This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LCM-MVSNet-Re97.33 10297.33 9497.32 14798.13 18793.79 16396.99 10899.65 296.74 8799.47 1398.93 4496.91 5999.84 2590.11 27399.06 20798.32 241
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17498.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ANet_high98.31 2898.94 696.41 20099.33 4389.64 24397.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3699.98 299.77 8
CS-MVS96.95 12097.07 11296.59 18697.86 20992.74 19297.38 8799.52 595.98 12194.89 26595.89 28596.05 9799.76 5796.65 6199.42 13797.26 300
Vis-MVSNetpermissive98.27 2998.34 2898.07 8399.33 4395.21 11398.04 4599.46 697.32 7397.82 14099.11 3196.75 6899.86 2097.84 2599.36 15299.15 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 798.85 1999.00 3699.20 2397.42 3299.59 15297.21 4799.76 3999.40 81
UA-Net98.88 798.76 1399.22 299.11 8297.89 1399.47 399.32 899.08 1097.87 13599.67 296.47 8499.92 497.88 2399.98 299.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 999.01 1699.63 999.66 399.27 299.68 11997.75 3099.89 2299.62 25
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10799.71 499.48 798.77 699.93 298.89 399.95 599.84 5
FC-MVSNet-test98.16 3398.37 2797.56 11999.49 2693.10 18398.35 2699.21 1198.43 2898.89 3998.83 5094.30 15999.81 3197.87 2499.91 1799.77 8
PS-MVSNAJss98.53 1998.63 1998.21 7599.68 994.82 12298.10 4299.21 1196.91 8299.75 299.45 995.82 10599.92 498.80 499.96 499.89 1
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4599.92 1499.77 8
ACMH+93.58 1098.23 3298.31 2997.98 9199.39 3795.22 11197.55 7499.20 1398.21 3699.25 2598.51 7298.21 1199.40 21094.79 15499.72 4899.32 96
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 14199.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5195.47 12299.89 1697.95 2199.91 1799.75 13
EIA-MVS96.04 16995.77 17796.85 17297.80 22292.98 18596.12 14999.16 1794.65 17893.77 29491.69 34795.68 11499.67 12494.18 18098.85 22997.91 277
AllTest97.20 11096.92 12298.06 8599.08 8496.16 6897.14 9999.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
TestCases98.06 8599.08 8496.16 6899.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6497.35 3597.96 4899.16 1798.34 3198.78 4498.52 7197.32 3599.45 19394.08 18499.67 5899.13 139
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023121198.55 1798.76 1397.94 9398.79 10694.37 14098.84 899.15 2199.37 399.67 699.43 1195.61 11799.72 8298.12 1699.86 2599.73 15
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8798.45 2399.15 2199.33 599.30 2199.00 3897.27 3899.92 497.64 3399.92 1499.75 13
v7n98.73 1198.99 597.95 9299.64 1194.20 14898.67 1199.14 2399.08 1099.42 1599.23 2196.53 7999.91 1299.27 299.93 1099.73 15
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9898.49 2099.13 2499.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 13399.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
FIs97.93 5498.07 3697.48 13199.38 3892.95 18698.03 4799.11 2698.04 4198.62 5198.66 6193.75 17399.78 4297.23 4499.84 2899.73 15
abl_698.42 2398.19 3299.09 399.16 6998.10 597.73 6599.11 2697.76 4998.62 5198.27 9797.88 1999.80 3795.67 10099.50 10899.38 85
SF-MVS97.60 8297.39 9098.22 7498.93 9695.69 8497.05 10499.10 2895.32 15397.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
Effi-MVS+96.19 16396.01 16696.71 18097.43 26192.19 20496.12 14999.10 2895.45 14893.33 31294.71 30997.23 4399.56 16193.21 21197.54 29598.37 234
APDe-MVS98.14 3498.03 4098.47 5498.72 11496.04 7398.07 4499.10 2895.96 12298.59 5598.69 5996.94 5599.81 3196.64 6299.58 7899.57 32
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
Gipumacopyleft98.07 4098.31 2997.36 14599.76 596.28 6698.51 1999.10 2898.76 2296.79 19499.34 1796.61 7498.82 29796.38 7299.50 10896.98 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
casdiffmvs97.50 8997.81 5296.56 19198.51 14191.04 22395.83 16899.09 3397.23 7698.33 8298.30 9097.03 5299.37 22196.58 6599.38 14899.28 110
nrg03098.54 1898.62 2198.32 6499.22 5795.66 8897.90 5399.08 3498.31 3299.02 3498.74 5597.68 2499.61 15097.77 2999.85 2799.70 18
diffmvs96.04 16996.23 15695.46 24297.35 26588.03 27493.42 28399.08 3494.09 19996.66 20296.93 22593.85 17099.29 24296.01 8898.67 24499.06 157
PVSNet_Blended_VisFu95.95 17395.80 17596.42 19899.28 4790.62 23195.31 19999.08 3488.40 29096.97 18798.17 10992.11 21199.78 4293.64 20299.21 18298.86 192
xxxxxxxxxxxxxcwj97.24 10897.03 11697.89 9698.48 14794.71 12694.53 24199.07 3795.02 16797.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
PGM-MVS97.88 6097.52 8298.96 1699.20 6597.62 2197.09 10299.06 3895.45 14897.55 14597.94 13997.11 4499.78 4294.77 15799.46 12199.48 56
RPSCF97.87 6197.51 8398.95 1799.15 7298.43 397.56 7399.06 3896.19 10898.48 6398.70 5894.72 14399.24 25094.37 17299.33 16799.17 129
canonicalmvs97.23 10997.21 10497.30 14897.65 24494.39 13897.84 5699.05 4097.42 6796.68 20193.85 32297.63 2699.33 23196.29 7598.47 25898.18 257
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8695.87 7896.73 12299.05 4098.67 2398.84 4198.45 7697.58 2899.88 1896.45 7199.86 2599.54 36
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17499.88 1898.72 999.88 2399.65 23
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 15097.41 16097.50 18297.98 1599.79 3895.58 10999.57 8199.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 11196.74 13198.26 6998.99 9397.45 3293.82 27199.05 4095.19 15898.32 8397.70 16695.22 13198.41 33194.27 17798.13 26998.93 176
ACMH93.61 998.44 2298.76 1397.51 12499.43 3293.54 17398.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18697.74 3199.71 5199.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)97.83 6597.65 6798.35 6398.80 10595.86 7995.92 16499.04 4697.51 6498.22 9397.81 15594.68 14699.78 4297.14 5299.75 4399.41 80
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12897.88 13298.22 10498.15 1299.74 7296.50 6999.62 6599.42 78
baseline97.44 9497.78 5696.43 19798.52 14090.75 23096.84 11299.03 4796.51 9597.86 13698.02 12896.67 7099.36 22397.09 5399.47 11899.19 126
v1097.55 8597.97 4196.31 20498.60 13189.64 24397.44 8299.02 4996.60 9098.72 4999.16 2993.48 17899.72 8298.76 699.92 1499.58 28
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6098.72 11495.78 8095.66 17699.02 4998.11 3998.31 8597.69 16894.65 14899.85 2297.02 5699.71 5199.48 56
XVG-OURS-SEG-HR97.38 9897.07 11298.30 6799.01 9297.41 3494.66 23699.02 4995.20 15798.15 10197.52 18098.83 498.43 33094.87 15096.41 32199.07 155
MVSFormer96.14 16596.36 15295.49 24097.68 24087.81 27998.67 1199.02 4996.50 9694.48 27696.15 27086.90 27599.92 498.73 799.13 19498.74 205
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9699.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
LPG-MVS_test97.94 5197.67 6498.74 3599.15 7297.02 4297.09 10299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
LGP-MVS_train98.74 3599.15 7297.02 4299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
DeepC-MVS95.41 497.82 6797.70 6098.16 7698.78 10895.72 8296.23 14499.02 4993.92 20498.62 5198.99 3997.69 2399.62 14496.18 7899.87 2499.15 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pm-mvs198.47 2198.67 1797.86 9999.52 2194.58 13298.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17997.09 5399.75 4399.50 43
VPA-MVSNet98.27 2998.46 2497.70 11099.06 8793.80 16297.76 6199.00 5798.40 2999.07 3398.98 4096.89 6099.75 6597.19 5099.79 3599.55 35
XXY-MVS97.54 8697.70 6097.07 16099.46 2892.21 20197.22 9599.00 5794.93 17198.58 5698.92 4597.31 3699.41 20894.44 16799.43 13499.59 27
DPE-MVScopyleft97.64 7897.35 9398.50 5198.85 10196.18 6795.21 20898.99 6095.84 13298.78 4498.08 11796.84 6599.81 3193.98 19199.57 8199.52 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss97.69 7697.36 9298.70 3999.50 2596.84 4795.38 19398.99 6092.45 24498.11 10598.31 8697.25 4199.77 5296.60 6399.62 6599.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CSCG97.40 9797.30 9597.69 11298.95 9594.83 12197.28 9198.99 6096.35 10398.13 10495.95 28295.99 9899.66 13094.36 17599.73 4598.59 220
GeoE97.75 7297.70 6097.89 9698.88 10094.53 13397.10 10198.98 6395.75 13797.62 14397.59 17497.61 2799.77 5296.34 7499.44 12699.36 91
9.1496.69 13398.53 13996.02 15598.98 6393.23 22197.18 16897.46 18596.47 8499.62 14492.99 21499.32 169
ETH3D-3000-0.196.89 12696.46 14998.16 7698.62 12895.69 8495.96 16098.98 6393.36 21697.04 18097.31 20294.93 14099.63 13692.60 21799.34 16099.17 129
XVG-ACMP-BASELINE97.58 8497.28 9898.49 5299.16 6996.90 4696.39 13298.98 6395.05 16598.06 11398.02 12895.86 10199.56 16194.37 17299.64 6399.00 164
EG-PatchMatch MVS97.69 7697.79 5397.40 14299.06 8793.52 17495.96 16098.97 6794.55 18498.82 4298.76 5497.31 3699.29 24297.20 4999.44 12699.38 85
CP-MVS97.92 5597.56 8098.99 1398.99 9397.82 1597.93 5098.96 6896.11 11196.89 19297.45 18696.85 6499.78 4295.19 13199.63 6499.38 85
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5497.60 2298.09 4398.96 6895.75 13797.91 12898.06 12496.89 6099.76 5795.32 12499.57 8199.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ETV-MVS96.13 16695.90 17396.82 17497.76 23493.89 15795.40 19198.95 7095.87 12995.58 25091.00 35396.36 9199.72 8293.36 20598.83 23196.85 313
DIV-MVS_2432*160097.86 6398.07 3697.25 15299.22 5792.81 18997.55 7498.94 7197.10 7898.85 4098.88 4795.03 13699.67 12497.39 4299.65 6199.26 115
114514_t93.96 25393.22 26096.19 21099.06 8790.97 22595.99 15798.94 7173.88 35993.43 30996.93 22592.38 20799.37 22189.09 28899.28 17698.25 251
SD-MVS97.37 9997.70 6096.35 20198.14 18495.13 11496.54 12798.92 7395.94 12499.19 2898.08 11797.74 2295.06 35895.24 12999.54 9398.87 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10697.31 3697.55 7498.92 7397.72 5398.25 9098.13 11197.10 4599.75 6595.44 11799.24 18199.32 96
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9798.90 7596.58 9298.08 11197.87 14897.02 5399.76 5795.25 12899.59 7699.40 81
Skip Steuart: Steuart Systems R&D Blog.
test_0728_SECOND98.25 7299.23 5495.49 9796.74 11898.89 7699.75 6595.48 11399.52 10199.53 39
test072699.24 5295.51 9496.89 11198.89 7695.92 12598.64 5098.31 8697.06 50
MSP-MVS97.45 9396.92 12299.03 899.26 4897.70 1897.66 6698.89 7695.65 13998.51 6096.46 25492.15 20999.81 3195.14 13898.58 25499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7698.49 2799.38 1799.14 3095.44 12499.84 2596.47 7099.80 3399.47 59
ACMP92.54 1397.47 9297.10 10998.55 5099.04 9096.70 5196.24 14398.89 7693.71 20897.97 12397.75 16097.44 3099.63 13693.22 21099.70 5499.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124096.74 13697.02 11795.91 22398.18 17788.52 26295.39 19298.88 8193.15 22898.46 6698.40 8092.80 19299.71 9698.45 1399.49 11299.49 51
3Dnovator96.53 297.61 8197.64 7097.50 12797.74 23693.65 17198.49 2098.88 8196.86 8497.11 17398.55 6995.82 10599.73 7895.94 9199.42 13799.13 139
TransMVSNet (Re)98.38 2598.67 1797.51 12499.51 2293.39 17798.20 3798.87 8398.23 3599.48 1299.27 1998.47 899.55 16596.52 6799.53 9699.60 26
DU-MVS97.79 6997.60 7698.36 6198.73 11295.78 8095.65 17998.87 8397.57 6098.31 8597.83 15194.69 14499.85 2297.02 5699.71 5199.46 61
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.60 7699.76 5795.49 11099.20 18399.26 115
RE-MVS-def97.88 4798.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.94 5595.49 11099.20 18399.26 115
Baseline_NR-MVSNet97.72 7497.79 5397.50 12799.56 1593.29 17895.44 18698.86 8598.20 3798.37 7399.24 2094.69 14499.55 16595.98 9099.79 3599.65 23
RPMNet94.68 22894.60 22194.90 26195.44 32688.15 27096.18 14698.86 8597.43 6694.10 28398.49 7379.40 30999.76 5795.69 9995.81 32796.81 317
test117298.08 3997.76 5799.05 698.78 10898.07 697.41 8698.85 8997.57 6098.15 10197.96 13496.60 7699.76 5795.30 12599.18 18799.33 95
test_part196.77 13596.53 14497.47 13298.04 19192.92 18797.93 5098.85 8998.83 2099.30 2199.07 3579.25 31099.79 3897.59 3499.93 1099.69 20
1112_ss94.12 24893.42 25596.23 20798.59 13390.85 22694.24 25098.85 8985.49 31692.97 31694.94 30486.01 28099.64 13491.78 23197.92 27698.20 255
PHI-MVS96.96 11996.53 14498.25 7297.48 25596.50 5896.76 11798.85 8993.52 21196.19 22796.85 22995.94 9999.42 19993.79 19799.43 13498.83 194
LS3D97.77 7197.50 8598.57 4896.24 30297.58 2498.45 2398.85 8998.58 2697.51 14897.94 13995.74 11399.63 13695.19 13198.97 21298.51 225
ZNCC-MVS97.92 5597.62 7498.83 2699.32 4597.24 3997.45 8198.84 9495.76 13596.93 18997.43 18797.26 4099.79 3896.06 8199.53 9699.45 66
HFP-MVS97.94 5197.64 7098.83 2699.15 7297.50 2897.59 7198.84 9496.05 11497.49 15197.54 17797.07 4899.70 10595.61 10699.46 12199.30 102
region2R97.92 5597.59 7798.92 2299.22 5797.55 2697.60 7098.84 9496.00 11997.22 16497.62 17296.87 6399.76 5795.48 11399.43 13499.46 61
#test#97.62 8097.22 10398.83 2699.15 7297.50 2896.81 11498.84 9494.25 19397.49 15197.54 17797.07 4899.70 10594.37 17299.46 12199.30 102
MSLP-MVS++96.42 15696.71 13295.57 23597.82 21790.56 23495.71 17198.84 9494.72 17696.71 20097.39 19394.91 14198.10 34595.28 12699.02 20998.05 269
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 11198.27 3198.84 9499.05 1399.01 3598.65 6395.37 12599.90 1397.57 3599.91 1799.77 8
OpenMVScopyleft94.22 895.48 19095.20 19096.32 20397.16 27991.96 21097.74 6398.84 9487.26 29994.36 27898.01 13093.95 16899.67 12490.70 26098.75 23897.35 299
SED-MVS97.94 5197.90 4498.07 8399.22 5795.35 10396.79 11598.83 10196.11 11199.08 3198.24 9997.87 2099.72 8295.44 11799.51 10699.14 136
test_241102_TWO98.83 10196.11 11198.62 5198.24 9996.92 5899.72 8295.44 11799.49 11299.49 51
test_241102_ONE99.22 5795.35 10398.83 10196.04 11699.08 3198.13 11197.87 2099.33 231
SR-MVS98.00 4597.66 6599.01 1198.77 11097.93 1097.38 8798.83 10197.32 7398.06 11397.85 14996.65 7199.77 5295.00 14799.11 19899.32 96
XVS97.96 4697.63 7298.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21897.64 17096.49 8299.72 8295.66 10299.37 14999.45 66
X-MVStestdata92.86 27590.83 30098.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21836.50 36396.49 8299.72 8295.66 10299.37 14999.45 66
ACMMPR97.95 4997.62 7498.94 1899.20 6597.56 2597.59 7198.83 10196.05 11497.46 15797.63 17196.77 6799.76 5795.61 10699.46 12199.49 51
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7297.55 2696.68 12498.83 10195.21 15698.36 7598.13 11198.13 1499.62 14496.04 8499.54 9399.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.60 8298.06 3896.23 20798.71 11789.44 24797.43 8498.82 10997.29 7598.74 4799.10 3293.86 16999.68 11998.61 1099.94 899.56 33
LF4IMVS96.07 16795.63 18197.36 14598.19 17495.55 9195.44 18698.82 10992.29 24695.70 24796.55 24892.63 19898.69 31091.75 23399.33 16797.85 279
GST-MVS97.82 6797.49 8698.81 2999.23 5497.25 3897.16 9698.79 11195.96 12297.53 14697.40 18996.93 5799.77 5295.04 14499.35 15799.42 78
ACMMP_NAP97.89 5997.63 7298.67 4199.35 4196.84 4796.36 13598.79 11195.07 16497.88 13298.35 8297.24 4299.72 8296.05 8399.58 7899.45 66
v192192096.72 13996.96 12095.99 21698.21 17288.79 25995.42 18898.79 11193.22 22298.19 9798.26 9892.68 19599.70 10598.34 1599.55 9099.49 51
DP-MVS97.87 6197.89 4697.81 10298.62 12894.82 12297.13 10098.79 11198.98 1798.74 4798.49 7395.80 11199.49 18095.04 14499.44 12699.11 148
mPP-MVS97.91 5897.53 8199.04 799.22 5797.87 1497.74 6398.78 11596.04 11697.10 17497.73 16396.53 7999.78 4295.16 13599.50 10899.46 61
v14419296.69 14296.90 12496.03 21598.25 16888.92 25495.49 18498.77 11693.05 23098.09 10998.29 9292.51 20499.70 10598.11 1799.56 8499.47 59
v119296.83 13097.06 11496.15 21298.28 16389.29 24995.36 19498.77 11693.73 20798.11 10598.34 8393.02 18999.67 12498.35 1499.58 7899.50 43
APD-MVScopyleft97.00 11496.53 14498.41 5798.55 13796.31 6496.32 13898.77 11692.96 23797.44 15997.58 17695.84 10299.74 7291.96 22499.35 15799.19 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 14296.08 16498.49 5298.89 9996.64 5497.25 9298.77 11692.89 23896.01 23497.13 21092.23 20899.67 12492.24 22299.34 16099.17 129
HQP_MVS96.66 14596.33 15497.68 11398.70 11994.29 14296.50 12898.75 12096.36 10196.16 22896.77 23691.91 22099.46 18992.59 21999.20 18399.28 110
plane_prior598.75 12099.46 18992.59 21999.20 18399.28 110
ETH3D cwj APD-0.1696.23 16195.61 18398.09 8297.91 20595.65 8994.94 22498.74 12291.31 26196.02 23397.08 21594.05 16699.69 11391.51 23698.94 21798.93 176
Patchmatch-RL test94.66 22994.49 22795.19 25098.54 13888.91 25592.57 30298.74 12291.46 25898.32 8397.75 16077.31 32398.81 29996.06 8199.61 7197.85 279
SMA-MVScopyleft97.48 9197.11 10898.60 4698.83 10296.67 5296.74 11898.73 12491.61 25598.48 6398.36 8196.53 7999.68 11995.17 13399.54 9399.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu96.44 15496.12 16197.39 14397.18 27894.39 13895.46 18598.73 12496.03 11894.72 26794.92 30696.28 9499.69 11393.81 19697.98 27498.09 259
zzz-MVS98.01 4497.66 6599.06 499.44 3097.90 1195.66 17698.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
MTGPAbinary98.73 124
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9298.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
MP-MVScopyleft97.64 7897.18 10599.00 1299.32 4597.77 1797.49 8098.73 12496.27 10495.59 24997.75 16096.30 9299.78 4293.70 20199.48 11699.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NR-MVSNet97.96 4697.86 4898.26 6998.73 11295.54 9298.14 4098.73 12497.79 4599.42 1597.83 15194.40 15799.78 4295.91 9399.76 3999.46 61
QAPM95.88 17695.57 18496.80 17597.90 20791.84 21398.18 3998.73 12488.41 28996.42 21398.13 11194.73 14299.75 6588.72 29398.94 21798.81 196
test_040297.84 6497.97 4197.47 13299.19 6794.07 15196.71 12398.73 12498.66 2498.56 5798.41 7896.84 6599.69 11394.82 15299.81 3098.64 214
TAPA-MVS93.32 1294.93 21394.23 23597.04 16298.18 17794.51 13495.22 20798.73 12481.22 34196.25 22495.95 28293.80 17298.98 28489.89 27798.87 22597.62 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640094.77 22093.87 24997.47 13298.12 18893.73 16594.56 24098.70 13485.45 31994.70 26995.93 28491.77 22299.63 13686.45 31899.14 19099.05 159
testtj96.69 14296.13 16098.36 6198.46 15196.02 7596.44 13098.70 13494.26 19296.79 19497.13 21094.07 16599.75 6590.53 26598.80 23399.31 101
3Dnovator+96.13 397.73 7397.59 7798.15 7998.11 18995.60 9098.04 4598.70 13498.13 3896.93 18998.45 7695.30 12999.62 14495.64 10498.96 21399.24 121
Test_1112_low_res93.53 26592.86 26595.54 23898.60 13188.86 25792.75 29898.69 13782.66 33592.65 32396.92 22784.75 28899.56 16190.94 24897.76 28298.19 256
DP-MVS Recon95.55 18695.13 19396.80 17598.51 14193.99 15594.60 23898.69 13790.20 27295.78 24396.21 26892.73 19498.98 28490.58 26498.86 22797.42 296
CHOSEN 1792x268894.10 24993.41 25696.18 21199.16 6990.04 23792.15 31098.68 13979.90 34696.22 22597.83 15187.92 26999.42 19989.18 28799.65 6199.08 153
PVSNet_BlendedMVS95.02 21294.93 20395.27 24797.79 22887.40 28794.14 25898.68 13988.94 28494.51 27498.01 13093.04 18699.30 23889.77 27999.49 11299.11 148
PVSNet_Blended93.96 25393.65 25294.91 25997.79 22887.40 28791.43 32098.68 13984.50 32994.51 27494.48 31593.04 18699.30 23889.77 27998.61 25198.02 272
v114496.84 12797.08 11196.13 21398.42 15389.28 25095.41 19098.67 14294.21 19497.97 12398.31 8693.06 18599.65 13198.06 1999.62 6599.45 66
CLD-MVS95.47 19195.07 19696.69 18298.27 16592.53 19491.36 32198.67 14291.22 26395.78 24394.12 32095.65 11698.98 28490.81 25299.72 4898.57 221
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GBi-Net96.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
test196.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
FMVSNet197.95 4998.08 3597.56 11999.14 8093.67 16798.23 3298.66 14497.41 7099.00 3699.19 2495.47 12299.73 7895.83 9699.76 3999.30 102
IterMVS-LS96.92 12297.29 9695.79 22798.51 14188.13 27295.10 21198.66 14496.99 7998.46 6698.68 6092.55 20099.74 7296.91 5999.79 3599.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP95.30 19994.38 23298.05 8898.64 12396.04 7395.61 18298.66 14489.00 28393.22 31396.40 25892.90 19099.35 22687.45 31297.53 29698.77 203
USDC94.56 23494.57 22694.55 27897.78 23286.43 30192.75 29898.65 14985.96 31096.91 19197.93 14190.82 23198.74 30590.71 25999.59 7698.47 228
PM-MVS97.36 10197.10 10998.14 8098.91 9896.77 4996.20 14598.63 15093.82 20598.54 5898.33 8493.98 16799.05 27595.99 8999.45 12598.61 219
cascas91.89 29291.35 29093.51 29694.27 34185.60 30888.86 35098.61 15179.32 34892.16 33091.44 34989.22 25698.12 34490.80 25397.47 30096.82 316
Fast-Effi-MVS+95.49 18895.07 19696.75 17897.67 24392.82 18894.22 25298.60 15291.61 25593.42 31092.90 33296.73 6999.70 10592.60 21797.89 27997.74 284
DeepPCF-MVS94.58 596.90 12496.43 15098.31 6697.48 25597.23 4092.56 30398.60 15292.84 23998.54 5897.40 18996.64 7398.78 30194.40 17199.41 14498.93 176
OMC-MVS96.48 15296.00 16797.91 9598.30 16096.01 7694.86 22898.60 15291.88 25297.18 16897.21 20896.11 9599.04 27690.49 26999.34 16098.69 211
testgi96.07 16796.50 14894.80 26799.26 4887.69 28295.96 16098.58 15595.08 16398.02 11896.25 26597.92 1697.60 35088.68 29598.74 23999.11 148
ZD-MVS98.43 15295.94 7798.56 15690.72 26796.66 20297.07 21695.02 13799.74 7291.08 24498.93 219
RRT_test8_iter0592.46 28192.52 27792.29 32295.33 32977.43 35295.73 17098.55 15794.41 18697.46 15797.72 16557.44 36499.74 7296.92 5899.14 19099.69 20
VPNet97.26 10697.49 8696.59 18699.47 2790.58 23296.27 13998.53 15897.77 4698.46 6698.41 7894.59 15099.68 11994.61 16099.29 17599.52 40
DELS-MVS96.17 16496.23 15695.99 21697.55 25290.04 23792.38 30898.52 15994.13 19796.55 20997.06 21794.99 13899.58 15495.62 10599.28 17698.37 234
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HyFIR lowres test93.72 25892.65 27396.91 16998.93 9691.81 21491.23 32798.52 15982.69 33496.46 21296.52 25280.38 30799.90 1390.36 27198.79 23499.03 161
ITE_SJBPF97.85 10098.64 12396.66 5398.51 16195.63 14097.22 16497.30 20395.52 11998.55 32490.97 24798.90 22198.34 240
eth_miper_zixun_eth94.89 21594.93 20394.75 26995.99 31386.12 30491.35 32298.49 16293.40 21497.12 17297.25 20686.87 27799.35 22695.08 14398.82 23298.78 200
TinyColmap96.00 17296.34 15394.96 25897.90 20787.91 27594.13 25998.49 16294.41 18698.16 9997.76 15796.29 9398.68 31390.52 26699.42 13798.30 245
OPM-MVS97.54 8697.25 9998.41 5799.11 8296.61 5595.24 20698.46 16494.58 18398.10 10898.07 11997.09 4799.39 21595.16 13599.44 12699.21 124
tfpnnormal97.72 7497.97 4196.94 16699.26 4892.23 20097.83 5798.45 16598.25 3499.13 3098.66 6196.65 7199.69 11393.92 19399.62 6598.91 181
UnsupCasMVSNet_eth95.91 17495.73 17896.44 19698.48 14791.52 21895.31 19998.45 16595.76 13597.48 15497.54 17789.53 25198.69 31094.43 16894.61 34099.13 139
PCF-MVS89.43 1892.12 28990.64 30396.57 19097.80 22293.48 17589.88 34598.45 16574.46 35896.04 23295.68 28990.71 23399.31 23573.73 35699.01 21196.91 310
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP3-MVS98.43 16898.74 239
HQP-MVS95.17 20594.58 22496.92 16797.85 21092.47 19594.26 24698.43 16893.18 22492.86 31895.08 30090.33 23799.23 25290.51 26798.74 23999.05 159
DeepC-MVS_fast94.34 796.74 13696.51 14797.44 13897.69 23994.15 14996.02 15598.43 16893.17 22797.30 16297.38 19595.48 12199.28 24493.74 19899.34 16098.88 189
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior395.91 17495.39 18797.46 13597.79 22894.26 14693.33 28898.42 17194.21 19494.02 28796.25 26593.64 17599.34 22891.90 22698.96 21398.79 198
test_prior97.46 13597.79 22894.26 14698.42 17199.34 22898.79 198
save fliter98.48 14794.71 12694.53 24198.41 17395.02 167
CANet95.86 17795.65 18096.49 19496.41 29890.82 22794.36 24498.41 17394.94 16992.62 32696.73 23992.68 19599.71 9695.12 14199.60 7498.94 172
Anonymous2024052197.07 11297.51 8395.76 22899.35 4188.18 26997.78 5898.40 17597.11 7798.34 7899.04 3789.58 24899.79 3898.09 1899.93 1099.30 102
TEST997.84 21495.23 10893.62 27798.39 17686.81 30493.78 29295.99 27794.68 14699.52 174
train_agg95.46 19294.66 21597.88 9897.84 21495.23 10893.62 27798.39 17687.04 30293.78 29295.99 27794.58 15199.52 17491.76 23298.90 22198.89 185
test_897.81 21895.07 11693.54 28098.38 17887.04 30293.71 29695.96 28194.58 15199.52 174
MSDG95.33 19795.13 19395.94 22297.40 26391.85 21291.02 33298.37 17995.30 15496.31 22095.99 27794.51 15498.38 33489.59 28197.65 29297.60 291
agg_prior195.39 19594.60 22197.75 10597.80 22294.96 11893.39 28598.36 18087.20 30093.49 30595.97 28094.65 14899.53 17091.69 23498.86 22798.77 203
agg_prior97.80 22294.96 11898.36 18093.49 30599.53 170
V4297.04 11397.16 10696.68 18398.59 13391.05 22296.33 13798.36 18094.60 18097.99 11998.30 9093.32 18099.62 14497.40 4199.53 9699.38 85
MVS_111021_HR96.73 13896.54 14397.27 14998.35 15893.66 17093.42 28398.36 18094.74 17596.58 20596.76 23896.54 7898.99 28294.87 15099.27 17899.15 133
cl_fuxian95.20 20295.32 18894.83 26696.19 30686.43 30191.83 31698.35 18493.47 21397.36 16197.26 20588.69 25899.28 24495.41 12399.36 15298.78 200
MVS_Test96.27 15996.79 13094.73 27096.94 28786.63 29896.18 14698.33 18594.94 16996.07 23198.28 9395.25 13099.26 24797.21 4797.90 27898.30 245
CDPH-MVS95.45 19394.65 21697.84 10198.28 16394.96 11893.73 27598.33 18585.03 32495.44 25196.60 24695.31 12899.44 19690.01 27599.13 19499.11 148
MVS_111021_LR96.82 13196.55 14197.62 11698.27 16595.34 10593.81 27398.33 18594.59 18296.56 20796.63 24596.61 7498.73 30694.80 15399.34 16098.78 200
Anonymous2024052997.96 4698.04 3997.71 10898.69 12194.28 14597.86 5598.31 18898.79 2199.23 2698.86 4995.76 11299.61 15095.49 11099.36 15299.23 122
Regformer-297.41 9697.24 10197.93 9497.21 27694.72 12594.85 22998.27 18997.74 5098.11 10597.50 18295.58 11899.69 11396.57 6699.31 17199.37 90
FMVSNet593.39 26792.35 27896.50 19395.83 31790.81 22997.31 8998.27 18992.74 24096.27 22298.28 9362.23 36199.67 12490.86 25099.36 15299.03 161
v2v48296.78 13497.06 11495.95 22098.57 13588.77 26095.36 19498.26 19195.18 15997.85 13798.23 10192.58 19999.63 13697.80 2799.69 5599.45 66
PLCcopyleft91.02 1694.05 25292.90 26497.51 12498.00 19995.12 11594.25 24998.25 19286.17 30891.48 33495.25 29891.01 22899.19 25585.02 33196.69 31698.22 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
miper_ehance_all_eth94.69 22694.70 21494.64 27195.77 31986.22 30391.32 32598.24 19391.67 25497.05 17996.65 24488.39 26299.22 25494.88 14998.34 26198.49 227
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11898.23 19495.92 12598.40 7098.28 9397.06 5099.71 9695.48 11399.52 10199.26 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base_debi95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
miper_lstm_enhance94.81 21994.80 21194.85 26496.16 30886.45 30091.14 32998.20 19893.49 21297.03 18197.37 19784.97 28799.26 24795.28 12699.56 8498.83 194
TSAR-MVS + MP.97.42 9597.23 10298.00 9099.38 3895.00 11797.63 6998.20 19893.00 23298.16 9998.06 12495.89 10099.72 8295.67 10099.10 20099.28 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVP-Stereo95.69 18095.28 18996.92 16798.15 18393.03 18495.64 18198.20 19890.39 27096.63 20497.73 16391.63 22399.10 27091.84 23097.31 30498.63 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS++copyleft96.99 11596.38 15198.81 2998.64 12397.59 2395.97 15998.20 19895.51 14695.06 25896.53 25094.10 16499.70 10594.29 17699.15 18999.13 139
NCCC96.52 15095.99 16898.10 8197.81 21895.68 8695.00 22298.20 19895.39 15195.40 25396.36 26193.81 17199.45 19393.55 20498.42 25999.17 129
new-patchmatchnet95.67 18296.58 13892.94 31197.48 25580.21 34492.96 29498.19 20394.83 17398.82 4298.79 5193.31 18199.51 17895.83 9699.04 20899.12 144
MCST-MVS96.24 16095.80 17597.56 11998.75 11194.13 15094.66 23698.17 20490.17 27396.21 22696.10 27595.14 13299.43 19894.13 18398.85 22999.13 139
door-mid98.17 204
CNVR-MVS96.92 12296.55 14198.03 8998.00 19995.54 9294.87 22798.17 20494.60 18096.38 21597.05 21895.67 11599.36 22395.12 14199.08 20299.19 126
原ACMM196.58 18898.16 18192.12 20598.15 20785.90 31293.49 30596.43 25592.47 20599.38 21887.66 30798.62 25098.23 252
IU-MVS99.22 5795.40 9998.14 20885.77 31498.36 7595.23 13099.51 10699.49 51
Regformer-497.53 8897.47 8897.71 10897.35 26593.91 15695.26 20398.14 20897.97 4298.34 7897.89 14495.49 12099.71 9697.41 4099.42 13799.51 42
ambc96.56 19198.23 17191.68 21697.88 5498.13 21098.42 6998.56 6894.22 16299.04 27694.05 18899.35 15798.95 170
WR-MVS96.90 12496.81 12797.16 15498.56 13692.20 20394.33 24598.12 21197.34 7298.20 9497.33 20092.81 19199.75 6594.79 15499.81 3099.54 36
cdsmvs_eth3d_5k24.22 33432.30 3370.00 3500.00 3710.00 3720.00 36298.10 2120.00 3670.00 36895.06 30297.54 290.00 3680.00 3660.00 3660.00 364
Effi-MVS+-dtu96.81 13296.09 16398.99 1396.90 28998.69 296.42 13198.09 21395.86 13095.15 25795.54 29494.26 16099.81 3194.06 18598.51 25798.47 228
mvs-test196.20 16295.50 18698.32 6496.90 28998.16 495.07 21698.09 21395.86 13093.63 29994.32 31894.26 16099.71 9694.06 18597.27 30697.07 303
cl-mvsnet____94.73 22194.64 21795.01 25695.85 31687.00 29391.33 32398.08 21593.34 21797.10 17497.33 20084.01 29499.30 23895.14 13899.56 8498.71 210
cl-mvsnet194.73 22194.64 21795.01 25695.86 31587.00 29391.33 32398.08 21593.34 21797.10 17497.34 19984.02 29399.31 23595.15 13799.55 9098.72 208
test1198.08 215
AdaColmapbinary95.11 20694.62 22096.58 18897.33 27194.45 13794.92 22598.08 21593.15 22893.98 29095.53 29594.34 15899.10 27085.69 32398.61 25196.20 330
pmmvs-eth3d96.49 15196.18 15997.42 14098.25 16894.29 14294.77 23398.07 21989.81 27697.97 12398.33 8493.11 18499.08 27295.46 11699.84 2898.89 185
FMVSNet296.72 13996.67 13596.87 17197.96 20191.88 21197.15 9798.06 22095.59 14398.50 6298.62 6489.51 25299.65 13194.99 14899.60 7499.07 155
UnsupCasMVSNet_bld94.72 22594.26 23496.08 21498.62 12890.54 23593.38 28698.05 22190.30 27197.02 18296.80 23589.54 24999.16 26188.44 29796.18 32498.56 222
Regformer-197.27 10597.16 10697.61 11797.21 27693.86 15994.85 22998.04 22297.62 5998.03 11797.50 18295.34 12699.63 13696.52 6799.31 17199.35 93
PAPM_NR94.61 23294.17 23995.96 21898.36 15791.23 22095.93 16397.95 22392.98 23393.42 31094.43 31690.53 23498.38 33487.60 30896.29 32398.27 249
D2MVS95.18 20395.17 19295.21 24997.76 23487.76 28194.15 25697.94 22489.77 27796.99 18497.68 16987.45 27299.14 26395.03 14699.81 3098.74 205
无先验93.20 29197.91 22580.78 34299.40 21087.71 30497.94 275
v14896.58 14896.97 11895.42 24398.63 12787.57 28395.09 21397.90 22695.91 12798.24 9297.96 13493.42 17999.39 21596.04 8499.52 10199.29 109
CNLPA95.04 20994.47 22896.75 17897.81 21895.25 10794.12 26097.89 22794.41 18694.57 27195.69 28890.30 24098.35 33786.72 31798.76 23796.64 322
PAPR92.22 28691.27 29295.07 25495.73 32188.81 25891.97 31497.87 22885.80 31390.91 33692.73 33691.16 22698.33 33879.48 34795.76 33198.08 260
miper_enhance_ethall93.14 27392.78 27094.20 28793.65 34885.29 31389.97 34197.85 22985.05 32396.15 23094.56 31185.74 28199.14 26393.74 19898.34 26198.17 258
Anonymous2023120695.27 20095.06 19895.88 22498.72 11489.37 24895.70 17297.85 22988.00 29596.98 18697.62 17291.95 21699.34 22889.21 28699.53 9698.94 172
xiu_mvs_v2_base94.22 24394.63 21992.99 30997.32 27284.84 32192.12 31197.84 23191.96 25094.17 28193.43 32396.07 9699.71 9691.27 24097.48 29894.42 345
PS-MVSNAJ94.10 24994.47 22893.00 30897.35 26584.88 32091.86 31597.84 23191.96 25094.17 28192.50 33995.82 10599.71 9691.27 24097.48 29894.40 346
CANet_DTU94.65 23094.21 23795.96 21895.90 31489.68 24293.92 26897.83 23393.19 22390.12 34395.64 29188.52 25999.57 16093.27 20999.47 11898.62 217
door97.81 234
test1297.46 13597.61 24794.07 15197.78 23593.57 30393.31 18199.42 19998.78 23598.89 185
旧先验197.80 22293.87 15897.75 23697.04 21993.57 17798.68 24398.72 208
新几何197.25 15298.29 16194.70 12997.73 23777.98 35294.83 26696.67 24392.08 21399.45 19388.17 30298.65 24897.61 290
testdata95.70 23298.16 18190.58 23297.72 23880.38 34495.62 24897.02 22092.06 21498.98 28489.06 29098.52 25597.54 292
112194.26 24193.26 25897.27 14998.26 16794.73 12495.86 16597.71 23977.96 35394.53 27396.71 24091.93 21899.40 21087.71 30498.64 24997.69 287
test20.0396.58 14896.61 13696.48 19598.49 14591.72 21595.68 17597.69 24096.81 8598.27 8997.92 14294.18 16398.71 30890.78 25499.66 6099.00 164
ab-mvs96.59 14796.59 13796.60 18598.64 12392.21 20198.35 2697.67 24194.45 18596.99 18498.79 5194.96 13999.49 18090.39 27099.07 20498.08 260
CMPMVSbinary73.10 2392.74 27791.39 28996.77 17793.57 35094.67 13094.21 25397.67 24180.36 34593.61 30196.60 24682.85 29797.35 35184.86 33298.78 23598.29 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs_anonymous95.36 19696.07 16593.21 30396.29 30081.56 33994.60 23897.66 24393.30 21996.95 18898.91 4693.03 18899.38 21896.60 6397.30 30598.69 211
FMVSNet395.26 20194.94 20196.22 20996.53 29590.06 23695.99 15797.66 24394.11 19897.99 11997.91 14380.22 30899.63 13694.60 16199.44 12698.96 169
EI-MVSNet-UG-set97.32 10397.40 8997.09 15997.34 26992.01 20995.33 19797.65 24597.74 5098.30 8798.14 11095.04 13599.69 11397.55 3699.52 10199.58 28
EI-MVSNet-Vis-set97.32 10397.39 9097.11 15797.36 26492.08 20795.34 19697.65 24597.74 5098.29 8898.11 11595.05 13399.68 11997.50 3899.50 10899.56 33
EI-MVSNet96.63 14696.93 12195.74 22997.26 27488.13 27295.29 20197.65 24596.99 7997.94 12698.19 10692.55 20099.58 15496.91 5999.56 8499.50 43
MVSTER94.21 24593.93 24895.05 25595.83 31786.46 29995.18 20997.65 24592.41 24597.94 12698.00 13272.39 34699.58 15496.36 7399.56 8499.12 144
IterMVS-SCA-FT95.86 17796.19 15894.85 26497.68 24085.53 30992.42 30697.63 24996.99 7998.36 7598.54 7087.94 26599.75 6597.07 5599.08 20299.27 114
Regformer-397.25 10797.29 9697.11 15797.35 26592.32 19895.26 20397.62 25097.67 5898.17 9897.89 14495.05 13399.56 16197.16 5199.42 13799.46 61
test22298.17 17993.24 18092.74 30097.61 25175.17 35794.65 27096.69 24290.96 23098.66 24697.66 288
VNet96.84 12796.83 12696.88 17098.06 19092.02 20896.35 13697.57 25297.70 5597.88 13297.80 15692.40 20699.54 16894.73 15998.96 21399.08 153
RRT_MVS94.90 21494.07 24197.39 14393.18 35193.21 18195.26 20397.49 25393.94 20398.25 9097.85 14972.96 34599.84 2597.90 2299.78 3899.14 136
PMVScopyleft89.60 1796.71 14196.97 11895.95 22099.51 2297.81 1697.42 8597.49 25397.93 4395.95 23598.58 6596.88 6296.91 35389.59 28199.36 15293.12 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ppachtmachnet_test94.49 23794.84 20893.46 29796.16 30882.10 33690.59 33597.48 25590.53 26997.01 18397.59 17491.01 22899.36 22393.97 19299.18 18798.94 172
DPM-MVS93.68 26092.77 27196.42 19897.91 20592.54 19391.17 32897.47 25684.99 32593.08 31594.74 30889.90 24599.00 28087.54 31098.09 27197.72 285
IterMVS95.42 19495.83 17494.20 28797.52 25383.78 33092.41 30797.47 25695.49 14798.06 11398.49 7387.94 26599.58 15496.02 8699.02 20999.23 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch94.83 21794.91 20594.57 27796.81 29187.10 29294.23 25197.34 25888.74 28797.14 17097.11 21391.94 21798.23 34192.99 21497.92 27698.37 234
MDA-MVSNet-bldmvs95.69 18095.67 17995.74 22998.48 14788.76 26192.84 29597.25 25996.00 11997.59 14497.95 13891.38 22599.46 18993.16 21296.35 32298.99 167
PatchMatch-RL94.61 23293.81 25097.02 16498.19 17495.72 8293.66 27697.23 26088.17 29394.94 26395.62 29291.43 22498.57 32187.36 31397.68 28996.76 319
CR-MVSNet93.29 27092.79 26894.78 26895.44 32688.15 27096.18 14697.20 26184.94 32694.10 28398.57 6677.67 31899.39 21595.17 13395.81 32796.81 317
Patchmtry95.03 21194.59 22396.33 20294.83 33490.82 22796.38 13497.20 26196.59 9197.49 15198.57 6677.67 31899.38 21892.95 21699.62 6598.80 197
API-MVS95.09 20895.01 20095.31 24696.61 29394.02 15396.83 11397.18 26395.60 14295.79 24194.33 31794.54 15398.37 33685.70 32298.52 25593.52 349
MAR-MVS94.21 24593.03 26297.76 10496.94 28797.44 3396.97 10997.15 26487.89 29792.00 33192.73 33692.14 21099.12 26583.92 33697.51 29796.73 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
pmmvs594.63 23194.34 23395.50 23997.63 24688.34 26694.02 26297.13 26587.15 30195.22 25697.15 20987.50 27199.27 24693.99 19099.26 17998.88 189
UGNet96.81 13296.56 14097.58 11896.64 29293.84 16197.75 6297.12 26696.47 9993.62 30098.88 4793.22 18399.53 17095.61 10699.69 5599.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
hse-mvs396.29 15895.63 18198.26 6998.50 14496.11 7196.90 11097.09 26796.58 9297.21 16698.19 10684.14 29199.78 4295.89 9496.17 32598.89 185
CHOSEN 280x42089.98 31089.19 31692.37 32095.60 32381.13 34286.22 35597.09 26781.44 34087.44 35593.15 32473.99 33599.47 18688.69 29499.07 20496.52 326
CDS-MVSNet94.88 21694.12 24097.14 15697.64 24593.57 17293.96 26797.06 26990.05 27496.30 22196.55 24886.10 27999.47 18690.10 27499.31 17198.40 231
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-untuned94.69 22694.75 21394.52 27997.95 20487.53 28494.07 26197.01 27093.99 20197.10 17495.65 29092.65 19798.95 28987.60 30896.74 31597.09 302
sss94.22 24393.72 25195.74 22997.71 23889.95 23993.84 27096.98 27188.38 29193.75 29595.74 28787.94 26598.89 29291.02 24698.10 27098.37 234
131492.38 28392.30 27992.64 31595.42 32885.15 31695.86 16596.97 27285.40 32090.62 33793.06 33091.12 22797.80 34886.74 31695.49 33494.97 343
SixPastTwentyTwo97.49 9097.57 7997.26 15199.56 1592.33 19798.28 2996.97 27298.30 3399.45 1499.35 1688.43 26199.89 1698.01 2099.76 3999.54 36
TSAR-MVS + GP.96.47 15396.12 16197.49 13097.74 23695.23 10894.15 25696.90 27493.26 22098.04 11696.70 24194.41 15698.89 29294.77 15799.14 19098.37 234
our_test_394.20 24794.58 22493.07 30596.16 30881.20 34190.42 33796.84 27590.72 26797.14 17097.13 21090.47 23599.11 26894.04 18998.25 26598.91 181
alignmvs96.01 17195.52 18597.50 12797.77 23394.71 12696.07 15196.84 27597.48 6596.78 19894.28 31985.50 28399.40 21096.22 7698.73 24298.40 231
CL-MVSNet_2432*160095.04 20994.79 21295.82 22697.51 25489.79 24191.14 32996.82 27793.05 23096.72 19996.40 25890.82 23199.16 26191.95 22598.66 24698.50 226
TAMVS95.49 18894.94 20197.16 15498.31 15993.41 17695.07 21696.82 27791.09 26497.51 14897.82 15489.96 24499.42 19988.42 29899.44 12698.64 214
pmmvs494.82 21894.19 23896.70 18197.42 26292.75 19192.09 31396.76 27986.80 30595.73 24697.22 20789.28 25598.89 29293.28 20899.14 19098.46 230
jason94.39 24094.04 24395.41 24598.29 16187.85 27892.74 30096.75 28085.38 32195.29 25496.15 27088.21 26499.65 13194.24 17899.34 16098.74 205
jason: jason.
MVS90.02 30889.20 31592.47 31894.71 33586.90 29595.86 16596.74 28164.72 36190.62 33792.77 33492.54 20298.39 33379.30 34895.56 33392.12 353
IS-MVSNet96.93 12196.68 13497.70 11099.25 5194.00 15498.57 1596.74 28198.36 3098.14 10397.98 13388.23 26399.71 9693.10 21399.72 4899.38 85
OpenMVS_ROBcopyleft91.80 1493.64 26293.05 26195.42 24397.31 27391.21 22195.08 21596.68 28381.56 33896.88 19396.41 25690.44 23699.25 24985.39 32797.67 29095.80 334
cl-mvsnet293.25 27192.84 26794.46 28094.30 34086.00 30591.09 33196.64 28490.74 26695.79 24196.31 26378.24 31598.77 30294.15 18298.34 26198.62 217
EPP-MVSNet96.84 12796.58 13897.65 11499.18 6893.78 16498.68 1096.34 28597.91 4497.30 16298.06 12488.46 26099.85 2293.85 19599.40 14599.32 96
BH-RMVSNet94.56 23494.44 23194.91 25997.57 24887.44 28693.78 27496.26 28693.69 20996.41 21496.50 25392.10 21299.00 28085.96 32097.71 28698.31 243
MVS_030495.50 18795.05 19996.84 17396.28 30193.12 18297.00 10796.16 28795.03 16689.22 34897.70 16690.16 24399.48 18394.51 16699.34 16097.93 276
GA-MVS92.83 27692.15 28194.87 26396.97 28487.27 29090.03 34096.12 28891.83 25394.05 28694.57 31076.01 33098.97 28892.46 22197.34 30398.36 239
lupinMVS93.77 25693.28 25795.24 24897.68 24087.81 27992.12 31196.05 28984.52 32894.48 27695.06 30286.90 27599.63 13693.62 20399.13 19498.27 249
test_method66.88 33266.13 33569.11 34662.68 36725.73 36949.76 36196.04 29014.32 36464.27 36591.69 34773.45 34288.05 36276.06 35566.94 36293.54 348
PMMVS293.66 26194.07 24192.45 31997.57 24880.67 34386.46 35496.00 29193.99 20197.10 17497.38 19589.90 24597.82 34788.76 29299.47 11898.86 192
WTY-MVS93.55 26493.00 26395.19 25097.81 21887.86 27693.89 26996.00 29189.02 28294.07 28595.44 29786.27 27899.33 23187.69 30696.82 31298.39 233
PMMVS92.39 28291.08 29496.30 20593.12 35492.81 18990.58 33695.96 29379.17 34991.85 33392.27 34090.29 24198.66 31589.85 27896.68 31797.43 295
MG-MVS94.08 25194.00 24494.32 28497.09 28185.89 30693.19 29295.96 29392.52 24194.93 26497.51 18189.54 24998.77 30287.52 31197.71 28698.31 243
MDA-MVSNet_test_wron94.73 22194.83 21094.42 28197.48 25585.15 31690.28 33995.87 29592.52 24197.48 15497.76 15791.92 21999.17 26093.32 20696.80 31498.94 172
YYNet194.73 22194.84 20894.41 28297.47 25985.09 31890.29 33895.85 29692.52 24197.53 14697.76 15791.97 21599.18 25693.31 20796.86 31198.95 170
ADS-MVSNet291.47 29790.51 30594.36 28395.51 32485.63 30795.05 21995.70 29783.46 33292.69 32196.84 23079.15 31299.41 20885.66 32490.52 35098.04 270
BH-w/o92.14 28891.94 28292.73 31497.13 28085.30 31292.46 30595.64 29889.33 28094.21 28092.74 33589.60 24798.24 34081.68 34394.66 33994.66 344
KD-MVS_2432*160088.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
miper_refine_blended88.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
VDD-MVS97.37 9997.25 9997.74 10698.69 12194.50 13697.04 10595.61 30198.59 2598.51 6098.72 5692.54 20299.58 15496.02 8699.49 11299.12 144
PAPM87.64 32885.84 33393.04 30696.54 29484.99 31988.42 35295.57 30279.52 34783.82 35993.05 33180.57 30698.41 33162.29 36292.79 34695.71 335
test_yl94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
DCV-MVSNet94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
AUN-MVS93.95 25592.69 27297.74 10697.80 22295.38 10095.57 18395.46 30591.26 26292.64 32496.10 27574.67 33499.55 16593.72 20096.97 30798.30 245
hse-mvs295.77 17995.09 19597.79 10397.84 21495.51 9495.66 17695.43 30696.58 9297.21 16696.16 26984.14 29199.54 16895.89 9496.92 30898.32 241
VDDNet96.98 11896.84 12597.41 14199.40 3693.26 17997.94 4995.31 30799.26 798.39 7299.18 2787.85 27099.62 14495.13 14099.09 20199.35 93
wuyk23d93.25 27195.20 19087.40 34396.07 31295.38 10097.04 10594.97 30895.33 15299.70 598.11 11598.14 1391.94 36077.76 35399.68 5774.89 360
Vis-MVSNet (Re-imp)95.11 20694.85 20795.87 22599.12 8189.17 25197.54 7994.92 30996.50 9696.58 20597.27 20483.64 29599.48 18388.42 29899.67 5898.97 168
TR-MVS92.54 28092.20 28093.57 29596.49 29686.66 29793.51 28194.73 31089.96 27594.95 26293.87 32190.24 24298.61 31881.18 34594.88 33795.45 340
HY-MVS91.43 1592.58 27991.81 28594.90 26196.49 29688.87 25697.31 8994.62 31185.92 31190.50 34096.84 23085.05 28599.40 21083.77 33995.78 33096.43 327
PVSNet86.72 1991.10 30090.97 29791.49 32597.56 25078.04 34987.17 35394.60 31284.65 32792.34 32892.20 34187.37 27398.47 32885.17 33097.69 28897.96 274
Patchmatch-test93.60 26393.25 25994.63 27296.14 31187.47 28596.04 15394.50 31393.57 21096.47 21196.97 22276.50 32698.61 31890.67 26198.41 26097.81 283
Anonymous20240521196.34 15795.98 16997.43 13998.25 16893.85 16096.74 11894.41 31497.72 5398.37 7398.03 12787.15 27499.53 17094.06 18599.07 20498.92 180
tpm cat188.01 32587.33 32690.05 33594.48 33876.28 35694.47 24394.35 31573.84 36089.26 34795.61 29373.64 33998.30 33984.13 33586.20 35895.57 339
SCA93.38 26893.52 25492.96 31096.24 30281.40 34093.24 29094.00 31691.58 25794.57 27196.97 22287.94 26599.42 19989.47 28397.66 29198.06 266
tpmrst90.31 30690.61 30489.41 33694.06 34572.37 36395.06 21893.69 31788.01 29492.32 32996.86 22877.45 32098.82 29791.04 24587.01 35797.04 305
MIMVSNet93.42 26692.86 26595.10 25398.17 17988.19 26898.13 4193.69 31792.07 24795.04 26198.21 10580.95 30599.03 27981.42 34498.06 27298.07 262
DSMNet-mixed92.19 28791.83 28493.25 30196.18 30783.68 33196.27 13993.68 31976.97 35692.54 32799.18 2789.20 25798.55 32483.88 33798.60 25397.51 293
tpmvs90.79 30490.87 29890.57 33292.75 35876.30 35595.79 16993.64 32091.04 26591.91 33296.26 26477.19 32498.86 29689.38 28589.85 35396.56 325
PatchmatchNetpermissive91.98 29191.87 28392.30 32194.60 33779.71 34595.12 21093.59 32189.52 27893.61 30197.02 22077.94 31699.18 25690.84 25194.57 34298.01 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet90.95 30390.26 30793.04 30695.51 32482.37 33595.05 21993.41 32283.46 33292.69 32196.84 23079.15 31298.70 30985.66 32490.52 35098.04 270
FPMVS89.92 31288.63 31993.82 29098.37 15696.94 4591.58 31893.34 32388.00 29590.32 34197.10 21470.87 35191.13 36171.91 35996.16 32693.39 351
MDTV_nov1_ep1391.28 29194.31 33973.51 36194.80 23193.16 32486.75 30693.45 30897.40 18976.37 32798.55 32488.85 29196.43 320
baseline193.14 27392.64 27494.62 27397.34 26987.20 29196.67 12593.02 32594.71 17796.51 21095.83 28681.64 30098.60 32090.00 27688.06 35598.07 262
PatchT93.75 25793.57 25394.29 28695.05 33287.32 28996.05 15292.98 32697.54 6394.25 27998.72 5675.79 33199.24 25095.92 9295.81 32796.32 328
EPNet_dtu91.39 29890.75 30193.31 29990.48 36382.61 33394.80 23192.88 32793.39 21581.74 36294.90 30781.36 30299.11 26888.28 30098.87 22598.21 254
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
new_pmnet92.34 28491.69 28794.32 28496.23 30489.16 25292.27 30992.88 32784.39 33195.29 25496.35 26285.66 28296.74 35684.53 33497.56 29497.05 304
dp88.08 32488.05 32288.16 34292.85 35668.81 36594.17 25492.88 32785.47 31791.38 33596.14 27268.87 35598.81 29986.88 31583.80 36096.87 311
EU-MVSNet94.25 24294.47 22893.60 29498.14 18482.60 33497.24 9492.72 33085.08 32298.48 6398.94 4382.59 29898.76 30497.47 3999.53 9699.44 76
PVSNet_081.89 2184.49 33183.21 33488.34 34095.76 32074.97 36083.49 35792.70 33178.47 35187.94 35386.90 36083.38 29696.63 35773.44 35766.86 36393.40 350
pmmvs390.00 30988.90 31893.32 29894.20 34485.34 31191.25 32692.56 33278.59 35093.82 29195.17 29967.36 35798.69 31089.08 28998.03 27395.92 331
CVMVSNet92.33 28592.79 26890.95 32997.26 27475.84 35795.29 20192.33 33381.86 33696.27 22298.19 10681.44 30198.46 32994.23 17998.29 26498.55 224
E-PMN89.52 31589.78 31088.73 33893.14 35377.61 35183.26 35892.02 33494.82 17493.71 29693.11 32575.31 33296.81 35485.81 32196.81 31391.77 355
CostFormer89.75 31389.25 31291.26 32894.69 33678.00 35095.32 19891.98 33581.50 33990.55 33996.96 22471.06 35098.89 29288.59 29692.63 34796.87 311
tpm288.47 32187.69 32590.79 33094.98 33377.34 35395.09 21391.83 33677.51 35589.40 34696.41 25667.83 35698.73 30683.58 34192.60 34896.29 329
JIA-IIPM91.79 29390.69 30295.11 25293.80 34790.98 22494.16 25591.78 33796.38 10090.30 34299.30 1872.02 34798.90 29088.28 30090.17 35295.45 340
N_pmnet95.18 20394.23 23598.06 8597.85 21096.55 5792.49 30491.63 33889.34 27998.09 10997.41 18890.33 23799.06 27491.58 23599.31 17198.56 222
DWT-MVSNet_test87.92 32686.77 33091.39 32693.18 35178.62 34795.10 21191.42 33985.58 31588.00 35288.73 35860.60 36298.90 29090.60 26287.70 35696.65 321
bset_n11_16_dypcd94.53 23693.95 24796.25 20697.56 25089.85 24088.52 35191.32 34094.90 17297.51 14896.38 26082.34 29999.78 4297.22 4599.80 3399.12 144
EPNet93.72 25892.62 27597.03 16387.61 36692.25 19996.27 13991.28 34196.74 8787.65 35497.39 19385.00 28699.64 13492.14 22399.48 11699.20 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm91.08 30190.85 29991.75 32495.33 32978.09 34895.03 22191.27 34288.75 28693.53 30497.40 18971.24 34899.30 23891.25 24293.87 34397.87 278
thres20091.00 30290.42 30692.77 31397.47 25983.98 32994.01 26391.18 34395.12 16295.44 25191.21 35173.93 33699.31 23577.76 35397.63 29395.01 342
EMVS89.06 31789.22 31388.61 33993.00 35577.34 35382.91 35990.92 34494.64 17992.63 32591.81 34576.30 32897.02 35283.83 33896.90 31091.48 356
tfpn200view991.55 29691.00 29593.21 30398.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28395.85 332
thres40091.68 29591.00 29593.71 29298.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28397.36 297
LFMVS95.32 19894.88 20696.62 18498.03 19291.47 21997.65 6790.72 34799.11 997.89 13198.31 8679.20 31199.48 18393.91 19499.12 19798.93 176
thres100view90091.76 29491.26 29393.26 30098.21 17284.50 32496.39 13290.39 34896.87 8396.33 21793.08 32973.44 34399.42 19978.85 35097.74 28395.85 332
thres600view792.03 29091.43 28893.82 29098.19 17484.61 32396.27 13990.39 34896.81 8596.37 21693.11 32573.44 34399.49 18080.32 34697.95 27597.36 297
K. test v396.44 15496.28 15596.95 16599.41 3591.53 21797.65 6790.31 35098.89 1898.93 3899.36 1484.57 29099.92 497.81 2699.56 8499.39 83
ET-MVSNet_ETH3D91.12 29989.67 31195.47 24196.41 29889.15 25391.54 31990.23 35189.07 28186.78 35892.84 33369.39 35499.44 19694.16 18196.61 31897.82 281
IB-MVS85.98 2088.63 32086.95 32993.68 29395.12 33184.82 32290.85 33390.17 35287.55 29888.48 35191.34 35058.01 36399.59 15287.24 31493.80 34496.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR89.97 31189.90 30990.16 33394.24 34274.98 35889.89 34289.06 35392.02 24889.97 34490.77 35473.92 33798.57 32191.88 22897.36 30196.92 308
test-mter87.92 32687.17 32790.16 33394.24 34274.98 35889.89 34289.06 35386.44 30789.97 34490.77 35454.96 37098.57 32191.88 22897.36 30196.92 308
test0.0.03 190.11 30789.21 31492.83 31293.89 34686.87 29691.74 31788.74 35592.02 24894.71 26891.14 35273.92 33794.48 35983.75 34092.94 34597.16 301
thisisatest051590.43 30589.18 31794.17 28997.07 28285.44 31089.75 34687.58 35688.28 29293.69 29891.72 34665.27 35899.58 15490.59 26398.67 24497.50 294
thisisatest053092.71 27891.76 28695.56 23798.42 15388.23 26796.03 15487.35 35794.04 20096.56 20795.47 29664.03 36099.77 5294.78 15699.11 19898.68 213
tttt051793.31 26992.56 27695.57 23598.71 11787.86 27697.44 8287.17 35895.79 13497.47 15696.84 23064.12 35999.81 3196.20 7799.32 16999.02 163
TESTMET0.1,187.20 32986.57 33189.07 33793.62 34972.84 36289.89 34287.01 35985.46 31889.12 34990.20 35656.00 36997.72 34990.91 24996.92 30896.64 322
baseline289.65 31488.44 32193.25 30195.62 32282.71 33293.82 27185.94 36088.89 28587.35 35692.54 33871.23 34999.33 23186.01 31994.60 34197.72 285
MVS-HIRNet88.40 32290.20 30882.99 34497.01 28360.04 36693.11 29385.61 36184.45 33088.72 35099.09 3384.72 28998.23 34182.52 34296.59 31990.69 358
lessismore_v097.05 16199.36 4092.12 20584.07 36298.77 4698.98 4085.36 28499.74 7297.34 4399.37 14999.30 102
EPMVS89.26 31688.55 32091.39 32692.36 35979.11 34695.65 17979.86 36388.60 28893.12 31496.53 25070.73 35298.10 34590.75 25589.32 35496.98 306
MVEpermissive73.61 2286.48 33085.92 33288.18 34196.23 30485.28 31481.78 36075.79 36486.01 30982.53 36191.88 34492.74 19387.47 36371.42 36094.86 33891.78 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP96.55 12674.60 365
gg-mvs-nofinetune88.28 32386.96 32892.23 32392.84 35784.44 32598.19 3874.60 36599.08 1087.01 35799.47 856.93 36598.23 34178.91 34995.61 33294.01 347
DeepMVS_CXcopyleft77.17 34590.94 36285.28 31474.08 36752.51 36280.87 36388.03 35975.25 33370.63 36459.23 36384.94 35975.62 359
GG-mvs-BLEND90.60 33191.00 36184.21 32898.23 3272.63 36882.76 36084.11 36156.14 36896.79 35572.20 35892.09 34990.78 357
tmp_tt57.23 33362.50 33641.44 34734.77 36849.21 36883.93 35660.22 36915.31 36371.11 36479.37 36270.09 35344.86 36564.76 36182.93 36130.25 361
testmvs12.33 33615.23 3393.64 3495.77 3702.23 37188.99 3493.62 3702.30 3665.29 36613.09 3644.52 3721.95 3665.16 3658.32 3656.75 363
test12312.59 33515.49 3383.87 3486.07 3692.55 37090.75 3342.59 3712.52 3655.20 36713.02 3654.96 3711.85 3675.20 3649.09 3647.23 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.98 33710.65 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36895.82 1050.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
n20.00 372
nn0.00 372
ab-mvs-re7.91 33810.55 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36894.94 3040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS97.64 11598.01 19595.27 10696.79 11597.35 19896.97 5498.51 32791.21 24399.25 18099.14 136
test_0728_THIRD96.62 8998.40 7098.28 9397.10 4599.71 9695.70 9899.62 6599.58 28
GSMVS98.06 266
test_part299.03 9196.07 7298.08 111
sam_mvs177.80 31798.06 266
sam_mvs77.38 321
test_post194.98 22310.37 36776.21 32999.04 27689.47 283
test_post10.87 36676.83 32599.07 273
patchmatchnet-post96.84 23077.36 32299.42 199
gm-plane-assit91.79 36071.40 36481.67 33790.11 35798.99 28284.86 332
test9_res91.29 23998.89 22499.00 164
agg_prior290.34 27298.90 22199.10 152
test_prior495.38 10093.61 279
test_prior293.33 28894.21 19494.02 28796.25 26593.64 17591.90 22698.96 213
旧先验293.35 28777.95 35495.77 24598.67 31490.74 258
新几何293.43 282
原ACMM292.82 296
testdata299.46 18987.84 303
segment_acmp95.34 126
testdata192.77 29793.78 206
plane_prior798.70 11994.67 130
plane_prior698.38 15594.37 14091.91 220
plane_prior496.77 236
plane_prior394.51 13495.29 15596.16 228
plane_prior296.50 12896.36 101
plane_prior198.49 145
plane_prior94.29 14295.42 18894.31 19198.93 219
HQP5-MVS92.47 195
HQP-NCC97.85 21094.26 24693.18 22492.86 318
ACMP_Plane97.85 21094.26 24693.18 22492.86 318
BP-MVS90.51 267
HQP4-MVS92.87 31799.23 25299.06 157
HQP2-MVS90.33 237
NP-MVS98.14 18493.72 16695.08 300
MDTV_nov1_ep13_2view57.28 36794.89 22680.59 34394.02 28778.66 31485.50 32697.82 281
ACMMP++_ref99.52 101
ACMMP++99.55 90
Test By Simon94.51 154