This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21383.13 20693.79 13599.19 292.00 9198.84 598.04 3593.64 7299.02 11081.28 27398.54 15496.96 219
DROMVSNet95.44 6995.62 6994.89 10596.93 14387.69 12996.48 3399.14 393.93 5592.77 22194.52 22793.95 7099.49 2293.62 4399.22 8097.51 194
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17696.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS-test93.33 13893.53 14192.71 18895.74 22283.08 20794.55 11298.85 591.02 12789.30 29191.91 29591.79 11899.23 8090.23 14498.41 16495.82 264
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
ANet_high94.83 9596.28 3790.47 26096.65 15473.16 32894.33 11898.74 896.39 2398.09 2598.93 893.37 7998.70 16690.38 13499.68 1899.53 14
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 6898.61 996.10 2698.16 2397.52 5996.90 798.62 17590.30 14099.60 2598.72 90
CS-MVS92.12 18092.62 16290.60 25794.57 26678.12 27892.00 19598.58 1087.75 19690.08 27491.88 29789.79 16699.10 9790.35 13698.60 14994.58 296
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7098.56 1191.84 10196.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13296.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AllTest94.88 9194.51 11096.00 5598.02 8492.17 5195.26 8198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
TestCases96.00 5598.02 8492.17 5198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 11988.05 12292.04 19298.42 1587.63 20096.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
APDe-MVS96.46 3296.64 2295.93 6097.68 10589.38 9696.90 1998.41 1692.52 7797.43 4397.92 4195.11 4299.50 1994.45 1999.30 6498.92 67
9.1494.81 9497.49 11694.11 12598.37 1787.56 20395.38 13196.03 15794.66 5699.08 9990.70 12898.97 109
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 10989.72 8694.05 12798.37 1788.09 18895.06 14995.85 16392.58 10299.10 9790.33 13998.99 10498.62 102
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6496.51 999.40 4394.06 3099.23 7898.85 75
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 14798.32 2087.89 19296.86 6597.38 6795.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6098.32 2093.93 5597.53 3997.56 5688.48 17699.40 4392.91 7999.83 699.68 4
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5695.48 2598.77 15490.11 14999.44 4598.31 124
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9189.83 8593.46 14398.30 2392.37 8097.75 2996.95 9595.14 3999.51 1891.74 10799.28 7298.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 7898.30 2391.40 11895.76 11596.87 10295.26 3599.45 2392.77 8099.21 8199.00 51
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23094.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03096.32 4196.55 2695.62 7797.83 9488.55 11295.77 6498.29 2692.68 7398.03 2697.91 4295.13 4098.95 12293.85 3699.49 3899.36 24
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9093.82 3396.31 4498.25 2795.51 3596.99 6097.05 9195.63 2199.39 4893.31 6298.88 11698.75 84
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 7898.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
Anonymous2023121196.60 2597.13 1295.00 10297.46 11986.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
canonicalmvs94.59 10394.69 10094.30 13595.60 23287.03 14295.59 6998.24 3091.56 11595.21 14392.04 29494.95 5098.66 17291.45 11697.57 23497.20 212
DVP-MVS++.95.93 5396.34 3494.70 11496.54 16386.66 15298.45 498.22 3293.26 6897.54 3797.36 7193.12 8799.38 5493.88 3498.68 14298.04 144
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8498.22 3299.38 5493.44 5599.31 6298.53 109
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7698.22 3292.36 8194.11 17598.07 3392.02 11299.44 2493.38 6097.67 23097.85 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 12999.23 493.45 7599.57 1395.34 1299.89 299.63 9
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7195.13 40
test072698.51 4686.69 15095.34 7798.18 3691.85 9897.63 3297.37 6895.58 22
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14495.15 19986.60 21299.50 1993.43 5796.81 25798.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10695.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS92.35 17492.03 17393.30 17095.81 21883.97 19592.80 15898.17 4087.71 19789.79 28487.56 34291.17 14099.18 8587.97 19597.27 24296.77 227
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7196.92 699.34 6294.31 2399.38 5598.92 67
XVG-OURS94.72 9994.12 12296.50 4898.00 8694.23 1791.48 21898.17 4090.72 13495.30 13596.47 12787.94 18796.98 28591.41 11797.61 23398.30 125
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5298.16 4391.74 10995.34 13396.36 14095.68 1999.44 2494.41 2199.28 7298.97 59
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 7898.14 4493.05 7197.07 5397.18 8487.65 19099.29 7191.72 10899.69 1599.61 11
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17198.13 4590.69 13593.75 18996.25 14898.03 297.02 28492.08 9695.55 28398.45 116
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9294.85 5299.42 2993.49 4898.84 12198.00 149
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9295.40 2793.49 4898.84 12198.00 149
RPMNet90.31 22190.14 22090.81 25291.01 32778.93 26692.52 16698.12 4691.91 9589.10 29296.89 10168.84 31499.41 3690.17 14792.70 33194.08 305
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8298.10 4991.95 9297.63 3297.25 7996.48 1199.35 5993.29 6399.29 6797.95 157
test_241102_TWO98.10 4991.95 9297.54 3797.25 7995.37 2899.35 5993.29 6399.25 7598.49 112
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9296.48 1198.95 122
test_part194.39 11094.55 10793.92 14896.14 19582.86 21095.54 7298.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4591.76 12099.63 694.23 2699.84 399.66 6
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 14896.39 13794.77 5499.42 2993.17 6999.44 4598.58 107
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12098.08 5389.46 15996.61 7696.47 12795.85 1799.12 9390.45 13199.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5098.07 5695.17 3796.82 6796.73 11495.09 4499.43 2892.99 7798.71 13898.50 111
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9588.91 10292.91 15598.07 5693.46 6596.31 8795.97 16090.14 15899.34 6292.11 9499.64 2399.16 36
test117296.79 1596.52 2797.60 998.03 8394.87 1096.07 5398.06 5995.76 3296.89 6396.85 10394.85 5299.42 2993.35 6198.81 12998.53 109
SD-MVS95.19 8195.73 6693.55 16096.62 15788.88 10594.67 10398.05 6091.26 12197.25 5096.40 13395.42 2694.36 34092.72 8499.19 8397.40 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs94.32 11594.80 9592.85 18496.05 20281.44 22592.35 17998.05 6091.53 11695.75 11696.80 10793.35 8098.49 19091.01 12398.32 17998.64 98
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11498.05 6090.45 14296.31 8796.76 11092.91 9498.72 16091.19 11999.42 4798.32 122
baseline94.26 11894.80 9592.64 19196.08 20080.99 23193.69 13898.04 6490.80 13394.89 15696.32 14293.19 8498.48 19491.68 11098.51 15898.43 117
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 10998.03 6590.42 14396.37 8297.35 7495.68 1999.25 7794.44 2099.34 5898.80 79
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10198.03 6590.82 13297.15 5196.85 10396.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 14889.92 8292.72 15998.02 6784.73 24893.65 19395.54 18591.68 12299.22 8188.78 18098.49 16198.26 128
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10690.17 7993.86 13498.02 6787.35 20496.22 9597.99 3894.48 6299.05 10492.73 8399.68 1897.93 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6798.01 6992.08 9095.74 11796.28 14595.22 3799.42 2993.17 6999.06 9498.88 71
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6598.01 6993.34 6796.64 7496.57 12494.99 4999.36 5893.48 5199.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12196.47 12795.37 2899.27 7593.78 3899.14 8898.48 113
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 8797.98 7289.34 16295.63 12196.47 12795.37 2899.27 7591.99 9999.14 8898.48 113
LS3D96.11 4895.83 6296.95 3794.75 25594.20 1897.34 1197.98 7297.31 1195.32 13496.77 10893.08 8999.20 8391.79 10598.16 19897.44 198
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3295.24 3699.65 393.39 5999.84 399.72 2
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13796.57 12495.02 4799.41 3693.63 4299.11 9298.94 62
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12496.61 12294.93 5199.41 3693.78 3899.15 8799.00 51
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17196.49 12694.56 5999.39 4893.57 4499.05 9798.93 63
X-MVStestdata90.70 20788.45 24797.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17126.89 36894.56 5999.39 4893.57 4499.05 9798.93 63
Gipumacopyleft95.31 7795.80 6493.81 15497.99 8990.91 7096.42 3797.95 7896.69 1791.78 24898.85 1291.77 11995.49 32391.72 10899.08 9395.02 286
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7197.88 8288.72 17598.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21391.38 11899.69 1599.42 19
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13697.86 8395.96 3097.48 4197.14 8695.33 3299.44 2490.79 12699.76 1199.38 22
PHI-MVS94.34 11493.80 12795.95 5795.65 22891.67 6294.82 9897.86 8387.86 19393.04 21494.16 23991.58 12498.78 15090.27 14298.96 11197.41 199
testtj94.81 9694.42 11196.01 5497.23 12790.51 7794.77 10097.85 8691.29 12094.92 15595.66 17691.71 12199.40 4388.07 19398.25 18898.11 140
ETV-MVS92.99 15392.74 15893.72 15595.86 21586.30 16392.33 18097.84 8791.70 11292.81 21986.17 35292.22 10899.19 8488.03 19497.73 22495.66 272
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10488.59 11092.26 18497.84 8794.91 3896.80 6895.78 17190.42 15399.41 3691.60 11299.58 3199.29 28
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15090.79 7396.30 4697.82 8996.13 2594.74 16297.23 8191.33 13099.16 8693.25 6698.30 18298.46 115
HQP_MVS94.26 11893.93 12495.23 9597.71 10188.12 12094.56 11097.81 9091.74 10993.31 20095.59 17886.93 20498.95 12289.26 16998.51 15898.60 105
plane_prior597.81 9098.95 12289.26 16998.51 15898.60 105
DU-MVS95.28 7895.12 8795.75 7397.75 9788.59 11092.58 16497.81 9093.99 5296.80 6895.90 16190.10 16299.41 3691.60 11299.58 3199.26 29
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12290.88 7194.59 10697.81 9089.22 16795.46 12996.17 15393.42 7899.34 6289.30 16598.87 11997.56 191
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 8897.79 9486.48 21597.42 4597.51 6194.47 6399.29 7193.55 4699.29 6798.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5197.78 9592.73 7293.48 19696.72 11594.23 6699.42 2991.99 9999.29 6799.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++93.25 14593.88 12591.37 23096.34 17882.81 21193.11 14997.74 9689.37 16194.08 17795.29 19790.40 15696.35 30790.35 13698.25 18894.96 287
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12796.68 11794.50 6199.42 2993.10 7299.26 7498.99 53
ETH3 D test640091.91 18491.25 19593.89 15096.59 15884.41 18692.10 18997.72 9878.52 30091.82 24793.78 25488.70 17499.13 9183.61 25098.39 16898.14 136
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 16789.69 8792.91 15597.68 9978.02 30492.79 22094.10 24090.85 14397.96 23484.76 24298.16 19896.54 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6297.66 10089.21 16893.28 20395.46 18888.89 17398.98 11589.80 15698.82 12797.80 174
DP-MVS95.62 6395.84 6194.97 10397.16 13288.62 10994.54 11497.64 10196.94 1596.58 7797.32 7793.07 9098.72 16090.45 13198.84 12197.57 189
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 13897.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
MTGPAbinary97.62 102
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6197.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
anonymousdsp96.74 1796.42 2997.68 798.00 8694.03 2596.97 1797.61 10587.68 19998.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20298.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9683.15 20594.58 10897.58 10793.39 6697.05 5698.04 3593.25 8298.51 18989.75 15999.59 2799.08 45
v1094.68 10195.27 8292.90 18296.57 16080.15 23894.65 10597.57 10890.68 13697.43 4398.00 3788.18 18099.15 8794.84 1599.55 3499.41 20
CSCG94.69 10094.75 9794.52 12597.55 11387.87 12695.01 9397.57 10892.68 7396.20 9793.44 26191.92 11698.78 15089.11 17399.24 7796.92 220
ZD-MVS97.23 12790.32 7897.54 11084.40 25094.78 16095.79 16892.76 9999.39 4888.72 18398.40 165
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
Effi-MVS+92.79 16092.74 15892.94 18095.10 24583.30 20294.00 12997.53 11291.36 11989.35 29090.65 31894.01 6998.66 17287.40 20595.30 29196.88 223
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 5991.98 11599.63 693.08 7499.81 999.70 3
RPSCF95.58 6594.89 9297.62 897.58 11196.30 495.97 5797.53 11292.42 7893.41 19797.78 4691.21 13697.77 25191.06 12097.06 24798.80 79
diffmvs91.74 18691.93 17791.15 24093.06 29478.17 27788.77 28997.51 11586.28 21992.42 23193.96 24788.04 18497.46 26790.69 12996.67 26297.82 172
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10083.95 19692.14 18897.46 11678.85 29992.35 23594.98 20984.16 23099.08 9986.36 22296.77 25995.79 266
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 20992.96 4489.48 27297.46 11685.14 23896.23 9495.42 19193.19 8498.08 22390.37 13598.76 13597.38 205
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21198.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
OMC-MVS94.22 12093.69 13295.81 6797.25 12691.27 6492.27 18397.40 11987.10 21094.56 16695.42 19193.74 7198.11 22286.62 21698.85 12098.06 141
v124093.29 14093.71 13192.06 21396.01 20777.89 28291.81 21197.37 12085.12 24096.69 7296.40 13386.67 21099.07 10394.51 1898.76 13599.22 32
NR-MVSNet95.28 7895.28 8195.26 9397.75 9787.21 13795.08 8997.37 12093.92 5797.65 3195.90 16190.10 16299.33 6790.11 14999.66 2199.26 29
MVSFormer92.18 17992.23 16992.04 21494.74 25780.06 24297.15 1397.37 12088.98 16988.83 29592.79 27677.02 28799.60 896.41 496.75 26096.46 238
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 16998.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13186.87 14691.10 22797.37 12084.92 24592.08 24394.08 24188.59 17598.20 21483.50 25198.14 20095.73 268
test_prior393.29 14092.85 15494.61 11795.95 21087.23 13590.21 25097.36 12589.33 16390.77 26194.81 21690.41 15498.68 17088.21 18798.55 15197.93 159
test_prior94.61 11795.95 21087.23 13597.36 12598.68 17097.93 159
QAPM92.88 15792.77 15693.22 17295.82 21683.31 20196.45 3497.35 12783.91 25393.75 18996.77 10889.25 17198.88 12984.56 24497.02 24997.49 195
GeoE94.55 10594.68 10294.15 13897.23 12785.11 18094.14 12497.34 12888.71 17695.26 13895.50 18694.65 5799.12 9390.94 12498.40 16598.23 129
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16397.33 12990.05 14896.77 7096.85 10395.04 4598.56 18492.77 8099.06 9498.70 93
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS97.31 13097.73 224
HQP-MVS92.09 18191.49 18993.88 15196.36 17484.89 18291.37 21997.31 13087.16 20788.81 29793.40 26284.76 22698.60 17886.55 21897.73 22498.14 136
PCF-MVS84.52 1789.12 24487.71 26393.34 16796.06 20185.84 17286.58 32697.31 13068.46 34993.61 19493.89 25087.51 19398.52 18867.85 35398.11 20495.66 272
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t90.51 21189.80 22592.63 19398.00 8682.24 21593.40 14597.29 13365.84 35689.40 28994.80 21986.99 20298.75 15583.88 24998.61 14796.89 222
CLD-MVS91.82 18591.41 19193.04 17496.37 17283.65 19986.82 31897.29 13384.65 24992.27 23989.67 32892.20 10997.85 24483.95 24899.47 3997.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23587.06 14096.63 2597.28 13591.82 10494.34 17397.41 6590.60 15198.65 17492.47 8998.11 20497.70 181
DELS-MVS92.05 18292.16 17091.72 22194.44 26880.13 24087.62 29997.25 13687.34 20592.22 24093.18 26889.54 16998.73 15989.67 16098.20 19696.30 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
v192192093.26 14393.61 13592.19 20696.04 20678.31 27591.88 20497.24 13785.17 23796.19 9996.19 15086.76 20999.05 10494.18 2898.84 12199.22 32
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 14897.24 13796.88 1697.69 3097.77 4894.12 6899.13 9191.54 11599.29 6797.88 165
v119293.49 13493.78 12892.62 19496.16 19379.62 25491.83 21097.22 13986.07 22396.10 10396.38 13887.22 19799.02 11094.14 2998.88 11699.22 32
F-COLMAP92.28 17691.06 20095.95 5797.52 11491.90 5793.53 14197.18 14083.98 25288.70 30394.04 24288.41 17898.55 18680.17 28495.99 27497.39 203
v894.65 10295.29 8092.74 18796.65 15479.77 25294.59 10697.17 14191.86 9797.47 4297.93 4088.16 18199.08 9994.32 2299.47 3999.38 22
v14419293.20 14893.54 13992.16 21096.05 20278.26 27691.95 19797.14 14284.98 24495.96 10696.11 15487.08 20199.04 10793.79 3798.84 12199.17 35
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19587.90 12593.36 14697.14 14285.53 23293.90 18695.45 18991.30 13298.59 18089.51 16298.62 14697.31 208
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS92.91 15592.51 16594.10 14097.52 11485.72 17491.36 22297.13 14480.33 28192.91 21894.24 23591.23 13598.72 16089.99 15397.93 21797.86 167
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 10779.49 25794.86 9797.12 14589.59 15896.87 6497.65 5290.40 15698.34 20389.08 17499.35 5798.75 84
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7597.12 14591.84 10197.28 4898.46 2595.30 3497.71 25690.17 14799.42 4798.99 53
save fliter97.46 11988.05 12292.04 19297.08 14787.63 200
CDPH-MVS92.67 16591.83 17995.18 9796.94 14188.46 11590.70 23697.07 14877.38 30692.34 23795.08 20492.67 10198.88 12985.74 22798.57 15098.20 133
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 26784.10 19395.70 6597.03 14982.44 26991.14 25896.42 13188.47 17798.38 19985.95 22697.47 23795.55 276
原ACMM192.87 18396.91 14484.22 19097.01 15076.84 31189.64 28794.46 22888.00 18598.70 16681.53 27198.01 21395.70 270
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8497.00 15191.85 9897.40 4697.35 7495.58 2299.34 6293.44 5599.31 6298.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet92.38 17391.99 17593.52 16493.82 28483.46 20091.14 22597.00 15189.81 15386.47 32494.04 24287.90 18899.21 8289.50 16398.27 18497.90 163
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9293.58 3794.09 12696.99 15391.05 12692.40 23295.22 19891.03 14299.25 7792.11 9498.69 14197.90 163
v114493.50 13393.81 12692.57 19696.28 18379.61 25591.86 20996.96 15486.95 21295.91 11096.32 14287.65 19098.96 12093.51 4798.88 11699.13 39
MVS_Test92.57 17093.29 14590.40 26393.53 28675.85 30892.52 16696.96 15488.73 17492.35 23596.70 11690.77 14498.37 20292.53 8895.49 28596.99 218
PVSNet_BlendedMVS90.35 21889.96 22291.54 22794.81 25278.80 27190.14 25496.93 15679.43 28988.68 30495.06 20586.27 21598.15 22080.27 28198.04 21097.68 183
PVSNet_Blended88.74 25488.16 25890.46 26294.81 25278.80 27186.64 32296.93 15674.67 31988.68 30489.18 33486.27 21598.15 22080.27 28196.00 27394.44 300
TEST996.45 17089.46 9190.60 23896.92 15879.09 29590.49 26694.39 23191.31 13198.88 129
train_agg92.71 16491.83 17995.35 8696.45 17089.46 9190.60 23896.92 15879.37 29090.49 26694.39 23191.20 13798.88 12988.66 18498.43 16397.72 180
NCCC94.08 12493.54 13995.70 7696.49 16889.90 8492.39 17696.91 16090.64 13792.33 23894.60 22490.58 15298.96 12090.21 14697.70 22898.23 129
test_896.37 17289.14 9890.51 24196.89 16179.37 29090.42 26894.36 23391.20 13798.82 139
agg_prior192.60 16791.76 18295.10 10096.20 18988.89 10390.37 24596.88 16279.67 28790.21 27194.41 22991.30 13298.78 15088.46 18698.37 17597.64 186
agg_prior96.20 18988.89 10396.88 16290.21 27198.78 150
MSC_two_6792asdad95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
No_MVS95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22199.60 2599.10 44
IU-MVS98.51 4686.66 15296.83 16772.74 33195.83 11393.00 7699.29 6798.64 98
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23594.75 16197.12 8791.85 11799.40 4393.45 5398.33 17798.62 102
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS94.58 10494.29 11695.46 8496.94 14189.35 9791.81 21196.80 16989.66 15593.90 18695.44 19092.80 9898.72 16092.74 8298.52 15698.32 122
cascas87.02 28886.28 28989.25 28691.56 32276.45 30284.33 34196.78 17071.01 33986.89 32385.91 35381.35 25596.94 28683.09 25595.60 28294.35 302
IterMVS-LS93.78 12994.28 11792.27 20396.27 18479.21 26491.87 20596.78 17091.77 10796.57 7897.07 8987.15 19998.74 15891.99 9999.03 10398.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052995.50 6795.83 6294.50 12697.33 12585.93 17095.19 8696.77 17296.64 1997.61 3598.05 3493.23 8398.79 14688.60 18599.04 10298.78 81
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9096.76 17393.97 5497.77 2898.57 1995.72 1897.90 23688.89 17899.23 7899.08 45
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9386.50 15492.00 19596.74 17488.16 18796.93 6297.61 5493.04 9197.90 23691.60 11298.12 20398.03 147
1112_ss88.42 25887.41 26791.45 22896.69 15380.99 23189.72 26796.72 17573.37 32787.00 32290.69 31677.38 28398.20 21481.38 27293.72 31895.15 282
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19096.68 17693.82 5896.29 8998.56 2090.10 16297.75 25490.10 15199.66 2199.24 31
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31376.84 29886.91 31496.67 17785.21 23694.41 16993.92 24879.53 26798.26 21089.76 15897.02 24998.06 141
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26388.25 11792.05 19196.65 17889.62 15690.08 27491.23 30692.56 10398.60 17886.30 22396.27 26996.90 221
test1196.65 178
RRT_test8_iter0588.21 26188.17 25688.33 30191.62 32066.82 35691.73 21496.60 18086.34 21894.14 17495.38 19647.72 36999.11 9591.78 10698.26 18599.06 47
LF4IMVS92.72 16392.02 17494.84 10895.65 22891.99 5592.92 15496.60 18085.08 24292.44 23093.62 25686.80 20896.35 30786.81 21198.25 18896.18 249
GBi-Net93.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
test193.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
FMVSNet194.84 9495.13 8693.97 14497.60 11084.29 18795.99 5496.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8698.65 94
ITE_SJBPF95.95 5797.34 12493.36 4196.55 18591.93 9494.82 15895.39 19491.99 11497.08 28285.53 22997.96 21597.41 199
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23682.53 21389.25 28196.52 18685.00 24389.91 27988.55 33892.94 9298.84 13784.72 24395.44 28796.22 247
V4293.43 13693.58 13692.97 17795.34 24181.22 22892.67 16296.49 18787.25 20696.20 9796.37 13987.32 19698.85 13692.39 9398.21 19498.85 75
PLCcopyleft85.34 1590.40 21588.92 23994.85 10796.53 16690.02 8091.58 21696.48 18880.16 28286.14 32692.18 29085.73 22098.25 21176.87 31394.61 30696.30 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l91.32 19891.42 19091.00 24592.29 30676.79 29987.52 30596.42 18985.76 22994.72 16493.89 25082.73 24198.16 21990.93 12598.55 15198.04 144
Regformer-294.86 9294.55 10795.77 7192.83 29989.98 8191.87 20596.40 19094.38 4796.19 9995.04 20692.47 10799.04 10793.49 4898.31 18098.28 126
USDC89.02 24589.08 23588.84 29195.07 24674.50 31988.97 28496.39 19173.21 32893.27 20496.28 14582.16 24896.39 30477.55 30798.80 13195.62 275
ambc92.98 17696.88 14583.01 20995.92 5996.38 19296.41 8097.48 6288.26 17997.80 24789.96 15498.93 11398.12 139
PAPM_NR91.03 20190.81 20591.68 22396.73 15281.10 23093.72 13796.35 19388.19 18688.77 30192.12 29385.09 22597.25 27782.40 26393.90 31596.68 230
v2v48293.29 14093.63 13492.29 20296.35 17778.82 26991.77 21396.28 19488.45 18195.70 12096.26 14786.02 21898.90 12693.02 7598.81 12999.14 38
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23386.36 16192.24 18696.27 19588.88 17389.90 28092.69 27991.65 12398.32 20477.38 31097.64 23192.72 334
Test_1112_low_res87.50 27686.58 28290.25 26796.80 15177.75 28487.53 30496.25 19669.73 34586.47 32493.61 25775.67 29697.88 23879.95 28693.20 32395.11 284
test1294.43 13295.95 21086.75 14896.24 19789.76 28589.79 16698.79 14697.95 21697.75 179
PAPR87.65 27286.77 28090.27 26692.85 29877.38 28988.56 29496.23 19876.82 31284.98 33289.75 32786.08 21797.16 28072.33 33793.35 32196.26 246
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15486.96 14589.30 27896.23 19888.36 18493.57 19594.60 22493.45 7597.77 25190.23 14498.38 17098.03 147
XXY-MVS92.58 16893.16 15090.84 25197.75 9779.84 24891.87 20596.22 20085.94 22595.53 12697.68 5092.69 10094.48 33683.21 25497.51 23598.21 132
MSDG90.82 20390.67 20991.26 23494.16 27383.08 20786.63 32396.19 20190.60 13991.94 24591.89 29689.16 17295.75 31880.96 27994.51 30794.95 288
miper_ehance_all_eth90.48 21290.42 21490.69 25491.62 32076.57 30186.83 31796.18 20283.38 25594.06 17992.66 28182.20 24798.04 22589.79 15797.02 24997.45 197
TinyColmap92.00 18392.76 15789.71 27795.62 23177.02 29390.72 23596.17 20387.70 19895.26 13896.29 14492.54 10496.45 30281.77 26898.77 13495.66 272
DPM-MVS89.35 24088.40 24892.18 20996.13 19884.20 19186.96 31396.15 20475.40 31787.36 31991.55 30483.30 23498.01 22982.17 26696.62 26394.32 303
HyFIR lowres test87.19 28485.51 29492.24 20497.12 13680.51 23585.03 33396.06 20566.11 35591.66 24992.98 27270.12 31299.14 8975.29 32295.23 29397.07 213
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
Regformer-494.90 8994.67 10395.59 7892.78 30189.02 10092.39 17695.91 20994.50 4396.41 8095.56 18392.10 11199.01 11294.23 2698.14 20098.74 87
UnsupCasMVSNet_eth90.33 21990.34 21590.28 26594.64 26480.24 23689.69 26895.88 21085.77 22893.94 18595.69 17481.99 25092.98 35184.21 24791.30 34297.62 187
CANet_DTU89.85 23489.17 23391.87 21692.20 30980.02 24590.79 23395.87 21186.02 22482.53 34891.77 29980.01 26498.57 18385.66 22897.70 22897.01 217
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7295.85 21296.47 2193.40 19997.46 6395.31 3395.47 32486.18 22598.78 13389.11 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-194.55 10594.33 11595.19 9692.83 29988.54 11391.87 20595.84 21393.99 5295.95 10795.04 20692.00 11398.79 14693.14 7198.31 18098.23 129
alignmvs93.26 14392.85 15494.50 12695.70 22487.45 13193.45 14495.76 21491.58 11495.25 14092.42 28881.96 25198.72 16091.61 11197.87 22097.33 207
无先验89.94 26095.75 21570.81 34198.59 18081.17 27694.81 289
WR-MVS93.49 13493.72 13092.80 18697.57 11280.03 24490.14 25495.68 21693.70 6096.62 7595.39 19487.21 19899.04 10787.50 20299.64 2399.33 25
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 21795.62 21791.84 10195.74 11797.10 8889.31 17098.32 20485.07 23899.06 9498.93 63
Anonymous2024052192.86 15993.57 13790.74 25396.57 16075.50 31294.15 12395.60 21889.38 16095.90 11197.90 4480.39 26397.96 23492.60 8799.68 1898.75 84
xiu_mvs_v2_base89.00 24789.19 23288.46 29994.86 25074.63 31686.97 31295.60 21880.88 27787.83 31488.62 33791.04 14198.81 14482.51 26294.38 30891.93 340
PS-MVSNAJ88.86 25188.99 23888.48 29894.88 24874.71 31486.69 32195.60 21880.88 27787.83 31487.37 34590.77 14498.82 13982.52 26194.37 30991.93 340
CHOSEN 1792x268887.19 28485.92 29291.00 24597.13 13579.41 25884.51 33995.60 21864.14 35990.07 27694.81 21678.26 27797.14 28173.34 33195.38 29096.46 238
miper_enhance_ethall88.42 25887.87 26190.07 27288.67 35375.52 31185.10 33295.59 22275.68 31392.49 22889.45 33178.96 26997.88 23887.86 19897.02 24996.81 225
MVP-Stereo90.07 22888.92 23993.54 16296.31 18186.49 15590.93 23095.59 22279.80 28391.48 25095.59 17880.79 26097.39 27378.57 30191.19 34396.76 228
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cdsmvs_eth3d_5k23.35 33731.13 3400.00 3550.00 3780.00 3790.00 36695.58 2240.00 3730.00 37491.15 30793.43 770.00 3740.00 3720.00 3720.00 370
CNLPA91.72 18791.20 19693.26 17196.17 19291.02 6791.14 22595.55 22590.16 14790.87 26093.56 25986.31 21494.40 33979.92 29097.12 24694.37 301
FMVSNet292.78 16192.73 16092.95 17995.40 23781.98 21794.18 12295.53 22688.63 17796.05 10497.37 6881.31 25698.81 14487.38 20698.67 14498.06 141
ab-mvs92.40 17292.62 16291.74 22097.02 13781.65 22195.84 6295.50 22786.95 21292.95 21797.56 5690.70 14997.50 26479.63 29197.43 23896.06 253
MVS_111021_LR93.66 13193.28 14794.80 10996.25 18790.95 6990.21 25095.43 22887.91 19093.74 19194.40 23092.88 9696.38 30590.39 13398.28 18397.07 213
tfpnnormal94.27 11794.87 9392.48 20097.71 10180.88 23394.55 11295.41 22993.70 6096.67 7397.72 4991.40 12898.18 21787.45 20399.18 8598.36 120
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 25796.67 394.00 12995.41 22989.94 14991.93 24692.13 29290.12 15998.97 11987.68 20097.48 23697.67 184
mvs-test193.07 15191.80 18196.89 3994.74 25795.83 692.17 18795.41 22989.94 14989.85 28190.59 31990.12 15998.88 12987.68 20095.66 28195.97 256
cl____90.65 20990.56 21190.91 24991.85 31576.98 29686.75 31995.36 23285.53 23294.06 17994.89 21377.36 28597.98 23390.27 14298.98 10597.76 177
DIV-MVS_self_test90.65 20990.56 21190.91 24991.85 31576.99 29586.75 31995.36 23285.52 23494.06 17994.89 21377.37 28497.99 23290.28 14198.97 10997.76 177
testgi90.38 21691.34 19387.50 31097.49 11671.54 33789.43 27395.16 23488.38 18394.54 16794.68 22392.88 9693.09 35071.60 34297.85 22197.88 165
v14892.87 15893.29 14591.62 22496.25 18777.72 28591.28 22395.05 23589.69 15495.93 10996.04 15687.34 19598.38 19990.05 15297.99 21498.78 81
miper_lstm_enhance89.90 23389.80 22590.19 27191.37 32477.50 28783.82 34695.00 23684.84 24693.05 21394.96 21076.53 29495.20 33289.96 15498.67 14497.86 167
VNet92.67 16592.96 15191.79 21896.27 18480.15 23891.95 19794.98 23792.19 8894.52 16896.07 15587.43 19497.39 27384.83 24098.38 17097.83 170
FMVSNet390.78 20590.32 21692.16 21093.03 29679.92 24792.54 16594.95 23886.17 22295.10 14596.01 15869.97 31398.75 15586.74 21298.38 17097.82 172
BH-untuned90.68 20890.90 20190.05 27495.98 20879.57 25690.04 25794.94 23987.91 19094.07 17893.00 27087.76 18997.78 25079.19 29795.17 29492.80 332
RRT_MVS91.36 19690.05 22195.29 9289.21 34888.15 11992.51 17094.89 24086.73 21495.54 12595.68 17561.82 34899.30 7094.91 1399.13 9198.43 117
D2MVS89.93 23289.60 23090.92 24794.03 27878.40 27488.69 29194.85 24178.96 29793.08 21195.09 20374.57 29896.94 28688.19 18998.96 11197.41 199
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5894.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
旧先验196.20 18984.17 19294.82 24395.57 18289.57 16897.89 21996.32 243
API-MVS91.52 19291.61 18491.26 23494.16 27386.26 16594.66 10494.82 24391.17 12492.13 24291.08 30990.03 16597.06 28379.09 29897.35 24190.45 349
FMVSNet587.82 26886.56 28391.62 22492.31 30579.81 25193.49 14294.81 24583.26 25691.36 25296.93 9852.77 36597.49 26676.07 31898.03 21197.55 192
MAR-MVS90.32 22088.87 24294.66 11694.82 25191.85 5894.22 12194.75 24680.91 27687.52 31888.07 34186.63 21197.87 24176.67 31496.21 27094.25 304
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous90.37 21791.30 19487.58 30992.17 31068.00 35089.84 26594.73 24783.82 25493.22 20897.40 6687.54 19297.40 27287.94 19695.05 29697.34 206
Regformer-394.28 11694.23 12194.46 13092.78 30186.28 16492.39 17694.70 24893.69 6395.97 10595.56 18391.34 12998.48 19493.45 5398.14 20098.62 102
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30485.87 17192.42 17494.69 24993.67 6496.13 10195.84 16691.20 13798.86 13493.78 3898.23 19199.03 49
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30385.98 16992.44 17294.69 24993.70 6096.12 10295.81 16791.24 13498.86 13493.76 4198.22 19398.98 58
EI-MVSNet92.99 15393.26 14992.19 20692.12 31179.21 26492.32 18194.67 25191.77 10795.24 14195.85 16387.14 20098.49 19091.99 9998.26 18598.86 72
MVSTER89.32 24188.75 24391.03 24290.10 33876.62 30090.85 23194.67 25182.27 27095.24 14195.79 16861.09 35198.49 19090.49 13098.26 18597.97 156
新几何193.17 17397.16 13287.29 13494.43 25367.95 35091.29 25394.94 21186.97 20398.23 21281.06 27897.75 22393.98 311
112190.26 22289.23 23193.34 16797.15 13487.40 13291.94 19994.39 25467.88 35191.02 25994.91 21286.91 20698.59 18081.17 27697.71 22794.02 310
CMPMVSbinary68.83 2287.28 28085.67 29392.09 21288.77 35285.42 17790.31 24894.38 25570.02 34488.00 31293.30 26473.78 30294.03 34475.96 32096.54 26496.83 224
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14082.88 23899.35 5988.19 18999.52 3798.96 60
testdata91.03 24296.87 14682.01 21694.28 25771.55 33592.46 22995.42 19185.65 22297.38 27582.64 25997.27 24293.70 318
UGNet93.08 14992.50 16694.79 11093.87 28287.99 12495.07 9094.26 25890.64 13787.33 32097.67 5186.89 20798.49 19088.10 19298.71 13897.91 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS84.98 29984.30 29987.01 31391.03 32677.69 28691.94 19994.16 25959.36 36484.23 33887.50 34485.66 22196.80 29271.79 33993.05 32886.54 356
131486.46 29186.33 28886.87 31591.65 31974.54 31791.94 19994.10 26074.28 32184.78 33487.33 34683.03 23795.00 33378.72 29991.16 34491.06 346
cl2289.02 24588.50 24690.59 25889.76 34076.45 30286.62 32494.03 26182.98 26392.65 22492.49 28272.05 30897.53 26288.93 17597.02 24997.78 175
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15396.19 15082.07 24999.57 1387.28 20798.89 11498.65 94
UnsupCasMVSNet_bld88.50 25788.03 25989.90 27595.52 23478.88 26887.39 30694.02 26379.32 29393.06 21294.02 24480.72 26194.27 34175.16 32393.08 32796.54 231
h-mvs3392.89 15691.99 17595.58 7996.97 13990.55 7593.94 13294.01 26489.23 16593.95 18396.19 15076.88 29099.14 8991.02 12195.71 28097.04 216
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22187.86 12790.83 23293.98 26578.23 30394.02 18296.22 14982.62 24496.83 29186.57 21798.33 17797.29 209
BH-RMVSNet90.47 21390.44 21390.56 25995.21 24478.65 27389.15 28293.94 26688.21 18592.74 22294.22 23686.38 21397.88 23878.67 30095.39 28995.14 283
test22296.95 14085.27 17988.83 28793.61 26765.09 35890.74 26394.85 21584.62 22897.36 24093.91 312
CDS-MVSNet89.55 23788.22 25593.53 16395.37 24086.49 15589.26 27993.59 26879.76 28591.15 25792.31 28977.12 28698.38 19977.51 30897.92 21895.71 269
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
new-patchmatchnet88.97 24890.79 20683.50 33794.28 27255.83 37185.34 33193.56 26986.18 22195.47 12795.73 17383.10 23696.51 30085.40 23098.06 20898.16 134
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28179.22 26387.56 30293.51 27091.53 11695.37 13296.62 12178.65 27298.90 12691.89 10494.95 29797.70 181
Anonymous2023120688.77 25388.29 25190.20 27096.31 18178.81 27089.56 27193.49 27174.26 32292.38 23395.58 18182.21 24695.43 32672.07 33898.75 13796.34 242
OpenMVS_ROBcopyleft85.12 1689.52 23989.05 23690.92 24794.58 26581.21 22991.10 22793.41 27277.03 31093.41 19793.99 24683.23 23597.80 24779.93 28894.80 30193.74 317
VDD-MVS94.37 11194.37 11394.40 13397.49 11686.07 16893.97 13193.28 27394.49 4496.24 9397.78 4687.99 18698.79 14688.92 17699.14 8898.34 121
jason89.17 24388.32 24991.70 22295.73 22380.07 24188.10 29693.22 27471.98 33490.09 27392.79 27678.53 27598.56 18487.43 20497.06 24796.46 238
jason: jason.
PAPM81.91 31880.11 32887.31 31293.87 28272.32 33584.02 34493.22 27469.47 34676.13 36589.84 32272.15 30797.23 27853.27 36689.02 34992.37 337
BH-w/o87.21 28287.02 27687.79 30894.77 25477.27 29187.90 29793.21 27681.74 27489.99 27888.39 34083.47 23296.93 28871.29 34392.43 33589.15 350
ppachtmachnet_test88.61 25688.64 24488.50 29791.76 31770.99 34084.59 33892.98 27779.30 29492.38 23393.53 26079.57 26697.45 26886.50 22097.17 24597.07 213
IterMVS90.18 22390.16 21790.21 26993.15 29275.98 30787.56 30292.97 27886.43 21794.09 17696.40 13378.32 27697.43 26987.87 19794.69 30497.23 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test20.0390.80 20490.85 20490.63 25695.63 23079.24 26289.81 26692.87 27989.90 15194.39 17096.40 13385.77 21995.27 33173.86 32999.05 9797.39 203
CR-MVSNet87.89 26587.12 27490.22 26891.01 32778.93 26692.52 16692.81 28073.08 32989.10 29296.93 9867.11 31997.64 25988.80 17992.70 33194.08 305
Patchmtry90.11 22589.92 22390.66 25590.35 33677.00 29492.96 15392.81 28090.25 14694.74 16296.93 9867.11 31997.52 26385.17 23198.98 10597.46 196
GA-MVS87.70 26986.82 27890.31 26493.27 28977.22 29284.72 33792.79 28285.11 24189.82 28290.07 32066.80 32297.76 25384.56 24494.27 31295.96 257
sss87.23 28186.82 27888.46 29993.96 27977.94 27986.84 31692.78 28377.59 30587.61 31791.83 29878.75 27191.92 35477.84 30494.20 31395.52 277
Patchmatch-RL test88.81 25288.52 24589.69 27895.33 24279.94 24686.22 32792.71 28478.46 30195.80 11494.18 23866.25 32795.33 32989.22 17198.53 15593.78 315
test_yl90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
DCV-MVSNet90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
CL-MVSNet_self_test90.04 23089.90 22490.47 26095.24 24377.81 28386.60 32592.62 28785.64 23193.25 20793.92 24883.84 23196.06 31479.93 28898.03 21197.53 193
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21690.87 7290.97 22992.61 28888.04 18994.61 16593.79 25388.08 18297.81 24689.41 16498.39 16896.50 236
TAMVS90.16 22489.05 23693.49 16596.49 16886.37 16090.34 24792.55 28980.84 27992.99 21594.57 22681.94 25298.20 21473.51 33098.21 19495.90 261
MS-PatchMatch88.05 26487.75 26288.95 28893.28 28877.93 28087.88 29892.49 29075.42 31692.57 22793.59 25880.44 26294.24 34381.28 27392.75 33094.69 295
MG-MVS89.54 23889.80 22588.76 29294.88 24872.47 33489.60 26992.44 29185.82 22789.48 28895.98 15982.85 23997.74 25581.87 26795.27 29296.08 252
MVS_030490.96 20290.15 21993.37 16693.17 29187.06 14093.62 14092.43 29289.60 15782.25 34995.50 18682.56 24597.83 24584.41 24697.83 22295.22 280
lupinMVS88.34 26087.31 26891.45 22894.74 25780.06 24287.23 30792.27 29371.10 33888.83 29591.15 30777.02 28798.53 18786.67 21596.75 26095.76 267
pmmvs587.87 26687.14 27390.07 27293.26 29076.97 29788.89 28692.18 29473.71 32688.36 30793.89 25076.86 29296.73 29480.32 28096.81 25796.51 233
PM-MVS93.33 13892.67 16195.33 8896.58 15994.06 2092.26 18492.18 29485.92 22696.22 9596.61 12285.64 22395.99 31690.35 13698.23 19195.93 258
pmmvs488.95 24987.70 26492.70 18994.30 27185.60 17587.22 30892.16 29674.62 32089.75 28694.19 23777.97 27996.41 30382.71 25896.36 26896.09 251
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26280.16 23785.49 33092.14 29790.41 14494.93 15495.79 16885.10 22496.93 28885.15 23394.19 31497.57 189
door-mid92.13 298
WTY-MVS86.93 28986.50 28788.24 30294.96 24774.64 31587.19 30992.07 29978.29 30288.32 30891.59 30378.06 27894.27 34174.88 32493.15 32595.80 265
AUN-MVS90.05 22988.30 25095.32 9196.09 19990.52 7692.42 17492.05 30082.08 27288.45 30692.86 27365.76 32998.69 16888.91 17796.07 27196.75 229
hse-mvs292.24 17891.20 19695.38 8596.16 19390.65 7492.52 16692.01 30189.23 16593.95 18392.99 27176.88 29098.69 16891.02 12196.03 27296.81 225
TR-MVS87.70 26987.17 27289.27 28594.11 27579.26 26188.69 29191.86 30281.94 27390.69 26489.79 32582.82 24097.42 27072.65 33691.98 33991.14 345
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7491.78 30397.19 1296.32 8698.60 1884.24 22998.75 15587.09 20998.83 12698.81 78
Anonymous20240521192.58 16892.50 16692.83 18596.55 16283.22 20392.43 17391.64 30494.10 5195.59 12396.64 12081.88 25397.50 26485.12 23598.52 15697.77 176
HY-MVS82.50 1886.81 29085.93 29189.47 27993.63 28577.93 28094.02 12891.58 30575.68 31383.64 34193.64 25577.40 28297.42 27071.70 34192.07 33893.05 329
door91.26 306
PatchMatch-RL89.18 24288.02 26092.64 19195.90 21492.87 4688.67 29391.06 30780.34 28090.03 27791.67 30183.34 23394.42 33876.35 31794.84 30090.64 348
ADS-MVSNet284.01 30482.20 31289.41 28189.04 34976.37 30487.57 30090.98 30872.71 33284.46 33592.45 28468.08 31596.48 30170.58 34883.97 35795.38 278
KD-MVS_2432*160082.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
miper_refine_blended82.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
wuyk23d87.83 26790.79 20678.96 34690.46 33588.63 10892.72 15990.67 31191.65 11398.68 1197.64 5396.06 1677.53 36759.84 36299.41 5270.73 365
our_test_387.55 27487.59 26587.44 31191.76 31770.48 34183.83 34590.55 31279.79 28492.06 24492.17 29178.63 27495.63 31984.77 24194.73 30296.22 247
test_method50.44 33548.94 33854.93 35039.68 37412.38 37628.59 36590.09 3136.82 36941.10 37178.41 36354.41 36170.69 36950.12 36751.26 36981.72 363
EU-MVSNet87.39 27886.71 28189.44 28093.40 28776.11 30594.93 9690.00 31457.17 36595.71 11997.37 6864.77 33597.68 25892.67 8594.37 30994.52 298
CHOSEN 280x42080.04 32977.97 33586.23 32190.13 33774.53 31872.87 36089.59 31566.38 35476.29 36485.32 35556.96 35795.36 32769.49 35194.72 30388.79 353
MDA-MVSNet_test_wron88.16 26388.23 25487.93 30592.22 30773.71 32480.71 35588.84 31682.52 26794.88 15795.14 20082.70 24293.61 34683.28 25393.80 31796.46 238
YYNet188.17 26288.24 25387.93 30592.21 30873.62 32580.75 35488.77 31782.51 26894.99 15295.11 20282.70 24293.70 34583.33 25293.83 31696.48 237
PVSNet76.22 2082.89 31082.37 31084.48 33293.96 27964.38 36478.60 35788.61 31871.50 33684.43 33786.36 35174.27 29994.60 33569.87 35093.69 31994.46 299
MIMVSNet87.13 28686.54 28488.89 29096.05 20276.11 30594.39 11688.51 31981.37 27588.27 30996.75 11172.38 30695.52 32165.71 35895.47 28695.03 285
tpmvs84.22 30383.97 30284.94 32887.09 36065.18 35991.21 22488.35 32082.87 26485.21 32990.96 31165.24 33396.75 29379.60 29485.25 35692.90 331
EPNet_dtu85.63 29584.37 29889.40 28286.30 36374.33 32191.64 21588.26 32184.84 24672.96 36789.85 32171.27 31197.69 25776.60 31597.62 23296.18 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat180.61 32779.46 33084.07 33588.78 35165.06 36289.26 27988.23 32262.27 36281.90 35489.66 32962.70 34695.29 33071.72 34080.60 36491.86 342
baseline187.62 27387.31 26888.54 29694.71 26174.27 32293.10 15088.20 32386.20 22092.18 24193.04 26973.21 30395.52 32179.32 29585.82 35595.83 263
CVMVSNet85.16 29784.72 29686.48 31692.12 31170.19 34292.32 18188.17 32456.15 36690.64 26595.85 16367.97 31796.69 29588.78 18090.52 34692.56 335
SCA87.43 27787.21 27188.10 30492.01 31471.98 33689.43 27388.11 32582.26 27188.71 30292.83 27478.65 27297.59 26079.61 29293.30 32294.75 292
tpmrst82.85 31182.93 30982.64 33987.65 35458.99 36990.14 25487.90 32675.54 31583.93 33991.63 30266.79 32495.36 32781.21 27581.54 36393.57 323
Vis-MVSNet (Re-imp)90.42 21490.16 21791.20 23897.66 10777.32 29094.33 11887.66 32791.20 12392.99 21595.13 20175.40 29798.28 20677.86 30399.19 8397.99 152
bset_n11_16_dypcd89.99 23189.15 23492.53 19894.75 25581.34 22684.19 34287.56 32885.13 23993.77 18892.46 28372.82 30499.01 11292.46 9099.21 8197.23 210
MDTV_nov1_ep1383.88 30389.42 34661.52 36788.74 29087.41 32973.99 32484.96 33394.01 24565.25 33295.53 32078.02 30293.16 324
PatchmatchNetpermissive85.22 29684.64 29786.98 31489.51 34569.83 34790.52 24087.34 33078.87 29887.22 32192.74 27866.91 32196.53 29881.77 26886.88 35494.58 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet88.90 25087.25 27093.83 15394.40 27093.81 3584.73 33587.09 33179.36 29293.26 20592.43 28779.29 26891.68 35577.50 30997.22 24496.00 255
EPNet89.80 23688.25 25294.45 13183.91 36986.18 16693.87 13387.07 33291.16 12580.64 35894.72 22178.83 27098.89 12885.17 23198.89 11498.28 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test86.10 29386.01 29086.38 32090.63 33174.22 32389.57 27086.69 33385.73 23089.81 28392.83 27465.24 33391.04 35777.82 30695.78 27993.88 314
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 11786.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19698.73 89
CostFormer83.09 30882.21 31185.73 32289.27 34767.01 35190.35 24686.47 33570.42 34283.52 34393.23 26761.18 35096.85 29077.21 31188.26 35293.34 325
thres20085.85 29485.18 29587.88 30794.44 26872.52 33389.08 28386.21 33688.57 18091.44 25188.40 33964.22 33698.00 23068.35 35295.88 27893.12 326
ET-MVSNet_ETH3D86.15 29284.27 30091.79 21893.04 29581.28 22787.17 31086.14 33779.57 28883.65 34088.66 33657.10 35698.18 21787.74 19995.40 28895.90 261
PatchT87.51 27588.17 25685.55 32390.64 33066.91 35292.02 19486.09 33892.20 8789.05 29497.16 8564.15 33796.37 30689.21 17292.98 32993.37 324
DWT-MVSNet_test80.74 32579.18 33185.43 32587.51 35766.87 35389.87 26486.01 33974.20 32380.86 35780.62 36248.84 36796.68 29781.54 27083.14 36192.75 333
tfpn200view987.05 28786.52 28588.67 29495.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26494.79 290
thres40087.20 28386.52 28589.24 28795.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26496.51 233
IB-MVS77.21 1983.11 30781.05 31889.29 28491.15 32575.85 30885.66 32986.00 34079.70 28682.02 35386.61 34848.26 36898.39 19777.84 30492.22 33693.63 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMMVS83.00 30981.11 31788.66 29583.81 37086.44 15882.24 35185.65 34361.75 36382.07 35185.64 35479.75 26591.59 35675.99 31993.09 32687.94 355
tpm84.38 30284.08 30185.30 32790.47 33463.43 36689.34 27685.63 34477.24 30987.62 31695.03 20861.00 35297.30 27679.26 29691.09 34595.16 281
LFMVS91.33 19791.16 19991.82 21796.27 18479.36 25995.01 9385.61 34596.04 2994.82 15897.06 9072.03 30998.46 19684.96 23998.70 14097.65 185
FPMVS84.50 30183.28 30588.16 30396.32 18094.49 1585.76 32885.47 34683.09 26085.20 33094.26 23463.79 34086.58 36463.72 36091.88 34183.40 359
tpm281.46 31980.35 32684.80 32989.90 33965.14 36090.44 24285.36 34765.82 35782.05 35292.44 28657.94 35596.69 29570.71 34788.49 35192.56 335
thres100view90087.35 27986.89 27788.72 29396.14 19573.09 32993.00 15285.31 34892.13 8993.26 20590.96 31163.42 34198.28 20671.27 34496.54 26494.79 290
thres600view787.66 27187.10 27589.36 28396.05 20273.17 32792.72 15985.31 34891.89 9693.29 20290.97 31063.42 34198.39 19773.23 33296.99 25496.51 233
dp79.28 33078.62 33381.24 34285.97 36456.45 37086.91 31485.26 35072.97 33081.45 35689.17 33556.01 36095.45 32573.19 33376.68 36591.82 343
PMMVS281.31 32083.44 30474.92 34890.52 33346.49 37369.19 36285.23 35184.30 25187.95 31394.71 22276.95 28984.36 36664.07 35998.09 20693.89 313
ADS-MVSNet82.25 31381.55 31484.34 33389.04 34965.30 35887.57 30085.13 35272.71 33284.46 33592.45 28468.08 31592.33 35370.58 34883.97 35795.38 278
test-LLR83.58 30583.17 30684.79 33089.68 34266.86 35483.08 34784.52 35383.07 26182.85 34684.78 35662.86 34493.49 34782.85 25694.86 29894.03 308
test-mter81.21 32280.01 32984.79 33089.68 34266.86 35483.08 34784.52 35373.85 32582.85 34684.78 35643.66 37393.49 34782.85 25694.86 29894.03 308
JIA-IIPM85.08 29883.04 30791.19 23987.56 35586.14 16789.40 27584.44 35588.98 16982.20 35097.95 3956.82 35896.15 31076.55 31683.45 35991.30 344
thisisatest053088.69 25587.52 26692.20 20596.33 17979.36 25992.81 15784.01 35686.44 21693.67 19292.68 28053.62 36499.25 7789.65 16198.45 16298.00 149
tttt051789.81 23588.90 24192.55 19797.00 13879.73 25395.03 9283.65 35789.88 15295.30 13594.79 22053.64 36399.39 4891.99 9998.79 13298.54 108
thisisatest051584.72 30082.99 30889.90 27592.96 29775.33 31384.36 34083.42 35877.37 30788.27 30986.65 34753.94 36298.72 16082.56 26097.40 23995.67 271
PVSNet_070.34 2174.58 33372.96 33679.47 34590.63 33166.24 35773.26 35883.40 35963.67 36178.02 36278.35 36472.53 30589.59 36156.68 36460.05 36882.57 362
pmmvs380.83 32478.96 33286.45 31787.23 35977.48 28884.87 33482.31 36063.83 36085.03 33189.50 33049.66 36693.10 34973.12 33495.10 29588.78 354
E-PMN80.72 32680.86 32180.29 34485.11 36668.77 34972.96 35981.97 36187.76 19583.25 34583.01 36062.22 34789.17 36277.15 31294.31 31182.93 360
test0.0.03 182.48 31281.47 31685.48 32489.70 34173.57 32684.73 33581.64 36283.07 26188.13 31186.61 34862.86 34489.10 36366.24 35790.29 34793.77 316
baseline283.38 30681.54 31588.90 28991.38 32372.84 33288.78 28881.22 36378.97 29679.82 36087.56 34261.73 34997.80 24774.30 32790.05 34896.05 254
EMVS80.35 32880.28 32780.54 34384.73 36869.07 34872.54 36180.73 36487.80 19481.66 35581.73 36162.89 34389.84 36075.79 32194.65 30582.71 361
TESTMET0.1,179.09 33178.04 33482.25 34087.52 35664.03 36583.08 34780.62 36570.28 34380.16 35983.22 35944.13 37290.56 35879.95 28693.36 32092.15 338
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4277.49 28199.11 9592.62 8698.08 20798.74 87
new_pmnet81.22 32181.01 32081.86 34190.92 32970.15 34384.03 34380.25 36770.83 34085.97 32789.78 32667.93 31884.65 36567.44 35491.90 34090.78 347
MVS-HIRNet78.83 33280.60 32473.51 34993.07 29347.37 37287.10 31178.00 36868.94 34777.53 36397.26 7871.45 31094.62 33463.28 36188.74 35078.55 364
DSMNet-mixed82.21 31481.56 31384.16 33489.57 34470.00 34690.65 23777.66 36954.99 36783.30 34497.57 5577.89 28090.50 35966.86 35695.54 28491.97 339
EPMVS81.17 32380.37 32583.58 33685.58 36565.08 36190.31 24871.34 37077.31 30885.80 32891.30 30559.38 35392.70 35279.99 28582.34 36292.96 330
gg-mvs-nofinetune82.10 31781.02 31985.34 32687.46 35871.04 33894.74 10167.56 37196.44 2279.43 36198.99 645.24 37096.15 31067.18 35592.17 33788.85 352
GG-mvs-BLEND83.24 33885.06 36771.03 33994.99 9565.55 37274.09 36675.51 36544.57 37194.46 33759.57 36387.54 35384.24 358
MVEpermissive59.87 2373.86 33472.65 33777.47 34787.00 36274.35 32061.37 36460.93 37367.27 35269.69 36886.49 35081.24 25972.33 36856.45 36583.45 35985.74 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP94.82 9854.62 374
DeepMVS_CXcopyleft53.83 35170.38 37364.56 36348.52 37533.01 36865.50 36974.21 36656.19 35946.64 37038.45 36970.07 36650.30 366
tmp_tt37.97 33644.33 33918.88 35211.80 37521.54 37563.51 36345.66 3764.23 37051.34 37050.48 36759.08 35422.11 37144.50 36868.35 36713.00 367
testmvs9.02 33911.42 3421.81 3542.77 3771.13 37879.44 3561.90 3771.18 3722.65 3736.80 3691.95 3770.87 3732.62 3713.45 3713.44 369
test1239.49 33812.01 3411.91 3532.87 3761.30 37782.38 3501.34 3781.36 3712.84 3726.56 3702.45 3760.97 3722.73 3705.56 3703.47 368
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.56 34010.09 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37390.77 1440.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
n20.00 379
nn0.00 379
ab-mvs-re7.56 34010.08 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37490.69 3160.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145275.31 31895.87 11295.75 17292.93 9396.34 30987.18 20898.68 14298.04 144
eth-test20.00 378
eth-test0.00 378
OPU-MVS95.15 9896.84 14789.43 9395.21 8295.66 17693.12 8798.06 22486.28 22498.61 14797.95 157
test_0728_THIRD93.26 6897.40 4697.35 7494.69 5599.34 6293.88 3499.42 4798.89 69
GSMVS94.75 292
test_part298.21 7089.41 9496.72 71
sam_mvs166.64 32594.75 292
sam_mvs66.41 326
test_post190.21 2505.85 37265.36 33196.00 31579.61 292
test_post6.07 37165.74 33095.84 317
patchmatchnet-post91.71 30066.22 32897.59 260
gm-plane-assit87.08 36159.33 36871.22 33783.58 35897.20 27973.95 328
test9_res88.16 19198.40 16597.83 170
agg_prior287.06 21098.36 17697.98 153
test_prior489.91 8390.74 234
test_prior290.21 25089.33 16390.77 26194.81 21690.41 15488.21 18798.55 151
旧先验290.00 25968.65 34892.71 22396.52 29985.15 233
新几何290.02 258
原ACMM289.34 276
testdata298.03 22680.24 283
segment_acmp92.14 110
testdata188.96 28588.44 182
plane_prior797.71 10188.68 107
plane_prior697.21 13088.23 11886.93 204
plane_prior495.59 178
plane_prior388.43 11690.35 14593.31 200
plane_prior294.56 11091.74 109
plane_prior197.38 122
plane_prior88.12 12093.01 15188.98 16998.06 208
HQP5-MVS84.89 182
HQP-NCC96.36 17491.37 21987.16 20788.81 297
ACMP_Plane96.36 17491.37 21987.16 20788.81 297
BP-MVS86.55 218
HQP4-MVS88.81 29798.61 17698.15 135
HQP2-MVS84.76 226
NP-MVS96.82 14887.10 13993.40 262
MDTV_nov1_ep13_2view42.48 37488.45 29567.22 35383.56 34266.80 32272.86 33594.06 307
ACMMP++_ref98.82 127
ACMMP++99.25 75
Test By Simon90.61 150