This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7696.33 4899.20 293.99 5391.03 26993.73 26793.52 7699.55 1891.81 11199.45 4897.58 200
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21393.79 14699.19 392.00 9598.84 598.04 4493.64 7299.02 11581.28 28298.54 16696.96 231
DROMVSNet95.44 7395.62 7094.89 11196.93 15387.69 13596.48 3999.14 493.93 5792.77 22994.52 23993.95 7099.49 2493.62 4799.22 8897.51 206
CS-MVS95.77 6095.58 7196.37 5396.84 15891.72 6396.73 2999.06 594.23 4992.48 23794.79 23193.56 7399.49 2493.47 5699.05 10697.89 175
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2693.86 3299.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 18496.85 299.77 1099.31 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
dcpmvs_293.96 13495.01 9590.82 26097.60 11974.04 33193.68 15198.85 789.80 15997.82 3097.01 10491.14 14399.21 8690.56 13798.59 16099.19 39
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 897.41 1097.28 5398.46 2894.62 5898.84 14294.64 2199.53 3998.99 58
ANet_high94.83 10196.28 3790.47 26896.65 16673.16 33694.33 12898.74 1096.39 2398.09 2698.93 893.37 8198.70 17290.38 14299.68 2199.53 15
ACMH+88.43 1196.48 3096.82 1695.47 9098.54 4689.06 10595.65 7898.61 1196.10 2698.16 2397.52 6896.90 798.62 18390.30 14799.60 2998.72 97
SF-MVS95.88 5795.88 5995.87 7398.12 8089.65 9495.58 8198.56 1291.84 10596.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1392.35 8695.95 11396.41 14396.71 899.42 3593.99 3799.36 6299.13 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5295.26 9298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
TestCases96.00 6198.02 9192.17 5298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12892.04 20498.42 1687.63 20996.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
APDe-MVS96.46 3296.64 2295.93 6797.68 11489.38 10296.90 2398.41 1792.52 8197.43 4897.92 5095.11 4299.50 2194.45 2399.30 7198.92 72
9.1494.81 10197.49 12694.11 13698.37 1887.56 21295.38 13796.03 16894.66 5699.08 10490.70 13598.97 119
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9294.05 13898.37 1888.09 19895.06 15695.85 17492.58 10499.10 10390.33 14698.99 11498.62 111
abl_697.31 597.12 1397.86 398.54 4695.32 796.61 3298.35 2095.81 3197.55 4097.44 7396.51 999.40 4994.06 3499.23 8698.85 81
MP-MVS-pluss96.08 5095.92 5896.57 4699.06 1091.21 6793.25 15998.32 2187.89 20296.86 7197.38 7695.55 2499.39 5495.47 1599.47 4499.11 47
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test95.32 8095.88 5993.62 16498.49 5981.77 22595.90 6898.32 2193.93 5797.53 4397.56 6588.48 17999.40 4992.91 8499.83 699.68 4
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 6494.31 1796.79 2798.32 2196.69 1796.86 7197.56 6595.48 2598.77 16090.11 15699.44 5198.31 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DPE-MVScopyleft95.89 5595.88 5995.92 6997.93 9889.83 9193.46 15598.30 2492.37 8497.75 3296.95 10595.14 3999.51 2091.74 11399.28 7998.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS96.32 4195.94 5697.43 1998.59 3993.84 3395.33 8998.30 2491.40 12295.76 12296.87 11295.26 3599.45 2892.77 8599.21 8999.00 56
ACMH88.36 1296.59 2797.43 594.07 14898.56 4085.33 18596.33 4898.30 2494.66 4098.72 898.30 3397.51 598.00 23994.87 1899.59 3198.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03096.32 4196.55 2695.62 8497.83 10188.55 11995.77 7398.29 2792.68 7798.03 2797.91 5195.13 4098.95 12693.85 4099.49 4399.36 27
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9793.82 3496.31 5198.25 2895.51 3596.99 6697.05 10095.63 2199.39 5493.31 6798.88 12798.75 91
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6792.13 5495.33 8998.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
LGP-MVS_train96.84 4098.36 6792.13 5498.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
Anonymous2023121196.60 2597.13 1295.00 10897.46 12986.35 16897.11 1998.24 3197.58 898.72 898.97 793.15 8899.15 9293.18 7399.74 1399.50 17
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 14895.59 7998.24 3191.56 11995.21 15092.04 30694.95 5098.66 17991.45 12297.57 24497.20 224
DVP-MVS++95.93 5496.34 3494.70 12096.54 17686.66 15898.45 498.22 3393.26 7097.54 4197.36 8093.12 8999.38 6093.88 3898.68 15398.04 154
test_0728_SECOND94.88 11298.55 4386.72 15595.20 9598.22 3399.38 6093.44 6099.31 6998.53 118
Vis-MVSNetpermissive95.50 7195.48 7495.56 8898.11 8189.40 10195.35 8798.22 3392.36 8594.11 18198.07 4292.02 11599.44 3093.38 6597.67 24097.85 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net97.35 497.24 1197.69 598.22 7593.87 3198.42 698.19 3696.95 1495.46 13599.23 493.45 7799.57 1495.34 1799.89 299.63 9
test_one_060198.26 7287.14 14498.18 3794.25 4896.99 6697.36 8095.13 40
test072698.51 5186.69 15695.34 8898.18 3791.85 10297.63 3597.37 7795.58 22
MSP-MVS95.34 7994.63 11297.48 1498.67 3194.05 2396.41 4498.18 3791.26 12595.12 15195.15 21086.60 21699.50 2193.43 6296.81 26798.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3693.88 3096.95 2298.18 3792.26 8996.33 9196.84 11695.10 4399.40 4993.47 5699.33 6699.02 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS92.35 18292.03 18093.30 17795.81 23183.97 20292.80 17098.17 4187.71 20689.79 29487.56 35291.17 14299.18 9087.97 20497.27 25296.77 239
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4193.11 7396.48 8597.36 8096.92 699.34 6894.31 2799.38 6198.92 72
XVG-OURS94.72 10594.12 13096.50 5098.00 9394.23 1891.48 22898.17 4190.72 13895.30 14296.47 13887.94 19096.98 29591.41 12397.61 24398.30 134
ZNCC-MVS96.42 3696.20 4297.07 3098.80 2892.79 4896.08 6098.16 4491.74 11395.34 14096.36 15195.68 1999.44 3094.41 2599.28 7998.97 64
FIs94.90 9595.35 7993.55 16798.28 7081.76 22695.33 8998.14 4593.05 7497.07 5997.18 9387.65 19399.29 7691.72 11499.69 1599.61 11
XVG-OURS-SEG-HR95.38 7795.00 9696.51 4998.10 8294.07 2092.46 18398.13 4690.69 13993.75 19496.25 15998.03 297.02 29492.08 10195.55 29398.45 125
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10194.85 5299.42 3593.49 5298.84 13298.00 159
RE-MVS-def96.66 2098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10195.40 2793.49 5298.84 13298.00 159
bld_raw_conf00596.23 4596.22 4096.26 5498.53 4989.90 8897.25 1398.12 4792.70 7698.10 2598.51 2587.19 20299.46 2695.86 1099.69 1599.42 21
RPMNet90.31 22890.14 22990.81 26191.01 33878.93 27292.52 17998.12 4791.91 9989.10 30196.89 11168.84 32399.41 4290.17 15492.70 34194.08 315
SED-MVS96.00 5396.41 3294.76 11798.51 5186.97 14995.21 9398.10 5191.95 9697.63 3597.25 8896.48 1199.35 6593.29 6899.29 7497.95 167
test_241102_TWO98.10 5191.95 9697.54 4197.25 8895.37 2899.35 6593.29 6899.25 8398.49 121
test_241102_ONE98.51 5186.97 14998.10 5191.85 10297.63 3597.03 10196.48 1198.95 126
test_part194.39 11694.55 11493.92 15596.14 20882.86 21695.54 8398.09 5495.36 3698.27 2098.36 3175.91 30399.44 3093.41 6399.84 399.47 19
WR-MVS_H96.60 2597.05 1495.24 10099.02 1286.44 16496.78 2898.08 5597.42 998.48 1697.86 5491.76 12299.63 694.23 3099.84 399.66 6
CP-MVS96.44 3596.08 5097.54 1198.29 6994.62 1496.80 2698.08 5592.67 7995.08 15596.39 14894.77 5499.42 3593.17 7499.44 5198.58 116
ACMP88.15 1395.71 6395.43 7796.54 4898.17 7891.73 6294.24 13198.08 5589.46 16596.61 8296.47 13895.85 1799.12 10090.45 13999.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8694.69 1196.13 5898.07 5895.17 3796.82 7396.73 12595.09 4499.43 3492.99 8298.71 14998.50 120
v7n96.82 1097.31 1095.33 9598.54 4686.81 15396.83 2498.07 5896.59 2098.46 1798.43 3092.91 9699.52 1996.25 699.76 1199.65 8
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 10992.91 16798.07 5893.46 6796.31 9395.97 17190.14 16199.34 6892.11 9999.64 2799.16 41
test117296.79 1596.52 2797.60 998.03 9094.87 1096.07 6198.06 6195.76 3296.89 6996.85 11394.85 5299.42 3593.35 6698.81 14098.53 118
SD-MVS95.19 8795.73 6793.55 16796.62 17088.88 11294.67 11498.05 6291.26 12597.25 5596.40 14495.42 2694.36 34992.72 8999.19 9197.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23292.35 19198.05 6291.53 12095.75 12396.80 11793.35 8298.49 19891.01 12998.32 19098.64 107
PEN-MVS96.69 2097.39 894.61 12499.16 484.50 19296.54 3598.05 6298.06 498.64 1398.25 3495.01 4899.65 392.95 8399.83 699.68 4
XVG-ACMP-BASELINE95.68 6495.34 8096.69 4398.40 6293.04 4394.54 12498.05 6290.45 14696.31 9396.76 12092.91 9698.72 16691.19 12599.42 5398.32 131
baseline94.26 12594.80 10292.64 19896.08 21380.99 23793.69 14998.04 6690.80 13794.89 16396.32 15393.19 8698.48 20291.68 11698.51 17098.43 126
ACMMP_NAP96.21 4696.12 4896.49 5198.90 1891.42 6594.57 12098.03 6790.42 14796.37 8897.35 8395.68 1999.25 8294.44 2499.34 6498.80 86
ACMM88.83 996.30 4396.07 5196.97 3598.39 6392.95 4694.74 11298.03 6790.82 13697.15 5696.85 11396.25 1599.00 11893.10 7799.33 6698.95 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8692.72 17298.02 6984.73 25593.65 19895.54 19591.68 12499.22 8588.78 18798.49 17398.26 137
DeepC-MVS91.39 495.43 7495.33 8195.71 8297.67 11590.17 8393.86 14598.02 6987.35 21396.22 10197.99 4794.48 6299.05 10992.73 8899.68 2197.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS96.24 4495.99 5597.00 3498.65 3292.71 4995.69 7798.01 7192.08 9495.74 12496.28 15695.22 3799.42 3593.17 7499.06 10398.88 77
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 7194.15 5198.93 399.07 588.07 18699.57 1495.86 1099.69 1599.46 20
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3391.96 5795.70 7598.01 7193.34 6996.64 8096.57 13594.99 4999.36 6493.48 5599.34 6498.82 83
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3996.17 4597.04 3198.51 5193.37 4096.30 5397.98 7492.35 8695.63 12896.47 13895.37 2899.27 8093.78 4299.14 9898.48 122
#test#95.89 5595.51 7397.04 3198.51 5193.37 4095.14 9897.98 7489.34 16995.63 12896.47 13895.37 2899.27 8091.99 10499.14 9898.48 122
LS3D96.11 4995.83 6396.95 3794.75 26794.20 1997.34 1297.98 7497.31 1195.32 14196.77 11893.08 9199.20 8891.79 11298.16 20897.44 211
PS-CasMVS96.69 2097.43 594.49 13599.13 684.09 20196.61 3297.97 7797.91 598.64 1398.13 3895.24 3699.65 393.39 6499.84 399.72 2
region2R96.41 3796.09 4997.38 2398.62 3493.81 3696.32 5097.96 7892.26 8995.28 14496.57 13595.02 4799.41 4293.63 4699.11 10198.94 67
ACMMPR96.46 3296.14 4697.41 2198.60 3793.82 3496.30 5397.96 7892.35 8695.57 13196.61 13394.93 5199.41 4293.78 4299.15 9799.00 56
XVS96.49 2996.18 4397.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17896.49 13794.56 5999.39 5493.57 4899.05 10698.93 68
X-MVStestdata90.70 21388.45 25597.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17826.89 37794.56 5999.39 5493.57 4899.05 10698.93 68
Gipumacopyleft95.31 8395.80 6593.81 16197.99 9690.91 7296.42 4397.95 8096.69 1791.78 25898.85 1291.77 12195.49 33291.72 11499.08 10295.02 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DTE-MVSNet96.74 1797.43 594.67 12199.13 684.68 19196.51 3697.94 8398.14 398.67 1298.32 3295.04 4599.69 293.27 7099.82 899.62 10
PS-MVSNAJss96.01 5296.04 5395.89 7298.82 2588.51 12195.57 8297.88 8488.72 18498.81 698.86 1090.77 14799.60 995.43 1699.53 3999.57 14
pmmvs696.80 1397.36 995.15 10499.12 887.82 13496.68 3097.86 8596.10 2698.14 2499.28 397.94 398.21 22191.38 12499.69 1599.42 21
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8998.26 7287.69 13593.75 14797.86 8595.96 3097.48 4697.14 9595.33 3299.44 3090.79 13399.76 1199.38 25
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6494.82 10997.86 8587.86 20393.04 22194.16 25191.58 12698.78 15690.27 14998.96 12197.41 212
testtj94.81 10294.42 11896.01 6097.23 13790.51 8194.77 11197.85 8891.29 12494.92 16295.66 18691.71 12399.40 4988.07 20298.25 19898.11 150
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 16992.33 19297.84 8991.70 11692.81 22786.17 36292.22 11199.19 8988.03 20397.73 23495.66 283
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11792.26 19697.84 8994.91 3896.80 7495.78 18290.42 15699.41 4291.60 11899.58 3599.29 32
3Dnovator+92.74 295.86 5895.77 6696.13 5796.81 16290.79 7596.30 5397.82 9196.13 2594.74 16997.23 9091.33 13299.16 9193.25 7198.30 19398.46 124
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12694.56 12197.81 9291.74 11393.31 20795.59 18886.93 20898.95 12689.26 17698.51 17098.60 114
plane_prior597.81 9298.95 12689.26 17698.51 17098.60 114
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11792.58 17797.81 9293.99 5396.80 7495.90 17290.10 16599.41 4291.60 11899.58 3599.26 33
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7394.59 11797.81 9289.22 17495.46 13596.17 16493.42 8099.34 6889.30 17298.87 13097.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft95.77 6095.54 7296.47 5298.27 7191.19 6895.09 9997.79 9686.48 22397.42 5097.51 7094.47 6399.29 7693.55 5099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4895.68 6897.51 1398.81 2694.06 2196.10 5997.78 9792.73 7593.48 20396.72 12694.23 6699.42 3591.99 10499.29 7499.05 53
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++93.25 15293.88 13391.37 23896.34 19182.81 21793.11 16197.74 9889.37 16894.08 18395.29 20890.40 15996.35 31690.35 14498.25 19894.96 298
mPP-MVS96.46 3296.05 5297.69 598.62 3494.65 1396.45 4097.74 9892.59 8095.47 13396.68 12894.50 6199.42 3593.10 7799.26 8298.99 58
ETH3 D test640091.91 19191.25 20293.89 15796.59 17184.41 19392.10 20197.72 10078.52 30991.82 25793.78 26688.70 17799.13 9683.61 26098.39 17998.14 146
TAPA-MVS88.58 1092.49 17891.75 19094.73 11896.50 18089.69 9392.91 16797.68 10178.02 31392.79 22894.10 25290.85 14697.96 24384.76 25298.16 20896.54 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CPTT-MVS94.74 10494.12 13096.60 4598.15 7993.01 4495.84 7097.66 10289.21 17593.28 21095.46 19888.89 17698.98 11989.80 16398.82 13897.80 185
DP-MVS95.62 6695.84 6294.97 10997.16 14288.62 11694.54 12497.64 10396.94 1596.58 8397.32 8693.07 9298.72 16690.45 13998.84 13297.57 201
zzz-MVS96.47 3196.14 4697.47 1598.95 1694.05 2393.69 14997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
MTGPAbinary97.62 104
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
anonymousdsp96.74 1796.42 2997.68 798.00 9394.03 2696.97 2197.61 10787.68 20898.45 1898.77 1594.20 6799.50 2196.70 399.40 5999.53 15
mvs_tets96.83 996.71 1997.17 2798.83 2492.51 5096.58 3497.61 10787.57 21198.80 798.90 996.50 1099.59 1396.15 799.47 4499.40 24
VPA-MVSNet95.14 8895.67 6993.58 16697.76 10583.15 21294.58 11997.58 10993.39 6897.05 6298.04 4493.25 8498.51 19789.75 16699.59 3199.08 51
v1094.68 10795.27 8692.90 19096.57 17380.15 24494.65 11697.57 11090.68 14097.43 4898.00 4688.18 18399.15 9294.84 1999.55 3899.41 23
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13295.01 10497.57 11092.68 7796.20 10393.44 27491.92 11998.78 15689.11 18099.24 8596.92 232
ZD-MVS97.23 13790.32 8297.54 11284.40 25794.78 16795.79 17992.76 10199.39 5488.72 19098.40 176
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 13997.70 897.54 11298.16 298.94 299.33 297.84 499.08 10490.73 13499.73 1499.59 13
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 20994.00 14097.53 11491.36 12389.35 30090.65 32894.01 6998.66 17987.40 21495.30 30196.88 235
CP-MVSNet96.19 4796.80 1794.38 14198.99 1483.82 20496.31 5197.53 11497.60 798.34 1997.52 6891.98 11899.63 693.08 7999.81 999.70 3
RPSCF95.58 6994.89 9997.62 897.58 12196.30 495.97 6597.53 11492.42 8293.41 20497.78 5591.21 13897.77 26091.06 12697.06 25798.80 86
diffmvs91.74 19391.93 18491.15 24893.06 30578.17 28488.77 29997.51 11786.28 22692.42 24193.96 25988.04 18797.46 27690.69 13696.67 27297.82 183
PVSNet_Blended_VisFu91.63 19691.20 20392.94 18897.73 10983.95 20392.14 20097.46 11878.85 30892.35 24594.98 22084.16 23599.08 10486.36 23296.77 26995.79 277
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4589.48 28197.46 11885.14 24696.23 10095.42 20193.19 8698.08 23190.37 14398.76 14697.38 218
mvsmamba95.61 6795.40 7896.22 5598.44 6189.86 9097.14 1797.45 12091.25 12797.49 4598.14 3683.49 23799.45 2895.52 1399.66 2499.36 27
jajsoiax96.59 2796.42 2997.12 2998.76 2992.49 5196.44 4297.42 12186.96 22098.71 1098.72 1795.36 3199.56 1795.92 999.45 4899.32 30
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6692.27 19597.40 12287.10 21994.56 17395.42 20193.74 7198.11 23086.62 22698.85 13198.06 151
v124093.29 14793.71 13992.06 21996.01 22077.89 28891.81 22297.37 12385.12 24796.69 7896.40 14486.67 21499.07 10894.51 2298.76 14699.22 36
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14395.08 10097.37 12393.92 5997.65 3495.90 17290.10 16599.33 7390.11 15699.66 2499.26 33
MVSFormer92.18 18792.23 17692.04 22094.74 26880.06 24897.15 1597.37 12388.98 17888.83 30492.79 28977.02 29599.60 996.41 496.75 27096.46 250
test_djsdf96.62 2396.49 2897.01 3398.55 4391.77 6197.15 1597.37 12388.98 17898.26 2298.86 1093.35 8299.60 996.41 499.45 4899.66 6
DP-MVS Recon92.31 18391.88 18593.60 16597.18 14186.87 15291.10 23797.37 12384.92 25292.08 25394.08 25388.59 17898.20 22283.50 26198.14 21095.73 279
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14190.21 26097.36 12889.33 17090.77 27294.81 22790.41 15798.68 17688.21 19598.55 16397.93 169
test_prior94.61 12495.95 22387.23 14197.36 12898.68 17697.93 169
QAPM92.88 16492.77 16393.22 17995.82 22983.31 20896.45 4097.35 13083.91 26093.75 19496.77 11889.25 17498.88 13384.56 25497.02 25997.49 207
GeoE94.55 11194.68 10994.15 14597.23 13785.11 18794.14 13597.34 13188.71 18595.26 14595.50 19694.65 5799.12 10090.94 13098.40 17698.23 139
OPM-MVS95.61 6795.45 7596.08 5898.49 5991.00 7092.65 17697.33 13290.05 15296.77 7696.85 11395.04 4598.56 19292.77 8599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS97.31 13397.73 234
HQP-MVS92.09 18891.49 19693.88 15896.36 18784.89 18991.37 22997.31 13387.16 21688.81 30693.40 27584.76 23098.60 18686.55 22897.73 23498.14 146
PCF-MVS84.52 1789.12 25287.71 27193.34 17496.06 21485.84 17986.58 33697.31 13368.46 35793.61 20093.89 26287.51 19698.52 19667.85 36298.11 21495.66 283
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t90.51 21789.80 23392.63 20098.00 9382.24 22193.40 15797.29 13665.84 36489.40 29994.80 23086.99 20698.75 16183.88 25998.61 15896.89 234
CLD-MVS91.82 19291.41 19893.04 18196.37 18583.65 20686.82 32897.29 13684.65 25692.27 24989.67 33892.20 11297.85 25383.95 25899.47 4497.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14696.63 3197.28 13891.82 10894.34 18097.41 7490.60 15498.65 18192.47 9498.11 21497.70 192
DELS-MVS92.05 18992.16 17791.72 22794.44 27980.13 24687.62 30997.25 13987.34 21492.22 25093.18 28189.54 17298.73 16589.67 16798.20 20696.30 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
v192192093.26 15093.61 14392.19 21296.04 21978.31 28291.88 21597.24 14085.17 24596.19 10596.19 16186.76 21399.05 10994.18 3298.84 13299.22 36
test_040295.73 6296.22 4094.26 14398.19 7785.77 18093.24 16097.24 14096.88 1697.69 3397.77 5794.12 6899.13 9691.54 12199.29 7497.88 176
v119293.49 14293.78 13692.62 20196.16 20679.62 26091.83 22197.22 14286.07 23096.10 10996.38 14987.22 20099.02 11594.14 3398.88 12799.22 36
F-COLMAP92.28 18491.06 20795.95 6497.52 12491.90 5893.53 15397.18 14383.98 25988.70 31294.04 25488.41 18198.55 19480.17 29395.99 28497.39 216
patch_mono-292.46 17992.72 16891.71 22896.65 16678.91 27488.85 29697.17 14483.89 26192.45 23996.76 12089.86 16997.09 29190.24 15198.59 16099.12 46
v894.65 10895.29 8492.74 19596.65 16679.77 25894.59 11797.17 14491.86 10197.47 4797.93 4988.16 18499.08 10494.32 2699.47 4499.38 25
v14419293.20 15593.54 14792.16 21696.05 21578.26 28391.95 20897.14 14684.98 25195.96 11296.11 16587.08 20599.04 11293.79 4198.84 13299.17 40
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13193.36 15897.14 14685.53 24093.90 19295.45 19991.30 13498.59 18889.51 16998.62 15797.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18191.36 23297.13 14880.33 29092.91 22594.24 24791.23 13798.72 16689.99 16097.93 22797.86 178
KD-MVS_self_test94.10 13094.73 10692.19 21297.66 11679.49 26394.86 10897.12 14989.59 16496.87 7097.65 6190.40 15998.34 21189.08 18199.35 6398.75 91
pm-mvs195.43 7495.94 5693.93 15498.38 6485.08 18895.46 8697.12 14991.84 10597.28 5398.46 2895.30 3497.71 26590.17 15499.42 5398.99 58
save fliter97.46 12988.05 12892.04 20497.08 15187.63 209
CDPH-MVS92.67 17291.83 18695.18 10396.94 15188.46 12290.70 24697.07 15277.38 31592.34 24795.08 21592.67 10398.88 13385.74 23798.57 16298.20 143
OpenMVScopyleft89.45 892.27 18592.13 17992.68 19794.53 27884.10 20095.70 7597.03 15382.44 27891.14 26896.42 14288.47 18098.38 20785.95 23697.47 24795.55 287
原ACMM192.87 19196.91 15484.22 19797.01 15476.84 32089.64 29794.46 24088.00 18898.70 17281.53 28098.01 22395.70 281
DVP-MVScopyleft95.82 5996.18 4394.72 11998.51 5186.69 15695.20 9597.00 15591.85 10297.40 5197.35 8395.58 2299.34 6893.44 6099.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet92.38 18191.99 18293.52 17193.82 29583.46 20791.14 23597.00 15589.81 15886.47 33394.04 25487.90 19199.21 8689.50 17098.27 19597.90 173
HPM-MVS++copyleft95.02 9094.39 11996.91 3897.88 9993.58 3894.09 13796.99 15791.05 13192.40 24295.22 20991.03 14599.25 8292.11 9998.69 15297.90 173
v114493.50 14193.81 13492.57 20396.28 19679.61 26191.86 22096.96 15886.95 22195.91 11796.32 15387.65 19398.96 12493.51 5198.88 12799.13 44
MVS_Test92.57 17793.29 15290.40 27193.53 29775.85 31592.52 17996.96 15888.73 18392.35 24596.70 12790.77 14798.37 21092.53 9395.49 29596.99 230
PVSNet_BlendedMVS90.35 22589.96 23091.54 23494.81 26478.80 27890.14 26496.93 16079.43 29888.68 31395.06 21686.27 21998.15 22880.27 29098.04 22097.68 194
PVSNet_Blended88.74 26388.16 26590.46 27094.81 26478.80 27886.64 33296.93 16074.67 32888.68 31389.18 34486.27 21998.15 22880.27 29096.00 28394.44 310
TEST996.45 18389.46 9790.60 24896.92 16279.09 30490.49 27794.39 24391.31 13398.88 133
train_agg92.71 17191.83 18695.35 9396.45 18389.46 9790.60 24896.92 16279.37 29990.49 27794.39 24391.20 13998.88 13388.66 19198.43 17597.72 191
NCCC94.08 13193.54 14795.70 8396.49 18189.90 8892.39 18896.91 16490.64 14192.33 24894.60 23690.58 15598.96 12490.21 15397.70 23898.23 139
test_896.37 18589.14 10490.51 25196.89 16579.37 29990.42 27994.36 24591.20 13998.82 144
agg_prior192.60 17491.76 18995.10 10696.20 20288.89 11090.37 25596.88 16679.67 29690.21 28294.41 24191.30 13498.78 15688.46 19498.37 18697.64 197
agg_prior96.20 20288.89 11096.88 16690.21 28298.78 156
MSC_two_6792asdad95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
No_MVS95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
MIMVSNet195.52 7095.45 7595.72 8199.14 589.02 10696.23 5696.87 16893.73 6197.87 2998.49 2690.73 15199.05 10986.43 23199.60 2999.10 50
IU-MVS98.51 5186.66 15896.83 17172.74 33995.83 12093.00 8199.29 7498.64 107
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2188.69 11396.37 4596.81 17285.23 24394.75 16897.12 9691.85 12099.40 4993.45 5898.33 18898.62 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10391.81 22296.80 17389.66 16193.90 19295.44 20092.80 10098.72 16692.74 8798.52 16898.32 131
cascas87.02 29686.28 29789.25 29691.56 33376.45 30984.33 35196.78 17471.01 34786.89 33285.91 36381.35 26196.94 29683.09 26595.60 29294.35 312
IterMVS-LS93.78 13794.28 12492.27 20996.27 19779.21 27091.87 21696.78 17491.77 11196.57 8497.07 9887.15 20398.74 16491.99 10499.03 11398.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052995.50 7195.83 6394.50 13397.33 13585.93 17795.19 9796.77 17696.64 1997.61 3898.05 4393.23 8598.79 15288.60 19299.04 11298.78 88
TransMVSNet (Re)95.27 8696.04 5392.97 18498.37 6681.92 22495.07 10196.76 17793.97 5697.77 3198.57 1995.72 1897.90 24588.89 18599.23 8699.08 51
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16092.00 20796.74 17888.16 19796.93 6897.61 6393.04 9397.90 24591.60 11898.12 21398.03 157
1112_ss88.42 26787.41 27591.45 23696.69 16580.99 23789.72 27696.72 17973.37 33587.00 33190.69 32677.38 29198.20 22281.38 28193.72 32895.15 293
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24092.08 20296.68 18093.82 6096.29 9598.56 2090.10 16597.75 26390.10 15899.66 2499.24 35
eth_miper_zixun_eth90.72 21290.61 21791.05 24992.04 32576.84 30586.91 32496.67 18185.21 24494.41 17693.92 26079.53 27498.26 21889.76 16597.02 25998.06 151
Fast-Effi-MVS+-dtu92.77 16992.16 17794.58 13194.66 27488.25 12492.05 20396.65 18289.62 16290.08 28591.23 31692.56 10598.60 18686.30 23396.27 27996.90 233
test1196.65 182
EGC-MVSNET80.97 33375.73 34496.67 4498.85 2394.55 1596.83 2496.60 1842.44 3795.32 38098.25 3492.24 11098.02 23791.85 11099.21 8997.45 209
LF4IMVS92.72 17092.02 18194.84 11495.65 24091.99 5692.92 16696.60 18485.08 24992.44 24093.62 26986.80 21296.35 31686.81 22198.25 19896.18 261
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
test193.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19495.99 6296.56 18692.38 8397.03 6398.53 2290.12 16298.98 11988.78 18799.16 9698.65 103
ITE_SJBPF95.95 6497.34 13493.36 4296.55 18991.93 9894.82 16595.39 20491.99 11797.08 29285.53 23997.96 22597.41 212
Fast-Effi-MVS+91.28 20590.86 21092.53 20595.45 24882.53 21989.25 29096.52 19085.00 25089.91 28988.55 34892.94 9498.84 14284.72 25395.44 29796.22 259
V4293.43 14493.58 14492.97 18495.34 25381.22 23492.67 17596.49 19187.25 21596.20 10396.37 15087.32 19998.85 14192.39 9798.21 20498.85 81
PLCcopyleft85.34 1590.40 22188.92 24794.85 11396.53 17990.02 8491.58 22696.48 19280.16 29186.14 33592.18 30285.73 22498.25 21976.87 32294.61 31696.30 256
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l91.32 20491.42 19791.00 25392.29 31876.79 30687.52 31596.42 19385.76 23694.72 17193.89 26282.73 24798.16 22790.93 13198.55 16398.04 154
Regformer-294.86 9894.55 11495.77 7892.83 31089.98 8591.87 21696.40 19494.38 4796.19 10595.04 21792.47 10999.04 11293.49 5298.31 19198.28 135
USDC89.02 25389.08 24388.84 30195.07 25874.50 32688.97 29396.39 19573.21 33693.27 21196.28 15682.16 25496.39 31377.55 31698.80 14295.62 286
ambc92.98 18396.88 15583.01 21595.92 6796.38 19696.41 8697.48 7188.26 18297.80 25689.96 16198.93 12498.12 149
PAPM_NR91.03 20790.81 21291.68 23096.73 16481.10 23693.72 14896.35 19788.19 19688.77 31092.12 30585.09 22997.25 28682.40 27393.90 32596.68 242
v2v48293.29 14793.63 14292.29 20896.35 19078.82 27691.77 22496.28 19888.45 19095.70 12796.26 15886.02 22298.90 13093.02 8098.81 14099.14 43
AdaColmapbinary91.63 19691.36 19992.47 20795.56 24586.36 16792.24 19896.27 19988.88 18289.90 29092.69 29291.65 12598.32 21277.38 31997.64 24192.72 343
Test_1112_low_res87.50 28486.58 29090.25 27596.80 16377.75 29087.53 31496.25 20069.73 35386.47 33393.61 27075.67 30497.88 24779.95 29593.20 33395.11 295
test1294.43 13995.95 22386.75 15496.24 20189.76 29589.79 17098.79 15297.95 22697.75 190
PAPR87.65 28086.77 28890.27 27492.85 30977.38 29588.56 30496.23 20276.82 32184.98 34189.75 33786.08 22197.16 28972.33 34693.35 33196.26 258
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15189.30 28796.23 20288.36 19493.57 20194.60 23693.45 7797.77 26090.23 15298.38 18198.03 157
XXY-MVS92.58 17593.16 15790.84 25997.75 10679.84 25491.87 21696.22 20485.94 23295.53 13297.68 5992.69 10294.48 34583.21 26497.51 24598.21 142
MSDG90.82 20990.67 21691.26 24294.16 28483.08 21486.63 33396.19 20590.60 14391.94 25591.89 30789.16 17595.75 32780.96 28894.51 31794.95 299
miper_ehance_all_eth90.48 21890.42 22290.69 26391.62 33276.57 30886.83 32796.18 20683.38 26394.06 18592.66 29482.20 25398.04 23389.79 16497.02 25997.45 209
TinyColmap92.00 19092.76 16489.71 28795.62 24377.02 29990.72 24596.17 20787.70 20795.26 14596.29 15592.54 10696.45 31181.77 27898.77 14595.66 283
DPM-MVS89.35 24888.40 25692.18 21596.13 21184.20 19886.96 32396.15 20875.40 32687.36 32891.55 31483.30 24098.01 23882.17 27696.62 27394.32 313
HyFIR lowres test87.19 29285.51 30292.24 21097.12 14680.51 24185.03 34396.06 20966.11 36391.66 25992.98 28570.12 32199.14 9475.29 33195.23 30397.07 225
xiu_mvs_v1_base_debu91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base_debi91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
iter_conf0588.94 25888.09 26691.50 23592.74 31476.97 30392.80 17095.92 21382.82 27393.65 19895.37 20649.41 37699.13 9690.82 13299.28 7998.40 128
Regformer-494.90 9594.67 11095.59 8592.78 31289.02 10692.39 18895.91 21494.50 4396.41 8695.56 19392.10 11499.01 11794.23 3098.14 21098.74 94
UnsupCasMVSNet_eth90.33 22690.34 22390.28 27394.64 27680.24 24289.69 27795.88 21585.77 23593.94 19195.69 18581.99 25692.98 36084.21 25791.30 35297.62 198
CANet_DTU89.85 24289.17 24291.87 22292.20 32180.02 25190.79 24395.87 21686.02 23182.53 35791.77 30980.01 27198.57 19185.66 23897.70 23897.01 229
PMVScopyleft87.21 1494.97 9295.33 8193.91 15698.97 1597.16 295.54 8395.85 21796.47 2193.40 20697.46 7295.31 3395.47 33386.18 23598.78 14489.11 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-194.55 11194.33 12295.19 10292.83 31088.54 12091.87 21695.84 21893.99 5395.95 11395.04 21792.00 11698.79 15293.14 7698.31 19198.23 139
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13793.45 15695.76 21991.58 11895.25 14792.42 30081.96 25798.72 16691.61 11797.87 23097.33 220
无先验89.94 27095.75 22070.81 34998.59 18881.17 28594.81 300
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25090.14 26495.68 22193.70 6296.62 8195.39 20487.21 20199.04 11287.50 21199.64 2799.33 29
VPNet93.08 15693.76 13791.03 25098.60 3775.83 31791.51 22795.62 22291.84 10595.74 12497.10 9789.31 17398.32 21285.07 24899.06 10398.93 68
Anonymous2024052192.86 16693.57 14590.74 26296.57 17375.50 31994.15 13495.60 22389.38 16795.90 11897.90 5380.39 27097.96 24392.60 9299.68 2198.75 91
xiu_mvs_v2_base89.00 25589.19 24188.46 30994.86 26274.63 32386.97 32295.60 22380.88 28687.83 32388.62 34791.04 14498.81 14982.51 27294.38 31891.93 349
PS-MVSNAJ88.86 26088.99 24688.48 30894.88 26074.71 32186.69 33195.60 22380.88 28687.83 32387.37 35590.77 14798.82 14482.52 27194.37 31991.93 349
CHOSEN 1792x268887.19 29285.92 30091.00 25397.13 14579.41 26484.51 34995.60 22364.14 36790.07 28694.81 22778.26 28597.14 29073.34 34095.38 30096.46 250
miper_enhance_ethall88.42 26787.87 26990.07 28088.67 36375.52 31885.10 34295.59 22775.68 32292.49 23689.45 34178.96 27697.88 24787.86 20797.02 25996.81 237
MVP-Stereo90.07 23788.92 24793.54 16996.31 19486.49 16190.93 24095.59 22779.80 29291.48 26095.59 18880.79 26797.39 28278.57 31091.19 35396.76 240
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cdsmvs_eth3d_5k23.35 34631.13 3490.00 3640.00 3870.00 3880.00 37595.58 2290.00 3820.00 38391.15 31793.43 790.00 3830.00 3810.00 3810.00 379
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4386.28 17095.80 7295.55 23088.41 19297.09 5898.08 4178.69 27998.87 13895.63 1299.53 3998.81 84
CNLPA91.72 19491.20 20393.26 17896.17 20591.02 6991.14 23595.55 23090.16 15190.87 27193.56 27286.31 21894.40 34879.92 29997.12 25694.37 311
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22394.18 13395.53 23288.63 18696.05 11097.37 7781.31 26298.81 14987.38 21598.67 15598.06 151
ab-mvs92.40 18092.62 17091.74 22697.02 14781.65 22795.84 7095.50 23386.95 22192.95 22497.56 6590.70 15297.50 27379.63 30097.43 24896.06 265
test_low_dy_conf_00195.63 6595.32 8396.56 4798.74 3090.71 7797.10 2095.47 23490.00 15397.57 3998.49 2684.73 23299.46 2696.06 899.69 1599.50 17
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7190.21 26095.43 23587.91 20093.74 19694.40 24292.88 9896.38 31490.39 14198.28 19497.07 225
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 23994.55 12395.41 23693.70 6296.67 7997.72 5891.40 13098.18 22587.45 21299.18 9398.36 129
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 26896.67 394.00 14095.41 23689.94 15491.93 25692.13 30490.12 16298.97 12387.68 20997.48 24697.67 195
mvs-test193.07 15891.80 18896.89 3994.74 26895.83 692.17 19995.41 23689.94 15489.85 29190.59 32990.12 16298.88 13387.68 20995.66 29195.97 268
iter_conf_final90.23 23089.32 23992.95 18694.65 27581.46 23194.32 13095.40 23985.61 23992.84 22695.37 20654.58 36999.13 9692.16 9898.94 12398.25 138
cl____90.65 21590.56 21990.91 25791.85 32776.98 30286.75 32995.36 24085.53 24094.06 18594.89 22477.36 29397.98 24290.27 14998.98 11597.76 188
DIV-MVS_self_test90.65 21590.56 21990.91 25791.85 32776.99 30186.75 32995.36 24085.52 24294.06 18594.89 22477.37 29297.99 24190.28 14898.97 11997.76 188
testgi90.38 22391.34 20087.50 32097.49 12671.54 34689.43 28295.16 24288.38 19394.54 17494.68 23592.88 9893.09 35971.60 35197.85 23197.88 176
v14892.87 16593.29 15291.62 23196.25 20077.72 29191.28 23395.05 24389.69 16095.93 11696.04 16787.34 19898.38 20790.05 15997.99 22498.78 88
miper_lstm_enhance89.90 24189.80 23390.19 27991.37 33577.50 29383.82 35595.00 24484.84 25393.05 22094.96 22176.53 30295.20 34189.96 16198.67 15597.86 178
VNet92.67 17292.96 15891.79 22496.27 19780.15 24491.95 20894.98 24592.19 9294.52 17596.07 16687.43 19797.39 28284.83 25098.38 18197.83 181
FMVSNet390.78 21190.32 22492.16 21693.03 30779.92 25392.54 17894.95 24686.17 22995.10 15296.01 16969.97 32298.75 16186.74 22298.38 18197.82 183
BH-untuned90.68 21490.90 20890.05 28295.98 22179.57 26290.04 26794.94 24787.91 20094.07 18493.00 28387.76 19297.78 25979.19 30695.17 30492.80 342
D2MVS89.93 24089.60 23890.92 25594.03 28978.40 28188.69 30194.85 24878.96 30693.08 21895.09 21474.57 30696.94 29688.19 19798.96 12197.41 212
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21195.93 6694.84 24994.86 3998.49 1598.74 1681.45 26099.60 994.69 2099.39 6099.15 42
旧先验196.20 20284.17 19994.82 25095.57 19289.57 17197.89 22996.32 255
API-MVS91.52 19991.61 19191.26 24294.16 28486.26 17294.66 11594.82 25091.17 12992.13 25291.08 31990.03 16897.06 29379.09 30797.35 25190.45 358
FMVSNet587.82 27686.56 29191.62 23192.31 31779.81 25793.49 15494.81 25283.26 26491.36 26296.93 10852.77 37497.49 27576.07 32798.03 22197.55 204
MAR-MVS90.32 22788.87 25094.66 12294.82 26391.85 5994.22 13294.75 25380.91 28587.52 32788.07 35186.63 21597.87 25076.67 32396.21 28094.25 314
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous90.37 22491.30 20187.58 31992.17 32268.00 36089.84 27494.73 25483.82 26293.22 21597.40 7587.54 19597.40 28187.94 20595.05 30697.34 219
Regformer-394.28 12294.23 12894.46 13792.78 31286.28 17092.39 18894.70 25593.69 6595.97 11195.56 19391.34 13198.48 20293.45 5898.14 21098.62 111
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31685.87 17892.42 18694.69 25693.67 6696.13 10795.84 17791.20 13998.86 13993.78 4298.23 20199.03 54
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31585.98 17692.44 18494.69 25693.70 6296.12 10895.81 17891.24 13698.86 13993.76 4598.22 20398.98 63
EI-MVSNet92.99 16093.26 15692.19 21292.12 32379.21 27092.32 19394.67 25891.77 11195.24 14895.85 17487.14 20498.49 19891.99 10498.26 19698.86 78
MVSTER89.32 24988.75 25191.03 25090.10 34976.62 30790.85 24194.67 25882.27 27995.24 14895.79 17961.09 35998.49 19890.49 13898.26 19697.97 166
RRT_MVS95.41 7695.20 8996.05 5998.86 2188.92 10897.49 1094.48 26093.12 7297.94 2898.54 2181.19 26699.63 695.48 1499.69 1599.60 12
新几何193.17 18097.16 14287.29 14094.43 26167.95 35891.29 26394.94 22286.97 20798.23 22081.06 28797.75 23393.98 321
112190.26 22989.23 24093.34 17497.15 14487.40 13891.94 21094.39 26267.88 35991.02 27094.91 22386.91 21098.59 18881.17 28597.71 23794.02 320
CMPMVSbinary68.83 2287.28 28885.67 30192.09 21888.77 36285.42 18490.31 25894.38 26370.02 35288.00 32193.30 27773.78 31094.03 35375.96 32996.54 27496.83 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16397.13 1894.31 26496.24 2496.28 9896.36 15182.88 24499.35 6588.19 19799.52 4298.96 65
testdata91.03 25096.87 15682.01 22294.28 26571.55 34392.46 23895.42 20185.65 22697.38 28482.64 26997.27 25293.70 328
UGNet93.08 15692.50 17394.79 11693.87 29387.99 13095.07 10194.26 26690.64 14187.33 32997.67 6086.89 21198.49 19888.10 20098.71 14997.91 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS84.98 30884.30 30887.01 32391.03 33777.69 29291.94 21094.16 26759.36 37284.23 34787.50 35485.66 22596.80 30271.79 34893.05 33886.54 365
131486.46 29986.33 29686.87 32591.65 33174.54 32491.94 21094.10 26874.28 33084.78 34387.33 35683.03 24395.00 34278.72 30891.16 35491.06 355
cl2289.02 25388.50 25490.59 26689.76 35176.45 30986.62 33494.03 26982.98 27192.65 23292.49 29572.05 31597.53 27188.93 18297.02 25997.78 186
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18397.44 1194.03 26994.22 5094.94 16096.19 16182.07 25599.57 1487.28 21698.89 12598.65 103
UnsupCasMVSNet_bld88.50 26688.03 26789.90 28495.52 24678.88 27587.39 31694.02 27179.32 30293.06 21994.02 25680.72 26894.27 35075.16 33293.08 33796.54 243
h-mvs3392.89 16391.99 18295.58 8696.97 14990.55 7993.94 14394.01 27289.23 17293.95 18996.19 16176.88 29899.14 9491.02 12795.71 29097.04 228
pmmvs-eth3d91.54 19890.73 21593.99 14995.76 23487.86 13390.83 24293.98 27378.23 31294.02 18896.22 16082.62 25096.83 30186.57 22798.33 18897.29 222
BH-RMVSNet90.47 21990.44 22190.56 26795.21 25678.65 28089.15 29193.94 27488.21 19592.74 23094.22 24886.38 21797.88 24778.67 30995.39 29995.14 294
test22296.95 15085.27 18688.83 29793.61 27565.09 36690.74 27494.85 22684.62 23397.36 25093.91 322
CDS-MVSNet89.55 24588.22 26393.53 17095.37 25286.49 16189.26 28893.59 27679.76 29491.15 26792.31 30177.12 29498.38 20777.51 31797.92 22895.71 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
new-patchmatchnet88.97 25690.79 21383.50 34694.28 28355.83 38085.34 34193.56 27786.18 22895.47 13395.73 18483.10 24296.51 30985.40 24098.06 21898.16 144
IterMVS-SCA-FT91.65 19591.55 19291.94 22193.89 29279.22 26987.56 31293.51 27891.53 12095.37 13896.62 13278.65 28098.90 13091.89 10994.95 30797.70 192
Anonymous2023120688.77 26288.29 25990.20 27896.31 19478.81 27789.56 28093.49 27974.26 33192.38 24395.58 19182.21 25295.43 33572.07 34798.75 14896.34 254
OpenMVS_ROBcopyleft85.12 1689.52 24789.05 24490.92 25594.58 27781.21 23591.10 23793.41 28077.03 31993.41 20493.99 25883.23 24197.80 25679.93 29794.80 31193.74 327
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17593.97 14293.28 28194.49 4496.24 9997.78 5587.99 18998.79 15288.92 18399.14 9898.34 130
jason89.17 25188.32 25791.70 22995.73 23580.07 24788.10 30693.22 28271.98 34290.09 28492.79 28978.53 28398.56 19287.43 21397.06 25796.46 250
jason: jason.
PAPM81.91 32780.11 33787.31 32293.87 29372.32 34484.02 35393.22 28269.47 35476.13 37389.84 33272.15 31497.23 28753.27 37589.02 35992.37 346
BH-w/o87.21 29087.02 28487.79 31894.77 26677.27 29787.90 30793.21 28481.74 28389.99 28888.39 35083.47 23896.93 29871.29 35292.43 34589.15 359
ppachtmachnet_test88.61 26588.64 25288.50 30791.76 32970.99 35084.59 34892.98 28579.30 30392.38 24393.53 27379.57 27397.45 27786.50 23097.17 25597.07 225
IterMVS90.18 23190.16 22590.21 27793.15 30375.98 31487.56 31292.97 28686.43 22594.09 18296.40 14478.32 28497.43 27887.87 20694.69 31497.23 223
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test20.0390.80 21090.85 21190.63 26595.63 24279.24 26889.81 27592.87 28789.90 15694.39 17796.40 14485.77 22395.27 34073.86 33899.05 10697.39 216
CR-MVSNet87.89 27387.12 28290.22 27691.01 33878.93 27292.52 17992.81 28873.08 33789.10 30196.93 10867.11 32897.64 26888.80 18692.70 34194.08 315
Patchmtry90.11 23489.92 23190.66 26490.35 34777.00 30092.96 16592.81 28890.25 15094.74 16996.93 10867.11 32897.52 27285.17 24198.98 11597.46 208
GA-MVS87.70 27786.82 28690.31 27293.27 30077.22 29884.72 34792.79 29085.11 24889.82 29290.07 33066.80 33197.76 26284.56 25494.27 32295.96 269
sss87.23 28986.82 28688.46 30993.96 29077.94 28586.84 32692.78 29177.59 31487.61 32691.83 30878.75 27891.92 36377.84 31394.20 32395.52 288
Patchmatch-RL test88.81 26188.52 25389.69 28895.33 25479.94 25286.22 33792.71 29278.46 31095.80 12194.18 25066.25 33695.33 33889.22 17898.53 16793.78 325
test_yl90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
DCV-MVSNet90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
CL-MVSNet_self_test90.04 23989.90 23290.47 26895.24 25577.81 28986.60 33592.62 29585.64 23893.25 21493.92 26083.84 23696.06 32379.93 29798.03 22197.53 205
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7490.97 23992.61 29688.04 19994.61 17293.79 26588.08 18597.81 25589.41 17198.39 17996.50 248
TAMVS90.16 23289.05 24493.49 17296.49 18186.37 16690.34 25792.55 29780.84 28892.99 22294.57 23881.94 25898.20 22273.51 33998.21 20495.90 273
MS-PatchMatch88.05 27287.75 27088.95 29893.28 29977.93 28687.88 30892.49 29875.42 32592.57 23593.59 27180.44 26994.24 35281.28 28292.75 34094.69 306
MG-MVS89.54 24689.80 23388.76 30294.88 26072.47 34389.60 27892.44 29985.82 23489.48 29895.98 17082.85 24597.74 26481.87 27795.27 30296.08 264
MVS_030490.96 20890.15 22893.37 17393.17 30287.06 14693.62 15292.43 30089.60 16382.25 35895.50 19682.56 25197.83 25484.41 25697.83 23295.22 291
lupinMVS88.34 26987.31 27691.45 23694.74 26880.06 24887.23 31792.27 30171.10 34688.83 30491.15 31777.02 29598.53 19586.67 22596.75 27095.76 278
pmmvs587.87 27487.14 28190.07 28093.26 30176.97 30388.89 29592.18 30273.71 33488.36 31693.89 26276.86 30096.73 30480.32 28996.81 26796.51 245
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2192.26 19692.18 30285.92 23396.22 10196.61 13385.64 22795.99 32590.35 14498.23 20195.93 270
pmmvs488.95 25787.70 27292.70 19694.30 28285.60 18287.22 31892.16 30474.62 32989.75 29694.19 24977.97 28796.41 31282.71 26896.36 27896.09 263
MDA-MVSNet-bldmvs91.04 20690.88 20991.55 23394.68 27380.16 24385.49 34092.14 30590.41 14894.93 16195.79 17985.10 22896.93 29885.15 24394.19 32497.57 201
door-mid92.13 306
WTY-MVS86.93 29786.50 29588.24 31194.96 25974.64 32287.19 31992.07 30778.29 31188.32 31791.59 31378.06 28694.27 35074.88 33393.15 33595.80 276
AUN-MVS90.05 23888.30 25895.32 9896.09 21290.52 8092.42 18692.05 30882.08 28188.45 31592.86 28665.76 33898.69 17488.91 18496.07 28196.75 241
hse-mvs292.24 18691.20 20395.38 9296.16 20690.65 7892.52 17992.01 30989.23 17293.95 18992.99 28476.88 29898.69 17491.02 12796.03 28296.81 237
TR-MVS87.70 27787.17 28089.27 29594.11 28679.26 26788.69 30191.86 31081.94 28290.69 27589.79 33582.82 24697.42 27972.65 34591.98 34991.14 354
VDDNet94.03 13294.27 12693.31 17698.87 2082.36 22095.51 8591.78 31197.19 1296.32 9298.60 1884.24 23498.75 16187.09 21998.83 13798.81 84
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21092.43 18591.64 31294.10 5295.59 13096.64 13181.88 25997.50 27385.12 24598.52 16897.77 187
HY-MVS82.50 1886.81 29885.93 29989.47 28993.63 29677.93 28694.02 13991.58 31375.68 32283.64 35093.64 26877.40 29097.42 27971.70 35092.07 34893.05 339
door91.26 314
PatchMatch-RL89.18 25088.02 26892.64 19895.90 22792.87 4788.67 30391.06 31580.34 28990.03 28791.67 31183.34 23994.42 34776.35 32694.84 31090.64 357
ADS-MVSNet284.01 31382.20 32189.41 29189.04 35976.37 31187.57 31090.98 31672.71 34084.46 34492.45 29668.08 32496.48 31070.58 35783.97 36795.38 289
KD-MVS_2432*160082.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
miper_refine_blended82.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
wuyk23d87.83 27590.79 21378.96 35590.46 34688.63 11592.72 17290.67 31991.65 11798.68 1197.64 6296.06 1677.53 37659.84 37199.41 5870.73 374
our_test_387.55 28287.59 27387.44 32191.76 32970.48 35183.83 35490.55 32079.79 29392.06 25492.17 30378.63 28295.63 32884.77 25194.73 31296.22 259
test_method50.44 34448.94 34754.93 35939.68 38312.38 38528.59 37490.09 3216.82 37741.10 37978.41 37254.41 37070.69 37850.12 37651.26 37881.72 372
EU-MVSNet87.39 28686.71 28989.44 29093.40 29876.11 31294.93 10790.00 32257.17 37395.71 12697.37 7764.77 34497.68 26792.67 9094.37 31994.52 308
CHOSEN 280x42080.04 33877.97 34386.23 33190.13 34874.53 32572.87 36989.59 32366.38 36276.29 37285.32 36556.96 36595.36 33669.49 36094.72 31388.79 362
MDA-MVSNet_test_wron88.16 27188.23 26287.93 31592.22 31973.71 33280.71 36488.84 32482.52 27694.88 16495.14 21182.70 24893.61 35583.28 26393.80 32796.46 250
YYNet188.17 27088.24 26187.93 31592.21 32073.62 33380.75 36388.77 32582.51 27794.99 15995.11 21382.70 24893.70 35483.33 26293.83 32696.48 249
PVSNet76.22 2082.89 31982.37 31984.48 34193.96 29064.38 37378.60 36688.61 32671.50 34484.43 34686.36 36174.27 30794.60 34469.87 35993.69 32994.46 309
MIMVSNet87.13 29486.54 29288.89 30096.05 21576.11 31294.39 12688.51 32781.37 28488.27 31896.75 12272.38 31395.52 33065.71 36795.47 29695.03 296
tpmvs84.22 31283.97 31184.94 33787.09 36965.18 36891.21 23488.35 32882.87 27285.21 33890.96 32165.24 34296.75 30379.60 30385.25 36692.90 341
EPNet_dtu85.63 30384.37 30789.40 29286.30 37274.33 32891.64 22588.26 32984.84 25372.96 37589.85 33171.27 31897.69 26676.60 32497.62 24296.18 261
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat180.61 33679.46 33984.07 34488.78 36165.06 37189.26 28888.23 33062.27 37081.90 36389.66 33962.70 35595.29 33971.72 34980.60 37391.86 351
baseline187.62 28187.31 27688.54 30694.71 27274.27 32993.10 16288.20 33186.20 22792.18 25193.04 28273.21 31195.52 33079.32 30485.82 36595.83 275
CVMVSNet85.16 30684.72 30486.48 32692.12 32370.19 35292.32 19388.17 33256.15 37490.64 27695.85 17467.97 32696.69 30588.78 18790.52 35692.56 344
SCA87.43 28587.21 27988.10 31392.01 32671.98 34589.43 28288.11 33382.26 28088.71 31192.83 28778.65 28097.59 26979.61 30193.30 33294.75 303
tpmrst82.85 32082.93 31882.64 34887.65 36458.99 37890.14 26487.90 33475.54 32483.93 34891.63 31266.79 33395.36 33681.21 28481.54 37293.57 333
Vis-MVSNet (Re-imp)90.42 22090.16 22591.20 24697.66 11677.32 29694.33 12887.66 33591.20 12892.99 22295.13 21275.40 30598.28 21477.86 31299.19 9197.99 162
MDTV_nov1_ep1383.88 31289.42 35761.52 37688.74 30087.41 33673.99 33284.96 34294.01 25765.25 34195.53 32978.02 31193.16 334
PatchmatchNetpermissive85.22 30584.64 30586.98 32489.51 35669.83 35790.52 25087.34 33778.87 30787.22 33092.74 29166.91 33096.53 30781.77 27886.88 36494.58 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet88.90 25987.25 27893.83 16094.40 28193.81 3684.73 34587.09 33879.36 30193.26 21292.43 29979.29 27591.68 36477.50 31897.22 25496.00 267
EPNet89.80 24488.25 26094.45 13883.91 37886.18 17393.87 14487.07 33991.16 13080.64 36694.72 23378.83 27798.89 13285.17 24198.89 12598.28 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test86.10 30186.01 29886.38 33090.63 34274.22 33089.57 27986.69 34085.73 23789.81 29392.83 28765.24 34291.04 36677.82 31595.78 28993.88 324
K. test v393.37 14593.27 15593.66 16398.05 8682.62 21894.35 12786.62 34196.05 2897.51 4498.85 1276.59 30199.65 393.21 7298.20 20698.73 96
CostFormer83.09 31782.21 32085.73 33289.27 35867.01 36190.35 25686.47 34270.42 35083.52 35293.23 28061.18 35896.85 30077.21 32088.26 36293.34 335
thres20085.85 30285.18 30387.88 31794.44 27972.52 34289.08 29286.21 34388.57 18991.44 26188.40 34964.22 34598.00 23968.35 36195.88 28893.12 336
ET-MVSNet_ETH3D86.15 30084.27 30991.79 22493.04 30681.28 23387.17 32086.14 34479.57 29783.65 34988.66 34657.10 36498.18 22587.74 20895.40 29895.90 273
PatchT87.51 28388.17 26485.55 33390.64 34166.91 36292.02 20686.09 34592.20 9189.05 30397.16 9464.15 34696.37 31589.21 17992.98 33993.37 334
tfpn200view987.05 29586.52 29388.67 30495.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27494.79 301
thres40087.20 29186.52 29389.24 29795.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27496.51 245
IB-MVS77.21 1983.11 31681.05 32789.29 29491.15 33675.85 31585.66 33986.00 34679.70 29582.02 36286.61 35848.26 37798.39 20577.84 31392.22 34693.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMMVS83.00 31881.11 32688.66 30583.81 37986.44 16482.24 36085.65 34961.75 37182.07 36085.64 36479.75 27291.59 36575.99 32893.09 33687.94 364
tpm84.38 31184.08 31085.30 33690.47 34563.43 37589.34 28585.63 35077.24 31887.62 32595.03 21961.00 36097.30 28579.26 30591.09 35595.16 292
LFMVS91.33 20391.16 20691.82 22396.27 19779.36 26595.01 10485.61 35196.04 2994.82 16597.06 9972.03 31698.46 20484.96 24998.70 15197.65 196
FPMVS84.50 31083.28 31488.16 31296.32 19394.49 1685.76 33885.47 35283.09 26885.20 33994.26 24663.79 34986.58 37363.72 36991.88 35183.40 368
tpm281.46 32880.35 33584.80 33889.90 35065.14 36990.44 25285.36 35365.82 36582.05 36192.44 29857.94 36396.69 30570.71 35688.49 36192.56 344
thres100view90087.35 28786.89 28588.72 30396.14 20873.09 33793.00 16485.31 35492.13 9393.26 21290.96 32163.42 35098.28 21471.27 35396.54 27494.79 301
thres600view787.66 27987.10 28389.36 29396.05 21573.17 33592.72 17285.31 35491.89 10093.29 20990.97 32063.42 35098.39 20573.23 34196.99 26496.51 245
dp79.28 33978.62 34181.24 35185.97 37356.45 37986.91 32485.26 35672.97 33881.45 36589.17 34556.01 36895.45 33473.19 34276.68 37491.82 352
PMMVS281.31 32983.44 31374.92 35790.52 34446.49 38269.19 37185.23 35784.30 25887.95 32294.71 23476.95 29784.36 37564.07 36898.09 21693.89 323
ADS-MVSNet82.25 32281.55 32384.34 34289.04 35965.30 36787.57 31085.13 35872.71 34084.46 34492.45 29668.08 32492.33 36270.58 35783.97 36795.38 289
test-LLR83.58 31483.17 31584.79 33989.68 35366.86 36383.08 35684.52 35983.07 26982.85 35584.78 36662.86 35393.49 35682.85 26694.86 30894.03 318
test-mter81.21 33180.01 33884.79 33989.68 35366.86 36383.08 35684.52 35973.85 33382.85 35584.78 36643.66 38193.49 35682.85 26694.86 30894.03 318
JIA-IIPM85.08 30783.04 31691.19 24787.56 36586.14 17489.40 28484.44 36188.98 17882.20 35997.95 4856.82 36696.15 31976.55 32583.45 36991.30 353
thisisatest053088.69 26487.52 27492.20 21196.33 19279.36 26592.81 16984.01 36286.44 22493.67 19792.68 29353.62 37399.25 8289.65 16898.45 17498.00 159
tttt051789.81 24388.90 24992.55 20497.00 14879.73 25995.03 10383.65 36389.88 15795.30 14294.79 23153.64 37299.39 5491.99 10498.79 14398.54 117
thisisatest051584.72 30982.99 31789.90 28492.96 30875.33 32084.36 35083.42 36477.37 31688.27 31886.65 35753.94 37198.72 16682.56 27097.40 24995.67 282
PVSNet_070.34 2174.58 34272.96 34579.47 35490.63 34266.24 36673.26 36783.40 36563.67 36978.02 37078.35 37372.53 31289.59 37056.68 37360.05 37782.57 371
pmmvs380.83 33478.96 34086.45 32787.23 36877.48 29484.87 34482.31 36663.83 36885.03 34089.50 34049.66 37593.10 35873.12 34395.10 30588.78 363
E-PMN80.72 33580.86 33080.29 35385.11 37568.77 35972.96 36881.97 36787.76 20583.25 35483.01 37062.22 35689.17 37177.15 32194.31 32182.93 369
test0.0.03 182.48 32181.47 32585.48 33489.70 35273.57 33484.73 34581.64 36883.07 26988.13 32086.61 35862.86 35389.10 37266.24 36690.29 35793.77 326
baseline283.38 31581.54 32488.90 29991.38 33472.84 34088.78 29881.22 36978.97 30579.82 36887.56 35261.73 35797.80 25674.30 33690.05 35896.05 266
EMVS80.35 33780.28 33680.54 35284.73 37769.07 35872.54 37080.73 37087.80 20481.66 36481.73 37162.89 35289.84 36975.79 33094.65 31582.71 370
TESTMET0.1,179.09 34078.04 34282.25 34987.52 36664.03 37483.08 35680.62 37170.28 35180.16 36783.22 36944.13 38090.56 36779.95 29593.36 33092.15 347
lessismore_v093.87 15998.05 8683.77 20580.32 37297.13 5797.91 5177.49 28999.11 10292.62 9198.08 21798.74 94
new_pmnet81.22 33081.01 32981.86 35090.92 34070.15 35384.03 35280.25 37370.83 34885.97 33689.78 33667.93 32784.65 37467.44 36391.90 35090.78 356
test111190.39 22290.61 21789.74 28698.04 8971.50 34795.59 7979.72 37489.41 16695.94 11598.14 3670.79 31998.81 14988.52 19399.32 6898.90 74
ECVR-MVScopyleft90.12 23390.16 22590.00 28397.81 10272.68 34195.76 7478.54 37589.04 17695.36 13998.10 3970.51 32098.64 18287.10 21899.18 9398.67 101
MVS-HIRNet78.83 34180.60 33373.51 35893.07 30447.37 38187.10 32178.00 37668.94 35577.53 37197.26 8771.45 31794.62 34363.28 37088.74 36078.55 373
DSMNet-mixed82.21 32381.56 32284.16 34389.57 35570.00 35690.65 24777.66 37754.99 37583.30 35397.57 6477.89 28890.50 36866.86 36595.54 29491.97 348
EPMVS81.17 33280.37 33483.58 34585.58 37465.08 37090.31 25871.34 37877.31 31785.80 33791.30 31559.38 36192.70 36179.99 29482.34 37192.96 340
gg-mvs-nofinetune82.10 32681.02 32885.34 33587.46 36771.04 34894.74 11267.56 37996.44 2279.43 36998.99 645.24 37896.15 31967.18 36492.17 34788.85 361
GG-mvs-BLEND83.24 34785.06 37671.03 34994.99 10665.55 38074.09 37475.51 37444.57 37994.46 34659.57 37287.54 36384.24 367
MVEpermissive59.87 2373.86 34372.65 34677.47 35687.00 37174.35 32761.37 37360.93 38167.27 36069.69 37686.49 36081.24 26572.33 37756.45 37483.45 36985.74 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250685.42 30484.57 30687.96 31497.81 10266.53 36596.14 5756.35 38289.04 17693.55 20298.10 3942.88 38498.68 17688.09 20199.18 9398.67 101
MTMP94.82 10954.62 383
DeepMVS_CXcopyleft53.83 36070.38 38264.56 37248.52 38433.01 37665.50 37774.21 37556.19 36746.64 37938.45 37870.07 37550.30 375
tmp_tt37.97 34544.33 34818.88 36111.80 38421.54 38463.51 37245.66 3854.23 37851.34 37850.48 37659.08 36222.11 38044.50 37768.35 37613.00 376
testmvs9.02 34811.42 3511.81 3632.77 3861.13 38779.44 3651.90 3861.18 3812.65 3826.80 3781.95 3860.87 3822.62 3803.45 3803.44 378
test1239.49 34712.01 3501.91 3622.87 3851.30 38682.38 3591.34 3871.36 3802.84 3816.56 3792.45 3850.97 3812.73 3795.56 3793.47 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.56 34910.09 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38290.77 1470.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
n20.00 388
nn0.00 388
ab-mvs-re7.56 34910.08 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38390.69 3260.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145275.31 32795.87 11995.75 18392.93 9596.34 31887.18 21798.68 15398.04 154
eth-test20.00 387
eth-test0.00 387
OPU-MVS95.15 10496.84 15889.43 9995.21 9395.66 18693.12 8998.06 23286.28 23498.61 15897.95 167
test_0728_THIRD93.26 7097.40 5197.35 8394.69 5599.34 6893.88 3899.42 5398.89 75
GSMVS94.75 303
test_part298.21 7689.41 10096.72 77
sam_mvs166.64 33494.75 303
sam_mvs66.41 335
test_post190.21 2605.85 38165.36 34096.00 32479.61 301
test_post6.07 38065.74 33995.84 326
patchmatchnet-post91.71 31066.22 33797.59 269
gm-plane-assit87.08 37059.33 37771.22 34583.58 36897.20 28873.95 337
test9_res88.16 19998.40 17697.83 181
agg_prior287.06 22098.36 18797.98 163
test_prior489.91 8790.74 244
test_prior290.21 26089.33 17090.77 27294.81 22790.41 15788.21 19598.55 163
旧先验290.00 26968.65 35692.71 23196.52 30885.15 243
新几何290.02 268
原ACMM289.34 285
testdata298.03 23480.24 292
segment_acmp92.14 113
testdata188.96 29488.44 191
plane_prior797.71 11088.68 114
plane_prior697.21 14088.23 12586.93 208
plane_prior495.59 188
plane_prior388.43 12390.35 14993.31 207
plane_prior294.56 12191.74 113
plane_prior197.38 132
plane_prior88.12 12693.01 16388.98 17898.06 218
HQP5-MVS84.89 189
HQP-NCC96.36 18791.37 22987.16 21688.81 306
ACMP_Plane96.36 18791.37 22987.16 21688.81 306
BP-MVS86.55 228
HQP4-MVS88.81 30698.61 18498.15 145
HQP2-MVS84.76 230
NP-MVS96.82 16087.10 14593.40 275
MDTV_nov1_ep13_2view42.48 38388.45 30567.22 36183.56 35166.80 33172.86 34494.06 317
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 153