This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5591.63 186.34 197.97 194.77 366.57 11795.38 187.74 197.72 193.00 7
Effi-MVS+-dtu75.43 9272.28 15084.91 377.05 17983.58 278.47 9677.70 18357.68 15274.89 19078.13 28264.80 13484.26 7556.46 19685.32 20986.88 62
PMVScopyleft70.70 681.70 3383.15 3277.36 7690.35 682.82 382.15 5779.22 15574.08 2187.16 2991.97 2084.80 276.97 19864.98 12093.61 6072.28 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
mPP-MVS84.01 1184.39 1282.88 790.65 481.38 487.08 1282.79 8572.41 3785.11 5690.85 4576.65 2884.89 6479.30 1794.63 3382.35 177
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 987.95 1592.53 1479.37 1384.79 6774.51 4896.15 392.88 8
CP-MVS84.12 984.55 1182.80 1189.42 1879.74 688.19 584.43 5971.96 4184.70 6290.56 5377.12 2586.18 2879.24 1895.36 1382.49 175
SR-MVS-dyc-post84.75 485.26 683.21 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4879.20 1485.58 4878.11 2494.46 3684.89 95
RE-MVS-def85.50 486.19 5079.18 787.23 886.27 2177.51 1187.65 1990.73 4881.38 778.11 2494.46 3684.89 95
MP-MVScopyleft83.19 1983.54 2482.14 2090.54 579.00 986.42 2283.59 7571.31 4281.26 10190.96 4074.57 4784.69 6878.41 2294.78 2882.74 169
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CPTT-MVS81.51 3581.76 4480.76 3589.20 2378.75 1086.48 2182.03 9968.80 5680.92 10688.52 10972.00 6582.39 10274.80 4493.04 6781.14 196
HPM-MVS++copyleft79.89 5279.80 5880.18 4089.02 2678.44 1183.49 4680.18 13964.71 9378.11 13888.39 11265.46 12883.14 9177.64 3091.20 9578.94 238
MTAPA83.19 1983.87 1981.13 3191.16 378.16 1284.87 3080.63 12972.08 3984.93 5790.79 4674.65 4684.42 7380.98 594.75 2980.82 206
FOURS189.19 2477.84 1391.64 189.11 384.05 391.57 3
SR-MVS84.51 685.27 582.25 1988.52 3477.71 1486.81 1685.25 3877.42 1486.15 3890.24 7181.69 585.94 3477.77 2793.58 6183.09 157
XVS83.51 1683.73 2182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 8190.39 6373.86 5286.31 2178.84 2094.03 5384.64 105
X-MVStestdata76.81 7974.79 10182.85 989.43 1677.61 1586.80 1784.66 5472.71 3082.87 819.95 40873.86 5286.31 2178.84 2094.03 5384.64 105
region2R83.54 1583.86 2082.58 1589.82 1077.53 1787.06 1384.23 6570.19 5183.86 7190.72 5075.20 4086.27 2379.41 1594.25 5083.95 130
RPSCF75.76 8674.37 10779.93 4174.81 21777.53 1777.53 10879.30 15459.44 13678.88 12889.80 8071.26 7173.09 24257.45 18680.89 26289.17 31
ACMMPR83.62 1383.93 1882.69 1289.78 1177.51 1987.01 1484.19 6670.23 4984.49 6490.67 5175.15 4186.37 2079.58 1194.26 4984.18 125
MSP-MVS80.49 4679.67 5982.96 689.70 1277.46 2087.16 1185.10 4164.94 9181.05 10488.38 11357.10 21387.10 979.75 883.87 23084.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS83.07 2283.25 3182.54 1689.57 1477.21 2182.04 6085.40 3567.96 6284.91 6090.88 4375.59 3686.57 1678.16 2394.71 3183.82 132
DeepPCF-MVS71.07 578.48 6677.14 8282.52 1784.39 8377.04 2276.35 12484.05 6956.66 16480.27 11485.31 17768.56 9287.03 1267.39 10091.26 9383.50 140
ACMMPcopyleft84.22 784.84 982.35 1889.23 2276.66 2387.65 685.89 2771.03 4585.85 4290.58 5278.77 1685.78 4179.37 1695.17 1784.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast84.59 585.10 783.06 588.60 3375.83 2486.27 2486.89 1673.69 2486.17 3791.70 2778.23 1985.20 5879.45 1394.91 2588.15 47
HFP-MVS83.39 1884.03 1781.48 2489.25 2175.69 2587.01 1484.27 6270.23 4984.47 6590.43 5876.79 2685.94 3479.58 1194.23 5182.82 166
LTVRE_ROB75.46 184.22 784.98 881.94 2184.82 7375.40 2691.60 387.80 873.52 2588.90 1293.06 771.39 7081.53 11681.53 492.15 8188.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CNLPA73.44 11773.03 13674.66 10478.27 16375.29 2775.99 13178.49 17065.39 8075.67 18083.22 21261.23 16666.77 30853.70 22585.33 20881.92 186
PM-MVS64.49 24163.61 25167.14 23676.68 19175.15 2868.49 23242.85 39051.17 23677.85 14180.51 24245.76 27566.31 31152.83 23176.35 30559.96 379
XVG-OURS79.51 5479.82 5778.58 6286.11 5774.96 2976.33 12684.95 4566.89 6582.75 8488.99 9966.82 11078.37 17774.80 4490.76 11582.40 176
XVG-OURS-SEG-HR79.62 5379.99 5678.49 6386.46 4774.79 3077.15 11485.39 3666.73 6880.39 11388.85 10274.43 5078.33 17974.73 4685.79 20182.35 177
EGC-MVSNET64.77 23761.17 27075.60 9786.90 4374.47 3184.04 3668.62 2670.60 4101.13 41291.61 3065.32 13074.15 23464.01 12788.28 15778.17 248
HPM-MVScopyleft84.12 984.63 1082.60 1488.21 3674.40 3285.24 2887.21 1470.69 4885.14 5590.42 5978.99 1586.62 1580.83 694.93 2486.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft72.78 383.75 1284.11 1682.68 1382.97 10374.39 3387.18 1088.18 778.98 786.11 4091.47 3279.70 1285.76 4266.91 10895.46 1287.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp78.60 6277.80 7581.00 3278.01 16874.34 3480.09 8076.12 19850.51 24289.19 1190.88 4371.45 6977.78 19173.38 5790.60 11790.90 17
ACMM69.25 982.11 3083.31 2878.49 6388.17 3773.96 3583.11 5184.52 5866.40 7187.45 2389.16 9481.02 880.52 13974.27 5195.73 880.98 202
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5978.67 6779.72 4484.81 7473.93 3680.65 7076.50 19651.98 22387.40 2491.86 2476.09 3378.53 16968.58 8490.20 12186.69 65
MVS_111021_LR72.10 14971.82 15572.95 13979.53 14373.90 3770.45 20366.64 27556.87 16076.81 15981.76 22768.78 9071.76 26161.81 14683.74 23273.18 294
jajsoiax78.51 6478.16 7379.59 4684.65 7773.83 3880.42 7376.12 19851.33 23387.19 2891.51 3173.79 5478.44 17368.27 8790.13 12586.49 67
ITE_SJBPF80.35 3976.94 18473.60 3980.48 13266.87 6683.64 7486.18 16170.25 8079.90 14961.12 15588.95 15287.56 53
PatchMatch-RL58.68 29357.72 29761.57 28576.21 19773.59 4061.83 30349.00 37147.30 27461.08 33368.97 35650.16 25459.01 34136.06 35468.84 36352.10 389
APD-MVS_3200maxsize83.57 1484.33 1381.31 2982.83 10673.53 4185.50 2787.45 1374.11 2086.45 3590.52 5680.02 1084.48 7177.73 2894.34 4785.93 75
GST-MVS82.79 2583.27 3081.34 2888.99 2773.29 4285.94 2585.13 3968.58 6084.14 6890.21 7373.37 5686.41 1879.09 1993.98 5684.30 124
ZNCC-MVS83.12 2183.68 2281.45 2589.14 2573.28 4386.32 2385.97 2667.39 6384.02 6990.39 6374.73 4586.46 1780.73 794.43 4084.60 110
XVG-ACMP-BASELINE80.54 4581.06 4978.98 5687.01 3972.91 4480.23 7985.56 3066.56 7085.64 4589.57 8369.12 8980.55 13872.51 6593.37 6383.48 143
h-mvs3373.08 12671.61 15977.48 7483.89 8972.89 4570.47 20271.12 24954.28 19477.89 13983.41 20049.04 26180.98 12963.62 13590.77 11478.58 242
3Dnovator+73.19 281.08 4080.48 5282.87 881.41 12472.03 4684.38 3586.23 2477.28 1580.65 11090.18 7459.80 18487.58 673.06 5991.34 9289.01 34
F-COLMAP75.29 9373.99 11479.18 5181.73 12071.90 4781.86 6282.98 8259.86 13472.27 23084.00 19364.56 13683.07 9451.48 23687.19 18382.56 174
hse-mvs272.32 14670.66 17177.31 7883.10 10071.77 4869.19 21971.45 23954.28 19477.89 13978.26 27849.04 26179.23 15763.62 13589.13 14880.92 203
AUN-MVS70.22 16767.88 20377.22 7982.96 10471.61 4969.08 22071.39 24049.17 25771.70 23678.07 28337.62 32879.21 15861.81 14689.15 14680.82 206
FPMVS59.43 28860.07 27957.51 31477.62 17671.52 5062.33 30250.92 36257.40 15769.40 26780.00 25339.14 31861.92 33237.47 34066.36 37239.09 402
LS3D80.99 4280.85 5081.41 2678.37 16271.37 5187.45 785.87 2877.48 1381.98 9089.95 7869.14 8885.26 5466.15 11091.24 9487.61 52
新几何169.99 19088.37 3571.34 5262.08 30743.85 29974.99 18986.11 16652.85 23870.57 27150.99 24183.23 23968.05 342
test_djsdf78.88 6078.27 7180.70 3681.42 12371.24 5383.98 3775.72 20352.27 21887.37 2792.25 1768.04 9980.56 13672.28 6791.15 9790.32 21
N_pmnet52.06 33351.11 34154.92 32559.64 37071.03 5437.42 39861.62 31133.68 36957.12 35472.10 32837.94 32431.03 40429.13 38671.35 34762.70 369
SteuartSystems-ACMMP83.07 2283.64 2381.35 2785.14 6971.00 5585.53 2684.78 4770.91 4685.64 4590.41 6075.55 3887.69 579.75 895.08 2085.36 86
Skip Steuart: Steuart Systems R&D Blog.
AllTest77.66 7277.43 7878.35 6579.19 15070.81 5678.60 9488.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
TestCases78.35 6579.19 15070.81 5688.64 465.37 8180.09 11588.17 11770.33 7878.43 17455.60 20390.90 10885.81 77
TSAR-MVS + GP.73.08 12671.60 16077.54 7378.99 15770.73 5874.96 13969.38 26160.73 12774.39 20178.44 27657.72 20782.78 9760.16 16489.60 13579.11 236
OMC-MVS79.41 5678.79 6581.28 3080.62 13370.71 5980.91 6884.76 4862.54 11581.77 9386.65 14671.46 6883.53 8567.95 9392.44 7589.60 24
APD-MVScopyleft81.13 3981.73 4579.36 5084.47 8070.53 6083.85 3983.70 7369.43 5583.67 7388.96 10075.89 3486.41 1872.62 6492.95 6881.14 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LPG-MVS_test83.47 1784.33 1380.90 3387.00 4070.41 6182.04 6086.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
LGP-MVS_train80.90 3387.00 4070.41 6186.35 1869.77 5387.75 1691.13 3681.83 386.20 2677.13 3695.96 686.08 70
APD_test175.04 9975.38 9974.02 11669.89 28770.15 6376.46 12079.71 14565.50 7782.99 7988.60 10866.94 10772.35 25359.77 17088.54 15579.56 228
test_prior470.14 6477.57 105
DeepC-MVS72.44 481.00 4180.83 5181.50 2386.70 4570.03 6582.06 5887.00 1559.89 13380.91 10790.53 5472.19 6188.56 273.67 5694.52 3585.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft82.12 2982.68 3980.43 3788.90 3069.52 6685.12 2984.76 4863.53 10484.23 6791.47 3272.02 6487.16 879.74 1094.36 4584.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC78.25 6878.04 7478.89 5885.61 6369.45 6779.80 8480.99 12265.77 7475.55 18286.25 16067.42 10385.42 4970.10 7690.88 11081.81 187
ACMP69.50 882.64 2683.38 2780.40 3886.50 4669.44 6882.30 5686.08 2566.80 6786.70 3189.99 7681.64 685.95 3374.35 5096.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS80.99 4281.63 4779.07 5386.86 4469.39 6979.41 8784.00 7165.64 7585.54 4989.28 8776.32 3183.47 8674.03 5393.57 6284.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ZD-MVS83.91 8769.36 7081.09 11958.91 14382.73 8589.11 9575.77 3586.63 1472.73 6292.93 69
TEST985.47 6469.32 7176.42 12278.69 16653.73 20876.97 15186.74 14066.84 10981.10 124
train_agg76.38 8276.55 8675.86 9485.47 6469.32 7176.42 12278.69 16654.00 20376.97 15186.74 14066.60 11581.10 12472.50 6691.56 8877.15 261
UA-Net81.56 3482.28 4179.40 4988.91 2969.16 7384.67 3380.01 14275.34 1679.80 11794.91 269.79 8580.25 14372.63 6394.46 3688.78 42
test22287.30 3869.15 7467.85 23859.59 31741.06 32373.05 22185.72 17448.03 27080.65 26666.92 347
ACMMP_NAP82.33 2883.28 2979.46 4889.28 1969.09 7583.62 4384.98 4364.77 9283.97 7091.02 3975.53 3985.93 3682.00 394.36 4583.35 150
PLCcopyleft62.01 1671.79 15270.28 17376.33 8880.31 13668.63 7678.18 10281.24 11454.57 18967.09 29680.63 24159.44 18581.74 11546.91 27984.17 22778.63 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MP-MVS-pluss82.54 2783.46 2679.76 4288.88 3168.44 7781.57 6386.33 2063.17 11085.38 5391.26 3576.33 3084.67 6983.30 294.96 2386.17 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TAPA-MVS65.27 1275.16 9674.29 10977.77 7274.86 21668.08 7877.89 10484.04 7055.15 17876.19 17783.39 20166.91 10880.11 14760.04 16790.14 12485.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS_fast69.89 777.17 7676.33 8879.70 4583.90 8867.94 7980.06 8283.75 7256.73 16374.88 19185.32 17665.54 12687.79 365.61 11791.14 9883.35 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_885.09 7067.89 8076.26 12778.66 16854.00 20376.89 15586.72 14266.60 11580.89 134
SD-MVS80.28 5081.55 4876.47 8783.57 9067.83 8183.39 4885.35 3764.42 9486.14 3987.07 13174.02 5180.97 13077.70 2992.32 7980.62 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testf175.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
APD_test275.66 8876.57 8472.95 13967.07 32167.62 8276.10 12880.68 12764.95 8986.58 3390.94 4171.20 7271.68 26360.46 16091.13 9979.56 228
TSAR-MVS + MP.79.05 5878.81 6479.74 4388.94 2867.52 8486.61 1981.38 11151.71 22577.15 14991.42 3465.49 12787.20 779.44 1487.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS78.49 6578.59 6878.16 6785.86 6167.40 8578.12 10381.50 10763.92 9877.51 14686.56 15068.43 9584.82 6673.83 5491.61 8782.26 181
DPE-MVScopyleft82.00 3183.02 3478.95 5785.36 6667.25 8682.91 5284.98 4373.52 2585.43 5290.03 7576.37 2986.97 1374.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
save fliter87.00 4067.23 8779.24 8877.94 18156.65 165
MSC_two_6792asdad79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
No_MVS79.02 5483.14 9667.03 8880.75 12486.24 2477.27 3494.85 2683.78 134
OPU-MVS78.65 6183.44 9466.85 9083.62 4386.12 16566.82 11086.01 3261.72 14989.79 13383.08 158
APDe-MVScopyleft82.88 2484.14 1579.08 5284.80 7566.72 9186.54 2085.11 4072.00 4086.65 3291.75 2678.20 2087.04 1177.93 2694.32 4883.47 144
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_part285.90 5866.44 9284.61 63
PS-MVSNAJss77.54 7377.35 8078.13 6984.88 7266.37 9378.55 9579.59 14953.48 21086.29 3692.43 1662.39 15280.25 14367.90 9490.61 11687.77 49
test_fmvsmconf0.01_n73.91 11073.64 12174.71 10369.79 29166.25 9475.90 13279.90 14346.03 28276.48 17185.02 18067.96 10173.97 23574.47 4987.22 18183.90 131
plane_prior785.18 6766.21 95
test_fmvsmconf0.1_n73.26 12372.82 14074.56 10569.10 29766.18 9674.65 15079.34 15345.58 28475.54 18383.91 19467.19 10573.88 23873.26 5886.86 18683.63 139
test_fmvsmconf_n72.91 13572.40 14874.46 10668.62 30166.12 9774.21 15578.80 16345.64 28374.62 19783.25 20966.80 11373.86 23972.97 6086.66 19283.39 147
agg_prior84.44 8266.02 9878.62 16976.95 15380.34 141
test_fmvsm_n_192069.63 17568.45 19373.16 13270.56 27665.86 9970.26 20578.35 17237.69 34974.29 20278.89 27261.10 17068.10 29065.87 11579.07 28285.53 84
plane_prior365.67 10063.82 10078.23 135
MM78.15 7077.68 7679.55 4780.10 13765.47 10180.94 6778.74 16571.22 4372.40 22988.70 10460.51 17587.70 477.40 3389.13 14885.48 85
MVS_111021_HR72.98 13372.97 13872.99 13780.82 13165.47 10168.81 22472.77 22557.67 15375.76 17982.38 21971.01 7477.17 19661.38 15186.15 19576.32 267
DP-MVS78.44 6779.29 6275.90 9381.86 11965.33 10379.05 9084.63 5674.83 1980.41 11286.27 15871.68 6683.45 8762.45 14592.40 7678.92 239
plane_prior684.18 8565.31 10460.83 173
HQP_MVS78.77 6178.78 6678.72 5985.18 6765.18 10582.74 5385.49 3165.45 7878.23 13589.11 9560.83 17386.15 2971.09 7090.94 10484.82 100
plane_prior65.18 10580.06 8261.88 12089.91 130
原ACMM173.90 11785.90 5865.15 10781.67 10550.97 23774.25 20386.16 16361.60 16083.54 8456.75 19191.08 10273.00 296
MAR-MVS67.72 20566.16 22372.40 15774.45 22564.99 10874.87 14077.50 18648.67 26165.78 30268.58 36357.01 21577.79 19046.68 28281.92 24874.42 285
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS76.51 8176.00 9178.06 7077.02 18164.77 10980.78 6982.66 9060.39 12974.15 20483.30 20769.65 8682.07 10969.27 8286.75 19087.36 55
Vis-MVSNetpermissive74.85 10674.56 10475.72 9581.63 12264.64 11076.35 12479.06 15762.85 11373.33 21788.41 11162.54 15079.59 15463.94 13282.92 24082.94 162
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+-dtu70.00 17068.74 19073.77 11973.47 23964.53 11171.36 18878.14 17855.81 17368.84 27874.71 30865.36 12975.75 21052.00 23379.00 28381.03 199
SF-MVS80.72 4481.80 4377.48 7482.03 11664.40 11283.41 4788.46 665.28 8384.29 6689.18 9273.73 5583.22 9076.01 3893.77 5884.81 102
OurMVSNet-221017-078.57 6378.53 6978.67 6080.48 13464.16 11380.24 7882.06 9861.89 11988.77 1393.32 557.15 21182.60 10070.08 7792.80 7089.25 28
test_fmvsmvis_n_192072.36 14572.49 14571.96 16371.29 26764.06 11472.79 16581.82 10240.23 33381.25 10281.04 23570.62 7768.69 28469.74 8083.60 23683.14 156
CDPH-MVS77.33 7577.06 8378.14 6884.21 8463.98 11576.07 13083.45 7654.20 19877.68 14587.18 12769.98 8285.37 5068.01 9192.72 7385.08 92
UGNet70.20 16869.05 18373.65 12076.24 19663.64 11675.87 13372.53 22861.48 12160.93 33786.14 16452.37 24177.12 19750.67 24385.21 21080.17 222
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_Blended_VisFu70.04 16968.88 18673.53 12682.71 10763.62 11774.81 14281.95 10148.53 26267.16 29579.18 26751.42 24878.38 17654.39 21879.72 27878.60 241
DP-MVS Recon73.57 11672.69 14276.23 9082.85 10563.39 11874.32 15282.96 8357.75 15170.35 25481.98 22364.34 13884.41 7449.69 25089.95 12880.89 204
testdata64.13 25885.87 6063.34 11961.80 31047.83 26976.42 17486.60 14948.83 26462.31 33054.46 21681.26 26066.74 351
LCM-MVSNet86.90 288.67 281.57 2291.50 263.30 12084.80 3287.77 1086.18 296.26 296.06 190.32 184.49 7068.08 8997.05 296.93 1
3Dnovator65.95 1171.50 15571.22 16572.34 15873.16 24563.09 12178.37 9778.32 17357.67 15372.22 23284.61 18354.77 22678.47 17160.82 15881.07 26175.45 273
NP-MVS83.34 9563.07 12285.97 169
CS-MVS-test74.89 10474.23 11076.86 8077.01 18262.94 12378.98 9184.61 5758.62 14470.17 25880.80 23866.74 11481.96 11061.74 14889.40 14285.69 82
MSLP-MVS++74.48 10775.78 9370.59 17684.66 7662.40 12478.65 9384.24 6460.55 12877.71 14481.98 22363.12 14377.64 19362.95 14288.14 15971.73 311
ACMH+66.64 1081.20 3782.48 4077.35 7781.16 12862.39 12580.51 7187.80 873.02 2787.57 2191.08 3880.28 982.44 10164.82 12196.10 587.21 57
PHI-MVS74.92 10174.36 10876.61 8376.40 19462.32 12680.38 7483.15 8054.16 20073.23 21980.75 23962.19 15583.86 7968.02 9090.92 10783.65 138
fmvsm_l_conf0.5_n67.48 20866.88 21969.28 20167.41 31662.04 12770.69 20069.85 25839.46 33669.59 26581.09 23458.15 19868.73 28367.51 9778.16 29577.07 265
LF4IMVS67.50 20767.31 21168.08 22458.86 37361.93 12871.43 18675.90 20244.67 29672.42 22880.20 24857.16 21070.44 27358.99 17786.12 19871.88 309
xiu_mvs_v1_base_debu67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
xiu_mvs_v1_base_debi67.87 20267.07 21470.26 18279.13 15261.90 12967.34 24571.25 24547.98 26667.70 28874.19 31661.31 16372.62 24756.51 19378.26 29276.27 268
CSCG74.12 10974.39 10673.33 12879.35 14561.66 13277.45 10981.98 10062.47 11779.06 12780.19 24961.83 15778.79 16659.83 16987.35 17379.54 231
MVS_030475.45 9174.66 10377.83 7175.58 20761.53 13378.29 9877.18 19163.15 11269.97 26087.20 12657.54 20987.05 1074.05 5288.96 15184.89 95
test_one_060185.84 6261.45 13485.63 2975.27 1885.62 4890.38 6576.72 27
fmvsm_l_conf0.5_n_a66.66 21865.97 22768.72 21667.09 31961.38 13570.03 20769.15 26338.59 34368.41 28180.36 24556.56 21968.32 28866.10 11177.45 29976.46 266
CANet73.00 13171.84 15476.48 8675.82 20461.28 13674.81 14280.37 13663.17 11062.43 32780.50 24361.10 17085.16 6064.00 12884.34 22683.01 161
EPNet69.10 18567.32 21074.46 10668.33 30561.27 13777.56 10663.57 30060.95 12556.62 36182.75 21351.53 24781.24 12154.36 21990.20 12180.88 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n_a67.37 21266.36 22170.37 18070.86 26961.17 13874.00 15757.18 32840.77 32868.83 27980.88 23763.11 14467.61 29566.94 10774.72 31982.33 180
fmvsm_s_conf0.5_n_a67.00 21765.95 22870.17 18569.72 29261.16 13973.34 16156.83 33140.96 32568.36 28280.08 25262.84 14567.57 29666.90 10974.50 32381.78 188
SED-MVS81.78 3283.48 2576.67 8286.12 5461.06 14083.62 4384.72 5072.61 3387.38 2589.70 8177.48 2385.89 3975.29 4294.39 4183.08 158
test_241102_ONE86.12 5461.06 14084.72 5072.64 3287.38 2589.47 8477.48 2385.74 43
AdaColmapbinary74.22 10874.56 10473.20 13181.95 11760.97 14279.43 8580.90 12365.57 7672.54 22781.76 22770.98 7585.26 5447.88 27290.00 12673.37 292
test1276.51 8582.28 11360.94 14381.64 10673.60 21264.88 13385.19 5990.42 11983.38 148
DVP-MVS++81.24 3682.74 3876.76 8183.14 9660.90 14491.64 185.49 3174.03 2284.93 5790.38 6566.82 11085.90 3777.43 3190.78 11283.49 141
IU-MVS86.12 5460.90 14480.38 13545.49 28781.31 10075.64 4194.39 4184.65 104
DVP-MVScopyleft81.15 3883.12 3375.24 10286.16 5260.78 14683.77 4180.58 13172.48 3585.83 4390.41 6078.57 1785.69 4475.86 3994.39 4179.24 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5260.78 14683.81 4085.10 4172.48 3585.27 5489.96 7778.57 17
wuyk23d61.97 26666.25 22249.12 35658.19 37860.77 14866.32 26152.97 35555.93 17290.62 686.91 13473.07 5735.98 40220.63 40591.63 8650.62 391
test_0728_SECOND76.57 8486.20 4960.57 14983.77 4185.49 3185.90 3775.86 3994.39 4183.25 152
MVP-Stereo61.56 27159.22 28468.58 21879.28 14660.44 15069.20 21871.57 23543.58 30556.42 36278.37 27739.57 31676.46 20634.86 35960.16 38768.86 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
旧先验184.55 7960.36 15163.69 29987.05 13254.65 22883.34 23869.66 330
pmmvs-eth3d64.41 24463.27 25567.82 22875.81 20560.18 15269.49 21362.05 30838.81 34274.13 20582.23 22043.76 28968.65 28542.53 30580.63 26874.63 280
PCF-MVS63.80 1372.70 14071.69 15675.72 9578.10 16560.01 15373.04 16381.50 10745.34 29079.66 11884.35 18965.15 13182.65 9948.70 26189.38 14384.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_prior75.27 10182.15 11559.85 15484.33 6183.39 8882.58 173
TAMVS65.31 23063.75 24969.97 19182.23 11459.76 15566.78 25763.37 30145.20 29169.79 26379.37 26347.42 27372.17 25434.48 36085.15 21277.99 253
jason64.47 24262.84 25969.34 20076.91 18559.20 15667.15 25065.67 28135.29 36065.16 30576.74 29344.67 28370.68 26954.74 21279.28 28178.14 249
jason: jason.
MVSFormer69.93 17269.03 18472.63 15374.93 21359.19 15783.98 3775.72 20352.27 21863.53 32276.74 29343.19 29280.56 13672.28 6778.67 28778.14 249
lupinMVS63.36 25261.49 26868.97 20974.93 21359.19 15765.80 26864.52 29434.68 36563.53 32274.25 31443.19 29270.62 27053.88 22478.67 28777.10 262
MCST-MVS73.42 11873.34 12873.63 12281.28 12659.17 15974.80 14483.13 8145.50 28572.84 22283.78 19765.15 13180.99 12864.54 12289.09 15080.73 210
fmvsm_s_conf0.1_n66.60 21965.54 22969.77 19368.99 29859.15 16072.12 17056.74 33340.72 33068.25 28580.14 25161.18 16966.92 30267.34 10474.40 32483.23 154
test_040278.17 6979.48 6074.24 11283.50 9159.15 16072.52 16674.60 21275.34 1688.69 1491.81 2575.06 4282.37 10365.10 11888.68 15481.20 194
fmvsm_s_conf0.5_n66.34 22465.27 23269.57 19668.20 30659.14 16271.66 18356.48 33440.92 32667.78 28779.46 26061.23 16666.90 30367.39 10074.32 32782.66 171
EI-MVSNet-Vis-set72.78 13871.87 15375.54 9874.77 21859.02 16372.24 16871.56 23663.92 9878.59 13071.59 33366.22 12078.60 16867.58 9580.32 26989.00 35
DPM-MVS69.98 17169.22 18272.26 16082.69 10858.82 16470.53 20181.23 11547.79 27064.16 31280.21 24751.32 24983.12 9260.14 16584.95 21774.83 279
HQP5-MVS58.80 165
EG-PatchMatch MVS70.70 16370.88 16870.16 18682.64 10958.80 16571.48 18573.64 21754.98 17976.55 16881.77 22661.10 17078.94 16354.87 21080.84 26472.74 301
HQP-MVS75.24 9575.01 10075.94 9282.37 11058.80 16577.32 11084.12 6759.08 13771.58 23885.96 17058.09 20085.30 5267.38 10289.16 14483.73 137
EI-MVSNet-UG-set72.63 14171.68 15775.47 9974.67 22058.64 16872.02 17371.50 23763.53 10478.58 13271.39 33765.98 12178.53 16967.30 10580.18 27189.23 29
CDS-MVSNet64.33 24562.66 26169.35 19980.44 13558.28 16965.26 27565.66 28244.36 29767.30 29475.54 30043.27 29171.77 26037.68 33784.44 22578.01 252
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT67.68 20666.07 22572.49 15573.34 24258.20 17063.80 29065.55 28448.10 26576.91 15482.64 21645.20 27978.84 16461.20 15377.89 29780.44 218
mvsany_test343.76 36641.01 37052.01 34048.09 40657.74 17142.47 38923.85 41223.30 40264.80 30762.17 38427.12 38040.59 39629.17 38448.11 40257.69 384
pmmvs460.78 27759.04 28666.00 24773.06 25157.67 17264.53 28460.22 31436.91 35465.96 29977.27 28939.66 31568.54 28638.87 32774.89 31871.80 310
114514_t73.40 11973.33 12973.64 12184.15 8657.11 17378.20 10180.02 14143.76 30272.55 22686.07 16864.00 13983.35 8960.14 16591.03 10380.45 217
BH-untuned69.39 18169.46 17769.18 20377.96 16956.88 17468.47 23377.53 18556.77 16277.79 14279.63 25860.30 17880.20 14646.04 28680.65 26670.47 322
EC-MVSNet77.08 7777.39 7976.14 9176.86 18956.87 17580.32 7787.52 1263.45 10674.66 19684.52 18669.87 8484.94 6269.76 7989.59 13686.60 66
lessismore_v072.75 14879.60 14256.83 17657.37 32483.80 7289.01 9847.45 27278.74 16764.39 12486.49 19482.69 170
ACMH63.62 1477.50 7480.11 5569.68 19479.61 14156.28 17778.81 9283.62 7463.41 10887.14 3090.23 7276.11 3273.32 24067.58 9594.44 3979.44 232
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS72.72 13972.16 15274.38 11176.90 18755.95 17873.34 16184.67 5362.04 11872.19 23370.81 33865.90 12385.24 5658.64 17884.96 21681.95 185
API-MVS70.97 16171.51 16269.37 19775.20 21055.94 17980.99 6676.84 19362.48 11671.24 24677.51 28861.51 16280.96 13352.04 23285.76 20371.22 316
patch_mono-262.73 26264.08 24658.68 30770.36 28255.87 18060.84 31164.11 29741.23 32164.04 31378.22 27960.00 17948.80 36454.17 22183.71 23471.37 313
v7n79.37 5780.41 5376.28 8978.67 16155.81 18179.22 8982.51 9370.72 4787.54 2292.44 1568.00 10081.34 11872.84 6191.72 8391.69 11
ET-MVSNet_ETH3D63.32 25360.69 27671.20 17270.15 28555.66 18265.02 27864.32 29543.28 31168.99 27172.05 33125.46 38878.19 18454.16 22282.80 24179.74 227
EIA-MVS68.59 19367.16 21372.90 14375.18 21155.64 18369.39 21581.29 11252.44 21764.53 30870.69 33960.33 17782.30 10554.27 22076.31 30680.75 209
K. test v373.67 11373.61 12273.87 11879.78 13955.62 18474.69 14862.04 30966.16 7384.76 6193.23 649.47 25780.97 13065.66 11686.67 19185.02 94
JIA-IIPM54.03 31851.62 33661.25 29059.14 37255.21 18559.10 32147.72 37450.85 23850.31 38885.81 17320.10 40163.97 32236.16 35255.41 39864.55 364
SixPastTwentyTwo75.77 8576.34 8774.06 11581.69 12154.84 18676.47 11975.49 20564.10 9787.73 1892.24 1850.45 25381.30 12067.41 9891.46 9086.04 72
BH-w/o64.81 23664.29 24466.36 24376.08 20154.71 18765.61 27175.23 20850.10 24871.05 24971.86 33254.33 23179.02 16138.20 33476.14 30765.36 357
MSDG67.47 21067.48 20967.46 23170.70 27254.69 18866.90 25578.17 17660.88 12670.41 25374.76 30661.22 16873.18 24147.38 27576.87 30274.49 283
Patchmatch-RL test59.95 28459.12 28562.44 27872.46 25754.61 18959.63 31947.51 37641.05 32474.58 19874.30 31331.06 36465.31 31651.61 23579.85 27467.39 344
CLD-MVS72.88 13672.36 14974.43 10977.03 18054.30 19068.77 22783.43 7752.12 22076.79 16074.44 31169.54 8783.91 7855.88 20193.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FE-MVS68.29 19866.96 21772.26 16074.16 23154.24 19177.55 10773.42 21957.65 15572.66 22484.91 18132.02 35581.49 11748.43 26581.85 25081.04 198
HyFIR lowres test63.01 25760.47 27770.61 17583.04 10154.10 19259.93 31872.24 23233.67 37069.00 27075.63 29938.69 32076.93 19936.60 34775.45 31480.81 208
Gipumacopyleft69.55 17872.83 13959.70 30063.63 34753.97 19380.08 8175.93 20164.24 9673.49 21488.93 10157.89 20662.46 32859.75 17191.55 8962.67 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OpenMVScopyleft62.51 1568.76 19068.75 18968.78 21570.56 27653.91 19478.29 9877.35 18748.85 26070.22 25683.52 19952.65 23976.93 19955.31 20781.99 24775.49 272
BH-RMVSNet68.69 19268.20 19970.14 18776.40 19453.90 19564.62 28273.48 21858.01 14873.91 21181.78 22559.09 18978.22 18148.59 26277.96 29678.31 245
mvsmamba68.87 18767.30 21273.57 12476.58 19253.70 19684.43 3474.25 21445.38 28976.63 16384.55 18535.85 33585.27 5349.54 25378.49 28981.75 189
PAPM_NR73.91 11074.16 11173.16 13281.90 11853.50 19781.28 6581.40 11066.17 7273.30 21883.31 20659.96 18083.10 9358.45 18081.66 25782.87 164
PMMVS44.69 36143.95 36946.92 36350.05 40353.47 19848.08 37642.40 39222.36 40344.01 40253.05 39842.60 29745.49 37631.69 37161.36 38541.79 400
EPP-MVSNet73.86 11273.38 12575.31 10078.19 16453.35 19980.45 7277.32 18865.11 8776.47 17286.80 13649.47 25783.77 8053.89 22392.72 7388.81 41
IterMVS63.12 25662.48 26265.02 25366.34 32652.86 20063.81 28962.25 30446.57 27871.51 24380.40 24444.60 28466.82 30751.38 23875.47 31375.38 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051769.46 17967.79 20574.46 10675.34 20852.72 20175.05 13863.27 30254.69 18578.87 12984.37 18826.63 38281.15 12263.95 13087.93 16589.51 25
GeoE73.14 12473.77 11971.26 17178.09 16652.64 20274.32 15279.56 15056.32 16776.35 17583.36 20570.76 7677.96 18763.32 13981.84 25183.18 155
QAPM69.18 18469.26 18068.94 21071.61 26352.58 20380.37 7578.79 16449.63 25273.51 21385.14 17953.66 23479.12 15955.11 20875.54 31275.11 278
FA-MVS(test-final)71.27 15671.06 16671.92 16473.96 23352.32 20476.45 12176.12 19859.07 14074.04 20986.18 16152.18 24279.43 15659.75 17181.76 25284.03 128
CHOSEN 280x42041.62 36839.89 37346.80 36461.81 35351.59 20533.56 40235.74 40527.48 38937.64 40753.53 39623.24 39542.09 39127.39 38858.64 39146.72 395
CMPMVSbinary48.73 2061.54 27260.89 27363.52 26661.08 35851.55 20668.07 23768.00 27033.88 36765.87 30081.25 23237.91 32567.71 29249.32 25682.60 24371.31 315
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PS-MVSNAJ64.27 24663.73 25065.90 24877.82 17151.42 20763.33 29572.33 23045.09 29361.60 32968.04 36562.39 15273.95 23649.07 25773.87 33072.34 304
xiu_mvs_v2_base64.43 24363.96 24765.85 24977.72 17351.32 20863.63 29272.31 23145.06 29461.70 32869.66 35162.56 14873.93 23749.06 25873.91 32972.31 305
test_vis1_rt46.70 35545.24 36351.06 34544.58 40951.04 20939.91 39467.56 27121.84 40551.94 38050.79 40133.83 34139.77 39735.25 35861.50 38462.38 373
CHOSEN 1792x268858.09 29656.30 30763.45 26779.95 13850.93 21054.07 35765.59 28328.56 38661.53 33074.33 31241.09 30566.52 31033.91 36367.69 37072.92 297
TR-MVS64.59 23963.54 25267.73 22975.75 20650.83 21163.39 29470.29 25649.33 25571.55 24274.55 30950.94 25078.46 17240.43 31975.69 31073.89 289
thisisatest053067.05 21665.16 23572.73 15073.10 24950.55 21271.26 19263.91 29850.22 24674.46 20080.75 23926.81 38180.25 14359.43 17386.50 19387.37 54
dcpmvs_271.02 16072.65 14366.16 24576.06 20250.49 21371.97 17579.36 15250.34 24382.81 8383.63 19864.38 13767.27 29961.54 15083.71 23480.71 212
test_fmvs1_n52.70 32852.01 33554.76 32653.83 39850.36 21455.80 34565.90 27924.96 39765.39 30360.64 38927.69 37948.46 36645.88 28867.99 36765.46 356
Effi-MVS+72.10 14972.28 15071.58 16674.21 23050.33 21574.72 14782.73 8862.62 11470.77 25076.83 29269.96 8380.97 13060.20 16278.43 29083.45 146
IB-MVS49.67 1859.69 28656.96 30267.90 22568.19 30750.30 21661.42 30665.18 28747.57 27255.83 36567.15 37223.77 39479.60 15343.56 30179.97 27373.79 290
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc70.10 18877.74 17250.21 21774.28 15477.93 18279.26 12288.29 11554.11 23379.77 15064.43 12391.10 10180.30 219
test_vis3_rt51.94 33651.04 34254.65 32746.32 40850.13 21844.34 38778.17 17623.62 40168.95 27362.81 38121.41 39838.52 40041.49 31272.22 34275.30 277
cascas64.59 23962.77 26070.05 18975.27 20950.02 21961.79 30471.61 23442.46 31363.68 31968.89 35949.33 25980.35 14047.82 27384.05 22979.78 226
test_vis1_n51.27 33950.41 34953.83 32956.99 38150.01 22056.75 33760.53 31325.68 39559.74 34557.86 39329.40 37547.41 37143.10 30363.66 37864.08 366
test_fmvs254.80 31354.11 32256.88 31851.76 40149.95 22156.70 33865.80 28026.22 39369.42 26665.25 37531.82 35649.98 36149.63 25270.36 35470.71 321
mvsany_test137.88 37035.74 37544.28 37447.28 40749.90 22236.54 40024.37 41119.56 40645.76 39553.46 39732.99 34637.97 40126.17 38935.52 40444.99 399
EI-MVSNet69.61 17769.01 18571.41 17073.94 23449.90 22271.31 19071.32 24258.22 14675.40 18670.44 34058.16 19775.85 20762.51 14379.81 27588.48 44
MDA-MVSNet-bldmvs62.34 26561.73 26364.16 25761.64 35549.90 22248.11 37557.24 32753.31 21180.95 10579.39 26249.00 26361.55 33345.92 28780.05 27281.03 199
IterMVS-LS73.01 13073.12 13372.66 15173.79 23649.90 22271.63 18478.44 17158.22 14680.51 11186.63 14758.15 19879.62 15262.51 14388.20 15888.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
nrg03074.87 10575.99 9271.52 16874.90 21549.88 22674.10 15682.58 9254.55 19083.50 7589.21 9071.51 6775.74 21161.24 15292.34 7888.94 37
casdiffmvs_mvgpermissive75.26 9476.18 9072.52 15472.87 25549.47 22772.94 16484.71 5259.49 13580.90 10888.81 10370.07 8179.71 15167.40 9988.39 15688.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS65.38 22964.30 24368.61 21769.81 28849.36 22865.60 27278.96 15845.50 28559.98 34078.61 27451.82 24478.20 18244.30 29584.11 22878.27 246
PVSNet_Blended62.90 25961.64 26566.69 24169.81 28849.36 22861.23 30878.96 15842.04 31459.98 34068.86 36051.82 24478.20 18244.30 29577.77 29872.52 302
test_fmvs151.51 33850.86 34553.48 33249.72 40449.35 23054.11 35664.96 28924.64 39963.66 32059.61 39228.33 37848.45 36745.38 29367.30 37162.66 371
MS-PatchMatch55.59 30854.89 31757.68 31369.18 29449.05 23161.00 31062.93 30335.98 35758.36 35068.93 35836.71 33266.59 30937.62 33963.30 37957.39 385
MVSMamba_PlusPlus76.88 7878.21 7272.88 14580.83 12948.71 23283.28 4982.79 8572.78 2879.17 12491.94 2156.47 22083.95 7670.51 7486.15 19585.99 73
bld_raw_conf0372.88 13672.76 14173.22 13076.77 19048.71 23283.28 4982.79 8548.38 26379.17 12486.44 15452.61 24084.97 6159.29 17586.15 19585.99 73
v1075.69 8776.20 8974.16 11374.44 22648.69 23475.84 13482.93 8459.02 14185.92 4189.17 9358.56 19482.74 9870.73 7289.14 14791.05 14
v119273.40 11973.42 12373.32 12974.65 22348.67 23572.21 16981.73 10452.76 21581.85 9184.56 18457.12 21282.24 10768.58 8487.33 17589.06 33
Fast-Effi-MVS+68.81 18968.30 19570.35 18174.66 22248.61 23666.06 26378.32 17350.62 24171.48 24475.54 30068.75 9179.59 15450.55 24578.73 28682.86 165
DELS-MVS68.83 18868.31 19470.38 17970.55 27848.31 23763.78 29182.13 9754.00 20368.96 27275.17 30458.95 19180.06 14858.55 17982.74 24282.76 167
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
pmmvs346.71 35445.09 36451.55 34256.76 38348.25 23855.78 34639.53 40224.13 40050.35 38763.40 37915.90 41051.08 35829.29 38270.69 35355.33 388
CR-MVSNet58.96 29058.49 29160.36 29766.37 32448.24 23970.93 19656.40 33632.87 37361.35 33186.66 14433.19 34463.22 32748.50 26470.17 35669.62 331
RPMNet65.77 22765.08 24167.84 22766.37 32448.24 23970.93 19686.27 2154.66 18661.35 33186.77 13933.29 34385.67 4655.93 20070.17 35669.62 331
v114473.29 12273.39 12473.01 13674.12 23248.11 24172.01 17481.08 12053.83 20781.77 9384.68 18258.07 20381.91 11168.10 8886.86 18688.99 36
test_fmvs356.78 30155.99 31059.12 30453.96 39748.09 24258.76 32566.22 27727.54 38876.66 16268.69 36225.32 39051.31 35753.42 22973.38 33377.97 254
IS-MVSNet75.10 9775.42 9874.15 11479.23 14848.05 24379.43 8578.04 17970.09 5279.17 12488.02 12153.04 23783.60 8258.05 18393.76 5990.79 18
alignmvs70.54 16571.00 16769.15 20473.50 23848.04 24469.85 21179.62 14653.94 20676.54 16982.00 22159.00 19074.68 22657.32 18787.21 18284.72 103
D2MVS62.58 26361.05 27267.20 23463.85 34447.92 24556.29 34069.58 26039.32 33770.07 25978.19 28034.93 33872.68 24553.44 22883.74 23281.00 201
UniMVSNet (Re)75.00 10075.48 9773.56 12583.14 9647.92 24570.41 20481.04 12163.67 10279.54 11986.37 15662.83 14681.82 11257.10 19095.25 1590.94 16
test_cas_vis1_n_192050.90 34050.92 34450.83 34654.12 39647.80 24751.44 36854.61 34326.95 39163.95 31560.85 38737.86 32744.97 38045.53 29062.97 38059.72 380
PAPR69.20 18368.66 19270.82 17375.15 21247.77 24875.31 13681.11 11749.62 25366.33 29879.27 26461.53 16182.96 9548.12 26981.50 25981.74 190
CVMVSNet59.21 28958.44 29261.51 28673.94 23447.76 24971.31 19064.56 29326.91 39260.34 33970.44 34036.24 33467.65 29353.57 22668.66 36469.12 336
balanced_conf0373.59 11574.06 11272.17 16277.48 17747.72 25081.43 6482.20 9654.38 19179.19 12387.68 12454.41 23083.57 8363.98 12985.78 20285.22 87
EPNet_dtu58.93 29158.52 29060.16 29967.91 31147.70 25169.97 20858.02 32049.73 25147.28 39373.02 32538.14 32262.34 32936.57 34885.99 20070.43 323
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192072.96 13472.98 13772.89 14474.67 22047.58 25271.92 17980.69 12651.70 22681.69 9783.89 19556.58 21882.25 10668.34 8687.36 17288.82 40
v14419272.99 13273.06 13572.77 14774.58 22447.48 25371.90 18080.44 13451.57 22781.46 9984.11 19258.04 20482.12 10867.98 9287.47 17088.70 43
v875.07 9875.64 9573.35 12773.42 24047.46 25475.20 13781.45 10960.05 13185.64 4589.26 8858.08 20281.80 11369.71 8187.97 16490.79 18
sasdasda72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
canonicalmvs72.29 14773.38 12569.04 20574.23 22747.37 25573.93 15883.18 7854.36 19276.61 16581.64 22972.03 6275.34 21557.12 18887.28 17784.40 118
MVS60.62 27959.97 28062.58 27768.13 30847.28 25768.59 22973.96 21632.19 37459.94 34268.86 36050.48 25277.64 19341.85 31075.74 30962.83 368
v124073.06 12873.14 13172.84 14674.74 21947.27 25871.88 18181.11 11751.80 22482.28 8884.21 19056.22 22382.34 10468.82 8387.17 18488.91 38
V4271.06 15870.83 16971.72 16567.25 31747.14 25965.94 26480.35 13751.35 23283.40 7683.23 21059.25 18878.80 16565.91 11480.81 26589.23 29
iter_conf0577.90 7179.33 6173.61 12380.83 12946.85 26082.06 5886.72 1772.78 2885.44 5191.94 2156.47 22083.95 7670.51 7487.24 18090.02 22
TinyColmap67.98 20169.28 17964.08 25967.98 31046.82 26170.04 20675.26 20753.05 21277.36 14886.79 13759.39 18672.59 25045.64 28988.01 16372.83 299
v2v48272.55 14472.58 14472.43 15672.92 25446.72 26271.41 18779.13 15655.27 17681.17 10385.25 17855.41 22581.13 12367.25 10685.46 20489.43 26
casdiffmvspermissive73.06 12873.84 11670.72 17471.32 26646.71 26370.93 19684.26 6355.62 17477.46 14787.10 12867.09 10677.81 18963.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDD-MVS70.81 16271.44 16368.91 21279.07 15546.51 26467.82 23970.83 25361.23 12274.07 20788.69 10559.86 18275.62 21251.11 23990.28 12084.61 108
eth_miper_zixun_eth69.42 18068.73 19171.50 16967.99 30946.42 26567.58 24178.81 16150.72 24078.13 13780.34 24650.15 25580.34 14160.18 16384.65 22087.74 50
thisisatest051560.48 28057.86 29668.34 22067.25 31746.42 26560.58 31462.14 30540.82 32763.58 32169.12 35426.28 38478.34 17848.83 25982.13 24680.26 220
baseline73.10 12573.96 11570.51 17871.46 26546.39 26772.08 17184.40 6055.95 17176.62 16486.46 15367.20 10478.03 18664.22 12687.27 17987.11 61
MVSTER63.29 25461.60 26768.36 21959.77 36946.21 26860.62 31371.32 24241.83 31675.40 18679.12 26830.25 37075.85 20756.30 19779.81 27583.03 160
SDMVSNet66.36 22367.85 20461.88 28373.04 25246.14 26958.54 32671.36 24151.42 23068.93 27482.72 21465.62 12562.22 33154.41 21784.67 21877.28 258
UniMVSNet_NR-MVSNet74.90 10375.65 9472.64 15283.04 10145.79 27069.26 21778.81 16166.66 6981.74 9586.88 13563.26 14281.07 12656.21 19894.98 2191.05 14
DU-MVS74.91 10275.57 9672.93 14283.50 9145.79 27069.47 21480.14 14065.22 8481.74 9587.08 12961.82 15881.07 12656.21 19894.98 2191.93 9
miper_lstm_enhance61.97 26661.63 26662.98 27260.04 36345.74 27247.53 37770.95 25044.04 29873.06 22078.84 27339.72 31460.33 33655.82 20284.64 22182.88 163
Anonymous2023121175.54 9077.19 8170.59 17677.67 17445.70 27374.73 14680.19 13868.80 5682.95 8092.91 966.26 11976.76 20358.41 18192.77 7189.30 27
OpenMVS_ROBcopyleft54.93 1763.23 25563.28 25463.07 27169.81 28845.34 27468.52 23167.14 27243.74 30370.61 25279.22 26547.90 27172.66 24648.75 26073.84 33171.21 317
Anonymous2024052972.56 14273.79 11868.86 21376.89 18845.21 27568.80 22677.25 19067.16 6476.89 15590.44 5765.95 12274.19 23350.75 24290.00 12687.18 59
diffmvspermissive67.42 21167.50 20867.20 23462.26 35245.21 27564.87 27977.04 19248.21 26471.74 23579.70 25758.40 19571.17 26764.99 11980.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_n_192052.96 32553.50 32451.32 34459.15 37144.90 27756.13 34364.29 29630.56 38459.87 34460.68 38840.16 31147.47 37048.25 26862.46 38161.58 376
131459.83 28558.86 28862.74 27665.71 33244.78 27868.59 22972.63 22733.54 37261.05 33567.29 37143.62 29071.26 26649.49 25467.84 36972.19 307
v14869.38 18269.39 17869.36 19869.14 29644.56 27968.83 22372.70 22654.79 18378.59 13084.12 19154.69 22776.74 20459.40 17482.20 24586.79 63
GA-MVS62.91 25861.66 26466.66 24267.09 31944.49 28061.18 30969.36 26251.33 23369.33 26874.47 31036.83 33174.94 22250.60 24474.72 31980.57 216
ppachtmachnet_test60.26 28259.61 28362.20 28067.70 31344.33 28158.18 33060.96 31240.75 32965.80 30172.57 32741.23 30263.92 32346.87 28082.42 24478.33 244
baseline255.57 30952.74 32864.05 26065.26 33444.11 28262.38 30154.43 34439.03 34051.21 38267.35 37033.66 34272.45 25137.14 34264.22 37775.60 271
Anonymous2024052163.55 25066.07 22555.99 32166.18 32944.04 28368.77 22768.80 26446.99 27572.57 22585.84 17239.87 31350.22 36053.40 23092.23 8073.71 291
UniMVSNet_ETH3D76.74 8079.02 6369.92 19289.27 2043.81 28474.47 15171.70 23372.33 3885.50 5093.65 477.98 2176.88 20154.60 21491.64 8589.08 32
NR-MVSNet73.62 11474.05 11372.33 15983.50 9143.71 28565.65 27077.32 18864.32 9575.59 18187.08 12962.45 15181.34 11854.90 20995.63 991.93 9
cl____68.26 20068.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.42 21848.74 26575.38 21360.92 15789.81 13185.80 81
DIV-MVS_self_test68.27 19968.26 19668.29 22164.98 33943.67 28665.89 26574.67 21050.04 24976.86 15782.43 21748.74 26575.38 21360.94 15689.81 13185.81 77
c3_l69.82 17469.89 17569.61 19566.24 32743.48 28868.12 23679.61 14851.43 22977.72 14380.18 25054.61 22978.15 18563.62 13587.50 16987.20 58
cl2267.14 21366.51 22069.03 20763.20 34843.46 28966.88 25676.25 19749.22 25674.48 19977.88 28445.49 27877.40 19560.64 15984.59 22286.24 68
miper_ehance_all_eth68.36 19568.16 20068.98 20865.14 33843.34 29067.07 25178.92 16049.11 25876.21 17677.72 28553.48 23577.92 18861.16 15484.59 22285.68 83
USDC62.80 26063.10 25761.89 28265.19 33543.30 29167.42 24474.20 21535.80 35972.25 23184.48 18745.67 27671.95 25937.95 33684.97 21370.42 324
MVS_Test69.84 17370.71 17067.24 23367.49 31543.25 29269.87 21081.22 11652.69 21671.57 24186.68 14362.09 15674.51 22866.05 11278.74 28583.96 129
MGCFI-Net71.70 15373.10 13467.49 23073.23 24443.08 29372.06 17282.43 9454.58 18875.97 17882.00 22172.42 6075.22 21757.84 18587.34 17484.18 125
EMVS44.61 36344.45 36845.10 37248.91 40543.00 29437.92 39741.10 40046.75 27738.00 40648.43 40326.42 38346.27 37337.11 34375.38 31546.03 396
CANet_DTU64.04 24863.83 24864.66 25468.39 30242.97 29573.45 16074.50 21352.05 22254.78 37075.44 30343.99 28770.42 27453.49 22778.41 29180.59 215
E-PMN45.17 35945.36 36244.60 37350.07 40242.75 29638.66 39642.29 39446.39 27939.55 40451.15 40026.00 38545.37 37837.68 33776.41 30445.69 397
WR-MVS_H80.22 5182.17 4274.39 11089.46 1542.69 29778.24 10082.24 9578.21 1089.57 1092.10 1968.05 9885.59 4766.04 11395.62 1094.88 5
miper_enhance_ethall65.86 22665.05 24268.28 22361.62 35642.62 29864.74 28077.97 18042.52 31273.42 21672.79 32649.66 25677.68 19258.12 18284.59 22284.54 112
TranMVSNet+NR-MVSNet76.13 8377.66 7771.56 16784.61 7842.57 29970.98 19578.29 17568.67 5983.04 7789.26 8872.99 5880.75 13555.58 20695.47 1191.35 12
1112_ss59.48 28758.99 28760.96 29377.84 17042.39 30061.42 30668.45 26837.96 34759.93 34367.46 36845.11 28165.07 31840.89 31771.81 34575.41 274
pmmvs671.82 15173.66 12066.31 24475.94 20342.01 30166.99 25272.53 22863.45 10676.43 17392.78 1172.95 5969.69 27751.41 23790.46 11887.22 56
test-LLR50.43 34250.69 34749.64 35260.76 35941.87 30253.18 36045.48 38143.41 30849.41 38960.47 39029.22 37644.73 38242.09 30872.14 34362.33 374
test-mter48.56 35048.20 35549.64 35260.76 35941.87 30253.18 36045.48 38131.91 37949.41 38960.47 39018.34 40544.73 38242.09 30872.14 34362.33 374
PAPM61.79 26960.37 27866.05 24676.09 19941.87 30269.30 21676.79 19540.64 33153.80 37579.62 25944.38 28582.92 9629.64 38073.11 33573.36 293
tt080576.12 8478.43 7069.20 20281.32 12541.37 30576.72 11877.64 18463.78 10182.06 8987.88 12279.78 1179.05 16064.33 12592.40 7687.17 60
EU-MVSNet60.82 27660.80 27560.86 29468.37 30341.16 30672.27 16768.27 26926.96 39069.08 26975.71 29832.09 35267.44 29755.59 20578.90 28473.97 287
VDDNet71.60 15473.13 13267.02 23786.29 4841.11 30769.97 20866.50 27668.72 5874.74 19291.70 2759.90 18175.81 20948.58 26391.72 8384.15 127
SCA58.57 29458.04 29560.17 29870.17 28441.07 30865.19 27653.38 35343.34 31061.00 33673.48 32045.20 27969.38 27940.34 32070.31 35570.05 325
test_yl65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
DCV-MVSNet65.11 23165.09 23965.18 25170.59 27440.86 30963.22 29872.79 22357.91 14968.88 27679.07 27042.85 29574.89 22345.50 29184.97 21379.81 224
GBi-Net68.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
test168.30 19668.79 18766.81 23873.14 24640.68 31171.96 17673.03 22054.81 18074.72 19390.36 6848.63 26775.20 21947.12 27685.37 20584.54 112
FMVSNet171.06 15872.48 14666.81 23877.65 17540.68 31171.96 17673.03 22061.14 12379.45 12190.36 6860.44 17675.20 21950.20 24788.05 16184.54 112
ADS-MVSNet248.76 34947.25 35853.29 33555.90 38740.54 31447.34 37854.99 34231.41 38150.48 38572.06 32931.23 36154.26 35425.93 39155.93 39565.07 359
MG-MVS70.47 16671.34 16467.85 22679.26 14740.42 31574.67 14975.15 20958.41 14568.74 28088.14 12056.08 22483.69 8159.90 16881.71 25679.43 233
PVSNet_036.71 2241.12 36940.78 37242.14 37859.97 36540.13 31640.97 39142.24 39530.81 38344.86 39949.41 40240.70 30845.12 37923.15 40034.96 40541.16 401
pm-mvs168.40 19469.85 17664.04 26173.10 24939.94 31764.61 28370.50 25455.52 17573.97 21089.33 8663.91 14068.38 28749.68 25188.02 16283.81 133
tpm cat154.02 31952.63 33058.19 31064.85 34139.86 31866.26 26257.28 32532.16 37556.90 35770.39 34232.75 34865.30 31734.29 36158.79 39069.41 333
our_test_356.46 30256.51 30556.30 31967.70 31339.66 31955.36 34852.34 35940.57 33263.85 31669.91 35040.04 31258.22 34543.49 30275.29 31771.03 320
PS-CasMVS80.41 4882.86 3773.07 13589.93 739.21 32077.15 11481.28 11379.74 690.87 592.73 1275.03 4384.93 6363.83 13395.19 1695.07 3
PatchmatchNetpermissive54.60 31454.27 32155.59 32465.17 33739.08 32166.92 25451.80 36139.89 33458.39 34973.12 32431.69 35858.33 34443.01 30458.38 39369.38 334
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet79.48 5581.65 4672.98 13889.66 1339.06 32276.76 11780.46 13378.91 890.32 891.70 2768.49 9384.89 6463.40 13895.12 1995.01 4
PEN-MVS80.46 4782.91 3573.11 13489.83 939.02 32377.06 11682.61 9180.04 590.60 792.85 1074.93 4485.21 5763.15 14195.15 1895.09 2
FMVSNet267.48 20868.21 19865.29 25073.14 24638.94 32468.81 22471.21 24854.81 18076.73 16186.48 15248.63 26774.60 22747.98 27186.11 19982.35 177
dmvs_re49.91 34750.77 34647.34 36159.98 36438.86 32553.18 36053.58 35039.75 33555.06 36861.58 38636.42 33344.40 38429.15 38568.23 36558.75 382
sd_testset63.55 25065.38 23158.07 31173.04 25238.83 32657.41 33465.44 28551.42 23068.93 27482.72 21463.76 14158.11 34641.05 31584.67 21877.28 258
test_f43.79 36545.63 36038.24 38642.29 41238.58 32734.76 40147.68 37522.22 40467.34 29363.15 38031.82 35630.60 40539.19 32562.28 38245.53 398
CostFormer57.35 30056.14 30860.97 29263.76 34638.43 32867.50 24260.22 31437.14 35359.12 34876.34 29532.78 34771.99 25839.12 32669.27 36172.47 303
TESTMET0.1,145.17 35944.93 36545.89 36856.02 38638.31 32953.18 36041.94 39627.85 38744.86 39956.47 39517.93 40641.50 39538.08 33568.06 36657.85 383
PVSNet43.83 2151.56 33751.17 34052.73 33668.34 30438.27 33048.22 37453.56 35136.41 35554.29 37364.94 37634.60 33954.20 35530.34 37569.87 35865.71 355
LFMVS67.06 21567.89 20264.56 25578.02 16738.25 33170.81 19959.60 31665.18 8571.06 24886.56 15043.85 28875.22 21746.35 28389.63 13480.21 221
Anonymous20240521166.02 22566.89 21863.43 26874.22 22938.14 33259.00 32266.13 27863.33 10969.76 26485.95 17151.88 24370.50 27244.23 29787.52 16881.64 191
Test_1112_low_res58.78 29258.69 28959.04 30679.41 14438.13 33357.62 33266.98 27434.74 36359.62 34677.56 28742.92 29463.65 32538.66 32970.73 35275.35 276
VPA-MVSNet68.71 19170.37 17263.72 26376.13 19838.06 33464.10 28771.48 23856.60 16674.10 20688.31 11464.78 13569.72 27647.69 27490.15 12383.37 149
ab-mvs64.11 24765.13 23861.05 29171.99 26138.03 33567.59 24068.79 26549.08 25965.32 30486.26 15958.02 20566.85 30639.33 32379.79 27778.27 246
FIs72.56 14273.80 11768.84 21478.74 16037.74 33671.02 19479.83 14456.12 16880.88 10989.45 8558.18 19678.28 18056.63 19293.36 6490.51 20
MIMVSNet166.57 22069.23 18158.59 30881.26 12737.73 33764.06 28857.62 32157.02 15978.40 13490.75 4762.65 14758.10 34741.77 31189.58 13779.95 223
mvs_anonymous65.08 23365.49 23063.83 26263.79 34537.60 33866.52 26069.82 25943.44 30773.46 21586.08 16758.79 19371.75 26251.90 23475.63 31182.15 182
FMVSNet365.00 23465.16 23564.52 25669.47 29337.56 33966.63 25870.38 25551.55 22874.72 19383.27 20837.89 32674.44 22947.12 27685.37 20581.57 192
DTE-MVSNet80.35 4982.89 3672.74 14989.84 837.34 34077.16 11381.81 10380.45 490.92 492.95 874.57 4786.12 3163.65 13494.68 3294.76 6
tfpnnormal66.48 22167.93 20162.16 28173.40 24136.65 34163.45 29364.99 28855.97 17072.82 22387.80 12357.06 21469.10 28248.31 26787.54 16780.72 211
FC-MVSNet-test73.32 12174.78 10268.93 21179.21 14936.57 34271.82 18279.54 15157.63 15682.57 8690.38 6559.38 18778.99 16257.91 18494.56 3491.23 13
MDA-MVSNet_test_wron52.57 33053.49 32649.81 35154.24 39336.47 34340.48 39346.58 37938.13 34575.47 18573.32 32241.05 30743.85 38740.98 31671.20 34969.10 337
YYNet152.58 32953.50 32449.85 35054.15 39436.45 34440.53 39246.55 38038.09 34675.52 18473.31 32341.08 30643.88 38641.10 31471.14 35069.21 335
HY-MVS49.31 1957.96 29757.59 29859.10 30566.85 32336.17 34565.13 27765.39 28639.24 33954.69 37278.14 28144.28 28667.18 30133.75 36570.79 35173.95 288
tpm256.12 30354.64 31960.55 29666.24 32736.01 34668.14 23556.77 33233.60 37158.25 35175.52 30230.25 37074.33 23133.27 36669.76 36071.32 314
Anonymous2023120654.13 31655.82 31149.04 35770.89 26835.96 34751.73 36650.87 36334.86 36162.49 32679.22 26542.52 29844.29 38527.95 38781.88 24966.88 348
TransMVSNet (Re)69.62 17671.63 15863.57 26576.51 19335.93 34865.75 26971.29 24461.05 12475.02 18889.90 7965.88 12470.41 27549.79 24989.48 13884.38 120
MVEpermissive27.91 2336.69 37335.64 37639.84 38343.37 41035.85 34919.49 40424.61 41024.68 39839.05 40562.63 38338.67 32127.10 40821.04 40447.25 40356.56 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WR-MVS71.20 15772.48 14667.36 23284.98 7135.70 35064.43 28568.66 26665.05 8881.49 9886.43 15557.57 20876.48 20550.36 24693.32 6589.90 23
VNet64.01 24965.15 23760.57 29573.28 24335.61 35157.60 33367.08 27354.61 18766.76 29783.37 20356.28 22266.87 30442.19 30785.20 21179.23 235
tfpn200view960.35 28159.97 28061.51 28670.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25377.08 263
thres40060.77 27859.97 28063.15 26970.78 27035.35 35263.27 29657.47 32253.00 21368.31 28377.09 29032.45 35072.09 25535.61 35581.73 25382.02 183
thres100view90061.17 27461.09 27161.39 28872.14 26035.01 35465.42 27456.99 32955.23 17770.71 25179.90 25432.07 35372.09 25535.61 35581.73 25377.08 263
thres600view761.82 26861.38 26963.12 27071.81 26234.93 35564.64 28156.99 32954.78 18470.33 25579.74 25632.07 35372.42 25238.61 33083.46 23782.02 183
thres20057.55 29957.02 30159.17 30367.89 31234.93 35558.91 32457.25 32650.24 24564.01 31471.46 33532.49 34971.39 26531.31 37279.57 27971.19 318
XXY-MVS55.19 31057.40 30048.56 35964.45 34234.84 35751.54 36753.59 34938.99 34163.79 31879.43 26156.59 21745.57 37536.92 34671.29 34865.25 358
Baseline_NR-MVSNet70.62 16473.19 13062.92 27576.97 18334.44 35868.84 22270.88 25260.25 13079.50 12090.53 5461.82 15869.11 28154.67 21395.27 1485.22 87
KD-MVS_self_test66.38 22267.51 20762.97 27361.76 35434.39 35958.11 33175.30 20650.84 23977.12 15085.42 17556.84 21669.44 27851.07 24091.16 9685.08 92
LCM-MVSNet-Re69.10 18571.57 16161.70 28470.37 28134.30 36061.45 30579.62 14656.81 16189.59 988.16 11968.44 9472.94 24342.30 30687.33 17577.85 255
sss47.59 35348.32 35345.40 37056.73 38433.96 36145.17 38348.51 37232.11 37852.37 37865.79 37340.39 31041.91 39331.85 37061.97 38360.35 378
gm-plane-assit62.51 35033.91 36237.25 35262.71 38272.74 24438.70 328
UnsupCasMVSNet_eth52.26 33253.29 32749.16 35555.08 39033.67 36350.03 37058.79 31937.67 35063.43 32474.75 30741.82 30045.83 37438.59 33159.42 38967.98 343
FMVSNet555.08 31255.54 31353.71 33065.80 33133.50 36456.22 34152.50 35743.72 30461.06 33483.38 20225.46 38854.87 35230.11 37781.64 25872.75 300
tpmvs55.84 30455.45 31457.01 31660.33 36233.20 36565.89 26559.29 31847.52 27356.04 36373.60 31931.05 36568.06 29140.64 31864.64 37569.77 329
UnsupCasMVSNet_bld50.01 34651.03 34346.95 36258.61 37432.64 36648.31 37353.27 35434.27 36660.47 33871.53 33441.40 30147.07 37230.68 37460.78 38661.13 377
CL-MVSNet_self_test62.44 26463.40 25359.55 30272.34 25832.38 36756.39 33964.84 29051.21 23567.46 29281.01 23650.75 25163.51 32638.47 33288.12 16082.75 168
pmmvs552.49 33152.58 33152.21 33954.99 39132.38 36755.45 34753.84 34832.15 37655.49 36774.81 30538.08 32357.37 34934.02 36274.40 32466.88 348
test20.0355.74 30657.51 29950.42 34759.89 36832.09 36950.63 36949.01 37050.11 24765.07 30683.23 21045.61 27748.11 36930.22 37683.82 23171.07 319
WTY-MVS49.39 34850.31 35046.62 36561.22 35732.00 37046.61 38049.77 36733.87 36854.12 37469.55 35341.96 29945.40 37731.28 37364.42 37662.47 372
testing1153.13 32452.26 33455.75 32370.44 28031.73 37154.75 35352.40 35844.81 29552.36 37968.40 36421.83 39765.74 31432.64 36972.73 33769.78 328
Vis-MVSNet (Re-imp)62.74 26163.21 25661.34 28972.19 25931.56 37267.31 24953.87 34753.60 20969.88 26283.37 20340.52 30970.98 26841.40 31386.78 18981.48 193
KD-MVS_2432*160052.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
miper_refine_blended52.05 33451.58 33753.44 33352.11 39931.20 37344.88 38564.83 29141.53 31864.37 30970.03 34815.61 41164.20 32036.25 34974.61 32164.93 361
ECVR-MVScopyleft64.82 23565.22 23363.60 26478.80 15831.14 37566.97 25356.47 33554.23 19669.94 26188.68 10637.23 32974.81 22545.28 29489.41 14084.86 98
MIMVSNet54.39 31556.12 30949.20 35472.57 25630.91 37659.98 31748.43 37341.66 31755.94 36483.86 19641.19 30450.42 35926.05 39075.38 31566.27 352
testing9155.74 30655.29 31657.08 31570.63 27330.85 37754.94 35256.31 33850.34 24357.08 35570.10 34724.50 39265.86 31236.98 34576.75 30374.53 282
baseline157.82 29858.36 29456.19 32069.17 29530.76 37862.94 30055.21 34046.04 28163.83 31778.47 27541.20 30363.68 32439.44 32268.99 36274.13 286
testing9955.16 31154.56 32056.98 31770.13 28630.58 37954.55 35554.11 34649.53 25456.76 35970.14 34622.76 39665.79 31336.99 34476.04 30874.57 281
VPNet65.58 22867.56 20659.65 30179.72 14030.17 38060.27 31662.14 30554.19 19971.24 24686.63 14758.80 19267.62 29444.17 29890.87 11181.18 195
test111164.62 23865.19 23462.93 27479.01 15629.91 38165.45 27354.41 34554.09 20171.47 24588.48 11037.02 33074.29 23246.83 28189.94 12984.58 111
testing22253.37 32252.50 33255.98 32270.51 27929.68 38256.20 34251.85 36046.19 28056.76 35968.94 35719.18 40465.39 31525.87 39376.98 30172.87 298
test0.0.03 147.72 35248.31 35445.93 36755.53 38929.39 38346.40 38141.21 39943.41 30855.81 36667.65 36729.22 37643.77 38825.73 39469.87 35864.62 363
MDTV_nov1_ep1354.05 32365.54 33329.30 38459.00 32255.22 33935.96 35852.44 37775.98 29630.77 36759.62 33938.21 33373.33 334
GG-mvs-BLEND52.24 33860.64 36129.21 38569.73 21242.41 39145.47 39652.33 39920.43 40068.16 28925.52 39565.42 37459.36 381
DSMNet-mixed43.18 36744.66 36738.75 38454.75 39228.88 38657.06 33627.42 40913.47 40747.27 39477.67 28638.83 31939.29 39925.32 39660.12 38848.08 393
WB-MVSnew53.94 32154.76 31851.49 34371.53 26428.05 38758.22 32950.36 36537.94 34859.16 34770.17 34549.21 26051.94 35624.49 39771.80 34674.47 284
gg-mvs-nofinetune55.75 30556.75 30452.72 33762.87 34928.04 38868.92 22141.36 39871.09 4450.80 38492.63 1320.74 39966.86 30529.97 37872.41 33963.25 367
test250661.23 27360.85 27462.38 27978.80 15827.88 38967.33 24837.42 40354.23 19667.55 29188.68 10617.87 40774.39 23046.33 28489.41 14084.86 98
UWE-MVS52.94 32652.70 32953.65 33173.56 23727.49 39057.30 33549.57 36838.56 34462.79 32571.42 33619.49 40360.41 33524.33 39977.33 30073.06 295
ANet_high67.08 21469.94 17458.51 30957.55 37927.09 39158.43 32876.80 19463.56 10382.40 8791.93 2359.82 18364.98 31950.10 24888.86 15383.46 145
MVS-HIRNet45.53 35747.29 35740.24 38262.29 35126.82 39256.02 34437.41 40429.74 38543.69 40381.27 23133.96 34055.48 35024.46 39856.79 39438.43 403
ETVMVS50.32 34449.87 35251.68 34170.30 28326.66 39352.33 36543.93 38543.54 30654.91 36967.95 36620.01 40260.17 33722.47 40173.40 33268.22 339
tpm50.60 34152.42 33345.14 37165.18 33626.29 39460.30 31543.50 38637.41 35157.01 35679.09 26930.20 37242.32 39032.77 36866.36 37266.81 350
Patchmtry60.91 27563.01 25854.62 32866.10 33026.27 39567.47 24356.40 33654.05 20272.04 23486.66 14433.19 34460.17 33743.69 29987.45 17177.42 256
testing358.28 29558.38 29358.00 31277.45 17826.12 39660.78 31243.00 38956.02 16970.18 25775.76 29713.27 41467.24 30048.02 27080.89 26280.65 213
testgi54.00 32056.86 30345.45 36958.20 37725.81 39749.05 37149.50 36945.43 28867.84 28681.17 23351.81 24643.20 38929.30 38179.41 28067.34 346
tpmrst50.15 34551.38 33946.45 36656.05 38524.77 39864.40 28649.98 36636.14 35653.32 37669.59 35235.16 33748.69 36539.24 32458.51 39265.89 353
Patchmatch-test47.93 35149.96 35141.84 37957.42 38024.26 39948.75 37241.49 39739.30 33856.79 35873.48 32030.48 36933.87 40329.29 38272.61 33867.39 344
Syy-MVS54.13 31655.45 31450.18 34868.77 29923.59 40055.02 34944.55 38343.80 30058.05 35264.07 37746.22 27458.83 34246.16 28572.36 34068.12 340
dp44.09 36444.88 36641.72 38158.53 37623.18 40154.70 35442.38 39334.80 36244.25 40165.61 37424.48 39344.80 38129.77 37949.42 40157.18 386
WAC-MVS22.69 40236.10 353
myMVS_eth3d50.36 34350.52 34849.88 34968.77 29922.69 40255.02 34944.55 38343.80 30058.05 35264.07 37714.16 41358.83 34233.90 36472.36 34068.12 340
EPMVS45.74 35646.53 35943.39 37754.14 39522.33 40455.02 34935.00 40634.69 36451.09 38370.20 34425.92 38642.04 39237.19 34155.50 39765.78 354
ADS-MVSNet44.62 36245.58 36141.73 38055.90 38720.83 40547.34 37839.94 40131.41 38150.48 38572.06 32931.23 36139.31 39825.93 39155.93 39565.07 359
MDTV_nov1_ep13_2view18.41 40653.74 35831.57 38044.89 39829.90 37432.93 36771.48 312
PatchT53.35 32356.47 30643.99 37664.19 34317.46 40759.15 32043.10 38852.11 22154.74 37186.95 13329.97 37349.98 36143.62 30074.40 32464.53 365
new_pmnet37.55 37239.80 37430.79 38756.83 38216.46 40839.35 39530.65 40725.59 39645.26 39761.60 38524.54 39128.02 40721.60 40252.80 40047.90 394
dmvs_testset45.26 35847.51 35638.49 38559.96 36614.71 40958.50 32743.39 38741.30 32051.79 38156.48 39439.44 31749.91 36321.42 40355.35 39950.85 390
DeepMVS_CXcopyleft11.83 39215.51 41413.86 41011.25 4175.76 40820.85 41026.46 40717.06 4099.22 4119.69 41013.82 41012.42 407
dongtai31.66 37432.98 37727.71 38958.58 37512.61 41145.02 38414.24 41541.90 31547.93 39143.91 40410.65 41541.81 39414.06 40720.53 40828.72 405
kuosan22.02 37523.52 37917.54 39141.56 41311.24 41241.99 39013.39 41626.13 39428.87 40830.75 4069.72 41621.94 4104.77 41114.49 40919.43 406
WB-MVS60.04 28364.19 24547.59 36076.09 19910.22 41352.44 36446.74 37865.17 8674.07 20787.48 12553.48 23555.28 35149.36 25572.84 33677.28 258
SSC-MVS61.79 26966.08 22448.89 35876.91 18510.00 41453.56 35947.37 37768.20 6176.56 16789.21 9054.13 23257.59 34854.75 21174.07 32879.08 237
new-patchmatchnet52.89 32755.76 31244.26 37559.94 3676.31 41537.36 39950.76 36441.10 32264.28 31179.82 25544.77 28248.43 36836.24 35187.61 16678.03 251
PMMVS237.74 37140.87 37128.36 38842.41 4115.35 41624.61 40327.75 40832.15 37647.85 39270.27 34335.85 33529.51 40619.08 40667.85 36850.22 392
tmp_tt11.98 37814.73 3813.72 3932.28 4164.62 41719.44 40514.50 4140.47 41121.55 4099.58 40925.78 3874.57 41211.61 40927.37 4061.96 408
test_method19.26 37619.12 38019.71 3909.09 4151.91 4187.79 40653.44 3521.42 40910.27 41135.80 40517.42 40825.11 40912.44 40824.38 40732.10 404
test1234.43 3815.78 3840.39 3950.97 4170.28 41946.33 3820.45 4180.31 4120.62 4131.50 4120.61 4180.11 4140.56 4120.63 4110.77 410
testmvs4.06 3825.28 3850.41 3940.64 4180.16 42042.54 3880.31 4190.26 4130.50 4141.40 4130.77 4170.17 4130.56 4120.55 4120.90 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k17.71 37723.62 3780.00 3960.00 4190.00 4210.00 40770.17 2570.00 4140.00 41574.25 31468.16 970.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.20 3806.93 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41462.39 1520.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re5.62 3797.50 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41567.46 3680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
PC_three_145246.98 27681.83 9286.28 15766.55 11884.47 7263.31 14090.78 11283.49 141
eth-test20.00 419
eth-test0.00 419
test_241102_TWO84.80 4672.61 3384.93 5789.70 8177.73 2285.89 3975.29 4294.22 5283.25 152
9.1480.22 5480.68 13280.35 7687.69 1159.90 13283.00 7888.20 11674.57 4781.75 11473.75 5593.78 57
test_0728_THIRD74.03 2285.83 4390.41 6075.58 3785.69 4477.43 3194.74 3084.31 122
GSMVS70.05 325
sam_mvs131.41 35970.05 325
sam_mvs31.21 363
MTGPAbinary80.63 129
test_post166.63 2582.08 41030.66 36859.33 34040.34 320
test_post1.99 41130.91 36654.76 353
patchmatchnet-post68.99 35531.32 36069.38 279
MTMP84.83 3119.26 413
test9_res72.12 6991.37 9177.40 257
agg_prior270.70 7390.93 10678.55 243
test_prior275.57 13558.92 14276.53 17086.78 13867.83 10269.81 7892.76 72
旧先验271.17 19345.11 29278.54 13361.28 33459.19 176
新几何271.33 189
无先验74.82 14170.94 25147.75 27176.85 20254.47 21572.09 308
原ACMM274.78 145
testdata267.30 29848.34 266
segment_acmp68.30 96
testdata168.34 23457.24 158
plane_prior585.49 3186.15 2971.09 7090.94 10484.82 100
plane_prior489.11 95
plane_prior282.74 5365.45 78
plane_prior184.46 81
n20.00 420
nn0.00 420
door-mid55.02 341
test1182.71 89
door52.91 356
HQP-NCC82.37 11077.32 11059.08 13771.58 238
ACMP_Plane82.37 11077.32 11059.08 13771.58 238
BP-MVS67.38 102
HQP4-MVS71.59 23785.31 5183.74 136
HQP3-MVS84.12 6789.16 144
HQP2-MVS58.09 200
ACMMP++_ref89.47 139
ACMMP++91.96 82
Test By Simon62.56 148