This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv498.21 297.86 399.26 198.24 7199.36 196.10 6399.32 298.75 299.58 298.70 1891.78 12899.88 198.60 199.67 2098.54 117
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 1
PMVScopyleft87.21 1494.97 9495.33 8793.91 14898.97 1797.16 395.54 8995.85 22596.47 2593.40 22097.46 8695.31 3595.47 34586.18 24998.78 14489.11 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf196.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
APD_test296.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
Effi-MVS+-dtu93.90 14092.60 17997.77 494.74 28296.67 694.00 14595.41 24489.94 15791.93 27492.13 32190.12 16998.97 11387.68 22297.48 24897.67 196
APD_test195.91 5495.42 8397.36 2498.82 2596.62 795.64 8397.64 10793.38 7295.89 12097.23 10593.35 8997.66 26688.20 20898.66 15997.79 185
RPSCF95.58 6894.89 10397.62 897.58 12296.30 895.97 7097.53 12092.42 8593.41 21897.78 6391.21 14397.77 25691.06 13497.06 26398.80 83
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1097.41 1197.28 5698.46 3294.62 6498.84 13094.64 3499.53 3798.99 54
SR-MVS-dyc-post96.84 896.60 2697.56 1198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12394.85 5899.42 3493.49 6298.84 13198.00 158
RE-MVS-def96.66 2198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12395.40 2993.49 6298.84 13198.00 158
SR-MVS96.70 2096.42 3197.54 1298.05 8394.69 1296.13 6298.07 6495.17 4096.82 7696.73 14795.09 4799.43 3392.99 8898.71 15198.50 120
FOURS199.21 394.68 1398.45 498.81 1097.73 798.27 22
mPP-MVS96.46 3296.05 5397.69 598.62 3594.65 1496.45 4197.74 10292.59 8395.47 14196.68 15094.50 6899.42 3493.10 8399.26 8098.99 54
CP-MVS96.44 3596.08 5197.54 1298.29 6594.62 1596.80 2498.08 6192.67 8295.08 16896.39 16994.77 6099.42 3493.17 8199.44 4898.58 116
EGC-MVSNET80.97 35875.73 37496.67 4398.85 2394.55 1696.83 2296.60 1902.44 4115.32 41298.25 3992.24 11798.02 22991.85 11599.21 8897.45 209
FPMVS84.50 32983.28 33488.16 32696.32 19794.49 1785.76 36685.47 37183.09 28085.20 36294.26 26263.79 37286.58 40063.72 39691.88 37783.40 398
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2998.38 6094.31 1896.79 2598.32 2696.69 2096.86 7497.56 7595.48 2798.77 14790.11 16599.44 4898.31 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 10494.12 13596.50 4898.00 8994.23 1991.48 23898.17 4990.72 14195.30 15296.47 15987.94 19596.98 30191.41 13097.61 24398.30 133
LS3D96.11 4895.83 6696.95 3794.75 28194.20 2097.34 1297.98 7997.31 1295.32 15196.77 13993.08 9999.20 8391.79 11798.16 20697.44 211
XVG-OURS-SEG-HR95.38 7895.00 10196.51 4798.10 7994.07 2192.46 19798.13 5490.69 14293.75 21096.25 18298.03 297.02 30092.08 10795.55 30398.45 125
MP-MVScopyleft96.14 4795.68 7297.51 1498.81 2794.06 2296.10 6397.78 10092.73 7993.48 21796.72 14894.23 7399.42 3491.99 11099.29 7399.05 49
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS93.33 15392.67 17795.33 8596.58 17594.06 2292.26 21192.18 31285.92 23496.22 10496.61 15485.64 23295.99 33590.35 15398.23 19995.93 285
MSP-MVS95.34 8094.63 11897.48 1598.67 3294.05 2496.41 4598.18 4591.26 12995.12 16495.15 22986.60 22199.50 2393.43 7196.81 27598.89 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA96.65 2396.38 3597.47 1698.95 1894.05 2495.88 7497.62 10994.46 5096.29 9896.94 12993.56 8199.37 5894.29 4199.42 5098.99 54
anonymousdsp96.74 1896.42 3197.68 798.00 8994.03 2696.97 1997.61 11187.68 20898.45 2098.77 1594.20 7499.50 2396.70 699.40 5599.53 14
XVS96.49 3096.18 4497.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19196.49 15894.56 6699.39 5093.57 5899.05 10498.93 66
X-MVStestdata90.70 21988.45 26697.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19126.89 40994.56 6699.39 5093.57 5899.05 10498.93 66
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4993.11 7696.48 8997.36 9396.92 699.34 6394.31 4099.38 5798.92 70
ACMMPcopyleft96.61 2596.34 3697.43 1998.61 3793.88 3096.95 2098.18 4592.26 9296.33 9496.84 13795.10 4699.40 4793.47 6599.33 6599.02 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.35 597.24 1297.69 598.22 7293.87 3198.42 698.19 4396.95 1795.46 14399.23 493.45 8499.57 1695.34 2999.89 299.63 9
LTVRE_ROB93.87 197.93 398.16 297.26 2798.81 2793.86 3299.07 298.98 797.01 1698.92 698.78 1495.22 4098.61 17296.85 499.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS96.32 4195.94 5797.43 1998.59 4093.84 3395.33 9498.30 2991.40 12795.76 12596.87 13495.26 3799.45 2992.77 9199.21 8899.00 52
APD-MVS_3200maxsize96.82 1096.65 2297.32 2697.95 9393.82 3496.31 5298.25 3395.51 3896.99 6997.05 12295.63 2399.39 5093.31 7498.88 12698.75 89
ACMMPR96.46 3296.14 4797.41 2198.60 3893.82 3496.30 5697.96 8292.35 8995.57 13696.61 15494.93 5699.41 4093.78 5299.15 9699.00 52
region2R96.41 3796.09 4997.38 2398.62 3593.81 3696.32 5197.96 8292.26 9295.28 15596.57 15695.02 5099.41 4093.63 5699.11 9998.94 64
N_pmnet88.90 27187.25 29393.83 15394.40 29393.81 3684.73 37487.09 35679.36 32093.26 22692.43 31579.29 28791.68 38177.50 33897.22 25896.00 281
HPM-MVS++copyleft95.02 9294.39 12296.91 3897.88 9793.58 3894.09 14396.99 16391.05 13492.40 25995.22 22891.03 15099.25 7792.11 10598.69 15497.90 171
HPM-MVScopyleft96.81 1296.62 2497.36 2498.89 2093.53 3997.51 1098.44 1892.35 8995.95 11596.41 16496.71 899.42 3493.99 4799.36 5999.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS96.39 3996.17 4697.04 3298.51 4993.37 4096.30 5697.98 7992.35 8995.63 13396.47 15995.37 3099.27 7593.78 5299.14 9798.48 123
ITE_SJBPF95.95 5897.34 13593.36 4196.55 19791.93 10194.82 17895.39 22591.99 12397.08 29785.53 25597.96 22497.41 212
XVG-ACMP-BASELINE95.68 6495.34 8696.69 4298.40 5893.04 4294.54 12898.05 6890.45 15096.31 9696.76 14192.91 10498.72 15391.19 13299.42 5098.32 130
CPTT-MVS94.74 10394.12 13596.60 4498.15 7693.01 4395.84 7597.66 10689.21 17493.28 22495.46 21888.89 18298.98 10989.80 17298.82 13797.80 184
DeepPCF-MVS90.46 694.20 12993.56 15496.14 5295.96 22892.96 4489.48 29697.46 12585.14 25196.23 10395.42 22193.19 9498.08 22390.37 15298.76 14697.38 218
ACMM88.83 996.30 4396.07 5296.97 3598.39 5992.95 4594.74 11698.03 7390.82 13997.15 5996.85 13596.25 1499.00 10893.10 8399.33 6598.95 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL89.18 26088.02 28292.64 19595.90 23292.87 4688.67 32091.06 32680.34 30890.03 30691.67 32983.34 24994.42 36276.35 34794.84 32590.64 384
ZNCC-MVS96.42 3696.20 4397.07 3198.80 2992.79 4796.08 6598.16 5291.74 11695.34 15096.36 17295.68 2199.44 3094.41 3899.28 7898.97 60
GST-MVS96.24 4495.99 5697.00 3498.65 3392.71 4895.69 8198.01 7692.08 9795.74 12896.28 17895.22 4099.42 3493.17 8199.06 10198.88 75
mvs_tets96.83 996.71 2097.17 2898.83 2492.51 4996.58 3397.61 11187.57 21098.80 998.90 996.50 999.59 1596.15 1399.47 4199.40 20
jajsoiax96.59 2896.42 3197.12 3098.76 3092.49 5096.44 4397.42 12786.96 21998.71 1298.72 1795.36 3299.56 1995.92 1499.45 4599.32 25
AllTest94.88 9894.51 12096.00 5598.02 8792.17 5195.26 9798.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
TestCases96.00 5598.02 8792.17 5198.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
LPG-MVS_test96.38 4096.23 4196.84 3998.36 6392.13 5395.33 9498.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
LGP-MVS_train96.84 3998.36 6392.13 5398.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
LF4IMVS92.72 17692.02 19294.84 10595.65 24991.99 5592.92 17896.60 19085.08 25492.44 25793.62 28586.80 21796.35 32686.81 23498.25 19796.18 274
SteuartSystems-ACMMP96.40 3896.30 3896.71 4198.63 3491.96 5695.70 7998.01 7693.34 7396.64 8496.57 15694.99 5299.36 5993.48 6499.34 6398.82 80
Skip Steuart: Steuart Systems R&D Blog.
F-COLMAP92.28 19191.06 21695.95 5897.52 12591.90 5793.53 15997.18 14883.98 26788.70 33094.04 27088.41 18698.55 18180.17 31395.99 29497.39 216
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 7694.15 5498.93 599.07 588.07 19199.57 1695.86 1599.69 1499.46 17
MAR-MVS90.32 23588.87 26194.66 11594.82 27691.85 5894.22 13794.75 26380.91 30487.52 34988.07 37186.63 22097.87 24576.67 34396.21 29094.25 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_djsdf96.62 2496.49 2897.01 3398.55 4491.77 6097.15 1597.37 12988.98 17798.26 2498.86 1093.35 8999.60 1196.41 999.45 4599.66 6
ACMP88.15 1395.71 6395.43 8296.54 4698.17 7591.73 6194.24 13598.08 6189.46 16696.61 8696.47 15995.85 1899.12 9290.45 14899.56 3498.77 88
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS95.77 6095.58 7696.37 5196.84 16091.72 6296.73 2899.06 694.23 5292.48 25494.79 24693.56 8199.49 2693.47 6599.05 10497.89 173
PHI-MVS94.34 12293.80 14295.95 5895.65 24991.67 6394.82 11497.86 8987.86 20293.04 23694.16 26791.58 13398.78 14490.27 15898.96 11997.41 212
ACMMP_NAP96.21 4596.12 4896.49 4998.90 1991.42 6494.57 12498.03 7390.42 15196.37 9297.35 9695.68 2199.25 7794.44 3799.34 6398.80 83
OMC-MVS94.22 12893.69 14795.81 6897.25 13891.27 6592.27 21097.40 12887.10 21894.56 18695.42 22193.74 7998.11 22186.62 23998.85 13098.06 150
MP-MVS-pluss96.08 4995.92 6096.57 4599.06 1091.21 6693.25 16898.32 2687.89 20196.86 7497.38 8995.55 2699.39 5095.47 2299.47 4199.11 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft95.77 6095.54 7796.47 5098.27 6791.19 6795.09 10497.79 9986.48 22297.42 5097.51 8394.47 7199.29 7193.55 6099.29 7398.93 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNLPA91.72 20191.20 21293.26 17596.17 21091.02 6891.14 24595.55 23890.16 15590.87 28993.56 28886.31 22394.40 36379.92 31997.12 26194.37 337
OPM-MVS95.61 6695.45 8096.08 5498.49 5691.00 6992.65 18997.33 13790.05 15696.77 7996.85 13595.04 4898.56 17992.77 9199.06 10198.70 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR93.66 14493.28 16194.80 10696.25 20590.95 7090.21 27395.43 24387.91 19993.74 21294.40 25892.88 10696.38 32490.39 15098.28 19397.07 230
Gipumacopyleft95.31 8495.80 6893.81 15497.99 9290.91 7196.42 4497.95 8496.69 2091.78 27598.85 1291.77 12995.49 34491.72 11999.08 10095.02 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVScopyleft95.00 9394.69 11295.93 6197.38 13290.88 7294.59 12197.81 9589.22 17395.46 14396.17 18793.42 8799.34 6389.30 18398.87 12997.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.93.07 16492.41 18395.06 9895.82 23790.87 7390.97 24992.61 30688.04 19894.61 18593.79 28188.08 19097.81 25089.41 18098.39 18296.50 256
3Dnovator+92.74 295.86 5895.77 6996.13 5396.81 16390.79 7496.30 5697.82 9496.13 2994.74 18297.23 10591.33 13899.16 8693.25 7898.30 19298.46 124
CS-MVS-test95.32 8195.10 9795.96 5796.86 15890.75 7596.33 4999.20 393.99 5691.03 28893.73 28293.52 8399.55 2091.81 11699.45 4597.58 200
hse-mvs292.24 19391.20 21295.38 8296.16 21190.65 7692.52 19392.01 31989.23 17193.95 20592.99 30076.88 31298.69 16291.02 13596.03 29296.81 244
h-mvs3392.89 16891.99 19395.58 7696.97 15090.55 7793.94 14894.01 28089.23 17193.95 20596.19 18476.88 31299.14 8991.02 13595.71 30097.04 234
AUN-MVS90.05 24688.30 27095.32 8796.09 21890.52 7892.42 20192.05 31882.08 29488.45 33492.86 30265.76 36198.69 16288.91 19896.07 29196.75 248
ZD-MVS97.23 13990.32 7997.54 11884.40 26494.78 18095.79 20292.76 10999.39 5088.72 20398.40 179
mvsany_test389.11 26388.21 27891.83 22491.30 36190.25 8088.09 32578.76 40076.37 34196.43 9098.39 3583.79 24790.43 38886.57 24094.20 34094.80 326
DeepC-MVS91.39 495.43 7495.33 8795.71 7397.67 11790.17 8193.86 15098.02 7587.35 21296.22 10497.99 5394.48 7099.05 10192.73 9499.68 1797.93 168
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft85.34 1590.40 22888.92 25894.85 10496.53 18290.02 8291.58 23696.48 20080.16 31086.14 35792.18 31985.73 22998.25 21076.87 34294.61 33196.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_prior489.91 8390.74 255
NCCC94.08 13393.54 15595.70 7496.49 18489.90 8492.39 20396.91 17090.64 14492.33 26594.60 25390.58 16298.96 11490.21 16297.70 23798.23 137
DPE-MVScopyleft95.89 5695.88 6295.92 6397.93 9489.83 8593.46 16298.30 2992.37 8797.75 3396.95 12895.14 4299.51 2291.74 11899.28 7898.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TAPA-MVS88.58 1092.49 18491.75 20094.73 10996.50 18389.69 8692.91 17997.68 10578.02 33192.79 24494.10 26890.85 15297.96 23584.76 26898.16 20696.54 251
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SF-MVS95.88 5795.88 6295.87 6798.12 7789.65 8795.58 8798.56 1691.84 10896.36 9396.68 15094.37 7299.32 6992.41 10299.05 10498.64 109
MSC_two_6792asdad95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
No_MVS95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
TEST996.45 18789.46 9090.60 26096.92 16879.09 32390.49 29594.39 25991.31 13998.88 123
train_agg92.71 17791.83 19895.35 8396.45 18789.46 9090.60 26096.92 16879.37 31890.49 29594.39 25991.20 14498.88 12388.66 20498.43 17897.72 192
OPU-MVS95.15 9696.84 16089.43 9295.21 9995.66 21093.12 9798.06 22486.28 24898.61 16197.95 166
test_part298.21 7389.41 9396.72 80
Vis-MVSNetpermissive95.50 7195.48 7995.56 7898.11 7889.40 9495.35 9298.22 4092.36 8894.11 19698.07 4592.02 12299.44 3093.38 7397.67 23997.85 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APDe-MVScopyleft96.46 3296.64 2395.93 6197.68 11689.38 9596.90 2198.41 2192.52 8497.43 4897.92 5895.11 4599.50 2394.45 3699.30 7098.92 70
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS94.58 11194.29 12795.46 8196.94 15289.35 9691.81 23296.80 17889.66 16393.90 20895.44 22092.80 10898.72 15392.74 9398.52 17198.32 130
test_fmvsmconf0.01_n95.90 5596.09 4995.31 8897.30 13789.21 9794.24 13598.76 1286.25 22697.56 4098.66 1995.73 1998.44 19397.35 398.99 11198.27 135
test_fmvsmconf0.1_n95.61 6695.72 7195.26 8996.85 15989.20 9893.51 16098.60 1585.68 23997.42 5098.30 3795.34 3398.39 19496.85 498.98 11298.19 141
test_fmvsmconf_n95.43 7495.50 7895.22 9396.48 18689.19 9993.23 17098.36 2385.61 24296.92 7298.02 5095.23 3998.38 19796.69 798.95 12198.09 149
test_896.37 18989.14 10090.51 26396.89 17179.37 31890.42 29794.36 26191.20 14498.82 132
ACMH+88.43 1196.48 3196.82 1695.47 8098.54 4689.06 10195.65 8298.61 1496.10 3098.16 2597.52 8096.90 798.62 17190.30 15699.60 2598.72 94
MIMVSNet195.52 6995.45 8095.72 7299.14 589.02 10296.23 5996.87 17393.73 6397.87 2998.49 2990.73 15899.05 10186.43 24599.60 2599.10 45
test_vis3_rt90.40 22890.03 23991.52 23992.58 32688.95 10390.38 26897.72 10473.30 36097.79 3197.51 8377.05 30887.10 39889.03 19594.89 32298.50 120
UniMVSNet (Re)95.32 8195.15 9495.80 6997.79 10588.91 10492.91 17998.07 6493.46 7096.31 9695.97 19590.14 16899.34 6392.11 10599.64 2399.16 36
agg_prior96.20 20888.89 10596.88 17290.21 30298.78 144
SD-MVS95.19 8895.73 7093.55 16296.62 17488.88 10694.67 11898.05 6891.26 12997.25 5896.40 16595.42 2894.36 36492.72 9599.19 9097.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.96 9594.75 10895.57 7798.86 2288.69 10796.37 4696.81 17785.23 24894.75 18197.12 11691.85 12699.40 4793.45 6798.33 18998.62 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
plane_prior797.71 11288.68 108
wuyk23d87.83 28990.79 22278.96 38490.46 37288.63 10992.72 18490.67 33291.65 12098.68 1397.64 7096.06 1577.53 40659.84 40099.41 5470.73 404
test_fmvsm_n_192094.72 10494.74 11094.67 11396.30 20088.62 11093.19 17198.07 6485.63 24197.08 6197.35 9690.86 15197.66 26695.70 1698.48 17697.74 191
DP-MVS95.62 6595.84 6594.97 10097.16 14488.62 11094.54 12897.64 10796.94 1896.58 8797.32 10093.07 10098.72 15390.45 14898.84 13197.57 201
UniMVSNet_NR-MVSNet95.35 7995.21 9295.76 7097.69 11588.59 11292.26 21197.84 9294.91 4396.80 7795.78 20590.42 16399.41 4091.60 12399.58 3199.29 27
DU-MVS95.28 8595.12 9695.75 7197.75 10788.59 11292.58 19197.81 9593.99 5696.80 7795.90 19690.10 17199.41 4091.60 12399.58 3199.26 28
nrg03096.32 4196.55 2795.62 7597.83 10088.55 11495.77 7798.29 3292.68 8098.03 2897.91 5995.13 4398.95 11693.85 5099.49 4099.36 23
PS-MVSNAJss96.01 5196.04 5495.89 6698.82 2588.51 11595.57 8897.88 8888.72 18398.81 898.86 1090.77 15499.60 1195.43 2499.53 3799.57 13
tt080595.42 7795.93 5993.86 15198.75 3188.47 11697.68 994.29 27296.48 2495.38 14693.63 28494.89 5797.94 23795.38 2796.92 27195.17 310
CDPH-MVS92.67 17891.83 19895.18 9596.94 15288.46 11790.70 25797.07 15777.38 33392.34 26495.08 23492.67 11198.88 12385.74 25298.57 16698.20 140
plane_prior388.43 11890.35 15393.31 221
Fast-Effi-MVS+-dtu92.77 17592.16 18794.58 12294.66 28788.25 11992.05 21696.65 18889.62 16490.08 30491.23 33492.56 11298.60 17486.30 24796.27 28996.90 239
plane_prior697.21 14288.23 12086.93 214
HQP_MVS94.26 12593.93 13895.23 9297.71 11288.12 12194.56 12597.81 9591.74 11693.31 22195.59 21286.93 21498.95 11689.26 18898.51 17398.60 114
plane_prior88.12 12193.01 17588.98 17798.06 214
save fliter97.46 13088.05 12392.04 21797.08 15687.63 209
UGNet93.08 16292.50 18194.79 10793.87 30587.99 12495.07 10694.26 27490.64 14487.33 35197.67 6886.89 21698.49 18688.10 21298.71 15197.91 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DeepC-MVS_fast89.96 793.73 14393.44 15794.60 11996.14 21487.90 12593.36 16797.14 15185.53 24493.90 20895.45 21991.30 14098.59 17689.51 17898.62 16097.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG94.69 10694.75 10894.52 12397.55 12487.87 12695.01 10997.57 11692.68 8096.20 10693.44 29091.92 12598.78 14489.11 19399.24 8396.92 238
pmmvs-eth3d91.54 20590.73 22493.99 14195.76 24387.86 12790.83 25293.98 28178.23 33094.02 20396.22 18382.62 26296.83 31086.57 24098.33 18997.29 222
pmmvs696.80 1397.36 1095.15 9699.12 887.82 12896.68 2997.86 8996.10 3098.14 2699.28 397.94 398.21 21291.38 13199.69 1499.42 18
test_fmvsmvis_n_192095.08 9195.40 8494.13 13896.66 16987.75 12993.44 16498.49 1785.57 24398.27 2297.11 11794.11 7697.75 25996.26 1198.72 14996.89 240
TranMVSNet+NR-MVSNet96.07 5096.26 4095.50 7998.26 6887.69 13093.75 15397.86 8995.96 3597.48 4697.14 11495.33 3499.44 3090.79 14099.76 1099.38 21
EC-MVSNet95.44 7395.62 7494.89 10296.93 15487.69 13096.48 4099.14 593.93 5992.77 24594.52 25693.95 7899.49 2693.62 5799.22 8797.51 206
alignmvs93.26 15692.85 17094.50 12495.70 24587.45 13293.45 16395.76 22691.58 12195.25 15892.42 31681.96 26998.72 15391.61 12297.87 22997.33 220
UniMVSNet_ETH3D97.13 697.72 495.35 8399.51 287.38 13397.70 897.54 11898.16 398.94 499.33 297.84 499.08 9690.73 14299.73 1399.59 12
新几何193.17 17797.16 14487.29 13494.43 26967.95 38991.29 28294.94 23986.97 21398.23 21181.06 30597.75 23393.98 346
test_fmvs392.42 18692.40 18492.46 20793.80 30887.28 13593.86 15097.05 15876.86 33896.25 10198.66 1982.87 25691.26 38395.44 2396.83 27498.82 80
test_prior94.61 11695.95 22987.23 13697.36 13498.68 16497.93 168
MM94.41 11894.14 13495.22 9395.84 23587.21 13794.31 13490.92 32994.48 4992.80 24397.52 8085.27 23599.49 2696.58 899.57 3398.97 60
NR-MVSNet95.28 8595.28 9095.26 8997.75 10787.21 13795.08 10597.37 12993.92 6197.65 3595.90 19690.10 17199.33 6890.11 16599.66 2199.26 28
test_one_060198.26 6887.14 13998.18 4594.25 5196.99 6997.36 9395.13 43
NP-MVS96.82 16287.10 14093.40 291
3Dnovator92.54 394.80 10294.90 10294.47 12795.47 25987.06 14196.63 3197.28 14391.82 11194.34 19397.41 8790.60 16198.65 16992.47 10198.11 21097.70 193
sasdasda94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
canonicalmvs94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
SED-MVS96.00 5296.41 3494.76 10898.51 4986.97 14495.21 9998.10 5891.95 9997.63 3697.25 10396.48 1099.35 6093.29 7599.29 7397.95 166
test_241102_ONE98.51 4986.97 14498.10 5891.85 10597.63 3697.03 12396.48 1098.95 116
MVS_111021_HR93.63 14593.42 15894.26 13496.65 17086.96 14689.30 30396.23 21088.36 19393.57 21594.60 25393.45 8497.77 25690.23 16198.38 18398.03 156
DP-MVS Recon92.31 19091.88 19693.60 16097.18 14386.87 14791.10 24797.37 12984.92 25792.08 27194.08 26988.59 18398.20 21383.50 27798.14 20895.73 294
v7n96.82 1097.31 1195.33 8598.54 4686.81 14896.83 2298.07 6496.59 2398.46 1998.43 3492.91 10499.52 2196.25 1299.76 1099.65 8
test_vis1_rt85.58 32084.58 32388.60 31687.97 39286.76 14985.45 36993.59 28466.43 39287.64 34689.20 36179.33 28685.38 40281.59 29889.98 38693.66 354
test1294.43 12995.95 22986.75 15096.24 20989.76 31389.79 17698.79 14197.95 22597.75 190
test_0728_SECOND94.88 10398.55 4486.72 15195.20 10198.22 4099.38 5693.44 6899.31 6898.53 119
DVP-MVScopyleft95.82 5996.18 4494.72 11098.51 4986.69 15295.20 10197.00 16191.85 10597.40 5297.35 9695.58 2499.34 6393.44 6899.31 6898.13 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4986.69 15295.34 9398.18 4591.85 10597.63 3697.37 9095.58 24
DVP-MVS++95.93 5396.34 3694.70 11196.54 17986.66 15498.45 498.22 4093.26 7497.54 4197.36 9393.12 9799.38 5693.88 4898.68 15598.04 153
IU-MVS98.51 4986.66 15496.83 17672.74 36595.83 12293.00 8799.29 7398.64 109
EG-PatchMatch MVS94.54 11394.67 11694.14 13797.87 9986.50 15692.00 21996.74 18388.16 19796.93 7197.61 7293.04 10197.90 23891.60 12398.12 20998.03 156
MVP-Stereo90.07 24588.92 25893.54 16496.31 19886.49 15790.93 25095.59 23579.80 31191.48 27995.59 21280.79 27897.39 28278.57 33091.19 37996.76 247
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 25388.22 27793.53 16595.37 26486.49 15789.26 30493.59 28479.76 31391.15 28692.31 31777.12 30798.38 19777.51 33797.92 22795.71 295
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet94.49 11494.35 12694.92 10198.25 7086.46 15997.13 1794.31 27196.24 2896.28 10096.36 17282.88 25599.35 6088.19 20999.52 3998.96 62
WR-MVS_H96.60 2697.05 1495.24 9199.02 1286.44 16096.78 2698.08 6197.42 1098.48 1897.86 6291.76 13199.63 994.23 4299.84 399.66 6
PMMVS83.00 34181.11 35088.66 31583.81 40986.44 16082.24 38985.65 36861.75 40282.07 38885.64 38779.75 28391.59 38275.99 35093.09 36287.94 392
TAMVS90.16 23989.05 25493.49 16996.49 18486.37 16290.34 27092.55 30780.84 30792.99 23794.57 25581.94 27098.20 21373.51 36398.21 20295.90 288
AdaColmapbinary91.63 20391.36 20992.47 20695.56 25586.36 16392.24 21396.27 20788.88 18189.90 30992.69 30891.65 13298.32 20377.38 33997.64 24192.72 369
Anonymous2023121196.60 2697.13 1395.00 9997.46 13086.35 16497.11 1898.24 3697.58 998.72 1098.97 793.15 9699.15 8793.18 8099.74 1299.50 16
ETV-MVS92.99 16592.74 17393.72 15795.86 23386.30 16592.33 20597.84 9291.70 11992.81 24286.17 38392.22 11899.19 8488.03 21697.73 23495.66 299
fmvsm_l_conf0.5_n93.79 14193.81 14093.73 15696.16 21186.26 16692.46 19796.72 18481.69 29895.77 12497.11 11790.83 15397.82 24995.58 1997.99 22197.11 229
API-MVS91.52 20691.61 20191.26 25094.16 29686.26 16694.66 11994.82 26091.17 13292.13 27091.08 33790.03 17497.06 29979.09 32797.35 25590.45 385
EPNet89.80 25288.25 27494.45 12883.91 40886.18 16893.87 14987.07 35791.16 13380.64 39694.72 24878.83 28998.89 12285.17 25798.89 12498.28 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 32483.04 33691.19 25587.56 39486.14 16989.40 30084.44 38188.98 17782.20 38797.95 5456.82 39096.15 32976.55 34683.45 39891.30 380
test_f86.65 31487.13 29785.19 35990.28 37486.11 17086.52 35691.66 32269.76 38395.73 13097.21 10969.51 34381.28 40589.15 19294.40 33388.17 391
VDD-MVS94.37 11994.37 12494.40 13097.49 12786.07 17193.97 14793.28 29194.49 4896.24 10297.78 6387.99 19498.79 14188.92 19799.14 9798.34 129
MVS_030492.88 16992.27 18594.69 11292.35 33286.03 17292.88 18189.68 33690.53 14791.52 27896.43 16282.52 26399.32 6995.01 3099.54 3698.71 97
EI-MVSNet-Vis-set94.36 12094.28 12894.61 11692.55 32885.98 17392.44 19994.69 26593.70 6496.12 11095.81 20191.24 14198.86 12793.76 5598.22 20198.98 58
mvsany_test183.91 33482.93 33886.84 34386.18 40285.93 17481.11 39275.03 40770.80 37888.57 33394.63 25183.08 25387.38 39780.39 30786.57 39387.21 393
Anonymous2024052995.50 7195.83 6694.50 12497.33 13685.93 17495.19 10396.77 18196.64 2297.61 3998.05 4693.23 9398.79 14188.60 20599.04 10998.78 85
EI-MVSNet-UG-set94.35 12194.27 13094.59 12092.46 33185.87 17692.42 20194.69 26593.67 6796.13 10995.84 20091.20 14498.86 12793.78 5298.23 19999.03 50
PCF-MVS84.52 1789.12 26287.71 28593.34 17296.06 22085.84 17786.58 35597.31 13868.46 38893.61 21493.89 27887.51 20198.52 18467.85 38898.11 21095.66 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_040295.73 6296.22 4294.26 13498.19 7485.77 17893.24 16997.24 14596.88 1997.69 3497.77 6594.12 7599.13 9191.54 12799.29 7397.88 174
fmvsm_s_conf0.5_n_a94.02 13594.08 13793.84 15296.72 16685.73 17993.65 15895.23 24983.30 27495.13 16397.56 7592.22 11897.17 29295.51 2197.41 25298.64 109
fmvsm_s_conf0.1_n_a94.26 12594.37 12493.95 14697.36 13485.72 18094.15 13995.44 24183.25 27695.51 13898.05 4692.54 11397.19 29195.55 2097.46 25098.94 64
MCST-MVS92.91 16792.51 18094.10 13997.52 12585.72 18091.36 24297.13 15380.33 30992.91 24194.24 26391.23 14298.72 15389.99 16997.93 22697.86 176
fmvsm_l_conf0.5_n_a93.59 14693.63 14993.49 16996.10 21785.66 18292.32 20696.57 19381.32 30195.63 13397.14 11490.19 16797.73 26295.37 2898.03 21797.07 230
pmmvs488.95 27087.70 28692.70 19294.30 29485.60 18387.22 33792.16 31474.62 35289.75 31494.19 26577.97 29896.41 32282.71 28496.36 28796.09 277
EPP-MVSNet93.91 13993.68 14894.59 12098.08 8085.55 18497.44 1194.03 27794.22 5394.94 17396.19 18482.07 26799.57 1687.28 22998.89 12498.65 104
MGCFI-Net94.44 11694.67 11693.75 15595.56 25585.47 18595.25 9898.24 3691.53 12495.04 16992.21 31894.94 5598.54 18291.56 12697.66 24097.24 224
test_fmvs290.62 22390.40 23291.29 24891.93 34885.46 18692.70 18696.48 20074.44 35394.91 17597.59 7375.52 32090.57 38593.44 6896.56 28297.84 179
CMPMVSbinary68.83 2287.28 30385.67 31792.09 21888.77 38985.42 18790.31 27194.38 27070.02 38288.00 34093.30 29373.78 32794.03 36875.96 35196.54 28396.83 243
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMH88.36 1296.59 2897.43 694.07 14098.56 4185.33 18896.33 4998.30 2994.66 4598.72 1098.30 3797.51 598.00 23194.87 3199.59 2798.86 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.95 15185.27 18988.83 31493.61 28365.09 39790.74 29294.85 24284.62 24297.36 25493.91 347
GeoE94.55 11294.68 11594.15 13697.23 13985.11 19094.14 14197.34 13688.71 18495.26 15695.50 21794.65 6399.12 9290.94 13898.40 17998.23 137
pm-mvs195.43 7495.94 5793.93 14798.38 6085.08 19195.46 9197.12 15491.84 10897.28 5698.46 3295.30 3697.71 26390.17 16399.42 5098.99 54
HQP5-MVS84.89 192
HQP-MVS92.09 19591.49 20693.88 14996.36 19184.89 19291.37 23997.31 13887.16 21588.81 32493.40 29184.76 24098.60 17486.55 24297.73 23498.14 146
DTE-MVSNet96.74 1897.43 694.67 11399.13 684.68 19496.51 3797.94 8798.14 498.67 1498.32 3695.04 4899.69 593.27 7799.82 799.62 10
PEN-MVS96.69 2197.39 994.61 11699.16 484.50 19596.54 3498.05 6898.06 598.64 1598.25 3995.01 5199.65 692.95 8999.83 599.68 4
fmvsm_s_conf0.1_n94.19 13194.41 12193.52 16797.22 14184.37 19693.73 15495.26 24884.45 26395.76 12598.00 5191.85 12697.21 28895.62 1797.82 23198.98 58
fmvsm_s_conf0.5_n94.00 13694.20 13293.42 17196.69 16784.37 19693.38 16695.13 25184.50 26295.40 14597.55 7991.77 12997.20 28995.59 1897.79 23298.69 101
GBi-Net93.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
test193.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
FMVSNet194.84 9995.13 9593.97 14397.60 12084.29 19895.99 6796.56 19492.38 8697.03 6698.53 2690.12 16998.98 10988.78 20199.16 9598.65 104
原ACMM192.87 18796.91 15584.22 20197.01 16076.84 33989.64 31594.46 25788.00 19398.70 16081.53 29998.01 22095.70 297
DPM-MVS89.35 25888.40 26792.18 21596.13 21684.20 20286.96 34296.15 21675.40 34787.36 35091.55 33283.30 25098.01 23082.17 29396.62 28194.32 339
旧先验196.20 20884.17 20394.82 26095.57 21689.57 17797.89 22896.32 264
OpenMVScopyleft89.45 892.27 19292.13 19092.68 19494.53 29084.10 20495.70 7997.03 15982.44 29091.14 28796.42 16388.47 18598.38 19785.95 25097.47 24995.55 304
PS-CasMVS96.69 2197.43 694.49 12699.13 684.09 20596.61 3297.97 8197.91 698.64 1598.13 4295.24 3899.65 693.39 7299.84 399.72 2
EIA-MVS92.35 18992.03 19193.30 17495.81 23983.97 20692.80 18398.17 4987.71 20689.79 31287.56 37391.17 14799.18 8587.97 21797.27 25696.77 246
PVSNet_Blended_VisFu91.63 20391.20 21292.94 18497.73 11083.95 20792.14 21497.46 12578.85 32792.35 26294.98 23784.16 24599.08 9686.36 24696.77 27795.79 292
CP-MVSNet96.19 4696.80 1794.38 13198.99 1683.82 20896.31 5297.53 12097.60 898.34 2197.52 8091.98 12499.63 993.08 8599.81 899.70 3
lessismore_v093.87 15098.05 8383.77 20980.32 39797.13 6097.91 5977.49 30199.11 9492.62 9798.08 21398.74 92
CLD-MVS91.82 19891.41 20893.04 17896.37 18983.65 21086.82 34797.29 14184.65 26192.27 26689.67 35592.20 12097.85 24883.95 27599.47 4197.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet92.38 18891.99 19393.52 16793.82 30783.46 21191.14 24597.00 16189.81 16086.47 35594.04 27087.90 19699.21 8089.50 17998.27 19497.90 171
QAPM92.88 16992.77 17193.22 17695.82 23783.31 21296.45 4197.35 13583.91 26893.75 21096.77 13989.25 18098.88 12384.56 27097.02 26597.49 207
Effi-MVS+92.79 17392.74 17392.94 18495.10 26983.30 21394.00 14597.53 12091.36 12889.35 31890.65 34694.01 7798.66 16687.40 22795.30 31296.88 242
sd_testset93.94 13894.39 12292.61 20097.93 9483.24 21493.17 17295.04 25393.65 6895.51 13898.63 2194.49 6995.89 33781.72 29799.35 6098.70 98
casdiffmvs_mvgpermissive95.10 9095.62 7493.53 16596.25 20583.23 21592.66 18898.19 4393.06 7797.49 4597.15 11394.78 5998.71 15992.27 10498.72 14998.65 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521192.58 18192.50 18192.83 18996.55 17883.22 21692.43 20091.64 32394.10 5595.59 13596.64 15281.88 27197.50 27385.12 26198.52 17197.77 187
SixPastTwentyTwo94.91 9695.21 9293.98 14298.52 4883.19 21795.93 7194.84 25994.86 4498.49 1798.74 1681.45 27299.60 1194.69 3399.39 5699.15 37
VPA-MVSNet95.14 8995.67 7393.58 16197.76 10683.15 21894.58 12397.58 11593.39 7197.05 6598.04 4893.25 9298.51 18589.75 17599.59 2799.08 46
LCM-MVSNet-Re94.20 12994.58 11993.04 17895.91 23183.13 21993.79 15299.19 492.00 9898.84 798.04 4893.64 8099.02 10681.28 30198.54 16996.96 237
MSDG90.82 21590.67 22591.26 25094.16 29683.08 22086.63 35296.19 21390.60 14691.94 27391.89 32589.16 18195.75 33980.96 30694.51 33294.95 320
ambc92.98 18096.88 15683.01 22195.92 7296.38 20496.41 9197.48 8588.26 18797.80 25189.96 17098.93 12298.12 148
dmvs_re84.69 32883.94 33086.95 34092.24 33582.93 22289.51 29587.37 35484.38 26585.37 36085.08 39072.44 33086.59 39968.05 38791.03 38291.33 379
SDMVSNet94.43 11795.02 9992.69 19397.93 9482.88 22391.92 22495.99 22293.65 6895.51 13898.63 2194.60 6596.48 31987.57 22399.35 6098.70 98
MSLP-MVS++93.25 15893.88 13991.37 24396.34 19582.81 22493.11 17397.74 10289.37 16994.08 19895.29 22790.40 16596.35 32690.35 15398.25 19794.96 319
K. test v393.37 15293.27 16293.66 15898.05 8382.62 22594.35 13186.62 35996.05 3297.51 4498.85 1276.59 31699.65 693.21 7998.20 20498.73 93
test_fmvs1_n88.73 27688.38 26889.76 29492.06 34382.53 22692.30 20996.59 19271.14 37392.58 25195.41 22468.55 34589.57 39391.12 13395.66 30197.18 228
Fast-Effi-MVS+91.28 21290.86 21992.53 20495.45 26082.53 22689.25 30696.52 19885.00 25589.91 30888.55 36792.94 10298.84 13084.72 26995.44 30796.22 272
test_vis1_n89.01 26789.01 25689.03 30792.57 32782.46 22892.62 19096.06 21773.02 36390.40 29895.77 20674.86 32289.68 39190.78 14194.98 32094.95 320
VDDNet94.03 13494.27 13093.31 17398.87 2182.36 22995.51 9091.78 32197.19 1396.32 9598.60 2384.24 24498.75 14887.09 23298.83 13698.81 82
mvsmamba90.24 23789.43 25092.64 19595.52 25782.36 22996.64 3092.29 31081.77 29692.14 26996.28 17870.59 33999.10 9584.44 27295.22 31596.47 258
114514_t90.51 22489.80 24492.63 19898.00 8982.24 23193.40 16597.29 14165.84 39589.40 31794.80 24586.99 21298.75 14883.88 27698.61 16196.89 240
testdata91.03 25896.87 15782.01 23294.28 27371.55 37092.46 25595.42 22185.65 23197.38 28482.64 28597.27 25693.70 353
FMVSNet292.78 17492.73 17592.95 18395.40 26181.98 23394.18 13895.53 23988.63 18596.05 11297.37 9081.31 27498.81 13787.38 22898.67 15798.06 150
TransMVSNet (Re)95.27 8796.04 5492.97 18198.37 6281.92 23495.07 10696.76 18293.97 5897.77 3298.57 2495.72 2097.90 23888.89 19999.23 8499.08 46
FC-MVSNet-test95.32 8195.88 6293.62 15998.49 5681.77 23595.90 7398.32 2693.93 5997.53 4397.56 7588.48 18499.40 4792.91 9099.83 599.68 4
FIs94.90 9795.35 8593.55 16298.28 6681.76 23695.33 9498.14 5393.05 7897.07 6297.18 11187.65 19899.29 7191.72 11999.69 1499.61 11
ab-mvs92.40 18792.62 17891.74 22897.02 14881.65 23795.84 7595.50 24086.95 22092.95 24097.56 7590.70 15997.50 27379.63 32097.43 25196.06 279
xiu_mvs_v1_base_debu91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
xiu_mvs_v1_base91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
xiu_mvs_v1_base_debi91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
casdiffmvspermissive94.32 12394.80 10692.85 18896.05 22181.44 24192.35 20498.05 6891.53 12495.75 12796.80 13893.35 8998.49 18691.01 13798.32 19198.64 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 31684.27 32791.79 22693.04 31981.28 24287.17 33986.14 36279.57 31683.65 37688.66 36457.10 38898.18 21687.74 22195.40 30895.90 288
test_fmvs187.59 29687.27 29288.54 31788.32 39181.26 24390.43 26795.72 22870.55 37991.70 27694.63 25168.13 34689.42 39490.59 14595.34 31194.94 322
V4293.43 15193.58 15292.97 18195.34 26581.22 24492.67 18796.49 19987.25 21496.20 10696.37 17187.32 20498.85 12992.39 10398.21 20298.85 79
OpenMVS_ROBcopyleft85.12 1689.52 25589.05 25490.92 26394.58 28981.21 24591.10 24793.41 29077.03 33793.41 21893.99 27483.23 25197.80 25179.93 31794.80 32693.74 352
PAPM_NR91.03 21490.81 22191.68 23296.73 16581.10 24693.72 15596.35 20588.19 19588.77 32892.12 32285.09 23897.25 28682.40 29093.90 34796.68 249
baseline94.26 12594.80 10692.64 19596.08 21980.99 24793.69 15698.04 7290.80 14094.89 17696.32 17493.19 9498.48 19091.68 12198.51 17398.43 126
1112_ss88.42 28087.41 28991.45 24196.69 16780.99 24789.72 29096.72 18473.37 35987.00 35390.69 34477.38 30498.20 21381.38 30093.72 35095.15 312
tfpnnormal94.27 12494.87 10492.48 20597.71 11280.88 24994.55 12795.41 24493.70 6496.67 8397.72 6691.40 13798.18 21687.45 22599.18 9298.36 128
Baseline_NR-MVSNet94.47 11595.09 9892.60 20198.50 5580.82 25092.08 21596.68 18693.82 6296.29 9898.56 2590.10 17197.75 25990.10 16799.66 2199.24 30
HyFIR lowres test87.19 30785.51 31892.24 21097.12 14780.51 25185.03 37296.06 21766.11 39491.66 27792.98 30170.12 34199.14 8975.29 35395.23 31497.07 230
UnsupCasMVSNet_eth90.33 23490.34 23390.28 28194.64 28880.24 25289.69 29195.88 22385.77 23693.94 20795.69 20981.99 26892.98 37684.21 27391.30 37897.62 198
MDA-MVSNet-bldmvs91.04 21390.88 21891.55 23794.68 28680.16 25385.49 36892.14 31590.41 15294.93 17495.79 20285.10 23796.93 30585.15 25994.19 34297.57 201
v1094.68 10795.27 9192.90 18696.57 17680.15 25494.65 12097.57 11690.68 14397.43 4898.00 5188.18 18899.15 8794.84 3299.55 3599.41 19
VNet92.67 17892.96 16591.79 22696.27 20280.15 25491.95 22094.98 25592.19 9594.52 18896.07 19087.43 20297.39 28284.83 26698.38 18397.83 180
DELS-MVS92.05 19692.16 18791.72 22994.44 29180.13 25687.62 32897.25 14487.34 21392.22 26793.18 29789.54 17898.73 15289.67 17698.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 26188.32 26991.70 23195.73 24480.07 25788.10 32493.22 29271.98 36890.09 30392.79 30578.53 29498.56 17987.43 22697.06 26396.46 259
jason: jason.
MVSFormer92.18 19492.23 18692.04 22094.74 28280.06 25897.15 1597.37 12988.98 17788.83 32292.79 30577.02 30999.60 1196.41 996.75 27896.46 259
lupinMVS88.34 28287.31 29091.45 24194.74 28280.06 25887.23 33692.27 31171.10 37488.83 32291.15 33577.02 30998.53 18386.67 23896.75 27895.76 293
WR-MVS93.49 14893.72 14592.80 19097.57 12380.03 26090.14 27695.68 22993.70 6496.62 8595.39 22587.21 20699.04 10487.50 22499.64 2399.33 24
CANet_DTU89.85 25089.17 25291.87 22392.20 33880.02 26190.79 25395.87 22486.02 23282.53 38691.77 32780.01 28298.57 17885.66 25497.70 23797.01 235
FA-MVS(test-final)91.81 19991.85 19791.68 23294.95 27279.99 26296.00 6693.44 28987.80 20394.02 20397.29 10177.60 30098.45 19288.04 21597.49 24796.61 250
Patchmatch-RL test88.81 27388.52 26489.69 29795.33 26679.94 26386.22 36092.71 30278.46 32895.80 12394.18 26666.25 35995.33 35089.22 19098.53 17093.78 350
FMVSNet390.78 21790.32 23492.16 21693.03 32079.92 26492.54 19294.95 25686.17 23095.10 16596.01 19369.97 34298.75 14886.74 23598.38 18397.82 182
XXY-MVS92.58 18193.16 16490.84 26797.75 10779.84 26591.87 22896.22 21285.94 23395.53 13797.68 6792.69 11094.48 36083.21 28097.51 24698.21 139
test_yl90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
DCV-MVSNet90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
FMVSNet587.82 29086.56 30791.62 23492.31 33379.81 26893.49 16194.81 26283.26 27591.36 28196.93 13052.77 39797.49 27576.07 34998.03 21797.55 204
v894.65 10895.29 8992.74 19196.65 17079.77 26994.59 12197.17 14991.86 10497.47 4797.93 5588.16 18999.08 9694.32 3999.47 4199.38 21
tttt051789.81 25188.90 26092.55 20397.00 14979.73 27095.03 10883.65 38389.88 15995.30 15294.79 24653.64 39599.39 5091.99 11098.79 14398.54 117
v119293.49 14893.78 14392.62 19996.16 21179.62 27191.83 23197.22 14786.07 23196.10 11196.38 17087.22 20599.02 10694.14 4498.88 12699.22 31
v114493.50 14793.81 14092.57 20296.28 20179.61 27291.86 23096.96 16486.95 22095.91 11896.32 17487.65 19898.96 11493.51 6198.88 12699.13 39
FE-MVS89.06 26488.29 27191.36 24494.78 27979.57 27396.77 2790.99 32784.87 25892.96 23996.29 17660.69 38498.80 14080.18 31297.11 26295.71 295
BH-untuned90.68 22090.90 21790.05 29095.98 22779.57 27390.04 27994.94 25787.91 19994.07 19993.00 29987.76 19797.78 25579.19 32695.17 31692.80 368
KD-MVS_self_test94.10 13294.73 11192.19 21297.66 11879.49 27594.86 11397.12 15489.59 16596.87 7397.65 6990.40 16598.34 20289.08 19499.35 6098.75 89
CHOSEN 1792x268887.19 30785.92 31691.00 26197.13 14679.41 27684.51 37895.60 23164.14 39890.07 30594.81 24378.26 29697.14 29573.34 36495.38 31096.46 259
thisisatest053088.69 27787.52 28892.20 21196.33 19679.36 27792.81 18284.01 38286.44 22393.67 21392.68 30953.62 39699.25 7789.65 17798.45 17798.00 158
LFMVS91.33 21091.16 21591.82 22596.27 20279.36 27795.01 10985.61 37096.04 3394.82 17897.06 12172.03 33498.46 19184.96 26598.70 15397.65 197
TR-MVS87.70 29187.17 29589.27 30494.11 29879.26 27988.69 31891.86 32081.94 29590.69 29389.79 35282.82 25897.42 27972.65 36991.98 37591.14 381
test20.0390.80 21690.85 22090.63 27395.63 25179.24 28089.81 28792.87 29789.90 15894.39 19096.40 16585.77 22895.27 35273.86 36299.05 10497.39 216
IterMVS-SCA-FT91.65 20291.55 20291.94 22193.89 30479.22 28187.56 33193.51 28791.53 12495.37 14896.62 15378.65 29198.90 12091.89 11494.95 32197.70 193
EI-MVSNet92.99 16593.26 16392.19 21292.12 34179.21 28292.32 20694.67 26791.77 11495.24 15995.85 19887.14 20898.49 18691.99 11098.26 19598.86 76
IterMVS-LS93.78 14294.28 12892.27 20996.27 20279.21 28291.87 22896.78 17991.77 11496.57 8897.07 12087.15 20798.74 15191.99 11099.03 11098.86 76
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet87.89 28787.12 29890.22 28491.01 36478.93 28492.52 19392.81 29873.08 36289.10 31996.93 13067.11 35197.64 26888.80 20092.70 36794.08 341
RPMNet90.31 23690.14 23890.81 26991.01 36478.93 28492.52 19398.12 5591.91 10289.10 31996.89 13368.84 34499.41 4090.17 16392.70 36794.08 341
test_cas_vis1_n_192088.25 28388.27 27388.20 32592.19 33978.92 28689.45 29795.44 24175.29 35093.23 22995.65 21171.58 33590.23 38988.05 21493.55 35495.44 306
patch_mono-292.46 18592.72 17691.71 23096.65 17078.91 28788.85 31397.17 14983.89 26992.45 25696.76 14189.86 17597.09 29690.24 16098.59 16499.12 41
MVSMamba_PlusPlus94.82 10195.89 6191.62 23497.82 10178.88 28896.52 3597.60 11397.14 1494.23 19498.48 3087.01 21099.71 395.43 2498.80 14096.28 267
bld_raw_conf0392.59 18092.96 16591.47 24095.85 23478.88 28896.52 3597.60 11383.31 27394.23 19496.75 14384.27 24399.26 7689.30 18398.80 14096.28 267
UnsupCasMVSNet_bld88.50 27988.03 28189.90 29295.52 25778.88 28887.39 33594.02 27979.32 32193.06 23494.02 27280.72 27994.27 36575.16 35493.08 36396.54 251
v2v48293.29 15493.63 14992.29 20896.35 19478.82 29191.77 23496.28 20688.45 19095.70 13296.26 18186.02 22798.90 12093.02 8698.81 13999.14 38
Anonymous2023120688.77 27488.29 27190.20 28696.31 19878.81 29289.56 29493.49 28874.26 35592.38 26095.58 21582.21 26495.43 34772.07 37198.75 14896.34 263
PVSNet_BlendedMVS90.35 23389.96 24091.54 23894.81 27778.80 29390.14 27696.93 16679.43 31788.68 33195.06 23586.27 22498.15 21980.27 30998.04 21697.68 195
PVSNet_Blended88.74 27588.16 28090.46 27894.81 27778.80 29386.64 35196.93 16674.67 35188.68 33189.18 36286.27 22498.15 21980.27 30996.00 29394.44 336
BH-RMVSNet90.47 22690.44 23090.56 27595.21 26878.65 29589.15 30793.94 28288.21 19492.74 24694.22 26486.38 22297.88 24278.67 32995.39 30995.14 313
balanced_conf0393.45 15094.17 13391.28 24995.81 23978.40 29696.20 6097.48 12488.56 18995.29 15497.20 11085.56 23499.21 8092.52 10098.91 12396.24 271
D2MVS89.93 24889.60 24990.92 26394.03 30178.40 29688.69 31894.85 25878.96 32593.08 23395.09 23374.57 32396.94 30388.19 20998.96 11997.41 212
v192192093.26 15693.61 15192.19 21296.04 22578.31 29891.88 22797.24 14585.17 25096.19 10896.19 18486.76 21899.05 10194.18 4398.84 13199.22 31
v14419293.20 16193.54 15592.16 21696.05 22178.26 29991.95 22097.14 15184.98 25695.96 11496.11 18887.08 20999.04 10493.79 5198.84 13199.17 35
diffmvspermissive91.74 20091.93 19591.15 25693.06 31878.17 30088.77 31697.51 12386.28 22592.42 25893.96 27588.04 19297.46 27690.69 14496.67 28097.82 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sss87.23 30486.82 30288.46 32193.96 30277.94 30186.84 34592.78 30177.59 33287.61 34891.83 32678.75 29091.92 38077.84 33394.20 34095.52 305
MS-PatchMatch88.05 28687.75 28488.95 30893.28 31377.93 30287.88 32792.49 30875.42 34692.57 25293.59 28780.44 28094.24 36781.28 30192.75 36694.69 332
HY-MVS82.50 1886.81 31385.93 31589.47 29893.63 30977.93 30294.02 14491.58 32475.68 34383.64 37793.64 28377.40 30397.42 27971.70 37492.07 37493.05 365
v124093.29 15493.71 14692.06 21996.01 22677.89 30491.81 23297.37 12985.12 25296.69 8296.40 16586.67 21999.07 10094.51 3598.76 14699.22 31
CL-MVSNet_self_test90.04 24789.90 24290.47 27695.24 26777.81 30586.60 35492.62 30585.64 24093.25 22893.92 27683.84 24696.06 33379.93 31798.03 21797.53 205
Test_1112_low_res87.50 29986.58 30690.25 28396.80 16477.75 30687.53 33396.25 20869.73 38486.47 35593.61 28675.67 31997.88 24279.95 31593.20 35995.11 316
v14892.87 17193.29 15991.62 23496.25 20577.72 30791.28 24395.05 25289.69 16295.93 11796.04 19187.34 20398.38 19790.05 16897.99 22198.78 85
MVS84.98 32584.30 32687.01 33891.03 36377.69 30891.94 22294.16 27559.36 40384.23 37387.50 37585.66 23096.80 31171.79 37293.05 36486.54 395
iter_conf0595.52 6996.74 1991.88 22297.82 10177.68 30997.26 1398.91 897.14 1499.22 398.48 3087.01 21099.71 395.43 2499.38 5798.25 136
miper_lstm_enhance89.90 24989.80 24490.19 28791.37 36077.50 31083.82 38495.00 25484.84 25993.05 23594.96 23876.53 31795.20 35389.96 17098.67 15797.86 176
pmmvs380.83 35978.96 36786.45 34787.23 39777.48 31184.87 37382.31 38763.83 39985.03 36589.50 35749.66 39893.10 37473.12 36795.10 31788.78 390
PAPR87.65 29486.77 30490.27 28292.85 32477.38 31288.56 32196.23 21076.82 34084.98 36689.75 35486.08 22697.16 29472.33 37093.35 35696.26 270
Vis-MVSNet (Re-imp)90.42 22790.16 23591.20 25497.66 11877.32 31394.33 13287.66 35291.20 13192.99 23795.13 23175.40 32198.28 20577.86 33299.19 9097.99 161
BH-w/o87.21 30587.02 30087.79 33294.77 28077.27 31487.90 32693.21 29481.74 29789.99 30788.39 36983.47 24896.93 30571.29 37692.43 37189.15 386
GA-MVS87.70 29186.82 30290.31 28093.27 31477.22 31584.72 37692.79 30085.11 25389.82 31090.07 34766.80 35497.76 25884.56 27094.27 33895.96 283
TinyColmap92.00 19792.76 17289.71 29695.62 25277.02 31690.72 25696.17 21587.70 20795.26 15696.29 17692.54 11396.45 32181.77 29598.77 14595.66 299
Patchmtry90.11 24289.92 24190.66 27290.35 37377.00 31792.96 17792.81 29890.25 15494.74 18296.93 13067.11 35197.52 27285.17 25798.98 11297.46 208
DIV-MVS_self_test90.65 22190.56 22890.91 26591.85 34976.99 31886.75 34895.36 24685.52 24694.06 20094.89 24077.37 30597.99 23390.28 15798.97 11797.76 188
cl____90.65 22190.56 22890.91 26591.85 34976.98 31986.75 34895.36 24685.53 24494.06 20094.89 24077.36 30697.98 23490.27 15898.98 11297.76 188
pmmvs587.87 28887.14 29690.07 28893.26 31576.97 32088.89 31192.18 31273.71 35888.36 33593.89 27876.86 31496.73 31380.32 30896.81 27596.51 253
eth_miper_zixun_eth90.72 21890.61 22691.05 25792.04 34476.84 32186.91 34396.67 18785.21 24994.41 18993.92 27679.53 28598.26 20989.76 17497.02 26598.06 150
c3_l91.32 21191.42 20791.00 26192.29 33476.79 32287.52 33496.42 20285.76 23794.72 18493.89 27882.73 25998.16 21890.93 13998.55 16798.04 153
test_vis1_n_192089.45 25689.85 24388.28 32393.59 31076.71 32390.67 25897.78 10079.67 31590.30 30196.11 18876.62 31592.17 37990.31 15593.57 35295.96 283
MVSTER89.32 25988.75 26291.03 25890.10 37676.62 32490.85 25194.67 26782.27 29195.24 15995.79 20261.09 38298.49 18690.49 14798.26 19597.97 165
miper_ehance_all_eth90.48 22590.42 23190.69 27191.62 35676.57 32586.83 34696.18 21483.38 27294.06 20092.66 31082.20 26598.04 22589.79 17397.02 26597.45 209
cl2289.02 26588.50 26590.59 27489.76 37876.45 32686.62 35394.03 27782.98 28392.65 24892.49 31172.05 33397.53 27188.93 19697.02 26597.78 186
cascas87.02 31186.28 31389.25 30591.56 35876.45 32684.33 38096.78 17971.01 37586.89 35485.91 38481.35 27396.94 30383.09 28195.60 30294.35 338
ADS-MVSNet284.01 33382.20 34489.41 30089.04 38676.37 32887.57 32990.98 32872.71 36684.46 36992.45 31268.08 34796.48 31970.58 38283.97 39695.38 307
EU-MVSNet87.39 30186.71 30589.44 29993.40 31276.11 32994.93 11290.00 33557.17 40495.71 13197.37 9064.77 36797.68 26592.67 9694.37 33594.52 334
MIMVSNet87.13 30986.54 30888.89 31096.05 22176.11 32994.39 13088.51 34181.37 30088.27 33796.75 14372.38 33195.52 34265.71 39395.47 30695.03 317
IterMVS90.18 23890.16 23590.21 28593.15 31675.98 33187.56 33192.97 29686.43 22494.09 19796.40 16578.32 29597.43 27887.87 21994.69 32997.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test92.57 18393.29 15990.40 27993.53 31175.85 33292.52 19396.96 16488.73 18292.35 26296.70 14990.77 15498.37 20192.53 9995.49 30596.99 236
IB-MVS77.21 1983.11 33981.05 35189.29 30391.15 36275.85 33285.66 36786.00 36479.70 31482.02 39086.61 37948.26 39998.39 19477.84 33392.22 37293.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VPNet93.08 16293.76 14491.03 25898.60 3875.83 33491.51 23795.62 23091.84 10895.74 12897.10 11989.31 17998.32 20385.07 26499.06 10198.93 66
miper_enhance_ethall88.42 28087.87 28390.07 28888.67 39075.52 33585.10 37195.59 23575.68 34392.49 25389.45 35878.96 28897.88 24287.86 22097.02 26596.81 244
Anonymous2024052192.86 17293.57 15390.74 27096.57 17675.50 33694.15 13995.60 23189.38 16895.90 11997.90 6180.39 28197.96 23592.60 9899.68 1798.75 89
thisisatest051584.72 32782.99 33789.90 29292.96 32275.33 33784.36 37983.42 38477.37 33488.27 33786.65 37853.94 39498.72 15382.56 28697.40 25395.67 298
PS-MVSNAJ88.86 27288.99 25788.48 32094.88 27374.71 33886.69 35095.60 23180.88 30587.83 34387.37 37690.77 15498.82 13282.52 28794.37 33591.93 375
WTY-MVS86.93 31286.50 31188.24 32494.96 27174.64 33987.19 33892.07 31778.29 32988.32 33691.59 33178.06 29794.27 36574.88 35593.15 36195.80 291
xiu_mvs_v2_base89.00 26889.19 25188.46 32194.86 27574.63 34086.97 34195.60 23180.88 30587.83 34388.62 36691.04 14998.81 13782.51 28894.38 33491.93 375
131486.46 31586.33 31286.87 34291.65 35574.54 34191.94 22294.10 27674.28 35484.78 36887.33 37783.03 25495.00 35478.72 32891.16 38091.06 382
CHOSEN 280x42080.04 36577.97 37286.23 35290.13 37574.53 34272.87 40189.59 33766.38 39376.29 40285.32 38956.96 38995.36 34869.49 38594.72 32888.79 389
USDC89.02 26589.08 25388.84 31195.07 27074.50 34388.97 30996.39 20373.21 36193.27 22596.28 17882.16 26696.39 32377.55 33698.80 14095.62 302
MVEpermissive59.87 2373.86 37372.65 37677.47 38587.00 40074.35 34461.37 40560.93 41167.27 39069.69 40686.49 38181.24 27772.33 40856.45 40483.45 39885.74 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 31984.37 32589.40 30186.30 40174.33 34591.64 23588.26 34384.84 25972.96 40589.85 34871.27 33797.69 26476.60 34497.62 24296.18 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline187.62 29587.31 29088.54 31794.71 28574.27 34693.10 17488.20 34586.20 22892.18 26893.04 29873.21 32895.52 34279.32 32485.82 39495.83 290
Patchmatch-test86.10 31786.01 31486.38 35090.63 36874.22 34789.57 29386.69 35885.73 23889.81 31192.83 30365.24 36591.04 38477.82 33595.78 29993.88 349
dcpmvs_293.96 13795.01 10090.82 26897.60 12074.04 34893.68 15798.85 989.80 16197.82 3097.01 12691.14 14899.21 8090.56 14698.59 16499.19 34
MDA-MVSNet_test_wron88.16 28588.23 27687.93 32992.22 33673.71 34980.71 39488.84 33882.52 28894.88 17795.14 23082.70 26093.61 37083.28 27993.80 34996.46 259
YYNet188.17 28488.24 27587.93 32992.21 33773.62 35080.75 39388.77 33982.51 28994.99 17295.11 23282.70 26093.70 36983.33 27893.83 34896.48 257
test0.0.03 182.48 34581.47 34985.48 35689.70 37973.57 35184.73 37481.64 38983.07 28188.13 33986.61 37962.86 37689.10 39666.24 39290.29 38493.77 351
thres600view787.66 29387.10 29989.36 30296.05 22173.17 35292.72 18485.31 37391.89 10393.29 22390.97 33863.42 37398.39 19473.23 36596.99 27096.51 253
ANet_high94.83 10096.28 3990.47 27696.65 17073.16 35394.33 13298.74 1396.39 2798.09 2798.93 893.37 8898.70 16090.38 15199.68 1799.53 14
thres100view90087.35 30286.89 30188.72 31396.14 21473.09 35493.00 17685.31 37392.13 9693.26 22690.96 33963.42 37398.28 20571.27 37796.54 28394.79 327
tfpn200view987.05 31086.52 30988.67 31495.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28394.79 327
thres40087.20 30686.52 30989.24 30695.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28396.51 253
baseline283.38 33881.54 34888.90 30991.38 35972.84 35788.78 31581.22 39278.97 32479.82 39887.56 37361.73 38097.80 25174.30 35990.05 38596.05 280
ECVR-MVScopyleft90.12 24190.16 23590.00 29197.81 10372.68 35895.76 7878.54 40289.04 17595.36 14998.10 4370.51 34098.64 17087.10 23199.18 9298.67 102
thres20085.85 31885.18 31987.88 33194.44 29172.52 35989.08 30886.21 36188.57 18891.44 28088.40 36864.22 36898.00 23168.35 38695.88 29893.12 362
MG-MVS89.54 25489.80 24488.76 31294.88 27372.47 36089.60 29292.44 30985.82 23589.48 31695.98 19482.85 25797.74 26181.87 29495.27 31396.08 278
PAPM81.91 35280.11 36287.31 33693.87 30572.32 36184.02 38293.22 29269.47 38576.13 40389.84 34972.15 33297.23 28753.27 40589.02 38792.37 372
SCA87.43 30087.21 29488.10 32792.01 34571.98 36289.43 29888.11 34782.26 29288.71 32992.83 30378.65 29197.59 26979.61 32193.30 35794.75 329
testgi90.38 23191.34 21087.50 33497.49 12771.54 36389.43 29895.16 25088.38 19294.54 18794.68 25092.88 10693.09 37571.60 37597.85 23097.88 174
test111190.39 23090.61 22689.74 29598.04 8671.50 36495.59 8479.72 39989.41 16795.94 11698.14 4170.79 33898.81 13788.52 20699.32 6798.90 72
gg-mvs-nofinetune82.10 35081.02 35285.34 35787.46 39671.04 36594.74 11667.56 40996.44 2679.43 39998.99 645.24 40296.15 32967.18 39092.17 37388.85 388
GG-mvs-BLEND83.24 37485.06 40671.03 36694.99 11165.55 41074.09 40475.51 40444.57 40494.46 36159.57 40187.54 39184.24 397
ppachtmachnet_test88.61 27888.64 26388.50 31991.76 35170.99 36784.59 37792.98 29579.30 32292.38 26093.53 28979.57 28497.45 27786.50 24497.17 26097.07 230
our_test_387.55 29787.59 28787.44 33591.76 35170.48 36883.83 38390.55 33379.79 31292.06 27292.17 32078.63 29395.63 34084.77 26794.73 32796.22 272
CVMVSNet85.16 32384.72 32186.48 34692.12 34170.19 36992.32 20688.17 34656.15 40590.64 29495.85 19867.97 34996.69 31488.78 20190.52 38392.56 370
new_pmnet81.22 35581.01 35381.86 37790.92 36670.15 37084.03 38180.25 39870.83 37685.97 35889.78 35367.93 35084.65 40367.44 38991.90 37690.78 383
KD-MVS_2432*160082.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
miper_refine_blended82.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
DSMNet-mixed82.21 34781.56 34684.16 36889.57 38270.00 37390.65 25977.66 40454.99 40683.30 38197.57 7477.89 29990.50 38766.86 39195.54 30491.97 374
PatchmatchNetpermissive85.22 32284.64 32286.98 33989.51 38369.83 37490.52 26287.34 35578.87 32687.22 35292.74 30766.91 35396.53 31681.77 29586.88 39294.58 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EMVS80.35 36380.28 36180.54 38184.73 40769.07 37572.54 40280.73 39587.80 20381.66 39281.73 39862.89 37589.84 39075.79 35294.65 33082.71 400
E-PMN80.72 36080.86 35480.29 38285.11 40568.77 37672.96 40081.97 38887.76 20583.25 38283.01 39762.22 37989.17 39577.15 34194.31 33782.93 399
testing22280.54 36278.53 36986.58 34592.54 33068.60 37786.24 35982.72 38683.78 27182.68 38584.24 39339.25 41295.94 33660.25 39995.09 31895.20 309
mvs_anonymous90.37 23291.30 21187.58 33392.17 34068.00 37889.84 28694.73 26483.82 27093.22 23097.40 8887.54 20097.40 28187.94 21895.05 31997.34 219
testing9183.56 33782.45 34186.91 34192.92 32367.29 37986.33 35888.07 34886.22 22784.26 37285.76 38548.15 40097.17 29276.27 34894.08 34696.27 269
testing1181.98 35180.52 35886.38 35092.69 32567.13 38085.79 36584.80 37882.16 29381.19 39585.41 38845.24 40296.88 30874.14 36093.24 35895.14 313
CostFormer83.09 34082.21 34385.73 35389.27 38567.01 38190.35 26986.47 36070.42 38083.52 37993.23 29661.18 38196.85 30977.21 34088.26 39093.34 361
PatchT87.51 29888.17 27985.55 35590.64 36766.91 38292.02 21886.09 36392.20 9489.05 32197.16 11264.15 36996.37 32589.21 19192.98 36593.37 360
test-LLR83.58 33683.17 33584.79 36389.68 38066.86 38383.08 38584.52 37983.07 28182.85 38384.78 39162.86 37693.49 37182.85 28294.86 32394.03 344
test-mter81.21 35680.01 36384.79 36389.68 38066.86 38383.08 38584.52 37973.85 35782.85 38384.78 39143.66 40793.49 37182.85 28294.86 32394.03 344
testing9982.94 34281.72 34586.59 34492.55 32866.53 38586.08 36285.70 36785.47 24783.95 37485.70 38645.87 40197.07 29876.58 34593.56 35396.17 276
test250685.42 32184.57 32487.96 32897.81 10366.53 38596.14 6156.35 41289.04 17593.55 21698.10 4342.88 41098.68 16488.09 21399.18 9298.67 102
PVSNet_070.34 2174.58 37272.96 37579.47 38390.63 36866.24 38773.26 39983.40 38563.67 40078.02 40078.35 40372.53 32989.59 39256.68 40260.05 40782.57 401
ETVMVS79.85 36677.94 37385.59 35492.97 32166.20 38886.13 36180.99 39481.41 29983.52 37983.89 39441.81 41194.98 35756.47 40394.25 33995.61 303
WB-MVSnew84.20 33283.89 33185.16 36091.62 35666.15 38988.44 32381.00 39376.23 34287.98 34187.77 37284.98 23993.35 37362.85 39894.10 34595.98 282
testing383.66 33582.52 34087.08 33795.84 23565.84 39089.80 28877.17 40688.17 19690.84 29088.63 36530.95 41498.11 22184.05 27497.19 25997.28 223
ADS-MVSNet82.25 34681.55 34784.34 36789.04 38665.30 39187.57 32985.13 37772.71 36684.46 36992.45 31268.08 34792.33 37870.58 38283.97 39695.38 307
tpmvs84.22 33183.97 32984.94 36187.09 39865.18 39291.21 24488.35 34282.87 28485.21 36190.96 33965.24 36596.75 31279.60 32385.25 39592.90 367
tpm281.46 35380.35 36084.80 36289.90 37765.14 39390.44 26485.36 37265.82 39682.05 38992.44 31457.94 38796.69 31470.71 38188.49 38992.56 370
EPMVS81.17 35780.37 35983.58 37285.58 40465.08 39490.31 27171.34 40877.31 33585.80 35991.30 33359.38 38592.70 37779.99 31482.34 40192.96 366
tpm cat180.61 36179.46 36484.07 36988.78 38865.06 39589.26 30488.23 34462.27 40181.90 39189.66 35662.70 37895.29 35171.72 37380.60 40391.86 377
DeepMVS_CXcopyleft53.83 39070.38 41364.56 39648.52 41433.01 40865.50 40874.21 40556.19 39146.64 41138.45 40970.07 40550.30 406
PVSNet76.22 2082.89 34382.37 34284.48 36593.96 30264.38 39778.60 39688.61 34071.50 37184.43 37186.36 38274.27 32494.60 35969.87 38493.69 35194.46 335
TESTMET0.1,179.09 36978.04 37182.25 37687.52 39564.03 39883.08 38580.62 39670.28 38180.16 39783.22 39644.13 40590.56 38679.95 31593.36 35592.15 373
tpm84.38 33084.08 32885.30 35890.47 37163.43 39989.34 30185.63 36977.24 33687.62 34795.03 23661.00 38397.30 28579.26 32591.09 38195.16 311
Syy-MVS84.81 32684.93 32084.42 36691.71 35363.36 40085.89 36381.49 39081.03 30285.13 36381.64 39977.44 30295.00 35485.94 25194.12 34394.91 323
MDTV_nov1_ep1383.88 33289.42 38461.52 40188.74 31787.41 35373.99 35684.96 36794.01 27365.25 36495.53 34178.02 33193.16 360
WAC-MVS61.25 40274.55 356
myMVS_eth3d79.62 36778.26 37083.72 37191.71 35361.25 40285.89 36381.49 39081.03 30285.13 36381.64 39932.12 41395.00 35471.17 38094.12 34394.91 323
UWE-MVS80.29 36479.10 36583.87 37091.97 34759.56 40486.50 35777.43 40575.40 34787.79 34588.10 37044.08 40696.90 30764.23 39496.36 28795.14 313
gm-plane-assit87.08 39959.33 40571.22 37283.58 39597.20 28973.95 361
tpmrst82.85 34482.93 33882.64 37587.65 39358.99 40690.14 27687.90 35075.54 34583.93 37591.63 33066.79 35695.36 34881.21 30381.54 40293.57 359
dp79.28 36878.62 36881.24 38085.97 40356.45 40786.91 34385.26 37572.97 36481.45 39489.17 36356.01 39295.45 34673.19 36676.68 40491.82 378
new-patchmatchnet88.97 26990.79 22283.50 37394.28 29555.83 40885.34 37093.56 28686.18 22995.47 14195.73 20883.10 25296.51 31885.40 25698.06 21498.16 144
dmvs_testset78.23 37178.99 36675.94 38691.99 34655.34 40988.86 31278.70 40182.69 28581.64 39379.46 40175.93 31885.74 40148.78 40782.85 40086.76 394
SSC-MVS90.16 23992.96 16581.78 37897.88 9748.48 41090.75 25487.69 35196.02 3496.70 8197.63 7185.60 23397.80 25185.73 25398.60 16399.06 48
WB-MVS89.44 25792.15 18981.32 37997.73 11048.22 41189.73 28987.98 34995.24 3996.05 11296.99 12785.18 23696.95 30282.45 28997.97 22398.78 85
MVS-HIRNet78.83 37080.60 35773.51 38893.07 31747.37 41287.10 34078.00 40368.94 38677.53 40197.26 10271.45 33694.62 35863.28 39788.74 38878.55 403
PMMVS281.31 35483.44 33374.92 38790.52 37046.49 41369.19 40385.23 37684.30 26687.95 34294.71 24976.95 31184.36 40464.07 39598.09 21293.89 348
MDTV_nov1_ep13_2view42.48 41488.45 32267.22 39183.56 37866.80 35472.86 36894.06 343
dongtai53.72 37453.79 37753.51 39179.69 41236.70 41577.18 39732.53 41771.69 36968.63 40760.79 40626.65 41573.11 40730.67 41036.29 40950.73 405
kuosan43.63 37644.25 38041.78 39266.04 41434.37 41675.56 39832.62 41653.25 40750.46 41051.18 40725.28 41649.13 41013.44 41130.41 41041.84 407
tmp_tt37.97 37744.33 37918.88 39311.80 41621.54 41763.51 40445.66 4154.23 41051.34 40950.48 40859.08 38622.11 41244.50 40868.35 40613.00 408
test_method50.44 37548.94 37854.93 38939.68 41512.38 41828.59 40690.09 3346.82 40941.10 41178.41 40254.41 39370.69 40950.12 40651.26 40881.72 402
test1239.49 37912.01 3821.91 3942.87 4171.30 41982.38 3881.34 4191.36 4122.84 4136.56 4112.45 4170.97 4132.73 4125.56 4113.47 409
testmvs9.02 38011.42 3831.81 3952.77 4181.13 42079.44 3951.90 4181.18 4132.65 4146.80 4101.95 4180.87 4142.62 4133.45 4123.44 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.35 37831.13 3810.00 3960.00 4190.00 4210.00 40795.58 2370.00 4140.00 41591.15 33593.43 860.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.56 38110.09 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41490.77 1540.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.56 38110.08 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41590.69 3440.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
PC_three_145275.31 34995.87 12195.75 20792.93 10396.34 32887.18 23098.68 15598.04 153
eth-test20.00 419
eth-test0.00 419
test_241102_TWO98.10 5891.95 9997.54 4197.25 10395.37 3099.35 6093.29 7599.25 8198.49 122
9.1494.81 10597.49 12794.11 14298.37 2287.56 21195.38 14696.03 19294.66 6299.08 9690.70 14398.97 117
test_0728_THIRD93.26 7497.40 5297.35 9694.69 6199.34 6393.88 4899.42 5098.89 73
GSMVS94.75 329
sam_mvs166.64 35794.75 329
sam_mvs66.41 358
MTGPAbinary97.62 109
test_post190.21 2735.85 41365.36 36396.00 33479.61 321
test_post6.07 41265.74 36295.84 338
patchmatchnet-post91.71 32866.22 36097.59 269
MTMP94.82 11454.62 413
test9_res88.16 21198.40 17997.83 180
agg_prior287.06 23398.36 18897.98 162
test_prior290.21 27389.33 17090.77 29194.81 24390.41 16488.21 20798.55 167
旧先验290.00 28168.65 38792.71 24796.52 31785.15 259
新几何290.02 280
无先验89.94 28295.75 22770.81 37798.59 17681.17 30494.81 325
原ACMM289.34 301
testdata298.03 22680.24 311
segment_acmp92.14 121
testdata188.96 31088.44 191
plane_prior597.81 9598.95 11689.26 18898.51 17398.60 114
plane_prior495.59 212
plane_prior294.56 12591.74 116
plane_prior197.38 132
n20.00 420
nn0.00 420
door-mid92.13 316
test1196.65 188
door91.26 325
HQP-NCC96.36 19191.37 23987.16 21588.81 324
ACMP_Plane96.36 19191.37 23987.16 21588.81 324
BP-MVS86.55 242
HQP4-MVS88.81 32498.61 17298.15 145
HQP3-MVS97.31 13897.73 234
HQP2-MVS84.76 240
ACMMP++_ref98.82 137
ACMMP++99.25 81
Test By Simon90.61 160