This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9399.93 499.95 1099.89 2599.71 999.96 3599.51 3099.97 3099.84 14
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
DIV-MVS_2432*160099.63 3199.59 3399.76 4699.84 3499.90 499.37 9099.79 5399.83 2699.88 3299.85 3798.42 15199.90 12999.60 1999.73 19199.49 181
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2499.70 4899.92 1899.93 1399.45 2299.97 1799.36 49100.00 199.85 13
PEN-MVS99.66 2599.59 3399.89 799.83 3899.87 899.66 3999.73 8199.70 4899.84 4399.73 8798.56 13099.96 3599.29 6299.94 6299.83 18
DTE-MVSNet99.68 2399.61 3099.88 1199.80 5699.87 899.67 3599.71 9399.72 4399.84 4399.78 6698.67 11699.97 1799.30 5999.95 4999.80 24
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 899.69 2899.77 6199.78 3599.93 1499.89 2597.94 19599.92 9099.65 1699.98 2199.62 106
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1199.72 1999.78 5899.90 799.82 5099.83 4398.45 14899.87 17099.51 3099.97 3099.86 11
CS-MVS99.52 4999.54 4499.47 16599.51 19199.85 1299.62 4799.93 599.75 3899.34 21299.13 29499.39 2499.91 10899.43 3799.75 17598.66 316
FIs99.65 3099.58 3699.84 1999.84 3499.85 1299.66 3999.75 7399.86 1699.74 8999.79 6098.27 16899.85 20899.37 4899.93 7099.83 18
PS-CasMVS99.66 2599.58 3699.89 799.80 5699.85 1299.66 3999.73 8199.62 6899.84 4399.71 10098.62 12299.96 3599.30 5999.96 4299.86 11
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 2099.70 4899.91 2099.89 2599.60 1999.87 17099.59 2099.74 18499.71 46
RPSCF99.18 14099.02 15599.64 10799.83 3899.85 1299.44 7899.82 3798.33 24399.50 17599.78 6697.90 19899.65 33396.78 26899.83 13399.44 202
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1299.86 599.92 699.69 5199.78 6899.92 1699.37 3199.88 15798.93 11199.95 4999.60 119
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9799.93 499.78 6899.68 12499.10 5899.78 27399.45 3599.96 4299.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3799.84 2399.94 1199.91 1999.13 5799.96 3599.83 999.99 1299.83 18
Baseline_NR-MVSNet99.49 5299.37 7299.82 2399.91 1599.84 1898.83 21899.86 2099.68 5299.65 11999.88 2897.67 21699.87 17099.03 9699.86 11699.76 37
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4799.73 4099.97 699.92 1699.77 799.98 799.43 37100.00 199.90 4
MP-MVS-pluss99.14 14998.92 17999.80 2999.83 3899.83 2298.61 24199.63 13496.84 31599.44 18499.58 18498.81 9299.91 10897.70 20699.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 1899.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3599.75 7399.58 8199.85 4099.69 11398.18 17999.94 5799.28 6499.95 4999.83 18
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2499.80 3299.93 1499.93 1398.54 13399.93 7199.59 2099.98 2199.76 37
SED-MVS99.40 7699.28 9599.77 4099.69 12199.82 2699.20 13899.54 18999.13 14999.82 5099.63 15198.91 8299.92 9097.85 19499.70 20399.58 133
test_241102_ONE99.69 12199.82 2699.54 18999.12 15299.82 5099.49 22198.91 8299.52 350
CP-MVSNet99.54 4699.43 6299.87 1499.76 8499.82 2699.57 6299.61 14499.54 8299.80 6099.64 14197.79 20899.95 4599.21 6999.94 6299.84 14
ACMMP_NAP99.28 10699.11 12599.79 3499.75 9599.81 2998.95 20499.53 19898.27 24799.53 16799.73 8798.75 10799.87 17097.70 20699.83 13399.68 58
zzz-MVS99.30 10399.14 11599.80 2999.81 5199.81 2998.73 23699.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
MTAPA99.35 8999.20 10799.80 2999.81 5199.81 2999.33 9799.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
APDe-MVS99.48 5499.36 7599.85 1899.55 17599.81 2999.50 6899.69 10398.99 16399.75 8099.71 10098.79 9999.93 7198.46 14199.85 11999.80 24
HPM-MVS_fast99.43 6699.30 8899.80 2999.83 3899.81 2999.52 6699.70 9798.35 23899.51 17499.50 21699.31 3799.88 15798.18 16599.84 12399.69 52
DVP-MVS99.32 10099.17 11099.77 4099.69 12199.80 3499.14 15999.31 27099.16 14399.62 13299.61 16998.35 16099.91 10897.88 18899.72 19799.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12199.80 3499.24 12899.57 17399.16 14399.73 9399.65 13998.35 160
test_0728_SECOND99.83 2199.70 11899.79 3699.14 15999.61 14499.92 9097.88 18899.72 19799.77 33
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1699.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
LS3D99.24 11699.11 12599.61 12398.38 34999.79 3699.57 6299.68 10699.61 7299.15 24899.71 10098.70 11199.91 10897.54 22099.68 20999.13 273
Effi-MVS+-dtu99.07 16398.92 17999.52 15098.89 32399.78 3999.15 15799.66 11599.34 11498.92 27299.24 28397.69 21399.98 798.11 17199.28 29198.81 311
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2099.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
IU-MVS99.69 12199.77 4199.22 28997.50 28999.69 10597.75 20199.70 20399.77 33
DPE-MVScopyleft99.14 14998.92 17999.82 2399.57 16499.77 4198.74 23499.60 15598.55 21399.76 7599.69 11398.23 17399.92 9096.39 28899.75 17599.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4199.68 3199.85 2499.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
GBi-Net99.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
test199.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4199.68 3199.70 9799.67 5699.82 5099.83 4398.98 7399.90 12999.24 6699.97 3099.53 158
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4799.60 5899.82 3799.46 9899.75 8099.56 19599.63 1499.95 4599.43 3799.88 10099.62 106
LCM-MVSNet-Re99.28 10699.15 11499.67 8899.33 26299.76 4799.34 9599.97 298.93 17399.91 2099.79 6098.68 11399.93 7196.80 26799.56 24399.30 237
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4799.32 10099.77 6199.53 8499.77 7399.76 7699.26 4599.78 27397.77 19999.88 10099.60 119
test117299.23 11799.05 14699.74 6299.52 18699.75 5099.20 13899.61 14498.97 16599.48 17799.58 18498.41 15299.91 10897.15 24999.55 24799.57 139
tfpnnormal99.43 6699.38 6999.60 12599.87 2899.75 5099.59 5999.78 5899.71 4499.90 2299.69 11398.85 9099.90 12997.25 24299.78 16699.15 266
APD-MVS_3200maxsize99.31 10299.16 11199.74 6299.53 18199.75 5099.27 11899.61 14499.19 13799.57 14899.64 14198.76 10599.90 12997.29 23499.62 22899.56 142
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5099.62 4799.69 10399.85 2099.80 6099.81 5298.81 9299.91 10899.47 3499.88 10099.70 49
HPM-MVScopyleft99.25 11399.07 14099.78 3799.81 5199.75 5099.61 5399.67 11197.72 27899.35 20999.25 27899.23 4699.92 9097.21 24599.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepPCF-MVS98.42 699.18 14099.02 15599.67 8899.22 28299.75 5097.25 34399.47 22498.72 19999.66 11599.70 10799.29 3999.63 33698.07 17499.81 15099.62 106
SR-MVS-dyc-post99.27 11099.11 12599.73 7099.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.41 15299.91 10897.27 23799.61 23599.54 153
RE-MVS-def99.13 11899.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.57 12897.27 23799.61 23599.54 153
abl_699.36 8799.23 10599.75 5699.71 11199.74 5699.33 9799.76 6699.07 15699.65 11999.63 15199.09 6099.92 9097.13 25099.76 17299.58 133
ZNCC-MVS99.22 12699.04 15299.77 4099.76 8499.73 5999.28 11599.56 17898.19 25299.14 25099.29 26998.84 9199.92 9097.53 22299.80 15599.64 90
GST-MVS99.16 14598.96 17299.75 5699.73 10499.73 5999.20 13899.55 18498.22 24999.32 21799.35 25798.65 12099.91 10896.86 26299.74 18499.62 106
SMA-MVScopyleft99.19 13699.00 16199.73 7099.46 21999.73 5999.13 16599.52 20697.40 29499.57 14899.64 14198.93 7999.83 23697.61 21699.79 16099.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.04 17098.79 19799.81 2699.78 7299.73 5999.35 9499.57 17398.54 21699.54 16298.99 31696.81 25399.93 7196.97 25699.53 25599.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS99.19 13699.00 16199.74 6299.51 19199.72 6399.18 14499.60 15598.85 18399.47 17999.58 18498.38 15799.92 9096.92 25899.54 25399.57 139
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6399.59 5999.82 3799.39 10999.82 5099.84 4299.38 2999.91 10899.38 4699.93 7099.80 24
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6599.91 399.95 499.96 299.71 10099.91 1999.15 5399.97 1799.50 32100.00 199.90 4
HPM-MVS++copyleft98.96 18698.70 20499.74 6299.52 18699.71 6598.86 21399.19 29498.47 22398.59 30499.06 30598.08 18599.91 10896.94 25799.60 23899.60 119
XVS99.27 11099.11 12599.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29299.47 22998.47 14499.88 15797.62 21499.73 19199.67 65
X-MVStestdata96.09 32294.87 33299.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29261.30 37098.47 14499.88 15797.62 21499.73 19199.67 65
MP-MVScopyleft99.06 16498.83 19299.76 4699.76 8499.71 6599.32 10099.50 21398.35 23898.97 26599.48 22498.37 15899.92 9095.95 30899.75 17599.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.20 13399.01 15899.77 4099.75 9599.71 6599.16 15599.72 9097.99 26299.42 19099.60 17698.81 9299.93 7196.91 25999.74 18499.66 75
Gipumacopyleft99.57 3899.59 3399.49 15999.98 399.71 6599.72 1999.84 3099.81 2999.94 1199.78 6698.91 8299.71 29898.41 14399.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HFP-MVS99.25 11399.08 13699.76 4699.73 10499.70 7299.31 10499.59 16298.36 23399.36 20799.37 24798.80 9699.91 10897.43 22799.75 17599.68 58
region2R99.23 11799.05 14699.77 4099.76 8499.70 7299.31 10499.59 16298.41 22799.32 21799.36 25298.73 11099.93 7197.29 23499.74 18499.67 65
#test#99.12 15398.90 18399.76 4699.73 10499.70 7299.10 17299.59 16297.60 28399.36 20799.37 24798.80 9699.91 10896.84 26599.75 17599.68 58
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7299.70 8499.83 3899.70 7299.38 8699.78 5899.53 8499.67 11199.78 6699.19 4999.86 19097.32 23299.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 13399.12 12299.43 17999.25 27899.69 7699.05 18299.82 3799.50 8798.97 26599.05 30698.98 7399.98 798.20 16199.24 29798.62 318
ACMMPR99.23 11799.06 14299.76 4699.74 10199.69 7699.31 10499.59 16298.36 23399.35 20999.38 24698.61 12499.93 7197.43 22799.75 17599.67 65
ACMM98.09 1199.46 6199.38 6999.72 7699.80 5699.69 7699.13 16599.65 12698.99 16399.64 12199.72 9399.39 2499.86 19098.23 15899.81 15099.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS99.19 13699.00 16199.76 4699.76 8499.68 7999.38 8699.54 18998.34 24299.01 26399.50 21698.53 13799.93 7197.18 24799.78 16699.66 75
ACMMPcopyleft99.25 11399.08 13699.74 6299.79 6699.68 7999.50 6899.65 12698.07 25899.52 16999.69 11398.57 12899.92 9097.18 24799.79 16099.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_part299.62 14599.67 8199.55 160
SixPastTwentyTwo99.42 6999.30 8899.76 4699.92 1499.67 8199.70 2299.14 29999.65 6299.89 2699.90 2196.20 27099.94 5799.42 4399.92 7499.67 65
Anonymous20240521198.75 21298.46 22699.63 11199.34 25799.66 8399.47 7497.65 34499.28 12399.56 15599.50 21693.15 30199.84 22598.62 13499.58 24199.40 214
PM-MVS99.36 8799.29 9399.58 13199.83 3899.66 8398.95 20499.86 2098.85 18399.81 5799.73 8798.40 15699.92 9098.36 14699.83 13399.17 262
CP-MVS99.23 11799.05 14699.75 5699.66 13699.66 8399.38 8699.62 13798.38 23199.06 26199.27 27398.79 9999.94 5797.51 22399.82 14299.66 75
SteuartSystems-ACMMP99.30 10399.14 11599.76 4699.87 2899.66 8399.18 14499.60 15598.55 21399.57 14899.67 13099.03 7099.94 5797.01 25499.80 15599.69 52
Skip Steuart: Steuart Systems R&D Blog.
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8399.69 2899.92 699.67 5699.77 7399.75 8099.61 1799.98 799.35 5099.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvs-test198.83 20398.70 20499.22 23198.89 32399.65 8898.88 20999.66 11599.34 11498.29 31798.94 32697.69 21399.96 3598.11 17198.54 33198.04 346
MAR-MVS98.24 26697.92 27599.19 23598.78 33799.65 8899.17 14999.14 29995.36 33698.04 33298.81 33697.47 22699.72 29495.47 32199.06 30398.21 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest99.21 13199.07 14099.63 11199.78 7299.64 9099.12 16999.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
TestCases99.63 11199.78 7299.64 9099.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
TranMVSNet+NR-MVSNet99.54 4699.47 5399.76 4699.58 15499.64 9099.30 10799.63 13499.61 7299.71 10099.56 19598.76 10599.96 3599.14 8999.92 7499.68 58
XVG-OURS-SEG-HR99.16 14598.99 16699.66 9599.84 3499.64 9098.25 27899.73 8198.39 23099.63 12599.43 23799.70 1199.90 12997.34 23198.64 32799.44 202
LPG-MVS_test99.22 12699.05 14699.74 6299.82 4499.63 9499.16 15599.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
LGP-MVS_train99.74 6299.82 4499.63 9499.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
EIA-MVS99.12 15399.01 15899.45 17399.36 24599.62 9699.34 9599.79 5398.41 22798.84 28298.89 33198.75 10799.84 22598.15 16999.51 25898.89 304
XVG-OURS99.21 13199.06 14299.65 10099.82 4499.62 9697.87 31699.74 7898.36 23399.66 11599.68 12499.71 999.90 12996.84 26599.88 10099.43 208
baseline99.63 3199.62 2699.66 9599.80 5699.62 9699.44 7899.80 4799.71 4499.72 9599.69 11399.15 5399.83 23699.32 5699.94 6299.53 158
APD-MVScopyleft98.87 20098.59 21299.71 8099.50 19899.62 9699.01 18999.57 17396.80 31799.54 16299.63 15198.29 16699.91 10895.24 32599.71 20199.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DP-MVS99.48 5499.39 6799.74 6299.57 16499.62 9699.29 11499.61 14499.87 1499.74 8999.76 7698.69 11299.87 17098.20 16199.80 15599.75 40
ACMH98.42 699.59 3799.54 4499.72 7699.86 3099.62 9699.56 6499.79 5398.77 19499.80 6099.85 3799.64 1399.85 20898.70 12999.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZD-MVS99.43 22699.61 10299.43 23796.38 32299.11 25499.07 30497.86 20299.92 9094.04 34199.49 262
OPM-MVS99.26 11299.13 11899.63 11199.70 11899.61 10298.58 24599.48 22098.50 21999.52 16999.63 15199.14 5599.76 28397.89 18799.77 17099.51 170
testtj98.56 23498.17 25799.72 7699.45 22299.60 10498.88 20999.50 21396.88 31299.18 24599.48 22497.08 24699.92 9093.69 34599.38 27799.63 95
Anonymous2024052999.42 6999.34 7799.65 10099.53 18199.60 10499.63 4699.39 25099.47 9499.76 7599.78 6698.13 18199.86 19098.70 12999.68 20999.49 181
Anonymous2023121199.62 3499.57 3999.76 4699.61 14699.60 10499.81 999.73 8199.82 2899.90 2299.90 2197.97 19499.86 19099.42 4399.96 4299.80 24
VPNet99.46 6199.37 7299.71 8099.82 4499.59 10799.48 7299.70 9799.81 2999.69 10599.58 18497.66 22099.86 19099.17 7999.44 26899.67 65
casdiffmvs99.63 3199.61 3099.67 8899.79 6699.59 10799.13 16599.85 2499.79 3499.76 7599.72 9399.33 3699.82 24699.21 6999.94 6299.59 128
PHI-MVS99.11 15798.95 17499.59 12799.13 29799.59 10799.17 14999.65 12697.88 27099.25 22999.46 23298.97 7599.80 26797.26 23999.82 14299.37 222
UniMVSNet (Re)99.37 8499.26 10099.68 8699.51 19199.58 11098.98 20099.60 15599.43 10699.70 10299.36 25297.70 21199.88 15799.20 7299.87 10999.59 128
XVG-ACMP-BASELINE99.23 11799.10 13399.63 11199.82 4499.58 11098.83 21899.72 9098.36 23399.60 14099.71 10098.92 8099.91 10897.08 25299.84 12399.40 214
114514_t98.49 24598.11 26099.64 10799.73 10499.58 11099.24 12899.76 6689.94 35799.42 19099.56 19597.76 21099.86 19097.74 20299.82 14299.47 191
UniMVSNet_NR-MVSNet99.37 8499.25 10299.72 7699.47 21499.56 11398.97 20299.61 14499.43 10699.67 11199.28 27197.85 20499.95 4599.17 7999.81 15099.65 83
DU-MVS99.33 9899.21 10699.71 8099.43 22699.56 11398.83 21899.53 19899.38 11099.67 11199.36 25297.67 21699.95 4599.17 7999.81 15099.63 95
CMPMVSbinary77.52 2398.50 24298.19 25599.41 18998.33 35199.56 11399.01 18999.59 16295.44 33599.57 14899.80 5495.64 27899.46 35596.47 28599.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet99.40 7699.31 8399.68 8699.43 22699.55 11699.73 1699.50 21399.46 9899.88 3299.36 25297.54 22499.87 17098.97 10399.87 10999.63 95
ACMP97.51 1499.05 16798.84 19099.67 8899.78 7299.55 11698.88 20999.66 11597.11 30999.47 17999.60 17699.07 6599.89 14396.18 29799.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETH3D-3000-0.198.77 20998.50 22499.59 12799.47 21499.53 11898.77 23199.60 15597.33 29899.23 23399.50 21697.91 19799.83 23695.02 32999.67 21699.41 212
SF-MVS99.10 16198.93 17599.62 12099.58 15499.51 11999.13 16599.65 12697.97 26499.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
Fast-Effi-MVS+99.02 17398.87 18699.46 16999.38 24099.50 12099.04 18499.79 5397.17 30598.62 30198.74 33999.34 3599.95 4598.32 15199.41 27498.92 302
test_part198.63 22498.26 24799.75 5699.40 23599.49 12199.67 3599.68 10699.86 1699.88 3299.86 3686.73 35299.93 7199.34 5199.97 3099.81 23
MCST-MVS99.02 17398.81 19499.65 10099.58 15499.49 12198.58 24599.07 30298.40 22999.04 26299.25 27898.51 14299.80 26797.31 23399.51 25899.65 83
wuyk23d97.58 29099.13 11892.93 34699.69 12199.49 12199.52 6699.77 6197.97 26499.96 899.79 6099.84 399.94 5795.85 31099.82 14279.36 361
QAPM98.40 25497.99 26599.65 10099.39 23799.47 12499.67 3599.52 20691.70 35498.78 29099.80 5498.55 13199.95 4594.71 33399.75 17599.53 158
HyFIR lowres test98.91 19298.64 20799.73 7099.85 3399.47 12498.07 29599.83 3298.64 20499.89 2699.60 17692.57 306100.00 199.33 5499.97 3099.72 43
F-COLMAP98.74 21498.45 22799.62 12099.57 16499.47 12498.84 21699.65 12696.31 32498.93 26999.19 29197.68 21599.87 17096.52 28199.37 28199.53 158
3Dnovator+98.92 399.35 8999.24 10399.67 8899.35 24799.47 12499.62 4799.50 21399.44 10199.12 25399.78 6698.77 10499.94 5797.87 19199.72 19799.62 106
V4299.56 4199.54 4499.63 11199.79 6699.46 12899.39 8499.59 16299.24 13099.86 3999.70 10798.55 13199.82 24699.79 1199.95 4999.60 119
CDPH-MVS98.56 23498.20 25299.61 12399.50 19899.46 12898.32 27299.41 24095.22 33899.21 23999.10 30298.34 16299.82 24695.09 32899.66 22099.56 142
K. test v398.87 20098.60 21099.69 8599.93 1399.46 12899.74 1594.97 35999.78 3599.88 3299.88 2893.66 29899.97 1799.61 1899.95 4999.64 90
DP-MVS Recon98.50 24298.23 24999.31 21599.49 20399.46 12898.56 25099.63 13494.86 34498.85 28199.37 24797.81 20699.59 34396.08 29999.44 26898.88 305
CSCG99.37 8499.29 9399.60 12599.71 11199.46 12899.43 8099.85 2498.79 19199.41 19899.60 17698.92 8099.92 9098.02 17599.92 7499.43 208
UnsupCasMVSNet_eth98.83 20398.57 21699.59 12799.68 13099.45 13398.99 19699.67 11199.48 8999.55 16099.36 25294.92 28399.86 19098.95 10996.57 35699.45 197
OpenMVS_ROBcopyleft97.31 1797.36 29796.84 30898.89 27299.29 27099.45 13398.87 21299.48 22086.54 36099.44 18499.74 8397.34 23499.86 19091.61 34999.28 29197.37 354
OPU-MVS99.29 21899.12 29999.44 13599.20 13899.40 24199.00 7198.84 36196.54 28099.60 23899.58 133
DeepC-MVS98.90 499.62 3499.61 3099.67 8899.72 10899.44 13599.24 12899.71 9399.27 12499.93 1499.90 2199.70 1199.93 7198.99 9999.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 19899.63 14299.44 13599.73 8198.56 21199.33 21599.53 20798.88 8799.68 31796.01 30299.65 22399.02 295
TAPA-MVS97.92 1398.03 27597.55 28999.46 16999.47 21499.44 13598.50 25899.62 13786.79 35899.07 26099.26 27698.26 16999.62 33797.28 23699.73 19199.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.99 18298.80 19699.56 14099.25 27899.43 13998.54 25499.27 27998.58 21098.80 28799.43 23798.53 13799.70 30097.22 24499.59 24099.54 153
test_040299.22 12699.14 11599.45 17399.79 6699.43 13999.28 11599.68 10699.54 8299.40 20399.56 19599.07 6599.82 24696.01 30299.96 4299.11 274
EPP-MVSNet99.17 14499.00 16199.66 9599.80 5699.43 13999.70 2299.24 28799.48 8999.56 15599.77 7394.89 28499.93 7198.72 12899.89 9299.63 95
WR-MVS99.11 15798.93 17599.66 9599.30 26899.42 14298.42 26699.37 25799.04 16199.57 14899.20 28996.89 25199.86 19098.66 13399.87 10999.70 49
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14299.45 7599.57 17399.66 6099.78 6899.83 4397.85 20499.86 19099.44 3699.96 4299.61 115
OMC-MVS98.90 19498.72 20099.44 17599.39 23799.42 14298.58 24599.64 13297.31 29999.44 18499.62 16098.59 12699.69 30696.17 29899.79 16099.22 251
3Dnovator99.15 299.43 6699.36 7599.65 10099.39 23799.42 14299.70 2299.56 17899.23 13299.35 20999.80 5499.17 5199.95 4598.21 16099.84 12399.59 128
pmmvs-eth3d99.48 5499.47 5399.51 15399.77 8099.41 14698.81 22399.66 11599.42 10899.75 8099.66 13499.20 4899.76 28398.98 10199.99 1299.36 225
v899.68 2399.69 1899.65 10099.80 5699.40 14799.66 3999.76 6699.64 6499.93 1499.85 3798.66 11899.84 22599.88 699.99 1299.71 46
SD-MVS99.01 17799.30 8898.15 30799.50 19899.40 14798.94 20699.61 14499.22 13599.75 8099.82 4999.54 2195.51 36597.48 22499.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D cwj APD-0.1698.50 24298.16 25899.51 15399.04 31299.39 14998.47 26099.47 22496.70 31998.78 29099.33 26197.62 22399.86 19094.69 33499.38 27799.28 242
v1099.69 2199.69 1899.66 9599.81 5199.39 14999.66 3999.75 7399.60 7899.92 1899.87 3198.75 10799.86 19099.90 299.99 1299.73 42
ab-mvs99.33 9899.28 9599.47 16599.57 16499.39 14999.78 1099.43 23798.87 18199.57 14899.82 4998.06 18699.87 17098.69 13199.73 19199.15 266
plane_prior799.58 15499.38 152
lessismore_v099.64 10799.86 3099.38 15290.66 36699.89 2699.83 4394.56 28999.97 1799.56 2599.92 7499.57 139
CPTT-MVS98.74 21498.44 22999.64 10799.61 14699.38 15299.18 14499.55 18496.49 32099.27 22799.37 24797.11 24599.92 9095.74 31599.67 21699.62 106
TSAR-MVS + MP.99.34 9499.24 10399.63 11199.82 4499.37 15599.26 12099.35 26198.77 19499.57 14899.70 10799.27 4499.88 15797.71 20499.75 17599.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test20.0399.55 4499.54 4499.58 13199.79 6699.37 15599.02 18799.89 1399.60 7899.82 5099.62 16098.81 9299.89 14399.43 3799.86 11699.47 191
UnsupCasMVSNet_bld98.55 23798.27 24699.40 19199.56 17499.37 15597.97 30899.68 10697.49 29099.08 25799.35 25795.41 28199.82 24697.70 20698.19 34099.01 296
agg_prior198.33 26197.92 27599.57 13699.35 24799.36 15897.99 30499.39 25094.85 34597.76 34498.98 31998.03 18799.85 20895.49 31999.44 26899.51 170
agg_prior99.35 24799.36 15899.39 25097.76 34499.85 208
VNet99.18 14099.06 14299.56 14099.24 28099.36 15899.33 9799.31 27099.67 5699.47 17999.57 19296.48 25999.84 22599.15 8399.30 28999.47 191
DELS-MVS99.34 9499.30 8899.48 16399.51 19199.36 15898.12 28899.53 19899.36 11399.41 19899.61 16999.22 4799.87 17099.21 6999.68 20999.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 24799.35 16298.11 29099.41 24094.83 34697.92 33598.99 31698.02 18999.85 208
train_agg98.35 25997.95 26999.57 13699.35 24799.35 16298.11 29099.41 24094.90 34297.92 33598.99 31698.02 18999.85 20895.38 32399.44 26899.50 176
FMVSNet299.35 8999.28 9599.55 14399.49 20399.35 16299.45 7599.57 17399.44 10199.70 10299.74 8397.21 23999.87 17099.03 9699.94 6299.44 202
test1299.54 14799.29 27099.33 16599.16 29798.43 31497.54 22499.82 24699.47 26599.48 186
EG-PatchMatch MVS99.57 3899.56 4399.62 12099.77 8099.33 16599.26 12099.76 6699.32 11899.80 6099.78 6699.29 3999.87 17099.15 8399.91 8399.66 75
MVS_111021_LR99.13 15199.03 15499.42 18199.58 15499.32 16797.91 31599.73 8198.68 20199.31 22199.48 22499.09 6099.66 32697.70 20699.77 17099.29 240
test_899.34 25799.31 16898.08 29499.40 24794.90 34297.87 33998.97 32298.02 18999.84 225
plane_prior399.31 16898.36 23399.14 250
NCCC98.82 20598.57 21699.58 13199.21 28499.31 16898.61 24199.25 28498.65 20398.43 31499.26 27697.86 20299.81 26296.55 27999.27 29499.61 115
旧先验199.49 20399.29 17199.26 28199.39 24597.67 21699.36 28299.46 195
1112_ss99.05 16798.84 19099.67 8899.66 13699.29 17198.52 25699.82 3797.65 28199.43 18899.16 29296.42 26299.91 10899.07 9499.84 12399.80 24
ETV-MVS99.18 14099.18 10999.16 23899.34 25799.28 17399.12 16999.79 5399.48 8998.93 26998.55 34699.40 2399.93 7198.51 13999.52 25798.28 336
v114499.54 4699.53 4999.59 12799.79 6699.28 17399.10 17299.61 14499.20 13699.84 4399.73 8798.67 11699.84 22599.86 899.98 2199.64 90
PatchMatch-RL98.68 22198.47 22599.30 21799.44 22499.28 17398.14 28699.54 18997.12 30899.11 25499.25 27897.80 20799.70 30096.51 28299.30 28998.93 301
LF4IMVS99.01 17798.92 17999.27 22299.71 11199.28 17398.59 24499.77 6198.32 24499.39 20499.41 23998.62 12299.84 22596.62 27899.84 12398.69 315
ETH3 D test640097.76 28397.19 29899.50 15699.38 24099.26 17798.34 26999.49 21892.99 35198.54 30899.20 28995.92 27699.82 24691.14 35299.66 22099.40 214
plane_prior699.47 21499.26 17797.24 237
API-MVS98.38 25598.39 23498.35 29998.83 32999.26 17799.14 15999.18 29598.59 20998.66 29998.78 33798.61 12499.57 34594.14 33999.56 24396.21 358
OpenMVScopyleft98.12 1098.23 26797.89 27999.26 22499.19 28999.26 17799.65 4499.69 10391.33 35598.14 32899.77 7398.28 16799.96 3595.41 32299.55 24798.58 322
xxxxxxxxxxxxxcwj99.11 15798.96 17299.54 14799.53 18199.25 18198.29 27499.76 6699.07 15699.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
save fliter99.53 18199.25 18198.29 27499.38 25699.07 156
v2v48299.50 5099.47 5399.58 13199.78 7299.25 18199.14 15999.58 17199.25 12899.81 5799.62 16098.24 17099.84 22599.83 999.97 3099.64 90
CHOSEN 1792x268899.39 8099.30 8899.65 10099.88 2499.25 18198.78 23099.88 1698.66 20299.96 899.79 6097.45 22799.93 7199.34 5199.99 1299.78 32
IS-MVSNet99.03 17198.85 18899.55 14399.80 5699.25 18199.73 1699.15 29899.37 11199.61 13899.71 10094.73 28799.81 26297.70 20699.88 10099.58 133
112198.56 23498.24 24899.52 15099.49 20399.24 18699.30 10799.22 28995.77 33198.52 30999.29 26997.39 23199.85 20895.79 31399.34 28499.46 195
HQP_MVS98.90 19498.68 20699.55 14399.58 15499.24 18698.80 22699.54 18998.94 17099.14 25099.25 27897.24 23799.82 24695.84 31199.78 16699.60 119
plane_prior99.24 18698.42 26697.87 27199.71 201
PLCcopyleft97.35 1698.36 25697.99 26599.48 16399.32 26399.24 18698.50 25899.51 20995.19 34098.58 30598.96 32496.95 25099.83 23695.63 31699.25 29599.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119299.57 3899.57 3999.57 13699.77 8099.22 19099.04 18499.60 15599.18 13899.87 3899.72 9399.08 6399.85 20899.89 599.98 2199.66 75
test_prior398.62 22598.34 24099.46 16999.35 24799.22 19097.95 30999.39 25097.87 27198.05 33099.05 30697.90 19899.69 30695.99 30499.49 26299.48 186
test_prior99.46 16999.35 24799.22 19099.39 25099.69 30699.48 186
新几何199.52 15099.50 19899.22 19099.26 28195.66 33498.60 30399.28 27197.67 21699.89 14395.95 30899.32 28799.45 197
DeepC-MVS_fast98.47 599.23 11799.12 12299.56 14099.28 27399.22 19098.99 19699.40 24799.08 15499.58 14599.64 14198.90 8599.83 23697.44 22699.75 17599.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary98.60 22898.35 23999.38 19899.12 29999.22 19098.67 24099.42 23997.84 27598.81 28599.27 27397.32 23599.81 26295.14 32699.53 25599.10 276
v14419299.55 4499.54 4499.58 13199.78 7299.20 19699.11 17199.62 13799.18 13899.89 2699.72 9398.66 11899.87 17099.88 699.97 3099.66 75
test_prior499.19 19798.00 302
Patchmtry98.78 20898.54 22099.49 15998.89 32399.19 19799.32 10099.67 11199.65 6299.72 9599.79 6091.87 31599.95 4598.00 17999.97 3099.33 231
TSAR-MVS + GP.99.12 15399.04 15299.38 19899.34 25799.16 19998.15 28499.29 27598.18 25399.63 12599.62 16099.18 5099.68 31798.20 16199.74 18499.30 237
PCF-MVS96.03 1896.73 31095.86 32199.33 20899.44 22499.16 19996.87 35299.44 23386.58 35998.95 26799.40 24194.38 29099.88 15787.93 35799.80 15598.95 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Test_1112_low_res98.95 18998.73 19999.63 11199.68 13099.15 20198.09 29299.80 4797.14 30799.46 18299.40 24196.11 27299.89 14399.01 9899.84 12399.84 14
NP-MVS99.40 23599.13 20298.83 334
MSDG99.08 16298.98 16999.37 20199.60 14899.13 20297.54 32999.74 7898.84 18699.53 16799.55 20299.10 5899.79 27097.07 25399.86 11699.18 260
DPM-MVS98.28 26297.94 27399.32 21299.36 24599.11 20497.31 34198.78 31696.88 31298.84 28299.11 30197.77 20999.61 34194.03 34299.36 28299.23 249
v192192099.56 4199.57 3999.55 14399.75 9599.11 20499.05 18299.61 14499.15 14799.88 3299.71 10099.08 6399.87 17099.90 299.97 3099.66 75
CDS-MVSNet99.22 12699.13 11899.50 15699.35 24799.11 20498.96 20399.54 18999.46 9899.61 13899.70 10796.31 26799.83 23699.34 5199.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_HR99.12 15399.02 15599.40 19199.50 19899.11 20497.92 31399.71 9398.76 19799.08 25799.47 22999.17 5199.54 34697.85 19499.76 17299.54 153
Regformer-299.34 9499.27 9899.53 14999.41 23299.10 20898.99 19699.53 19899.47 9499.66 11599.52 20998.80 9699.89 14398.31 15299.74 18499.60 119
pmmvs499.13 15199.06 14299.36 20499.57 16499.10 20898.01 30099.25 28498.78 19399.58 14599.44 23698.24 17099.76 28398.74 12699.93 7099.22 251
CNLPA98.57 23398.34 24099.28 22099.18 29199.10 20898.34 26999.41 24098.48 22298.52 30998.98 31997.05 24799.78 27395.59 31799.50 26098.96 298
test22299.51 19199.08 21197.83 31899.29 27595.21 33998.68 29899.31 26497.28 23699.38 27799.43 208
MVP-Stereo99.16 14599.08 13699.43 17999.48 20999.07 21299.08 17999.55 18498.63 20599.31 22199.68 12498.19 17799.78 27398.18 16599.58 24199.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test98.60 22898.36 23799.33 20899.77 8099.07 21298.27 27699.87 1898.91 17699.74 8999.72 9390.57 33299.79 27098.55 13799.85 11999.11 274
Anonymous2023120699.35 8999.31 8399.47 16599.74 10199.06 21499.28 11599.74 7899.23 13299.72 9599.53 20797.63 22299.88 15799.11 9199.84 12399.48 186
v124099.56 4199.58 3699.51 15399.80 5699.00 21599.00 19199.65 12699.15 14799.90 2299.75 8099.09 6099.88 15799.90 299.96 4299.67 65
PMMVS299.48 5499.45 5799.57 13699.76 8498.99 21698.09 29299.90 1298.95 16999.78 6899.58 18499.57 2099.93 7199.48 3399.95 4999.79 30
Effi-MVS+99.06 16498.97 17099.34 20699.31 26498.98 21798.31 27399.91 998.81 18898.79 28898.94 32699.14 5599.84 22598.79 12098.74 32399.20 256
VDD-MVS99.20 13399.11 12599.44 17599.43 22698.98 21799.50 6898.32 33599.80 3299.56 15599.69 11396.99 24999.85 20898.99 9999.73 19199.50 176
FMVSNet597.80 28197.25 29599.42 18198.83 32998.97 21999.38 8699.80 4798.87 18199.25 22999.69 11380.60 36499.91 10898.96 10599.90 8499.38 219
CLD-MVS98.76 21198.57 21699.33 20899.57 16498.97 21997.53 33199.55 18496.41 32199.27 22799.13 29499.07 6599.78 27396.73 27199.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052199.44 6599.42 6499.49 15999.89 2198.96 22199.62 4799.76 6699.85 2099.82 5099.88 2896.39 26599.97 1799.59 2099.98 2199.55 145
Regformer-199.32 10099.27 9899.47 16599.41 23298.95 22298.99 19699.48 22099.48 8999.66 11599.52 20998.78 10199.87 17098.36 14699.74 18499.60 119
v14899.40 7699.41 6599.39 19499.76 8498.94 22399.09 17699.59 16299.17 14199.81 5799.61 16998.41 15299.69 30699.32 5699.94 6299.53 158
Regformer-499.45 6399.44 5999.50 15699.52 18698.94 22399.17 14999.53 19899.64 6499.76 7599.60 17698.96 7899.90 12998.91 11299.84 12399.67 65
HQP5-MVS98.94 223
HQP-MVS98.36 25698.02 26499.39 19499.31 26498.94 22397.98 30599.37 25797.45 29198.15 32498.83 33496.67 25499.70 30094.73 33199.67 21699.53 158
alignmvs98.28 26297.96 26899.25 22799.12 29998.93 22799.03 18698.42 33199.64 6498.72 29597.85 35890.86 32899.62 33798.88 11499.13 30099.19 258
testdata99.42 18199.51 19198.93 22799.30 27396.20 32598.87 27999.40 24198.33 16499.89 14396.29 29299.28 29199.44 202
PAPM_NR98.36 25698.04 26399.33 20899.48 20998.93 22798.79 22999.28 27897.54 28698.56 30798.57 34497.12 24499.69 30694.09 34098.90 31499.38 219
MVS_030498.88 19898.71 20199.39 19498.85 32798.91 23099.45 7599.30 27398.56 21197.26 35099.68 12496.18 27199.96 3599.17 7999.94 6299.29 240
UGNet99.38 8299.34 7799.49 15998.90 32098.90 23199.70 2299.35 26199.86 1698.57 30699.81 5298.50 14399.93 7199.38 4699.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs599.19 13699.11 12599.42 18199.76 8498.88 23298.55 25199.73 8198.82 18799.72 9599.62 16096.56 25699.82 24699.32 5699.95 4999.56 142
Vis-MVSNet (Re-imp)98.77 20998.58 21599.34 20699.78 7298.88 23299.61 5399.56 17899.11 15399.24 23299.56 19593.00 30499.78 27397.43 22799.89 9299.35 228
原ACMM199.37 20199.47 21498.87 23499.27 27996.74 31898.26 31999.32 26297.93 19699.82 24695.96 30799.38 27799.43 208
VDDNet98.97 18398.82 19399.42 18199.71 11198.81 23599.62 4798.68 31999.81 2999.38 20599.80 5494.25 29199.85 20898.79 12099.32 28799.59 128
testgi99.29 10599.26 10099.37 20199.75 9598.81 23598.84 21699.89 1398.38 23199.75 8099.04 30999.36 3499.86 19099.08 9399.25 29599.45 197
MVS_Test99.28 10699.31 8399.19 23599.35 24798.79 23799.36 9399.49 21899.17 14199.21 23999.67 13098.78 10199.66 32699.09 9299.66 22099.10 276
diffmvs99.34 9499.32 8299.39 19499.67 13598.77 23898.57 24999.81 4699.61 7299.48 17799.41 23998.47 14499.86 19098.97 10399.90 8499.53 158
D2MVS99.22 12699.19 10899.29 21899.69 12198.74 23998.81 22399.41 24098.55 21399.68 10799.69 11398.13 18199.87 17098.82 11899.98 2199.24 246
FMVSNet398.80 20798.63 20999.32 21299.13 29798.72 24099.10 17299.48 22099.23 13299.62 13299.64 14192.57 30699.86 19098.96 10599.90 8499.39 217
canonicalmvs99.02 17399.00 16199.09 24699.10 30598.70 24199.61 5399.66 11599.63 6798.64 30097.65 36099.04 6999.54 34698.79 12098.92 31299.04 290
Regformer-399.41 7399.41 6599.40 19199.52 18698.70 24199.17 14999.44 23399.62 6899.75 8099.60 17698.90 8599.85 20898.89 11399.84 12399.65 83
hse-mvs398.61 22698.34 24099.44 17599.60 14898.67 24399.27 11899.44 23399.68 5299.32 21799.49 22192.50 309100.00 199.24 6696.51 35799.65 83
N_pmnet98.73 21698.53 22299.35 20599.72 10898.67 24398.34 26994.65 36098.35 23899.79 6599.68 12498.03 18799.93 7198.28 15499.92 7499.44 202
CL-MVSNet_2432*160098.71 21898.56 21999.15 24099.22 28298.66 24597.14 34699.51 20998.09 25799.54 16299.27 27396.87 25299.74 28998.43 14298.96 30999.03 291
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16498.66 24599.24 12899.46 22899.67 5699.79 6599.65 13998.97 7599.89 14399.15 8399.89 9299.71 46
PVSNet_Blended_VisFu99.40 7699.38 6999.44 17599.90 1998.66 24598.94 20699.91 997.97 26499.79 6599.73 8799.05 6899.97 1799.15 8399.99 1299.68 58
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16498.65 24899.24 12899.46 22899.68 5299.80 6099.66 13498.99 7299.89 14399.19 7499.90 8499.72 43
RRT_MVS98.75 21298.54 22099.41 18998.14 35898.61 24998.98 20099.66 11599.31 11999.84 4399.75 8091.98 31299.98 799.20 7299.95 4999.62 106
hse-mvs298.52 24098.30 24499.16 23899.29 27098.60 25098.77 23199.02 30699.68 5299.32 21799.04 30992.50 30999.85 20899.24 6697.87 34899.03 291
CANet99.11 15799.05 14699.28 22098.83 32998.56 25198.71 23999.41 24099.25 12899.23 23399.22 28597.66 22099.94 5799.19 7499.97 3099.33 231
AUN-MVS97.82 28097.38 29199.14 24199.27 27598.53 25298.72 23799.02 30698.10 25597.18 35299.03 31389.26 34199.85 20897.94 18497.91 34699.03 291
ambc99.20 23499.35 24798.53 25299.17 14999.46 22899.67 11199.80 5498.46 14799.70 30097.92 18599.70 20399.38 219
bset_n11_16_dypcd98.69 22098.45 22799.42 18199.69 12198.52 25496.06 35796.80 35299.71 4499.73 9399.54 20495.14 28299.96 3599.39 4599.95 4999.79 30
LFMVS98.46 24898.19 25599.26 22499.24 28098.52 25499.62 4796.94 35199.87 1499.31 22199.58 18491.04 32399.81 26298.68 13299.42 27399.45 197
test_yl98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
DCV-MVSNet98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
BH-RMVSNet98.41 25298.14 25999.21 23299.21 28498.47 25698.60 24398.26 33698.35 23898.93 26999.31 26497.20 24299.66 32694.32 33699.10 30299.51 170
jason99.16 14599.11 12599.32 21299.75 9598.44 25998.26 27799.39 25098.70 20099.74 8999.30 26698.54 13399.97 1798.48 14099.82 14299.55 145
jason: jason.
sss98.90 19498.77 19899.27 22299.48 20998.44 25998.72 23799.32 26697.94 26899.37 20699.35 25796.31 26799.91 10898.85 11599.63 22799.47 191
PMMVS98.49 24598.29 24599.11 24498.96 31798.42 26197.54 32999.32 26697.53 28798.47 31398.15 35597.88 20199.82 24697.46 22599.24 29799.09 279
MVSFormer99.41 7399.44 5999.31 21599.57 16498.40 26299.77 1199.80 4799.73 4099.63 12599.30 26698.02 18999.98 799.43 3799.69 20699.55 145
lupinMVS98.96 18698.87 18699.24 22999.57 16498.40 26298.12 28899.18 29598.28 24699.63 12599.13 29498.02 18999.97 1798.22 15999.69 20699.35 228
WTY-MVS98.59 23198.37 23699.26 22499.43 22698.40 26298.74 23499.13 30198.10 25599.21 23999.24 28394.82 28599.90 12997.86 19298.77 31999.49 181
MIMVSNet98.43 25098.20 25299.11 24499.53 18198.38 26599.58 6198.61 32398.96 16899.33 21599.76 7690.92 32599.81 26297.38 23099.76 17299.15 266
MSLP-MVS++99.05 16799.09 13498.91 26599.21 28498.36 26698.82 22299.47 22498.85 18398.90 27599.56 19598.78 10199.09 35998.57 13699.68 20999.26 243
MVSTER98.47 24798.22 25099.24 22999.06 30998.35 26799.08 17999.46 22899.27 12499.75 8099.66 13488.61 34299.85 20899.14 8999.92 7499.52 168
PatchT98.45 24998.32 24398.83 27798.94 31898.29 26899.24 12898.82 31499.84 2399.08 25799.76 7691.37 31899.94 5798.82 11899.00 30898.26 337
HY-MVS98.23 998.21 26997.95 26998.99 25599.03 31398.24 26999.61 5398.72 31896.81 31698.73 29499.51 21394.06 29299.86 19096.91 25998.20 33898.86 307
xiu_mvs_v1_base_debu99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base_debi99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
MS-PatchMatch99.00 17998.97 17099.09 24699.11 30498.19 27398.76 23399.33 26498.49 22199.44 18499.58 18498.21 17499.69 30698.20 16199.62 22899.39 217
TinyColmap98.97 18398.93 17599.07 25099.46 21998.19 27397.75 32099.75 7398.79 19199.54 16299.70 10798.97 7599.62 33796.63 27799.83 13399.41 212
FPMVS96.32 31895.50 32698.79 28199.60 14898.17 27598.46 26598.80 31597.16 30696.28 35599.63 15182.19 36099.09 35988.45 35698.89 31599.10 276
CANet_DTU98.91 19298.85 18899.09 24698.79 33598.13 27698.18 28199.31 27099.48 8998.86 28099.51 21396.56 25699.95 4599.05 9599.95 4999.19 258
CR-MVSNet98.35 25998.20 25298.83 27799.05 31098.12 27799.30 10799.67 11197.39 29599.16 24699.79 6091.87 31599.91 10898.78 12398.77 31998.44 331
RPMNet98.60 22898.53 22298.83 27799.05 31098.12 27799.30 10799.62 13799.86 1699.16 24699.74 8392.53 30899.92 9098.75 12598.77 31998.44 331
PAPR97.56 29197.07 30099.04 25398.80 33498.11 27997.63 32599.25 28494.56 34898.02 33398.25 35497.43 22899.68 31790.90 35398.74 32399.33 231
PS-MVSNAJ99.00 17999.08 13698.76 28399.37 24398.10 28098.00 30299.51 20999.47 9499.41 19898.50 34999.28 4199.97 1798.83 11699.34 28498.20 342
xiu_mvs_v2_base99.02 17399.11 12598.77 28299.37 24398.09 28198.13 28799.51 20999.47 9499.42 19098.54 34799.38 2999.97 1798.83 11699.33 28698.24 338
EI-MVSNet99.38 8299.44 5999.21 23299.58 15498.09 28199.26 12099.46 22899.62 6899.75 8099.67 13098.54 13399.85 20899.15 8399.92 7499.68 58
IterMVS-LS99.41 7399.47 5399.25 22799.81 5198.09 28198.85 21599.76 6699.62 6899.83 4899.64 14198.54 13399.97 1799.15 8399.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.99 27897.68 28698.93 26299.52 18698.04 28497.19 34599.05 30598.32 24498.81 28598.97 32289.89 33999.41 35698.33 15099.05 30499.34 230
EPNet98.13 27097.77 28399.18 23794.57 36697.99 28599.24 12897.96 33999.74 3997.29 34999.62 16093.13 30299.97 1798.59 13599.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS99.03 17199.01 15899.09 24699.54 17697.99 28598.58 24599.82 3797.62 28299.34 21299.71 10098.52 14099.77 28197.98 18099.97 3099.52 168
PVSNet_Blended98.70 21998.59 21299.02 25499.54 17697.99 28597.58 32899.82 3795.70 33399.34 21298.98 31998.52 14099.77 28197.98 18099.83 13399.30 237
USDC98.96 18698.93 17599.05 25299.54 17697.99 28597.07 34999.80 4798.21 25099.75 8099.77 7398.43 14999.64 33597.90 18699.88 10099.51 170
PMVScopyleft92.94 2198.82 20598.81 19498.85 27399.84 3497.99 28599.20 13899.47 22499.71 4499.42 19099.82 4998.09 18399.47 35393.88 34499.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS95.72 33094.63 33498.99 25598.56 34597.98 29099.30 10798.86 31172.71 36397.30 34899.08 30398.34 16299.74 28989.21 35498.33 33599.26 243
ET-MVSNet_ETH3D96.78 30896.07 31798.91 26599.26 27797.92 29197.70 32396.05 35697.96 26792.37 36498.43 35087.06 34699.90 12998.27 15597.56 35198.91 303
MDA-MVSNet-bldmvs99.06 16499.05 14699.07 25099.80 5697.83 29298.89 20899.72 9099.29 12099.63 12599.70 10796.47 26099.89 14398.17 16799.82 14299.50 176
mvs_anonymous99.28 10699.39 6798.94 25999.19 28997.81 29399.02 18799.55 18499.78 3599.85 4099.80 5498.24 17099.86 19099.57 2499.50 26099.15 266
cl-mvsnet____98.54 23898.41 23298.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.85 29599.78 27397.97 18299.89 9299.17 262
cl-mvsnet198.54 23898.42 23198.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.87 29499.78 27397.97 18299.89 9299.18 260
thisisatest053097.45 29396.95 30498.94 25999.68 13097.73 29699.09 17694.19 36398.61 20899.56 15599.30 26684.30 35999.93 7198.27 15599.54 25399.16 264
baseline197.73 28497.33 29298.96 25799.30 26897.73 29699.40 8298.42 33199.33 11799.46 18299.21 28791.18 32199.82 24698.35 14891.26 36299.32 234
pmmvs398.08 27397.80 28098.91 26599.41 23297.69 29897.87 31699.66 11595.87 32999.50 17599.51 21390.35 33499.97 1798.55 13799.47 26599.08 282
new_pmnet98.88 19898.89 18498.84 27599.70 11897.62 29998.15 28499.50 21397.98 26399.62 13299.54 20498.15 18099.94 5797.55 21999.84 12398.95 299
test0.0.03 197.37 29696.91 30798.74 28497.72 35997.57 30097.60 32797.36 35098.00 26099.21 23998.02 35690.04 33799.79 27098.37 14595.89 36098.86 307
MVEpermissive92.54 2296.66 31296.11 31698.31 30399.68 13097.55 30197.94 31195.60 35899.37 11190.68 36598.70 34096.56 25698.61 36386.94 36299.55 24798.77 313
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thisisatest051596.98 30496.42 31198.66 28899.42 23197.47 30297.27 34294.30 36297.24 30199.15 24898.86 33385.01 35699.87 17097.10 25199.39 27698.63 317
TR-MVS97.44 29497.15 29998.32 30198.53 34697.46 30398.47 26097.91 34196.85 31498.21 32398.51 34896.42 26299.51 35192.16 34897.29 35297.98 347
131498.00 27797.90 27898.27 30598.90 32097.45 30499.30 10799.06 30494.98 34197.21 35199.12 29998.43 14999.67 32295.58 31898.56 33097.71 350
tttt051797.62 28897.20 29798.90 27199.76 8497.40 30599.48 7294.36 36199.06 16099.70 10299.49 22184.55 35899.94 5798.73 12799.65 22399.36 225
MG-MVS98.52 24098.39 23498.94 25999.15 29497.39 30698.18 28199.21 29398.89 18099.23 23399.63 15197.37 23399.74 28994.22 33899.61 23599.69 52
miper_lstm_enhance98.65 22398.60 21098.82 28099.20 28797.33 30797.78 31999.66 11599.01 16299.59 14399.50 21694.62 28899.85 20898.12 17099.90 8499.26 243
DSMNet-mixed99.48 5499.65 2398.95 25899.71 11197.27 30899.50 6899.82 3799.59 8099.41 19899.85 3799.62 16100.00 199.53 2899.89 9299.59 128
BH-untuned98.22 26898.09 26198.58 29199.38 24097.24 30998.55 25198.98 30997.81 27699.20 24498.76 33897.01 24899.65 33394.83 33098.33 33598.86 307
cl_fuxian98.72 21798.71 20198.72 28599.12 29997.22 31097.68 32499.56 17898.90 17799.54 16299.48 22496.37 26699.73 29297.88 18899.88 10099.21 253
MDA-MVSNet_test_wron98.95 18998.99 16698.85 27399.64 14097.16 31198.23 27999.33 26498.93 17399.56 15599.66 13497.39 23199.83 23698.29 15399.88 10099.55 145
YYNet198.95 18998.99 16698.84 27599.64 14097.14 31298.22 28099.32 26698.92 17599.59 14399.66 13497.40 22999.83 23698.27 15599.90 8499.55 145
miper_ehance_all_eth98.59 23198.59 21298.59 29098.98 31697.07 31397.49 33499.52 20698.50 21999.52 16999.37 24796.41 26499.71 29897.86 19299.62 22899.00 297
JIA-IIPM98.06 27497.92 27598.50 29398.59 34497.02 31498.80 22698.51 32799.88 1397.89 33799.87 3191.89 31499.90 12998.16 16897.68 35098.59 320
gg-mvs-nofinetune95.87 32795.17 33197.97 31198.19 35496.95 31599.69 2889.23 36899.89 1196.24 35799.94 1281.19 36199.51 35193.99 34398.20 33897.44 352
DeepMVS_CXcopyleft97.98 31099.69 12196.95 31599.26 28175.51 36295.74 36098.28 35396.47 26099.62 33791.23 35197.89 34797.38 353
baseline296.83 30796.28 31398.46 29599.09 30796.91 31798.83 21893.87 36497.23 30296.23 35898.36 35188.12 34399.90 12996.68 27398.14 34298.57 323
GG-mvs-BLEND97.36 32797.59 36096.87 31899.70 2288.49 36994.64 36397.26 36680.66 36399.12 35891.50 35096.50 35896.08 360
eth_miper_zixun_eth98.68 22198.71 20198.60 28999.10 30596.84 31997.52 33399.54 18998.94 17099.58 14599.48 22496.25 26999.76 28398.01 17899.93 7099.21 253
cl-mvsnet297.56 29197.28 29398.40 29798.37 35096.75 32097.24 34499.37 25797.31 29999.41 19899.22 28587.30 34499.37 35797.70 20699.62 22899.08 282
PAPM95.61 33194.71 33398.31 30399.12 29996.63 32196.66 35598.46 33090.77 35696.25 35698.68 34193.01 30399.69 30681.60 36397.86 34998.62 318
new-patchmatchnet99.35 8999.57 3998.71 28799.82 4496.62 32298.55 25199.75 7399.50 8799.88 3299.87 3199.31 3799.88 15799.43 37100.00 199.62 106
Patchmatch-test98.10 27297.98 26798.48 29499.27 27596.48 32399.40 8299.07 30298.81 18899.23 23399.57 19290.11 33699.87 17096.69 27299.64 22599.09 279
EU-MVSNet99.39 8099.62 2698.72 28599.88 2496.44 32499.56 6499.85 2499.90 799.90 2299.85 3798.09 18399.83 23699.58 2399.95 4999.90 4
miper_enhance_ethall98.03 27597.94 27398.32 30198.27 35296.43 32596.95 35099.41 24096.37 32399.43 18898.96 32494.74 28699.69 30697.71 20499.62 22898.83 310
PVSNet97.47 1598.42 25198.44 22998.35 29999.46 21996.26 32696.70 35499.34 26397.68 28099.00 26499.13 29497.40 22999.72 29497.59 21899.68 20999.08 282
thres20096.09 32295.68 32597.33 32999.48 20996.22 32798.53 25597.57 34598.06 25998.37 31696.73 36986.84 35199.61 34186.99 36198.57 32996.16 359
tfpn200view996.30 31995.89 31997.53 32299.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33296.81 356
thres40096.40 31595.89 31997.92 31399.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33297.98 347
thres600view796.60 31396.16 31597.93 31299.63 14296.09 33099.18 14497.57 34598.77 19498.72 29597.32 36487.04 34799.72 29488.57 35598.62 32897.98 347
thres100view90096.39 31696.03 31897.47 32499.63 14295.93 33199.18 14497.57 34598.75 19898.70 29797.31 36587.04 34799.67 32287.62 35898.51 33296.81 356
IterMVS-SCA-FT99.00 17999.16 11198.51 29299.75 9595.90 33298.07 29599.84 3099.84 2399.89 2699.73 8796.01 27499.99 599.33 54100.00 199.63 95
CHOSEN 280x42098.41 25298.41 23298.40 29799.34 25795.89 33396.94 35199.44 23398.80 19099.25 22999.52 20993.51 29999.98 798.94 11099.98 2199.32 234
BH-w/o97.20 29997.01 30297.76 31799.08 30895.69 33498.03 29998.52 32695.76 33297.96 33498.02 35695.62 27999.47 35392.82 34797.25 35398.12 344
cascas96.99 30396.82 30997.48 32397.57 36295.64 33596.43 35699.56 17891.75 35397.13 35397.61 36195.58 28098.63 36296.68 27399.11 30198.18 343
IterMVS98.97 18399.16 11198.42 29699.74 10195.64 33598.06 29799.83 3299.83 2699.85 4099.74 8396.10 27399.99 599.27 65100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet297.78 28297.66 28898.12 30999.14 29595.36 33799.22 13598.75 31796.97 31098.25 32099.64 14190.90 32699.94 5796.51 28299.56 24399.08 282
IB-MVS95.41 2095.30 33294.46 33597.84 31598.76 33995.33 33897.33 34096.07 35596.02 32795.37 36297.41 36376.17 37099.96 3597.54 22095.44 36198.22 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test98.89 19799.12 12298.20 30699.66 13695.24 33997.63 32599.68 10699.08 15499.78 6899.62 16098.65 12099.88 15798.02 17599.96 4299.48 186
test-LLR97.15 30096.95 30497.74 31998.18 35595.02 34097.38 33796.10 35398.00 26097.81 34198.58 34290.04 33799.91 10897.69 21298.78 31798.31 334
test-mter96.23 32195.73 32497.74 31998.18 35595.02 34097.38 33796.10 35397.90 26997.81 34198.58 34279.12 36899.91 10897.69 21298.78 31798.31 334
our_test_398.85 20299.09 13498.13 30899.66 13694.90 34297.72 32199.58 17199.07 15699.64 12199.62 16098.19 17799.93 7198.41 14399.95 4999.55 145
ADS-MVSNet97.72 28697.67 28797.86 31499.14 29594.65 34399.22 13598.86 31196.97 31098.25 32099.64 14190.90 32699.84 22596.51 28299.56 24399.08 282
tmp_tt95.75 32995.42 32796.76 33589.90 36894.42 34498.86 21397.87 34278.01 36199.30 22599.69 11397.70 21195.89 36499.29 6298.14 34299.95 1
tpm97.15 30096.95 30497.75 31898.91 31994.24 34599.32 10097.96 33997.71 27998.29 31799.32 26286.72 35399.92 9098.10 17396.24 35999.09 279
KD-MVS_2432*160095.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
miper_refine_blended95.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
TESTMET0.1,196.24 32095.84 32297.41 32698.24 35393.84 34897.38 33795.84 35798.43 22497.81 34198.56 34579.77 36599.89 14397.77 19998.77 31998.52 325
CVMVSNet98.61 22698.88 18597.80 31699.58 15493.60 34999.26 12099.64 13299.66 6099.72 9599.67 13093.26 30099.93 7199.30 5999.81 15099.87 9
PVSNet_095.53 1995.85 32895.31 33097.47 32498.78 33793.48 35095.72 35899.40 24796.18 32697.37 34797.73 35995.73 27799.58 34495.49 31981.40 36399.36 225
RRT_test8_iter0597.35 29897.25 29597.63 32198.81 33393.13 35199.26 12099.89 1399.51 8699.83 4899.68 12479.03 36999.88 15799.53 2899.72 19799.89 8
SCA98.11 27198.36 23797.36 32799.20 28792.99 35298.17 28398.49 32998.24 24899.10 25699.57 19296.01 27499.94 5796.86 26299.62 22899.14 270
EPMVS96.53 31496.32 31297.17 33398.18 35592.97 35399.39 8489.95 36798.21 25098.61 30299.59 18286.69 35499.72 29496.99 25599.23 29998.81 311
PatchmatchNetpermissive97.65 28797.80 28097.18 33298.82 33292.49 35499.17 14998.39 33398.12 25498.79 28899.58 18490.71 33099.89 14397.23 24399.41 27499.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 28897.79 28297.11 33496.67 36392.31 35598.51 25798.04 33799.24 13095.77 35999.47 22993.78 29799.66 32698.98 10199.62 22899.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpmrst97.73 28498.07 26296.73 33798.71 34192.00 35699.10 17298.86 31198.52 21798.92 27299.54 20491.90 31399.82 24698.02 17599.03 30698.37 333
DWT-MVSNet_test96.03 32495.80 32396.71 33998.50 34791.93 35799.25 12797.87 34295.99 32896.81 35497.61 36181.02 36299.66 32697.20 24697.98 34598.54 324
tpmvs97.39 29597.69 28596.52 34098.41 34891.76 35899.30 10798.94 31097.74 27797.85 34099.55 20292.40 31199.73 29296.25 29498.73 32598.06 345
tpm296.35 31796.22 31496.73 33798.88 32691.75 35999.21 13798.51 32793.27 35097.89 33799.21 28784.83 35799.70 30096.04 30198.18 34198.75 314
E-PMN97.14 30297.43 29096.27 34298.79 33591.62 36095.54 35999.01 30899.44 10198.88 27699.12 29992.78 30599.68 31794.30 33799.03 30697.50 351
MVS-HIRNet97.86 27998.22 25096.76 33599.28 27391.53 36198.38 26892.60 36599.13 14999.31 22199.96 1097.18 24399.68 31798.34 14999.83 13399.07 287
MDTV_nov1_ep13_2view91.44 36299.14 15997.37 29699.21 23991.78 31796.75 26999.03 291
EMVS96.96 30597.28 29395.99 34598.76 33991.03 36395.26 36098.61 32399.34 11498.92 27298.88 33293.79 29699.66 32692.87 34699.05 30497.30 355
MDTV_nov1_ep1397.73 28498.70 34290.83 36499.15 15798.02 33898.51 21898.82 28499.61 16990.98 32499.66 32696.89 26198.92 312
CostFormer96.71 31196.79 31096.46 34198.90 32090.71 36599.41 8198.68 31994.69 34798.14 32899.34 26086.32 35599.80 26797.60 21798.07 34498.88 305
tpm cat196.78 30896.98 30396.16 34498.85 32790.59 36699.08 17999.32 26692.37 35297.73 34699.46 23291.15 32299.69 30696.07 30098.80 31698.21 340
dp96.86 30697.07 30096.24 34398.68 34390.30 36799.19 14398.38 33497.35 29798.23 32299.59 18287.23 34599.82 24696.27 29398.73 32598.59 320
gm-plane-assit97.59 36089.02 36893.47 34998.30 35299.84 22596.38 289
test_method91.72 33392.32 33689.91 34793.49 36770.18 36990.28 36199.56 17861.71 36495.39 36199.52 20993.90 29399.94 5798.76 12498.27 33799.62 106
test12329.31 33433.05 33918.08 34825.93 37012.24 37097.53 33110.93 37111.78 36524.21 36650.08 37421.04 3718.60 36623.51 36432.43 36533.39 362
testmvs28.94 33533.33 33715.79 34926.03 3699.81 37196.77 35315.67 37011.55 36623.87 36750.74 37319.03 3728.53 36723.21 36533.07 36429.03 363
uanet_test8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.88 33633.17 3380.00 3500.00 3710.00 3720.00 36299.62 1370.00 3670.00 36899.13 29499.82 40.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas16.61 33722.14 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 199.28 410.00 3680.00 3660.00 3660.00 364
sosnet-low-res8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
sosnet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
Regformer8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.26 34411.02 3470.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.16 2920.00 3730.00 3680.00 3660.00 3660.00 364
uanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_TWO99.54 18999.13 14999.76 7599.63 15198.32 16599.92 9097.85 19499.69 20699.75 40
9.1498.64 20799.45 22298.81 22399.60 15597.52 28899.28 22699.56 19598.53 13799.83 23695.36 32499.64 225
test_0728_THIRD99.18 13899.62 13299.61 16998.58 12799.91 10897.72 20399.80 15599.77 33
GSMVS99.14 270
sam_mvs190.81 32999.14 270
sam_mvs90.52 333
MTGPAbinary99.53 198
test_post199.14 15951.63 37289.54 34099.82 24696.86 262
test_post52.41 37190.25 33599.86 190
patchmatchnet-post99.62 16090.58 33199.94 57
MTMP99.09 17698.59 325
test9_res95.10 32799.44 26899.50 176
agg_prior294.58 33599.46 26799.50 176
test_prior297.95 30997.87 27198.05 33099.05 30697.90 19895.99 30499.49 262
旧先验297.94 31195.33 33798.94 26899.88 15796.75 269
新几何298.04 298
无先验98.01 30099.23 28895.83 33099.85 20895.79 31399.44 202
原ACMM297.92 313
testdata299.89 14395.99 304
segment_acmp98.37 158
testdata197.72 32197.86 274
plane_prior599.54 18999.82 24695.84 31199.78 16699.60 119
plane_prior499.25 278
plane_prior298.80 22698.94 170
plane_prior199.51 191
n20.00 372
nn0.00 372
door-mid99.83 32
test1199.29 275
door99.77 61
HQP-NCC99.31 26497.98 30597.45 29198.15 324
ACMP_Plane99.31 26497.98 30597.45 29198.15 324
BP-MVS94.73 331
HQP4-MVS98.15 32499.70 30099.53 158
HQP3-MVS99.37 25799.67 216
HQP2-MVS96.67 254
ACMMP++_ref99.94 62
ACMMP++99.79 160
Test By Simon98.41 152