This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7699.94 297.80 17399.91 1199.67 2597.15 15598.91 38999.76 1699.56 21099.92 9
test_fmvs399.12 5199.41 1998.25 23099.76 3195.07 28399.05 6499.94 297.78 17599.82 2199.84 298.56 5399.71 24699.96 199.96 2599.97 3
test_fmvs1_n98.09 18598.28 15497.52 29099.68 5893.47 33298.63 9899.93 495.41 31199.68 3999.64 3291.88 30899.48 33899.82 899.87 7799.62 67
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
test_fmvs298.70 10398.97 6597.89 25799.54 9894.05 31098.55 10799.92 696.78 25799.72 3199.78 896.60 18899.67 26799.91 299.90 6999.94 7
test_vis1_n_192098.40 15098.92 6896.81 32799.74 3790.76 37698.15 15299.91 798.33 13099.89 1599.55 4895.07 24599.88 8399.76 1699.93 4499.79 30
test_vis1_n98.31 16298.50 12097.73 27399.76 3194.17 30898.68 9599.91 796.31 27999.79 2599.57 4292.85 29599.42 35099.79 1399.84 8599.60 74
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4399.93 4098.91 6599.85 8198.88 283
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13799.73 1999.98 1299.98 2
dcpmvs_298.78 9099.11 5297.78 26499.56 8993.67 32899.06 6299.86 1399.50 3099.66 4299.26 10097.21 15399.99 298.00 12299.91 6399.68 54
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24697.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6496.97 21998.00 17499.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
test_cas_vis1_n_192098.33 15998.68 9597.27 30499.69 5692.29 35398.03 16899.85 1597.62 18599.96 499.62 3493.98 27699.74 23399.52 3199.86 8099.79 30
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21599.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8498.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17897.93 18199.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7799.92 5094.13 31599.30 25898.91 279
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5999.84 13799.70 2299.97 1999.90 10
bld_raw_dy_0_6497.62 22297.51 22397.96 25397.97 34596.28 24298.20 14699.82 2296.46 27299.37 8997.12 34792.42 30099.70 25096.27 24299.97 1997.90 357
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 24997.74 20999.81 2498.55 12399.85 1999.55 4898.60 4899.84 13799.69 2499.98 1299.89 11
test_fmvs197.72 21497.94 19197.07 31498.66 29192.39 35097.68 21599.81 2495.20 31599.54 5699.44 7191.56 31099.41 35199.78 1599.77 12499.40 173
test_f98.67 11498.87 7198.05 24799.72 4495.59 26198.51 11699.81 2496.30 28199.78 2699.82 496.14 20598.63 39499.82 899.93 4499.95 6
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7299.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21597.80 20099.76 2998.70 11099.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20197.82 19799.76 2998.73 10799.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7599.51 33297.70 14199.73 14297.89 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 9099.96 1198.85 6999.99 599.86 18
Patchmatch-RL test97.26 24797.02 25097.99 25199.52 10395.53 26596.13 32099.71 3497.47 20199.27 10899.16 12284.30 36299.62 29297.89 12799.77 12498.81 292
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4399.80 18498.24 10599.84 8599.52 118
test_vis1_rt97.75 21297.72 20897.83 26098.81 26096.35 23997.30 25399.69 3794.61 32697.87 26998.05 29796.26 20398.32 39798.74 7698.18 34198.82 288
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3798.90 9999.43 7699.35 8398.86 2899.67 26797.81 13399.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3798.90 9999.43 7699.35 8398.86 2899.67 26797.81 13399.81 9999.24 222
patch_mono-298.51 14098.63 10298.17 23699.38 14094.78 28897.36 24899.69 3798.16 15298.49 22699.29 9597.06 15999.97 498.29 10499.91 6399.76 39
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9799.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
Effi-MVS+98.02 18997.82 20198.62 18698.53 30997.19 20997.33 25099.68 4297.30 22196.68 33797.46 33298.56 5399.80 18496.63 21498.20 34098.86 285
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17799.68 4297.62 18599.34 9699.18 11697.54 12899.77 21597.79 13599.74 13999.04 255
PVSNet_Blended_VisFu98.17 18098.15 17198.22 23399.73 3895.15 27997.36 24899.68 4294.45 33298.99 14999.27 9896.87 17099.94 3597.13 17099.91 6399.57 91
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8799.96 1199.53 30100.00 199.93 8
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17898.00 17499.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268897.49 23097.14 24698.54 20499.68 5896.09 24996.50 29799.62 4891.58 37098.84 18198.97 17192.36 30199.88 8396.76 20399.95 3299.67 57
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17698.85 8299.62 4898.48 12599.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 6099.95 2299.73 1999.96 2599.75 43
EIA-MVS98.00 19197.74 20598.80 16098.72 27198.09 13598.05 16599.60 5297.39 21296.63 33995.55 37397.68 11399.80 18496.73 20799.27 26298.52 322
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 19098.04 16799.59 5398.15 15399.40 8399.36 8298.58 5299.76 22198.78 7299.68 16799.59 80
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15699.90 6499.21 4899.87 7799.54 108
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
AllTest98.44 14698.20 16399.16 10599.50 10898.55 9798.25 14199.58 5596.80 25598.88 17499.06 14097.65 11699.57 31194.45 30399.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25598.88 17499.06 14097.65 11699.57 31194.45 30399.61 19299.37 184
diffmvspermissive98.22 17398.24 16098.17 23699.00 22195.44 26996.38 30499.58 5597.79 17498.53 22398.50 25896.76 18099.74 23397.95 12699.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19699.92 5099.44 3699.92 5599.68 54
1112_ss97.29 24696.86 25898.58 19399.34 15396.32 24096.75 28699.58 5593.14 35396.89 32897.48 33092.11 30599.86 10896.91 18699.54 21599.57 91
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10299.58 5599.11 7299.53 6099.18 11698.81 3299.67 26796.71 21099.77 12499.50 123
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15699.85 12099.02 6099.94 4099.80 29
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19897.82 19799.57 6299.17 7099.35 9499.17 12098.35 6799.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24299.57 6299.37 4599.21 12099.61 3796.76 18099.83 15498.06 11799.83 9299.71 46
door-mid99.57 62
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10799.57 6297.72 17998.90 16899.26 10096.12 20799.52 32895.72 27199.71 15499.32 203
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10699.57 6297.87 16898.85 17998.04 29897.66 11599.84 13796.72 20899.81 9999.13 244
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 8999.56 6998.42 12698.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
MVSFormer98.26 16998.43 13397.77 26598.88 24693.89 32299.39 1799.56 6999.11 7298.16 24898.13 28893.81 27999.97 499.26 4399.57 20799.43 158
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7299.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8699.56 6999.09 8299.33 9799.19 11398.40 6299.72 24595.98 25899.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1098.97 6699.11 5298.55 20199.44 12996.21 24598.90 7799.55 7398.73 10799.48 6899.60 3996.63 18799.83 15499.70 2299.99 599.61 73
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14599.93 4098.90 6699.93 4499.77 35
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22499.91 5999.32 4099.95 3299.70 51
114514_t96.50 28995.77 29698.69 17899.48 12297.43 19497.84 19699.55 7381.42 40196.51 34598.58 24795.53 23299.67 26793.41 33599.58 20398.98 264
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13399.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9499.54 7899.31 5299.62 5199.53 5497.36 14399.86 10899.24 4799.71 15499.39 175
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8399.96 1198.78 7299.93 4499.77 35
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7299.95 2298.89 6899.95 3299.81 28
Test_1112_low_res96.99 26996.55 28098.31 22699.35 15195.47 26895.84 33799.53 8191.51 37296.80 33398.48 26191.36 31299.83 15496.58 21699.53 21999.62 67
USDC97.41 23797.40 22997.44 29798.94 23093.67 32895.17 35799.53 8194.03 34298.97 15499.10 13695.29 23999.34 36195.84 26799.73 14299.30 210
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17799.82 16498.69 8199.88 7499.76 39
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17199.83 15499.21 4899.91 6399.77 35
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7299.97 498.78 7299.93 4499.72 45
ETV-MVS98.03 18897.86 19998.56 20098.69 28398.07 14197.51 23899.50 8798.10 15497.50 29795.51 37498.41 6199.88 8396.27 24299.24 26797.71 371
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15898.43 31898.11 13297.61 22699.50 8798.64 11197.39 30697.52 32898.12 8699.95 2296.90 19198.71 31998.38 335
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21798.94 16498.86 19798.75 3699.82 16497.53 14899.71 15499.56 97
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32699.50 8797.30 22199.05 14198.98 16999.35 1299.32 36495.72 27199.68 16799.18 236
baseline98.96 6899.02 6098.76 17099.38 14097.26 20398.49 11999.50 8798.86 10299.19 12299.06 14098.23 7299.69 25598.71 7999.76 13599.33 201
FMVSNet596.01 30295.20 31998.41 21797.53 37096.10 24698.74 8699.50 8797.22 23598.03 26299.04 14969.80 39699.88 8397.27 15999.71 15499.25 219
HyFIR lowres test97.19 25496.60 27898.96 13999.62 7697.28 20195.17 35799.50 8794.21 33799.01 14798.32 27786.61 34199.99 297.10 17299.84 8599.60 74
testgi98.32 16098.39 14098.13 23999.57 8195.54 26497.78 20299.49 9497.37 21499.19 12297.65 32098.96 2499.49 33596.50 22998.99 30099.34 196
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14299.49 9497.01 24598.69 19898.88 19498.00 9399.89 7495.87 26499.59 19899.58 86
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19798.84 8499.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12499.92 5599.57 91
new-patchmatchnet98.35 15698.74 8397.18 30799.24 16692.23 35596.42 30299.48 9698.30 13399.69 3799.53 5497.44 13999.82 16498.84 7099.77 12499.49 127
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4699.73 23899.17 5199.92 5599.76 39
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 7999.48 9697.57 19199.35 9499.24 10597.83 10399.89 7497.88 13099.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29499.48 9697.32 21999.11 12998.61 24499.33 1399.30 36796.23 24598.38 33399.28 214
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14299.48 9696.60 26499.10 13299.06 14098.71 3999.83 15495.58 27899.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26499.10 13299.06 14098.71 3999.83 15495.58 27899.78 11999.62 67
v899.01 6099.16 4598.57 19699.47 12496.31 24198.90 7799.47 10399.03 8899.52 6299.57 4296.93 16799.81 17799.60 2599.98 1299.60 74
LF4IMVS97.90 19697.69 20998.52 20699.17 18897.66 18197.19 26499.47 10396.31 27997.85 27298.20 28596.71 18499.52 32894.62 29799.72 14998.38 335
sasdasda98.34 15798.26 15798.58 19398.46 31497.82 16898.96 7299.46 10599.19 6897.46 30095.46 37798.59 4999.46 34398.08 11598.71 31998.46 324
canonicalmvs98.34 15798.26 15798.58 19398.46 31497.82 16898.96 7299.46 10599.19 6897.46 30095.46 37798.59 4999.46 34398.08 11598.71 31998.46 324
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21299.46 10597.25 22698.98 15098.99 16597.54 12899.84 13795.88 26199.74 13999.23 224
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17399.46 10597.56 19399.54 5699.50 5998.97 2399.84 13798.06 11799.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 12999.45 10998.28 13898.98 15099.19 11397.76 10999.58 30996.57 21899.55 21398.97 267
Fast-Effi-MVS+97.67 21897.38 23198.57 19698.71 27497.43 19497.23 25899.45 10994.82 32396.13 35396.51 35498.52 5599.91 5996.19 24898.83 31198.37 337
v124098.55 13298.62 10498.32 22499.22 17195.58 26397.51 23899.45 10997.16 23899.45 7499.24 10596.12 20799.85 12099.60 2599.88 7499.55 104
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 10999.63 1799.52 6299.44 7198.25 7099.88 8399.09 5499.84 8599.62 67
Anonymous2024052198.69 10698.87 7198.16 23899.77 2895.11 28299.08 5899.44 11399.34 4999.33 9799.55 4894.10 27599.94 3599.25 4599.96 2599.42 161
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11399.45 3699.51 6699.24 10598.20 7899.86 10895.92 26099.69 16299.04 255
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11398.59 11798.95 15799.55 4894.14 27199.86 10897.77 13699.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11398.59 11798.95 15799.55 4894.14 27199.86 10897.77 13699.69 16299.41 164
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11399.21 6299.43 7699.55 4897.82 10699.86 10898.42 9899.89 7399.41 164
TinyColmap97.89 19897.98 18797.60 28198.86 24894.35 30396.21 31499.44 11397.45 20899.06 13698.88 19497.99 9699.28 37194.38 30999.58 20399.18 236
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 11996.74 25998.61 20998.38 26998.62 4699.87 10096.47 23099.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_BlendedMVS97.55 22797.53 22197.60 28198.92 23693.77 32696.64 29199.43 11994.49 32897.62 28599.18 11696.82 17499.67 26794.73 29499.93 4499.36 190
PVSNet_Blended96.88 27296.68 27197.47 29598.92 23693.77 32694.71 36999.43 11990.98 37897.62 28597.36 33896.82 17499.67 26794.73 29499.56 21098.98 264
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13199.42 12299.42 4199.36 9299.06 14098.38 6399.95 2298.34 10199.90 6999.57 91
SF-MVS98.53 13698.27 15699.32 8099.31 15498.75 8198.19 14799.41 12396.77 25898.83 18298.90 18797.80 10799.82 16495.68 27499.52 22299.38 182
door99.41 123
PMMVS298.07 18798.08 17998.04 24899.41 13794.59 29794.59 37699.40 12597.50 19898.82 18598.83 20396.83 17399.84 13797.50 15099.81 9999.71 46
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21599.40 12599.14 7199.06 13698.59 24696.71 18499.93 4098.57 8899.77 12499.53 115
DPE-MVScopyleft98.59 12698.26 15799.57 1699.27 16199.15 4797.01 27099.39 12797.67 18199.44 7598.99 16597.53 13099.89 7495.40 28299.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-LS98.55 13298.70 9298.09 24099.48 12294.73 29197.22 26199.39 12798.97 9399.38 8799.31 9396.00 21399.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss98.57 12798.23 16199.60 1199.69 5699.35 1297.16 26599.38 12994.87 32298.97 15498.99 16598.01 9299.88 8397.29 15899.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21199.38 12998.93 9799.12 12898.73 21996.77 17899.86 10898.63 8599.80 10999.46 146
PHI-MVS98.29 16697.95 18999.34 7398.44 31799.16 4398.12 15599.38 12996.01 29098.06 25898.43 26497.80 10799.67 26795.69 27399.58 20399.20 229
ACMP95.32 1598.41 14898.09 17699.36 6499.51 10598.79 8097.68 21599.38 12995.76 29898.81 18798.82 20698.36 6499.82 16494.75 29399.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 7999.37 13397.16 23898.82 18599.01 16197.71 11299.87 10096.29 24199.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 26096.68 27198.32 22498.32 32697.16 21298.86 8199.37 13389.48 38696.29 35199.15 12696.56 18999.90 6492.90 34299.20 27397.89 359
MSDG97.71 21597.52 22298.28 22998.91 23996.82 22694.42 37999.37 13397.65 18398.37 23898.29 27997.40 14199.33 36394.09 31699.22 27098.68 313
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16299.37 13397.62 18599.04 14398.96 17498.84 3099.79 19797.43 15299.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419298.54 13498.57 11298.45 21399.21 17395.98 25297.63 22399.36 13797.15 24099.32 10399.18 11695.84 22599.84 13799.50 3299.91 6399.54 108
v192192098.54 13498.60 10998.38 22099.20 17795.76 26097.56 23299.36 13797.23 23299.38 8799.17 12096.02 21199.84 13799.57 2799.90 6999.54 108
v119298.60 12498.66 9898.41 21799.27 16195.88 25597.52 23699.36 13797.41 21099.33 9799.20 11296.37 19999.82 16499.57 2799.92 5599.55 104
SD-MVS98.40 15098.68 9597.54 28898.96 22897.99 14897.88 18999.36 13798.20 14699.63 4899.04 14998.76 3595.33 40696.56 22299.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 9099.36 13797.54 19698.30 24098.40 26697.86 10299.89 7496.53 22799.72 14999.56 97
test072699.50 10899.21 2898.17 15199.35 14297.97 15999.26 11299.06 14097.61 122
MSP-MVS98.40 15098.00 18599.61 999.57 8199.25 2498.57 10599.35 14297.55 19599.31 10597.71 31694.61 26099.88 8396.14 25299.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18598.43 12799.35 14299.47 3499.28 10699.05 14796.72 18399.82 16498.09 11499.36 24799.59 80
UnsupCasMVSNet_eth97.89 19897.60 21898.75 17399.31 15497.17 21197.62 22499.35 14298.72 10998.76 19398.68 22892.57 29999.74 23397.76 14095.60 39299.34 196
DP-MVS Recon97.33 24296.92 25498.57 19699.09 20497.99 14896.79 28299.35 14293.18 35297.71 28098.07 29695.00 24799.31 36593.97 31899.13 28498.42 332
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14297.50 19898.28 24298.60 24597.64 11999.35 36093.86 32399.27 26298.79 298
v114498.60 12498.66 9898.41 21799.36 14795.90 25497.58 23099.34 14897.51 19799.27 10899.15 12696.34 20199.80 18499.47 3499.93 4499.51 120
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9699.34 14898.62 11597.54 29398.63 24097.50 13499.83 15496.79 19999.53 21999.56 97
X-MVStestdata94.32 33392.59 35199.53 3499.46 12599.21 2898.65 9699.34 14898.62 11597.54 29345.85 40597.50 13499.83 15496.79 19999.53 21999.56 97
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14899.42 4199.33 9799.26 10097.01 16499.94 3598.74 7699.93 4499.79 30
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12699.34 14899.28 5698.95 15798.91 18498.34 6899.79 19795.63 27599.91 6398.86 285
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 11999.33 15398.64 11199.03 14698.98 16997.89 10099.85 12096.54 22699.42 24099.46 146
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12499.33 15399.63 1799.48 6899.15 12697.23 15199.75 22897.17 16499.66 17899.63 66
DVP-MVS++98.90 7598.70 9299.51 4398.43 31899.15 4799.43 1199.32 15598.17 14999.26 11299.02 15298.18 7999.88 8397.07 17499.45 23699.49 127
9.1497.78 20299.07 20897.53 23599.32 15595.53 30598.54 22298.70 22597.58 12499.76 22194.32 31099.46 234
test_0728_SECOND99.60 1199.50 10899.23 2698.02 17099.32 15599.88 8396.99 18099.63 18499.68 54
Anonymous2023120698.21 17598.21 16298.20 23499.51 10595.43 27098.13 15399.32 15596.16 28498.93 16598.82 20696.00 21399.83 15497.32 15799.73 14299.36 190
LS3D98.63 12098.38 14299.36 6497.25 38199.38 899.12 5799.32 15599.21 6298.44 23098.88 19497.31 14499.80 18496.58 21699.34 25198.92 276
test_one_060199.39 13999.20 3499.31 16098.49 12498.66 20299.02 15297.64 119
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15899.31 16098.03 15699.66 4299.02 15298.36 6499.88 8396.91 18699.62 18799.41 164
test_241102_ONE99.49 11599.17 3999.31 16097.98 15899.66 4298.90 18798.36 6499.48 338
miper_lstm_enhance97.18 25597.16 24397.25 30698.16 33692.85 34195.15 35999.31 16097.25 22698.74 19698.78 21290.07 32099.78 20897.19 16399.80 10999.11 246
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11199.31 16097.47 20198.58 21598.50 25897.97 9799.85 12096.57 21899.59 19899.53 115
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11199.31 16097.46 20698.44 23098.51 25497.83 10399.88 8396.46 23199.58 20399.58 86
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11199.31 16097.47 20198.56 21898.54 25097.75 11099.88 8396.57 21899.59 19899.58 86
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14299.31 16097.92 16498.90 16898.90 18798.00 9399.88 8396.15 25199.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16899.69 999.63 4899.68 2099.25 1499.96 1197.25 16199.92 5599.57 91
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12299.30 16898.64 11198.95 15798.96 17497.49 13799.86 10896.56 22299.39 24399.45 150
RE-MVS-def98.58 11199.20 17799.38 898.48 12299.30 16898.64 11198.95 15798.96 17497.75 11096.56 22299.39 24399.45 150
test_241102_TWO99.30 16898.03 15699.26 11299.02 15297.51 13399.88 8396.91 18699.60 19499.66 58
RPMNet97.02 26596.93 25297.30 30297.71 35994.22 30498.11 15699.30 16899.37 4596.91 32499.34 8786.72 34099.87 10097.53 14897.36 37097.81 364
MVS_111021_LR98.30 16398.12 17498.83 15599.16 19098.03 14696.09 32299.30 16897.58 19098.10 25598.24 28198.25 7099.34 36196.69 21199.65 17999.12 245
F-COLMAP97.30 24496.68 27199.14 10899.19 18098.39 10897.27 25799.30 16892.93 35696.62 34098.00 29995.73 22799.68 26492.62 35198.46 33299.35 194
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17199.25 4099.30 16898.57 12098.55 22099.33 8997.95 9899.90 6497.16 16599.67 17399.44 154
EGC-MVSNET85.24 37180.54 37499.34 7399.77 2899.20 3499.08 5899.29 17612.08 40720.84 40899.42 7397.55 12799.85 12097.08 17399.72 14998.96 269
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12499.29 17697.28 22398.11 25498.39 26798.00 9399.87 10096.86 19699.64 18199.55 104
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13499.29 17698.29 13698.88 17498.85 20097.53 13099.87 10096.14 25299.31 25599.48 137
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17497.16 26599.28 17995.54 30499.42 7999.19 11397.27 14899.63 28997.89 12799.97 1999.20 229
APD-MVScopyleft98.10 18297.67 21099.42 5899.11 19998.93 7197.76 20799.28 17994.97 31998.72 19798.77 21497.04 16099.85 12093.79 32599.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS96.21 1196.63 28395.95 29498.65 18098.93 23298.09 13596.93 27699.28 17983.58 39998.13 25297.78 31296.13 20699.40 35293.52 33199.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS97.99 19497.67 21098.93 14499.19 18097.65 18297.77 20499.27 18298.20 14697.79 27697.98 30194.90 24899.70 25094.42 30599.51 22499.45 150
plane_prior599.27 18299.70 25094.42 30599.51 22499.45 150
CPTT-MVS97.84 20897.36 23399.27 8899.31 15498.46 10598.29 13799.27 18294.90 32197.83 27398.37 27094.90 24899.84 13793.85 32499.54 21599.51 120
UnsupCasMVSNet_bld97.30 24496.92 25498.45 21399.28 15996.78 23096.20 31599.27 18295.42 30898.28 24298.30 27893.16 28699.71 24694.99 28897.37 36898.87 284
MVS_111021_HR98.25 17198.08 17998.75 17399.09 20497.46 19195.97 32699.27 18297.60 18997.99 26398.25 28098.15 8599.38 35696.87 19499.57 20799.42 161
cascas94.79 32894.33 33496.15 34996.02 40392.36 35292.34 39899.26 18785.34 39795.08 37594.96 38692.96 29298.53 39594.41 30898.59 32997.56 376
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 14099.25 18897.44 20998.67 20098.39 26797.68 11399.85 12096.00 25699.51 22499.52 118
IterMVS-SCA-FT97.85 20798.18 16696.87 32399.27 16191.16 37195.53 34599.25 18899.10 7999.41 8099.35 8393.10 28899.96 1198.65 8399.94 4099.49 127
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19799.25 18896.94 24898.78 18899.12 13298.02 9199.84 13797.13 17099.67 17399.59 80
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23499.25 18898.84 10599.06 13698.76 21696.76 18099.93 4098.57 8899.77 12499.50 123
OMC-MVS97.88 20097.49 22599.04 12998.89 24598.63 8996.94 27499.25 18895.02 31798.53 22398.51 25497.27 14899.47 34193.50 33399.51 22499.01 259
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20897.78 20299.24 19399.04 8799.41 8098.90 18797.65 11699.76 22197.70 14199.79 11499.39 175
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9899.24 19397.47 20198.09 25698.68 22897.62 12199.89 7496.22 24699.62 18799.57 91
MSLP-MVS++98.02 18998.14 17397.64 27998.58 30295.19 27897.48 24099.23 19597.47 20197.90 26798.62 24297.04 16098.81 39297.55 14599.41 24198.94 274
SMA-MVScopyleft98.40 15098.03 18399.51 4399.16 19099.21 2898.05 16599.22 19694.16 33898.98 15099.10 13697.52 13299.79 19796.45 23299.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS97.73 21398.11 17596.57 33299.24 16690.28 37995.52 34799.21 19798.86 10299.33 9799.33 8993.11 28799.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.49 23097.16 24398.48 21099.07 20897.03 21794.71 36999.21 19794.46 33098.06 25897.16 34297.57 12599.48 33894.46 30299.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MTGPAbinary99.20 199
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12799.20 19998.83 10698.89 17098.90 18796.98 16699.92 5097.16 16599.70 15999.56 97
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 19999.10 7999.72 3198.76 21696.38 19899.86 10898.00 12299.82 9599.50 123
DELS-MVS98.27 16798.20 16398.48 21098.86 24896.70 23195.60 34399.20 19997.73 17798.45 22998.71 22297.50 13499.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4298.78 9098.78 8198.76 17099.44 12997.04 21698.27 13999.19 20397.87 16899.25 11699.16 12296.84 17199.78 20899.21 4899.84 8599.46 146
MP-MVScopyleft98.46 14498.09 17699.54 2799.57 8199.22 2798.50 11899.19 20397.61 18897.58 28998.66 23397.40 14199.88 8394.72 29699.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM97.31 24396.81 26498.82 15698.80 26397.49 18999.06 6299.19 20390.22 38297.69 28299.16 12296.91 16899.90 6490.89 37699.41 24199.07 249
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20398.99 9198.07 25799.28 9697.11 15899.84 13796.84 19799.32 25399.47 144
eth_miper_zixun_eth97.23 25197.25 23897.17 30998.00 34492.77 34394.71 36999.18 20797.27 22498.56 21898.74 21891.89 30799.69 25597.06 17699.81 9999.05 251
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26799.18 20797.10 24198.75 19498.92 18398.18 7999.65 28396.68 21299.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVP-Stereo98.08 18697.92 19398.57 19698.96 22896.79 22797.90 18699.18 20796.41 27598.46 22898.95 17895.93 22199.60 29996.51 22898.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9798.39 32398.97 6695.03 36199.18 20796.88 25199.33 9798.78 21298.16 8399.28 37196.74 20599.62 18799.44 154
xiu_mvs_v1_base_debu97.86 20298.17 16796.92 32098.98 22593.91 31996.45 29999.17 21197.85 17098.41 23397.14 34498.47 5699.92 5098.02 11999.05 29096.92 383
xiu_mvs_v1_base97.86 20298.17 16796.92 32098.98 22593.91 31996.45 29999.17 21197.85 17098.41 23397.14 34498.47 5699.92 5098.02 11999.05 29096.92 383
xiu_mvs_v1_base_debi97.86 20298.17 16796.92 32098.98 22593.91 31996.45 29999.17 21197.85 17098.41 23397.14 34498.47 5699.92 5098.02 11999.05 29096.92 383
cl____97.02 26596.83 26197.58 28397.82 35494.04 31294.66 37299.16 21497.04 24398.63 20598.71 22288.68 33199.69 25597.00 17899.81 9999.00 262
DIV-MVS_self_test97.02 26596.84 26097.58 28397.82 35494.03 31394.66 37299.16 21497.04 24398.63 20598.71 22288.69 32999.69 25597.00 17899.81 9999.01 259
c3_l97.36 23997.37 23297.31 30198.09 34093.25 33495.01 36299.16 21497.05 24298.77 19198.72 22192.88 29399.64 28696.93 18599.76 13599.05 251
Effi-MVS+-dtu98.26 16997.90 19599.35 7098.02 34399.49 598.02 17099.16 21498.29 13697.64 28497.99 30096.44 19599.95 2296.66 21398.93 30798.60 318
v2v48298.56 12898.62 10498.37 22199.42 13595.81 25897.58 23099.16 21497.90 16699.28 10699.01 16195.98 21899.79 19799.33 3999.90 6999.51 120
MDA-MVSNet-bldmvs97.94 19597.91 19498.06 24599.44 12994.96 28596.63 29299.15 21998.35 12898.83 18299.11 13394.31 26899.85 12096.60 21598.72 31799.37 184
iter_conf0596.54 28696.07 29297.92 25497.90 35194.50 29897.87 19299.14 22097.73 17798.89 17098.95 17875.75 39299.87 10098.50 9399.92 5599.40 173
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21498.61 10199.13 22198.59 11799.19 12299.28 9694.14 27199.82 16497.97 12499.80 10999.29 212
DSMNet-mixed97.42 23697.60 21896.87 32399.15 19491.46 36198.54 10999.12 22292.87 35897.58 28999.63 3396.21 20499.90 6495.74 27099.54 21599.27 215
CMPMVSbinary75.91 2396.29 29595.44 31098.84 15496.25 40098.69 8897.02 26999.12 22288.90 38997.83 27398.86 19789.51 32498.90 39091.92 35699.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PCF-MVS92.86 1894.36 33293.00 34998.42 21698.70 27897.56 18693.16 39499.11 22479.59 40297.55 29297.43 33392.19 30399.73 23879.85 40399.45 23697.97 356
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22398.58 10499.10 22596.49 26999.96 499.81 598.18 7999.45 34598.97 6399.79 11499.83 22
cdsmvs_eth3d_5k24.66 37432.88 3770.00 3920.00 4150.00 4170.00 40399.10 2250.00 4100.00 41197.58 32499.21 160.00 4110.00 4100.00 4090.00 407
miper_ehance_all_eth97.06 26297.03 24997.16 31197.83 35393.06 33694.66 37299.09 22795.99 29198.69 19898.45 26392.73 29799.61 29896.79 19999.03 29498.82 288
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17398.61 29597.23 20497.76 20799.09 22797.31 22098.75 19498.66 23397.56 12699.64 28696.10 25599.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS99.01 22098.84 7599.07 22994.10 34098.05 26098.12 29096.36 20099.86 10892.70 35099.19 276
v14898.45 14598.60 10998.00 25099.44 12994.98 28497.44 24499.06 23098.30 13399.32 10398.97 17196.65 18699.62 29298.37 9999.85 8199.39 175
PatchMatch-RL97.24 25096.78 26598.61 18999.03 21997.83 16596.36 30599.06 23093.49 35097.36 30897.78 31295.75 22699.49 33593.44 33498.77 31498.52 322
PLCcopyleft94.65 1696.51 28795.73 29898.85 15398.75 26797.91 15896.42 30299.06 23090.94 37995.59 36297.38 33694.41 26499.59 30390.93 37498.04 35499.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ppachtmachnet_test97.50 22897.74 20596.78 32998.70 27891.23 37094.55 37799.05 23396.36 27699.21 12098.79 21196.39 19699.78 20896.74 20599.82 9599.34 196
CANet97.87 20197.76 20398.19 23597.75 35695.51 26696.76 28599.05 23397.74 17696.93 32198.21 28495.59 23199.89 7497.86 13299.93 4499.19 234
pmmvs597.64 22097.49 22598.08 24399.14 19595.12 28196.70 28999.05 23393.77 34598.62 20798.83 20393.23 28499.75 22898.33 10399.76 13599.36 190
HQP3-MVS99.04 23699.26 265
HQP-MVS97.00 26896.49 28298.55 20198.67 28696.79 22796.29 31099.04 23696.05 28795.55 36596.84 34893.84 27799.54 32292.82 34599.26 26599.32 203
TEST998.71 27498.08 13995.96 32899.03 23891.40 37395.85 35997.53 32696.52 19199.76 221
train_agg97.10 25996.45 28399.07 12098.71 27498.08 13995.96 32899.03 23891.64 36895.85 35997.53 32696.47 19399.76 22193.67 32799.16 27999.36 190
test_prior98.95 14198.69 28397.95 15699.03 23899.59 30399.30 210
save fliter99.11 19997.97 15296.53 29699.02 24198.24 139
test_898.67 28698.01 14795.91 33399.02 24191.64 36895.79 36197.50 32996.47 19399.76 221
MVS_Test98.18 17898.36 14497.67 27598.48 31294.73 29198.18 14899.02 24197.69 18098.04 26199.11 13397.22 15299.56 31498.57 8898.90 30998.71 306
agg_prior98.68 28597.99 14899.01 24495.59 36299.77 215
CDPH-MVS97.26 24796.66 27499.07 12099.00 22198.15 12896.03 32499.01 24491.21 37697.79 27697.85 31096.89 16999.69 25592.75 34899.38 24699.39 175
ambc98.24 23298.82 25795.97 25398.62 10099.00 24699.27 10899.21 11096.99 16599.50 33396.55 22599.50 23199.26 218
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24799.25 5899.54 5699.37 7997.04 16099.80 18497.89 12799.52 22299.35 194
our_test_397.39 23897.73 20796.34 33798.70 27889.78 38194.61 37598.97 24896.50 26899.04 14398.85 20095.98 21899.84 13797.26 16099.67 17399.41 164
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11698.94 24996.96 24699.24 11798.89 19397.83 10399.81 17796.88 19399.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
WR-MVS98.40 15098.19 16599.03 13099.00 22197.65 18296.85 28098.94 24998.57 12098.89 17098.50 25895.60 23099.85 12097.54 14799.85 8199.59 80
CNVR-MVS98.17 18097.87 19899.07 12098.67 28698.24 12097.01 27098.93 25197.25 22697.62 28598.34 27497.27 14899.57 31196.42 23399.33 25299.39 175
CNLPA97.17 25696.71 26998.55 20198.56 30598.05 14596.33 30798.93 25196.91 25097.06 31697.39 33594.38 26699.45 34591.66 36099.18 27898.14 346
AdaColmapbinary97.14 25896.71 26998.46 21298.34 32597.80 17296.95 27398.93 25195.58 30396.92 32297.66 31995.87 22399.53 32490.97 37399.14 28298.04 351
CR-MVSNet96.28 29695.95 29497.28 30397.71 35994.22 30498.11 15698.92 25492.31 36496.91 32499.37 7985.44 35399.81 17797.39 15497.36 37097.81 364
Patchmtry97.35 24096.97 25198.50 20997.31 38096.47 23698.18 14898.92 25498.95 9698.78 18899.37 7985.44 35399.85 12095.96 25999.83 9299.17 240
FMVSNet397.50 22897.24 23998.29 22898.08 34195.83 25797.86 19498.91 25697.89 16798.95 15798.95 17887.06 33899.81 17797.77 13699.69 16299.23 224
mvs_anonymous97.83 21098.16 17096.87 32398.18 33591.89 35797.31 25298.90 25797.37 21498.83 18299.46 6696.28 20299.79 19798.90 6698.16 34498.95 270
NCCC97.86 20297.47 22899.05 12798.61 29598.07 14196.98 27298.90 25797.63 18497.04 31797.93 30695.99 21799.66 27895.31 28398.82 31399.43 158
miper_enhance_ethall96.01 30295.74 29796.81 32796.41 39892.27 35493.69 39198.89 25991.14 37798.30 24097.35 33990.58 31799.58 30996.31 23999.03 29498.60 318
D2MVS97.84 20897.84 20097.83 26099.14 19594.74 29096.94 27498.88 26095.84 29698.89 17098.96 17494.40 26599.69 25597.55 14599.95 3299.05 251
CHOSEN 280x42095.51 31895.47 30795.65 35798.25 33088.27 38793.25 39398.88 26093.53 34894.65 38097.15 34386.17 34599.93 4097.41 15399.93 4498.73 305
IU-MVS99.49 11599.15 4798.87 26292.97 35599.41 8096.76 20399.62 18799.66 58
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23897.23 25898.87 26299.20 6499.19 12298.99 16597.30 14599.85 12098.77 7599.79 11499.65 62
EI-MVSNet98.40 15098.51 11898.04 24899.10 20194.73 29197.20 26298.87 26298.97 9399.06 13699.02 15296.00 21399.80 18498.58 8699.82 9599.60 74
test1198.87 262
MVSTER96.86 27396.55 28097.79 26397.91 35094.21 30697.56 23298.87 26297.49 20099.06 13699.05 14780.72 37599.80 18498.44 9699.82 9599.37 184
MSC_two_6792asdad99.32 8098.43 31898.37 11198.86 26799.89 7497.14 16899.60 19499.71 46
No_MVS99.32 8098.43 31898.37 11198.86 26799.89 7497.14 16899.60 19499.71 46
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23797.23 25898.86 26799.20 6499.18 12698.97 17197.29 14799.85 12098.72 7899.78 11999.64 63
PS-MVSNAJ97.08 26197.39 23096.16 34898.56 30592.46 34895.24 35698.85 27097.25 22697.49 29895.99 36498.07 8799.90 6496.37 23598.67 32496.12 395
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 17098.84 27197.97 15999.08 13499.02 15297.61 12299.88 8396.99 18099.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xiu_mvs_v2_base97.16 25797.49 22596.17 34698.54 30792.46 34895.45 34998.84 27197.25 22697.48 29996.49 35598.31 6999.90 6496.34 23898.68 32396.15 394
MS-PatchMatch97.68 21797.75 20497.45 29698.23 33393.78 32597.29 25498.84 27196.10 28698.64 20498.65 23596.04 21099.36 35796.84 19799.14 28299.20 229
PMMVS96.51 28795.98 29398.09 24097.53 37095.84 25694.92 36598.84 27191.58 37096.05 35795.58 37295.68 22899.66 27895.59 27798.09 34898.76 302
原ACMM198.35 22298.90 24096.25 24398.83 27592.48 36296.07 35698.10 29295.39 23899.71 24692.61 35298.99 30099.08 247
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20499.32 2398.81 27697.66 18298.62 20799.40 7896.82 17499.80 18495.88 26199.51 22498.75 303
TAMVS98.24 17298.05 18198.80 16099.07 20897.18 21097.88 18998.81 27696.66 26399.17 12799.21 11094.81 25499.77 21596.96 18499.88 7499.44 154
testdata98.09 24098.93 23295.40 27198.80 27890.08 38497.45 30298.37 27095.26 24099.70 25093.58 33098.95 30599.17 240
CL-MVSNet_self_test97.44 23597.22 24098.08 24398.57 30495.78 25994.30 38298.79 27996.58 26698.60 21198.19 28694.74 25999.64 28696.41 23498.84 31098.82 288
CANet_DTU97.26 24797.06 24897.84 25997.57 36594.65 29596.19 31698.79 27997.23 23295.14 37498.24 28193.22 28599.84 13797.34 15699.84 8599.04 255
test22298.92 23696.93 22495.54 34498.78 28185.72 39696.86 33098.11 29194.43 26399.10 28999.23 224
WB-MVS98.52 13998.55 11398.43 21599.65 6595.59 26198.52 11198.77 28299.65 1499.52 6299.00 16494.34 26799.93 4098.65 8398.83 31199.76 39
新几何198.91 14798.94 23097.76 17498.76 28387.58 39396.75 33698.10 29294.80 25599.78 20892.73 34999.00 29999.20 229
旧先验198.82 25797.45 19298.76 28398.34 27495.50 23599.01 29899.23 224
PAPM_NR96.82 27696.32 28698.30 22799.07 20896.69 23297.48 24098.76 28395.81 29796.61 34196.47 35794.12 27499.17 37890.82 37797.78 35699.06 250
HPM-MVS++copyleft98.10 18297.64 21599.48 5199.09 20499.13 5597.52 23698.75 28697.46 20696.90 32797.83 31196.01 21299.84 13795.82 26899.35 24999.46 146
CDS-MVSNet97.69 21697.35 23498.69 17898.73 26997.02 21896.92 27898.75 28695.89 29598.59 21398.67 23092.08 30699.74 23396.72 20899.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
无先验95.74 33998.74 28889.38 38799.73 23892.38 35599.22 228
MCST-MVS98.00 19197.63 21699.10 11499.24 16698.17 12796.89 27998.73 28995.66 29997.92 26597.70 31897.17 15499.66 27896.18 25099.23 26999.47 144
PAPR95.29 32094.47 32997.75 26997.50 37595.14 28094.89 36698.71 29091.39 37495.35 37295.48 37694.57 26199.14 38184.95 39497.37 36898.97 267
PMVScopyleft91.26 2097.86 20297.94 19197.65 27799.71 4797.94 15798.52 11198.68 29198.99 9197.52 29599.35 8397.41 14098.18 39891.59 36399.67 17396.82 386
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VNet98.42 14798.30 15298.79 16398.79 26497.29 20098.23 14298.66 29299.31 5298.85 17998.80 20994.80 25599.78 20898.13 11199.13 28499.31 207
test1298.93 14498.58 30297.83 16598.66 29296.53 34395.51 23499.69 25599.13 28499.27 215
TSAR-MVS + GP.98.18 17897.98 18798.77 16998.71 27497.88 16096.32 30898.66 29296.33 27799.23 11998.51 25497.48 13899.40 35297.16 16599.46 23499.02 258
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25198.74 8698.64 29599.74 699.67 4199.24 10594.57 26199.95 2299.11 5299.24 26799.82 25
OpenMVS_ROBcopyleft95.38 1495.84 30895.18 32097.81 26298.41 32297.15 21397.37 24798.62 29683.86 39898.65 20398.37 27094.29 26999.68 26488.41 38498.62 32896.60 389
MAR-MVS96.47 29195.70 29998.79 16397.92 34999.12 5798.28 13898.60 29792.16 36695.54 36896.17 36294.77 25899.52 32889.62 38198.23 33897.72 370
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
h-mvs3397.77 21197.33 23699.10 11499.21 17397.84 16498.35 13598.57 29899.11 7298.58 21599.02 15288.65 33299.96 1198.11 11296.34 38499.49 127
UGNet98.53 13698.45 13098.79 16397.94 34896.96 22199.08 5898.54 29999.10 7996.82 33299.47 6596.55 19099.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl2295.79 30995.39 31396.98 31796.77 39292.79 34294.40 38098.53 30094.59 32797.89 26898.17 28782.82 37199.24 37396.37 23599.03 29498.92 276
pmmvs497.58 22697.28 23798.51 20798.84 25296.93 22495.40 35298.52 30193.60 34798.61 20998.65 23595.10 24499.60 29996.97 18399.79 11498.99 263
API-MVS97.04 26496.91 25697.42 29897.88 35298.23 12498.18 14898.50 30297.57 19197.39 30696.75 35196.77 17899.15 38090.16 37999.02 29794.88 400
sss97.21 25296.93 25298.06 24598.83 25495.22 27796.75 28698.48 30394.49 32897.27 30997.90 30792.77 29699.80 18496.57 21899.32 25399.16 243
Vis-MVSNet (Re-imp)97.46 23297.16 24398.34 22399.55 9396.10 24698.94 7498.44 30498.32 13298.16 24898.62 24288.76 32899.73 23893.88 32299.79 11499.18 236
MDA-MVSNet_test_wron97.60 22397.66 21397.41 29999.04 21693.09 33595.27 35498.42 30597.26 22598.88 17498.95 17895.43 23799.73 23897.02 17798.72 31799.41 164
jason97.45 23497.35 23497.76 26899.24 16693.93 31895.86 33498.42 30594.24 33698.50 22598.13 28894.82 25299.91 5997.22 16299.73 14299.43 158
jason: jason.
test_method79.78 37279.50 37580.62 38880.21 41145.76 41470.82 40298.41 30731.08 40680.89 40797.71 31684.85 35597.37 40191.51 36580.03 40598.75 303
YYNet197.60 22397.67 21097.39 30099.04 21693.04 33995.27 35498.38 30897.25 22698.92 16698.95 17895.48 23699.73 23896.99 18098.74 31599.41 164
IS-MVSNet98.19 17797.90 19599.08 11899.57 8197.97 15299.31 2798.32 30999.01 9098.98 15099.03 15191.59 30999.79 19795.49 28099.80 10999.48 137
131495.74 31095.60 30396.17 34697.53 37092.75 34498.07 16298.31 31091.22 37594.25 38396.68 35295.53 23299.03 38291.64 36297.18 37496.74 387
DPM-MVS96.32 29495.59 30498.51 20798.76 26597.21 20794.54 37898.26 31191.94 36796.37 34997.25 34093.06 29099.43 34891.42 36698.74 31598.89 280
BH-untuned96.83 27496.75 26797.08 31298.74 26893.33 33396.71 28898.26 31196.72 26098.44 23097.37 33795.20 24199.47 34191.89 35797.43 36598.44 329
EU-MVSNet97.66 21998.50 12095.13 36599.63 7485.84 39598.35 13598.21 31398.23 14099.54 5699.46 6695.02 24699.68 26498.24 10599.87 7799.87 16
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31499.37 4599.70 3599.65 3092.65 29899.93 4099.04 5899.84 8599.60 74
new_pmnet96.99 26996.76 26697.67 27598.72 27194.89 28695.95 33098.20 31492.62 36198.55 22098.54 25094.88 25199.52 32893.96 31999.44 23998.59 320
CVMVSNet96.25 29797.21 24193.38 38399.10 20180.56 41097.20 26298.19 31696.94 24899.00 14899.02 15289.50 32599.80 18496.36 23799.59 19899.78 33
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25799.95 2299.45 3599.96 2599.88 14
KD-MVS_2432*160092.87 35791.99 35995.51 36091.37 40889.27 38294.07 38498.14 31895.42 30897.25 31096.44 35867.86 39899.24 37391.28 36896.08 38998.02 352
miper_refine_blended92.87 35791.99 35995.51 36091.37 40889.27 38294.07 38498.14 31895.42 30897.25 31096.44 35867.86 39899.24 37391.28 36896.08 38998.02 352
MG-MVS96.77 27796.61 27697.26 30598.31 32793.06 33695.93 33198.12 32096.45 27397.92 26598.73 21993.77 28199.39 35491.19 37199.04 29399.33 201
EPP-MVSNet98.30 16398.04 18299.07 12099.56 8997.83 16599.29 3398.07 32199.03 8898.59 21399.13 13092.16 30499.90 6496.87 19499.68 16799.49 127
MVS93.19 35292.09 35696.50 33496.91 38894.03 31398.07 16298.06 32268.01 40394.56 38296.48 35695.96 22099.30 36783.84 39696.89 37996.17 392
lupinMVS97.06 26296.86 25897.65 27798.88 24693.89 32295.48 34897.97 32393.53 34898.16 24897.58 32493.81 27999.91 5996.77 20299.57 20799.17 240
GA-MVS95.86 30795.32 31697.49 29398.60 29794.15 30993.83 38997.93 32495.49 30696.68 33797.42 33483.21 36799.30 36796.22 24698.55 33199.01 259
WTY-MVS96.67 28196.27 29097.87 25898.81 26094.61 29696.77 28497.92 32594.94 32097.12 31297.74 31591.11 31499.82 16493.89 32198.15 34599.18 236
Patchmatch-test96.55 28596.34 28597.17 30998.35 32493.06 33698.40 13097.79 32697.33 21798.41 23398.67 23083.68 36699.69 25595.16 28699.31 25598.77 300
ADS-MVSNet295.43 31994.98 32396.76 33098.14 33791.74 35897.92 18397.76 32790.23 38096.51 34598.91 18485.61 35099.85 12092.88 34396.90 37798.69 310
PVSNet93.40 1795.67 31295.70 29995.57 35898.83 25488.57 38492.50 39697.72 32892.69 36096.49 34896.44 35893.72 28299.43 34893.61 32899.28 26198.71 306
pmmvs395.03 32594.40 33196.93 31997.70 36192.53 34795.08 36097.71 32988.57 39097.71 28098.08 29579.39 38299.82 16496.19 24899.11 28898.43 330
alignmvs97.35 24096.88 25798.78 16698.54 30798.09 13597.71 21297.69 33099.20 6497.59 28895.90 36788.12 33799.55 31798.18 10998.96 30498.70 309
AUN-MVS96.24 29895.45 30998.60 19198.70 27897.22 20697.38 24697.65 33195.95 29395.53 36997.96 30582.11 37499.79 19796.31 23997.44 36498.80 297
tpm cat193.29 35193.13 34893.75 37897.39 37884.74 39997.39 24597.65 33183.39 40094.16 38498.41 26582.86 37099.39 35491.56 36495.35 39497.14 382
hse-mvs297.46 23297.07 24798.64 18198.73 26997.33 19897.45 24397.64 33399.11 7298.58 21597.98 30188.65 33299.79 19798.11 11297.39 36798.81 292
PVSNet_089.98 2191.15 37090.30 37393.70 37997.72 35784.34 40490.24 39997.42 33490.20 38393.79 39093.09 39890.90 31598.89 39186.57 39272.76 40697.87 361
BH-w/o95.13 32394.89 32795.86 35098.20 33491.31 36595.65 34197.37 33593.64 34696.52 34495.70 37193.04 29199.02 38388.10 38695.82 39197.24 381
test_yl96.69 27996.29 28897.90 25598.28 32895.24 27597.29 25497.36 33698.21 14298.17 24697.86 30886.27 34399.55 31794.87 29198.32 33498.89 280
DCV-MVSNet96.69 27996.29 28897.90 25598.28 32895.24 27597.29 25497.36 33698.21 14298.17 24697.86 30886.27 34399.55 31794.87 29198.32 33498.89 280
BH-RMVSNet96.83 27496.58 27997.58 28398.47 31394.05 31096.67 29097.36 33696.70 26297.87 26997.98 30195.14 24399.44 34790.47 37898.58 33099.25 219
ADS-MVSNet95.24 32294.93 32696.18 34598.14 33790.10 38097.92 18397.32 33990.23 38096.51 34598.91 18485.61 35099.74 23392.88 34396.90 37798.69 310
VDDNet98.21 17597.95 18999.01 13399.58 7797.74 17699.01 6697.29 34099.67 1298.97 15499.50 5990.45 31899.80 18497.88 13099.20 27399.48 137
PAPM91.88 36990.34 37296.51 33398.06 34292.56 34692.44 39797.17 34186.35 39490.38 40196.01 36386.61 34199.21 37670.65 40795.43 39397.75 368
FPMVS93.44 34992.23 35497.08 31299.25 16597.86 16295.61 34297.16 34292.90 35793.76 39198.65 23575.94 39195.66 40479.30 40497.49 36197.73 369
mvsany_test197.60 22397.54 22097.77 26597.72 35795.35 27295.36 35397.13 34394.13 33999.71 3399.33 8997.93 9999.30 36797.60 14498.94 30698.67 314
E-PMN94.17 33794.37 33293.58 38096.86 38985.71 39790.11 40097.07 34498.17 14997.82 27597.19 34184.62 35898.94 38789.77 38097.68 35896.09 396
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10397.01 34599.59 2399.11 12999.27 9894.82 25299.79 19798.34 10199.63 18499.34 196
FA-MVS(test-final)96.99 26996.82 26297.50 29298.70 27894.78 28899.34 2096.99 34695.07 31698.48 22799.33 8988.41 33599.65 28396.13 25498.92 30898.07 350
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34798.86 10298.87 17897.62 32398.63 4598.96 38699.41 3798.29 33798.45 327
tpmrst95.07 32495.46 30893.91 37697.11 38484.36 40397.62 22496.96 34894.98 31896.35 35098.80 20985.46 35299.59 30395.60 27696.23 38697.79 367
wuyk23d96.06 30097.62 21791.38 38698.65 29498.57 9698.85 8296.95 34996.86 25399.90 1299.16 12299.18 1798.40 39689.23 38399.77 12477.18 404
HY-MVS95.94 1395.90 30695.35 31597.55 28797.95 34794.79 28798.81 8596.94 35092.28 36595.17 37398.57 24889.90 32299.75 22891.20 37097.33 37298.10 348
MIMVSNet96.62 28496.25 29197.71 27499.04 21694.66 29499.16 5196.92 35197.23 23297.87 26999.10 13686.11 34799.65 28391.65 36199.21 27298.82 288
SCA96.41 29396.66 27495.67 35598.24 33188.35 38695.85 33696.88 35296.11 28597.67 28398.67 23093.10 28899.85 12094.16 31199.22 27098.81 292
tpmvs95.02 32695.25 31794.33 37196.39 39985.87 39498.08 16096.83 35395.46 30795.51 37098.69 22685.91 34899.53 32494.16 31196.23 38697.58 375
testing9193.32 35092.27 35396.47 33597.54 36891.25 36896.17 31996.76 35497.18 23693.65 39293.50 39665.11 40699.63 28993.04 34097.45 36398.53 321
PatchmatchNetpermissive95.58 31595.67 30195.30 36497.34 37987.32 39197.65 22196.65 35595.30 31297.07 31598.69 22684.77 35699.75 22894.97 28998.64 32598.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchT96.65 28296.35 28497.54 28897.40 37795.32 27397.98 17796.64 35699.33 5096.89 32899.42 7384.32 36199.81 17797.69 14397.49 36197.48 377
Syy-MVS96.04 30195.56 30697.49 29397.10 38594.48 29996.18 31796.58 35795.65 30094.77 37792.29 40291.27 31399.36 35798.17 11098.05 35298.63 316
myMVS_eth3d91.92 36890.45 37096.30 33897.10 38590.90 37396.18 31796.58 35795.65 30094.77 37792.29 40253.88 41199.36 35789.59 38298.05 35298.63 316
TR-MVS95.55 31695.12 32196.86 32697.54 36893.94 31796.49 29896.53 35994.36 33597.03 31996.61 35394.26 27099.16 37986.91 39196.31 38597.47 378
dp93.47 34893.59 34193.13 38596.64 39481.62 40997.66 21996.42 36092.80 35996.11 35498.64 23878.55 38899.59 30393.31 33692.18 40398.16 345
EMVS93.83 34394.02 33593.23 38496.83 39184.96 39889.77 40196.32 36197.92 16497.43 30496.36 36186.17 34598.93 38887.68 38797.73 35795.81 397
iter_conf05_1196.72 27896.30 28797.97 25297.97 34596.24 24494.99 36396.19 36296.45 27396.77 33596.84 34891.46 31199.78 20896.27 24299.78 11997.90 357
Anonymous20240521197.90 19697.50 22499.08 11898.90 24098.25 11998.53 11096.16 36398.87 10199.11 12998.86 19790.40 31999.78 20897.36 15599.31 25599.19 234
MDTV_nov1_ep1395.22 31897.06 38783.20 40597.74 20996.16 36394.37 33496.99 32098.83 20383.95 36499.53 32493.90 32097.95 355
FE-MVS95.66 31394.95 32597.77 26598.53 30995.28 27499.40 1696.09 36593.11 35497.96 26499.26 10079.10 38499.77 21592.40 35498.71 31998.27 341
baseline195.96 30595.44 31097.52 29098.51 31193.99 31698.39 13196.09 36598.21 14298.40 23797.76 31486.88 33999.63 28995.42 28189.27 40498.95 270
CostFormer93.97 34193.78 33894.51 37097.53 37085.83 39697.98 17795.96 36789.29 38894.99 37698.63 24078.63 38699.62 29294.54 29996.50 38298.09 349
testing9993.04 35591.98 36196.23 34397.53 37090.70 37796.35 30695.94 36896.87 25293.41 39393.43 39763.84 40899.59 30393.24 33897.19 37398.40 333
JIA-IIPM95.52 31795.03 32297.00 31596.85 39094.03 31396.93 27695.82 36999.20 6494.63 38199.71 1783.09 36899.60 29994.42 30594.64 39697.36 380
tpm293.09 35392.58 35294.62 36997.56 36686.53 39397.66 21995.79 37086.15 39594.07 38798.23 28375.95 39099.53 32490.91 37596.86 38097.81 364
testing1193.08 35492.02 35896.26 34197.56 36690.83 37596.32 30895.70 37196.47 27192.66 39693.73 39364.36 40799.59 30393.77 32697.57 35998.37 337
ETVMVS92.60 35991.08 36897.18 30797.70 36193.65 33096.54 29495.70 37196.51 26794.68 37992.39 40161.80 40999.50 33386.97 38997.41 36698.40 333
dmvs_re95.98 30495.39 31397.74 27198.86 24897.45 19298.37 13395.69 37397.95 16196.56 34295.95 36590.70 31697.68 40088.32 38596.13 38898.11 347
EPNet_dtu94.93 32794.78 32895.38 36393.58 40787.68 39096.78 28395.69 37397.35 21689.14 40398.09 29488.15 33699.49 33594.95 29099.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing393.51 34792.09 35697.75 26998.60 29794.40 30197.32 25195.26 37597.56 19396.79 33495.50 37553.57 41299.77 21595.26 28498.97 30399.08 247
tpm94.67 32994.34 33395.66 35697.68 36488.42 38597.88 18994.90 37694.46 33096.03 35898.56 24978.66 38599.79 19795.88 26195.01 39598.78 299
testing22291.96 36790.37 37196.72 33197.47 37692.59 34596.11 32194.76 37796.83 25492.90 39592.87 39957.92 41099.55 31786.93 39097.52 36098.00 355
EPNet96.14 29995.44 31098.25 23090.76 41095.50 26797.92 18394.65 37898.97 9392.98 39498.85 20089.12 32799.87 10095.99 25799.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20093.72 34593.14 34795.46 36298.66 29191.29 36696.61 29394.63 37997.39 21296.83 33193.71 39479.88 37799.56 31482.40 40098.13 34695.54 399
MM98.22 17397.99 18698.91 14798.66 29196.97 21997.89 18894.44 38099.54 2798.95 15799.14 12993.50 28399.92 5099.80 1299.96 2599.85 19
DeepMVS_CXcopyleft93.44 38298.24 33194.21 30694.34 38164.28 40491.34 40094.87 38989.45 32692.77 40777.54 40593.14 40093.35 402
tfpn200view994.03 34093.44 34295.78 35398.93 23291.44 36297.60 22794.29 38297.94 16297.10 31394.31 39179.67 38099.62 29283.05 39798.08 34996.29 390
thres40094.14 33893.44 34296.24 34298.93 23291.44 36297.60 22794.29 38297.94 16297.10 31394.31 39179.67 38099.62 29283.05 39798.08 34997.66 372
thres100view90094.19 33693.67 34095.75 35499.06 21291.35 36498.03 16894.24 38498.33 13097.40 30594.98 38579.84 37899.62 29283.05 39798.08 34996.29 390
thres600view794.45 33193.83 33796.29 33999.06 21291.53 36097.99 17694.24 38498.34 12997.44 30395.01 38379.84 37899.67 26784.33 39598.23 33897.66 372
LFMVS97.20 25396.72 26898.64 18198.72 27196.95 22298.93 7594.14 38699.74 698.78 18899.01 16184.45 35999.73 23897.44 15199.27 26299.25 219
WB-MVSnew95.73 31195.57 30596.23 34396.70 39390.70 37796.07 32393.86 38795.60 30297.04 31795.45 38096.00 21399.55 31791.04 37298.31 33698.43 330
test0.0.03 194.51 33093.69 33996.99 31696.05 40193.61 33194.97 36493.49 38896.17 28297.57 29194.88 38782.30 37299.01 38593.60 32994.17 39998.37 337
N_pmnet97.63 22197.17 24298.99 13599.27 16197.86 16295.98 32593.41 38995.25 31399.47 7098.90 18795.63 22999.85 12096.91 18699.73 14299.27 215
IB-MVS91.63 1992.24 36590.90 36996.27 34097.22 38291.24 36994.36 38193.33 39092.37 36392.24 39894.58 39066.20 40499.89 7493.16 33994.63 39797.66 372
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.30 33593.21 34597.58 28398.14 33794.47 30094.78 36893.24 39194.72 32489.56 40295.87 36878.57 38799.81 17796.91 18697.11 37698.46 324
K. test v398.00 19197.66 21399.03 13099.79 2497.56 18699.19 4992.47 39299.62 2099.52 6299.66 2789.61 32399.96 1199.25 4599.81 9999.56 97
test-LLR93.90 34293.85 33694.04 37496.53 39584.62 40194.05 38692.39 39396.17 28294.12 38595.07 38182.30 37299.67 26795.87 26498.18 34197.82 362
test-mter92.33 36491.76 36594.04 37496.53 39584.62 40194.05 38692.39 39394.00 34394.12 38595.07 38165.63 40599.67 26795.87 26498.18 34197.82 362
dmvs_testset92.94 35692.21 35595.13 36598.59 30090.99 37297.65 22192.09 39596.95 24794.00 38893.55 39592.34 30296.97 40372.20 40692.52 40197.43 379
MTMP97.93 18191.91 396
TESTMET0.1,192.19 36691.77 36493.46 38196.48 39782.80 40694.05 38691.52 39794.45 33294.00 38894.88 38766.65 40199.56 31495.78 26998.11 34798.02 352
MVS_030498.10 18297.88 19798.76 17098.82 25796.50 23597.90 18691.35 39899.56 2698.32 23999.13 13096.06 20999.93 4099.84 799.97 1999.85 19
thisisatest051594.12 33993.16 34696.97 31898.60 29792.90 34093.77 39090.61 39994.10 34096.91 32495.87 36874.99 39399.80 18494.52 30099.12 28798.20 343
tttt051795.64 31494.98 32397.64 27999.36 14793.81 32498.72 9090.47 40098.08 15598.67 20098.34 27473.88 39499.92 5097.77 13699.51 22499.20 229
thisisatest053095.27 32194.45 33097.74 27199.19 18094.37 30297.86 19490.20 40197.17 23798.22 24497.65 32073.53 39599.90 6496.90 19199.35 24998.95 270
baseline293.73 34492.83 35096.42 33697.70 36191.28 36796.84 28189.77 40293.96 34492.44 39795.93 36679.14 38399.77 21592.94 34196.76 38198.21 342
MVS-HIRNet94.32 33395.62 30290.42 38798.46 31475.36 41196.29 31089.13 40395.25 31395.38 37199.75 1192.88 29399.19 37794.07 31799.39 24396.72 388
UWE-MVS92.38 36291.76 36594.21 37397.16 38384.65 40095.42 35188.45 40495.96 29296.17 35295.84 37066.36 40299.71 24691.87 35898.64 32598.28 340
test111196.49 29096.82 26295.52 35999.42 13587.08 39299.22 4287.14 40599.11 7299.46 7199.58 4188.69 32999.86 10898.80 7199.95 3299.62 67
lessismore_v098.97 13899.73 3897.53 18886.71 40699.37 8999.52 5789.93 32199.92 5098.99 6299.72 14999.44 154
ECVR-MVScopyleft96.42 29296.61 27695.85 35199.38 14088.18 38899.22 4286.00 40799.08 8499.36 9299.57 4288.47 33499.82 16498.52 9299.95 3299.54 108
EPMVS93.72 34593.27 34495.09 36796.04 40287.76 38998.13 15385.01 40894.69 32596.92 32298.64 23878.47 38999.31 36595.04 28796.46 38398.20 343
MVEpermissive83.40 2292.50 36091.92 36294.25 37298.83 25491.64 35992.71 39583.52 40995.92 29486.46 40695.46 37795.20 24195.40 40580.51 40298.64 32595.73 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 36391.20 36795.85 35195.80 40492.38 35199.31 2781.84 41099.75 591.83 39999.74 1368.29 39799.02 38387.15 38897.12 37596.16 393
GG-mvs-BLEND94.76 36894.54 40692.13 35699.31 2780.47 41188.73 40491.01 40467.59 40098.16 39982.30 40194.53 39893.98 401
tmp_tt78.77 37378.73 37678.90 38958.45 41274.76 41394.20 38378.26 41239.16 40586.71 40592.82 40080.50 37675.19 40886.16 39392.29 40286.74 403
test250692.39 36191.89 36393.89 37799.38 14082.28 40799.32 2366.03 41399.08 8498.77 19199.57 4266.26 40399.84 13798.71 7999.95 3299.54 108
testmvs17.12 37520.53 3786.87 39112.05 4134.20 41693.62 3926.73 4144.62 40910.41 40924.33 4068.28 4143.56 4109.69 40915.07 40712.86 406
test12317.04 37620.11 3797.82 39010.25 4144.91 41594.80 3674.47 4154.93 40810.00 41024.28 4079.69 4133.64 40910.14 40812.43 40814.92 405
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas8.17 37710.90 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41098.07 870.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
n20.00 416
nn0.00 416
ab-mvs-re8.12 37810.83 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41197.48 3300.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS90.90 37391.37 367
PC_three_145293.27 35199.40 8398.54 25098.22 7597.00 40295.17 28599.45 23699.49 127
eth-test20.00 415
eth-test0.00 415
OPU-MVS98.82 15698.59 30098.30 11698.10 15898.52 25398.18 7998.75 39394.62 29799.48 23399.41 164
test_0728_THIRD98.17 14999.08 13499.02 15297.89 10099.88 8397.07 17499.71 15499.70 51
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
sam_mvs184.74 35798.81 292
sam_mvs84.29 363
test_post197.59 22920.48 40983.07 36999.66 27894.16 311
test_post21.25 40883.86 36599.70 250
patchmatchnet-post98.77 21484.37 36099.85 120
gm-plane-assit94.83 40581.97 40888.07 39294.99 38499.60 29991.76 359
test9_res93.28 33799.15 28199.38 182
agg_prior292.50 35399.16 27999.37 184
test_prior497.97 15295.86 334
test_prior295.74 33996.48 27096.11 35497.63 32295.92 22294.16 31199.20 273
旧先验295.76 33888.56 39197.52 29599.66 27894.48 301
新几何295.93 331
原ACMM295.53 345
testdata299.79 19792.80 347
segment_acmp97.02 163
testdata195.44 35096.32 278
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 18094.90 248
plane_prior497.98 301
plane_prior397.78 17397.41 21097.79 276
plane_prior297.77 20498.20 146
plane_prior199.05 215
plane_prior97.65 18297.07 26896.72 26099.36 247
HQP5-MVS96.79 227
HQP-NCC98.67 28696.29 31096.05 28795.55 365
ACMP_Plane98.67 28696.29 31096.05 28795.55 365
BP-MVS92.82 345
HQP4-MVS95.56 36499.54 32299.32 203
HQP2-MVS93.84 277
NP-MVS98.84 25297.39 19696.84 348
MDTV_nov1_ep13_2view74.92 41297.69 21490.06 38597.75 27985.78 34993.52 33198.69 310
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 191