This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 9100.00 199.85 19
FOURS199.73 3999.67 299.43 1199.54 7599.43 4099.26 110
testf199.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
APD_test299.25 3399.16 4399.51 4399.89 699.63 398.71 9299.69 3498.90 9999.43 7499.35 8498.86 2899.67 26497.81 13299.81 9899.24 222
Effi-MVS+-dtu98.26 16797.90 19299.35 7098.02 34199.49 598.02 17099.16 21198.29 13497.64 28397.99 30096.44 19299.95 2396.66 21298.93 30598.60 318
APD_test198.83 8298.66 9799.34 7399.78 2699.47 698.42 12999.45 10598.28 13698.98 14899.19 11497.76 10699.58 30396.57 21799.55 21198.97 267
RPSCF98.62 12198.36 14399.42 5899.65 6699.42 798.55 10799.57 5997.72 17898.90 16699.26 10196.12 20499.52 32095.72 26899.71 15299.32 203
SR-MVS-dyc-post98.81 8598.55 11299.57 1699.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.49 13499.86 10896.56 22199.39 24199.45 149
RE-MVS-def98.58 11099.20 17699.38 898.48 12299.30 16598.64 10998.95 15598.96 17397.75 10796.56 22199.39 24199.45 149
LS3D98.63 11998.38 14199.36 6497.25 37299.38 899.12 5799.32 15299.21 6398.44 22998.88 19497.31 14199.80 18496.58 21599.34 24998.92 276
MTAPA98.88 7698.64 10099.61 999.67 6399.36 1198.43 12799.20 19698.83 10698.89 16898.90 18796.98 16399.92 4997.16 16499.70 15799.56 96
SR-MVS98.71 9898.43 13299.57 1699.18 18699.35 1298.36 13499.29 17398.29 13498.88 17298.85 20097.53 12799.87 9996.14 24999.31 25399.48 136
MP-MVS-pluss98.57 12698.23 15999.60 1199.69 5799.35 1297.16 26399.38 12694.87 31298.97 15298.99 16498.01 8999.88 8297.29 15799.70 15799.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast99.01 5998.82 7699.57 1699.71 4899.35 1299.00 6999.50 8497.33 21698.94 16298.86 19798.75 3499.82 16497.53 14799.71 15299.56 96
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5299.90 299.86 1899.78 899.58 699.95 2399.00 6099.95 3099.78 31
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3199.38 4499.53 5899.61 3798.64 4199.80 18498.24 10599.84 8499.52 117
tt080598.69 10598.62 10398.90 14999.75 3699.30 1799.15 5396.97 34598.86 10298.87 17697.62 32398.63 4398.96 37699.41 3598.29 33298.45 325
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8299.64 1599.56 5199.46 6698.23 6999.97 498.78 7199.93 4299.72 44
ACMMP_NAP98.75 9498.48 12499.57 1699.58 7699.29 1997.82 19799.25 18596.94 24698.78 18799.12 13398.02 8899.84 13797.13 16999.67 17199.59 79
UA-Net99.47 1399.40 2099.70 299.49 11499.29 1999.80 399.72 3099.82 399.04 14199.81 598.05 8799.96 1298.85 6899.99 599.86 18
HPM-MVScopyleft98.79 8798.53 11599.59 1599.65 6699.29 1999.16 5199.43 11596.74 25598.61 20898.38 26998.62 4499.87 9996.47 22999.67 17199.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 9999.36 3699.92 5399.64 62
APD-MVS_3200maxsize98.84 8198.61 10799.53 3499.19 17999.27 2298.49 11999.33 15098.64 10999.03 14498.98 16897.89 9799.85 12096.54 22599.42 23899.46 145
MSP-MVS98.40 14998.00 18399.61 999.57 8099.25 2498.57 10599.35 13997.55 19499.31 10397.71 31694.61 25799.88 8296.14 24999.19 27499.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
WR-MVS_H99.33 2699.22 3899.65 599.71 4899.24 2599.32 2399.55 7099.46 3599.50 6599.34 8897.30 14299.93 3998.90 6599.93 4299.77 33
test_0728_SECOND99.60 1199.50 10799.23 2698.02 17099.32 15299.88 8296.99 17999.63 18299.68 53
MP-MVScopyleft98.46 14398.09 17499.54 2799.57 8099.22 2798.50 11899.19 20097.61 18797.58 28898.66 23397.40 13899.88 8294.72 29399.60 19299.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS98.68 11098.40 13699.54 2799.57 8099.21 2898.46 12499.29 17397.28 22298.11 25398.39 26798.00 9099.87 9996.86 19599.64 17999.55 103
DVP-MVScopyleft98.77 9298.52 11699.52 3999.50 10799.21 2898.02 17098.84 26997.97 15899.08 13299.02 15197.61 11999.88 8296.99 17999.63 18299.48 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10799.21 2898.17 15199.35 13997.97 15899.26 11099.06 13997.61 119
SMA-MVScopyleft98.40 14998.03 18199.51 4399.16 18999.21 2898.05 16599.22 19394.16 32898.98 14899.10 13697.52 12999.79 19796.45 23199.64 17999.53 114
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS98.72 9798.45 12999.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29298.63 24097.50 13199.83 15496.79 19899.53 21799.56 96
X-MVStestdata94.32 32892.59 34699.53 3499.46 12499.21 2898.65 9699.34 14598.62 11397.54 29245.85 39597.50 13199.83 15496.79 19899.53 21799.56 96
EGC-MVSNET85.24 36080.54 36399.34 7399.77 2999.20 3499.08 5999.29 17312.08 39720.84 39899.42 7497.55 12499.85 12097.08 17299.72 14798.96 269
test_one_060199.39 13899.20 3499.31 15798.49 12298.66 20199.02 15197.64 116
GST-MVS98.61 12298.30 15199.52 3999.51 10499.20 3498.26 14199.25 18597.44 20898.67 19998.39 26797.68 11099.85 12096.00 25399.51 22299.52 117
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5099.59 2399.71 3199.57 4297.12 15399.90 6399.21 4799.87 7699.54 107
PGM-MVS98.66 11498.37 14299.55 2399.53 10099.18 3898.23 14399.49 9197.01 24398.69 19798.88 19498.00 9099.89 7395.87 26199.59 19699.58 85
SED-MVS98.91 7298.72 8699.49 4899.49 11499.17 3998.10 15899.31 15798.03 15599.66 4099.02 15198.36 6199.88 8296.91 18599.62 18599.41 163
test_241102_ONE99.49 11499.17 3999.31 15797.98 15799.66 4098.90 18798.36 6199.48 329
region2R98.69 10598.40 13699.54 2799.53 10099.17 3998.52 11199.31 15797.46 20598.44 22998.51 25497.83 10099.88 8296.46 23099.58 20199.58 85
mPP-MVS98.64 11798.34 14699.54 2799.54 9799.17 3998.63 9899.24 19097.47 20098.09 25598.68 22897.62 11899.89 7396.22 24399.62 18599.57 90
HFP-MVS98.71 9898.44 13199.51 4399.49 11499.16 4398.52 11199.31 15797.47 20098.58 21498.50 25897.97 9499.85 12096.57 21799.59 19699.53 114
SteuartSystems-ACMMP98.79 8798.54 11499.54 2799.73 3999.16 4398.23 14399.31 15797.92 16398.90 16698.90 18798.00 9099.88 8296.15 24899.72 14799.58 85
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.75 9498.50 11999.52 3999.56 8899.16 4398.87 7999.37 13097.16 23698.82 18499.01 16097.71 10999.87 9996.29 24099.69 16099.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS98.29 16497.95 18699.34 7398.44 31599.16 4398.12 15599.38 12696.01 28298.06 25798.43 26497.80 10499.67 26495.69 27099.58 20199.20 229
DVP-MVS++98.90 7498.70 9199.51 4398.43 31699.15 4799.43 1199.32 15298.17 14799.26 11099.02 15198.18 7699.88 8297.07 17399.45 23499.49 126
IU-MVS99.49 11499.15 4798.87 26092.97 34599.41 7896.76 20299.62 18599.66 57
CS-MVS99.13 4799.10 5299.24 9699.06 21199.15 4799.36 1999.88 1199.36 4898.21 24498.46 26298.68 4099.93 3999.03 5899.85 8098.64 315
DPE-MVScopyleft98.59 12598.26 15699.57 1699.27 16099.15 4797.01 26899.39 12497.67 18099.44 7398.99 16497.53 12799.89 7395.40 27999.68 16599.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft98.99 6198.79 7999.60 1199.21 17299.15 4798.87 7999.48 9397.57 19099.35 9299.24 10697.83 10099.89 7397.88 12999.70 15799.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR98.70 10298.42 13499.54 2799.52 10299.14 5298.52 11199.31 15797.47 20098.56 21798.54 25097.75 10799.88 8296.57 21799.59 19699.58 85
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7599.62 2099.56 5199.42 7498.16 8099.96 1298.78 7199.93 4299.77 33
ACMM96.08 1298.91 7298.73 8499.48 5199.55 9299.14 5298.07 16299.37 13097.62 18499.04 14198.96 17398.84 3099.79 19797.43 15199.65 17799.49 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03099.40 2199.35 2399.54 2799.58 7699.13 5598.98 7299.48 9399.68 1199.46 6999.26 10198.62 4499.73 23799.17 5099.92 5399.76 37
HPM-MVS++copyleft98.10 17997.64 21299.48 5199.09 20399.13 5597.52 23498.75 28497.46 20596.90 32497.83 31196.01 20999.84 13795.82 26599.35 24799.46 145
CP-MVS98.70 10298.42 13499.52 3999.36 14699.12 5798.72 9099.36 13497.54 19598.30 23998.40 26697.86 9999.89 7396.53 22699.72 14799.56 96
MAR-MVS96.47 28795.70 29598.79 16297.92 34599.12 5798.28 13998.60 29592.16 35695.54 36396.17 36094.77 25599.52 32089.62 37398.23 33397.72 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2599.67 2599.48 999.81 17799.30 4199.97 2099.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part299.36 14699.10 6099.05 139
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 7899.53 2999.46 6999.41 7798.23 6999.95 2398.89 6799.95 3099.81 26
COLMAP_ROBcopyleft96.50 1098.99 6198.85 7499.41 6099.58 7699.10 6098.74 8699.56 6699.09 8299.33 9599.19 11498.40 5999.72 24495.98 25599.76 13399.42 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3498.93 9799.65 4399.72 1698.93 2699.95 2399.11 51100.00 199.82 23
KD-MVS_self_test99.25 3399.18 4099.44 5799.63 7399.06 6498.69 9499.54 7599.31 5399.62 4999.53 5497.36 14099.86 10899.24 4699.71 15299.39 175
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5299.44 3899.78 2599.76 1096.39 19399.92 4999.44 3499.92 5399.68 53
CS-MVS-test99.13 4799.09 5399.26 9199.13 19698.97 6699.31 2799.88 1199.44 3898.16 24798.51 25498.64 4199.93 3998.91 6499.85 8098.88 283
LPG-MVS_test98.71 9898.46 12899.47 5499.57 8098.97 6698.23 14399.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
LGP-MVS_train99.47 5499.57 8098.97 6699.48 9396.60 26099.10 13099.06 13998.71 3799.83 15495.58 27599.78 11899.62 66
DeepPCF-MVS96.93 598.32 15898.01 18299.23 9898.39 32198.97 6695.03 35299.18 20496.88 24999.33 9598.78 21298.16 8099.28 36196.74 20499.62 18599.44 153
CP-MVSNet99.21 3999.09 5399.56 2199.65 6698.96 7099.13 5599.34 14599.42 4199.33 9599.26 10197.01 16199.94 3498.74 7599.93 4299.79 28
APD-MVScopyleft98.10 17997.67 20799.42 5899.11 19898.93 7197.76 20599.28 17694.97 30998.72 19698.77 21497.04 15799.85 12093.79 32299.54 21399.49 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EC-MVSNet99.09 5299.05 5799.20 10099.28 15898.93 7199.24 4199.84 1899.08 8498.12 25298.37 27098.72 3699.90 6399.05 5699.77 12298.77 300
TranMVSNet+NR-MVSNet99.17 4099.07 5699.46 5699.37 14598.87 7398.39 13199.42 11899.42 4199.36 9099.06 13998.38 6099.95 2398.34 10199.90 6899.57 90
mvsmamba99.24 3799.15 4899.49 4899.83 2098.85 7499.41 1399.55 7099.54 2799.40 8199.52 5795.86 22099.91 5899.32 3899.95 3099.70 50
ZD-MVS99.01 21998.84 7599.07 22794.10 33098.05 25998.12 29096.36 19799.86 10892.70 34499.19 274
XVG-OURS-SEG-HR98.49 14098.28 15399.14 10999.49 11498.83 7696.54 29299.48 9397.32 21899.11 12798.61 24499.33 1399.30 35796.23 24298.38 32999.28 214
ACMH+96.62 999.08 5599.00 6099.33 7899.71 4898.83 7698.60 10299.58 5299.11 7299.53 5899.18 11798.81 3299.67 26496.71 20999.77 12299.50 122
RRT_MVS99.09 5298.94 6599.55 2399.87 1298.82 7899.48 998.16 31599.49 3199.59 5099.65 3094.79 25499.95 2399.45 3399.96 2599.88 14
XVG-OURS98.53 13598.34 14699.11 11399.50 10798.82 7895.97 31899.50 8497.30 22099.05 13998.98 16899.35 1299.32 35495.72 26899.68 16599.18 236
ACMP95.32 1598.41 14798.09 17499.36 6499.51 10498.79 8097.68 21399.38 12695.76 28998.81 18698.82 20698.36 6199.82 16494.75 29099.77 12299.48 136
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SF-MVS98.53 13598.27 15599.32 8099.31 15398.75 8198.19 14799.41 11996.77 25498.83 18198.90 18797.80 10499.82 16495.68 27199.52 22099.38 182
UniMVSNet_NR-MVSNet98.86 8098.68 9499.40 6299.17 18798.74 8297.68 21399.40 12199.14 7199.06 13498.59 24696.71 18199.93 3998.57 8899.77 12299.53 114
DU-MVS98.82 8398.63 10199.39 6399.16 18998.74 8297.54 23299.25 18598.84 10599.06 13498.76 21696.76 17799.93 3998.57 8899.77 12299.50 122
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6699.11 7299.70 3399.73 1599.00 2299.97 499.26 4299.98 1299.89 11
OPM-MVS98.56 12798.32 15099.25 9499.41 13698.73 8597.13 26599.18 20497.10 23998.75 19398.92 18398.18 7699.65 28096.68 21199.56 20899.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)98.87 7798.71 8899.35 7099.24 16598.73 8597.73 20999.38 12698.93 9799.12 12698.73 21996.77 17599.86 10898.63 8599.80 10899.46 145
NR-MVSNet98.95 6898.82 7699.36 6499.16 18998.72 8799.22 4299.20 19699.10 7999.72 2998.76 21696.38 19599.86 10898.00 12199.82 9499.50 122
CMPMVSbinary75.91 2396.29 29195.44 30598.84 15396.25 38998.69 8897.02 26799.12 21988.90 37997.83 27298.86 19789.51 31998.90 38091.92 35099.51 22298.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4499.30 5599.65 4399.60 3999.16 2099.82 16499.07 5499.83 9199.56 96
CSCG98.68 11098.50 11999.20 10099.45 12798.63 8998.56 10699.57 5997.87 16798.85 17798.04 29897.66 11299.84 13796.72 20799.81 9899.13 244
OMC-MVS97.88 19797.49 22199.04 13098.89 24498.63 8996.94 27299.25 18595.02 30798.53 22298.51 25497.27 14599.47 33293.50 32999.51 22299.01 259
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4299.09 8299.89 1599.68 2099.53 799.97 499.50 3099.99 599.87 16
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3199.27 5899.90 1299.74 1399.68 499.97 499.55 2799.99 599.88 14
XVG-ACMP-BASELINE98.56 12798.34 14699.22 9999.54 9798.59 9497.71 21099.46 10297.25 22598.98 14898.99 16497.54 12599.84 13795.88 25899.74 13799.23 224
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 5999.39 4399.75 2899.62 3499.17 1899.83 15499.06 5599.62 18599.66 57
wuyk23d96.06 29697.62 21491.38 37698.65 29298.57 9698.85 8296.95 34796.86 25099.90 1299.16 12399.18 1798.40 38689.23 37599.77 12277.18 394
AllTest98.44 14598.20 16199.16 10699.50 10798.55 9798.25 14299.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
TestCases99.16 10699.50 10798.55 9799.58 5296.80 25198.88 17299.06 13997.65 11399.57 30594.45 30099.61 19099.37 184
Baseline_NR-MVSNet98.98 6498.86 7399.36 6499.82 2298.55 9797.47 24099.57 5999.37 4599.21 11899.61 3796.76 17799.83 15498.06 11699.83 9199.71 45
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 4899.66 1399.68 3799.66 2798.44 5799.95 2399.73 1799.96 2599.75 41
PM-MVS98.82 8398.72 8699.12 11199.64 7098.54 10097.98 17799.68 3997.62 18499.34 9499.18 11797.54 12599.77 21497.79 13499.74 13799.04 255
LCM-MVSNet-Re98.64 11798.48 12499.11 11398.85 25098.51 10298.49 11999.83 2098.37 12599.69 3599.46 6698.21 7499.92 4994.13 31299.30 25698.91 279
Gipumacopyleft99.03 5899.16 4398.64 18099.94 298.51 10299.32 2399.75 2999.58 2598.60 21099.62 3498.22 7299.51 32497.70 14099.73 14097.89 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ITE_SJBPF98.87 15099.22 17098.48 10499.35 13997.50 19798.28 24198.60 24597.64 11699.35 35093.86 32099.27 26098.79 298
CPTT-MVS97.84 20597.36 22999.27 8999.31 15398.46 10598.29 13899.27 17994.90 31197.83 27298.37 27094.90 24599.84 13793.85 32199.54 21399.51 119
DP-MVS98.93 7098.81 7899.28 8699.21 17298.45 10698.46 12499.33 15099.63 1799.48 6699.15 12797.23 14899.75 22797.17 16399.66 17699.63 65
3Dnovator+97.89 398.69 10598.51 11799.24 9698.81 25998.40 10799.02 6699.19 20098.99 9198.07 25699.28 9797.11 15599.84 13796.84 19699.32 25199.47 143
F-COLMAP97.30 24096.68 26799.14 10999.19 17998.39 10897.27 25599.30 16592.93 34696.62 33698.00 29995.73 22399.68 26192.62 34598.46 32899.35 194
test_vis3_rt99.14 4499.17 4199.07 12199.78 2698.38 10998.92 7699.94 297.80 17299.91 1199.67 2597.15 15298.91 37999.76 1499.56 20899.92 9
ACMH96.65 799.25 3399.24 3799.26 9199.72 4598.38 10999.07 6299.55 7098.30 13199.65 4399.45 7099.22 1599.76 22098.44 9699.77 12299.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
No_MVS99.32 8098.43 31698.37 11198.86 26599.89 7397.14 16799.60 19299.71 45
FC-MVSNet-test99.27 3099.25 3699.34 7399.77 2998.37 11199.30 3299.57 5999.61 2299.40 8199.50 5997.12 15399.85 12099.02 5999.94 3899.80 27
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11498.36 11499.00 6999.45 10599.63 1799.52 6099.44 7198.25 6799.88 8299.09 5399.84 8499.62 66
GeoE99.05 5798.99 6399.25 9499.44 12898.35 11598.73 8999.56 6698.42 12498.91 16598.81 20898.94 2599.91 5898.35 10099.73 14099.49 126
OPU-MVS98.82 15598.59 29898.30 11698.10 15898.52 25398.18 7698.75 38394.62 29499.48 23199.41 163
FIs99.14 4499.09 5399.29 8499.70 5598.28 11799.13 5599.52 8199.48 3299.24 11599.41 7796.79 17499.82 16498.69 8099.88 7399.76 37
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10699.48 6498.82 3199.95 2398.94 6399.93 4299.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521197.90 19397.50 22099.08 11998.90 23998.25 11998.53 11096.16 35998.87 10199.11 12798.86 19790.40 31499.78 20897.36 15499.31 25399.19 234
CNVR-MVS98.17 17797.87 19599.07 12198.67 28598.24 12097.01 26898.93 24997.25 22597.62 28498.34 27497.27 14599.57 30596.42 23299.33 25099.39 175
GBi-Net98.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
test198.65 11598.47 12699.17 10398.90 23998.24 12099.20 4599.44 10998.59 11598.95 15599.55 4894.14 26899.86 10897.77 13599.69 16099.41 163
FMVSNet199.17 4099.17 4199.17 10399.55 9298.24 12099.20 4599.44 10999.21 6399.43 7499.55 4897.82 10399.86 10898.42 9899.89 7299.41 163
API-MVS97.04 26196.91 25297.42 29597.88 34898.23 12498.18 14898.50 30097.57 19097.39 30496.75 34996.77 17599.15 37090.16 37199.02 29594.88 390
Anonymous2024052998.93 7098.87 7099.12 11199.19 17998.22 12599.01 6798.99 24599.25 5999.54 5499.37 8097.04 15799.80 18497.89 12699.52 22099.35 194
bld_raw_dy_0_6499.07 5699.00 6099.29 8499.85 1798.18 12699.11 5899.40 12199.33 5099.38 8599.44 7195.21 23799.97 499.31 3999.98 1299.73 43
Anonymous2023121199.27 3099.27 3499.26 9199.29 15798.18 12699.49 899.51 8299.70 899.80 2399.68 2096.84 16899.83 15499.21 4799.91 6199.77 33
MCST-MVS98.00 18897.63 21399.10 11599.24 16598.17 12896.89 27798.73 28795.66 29097.92 26497.70 31897.17 15199.66 27596.18 24799.23 26799.47 143
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4399.48 3299.92 899.71 1798.07 8499.96 1299.53 28100.00 199.93 8
CDPH-MVS97.26 24396.66 27099.07 12199.00 22098.15 12996.03 31699.01 24291.21 36697.79 27597.85 31096.89 16699.69 25292.75 34299.38 24499.39 175
test_040298.76 9398.71 8898.93 14399.56 8898.14 13198.45 12699.34 14599.28 5798.95 15598.91 18498.34 6599.79 19795.63 27299.91 6198.86 285
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 699.99 599.99 1
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20299.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1199.99 599.96 5
Fast-Effi-MVS+-dtu98.27 16598.09 17498.81 15798.43 31698.11 13397.61 22499.50 8498.64 10997.39 30497.52 32898.12 8399.95 2396.90 19098.71 31798.38 330
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13597.68 21399.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1699.98 1299.89 11
EIA-MVS98.00 18897.74 20298.80 15998.72 27098.09 13698.05 16599.60 4997.39 21196.63 33595.55 37097.68 11099.80 18496.73 20699.27 26098.52 321
alignmvs97.35 23696.88 25398.78 16598.54 30598.09 13697.71 21097.69 32899.20 6597.59 28795.90 36588.12 33299.55 31198.18 10998.96 30298.70 309
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3499.31 39100.00 199.82 23
TAPA-MVS96.21 1196.63 27995.95 29098.65 17998.93 23198.09 13696.93 27499.28 17683.58 38998.13 25197.78 31296.13 20399.40 34293.52 32799.29 25898.45 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST998.71 27398.08 14095.96 32099.03 23691.40 36395.85 35497.53 32696.52 18899.76 220
train_agg97.10 25596.45 28099.07 12198.71 27398.08 14095.96 32099.03 23691.64 35895.85 35497.53 32696.47 19099.76 22093.67 32399.16 27799.36 190
ETV-MVS98.03 18597.86 19698.56 19898.69 28298.07 14297.51 23699.50 8498.10 15297.50 29695.51 37198.41 5899.88 8296.27 24199.24 26597.71 361
VDD-MVS98.56 12798.39 13999.07 12199.13 19698.07 14298.59 10397.01 34399.59 2399.11 12799.27 9994.82 24999.79 19798.34 10199.63 18299.34 196
NCCC97.86 19997.47 22499.05 12898.61 29398.07 14296.98 27098.90 25597.63 18397.04 31597.93 30695.99 21399.66 27595.31 28098.82 31199.43 157
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16599.69 999.63 4699.68 2099.25 1499.96 1297.25 16099.92 5399.57 90
CNLPA97.17 25296.71 26598.55 19998.56 30398.05 14696.33 30398.93 24996.91 24897.06 31497.39 33594.38 26399.45 33591.66 35399.18 27698.14 339
MVS_111021_LR98.30 16198.12 17298.83 15499.16 18998.03 14796.09 31599.30 16597.58 18998.10 25498.24 28198.25 6799.34 35196.69 21099.65 17799.12 245
test_898.67 28598.01 14895.91 32599.02 23991.64 35895.79 35697.50 32996.47 19099.76 220
agg_prior98.68 28497.99 14999.01 24295.59 35799.77 214
SD-MVS98.40 14998.68 9497.54 28598.96 22797.99 14997.88 18999.36 13498.20 14499.63 4699.04 14898.76 3395.33 39696.56 22199.74 13799.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon97.33 23896.92 25098.57 19499.09 20397.99 14996.79 28099.35 13993.18 34297.71 27998.07 29695.00 24499.31 35593.97 31599.13 28298.42 329
DeepC-MVS97.60 498.97 6598.93 6699.10 11599.35 15097.98 15298.01 17399.46 10297.56 19299.54 5499.50 5998.97 2399.84 13798.06 11699.92 5399.49 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.11 19897.97 15396.53 29399.02 23998.24 137
test_prior497.97 15395.86 326
IS-MVSNet98.19 17497.90 19299.08 11999.57 8097.97 15399.31 2798.32 30799.01 9098.98 14899.03 15091.59 30599.79 19795.49 27799.80 10899.48 136
SixPastTwentyTwo98.75 9498.62 10399.16 10699.83 2097.96 15699.28 3798.20 31299.37 4599.70 3399.65 3092.65 29599.93 3999.04 5799.84 8499.60 73
test_prior98.95 14198.69 28297.95 15799.03 23699.59 29999.30 210
PMVScopyleft91.26 2097.86 19997.94 18897.65 27499.71 4897.94 15898.52 11198.68 28998.99 9197.52 29499.35 8497.41 13798.18 38891.59 35699.67 17196.82 376
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft94.65 1696.51 28395.73 29498.85 15298.75 26697.91 15996.42 29999.06 22890.94 36995.59 35797.38 33694.41 26199.59 29990.93 36698.04 34999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + MP.98.63 11998.49 12399.06 12799.64 7097.90 16098.51 11698.94 24796.96 24499.24 11598.89 19397.83 10099.81 17796.88 19299.49 23099.48 136
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.98.18 17597.98 18498.77 16898.71 27397.88 16196.32 30498.66 29096.33 26999.23 11798.51 25497.48 13599.40 34297.16 16499.46 23299.02 258
plane_prior799.19 17997.87 162
N_pmnet97.63 21897.17 23898.99 13599.27 16097.86 16395.98 31793.41 38095.25 30399.47 6898.90 18795.63 22599.85 12096.91 18599.73 14099.27 215
FPMVS93.44 34492.23 34897.08 30899.25 16497.86 16395.61 33497.16 34092.90 34793.76 38598.65 23575.94 38795.66 39479.30 39497.49 35497.73 359
h-mvs3397.77 20897.33 23299.10 11599.21 17297.84 16598.35 13598.57 29699.11 7298.58 21499.02 15188.65 32799.96 1298.11 11296.34 37499.49 126
test1298.93 14398.58 30097.83 16698.66 29096.53 33995.51 23099.69 25299.13 28299.27 215
PatchMatch-RL97.24 24696.78 26198.61 18899.03 21897.83 16696.36 30299.06 22893.49 34097.36 30697.78 31295.75 22299.49 32693.44 33098.77 31298.52 321
EPP-MVSNet98.30 16198.04 18099.07 12199.56 8897.83 16699.29 3398.07 31999.03 8898.59 21299.13 13192.16 30099.90 6396.87 19399.68 16599.49 126
tfpnnormal98.90 7498.90 6998.91 14699.67 6397.82 16999.00 6999.44 10999.45 3699.51 6499.24 10698.20 7599.86 10895.92 25799.69 16099.04 255
canonicalmvs98.34 15698.26 15698.58 19298.46 31397.82 16998.96 7399.46 10299.19 6997.46 29995.46 37498.59 4799.46 33498.08 11598.71 31798.46 323
3Dnovator98.27 298.81 8598.73 8499.05 12898.76 26497.81 17199.25 4099.30 16598.57 11898.55 21999.33 9097.95 9599.90 6397.16 16499.67 17199.44 153
AdaColmapbinary97.14 25496.71 26598.46 21098.34 32397.80 17296.95 27198.93 24995.58 29396.92 31997.66 31995.87 21999.53 31690.97 36599.14 28098.04 344
plane_prior397.78 17397.41 20997.79 275
pmmvs-eth3d98.47 14298.34 14698.86 15199.30 15697.76 17497.16 26399.28 17695.54 29499.42 7799.19 11497.27 14599.63 28697.89 12699.97 2099.20 229
新几何198.91 14698.94 22997.76 17498.76 28187.58 38396.75 33298.10 29294.80 25299.78 20892.73 34399.00 29799.20 229
VDDNet98.21 17297.95 18699.01 13399.58 7697.74 17699.01 6797.29 33899.67 1298.97 15299.50 5990.45 31399.80 18497.88 12999.20 27199.48 136
XXY-MVS99.14 4499.15 4899.10 11599.76 3297.74 17698.85 8299.62 4598.48 12399.37 8899.49 6398.75 3499.86 10898.20 10899.80 10899.71 45
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8097.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 499.99 599.29 212
casdiffmvs_mvgpermissive99.12 4999.16 4398.99 13599.43 13397.73 17898.00 17499.62 4599.22 6199.55 5399.22 11098.93 2699.75 22798.66 8299.81 9899.50 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
plane_prior698.99 22397.70 18094.90 245
LF4IMVS97.90 19397.69 20698.52 20499.17 18797.66 18197.19 26299.47 10096.31 27197.85 27198.20 28596.71 18199.52 32094.62 29499.72 14798.38 330
HQP_MVS97.99 19197.67 20798.93 14399.19 17997.65 18297.77 20299.27 17998.20 14497.79 27597.98 30194.90 24599.70 24894.42 30299.51 22299.45 149
plane_prior97.65 18297.07 26696.72 25699.36 245
WR-MVS98.40 14998.19 16399.03 13199.00 22097.65 18296.85 27898.94 24798.57 11898.89 16898.50 25895.60 22699.85 12097.54 14699.85 8099.59 79
VPNet98.87 7798.83 7599.01 13399.70 5597.62 18598.43 12799.35 13999.47 3499.28 10499.05 14696.72 18099.82 16498.09 11499.36 24599.59 79
K. test v398.00 18897.66 21099.03 13199.79 2597.56 18699.19 4992.47 38399.62 2099.52 6099.66 2789.61 31899.96 1299.25 4499.81 9899.56 96
PCF-MVS92.86 1894.36 32793.00 34498.42 21598.70 27797.56 18693.16 38499.11 22179.59 39297.55 29197.43 33392.19 29999.73 23779.85 39399.45 23497.97 348
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
lessismore_v098.97 13899.73 3997.53 18886.71 39699.37 8899.52 5789.93 31699.92 4998.99 6199.72 14799.44 153
QAPM97.31 23996.81 26098.82 15598.80 26297.49 18999.06 6399.19 20090.22 37297.69 28199.16 12396.91 16599.90 6390.89 36899.41 23999.07 249
EG-PatchMatch MVS98.99 6199.01 5998.94 14299.50 10797.47 19098.04 16799.59 5098.15 15199.40 8199.36 8398.58 4999.76 22098.78 7199.68 16599.59 79
MVS_111021_HR98.25 16998.08 17798.75 17299.09 20397.46 19195.97 31899.27 17997.60 18897.99 26298.25 28098.15 8299.38 34696.87 19399.57 20599.42 160
dmvs_re95.98 30095.39 30897.74 26898.86 24797.45 19298.37 13395.69 36697.95 16096.56 33895.95 36390.70 31197.68 39088.32 37796.13 37898.11 340
旧先验198.82 25697.45 19298.76 28198.34 27495.50 23199.01 29699.23 224
Fast-Effi-MVS+97.67 21597.38 22798.57 19498.71 27397.43 19497.23 25699.45 10594.82 31396.13 34896.51 35298.52 5299.91 5896.19 24598.83 30998.37 332
114514_t96.50 28595.77 29298.69 17799.48 12197.43 19497.84 19699.55 7081.42 39196.51 34198.58 24795.53 22899.67 26493.41 33199.58 20198.98 264
NP-MVS98.84 25197.39 19696.84 347
SDMVSNet99.23 3899.32 2898.96 13999.68 5997.35 19798.84 8499.48 9399.69 999.63 4699.68 2099.03 2199.96 1297.97 12399.92 5399.57 90
hse-mvs297.46 22897.07 24398.64 18098.73 26897.33 19897.45 24197.64 33199.11 7298.58 21497.98 30188.65 32799.79 19798.11 11297.39 35898.81 292
casdiffmvspermissive98.95 6899.00 6098.81 15799.38 13997.33 19897.82 19799.57 5999.17 7099.35 9299.17 12198.35 6499.69 25298.46 9599.73 14099.41 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VNet98.42 14698.30 15198.79 16298.79 26397.29 20098.23 14398.66 29099.31 5398.85 17798.80 20994.80 25299.78 20898.13 11199.13 28299.31 207
HyFIR lowres test97.19 25096.60 27598.96 13999.62 7597.28 20195.17 34899.50 8494.21 32799.01 14598.32 27786.61 33699.99 297.10 17199.84 8499.60 73
baseline98.96 6799.02 5898.76 16999.38 13997.26 20298.49 11999.50 8498.86 10299.19 12099.06 13998.23 6999.69 25298.71 7899.76 13399.33 201
ab-mvs98.41 14798.36 14398.59 19199.19 17997.23 20399.32 2398.81 27497.66 18198.62 20699.40 7996.82 17199.80 18495.88 25899.51 22298.75 303
DeepC-MVS_fast96.85 698.30 16198.15 16998.75 17298.61 29397.23 20397.76 20599.09 22597.31 21998.75 19398.66 23397.56 12399.64 28396.10 25299.55 21199.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS96.24 29495.45 30498.60 19098.70 27797.22 20597.38 24497.65 32995.95 28495.53 36497.96 30582.11 36999.79 19796.31 23897.44 35698.80 297
DPM-MVS96.32 29095.59 30098.51 20598.76 26497.21 20694.54 36898.26 30991.94 35796.37 34597.25 34093.06 28799.43 33891.42 35998.74 31398.89 280
test20.0398.78 8998.77 8198.78 16599.46 12497.20 20797.78 20099.24 19099.04 8799.41 7898.90 18797.65 11399.76 22097.70 14099.79 11399.39 175
Effi-MVS+98.02 18697.82 19898.62 18598.53 30797.19 20897.33 24899.68 3997.30 22096.68 33397.46 33298.56 5099.80 18496.63 21398.20 33598.86 285
TAMVS98.24 17098.05 17998.80 15999.07 20797.18 20997.88 18998.81 27496.66 25999.17 12599.21 11194.81 25199.77 21496.96 18399.88 7399.44 153
UnsupCasMVSNet_eth97.89 19597.60 21598.75 17299.31 15397.17 21097.62 22299.35 13998.72 10898.76 19298.68 22892.57 29699.74 23297.76 13995.60 38299.34 196
OpenMVScopyleft96.65 797.09 25796.68 26798.32 22398.32 32497.16 21198.86 8199.37 13089.48 37696.29 34799.15 12796.56 18699.90 6392.90 33699.20 27197.89 349
OpenMVS_ROBcopyleft95.38 1495.84 30495.18 31597.81 25998.41 32097.15 21297.37 24598.62 29483.86 38898.65 20298.37 27094.29 26699.68 26188.41 37698.62 32496.60 379
FMVSNet298.49 14098.40 13698.75 17298.90 23997.14 21398.61 10199.13 21898.59 11599.19 12099.28 9794.14 26899.82 16497.97 12399.80 10899.29 212
V4298.78 8998.78 8098.76 16999.44 12897.04 21498.27 14099.19 20097.87 16799.25 11499.16 12396.84 16899.78 20899.21 4799.84 8499.46 145
CLD-MVS97.49 22697.16 23998.48 20899.07 20797.03 21594.71 35999.21 19494.46 32098.06 25797.16 34297.57 12299.48 32994.46 29999.78 11898.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet97.69 21397.35 23098.69 17798.73 26897.02 21696.92 27698.75 28495.89 28698.59 21298.67 23092.08 30299.74 23296.72 20799.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MM98.91 14696.97 21797.89 18894.44 37299.54 2798.95 15599.14 13093.50 28099.92 4999.80 1099.96 2599.85 19
test_fmvsmvis_n_192099.26 3299.49 1298.54 20299.66 6596.97 21798.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 306
UGNet98.53 13598.45 12998.79 16297.94 34496.96 21999.08 5998.54 29799.10 7996.82 32999.47 6596.55 18799.84 13798.56 9199.94 3899.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS97.20 24996.72 26498.64 18098.72 27096.95 22098.93 7594.14 37899.74 698.78 18799.01 16084.45 35499.73 23797.44 15099.27 26099.25 219
mvsany_test398.87 7798.92 6798.74 17699.38 13996.94 22198.58 10499.10 22396.49 26499.96 499.81 598.18 7699.45 33598.97 6299.79 11399.83 22
test22298.92 23596.93 22295.54 33698.78 27985.72 38696.86 32798.11 29194.43 26099.10 28799.23 224
pmmvs497.58 22297.28 23398.51 20598.84 25196.93 22295.40 34398.52 29993.60 33798.61 20898.65 23595.10 24199.60 29596.97 18299.79 11398.99 263
MSDG97.71 21297.52 21998.28 22898.91 23896.82 22494.42 36999.37 13097.65 18298.37 23798.29 27997.40 13899.33 35394.09 31399.22 26898.68 313
MVP-Stereo98.08 18397.92 19098.57 19498.96 22796.79 22597.90 18699.18 20496.41 26798.46 22798.95 17795.93 21799.60 29596.51 22798.98 30099.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP5-MVS96.79 225
HQP-MVS97.00 26596.49 27998.55 19998.67 28596.79 22596.29 30599.04 23496.05 27995.55 36096.84 34793.84 27499.54 31492.82 33999.26 26399.32 203
UnsupCasMVSNet_bld97.30 24096.92 25098.45 21199.28 15896.78 22896.20 31099.27 17995.42 29898.28 24198.30 27893.16 28399.71 24594.99 28597.37 35998.87 284
DELS-MVS98.27 16598.20 16198.48 20898.86 24796.70 22995.60 33599.20 19697.73 17698.45 22898.71 22297.50 13199.82 16498.21 10799.59 19698.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR96.82 27396.32 28398.30 22699.07 20796.69 23097.48 23898.76 28195.81 28896.61 33796.47 35594.12 27199.17 36890.82 36997.78 35199.06 250
fmvsm_s_conf0.1_n_a99.17 4099.30 3298.80 15999.75 3696.59 23197.97 18099.86 1398.22 13999.88 1799.71 1798.59 4799.84 13799.73 1799.98 1299.98 2
fmvsm_s_conf0.5_n_a99.10 5199.20 3998.78 16599.55 9296.59 23197.79 19999.82 2298.21 14099.81 2299.53 5498.46 5699.84 13799.70 2099.97 2099.90 10
MVS_030498.10 17997.88 19498.76 16998.82 25696.50 23397.90 18691.35 38999.56 2698.32 23899.13 13196.06 20699.93 3999.84 599.97 2099.85 19
Patchmtry97.35 23696.97 24798.50 20797.31 37196.47 23498.18 14898.92 25298.95 9698.78 18799.37 8085.44 34899.85 12095.96 25699.83 9199.17 240
EI-MVSNet-Vis-set98.68 11098.70 9198.63 18499.09 20396.40 23597.23 25698.86 26599.20 6599.18 12498.97 17097.29 14499.85 12098.72 7799.78 11899.64 62
EI-MVSNet-UG-set98.69 10598.71 8898.62 18599.10 20096.37 23697.23 25698.87 26099.20 6599.19 12098.99 16497.30 14299.85 12098.77 7499.79 11399.65 61
test_vis1_rt97.75 20997.72 20597.83 25798.81 25996.35 23797.30 25199.69 3494.61 31697.87 26898.05 29796.26 20098.32 38798.74 7598.18 33698.82 288
1112_ss97.29 24296.86 25498.58 19299.34 15296.32 23896.75 28499.58 5293.14 34396.89 32597.48 33092.11 30199.86 10896.91 18599.54 21399.57 90
v899.01 5999.16 4398.57 19499.47 12396.31 23998.90 7799.47 10099.03 8899.52 6099.57 4296.93 16499.81 17799.60 2399.98 1299.60 73
原ACMM198.35 22198.90 23996.25 24098.83 27392.48 35296.07 35198.10 29295.39 23499.71 24592.61 34698.99 29899.08 247
v1098.97 6599.11 5098.55 19999.44 12896.21 24198.90 7799.55 7098.73 10799.48 6699.60 3996.63 18499.83 15499.70 2099.99 599.61 72
fmvsm_s_conf0.1_n99.16 4399.33 2698.64 18099.71 4896.10 24297.87 19299.85 1598.56 12099.90 1299.68 2098.69 3999.85 12099.72 1999.98 1299.97 3
FMVSNet596.01 29895.20 31498.41 21697.53 36396.10 24298.74 8699.50 8497.22 23498.03 26199.04 14869.80 39299.88 8297.27 15899.71 15299.25 219
Vis-MVSNet (Re-imp)97.46 22897.16 23998.34 22299.55 9296.10 24298.94 7498.44 30298.32 13098.16 24798.62 24288.76 32399.73 23793.88 31999.79 11399.18 236
fmvsm_s_conf0.5_n99.09 5299.26 3598.61 18899.55 9296.09 24597.74 20799.81 2398.55 12199.85 1999.55 4898.60 4699.84 13799.69 2299.98 1299.89 11
CHOSEN 1792x268897.49 22697.14 24298.54 20299.68 5996.09 24596.50 29499.62 4591.58 36098.84 18098.97 17092.36 29799.88 8296.76 20299.95 3099.67 56
SSC-MVS98.71 9898.74 8298.62 18599.72 4596.08 24798.74 8698.64 29399.74 699.67 3999.24 10694.57 25899.95 2399.11 5199.24 26599.82 23
iter_conf_final97.10 25596.65 27298.45 21198.53 30796.08 24798.30 13799.11 22198.10 15298.85 17798.95 17779.38 37899.87 9998.68 8199.91 6199.40 172
v14419298.54 13398.57 11198.45 21199.21 17295.98 24997.63 22199.36 13497.15 23899.32 10199.18 11795.84 22199.84 13799.50 3099.91 6199.54 107
ambc98.24 23198.82 25695.97 25098.62 10099.00 24499.27 10699.21 11196.99 16299.50 32596.55 22499.50 22999.26 218
v114498.60 12398.66 9798.41 21699.36 14695.90 25197.58 22899.34 14597.51 19699.27 10699.15 12796.34 19899.80 18499.47 3299.93 4299.51 119
v119298.60 12398.66 9798.41 21699.27 16095.88 25297.52 23499.36 13497.41 20999.33 9599.20 11396.37 19699.82 16499.57 2599.92 5399.55 103
PMMVS96.51 28395.98 28998.09 23997.53 36395.84 25394.92 35598.84 26991.58 36096.05 35295.58 36995.68 22499.66 27595.59 27498.09 34398.76 302
FMVSNet397.50 22497.24 23598.29 22798.08 33995.83 25497.86 19498.91 25497.89 16698.95 15598.95 17787.06 33399.81 17797.77 13599.69 16099.23 224
v2v48298.56 12798.62 10398.37 22099.42 13495.81 25597.58 22899.16 21197.90 16599.28 10499.01 16095.98 21499.79 19799.33 3799.90 6899.51 119
CL-MVSNet_self_test97.44 23197.22 23698.08 24298.57 30295.78 25694.30 37298.79 27796.58 26298.60 21098.19 28694.74 25699.64 28396.41 23398.84 30898.82 288
v192192098.54 13398.60 10898.38 21999.20 17695.76 25797.56 23099.36 13497.23 23199.38 8599.17 12196.02 20899.84 13799.57 2599.90 6899.54 107
WB-MVS98.52 13898.55 11298.43 21499.65 6695.59 25898.52 11198.77 28099.65 1499.52 6099.00 16394.34 26499.93 3998.65 8398.83 30999.76 37
test_f98.67 11398.87 7098.05 24699.72 4595.59 25898.51 11699.81 2396.30 27399.78 2599.82 496.14 20298.63 38499.82 699.93 4299.95 6
v124098.55 13198.62 10398.32 22399.22 17095.58 26097.51 23699.45 10597.16 23699.45 7299.24 10696.12 20499.85 12099.60 2399.88 7399.55 103
testgi98.32 15898.39 13998.13 23899.57 8095.54 26197.78 20099.49 9197.37 21399.19 12097.65 32098.96 2499.49 32696.50 22898.99 29899.34 196
Patchmatch-RL test97.26 24397.02 24697.99 25099.52 10295.53 26296.13 31499.71 3197.47 20099.27 10699.16 12384.30 35799.62 28897.89 12699.77 12298.81 292
CANet97.87 19897.76 20098.19 23497.75 35295.51 26396.76 28399.05 23197.74 17596.93 31898.21 28495.59 22799.89 7397.86 13199.93 4299.19 234
EPNet96.14 29595.44 30598.25 22990.76 39995.50 26497.92 18394.65 37098.97 9392.98 38698.85 20089.12 32299.87 9995.99 25499.68 16599.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res96.99 26696.55 27798.31 22599.35 15095.47 26595.84 32999.53 7891.51 36296.80 33098.48 26191.36 30799.83 15496.58 21599.53 21799.62 66
diffmvspermissive98.22 17198.24 15898.17 23599.00 22095.44 26696.38 30199.58 5297.79 17398.53 22298.50 25896.76 17799.74 23297.95 12599.64 17999.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 17298.21 16098.20 23399.51 10495.43 26798.13 15399.32 15296.16 27698.93 16398.82 20696.00 21099.83 15497.32 15699.73 14099.36 190
testdata98.09 23998.93 23195.40 26898.80 27690.08 37497.45 30098.37 27095.26 23699.70 24893.58 32698.95 30399.17 240
mvsany_test197.60 21997.54 21797.77 26297.72 35395.35 26995.36 34497.13 34194.13 32999.71 3199.33 9097.93 9699.30 35797.60 14398.94 30498.67 314
PatchT96.65 27896.35 28197.54 28597.40 36895.32 27097.98 17796.64 35399.33 5096.89 32599.42 7484.32 35699.81 17797.69 14297.49 35497.48 367
FE-MVS95.66 30894.95 32097.77 26298.53 30795.28 27199.40 1696.09 36193.11 34497.96 26399.26 10179.10 38099.77 21492.40 34898.71 31798.27 334
test_yl96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
DCV-MVSNet96.69 27596.29 28497.90 25298.28 32695.24 27297.29 25297.36 33498.21 14098.17 24597.86 30886.27 33899.55 31194.87 28898.32 33098.89 280
sss97.21 24896.93 24898.06 24498.83 25395.22 27496.75 28498.48 30194.49 31897.27 30797.90 30792.77 29399.80 18496.57 21799.32 25199.16 243
MSLP-MVS++98.02 18698.14 17197.64 27698.58 30095.19 27597.48 23899.23 19297.47 20097.90 26698.62 24297.04 15798.81 38297.55 14499.41 23998.94 274
PVSNet_Blended_VisFu98.17 17798.15 16998.22 23299.73 3995.15 27697.36 24699.68 3994.45 32298.99 14799.27 9996.87 16799.94 3497.13 16999.91 6199.57 90
PAPR95.29 31594.47 32497.75 26697.50 36795.14 27794.89 35698.71 28891.39 36495.35 36795.48 37394.57 25899.14 37184.95 38497.37 35998.97 267
pmmvs597.64 21797.49 22198.08 24299.14 19495.12 27896.70 28799.05 23193.77 33598.62 20698.83 20393.23 28199.75 22798.33 10399.76 13399.36 190
Anonymous2024052198.69 10598.87 7098.16 23799.77 2995.11 27999.08 5999.44 10999.34 4999.33 9599.55 4894.10 27299.94 3499.25 4499.96 2599.42 160
test_fmvs399.12 4999.41 1998.25 22999.76 3295.07 28099.05 6599.94 297.78 17499.82 2199.84 298.56 5099.71 24599.96 199.96 2599.97 3
v14898.45 14498.60 10898.00 24999.44 12894.98 28197.44 24299.06 22898.30 13199.32 10198.97 17096.65 18399.62 28898.37 9999.85 8099.39 175
MDA-MVSNet-bldmvs97.94 19297.91 19198.06 24499.44 12894.96 28296.63 29099.15 21698.35 12698.83 18199.11 13494.31 26599.85 12096.60 21498.72 31599.37 184
new_pmnet96.99 26696.76 26297.67 27298.72 27094.89 28395.95 32298.20 31292.62 35198.55 21998.54 25094.88 24899.52 32093.96 31699.44 23798.59 320
HY-MVS95.94 1395.90 30295.35 31097.55 28497.95 34394.79 28498.81 8596.94 34892.28 35595.17 36898.57 24889.90 31799.75 22791.20 36397.33 36398.10 341
FA-MVS(test-final)96.99 26696.82 25897.50 28998.70 27794.78 28599.34 2096.99 34495.07 30698.48 22699.33 9088.41 33099.65 28096.13 25198.92 30698.07 343
patch_mono-298.51 13998.63 10198.17 23599.38 13994.78 28597.36 24699.69 3498.16 15098.49 22599.29 9697.06 15699.97 498.29 10499.91 6199.76 37
D2MVS97.84 20597.84 19797.83 25799.14 19494.74 28796.94 27298.88 25895.84 28798.89 16898.96 17394.40 26299.69 25297.55 14499.95 3099.05 251
EI-MVSNet98.40 14998.51 11798.04 24799.10 20094.73 28897.20 26098.87 26098.97 9399.06 13499.02 15196.00 21099.80 18498.58 8699.82 9499.60 73
MVS_Test98.18 17598.36 14397.67 27298.48 31194.73 28898.18 14899.02 23997.69 17998.04 26099.11 13497.22 14999.56 30898.57 8898.90 30798.71 306
IterMVS-LS98.55 13198.70 9198.09 23999.48 12194.73 28897.22 25999.39 12498.97 9399.38 8599.31 9496.00 21099.93 3998.58 8699.97 2099.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet96.62 28096.25 28797.71 27199.04 21594.66 29199.16 5196.92 34997.23 23197.87 26899.10 13686.11 34299.65 28091.65 35499.21 27098.82 288
CANet_DTU97.26 24397.06 24497.84 25697.57 36094.65 29296.19 31198.79 27797.23 23195.14 36998.24 28193.22 28299.84 13797.34 15599.84 8499.04 255
WTY-MVS96.67 27796.27 28697.87 25598.81 25994.61 29396.77 28297.92 32394.94 31097.12 31097.74 31591.11 30999.82 16493.89 31898.15 34099.18 236
PMMVS298.07 18498.08 17798.04 24799.41 13694.59 29494.59 36699.40 12197.50 19798.82 18498.83 20396.83 17099.84 13797.50 14999.81 9899.71 45
iter_conf0596.54 28296.07 28897.92 25197.90 34794.50 29597.87 19299.14 21797.73 17698.89 16898.95 17775.75 38899.87 9998.50 9399.92 5399.40 172
Syy-MVS96.04 29795.56 30197.49 29097.10 37594.48 29696.18 31296.58 35495.65 29194.77 37292.29 39291.27 30899.36 34798.17 11098.05 34798.63 316
ET-MVSNet_ETH3D94.30 33093.21 34097.58 28098.14 33594.47 29794.78 35893.24 38294.72 31489.56 39295.87 36678.57 38399.81 17796.91 18597.11 36698.46 323
testing393.51 34292.09 35097.75 26698.60 29594.40 29897.32 24995.26 36897.56 19296.79 33195.50 37253.57 40299.77 21495.26 28198.97 30199.08 247
thisisatest053095.27 31694.45 32597.74 26899.19 17994.37 29997.86 19490.20 39297.17 23598.22 24397.65 32073.53 39199.90 6396.90 19099.35 24798.95 270
TinyColmap97.89 19597.98 18497.60 27898.86 24794.35 30096.21 30999.44 10997.45 20799.06 13498.88 19497.99 9399.28 36194.38 30699.58 20199.18 236
CR-MVSNet96.28 29295.95 29097.28 30097.71 35594.22 30198.11 15698.92 25292.31 35496.91 32199.37 8085.44 34899.81 17797.39 15397.36 36197.81 354
RPMNet97.02 26296.93 24897.30 29997.71 35594.22 30198.11 15699.30 16599.37 4596.91 32199.34 8886.72 33599.87 9997.53 14797.36 36197.81 354
MVSTER96.86 27096.55 27797.79 26097.91 34694.21 30397.56 23098.87 26097.49 19999.06 13499.05 14680.72 37099.80 18498.44 9699.82 9499.37 184
DeepMVS_CXcopyleft93.44 37298.24 32994.21 30394.34 37364.28 39491.34 39094.87 38489.45 32192.77 39777.54 39593.14 39093.35 392
test_vis1_n98.31 16098.50 11997.73 27099.76 3294.17 30598.68 9599.91 796.31 27199.79 2499.57 4292.85 29299.42 34099.79 1199.84 8499.60 73
GA-MVS95.86 30395.32 31197.49 29098.60 29594.15 30693.83 37997.93 32295.49 29696.68 33397.42 33483.21 36299.30 35796.22 24398.55 32799.01 259
test_fmvs298.70 10298.97 6497.89 25499.54 9794.05 30798.55 10799.92 696.78 25399.72 2999.78 896.60 18599.67 26499.91 299.90 6899.94 7
BH-RMVSNet96.83 27196.58 27697.58 28098.47 31294.05 30796.67 28897.36 33496.70 25897.87 26897.98 30195.14 24099.44 33790.47 37098.58 32699.25 219
cl____97.02 26296.83 25797.58 28097.82 35094.04 30994.66 36299.16 21197.04 24198.63 20498.71 22288.68 32699.69 25297.00 17799.81 9899.00 262
DIV-MVS_self_test97.02 26296.84 25697.58 28097.82 35094.03 31094.66 36299.16 21197.04 24198.63 20498.71 22288.69 32499.69 25297.00 17799.81 9899.01 259
MVS93.19 34692.09 35096.50 32996.91 37894.03 31098.07 16298.06 32068.01 39394.56 37696.48 35495.96 21699.30 35783.84 38696.89 36996.17 382
JIA-IIPM95.52 31295.03 31797.00 31196.85 38094.03 31096.93 27495.82 36499.20 6594.63 37599.71 1783.09 36399.60 29594.42 30294.64 38697.36 370
baseline195.96 30195.44 30597.52 28798.51 31093.99 31398.39 13196.09 36198.21 14098.40 23697.76 31486.88 33499.63 28695.42 27889.27 39498.95 270
TR-MVS95.55 31195.12 31696.86 32297.54 36293.94 31496.49 29596.53 35694.36 32597.03 31696.61 35194.26 26799.16 36986.91 38196.31 37597.47 368
jason97.45 23097.35 23097.76 26599.24 16593.93 31595.86 32698.42 30394.24 32698.50 22498.13 28894.82 24999.91 5897.22 16199.73 14099.43 157
jason: jason.
xiu_mvs_v1_base_debu97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
xiu_mvs_v1_base_debi97.86 19998.17 16596.92 31698.98 22493.91 31696.45 29699.17 20897.85 16998.41 23297.14 34498.47 5399.92 4998.02 11899.05 28896.92 373
MVSFormer98.26 16798.43 13297.77 26298.88 24593.89 31999.39 1799.56 6699.11 7298.16 24798.13 28893.81 27699.97 499.26 4299.57 20599.43 157
lupinMVS97.06 25996.86 25497.65 27498.88 24593.89 31995.48 34097.97 32193.53 33898.16 24797.58 32493.81 27699.91 5896.77 20199.57 20599.17 240
tttt051795.64 30994.98 31897.64 27699.36 14693.81 32198.72 9090.47 39198.08 15498.67 19998.34 27473.88 39099.92 4997.77 13599.51 22299.20 229
MS-PatchMatch97.68 21497.75 20197.45 29398.23 33193.78 32297.29 25298.84 26996.10 27898.64 20398.65 23596.04 20799.36 34796.84 19699.14 28099.20 229
PVSNet_BlendedMVS97.55 22397.53 21897.60 27898.92 23593.77 32396.64 28999.43 11594.49 31897.62 28499.18 11796.82 17199.67 26494.73 29199.93 4299.36 190
PVSNet_Blended96.88 26996.68 26797.47 29298.92 23593.77 32394.71 35999.43 11590.98 36897.62 28497.36 33896.82 17199.67 26494.73 29199.56 20898.98 264
dcpmvs_298.78 8999.11 5097.78 26199.56 8893.67 32599.06 6399.86 1399.50 3099.66 4099.26 10197.21 15099.99 298.00 12199.91 6199.68 53
USDC97.41 23397.40 22597.44 29498.94 22993.67 32595.17 34899.53 7894.03 33298.97 15299.10 13695.29 23599.34 35195.84 26499.73 14099.30 210
test0.0.03 194.51 32593.69 33496.99 31296.05 39093.61 32794.97 35493.49 37996.17 27497.57 29094.88 38282.30 36799.01 37593.60 32594.17 38998.37 332
test_fmvs1_n98.09 18298.28 15397.52 28799.68 5993.47 32898.63 9899.93 495.41 30199.68 3799.64 3291.88 30499.48 32999.82 699.87 7699.62 66
BH-untuned96.83 27196.75 26397.08 30898.74 26793.33 32996.71 28698.26 30996.72 25698.44 22997.37 33795.20 23899.47 33291.89 35197.43 35798.44 327
c3_l97.36 23597.37 22897.31 29898.09 33893.25 33095.01 35399.16 21197.05 24098.77 19098.72 22192.88 29099.64 28396.93 18499.76 13399.05 251
MDA-MVSNet_test_wron97.60 21997.66 21097.41 29699.04 21593.09 33195.27 34598.42 30397.26 22498.88 17298.95 17795.43 23399.73 23797.02 17698.72 31599.41 163
miper_ehance_all_eth97.06 25997.03 24597.16 30797.83 34993.06 33294.66 36299.09 22595.99 28398.69 19798.45 26392.73 29499.61 29496.79 19899.03 29298.82 288
Patchmatch-test96.55 28196.34 28297.17 30598.35 32293.06 33298.40 13097.79 32497.33 21698.41 23298.67 23083.68 36199.69 25295.16 28399.31 25398.77 300
MG-MVS96.77 27496.61 27397.26 30298.31 32593.06 33295.93 32398.12 31896.45 26697.92 26498.73 21993.77 27899.39 34491.19 36499.04 29199.33 201
YYNet197.60 21997.67 20797.39 29799.04 21593.04 33595.27 34598.38 30697.25 22598.92 16498.95 17795.48 23299.73 23796.99 17998.74 31399.41 163
thisisatest051594.12 33493.16 34196.97 31498.60 29592.90 33693.77 38090.61 39094.10 33096.91 32195.87 36674.99 38999.80 18494.52 29799.12 28598.20 336
miper_lstm_enhance97.18 25197.16 23997.25 30398.16 33492.85 33795.15 35099.31 15797.25 22598.74 19598.78 21290.07 31599.78 20897.19 16299.80 10899.11 246
cl2295.79 30595.39 30896.98 31396.77 38292.79 33894.40 37098.53 29894.59 31797.89 26798.17 28782.82 36699.24 36396.37 23499.03 29298.92 276
eth_miper_zixun_eth97.23 24797.25 23497.17 30598.00 34292.77 33994.71 35999.18 20497.27 22398.56 21798.74 21891.89 30399.69 25297.06 17599.81 9899.05 251
131495.74 30695.60 29996.17 33797.53 36392.75 34098.07 16298.31 30891.22 36594.25 37796.68 35095.53 22899.03 37291.64 35597.18 36496.74 377
PAPM91.88 35890.34 36196.51 32898.06 34092.56 34192.44 38797.17 33986.35 38490.38 39196.01 36186.61 33699.21 36670.65 39795.43 38397.75 358
pmmvs395.03 32094.40 32696.93 31597.70 35792.53 34295.08 35197.71 32788.57 38097.71 27998.08 29579.39 37799.82 16496.19 24599.11 28698.43 328
xiu_mvs_v2_base97.16 25397.49 22196.17 33798.54 30592.46 34395.45 34198.84 26997.25 22597.48 29896.49 35398.31 6699.90 6396.34 23798.68 32096.15 384
PS-MVSNAJ97.08 25897.39 22696.16 33998.56 30392.46 34395.24 34798.85 26897.25 22597.49 29795.99 36298.07 8499.90 6396.37 23498.67 32196.12 385
test_fmvs197.72 21197.94 18897.07 31098.66 29092.39 34597.68 21399.81 2395.20 30599.54 5499.44 7191.56 30699.41 34199.78 1399.77 12299.40 172
gg-mvs-nofinetune92.37 35391.20 35895.85 34295.80 39392.38 34699.31 2781.84 40099.75 591.83 38999.74 1368.29 39399.02 37387.15 38097.12 36596.16 383
cascas94.79 32394.33 32996.15 34096.02 39292.36 34792.34 38899.26 18485.34 38795.08 37094.96 38192.96 28998.53 38594.41 30598.59 32597.56 366
test_cas_vis1_n_192098.33 15798.68 9497.27 30199.69 5792.29 34898.03 16899.85 1597.62 18499.96 499.62 3493.98 27399.74 23299.52 2999.86 7999.79 28
miper_enhance_ethall96.01 29895.74 29396.81 32396.41 38792.27 34993.69 38198.89 25791.14 36798.30 23997.35 33990.58 31299.58 30396.31 23899.03 29298.60 318
new-patchmatchnet98.35 15598.74 8297.18 30499.24 16592.23 35096.42 29999.48 9398.30 13199.69 3599.53 5497.44 13699.82 16498.84 6999.77 12299.49 126
GG-mvs-BLEND94.76 35994.54 39592.13 35199.31 2780.47 40188.73 39491.01 39467.59 39698.16 38982.30 39194.53 38893.98 391
mvs_anonymous97.83 20798.16 16896.87 31998.18 33391.89 35297.31 25098.90 25597.37 21398.83 18199.46 6696.28 19999.79 19798.90 6598.16 33998.95 270
ADS-MVSNet295.43 31494.98 31896.76 32698.14 33591.74 35397.92 18397.76 32590.23 37096.51 34198.91 18485.61 34599.85 12092.88 33796.90 36798.69 310
MVEpermissive83.40 2292.50 35191.92 35494.25 36398.83 25391.64 35492.71 38583.52 39995.92 28586.46 39695.46 37495.20 23895.40 39580.51 39298.64 32295.73 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view794.45 32693.83 33296.29 33399.06 21191.53 35597.99 17694.24 37698.34 12797.44 30195.01 37879.84 37399.67 26484.33 38598.23 33397.66 362
DSMNet-mixed97.42 23297.60 21596.87 31999.15 19391.46 35698.54 10999.12 21992.87 34897.58 28899.63 3396.21 20199.90 6395.74 26799.54 21399.27 215
tfpn200view994.03 33593.44 33795.78 34498.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34496.29 380
thres40094.14 33393.44 33796.24 33598.93 23191.44 35797.60 22594.29 37497.94 16197.10 31194.31 38679.67 37599.62 28883.05 38798.08 34497.66 362
thres100view90094.19 33193.67 33595.75 34599.06 21191.35 35998.03 16894.24 37698.33 12897.40 30394.98 38079.84 37399.62 28883.05 38798.08 34496.29 380
BH-w/o95.13 31894.89 32295.86 34198.20 33291.31 36095.65 33397.37 33393.64 33696.52 34095.70 36893.04 28899.02 37388.10 37895.82 38197.24 371
thres20093.72 34093.14 34295.46 35398.66 29091.29 36196.61 29194.63 37197.39 21196.83 32893.71 38879.88 37299.56 30882.40 39098.13 34195.54 389
baseline293.73 33992.83 34596.42 33097.70 35791.28 36296.84 27989.77 39393.96 33492.44 38795.93 36479.14 37999.77 21492.94 33596.76 37198.21 335
IB-MVS91.63 1992.24 35590.90 35996.27 33497.22 37391.24 36394.36 37193.33 38192.37 35392.24 38894.58 38566.20 39999.89 7393.16 33494.63 38797.66 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test97.50 22497.74 20296.78 32598.70 27791.23 36494.55 36799.05 23196.36 26899.21 11898.79 21196.39 19399.78 20896.74 20499.82 9499.34 196
IterMVS-SCA-FT97.85 20498.18 16496.87 31999.27 16091.16 36595.53 33799.25 18599.10 7999.41 7899.35 8493.10 28599.96 1298.65 8399.94 3899.49 126
dmvs_testset92.94 34892.21 34995.13 35698.59 29890.99 36697.65 21992.09 38696.95 24594.00 38293.55 38992.34 29896.97 39372.20 39692.52 39197.43 369
WAC-MVS90.90 36791.37 360
myMVS_eth3d91.92 35790.45 36096.30 33297.10 37590.90 36796.18 31296.58 35495.65 29194.77 37292.29 39253.88 40199.36 34789.59 37498.05 34798.63 316
test_vis1_n_192098.40 14998.92 6796.81 32399.74 3890.76 36998.15 15299.91 798.33 12899.89 1599.55 4895.07 24299.88 8299.76 1499.93 4299.79 28
IterMVS97.73 21098.11 17396.57 32799.24 16590.28 37095.52 33999.21 19498.86 10299.33 9599.33 9093.11 28499.94 3498.49 9499.94 3899.48 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet95.24 31794.93 32196.18 33698.14 33590.10 37197.92 18397.32 33790.23 37096.51 34198.91 18485.61 34599.74 23292.88 33796.90 36798.69 310
our_test_397.39 23497.73 20496.34 33198.70 27789.78 37294.61 36598.97 24696.50 26399.04 14198.85 20095.98 21499.84 13797.26 15999.67 17199.41 163
KD-MVS_2432*160092.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
miper_refine_blended92.87 34991.99 35295.51 35191.37 39789.27 37394.07 37498.14 31695.42 29897.25 30896.44 35667.86 39499.24 36391.28 36196.08 37998.02 345
PVSNet93.40 1795.67 30795.70 29595.57 34998.83 25388.57 37592.50 38697.72 32692.69 35096.49 34496.44 35693.72 27999.43 33893.61 32499.28 25998.71 306
tpm94.67 32494.34 32895.66 34797.68 35988.42 37697.88 18994.90 36994.46 32096.03 35398.56 24978.66 38199.79 19795.88 25895.01 38598.78 299
SCA96.41 28996.66 27095.67 34698.24 32988.35 37795.85 32896.88 35096.11 27797.67 28298.67 23093.10 28599.85 12094.16 30899.22 26898.81 292
CHOSEN 280x42095.51 31395.47 30295.65 34898.25 32888.27 37893.25 38398.88 25893.53 33894.65 37497.15 34386.17 34099.93 3997.41 15299.93 4298.73 305
ECVR-MVScopyleft96.42 28896.61 27395.85 34299.38 13988.18 37999.22 4286.00 39799.08 8499.36 9099.57 4288.47 32999.82 16498.52 9299.95 3099.54 107
EPMVS93.72 34093.27 33995.09 35896.04 39187.76 38098.13 15385.01 39894.69 31596.92 31998.64 23878.47 38599.31 35595.04 28496.46 37398.20 336
EPNet_dtu94.93 32294.78 32395.38 35493.58 39687.68 38196.78 28195.69 36697.35 21589.14 39398.09 29488.15 33199.49 32694.95 28799.30 25698.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 31095.67 29795.30 35597.34 37087.32 38297.65 21996.65 35295.30 30297.07 31398.69 22684.77 35199.75 22794.97 28698.64 32298.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111196.49 28696.82 25895.52 35099.42 13487.08 38399.22 4287.14 39599.11 7299.46 6999.58 4188.69 32499.86 10898.80 7099.95 3099.62 66
tpm293.09 34792.58 34794.62 36097.56 36186.53 38497.66 21795.79 36586.15 38594.07 38198.23 28375.95 38699.53 31690.91 36796.86 37097.81 354
tpmvs95.02 32195.25 31294.33 36296.39 38885.87 38598.08 16096.83 35195.46 29795.51 36598.69 22685.91 34399.53 31694.16 30896.23 37697.58 365
EU-MVSNet97.66 21698.50 11995.13 35699.63 7385.84 38698.35 13598.21 31198.23 13899.54 5499.46 6695.02 24399.68 26198.24 10599.87 7699.87 16
CostFormer93.97 33693.78 33394.51 36197.53 36385.83 38797.98 17795.96 36389.29 37894.99 37198.63 24078.63 38299.62 28894.54 29696.50 37298.09 342
E-PMN94.17 33294.37 32793.58 37096.86 37985.71 38890.11 39097.07 34298.17 14797.82 27497.19 34184.62 35398.94 37789.77 37297.68 35396.09 386
EMVS93.83 33894.02 33093.23 37496.83 38184.96 38989.77 39196.32 35897.92 16397.43 30296.36 35986.17 34098.93 37887.68 37997.73 35295.81 387
tpm cat193.29 34593.13 34393.75 36897.39 36984.74 39097.39 24397.65 32983.39 39094.16 37898.41 26582.86 36599.39 34491.56 35795.35 38497.14 372
test-LLR93.90 33793.85 33194.04 36496.53 38484.62 39194.05 37692.39 38496.17 27494.12 37995.07 37682.30 36799.67 26495.87 26198.18 33697.82 352
test-mter92.33 35491.76 35794.04 36496.53 38484.62 39194.05 37692.39 38494.00 33394.12 37995.07 37665.63 40099.67 26495.87 26198.18 33697.82 352
tpmrst95.07 31995.46 30393.91 36697.11 37484.36 39397.62 22296.96 34694.98 30896.35 34698.80 20985.46 34799.59 29995.60 27396.23 37697.79 357
PVSNet_089.98 2191.15 35990.30 36293.70 36997.72 35384.34 39490.24 38997.42 33290.20 37393.79 38493.09 39090.90 31098.89 38186.57 38272.76 39697.87 351
MDTV_nov1_ep1395.22 31397.06 37783.20 39597.74 20796.16 35994.37 32496.99 31798.83 20383.95 35999.53 31693.90 31797.95 350
TESTMET0.1,192.19 35691.77 35693.46 37196.48 38682.80 39694.05 37691.52 38894.45 32294.00 38294.88 38266.65 39799.56 30895.78 26698.11 34298.02 345
test250692.39 35291.89 35593.89 36799.38 13982.28 39799.32 2366.03 40399.08 8498.77 19099.57 4266.26 39899.84 13798.71 7899.95 3099.54 107
gm-plane-assit94.83 39481.97 39888.07 38294.99 37999.60 29591.76 352
dp93.47 34393.59 33693.13 37596.64 38381.62 39997.66 21796.42 35792.80 34996.11 34998.64 23878.55 38499.59 29993.31 33292.18 39398.16 338
CVMVSNet96.25 29397.21 23793.38 37399.10 20080.56 40097.20 26098.19 31496.94 24699.00 14699.02 15189.50 32099.80 18496.36 23699.59 19699.78 31
MVS-HIRNet94.32 32895.62 29890.42 37798.46 31375.36 40196.29 30589.13 39495.25 30395.38 36699.75 1192.88 29099.19 36794.07 31499.39 24196.72 378
MDTV_nov1_ep13_2view74.92 40297.69 21290.06 37597.75 27885.78 34493.52 32798.69 310
tmp_tt78.77 36278.73 36578.90 37958.45 40174.76 40394.20 37378.26 40239.16 39586.71 39592.82 39180.50 37175.19 39886.16 38392.29 39286.74 393
test_method79.78 36179.50 36480.62 37880.21 40045.76 40470.82 39298.41 30531.08 39680.89 39797.71 31684.85 35097.37 39191.51 35880.03 39598.75 303
test12317.04 36520.11 3687.82 38010.25 4034.91 40594.80 3574.47 4054.93 39810.00 40024.28 3979.69 4033.64 39910.14 39812.43 39814.92 395
testmvs17.12 36420.53 3676.87 38112.05 4024.20 40693.62 3826.73 4044.62 39910.41 39924.33 3968.28 4043.56 4009.69 39915.07 39712.86 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.66 36332.88 3660.00 3820.00 4040.00 4070.00 39399.10 2230.00 4000.00 40197.58 32499.21 160.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas8.17 36610.90 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40098.07 840.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.12 36710.83 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40197.48 3300.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
PC_three_145293.27 34199.40 8198.54 25098.22 7297.00 39295.17 28299.45 23499.49 126
eth-test20.00 404
eth-test0.00 404
test_241102_TWO99.30 16598.03 15599.26 11099.02 15197.51 13099.88 8296.91 18599.60 19299.66 57
9.1497.78 19999.07 20797.53 23399.32 15295.53 29598.54 22198.70 22597.58 12199.76 22094.32 30799.46 232
test_0728_THIRD98.17 14799.08 13299.02 15197.89 9799.88 8297.07 17399.71 15299.70 50
GSMVS98.81 292
sam_mvs184.74 35298.81 292
sam_mvs84.29 358
MTGPAbinary99.20 196
test_post197.59 22720.48 39983.07 36499.66 27594.16 308
test_post21.25 39883.86 36099.70 248
patchmatchnet-post98.77 21484.37 35599.85 120
MTMP97.93 18191.91 387
test9_res93.28 33399.15 27999.38 182
agg_prior292.50 34799.16 27799.37 184
test_prior295.74 33196.48 26596.11 34997.63 32295.92 21894.16 30899.20 271
旧先验295.76 33088.56 38197.52 29499.66 27594.48 298
新几何295.93 323
无先验95.74 33198.74 28689.38 37799.73 23792.38 34999.22 228
原ACMM295.53 337
testdata299.79 19792.80 341
segment_acmp97.02 160
testdata195.44 34296.32 270
plane_prior599.27 17999.70 24894.42 30299.51 22299.45 149
plane_prior497.98 301
plane_prior297.77 20298.20 144
plane_prior199.05 214
n20.00 406
nn0.00 406
door-mid99.57 59
test1198.87 260
door99.41 119
HQP-NCC98.67 28596.29 30596.05 27995.55 360
ACMP_Plane98.67 28596.29 30596.05 27995.55 360
BP-MVS92.82 339
HQP4-MVS95.56 35999.54 31499.32 203
HQP3-MVS99.04 23499.26 263
HQP2-MVS93.84 274
ACMMP++_ref99.77 122
ACMMP++99.68 165
Test By Simon96.52 188