This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 266
FOURS199.73 3699.67 399.43 1299.54 8099.43 4199.26 116
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35299.49 698.02 17899.16 22298.29 14697.64 29497.99 31296.44 20299.95 2496.66 22298.93 31598.60 327
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11398.28 14898.98 15499.19 12497.76 11699.58 31596.57 22999.55 21898.97 275
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 15899.47 10699.12 7599.52 6399.32 9998.31 7199.90 6697.78 14199.73 14499.66 60
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6597.72 19098.90 17399.26 11096.12 21599.52 33595.72 28199.71 15799.32 209
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.49 14499.86 11496.56 23399.39 24899.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.75 11796.56 23399.39 24899.45 157
LS3D98.63 12598.38 14899.36 6697.25 39099.38 1299.12 5799.32 16399.21 6398.44 23698.88 20497.31 15199.80 19296.58 22799.34 25698.92 284
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20798.83 11398.89 17598.90 19796.98 17399.92 5197.16 17499.70 16499.56 102
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18498.29 14698.88 17898.85 21097.53 13799.87 10696.14 26299.31 26099.48 144
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27699.38 13794.87 33498.97 15898.99 17698.01 9899.88 8997.29 16799.70 16499.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 8997.33 22998.94 16998.86 20798.75 3699.82 17197.53 15799.71 15799.56 102
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5899.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19298.24 10999.84 8599.52 124
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 35998.86 10998.87 18297.62 33598.63 4698.96 39599.41 3898.29 34798.45 338
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8799.64 1999.56 5399.46 7098.23 7799.97 598.78 7699.93 4399.72 48
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20799.25 19696.94 26198.78 19299.12 14398.02 9799.84 14497.13 17999.67 17899.59 85
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7399.99 599.86 21
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12396.74 27298.61 21598.38 28198.62 4799.87 10696.47 24199.67 17899.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10699.36 3999.92 5499.64 66
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16198.64 11899.03 15098.98 18097.89 10699.85 12696.54 23799.42 24599.46 153
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15097.55 20699.31 10897.71 32894.61 26799.88 8996.14 26299.19 28399.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7699.46 3699.50 6999.34 9397.30 15299.93 4298.90 6999.93 4399.77 37
test_0728_SECOND99.60 1499.50 10899.23 3098.02 17899.32 16399.88 8996.99 18999.63 18999.68 56
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21197.61 19997.58 29998.66 24497.40 14899.88 8994.72 30799.60 19999.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18497.28 23598.11 26298.39 27998.00 9999.87 10696.86 20599.64 18699.55 109
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 17898.84 28097.97 17099.08 13899.02 16397.61 12999.88 8996.99 18999.63 18999.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10899.21 3298.17 15799.35 15097.97 17099.26 11699.06 15197.61 129
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17399.22 20494.16 35098.98 15499.10 14797.52 13999.79 20596.45 24399.64 18699.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30398.63 25197.50 14199.83 16196.79 20899.53 22499.56 102
X-MVStestdata94.32 34492.59 36299.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30345.85 41997.50 14199.83 16196.79 20899.53 22499.56 102
EGC-MVSNET85.24 38380.54 38699.34 7599.77 2699.20 3899.08 5899.29 18412.08 42120.84 42299.42 7797.55 13499.85 12697.08 18299.72 15298.96 277
test_one_060199.39 13999.20 3899.31 16898.49 13398.66 20899.02 16397.64 126
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14799.25 19697.44 22198.67 20698.39 27997.68 12099.85 12696.00 26699.51 22999.52 124
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5699.59 2799.71 3499.57 4597.12 16399.90 6699.21 5199.87 7699.54 113
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 14999.49 9697.01 25898.69 20398.88 20498.00 9999.89 7795.87 27499.59 20399.58 91
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16699.31 16898.03 16699.66 4399.02 16398.36 6599.88 8996.91 19599.62 19299.41 171
test_241102_ONE99.49 11599.17 4399.31 16897.98 16999.66 4398.90 19798.36 6599.48 347
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16897.46 21898.44 23698.51 26597.83 10999.88 8996.46 24299.58 20899.58 91
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20197.47 21398.09 26498.68 23997.62 12899.89 7796.22 25699.62 19299.57 96
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16897.47 21398.58 22198.50 26997.97 10399.85 12696.57 22999.59 20399.53 121
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 14999.31 16897.92 17698.90 17398.90 19798.00 9999.88 8996.15 26199.72 15299.58 91
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14197.16 25098.82 18999.01 17297.71 11999.87 10696.29 25399.69 16799.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS98.29 17397.95 19899.34 7598.44 32599.16 4798.12 16399.38 13796.01 30298.06 26698.43 27697.80 11499.67 27395.69 28399.58 20899.20 235
DVP-MVS++98.90 7998.70 9899.51 4698.43 32699.15 5199.43 1299.32 16398.17 15999.26 11699.02 16398.18 8499.88 8997.07 18399.45 24199.49 134
IU-MVS99.49 11599.15 5198.87 27192.97 36799.41 8596.76 21299.62 19299.66 60
CS-MVS99.13 5299.10 5699.24 9799.06 21799.15 5199.36 1999.88 1399.36 4998.21 25398.46 27398.68 4299.93 4299.03 6299.85 8198.64 324
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28199.39 13597.67 19299.44 7998.99 17697.53 13799.89 7795.40 29299.68 17299.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9897.57 20299.35 9799.24 11597.83 10999.89 7797.88 13599.70 16499.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16897.47 21398.56 22498.54 26197.75 11799.88 8996.57 22999.59 20399.58 91
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8099.62 2499.56 5399.42 7798.16 8899.96 1298.78 7699.93 4399.77 37
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17099.37 14197.62 19699.04 14798.96 18598.84 3099.79 20597.43 16199.65 18499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9899.68 1599.46 7599.26 11098.62 4799.73 24599.17 5499.92 5499.76 42
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24698.75 29597.46 21896.90 33997.83 32396.01 21999.84 14495.82 27899.35 25499.46 153
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14597.54 20798.30 24598.40 27897.86 10899.89 7796.53 23899.72 15299.56 102
MAR-MVS96.47 29895.70 30798.79 16697.92 35699.12 6198.28 14598.60 30792.16 37895.54 37996.17 37294.77 26599.52 33589.62 39398.23 34897.72 381
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18599.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part299.36 14799.10 6499.05 145
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8399.53 3199.46 7599.41 8198.23 7799.95 2498.89 7199.95 3099.81 30
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7299.09 8699.33 10099.19 12498.40 6399.72 25295.98 26899.76 13799.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 3998.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8099.31 5399.62 5299.53 5897.36 15099.86 11499.24 5099.71 15799.39 181
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5899.44 3999.78 2799.76 1296.39 20399.92 5199.44 3799.92 5499.68 56
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25698.51 26598.64 4499.93 4298.91 6899.85 8198.88 292
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 14999.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33198.97 7095.03 37499.18 21596.88 26499.33 10098.78 22398.16 8899.28 38096.74 21499.62 19299.44 161
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15699.42 4299.33 10099.26 11097.01 17199.94 3698.74 8199.93 4399.79 32
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21799.28 18794.97 33198.72 20198.77 22597.04 16799.85 12693.79 33699.54 22099.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26198.37 28298.72 3899.90 6699.05 6099.77 12598.77 309
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12699.42 4299.36 9599.06 15198.38 6499.95 2498.34 10599.90 6799.57 96
ZD-MVS99.01 22598.84 7899.07 23694.10 35298.05 26898.12 30296.36 20799.86 11492.70 36199.19 283
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30599.48 9897.32 23199.11 13398.61 25599.33 1399.30 37696.23 25598.38 34399.28 220
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5899.11 7699.53 6199.18 12898.81 3299.67 27396.71 21999.77 12599.50 130
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33799.50 8997.30 23399.05 14598.98 18099.35 1299.32 37395.72 28199.68 17299.18 242
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22599.38 13795.76 31098.81 19198.82 21698.36 6599.82 17194.75 30499.77 12599.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15399.41 13096.77 27198.83 18698.90 19797.80 11499.82 17195.68 28499.52 22799.38 188
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22599.40 13399.14 7499.06 14098.59 25796.71 19199.93 4298.57 9399.77 12599.53 121
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24499.25 19698.84 11299.06 14098.76 22796.76 18799.93 4298.57 9399.77 12599.50 130
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7299.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 27899.18 21597.10 25398.75 19898.92 19398.18 8499.65 28996.68 22199.56 21599.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22199.38 13798.93 10499.12 13298.73 23096.77 18599.86 11498.63 9099.80 11099.46 153
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20799.10 8399.72 3298.76 22796.38 20599.86 11498.00 12799.82 9599.50 130
CMPMVSbinary75.91 2396.29 30295.44 31998.84 15796.25 41198.69 9097.02 28099.12 22988.90 40197.83 28398.86 20789.51 33398.90 39991.92 36799.51 22998.92 284
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5099.30 5599.65 4699.60 4199.16 2099.82 17199.07 5899.83 9299.56 102
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6597.87 18098.85 18398.04 31097.66 12299.84 14496.72 21799.81 9999.13 251
OMC-MVS97.88 20797.49 23299.04 13198.89 25098.63 9196.94 28599.25 19695.02 32998.53 22998.51 26597.27 15599.47 35093.50 34499.51 22999.01 266
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4799.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22299.46 10997.25 23898.98 15498.99 17697.54 13599.84 14495.88 27199.74 14199.23 230
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6599.39 4499.75 3199.62 3699.17 1899.83 16199.06 5999.62 19299.66 60
wuyk23d96.06 30897.62 22591.38 39898.65 30198.57 9898.85 8796.95 36196.86 26699.90 1299.16 13499.18 1798.40 40689.23 39599.77 12577.18 418
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14899.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
TestCases99.16 10799.50 10898.55 9999.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25299.57 6599.37 4699.21 12499.61 3996.76 18799.83 16198.06 12299.83 9299.71 49
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5499.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18799.68 4497.62 19699.34 9999.18 12897.54 13599.77 22297.79 14099.74 14199.04 262
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25698.51 10498.49 12699.83 2298.37 13799.69 3899.46 7098.21 8299.92 5194.13 32699.30 26398.91 287
Gipumacopyleft99.03 6399.16 4898.64 18499.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34097.70 14799.73 14497.89 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15097.50 21098.28 24998.60 25697.64 12699.35 36993.86 33499.27 26798.79 307
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14499.27 19094.90 33397.83 28398.37 28294.90 25699.84 14493.85 33599.54 22099.51 127
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16199.63 2199.48 7099.15 13897.23 15899.75 23597.17 17399.66 18399.63 69
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26498.40 10999.02 6699.19 21198.99 9798.07 26599.28 10497.11 16599.84 14496.84 20699.32 25899.47 151
F-COLMAP97.30 25396.68 28099.14 11099.19 18598.39 11097.27 26799.30 17692.93 36896.62 35198.00 31195.73 23599.68 27092.62 36298.46 34299.35 200
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18599.91 1199.67 2797.15 16298.91 39899.76 1599.56 21599.92 11
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7698.30 14399.65 4699.45 7499.22 1599.76 22898.44 10099.77 12599.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
No_MVS99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6599.61 2699.40 8899.50 6297.12 16399.85 12699.02 6399.94 3899.80 31
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11399.63 2199.52 6399.44 7598.25 7599.88 8999.09 5799.84 8599.62 70
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7298.42 13698.91 17298.81 21898.94 2599.91 6098.35 10499.73 14499.49 134
OPU-MVS98.82 15998.59 30798.30 11898.10 16698.52 26498.18 8498.75 40294.62 30899.48 23899.41 171
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8699.48 3399.24 12199.41 8196.79 18499.82 17198.69 8699.88 7399.76 42
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6799.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521197.90 20397.50 23199.08 12098.90 24598.25 12198.53 11796.16 37498.87 10899.11 13398.86 20790.40 32899.78 21697.36 16499.31 26099.19 240
CNVR-MVS98.17 18797.87 20699.07 12298.67 29298.24 12297.01 28198.93 25997.25 23897.62 29598.34 28697.27 15599.57 31796.42 24499.33 25799.39 181
GBi-Net98.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
test198.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11799.21 6399.43 8099.55 5297.82 11299.86 11498.42 10299.89 7199.41 171
API-MVS97.04 27396.91 26597.42 30597.88 35898.23 12698.18 15498.50 31297.57 20297.39 31796.75 36196.77 18599.15 38990.16 39199.02 30494.88 412
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25499.25 5999.54 5799.37 8497.04 16799.80 19297.89 13299.52 22799.35 200
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8799.70 1299.80 2599.68 2296.84 17899.83 16199.21 5199.91 6199.77 37
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29098.73 29895.66 31197.92 27497.70 33097.17 16199.66 28496.18 26099.23 27599.47 151
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4899.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
CDPH-MVS97.26 25696.66 28399.07 12299.00 22698.15 13096.03 33599.01 25191.21 38897.79 28697.85 32296.89 17699.69 26192.75 35999.38 25199.39 181
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15699.28 5798.95 16298.91 19498.34 6999.79 20595.63 28599.91 6198.86 294
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 16899.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21499.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32698.11 13497.61 23699.50 8998.64 11897.39 31797.52 34098.12 9299.95 2496.90 20098.71 32798.38 348
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22599.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
EIA-MVS98.00 19797.74 21398.80 16398.72 27598.09 13798.05 17399.60 5597.39 22496.63 35095.55 38397.68 12099.80 19296.73 21699.27 26798.52 333
alignmvs97.35 24996.88 26698.78 16998.54 31498.09 13797.71 22297.69 34099.20 6597.59 29895.90 37788.12 34699.55 32498.18 11398.96 31298.70 318
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3699.31 42100.00 199.82 27
TAPA-MVS96.21 1196.63 29195.95 30298.65 18398.93 23798.09 13796.93 28799.28 18783.58 41198.13 26097.78 32496.13 21499.40 36193.52 34299.29 26598.45 338
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST998.71 27898.08 14195.96 33999.03 24591.40 38595.85 37097.53 33896.52 19899.76 228
train_agg97.10 26896.45 29399.07 12298.71 27898.08 14195.96 33999.03 24591.64 38095.85 37097.53 33896.47 20099.76 22893.67 33899.16 28699.36 196
ETV-MVS98.03 19497.86 20798.56 20398.69 28798.07 14397.51 24899.50 8998.10 16497.50 30795.51 38498.41 6299.88 8996.27 25499.24 27297.71 382
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35799.59 2799.11 13399.27 10694.82 26099.79 20598.34 10599.63 18999.34 202
NCCC97.86 21097.47 23599.05 12998.61 30298.07 14396.98 28398.90 26597.63 19597.04 32997.93 31895.99 22499.66 28495.31 29398.82 32199.43 165
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17699.69 1399.63 4999.68 2299.25 1499.96 1297.25 17099.92 5499.57 96
CNLPA97.17 26596.71 27898.55 20498.56 31298.05 14796.33 31898.93 25996.91 26397.06 32897.39 34794.38 27399.45 35491.66 37199.18 28598.14 359
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33399.30 17697.58 20198.10 26398.24 29398.25 7599.34 37096.69 22099.65 18499.12 252
test_898.67 29298.01 14995.91 34599.02 24891.64 38095.79 37297.50 34196.47 20099.76 228
agg_prior98.68 29197.99 15099.01 25195.59 37399.77 222
SD-MVS98.40 15698.68 10197.54 29598.96 23397.99 15097.88 19999.36 14598.20 15699.63 4999.04 16098.76 3595.33 41896.56 23399.74 14199.31 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon97.33 25196.92 26398.57 19999.09 20997.99 15096.79 29399.35 15093.18 36497.71 29098.07 30895.00 25599.31 37493.97 32999.13 29198.42 345
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18199.46 10997.56 20499.54 5799.50 6298.97 2399.84 14498.06 12299.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.11 20497.97 15496.53 30799.02 24898.24 149
test_prior497.97 15495.86 346
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32099.01 9698.98 15499.03 16291.59 31799.79 20595.49 29099.80 11099.48 144
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32599.37 4699.70 3699.65 3392.65 30699.93 4299.04 6199.84 8599.60 79
test_prior98.95 14398.69 28797.95 15899.03 24599.59 30999.30 216
PMVScopyleft91.26 2097.86 21097.94 20097.65 28299.71 4597.94 15998.52 11898.68 30198.99 9797.52 30599.35 8997.41 14798.18 40991.59 37499.67 17896.82 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft94.65 1696.51 29495.73 30698.85 15698.75 27197.91 16096.42 31399.06 23790.94 39195.59 37397.38 34894.41 27199.59 30990.93 38598.04 36499.05 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25696.96 25999.24 12198.89 20397.83 10999.81 18596.88 20299.49 23799.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 27897.88 16296.32 31998.66 30296.33 28899.23 12398.51 26597.48 14599.40 36197.16 17499.46 23999.02 265
plane_prior799.19 18597.87 163
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33693.41 40195.25 32599.47 7498.90 19795.63 23799.85 12696.91 19599.73 14499.27 221
FPMVS93.44 36092.23 36697.08 31999.25 17097.86 16495.61 35597.16 35492.90 36993.76 40398.65 24675.94 40095.66 41679.30 41697.49 37297.73 380
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30899.11 7698.58 22199.02 16388.65 34199.96 1298.11 11796.34 39599.49 134
test1298.93 14698.58 30997.83 16798.66 30296.53 35495.51 24299.69 26199.13 29199.27 221
PatchMatch-RL97.24 25996.78 27498.61 19299.03 22497.83 16796.36 31699.06 23793.49 36297.36 31997.78 32495.75 23499.49 34493.44 34598.77 32298.52 333
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33199.03 9498.59 21999.13 14292.16 31199.90 6696.87 20399.68 17299.49 134
sasdasda98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11799.45 3799.51 6899.24 11598.20 8399.86 11495.92 27099.69 16799.04 262
canonicalmvs98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 26997.81 17399.25 4099.30 17698.57 12798.55 22699.33 9597.95 10499.90 6697.16 17499.67 17899.44 161
AdaColmapbinary97.14 26796.71 27898.46 21798.34 33397.80 17496.95 28498.93 25995.58 31596.92 33497.66 33195.87 23199.53 33190.97 38499.14 28998.04 364
plane_prior397.78 17597.41 22297.79 286
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27699.28 18795.54 31699.42 8399.19 12497.27 15599.63 29597.89 13299.97 1999.20 235
新几何198.91 15098.94 23597.76 17698.76 29287.58 40596.75 34798.10 30494.80 26399.78 21692.73 36099.00 30699.20 235
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35199.67 1698.97 15899.50 6290.45 32799.80 19297.88 13599.20 28099.48 144
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5198.48 13499.37 9399.49 6798.75 3699.86 11498.20 11299.80 11099.71 49
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19199.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 218
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18299.62 5199.22 6199.55 5699.22 12098.93 2699.75 23598.66 8799.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
plane_prior698.99 22997.70 18294.90 256
LF4IMVS97.90 20397.69 21798.52 20999.17 19397.66 18397.19 27599.47 10696.31 29097.85 28298.20 29796.71 19199.52 33594.62 30899.72 15298.38 348
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21499.27 19098.20 15697.79 28697.98 31394.90 25699.70 25794.42 31699.51 22999.45 157
plane_prior97.65 18497.07 27996.72 27399.36 252
WR-MVS98.40 15698.19 17299.03 13299.00 22697.65 18496.85 29198.94 25698.57 12798.89 17598.50 26995.60 23899.85 12697.54 15699.85 8199.59 85
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15099.47 3599.28 11099.05 15896.72 19099.82 17198.09 11999.36 25299.59 85
MGCFI-Net98.34 16398.28 16098.51 21098.47 32097.59 18898.96 7499.48 9899.18 7197.40 31595.50 38598.66 4399.50 34198.18 11398.71 32798.44 341
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40499.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
PCF-MVS92.86 1894.36 34393.00 36098.42 22298.70 28297.56 18993.16 40699.11 23179.59 41597.55 30297.43 34592.19 31099.73 24579.85 41599.45 24197.97 369
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
lessismore_v098.97 14099.73 3697.53 19186.71 41899.37 9399.52 6189.93 33099.92 5198.99 6599.72 15299.44 161
QAPM97.31 25296.81 27398.82 15998.80 26797.49 19299.06 6299.19 21190.22 39497.69 29299.16 13496.91 17599.90 6690.89 38799.41 24699.07 256
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17599.59 5698.15 16399.40 8899.36 8898.58 5399.76 22898.78 7699.68 17299.59 85
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33799.27 19097.60 20097.99 27298.25 29298.15 9099.38 36596.87 20399.57 21299.42 168
dmvs_re95.98 31295.39 32297.74 27698.86 25397.45 19598.37 14095.69 38597.95 17296.56 35395.95 37590.70 32597.68 41288.32 39796.13 39998.11 360
旧先验198.82 26297.45 19598.76 29298.34 28695.50 24399.01 30599.23 230
Fast-Effi-MVS+97.67 22697.38 23898.57 19998.71 27897.43 19797.23 26899.45 11394.82 33596.13 36496.51 36498.52 5699.91 6096.19 25898.83 31998.37 350
114514_t96.50 29695.77 30498.69 18199.48 12297.43 19797.84 20699.55 7681.42 41496.51 35698.58 25895.53 24099.67 27393.41 34699.58 20898.98 272
NP-MVS98.84 25797.39 19996.84 359
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9899.69 1399.63 4999.68 2299.03 2199.96 1297.97 12999.92 5499.57 96
hse-mvs297.46 24097.07 25598.64 18498.73 27397.33 20197.45 25397.64 34499.11 7698.58 22197.98 31388.65 34199.79 20598.11 11797.39 37898.81 301
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20799.57 6599.17 7299.35 9799.17 13298.35 6899.69 26198.46 9999.73 14499.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VNet98.42 15398.30 15898.79 16698.79 26897.29 20398.23 14998.66 30299.31 5398.85 18398.80 21994.80 26399.78 21698.13 11699.13 29199.31 213
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20799.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
HyFIR lowres test97.19 26396.60 28798.96 14199.62 7597.28 20495.17 37099.50 8994.21 34999.01 15198.32 28986.61 35099.99 297.10 18199.84 8599.60 79
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 8998.86 10999.19 12699.06 15198.23 7799.69 26198.71 8499.76 13799.33 207
ab-mvs98.41 15498.36 15098.59 19599.19 18597.23 20799.32 2398.81 28597.66 19398.62 21399.40 8396.82 18199.80 19295.88 27199.51 22998.75 312
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30297.23 20797.76 21799.09 23497.31 23298.75 19898.66 24497.56 13399.64 29296.10 26599.55 21899.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS96.24 30695.45 31898.60 19498.70 28297.22 20997.38 25697.65 34295.95 30595.53 38097.96 31782.11 38399.79 20596.31 25197.44 37598.80 306
DPM-MVS96.32 30195.59 31398.51 21098.76 26997.21 21094.54 39098.26 32291.94 37996.37 36097.25 35293.06 29799.43 35791.42 37798.74 32398.89 289
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21299.24 20199.04 9399.41 8598.90 19797.65 12399.76 22897.70 14799.79 11599.39 181
Effi-MVS+98.02 19597.82 20998.62 18998.53 31697.19 21297.33 26099.68 4497.30 23396.68 34897.46 34498.56 5499.80 19296.63 22398.20 35098.86 294
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 19998.81 28596.66 27699.17 13199.21 12194.81 26299.77 22296.96 19399.88 7399.44 161
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23499.35 15098.72 11698.76 19798.68 23992.57 30799.74 24097.76 14695.60 40399.34 202
OpenMVScopyleft96.65 797.09 26996.68 28098.32 23298.32 33497.16 21598.86 8699.37 14189.48 39896.29 36299.15 13896.56 19699.90 6692.90 35399.20 28097.89 370
OpenMVS_ROBcopyleft95.38 1495.84 31795.18 33097.81 26798.41 33097.15 21697.37 25798.62 30683.86 41098.65 20998.37 28294.29 27699.68 27088.41 39698.62 33796.60 401
FMVSNet298.49 14798.40 14398.75 17598.90 24597.14 21798.61 10899.13 22898.59 12499.19 12699.28 10494.14 27899.82 17197.97 12999.80 11099.29 218
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21099.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14699.19 21197.87 18099.25 12099.16 13496.84 17899.78 21699.21 5199.84 8599.46 153
CLD-MVS97.49 23897.16 25198.48 21599.07 21397.03 22094.71 38199.21 20594.46 34298.06 26697.16 35497.57 13299.48 34794.46 31399.78 12098.95 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet97.69 22497.35 24198.69 18198.73 27397.02 22196.92 28998.75 29595.89 30798.59 21998.67 24192.08 31399.74 24096.72 21799.81 9999.32 209
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MM98.22 18097.99 19498.91 15098.66 29796.97 22297.89 19894.44 39299.54 3098.95 16299.14 14193.50 29099.92 5199.80 1199.96 2399.85 22
test_fmvsmvis_n_192099.26 3599.49 1398.54 20799.66 6296.97 22298.00 18299.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 315
UGNet98.53 14298.45 13698.79 16697.94 35596.96 22499.08 5898.54 30999.10 8396.82 34499.47 6996.55 19799.84 14498.56 9699.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS97.20 26296.72 27798.64 18498.72 27596.95 22598.93 7894.14 39899.74 1098.78 19299.01 17284.45 36899.73 24597.44 16099.27 26799.25 225
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23296.49 28299.96 499.81 698.18 8499.45 35498.97 6699.79 11599.83 24
test22298.92 24196.93 22795.54 35798.78 29085.72 40896.86 34298.11 30394.43 27099.10 29699.23 230
pmmvs497.58 23397.28 24498.51 21098.84 25796.93 22795.40 36598.52 31193.60 35998.61 21598.65 24695.10 25299.60 30596.97 19299.79 11598.99 271
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25199.80 998.33 7099.91 6099.56 2999.95 3099.97 4
MSDG97.71 22397.52 23098.28 23798.91 24496.82 23094.42 39199.37 14197.65 19498.37 24498.29 29197.40 14899.33 37294.09 32799.22 27698.68 322
MVP-Stereo98.08 19297.92 20298.57 19998.96 23396.79 23197.90 19799.18 21596.41 28698.46 23498.95 18995.93 22999.60 30596.51 23998.98 31099.31 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP5-MVS96.79 231
HQP-MVS97.00 27796.49 29298.55 20498.67 29296.79 23196.29 32199.04 24396.05 29895.55 37696.84 35993.84 28499.54 32992.82 35699.26 27099.32 209
UnsupCasMVSNet_bld97.30 25396.92 26398.45 21899.28 16296.78 23496.20 32699.27 19095.42 32098.28 24998.30 29093.16 29399.71 25394.99 29897.37 37998.87 293
MVS_030497.44 24397.01 25998.72 18096.42 40896.74 23597.20 27291.97 40898.46 13598.30 24598.79 22192.74 30499.91 6099.30 4399.94 3899.52 124
mvsmamba97.57 23497.26 24598.51 21098.69 28796.73 23698.74 9297.25 35297.03 25797.88 27899.23 11990.95 32299.87 10696.61 22599.00 30698.91 287
DELS-MVS98.27 17498.20 17098.48 21598.86 25396.70 23795.60 35699.20 20797.73 18998.45 23598.71 23397.50 14199.82 17198.21 11199.59 20398.93 283
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR96.82 28596.32 29698.30 23599.07 21396.69 23897.48 25098.76 29295.81 30996.61 35296.47 36794.12 28199.17 38790.82 38897.78 36799.06 257
balanced_conf0398.63 12598.72 9298.38 22698.66 29796.68 23998.90 8099.42 12698.99 9798.97 15899.19 12495.81 23399.85 12698.77 7999.77 12598.60 327
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24097.97 19099.86 1598.22 15199.88 1799.71 1998.59 5099.84 14499.73 1899.98 1299.98 3
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24097.79 21199.82 2498.21 15299.81 2499.53 5898.46 6099.84 14499.70 2199.97 1999.90 13
MVSMamba_PlusPlus98.83 8798.98 6798.36 22999.32 15596.58 24298.90 8099.41 13099.75 898.72 20199.50 6296.17 21299.94 3699.27 4599.78 12098.57 331
Patchmtry97.35 24996.97 26098.50 21497.31 38996.47 24398.18 15498.92 26298.95 10398.78 19299.37 8485.44 36299.85 12695.96 26999.83 9299.17 246
EI-MVSNet-Vis-set98.68 11698.70 9898.63 18899.09 20996.40 24497.23 26898.86 27699.20 6599.18 13098.97 18297.29 15499.85 12698.72 8399.78 12099.64 66
EI-MVSNet-UG-set98.69 11198.71 9598.62 18999.10 20696.37 24597.23 26898.87 27199.20 6599.19 12698.99 17697.30 15299.85 12698.77 7999.79 11599.65 65
test_vis1_rt97.75 22097.72 21697.83 26598.81 26496.35 24697.30 26399.69 3994.61 33897.87 27998.05 30996.26 21098.32 40798.74 8198.18 35198.82 297
1112_ss97.29 25596.86 26798.58 19699.34 15396.32 24796.75 29799.58 5893.14 36596.89 34097.48 34292.11 31299.86 11496.91 19599.54 22099.57 96
v899.01 6499.16 4898.57 19999.47 12496.31 24898.90 8099.47 10699.03 9499.52 6399.57 4596.93 17499.81 18599.60 2599.98 1299.60 79
原ACMM198.35 23098.90 24596.25 24998.83 28492.48 37496.07 36798.10 30495.39 24699.71 25392.61 36398.99 30899.08 254
v1098.97 7099.11 5498.55 20499.44 12996.21 25098.90 8099.55 7698.73 11499.48 7099.60 4196.63 19499.83 16199.70 2199.99 599.61 78
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18499.71 4596.10 25197.87 20299.85 1798.56 13099.90 1299.68 2298.69 4199.85 12699.72 2099.98 1299.97 4
FMVSNet596.01 31095.20 32998.41 22397.53 37896.10 25198.74 9299.50 8997.22 24798.03 27099.04 16069.80 40699.88 8997.27 16899.71 15799.25 225
Vis-MVSNet (Re-imp)97.46 24097.16 25198.34 23199.55 9396.10 25198.94 7798.44 31498.32 14298.16 25698.62 25388.76 33799.73 24593.88 33399.79 11599.18 242
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19299.55 9396.09 25497.74 21999.81 2598.55 13199.85 1999.55 5298.60 4999.84 14499.69 2399.98 1299.89 14
CHOSEN 1792x268897.49 23897.14 25498.54 20799.68 5696.09 25496.50 30899.62 5191.58 38298.84 18598.97 18292.36 30899.88 8996.76 21299.95 3099.67 59
SSC-MVS98.71 10498.74 8898.62 18999.72 4296.08 25698.74 9298.64 30599.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27299.82 27
v14419298.54 14098.57 11898.45 21899.21 17895.98 25797.63 23399.36 14597.15 25299.32 10699.18 12895.84 23299.84 14499.50 3499.91 6199.54 113
ambc98.24 24098.82 26295.97 25898.62 10799.00 25399.27 11299.21 12196.99 17299.50 34196.55 23699.50 23699.26 224
v114498.60 13098.66 10498.41 22399.36 14795.90 25997.58 24099.34 15697.51 20999.27 11299.15 13896.34 20899.80 19299.47 3699.93 4399.51 127
v119298.60 13098.66 10498.41 22399.27 16495.88 26097.52 24699.36 14597.41 22299.33 10099.20 12396.37 20699.82 17199.57 2799.92 5499.55 109
PMMVS96.51 29495.98 30198.09 24897.53 37895.84 26194.92 37798.84 28091.58 38296.05 36895.58 38295.68 23699.66 28495.59 28798.09 35898.76 311
FMVSNet397.50 23697.24 24798.29 23698.08 35095.83 26297.86 20398.91 26497.89 17998.95 16298.95 18987.06 34799.81 18597.77 14299.69 16799.23 230
v2v48298.56 13498.62 11098.37 22899.42 13595.81 26397.58 24099.16 22297.90 17899.28 11099.01 17295.98 22599.79 20599.33 4199.90 6799.51 127
CL-MVSNet_self_test97.44 24397.22 24898.08 25198.57 31195.78 26494.30 39498.79 28896.58 27998.60 21798.19 29894.74 26699.64 29296.41 24598.84 31898.82 297
v192192098.54 14098.60 11598.38 22699.20 18295.76 26597.56 24299.36 14597.23 24499.38 9199.17 13296.02 21899.84 14499.57 2799.90 6799.54 113
WB-MVS98.52 14598.55 11998.43 22199.65 6395.59 26698.52 11898.77 29199.65 1899.52 6399.00 17594.34 27499.93 4298.65 8898.83 31999.76 42
test_f98.67 11998.87 7698.05 25599.72 4295.59 26698.51 12399.81 2596.30 29299.78 2799.82 596.14 21398.63 40499.82 799.93 4399.95 8
v124098.55 13898.62 11098.32 23299.22 17695.58 26897.51 24899.45 11397.16 25099.45 7899.24 11596.12 21599.85 12699.60 2599.88 7399.55 109
testgi98.32 16798.39 14698.13 24799.57 8195.54 26997.78 21299.49 9697.37 22699.19 12697.65 33298.96 2499.49 34496.50 24098.99 30899.34 202
Patchmatch-RL test97.26 25697.02 25897.99 25999.52 10395.53 27096.13 33199.71 3697.47 21399.27 11299.16 13484.30 37199.62 29897.89 13299.77 12598.81 301
CANet97.87 20997.76 21198.19 24397.75 36295.51 27196.76 29699.05 24097.74 18896.93 33398.21 29695.59 23999.89 7797.86 13799.93 4399.19 240
EPNet96.14 30795.44 31998.25 23890.76 42395.50 27297.92 19494.65 39098.97 10092.98 40698.85 21089.12 33699.87 10695.99 26799.68 17299.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res96.99 27896.55 28998.31 23499.35 15195.47 27395.84 34999.53 8391.51 38496.80 34598.48 27291.36 31999.83 16196.58 22799.53 22499.62 70
diffmvspermissive98.22 18098.24 16798.17 24499.00 22695.44 27496.38 31599.58 5897.79 18698.53 22998.50 26996.76 18799.74 24097.95 13199.64 18699.34 202
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 18298.21 16998.20 24299.51 10595.43 27598.13 16099.32 16396.16 29598.93 17098.82 21696.00 22099.83 16197.32 16699.73 14499.36 196
testdata98.09 24898.93 23795.40 27698.80 28790.08 39697.45 31298.37 28295.26 24899.70 25793.58 34198.95 31399.17 246
mvs5depth99.30 2999.59 998.44 22099.65 6395.35 27799.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
mvsany_test197.60 23097.54 22897.77 27097.72 36395.35 27795.36 36697.13 35594.13 35199.71 3499.33 9597.93 10599.30 37697.60 15398.94 31498.67 323
PatchT96.65 29096.35 29497.54 29597.40 38695.32 27997.98 18796.64 36899.33 5196.89 34099.42 7784.32 37099.81 18597.69 14997.49 37297.48 388
FE-MVS95.66 32294.95 33597.77 27098.53 31695.28 28099.40 1696.09 37693.11 36697.96 27399.26 11079.10 39399.77 22292.40 36598.71 32798.27 354
test_yl96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
DCV-MVSNet96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
sss97.21 26196.93 26198.06 25398.83 25995.22 28396.75 29798.48 31394.49 34097.27 32197.90 31992.77 30399.80 19296.57 22999.32 25899.16 249
MSLP-MVS++98.02 19598.14 18097.64 28498.58 30995.19 28497.48 25099.23 20397.47 21397.90 27698.62 25397.04 16798.81 40197.55 15499.41 24698.94 282
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24199.73 3695.15 28597.36 25899.68 4494.45 34498.99 15399.27 10696.87 17799.94 3697.13 17999.91 6199.57 96
PAPR95.29 32994.47 34097.75 27497.50 38495.14 28694.89 37898.71 30091.39 38695.35 38395.48 38794.57 26899.14 39084.95 40697.37 37998.97 275
pmmvs597.64 22897.49 23298.08 25199.14 20095.12 28796.70 30099.05 24093.77 35798.62 21398.83 21393.23 29199.75 23598.33 10799.76 13799.36 196
Anonymous2024052198.69 11198.87 7698.16 24699.77 2695.11 28899.08 5899.44 11799.34 5099.33 10099.55 5294.10 28299.94 3699.25 4899.96 2399.42 168
test_fmvs399.12 5499.41 2198.25 23899.76 2995.07 28999.05 6499.94 297.78 18799.82 2199.84 398.56 5499.71 25399.96 199.96 2399.97 4
v14898.45 15198.60 11598.00 25899.44 12994.98 29097.44 25499.06 23798.30 14399.32 10698.97 18296.65 19399.62 29898.37 10399.85 8199.39 181
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25399.44 12994.96 29196.63 30399.15 22798.35 13898.83 18699.11 14494.31 27599.85 12696.60 22698.72 32599.37 190
new_pmnet96.99 27896.76 27597.67 28098.72 27594.89 29295.95 34198.20 32592.62 37398.55 22698.54 26194.88 25999.52 33593.96 33099.44 24498.59 330
HY-MVS95.94 1395.90 31495.35 32497.55 29497.95 35494.79 29398.81 9196.94 36292.28 37795.17 38498.57 25989.90 33199.75 23591.20 38197.33 38398.10 361
FA-MVS(test-final)96.99 27896.82 27197.50 29998.70 28294.78 29499.34 2096.99 35895.07 32898.48 23399.33 9588.41 34499.65 28996.13 26498.92 31698.07 363
patch_mono-298.51 14698.63 10898.17 24499.38 14094.78 29497.36 25899.69 3998.16 16298.49 23299.29 10397.06 16699.97 598.29 10899.91 6199.76 42
D2MVS97.84 21697.84 20897.83 26599.14 20094.74 29696.94 28598.88 26995.84 30898.89 17598.96 18594.40 27299.69 26197.55 15499.95 3099.05 258
EI-MVSNet98.40 15698.51 12498.04 25699.10 20694.73 29797.20 27298.87 27198.97 10099.06 14099.02 16396.00 22099.80 19298.58 9199.82 9599.60 79
MVS_Test98.18 18598.36 15097.67 28098.48 31994.73 29798.18 15499.02 24897.69 19198.04 26999.11 14497.22 15999.56 32098.57 9398.90 31798.71 315
IterMVS-LS98.55 13898.70 9898.09 24899.48 12294.73 29797.22 27199.39 13598.97 10099.38 9199.31 10096.00 22099.93 4298.58 9199.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet96.62 29296.25 30097.71 27999.04 22194.66 30099.16 5196.92 36397.23 24497.87 27999.10 14786.11 35699.65 28991.65 37299.21 27998.82 297
CANet_DTU97.26 25697.06 25697.84 26497.57 37394.65 30196.19 32798.79 28897.23 24495.14 38598.24 29393.22 29299.84 14497.34 16599.84 8599.04 262
WTY-MVS96.67 28996.27 29997.87 26398.81 26494.61 30296.77 29597.92 33594.94 33297.12 32497.74 32791.11 32199.82 17193.89 33298.15 35599.18 242
PMMVS298.07 19398.08 18698.04 25699.41 13794.59 30394.59 38899.40 13397.50 21098.82 18998.83 21396.83 18099.84 14497.50 15999.81 9999.71 49
Syy-MVS96.04 30995.56 31597.49 30097.10 39494.48 30496.18 32896.58 36995.65 31294.77 38892.29 41591.27 32099.36 36698.17 11598.05 36298.63 325
ET-MVSNet_ETH3D94.30 34693.21 35697.58 28998.14 34694.47 30594.78 38093.24 40394.72 33689.56 41495.87 37878.57 39699.81 18596.91 19597.11 38798.46 335
testing393.51 35892.09 36897.75 27498.60 30494.40 30697.32 26195.26 38797.56 20496.79 34695.50 38553.57 42499.77 22295.26 29498.97 31199.08 254
thisisatest053095.27 33094.45 34197.74 27699.19 18594.37 30797.86 20390.20 41397.17 24998.22 25297.65 33273.53 40399.90 6696.90 20099.35 25498.95 278
TinyColmap97.89 20597.98 19597.60 28798.86 25394.35 30896.21 32599.44 11797.45 22099.06 14098.88 20497.99 10299.28 38094.38 32099.58 20899.18 242
CR-MVSNet96.28 30395.95 30297.28 31097.71 36694.22 30998.11 16498.92 26292.31 37696.91 33699.37 8485.44 36299.81 18597.39 16397.36 38197.81 375
RPMNet97.02 27496.93 26197.30 30997.71 36694.22 30998.11 16499.30 17699.37 4696.91 33699.34 9386.72 34999.87 10697.53 15797.36 38197.81 375
MVSTER96.86 28296.55 28997.79 26897.91 35794.21 31197.56 24298.87 27197.49 21299.06 14099.05 15880.72 38499.80 19298.44 10099.82 9599.37 190
DeepMVS_CXcopyleft93.44 39498.24 33994.21 31194.34 39364.28 41891.34 41294.87 40089.45 33592.77 41977.54 41793.14 41293.35 414
test_vis1_n98.31 16998.50 12697.73 27899.76 2994.17 31398.68 10299.91 996.31 29099.79 2699.57 4592.85 30299.42 35999.79 1299.84 8599.60 79
GA-MVS95.86 31595.32 32597.49 30098.60 30494.15 31493.83 40197.93 33495.49 31896.68 34897.42 34683.21 37699.30 37696.22 25698.55 34099.01 266
ttmdpeth97.91 20298.02 19197.58 28998.69 28794.10 31598.13 16098.90 26597.95 17297.32 32099.58 4395.95 22898.75 40296.41 24599.22 27699.87 18
test_fmvs298.70 10898.97 6897.89 26299.54 9894.05 31698.55 11499.92 796.78 27099.72 3299.78 1096.60 19599.67 27399.91 299.90 6799.94 9
BH-RMVSNet96.83 28396.58 28897.58 28998.47 32094.05 31696.67 30197.36 34796.70 27597.87 27997.98 31395.14 25199.44 35690.47 39098.58 33999.25 225
cl____97.02 27496.83 27097.58 28997.82 36094.04 31894.66 38499.16 22297.04 25598.63 21198.71 23388.68 34099.69 26197.00 18799.81 9999.00 270
DIV-MVS_self_test97.02 27496.84 26997.58 28997.82 36094.03 31994.66 38499.16 22297.04 25598.63 21198.71 23388.69 33899.69 26197.00 18799.81 9999.01 266
MVS93.19 36492.09 36896.50 34296.91 39794.03 31998.07 17098.06 33268.01 41794.56 39396.48 36695.96 22799.30 37683.84 40896.89 39096.17 404
JIA-IIPM95.52 32695.03 33297.00 32296.85 39994.03 31996.93 28795.82 38199.20 6594.63 39299.71 1983.09 37799.60 30594.42 31694.64 40797.36 392
baseline195.96 31395.44 31997.52 29798.51 31893.99 32298.39 13896.09 37698.21 15298.40 24397.76 32686.88 34899.63 29595.42 29189.27 41698.95 278
TR-MVS95.55 32595.12 33196.86 33397.54 37693.94 32396.49 30996.53 37194.36 34797.03 33196.61 36394.26 27799.16 38886.91 40396.31 39697.47 389
jason97.45 24297.35 24197.76 27399.24 17193.93 32495.86 34698.42 31694.24 34898.50 23198.13 30094.82 26099.91 6097.22 17199.73 14499.43 165
jason: jason.
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
MVSFormer98.26 17698.43 13997.77 27098.88 25193.89 32899.39 1799.56 7299.11 7698.16 25698.13 30093.81 28699.97 599.26 4699.57 21299.43 165
lupinMVS97.06 27196.86 26797.65 28298.88 25193.89 32895.48 36197.97 33393.53 36098.16 25697.58 33693.81 28699.91 6096.77 21199.57 21299.17 246
tttt051795.64 32394.98 33397.64 28499.36 14793.81 33098.72 9790.47 41298.08 16598.67 20698.34 28673.88 40299.92 5197.77 14299.51 22999.20 235
MS-PatchMatch97.68 22597.75 21297.45 30398.23 34193.78 33197.29 26498.84 28096.10 29798.64 21098.65 24696.04 21799.36 36696.84 20699.14 28999.20 235
RRT-MVS97.88 20797.98 19597.61 28698.15 34593.77 33298.97 7399.64 4999.16 7398.69 20399.42 7791.60 31699.89 7797.63 15098.52 34199.16 249
PVSNet_BlendedMVS97.55 23597.53 22997.60 28798.92 24193.77 33296.64 30299.43 12394.49 34097.62 29599.18 12896.82 18199.67 27394.73 30599.93 4399.36 196
PVSNet_Blended96.88 28196.68 28097.47 30298.92 24193.77 33294.71 38199.43 12390.98 39097.62 29597.36 35096.82 18199.67 27394.73 30599.56 21598.98 272
dcpmvs_298.78 9599.11 5497.78 26999.56 8993.67 33599.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12799.91 6199.68 56
USDC97.41 24697.40 23697.44 30498.94 23593.67 33595.17 37099.53 8394.03 35498.97 15899.10 14795.29 24799.34 37095.84 27799.73 14499.30 216
ETVMVS92.60 37191.08 38097.18 31497.70 36893.65 33796.54 30595.70 38396.51 28094.68 39092.39 41461.80 42199.50 34186.97 40197.41 37798.40 346
test0.0.03 194.51 34193.69 35096.99 32396.05 41293.61 33894.97 37693.49 40096.17 29397.57 30194.88 39882.30 38199.01 39493.60 34094.17 41098.37 350
test_fmvs1_n98.09 19198.28 16097.52 29799.68 5693.47 33998.63 10599.93 595.41 32399.68 4099.64 3491.88 31599.48 34799.82 799.87 7699.62 70
BH-untuned96.83 28396.75 27697.08 31998.74 27293.33 34096.71 29998.26 32296.72 27398.44 23697.37 34995.20 24999.47 35091.89 36897.43 37698.44 341
c3_l97.36 24897.37 23997.31 30898.09 34993.25 34195.01 37599.16 22297.05 25498.77 19598.72 23292.88 30099.64 29296.93 19499.76 13799.05 258
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30699.04 22193.09 34295.27 36798.42 31697.26 23798.88 17898.95 18995.43 24599.73 24597.02 18698.72 32599.41 171
miper_ehance_all_eth97.06 27197.03 25797.16 31897.83 35993.06 34394.66 38499.09 23495.99 30398.69 20398.45 27492.73 30599.61 30496.79 20899.03 30198.82 297
Patchmatch-test96.55 29396.34 29597.17 31698.35 33293.06 34398.40 13797.79 33697.33 22998.41 23998.67 24183.68 37599.69 26195.16 29699.31 26098.77 309
MG-MVS96.77 28696.61 28597.26 31298.31 33593.06 34395.93 34298.12 33096.45 28597.92 27498.73 23093.77 28899.39 36391.19 38299.04 30099.33 207
YYNet197.60 23097.67 21897.39 30799.04 22193.04 34695.27 36798.38 31997.25 23898.92 17198.95 18995.48 24499.73 24596.99 18998.74 32399.41 171
thisisatest051594.12 35093.16 35796.97 32598.60 30492.90 34793.77 40290.61 41194.10 35296.91 33695.87 37874.99 40199.80 19294.52 31199.12 29498.20 356
miper_lstm_enhance97.18 26497.16 25197.25 31398.16 34492.85 34895.15 37299.31 16897.25 23898.74 20098.78 22390.07 32999.78 21697.19 17299.80 11099.11 253
cl2295.79 31895.39 32296.98 32496.77 40192.79 34994.40 39298.53 31094.59 33997.89 27798.17 29982.82 38099.24 38296.37 24799.03 30198.92 284
eth_miper_zixun_eth97.23 26097.25 24697.17 31698.00 35392.77 35094.71 38199.18 21597.27 23698.56 22498.74 22991.89 31499.69 26197.06 18599.81 9999.05 258
131495.74 31995.60 31196.17 35597.53 37892.75 35198.07 17098.31 32191.22 38794.25 39496.68 36295.53 24099.03 39191.64 37397.18 38596.74 399
testing22291.96 37990.37 38396.72 33897.47 38592.59 35296.11 33294.76 38996.83 26792.90 40792.87 41257.92 42299.55 32486.93 40297.52 37198.00 368
PAPM91.88 38190.34 38496.51 34198.06 35192.56 35392.44 40997.17 35386.35 40690.38 41396.01 37386.61 35099.21 38570.65 41995.43 40497.75 379
pmmvs395.03 33594.40 34296.93 32697.70 36892.53 35495.08 37397.71 33988.57 40297.71 29098.08 30779.39 39199.82 17196.19 25899.11 29598.43 343
xiu_mvs_v2_base97.16 26697.49 23296.17 35598.54 31492.46 35595.45 36298.84 28097.25 23897.48 30996.49 36598.31 7199.90 6696.34 25098.68 33296.15 406
PS-MVSNAJ97.08 27097.39 23796.16 35798.56 31292.46 35595.24 36998.85 27997.25 23897.49 30895.99 37498.07 9399.90 6696.37 24798.67 33396.12 407
test_fmvs197.72 22297.94 20097.07 32198.66 29792.39 35797.68 22599.81 2595.20 32799.54 5799.44 7591.56 31899.41 36099.78 1499.77 12599.40 180
gg-mvs-nofinetune92.37 37591.20 37995.85 36195.80 41692.38 35899.31 2781.84 42299.75 891.83 41199.74 1568.29 40899.02 39287.15 40097.12 38696.16 405
cascas94.79 33994.33 34596.15 35896.02 41492.36 35992.34 41099.26 19585.34 40995.08 38694.96 39792.96 29998.53 40594.41 31998.59 33897.56 387
test_cas_vis1_n_192098.33 16698.68 10197.27 31199.69 5492.29 36098.03 17699.85 1797.62 19699.96 499.62 3693.98 28399.74 24099.52 3399.86 8099.79 32
miper_enhance_ethall96.01 31095.74 30596.81 33496.41 40992.27 36193.69 40398.89 26891.14 38998.30 24597.35 35190.58 32699.58 31596.31 25199.03 30198.60 327
new-patchmatchnet98.35 16298.74 8897.18 31499.24 17192.23 36296.42 31399.48 9898.30 14399.69 3899.53 5897.44 14699.82 17198.84 7499.77 12599.49 134
GG-mvs-BLEND94.76 37994.54 41892.13 36399.31 2780.47 42388.73 41791.01 41767.59 41298.16 41082.30 41394.53 40993.98 413
mvs_anonymous97.83 21898.16 17796.87 33098.18 34391.89 36497.31 26298.90 26597.37 22698.83 18699.46 7096.28 20999.79 20598.90 6998.16 35498.95 278
ADS-MVSNet295.43 32894.98 33396.76 33798.14 34691.74 36597.92 19497.76 33790.23 39296.51 35698.91 19485.61 35999.85 12692.88 35496.90 38898.69 319
MVStest195.86 31595.60 31196.63 33995.87 41591.70 36697.93 19198.94 25698.03 16699.56 5399.66 2971.83 40498.26 40899.35 4099.24 27299.91 12
MVEpermissive83.40 2292.50 37291.92 37494.25 38398.83 25991.64 36792.71 40783.52 42195.92 30686.46 41995.46 38895.20 24995.40 41780.51 41498.64 33495.73 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view794.45 34293.83 34896.29 34899.06 21791.53 36897.99 18694.24 39698.34 13997.44 31395.01 39479.84 38799.67 27384.33 40798.23 34897.66 383
DSMNet-mixed97.42 24597.60 22696.87 33099.15 19991.46 36998.54 11699.12 22992.87 37097.58 29999.63 3596.21 21199.90 6695.74 28099.54 22099.27 221
tfpn200view994.03 35193.44 35395.78 36398.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35996.29 402
thres40094.14 34993.44 35396.24 35198.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35997.66 383
thres100view90094.19 34793.67 35195.75 36499.06 21791.35 37298.03 17694.24 39698.33 14097.40 31594.98 39679.84 38799.62 29883.05 40998.08 35996.29 402
BH-w/o95.13 33394.89 33795.86 36098.20 34291.31 37395.65 35497.37 34693.64 35896.52 35595.70 38193.04 29899.02 39288.10 39895.82 40297.24 393
thres20093.72 35693.14 35895.46 37298.66 29791.29 37496.61 30494.63 39197.39 22496.83 34393.71 40679.88 38699.56 32082.40 41298.13 35695.54 411
baseline293.73 35592.83 36196.42 34497.70 36891.28 37596.84 29289.77 41493.96 35692.44 40995.93 37679.14 39299.77 22292.94 35296.76 39298.21 355
testing9193.32 36192.27 36596.47 34397.54 37691.25 37696.17 33096.76 36697.18 24893.65 40493.50 40865.11 41899.63 29593.04 35197.45 37498.53 332
IB-MVS91.63 1992.24 37790.90 38196.27 34997.22 39191.24 37794.36 39393.33 40292.37 37592.24 41094.58 40266.20 41699.89 7793.16 35094.63 40897.66 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test97.50 23697.74 21396.78 33698.70 28291.23 37894.55 38999.05 24096.36 28799.21 12498.79 22196.39 20399.78 21696.74 21499.82 9599.34 202
IterMVS-SCA-FT97.85 21598.18 17396.87 33099.27 16491.16 37995.53 35899.25 19699.10 8399.41 8599.35 8993.10 29599.96 1298.65 8899.94 3899.49 134
MonoMVSNet96.25 30496.53 29195.39 37396.57 40491.01 38098.82 9097.68 34198.57 12798.03 27099.37 8490.92 32397.78 41194.99 29893.88 41197.38 391
dmvs_testset92.94 36892.21 36795.13 37698.59 30790.99 38197.65 23192.09 40796.95 26094.00 39993.55 40792.34 30996.97 41572.20 41892.52 41397.43 390
WAC-MVS90.90 38291.37 378
myMVS_eth3d91.92 38090.45 38296.30 34797.10 39490.90 38296.18 32896.58 36995.65 31294.77 38892.29 41553.88 42399.36 36689.59 39498.05 36298.63 325
testing1193.08 36692.02 37096.26 35097.56 37490.83 38496.32 31995.70 38396.47 28492.66 40893.73 40564.36 41999.59 30993.77 33797.57 37098.37 350
test_vis1_n_192098.40 15698.92 7196.81 33499.74 3590.76 38598.15 15899.91 998.33 14099.89 1599.55 5295.07 25399.88 8999.76 1599.93 4399.79 32
testing9993.04 36791.98 37396.23 35297.53 37890.70 38696.35 31795.94 37996.87 26593.41 40593.43 40963.84 42099.59 30993.24 34997.19 38498.40 346
WB-MVSnew95.73 32095.57 31496.23 35296.70 40290.70 38696.07 33493.86 39995.60 31497.04 32995.45 39196.00 22099.55 32491.04 38398.31 34698.43 343
IterMVS97.73 22198.11 18296.57 34099.24 17190.28 38895.52 36099.21 20598.86 10999.33 10099.33 9593.11 29499.94 3698.49 9899.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UBG93.25 36392.32 36496.04 35997.72 36390.16 38995.92 34495.91 38096.03 30193.95 40193.04 41169.60 40799.52 33590.72 38997.98 36598.45 338
ADS-MVSNet95.24 33194.93 33696.18 35498.14 34690.10 39097.92 19497.32 35090.23 39296.51 35698.91 19485.61 35999.74 24092.88 35496.90 38898.69 319
our_test_397.39 24797.73 21596.34 34698.70 28289.78 39194.61 38798.97 25596.50 28199.04 14798.85 21095.98 22599.84 14497.26 16999.67 17899.41 171
WBMVS95.18 33294.78 33896.37 34597.68 37189.74 39295.80 35098.73 29897.54 20798.30 24598.44 27570.06 40599.82 17196.62 22499.87 7699.54 113
KD-MVS_2432*160092.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
miper_refine_blended92.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
PVSNet93.40 1795.67 32195.70 30795.57 36898.83 25988.57 39592.50 40897.72 33892.69 37296.49 35996.44 36893.72 28999.43 35793.61 33999.28 26698.71 315
tpm94.67 34094.34 34495.66 36697.68 37188.42 39697.88 19994.90 38894.46 34296.03 36998.56 26078.66 39499.79 20595.88 27195.01 40698.78 308
SCA96.41 30096.66 28395.67 36598.24 33988.35 39795.85 34896.88 36496.11 29697.67 29398.67 24193.10 29599.85 12694.16 32299.22 27698.81 301
CHOSEN 280x42095.51 32795.47 31695.65 36798.25 33888.27 39893.25 40598.88 26993.53 36094.65 39197.15 35586.17 35499.93 4297.41 16299.93 4398.73 314
ECVR-MVScopyleft96.42 29996.61 28595.85 36199.38 14088.18 39999.22 4286.00 41999.08 8899.36 9599.57 4588.47 34399.82 17198.52 9799.95 3099.54 113
EPMVS93.72 35693.27 35595.09 37896.04 41387.76 40098.13 16085.01 42094.69 33796.92 33498.64 24978.47 39899.31 37495.04 29796.46 39498.20 356
EPNet_dtu94.93 33894.78 33895.38 37493.58 41987.68 40196.78 29495.69 38597.35 22889.14 41698.09 30688.15 34599.49 34494.95 30199.30 26398.98 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 32495.67 30995.30 37597.34 38887.32 40297.65 23196.65 36795.30 32497.07 32798.69 23784.77 36599.75 23594.97 30098.64 33498.83 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111196.49 29796.82 27195.52 36999.42 13587.08 40399.22 4287.14 41799.11 7699.46 7599.58 4388.69 33899.86 11498.80 7599.95 3099.62 70
tpm293.09 36592.58 36394.62 38097.56 37486.53 40497.66 22995.79 38286.15 40794.07 39898.23 29575.95 39999.53 33190.91 38696.86 39197.81 375
tpmvs95.02 33695.25 32694.33 38296.39 41085.87 40598.08 16896.83 36595.46 31995.51 38198.69 23785.91 35799.53 33194.16 32296.23 39797.58 386
EU-MVSNet97.66 22798.50 12695.13 37699.63 7385.84 40698.35 14298.21 32498.23 15099.54 5799.46 7095.02 25499.68 27098.24 10999.87 7699.87 18
CostFormer93.97 35293.78 34994.51 38197.53 37885.83 40797.98 18795.96 37889.29 40094.99 38798.63 25178.63 39599.62 29894.54 31096.50 39398.09 362
E-PMN94.17 34894.37 34393.58 39296.86 39885.71 40890.11 41497.07 35698.17 15997.82 28597.19 35384.62 36798.94 39689.77 39297.68 36996.09 408
EMVS93.83 35494.02 34693.23 39696.83 40084.96 40989.77 41596.32 37397.92 17697.43 31496.36 37186.17 35498.93 39787.68 39997.73 36895.81 409
tpm cat193.29 36293.13 35993.75 39097.39 38784.74 41097.39 25597.65 34283.39 41294.16 39598.41 27782.86 37999.39 36391.56 37595.35 40597.14 394
UWE-MVS92.38 37491.76 37794.21 38597.16 39284.65 41195.42 36488.45 41695.96 30496.17 36395.84 38066.36 41499.71 25391.87 36998.64 33498.28 353
test-LLR93.90 35393.85 34794.04 38696.53 40584.62 41294.05 39892.39 40596.17 29394.12 39695.07 39282.30 38199.67 27395.87 27498.18 35197.82 373
test-mter92.33 37691.76 37794.04 38696.53 40584.62 41294.05 39892.39 40594.00 35594.12 39695.07 39265.63 41799.67 27395.87 27498.18 35197.82 373
tpmrst95.07 33495.46 31793.91 38897.11 39384.36 41497.62 23496.96 36094.98 33096.35 36198.80 21985.46 36199.59 30995.60 28696.23 39797.79 378
PVSNet_089.98 2191.15 38290.30 38593.70 39197.72 36384.34 41590.24 41297.42 34590.20 39593.79 40293.09 41090.90 32498.89 40086.57 40472.76 41997.87 372
reproduce_monomvs95.00 33795.25 32694.22 38497.51 38383.34 41697.86 20398.44 31498.51 13299.29 10999.30 10167.68 41199.56 32098.89 7199.81 9999.77 37
MDTV_nov1_ep1395.22 32897.06 39683.20 41797.74 21996.16 37494.37 34696.99 33298.83 21383.95 37399.53 33193.90 33197.95 366
TESTMET0.1,192.19 37891.77 37693.46 39396.48 40782.80 41894.05 39891.52 41094.45 34494.00 39994.88 39866.65 41399.56 32095.78 27998.11 35798.02 365
test250692.39 37391.89 37593.89 38999.38 14082.28 41999.32 2366.03 42599.08 8898.77 19599.57 4566.26 41599.84 14498.71 8499.95 3099.54 113
gm-plane-assit94.83 41781.97 42088.07 40494.99 39599.60 30591.76 370
dp93.47 35993.59 35293.13 39796.64 40381.62 42197.66 22996.42 37292.80 37196.11 36598.64 24978.55 39799.59 30993.31 34792.18 41598.16 358
CVMVSNet96.25 30497.21 24993.38 39599.10 20680.56 42297.20 27298.19 32796.94 26199.00 15299.02 16389.50 33499.80 19296.36 24999.59 20399.78 35
MVS-HIRNet94.32 34495.62 31090.42 39998.46 32275.36 42396.29 32189.13 41595.25 32595.38 38299.75 1392.88 30099.19 38694.07 32899.39 24896.72 400
MDTV_nov1_ep13_2view74.92 42497.69 22490.06 39797.75 28985.78 35893.52 34298.69 319
tmp_tt78.77 38578.73 38878.90 40158.45 42674.76 42594.20 39578.26 42439.16 41986.71 41892.82 41380.50 38575.19 42186.16 40592.29 41486.74 415
dongtai76.24 38675.95 38977.12 40292.39 42067.91 42690.16 41359.44 42782.04 41389.42 41594.67 40149.68 42581.74 42048.06 42077.66 41881.72 416
kuosan69.30 38768.95 39070.34 40387.68 42465.00 42791.11 41159.90 42669.02 41674.46 42188.89 41848.58 42668.03 42228.61 42172.33 42077.99 417
test_method79.78 38479.50 38780.62 40080.21 42545.76 42870.82 41698.41 31831.08 42080.89 42097.71 32884.85 36497.37 41391.51 37680.03 41798.75 312
test12317.04 39020.11 3937.82 40410.25 4284.91 42994.80 3794.47 4294.93 42210.00 42424.28 4219.69 4273.64 42310.14 42212.43 42214.92 419
testmvs17.12 38920.53 3926.87 40512.05 4274.20 43093.62 4046.73 4284.62 42310.41 42324.33 4208.28 4283.56 4249.69 42315.07 42112.86 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.66 38832.88 3910.00 4060.00 4290.00 4310.00 41799.10 2320.00 4240.00 42597.58 33699.21 160.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.17 39110.90 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42498.07 930.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.12 39210.83 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.48 3420.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
PC_three_145293.27 36399.40 8898.54 26198.22 8097.00 41495.17 29599.45 24199.49 134
eth-test20.00 429
eth-test0.00 429
test_241102_TWO99.30 17698.03 16699.26 11699.02 16397.51 14099.88 8996.91 19599.60 19999.66 60
9.1497.78 21099.07 21397.53 24599.32 16395.53 31798.54 22898.70 23697.58 13199.76 22894.32 32199.46 239
test_0728_THIRD98.17 15999.08 13899.02 16397.89 10699.88 8997.07 18399.71 15799.70 54
GSMVS98.81 301
sam_mvs184.74 36698.81 301
sam_mvs84.29 372
MTGPAbinary99.20 207
test_post197.59 23920.48 42383.07 37899.66 28494.16 322
test_post21.25 42283.86 37499.70 257
patchmatchnet-post98.77 22584.37 36999.85 126
MTMP97.93 19191.91 409
test9_res93.28 34899.15 28899.38 188
agg_prior292.50 36499.16 28699.37 190
test_prior295.74 35296.48 28396.11 36597.63 33495.92 23094.16 32299.20 280
旧先验295.76 35188.56 40397.52 30599.66 28494.48 312
新几何295.93 342
无先验95.74 35298.74 29789.38 39999.73 24592.38 36699.22 234
原ACMM295.53 358
testdata299.79 20592.80 358
segment_acmp97.02 170
testdata195.44 36396.32 289
plane_prior599.27 19099.70 25794.42 31699.51 22999.45 157
plane_prior497.98 313
plane_prior297.77 21498.20 156
plane_prior199.05 220
n20.00 430
nn0.00 430
door-mid99.57 65
test1198.87 271
door99.41 130
HQP-NCC98.67 29296.29 32196.05 29895.55 376
ACMP_Plane98.67 29296.29 32196.05 29895.55 376
BP-MVS92.82 356
HQP4-MVS95.56 37599.54 32999.32 209
HQP3-MVS99.04 24399.26 270
HQP2-MVS93.84 284
ACMMP++_ref99.77 125
ACMMP++99.68 172
Test By Simon96.52 198