This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 699.99 599.99 1
test_vis3_rt99.14 4499.17 4199.07 12199.78 2698.38 10998.92 7699.94 297.80 17299.91 1199.67 2597.15 15298.91 37999.76 1499.56 20899.92 9
test_fmvs399.12 4999.41 1998.25 22999.76 3295.07 28099.05 6599.94 297.78 17499.82 2199.84 298.56 5099.71 24599.96 199.96 2599.97 3
test_fmvs1_n98.09 18298.28 15397.52 28799.68 5993.47 32898.63 9899.93 495.41 30199.68 3799.64 3291.88 30499.48 32999.82 699.87 7699.62 66
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3499.31 39100.00 199.82 23
test_fmvs298.70 10298.97 6497.89 25499.54 9794.05 30798.55 10799.92 696.78 25399.72 2999.78 896.60 18599.67 26499.91 299.90 6899.94 7
test_vis1_n_192098.40 14998.92 6796.81 32399.74 3890.76 36998.15 15299.91 798.33 12899.89 1599.55 4895.07 24299.88 8299.76 1499.93 4299.79 28
test_vis1_n98.31 16098.50 11997.73 27099.76 3294.17 30598.68 9599.91 796.31 27199.79 2499.57 4292.85 29299.42 34099.79 1199.84 8499.60 73
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20299.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1199.99 599.96 5
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 9100.00 199.85 19
CS-MVS99.13 4799.10 5299.24 9699.06 21199.15 4799.36 1999.88 1199.36 4898.21 24498.46 26298.68 4099.93 3999.03 5899.85 8098.64 315
CS-MVS-test99.13 4799.09 5399.26 9199.13 19698.97 6699.31 2799.88 1199.44 3898.16 24798.51 25498.64 4199.93 3998.91 6499.85 8098.88 283
fmvsm_s_conf0.1_n_a99.17 4099.30 3298.80 15999.75 3696.59 23197.97 18099.86 1398.22 13999.88 1799.71 1798.59 4799.84 13799.73 1799.98 1299.98 2
dcpmvs_298.78 8999.11 5097.78 26199.56 8893.67 32599.06 6399.86 1399.50 3099.66 4099.26 10197.21 15099.99 298.00 12199.91 6199.68 53
fmvsm_s_conf0.1_n99.16 4399.33 2698.64 18099.71 4896.10 24297.87 19299.85 1598.56 12099.90 1299.68 2098.69 3999.85 12099.72 1999.98 1299.97 3
test_fmvsmvis_n_192099.26 3299.49 1298.54 20299.66 6596.97 21798.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 306
test_cas_vis1_n_192098.33 15798.68 9497.27 30199.69 5792.29 34898.03 16899.85 1597.62 18499.96 499.62 3493.98 27399.74 23299.52 2999.86 7999.79 28
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13597.68 21399.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1699.98 1299.89 11
EC-MVSNet99.09 5299.05 5799.20 10099.28 15898.93 7199.24 4199.84 1899.08 8498.12 25298.37 27098.72 3699.90 6399.05 5699.77 12298.77 300
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8097.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 499.99 599.29 212
LCM-MVSNet-Re98.64 11798.48 12499.11 11398.85 25098.51 10298.49 11999.83 2098.37 12599.69 3599.46 6698.21 7499.92 4994.13 31299.30 25698.91 279
fmvsm_s_conf0.5_n_a99.10 5199.20 3998.78 16599.55 9296.59 23197.79 19999.82 2298.21 14099.81 2299.53 5498.46 5699.84 13799.70 2099.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5299.26 3598.61 18899.55 9296.09 24597.74 20799.81 2398.55 12199.85 1999.55 4898.60 4699.84 13799.69 2299.98 1299.89 11
test_fmvs197.72 21197.94 18897.07 31098.66 29092.39 34597.68 21399.81 2395.20 30599.54 5499.44 7191.56 30699.41 34199.78 1399.77 12299.40 172
test_f98.67 11398.87 7098.05 24699.72 4595.59 25898.51 11699.81 2396.30 27399.78 2599.82 496.14 20298.63 38499.82 699.93 4299.95 6
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10699.48 6498.82 3199.95 2398.94 6399.93 4299.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2599.67 2599.48 999.81 17799.30 4199.97 2099.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 9999.36 3699.92 5399.64 62
Gipumacopyleft99.03 5899.16 4398.64 18099.94 298.51 10299.32 2399.75 2999.58 2598.60 21099.62 3498.22 7299.51 32497.70 14099.73 14097.89 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UA-Net99.47 1399.40 2099.70 299.49 11499.29 1999.80 399.72 3099.82 399.04 14199.81 598.05 8799.96 1298.85 6899.99 599.86 18
Patchmatch-RL test97.26 24397.02 24697.99 25099.52 10295.53 26296.13 31499.71 3197.47 20099.27 10699.16 12384.30 35799.62 28897.89 12699.77 12298.81 292
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3199.27 5899.90 1299.74 1399.68 499.97 499.55 2799.99 599.88 14
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3199.38 4499.53 5899.61 3798.64 4199.80 18498.24 10599.84 8499.52 117
test_vis1_rt97.75 20997.72 20597.83 25798.81 25996.35 23797.30 25199.69 3494.61 31697.87 26898.05 29796.26 20098.32 38798.74 7598.18 33698.82 288
testf199.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
APD_test299.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
patch_mono-298.51 13998.63 10198.17 23599.38 13994.78 28597.36 24699.69 3498.16 15098.49 22599.29 9697.06 15699.97 498.29 10499.91 6199.76 37
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3498.93 9799.65 4399.72 1698.93 2699.95 2399.11 51100.00 199.82 23
Effi-MVS+98.02 18697.82 19898.62 18598.53 30797.19 20897.33 24899.68 3997.30 22096.68 33397.46 33298.56 5099.80 18496.63 21398.20 33598.86 285
PM-MVS98.82 8398.72 8699.12 11199.64 7098.54 10097.98 17799.68 3997.62 18499.34 9499.18 11797.54 12599.77 21497.79 13499.74 13799.04 255
PVSNet_Blended_VisFu98.17 17798.15 16998.22 23299.73 3995.15 27697.36 24699.68 3994.45 32298.99 14799.27 9996.87 16799.94 3497.13 16999.91 6199.57 90
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4299.09 8299.89 1599.68 2099.53 799.97 499.50 3099.99 599.87 16
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4399.48 3299.92 899.71 1798.07 8499.96 1299.53 28100.00 199.93 8
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4499.30 5599.65 4399.60 3999.16 2099.82 16499.07 5499.83 9199.56 96
casdiffmvs_mvgpermissive99.12 4999.16 4398.99 13599.43 13397.73 17898.00 17499.62 4599.22 6199.55 5399.22 11098.93 2699.75 22798.66 8299.81 9899.50 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268897.49 22697.14 24298.54 20299.68 5996.09 24596.50 29499.62 4591.58 36098.84 18098.97 17092.36 29799.88 8296.76 20299.95 3099.67 56
XXY-MVS99.14 4499.15 4899.10 11599.76 3297.74 17698.85 8299.62 4598.48 12399.37 8899.49 6398.75 3499.86 10898.20 10899.80 10899.71 45
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 4899.66 1399.68 3799.66 2798.44 5799.95 2399.73 1799.96 2599.75 41
EIA-MVS98.00 18897.74 20298.80 15998.72 27098.09 13698.05 16599.60 4997.39 21196.63 33595.55 37097.68 11099.80 18496.73 20699.27 26098.52 321
EG-PatchMatch MVS98.99 6199.01 5998.94 14299.50 10797.47 19098.04 16799.59 5098.15 15199.40 8199.36 8398.58 4999.76 22098.78 7199.68 16599.59 79
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5099.59 2399.71 3199.57 4297.12 15399.90 6399.21 4799.87 7699.54 107
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5299.90 299.86 1899.78 899.58 699.95 2399.00 6099.95 3099.78 31
AllTest98.44 14598.20 16199.16 10699.50 10798.55 9798.25 14299.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
TestCases99.16 10699.50 10798.55 9799.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
diffmvspermissive98.22 17198.24 15898.17 23599.00 22095.44 26696.38 30199.58 5297.79 17398.53 22298.50 25896.76 17799.74 23297.95 12599.64 17999.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5299.44 3899.78 2599.76 1096.39 19399.92 4999.44 3499.92 5399.68 53
1112_ss97.29 24296.86 25498.58 19299.34 15296.32 23896.75 28499.58 5293.14 34396.89 32597.48 33092.11 30199.86 10896.91 18599.54 21399.57 90
ACMH+96.62 999.08 5599.00 6099.33 7899.71 4898.83 7698.60 10299.58 5299.11 7299.53 5899.18 11798.81 3299.67 26496.71 20999.77 12299.50 122
FC-MVSNet-test99.27 3099.25 3699.34 7399.77 2998.37 11199.30 3299.57 5999.61 2299.40 8199.50 5997.12 15399.85 12099.02 5999.94 3899.80 27
casdiffmvspermissive98.95 6899.00 6098.81 15799.38 13997.33 19897.82 19799.57 5999.17 7099.35 9299.17 12198.35 6499.69 25298.46 9599.73 14099.41 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 5999.39 4399.75 2899.62 3499.17 1899.83 15499.06 5599.62 18599.66 57
Baseline_NR-MVSNet98.98 6498.86 7399.36 6499.82 2298.55 9797.47 24099.57 5999.37 4599.21 11899.61 3796.76 17799.83 15498.06 11699.83 9199.71 45
door-mid99.57 59
RPSCF98.62 12198.36 14399.42 5899.65 6699.42 798.55 10799.57 5997.72 17898.90 16699.26 10196.12 20499.52 32095.72 26899.71 15299.32 203
CSCG98.68 11098.50 11999.20 10099.45 12798.63 8998.56 10699.57 5997.87 16798.85 17798.04 29897.66 11299.84 13796.72 20799.81 9899.13 244
GeoE99.05 5798.99 6399.25 9499.44 12898.35 11598.73 8999.56 6698.42 12498.91 16598.81 20898.94 2599.91 5898.35 10099.73 14099.49 126
MVSFormer98.26 16798.43 13297.77 26298.88 24593.89 31999.39 1799.56 6699.11 7298.16 24798.13 28893.81 27699.97 499.26 4299.57 20599.43 157
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6699.11 7299.70 3399.73 1599.00 2299.97 499.26 4299.98 1299.89 11
COLMAP_ROBcopyleft96.50 1098.99 6198.85 7499.41 6099.58 7699.10 6098.74 8699.56 6699.09 8299.33 9599.19 11498.40 5999.72 24495.98 25599.76 13399.42 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1098.97 6599.11 5098.55 19999.44 12896.21 24198.90 7799.55 7098.73 10799.48 6699.60 3996.63 18499.83 15499.70 2099.99 599.61 72
WR-MVS_H99.33 2699.22 3899.65 599.71 4899.24 2599.32 2399.55 7099.46 3599.50 6599.34 8897.30 14299.93 3998.90 6599.93 4299.77 33
mvsmamba99.24 3799.15 4899.49 4899.83 2098.85 7499.41 1399.55 7099.54 2799.40 8199.52 5795.86 22099.91 5899.32 3899.95 3099.70 50
114514_t96.50 28595.77 29298.69 17799.48 12197.43 19497.84 19699.55 7081.42 39196.51 34198.58 24795.53 22899.67 26493.41 33199.58 20198.98 264
ACMH96.65 799.25 3399.24 3799.26 9199.72 4598.38 10999.07 6299.55 7098.30 13199.65 4399.45 7099.22 1599.76 22098.44 9699.77 12299.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FOURS199.73 3999.67 299.43 1199.54 7599.43 4099.26 110
KD-MVS_self_test99.25 3399.18 4099.44 5799.63 7399.06 6498.69 9499.54 7599.31 5399.62 4999.53 5497.36 14099.86 10899.24 4699.71 15299.39 175
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7599.62 2099.56 5199.42 7498.16 8099.96 1298.78 7199.93 4299.77 33
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 7899.53 2999.46 6999.41 7798.23 6999.95 2398.89 6799.95 3099.81 26
Test_1112_low_res96.99 26696.55 27798.31 22599.35 15095.47 26595.84 32999.53 7891.51 36296.80 33098.48 26191.36 30799.83 15496.58 21599.53 21799.62 66
USDC97.41 23397.40 22597.44 29498.94 22993.67 32595.17 34899.53 7894.03 33298.97 15299.10 13695.29 23599.34 35195.84 26499.73 14099.30 210
FIs99.14 4499.09 5399.29 8499.70 5598.28 11799.13 5599.52 8199.48 3299.24 11599.41 7796.79 17499.82 16498.69 8099.88 7399.76 37
Anonymous2023121199.27 3099.27 3499.26 9199.29 15798.18 12699.49 899.51 8299.70 899.80 2399.68 2096.84 16899.83 15499.21 4799.91 6199.77 33
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8299.64 1599.56 5199.46 6698.23 6999.97 498.78 7199.93 4299.72 44
ETV-MVS98.03 18597.86 19698.56 19898.69 28298.07 14297.51 23699.50 8498.10 15297.50 29695.51 37198.41 5899.88 8296.27 24199.24 26597.71 361
Fast-Effi-MVS+-dtu98.27 16598.09 17498.81 15798.43 31698.11 13397.61 22499.50 8498.64 10997.39 30497.52 32898.12 8399.95 2396.90 19098.71 31798.38 330
HPM-MVS_fast99.01 5998.82 7699.57 1699.71 4899.35 1299.00 6999.50 8497.33 21698.94 16298.86 19798.75 3499.82 16497.53 14799.71 15299.56 96
XVG-OURS98.53 13598.34 14699.11 11399.50 10798.82 7895.97 31899.50 8497.30 22099.05 13998.98 16899.35 1299.32 35495.72 26899.68 16599.18 236
baseline98.96 6799.02 5898.76 16999.38 13997.26 20298.49 11999.50 8498.86 10299.19 12099.06 13998.23 6999.69 25298.71 7899.76 13399.33 201
FMVSNet596.01 29895.20 31498.41 21697.53 36396.10 24298.74 8699.50 8497.22 23498.03 26199.04 14869.80 39299.88 8297.27 15899.71 15299.25 219
HyFIR lowres test97.19 25096.60 27598.96 13999.62 7597.28 20195.17 34899.50 8494.21 32799.01 14598.32 27786.61 33699.99 297.10 17199.84 8499.60 73
testgi98.32 15898.39 13998.13 23899.57 8095.54 26197.78 20099.49 9197.37 21399.19 12097.65 32098.96 2499.49 32696.50 22898.99 29899.34 196
PGM-MVS98.66 11498.37 14299.55 2399.53 10099.18 3898.23 14399.49 9197.01 24398.69 19798.88 19498.00 9099.89 7395.87 26199.59 19699.58 85
SDMVSNet99.23 3899.32 2898.96 13999.68 5997.35 19798.84 8499.48 9399.69 999.63 4699.68 2099.03 2199.96 1297.97 12399.92 5399.57 90
new-patchmatchnet98.35 15598.74 8297.18 30499.24 16592.23 35096.42 29999.48 9398.30 13199.69 3599.53 5497.44 13699.82 16498.84 6999.77 12299.49 126
nrg03099.40 2199.35 2399.54 2799.58 7699.13 5598.98 7299.48 9399.68 1199.46 6999.26 10198.62 4499.73 23799.17 5099.92 5399.76 37
APDe-MVScopyleft98.99 6198.79 7999.60 1199.21 17299.15 4798.87 7999.48 9397.57 19099.35 9299.24 10697.83 10099.89 7397.88 12999.70 15799.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
XVG-OURS-SEG-HR98.49 14098.28 15399.14 10999.49 11498.83 7696.54 29299.48 9397.32 21899.11 12798.61 24499.33 1399.30 35796.23 24298.38 32999.28 214
LPG-MVS_test98.71 9898.46 12899.47 5499.57 8098.97 6698.23 14399.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
LGP-MVS_train99.47 5499.57 8098.97 6699.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
v899.01 5999.16 4398.57 19499.47 12396.31 23998.90 7799.47 10099.03 8899.52 6099.57 4296.93 16499.81 17799.60 2399.98 1299.60 73
LF4IMVS97.90 19397.69 20698.52 20499.17 18797.66 18197.19 26299.47 10096.31 27197.85 27198.20 28596.71 18199.52 32094.62 29499.72 14798.38 330
canonicalmvs98.34 15698.26 15698.58 19298.46 31397.82 16998.96 7399.46 10299.19 6997.46 29995.46 37498.59 4799.46 33498.08 11598.71 31798.46 323
XVG-ACMP-BASELINE98.56 12798.34 14699.22 9999.54 9798.59 9497.71 21099.46 10297.25 22598.98 14898.99 16497.54 12599.84 13795.88 25899.74 13799.23 224
DeepC-MVS97.60 498.97 6598.93 6699.10 11599.35 15097.98 15298.01 17399.46 10297.56 19299.54 5499.50 5998.97 2399.84 13798.06 11699.92 5399.49 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD_test198.83 8298.66 9799.34 7399.78 2699.47 698.42 12999.45 10598.28 13698.98 14899.19 11497.76 10699.58 30396.57 21799.55 21198.97 267
Fast-Effi-MVS+97.67 21597.38 22798.57 19498.71 27397.43 19497.23 25699.45 10594.82 31396.13 34896.51 35298.52 5299.91 5896.19 24598.83 30998.37 332
v124098.55 13198.62 10398.32 22399.22 17095.58 26097.51 23699.45 10597.16 23699.45 7299.24 10696.12 20499.85 12099.60 2399.88 7399.55 103
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11498.36 11499.00 6999.45 10599.63 1799.52 6099.44 7198.25 6799.88 8299.09 5399.84 8499.62 66
Anonymous2024052198.69 10598.87 7098.16 23799.77 2995.11 27999.08 5999.44 10999.34 4999.33 9599.55 4894.10 27299.94 3499.25 4499.96 2599.42 160
tfpnnormal98.90 7498.90 6998.91 14699.67 6397.82 16999.00 6999.44 10999.45 3699.51 6499.24 10698.20 7599.86 10895.92 25799.69 16099.04 255
GBi-Net98.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
test198.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
FMVSNet199.17 4099.17 4199.17 10399.55 9298.24 12099.20 4599.44 10999.21 6399.43 7499.55 4897.82 10399.86 10898.42 9899.89 7299.41 163
TinyColmap97.89 19597.98 18497.60 27898.86 24794.35 30096.21 30999.44 10997.45 20799.06 13498.88 19497.99 9399.28 36194.38 30699.58 20199.18 236
HPM-MVScopyleft98.79 8798.53 11599.59 1599.65 6699.29 1999.16 5199.43 11596.74 25598.61 20898.38 26998.62 4499.87 9996.47 22999.67 17199.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_BlendedMVS97.55 22397.53 21897.60 27898.92 23593.77 32396.64 28999.43 11594.49 31897.62 28499.18 11796.82 17199.67 26494.73 29199.93 4299.36 190
PVSNet_Blended96.88 26996.68 26797.47 29298.92 23593.77 32394.71 35999.43 11590.98 36897.62 28497.36 33896.82 17199.67 26494.73 29199.56 20898.98 264
TranMVSNet+NR-MVSNet99.17 4099.07 5699.46 5699.37 14598.87 7398.39 13199.42 11899.42 4199.36 9099.06 13998.38 6099.95 2398.34 10199.90 6899.57 90
SF-MVS98.53 13598.27 15599.32 8099.31 15398.75 8198.19 14799.41 11996.77 25498.83 18198.90 18797.80 10499.82 16495.68 27199.52 22099.38 182
door99.41 119
bld_raw_dy_0_6499.07 5699.00 6099.29 8499.85 1798.18 12699.11 5899.40 12199.33 5099.38 8599.44 7195.21 23799.97 499.31 3999.98 1299.73 43
PMMVS298.07 18498.08 17798.04 24799.41 13694.59 29494.59 36699.40 12197.50 19798.82 18498.83 20396.83 17099.84 13797.50 14999.81 9899.71 45
UniMVSNet_NR-MVSNet98.86 8098.68 9499.40 6299.17 18798.74 8297.68 21399.40 12199.14 7199.06 13498.59 24696.71 18199.93 3998.57 8899.77 12299.53 114
DPE-MVScopyleft98.59 12598.26 15699.57 1699.27 16099.15 4797.01 26899.39 12497.67 18099.44 7398.99 16497.53 12799.89 7395.40 27999.68 16599.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-LS98.55 13198.70 9198.09 23999.48 12194.73 28897.22 25999.39 12498.97 9399.38 8599.31 9496.00 21099.93 3998.58 8699.97 2099.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss98.57 12698.23 15999.60 1199.69 5799.35 1297.16 26399.38 12694.87 31298.97 15298.99 16498.01 8999.88 8297.29 15799.70 15799.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UniMVSNet (Re)98.87 7798.71 8899.35 7099.24 16598.73 8597.73 20999.38 12698.93 9799.12 12698.73 21996.77 17599.86 10898.63 8599.80 10899.46 145
PHI-MVS98.29 16497.95 18699.34 7398.44 31599.16 4398.12 15599.38 12696.01 28298.06 25798.43 26497.80 10499.67 26495.69 27099.58 20199.20 229
ACMP95.32 1598.41 14798.09 17499.36 6499.51 10498.79 8097.68 21399.38 12695.76 28998.81 18698.82 20698.36 6199.82 16494.75 29099.77 12299.48 136
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPcopyleft98.75 9498.50 11999.52 3999.56 8899.16 4398.87 7999.37 13097.16 23698.82 18499.01 16097.71 10999.87 9996.29 24099.69 16099.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 25796.68 26798.32 22398.32 32497.16 21198.86 8199.37 13089.48 37696.29 34799.15 12796.56 18699.90 6392.90 33699.20 27197.89 349
MSDG97.71 21297.52 21998.28 22898.91 23896.82 22494.42 36999.37 13097.65 18298.37 23798.29 27997.40 13899.33 35394.09 31399.22 26898.68 313
ACMM96.08 1298.91 7298.73 8499.48 5199.55 9299.14 5298.07 16299.37 13097.62 18499.04 14198.96 17398.84 3099.79 19797.43 15199.65 17799.49 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419298.54 13398.57 11198.45 21199.21 17295.98 24997.63 22199.36 13497.15 23899.32 10199.18 11795.84 22199.84 13799.50 3099.91 6199.54 107
v192192098.54 13398.60 10898.38 21999.20 17695.76 25797.56 23099.36 13497.23 23199.38 8599.17 12196.02 20899.84 13799.57 2599.90 6899.54 107
v119298.60 12398.66 9798.41 21699.27 16095.88 25297.52 23499.36 13497.41 20999.33 9599.20 11396.37 19699.82 16499.57 2599.92 5399.55 103
SD-MVS98.40 14998.68 9497.54 28598.96 22797.99 14997.88 18999.36 13498.20 14499.63 4699.04 14898.76 3395.33 39696.56 22199.74 13799.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CP-MVS98.70 10298.42 13499.52 3999.36 14699.12 5798.72 9099.36 13497.54 19598.30 23998.40 26697.86 9999.89 7396.53 22699.72 14799.56 96
test072699.50 10799.21 2898.17 15199.35 13997.97 15899.26 11099.06 13997.61 119
MSP-MVS98.40 14998.00 18399.61 999.57 8099.25 2498.57 10599.35 13997.55 19499.31 10397.71 31694.61 25799.88 8296.14 24999.19 27499.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 7798.83 7599.01 13399.70 5597.62 18598.43 12799.35 13999.47 3499.28 10499.05 14696.72 18099.82 16498.09 11499.36 24599.59 79
UnsupCasMVSNet_eth97.89 19597.60 21598.75 17299.31 15397.17 21097.62 22299.35 13998.72 10898.76 19298.68 22892.57 29699.74 23297.76 13995.60 38299.34 196
DP-MVS Recon97.33 23896.92 25098.57 19499.09 20397.99 14996.79 28099.35 13993.18 34297.71 27998.07 29695.00 24499.31 35593.97 31599.13 28298.42 329
ITE_SJBPF98.87 15099.22 17098.48 10499.35 13997.50 19798.28 24198.60 24597.64 11699.35 35093.86 32099.27 26098.79 298
v114498.60 12398.66 9798.41 21699.36 14695.90 25197.58 22899.34 14597.51 19699.27 10699.15 12796.34 19899.80 18499.47 3299.93 4299.51 119
XVS98.72 9798.45 12999.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29298.63 24097.50 13199.83 15496.79 19899.53 21799.56 96
X-MVStestdata94.32 32892.59 34699.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29245.85 39597.50 13199.83 15496.79 19899.53 21799.56 96
CP-MVSNet99.21 3999.09 5399.56 2199.65 6698.96 7099.13 5599.34 14599.42 4199.33 9599.26 10197.01 16199.94 3498.74 7599.93 4299.79 28
test_040298.76 9398.71 8898.93 14399.56 8898.14 13198.45 12699.34 14599.28 5798.95 15598.91 18498.34 6599.79 19795.63 27299.91 6198.86 285
APD-MVS_3200maxsize98.84 8198.61 10799.53 3499.19 17999.27 2298.49 11999.33 15098.64 10999.03 14498.98 16897.89 9799.85 12096.54 22599.42 23899.46 145
DP-MVS98.93 7098.81 7899.28 8699.21 17298.45 10698.46 12499.33 15099.63 1799.48 6699.15 12797.23 14899.75 22797.17 16399.66 17699.63 65
DVP-MVS++98.90 7498.70 9199.51 4398.43 31699.15 4799.43 1199.32 15298.17 14799.26 11099.02 15198.18 7699.88 8297.07 17399.45 23499.49 126
9.1497.78 19999.07 20797.53 23399.32 15295.53 29598.54 22198.70 22597.58 12199.76 22094.32 30799.46 232
test_0728_SECOND99.60 1199.50 10799.23 2698.02 17099.32 15299.88 8296.99 17999.63 18299.68 53
Anonymous2023120698.21 17298.21 16098.20 23399.51 10495.43 26798.13 15399.32 15296.16 27698.93 16398.82 20696.00 21099.83 15497.32 15699.73 14099.36 190
LS3D98.63 11998.38 14199.36 6497.25 37299.38 899.12 5799.32 15299.21 6398.44 22998.88 19497.31 14199.80 18496.58 21599.34 24998.92 276
test_one_060199.39 13899.20 3499.31 15798.49 12298.66 20199.02 15197.64 116
SED-MVS98.91 7298.72 8699.49 4899.49 11499.17 3998.10 15899.31 15798.03 15599.66 4099.02 15198.36 6199.88 8296.91 18599.62 18599.41 163
test_241102_ONE99.49 11499.17 3999.31 15797.98 15799.66 4098.90 18798.36 6199.48 329
miper_lstm_enhance97.18 25197.16 23997.25 30398.16 33492.85 33795.15 35099.31 15797.25 22598.74 19598.78 21290.07 31599.78 20897.19 16299.80 10899.11 246
HFP-MVS98.71 9898.44 13199.51 4399.49 11499.16 4398.52 11199.31 15797.47 20098.58 21498.50 25897.97 9499.85 12096.57 21799.59 19699.53 114
region2R98.69 10598.40 13699.54 2799.53 10099.17 3998.52 11199.31 15797.46 20598.44 22998.51 25497.83 10099.88 8296.46 23099.58 20199.58 85
ACMMPR98.70 10298.42 13499.54 2799.52 10299.14 5298.52 11199.31 15797.47 20098.56 21798.54 25097.75 10799.88 8296.57 21799.59 19699.58 85
SteuartSystems-ACMMP98.79 8798.54 11499.54 2799.73 3999.16 4398.23 14399.31 15797.92 16398.90 16698.90 18798.00 9099.88 8296.15 24899.72 14799.58 85
Skip Steuart: Steuart Systems R&D Blog.
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16599.69 999.63 4699.68 2099.25 1499.96 1297.25 16099.92 5399.57 90
SR-MVS-dyc-post98.81 8598.55 11299.57 1699.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.49 13499.86 10896.56 22199.39 24199.45 149
RE-MVS-def98.58 11099.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.75 10796.56 22199.39 24199.45 149
test_241102_TWO99.30 16598.03 15599.26 11099.02 15197.51 13099.88 8296.91 18599.60 19299.66 57
RPMNet97.02 26296.93 24897.30 29997.71 35594.22 30198.11 15699.30 16599.37 4596.91 32199.34 8886.72 33599.87 9997.53 14797.36 36197.81 354
MVS_111021_LR98.30 16198.12 17298.83 15499.16 18998.03 14796.09 31599.30 16597.58 18998.10 25498.24 28198.25 6799.34 35196.69 21099.65 17799.12 245
F-COLMAP97.30 24096.68 26799.14 10999.19 17998.39 10897.27 25599.30 16592.93 34696.62 33698.00 29995.73 22399.68 26192.62 34598.46 32899.35 194
3Dnovator98.27 298.81 8598.73 8499.05 12898.76 26497.81 17199.25 4099.30 16598.57 11898.55 21999.33 9097.95 9599.90 6397.16 16499.67 17199.44 153
EGC-MVSNET85.24 36080.54 36399.34 7399.77 2999.20 3499.08 5999.29 17312.08 39720.84 39899.42 7497.55 12499.85 12097.08 17299.72 14798.96 269
ZNCC-MVS98.68 11098.40 13699.54 2799.57 8099.21 2898.46 12499.29 17397.28 22298.11 25398.39 26798.00 9099.87 9996.86 19599.64 17999.55 103
SR-MVS98.71 9898.43 13299.57 1699.18 18699.35 1298.36 13499.29 17398.29 13498.88 17298.85 20097.53 12799.87 9996.14 24999.31 25399.48 136
pmmvs-eth3d98.47 14298.34 14698.86 15199.30 15697.76 17497.16 26399.28 17695.54 29499.42 7799.19 11497.27 14599.63 28697.89 12699.97 2099.20 229
APD-MVScopyleft98.10 17997.67 20799.42 5899.11 19898.93 7197.76 20599.28 17694.97 30998.72 19698.77 21497.04 15799.85 12093.79 32299.54 21399.49 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS96.21 1196.63 27995.95 29098.65 17998.93 23198.09 13696.93 27499.28 17683.58 38998.13 25197.78 31296.13 20399.40 34293.52 32799.29 25898.45 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS97.99 19197.67 20798.93 14399.19 17997.65 18297.77 20299.27 17998.20 14497.79 27597.98 30194.90 24599.70 24894.42 30299.51 22299.45 149
plane_prior599.27 17999.70 24894.42 30299.51 22299.45 149
CPTT-MVS97.84 20597.36 22999.27 8999.31 15398.46 10598.29 13899.27 17994.90 31197.83 27298.37 27094.90 24599.84 13793.85 32199.54 21399.51 119
UnsupCasMVSNet_bld97.30 24096.92 25098.45 21199.28 15896.78 22896.20 31099.27 17995.42 29898.28 24198.30 27893.16 28399.71 24594.99 28597.37 35998.87 284
MVS_111021_HR98.25 16998.08 17798.75 17299.09 20397.46 19195.97 31899.27 17997.60 18897.99 26298.25 28098.15 8299.38 34696.87 19399.57 20599.42 160
cascas94.79 32394.33 32996.15 34096.02 39292.36 34792.34 38899.26 18485.34 38795.08 37094.96 38192.96 28998.53 38594.41 30598.59 32597.56 366
GST-MVS98.61 12298.30 15199.52 3999.51 10499.20 3498.26 14199.25 18597.44 20898.67 19998.39 26797.68 11099.85 12096.00 25399.51 22299.52 117
IterMVS-SCA-FT97.85 20498.18 16496.87 31999.27 16091.16 36595.53 33799.25 18599.10 7999.41 7899.35 8493.10 28599.96 1298.65 8399.94 3899.49 126
ACMMP_NAP98.75 9498.48 12499.57 1699.58 7699.29 1997.82 19799.25 18596.94 24698.78 18799.12 13398.02 8899.84 13797.13 16999.67 17199.59 79
DU-MVS98.82 8398.63 10199.39 6399.16 18998.74 8297.54 23299.25 18598.84 10599.06 13498.76 21696.76 17799.93 3998.57 8899.77 12299.50 122
OMC-MVS97.88 19797.49 22199.04 13098.89 24498.63 8996.94 27299.25 18595.02 30798.53 22298.51 25497.27 14599.47 33293.50 32999.51 22299.01 259
test20.0398.78 8998.77 8198.78 16599.46 12497.20 20797.78 20099.24 19099.04 8799.41 7898.90 18797.65 11399.76 22097.70 14099.79 11399.39 175
mPP-MVS98.64 11798.34 14699.54 2799.54 9799.17 3998.63 9899.24 19097.47 20098.09 25598.68 22897.62 11899.89 7396.22 24399.62 18599.57 90
MSLP-MVS++98.02 18698.14 17197.64 27698.58 30095.19 27597.48 23899.23 19297.47 20097.90 26698.62 24297.04 15798.81 38297.55 14499.41 23998.94 274
SMA-MVScopyleft98.40 14998.03 18199.51 4399.16 18999.21 2898.05 16599.22 19394.16 32898.98 14899.10 13697.52 12999.79 19796.45 23199.64 17999.53 114
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS97.73 21098.11 17396.57 32799.24 16590.28 37095.52 33999.21 19498.86 10299.33 9599.33 9093.11 28499.94 3498.49 9499.94 3899.48 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.49 22697.16 23998.48 20899.07 20797.03 21594.71 35999.21 19494.46 32098.06 25797.16 34297.57 12299.48 32994.46 29999.78 11898.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MTGPAbinary99.20 196
MTAPA98.88 7698.64 10099.61 999.67 6399.36 1198.43 12799.20 19698.83 10698.89 16898.90 18796.98 16399.92 4997.16 16499.70 15799.56 96
NR-MVSNet98.95 6898.82 7699.36 6499.16 18998.72 8799.22 4299.20 19699.10 7999.72 2998.76 21696.38 19599.86 10898.00 12199.82 9499.50 122
DELS-MVS98.27 16598.20 16198.48 20898.86 24796.70 22995.60 33599.20 19697.73 17698.45 22898.71 22297.50 13199.82 16498.21 10799.59 19698.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4298.78 8998.78 8098.76 16999.44 12897.04 21498.27 14099.19 20097.87 16799.25 11499.16 12396.84 16899.78 20899.21 4799.84 8499.46 145
MP-MVScopyleft98.46 14398.09 17499.54 2799.57 8099.22 2798.50 11899.19 20097.61 18797.58 28898.66 23397.40 13899.88 8294.72 29399.60 19299.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM97.31 23996.81 26098.82 15598.80 26297.49 18999.06 6399.19 20090.22 37297.69 28199.16 12396.91 16599.90 6390.89 36899.41 23999.07 249
3Dnovator+97.89 398.69 10598.51 11799.24 9698.81 25998.40 10799.02 6699.19 20098.99 9198.07 25699.28 9797.11 15599.84 13796.84 19699.32 25199.47 143
eth_miper_zixun_eth97.23 24797.25 23497.17 30598.00 34292.77 33994.71 35999.18 20497.27 22398.56 21798.74 21891.89 30399.69 25297.06 17599.81 9899.05 251
OPM-MVS98.56 12798.32 15099.25 9499.41 13698.73 8597.13 26599.18 20497.10 23998.75 19398.92 18398.18 7699.65 28096.68 21199.56 20899.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVP-Stereo98.08 18397.92 19098.57 19498.96 22796.79 22597.90 18699.18 20496.41 26798.46 22798.95 17795.93 21799.60 29596.51 22798.98 30099.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DeepPCF-MVS96.93 598.32 15898.01 18299.23 9898.39 32198.97 6695.03 35299.18 20496.88 24999.33 9598.78 21298.16 8099.28 36196.74 20499.62 18599.44 153
xiu_mvs_v1_base_debu97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base_debi97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
cl____97.02 26296.83 25797.58 28097.82 35094.04 30994.66 36299.16 21197.04 24198.63 20498.71 22288.68 32699.69 25297.00 17799.81 9899.00 262
DIV-MVS_self_test97.02 26296.84 25697.58 28097.82 35094.03 31094.66 36299.16 21197.04 24198.63 20498.71 22288.69 32499.69 25297.00 17799.81 9899.01 259
c3_l97.36 23597.37 22897.31 29898.09 33893.25 33095.01 35399.16 21197.05 24098.77 19098.72 22192.88 29099.64 28396.93 18499.76 13399.05 251
Effi-MVS+-dtu98.26 16797.90 19299.35 7098.02 34199.49 598.02 17099.16 21198.29 13497.64 28397.99 30096.44 19299.95 2396.66 21298.93 30598.60 318
v2v48298.56 12798.62 10398.37 22099.42 13495.81 25597.58 22899.16 21197.90 16599.28 10499.01 16095.98 21499.79 19799.33 3799.90 6899.51 119
MDA-MVSNet-bldmvs97.94 19297.91 19198.06 24499.44 12894.96 28296.63 29099.15 21698.35 12698.83 18199.11 13494.31 26599.85 12096.60 21498.72 31599.37 184
iter_conf0596.54 28296.07 28897.92 25197.90 34794.50 29597.87 19299.14 21797.73 17698.89 16898.95 17775.75 38899.87 9998.50 9399.92 5399.40 172
FMVSNet298.49 14098.40 13698.75 17298.90 23997.14 21398.61 10199.13 21898.59 11599.19 12099.28 9794.14 26899.82 16497.97 12399.80 10899.29 212
DSMNet-mixed97.42 23297.60 21596.87 31999.15 19391.46 35698.54 10999.12 21992.87 34897.58 28899.63 3396.21 20199.90 6395.74 26799.54 21399.27 215
CMPMVSbinary75.91 2396.29 29195.44 30598.84 15396.25 38998.69 8897.02 26799.12 21988.90 37997.83 27298.86 19789.51 31998.90 38091.92 35099.51 22298.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final97.10 25596.65 27298.45 21198.53 30796.08 24798.30 13799.11 22198.10 15298.85 17798.95 17779.38 37899.87 9998.68 8199.91 6199.40 172
PCF-MVS92.86 1894.36 32793.00 34498.42 21598.70 27797.56 18693.16 38499.11 22179.59 39297.55 29197.43 33392.19 29999.73 23779.85 39399.45 23497.97 348
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test398.87 7798.92 6798.74 17699.38 13996.94 22198.58 10499.10 22396.49 26499.96 499.81 598.18 7699.45 33598.97 6299.79 11399.83 22
cdsmvs_eth3d_5k24.66 36332.88 3660.00 3820.00 4040.00 4070.00 39399.10 2230.00 4000.00 40197.58 32499.21 160.00 4010.00 4000.00 3990.00 397
miper_ehance_all_eth97.06 25997.03 24597.16 30797.83 34993.06 33294.66 36299.09 22595.99 28398.69 19798.45 26392.73 29499.61 29496.79 19899.03 29298.82 288
DeepC-MVS_fast96.85 698.30 16198.15 16998.75 17298.61 29397.23 20397.76 20599.09 22597.31 21998.75 19398.66 23397.56 12399.64 28396.10 25299.55 21199.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS99.01 21998.84 7599.07 22794.10 33098.05 25998.12 29096.36 19799.86 10892.70 34499.19 274
v14898.45 14498.60 10898.00 24999.44 12894.98 28197.44 24299.06 22898.30 13199.32 10198.97 17096.65 18399.62 28898.37 9999.85 8099.39 175
PatchMatch-RL97.24 24696.78 26198.61 18899.03 21897.83 16696.36 30299.06 22893.49 34097.36 30697.78 31295.75 22299.49 32693.44 33098.77 31298.52 321
PLCcopyleft94.65 1696.51 28395.73 29498.85 15298.75 26697.91 15996.42 29999.06 22890.94 36995.59 35797.38 33694.41 26199.59 29990.93 36698.04 34999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ppachtmachnet_test97.50 22497.74 20296.78 32598.70 27791.23 36494.55 36799.05 23196.36 26899.21 11898.79 21196.39 19399.78 20896.74 20499.82 9499.34 196
CANet97.87 19897.76 20098.19 23497.75 35295.51 26396.76 28399.05 23197.74 17596.93 31898.21 28495.59 22799.89 7397.86 13199.93 4299.19 234
pmmvs597.64 21797.49 22198.08 24299.14 19495.12 27896.70 28799.05 23193.77 33598.62 20698.83 20393.23 28199.75 22798.33 10399.76 13399.36 190
HQP3-MVS99.04 23499.26 263
HQP-MVS97.00 26596.49 27998.55 19998.67 28596.79 22596.29 30599.04 23496.05 27995.55 36096.84 34793.84 27499.54 31492.82 33999.26 26399.32 203
TEST998.71 27398.08 14095.96 32099.03 23691.40 36395.85 35497.53 32696.52 18899.76 220
train_agg97.10 25596.45 28099.07 12198.71 27398.08 14095.96 32099.03 23691.64 35895.85 35497.53 32696.47 19099.76 22093.67 32399.16 27799.36 190
test_prior98.95 14198.69 28297.95 15799.03 23699.59 29999.30 210
save fliter99.11 19897.97 15396.53 29399.02 23998.24 137
test_898.67 28598.01 14895.91 32599.02 23991.64 35895.79 35697.50 32996.47 19099.76 220
MVS_Test98.18 17598.36 14397.67 27298.48 31194.73 28898.18 14899.02 23997.69 17998.04 26099.11 13497.22 14999.56 30898.57 8898.90 30798.71 306
agg_prior98.68 28497.99 14999.01 24295.59 35799.77 214
CDPH-MVS97.26 24396.66 27099.07 12199.00 22098.15 12996.03 31699.01 24291.21 36697.79 27597.85 31096.89 16699.69 25292.75 34299.38 24499.39 175
ambc98.24 23198.82 25695.97 25098.62 10099.00 24499.27 10699.21 11196.99 16299.50 32596.55 22499.50 22999.26 218
Anonymous2024052998.93 7098.87 7099.12 11199.19 17998.22 12599.01 6798.99 24599.25 5999.54 5499.37 8097.04 15799.80 18497.89 12699.52 22099.35 194
our_test_397.39 23497.73 20496.34 33198.70 27789.78 37294.61 36598.97 24696.50 26399.04 14198.85 20095.98 21499.84 13797.26 15999.67 17199.41 163
TSAR-MVS + MP.98.63 11998.49 12399.06 12799.64 7097.90 16098.51 11698.94 24796.96 24499.24 11598.89 19397.83 10099.81 17796.88 19299.49 23099.48 136
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
WR-MVS98.40 14998.19 16399.03 13199.00 22097.65 18296.85 27898.94 24798.57 11898.89 16898.50 25895.60 22699.85 12097.54 14699.85 8099.59 79
CNVR-MVS98.17 17797.87 19599.07 12198.67 28598.24 12097.01 26898.93 24997.25 22597.62 28498.34 27497.27 14599.57 30596.42 23299.33 25099.39 175
CNLPA97.17 25296.71 26598.55 19998.56 30398.05 14696.33 30398.93 24996.91 24897.06 31497.39 33594.38 26399.45 33591.66 35399.18 27698.14 339
AdaColmapbinary97.14 25496.71 26598.46 21098.34 32397.80 17296.95 27198.93 24995.58 29396.92 31997.66 31995.87 21999.53 31690.97 36599.14 28098.04 344
CR-MVSNet96.28 29295.95 29097.28 30097.71 35594.22 30198.11 15698.92 25292.31 35496.91 32199.37 8085.44 34899.81 17797.39 15397.36 36197.81 354
Patchmtry97.35 23696.97 24798.50 20797.31 37196.47 23498.18 14898.92 25298.95 9698.78 18799.37 8085.44 34899.85 12095.96 25699.83 9199.17 240
FMVSNet397.50 22497.24 23598.29 22798.08 33995.83 25497.86 19498.91 25497.89 16698.95 15598.95 17787.06 33399.81 17797.77 13599.69 16099.23 224
mvs_anonymous97.83 20798.16 16896.87 31998.18 33391.89 35297.31 25098.90 25597.37 21398.83 18199.46 6696.28 19999.79 19798.90 6598.16 33998.95 270
NCCC97.86 19997.47 22499.05 12898.61 29398.07 14296.98 27098.90 25597.63 18397.04 31597.93 30695.99 21399.66 27595.31 28098.82 31199.43 157
miper_enhance_ethall96.01 29895.74 29396.81 32396.41 38792.27 34993.69 38198.89 25791.14 36798.30 23997.35 33990.58 31299.58 30396.31 23899.03 29298.60 318
D2MVS97.84 20597.84 19797.83 25799.14 19494.74 28796.94 27298.88 25895.84 28798.89 16898.96 17394.40 26299.69 25297.55 14499.95 3099.05 251
CHOSEN 280x42095.51 31395.47 30295.65 34898.25 32888.27 37893.25 38398.88 25893.53 33894.65 37497.15 34386.17 34099.93 3997.41 15299.93 4298.73 305
IU-MVS99.49 11499.15 4798.87 26092.97 34599.41 7896.76 20299.62 18599.66 57
EI-MVSNet-UG-set98.69 10598.71 8898.62 18599.10 20096.37 23697.23 25698.87 26099.20 6599.19 12098.99 16497.30 14299.85 12098.77 7499.79 11399.65 61
EI-MVSNet98.40 14998.51 11798.04 24799.10 20094.73 28897.20 26098.87 26098.97 9399.06 13499.02 15196.00 21099.80 18498.58 8699.82 9499.60 73
test1198.87 260
MVSTER96.86 27096.55 27797.79 26097.91 34694.21 30397.56 23098.87 26097.49 19999.06 13499.05 14680.72 37099.80 18498.44 9699.82 9499.37 184
MSC_two_6792asdad99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
No_MVS99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
EI-MVSNet-Vis-set98.68 11098.70 9198.63 18499.09 20396.40 23597.23 25698.86 26599.20 6599.18 12498.97 17097.29 14499.85 12098.72 7799.78 11899.64 62
PS-MVSNAJ97.08 25897.39 22696.16 33998.56 30392.46 34395.24 34798.85 26897.25 22597.49 29795.99 36298.07 8499.90 6396.37 23498.67 32196.12 385
DVP-MVScopyleft98.77 9298.52 11699.52 3999.50 10799.21 2898.02 17098.84 26997.97 15899.08 13299.02 15197.61 11999.88 8296.99 17999.63 18299.48 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xiu_mvs_v2_base97.16 25397.49 22196.17 33798.54 30592.46 34395.45 34198.84 26997.25 22597.48 29896.49 35398.31 6699.90 6396.34 23798.68 32096.15 384
MS-PatchMatch97.68 21497.75 20197.45 29398.23 33193.78 32297.29 25298.84 26996.10 27898.64 20398.65 23596.04 20799.36 34796.84 19699.14 28099.20 229
PMMVS96.51 28395.98 28998.09 23997.53 36395.84 25394.92 35598.84 26991.58 36096.05 35295.58 36995.68 22499.66 27595.59 27498.09 34398.76 302
原ACMM198.35 22198.90 23996.25 24098.83 27392.48 35296.07 35198.10 29295.39 23499.71 24592.61 34698.99 29899.08 247
ab-mvs98.41 14798.36 14398.59 19199.19 17997.23 20399.32 2398.81 27497.66 18198.62 20699.40 7996.82 17199.80 18495.88 25899.51 22298.75 303
TAMVS98.24 17098.05 17998.80 15999.07 20797.18 20997.88 18998.81 27496.66 25999.17 12599.21 11194.81 25199.77 21496.96 18399.88 7399.44 153
testdata98.09 23998.93 23195.40 26898.80 27690.08 37497.45 30098.37 27095.26 23699.70 24893.58 32698.95 30399.17 240
CL-MVSNet_self_test97.44 23197.22 23698.08 24298.57 30295.78 25694.30 37298.79 27796.58 26298.60 21098.19 28694.74 25699.64 28396.41 23398.84 30898.82 288
CANet_DTU97.26 24397.06 24497.84 25697.57 36094.65 29296.19 31198.79 27797.23 23195.14 36998.24 28193.22 28299.84 13797.34 15599.84 8499.04 255
test22298.92 23596.93 22295.54 33698.78 27985.72 38696.86 32798.11 29194.43 26099.10 28799.23 224
WB-MVS98.52 13898.55 11298.43 21499.65 6695.59 25898.52 11198.77 28099.65 1499.52 6099.00 16394.34 26499.93 3998.65 8398.83 30999.76 37
新几何198.91 14698.94 22997.76 17498.76 28187.58 38396.75 33298.10 29294.80 25299.78 20892.73 34399.00 29799.20 229
旧先验198.82 25697.45 19298.76 28198.34 27495.50 23199.01 29699.23 224
PAPM_NR96.82 27396.32 28398.30 22699.07 20796.69 23097.48 23898.76 28195.81 28896.61 33796.47 35594.12 27199.17 36890.82 36997.78 35199.06 250
HPM-MVS++copyleft98.10 17997.64 21299.48 5199.09 20399.13 5597.52 23498.75 28497.46 20596.90 32497.83 31196.01 20999.84 13795.82 26599.35 24799.46 145
CDS-MVSNet97.69 21397.35 23098.69 17798.73 26897.02 21696.92 27698.75 28495.89 28698.59 21298.67 23092.08 30299.74 23296.72 20799.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
无先验95.74 33198.74 28689.38 37799.73 23792.38 34999.22 228
MCST-MVS98.00 18897.63 21399.10 11599.24 16598.17 12896.89 27798.73 28795.66 29097.92 26497.70 31897.17 15199.66 27596.18 24799.23 26799.47 143
PAPR95.29 31594.47 32497.75 26697.50 36795.14 27794.89 35698.71 28891.39 36495.35 36795.48 37394.57 25899.14 37184.95 38497.37 35998.97 267
PMVScopyleft91.26 2097.86 19997.94 18897.65 27499.71 4897.94 15898.52 11198.68 28998.99 9197.52 29499.35 8497.41 13798.18 38891.59 35699.67 17196.82 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VNet98.42 14698.30 15198.79 16298.79 26397.29 20098.23 14398.66 29099.31 5398.85 17798.80 20994.80 25299.78 20898.13 11199.13 28299.31 207
test1298.93 14398.58 30097.83 16698.66 29096.53 33995.51 23099.69 25299.13 28299.27 215
TSAR-MVS + GP.98.18 17597.98 18498.77 16898.71 27397.88 16196.32 30498.66 29096.33 26999.23 11798.51 25497.48 13599.40 34297.16 16499.46 23299.02 258
SSC-MVS98.71 9898.74 8298.62 18599.72 4596.08 24798.74 8698.64 29399.74 699.67 3999.24 10694.57 25899.95 2399.11 5199.24 26599.82 23
OpenMVS_ROBcopyleft95.38 1495.84 30495.18 31597.81 25998.41 32097.15 21297.37 24598.62 29483.86 38898.65 20298.37 27094.29 26699.68 26188.41 37698.62 32496.60 379
MAR-MVS96.47 28795.70 29598.79 16297.92 34599.12 5798.28 13998.60 29592.16 35695.54 36396.17 36094.77 25599.52 32089.62 37398.23 33397.72 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
h-mvs3397.77 20897.33 23299.10 11599.21 17297.84 16598.35 13598.57 29699.11 7298.58 21499.02 15188.65 32799.96 1298.11 11296.34 37499.49 126
UGNet98.53 13598.45 12998.79 16297.94 34496.96 21999.08 5998.54 29799.10 7996.82 32999.47 6596.55 18799.84 13798.56 9199.94 3899.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl2295.79 30595.39 30896.98 31396.77 38292.79 33894.40 37098.53 29894.59 31797.89 26798.17 28782.82 36699.24 36396.37 23499.03 29298.92 276
pmmvs497.58 22297.28 23398.51 20598.84 25196.93 22295.40 34398.52 29993.60 33798.61 20898.65 23595.10 24199.60 29596.97 18299.79 11398.99 263
API-MVS97.04 26196.91 25297.42 29597.88 34898.23 12498.18 14898.50 30097.57 19097.39 30496.75 34996.77 17599.15 37090.16 37199.02 29594.88 390
sss97.21 24896.93 24898.06 24498.83 25395.22 27496.75 28498.48 30194.49 31897.27 30797.90 30792.77 29399.80 18496.57 21799.32 25199.16 243
Vis-MVSNet (Re-imp)97.46 22897.16 23998.34 22299.55 9296.10 24298.94 7498.44 30298.32 13098.16 24798.62 24288.76 32399.73 23793.88 31999.79 11399.18 236
MDA-MVSNet_test_wron97.60 21997.66 21097.41 29699.04 21593.09 33195.27 34598.42 30397.26 22498.88 17298.95 17795.43 23399.73 23797.02 17698.72 31599.41 163
jason97.45 23097.35 23097.76 26599.24 16593.93 31595.86 32698.42 30394.24 32698.50 22498.13 28894.82 24999.91 5897.22 16199.73 14099.43 157
jason: jason.
test_method79.78 36179.50 36480.62 37880.21 40045.76 40470.82 39298.41 30531.08 39680.89 39797.71 31684.85 35097.37 39191.51 35880.03 39598.75 303
YYNet197.60 21997.67 20797.39 29799.04 21593.04 33595.27 34598.38 30697.25 22598.92 16498.95 17795.48 23299.73 23796.99 17998.74 31399.41 163
IS-MVSNet98.19 17497.90 19299.08 11999.57 8097.97 15399.31 2798.32 30799.01 9098.98 14899.03 15091.59 30599.79 19795.49 27799.80 10899.48 136
131495.74 30695.60 29996.17 33797.53 36392.75 34098.07 16298.31 30891.22 36594.25 37796.68 35095.53 22899.03 37291.64 35597.18 36496.74 377
DPM-MVS96.32 29095.59 30098.51 20598.76 26497.21 20694.54 36898.26 30991.94 35796.37 34597.25 34093.06 28799.43 33891.42 35998.74 31398.89 280
BH-untuned96.83 27196.75 26397.08 30898.74 26793.33 32996.71 28698.26 30996.72 25698.44 22997.37 33795.20 23899.47 33291.89 35197.43 35798.44 327
EU-MVSNet97.66 21698.50 11995.13 35699.63 7385.84 38698.35 13598.21 31198.23 13899.54 5499.46 6695.02 24399.68 26198.24 10599.87 7699.87 16
SixPastTwentyTwo98.75 9498.62 10399.16 10699.83 2097.96 15699.28 3798.20 31299.37 4599.70 3399.65 3092.65 29599.93 3999.04 5799.84 8499.60 73
new_pmnet96.99 26696.76 26297.67 27298.72 27094.89 28395.95 32298.20 31292.62 35198.55 21998.54 25094.88 24899.52 32093.96 31699.44 23798.59 320
CVMVSNet96.25 29397.21 23793.38 37399.10 20080.56 40097.20 26098.19 31496.94 24699.00 14699.02 15189.50 32099.80 18496.36 23699.59 19699.78 31
RRT_MVS99.09 5298.94 6599.55 2399.87 1298.82 7899.48 998.16 31599.49 3199.59 5099.65 3094.79 25499.95 2399.45 3399.96 2599.88 14
KD-MVS_2432*160092.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
miper_refine_blended92.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
MG-MVS96.77 27496.61 27397.26 30298.31 32593.06 33295.93 32398.12 31896.45 26697.92 26498.73 21993.77 27899.39 34491.19 36499.04 29199.33 201
EPP-MVSNet98.30 16198.04 18099.07 12199.56 8897.83 16699.29 3398.07 31999.03 8898.59 21299.13 13192.16 30099.90 6396.87 19399.68 16599.49 126
MVS93.19 34692.09 35096.50 32996.91 37894.03 31098.07 16298.06 32068.01 39394.56 37696.48 35495.96 21699.30 35783.84 38696.89 36996.17 382
lupinMVS97.06 25996.86 25497.65 27498.88 24593.89 31995.48 34097.97 32193.53 33898.16 24797.58 32493.81 27699.91 5896.77 20199.57 20599.17 240
GA-MVS95.86 30395.32 31197.49 29098.60 29594.15 30693.83 37997.93 32295.49 29696.68 33397.42 33483.21 36299.30 35796.22 24398.55 32799.01 259
WTY-MVS96.67 27796.27 28697.87 25598.81 25994.61 29396.77 28297.92 32394.94 31097.12 31097.74 31591.11 30999.82 16493.89 31898.15 34099.18 236
Patchmatch-test96.55 28196.34 28297.17 30598.35 32293.06 33298.40 13097.79 32497.33 21698.41 23298.67 23083.68 36199.69 25295.16 28399.31 25398.77 300
ADS-MVSNet295.43 31494.98 31896.76 32698.14 33591.74 35397.92 18397.76 32590.23 37096.51 34198.91 18485.61 34599.85 12092.88 33796.90 36798.69 310
PVSNet93.40 1795.67 30795.70 29595.57 34998.83 25388.57 37592.50 38697.72 32692.69 35096.49 34496.44 35693.72 27999.43 33893.61 32499.28 25998.71 306
pmmvs395.03 32094.40 32696.93 31597.70 35792.53 34295.08 35197.71 32788.57 38097.71 27998.08 29579.39 37799.82 16496.19 24599.11 28698.43 328
alignmvs97.35 23696.88 25398.78 16598.54 30598.09 13697.71 21097.69 32899.20 6597.59 28795.90 36588.12 33299.55 31198.18 10998.96 30298.70 309
AUN-MVS96.24 29495.45 30498.60 19098.70 27797.22 20597.38 24497.65 32995.95 28495.53 36497.96 30582.11 36999.79 19796.31 23897.44 35698.80 297
tpm cat193.29 34593.13 34393.75 36897.39 36984.74 39097.39 24397.65 32983.39 39094.16 37898.41 26582.86 36599.39 34491.56 35795.35 38497.14 372
hse-mvs297.46 22897.07 24398.64 18098.73 26897.33 19897.45 24197.64 33199.11 7298.58 21497.98 30188.65 32799.79 19798.11 11297.39 35898.81 292
PVSNet_089.98 2191.15 35990.30 36293.70 36997.72 35384.34 39490.24 38997.42 33290.20 37393.79 38493.09 39090.90 31098.89 38186.57 38272.76 39697.87 351
BH-w/o95.13 31894.89 32295.86 34198.20 33291.31 36095.65 33397.37 33393.64 33696.52 34095.70 36893.04 28899.02 37388.10 37895.82 38197.24 371
test_yl96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
DCV-MVSNet96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
BH-RMVSNet96.83 27196.58 27697.58 28098.47 31294.05 30796.67 28897.36 33496.70 25897.87 26897.98 30195.14 24099.44 33790.47 37098.58 32699.25 219
ADS-MVSNet95.24 31794.93 32196.18 33698.14 33590.10 37197.92 18397.32 33790.23 37096.51 34198.91 18485.61 34599.74 23292.88 33796.90 36798.69 310
VDDNet98.21 17297.95 18699.01 13399.58 7697.74 17699.01 6797.29 33899.67 1298.97 15299.50 5990.45 31399.80 18497.88 12999.20 27199.48 136
PAPM91.88 35890.34 36196.51 32898.06 34092.56 34192.44 38797.17 33986.35 38490.38 39196.01 36186.61 33699.21 36670.65 39795.43 38397.75 358
FPMVS93.44 34492.23 34897.08 30899.25 16497.86 16395.61 33497.16 34092.90 34793.76 38598.65 23575.94 38795.66 39479.30 39497.49 35497.73 359
mvsany_test197.60 21997.54 21797.77 26297.72 35395.35 26995.36 34497.13 34194.13 32999.71 3199.33 9097.93 9699.30 35797.60 14398.94 30498.67 314
E-PMN94.17 33294.37 32793.58 37096.86 37985.71 38890.11 39097.07 34298.17 14797.82 27497.19 34184.62 35398.94 37789.77 37297.68 35396.09 386
VDD-MVS98.56 12798.39 13999.07 12199.13 19698.07 14298.59 10397.01 34399.59 2399.11 12799.27 9994.82 24999.79 19798.34 10199.63 18299.34 196
FA-MVS(test-final)96.99 26696.82 25897.50 28998.70 27794.78 28599.34 2096.99 34495.07 30698.48 22699.33 9088.41 33099.65 28096.13 25198.92 30698.07 343
tt080598.69 10598.62 10398.90 14999.75 3699.30 1799.15 5396.97 34598.86 10298.87 17697.62 32398.63 4398.96 37699.41 3598.29 33298.45 325
tpmrst95.07 31995.46 30393.91 36697.11 37484.36 39397.62 22296.96 34694.98 30896.35 34698.80 20985.46 34799.59 29995.60 27396.23 37697.79 357
wuyk23d96.06 29697.62 21491.38 37698.65 29298.57 9698.85 8296.95 34796.86 25099.90 1299.16 12399.18 1798.40 38689.23 37599.77 12277.18 394
HY-MVS95.94 1395.90 30295.35 31097.55 28497.95 34394.79 28498.81 8596.94 34892.28 35595.17 36898.57 24889.90 31799.75 22791.20 36397.33 36398.10 341
MIMVSNet96.62 28096.25 28797.71 27199.04 21594.66 29199.16 5196.92 34997.23 23197.87 26899.10 13686.11 34299.65 28091.65 35499.21 27098.82 288
SCA96.41 28996.66 27095.67 34698.24 32988.35 37795.85 32896.88 35096.11 27797.67 28298.67 23093.10 28599.85 12094.16 30899.22 26898.81 292
tpmvs95.02 32195.25 31294.33 36296.39 38885.87 38598.08 16096.83 35195.46 29795.51 36598.69 22685.91 34399.53 31694.16 30896.23 37697.58 365
PatchmatchNetpermissive95.58 31095.67 29795.30 35597.34 37087.32 38297.65 21996.65 35295.30 30297.07 31398.69 22684.77 35199.75 22794.97 28698.64 32298.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchT96.65 27896.35 28197.54 28597.40 36895.32 27097.98 17796.64 35399.33 5096.89 32599.42 7484.32 35699.81 17797.69 14297.49 35497.48 367
Syy-MVS96.04 29795.56 30197.49 29097.10 37594.48 29696.18 31296.58 35495.65 29194.77 37292.29 39291.27 30899.36 34798.17 11098.05 34798.63 316
myMVS_eth3d91.92 35790.45 36096.30 33297.10 37590.90 36796.18 31296.58 35495.65 29194.77 37292.29 39253.88 40199.36 34789.59 37498.05 34798.63 316
TR-MVS95.55 31195.12 31696.86 32297.54 36293.94 31496.49 29596.53 35694.36 32597.03 31696.61 35194.26 26799.16 36986.91 38196.31 37597.47 368
dp93.47 34393.59 33693.13 37596.64 38381.62 39997.66 21796.42 35792.80 34996.11 34998.64 23878.55 38499.59 29993.31 33292.18 39398.16 338
EMVS93.83 33894.02 33093.23 37496.83 38184.96 38989.77 39196.32 35897.92 16397.43 30296.36 35986.17 34098.93 37887.68 37997.73 35295.81 387
Anonymous20240521197.90 19397.50 22099.08 11998.90 23998.25 11998.53 11096.16 35998.87 10199.11 12798.86 19790.40 31499.78 20897.36 15499.31 25399.19 234
MDTV_nov1_ep1395.22 31397.06 37783.20 39597.74 20796.16 35994.37 32496.99 31798.83 20383.95 35999.53 31693.90 31797.95 350
FE-MVS95.66 30894.95 32097.77 26298.53 30795.28 27199.40 1696.09 36193.11 34497.96 26399.26 10179.10 38099.77 21492.40 34898.71 31798.27 334
baseline195.96 30195.44 30597.52 28798.51 31093.99 31398.39 13196.09 36198.21 14098.40 23697.76 31486.88 33499.63 28695.42 27889.27 39498.95 270
CostFormer93.97 33693.78 33394.51 36197.53 36385.83 38797.98 17795.96 36389.29 37894.99 37198.63 24078.63 38299.62 28894.54 29696.50 37298.09 342
JIA-IIPM95.52 31295.03 31797.00 31196.85 38094.03 31096.93 27495.82 36499.20 6594.63 37599.71 1783.09 36399.60 29594.42 30294.64 38697.36 370
tpm293.09 34792.58 34794.62 36097.56 36186.53 38497.66 21795.79 36586.15 38594.07 38198.23 28375.95 38699.53 31690.91 36796.86 37097.81 354
dmvs_re95.98 30095.39 30897.74 26898.86 24797.45 19298.37 13395.69 36697.95 16096.56 33895.95 36390.70 31197.68 39088.32 37796.13 37898.11 340
EPNet_dtu94.93 32294.78 32395.38 35493.58 39687.68 38196.78 28195.69 36697.35 21589.14 39398.09 29488.15 33199.49 32694.95 28799.30 25698.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing393.51 34292.09 35097.75 26698.60 29594.40 29897.32 24995.26 36897.56 19296.79 33195.50 37253.57 40299.77 21495.26 28198.97 30199.08 247
tpm94.67 32494.34 32895.66 34797.68 35988.42 37697.88 18994.90 36994.46 32096.03 35398.56 24978.66 38199.79 19795.88 25895.01 38598.78 299
EPNet96.14 29595.44 30598.25 22990.76 39995.50 26497.92 18394.65 37098.97 9392.98 38698.85 20089.12 32299.87 9995.99 25499.68 16599.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20093.72 34093.14 34295.46 35398.66 29091.29 36196.61 29194.63 37197.39 21196.83 32893.71 38879.88 37299.56 30882.40 39098.13 34195.54 389
MM98.91 14696.97 21797.89 18894.44 37299.54 2798.95 15599.14 13093.50 28099.92 4999.80 1099.96 2599.85 19
DeepMVS_CXcopyleft93.44 37298.24 32994.21 30394.34 37364.28 39491.34 39094.87 38489.45 32192.77 39777.54 39593.14 39093.35 392
tfpn200view994.03 33593.44 33795.78 34498.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34496.29 380
thres40094.14 33393.44 33796.24 33598.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34497.66 362
thres100view90094.19 33193.67 33595.75 34599.06 21191.35 35998.03 16894.24 37698.33 12897.40 30394.98 38079.84 37399.62 28883.05 38798.08 34496.29 380
thres600view794.45 32693.83 33296.29 33399.06 21191.53 35597.99 17694.24 37698.34 12797.44 30195.01 37879.84 37399.67 26484.33 38598.23 33397.66 362
LFMVS97.20 24996.72 26498.64 18098.72 27096.95 22098.93 7594.14 37899.74 698.78 18799.01 16084.45 35499.73 23797.44 15099.27 26099.25 219
test0.0.03 194.51 32593.69 33496.99 31296.05 39093.61 32794.97 35493.49 37996.17 27497.57 29094.88 38282.30 36799.01 37593.60 32594.17 38998.37 332
N_pmnet97.63 21897.17 23898.99 13599.27 16097.86 16395.98 31793.41 38095.25 30399.47 6898.90 18795.63 22599.85 12096.91 18599.73 14099.27 215
IB-MVS91.63 1992.24 35590.90 35996.27 33497.22 37391.24 36394.36 37193.33 38192.37 35392.24 38894.58 38566.20 39999.89 7393.16 33494.63 38797.66 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.30 33093.21 34097.58 28098.14 33594.47 29794.78 35893.24 38294.72 31489.56 39295.87 36678.57 38399.81 17796.91 18597.11 36698.46 323
K. test v398.00 18897.66 21099.03 13199.79 2597.56 18699.19 4992.47 38399.62 2099.52 6099.66 2789.61 31899.96 1299.25 4499.81 9899.56 96
test-LLR93.90 33793.85 33194.04 36496.53 38484.62 39194.05 37692.39 38496.17 27494.12 37995.07 37682.30 36799.67 26495.87 26198.18 33697.82 352
test-mter92.33 35491.76 35794.04 36496.53 38484.62 39194.05 37692.39 38494.00 33394.12 37995.07 37665.63 40099.67 26495.87 26198.18 33697.82 352
dmvs_testset92.94 34892.21 34995.13 35698.59 29890.99 36697.65 21992.09 38696.95 24594.00 38293.55 38992.34 29896.97 39372.20 39692.52 39197.43 369
MTMP97.93 18191.91 387
TESTMET0.1,192.19 35691.77 35693.46 37196.48 38682.80 39694.05 37691.52 38894.45 32294.00 38294.88 38266.65 39799.56 30895.78 26698.11 34298.02 345
MVS_030498.10 17997.88 19498.76 16998.82 25696.50 23397.90 18691.35 38999.56 2698.32 23899.13 13196.06 20699.93 3999.84 599.97 2099.85 19
thisisatest051594.12 33493.16 34196.97 31498.60 29592.90 33693.77 38090.61 39094.10 33096.91 32195.87 36674.99 38999.80 18494.52 29799.12 28598.20 336
tttt051795.64 30994.98 31897.64 27699.36 14693.81 32198.72 9090.47 39198.08 15498.67 19998.34 27473.88 39099.92 4997.77 13599.51 22299.20 229
thisisatest053095.27 31694.45 32597.74 26899.19 17994.37 29997.86 19490.20 39297.17 23598.22 24397.65 32073.53 39199.90 6396.90 19099.35 24798.95 270
baseline293.73 33992.83 34596.42 33097.70 35791.28 36296.84 27989.77 39393.96 33492.44 38795.93 36479.14 37999.77 21492.94 33596.76 37198.21 335
MVS-HIRNet94.32 32895.62 29890.42 37798.46 31375.36 40196.29 30589.13 39495.25 30395.38 36699.75 1192.88 29099.19 36794.07 31499.39 24196.72 378
test111196.49 28696.82 25895.52 35099.42 13487.08 38399.22 4287.14 39599.11 7299.46 6999.58 4188.69 32499.86 10898.80 7099.95 3099.62 66
lessismore_v098.97 13899.73 3997.53 18886.71 39699.37 8899.52 5789.93 31699.92 4998.99 6199.72 14799.44 153
ECVR-MVScopyleft96.42 28896.61 27395.85 34299.38 13988.18 37999.22 4286.00 39799.08 8499.36 9099.57 4288.47 32999.82 16498.52 9299.95 3099.54 107
EPMVS93.72 34093.27 33995.09 35896.04 39187.76 38098.13 15385.01 39894.69 31596.92 31998.64 23878.47 38599.31 35595.04 28496.46 37398.20 336
MVEpermissive83.40 2292.50 35191.92 35494.25 36398.83 25391.64 35492.71 38583.52 39995.92 28586.46 39695.46 37495.20 23895.40 39580.51 39298.64 32295.73 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 35391.20 35895.85 34295.80 39392.38 34699.31 2781.84 40099.75 591.83 38999.74 1368.29 39399.02 37387.15 38097.12 36596.16 383
GG-mvs-BLEND94.76 35994.54 39592.13 35199.31 2780.47 40188.73 39491.01 39467.59 39698.16 38982.30 39194.53 38893.98 391
tmp_tt78.77 36278.73 36578.90 37958.45 40174.76 40394.20 37378.26 40239.16 39586.71 39592.82 39180.50 37175.19 39886.16 38392.29 39286.74 393
test250692.39 35291.89 35593.89 36799.38 13982.28 39799.32 2366.03 40399.08 8498.77 19099.57 4266.26 39899.84 13798.71 7899.95 3099.54 107
testmvs17.12 36420.53 3676.87 38112.05 4024.20 40693.62 3826.73 4044.62 39910.41 39924.33 3968.28 4043.56 4009.69 39915.07 39712.86 396
test12317.04 36520.11 3687.82 38010.25 4034.91 40594.80 3574.47 4054.93 39810.00 40024.28 3979.69 4033.64 39910.14 39812.43 39814.92 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas8.17 36610.90 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40098.07 840.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
n20.00 406
nn0.00 406
ab-mvs-re8.12 36710.83 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.48 3300.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS90.90 36791.37 360
PC_three_145293.27 34199.40 8198.54 25098.22 7297.00 39295.17 28299.45 23499.49 126
eth-test20.00 404
eth-test0.00 404
OPU-MVS98.82 15598.59 29898.30 11698.10 15898.52 25398.18 7698.75 38394.62 29499.48 23199.41 163
test_0728_THIRD98.17 14799.08 13299.02 15197.89 9799.88 8297.07 17399.71 15299.70 50
GSMVS98.81 292
test_part299.36 14699.10 6099.05 139
sam_mvs184.74 35298.81 292
sam_mvs84.29 358
test_post197.59 22720.48 39983.07 36499.66 27594.16 308
test_post21.25 39883.86 36099.70 248
patchmatchnet-post98.77 21484.37 35599.85 120
gm-plane-assit94.83 39481.97 39888.07 38294.99 37999.60 29591.76 352
test9_res93.28 33399.15 27999.38 182
agg_prior292.50 34799.16 27799.37 184
test_prior497.97 15395.86 326
test_prior295.74 33196.48 26596.11 34997.63 32295.92 21894.16 30899.20 271
旧先验295.76 33088.56 38197.52 29499.66 27594.48 298
新几何295.93 323
原ACMM295.53 337
testdata299.79 19792.80 341
segment_acmp97.02 160
testdata195.44 34296.32 270
plane_prior799.19 17997.87 162
plane_prior698.99 22397.70 18094.90 245
plane_prior497.98 301
plane_prior397.78 17397.41 20997.79 275
plane_prior297.77 20298.20 144
plane_prior199.05 214
plane_prior97.65 18297.07 26696.72 25699.36 245
HQP5-MVS96.79 225
HQP-NCC98.67 28596.29 30596.05 27995.55 360
ACMP_Plane98.67 28596.29 30596.05 27995.55 360
BP-MVS92.82 339
HQP4-MVS95.56 35999.54 31499.32 203
HQP2-MVS93.84 274
NP-MVS98.84 25197.39 19696.84 347
MDTV_nov1_ep13_2view74.92 40297.69 21290.06 37597.75 27885.78 34493.52 32798.69 310
ACMMP++_ref99.77 122
ACMMP++99.68 165
Test By Simon96.52 188