This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 34286.18 24798.78 14489.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
Effi-MVS+-dtu93.90 13992.60 17697.77 394.74 27896.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1842.44 4065.32 40798.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
FPMVS84.50 32683.28 33188.16 32396.32 19794.49 1685.76 36385.47 36883.09 27785.20 35994.26 26163.79 36786.58 39763.72 39391.88 37483.40 395
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 10394.12 13296.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29891.41 12897.61 24298.30 136
LS3D96.11 4795.83 6396.95 3694.75 27794.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29792.08 10795.55 30198.45 127
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS93.33 15192.67 17495.33 8696.58 17594.06 2192.26 20892.18 30985.92 23196.22 10596.61 15385.64 22895.99 33290.35 15298.23 19995.93 282
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
X-MVStestdata90.70 21588.45 26297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 40494.56 6499.39 4993.57 5899.05 10698.93 68
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
N_pmnet88.90 26887.25 29093.83 15494.40 29093.81 3584.73 37187.09 35379.36 31793.26 22392.43 31479.29 28291.68 37877.50 33597.22 25696.00 278
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29485.53 25397.96 22497.41 215
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
CPTT-MVS94.74 10294.12 13296.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
DeepPCF-MVS90.46 694.20 12793.56 15296.14 5295.96 22892.96 4389.48 29397.46 11885.14 24996.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL89.18 25688.02 27992.64 19695.90 23392.87 4588.67 31791.06 32380.34 30590.03 30391.67 32683.34 24494.42 35976.35 34494.84 32290.64 381
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
LF4IMVS92.72 17392.02 18894.84 10695.65 24891.99 5492.92 17596.60 18485.08 25292.44 25593.62 28486.80 21296.35 32386.81 23298.25 19796.18 271
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
F-COLMAP92.28 18791.06 21295.95 5997.52 12591.90 5693.53 15697.18 14283.98 26588.70 32794.04 26988.41 18398.55 17980.17 31095.99 29297.39 219
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
MAR-MVS90.32 23188.87 25794.66 11594.82 27291.85 5794.22 13494.75 26080.91 30187.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
PHI-MVS94.34 11993.80 13995.95 5995.65 24891.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
OMC-MVS94.22 12693.69 14495.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNLPA91.72 19791.20 20893.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 36079.92 31697.12 25994.37 334
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR93.66 14393.28 15994.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 32190.39 14998.28 19397.07 231
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 34191.72 11999.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.93.07 16292.41 18095.06 9995.82 23790.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
hse-mvs292.24 18991.20 20895.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30898.69 16191.02 13396.03 29096.81 245
h-mvs3392.89 16691.99 18995.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30899.14 8691.02 13395.71 29897.04 235
AUN-MVS90.05 24288.30 26695.32 8896.09 21890.52 7792.42 19892.05 31582.08 29288.45 33192.86 30165.76 35698.69 16188.91 19696.07 28996.75 249
ZD-MVS97.23 13990.32 7897.54 11284.40 26294.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
mvsany_test389.11 25988.21 27491.83 22391.30 35890.25 7988.09 32278.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23894.20 33794.80 323
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft85.34 1590.40 22488.92 25494.85 10596.53 18290.02 8191.58 23396.48 19480.16 30786.14 35492.18 31785.73 22598.25 20776.87 33994.61 32896.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_prior489.91 8290.74 252
NCCC94.08 13193.54 15395.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24299.45 2795.52 2299.66 2199.36 24
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TAPA-MVS88.58 1092.49 18091.75 19694.73 11096.50 18389.69 8692.91 17697.68 10178.02 32892.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
TEST996.45 18789.46 9090.60 25796.92 16279.09 32090.49 29294.39 25891.31 13698.88 121
train_agg92.71 17491.83 19495.35 8496.45 18789.46 9090.60 25796.92 16279.37 31590.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
test_part298.21 7589.41 9396.72 81
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23697.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23996.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
test_896.37 18989.14 10090.51 26096.89 16579.37 31590.42 29494.36 26091.20 14198.82 131
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
test_vis3_rt90.40 22490.03 23591.52 23792.58 32488.95 10390.38 26597.72 10073.30 35797.79 3097.51 8477.05 30487.10 39589.03 19394.89 31998.50 122
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27299.63 695.48 2499.69 1499.60 12
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 36192.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24694.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
plane_prior797.71 11288.68 109
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 40359.84 39799.41 5670.73 401
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23897.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 307
CDPH-MVS92.67 17591.83 19495.18 9696.94 15288.46 11890.70 25497.07 15177.38 33092.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
plane_prior388.43 11990.35 15093.31 218
Fast-Effi-MVS+-dtu92.77 17292.16 18394.58 12494.66 28388.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28796.90 240
plane_prior697.21 14288.23 12186.93 209
HQP_MVS94.26 12393.93 13595.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
plane_prior88.12 12293.01 17288.98 17498.06 214
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
UGNet93.08 16092.50 17894.79 10893.87 30287.99 12595.07 10194.26 27290.64 14287.33 34897.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DeepC-MVS_fast89.96 793.73 14293.44 15594.60 12196.14 21487.90 12693.36 16497.14 14585.53 24293.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
pmmvs-eth3d91.54 20190.73 22093.99 14295.76 24287.86 12890.83 24993.98 27978.23 32794.02 19996.22 18082.62 25796.83 30786.57 23898.33 18997.29 225
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24198.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
alignmvs93.26 15492.85 16794.50 12695.70 24487.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26398.72 15291.61 12297.87 22997.33 223
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
新几何193.17 17797.16 14487.29 13594.43 26767.95 38591.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 343
test_fmvs392.42 18292.40 18192.46 20793.80 30587.28 13693.86 14797.05 15276.86 33596.25 10298.66 1882.87 25191.26 38095.44 2696.83 27298.82 82
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
MM94.41 11594.14 13195.22 9495.84 23587.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
NP-MVS96.82 16287.10 14193.40 290
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25587.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
canonicalmvs94.59 10894.69 11194.30 13495.60 25287.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
MVS_111021_HR93.63 14493.42 15694.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
DP-MVS Recon92.31 18691.88 19293.60 16097.18 14386.87 14791.10 24497.37 12384.92 25592.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 291
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28266.43 38887.64 34389.20 35879.33 28185.38 39981.59 29589.98 38393.66 351
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
IU-MVS98.51 5186.66 15496.83 17072.74 36295.83 12393.00 8799.29 7498.64 112
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
MVP-Stereo90.07 24188.92 25493.54 16496.31 19886.49 15790.93 24795.59 23079.80 30891.48 27595.59 20980.79 27397.39 27978.57 32791.19 37696.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 24988.22 27393.53 16595.37 26086.49 15789.26 30193.59 28279.76 31091.15 28292.31 31677.12 30398.38 19477.51 33497.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 25099.35 6088.19 20799.52 4198.96 64
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 27891.59 37975.99 34793.09 35987.94 389
TAMVS90.16 23589.05 25093.49 16996.49 18486.37 16290.34 26792.55 30580.84 30492.99 23494.57 25481.94 26498.20 21073.51 36098.21 20295.90 285
AdaColmapbinary91.63 19991.36 20592.47 20695.56 25386.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 366
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
ETV-MVS92.99 16392.74 17093.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 38092.22 11699.19 8188.03 21497.73 23495.66 296
bld_raw_dy_0_6494.27 12194.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28698.87 12595.63 1799.53 3898.81 84
fmvsm_l_conf0.5_n93.79 14093.81 13793.73 15696.16 21186.26 16792.46 19496.72 17881.69 29595.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
API-MVS91.52 20291.61 19791.26 24794.16 29386.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29679.09 32497.35 25390.45 382
EPNet89.80 24888.25 27094.45 13083.91 40586.18 16993.87 14687.07 35491.16 13180.64 39394.72 24778.83 28498.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 32183.04 33391.19 25287.56 39186.14 17089.40 29784.44 37888.98 17482.20 38497.95 5456.82 38596.15 32676.55 34383.45 39591.30 377
test_f86.65 31187.13 29485.19 35690.28 37186.11 17186.52 35391.66 31969.76 37995.73 13197.21 11069.51 33881.28 40289.15 19094.40 33088.17 388
VDD-MVS94.37 11694.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11892.55 32685.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17481.11 38975.03 40470.80 37488.57 33094.63 25083.08 24887.38 39480.39 30486.57 39087.21 390
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
EI-MVSNet-UG-set94.35 11894.27 12794.59 12292.46 32985.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
PCF-MVS84.52 1789.12 25887.71 28293.34 17296.06 22085.84 17786.58 35297.31 13268.46 38493.61 21193.89 27787.51 19898.52 18167.85 38598.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_030493.92 13793.68 14594.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
fmvsm_s_conf0.5_n_a94.02 13394.08 13493.84 15396.72 16685.73 18093.65 15595.23 24683.30 27195.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
fmvsm_s_conf0.1_n_a94.26 12394.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27395.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
MCST-MVS92.91 16592.51 17794.10 14097.52 12585.72 18191.36 23997.13 14780.33 30692.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
fmvsm_l_conf0.5_n_a93.59 14593.63 14793.49 16996.10 21785.66 18392.32 20396.57 18781.32 29895.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
pmmvs488.95 26687.70 28392.70 19394.30 29185.60 18487.22 33492.16 31174.62 34989.75 31194.19 26477.97 29496.41 31982.71 28196.36 28596.09 274
EPP-MVSNet93.91 13893.68 14594.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26199.57 1487.28 22798.89 12698.65 107
test_fmvs290.62 21990.40 22891.29 24691.93 34585.46 18692.70 18396.48 19474.44 35094.91 17397.59 7475.52 31690.57 38293.44 6896.56 28097.84 182
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21888.77 38685.42 18790.31 26894.38 26870.02 37888.00 33793.30 29273.78 32394.03 36575.96 34896.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.95 15185.27 18988.83 31193.61 28165.09 39390.74 28994.85 24184.62 23797.36 25293.91 344
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
HQP5-MVS84.89 192
HQP-MVS92.09 19191.49 20293.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23598.60 17286.55 24097.73 23498.14 149
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
fmvsm_s_conf0.1_n94.19 12994.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 26195.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
fmvsm_s_conf0.5_n94.00 13494.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 26095.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
GBi-Net93.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
test193.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33689.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 294
DPM-MVS89.35 25488.40 26392.18 21596.13 21684.20 20286.96 33996.15 21075.40 34487.36 34791.55 32983.30 24598.01 22782.17 29096.62 27994.32 336
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
OpenMVScopyleft89.45 892.27 18892.13 18692.68 19594.53 28784.10 20495.70 7697.03 15382.44 28891.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 301
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
EIA-MVS92.35 18592.03 18793.30 17495.81 23983.97 20692.80 17998.17 4587.71 20389.79 30987.56 37091.17 14499.18 8287.97 21597.27 25496.77 247
PVSNet_Blended_VisFu91.63 19991.20 20892.94 18597.73 11083.95 20792.14 21197.46 11878.85 32492.35 26094.98 23684.16 23999.08 9486.36 24496.77 27595.79 289
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
lessismore_v093.87 15198.05 8583.77 20980.32 39497.13 6097.91 5977.49 29799.11 9392.62 9798.08 21398.74 95
CLD-MVS91.82 19491.41 20493.04 17896.37 18983.65 21086.82 34497.29 13584.65 25992.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet92.38 18491.99 18993.52 16793.82 30483.46 21191.14 24297.00 15589.81 15786.47 35294.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
QAPM92.88 16792.77 16893.22 17695.82 23783.31 21296.45 3997.35 12983.91 26693.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
Effi-MVS+92.79 17092.74 17092.94 18595.10 26583.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 31096.88 243
sd_testset93.94 13694.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 101
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521192.58 17792.50 17892.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26597.50 27085.12 25998.52 17197.77 190
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26699.60 994.69 3399.39 5899.15 39
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
LCM-MVSNet-Re94.20 12794.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
MSDG90.82 21190.67 22191.26 24794.16 29383.08 22086.63 34996.19 20790.60 14491.94 27091.89 32289.16 17895.75 33680.96 30394.51 32994.95 317
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22289.51 29287.37 35184.38 26385.37 35785.08 38772.44 32686.59 39668.05 38491.03 37991.33 376
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31687.57 22199.35 6198.70 101
MSLP-MVS++93.25 15693.88 13691.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 32390.35 15298.25 19794.96 316
K. test v393.37 15093.27 16093.66 15898.05 8582.62 22594.35 12686.62 35696.05 2997.51 4398.85 1276.59 31299.65 393.21 7998.20 20498.73 96
test_fmvs1_n88.73 27388.38 26489.76 29192.06 34082.53 22692.30 20696.59 18671.14 36992.58 24995.41 22168.55 34089.57 39091.12 13195.66 29997.18 229
Fast-Effi-MVS+91.28 20890.86 21592.53 20495.45 25682.53 22689.25 30396.52 19285.00 25389.91 30588.55 36492.94 10098.84 12984.72 26795.44 30596.22 269
test_vis1_n89.01 26389.01 25289.03 30492.57 32582.46 22892.62 18796.06 21173.02 36090.40 29595.77 20374.86 31889.68 38890.78 14094.98 31794.95 317
VDDNet94.03 13294.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23898.75 14787.09 23098.83 13898.81 84
114514_t90.51 22089.80 24092.63 19898.00 9182.24 23093.40 16297.29 13565.84 39189.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
testdata91.03 25596.87 15782.01 23194.28 27171.55 36692.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 350
FMVSNet292.78 17192.73 17292.95 18395.40 25781.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26898.81 13687.38 22698.67 15798.06 153
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
ab-mvs92.40 18392.62 17591.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 276
xiu_mvs_v1_base_debu91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
xiu_mvs_v1_base91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
iter_conf_final90.23 23389.32 24692.95 18394.65 28481.46 24094.32 13095.40 24285.61 23992.84 23995.37 22454.58 38899.13 8892.16 10498.94 12498.25 139
casdiffmvspermissive94.32 12094.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22593.04 31681.28 24287.17 33686.14 35979.57 31383.65 37388.66 36157.10 38398.18 21387.74 21995.40 30695.90 285
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24390.43 26495.72 22370.55 37591.70 27394.63 25068.13 34189.42 39190.59 14495.34 30994.94 319
V4293.43 14993.58 15092.97 18195.34 26181.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
OpenMVS_ROBcopyleft85.12 1689.52 25189.05 25090.92 26094.58 28681.21 24591.10 24493.41 28877.03 33493.41 21593.99 27383.23 24697.80 24879.93 31494.80 32393.74 349
PAPM_NR91.03 21090.81 21791.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 34496.68 250
baseline94.26 12394.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
1112_ss88.42 27787.41 28691.45 23996.69 16780.99 24789.72 28796.72 17873.37 35687.00 35090.69 34177.38 30098.20 21081.38 29793.72 34795.15 309
tfpnnormal94.27 12194.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
HyFIR lowres test87.19 30485.51 31592.24 21097.12 14780.51 25185.03 36996.06 21166.11 39091.66 27492.98 30070.12 33699.14 8675.29 35095.23 31297.07 231
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28580.24 25289.69 28895.88 21885.77 23393.94 20395.69 20681.99 26292.98 37384.21 27091.30 37597.62 201
MDA-MVSNet-bldmvs91.04 20990.88 21491.55 23594.68 28280.16 25385.49 36592.14 31290.41 14994.93 17295.79 19985.10 23296.93 30285.15 25794.19 33997.57 204
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
VNet92.67 17592.96 16391.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
DELS-MVS92.05 19292.16 18391.72 22894.44 28880.13 25687.62 32597.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 25788.32 26591.70 23095.73 24380.07 25788.10 32193.22 29071.98 36590.09 30092.79 30478.53 29098.56 17787.43 22497.06 26196.46 259
jason: jason.
MVSFormer92.18 19092.23 18292.04 22094.74 27880.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30599.60 996.41 996.75 27696.46 259
lupinMVS88.34 27987.31 28791.45 23994.74 27880.06 25887.23 33392.27 30871.10 37088.83 31991.15 33277.02 30598.53 18086.67 23696.75 27695.76 290
WR-MVS93.49 14793.72 14292.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
CANet_DTU89.85 24689.17 24891.87 22292.20 33580.02 26190.79 25095.87 21986.02 22982.53 38391.77 32480.01 27798.57 17685.66 25297.70 23797.01 236
FA-MVS(test-final)91.81 19591.85 19391.68 23194.95 26879.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29698.45 18988.04 21397.49 24596.61 251
Patchmatch-RL test88.81 27088.52 26089.69 29495.33 26279.94 26386.22 35792.71 30078.46 32595.80 12494.18 26566.25 35495.33 34789.22 18898.53 17093.78 347
FMVSNet390.78 21390.32 23092.16 21693.03 31779.92 26492.54 18994.95 25386.17 22795.10 16496.01 19069.97 33798.75 14786.74 23398.38 18397.82 185
XXY-MVS92.58 17793.16 16290.84 26497.75 10779.84 26591.87 22596.22 20685.94 23095.53 13897.68 6792.69 10894.48 35783.21 27797.51 24498.21 142
test_yl90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
DCV-MVSNet90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
FMVSNet587.82 28786.56 30491.62 23392.31 33079.81 26893.49 15894.81 25983.26 27291.36 27796.93 13052.77 39397.49 27276.07 34698.03 21797.55 207
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
tttt051789.81 24788.90 25692.55 20397.00 14979.73 27095.03 10383.65 38089.88 15695.30 15394.79 24553.64 39199.39 4991.99 11098.79 14398.54 120
v119293.49 14793.78 14092.62 19996.16 21179.62 27191.83 22897.22 14186.07 22896.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
v114493.50 14693.81 13792.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
FE-MVS89.06 26088.29 26791.36 24294.78 27579.57 27396.77 2890.99 32484.87 25692.96 23696.29 17460.69 37998.80 13980.18 30997.11 26095.71 292
BH-untuned90.68 21690.90 21390.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31392.80 365
KD-MVS_self_test94.10 13094.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
CHOSEN 1792x268887.19 30485.92 31391.00 25897.13 14679.41 27684.51 37595.60 22664.14 39490.07 30294.81 24278.26 29297.14 29273.34 36195.38 30896.46 259
thisisatest053088.69 27487.52 28592.20 21196.33 19679.36 27792.81 17884.01 37986.44 22093.67 20992.68 30853.62 39299.25 7589.65 17698.45 17798.00 161
LFMVS91.33 20691.16 21191.82 22496.27 20279.36 27795.01 10485.61 36796.04 3094.82 17697.06 12172.03 33098.46 18884.96 26398.70 15397.65 200
TR-MVS87.70 28887.17 29289.27 30194.11 29579.26 27988.69 31591.86 31781.94 29390.69 29089.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
test20.0390.80 21290.85 21690.63 27095.63 25079.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34973.86 35999.05 10697.39 219
IterMVS-SCA-FT91.65 19891.55 19891.94 22193.89 30179.22 28187.56 32893.51 28591.53 12295.37 14996.62 15278.65 28798.90 11891.89 11494.95 31897.70 196
EI-MVSNet92.99 16393.26 16192.19 21292.12 33879.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
IterMVS-LS93.78 14194.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28492.52 19092.81 29673.08 35989.10 31696.93 13067.11 34697.64 26588.80 19892.70 36494.08 338
RPMNet90.31 23290.14 23490.81 26691.01 36178.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33999.41 3990.17 16292.70 36494.08 338
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28689.45 29495.44 23775.29 34793.23 22695.65 20871.58 33190.23 38688.05 21293.55 35195.44 303
patch_mono-292.46 18192.72 17391.71 22996.65 17078.91 28788.85 31097.17 14383.89 26792.45 25496.76 14189.86 17297.09 29390.24 15998.59 16499.12 43
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25478.88 28887.39 33294.02 27779.32 31893.06 23194.02 27180.72 27494.27 36275.16 35193.08 36096.54 252
v2v48293.29 15293.63 14792.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
Anonymous2023120688.77 27188.29 26790.20 28396.31 19878.81 29089.56 29193.49 28674.26 35292.38 25895.58 21282.21 25895.43 34472.07 36898.75 14896.34 263
PVSNet_BlendedMVS90.35 22989.96 23691.54 23694.81 27378.80 29190.14 27396.93 16079.43 31488.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27378.80 29186.64 34896.93 16074.67 34888.68 32889.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
BH-RMVSNet90.47 22290.44 22690.56 27295.21 26478.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30795.14 310
D2MVS89.93 24489.60 24590.92 26094.03 29878.40 29488.69 31594.85 25578.96 32293.08 23095.09 23274.57 31996.94 30088.19 20798.96 12197.41 215
v192192093.26 15493.61 14992.19 21296.04 22578.31 29591.88 22497.24 13985.17 24896.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
v14419293.20 15993.54 15392.16 21696.05 22178.26 29691.95 21797.14 14584.98 25495.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
diffmvspermissive91.74 19691.93 19191.15 25393.06 31578.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss87.23 30186.82 29988.46 31893.96 29977.94 29886.84 34292.78 29977.59 32987.61 34591.83 32378.75 28591.92 37777.84 33094.20 33795.52 302
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29987.88 32492.49 30675.42 34392.57 25093.59 28680.44 27594.24 36481.28 29892.75 36394.69 329
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29994.02 14191.58 32175.68 34083.64 37493.64 28277.40 29997.42 27671.70 37192.07 37193.05 362
v124093.29 15293.71 14392.06 21996.01 22677.89 30191.81 22997.37 12385.12 25096.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
CL-MVSNet_self_test90.04 24389.90 23890.47 27395.24 26377.81 30286.60 35192.62 30385.64 23793.25 22593.92 27583.84 24096.06 33079.93 31498.03 21797.53 208
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16477.75 30387.53 33096.25 20269.73 38086.47 35293.61 28575.67 31597.88 23979.95 31293.20 35695.11 313
v14892.87 16893.29 15791.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21994.16 27359.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
miper_lstm_enhance89.90 24589.80 24090.19 28491.37 35777.50 30683.82 38195.00 25184.84 25793.05 23294.96 23776.53 31395.20 35089.96 16998.67 15797.86 179
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31896.23 20476.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 268
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 25197.66 11877.32 30994.33 12887.66 34991.20 12992.99 23495.13 23075.40 31798.28 20277.86 32999.19 9297.99 164
BH-w/o87.21 30287.02 29787.79 32994.77 27677.27 31087.90 32393.21 29281.74 29489.99 30488.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 25189.82 30790.07 34466.80 34997.76 25584.56 26894.27 33595.96 280
TinyColmap92.00 19392.76 16989.71 29395.62 25177.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31881.77 29298.77 14595.66 296
Patchmtry90.11 23889.92 23790.66 26990.35 37077.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34697.52 26985.17 25598.98 11497.46 211
DIV-MVS_self_test90.65 21790.56 22490.91 26291.85 34676.99 31486.75 34595.36 24385.52 24494.06 19694.89 23977.37 30197.99 23090.28 15698.97 11997.76 191
cl____90.65 21790.56 22490.91 26291.85 34676.98 31586.75 34595.36 24385.53 24294.06 19694.89 23977.36 30297.98 23190.27 15798.98 11497.76 191
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30892.18 30973.71 35588.36 33293.89 27776.86 31096.73 31080.32 30596.81 27396.51 254
iter_conf0588.94 26788.09 27791.50 23892.74 32276.97 31692.80 17995.92 21782.82 28293.65 21095.37 22449.41 39599.13 8890.82 13899.28 7998.40 130
eth_miper_zixun_eth90.72 21490.61 22291.05 25492.04 34176.84 31886.91 34096.67 18185.21 24794.41 18793.92 27579.53 28098.26 20689.76 17397.02 26398.06 153
c3_l91.32 20791.42 20391.00 25892.29 33176.79 31987.52 33196.42 19685.76 23494.72 18293.89 27782.73 25498.16 21590.93 13798.55 16798.04 156
test_vis1_n_192089.45 25289.85 23988.28 32093.59 30776.71 32090.67 25597.78 9679.67 31290.30 29896.11 18576.62 31192.17 37690.31 15493.57 34995.96 280
MVSTER89.32 25588.75 25891.03 25590.10 37376.62 32190.85 24894.67 26482.27 28995.24 15995.79 19961.09 37798.49 18390.49 14698.26 19597.97 168
miper_ehance_all_eth90.48 22190.42 22790.69 26891.62 35376.57 32286.83 34396.18 20883.38 27094.06 19692.66 30982.20 25998.04 22289.79 17297.02 26397.45 212
cl2289.02 26188.50 26190.59 27189.76 37576.45 32386.62 35094.03 27582.98 28092.65 24692.49 31072.05 32997.53 26888.93 19497.02 26397.78 189
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17371.01 37186.89 35185.91 38181.35 26796.94 30083.09 27895.60 30094.35 335
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32690.98 32572.71 36384.46 36692.45 31168.08 34296.48 31670.58 37983.97 39395.38 304
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10790.00 33257.17 40095.71 13297.37 9164.77 36297.68 26292.67 9694.37 33294.52 331
MIMVSNet87.13 30686.54 30588.89 30796.05 22176.11 32694.39 12588.51 33781.37 29788.27 33496.75 14372.38 32795.52 33965.71 39095.47 30495.03 314
IterMVS90.18 23490.16 23190.21 28293.15 31375.98 32887.56 32892.97 29486.43 22194.09 19396.40 16378.32 29197.43 27587.87 21794.69 32697.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test92.57 17993.29 15790.40 27693.53 30875.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30396.99 237
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 31182.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VPNet93.08 16093.76 14191.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23075.68 34092.49 25189.45 35578.96 28397.88 23987.86 21897.02 26396.81 245
Anonymous2024052192.86 16993.57 15190.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27697.96 23292.60 9899.68 1898.75 92
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33486.65 37553.94 39098.72 15282.56 28397.40 25195.67 295
PS-MVSNAJ88.86 26988.99 25388.48 31794.88 26974.71 33586.69 34795.60 22680.88 30287.83 34087.37 37390.77 15198.82 13182.52 28494.37 33291.93 372
WTY-MVS86.93 30986.50 30888.24 32194.96 26774.64 33687.19 33592.07 31478.29 32688.32 33391.59 32878.06 29394.27 36274.88 35293.15 35895.80 288
xiu_mvs_v2_base89.00 26489.19 24788.46 31894.86 27174.63 33786.97 33895.60 22680.88 30287.83 34088.62 36391.04 14698.81 13682.51 28594.38 33191.93 372
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21994.10 27474.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38495.36 34569.49 38294.72 32588.79 386
USDC89.02 26189.08 24988.84 30895.07 26674.50 34088.97 30696.39 19773.21 35893.27 22296.28 17682.16 26096.39 32077.55 33398.80 14295.62 299
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27172.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23288.26 33984.84 25772.96 40289.85 34571.27 33397.69 26176.60 34197.62 24196.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline187.62 29287.31 28788.54 31494.71 28174.27 34393.10 17188.20 34186.20 22592.18 26693.04 29773.21 32495.52 33979.32 32185.82 39195.83 287
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 29086.69 35585.73 23589.81 30892.83 30265.24 36091.04 38177.82 33295.78 29793.88 346
dcpmvs_293.96 13595.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28694.88 17595.14 22982.70 25593.61 36783.28 27693.80 34696.46 259
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28794.99 17095.11 23182.70 25593.70 36683.33 27593.83 34596.48 258
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27888.13 33686.61 37662.86 37189.10 39366.24 38990.29 38193.77 348
thres600view787.66 29087.10 29689.36 29996.05 22173.17 34992.72 18185.31 37091.89 10293.29 22090.97 33563.42 36898.39 19173.23 36296.99 26896.51 254
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
thres100view90087.35 29986.89 29888.72 31096.14 21473.09 35193.00 17385.31 37092.13 9593.26 22390.96 33663.42 36898.28 20271.27 37496.54 28194.79 324
tfpn200view987.05 30786.52 30688.67 31195.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28194.79 324
thres40087.20 30386.52 30689.24 30395.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28196.51 254
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31281.22 38978.97 32179.82 39587.56 37061.73 37597.80 24874.30 35690.05 38296.05 277
ECVR-MVScopyleft90.12 23790.16 23190.00 28897.81 10372.68 35595.76 7578.54 39989.04 17295.36 15098.10 4270.51 33598.64 16887.10 22999.18 9498.67 105
thres20085.85 31585.18 31687.88 32894.44 28872.52 35689.08 30586.21 35888.57 18591.44 27688.40 36564.22 36398.00 22868.35 38395.88 29693.12 359
MG-MVS89.54 25089.80 24088.76 30994.88 26972.47 35789.60 28992.44 30785.82 23289.48 31395.98 19182.85 25297.74 25881.87 29195.27 31196.08 275
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 29069.47 38176.13 40089.84 34672.15 32897.23 28453.27 40289.02 38492.37 369
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29588.11 34482.26 29088.71 32692.83 30278.65 28797.59 26679.61 31893.30 35494.75 326
testgi90.38 22791.34 20687.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 37271.60 37297.85 23097.88 177
test111190.39 22690.61 22289.74 29298.04 8871.50 36195.59 8179.72 39689.41 16495.94 11798.14 3970.79 33498.81 13688.52 20499.32 6898.90 74
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11167.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10665.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
ppachtmachnet_test88.61 27588.64 25988.50 31691.76 34870.99 36484.59 37492.98 29379.30 31992.38 25893.53 28879.57 27997.45 27486.50 24297.17 25897.07 231
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30992.06 26992.17 31878.63 28995.63 33784.77 26594.73 32496.22 269
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20388.17 34256.15 40190.64 29195.85 19567.97 34496.69 31188.78 19990.52 38092.56 367
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34584.65 40067.44 38691.90 37390.78 380
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25677.66 40154.99 40283.30 37897.57 7577.89 29590.50 38466.86 38895.54 30291.97 371
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25987.34 35278.87 32387.22 34992.74 30666.91 34896.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 20081.66 38981.73 39562.89 37089.84 38775.79 34994.65 32782.71 397
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20283.25 37983.01 39462.22 37489.17 39277.15 33894.31 33482.93 396
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26982.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 306
mvs_anonymous90.37 22891.30 20787.58 33092.17 33768.00 37589.84 28394.73 26183.82 26893.22 22797.40 8987.54 19797.40 27887.94 21695.05 31697.34 222
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22484.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 267
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 29181.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 310
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26686.47 35770.42 37683.52 37693.23 29561.18 37696.85 30677.21 33788.26 38793.34 358
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21586.09 36092.20 9389.05 31897.16 11264.15 36496.37 32289.21 18992.98 36293.37 357
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27882.85 38084.78 38862.86 37193.49 36882.85 27994.86 32094.03 341
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24583.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 273
test250685.42 31884.57 32187.96 32597.81 10366.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16388.09 21199.18 9498.67 105
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32589.59 38956.68 39960.05 40482.57 398
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29683.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 300
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 32081.00 39076.23 33987.98 33887.77 36984.98 23493.35 37062.85 39594.10 34295.98 279
testing383.66 33282.52 33787.08 33495.84 23565.84 38789.80 28577.17 40388.17 19390.84 28788.63 36230.95 41198.11 21884.05 27197.19 25797.28 226
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32685.13 37472.71 36384.46 36692.45 31168.08 34292.33 37570.58 37983.97 39395.38 304
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24188.35 33882.87 28185.21 35890.96 33665.24 36096.75 30979.60 32085.25 39292.90 364
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26185.36 36965.82 39282.05 38692.44 31357.94 38296.69 31170.71 37888.49 38692.56 367
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26871.34 40577.31 33285.80 35691.30 33059.38 38092.70 37479.99 31182.34 39892.96 363
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30188.23 34062.27 39781.90 38889.66 35362.70 37395.29 34871.72 37080.60 40091.86 374
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38646.64 40638.45 40670.07 40250.30 402
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29964.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32094.60 35669.87 38193.69 34894.46 332
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29885.63 36677.24 33387.62 34495.03 23561.00 37897.30 28279.26 32291.09 37895.16 308
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29985.13 36081.64 39677.44 29895.00 35185.94 24994.12 34094.91 320
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31487.41 35073.99 35384.96 36494.01 27265.25 35995.53 33878.02 32893.16 357
WAC-MVS61.25 39974.55 353
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29985.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34288.10 36744.08 40396.90 30464.23 39196.36 28595.14 310
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27387.90 34775.54 34283.93 37291.63 32766.79 35195.36 34581.21 30081.54 39993.57 356
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38795.45 34373.19 36376.68 40191.82 375
new-patchmatchnet88.97 26590.79 21883.50 37094.28 29255.83 40585.34 36793.56 28486.18 22695.47 14295.73 20583.10 24796.51 31585.40 25498.06 21498.16 147
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30978.70 39882.69 28381.64 39079.46 39875.93 31485.74 39848.78 40482.85 39786.76 391
SSC-MVS90.16 23592.96 16381.78 37597.88 9948.48 40790.75 25187.69 34896.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
WB-MVS89.44 25392.15 18581.32 37697.73 11048.22 40889.73 28687.98 34695.24 3696.05 11396.99 12785.18 23196.95 29982.45 28697.97 22398.78 88
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33778.00 40068.94 38277.53 39897.26 10371.45 33294.62 35563.28 39488.74 38578.55 400
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26487.95 33994.71 24876.95 30784.36 40164.07 39298.09 21293.89 345
MDTV_nov1_ep13_2view42.48 41188.45 31967.22 38783.56 37566.80 34972.86 36594.06 340
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38122.11 40744.50 40568.35 40313.00 403
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2320.00 4090.00 41091.15 33293.43 840.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3410.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
PC_three_145275.31 34695.87 12295.75 20492.93 10196.34 32587.18 22898.68 15598.04 156
eth-test20.00 414
eth-test0.00 414
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
GSMVS94.75 326
sam_mvs166.64 35294.75 326
sam_mvs66.41 353
MTGPAbinary97.62 105
test_post190.21 2705.85 40865.36 35896.00 33179.61 318
test_post6.07 40765.74 35795.84 335
patchmatchnet-post91.71 32566.22 35597.59 266
MTMP94.82 10954.62 410
test9_res88.16 20998.40 17997.83 183
agg_prior287.06 23198.36 18897.98 165
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
旧先验290.00 27868.65 38392.71 24596.52 31485.15 257
新几何290.02 277
无先验89.94 27995.75 22270.81 37398.59 17481.17 30194.81 322
原ACMM289.34 298
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata188.96 30788.44 187
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
plane_prior495.59 209
plane_prior294.56 12091.74 115
plane_prior197.38 132
n20.00 415
nn0.00 415
door-mid92.13 313
test1196.65 182
door91.26 322
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
BP-MVS86.55 240
HQP4-MVS88.81 32198.61 17098.15 148
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 235
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 157