 49 | 89.28 87 | 76.32 31 | 83.47 84 | 74.03 52 | 93.57 62 | 84.35 120 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DeepC-MVS_fast | | 69.89 7 | 77.17 75 | 76.33 86 | 79.70 44 | 83.90 88 | 67.94 78 | 80.06 79 | 83.75 70 | 56.73 161 | 74.88 186 | 85.32 174 | 65.54 123 | 87.79 2 | 65.61 115 | 91.14 100 | 83.35 148 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| APD-MVS |  | | 81.13 38 | 81.73 44 | 79.36 51 | 84.47 80 | 70.53 59 | 83.85 38 | 83.70 71 | 69.43 52 | 83.67 73 | 88.96 100 | 75.89 34 | 86.41 16 | 72.62 64 | 92.95 69 | 81.14 193 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMH | | 63.62 14 | 77.50 72 | 80.11 54 | 69.68 193 | 79.61 140 | 56.28 177 | 78.81 89 | 83.62 72 | 63.41 106 | 87.14 29 | 90.23 72 | 76.11 32 | 73.32 236 | 67.58 95 | 94.44 39 | 79.44 229 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MP-MVS |  | | 83.19 18 | 83.54 23 | 82.14 19 | 90.54 4 | 79.00 8 | 86.42 22 | 83.59 73 | 71.31 39 | 81.26 102 | 90.96 39 | 74.57 47 | 84.69 67 | 78.41 21 | 94.78 27 | 82.74 167 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CDPH-MVS | | | 77.33 73 | 77.06 80 | 78.14 69 | 84.21 84 | 63.98 115 | 76.07 127 | 83.45 74 | 54.20 193 | 77.68 143 | 87.18 126 | 69.98 80 | 85.37 51 | 68.01 91 | 92.72 74 | 85.08 92 |
|
| CLD-MVS | | | 72.88 133 | 72.36 144 | 74.43 110 | 77.03 179 | 54.30 190 | 68.77 222 | 83.43 75 | 52.12 216 | 76.79 158 | 74.44 306 | 69.54 85 | 83.91 75 | 55.88 197 | 93.25 66 | 85.09 91 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| canonicalmvs | | | 72.29 144 | 73.38 122 | 69.04 203 | 74.23 223 | 47.37 252 | 73.93 156 | 83.18 76 | 54.36 188 | 76.61 162 | 81.64 227 | 72.03 61 | 75.34 213 | 57.12 185 | 87.28 179 | 84.40 118 |
|
| PHI-MVS | | | 74.92 99 | 74.36 106 | 76.61 84 | 76.40 191 | 62.32 126 | 80.38 70 | 83.15 77 | 54.16 195 | 73.23 214 | 80.75 235 | 62.19 152 | 83.86 76 | 68.02 90 | 90.92 109 | 83.65 136 |
|
| MCST-MVS | | | 73.42 115 | 73.34 124 | 73.63 124 | 81.28 127 | 59.17 159 | 74.80 142 | 83.13 78 | 45.50 279 | 72.84 218 | 83.78 194 | 65.15 128 | 80.99 126 | 64.54 121 | 89.09 153 | 80.73 207 |
|
| F-COLMAP | | | 75.29 91 | 73.99 111 | 79.18 52 | 81.73 121 | 71.90 46 | 81.86 58 | 82.98 79 | 59.86 131 | 72.27 226 | 84.00 190 | 64.56 133 | 83.07 92 | 51.48 232 | 87.19 183 | 82.56 172 |
|
| DP-MVS Recon | | | 73.57 113 | 72.69 137 | 76.23 91 | 82.85 106 | 63.39 118 | 74.32 150 | 82.96 80 | 57.75 148 | 70.35 250 | 81.98 221 | 64.34 135 | 84.41 73 | 49.69 246 | 89.95 130 | 80.89 201 |
|
| v10 | | | 75.69 86 | 76.20 87 | 74.16 114 | 74.44 222 | 48.69 232 | 75.84 132 | 82.93 81 | 59.02 138 | 85.92 41 | 89.17 93 | 58.56 191 | 82.74 96 | 70.73 73 | 89.14 150 | 91.05 15 |
|
| mPP-MVS | | | 84.01 10 | 84.39 11 | 82.88 6 | 90.65 3 | 81.38 3 | 87.08 12 | 82.79 82 | 72.41 34 | 85.11 55 | 90.85 44 | 76.65 28 | 84.89 63 | 79.30 16 | 94.63 33 | 82.35 175 |
|
| Effi-MVS+ | | | 72.10 145 | 72.28 145 | 71.58 165 | 74.21 225 | 50.33 215 | 74.72 145 | 82.73 83 | 62.62 111 | 70.77 246 | 76.83 287 | 69.96 81 | 80.97 128 | 60.20 161 | 78.43 287 | 83.45 144 |
|
| test11 | | | | | | | | | 82.71 84 | | | | | | | | |
|
| CS-MVS | | | 76.51 79 | 76.00 89 | 78.06 71 | 77.02 180 | 64.77 109 | 80.78 64 | 82.66 85 | 60.39 126 | 74.15 199 | 83.30 204 | 69.65 84 | 82.07 107 | 69.27 82 | 86.75 190 | 87.36 55 |
|
| PEN-MVS | | | 80.46 46 | 82.91 34 | 73.11 133 | 89.83 8 | 39.02 318 | 77.06 113 | 82.61 86 | 80.04 4 | 90.60 6 | 92.85 9 | 74.93 44 | 85.21 57 | 63.15 139 | 95.15 17 | 95.09 2 |
|
| nrg030 | | | 74.87 103 | 75.99 90 | 71.52 167 | 74.90 211 | 49.88 226 | 74.10 154 | 82.58 87 | 54.55 187 | 83.50 75 | 89.21 90 | 71.51 65 | 75.74 209 | 61.24 150 | 92.34 79 | 88.94 37 |
|
| v7n | | | 79.37 56 | 80.41 52 | 76.28 90 | 78.67 161 | 55.81 181 | 79.22 86 | 82.51 88 | 70.72 44 | 87.54 21 | 92.44 14 | 68.00 98 | 81.34 116 | 72.84 61 | 91.72 84 | 91.69 10 |
|
| WR-MVS_H | | | 80.22 50 | 82.17 41 | 74.39 111 | 89.46 14 | 42.69 292 | 78.24 97 | 82.24 89 | 78.21 9 | 89.57 9 | 92.10 18 | 68.05 96 | 85.59 48 | 66.04 111 | 95.62 9 | 94.88 5 |
|
| DELS-MVS | | | 68.83 182 | 68.31 189 | 70.38 178 | 70.55 270 | 48.31 235 | 63.78 286 | 82.13 90 | 54.00 198 | 68.96 268 | 75.17 299 | 58.95 188 | 80.06 146 | 58.55 177 | 82.74 240 | 82.76 165 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| mvsmamba | | | 77.20 74 | 76.37 84 | 79.69 45 | 80.34 135 | 61.52 132 | 80.58 66 | 82.12 91 | 53.54 205 | 83.93 70 | 91.03 37 | 49.49 249 | 85.97 33 | 73.26 57 | 93.08 67 | 91.59 12 |
|
| OurMVSNet-221017-0 | | | 78.57 62 | 78.53 67 | 78.67 61 | 80.48 133 | 64.16 113 | 80.24 74 | 82.06 92 | 61.89 116 | 88.77 12 | 93.32 4 | 57.15 207 | 82.60 98 | 70.08 77 | 92.80 71 | 89.25 28 |
|
| CPTT-MVS | | | 81.51 34 | 81.76 43 | 80.76 34 | 89.20 22 | 78.75 9 | 86.48 21 | 82.03 93 | 68.80 53 | 80.92 107 | 88.52 110 | 72.00 63 | 82.39 100 | 74.80 44 | 93.04 68 | 81.14 193 |
|
| CSCG | | | 74.12 107 | 74.39 104 | 73.33 128 | 79.35 144 | 61.66 131 | 77.45 106 | 81.98 94 | 62.47 114 | 79.06 125 | 80.19 244 | 61.83 154 | 78.79 164 | 59.83 168 | 87.35 176 | 79.54 228 |
|
| PVSNet_Blended_VisFu | | | 70.04 164 | 68.88 181 | 73.53 126 | 82.71 108 | 63.62 117 | 74.81 140 | 81.95 95 | 48.53 258 | 67.16 290 | 79.18 262 | 51.42 239 | 78.38 174 | 54.39 214 | 79.72 276 | 78.60 238 |
|
| test_fmvsmvis_n_1920 | | | 72.36 142 | 72.49 140 | 71.96 162 | 71.29 260 | 64.06 114 | 72.79 162 | 81.82 96 | 40.23 324 | 81.25 103 | 81.04 231 | 70.62 75 | 68.69 280 | 69.74 80 | 83.60 234 | 83.14 154 |
|
| DTE-MVSNet | | | 80.35 48 | 82.89 35 | 72.74 148 | 89.84 7 | 37.34 335 | 77.16 110 | 81.81 97 | 80.45 3 | 90.92 3 | 92.95 7 | 74.57 47 | 86.12 29 | 63.65 132 | 94.68 31 | 94.76 6 |
|
| v1192 | | | 73.40 116 | 73.42 120 | 73.32 129 | 74.65 219 | 48.67 233 | 72.21 166 | 81.73 98 | 52.76 211 | 81.85 92 | 84.56 182 | 57.12 208 | 82.24 105 | 68.58 84 | 87.33 177 | 89.06 33 |
|
| 原ACMM1 | | | | | 73.90 118 | 85.90 57 | 65.15 106 | | 81.67 99 | 50.97 234 | 74.25 198 | 86.16 161 | 61.60 157 | 83.54 82 | 56.75 187 | 91.08 104 | 73.00 287 |
|
| test12 | | | | | 76.51 86 | 82.28 114 | 60.94 142 | | 81.64 100 | | 73.60 207 | | 64.88 130 | 85.19 59 | | 90.42 121 | 83.38 146 |
|
| CNVR-MVS | | | 78.49 64 | 78.59 66 | 78.16 68 | 85.86 60 | 67.40 84 | 78.12 100 | 81.50 101 | 63.92 96 | 77.51 144 | 86.56 149 | 68.43 93 | 84.82 65 | 73.83 53 | 91.61 88 | 82.26 179 |
|
| PCF-MVS | | 63.80 13 | 72.70 137 | 71.69 151 | 75.72 96 | 78.10 165 | 60.01 153 | 73.04 160 | 81.50 101 | 45.34 283 | 79.66 119 | 84.35 186 | 65.15 128 | 82.65 97 | 48.70 256 | 89.38 146 | 84.50 117 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| v8 | | | 75.07 96 | 75.64 94 | 73.35 127 | 73.42 235 | 47.46 251 | 75.20 135 | 81.45 103 | 60.05 128 | 85.64 45 | 89.26 88 | 58.08 198 | 81.80 111 | 69.71 81 | 87.97 167 | 90.79 19 |
|
| PAPM_NR | | | 73.91 108 | 74.16 109 | 73.16 131 | 81.90 119 | 53.50 196 | 81.28 60 | 81.40 104 | 66.17 70 | 73.30 213 | 83.31 203 | 59.96 177 | 83.10 91 | 58.45 178 | 81.66 255 | 82.87 162 |
|
| TSAR-MVS + MP. | | | 79.05 57 | 78.81 62 | 79.74 42 | 88.94 27 | 67.52 83 | 86.61 19 | 81.38 105 | 51.71 222 | 77.15 147 | 91.42 32 | 65.49 124 | 87.20 6 | 79.44 13 | 87.17 184 | 84.51 116 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| EIA-MVS | | | 68.59 188 | 67.16 207 | 72.90 143 | 75.18 207 | 55.64 183 | 69.39 210 | 81.29 106 | 52.44 213 | 64.53 303 | 70.69 333 | 60.33 174 | 82.30 103 | 54.27 216 | 76.31 298 | 80.75 206 |
|
| PS-CasMVS | | | 80.41 47 | 82.86 36 | 73.07 135 | 89.93 6 | 39.21 315 | 77.15 111 | 81.28 107 | 79.74 5 | 90.87 4 | 92.73 11 | 75.03 43 | 84.93 62 | 63.83 131 | 95.19 15 | 95.07 3 |
|
| PLC |  | 62.01 16 | 71.79 148 | 70.28 168 | 76.33 89 | 80.31 136 | 68.63 75 | 78.18 99 | 81.24 108 | 54.57 186 | 67.09 291 | 80.63 237 | 59.44 182 | 81.74 113 | 46.91 274 | 84.17 225 | 78.63 237 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| DPM-MVS | | | 69.98 166 | 69.22 177 | 72.26 160 | 82.69 109 | 58.82 164 | 70.53 197 | 81.23 109 | 47.79 265 | 64.16 307 | 80.21 242 | 51.32 240 | 83.12 90 | 60.14 164 | 84.95 215 | 74.83 274 |
|
| MVS_Test | | | 69.84 168 | 70.71 165 | 67.24 228 | 67.49 304 | 43.25 288 | 69.87 205 | 81.22 110 | 52.69 212 | 71.57 237 | 86.68 142 | 62.09 153 | 74.51 224 | 66.05 110 | 78.74 283 | 83.96 127 |
|
| v1240 | | | 73.06 125 | 73.14 127 | 72.84 145 | 74.74 215 | 47.27 254 | 71.88 178 | 81.11 111 | 51.80 221 | 82.28 89 | 84.21 187 | 56.22 216 | 82.34 102 | 68.82 83 | 87.17 184 | 88.91 38 |
|
| PAPR | | | 69.20 178 | 68.66 187 | 70.82 172 | 75.15 208 | 47.77 246 | 75.31 134 | 81.11 111 | 49.62 250 | 66.33 293 | 79.27 259 | 61.53 158 | 82.96 93 | 48.12 264 | 81.50 257 | 81.74 187 |
|
| ZD-MVS | | | | | | 83.91 87 | 69.36 69 | | 81.09 113 | 58.91 140 | 82.73 86 | 89.11 95 | 75.77 35 | 86.63 12 | 72.73 62 | 92.93 70 | |
|
| v1144 | | | 73.29 119 | 73.39 121 | 73.01 136 | 74.12 227 | 48.11 239 | 72.01 171 | 81.08 114 | 53.83 202 | 81.77 94 | 84.68 180 | 58.07 199 | 81.91 109 | 68.10 88 | 86.86 186 | 88.99 36 |
|
| UniMVSNet (Re) | | | 75.00 98 | 75.48 96 | 73.56 125 | 83.14 96 | 47.92 243 | 70.41 200 | 81.04 115 | 63.67 100 | 79.54 120 | 86.37 154 | 62.83 143 | 81.82 110 | 57.10 186 | 95.25 14 | 90.94 17 |
|
| NCCC | | | 78.25 67 | 78.04 71 | 78.89 59 | 85.61 62 | 69.45 66 | 79.80 81 | 80.99 116 | 65.77 72 | 75.55 177 | 86.25 158 | 67.42 101 | 85.42 50 | 70.10 76 | 90.88 112 | 81.81 185 |
|
| AdaColmap |  | | 74.22 106 | 74.56 102 | 73.20 130 | 81.95 118 | 60.97 141 | 79.43 82 | 80.90 117 | 65.57 74 | 72.54 223 | 81.76 225 | 70.98 73 | 85.26 54 | 47.88 267 | 90.00 128 | 73.37 284 |
|
| MSC_two_6792asdad | | | | | 79.02 55 | 83.14 96 | 67.03 87 | | 80.75 118 | | | | | 86.24 22 | 77.27 33 | 94.85 25 | 83.78 132 |
|
| No_MVS | | | | | 79.02 55 | 83.14 96 | 67.03 87 | | 80.75 118 | | | | | 86.24 22 | 77.27 33 | 94.85 25 | 83.78 132 |
|
| v1921920 | | | 72.96 131 | 72.98 132 | 72.89 144 | 74.67 216 | 47.58 249 | 71.92 176 | 80.69 120 | 51.70 223 | 81.69 98 | 83.89 192 | 56.58 214 | 82.25 104 | 68.34 86 | 87.36 175 | 88.82 40 |
|
| testf1 | | | 75.66 87 | 76.57 81 | 72.95 139 | 67.07 308 | 67.62 81 | 76.10 125 | 80.68 121 | 64.95 87 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 259 | 60.46 159 | 91.13 101 | 79.56 225 |
|
| APD_test2 | | | 75.66 87 | 76.57 81 | 72.95 139 | 67.07 308 | 67.62 81 | 76.10 125 | 80.68 121 | 64.95 87 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 259 | 60.46 159 | 91.13 101 | 79.56 225 |
|
| MTGPA |  | | | | | | | | 80.63 123 | | | | | | | | |
|
| MTAPA | | | 83.19 18 | 83.87 18 | 81.13 30 | 91.16 2 | 78.16 11 | 84.87 30 | 80.63 123 | 72.08 36 | 84.93 56 | 90.79 45 | 74.65 46 | 84.42 72 | 80.98 4 | 94.75 28 | 80.82 203 |
|
| DVP-MVS |  | | 81.15 37 | 83.12 32 | 75.24 103 | 86.16 51 | 60.78 146 | 83.77 40 | 80.58 125 | 72.48 32 | 85.83 43 | 90.41 59 | 78.57 17 | 85.69 45 | 75.86 39 | 94.39 41 | 79.24 231 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| ITE_SJBPF | | | | | 80.35 38 | 76.94 183 | 73.60 38 | | 80.48 126 | 66.87 64 | 83.64 74 | 86.18 159 | 70.25 78 | 79.90 147 | 61.12 154 | 88.95 155 | 87.56 53 |
|
| CP-MVSNet | | | 79.48 54 | 81.65 45 | 72.98 138 | 89.66 12 | 39.06 317 | 76.76 114 | 80.46 127 | 78.91 7 | 90.32 7 | 91.70 25 | 68.49 91 | 84.89 63 | 63.40 136 | 95.12 18 | 95.01 4 |
|
| v144192 | | | 72.99 129 | 73.06 130 | 72.77 146 | 74.58 220 | 47.48 250 | 71.90 177 | 80.44 128 | 51.57 224 | 81.46 100 | 84.11 189 | 58.04 200 | 82.12 106 | 67.98 92 | 87.47 173 | 88.70 43 |
|
| IU-MVS | | | | | | 86.12 53 | 60.90 143 | | 80.38 129 | 45.49 281 | 81.31 101 | | | | 75.64 41 | 94.39 41 | 84.65 103 |
|
| CANet | | | 73.00 128 | 71.84 149 | 76.48 87 | 75.82 201 | 61.28 135 | 74.81 140 | 80.37 130 | 63.17 108 | 62.43 321 | 80.50 239 | 61.10 167 | 85.16 60 | 64.00 127 | 84.34 224 | 83.01 159 |
|
| V42 | | | 71.06 153 | 70.83 164 | 71.72 164 | 67.25 305 | 47.14 255 | 65.94 259 | 80.35 131 | 51.35 229 | 83.40 76 | 83.23 207 | 59.25 185 | 78.80 163 | 65.91 112 | 80.81 263 | 89.23 29 |
|
| RRT_MVS | | | 78.18 68 | 77.69 73 | 79.66 46 | 83.14 96 | 61.34 134 | 83.29 48 | 80.34 132 | 57.43 154 | 86.65 31 | 91.79 23 | 50.52 243 | 86.01 31 | 71.36 70 | 94.65 32 | 91.62 11 |
|
| Anonymous20231211 | | | 75.54 89 | 77.19 78 | 70.59 175 | 77.67 174 | 45.70 269 | 74.73 144 | 80.19 133 | 68.80 53 | 82.95 81 | 92.91 8 | 66.26 116 | 76.76 201 | 58.41 179 | 92.77 72 | 89.30 27 |
|
| HPM-MVS++ |  | | 79.89 51 | 79.80 57 | 80.18 39 | 89.02 25 | 78.44 10 | 83.49 45 | 80.18 134 | 64.71 91 | 78.11 136 | 88.39 113 | 65.46 125 | 83.14 89 | 77.64 29 | 91.20 97 | 78.94 235 |
|
| DU-MVS | | | 74.91 100 | 75.57 95 | 72.93 142 | 83.50 91 | 45.79 266 | 69.47 209 | 80.14 135 | 65.22 82 | 81.74 96 | 87.08 128 | 61.82 155 | 81.07 124 | 56.21 194 | 94.98 20 | 91.93 8 |
|
| 114514_t | | | 73.40 116 | 73.33 125 | 73.64 123 | 84.15 86 | 57.11 173 | 78.20 98 | 80.02 136 | 43.76 295 | 72.55 222 | 86.07 166 | 64.00 136 | 83.35 87 | 60.14 164 | 91.03 105 | 80.45 214 |
|
| UA-Net | | | 81.56 33 | 82.28 40 | 79.40 50 | 88.91 28 | 69.16 72 | 84.67 33 | 80.01 137 | 75.34 15 | 79.80 118 | 94.91 2 | 69.79 83 | 80.25 141 | 72.63 63 | 94.46 36 | 88.78 42 |
|
| test_fmvsmconf0.01_n | | | 73.91 108 | 73.64 118 | 74.71 104 | 69.79 280 | 66.25 93 | 75.90 130 | 79.90 138 | 46.03 276 | 76.48 167 | 85.02 178 | 67.96 99 | 73.97 231 | 74.47 49 | 87.22 181 | 83.90 129 |
|
| FIs | | | 72.56 139 | 73.80 114 | 68.84 211 | 78.74 160 | 37.74 331 | 71.02 191 | 79.83 139 | 56.12 166 | 80.88 110 | 89.45 85 | 58.18 193 | 78.28 178 | 56.63 188 | 93.36 64 | 90.51 21 |
|
| APD_test1 | | | 75.04 97 | 75.38 98 | 74.02 117 | 69.89 275 | 70.15 62 | 76.46 117 | 79.71 140 | 65.50 75 | 82.99 80 | 88.60 109 | 66.94 105 | 72.35 249 | 59.77 169 | 88.54 158 | 79.56 225 |
|
| alignmvs | | | 70.54 160 | 71.00 162 | 69.15 202 | 73.50 233 | 48.04 242 | 69.85 206 | 79.62 141 | 53.94 201 | 76.54 165 | 82.00 220 | 59.00 187 | 74.68 222 | 57.32 184 | 87.21 182 | 84.72 102 |
|
| LCM-MVSNet-Re | | | 69.10 180 | 71.57 156 | 61.70 279 | 70.37 271 | 34.30 355 | 61.45 300 | 79.62 141 | 56.81 159 | 89.59 8 | 88.16 120 | 68.44 92 | 72.94 239 | 42.30 301 | 87.33 177 | 77.85 252 |
|
| c3_l | | | 69.82 169 | 69.89 170 | 69.61 194 | 66.24 314 | 43.48 284 | 68.12 231 | 79.61 143 | 51.43 226 | 77.72 141 | 80.18 245 | 54.61 222 | 78.15 183 | 63.62 133 | 87.50 172 | 87.20 58 |
|
| PS-MVSNAJss | | | 77.54 71 | 77.35 77 | 78.13 70 | 84.88 72 | 66.37 92 | 78.55 93 | 79.59 144 | 53.48 206 | 86.29 36 | 92.43 15 | 62.39 149 | 80.25 141 | 67.90 94 | 90.61 118 | 87.77 49 |
|
| GeoE | | | 73.14 121 | 73.77 116 | 71.26 170 | 78.09 166 | 52.64 201 | 74.32 150 | 79.56 145 | 56.32 165 | 76.35 171 | 83.36 202 | 70.76 74 | 77.96 185 | 63.32 137 | 81.84 249 | 83.18 153 |
|
| FC-MVSNet-test | | | 73.32 118 | 74.78 101 | 68.93 208 | 79.21 149 | 36.57 337 | 71.82 179 | 79.54 146 | 57.63 153 | 82.57 87 | 90.38 64 | 59.38 184 | 78.99 160 | 57.91 182 | 94.56 34 | 91.23 14 |
|
| dcpmvs_2 | | | 71.02 155 | 72.65 138 | 66.16 240 | 76.06 199 | 50.49 213 | 71.97 172 | 79.36 147 | 50.34 241 | 82.81 84 | 83.63 195 | 64.38 134 | 67.27 294 | 61.54 148 | 83.71 232 | 80.71 209 |
|
| test_fmvsmconf0.1_n | | | 73.26 120 | 72.82 135 | 74.56 106 | 69.10 286 | 66.18 95 | 74.65 148 | 79.34 148 | 45.58 278 | 75.54 178 | 83.91 191 | 67.19 103 | 73.88 234 | 73.26 57 | 86.86 186 | 83.63 137 |
|
| RPSCF | | | 75.76 85 | 74.37 105 | 79.93 40 | 74.81 213 | 77.53 16 | 77.53 105 | 79.30 149 | 59.44 133 | 78.88 126 | 89.80 80 | 71.26 69 | 73.09 238 | 57.45 183 | 80.89 260 | 89.17 31 |
|
| PMVS |  | 70.70 6 | 81.70 32 | 83.15 31 | 77.36 77 | 90.35 5 | 82.82 2 | 82.15 54 | 79.22 150 | 74.08 20 | 87.16 28 | 91.97 19 | 84.80 2 | 76.97 196 | 64.98 119 | 93.61 60 | 72.28 296 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| v2v482 | | | 72.55 141 | 72.58 139 | 72.43 156 | 72.92 248 | 46.72 258 | 71.41 184 | 79.13 151 | 55.27 174 | 81.17 104 | 85.25 176 | 55.41 218 | 81.13 121 | 67.25 105 | 85.46 202 | 89.43 26 |
|
| Vis-MVSNet |  | | 74.85 104 | 74.56 102 | 75.72 96 | 81.63 123 | 64.64 110 | 76.35 121 | 79.06 152 | 62.85 110 | 73.33 212 | 88.41 112 | 62.54 147 | 79.59 152 | 63.94 130 | 82.92 238 | 82.94 160 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PVSNet_BlendedMVS | | | 65.38 223 | 64.30 237 | 68.61 213 | 69.81 277 | 49.36 228 | 65.60 267 | 78.96 153 | 45.50 279 | 59.98 334 | 78.61 269 | 51.82 235 | 78.20 180 | 44.30 290 | 84.11 226 | 78.27 243 |
|
| PVSNet_Blended | | | 62.90 253 | 61.64 259 | 66.69 236 | 69.81 277 | 49.36 228 | 61.23 303 | 78.96 153 | 42.04 306 | 59.98 334 | 68.86 350 | 51.82 235 | 78.20 180 | 44.30 290 | 77.77 294 | 72.52 292 |
|
| miper_ehance_all_eth | | | 68.36 190 | 68.16 195 | 68.98 205 | 65.14 325 | 43.34 286 | 67.07 246 | 78.92 155 | 49.11 254 | 76.21 172 | 77.72 280 | 53.48 227 | 77.92 186 | 61.16 152 | 84.59 220 | 85.68 82 |
|
| eth_miper_zixun_eth | | | 69.42 175 | 68.73 186 | 71.50 168 | 67.99 298 | 46.42 261 | 67.58 236 | 78.81 156 | 50.72 237 | 78.13 135 | 80.34 241 | 50.15 247 | 80.34 139 | 60.18 162 | 84.65 218 | 87.74 50 |
|
| UniMVSNet_NR-MVSNet | | | 74.90 101 | 75.65 93 | 72.64 151 | 83.04 102 | 45.79 266 | 69.26 212 | 78.81 156 | 66.66 67 | 81.74 96 | 86.88 134 | 63.26 139 | 81.07 124 | 56.21 194 | 94.98 20 | 91.05 15 |
|
| test_fmvsmconf_n | | | 72.91 132 | 72.40 143 | 74.46 107 | 68.62 290 | 66.12 96 | 74.21 153 | 78.80 158 | 45.64 277 | 74.62 192 | 83.25 206 | 66.80 111 | 73.86 235 | 72.97 60 | 86.66 192 | 83.39 145 |
|
| QAPM | | | 69.18 179 | 69.26 175 | 68.94 207 | 71.61 257 | 52.58 202 | 80.37 71 | 78.79 159 | 49.63 249 | 73.51 208 | 85.14 177 | 53.66 226 | 79.12 157 | 55.11 204 | 75.54 303 | 75.11 273 |
|
| MM | | | | | 79.55 48 | | 65.47 100 | 80.94 62 | 78.74 160 | 71.22 40 | 72.40 225 | 88.70 105 | 60.51 172 | 87.70 3 | 77.40 32 | 89.13 151 | 85.48 84 |
|
| TEST9 | | | | | | 85.47 63 | 69.32 70 | 76.42 119 | 78.69 161 | 53.73 203 | 76.97 149 | 86.74 139 | 66.84 107 | 81.10 122 | | | |
|
| train_agg | | | 76.38 80 | 76.55 83 | 75.86 95 | 85.47 63 | 69.32 70 | 76.42 119 | 78.69 161 | 54.00 198 | 76.97 149 | 86.74 139 | 66.60 113 | 81.10 122 | 72.50 66 | 91.56 90 | 77.15 258 |
|
| test_8 | | | | | | 85.09 69 | 67.89 79 | 76.26 124 | 78.66 163 | 54.00 198 | 76.89 153 | 86.72 141 | 66.60 113 | 80.89 132 | | | |
|
| agg_prior | | | | | | 84.44 82 | 66.02 97 | | 78.62 164 | | 76.95 151 | | | 80.34 139 | | | |
|
| CNLPA | | | 73.44 114 | 73.03 131 | 74.66 105 | 78.27 163 | 75.29 26 | 75.99 128 | 78.49 165 | 65.39 78 | 75.67 175 | 83.22 209 | 61.23 163 | 66.77 303 | 53.70 221 | 85.33 206 | 81.92 184 |
|
| IterMVS-LS | | | 73.01 127 | 73.12 129 | 72.66 150 | 73.79 231 | 49.90 222 | 71.63 181 | 78.44 166 | 58.22 143 | 80.51 112 | 86.63 146 | 58.15 195 | 79.62 150 | 62.51 141 | 88.20 161 | 88.48 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test_fmvsm_n_1920 | | | 69.63 170 | 68.45 188 | 73.16 131 | 70.56 268 | 65.86 98 | 70.26 201 | 78.35 167 | 37.69 336 | 74.29 197 | 78.89 267 | 61.10 167 | 68.10 285 | 65.87 113 | 79.07 280 | 85.53 83 |
|
| Fast-Effi-MVS+ | | | 68.81 183 | 68.30 190 | 70.35 180 | 74.66 218 | 48.61 234 | 66.06 258 | 78.32 168 | 50.62 238 | 71.48 240 | 75.54 295 | 68.75 89 | 79.59 152 | 50.55 241 | 78.73 284 | 82.86 163 |
|
| 3Dnovator | | 65.95 11 | 71.50 150 | 71.22 160 | 72.34 158 | 73.16 239 | 63.09 121 | 78.37 95 | 78.32 168 | 57.67 150 | 72.22 228 | 84.61 181 | 54.77 219 | 78.47 169 | 60.82 157 | 81.07 259 | 75.45 268 |
|
| TranMVSNet+NR-MVSNet | | | 76.13 82 | 77.66 74 | 71.56 166 | 84.61 78 | 42.57 294 | 70.98 192 | 78.29 170 | 68.67 56 | 83.04 78 | 89.26 88 | 72.99 58 | 80.75 133 | 55.58 202 | 95.47 10 | 91.35 13 |
|
| test_vis3_rt | | | 51.94 324 | 51.04 330 | 54.65 318 | 46.32 394 | 50.13 218 | 44.34 374 | 78.17 171 | 23.62 387 | 68.95 269 | 62.81 369 | 21.41 388 | 38.52 387 | 41.49 307 | 72.22 331 | 75.30 272 |
|
| MSDG | | | 67.47 204 | 67.48 204 | 67.46 226 | 70.70 265 | 54.69 188 | 66.90 250 | 78.17 171 | 60.88 123 | 70.41 249 | 74.76 301 | 61.22 165 | 73.18 237 | 47.38 270 | 76.87 295 | 74.49 276 |
|
| Fast-Effi-MVS+-dtu | | | 70.00 165 | 68.74 185 | 73.77 120 | 73.47 234 | 64.53 111 | 71.36 185 | 78.14 173 | 55.81 171 | 68.84 274 | 74.71 303 | 65.36 126 | 75.75 208 | 52.00 229 | 79.00 281 | 81.03 196 |
|
| IS-MVSNet | | | 75.10 95 | 75.42 97 | 74.15 115 | 79.23 148 | 48.05 241 | 79.43 82 | 78.04 174 | 70.09 49 | 79.17 124 | 88.02 122 | 53.04 229 | 83.60 81 | 58.05 181 | 93.76 59 | 90.79 19 |
|
| miper_enhance_ethall | | | 65.86 220 | 65.05 236 | 68.28 219 | 61.62 343 | 42.62 293 | 64.74 275 | 77.97 175 | 42.52 304 | 73.42 211 | 72.79 321 | 49.66 248 | 77.68 190 | 58.12 180 | 84.59 220 | 84.54 112 |
|
| save fliter | | | | | | 87.00 39 | 67.23 86 | 79.24 85 | 77.94 176 | 56.65 163 | | | | | | | |
|
| ambc | | | | | 70.10 187 | 77.74 172 | 50.21 217 | 74.28 152 | 77.93 177 | | 79.26 123 | 88.29 116 | 54.11 225 | 79.77 148 | 64.43 122 | 91.10 103 | 80.30 216 |
|
| Effi-MVS+-dtu | | | 75.43 90 | 72.28 145 | 84.91 2 | 77.05 178 | 83.58 1 | 78.47 94 | 77.70 178 | 57.68 149 | 74.89 185 | 78.13 277 | 64.80 131 | 84.26 74 | 56.46 192 | 85.32 207 | 86.88 62 |
|
| tt0805 | | | 76.12 83 | 78.43 68 | 69.20 200 | 81.32 126 | 41.37 300 | 76.72 115 | 77.64 179 | 63.78 99 | 82.06 90 | 87.88 123 | 79.78 11 | 79.05 158 | 64.33 124 | 92.40 77 | 87.17 60 |
|
| BH-untuned | | | 69.39 176 | 69.46 172 | 69.18 201 | 77.96 169 | 56.88 174 | 68.47 228 | 77.53 180 | 56.77 160 | 77.79 140 | 79.63 253 | 60.30 175 | 80.20 144 | 46.04 281 | 80.65 264 | 70.47 312 |
|
| MAR-MVS | | | 67.72 200 | 66.16 217 | 72.40 157 | 74.45 221 | 64.99 107 | 74.87 138 | 77.50 181 | 48.67 257 | 65.78 297 | 68.58 353 | 57.01 211 | 77.79 188 | 46.68 277 | 81.92 246 | 74.42 277 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| OpenMVS |  | 62.51 15 | 68.76 184 | 68.75 184 | 68.78 212 | 70.56 268 | 53.91 194 | 78.29 96 | 77.35 182 | 48.85 256 | 70.22 252 | 83.52 196 | 52.65 231 | 76.93 197 | 55.31 203 | 81.99 245 | 75.49 267 |
|
| NR-MVSNet | | | 73.62 112 | 74.05 110 | 72.33 159 | 83.50 91 | 43.71 281 | 65.65 265 | 77.32 183 | 64.32 93 | 75.59 176 | 87.08 128 | 62.45 148 | 81.34 116 | 54.90 205 | 95.63 8 | 91.93 8 |
|
| EPP-MVSNet | | | 73.86 110 | 73.38 122 | 75.31 101 | 78.19 164 | 53.35 198 | 80.45 68 | 77.32 183 | 65.11 85 | 76.47 168 | 86.80 135 | 49.47 250 | 83.77 77 | 53.89 219 | 92.72 74 | 88.81 41 |
|
| Anonymous20240529 | | | 72.56 139 | 73.79 115 | 68.86 210 | 76.89 187 | 45.21 271 | 68.80 221 | 77.25 185 | 67.16 61 | 76.89 153 | 90.44 56 | 65.95 119 | 74.19 229 | 50.75 238 | 90.00 128 | 87.18 59 |
|
| diffmvs |  | | 67.42 205 | 67.50 203 | 67.20 229 | 62.26 339 | 45.21 271 | 64.87 274 | 77.04 186 | 48.21 259 | 71.74 231 | 79.70 252 | 58.40 192 | 71.17 263 | 64.99 118 | 80.27 268 | 85.22 87 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| iter_conf05 | | | 67.34 207 | 65.62 222 | 72.50 154 | 69.82 276 | 47.06 256 | 72.19 167 | 76.86 187 | 45.32 284 | 72.86 217 | 82.85 210 | 20.53 390 | 83.73 78 | 61.13 153 | 89.02 154 | 86.70 65 |
|
| API-MVS | | | 70.97 156 | 71.51 157 | 69.37 196 | 75.20 206 | 55.94 179 | 80.99 61 | 76.84 188 | 62.48 113 | 71.24 242 | 77.51 283 | 61.51 159 | 80.96 131 | 52.04 228 | 85.76 201 | 71.22 306 |
|
| ANet_high | | | 67.08 209 | 69.94 169 | 58.51 304 | 57.55 365 | 27.09 380 | 58.43 323 | 76.80 189 | 63.56 101 | 82.40 88 | 91.93 20 | 59.82 180 | 64.98 310 | 50.10 244 | 88.86 156 | 83.46 143 |
|
| PAPM | | | 61.79 263 | 60.37 272 | 66.05 241 | 76.09 196 | 41.87 297 | 69.30 211 | 76.79 190 | 40.64 322 | 53.80 364 | 79.62 254 | 44.38 277 | 82.92 94 | 29.64 372 | 73.11 325 | 73.36 285 |
|
| mvs_tets | | | 78.93 58 | 78.67 65 | 79.72 43 | 84.81 74 | 73.93 35 | 80.65 65 | 76.50 191 | 51.98 219 | 87.40 23 | 91.86 21 | 76.09 33 | 78.53 167 | 68.58 84 | 90.20 123 | 86.69 66 |
|
| cl22 | | | 67.14 208 | 66.51 214 | 69.03 204 | 63.20 335 | 43.46 285 | 66.88 251 | 76.25 192 | 49.22 252 | 74.48 194 | 77.88 279 | 45.49 270 | 77.40 193 | 60.64 158 | 84.59 220 | 86.24 69 |
|
| FA-MVS(test-final) | | | 71.27 151 | 71.06 161 | 71.92 163 | 73.96 228 | 52.32 204 | 76.45 118 | 76.12 193 | 59.07 137 | 74.04 204 | 86.18 159 | 52.18 233 | 79.43 154 | 59.75 170 | 81.76 250 | 84.03 126 |
|
| anonymousdsp | | | 78.60 61 | 77.80 72 | 81.00 31 | 78.01 168 | 74.34 33 | 80.09 77 | 76.12 193 | 50.51 240 | 89.19 10 | 90.88 42 | 71.45 67 | 77.78 189 | 73.38 56 | 90.60 119 | 90.90 18 |
|
| jajsoiax | | | 78.51 63 | 78.16 70 | 79.59 47 | 84.65 77 | 73.83 37 | 80.42 69 | 76.12 193 | 51.33 230 | 87.19 27 | 91.51 29 | 73.79 54 | 78.44 171 | 68.27 87 | 90.13 127 | 86.49 68 |
|
| Gipuma |  | | 69.55 173 | 72.83 134 | 59.70 295 | 63.63 334 | 53.97 193 | 80.08 78 | 75.93 196 | 64.24 94 | 73.49 209 | 88.93 102 | 57.89 202 | 62.46 319 | 59.75 170 | 91.55 91 | 62.67 358 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| LF4IMVS | | | 67.50 202 | 67.31 206 | 68.08 220 | 58.86 360 | 61.93 127 | 71.43 183 | 75.90 197 | 44.67 289 | 72.42 224 | 80.20 243 | 57.16 206 | 70.44 269 | 58.99 175 | 86.12 197 | 71.88 299 |
|
| MVSFormer | | | 69.93 167 | 69.03 179 | 72.63 152 | 74.93 209 | 59.19 157 | 83.98 36 | 75.72 198 | 52.27 214 | 63.53 317 | 76.74 288 | 43.19 284 | 80.56 134 | 72.28 67 | 78.67 285 | 78.14 246 |
|
| test_djsdf | | | 78.88 59 | 78.27 69 | 80.70 35 | 81.42 124 | 71.24 52 | 83.98 36 | 75.72 198 | 52.27 214 | 87.37 26 | 92.25 16 | 68.04 97 | 80.56 134 | 72.28 67 | 91.15 99 | 90.32 22 |
|
| SixPastTwentyTwo | | | 75.77 84 | 76.34 85 | 74.06 116 | 81.69 122 | 54.84 186 | 76.47 116 | 75.49 200 | 64.10 95 | 87.73 17 | 92.24 17 | 50.45 245 | 81.30 118 | 67.41 97 | 91.46 92 | 86.04 73 |
|
| KD-MVS_self_test | | | 66.38 216 | 67.51 202 | 62.97 268 | 61.76 341 | 34.39 354 | 58.11 325 | 75.30 201 | 50.84 236 | 77.12 148 | 85.42 173 | 56.84 212 | 69.44 275 | 51.07 236 | 91.16 98 | 85.08 92 |
|
| TinyColmap | | | 67.98 196 | 69.28 174 | 64.08 254 | 67.98 299 | 46.82 257 | 70.04 202 | 75.26 202 | 53.05 208 | 77.36 146 | 86.79 136 | 59.39 183 | 72.59 246 | 45.64 284 | 88.01 166 | 72.83 289 |
|
| BH-w/o | | | 64.81 230 | 64.29 238 | 66.36 238 | 76.08 198 | 54.71 187 | 65.61 266 | 75.23 203 | 50.10 245 | 71.05 245 | 71.86 327 | 54.33 223 | 79.02 159 | 38.20 329 | 76.14 299 | 65.36 345 |
|
| MG-MVS | | | 70.47 161 | 71.34 159 | 67.85 222 | 79.26 147 | 40.42 310 | 74.67 147 | 75.15 204 | 58.41 142 | 68.74 276 | 88.14 121 | 56.08 217 | 83.69 80 | 59.90 167 | 81.71 254 | 79.43 230 |
|
| MVS_0304 | | | 76.32 81 | 75.96 91 | 77.42 76 | 79.33 145 | 60.86 145 | 80.18 76 | 74.88 205 | 66.93 62 | 69.11 264 | 88.95 101 | 57.84 203 | 86.12 29 | 76.63 37 | 89.77 136 | 85.28 86 |
|
| cl____ | | | 68.26 195 | 68.26 191 | 68.29 217 | 64.98 326 | 43.67 282 | 65.89 260 | 74.67 206 | 50.04 246 | 76.86 155 | 82.42 217 | 48.74 257 | 75.38 211 | 60.92 156 | 89.81 133 | 85.80 80 |
|
| DIV-MVS_self_test | | | 68.27 194 | 68.26 191 | 68.29 217 | 64.98 326 | 43.67 282 | 65.89 260 | 74.67 206 | 50.04 246 | 76.86 155 | 82.43 216 | 48.74 257 | 75.38 211 | 60.94 155 | 89.81 133 | 85.81 76 |
|
| test_0402 | | | 78.17 69 | 79.48 59 | 74.24 113 | 83.50 91 | 59.15 160 | 72.52 163 | 74.60 208 | 75.34 15 | 88.69 13 | 91.81 22 | 75.06 42 | 82.37 101 | 65.10 117 | 88.68 157 | 81.20 191 |
|
| CANet_DTU | | | 64.04 242 | 63.83 242 | 64.66 249 | 68.39 291 | 42.97 290 | 73.45 157 | 74.50 209 | 52.05 218 | 54.78 359 | 75.44 298 | 43.99 279 | 70.42 270 | 53.49 223 | 78.41 288 | 80.59 212 |
|
| USDC | | | 62.80 254 | 63.10 251 | 61.89 277 | 65.19 322 | 43.30 287 | 67.42 239 | 74.20 210 | 35.80 346 | 72.25 227 | 84.48 184 | 45.67 268 | 71.95 255 | 37.95 331 | 84.97 211 | 70.42 314 |
|
| MVS | | | 60.62 273 | 59.97 274 | 62.58 272 | 68.13 297 | 47.28 253 | 68.59 224 | 73.96 211 | 32.19 361 | 59.94 336 | 68.86 350 | 50.48 244 | 77.64 191 | 41.85 305 | 75.74 300 | 62.83 356 |
|
| EG-PatchMatch MVS | | | 70.70 158 | 70.88 163 | 70.16 185 | 82.64 110 | 58.80 165 | 71.48 182 | 73.64 212 | 54.98 177 | 76.55 164 | 81.77 224 | 61.10 167 | 78.94 161 | 54.87 206 | 80.84 262 | 72.74 291 |
|
| iter_conf_final | | | 68.69 186 | 67.00 211 | 73.76 121 | 73.68 232 | 52.33 203 | 75.96 129 | 73.54 213 | 50.56 239 | 69.90 257 | 82.85 210 | 24.76 383 | 83.73 78 | 65.40 116 | 86.33 195 | 85.22 87 |
|
| BH-RMVSNet | | | 68.69 186 | 68.20 194 | 70.14 186 | 76.40 191 | 53.90 195 | 64.62 277 | 73.48 214 | 58.01 145 | 73.91 206 | 81.78 223 | 59.09 186 | 78.22 179 | 48.59 257 | 77.96 292 | 78.31 242 |
|
| FE-MVS | | | 68.29 193 | 66.96 212 | 72.26 160 | 74.16 226 | 54.24 191 | 77.55 104 | 73.42 215 | 57.65 152 | 72.66 220 | 84.91 179 | 32.02 347 | 81.49 115 | 48.43 260 | 81.85 248 | 81.04 195 |
|
| GBi-Net | | | 68.30 191 | 68.79 182 | 66.81 233 | 73.14 240 | 40.68 306 | 71.96 173 | 73.03 216 | 54.81 178 | 74.72 188 | 90.36 67 | 48.63 259 | 75.20 215 | 47.12 271 | 85.37 203 | 84.54 112 |
|
| test1 | | | 68.30 191 | 68.79 182 | 66.81 233 | 73.14 240 | 40.68 306 | 71.96 173 | 73.03 216 | 54.81 178 | 74.72 188 | 90.36 67 | 48.63 259 | 75.20 215 | 47.12 271 | 85.37 203 | 84.54 112 |
|
| FMVSNet1 | | | 71.06 153 | 72.48 141 | 66.81 233 | 77.65 175 | 40.68 306 | 71.96 173 | 73.03 216 | 61.14 120 | 79.45 122 | 90.36 67 | 60.44 173 | 75.20 215 | 50.20 243 | 88.05 164 | 84.54 112 |
|
| test_yl | | | 65.11 225 | 65.09 233 | 65.18 246 | 70.59 266 | 40.86 304 | 63.22 293 | 72.79 219 | 57.91 146 | 68.88 272 | 79.07 265 | 42.85 287 | 74.89 219 | 45.50 286 | 84.97 211 | 79.81 221 |
|
| DCV-MVSNet | | | 65.11 225 | 65.09 233 | 65.18 246 | 70.59 266 | 40.86 304 | 63.22 293 | 72.79 219 | 57.91 146 | 68.88 272 | 79.07 265 | 42.85 287 | 74.89 219 | 45.50 286 | 84.97 211 | 79.81 221 |
|
| MVS_111021_HR | | | 72.98 130 | 72.97 133 | 72.99 137 | 80.82 130 | 65.47 100 | 68.81 219 | 72.77 221 | 57.67 150 | 75.76 174 | 82.38 218 | 71.01 72 | 77.17 194 | 61.38 149 | 86.15 196 | 76.32 262 |
|
| v148 | | | 69.38 177 | 69.39 173 | 69.36 197 | 69.14 285 | 44.56 275 | 68.83 218 | 72.70 222 | 54.79 181 | 78.59 128 | 84.12 188 | 54.69 220 | 76.74 202 | 59.40 173 | 82.20 243 | 86.79 63 |
|
| 1314 | | | 59.83 279 | 58.86 282 | 62.74 271 | 65.71 319 | 44.78 274 | 68.59 224 | 72.63 223 | 33.54 359 | 61.05 329 | 67.29 359 | 43.62 282 | 71.26 262 | 49.49 249 | 67.84 357 | 72.19 297 |
|
| pmmvs6 | | | 71.82 147 | 73.66 117 | 66.31 239 | 75.94 200 | 42.01 296 | 66.99 247 | 72.53 224 | 63.45 104 | 76.43 169 | 92.78 10 | 72.95 59 | 69.69 274 | 51.41 233 | 90.46 120 | 87.22 56 |
|
| UGNet | | | 70.20 163 | 69.05 178 | 73.65 122 | 76.24 193 | 63.64 116 | 75.87 131 | 72.53 224 | 61.48 118 | 60.93 331 | 86.14 162 | 52.37 232 | 77.12 195 | 50.67 239 | 85.21 208 | 80.17 219 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PS-MVSNAJ | | | 64.27 240 | 63.73 244 | 65.90 243 | 77.82 171 | 51.42 207 | 63.33 290 | 72.33 226 | 45.09 287 | 61.60 323 | 68.04 354 | 62.39 149 | 73.95 232 | 49.07 252 | 73.87 321 | 72.34 294 |
|
| xiu_mvs_v2_base | | | 64.43 237 | 63.96 241 | 65.85 244 | 77.72 173 | 51.32 208 | 63.63 287 | 72.31 227 | 45.06 288 | 61.70 322 | 69.66 342 | 62.56 145 | 73.93 233 | 49.06 253 | 73.91 320 | 72.31 295 |
|
| HyFIR lowres test | | | 63.01 251 | 60.47 271 | 70.61 174 | 83.04 102 | 54.10 192 | 59.93 313 | 72.24 228 | 33.67 357 | 69.00 266 | 75.63 294 | 38.69 313 | 76.93 197 | 36.60 340 | 75.45 305 | 80.81 205 |
|
| UniMVSNet_ETH3D | | | 76.74 78 | 79.02 61 | 69.92 191 | 89.27 19 | 43.81 280 | 74.47 149 | 71.70 229 | 72.33 35 | 85.50 50 | 93.65 3 | 77.98 21 | 76.88 199 | 54.60 210 | 91.64 86 | 89.08 32 |
|
| cascas | | | 64.59 233 | 62.77 254 | 70.05 188 | 75.27 205 | 50.02 219 | 61.79 299 | 71.61 230 | 42.46 305 | 63.68 314 | 68.89 349 | 49.33 252 | 80.35 138 | 47.82 268 | 84.05 227 | 79.78 223 |
|
| MVP-Stereo | | | 61.56 265 | 59.22 278 | 68.58 214 | 79.28 146 | 60.44 150 | 69.20 213 | 71.57 231 | 43.58 298 | 56.42 352 | 78.37 272 | 39.57 308 | 76.46 204 | 34.86 352 | 60.16 375 | 68.86 327 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EI-MVSNet-Vis-set | | | 72.78 135 | 71.87 148 | 75.54 99 | 74.77 214 | 59.02 163 | 72.24 165 | 71.56 232 | 63.92 96 | 78.59 128 | 71.59 328 | 66.22 117 | 78.60 166 | 67.58 95 | 80.32 267 | 89.00 35 |
|
| EI-MVSNet-UG-set | | | 72.63 138 | 71.68 152 | 75.47 100 | 74.67 216 | 58.64 168 | 72.02 170 | 71.50 233 | 63.53 102 | 78.58 130 | 71.39 331 | 65.98 118 | 78.53 167 | 67.30 104 | 80.18 269 | 89.23 29 |
|
| VPA-MVSNet | | | 68.71 185 | 70.37 167 | 63.72 258 | 76.13 195 | 38.06 329 | 64.10 282 | 71.48 234 | 56.60 164 | 74.10 201 | 88.31 115 | 64.78 132 | 69.72 273 | 47.69 269 | 90.15 125 | 83.37 147 |
|
| hse-mvs2 | | | 72.32 143 | 70.66 166 | 77.31 79 | 83.10 101 | 71.77 47 | 69.19 214 | 71.45 235 | 54.28 189 | 77.89 137 | 78.26 273 | 49.04 253 | 79.23 155 | 63.62 133 | 89.13 151 | 80.92 200 |
|
| AUN-MVS | | | 70.22 162 | 67.88 198 | 77.22 80 | 82.96 105 | 71.61 48 | 69.08 215 | 71.39 236 | 49.17 253 | 71.70 232 | 78.07 278 | 37.62 321 | 79.21 156 | 61.81 144 | 89.15 149 | 80.82 203 |
|
| SDMVSNet | | | 66.36 217 | 67.85 199 | 61.88 278 | 73.04 246 | 46.14 265 | 58.54 321 | 71.36 237 | 51.42 227 | 68.93 270 | 82.72 213 | 65.62 122 | 62.22 322 | 54.41 213 | 84.67 216 | 77.28 255 |
|
| EI-MVSNet | | | 69.61 172 | 69.01 180 | 71.41 169 | 73.94 229 | 49.90 222 | 71.31 187 | 71.32 238 | 58.22 143 | 75.40 181 | 70.44 334 | 58.16 194 | 75.85 205 | 62.51 141 | 79.81 273 | 88.48 44 |
|
| MVSTER | | | 63.29 248 | 61.60 261 | 68.36 215 | 59.77 356 | 46.21 264 | 60.62 308 | 71.32 238 | 41.83 307 | 75.40 181 | 79.12 263 | 30.25 362 | 75.85 205 | 56.30 193 | 79.81 273 | 83.03 158 |
|
| TransMVSNet (Re) | | | 69.62 171 | 71.63 153 | 63.57 260 | 76.51 190 | 35.93 343 | 65.75 264 | 71.29 240 | 61.05 121 | 75.02 183 | 89.90 79 | 65.88 121 | 70.41 271 | 49.79 245 | 89.48 141 | 84.38 119 |
|
| xiu_mvs_v1_base_debu | | | 67.87 197 | 67.07 208 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 240 | 71.25 241 | 47.98 261 | 67.70 283 | 74.19 311 | 61.31 160 | 72.62 243 | 56.51 189 | 78.26 289 | 76.27 263 |
|
| xiu_mvs_v1_base | | | 67.87 197 | 67.07 208 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 240 | 71.25 241 | 47.98 261 | 67.70 283 | 74.19 311 | 61.31 160 | 72.62 243 | 56.51 189 | 78.26 289 | 76.27 263 |
|
| xiu_mvs_v1_base_debi | | | 67.87 197 | 67.07 208 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 240 | 71.25 241 | 47.98 261 | 67.70 283 | 74.19 311 | 61.31 160 | 72.62 243 | 56.51 189 | 78.26 289 | 76.27 263 |
|
| FMVSNet2 | | | 67.48 203 | 68.21 193 | 65.29 245 | 73.14 240 | 38.94 319 | 68.81 219 | 71.21 244 | 54.81 178 | 76.73 159 | 86.48 151 | 48.63 259 | 74.60 223 | 47.98 266 | 86.11 198 | 82.35 175 |
|
| h-mvs33 | | | 73.08 123 | 71.61 154 | 77.48 74 | 83.89 89 | 72.89 44 | 70.47 198 | 71.12 245 | 54.28 189 | 77.89 137 | 83.41 197 | 49.04 253 | 80.98 127 | 63.62 133 | 90.77 116 | 78.58 239 |
|
| miper_lstm_enhance | | | 61.97 260 | 61.63 260 | 62.98 267 | 60.04 350 | 45.74 268 | 47.53 365 | 70.95 246 | 44.04 291 | 73.06 215 | 78.84 268 | 39.72 306 | 60.33 326 | 55.82 198 | 84.64 219 | 82.88 161 |
|
| 无先验 | | | | | | | | 74.82 139 | 70.94 247 | 47.75 266 | | | | 76.85 200 | 54.47 211 | | 72.09 298 |
|
| Baseline_NR-MVSNet | | | 70.62 159 | 73.19 126 | 62.92 270 | 76.97 182 | 34.44 353 | 68.84 217 | 70.88 248 | 60.25 127 | 79.50 121 | 90.53 53 | 61.82 155 | 69.11 278 | 54.67 209 | 95.27 13 | 85.22 87 |
|
| VDD-MVS | | | 70.81 157 | 71.44 158 | 68.91 209 | 79.07 155 | 46.51 260 | 67.82 234 | 70.83 249 | 61.23 119 | 74.07 202 | 88.69 106 | 59.86 179 | 75.62 210 | 51.11 235 | 90.28 122 | 84.61 107 |
|
| pm-mvs1 | | | 68.40 189 | 69.85 171 | 64.04 256 | 73.10 243 | 39.94 312 | 64.61 278 | 70.50 250 | 55.52 173 | 73.97 205 | 89.33 86 | 63.91 137 | 68.38 283 | 49.68 247 | 88.02 165 | 83.81 131 |
|
| FMVSNet3 | | | 65.00 228 | 65.16 229 | 64.52 251 | 69.47 282 | 37.56 334 | 66.63 253 | 70.38 251 | 51.55 225 | 74.72 188 | 83.27 205 | 37.89 319 | 74.44 225 | 47.12 271 | 85.37 203 | 81.57 189 |
|
| TR-MVS | | | 64.59 233 | 63.54 246 | 67.73 225 | 75.75 203 | 50.83 211 | 63.39 289 | 70.29 252 | 49.33 251 | 71.55 238 | 74.55 304 | 50.94 241 | 78.46 170 | 40.43 314 | 75.69 301 | 73.89 281 |
|
| cdsmvs_eth3d_5k | | | 17.71 362 | 23.62 364 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 70.17 253 | 0.00 400 | 0.00 401 | 74.25 309 | 68.16 95 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| mvs_anonymous | | | 65.08 227 | 65.49 224 | 63.83 257 | 63.79 332 | 37.60 333 | 66.52 255 | 69.82 254 | 43.44 299 | 73.46 210 | 86.08 165 | 58.79 190 | 71.75 258 | 51.90 230 | 75.63 302 | 82.15 180 |
|
| D2MVS | | | 62.58 257 | 61.05 266 | 67.20 229 | 63.85 331 | 47.92 243 | 56.29 333 | 69.58 255 | 39.32 327 | 70.07 255 | 78.19 275 | 34.93 330 | 72.68 241 | 53.44 224 | 83.74 230 | 81.00 198 |
|
| TSAR-MVS + GP. | | | 73.08 123 | 71.60 155 | 77.54 73 | 78.99 157 | 70.73 57 | 74.96 137 | 69.38 256 | 60.73 124 | 74.39 196 | 78.44 271 | 57.72 204 | 82.78 95 | 60.16 163 | 89.60 138 | 79.11 233 |
|
| GA-MVS | | | 62.91 252 | 61.66 258 | 66.66 237 | 67.09 307 | 44.49 276 | 61.18 304 | 69.36 257 | 51.33 230 | 69.33 263 | 74.47 305 | 36.83 324 | 74.94 218 | 50.60 240 | 74.72 310 | 80.57 213 |
|
| Anonymous20240521 | | | 63.55 244 | 66.07 219 | 55.99 314 | 66.18 316 | 44.04 279 | 68.77 222 | 68.80 258 | 46.99 270 | 72.57 221 | 85.84 170 | 39.87 305 | 50.22 348 | 53.40 226 | 92.23 81 | 73.71 283 |
|
| ab-mvs | | | 64.11 241 | 65.13 232 | 61.05 286 | 71.99 255 | 38.03 330 | 67.59 235 | 68.79 259 | 49.08 255 | 65.32 299 | 86.26 157 | 58.02 201 | 66.85 301 | 39.33 318 | 79.79 275 | 78.27 243 |
|
| WR-MVS | | | 71.20 152 | 72.48 141 | 67.36 227 | 84.98 71 | 35.70 345 | 64.43 280 | 68.66 260 | 65.05 86 | 81.49 99 | 86.43 153 | 57.57 205 | 76.48 203 | 50.36 242 | 93.32 65 | 89.90 23 |
|
| EGC-MVSNET | | | 64.77 231 | 61.17 264 | 75.60 98 | 86.90 42 | 74.47 30 | 84.04 35 | 68.62 261 | 0.60 396 | 1.13 398 | 91.61 28 | 65.32 127 | 74.15 230 | 64.01 126 | 88.28 160 | 78.17 245 |
|
| 1112_ss | | | 59.48 281 | 58.99 281 | 60.96 288 | 77.84 170 | 42.39 295 | 61.42 301 | 68.45 262 | 37.96 335 | 59.93 337 | 67.46 356 | 45.11 273 | 65.07 309 | 40.89 312 | 71.81 334 | 75.41 269 |
|
| EU-MVSNet | | | 60.82 270 | 60.80 269 | 60.86 289 | 68.37 292 | 41.16 301 | 72.27 164 | 68.27 263 | 26.96 377 | 69.08 265 | 75.71 293 | 32.09 344 | 67.44 292 | 55.59 201 | 78.90 282 | 73.97 279 |
|
| CMPMVS |  | 48.73 20 | 61.54 266 | 60.89 267 | 63.52 261 | 61.08 345 | 51.55 206 | 68.07 232 | 68.00 264 | 33.88 354 | 65.87 295 | 81.25 229 | 37.91 318 | 67.71 287 | 49.32 251 | 82.60 241 | 71.31 305 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_vis1_rt | | | 46.70 342 | 45.24 350 | 51.06 333 | 44.58 395 | 51.04 209 | 39.91 380 | 67.56 265 | 21.84 391 | 51.94 368 | 50.79 389 | 33.83 333 | 39.77 384 | 35.25 351 | 61.50 372 | 62.38 361 |
|
| OpenMVS_ROB |  | 54.93 17 | 63.23 249 | 63.28 248 | 63.07 266 | 69.81 277 | 45.34 270 | 68.52 226 | 67.14 266 | 43.74 296 | 70.61 248 | 79.22 260 | 47.90 263 | 72.66 242 | 48.75 255 | 73.84 322 | 71.21 307 |
|
| VNet | | | 64.01 243 | 65.15 231 | 60.57 290 | 73.28 238 | 35.61 346 | 57.60 327 | 67.08 267 | 54.61 185 | 66.76 292 | 83.37 200 | 56.28 215 | 66.87 299 | 42.19 302 | 85.20 209 | 79.23 232 |
|
| Test_1112_low_res | | | 58.78 286 | 58.69 283 | 59.04 301 | 79.41 143 | 38.13 328 | 57.62 326 | 66.98 268 | 34.74 350 | 59.62 340 | 77.56 282 | 42.92 286 | 63.65 316 | 38.66 324 | 70.73 340 | 75.35 271 |
|
| MVS_111021_LR | | | 72.10 145 | 71.82 150 | 72.95 139 | 79.53 142 | 73.90 36 | 70.45 199 | 66.64 269 | 56.87 158 | 76.81 157 | 81.76 225 | 68.78 88 | 71.76 257 | 61.81 144 | 83.74 230 | 73.18 286 |
|
| VDDNet | | | 71.60 149 | 73.13 128 | 67.02 232 | 86.29 47 | 41.11 302 | 69.97 203 | 66.50 270 | 68.72 55 | 74.74 187 | 91.70 25 | 59.90 178 | 75.81 207 | 48.58 258 | 91.72 84 | 84.15 125 |
|
| test_fmvs3 | | | 56.78 295 | 55.99 304 | 59.12 299 | 53.96 383 | 48.09 240 | 58.76 320 | 66.22 271 | 27.54 375 | 76.66 160 | 68.69 352 | 25.32 382 | 51.31 345 | 53.42 225 | 73.38 323 | 77.97 251 |
|
| Anonymous202405211 | | | 66.02 219 | 66.89 213 | 63.43 263 | 74.22 224 | 38.14 327 | 59.00 317 | 66.13 272 | 63.33 107 | 69.76 260 | 85.95 169 | 51.88 234 | 70.50 268 | 44.23 292 | 87.52 171 | 81.64 188 |
|
| test_fmvs1_n | | | 52.70 316 | 52.01 323 | 54.76 317 | 53.83 384 | 50.36 214 | 55.80 337 | 65.90 273 | 24.96 383 | 65.39 298 | 60.64 377 | 27.69 371 | 48.46 354 | 45.88 283 | 67.99 355 | 65.46 344 |
|
| test_fmvs2 | | | 54.80 305 | 54.11 313 | 56.88 311 | 51.76 387 | 49.95 221 | 56.70 331 | 65.80 274 | 26.22 380 | 69.42 261 | 65.25 363 | 31.82 348 | 49.98 349 | 49.63 248 | 70.36 342 | 70.71 311 |
|
| jason | | | 64.47 236 | 62.84 253 | 69.34 199 | 76.91 184 | 59.20 156 | 67.15 245 | 65.67 275 | 35.29 347 | 65.16 300 | 76.74 288 | 44.67 275 | 70.68 265 | 54.74 208 | 79.28 279 | 78.14 246 |
| jason: jason. |
| CDS-MVSNet | | | 64.33 239 | 62.66 255 | 69.35 198 | 80.44 134 | 58.28 169 | 65.26 270 | 65.66 276 | 44.36 290 | 67.30 289 | 75.54 295 | 43.27 283 | 71.77 256 | 37.68 332 | 84.44 223 | 78.01 249 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CHOSEN 1792x2688 | | | 58.09 290 | 56.30 301 | 63.45 262 | 79.95 137 | 50.93 210 | 54.07 346 | 65.59 277 | 28.56 373 | 61.53 324 | 74.33 307 | 41.09 297 | 66.52 305 | 33.91 356 | 67.69 358 | 72.92 288 |
|
| IterMVS-SCA-FT | | | 67.68 201 | 66.07 219 | 72.49 155 | 73.34 237 | 58.20 170 | 63.80 285 | 65.55 278 | 48.10 260 | 76.91 152 | 82.64 215 | 45.20 271 | 78.84 162 | 61.20 151 | 77.89 293 | 80.44 215 |
|
| sd_testset | | | 63.55 244 | 65.38 225 | 58.07 306 | 73.04 246 | 38.83 321 | 57.41 328 | 65.44 279 | 51.42 227 | 68.93 270 | 82.72 213 | 63.76 138 | 58.11 335 | 41.05 310 | 84.67 216 | 77.28 255 |
|
| HY-MVS | | 49.31 19 | 57.96 291 | 57.59 292 | 59.10 300 | 66.85 310 | 36.17 340 | 65.13 272 | 65.39 280 | 39.24 329 | 54.69 361 | 78.14 276 | 44.28 278 | 67.18 296 | 33.75 358 | 70.79 339 | 73.95 280 |
|
| IB-MVS | | 49.67 18 | 59.69 280 | 56.96 296 | 67.90 221 | 68.19 296 | 50.30 216 | 61.42 301 | 65.18 281 | 47.57 267 | 55.83 355 | 67.15 360 | 23.77 386 | 79.60 151 | 43.56 296 | 79.97 271 | 73.79 282 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| tfpnnormal | | | 66.48 215 | 67.93 196 | 62.16 276 | 73.40 236 | 36.65 336 | 63.45 288 | 64.99 282 | 55.97 168 | 72.82 219 | 87.80 124 | 57.06 210 | 69.10 279 | 48.31 262 | 87.54 170 | 80.72 208 |
|
| test_fmvs1 | | | 51.51 326 | 50.86 333 | 53.48 322 | 49.72 390 | 49.35 230 | 54.11 345 | 64.96 283 | 24.64 385 | 63.66 315 | 59.61 380 | 28.33 370 | 48.45 355 | 45.38 288 | 67.30 359 | 62.66 359 |
|
| CL-MVSNet_self_test | | | 62.44 258 | 63.40 247 | 59.55 297 | 72.34 252 | 32.38 362 | 56.39 332 | 64.84 284 | 51.21 232 | 67.46 287 | 81.01 232 | 50.75 242 | 63.51 317 | 38.47 327 | 88.12 163 | 82.75 166 |
|
| KD-MVS_2432*1600 | | | 52.05 322 | 51.58 325 | 53.44 323 | 52.11 385 | 31.20 367 | 44.88 372 | 64.83 285 | 41.53 309 | 64.37 304 | 70.03 339 | 15.61 399 | 64.20 311 | 36.25 342 | 74.61 312 | 64.93 349 |
|
| miper_refine_blended | | | 52.05 322 | 51.58 325 | 53.44 323 | 52.11 385 | 31.20 367 | 44.88 372 | 64.83 285 | 41.53 309 | 64.37 304 | 70.03 339 | 15.61 399 | 64.20 311 | 36.25 342 | 74.61 312 | 64.93 349 |
|
| CVMVSNet | | | 59.21 283 | 58.44 286 | 61.51 281 | 73.94 229 | 47.76 247 | 71.31 187 | 64.56 287 | 26.91 379 | 60.34 333 | 70.44 334 | 36.24 327 | 67.65 288 | 53.57 222 | 68.66 352 | 69.12 325 |
|
| lupinMVS | | | 63.36 246 | 61.49 262 | 68.97 206 | 74.93 209 | 59.19 157 | 65.80 263 | 64.52 288 | 34.68 352 | 63.53 317 | 74.25 309 | 43.19 284 | 70.62 266 | 53.88 220 | 78.67 285 | 77.10 259 |
|
| ET-MVSNet_ETH3D | | | 63.32 247 | 60.69 270 | 71.20 171 | 70.15 274 | 55.66 182 | 65.02 273 | 64.32 289 | 43.28 303 | 68.99 267 | 72.05 326 | 25.46 380 | 78.19 182 | 54.16 218 | 82.80 239 | 79.74 224 |
|
| test_vis1_n_1920 | | | 52.96 314 | 53.50 315 | 51.32 332 | 59.15 358 | 44.90 273 | 56.13 335 | 64.29 290 | 30.56 371 | 59.87 338 | 60.68 376 | 40.16 303 | 47.47 358 | 48.25 263 | 62.46 369 | 61.58 364 |
|
| bld_raw_dy_0_64 | | | 72.85 134 | 72.76 136 | 73.09 134 | 85.08 70 | 64.80 108 | 78.72 90 | 64.22 291 | 51.92 220 | 83.13 77 | 90.26 70 | 39.21 310 | 69.91 272 | 70.73 73 | 91.60 89 | 84.56 111 |
|
| patch_mono-2 | | | 62.73 256 | 64.08 240 | 58.68 302 | 70.36 272 | 55.87 180 | 60.84 306 | 64.11 292 | 41.23 312 | 64.04 308 | 78.22 274 | 60.00 176 | 48.80 352 | 54.17 217 | 83.71 232 | 71.37 303 |
|
| thisisatest0530 | | | 67.05 211 | 65.16 229 | 72.73 149 | 73.10 243 | 50.55 212 | 71.26 189 | 63.91 293 | 50.22 243 | 74.46 195 | 80.75 235 | 26.81 373 | 80.25 141 | 59.43 172 | 86.50 193 | 87.37 54 |
|
| 旧先验1 | | | | | | 84.55 79 | 60.36 151 | | 63.69 294 | | | 87.05 131 | 54.65 221 | | | 83.34 236 | 69.66 319 |
|
| EPNet | | | 69.10 180 | 67.32 205 | 74.46 107 | 68.33 294 | 61.27 136 | 77.56 103 | 63.57 295 | 60.95 122 | 56.62 351 | 82.75 212 | 51.53 238 | 81.24 119 | 54.36 215 | 90.20 123 | 80.88 202 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TAMVS | | | 65.31 224 | 63.75 243 | 69.97 190 | 82.23 115 | 59.76 155 | 66.78 252 | 63.37 296 | 45.20 285 | 69.79 259 | 79.37 258 | 47.42 265 | 72.17 250 | 34.48 353 | 85.15 210 | 77.99 250 |
|
| tttt0517 | | | 69.46 174 | 67.79 200 | 74.46 107 | 75.34 204 | 52.72 200 | 75.05 136 | 63.27 297 | 54.69 183 | 78.87 127 | 84.37 185 | 26.63 374 | 81.15 120 | 63.95 128 | 87.93 168 | 89.51 25 |
|
| MS-PatchMatch | | | 55.59 301 | 54.89 310 | 57.68 308 | 69.18 283 | 49.05 231 | 61.00 305 | 62.93 298 | 35.98 344 | 58.36 343 | 68.93 348 | 36.71 325 | 66.59 304 | 37.62 334 | 63.30 367 | 57.39 373 |
|
| IterMVS | | | 63.12 250 | 62.48 256 | 65.02 248 | 66.34 313 | 52.86 199 | 63.81 284 | 62.25 299 | 46.57 273 | 71.51 239 | 80.40 240 | 44.60 276 | 66.82 302 | 51.38 234 | 75.47 304 | 75.38 270 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| thisisatest0515 | | | 60.48 274 | 57.86 290 | 68.34 216 | 67.25 305 | 46.42 261 | 60.58 309 | 62.14 300 | 40.82 318 | 63.58 316 | 69.12 345 | 26.28 376 | 78.34 176 | 48.83 254 | 82.13 244 | 80.26 217 |
|
| VPNet | | | 65.58 222 | 67.56 201 | 59.65 296 | 79.72 139 | 30.17 372 | 60.27 311 | 62.14 300 | 54.19 194 | 71.24 242 | 86.63 146 | 58.80 189 | 67.62 289 | 44.17 293 | 90.87 113 | 81.18 192 |
|
| 新几何1 | | | | | 69.99 189 | 88.37 34 | 71.34 51 | | 62.08 302 | 43.85 292 | 74.99 184 | 86.11 164 | 52.85 230 | 70.57 267 | 50.99 237 | 83.23 237 | 68.05 330 |
|
| pmmvs-eth3d | | | 64.41 238 | 63.27 249 | 67.82 224 | 75.81 202 | 60.18 152 | 69.49 208 | 62.05 303 | 38.81 332 | 74.13 200 | 82.23 219 | 43.76 281 | 68.65 281 | 42.53 300 | 80.63 266 | 74.63 275 |
|
| K. test v3 | | | 73.67 111 | 73.61 119 | 73.87 119 | 79.78 138 | 55.62 184 | 74.69 146 | 62.04 304 | 66.16 71 | 84.76 60 | 93.23 5 | 49.47 250 | 80.97 128 | 65.66 114 | 86.67 191 | 85.02 94 |
|
| testdata | | | | | 64.13 253 | 85.87 59 | 63.34 119 | | 61.80 305 | 47.83 264 | 76.42 170 | 86.60 148 | 48.83 256 | 62.31 321 | 54.46 212 | 81.26 258 | 66.74 339 |
|
| N_pmnet | | | 52.06 321 | 51.11 329 | 54.92 316 | 59.64 357 | 71.03 53 | 37.42 384 | 61.62 306 | 33.68 356 | 57.12 347 | 72.10 323 | 37.94 317 | 31.03 391 | 29.13 378 | 71.35 335 | 62.70 357 |
|
| ppachtmachnet_test | | | 60.26 276 | 59.61 277 | 62.20 275 | 67.70 302 | 44.33 277 | 58.18 324 | 60.96 307 | 40.75 320 | 65.80 296 | 72.57 322 | 41.23 294 | 63.92 314 | 46.87 275 | 82.42 242 | 78.33 241 |
|
| test_vis1_n | | | 51.27 327 | 50.41 337 | 53.83 320 | 56.99 367 | 50.01 220 | 56.75 330 | 60.53 308 | 25.68 381 | 59.74 339 | 57.86 381 | 29.40 367 | 47.41 359 | 43.10 298 | 63.66 366 | 64.08 354 |
|
| pmmvs4 | | | 60.78 271 | 59.04 280 | 66.00 242 | 73.06 245 | 57.67 172 | 64.53 279 | 60.22 309 | 36.91 341 | 65.96 294 | 77.27 284 | 39.66 307 | 68.54 282 | 38.87 322 | 74.89 309 | 71.80 300 |
|
| CostFormer | | | 57.35 294 | 56.14 302 | 60.97 287 | 63.76 333 | 38.43 323 | 67.50 237 | 60.22 309 | 37.14 340 | 59.12 341 | 76.34 290 | 32.78 339 | 71.99 254 | 39.12 321 | 69.27 349 | 72.47 293 |
|
| LFMVS | | | 67.06 210 | 67.89 197 | 64.56 250 | 78.02 167 | 38.25 326 | 70.81 196 | 59.60 311 | 65.18 83 | 71.06 244 | 86.56 149 | 43.85 280 | 75.22 214 | 46.35 278 | 89.63 137 | 80.21 218 |
|
| test222 | | | | | | 87.30 37 | 69.15 73 | 67.85 233 | 59.59 312 | 41.06 314 | 73.05 216 | 85.72 172 | 48.03 262 | | | 80.65 264 | 66.92 335 |
|
| tpmvs | | | 55.84 298 | 55.45 308 | 57.01 310 | 60.33 349 | 33.20 360 | 65.89 260 | 59.29 313 | 47.52 268 | 56.04 353 | 73.60 314 | 31.05 357 | 68.06 286 | 40.64 313 | 64.64 363 | 69.77 318 |
|
| UnsupCasMVSNet_eth | | | 52.26 320 | 53.29 318 | 49.16 343 | 55.08 376 | 33.67 358 | 50.03 358 | 58.79 314 | 37.67 337 | 63.43 319 | 74.75 302 | 41.82 292 | 45.83 362 | 38.59 326 | 59.42 377 | 67.98 331 |
|
| EPNet_dtu | | | 58.93 285 | 58.52 284 | 60.16 294 | 67.91 300 | 47.70 248 | 69.97 203 | 58.02 315 | 49.73 248 | 47.28 380 | 73.02 320 | 38.14 315 | 62.34 320 | 36.57 341 | 85.99 199 | 70.43 313 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MIMVSNet1 | | | 66.57 214 | 69.23 176 | 58.59 303 | 81.26 128 | 37.73 332 | 64.06 283 | 57.62 316 | 57.02 157 | 78.40 132 | 90.75 46 | 62.65 144 | 58.10 336 | 41.77 306 | 89.58 140 | 79.95 220 |
|
| tfpn200view9 | | | 60.35 275 | 59.97 274 | 61.51 281 | 70.78 263 | 35.35 347 | 63.27 291 | 57.47 317 | 53.00 209 | 68.31 278 | 77.09 285 | 32.45 342 | 72.09 251 | 35.61 348 | 81.73 251 | 77.08 260 |
|
| thres400 | | | 60.77 272 | 59.97 274 | 63.15 264 | 70.78 263 | 35.35 347 | 63.27 291 | 57.47 317 | 53.00 209 | 68.31 278 | 77.09 285 | 32.45 342 | 72.09 251 | 35.61 348 | 81.73 251 | 82.02 181 |
|
| lessismore_v0 | | | | | 72.75 147 | 79.60 141 | 56.83 176 | | 57.37 319 | | 83.80 72 | 89.01 98 | 47.45 264 | 78.74 165 | 64.39 123 | 86.49 194 | 82.69 168 |
|
| tpm cat1 | | | 54.02 311 | 52.63 320 | 58.19 305 | 64.85 328 | 39.86 313 | 66.26 257 | 57.28 320 | 32.16 362 | 56.90 349 | 70.39 336 | 32.75 340 | 65.30 308 | 34.29 354 | 58.79 378 | 69.41 322 |
|
| thres200 | | | 57.55 293 | 57.02 295 | 59.17 298 | 67.89 301 | 34.93 350 | 58.91 319 | 57.25 321 | 50.24 242 | 64.01 309 | 71.46 330 | 32.49 341 | 71.39 261 | 31.31 364 | 79.57 277 | 71.19 308 |
|
| MDA-MVSNet-bldmvs | | | 62.34 259 | 61.73 257 | 64.16 252 | 61.64 342 | 49.90 222 | 48.11 363 | 57.24 322 | 53.31 207 | 80.95 106 | 79.39 257 | 49.00 255 | 61.55 324 | 45.92 282 | 80.05 270 | 81.03 196 |
|
| fmvsm_s_conf0.1_n_a | | | 67.37 206 | 66.36 215 | 70.37 179 | 70.86 262 | 61.17 137 | 74.00 155 | 57.18 323 | 40.77 319 | 68.83 275 | 80.88 233 | 63.11 141 | 67.61 290 | 66.94 106 | 74.72 310 | 82.33 178 |
|
| thres100view900 | | | 61.17 268 | 61.09 265 | 61.39 283 | 72.14 254 | 35.01 349 | 65.42 269 | 56.99 324 | 55.23 175 | 70.71 247 | 79.90 249 | 32.07 345 | 72.09 251 | 35.61 348 | 81.73 251 | 77.08 260 |
|
| thres600view7 | | | 61.82 262 | 61.38 263 | 63.12 265 | 71.81 256 | 34.93 350 | 64.64 276 | 56.99 324 | 54.78 182 | 70.33 251 | 79.74 251 | 32.07 345 | 72.42 248 | 38.61 325 | 83.46 235 | 82.02 181 |
|
| fmvsm_s_conf0.5_n_a | | | 67.00 212 | 65.95 221 | 70.17 184 | 69.72 281 | 61.16 138 | 73.34 158 | 56.83 326 | 40.96 316 | 68.36 277 | 80.08 247 | 62.84 142 | 67.57 291 | 66.90 108 | 74.50 314 | 81.78 186 |
|
| tpm2 | | | 56.12 297 | 54.64 311 | 60.55 291 | 66.24 314 | 36.01 341 | 68.14 230 | 56.77 327 | 33.60 358 | 58.25 344 | 75.52 297 | 30.25 362 | 74.33 227 | 33.27 359 | 69.76 348 | 71.32 304 |
|
| fmvsm_s_conf0.1_n | | | 66.60 213 | 65.54 223 | 69.77 192 | 68.99 287 | 59.15 160 | 72.12 168 | 56.74 328 | 40.72 321 | 68.25 280 | 80.14 246 | 61.18 166 | 66.92 297 | 67.34 103 | 74.40 315 | 83.23 152 |
|
| fmvsm_s_conf0.5_n | | | 66.34 218 | 65.27 226 | 69.57 195 | 68.20 295 | 59.14 162 | 71.66 180 | 56.48 329 | 40.92 317 | 67.78 282 | 79.46 255 | 61.23 163 | 66.90 298 | 67.39 99 | 74.32 318 | 82.66 169 |
|
| ECVR-MVS |  | | 64.82 229 | 65.22 227 | 63.60 259 | 78.80 158 | 31.14 369 | 66.97 248 | 56.47 330 | 54.23 191 | 69.94 256 | 88.68 107 | 37.23 322 | 74.81 221 | 45.28 289 | 89.41 143 | 84.86 97 |
|
| CR-MVSNet | | | 58.96 284 | 58.49 285 | 60.36 292 | 66.37 311 | 48.24 237 | 70.93 193 | 56.40 331 | 32.87 360 | 61.35 325 | 86.66 143 | 33.19 336 | 63.22 318 | 48.50 259 | 70.17 344 | 69.62 320 |
|
| Patchmtry | | | 60.91 269 | 63.01 252 | 54.62 319 | 66.10 317 | 26.27 383 | 67.47 238 | 56.40 331 | 54.05 197 | 72.04 230 | 86.66 143 | 33.19 336 | 60.17 327 | 43.69 294 | 87.45 174 | 77.42 253 |
|
| MDTV_nov1_ep13 | | | | 54.05 314 | | 65.54 320 | 29.30 375 | 59.00 317 | 55.22 333 | 35.96 345 | 52.44 366 | 75.98 291 | 30.77 359 | 59.62 328 | 38.21 328 | 73.33 324 | |
|
| baseline1 | | | 57.82 292 | 58.36 288 | 56.19 313 | 69.17 284 | 30.76 371 | 62.94 295 | 55.21 334 | 46.04 275 | 63.83 312 | 78.47 270 | 41.20 295 | 63.68 315 | 39.44 317 | 68.99 350 | 74.13 278 |
|
| door-mid | | | | | | | | | 55.02 335 | | | | | | | | |
|
| ADS-MVSNet2 | | | 48.76 336 | 47.25 345 | 53.29 325 | 55.90 373 | 40.54 309 | 47.34 366 | 54.99 336 | 31.41 368 | 50.48 373 | 72.06 324 | 31.23 353 | 54.26 343 | 25.93 383 | 55.93 383 | 65.07 347 |
|
| test_cas_vis1_n_1920 | | | 50.90 328 | 50.92 332 | 50.83 334 | 54.12 382 | 47.80 245 | 51.44 356 | 54.61 337 | 26.95 378 | 63.95 310 | 60.85 375 | 37.86 320 | 44.97 368 | 45.53 285 | 62.97 368 | 59.72 368 |
|
| baseline2 | | | 55.57 302 | 52.74 319 | 64.05 255 | 65.26 321 | 44.11 278 | 62.38 296 | 54.43 338 | 39.03 330 | 51.21 370 | 67.35 358 | 33.66 334 | 72.45 247 | 37.14 337 | 64.22 365 | 75.60 266 |
|
| test1111 | | | 64.62 232 | 65.19 228 | 62.93 269 | 79.01 156 | 29.91 373 | 65.45 268 | 54.41 339 | 54.09 196 | 71.47 241 | 88.48 111 | 37.02 323 | 74.29 228 | 46.83 276 | 89.94 131 | 84.58 110 |
|
| Vis-MVSNet (Re-imp) | | | 62.74 255 | 63.21 250 | 61.34 284 | 72.19 253 | 31.56 366 | 67.31 244 | 53.87 340 | 53.60 204 | 69.88 258 | 83.37 200 | 40.52 301 | 70.98 264 | 41.40 308 | 86.78 189 | 81.48 190 |
|
| pmmvs5 | | | 52.49 319 | 52.58 321 | 52.21 329 | 54.99 377 | 32.38 362 | 55.45 339 | 53.84 341 | 32.15 363 | 55.49 357 | 74.81 300 | 38.08 316 | 57.37 338 | 34.02 355 | 74.40 315 | 66.88 336 |
|
| XXY-MVS | | | 55.19 303 | 57.40 294 | 48.56 347 | 64.45 329 | 34.84 352 | 51.54 355 | 53.59 342 | 38.99 331 | 63.79 313 | 79.43 256 | 56.59 213 | 45.57 363 | 36.92 339 | 71.29 336 | 65.25 346 |
|
| dmvs_re | | | 49.91 334 | 50.77 334 | 47.34 349 | 59.98 351 | 38.86 320 | 53.18 349 | 53.58 343 | 39.75 326 | 55.06 358 | 61.58 374 | 36.42 326 | 44.40 372 | 29.15 377 | 68.23 353 | 58.75 370 |
|
| PVSNet | | 43.83 21 | 51.56 325 | 51.17 328 | 52.73 326 | 68.34 293 | 38.27 325 | 48.22 362 | 53.56 344 | 36.41 342 | 54.29 362 | 64.94 364 | 34.60 331 | 54.20 344 | 30.34 367 | 69.87 346 | 65.71 343 |
|
| test_method | | | 19.26 361 | 19.12 365 | 19.71 377 | 9.09 400 | 1.91 404 | 7.79 392 | 53.44 345 | 1.42 395 | 10.27 397 | 35.80 392 | 17.42 396 | 25.11 396 | 12.44 395 | 24.38 395 | 32.10 392 |
|
| SCA | | | 58.57 288 | 58.04 289 | 60.17 293 | 70.17 273 | 41.07 303 | 65.19 271 | 53.38 346 | 43.34 302 | 61.00 330 | 73.48 315 | 45.20 271 | 69.38 276 | 40.34 315 | 70.31 343 | 70.05 315 |
|
| UnsupCasMVSNet_bld | | | 50.01 333 | 51.03 331 | 46.95 350 | 58.61 361 | 32.64 361 | 48.31 361 | 53.27 347 | 34.27 353 | 60.47 332 | 71.53 329 | 41.40 293 | 47.07 360 | 30.68 366 | 60.78 374 | 61.13 365 |
|
| wuyk23d | | | 61.97 260 | 66.25 216 | 49.12 344 | 58.19 364 | 60.77 148 | 66.32 256 | 52.97 348 | 55.93 170 | 90.62 5 | 86.91 133 | 73.07 57 | 35.98 389 | 20.63 393 | 91.63 87 | 50.62 379 |
|
| door | | | | | | | | | 52.91 349 | | | | | | | | |
|
| FMVSNet5 | | | 55.08 304 | 55.54 307 | 53.71 321 | 65.80 318 | 33.50 359 | 56.22 334 | 52.50 350 | 43.72 297 | 61.06 328 | 83.38 199 | 25.46 380 | 54.87 341 | 30.11 369 | 81.64 256 | 72.75 290 |
|
| our_test_3 | | | 56.46 296 | 56.51 299 | 56.30 312 | 67.70 302 | 39.66 314 | 55.36 340 | 52.34 351 | 40.57 323 | 63.85 311 | 69.91 341 | 40.04 304 | 58.22 334 | 43.49 297 | 75.29 308 | 71.03 310 |
|
| PatchmatchNet |  | | 54.60 306 | 54.27 312 | 55.59 315 | 65.17 324 | 39.08 316 | 66.92 249 | 51.80 352 | 39.89 325 | 58.39 342 | 73.12 319 | 31.69 350 | 58.33 333 | 43.01 299 | 58.38 381 | 69.38 323 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| FPMVS | | | 59.43 282 | 60.07 273 | 57.51 309 | 77.62 176 | 71.52 49 | 62.33 297 | 50.92 353 | 57.40 155 | 69.40 262 | 80.00 248 | 39.14 311 | 61.92 323 | 37.47 335 | 66.36 360 | 39.09 390 |
|
| Anonymous20231206 | | | 54.13 308 | 55.82 305 | 49.04 345 | 70.89 261 | 35.96 342 | 51.73 354 | 50.87 354 | 34.86 348 | 62.49 320 | 79.22 260 | 42.52 290 | 44.29 373 | 27.95 379 | 81.88 247 | 66.88 336 |
|
| new-patchmatchnet | | | 52.89 315 | 55.76 306 | 44.26 363 | 59.94 354 | 6.31 401 | 37.36 385 | 50.76 355 | 41.10 313 | 64.28 306 | 79.82 250 | 44.77 274 | 48.43 356 | 36.24 344 | 87.61 169 | 78.03 248 |
|
| tpmrst | | | 50.15 332 | 51.38 327 | 46.45 354 | 56.05 371 | 24.77 386 | 64.40 281 | 49.98 356 | 36.14 343 | 53.32 365 | 69.59 343 | 35.16 329 | 48.69 353 | 39.24 319 | 58.51 380 | 65.89 341 |
|
| WTY-MVS | | | 49.39 335 | 50.31 338 | 46.62 353 | 61.22 344 | 32.00 365 | 46.61 368 | 49.77 357 | 33.87 355 | 54.12 363 | 69.55 344 | 41.96 291 | 45.40 365 | 31.28 365 | 64.42 364 | 62.47 360 |
|
| testgi | | | 54.00 312 | 56.86 297 | 45.45 357 | 58.20 363 | 25.81 385 | 49.05 359 | 49.50 358 | 45.43 282 | 67.84 281 | 81.17 230 | 51.81 237 | 43.20 377 | 29.30 373 | 79.41 278 | 67.34 334 |
|
| test20.03 | | | 55.74 300 | 57.51 293 | 50.42 335 | 59.89 355 | 32.09 364 | 50.63 357 | 49.01 359 | 50.11 244 | 65.07 301 | 83.23 207 | 45.61 269 | 48.11 357 | 30.22 368 | 83.82 229 | 71.07 309 |
|
| PatchMatch-RL | | | 58.68 287 | 57.72 291 | 61.57 280 | 76.21 194 | 73.59 39 | 61.83 298 | 49.00 360 | 47.30 269 | 61.08 327 | 68.97 347 | 50.16 246 | 59.01 330 | 36.06 347 | 68.84 351 | 52.10 377 |
|
| sss | | | 47.59 340 | 48.32 340 | 45.40 358 | 56.73 370 | 33.96 356 | 45.17 371 | 48.51 361 | 32.11 365 | 52.37 367 | 65.79 361 | 40.39 302 | 41.91 381 | 31.85 362 | 61.97 371 | 60.35 366 |
|
| MIMVSNet | | | 54.39 307 | 56.12 303 | 49.20 342 | 72.57 250 | 30.91 370 | 59.98 312 | 48.43 362 | 41.66 308 | 55.94 354 | 83.86 193 | 41.19 296 | 50.42 347 | 26.05 382 | 75.38 306 | 66.27 340 |
|
| JIA-IIPM | | | 54.03 310 | 51.62 324 | 61.25 285 | 59.14 359 | 55.21 185 | 59.10 316 | 47.72 363 | 50.85 235 | 50.31 376 | 85.81 171 | 20.10 392 | 63.97 313 | 36.16 345 | 55.41 386 | 64.55 352 |
|
| test_f | | | 43.79 352 | 45.63 347 | 38.24 374 | 42.29 398 | 38.58 322 | 34.76 387 | 47.68 364 | 22.22 390 | 67.34 288 | 63.15 368 | 31.82 348 | 30.60 392 | 39.19 320 | 62.28 370 | 45.53 386 |
|
| Patchmatch-RL test | | | 59.95 278 | 59.12 279 | 62.44 273 | 72.46 251 | 54.61 189 | 59.63 314 | 47.51 365 | 41.05 315 | 74.58 193 | 74.30 308 | 31.06 356 | 65.31 307 | 51.61 231 | 79.85 272 | 67.39 332 |
|
| SSC-MVS | | | 61.79 263 | 66.08 218 | 48.89 346 | 76.91 184 | 10.00 400 | 53.56 348 | 47.37 366 | 68.20 58 | 76.56 163 | 89.21 90 | 54.13 224 | 57.59 337 | 54.75 207 | 74.07 319 | 79.08 234 |
|
| WB-MVS | | | 60.04 277 | 64.19 239 | 47.59 348 | 76.09 196 | 10.22 399 | 52.44 353 | 46.74 367 | 65.17 84 | 74.07 202 | 87.48 125 | 53.48 227 | 55.28 340 | 49.36 250 | 72.84 326 | 77.28 255 |
|
| MDA-MVSNet_test_wron | | | 52.57 318 | 53.49 317 | 49.81 339 | 54.24 379 | 36.47 338 | 40.48 379 | 46.58 368 | 38.13 333 | 75.47 180 | 73.32 317 | 41.05 299 | 43.85 375 | 40.98 311 | 71.20 337 | 69.10 326 |
|
| YYNet1 | | | 52.58 317 | 53.50 315 | 49.85 338 | 54.15 380 | 36.45 339 | 40.53 378 | 46.55 369 | 38.09 334 | 75.52 179 | 73.31 318 | 41.08 298 | 43.88 374 | 41.10 309 | 71.14 338 | 69.21 324 |
|
| test-LLR | | | 50.43 330 | 50.69 335 | 49.64 340 | 60.76 346 | 41.87 297 | 53.18 349 | 45.48 370 | 43.41 300 | 49.41 377 | 60.47 378 | 29.22 368 | 44.73 370 | 42.09 303 | 72.14 332 | 62.33 362 |
|
| test-mter | | | 48.56 337 | 48.20 342 | 49.64 340 | 60.76 346 | 41.87 297 | 53.18 349 | 45.48 370 | 31.91 366 | 49.41 377 | 60.47 378 | 18.34 393 | 44.73 370 | 42.09 303 | 72.14 332 | 62.33 362 |
|
| Syy-MVS | | | 54.13 308 | 55.45 308 | 50.18 336 | 68.77 288 | 23.59 388 | 55.02 341 | 44.55 372 | 43.80 293 | 58.05 345 | 64.07 365 | 46.22 266 | 58.83 331 | 46.16 280 | 72.36 329 | 68.12 328 |
|
| myMVS_eth3d | | | 50.36 331 | 50.52 336 | 49.88 337 | 68.77 288 | 22.69 390 | 55.02 341 | 44.55 372 | 43.80 293 | 58.05 345 | 64.07 365 | 14.16 401 | 58.83 331 | 33.90 357 | 72.36 329 | 68.12 328 |
|
| tpm | | | 50.60 329 | 52.42 322 | 45.14 359 | 65.18 323 | 26.29 382 | 60.30 310 | 43.50 374 | 37.41 338 | 57.01 348 | 79.09 264 | 30.20 364 | 42.32 378 | 32.77 361 | 66.36 360 | 66.81 338 |
|
| dmvs_testset | | | 45.26 345 | 47.51 343 | 38.49 373 | 59.96 353 | 14.71 397 | 58.50 322 | 43.39 375 | 41.30 311 | 51.79 369 | 56.48 382 | 39.44 309 | 49.91 351 | 21.42 391 | 55.35 387 | 50.85 378 |
|
| PatchT | | | 53.35 313 | 56.47 300 | 43.99 364 | 64.19 330 | 17.46 395 | 59.15 315 | 43.10 376 | 52.11 217 | 54.74 360 | 86.95 132 | 29.97 365 | 49.98 349 | 43.62 295 | 74.40 315 | 64.53 353 |
|
| testing3 | | | 58.28 289 | 58.38 287 | 58.00 307 | 77.45 177 | 26.12 384 | 60.78 307 | 43.00 377 | 56.02 167 | 70.18 253 | 75.76 292 | 13.27 402 | 67.24 295 | 48.02 265 | 80.89 260 | 80.65 210 |
|
| PM-MVS | | | 64.49 235 | 63.61 245 | 67.14 231 | 76.68 189 | 75.15 27 | 68.49 227 | 42.85 378 | 51.17 233 | 77.85 139 | 80.51 238 | 45.76 267 | 66.31 306 | 52.83 227 | 76.35 297 | 59.96 367 |
|
| GG-mvs-BLEND | | | | | 52.24 328 | 60.64 348 | 29.21 376 | 69.73 207 | 42.41 379 | | 45.47 383 | 52.33 387 | 20.43 391 | 68.16 284 | 25.52 386 | 65.42 362 | 59.36 369 |
|
| PMMVS | | | 44.69 348 | 43.95 356 | 46.92 351 | 50.05 389 | 53.47 197 | 48.08 364 | 42.40 380 | 22.36 389 | 44.01 389 | 53.05 386 | 42.60 289 | 45.49 364 | 31.69 363 | 61.36 373 | 41.79 388 |
|
| dp | | | 44.09 351 | 44.88 353 | 41.72 369 | 58.53 362 | 23.18 389 | 54.70 344 | 42.38 381 | 34.80 349 | 44.25 388 | 65.61 362 | 24.48 385 | 44.80 369 | 29.77 371 | 49.42 389 | 57.18 374 |
|
| E-PMN | | | 45.17 346 | 45.36 349 | 44.60 361 | 50.07 388 | 42.75 291 | 38.66 382 | 42.29 382 | 46.39 274 | 39.55 391 | 51.15 388 | 26.00 377 | 45.37 366 | 37.68 332 | 76.41 296 | 45.69 385 |
|
| PVSNet_0 | | 36.71 22 | 41.12 356 | 40.78 359 | 42.14 366 | 59.97 352 | 40.13 311 | 40.97 377 | 42.24 383 | 30.81 370 | 44.86 386 | 49.41 390 | 40.70 300 | 45.12 367 | 23.15 389 | 34.96 393 | 41.16 389 |
|
| TESTMET0.1,1 | | | 45.17 346 | 44.93 352 | 45.89 356 | 56.02 372 | 38.31 324 | 53.18 349 | 41.94 384 | 27.85 374 | 44.86 386 | 56.47 383 | 17.93 394 | 41.50 382 | 38.08 330 | 68.06 354 | 57.85 371 |
|
| Patchmatch-test | | | 47.93 338 | 49.96 339 | 41.84 367 | 57.42 366 | 24.26 387 | 48.75 360 | 41.49 385 | 39.30 328 | 56.79 350 | 73.48 315 | 30.48 361 | 33.87 390 | 29.29 374 | 72.61 327 | 67.39 332 |
|
| gg-mvs-nofinetune | | | 55.75 299 | 56.75 298 | 52.72 327 | 62.87 336 | 28.04 378 | 68.92 216 | 41.36 386 | 71.09 41 | 50.80 372 | 92.63 12 | 20.74 389 | 66.86 300 | 29.97 370 | 72.41 328 | 63.25 355 |
|
| test0.0.03 1 | | | 47.72 339 | 48.31 341 | 45.93 355 | 55.53 375 | 29.39 374 | 46.40 369 | 41.21 387 | 43.41 300 | 55.81 356 | 67.65 355 | 29.22 368 | 43.77 376 | 25.73 385 | 69.87 346 | 64.62 351 |
|
| EMVS | | | 44.61 350 | 44.45 355 | 45.10 360 | 48.91 391 | 43.00 289 | 37.92 383 | 41.10 388 | 46.75 272 | 38.00 393 | 48.43 391 | 26.42 375 | 46.27 361 | 37.11 338 | 75.38 306 | 46.03 384 |
|
| ADS-MVSNet | | | 44.62 349 | 45.58 348 | 41.73 368 | 55.90 373 | 20.83 393 | 47.34 366 | 39.94 389 | 31.41 368 | 50.48 373 | 72.06 324 | 31.23 353 | 39.31 385 | 25.93 383 | 55.93 383 | 65.07 347 |
|
| pmmvs3 | | | 46.71 341 | 45.09 351 | 51.55 331 | 56.76 369 | 48.25 236 | 55.78 338 | 39.53 390 | 24.13 386 | 50.35 375 | 63.40 367 | 15.90 398 | 51.08 346 | 29.29 374 | 70.69 341 | 55.33 376 |
|
| test2506 | | | 61.23 267 | 60.85 268 | 62.38 274 | 78.80 158 | 27.88 379 | 67.33 243 | 37.42 391 | 54.23 191 | 67.55 286 | 88.68 107 | 17.87 395 | 74.39 226 | 46.33 279 | 89.41 143 | 84.86 97 |
|
| MVS-HIRNet | | | 45.53 344 | 47.29 344 | 40.24 370 | 62.29 338 | 26.82 381 | 56.02 336 | 37.41 392 | 29.74 372 | 43.69 390 | 81.27 228 | 33.96 332 | 55.48 339 | 24.46 388 | 56.79 382 | 38.43 391 |
|
| CHOSEN 280x420 | | | 41.62 355 | 39.89 360 | 46.80 352 | 61.81 340 | 51.59 205 | 33.56 388 | 35.74 393 | 27.48 376 | 37.64 394 | 53.53 384 | 23.24 387 | 42.09 379 | 27.39 380 | 58.64 379 | 46.72 383 |
|
| EPMVS | | | 45.74 343 | 46.53 346 | 43.39 365 | 54.14 381 | 22.33 392 | 55.02 341 | 35.00 394 | 34.69 351 | 51.09 371 | 70.20 338 | 25.92 378 | 42.04 380 | 37.19 336 | 55.50 385 | 65.78 342 |
|
| new_pmnet | | | 37.55 359 | 39.80 361 | 30.79 375 | 56.83 368 | 16.46 396 | 39.35 381 | 30.65 395 | 25.59 382 | 45.26 384 | 61.60 373 | 24.54 384 | 28.02 394 | 21.60 390 | 52.80 388 | 47.90 382 |
|
| PMMVS2 | | | 37.74 358 | 40.87 358 | 28.36 376 | 42.41 397 | 5.35 402 | 24.61 389 | 27.75 396 | 32.15 363 | 47.85 379 | 70.27 337 | 35.85 328 | 29.51 393 | 19.08 394 | 67.85 356 | 50.22 380 |
|
| DSMNet-mixed | | | 43.18 354 | 44.66 354 | 38.75 372 | 54.75 378 | 28.88 377 | 57.06 329 | 27.42 397 | 13.47 393 | 47.27 381 | 77.67 281 | 38.83 312 | 39.29 386 | 25.32 387 | 60.12 376 | 48.08 381 |
|
| MVE |  | 27.91 23 | 36.69 360 | 35.64 363 | 39.84 371 | 43.37 396 | 35.85 344 | 19.49 390 | 24.61 398 | 24.68 384 | 39.05 392 | 62.63 371 | 38.67 314 | 27.10 395 | 21.04 392 | 47.25 391 | 56.56 375 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| mvsany_test1 | | | 37.88 357 | 35.74 362 | 44.28 362 | 47.28 393 | 49.90 222 | 36.54 386 | 24.37 399 | 19.56 392 | 45.76 382 | 53.46 385 | 32.99 338 | 37.97 388 | 26.17 381 | 35.52 392 | 44.99 387 |
|
| mvsany_test3 | | | 43.76 353 | 41.01 357 | 52.01 330 | 48.09 392 | 57.74 171 | 42.47 376 | 23.85 400 | 23.30 388 | 64.80 302 | 62.17 372 | 27.12 372 | 40.59 383 | 29.17 376 | 48.11 390 | 57.69 372 |
|
| MTMP | | | | | | | | 84.83 31 | 19.26 401 | | | | | | | | |
|
| tmp_tt | | | 11.98 363 | 14.73 366 | 3.72 379 | 2.28 401 | 4.62 403 | 19.44 391 | 14.50 402 | 0.47 397 | 21.55 395 | 9.58 395 | 25.78 379 | 4.57 398 | 11.61 396 | 27.37 394 | 1.96 394 |
|
| DeepMVS_CX |  | | | | 11.83 378 | 15.51 399 | 13.86 398 | | 11.25 403 | 5.76 394 | 20.85 396 | 26.46 393 | 17.06 397 | 9.22 397 | 9.69 397 | 13.82 396 | 12.42 393 |
|
| test123 | | | 4.43 366 | 5.78 369 | 0.39 381 | 0.97 402 | 0.28 405 | 46.33 370 | 0.45 404 | 0.31 398 | 0.62 399 | 1.50 398 | 0.61 404 | 0.11 400 | 0.56 398 | 0.63 397 | 0.77 396 |
|
| testmvs | | | 4.06 367 | 5.28 370 | 0.41 380 | 0.64 403 | 0.16 406 | 42.54 375 | 0.31 405 | 0.26 399 | 0.50 400 | 1.40 399 | 0.77 403 | 0.17 399 | 0.56 398 | 0.55 398 | 0.90 395 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 5.20 365 | 6.93 368 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 62.39 149 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| ab-mvs-re | | | 5.62 364 | 7.50 367 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 67.46 356 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| WAC-MVS | | | | | | | 22.69 390 | | | | | | | | 36.10 346 | | |
|
| PC_three_1452 | | | | | | | | | | 46.98 271 | 81.83 93 | 86.28 155 | 66.55 115 | 84.47 71 | 63.31 138 | 90.78 114 | 83.49 139 |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 78.65 62 | 83.44 94 | 66.85 89 | 83.62 42 | | | | 86.12 163 | 66.82 108 | 86.01 31 | 61.72 147 | 89.79 135 | 83.08 156 |
|
| test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 43 | 90.41 59 | 75.58 37 | 85.69 45 | 77.43 30 | 94.74 29 | 84.31 121 |
|
| GSMVS | | | | | | | | | | | | | | | | | 70.05 315 |
|
| test_part2 | | | | | | 85.90 57 | 66.44 91 | | | | 84.61 62 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 31.41 351 | | | | 70.05 315 |
|
| sam_mvs | | | | | | | | | | | | | 31.21 355 | | | | |
|
| test_post1 | | | | | | | | 66.63 253 | | | | 2.08 396 | 30.66 360 | 59.33 329 | 40.34 315 | | |
|
| test_post | | | | | | | | | | | | 1.99 397 | 30.91 358 | 54.76 342 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 68.99 346 | 31.32 352 | 69.38 276 | | | |
|
| gm-plane-assit | | | | | | 62.51 337 | 33.91 357 | | | 37.25 339 | | 62.71 370 | | 72.74 240 | 38.70 323 | | |
|
| test9_res | | | | | | | | | | | | | | | 72.12 69 | 91.37 93 | 77.40 254 |
|
| agg_prior2 | | | | | | | | | | | | | | | 70.70 75 | 90.93 108 | 78.55 240 |
|
| test_prior4 | | | | | | | 70.14 63 | 77.57 102 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 75.57 133 | | 58.92 139 | 76.53 166 | 86.78 137 | 67.83 100 | | 69.81 78 | 92.76 73 | |
|
| 旧先验2 | | | | | | | | 71.17 190 | | 45.11 286 | 78.54 131 | | | 61.28 325 | 59.19 174 | | |
|
| 新几何2 | | | | | | | | 71.33 186 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 74.78 143 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 67.30 293 | 48.34 261 | | |
|
| segment_acmp | | | | | | | | | | | | | 68.30 94 | | | | |
|
| testdata1 | | | | | | | | 68.34 229 | | 57.24 156 | | | | | | | |
|
| plane_prior7 | | | | | | 85.18 66 | 66.21 94 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 84.18 85 | 65.31 103 | | | | | | 60.83 170 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 89.11 95 | | | | | |
|
| plane_prior3 | | | | | | | 65.67 99 | | | 63.82 98 | 78.23 133 | | | | | | |
|
| plane_prior2 | | | | | | | | 82.74 51 | | 65.45 76 | | | | | | | |
|
| plane_prior1 | | | | | | 84.46 81 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 65.18 104 | 80.06 79 | | 61.88 117 | | | | | | 89.91 132 | |
|
| HQP5-MVS | | | | | | | 58.80 165 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 82.37 111 | | 77.32 107 | | 59.08 134 | 71.58 234 | | | | | | |
|
| ACMP_Plane | | | | | | 82.37 111 | | 77.32 107 | | 59.08 134 | 71.58 234 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.38 101 | | |
|
| HQP4-MVS | | | | | | | | | | | 71.59 233 | | | 85.31 52 | | | 83.74 134 |
|
| HQP2-MVS | | | | | | | | | | | | | 58.09 196 | | | | |
|
| NP-MVS | | | | | | 83.34 95 | 63.07 122 | | | | | 85.97 167 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 18.41 394 | 53.74 347 | | 31.57 367 | 44.89 385 | | 29.90 366 | | 32.93 360 | | 71.48 302 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 142 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.96 83 | |
|
| Test By Simon | | | | | | | | | | | | | 62.56 145 | | | | |
|