This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3199.97 3099.84 14
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1699.51 17799.39 24999.57 2099.93 7199.64 1899.86 11699.20 260
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 47100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9399.79 5599.83 2799.88 3299.85 3898.42 15699.90 13299.60 2099.73 19299.49 185
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2199.94 1199.95 1299.73 899.90 13299.65 1699.97 3099.69 54
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2799.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FOURS199.83 3899.89 899.74 1699.71 9599.69 5299.63 127
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 1999.85 2699.70 4999.92 1899.93 1499.45 2399.97 1799.36 50100.00 199.85 13
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4299.73 8399.70 4999.84 4399.73 8898.56 13599.96 3599.29 6399.94 6299.83 18
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 3899.71 9599.72 4399.84 4399.78 6798.67 12099.97 1799.30 6099.95 4999.80 24
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3199.77 6399.78 3699.93 1499.89 2697.94 20099.92 9199.65 1699.98 2199.62 108
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2299.78 6099.90 799.82 5099.83 4498.45 15399.87 17499.51 3199.97 3099.86 11
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4299.75 7599.86 1699.74 9099.79 6198.27 17399.85 21399.37 4999.93 7099.83 18
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4299.73 8399.62 7099.84 4399.71 10198.62 12699.96 3599.30 6099.96 4299.86 11
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 4999.91 2099.89 2699.60 1999.87 17499.59 2199.74 18599.71 48
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8199.82 3998.33 24899.50 17999.78 6797.90 20399.65 33896.78 27399.83 13499.44 206
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5299.78 6899.92 1799.37 3199.88 16198.93 11399.95 4999.60 123
CS-MVS-test99.43 6699.40 6899.53 15399.51 19499.84 1999.60 6099.94 699.52 8899.10 26198.89 33599.24 4699.90 13299.11 9299.66 22398.84 315
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5599.70 10099.93 499.78 6899.68 12599.10 6099.78 27899.45 3699.96 4299.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2499.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22299.86 2299.68 5499.65 12199.88 2997.67 22199.87 17499.03 9899.86 11699.76 39
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4099.97 699.92 1799.77 799.98 799.43 38100.00 199.90 4
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24599.63 13796.84 32199.44 18899.58 18798.81 9699.91 11297.70 21199.82 14399.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4099.89 2699.87 3299.63 1499.87 17499.54 2799.92 7499.63 97
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 3899.75 7599.58 8399.85 4099.69 11498.18 18499.94 5799.28 6599.95 4999.83 18
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3399.93 1499.93 1498.54 13899.93 7199.59 2199.98 2199.76 39
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14299.54 19499.13 15499.82 5099.63 15298.91 8699.92 9197.85 19699.70 20499.58 137
test_241102_ONE99.69 12399.82 2899.54 19499.12 15799.82 5099.49 22498.91 8699.52 355
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6599.61 14799.54 8499.80 6099.64 14297.79 21399.95 4599.21 7099.94 6299.84 14
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 20899.53 20398.27 25299.53 17099.73 8898.75 11199.87 17497.70 21199.83 13499.68 60
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24099.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10199.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
APDe-MVS99.48 5499.36 7799.85 1899.55 17899.81 3199.50 7199.69 10698.99 16899.75 8199.71 10198.79 10399.93 7198.46 14399.85 12099.80 24
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 6999.70 10098.35 24399.51 17799.50 21999.31 3799.88 16198.18 16799.84 12499.69 54
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16399.31 27599.16 14899.62 13599.61 17098.35 16599.91 11297.88 19099.72 19899.61 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12399.80 3699.24 13299.57 17799.16 14899.73 9499.65 14098.35 165
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16399.61 14799.92 9197.88 19099.72 19899.77 35
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2299.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
LS3D99.24 11999.11 12899.61 12798.38 35699.79 3899.57 6599.68 10999.61 7499.15 25399.71 10198.70 11599.91 11297.54 22599.68 21299.13 278
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33099.78 4199.15 16199.66 11899.34 11798.92 27899.24 28897.69 21899.98 798.11 17399.28 29798.81 317
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2599.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
DVP-MVS++.99.38 8499.25 10499.77 4099.03 31799.77 4399.74 1699.61 14799.18 14299.76 7599.61 17099.00 7499.92 9197.72 20799.60 24299.62 108
IU-MVS99.69 12399.77 4399.22 29697.50 29599.69 10697.75 20599.70 20499.77 35
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 16799.77 4398.74 23899.60 15998.55 21899.76 7599.69 11498.23 17899.92 9196.39 29499.75 17799.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3499.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
GBi-Net99.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
test199.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3499.70 10099.67 5899.82 5099.83 4498.98 7799.90 13299.24 6799.97 3099.53 162
test_one_060199.63 14499.76 5099.55 18899.23 13599.31 22499.61 17098.59 130
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6099.82 3999.46 10199.75 8199.56 19899.63 1499.95 4599.43 3899.88 10099.62 108
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26699.76 5099.34 9999.97 298.93 17899.91 2099.79 6198.68 11799.93 7196.80 27299.56 24999.30 241
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10499.77 6399.53 8699.77 7399.76 7799.26 4599.78 27897.77 20199.88 10099.60 123
test117299.23 12099.05 14999.74 6399.52 18999.75 5499.20 14299.61 14798.97 17099.48 18199.58 18798.41 15799.91 11297.15 25499.55 25399.57 143
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6299.78 6099.71 4499.90 2299.69 11498.85 9499.90 13297.25 24799.78 16799.15 271
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18499.75 5499.27 12299.61 14799.19 14199.57 15199.64 14298.76 10999.90 13297.29 23999.62 23299.56 146
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5099.69 10699.85 2199.80 6099.81 5398.81 9699.91 11299.47 3599.88 10099.70 51
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5599.67 11497.72 28399.35 21399.25 28399.23 4799.92 9197.21 25099.82 14399.67 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28699.75 5497.25 34799.47 22998.72 20499.66 11799.70 10899.29 3999.63 34198.07 17699.81 15199.62 108
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.41 15799.91 11297.27 24299.61 23999.54 157
RE-MVS-def99.13 12199.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.57 13397.27 24299.61 23999.54 157
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10199.76 6899.07 16199.65 12199.63 15299.09 6299.92 9197.13 25599.76 17499.58 137
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 11999.56 18298.19 25799.14 25599.29 27498.84 9599.92 9197.53 22799.80 15699.64 92
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14299.55 18898.22 25499.32 22099.35 26298.65 12499.91 11296.86 26799.74 18599.62 108
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22299.73 6399.13 16999.52 21197.40 30099.57 15199.64 14298.93 8399.83 24197.61 22199.79 16199.63 97
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 9899.57 17798.54 22199.54 16598.99 32096.81 25899.93 7196.97 26199.53 26199.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS99.40 7799.43 6299.29 22299.44 22799.72 6799.36 9699.91 1099.71 4499.28 23098.83 33999.22 4899.86 19499.40 4599.77 17198.29 341
SR-MVS99.19 13999.00 16499.74 6399.51 19499.72 6799.18 14899.60 15998.85 18899.47 18399.58 18798.38 16299.92 9196.92 26399.54 25999.57 143
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6299.82 3999.39 11299.82 5099.84 4399.38 2999.91 11299.38 4799.93 7099.80 24
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10199.91 2099.15 5599.97 1799.50 33100.00 199.90 4
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 18999.71 7098.86 21799.19 30198.47 22898.59 31099.06 30998.08 19099.91 11296.94 26299.60 24299.60 123
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29899.47 23298.47 14999.88 16197.62 21999.73 19299.67 67
X-MVStestdata96.09 32594.87 33599.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29861.30 37698.47 14999.88 16197.62 21999.73 19299.67 67
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10499.50 21898.35 24398.97 27199.48 22798.37 16399.92 9195.95 31499.75 17799.63 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 15999.72 9297.99 26799.42 19499.60 17998.81 9699.93 7196.91 26499.74 18599.66 77
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2299.84 3299.81 3099.94 1199.78 6798.91 8699.71 30398.41 14599.95 4999.05 294
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 10899.59 16698.36 23899.36 21199.37 25298.80 10099.91 11297.43 23299.75 17799.68 60
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 10899.59 16698.41 23299.32 22099.36 25798.73 11499.93 7197.29 23999.74 18599.67 67
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17699.59 16697.60 28899.36 21199.37 25298.80 10099.91 11296.84 27099.75 17799.68 60
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 8999.78 6099.53 8699.67 11399.78 6799.19 5199.86 19497.32 23799.87 10999.55 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28299.69 8199.05 18699.82 3999.50 9098.97 27199.05 31098.98 7799.98 798.20 16399.24 30398.62 323
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 10899.59 16698.36 23899.35 21399.38 25198.61 12899.93 7197.43 23299.75 17799.67 67
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 16999.65 12998.99 16899.64 12399.72 9499.39 2599.86 19498.23 16099.81 15199.60 123
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 8999.54 19498.34 24799.01 26999.50 21998.53 14299.93 7197.18 25299.78 16799.66 77
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7199.65 12998.07 26399.52 17299.69 11498.57 13399.92 9197.18 25299.79 16199.63 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_part299.62 14899.67 8699.55 163
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2599.14 30699.65 6499.89 2699.90 2296.20 27599.94 5799.42 4399.92 7499.67 67
Anonymous20240521198.75 21598.46 22999.63 11599.34 26199.66 8899.47 7797.65 35199.28 12699.56 15899.50 21993.15 30699.84 23098.62 13699.58 24799.40 218
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 20899.86 2298.85 18899.81 5799.73 8898.40 16199.92 9198.36 14899.83 13499.17 267
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 8999.62 14098.38 23699.06 26799.27 27898.79 10399.94 5797.51 22899.82 14399.66 77
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 14899.60 15998.55 21899.57 15199.67 13199.03 7399.94 5797.01 25999.80 15699.69 54
Skip Steuart: Steuart Systems R&D Blog.
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3199.92 799.67 5899.77 7399.75 8199.61 1799.98 799.35 5199.98 2199.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvs-test198.83 20698.70 20799.22 23698.89 33099.65 9398.88 21399.66 11899.34 11798.29 32398.94 33097.69 21899.96 3598.11 17398.54 33798.04 352
MAR-MVS98.24 26997.92 27899.19 24098.78 34499.65 9399.17 15399.14 30695.36 34298.04 33898.81 34297.47 23199.72 29995.47 32799.06 30998.21 346
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17399.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 15799.64 9599.30 11199.63 13799.61 7499.71 10199.56 19898.76 10999.96 3599.14 9099.92 7499.68 60
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28299.73 8398.39 23599.63 12799.43 24099.70 1199.90 13297.34 23698.64 33399.44 206
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 15999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
EIA-MVS99.12 15699.01 16199.45 17799.36 24999.62 10199.34 9999.79 5598.41 23298.84 28898.89 33598.75 11199.84 23098.15 17199.51 26498.89 309
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32099.74 8098.36 23899.66 11799.68 12599.71 999.90 13296.84 27099.88 10099.43 212
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8199.80 4999.71 4499.72 9699.69 11499.15 5599.83 24199.32 5799.94 6299.53 162
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20199.62 10199.01 19399.57 17796.80 32399.54 16599.63 15298.29 17199.91 11295.24 33199.71 20299.61 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DP-MVS99.48 5499.39 6999.74 6399.57 16799.62 10199.29 11899.61 14799.87 1499.74 9099.76 7798.69 11699.87 17498.20 16399.80 15699.75 42
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 6799.79 5598.77 19999.80 6099.85 3899.64 1399.85 21398.70 13199.89 9299.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZD-MVS99.43 23099.61 10799.43 24296.38 32899.11 25999.07 30897.86 20799.92 9194.04 34799.49 268
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 24999.48 22598.50 22499.52 17299.63 15299.14 5799.76 28897.89 18999.77 17199.51 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
testtj98.56 23798.17 26099.72 7999.45 22599.60 10998.88 21399.50 21896.88 31899.18 25099.48 22797.08 25199.92 9193.69 35199.38 28399.63 97
Anonymous2024052999.42 7099.34 7999.65 10499.53 18499.60 10999.63 4999.39 25599.47 9799.76 7599.78 6798.13 18699.86 19498.70 13199.68 21299.49 185
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 2999.90 2299.90 2297.97 19999.86 19499.42 4399.96 4299.80 24
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7599.70 10099.81 3099.69 10699.58 18797.66 22599.86 19499.17 8099.44 27499.67 67
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 16999.85 2699.79 3599.76 7599.72 9499.33 3699.82 25199.21 7099.94 6299.59 132
PHI-MVS99.11 16098.95 17799.59 13199.13 30199.59 11299.17 15399.65 12997.88 27599.25 23499.46 23598.97 7999.80 27297.26 24499.82 14399.37 226
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19499.58 11598.98 20499.60 15999.43 10999.70 10399.36 25797.70 21699.88 16199.20 7399.87 10999.59 132
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22299.72 9298.36 23899.60 14399.71 10198.92 8499.91 11297.08 25799.84 12499.40 218
114514_t98.49 24898.11 26399.64 11199.73 10599.58 11599.24 13299.76 6889.94 36399.42 19499.56 19897.76 21599.86 19497.74 20699.82 14399.47 195
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 21799.56 11898.97 20699.61 14799.43 10999.67 11399.28 27697.85 20999.95 4599.17 8099.81 15199.65 85
DU-MVS99.33 10199.21 10999.71 8399.43 23099.56 11898.83 22299.53 20399.38 11399.67 11399.36 25797.67 22199.95 4599.17 8099.81 15199.63 97
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 35899.56 11899.01 19399.59 16695.44 34199.57 15199.80 5595.64 28399.46 36096.47 29199.92 7499.21 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet99.40 7799.31 8599.68 8999.43 23099.55 12199.73 1999.50 21899.46 10199.88 3299.36 25797.54 22999.87 17498.97 10599.87 10999.63 97
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21399.66 11897.11 31599.47 18399.60 17999.07 6899.89 14796.18 30399.85 12099.58 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSC_two_6792asdad99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
No_MVS99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 21799.53 12398.77 23599.60 15997.33 30499.23 23899.50 21997.91 20299.83 24195.02 33599.67 21999.41 216
SF-MVS99.10 16498.93 17899.62 12499.58 15799.51 12699.13 16999.65 12997.97 26999.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24499.50 12799.04 18899.79 5597.17 31198.62 30798.74 34599.34 3599.95 4598.32 15399.41 28098.92 307
test_part198.63 22798.26 25099.75 5799.40 23999.49 12899.67 3899.68 10999.86 1699.88 3299.86 3786.73 35799.93 7199.34 5299.97 3099.81 23
MCST-MVS99.02 17698.81 19799.65 10499.58 15799.49 12898.58 24999.07 30998.40 23499.04 26899.25 28398.51 14799.80 27297.31 23899.51 26499.65 85
wuyk23d97.58 29399.13 12192.93 35199.69 12399.49 12899.52 6999.77 6397.97 26999.96 899.79 6199.84 399.94 5795.85 31699.82 14379.36 367
QAPM98.40 25797.99 26899.65 10499.39 24199.47 13199.67 3899.52 21191.70 36098.78 29699.80 5598.55 13699.95 4594.71 33999.75 17799.53 162
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 29999.83 3498.64 20999.89 2699.60 17992.57 311100.00 199.33 5599.97 3099.72 45
F-COLMAP98.74 21798.45 23099.62 12499.57 16799.47 13198.84 22099.65 12996.31 33098.93 27599.19 29697.68 22099.87 17496.52 28799.37 28799.53 162
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25199.47 13199.62 5099.50 21899.44 10499.12 25899.78 6798.77 10899.94 5797.87 19399.72 19899.62 108
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 8799.59 16699.24 13399.86 3999.70 10898.55 13699.82 25199.79 1199.95 4999.60 123
CDPH-MVS98.56 23798.20 25599.61 12799.50 20199.46 13598.32 27699.41 24595.22 34499.21 24499.10 30698.34 16799.82 25195.09 33499.66 22399.56 146
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1694.97 36699.78 3699.88 3299.88 2993.66 30399.97 1799.61 1999.95 4999.64 92
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20699.46 13598.56 25499.63 13794.86 35098.85 28799.37 25297.81 21199.59 34896.08 30599.44 27498.88 310
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8399.85 2698.79 19699.41 20299.60 17998.92 8499.92 9198.02 17799.92 7499.43 212
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20099.67 11499.48 9299.55 16399.36 25794.92 28899.86 19498.95 11196.57 36299.45 201
OpenMVS_ROBcopyleft97.31 1797.36 30096.84 31198.89 27799.29 27499.45 14098.87 21699.48 22586.54 36699.44 18899.74 8497.34 23999.86 19491.61 35599.28 29797.37 360
OPU-MVS99.29 22299.12 30399.44 14299.20 14299.40 24599.00 7498.84 36696.54 28699.60 24299.58 137
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13299.71 9599.27 12799.93 1499.90 2299.70 1199.93 7198.99 10199.99 1299.64 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21699.33 21899.53 21098.88 9199.68 32296.01 30899.65 22799.02 300
TAPA-MVS97.92 1398.03 27897.55 29299.46 17399.47 21799.44 14298.50 26299.62 14086.79 36499.07 26699.26 28198.26 17499.62 34297.28 24199.73 19299.31 240
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.99 18598.80 19999.56 14499.25 28299.43 14698.54 25899.27 28498.58 21598.80 29399.43 24098.53 14299.70 30597.22 24999.59 24699.54 157
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 11999.68 10999.54 8499.40 20799.56 19899.07 6899.82 25196.01 30899.96 4299.11 279
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2599.24 29299.48 9299.56 15899.77 7494.89 28999.93 7198.72 13099.89 9299.63 97
WR-MVS99.11 16098.93 17899.66 9999.30 27299.42 14998.42 27099.37 26299.04 16699.57 15199.20 29496.89 25699.86 19498.66 13599.87 10999.70 51
TAMVS99.49 5299.45 5799.63 11599.48 21299.42 14999.45 7899.57 17799.66 6299.78 6899.83 4497.85 20999.86 19499.44 3799.96 4299.61 119
OMC-MVS98.90 19798.72 20399.44 17999.39 24199.42 14998.58 24999.64 13597.31 30599.44 18899.62 16198.59 13099.69 31196.17 30499.79 16199.22 255
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24199.42 14999.70 2599.56 18299.23 13599.35 21399.80 5599.17 5399.95 4598.21 16299.84 12499.59 132
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 22799.66 11899.42 11199.75 8199.66 13599.20 5099.76 28898.98 10399.99 1299.36 229
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4299.76 6899.64 6699.93 1499.85 3898.66 12299.84 23099.88 699.99 1299.71 48
SD-MVS99.01 18099.30 9098.15 31299.50 20199.40 15498.94 21099.61 14799.22 13999.75 8199.82 5099.54 2295.51 37197.48 22999.87 10999.54 157
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31699.39 15698.47 26499.47 22996.70 32598.78 29699.33 26697.62 22899.86 19494.69 34099.38 28399.28 246
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4299.75 7599.60 8099.92 1899.87 3298.75 11199.86 19499.90 299.99 1299.73 44
ab-mvs99.33 10199.28 9799.47 17099.57 16799.39 15699.78 1099.43 24298.87 18699.57 15199.82 5098.06 19199.87 17498.69 13399.73 19299.15 271
plane_prior799.58 15799.38 159
lessismore_v099.64 11199.86 3099.38 15990.66 37399.89 2699.83 4494.56 29499.97 1799.56 2699.92 7499.57 143
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 14899.55 18896.49 32699.27 23299.37 25297.11 25099.92 9195.74 32199.67 21999.62 108
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12499.35 26698.77 19999.57 15199.70 10899.27 4499.88 16197.71 20999.75 17799.65 85
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19199.89 1599.60 8099.82 5099.62 16198.81 9699.89 14799.43 3899.86 11699.47 195
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 17799.37 16297.97 31299.68 10997.49 29699.08 26399.35 26295.41 28699.82 25197.70 21198.19 34699.01 301
agg_prior198.33 26497.92 27899.57 14099.35 25199.36 16597.99 30899.39 25594.85 35197.76 35098.98 32398.03 19299.85 21395.49 32599.44 27499.51 174
agg_prior99.35 25199.36 16599.39 25597.76 35099.85 213
VNet99.18 14399.06 14599.56 14499.24 28499.36 16599.33 10199.31 27599.67 5899.47 18399.57 19596.48 26499.84 23099.15 8499.30 29599.47 195
DELS-MVS99.34 9799.30 9099.48 16899.51 19499.36 16598.12 29299.53 20399.36 11699.41 20299.61 17099.22 4899.87 17499.21 7099.68 21299.20 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TEST999.35 25199.35 16998.11 29499.41 24594.83 35297.92 34198.99 32098.02 19499.85 213
train_agg98.35 26297.95 27299.57 14099.35 25199.35 16998.11 29499.41 24594.90 34897.92 34198.99 32098.02 19499.85 21395.38 32999.44 27499.50 180
FMVSNet299.35 9299.28 9799.55 14799.49 20699.35 16999.45 7899.57 17799.44 10499.70 10399.74 8497.21 24499.87 17499.03 9899.94 6299.44 206
test1299.54 15199.29 27499.33 17299.16 30498.43 32097.54 22999.82 25199.47 27199.48 190
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12499.76 6899.32 12199.80 6099.78 6799.29 3999.87 17499.15 8499.91 8399.66 77
MVS_111021_LR99.13 15499.03 15799.42 18599.58 15799.32 17497.91 31999.73 8398.68 20699.31 22499.48 22799.09 6299.66 33197.70 21199.77 17199.29 244
test_899.34 26199.31 17598.08 29899.40 25294.90 34897.87 34598.97 32698.02 19499.84 230
plane_prior399.31 17598.36 23899.14 255
NCCC98.82 20898.57 21999.58 13599.21 28899.31 17598.61 24599.25 28998.65 20898.43 32099.26 28197.86 20799.81 26796.55 28599.27 30099.61 119
旧先验199.49 20699.29 17899.26 28699.39 24997.67 22199.36 28899.46 199
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26099.82 3997.65 28699.43 19299.16 29796.42 26799.91 11299.07 9699.84 12499.80 24
ETV-MVS99.18 14399.18 11299.16 24399.34 26199.28 18099.12 17399.79 5599.48 9298.93 27598.55 35299.40 2499.93 7198.51 14199.52 26398.28 342
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17699.61 14799.20 14099.84 4399.73 8898.67 12099.84 23099.86 899.98 2199.64 92
PatchMatch-RL98.68 22498.47 22899.30 22199.44 22799.28 18098.14 29099.54 19497.12 31499.11 25999.25 28397.80 21299.70 30596.51 28899.30 29598.93 306
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 24899.77 6398.32 24999.39 20899.41 24298.62 12699.84 23096.62 28499.84 12498.69 321
ETH3 D test640097.76 28697.19 30199.50 16199.38 24499.26 18498.34 27399.49 22392.99 35798.54 31499.20 29495.92 28199.82 25191.14 35899.66 22399.40 218
plane_prior699.47 21799.26 18497.24 242
API-MVS98.38 25898.39 23798.35 30498.83 33699.26 18499.14 16399.18 30298.59 21498.66 30598.78 34398.61 12899.57 35094.14 34599.56 24996.21 364
OpenMVScopyleft98.12 1098.23 27097.89 28299.26 22999.19 29399.26 18499.65 4799.69 10691.33 36198.14 33499.77 7498.28 17299.96 3595.41 32899.55 25398.58 327
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18499.25 18898.29 27899.76 6899.07 16199.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
save fliter99.53 18499.25 18898.29 27899.38 26199.07 161
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16399.58 17599.25 13199.81 5799.62 16198.24 17599.84 23099.83 999.97 3099.64 92
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23499.88 1898.66 20799.96 899.79 6197.45 23299.93 7199.34 5299.99 1299.78 32
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 1999.15 30599.37 11499.61 14199.71 10194.73 29299.81 26797.70 21199.88 10099.58 137
112198.56 23798.24 25199.52 15599.49 20699.24 19399.30 11199.22 29695.77 33798.52 31599.29 27497.39 23699.85 21395.79 31999.34 29099.46 199
HQP_MVS98.90 19798.68 20999.55 14799.58 15799.24 19398.80 23099.54 19498.94 17599.14 25599.25 28397.24 24299.82 25195.84 31799.78 16799.60 123
plane_prior99.24 19398.42 27097.87 27699.71 202
PLCcopyleft97.35 1698.36 25997.99 26899.48 16899.32 26799.24 19398.50 26299.51 21495.19 34698.58 31198.96 32896.95 25599.83 24195.63 32299.25 30199.37 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 18899.60 15999.18 14299.87 3899.72 9499.08 6699.85 21399.89 599.98 2199.66 77
test_prior398.62 22898.34 24399.46 17399.35 25199.22 19797.95 31399.39 25597.87 27698.05 33699.05 31097.90 20399.69 31195.99 31099.49 26899.48 190
test_prior99.46 17399.35 25199.22 19799.39 25599.69 31199.48 190
新几何199.52 15599.50 20199.22 19799.26 28695.66 34098.60 30999.28 27697.67 22199.89 14795.95 31499.32 29399.45 201
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 27799.22 19798.99 20099.40 25299.08 15999.58 14899.64 14298.90 8999.83 24197.44 23199.75 17799.63 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30399.22 19798.67 24499.42 24497.84 28098.81 29199.27 27897.32 24099.81 26795.14 33299.53 26199.10 281
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17599.62 14099.18 14299.89 2699.72 9498.66 12299.87 17499.88 699.97 3099.66 77
test_prior499.19 20498.00 306
Patchmtry98.78 21198.54 22399.49 16498.89 33099.19 20499.32 10499.67 11499.65 6499.72 9699.79 6191.87 32099.95 4598.00 18199.97 3099.33 235
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26199.16 20698.15 28899.29 28098.18 25899.63 12799.62 16199.18 5299.68 32298.20 16399.74 18599.30 241
PCF-MVS96.03 1896.73 31395.86 32499.33 21299.44 22799.16 20696.87 35699.44 23886.58 36598.95 27399.40 24594.38 29599.88 16187.93 36399.80 15698.95 304
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29699.80 4997.14 31399.46 18699.40 24596.11 27799.89 14799.01 10099.84 12499.84 14
NP-MVS99.40 23999.13 20998.83 339
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33399.74 8098.84 19199.53 17099.55 20599.10 6099.79 27597.07 25899.86 11699.18 265
DPM-MVS98.28 26597.94 27699.32 21699.36 24999.11 21197.31 34598.78 32396.88 31898.84 28899.11 30597.77 21499.61 34694.03 34899.36 28899.23 253
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18699.61 14799.15 15299.88 3299.71 10199.08 6699.87 17499.90 299.97 3099.66 77
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25199.11 21198.96 20799.54 19499.46 10199.61 14199.70 10896.31 27299.83 24199.34 5299.88 10099.55 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20199.11 21197.92 31799.71 9598.76 20299.08 26399.47 23299.17 5399.54 35197.85 19699.76 17499.54 157
Regformer-299.34 9799.27 10099.53 15399.41 23699.10 21598.99 20099.53 20399.47 9799.66 11799.52 21298.80 10099.89 14798.31 15499.74 18599.60 123
pmmvs499.13 15499.06 14599.36 20899.57 16799.10 21598.01 30499.25 28998.78 19899.58 14899.44 23998.24 17599.76 28898.74 12899.93 7099.22 255
CNLPA98.57 23698.34 24399.28 22599.18 29599.10 21598.34 27399.41 24598.48 22798.52 31598.98 32397.05 25299.78 27895.59 32399.50 26698.96 303
test22299.51 19499.08 21897.83 32299.29 28095.21 34598.68 30499.31 26997.28 24199.38 28399.43 212
MVP-Stereo99.16 14899.08 13999.43 18399.48 21299.07 21999.08 18399.55 18898.63 21099.31 22499.68 12598.19 18299.78 27898.18 16799.58 24799.45 201
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28099.87 2098.91 18199.74 9099.72 9490.57 33799.79 27598.55 13999.85 12099.11 279
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 11999.74 8099.23 13599.72 9699.53 21097.63 22799.88 16199.11 9299.84 12499.48 190
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19599.65 12999.15 15299.90 2299.75 8199.09 6299.88 16199.90 299.96 4299.67 67
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29699.90 1498.95 17499.78 6899.58 18799.57 2099.93 7199.48 3499.95 4999.79 30
Effi-MVS+99.06 16798.97 17399.34 21099.31 26898.98 22498.31 27799.91 1098.81 19398.79 29498.94 33099.14 5799.84 23098.79 12298.74 32999.20 260
VDD-MVS99.20 13699.11 12899.44 17999.43 23098.98 22499.50 7198.32 34299.80 3399.56 15899.69 11496.99 25499.85 21398.99 10199.73 19299.50 180
FMVSNet597.80 28497.25 29899.42 18598.83 33698.97 22699.38 8999.80 4998.87 18699.25 23499.69 11480.60 36999.91 11298.96 10799.90 8499.38 223
CLD-MVS98.76 21498.57 21999.33 21299.57 16798.97 22697.53 33599.55 18896.41 32799.27 23299.13 29999.07 6899.78 27896.73 27699.89 9299.23 253
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5099.76 6899.85 2199.82 5099.88 2996.39 27099.97 1799.59 2199.98 2199.55 149
Regformer-199.32 10399.27 10099.47 17099.41 23698.95 22998.99 20099.48 22599.48 9299.66 11799.52 21298.78 10599.87 17498.36 14899.74 18599.60 123
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18099.59 16699.17 14699.81 5799.61 17098.41 15799.69 31199.32 5799.94 6299.53 162
Regformer-499.45 6399.44 5999.50 16199.52 18998.94 23099.17 15399.53 20399.64 6699.76 7599.60 17998.96 8299.90 13298.91 11499.84 12499.67 67
HQP5-MVS98.94 230
HQP-MVS98.36 25998.02 26799.39 19899.31 26898.94 23097.98 30999.37 26297.45 29798.15 33098.83 33996.67 25999.70 30594.73 33799.67 21999.53 162
alignmvs98.28 26597.96 27199.25 23299.12 30398.93 23499.03 19098.42 33899.64 6698.72 30197.85 36490.86 33399.62 34298.88 11699.13 30699.19 263
testdata99.42 18599.51 19498.93 23499.30 27896.20 33198.87 28599.40 24598.33 16999.89 14796.29 29899.28 29799.44 206
PAPM_NR98.36 25998.04 26699.33 21299.48 21298.93 23498.79 23399.28 28397.54 29298.56 31398.57 35097.12 24999.69 31194.09 34698.90 32099.38 223
MVS_030498.88 20198.71 20499.39 19898.85 33498.91 23799.45 7899.30 27898.56 21697.26 35699.68 12596.18 27699.96 3599.17 8099.94 6299.29 244
UGNet99.38 8499.34 7999.49 16498.90 32798.90 23899.70 2599.35 26699.86 1698.57 31299.81 5398.50 14899.93 7199.38 4799.98 2199.66 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25599.73 8398.82 19299.72 9699.62 16196.56 26199.82 25199.32 5799.95 4999.56 146
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5599.56 18299.11 15899.24 23799.56 19893.00 30999.78 27897.43 23299.89 9299.35 232
原ACMM199.37 20599.47 21798.87 24199.27 28496.74 32498.26 32599.32 26797.93 20199.82 25195.96 31399.38 28399.43 212
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5098.68 32699.81 3099.38 20999.80 5594.25 29699.85 21398.79 12299.32 29399.59 132
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22099.89 1598.38 23699.75 8199.04 31399.36 3499.86 19499.08 9599.25 30199.45 201
MVS_Test99.28 10999.31 8599.19 24099.35 25198.79 24499.36 9699.49 22399.17 14699.21 24499.67 13198.78 10599.66 33199.09 9499.66 22399.10 281
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25399.81 4899.61 7499.48 18199.41 24298.47 14999.86 19498.97 10599.90 8499.53 162
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 22799.41 24598.55 21899.68 10899.69 11498.13 18699.87 17498.82 12099.98 2199.24 250
FMVSNet398.80 21098.63 21299.32 21699.13 30198.72 24799.10 17699.48 22599.23 13599.62 13599.64 14292.57 31199.86 19498.96 10799.90 8499.39 221
canonicalmvs99.02 17699.00 16499.09 25199.10 30998.70 24899.61 5599.66 11899.63 6998.64 30697.65 36699.04 7299.54 35198.79 12298.92 31899.04 295
Regformer-399.41 7499.41 6699.40 19599.52 18998.70 24899.17 15399.44 23899.62 7099.75 8199.60 17998.90 8999.85 21398.89 11599.84 12499.65 85
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12299.44 23899.68 5499.32 22099.49 22492.50 314100.00 199.24 6796.51 36399.65 85
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27394.65 36798.35 24399.79 6599.68 12598.03 19299.93 7198.28 15699.92 7499.44 206
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28698.66 25297.14 35099.51 21498.09 26299.54 16599.27 27896.87 25799.74 29498.43 14498.96 31599.03 296
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 16798.66 25299.24 13299.46 23399.67 5899.79 6599.65 14098.97 7999.89 14799.15 8499.89 9299.71 48
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21099.91 1097.97 26999.79 6599.73 8899.05 7199.97 1799.15 8499.99 1299.68 60
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 16798.65 25599.24 13299.46 23399.68 5499.80 6099.66 13598.99 7699.89 14799.19 7599.90 8499.72 45
RRT_MVS98.75 21598.54 22399.41 19398.14 36598.61 25698.98 20499.66 11899.31 12299.84 4399.75 8191.98 31799.98 799.20 7399.95 4999.62 108
hse-mvs298.52 24398.30 24799.16 24399.29 27498.60 25798.77 23599.02 31399.68 5499.32 22099.04 31392.50 31499.85 21399.24 6797.87 35499.03 296
CANet99.11 16099.05 14999.28 22598.83 33698.56 25898.71 24399.41 24599.25 13199.23 23899.22 29097.66 22599.94 5799.19 7599.97 3099.33 235
AUN-MVS97.82 28397.38 29499.14 24699.27 27998.53 25998.72 24199.02 31398.10 26097.18 35899.03 31789.26 34699.85 21397.94 18697.91 35299.03 296
ambc99.20 23999.35 25198.53 25999.17 15399.46 23399.67 11399.80 5598.46 15299.70 30597.92 18799.70 20499.38 223
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36196.80 35999.71 4499.73 9499.54 20795.14 28799.96 3599.39 4699.95 4999.79 30
LFMVS98.46 25198.19 25899.26 22999.24 28498.52 26199.62 5096.94 35899.87 1499.31 22499.58 18791.04 32899.81 26798.68 13499.42 27999.45 201
test_yl98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
DCV-MVSNet98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
BH-RMVSNet98.41 25598.14 26299.21 23799.21 28898.47 26398.60 24798.26 34398.35 24398.93 27599.31 26997.20 24799.66 33194.32 34299.10 30899.51 174
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28199.39 25598.70 20599.74 9099.30 27198.54 13899.97 1798.48 14299.82 14399.55 149
jason: jason.
sss98.90 19798.77 20199.27 22799.48 21298.44 26698.72 24199.32 27197.94 27399.37 21099.35 26296.31 27299.91 11298.85 11799.63 23199.47 195
PMMVS98.49 24898.29 24899.11 24998.96 32498.42 26897.54 33399.32 27197.53 29398.47 31998.15 36197.88 20699.82 25197.46 23099.24 30399.09 284
MVSFormer99.41 7499.44 5999.31 21999.57 16798.40 26999.77 1199.80 4999.73 4099.63 12799.30 27198.02 19499.98 799.43 3899.69 20799.55 149
lupinMVS98.96 18998.87 18999.24 23499.57 16798.40 26998.12 29299.18 30298.28 25199.63 12799.13 29998.02 19499.97 1798.22 16199.69 20799.35 232
WTY-MVS98.59 23498.37 23999.26 22999.43 23098.40 26998.74 23899.13 30898.10 26099.21 24499.24 28894.82 29099.90 13297.86 19498.77 32599.49 185
MIMVSNet98.43 25398.20 25599.11 24999.53 18498.38 27299.58 6498.61 33098.96 17399.33 21899.76 7790.92 33099.81 26797.38 23599.76 17499.15 271
MSLP-MVS++99.05 17099.09 13798.91 27099.21 28898.36 27398.82 22699.47 22998.85 18898.90 28199.56 19898.78 10599.09 36498.57 13899.68 21299.26 247
MVSTER98.47 25098.22 25399.24 23499.06 31398.35 27499.08 18399.46 23399.27 12799.75 8199.66 13588.61 34799.85 21399.14 9099.92 7499.52 172
PatchT98.45 25298.32 24698.83 28298.94 32598.29 27599.24 13298.82 32199.84 2499.08 26399.76 7791.37 32399.94 5798.82 12099.00 31498.26 343
HY-MVS98.23 998.21 27297.95 27298.99 26099.03 31798.24 27699.61 5598.72 32596.81 32298.73 30099.51 21694.06 29799.86 19496.91 26498.20 34498.86 312
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
MS-PatchMatch99.00 18298.97 17399.09 25199.11 30898.19 28098.76 23799.33 26998.49 22699.44 18899.58 18798.21 17999.69 31198.20 16399.62 23299.39 221
TinyColmap98.97 18698.93 17899.07 25599.46 22298.19 28097.75 32499.75 7598.79 19699.54 16599.70 10898.97 7999.62 34296.63 28399.83 13499.41 216
FPMVS96.32 32195.50 32998.79 28699.60 15198.17 28298.46 26998.80 32297.16 31296.28 36199.63 15282.19 36599.09 36488.45 36298.89 32199.10 281
CANet_DTU98.91 19598.85 19199.09 25198.79 34298.13 28398.18 28599.31 27599.48 9298.86 28699.51 21696.56 26199.95 4599.05 9799.95 4999.19 263
CR-MVSNet98.35 26298.20 25598.83 28299.05 31498.12 28499.30 11199.67 11497.39 30199.16 25199.79 6191.87 32099.91 11298.78 12598.77 32598.44 336
RPMNet98.60 23198.53 22598.83 28299.05 31498.12 28499.30 11199.62 14099.86 1699.16 25199.74 8492.53 31399.92 9198.75 12798.77 32598.44 336
PAPR97.56 29497.07 30399.04 25898.80 34198.11 28697.63 32999.25 28994.56 35498.02 33998.25 36097.43 23399.68 32290.90 35998.74 32999.33 235
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 24798.10 28798.00 30699.51 21499.47 9799.41 20298.50 35599.28 4199.97 1798.83 11899.34 29098.20 348
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 24798.09 28898.13 29199.51 21499.47 9799.42 19498.54 35399.38 2999.97 1798.83 11899.33 29298.24 344
EI-MVSNet99.38 8499.44 5999.21 23799.58 15798.09 28899.26 12499.46 23399.62 7099.75 8199.67 13198.54 13899.85 21399.15 8499.92 7499.68 60
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 21999.76 6899.62 7099.83 4899.64 14298.54 13899.97 1799.15 8499.99 1299.68 60
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.99 28197.68 28998.93 26799.52 18998.04 29197.19 34999.05 31298.32 24998.81 29198.97 32689.89 34499.41 36198.33 15299.05 31099.34 234
EPNet98.13 27397.77 28699.18 24294.57 37397.99 29299.24 13297.96 34699.74 3997.29 35599.62 16193.13 30799.97 1798.59 13799.83 13499.58 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 17997.99 29298.58 24999.82 3997.62 28799.34 21699.71 10198.52 14599.77 28697.98 18299.97 3099.52 172
PVSNet_Blended98.70 22298.59 21599.02 25999.54 17997.99 29297.58 33299.82 3995.70 33999.34 21698.98 32398.52 14599.77 28697.98 18299.83 13499.30 241
USDC98.96 18998.93 17899.05 25799.54 17997.99 29297.07 35399.80 4998.21 25599.75 8199.77 7498.43 15499.64 34097.90 18899.88 10099.51 174
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14299.47 22999.71 4499.42 19499.82 5098.09 18899.47 35893.88 35099.85 12099.07 292
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS95.72 33394.63 33798.99 26098.56 35297.98 29799.30 11198.86 31872.71 36997.30 35499.08 30798.34 16799.74 29489.21 36098.33 34199.26 247
ET-MVSNet_ETH3D96.78 31196.07 32098.91 27099.26 28197.92 29897.70 32796.05 36397.96 27292.37 37098.43 35687.06 35199.90 13298.27 15797.56 35798.91 308
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21299.72 9299.29 12399.63 12799.70 10896.47 26599.89 14798.17 16999.82 14399.50 180
mvs_anonymous99.28 10999.39 6998.94 26499.19 29397.81 30099.02 19199.55 18899.78 3699.85 4099.80 5598.24 17599.86 19499.57 2599.50 26699.15 271
cl____98.54 24198.41 23598.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.85 30099.78 27897.97 18499.89 9299.17 267
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.87 29999.78 27897.97 18499.89 9299.18 265
thisisatest053097.45 29696.95 30798.94 26499.68 13297.73 30399.09 18094.19 37098.61 21399.56 15899.30 27184.30 36499.93 7198.27 15799.54 25999.16 269
baseline197.73 28797.33 29598.96 26299.30 27297.73 30399.40 8598.42 33899.33 12099.46 18699.21 29291.18 32699.82 25198.35 15091.26 36899.32 238
pmmvs398.08 27697.80 28398.91 27099.41 23697.69 30597.87 32099.66 11895.87 33599.50 17999.51 21690.35 33999.97 1798.55 13999.47 27199.08 287
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 28899.50 21897.98 26899.62 13599.54 20798.15 18599.94 5797.55 22499.84 12498.95 304
test0.0.03 197.37 29996.91 31098.74 28997.72 36697.57 30797.60 33197.36 35798.00 26599.21 24498.02 36290.04 34299.79 27598.37 14795.89 36698.86 312
MVEpermissive92.54 2296.66 31596.11 31998.31 30899.68 13297.55 30897.94 31595.60 36599.37 11490.68 37198.70 34696.56 26198.61 36886.94 36899.55 25398.77 319
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thisisatest051596.98 30796.42 31498.66 29399.42 23597.47 30997.27 34694.30 36997.24 30799.15 25398.86 33885.01 36199.87 17497.10 25699.39 28298.63 322
TR-MVS97.44 29797.15 30298.32 30698.53 35397.46 31098.47 26497.91 34896.85 32098.21 32998.51 35496.42 26799.51 35692.16 35497.29 35897.98 353
131498.00 28097.90 28198.27 31098.90 32797.45 31199.30 11199.06 31194.98 34797.21 35799.12 30398.43 15499.67 32795.58 32498.56 33697.71 356
tttt051797.62 29197.20 30098.90 27699.76 8597.40 31299.48 7594.36 36899.06 16599.70 10399.49 22484.55 36399.94 5798.73 12999.65 22799.36 229
MG-MVS98.52 24398.39 23798.94 26499.15 29897.39 31398.18 28599.21 30098.89 18599.23 23899.63 15297.37 23899.74 29494.22 34499.61 23999.69 54
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29197.33 31497.78 32399.66 11899.01 16799.59 14699.50 21994.62 29399.85 21398.12 17299.90 8499.26 247
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7199.82 3999.59 8299.41 20299.85 3899.62 16100.00 199.53 2999.89 9299.59 132
BH-untuned98.22 27198.09 26498.58 29699.38 24497.24 31698.55 25598.98 31697.81 28199.20 24998.76 34497.01 25399.65 33894.83 33698.33 34198.86 312
c3_l98.72 22098.71 20498.72 29099.12 30397.22 31797.68 32899.56 18298.90 18299.54 16599.48 22796.37 27199.73 29797.88 19099.88 10099.21 257
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28399.33 26998.93 17899.56 15899.66 13597.39 23699.83 24198.29 15599.88 10099.55 149
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28499.32 27198.92 18099.59 14699.66 13597.40 23499.83 24198.27 15799.90 8499.55 149
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32397.07 32097.49 33899.52 21198.50 22499.52 17299.37 25296.41 26999.71 30397.86 19499.62 23299.00 302
JIA-IIPM98.06 27797.92 27898.50 29898.59 35197.02 32198.80 23098.51 33499.88 1397.89 34399.87 3291.89 31999.90 13298.16 17097.68 35698.59 325
gg-mvs-nofinetune95.87 33095.17 33497.97 31698.19 36196.95 32299.69 3189.23 37599.89 1196.24 36399.94 1381.19 36699.51 35693.99 34998.20 34497.44 358
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 36895.74 36698.28 35996.47 26599.62 34291.23 35797.89 35397.38 359
baseline296.83 31096.28 31698.46 30099.09 31196.91 32498.83 22293.87 37197.23 30896.23 36498.36 35788.12 34899.90 13296.68 27898.14 34898.57 328
GG-mvs-BLEND97.36 33297.59 36796.87 32599.70 2588.49 37694.64 36997.26 37280.66 36899.12 36391.50 35696.50 36496.08 366
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 30996.84 32697.52 33799.54 19498.94 17599.58 14899.48 22796.25 27499.76 28898.01 18099.93 7099.21 257
cl2297.56 29497.28 29698.40 30298.37 35796.75 32797.24 34899.37 26297.31 30599.41 20299.22 29087.30 34999.37 36297.70 21199.62 23299.08 287
PAPM95.61 33494.71 33698.31 30899.12 30396.63 32896.66 35998.46 33790.77 36296.25 36298.68 34793.01 30899.69 31181.60 36997.86 35598.62 323
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25599.75 7599.50 9099.88 3299.87 3299.31 3799.88 16199.43 38100.00 199.62 108
Patchmatch-test98.10 27597.98 27098.48 29999.27 27996.48 33099.40 8599.07 30998.81 19399.23 23899.57 19590.11 34199.87 17496.69 27799.64 22999.09 284
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 6799.85 2699.90 799.90 2299.85 3898.09 18899.83 24199.58 2499.95 4999.90 4
miper_enhance_ethall98.03 27897.94 27698.32 30698.27 35996.43 33296.95 35499.41 24596.37 32999.43 19298.96 32894.74 29199.69 31197.71 20999.62 23298.83 316
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22296.26 33396.70 35899.34 26897.68 28599.00 27099.13 29997.40 23499.72 29997.59 22399.68 21299.08 287
thres20096.09 32595.68 32897.33 33499.48 21296.22 33498.53 25997.57 35298.06 26498.37 32296.73 37586.84 35699.61 34686.99 36798.57 33596.16 365
tfpn200view996.30 32295.89 32297.53 32799.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33896.81 362
thres40096.40 31895.89 32297.92 31899.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33897.98 353
thres600view796.60 31696.16 31897.93 31799.63 14496.09 33799.18 14897.57 35298.77 19998.72 30197.32 37087.04 35299.72 29988.57 36198.62 33497.98 353
thres100view90096.39 31996.03 32197.47 32999.63 14495.93 33899.18 14897.57 35298.75 20398.70 30397.31 37187.04 35299.67 32787.62 36498.51 33896.81 362
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 29999.84 3299.84 2499.89 2699.73 8896.01 27999.99 599.33 55100.00 199.63 97
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26195.89 34096.94 35599.44 23898.80 19599.25 23499.52 21293.51 30499.98 798.94 11299.98 2199.32 238
BH-w/o97.20 30297.01 30597.76 32299.08 31295.69 34198.03 30398.52 33395.76 33897.96 34098.02 36295.62 28499.47 35892.82 35397.25 35998.12 350
cascas96.99 30696.82 31297.48 32897.57 36995.64 34296.43 36099.56 18291.75 35997.13 35997.61 36795.58 28598.63 36796.68 27899.11 30798.18 349
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30199.83 3499.83 2799.85 4099.74 8496.10 27899.99 599.27 66100.00 199.63 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet297.78 28597.66 29198.12 31499.14 29995.36 34499.22 13998.75 32496.97 31698.25 32699.64 14290.90 33199.94 5796.51 28899.56 24999.08 287
IB-MVS95.41 2095.30 33594.46 33897.84 32098.76 34695.33 34597.33 34496.07 36296.02 33395.37 36897.41 36976.17 37599.96 3597.54 22595.44 36798.22 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 32999.68 10999.08 15999.78 6899.62 16198.65 12499.88 16198.02 17799.96 4299.48 190
test-LLR97.15 30396.95 30797.74 32498.18 36295.02 34797.38 34196.10 36098.00 26597.81 34798.58 34890.04 34299.91 11297.69 21798.78 32398.31 339
test-mter96.23 32495.73 32797.74 32498.18 36295.02 34797.38 34196.10 36097.90 27497.81 34798.58 34879.12 37399.91 11297.69 21798.78 32398.31 339
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32599.58 17599.07 16199.64 12399.62 16198.19 18299.93 7198.41 14599.95 4999.55 149
ADS-MVSNet97.72 28997.67 29097.86 31999.14 29994.65 35099.22 13998.86 31896.97 31698.25 32699.64 14290.90 33199.84 23096.51 28899.56 24999.08 287
tmp_tt95.75 33295.42 33096.76 34089.90 37594.42 35198.86 21797.87 34978.01 36799.30 22999.69 11497.70 21695.89 37099.29 6398.14 34899.95 1
tpm97.15 30396.95 30797.75 32398.91 32694.24 35299.32 10497.96 34697.71 28498.29 32399.32 26786.72 35899.92 9198.10 17596.24 36599.09 284
KD-MVS_2432*160095.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
miper_refine_blended95.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
TESTMET0.1,196.24 32395.84 32597.41 33198.24 36093.84 35597.38 34195.84 36498.43 22997.81 34798.56 35179.77 37099.89 14797.77 20198.77 32598.52 330
CVMVSNet98.61 22998.88 18897.80 32199.58 15793.60 35699.26 12499.64 13599.66 6299.72 9699.67 13193.26 30599.93 7199.30 6099.81 15199.87 9
PVSNet_095.53 1995.85 33195.31 33397.47 32998.78 34493.48 35795.72 36299.40 25296.18 33297.37 35397.73 36595.73 28299.58 34995.49 32581.40 36999.36 229
RRT_test8_iter0597.35 30197.25 29897.63 32698.81 34093.13 35899.26 12499.89 1599.51 8999.83 4899.68 12579.03 37499.88 16199.53 2999.72 19899.89 8
SCA98.11 27498.36 24097.36 33299.20 29192.99 35998.17 28798.49 33698.24 25399.10 26199.57 19596.01 27999.94 5796.86 26799.62 23299.14 275
EPMVS96.53 31796.32 31597.17 33898.18 36292.97 36099.39 8789.95 37498.21 25598.61 30899.59 18586.69 35999.72 29996.99 26099.23 30598.81 317
PatchmatchNetpermissive97.65 29097.80 28397.18 33798.82 33992.49 36199.17 15398.39 34098.12 25998.79 29499.58 18790.71 33599.89 14797.23 24899.41 28099.16 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 29197.79 28597.11 33996.67 37092.31 36298.51 26198.04 34499.24 13395.77 36599.47 23293.78 30299.66 33198.98 10399.62 23299.37 226
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpmrst97.73 28798.07 26596.73 34298.71 34892.00 36399.10 17698.86 31898.52 22298.92 27899.54 20791.90 31899.82 25198.02 17799.03 31298.37 338
DWT-MVSNet_test96.03 32795.80 32696.71 34498.50 35491.93 36499.25 13197.87 34995.99 33496.81 36097.61 36781.02 36799.66 33197.20 25197.98 35198.54 329
tpmvs97.39 29897.69 28896.52 34598.41 35591.76 36599.30 11198.94 31797.74 28297.85 34699.55 20592.40 31699.73 29796.25 30098.73 33198.06 351
tpm296.35 32096.22 31796.73 34298.88 33391.75 36699.21 14198.51 33493.27 35697.89 34399.21 29284.83 36299.70 30596.04 30798.18 34798.75 320
E-PMN97.14 30597.43 29396.27 34798.79 34291.62 36795.54 36399.01 31599.44 10498.88 28299.12 30392.78 31099.68 32294.30 34399.03 31297.50 357
MVS-HIRNet97.86 28298.22 25396.76 34099.28 27791.53 36898.38 27292.60 37299.13 15499.31 22499.96 1197.18 24899.68 32298.34 15199.83 13499.07 292
MDTV_nov1_ep13_2view91.44 36999.14 16397.37 30299.21 24491.78 32296.75 27499.03 296
EMVS96.96 30897.28 29695.99 35098.76 34691.03 37095.26 36498.61 33099.34 11798.92 27898.88 33793.79 30199.66 33192.87 35299.05 31097.30 361
MDTV_nov1_ep1397.73 28798.70 34990.83 37199.15 16198.02 34598.51 22398.82 29099.61 17090.98 32999.66 33196.89 26698.92 318
CostFormer96.71 31496.79 31396.46 34698.90 32790.71 37299.41 8498.68 32694.69 35398.14 33499.34 26586.32 36099.80 27297.60 22298.07 35098.88 310
tpm cat196.78 31196.98 30696.16 34998.85 33490.59 37399.08 18399.32 27192.37 35897.73 35299.46 23591.15 32799.69 31196.07 30698.80 32298.21 346
dp96.86 30997.07 30396.24 34898.68 35090.30 37499.19 14798.38 34197.35 30398.23 32899.59 18587.23 35099.82 25196.27 29998.73 33198.59 325
gm-plane-assit97.59 36789.02 37593.47 35598.30 35899.84 23096.38 295
test_method91.72 33692.32 33989.91 35293.49 37470.18 37690.28 36599.56 18261.71 37095.39 36799.52 21293.90 29899.94 5798.76 12698.27 34399.62 108
test12329.31 33733.05 34218.08 35325.93 37712.24 37797.53 33510.93 37811.78 37124.21 37250.08 38021.04 3768.60 37223.51 37032.43 37133.39 368
testmvs28.94 33833.33 34015.79 35426.03 3769.81 37896.77 35715.67 37711.55 37223.87 37350.74 37919.03 3778.53 37323.21 37133.07 37029.03 369
test_blank8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.88 33933.17 3410.00 3550.00 3780.00 3790.00 36699.62 1400.00 3730.00 37499.13 29999.82 40.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas16.61 34022.14 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 199.28 410.00 3740.00 3720.00 3720.00 370
sosnet-low-res8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
sosnet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
Regformer8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.26 34811.02 3510.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.16 2970.00 3780.00 3740.00 3720.00 3720.00 370
uanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145297.56 28999.68 10899.41 24299.09 6297.09 36996.66 28099.60 24299.62 108
eth-test20.00 378
eth-test0.00 378
test_241102_TWO99.54 19499.13 15499.76 7599.63 15298.32 17099.92 9197.85 19699.69 20799.75 42
9.1498.64 21099.45 22598.81 22799.60 15997.52 29499.28 23099.56 19898.53 14299.83 24195.36 33099.64 229
test_0728_THIRD99.18 14299.62 13599.61 17098.58 13299.91 11297.72 20799.80 15699.77 35
GSMVS99.14 275
sam_mvs190.81 33499.14 275
sam_mvs90.52 338
MTGPAbinary99.53 203
test_post199.14 16351.63 37889.54 34599.82 25196.86 267
test_post52.41 37790.25 34099.86 194
patchmatchnet-post99.62 16190.58 33699.94 57
MTMP99.09 18098.59 332
test9_res95.10 33399.44 27499.50 180
agg_prior294.58 34199.46 27399.50 180
test_prior297.95 31397.87 27698.05 33699.05 31097.90 20395.99 31099.49 268
旧先验297.94 31595.33 34398.94 27499.88 16196.75 274
新几何298.04 302
无先验98.01 30499.23 29395.83 33699.85 21395.79 31999.44 206
原ACMM297.92 317
testdata299.89 14795.99 310
segment_acmp98.37 163
testdata197.72 32597.86 279
plane_prior599.54 19499.82 25195.84 31799.78 16799.60 123
plane_prior499.25 283
plane_prior298.80 23098.94 175
plane_prior199.51 194
n20.00 379
nn0.00 379
door-mid99.83 34
test1199.29 280
door99.77 63
HQP-NCC99.31 26897.98 30997.45 29798.15 330
ACMP_Plane99.31 26897.98 30997.45 29798.15 330
BP-MVS94.73 337
HQP4-MVS98.15 33099.70 30599.53 162
HQP3-MVS99.37 26299.67 219
HQP2-MVS96.67 259
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 157