This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PMVScopyleft87.21 1494.97 9195.33 8293.91 14498.97 1797.16 295.54 8595.85 21596.47 2293.40 20697.46 7895.31 3395.47 32486.18 23798.78 14089.11 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
Effi-MVS+-dtu93.90 13192.60 16597.77 394.74 26596.67 594.00 13995.41 23489.94 15191.93 25992.13 30790.12 15798.97 11087.68 21097.48 23697.67 189
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 10093.38 6695.89 11697.23 9793.35 8497.66 25588.20 19698.66 15597.79 178
RPSCF95.58 6694.89 9997.62 797.58 12096.30 795.97 6697.53 11192.42 8193.41 20497.78 5891.21 13397.77 24691.06 12297.06 24898.80 82
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5498.46 2994.62 5998.84 12894.64 2499.53 3798.99 55
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11294.85 5399.42 3293.49 5298.84 12998.00 151
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11295.40 2893.49 5298.84 12998.00 151
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5795.17 3596.82 7496.73 13495.09 4499.43 3192.99 7898.71 14798.50 115
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9592.59 7995.47 13396.68 13794.50 6399.42 3293.10 7399.26 8198.99 55
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5492.67 7895.08 15696.39 15594.77 5599.42 3293.17 7199.44 4998.58 112
EGC-MVSNET80.97 33775.73 34996.67 4298.85 2494.55 1596.83 2396.60 1802.44 3845.32 38598.25 3592.24 11198.02 22191.85 10599.21 8997.45 202
FPMVS84.50 31383.28 31788.16 31396.32 18894.49 1685.76 34185.47 35483.09 26385.20 34494.26 24963.79 35386.58 37563.72 37391.88 35283.40 373
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2196.69 1796.86 7297.56 7095.48 2698.77 14590.11 15499.44 4998.31 128
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 10094.12 12596.50 4798.00 9194.23 1891.48 22598.17 4290.72 13695.30 14396.47 14687.94 18396.98 28491.41 11897.61 23298.30 129
LS3D96.11 4795.83 6296.95 3694.75 26494.20 1997.34 1397.98 7297.31 1195.32 14296.77 12793.08 9499.20 7991.79 10798.16 20197.44 204
XVG-OURS-SEG-HR95.38 7595.00 9796.51 4698.10 8194.07 2092.46 18698.13 4790.69 13793.75 19596.25 16798.03 297.02 28392.08 9795.55 28798.45 120
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9392.73 7593.48 20396.72 13594.23 6899.42 3291.99 10099.29 7399.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS93.33 14192.67 16395.33 8696.58 16794.06 2192.26 19892.18 30085.92 22596.22 10196.61 14185.64 21995.99 31590.35 14298.23 19495.93 266
MSP-MVS95.34 7794.63 11297.48 1498.67 3394.05 2396.41 4398.18 3891.26 12395.12 15295.15 21686.60 20899.50 2193.43 6196.81 26098.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10294.46 4496.29 9596.94 11793.56 7699.37 5694.29 3199.42 5198.99 55
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10487.68 20198.45 1898.77 1594.20 6999.50 2196.70 399.40 5699.53 15
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17896.49 14594.56 6199.39 4893.57 4899.05 10598.93 64
X-MVStestdata90.70 20588.45 25097.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17826.89 38294.56 6199.39 4893.57 4899.05 10598.93 64
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4293.11 7196.48 8697.36 8596.92 699.34 6294.31 3099.38 5898.92 68
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3892.26 8896.33 9196.84 12595.10 4399.40 4593.47 5599.33 6599.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3696.95 1495.46 13599.23 493.45 7999.57 1495.34 2099.89 299.63 9
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16996.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2491.40 12195.76 12096.87 12295.26 3599.45 2692.77 8199.21 8999.00 53
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2895.51 3496.99 6897.05 11195.63 2299.39 4893.31 6498.88 12498.75 87
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7592.35 8595.57 12996.61 14194.93 5199.41 3893.78 4299.15 9799.00 53
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7592.26 8895.28 14596.57 14395.02 4799.41 3893.63 4699.11 10098.94 63
N_pmnet88.90 25687.25 27893.83 14894.40 27793.81 3584.73 34987.09 34079.36 29793.26 21292.43 30279.29 26991.68 35677.50 32197.22 24496.00 263
HPM-MVS++copyleft95.02 8994.39 11596.91 3797.88 9993.58 3794.09 13796.99 15491.05 12992.40 24595.22 21591.03 14099.25 7492.11 9598.69 15097.90 164
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1492.35 8595.95 11196.41 15096.71 899.42 3293.99 3799.36 5999.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7292.35 8595.63 12796.47 14695.37 2999.27 7393.78 4299.14 9898.48 118
ITE_SJBPF95.95 5997.34 13293.36 4096.55 18691.93 9794.82 16595.39 21091.99 11697.08 28185.53 24197.96 21697.41 205
XVG-ACMP-BASELINE95.68 6295.34 8196.69 4198.40 6193.04 4194.54 12398.05 6190.45 14496.31 9396.76 12992.91 9998.72 15191.19 12099.42 5198.32 126
CPTT-MVS94.74 9994.12 12596.60 4398.15 7893.01 4295.84 7197.66 9989.21 16893.28 21095.46 20388.89 17098.98 10689.80 16198.82 13597.80 177
DeepPCF-MVS90.46 694.20 12293.56 14296.14 5295.96 21792.96 4389.48 28097.46 11585.14 24096.23 10095.42 20693.19 8998.08 21590.37 14198.76 14297.38 211
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6690.82 13497.15 5796.85 12396.25 1499.00 10593.10 7399.33 6598.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL89.18 24488.02 26792.64 18695.90 22292.87 4588.67 30491.06 31480.34 28590.03 29091.67 31483.34 23194.42 33876.35 32994.84 30790.64 359
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4591.74 11295.34 14196.36 15895.68 2099.44 2894.41 2899.28 7898.97 60
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6992.08 9395.74 12296.28 16495.22 3799.42 3293.17 7199.06 10298.88 73
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10487.57 20398.80 798.90 996.50 999.59 1396.15 999.47 4299.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11886.96 21298.71 1098.72 1795.36 3199.56 1795.92 1099.45 4699.32 27
AllTest94.88 9594.51 11496.00 5698.02 8992.17 5095.26 9398.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
TestCases96.00 5698.02 8992.17 5098.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
LF4IMVS92.72 16392.02 17694.84 10295.65 23591.99 5492.92 16796.60 18085.08 24392.44 24393.62 27286.80 20396.35 30686.81 22298.25 19296.18 257
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6993.34 6796.64 8196.57 14394.99 4999.36 5793.48 5499.34 6398.82 78
Skip Steuart: Steuart Systems R&D Blog.
F-COLMAP92.28 17791.06 20095.95 5997.52 12391.90 5693.53 15197.18 13983.98 25488.70 31494.04 25788.41 17498.55 17880.17 29695.99 27897.39 209
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6994.15 4898.93 399.07 588.07 17999.57 1495.86 1199.69 1499.46 18
MAR-MVS90.32 22188.87 24594.66 11194.82 25991.85 5794.22 13294.75 25180.91 28187.52 33188.07 35486.63 20797.87 23776.67 32696.21 27494.25 315
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12088.98 17198.26 2298.86 1093.35 8499.60 996.41 599.45 4699.66 6
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13198.08 5489.46 16096.61 8396.47 14695.85 1899.12 9090.45 13799.56 3598.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS95.77 5895.58 7196.37 5096.84 15491.72 6196.73 2999.06 594.23 4692.48 24094.79 23393.56 7699.49 2493.47 5599.05 10597.89 166
PHI-MVS94.34 11593.80 13095.95 5995.65 23591.67 6294.82 10997.86 8287.86 19593.04 22294.16 25491.58 12398.78 14290.27 14798.96 11897.41 205
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6690.42 14596.37 8997.35 8895.68 2099.25 7494.44 2799.34 6398.80 82
OMC-MVS94.22 12193.69 13595.81 6997.25 13491.27 6492.27 19797.40 11987.10 21194.56 17395.42 20693.74 7498.11 21486.62 22798.85 12898.06 143
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15898.32 2187.89 19496.86 7297.38 8195.55 2599.39 4895.47 1699.47 4299.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9286.48 21597.42 4997.51 7594.47 6699.29 6993.55 5099.29 7398.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNLPA91.72 18791.20 19693.26 16596.17 20191.02 6791.14 23295.55 22890.16 14990.87 27493.56 27586.31 21094.40 33979.92 30297.12 24694.37 312
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17897.33 12890.05 15096.77 7796.85 12395.04 4598.56 17692.77 8199.06 10298.70 96
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR93.66 13493.28 14994.80 10396.25 19690.95 6990.21 25995.43 23387.91 19293.74 19794.40 24592.88 10196.38 30490.39 13998.28 18897.07 219
Gipumacopyleft95.31 8195.80 6493.81 14997.99 9490.91 7096.42 4297.95 7796.69 1791.78 26098.85 1291.77 12095.49 32391.72 10999.08 10195.02 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVScopyleft95.00 9094.69 10895.93 6297.38 13090.88 7194.59 11697.81 8889.22 16795.46 13596.17 17293.42 8299.34 6289.30 17298.87 12797.56 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.93.07 15292.41 16995.06 9595.82 22490.87 7290.97 23692.61 29588.04 19194.61 17293.79 26888.08 17897.81 24189.41 16998.39 17796.50 244
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15790.79 7396.30 5497.82 8796.13 2694.74 16997.23 9791.33 12899.16 8293.25 6898.30 18798.46 119
CS-MVS-test95.32 7895.10 9395.96 5896.86 15390.75 7496.33 4799.20 293.99 5091.03 27393.73 26993.52 7899.55 1891.81 10699.45 4697.58 193
hse-mvs292.24 17991.20 19695.38 8396.16 20290.65 7592.52 18292.01 30789.23 16593.95 19092.99 28776.88 29498.69 16091.02 12396.03 27696.81 232
h-mvs3392.89 15691.99 17795.58 7796.97 14590.55 7693.94 14294.01 26989.23 16593.95 19096.19 16976.88 29499.14 8591.02 12395.71 28497.04 222
AUN-MVS90.05 23188.30 25495.32 8896.09 20790.52 7792.42 18992.05 30682.08 27788.45 31892.86 28965.76 34298.69 16088.91 18696.07 27596.75 236
ZD-MVS97.23 13590.32 7897.54 10984.40 25194.78 16795.79 18792.76 10499.39 4888.72 19198.40 174
mvsany_test389.11 24788.21 26291.83 21391.30 33690.25 7988.09 30878.76 37776.37 31896.43 8798.39 3283.79 22890.43 36386.57 22894.20 32194.80 301
DeepC-MVS91.39 495.43 7195.33 8295.71 7497.67 11590.17 8093.86 14498.02 6887.35 20596.22 10197.99 4894.48 6599.05 9892.73 8499.68 1897.93 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft85.34 1590.40 21488.92 24294.85 10196.53 17490.02 8191.58 22396.48 18980.16 28786.14 33992.18 30585.73 21698.25 20376.87 32594.61 31396.30 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_prior489.91 8290.74 241
NCCC94.08 12593.54 14395.70 7596.49 17689.90 8392.39 19196.91 16190.64 13992.33 25194.60 24090.58 15198.96 11190.21 15197.70 22798.23 132
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11791.25 12597.49 4398.14 3783.49 22999.45 2695.52 1499.66 2199.36 24
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2492.37 8397.75 3296.95 11695.14 3999.51 2091.74 10899.28 7898.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TAPA-MVS88.58 1092.49 17091.75 18494.73 10696.50 17589.69 8692.91 16897.68 9878.02 30892.79 23094.10 25590.85 14297.96 22784.76 25498.16 20196.54 239
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10496.36 9096.68 13794.37 6799.32 6892.41 9199.05 10598.64 106
MSC_two_6792asdad95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
No_MVS95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
TEST996.45 17889.46 9090.60 24696.92 15979.09 30090.49 27994.39 24691.31 12998.88 120
train_agg92.71 16491.83 18295.35 8496.45 17889.46 9090.60 24696.92 15979.37 29590.49 27994.39 24691.20 13498.88 12088.66 19298.43 17397.72 185
OPU-MVS95.15 9396.84 15489.43 9295.21 9495.66 19593.12 9298.06 21686.28 23698.61 15797.95 159
test_part298.21 7589.41 9396.72 78
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3392.36 8494.11 18198.07 4392.02 11599.44 2893.38 6397.67 22997.85 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APDe-MVS96.46 3196.64 2195.93 6297.68 11489.38 9596.90 2298.41 1792.52 8097.43 4797.92 5395.11 4299.50 2194.45 2699.30 7098.92 68
CNVR-MVS94.58 10694.29 11995.46 8296.94 14789.35 9691.81 21996.80 16989.66 15793.90 19395.44 20592.80 10398.72 15192.74 8398.52 16698.32 126
test_896.37 18089.14 9790.51 24996.89 16279.37 29590.42 28194.36 24891.20 13498.82 130
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2397.52 7396.90 798.62 16890.30 14599.60 2698.72 92
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16493.73 5797.87 2898.49 2890.73 14799.05 9886.43 23399.60 2699.10 47
test_vis3_rt90.40 21490.03 22391.52 22792.58 30888.95 10090.38 25497.72 9773.30 33597.79 3097.51 7577.05 29087.10 37389.03 18394.89 30498.50 115
RRT_MVS95.41 7495.20 8996.05 5598.86 2288.92 10197.49 1194.48 25793.12 7097.94 2798.54 2481.19 25999.63 695.48 1599.69 1499.60 12
UniMVSNet (Re)95.32 7895.15 9095.80 7097.79 10488.91 10292.91 16898.07 5793.46 6496.31 9395.97 18090.14 15699.34 6292.11 9599.64 2499.16 38
agg_prior96.20 19988.89 10396.88 16390.21 28698.78 142
SD-MVS95.19 8595.73 6693.55 15596.62 16688.88 10494.67 11398.05 6191.26 12397.25 5696.40 15195.42 2794.36 34092.72 8599.19 9197.40 208
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.96 9294.75 10495.57 7898.86 2288.69 10596.37 4496.81 16885.23 23794.75 16897.12 10691.85 11999.40 4593.45 5798.33 18498.62 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
plane_prior797.71 11088.68 106
wuyk23d87.83 27490.79 20678.96 35990.46 34788.63 10792.72 17390.67 31991.65 11698.68 1197.64 6696.06 1577.53 38159.84 37599.41 5570.73 379
test_fmvsm_n_192094.72 10094.74 10694.67 10996.30 19188.62 10893.19 16098.07 5785.63 23197.08 6097.35 8890.86 14197.66 25595.70 1298.48 17197.74 184
DP-MVS95.62 6395.84 6194.97 9797.16 13988.62 10894.54 12397.64 10096.94 1596.58 8497.32 9293.07 9598.72 15190.45 13798.84 12997.57 194
UniMVSNet_NR-MVSNet95.35 7695.21 8795.76 7197.69 11388.59 11092.26 19897.84 8594.91 3896.80 7595.78 19090.42 15299.41 3891.60 11399.58 3399.29 29
DU-MVS95.28 8295.12 9295.75 7297.75 10688.59 11092.58 18097.81 8893.99 5096.80 7595.90 18190.10 15999.41 3891.60 11399.58 3399.26 30
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11295.77 7498.29 2792.68 7698.03 2697.91 5495.13 4098.95 11393.85 4099.49 4199.36 24
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11395.57 8497.88 8188.72 17798.81 698.86 1090.77 14399.60 995.43 1899.53 3799.57 14
tt080595.42 7395.93 5693.86 14798.75 3288.47 11497.68 994.29 26196.48 2195.38 13793.63 27194.89 5297.94 22995.38 1996.92 25695.17 289
CDPH-MVS92.67 16591.83 18295.18 9296.94 14788.46 11590.70 24397.07 14877.38 31092.34 25095.08 22192.67 10698.88 12085.74 23998.57 16198.20 135
plane_prior388.43 11690.35 14793.31 207
Fast-Effi-MVS+-dtu92.77 16292.16 17294.58 12094.66 27088.25 11792.05 20396.65 17889.62 15890.08 28891.23 31992.56 10798.60 17186.30 23596.27 27396.90 227
plane_prior697.21 13788.23 11886.93 200
HQP_MVS94.26 11993.93 12795.23 9197.71 11088.12 11994.56 12097.81 8891.74 11293.31 20795.59 19786.93 20098.95 11389.26 17698.51 16898.60 110
plane_prior88.12 11993.01 16488.98 17198.06 209
save fliter97.46 12888.05 12192.04 20497.08 14787.63 202
UGNet93.08 15092.50 16794.79 10493.87 28987.99 12295.07 10194.26 26390.64 13987.33 33397.67 6486.89 20298.49 18288.10 20098.71 14797.91 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DeepC-MVS_fast89.96 793.73 13393.44 14594.60 11796.14 20487.90 12393.36 15797.14 14285.53 23493.90 19395.45 20491.30 13098.59 17389.51 16798.62 15697.31 214
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG94.69 10294.75 10494.52 12197.55 12287.87 12495.01 10497.57 10792.68 7696.20 10393.44 27791.92 11898.78 14289.11 18199.24 8496.92 226
pmmvs-eth3d91.54 19190.73 20893.99 13895.76 22987.86 12590.83 23993.98 27078.23 30794.02 18896.22 16882.62 24496.83 29086.57 22898.33 18497.29 215
pmmvs696.80 1297.36 995.15 9399.12 887.82 12696.68 3097.86 8296.10 2798.14 2499.28 397.94 398.21 20591.38 11999.69 1499.42 19
test_fmvsmvis_n_192095.08 8895.40 7894.13 13596.66 16187.75 12793.44 15598.49 1385.57 23398.27 2097.11 10794.11 7197.75 24996.26 798.72 14596.89 228
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12893.75 14797.86 8295.96 3197.48 4597.14 10595.33 3299.44 2890.79 12999.76 1099.38 22
EC-MVSNet95.44 7095.62 6994.89 9996.93 14987.69 12896.48 3899.14 493.93 5392.77 23194.52 24393.95 7399.49 2493.62 4799.22 8897.51 199
alignmvs93.26 14492.85 15694.50 12295.70 23187.45 13093.45 15495.76 21691.58 11795.25 14892.42 30381.96 25098.72 15191.61 11297.87 22197.33 213
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13197.70 897.54 10998.16 298.94 299.33 297.84 499.08 9390.73 13199.73 1399.59 13
新几何193.17 16797.16 13987.29 13294.43 25867.95 36391.29 26694.94 22686.97 19998.23 20481.06 28897.75 22393.98 321
test_fmvs392.42 17292.40 17092.46 19793.80 29287.28 13393.86 14497.05 14976.86 31596.25 9898.66 1882.87 23891.26 35895.44 1796.83 25998.82 78
test_prior94.61 11495.95 21887.23 13497.36 12598.68 16297.93 161
NR-MVSNet95.28 8295.28 8595.26 8997.75 10687.21 13595.08 10097.37 12093.92 5597.65 3495.90 18190.10 15999.33 6790.11 15499.66 2199.26 30
test_one_060198.26 7187.14 13698.18 3894.25 4596.99 6897.36 8595.13 40
NP-MVS96.82 15687.10 13793.40 278
3Dnovator92.54 394.80 9894.90 9894.47 12595.47 24287.06 13896.63 3197.28 13491.82 10794.34 18097.41 7990.60 15098.65 16692.47 9098.11 20597.70 186
canonicalmvs94.59 10594.69 10894.30 13095.60 23987.03 13995.59 8198.24 3191.56 11895.21 15192.04 30994.95 5098.66 16491.45 11797.57 23397.20 217
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 14095.21 9498.10 5191.95 9597.63 3597.25 9596.48 1099.35 5993.29 6599.29 7397.95 159
test_241102_ONE98.51 5186.97 14098.10 5191.85 10197.63 3597.03 11296.48 1098.95 113
MVS_111021_HR93.63 13593.42 14694.26 13196.65 16286.96 14289.30 28796.23 19988.36 18793.57 20194.60 24093.45 7997.77 24690.23 15098.38 17898.03 149
DP-MVS Recon92.31 17691.88 18093.60 15397.18 13886.87 14391.10 23497.37 12084.92 24692.08 25694.08 25688.59 17198.20 20683.50 26198.14 20395.73 275
v7n96.82 997.31 1095.33 8698.54 4886.81 14496.83 2398.07 5796.59 2098.46 1798.43 3192.91 9999.52 1996.25 899.76 1099.65 8
test_vis1_rt85.58 30584.58 30788.60 30387.97 36786.76 14585.45 34493.59 27366.43 36687.64 32889.20 34679.33 26885.38 37781.59 28189.98 36193.66 329
test1294.43 12795.95 21886.75 14696.24 19889.76 29789.79 16498.79 13997.95 21797.75 183
test_0728_SECOND94.88 10098.55 4586.72 14795.20 9698.22 3399.38 5493.44 5899.31 6898.53 114
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14895.20 9697.00 15291.85 10197.40 5097.35 8895.58 2399.34 6293.44 5899.31 6898.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5186.69 14895.34 8998.18 3891.85 10197.63 3597.37 8295.58 23
DVP-MVS++95.93 5296.34 3494.70 10896.54 17186.66 15098.45 498.22 3393.26 6897.54 3997.36 8593.12 9299.38 5493.88 3898.68 15198.04 146
IU-MVS98.51 5186.66 15096.83 16772.74 34095.83 11893.00 7799.29 7398.64 106
EG-PatchMatch MVS94.54 10894.67 11194.14 13497.87 10086.50 15292.00 20696.74 17488.16 19096.93 7097.61 6793.04 9697.90 23091.60 11398.12 20498.03 149
MVP-Stereo90.07 23088.92 24293.54 15796.31 18986.49 15390.93 23795.59 22579.80 28891.48 26395.59 19780.79 26097.39 27178.57 31391.19 35496.76 235
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 23888.22 26193.53 15895.37 24786.49 15389.26 28893.59 27379.76 29091.15 27092.31 30477.12 28998.38 19177.51 32097.92 21995.71 276
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet94.49 10994.35 11894.92 9898.25 7386.46 15597.13 1894.31 26096.24 2596.28 9796.36 15882.88 23799.35 5988.19 19799.52 4098.96 61
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15696.78 2798.08 5497.42 998.48 1697.86 5791.76 12199.63 694.23 3299.84 399.66 6
PMMVS83.00 32281.11 33088.66 30283.81 38486.44 15682.24 36485.65 35161.75 37682.07 36485.64 36779.75 26591.59 35775.99 33193.09 33787.94 367
TAMVS90.16 22589.05 23893.49 16196.49 17686.37 15890.34 25692.55 29680.84 28492.99 22394.57 24281.94 25198.20 20673.51 34298.21 19795.90 269
AdaColmapbinary91.63 18991.36 19392.47 19695.56 24086.36 15992.24 20096.27 19688.88 17589.90 29392.69 29591.65 12298.32 19677.38 32297.64 23092.72 344
Anonymous2023121196.60 2597.13 1295.00 9697.46 12886.35 16097.11 1998.24 3197.58 898.72 898.97 793.15 9199.15 8393.18 7099.74 1299.50 17
ETV-MVS92.99 15392.74 15993.72 15095.86 22386.30 16192.33 19397.84 8591.70 11592.81 22986.17 36592.22 11299.19 8088.03 20497.73 22495.66 280
bld_raw_dy_0_6494.27 11794.15 12494.65 11298.55 4586.28 16295.80 7395.55 22888.41 18597.09 5998.08 4278.69 27398.87 12495.63 1399.53 3798.81 80
API-MVS91.52 19291.61 18591.26 23794.16 28086.26 16394.66 11494.82 24891.17 12792.13 25591.08 32290.03 16297.06 28279.09 31097.35 24190.45 360
EPNet89.80 23788.25 25894.45 12683.91 38386.18 16493.87 14387.07 34191.16 12880.64 37194.72 23578.83 27198.89 11985.17 24398.89 12298.28 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 30983.04 31991.19 24287.56 36986.14 16589.40 28484.44 36388.98 17182.20 36397.95 4956.82 37196.15 30976.55 32883.45 37391.30 355
test_f86.65 29987.13 28285.19 34090.28 34986.11 16686.52 33991.66 31069.76 35795.73 12497.21 10169.51 32481.28 38089.15 18094.40 31588.17 366
VDD-MVS94.37 11294.37 11794.40 12897.49 12586.07 16793.97 14193.28 28094.49 4396.24 9997.78 5887.99 18298.79 13988.92 18599.14 9898.34 125
EI-MVSNet-Vis-set94.36 11394.28 12094.61 11492.55 31085.98 16892.44 18794.69 25393.70 5896.12 10795.81 18691.24 13198.86 12593.76 4598.22 19698.98 59
mvsany_test183.91 31782.93 32186.84 32886.18 37785.93 16981.11 36775.03 38270.80 35288.57 31794.63 23883.08 23587.38 37280.39 29086.57 36887.21 368
Anonymous2024052995.50 6895.83 6294.50 12297.33 13385.93 16995.19 9896.77 17296.64 1997.61 3898.05 4493.23 8898.79 13988.60 19399.04 11098.78 84
EI-MVSNet-UG-set94.35 11494.27 12294.59 11892.46 31185.87 17192.42 18994.69 25393.67 6196.13 10695.84 18591.20 13498.86 12593.78 4298.23 19499.03 51
PCF-MVS84.52 1789.12 24687.71 27093.34 16296.06 20985.84 17286.58 33897.31 12968.46 36293.61 20093.89 26587.51 18998.52 18067.85 36698.11 20595.66 280
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_030493.92 12993.68 13694.64 11395.94 22085.83 17394.34 12788.14 33392.98 7491.09 27297.68 6286.73 20599.36 5796.64 499.59 2898.72 92
test_040295.73 6096.22 4094.26 13198.19 7685.77 17493.24 15997.24 13696.88 1697.69 3397.77 6094.12 7099.13 8791.54 11699.29 7397.88 167
MCST-MVS92.91 15592.51 16694.10 13697.52 12385.72 17591.36 22997.13 14480.33 28692.91 22794.24 25091.23 13298.72 15189.99 15897.93 21897.86 169
pmmvs488.95 25487.70 27192.70 18394.30 27885.60 17687.22 32092.16 30274.62 32789.75 29894.19 25277.97 28196.41 30282.71 26896.36 27296.09 259
EPP-MVSNet93.91 13093.68 13694.59 11898.08 8285.55 17797.44 1294.03 26694.22 4794.94 16096.19 16982.07 24899.57 1487.28 21798.89 12298.65 101
test_fmvs290.62 20990.40 21691.29 23691.93 32685.46 17892.70 17596.48 18974.44 32894.91 16297.59 6875.52 30290.57 36093.44 5896.56 26797.84 172
CMPMVSbinary68.83 2287.28 28885.67 30292.09 20888.77 36485.42 17990.31 25794.38 25970.02 35688.00 32493.30 28073.78 30994.03 34475.96 33296.54 26896.83 231
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMH88.36 1296.59 2797.43 594.07 13798.56 4285.33 18096.33 4798.30 2494.66 4098.72 898.30 3497.51 598.00 22394.87 2199.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.95 14685.27 18188.83 29893.61 27265.09 37190.74 27694.85 22984.62 22497.36 24093.91 322
GeoE94.55 10794.68 11094.15 13397.23 13585.11 18294.14 13597.34 12788.71 17895.26 14695.50 20294.65 5899.12 9090.94 12698.40 17498.23 132
pm-mvs195.43 7195.94 5493.93 14398.38 6385.08 18395.46 8797.12 14591.84 10497.28 5498.46 2995.30 3497.71 25290.17 15299.42 5198.99 55
HQP5-MVS84.89 184
HQP-MVS92.09 18191.49 19093.88 14596.36 18284.89 18491.37 22697.31 12987.16 20888.81 30893.40 27884.76 22298.60 17186.55 23097.73 22498.14 140
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18696.51 3597.94 8098.14 398.67 1298.32 3395.04 4599.69 293.27 6799.82 799.62 10
PEN-MVS96.69 2097.39 894.61 11499.16 484.50 18796.54 3498.05 6198.06 498.64 1398.25 3595.01 4899.65 392.95 7999.83 599.68 4
GBi-Net93.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
test193.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
FMVSNet194.84 9695.13 9193.97 14097.60 11884.29 18895.99 6396.56 18392.38 8297.03 6598.53 2590.12 15798.98 10688.78 18999.16 9698.65 101
原ACMM192.87 17896.91 15084.22 19197.01 15176.84 31689.64 29994.46 24488.00 18198.70 15881.53 28298.01 21495.70 278
DPM-MVS89.35 24288.40 25192.18 20596.13 20684.20 19286.96 32596.15 20575.40 32387.36 33291.55 31783.30 23298.01 22282.17 27696.62 26694.32 314
旧先验196.20 19984.17 19394.82 24895.57 20189.57 16597.89 22096.32 251
OpenMVScopyleft89.45 892.27 17892.13 17492.68 18594.53 27484.10 19495.70 7697.03 15082.44 27491.14 27196.42 14988.47 17398.38 19185.95 23897.47 23795.55 284
PS-CasMVS96.69 2097.43 594.49 12499.13 684.09 19596.61 3297.97 7497.91 598.64 1398.13 3995.24 3699.65 393.39 6299.84 399.72 2
EIA-MVS92.35 17592.03 17593.30 16495.81 22683.97 19692.80 17198.17 4287.71 19989.79 29687.56 35591.17 13799.18 8187.97 20597.27 24296.77 234
PVSNet_Blended_VisFu91.63 18991.20 19692.94 17597.73 10983.95 19792.14 20197.46 11578.85 30492.35 24894.98 22484.16 22699.08 9386.36 23496.77 26295.79 273
CP-MVSNet96.19 4596.80 1694.38 12998.99 1683.82 19896.31 5097.53 11197.60 798.34 1997.52 7391.98 11799.63 693.08 7599.81 899.70 3
lessismore_v093.87 14698.05 8583.77 19980.32 37497.13 5897.91 5477.49 28499.11 9292.62 8798.08 20898.74 90
CLD-MVS91.82 18491.41 19293.04 16896.37 18083.65 20086.82 33097.29 13284.65 25092.27 25289.67 34092.20 11397.85 24083.95 25999.47 4297.62 191
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet92.38 17491.99 17793.52 16093.82 29183.46 20191.14 23297.00 15289.81 15486.47 33794.04 25787.90 18499.21 7789.50 16898.27 18997.90 164
QAPM92.88 15792.77 15793.22 16695.82 22483.31 20296.45 3997.35 12683.91 25593.75 19596.77 12789.25 16898.88 12084.56 25697.02 25097.49 200
Effi-MVS+92.79 16092.74 15992.94 17595.10 25283.30 20394.00 13997.53 11191.36 12289.35 30290.65 33194.01 7298.66 16487.40 21595.30 29696.88 230
sd_testset93.94 12894.39 11592.61 19097.93 9683.24 20493.17 16195.04 24193.65 6295.51 13198.63 1994.49 6495.89 31681.72 28099.35 6098.70 96
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15896.25 19683.23 20592.66 17798.19 3693.06 7297.49 4397.15 10494.78 5498.71 15792.27 9398.72 14598.65 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521192.58 16792.50 16792.83 18096.55 17083.22 20692.43 18891.64 31194.10 4995.59 12896.64 13981.88 25297.50 26285.12 24798.52 16697.77 180
SixPastTwentyTwo94.91 9395.21 8793.98 13998.52 5083.19 20795.93 6794.84 24794.86 3998.49 1598.74 1681.45 25399.60 994.69 2399.39 5799.15 39
VPA-MVSNet95.14 8695.67 6893.58 15497.76 10583.15 20894.58 11897.58 10693.39 6597.05 6498.04 4593.25 8798.51 18189.75 16499.59 2899.08 48
LCM-MVSNet-Re94.20 12294.58 11393.04 16895.91 22183.13 20993.79 14699.19 392.00 9498.84 598.04 4593.64 7599.02 10381.28 28498.54 16496.96 225
MSDG90.82 20190.67 20991.26 23794.16 28083.08 21086.63 33596.19 20290.60 14191.94 25891.89 31089.16 16995.75 31880.96 28994.51 31494.95 297
ambc92.98 17096.88 15183.01 21195.92 6896.38 19396.41 8897.48 7788.26 17597.80 24289.96 15998.93 12198.12 142
dmvs_re84.69 31283.94 31486.95 32692.24 31482.93 21289.51 27987.37 33884.38 25285.37 34285.08 36972.44 31286.59 37468.05 36591.03 35791.33 354
SDMVSNet94.43 11195.02 9592.69 18497.93 9682.88 21391.92 21195.99 21193.65 6295.51 13198.63 1994.60 6096.48 29987.57 21199.35 6098.70 96
MSLP-MVS++93.25 14693.88 12891.37 23196.34 18682.81 21493.11 16297.74 9589.37 16394.08 18395.29 21490.40 15496.35 30690.35 14298.25 19294.96 296
K. test v393.37 14093.27 15093.66 15198.05 8582.62 21594.35 12686.62 34396.05 2997.51 4298.85 1276.59 29899.65 393.21 6998.20 19998.73 91
test_fmvs1_n88.73 26188.38 25289.76 28192.06 32282.53 21692.30 19696.59 18271.14 34792.58 23795.41 20968.55 32689.57 36891.12 12195.66 28597.18 218
Fast-Effi-MVS+91.28 19890.86 20392.53 19495.45 24382.53 21689.25 29096.52 18785.00 24489.91 29288.55 35192.94 9798.84 12884.72 25595.44 29196.22 255
test_vis1_n89.01 25189.01 24089.03 29492.57 30982.46 21892.62 17996.06 20673.02 33890.40 28295.77 19174.86 30489.68 36690.78 13094.98 30294.95 297
VDDNet94.03 12694.27 12293.31 16398.87 2182.36 21995.51 8691.78 30997.19 1296.32 9298.60 2184.24 22598.75 14687.09 22098.83 13498.81 80
114514_t90.51 21089.80 22892.63 18898.00 9182.24 22093.40 15697.29 13265.84 36989.40 30194.80 23286.99 19898.75 14683.88 26098.61 15796.89 228
testdata91.03 24596.87 15282.01 22194.28 26271.55 34492.46 24195.42 20685.65 21897.38 27382.64 26997.27 24293.70 328
FMVSNet292.78 16192.73 16192.95 17395.40 24481.98 22294.18 13395.53 23088.63 17996.05 10997.37 8281.31 25598.81 13587.38 21698.67 15398.06 143
TransMVSNet (Re)95.27 8496.04 5192.97 17198.37 6581.92 22395.07 10196.76 17393.97 5297.77 3198.57 2295.72 1997.90 23088.89 18799.23 8599.08 48
FC-MVSNet-test95.32 7895.88 5893.62 15298.49 5881.77 22495.90 6998.32 2193.93 5397.53 4197.56 7088.48 17299.40 4592.91 8099.83 599.68 4
FIs94.90 9495.35 8093.55 15598.28 6981.76 22595.33 9098.14 4693.05 7397.07 6197.18 10287.65 18699.29 6991.72 10999.69 1499.61 11
ab-mvs92.40 17392.62 16491.74 21797.02 14381.65 22695.84 7195.50 23186.95 21392.95 22697.56 7090.70 14897.50 26279.63 30397.43 23896.06 261
xiu_mvs_v1_base_debu91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
xiu_mvs_v1_base91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
xiu_mvs_v1_base_debi91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
iter_conf_final90.23 22389.32 23492.95 17394.65 27181.46 23094.32 13095.40 23685.61 23292.84 22895.37 21254.58 37499.13 8792.16 9498.94 12098.25 131
casdiffmvspermissive94.32 11694.80 10292.85 17996.05 21081.44 23192.35 19298.05 6191.53 11995.75 12196.80 12693.35 8498.49 18291.01 12598.32 18698.64 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 30184.27 31191.79 21593.04 30381.28 23287.17 32286.14 34679.57 29383.65 35488.66 34957.10 36998.18 20987.74 20995.40 29295.90 269
test_fmvs187.59 28187.27 27788.54 30488.32 36681.26 23390.43 25395.72 21870.55 35391.70 26194.63 23868.13 32789.42 36990.59 13495.34 29594.94 299
V4293.43 13993.58 14092.97 17195.34 24881.22 23492.67 17696.49 18887.25 20796.20 10396.37 15787.32 19298.85 12792.39 9298.21 19798.85 77
OpenMVS_ROBcopyleft85.12 1689.52 24089.05 23890.92 25094.58 27381.21 23591.10 23493.41 27977.03 31493.41 20493.99 26183.23 23397.80 24279.93 30094.80 30893.74 327
PAPM_NR91.03 20090.81 20591.68 22196.73 15981.10 23693.72 14896.35 19488.19 18988.77 31292.12 30885.09 22197.25 27582.40 27393.90 32496.68 237
baseline94.26 11994.80 10292.64 18696.08 20880.99 23793.69 14998.04 6590.80 13594.89 16396.32 16093.19 8998.48 18691.68 11198.51 16898.43 121
1112_ss88.42 26587.41 27491.45 22996.69 16080.99 23789.72 27496.72 17573.37 33487.00 33590.69 32977.38 28698.20 20681.38 28393.72 32795.15 291
tfpnnormal94.27 11794.87 10092.48 19597.71 11080.88 23994.55 12295.41 23493.70 5896.67 8097.72 6191.40 12798.18 20987.45 21399.18 9398.36 124
Baseline_NR-MVSNet94.47 11095.09 9492.60 19198.50 5780.82 24092.08 20296.68 17693.82 5696.29 9598.56 2390.10 15997.75 24990.10 15699.66 2199.24 32
HyFIR lowres test87.19 29285.51 30392.24 20097.12 14280.51 24185.03 34796.06 20666.11 36891.66 26292.98 28870.12 32299.14 8575.29 33495.23 29897.07 219
UnsupCasMVSNet_eth90.33 22090.34 21790.28 26894.64 27280.24 24289.69 27595.88 21385.77 22793.94 19295.69 19481.99 24992.98 35184.21 25891.30 35397.62 191
MDA-MVSNet-bldmvs91.04 19990.88 20291.55 22594.68 26980.16 24385.49 34392.14 30390.41 14694.93 16195.79 18785.10 22096.93 28785.15 24594.19 32397.57 194
v1094.68 10395.27 8692.90 17796.57 16880.15 24494.65 11597.57 10790.68 13897.43 4798.00 4788.18 17699.15 8394.84 2299.55 3699.41 20
VNet92.67 16592.96 15391.79 21596.27 19380.15 24491.95 20794.98 24392.19 9194.52 17596.07 17587.43 19097.39 27184.83 25298.38 17897.83 173
DELS-MVS92.05 18292.16 17291.72 21894.44 27580.13 24687.62 31197.25 13587.34 20692.22 25393.18 28489.54 16698.73 15089.67 16598.20 19996.30 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 24588.32 25391.70 22095.73 23080.07 24788.10 30793.22 28171.98 34390.09 28792.79 29278.53 27798.56 17687.43 21497.06 24896.46 246
jason: jason.
MVSFormer92.18 18092.23 17192.04 21094.74 26580.06 24897.15 1597.37 12088.98 17188.83 30692.79 29277.02 29199.60 996.41 596.75 26396.46 246
lupinMVS88.34 26787.31 27591.45 22994.74 26580.06 24887.23 31992.27 29971.10 34888.83 30691.15 32077.02 29198.53 17986.67 22696.75 26395.76 274
WR-MVS93.49 13793.72 13392.80 18197.57 12180.03 25090.14 26295.68 21993.70 5896.62 8295.39 21087.21 19499.04 10187.50 21299.64 2499.33 26
CANet_DTU89.85 23589.17 23691.87 21292.20 31780.02 25190.79 24095.87 21486.02 22382.53 36291.77 31280.01 26498.57 17585.66 24097.70 22797.01 223
FA-MVS(test-final)91.81 18591.85 18191.68 22194.95 25579.99 25296.00 6293.44 27887.80 19694.02 18897.29 9377.60 28398.45 18888.04 20397.49 23596.61 238
Patchmatch-RL test88.81 25888.52 24889.69 28495.33 24979.94 25386.22 34092.71 29178.46 30595.80 11994.18 25366.25 34095.33 32989.22 17898.53 16593.78 325
FMVSNet390.78 20390.32 21892.16 20693.03 30479.92 25492.54 18194.95 24486.17 22195.10 15396.01 17869.97 32398.75 14686.74 22398.38 17897.82 175
XXY-MVS92.58 16793.16 15290.84 25497.75 10679.84 25591.87 21596.22 20185.94 22495.53 13097.68 6292.69 10594.48 33683.21 26497.51 23498.21 134
test_yl90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
DCV-MVSNet90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
FMVSNet587.82 27586.56 29291.62 22392.31 31279.81 25893.49 15294.81 25083.26 25991.36 26596.93 11852.77 37997.49 26476.07 33098.03 21297.55 197
v894.65 10495.29 8492.74 18296.65 16279.77 25994.59 11697.17 14091.86 10097.47 4697.93 5088.16 17799.08 9394.32 2999.47 4299.38 22
tttt051789.81 23688.90 24492.55 19397.00 14479.73 26095.03 10383.65 36589.88 15395.30 14394.79 23353.64 37799.39 4891.99 10098.79 13998.54 113
v119293.49 13793.78 13192.62 18996.16 20279.62 26191.83 21897.22 13886.07 22296.10 10896.38 15687.22 19399.02 10394.14 3498.88 12499.22 33
v114493.50 13693.81 12992.57 19296.28 19279.61 26291.86 21796.96 15586.95 21395.91 11496.32 16087.65 18698.96 11193.51 5198.88 12499.13 41
FE-MVS89.06 24888.29 25591.36 23294.78 26279.57 26396.77 2890.99 31584.87 24792.96 22596.29 16260.69 36598.80 13880.18 29597.11 24795.71 276
BH-untuned90.68 20690.90 20190.05 27795.98 21679.57 26390.04 26594.94 24587.91 19294.07 18493.00 28687.76 18597.78 24579.19 30995.17 29992.80 343
KD-MVS_self_test94.10 12494.73 10792.19 20297.66 11679.49 26594.86 10897.12 14589.59 15996.87 7197.65 6590.40 15498.34 19589.08 18299.35 6098.75 87
CHOSEN 1792x268887.19 29285.92 30191.00 24897.13 14179.41 26684.51 35395.60 22164.14 37290.07 28994.81 23078.26 27997.14 27973.34 34395.38 29496.46 246
thisisatest053088.69 26287.52 27392.20 20196.33 18779.36 26792.81 17084.01 36486.44 21693.67 19892.68 29653.62 37899.25 7489.65 16698.45 17298.00 151
LFMVS91.33 19691.16 19991.82 21496.27 19379.36 26795.01 10485.61 35396.04 3094.82 16597.06 11072.03 31698.46 18784.96 25198.70 14997.65 190
TR-MVS87.70 27687.17 28089.27 29194.11 28279.26 26988.69 30291.86 30881.94 27890.69 27789.79 33782.82 24097.42 26872.65 34891.98 35091.14 356
test20.0390.80 20290.85 20490.63 26095.63 23779.24 27089.81 27392.87 28689.90 15294.39 17796.40 15185.77 21595.27 33173.86 34199.05 10597.39 209
IterMVS-SCA-FT91.65 18891.55 18691.94 21193.89 28879.22 27187.56 31493.51 27691.53 11995.37 13996.62 14078.65 27498.90 11791.89 10494.95 30397.70 186
EI-MVSNet92.99 15393.26 15192.19 20292.12 32079.21 27292.32 19494.67 25591.77 11095.24 14995.85 18387.14 19698.49 18291.99 10098.26 19098.86 74
IterMVS-LS93.78 13294.28 12092.27 19996.27 19379.21 27291.87 21596.78 17091.77 11096.57 8597.07 10987.15 19598.74 14991.99 10099.03 11198.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet87.89 27287.12 28390.22 27191.01 33978.93 27492.52 18292.81 28773.08 33789.10 30396.93 11867.11 33297.64 25788.80 18892.70 34294.08 316
RPMNet90.31 22290.14 22290.81 25691.01 33978.93 27492.52 18298.12 4891.91 9889.10 30396.89 12168.84 32599.41 3890.17 15292.70 34294.08 316
test_cas_vis1_n_192088.25 26888.27 25788.20 31292.19 31878.92 27689.45 28195.44 23275.29 32593.23 21595.65 19671.58 31790.23 36488.05 20293.55 33095.44 286
patch_mono-292.46 17192.72 16291.71 21996.65 16278.91 27788.85 29797.17 14083.89 25692.45 24296.76 12989.86 16397.09 28090.24 14998.59 15999.12 43
UnsupCasMVSNet_bld88.50 26488.03 26689.90 27995.52 24178.88 27887.39 31894.02 26879.32 29893.06 22094.02 25980.72 26194.27 34175.16 33593.08 33896.54 239
v2v48293.29 14293.63 13892.29 19896.35 18578.82 27991.77 22196.28 19588.45 18395.70 12696.26 16686.02 21498.90 11793.02 7698.81 13799.14 40
Anonymous2023120688.77 25988.29 25590.20 27396.31 18978.81 28089.56 27893.49 27774.26 33092.38 24695.58 20082.21 24595.43 32672.07 35098.75 14496.34 250
PVSNet_BlendedMVS90.35 21989.96 22491.54 22694.81 26078.80 28190.14 26296.93 15779.43 29488.68 31595.06 22286.27 21198.15 21280.27 29298.04 21197.68 188
PVSNet_Blended88.74 26088.16 26490.46 26594.81 26078.80 28186.64 33496.93 15774.67 32688.68 31589.18 34786.27 21198.15 21280.27 29296.00 27794.44 311
BH-RMVSNet90.47 21290.44 21490.56 26295.21 25178.65 28389.15 29193.94 27188.21 18892.74 23294.22 25186.38 20997.88 23478.67 31295.39 29395.14 292
D2MVS89.93 23389.60 23390.92 25094.03 28578.40 28488.69 30294.85 24678.96 30293.08 21995.09 22074.57 30596.94 28588.19 19798.96 11897.41 205
v192192093.26 14493.61 13992.19 20296.04 21478.31 28591.88 21497.24 13685.17 23996.19 10596.19 16986.76 20499.05 9894.18 3398.84 12999.22 33
v14419293.20 14993.54 14392.16 20696.05 21078.26 28691.95 20797.14 14284.98 24595.96 11096.11 17387.08 19799.04 10193.79 4198.84 12999.17 37
diffmvspermissive91.74 18691.93 17991.15 24393.06 30278.17 28788.77 30097.51 11486.28 21892.42 24493.96 26288.04 18097.46 26590.69 13396.67 26597.82 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss87.23 28986.82 28788.46 30893.96 28677.94 28886.84 32892.78 29077.59 30987.61 33091.83 31178.75 27291.92 35577.84 31694.20 32195.52 285
MS-PatchMatch88.05 27187.75 26988.95 29593.28 29777.93 28987.88 31092.49 29775.42 32292.57 23893.59 27480.44 26294.24 34381.28 28492.75 34194.69 307
HY-MVS82.50 1886.81 29885.93 30089.47 28593.63 29377.93 28994.02 13891.58 31275.68 31983.64 35593.64 27077.40 28597.42 26871.70 35392.07 34993.05 340
v124093.29 14293.71 13492.06 20996.01 21577.89 29191.81 21997.37 12085.12 24196.69 7996.40 15186.67 20699.07 9794.51 2598.76 14299.22 33
CL-MVSNet_self_test90.04 23289.90 22690.47 26395.24 25077.81 29286.60 33792.62 29485.64 23093.25 21493.92 26383.84 22796.06 31379.93 30098.03 21297.53 198
Test_1112_low_res87.50 28486.58 29190.25 27096.80 15877.75 29387.53 31696.25 19769.73 35886.47 33793.61 27375.67 30197.88 23479.95 29893.20 33495.11 293
v14892.87 15893.29 14791.62 22396.25 19677.72 29491.28 23095.05 24089.69 15695.93 11396.04 17687.34 19198.38 19190.05 15797.99 21598.78 84
MVS84.98 31084.30 31087.01 32491.03 33877.69 29591.94 20994.16 26459.36 37784.23 35287.50 35785.66 21796.80 29171.79 35193.05 33986.54 370
miper_lstm_enhance89.90 23489.80 22890.19 27491.37 33577.50 29683.82 35995.00 24284.84 24893.05 22194.96 22576.53 29995.20 33289.96 15998.67 15397.86 169
pmmvs380.83 33878.96 34586.45 33087.23 37277.48 29784.87 34882.31 36863.83 37385.03 34589.50 34249.66 38093.10 34973.12 34695.10 30088.78 365
PAPR87.65 27986.77 28990.27 26992.85 30677.38 29888.56 30596.23 19976.82 31784.98 34689.75 33986.08 21397.16 27872.33 34993.35 33296.26 254
Vis-MVSNet (Re-imp)90.42 21390.16 21991.20 24197.66 11677.32 29994.33 12887.66 33691.20 12692.99 22395.13 21875.40 30398.28 19877.86 31599.19 9197.99 154
BH-w/o87.21 29087.02 28587.79 31994.77 26377.27 30087.90 30993.21 28381.74 27989.99 29188.39 35383.47 23096.93 28771.29 35592.43 34689.15 361
GA-MVS87.70 27686.82 28790.31 26793.27 29877.22 30184.72 35192.79 28985.11 24289.82 29490.07 33266.80 33597.76 24884.56 25694.27 32095.96 264
TinyColmap92.00 18392.76 15889.71 28395.62 23877.02 30290.72 24296.17 20487.70 20095.26 14696.29 16292.54 10896.45 30181.77 27898.77 14195.66 280
Patchmtry90.11 22789.92 22590.66 25990.35 34877.00 30392.96 16692.81 28790.25 14894.74 16996.93 11867.11 33297.52 26185.17 24398.98 11297.46 201
DIV-MVS_self_test90.65 20790.56 21290.91 25291.85 32776.99 30486.75 33195.36 23785.52 23694.06 18594.89 22777.37 28797.99 22590.28 14698.97 11697.76 181
cl____90.65 20790.56 21290.91 25291.85 32776.98 30586.75 33195.36 23785.53 23494.06 18594.89 22777.36 28897.98 22690.27 14798.98 11297.76 181
pmmvs587.87 27387.14 28190.07 27593.26 29976.97 30688.89 29592.18 30073.71 33388.36 31993.89 26576.86 29696.73 29380.32 29196.81 26096.51 241
iter_conf0588.94 25588.09 26591.50 22892.74 30776.97 30692.80 17195.92 21282.82 26893.65 19995.37 21249.41 38199.13 8790.82 12899.28 7898.40 123
eth_miper_zixun_eth90.72 20490.61 21091.05 24492.04 32376.84 30886.91 32696.67 17785.21 23894.41 17693.92 26379.53 26798.26 20289.76 16397.02 25098.06 143
c3_l91.32 19791.42 19191.00 24892.29 31376.79 30987.52 31796.42 19185.76 22894.72 17193.89 26582.73 24198.16 21190.93 12798.55 16298.04 146
test_vis1_n_192089.45 24189.85 22788.28 31093.59 29476.71 31090.67 24497.78 9379.67 29290.30 28596.11 17376.62 29792.17 35490.31 14493.57 32995.96 264
MVSTER89.32 24388.75 24691.03 24590.10 35176.62 31190.85 23894.67 25582.27 27595.24 14995.79 18761.09 36398.49 18290.49 13698.26 19097.97 158
miper_ehance_all_eth90.48 21190.42 21590.69 25891.62 33276.57 31286.83 32996.18 20383.38 25894.06 18592.66 29782.20 24698.04 21789.79 16297.02 25097.45 202
cl2289.02 24988.50 24990.59 26189.76 35376.45 31386.62 33694.03 26682.98 26692.65 23492.49 29872.05 31597.53 26088.93 18497.02 25097.78 179
cascas87.02 29686.28 29889.25 29291.56 33376.45 31384.33 35596.78 17071.01 34986.89 33685.91 36681.35 25496.94 28583.09 26595.60 28694.35 313
ADS-MVSNet284.01 31682.20 32589.41 28789.04 36176.37 31587.57 31290.98 31672.71 34184.46 34992.45 29968.08 32896.48 29970.58 36083.97 37195.38 287
EU-MVSNet87.39 28686.71 29089.44 28693.40 29676.11 31694.93 10790.00 32257.17 37895.71 12597.37 8264.77 34897.68 25492.67 8694.37 31794.52 309
MIMVSNet87.13 29486.54 29388.89 29796.05 21076.11 31694.39 12588.51 32781.37 28088.27 32196.75 13172.38 31395.52 32165.71 37195.47 29095.03 294
IterMVS90.18 22490.16 21990.21 27293.15 30075.98 31887.56 31492.97 28586.43 21794.09 18296.40 15178.32 27897.43 26787.87 20794.69 31197.23 216
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test92.57 16993.29 14790.40 26693.53 29575.85 31992.52 18296.96 15588.73 17692.35 24896.70 13690.77 14398.37 19492.53 8995.49 28996.99 224
IB-MVS77.21 1983.11 32081.05 33189.29 29091.15 33775.85 31985.66 34286.00 34879.70 29182.02 36686.61 36148.26 38298.39 18977.84 31692.22 34793.63 330
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VPNet93.08 15093.76 13291.03 24598.60 3975.83 32191.51 22495.62 22091.84 10495.74 12297.10 10889.31 16798.32 19685.07 25099.06 10298.93 64
miper_enhance_ethall88.42 26587.87 26890.07 27588.67 36575.52 32285.10 34695.59 22575.68 31992.49 23989.45 34378.96 27097.88 23487.86 20897.02 25096.81 232
Anonymous2024052192.86 15993.57 14190.74 25796.57 16875.50 32394.15 13495.60 22189.38 16295.90 11597.90 5680.39 26397.96 22792.60 8899.68 1898.75 87
thisisatest051584.72 31182.99 32089.90 27992.96 30575.33 32484.36 35483.42 36677.37 31188.27 32186.65 36053.94 37698.72 15182.56 27097.40 23995.67 279
PS-MVSNAJ88.86 25788.99 24188.48 30794.88 25674.71 32586.69 33395.60 22180.88 28287.83 32687.37 35890.77 14398.82 13082.52 27194.37 31791.93 350
WTY-MVS86.93 29786.50 29688.24 31194.96 25474.64 32687.19 32192.07 30578.29 30688.32 32091.59 31678.06 28094.27 34174.88 33693.15 33695.80 272
xiu_mvs_v2_base89.00 25289.19 23588.46 30894.86 25874.63 32786.97 32495.60 22180.88 28287.83 32688.62 35091.04 13998.81 13582.51 27294.38 31691.93 350
131486.46 30086.33 29786.87 32791.65 33174.54 32891.94 20994.10 26574.28 32984.78 34887.33 35983.03 23695.00 33378.72 31191.16 35591.06 357
CHOSEN 280x42080.04 34277.97 34886.23 33490.13 35074.53 32972.87 37489.59 32366.38 36776.29 37785.32 36856.96 37095.36 32769.49 36394.72 31088.79 364
USDC89.02 24989.08 23788.84 29895.07 25374.50 33088.97 29396.39 19273.21 33693.27 21196.28 16482.16 24796.39 30377.55 31998.80 13895.62 283
MVEpermissive59.87 2373.86 34872.65 35177.47 36087.00 37574.35 33161.37 37860.93 38667.27 36469.69 38186.49 36381.24 25872.33 38256.45 37883.45 37385.74 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 30484.37 30989.40 28886.30 37674.33 33291.64 22288.26 32984.84 24872.96 38089.85 33371.27 31997.69 25376.60 32797.62 23196.18 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline187.62 28087.31 27588.54 30494.71 26874.27 33393.10 16388.20 33186.20 21992.18 25493.04 28573.21 31095.52 32179.32 30785.82 36995.83 271
Patchmatch-test86.10 30286.01 29986.38 33390.63 34374.22 33489.57 27786.69 34285.73 22989.81 29592.83 29065.24 34691.04 35977.82 31895.78 28393.88 324
dcpmvs_293.96 12795.01 9690.82 25597.60 11874.04 33593.68 15098.85 789.80 15597.82 2997.01 11591.14 13899.21 7790.56 13598.59 15999.19 36
MDA-MVSNet_test_wron88.16 27088.23 26087.93 31692.22 31573.71 33680.71 36988.84 32482.52 27294.88 16495.14 21782.70 24293.61 34683.28 26393.80 32696.46 246
YYNet188.17 26988.24 25987.93 31692.21 31673.62 33780.75 36888.77 32582.51 27394.99 15995.11 21982.70 24293.70 34583.33 26293.83 32596.48 245
test0.0.03 182.48 32581.47 32985.48 33789.70 35473.57 33884.73 34981.64 37083.07 26488.13 32386.61 36162.86 35789.10 37166.24 37090.29 35993.77 326
thres600view787.66 27887.10 28489.36 28996.05 21073.17 33992.72 17385.31 35691.89 9993.29 20990.97 32363.42 35498.39 18973.23 34496.99 25596.51 241
ANet_high94.83 9796.28 3790.47 26396.65 16273.16 34094.33 12898.74 1096.39 2498.09 2598.93 893.37 8398.70 15890.38 14099.68 1899.53 15
thres100view90087.35 28786.89 28688.72 30096.14 20473.09 34193.00 16585.31 35692.13 9293.26 21290.96 32463.42 35498.28 19871.27 35696.54 26894.79 302
tfpn200view987.05 29586.52 29488.67 30195.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26894.79 302
thres40087.20 29186.52 29489.24 29395.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26896.51 241
baseline283.38 31981.54 32888.90 29691.38 33472.84 34488.78 29981.22 37178.97 30179.82 37387.56 35561.73 36197.80 24274.30 33990.05 36096.05 262
ECVR-MVScopyleft90.12 22690.16 21990.00 27897.81 10272.68 34595.76 7578.54 37989.04 16995.36 14098.10 4070.51 32198.64 16787.10 21999.18 9398.67 99
thres20085.85 30385.18 30487.88 31894.44 27572.52 34689.08 29286.21 34588.57 18291.44 26488.40 35264.22 34998.00 22368.35 36495.88 28293.12 337
MG-MVS89.54 23989.80 22888.76 29994.88 25672.47 34789.60 27692.44 29885.82 22689.48 30095.98 17982.85 23997.74 25181.87 27795.27 29796.08 260
PAPM81.91 33180.11 34187.31 32393.87 28972.32 34884.02 35793.22 28169.47 35976.13 37889.84 33472.15 31497.23 27653.27 37989.02 36292.37 347
SCA87.43 28587.21 27988.10 31492.01 32471.98 34989.43 28288.11 33482.26 27688.71 31392.83 29078.65 27497.59 25879.61 30493.30 33394.75 304
testgi90.38 21791.34 19487.50 32197.49 12571.54 35089.43 28295.16 23988.38 18694.54 17494.68 23792.88 10193.09 35071.60 35497.85 22297.88 167
test111190.39 21690.61 21089.74 28298.04 8871.50 35195.59 8179.72 37689.41 16195.94 11298.14 3770.79 32098.81 13588.52 19499.32 6798.90 70
gg-mvs-nofinetune82.10 33081.02 33285.34 33887.46 37171.04 35294.74 11167.56 38496.44 2379.43 37498.99 645.24 38396.15 30967.18 36892.17 34888.85 363
GG-mvs-BLEND83.24 35185.06 38171.03 35394.99 10665.55 38574.09 37975.51 37944.57 38494.46 33759.57 37687.54 36684.24 372
ppachtmachnet_test88.61 26388.64 24788.50 30691.76 32970.99 35484.59 35292.98 28479.30 29992.38 24693.53 27679.57 26697.45 26686.50 23297.17 24597.07 219
our_test_387.55 28287.59 27287.44 32291.76 32970.48 35583.83 35890.55 32079.79 28992.06 25792.17 30678.63 27695.63 31984.77 25394.73 30996.22 255
CVMVSNet85.16 30884.72 30586.48 32992.12 32070.19 35692.32 19488.17 33256.15 37990.64 27895.85 18367.97 33096.69 29488.78 18990.52 35892.56 345
new_pmnet81.22 33481.01 33381.86 35490.92 34170.15 35784.03 35680.25 37570.83 35085.97 34089.78 33867.93 33184.65 37867.44 36791.90 35190.78 358
KD-MVS_2432*160082.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
miper_refine_blended82.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
DSMNet-mixed82.21 32781.56 32684.16 34789.57 35770.00 36090.65 24577.66 38154.99 38083.30 35897.57 6977.89 28290.50 36266.86 36995.54 28891.97 349
PatchmatchNetpermissive85.22 30784.64 30686.98 32589.51 35869.83 36190.52 24887.34 33978.87 30387.22 33492.74 29466.91 33496.53 29681.77 27886.88 36794.58 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EMVS80.35 34180.28 34080.54 35684.73 38269.07 36272.54 37580.73 37287.80 19681.66 36881.73 37562.89 35689.84 36575.79 33394.65 31282.71 375
E-PMN80.72 33980.86 33480.29 35785.11 38068.77 36372.96 37381.97 36987.76 19883.25 35983.01 37462.22 36089.17 37077.15 32494.31 31982.93 374
mvs_anonymous90.37 21891.30 19587.58 32092.17 31968.00 36489.84 27294.73 25283.82 25793.22 21697.40 8087.54 18897.40 27087.94 20695.05 30197.34 212
CostFormer83.09 32182.21 32485.73 33589.27 36067.01 36590.35 25586.47 34470.42 35483.52 35793.23 28361.18 36296.85 28977.21 32388.26 36593.34 336
PatchT87.51 28388.17 26385.55 33690.64 34266.91 36692.02 20586.09 34792.20 9089.05 30597.16 10364.15 35096.37 30589.21 17992.98 34093.37 335
test-LLR83.58 31883.17 31884.79 34389.68 35566.86 36783.08 36084.52 36183.07 26482.85 36084.78 37062.86 35793.49 34782.85 26694.86 30594.03 319
test-mter81.21 33580.01 34284.79 34389.68 35566.86 36783.08 36084.52 36173.85 33282.85 36084.78 37043.66 38693.49 34782.85 26694.86 30594.03 319
test250685.42 30684.57 30887.96 31597.81 10266.53 36996.14 5856.35 38789.04 16993.55 20298.10 4042.88 38998.68 16288.09 20199.18 9398.67 99
PVSNet_070.34 2174.58 34772.96 35079.47 35890.63 34366.24 37073.26 37283.40 36763.67 37478.02 37578.35 37872.53 31189.59 36756.68 37760.05 38282.57 376
ADS-MVSNet82.25 32681.55 32784.34 34689.04 36165.30 37187.57 31285.13 36072.71 34184.46 34992.45 29968.08 32892.33 35370.58 36083.97 37195.38 287
tpmvs84.22 31583.97 31384.94 34187.09 37365.18 37291.21 23188.35 32882.87 26785.21 34390.96 32465.24 34696.75 29279.60 30685.25 37092.90 342
tpm281.46 33280.35 33984.80 34289.90 35265.14 37390.44 25085.36 35565.82 37082.05 36592.44 30157.94 36896.69 29470.71 35988.49 36492.56 345
EPMVS81.17 33680.37 33883.58 34985.58 37965.08 37490.31 25771.34 38377.31 31285.80 34191.30 31859.38 36692.70 35279.99 29782.34 37692.96 341
tpm cat180.61 34079.46 34384.07 34888.78 36365.06 37589.26 28888.23 33062.27 37581.90 36789.66 34162.70 35995.29 33071.72 35280.60 37891.86 352
DeepMVS_CXcopyleft53.83 36570.38 38764.56 37648.52 38933.01 38165.50 38274.21 38056.19 37246.64 38438.45 38370.07 38050.30 380
PVSNet76.22 2082.89 32382.37 32384.48 34593.96 28664.38 37778.60 37188.61 32671.50 34584.43 35186.36 36474.27 30694.60 33569.87 36293.69 32894.46 310
TESTMET0.1,179.09 34478.04 34782.25 35387.52 37064.03 37883.08 36080.62 37370.28 35580.16 37283.22 37344.13 38590.56 36179.95 29893.36 33192.15 348
tpm84.38 31484.08 31285.30 33990.47 34663.43 37989.34 28585.63 35277.24 31387.62 32995.03 22361.00 36497.30 27479.26 30891.09 35695.16 290
MDTV_nov1_ep1383.88 31589.42 35961.52 38088.74 30187.41 33773.99 33184.96 34794.01 26065.25 34595.53 32078.02 31493.16 335
gm-plane-assit87.08 37459.33 38171.22 34683.58 37297.20 27773.95 340
tpmrst82.85 32482.93 32182.64 35287.65 36858.99 38290.14 26287.90 33575.54 32183.93 35391.63 31566.79 33795.36 32781.21 28681.54 37793.57 334
dp79.28 34378.62 34681.24 35585.97 37856.45 38386.91 32685.26 35872.97 33981.45 37089.17 34856.01 37395.45 32573.19 34576.68 37991.82 353
new-patchmatchnet88.97 25390.79 20683.50 35094.28 27955.83 38485.34 34593.56 27586.18 22095.47 13395.73 19383.10 23496.51 29885.40 24298.06 20998.16 138
dmvs_testset78.23 34678.99 34475.94 36191.99 32555.34 38588.86 29678.70 37882.69 26981.64 36979.46 37675.93 30085.74 37648.78 38182.85 37586.76 369
MVS-HIRNet78.83 34580.60 33773.51 36393.07 30147.37 38687.10 32378.00 38068.94 36077.53 37697.26 9471.45 31894.62 33463.28 37488.74 36378.55 378
PMMVS281.31 33383.44 31674.92 36290.52 34546.49 38769.19 37685.23 35984.30 25387.95 32594.71 23676.95 29384.36 37964.07 37298.09 20793.89 323
MDTV_nov1_ep13_2view42.48 38888.45 30667.22 36583.56 35666.80 33572.86 34794.06 318
tmp_tt37.97 35044.33 35318.88 36611.80 38921.54 38963.51 37745.66 3904.23 38351.34 38350.48 38159.08 36722.11 38544.50 38268.35 38113.00 381
test_method50.44 34948.94 35254.93 36439.68 38812.38 39028.59 37990.09 3216.82 38241.10 38478.41 37754.41 37570.69 38350.12 38051.26 38381.72 377
test1239.49 35212.01 3551.91 3672.87 3901.30 39182.38 3631.34 3921.36 3852.84 3866.56 3842.45 3900.97 3862.73 3845.56 3843.47 382
testmvs9.02 35311.42 3561.81 3682.77 3911.13 39279.44 3701.90 3911.18 3862.65 3876.80 3831.95 3910.87 3872.62 3853.45 3853.44 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.35 35131.13 3540.00 3690.00 3920.00 3930.00 38095.58 2270.00 3870.00 38891.15 32093.43 810.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.56 35410.09 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38790.77 1430.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.56 35410.08 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38890.69 3290.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145275.31 32495.87 11795.75 19292.93 9896.34 30887.18 21898.68 15198.04 146
eth-test20.00 392
eth-test0.00 392
test_241102_TWO98.10 5191.95 9597.54 3997.25 9595.37 2999.35 5993.29 6599.25 8298.49 117
9.1494.81 10197.49 12594.11 13698.37 1887.56 20495.38 13796.03 17794.66 5799.08 9390.70 13298.97 116
test_0728_THIRD93.26 6897.40 5097.35 8894.69 5699.34 6293.88 3899.42 5198.89 71
GSMVS94.75 304
sam_mvs166.64 33894.75 304
sam_mvs66.41 339
MTGPAbinary97.62 102
test_post190.21 2595.85 38665.36 34496.00 31479.61 304
test_post6.07 38565.74 34395.84 317
patchmatchnet-post91.71 31366.22 34197.59 258
MTMP94.82 10954.62 388
test9_res88.16 19998.40 17497.83 173
agg_prior287.06 22198.36 18397.98 155
test_prior290.21 25989.33 16490.77 27594.81 23090.41 15388.21 19598.55 162
旧先验290.00 26768.65 36192.71 23396.52 29785.15 245
新几何290.02 266
无先验89.94 26895.75 21770.81 35198.59 17381.17 28794.81 300
原ACMM289.34 285
testdata298.03 21880.24 294
segment_acmp92.14 114
testdata188.96 29488.44 184
plane_prior597.81 8898.95 11389.26 17698.51 16898.60 110
plane_prior495.59 197
plane_prior294.56 12091.74 112
plane_prior197.38 130
n20.00 393
nn0.00 393
door-mid92.13 304
test1196.65 178
door91.26 313
HQP-NCC96.36 18291.37 22687.16 20888.81 308
ACMP_Plane96.36 18291.37 22687.16 20888.81 308
BP-MVS86.55 230
HQP4-MVS88.81 30898.61 16998.15 139
HQP3-MVS97.31 12997.73 224
HQP2-MVS84.76 222
ACMMP++_ref98.82 135
ACMMP++99.25 82
Test By Simon90.61 149