This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
CS-MVS98.09 4298.01 4498.32 6998.45 16796.69 5498.52 2699.69 298.07 4396.07 24497.19 22396.88 6699.86 2597.50 4399.73 5698.41 246
CS-MVS-test97.91 6497.84 5698.14 8898.52 15496.03 7998.38 3499.67 398.11 4195.50 26696.92 24396.81 7299.87 2296.87 6599.76 4998.51 239
DROMVSNet97.90 6697.94 4997.79 11498.66 13695.14 12698.31 3999.66 497.57 6695.95 24997.01 23796.99 5599.82 3797.66 3799.64 7598.39 249
dcpmvs_297.12 12097.99 4594.51 29299.11 8984.00 34397.75 7699.65 597.38 7999.14 3298.42 8795.16 13899.96 295.52 12499.78 4699.58 33
LCM-MVSNet-Re97.33 11197.33 10497.32 15898.13 20393.79 17796.99 12299.65 596.74 9799.47 1398.93 5296.91 6399.84 3190.11 28899.06 22398.32 258
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18898.58 1599.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ANet_high98.31 2998.94 696.41 21199.33 5089.64 25597.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3497.55 4199.98 299.77 10
Vis-MVSNetpermissive98.27 3098.34 2998.07 9399.33 5095.21 12598.04 5999.46 997.32 8197.82 15199.11 3796.75 7499.86 2597.84 2999.36 16799.15 148
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement98.90 598.86 899.02 999.54 2498.06 899.34 499.44 1098.85 2099.00 3999.20 2697.42 3299.59 16697.21 5299.76 4999.40 90
UA-Net98.88 798.76 1399.22 299.11 8997.89 1499.47 399.32 1199.08 1097.87 14699.67 296.47 9099.92 597.88 2799.98 299.85 3
patch_mono-296.59 15696.93 13095.55 24898.88 11287.12 30594.47 25699.30 1294.12 21096.65 21698.41 8894.98 14699.87 2295.81 10999.78 4699.66 23
pmmvs699.07 499.24 498.56 5099.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13297.75 3499.89 2699.62 29
bld_raw_conf00598.51 2098.52 2498.47 5699.57 1895.91 8398.75 1399.27 1498.28 3599.17 2999.27 2193.85 17899.83 3498.63 1299.91 1799.66 23
FOURS199.59 1698.20 499.03 799.25 1598.96 1898.87 43
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2499.22 1696.23 12099.71 499.48 798.77 699.93 398.89 399.95 599.84 5
FC-MVSNet-test98.16 3598.37 2897.56 13199.49 3393.10 19698.35 3599.21 1798.43 2998.89 4298.83 5994.30 16799.81 4097.87 2899.91 1799.77 10
PS-MVSNAJss98.53 1998.63 1998.21 8399.68 994.82 13598.10 5599.21 1796.91 9299.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1999.67 299.73 399.65 499.15 399.86 2597.22 5199.92 1499.77 10
ACMH+93.58 1098.23 3398.31 3097.98 10199.39 4495.22 12397.55 8999.20 1998.21 3899.25 2598.51 8198.21 1199.40 22594.79 16999.72 6099.32 107
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 2099.19 2195.62 15599.35 1999.37 1297.38 3399.90 1498.59 1499.91 1799.77 10
WR-MVS_H98.65 1598.62 2198.75 3399.51 2996.61 5898.55 2399.17 2299.05 1399.17 2998.79 6095.47 12899.89 1897.95 2699.91 1799.75 15
EIA-MVS96.04 17995.77 18796.85 18397.80 23792.98 19896.12 16499.16 2394.65 19193.77 30991.69 36295.68 11999.67 13794.18 19598.85 24597.91 294
AllTest97.20 11996.92 13298.06 9599.08 9296.16 7197.14 11399.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
TestCases98.06 9599.08 9296.16 7199.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4499.21 7197.35 3797.96 6299.16 2398.34 3298.78 5098.52 8097.32 3599.45 20894.08 19999.67 7099.13 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023121198.55 1798.76 1397.94 10398.79 11994.37 15398.84 1199.15 2799.37 399.67 699.43 1195.61 12299.72 9298.12 2199.86 3099.73 17
PEN-MVS98.75 1098.85 1098.44 5899.58 1795.67 9498.45 3199.15 2799.33 599.30 2199.00 4597.27 3899.92 597.64 3899.92 1499.75 15
v7n98.73 1198.99 597.95 10299.64 1294.20 16298.67 1699.14 2999.08 1099.42 1599.23 2496.53 8599.91 1399.27 299.93 1099.73 17
PS-CasMVS98.73 1198.85 1098.39 6499.55 2295.47 10798.49 2899.13 3099.22 899.22 2798.96 4997.35 3499.92 597.79 3299.93 1099.79 9
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3199.12 3195.83 14799.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
FIs97.93 6098.07 3797.48 14399.38 4592.95 19998.03 6199.11 3298.04 4598.62 5898.66 7093.75 18299.78 5197.23 5099.84 3499.73 17
abl_698.42 2498.19 3399.09 399.16 7698.10 697.73 8099.11 3297.76 5498.62 5898.27 11097.88 1999.80 4695.67 11499.50 12499.38 94
SF-MVS97.60 9197.39 10098.22 8098.93 10895.69 9197.05 11899.10 3495.32 16797.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
Effi-MVS+96.19 17396.01 17696.71 19197.43 27892.19 21696.12 16499.10 3495.45 16293.33 32794.71 32497.23 4399.56 17593.21 22697.54 31198.37 251
APDe-MVS98.14 3798.03 4398.47 5698.72 12796.04 7798.07 5799.10 3495.96 13698.59 6398.69 6896.94 5899.81 4096.64 6799.58 9299.57 38
DTE-MVSNet98.79 898.86 898.59 4899.55 2296.12 7498.48 3099.10 3499.36 499.29 2399.06 4397.27 3899.93 397.71 3699.91 1799.70 20
Gipumacopyleft98.07 4498.31 3097.36 15699.76 596.28 6998.51 2799.10 3498.76 2396.79 20699.34 1896.61 8098.82 31196.38 7999.50 12496.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
casdiffmvs97.50 9897.81 6096.56 20198.51 15691.04 23595.83 18499.09 3997.23 8598.33 9298.30 10197.03 5299.37 23696.58 7199.38 16399.28 121
nrg03098.54 1898.62 2198.32 6999.22 6495.66 9597.90 6799.08 4098.31 3399.02 3798.74 6497.68 2499.61 16497.77 3399.85 3399.70 20
diffmvs96.04 17996.23 16695.46 25397.35 28288.03 28693.42 29799.08 4094.09 21296.66 21496.93 24193.85 17899.29 25796.01 9698.67 26099.06 170
PVSNet_Blended_VisFu95.95 18395.80 18596.42 20999.28 5490.62 24395.31 21499.08 4088.40 30496.97 19898.17 12292.11 22199.78 5193.64 21799.21 19998.86 205
xxxxxxxxxxxxxcwj97.24 11797.03 12597.89 10798.48 16294.71 13994.53 25499.07 4395.02 18197.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
PGM-MVS97.88 6897.52 9298.96 1699.20 7297.62 2297.09 11699.06 4495.45 16297.55 15697.94 15297.11 4499.78 5194.77 17299.46 13799.48 65
RPSCF97.87 6997.51 9398.95 1799.15 7998.43 397.56 8899.06 4496.19 12398.48 7298.70 6794.72 15199.24 26594.37 18799.33 18299.17 144
canonicalmvs97.23 11897.21 11497.30 15997.65 26294.39 15197.84 7099.05 4697.42 7496.68 21393.85 33797.63 2699.33 24696.29 8298.47 27498.18 274
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 6099.07 9495.87 8496.73 13799.05 4698.67 2498.84 4698.45 8597.58 2899.88 2096.45 7799.86 3099.54 44
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4698.05 4499.61 1199.52 593.72 18399.88 2098.72 999.88 2899.65 26
HPM-MVScopyleft98.11 4197.83 5998.92 2299.42 4197.46 3398.57 2199.05 4695.43 16497.41 16997.50 19597.98 1599.79 4795.58 12399.57 9599.50 51
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 12096.74 14198.26 7598.99 10397.45 3493.82 28599.05 4695.19 17298.32 9397.70 17995.22 13798.41 34594.27 19298.13 28598.93 189
ACMH93.61 998.44 2398.76 1397.51 13699.43 3993.54 18798.23 4599.05 4697.40 7899.37 1899.08 4198.79 599.47 20197.74 3599.71 6399.50 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)97.83 7397.65 7698.35 6898.80 11895.86 8695.92 18099.04 5297.51 7198.22 10397.81 16994.68 15499.78 5197.14 5799.75 5499.41 89
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2497.48 3298.35 3599.03 5395.88 14297.88 14398.22 11798.15 1299.74 8296.50 7599.62 7899.42 87
baseline97.44 10397.78 6596.43 20798.52 15490.75 24296.84 12699.03 5396.51 10797.86 14798.02 14196.67 7699.36 23897.09 5899.47 13499.19 140
v1097.55 9497.97 4696.31 21598.60 14589.64 25597.44 9799.02 5596.60 10198.72 5699.16 3393.48 18799.72 9298.76 699.92 1499.58 33
UniMVSNet_NR-MVSNet97.83 7397.65 7698.37 6598.72 12795.78 8795.66 19199.02 5598.11 4198.31 9597.69 18194.65 15699.85 2897.02 6199.71 6399.48 65
XVG-OURS-SEG-HR97.38 10797.07 12298.30 7399.01 10297.41 3694.66 24999.02 5595.20 17198.15 11197.52 19398.83 498.43 34494.87 16596.41 33799.07 168
MVSFormer96.14 17596.36 16295.49 25197.68 25887.81 29198.67 1699.02 5596.50 10894.48 29196.15 28686.90 28899.92 598.73 799.13 21098.74 218
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1699.02 5596.50 10899.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
LPG-MVS_test97.94 5797.67 7398.74 3599.15 7997.02 4497.09 11699.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
LGP-MVS_train98.74 3599.15 7997.02 4499.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
DeepC-MVS95.41 497.82 7597.70 6998.16 8498.78 12195.72 8996.23 15999.02 5593.92 21698.62 5898.99 4697.69 2399.62 15896.18 8699.87 2999.15 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pm-mvs198.47 2298.67 1797.86 11099.52 2894.58 14598.28 4299.00 6397.57 6699.27 2499.22 2598.32 999.50 19397.09 5899.75 5499.50 51
VPA-MVSNet98.27 3098.46 2597.70 12299.06 9593.80 17697.76 7599.00 6398.40 3099.07 3698.98 4796.89 6499.75 7297.19 5599.79 4399.55 43
XXY-MVS97.54 9597.70 6997.07 17199.46 3592.21 21397.22 10999.00 6394.93 18598.58 6498.92 5397.31 3699.41 22394.44 18299.43 15099.59 32
DPE-MVScopyleft97.64 8797.35 10398.50 5398.85 11496.18 7095.21 22298.99 6695.84 14698.78 5098.08 13096.84 7099.81 4093.98 20699.57 9599.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss97.69 8497.36 10298.70 3999.50 3296.84 4995.38 20898.99 6692.45 25898.11 11598.31 9797.25 4199.77 6096.60 6999.62 7899.48 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CSCG97.40 10697.30 10597.69 12498.95 10594.83 13497.28 10598.99 6696.35 11698.13 11495.95 29895.99 10399.66 14394.36 19099.73 5698.59 233
GeoE97.75 8097.70 6997.89 10798.88 11294.53 14697.10 11598.98 6995.75 15197.62 15497.59 18797.61 2799.77 6096.34 8199.44 14299.36 102
9.1496.69 14398.53 15396.02 17098.98 6993.23 23497.18 17797.46 19896.47 9099.62 15892.99 22999.32 184
ETH3D-3000-0.196.89 13596.46 15998.16 8498.62 14295.69 9195.96 17598.98 6993.36 22997.04 19097.31 21694.93 14899.63 15092.60 23299.34 17599.17 144
XVG-ACMP-BASELINE97.58 9397.28 10898.49 5499.16 7696.90 4896.39 14798.98 6995.05 17998.06 12398.02 14195.86 10699.56 17594.37 18799.64 7599.00 177
EG-PatchMatch MVS97.69 8497.79 6197.40 15499.06 9593.52 18895.96 17598.97 7394.55 19798.82 4798.76 6397.31 3699.29 25797.20 5499.44 14299.38 94
CP-MVS97.92 6197.56 9098.99 1398.99 10397.82 1697.93 6498.96 7496.11 12696.89 20397.45 19996.85 6999.78 5195.19 14699.63 7799.38 94
ACMMPcopyleft98.05 4597.75 6898.93 2199.23 6197.60 2398.09 5698.96 7495.75 15197.91 13998.06 13796.89 6499.76 6595.32 13999.57 9599.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ETV-MVS96.13 17695.90 18396.82 18597.76 24993.89 17195.40 20698.95 7695.87 14395.58 26591.00 36896.36 9799.72 9293.36 22098.83 24796.85 329
KD-MVS_self_test97.86 7198.07 3797.25 16399.22 6492.81 20297.55 8998.94 7797.10 8898.85 4498.88 5695.03 14399.67 13797.39 4899.65 7399.26 126
mvsmamba98.16 3598.06 3998.44 5899.53 2795.87 8498.70 1498.94 7797.71 6098.85 4499.10 3891.35 23699.83 3498.47 1699.90 2499.64 28
114514_t93.96 26493.22 27196.19 22099.06 9590.97 23795.99 17298.94 7773.88 37393.43 32496.93 24192.38 21799.37 23689.09 30399.28 19198.25 268
SD-MVS97.37 10897.70 6996.35 21298.14 20095.13 12796.54 14298.92 8095.94 13899.19 2898.08 13097.74 2295.06 37395.24 14499.54 10798.87 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.13 4097.90 5098.79 3198.79 11997.31 3897.55 8998.92 8097.72 5898.25 10098.13 12497.10 4599.75 7295.44 13299.24 19899.32 107
SteuartSystems-ACMMP98.02 4797.76 6698.79 3199.43 3997.21 4397.15 11198.90 8296.58 10498.08 12197.87 16397.02 5399.76 6595.25 14399.59 9099.40 90
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++97.96 5097.90 5098.12 9097.75 25195.40 10899.03 798.89 8396.62 9998.62 5898.30 10196.97 5699.75 7295.70 11099.25 19599.21 135
test_0728_SECOND98.25 7899.23 6195.49 10696.74 13398.89 8399.75 7295.48 12899.52 11599.53 47
test072699.24 5995.51 10296.89 12598.89 8395.92 13998.64 5798.31 9797.06 50
MSP-MVS97.45 10296.92 13299.03 899.26 5597.70 1997.66 8198.89 8395.65 15398.51 6896.46 27192.15 21999.81 4095.14 15398.58 27099.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MIMVSNet198.51 2098.45 2798.67 4199.72 696.71 5298.76 1298.89 8398.49 2899.38 1799.14 3695.44 13099.84 3196.47 7699.80 4299.47 68
ACMP92.54 1397.47 10197.10 11998.55 5199.04 10096.70 5396.24 15898.89 8393.71 22197.97 13497.75 17497.44 3099.63 15093.22 22599.70 6699.32 107
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124096.74 14597.02 12695.91 23398.18 19388.52 27495.39 20798.88 8993.15 24198.46 7598.40 9192.80 20199.71 10898.45 1799.49 12899.49 59
3Dnovator96.53 297.61 9097.64 7997.50 13997.74 25493.65 18598.49 2898.88 8996.86 9497.11 18298.55 7895.82 11099.73 8795.94 10099.42 15399.13 153
test_one_060199.05 9995.50 10598.87 9197.21 8698.03 12798.30 10196.93 60
TransMVSNet (Re)98.38 2698.67 1797.51 13699.51 2993.39 19198.20 5098.87 9198.23 3799.48 1299.27 2198.47 899.55 17996.52 7399.53 11099.60 31
DU-MVS97.79 7797.60 8698.36 6698.73 12595.78 8795.65 19498.87 9197.57 6698.31 9597.83 16594.69 15299.85 2897.02 6199.71 6399.46 70
SR-MVS-dyc-post98.14 3797.84 5699.02 998.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.60 8299.76 6595.49 12599.20 20099.26 126
RE-MVS-def97.88 5498.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.94 5895.49 12599.20 20099.26 126
Baseline_NR-MVSNet97.72 8297.79 6197.50 13999.56 2093.29 19295.44 20198.86 9498.20 3998.37 8299.24 2394.69 15299.55 17995.98 9899.79 4399.65 26
RPMNet94.68 23794.60 23294.90 27395.44 34588.15 28296.18 16198.86 9497.43 7394.10 29898.49 8279.40 32399.76 6595.69 11295.81 34396.81 333
test117298.08 4397.76 6699.05 698.78 12198.07 797.41 10198.85 9897.57 6698.15 11197.96 14796.60 8299.76 6595.30 14099.18 20499.33 106
test_part196.77 14496.53 15497.47 14498.04 20792.92 20097.93 6498.85 9898.83 2199.30 2199.07 4279.25 32499.79 4797.59 3999.93 1099.69 22
1112_ss94.12 25993.42 26696.23 21798.59 14790.85 23894.24 26498.85 9885.49 33092.97 33194.94 31986.01 29399.64 14891.78 24797.92 29298.20 272
PHI-MVS96.96 12996.53 15498.25 7897.48 27296.50 6196.76 13298.85 9893.52 22496.19 24096.85 24695.94 10499.42 21493.79 21299.43 15098.83 207
LS3D97.77 7997.50 9598.57 4996.24 32097.58 2598.45 3198.85 9898.58 2797.51 15997.94 15295.74 11899.63 15095.19 14698.97 22898.51 239
ZNCC-MVS97.92 6197.62 8398.83 2699.32 5297.24 4197.45 9698.84 10395.76 14996.93 20097.43 20197.26 4099.79 4796.06 8999.53 11099.45 75
HFP-MVS97.94 5797.64 7998.83 2699.15 7997.50 3097.59 8698.84 10396.05 12997.49 16197.54 19097.07 4899.70 11795.61 12099.46 13799.30 113
region2R97.92 6197.59 8798.92 2299.22 6497.55 2797.60 8598.84 10396.00 13497.22 17397.62 18596.87 6899.76 6595.48 12899.43 15099.46 70
#test#97.62 8997.22 11398.83 2699.15 7997.50 3096.81 12898.84 10394.25 20597.49 16197.54 19097.07 4899.70 11794.37 18799.46 13799.30 113
MSLP-MVS++96.42 16696.71 14295.57 24597.82 23290.56 24695.71 18698.84 10394.72 18996.71 21297.39 20794.91 14998.10 35995.28 14199.02 22598.05 286
CP-MVSNet98.42 2498.46 2598.30 7399.46 3595.22 12398.27 4498.84 10399.05 1399.01 3898.65 7295.37 13199.90 1497.57 4099.91 1799.77 10
OpenMVScopyleft94.22 895.48 20095.20 20096.32 21497.16 29791.96 22297.74 7898.84 10387.26 31394.36 29398.01 14393.95 17699.67 13790.70 27698.75 25497.35 316
SED-MVS97.94 5797.90 5098.07 9399.22 6495.35 11396.79 13098.83 11096.11 12699.08 3498.24 11297.87 2099.72 9295.44 13299.51 12099.14 151
test_241102_TWO98.83 11096.11 12698.62 5898.24 11296.92 6299.72 9295.44 13299.49 12899.49 59
test_241102_ONE99.22 6495.35 11398.83 11096.04 13199.08 3498.13 12497.87 2099.33 246
SR-MVS98.00 4997.66 7499.01 1198.77 12397.93 1197.38 10298.83 11097.32 8198.06 12397.85 16496.65 7799.77 6095.00 16299.11 21499.32 107
XVS97.96 5097.63 8198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23197.64 18396.49 8899.72 9295.66 11699.37 16499.45 75
X-MVStestdata92.86 28790.83 31198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23136.50 37796.49 8899.72 9295.66 11699.37 16499.45 75
ACMMPR97.95 5497.62 8398.94 1899.20 7297.56 2697.59 8698.83 11096.05 12997.46 16797.63 18496.77 7399.76 6595.61 12099.46 13799.49 59
ACMM93.33 1198.05 4597.79 6198.85 2599.15 7997.55 2796.68 13998.83 11095.21 17098.36 8598.13 12498.13 1499.62 15896.04 9299.54 10799.39 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.60 9198.06 3996.23 21798.71 13089.44 25997.43 9998.82 11897.29 8398.74 5499.10 3893.86 17799.68 13298.61 1399.94 899.56 41
LF4IMVS96.07 17795.63 19197.36 15698.19 19095.55 9995.44 20198.82 11892.29 26095.70 26296.55 26592.63 20798.69 32491.75 24999.33 18297.85 296
GST-MVS97.82 7597.49 9698.81 2999.23 6197.25 4097.16 11098.79 12095.96 13697.53 15797.40 20396.93 6099.77 6095.04 15999.35 17299.42 87
ACMMP_NAP97.89 6797.63 8198.67 4199.35 4896.84 4996.36 15098.79 12095.07 17897.88 14398.35 9397.24 4299.72 9296.05 9199.58 9299.45 75
v192192096.72 14896.96 12995.99 22698.21 18888.79 27195.42 20398.79 12093.22 23598.19 10798.26 11192.68 20499.70 11798.34 2099.55 10499.49 59
DP-MVS97.87 6997.89 5397.81 11398.62 14294.82 13597.13 11498.79 12098.98 1798.74 5498.49 8295.80 11699.49 19595.04 15999.44 14299.11 161
mPP-MVS97.91 6497.53 9199.04 799.22 6497.87 1597.74 7898.78 12496.04 13197.10 18397.73 17796.53 8599.78 5195.16 15099.50 12499.46 70
v14419296.69 15196.90 13496.03 22598.25 18488.92 26695.49 19998.77 12593.05 24398.09 11998.29 10592.51 21399.70 11798.11 2299.56 9899.47 68
v119296.83 13997.06 12396.15 22298.28 17989.29 26195.36 20998.77 12593.73 22098.11 11598.34 9493.02 19899.67 13798.35 1999.58 9299.50 51
APD-MVScopyleft97.00 12496.53 15498.41 6298.55 15196.31 6796.32 15398.77 12592.96 25097.44 16897.58 18995.84 10799.74 8291.96 24099.35 17299.19 140
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 15196.08 17498.49 5498.89 11196.64 5797.25 10698.77 12592.89 25196.01 24897.13 22592.23 21899.67 13792.24 23799.34 17599.17 144
HQP_MVS96.66 15496.33 16497.68 12598.70 13294.29 15596.50 14398.75 12996.36 11496.16 24196.77 25391.91 23099.46 20492.59 23499.20 20099.28 121
plane_prior598.75 12999.46 20492.59 23499.20 20099.28 121
ETH3D cwj APD-0.1696.23 17195.61 19398.09 9297.91 22195.65 9694.94 23798.74 13191.31 27596.02 24797.08 23094.05 17499.69 12591.51 25298.94 23398.93 189
Patchmatch-RL test94.66 23894.49 23895.19 26298.54 15288.91 26792.57 31698.74 13191.46 27298.32 9397.75 17477.31 33798.81 31396.06 8999.61 8497.85 296
SMA-MVScopyleft97.48 10097.11 11898.60 4698.83 11596.67 5596.74 13398.73 13391.61 26998.48 7298.36 9296.53 8599.68 13295.17 14899.54 10799.45 75
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu96.44 16496.12 17197.39 15597.18 29694.39 15195.46 20098.73 13396.03 13394.72 28294.92 32196.28 10099.69 12593.81 21197.98 29098.09 276
zzz-MVS98.01 4897.66 7499.06 499.44 3797.90 1295.66 19198.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
MTGPAbinary98.73 133
MTAPA98.14 3797.84 5699.06 499.44 3797.90 1297.25 10698.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
MP-MVScopyleft97.64 8797.18 11599.00 1299.32 5297.77 1897.49 9598.73 13396.27 11795.59 26497.75 17496.30 9899.78 5193.70 21699.48 13299.45 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NR-MVSNet97.96 5097.86 5598.26 7598.73 12595.54 10098.14 5398.73 13397.79 5099.42 1597.83 16594.40 16599.78 5195.91 10299.76 4999.46 70
QAPM95.88 18695.57 19496.80 18697.90 22391.84 22598.18 5298.73 13388.41 30396.42 22698.13 12494.73 15099.75 7288.72 30898.94 23398.81 209
test_040297.84 7297.97 4697.47 14499.19 7494.07 16596.71 13898.73 13398.66 2598.56 6598.41 8896.84 7099.69 12594.82 16799.81 3998.64 227
TAPA-MVS93.32 1294.93 22394.23 24797.04 17398.18 19394.51 14795.22 22198.73 13381.22 35596.25 23795.95 29893.80 18198.98 29989.89 29298.87 24197.62 306
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640094.77 22993.87 26097.47 14498.12 20493.73 17994.56 25398.70 14385.45 33394.70 28495.93 30091.77 23299.63 15086.45 33399.14 20799.05 172
testtj96.69 15196.13 17098.36 6698.46 16696.02 8096.44 14598.70 14394.26 20496.79 20697.13 22594.07 17399.75 7290.53 28098.80 24999.31 112
3Dnovator+96.13 397.73 8197.59 8798.15 8798.11 20595.60 9798.04 5998.70 14398.13 4096.93 20098.45 8595.30 13599.62 15895.64 11898.96 22999.24 132
Test_1112_low_res93.53 27792.86 27795.54 24998.60 14588.86 26992.75 31298.69 14682.66 34992.65 33896.92 24384.75 30199.56 17590.94 26497.76 29898.19 273
DP-MVS Recon95.55 19695.13 20396.80 18698.51 15693.99 16994.60 25198.69 14690.20 28695.78 25896.21 28492.73 20398.98 29990.58 27998.86 24397.42 313
CHOSEN 1792x268894.10 26093.41 26796.18 22199.16 7690.04 25092.15 32498.68 14879.90 36096.22 23897.83 16587.92 28299.42 21489.18 30299.65 7399.08 166
PVSNet_BlendedMVS95.02 22294.93 21395.27 25997.79 24387.40 30094.14 27298.68 14888.94 29894.51 28998.01 14393.04 19599.30 25389.77 29499.49 12899.11 161
PVSNet_Blended93.96 26493.65 26394.91 27197.79 24387.40 30091.43 33498.68 14884.50 34394.51 28994.48 33093.04 19599.30 25389.77 29498.61 26798.02 289
v114496.84 13697.08 12196.13 22398.42 16989.28 26295.41 20598.67 15194.21 20697.97 13498.31 9793.06 19499.65 14598.06 2499.62 7899.45 75
CLD-MVS95.47 20195.07 20696.69 19398.27 18192.53 20691.36 33598.67 15191.22 27795.78 25894.12 33595.65 12198.98 29990.81 26899.72 6098.57 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GBi-Net96.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
test196.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
FMVSNet197.95 5498.08 3697.56 13199.14 8793.67 18198.23 4598.66 15397.41 7799.00 3999.19 2795.47 12899.73 8795.83 10799.76 4999.30 113
IterMVS-LS96.92 13197.29 10695.79 23798.51 15688.13 28495.10 22598.66 15396.99 8998.46 7598.68 6992.55 20999.74 8296.91 6399.79 4399.50 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP95.30 20994.38 24498.05 9898.64 13796.04 7795.61 19798.66 15389.00 29793.22 32896.40 27592.90 19999.35 24187.45 32797.53 31298.77 216
USDC94.56 24394.57 23794.55 29097.78 24786.43 31592.75 31298.65 15885.96 32596.91 20297.93 15490.82 24298.74 31990.71 27599.59 9098.47 243
PM-MVS97.36 11097.10 11998.14 8898.91 11096.77 5196.20 16098.63 15993.82 21898.54 6698.33 9593.98 17599.05 29095.99 9799.45 14198.61 232
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 16079.32 36292.16 34591.44 36489.22 26998.12 35890.80 26997.47 31696.82 332
bld_raw_dy_0_6497.69 8497.61 8597.91 10599.54 2494.27 15998.06 5898.60 16196.60 10198.79 4998.95 5089.62 25999.84 3198.43 1899.91 1799.62 29
Fast-Effi-MVS+95.49 19895.07 20696.75 18997.67 26192.82 20194.22 26698.60 16191.61 26993.42 32592.90 34796.73 7599.70 11792.60 23297.89 29597.74 301
DeepPCF-MVS94.58 596.90 13396.43 16098.31 7297.48 27297.23 4292.56 31798.60 16192.84 25298.54 6697.40 20396.64 7998.78 31594.40 18699.41 15998.93 189
OMC-MVS96.48 16296.00 17797.91 10598.30 17696.01 8194.86 24198.60 16191.88 26697.18 17797.21 22296.11 10199.04 29190.49 28499.34 17598.69 224
testgi96.07 17796.50 15894.80 27999.26 5587.69 29495.96 17598.58 16595.08 17798.02 12996.25 28197.92 1697.60 36488.68 31098.74 25599.11 161
EGC-MVSNET83.08 34377.93 34698.53 5299.57 1897.55 2798.33 3898.57 1664.71 37910.38 38098.90 5595.60 12399.50 19395.69 11299.61 8498.55 237
ZD-MVS98.43 16895.94 8298.56 16790.72 28196.66 21497.07 23195.02 14499.74 8291.08 26098.93 235
VPNet97.26 11597.49 9696.59 19799.47 3490.58 24496.27 15498.53 16897.77 5198.46 7598.41 8894.59 15899.68 13294.61 17599.29 19099.52 48
DELS-MVS96.17 17496.23 16695.99 22697.55 26990.04 25092.38 32298.52 16994.13 20996.55 22297.06 23294.99 14599.58 16895.62 11999.28 19198.37 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HyFIR lowres test93.72 26992.65 28596.91 18098.93 10891.81 22691.23 34198.52 16982.69 34896.46 22596.52 26980.38 32199.90 1490.36 28698.79 25099.03 174
ITE_SJBPF97.85 11198.64 13796.66 5698.51 17195.63 15497.22 17397.30 21795.52 12598.55 33890.97 26398.90 23798.34 257
eth_miper_zixun_eth94.89 22494.93 21394.75 28195.99 33286.12 31891.35 33698.49 17293.40 22797.12 18197.25 22086.87 29099.35 24195.08 15898.82 24898.78 213
TinyColmap96.00 18296.34 16394.96 27097.90 22387.91 28794.13 27398.49 17294.41 19998.16 10997.76 17196.29 9998.68 32790.52 28199.42 15398.30 262
OPM-MVS97.54 9597.25 10998.41 6299.11 8996.61 5895.24 22098.46 17494.58 19698.10 11898.07 13297.09 4799.39 23095.16 15099.44 14299.21 135
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal97.72 8297.97 4696.94 17799.26 5592.23 21297.83 7198.45 17598.25 3699.13 3398.66 7096.65 7799.69 12593.92 20899.62 7898.91 194
UnsupCasMVSNet_eth95.91 18495.73 18896.44 20698.48 16291.52 23095.31 21498.45 17595.76 14997.48 16497.54 19089.53 26498.69 32494.43 18394.61 35699.13 153
PCF-MVS89.43 1892.12 30090.64 31496.57 20097.80 23793.48 18989.88 35998.45 17574.46 37296.04 24695.68 30490.71 24499.31 25073.73 37199.01 22796.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP3-MVS98.43 17898.74 255
HQP-MVS95.17 21594.58 23596.92 17897.85 22592.47 20794.26 26098.43 17893.18 23792.86 33395.08 31590.33 24899.23 26790.51 28298.74 25599.05 172
DeepC-MVS_fast94.34 796.74 14596.51 15797.44 15097.69 25794.15 16396.02 17098.43 17893.17 24097.30 17197.38 20995.48 12799.28 25993.74 21399.34 17598.88 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior395.91 18495.39 19797.46 14797.79 24394.26 16093.33 30298.42 18194.21 20694.02 30296.25 28193.64 18499.34 24391.90 24298.96 22998.79 211
test_prior97.46 14797.79 24394.26 16098.42 18199.34 24398.79 211
save fliter98.48 16294.71 13994.53 25498.41 18395.02 181
CANet95.86 18795.65 19096.49 20496.41 31690.82 23994.36 25898.41 18394.94 18392.62 34196.73 25692.68 20499.71 10895.12 15699.60 8898.94 185
Anonymous2024052197.07 12297.51 9395.76 23899.35 4888.18 28197.78 7298.40 18597.11 8798.34 8899.04 4489.58 26199.79 4798.09 2399.93 1099.30 113
TEST997.84 22995.23 12093.62 29198.39 18686.81 31993.78 30795.99 29394.68 15499.52 188
train_agg95.46 20294.66 22697.88 10997.84 22995.23 12093.62 29198.39 18687.04 31793.78 30795.99 29394.58 15999.52 18891.76 24898.90 23798.89 198
test_897.81 23395.07 12993.54 29498.38 18887.04 31793.71 31195.96 29794.58 15999.52 188
MSDG95.33 20795.13 20395.94 23297.40 28091.85 22491.02 34698.37 18995.30 16896.31 23395.99 29394.51 16298.38 34889.59 29697.65 30897.60 308
agg_prior195.39 20594.60 23297.75 11797.80 23794.96 13193.39 29998.36 19087.20 31593.49 32095.97 29694.65 15699.53 18491.69 25098.86 24398.77 216
agg_prior97.80 23794.96 13198.36 19093.49 32099.53 184
V4297.04 12397.16 11696.68 19498.59 14791.05 23496.33 15298.36 19094.60 19397.99 13098.30 10193.32 18999.62 15897.40 4799.53 11099.38 94
MVS_111021_HR96.73 14796.54 15397.27 16098.35 17493.66 18493.42 29798.36 19094.74 18896.58 21896.76 25596.54 8498.99 29794.87 16599.27 19399.15 148
c3_l95.20 21295.32 19894.83 27896.19 32486.43 31591.83 33098.35 19493.47 22697.36 17097.26 21988.69 27199.28 25995.41 13899.36 16798.78 213
MVS_Test96.27 16996.79 14094.73 28296.94 30586.63 31296.18 16198.33 19594.94 18396.07 24498.28 10695.25 13699.26 26297.21 5297.90 29498.30 262
CDPH-MVS95.45 20394.65 22797.84 11298.28 17994.96 13193.73 28998.33 19585.03 33895.44 26796.60 26395.31 13499.44 21190.01 29099.13 21099.11 161
MVS_111021_LR96.82 14096.55 15197.62 12898.27 18195.34 11593.81 28798.33 19594.59 19596.56 22096.63 26296.61 8098.73 32094.80 16899.34 17598.78 213
Anonymous2024052997.96 5098.04 4197.71 12098.69 13494.28 15897.86 6998.31 19898.79 2299.23 2698.86 5895.76 11799.61 16495.49 12599.36 16799.23 133
Regformer-297.41 10597.24 11197.93 10497.21 29494.72 13894.85 24298.27 19997.74 5598.11 11597.50 19595.58 12499.69 12596.57 7299.31 18699.37 101
FMVSNet593.39 27992.35 28996.50 20395.83 33690.81 24197.31 10398.27 19992.74 25396.27 23598.28 10662.23 37699.67 13790.86 26699.36 16799.03 174
v2v48296.78 14397.06 12395.95 23098.57 14988.77 27295.36 20998.26 20195.18 17397.85 14898.23 11492.58 20899.63 15097.80 3199.69 6799.45 75
PLCcopyleft91.02 1694.05 26392.90 27697.51 13698.00 21595.12 12894.25 26398.25 20286.17 32391.48 34995.25 31391.01 23999.19 27085.02 34696.69 33298.22 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
miper_ehance_all_eth94.69 23594.70 22594.64 28395.77 33886.22 31791.32 33998.24 20391.67 26897.05 18996.65 26188.39 27599.22 26994.88 16498.34 27798.49 242
DVP-MVScopyleft97.78 7897.65 7698.16 8499.24 5995.51 10296.74 13398.23 20495.92 13998.40 7998.28 10697.06 5099.71 10895.48 12899.52 11599.26 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
iter_conf0593.65 27393.05 27295.46 25396.13 33087.45 29895.95 17898.22 20592.66 25497.04 19097.89 15763.52 37599.72 9296.19 8599.82 3899.21 135
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
miper_lstm_enhance94.81 22894.80 22294.85 27696.16 32686.45 31491.14 34398.20 20993.49 22597.03 19297.37 21184.97 30099.26 26295.28 14199.56 9898.83 207
TSAR-MVS + MP.97.42 10497.23 11298.00 10099.38 4595.00 13097.63 8498.20 20993.00 24598.16 10998.06 13795.89 10599.72 9295.67 11499.10 21699.28 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVP-Stereo95.69 19095.28 19996.92 17898.15 19993.03 19795.64 19698.20 20990.39 28496.63 21797.73 17791.63 23399.10 28591.84 24697.31 32098.63 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS++copyleft96.99 12596.38 16198.81 2998.64 13797.59 2495.97 17498.20 20995.51 16095.06 27496.53 26794.10 17299.70 11794.29 19199.15 20699.13 153
NCCC96.52 16095.99 17898.10 9197.81 23395.68 9395.00 23598.20 20995.39 16595.40 26996.36 27793.81 18099.45 20893.55 21998.42 27599.17 144
new-patchmatchnet95.67 19296.58 14892.94 32697.48 27280.21 36192.96 30898.19 21494.83 18698.82 4798.79 6093.31 19099.51 19295.83 10799.04 22499.12 158
MCST-MVS96.24 17095.80 18597.56 13198.75 12494.13 16494.66 24998.17 21590.17 28796.21 23996.10 29195.14 13999.43 21394.13 19898.85 24599.13 153
door-mid98.17 215
CNVR-MVS96.92 13196.55 15198.03 9998.00 21595.54 10094.87 24098.17 21594.60 19396.38 22897.05 23395.67 12099.36 23895.12 15699.08 21899.19 140
MSC_two_6792asdad98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
No_MVS98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
原ACMM196.58 19898.16 19792.12 21798.15 22085.90 32793.49 32096.43 27292.47 21499.38 23387.66 32298.62 26698.23 269
IU-MVS99.22 6495.40 10898.14 22185.77 32998.36 8595.23 14599.51 12099.49 59
Regformer-497.53 9797.47 9897.71 12097.35 28293.91 17095.26 21898.14 22197.97 4798.34 8897.89 15795.49 12699.71 10897.41 4699.42 15399.51 50
ambc96.56 20198.23 18791.68 22897.88 6898.13 22398.42 7898.56 7794.22 17099.04 29194.05 20399.35 17298.95 183
WR-MVS96.90 13396.81 13797.16 16598.56 15092.20 21594.33 25998.12 22497.34 8098.20 10497.33 21492.81 20099.75 7294.79 16999.81 3999.54 44
iter_conf_final94.54 24593.91 25996.43 20797.23 29390.41 24896.81 12898.10 22593.87 21796.80 20597.89 15768.02 36999.72 9296.73 6699.77 4899.18 143
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2250.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
Effi-MVS+-dtu96.81 14196.09 17398.99 1396.90 30798.69 296.42 14698.09 22795.86 14495.15 27395.54 30994.26 16899.81 4094.06 20098.51 27398.47 243
mvs-test196.20 17295.50 19698.32 6996.90 30798.16 595.07 22998.09 22795.86 14493.63 31494.32 33394.26 16899.71 10894.06 20097.27 32297.07 319
cl____94.73 23094.64 22895.01 26895.85 33587.00 30791.33 33798.08 22993.34 23097.10 18397.33 21484.01 30799.30 25395.14 15399.56 9898.71 223
DIV-MVS_self_test94.73 23094.64 22895.01 26895.86 33487.00 30791.33 33798.08 22993.34 23097.10 18397.34 21384.02 30699.31 25095.15 15299.55 10498.72 221
test1198.08 229
AdaColmapbinary95.11 21694.62 23196.58 19897.33 28894.45 15094.92 23898.08 22993.15 24193.98 30595.53 31094.34 16699.10 28585.69 33898.61 26796.20 345
pmmvs-eth3d96.49 16196.18 16997.42 15298.25 18494.29 15594.77 24698.07 23389.81 29097.97 13498.33 9593.11 19399.08 28795.46 13199.84 3498.89 198
FMVSNet296.72 14896.67 14596.87 18297.96 21791.88 22397.15 11198.06 23495.59 15798.50 7098.62 7389.51 26599.65 14594.99 16399.60 8899.07 168
UnsupCasMVSNet_bld94.72 23494.26 24696.08 22498.62 14290.54 24793.38 30098.05 23590.30 28597.02 19396.80 25289.54 26299.16 27688.44 31296.18 34098.56 235
Regformer-197.27 11497.16 11697.61 12997.21 29493.86 17394.85 24298.04 23697.62 6598.03 12797.50 19595.34 13299.63 15096.52 7399.31 18699.35 104
PAPM_NR94.61 24194.17 25195.96 22898.36 17391.23 23295.93 17997.95 23792.98 24693.42 32594.43 33190.53 24598.38 34887.60 32396.29 33998.27 266
D2MVS95.18 21395.17 20295.21 26197.76 24987.76 29394.15 27097.94 23889.77 29196.99 19597.68 18287.45 28599.14 27895.03 16199.81 3998.74 218
无先验93.20 30597.91 23980.78 35699.40 22587.71 31997.94 292
v14896.58 15896.97 12795.42 25598.63 14187.57 29595.09 22697.90 24095.91 14198.24 10197.96 14793.42 18899.39 23096.04 9299.52 11599.29 120
CNLPA95.04 21994.47 24096.75 18997.81 23395.25 11994.12 27497.89 24194.41 19994.57 28695.69 30390.30 25198.35 35186.72 33298.76 25396.64 337
PAPR92.22 29791.27 30395.07 26695.73 34088.81 27091.97 32897.87 24285.80 32890.91 35192.73 35191.16 23798.33 35279.48 36295.76 34798.08 277
miper_enhance_ethall93.14 28592.78 28294.20 30093.65 36685.29 32789.97 35597.85 24385.05 33796.15 24394.56 32685.74 29499.14 27893.74 21398.34 27798.17 275
Anonymous2023120695.27 21095.06 20895.88 23498.72 12789.37 26095.70 18797.85 24388.00 30996.98 19797.62 18591.95 22699.34 24389.21 30199.53 11098.94 185
xiu_mvs_v2_base94.22 25494.63 23092.99 32497.32 28984.84 33592.12 32597.84 24591.96 26494.17 29693.43 33896.07 10299.71 10891.27 25697.48 31494.42 360
PS-MVSNAJ94.10 26094.47 24093.00 32397.35 28284.88 33491.86 32997.84 24591.96 26494.17 29692.50 35495.82 11099.71 10891.27 25697.48 31494.40 361
CANet_DTU94.65 23994.21 24995.96 22895.90 33389.68 25493.92 28297.83 24793.19 23690.12 35895.64 30688.52 27299.57 17493.27 22499.47 13498.62 230
door97.81 248
test1297.46 14797.61 26594.07 16597.78 24993.57 31893.31 19099.42 21498.78 25198.89 198
旧先验197.80 23793.87 17297.75 25097.04 23493.57 18698.68 25998.72 221
新几何197.25 16398.29 17794.70 14297.73 25177.98 36694.83 28196.67 26092.08 22399.45 20888.17 31798.65 26497.61 307
testdata95.70 24298.16 19790.58 24497.72 25280.38 35895.62 26397.02 23592.06 22498.98 29989.06 30598.52 27197.54 309
112194.26 25293.26 26997.27 16098.26 18394.73 13795.86 18197.71 25377.96 36794.53 28896.71 25791.93 22899.40 22587.71 31998.64 26597.69 304
test20.0396.58 15896.61 14696.48 20598.49 16091.72 22795.68 19097.69 25496.81 9598.27 9997.92 15594.18 17198.71 32290.78 27099.66 7299.00 177
ab-mvs96.59 15696.59 14796.60 19698.64 13792.21 21398.35 3597.67 25594.45 19896.99 19598.79 6094.96 14799.49 19590.39 28599.07 22098.08 277
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18893.57 36894.67 14394.21 26797.67 25580.36 35993.61 31696.60 26382.85 31097.35 36584.86 34798.78 25198.29 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_low_dy_conf_00198.18 3498.04 4198.60 4699.62 1496.14 7398.66 1997.66 25797.24 8498.78 5099.33 1992.47 21499.87 2298.71 1099.89 2699.80 8
mvs_anonymous95.36 20696.07 17593.21 31896.29 31881.56 35694.60 25197.66 25793.30 23296.95 19998.91 5493.03 19799.38 23396.60 6997.30 32198.69 224
FMVSNet395.26 21194.94 21196.22 21996.53 31390.06 24995.99 17297.66 25794.11 21197.99 13097.91 15680.22 32299.63 15094.60 17699.44 14298.96 182
EI-MVSNet-UG-set97.32 11297.40 9997.09 17097.34 28692.01 22195.33 21297.65 26097.74 5598.30 9798.14 12395.04 14299.69 12597.55 4199.52 11599.58 33
EI-MVSNet-Vis-set97.32 11297.39 10097.11 16897.36 28192.08 21995.34 21197.65 26097.74 5598.29 9898.11 12895.05 14099.68 13297.50 4399.50 12499.56 41
EI-MVSNet96.63 15596.93 13095.74 23997.26 29188.13 28495.29 21697.65 26096.99 8997.94 13798.19 11992.55 20999.58 16896.91 6399.56 9899.50 51
MVSTER94.21 25693.93 25895.05 26795.83 33686.46 31395.18 22397.65 26092.41 25997.94 13798.00 14572.39 35999.58 16896.36 8099.56 9899.12 158
IterMVS-SCA-FT95.86 18796.19 16894.85 27697.68 25885.53 32392.42 32097.63 26496.99 8998.36 8598.54 7987.94 27899.75 7297.07 6099.08 21899.27 125
Regformer-397.25 11697.29 10697.11 16897.35 28292.32 21095.26 21897.62 26597.67 6498.17 10897.89 15795.05 14099.56 17597.16 5699.42 15399.46 70
test22298.17 19593.24 19492.74 31497.61 26675.17 37194.65 28596.69 25990.96 24198.66 26297.66 305
VNet96.84 13696.83 13696.88 18198.06 20692.02 22096.35 15197.57 26797.70 6197.88 14397.80 17092.40 21699.54 18294.73 17498.96 22999.08 166
PMVScopyleft89.60 1796.71 15096.97 12795.95 23099.51 2997.81 1797.42 10097.49 26897.93 4895.95 24998.58 7496.88 6696.91 36789.59 29699.36 16793.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ppachtmachnet_test94.49 24794.84 21893.46 31296.16 32682.10 35290.59 34997.48 26990.53 28397.01 19497.59 18791.01 23999.36 23893.97 20799.18 20498.94 185
DPM-MVS93.68 27192.77 28396.42 20997.91 22192.54 20591.17 34297.47 27084.99 33993.08 33094.74 32389.90 25699.00 29587.54 32598.09 28797.72 302
IterMVS95.42 20495.83 18494.20 30097.52 27083.78 34592.41 32197.47 27095.49 16198.06 12398.49 8287.94 27899.58 16896.02 9499.02 22599.23 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch94.83 22694.91 21594.57 28996.81 30987.10 30694.23 26597.34 27288.74 30197.14 17997.11 22891.94 22798.23 35592.99 22997.92 29298.37 251
MDA-MVSNet-bldmvs95.69 19095.67 18995.74 23998.48 16288.76 27392.84 30997.25 27396.00 13497.59 15597.95 15191.38 23599.46 20493.16 22796.35 33898.99 180
PatchMatch-RL94.61 24193.81 26197.02 17598.19 19095.72 8993.66 29097.23 27488.17 30794.94 27995.62 30791.43 23498.57 33587.36 32897.68 30596.76 335
CR-MVSNet93.29 28292.79 28094.78 28095.44 34588.15 28296.18 16197.20 27584.94 34094.10 29898.57 7577.67 33299.39 23095.17 14895.81 34396.81 333
Patchmtry95.03 22194.59 23496.33 21394.83 35290.82 23996.38 14997.20 27596.59 10397.49 16198.57 7577.67 33299.38 23392.95 23199.62 7898.80 210
API-MVS95.09 21895.01 21095.31 25896.61 31194.02 16796.83 12797.18 27795.60 15695.79 25694.33 33294.54 16198.37 35085.70 33798.52 27193.52 364
MAR-MVS94.21 25693.03 27497.76 11696.94 30597.44 3596.97 12397.15 27887.89 31192.00 34692.73 35192.14 22099.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
pmmvs594.63 24094.34 24595.50 25097.63 26488.34 27894.02 27697.13 27987.15 31695.22 27297.15 22487.50 28499.27 26193.99 20599.26 19498.88 202
UGNet96.81 14196.56 15097.58 13096.64 31093.84 17597.75 7697.12 28096.47 11193.62 31598.88 5693.22 19299.53 18495.61 12099.69 6799.36 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
h-mvs3396.29 16895.63 19198.26 7598.50 15996.11 7596.90 12497.09 28196.58 10497.21 17598.19 11984.14 30499.78 5195.89 10396.17 34198.89 198
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 28181.44 35487.44 36993.15 33973.99 34999.47 20188.69 30999.07 22096.52 341
CDS-MVSNet94.88 22594.12 25297.14 16797.64 26393.57 18693.96 28197.06 28390.05 28896.30 23496.55 26586.10 29299.47 20190.10 28999.31 18698.40 247
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-untuned94.69 23594.75 22494.52 29197.95 22087.53 29694.07 27597.01 28493.99 21497.10 18395.65 30592.65 20698.95 30487.60 32396.74 33197.09 318
sss94.22 25493.72 26295.74 23997.71 25689.95 25293.84 28496.98 28588.38 30593.75 31095.74 30287.94 27898.89 30691.02 26298.10 28698.37 251
131492.38 29492.30 29092.64 33095.42 34785.15 33095.86 18196.97 28685.40 33490.62 35293.06 34591.12 23897.80 36286.74 33195.49 35094.97 358
SixPastTwentyTwo97.49 9997.57 8997.26 16299.56 2092.33 20998.28 4296.97 28698.30 3499.45 1499.35 1688.43 27499.89 1898.01 2599.76 4999.54 44
TSAR-MVS + GP.96.47 16396.12 17197.49 14297.74 25495.23 12094.15 27096.90 28893.26 23398.04 12696.70 25894.41 16498.89 30694.77 17299.14 20798.37 251
our_test_394.20 25894.58 23593.07 32096.16 32681.20 35890.42 35196.84 28990.72 28197.14 17997.13 22590.47 24699.11 28394.04 20498.25 28198.91 194
alignmvs96.01 18195.52 19597.50 13997.77 24894.71 13996.07 16696.84 28997.48 7296.78 21094.28 33485.50 29699.40 22596.22 8398.73 25898.40 247
CL-MVSNet_self_test95.04 21994.79 22395.82 23697.51 27189.79 25391.14 34396.82 29193.05 24396.72 21196.40 27590.82 24299.16 27691.95 24198.66 26298.50 241
TAMVS95.49 19894.94 21197.16 16598.31 17593.41 19095.07 22996.82 29191.09 27897.51 15997.82 16889.96 25599.42 21488.42 31399.44 14298.64 227
pmmvs494.82 22794.19 25096.70 19297.42 27992.75 20492.09 32796.76 29386.80 32095.73 26197.22 22189.28 26898.89 30693.28 22399.14 20798.46 245
jason94.39 25094.04 25495.41 25798.29 17787.85 29092.74 31496.75 29485.38 33595.29 27096.15 28688.21 27799.65 14594.24 19399.34 17598.74 218
jason: jason.
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29564.72 37590.62 35292.77 34992.54 21198.39 34779.30 36395.56 34992.12 368
IS-MVSNet96.93 13096.68 14497.70 12299.25 5894.00 16898.57 2196.74 29598.36 3198.14 11397.98 14688.23 27699.71 10893.10 22899.72 6099.38 94
RRT_MVS97.95 5497.79 6198.43 6099.67 1095.56 9898.86 1096.73 29797.99 4699.15 3199.35 1689.84 25899.90 1498.64 1199.90 2499.82 6
OpenMVS_ROBcopyleft91.80 1493.64 27493.05 27295.42 25597.31 29091.21 23395.08 22896.68 29881.56 35296.88 20496.41 27390.44 24799.25 26485.39 34297.67 30695.80 349
cl2293.25 28392.84 27994.46 29394.30 35886.00 31991.09 34596.64 29990.74 28095.79 25696.31 27978.24 32998.77 31694.15 19798.34 27798.62 230
EPP-MVSNet96.84 13696.58 14897.65 12699.18 7593.78 17898.68 1596.34 30097.91 4997.30 17198.06 13788.46 27399.85 2893.85 21099.40 16099.32 107
BH-RMVSNet94.56 24394.44 24394.91 27197.57 26687.44 29993.78 28896.26 30193.69 22296.41 22796.50 27092.10 22299.00 29585.96 33597.71 30298.31 260
MVS_030495.50 19795.05 20996.84 18496.28 31993.12 19597.00 12196.16 30295.03 18089.22 36397.70 17990.16 25499.48 19894.51 18199.34 17597.93 293
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30391.83 26794.05 30194.57 32576.01 34498.97 30392.46 23697.34 31998.36 256
lupinMVS93.77 26793.28 26895.24 26097.68 25887.81 29192.12 32596.05 30484.52 34294.48 29195.06 31786.90 28899.63 15093.62 21899.13 21098.27 266
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30514.32 37864.27 37991.69 36273.45 35688.05 37776.06 37066.94 37793.54 363
PMMVS293.66 27294.07 25392.45 33497.57 26680.67 36086.46 36796.00 30693.99 21497.10 18397.38 20989.90 25697.82 36188.76 30799.47 13498.86 205
WTY-MVS93.55 27693.00 27595.19 26297.81 23387.86 28893.89 28396.00 30689.02 29694.07 30095.44 31286.27 29199.33 24687.69 32196.82 32898.39 249
PMMVS92.39 29391.08 30596.30 21693.12 37092.81 20290.58 35095.96 30879.17 36391.85 34892.27 35590.29 25298.66 32989.85 29396.68 33397.43 312
MG-MVS94.08 26294.00 25594.32 29797.09 29985.89 32093.19 30695.96 30892.52 25594.93 28097.51 19489.54 26298.77 31687.52 32697.71 30298.31 260
MDA-MVSNet_test_wron94.73 23094.83 22094.42 29497.48 27285.15 33090.28 35395.87 31092.52 25597.48 16497.76 17191.92 22999.17 27593.32 22196.80 33098.94 185
YYNet194.73 23094.84 21894.41 29597.47 27685.09 33290.29 35295.85 31192.52 25597.53 15797.76 17191.97 22599.18 27193.31 22296.86 32798.95 183
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31283.46 34692.69 33696.84 24779.15 32699.41 22385.66 33990.52 36698.04 287
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31389.33 29494.21 29592.74 35089.60 26098.24 35481.68 35894.66 35594.66 359
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
VDD-MVS97.37 10897.25 10997.74 11898.69 13494.50 14997.04 11995.61 31698.59 2698.51 6898.72 6592.54 21199.58 16896.02 9499.49 12899.12 158
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31779.52 36183.82 37393.05 34680.57 32098.41 34562.29 37792.79 36295.71 350
test_yl94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
DCV-MVSNet94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
AUN-MVS93.95 26692.69 28497.74 11897.80 23795.38 11095.57 19895.46 32091.26 27692.64 33996.10 29174.67 34899.55 17993.72 21596.97 32398.30 262
hse-mvs295.77 18995.09 20597.79 11497.84 22995.51 10295.66 19195.43 32196.58 10497.21 17596.16 28584.14 30499.54 18295.89 10396.92 32498.32 258
VDDNet96.98 12896.84 13597.41 15399.40 4393.26 19397.94 6395.31 32299.26 798.39 8199.18 3087.85 28399.62 15895.13 15599.09 21799.35 104
wuyk23d93.25 28395.20 20087.40 35796.07 33195.38 11097.04 11994.97 32395.33 16699.70 598.11 12898.14 1391.94 37577.76 36899.68 6974.89 375
Vis-MVSNet (Re-imp)95.11 21694.85 21795.87 23599.12 8889.17 26397.54 9494.92 32496.50 10896.58 21897.27 21883.64 30899.48 19888.42 31399.67 7098.97 181
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32589.96 28994.95 27893.87 33690.24 25398.61 33281.18 36094.88 35395.45 355
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26897.31 10394.62 32685.92 32690.50 35596.84 24785.05 29899.40 22583.77 35495.78 34696.43 342
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26878.04 36587.17 36694.60 32784.65 34192.34 34392.20 35687.37 28698.47 34285.17 34597.69 30497.96 291
Patchmatch-test93.60 27593.25 27094.63 28496.14 32987.47 29796.04 16894.50 32893.57 22396.47 22496.97 23876.50 34098.61 33290.67 27798.41 27697.81 300
Anonymous20240521196.34 16795.98 17997.43 15198.25 18493.85 17496.74 13394.41 32997.72 5898.37 8298.03 14087.15 28799.53 18494.06 20099.07 22098.92 193
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 33073.84 37489.26 36295.61 30873.64 35398.30 35384.13 35086.20 37395.57 354
SCA93.38 28093.52 26592.96 32596.24 32081.40 35793.24 30494.00 33191.58 27194.57 28696.97 23887.94 27899.42 21489.47 29897.66 30798.06 283
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33288.01 30892.32 34496.86 24577.45 33498.82 31191.04 26187.01 37297.04 321
MIMVSNet93.42 27892.86 27795.10 26598.17 19588.19 28098.13 5493.69 33292.07 26195.04 27798.21 11880.95 31999.03 29481.42 35998.06 28898.07 279
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33476.97 37092.54 34299.18 3089.20 27098.55 33883.88 35298.60 26997.51 310
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27991.91 34796.26 28077.19 33898.86 31089.38 30089.85 36996.56 340
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 33099.18 27190.84 26794.57 35898.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32698.70 32385.66 33990.52 36698.04 287
FPMVS89.92 32388.63 33193.82 30498.37 17296.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36491.13 37671.91 37496.16 34293.39 366
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34198.55 33888.85 30696.43 336
baseline193.14 28592.64 28694.62 28597.34 28687.20 30496.67 14093.02 34094.71 19096.51 22395.83 30181.64 31298.60 33490.00 29188.06 37198.07 279
PatchT93.75 26893.57 26494.29 29995.05 35087.32 30296.05 16792.98 34197.54 7094.25 29498.72 6575.79 34599.24 26595.92 10195.81 34396.32 343
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22881.74 37694.90 32281.36 31599.11 28388.28 31598.87 24198.21 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26492.27 32392.88 34284.39 34595.29 27096.35 27885.66 29596.74 37184.53 34997.56 31097.05 320
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
EU-MVSNet94.25 25394.47 24093.60 30998.14 20082.60 35097.24 10892.72 34585.08 33698.48 7298.94 5182.59 31198.76 31897.47 4599.53 11099.44 85
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30996.63 37273.44 37266.86 37893.40 365
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30498.03 28995.92 346
CVMVSNet92.33 29692.79 28090.95 34397.26 29175.84 37395.29 21692.33 34881.86 35096.27 23598.19 11981.44 31498.46 34394.23 19498.29 28098.55 237
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18793.71 31193.11 34075.31 34696.81 36885.81 33696.81 32991.77 370
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36398.89 30688.59 31192.63 36396.87 327
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
JIA-IIPM91.79 30490.69 31395.11 26493.80 36590.98 23694.16 26991.78 35296.38 11290.30 35799.30 2072.02 36098.90 30588.28 31590.17 36895.45 355
N_pmnet95.18 21394.23 24798.06 9597.85 22596.55 6092.49 31891.63 35389.34 29398.09 11997.41 20290.33 24899.06 28991.58 25199.31 18698.56 235
EPNet93.72 26992.62 28797.03 17487.61 38292.25 21196.27 15491.28 35496.74 9787.65 36897.39 20785.00 29999.64 14892.14 23899.48 13299.20 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36199.30 25391.25 25893.87 35997.87 295
thres20091.00 31390.42 31792.77 32897.47 27683.98 34494.01 27791.18 35695.12 17695.44 26791.21 36673.93 35099.31 25077.76 36897.63 30995.01 357
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19292.63 34091.81 36076.30 34297.02 36683.83 35396.90 32691.48 371
tfpn200view991.55 30791.00 30693.21 31898.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29997.36 314
LFMVS95.32 20894.88 21696.62 19598.03 20891.47 23197.65 8290.72 36099.11 997.89 14298.31 9779.20 32599.48 19893.91 20999.12 21398.93 189
thres100view90091.76 30591.26 30493.26 31598.21 18884.50 33896.39 14790.39 36196.87 9396.33 23093.08 34473.44 35799.42 21478.85 36597.74 29995.85 347
thres600view792.03 30191.43 29993.82 30498.19 19084.61 33796.27 15490.39 36196.81 9596.37 22993.11 34073.44 35799.49 19580.32 36197.95 29197.36 314
K. test v396.44 16496.28 16596.95 17699.41 4291.53 22997.65 8290.31 36398.89 1998.93 4199.36 1484.57 30399.92 597.81 3099.56 9899.39 92
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25296.41 31689.15 26591.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21194.16 19696.61 33497.82 298
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16687.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26289.97 35990.77 36973.92 35198.57 33591.88 24497.36 31796.92 324
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24497.36 31796.92 324
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26294.71 28391.14 36773.92 35194.48 37483.75 35592.94 36197.16 317
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16890.59 27898.67 26097.50 311
thisisatest053092.71 29091.76 29795.56 24798.42 16988.23 27996.03 16987.35 37094.04 21396.56 22095.47 31164.03 37499.77 6094.78 17199.11 21498.68 226
tttt051793.31 28192.56 28895.57 24598.71 13087.86 28897.44 9787.17 37195.79 14897.47 16696.84 24764.12 37399.81 4096.20 8499.32 18499.02 176
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26596.92 32496.64 337
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36299.33 24686.01 33494.60 35797.72 302
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 4084.72 30298.23 35582.52 35796.59 33590.69 373
lessismore_v097.05 17299.36 4792.12 21784.07 37598.77 5398.98 4785.36 29799.74 8297.34 4999.37 16499.30 113
test111194.53 24694.81 22193.72 30699.06 9581.94 35598.31 3983.87 37696.37 11398.49 7199.17 3281.49 31399.73 8796.64 6799.86 3099.49 59
ECVR-MVScopyleft94.37 25194.48 23994.05 30398.95 10583.10 34798.31 3982.48 37796.20 12198.23 10299.16 3381.18 31699.66 14395.95 9999.83 3699.38 94
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36598.10 35990.75 27189.32 37096.98 322
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20287.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP96.55 14174.60 380
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34770.63 37959.23 37884.94 37475.62 374
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
test250689.86 32489.16 32991.97 33898.95 10576.83 37098.54 2461.07 38496.20 12197.07 18899.16 3355.19 38399.69 12596.43 7899.83 3699.38 94
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
n20.00 388
nn0.00 388
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145287.24 31498.37 8297.44 20097.00 5496.78 37092.01 23999.25 19599.21 135
eth-test20.00 387
eth-test0.00 387
OPU-MVS97.64 12798.01 21195.27 11896.79 13097.35 21296.97 5698.51 34191.21 25999.25 19599.14 151
test_0728_THIRD96.62 9998.40 7998.28 10697.10 4599.71 10895.70 11099.62 7899.58 33
GSMVS98.06 283
test_part299.03 10196.07 7698.08 121
sam_mvs177.80 33198.06 283
sam_mvs77.38 335
test_post194.98 23610.37 38176.21 34399.04 29189.47 298
test_post10.87 38076.83 33999.07 288
patchmatchnet-post96.84 24777.36 33699.42 214
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
test9_res91.29 25598.89 24099.00 177
agg_prior290.34 28798.90 23799.10 165
test_prior495.38 11093.61 293
test_prior293.33 30294.21 20694.02 30296.25 28193.64 18491.90 24298.96 229
旧先验293.35 30177.95 36895.77 26098.67 32890.74 274
新几何293.43 296
原ACMM292.82 310
testdata299.46 20487.84 318
segment_acmp95.34 132
testdata192.77 31193.78 219
plane_prior798.70 13294.67 143
plane_prior698.38 17194.37 15391.91 230
plane_prior496.77 253
plane_prior394.51 14795.29 16996.16 241
plane_prior296.50 14396.36 114
plane_prior198.49 160
plane_prior94.29 15595.42 20394.31 20398.93 235
HQP5-MVS92.47 207
HQP-NCC97.85 22594.26 26093.18 23792.86 333
ACMP_Plane97.85 22594.26 26093.18 23792.86 333
BP-MVS90.51 282
HQP4-MVS92.87 33299.23 26799.06 170
HQP2-MVS90.33 248
NP-MVS98.14 20093.72 18095.08 315
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32885.50 34197.82 298
ACMMP++_ref99.52 115
ACMMP++99.55 104
Test By Simon94.51 162