This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2796.06 3453.55 20497.89 4391.10 2993.31 5194.54 94
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1097.22 379.93 599.10 983.12 9097.64 297.94 1
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2795.95 3653.45 20897.68 5091.07 3092.62 5894.54 94
MG-MVS87.11 3086.27 3989.62 797.79 176.27 494.96 4394.49 3878.74 7883.87 7092.94 11564.34 7896.94 10175.19 14594.09 3695.66 47
CHOSEN 1792x268884.98 6283.45 7789.57 1089.94 13975.14 592.07 14692.32 11781.87 3175.68 14788.27 19260.18 12798.60 2780.46 11190.27 9194.96 77
MVS84.66 6682.86 9290.06 290.93 12074.56 687.91 26695.54 1168.55 25472.35 18894.71 7159.78 13398.90 1981.29 10694.69 3196.74 13
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5094.91 6674.11 1998.91 1787.26 5795.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 4996.26 2872.84 2699.38 192.64 1795.93 997.08 9
LFMVS84.34 7182.73 9489.18 1294.76 3373.25 994.99 4291.89 13771.90 19182.16 8193.49 10647.98 25597.05 8782.55 9484.82 13597.25 7
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 397.63 397.62 2
PAPM85.89 4885.46 5387.18 4288.20 18672.42 1392.41 13392.77 10282.11 2980.34 9793.07 11268.27 4095.02 17078.39 12893.59 4794.09 111
canonicalmvs86.85 3386.25 4188.66 1891.80 10171.92 1493.54 9291.71 14780.26 5087.55 3595.25 5663.59 9196.93 10388.18 4784.34 13997.11 8
iter_conf0583.27 9382.70 9584.98 10993.32 5971.84 1594.16 5681.76 33982.74 2173.83 16988.40 18872.77 2794.61 18682.10 9675.21 21288.48 227
OpenMVScopyleft70.45 1178.54 17875.92 19686.41 6885.93 23371.68 1692.74 11792.51 11466.49 27164.56 27591.96 13643.88 28398.10 3754.61 29390.65 8789.44 216
QAPM79.95 15177.39 17787.64 3089.63 14571.41 1793.30 9993.70 6665.34 28067.39 25391.75 14047.83 25798.96 1657.71 28489.81 9392.54 159
3Dnovator73.91 682.69 10580.82 12088.31 2389.57 14671.26 1892.60 12694.39 4578.84 7567.89 24592.48 12748.42 25098.52 2868.80 20494.40 3495.15 71
MVSFormer83.75 8682.88 9186.37 6989.24 15871.18 1989.07 24890.69 18565.80 27587.13 3794.34 8564.99 6892.67 25772.83 16191.80 7095.27 66
lupinMVS87.74 2387.77 2387.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3795.27 5464.99 6895.80 13889.34 3991.80 7095.93 40
alignmvs87.28 2886.97 3388.24 2491.30 11471.14 2195.61 2593.56 7179.30 6387.07 3995.25 5668.43 3996.93 10387.87 4984.33 14096.65 14
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1196.19 3170.12 3698.91 1796.83 195.06 1696.76 12
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2696.26 2868.44 3898.74 2495.82 294.72 3095.90 42
ET-MVSNet_ETH3D84.01 7983.15 8786.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 31893.64 10273.64 2392.35 27182.66 9278.66 18596.50 24
CSCG86.87 3286.26 4088.72 1595.05 3170.79 2593.83 8095.33 1368.48 25677.63 12894.35 8473.04 2498.45 3084.92 7793.71 4596.92 11
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 2996.80 1770.86 3499.06 1592.64 1795.71 1096.12 35
API-MVS82.28 10980.53 12787.54 3596.13 2270.59 2793.63 8891.04 18065.72 27775.45 15292.83 12056.11 17598.89 2064.10 24789.75 9693.15 141
jason86.40 3886.17 4287.11 4486.16 22770.54 2895.71 2492.19 12582.00 3084.58 6294.34 8561.86 11095.53 15887.76 5090.89 8495.27 66
jason: jason.
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2594.90 2196.51 21
PatchmatchNetpermissive77.46 19474.63 21185.96 7889.55 14870.35 3079.97 33589.55 23172.23 18270.94 20176.91 32857.03 15992.79 25254.27 29581.17 16394.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IB-MVS77.80 482.18 11080.46 12987.35 3989.14 16070.28 3195.59 2695.17 1778.85 7470.19 21285.82 22970.66 3597.67 5172.19 17266.52 27594.09 111
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA75.82 22272.76 23985.01 10886.63 21870.08 3281.06 32389.19 24571.60 20770.01 21477.09 32645.53 27590.25 30160.43 27173.27 22694.68 87
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 18990.55 1796.93 1073.77 2199.08 1191.91 2594.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3396.76 794.33 4871.92 18991.89 897.11 673.77 21
VNet86.20 4285.65 5287.84 2793.92 4669.99 3395.73 2395.94 778.43 8086.00 4793.07 11258.22 14897.00 9285.22 7284.33 14096.52 20
MS-PatchMatch77.90 19076.50 18882.12 19785.99 22969.95 3691.75 16592.70 10473.97 14162.58 29684.44 24441.11 29395.78 13963.76 25092.17 6480.62 340
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6894.37 4672.48 17392.07 696.85 1483.82 299.15 291.53 2797.42 497.55 4
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 1995.36 1396.47 25
MVS_Test84.16 7783.20 8487.05 4791.56 10769.82 3989.99 22992.05 12877.77 8982.84 7586.57 21963.93 8396.09 12774.91 15089.18 9995.25 69
VDDNet80.50 13878.26 16087.21 4186.19 22669.79 4094.48 5091.31 16360.42 31879.34 10890.91 15338.48 30596.56 11582.16 9581.05 16495.27 66
MVS_111021_HR86.19 4385.80 5087.37 3893.17 6569.79 4093.99 6793.76 6279.08 7078.88 11693.99 9562.25 10798.15 3685.93 6991.15 8294.15 108
test_one_060196.32 1869.74 4294.18 5171.42 21390.67 1696.85 1474.45 18
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2595.78 3865.94 5999.10 992.99 1493.91 4096.58 18
EPMVS78.49 17975.98 19586.02 7691.21 11669.68 4480.23 33091.20 16775.25 12372.48 18478.11 31754.65 19093.69 22957.66 28583.04 14794.69 86
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35494.75 2878.67 12090.85 15477.91 794.56 19272.25 16993.74 4395.36 58
Effi-MVS+83.82 8382.76 9386.99 4989.56 14769.40 4691.35 18286.12 30872.59 17083.22 7392.81 12159.60 13596.01 13581.76 9987.80 10895.56 51
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20292.11 497.21 476.79 999.11 692.34 1995.36 1397.62 2
test_241102_ONE96.45 1269.38 4794.44 4071.65 20292.11 497.05 776.79 999.11 6
WTY-MVS86.32 4085.81 4987.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8294.73 7067.93 4597.63 5679.55 11582.25 15396.54 19
casdiffmvs_mvgpermissive85.66 5385.18 5687.09 4588.22 18569.35 5093.74 8491.89 13781.47 3580.10 9991.45 14464.80 7396.35 11987.23 5887.69 10995.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
DCV-MVSNet84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
cascas78.18 18375.77 19885.41 9687.14 21169.11 5392.96 11091.15 17166.71 26970.47 20686.07 22637.49 31696.48 11870.15 18879.80 17490.65 196
iter_conf_final81.74 11980.93 11984.18 14392.66 7969.10 5492.94 11182.80 33779.01 7374.85 15788.40 18861.83 11294.61 18679.36 11676.52 20588.83 218
casdiffmvspermissive85.37 5684.87 6286.84 5188.25 18369.07 5593.04 10791.76 14481.27 4180.84 9492.07 13564.23 7996.06 13184.98 7687.43 11395.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4196.20 3066.56 5598.76 2389.03 4494.56 3295.92 41
MVSTER82.47 10682.05 10383.74 15292.68 7869.01 5791.90 15593.21 8479.83 5372.14 18985.71 23174.72 1694.72 18175.72 14172.49 23487.50 238
FMVSNet377.73 19176.04 19482.80 17491.20 11768.99 5891.87 15691.99 13173.35 15567.04 25683.19 25756.62 16992.14 27459.80 27669.34 25287.28 246
MSLP-MVS++86.27 4185.91 4887.35 3992.01 9368.97 5995.04 4092.70 10479.04 7281.50 8596.50 2358.98 14396.78 10883.49 8893.93 3996.29 30
test1287.09 4594.60 3668.86 6092.91 9882.67 7965.44 6497.55 6293.69 4694.84 83
nrg03080.93 13279.86 13684.13 14583.69 26868.83 6193.23 10191.20 16775.55 11875.06 15588.22 19663.04 10094.74 18081.88 9866.88 27288.82 221
SD-MVS87.49 2687.49 2787.50 3693.60 5368.82 6293.90 7292.63 11076.86 10287.90 3395.76 3966.17 5697.63 5689.06 4391.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
baseline85.01 6184.44 6586.71 5688.33 18068.73 6390.24 22091.82 14381.05 4481.18 8892.50 12463.69 8796.08 13084.45 8186.71 12395.32 61
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7594.03 5574.18 13691.74 996.67 1965.61 6398.42 3389.24 4196.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xiu_mvs_v1_base_debu82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base_debi82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
MDTV_nov1_ep1372.61 24389.06 16168.48 6880.33 32890.11 21071.84 19671.81 19375.92 33653.01 21093.92 22348.04 31873.38 225
CostFormer82.33 10881.15 11385.86 8289.01 16368.46 6982.39 31293.01 9475.59 11780.25 9881.57 27772.03 3294.96 17379.06 12177.48 19694.16 107
mvs_anonymous81.36 12479.99 13485.46 9490.39 13168.40 7086.88 28290.61 19074.41 13170.31 21184.67 24063.79 8592.32 27273.13 15885.70 13095.67 46
gg-mvs-nofinetune77.18 19874.31 21885.80 8591.42 11168.36 7171.78 35794.72 2949.61 35877.12 13545.92 38177.41 893.98 22067.62 21493.16 5395.05 74
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7196.19 3164.53 7798.44 3183.42 8994.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR85.15 5984.47 6487.18 4296.02 2568.29 7391.85 15893.00 9676.59 10979.03 11295.00 6161.59 11497.61 5878.16 12989.00 10095.63 48
tpmrst80.57 13679.14 15184.84 11390.10 13668.28 7481.70 31689.72 22877.63 9475.96 14479.54 30964.94 7092.71 25475.43 14377.28 19993.55 130
thisisatest051583.41 9082.49 9986.16 7489.46 15068.26 7593.54 9294.70 3074.31 13475.75 14590.92 15272.62 2896.52 11769.64 19281.50 16193.71 126
tpm279.80 15377.95 16685.34 9988.28 18168.26 7581.56 31891.42 16070.11 23477.59 13080.50 29567.40 4894.26 20567.34 21677.35 19793.51 131
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3096.35 2571.89 3398.63 2688.76 4596.40 696.06 36
dcpmvs_287.37 2787.55 2686.85 5095.04 3268.20 7890.36 21590.66 18879.37 6281.20 8793.67 10174.73 1596.55 11690.88 3292.00 6795.82 44
test_part296.29 1968.16 7990.78 14
HyFIR lowres test81.03 13179.56 14185.43 9587.81 19768.11 8090.18 22190.01 21670.65 22872.95 17586.06 22763.61 9094.50 19675.01 14879.75 17593.67 127
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21593.55 7282.89 1991.29 1392.89 11772.27 3096.03 13387.99 4894.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive84.28 7283.83 7085.61 9187.40 20568.02 8290.88 19989.24 24280.54 4781.64 8492.52 12359.83 13294.52 19587.32 5685.11 13394.29 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CR-MVSNet73.79 24670.82 26182.70 17783.15 27467.96 8370.25 36084.00 32673.67 15169.97 21672.41 34657.82 15289.48 31252.99 30173.13 22790.64 197
RPMNet70.42 27465.68 29384.63 12783.15 27467.96 8370.25 36090.45 19246.83 36669.97 21665.10 36556.48 17295.30 16635.79 36373.13 22790.64 197
save fliter93.84 4867.89 8595.05 3992.66 10778.19 82
V4276.46 21074.55 21482.19 19479.14 31967.82 8690.26 21989.42 23673.75 14768.63 23481.89 27051.31 22594.09 21071.69 17664.84 28884.66 295
tpm cat175.30 22972.21 24884.58 12988.52 17167.77 8778.16 34488.02 28761.88 31068.45 23776.37 33260.65 12294.03 21853.77 29874.11 22091.93 176
HY-MVS76.49 584.28 7283.36 8387.02 4892.22 8767.74 8884.65 29294.50 3779.15 6782.23 8087.93 20166.88 5196.94 10180.53 11082.20 15496.39 28
VDD-MVS83.06 9781.81 10886.81 5390.86 12367.70 8995.40 2991.50 15775.46 11981.78 8392.34 13140.09 29697.13 8586.85 6282.04 15595.60 49
FMVSNet276.07 21374.01 22482.26 19188.85 16567.66 9091.33 18391.61 15270.84 22365.98 26382.25 26648.03 25292.00 27958.46 28168.73 26087.10 249
CLD-MVS82.73 10282.35 10283.86 15087.90 19367.65 9195.45 2892.18 12685.06 1072.58 18192.27 13252.46 21595.78 13984.18 8279.06 18088.16 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SDMVSNet80.26 14378.88 15384.40 13589.25 15567.63 9285.35 28893.02 9376.77 10670.84 20387.12 21347.95 25696.09 12785.04 7474.55 21489.48 214
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5594.15 5368.77 25290.74 1597.27 276.09 1298.49 2990.58 3594.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
131480.70 13578.95 15285.94 7987.77 19967.56 9387.91 26692.55 11372.17 18567.44 25093.09 11050.27 23397.04 9071.68 17787.64 11093.23 139
ACMMP_NAP86.05 4585.80 5086.80 5491.58 10667.53 9591.79 16093.49 7674.93 12784.61 6195.30 5159.42 13797.92 4186.13 6694.92 1994.94 79
PVSNet_BlendedMVS83.38 9183.43 7883.22 16893.76 4967.53 9594.06 6193.61 6979.13 6881.00 9285.14 23463.19 9797.29 7687.08 5973.91 22384.83 294
PVSNet_Blended86.73 3686.86 3686.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9293.08 11163.19 9797.29 7687.08 5991.38 7894.13 109
SF-MVS87.03 3187.09 3186.84 5192.70 7767.45 9893.64 8793.76 6270.78 22686.25 4396.44 2466.98 5097.79 4788.68 4694.56 3295.28 65
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10695.05 74
TEST994.18 4167.28 10094.16 5693.51 7371.75 20085.52 5295.33 4968.01 4397.27 80
train_agg87.21 2987.42 2886.60 5994.18 4167.28 10094.16 5693.51 7371.87 19485.52 5295.33 4968.19 4197.27 8089.09 4294.90 2195.25 69
test_894.19 4067.19 10294.15 5993.42 7971.87 19485.38 5595.35 4868.19 4196.95 100
CDPH-MVS85.71 5185.46 5386.46 6594.75 3467.19 10293.89 7392.83 10170.90 22283.09 7495.28 5263.62 8997.36 7180.63 10994.18 3594.84 83
test_prior467.18 10493.92 71
v2v48277.42 19575.65 20182.73 17680.38 30167.13 10591.85 15890.23 20675.09 12569.37 22083.39 25553.79 20294.44 19771.77 17465.00 28786.63 258
DP-MVS Recon82.73 10281.65 10985.98 7797.31 467.06 10695.15 3691.99 13169.08 24976.50 14293.89 9754.48 19498.20 3570.76 18385.66 13192.69 154
tpmvs72.88 25569.76 27182.22 19290.98 11967.05 10778.22 34388.30 28063.10 29864.35 28074.98 33955.09 18794.27 20343.25 33869.57 25185.34 288
gm-plane-assit88.42 17667.04 10878.62 7991.83 13897.37 7076.57 137
ETV-MVS86.01 4686.11 4385.70 8990.21 13467.02 10993.43 9791.92 13481.21 4284.13 6894.07 9460.93 12195.63 14989.28 4089.81 9394.46 100
agg_prior94.16 4366.97 11093.31 8284.49 6396.75 109
ADS-MVSNet68.54 29164.38 30681.03 22588.06 18866.90 11168.01 36784.02 32557.57 33164.48 27669.87 35638.68 30089.21 31440.87 34967.89 26686.97 250
CANet_DTU84.09 7883.52 7285.81 8490.30 13266.82 11291.87 15689.01 25685.27 986.09 4693.74 9947.71 25996.98 9677.90 13189.78 9593.65 128
v875.35 22873.26 23381.61 20880.67 29866.82 11289.54 23789.27 24171.65 20263.30 28880.30 29954.99 18894.06 21367.33 21762.33 30983.94 300
3Dnovator+73.60 782.10 11480.60 12686.60 5990.89 12266.80 11495.20 3493.44 7874.05 13867.42 25192.49 12649.46 24097.65 5570.80 18291.68 7295.33 59
PAPM_NR82.97 9981.84 10786.37 6994.10 4466.76 11587.66 27192.84 10069.96 23674.07 16693.57 10463.10 9997.50 6470.66 18590.58 8894.85 80
v1074.77 23572.54 24581.46 21180.33 30366.71 11689.15 24789.08 25370.94 22163.08 29179.86 30452.52 21494.04 21665.70 23562.17 31083.64 302
DeepC-MVS77.85 385.52 5585.24 5586.37 6988.80 16866.64 11792.15 14093.68 6781.07 4376.91 13893.64 10262.59 10398.44 3185.50 7092.84 5794.03 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline181.84 11781.03 11884.28 14191.60 10566.62 11891.08 19391.66 15181.87 3174.86 15691.67 14269.98 3794.92 17671.76 17564.75 29091.29 189
v114476.73 20874.88 20882.27 18980.23 30566.60 11991.68 16790.21 20873.69 14969.06 22581.89 27052.73 21394.40 19869.21 19965.23 28485.80 277
PVSNet_Blended_VisFu83.97 8083.50 7485.39 9790.02 13766.59 12093.77 8291.73 14577.43 9877.08 13789.81 17463.77 8696.97 9879.67 11488.21 10592.60 157
v14419276.05 21674.03 22382.12 19779.50 31366.55 12191.39 17789.71 22972.30 18068.17 23881.33 28251.75 22094.03 21867.94 21064.19 29485.77 278
VPNet78.82 17077.53 17282.70 17784.52 25566.44 12293.93 7092.23 12080.46 4872.60 18088.38 19049.18 24493.13 23872.47 16863.97 29988.55 226
SteuartSystems-ACMMP86.82 3586.90 3586.58 6190.42 12966.38 12396.09 1793.87 5777.73 9084.01 6995.66 4163.39 9397.94 4087.40 5593.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
v192192075.63 22673.49 23182.06 20179.38 31466.35 12491.07 19589.48 23271.98 18867.99 23981.22 28549.16 24693.90 22466.56 22364.56 29385.92 276
MVP-Stereo77.12 19976.23 19279.79 25381.72 28966.34 12589.29 24290.88 18270.56 23062.01 29982.88 25949.34 24194.13 20865.55 23893.80 4178.88 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 18276.23 19284.65 12583.65 26966.30 12691.44 17190.14 20976.01 11470.32 21084.02 24842.50 28894.72 18170.98 18077.00 20192.94 149
APDe-MVScopyleft87.54 2587.84 2286.65 5896.07 2366.30 12694.84 4593.78 5969.35 24388.39 3196.34 2667.74 4697.66 5490.62 3493.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
v119275.98 21873.92 22582.15 19579.73 30966.24 12891.22 18889.75 22372.67 16968.49 23681.42 28049.86 23794.27 20367.08 21965.02 28685.95 274
dp75.01 23372.09 24983.76 15189.28 15466.22 12979.96 33689.75 22371.16 21667.80 24777.19 32551.81 21992.54 26350.39 30671.44 24392.51 161
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3294.53 7566.79 5297.34 7383.89 8691.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test67.72 29763.70 30879.77 25478.92 32166.04 13188.68 25482.90 33660.11 32255.45 33075.96 33539.19 29990.55 29739.53 35352.55 35282.71 319
v124075.21 23172.98 23681.88 20379.20 31666.00 13290.75 20489.11 25171.63 20667.41 25281.22 28547.36 26093.87 22565.46 23964.72 29185.77 278
baseline283.68 8983.42 8084.48 13387.37 20666.00 13290.06 22495.93 879.71 5769.08 22490.39 16277.92 696.28 12178.91 12381.38 16291.16 191
PCF-MVS73.15 979.29 16077.63 17084.29 14086.06 22865.96 13487.03 27891.10 17369.86 23869.79 21990.64 15557.54 15596.59 11264.37 24682.29 15190.32 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS84.18 7683.43 7886.44 6696.25 2165.93 13594.28 5394.27 5074.41 13179.16 11195.61 4353.99 19998.88 2169.62 19493.26 5294.50 98
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+81.14 12780.01 13384.51 13290.24 13365.86 13694.12 6089.15 24873.81 14675.37 15388.26 19357.26 15694.53 19466.97 22184.92 13493.15 141
AdaColmapbinary78.94 16777.00 18384.76 11996.34 1765.86 13692.66 12487.97 29062.18 30570.56 20592.37 13043.53 28497.35 7264.50 24582.86 14891.05 193
thres20079.66 15478.33 15883.66 15892.54 8265.82 13893.06 10596.31 374.90 12873.30 17288.66 18359.67 13495.61 15147.84 32178.67 18489.56 213
BH-RMVSNet79.46 15977.65 16984.89 11191.68 10465.66 13993.55 9188.09 28672.93 16373.37 17191.12 15146.20 27196.12 12656.28 28885.61 13292.91 150
ZNCC-MVS85.33 5785.08 5886.06 7593.09 6865.65 14093.89 7393.41 8073.75 14779.94 10194.68 7260.61 12498.03 3882.63 9393.72 4494.52 96
thisisatest053081.15 12680.07 13184.39 13688.26 18265.63 14191.40 17594.62 3471.27 21570.93 20289.18 17972.47 2996.04 13265.62 23676.89 20291.49 180
MP-MVS-pluss85.24 5885.13 5785.56 9291.42 11165.59 14291.54 17092.51 11474.56 13080.62 9595.64 4259.15 14197.00 9286.94 6193.80 4194.07 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS75.97 21973.02 23584.82 11489.78 14165.56 14377.44 34691.07 17764.55 28372.66 17879.85 30546.05 27396.69 11054.97 29280.82 16792.21 172
PHI-MVS86.83 3486.85 3786.78 5593.47 5765.55 14495.39 3095.10 1871.77 19985.69 5196.52 2162.07 10898.77 2286.06 6895.60 1196.03 38
114514_t79.17 16277.67 16883.68 15695.32 2965.53 14592.85 11491.60 15363.49 29167.92 24290.63 15746.65 26495.72 14767.01 22083.54 14589.79 208
ZD-MVS96.63 965.50 14693.50 7570.74 22785.26 5795.19 5964.92 7197.29 7687.51 5393.01 54
ab-mvs80.18 14578.31 15985.80 8588.44 17565.49 14783.00 30992.67 10671.82 19777.36 13285.01 23554.50 19196.59 11276.35 13975.63 21095.32 61
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8385.93 4894.80 6975.80 1398.21 3489.38 3888.78 10196.59 16
GST-MVS84.63 6784.29 6785.66 9092.82 7365.27 14993.04 10793.13 9073.20 15678.89 11394.18 9159.41 13897.85 4581.45 10292.48 6193.86 123
pmmvs473.92 24471.81 25380.25 23979.17 31765.24 15087.43 27487.26 29667.64 26363.46 28683.91 25048.96 24891.53 29262.94 25665.49 28083.96 299
APD-MVScopyleft85.93 4785.99 4685.76 8795.98 2665.21 15193.59 9092.58 11266.54 27086.17 4595.88 3763.83 8497.00 9286.39 6592.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_enhance_ethall78.86 16977.97 16581.54 21088.00 19165.17 15291.41 17389.15 24875.19 12468.79 23183.98 24967.17 4992.82 24972.73 16465.30 28186.62 259
MTAPA83.91 8183.38 8285.50 9391.89 9965.16 15381.75 31592.23 12075.32 12280.53 9695.21 5856.06 17697.16 8484.86 7892.55 6094.18 105
GBi-Net75.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
test175.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
FMVSNet172.71 25869.91 26981.10 22183.60 27065.11 15490.01 22690.32 19863.92 28763.56 28580.25 30036.35 32591.54 28954.46 29466.75 27386.64 255
HFP-MVS84.73 6584.40 6685.72 8893.75 5165.01 15793.50 9493.19 8772.19 18379.22 11094.93 6459.04 14297.67 5181.55 10092.21 6294.49 99
PVSNet73.49 880.05 14878.63 15584.31 13990.92 12164.97 15892.47 13291.05 17979.18 6672.43 18690.51 15937.05 32294.06 21368.06 20886.00 12893.90 122
Anonymous2024052976.84 20574.15 22184.88 11291.02 11864.95 15993.84 7891.09 17453.57 34773.00 17387.42 20935.91 32697.32 7469.14 20072.41 23692.36 163
cl2277.94 18876.78 18581.42 21287.57 20064.93 16090.67 20688.86 26372.45 17567.63 24982.68 26264.07 8092.91 24771.79 17365.30 28186.44 260
our_test_368.29 29364.69 30179.11 26778.92 32164.85 16188.40 25985.06 31660.32 32052.68 34076.12 33440.81 29489.80 31144.25 33755.65 34282.67 322
tpm78.58 17777.03 18183.22 16885.94 23264.56 16283.21 30691.14 17278.31 8173.67 17079.68 30764.01 8192.09 27766.07 23171.26 24493.03 146
Anonymous20240521177.96 18775.33 20585.87 8193.73 5264.52 16394.85 4485.36 31462.52 30376.11 14390.18 16729.43 35197.29 7668.51 20677.24 20095.81 45
tfpn200view978.79 17277.43 17382.88 17392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19388.83 218
thres40078.68 17477.43 17382.43 18392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19387.48 239
VPA-MVSNet79.03 16478.00 16482.11 20085.95 23064.48 16693.22 10294.66 3275.05 12674.04 16784.95 23652.17 21793.52 23274.90 15167.04 27188.32 232
CDS-MVSNet81.43 12380.74 12183.52 15986.26 22564.45 16792.09 14490.65 18975.83 11673.95 16889.81 17463.97 8292.91 24771.27 17882.82 14993.20 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14876.19 21174.47 21681.36 21380.05 30764.44 16891.75 16590.23 20673.68 15067.13 25580.84 29055.92 17893.86 22768.95 20261.73 31785.76 280
XXY-MVS77.94 18876.44 18982.43 18382.60 28064.44 16892.01 14991.83 14273.59 15270.00 21585.82 22954.43 19594.76 17869.63 19368.02 26588.10 234
MIMVSNet71.64 26568.44 27981.23 21681.97 28864.44 16873.05 35688.80 26569.67 24064.59 27374.79 34032.79 33787.82 32553.99 29676.35 20691.42 182
miper_ehance_all_eth77.60 19276.44 18981.09 22485.70 23764.41 17190.65 20788.64 27372.31 17967.37 25482.52 26364.77 7492.64 26170.67 18465.30 28186.24 264
Patchmtry67.53 30063.93 30778.34 27282.12 28664.38 17268.72 36484.00 32648.23 36359.24 31172.41 34657.82 15289.27 31346.10 32956.68 34181.36 331
ACMMPR84.37 6984.06 6885.28 10093.56 5464.37 17393.50 9493.15 8972.19 18378.85 11894.86 6756.69 16897.45 6581.55 10092.20 6394.02 116
BH-w/o80.49 13979.30 14884.05 14790.83 12464.36 17493.60 8989.42 23674.35 13369.09 22390.15 16955.23 18495.61 15164.61 24486.43 12792.17 173
region2R84.36 7084.03 6985.36 9893.54 5564.31 17593.43 9792.95 9772.16 18678.86 11794.84 6856.97 16397.53 6381.38 10492.11 6594.24 103
新几何184.73 12092.32 8464.28 17691.46 15959.56 32579.77 10392.90 11656.95 16496.57 11463.40 25192.91 5693.34 135
原ACMM184.42 13493.21 6364.27 17793.40 8165.39 27879.51 10692.50 12458.11 15096.69 11065.27 24193.96 3892.32 165
MP-MVScopyleft85.02 6084.97 6085.17 10592.60 8164.27 17793.24 10092.27 11973.13 15879.63 10594.43 7861.90 10997.17 8385.00 7592.56 5994.06 114
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
c3_l76.83 20675.47 20280.93 22885.02 24864.18 17990.39 21488.11 28571.66 20166.65 26281.64 27563.58 9292.56 26269.31 19862.86 30386.04 271
PGM-MVS83.25 9482.70 9584.92 11092.81 7564.07 18090.44 21192.20 12471.28 21477.23 13494.43 7855.17 18697.31 7579.33 11891.38 7893.37 134
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18193.06 10594.33 4882.19 2893.65 396.15 3385.89 197.19 8291.02 3197.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)79.12 16377.23 17984.81 11790.54 12763.98 18281.35 32191.71 14771.09 21974.85 15782.94 25852.85 21197.05 8767.97 20981.73 16093.41 133
CP-MVS83.71 8783.40 8184.65 12593.14 6663.84 18394.59 4992.28 11871.03 22077.41 13194.92 6555.21 18596.19 12381.32 10590.70 8693.91 120
OPM-MVS79.00 16578.09 16281.73 20583.52 27163.83 18491.64 16990.30 20276.36 11271.97 19189.93 17346.30 27095.17 16875.10 14677.70 19186.19 266
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS83.87 8283.47 7685.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12294.31 8755.25 18297.41 6879.16 11991.58 7493.95 118
X-MVStestdata76.86 20274.13 22285.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12210.19 39655.25 18297.41 6879.16 11991.58 7493.95 118
TESTMET0.1,182.41 10781.98 10683.72 15588.08 18763.74 18792.70 12093.77 6179.30 6377.61 12987.57 20758.19 14994.08 21173.91 15686.68 12493.33 137
BH-untuned78.68 17477.08 18083.48 16389.84 14063.74 18792.70 12088.59 27471.57 20866.83 26088.65 18451.75 22095.39 16159.03 27984.77 13691.32 187
test_fmvsmvis_n_192083.80 8483.48 7584.77 11882.51 28163.72 18991.37 18083.99 32881.42 3977.68 12795.74 4058.37 14697.58 5993.38 1286.87 11793.00 148
MSDG69.54 28265.73 29280.96 22685.11 24763.71 19084.19 29483.28 33456.95 33654.50 33384.03 24731.50 34396.03 13342.87 34269.13 25783.14 313
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19195.04 4095.19 1586.74 791.53 1295.15 6073.86 2097.58 5993.38 1292.00 6796.28 32
thres600view778.00 18576.66 18782.03 20291.93 9663.69 19291.30 18596.33 172.43 17670.46 20787.89 20260.31 12594.92 17642.64 34476.64 20387.48 239
PatchT69.11 28565.37 29780.32 23582.07 28763.68 19367.96 36987.62 29250.86 35569.37 22065.18 36457.09 15888.53 31841.59 34766.60 27488.74 222
HQP5-MVS63.66 194
HQP-MVS81.14 12780.64 12482.64 17987.54 20163.66 19494.06 6191.70 14979.80 5474.18 16290.30 16451.63 22295.61 15177.63 13278.90 18188.63 223
fmvsm_s_conf0.5_n_a85.75 5086.09 4484.72 12185.73 23663.58 19693.79 8189.32 23981.42 3990.21 2096.91 1362.41 10597.67 5194.48 880.56 16992.90 151
EI-MVSNet-Vis-set83.77 8583.67 7184.06 14692.79 7663.56 19791.76 16394.81 2679.65 5877.87 12594.09 9263.35 9597.90 4279.35 11779.36 17790.74 195
test_fmvsm_n_192087.69 2488.50 1785.27 10187.05 21363.55 19893.69 8591.08 17684.18 1390.17 2197.04 867.58 4797.99 3995.72 390.03 9294.26 102
fmvsm_s_conf0.5_n86.39 3986.91 3484.82 11487.36 20763.54 19994.74 4790.02 21582.52 2490.14 2296.92 1262.93 10197.84 4695.28 682.26 15293.07 145
fmvsm_s_conf0.1_n_a84.76 6484.84 6384.53 13080.23 30563.50 20092.79 11588.73 26880.46 4889.84 2496.65 2060.96 12097.57 6193.80 1180.14 17192.53 160
fmvsm_s_conf0.1_n85.61 5485.93 4784.68 12482.95 27963.48 20194.03 6689.46 23381.69 3389.86 2396.74 1861.85 11197.75 4994.74 782.01 15692.81 153
TAMVS80.37 14179.45 14483.13 17085.14 24563.37 20291.23 18790.76 18474.81 12972.65 17988.49 18560.63 12392.95 24269.41 19681.95 15793.08 144
Anonymous2023121173.08 24970.39 26581.13 21990.62 12663.33 20391.40 17590.06 21351.84 35264.46 27880.67 29336.49 32494.07 21263.83 24964.17 29585.98 273
ACMH63.93 1768.62 28964.81 29980.03 24585.22 24363.25 20487.72 26984.66 32060.83 31651.57 34579.43 31027.29 35694.96 17341.76 34564.84 28881.88 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres100view90078.37 18077.01 18282.46 18291.89 9963.21 20591.19 19196.33 172.28 18170.45 20887.89 20260.31 12595.32 16345.16 33277.58 19388.83 218
EI-MVSNet-UG-set83.14 9682.96 8883.67 15792.28 8563.19 20691.38 17994.68 3179.22 6576.60 14093.75 9862.64 10297.76 4878.07 13078.01 18890.05 204
test250683.29 9282.92 9084.37 13788.39 17863.18 20792.01 14991.35 16277.66 9278.49 12191.42 14564.58 7695.09 16973.19 15789.23 9794.85 80
NP-MVS87.41 20463.04 20890.30 164
eth_miper_zixun_eth75.96 22074.40 21780.66 23084.66 25263.02 20989.28 24388.27 28271.88 19365.73 26481.65 27459.45 13692.81 25068.13 20760.53 32686.14 267
D2MVS73.80 24572.02 25079.15 26679.15 31862.97 21088.58 25690.07 21172.94 16259.22 31278.30 31442.31 29092.70 25665.59 23772.00 23781.79 329
IterMVS72.65 26170.83 25978.09 27782.17 28562.96 21187.64 27286.28 30471.56 20960.44 30578.85 31245.42 27786.66 33563.30 25461.83 31484.65 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 29065.41 29677.96 27878.69 32662.93 21289.86 23189.17 24660.55 31750.27 35077.73 32022.60 36594.06 21347.18 32472.65 23376.88 362
DP-MVS69.90 27966.48 28680.14 24195.36 2862.93 21289.56 23576.11 35150.27 35757.69 32485.23 23339.68 29795.73 14333.35 36871.05 24581.78 330
mPP-MVS82.96 10082.44 10084.52 13192.83 7162.92 21492.76 11691.85 14171.52 21075.61 15094.24 8953.48 20796.99 9578.97 12290.73 8593.64 129
ACMMPcopyleft81.49 12280.67 12383.93 14991.71 10362.90 21592.13 14192.22 12371.79 19871.68 19693.49 10650.32 23196.96 9978.47 12784.22 14491.93 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft83.25 9482.95 8984.17 14492.25 8662.88 21690.91 19691.86 13970.30 23277.12 13593.96 9656.75 16696.28 12182.04 9791.34 8093.34 135
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR82.02 11581.52 11083.51 16188.42 17662.88 21689.77 23388.93 26076.78 10575.55 15193.10 10950.31 23295.38 16283.82 8787.02 11692.26 171
IterMVS-LS76.49 20975.18 20780.43 23484.49 25662.74 21890.64 20888.80 26572.40 17765.16 26981.72 27360.98 11992.27 27367.74 21264.65 29286.29 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 16678.22 16181.25 21585.33 24062.73 21989.53 23893.21 8472.39 17872.14 18990.13 17060.99 11894.72 18167.73 21372.49 23486.29 262
CHOSEN 280x42077.35 19676.95 18478.55 27187.07 21262.68 22069.71 36382.95 33568.80 25171.48 19887.27 21266.03 5884.00 35076.47 13882.81 15088.95 217
test_fmvsmconf_n86.58 3787.17 3084.82 11485.28 24262.55 22194.26 5489.78 22183.81 1687.78 3496.33 2765.33 6596.98 9694.40 987.55 11194.95 78
HQP_MVS80.34 14279.75 13882.12 19786.94 21462.42 22293.13 10391.31 16378.81 7672.53 18289.14 18150.66 22995.55 15676.74 13578.53 18688.39 230
plane_prior62.42 22293.85 7579.38 6178.80 183
EIA-MVS84.84 6384.88 6184.69 12391.30 11462.36 22493.85 7592.04 12979.45 5979.33 10994.28 8862.42 10496.35 11980.05 11291.25 8195.38 56
test_fmvsmconf0.1_n85.71 5186.08 4584.62 12880.83 29562.33 22593.84 7888.81 26483.50 1887.00 4096.01 3563.36 9496.93 10394.04 1087.29 11494.61 91
plane_prior687.23 20862.32 22650.66 229
PVSNet_068.08 1571.81 26468.32 28182.27 18984.68 25162.31 22788.68 25490.31 20175.84 11557.93 32380.65 29437.85 31394.19 20769.94 19029.05 38690.31 201
WR-MVS76.76 20775.74 19979.82 25284.60 25362.27 22892.60 12692.51 11476.06 11367.87 24685.34 23256.76 16590.24 30462.20 26263.69 30186.94 252
NR-MVSNet76.05 21674.59 21280.44 23382.96 27762.18 22990.83 20191.73 14577.12 10060.96 30386.35 22159.28 14091.80 28260.74 26961.34 32187.35 244
sd_testset77.08 20075.37 20382.20 19389.25 15562.11 23082.06 31389.09 25276.77 10670.84 20387.12 21341.43 29295.01 17167.23 21874.55 21489.48 214
GeoE78.90 16877.43 17383.29 16688.95 16462.02 23192.31 13486.23 30670.24 23371.34 20089.27 17854.43 19594.04 21663.31 25380.81 16893.81 125
h-mvs3383.01 9882.56 9884.35 13889.34 15162.02 23192.72 11893.76 6281.45 3682.73 7792.25 13360.11 12897.13 8587.69 5162.96 30293.91 120
ECVR-MVScopyleft81.29 12580.38 13084.01 14888.39 17861.96 23392.56 13186.79 30177.66 9276.63 13991.42 14546.34 26895.24 16774.36 15489.23 9794.85 80
plane_prior361.95 23479.09 6972.53 182
Vis-MVSNetpermissive80.92 13379.98 13583.74 15288.48 17361.80 23593.44 9688.26 28473.96 14277.73 12691.76 13949.94 23694.76 17865.84 23390.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FOURS193.95 4561.77 23693.96 6891.92 13462.14 30686.57 42
cl____76.07 21374.67 20980.28 23785.15 24461.76 23790.12 22288.73 26871.16 21665.43 26681.57 27761.15 11692.95 24266.54 22462.17 31086.13 269
DIV-MVS_self_test76.07 21374.67 20980.28 23785.14 24561.75 23890.12 22288.73 26871.16 21665.42 26781.60 27661.15 11692.94 24666.54 22462.16 31286.14 267
test_fmvsmconf0.01_n83.70 8883.52 7284.25 14275.26 34761.72 23992.17 13987.24 29782.36 2684.91 5995.41 4655.60 18096.83 10792.85 1585.87 12994.21 104
CNLPA74.31 23972.30 24780.32 23591.49 11061.66 24090.85 20080.72 34356.67 33963.85 28390.64 15546.75 26390.84 29653.79 29775.99 20988.47 229
test22289.77 14261.60 24189.55 23689.42 23656.83 33877.28 13392.43 12852.76 21291.14 8393.09 143
plane_prior786.94 21461.51 242
UGNet79.87 15278.68 15483.45 16489.96 13861.51 24292.13 14190.79 18376.83 10478.85 11886.33 22338.16 30896.17 12467.93 21187.17 11592.67 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051779.50 15778.53 15782.41 18687.22 20961.43 24489.75 23494.76 2769.29 24467.91 24388.06 20072.92 2595.63 14962.91 25773.90 22490.16 202
EC-MVSNet84.53 6885.04 5983.01 17189.34 15161.37 24594.42 5191.09 17477.91 8783.24 7294.20 9058.37 14695.40 16085.35 7191.41 7792.27 170
test-LLR80.10 14779.56 14181.72 20686.93 21661.17 24692.70 12091.54 15471.51 21175.62 14886.94 21553.83 20092.38 26872.21 17084.76 13791.60 178
test-mter79.96 15079.38 14781.72 20686.93 21661.17 24692.70 12091.54 15473.85 14475.62 14886.94 21549.84 23892.38 26872.21 17084.76 13791.60 178
SR-MVS82.81 10182.58 9783.50 16293.35 5861.16 24892.23 13891.28 16664.48 28481.27 8695.28 5253.71 20395.86 13782.87 9188.77 10293.49 132
KD-MVS_2432*160069.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
miper_refine_blended69.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
tfpnnormal70.10 27667.36 28478.32 27383.45 27260.97 25188.85 25192.77 10264.85 28260.83 30478.53 31343.52 28593.48 23331.73 37561.70 31880.52 341
TR-MVS78.77 17377.37 17882.95 17290.49 12860.88 25293.67 8690.07 21170.08 23574.51 16091.37 14845.69 27495.70 14860.12 27480.32 17092.29 166
UniMVSNet (Re)77.58 19376.78 18579.98 24684.11 26360.80 25391.76 16393.17 8876.56 11069.93 21884.78 23963.32 9692.36 27064.89 24362.51 30886.78 254
1112_ss80.56 13779.83 13782.77 17588.65 17060.78 25492.29 13588.36 27872.58 17172.46 18594.95 6265.09 6793.42 23566.38 22777.71 19094.10 110
v7n71.31 26968.65 27679.28 26276.40 34360.77 25586.71 28389.45 23464.17 28658.77 31778.24 31544.59 28193.54 23157.76 28361.75 31683.52 305
test111180.84 13480.02 13283.33 16587.87 19460.76 25692.62 12586.86 30077.86 8875.73 14691.39 14746.35 26794.70 18472.79 16388.68 10394.52 96
test_040264.54 31561.09 32174.92 30784.10 26460.75 25787.95 26579.71 34752.03 35052.41 34177.20 32432.21 34191.64 28523.14 38161.03 32272.36 370
旧先验191.94 9560.74 25891.50 15794.36 8065.23 6691.84 6994.55 92
dmvs_re76.93 20175.36 20481.61 20887.78 19860.71 25980.00 33487.99 28879.42 6069.02 22689.47 17746.77 26294.32 19963.38 25274.45 21789.81 207
ADS-MVSNet266.90 30363.44 31077.26 28888.06 18860.70 26068.01 36775.56 35557.57 33164.48 27669.87 35638.68 30084.10 34740.87 34967.89 26686.97 250
IterMVS-SCA-FT71.55 26869.97 26776.32 29781.48 29060.67 26187.64 27285.99 30966.17 27359.50 31078.88 31145.53 27583.65 35262.58 26061.93 31384.63 297
TranMVSNet+NR-MVSNet75.86 22174.52 21579.89 25082.44 28260.64 26291.37 18091.37 16176.63 10867.65 24886.21 22552.37 21691.55 28861.84 26460.81 32487.48 239
pmmvs573.35 24871.52 25578.86 26878.64 32760.61 26391.08 19386.90 29867.69 26063.32 28783.64 25144.33 28290.53 29862.04 26366.02 27885.46 285
MDA-MVSNet_test_wron63.78 32060.16 32374.64 30878.15 33360.41 26483.49 29984.03 32456.17 34239.17 37671.59 35237.22 31883.24 35742.87 34248.73 35880.26 344
Test_1112_low_res79.56 15678.60 15682.43 18388.24 18460.39 26592.09 14487.99 28872.10 18771.84 19287.42 20964.62 7593.04 23965.80 23477.30 19893.85 124
UniMVSNet_NR-MVSNet78.15 18477.55 17179.98 24684.46 25760.26 26692.25 13693.20 8677.50 9668.88 22986.61 21866.10 5792.13 27566.38 22762.55 30687.54 237
DU-MVS76.86 20275.84 19779.91 24982.96 27760.26 26691.26 18691.54 15476.46 11168.88 22986.35 22156.16 17392.13 27566.38 22762.55 30687.35 244
EPP-MVSNet81.79 11881.52 11082.61 18088.77 16960.21 26893.02 10993.66 6868.52 25572.90 17690.39 16272.19 3194.96 17374.93 14979.29 17992.67 155
YYNet163.76 32160.14 32474.62 30978.06 33460.19 26983.46 30183.99 32856.18 34139.25 37571.56 35337.18 31983.34 35542.90 34148.70 35980.32 343
IS-MVSNet80.14 14679.41 14582.33 18787.91 19260.08 27091.97 15388.27 28272.90 16671.44 19991.73 14161.44 11593.66 23062.47 26186.53 12593.24 138
HPM-MVS_fast80.25 14479.55 14382.33 18791.55 10859.95 27191.32 18489.16 24765.23 28174.71 15993.07 11247.81 25895.74 14274.87 15288.23 10491.31 188
MDTV_nov1_ep13_2view59.90 27280.13 33267.65 26272.79 17754.33 19759.83 27592.58 158
CPTT-MVS79.59 15579.16 15080.89 22991.54 10959.80 27392.10 14388.54 27660.42 31872.96 17493.28 10848.27 25192.80 25178.89 12486.50 12690.06 203
ACMP71.68 1075.58 22774.23 22079.62 25784.97 24959.64 27490.80 20289.07 25470.39 23162.95 29287.30 21138.28 30693.87 22572.89 16071.45 24285.36 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d65.53 31262.32 31775.19 30469.39 36759.59 27582.80 31083.43 33162.52 30351.30 34772.49 34432.86 33687.16 33455.32 29150.73 35578.83 355
sss82.71 10482.38 10183.73 15489.25 15559.58 27692.24 13794.89 2377.96 8579.86 10292.38 12956.70 16797.05 8777.26 13480.86 16694.55 92
Fast-Effi-MVS+-dtu75.04 23273.37 23280.07 24380.86 29459.52 27791.20 19085.38 31371.90 19165.20 26884.84 23841.46 29192.97 24166.50 22672.96 22987.73 236
FIs79.47 15879.41 14579.67 25585.95 23059.40 27891.68 16793.94 5678.06 8468.96 22888.28 19166.61 5491.77 28366.20 23074.99 21387.82 235
LPG-MVS_test75.82 22274.58 21379.56 25984.31 26059.37 27990.44 21189.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
LGP-MVS_train79.56 25984.31 26059.37 27989.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
CS-MVS-test86.14 4487.01 3283.52 15992.63 8059.36 28195.49 2791.92 13480.09 5185.46 5495.53 4561.82 11395.77 14186.77 6393.37 5095.41 54
Baseline_NR-MVSNet73.99 24372.83 23877.48 28380.78 29659.29 28291.79 16084.55 32168.85 25068.99 22780.70 29156.16 17392.04 27862.67 25960.98 32381.11 334
PS-MVSNAJss77.26 19776.31 19180.13 24280.64 29959.16 28390.63 21091.06 17872.80 16768.58 23584.57 24253.55 20493.96 22172.97 15971.96 23887.27 247
mvsmamba76.85 20475.71 20080.25 23983.07 27659.16 28391.44 17180.64 34476.84 10367.95 24186.33 22346.17 27294.24 20676.06 14072.92 23087.36 243
TransMVSNet (Re)70.07 27767.66 28377.31 28780.62 30059.13 28591.78 16284.94 31865.97 27460.08 30880.44 29650.78 22891.87 28048.84 31445.46 36480.94 336
CS-MVS85.80 4986.65 3883.27 16792.00 9458.92 28695.31 3191.86 13979.97 5284.82 6095.40 4762.26 10695.51 15986.11 6792.08 6695.37 57
Patchmatch-test65.86 30860.94 32280.62 23283.75 26758.83 28758.91 38175.26 35744.50 37150.95 34977.09 32658.81 14487.90 32335.13 36464.03 29795.12 72
APD-MVS_3200maxsize81.64 12181.32 11282.59 18192.36 8358.74 28891.39 17791.01 18163.35 29379.72 10494.62 7451.82 21896.14 12579.71 11387.93 10792.89 152
PLCcopyleft68.80 1475.23 23073.68 22979.86 25192.93 7058.68 28990.64 20888.30 28060.90 31564.43 27990.53 15842.38 28994.57 19056.52 28676.54 20486.33 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SR-MVS-dyc-post81.06 13080.70 12282.15 19592.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7651.26 22695.61 15178.77 12586.77 12192.28 167
RE-MVS-def80.48 12892.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7649.30 24278.77 12586.77 12192.28 167
miper_lstm_enhance73.05 25171.73 25477.03 29083.80 26658.32 29281.76 31488.88 26169.80 23961.01 30278.23 31657.19 15787.51 33165.34 24059.53 33185.27 290
DeepPCF-MVS81.17 189.72 991.38 384.72 12193.00 6958.16 29396.72 894.41 4286.50 890.25 1997.83 175.46 1498.67 2592.78 1695.49 1297.32 6
bld_raw_dy_0_6471.59 26769.71 27277.22 28977.82 33758.12 29487.71 27073.66 36068.01 25861.90 30184.29 24633.68 33488.43 31969.91 19170.43 24785.11 291
FMVSNet568.04 29565.66 29475.18 30584.43 25857.89 29583.54 29886.26 30561.83 31153.64 33873.30 34337.15 32085.08 34348.99 31361.77 31582.56 323
ACMM69.62 1374.34 23872.73 24179.17 26484.25 26257.87 29690.36 21589.93 21763.17 29765.64 26586.04 22837.79 31494.10 20965.89 23271.52 24185.55 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 30562.92 31376.80 29576.51 34257.77 29789.22 24483.41 33255.48 34353.86 33777.84 31926.28 35993.95 22234.90 36568.76 25978.68 356
UA-Net80.02 14979.65 13981.11 22089.33 15357.72 29886.33 28589.00 25977.44 9781.01 9189.15 18059.33 13995.90 13661.01 26884.28 14289.73 210
testdata81.34 21489.02 16257.72 29889.84 22058.65 32985.32 5694.09 9257.03 15993.28 23669.34 19790.56 8993.03 146
RRT_MVS74.44 23772.97 23778.84 26982.36 28357.66 30089.83 23288.79 26770.61 22964.58 27484.89 23739.24 29892.65 26070.11 18966.34 27686.21 265
pm-mvs172.89 25471.09 25878.26 27579.10 32057.62 30190.80 20289.30 24067.66 26162.91 29381.78 27249.11 24792.95 24260.29 27358.89 33484.22 298
XVG-OURS74.25 24072.46 24679.63 25678.45 32957.59 30280.33 32887.39 29363.86 28868.76 23289.62 17640.50 29591.72 28469.00 20174.25 21989.58 211
hse-mvs281.12 12981.11 11781.16 21886.52 22057.48 30389.40 24191.16 16981.45 3682.73 7790.49 16060.11 12894.58 18887.69 5160.41 32991.41 183
AUN-MVS78.37 18077.43 17381.17 21786.60 21957.45 30489.46 24091.16 16974.11 13774.40 16190.49 16055.52 18194.57 19074.73 15360.43 32891.48 181
OMC-MVS78.67 17677.91 16780.95 22785.76 23557.40 30588.49 25788.67 27173.85 14472.43 18692.10 13449.29 24394.55 19372.73 16477.89 18990.91 194
XVG-OURS-SEG-HR74.70 23673.08 23479.57 25878.25 33157.33 30680.49 32687.32 29463.22 29568.76 23290.12 17244.89 28091.59 28770.55 18674.09 22189.79 208
ACMH+65.35 1667.65 29864.55 30276.96 29384.59 25457.10 30788.08 26180.79 34258.59 33053.00 33981.09 28926.63 35892.95 24246.51 32661.69 31980.82 337
tt080573.07 25070.73 26280.07 24378.37 33057.05 30887.78 26892.18 12661.23 31467.04 25686.49 22031.35 34594.58 18865.06 24267.12 27088.57 225
test_cas_vis1_n_192080.45 14080.61 12579.97 24878.25 33157.01 30994.04 6588.33 27979.06 7182.81 7693.70 10038.65 30291.63 28690.82 3379.81 17391.27 190
MDA-MVSNet-bldmvs61.54 32757.70 33173.05 32079.53 31257.00 31083.08 30781.23 34057.57 33134.91 37972.45 34532.79 33786.26 33835.81 36241.95 36975.89 364
UniMVSNet_ETH3D72.74 25770.53 26479.36 26178.62 32856.64 31185.01 29089.20 24463.77 28964.84 27284.44 24434.05 33391.86 28163.94 24870.89 24689.57 212
MVS-HIRNet60.25 33055.55 33774.35 31184.37 25956.57 31271.64 35874.11 35934.44 37945.54 36542.24 38631.11 34789.81 30940.36 35276.10 20876.67 363
PMMVS81.98 11682.04 10481.78 20489.76 14356.17 31391.13 19290.69 18577.96 8580.09 10093.57 10446.33 26994.99 17281.41 10387.46 11294.17 106
LS3D69.17 28466.40 28877.50 28291.92 9756.12 31485.12 28980.37 34546.96 36456.50 32887.51 20837.25 31793.71 22832.52 37479.40 17682.68 321
F-COLMAP70.66 27168.44 27977.32 28686.37 22455.91 31588.00 26486.32 30356.94 33757.28 32688.07 19933.58 33592.49 26551.02 30468.37 26283.55 303
CL-MVSNet_self_test69.92 27868.09 28275.41 30273.25 35455.90 31690.05 22589.90 21869.96 23661.96 30076.54 32951.05 22787.64 32849.51 31250.59 35682.70 320
PatchMatch-RL72.06 26369.98 26678.28 27489.51 14955.70 31783.49 29983.39 33361.24 31363.72 28482.76 26034.77 33093.03 24053.37 30077.59 19286.12 270
FC-MVSNet-test77.99 18678.08 16377.70 27984.89 25055.51 31890.27 21893.75 6576.87 10166.80 26187.59 20665.71 6290.23 30562.89 25873.94 22287.37 242
USDC67.43 30264.51 30376.19 29877.94 33555.29 31978.38 34185.00 31773.17 15748.36 35780.37 29721.23 36792.48 26652.15 30264.02 29880.81 338
Effi-MVS+-dtu76.14 21275.28 20678.72 27083.22 27355.17 32089.87 23087.78 29175.42 12067.98 24081.43 27945.08 27992.52 26475.08 14771.63 23988.48 227
test_vis1_n_192081.66 12082.01 10580.64 23182.24 28455.09 32194.76 4686.87 29981.67 3484.40 6494.63 7338.17 30794.67 18591.98 2483.34 14692.16 174
jajsoiax73.05 25171.51 25677.67 28077.46 33854.83 32288.81 25290.04 21469.13 24862.85 29483.51 25331.16 34692.75 25370.83 18169.80 24885.43 286
anonymousdsp71.14 27069.37 27476.45 29672.95 35554.71 32384.19 29488.88 26161.92 30962.15 29879.77 30638.14 30991.44 29468.90 20367.45 26983.21 311
mvs_tets72.71 25871.11 25777.52 28177.41 33954.52 32488.45 25889.76 22268.76 25362.70 29583.26 25629.49 35092.71 25470.51 18769.62 25085.34 288
JIA-IIPM66.06 30762.45 31676.88 29481.42 29254.45 32557.49 38288.67 27149.36 35963.86 28246.86 38056.06 17690.25 30149.53 31168.83 25885.95 274
Patchmatch-RL test68.17 29464.49 30479.19 26371.22 35953.93 32670.07 36271.54 36869.22 24556.79 32762.89 36856.58 17088.61 31569.53 19552.61 35195.03 76
test_djsdf73.76 24772.56 24477.39 28577.00 34153.93 32689.07 24890.69 18565.80 27563.92 28182.03 26943.14 28792.67 25772.83 16168.53 26185.57 282
pmmvs667.57 29964.76 30076.00 30072.82 35753.37 32888.71 25386.78 30253.19 34857.58 32578.03 31835.33 32992.41 26755.56 29054.88 34682.21 326
TinyColmap60.32 32956.42 33672.00 33278.78 32453.18 32978.36 34275.64 35452.30 34941.59 37475.82 33714.76 37988.35 32035.84 36154.71 34774.46 366
COLMAP_ROBcopyleft57.96 2062.98 32359.65 32572.98 32181.44 29153.00 33083.75 29775.53 35648.34 36248.81 35681.40 28124.14 36190.30 30032.95 37060.52 32775.65 365
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE68.04 29565.53 29575.56 30174.06 35252.37 33178.43 34085.88 31062.03 30758.91 31681.21 28720.38 37091.15 29560.69 27068.18 26383.16 312
Vis-MVSNet (Re-imp)79.24 16179.57 14078.24 27688.46 17452.29 33290.41 21389.12 25074.24 13569.13 22291.91 13765.77 6190.09 30859.00 28088.09 10692.33 164
TAPA-MVS70.22 1274.94 23473.53 23079.17 26490.40 13052.07 33389.19 24689.61 23062.69 30270.07 21392.67 12248.89 24994.32 19938.26 35879.97 17291.12 192
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UnsupCasMVSNet_bld61.60 32657.71 33073.29 31968.73 36851.64 33478.61 33989.05 25557.20 33546.11 36061.96 37128.70 35388.60 31650.08 30938.90 37579.63 348
LTVRE_ROB59.60 1966.27 30663.54 30974.45 31084.00 26551.55 33567.08 37083.53 33058.78 32854.94 33280.31 29834.54 33193.23 23740.64 35168.03 26478.58 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H70.59 27269.94 26872.53 32481.03 29351.43 33687.35 27592.03 13067.38 26460.23 30780.70 29155.84 17983.45 35446.33 32858.58 33682.72 318
AllTest61.66 32558.06 32972.46 32579.57 31051.42 33780.17 33168.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
TestCases72.46 32579.57 31051.42 33768.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
CP-MVSNet70.50 27369.91 26972.26 32780.71 29751.00 33987.23 27790.30 20267.84 25959.64 30982.69 26150.23 23482.30 36251.28 30359.28 33283.46 307
pmmvs355.51 33751.50 34267.53 34757.90 38250.93 34080.37 32773.66 36040.63 37744.15 37064.75 36616.30 37478.97 37144.77 33640.98 37372.69 368
PS-CasMVS69.86 28069.13 27572.07 33180.35 30250.57 34187.02 27989.75 22367.27 26559.19 31382.28 26546.58 26582.24 36350.69 30559.02 33383.39 309
CMPMVSbinary48.56 2166.77 30464.41 30573.84 31570.65 36350.31 34277.79 34585.73 31245.54 36844.76 36782.14 26835.40 32890.14 30763.18 25574.54 21681.07 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_eth65.79 30963.10 31173.88 31470.71 36250.29 34381.09 32289.88 21972.58 17149.25 35574.77 34132.57 33987.43 33255.96 28941.04 37183.90 301
SixPastTwentyTwo64.92 31361.78 32074.34 31278.74 32549.76 34483.42 30279.51 34862.86 29950.27 35077.35 32130.92 34890.49 29945.89 33047.06 36182.78 315
PEN-MVS69.46 28368.56 27772.17 32979.27 31549.71 34586.90 28189.24 24267.24 26859.08 31482.51 26447.23 26183.54 35348.42 31657.12 33783.25 310
EPNet_dtu78.80 17179.26 14977.43 28488.06 18849.71 34591.96 15491.95 13377.67 9176.56 14191.28 14958.51 14590.20 30656.37 28780.95 16592.39 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WAC-MVS49.45 34731.56 377
myMVS_eth3d72.58 26272.74 24072.10 33087.87 19449.45 34788.07 26289.01 25672.91 16463.11 28988.10 19763.63 8885.54 34032.73 37269.23 25581.32 332
K. test v363.09 32259.61 32673.53 31776.26 34449.38 34983.27 30377.15 35064.35 28547.77 35972.32 34828.73 35287.79 32649.93 31036.69 37783.41 308
DTE-MVSNet68.46 29267.33 28571.87 33377.94 33549.00 35086.16 28688.58 27566.36 27258.19 31882.21 26746.36 26683.87 35144.97 33555.17 34482.73 317
Anonymous2024052162.09 32459.08 32771.10 33467.19 37048.72 35183.91 29685.23 31550.38 35647.84 35871.22 35520.74 36885.51 34246.47 32758.75 33579.06 352
LCM-MVSNet-Re72.93 25371.84 25276.18 29988.49 17248.02 35280.07 33370.17 36973.96 14252.25 34280.09 30349.98 23588.24 32167.35 21584.23 14392.28 167
test0.0.03 172.76 25672.71 24272.88 32280.25 30447.99 35391.22 18889.45 23471.51 21162.51 29787.66 20553.83 20085.06 34450.16 30867.84 26885.58 281
lessismore_v073.72 31672.93 35647.83 35461.72 38145.86 36373.76 34228.63 35489.81 30947.75 32331.37 38383.53 304
Anonymous2023120667.53 30065.78 29172.79 32374.95 34847.59 35588.23 26087.32 29461.75 31258.07 32077.29 32337.79 31487.29 33342.91 34063.71 30083.48 306
OurMVSNet-221017-064.68 31462.17 31872.21 32876.08 34647.35 35680.67 32581.02 34156.19 34051.60 34479.66 30827.05 35788.56 31753.60 29953.63 34980.71 339
test_fmvs174.07 24173.69 22875.22 30378.91 32347.34 35789.06 25074.69 35863.68 29079.41 10791.59 14324.36 36087.77 32785.22 7276.26 20790.55 199
test_vis1_n71.63 26670.73 26274.31 31369.63 36647.29 35886.91 28072.11 36463.21 29675.18 15490.17 16820.40 36985.76 33984.59 8074.42 21889.87 206
test_fmvs1_n72.69 26071.92 25174.99 30671.15 36047.08 35987.34 27675.67 35363.48 29278.08 12491.17 15020.16 37187.87 32484.65 7975.57 21190.01 205
ITE_SJBPF70.43 33674.44 35047.06 36077.32 34960.16 32154.04 33683.53 25223.30 36484.01 34943.07 33961.58 32080.21 346
EGC-MVSNET42.35 34738.09 35055.11 36074.57 34946.62 36171.63 35955.77 3830.04 3970.24 39862.70 36914.24 38074.91 37417.59 38646.06 36343.80 383
TDRefinement55.28 33851.58 34166.39 35059.53 38146.15 36276.23 35072.80 36244.60 37042.49 37276.28 33315.29 37782.39 36133.20 36943.75 36670.62 372
test_vis1_rt59.09 33457.31 33364.43 35168.44 36946.02 36383.05 30848.63 39151.96 35149.57 35363.86 36716.30 37480.20 36971.21 17962.79 30467.07 376
mvsany_test168.77 28868.56 27769.39 33973.57 35345.88 36480.93 32460.88 38259.65 32471.56 19790.26 16643.22 28675.05 37274.26 15562.70 30587.25 248
RPSCF64.24 31761.98 31971.01 33576.10 34545.00 36575.83 35275.94 35246.94 36558.96 31584.59 24131.40 34482.00 36447.76 32260.33 33086.04 271
new-patchmatchnet59.30 33356.48 33567.79 34565.86 37344.19 36682.47 31181.77 33859.94 32343.65 37166.20 36327.67 35581.68 36539.34 35441.40 37077.50 361
MIMVSNet160.16 33157.33 33268.67 34269.71 36544.13 36778.92 33884.21 32255.05 34444.63 36871.85 35023.91 36281.54 36632.63 37355.03 34580.35 342
CVMVSNet74.04 24274.27 21973.33 31885.33 24043.94 36889.53 23888.39 27754.33 34670.37 20990.13 17049.17 24584.05 34861.83 26579.36 17791.99 175
testing370.38 27570.83 25969.03 34185.82 23443.93 36990.72 20590.56 19168.06 25760.24 30686.82 21764.83 7284.12 34626.33 37964.10 29679.04 353
Syy-MVS69.65 28169.52 27370.03 33787.87 19443.21 37088.07 26289.01 25672.91 16463.11 28988.10 19745.28 27885.54 34022.07 38369.23 25581.32 332
PM-MVS59.40 33256.59 33467.84 34463.63 37441.86 37176.76 34763.22 37959.01 32751.07 34872.27 34911.72 38283.25 35661.34 26650.28 35778.39 358
test_fmvs265.78 31064.84 29868.60 34366.54 37141.71 37283.27 30369.81 37054.38 34567.91 24384.54 24315.35 37681.22 36775.65 14266.16 27782.88 314
ambc69.61 33861.38 37941.35 37349.07 38785.86 31150.18 35266.40 36210.16 38488.14 32245.73 33144.20 36579.32 351
new_pmnet49.31 34146.44 34457.93 35662.84 37640.74 37468.47 36662.96 38036.48 37835.09 37857.81 37514.97 37872.18 37732.86 37146.44 36260.88 378
testgi64.48 31662.87 31469.31 34071.24 35840.62 37585.49 28779.92 34665.36 27954.18 33583.49 25423.74 36384.55 34541.60 34660.79 32582.77 316
test20.0363.83 31962.65 31567.38 34870.58 36439.94 37686.57 28484.17 32363.29 29451.86 34377.30 32237.09 32182.47 36038.87 35754.13 34879.73 347
KD-MVS_self_test60.87 32858.60 32867.68 34666.13 37239.93 37775.63 35384.70 31957.32 33449.57 35368.45 35929.55 34982.87 35848.09 31747.94 36080.25 345
LF4IMVS54.01 33952.12 34059.69 35562.41 37739.91 37868.59 36568.28 37442.96 37544.55 36975.18 33814.09 38168.39 38141.36 34851.68 35370.78 371
Gipumacopyleft34.91 35431.44 35745.30 37070.99 36139.64 37919.85 39272.56 36320.10 38816.16 39221.47 3935.08 39371.16 37813.07 39043.70 36725.08 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet64.01 31863.01 31267.02 34974.40 35138.86 38083.27 30386.19 30745.11 36954.27 33481.15 28836.91 32380.01 37048.79 31557.02 33882.19 327
FPMVS45.64 34543.10 34953.23 36351.42 38736.46 38164.97 37271.91 36529.13 38327.53 38361.55 3729.83 38565.01 38716.00 38955.58 34358.22 379
test_fmvs356.82 33554.86 33862.69 35453.59 38435.47 38275.87 35165.64 37743.91 37255.10 33171.43 3546.91 39074.40 37568.64 20552.63 35078.20 359
APD_test140.50 34937.31 35250.09 36651.88 38535.27 38359.45 38052.59 38721.64 38626.12 38457.80 3764.56 39466.56 38322.64 38239.09 37448.43 382
ANet_high40.27 35135.20 35455.47 35934.74 39834.47 38463.84 37471.56 36748.42 36118.80 38841.08 3879.52 38664.45 38820.18 3848.66 39567.49 375
test_vis3_rt40.46 35037.79 35148.47 36844.49 39233.35 38566.56 37132.84 39932.39 38129.65 38139.13 3893.91 39768.65 38050.17 30740.99 37243.40 384
test_f46.58 34343.45 34755.96 35845.18 39132.05 38661.18 37649.49 39033.39 38042.05 37362.48 3707.00 38965.56 38547.08 32543.21 36870.27 373
mvsany_test348.86 34246.35 34556.41 35746.00 39031.67 38762.26 37547.25 39243.71 37345.54 36568.15 36010.84 38364.44 38957.95 28235.44 38073.13 367
testf132.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
APD_test232.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
LCM-MVSNet40.54 34835.79 35354.76 36236.92 39730.81 38851.41 38569.02 37122.07 38524.63 38545.37 3824.56 39465.81 38433.67 36734.50 38167.67 374
DSMNet-mixed56.78 33654.44 33963.79 35263.21 37529.44 39164.43 37364.10 37842.12 37651.32 34671.60 35131.76 34275.04 37336.23 36065.20 28586.87 253
PMVScopyleft26.43 2231.84 35728.16 36042.89 37125.87 40027.58 39250.92 38649.78 38921.37 38714.17 39340.81 3882.01 40066.62 3829.61 39338.88 37634.49 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 35919.77 36538.09 37434.56 39926.92 39326.57 39038.87 39711.73 39311.37 39427.44 3901.37 40150.42 39311.41 39114.60 39136.93 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.93 35333.61 35650.92 36446.31 38924.76 39460.55 37950.05 38828.94 38420.93 38647.59 3794.41 39665.13 38625.14 38018.55 39062.87 377
DeepMVS_CXcopyleft34.71 37551.45 38624.73 39528.48 40131.46 38217.49 39152.75 3775.80 39242.60 39618.18 38519.42 38936.81 388
dmvs_testset65.55 31166.45 28762.86 35379.87 30822.35 39676.55 34871.74 36677.42 9955.85 32987.77 20451.39 22480.69 36831.51 37865.92 27985.55 283
test_method38.59 35235.16 35548.89 36754.33 38321.35 39745.32 38853.71 3867.41 39428.74 38251.62 3788.70 38752.87 39233.73 36632.89 38272.47 369
WB-MVS46.23 34444.94 34650.11 36562.13 37821.23 39876.48 34955.49 38445.89 36735.78 37761.44 37335.54 32772.83 3769.96 39221.75 38756.27 380
wuyk23d11.30 36310.95 36612.33 37948.05 38819.89 39925.89 3911.92 4033.58 3953.12 3971.37 3970.64 40215.77 3986.23 3977.77 3961.35 394
SSC-MVS44.51 34643.35 34847.99 36961.01 38018.90 40074.12 35554.36 38543.42 37434.10 38060.02 37434.42 33270.39 3799.14 39419.57 38854.68 381
E-PMN24.61 35824.00 36226.45 37643.74 39318.44 40160.86 37739.66 39515.11 3919.53 39522.10 3926.52 39146.94 3948.31 39510.14 39213.98 392
EMVS23.76 36023.20 36425.46 37741.52 39616.90 40260.56 37838.79 39814.62 3928.99 39620.24 3957.35 38845.82 3957.25 3969.46 39313.64 393
tmp_tt22.26 36123.75 36317.80 3785.23 40112.06 40335.26 38939.48 3962.82 39618.94 38744.20 38522.23 36624.64 39736.30 3599.31 39416.69 391
N_pmnet50.55 34049.11 34354.88 36177.17 3404.02 40484.36 2932.00 40248.59 36045.86 36368.82 35832.22 34082.80 35931.58 37651.38 35477.81 360
test1236.92 3669.21 3690.08 3800.03 4030.05 40581.65 3170.01 4050.02 3990.14 4000.85 3990.03 4030.02 3990.12 3990.00 3980.16 395
testmvs7.23 3659.62 3680.06 3810.04 4020.02 40684.98 2910.02 4040.03 3980.18 3991.21 3980.01 4040.02 3990.14 3980.01 3970.13 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
cdsmvs_eth3d_5k19.86 36226.47 3610.00 3820.00 4040.00 4070.00 39393.45 770.00 4000.00 40195.27 5449.56 2390.00 4010.00 4000.00 3980.00 397
pcd_1.5k_mvsjas4.46 3675.95 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40053.55 2040.00 4010.00 4000.00 3980.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
ab-mvs-re7.91 36410.55 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.95 620.00 4050.00 4010.00 4000.00 3980.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
PC_three_145280.91 4594.07 296.83 1683.57 499.12 595.70 597.42 497.55 4
eth-test20.00 404
eth-test0.00 404
test_241102_TWO94.41 4271.65 20292.07 697.21 474.58 1799.11 692.34 1995.36 1396.59 16
9.1487.63 2493.86 4794.41 5294.18 5172.76 16886.21 4496.51 2266.64 5397.88 4490.08 3694.04 37
test_0728_THIRD72.48 17390.55 1796.93 1076.24 1199.08 1191.53 2794.99 1796.43 26
GSMVS94.68 87
sam_mvs157.85 15194.68 87
sam_mvs54.91 189
MTGPAbinary92.23 120
test_post178.95 33720.70 39453.05 20991.50 29360.43 271
test_post23.01 39156.49 17192.67 257
patchmatchnet-post67.62 36157.62 15490.25 301
MTMP93.77 8232.52 400
test9_res89.41 3794.96 1895.29 63
agg_prior286.41 6494.75 2995.33 59
test_prior295.10 3875.40 12185.25 5895.61 4367.94 4487.47 5494.77 25
旧先验292.00 15259.37 32687.54 3693.47 23475.39 144
新几何291.41 173
无先验92.71 11992.61 11162.03 30797.01 9166.63 22293.97 117
原ACMM292.01 149
testdata296.09 12761.26 267
segment_acmp65.94 59
testdata189.21 24577.55 95
plane_prior591.31 16395.55 15676.74 13578.53 18688.39 230
plane_prior489.14 181
plane_prior293.13 10378.81 76
plane_prior187.15 210
n20.00 406
nn0.00 406
door-mid66.01 376
test1193.01 94
door66.57 375
HQP-NCC87.54 20194.06 6179.80 5474.18 162
ACMP_Plane87.54 20194.06 6179.80 5474.18 162
BP-MVS77.63 132
HQP4-MVS74.18 16295.61 15188.63 223
HQP3-MVS91.70 14978.90 181
HQP2-MVS51.63 222
ACMMP++_ref71.63 239
ACMMP++69.72 249
Test By Simon54.21 198