This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28393.73 27993.52 8199.55 1891.81 11499.45 4797.58 203
LCM-MVSNet-Re94.20 12694.58 11693.04 17695.91 23083.13 21793.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29698.54 16996.96 236
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24194.52 25393.95 7699.49 2493.62 5599.22 8997.51 209
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25094.79 24393.56 7999.49 2493.47 6399.05 10697.89 176
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
dcpmvs_293.96 13495.01 9990.82 26397.60 12074.04 34393.68 15498.85 789.80 15897.82 2997.01 12491.14 14599.21 7890.56 14398.59 16499.19 36
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3299.53 3898.99 56
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
ANet_high94.83 10096.28 3790.47 27196.65 17073.16 34894.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 14899.68 1899.53 15
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15399.60 2698.72 97
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14794.37 7099.32 6992.41 9999.05 10698.64 112
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11694.11 7497.75 25596.26 1198.72 14996.89 239
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16096.71 899.42 3393.99 4599.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3499.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14596.03 18794.66 6099.08 9490.70 14098.97 119
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5881.77 23295.90 6998.32 2493.93 5697.53 4297.56 7688.48 17999.40 4692.91 8899.83 599.68 4
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16299.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12695.14 4299.51 2091.74 11699.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12596.87 13295.26 3799.45 2792.77 8999.21 9099.00 54
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18696.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 2999.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 4899.49 4299.36 24
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12095.63 2399.39 4993.31 7298.88 12898.75 92
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 7899.74 1299.50 17
canonicalmvs94.59 10894.69 11194.30 13495.60 24987.03 14395.59 8198.24 3491.56 12195.21 15992.04 31994.95 5398.66 16591.45 12597.57 24197.20 228
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4698.68 15598.04 156
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6699.31 6998.53 121
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19098.07 4592.02 12099.44 2993.38 7197.67 23797.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14299.23 493.45 8299.57 1495.34 2899.89 299.63 9
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20583.23 21392.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10198.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16195.15 22686.60 21599.50 2193.43 6996.81 27198.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13595.10 4699.40 4693.47 6399.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS92.35 18292.03 18493.30 17295.81 23683.97 20492.80 17998.17 4587.71 20389.79 30787.56 36691.17 14499.18 8287.97 21397.27 25296.77 245
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 3899.38 5998.92 72
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23398.17 4590.72 13995.30 15196.47 15687.94 19096.98 29491.41 12697.61 24098.30 136
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 14996.36 16895.68 2199.44 2994.41 3699.28 7998.97 62
FIs94.90 9795.35 8393.55 16198.28 6981.76 23395.33 9098.14 4993.05 7697.07 6397.18 11187.65 19399.29 7091.72 11799.69 1499.61 11
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20496.25 17798.03 297.02 29392.08 10595.55 29898.45 127
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12194.85 5699.42 3393.49 6098.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12195.40 2993.49 6098.84 13398.00 161
RPMNet90.31 22990.14 23190.81 26491.01 35178.93 28292.52 19098.12 5191.91 10189.10 31496.89 13168.84 33699.41 3990.17 16092.70 35594.08 329
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7399.29 7497.95 169
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7399.25 8398.49 124
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12196.48 1098.95 114
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4099.84 399.66 6
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16596.39 16594.77 5899.42 3393.17 7999.44 5098.58 119
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15695.85 1899.12 9190.45 14599.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26195.70 1698.48 17697.74 194
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14495.09 4799.43 3292.99 8698.71 15198.50 122
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19090.14 16399.34 6392.11 10399.64 2499.16 38
SD-MVS95.19 8895.73 6793.55 16196.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16195.42 2894.36 35392.72 9399.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive94.32 11994.80 10592.85 18796.05 21981.44 23992.35 20098.05 6491.53 12295.75 12796.80 13693.35 8798.49 18391.01 13398.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19396.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8799.83 599.68 4
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 13992.91 10298.72 15291.19 12899.42 5298.32 133
baseline94.26 12294.80 10592.64 19496.08 21780.99 24593.69 15398.04 6890.80 13894.89 17296.32 17093.19 9298.48 18791.68 11998.51 17398.43 128
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3599.34 6498.80 86
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13396.25 1499.00 10693.10 8199.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9299.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12896.28 17495.22 4099.42 3393.17 7999.06 10398.88 77
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18699.57 1495.86 1599.69 1499.46 18
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15394.99 5299.36 5893.48 6299.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13396.47 15695.37 3099.27 7493.78 5099.14 9998.48 125
LS3D96.11 4795.83 6396.95 3694.75 27494.20 1997.34 1397.98 7597.31 1195.32 15096.77 13793.08 9799.20 8091.79 11598.16 20697.44 214
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20396.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7099.84 399.72 2
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15396.57 15395.02 5099.41 3993.63 5499.11 10198.94 66
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13596.61 15194.93 5499.41 3993.78 5099.15 9899.00 54
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18796.49 15594.56 6499.39 4993.57 5699.05 10698.93 68
X-MVStestdata90.70 21288.45 25997.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18726.89 39594.56 6499.39 4993.57 5699.05 10698.93 68
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27098.85 1291.77 12695.49 33491.72 11799.08 10295.02 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19296.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7599.82 799.62 10
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15099.60 995.43 2699.53 3899.57 14
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13799.76 1099.38 22
PHI-MVS94.34 11893.80 13795.95 5995.65 24591.67 6294.82 10997.86 8587.86 19993.04 23194.16 26491.58 13098.78 14390.27 15598.96 12197.41 215
ETV-MVS92.99 16092.74 16793.72 15695.86 23286.30 16592.33 20197.84 8891.70 11892.81 23886.17 37692.22 11699.19 8188.03 21297.73 23295.66 291
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20697.84 8894.91 4096.80 7895.78 20090.42 15999.41 3991.60 12199.58 3399.29 29
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 17897.23 10691.33 13599.16 8393.25 7698.30 19298.46 126
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21695.59 20786.93 20798.95 11489.26 18498.51 17398.60 117
plane_prior597.81 9198.95 11489.26 18498.51 17398.60 117
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19190.10 16699.41 3991.60 12199.58 3399.26 30
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14296.17 18293.42 8599.34 6389.30 18098.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 5899.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_vis1_n_192089.45 24989.85 23688.28 31893.59 30476.71 31890.67 25397.78 9679.67 30590.30 29696.11 18376.62 30892.17 36790.31 15293.57 34295.96 275
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21296.72 14594.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++93.25 15393.88 13591.37 23996.34 19582.81 22293.11 17097.74 9889.37 16694.08 19295.29 22490.40 16196.35 31790.35 15098.25 19794.96 307
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14096.68 14794.50 6699.42 3393.10 8199.26 8298.99 56
test_vis3_rt90.40 22190.03 23291.52 23592.58 31888.95 10390.38 26397.72 10073.30 34897.79 3097.51 8477.05 30187.10 38689.03 19194.89 31598.50 122
TAPA-MVS88.58 1092.49 17791.75 19394.73 11096.50 18389.69 8692.91 17697.68 10178.02 32192.79 24094.10 26590.85 14997.96 23284.76 26498.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 21995.46 21388.89 17798.98 10789.80 16998.82 13997.80 187
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26188.20 20498.66 15997.79 188
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14598.84 13397.57 204
MTGPAbinary97.62 105
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12793.56 7999.37 5794.29 3999.42 5298.99 56
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10683.15 21694.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17299.59 2899.08 48
v1094.68 10695.27 8992.90 18596.57 17680.15 25294.65 11597.57 11090.68 14197.43 4898.00 5188.18 18399.15 8494.84 3099.55 3799.41 20
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28791.92 12398.78 14389.11 18999.24 8596.92 237
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17695.79 19792.76 10799.39 4988.72 19998.40 179
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 13999.73 1399.59 13
Effi-MVS+92.79 16792.74 16792.94 18395.10 26283.30 21194.00 14297.53 11491.36 12589.35 31390.65 34194.01 7598.66 16587.40 22395.30 30796.88 241
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20696.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8399.81 899.70 3
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21397.78 6391.21 14097.77 25291.06 13097.06 25998.80 86
diffmvspermissive91.74 19391.93 18891.15 25193.06 31278.17 29588.77 31197.51 11786.28 22292.42 25493.96 27288.04 18797.46 27190.69 14196.67 27697.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu91.63 19691.20 20592.94 18397.73 11083.95 20592.14 20997.46 11878.85 31792.35 25894.98 23484.16 23699.08 9486.36 24296.77 27395.79 284
DeepPCF-MVS90.46 694.20 12693.56 14996.14 5295.96 22692.96 4389.48 29197.46 11885.14 24796.23 10495.42 21693.19 9298.08 22090.37 14998.76 14697.38 221
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 23999.45 2795.52 2199.66 2199.36 24
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
OMC-MVS94.22 12593.69 14295.81 6997.25 13891.27 6492.27 20597.40 12287.10 21594.56 18295.42 21693.74 7798.11 21886.62 23598.85 13298.06 153
v124093.29 14993.71 14192.06 21796.01 22477.89 29991.81 22797.37 12385.12 24896.69 8396.40 16186.67 21399.07 9894.51 3398.76 14699.22 33
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19190.10 16699.33 6890.11 16299.66 2199.26 30
MVSFormer92.18 18792.23 17992.04 21894.74 27580.06 25697.15 1597.37 12388.98 17488.83 31792.79 30277.02 30299.60 996.41 996.75 27496.46 257
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
DP-MVS Recon92.31 18391.88 18993.60 15997.18 14386.87 14791.10 24297.37 12384.92 25392.08 26694.08 26688.59 17898.20 21083.50 27298.14 20895.73 286
test_prior94.61 11895.95 22787.23 13797.36 12898.68 16397.93 171
QAPM92.88 16492.77 16593.22 17495.82 23483.31 21096.45 3997.35 12983.91 26493.75 20496.77 13789.25 17598.88 12184.56 26697.02 26197.49 210
GeoE94.55 11094.68 11394.15 13797.23 13985.11 18894.14 13897.34 13088.71 18195.26 15495.50 21294.65 6199.12 9190.94 13498.40 17998.23 140
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13395.04 4898.56 17792.77 8999.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS97.31 13297.73 232
HQP-MVS92.09 18891.49 19993.88 15096.36 19184.89 19091.37 23497.31 13287.16 21288.81 31993.40 28884.76 23298.60 17286.55 23897.73 23298.14 149
PCF-MVS84.52 1789.12 25587.71 27993.34 17096.06 21885.84 17686.58 34997.31 13268.46 37593.61 20993.89 27587.51 19698.52 18167.85 38098.11 21095.66 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t90.51 21789.80 23792.63 19698.00 9182.24 22893.40 16297.29 13565.84 38289.40 31294.80 24286.99 20598.75 14783.88 27198.61 16196.89 239
CLD-MVS91.82 19191.41 20193.04 17696.37 18983.65 20886.82 34197.29 13584.65 25792.27 26289.67 35092.20 11897.85 24583.95 27099.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25287.06 14296.63 3197.28 13791.82 11094.34 18997.41 8890.60 15798.65 16792.47 9898.11 21097.70 196
DELS-MVS92.05 18992.16 18091.72 22694.44 28580.13 25487.62 32297.25 13887.34 21092.22 26393.18 29489.54 17398.73 15189.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
v192192093.26 15193.61 14692.19 21096.04 22378.31 29391.88 22297.24 13985.17 24696.19 10996.19 17986.76 21199.05 9994.18 4198.84 13399.22 33
test_040295.73 6196.22 4094.26 13598.19 7685.77 17893.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12499.29 7497.88 177
v119293.49 14493.78 13892.62 19796.16 21179.62 26991.83 22697.22 14186.07 22796.10 11296.38 16687.22 20099.02 10494.14 4298.88 12899.22 33
F-COLMAP92.28 18491.06 20995.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32594.04 26788.41 18198.55 17980.17 30895.99 28997.39 219
patch_mono-292.46 17892.72 17091.71 22796.65 17078.91 28588.85 30897.17 14383.89 26592.45 25296.76 13989.86 17097.09 29090.24 15798.59 16499.12 43
v894.65 10795.29 8792.74 19096.65 17079.77 26794.59 11697.17 14391.86 10397.47 4797.93 5588.16 18499.08 9494.32 3799.47 4399.38 22
v14419293.20 15693.54 15092.16 21496.05 21978.26 29491.95 21597.14 14584.98 25295.96 11596.11 18387.08 20499.04 10293.79 4998.84 13399.17 37
DeepC-MVS_fast89.96 793.73 14093.44 15294.60 12196.14 21387.90 12693.36 16497.14 14585.53 24193.90 20295.45 21491.30 13798.59 17489.51 17598.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS92.91 16292.51 17494.10 14097.52 12585.72 18091.36 23797.13 14780.33 29992.91 23694.24 26091.23 13998.72 15289.99 16697.93 22497.86 179
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11879.49 27394.86 10897.12 14889.59 16296.87 7497.65 7090.40 16198.34 19989.08 19099.35 6198.75 92
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 18995.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 25890.17 16099.42 5298.99 56
save fliter97.46 13088.05 12492.04 21297.08 15087.63 206
CDPH-MVS92.67 17291.83 19195.18 9696.94 15288.46 11890.70 25297.07 15177.38 32392.34 26095.08 23192.67 10998.88 12185.74 24898.57 16698.20 143
test_fmvs392.42 17992.40 17892.46 20593.80 30287.28 13693.86 14797.05 15276.86 32896.25 10298.66 1882.87 24891.26 37195.44 2596.83 27098.82 82
OpenMVScopyleft89.45 892.27 18592.13 18392.68 19394.53 28484.10 20295.70 7697.03 15382.44 28591.14 28196.42 15988.47 18098.38 19485.95 24697.47 24595.55 295
原ACMM192.87 18696.91 15584.22 19997.01 15476.84 32989.64 31094.46 25488.00 18898.70 15981.53 29498.01 21995.70 289
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6699.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet92.38 18191.99 18693.52 16693.82 30183.46 20991.14 24097.00 15589.81 15786.47 34894.04 26787.90 19199.21 7889.50 17698.27 19497.90 174
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25595.22 22591.03 14799.25 7592.11 10398.69 15497.90 174
v114493.50 14393.81 13692.57 20096.28 20179.61 27091.86 22596.96 15886.95 21795.91 11996.32 17087.65 19398.96 11293.51 5998.88 12899.13 41
MVS_Test92.57 17693.29 15490.40 27493.53 30575.85 32792.52 19096.96 15888.73 17992.35 25896.70 14690.77 15098.37 19892.53 9795.49 30096.99 235
PVSNet_BlendedMVS90.35 22689.96 23391.54 23494.81 27078.80 28990.14 27196.93 16079.43 30788.68 32695.06 23286.27 21898.15 21680.27 30498.04 21697.68 198
PVSNet_Blended88.74 26988.16 27390.46 27394.81 27078.80 28986.64 34596.93 16074.67 33988.68 32689.18 35786.27 21898.15 21680.27 30496.00 28894.44 324
TEST996.45 18789.46 9090.60 25596.92 16279.09 31390.49 29094.39 25691.31 13698.88 121
train_agg92.71 17191.83 19195.35 8496.45 18789.46 9090.60 25596.92 16279.37 30890.49 29094.39 25691.20 14198.88 12188.66 20098.43 17897.72 195
NCCC94.08 13093.54 15095.70 7596.49 18489.90 8392.39 19996.91 16490.64 14292.33 26194.60 25090.58 15898.96 11290.21 15997.70 23598.23 140
test_896.37 18989.14 10090.51 25896.89 16579.37 30890.42 29294.36 25891.20 14198.82 131
agg_prior96.20 20888.89 10696.88 16690.21 29798.78 143
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15499.05 9986.43 24199.60 2699.10 47
IU-MVS98.51 5186.66 15496.83 17072.74 35395.83 12393.00 8599.29 7498.64 112
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17797.12 11591.85 12499.40 4693.45 6598.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22796.80 17289.66 16093.90 20295.44 21592.80 10698.72 15292.74 9198.52 17198.32 133
cascas87.02 30586.28 30789.25 30091.56 34576.45 32184.33 36896.78 17371.01 36286.89 34785.91 37781.35 26496.94 29683.09 27695.60 29794.35 326
IterMVS-LS93.78 13994.28 12592.27 20796.27 20279.21 28091.87 22396.78 17391.77 11396.57 8997.07 11887.15 20298.74 15091.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17395.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20199.04 11198.78 88
TransMVSNet (Re)95.27 8796.04 5292.97 17998.37 6581.92 23195.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21496.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12198.12 20998.03 159
1112_ss88.42 27487.41 28391.45 23796.69 16780.99 24589.72 28596.72 17873.37 34787.00 34690.69 33977.38 29798.20 21081.38 29593.72 34095.15 302
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5780.82 24892.08 21096.68 17993.82 5996.29 9998.56 2490.10 16697.75 25590.10 16499.66 2199.24 32
eth_miper_zixun_eth90.72 21190.61 21991.05 25292.04 33376.84 31686.91 33796.67 18085.21 24594.41 18593.92 27379.53 27798.26 20689.76 17197.02 26198.06 153
Fast-Effi-MVS+-dtu92.77 16992.16 18094.58 12494.66 28088.25 12092.05 21196.65 18189.62 16190.08 29991.23 32992.56 11098.60 17286.30 24396.27 28496.90 238
test1196.65 181
EGC-MVSNET80.97 34875.73 36196.67 4298.85 2494.55 1596.83 2396.60 1832.44 3975.32 39898.25 3792.24 11598.02 22691.85 11399.21 9097.45 212
LF4IMVS92.72 17092.02 18594.84 10695.65 24591.99 5492.92 17596.60 18385.08 25092.44 25393.62 28286.80 21096.35 31786.81 23098.25 19796.18 268
test_fmvs1_n88.73 27088.38 26189.76 28992.06 33282.53 22492.30 20496.59 18571.14 36092.58 24795.41 21968.55 33789.57 38191.12 12995.66 29697.18 229
GBi-Net93.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
test193.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19695.99 6396.56 18692.38 8597.03 6798.53 2690.12 16498.98 10788.78 19799.16 9798.65 107
ITE_SJBPF95.95 5997.34 13593.36 4096.55 18991.93 10094.82 17495.39 22091.99 12197.08 29185.53 25197.96 22297.41 215
Fast-Effi-MVS+91.28 20590.86 21292.53 20295.45 25382.53 22489.25 30196.52 19085.00 25189.91 30388.55 36292.94 10098.84 12984.72 26595.44 30296.22 266
V4293.43 14693.58 14792.97 17995.34 25881.22 24292.67 18496.49 19187.25 21196.20 10796.37 16787.32 19998.85 12892.39 10098.21 20298.85 81
test_fmvs290.62 21690.40 22591.29 24491.93 33685.46 18492.70 18396.48 19274.44 34194.91 17197.59 7475.52 31390.57 37393.44 6696.56 27897.84 182
PLCcopyleft85.34 1590.40 22188.92 25194.85 10596.53 18290.02 8191.58 23196.48 19280.16 30086.14 35092.18 31585.73 22398.25 20776.87 33794.61 32496.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l91.32 20491.42 20091.00 25692.29 32376.79 31787.52 32896.42 19485.76 23394.72 18093.89 27582.73 25198.16 21590.93 13598.55 16798.04 156
USDC89.02 25889.08 24688.84 30695.07 26374.50 33888.97 30496.39 19573.21 34993.27 22096.28 17482.16 25796.39 31477.55 33198.80 14295.62 294
ambc92.98 17896.88 15683.01 21995.92 6896.38 19696.41 9297.48 8688.26 18297.80 24789.96 16798.93 12598.12 151
PAPM_NR91.03 20790.81 21491.68 22996.73 16581.10 24493.72 15296.35 19788.19 19288.77 32392.12 31885.09 23197.25 28182.40 28593.90 33796.68 248
v2v48293.29 14993.63 14592.29 20696.35 19478.82 28791.77 22996.28 19888.45 18695.70 13296.26 17686.02 22198.90 11893.02 8498.81 14199.14 40
AdaColmapbinary91.63 19691.36 20292.47 20495.56 25086.36 16392.24 20896.27 19988.88 17889.90 30492.69 30591.65 12998.32 20077.38 33497.64 23892.72 357
Test_1112_low_res87.50 29386.58 30090.25 27896.80 16477.75 30187.53 32796.25 20069.73 37186.47 34893.61 28375.67 31297.88 23979.95 31093.20 34795.11 304
test1294.43 13195.95 22786.75 15096.24 20189.76 30889.79 17198.79 14097.95 22397.75 193
PAPR87.65 28886.77 29890.27 27792.85 31677.38 30688.56 31696.23 20276.82 33084.98 35989.75 34986.08 22097.16 28872.33 36293.35 34596.26 265
MVS_111021_HR93.63 14293.42 15394.26 13596.65 17086.96 14689.30 29896.23 20288.36 19093.57 21094.60 25093.45 8297.77 25290.23 15898.38 18398.03 159
XXY-MVS92.58 17493.16 15990.84 26297.75 10779.84 26391.87 22396.22 20485.94 22995.53 13697.68 6792.69 10894.48 34983.21 27597.51 24298.21 142
MSDG90.82 20890.67 21891.26 24594.16 29083.08 21886.63 34696.19 20590.60 14491.94 26891.89 32089.16 17695.75 32980.96 30194.51 32594.95 308
miper_ehance_all_eth90.48 21890.42 22490.69 26691.62 34476.57 32086.83 34096.18 20683.38 26794.06 19492.66 30782.20 25698.04 22289.79 17097.02 26197.45 212
TinyColmap92.00 19092.76 16689.71 29195.62 24877.02 31090.72 25196.17 20787.70 20495.26 15496.29 17292.54 11196.45 31281.77 29098.77 14595.66 291
DPM-MVS89.35 25188.40 26092.18 21396.13 21584.20 20086.96 33696.15 20875.40 33687.36 34391.55 32783.30 24298.01 22782.17 28896.62 27794.32 327
test_vis1_n89.01 26089.01 24989.03 30292.57 31982.46 22692.62 18796.06 20973.02 35190.40 29395.77 20174.86 31589.68 37990.78 13894.98 31394.95 308
HyFIR lowres test87.19 30185.51 31292.24 20897.12 14780.51 24985.03 36096.06 20966.11 38191.66 27292.98 29870.12 33399.14 8675.29 34695.23 30997.07 230
xiu_mvs_v1_base_debu91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base_debi91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
SDMVSNet94.43 11495.02 9892.69 19297.93 9682.88 22191.92 21995.99 21493.65 6595.51 13798.63 2094.60 6396.48 31087.57 21999.35 6198.70 101
iter_conf0588.94 26488.09 27491.50 23692.74 31776.97 31492.80 17995.92 21582.82 27993.65 20895.37 22249.41 39299.13 8890.82 13699.28 7998.40 130
UnsupCasMVSNet_eth90.33 22790.34 22690.28 27694.64 28280.24 25089.69 28695.88 21685.77 23293.94 20195.69 20481.99 25992.98 36484.21 26891.30 36697.62 201
CANet_DTU89.85 24389.17 24591.87 22092.20 32780.02 25990.79 24895.87 21786.02 22882.53 37591.77 32280.01 27498.57 17685.66 25097.70 23597.01 234
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 21896.47 2293.40 21597.46 8795.31 3595.47 33586.18 24598.78 14489.11 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
alignmvs93.26 15192.85 16494.50 12695.70 24187.45 13393.45 16095.76 21991.58 12095.25 15692.42 31381.96 26098.72 15291.61 12097.87 22797.33 223
无先验89.94 27795.75 22070.81 36498.59 17481.17 29994.81 313
test_fmvs187.59 29087.27 28688.54 31288.32 37881.26 24190.43 26295.72 22170.55 36691.70 27194.63 24868.13 33889.42 38290.59 14295.34 30694.94 310
WR-MVS93.49 14493.72 14092.80 18997.57 12380.03 25890.14 27195.68 22293.70 6196.62 8695.39 22087.21 20199.04 10287.50 22099.64 2499.33 26
VPNet93.08 15793.76 13991.03 25398.60 3975.83 32991.51 23295.62 22391.84 10795.74 12897.10 11789.31 17498.32 20085.07 26099.06 10398.93 68
Anonymous2024052192.86 16693.57 14890.74 26596.57 17675.50 33194.15 13695.60 22489.38 16595.90 12097.90 6180.39 27397.96 23292.60 9699.68 1898.75 92
xiu_mvs_v2_base89.00 26189.19 24488.46 31694.86 26874.63 33586.97 33595.60 22480.88 29587.83 33788.62 36191.04 14698.81 13682.51 28394.38 32791.93 363
PS-MVSNAJ88.86 26688.99 25088.48 31594.88 26674.71 33386.69 34495.60 22480.88 29587.83 33787.37 36990.77 15098.82 13182.52 28294.37 32891.93 363
CHOSEN 1792x268887.19 30185.92 31091.00 25697.13 14679.41 27484.51 36695.60 22464.14 38590.07 30094.81 24078.26 28997.14 28973.34 35695.38 30596.46 257
miper_enhance_ethall88.42 27487.87 27790.07 28388.67 37775.52 33085.10 35995.59 22875.68 33292.49 24989.45 35378.96 28097.88 23987.86 21697.02 26196.81 243
MVP-Stereo90.07 23888.92 25193.54 16396.31 19886.49 15790.93 24595.59 22879.80 30191.48 27395.59 20780.79 27097.39 27778.57 32591.19 36796.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cdsmvs_eth3d_5k23.35 36331.13 3660.00 3820.00 4040.00 4070.00 39395.58 2300.00 4000.00 40191.15 33093.43 840.00 4010.00 4000.00 3990.00 397
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23188.41 18897.09 6198.08 4478.69 28398.87 12595.63 1799.53 3898.81 84
CNLPA91.72 19491.20 20593.26 17396.17 21091.02 6791.14 24095.55 23190.16 15290.87 28493.56 28586.31 21794.40 35279.92 31497.12 25794.37 325
FMVSNet292.78 16892.73 16992.95 18195.40 25481.98 23094.18 13595.53 23388.63 18296.05 11397.37 9181.31 26598.81 13687.38 22498.67 15798.06 153
ab-mvs92.40 18092.62 17291.74 22597.02 14881.65 23495.84 7195.50 23486.95 21792.95 23597.56 7690.70 15597.50 26879.63 31597.43 24796.06 272
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18094.15 13695.44 23583.25 27095.51 13798.05 4692.54 11197.19 28695.55 2097.46 24698.94 66
test_cas_vis1_n_192088.25 27788.27 26688.20 32092.19 32878.92 28489.45 29295.44 23575.29 33893.23 22495.65 20671.58 32890.23 37788.05 21093.55 34395.44 297
MVS_111021_LR93.66 14193.28 15694.80 10796.25 20590.95 6990.21 26895.43 23787.91 19693.74 20694.40 25592.88 10496.38 31590.39 14798.28 19397.07 230
tfpnnormal94.27 12094.87 10392.48 20397.71 11280.88 24794.55 12295.41 23893.70 6196.67 8497.72 6691.40 13498.18 21387.45 22199.18 9498.36 131
Effi-MVS+-dtu93.90 13892.60 17397.77 394.74 27596.67 594.00 14295.41 23889.94 15491.93 26992.13 31790.12 16498.97 11187.68 21897.48 24497.67 199
iter_conf_final90.23 23089.32 24392.95 18194.65 28181.46 23894.32 13095.40 24085.61 23892.84 23795.37 22254.58 38599.13 8892.16 10298.94 12498.25 139
cl____90.65 21490.56 22190.91 26091.85 33776.98 31386.75 34295.36 24185.53 24194.06 19494.89 23777.36 29997.98 23190.27 15598.98 11497.76 191
DIV-MVS_self_test90.65 21490.56 22190.91 26091.85 33776.99 31286.75 34295.36 24185.52 24394.06 19494.89 23777.37 29897.99 23090.28 15498.97 11997.76 191
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14184.37 19493.73 15195.26 24384.45 25995.76 12598.00 5191.85 12497.21 28395.62 1897.82 22998.98 60
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 17993.65 15595.23 24483.30 26895.13 16097.56 7692.22 11697.17 28795.51 2297.41 24898.64 112
testgi90.38 22491.34 20387.50 32997.49 12771.54 35889.43 29395.16 24588.38 18994.54 18394.68 24792.88 10493.09 36371.60 36797.85 22897.88 177
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 16996.69 16784.37 19493.38 16395.13 24684.50 25895.40 14497.55 8091.77 12697.20 28495.59 1997.79 23098.69 104
v14892.87 16593.29 15491.62 23196.25 20577.72 30291.28 23895.05 24789.69 15995.93 11896.04 18687.34 19898.38 19490.05 16597.99 22098.78 88
sd_testset93.94 13594.39 11992.61 19897.93 9683.24 21293.17 16995.04 24893.65 6595.51 13798.63 2094.49 6795.89 32781.72 29299.35 6198.70 101
miper_lstm_enhance89.90 24289.80 23790.19 28291.37 34777.50 30483.82 37295.00 24984.84 25593.05 23094.96 23576.53 31095.20 34389.96 16798.67 15797.86 179
VNet92.67 17292.96 16091.79 22396.27 20280.15 25291.95 21594.98 25092.19 9494.52 18496.07 18587.43 19797.39 27784.83 26298.38 18397.83 183
FMVSNet390.78 21090.32 22792.16 21493.03 31479.92 26292.54 18994.95 25186.17 22695.10 16296.01 18869.97 33498.75 14786.74 23198.38 18397.82 185
BH-untuned90.68 21390.90 21090.05 28595.98 22579.57 27190.04 27494.94 25287.91 19694.07 19393.00 29687.76 19297.78 25179.19 32195.17 31092.80 356
D2MVS89.93 24189.60 24290.92 25894.03 29578.40 29288.69 31394.85 25378.96 31593.08 22895.09 23074.57 31696.94 29688.19 20598.96 12197.41 215
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21595.93 6794.84 25494.86 4198.49 1598.74 1681.45 26399.60 994.69 3199.39 5899.15 39
旧先验196.20 20884.17 20194.82 25595.57 21189.57 17297.89 22696.32 262
API-MVS91.52 19991.61 19491.26 24594.16 29086.26 16794.66 11494.82 25591.17 13092.13 26591.08 33290.03 16997.06 29279.09 32297.35 25190.45 373
FMVSNet587.82 28486.56 30191.62 23192.31 32279.81 26693.49 15894.81 25783.26 26991.36 27596.93 12852.77 39097.49 27076.07 34298.03 21797.55 207
MAR-MVS90.32 22888.87 25494.66 11594.82 26991.85 5794.22 13494.75 25880.91 29487.52 34288.07 36586.63 21497.87 24276.67 33896.21 28594.25 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous90.37 22591.30 20487.58 32892.17 32968.00 37289.84 28194.73 25983.82 26693.22 22597.40 8987.54 19597.40 27687.94 21495.05 31297.34 222
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32185.87 17592.42 19794.69 26093.67 6496.13 11095.84 19591.20 14198.86 12693.78 5098.23 19999.03 52
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32085.98 17292.44 19594.69 26093.70 6196.12 11195.81 19691.24 13898.86 12693.76 5398.22 20198.98 60
EI-MVSNet92.99 16093.26 15892.19 21092.12 33079.21 28092.32 20294.67 26291.77 11395.24 15795.85 19387.14 20398.49 18391.99 10898.26 19598.86 78
MVSTER89.32 25288.75 25591.03 25390.10 36376.62 31990.85 24694.67 26282.27 28695.24 15795.79 19761.09 37498.49 18390.49 14498.26 19597.97 168
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26493.12 7397.94 2798.54 2581.19 26999.63 695.48 2399.69 1499.60 12
新几何193.17 17597.16 14487.29 13594.43 26567.95 37691.29 27694.94 23686.97 20698.23 20881.06 30097.75 23193.98 334
CMPMVSbinary68.83 2287.28 29785.67 31192.09 21688.77 37685.42 18590.31 26694.38 26670.02 36988.00 33593.30 29073.78 32094.03 35775.96 34496.54 27996.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26796.24 2596.28 10196.36 16882.88 24799.35 6088.19 20599.52 4198.96 64
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 26896.48 2195.38 14593.63 28194.89 5597.94 23495.38 2796.92 26795.17 300
testdata91.03 25396.87 15782.01 22994.28 26971.55 35792.46 25195.42 21685.65 22597.38 27982.64 28097.27 25293.70 341
UGNet93.08 15792.50 17594.79 10893.87 29987.99 12595.07 10194.26 27090.64 14287.33 34497.67 6986.89 20998.49 18388.10 20898.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS84.98 31984.30 32087.01 33391.03 35077.69 30391.94 21794.16 27159.36 39084.23 36587.50 36885.66 22496.80 30271.79 36493.05 35286.54 383
131486.46 30986.33 30686.87 33691.65 34374.54 33691.94 21794.10 27274.28 34284.78 36187.33 37083.03 24695.00 34478.72 32391.16 36891.06 370
cl2289.02 25888.50 25890.59 26989.76 36576.45 32186.62 34794.03 27382.98 27792.65 24492.49 30872.05 32697.53 26688.93 19297.02 26197.78 189
EPP-MVSNet93.91 13793.68 14394.59 12298.08 8285.55 18397.44 1294.03 27394.22 5094.94 16996.19 17982.07 25899.57 1487.28 22598.89 12698.65 107
UnsupCasMVSNet_bld88.50 27388.03 27589.90 28795.52 25178.88 28687.39 32994.02 27579.32 31193.06 22994.02 26980.72 27194.27 35475.16 34793.08 35196.54 250
h-mvs3392.89 16391.99 18695.58 7796.97 15090.55 7693.94 14594.01 27689.23 16893.95 19996.19 17976.88 30599.14 8691.02 13195.71 29597.04 233
pmmvs-eth3d91.54 19890.73 21793.99 14295.76 23987.86 12890.83 24793.98 27778.23 32094.02 19796.22 17882.62 25496.83 30186.57 23698.33 18997.29 225
BH-RMVSNet90.47 21990.44 22390.56 27095.21 26178.65 29189.15 30293.94 27888.21 19192.74 24294.22 26186.38 21697.88 23978.67 32495.39 30495.14 303
test22296.95 15185.27 18788.83 30993.61 27965.09 38490.74 28794.85 23984.62 23497.36 25093.91 335
test_vis1_rt85.58 31484.58 31788.60 31187.97 37986.76 14985.45 35793.59 28066.43 37987.64 33989.20 35679.33 27885.38 39081.59 29389.98 37493.66 342
CDS-MVSNet89.55 24688.22 27093.53 16495.37 25786.49 15789.26 29993.59 28079.76 30391.15 28092.31 31477.12 30098.38 19477.51 33297.92 22595.71 287
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
new-patchmatchnet88.97 26290.79 21583.50 36194.28 28955.83 39685.34 35893.56 28286.18 22595.47 14095.73 20383.10 24496.51 30985.40 25298.06 21498.16 147
IterMVS-SCA-FT91.65 19591.55 19591.94 21993.89 29879.22 27987.56 32593.51 28391.53 12295.37 14796.62 15078.65 28498.90 11891.89 11294.95 31497.70 196
Anonymous2023120688.77 26888.29 26490.20 28196.31 19878.81 28889.56 28993.49 28474.26 34392.38 25695.58 21082.21 25595.43 33772.07 36398.75 14896.34 261
FA-MVS(test-final)91.81 19291.85 19091.68 22994.95 26579.99 26096.00 6293.44 28587.80 20094.02 19797.29 10277.60 29398.45 18988.04 21197.49 24396.61 249
OpenMVS_ROBcopyleft85.12 1689.52 24889.05 24790.92 25894.58 28381.21 24391.10 24293.41 28677.03 32793.41 21393.99 27183.23 24397.80 24779.93 31294.80 31993.74 340
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17193.97 14493.28 28794.49 4596.24 10397.78 6387.99 18998.79 14088.92 19399.14 9998.34 132
jason89.17 25488.32 26291.70 22895.73 24080.07 25588.10 31893.22 28871.98 35690.09 29892.79 30278.53 28798.56 17787.43 22297.06 25996.46 257
jason: jason.
PAPM81.91 34280.11 35287.31 33193.87 29972.32 35684.02 37093.22 28869.47 37276.13 39189.84 34472.15 32597.23 28253.27 39389.02 37592.37 360
BH-w/o87.21 29987.02 29487.79 32794.77 27377.27 30887.90 32093.21 29081.74 29089.99 30288.39 36483.47 24096.93 29871.29 36892.43 35989.15 374
ppachtmachnet_test88.61 27288.64 25688.50 31491.76 33970.99 36284.59 36592.98 29179.30 31292.38 25693.53 28679.57 27697.45 27286.50 24097.17 25697.07 230
IterMVS90.18 23190.16 22890.21 28093.15 31075.98 32687.56 32592.97 29286.43 22194.09 19196.40 16178.32 28897.43 27387.87 21594.69 32297.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test20.0390.80 20990.85 21390.63 26895.63 24779.24 27889.81 28292.87 29389.90 15594.39 18696.40 16185.77 22295.27 34273.86 35499.05 10697.39 219
CR-MVSNet87.89 28187.12 29290.22 27991.01 35178.93 28292.52 19092.81 29473.08 35089.10 31496.93 12867.11 34397.64 26388.80 19692.70 35594.08 329
Patchmtry90.11 23589.92 23490.66 26790.35 36077.00 31192.96 17492.81 29490.25 15194.74 17896.93 12867.11 34397.52 26785.17 25398.98 11497.46 211
GA-MVS87.70 28586.82 29690.31 27593.27 30877.22 30984.72 36492.79 29685.11 24989.82 30590.07 34266.80 34697.76 25484.56 26694.27 33195.96 275
sss87.23 29886.82 29688.46 31693.96 29677.94 29686.84 33992.78 29777.59 32287.61 34191.83 32178.75 28291.92 36877.84 32894.20 33295.52 296
Patchmatch-RL test88.81 26788.52 25789.69 29295.33 25979.94 26186.22 35192.71 29878.46 31895.80 12494.18 26366.25 35195.33 34089.22 18698.53 17093.78 338
test_yl90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
DCV-MVSNet90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
CL-MVSNet_self_test90.04 24089.90 23590.47 27195.24 26077.81 30086.60 34892.62 30185.64 23693.25 22393.92 27383.84 23796.06 32479.93 31298.03 21797.53 208
TSAR-MVS + GP.93.07 15992.41 17795.06 9995.82 23490.87 7290.97 24492.61 30288.04 19594.61 18193.79 27888.08 18597.81 24689.41 17798.39 18296.50 255
TAMVS90.16 23289.05 24793.49 16896.49 18486.37 16290.34 26592.55 30380.84 29792.99 23294.57 25281.94 26198.20 21073.51 35598.21 20295.90 280
MS-PatchMatch88.05 28087.75 27888.95 30393.28 30777.93 29787.88 32192.49 30475.42 33592.57 24893.59 28480.44 27294.24 35681.28 29692.75 35494.69 320
MG-MVS89.54 24789.80 23788.76 30794.88 26672.47 35589.60 28792.44 30585.82 23189.48 31195.98 18982.85 24997.74 25781.87 28995.27 30896.08 271
lupinMVS88.34 27687.31 28491.45 23794.74 27580.06 25687.23 33092.27 30671.10 36188.83 31791.15 33077.02 30298.53 18086.67 23496.75 27495.76 285
pmmvs587.87 28287.14 29090.07 28393.26 30976.97 31488.89 30692.18 30773.71 34688.36 33093.89 27576.86 30796.73 30480.32 30396.81 27196.51 252
PM-MVS93.33 14892.67 17195.33 8696.58 17594.06 2192.26 20692.18 30785.92 23096.22 10596.61 15185.64 22695.99 32690.35 15098.23 19995.93 277
pmmvs488.95 26387.70 28092.70 19194.30 28885.60 18287.22 33192.16 30974.62 34089.75 30994.19 26277.97 29196.41 31382.71 27996.36 28396.09 270
MDA-MVSNet-bldmvs91.04 20690.88 21191.55 23394.68 27980.16 25185.49 35692.14 31090.41 14994.93 17095.79 19785.10 23096.93 29885.15 25594.19 33497.57 204
door-mid92.13 311
WTY-MVS86.93 30686.50 30588.24 31994.96 26474.64 33487.19 33292.07 31278.29 31988.32 33191.59 32678.06 29094.27 35474.88 34893.15 34995.80 283
AUN-MVS90.05 23988.30 26395.32 8896.09 21690.52 7792.42 19792.05 31382.08 28888.45 32992.86 29965.76 35398.69 16188.91 19496.07 28696.75 247
hse-mvs292.24 18691.20 20595.38 8396.16 21190.65 7592.52 19092.01 31489.23 16893.95 19992.99 29776.88 30598.69 16191.02 13196.03 28796.81 243
TR-MVS87.70 28587.17 28989.27 29994.11 29279.26 27788.69 31391.86 31581.94 28990.69 28889.79 34782.82 25097.42 27472.65 36191.98 36391.14 369
VDDNet94.03 13194.27 12793.31 17198.87 2182.36 22795.51 8691.78 31697.19 1296.32 9698.60 2284.24 23598.75 14787.09 22898.83 13898.81 84
test_f86.65 30887.13 29185.19 34990.28 36186.11 17086.52 35091.66 31769.76 37095.73 13097.21 11069.51 33581.28 39389.15 18894.40 32688.17 379
Anonymous20240521192.58 17492.50 17592.83 18896.55 17883.22 21492.43 19691.64 31894.10 5295.59 13496.64 14981.88 26297.50 26885.12 25798.52 17197.77 190
HY-MVS82.50 1886.81 30785.93 30989.47 29393.63 30377.93 29794.02 14191.58 31975.68 33283.64 36893.64 28077.40 29697.42 27471.70 36692.07 36293.05 353
door91.26 320
PatchMatch-RL89.18 25388.02 27692.64 19495.90 23192.87 4588.67 31591.06 32180.34 29890.03 30191.67 32483.34 24194.42 35176.35 34194.84 31890.64 372
FE-MVS89.06 25788.29 26491.36 24094.78 27279.57 27196.77 2890.99 32284.87 25492.96 23496.29 17260.69 37698.80 13980.18 30797.11 25895.71 287
ADS-MVSNet284.01 32682.20 33689.41 29589.04 37376.37 32387.57 32390.98 32372.71 35484.46 36292.45 30968.08 33996.48 31070.58 37483.97 38495.38 298
MM95.22 9487.21 13894.31 13190.92 32494.48 4692.80 23997.52 8185.27 22899.49 2496.58 899.57 3598.97 62
KD-MVS_2432*160082.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
miper_refine_blended82.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
wuyk23d87.83 28390.79 21578.96 37290.46 35988.63 11092.72 18190.67 32791.65 11998.68 1197.64 7196.06 1577.53 39459.84 38999.41 5670.73 392
our_test_387.55 29187.59 28187.44 33091.76 33970.48 36383.83 37190.55 32879.79 30292.06 26792.17 31678.63 28695.63 33084.77 26394.73 32096.22 266
test_method50.44 36148.94 36454.93 37739.68 40012.38 40428.59 39290.09 3296.82 39541.10 39778.41 39054.41 38670.69 39650.12 39451.26 39681.72 390
EU-MVSNet87.39 29586.71 29989.44 29493.40 30676.11 32494.93 10790.00 33057.17 39195.71 13197.37 9164.77 35997.68 26092.67 9494.37 32894.52 322
CHOSEN 280x42080.04 35377.97 36086.23 34390.13 36274.53 33772.87 38789.59 33166.38 38076.29 39085.32 37956.96 38195.36 33869.49 37794.72 32188.79 377
MDA-MVSNet_test_wron88.16 27988.23 26987.93 32492.22 32573.71 34480.71 38288.84 33282.52 28394.88 17395.14 22782.70 25293.61 35983.28 27493.80 33996.46 257
YYNet188.17 27888.24 26887.93 32492.21 32673.62 34580.75 38188.77 33382.51 28494.99 16895.11 22982.70 25293.70 35883.33 27393.83 33896.48 256
PVSNet76.22 2082.89 33482.37 33484.48 35493.96 29664.38 38678.60 38488.61 33471.50 35884.43 36486.36 37574.27 31794.60 34869.87 37693.69 34194.46 323
MIMVSNet87.13 30386.54 30288.89 30596.05 21976.11 32494.39 12588.51 33581.37 29188.27 33296.75 14172.38 32495.52 33265.71 38595.47 30195.03 305
tpmvs84.22 32583.97 32384.94 35087.09 38565.18 38191.21 23988.35 33682.87 27885.21 35490.96 33465.24 35796.75 30379.60 31885.25 38392.90 355
EPNet_dtu85.63 31384.37 31989.40 29686.30 38874.33 34091.64 23088.26 33784.84 25572.96 39389.85 34371.27 33097.69 25976.60 33997.62 23996.18 268
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat180.61 35179.46 35484.07 35888.78 37565.06 38489.26 29988.23 33862.27 38881.90 38089.66 35162.70 37095.29 34171.72 36580.60 39191.86 365
baseline187.62 28987.31 28488.54 31294.71 27874.27 34193.10 17188.20 33986.20 22492.18 26493.04 29573.21 32195.52 33279.32 31985.82 38295.83 282
CVMVSNet85.16 31784.72 31586.48 33892.12 33070.19 36492.32 20288.17 34056.15 39290.64 28995.85 19367.97 34196.69 30588.78 19790.52 37192.56 358
MVS_030493.92 13693.68 14394.64 11795.94 22985.83 17794.34 12788.14 34192.98 7791.09 28297.68 6786.73 21299.36 5896.64 799.59 2898.72 97
SCA87.43 29487.21 28888.10 32292.01 33471.98 35789.43 29388.11 34282.26 28788.71 32492.83 30078.65 28497.59 26479.61 31693.30 34694.75 317
WB-MVS89.44 25092.15 18281.32 36797.73 11048.22 39989.73 28487.98 34395.24 3696.05 11396.99 12585.18 22996.95 29582.45 28497.97 22198.78 88
tpmrst82.85 33582.93 33182.64 36387.65 38058.99 39490.14 27187.90 34475.54 33483.93 36691.63 32566.79 34895.36 33881.21 29881.54 39093.57 347
SSC-MVS90.16 23292.96 16081.78 36697.88 9948.48 39890.75 24987.69 34596.02 3196.70 8297.63 7285.60 22797.80 24785.73 24998.60 16399.06 50
Vis-MVSNet (Re-imp)90.42 22090.16 22891.20 24997.66 11877.32 30794.33 12887.66 34691.20 12992.99 23295.13 22875.40 31498.28 20277.86 32799.19 9297.99 164
MDTV_nov1_ep1383.88 32589.42 37161.52 39088.74 31287.41 34773.99 34484.96 36094.01 27065.25 35695.53 33178.02 32693.16 348
dmvs_re84.69 32283.94 32486.95 33592.24 32482.93 22089.51 29087.37 34884.38 26185.37 35385.08 38072.44 32386.59 38768.05 37991.03 37091.33 367
PatchmatchNetpermissive85.22 31684.64 31686.98 33489.51 37069.83 36990.52 25787.34 34978.87 31687.22 34592.74 30466.91 34596.53 30781.77 29086.88 38094.58 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet88.90 26587.25 28793.83 15494.40 28793.81 3584.73 36287.09 35079.36 31093.26 22192.43 31279.29 27991.68 36977.50 33397.22 25496.00 274
EPNet89.80 24588.25 26794.45 13083.91 39586.18 16893.87 14687.07 35191.16 13180.64 38494.72 24578.83 28198.89 12085.17 25398.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test86.10 31186.01 30886.38 34290.63 35574.22 34289.57 28886.69 35285.73 23489.81 30692.83 30065.24 35791.04 37277.82 33095.78 29493.88 337
K. test v393.37 14793.27 15793.66 15798.05 8582.62 22394.35 12686.62 35396.05 2997.51 4398.85 1276.59 30999.65 393.21 7798.20 20498.73 96
CostFormer83.09 33282.21 33585.73 34489.27 37267.01 37390.35 26486.47 35470.42 36783.52 37093.23 29361.18 37396.85 30077.21 33588.26 37893.34 349
thres20085.85 31285.18 31387.88 32694.44 28572.52 35489.08 30386.21 35588.57 18591.44 27488.40 36364.22 36098.00 22868.35 37895.88 29393.12 350
ET-MVSNet_ETH3D86.15 31084.27 32191.79 22393.04 31381.28 24087.17 33386.14 35679.57 30683.65 36788.66 35957.10 38098.18 21387.74 21795.40 30395.90 280
PatchT87.51 29288.17 27285.55 34590.64 35466.91 37492.02 21386.09 35792.20 9389.05 31697.16 11264.15 36196.37 31689.21 18792.98 35393.37 348
tfpn200view987.05 30486.52 30388.67 30995.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27994.79 315
thres40087.20 30086.52 30389.24 30195.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27996.51 252
IB-MVS77.21 1983.11 33181.05 34289.29 29891.15 34975.85 32785.66 35586.00 35879.70 30482.02 37986.61 37248.26 39398.39 19177.84 32892.22 36093.63 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMMVS83.00 33381.11 34188.66 31083.81 39686.44 16082.24 37785.65 36161.75 38982.07 37785.64 37879.75 27591.59 37075.99 34393.09 35087.94 380
tpm84.38 32484.08 32285.30 34890.47 35863.43 38889.34 29685.63 36277.24 32687.62 34095.03 23361.00 37597.30 28079.26 32091.09 36995.16 301
LFMVS91.33 20391.16 20891.82 22296.27 20279.36 27595.01 10485.61 36396.04 3094.82 17497.06 11972.03 32798.46 18884.96 26198.70 15397.65 200
FPMVS84.50 32383.28 32788.16 32196.32 19794.49 1685.76 35485.47 36483.09 27485.20 35594.26 25963.79 36486.58 38863.72 38791.88 36583.40 386
tpm281.46 34380.35 35084.80 35189.90 36465.14 38290.44 25985.36 36565.82 38382.05 37892.44 31157.94 37996.69 30570.71 37388.49 37792.56 358
thres100view90087.35 29686.89 29588.72 30896.14 21373.09 34993.00 17385.31 36692.13 9593.26 22190.96 33463.42 36598.28 20271.27 36996.54 27994.79 315
thres600view787.66 28787.10 29389.36 29796.05 21973.17 34792.72 18185.31 36691.89 10293.29 21890.97 33363.42 36598.39 19173.23 35796.99 26696.51 252
dp79.28 35578.62 35781.24 36885.97 39056.45 39586.91 33785.26 36872.97 35281.45 38389.17 35856.01 38495.45 33673.19 35876.68 39291.82 366
PMMVS281.31 34483.44 32674.92 37590.52 35746.49 40169.19 38985.23 36984.30 26287.95 33694.71 24676.95 30484.36 39264.07 38698.09 21293.89 336
ADS-MVSNet82.25 33781.55 33884.34 35689.04 37365.30 38087.57 32385.13 37072.71 35484.46 36292.45 30968.08 33992.33 36670.58 37483.97 38495.38 298
test-LLR83.58 32983.17 32884.79 35289.68 36766.86 37583.08 37384.52 37183.07 27582.85 37384.78 38162.86 36893.49 36082.85 27794.86 31694.03 332
test-mter81.21 34680.01 35384.79 35289.68 36766.86 37583.08 37384.52 37173.85 34582.85 37384.78 38143.66 39793.49 36082.85 27794.86 31694.03 332
JIA-IIPM85.08 31883.04 32991.19 25087.56 38186.14 16989.40 29584.44 37388.98 17482.20 37697.95 5456.82 38296.15 32076.55 34083.45 38691.30 368
thisisatest053088.69 27187.52 28292.20 20996.33 19679.36 27592.81 17884.01 37486.44 22093.67 20792.68 30653.62 38999.25 7589.65 17498.45 17798.00 161
tttt051789.81 24488.90 25392.55 20197.00 14979.73 26895.03 10383.65 37589.88 15695.30 15194.79 24353.64 38899.39 4991.99 10898.79 14398.54 120
thisisatest051584.72 32182.99 33089.90 28792.96 31575.33 33284.36 36783.42 37677.37 32488.27 33286.65 37153.94 38798.72 15282.56 28197.40 24995.67 290
PVSNet_070.34 2174.58 35972.96 36279.47 37190.63 35566.24 37873.26 38583.40 37763.67 38778.02 38878.35 39172.53 32289.59 38056.68 39160.05 39582.57 389
pmmvs380.83 34978.96 35686.45 33987.23 38477.48 30584.87 36182.31 37863.83 38685.03 35889.50 35249.66 39193.10 36273.12 35995.10 31188.78 378
E-PMN80.72 35080.86 34580.29 37085.11 39268.77 37172.96 38681.97 37987.76 20283.25 37283.01 38562.22 37189.17 38377.15 33694.31 33082.93 387
test0.0.03 182.48 33681.47 34085.48 34689.70 36673.57 34684.73 36281.64 38083.07 27588.13 33486.61 37262.86 36889.10 38466.24 38490.29 37293.77 339
Syy-MVS84.81 32084.93 31484.42 35591.71 34163.36 38985.89 35281.49 38181.03 29285.13 35681.64 38777.44 29595.00 34485.94 24794.12 33594.91 311
myMVS_eth3d79.62 35478.26 35883.72 35991.71 34161.25 39185.89 35281.49 38181.03 29285.13 35681.64 38732.12 40195.00 34471.17 37294.12 33594.91 311
baseline283.38 33081.54 33988.90 30491.38 34672.84 35288.78 31081.22 38378.97 31479.82 38687.56 36661.73 37297.80 24774.30 35290.05 37396.05 273
EMVS80.35 35280.28 35180.54 36984.73 39469.07 37072.54 38880.73 38487.80 20081.66 38181.73 38662.89 36789.84 37875.79 34594.65 32382.71 388
TESTMET0.1,179.09 35678.04 35982.25 36487.52 38264.03 38783.08 37380.62 38570.28 36880.16 38583.22 38444.13 39690.56 37479.95 31093.36 34492.15 361
lessismore_v093.87 15198.05 8583.77 20780.32 38697.13 6097.91 5977.49 29499.11 9392.62 9598.08 21398.74 95
new_pmnet81.22 34581.01 34481.86 36590.92 35370.15 36584.03 36980.25 38770.83 36385.97 35189.78 34867.93 34284.65 39167.44 38191.90 36490.78 371
test111190.39 22390.61 21989.74 29098.04 8871.50 35995.59 8179.72 38889.41 16495.94 11798.14 3970.79 33198.81 13688.52 20299.32 6898.90 74
mvsany_test389.11 25688.21 27191.83 22191.30 34890.25 7988.09 31978.76 38976.37 33196.43 9198.39 3383.79 23890.43 37686.57 23694.20 33294.80 314
dmvs_testset78.23 35878.99 35575.94 37491.99 33555.34 39788.86 30778.70 39082.69 28081.64 38279.46 38975.93 31185.74 38948.78 39582.85 38886.76 382
ECVR-MVScopyleft90.12 23490.16 22890.00 28697.81 10372.68 35395.76 7578.54 39189.04 17295.36 14898.10 4270.51 33298.64 16887.10 22799.18 9498.67 105
MVS-HIRNet78.83 35780.60 34873.51 37693.07 31147.37 40087.10 33478.00 39268.94 37377.53 38997.26 10371.45 32994.62 34763.28 38888.74 37678.55 391
DSMNet-mixed82.21 33881.56 33784.16 35789.57 36970.00 36890.65 25477.66 39354.99 39383.30 37197.57 7577.89 29290.50 37566.86 38395.54 29991.97 362
testing383.66 32882.52 33387.08 33295.84 23365.84 37989.80 28377.17 39488.17 19390.84 28588.63 36030.95 40298.11 21884.05 26997.19 25597.28 226
mvsany_test183.91 32782.93 33186.84 33786.18 38985.93 17381.11 38075.03 39570.80 36588.57 32894.63 24883.08 24587.38 38580.39 30286.57 38187.21 381
EPMVS81.17 34780.37 34983.58 36085.58 39165.08 38390.31 26671.34 39677.31 32585.80 35291.30 32859.38 37792.70 36579.99 30982.34 38992.96 354
gg-mvs-nofinetune82.10 34181.02 34385.34 34787.46 38371.04 36094.74 11167.56 39796.44 2379.43 38798.99 645.24 39496.15 32067.18 38292.17 36188.85 376
GG-mvs-BLEND83.24 36285.06 39371.03 36194.99 10665.55 39874.09 39275.51 39244.57 39594.46 35059.57 39087.54 37984.24 385
MVEpermissive59.87 2373.86 36072.65 36377.47 37387.00 38774.35 33961.37 39160.93 39967.27 37769.69 39486.49 37481.24 26872.33 39556.45 39283.45 38685.74 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250685.42 31584.57 31887.96 32397.81 10366.53 37796.14 5856.35 40089.04 17293.55 21198.10 4242.88 40098.68 16388.09 20999.18 9498.67 105
MTMP94.82 10954.62 401
DeepMVS_CXcopyleft53.83 37870.38 39964.56 38548.52 40233.01 39465.50 39574.21 39356.19 38346.64 39738.45 39770.07 39350.30 393
tmp_tt37.97 36244.33 36518.88 37911.80 40121.54 40363.51 39045.66 4034.23 39651.34 39650.48 39459.08 37822.11 39844.50 39668.35 39413.00 394
testmvs9.02 36511.42 3681.81 3812.77 4031.13 40679.44 3831.90 4041.18 3992.65 4006.80 3961.95 4040.87 4002.62 3993.45 3983.44 396
test1239.49 36412.01 3671.91 3802.87 4021.30 40582.38 3761.34 4051.36 3982.84 3996.56 3972.45 4030.97 3992.73 3985.56 3973.47 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.56 36610.09 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40090.77 1500.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
n20.00 406
nn0.00 406
ab-mvs-re7.56 36610.08 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40190.69 3390.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS61.25 39174.55 349
PC_three_145275.31 33795.87 12295.75 20292.93 10196.34 31987.18 22698.68 15598.04 156
eth-test20.00 404
eth-test0.00 404
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20593.12 9598.06 22186.28 24498.61 16197.95 169
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4699.42 5298.89 75
GSMVS94.75 317
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 34994.75 317
sam_mvs66.41 350
test_post190.21 2685.85 39965.36 35596.00 32579.61 316
test_post6.07 39865.74 35495.84 328
patchmatchnet-post91.71 32366.22 35297.59 264
gm-plane-assit87.08 38659.33 39371.22 35983.58 38397.20 28473.95 353
test9_res88.16 20798.40 17997.83 183
agg_prior287.06 22998.36 18897.98 165
test_prior489.91 8290.74 250
test_prior290.21 26889.33 16790.77 28694.81 24090.41 16088.21 20398.55 167
旧先验290.00 27668.65 37492.71 24396.52 30885.15 255
新几何290.02 275
原ACMM289.34 296
testdata298.03 22380.24 306
segment_acmp92.14 119
testdata188.96 30588.44 187
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 207
plane_prior495.59 207
plane_prior388.43 11990.35 15093.31 216
plane_prior294.56 12091.74 115
plane_prior197.38 132
plane_prior88.12 12293.01 17288.98 17498.06 214
HQP5-MVS84.89 190
HQP-NCC96.36 19191.37 23487.16 21288.81 319
ACMP_Plane96.36 19191.37 23487.16 21288.81 319
BP-MVS86.55 238
HQP4-MVS88.81 31998.61 17098.15 148
HQP2-MVS84.76 232
NP-MVS96.82 16287.10 14193.40 288
MDTV_nov1_ep13_2view42.48 40288.45 31767.22 37883.56 36966.80 34672.86 36094.06 331
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 156