This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
CS-MVS-test95.32 7895.10 9295.96 5896.86 15190.75 7496.33 4799.20 293.99 5091.03 26793.73 26493.52 7599.55 1891.81 10399.45 4597.58 189
LCM-MVSNet-Re94.20 11994.58 11093.04 16695.91 21683.13 20693.79 14599.19 392.00 9198.84 598.04 4393.64 7299.02 10281.28 27998.54 16096.96 221
DROMVSNet95.44 7095.62 6994.89 9996.93 14787.69 12696.48 3899.14 493.93 5392.77 22694.52 23893.95 7099.49 2493.62 4499.22 8597.51 195
CS-MVS95.77 5895.58 7196.37 5096.84 15291.72 6196.73 2999.06 594.23 4692.48 23594.79 22893.56 7399.49 2493.47 5299.05 10297.89 163
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16896.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
dcpmvs_293.96 12495.01 9490.82 25197.60 11674.04 32993.68 14998.85 789.80 15297.82 2897.01 11091.14 13599.21 7690.56 13298.59 15599.19 36
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5398.46 2794.62 5998.84 12794.64 2199.53 3698.99 55
ANet_high94.83 9696.28 3790.47 25996.65 15973.16 33494.33 12798.74 1096.39 2498.09 2498.93 893.37 8098.70 15790.38 13799.68 1899.53 15
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2297.52 7096.90 798.62 16790.30 14299.60 2698.72 92
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10196.36 8896.68 13294.37 6599.32 6792.41 8899.05 10298.64 103
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1392.35 8295.95 10996.41 14596.71 899.42 3293.99 3499.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AllTest94.88 9494.51 11196.00 5698.02 8992.17 5095.26 9398.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
TestCases96.00 5698.02 8992.17 5098.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
APDe-MVS96.46 3196.64 2195.93 6297.68 11289.38 9596.90 2298.41 1692.52 7797.43 4697.92 5195.11 4299.50 2194.45 2399.30 6798.92 68
9.1494.81 9997.49 12394.11 13598.37 1787.56 20295.38 13396.03 17294.66 5799.08 9290.70 12998.97 113
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15798.32 2087.89 19296.86 7097.38 7895.55 2599.39 4895.47 1399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test95.32 7895.88 5893.62 14998.49 5881.77 21995.90 6998.32 2093.93 5397.53 4097.56 6788.48 16899.40 4592.91 7799.83 599.68 4
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2096.69 1796.86 7097.56 6795.48 2698.77 14490.11 15199.44 4898.31 125
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2392.37 8097.75 3196.95 11195.14 3999.51 2091.74 10599.28 7598.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2391.40 11895.76 11896.87 11795.26 3599.45 2692.77 7899.21 8699.00 53
ACMH88.36 1296.59 2797.43 594.07 13498.56 4285.33 17896.33 4798.30 2394.66 4098.72 898.30 3297.51 598.00 22294.87 1899.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03096.32 4096.55 2595.62 7697.83 9988.55 11195.77 7498.29 2692.68 7398.03 2597.91 5295.13 4098.95 11293.85 3799.49 4099.36 24
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2795.51 3496.99 6697.05 10695.63 2299.39 4893.31 6198.88 12198.75 87
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
Anonymous2023121196.60 2597.13 1295.00 9697.46 12686.35 15997.11 1998.24 3097.58 898.72 898.97 793.15 8899.15 8293.18 6799.74 1299.50 17
canonicalmvs94.59 10394.69 10594.30 12895.60 23487.03 13895.59 8198.24 3091.56 11595.21 14792.04 30494.95 5098.66 16391.45 11497.57 22997.20 213
DVP-MVS++95.93 5296.34 3494.70 10896.54 16886.66 14998.45 498.22 3293.26 6697.54 3897.36 8293.12 8999.38 5493.88 3598.68 14798.04 143
test_0728_SECOND94.88 10098.55 4586.72 14695.20 9698.22 3299.38 5493.44 5599.31 6598.53 111
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3292.36 8194.11 17798.07 4192.02 11299.44 2893.38 6097.67 22597.85 168
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3596.95 1495.46 13199.23 493.45 7699.57 1495.34 1799.89 299.63 9
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15596.25 19283.23 20292.66 17498.19 3593.06 7097.49 4297.15 10094.78 5498.71 15692.27 9098.72 14298.65 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_one_060198.26 7187.14 13498.18 3794.25 4596.99 6697.36 8295.13 40
test072698.51 5186.69 14795.34 8998.18 3791.85 9897.63 3497.37 7995.58 23
MSP-MVS95.34 7794.63 10997.48 1498.67 3394.05 2396.41 4398.18 3791.26 12095.12 14895.15 21186.60 20399.50 2193.43 5896.81 25698.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3792.26 8596.33 8996.84 12095.10 4399.40 4593.47 5299.33 6299.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS92.35 17092.03 17093.30 16295.81 22183.97 19492.80 16898.17 4187.71 19789.79 29087.56 35091.17 13499.18 8087.97 20197.27 23896.77 229
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4193.11 6996.48 8497.36 8296.92 699.34 6194.31 2799.38 5798.92 68
XVG-OURS94.72 9994.12 12196.50 4798.00 9194.23 1891.48 22198.17 4190.72 13395.30 13996.47 14187.94 17996.98 28291.41 11597.61 22898.30 126
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4491.74 10995.34 13796.36 15395.68 2099.44 2894.41 2599.28 7598.97 60
FIs94.90 9395.35 7993.55 15298.28 6981.76 22095.33 9098.14 4593.05 7197.07 5997.18 9887.65 18299.29 6891.72 10699.69 1499.61 11
XVG-OURS-SEG-HR95.38 7595.00 9596.51 4698.10 8194.07 2092.46 18398.13 4690.69 13493.75 19196.25 16298.03 297.02 28192.08 9495.55 28398.45 117
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10794.85 5399.42 3293.49 4998.84 12698.00 148
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10795.40 2893.49 4998.84 12698.00 148
RPMNet90.31 21890.14 21890.81 25291.01 33278.93 26992.52 17998.12 4791.91 9589.10 29796.89 11668.84 31899.41 3890.17 14992.70 33794.08 311
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 13995.21 9498.10 5091.95 9297.63 3497.25 9196.48 1099.35 5893.29 6299.29 7097.95 156
test_241102_TWO98.10 5091.95 9297.54 3897.25 9195.37 2999.35 5893.29 6299.25 7998.49 114
test_241102_ONE98.51 5186.97 13998.10 5091.85 9897.63 3497.03 10796.48 1098.95 112
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15596.78 2798.08 5397.42 998.48 1697.86 5591.76 11899.63 694.23 2999.84 399.66 6
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5392.67 7595.08 15296.39 15094.77 5599.42 3293.17 6899.44 4898.58 109
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13098.08 5389.46 15896.61 8196.47 14195.85 1899.12 8990.45 13499.56 3498.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5695.17 3596.82 7296.73 12995.09 4499.43 3192.99 7598.71 14398.50 112
v7n96.82 997.31 1095.33 8698.54 4886.81 14396.83 2398.07 5696.59 2098.46 1798.43 2992.91 9699.52 1996.25 699.76 1099.65 8
UniMVSNet (Re)95.32 7895.15 8995.80 7097.79 10288.91 10292.91 16598.07 5693.46 6296.31 9195.97 17590.14 15299.34 6192.11 9299.64 2499.16 38
SD-MVS95.19 8595.73 6693.55 15296.62 16388.88 10494.67 11398.05 5991.26 12097.25 5596.40 14695.42 2794.36 33692.72 8299.19 8897.40 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvspermissive94.32 11394.80 10092.85 17796.05 20681.44 22692.35 18998.05 5991.53 11695.75 11996.80 12193.35 8198.49 18191.01 12298.32 18198.64 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PEN-MVS96.69 2097.39 894.61 11299.16 484.50 18596.54 3498.05 5998.06 498.64 1398.25 3395.01 4899.65 392.95 7699.83 599.68 4
XVG-ACMP-BASELINE95.68 6295.34 8096.69 4198.40 6193.04 4194.54 12398.05 5990.45 14196.31 9196.76 12492.91 9698.72 15091.19 11799.42 5098.32 123
baseline94.26 11694.80 10092.64 18396.08 20480.99 23293.69 14898.04 6390.80 13294.89 15996.32 15593.19 8698.48 18591.68 10898.51 16498.43 118
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6490.42 14296.37 8797.35 8595.68 2099.25 7394.44 2499.34 6098.80 82
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6490.82 13197.15 5696.85 11896.25 1499.00 10493.10 7099.33 6298.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DeepC-MVS91.39 495.43 7195.33 8195.71 7497.67 11390.17 8093.86 14398.02 6687.35 20396.22 9997.99 4694.48 6399.05 9792.73 8199.68 1897.93 158
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6792.08 9095.74 12096.28 15995.22 3799.42 3293.17 6899.06 9998.88 73
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6794.15 4898.93 399.07 588.07 17599.57 1495.86 999.69 1499.46 18
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6793.34 6596.64 7996.57 13894.99 4999.36 5793.48 5199.34 6098.82 78
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7092.35 8295.63 12596.47 14195.37 2999.27 7293.78 3999.14 9598.48 115
LS3D96.11 4795.83 6296.95 3694.75 25994.20 1997.34 1397.98 7097.31 1195.32 13896.77 12293.08 9199.20 7891.79 10498.16 19697.44 200
PS-CasMVS96.69 2097.43 594.49 12299.13 684.09 19396.61 3297.97 7297.91 598.64 1398.13 3795.24 3699.65 393.39 5999.84 399.72 2
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7392.26 8595.28 14196.57 13895.02 4799.41 3893.63 4399.11 9798.94 63
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7392.35 8295.57 12796.61 13694.93 5199.41 3893.78 3999.15 9499.00 53
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17496.49 14094.56 6099.39 4893.57 4599.05 10298.93 64
X-MVStestdata90.70 20188.45 24697.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17426.89 37594.56 6099.39 4893.57 4599.05 10298.93 64
Gipumacopyleft95.31 8195.80 6493.81 14697.99 9490.91 7096.42 4297.95 7596.69 1791.78 25598.85 1291.77 11795.49 31991.72 10699.08 9895.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18496.51 3597.94 7898.14 398.67 1298.32 3195.04 4599.69 293.27 6499.82 799.62 10
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11295.57 8497.88 7988.72 17598.81 698.86 1090.77 13999.60 995.43 1599.53 3699.57 14
pmmvs696.80 1297.36 995.15 9399.12 887.82 12596.68 3097.86 8096.10 2798.14 2399.28 397.94 398.21 20491.38 11699.69 1499.42 19
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12693.75 14697.86 8095.96 3197.48 4497.14 10195.33 3299.44 2890.79 12699.76 1099.38 22
PHI-MVS94.34 11293.80 12695.95 5995.65 23091.67 6294.82 10997.86 8087.86 19393.04 21794.16 24991.58 12098.78 14190.27 14498.96 11597.41 201
ETV-MVS92.99 14892.74 15493.72 14795.86 21886.30 16092.33 19097.84 8391.70 11292.81 22486.17 36092.22 10999.19 7988.03 20097.73 22095.66 275
UniMVSNet_NR-MVSNet95.35 7695.21 8695.76 7197.69 11188.59 10992.26 19597.84 8394.91 3896.80 7395.78 18590.42 14899.41 3891.60 11099.58 3299.29 29
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15590.79 7396.30 5497.82 8596.13 2694.74 16597.23 9391.33 12599.16 8193.25 6598.30 18298.46 116
HQP_MVS94.26 11693.93 12395.23 9197.71 10888.12 11894.56 12097.81 8691.74 10993.31 20395.59 19186.93 19698.95 11289.26 17398.51 16498.60 107
plane_prior597.81 8698.95 11289.26 17398.51 16498.60 107
DU-MVS95.28 8295.12 9195.75 7297.75 10488.59 10992.58 17797.81 8693.99 5096.80 7395.90 17690.10 15599.41 3891.60 11099.58 3299.26 30
APD-MVScopyleft95.00 8994.69 10595.93 6297.38 12890.88 7194.59 11697.81 8689.22 16595.46 13196.17 16793.42 7999.34 6189.30 16998.87 12497.56 192
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9086.48 21397.42 4897.51 7294.47 6499.29 6893.55 4799.29 7098.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_vis1_n_192089.45 23789.85 22388.28 30693.59 28976.71 30490.67 24097.78 9179.67 28690.30 27996.11 16876.62 29392.17 35090.31 14193.57 32595.96 259
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9192.73 7293.48 19996.72 13094.23 6699.42 3291.99 9799.29 7099.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++93.25 14193.88 12491.37 22796.34 18382.81 20993.11 15997.74 9389.37 16194.08 17995.29 20990.40 15096.35 30390.35 13998.25 18794.96 291
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9392.59 7695.47 12996.68 13294.50 6299.42 3293.10 7099.26 7898.99 55
test_vis3_rt90.40 21090.03 21991.52 22392.58 30488.95 10090.38 25097.72 9573.30 32897.79 2997.51 7277.05 28687.10 36889.03 18094.89 30098.50 112
TAPA-MVS88.58 1092.49 16591.75 17994.73 10696.50 17289.69 8692.91 16597.68 9678.02 30292.79 22594.10 25090.85 13897.96 22684.76 24998.16 19696.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CPTT-MVS94.74 9894.12 12196.60 4398.15 7893.01 4295.84 7197.66 9789.21 16693.28 20695.46 19888.89 16698.98 10589.80 15898.82 13297.80 174
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 9893.38 6495.89 11497.23 9393.35 8197.66 25488.20 19398.66 15197.79 175
DP-MVS95.62 6395.84 6194.97 9797.16 13788.62 10894.54 12397.64 9896.94 1596.58 8297.32 8893.07 9298.72 15090.45 13498.84 12697.57 190
MTGPAbinary97.62 100
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10094.46 4496.29 9396.94 11293.56 7399.37 5694.29 2899.42 5098.99 55
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10287.68 19998.45 1898.77 1594.20 6799.50 2196.70 399.40 5599.53 15
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10287.57 20198.80 798.90 996.50 999.59 1396.15 799.47 4199.40 21
VPA-MVSNet95.14 8695.67 6893.58 15197.76 10383.15 20594.58 11897.58 10493.39 6397.05 6298.04 4393.25 8498.51 18089.75 16199.59 2899.08 48
v1094.68 10195.27 8592.90 17596.57 16580.15 23994.65 11597.57 10590.68 13597.43 4698.00 4588.18 17299.15 8294.84 1999.55 3599.41 20
CSCG94.69 10094.75 10294.52 11997.55 12087.87 12395.01 10497.57 10592.68 7396.20 10193.44 27291.92 11598.78 14189.11 17899.24 8196.92 222
ZD-MVS97.23 13390.32 7897.54 10784.40 24794.78 16395.79 18292.76 10199.39 4888.72 18898.40 169
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 12997.70 897.54 10798.16 298.94 299.33 297.84 499.08 9290.73 12899.73 1399.59 13
Effi-MVS+92.79 15592.74 15492.94 17395.10 24783.30 20194.00 13897.53 10991.36 11989.35 29690.65 32694.01 6998.66 16387.40 21095.30 29296.88 225
CP-MVSNet96.19 4596.80 1694.38 12798.99 1683.82 19696.31 5097.53 10997.60 798.34 1997.52 7091.98 11499.63 693.08 7299.81 899.70 3
RPSCF95.58 6694.89 9797.62 797.58 11896.30 795.97 6697.53 10992.42 7893.41 20097.78 5691.21 13097.77 24691.06 11997.06 24498.80 82
diffmvspermissive91.74 18191.93 17491.15 23993.06 29878.17 28188.77 29397.51 11286.28 21692.42 23993.96 25788.04 17697.46 26390.69 13096.67 26197.82 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu91.63 18491.20 19192.94 17397.73 10783.95 19592.14 19897.46 11378.85 29892.35 24394.98 21984.16 22199.08 9286.36 22996.77 25895.79 268
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5295.96 21392.96 4389.48 27597.46 11385.14 23696.23 9895.42 20193.19 8698.08 21490.37 13898.76 13997.38 207
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11591.25 12297.49 4298.14 3583.49 22499.45 2695.52 1199.66 2199.36 24
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11686.96 21098.71 1098.72 1795.36 3199.56 1795.92 899.45 4599.32 27
OMC-MVS94.22 11893.69 13195.81 6997.25 13291.27 6492.27 19497.40 11787.10 20994.56 16995.42 20193.74 7198.11 21386.62 22298.85 12598.06 140
v124093.29 13793.71 13092.06 20596.01 21177.89 28591.81 21597.37 11885.12 23796.69 7796.40 14686.67 20199.07 9694.51 2298.76 13999.22 33
NR-MVSNet95.28 8295.28 8495.26 8997.75 10487.21 13395.08 10097.37 11893.92 5597.65 3395.90 17690.10 15599.33 6690.11 15199.66 2199.26 30
MVSFormer92.18 17592.23 16692.04 20694.74 26080.06 24397.15 1597.37 11888.98 16988.83 30092.79 28777.02 28799.60 996.41 496.75 25996.46 241
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 11888.98 16998.26 2198.86 1093.35 8199.60 996.41 499.45 4599.66 6
DP-MVS Recon92.31 17191.88 17593.60 15097.18 13686.87 14291.10 23097.37 11884.92 24292.08 25194.08 25188.59 16798.20 20583.50 25798.14 19895.73 270
test_prior94.61 11295.95 21487.23 13297.36 12398.68 16197.93 158
QAPM92.88 15292.77 15293.22 16495.82 21983.31 20096.45 3997.35 12483.91 25093.75 19196.77 12289.25 16498.88 11984.56 25197.02 24697.49 196
GeoE94.55 10594.68 10794.15 13197.23 13385.11 18094.14 13497.34 12588.71 17695.26 14295.50 19694.65 5899.12 8990.94 12398.40 16998.23 129
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17597.33 12690.05 14796.77 7596.85 11895.04 4598.56 17592.77 7899.06 9998.70 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS97.31 12797.73 220
HQP-MVS92.09 17691.49 18593.88 14296.36 17984.89 18291.37 22297.31 12787.16 20688.81 30293.40 27384.76 21798.60 17086.55 22597.73 22098.14 137
PCF-MVS84.52 1789.12 24287.71 26593.34 16096.06 20585.84 17186.58 33197.31 12768.46 35593.61 19693.89 26087.51 18598.52 17967.85 36098.11 20095.66 275
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t90.51 20689.80 22492.63 18598.00 9182.24 21593.40 15597.29 13065.84 36289.40 29594.80 22786.99 19498.75 14583.88 25698.61 15396.89 224
CLD-MVS91.82 17991.41 18793.04 16696.37 17783.65 19886.82 32397.29 13084.65 24692.27 24789.67 33592.20 11097.85 23983.95 25599.47 4197.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator92.54 394.80 9794.90 9694.47 12395.47 23787.06 13696.63 3197.28 13291.82 10494.34 17697.41 7690.60 14698.65 16592.47 8798.11 20097.70 182
DELS-MVS92.05 17792.16 16791.72 21494.44 27080.13 24187.62 30497.25 13387.34 20492.22 24893.18 27989.54 16298.73 14989.67 16298.20 19496.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
v192192093.26 13993.61 13492.19 19896.04 21078.31 27991.88 21097.24 13485.17 23596.19 10396.19 16486.76 20099.05 9794.18 3098.84 12699.22 33
test_040295.73 6096.22 4094.26 12998.19 7685.77 17293.24 15897.24 13496.88 1697.69 3297.77 5894.12 6899.13 8691.54 11399.29 7097.88 164
v119293.49 13293.78 12792.62 18696.16 19879.62 25691.83 21497.22 13686.07 22096.10 10696.38 15187.22 18999.02 10294.14 3198.88 12199.22 33
F-COLMAP92.28 17291.06 19595.95 5997.52 12191.90 5693.53 15197.18 13783.98 24988.70 30894.04 25288.41 17098.55 17780.17 29195.99 27497.39 205
patch_mono-292.46 16692.72 15791.71 21596.65 15978.91 27188.85 29097.17 13883.89 25192.45 23796.76 12489.86 15997.09 27890.24 14698.59 15599.12 43
v894.65 10295.29 8392.74 18096.65 15979.77 25494.59 11697.17 13891.86 9797.47 4597.93 4888.16 17399.08 9294.32 2699.47 4199.38 22
v14419293.20 14493.54 13892.16 20296.05 20678.26 28091.95 20497.14 14084.98 24195.96 10896.11 16887.08 19399.04 10093.79 3898.84 12699.17 37
DeepC-MVS_fast89.96 793.73 12893.44 14094.60 11596.14 20087.90 12293.36 15697.14 14085.53 23093.90 18995.45 19991.30 12798.59 17289.51 16498.62 15297.31 210
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS92.91 15092.51 16194.10 13397.52 12185.72 17391.36 22597.13 14280.33 28092.91 22294.24 24591.23 12998.72 15089.99 15597.93 21397.86 166
KD-MVS_self_test94.10 12194.73 10492.19 19897.66 11479.49 26094.86 10897.12 14389.59 15796.87 6997.65 6290.40 15098.34 19489.08 17999.35 5998.75 87
pm-mvs195.43 7195.94 5493.93 14098.38 6385.08 18195.46 8797.12 14391.84 10197.28 5398.46 2795.30 3497.71 25190.17 14999.42 5098.99 55
save fliter97.46 12688.05 12092.04 20197.08 14587.63 200
CDPH-MVS92.67 16091.83 17795.18 9296.94 14588.46 11490.70 23997.07 14677.38 30492.34 24595.08 21692.67 10398.88 11985.74 23498.57 15798.20 132
test_fmvs392.42 16792.40 16592.46 19393.80 28787.28 13193.86 14397.05 14776.86 30996.25 9698.66 1882.87 23391.26 35495.44 1496.83 25598.82 78
OpenMVScopyleft89.45 892.27 17392.13 16992.68 18294.53 26984.10 19295.70 7697.03 14882.44 26891.14 26696.42 14488.47 16998.38 19085.95 23397.47 23395.55 279
原ACMM192.87 17696.91 14884.22 18997.01 14976.84 31089.64 29394.46 23988.00 17798.70 15781.53 27798.01 20995.70 273
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14795.20 9697.00 15091.85 9897.40 4997.35 8595.58 2399.34 6193.44 5599.31 6598.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet92.38 16991.99 17293.52 15793.82 28683.46 19991.14 22897.00 15089.81 15186.47 33194.04 25287.90 18099.21 7689.50 16598.27 18497.90 161
HPM-MVS++copyleft95.02 8894.39 11296.91 3797.88 9793.58 3794.09 13696.99 15291.05 12692.40 24095.22 21091.03 13799.25 7392.11 9298.69 14697.90 161
v114493.50 13193.81 12592.57 18896.28 18879.61 25791.86 21396.96 15386.95 21195.91 11296.32 15587.65 18298.96 11093.51 4898.88 12199.13 41
MVS_Test92.57 16493.29 14290.40 26293.53 29075.85 31392.52 17996.96 15388.73 17492.35 24396.70 13190.77 13998.37 19392.53 8695.49 28596.99 220
PVSNet_BlendedMVS90.35 21589.96 22091.54 22294.81 25578.80 27590.14 25896.93 15579.43 28888.68 30995.06 21786.27 20698.15 21180.27 28798.04 20697.68 184
PVSNet_Blended88.74 25688.16 25990.46 26194.81 25578.80 27586.64 32796.93 15574.67 31988.68 30989.18 34286.27 20698.15 21180.27 28796.00 27394.44 306
TEST996.45 17589.46 9090.60 24296.92 15779.09 29490.49 27394.39 24191.31 12698.88 119
train_agg92.71 15991.83 17795.35 8496.45 17589.46 9090.60 24296.92 15779.37 28990.49 27394.39 24191.20 13198.88 11988.66 18998.43 16897.72 181
NCCC94.08 12293.54 13895.70 7596.49 17389.90 8392.39 18896.91 15990.64 13692.33 24694.60 23590.58 14798.96 11090.21 14897.70 22398.23 129
test_896.37 17789.14 9790.51 24596.89 16079.37 28990.42 27594.36 24391.20 13198.82 129
agg_prior96.20 19588.89 10396.88 16190.21 28098.78 141
MSC_two_6792asdad95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
No_MVS95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16293.73 5797.87 2798.49 2690.73 14399.05 9786.43 22899.60 2699.10 47
IU-MVS98.51 5186.66 14996.83 16572.74 33395.83 11693.00 7499.29 7098.64 103
TSAR-MVS + MP.94.96 9194.75 10295.57 7898.86 2288.69 10596.37 4496.81 16685.23 23394.75 16497.12 10291.85 11699.40 4593.45 5498.33 17998.62 106
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS94.58 10494.29 11595.46 8296.94 14589.35 9691.81 21596.80 16789.66 15493.90 18995.44 20092.80 10098.72 15092.74 8098.52 16298.32 123
cascas87.02 29186.28 29389.25 28891.56 32676.45 30784.33 34896.78 16871.01 34286.89 33085.91 36181.35 25096.94 28383.09 26195.60 28294.35 308
IterMVS-LS93.78 12794.28 11692.27 19596.27 18979.21 26791.87 21196.78 16891.77 10796.57 8397.07 10487.15 19198.74 14891.99 9799.03 10898.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052995.50 6895.83 6294.50 12097.33 13185.93 16895.19 9896.77 17096.64 1997.61 3798.05 4293.23 8598.79 13888.60 19099.04 10798.78 84
TransMVSNet (Re)95.27 8496.04 5192.97 16998.37 6581.92 21895.07 10196.76 17193.97 5297.77 3098.57 2095.72 1997.90 22988.89 18499.23 8299.08 48
EG-PatchMatch MVS94.54 10694.67 10894.14 13297.87 9886.50 15192.00 20396.74 17288.16 18896.93 6897.61 6493.04 9397.90 22991.60 11098.12 19998.03 146
1112_ss88.42 26187.41 26991.45 22596.69 15880.99 23289.72 27096.72 17373.37 32787.00 32990.69 32477.38 28298.20 20581.38 27893.72 32395.15 286
Baseline_NR-MVSNet94.47 10895.09 9392.60 18798.50 5780.82 23592.08 19996.68 17493.82 5696.29 9398.56 2190.10 15597.75 24990.10 15399.66 2199.24 32
eth_miper_zixun_eth90.72 20090.61 20591.05 24092.04 31776.84 30286.91 31996.67 17585.21 23494.41 17293.92 25879.53 26398.26 20189.76 16097.02 24698.06 140
Fast-Effi-MVS+-dtu92.77 15792.16 16794.58 11894.66 26588.25 11692.05 20096.65 17689.62 15590.08 28291.23 31492.56 10498.60 17086.30 23096.27 26996.90 223
test1196.65 176
EGC-MVSNET80.97 33175.73 34296.67 4298.85 2494.55 1596.83 2396.60 1782.44 3775.32 37898.25 3392.24 10898.02 22091.85 10299.21 8697.45 198
LF4IMVS92.72 15892.02 17194.84 10295.65 23091.99 5492.92 16496.60 17885.08 23992.44 23893.62 26786.80 19996.35 30386.81 21798.25 18796.18 252
test_fmvs1_n88.73 25788.38 24889.76 27792.06 31682.53 21192.30 19396.59 18071.14 34092.58 23295.41 20468.55 31989.57 36391.12 11895.66 28197.18 214
GBi-Net93.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
test193.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
FMVSNet194.84 9595.13 9093.97 13797.60 11684.29 18695.99 6396.56 18192.38 7997.03 6398.53 2390.12 15398.98 10588.78 18699.16 9398.65 98
ITE_SJBPF95.95 5997.34 13093.36 4096.55 18491.93 9494.82 16195.39 20591.99 11397.08 27985.53 23697.96 21197.41 201
Fast-Effi-MVS+91.28 19390.86 19892.53 19095.45 23882.53 21189.25 28496.52 18585.00 24089.91 28688.55 34692.94 9498.84 12784.72 25095.44 28796.22 250
V4293.43 13493.58 13592.97 16995.34 24381.22 22992.67 17396.49 18687.25 20596.20 10196.37 15287.32 18898.85 12692.39 8998.21 19298.85 77
test_fmvs290.62 20590.40 21191.29 23291.93 31985.46 17692.70 17296.48 18774.44 32194.91 15897.59 6575.52 29790.57 35693.44 5596.56 26397.84 169
PLCcopyleft85.34 1590.40 21088.92 23894.85 10196.53 17190.02 8191.58 21996.48 18780.16 28186.14 33392.18 30085.73 21198.25 20276.87 32094.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l91.32 19291.42 18691.00 24492.29 30976.79 30387.52 31096.42 18985.76 22694.72 16793.89 26082.73 23698.16 21090.93 12498.55 15898.04 143
USDC89.02 24589.08 23388.84 29495.07 24874.50 32488.97 28796.39 19073.21 32993.27 20796.28 15982.16 24396.39 30077.55 31498.80 13595.62 278
ambc92.98 16896.88 14983.01 20895.92 6896.38 19196.41 8697.48 7488.26 17197.80 24289.96 15698.93 11898.12 139
PAPM_NR91.03 19590.81 20091.68 21796.73 15781.10 23193.72 14796.35 19288.19 18788.77 30692.12 30385.09 21697.25 27382.40 26993.90 32096.68 232
v2v48293.29 13793.63 13392.29 19496.35 18278.82 27391.77 21796.28 19388.45 18195.70 12496.26 16186.02 20998.90 11693.02 7398.81 13499.14 40
AdaColmapbinary91.63 18491.36 18892.47 19295.56 23586.36 15892.24 19796.27 19488.88 17389.90 28792.69 29091.65 11998.32 19577.38 31797.64 22692.72 339
Test_1112_low_res87.50 27986.58 28690.25 26696.80 15677.75 28787.53 30996.25 19569.73 35186.47 33193.61 26875.67 29697.88 23379.95 29393.20 32995.11 288
test1294.43 12595.95 21486.75 14596.24 19689.76 29189.79 16098.79 13897.95 21297.75 180
PAPR87.65 27486.77 28490.27 26592.85 30277.38 29288.56 29896.23 19776.82 31184.98 33989.75 33486.08 20897.16 27672.33 34493.35 32796.26 249
MVS_111021_HR93.63 13093.42 14194.26 12996.65 15986.96 14189.30 28196.23 19788.36 18593.57 19794.60 23593.45 7697.77 24690.23 14798.38 17398.03 146
XXY-MVS92.58 16293.16 14790.84 25097.75 10479.84 25091.87 21196.22 19985.94 22295.53 12897.68 6092.69 10294.48 33283.21 26097.51 23098.21 131
MSDG90.82 19790.67 20491.26 23394.16 27583.08 20786.63 32896.19 20090.60 13891.94 25391.89 30589.16 16595.75 31480.96 28494.51 31094.95 292
miper_ehance_all_eth90.48 20790.42 21090.69 25491.62 32576.57 30686.83 32296.18 20183.38 25394.06 18192.66 29282.20 24298.04 21689.79 15997.02 24697.45 198
TinyColmap92.00 17892.76 15389.71 27995.62 23377.02 29690.72 23896.17 20287.70 19895.26 14296.29 15792.54 10596.45 29881.77 27498.77 13895.66 275
DPM-MVS89.35 23888.40 24792.18 20196.13 20284.20 19086.96 31896.15 20375.40 31787.36 32691.55 31283.30 22798.01 22182.17 27296.62 26294.32 309
test_vis1_n89.01 24789.01 23689.03 29092.57 30582.46 21392.62 17696.06 20473.02 33190.40 27695.77 18674.86 29989.68 36190.78 12794.98 29894.95 292
HyFIR lowres test87.19 28785.51 29892.24 19697.12 14080.51 23685.03 34096.06 20466.11 36191.66 25792.98 28370.12 31599.14 8475.29 32995.23 29497.07 215
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
iter_conf0588.94 25188.09 26091.50 22492.74 30376.97 30092.80 16895.92 20982.82 26393.65 19595.37 20749.41 37499.13 8690.82 12599.28 7598.40 120
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26494.64 26780.24 23789.69 27195.88 21085.77 22593.94 18895.69 18981.99 24592.98 34784.21 25491.30 34897.62 187
CANet_DTU89.85 23189.17 23291.87 20892.20 31280.02 24690.79 23695.87 21186.02 22182.53 35591.77 30780.01 26098.57 17485.66 23597.70 22397.01 219
PMVScopyleft87.21 1494.97 9095.33 8193.91 14198.97 1797.16 295.54 8595.85 21296.47 2293.40 20297.46 7595.31 3395.47 32086.18 23298.78 13789.11 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
alignmvs93.26 13992.85 15194.50 12095.70 22687.45 12893.45 15495.76 21391.58 11495.25 14492.42 29881.96 24698.72 15091.61 10997.87 21697.33 209
无先验89.94 26495.75 21470.81 34498.59 17281.17 28294.81 295
test_fmvs187.59 27687.27 27288.54 30088.32 35981.26 22890.43 24995.72 21570.55 34691.70 25694.63 23368.13 32089.42 36490.59 13195.34 29194.94 294
WR-MVS93.49 13293.72 12992.80 17997.57 11980.03 24590.14 25895.68 21693.70 5896.62 8095.39 20587.21 19099.04 10087.50 20799.64 2499.33 26
VPNet93.08 14593.76 12891.03 24198.60 3975.83 31591.51 22095.62 21791.84 10195.74 12097.10 10389.31 16398.32 19585.07 24599.06 9998.93 64
Anonymous2024052192.86 15493.57 13690.74 25396.57 16575.50 31794.15 13395.60 21889.38 16095.90 11397.90 5480.39 25997.96 22692.60 8599.68 1898.75 87
xiu_mvs_v2_base89.00 24889.19 23188.46 30494.86 25374.63 32186.97 31795.60 21880.88 27687.83 32088.62 34591.04 13698.81 13482.51 26894.38 31291.93 345
PS-MVSNAJ88.86 25388.99 23788.48 30394.88 25174.71 31986.69 32695.60 21880.88 27687.83 32087.37 35390.77 13998.82 12982.52 26794.37 31391.93 345
CHOSEN 1792x268887.19 28785.92 29691.00 24497.13 13979.41 26184.51 34695.60 21864.14 36590.07 28394.81 22578.26 27597.14 27773.34 33895.38 29096.46 241
miper_enhance_ethall88.42 26187.87 26390.07 27188.67 35875.52 31685.10 33995.59 22275.68 31392.49 23489.45 33878.96 26697.88 23387.86 20497.02 24696.81 227
MVP-Stereo90.07 22688.92 23893.54 15496.31 18686.49 15290.93 23395.59 22279.80 28291.48 25895.59 19180.79 25697.39 26978.57 30891.19 34996.76 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cdsmvs_eth3d_5k23.35 34431.13 3470.00 3620.00 3850.00 3860.00 37395.58 2240.00 3800.00 38191.15 31593.43 780.00 3810.00 3790.00 3790.00 377
bld_raw_dy_0_6494.27 11494.15 12094.65 11198.55 4586.28 16195.80 7395.55 22588.41 18397.09 5898.08 4078.69 26998.87 12395.63 1099.53 3698.81 80
CNLPA91.72 18291.20 19193.26 16396.17 19791.02 6791.14 22895.55 22590.16 14690.87 26893.56 27086.31 20594.40 33579.92 29797.12 24294.37 307
FMVSNet292.78 15692.73 15692.95 17195.40 23981.98 21794.18 13295.53 22788.63 17796.05 10797.37 7981.31 25198.81 13487.38 21198.67 14998.06 140
ab-mvs92.40 16892.62 15991.74 21397.02 14181.65 22195.84 7195.50 22886.95 21192.95 22197.56 6790.70 14497.50 26079.63 29897.43 23496.06 256
MVS_111021_LR93.66 12993.28 14494.80 10396.25 19290.95 6990.21 25595.43 22987.91 19093.74 19394.40 24092.88 9896.38 30190.39 13698.28 18397.07 215
tfpnnormal94.27 11494.87 9892.48 19197.71 10880.88 23494.55 12295.41 23093.70 5896.67 7897.72 5991.40 12498.18 20887.45 20899.18 9098.36 121
Effi-MVS+-dtu93.90 12692.60 16097.77 394.74 26096.67 594.00 13895.41 23089.94 14891.93 25492.13 30290.12 15398.97 10987.68 20697.48 23297.67 185
iter_conf_final90.23 21989.32 23092.95 17194.65 26681.46 22594.32 12995.40 23285.61 22992.84 22395.37 20754.58 36799.13 8692.16 9198.94 11798.25 128
cl____90.65 20390.56 20790.91 24891.85 32076.98 29986.75 32495.36 23385.53 23094.06 18194.89 22277.36 28497.98 22590.27 14498.98 10997.76 178
DIV-MVS_self_test90.65 20390.56 20790.91 24891.85 32076.99 29886.75 32495.36 23385.52 23294.06 18194.89 22277.37 28397.99 22490.28 14398.97 11397.76 178
testgi90.38 21391.34 18987.50 31697.49 12371.54 34489.43 27695.16 23588.38 18494.54 17094.68 23292.88 9893.09 34671.60 34997.85 21797.88 164
v14892.87 15393.29 14291.62 21996.25 19277.72 28891.28 22695.05 23689.69 15395.93 11196.04 17187.34 18798.38 19090.05 15497.99 21098.78 84
miper_lstm_enhance89.90 23089.80 22490.19 27091.37 32877.50 29083.82 35295.00 23784.84 24493.05 21694.96 22076.53 29595.20 32889.96 15698.67 14997.86 166
VNet92.67 16092.96 14891.79 21196.27 18980.15 23991.95 20494.98 23892.19 8894.52 17196.07 17087.43 18697.39 26984.83 24798.38 17397.83 170
FMVSNet390.78 19990.32 21392.16 20293.03 30079.92 24992.54 17894.95 23986.17 21995.10 14996.01 17369.97 31698.75 14586.74 21898.38 17397.82 172
BH-untuned90.68 20290.90 19690.05 27395.98 21279.57 25890.04 26194.94 24087.91 19094.07 18093.00 28187.76 18197.78 24579.19 30495.17 29592.80 338
D2MVS89.93 22989.60 22990.92 24694.03 28078.40 27888.69 29594.85 24178.96 29693.08 21495.09 21574.57 30096.94 28388.19 19498.96 11597.41 201
SixPastTwentyTwo94.91 9295.21 8693.98 13698.52 5083.19 20495.93 6794.84 24294.86 3998.49 1598.74 1681.45 24999.60 994.69 2099.39 5699.15 39
旧先验196.20 19584.17 19194.82 24395.57 19589.57 16197.89 21596.32 246
API-MVS91.52 18791.61 18091.26 23394.16 27586.26 16294.66 11494.82 24391.17 12492.13 25091.08 31790.03 15897.06 28079.09 30597.35 23790.45 354
FMVSNet587.82 27086.56 28791.62 21992.31 30879.81 25393.49 15294.81 24583.26 25491.36 26096.93 11352.77 37297.49 26276.07 32598.03 20797.55 193
MAR-MVS90.32 21788.87 24194.66 11094.82 25491.85 5794.22 13194.75 24680.91 27587.52 32588.07 34986.63 20297.87 23676.67 32196.21 27094.25 310
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous90.37 21491.30 19087.58 31592.17 31368.00 35889.84 26894.73 24783.82 25293.22 21197.40 7787.54 18497.40 26887.94 20295.05 29797.34 208
EI-MVSNet-UG-set94.35 11194.27 11894.59 11692.46 30785.87 17092.42 18694.69 24893.67 6196.13 10495.84 18091.20 13198.86 12493.78 3998.23 18999.03 51
EI-MVSNet-Vis-set94.36 11094.28 11694.61 11292.55 30685.98 16792.44 18494.69 24893.70 5896.12 10595.81 18191.24 12898.86 12493.76 4298.22 19198.98 59
EI-MVSNet92.99 14893.26 14692.19 19892.12 31479.21 26792.32 19194.67 25091.77 10795.24 14595.85 17887.14 19298.49 18191.99 9798.26 18598.86 74
MVSTER89.32 23988.75 24291.03 24190.10 34476.62 30590.85 23494.67 25082.27 26995.24 14595.79 18261.09 35698.49 18190.49 13398.26 18597.97 155
RRT_MVS95.41 7495.20 8896.05 5598.86 2288.92 10197.49 1194.48 25293.12 6897.94 2698.54 2281.19 25599.63 695.48 1299.69 1499.60 12
新几何193.17 16597.16 13787.29 13094.43 25367.95 35691.29 26194.94 22186.97 19598.23 20381.06 28397.75 21993.98 316
CMPMVSbinary68.83 2287.28 28385.67 29792.09 20488.77 35785.42 17790.31 25394.38 25470.02 34988.00 31893.30 27573.78 30494.03 34075.96 32796.54 26496.83 226
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IS-MVSNet94.49 10794.35 11494.92 9898.25 7386.46 15497.13 1894.31 25596.24 2596.28 9596.36 15382.88 23299.35 5888.19 19499.52 3998.96 61
tt080595.42 7395.93 5693.86 14498.75 3288.47 11397.68 994.29 25696.48 2195.38 13393.63 26694.89 5297.94 22895.38 1696.92 25295.17 284
testdata91.03 24196.87 15082.01 21694.28 25771.55 33792.46 23695.42 20185.65 21397.38 27182.64 26597.27 23893.70 323
UGNet93.08 14592.50 16294.79 10493.87 28487.99 12195.07 10194.26 25890.64 13687.33 32797.67 6186.89 19898.49 18188.10 19798.71 14397.91 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS84.98 30584.30 30587.01 31991.03 33177.69 28991.94 20694.16 25959.36 37084.23 34587.50 35285.66 21296.80 28971.79 34693.05 33486.54 363
131486.46 29586.33 29286.87 32191.65 32474.54 32291.94 20694.10 26074.28 32284.78 34187.33 35483.03 23195.00 32978.72 30691.16 35091.06 351
cl2289.02 24588.50 24590.59 25789.76 34676.45 30786.62 32994.03 26182.98 26192.65 22992.49 29372.05 30997.53 25888.93 18197.02 24697.78 176
EPP-MVSNet93.91 12593.68 13294.59 11698.08 8285.55 17597.44 1294.03 26194.22 4794.94 15696.19 16482.07 24499.57 1487.28 21298.89 11998.65 98
UnsupCasMVSNet_bld88.50 26088.03 26189.90 27595.52 23678.88 27287.39 31194.02 26379.32 29293.06 21594.02 25480.72 25794.27 33775.16 33093.08 33396.54 234
h-mvs3392.89 15191.99 17295.58 7796.97 14390.55 7693.94 14194.01 26489.23 16393.95 18696.19 16476.88 29099.14 8491.02 12095.71 28097.04 218
pmmvs-eth3d91.54 18690.73 20393.99 13595.76 22487.86 12490.83 23593.98 26578.23 30194.02 18496.22 16382.62 23996.83 28886.57 22398.33 17997.29 211
BH-RMVSNet90.47 20890.44 20990.56 25895.21 24678.65 27789.15 28593.94 26688.21 18692.74 22794.22 24686.38 20497.88 23378.67 30795.39 28995.14 287
test22296.95 14485.27 17988.83 29193.61 26765.09 36490.74 27094.85 22484.62 21997.36 23693.91 317
test_vis1_rt85.58 30084.58 30288.60 29987.97 36086.76 14485.45 33793.59 26866.43 35987.64 32289.20 34179.33 26485.38 37081.59 27689.98 35593.66 324
CDS-MVSNet89.55 23488.22 25693.53 15595.37 24286.49 15289.26 28293.59 26879.76 28491.15 26592.31 29977.12 28598.38 19077.51 31597.92 21495.71 271
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
new-patchmatchnet88.97 24990.79 20183.50 34494.28 27455.83 37885.34 33893.56 27086.18 21895.47 12995.73 18883.10 22996.51 29685.40 23798.06 20498.16 135
IterMVS-SCA-FT91.65 18391.55 18191.94 20793.89 28379.22 26687.56 30793.51 27191.53 11695.37 13596.62 13578.65 27098.90 11691.89 10194.95 29997.70 182
Anonymous2023120688.77 25588.29 25190.20 26996.31 18678.81 27489.56 27493.49 27274.26 32392.38 24195.58 19482.21 24195.43 32272.07 34598.75 14196.34 245
FA-MVS(test-final)91.81 18091.85 17691.68 21794.95 25079.99 24796.00 6293.44 27387.80 19494.02 18497.29 8977.60 27998.45 18788.04 19997.49 23196.61 233
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23490.92 24694.58 26881.21 23091.10 23093.41 27477.03 30893.41 20093.99 25683.23 22897.80 24279.93 29594.80 30493.74 322
VDD-MVS94.37 10994.37 11394.40 12697.49 12386.07 16693.97 14093.28 27594.49 4396.24 9797.78 5687.99 17898.79 13888.92 18299.14 9598.34 122
jason89.17 24188.32 24991.70 21695.73 22580.07 24288.10 30093.22 27671.98 33690.09 28192.79 28778.53 27398.56 17587.43 20997.06 24496.46 241
jason: jason.
PAPM81.91 32580.11 33587.31 31893.87 28472.32 34284.02 35093.22 27669.47 35276.13 37189.84 32972.15 30897.23 27453.27 37389.02 35692.37 342
BH-w/o87.21 28587.02 28087.79 31494.77 25877.27 29487.90 30293.21 27881.74 27389.99 28588.39 34883.47 22596.93 28571.29 35092.43 34189.15 355
ppachtmachnet_test88.61 25988.64 24388.50 30291.76 32270.99 34884.59 34592.98 27979.30 29392.38 24193.53 27179.57 26297.45 26486.50 22797.17 24197.07 215
IterMVS90.18 22090.16 21490.21 26893.15 29675.98 31287.56 30792.97 28086.43 21594.09 17896.40 14678.32 27497.43 26587.87 20394.69 30797.23 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test20.0390.80 19890.85 19990.63 25695.63 23279.24 26589.81 26992.87 28189.90 14994.39 17396.40 14685.77 21095.27 32773.86 33699.05 10297.39 205
CR-MVSNet87.89 26787.12 27890.22 26791.01 33278.93 26992.52 17992.81 28273.08 33089.10 29796.93 11367.11 32597.64 25588.80 18592.70 33794.08 311
Patchmtry90.11 22389.92 22190.66 25590.35 34177.00 29792.96 16392.81 28290.25 14594.74 16596.93 11367.11 32597.52 25985.17 23898.98 10997.46 197
GA-MVS87.70 27186.82 28290.31 26393.27 29377.22 29584.72 34492.79 28485.11 23889.82 28890.07 32766.80 32897.76 24884.56 25194.27 31695.96 259
sss87.23 28486.82 28288.46 30493.96 28177.94 28286.84 32192.78 28577.59 30387.61 32491.83 30678.75 26891.92 35177.84 31194.20 31795.52 280
Patchmatch-RL test88.81 25488.52 24489.69 28095.33 24479.94 24886.22 33392.71 28678.46 29995.80 11794.18 24866.25 33395.33 32589.22 17598.53 16193.78 320
test_yl90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
DCV-MVSNet90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
CL-MVSNet_self_test90.04 22889.90 22290.47 25995.24 24577.81 28686.60 33092.62 28985.64 22893.25 21093.92 25883.84 22296.06 31079.93 29598.03 20797.53 194
TSAR-MVS + GP.93.07 14792.41 16495.06 9595.82 21990.87 7290.97 23292.61 29088.04 18994.61 16893.79 26388.08 17497.81 24189.41 16698.39 17296.50 239
TAMVS90.16 22189.05 23493.49 15896.49 17386.37 15790.34 25292.55 29180.84 27892.99 21894.57 23781.94 24798.20 20573.51 33798.21 19295.90 264
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28387.88 30392.49 29275.42 31692.57 23393.59 26980.44 25894.24 33981.28 27992.75 33694.69 302
MG-MVS89.54 23589.80 22488.76 29594.88 25172.47 34189.60 27292.44 29385.82 22489.48 29495.98 17482.85 23497.74 25081.87 27395.27 29396.08 255
MVS_030490.96 19690.15 21793.37 15993.17 29587.06 13693.62 15092.43 29489.60 15682.25 35695.50 19682.56 24097.83 24084.41 25397.83 21895.22 283
lupinMVS88.34 26387.31 27091.45 22594.74 26080.06 24387.23 31292.27 29571.10 34188.83 30091.15 31577.02 28798.53 17886.67 22196.75 25995.76 269
pmmvs587.87 26887.14 27690.07 27193.26 29476.97 30088.89 28992.18 29673.71 32688.36 31393.89 26076.86 29296.73 29180.32 28696.81 25696.51 236
PM-MVS93.33 13692.67 15895.33 8696.58 16494.06 2192.26 19592.18 29685.92 22396.22 9996.61 13685.64 21495.99 31290.35 13998.23 18995.93 261
pmmvs488.95 25087.70 26692.70 18194.30 27385.60 17487.22 31392.16 29874.62 32089.75 29294.19 24777.97 27796.41 29982.71 26496.36 26896.09 254
MDA-MVSNet-bldmvs91.04 19490.88 19791.55 22194.68 26480.16 23885.49 33692.14 29990.41 14394.93 15795.79 18285.10 21596.93 28585.15 24094.19 31997.57 190
door-mid92.13 300
WTY-MVS86.93 29286.50 29188.24 30794.96 24974.64 32087.19 31492.07 30178.29 30088.32 31491.59 31178.06 27694.27 33774.88 33193.15 33195.80 267
AUN-MVS90.05 22788.30 25095.32 8896.09 20390.52 7792.42 18692.05 30282.08 27188.45 31292.86 28465.76 33598.69 15988.91 18396.07 27196.75 231
hse-mvs292.24 17491.20 19195.38 8396.16 19890.65 7592.52 17992.01 30389.23 16393.95 18692.99 28276.88 29098.69 15991.02 12096.03 27296.81 227
TR-MVS87.70 27187.17 27589.27 28794.11 27779.26 26488.69 29591.86 30481.94 27290.69 27189.79 33282.82 23597.42 26672.65 34391.98 34591.14 350
VDDNet94.03 12394.27 11893.31 16198.87 2182.36 21495.51 8691.78 30597.19 1296.32 9098.60 1984.24 22098.75 14587.09 21598.83 13198.81 80
test_f86.65 29487.13 27785.19 33490.28 34286.11 16586.52 33291.66 30669.76 35095.73 12297.21 9769.51 31781.28 37389.15 17794.40 31188.17 360
Anonymous20240521192.58 16292.50 16292.83 17896.55 16783.22 20392.43 18591.64 30794.10 4995.59 12696.64 13481.88 24897.50 26085.12 24298.52 16297.77 177
HY-MVS82.50 1886.81 29385.93 29589.47 28193.63 28877.93 28394.02 13791.58 30875.68 31383.64 34893.64 26577.40 28197.42 26671.70 34892.07 34493.05 335
door91.26 309
PatchMatch-RL89.18 24088.02 26292.64 18395.90 21792.87 4588.67 29791.06 31080.34 27990.03 28491.67 30983.34 22694.42 33476.35 32494.84 30390.64 353
FE-MVS89.06 24488.29 25191.36 22894.78 25779.57 25896.77 2890.99 31184.87 24392.96 22096.29 15760.69 35898.80 13780.18 29097.11 24395.71 271
ADS-MVSNet284.01 31082.20 31989.41 28389.04 35476.37 30987.57 30590.98 31272.71 33484.46 34292.45 29468.08 32196.48 29770.58 35583.97 36595.38 281
KD-MVS_2432*160082.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
miper_refine_blended82.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
wuyk23d87.83 26990.79 20178.96 35390.46 34088.63 10792.72 17090.67 31591.65 11398.68 1197.64 6396.06 1577.53 37459.84 36999.41 5470.73 372
our_test_387.55 27787.59 26787.44 31791.76 32270.48 34983.83 35190.55 31679.79 28392.06 25292.17 30178.63 27295.63 31584.77 24894.73 30596.22 250
test_method50.44 34248.94 34554.93 35739.68 38112.38 38328.59 37290.09 3176.82 37541.10 37778.41 37054.41 36870.69 37650.12 37451.26 37681.72 370
EU-MVSNet87.39 28186.71 28589.44 28293.40 29176.11 31094.93 10790.00 31857.17 37195.71 12397.37 7964.77 34197.68 25392.67 8394.37 31394.52 304
CHOSEN 280x42080.04 33677.97 34186.23 32890.13 34374.53 32372.87 36789.59 31966.38 36076.29 37085.32 36356.96 36395.36 32369.49 35894.72 30688.79 358
MDA-MVSNet_test_wron88.16 26588.23 25587.93 31192.22 31073.71 33080.71 36288.84 32082.52 26694.88 16095.14 21282.70 23793.61 34283.28 25993.80 32296.46 241
YYNet188.17 26488.24 25487.93 31192.21 31173.62 33180.75 36188.77 32182.51 26794.99 15595.11 21482.70 23793.70 34183.33 25893.83 32196.48 240
PVSNet76.22 2082.89 31782.37 31784.48 33993.96 28164.38 37178.60 36488.61 32271.50 33884.43 34486.36 35974.27 30194.60 33169.87 35793.69 32494.46 305
MIMVSNet87.13 28986.54 28888.89 29396.05 20676.11 31094.39 12588.51 32381.37 27488.27 31596.75 12672.38 30795.52 31765.71 36595.47 28695.03 289
tpmvs84.22 30983.97 30884.94 33587.09 36665.18 36691.21 22788.35 32482.87 26285.21 33690.96 31965.24 33996.75 29079.60 30185.25 36492.90 337
EPNet_dtu85.63 29984.37 30489.40 28486.30 36974.33 32691.64 21888.26 32584.84 24472.96 37389.85 32871.27 31297.69 25276.60 32297.62 22796.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat180.61 33479.46 33784.07 34288.78 35665.06 36989.26 28288.23 32662.27 36881.90 36189.66 33662.70 35295.29 32671.72 34780.60 37191.86 347
baseline187.62 27587.31 27088.54 30094.71 26374.27 32793.10 16088.20 32786.20 21792.18 24993.04 28073.21 30595.52 31779.32 30285.82 36395.83 266
CVMVSNet85.16 30384.72 30086.48 32392.12 31470.19 35092.32 19188.17 32856.15 37290.64 27295.85 17867.97 32396.69 29288.78 18690.52 35292.56 340
SCA87.43 28087.21 27488.10 30992.01 31871.98 34389.43 27688.11 32982.26 27088.71 30792.83 28578.65 27097.59 25679.61 29993.30 32894.75 299
tpmrst82.85 31882.93 31582.64 34687.65 36158.99 37690.14 25887.90 33075.54 31583.93 34691.63 31066.79 33095.36 32381.21 28181.54 37093.57 329
Vis-MVSNet (Re-imp)90.42 20990.16 21491.20 23797.66 11477.32 29394.33 12787.66 33191.20 12392.99 21895.13 21375.40 29898.28 19777.86 31099.19 8897.99 151
MDTV_nov1_ep1383.88 30989.42 35261.52 37488.74 29487.41 33273.99 32484.96 34094.01 25565.25 33895.53 31678.02 30993.16 330
PatchmatchNetpermissive85.22 30284.64 30186.98 32089.51 35169.83 35590.52 24487.34 33378.87 29787.22 32892.74 28966.91 32796.53 29481.77 27486.88 36194.58 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet88.90 25287.25 27393.83 14594.40 27293.81 3584.73 34287.09 33479.36 29193.26 20892.43 29779.29 26591.68 35277.50 31697.22 24096.00 258
EPNet89.80 23388.25 25394.45 12483.91 37686.18 16393.87 14287.07 33591.16 12580.64 36494.72 23078.83 26798.89 11885.17 23898.89 11998.28 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test86.10 29786.01 29486.38 32790.63 33674.22 32889.57 27386.69 33685.73 22789.81 28992.83 28565.24 33991.04 35577.82 31395.78 27993.88 319
K. test v393.37 13593.27 14593.66 14898.05 8582.62 21094.35 12686.62 33796.05 2997.51 4198.85 1276.59 29499.65 393.21 6698.20 19498.73 91
CostFormer83.09 31582.21 31885.73 32989.27 35367.01 35990.35 25186.47 33870.42 34783.52 35093.23 27861.18 35596.85 28777.21 31888.26 35993.34 331
thres20085.85 29885.18 29987.88 31394.44 27072.52 34089.08 28686.21 33988.57 18091.44 25988.40 34764.22 34298.00 22268.35 35995.88 27893.12 332
ET-MVSNet_ETH3D86.15 29684.27 30691.79 21193.04 29981.28 22787.17 31586.14 34079.57 28783.65 34788.66 34457.10 36298.18 20887.74 20595.40 28895.90 264
PatchT87.51 27888.17 25885.55 33090.64 33566.91 36092.02 20286.09 34192.20 8789.05 29997.16 9964.15 34396.37 30289.21 17692.98 33593.37 330
tfpn200view987.05 29086.52 28988.67 29795.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26494.79 297
thres40087.20 28686.52 28989.24 28995.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26496.51 236
IB-MVS77.21 1983.11 31481.05 32589.29 28691.15 33075.85 31385.66 33586.00 34279.70 28582.02 36086.61 35648.26 37598.39 18877.84 31192.22 34293.63 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMMVS83.00 31681.11 32488.66 29883.81 37786.44 15582.24 35785.65 34561.75 36982.07 35885.64 36279.75 26191.59 35375.99 32693.09 33287.94 361
tpm84.38 30884.08 30785.30 33390.47 33963.43 37389.34 27985.63 34677.24 30787.62 32395.03 21861.00 35797.30 27279.26 30391.09 35195.16 285
LFMVS91.33 19191.16 19491.82 21096.27 18979.36 26295.01 10485.61 34796.04 3094.82 16197.06 10572.03 31098.46 18684.96 24698.70 14597.65 186
FPMVS84.50 30783.28 31188.16 30896.32 18594.49 1685.76 33485.47 34883.09 25885.20 33794.26 24463.79 34686.58 36963.72 36791.88 34783.40 366
tpm281.46 32680.35 33384.80 33689.90 34565.14 36790.44 24685.36 34965.82 36382.05 35992.44 29657.94 36196.69 29270.71 35488.49 35892.56 340
thres100view90087.35 28286.89 28188.72 29696.14 20073.09 33593.00 16285.31 35092.13 8993.26 20890.96 31963.42 34798.28 19771.27 35196.54 26494.79 297
thres600view787.66 27387.10 27989.36 28596.05 20673.17 33392.72 17085.31 35091.89 9693.29 20590.97 31863.42 34798.39 18873.23 33996.99 25196.51 236
dp79.28 33778.62 33981.24 34985.97 37156.45 37786.91 31985.26 35272.97 33281.45 36389.17 34356.01 36695.45 32173.19 34076.68 37291.82 348
PMMVS281.31 32783.44 31074.92 35590.52 33846.49 38069.19 36985.23 35384.30 24887.95 31994.71 23176.95 28984.36 37264.07 36698.09 20293.89 318
ADS-MVSNet82.25 32081.55 32184.34 34089.04 35465.30 36587.57 30585.13 35472.71 33484.46 34292.45 29468.08 32192.33 34970.58 35583.97 36595.38 281
test-LLR83.58 31283.17 31284.79 33789.68 34866.86 36183.08 35384.52 35583.07 25982.85 35384.78 36462.86 35093.49 34382.85 26294.86 30194.03 314
test-mter81.21 32980.01 33684.79 33789.68 34866.86 36183.08 35384.52 35573.85 32582.85 35384.78 36443.66 37993.49 34382.85 26294.86 30194.03 314
JIA-IIPM85.08 30483.04 31391.19 23887.56 36286.14 16489.40 27884.44 35788.98 16982.20 35797.95 4756.82 36496.15 30676.55 32383.45 36791.30 349
thisisatest053088.69 25887.52 26892.20 19796.33 18479.36 26292.81 16784.01 35886.44 21493.67 19492.68 29153.62 37199.25 7389.65 16398.45 16798.00 148
tttt051789.81 23288.90 24092.55 18997.00 14279.73 25595.03 10383.65 35989.88 15095.30 13994.79 22853.64 37099.39 4891.99 9798.79 13698.54 110
thisisatest051584.72 30682.99 31489.90 27592.96 30175.33 31884.36 34783.42 36077.37 30588.27 31586.65 35553.94 36998.72 15082.56 26697.40 23595.67 274
PVSNet_070.34 2174.58 34072.96 34379.47 35290.63 33666.24 36473.26 36583.40 36163.67 36778.02 36878.35 37172.53 30689.59 36256.68 37160.05 37582.57 369
pmmvs380.83 33278.96 33886.45 32487.23 36577.48 29184.87 34182.31 36263.83 36685.03 33889.50 33749.66 37393.10 34573.12 34195.10 29688.78 359
E-PMN80.72 33380.86 32880.29 35185.11 37368.77 35772.96 36681.97 36387.76 19683.25 35283.01 36862.22 35389.17 36577.15 31994.31 31582.93 367
test0.0.03 182.48 31981.47 32385.48 33189.70 34773.57 33284.73 34281.64 36483.07 25988.13 31786.61 35662.86 35089.10 36666.24 36490.29 35393.77 321
baseline283.38 31381.54 32288.90 29291.38 32772.84 33888.78 29281.22 36578.97 29579.82 36687.56 35061.73 35497.80 24274.30 33490.05 35496.05 257
EMVS80.35 33580.28 33480.54 35084.73 37569.07 35672.54 36880.73 36687.80 19481.66 36281.73 36962.89 34989.84 36075.79 32894.65 30882.71 368
TESTMET0.1,179.09 33878.04 34082.25 34787.52 36364.03 37283.08 35380.62 36770.28 34880.16 36583.22 36744.13 37890.56 35779.95 29393.36 32692.15 343
lessismore_v093.87 14398.05 8583.77 19780.32 36897.13 5797.91 5277.49 28099.11 9192.62 8498.08 20398.74 90
new_pmnet81.22 32881.01 32781.86 34890.92 33470.15 35184.03 34980.25 36970.83 34385.97 33489.78 33367.93 32484.65 37167.44 36191.90 34690.78 352
test111190.39 21290.61 20589.74 27898.04 8871.50 34595.59 8179.72 37089.41 15995.94 11098.14 3570.79 31398.81 13488.52 19199.32 6498.90 70
mvsany_test389.11 24388.21 25791.83 20991.30 32990.25 7988.09 30178.76 37176.37 31296.43 8598.39 3083.79 22390.43 35986.57 22394.20 31794.80 296
ECVR-MVScopyleft90.12 22290.16 21490.00 27497.81 10072.68 33995.76 7578.54 37289.04 16795.36 13698.10 3870.51 31498.64 16687.10 21499.18 9098.67 96
MVS-HIRNet78.83 33980.60 33173.51 35693.07 29747.37 37987.10 31678.00 37368.94 35377.53 36997.26 9071.45 31194.62 33063.28 36888.74 35778.55 371
DSMNet-mixed82.21 32181.56 32084.16 34189.57 35070.00 35490.65 24177.66 37454.99 37383.30 35197.57 6677.89 27890.50 35866.86 36395.54 28491.97 344
mvsany_test183.91 31182.93 31586.84 32286.18 37085.93 16881.11 36075.03 37570.80 34588.57 31194.63 23383.08 23087.38 36780.39 28586.57 36287.21 362
EPMVS81.17 33080.37 33283.58 34385.58 37265.08 36890.31 25371.34 37677.31 30685.80 33591.30 31359.38 35992.70 34879.99 29282.34 36992.96 336
gg-mvs-nofinetune82.10 32481.02 32685.34 33287.46 36471.04 34694.74 11167.56 37796.44 2379.43 36798.99 645.24 37696.15 30667.18 36292.17 34388.85 357
GG-mvs-BLEND83.24 34585.06 37471.03 34794.99 10665.55 37874.09 37275.51 37244.57 37794.46 33359.57 37087.54 36084.24 365
MVEpermissive59.87 2373.86 34172.65 34477.47 35487.00 36874.35 32561.37 37160.93 37967.27 35769.69 37486.49 35881.24 25472.33 37556.45 37283.45 36785.74 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250685.42 30184.57 30387.96 31097.81 10066.53 36396.14 5856.35 38089.04 16793.55 19898.10 3842.88 38298.68 16188.09 19899.18 9098.67 96
MTMP94.82 10954.62 381
DeepMVS_CXcopyleft53.83 35870.38 38064.56 37048.52 38233.01 37465.50 37574.21 37356.19 36546.64 37738.45 37670.07 37350.30 373
tmp_tt37.97 34344.33 34618.88 35911.80 38221.54 38263.51 37045.66 3834.23 37651.34 37650.48 37459.08 36022.11 37844.50 37568.35 37413.00 374
testmvs9.02 34611.42 3491.81 3612.77 3841.13 38579.44 3631.90 3841.18 3792.65 3806.80 3761.95 3840.87 3802.62 3783.45 3783.44 376
test1239.49 34512.01 3481.91 3602.87 3831.30 38482.38 3561.34 3851.36 3782.84 3796.56 3772.45 3830.97 3792.73 3775.56 3773.47 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.56 34710.09 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38090.77 1390.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
n20.00 386
nn0.00 386
ab-mvs-re7.56 34710.08 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38190.69 3240.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145275.31 31895.87 11595.75 18792.93 9596.34 30587.18 21398.68 14798.04 143
eth-test20.00 385
eth-test0.00 385
OPU-MVS95.15 9396.84 15289.43 9295.21 9495.66 19093.12 8998.06 21586.28 23198.61 15397.95 156
test_0728_THIRD93.26 6697.40 4997.35 8594.69 5699.34 6193.88 3599.42 5098.89 71
GSMVS94.75 299
test_part298.21 7589.41 9396.72 76
sam_mvs166.64 33194.75 299
sam_mvs66.41 332
test_post190.21 2555.85 37965.36 33796.00 31179.61 299
test_post6.07 37865.74 33695.84 313
patchmatchnet-post91.71 30866.22 33497.59 256
gm-plane-assit87.08 36759.33 37571.22 33983.58 36697.20 27573.95 335
test9_res88.16 19698.40 16997.83 170
agg_prior287.06 21698.36 17897.98 152
test_prior489.91 8290.74 237
test_prior290.21 25589.33 16290.77 26994.81 22590.41 14988.21 19298.55 158
旧先验290.00 26368.65 35492.71 22896.52 29585.15 240
新几何290.02 262
原ACMM289.34 279
testdata298.03 21780.24 289
segment_acmp92.14 111
testdata188.96 28888.44 182
plane_prior797.71 10888.68 106
plane_prior697.21 13588.23 11786.93 196
plane_prior495.59 191
plane_prior388.43 11590.35 14493.31 203
plane_prior294.56 12091.74 109
plane_prior197.38 128
plane_prior88.12 11893.01 16188.98 16998.06 204
HQP5-MVS84.89 182
HQP-NCC96.36 17991.37 22287.16 20688.81 302
ACMP_Plane96.36 17991.37 22287.16 20688.81 302
BP-MVS86.55 225
HQP4-MVS88.81 30298.61 16898.15 136
HQP2-MVS84.76 217
NP-MVS96.82 15487.10 13593.40 273
MDTV_nov1_ep13_2view42.48 38188.45 29967.22 35883.56 34966.80 32872.86 34294.06 313
ACMMP++_ref98.82 132
ACMMP++99.25 79
Test By Simon90.61 145