LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
CS-MVS | | | 98.09 42 | 98.01 44 | 98.32 69 | 98.45 167 | 96.69 54 | 98.52 26 | 99.69 2 | 98.07 43 | 96.07 244 | 97.19 223 | 96.88 66 | 99.86 25 | 97.50 43 | 99.73 56 | 98.41 246 |
|
CS-MVS-test | | | 97.91 64 | 97.84 56 | 98.14 88 | 98.52 154 | 96.03 79 | 98.38 34 | 99.67 3 | 98.11 41 | 95.50 266 | 96.92 243 | 96.81 72 | 99.87 22 | 96.87 65 | 99.76 49 | 98.51 239 |
|
DROMVSNet | | | 97.90 66 | 97.94 49 | 97.79 114 | 98.66 136 | 95.14 126 | 98.31 39 | 99.66 4 | 97.57 66 | 95.95 249 | 97.01 237 | 96.99 55 | 99.82 37 | 97.66 37 | 99.64 75 | 98.39 249 |
|
dcpmvs_2 | | | 97.12 120 | 97.99 45 | 94.51 292 | 99.11 89 | 84.00 343 | 97.75 76 | 99.65 5 | 97.38 79 | 99.14 32 | 98.42 87 | 95.16 138 | 99.96 2 | 95.52 124 | 99.78 46 | 99.58 33 |
|
LCM-MVSNet-Re | | | 97.33 111 | 97.33 104 | 97.32 158 | 98.13 203 | 93.79 177 | 96.99 122 | 99.65 5 | 96.74 97 | 99.47 13 | 98.93 52 | 96.91 63 | 99.84 31 | 90.11 288 | 99.06 223 | 98.32 258 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 46 | 99.69 2 | 99.57 7 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 188 | 98.58 15 | 99.95 5 | 99.66 23 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ANet_high | | | 98.31 29 | 98.94 6 | 96.41 211 | 99.33 50 | 89.64 255 | 97.92 66 | 99.56 8 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 34 | 97.55 41 | 99.98 2 | 99.77 10 |
|
Vis-MVSNet |  | | 98.27 30 | 98.34 29 | 98.07 93 | 99.33 50 | 95.21 125 | 98.04 59 | 99.46 9 | 97.32 81 | 97.82 151 | 99.11 37 | 96.75 74 | 99.86 25 | 97.84 29 | 99.36 167 | 99.15 148 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 24 | 98.06 8 | 99.34 4 | 99.44 10 | 98.85 20 | 99.00 39 | 99.20 26 | 97.42 32 | 99.59 166 | 97.21 52 | 99.76 49 | 99.40 90 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 89 | 97.89 14 | 99.47 3 | 99.32 11 | 99.08 10 | 97.87 146 | 99.67 2 | 96.47 90 | 99.92 5 | 97.88 27 | 99.98 2 | 99.85 3 |
|
patch_mono-2 | | | 96.59 156 | 96.93 130 | 95.55 248 | 98.88 112 | 87.12 305 | 94.47 256 | 99.30 12 | 94.12 210 | 96.65 216 | 98.41 88 | 94.98 146 | 99.87 22 | 95.81 109 | 99.78 46 | 99.66 23 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 50 | 99.81 2 | 96.38 64 | 98.87 9 | 99.30 12 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 132 | 97.75 34 | 99.89 26 | 99.62 29 |
|
bld_raw_conf005 | | | 98.51 20 | 98.52 24 | 98.47 56 | 99.57 18 | 95.91 83 | 98.75 13 | 99.27 14 | 98.28 35 | 99.17 29 | 99.27 21 | 93.85 178 | 99.83 34 | 98.63 12 | 99.91 17 | 99.66 23 |
|
FOURS1 | | | | | | 99.59 16 | 98.20 4 | 99.03 7 | 99.25 15 | 98.96 18 | 98.87 43 | | | | | | |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 62 | 98.54 24 | 99.22 16 | 96.23 120 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 3 | 98.89 3 | 99.95 5 | 99.84 5 |
|
FC-MVSNet-test | | | 98.16 35 | 98.37 28 | 97.56 131 | 99.49 33 | 93.10 196 | 98.35 35 | 99.21 17 | 98.43 29 | 98.89 42 | 98.83 59 | 94.30 167 | 99.81 40 | 97.87 28 | 99.91 17 | 99.77 10 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 83 | 99.68 9 | 94.82 135 | 98.10 55 | 99.21 17 | 96.91 92 | 99.75 2 | 99.45 9 | 95.82 110 | 99.92 5 | 98.80 4 | 99.96 4 | 99.89 1 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 66 | 99.18 5 | 99.20 19 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 25 | 97.22 51 | 99.92 14 | 99.77 10 |
|
ACMH+ | | 93.58 10 | 98.23 33 | 98.31 30 | 97.98 101 | 99.39 44 | 95.22 123 | 97.55 89 | 99.20 19 | 98.21 38 | 99.25 25 | 98.51 81 | 98.21 11 | 99.40 225 | 94.79 169 | 99.72 60 | 99.32 107 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 14 | 97.29 39 | 98.65 20 | 99.19 21 | 95.62 155 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 14 | 98.59 14 | 99.91 17 | 99.77 10 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 29 | 96.61 58 | 98.55 23 | 99.17 22 | 99.05 13 | 99.17 29 | 98.79 60 | 95.47 128 | 99.89 18 | 97.95 26 | 99.91 17 | 99.75 15 |
|
EIA-MVS | | | 96.04 179 | 95.77 187 | 96.85 183 | 97.80 237 | 92.98 198 | 96.12 164 | 99.16 23 | 94.65 191 | 93.77 309 | 91.69 362 | 95.68 119 | 99.67 137 | 94.18 195 | 98.85 245 | 97.91 294 |
|
AllTest | | | 97.20 119 | 96.92 132 | 98.06 95 | 99.08 92 | 96.16 71 | 97.14 113 | 99.16 23 | 94.35 201 | 97.78 152 | 98.07 132 | 95.84 107 | 99.12 280 | 91.41 253 | 99.42 153 | 98.91 194 |
|
TestCases | | | | | 98.06 95 | 99.08 92 | 96.16 71 | | 99.16 23 | 94.35 201 | 97.78 152 | 98.07 132 | 95.84 107 | 99.12 280 | 91.41 253 | 99.42 153 | 98.91 194 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 32 | 98.11 35 | 98.64 44 | 99.21 71 | 97.35 37 | 97.96 62 | 99.16 23 | 98.34 32 | 98.78 50 | 98.52 80 | 97.32 35 | 99.45 208 | 94.08 199 | 99.67 70 | 99.13 153 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 103 | 98.79 119 | 94.37 153 | 98.84 11 | 99.15 27 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 122 | 99.72 92 | 98.12 21 | 99.86 30 | 99.73 17 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 58 | 99.58 17 | 95.67 94 | 98.45 31 | 99.15 27 | 99.33 5 | 99.30 21 | 99.00 45 | 97.27 38 | 99.92 5 | 97.64 38 | 99.92 14 | 99.75 15 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 102 | 99.64 12 | 94.20 162 | 98.67 16 | 99.14 29 | 99.08 10 | 99.42 15 | 99.23 24 | 96.53 85 | 99.91 13 | 99.27 2 | 99.93 10 | 99.73 17 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 64 | 99.55 22 | 95.47 107 | 98.49 28 | 99.13 30 | 99.22 8 | 99.22 27 | 98.96 49 | 97.35 34 | 99.92 5 | 97.79 32 | 99.93 10 | 99.79 9 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 11 | 96.48 62 | 98.45 31 | 99.12 31 | 95.83 147 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 5 | 98.77 5 | 99.94 8 | 99.82 6 |
|
FIs | | | 97.93 60 | 98.07 37 | 97.48 143 | 99.38 45 | 92.95 199 | 98.03 61 | 99.11 32 | 98.04 45 | 98.62 58 | 98.66 70 | 93.75 182 | 99.78 51 | 97.23 50 | 99.84 34 | 99.73 17 |
|
abl_6 | | | 98.42 24 | 98.19 33 | 99.09 3 | 99.16 76 | 98.10 6 | 97.73 80 | 99.11 32 | 97.76 54 | 98.62 58 | 98.27 110 | 97.88 19 | 99.80 46 | 95.67 114 | 99.50 124 | 99.38 94 |
|
SF-MVS | | | 97.60 91 | 97.39 100 | 98.22 80 | 98.93 108 | 95.69 91 | 97.05 118 | 99.10 34 | 95.32 167 | 97.83 149 | 97.88 161 | 96.44 92 | 99.72 92 | 94.59 179 | 99.39 161 | 99.25 130 |
|
Effi-MVS+ | | | 96.19 173 | 96.01 176 | 96.71 191 | 97.43 278 | 92.19 216 | 96.12 164 | 99.10 34 | 95.45 162 | 93.33 327 | 94.71 324 | 97.23 43 | 99.56 175 | 93.21 226 | 97.54 311 | 98.37 251 |
|
APDe-MVS | | | 98.14 37 | 98.03 43 | 98.47 56 | 98.72 127 | 96.04 77 | 98.07 57 | 99.10 34 | 95.96 136 | 98.59 63 | 98.69 68 | 96.94 58 | 99.81 40 | 96.64 67 | 99.58 92 | 99.57 38 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 48 | 99.55 22 | 96.12 74 | 98.48 30 | 99.10 34 | 99.36 4 | 99.29 23 | 99.06 43 | 97.27 38 | 99.93 3 | 97.71 36 | 99.91 17 | 99.70 20 |
|
Gipuma |  | | 98.07 44 | 98.31 30 | 97.36 156 | 99.76 5 | 96.28 69 | 98.51 27 | 99.10 34 | 98.76 23 | 96.79 206 | 99.34 18 | 96.61 80 | 98.82 311 | 96.38 79 | 99.50 124 | 96.98 322 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
casdiffmvs | | | 97.50 98 | 97.81 60 | 96.56 201 | 98.51 156 | 91.04 235 | 95.83 184 | 99.09 39 | 97.23 85 | 98.33 92 | 98.30 101 | 97.03 52 | 99.37 236 | 96.58 71 | 99.38 163 | 99.28 121 |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 69 | 99.22 64 | 95.66 95 | 97.90 67 | 99.08 40 | 98.31 33 | 99.02 37 | 98.74 64 | 97.68 24 | 99.61 164 | 97.77 33 | 99.85 33 | 99.70 20 |
|
diffmvs | | | 96.04 179 | 96.23 166 | 95.46 253 | 97.35 282 | 88.03 286 | 93.42 297 | 99.08 40 | 94.09 212 | 96.66 214 | 96.93 241 | 93.85 178 | 99.29 257 | 96.01 96 | 98.67 260 | 99.06 170 |
|
PVSNet_Blended_VisFu | | | 95.95 183 | 95.80 185 | 96.42 209 | 99.28 54 | 90.62 243 | 95.31 214 | 99.08 40 | 88.40 304 | 96.97 198 | 98.17 122 | 92.11 221 | 99.78 51 | 93.64 217 | 99.21 199 | 98.86 205 |
|
xxxxxxxxxxxxxcwj | | | 97.24 117 | 97.03 125 | 97.89 107 | 98.48 162 | 94.71 139 | 94.53 254 | 99.07 43 | 95.02 181 | 97.83 149 | 97.88 161 | 96.44 92 | 99.72 92 | 94.59 179 | 99.39 161 | 99.25 130 |
|
PGM-MVS | | | 97.88 68 | 97.52 92 | 98.96 16 | 99.20 72 | 97.62 22 | 97.09 116 | 99.06 44 | 95.45 162 | 97.55 156 | 97.94 152 | 97.11 44 | 99.78 51 | 94.77 172 | 99.46 137 | 99.48 65 |
|
RPSCF | | | 97.87 69 | 97.51 93 | 98.95 17 | 99.15 79 | 98.43 3 | 97.56 88 | 99.06 44 | 96.19 123 | 98.48 72 | 98.70 67 | 94.72 151 | 99.24 265 | 94.37 187 | 99.33 182 | 99.17 144 |
|
canonicalmvs | | | 97.23 118 | 97.21 114 | 97.30 159 | 97.65 262 | 94.39 151 | 97.84 70 | 99.05 46 | 97.42 74 | 96.68 213 | 93.85 337 | 97.63 26 | 99.33 246 | 96.29 82 | 98.47 274 | 98.18 274 |
|
TranMVSNet+NR-MVSNet | | | 98.33 27 | 98.30 32 | 98.43 60 | 99.07 94 | 95.87 84 | 96.73 137 | 99.05 46 | 98.67 24 | 98.84 46 | 98.45 85 | 97.58 28 | 99.88 20 | 96.45 77 | 99.86 30 | 99.54 44 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 65 | 99.17 6 | 99.05 46 | 98.05 44 | 99.61 11 | 99.52 5 | 93.72 183 | 99.88 20 | 98.72 9 | 99.88 28 | 99.65 26 |
|
HPM-MVS |  | | 98.11 41 | 97.83 59 | 98.92 22 | 99.42 41 | 97.46 33 | 98.57 21 | 99.05 46 | 95.43 164 | 97.41 169 | 97.50 195 | 97.98 15 | 99.79 47 | 95.58 123 | 99.57 95 | 99.50 51 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
XVG-OURS | | | 97.12 120 | 96.74 141 | 98.26 75 | 98.99 103 | 97.45 34 | 93.82 285 | 99.05 46 | 95.19 172 | 98.32 93 | 97.70 179 | 95.22 137 | 98.41 345 | 94.27 192 | 98.13 285 | 98.93 189 |
|
ACMH | | 93.61 9 | 98.44 23 | 98.76 13 | 97.51 136 | 99.43 39 | 93.54 187 | 98.23 45 | 99.05 46 | 97.40 78 | 99.37 18 | 99.08 41 | 98.79 5 | 99.47 201 | 97.74 35 | 99.71 63 | 99.50 51 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 97.83 73 | 97.65 76 | 98.35 68 | 98.80 118 | 95.86 86 | 95.92 180 | 99.04 52 | 97.51 71 | 98.22 103 | 97.81 169 | 94.68 154 | 99.78 51 | 97.14 57 | 99.75 54 | 99.41 89 |
|
HPM-MVS_fast | | | 98.32 28 | 98.13 34 | 98.88 24 | 99.54 24 | 97.48 32 | 98.35 35 | 99.03 53 | 95.88 142 | 97.88 143 | 98.22 117 | 98.15 12 | 99.74 82 | 96.50 75 | 99.62 78 | 99.42 87 |
|
baseline | | | 97.44 103 | 97.78 65 | 96.43 207 | 98.52 154 | 90.75 242 | 96.84 126 | 99.03 53 | 96.51 107 | 97.86 147 | 98.02 141 | 96.67 76 | 99.36 238 | 97.09 58 | 99.47 134 | 99.19 140 |
|
v10 | | | 97.55 94 | 97.97 46 | 96.31 215 | 98.60 145 | 89.64 255 | 97.44 97 | 99.02 55 | 96.60 101 | 98.72 56 | 99.16 33 | 93.48 187 | 99.72 92 | 98.76 6 | 99.92 14 | 99.58 33 |
|
UniMVSNet_NR-MVSNet | | | 97.83 73 | 97.65 76 | 98.37 65 | 98.72 127 | 95.78 87 | 95.66 191 | 99.02 55 | 98.11 41 | 98.31 95 | 97.69 181 | 94.65 156 | 99.85 28 | 97.02 61 | 99.71 63 | 99.48 65 |
|
XVG-OURS-SEG-HR | | | 97.38 107 | 97.07 122 | 98.30 73 | 99.01 102 | 97.41 36 | 94.66 249 | 99.02 55 | 95.20 171 | 98.15 111 | 97.52 193 | 98.83 4 | 98.43 344 | 94.87 165 | 96.41 337 | 99.07 168 |
|
MVSFormer | | | 96.14 175 | 96.36 162 | 95.49 251 | 97.68 258 | 87.81 291 | 98.67 16 | 99.02 55 | 96.50 108 | 94.48 291 | 96.15 286 | 86.90 288 | 99.92 5 | 98.73 7 | 99.13 210 | 98.74 218 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 13 | 96.30 68 | 98.67 16 | 99.02 55 | 96.50 108 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 5 | 98.73 7 | 99.95 5 | 99.86 2 |
|
LPG-MVS_test | | | 97.94 57 | 97.67 73 | 98.74 35 | 99.15 79 | 97.02 44 | 97.09 116 | 99.02 55 | 95.15 174 | 98.34 88 | 98.23 114 | 97.91 17 | 99.70 117 | 94.41 184 | 99.73 56 | 99.50 51 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 79 | 97.02 44 | | 99.02 55 | 95.15 174 | 98.34 88 | 98.23 114 | 97.91 17 | 99.70 117 | 94.41 184 | 99.73 56 | 99.50 51 |
|
DeepC-MVS | | 95.41 4 | 97.82 75 | 97.70 69 | 98.16 84 | 98.78 121 | 95.72 89 | 96.23 159 | 99.02 55 | 93.92 216 | 98.62 58 | 98.99 46 | 97.69 23 | 99.62 158 | 96.18 86 | 99.87 29 | 99.15 148 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
pm-mvs1 | | | 98.47 22 | 98.67 17 | 97.86 110 | 99.52 28 | 94.58 145 | 98.28 42 | 99.00 63 | 97.57 66 | 99.27 24 | 99.22 25 | 98.32 9 | 99.50 193 | 97.09 58 | 99.75 54 | 99.50 51 |
|
VPA-MVSNet | | | 98.27 30 | 98.46 25 | 97.70 122 | 99.06 95 | 93.80 176 | 97.76 75 | 99.00 63 | 98.40 30 | 99.07 36 | 98.98 47 | 96.89 64 | 99.75 72 | 97.19 55 | 99.79 43 | 99.55 43 |
|
XXY-MVS | | | 97.54 95 | 97.70 69 | 97.07 171 | 99.46 35 | 92.21 213 | 97.22 109 | 99.00 63 | 94.93 185 | 98.58 64 | 98.92 53 | 97.31 36 | 99.41 223 | 94.44 182 | 99.43 150 | 99.59 32 |
|
DPE-MVS |  | | 97.64 87 | 97.35 103 | 98.50 53 | 98.85 114 | 96.18 70 | 95.21 222 | 98.99 66 | 95.84 146 | 98.78 50 | 98.08 130 | 96.84 70 | 99.81 40 | 93.98 206 | 99.57 95 | 99.52 48 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 97.69 84 | 97.36 102 | 98.70 39 | 99.50 32 | 96.84 49 | 95.38 208 | 98.99 66 | 92.45 258 | 98.11 115 | 98.31 97 | 97.25 41 | 99.77 60 | 96.60 69 | 99.62 78 | 99.48 65 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CSCG | | | 97.40 106 | 97.30 105 | 97.69 124 | 98.95 105 | 94.83 134 | 97.28 105 | 98.99 66 | 96.35 116 | 98.13 114 | 95.95 298 | 95.99 103 | 99.66 143 | 94.36 190 | 99.73 56 | 98.59 233 |
|
GeoE | | | 97.75 80 | 97.70 69 | 97.89 107 | 98.88 112 | 94.53 146 | 97.10 115 | 98.98 69 | 95.75 151 | 97.62 154 | 97.59 187 | 97.61 27 | 99.77 60 | 96.34 81 | 99.44 142 | 99.36 102 |
|
9.14 | | | | 96.69 143 | | 98.53 153 | | 96.02 170 | 98.98 69 | 93.23 234 | 97.18 177 | 97.46 198 | 96.47 90 | 99.62 158 | 92.99 229 | 99.32 184 | |
|
ETH3D-3000-0.1 | | | 96.89 135 | 96.46 159 | 98.16 84 | 98.62 142 | 95.69 91 | 95.96 175 | 98.98 69 | 93.36 229 | 97.04 190 | 97.31 216 | 94.93 148 | 99.63 150 | 92.60 232 | 99.34 175 | 99.17 144 |
|
XVG-ACMP-BASELINE | | | 97.58 93 | 97.28 108 | 98.49 54 | 99.16 76 | 96.90 48 | 96.39 147 | 98.98 69 | 95.05 179 | 98.06 123 | 98.02 141 | 95.86 106 | 99.56 175 | 94.37 187 | 99.64 75 | 99.00 177 |
|
EG-PatchMatch MVS | | | 97.69 84 | 97.79 61 | 97.40 154 | 99.06 95 | 93.52 188 | 95.96 175 | 98.97 73 | 94.55 197 | 98.82 47 | 98.76 63 | 97.31 36 | 99.29 257 | 97.20 54 | 99.44 142 | 99.38 94 |
|
CP-MVS | | | 97.92 61 | 97.56 90 | 98.99 13 | 98.99 103 | 97.82 16 | 97.93 64 | 98.96 74 | 96.11 126 | 96.89 203 | 97.45 199 | 96.85 69 | 99.78 51 | 95.19 146 | 99.63 77 | 99.38 94 |
|
ACMMP |  | | 98.05 45 | 97.75 68 | 98.93 21 | 99.23 61 | 97.60 23 | 98.09 56 | 98.96 74 | 95.75 151 | 97.91 139 | 98.06 137 | 96.89 64 | 99.76 65 | 95.32 139 | 99.57 95 | 99.43 86 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ETV-MVS | | | 96.13 176 | 95.90 183 | 96.82 185 | 97.76 249 | 93.89 171 | 95.40 206 | 98.95 76 | 95.87 143 | 95.58 265 | 91.00 368 | 96.36 97 | 99.72 92 | 93.36 220 | 98.83 247 | 96.85 329 |
|
KD-MVS_self_test | | | 97.86 71 | 98.07 37 | 97.25 163 | 99.22 64 | 92.81 202 | 97.55 89 | 98.94 77 | 97.10 88 | 98.85 44 | 98.88 56 | 95.03 143 | 99.67 137 | 97.39 48 | 99.65 73 | 99.26 126 |
|
mvsmamba | | | 98.16 35 | 98.06 39 | 98.44 58 | 99.53 27 | 95.87 84 | 98.70 14 | 98.94 77 | 97.71 60 | 98.85 44 | 99.10 38 | 91.35 236 | 99.83 34 | 98.47 16 | 99.90 24 | 99.64 28 |
|
114514_t | | | 93.96 264 | 93.22 271 | 96.19 220 | 99.06 95 | 90.97 237 | 95.99 172 | 98.94 77 | 73.88 373 | 93.43 324 | 96.93 241 | 92.38 217 | 99.37 236 | 89.09 303 | 99.28 191 | 98.25 268 |
|
SD-MVS | | | 97.37 108 | 97.70 69 | 96.35 212 | 98.14 200 | 95.13 127 | 96.54 142 | 98.92 80 | 95.94 138 | 99.19 28 | 98.08 130 | 97.74 22 | 95.06 373 | 95.24 144 | 99.54 107 | 98.87 204 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS_3200maxsize | | | 98.13 40 | 97.90 50 | 98.79 31 | 98.79 119 | 97.31 38 | 97.55 89 | 98.92 80 | 97.72 58 | 98.25 100 | 98.13 124 | 97.10 45 | 99.75 72 | 95.44 132 | 99.24 198 | 99.32 107 |
|
SteuartSystems-ACMMP | | | 98.02 47 | 97.76 66 | 98.79 31 | 99.43 39 | 97.21 43 | 97.15 111 | 98.90 82 | 96.58 104 | 98.08 121 | 97.87 163 | 97.02 53 | 99.76 65 | 95.25 143 | 99.59 90 | 99.40 90 |
Skip Steuart: Steuart Systems R&D Blog. |
DVP-MVS++ | | | 97.96 50 | 97.90 50 | 98.12 90 | 97.75 251 | 95.40 108 | 99.03 7 | 98.89 83 | 96.62 99 | 98.62 58 | 98.30 101 | 96.97 56 | 99.75 72 | 95.70 110 | 99.25 195 | 99.21 135 |
|
test_0728_SECOND | | | | | 98.25 78 | 99.23 61 | 95.49 106 | 96.74 133 | 98.89 83 | | | | | 99.75 72 | 95.48 128 | 99.52 115 | 99.53 47 |
|
test0726 | | | | | | 99.24 59 | 95.51 102 | 96.89 125 | 98.89 83 | 95.92 139 | 98.64 57 | 98.31 97 | 97.06 50 | | | | |
|
MSP-MVS | | | 97.45 102 | 96.92 132 | 99.03 8 | 99.26 55 | 97.70 19 | 97.66 81 | 98.89 83 | 95.65 153 | 98.51 68 | 96.46 271 | 92.15 219 | 99.81 40 | 95.14 153 | 98.58 270 | 99.58 33 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MIMVSNet1 | | | 98.51 20 | 98.45 27 | 98.67 41 | 99.72 6 | 96.71 52 | 98.76 12 | 98.89 83 | 98.49 28 | 99.38 17 | 99.14 36 | 95.44 130 | 99.84 31 | 96.47 76 | 99.80 42 | 99.47 68 |
|
ACMP | | 92.54 13 | 97.47 101 | 97.10 119 | 98.55 51 | 99.04 100 | 96.70 53 | 96.24 158 | 98.89 83 | 93.71 221 | 97.97 134 | 97.75 174 | 97.44 30 | 99.63 150 | 93.22 225 | 99.70 66 | 99.32 107 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v1240 | | | 96.74 145 | 97.02 126 | 95.91 233 | 98.18 193 | 88.52 274 | 95.39 207 | 98.88 89 | 93.15 241 | 98.46 75 | 98.40 91 | 92.80 201 | 99.71 108 | 98.45 17 | 99.49 128 | 99.49 59 |
|
3Dnovator | | 96.53 2 | 97.61 90 | 97.64 79 | 97.50 139 | 97.74 254 | 93.65 185 | 98.49 28 | 98.88 89 | 96.86 94 | 97.11 182 | 98.55 78 | 95.82 110 | 99.73 87 | 95.94 100 | 99.42 153 | 99.13 153 |
|
test_one_0601 | | | | | | 99.05 99 | 95.50 105 | | 98.87 91 | 97.21 86 | 98.03 127 | 98.30 101 | 96.93 60 | | | | |
|
TransMVSNet (Re) | | | 98.38 26 | 98.67 17 | 97.51 136 | 99.51 29 | 93.39 191 | 98.20 50 | 98.87 91 | 98.23 37 | 99.48 12 | 99.27 21 | 98.47 8 | 99.55 179 | 96.52 73 | 99.53 110 | 99.60 31 |
|
DU-MVS | | | 97.79 77 | 97.60 86 | 98.36 66 | 98.73 125 | 95.78 87 | 95.65 194 | 98.87 91 | 97.57 66 | 98.31 95 | 97.83 165 | 94.69 152 | 99.85 28 | 97.02 61 | 99.71 63 | 99.46 70 |
|
SR-MVS-dyc-post | | | 98.14 37 | 97.84 56 | 99.02 9 | 98.81 116 | 98.05 9 | 97.55 89 | 98.86 94 | 97.77 51 | 98.20 104 | 98.07 132 | 96.60 82 | 99.76 65 | 95.49 125 | 99.20 200 | 99.26 126 |
|
RE-MVS-def | | | | 97.88 54 | | 98.81 116 | 98.05 9 | 97.55 89 | 98.86 94 | 97.77 51 | 98.20 104 | 98.07 132 | 96.94 58 | | 95.49 125 | 99.20 200 | 99.26 126 |
|
Baseline_NR-MVSNet | | | 97.72 82 | 97.79 61 | 97.50 139 | 99.56 20 | 93.29 192 | 95.44 201 | 98.86 94 | 98.20 39 | 98.37 82 | 99.24 23 | 94.69 152 | 99.55 179 | 95.98 98 | 99.79 43 | 99.65 26 |
|
RPMNet | | | 94.68 237 | 94.60 232 | 94.90 273 | 95.44 345 | 88.15 282 | 96.18 161 | 98.86 94 | 97.43 73 | 94.10 298 | 98.49 82 | 79.40 323 | 99.76 65 | 95.69 112 | 95.81 343 | 96.81 333 |
|
test1172 | | | 98.08 43 | 97.76 66 | 99.05 6 | 98.78 121 | 98.07 7 | 97.41 101 | 98.85 98 | 97.57 66 | 98.15 111 | 97.96 147 | 96.60 82 | 99.76 65 | 95.30 140 | 99.18 204 | 99.33 106 |
|
test_part1 | | | 96.77 144 | 96.53 154 | 97.47 144 | 98.04 207 | 92.92 200 | 97.93 64 | 98.85 98 | 98.83 21 | 99.30 21 | 99.07 42 | 79.25 324 | 99.79 47 | 97.59 39 | 99.93 10 | 99.69 22 |
|
1112_ss | | | 94.12 259 | 93.42 266 | 96.23 217 | 98.59 147 | 90.85 238 | 94.24 264 | 98.85 98 | 85.49 330 | 92.97 331 | 94.94 319 | 86.01 293 | 99.64 148 | 91.78 247 | 97.92 292 | 98.20 272 |
|
PHI-MVS | | | 96.96 129 | 96.53 154 | 98.25 78 | 97.48 272 | 96.50 61 | 96.76 132 | 98.85 98 | 93.52 224 | 96.19 240 | 96.85 246 | 95.94 104 | 99.42 214 | 93.79 212 | 99.43 150 | 98.83 207 |
|
LS3D | | | 97.77 79 | 97.50 95 | 98.57 49 | 96.24 320 | 97.58 25 | 98.45 31 | 98.85 98 | 98.58 27 | 97.51 159 | 97.94 152 | 95.74 118 | 99.63 150 | 95.19 146 | 98.97 228 | 98.51 239 |
|
ZNCC-MVS | | | 97.92 61 | 97.62 83 | 98.83 26 | 99.32 52 | 97.24 41 | 97.45 96 | 98.84 103 | 95.76 149 | 96.93 200 | 97.43 201 | 97.26 40 | 99.79 47 | 96.06 89 | 99.53 110 | 99.45 75 |
|
HFP-MVS | | | 97.94 57 | 97.64 79 | 98.83 26 | 99.15 79 | 97.50 30 | 97.59 86 | 98.84 103 | 96.05 129 | 97.49 161 | 97.54 190 | 97.07 48 | 99.70 117 | 95.61 120 | 99.46 137 | 99.30 113 |
|
region2R | | | 97.92 61 | 97.59 87 | 98.92 22 | 99.22 64 | 97.55 27 | 97.60 85 | 98.84 103 | 96.00 134 | 97.22 173 | 97.62 185 | 96.87 68 | 99.76 65 | 95.48 128 | 99.43 150 | 99.46 70 |
|
#test# | | | 97.62 89 | 97.22 113 | 98.83 26 | 99.15 79 | 97.50 30 | 96.81 128 | 98.84 103 | 94.25 205 | 97.49 161 | 97.54 190 | 97.07 48 | 99.70 117 | 94.37 187 | 99.46 137 | 99.30 113 |
|
MSLP-MVS++ | | | 96.42 166 | 96.71 142 | 95.57 245 | 97.82 232 | 90.56 246 | 95.71 186 | 98.84 103 | 94.72 189 | 96.71 212 | 97.39 207 | 94.91 149 | 98.10 359 | 95.28 141 | 99.02 225 | 98.05 286 |
|
CP-MVSNet | | | 98.42 24 | 98.46 25 | 98.30 73 | 99.46 35 | 95.22 123 | 98.27 44 | 98.84 103 | 99.05 13 | 99.01 38 | 98.65 72 | 95.37 131 | 99.90 14 | 97.57 40 | 99.91 17 | 99.77 10 |
|
OpenMVS |  | 94.22 8 | 95.48 200 | 95.20 200 | 96.32 214 | 97.16 297 | 91.96 222 | 97.74 78 | 98.84 103 | 87.26 313 | 94.36 293 | 98.01 143 | 93.95 176 | 99.67 137 | 90.70 276 | 98.75 254 | 97.35 316 |
|
SED-MVS | | | 97.94 57 | 97.90 50 | 98.07 93 | 99.22 64 | 95.35 113 | 96.79 130 | 98.83 110 | 96.11 126 | 99.08 34 | 98.24 112 | 97.87 20 | 99.72 92 | 95.44 132 | 99.51 120 | 99.14 151 |
|
test_241102_TWO | | | | | | | | | 98.83 110 | 96.11 126 | 98.62 58 | 98.24 112 | 96.92 62 | 99.72 92 | 95.44 132 | 99.49 128 | 99.49 59 |
|
test_241102_ONE | | | | | | 99.22 64 | 95.35 113 | | 98.83 110 | 96.04 131 | 99.08 34 | 98.13 124 | 97.87 20 | 99.33 246 | | | |
|
SR-MVS | | | 98.00 49 | 97.66 74 | 99.01 11 | 98.77 123 | 97.93 11 | 97.38 102 | 98.83 110 | 97.32 81 | 98.06 123 | 97.85 164 | 96.65 77 | 99.77 60 | 95.00 162 | 99.11 214 | 99.32 107 |
|
XVS | | | 97.96 50 | 97.63 81 | 98.94 18 | 99.15 79 | 97.66 20 | 97.77 73 | 98.83 110 | 97.42 74 | 96.32 231 | 97.64 183 | 96.49 88 | 99.72 92 | 95.66 116 | 99.37 164 | 99.45 75 |
|
X-MVStestdata | | | 92.86 287 | 90.83 311 | 98.94 18 | 99.15 79 | 97.66 20 | 97.77 73 | 98.83 110 | 97.42 74 | 96.32 231 | 36.50 377 | 96.49 88 | 99.72 92 | 95.66 116 | 99.37 164 | 99.45 75 |
|
ACMMPR | | | 97.95 54 | 97.62 83 | 98.94 18 | 99.20 72 | 97.56 26 | 97.59 86 | 98.83 110 | 96.05 129 | 97.46 167 | 97.63 184 | 96.77 73 | 99.76 65 | 95.61 120 | 99.46 137 | 99.49 59 |
|
ACMM | | 93.33 11 | 98.05 45 | 97.79 61 | 98.85 25 | 99.15 79 | 97.55 27 | 96.68 139 | 98.83 110 | 95.21 170 | 98.36 85 | 98.13 124 | 98.13 14 | 99.62 158 | 96.04 92 | 99.54 107 | 99.39 92 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v8 | | | 97.60 91 | 98.06 39 | 96.23 217 | 98.71 130 | 89.44 259 | 97.43 99 | 98.82 118 | 97.29 83 | 98.74 54 | 99.10 38 | 93.86 177 | 99.68 132 | 98.61 13 | 99.94 8 | 99.56 41 |
|
LF4IMVS | | | 96.07 177 | 95.63 191 | 97.36 156 | 98.19 190 | 95.55 99 | 95.44 201 | 98.82 118 | 92.29 260 | 95.70 262 | 96.55 265 | 92.63 207 | 98.69 324 | 91.75 249 | 99.33 182 | 97.85 296 |
|
GST-MVS | | | 97.82 75 | 97.49 96 | 98.81 29 | 99.23 61 | 97.25 40 | 97.16 110 | 98.79 120 | 95.96 136 | 97.53 157 | 97.40 203 | 96.93 60 | 99.77 60 | 95.04 159 | 99.35 172 | 99.42 87 |
|
ACMMP_NAP | | | 97.89 67 | 97.63 81 | 98.67 41 | 99.35 48 | 96.84 49 | 96.36 150 | 98.79 120 | 95.07 178 | 97.88 143 | 98.35 93 | 97.24 42 | 99.72 92 | 96.05 91 | 99.58 92 | 99.45 75 |
|
v1921920 | | | 96.72 148 | 96.96 129 | 95.99 226 | 98.21 188 | 88.79 271 | 95.42 203 | 98.79 120 | 93.22 235 | 98.19 107 | 98.26 111 | 92.68 204 | 99.70 117 | 98.34 20 | 99.55 104 | 99.49 59 |
|
DP-MVS | | | 97.87 69 | 97.89 53 | 97.81 113 | 98.62 142 | 94.82 135 | 97.13 114 | 98.79 120 | 98.98 17 | 98.74 54 | 98.49 82 | 95.80 116 | 99.49 195 | 95.04 159 | 99.44 142 | 99.11 161 |
|
mPP-MVS | | | 97.91 64 | 97.53 91 | 99.04 7 | 99.22 64 | 97.87 15 | 97.74 78 | 98.78 124 | 96.04 131 | 97.10 183 | 97.73 177 | 96.53 85 | 99.78 51 | 95.16 150 | 99.50 124 | 99.46 70 |
|
v144192 | | | 96.69 151 | 96.90 134 | 96.03 225 | 98.25 184 | 88.92 266 | 95.49 199 | 98.77 125 | 93.05 243 | 98.09 119 | 98.29 105 | 92.51 213 | 99.70 117 | 98.11 22 | 99.56 98 | 99.47 68 |
|
v1192 | | | 96.83 139 | 97.06 123 | 96.15 222 | 98.28 179 | 89.29 261 | 95.36 209 | 98.77 125 | 93.73 220 | 98.11 115 | 98.34 94 | 93.02 198 | 99.67 137 | 98.35 19 | 99.58 92 | 99.50 51 |
|
APD-MVS |  | | 97.00 124 | 96.53 154 | 98.41 62 | 98.55 151 | 96.31 67 | 96.32 153 | 98.77 125 | 92.96 250 | 97.44 168 | 97.58 189 | 95.84 107 | 99.74 82 | 91.96 240 | 99.35 172 | 99.19 140 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CPTT-MVS | | | 96.69 151 | 96.08 174 | 98.49 54 | 98.89 111 | 96.64 57 | 97.25 106 | 98.77 125 | 92.89 251 | 96.01 248 | 97.13 225 | 92.23 218 | 99.67 137 | 92.24 237 | 99.34 175 | 99.17 144 |
|
HQP_MVS | | | 96.66 154 | 96.33 164 | 97.68 125 | 98.70 132 | 94.29 155 | 96.50 143 | 98.75 129 | 96.36 114 | 96.16 241 | 96.77 253 | 91.91 230 | 99.46 204 | 92.59 234 | 99.20 200 | 99.28 121 |
|
plane_prior5 | | | | | | | | | 98.75 129 | | | | | 99.46 204 | 92.59 234 | 99.20 200 | 99.28 121 |
|
ETH3D cwj APD-0.16 | | | 96.23 171 | 95.61 193 | 98.09 92 | 97.91 221 | 95.65 96 | 94.94 237 | 98.74 131 | 91.31 275 | 96.02 247 | 97.08 230 | 94.05 174 | 99.69 125 | 91.51 252 | 98.94 233 | 98.93 189 |
|
Patchmatch-RL test | | | 94.66 238 | 94.49 238 | 95.19 262 | 98.54 152 | 88.91 267 | 92.57 316 | 98.74 131 | 91.46 272 | 98.32 93 | 97.75 174 | 77.31 337 | 98.81 313 | 96.06 89 | 99.61 84 | 97.85 296 |
|
SMA-MVS |  | | 97.48 100 | 97.11 118 | 98.60 46 | 98.83 115 | 96.67 55 | 96.74 133 | 98.73 133 | 91.61 269 | 98.48 72 | 98.36 92 | 96.53 85 | 99.68 132 | 95.17 148 | 99.54 107 | 99.45 75 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
Fast-Effi-MVS+-dtu | | | 96.44 164 | 96.12 171 | 97.39 155 | 97.18 296 | 94.39 151 | 95.46 200 | 98.73 133 | 96.03 133 | 94.72 282 | 94.92 321 | 96.28 100 | 99.69 125 | 93.81 211 | 97.98 290 | 98.09 276 |
|
zzz-MVS | | | 98.01 48 | 97.66 74 | 99.06 4 | 99.44 37 | 97.90 12 | 95.66 191 | 98.73 133 | 97.69 62 | 97.90 140 | 97.96 147 | 95.81 114 | 99.82 37 | 96.13 87 | 99.61 84 | 99.45 75 |
|
MTGPA |  | | | | | | | | 98.73 133 | | | | | | | | |
|
MTAPA | | | 98.14 37 | 97.84 56 | 99.06 4 | 99.44 37 | 97.90 12 | 97.25 106 | 98.73 133 | 97.69 62 | 97.90 140 | 97.96 147 | 95.81 114 | 99.82 37 | 96.13 87 | 99.61 84 | 99.45 75 |
|
MP-MVS |  | | 97.64 87 | 97.18 115 | 99.00 12 | 99.32 52 | 97.77 18 | 97.49 95 | 98.73 133 | 96.27 117 | 95.59 264 | 97.75 174 | 96.30 98 | 99.78 51 | 93.70 216 | 99.48 132 | 99.45 75 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NR-MVSNet | | | 97.96 50 | 97.86 55 | 98.26 75 | 98.73 125 | 95.54 100 | 98.14 53 | 98.73 133 | 97.79 50 | 99.42 15 | 97.83 165 | 94.40 165 | 99.78 51 | 95.91 102 | 99.76 49 | 99.46 70 |
|
QAPM | | | 95.88 186 | 95.57 194 | 96.80 186 | 97.90 223 | 91.84 225 | 98.18 52 | 98.73 133 | 88.41 303 | 96.42 226 | 98.13 124 | 94.73 150 | 99.75 72 | 88.72 308 | 98.94 233 | 98.81 209 |
|
test_0402 | | | 97.84 72 | 97.97 46 | 97.47 144 | 99.19 74 | 94.07 165 | 96.71 138 | 98.73 133 | 98.66 25 | 98.56 65 | 98.41 88 | 96.84 70 | 99.69 125 | 94.82 167 | 99.81 39 | 98.64 227 |
|
TAPA-MVS | | 93.32 12 | 94.93 223 | 94.23 247 | 97.04 173 | 98.18 193 | 94.51 147 | 95.22 221 | 98.73 133 | 81.22 355 | 96.25 237 | 95.95 298 | 93.80 181 | 98.98 299 | 89.89 292 | 98.87 241 | 97.62 306 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETH3 D test6400 | | | 94.77 229 | 93.87 260 | 97.47 144 | 98.12 204 | 93.73 179 | 94.56 253 | 98.70 143 | 85.45 333 | 94.70 284 | 95.93 300 | 91.77 232 | 99.63 150 | 86.45 333 | 99.14 207 | 99.05 172 |
|
testtj | | | 96.69 151 | 96.13 170 | 98.36 66 | 98.46 166 | 96.02 80 | 96.44 145 | 98.70 143 | 94.26 204 | 96.79 206 | 97.13 225 | 94.07 173 | 99.75 72 | 90.53 280 | 98.80 249 | 99.31 112 |
|
3Dnovator+ | | 96.13 3 | 97.73 81 | 97.59 87 | 98.15 87 | 98.11 205 | 95.60 97 | 98.04 59 | 98.70 143 | 98.13 40 | 96.93 200 | 98.45 85 | 95.30 135 | 99.62 158 | 95.64 118 | 98.96 229 | 99.24 132 |
|
Test_1112_low_res | | | 93.53 277 | 92.86 277 | 95.54 249 | 98.60 145 | 88.86 269 | 92.75 312 | 98.69 146 | 82.66 349 | 92.65 338 | 96.92 243 | 84.75 301 | 99.56 175 | 90.94 264 | 97.76 298 | 98.19 273 |
|
DP-MVS Recon | | | 95.55 196 | 95.13 203 | 96.80 186 | 98.51 156 | 93.99 169 | 94.60 251 | 98.69 146 | 90.20 286 | 95.78 258 | 96.21 284 | 92.73 203 | 98.98 299 | 90.58 279 | 98.86 243 | 97.42 313 |
|
CHOSEN 1792x2688 | | | 94.10 260 | 93.41 267 | 96.18 221 | 99.16 76 | 90.04 250 | 92.15 324 | 98.68 148 | 79.90 360 | 96.22 238 | 97.83 165 | 87.92 282 | 99.42 214 | 89.18 302 | 99.65 73 | 99.08 166 |
|
PVSNet_BlendedMVS | | | 95.02 222 | 94.93 213 | 95.27 259 | 97.79 243 | 87.40 300 | 94.14 272 | 98.68 148 | 88.94 298 | 94.51 289 | 98.01 143 | 93.04 195 | 99.30 253 | 89.77 294 | 99.49 128 | 99.11 161 |
|
PVSNet_Blended | | | 93.96 264 | 93.65 263 | 94.91 271 | 97.79 243 | 87.40 300 | 91.43 334 | 98.68 148 | 84.50 343 | 94.51 289 | 94.48 330 | 93.04 195 | 99.30 253 | 89.77 294 | 98.61 267 | 98.02 289 |
|
v1144 | | | 96.84 136 | 97.08 121 | 96.13 223 | 98.42 169 | 89.28 262 | 95.41 205 | 98.67 151 | 94.21 206 | 97.97 134 | 98.31 97 | 93.06 194 | 99.65 145 | 98.06 24 | 99.62 78 | 99.45 75 |
|
CLD-MVS | | | 95.47 201 | 95.07 206 | 96.69 193 | 98.27 181 | 92.53 206 | 91.36 335 | 98.67 151 | 91.22 277 | 95.78 258 | 94.12 335 | 95.65 121 | 98.98 299 | 90.81 268 | 99.72 60 | 98.57 234 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
GBi-Net | | | 96.99 125 | 96.80 138 | 97.56 131 | 97.96 217 | 93.67 181 | 98.23 45 | 98.66 153 | 95.59 157 | 97.99 130 | 99.19 27 | 89.51 265 | 99.73 87 | 94.60 176 | 99.44 142 | 99.30 113 |
|
test1 | | | 96.99 125 | 96.80 138 | 97.56 131 | 97.96 217 | 93.67 181 | 98.23 45 | 98.66 153 | 95.59 157 | 97.99 130 | 99.19 27 | 89.51 265 | 99.73 87 | 94.60 176 | 99.44 142 | 99.30 113 |
|
FMVSNet1 | | | 97.95 54 | 98.08 36 | 97.56 131 | 99.14 87 | 93.67 181 | 98.23 45 | 98.66 153 | 97.41 77 | 99.00 39 | 99.19 27 | 95.47 128 | 99.73 87 | 95.83 107 | 99.76 49 | 99.30 113 |
|
IterMVS-LS | | | 96.92 131 | 97.29 106 | 95.79 237 | 98.51 156 | 88.13 284 | 95.10 225 | 98.66 153 | 96.99 89 | 98.46 75 | 98.68 69 | 92.55 209 | 99.74 82 | 96.91 63 | 99.79 43 | 99.50 51 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
F-COLMAP | | | 95.30 209 | 94.38 244 | 98.05 98 | 98.64 137 | 96.04 77 | 95.61 197 | 98.66 153 | 89.00 297 | 93.22 328 | 96.40 275 | 92.90 199 | 99.35 241 | 87.45 327 | 97.53 312 | 98.77 216 |
|
USDC | | | 94.56 243 | 94.57 237 | 94.55 290 | 97.78 247 | 86.43 315 | 92.75 312 | 98.65 158 | 85.96 325 | 96.91 202 | 97.93 154 | 90.82 242 | 98.74 319 | 90.71 275 | 99.59 90 | 98.47 243 |
|
PM-MVS | | | 97.36 110 | 97.10 119 | 98.14 88 | 98.91 110 | 96.77 51 | 96.20 160 | 98.63 159 | 93.82 218 | 98.54 66 | 98.33 95 | 93.98 175 | 99.05 290 | 95.99 97 | 99.45 141 | 98.61 232 |
|
cascas | | | 91.89 303 | 91.35 301 | 93.51 311 | 94.27 359 | 85.60 322 | 88.86 364 | 98.61 160 | 79.32 362 | 92.16 345 | 91.44 364 | 89.22 269 | 98.12 358 | 90.80 269 | 97.47 316 | 96.82 332 |
|
bld_raw_dy_0_64 | | | 97.69 84 | 97.61 85 | 97.91 105 | 99.54 24 | 94.27 159 | 98.06 58 | 98.60 161 | 96.60 101 | 98.79 49 | 98.95 50 | 89.62 259 | 99.84 31 | 98.43 18 | 99.91 17 | 99.62 29 |
|
Fast-Effi-MVS+ | | | 95.49 198 | 95.07 206 | 96.75 189 | 97.67 261 | 92.82 201 | 94.22 266 | 98.60 161 | 91.61 269 | 93.42 325 | 92.90 347 | 96.73 75 | 99.70 117 | 92.60 232 | 97.89 295 | 97.74 301 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 133 | 96.43 160 | 98.31 72 | 97.48 272 | 97.23 42 | 92.56 317 | 98.60 161 | 92.84 252 | 98.54 66 | 97.40 203 | 96.64 79 | 98.78 315 | 94.40 186 | 99.41 159 | 98.93 189 |
|
OMC-MVS | | | 96.48 162 | 96.00 177 | 97.91 105 | 98.30 176 | 96.01 81 | 94.86 241 | 98.60 161 | 91.88 266 | 97.18 177 | 97.21 222 | 96.11 101 | 99.04 291 | 90.49 284 | 99.34 175 | 98.69 224 |
|
testgi | | | 96.07 177 | 96.50 158 | 94.80 279 | 99.26 55 | 87.69 294 | 95.96 175 | 98.58 165 | 95.08 177 | 98.02 129 | 96.25 281 | 97.92 16 | 97.60 364 | 88.68 310 | 98.74 255 | 99.11 161 |
|
EGC-MVSNET | | | 83.08 343 | 77.93 346 | 98.53 52 | 99.57 18 | 97.55 27 | 98.33 38 | 98.57 166 | 4.71 379 | 10.38 380 | 98.90 55 | 95.60 123 | 99.50 193 | 95.69 112 | 99.61 84 | 98.55 237 |
|
ZD-MVS | | | | | | 98.43 168 | 95.94 82 | | 98.56 167 | 90.72 281 | 96.66 214 | 97.07 231 | 95.02 144 | 99.74 82 | 91.08 260 | 98.93 235 | |
|
VPNet | | | 97.26 115 | 97.49 96 | 96.59 197 | 99.47 34 | 90.58 244 | 96.27 154 | 98.53 168 | 97.77 51 | 98.46 75 | 98.41 88 | 94.59 158 | 99.68 132 | 94.61 175 | 99.29 190 | 99.52 48 |
|
DELS-MVS | | | 96.17 174 | 96.23 166 | 95.99 226 | 97.55 269 | 90.04 250 | 92.38 322 | 98.52 169 | 94.13 209 | 96.55 222 | 97.06 232 | 94.99 145 | 99.58 168 | 95.62 119 | 99.28 191 | 98.37 251 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HyFIR lowres test | | | 93.72 269 | 92.65 285 | 96.91 180 | 98.93 108 | 91.81 226 | 91.23 341 | 98.52 169 | 82.69 348 | 96.46 225 | 96.52 269 | 80.38 321 | 99.90 14 | 90.36 286 | 98.79 250 | 99.03 174 |
|
ITE_SJBPF | | | | | 97.85 111 | 98.64 137 | 96.66 56 | | 98.51 171 | 95.63 154 | 97.22 173 | 97.30 217 | 95.52 125 | 98.55 338 | 90.97 263 | 98.90 237 | 98.34 257 |
|
eth_miper_zixun_eth | | | 94.89 224 | 94.93 213 | 94.75 281 | 95.99 332 | 86.12 318 | 91.35 336 | 98.49 172 | 93.40 227 | 97.12 181 | 97.25 220 | 86.87 290 | 99.35 241 | 95.08 158 | 98.82 248 | 98.78 213 |
|
TinyColmap | | | 96.00 182 | 96.34 163 | 94.96 270 | 97.90 223 | 87.91 287 | 94.13 273 | 98.49 172 | 94.41 199 | 98.16 109 | 97.76 171 | 96.29 99 | 98.68 327 | 90.52 281 | 99.42 153 | 98.30 262 |
|
OPM-MVS | | | 97.54 95 | 97.25 109 | 98.41 62 | 99.11 89 | 96.61 58 | 95.24 220 | 98.46 174 | 94.58 196 | 98.10 118 | 98.07 132 | 97.09 47 | 99.39 230 | 95.16 150 | 99.44 142 | 99.21 135 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tfpnnormal | | | 97.72 82 | 97.97 46 | 96.94 177 | 99.26 55 | 92.23 212 | 97.83 71 | 98.45 175 | 98.25 36 | 99.13 33 | 98.66 70 | 96.65 77 | 99.69 125 | 93.92 208 | 99.62 78 | 98.91 194 |
|
UnsupCasMVSNet_eth | | | 95.91 184 | 95.73 188 | 96.44 206 | 98.48 162 | 91.52 230 | 95.31 214 | 98.45 175 | 95.76 149 | 97.48 164 | 97.54 190 | 89.53 264 | 98.69 324 | 94.43 183 | 94.61 356 | 99.13 153 |
|
PCF-MVS | | 89.43 18 | 92.12 300 | 90.64 314 | 96.57 200 | 97.80 237 | 93.48 189 | 89.88 359 | 98.45 175 | 74.46 372 | 96.04 246 | 95.68 304 | 90.71 244 | 99.31 250 | 73.73 371 | 99.01 227 | 96.91 326 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP3-MVS | | | | | | | | | 98.43 178 | | | | | | | 98.74 255 | |
|
HQP-MVS | | | 95.17 215 | 94.58 235 | 96.92 178 | 97.85 225 | 92.47 207 | 94.26 260 | 98.43 178 | 93.18 237 | 92.86 333 | 95.08 315 | 90.33 248 | 99.23 267 | 90.51 282 | 98.74 255 | 99.05 172 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 145 | 96.51 157 | 97.44 150 | 97.69 257 | 94.15 163 | 96.02 170 | 98.43 178 | 93.17 240 | 97.30 171 | 97.38 209 | 95.48 127 | 99.28 259 | 93.74 213 | 99.34 175 | 98.88 202 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_prior3 | | | 95.91 184 | 95.39 197 | 97.46 147 | 97.79 243 | 94.26 160 | 93.33 302 | 98.42 181 | 94.21 206 | 94.02 302 | 96.25 281 | 93.64 184 | 99.34 243 | 91.90 242 | 98.96 229 | 98.79 211 |
|
test_prior | | | | | 97.46 147 | 97.79 243 | 94.26 160 | | 98.42 181 | | | | | 99.34 243 | | | 98.79 211 |
|
save fliter | | | | | | 98.48 162 | 94.71 139 | 94.53 254 | 98.41 183 | 95.02 181 | | | | | | | |
|
CANet | | | 95.86 187 | 95.65 190 | 96.49 204 | 96.41 316 | 90.82 239 | 94.36 258 | 98.41 183 | 94.94 183 | 92.62 341 | 96.73 256 | 92.68 204 | 99.71 108 | 95.12 156 | 99.60 88 | 98.94 185 |
|
Anonymous20240521 | | | 97.07 122 | 97.51 93 | 95.76 238 | 99.35 48 | 88.18 281 | 97.78 72 | 98.40 185 | 97.11 87 | 98.34 88 | 99.04 44 | 89.58 261 | 99.79 47 | 98.09 23 | 99.93 10 | 99.30 113 |
|
TEST9 | | | | | | 97.84 229 | 95.23 120 | 93.62 291 | 98.39 186 | 86.81 319 | 93.78 307 | 95.99 293 | 94.68 154 | 99.52 188 | | | |
|
train_agg | | | 95.46 202 | 94.66 226 | 97.88 109 | 97.84 229 | 95.23 120 | 93.62 291 | 98.39 186 | 87.04 317 | 93.78 307 | 95.99 293 | 94.58 159 | 99.52 188 | 91.76 248 | 98.90 237 | 98.89 198 |
|
test_8 | | | | | | 97.81 233 | 95.07 129 | 93.54 294 | 98.38 188 | 87.04 317 | 93.71 311 | 95.96 297 | 94.58 159 | 99.52 188 | | | |
|
MSDG | | | 95.33 207 | 95.13 203 | 95.94 232 | 97.40 280 | 91.85 224 | 91.02 346 | 98.37 189 | 95.30 168 | 96.31 233 | 95.99 293 | 94.51 162 | 98.38 348 | 89.59 296 | 97.65 308 | 97.60 308 |
|
agg_prior1 | | | 95.39 205 | 94.60 232 | 97.75 117 | 97.80 237 | 94.96 131 | 93.39 299 | 98.36 190 | 87.20 315 | 93.49 320 | 95.97 296 | 94.65 156 | 99.53 184 | 91.69 250 | 98.86 243 | 98.77 216 |
|
agg_prior | | | | | | 97.80 237 | 94.96 131 | | 98.36 190 | | 93.49 320 | | | 99.53 184 | | | |
|
V42 | | | 97.04 123 | 97.16 116 | 96.68 194 | 98.59 147 | 91.05 234 | 96.33 152 | 98.36 190 | 94.60 193 | 97.99 130 | 98.30 101 | 93.32 189 | 99.62 158 | 97.40 47 | 99.53 110 | 99.38 94 |
|
MVS_111021_HR | | | 96.73 147 | 96.54 153 | 97.27 160 | 98.35 174 | 93.66 184 | 93.42 297 | 98.36 190 | 94.74 188 | 96.58 218 | 96.76 255 | 96.54 84 | 98.99 297 | 94.87 165 | 99.27 193 | 99.15 148 |
|
c3_l | | | 95.20 212 | 95.32 198 | 94.83 278 | 96.19 324 | 86.43 315 | 91.83 330 | 98.35 194 | 93.47 226 | 97.36 170 | 97.26 219 | 88.69 271 | 99.28 259 | 95.41 138 | 99.36 167 | 98.78 213 |
|
MVS_Test | | | 96.27 169 | 96.79 140 | 94.73 282 | 96.94 305 | 86.63 312 | 96.18 161 | 98.33 195 | 94.94 183 | 96.07 244 | 98.28 106 | 95.25 136 | 99.26 262 | 97.21 52 | 97.90 294 | 98.30 262 |
|
CDPH-MVS | | | 95.45 203 | 94.65 227 | 97.84 112 | 98.28 179 | 94.96 131 | 93.73 289 | 98.33 195 | 85.03 338 | 95.44 267 | 96.60 263 | 95.31 134 | 99.44 211 | 90.01 290 | 99.13 210 | 99.11 161 |
|
MVS_111021_LR | | | 96.82 140 | 96.55 151 | 97.62 128 | 98.27 181 | 95.34 115 | 93.81 287 | 98.33 195 | 94.59 195 | 96.56 220 | 96.63 262 | 96.61 80 | 98.73 320 | 94.80 168 | 99.34 175 | 98.78 213 |
|
Anonymous20240529 | | | 97.96 50 | 98.04 41 | 97.71 120 | 98.69 134 | 94.28 158 | 97.86 69 | 98.31 198 | 98.79 22 | 99.23 26 | 98.86 58 | 95.76 117 | 99.61 164 | 95.49 125 | 99.36 167 | 99.23 133 |
|
Regformer-2 | | | 97.41 105 | 97.24 111 | 97.93 104 | 97.21 294 | 94.72 138 | 94.85 242 | 98.27 199 | 97.74 55 | 98.11 115 | 97.50 195 | 95.58 124 | 99.69 125 | 96.57 72 | 99.31 186 | 99.37 101 |
|
FMVSNet5 | | | 93.39 279 | 92.35 289 | 96.50 203 | 95.83 336 | 90.81 241 | 97.31 103 | 98.27 199 | 92.74 253 | 96.27 235 | 98.28 106 | 62.23 376 | 99.67 137 | 90.86 266 | 99.36 167 | 99.03 174 |
|
v2v482 | | | 96.78 143 | 97.06 123 | 95.95 230 | 98.57 149 | 88.77 272 | 95.36 209 | 98.26 201 | 95.18 173 | 97.85 148 | 98.23 114 | 92.58 208 | 99.63 150 | 97.80 31 | 99.69 67 | 99.45 75 |
|
PLC |  | 91.02 16 | 94.05 263 | 92.90 276 | 97.51 136 | 98.00 215 | 95.12 128 | 94.25 263 | 98.25 202 | 86.17 323 | 91.48 349 | 95.25 313 | 91.01 239 | 99.19 270 | 85.02 346 | 96.69 332 | 98.22 270 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
miper_ehance_all_eth | | | 94.69 235 | 94.70 225 | 94.64 283 | 95.77 338 | 86.22 317 | 91.32 339 | 98.24 203 | 91.67 268 | 97.05 189 | 96.65 261 | 88.39 275 | 99.22 269 | 94.88 164 | 98.34 277 | 98.49 242 |
|
DVP-MVS |  | | 97.78 78 | 97.65 76 | 98.16 84 | 99.24 59 | 95.51 102 | 96.74 133 | 98.23 204 | 95.92 139 | 98.40 79 | 98.28 106 | 97.06 50 | 99.71 108 | 95.48 128 | 99.52 115 | 99.26 126 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
iter_conf05 | | | 93.65 273 | 93.05 272 | 95.46 253 | 96.13 330 | 87.45 298 | 95.95 178 | 98.22 205 | 92.66 254 | 97.04 190 | 97.89 157 | 63.52 375 | 99.72 92 | 96.19 85 | 99.82 38 | 99.21 135 |
|
xiu_mvs_v1_base_debu | | | 95.62 193 | 95.96 180 | 94.60 286 | 98.01 211 | 88.42 275 | 93.99 278 | 98.21 206 | 92.98 246 | 95.91 251 | 94.53 327 | 96.39 94 | 99.72 92 | 95.43 135 | 98.19 282 | 95.64 351 |
|
xiu_mvs_v1_base | | | 95.62 193 | 95.96 180 | 94.60 286 | 98.01 211 | 88.42 275 | 93.99 278 | 98.21 206 | 92.98 246 | 95.91 251 | 94.53 327 | 96.39 94 | 99.72 92 | 95.43 135 | 98.19 282 | 95.64 351 |
|
xiu_mvs_v1_base_debi | | | 95.62 193 | 95.96 180 | 94.60 286 | 98.01 211 | 88.42 275 | 93.99 278 | 98.21 206 | 92.98 246 | 95.91 251 | 94.53 327 | 96.39 94 | 99.72 92 | 95.43 135 | 98.19 282 | 95.64 351 |
|
miper_lstm_enhance | | | 94.81 228 | 94.80 222 | 94.85 276 | 96.16 326 | 86.45 314 | 91.14 343 | 98.20 209 | 93.49 225 | 97.03 192 | 97.37 211 | 84.97 300 | 99.26 262 | 95.28 141 | 99.56 98 | 98.83 207 |
|
TSAR-MVS + MP. | | | 97.42 104 | 97.23 112 | 98.00 100 | 99.38 45 | 95.00 130 | 97.63 84 | 98.20 209 | 93.00 245 | 98.16 109 | 98.06 137 | 95.89 105 | 99.72 92 | 95.67 114 | 99.10 216 | 99.28 121 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MVP-Stereo | | | 95.69 190 | 95.28 199 | 96.92 178 | 98.15 199 | 93.03 197 | 95.64 196 | 98.20 209 | 90.39 284 | 96.63 217 | 97.73 177 | 91.63 233 | 99.10 285 | 91.84 246 | 97.31 320 | 98.63 229 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HPM-MVS++ |  | | 96.99 125 | 96.38 161 | 98.81 29 | 98.64 137 | 97.59 24 | 95.97 174 | 98.20 209 | 95.51 160 | 95.06 274 | 96.53 267 | 94.10 172 | 99.70 117 | 94.29 191 | 99.15 206 | 99.13 153 |
|
NCCC | | | 96.52 160 | 95.99 178 | 98.10 91 | 97.81 233 | 95.68 93 | 95.00 235 | 98.20 209 | 95.39 165 | 95.40 269 | 96.36 277 | 93.81 180 | 99.45 208 | 93.55 219 | 98.42 275 | 99.17 144 |
|
new-patchmatchnet | | | 95.67 192 | 96.58 148 | 92.94 326 | 97.48 272 | 80.21 361 | 92.96 308 | 98.19 214 | 94.83 186 | 98.82 47 | 98.79 60 | 93.31 190 | 99.51 192 | 95.83 107 | 99.04 224 | 99.12 158 |
|
MCST-MVS | | | 96.24 170 | 95.80 185 | 97.56 131 | 98.75 124 | 94.13 164 | 94.66 249 | 98.17 215 | 90.17 287 | 96.21 239 | 96.10 291 | 95.14 139 | 99.43 213 | 94.13 198 | 98.85 245 | 99.13 153 |
|
door-mid | | | | | | | | | 98.17 215 | | | | | | | | |
|
CNVR-MVS | | | 96.92 131 | 96.55 151 | 98.03 99 | 98.00 215 | 95.54 100 | 94.87 240 | 98.17 215 | 94.60 193 | 96.38 228 | 97.05 233 | 95.67 120 | 99.36 238 | 95.12 156 | 99.08 218 | 99.19 140 |
|
MSC_two_6792asdad | | | | | 98.22 80 | 97.75 251 | 95.34 115 | | 98.16 218 | | | | | 99.75 72 | 95.87 105 | 99.51 120 | 99.57 38 |
|
No_MVS | | | | | 98.22 80 | 97.75 251 | 95.34 115 | | 98.16 218 | | | | | 99.75 72 | 95.87 105 | 99.51 120 | 99.57 38 |
|
原ACMM1 | | | | | 96.58 198 | 98.16 197 | 92.12 217 | | 98.15 220 | 85.90 327 | 93.49 320 | 96.43 272 | 92.47 214 | 99.38 233 | 87.66 322 | 98.62 266 | 98.23 269 |
|
IU-MVS | | | | | | 99.22 64 | 95.40 108 | | 98.14 221 | 85.77 329 | 98.36 85 | | | | 95.23 145 | 99.51 120 | 99.49 59 |
|
Regformer-4 | | | 97.53 97 | 97.47 98 | 97.71 120 | 97.35 282 | 93.91 170 | 95.26 218 | 98.14 221 | 97.97 47 | 98.34 88 | 97.89 157 | 95.49 126 | 99.71 108 | 97.41 46 | 99.42 153 | 99.51 50 |
|
ambc | | | | | 96.56 201 | 98.23 187 | 91.68 228 | 97.88 68 | 98.13 223 | | 98.42 78 | 98.56 77 | 94.22 170 | 99.04 291 | 94.05 203 | 99.35 172 | 98.95 183 |
|
WR-MVS | | | 96.90 133 | 96.81 137 | 97.16 165 | 98.56 150 | 92.20 215 | 94.33 259 | 98.12 224 | 97.34 80 | 98.20 104 | 97.33 214 | 92.81 200 | 99.75 72 | 94.79 169 | 99.81 39 | 99.54 44 |
|
iter_conf_final | | | 94.54 245 | 93.91 259 | 96.43 207 | 97.23 293 | 90.41 248 | 96.81 128 | 98.10 225 | 93.87 217 | 96.80 205 | 97.89 157 | 68.02 369 | 99.72 92 | 96.73 66 | 99.77 48 | 99.18 143 |
|
cdsmvs_eth3d_5k | | | 24.22 346 | 32.30 349 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 98.10 225 | 0.00 382 | 0.00 383 | 95.06 317 | 97.54 29 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Effi-MVS+-dtu | | | 96.81 141 | 96.09 173 | 98.99 13 | 96.90 307 | 98.69 2 | 96.42 146 | 98.09 227 | 95.86 144 | 95.15 273 | 95.54 309 | 94.26 168 | 99.81 40 | 94.06 200 | 98.51 273 | 98.47 243 |
|
mvs-test1 | | | 96.20 172 | 95.50 196 | 98.32 69 | 96.90 307 | 98.16 5 | 95.07 229 | 98.09 227 | 95.86 144 | 93.63 314 | 94.32 333 | 94.26 168 | 99.71 108 | 94.06 200 | 97.27 322 | 97.07 319 |
|
cl____ | | | 94.73 230 | 94.64 228 | 95.01 268 | 95.85 335 | 87.00 307 | 91.33 337 | 98.08 229 | 93.34 230 | 97.10 183 | 97.33 214 | 84.01 307 | 99.30 253 | 95.14 153 | 99.56 98 | 98.71 223 |
|
DIV-MVS_self_test | | | 94.73 230 | 94.64 228 | 95.01 268 | 95.86 334 | 87.00 307 | 91.33 337 | 98.08 229 | 93.34 230 | 97.10 183 | 97.34 213 | 84.02 306 | 99.31 250 | 95.15 152 | 99.55 104 | 98.72 221 |
|
test11 | | | | | | | | | 98.08 229 | | | | | | | | |
|
AdaColmap |  | | 95.11 216 | 94.62 231 | 96.58 198 | 97.33 288 | 94.45 150 | 94.92 238 | 98.08 229 | 93.15 241 | 93.98 305 | 95.53 310 | 94.34 166 | 99.10 285 | 85.69 338 | 98.61 267 | 96.20 345 |
|
pmmvs-eth3d | | | 96.49 161 | 96.18 169 | 97.42 152 | 98.25 184 | 94.29 155 | 94.77 246 | 98.07 233 | 89.81 290 | 97.97 134 | 98.33 95 | 93.11 193 | 99.08 287 | 95.46 131 | 99.84 34 | 98.89 198 |
|
FMVSNet2 | | | 96.72 148 | 96.67 145 | 96.87 182 | 97.96 217 | 91.88 223 | 97.15 111 | 98.06 234 | 95.59 157 | 98.50 70 | 98.62 73 | 89.51 265 | 99.65 145 | 94.99 163 | 99.60 88 | 99.07 168 |
|
UnsupCasMVSNet_bld | | | 94.72 234 | 94.26 246 | 96.08 224 | 98.62 142 | 90.54 247 | 93.38 300 | 98.05 235 | 90.30 285 | 97.02 193 | 96.80 252 | 89.54 262 | 99.16 276 | 88.44 312 | 96.18 340 | 98.56 235 |
|
Regformer-1 | | | 97.27 114 | 97.16 116 | 97.61 129 | 97.21 294 | 93.86 173 | 94.85 242 | 98.04 236 | 97.62 65 | 98.03 127 | 97.50 195 | 95.34 132 | 99.63 150 | 96.52 73 | 99.31 186 | 99.35 104 |
|
PAPM_NR | | | 94.61 241 | 94.17 251 | 95.96 228 | 98.36 173 | 91.23 232 | 95.93 179 | 97.95 237 | 92.98 246 | 93.42 325 | 94.43 331 | 90.53 245 | 98.38 348 | 87.60 323 | 96.29 339 | 98.27 266 |
|
D2MVS | | | 95.18 213 | 95.17 202 | 95.21 261 | 97.76 249 | 87.76 293 | 94.15 270 | 97.94 238 | 89.77 291 | 96.99 195 | 97.68 182 | 87.45 285 | 99.14 278 | 95.03 161 | 99.81 39 | 98.74 218 |
|
无先验 | | | | | | | | 93.20 305 | 97.91 239 | 80.78 356 | | | | 99.40 225 | 87.71 319 | | 97.94 292 |
|
v148 | | | 96.58 158 | 96.97 127 | 95.42 255 | 98.63 141 | 87.57 295 | 95.09 226 | 97.90 240 | 95.91 141 | 98.24 101 | 97.96 147 | 93.42 188 | 99.39 230 | 96.04 92 | 99.52 115 | 99.29 120 |
|
CNLPA | | | 95.04 219 | 94.47 240 | 96.75 189 | 97.81 233 | 95.25 119 | 94.12 274 | 97.89 241 | 94.41 199 | 94.57 286 | 95.69 303 | 90.30 251 | 98.35 351 | 86.72 332 | 98.76 253 | 96.64 337 |
|
PAPR | | | 92.22 297 | 91.27 303 | 95.07 266 | 95.73 340 | 88.81 270 | 91.97 328 | 97.87 242 | 85.80 328 | 90.91 351 | 92.73 351 | 91.16 237 | 98.33 352 | 79.48 362 | 95.76 347 | 98.08 277 |
|
miper_enhance_ethall | | | 93.14 285 | 92.78 282 | 94.20 300 | 93.65 366 | 85.29 327 | 89.97 355 | 97.85 243 | 85.05 337 | 96.15 243 | 94.56 326 | 85.74 294 | 99.14 278 | 93.74 213 | 98.34 277 | 98.17 275 |
|
Anonymous20231206 | | | 95.27 210 | 95.06 208 | 95.88 234 | 98.72 127 | 89.37 260 | 95.70 187 | 97.85 243 | 88.00 309 | 96.98 197 | 97.62 185 | 91.95 226 | 99.34 243 | 89.21 301 | 99.53 110 | 98.94 185 |
|
xiu_mvs_v2_base | | | 94.22 254 | 94.63 230 | 92.99 324 | 97.32 289 | 84.84 335 | 92.12 325 | 97.84 245 | 91.96 264 | 94.17 296 | 93.43 338 | 96.07 102 | 99.71 108 | 91.27 256 | 97.48 314 | 94.42 360 |
|
PS-MVSNAJ | | | 94.10 260 | 94.47 240 | 93.00 323 | 97.35 282 | 84.88 334 | 91.86 329 | 97.84 245 | 91.96 264 | 94.17 296 | 92.50 354 | 95.82 110 | 99.71 108 | 91.27 256 | 97.48 314 | 94.40 361 |
|
CANet_DTU | | | 94.65 239 | 94.21 249 | 95.96 228 | 95.90 333 | 89.68 254 | 93.92 282 | 97.83 247 | 93.19 236 | 90.12 358 | 95.64 306 | 88.52 272 | 99.57 174 | 93.27 224 | 99.47 134 | 98.62 230 |
|
door | | | | | | | | | 97.81 248 | | | | | | | | |
|
test12 | | | | | 97.46 147 | 97.61 265 | 94.07 165 | | 97.78 249 | | 93.57 318 | | 93.31 190 | 99.42 214 | | 98.78 251 | 98.89 198 |
|
旧先验1 | | | | | | 97.80 237 | 93.87 172 | | 97.75 250 | | | 97.04 234 | 93.57 186 | | | 98.68 259 | 98.72 221 |
|
新几何1 | | | | | 97.25 163 | 98.29 177 | 94.70 142 | | 97.73 251 | 77.98 366 | 94.83 281 | 96.67 260 | 92.08 223 | 99.45 208 | 88.17 317 | 98.65 264 | 97.61 307 |
|
testdata | | | | | 95.70 242 | 98.16 197 | 90.58 244 | | 97.72 252 | 80.38 358 | 95.62 263 | 97.02 235 | 92.06 224 | 98.98 299 | 89.06 305 | 98.52 271 | 97.54 309 |
|
1121 | | | 94.26 252 | 93.26 269 | 97.27 160 | 98.26 183 | 94.73 137 | 95.86 181 | 97.71 253 | 77.96 367 | 94.53 288 | 96.71 257 | 91.93 228 | 99.40 225 | 87.71 319 | 98.64 265 | 97.69 304 |
|
test20.03 | | | 96.58 158 | 96.61 146 | 96.48 205 | 98.49 160 | 91.72 227 | 95.68 190 | 97.69 254 | 96.81 95 | 98.27 99 | 97.92 155 | 94.18 171 | 98.71 322 | 90.78 270 | 99.66 72 | 99.00 177 |
|
ab-mvs | | | 96.59 156 | 96.59 147 | 96.60 196 | 98.64 137 | 92.21 213 | 98.35 35 | 97.67 255 | 94.45 198 | 96.99 195 | 98.79 60 | 94.96 147 | 99.49 195 | 90.39 285 | 99.07 220 | 98.08 277 |
|
CMPMVS |  | 73.10 23 | 92.74 289 | 91.39 300 | 96.77 188 | 93.57 368 | 94.67 143 | 94.21 267 | 97.67 255 | 80.36 359 | 93.61 316 | 96.60 263 | 82.85 310 | 97.35 365 | 84.86 347 | 98.78 251 | 98.29 265 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_low_dy_conf_001 | | | 98.18 34 | 98.04 41 | 98.60 46 | 99.62 14 | 96.14 73 | 98.66 19 | 97.66 257 | 97.24 84 | 98.78 50 | 99.33 19 | 92.47 214 | 99.87 22 | 98.71 10 | 99.89 26 | 99.80 8 |
|
mvs_anonymous | | | 95.36 206 | 96.07 175 | 93.21 318 | 96.29 318 | 81.56 356 | 94.60 251 | 97.66 257 | 93.30 232 | 96.95 199 | 98.91 54 | 93.03 197 | 99.38 233 | 96.60 69 | 97.30 321 | 98.69 224 |
|
FMVSNet3 | | | 95.26 211 | 94.94 211 | 96.22 219 | 96.53 313 | 90.06 249 | 95.99 172 | 97.66 257 | 94.11 211 | 97.99 130 | 97.91 156 | 80.22 322 | 99.63 150 | 94.60 176 | 99.44 142 | 98.96 182 |
|
EI-MVSNet-UG-set | | | 97.32 112 | 97.40 99 | 97.09 170 | 97.34 286 | 92.01 221 | 95.33 212 | 97.65 260 | 97.74 55 | 98.30 97 | 98.14 123 | 95.04 142 | 99.69 125 | 97.55 41 | 99.52 115 | 99.58 33 |
|
EI-MVSNet-Vis-set | | | 97.32 112 | 97.39 100 | 97.11 168 | 97.36 281 | 92.08 219 | 95.34 211 | 97.65 260 | 97.74 55 | 98.29 98 | 98.11 128 | 95.05 140 | 99.68 132 | 97.50 43 | 99.50 124 | 99.56 41 |
|
EI-MVSNet | | | 96.63 155 | 96.93 130 | 95.74 239 | 97.26 291 | 88.13 284 | 95.29 216 | 97.65 260 | 96.99 89 | 97.94 137 | 98.19 119 | 92.55 209 | 99.58 168 | 96.91 63 | 99.56 98 | 99.50 51 |
|
MVSTER | | | 94.21 256 | 93.93 258 | 95.05 267 | 95.83 336 | 86.46 313 | 95.18 223 | 97.65 260 | 92.41 259 | 97.94 137 | 98.00 145 | 72.39 359 | 99.58 168 | 96.36 80 | 99.56 98 | 99.12 158 |
|
IterMVS-SCA-FT | | | 95.86 187 | 96.19 168 | 94.85 276 | 97.68 258 | 85.53 323 | 92.42 320 | 97.63 264 | 96.99 89 | 98.36 85 | 98.54 79 | 87.94 278 | 99.75 72 | 97.07 60 | 99.08 218 | 99.27 125 |
|
Regformer-3 | | | 97.25 116 | 97.29 106 | 97.11 168 | 97.35 282 | 92.32 210 | 95.26 218 | 97.62 265 | 97.67 64 | 98.17 108 | 97.89 157 | 95.05 140 | 99.56 175 | 97.16 56 | 99.42 153 | 99.46 70 |
|
test222 | | | | | | 98.17 195 | 93.24 194 | 92.74 314 | 97.61 266 | 75.17 371 | 94.65 285 | 96.69 259 | 90.96 241 | | | 98.66 262 | 97.66 305 |
|
VNet | | | 96.84 136 | 96.83 136 | 96.88 181 | 98.06 206 | 92.02 220 | 96.35 151 | 97.57 267 | 97.70 61 | 97.88 143 | 97.80 170 | 92.40 216 | 99.54 182 | 94.73 174 | 98.96 229 | 99.08 166 |
|
PMVS |  | 89.60 17 | 96.71 150 | 96.97 127 | 95.95 230 | 99.51 29 | 97.81 17 | 97.42 100 | 97.49 268 | 97.93 48 | 95.95 249 | 98.58 74 | 96.88 66 | 96.91 367 | 89.59 296 | 99.36 167 | 93.12 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ppachtmachnet_test | | | 94.49 247 | 94.84 218 | 93.46 312 | 96.16 326 | 82.10 352 | 90.59 349 | 97.48 269 | 90.53 283 | 97.01 194 | 97.59 187 | 91.01 239 | 99.36 238 | 93.97 207 | 99.18 204 | 98.94 185 |
|
DPM-MVS | | | 93.68 271 | 92.77 283 | 96.42 209 | 97.91 221 | 92.54 205 | 91.17 342 | 97.47 270 | 84.99 339 | 93.08 330 | 94.74 323 | 89.90 256 | 99.00 295 | 87.54 325 | 98.09 287 | 97.72 302 |
|
IterMVS | | | 95.42 204 | 95.83 184 | 94.20 300 | 97.52 270 | 83.78 345 | 92.41 321 | 97.47 270 | 95.49 161 | 98.06 123 | 98.49 82 | 87.94 278 | 99.58 168 | 96.02 94 | 99.02 225 | 99.23 133 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MS-PatchMatch | | | 94.83 226 | 94.91 215 | 94.57 289 | 96.81 309 | 87.10 306 | 94.23 265 | 97.34 272 | 88.74 301 | 97.14 179 | 97.11 228 | 91.94 227 | 98.23 355 | 92.99 229 | 97.92 292 | 98.37 251 |
|
MDA-MVSNet-bldmvs | | | 95.69 190 | 95.67 189 | 95.74 239 | 98.48 162 | 88.76 273 | 92.84 309 | 97.25 273 | 96.00 134 | 97.59 155 | 97.95 151 | 91.38 235 | 99.46 204 | 93.16 227 | 96.35 338 | 98.99 180 |
|
PatchMatch-RL | | | 94.61 241 | 93.81 261 | 97.02 175 | 98.19 190 | 95.72 89 | 93.66 290 | 97.23 274 | 88.17 307 | 94.94 279 | 95.62 307 | 91.43 234 | 98.57 335 | 87.36 328 | 97.68 305 | 96.76 335 |
|
CR-MVSNet | | | 93.29 282 | 92.79 280 | 94.78 280 | 95.44 345 | 88.15 282 | 96.18 161 | 97.20 275 | 84.94 340 | 94.10 298 | 98.57 75 | 77.67 332 | 99.39 230 | 95.17 148 | 95.81 343 | 96.81 333 |
|
Patchmtry | | | 95.03 221 | 94.59 234 | 96.33 213 | 94.83 352 | 90.82 239 | 96.38 149 | 97.20 275 | 96.59 103 | 97.49 161 | 98.57 75 | 77.67 332 | 99.38 233 | 92.95 231 | 99.62 78 | 98.80 210 |
|
API-MVS | | | 95.09 218 | 95.01 210 | 95.31 258 | 96.61 311 | 94.02 167 | 96.83 127 | 97.18 277 | 95.60 156 | 95.79 256 | 94.33 332 | 94.54 161 | 98.37 350 | 85.70 337 | 98.52 271 | 93.52 364 |
|
MAR-MVS | | | 94.21 256 | 93.03 274 | 97.76 116 | 96.94 305 | 97.44 35 | 96.97 123 | 97.15 278 | 87.89 311 | 92.00 346 | 92.73 351 | 92.14 220 | 99.12 280 | 83.92 351 | 97.51 313 | 96.73 336 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
pmmvs5 | | | 94.63 240 | 94.34 245 | 95.50 250 | 97.63 264 | 88.34 278 | 94.02 276 | 97.13 279 | 87.15 316 | 95.22 272 | 97.15 224 | 87.50 284 | 99.27 261 | 93.99 205 | 99.26 194 | 98.88 202 |
|
UGNet | | | 96.81 141 | 96.56 150 | 97.58 130 | 96.64 310 | 93.84 175 | 97.75 76 | 97.12 280 | 96.47 111 | 93.62 315 | 98.88 56 | 93.22 192 | 99.53 184 | 95.61 120 | 99.69 67 | 99.36 102 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
h-mvs33 | | | 96.29 168 | 95.63 191 | 98.26 75 | 98.50 159 | 96.11 75 | 96.90 124 | 97.09 281 | 96.58 104 | 97.21 175 | 98.19 119 | 84.14 304 | 99.78 51 | 95.89 103 | 96.17 341 | 98.89 198 |
|
CHOSEN 280x420 | | | 89.98 321 | 89.19 327 | 92.37 335 | 95.60 342 | 81.13 359 | 86.22 368 | 97.09 281 | 81.44 354 | 87.44 369 | 93.15 339 | 73.99 349 | 99.47 201 | 88.69 309 | 99.07 220 | 96.52 341 |
|
CDS-MVSNet | | | 94.88 225 | 94.12 252 | 97.14 167 | 97.64 263 | 93.57 186 | 93.96 281 | 97.06 283 | 90.05 288 | 96.30 234 | 96.55 265 | 86.10 292 | 99.47 201 | 90.10 289 | 99.31 186 | 98.40 247 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
BH-untuned | | | 94.69 235 | 94.75 224 | 94.52 291 | 97.95 220 | 87.53 296 | 94.07 275 | 97.01 284 | 93.99 214 | 97.10 183 | 95.65 305 | 92.65 206 | 98.95 304 | 87.60 323 | 96.74 331 | 97.09 318 |
|
sss | | | 94.22 254 | 93.72 262 | 95.74 239 | 97.71 256 | 89.95 252 | 93.84 284 | 96.98 285 | 88.38 305 | 93.75 310 | 95.74 302 | 87.94 278 | 98.89 306 | 91.02 262 | 98.10 286 | 98.37 251 |
|
1314 | | | 92.38 294 | 92.30 290 | 92.64 330 | 95.42 347 | 85.15 330 | 95.86 181 | 96.97 286 | 85.40 334 | 90.62 352 | 93.06 345 | 91.12 238 | 97.80 362 | 86.74 331 | 95.49 350 | 94.97 358 |
|
SixPastTwentyTwo | | | 97.49 99 | 97.57 89 | 97.26 162 | 99.56 20 | 92.33 209 | 98.28 42 | 96.97 286 | 98.30 34 | 99.45 14 | 99.35 16 | 88.43 274 | 99.89 18 | 98.01 25 | 99.76 49 | 99.54 44 |
|
TSAR-MVS + GP. | | | 96.47 163 | 96.12 171 | 97.49 142 | 97.74 254 | 95.23 120 | 94.15 270 | 96.90 288 | 93.26 233 | 98.04 126 | 96.70 258 | 94.41 164 | 98.89 306 | 94.77 172 | 99.14 207 | 98.37 251 |
|
our_test_3 | | | 94.20 258 | 94.58 235 | 93.07 320 | 96.16 326 | 81.20 358 | 90.42 351 | 96.84 289 | 90.72 281 | 97.14 179 | 97.13 225 | 90.47 246 | 99.11 283 | 94.04 204 | 98.25 281 | 98.91 194 |
|
alignmvs | | | 96.01 181 | 95.52 195 | 97.50 139 | 97.77 248 | 94.71 139 | 96.07 166 | 96.84 289 | 97.48 72 | 96.78 210 | 94.28 334 | 85.50 296 | 99.40 225 | 96.22 83 | 98.73 258 | 98.40 247 |
|
CL-MVSNet_self_test | | | 95.04 219 | 94.79 223 | 95.82 236 | 97.51 271 | 89.79 253 | 91.14 343 | 96.82 291 | 93.05 243 | 96.72 211 | 96.40 275 | 90.82 242 | 99.16 276 | 91.95 241 | 98.66 262 | 98.50 241 |
|
TAMVS | | | 95.49 198 | 94.94 211 | 97.16 165 | 98.31 175 | 93.41 190 | 95.07 229 | 96.82 291 | 91.09 278 | 97.51 159 | 97.82 168 | 89.96 255 | 99.42 214 | 88.42 313 | 99.44 142 | 98.64 227 |
|
pmmvs4 | | | 94.82 227 | 94.19 250 | 96.70 192 | 97.42 279 | 92.75 204 | 92.09 327 | 96.76 293 | 86.80 320 | 95.73 261 | 97.22 221 | 89.28 268 | 98.89 306 | 93.28 223 | 99.14 207 | 98.46 245 |
|
jason | | | 94.39 250 | 94.04 254 | 95.41 257 | 98.29 177 | 87.85 290 | 92.74 314 | 96.75 294 | 85.38 335 | 95.29 270 | 96.15 286 | 88.21 277 | 99.65 145 | 94.24 193 | 99.34 175 | 98.74 218 |
jason: jason. |
MVS | | | 90.02 319 | 89.20 326 | 92.47 333 | 94.71 353 | 86.90 309 | 95.86 181 | 96.74 295 | 64.72 375 | 90.62 352 | 92.77 349 | 92.54 211 | 98.39 347 | 79.30 363 | 95.56 349 | 92.12 368 |
|
IS-MVSNet | | | 96.93 130 | 96.68 144 | 97.70 122 | 99.25 58 | 94.00 168 | 98.57 21 | 96.74 295 | 98.36 31 | 98.14 113 | 97.98 146 | 88.23 276 | 99.71 108 | 93.10 228 | 99.72 60 | 99.38 94 |
|
RRT_MVS | | | 97.95 54 | 97.79 61 | 98.43 60 | 99.67 10 | 95.56 98 | 98.86 10 | 96.73 297 | 97.99 46 | 99.15 31 | 99.35 16 | 89.84 258 | 99.90 14 | 98.64 11 | 99.90 24 | 99.82 6 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 274 | 93.05 272 | 95.42 255 | 97.31 290 | 91.21 233 | 95.08 228 | 96.68 298 | 81.56 352 | 96.88 204 | 96.41 273 | 90.44 247 | 99.25 264 | 85.39 342 | 97.67 306 | 95.80 349 |
|
cl22 | | | 93.25 283 | 92.84 279 | 94.46 293 | 94.30 358 | 86.00 319 | 91.09 345 | 96.64 299 | 90.74 280 | 95.79 256 | 96.31 279 | 78.24 329 | 98.77 316 | 94.15 197 | 98.34 277 | 98.62 230 |
|
EPP-MVSNet | | | 96.84 136 | 96.58 148 | 97.65 126 | 99.18 75 | 93.78 178 | 98.68 15 | 96.34 300 | 97.91 49 | 97.30 171 | 98.06 137 | 88.46 273 | 99.85 28 | 93.85 210 | 99.40 160 | 99.32 107 |
|
BH-RMVSNet | | | 94.56 243 | 94.44 243 | 94.91 271 | 97.57 266 | 87.44 299 | 93.78 288 | 96.26 301 | 93.69 222 | 96.41 227 | 96.50 270 | 92.10 222 | 99.00 295 | 85.96 335 | 97.71 302 | 98.31 260 |
|
MVS_0304 | | | 95.50 197 | 95.05 209 | 96.84 184 | 96.28 319 | 93.12 195 | 97.00 121 | 96.16 302 | 95.03 180 | 89.22 363 | 97.70 179 | 90.16 254 | 99.48 198 | 94.51 181 | 99.34 175 | 97.93 293 |
|
GA-MVS | | | 92.83 288 | 92.15 292 | 94.87 275 | 96.97 302 | 87.27 303 | 90.03 354 | 96.12 303 | 91.83 267 | 94.05 301 | 94.57 325 | 76.01 344 | 98.97 303 | 92.46 236 | 97.34 319 | 98.36 256 |
|
lupinMVS | | | 93.77 267 | 93.28 268 | 95.24 260 | 97.68 258 | 87.81 291 | 92.12 325 | 96.05 304 | 84.52 342 | 94.48 291 | 95.06 317 | 86.90 288 | 99.63 150 | 93.62 218 | 99.13 210 | 98.27 266 |
|
test_method | | | 66.88 344 | 66.13 347 | 69.11 360 | 62.68 383 | 25.73 385 | 49.76 374 | 96.04 305 | 14.32 378 | 64.27 379 | 91.69 362 | 73.45 356 | 88.05 377 | 76.06 370 | 66.94 377 | 93.54 363 |
|
PMMVS2 | | | 93.66 272 | 94.07 253 | 92.45 334 | 97.57 266 | 80.67 360 | 86.46 367 | 96.00 306 | 93.99 214 | 97.10 183 | 97.38 209 | 89.90 256 | 97.82 361 | 88.76 307 | 99.47 134 | 98.86 205 |
|
WTY-MVS | | | 93.55 276 | 93.00 275 | 95.19 262 | 97.81 233 | 87.86 288 | 93.89 283 | 96.00 306 | 89.02 296 | 94.07 300 | 95.44 312 | 86.27 291 | 99.33 246 | 87.69 321 | 96.82 328 | 98.39 249 |
|
PMMVS | | | 92.39 293 | 91.08 305 | 96.30 216 | 93.12 370 | 92.81 202 | 90.58 350 | 95.96 308 | 79.17 363 | 91.85 348 | 92.27 355 | 90.29 252 | 98.66 329 | 89.85 293 | 96.68 333 | 97.43 312 |
|
MG-MVS | | | 94.08 262 | 94.00 255 | 94.32 297 | 97.09 299 | 85.89 320 | 93.19 306 | 95.96 308 | 92.52 255 | 94.93 280 | 97.51 194 | 89.54 262 | 98.77 316 | 87.52 326 | 97.71 302 | 98.31 260 |
|
MDA-MVSNet_test_wron | | | 94.73 230 | 94.83 220 | 94.42 294 | 97.48 272 | 85.15 330 | 90.28 353 | 95.87 310 | 92.52 255 | 97.48 164 | 97.76 171 | 91.92 229 | 99.17 275 | 93.32 221 | 96.80 330 | 98.94 185 |
|
YYNet1 | | | 94.73 230 | 94.84 218 | 94.41 295 | 97.47 276 | 85.09 332 | 90.29 352 | 95.85 311 | 92.52 255 | 97.53 157 | 97.76 171 | 91.97 225 | 99.18 271 | 93.31 222 | 96.86 327 | 98.95 183 |
|
ADS-MVSNet2 | | | 91.47 308 | 90.51 316 | 94.36 296 | 95.51 343 | 85.63 321 | 95.05 232 | 95.70 312 | 83.46 346 | 92.69 336 | 96.84 247 | 79.15 326 | 99.41 223 | 85.66 339 | 90.52 366 | 98.04 287 |
|
BH-w/o | | | 92.14 299 | 91.94 293 | 92.73 329 | 97.13 298 | 85.30 326 | 92.46 319 | 95.64 313 | 89.33 294 | 94.21 295 | 92.74 350 | 89.60 260 | 98.24 354 | 81.68 358 | 94.66 355 | 94.66 359 |
|
KD-MVS_2432*1600 | | | 88.93 330 | 87.74 335 | 92.49 331 | 88.04 380 | 81.99 353 | 89.63 361 | 95.62 314 | 91.35 273 | 95.06 274 | 93.11 340 | 56.58 379 | 98.63 330 | 85.19 343 | 95.07 351 | 96.85 329 |
|
miper_refine_blended | | | 88.93 330 | 87.74 335 | 92.49 331 | 88.04 380 | 81.99 353 | 89.63 361 | 95.62 314 | 91.35 273 | 95.06 274 | 93.11 340 | 56.58 379 | 98.63 330 | 85.19 343 | 95.07 351 | 96.85 329 |
|
VDD-MVS | | | 97.37 108 | 97.25 109 | 97.74 118 | 98.69 134 | 94.50 149 | 97.04 119 | 95.61 316 | 98.59 26 | 98.51 68 | 98.72 65 | 92.54 211 | 99.58 168 | 96.02 94 | 99.49 128 | 99.12 158 |
|
PAPM | | | 87.64 339 | 85.84 344 | 93.04 321 | 96.54 312 | 84.99 333 | 88.42 365 | 95.57 317 | 79.52 361 | 83.82 373 | 93.05 346 | 80.57 320 | 98.41 345 | 62.29 377 | 92.79 362 | 95.71 350 |
|
test_yl | | | 94.40 248 | 94.00 255 | 95.59 243 | 96.95 303 | 89.52 257 | 94.75 247 | 95.55 318 | 96.18 124 | 96.79 206 | 96.14 288 | 81.09 317 | 99.18 271 | 90.75 271 | 97.77 296 | 98.07 279 |
|
DCV-MVSNet | | | 94.40 248 | 94.00 255 | 95.59 243 | 96.95 303 | 89.52 257 | 94.75 247 | 95.55 318 | 96.18 124 | 96.79 206 | 96.14 288 | 81.09 317 | 99.18 271 | 90.75 271 | 97.77 296 | 98.07 279 |
|
AUN-MVS | | | 93.95 266 | 92.69 284 | 97.74 118 | 97.80 237 | 95.38 110 | 95.57 198 | 95.46 320 | 91.26 276 | 92.64 339 | 96.10 291 | 74.67 348 | 99.55 179 | 93.72 215 | 96.97 323 | 98.30 262 |
|
hse-mvs2 | | | 95.77 189 | 95.09 205 | 97.79 114 | 97.84 229 | 95.51 102 | 95.66 191 | 95.43 321 | 96.58 104 | 97.21 175 | 96.16 285 | 84.14 304 | 99.54 182 | 95.89 103 | 96.92 324 | 98.32 258 |
|
VDDNet | | | 96.98 128 | 96.84 135 | 97.41 153 | 99.40 43 | 93.26 193 | 97.94 63 | 95.31 322 | 99.26 7 | 98.39 81 | 99.18 30 | 87.85 283 | 99.62 158 | 95.13 155 | 99.09 217 | 99.35 104 |
|
wuyk23d | | | 93.25 283 | 95.20 200 | 87.40 357 | 96.07 331 | 95.38 110 | 97.04 119 | 94.97 323 | 95.33 166 | 99.70 5 | 98.11 128 | 98.14 13 | 91.94 375 | 77.76 368 | 99.68 69 | 74.89 375 |
|
Vis-MVSNet (Re-imp) | | | 95.11 216 | 94.85 217 | 95.87 235 | 99.12 88 | 89.17 263 | 97.54 94 | 94.92 324 | 96.50 108 | 96.58 218 | 97.27 218 | 83.64 308 | 99.48 198 | 88.42 313 | 99.67 70 | 98.97 181 |
|
TR-MVS | | | 92.54 292 | 92.20 291 | 93.57 310 | 96.49 314 | 86.66 311 | 93.51 295 | 94.73 325 | 89.96 289 | 94.95 278 | 93.87 336 | 90.24 253 | 98.61 332 | 81.18 360 | 94.88 353 | 95.45 355 |
|
HY-MVS | | 91.43 15 | 92.58 291 | 91.81 296 | 94.90 273 | 96.49 314 | 88.87 268 | 97.31 103 | 94.62 326 | 85.92 326 | 90.50 355 | 96.84 247 | 85.05 298 | 99.40 225 | 83.77 354 | 95.78 346 | 96.43 342 |
|
PVSNet | | 86.72 19 | 91.10 311 | 90.97 308 | 91.49 340 | 97.56 268 | 78.04 365 | 87.17 366 | 94.60 327 | 84.65 341 | 92.34 343 | 92.20 356 | 87.37 286 | 98.47 342 | 85.17 345 | 97.69 304 | 97.96 291 |
|
Patchmatch-test | | | 93.60 275 | 93.25 270 | 94.63 284 | 96.14 329 | 87.47 297 | 96.04 168 | 94.50 328 | 93.57 223 | 96.47 224 | 96.97 238 | 76.50 340 | 98.61 332 | 90.67 277 | 98.41 276 | 97.81 300 |
|
Anonymous202405211 | | | 96.34 167 | 95.98 179 | 97.43 151 | 98.25 184 | 93.85 174 | 96.74 133 | 94.41 329 | 97.72 58 | 98.37 82 | 98.03 140 | 87.15 287 | 99.53 184 | 94.06 200 | 99.07 220 | 98.92 193 |
|
tpm cat1 | | | 88.01 337 | 87.33 338 | 90.05 349 | 94.48 356 | 76.28 372 | 94.47 256 | 94.35 330 | 73.84 374 | 89.26 362 | 95.61 308 | 73.64 353 | 98.30 353 | 84.13 350 | 86.20 373 | 95.57 354 |
|
SCA | | | 93.38 280 | 93.52 265 | 92.96 325 | 96.24 320 | 81.40 357 | 93.24 304 | 94.00 331 | 91.58 271 | 94.57 286 | 96.97 238 | 87.94 278 | 99.42 214 | 89.47 298 | 97.66 307 | 98.06 283 |
|
tpmrst | | | 90.31 317 | 90.61 315 | 89.41 350 | 94.06 363 | 72.37 379 | 95.06 231 | 93.69 332 | 88.01 308 | 92.32 344 | 96.86 245 | 77.45 334 | 98.82 311 | 91.04 261 | 87.01 372 | 97.04 321 |
|
MIMVSNet | | | 93.42 278 | 92.86 277 | 95.10 265 | 98.17 195 | 88.19 280 | 98.13 54 | 93.69 332 | 92.07 261 | 95.04 277 | 98.21 118 | 80.95 319 | 99.03 294 | 81.42 359 | 98.06 288 | 98.07 279 |
|
DSMNet-mixed | | | 92.19 298 | 91.83 295 | 93.25 316 | 96.18 325 | 83.68 346 | 96.27 154 | 93.68 334 | 76.97 370 | 92.54 342 | 99.18 30 | 89.20 270 | 98.55 338 | 83.88 352 | 98.60 269 | 97.51 310 |
|
tpmvs | | | 90.79 315 | 90.87 309 | 90.57 346 | 92.75 374 | 76.30 371 | 95.79 185 | 93.64 335 | 91.04 279 | 91.91 347 | 96.26 280 | 77.19 338 | 98.86 310 | 89.38 300 | 89.85 369 | 96.56 340 |
|
PatchmatchNet |  | | 91.98 302 | 91.87 294 | 92.30 336 | 94.60 355 | 79.71 362 | 95.12 224 | 93.59 336 | 89.52 292 | 93.61 316 | 97.02 235 | 77.94 330 | 99.18 271 | 90.84 267 | 94.57 358 | 98.01 290 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ADS-MVSNet | | | 90.95 314 | 90.26 318 | 93.04 321 | 95.51 343 | 82.37 351 | 95.05 232 | 93.41 337 | 83.46 346 | 92.69 336 | 96.84 247 | 79.15 326 | 98.70 323 | 85.66 339 | 90.52 366 | 98.04 287 |
|
FPMVS | | | 89.92 323 | 88.63 331 | 93.82 304 | 98.37 172 | 96.94 47 | 91.58 332 | 93.34 338 | 88.00 309 | 90.32 356 | 97.10 229 | 70.87 364 | 91.13 376 | 71.91 374 | 96.16 342 | 93.39 366 |
|
MDTV_nov1_ep13 | | | | 91.28 302 | | 94.31 357 | 73.51 377 | 94.80 244 | 93.16 339 | 86.75 321 | 93.45 323 | 97.40 203 | 76.37 341 | 98.55 338 | 88.85 306 | 96.43 336 | |
|
baseline1 | | | 93.14 285 | 92.64 286 | 94.62 285 | 97.34 286 | 87.20 304 | 96.67 140 | 93.02 340 | 94.71 190 | 96.51 223 | 95.83 301 | 81.64 312 | 98.60 334 | 90.00 291 | 88.06 371 | 98.07 279 |
|
PatchT | | | 93.75 268 | 93.57 264 | 94.29 299 | 95.05 350 | 87.32 302 | 96.05 167 | 92.98 341 | 97.54 70 | 94.25 294 | 98.72 65 | 75.79 345 | 99.24 265 | 95.92 101 | 95.81 343 | 96.32 343 |
|
EPNet_dtu | | | 91.39 309 | 90.75 312 | 93.31 314 | 90.48 379 | 82.61 349 | 94.80 244 | 92.88 342 | 93.39 228 | 81.74 376 | 94.90 322 | 81.36 315 | 99.11 283 | 88.28 315 | 98.87 241 | 98.21 271 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
new_pmnet | | | 92.34 295 | 91.69 298 | 94.32 297 | 96.23 322 | 89.16 264 | 92.27 323 | 92.88 342 | 84.39 345 | 95.29 270 | 96.35 278 | 85.66 295 | 96.74 371 | 84.53 349 | 97.56 310 | 97.05 320 |
|
dp | | | 88.08 336 | 88.05 334 | 88.16 356 | 92.85 372 | 68.81 381 | 94.17 268 | 92.88 342 | 85.47 331 | 91.38 350 | 96.14 288 | 68.87 368 | 98.81 313 | 86.88 330 | 83.80 375 | 96.87 327 |
|
EU-MVSNet | | | 94.25 253 | 94.47 240 | 93.60 309 | 98.14 200 | 82.60 350 | 97.24 108 | 92.72 345 | 85.08 336 | 98.48 72 | 98.94 51 | 82.59 311 | 98.76 318 | 97.47 45 | 99.53 110 | 99.44 85 |
|
PVSNet_0 | | 81.89 21 | 84.49 342 | 83.21 345 | 88.34 354 | 95.76 339 | 74.97 376 | 83.49 370 | 92.70 346 | 78.47 365 | 87.94 367 | 86.90 374 | 83.38 309 | 96.63 372 | 73.44 372 | 66.86 378 | 93.40 365 |
|
pmmvs3 | | | 90.00 320 | 88.90 330 | 93.32 313 | 94.20 362 | 85.34 325 | 91.25 340 | 92.56 347 | 78.59 364 | 93.82 306 | 95.17 314 | 67.36 371 | 98.69 324 | 89.08 304 | 98.03 289 | 95.92 346 |
|
CVMVSNet | | | 92.33 296 | 92.79 280 | 90.95 343 | 97.26 291 | 75.84 373 | 95.29 216 | 92.33 348 | 81.86 350 | 96.27 235 | 98.19 119 | 81.44 314 | 98.46 343 | 94.23 194 | 98.29 280 | 98.55 237 |
|
E-PMN | | | 89.52 327 | 89.78 321 | 88.73 352 | 93.14 369 | 77.61 367 | 83.26 371 | 92.02 349 | 94.82 187 | 93.71 311 | 93.11 340 | 75.31 346 | 96.81 368 | 85.81 336 | 96.81 329 | 91.77 370 |
|
CostFormer | | | 89.75 325 | 89.25 323 | 91.26 342 | 94.69 354 | 78.00 366 | 95.32 213 | 91.98 350 | 81.50 353 | 90.55 354 | 96.96 240 | 71.06 363 | 98.89 306 | 88.59 311 | 92.63 363 | 96.87 327 |
|
tpm2 | | | 88.47 333 | 87.69 337 | 90.79 344 | 94.98 351 | 77.34 368 | 95.09 226 | 91.83 351 | 77.51 369 | 89.40 361 | 96.41 273 | 67.83 370 | 98.73 320 | 83.58 356 | 92.60 364 | 96.29 344 |
|
JIA-IIPM | | | 91.79 304 | 90.69 313 | 95.11 264 | 93.80 365 | 90.98 236 | 94.16 269 | 91.78 352 | 96.38 112 | 90.30 357 | 99.30 20 | 72.02 360 | 98.90 305 | 88.28 315 | 90.17 368 | 95.45 355 |
|
N_pmnet | | | 95.18 213 | 94.23 247 | 98.06 95 | 97.85 225 | 96.55 60 | 92.49 318 | 91.63 353 | 89.34 293 | 98.09 119 | 97.41 202 | 90.33 248 | 99.06 289 | 91.58 251 | 99.31 186 | 98.56 235 |
|
EPNet | | | 93.72 269 | 92.62 287 | 97.03 174 | 87.61 382 | 92.25 211 | 96.27 154 | 91.28 354 | 96.74 97 | 87.65 368 | 97.39 207 | 85.00 299 | 99.64 148 | 92.14 238 | 99.48 132 | 99.20 139 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm | | | 91.08 312 | 90.85 310 | 91.75 339 | 95.33 348 | 78.09 364 | 95.03 234 | 91.27 355 | 88.75 300 | 93.53 319 | 97.40 203 | 71.24 361 | 99.30 253 | 91.25 258 | 93.87 359 | 97.87 295 |
|
thres200 | | | 91.00 313 | 90.42 317 | 92.77 328 | 97.47 276 | 83.98 344 | 94.01 277 | 91.18 356 | 95.12 176 | 95.44 267 | 91.21 366 | 73.93 350 | 99.31 250 | 77.76 368 | 97.63 309 | 95.01 357 |
|
EMVS | | | 89.06 329 | 89.22 324 | 88.61 353 | 93.00 371 | 77.34 368 | 82.91 372 | 90.92 357 | 94.64 192 | 92.63 340 | 91.81 360 | 76.30 342 | 97.02 366 | 83.83 353 | 96.90 326 | 91.48 371 |
|
tfpn200view9 | | | 91.55 307 | 91.00 306 | 93.21 318 | 98.02 209 | 84.35 340 | 95.70 187 | 90.79 358 | 96.26 118 | 95.90 254 | 92.13 357 | 73.62 354 | 99.42 214 | 78.85 365 | 97.74 299 | 95.85 347 |
|
thres400 | | | 91.68 306 | 91.00 306 | 93.71 307 | 98.02 209 | 84.35 340 | 95.70 187 | 90.79 358 | 96.26 118 | 95.90 254 | 92.13 357 | 73.62 354 | 99.42 214 | 78.85 365 | 97.74 299 | 97.36 314 |
|
LFMVS | | | 95.32 208 | 94.88 216 | 96.62 195 | 98.03 208 | 91.47 231 | 97.65 82 | 90.72 360 | 99.11 9 | 97.89 142 | 98.31 97 | 79.20 325 | 99.48 198 | 93.91 209 | 99.12 213 | 98.93 189 |
|
thres100view900 | | | 91.76 305 | 91.26 304 | 93.26 315 | 98.21 188 | 84.50 338 | 96.39 147 | 90.39 361 | 96.87 93 | 96.33 230 | 93.08 344 | 73.44 357 | 99.42 214 | 78.85 365 | 97.74 299 | 95.85 347 |
|
thres600view7 | | | 92.03 301 | 91.43 299 | 93.82 304 | 98.19 190 | 84.61 337 | 96.27 154 | 90.39 361 | 96.81 95 | 96.37 229 | 93.11 340 | 73.44 357 | 99.49 195 | 80.32 361 | 97.95 291 | 97.36 314 |
|
K. test v3 | | | 96.44 164 | 96.28 165 | 96.95 176 | 99.41 42 | 91.53 229 | 97.65 82 | 90.31 363 | 98.89 19 | 98.93 41 | 99.36 14 | 84.57 303 | 99.92 5 | 97.81 30 | 99.56 98 | 99.39 92 |
|
ET-MVSNet_ETH3D | | | 91.12 310 | 89.67 322 | 95.47 252 | 96.41 316 | 89.15 265 | 91.54 333 | 90.23 364 | 89.07 295 | 86.78 372 | 92.84 348 | 69.39 367 | 99.44 211 | 94.16 196 | 96.61 334 | 97.82 298 |
|
IB-MVS | | 85.98 20 | 88.63 332 | 86.95 341 | 93.68 308 | 95.12 349 | 84.82 336 | 90.85 347 | 90.17 365 | 87.55 312 | 88.48 366 | 91.34 365 | 58.01 377 | 99.59 166 | 87.24 329 | 93.80 360 | 96.63 339 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-LLR | | | 89.97 322 | 89.90 320 | 90.16 347 | 94.24 360 | 74.98 374 | 89.89 356 | 89.06 366 | 92.02 262 | 89.97 359 | 90.77 369 | 73.92 351 | 98.57 335 | 91.88 244 | 97.36 317 | 96.92 324 |
|
test-mter | | | 87.92 338 | 87.17 339 | 90.16 347 | 94.24 360 | 74.98 374 | 89.89 356 | 89.06 366 | 86.44 322 | 89.97 359 | 90.77 369 | 54.96 384 | 98.57 335 | 91.88 244 | 97.36 317 | 96.92 324 |
|
test0.0.03 1 | | | 90.11 318 | 89.21 325 | 92.83 327 | 93.89 364 | 86.87 310 | 91.74 331 | 88.74 368 | 92.02 262 | 94.71 283 | 91.14 367 | 73.92 351 | 94.48 374 | 83.75 355 | 92.94 361 | 97.16 317 |
|
thisisatest0515 | | | 90.43 316 | 89.18 328 | 94.17 302 | 97.07 300 | 85.44 324 | 89.75 360 | 87.58 369 | 88.28 306 | 93.69 313 | 91.72 361 | 65.27 372 | 99.58 168 | 90.59 278 | 98.67 260 | 97.50 311 |
|
thisisatest0530 | | | 92.71 290 | 91.76 297 | 95.56 247 | 98.42 169 | 88.23 279 | 96.03 169 | 87.35 370 | 94.04 213 | 96.56 220 | 95.47 311 | 64.03 374 | 99.77 60 | 94.78 171 | 99.11 214 | 98.68 226 |
|
tttt0517 | | | 93.31 281 | 92.56 288 | 95.57 245 | 98.71 130 | 87.86 288 | 97.44 97 | 87.17 371 | 95.79 148 | 97.47 166 | 96.84 247 | 64.12 373 | 99.81 40 | 96.20 84 | 99.32 184 | 99.02 176 |
|
TESTMET0.1,1 | | | 87.20 340 | 86.57 342 | 89.07 351 | 93.62 367 | 72.84 378 | 89.89 356 | 87.01 372 | 85.46 332 | 89.12 364 | 90.20 371 | 56.00 382 | 97.72 363 | 90.91 265 | 96.92 324 | 96.64 337 |
|
baseline2 | | | 89.65 326 | 88.44 333 | 93.25 316 | 95.62 341 | 82.71 348 | 93.82 285 | 85.94 373 | 88.89 299 | 87.35 370 | 92.54 353 | 71.23 362 | 99.33 246 | 86.01 334 | 94.60 357 | 97.72 302 |
|
MVS-HIRNet | | | 88.40 334 | 90.20 319 | 82.99 358 | 97.01 301 | 60.04 382 | 93.11 307 | 85.61 374 | 84.45 344 | 88.72 365 | 99.09 40 | 84.72 302 | 98.23 355 | 82.52 357 | 96.59 335 | 90.69 373 |
|
lessismore_v0 | | | | | 97.05 172 | 99.36 47 | 92.12 217 | | 84.07 375 | | 98.77 53 | 98.98 47 | 85.36 297 | 99.74 82 | 97.34 49 | 99.37 164 | 99.30 113 |
|
test1111 | | | 94.53 246 | 94.81 221 | 93.72 306 | 99.06 95 | 81.94 355 | 98.31 39 | 83.87 376 | 96.37 113 | 98.49 71 | 99.17 32 | 81.49 313 | 99.73 87 | 96.64 67 | 99.86 30 | 99.49 59 |
|
ECVR-MVS |  | | 94.37 251 | 94.48 239 | 94.05 303 | 98.95 105 | 83.10 347 | 98.31 39 | 82.48 377 | 96.20 121 | 98.23 102 | 99.16 33 | 81.18 316 | 99.66 143 | 95.95 99 | 99.83 36 | 99.38 94 |
|
EPMVS | | | 89.26 328 | 88.55 332 | 91.39 341 | 92.36 375 | 79.11 363 | 95.65 194 | 79.86 378 | 88.60 302 | 93.12 329 | 96.53 267 | 70.73 365 | 98.10 359 | 90.75 271 | 89.32 370 | 96.98 322 |
|
MVE |  | 73.61 22 | 86.48 341 | 85.92 343 | 88.18 355 | 96.23 322 | 85.28 328 | 81.78 373 | 75.79 379 | 86.01 324 | 82.53 375 | 91.88 359 | 92.74 202 | 87.47 378 | 71.42 375 | 94.86 354 | 91.78 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MTMP | | | | | | | | 96.55 141 | 74.60 380 | | | | | | | | |
|
gg-mvs-nofinetune | | | 88.28 335 | 86.96 340 | 92.23 337 | 92.84 373 | 84.44 339 | 98.19 51 | 74.60 380 | 99.08 10 | 87.01 371 | 99.47 8 | 56.93 378 | 98.23 355 | 78.91 364 | 95.61 348 | 94.01 362 |
|
DeepMVS_CX |  | | | | 77.17 359 | 90.94 378 | 85.28 328 | | 74.08 382 | 52.51 376 | 80.87 377 | 88.03 373 | 75.25 347 | 70.63 379 | 59.23 378 | 84.94 374 | 75.62 374 |
|
GG-mvs-BLEND | | | | | 90.60 345 | 91.00 377 | 84.21 342 | 98.23 45 | 72.63 383 | | 82.76 374 | 84.11 375 | 56.14 381 | 96.79 369 | 72.20 373 | 92.09 365 | 90.78 372 |
|
test2506 | | | 89.86 324 | 89.16 329 | 91.97 338 | 98.95 105 | 76.83 370 | 98.54 24 | 61.07 384 | 96.20 121 | 97.07 188 | 99.16 33 | 55.19 383 | 99.69 125 | 96.43 78 | 99.83 36 | 99.38 94 |
|
tmp_tt | | | 57.23 345 | 62.50 348 | 41.44 361 | 34.77 384 | 49.21 384 | 83.93 369 | 60.22 385 | 15.31 377 | 71.11 378 | 79.37 376 | 70.09 366 | 44.86 380 | 64.76 376 | 82.93 376 | 30.25 376 |
|
testmvs | | | 12.33 348 | 15.23 351 | 3.64 363 | 5.77 386 | 2.23 387 | 88.99 363 | 3.62 386 | 2.30 381 | 5.29 381 | 13.09 378 | 4.52 386 | 1.95 381 | 5.16 380 | 8.32 380 | 6.75 378 |
|
test123 | | | 12.59 347 | 15.49 350 | 3.87 362 | 6.07 385 | 2.55 386 | 90.75 348 | 2.59 387 | 2.52 380 | 5.20 382 | 13.02 379 | 4.96 385 | 1.85 382 | 5.20 379 | 9.09 379 | 7.23 377 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 7.98 349 | 10.65 352 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 95.82 110 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
ab-mvs-re | | | 7.91 350 | 10.55 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 94.94 319 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
PC_three_1452 | | | | | | | | | | 87.24 314 | 98.37 82 | 97.44 200 | 97.00 54 | 96.78 370 | 92.01 239 | 99.25 195 | 99.21 135 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
OPU-MVS | | | | | 97.64 127 | 98.01 211 | 95.27 118 | 96.79 130 | | | | 97.35 212 | 96.97 56 | 98.51 341 | 91.21 259 | 99.25 195 | 99.14 151 |
|
test_0728_THIRD | | | | | | | | | | 96.62 99 | 98.40 79 | 98.28 106 | 97.10 45 | 99.71 108 | 95.70 110 | 99.62 78 | 99.58 33 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 283 |
|
test_part2 | | | | | | 99.03 101 | 96.07 76 | | | | 98.08 121 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 331 | | | | 98.06 283 |
|
sam_mvs | | | | | | | | | | | | | 77.38 335 | | | | |
|
test_post1 | | | | | | | | 94.98 236 | | | | 10.37 381 | 76.21 343 | 99.04 291 | 89.47 298 | | |
|
test_post | | | | | | | | | | | | 10.87 380 | 76.83 339 | 99.07 288 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 247 | 77.36 336 | 99.42 214 | | | |
|
gm-plane-assit | | | | | | 91.79 376 | 71.40 380 | | | 81.67 351 | | 90.11 372 | | 98.99 297 | 84.86 347 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 255 | 98.89 240 | 99.00 177 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 287 | 98.90 237 | 99.10 165 |
|
test_prior4 | | | | | | | 95.38 110 | 93.61 293 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 302 | | 94.21 206 | 94.02 302 | 96.25 281 | 93.64 184 | | 91.90 242 | 98.96 229 | |
|
旧先验2 | | | | | | | | 93.35 301 | | 77.95 368 | 95.77 260 | | | 98.67 328 | 90.74 274 | | |
|
新几何2 | | | | | | | | 93.43 296 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 92.82 310 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 204 | 87.84 318 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 132 | | | | |
|
testdata1 | | | | | | | | 92.77 311 | | 93.78 219 | | | | | | | |
|
plane_prior7 | | | | | | 98.70 132 | 94.67 143 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 171 | 94.37 153 | | | | | | 91.91 230 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.77 253 | | | | | |
|
plane_prior3 | | | | | | | 94.51 147 | | | 95.29 169 | 96.16 241 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 143 | | 96.36 114 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 160 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 155 | 95.42 203 | | 94.31 203 | | | | | | 98.93 235 | |
|
HQP5-MVS | | | | | | | 92.47 207 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 225 | | 94.26 260 | | 93.18 237 | 92.86 333 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 225 | | 94.26 260 | | 93.18 237 | 92.86 333 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 282 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 332 | | | 99.23 267 | | | 99.06 170 |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 248 | | | | |
|
NP-MVS | | | | | | 98.14 200 | 93.72 180 | | | | | 95.08 315 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 383 | 94.89 239 | | 80.59 357 | 94.02 302 | | 78.66 328 | | 85.50 341 | | 97.82 298 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 115 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 104 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 162 | | | | |
|