thres100view900 | | | 78.37 175 | 77.01 177 | 82.46 172 | 91.89 104 | 63.21 205 | 91.19 183 | 96.33 1 | 72.28 164 | 70.45 193 | 87.89 187 | 60.31 117 | 95.32 158 | 45.16 309 | 77.58 183 | 88.83 203 |
|
thres600view7 | | | 78.00 180 | 76.66 182 | 82.03 192 | 91.93 101 | 63.69 195 | 91.30 177 | 96.33 1 | 72.43 159 | 70.46 192 | 87.89 187 | 60.31 117 | 94.92 169 | 42.64 321 | 76.64 194 | 87.48 223 |
|
thres200 | | | 79.66 148 | 78.33 152 | 83.66 151 | 92.54 85 | 65.82 137 | 93.06 100 | 96.31 3 | 74.90 110 | 73.30 158 | 88.66 172 | 59.67 127 | 95.61 146 | 47.84 299 | 78.67 174 | 89.56 200 |
|
tfpn200view9 | | | 78.79 166 | 77.43 169 | 82.88 163 | 92.21 93 | 64.49 169 | 92.05 140 | 96.28 4 | 73.48 137 | 71.75 181 | 88.26 180 | 60.07 122 | 95.32 158 | 45.16 309 | 77.58 183 | 88.83 203 |
|
thres400 | | | 78.68 169 | 77.43 169 | 82.43 173 | 92.21 93 | 64.49 169 | 92.05 140 | 96.28 4 | 73.48 137 | 71.75 181 | 88.26 180 | 60.07 122 | 95.32 158 | 45.16 309 | 77.58 183 | 87.48 223 |
|
VNet | | | 86.20 44 | 85.65 52 | 87.84 23 | 93.92 47 | 69.99 31 | 95.73 22 | 95.94 6 | 78.43 64 | 86.00 37 | 93.07 107 | 58.22 140 | 97.00 90 | 85.22 59 | 84.33 137 | 96.52 17 |
|
baseline2 | | | 83.68 87 | 83.42 77 | 84.48 131 | 87.37 203 | 66.00 130 | 90.06 215 | 95.93 7 | 79.71 45 | 69.08 210 | 90.39 154 | 77.92 4 | 96.28 116 | 78.91 109 | 81.38 155 | 91.16 181 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 39 | 96.26 24 | 72.84 22 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 7 |
|
MVS | | | 84.66 66 | 82.86 88 | 90.06 2 | 90.93 127 | 74.56 6 | 87.91 256 | 95.54 9 | 68.55 237 | 72.35 174 | 94.71 68 | 59.78 126 | 98.90 14 | 81.29 93 | 94.69 28 | 96.74 10 |
|
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 151 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 8 | 97.22 4 | 79.93 3 | 99.10 7 | 83.12 74 | 97.64 2 | 97.94 1 |
|
CSCG | | | 86.87 35 | 86.26 41 | 88.72 12 | 95.05 30 | 70.79 22 | 93.83 77 | 95.33 11 | 68.48 239 | 77.63 120 | 94.35 81 | 73.04 20 | 98.45 25 | 84.92 62 | 93.71 45 | 96.92 9 |
|
WTY-MVS | | | 86.32 42 | 85.81 48 | 87.85 22 | 92.82 78 | 69.37 45 | 95.20 31 | 95.25 12 | 82.71 15 | 81.91 72 | 94.73 67 | 67.93 42 | 97.63 56 | 79.55 102 | 82.25 148 | 96.54 16 |
|
IU-MVS | | | | | | 96.46 10 | 69.91 35 | | 95.18 13 | 80.75 35 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 20 |
|
IB-MVS | | 77.80 4 | 82.18 106 | 80.46 123 | 87.35 36 | 89.14 164 | 70.28 28 | 95.59 25 | 95.17 14 | 78.85 58 | 70.19 197 | 85.82 209 | 70.66 31 | 97.67 51 | 72.19 157 | 66.52 255 | 94.09 105 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Regformer-1 | | | 87.24 27 | 87.60 25 | 86.15 76 | 95.14 27 | 65.83 136 | 93.95 66 | 95.12 15 | 82.11 21 | 84.25 55 | 95.73 33 | 67.88 43 | 98.35 29 | 85.60 56 | 88.64 100 | 94.26 95 |
|
Regformer-3 | | | 85.80 51 | 85.92 46 | 85.46 98 | 94.17 42 | 65.09 159 | 92.95 107 | 95.11 16 | 81.13 32 | 81.68 74 | 95.04 54 | 65.82 62 | 98.32 30 | 83.02 75 | 84.36 134 | 92.97 143 |
|
PHI-MVS | | | 86.83 37 | 86.85 37 | 86.78 51 | 93.47 61 | 65.55 143 | 95.39 28 | 95.10 17 | 71.77 184 | 85.69 42 | 96.52 15 | 62.07 103 | 98.77 17 | 86.06 54 | 95.60 10 | 96.03 33 |
|
test_yl | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 229 | 81.09 80 | 92.88 114 | 57.00 154 | 97.44 63 | 81.11 94 | 81.76 152 | 96.23 28 |
|
DCV-MVSNet | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 229 | 81.09 80 | 92.88 114 | 57.00 154 | 97.44 63 | 81.11 94 | 81.76 152 | 96.23 28 |
|
Regformer-2 | | | 87.00 34 | 87.43 27 | 85.71 91 | 95.14 27 | 64.73 166 | 93.95 66 | 94.95 20 | 81.69 26 | 84.03 60 | 95.73 33 | 67.35 47 | 98.19 33 | 85.40 58 | 88.64 100 | 94.20 97 |
|
sss | | | 82.71 100 | 82.38 97 | 83.73 147 | 89.25 161 | 59.58 266 | 92.24 131 | 94.89 21 | 77.96 70 | 79.86 95 | 92.38 125 | 56.70 160 | 97.05 85 | 77.26 122 | 80.86 160 | 94.55 85 |
|
EPNet | | | 87.84 20 | 88.38 15 | 86.23 74 | 93.30 63 | 66.05 128 | 95.26 29 | 94.84 22 | 87.09 3 | 88.06 22 | 94.53 72 | 66.79 53 | 97.34 70 | 83.89 70 | 91.68 73 | 95.29 55 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Regformer-4 | | | 85.45 54 | 85.69 51 | 84.73 120 | 94.17 42 | 63.23 204 | 92.95 107 | 94.83 23 | 80.66 36 | 81.29 77 | 95.04 54 | 65.12 68 | 98.08 36 | 82.74 77 | 84.36 134 | 92.88 147 |
|
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 16 | 96.76 7 | 70.65 23 | 96.47 12 | 94.83 23 | 84.83 8 | 89.07 19 | 96.80 12 | 70.86 29 | 99.06 11 | 92.64 4 | 95.71 9 | 96.12 30 |
|
EI-MVSNet-Vis-set | | | 83.77 84 | 83.67 70 | 84.06 140 | 92.79 81 | 63.56 200 | 91.76 155 | 94.81 25 | 79.65 46 | 77.87 116 | 94.09 88 | 63.35 93 | 97.90 43 | 79.35 103 | 79.36 167 | 90.74 185 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 16 | 94.80 26 | 77.13 80 | 89.13 18 | 97.38 2 | 74.49 15 | 98.48 24 | 92.32 9 | 95.98 6 | 96.46 21 |
|
tttt0517 | | | 79.50 152 | 78.53 151 | 82.41 176 | 87.22 205 | 61.43 237 | 89.75 224 | 94.76 27 | 69.29 227 | 67.91 228 | 88.06 185 | 72.92 21 | 95.63 144 | 62.91 237 | 73.90 207 | 90.16 191 |
|
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 103 | 69.67 41 | 75.02 331 | 94.75 28 | | 78.67 113 | 90.85 145 | 77.91 5 | 94.56 180 | 72.25 154 | 93.74 43 | 95.36 50 |
|
gg-mvs-nofinetune | | | 77.18 194 | 74.31 211 | 85.80 86 | 91.42 118 | 68.36 65 | 71.78 333 | 94.72 29 | 49.61 335 | 77.12 127 | 45.92 352 | 77.41 6 | 93.98 207 | 67.62 195 | 93.16 52 | 95.05 69 |
|
thisisatest0515 | | | 83.41 88 | 82.49 95 | 86.16 75 | 89.46 157 | 68.26 69 | 93.54 86 | 94.70 30 | 74.31 116 | 75.75 136 | 90.92 143 | 72.62 23 | 96.52 113 | 69.64 175 | 81.50 154 | 93.71 120 |
|
EI-MVSNet-UG-set | | | 83.14 92 | 82.96 85 | 83.67 150 | 92.28 90 | 63.19 206 | 91.38 172 | 94.68 31 | 79.22 51 | 76.60 131 | 93.75 94 | 62.64 99 | 97.76 49 | 78.07 117 | 78.01 178 | 90.05 193 |
|
VPA-MVSNet | | | 79.03 158 | 78.00 158 | 82.11 190 | 85.95 225 | 64.48 171 | 93.22 97 | 94.66 32 | 75.05 108 | 74.04 154 | 84.95 218 | 52.17 209 | 93.52 219 | 74.90 139 | 67.04 251 | 88.32 215 |
|
NCCC | | | 89.07 12 | 89.46 12 | 87.91 21 | 96.60 9 | 69.05 50 | 96.38 13 | 94.64 33 | 84.42 9 | 86.74 30 | 96.20 25 | 66.56 56 | 98.76 18 | 89.03 28 | 94.56 29 | 95.92 37 |
|
ET-MVSNet_ETH3D | | | 84.01 78 | 83.15 84 | 86.58 59 | 90.78 133 | 70.89 21 | 94.74 45 | 94.62 34 | 81.44 29 | 58.19 297 | 93.64 96 | 73.64 19 | 92.35 258 | 82.66 78 | 78.66 175 | 96.50 19 |
|
thisisatest0530 | | | 81.15 121 | 80.07 124 | 84.39 133 | 88.26 184 | 65.63 141 | 91.40 168 | 94.62 34 | 71.27 200 | 70.93 188 | 89.18 168 | 72.47 24 | 96.04 127 | 65.62 217 | 76.89 193 | 91.49 171 |
|
DVP-MVS | | | 89.41 10 | 89.73 11 | 88.45 18 | 96.40 14 | 69.99 31 | 96.64 8 | 94.52 36 | 71.92 173 | 90.55 12 | 96.93 10 | 73.77 17 | 99.08 9 | 91.91 10 | 94.90 19 | 96.29 26 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
HY-MVS | | 76.49 5 | 84.28 71 | 83.36 80 | 87.02 44 | 92.22 92 | 67.74 82 | 84.65 279 | 94.50 37 | 79.15 53 | 82.23 70 | 87.93 186 | 66.88 51 | 96.94 98 | 80.53 97 | 82.20 149 | 96.39 24 |
|
HPM-MVS++ |  | | 89.37 11 | 89.95 10 | 87.64 26 | 95.10 29 | 68.23 71 | 95.24 30 | 94.49 38 | 82.43 17 | 88.90 20 | 96.35 21 | 71.89 28 | 98.63 20 | 88.76 30 | 96.40 4 | 96.06 31 |
|
MG-MVS | | | 87.11 30 | 86.27 39 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 38 | 78.74 62 | 83.87 62 | 92.94 110 | 64.34 78 | 96.94 98 | 75.19 132 | 94.09 36 | 95.66 42 |
|
SED-MVS | | | 89.94 7 | 90.36 7 | 88.70 13 | 96.45 11 | 69.38 43 | 96.89 4 | 94.44 40 | 71.65 187 | 92.11 3 | 97.21 5 | 76.79 7 | 99.11 4 | 92.34 6 | 95.36 12 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 11 | 69.38 43 | | 94.44 40 | 71.65 187 | 92.11 3 | 97.05 8 | 76.79 7 | 99.11 4 | | | |
|
DWT-MVSNet_test | | | 83.95 80 | 82.80 89 | 87.41 34 | 92.90 75 | 70.07 30 | 89.12 238 | 94.42 42 | 82.15 20 | 77.64 119 | 91.77 135 | 70.81 30 | 96.22 118 | 65.03 223 | 81.36 156 | 95.94 35 |
|
test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 187 | 92.07 5 | 97.21 5 | 74.58 14 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 13 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 122 | 93.00 73 | 58.16 281 | 96.72 7 | 94.41 43 | 86.50 5 | 90.25 14 | 97.83 1 | 75.46 12 | 98.67 19 | 92.78 3 | 95.49 11 | 97.32 4 |
|
DELS-MVS | | | 90.05 6 | 90.09 8 | 89.94 4 | 93.14 70 | 73.88 8 | 97.01 3 | 94.40 45 | 88.32 2 | 85.71 41 | 94.91 63 | 74.11 16 | 98.91 13 | 87.26 45 | 95.94 7 | 97.03 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 73.91 6 | 82.69 101 | 80.82 115 | 88.31 19 | 89.57 153 | 71.26 17 | 92.60 121 | 94.39 46 | 78.84 59 | 67.89 229 | 92.48 123 | 48.42 242 | 98.52 22 | 68.80 187 | 94.40 33 | 95.15 64 |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 11 | 70.43 26 | 96.64 8 | 94.37 47 | | | | | 99.15 2 | 91.91 10 | 94.90 19 | 96.51 18 |
|
test0726 | | | | | | 96.40 14 | 69.99 31 | 96.76 6 | 94.33 48 | 71.92 173 | 91.89 6 | 97.11 7 | 73.77 17 | | | | |
|
MSP-MVS | | | 90.38 3 | 91.87 1 | 85.88 82 | 92.83 76 | 64.03 187 | 93.06 100 | 94.33 48 | 82.19 19 | 93.65 2 | 96.15 27 | 85.89 1 | 97.19 79 | 91.02 15 | 97.75 1 | 96.43 22 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MAR-MVS | | | 84.18 75 | 83.43 75 | 86.44 65 | 96.25 19 | 65.93 133 | 94.28 51 | 94.27 50 | 74.41 113 | 79.16 104 | 95.61 37 | 53.99 192 | 98.88 16 | 69.62 177 | 93.26 51 | 94.50 90 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ETH3D cwj APD-0.16 | | | 87.06 31 | 87.18 32 | 86.71 53 | 91.99 99 | 67.48 91 | 92.97 105 | 94.21 51 | 71.48 198 | 85.72 40 | 96.32 23 | 68.13 38 | 98.00 38 | 89.06 26 | 94.70 27 | 94.65 83 |
|
9.14 | | | | 87.63 23 | | 93.86 48 | | 94.41 48 | 94.18 52 | 72.76 151 | 86.21 33 | 96.51 16 | 66.64 54 | 97.88 45 | 90.08 19 | 94.04 37 | |
|
DPE-MVS |  | | 88.77 13 | 89.21 13 | 87.45 33 | 96.26 18 | 67.56 86 | 94.17 52 | 94.15 53 | 68.77 235 | 90.74 11 | 97.27 3 | 76.09 10 | 98.49 23 | 90.58 17 | 94.91 18 | 96.30 25 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ETH3D-3000-0.1 | | | 87.61 22 | 87.89 19 | 86.75 52 | 93.58 57 | 67.21 97 | 94.31 50 | 94.14 54 | 72.92 148 | 87.13 26 | 96.62 14 | 67.81 44 | 97.94 39 | 90.13 18 | 94.42 32 | 95.09 67 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 18 | 88.00 18 | 87.79 24 | 95.86 24 | 68.32 66 | 95.74 20 | 94.11 55 | 83.82 11 | 83.49 63 | 96.19 26 | 64.53 76 | 98.44 26 | 83.42 73 | 94.88 22 | 96.61 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SMA-MVS |  | | 88.14 14 | 88.29 17 | 87.67 25 | 93.21 67 | 68.72 58 | 93.85 73 | 94.03 56 | 74.18 119 | 91.74 7 | 96.67 13 | 65.61 65 | 98.42 28 | 89.24 24 | 96.08 5 | 95.88 39 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
FIs | | | 79.47 153 | 79.41 139 | 79.67 244 | 85.95 225 | 59.40 268 | 91.68 159 | 93.94 57 | 78.06 69 | 68.96 213 | 88.28 178 | 66.61 55 | 91.77 270 | 66.20 211 | 74.99 200 | 87.82 219 |
|
SteuartSystems-ACMMP | | | 86.82 38 | 86.90 35 | 86.58 59 | 90.42 136 | 66.38 121 | 96.09 15 | 93.87 58 | 77.73 73 | 84.01 61 | 95.66 35 | 63.39 92 | 97.94 39 | 87.40 42 | 93.55 48 | 95.42 47 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + GP. | | | 87.96 17 | 88.37 16 | 86.70 55 | 93.51 60 | 65.32 148 | 95.15 33 | 93.84 59 | 78.17 68 | 85.93 38 | 94.80 66 | 75.80 11 | 98.21 31 | 89.38 21 | 88.78 98 | 96.59 13 |
|
CANet | | | 89.61 9 | 89.99 9 | 88.46 17 | 94.39 38 | 69.71 39 | 96.53 11 | 93.78 60 | 86.89 4 | 89.68 15 | 95.78 31 | 65.94 60 | 99.10 7 | 92.99 2 | 93.91 40 | 96.58 15 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 21 | 66.30 124 | 94.84 44 | 93.78 60 | 69.35 226 | 88.39 21 | 96.34 22 | 67.74 45 | 97.66 54 | 90.62 16 | 93.44 49 | 96.01 34 |
|
TESTMET0.1,1 | | | 82.41 103 | 81.98 101 | 83.72 148 | 88.08 188 | 63.74 192 | 92.70 116 | 93.77 62 | 79.30 49 | 77.61 121 | 87.57 191 | 58.19 141 | 94.08 198 | 73.91 142 | 86.68 119 | 93.33 130 |
|
hse-mvs3 | | | 83.01 94 | 82.56 94 | 84.35 134 | 89.34 158 | 62.02 227 | 92.72 114 | 93.76 63 | 81.45 27 | 82.73 67 | 92.25 129 | 60.11 120 | 97.13 83 | 87.69 37 | 62.96 279 | 93.91 114 |
|
SF-MVS | | | 87.03 32 | 87.09 33 | 86.84 47 | 92.70 82 | 67.45 92 | 93.64 81 | 93.76 63 | 70.78 210 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 57 |
|
MVS_111021_HR | | | 86.19 45 | 85.80 49 | 87.37 35 | 93.17 69 | 69.79 37 | 93.99 64 | 93.76 63 | 79.08 56 | 78.88 109 | 93.99 91 | 62.25 102 | 98.15 34 | 85.93 55 | 91.15 82 | 94.15 102 |
|
FC-MVSNet-test | | | 77.99 181 | 78.08 157 | 77.70 267 | 84.89 242 | 55.51 304 | 90.27 209 | 93.75 66 | 76.87 83 | 66.80 244 | 87.59 190 | 65.71 64 | 90.23 291 | 62.89 238 | 73.94 205 | 87.37 226 |
|
QAPM | | | 79.95 144 | 77.39 173 | 87.64 26 | 89.63 152 | 71.41 16 | 93.30 94 | 93.70 67 | 65.34 262 | 67.39 237 | 91.75 137 | 47.83 248 | 98.96 12 | 57.71 263 | 89.81 92 | 92.54 153 |
|
RRT_test8_iter05 | | | 80.61 130 | 79.62 133 | 83.60 152 | 91.87 107 | 66.90 108 | 93.42 93 | 93.68 68 | 77.09 82 | 68.83 216 | 85.63 212 | 66.82 52 | 95.42 155 | 76.46 127 | 62.74 282 | 88.48 210 |
|
DeepC-MVS | | 77.85 3 | 85.52 53 | 85.24 55 | 86.37 69 | 88.80 172 | 66.64 115 | 92.15 133 | 93.68 68 | 81.07 33 | 76.91 130 | 93.64 96 | 62.59 100 | 98.44 26 | 85.50 57 | 92.84 57 | 94.03 109 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 81.79 115 | 81.52 106 | 82.61 170 | 88.77 173 | 60.21 258 | 93.02 104 | 93.66 70 | 68.52 238 | 72.90 162 | 90.39 154 | 72.19 26 | 94.96 166 | 74.93 137 | 79.29 169 | 92.67 149 |
|
PVSNet_BlendedMVS | | | 83.38 89 | 83.43 75 | 83.22 159 | 93.76 51 | 67.53 88 | 94.06 60 | 93.61 71 | 79.13 54 | 81.00 83 | 85.14 215 | 63.19 95 | 97.29 73 | 87.08 47 | 73.91 206 | 84.83 275 |
|
PVSNet_Blended | | | 86.73 39 | 86.86 36 | 86.31 72 | 93.76 51 | 67.53 88 | 96.33 14 | 93.61 71 | 82.34 18 | 81.00 83 | 93.08 105 | 63.19 95 | 97.29 73 | 87.08 47 | 91.38 78 | 94.13 103 |
|
alignmvs | | | 87.28 26 | 86.97 34 | 88.24 20 | 91.30 121 | 71.14 20 | 95.61 24 | 93.56 73 | 79.30 49 | 87.07 29 | 95.25 49 | 68.43 34 | 96.93 100 | 87.87 35 | 84.33 137 | 96.65 11 |
|
TSAR-MVS + MP. | | | 88.11 16 | 88.64 14 | 86.54 61 | 91.73 109 | 68.04 74 | 90.36 207 | 93.55 74 | 82.89 13 | 91.29 9 | 92.89 113 | 72.27 25 | 96.03 128 | 87.99 34 | 94.77 23 | 95.54 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TEST9 | | | | | | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 75 | 71.75 185 | 85.52 43 | 95.33 42 | 68.01 39 | 97.27 77 | | | |
|
train_agg | | | 87.21 28 | 87.42 28 | 86.60 57 | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 75 | 71.87 178 | 85.52 43 | 95.33 42 | 68.19 36 | 97.27 77 | 89.09 25 | 94.90 19 | 95.25 62 |
|
ZD-MVS | | | | | | 96.63 8 | 65.50 145 | | 93.50 77 | 70.74 211 | 85.26 47 | 95.19 53 | 64.92 73 | 97.29 73 | 87.51 39 | 93.01 54 | |
|
ACMMP_NAP | | | 86.05 46 | 85.80 49 | 86.80 50 | 91.58 113 | 67.53 88 | 91.79 152 | 93.49 78 | 74.93 109 | 84.61 50 | 95.30 44 | 59.42 130 | 97.92 41 | 86.13 53 | 94.92 17 | 94.94 74 |
|
testtj | | | 86.62 40 | 86.66 38 | 86.50 63 | 96.95 5 | 65.70 138 | 94.41 48 | 93.45 79 | 67.74 241 | 86.19 34 | 96.39 20 | 64.38 77 | 97.91 42 | 87.33 43 | 93.14 53 | 95.90 38 |
|
cdsmvs_eth3d_5k | | | 19.86 333 | 26.47 332 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 93.45 79 | 0.00 367 | 0.00 368 | 95.27 47 | 49.56 231 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
3Dnovator+ | | 73.60 7 | 82.10 110 | 80.60 120 | 86.60 57 | 90.89 130 | 66.80 112 | 95.20 31 | 93.44 81 | 74.05 121 | 67.42 235 | 92.49 122 | 49.46 232 | 97.65 55 | 70.80 167 | 91.68 73 | 95.33 51 |
|
test_8 | | | | | | 94.19 39 | 67.19 98 | 94.15 55 | 93.42 82 | 71.87 178 | 85.38 45 | 95.35 41 | 68.19 36 | 96.95 97 | | | |
|
ZNCC-MVS | | | 85.33 56 | 85.08 57 | 86.06 77 | 93.09 72 | 65.65 140 | 93.89 71 | 93.41 83 | 73.75 130 | 79.94 93 | 94.68 69 | 60.61 116 | 98.03 37 | 82.63 80 | 93.72 44 | 94.52 89 |
|
原ACMM1 | | | | | 84.42 132 | 93.21 67 | 64.27 183 | | 93.40 84 | 65.39 260 | 79.51 99 | 92.50 120 | 58.11 142 | 96.69 108 | 65.27 222 | 93.96 38 | 92.32 158 |
|
agg_prior1 | | | 87.02 33 | 87.26 30 | 86.28 73 | 94.16 44 | 66.97 106 | 94.08 59 | 93.31 85 | 71.85 180 | 84.49 52 | 95.39 40 | 68.91 33 | 96.75 106 | 88.84 29 | 94.32 34 | 95.13 65 |
|
agg_prior | | | | | | 94.16 44 | 66.97 106 | | 93.31 85 | | 84.49 52 | | | 96.75 106 | | | |
|
PS-MVSNAJ | | | 88.14 14 | 87.61 24 | 89.71 7 | 92.06 95 | 76.72 1 | 95.75 19 | 93.26 87 | 83.86 10 | 89.55 16 | 96.06 28 | 53.55 197 | 97.89 44 | 91.10 13 | 93.31 50 | 94.54 87 |
|
EI-MVSNet | | | 78.97 160 | 78.22 155 | 81.25 206 | 85.33 233 | 62.73 218 | 89.53 228 | 93.21 88 | 72.39 161 | 72.14 175 | 90.13 160 | 60.99 111 | 94.72 174 | 67.73 194 | 72.49 216 | 86.29 246 |
|
MVSTER | | | 82.47 102 | 82.05 99 | 83.74 145 | 92.68 83 | 69.01 51 | 91.90 147 | 93.21 88 | 79.83 40 | 72.14 175 | 85.71 211 | 74.72 13 | 94.72 174 | 75.72 129 | 72.49 216 | 87.50 222 |
|
UniMVSNet_NR-MVSNet | | | 78.15 179 | 77.55 167 | 79.98 235 | 84.46 249 | 60.26 256 | 92.25 130 | 93.20 90 | 77.50 77 | 68.88 214 | 86.61 200 | 66.10 58 | 92.13 262 | 66.38 208 | 62.55 283 | 87.54 221 |
|
HFP-MVS | | | 84.73 64 | 84.40 65 | 85.72 89 | 93.75 53 | 65.01 160 | 93.50 88 | 93.19 91 | 72.19 167 | 79.22 102 | 94.93 60 | 59.04 135 | 97.67 51 | 81.55 87 | 92.21 65 | 94.49 91 |
|
#test# | | | 84.98 61 | 84.74 61 | 85.72 89 | 93.75 53 | 65.01 160 | 94.09 58 | 93.19 91 | 73.55 136 | 79.22 102 | 94.93 60 | 59.04 135 | 97.67 51 | 82.66 78 | 92.21 65 | 94.49 91 |
|
UniMVSNet (Re) | | | 77.58 188 | 76.78 180 | 79.98 235 | 84.11 255 | 60.80 245 | 91.76 155 | 93.17 93 | 76.56 89 | 69.93 203 | 84.78 220 | 63.32 94 | 92.36 257 | 64.89 224 | 62.51 285 | 86.78 236 |
|
ACMMPR | | | 84.37 68 | 84.06 67 | 85.28 105 | 93.56 58 | 64.37 178 | 93.50 88 | 93.15 94 | 72.19 167 | 78.85 111 | 94.86 64 | 56.69 161 | 97.45 62 | 81.55 87 | 92.20 67 | 94.02 110 |
|
GST-MVS | | | 84.63 67 | 84.29 66 | 85.66 93 | 92.82 78 | 65.27 149 | 93.04 102 | 93.13 95 | 73.20 140 | 78.89 106 | 94.18 87 | 59.41 131 | 97.85 46 | 81.45 89 | 92.48 63 | 93.86 117 |
|
xiu_mvs_v2_base | | | 87.92 19 | 87.38 29 | 89.55 10 | 91.41 120 | 76.43 3 | 95.74 20 | 93.12 96 | 83.53 12 | 89.55 16 | 95.95 29 | 53.45 201 | 97.68 50 | 91.07 14 | 92.62 59 | 94.54 87 |
|
test_prior3 | | | 87.38 25 | 87.70 22 | 86.42 66 | 94.71 33 | 67.35 93 | 95.10 36 | 93.10 97 | 75.40 101 | 85.25 48 | 95.61 37 | 67.94 40 | 96.84 102 | 87.47 40 | 94.77 23 | 95.05 69 |
|
test_prior | | | | | 86.42 66 | 94.71 33 | 67.35 93 | | 93.10 97 | | | | | 96.84 102 | | | 95.05 69 |
|
test11 | | | | | | | | | 93.01 99 | | | | | | | | |
|
CostFormer | | | 82.33 104 | 81.15 109 | 85.86 84 | 89.01 167 | 68.46 63 | 82.39 297 | 93.01 99 | 75.59 96 | 80.25 90 | 81.57 256 | 72.03 27 | 94.96 166 | 79.06 107 | 77.48 187 | 94.16 101 |
|
PAPR | | | 85.15 58 | 84.47 62 | 87.18 39 | 96.02 22 | 68.29 67 | 91.85 150 | 93.00 101 | 76.59 88 | 79.03 105 | 95.00 56 | 61.59 106 | 97.61 58 | 78.16 116 | 89.00 97 | 95.63 43 |
|
region2R | | | 84.36 69 | 84.03 68 | 85.36 103 | 93.54 59 | 64.31 180 | 93.43 91 | 92.95 102 | 72.16 170 | 78.86 110 | 94.84 65 | 56.97 156 | 97.53 60 | 81.38 91 | 92.11 69 | 94.24 96 |
|
test12 | | | | | 87.09 42 | 94.60 35 | 68.86 54 | | 92.91 103 | | 82.67 69 | | 65.44 66 | 97.55 59 | | 93.69 46 | 94.84 76 |
|
lupinMVS | | | 87.74 21 | 87.77 21 | 87.63 30 | 89.24 162 | 71.18 18 | 96.57 10 | 92.90 104 | 82.70 16 | 87.13 26 | 95.27 47 | 64.99 70 | 95.80 133 | 89.34 22 | 91.80 71 | 95.93 36 |
|
PAPM_NR | | | 82.97 95 | 81.84 102 | 86.37 69 | 94.10 46 | 66.76 113 | 87.66 260 | 92.84 105 | 69.96 219 | 74.07 153 | 93.57 98 | 63.10 97 | 97.50 61 | 70.66 170 | 90.58 88 | 94.85 75 |
|
CDPH-MVS | | | 85.71 52 | 85.46 53 | 86.46 64 | 94.75 32 | 67.19 98 | 93.89 71 | 92.83 106 | 70.90 206 | 83.09 65 | 95.28 45 | 63.62 88 | 97.36 68 | 80.63 96 | 94.18 35 | 94.84 76 |
|
tfpnnormal | | | 70.10 261 | 67.36 267 | 78.32 261 | 83.45 264 | 60.97 243 | 88.85 242 | 92.77 107 | 64.85 264 | 60.83 284 | 78.53 291 | 43.52 273 | 93.48 220 | 31.73 351 | 61.70 295 | 80.52 320 |
|
PAPM | | | 85.89 49 | 85.46 53 | 87.18 39 | 88.20 187 | 72.42 12 | 92.41 127 | 92.77 107 | 82.11 21 | 80.34 89 | 93.07 107 | 68.27 35 | 95.02 164 | 78.39 114 | 93.59 47 | 94.09 105 |
|
MS-PatchMatch | | | 77.90 185 | 76.50 184 | 82.12 187 | 85.99 224 | 69.95 34 | 91.75 157 | 92.70 109 | 73.97 124 | 62.58 277 | 84.44 224 | 41.11 280 | 95.78 134 | 63.76 231 | 92.17 68 | 80.62 319 |
|
MSLP-MVS++ | | | 86.27 43 | 85.91 47 | 87.35 36 | 92.01 98 | 68.97 53 | 95.04 40 | 92.70 109 | 79.04 57 | 81.50 76 | 96.50 17 | 58.98 137 | 96.78 104 | 83.49 72 | 93.93 39 | 96.29 26 |
|
ab-mvs | | | 80.18 138 | 78.31 153 | 85.80 86 | 88.44 179 | 65.49 146 | 83.00 294 | 92.67 111 | 71.82 182 | 77.36 124 | 85.01 216 | 54.50 184 | 96.59 109 | 76.35 128 | 75.63 199 | 95.32 53 |
|
save fliter | | | | | | 93.84 49 | 67.89 78 | 95.05 38 | 92.66 112 | 78.19 66 | | | | | | | |
|
XVS | | | 83.87 82 | 83.47 73 | 85.05 110 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 112 | 73.99 122 | 78.18 114 | 94.31 84 | 55.25 175 | 97.41 65 | 79.16 105 | 91.58 75 | 93.95 112 |
|
X-MVStestdata | | | 76.86 196 | 74.13 216 | 85.05 110 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 112 | 73.99 122 | 78.18 114 | 10.19 364 | 55.25 175 | 97.41 65 | 79.16 105 | 91.58 75 | 93.95 112 |
|
SD-MVS | | | 87.49 24 | 87.49 26 | 87.50 32 | 93.60 56 | 68.82 56 | 93.90 70 | 92.63 115 | 76.86 84 | 87.90 23 | 95.76 32 | 66.17 57 | 97.63 56 | 89.06 26 | 91.48 77 | 96.05 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
无先验 | | | | | | | | 92.71 115 | 92.61 116 | 62.03 286 | | | | 97.01 88 | 66.63 202 | | 93.97 111 |
|
APD-MVS |  | | 85.93 48 | 85.99 45 | 85.76 88 | 95.98 23 | 65.21 151 | 93.59 84 | 92.58 117 | 66.54 252 | 86.17 35 | 95.88 30 | 63.83 84 | 97.00 90 | 86.39 52 | 92.94 55 | 95.06 68 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
1314 | | | 80.70 129 | 78.95 147 | 85.94 81 | 87.77 196 | 67.56 86 | 87.91 256 | 92.55 118 | 72.17 169 | 67.44 234 | 93.09 104 | 50.27 225 | 97.04 87 | 71.68 163 | 87.64 108 | 93.23 134 |
|
MP-MVS-pluss | | | 85.24 57 | 85.13 56 | 85.56 95 | 91.42 118 | 65.59 142 | 91.54 164 | 92.51 119 | 74.56 112 | 80.62 86 | 95.64 36 | 59.15 134 | 97.00 90 | 86.94 49 | 93.80 41 | 94.07 107 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
WR-MVS | | | 76.76 200 | 75.74 195 | 79.82 240 | 84.60 245 | 62.27 225 | 92.60 121 | 92.51 119 | 76.06 92 | 67.87 230 | 85.34 213 | 56.76 158 | 90.24 290 | 62.20 242 | 63.69 278 | 86.94 234 |
|
OpenMVS |  | 70.45 11 | 78.54 173 | 75.92 192 | 86.41 68 | 85.93 228 | 71.68 14 | 92.74 113 | 92.51 119 | 66.49 253 | 64.56 258 | 91.96 132 | 43.88 271 | 98.10 35 | 54.61 272 | 90.65 87 | 89.44 201 |
|
CHOSEN 1792x2688 | | | 84.98 61 | 83.45 74 | 89.57 9 | 89.94 145 | 75.14 5 | 92.07 139 | 92.32 122 | 81.87 24 | 75.68 137 | 88.27 179 | 60.18 119 | 98.60 21 | 80.46 98 | 90.27 91 | 94.96 73 |
|
CP-MVS | | | 83.71 86 | 83.40 78 | 84.65 125 | 93.14 70 | 63.84 188 | 94.59 46 | 92.28 123 | 71.03 204 | 77.41 123 | 94.92 62 | 55.21 178 | 96.19 119 | 81.32 92 | 90.70 86 | 93.91 114 |
|
MP-MVS |  | | 85.02 59 | 84.97 58 | 85.17 109 | 92.60 84 | 64.27 183 | 93.24 95 | 92.27 124 | 73.13 142 | 79.63 98 | 94.43 75 | 61.90 104 | 97.17 80 | 85.00 60 | 92.56 60 | 94.06 108 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
zzz-MVS | | | 84.73 64 | 84.47 62 | 85.50 96 | 91.89 104 | 65.16 153 | 91.55 163 | 92.23 125 | 75.32 103 | 80.53 87 | 95.21 51 | 56.06 169 | 97.16 81 | 84.86 63 | 92.55 61 | 94.18 98 |
|
MTGPA |  | | | | | | | | 92.23 125 | | | | | | | | |
|
MTAPA | | | 83.91 81 | 83.38 79 | 85.50 96 | 91.89 104 | 65.16 153 | 81.75 299 | 92.23 125 | 75.32 103 | 80.53 87 | 95.21 51 | 56.06 169 | 97.16 81 | 84.86 63 | 92.55 61 | 94.18 98 |
|
VPNet | | | 78.82 164 | 77.53 168 | 82.70 167 | 84.52 247 | 66.44 120 | 93.93 68 | 92.23 125 | 80.46 38 | 72.60 166 | 88.38 177 | 49.18 236 | 93.13 225 | 72.47 153 | 63.97 276 | 88.55 209 |
|
ACMMP |  | | 81.49 117 | 80.67 118 | 83.93 142 | 91.71 110 | 62.90 214 | 92.13 134 | 92.22 129 | 71.79 183 | 71.68 183 | 93.49 100 | 50.32 223 | 96.96 96 | 78.47 113 | 84.22 141 | 91.93 166 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PGM-MVS | | | 83.25 90 | 82.70 92 | 84.92 114 | 92.81 80 | 64.07 186 | 90.44 203 | 92.20 130 | 71.28 199 | 77.23 126 | 94.43 75 | 55.17 179 | 97.31 72 | 79.33 104 | 91.38 78 | 93.37 127 |
|
jason | | | 86.40 41 | 86.17 43 | 87.11 41 | 86.16 222 | 70.54 25 | 95.71 23 | 92.19 131 | 82.00 23 | 84.58 51 | 94.34 82 | 61.86 105 | 95.53 154 | 87.76 36 | 90.89 84 | 95.27 59 |
jason: jason. |
CLD-MVS | | | 82.73 98 | 82.35 98 | 83.86 143 | 87.90 194 | 67.65 85 | 95.45 26 | 92.18 132 | 85.06 7 | 72.58 167 | 92.27 128 | 52.46 207 | 95.78 134 | 84.18 66 | 79.06 170 | 88.16 217 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_Test | | | 84.16 76 | 83.20 81 | 87.05 43 | 91.56 114 | 69.82 36 | 89.99 220 | 92.05 133 | 77.77 72 | 82.84 66 | 86.57 201 | 63.93 83 | 96.09 123 | 74.91 138 | 89.18 96 | 95.25 62 |
|
EIA-MVS | | | 84.84 63 | 84.88 59 | 84.69 124 | 91.30 121 | 62.36 222 | 93.85 73 | 92.04 134 | 79.45 47 | 79.33 101 | 94.28 85 | 62.42 101 | 96.35 115 | 80.05 99 | 91.25 81 | 95.38 49 |
|
WR-MVS_H | | | 70.59 258 | 69.94 254 | 72.53 309 | 81.03 281 | 51.43 322 | 87.35 264 | 92.03 135 | 67.38 246 | 60.23 286 | 80.70 270 | 55.84 173 | 83.45 335 | 46.33 305 | 58.58 313 | 82.72 298 |
|
FMVSNet3 | | | 77.73 186 | 76.04 190 | 82.80 164 | 91.20 124 | 68.99 52 | 91.87 148 | 91.99 136 | 73.35 139 | 67.04 240 | 83.19 237 | 56.62 162 | 92.14 261 | 59.80 256 | 69.34 234 | 87.28 229 |
|
DP-MVS Recon | | | 82.73 98 | 81.65 105 | 85.98 79 | 97.31 4 | 67.06 102 | 95.15 33 | 91.99 136 | 69.08 232 | 76.50 133 | 93.89 93 | 54.48 187 | 98.20 32 | 70.76 168 | 85.66 125 | 92.69 148 |
|
EPNet_dtu | | | 78.80 165 | 79.26 143 | 77.43 272 | 88.06 189 | 49.71 331 | 91.96 146 | 91.95 138 | 77.67 74 | 76.56 132 | 91.28 141 | 58.51 139 | 90.20 292 | 56.37 267 | 80.95 159 | 92.39 155 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETV-MVS | | | 86.01 47 | 86.11 44 | 85.70 92 | 90.21 141 | 67.02 105 | 93.43 91 | 91.92 139 | 81.21 31 | 84.13 59 | 94.07 90 | 60.93 113 | 95.63 144 | 89.28 23 | 89.81 92 | 94.46 93 |
|
LFMVS | | | 84.34 70 | 82.73 91 | 89.18 11 | 94.76 31 | 73.25 10 | 94.99 41 | 91.89 140 | 71.90 175 | 82.16 71 | 93.49 100 | 47.98 247 | 97.05 85 | 82.55 81 | 84.82 130 | 97.25 5 |
|
HPM-MVS |  | | 83.25 90 | 82.95 86 | 84.17 138 | 92.25 91 | 62.88 215 | 90.91 189 | 91.86 141 | 70.30 215 | 77.12 127 | 93.96 92 | 56.75 159 | 96.28 116 | 82.04 83 | 91.34 80 | 93.34 128 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 82.96 96 | 82.44 96 | 84.52 129 | 92.83 76 | 62.92 213 | 92.76 112 | 91.85 142 | 71.52 195 | 75.61 140 | 94.24 86 | 53.48 200 | 96.99 93 | 78.97 108 | 90.73 85 | 93.64 123 |
|
XXY-MVS | | | 77.94 183 | 76.44 185 | 82.43 173 | 82.60 271 | 64.44 173 | 92.01 142 | 91.83 143 | 73.59 135 | 70.00 200 | 85.82 209 | 54.43 188 | 94.76 171 | 69.63 176 | 68.02 245 | 88.10 218 |
|
baseline | | | 85.01 60 | 84.44 64 | 86.71 53 | 88.33 182 | 68.73 57 | 90.24 211 | 91.82 144 | 81.05 34 | 81.18 79 | 92.50 120 | 63.69 87 | 96.08 125 | 84.45 65 | 86.71 118 | 95.32 53 |
|
casdiffmvs | | | 85.37 55 | 84.87 60 | 86.84 47 | 88.25 185 | 69.07 49 | 93.04 102 | 91.76 145 | 81.27 30 | 80.84 85 | 92.07 131 | 64.23 79 | 96.06 126 | 84.98 61 | 87.43 110 | 95.39 48 |
|
NR-MVSNet | | | 76.05 209 | 74.59 205 | 80.44 224 | 82.96 269 | 62.18 226 | 90.83 194 | 91.73 146 | 77.12 81 | 60.96 283 | 86.35 202 | 59.28 133 | 91.80 269 | 60.74 249 | 61.34 298 | 87.35 227 |
|
PVSNet_Blended_VisFu | | | 83.97 79 | 83.50 72 | 85.39 102 | 90.02 143 | 66.59 118 | 93.77 78 | 91.73 146 | 77.43 79 | 77.08 129 | 89.81 164 | 63.77 86 | 96.97 95 | 79.67 101 | 88.21 103 | 92.60 151 |
|
canonicalmvs | | | 86.85 36 | 86.25 42 | 88.66 15 | 91.80 108 | 71.92 13 | 93.54 86 | 91.71 148 | 80.26 39 | 87.55 24 | 95.25 49 | 63.59 90 | 96.93 100 | 88.18 33 | 84.34 136 | 97.11 6 |
|
HQP3-MVS | | | | | | | | | 91.70 149 | | | | | | | 78.90 171 | |
|
HQP-MVS | | | 81.14 122 | 80.64 119 | 82.64 169 | 87.54 198 | 63.66 197 | 94.06 60 | 91.70 149 | 79.80 41 | 74.18 149 | 90.30 156 | 51.63 214 | 95.61 146 | 77.63 120 | 78.90 171 | 88.63 207 |
|
baseline1 | | | 81.84 114 | 81.03 114 | 84.28 137 | 91.60 112 | 66.62 116 | 91.08 186 | 91.66 151 | 81.87 24 | 74.86 145 | 91.67 139 | 69.98 32 | 94.92 169 | 71.76 161 | 64.75 268 | 91.29 180 |
|
FMVSNet2 | | | 76.07 206 | 74.01 218 | 82.26 181 | 88.85 169 | 67.66 84 | 91.33 175 | 91.61 152 | 70.84 207 | 65.98 247 | 82.25 245 | 48.03 244 | 92.00 266 | 58.46 261 | 68.73 240 | 87.10 231 |
|
114514_t | | | 79.17 157 | 77.67 164 | 83.68 149 | 95.32 26 | 65.53 144 | 92.85 111 | 91.60 153 | 63.49 272 | 67.92 227 | 90.63 149 | 46.65 255 | 95.72 141 | 67.01 200 | 83.54 142 | 89.79 195 |
|
test-LLR | | | 80.10 140 | 79.56 135 | 81.72 196 | 86.93 211 | 61.17 238 | 92.70 116 | 91.54 154 | 71.51 196 | 75.62 138 | 86.94 198 | 53.83 193 | 92.38 255 | 72.21 155 | 84.76 132 | 91.60 169 |
|
test-mter | | | 79.96 143 | 79.38 141 | 81.72 196 | 86.93 211 | 61.17 238 | 92.70 116 | 91.54 154 | 73.85 127 | 75.62 138 | 86.94 198 | 49.84 230 | 92.38 255 | 72.21 155 | 84.76 132 | 91.60 169 |
|
DU-MVS | | | 76.86 196 | 75.84 193 | 79.91 237 | 82.96 269 | 60.26 256 | 91.26 178 | 91.54 154 | 76.46 90 | 68.88 214 | 86.35 202 | 56.16 166 | 92.13 262 | 66.38 208 | 62.55 283 | 87.35 227 |
|
旧先验1 | | | | | | 91.94 100 | 60.74 249 | | 91.50 157 | | | 94.36 77 | 65.23 67 | | | 91.84 70 | 94.55 85 |
|
VDD-MVS | | | 83.06 93 | 81.81 104 | 86.81 49 | 90.86 131 | 67.70 83 | 95.40 27 | 91.50 157 | 75.46 98 | 81.78 73 | 92.34 127 | 40.09 283 | 97.13 83 | 86.85 50 | 82.04 150 | 95.60 44 |
|
新几何1 | | | | | 84.73 120 | 92.32 88 | 64.28 182 | | 91.46 159 | 59.56 303 | 79.77 96 | 92.90 112 | 56.95 157 | 96.57 111 | 63.40 232 | 92.91 56 | 93.34 128 |
|
tpm2 | | | 79.80 147 | 77.95 160 | 85.34 104 | 88.28 183 | 68.26 69 | 81.56 302 | 91.42 160 | 70.11 217 | 77.59 122 | 80.50 274 | 67.40 46 | 94.26 193 | 67.34 197 | 77.35 188 | 93.51 125 |
|
CS-MVS | | | 85.88 50 | 86.27 39 | 84.72 122 | 89.87 146 | 65.33 147 | 95.15 33 | 91.40 161 | 79.80 41 | 84.41 54 | 94.59 71 | 61.53 107 | 95.67 143 | 87.23 46 | 92.46 64 | 93.15 136 |
|
1121 | | | 81.25 120 | 80.05 125 | 84.87 117 | 92.30 89 | 64.31 180 | 87.91 256 | 91.39 162 | 59.44 304 | 79.94 93 | 92.91 111 | 57.09 150 | 97.01 88 | 66.63 202 | 92.81 58 | 93.29 131 |
|
TranMVSNet+NR-MVSNet | | | 75.86 214 | 74.52 208 | 79.89 238 | 82.44 272 | 60.64 252 | 91.37 173 | 91.37 163 | 76.63 87 | 67.65 232 | 86.21 205 | 52.37 208 | 91.55 274 | 61.84 244 | 60.81 301 | 87.48 223 |
|
VDDNet | | | 80.50 133 | 78.26 154 | 87.21 38 | 86.19 221 | 69.79 37 | 94.48 47 | 91.31 164 | 60.42 296 | 79.34 100 | 90.91 144 | 38.48 290 | 96.56 112 | 82.16 82 | 81.05 158 | 95.27 59 |
|
HQP_MVS | | | 80.34 136 | 79.75 131 | 82.12 187 | 86.94 209 | 62.42 220 | 93.13 98 | 91.31 164 | 78.81 60 | 72.53 168 | 89.14 170 | 50.66 221 | 95.55 152 | 76.74 123 | 78.53 176 | 88.39 213 |
|
plane_prior5 | | | | | | | | | 91.31 164 | | | | | 95.55 152 | 76.74 123 | 78.53 176 | 88.39 213 |
|
SR-MVS | | | 82.81 97 | 82.58 93 | 83.50 155 | 93.35 62 | 61.16 240 | 92.23 132 | 91.28 167 | 64.48 265 | 81.27 78 | 95.28 45 | 53.71 196 | 95.86 132 | 82.87 76 | 88.77 99 | 93.49 126 |
|
nrg030 | | | 80.93 127 | 79.86 129 | 84.13 139 | 83.69 260 | 68.83 55 | 93.23 96 | 91.20 168 | 75.55 97 | 75.06 144 | 88.22 183 | 63.04 98 | 94.74 173 | 81.88 84 | 66.88 252 | 88.82 205 |
|
EPMVS | | | 78.49 174 | 75.98 191 | 86.02 78 | 91.21 123 | 69.68 40 | 80.23 312 | 91.20 168 | 75.25 105 | 72.48 170 | 78.11 295 | 54.65 183 | 93.69 216 | 57.66 264 | 83.04 143 | 94.69 79 |
|
hse-mvs2 | | | 81.12 124 | 81.11 113 | 81.16 209 | 86.52 215 | 57.48 290 | 89.40 231 | 91.16 170 | 81.45 27 | 82.73 67 | 90.49 152 | 60.11 120 | 94.58 177 | 87.69 37 | 60.41 306 | 91.41 174 |
|
AUN-MVS | | | 78.37 175 | 77.43 169 | 81.17 208 | 86.60 214 | 57.45 291 | 89.46 230 | 91.16 170 | 74.11 120 | 74.40 148 | 90.49 152 | 55.52 174 | 94.57 178 | 74.73 141 | 60.43 305 | 91.48 172 |
|
cascas | | | 78.18 178 | 75.77 194 | 85.41 101 | 87.14 207 | 69.11 48 | 92.96 106 | 91.15 172 | 66.71 251 | 70.47 191 | 86.07 206 | 37.49 300 | 96.48 114 | 70.15 173 | 79.80 164 | 90.65 186 |
|
tpm | | | 78.58 172 | 77.03 176 | 83.22 159 | 85.94 227 | 64.56 167 | 83.21 292 | 91.14 173 | 78.31 65 | 73.67 156 | 79.68 285 | 64.01 81 | 92.09 264 | 66.07 212 | 71.26 226 | 93.03 141 |
|
PCF-MVS | | 73.15 9 | 79.29 155 | 77.63 166 | 84.29 136 | 86.06 223 | 65.96 132 | 87.03 266 | 91.10 174 | 69.86 221 | 69.79 205 | 90.64 147 | 57.54 147 | 96.59 109 | 64.37 227 | 82.29 147 | 90.32 189 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Anonymous20240529 | | | 76.84 198 | 74.15 215 | 84.88 116 | 91.02 125 | 64.95 163 | 93.84 76 | 91.09 175 | 53.57 325 | 73.00 159 | 87.42 193 | 35.91 310 | 97.32 71 | 69.14 183 | 72.41 218 | 92.36 156 |
|
test_part1 | | | 79.63 149 | 77.86 163 | 84.93 113 | 92.50 86 | 71.43 15 | 94.15 55 | 91.08 176 | 72.51 156 | 70.66 189 | 84.98 217 | 59.84 124 | 95.07 163 | 72.07 158 | 62.94 280 | 88.30 216 |
|
PS-MVSNAJss | | | 77.26 193 | 76.31 187 | 80.13 232 | 80.64 286 | 59.16 272 | 90.63 202 | 91.06 177 | 72.80 150 | 68.58 221 | 84.57 223 | 53.55 197 | 93.96 208 | 72.97 145 | 71.96 220 | 87.27 230 |
|
PVSNet | | 73.49 8 | 80.05 141 | 78.63 149 | 84.31 135 | 90.92 128 | 64.97 162 | 92.47 126 | 91.05 178 | 79.18 52 | 72.43 172 | 90.51 151 | 37.05 306 | 94.06 200 | 68.06 190 | 86.00 123 | 93.90 116 |
|
API-MVS | | | 82.28 105 | 80.53 121 | 87.54 31 | 96.13 20 | 70.59 24 | 93.63 82 | 91.04 179 | 65.72 259 | 75.45 142 | 92.83 116 | 56.11 168 | 98.89 15 | 64.10 228 | 89.75 95 | 93.15 136 |
|
APD-MVS_3200maxsize | | | 81.64 116 | 81.32 108 | 82.59 171 | 92.36 87 | 58.74 275 | 91.39 170 | 91.01 180 | 63.35 273 | 79.72 97 | 94.62 70 | 51.82 210 | 96.14 121 | 79.71 100 | 87.93 106 | 92.89 146 |
|
test1172 | | | 81.90 113 | 81.83 103 | 82.13 186 | 93.23 64 | 57.52 289 | 91.61 162 | 90.98 181 | 64.32 267 | 80.20 91 | 95.00 56 | 51.26 217 | 95.61 146 | 81.73 86 | 88.13 104 | 93.26 132 |
|
RRT_MVS | | | 77.38 191 | 76.59 183 | 79.77 242 | 90.91 129 | 63.61 199 | 91.15 184 | 90.91 182 | 72.28 164 | 72.06 177 | 87.28 196 | 43.92 270 | 89.04 301 | 73.32 143 | 67.47 249 | 86.67 237 |
|
MVP-Stereo | | | 77.12 195 | 76.23 188 | 79.79 241 | 81.72 277 | 66.34 123 | 89.29 232 | 90.88 183 | 70.56 213 | 62.01 280 | 82.88 238 | 49.34 233 | 94.13 195 | 65.55 219 | 93.80 41 | 78.88 332 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UGNet | | | 79.87 145 | 78.68 148 | 83.45 157 | 89.96 144 | 61.51 235 | 92.13 134 | 90.79 184 | 76.83 85 | 78.85 111 | 86.33 204 | 38.16 292 | 96.17 120 | 67.93 192 | 87.17 111 | 92.67 149 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAMVS | | | 80.37 135 | 79.45 138 | 83.13 161 | 85.14 237 | 63.37 201 | 91.23 179 | 90.76 185 | 74.81 111 | 72.65 165 | 88.49 174 | 60.63 115 | 92.95 229 | 69.41 179 | 81.95 151 | 93.08 140 |
|
MVSFormer | | | 83.75 85 | 82.88 87 | 86.37 69 | 89.24 162 | 71.18 18 | 89.07 239 | 90.69 186 | 65.80 257 | 87.13 26 | 94.34 82 | 64.99 70 | 92.67 244 | 72.83 147 | 91.80 71 | 95.27 59 |
|
test_djsdf | | | 73.76 238 | 72.56 234 | 77.39 273 | 77.00 323 | 53.93 311 | 89.07 239 | 90.69 186 | 65.80 257 | 63.92 264 | 82.03 248 | 43.14 274 | 92.67 244 | 72.83 147 | 68.53 241 | 85.57 265 |
|
PMMVS | | | 81.98 112 | 82.04 100 | 81.78 194 | 89.76 150 | 56.17 299 | 91.13 185 | 90.69 186 | 77.96 70 | 80.09 92 | 93.57 98 | 46.33 258 | 94.99 165 | 81.41 90 | 87.46 109 | 94.17 100 |
|
CDS-MVSNet | | | 81.43 118 | 80.74 116 | 83.52 153 | 86.26 220 | 64.45 172 | 92.09 137 | 90.65 189 | 75.83 95 | 73.95 155 | 89.81 164 | 63.97 82 | 92.91 234 | 71.27 164 | 82.82 145 | 93.20 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mvs_anonymous | | | 81.36 119 | 79.99 127 | 85.46 98 | 90.39 138 | 68.40 64 | 86.88 270 | 90.61 190 | 74.41 113 | 70.31 196 | 84.67 221 | 63.79 85 | 92.32 259 | 73.13 144 | 85.70 124 | 95.67 41 |
|
SR-MVS-dyc-post | | | 81.06 125 | 80.70 117 | 82.15 184 | 92.02 96 | 58.56 277 | 90.90 190 | 90.45 191 | 62.76 279 | 78.89 106 | 94.46 73 | 51.26 217 | 95.61 146 | 78.77 111 | 86.77 116 | 92.28 160 |
|
RE-MVS-def | | | | 80.48 122 | | 92.02 96 | 58.56 277 | 90.90 190 | 90.45 191 | 62.76 279 | 78.89 106 | 94.46 73 | 49.30 234 | | 78.77 111 | 86.77 116 | 92.28 160 |
|
RPMNet | | | 70.42 260 | 65.68 276 | 84.63 127 | 83.15 267 | 67.96 76 | 70.25 335 | 90.45 191 | 46.83 343 | 69.97 201 | 65.10 342 | 56.48 165 | 95.30 161 | 35.79 340 | 73.13 210 | 90.64 187 |
|
xiu_mvs_v1_base_debu | | | 82.16 107 | 81.12 110 | 85.26 106 | 86.42 216 | 68.72 58 | 92.59 123 | 90.44 194 | 73.12 143 | 84.20 56 | 94.36 77 | 38.04 294 | 95.73 137 | 84.12 67 | 86.81 113 | 91.33 175 |
|
xiu_mvs_v1_base | | | 82.16 107 | 81.12 110 | 85.26 106 | 86.42 216 | 68.72 58 | 92.59 123 | 90.44 194 | 73.12 143 | 84.20 56 | 94.36 77 | 38.04 294 | 95.73 137 | 84.12 67 | 86.81 113 | 91.33 175 |
|
xiu_mvs_v1_base_debi | | | 82.16 107 | 81.12 110 | 85.26 106 | 86.42 216 | 68.72 58 | 92.59 123 | 90.44 194 | 73.12 143 | 84.20 56 | 94.36 77 | 38.04 294 | 95.73 137 | 84.12 67 | 86.81 113 | 91.33 175 |
|
GBi-Net | | | 75.65 217 | 73.83 220 | 81.10 213 | 88.85 169 | 65.11 156 | 90.01 217 | 90.32 197 | 70.84 207 | 67.04 240 | 80.25 279 | 48.03 244 | 91.54 275 | 59.80 256 | 69.34 234 | 86.64 238 |
|
test1 | | | 75.65 217 | 73.83 220 | 81.10 213 | 88.85 169 | 65.11 156 | 90.01 217 | 90.32 197 | 70.84 207 | 67.04 240 | 80.25 279 | 48.03 244 | 91.54 275 | 59.80 256 | 69.34 234 | 86.64 238 |
|
FMVSNet1 | | | 72.71 248 | 69.91 255 | 81.10 213 | 83.60 262 | 65.11 156 | 90.01 217 | 90.32 197 | 63.92 269 | 63.56 268 | 80.25 279 | 36.35 309 | 91.54 275 | 54.46 273 | 66.75 253 | 86.64 238 |
|
PVSNet_0 | | 68.08 15 | 71.81 252 | 68.32 264 | 82.27 179 | 84.68 243 | 62.31 224 | 88.68 245 | 90.31 200 | 75.84 94 | 57.93 302 | 80.65 273 | 37.85 297 | 94.19 194 | 69.94 174 | 29.05 355 | 90.31 190 |
|
OPM-MVS | | | 79.00 159 | 78.09 156 | 81.73 195 | 83.52 263 | 63.83 189 | 91.64 161 | 90.30 201 | 76.36 91 | 71.97 178 | 89.93 163 | 46.30 259 | 95.17 162 | 75.10 133 | 77.70 181 | 86.19 249 |
|
CP-MVSNet | | | 70.50 259 | 69.91 255 | 72.26 312 | 80.71 284 | 51.00 325 | 87.23 265 | 90.30 201 | 67.84 240 | 59.64 288 | 82.69 240 | 50.23 226 | 82.30 343 | 51.28 282 | 59.28 309 | 83.46 288 |
|
KD-MVS_2432*1600 | | | 69.03 270 | 66.37 272 | 77.01 278 | 85.56 231 | 61.06 241 | 81.44 303 | 90.25 203 | 67.27 247 | 58.00 300 | 76.53 308 | 54.49 185 | 87.63 314 | 48.04 296 | 35.77 350 | 82.34 304 |
|
miper_refine_blended | | | 69.03 270 | 66.37 272 | 77.01 278 | 85.56 231 | 61.06 241 | 81.44 303 | 90.25 203 | 67.27 247 | 58.00 300 | 76.53 308 | 54.49 185 | 87.63 314 | 48.04 296 | 35.77 350 | 82.34 304 |
|
v148 | | | 76.19 204 | 74.47 209 | 81.36 203 | 80.05 294 | 64.44 173 | 91.75 157 | 90.23 205 | 73.68 133 | 67.13 239 | 80.84 269 | 55.92 172 | 93.86 214 | 68.95 185 | 61.73 294 | 85.76 263 |
|
v2v482 | | | 77.42 190 | 75.65 196 | 82.73 166 | 80.38 288 | 67.13 101 | 91.85 150 | 90.23 205 | 75.09 107 | 69.37 206 | 83.39 235 | 53.79 195 | 94.44 186 | 71.77 160 | 65.00 265 | 86.63 241 |
|
v1144 | | | 76.73 201 | 74.88 201 | 82.27 179 | 80.23 293 | 66.60 117 | 91.68 159 | 90.21 207 | 73.69 132 | 69.06 211 | 81.89 249 | 52.73 205 | 94.40 187 | 69.21 182 | 65.23 262 | 85.80 260 |
|
GA-MVS | | | 78.33 177 | 76.23 188 | 84.65 125 | 83.65 261 | 66.30 124 | 91.44 165 | 90.14 208 | 76.01 93 | 70.32 195 | 84.02 227 | 42.50 275 | 94.72 174 | 70.98 165 | 77.00 192 | 92.94 144 |
|
MDTV_nov1_ep13 | | | | 72.61 233 | | 89.06 165 | 68.48 62 | 80.33 310 | 90.11 209 | 71.84 181 | 71.81 180 | 75.92 314 | 53.01 203 | 93.92 210 | 48.04 296 | 73.38 208 | |
|
D2MVS | | | 73.80 236 | 72.02 240 | 79.15 255 | 79.15 304 | 62.97 209 | 88.58 247 | 90.07 210 | 72.94 146 | 59.22 291 | 78.30 292 | 42.31 277 | 92.70 243 | 65.59 218 | 72.00 219 | 81.79 310 |
|
abl_6 | | | 79.82 146 | 79.20 144 | 81.70 198 | 89.85 147 | 58.34 279 | 88.47 249 | 90.07 210 | 62.56 282 | 77.71 118 | 93.08 105 | 47.65 251 | 96.78 104 | 77.94 118 | 85.45 127 | 89.99 194 |
|
TR-MVS | | | 78.77 167 | 77.37 174 | 82.95 162 | 90.49 135 | 60.88 244 | 93.67 80 | 90.07 210 | 70.08 218 | 74.51 147 | 91.37 140 | 45.69 261 | 95.70 142 | 60.12 254 | 80.32 162 | 92.29 159 |
|
Anonymous20231211 | | | 73.08 240 | 70.39 251 | 81.13 211 | 90.62 134 | 63.33 202 | 91.40 168 | 90.06 213 | 51.84 329 | 64.46 261 | 80.67 272 | 36.49 308 | 94.07 199 | 63.83 230 | 64.17 273 | 85.98 256 |
|
jajsoiax | | | 73.05 241 | 71.51 245 | 77.67 268 | 77.46 320 | 54.83 307 | 88.81 243 | 90.04 214 | 69.13 231 | 62.85 275 | 83.51 232 | 31.16 326 | 92.75 240 | 70.83 166 | 69.80 230 | 85.43 268 |
|
HyFIR lowres test | | | 81.03 126 | 79.56 135 | 85.43 100 | 87.81 195 | 68.11 73 | 90.18 212 | 90.01 215 | 70.65 212 | 72.95 161 | 86.06 207 | 63.61 89 | 94.50 185 | 75.01 136 | 79.75 165 | 93.67 121 |
|
ACMM | | 69.62 13 | 74.34 230 | 72.73 231 | 79.17 253 | 84.25 254 | 57.87 283 | 90.36 207 | 89.93 216 | 63.17 276 | 65.64 249 | 86.04 208 | 37.79 298 | 94.10 196 | 65.89 213 | 71.52 223 | 85.55 266 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CL-MVSNet_2432*1600 | | | 69.92 263 | 68.09 265 | 75.41 289 | 73.25 334 | 55.90 302 | 90.05 216 | 89.90 217 | 69.96 219 | 61.96 281 | 76.54 307 | 51.05 219 | 87.64 313 | 49.51 290 | 50.59 332 | 82.70 300 |
|
UnsupCasMVSNet_eth | | | 65.79 293 | 63.10 293 | 73.88 299 | 70.71 341 | 50.29 329 | 81.09 305 | 89.88 218 | 72.58 154 | 49.25 331 | 74.77 319 | 32.57 320 | 87.43 317 | 55.96 269 | 41.04 345 | 83.90 282 |
|
testdata | | | | | 81.34 204 | 89.02 166 | 57.72 285 | | 89.84 219 | 58.65 308 | 85.32 46 | 94.09 88 | 57.03 152 | 93.28 223 | 69.34 180 | 90.56 89 | 93.03 141 |
|
mvs_tets | | | 72.71 248 | 71.11 246 | 77.52 269 | 77.41 321 | 54.52 309 | 88.45 250 | 89.76 220 | 68.76 236 | 62.70 276 | 83.26 236 | 29.49 330 | 92.71 241 | 70.51 172 | 69.62 232 | 85.34 270 |
|
v1192 | | | 75.98 211 | 73.92 219 | 82.15 184 | 79.73 295 | 66.24 126 | 91.22 180 | 89.75 221 | 72.67 152 | 68.49 222 | 81.42 259 | 49.86 229 | 94.27 191 | 67.08 199 | 65.02 264 | 85.95 257 |
|
PS-CasMVS | | | 69.86 265 | 69.13 259 | 72.07 315 | 80.35 290 | 50.57 327 | 87.02 267 | 89.75 221 | 67.27 247 | 59.19 292 | 82.28 244 | 46.58 256 | 82.24 344 | 50.69 284 | 59.02 310 | 83.39 290 |
|
dp | | | 75.01 226 | 72.09 239 | 83.76 144 | 89.28 160 | 66.22 127 | 79.96 317 | 89.75 221 | 71.16 201 | 67.80 231 | 77.19 303 | 51.81 211 | 92.54 249 | 50.39 285 | 71.44 225 | 92.51 154 |
|
LPG-MVS_test | | | 75.82 215 | 74.58 206 | 79.56 248 | 84.31 252 | 59.37 269 | 90.44 203 | 89.73 224 | 69.49 224 | 64.86 254 | 88.42 175 | 38.65 288 | 94.30 189 | 72.56 151 | 72.76 213 | 85.01 273 |
|
LGP-MVS_train | | | | | 79.56 248 | 84.31 252 | 59.37 269 | | 89.73 224 | 69.49 224 | 64.86 254 | 88.42 175 | 38.65 288 | 94.30 189 | 72.56 151 | 72.76 213 | 85.01 273 |
|
tpmrst | | | 80.57 131 | 79.14 146 | 84.84 118 | 90.10 142 | 68.28 68 | 81.70 300 | 89.72 226 | 77.63 75 | 75.96 135 | 79.54 287 | 64.94 72 | 92.71 241 | 75.43 130 | 77.28 190 | 93.55 124 |
|
v144192 | | | 76.05 209 | 74.03 217 | 82.12 187 | 79.50 299 | 66.55 119 | 91.39 170 | 89.71 227 | 72.30 163 | 68.17 224 | 81.33 261 | 51.75 212 | 94.03 205 | 67.94 191 | 64.19 272 | 85.77 261 |
|
TAPA-MVS | | 70.22 12 | 74.94 227 | 73.53 223 | 79.17 253 | 90.40 137 | 52.07 319 | 89.19 236 | 89.61 228 | 62.69 281 | 70.07 198 | 92.67 118 | 48.89 241 | 94.32 188 | 38.26 335 | 79.97 163 | 91.12 182 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PatchmatchNet |  | | 77.46 189 | 74.63 204 | 85.96 80 | 89.55 155 | 70.35 27 | 79.97 316 | 89.55 229 | 72.23 166 | 70.94 187 | 76.91 306 | 57.03 152 | 92.79 239 | 54.27 274 | 81.17 157 | 94.74 78 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1921920 | | | 75.63 219 | 73.49 224 | 82.06 191 | 79.38 300 | 66.35 122 | 91.07 188 | 89.48 230 | 71.98 172 | 67.99 225 | 81.22 264 | 49.16 238 | 93.90 211 | 66.56 204 | 64.56 271 | 85.92 259 |
|
v7n | | | 71.31 255 | 68.65 260 | 79.28 251 | 76.40 326 | 60.77 247 | 86.71 271 | 89.45 231 | 64.17 268 | 58.77 296 | 78.24 293 | 44.59 268 | 93.54 218 | 57.76 262 | 61.75 293 | 83.52 286 |
|
test0.0.03 1 | | | 72.76 246 | 72.71 232 | 72.88 307 | 80.25 292 | 47.99 337 | 91.22 180 | 89.45 231 | 71.51 196 | 62.51 278 | 87.66 189 | 53.83 193 | 85.06 326 | 50.16 286 | 67.84 248 | 85.58 264 |
|
test222 | | | | | | 89.77 149 | 61.60 234 | 89.55 226 | 89.42 233 | 56.83 317 | 77.28 125 | 92.43 124 | 52.76 204 | | | 91.14 83 | 93.09 139 |
|
V42 | | | 76.46 203 | 74.55 207 | 82.19 183 | 79.14 305 | 67.82 80 | 90.26 210 | 89.42 233 | 73.75 130 | 68.63 220 | 81.89 249 | 51.31 216 | 94.09 197 | 71.69 162 | 64.84 266 | 84.66 276 |
|
BH-w/o | | | 80.49 134 | 79.30 142 | 84.05 141 | 90.83 132 | 64.36 179 | 93.60 83 | 89.42 233 | 74.35 115 | 69.09 209 | 90.15 159 | 55.23 177 | 95.61 146 | 64.61 225 | 86.43 122 | 92.17 164 |
|
pm-mvs1 | | | 72.89 244 | 71.09 247 | 78.26 263 | 79.10 306 | 57.62 287 | 90.80 195 | 89.30 236 | 67.66 243 | 62.91 274 | 81.78 251 | 49.11 239 | 92.95 229 | 60.29 253 | 58.89 311 | 84.22 279 |
|
v8 | | | 75.35 221 | 73.26 226 | 81.61 199 | 80.67 285 | 66.82 110 | 89.54 227 | 89.27 237 | 71.65 187 | 63.30 271 | 80.30 278 | 54.99 181 | 94.06 200 | 67.33 198 | 62.33 286 | 83.94 281 |
|
diffmvs | | | 84.28 71 | 83.83 69 | 85.61 94 | 87.40 202 | 68.02 75 | 90.88 192 | 89.24 238 | 80.54 37 | 81.64 75 | 92.52 119 | 59.83 125 | 94.52 184 | 87.32 44 | 85.11 128 | 94.29 94 |
|
PEN-MVS | | | 69.46 267 | 68.56 261 | 72.17 314 | 79.27 301 | 49.71 331 | 86.90 269 | 89.24 238 | 67.24 250 | 59.08 293 | 82.51 243 | 47.23 253 | 83.54 334 | 48.42 294 | 57.12 314 | 83.25 291 |
|
UniMVSNet_ETH3D | | | 72.74 247 | 70.53 250 | 79.36 250 | 78.62 313 | 56.64 297 | 85.01 277 | 89.20 240 | 63.77 271 | 64.84 256 | 84.44 224 | 34.05 315 | 91.86 268 | 63.94 229 | 70.89 228 | 89.57 199 |
|
SCA | | | 75.82 215 | 72.76 230 | 85.01 112 | 86.63 213 | 70.08 29 | 81.06 306 | 89.19 241 | 71.60 192 | 70.01 199 | 77.09 304 | 45.53 262 | 90.25 287 | 60.43 251 | 73.27 209 | 94.68 80 |
|
EG-PatchMatch MVS | | | 68.55 274 | 65.41 279 | 77.96 266 | 78.69 311 | 62.93 211 | 89.86 222 | 89.17 242 | 60.55 295 | 50.27 327 | 77.73 298 | 22.60 345 | 94.06 200 | 47.18 302 | 72.65 215 | 76.88 339 |
|
HPM-MVS_fast | | | 80.25 137 | 79.55 137 | 82.33 177 | 91.55 115 | 59.95 261 | 91.32 176 | 89.16 243 | 65.23 263 | 74.71 146 | 93.07 107 | 47.81 249 | 95.74 136 | 74.87 140 | 88.23 102 | 91.31 179 |
|
miper_enhance_ethall | | | 78.86 163 | 77.97 159 | 81.54 200 | 88.00 192 | 65.17 152 | 91.41 166 | 89.15 244 | 75.19 106 | 68.79 217 | 83.98 228 | 67.17 48 | 92.82 236 | 72.73 149 | 65.30 259 | 86.62 242 |
|
Fast-Effi-MVS+ | | | 81.14 122 | 80.01 126 | 84.51 130 | 90.24 140 | 65.86 134 | 94.12 57 | 89.15 244 | 73.81 129 | 75.37 143 | 88.26 180 | 57.26 148 | 94.53 183 | 66.97 201 | 84.92 129 | 93.15 136 |
|
Vis-MVSNet (Re-imp) | | | 79.24 156 | 79.57 134 | 78.24 264 | 88.46 178 | 52.29 318 | 90.41 205 | 89.12 246 | 74.24 118 | 69.13 208 | 91.91 133 | 65.77 63 | 90.09 294 | 59.00 260 | 88.09 105 | 92.33 157 |
|
v1240 | | | 75.21 224 | 72.98 228 | 81.88 193 | 79.20 302 | 66.00 130 | 90.75 197 | 89.11 247 | 71.63 191 | 67.41 236 | 81.22 264 | 47.36 252 | 93.87 212 | 65.46 220 | 64.72 269 | 85.77 261 |
|
v10 | | | 74.77 228 | 72.54 235 | 81.46 201 | 80.33 291 | 66.71 114 | 89.15 237 | 89.08 248 | 70.94 205 | 63.08 272 | 79.86 283 | 52.52 206 | 94.04 203 | 65.70 216 | 62.17 287 | 83.64 283 |
|
ACMP | | 71.68 10 | 75.58 220 | 74.23 213 | 79.62 246 | 84.97 241 | 59.64 264 | 90.80 195 | 89.07 249 | 70.39 214 | 62.95 273 | 87.30 195 | 38.28 291 | 93.87 212 | 72.89 146 | 71.45 224 | 85.36 269 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UnsupCasMVSNet_bld | | | 61.60 308 | 57.71 312 | 73.29 304 | 68.73 346 | 51.64 320 | 78.61 320 | 89.05 250 | 57.20 314 | 46.11 336 | 61.96 345 | 28.70 333 | 88.60 303 | 50.08 287 | 38.90 347 | 79.63 327 |
|
CANet_DTU | | | 84.09 77 | 83.52 71 | 85.81 85 | 90.30 139 | 66.82 110 | 91.87 148 | 89.01 251 | 85.27 6 | 86.09 36 | 93.74 95 | 47.71 250 | 96.98 94 | 77.90 119 | 89.78 94 | 93.65 122 |
|
UA-Net | | | 80.02 142 | 79.65 132 | 81.11 212 | 89.33 159 | 57.72 285 | 86.33 273 | 89.00 252 | 77.44 78 | 81.01 82 | 89.15 169 | 59.33 132 | 95.90 131 | 61.01 248 | 84.28 139 | 89.73 197 |
|
MVS_111021_LR | | | 82.02 111 | 81.52 106 | 83.51 154 | 88.42 180 | 62.88 215 | 89.77 223 | 88.93 253 | 76.78 86 | 75.55 141 | 93.10 103 | 50.31 224 | 95.38 157 | 83.82 71 | 87.02 112 | 92.26 163 |
|
miper_lstm_enhance | | | 73.05 241 | 71.73 243 | 77.03 277 | 83.80 258 | 58.32 280 | 81.76 298 | 88.88 254 | 69.80 222 | 61.01 282 | 78.23 294 | 57.19 149 | 87.51 316 | 65.34 221 | 59.53 308 | 85.27 272 |
|
anonymousdsp | | | 71.14 256 | 69.37 258 | 76.45 283 | 72.95 335 | 54.71 308 | 84.19 281 | 88.88 254 | 61.92 288 | 62.15 279 | 79.77 284 | 38.14 293 | 91.44 280 | 68.90 186 | 67.45 250 | 83.21 292 |
|
cl-mvsnet2 | | | 77.94 183 | 76.78 180 | 81.42 202 | 87.57 197 | 64.93 164 | 90.67 198 | 88.86 256 | 72.45 158 | 67.63 233 | 82.68 241 | 64.07 80 | 92.91 234 | 71.79 159 | 65.30 259 | 86.44 243 |
|
MIMVSNet | | | 71.64 253 | 68.44 262 | 81.23 207 | 81.97 276 | 64.44 173 | 73.05 332 | 88.80 257 | 69.67 223 | 64.59 257 | 74.79 318 | 32.79 318 | 87.82 311 | 53.99 275 | 76.35 196 | 91.42 173 |
|
IterMVS-LS | | | 76.49 202 | 75.18 200 | 80.43 225 | 84.49 248 | 62.74 217 | 90.64 200 | 88.80 257 | 72.40 160 | 65.16 253 | 81.72 252 | 60.98 112 | 92.27 260 | 67.74 193 | 64.65 270 | 86.29 246 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
cl-mvsnet____ | | | 76.07 206 | 74.67 202 | 80.28 228 | 85.15 236 | 61.76 231 | 90.12 213 | 88.73 259 | 71.16 201 | 65.43 250 | 81.57 256 | 61.15 109 | 92.95 229 | 66.54 205 | 62.17 287 | 86.13 252 |
|
cl-mvsnet1 | | | 76.07 206 | 74.67 202 | 80.28 228 | 85.14 237 | 61.75 232 | 90.12 213 | 88.73 259 | 71.16 201 | 65.42 251 | 81.60 255 | 61.15 109 | 92.94 233 | 66.54 205 | 62.16 289 | 86.14 250 |
|
JIA-IIPM | | | 66.06 291 | 62.45 298 | 76.88 281 | 81.42 280 | 54.45 310 | 57.49 353 | 88.67 261 | 49.36 336 | 63.86 265 | 46.86 351 | 56.06 169 | 90.25 287 | 49.53 289 | 68.83 238 | 85.95 257 |
|
OMC-MVS | | | 78.67 171 | 77.91 162 | 80.95 219 | 85.76 229 | 57.40 292 | 88.49 248 | 88.67 261 | 73.85 127 | 72.43 172 | 92.10 130 | 49.29 235 | 94.55 181 | 72.73 149 | 77.89 179 | 90.91 184 |
|
miper_ehance_all_eth | | | 77.60 187 | 76.44 185 | 81.09 216 | 85.70 230 | 64.41 176 | 90.65 199 | 88.64 263 | 72.31 162 | 67.37 238 | 82.52 242 | 64.77 74 | 92.64 247 | 70.67 169 | 65.30 259 | 86.24 248 |
|
BH-untuned | | | 78.68 169 | 77.08 175 | 83.48 156 | 89.84 148 | 63.74 192 | 92.70 116 | 88.59 264 | 71.57 193 | 66.83 243 | 88.65 173 | 51.75 212 | 95.39 156 | 59.03 259 | 84.77 131 | 91.32 178 |
|
DTE-MVSNet | | | 68.46 276 | 67.33 268 | 71.87 317 | 77.94 318 | 49.00 334 | 86.16 274 | 88.58 265 | 66.36 254 | 58.19 297 | 82.21 246 | 46.36 257 | 83.87 332 | 44.97 312 | 55.17 321 | 82.73 297 |
|
CPTT-MVS | | | 79.59 150 | 79.16 145 | 80.89 221 | 91.54 116 | 59.80 263 | 92.10 136 | 88.54 266 | 60.42 296 | 72.96 160 | 93.28 102 | 48.27 243 | 92.80 238 | 78.89 110 | 86.50 121 | 90.06 192 |
|
CVMVSNet | | | 74.04 233 | 74.27 212 | 73.33 303 | 85.33 233 | 43.94 346 | 89.53 228 | 88.39 267 | 54.33 324 | 70.37 194 | 90.13 160 | 49.17 237 | 84.05 329 | 61.83 245 | 79.36 167 | 91.99 165 |
|
1112_ss | | | 80.56 132 | 79.83 130 | 82.77 165 | 88.65 174 | 60.78 246 | 92.29 129 | 88.36 268 | 72.58 154 | 72.46 171 | 94.95 58 | 65.09 69 | 93.42 222 | 66.38 208 | 77.71 180 | 94.10 104 |
|
tpmvs | | | 72.88 245 | 69.76 257 | 82.22 182 | 90.98 126 | 67.05 103 | 78.22 324 | 88.30 269 | 63.10 277 | 64.35 263 | 74.98 317 | 55.09 180 | 94.27 191 | 43.25 315 | 69.57 233 | 85.34 270 |
|
PLC |  | 68.80 14 | 75.23 223 | 73.68 222 | 79.86 239 | 92.93 74 | 58.68 276 | 90.64 200 | 88.30 269 | 60.90 293 | 64.43 262 | 90.53 150 | 42.38 276 | 94.57 178 | 56.52 266 | 76.54 195 | 86.33 244 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
eth_miper_zixun_eth | | | 75.96 212 | 74.40 210 | 80.66 222 | 84.66 244 | 63.02 208 | 89.28 233 | 88.27 271 | 71.88 177 | 65.73 248 | 81.65 253 | 59.45 129 | 92.81 237 | 68.13 189 | 60.53 303 | 86.14 250 |
|
IS-MVSNet | | | 80.14 139 | 79.41 139 | 82.33 177 | 87.91 193 | 60.08 260 | 91.97 145 | 88.27 271 | 72.90 149 | 71.44 185 | 91.73 138 | 61.44 108 | 93.66 217 | 62.47 241 | 86.53 120 | 93.24 133 |
|
Vis-MVSNet |  | | 80.92 128 | 79.98 128 | 83.74 145 | 88.48 177 | 61.80 230 | 93.44 90 | 88.26 273 | 73.96 125 | 77.73 117 | 91.76 136 | 49.94 228 | 94.76 171 | 65.84 214 | 90.37 90 | 94.65 83 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
cl_fuxian | | | 76.83 199 | 75.47 197 | 80.93 220 | 85.02 240 | 64.18 185 | 90.39 206 | 88.11 274 | 71.66 186 | 66.65 245 | 81.64 254 | 63.58 91 | 92.56 248 | 69.31 181 | 62.86 281 | 86.04 254 |
|
BH-RMVSNet | | | 79.46 154 | 77.65 165 | 84.89 115 | 91.68 111 | 65.66 139 | 93.55 85 | 88.09 275 | 72.93 147 | 73.37 157 | 91.12 142 | 46.20 260 | 96.12 122 | 56.28 268 | 85.61 126 | 92.91 145 |
|
tpm cat1 | | | 75.30 222 | 72.21 238 | 84.58 128 | 88.52 175 | 67.77 81 | 78.16 325 | 88.02 276 | 61.88 289 | 68.45 223 | 76.37 310 | 60.65 114 | 94.03 205 | 53.77 277 | 74.11 203 | 91.93 166 |
|
Test_1112_low_res | | | 79.56 151 | 78.60 150 | 82.43 173 | 88.24 186 | 60.39 255 | 92.09 137 | 87.99 277 | 72.10 171 | 71.84 179 | 87.42 193 | 64.62 75 | 93.04 226 | 65.80 215 | 77.30 189 | 93.85 118 |
|
AdaColmap |  | | 78.94 161 | 77.00 178 | 84.76 119 | 96.34 16 | 65.86 134 | 92.66 120 | 87.97 278 | 62.18 285 | 70.56 190 | 92.37 126 | 43.53 272 | 97.35 69 | 64.50 226 | 82.86 144 | 91.05 183 |
|
Effi-MVS+-dtu | | | 76.14 205 | 75.28 199 | 78.72 258 | 83.22 265 | 55.17 306 | 89.87 221 | 87.78 279 | 75.42 99 | 67.98 226 | 81.43 258 | 45.08 265 | 92.52 250 | 75.08 134 | 71.63 221 | 88.48 210 |
|
mvs-test1 | | | 78.74 168 | 77.95 160 | 81.14 210 | 83.22 265 | 57.13 294 | 93.96 65 | 87.78 279 | 75.42 99 | 72.68 164 | 90.80 146 | 45.08 265 | 94.54 182 | 75.08 134 | 77.49 186 | 91.74 168 |
|
PatchT | | | 69.11 269 | 65.37 280 | 80.32 226 | 82.07 275 | 63.68 196 | 67.96 344 | 87.62 281 | 50.86 332 | 69.37 206 | 65.18 341 | 57.09 150 | 88.53 305 | 41.59 324 | 66.60 254 | 88.74 206 |
|
bset_n11_16_dypcd | | | 75.95 213 | 74.16 214 | 81.30 205 | 76.91 324 | 65.14 155 | 88.89 241 | 87.48 282 | 74.30 117 | 69.90 204 | 83.40 234 | 42.16 278 | 92.42 253 | 78.39 114 | 66.03 256 | 86.32 245 |
|
XVG-OURS | | | 74.25 232 | 72.46 236 | 79.63 245 | 78.45 314 | 57.59 288 | 80.33 310 | 87.39 283 | 63.86 270 | 68.76 218 | 89.62 166 | 40.50 282 | 91.72 271 | 69.00 184 | 74.25 202 | 89.58 198 |
|
Anonymous20231206 | | | 67.53 284 | 65.78 274 | 72.79 308 | 74.95 330 | 47.59 339 | 88.23 252 | 87.32 284 | 61.75 291 | 58.07 299 | 77.29 301 | 37.79 298 | 87.29 318 | 42.91 317 | 63.71 277 | 83.48 287 |
|
XVG-OURS-SEG-HR | | | 74.70 229 | 73.08 227 | 79.57 247 | 78.25 315 | 57.33 293 | 80.49 308 | 87.32 284 | 63.22 275 | 68.76 218 | 90.12 162 | 44.89 267 | 91.59 273 | 70.55 171 | 74.09 204 | 89.79 195 |
|
pmmvs4 | | | 73.92 235 | 71.81 242 | 80.25 230 | 79.17 303 | 65.24 150 | 87.43 263 | 87.26 286 | 67.64 245 | 63.46 269 | 83.91 229 | 48.96 240 | 91.53 278 | 62.94 236 | 65.49 258 | 83.96 280 |
|
pmmvs5 | | | 73.35 239 | 71.52 244 | 78.86 257 | 78.64 312 | 60.61 253 | 91.08 186 | 86.90 287 | 67.69 242 | 63.32 270 | 83.64 230 | 44.33 269 | 90.53 284 | 62.04 243 | 66.02 257 | 85.46 267 |
|
pmmvs6 | | | 67.57 283 | 64.76 282 | 76.00 287 | 72.82 337 | 53.37 313 | 88.71 244 | 86.78 288 | 53.19 326 | 57.58 304 | 78.03 296 | 35.33 312 | 92.41 254 | 55.56 270 | 54.88 323 | 82.21 307 |
|
MVS_0304 | | | 68.99 272 | 67.23 269 | 74.28 298 | 80.36 289 | 52.54 316 | 87.01 268 | 86.36 289 | 59.89 302 | 66.22 246 | 73.56 321 | 24.25 340 | 88.03 309 | 57.34 265 | 70.11 229 | 82.27 306 |
|
F-COLMAP | | | 70.66 257 | 68.44 262 | 77.32 274 | 86.37 219 | 55.91 301 | 88.00 254 | 86.32 290 | 56.94 316 | 57.28 305 | 88.07 184 | 33.58 316 | 92.49 251 | 51.02 283 | 68.37 242 | 83.55 284 |
|
IterMVS | | | 72.65 250 | 70.83 248 | 78.09 265 | 82.17 273 | 62.96 210 | 87.64 261 | 86.28 291 | 71.56 194 | 60.44 285 | 78.85 290 | 45.42 264 | 86.66 320 | 63.30 234 | 61.83 291 | 84.65 277 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet5 | | | 68.04 279 | 65.66 277 | 75.18 291 | 84.43 250 | 57.89 282 | 83.54 285 | 86.26 292 | 61.83 290 | 53.64 315 | 73.30 322 | 37.15 304 | 85.08 325 | 48.99 291 | 61.77 292 | 82.56 303 |
|
GeoE | | | 78.90 162 | 77.43 169 | 83.29 158 | 88.95 168 | 62.02 227 | 92.31 128 | 86.23 293 | 70.24 216 | 71.34 186 | 89.27 167 | 54.43 188 | 94.04 203 | 63.31 233 | 80.81 161 | 93.81 119 |
|
EU-MVSNet | | | 64.01 300 | 63.01 294 | 67.02 329 | 74.40 332 | 38.86 355 | 83.27 290 | 86.19 294 | 45.11 345 | 54.27 311 | 81.15 267 | 36.91 307 | 80.01 348 | 48.79 293 | 57.02 315 | 82.19 308 |
|
Effi-MVS+ | | | 83.82 83 | 82.76 90 | 86.99 45 | 89.56 154 | 69.40 42 | 91.35 174 | 86.12 295 | 72.59 153 | 83.22 64 | 92.81 117 | 59.60 128 | 96.01 130 | 81.76 85 | 87.80 107 | 95.56 45 |
|
IterMVS-SCA-FT | | | 71.55 254 | 69.97 253 | 76.32 284 | 81.48 278 | 60.67 251 | 87.64 261 | 85.99 296 | 66.17 255 | 59.50 289 | 78.88 289 | 45.53 262 | 83.65 333 | 62.58 240 | 61.93 290 | 84.63 278 |
|
XVG-ACMP-BASELINE | | | 68.04 279 | 65.53 278 | 75.56 288 | 74.06 333 | 52.37 317 | 78.43 321 | 85.88 297 | 62.03 286 | 58.91 295 | 81.21 266 | 20.38 349 | 91.15 281 | 60.69 250 | 68.18 243 | 83.16 293 |
|
ambc | | | | | 69.61 321 | 61.38 354 | 41.35 348 | 49.07 356 | 85.86 298 | | 50.18 329 | 66.40 339 | 10.16 358 | 88.14 308 | 45.73 308 | 44.20 340 | 79.32 330 |
|
CMPMVS |  | 48.56 21 | 66.77 288 | 64.41 287 | 73.84 300 | 70.65 342 | 50.31 328 | 77.79 326 | 85.73 299 | 45.54 344 | 44.76 342 | 82.14 247 | 35.40 311 | 90.14 293 | 63.18 235 | 74.54 201 | 81.07 314 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Fast-Effi-MVS+-dtu | | | 75.04 225 | 73.37 225 | 80.07 233 | 80.86 282 | 59.52 267 | 91.20 182 | 85.38 300 | 71.90 175 | 65.20 252 | 84.84 219 | 41.46 279 | 92.97 228 | 66.50 207 | 72.96 212 | 87.73 220 |
|
Anonymous202405211 | | | 77.96 182 | 75.33 198 | 85.87 83 | 93.73 55 | 64.52 168 | 94.85 43 | 85.36 301 | 62.52 283 | 76.11 134 | 90.18 158 | 29.43 331 | 97.29 73 | 68.51 188 | 77.24 191 | 95.81 40 |
|
Anonymous20240521 | | | 62.09 306 | 59.08 309 | 71.10 318 | 67.19 347 | 48.72 335 | 83.91 283 | 85.23 302 | 50.38 333 | 47.84 334 | 71.22 333 | 20.74 348 | 85.51 324 | 46.47 304 | 58.75 312 | 79.06 331 |
|
our_test_3 | | | 68.29 277 | 64.69 283 | 79.11 256 | 78.92 307 | 64.85 165 | 88.40 251 | 85.06 303 | 60.32 298 | 52.68 317 | 76.12 312 | 40.81 281 | 89.80 297 | 44.25 314 | 55.65 319 | 82.67 302 |
|
USDC | | | 67.43 286 | 64.51 285 | 76.19 285 | 77.94 318 | 55.29 305 | 78.38 322 | 85.00 304 | 73.17 141 | 48.36 333 | 80.37 276 | 21.23 347 | 92.48 252 | 52.15 281 | 64.02 275 | 80.81 317 |
|
TransMVSNet (Re) | | | 70.07 262 | 67.66 266 | 77.31 275 | 80.62 287 | 59.13 273 | 91.78 154 | 84.94 305 | 65.97 256 | 60.08 287 | 80.44 275 | 50.78 220 | 91.87 267 | 48.84 292 | 45.46 339 | 80.94 315 |
|
xxxxxxxxxxxxxcwj | | | 87.14 29 | 87.19 31 | 86.99 45 | 93.84 49 | 67.89 78 | 95.05 38 | 84.72 306 | 78.19 66 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 57 |
|
DIV-MVS_2432*1600 | | | 60.87 310 | 58.60 310 | 67.68 326 | 66.13 348 | 39.93 352 | 75.63 330 | 84.70 307 | 57.32 313 | 49.57 330 | 68.45 337 | 29.55 329 | 82.87 339 | 48.09 295 | 47.94 336 | 80.25 324 |
|
ACMH | | 63.93 17 | 68.62 273 | 64.81 281 | 80.03 234 | 85.22 235 | 63.25 203 | 87.72 259 | 84.66 308 | 60.83 294 | 51.57 322 | 79.43 288 | 27.29 336 | 94.96 166 | 41.76 322 | 64.84 266 | 81.88 309 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Baseline_NR-MVSNet | | | 73.99 234 | 72.83 229 | 77.48 271 | 80.78 283 | 59.29 271 | 91.79 152 | 84.55 309 | 68.85 233 | 68.99 212 | 80.70 270 | 56.16 166 | 92.04 265 | 62.67 239 | 60.98 300 | 81.11 313 |
|
MIMVSNet1 | | | 60.16 313 | 57.33 314 | 68.67 323 | 69.71 344 | 44.13 345 | 78.92 319 | 84.21 310 | 55.05 323 | 44.63 343 | 71.85 329 | 23.91 342 | 81.54 347 | 32.63 349 | 55.03 322 | 80.35 321 |
|
test20.03 | | | 63.83 301 | 62.65 297 | 67.38 328 | 70.58 343 | 39.94 351 | 86.57 272 | 84.17 311 | 63.29 274 | 51.86 320 | 77.30 300 | 37.09 305 | 82.47 341 | 38.87 334 | 54.13 325 | 79.73 326 |
|
MDA-MVSNet_test_wron | | | 63.78 302 | 60.16 305 | 74.64 293 | 78.15 316 | 60.41 254 | 83.49 286 | 84.03 312 | 56.17 321 | 39.17 350 | 71.59 331 | 37.22 302 | 83.24 338 | 42.87 319 | 48.73 334 | 80.26 323 |
|
ADS-MVSNet | | | 68.54 275 | 64.38 288 | 81.03 217 | 88.06 189 | 66.90 108 | 68.01 342 | 84.02 313 | 57.57 310 | 64.48 259 | 69.87 334 | 38.68 286 | 89.21 300 | 40.87 326 | 67.89 246 | 86.97 232 |
|
CR-MVSNet | | | 73.79 237 | 70.82 249 | 82.70 167 | 83.15 267 | 67.96 76 | 70.25 335 | 84.00 314 | 73.67 134 | 69.97 201 | 72.41 325 | 57.82 144 | 89.48 298 | 52.99 280 | 73.13 210 | 90.64 187 |
|
Patchmtry | | | 67.53 284 | 63.93 289 | 78.34 260 | 82.12 274 | 64.38 177 | 68.72 339 | 84.00 314 | 48.23 340 | 59.24 290 | 72.41 325 | 57.82 144 | 89.27 299 | 46.10 306 | 56.68 318 | 81.36 312 |
|
YYNet1 | | | 63.76 303 | 60.14 306 | 74.62 294 | 78.06 317 | 60.19 259 | 83.46 288 | 83.99 316 | 56.18 320 | 39.25 349 | 71.56 332 | 37.18 303 | 83.34 336 | 42.90 318 | 48.70 335 | 80.32 322 |
|
LTVRE_ROB | | 59.60 19 | 66.27 290 | 63.54 291 | 74.45 295 | 84.00 257 | 51.55 321 | 67.08 345 | 83.53 317 | 58.78 307 | 54.94 309 | 80.31 277 | 34.54 314 | 93.23 224 | 40.64 328 | 68.03 244 | 78.58 335 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs-eth3d | | | 65.53 294 | 62.32 299 | 75.19 290 | 69.39 345 | 59.59 265 | 82.80 295 | 83.43 318 | 62.52 283 | 51.30 324 | 72.49 323 | 32.86 317 | 87.16 319 | 55.32 271 | 50.73 331 | 78.83 333 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 289 | 62.92 295 | 76.80 282 | 76.51 325 | 57.77 284 | 89.22 234 | 83.41 319 | 55.48 322 | 53.86 314 | 77.84 297 | 26.28 339 | 93.95 209 | 34.90 342 | 68.76 239 | 78.68 334 |
|
PatchMatch-RL | | | 72.06 251 | 69.98 252 | 78.28 262 | 89.51 156 | 55.70 303 | 83.49 286 | 83.39 320 | 61.24 292 | 63.72 267 | 82.76 239 | 34.77 313 | 93.03 227 | 53.37 279 | 77.59 182 | 86.12 253 |
|
MSDG | | | 69.54 266 | 65.73 275 | 80.96 218 | 85.11 239 | 63.71 194 | 84.19 281 | 83.28 321 | 56.95 315 | 54.50 310 | 84.03 226 | 31.50 324 | 96.03 128 | 42.87 319 | 69.13 237 | 83.14 294 |
|
CHOSEN 280x420 | | | 77.35 192 | 76.95 179 | 78.55 259 | 87.07 208 | 62.68 219 | 69.71 338 | 82.95 322 | 68.80 234 | 71.48 184 | 87.27 197 | 66.03 59 | 84.00 331 | 76.47 126 | 82.81 146 | 88.95 202 |
|
ppachtmachnet_test | | | 67.72 281 | 63.70 290 | 79.77 242 | 78.92 307 | 66.04 129 | 88.68 245 | 82.90 323 | 60.11 300 | 55.45 308 | 75.96 313 | 39.19 285 | 90.55 283 | 39.53 330 | 52.55 328 | 82.71 299 |
|
new-patchmatchnet | | | 59.30 315 | 56.48 316 | 67.79 325 | 65.86 349 | 44.19 344 | 82.47 296 | 81.77 324 | 59.94 301 | 43.65 346 | 66.20 340 | 27.67 335 | 81.68 346 | 39.34 331 | 41.40 344 | 77.50 338 |
|
MDA-MVSNet-bldmvs | | | 61.54 309 | 57.70 313 | 73.05 305 | 79.53 298 | 57.00 296 | 83.08 293 | 81.23 325 | 57.57 310 | 34.91 352 | 72.45 324 | 32.79 318 | 86.26 323 | 35.81 339 | 41.95 343 | 75.89 341 |
|
OurMVSNet-221017-0 | | | 64.68 296 | 62.17 300 | 72.21 313 | 76.08 329 | 47.35 340 | 80.67 307 | 81.02 326 | 56.19 319 | 51.60 321 | 79.66 286 | 27.05 337 | 88.56 304 | 53.60 278 | 53.63 326 | 80.71 318 |
|
ACMH+ | | 65.35 16 | 67.65 282 | 64.55 284 | 76.96 280 | 84.59 246 | 57.10 295 | 88.08 253 | 80.79 327 | 58.59 309 | 53.00 316 | 81.09 268 | 26.63 338 | 92.95 229 | 46.51 303 | 61.69 296 | 80.82 316 |
|
CNLPA | | | 74.31 231 | 72.30 237 | 80.32 226 | 91.49 117 | 61.66 233 | 90.85 193 | 80.72 328 | 56.67 318 | 63.85 266 | 90.64 147 | 46.75 254 | 90.84 282 | 53.79 276 | 75.99 198 | 88.47 212 |
|
LS3D | | | 69.17 268 | 66.40 271 | 77.50 270 | 91.92 102 | 56.12 300 | 85.12 276 | 80.37 329 | 46.96 341 | 56.50 307 | 87.51 192 | 37.25 301 | 93.71 215 | 32.52 350 | 79.40 166 | 82.68 301 |
|
testgi | | | 64.48 298 | 62.87 296 | 69.31 322 | 71.24 338 | 40.62 350 | 85.49 275 | 79.92 330 | 65.36 261 | 54.18 312 | 83.49 233 | 23.74 343 | 84.55 327 | 41.60 323 | 60.79 302 | 82.77 296 |
|
test_0402 | | | 64.54 297 | 61.09 303 | 74.92 292 | 84.10 256 | 60.75 248 | 87.95 255 | 79.71 331 | 52.03 328 | 52.41 318 | 77.20 302 | 32.21 322 | 91.64 272 | 23.14 354 | 61.03 299 | 72.36 346 |
|
SixPastTwentyTwo | | | 64.92 295 | 61.78 302 | 74.34 297 | 78.74 310 | 49.76 330 | 83.42 289 | 79.51 332 | 62.86 278 | 50.27 327 | 77.35 299 | 30.92 328 | 90.49 285 | 45.89 307 | 47.06 337 | 82.78 295 |
|
ITE_SJBPF | | | | | 70.43 320 | 74.44 331 | 47.06 341 | | 77.32 333 | 60.16 299 | 54.04 313 | 83.53 231 | 23.30 344 | 84.01 330 | 43.07 316 | 61.58 297 | 80.21 325 |
|
K. test v3 | | | 63.09 304 | 59.61 308 | 73.53 302 | 76.26 327 | 49.38 333 | 83.27 290 | 77.15 334 | 64.35 266 | 47.77 335 | 72.32 327 | 28.73 332 | 87.79 312 | 49.93 288 | 36.69 349 | 83.41 289 |
|
DP-MVS | | | 69.90 264 | 66.48 270 | 80.14 231 | 95.36 25 | 62.93 211 | 89.56 225 | 76.11 335 | 50.27 334 | 57.69 303 | 85.23 214 | 39.68 284 | 95.73 137 | 33.35 345 | 71.05 227 | 81.78 311 |
|
RPSCF | | | 64.24 299 | 61.98 301 | 71.01 319 | 76.10 328 | 45.00 343 | 75.83 329 | 75.94 336 | 46.94 342 | 58.96 294 | 84.59 222 | 31.40 325 | 82.00 345 | 47.76 300 | 60.33 307 | 86.04 254 |
|
TinyColmap | | | 60.32 311 | 56.42 317 | 72.00 316 | 78.78 309 | 53.18 314 | 78.36 323 | 75.64 337 | 52.30 327 | 41.59 348 | 75.82 315 | 14.76 355 | 88.35 306 | 35.84 338 | 54.71 324 | 74.46 343 |
|
ADS-MVSNet2 | | | 66.90 287 | 63.44 292 | 77.26 276 | 88.06 189 | 60.70 250 | 68.01 342 | 75.56 338 | 57.57 310 | 64.48 259 | 69.87 334 | 38.68 286 | 84.10 328 | 40.87 326 | 67.89 246 | 86.97 232 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 305 | 59.65 307 | 72.98 306 | 81.44 279 | 53.00 315 | 83.75 284 | 75.53 339 | 48.34 339 | 48.81 332 | 81.40 260 | 24.14 341 | 90.30 286 | 32.95 347 | 60.52 304 | 75.65 342 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Patchmatch-test | | | 65.86 292 | 60.94 304 | 80.62 223 | 83.75 259 | 58.83 274 | 58.91 352 | 75.26 340 | 44.50 347 | 50.95 326 | 77.09 304 | 58.81 138 | 87.90 310 | 35.13 341 | 64.03 274 | 95.12 66 |
|
MVS-HIRNet | | | 60.25 312 | 55.55 318 | 74.35 296 | 84.37 251 | 56.57 298 | 71.64 334 | 74.11 341 | 34.44 352 | 45.54 341 | 42.24 355 | 31.11 327 | 89.81 295 | 40.36 329 | 76.10 197 | 76.67 340 |
|
pmmvs3 | | | 55.51 317 | 51.50 322 | 67.53 327 | 57.90 356 | 50.93 326 | 80.37 309 | 73.66 342 | 40.63 350 | 44.15 345 | 64.75 343 | 16.30 352 | 78.97 349 | 44.77 313 | 40.98 346 | 72.69 344 |
|
TDRefinement | | | 55.28 318 | 51.58 321 | 66.39 330 | 59.53 355 | 46.15 342 | 76.23 328 | 72.80 343 | 44.60 346 | 42.49 347 | 76.28 311 | 15.29 353 | 82.39 342 | 33.20 346 | 43.75 341 | 70.62 348 |
|
Gipuma |  | | 34.91 327 | 31.44 330 | 45.30 340 | 70.99 340 | 39.64 354 | 19.85 361 | 72.56 344 | 20.10 358 | 16.16 360 | 21.47 361 | 5.08 365 | 71.16 352 | 13.07 358 | 43.70 342 | 25.08 357 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
FPMVS | | | 45.64 322 | 43.10 325 | 53.23 337 | 51.42 359 | 36.46 356 | 64.97 346 | 71.91 345 | 29.13 354 | 27.53 354 | 61.55 346 | 9.83 359 | 65.01 357 | 16.00 357 | 55.58 320 | 58.22 353 |
|
ANet_high | | | 40.27 324 | 35.20 327 | 55.47 334 | 34.74 365 | 34.47 357 | 63.84 348 | 71.56 346 | 48.42 338 | 18.80 358 | 41.08 356 | 9.52 360 | 64.45 358 | 20.18 355 | 8.66 362 | 67.49 350 |
|
Patchmatch-RL test | | | 68.17 278 | 64.49 286 | 79.19 252 | 71.22 339 | 53.93 311 | 70.07 337 | 71.54 347 | 69.22 228 | 56.79 306 | 62.89 344 | 56.58 163 | 88.61 302 | 69.53 178 | 52.61 327 | 95.03 72 |
|
LCM-MVSNet-Re | | | 72.93 243 | 71.84 241 | 76.18 286 | 88.49 176 | 48.02 336 | 80.07 315 | 70.17 348 | 73.96 125 | 52.25 319 | 80.09 282 | 49.98 227 | 88.24 307 | 67.35 196 | 84.23 140 | 92.28 160 |
|
LCM-MVSNet | | | 40.54 323 | 35.79 326 | 54.76 336 | 36.92 364 | 30.81 358 | 51.41 354 | 69.02 349 | 22.07 356 | 24.63 355 | 45.37 353 | 4.56 366 | 65.81 355 | 33.67 344 | 34.50 352 | 67.67 349 |
|
AllTest | | | 61.66 307 | 58.06 311 | 72.46 310 | 79.57 296 | 51.42 323 | 80.17 313 | 68.61 350 | 51.25 330 | 45.88 337 | 81.23 262 | 19.86 350 | 86.58 321 | 38.98 332 | 57.01 316 | 79.39 328 |
|
TestCases | | | | | 72.46 310 | 79.57 296 | 51.42 323 | | 68.61 350 | 51.25 330 | 45.88 337 | 81.23 262 | 19.86 350 | 86.58 321 | 38.98 332 | 57.01 316 | 79.39 328 |
|
LF4IMVS | | | 54.01 319 | 52.12 320 | 59.69 332 | 62.41 353 | 39.91 353 | 68.59 340 | 68.28 352 | 42.96 348 | 44.55 344 | 75.18 316 | 14.09 356 | 68.39 353 | 41.36 325 | 51.68 329 | 70.78 347 |
|
door | | | | | | | | | 66.57 353 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 354 | | | | | | | | |
|
DSMNet-mixed | | | 56.78 316 | 54.44 319 | 63.79 331 | 63.21 351 | 29.44 359 | 64.43 347 | 64.10 355 | 42.12 349 | 51.32 323 | 71.60 330 | 31.76 323 | 75.04 350 | 36.23 337 | 65.20 263 | 86.87 235 |
|
PM-MVS | | | 59.40 314 | 56.59 315 | 67.84 324 | 63.63 350 | 41.86 347 | 76.76 327 | 63.22 356 | 59.01 306 | 51.07 325 | 72.27 328 | 11.72 357 | 83.25 337 | 61.34 246 | 50.28 333 | 78.39 336 |
|
new_pmnet | | | 49.31 321 | 46.44 324 | 57.93 333 | 62.84 352 | 40.74 349 | 68.47 341 | 62.96 357 | 36.48 351 | 35.09 351 | 57.81 347 | 14.97 354 | 72.18 351 | 32.86 348 | 46.44 338 | 60.88 352 |
|
lessismore_v0 | | | | | 73.72 301 | 72.93 336 | 47.83 338 | | 61.72 358 | | 45.86 339 | 73.76 320 | 28.63 334 | 89.81 295 | 47.75 301 | 31.37 354 | 83.53 285 |
|
test_method | | | 38.59 325 | 35.16 328 | 48.89 339 | 54.33 357 | 21.35 364 | 45.32 357 | 53.71 359 | 7.41 362 | 28.74 353 | 51.62 349 | 8.70 361 | 52.87 359 | 33.73 343 | 32.89 353 | 72.47 345 |
|
PMMVS2 | | | 37.93 326 | 33.61 329 | 50.92 338 | 46.31 361 | 24.76 362 | 60.55 351 | 50.05 360 | 28.94 355 | 20.93 356 | 47.59 350 | 4.41 367 | 65.13 356 | 25.14 353 | 18.55 357 | 62.87 351 |
|
PMVS |  | 26.43 22 | 31.84 328 | 28.16 331 | 42.89 341 | 25.87 367 | 27.58 360 | 50.92 355 | 49.78 361 | 21.37 357 | 14.17 361 | 40.81 357 | 2.01 368 | 66.62 354 | 9.61 360 | 38.88 348 | 34.49 356 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 24.61 329 | 24.00 333 | 26.45 344 | 43.74 362 | 18.44 366 | 60.86 349 | 39.66 362 | 15.11 359 | 9.53 363 | 22.10 360 | 6.52 363 | 46.94 361 | 8.31 361 | 10.14 359 | 13.98 359 |
|
tmp_tt | | | 22.26 332 | 23.75 334 | 17.80 346 | 5.23 368 | 12.06 368 | 35.26 358 | 39.48 363 | 2.82 364 | 18.94 357 | 44.20 354 | 22.23 346 | 24.64 364 | 36.30 336 | 9.31 361 | 16.69 358 |
|
MVE |  | 24.84 23 | 24.35 330 | 19.77 336 | 38.09 342 | 34.56 366 | 26.92 361 | 26.57 359 | 38.87 364 | 11.73 361 | 11.37 362 | 27.44 358 | 1.37 369 | 50.42 360 | 11.41 359 | 14.60 358 | 36.93 354 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 23.76 331 | 23.20 335 | 25.46 345 | 41.52 363 | 16.90 367 | 60.56 350 | 38.79 365 | 14.62 360 | 8.99 364 | 20.24 363 | 7.35 362 | 45.82 362 | 7.25 362 | 9.46 360 | 13.64 360 |
|
MTMP | | | | | | | | 93.77 78 | 32.52 366 | | | | | | | | |
|
DeepMVS_CX |  | | | | 34.71 343 | 51.45 358 | 24.73 363 | | 28.48 367 | 31.46 353 | 17.49 359 | 52.75 348 | 5.80 364 | 42.60 363 | 18.18 356 | 19.42 356 | 36.81 355 |
|
N_pmnet | | | 50.55 320 | 49.11 323 | 54.88 335 | 77.17 322 | 4.02 369 | 84.36 280 | 2.00 368 | 48.59 337 | 45.86 339 | 68.82 336 | 32.22 321 | 82.80 340 | 31.58 352 | 51.38 330 | 77.81 337 |
|
wuyk23d | | | 11.30 334 | 10.95 337 | 12.33 347 | 48.05 360 | 19.89 365 | 25.89 360 | 1.92 369 | 3.58 363 | 3.12 365 | 1.37 365 | 0.64 370 | 15.77 365 | 6.23 363 | 7.77 363 | 1.35 361 |
|
testmvs | | | 7.23 336 | 9.62 339 | 0.06 349 | 0.04 369 | 0.02 371 | 84.98 278 | 0.02 370 | 0.03 365 | 0.18 366 | 1.21 366 | 0.01 372 | 0.02 366 | 0.14 364 | 0.01 364 | 0.13 363 |
|
test123 | | | 6.92 337 | 9.21 340 | 0.08 348 | 0.03 370 | 0.05 370 | 81.65 301 | 0.01 371 | 0.02 366 | 0.14 367 | 0.85 367 | 0.03 371 | 0.02 366 | 0.12 365 | 0.00 365 | 0.16 362 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 4.46 338 | 5.95 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 53.55 197 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
ab-mvs-re | | | 7.91 335 | 10.55 338 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 94.95 58 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 365 | 0.00 364 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
test_0728_THIRD | | | | | | | | | | 72.48 157 | 90.55 12 | 96.93 10 | 76.24 9 | 99.08 9 | 91.53 12 | 94.99 15 | 96.43 22 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 80 |
|
test_part2 | | | | | | 96.29 17 | 68.16 72 | | | | 90.78 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 143 | | | | 94.68 80 |
|
sam_mvs | | | | | | | | | | | | | 54.91 182 | | | | |
|
test_post1 | | | | | | | | 78.95 318 | | | | 20.70 362 | 53.05 202 | 91.50 279 | 60.43 251 | | |
|
test_post | | | | | | | | | | | | 23.01 359 | 56.49 164 | 92.67 244 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 338 | 57.62 146 | 90.25 287 | | | |
|
gm-plane-assit | | | | | | 88.42 180 | 67.04 104 | | | 78.62 63 | | 91.83 134 | | 97.37 67 | 76.57 125 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 20 | 94.96 16 | 95.29 55 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 51 | 94.75 26 | 95.33 51 |
|
test_prior4 | | | | | | | 67.18 100 | 93.92 69 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 101 | 85.25 48 | 95.61 37 | 67.94 40 | | 87.47 40 | 94.77 23 | |
|
旧先验2 | | | | | | | | 92.00 144 | | 59.37 305 | 87.54 25 | | | 93.47 221 | 75.39 131 | | |
|
新几何2 | | | | | | | | 91.41 166 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 92.01 142 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 123 | 61.26 247 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 60 | | | | |
|
testdata1 | | | | | | | | 89.21 235 | | 77.55 76 | | | | | | | |
|
plane_prior7 | | | | | | 86.94 209 | 61.51 235 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 204 | 62.32 223 | | | | | | 50.66 221 | | | | |
|
plane_prior4 | | | | | | | | | | | | 89.14 170 | | | | | |
|
plane_prior3 | | | | | | | 61.95 229 | | | 79.09 55 | 72.53 168 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 98 | | 78.81 60 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 206 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 220 | 93.85 73 | | 79.38 48 | | | | | | 78.80 173 | |
|
HQP5-MVS | | | | | | | 63.66 197 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 198 | | 94.06 60 | | 79.80 41 | 74.18 149 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 198 | | 94.06 60 | | 79.80 41 | 74.18 149 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 120 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 149 | | | 95.61 146 | | | 88.63 207 |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 214 | | | | |
|
NP-MVS | | | | | | 87.41 201 | 63.04 207 | | | | | 90.30 156 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 262 | 80.13 314 | | 67.65 244 | 72.79 163 | | 54.33 190 | | 59.83 255 | | 92.58 152 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 221 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 231 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 191 | | | | |
|