| LCM-MVSNet | | | 99.95 1 | 99.95 1 | 99.95 1 | 99.99 1 | 99.99 1 | 99.95 2 | 99.97 19 | 99.99 3 | 100.00 1 | 99.98 13 | 99.78 17 | 100.00 1 | 99.92 21 | 100.00 1 | 99.87 32 |
|
| testf1 | | | 99.63 60 | 99.60 64 | 99.72 96 | 99.94 18 | 99.95 2 | 99.47 105 | 99.89 45 | 99.43 152 | 99.88 62 | 99.80 90 | 99.26 72 | 99.90 163 | 98.81 162 | 99.88 135 | 99.32 266 |
|
| APD_test2 | | | 99.63 60 | 99.60 64 | 99.72 96 | 99.94 18 | 99.95 2 | 99.47 105 | 99.89 45 | 99.43 152 | 99.88 62 | 99.80 90 | 99.26 72 | 99.90 163 | 98.81 162 | 99.88 135 | 99.32 266 |
|
| UniMVSNet_ETH3D | | | 99.85 12 | 99.83 21 | 99.90 7 | 99.89 38 | 99.91 4 | 99.89 5 | 99.71 131 | 99.93 25 | 99.95 32 | 99.89 38 | 99.71 22 | 99.96 55 | 99.51 68 | 99.97 55 | 99.84 39 |
|
| EC-MVSNet | | | 99.69 44 | 99.69 45 | 99.68 109 | 99.71 144 | 99.91 4 | 99.76 20 | 99.96 25 | 99.86 46 | 99.51 217 | 99.39 294 | 99.57 40 | 99.93 97 | 99.64 52 | 99.86 155 | 99.20 294 |
|
| ANet_high | | | 99.88 6 | 99.87 11 | 99.91 2 | 99.99 1 | 99.91 4 | 99.65 59 | 100.00 1 | 99.90 31 | 100.00 1 | 99.97 14 | 99.61 34 | 99.97 34 | 99.75 41 | 100.00 1 | 99.84 39 |
|
| KD-MVS_self_test | | | 99.63 60 | 99.59 66 | 99.76 66 | 99.84 61 | 99.90 7 | 99.37 124 | 99.79 90 | 99.83 60 | 99.88 62 | 99.85 63 | 98.42 189 | 99.90 163 | 99.60 54 | 99.73 228 | 99.49 216 |
|
| pmmvs6 | | | 99.86 10 | 99.86 13 | 99.83 31 | 99.94 18 | 99.90 7 | 99.83 7 | 99.91 38 | 99.85 52 | 99.94 35 | 99.95 16 | 99.73 21 | 99.90 163 | 99.65 50 | 99.97 55 | 99.69 88 |
|
| LTVRE_ROB | | 99.19 1 | 99.88 6 | 99.87 11 | 99.88 16 | 99.91 30 | 99.90 7 | 99.96 1 | 99.92 34 | 99.90 31 | 99.97 20 | 99.87 52 | 99.81 14 | 99.95 64 | 99.54 63 | 99.99 16 | 99.80 50 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| APD_test1 | | | 99.36 130 | 99.28 137 | 99.61 151 | 99.89 38 | 99.89 10 | 99.32 135 | 99.74 115 | 99.18 187 | 99.69 144 | 99.75 127 | 98.41 190 | 99.84 262 | 97.85 242 | 99.70 239 | 99.10 316 |
|
| FOURS1 | | | | | | 99.83 65 | 99.89 10 | 99.74 24 | 99.71 131 | 99.69 92 | 99.63 164 | | | | | | |
|
| tt0805 | | | 99.63 60 | 99.57 73 | 99.81 41 | 99.87 50 | 99.88 12 | 99.58 79 | 98.70 358 | 99.72 82 | 99.91 46 | 99.60 227 | 99.43 50 | 99.81 302 | 99.81 38 | 99.53 295 | 99.73 73 |
|
| anonymousdsp | | | 99.80 24 | 99.77 35 | 99.90 7 | 99.96 7 | 99.88 12 | 99.73 27 | 99.85 59 | 99.70 89 | 99.92 43 | 99.93 21 | 99.45 49 | 99.97 34 | 99.36 89 | 100.00 1 | 99.85 37 |
|
| mamv4 | | | 99.73 37 | 99.74 39 | 99.70 105 | 99.66 171 | 99.87 14 | 99.69 42 | 99.93 32 | 99.93 25 | 99.93 38 | 99.86 59 | 99.07 97 | 100.00 1 | 99.66 48 | 99.92 105 | 99.24 281 |
|
| PEN-MVS | | | 99.66 54 | 99.59 66 | 99.89 10 | 99.83 65 | 99.87 14 | 99.66 54 | 99.73 119 | 99.70 89 | 99.84 77 | 99.73 135 | 98.56 167 | 99.96 55 | 99.29 104 | 99.94 94 | 99.83 43 |
|
| DTE-MVSNet | | | 99.68 47 | 99.61 61 | 99.88 16 | 99.80 86 | 99.87 14 | 99.67 50 | 99.71 131 | 99.72 82 | 99.84 77 | 99.78 110 | 98.67 152 | 99.97 34 | 99.30 101 | 99.95 81 | 99.80 50 |
|
| MIMVSNet1 | | | 99.66 54 | 99.62 57 | 99.80 46 | 99.94 18 | 99.87 14 | 99.69 42 | 99.77 99 | 99.78 72 | 99.93 38 | 99.89 38 | 97.94 234 | 99.92 123 | 99.65 50 | 99.98 41 | 99.62 145 |
|
| FC-MVSNet-test | | | 99.70 42 | 99.65 52 | 99.86 24 | 99.88 43 | 99.86 18 | 99.72 30 | 99.78 96 | 99.90 31 | 99.82 82 | 99.83 73 | 98.45 185 | 99.87 210 | 99.51 68 | 99.97 55 | 99.86 34 |
|
| FIs | | | 99.65 59 | 99.58 69 | 99.84 28 | 99.84 61 | 99.85 19 | 99.66 54 | 99.75 109 | 99.86 46 | 99.74 127 | 99.79 100 | 98.27 207 | 99.85 247 | 99.37 88 | 99.93 101 | 99.83 43 |
|
| PS-CasMVS | | | 99.66 54 | 99.58 69 | 99.89 10 | 99.80 86 | 99.85 19 | 99.66 54 | 99.73 119 | 99.62 112 | 99.84 77 | 99.71 150 | 98.62 158 | 99.96 55 | 99.30 101 | 99.96 68 | 99.86 34 |
|
| TransMVSNet (Re) | | | 99.78 28 | 99.77 35 | 99.81 41 | 99.91 30 | 99.85 19 | 99.75 22 | 99.86 54 | 99.70 89 | 99.91 46 | 99.89 38 | 99.60 36 | 99.87 210 | 99.59 55 | 99.74 223 | 99.71 79 |
|
| RPSCF | | | 99.18 179 | 99.02 195 | 99.64 132 | 99.83 65 | 99.85 19 | 99.44 111 | 99.82 72 | 98.33 301 | 99.50 219 | 99.78 110 | 97.90 236 | 99.65 379 | 96.78 322 | 99.83 172 | 99.44 234 |
|
| TDRefinement | | | 99.72 38 | 99.70 42 | 99.77 59 | 99.90 36 | 99.85 19 | 99.86 6 | 99.92 34 | 99.69 92 | 99.78 103 | 99.92 25 | 99.37 58 | 99.88 196 | 98.93 154 | 99.95 81 | 99.60 159 |
|
| CS-MVS | | | 99.67 53 | 99.70 42 | 99.58 159 | 99.53 227 | 99.84 24 | 99.79 12 | 99.96 25 | 99.90 31 | 99.61 179 | 99.41 286 | 99.51 47 | 99.95 64 | 99.66 48 | 99.89 126 | 98.96 347 |
|
| nrg030 | | | 99.70 42 | 99.66 50 | 99.82 36 | 99.76 117 | 99.84 24 | 99.61 70 | 99.70 136 | 99.93 25 | 99.78 103 | 99.68 176 | 99.10 90 | 99.78 315 | 99.45 74 | 99.96 68 | 99.83 43 |
|
| v7n | | | 99.82 22 | 99.80 28 | 99.88 16 | 99.96 7 | 99.84 24 | 99.82 9 | 99.82 72 | 99.84 55 | 99.94 35 | 99.91 28 | 99.13 88 | 99.96 55 | 99.83 33 | 99.99 16 | 99.83 43 |
|
| Baseline_NR-MVSNet | | | 99.49 89 | 99.37 111 | 99.82 36 | 99.91 30 | 99.84 24 | 98.83 266 | 99.86 54 | 99.68 94 | 99.65 159 | 99.88 47 | 97.67 253 | 99.87 210 | 99.03 139 | 99.86 155 | 99.76 68 |
|
| test_djsdf | | | 99.84 16 | 99.81 25 | 99.91 2 | 99.94 18 | 99.84 24 | 99.77 16 | 99.80 84 | 99.73 78 | 99.97 20 | 99.92 25 | 99.77 19 | 99.98 21 | 99.43 76 | 100.00 1 | 99.90 24 |
|
| reproduce_model | | | 99.50 85 | 99.40 105 | 99.83 31 | 99.60 185 | 99.83 29 | 99.12 206 | 99.68 146 | 99.49 133 | 99.80 93 | 99.79 100 | 99.01 106 | 99.93 97 | 98.24 203 | 99.82 181 | 99.73 73 |
|
| reproduce-ours | | | 99.46 100 | 99.35 116 | 99.82 36 | 99.56 216 | 99.83 29 | 99.05 225 | 99.65 166 | 99.45 144 | 99.78 103 | 99.78 110 | 98.93 116 | 99.93 97 | 98.11 217 | 99.81 191 | 99.70 82 |
|
| our_new_method | | | 99.46 100 | 99.35 116 | 99.82 36 | 99.56 216 | 99.83 29 | 99.05 225 | 99.65 166 | 99.45 144 | 99.78 103 | 99.78 110 | 98.93 116 | 99.93 97 | 98.11 217 | 99.81 191 | 99.70 82 |
|
| MP-MVS-pluss | | | 99.14 189 | 98.92 222 | 99.80 46 | 99.83 65 | 99.83 29 | 98.61 290 | 99.63 176 | 96.84 373 | 99.44 230 | 99.58 235 | 98.81 129 | 99.91 145 | 97.70 258 | 99.82 181 | 99.67 102 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| SPE-MVS-test | | | 99.68 47 | 99.70 42 | 99.64 132 | 99.57 205 | 99.83 29 | 99.78 14 | 99.97 19 | 99.92 28 | 99.50 219 | 99.38 296 | 99.57 40 | 99.95 64 | 99.69 45 | 99.90 116 | 99.15 305 |
|
| pm-mvs1 | | | 99.79 27 | 99.79 29 | 99.78 56 | 99.91 30 | 99.83 29 | 99.76 20 | 99.87 51 | 99.73 78 | 99.89 53 | 99.87 52 | 99.63 30 | 99.87 210 | 99.54 63 | 99.92 105 | 99.63 134 |
|
| WR-MVS_H | | | 99.61 68 | 99.53 84 | 99.87 20 | 99.80 86 | 99.83 29 | 99.67 50 | 99.75 109 | 99.58 125 | 99.85 74 | 99.69 165 | 98.18 219 | 99.94 79 | 99.28 106 | 99.95 81 | 99.83 43 |
|
| OurMVSNet-221017-0 | | | 99.75 34 | 99.71 41 | 99.84 28 | 99.96 7 | 99.83 29 | 99.83 7 | 99.85 59 | 99.80 68 | 99.93 38 | 99.93 21 | 98.54 170 | 99.93 97 | 99.59 55 | 99.98 41 | 99.76 68 |
|
| fmvsm_s_conf0.1_n_a | | | 99.85 12 | 99.83 21 | 99.91 2 | 99.95 15 | 99.82 37 | 99.10 214 | 99.98 12 | 99.99 3 | 99.98 13 | 99.91 28 | 99.68 26 | 99.93 97 | 99.93 19 | 99.99 16 | 99.99 2 |
|
| fmvsm_s_conf0.5_n_a | | | 99.82 22 | 99.79 29 | 99.89 10 | 99.85 57 | 99.82 37 | 99.03 233 | 99.96 25 | 99.99 3 | 99.97 20 | 99.84 69 | 99.58 38 | 99.93 97 | 99.92 21 | 99.98 41 | 99.93 18 |
|
| SED-MVS | | | 99.40 118 | 99.28 137 | 99.77 59 | 99.69 156 | 99.82 37 | 99.20 174 | 99.54 231 | 99.13 200 | 99.82 82 | 99.63 203 | 98.91 121 | 99.92 123 | 97.85 242 | 99.70 239 | 99.58 171 |
|
| test_241102_ONE | | | | | | 99.69 156 | 99.82 37 | | 99.54 231 | 99.12 203 | 99.82 82 | 99.49 268 | 98.91 121 | 99.52 401 | | | |
|
| CP-MVSNet | | | 99.54 80 | 99.43 100 | 99.87 20 | 99.76 117 | 99.82 37 | 99.57 82 | 99.61 186 | 99.54 126 | 99.80 93 | 99.64 192 | 97.79 245 | 99.95 64 | 99.21 112 | 99.94 94 | 99.84 39 |
|
| ACMMP_NAP | | | 99.28 146 | 99.11 165 | 99.79 53 | 99.75 129 | 99.81 42 | 98.95 253 | 99.53 240 | 98.27 305 | 99.53 209 | 99.73 135 | 98.75 141 | 99.87 210 | 97.70 258 | 99.83 172 | 99.68 94 |
|
| MTAPA | | | 99.35 132 | 99.20 148 | 99.80 46 | 99.81 80 | 99.81 42 | 99.33 132 | 99.53 240 | 99.27 172 | 99.42 237 | 99.63 203 | 98.21 214 | 99.95 64 | 97.83 246 | 99.79 203 | 99.65 119 |
|
| APDe-MVS |  | | 99.48 91 | 99.36 114 | 99.85 26 | 99.55 219 | 99.81 42 | 99.50 96 | 99.69 143 | 98.99 213 | 99.75 119 | 99.71 150 | 98.79 134 | 99.93 97 | 98.46 188 | 99.85 159 | 99.80 50 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| HPM-MVS_fast | | | 99.43 109 | 99.30 130 | 99.80 46 | 99.83 65 | 99.81 42 | 99.52 89 | 99.70 136 | 98.35 296 | 99.51 217 | 99.50 264 | 99.31 64 | 99.88 196 | 98.18 211 | 99.84 164 | 99.69 88 |
|
| DVP-MVS |  | | 99.32 142 | 99.17 151 | 99.77 59 | 99.69 156 | 99.80 46 | 99.14 196 | 99.31 304 | 99.16 194 | 99.62 173 | 99.61 219 | 98.35 198 | 99.91 145 | 97.88 236 | 99.72 234 | 99.61 155 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.69 156 | 99.80 46 | 99.24 164 | 99.57 214 | 99.16 194 | 99.73 131 | 99.65 190 | 98.35 198 | | | | |
|
| test_0728_SECOND | | | | | 99.83 31 | 99.70 152 | 99.79 48 | 99.14 196 | 99.61 186 | | | | | 99.92 123 | 97.88 236 | 99.72 234 | 99.77 63 |
|
| mvs_tets | | | 99.90 2 | 99.90 4 | 99.90 7 | 99.96 7 | 99.79 48 | 99.72 30 | 99.88 49 | 99.92 28 | 99.98 13 | 99.93 21 | 99.94 4 | 99.98 21 | 99.77 40 | 100.00 1 | 99.92 22 |
|
| LS3D | | | 99.24 156 | 99.11 165 | 99.61 151 | 98.38 405 | 99.79 48 | 99.57 82 | 99.68 146 | 99.61 116 | 99.15 295 | 99.71 150 | 98.70 147 | 99.91 145 | 97.54 273 | 99.68 248 | 99.13 313 |
|
| fmvsm_s_conf0.1_n | | | 99.86 10 | 99.85 17 | 99.89 10 | 99.93 24 | 99.78 51 | 99.07 224 | 99.98 12 | 99.99 3 | 99.98 13 | 99.90 33 | 99.88 8 | 99.92 123 | 99.93 19 | 99.99 16 | 99.98 4 |
|
| fmvsm_s_conf0.5_n | | | 99.83 20 | 99.81 25 | 99.87 20 | 99.85 57 | 99.78 51 | 99.03 233 | 99.96 25 | 99.99 3 | 99.97 20 | 99.84 69 | 99.78 17 | 99.92 123 | 99.92 21 | 99.99 16 | 99.92 22 |
|
| EGC-MVSNET | | | 89.05 386 | 85.52 389 | 99.64 132 | 99.89 38 | 99.78 51 | 99.56 84 | 99.52 245 | 24.19 421 | 49.96 422 | 99.83 73 | 99.15 83 | 99.92 123 | 97.71 255 | 99.85 159 | 99.21 290 |
|
| Effi-MVS+-dtu | | | 99.07 203 | 98.92 222 | 99.52 179 | 98.89 373 | 99.78 51 | 99.15 194 | 99.66 156 | 99.34 163 | 98.92 319 | 99.24 331 | 97.69 251 | 99.98 21 | 98.11 217 | 99.28 331 | 98.81 365 |
|
| jajsoiax | | | 99.89 3 | 99.89 6 | 99.89 10 | 99.96 7 | 99.78 51 | 99.70 35 | 99.86 54 | 99.89 37 | 99.98 13 | 99.90 33 | 99.94 4 | 99.98 21 | 99.75 41 | 100.00 1 | 99.90 24 |
|
| DVP-MVS++ | | | 99.38 124 | 99.25 143 | 99.77 59 | 99.03 359 | 99.77 56 | 99.74 24 | 99.61 186 | 99.18 187 | 99.76 114 | 99.61 219 | 99.00 107 | 99.92 123 | 97.72 253 | 99.60 275 | 99.62 145 |
|
| IU-MVS | | | | | | 99.69 156 | 99.77 56 | | 99.22 324 | 97.50 348 | 99.69 144 | | | | 97.75 251 | 99.70 239 | 99.77 63 |
|
| DPE-MVS |  | | 99.14 189 | 98.92 222 | 99.82 36 | 99.57 205 | 99.77 56 | 98.74 282 | 99.60 197 | 98.55 270 | 99.76 114 | 99.69 165 | 98.23 213 | 99.92 123 | 96.39 346 | 99.75 216 | 99.76 68 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PS-MVSNAJss | | | 99.84 16 | 99.82 24 | 99.89 10 | 99.96 7 | 99.77 56 | 99.68 46 | 99.85 59 | 99.95 20 | 99.98 13 | 99.92 25 | 99.28 68 | 99.98 21 | 99.75 41 | 100.00 1 | 99.94 16 |
|
| GBi-Net | | | 99.42 112 | 99.31 125 | 99.73 90 | 99.49 245 | 99.77 56 | 99.68 46 | 99.70 136 | 99.44 146 | 99.62 173 | 99.83 73 | 97.21 274 | 99.90 163 | 98.96 148 | 99.90 116 | 99.53 194 |
|
| test1 | | | 99.42 112 | 99.31 125 | 99.73 90 | 99.49 245 | 99.77 56 | 99.68 46 | 99.70 136 | 99.44 146 | 99.62 173 | 99.83 73 | 97.21 274 | 99.90 163 | 98.96 148 | 99.90 116 | 99.53 194 |
|
| FMVSNet1 | | | 99.66 54 | 99.63 56 | 99.73 90 | 99.78 105 | 99.77 56 | 99.68 46 | 99.70 136 | 99.67 98 | 99.82 82 | 99.83 73 | 98.98 111 | 99.90 163 | 99.24 108 | 99.97 55 | 99.53 194 |
|
| test_fmvsmconf0.01_n | | | 99.89 3 | 99.88 7 | 99.91 2 | 99.98 3 | 99.76 63 | 99.12 206 | 100.00 1 | 100.00 1 | 99.99 7 | 99.91 28 | 99.98 1 | 100.00 1 | 99.97 4 | 100.00 1 | 99.99 2 |
|
| sd_testset | | | 99.78 28 | 99.78 33 | 99.80 46 | 99.80 86 | 99.76 63 | 99.80 11 | 99.79 90 | 99.97 16 | 99.89 53 | 99.89 38 | 99.53 45 | 99.99 8 | 99.36 89 | 99.96 68 | 99.65 119 |
|
| test_one_0601 | | | | | | 99.63 178 | 99.76 63 | | 99.55 225 | 99.23 180 | 99.31 269 | 99.61 219 | 98.59 162 | | | | |
|
| GeoE | | | 99.69 44 | 99.66 50 | 99.78 56 | 99.76 117 | 99.76 63 | 99.60 76 | 99.82 72 | 99.46 141 | 99.75 119 | 99.56 246 | 99.63 30 | 99.95 64 | 99.43 76 | 99.88 135 | 99.62 145 |
|
| LCM-MVSNet-Re | | | 99.28 146 | 99.15 155 | 99.67 112 | 99.33 302 | 99.76 63 | 99.34 129 | 99.97 19 | 98.93 223 | 99.91 46 | 99.79 100 | 98.68 149 | 99.93 97 | 96.80 321 | 99.56 284 | 99.30 272 |
|
| ACMH+ | | 98.40 8 | 99.50 85 | 99.43 100 | 99.71 101 | 99.86 53 | 99.76 63 | 99.32 135 | 99.77 99 | 99.53 128 | 99.77 111 | 99.76 122 | 99.26 72 | 99.78 315 | 97.77 247 | 99.88 135 | 99.60 159 |
|
| test_vis3_rt | | | 99.89 3 | 99.90 4 | 99.87 20 | 99.98 3 | 99.75 69 | 99.70 35 | 100.00 1 | 99.73 78 | 100.00 1 | 99.89 38 | 99.79 16 | 99.88 196 | 99.98 1 | 100.00 1 | 99.98 4 |
|
| tfpnnormal | | | 99.43 109 | 99.38 108 | 99.60 154 | 99.87 50 | 99.75 69 | 99.59 77 | 99.78 96 | 99.71 84 | 99.90 49 | 99.69 165 | 98.85 127 | 99.90 163 | 97.25 297 | 99.78 208 | 99.15 305 |
|
| APD-MVS_3200maxsize | | | 99.31 143 | 99.16 152 | 99.74 81 | 99.53 227 | 99.75 69 | 99.27 155 | 99.61 186 | 99.19 186 | 99.57 190 | 99.64 192 | 98.76 139 | 99.90 163 | 97.29 288 | 99.62 265 | 99.56 178 |
|
| VPA-MVSNet | | | 99.66 54 | 99.62 57 | 99.79 53 | 99.68 164 | 99.75 69 | 99.62 64 | 99.69 143 | 99.85 52 | 99.80 93 | 99.81 87 | 98.81 129 | 99.91 145 | 99.47 72 | 99.88 135 | 99.70 82 |
|
| HPM-MVS |  | | 99.25 153 | 99.07 180 | 99.78 56 | 99.81 80 | 99.75 69 | 99.61 70 | 99.67 151 | 97.72 337 | 99.35 255 | 99.25 326 | 99.23 75 | 99.92 123 | 97.21 300 | 99.82 181 | 99.67 102 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DeepPCF-MVS | | 98.42 6 | 99.18 179 | 99.02 195 | 99.67 112 | 99.22 324 | 99.75 69 | 97.25 397 | 99.47 262 | 98.72 253 | 99.66 157 | 99.70 158 | 99.29 66 | 99.63 382 | 98.07 221 | 99.81 191 | 99.62 145 |
|
| test_fmvsmconf0.1_n | | | 99.87 9 | 99.86 13 | 99.91 2 | 99.97 6 | 99.74 75 | 99.01 238 | 99.99 11 | 99.99 3 | 99.98 13 | 99.88 47 | 99.97 2 | 99.99 8 | 99.96 9 | 100.00 1 | 99.98 4 |
|
| SR-MVS-dyc-post | | | 99.27 150 | 99.11 165 | 99.73 90 | 99.54 221 | 99.74 75 | 99.26 157 | 99.62 179 | 99.16 194 | 99.52 211 | 99.64 192 | 98.41 190 | 99.91 145 | 97.27 291 | 99.61 272 | 99.54 189 |
|
| RE-MVS-def | | | | 99.13 158 | | 99.54 221 | 99.74 75 | 99.26 157 | 99.62 179 | 99.16 194 | 99.52 211 | 99.64 192 | 98.57 165 | | 97.27 291 | 99.61 272 | 99.54 189 |
|
| test_fmvsmconf_n | | | 99.85 12 | 99.84 20 | 99.88 16 | 99.91 30 | 99.73 78 | 98.97 250 | 99.98 12 | 99.99 3 | 99.96 24 | 99.85 63 | 99.93 7 | 99.99 8 | 99.94 16 | 99.99 16 | 99.93 18 |
|
| ZNCC-MVS | | | 99.22 165 | 99.04 192 | 99.77 59 | 99.76 117 | 99.73 78 | 99.28 152 | 99.56 219 | 98.19 310 | 99.14 297 | 99.29 318 | 98.84 128 | 99.92 123 | 97.53 275 | 99.80 198 | 99.64 129 |
|
| GST-MVS | | | 99.16 185 | 98.96 215 | 99.75 76 | 99.73 138 | 99.73 78 | 99.20 174 | 99.55 225 | 98.22 307 | 99.32 264 | 99.35 307 | 98.65 156 | 99.91 145 | 96.86 316 | 99.74 223 | 99.62 145 |
|
| SMA-MVS |  | | 99.19 175 | 99.00 202 | 99.73 90 | 99.46 260 | 99.73 78 | 99.13 202 | 99.52 245 | 97.40 353 | 99.57 190 | 99.64 192 | 98.93 116 | 99.83 277 | 97.61 269 | 99.79 203 | 99.63 134 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MSP-MVS | | | 99.04 210 | 98.79 239 | 99.81 41 | 99.78 105 | 99.73 78 | 99.35 128 | 99.57 214 | 98.54 273 | 99.54 204 | 98.99 362 | 96.81 288 | 99.93 97 | 96.97 310 | 99.53 295 | 99.77 63 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SR-MVS | | | 99.19 175 | 99.00 202 | 99.74 81 | 99.51 234 | 99.72 83 | 99.18 181 | 99.60 197 | 98.85 234 | 99.47 224 | 99.58 235 | 98.38 195 | 99.92 123 | 96.92 312 | 99.54 293 | 99.57 176 |
|
| XXY-MVS | | | 99.71 41 | 99.67 49 | 99.81 41 | 99.89 38 | 99.72 83 | 99.59 77 | 99.82 72 | 99.39 157 | 99.82 82 | 99.84 69 | 99.38 56 | 99.91 145 | 99.38 85 | 99.93 101 | 99.80 50 |
|
| UA-Net | | | 99.78 28 | 99.76 38 | 99.86 24 | 99.72 141 | 99.71 85 | 99.91 4 | 99.95 30 | 99.96 19 | 99.71 137 | 99.91 28 | 99.15 83 | 99.97 34 | 99.50 70 | 100.00 1 | 99.90 24 |
|
| HPM-MVS++ |  | | 98.96 228 | 98.70 245 | 99.74 81 | 99.52 232 | 99.71 85 | 98.86 261 | 99.19 330 | 98.47 281 | 98.59 353 | 99.06 352 | 98.08 225 | 99.91 145 | 96.94 311 | 99.60 275 | 99.60 159 |
|
| XVS | | | 99.27 150 | 99.11 165 | 99.75 76 | 99.71 144 | 99.71 85 | 99.37 124 | 99.61 186 | 99.29 168 | 98.76 339 | 99.47 275 | 98.47 181 | 99.88 196 | 97.62 267 | 99.73 228 | 99.67 102 |
|
| X-MVStestdata | | | 96.09 368 | 94.87 380 | 99.75 76 | 99.71 144 | 99.71 85 | 99.37 124 | 99.61 186 | 99.29 168 | 98.76 339 | 61.30 430 | 98.47 181 | 99.88 196 | 97.62 267 | 99.73 228 | 99.67 102 |
|
| MP-MVS |  | | 99.06 204 | 98.83 234 | 99.76 66 | 99.76 117 | 99.71 85 | 99.32 135 | 99.50 254 | 98.35 296 | 98.97 312 | 99.48 271 | 98.37 196 | 99.92 123 | 95.95 366 | 99.75 216 | 99.63 134 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PGM-MVS | | | 99.20 172 | 99.01 198 | 99.77 59 | 99.75 129 | 99.71 85 | 99.16 192 | 99.72 128 | 97.99 320 | 99.42 237 | 99.60 227 | 98.81 129 | 99.93 97 | 96.91 313 | 99.74 223 | 99.66 111 |
|
| Gipuma |  | | 99.57 71 | 99.59 66 | 99.49 186 | 99.98 3 | 99.71 85 | 99.72 30 | 99.84 65 | 99.81 65 | 99.94 35 | 99.78 110 | 98.91 121 | 99.71 342 | 98.41 190 | 99.95 81 | 99.05 334 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsm_n_1920 | | | 99.84 16 | 99.85 17 | 99.83 31 | 99.82 72 | 99.70 92 | 99.17 186 | 99.97 19 | 99.99 3 | 99.96 24 | 99.82 80 | 99.94 4 | 100.00 1 | 99.95 12 | 100.00 1 | 99.80 50 |
|
| HFP-MVS | | | 99.25 153 | 99.08 176 | 99.76 66 | 99.73 138 | 99.70 92 | 99.31 140 | 99.59 203 | 98.36 291 | 99.36 253 | 99.37 298 | 98.80 133 | 99.91 145 | 97.43 280 | 99.75 216 | 99.68 94 |
|
| region2R | | | 99.23 157 | 99.05 186 | 99.77 59 | 99.76 117 | 99.70 92 | 99.31 140 | 99.59 203 | 98.41 285 | 99.32 264 | 99.36 302 | 98.73 145 | 99.93 97 | 97.29 288 | 99.74 223 | 99.67 102 |
|
| COLMAP_ROB |  | 98.06 12 | 99.45 104 | 99.37 111 | 99.70 105 | 99.83 65 | 99.70 92 | 99.38 120 | 99.78 96 | 99.53 128 | 99.67 152 | 99.78 110 | 99.19 79 | 99.86 229 | 97.32 286 | 99.87 147 | 99.55 181 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Fast-Effi-MVS+-dtu | | | 99.20 172 | 99.12 162 | 99.43 206 | 99.25 319 | 99.69 96 | 99.05 225 | 99.82 72 | 99.50 131 | 98.97 312 | 99.05 353 | 98.98 111 | 99.98 21 | 98.20 207 | 99.24 337 | 98.62 375 |
|
| ACMMPR | | | 99.23 157 | 99.06 182 | 99.76 66 | 99.74 135 | 99.69 96 | 99.31 140 | 99.59 203 | 98.36 291 | 99.35 255 | 99.38 296 | 98.61 160 | 99.93 97 | 97.43 280 | 99.75 216 | 99.67 102 |
|
| ACMM | | 98.09 11 | 99.46 100 | 99.38 108 | 99.72 96 | 99.80 86 | 99.69 96 | 99.13 202 | 99.65 166 | 98.99 213 | 99.64 160 | 99.72 142 | 99.39 52 | 99.86 229 | 98.23 204 | 99.81 191 | 99.60 159 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| mPP-MVS | | | 99.19 175 | 99.00 202 | 99.76 66 | 99.76 117 | 99.68 99 | 99.38 120 | 99.54 231 | 98.34 300 | 99.01 310 | 99.50 264 | 98.53 174 | 99.93 97 | 97.18 302 | 99.78 208 | 99.66 111 |
|
| ACMMP |  | | 99.25 153 | 99.08 176 | 99.74 81 | 99.79 98 | 99.68 99 | 99.50 96 | 99.65 166 | 98.07 316 | 99.52 211 | 99.69 165 | 98.57 165 | 99.92 123 | 97.18 302 | 99.79 203 | 99.63 134 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| test_part2 | | | | | | 99.62 182 | 99.67 101 | | | | 99.55 202 | | | | | | |
|
| SixPastTwentyTwo | | | 99.42 112 | 99.30 130 | 99.76 66 | 99.92 28 | 99.67 101 | 99.70 35 | 99.14 336 | 99.65 105 | 99.89 53 | 99.90 33 | 96.20 310 | 99.94 79 | 99.42 81 | 99.92 105 | 99.67 102 |
|
| fmvsm_l_conf0.5_n | | | 99.80 24 | 99.78 33 | 99.85 26 | 99.88 43 | 99.66 103 | 99.11 211 | 99.91 38 | 99.98 14 | 99.96 24 | 99.64 192 | 99.60 36 | 99.99 8 | 99.95 12 | 99.99 16 | 99.88 28 |
|
| Anonymous202405211 | | | 98.75 251 | 98.46 265 | 99.63 139 | 99.34 297 | 99.66 103 | 99.47 105 | 97.65 394 | 99.28 171 | 99.56 197 | 99.50 264 | 93.15 344 | 99.84 262 | 98.62 181 | 99.58 281 | 99.40 246 |
|
| PM-MVS | | | 99.36 130 | 99.29 135 | 99.58 159 | 99.83 65 | 99.66 103 | 98.95 253 | 99.86 54 | 98.85 234 | 99.81 89 | 99.73 135 | 98.40 194 | 99.92 123 | 98.36 193 | 99.83 172 | 99.17 301 |
|
| CP-MVS | | | 99.23 157 | 99.05 186 | 99.75 76 | 99.66 171 | 99.66 103 | 99.38 120 | 99.62 179 | 98.38 289 | 99.06 308 | 99.27 321 | 98.79 134 | 99.94 79 | 97.51 276 | 99.82 181 | 99.66 111 |
|
| SteuartSystems-ACMMP | | | 99.30 144 | 99.14 156 | 99.76 66 | 99.87 50 | 99.66 103 | 99.18 181 | 99.60 197 | 98.55 270 | 99.57 190 | 99.67 180 | 99.03 105 | 99.94 79 | 97.01 307 | 99.80 198 | 99.69 88 |
| Skip Steuart: Steuart Systems R&D Blog. |
| Vis-MVSNet |  | | 99.75 34 | 99.74 39 | 99.79 53 | 99.88 43 | 99.66 103 | 99.69 42 | 99.92 34 | 99.67 98 | 99.77 111 | 99.75 127 | 99.61 34 | 99.98 21 | 99.35 92 | 99.98 41 | 99.72 76 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| SSC-MVS | | | 99.52 83 | 99.42 102 | 99.83 31 | 99.86 53 | 99.65 109 | 99.52 89 | 99.81 81 | 99.87 43 | 99.81 89 | 99.79 100 | 96.78 289 | 99.99 8 | 99.83 33 | 99.51 299 | 99.86 34 |
|
| SDMVSNet | | | 99.77 32 | 99.77 35 | 99.76 66 | 99.80 86 | 99.65 109 | 99.63 61 | 99.86 54 | 99.97 16 | 99.89 53 | 99.89 38 | 99.52 46 | 99.99 8 | 99.42 81 | 99.96 68 | 99.65 119 |
|
| MAR-MVS | | | 98.24 301 | 97.92 315 | 99.19 267 | 98.78 387 | 99.65 109 | 99.17 186 | 99.14 336 | 95.36 392 | 98.04 379 | 98.81 381 | 97.47 262 | 99.72 338 | 95.47 378 | 99.06 346 | 98.21 398 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| fmvsm_l_conf0.5_n_a | | | 99.80 24 | 99.79 29 | 99.84 28 | 99.88 43 | 99.64 112 | 99.12 206 | 99.91 38 | 99.98 14 | 99.95 32 | 99.67 180 | 99.67 27 | 99.99 8 | 99.94 16 | 99.99 16 | 99.88 28 |
|
| AllTest | | | 99.21 170 | 99.07 180 | 99.63 139 | 99.78 105 | 99.64 112 | 99.12 206 | 99.83 67 | 98.63 262 | 99.63 164 | 99.72 142 | 98.68 149 | 99.75 330 | 96.38 347 | 99.83 172 | 99.51 206 |
|
| TestCases | | | | | 99.63 139 | 99.78 105 | 99.64 112 | | 99.83 67 | 98.63 262 | 99.63 164 | 99.72 142 | 98.68 149 | 99.75 330 | 96.38 347 | 99.83 172 | 99.51 206 |
|
| TranMVSNet+NR-MVSNet | | | 99.54 80 | 99.47 89 | 99.76 66 | 99.58 195 | 99.64 112 | 99.30 143 | 99.63 176 | 99.61 116 | 99.71 137 | 99.56 246 | 98.76 139 | 99.96 55 | 99.14 130 | 99.92 105 | 99.68 94 |
|
| XVG-OURS-SEG-HR | | | 99.16 185 | 98.99 209 | 99.66 119 | 99.84 61 | 99.64 112 | 98.25 332 | 99.73 119 | 98.39 288 | 99.63 164 | 99.43 283 | 99.70 24 | 99.90 163 | 97.34 285 | 98.64 377 | 99.44 234 |
|
| LPG-MVS_test | | | 99.22 165 | 99.05 186 | 99.74 81 | 99.82 72 | 99.63 117 | 99.16 192 | 99.73 119 | 97.56 342 | 99.64 160 | 99.69 165 | 99.37 58 | 99.89 182 | 96.66 329 | 99.87 147 | 99.69 88 |
|
| LGP-MVS_train | | | | | 99.74 81 | 99.82 72 | 99.63 117 | | 99.73 119 | 97.56 342 | 99.64 160 | 99.69 165 | 99.37 58 | 99.89 182 | 96.66 329 | 99.87 147 | 99.69 88 |
|
| EIA-MVS | | | 99.12 193 | 99.01 198 | 99.45 198 | 99.36 285 | 99.62 119 | 99.34 129 | 99.79 90 | 98.41 285 | 98.84 329 | 98.89 375 | 98.75 141 | 99.84 262 | 98.15 215 | 99.51 299 | 98.89 358 |
|
| XVG-OURS | | | 99.21 170 | 99.06 182 | 99.65 125 | 99.82 72 | 99.62 119 | 97.87 370 | 99.74 115 | 98.36 291 | 99.66 157 | 99.68 176 | 99.71 22 | 99.90 163 | 96.84 319 | 99.88 135 | 99.43 240 |
|
| baseline | | | 99.63 60 | 99.62 57 | 99.66 119 | 99.80 86 | 99.62 119 | 99.44 111 | 99.80 84 | 99.71 84 | 99.72 132 | 99.69 165 | 99.15 83 | 99.83 277 | 99.32 98 | 99.94 94 | 99.53 194 |
|
| APD-MVS |  | | 98.87 241 | 98.59 252 | 99.71 101 | 99.50 240 | 99.62 119 | 99.01 238 | 99.57 214 | 96.80 375 | 99.54 204 | 99.63 203 | 98.29 204 | 99.91 145 | 95.24 382 | 99.71 237 | 99.61 155 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DP-MVS | | | 99.48 91 | 99.39 106 | 99.74 81 | 99.57 205 | 99.62 119 | 99.29 150 | 99.61 186 | 99.87 43 | 99.74 127 | 99.76 122 | 98.69 148 | 99.87 210 | 98.20 207 | 99.80 198 | 99.75 71 |
|
| ACMH | | 98.42 6 | 99.59 70 | 99.54 80 | 99.72 96 | 99.86 53 | 99.62 119 | 99.56 84 | 99.79 90 | 98.77 248 | 99.80 93 | 99.85 63 | 99.64 28 | 99.85 247 | 98.70 174 | 99.89 126 | 99.70 82 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| WB-MVS | | | 99.44 106 | 99.32 123 | 99.80 46 | 99.81 80 | 99.61 125 | 99.47 105 | 99.81 81 | 99.82 62 | 99.71 137 | 99.72 142 | 96.60 293 | 99.98 21 | 99.75 41 | 99.23 339 | 99.82 49 |
|
| ZD-MVS | | | | | | 99.43 268 | 99.61 125 | | 99.43 273 | 96.38 379 | 99.11 301 | 99.07 351 | 97.86 239 | 99.92 123 | 94.04 398 | 99.49 304 | |
|
| OPM-MVS | | | 99.26 152 | 99.13 158 | 99.63 139 | 99.70 152 | 99.61 125 | 98.58 297 | 99.48 259 | 98.50 277 | 99.52 211 | 99.63 203 | 99.14 86 | 99.76 326 | 97.89 235 | 99.77 212 | 99.51 206 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Anonymous20240529 | | | 99.42 112 | 99.34 118 | 99.65 125 | 99.53 227 | 99.60 128 | 99.63 61 | 99.39 286 | 99.47 138 | 99.76 114 | 99.78 110 | 98.13 221 | 99.86 229 | 98.70 174 | 99.68 248 | 99.49 216 |
|
| Anonymous20231211 | | | 99.62 66 | 99.57 73 | 99.76 66 | 99.61 183 | 99.60 128 | 99.81 10 | 99.73 119 | 99.82 62 | 99.90 49 | 99.90 33 | 97.97 233 | 99.86 229 | 99.42 81 | 99.96 68 | 99.80 50 |
|
| VPNet | | | 99.46 100 | 99.37 111 | 99.71 101 | 99.82 72 | 99.59 130 | 99.48 102 | 99.70 136 | 99.81 65 | 99.69 144 | 99.58 235 | 97.66 257 | 99.86 229 | 99.17 121 | 99.44 309 | 99.67 102 |
|
| casdiffmvs |  | | 99.63 60 | 99.61 61 | 99.67 112 | 99.79 98 | 99.59 130 | 99.13 202 | 99.85 59 | 99.79 70 | 99.76 114 | 99.72 142 | 99.33 63 | 99.82 287 | 99.21 112 | 99.94 94 | 99.59 166 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs_mvg |  | | 99.68 47 | 99.68 48 | 99.69 107 | 99.81 80 | 99.59 130 | 99.29 150 | 99.90 43 | 99.71 84 | 99.79 99 | 99.73 135 | 99.54 43 | 99.84 262 | 99.36 89 | 99.96 68 | 99.65 119 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PHI-MVS | | | 99.11 196 | 98.95 216 | 99.59 156 | 99.13 340 | 99.59 130 | 99.17 186 | 99.65 166 | 97.88 330 | 99.25 278 | 99.46 278 | 98.97 113 | 99.80 309 | 97.26 293 | 99.82 181 | 99.37 253 |
|
| UniMVSNet (Re) | | | 99.37 127 | 99.26 141 | 99.68 109 | 99.51 234 | 99.58 134 | 98.98 249 | 99.60 197 | 99.43 152 | 99.70 141 | 99.36 302 | 97.70 249 | 99.88 196 | 99.20 115 | 99.87 147 | 99.59 166 |
|
| XVG-ACMP-BASELINE | | | 99.23 157 | 99.10 173 | 99.63 139 | 99.82 72 | 99.58 134 | 98.83 266 | 99.72 128 | 98.36 291 | 99.60 182 | 99.71 150 | 98.92 119 | 99.91 145 | 97.08 305 | 99.84 164 | 99.40 246 |
|
| 114514_t | | | 98.49 280 | 98.11 298 | 99.64 132 | 99.73 138 | 99.58 134 | 99.24 164 | 99.76 104 | 89.94 412 | 99.42 237 | 99.56 246 | 97.76 248 | 99.86 229 | 97.74 252 | 99.82 181 | 99.47 224 |
|
| UniMVSNet_NR-MVSNet | | | 99.37 127 | 99.25 143 | 99.72 96 | 99.47 256 | 99.56 137 | 98.97 250 | 99.61 186 | 99.43 152 | 99.67 152 | 99.28 319 | 97.85 241 | 99.95 64 | 99.17 121 | 99.81 191 | 99.65 119 |
|
| DU-MVS | | | 99.33 140 | 99.21 147 | 99.71 101 | 99.43 268 | 99.56 137 | 98.83 266 | 99.53 240 | 99.38 158 | 99.67 152 | 99.36 302 | 97.67 253 | 99.95 64 | 99.17 121 | 99.81 191 | 99.63 134 |
|
| CMPMVS |  | 77.52 23 | 98.50 278 | 98.19 293 | 99.41 215 | 98.33 407 | 99.56 137 | 99.01 238 | 99.59 203 | 95.44 391 | 99.57 190 | 99.80 90 | 95.64 316 | 99.46 406 | 96.47 342 | 99.92 105 | 99.21 290 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_fmvsmvis_n_1920 | | | 99.84 16 | 99.86 13 | 99.81 41 | 99.88 43 | 99.55 140 | 99.17 186 | 99.98 12 | 99.99 3 | 99.96 24 | 99.84 69 | 99.96 3 | 99.99 8 | 99.96 9 | 99.99 16 | 99.88 28 |
|
| NR-MVSNet | | | 99.40 118 | 99.31 125 | 99.68 109 | 99.43 268 | 99.55 140 | 99.73 27 | 99.50 254 | 99.46 141 | 99.88 62 | 99.36 302 | 97.54 260 | 99.87 210 | 98.97 146 | 99.87 147 | 99.63 134 |
|
| ACMP | | 97.51 14 | 99.05 207 | 98.84 232 | 99.67 112 | 99.78 105 | 99.55 140 | 98.88 259 | 99.66 156 | 97.11 368 | 99.47 224 | 99.60 227 | 99.07 97 | 99.89 182 | 96.18 355 | 99.85 159 | 99.58 171 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MSC_two_6792asdad | | | | | 99.74 81 | 99.03 359 | 99.53 143 | | 99.23 321 | | | | | 99.92 123 | 97.77 247 | 99.69 243 | 99.78 59 |
|
| No_MVS | | | | | 99.74 81 | 99.03 359 | 99.53 143 | | 99.23 321 | | | | | 99.92 123 | 97.77 247 | 99.69 243 | 99.78 59 |
|
| SF-MVS | | | 99.10 199 | 98.93 218 | 99.62 148 | 99.58 195 | 99.51 145 | 99.13 202 | 99.65 166 | 97.97 322 | 99.42 237 | 99.61 219 | 98.86 126 | 99.87 210 | 96.45 344 | 99.68 248 | 99.49 216 |
|
| Fast-Effi-MVS+ | | | 99.02 213 | 98.87 228 | 99.46 195 | 99.38 280 | 99.50 146 | 99.04 230 | 99.79 90 | 97.17 364 | 98.62 350 | 98.74 384 | 99.34 62 | 99.95 64 | 98.32 197 | 99.41 314 | 98.92 354 |
|
| balanced_conf03 | | | 99.50 85 | 99.50 86 | 99.50 184 | 99.42 273 | 99.49 147 | 99.52 89 | 99.75 109 | 99.86 46 | 99.78 103 | 99.71 150 | 98.20 216 | 99.90 163 | 99.39 84 | 99.88 135 | 99.10 316 |
|
| MCST-MVS | | | 99.02 213 | 98.81 236 | 99.65 125 | 99.58 195 | 99.49 147 | 98.58 297 | 99.07 340 | 98.40 287 | 99.04 309 | 99.25 326 | 98.51 179 | 99.80 309 | 97.31 287 | 99.51 299 | 99.65 119 |
|
| wuyk23d | | | 97.58 330 | 99.13 158 | 92.93 400 | 99.69 156 | 99.49 147 | 99.52 89 | 99.77 99 | 97.97 322 | 99.96 24 | 99.79 100 | 99.84 12 | 99.94 79 | 95.85 369 | 99.82 181 | 79.36 418 |
|
| QAPM | | | 98.40 289 | 97.99 305 | 99.65 125 | 99.39 277 | 99.47 150 | 99.67 50 | 99.52 245 | 91.70 409 | 98.78 338 | 99.80 90 | 98.55 168 | 99.95 64 | 94.71 390 | 99.75 216 | 99.53 194 |
|
| HyFIR lowres test | | | 98.91 234 | 98.64 247 | 99.73 90 | 99.85 57 | 99.47 150 | 98.07 349 | 99.83 67 | 98.64 261 | 99.89 53 | 99.60 227 | 92.57 350 | 100.00 1 | 99.33 96 | 99.97 55 | 99.72 76 |
|
| F-COLMAP | | | 98.74 252 | 98.45 266 | 99.62 148 | 99.57 205 | 99.47 150 | 98.84 264 | 99.65 166 | 96.31 381 | 98.93 316 | 99.19 338 | 97.68 252 | 99.87 210 | 96.52 337 | 99.37 319 | 99.53 194 |
|
| 3Dnovator+ | | 98.92 3 | 99.35 132 | 99.24 145 | 99.67 112 | 99.35 288 | 99.47 150 | 99.62 64 | 99.50 254 | 99.44 146 | 99.12 300 | 99.78 110 | 98.77 138 | 99.94 79 | 97.87 239 | 99.72 234 | 99.62 145 |
|
| V42 | | | 99.56 74 | 99.54 80 | 99.63 139 | 99.79 98 | 99.46 154 | 99.39 117 | 99.59 203 | 99.24 178 | 99.86 71 | 99.70 158 | 98.55 168 | 99.82 287 | 99.79 39 | 99.95 81 | 99.60 159 |
|
| CDPH-MVS | | | 98.56 271 | 98.20 290 | 99.61 151 | 99.50 240 | 99.46 154 | 98.32 326 | 99.41 276 | 95.22 394 | 99.21 287 | 99.10 349 | 98.34 200 | 99.82 287 | 95.09 386 | 99.66 257 | 99.56 178 |
|
| K. test v3 | | | 98.87 241 | 98.60 250 | 99.69 107 | 99.93 24 | 99.46 154 | 99.74 24 | 94.97 410 | 99.78 72 | 99.88 62 | 99.88 47 | 93.66 340 | 99.97 34 | 99.61 53 | 99.95 81 | 99.64 129 |
|
| DP-MVS Recon | | | 98.50 278 | 98.23 287 | 99.31 244 | 99.49 245 | 99.46 154 | 98.56 302 | 99.63 176 | 94.86 400 | 98.85 328 | 99.37 298 | 97.81 243 | 99.59 390 | 96.08 357 | 99.44 309 | 98.88 359 |
|
| CSCG | | | 99.37 127 | 99.29 135 | 99.60 154 | 99.71 144 | 99.46 154 | 99.43 113 | 99.85 59 | 98.79 244 | 99.41 243 | 99.60 227 | 98.92 119 | 99.92 123 | 98.02 222 | 99.92 105 | 99.43 240 |
|
| UnsupCasMVSNet_eth | | | 98.83 244 | 98.57 256 | 99.59 156 | 99.68 164 | 99.45 159 | 98.99 246 | 99.67 151 | 99.48 134 | 99.55 202 | 99.36 302 | 94.92 324 | 99.86 229 | 98.95 152 | 96.57 411 | 99.45 229 |
|
| OpenMVS_ROB |  | 97.31 17 | 97.36 339 | 96.84 349 | 98.89 312 | 99.29 310 | 99.45 159 | 98.87 260 | 99.48 259 | 86.54 415 | 99.44 230 | 99.74 131 | 97.34 269 | 99.86 229 | 91.61 405 | 99.28 331 | 97.37 411 |
|
| OPU-MVS | | | | | 99.29 248 | 99.12 342 | 99.44 161 | 99.20 174 | | | | 99.40 290 | 99.00 107 | 98.84 414 | 96.54 336 | 99.60 275 | 99.58 171 |
|
| DeepC-MVS | | 98.90 4 | 99.62 66 | 99.61 61 | 99.67 112 | 99.72 141 | 99.44 161 | 99.24 164 | 99.71 131 | 99.27 172 | 99.93 38 | 99.90 33 | 99.70 24 | 99.93 97 | 98.99 142 | 99.99 16 | 99.64 129 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ITE_SJBPF | | | | | 99.38 223 | 99.63 178 | 99.44 161 | | 99.73 119 | 98.56 269 | 99.33 261 | 99.53 257 | 98.88 125 | 99.68 363 | 96.01 360 | 99.65 259 | 99.02 343 |
|
| TAPA-MVS | | 97.92 13 | 98.03 313 | 97.55 329 | 99.46 195 | 99.47 256 | 99.44 161 | 98.50 311 | 99.62 179 | 86.79 413 | 99.07 307 | 99.26 324 | 98.26 208 | 99.62 383 | 97.28 290 | 99.73 228 | 99.31 270 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CNVR-MVS | | | 98.99 224 | 98.80 238 | 99.56 168 | 99.25 319 | 99.43 165 | 98.54 306 | 99.27 312 | 98.58 268 | 98.80 334 | 99.43 283 | 98.53 174 | 99.70 345 | 97.22 299 | 99.59 279 | 99.54 189 |
|
| test_0402 | | | 99.22 165 | 99.14 156 | 99.45 198 | 99.79 98 | 99.43 165 | 99.28 152 | 99.68 146 | 99.54 126 | 99.40 248 | 99.56 246 | 99.07 97 | 99.82 287 | 96.01 360 | 99.96 68 | 99.11 314 |
|
| EPP-MVSNet | | | 99.17 184 | 99.00 202 | 99.66 119 | 99.80 86 | 99.43 165 | 99.70 35 | 99.24 320 | 99.48 134 | 99.56 197 | 99.77 119 | 94.89 325 | 99.93 97 | 98.72 173 | 99.89 126 | 99.63 134 |
|
| mvs5depth | | | 99.88 6 | 99.91 3 | 99.80 46 | 99.92 28 | 99.42 168 | 99.94 3 | 100.00 1 | 99.97 16 | 99.89 53 | 99.99 12 | 99.63 30 | 99.97 34 | 99.87 31 | 99.99 16 | 100.00 1 |
|
| dmvs_re | | | 98.69 258 | 98.48 263 | 99.31 244 | 99.55 219 | 99.42 168 | 99.54 87 | 98.38 378 | 99.32 166 | 98.72 342 | 98.71 385 | 96.76 290 | 99.21 409 | 96.01 360 | 99.35 322 | 99.31 270 |
|
| WR-MVS | | | 99.11 196 | 98.93 218 | 99.66 119 | 99.30 308 | 99.42 168 | 98.42 320 | 99.37 291 | 99.04 210 | 99.57 190 | 99.20 337 | 96.89 286 | 99.86 229 | 98.66 178 | 99.87 147 | 99.70 82 |
|
| TAMVS | | | 99.49 89 | 99.45 95 | 99.63 139 | 99.48 250 | 99.42 168 | 99.45 109 | 99.57 214 | 99.66 102 | 99.78 103 | 99.83 73 | 97.85 241 | 99.86 229 | 99.44 75 | 99.96 68 | 99.61 155 |
|
| OMC-MVS | | | 98.90 236 | 98.72 242 | 99.44 202 | 99.39 277 | 99.42 168 | 98.58 297 | 99.64 174 | 97.31 358 | 99.44 230 | 99.62 210 | 98.59 162 | 99.69 351 | 96.17 356 | 99.79 203 | 99.22 287 |
|
| 3Dnovator | | 99.15 2 | 99.43 109 | 99.36 114 | 99.65 125 | 99.39 277 | 99.42 168 | 99.70 35 | 99.56 219 | 99.23 180 | 99.35 255 | 99.80 90 | 99.17 81 | 99.95 64 | 98.21 206 | 99.84 164 | 99.59 166 |
|
| pmmvs-eth3d | | | 99.48 91 | 99.47 89 | 99.51 182 | 99.77 113 | 99.41 174 | 98.81 271 | 99.66 156 | 99.42 156 | 99.75 119 | 99.66 185 | 99.20 78 | 99.76 326 | 98.98 144 | 99.99 16 | 99.36 256 |
|
| MVSMamba_PlusPlus | | | 99.55 77 | 99.58 69 | 99.47 192 | 99.68 164 | 99.40 175 | 99.52 89 | 99.70 136 | 99.92 28 | 99.77 111 | 99.86 59 | 98.28 205 | 99.96 55 | 99.54 63 | 99.90 116 | 99.05 334 |
|
| v8 | | | 99.68 47 | 99.69 45 | 99.65 125 | 99.80 86 | 99.40 175 | 99.66 54 | 99.76 104 | 99.64 107 | 99.93 38 | 99.85 63 | 98.66 154 | 99.84 262 | 99.88 29 | 99.99 16 | 99.71 79 |
|
| SD-MVS | | | 99.01 219 | 99.30 130 | 98.15 354 | 99.50 240 | 99.40 175 | 98.94 255 | 99.61 186 | 99.22 184 | 99.75 119 | 99.82 80 | 99.54 43 | 95.51 421 | 97.48 277 | 99.87 147 | 99.54 189 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| v10 | | | 99.69 44 | 99.69 45 | 99.66 119 | 99.81 80 | 99.39 178 | 99.66 54 | 99.75 109 | 99.60 122 | 99.92 43 | 99.87 52 | 98.75 141 | 99.86 229 | 99.90 25 | 99.99 16 | 99.73 73 |
|
| ab-mvs | | | 99.33 140 | 99.28 137 | 99.47 192 | 99.57 205 | 99.39 178 | 99.78 14 | 99.43 273 | 98.87 231 | 99.57 190 | 99.82 80 | 98.06 226 | 99.87 210 | 98.69 176 | 99.73 228 | 99.15 305 |
|
| plane_prior7 | | | | | | 99.58 195 | 99.38 180 | | | | | | | | | | |
|
| lessismore_v0 | | | | | 99.64 132 | 99.86 53 | 99.38 180 | | 90.66 420 | | 99.89 53 | 99.83 73 | 94.56 330 | 99.97 34 | 99.56 60 | 99.92 105 | 99.57 176 |
|
| CPTT-MVS | | | 98.74 252 | 98.44 267 | 99.64 132 | 99.61 183 | 99.38 180 | 99.18 181 | 99.55 225 | 96.49 377 | 99.27 276 | 99.37 298 | 97.11 280 | 99.92 123 | 95.74 373 | 99.67 254 | 99.62 145 |
|
| mvsany_test3 | | | 99.85 12 | 99.88 7 | 99.75 76 | 99.95 15 | 99.37 183 | 99.53 88 | 99.98 12 | 99.77 76 | 99.99 7 | 99.95 16 | 99.85 10 | 99.94 79 | 99.95 12 | 99.98 41 | 99.94 16 |
|
| TSAR-MVS + MP. | | | 99.34 137 | 99.24 145 | 99.63 139 | 99.82 72 | 99.37 183 | 99.26 157 | 99.35 295 | 98.77 248 | 99.57 190 | 99.70 158 | 99.27 71 | 99.88 196 | 97.71 255 | 99.75 216 | 99.65 119 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test20.03 | | | 99.55 77 | 99.54 80 | 99.58 159 | 99.79 98 | 99.37 183 | 99.02 236 | 99.89 45 | 99.60 122 | 99.82 82 | 99.62 210 | 98.81 129 | 99.89 182 | 99.43 76 | 99.86 155 | 99.47 224 |
|
| UnsupCasMVSNet_bld | | | 98.55 272 | 98.27 286 | 99.40 217 | 99.56 216 | 99.37 183 | 97.97 362 | 99.68 146 | 97.49 349 | 99.08 304 | 99.35 307 | 95.41 322 | 99.82 287 | 97.70 258 | 98.19 392 | 99.01 344 |
|
| agg_prior | | | | | | 99.35 288 | 99.36 187 | | 99.39 286 | | 97.76 392 | | | 99.85 247 | | | |
|
| VNet | | | 99.18 179 | 99.06 182 | 99.56 168 | 99.24 321 | 99.36 187 | 99.33 132 | 99.31 304 | 99.67 98 | 99.47 224 | 99.57 242 | 96.48 297 | 99.84 262 | 99.15 124 | 99.30 328 | 99.47 224 |
|
| DELS-MVS | | | 99.34 137 | 99.30 130 | 99.48 190 | 99.51 234 | 99.36 187 | 98.12 342 | 99.53 240 | 99.36 162 | 99.41 243 | 99.61 219 | 99.22 76 | 99.87 210 | 99.21 112 | 99.68 248 | 99.20 294 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| TEST9 | | | | | | 99.35 288 | 99.35 190 | 98.11 344 | 99.41 276 | 94.83 401 | 97.92 382 | 98.99 362 | 98.02 228 | 99.85 247 | | | |
|
| train_agg | | | 98.35 294 | 97.95 309 | 99.57 165 | 99.35 288 | 99.35 190 | 98.11 344 | 99.41 276 | 94.90 398 | 97.92 382 | 98.99 362 | 98.02 228 | 99.85 247 | 95.38 380 | 99.44 309 | 99.50 211 |
|
| FMVSNet2 | | | 99.35 132 | 99.28 137 | 99.55 171 | 99.49 245 | 99.35 190 | 99.45 109 | 99.57 214 | 99.44 146 | 99.70 141 | 99.74 131 | 97.21 274 | 99.87 210 | 99.03 139 | 99.94 94 | 99.44 234 |
|
| test12 | | | | | 99.54 176 | 99.29 310 | 99.33 193 | | 99.16 334 | | 98.43 363 | | 97.54 260 | 99.82 287 | | 99.47 306 | 99.48 220 |
|
| EG-PatchMatch MVS | | | 99.57 71 | 99.56 78 | 99.62 148 | 99.77 113 | 99.33 193 | 99.26 157 | 99.76 104 | 99.32 166 | 99.80 93 | 99.78 110 | 99.29 66 | 99.87 210 | 99.15 124 | 99.91 115 | 99.66 111 |
|
| MVS_111021_LR | | | 99.13 191 | 99.03 194 | 99.42 208 | 99.58 195 | 99.32 195 | 97.91 368 | 99.73 119 | 98.68 257 | 99.31 269 | 99.48 271 | 99.09 92 | 99.66 373 | 97.70 258 | 99.77 212 | 99.29 275 |
|
| test_8 | | | | | | 99.34 297 | 99.31 196 | 98.08 348 | 99.40 283 | 94.90 398 | 97.87 386 | 98.97 367 | 98.02 228 | 99.84 262 | | | |
|
| plane_prior3 | | | | | | | 99.31 196 | | | 98.36 291 | 99.14 297 | | | | | | |
|
| NCCC | | | 98.82 245 | 98.57 256 | 99.58 159 | 99.21 326 | 99.31 196 | 98.61 290 | 99.25 317 | 98.65 260 | 98.43 363 | 99.26 324 | 97.86 239 | 99.81 302 | 96.55 335 | 99.27 334 | 99.61 155 |
|
| 旧先验1 | | | | | | 99.49 245 | 99.29 199 | | 99.26 314 | | | 99.39 294 | 97.67 253 | | | 99.36 320 | 99.46 228 |
|
| 1112_ss | | | 99.05 207 | 98.84 232 | 99.67 112 | 99.66 171 | 99.29 199 | 98.52 309 | 99.82 72 | 97.65 340 | 99.43 234 | 99.16 339 | 96.42 300 | 99.91 145 | 99.07 137 | 99.84 164 | 99.80 50 |
|
| ETV-MVS | | | 99.18 179 | 99.18 150 | 99.16 270 | 99.34 297 | 99.28 201 | 99.12 206 | 99.79 90 | 99.48 134 | 98.93 316 | 98.55 392 | 99.40 51 | 99.93 97 | 98.51 186 | 99.52 298 | 98.28 394 |
|
| v1144 | | | 99.54 80 | 99.53 84 | 99.59 156 | 99.79 98 | 99.28 201 | 99.10 214 | 99.61 186 | 99.20 185 | 99.84 77 | 99.73 135 | 98.67 152 | 99.84 262 | 99.86 32 | 99.98 41 | 99.64 129 |
|
| PatchMatch-RL | | | 98.68 259 | 98.47 264 | 99.30 247 | 99.44 265 | 99.28 201 | 98.14 340 | 99.54 231 | 97.12 367 | 99.11 301 | 99.25 326 | 97.80 244 | 99.70 345 | 96.51 338 | 99.30 328 | 98.93 352 |
|
| LF4IMVS | | | 99.01 219 | 98.92 222 | 99.27 254 | 99.71 144 | 99.28 201 | 98.59 295 | 99.77 99 | 98.32 302 | 99.39 250 | 99.41 286 | 98.62 158 | 99.84 262 | 96.62 334 | 99.84 164 | 98.69 373 |
|
| plane_prior6 | | | | | | 99.47 256 | 99.26 205 | | | | | | 97.24 272 | | | | |
|
| API-MVS | | | 98.38 290 | 98.39 272 | 98.35 344 | 98.83 379 | 99.26 205 | 99.14 196 | 99.18 331 | 98.59 267 | 98.66 347 | 98.78 382 | 98.61 160 | 99.57 392 | 94.14 396 | 99.56 284 | 96.21 415 |
|
| OpenMVS |  | 98.12 10 | 98.23 302 | 97.89 318 | 99.26 257 | 99.19 331 | 99.26 205 | 99.65 59 | 99.69 143 | 91.33 410 | 98.14 376 | 99.77 119 | 98.28 205 | 99.96 55 | 95.41 379 | 99.55 288 | 98.58 380 |
|
| save fliter | | | | | | 99.53 227 | 99.25 208 | 98.29 328 | 99.38 290 | 99.07 207 | | | | | | | |
|
| v2v482 | | | 99.50 85 | 99.47 89 | 99.58 159 | 99.78 105 | 99.25 208 | 99.14 196 | 99.58 212 | 99.25 176 | 99.81 89 | 99.62 210 | 98.24 209 | 99.84 262 | 99.83 33 | 99.97 55 | 99.64 129 |
|
| CHOSEN 1792x2688 | | | 99.39 122 | 99.30 130 | 99.65 125 | 99.88 43 | 99.25 208 | 98.78 278 | 99.88 49 | 98.66 259 | 99.96 24 | 99.79 100 | 97.45 263 | 99.93 97 | 99.34 93 | 99.99 16 | 99.78 59 |
|
| IS-MVSNet | | | 99.03 211 | 98.85 230 | 99.55 171 | 99.80 86 | 99.25 208 | 99.73 27 | 99.15 335 | 99.37 159 | 99.61 179 | 99.71 150 | 94.73 328 | 99.81 302 | 97.70 258 | 99.88 135 | 99.58 171 |
|
| HQP_MVS | | | 98.90 236 | 98.68 246 | 99.55 171 | 99.58 195 | 99.24 212 | 98.80 274 | 99.54 231 | 98.94 220 | 99.14 297 | 99.25 326 | 97.24 272 | 99.82 287 | 95.84 370 | 99.78 208 | 99.60 159 |
|
| plane_prior | | | | | | | 99.24 212 | 98.42 320 | | 97.87 331 | | | | | | 99.71 237 | |
|
| PLC |  | 97.35 16 | 98.36 291 | 97.99 305 | 99.48 190 | 99.32 303 | 99.24 212 | 98.50 311 | 99.51 250 | 95.19 396 | 98.58 354 | 98.96 369 | 96.95 285 | 99.83 277 | 95.63 374 | 99.25 335 | 99.37 253 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1192 | | | 99.57 71 | 99.57 73 | 99.57 165 | 99.77 113 | 99.22 215 | 99.04 230 | 99.60 197 | 99.18 187 | 99.87 70 | 99.72 142 | 99.08 95 | 99.85 247 | 99.89 28 | 99.98 41 | 99.66 111 |
|
| test_prior | | | | | 99.46 195 | 99.35 288 | 99.22 215 | | 99.39 286 | | | | | 99.69 351 | | | 99.48 220 |
|
| 新几何1 | | | | | 99.52 179 | 99.50 240 | 99.22 215 | | 99.26 314 | 95.66 390 | 98.60 352 | 99.28 319 | 97.67 253 | 99.89 182 | 95.95 366 | 99.32 326 | 99.45 229 |
|
| DeepC-MVS_fast | | 98.47 5 | 99.23 157 | 99.12 162 | 99.56 168 | 99.28 313 | 99.22 215 | 98.99 246 | 99.40 283 | 99.08 205 | 99.58 187 | 99.64 192 | 98.90 124 | 99.83 277 | 97.44 279 | 99.75 216 | 99.63 134 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 98.60 265 | 98.35 277 | 99.38 223 | 99.12 342 | 99.22 215 | 98.67 287 | 99.42 275 | 97.84 334 | 98.81 332 | 99.27 321 | 97.32 270 | 99.81 302 | 95.14 384 | 99.53 295 | 99.10 316 |
|
| v144192 | | | 99.55 77 | 99.54 80 | 99.58 159 | 99.78 105 | 99.20 220 | 99.11 211 | 99.62 179 | 99.18 187 | 99.89 53 | 99.72 142 | 98.66 154 | 99.87 210 | 99.88 29 | 99.97 55 | 99.66 111 |
|
| test_prior4 | | | | | | | 99.19 221 | 98.00 357 | | | | | | | | | |
|
| Patchmtry | | | 98.78 248 | 98.54 260 | 99.49 186 | 98.89 373 | 99.19 221 | 99.32 135 | 99.67 151 | 99.65 105 | 99.72 132 | 99.79 100 | 91.87 358 | 99.95 64 | 98.00 226 | 99.97 55 | 99.33 263 |
|
| mvsmamba | | | 99.08 200 | 98.95 216 | 99.45 198 | 99.36 285 | 99.18 223 | 99.39 117 | 98.81 353 | 99.37 159 | 99.35 255 | 99.70 158 | 96.36 305 | 99.94 79 | 98.66 178 | 99.59 279 | 99.22 287 |
|
| TSAR-MVS + GP. | | | 99.12 193 | 99.04 192 | 99.38 223 | 99.34 297 | 99.16 224 | 98.15 338 | 99.29 308 | 98.18 311 | 99.63 164 | 99.62 210 | 99.18 80 | 99.68 363 | 98.20 207 | 99.74 223 | 99.30 272 |
|
| PCF-MVS | | 96.03 18 | 96.73 352 | 95.86 364 | 99.33 236 | 99.44 265 | 99.16 224 | 96.87 406 | 99.44 270 | 86.58 414 | 98.95 314 | 99.40 290 | 94.38 331 | 99.88 196 | 87.93 412 | 99.80 198 | 98.95 349 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Test_1112_low_res | | | 98.95 231 | 98.73 241 | 99.63 139 | 99.68 164 | 99.15 226 | 98.09 346 | 99.80 84 | 97.14 366 | 99.46 228 | 99.40 290 | 96.11 311 | 99.89 182 | 99.01 141 | 99.84 164 | 99.84 39 |
|
| NP-MVS | | | | | | 99.40 276 | 99.13 227 | | | | | 98.83 378 | | | | | |
|
| MSDG | | | 99.08 200 | 98.98 212 | 99.37 226 | 99.60 185 | 99.13 227 | 97.54 383 | 99.74 115 | 98.84 237 | 99.53 209 | 99.55 253 | 99.10 90 | 99.79 312 | 97.07 306 | 99.86 155 | 99.18 299 |
|
| patch_mono-2 | | | 99.51 84 | 99.46 93 | 99.64 132 | 99.70 152 | 99.11 229 | 99.04 230 | 99.87 51 | 99.71 84 | 99.47 224 | 99.79 100 | 98.24 209 | 99.98 21 | 99.38 85 | 99.96 68 | 99.83 43 |
|
| DPM-MVS | | | 98.28 297 | 97.94 313 | 99.32 241 | 99.36 285 | 99.11 229 | 97.31 395 | 98.78 355 | 96.88 371 | 98.84 329 | 99.11 348 | 97.77 246 | 99.61 388 | 94.03 399 | 99.36 320 | 99.23 285 |
|
| v1921920 | | | 99.56 74 | 99.57 73 | 99.55 171 | 99.75 129 | 99.11 229 | 99.05 225 | 99.61 186 | 99.15 198 | 99.88 62 | 99.71 150 | 99.08 95 | 99.87 210 | 99.90 25 | 99.97 55 | 99.66 111 |
|
| CDS-MVSNet | | | 99.22 165 | 99.13 158 | 99.50 184 | 99.35 288 | 99.11 229 | 98.96 252 | 99.54 231 | 99.46 141 | 99.61 179 | 99.70 158 | 96.31 306 | 99.83 277 | 99.34 93 | 99.88 135 | 99.55 181 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVS_111021_HR | | | 99.12 193 | 99.02 195 | 99.40 217 | 99.50 240 | 99.11 229 | 97.92 366 | 99.71 131 | 98.76 251 | 99.08 304 | 99.47 275 | 99.17 81 | 99.54 396 | 97.85 242 | 99.76 214 | 99.54 189 |
|
| pmmvs4 | | | 99.13 191 | 99.06 182 | 99.36 230 | 99.57 205 | 99.10 234 | 98.01 355 | 99.25 317 | 98.78 246 | 99.58 187 | 99.44 282 | 98.24 209 | 99.76 326 | 98.74 171 | 99.93 101 | 99.22 287 |
|
| CNLPA | | | 98.57 270 | 98.34 278 | 99.28 251 | 99.18 334 | 99.10 234 | 98.34 324 | 99.41 276 | 98.48 280 | 98.52 358 | 98.98 365 | 97.05 282 | 99.78 315 | 95.59 375 | 99.50 302 | 98.96 347 |
|
| test222 | | | | | | 99.51 234 | 99.08 236 | 97.83 372 | 99.29 308 | 95.21 395 | 98.68 346 | 99.31 313 | 97.28 271 | | | 99.38 317 | 99.43 240 |
|
| MVP-Stereo | | | 99.16 185 | 99.08 176 | 99.43 206 | 99.48 250 | 99.07 237 | 99.08 221 | 99.55 225 | 98.63 262 | 99.31 269 | 99.68 176 | 98.19 217 | 99.78 315 | 98.18 211 | 99.58 281 | 99.45 229 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Patchmatch-RL test | | | 98.60 265 | 98.36 275 | 99.33 236 | 99.77 113 | 99.07 237 | 98.27 329 | 99.87 51 | 98.91 226 | 99.74 127 | 99.72 142 | 90.57 375 | 99.79 312 | 98.55 184 | 99.85 159 | 99.11 314 |
|
| Anonymous20231206 | | | 99.35 132 | 99.31 125 | 99.47 192 | 99.74 135 | 99.06 239 | 99.28 152 | 99.74 115 | 99.23 180 | 99.72 132 | 99.53 257 | 97.63 259 | 99.88 196 | 99.11 132 | 99.84 164 | 99.48 220 |
|
| mmtdpeth | | | 99.78 28 | 99.83 21 | 99.66 119 | 99.85 57 | 99.05 240 | 99.79 12 | 99.97 19 | 100.00 1 | 99.43 234 | 99.94 19 | 99.64 28 | 99.94 79 | 99.83 33 | 99.99 16 | 99.98 4 |
|
| v1240 | | | 99.56 74 | 99.58 69 | 99.51 182 | 99.80 86 | 99.00 241 | 99.00 241 | 99.65 166 | 99.15 198 | 99.90 49 | 99.75 127 | 99.09 92 | 99.88 196 | 99.90 25 | 99.96 68 | 99.67 102 |
|
| PMMVS2 | | | 99.48 91 | 99.45 95 | 99.57 165 | 99.76 117 | 98.99 242 | 98.09 346 | 99.90 43 | 98.95 219 | 99.78 103 | 99.58 235 | 99.57 40 | 99.93 97 | 99.48 71 | 99.95 81 | 99.79 57 |
|
| Effi-MVS+ | | | 99.06 204 | 98.97 213 | 99.34 233 | 99.31 304 | 98.98 243 | 98.31 327 | 99.91 38 | 98.81 241 | 98.79 336 | 98.94 371 | 99.14 86 | 99.84 262 | 98.79 164 | 98.74 370 | 99.20 294 |
|
| VDD-MVS | | | 99.20 172 | 99.11 165 | 99.44 202 | 99.43 268 | 98.98 243 | 99.50 96 | 98.32 381 | 99.80 68 | 99.56 197 | 99.69 165 | 96.99 284 | 99.85 247 | 98.99 142 | 99.73 228 | 99.50 211 |
|
| FMVSNet5 | | | 97.80 320 | 97.25 337 | 99.42 208 | 98.83 379 | 98.97 245 | 99.38 120 | 99.80 84 | 98.87 231 | 99.25 278 | 99.69 165 | 80.60 408 | 99.91 145 | 98.96 148 | 99.90 116 | 99.38 250 |
|
| CLD-MVS | | | 98.76 250 | 98.57 256 | 99.33 236 | 99.57 205 | 98.97 245 | 97.53 385 | 99.55 225 | 96.41 378 | 99.27 276 | 99.13 341 | 99.07 97 | 99.78 315 | 96.73 325 | 99.89 126 | 99.23 285 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Anonymous20240521 | | | 99.44 106 | 99.42 102 | 99.49 186 | 99.89 38 | 98.96 247 | 99.62 64 | 99.76 104 | 99.85 52 | 99.82 82 | 99.88 47 | 96.39 303 | 99.97 34 | 99.59 55 | 99.98 41 | 99.55 181 |
|
| MVS_0304 | | | 98.61 262 | 98.30 283 | 99.52 179 | 97.88 416 | 98.95 248 | 98.76 280 | 94.11 415 | 99.84 55 | 99.32 264 | 99.57 242 | 95.57 319 | 99.95 64 | 99.68 47 | 99.98 41 | 99.68 94 |
|
| v148 | | | 99.40 118 | 99.41 104 | 99.39 220 | 99.76 117 | 98.94 249 | 99.09 218 | 99.59 203 | 99.17 192 | 99.81 89 | 99.61 219 | 98.41 190 | 99.69 351 | 99.32 98 | 99.94 94 | 99.53 194 |
|
| HQP5-MVS | | | | | | | 98.94 249 | | | | | | | | | | |
|
| HQP-MVS | | | 98.36 291 | 98.02 304 | 99.39 220 | 99.31 304 | 98.94 249 | 97.98 359 | 99.37 291 | 97.45 350 | 98.15 372 | 98.83 378 | 96.67 291 | 99.70 345 | 94.73 388 | 99.67 254 | 99.53 194 |
|
| alignmvs | | | 98.28 297 | 97.96 308 | 99.25 260 | 99.12 342 | 98.93 252 | 99.03 233 | 98.42 374 | 99.64 107 | 98.72 342 | 97.85 407 | 90.86 371 | 99.62 383 | 98.88 155 | 99.13 341 | 99.19 297 |
|
| testdata | | | | | 99.42 208 | 99.51 234 | 98.93 252 | | 99.30 307 | 96.20 382 | 98.87 326 | 99.40 290 | 98.33 202 | 99.89 182 | 96.29 350 | 99.28 331 | 99.44 234 |
|
| PAPM_NR | | | 98.36 291 | 98.04 302 | 99.33 236 | 99.48 250 | 98.93 252 | 98.79 277 | 99.28 311 | 97.54 345 | 98.56 357 | 98.57 390 | 97.12 279 | 99.69 351 | 94.09 397 | 98.90 361 | 99.38 250 |
|
| UGNet | | | 99.38 124 | 99.34 118 | 99.49 186 | 98.90 370 | 98.90 255 | 99.70 35 | 99.35 295 | 99.86 46 | 98.57 356 | 99.81 87 | 98.50 180 | 99.93 97 | 99.38 85 | 99.98 41 | 99.66 111 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| pmmvs5 | | | 99.19 175 | 99.11 165 | 99.42 208 | 99.76 117 | 98.88 256 | 98.55 303 | 99.73 119 | 98.82 239 | 99.72 132 | 99.62 210 | 96.56 294 | 99.82 287 | 99.32 98 | 99.95 81 | 99.56 178 |
|
| Vis-MVSNet (Re-imp) | | | 98.77 249 | 98.58 255 | 99.34 233 | 99.78 105 | 98.88 256 | 99.61 70 | 99.56 219 | 99.11 204 | 99.24 281 | 99.56 246 | 93.00 348 | 99.78 315 | 97.43 280 | 99.89 126 | 99.35 259 |
|
| 原ACMM1 | | | | | 99.37 226 | 99.47 256 | 98.87 258 | | 99.27 312 | 96.74 376 | 98.26 367 | 99.32 311 | 97.93 235 | 99.82 287 | 95.96 365 | 99.38 317 | 99.43 240 |
|
| dcpmvs_2 | | | 99.61 68 | 99.64 55 | 99.53 177 | 99.79 98 | 98.82 259 | 99.58 79 | 99.97 19 | 99.95 20 | 99.96 24 | 99.76 122 | 98.44 186 | 99.99 8 | 99.34 93 | 99.96 68 | 99.78 59 |
|
| MM | | | 99.18 179 | 99.05 186 | 99.55 171 | 99.35 288 | 98.81 260 | 99.05 225 | 97.79 393 | 99.99 3 | 99.48 222 | 99.59 232 | 96.29 308 | 99.95 64 | 99.94 16 | 99.98 41 | 99.88 28 |
|
| VDDNet | | | 98.97 225 | 98.82 235 | 99.42 208 | 99.71 144 | 98.81 260 | 99.62 64 | 98.68 359 | 99.81 65 | 99.38 251 | 99.80 90 | 94.25 332 | 99.85 247 | 98.79 164 | 99.32 326 | 99.59 166 |
|
| testgi | | | 99.29 145 | 99.26 141 | 99.37 226 | 99.75 129 | 98.81 260 | 98.84 264 | 99.89 45 | 98.38 289 | 99.75 119 | 99.04 355 | 99.36 61 | 99.86 229 | 99.08 136 | 99.25 335 | 99.45 229 |
|
| Syy-MVS | | | 98.17 307 | 97.85 319 | 99.15 272 | 98.50 402 | 98.79 263 | 98.60 292 | 99.21 327 | 97.89 328 | 96.76 404 | 96.37 427 | 95.47 321 | 99.57 392 | 99.10 133 | 98.73 373 | 99.09 321 |
|
| MVS_Test | | | 99.28 146 | 99.31 125 | 99.19 267 | 99.35 288 | 98.79 263 | 99.36 127 | 99.49 258 | 99.17 192 | 99.21 287 | 99.67 180 | 98.78 136 | 99.66 373 | 99.09 134 | 99.66 257 | 99.10 316 |
|
| diffmvs |  | | 99.34 137 | 99.32 123 | 99.39 220 | 99.67 170 | 98.77 265 | 98.57 301 | 99.81 81 | 99.61 116 | 99.48 222 | 99.41 286 | 98.47 181 | 99.86 229 | 98.97 146 | 99.90 116 | 99.53 194 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FE-MVS | | | 97.85 318 | 97.42 332 | 99.15 272 | 99.44 265 | 98.75 266 | 99.77 16 | 98.20 384 | 95.85 386 | 99.33 261 | 99.80 90 | 88.86 385 | 99.88 196 | 96.40 345 | 99.12 342 | 98.81 365 |
|
| D2MVS | | | 99.22 165 | 99.19 149 | 99.29 248 | 99.69 156 | 98.74 267 | 98.81 271 | 99.41 276 | 98.55 270 | 99.68 147 | 99.69 165 | 98.13 221 | 99.87 210 | 98.82 160 | 99.98 41 | 99.24 281 |
|
| FMVSNet3 | | | 98.80 247 | 98.63 249 | 99.32 241 | 99.13 340 | 98.72 268 | 99.10 214 | 99.48 259 | 99.23 180 | 99.62 173 | 99.64 192 | 92.57 350 | 99.86 229 | 98.96 148 | 99.90 116 | 99.39 248 |
|
| sasdasda | | | 99.02 213 | 99.00 202 | 99.09 281 | 99.10 349 | 98.70 269 | 99.61 70 | 99.66 156 | 99.63 109 | 98.64 348 | 97.65 410 | 99.04 103 | 99.54 396 | 98.79 164 | 98.92 357 | 99.04 336 |
|
| canonicalmvs | | | 99.02 213 | 99.00 202 | 99.09 281 | 99.10 349 | 98.70 269 | 99.61 70 | 99.66 156 | 99.63 109 | 98.64 348 | 97.65 410 | 99.04 103 | 99.54 396 | 98.79 164 | 98.92 357 | 99.04 336 |
|
| FA-MVS(test-final) | | | 98.52 275 | 98.32 280 | 99.10 280 | 99.48 250 | 98.67 271 | 99.77 16 | 98.60 366 | 97.35 356 | 99.63 164 | 99.80 90 | 93.07 346 | 99.84 262 | 97.92 232 | 99.30 328 | 98.78 368 |
|
| h-mvs33 | | | 98.61 262 | 98.34 278 | 99.44 202 | 99.60 185 | 98.67 271 | 99.27 155 | 99.44 270 | 99.68 94 | 99.32 264 | 99.49 268 | 92.50 353 | 100.00 1 | 99.24 108 | 96.51 412 | 99.65 119 |
|
| N_pmnet | | | 98.73 254 | 98.53 261 | 99.35 232 | 99.72 141 | 98.67 271 | 98.34 324 | 94.65 411 | 98.35 296 | 99.79 99 | 99.68 176 | 98.03 227 | 99.93 97 | 98.28 199 | 99.92 105 | 99.44 234 |
|
| CL-MVSNet_self_test | | | 98.71 256 | 98.56 259 | 99.15 272 | 99.22 324 | 98.66 274 | 97.14 400 | 99.51 250 | 98.09 315 | 99.54 204 | 99.27 321 | 96.87 287 | 99.74 333 | 98.43 189 | 98.96 354 | 99.03 338 |
|
| EI-MVSNet-Vis-set | | | 99.47 99 | 99.49 88 | 99.42 208 | 99.57 205 | 98.66 274 | 99.24 164 | 99.46 265 | 99.67 98 | 99.79 99 | 99.65 190 | 98.97 113 | 99.89 182 | 99.15 124 | 99.89 126 | 99.71 79 |
|
| PVSNet_Blended_VisFu | | | 99.40 118 | 99.38 108 | 99.44 202 | 99.90 36 | 98.66 274 | 98.94 255 | 99.91 38 | 97.97 322 | 99.79 99 | 99.73 135 | 99.05 102 | 99.97 34 | 99.15 124 | 99.99 16 | 99.68 94 |
|
| RRT-MVS | | | 99.08 200 | 99.00 202 | 99.33 236 | 99.27 315 | 98.65 277 | 99.62 64 | 99.93 32 | 99.66 102 | 99.67 152 | 99.82 80 | 95.27 323 | 99.93 97 | 98.64 180 | 99.09 345 | 99.41 244 |
|
| EI-MVSNet-UG-set | | | 99.48 91 | 99.50 86 | 99.42 208 | 99.57 205 | 98.65 277 | 99.24 164 | 99.46 265 | 99.68 94 | 99.80 93 | 99.66 185 | 98.99 109 | 99.89 182 | 99.19 116 | 99.90 116 | 99.72 76 |
|
| mvsany_test1 | | | 99.44 106 | 99.45 95 | 99.40 217 | 99.37 282 | 98.64 279 | 97.90 369 | 99.59 203 | 99.27 172 | 99.92 43 | 99.82 80 | 99.74 20 | 99.93 97 | 99.55 62 | 99.87 147 | 99.63 134 |
|
| test_vis1_rt | | | 99.45 104 | 99.46 93 | 99.41 215 | 99.71 144 | 98.63 280 | 98.99 246 | 99.96 25 | 99.03 211 | 99.95 32 | 99.12 345 | 98.75 141 | 99.84 262 | 99.82 37 | 99.82 181 | 99.77 63 |
|
| test_fmvs3 | | | 99.83 20 | 99.93 2 | 99.53 177 | 99.96 7 | 98.62 281 | 99.67 50 | 100.00 1 | 99.95 20 | 100.00 1 | 99.95 16 | 99.85 10 | 99.99 8 | 99.98 1 | 99.99 16 | 99.98 4 |
|
| MGCFI-Net | | | 99.02 213 | 99.01 198 | 99.06 288 | 99.11 347 | 98.60 282 | 99.63 61 | 99.67 151 | 99.63 109 | 98.58 354 | 97.65 410 | 99.07 97 | 99.57 392 | 98.85 156 | 98.92 357 | 99.03 338 |
|
| hse-mvs2 | | | 98.52 275 | 98.30 283 | 99.16 270 | 99.29 310 | 98.60 282 | 98.77 279 | 99.02 344 | 99.68 94 | 99.32 264 | 99.04 355 | 92.50 353 | 99.85 247 | 99.24 108 | 97.87 402 | 99.03 338 |
|
| CANet | | | 99.11 196 | 99.05 186 | 99.28 251 | 98.83 379 | 98.56 284 | 98.71 286 | 99.41 276 | 99.25 176 | 99.23 282 | 99.22 333 | 97.66 257 | 99.94 79 | 99.19 116 | 99.97 55 | 99.33 263 |
|
| AUN-MVS | | | 97.82 319 | 97.38 333 | 99.14 275 | 99.27 315 | 98.53 285 | 98.72 284 | 99.02 344 | 98.10 313 | 97.18 400 | 99.03 359 | 89.26 384 | 99.85 247 | 97.94 231 | 97.91 400 | 99.03 338 |
|
| ambc | | | | | 99.20 266 | 99.35 288 | 98.53 285 | 99.17 186 | 99.46 265 | | 99.67 152 | 99.80 90 | 98.46 184 | 99.70 345 | 97.92 232 | 99.70 239 | 99.38 250 |
|
| LFMVS | | | 98.46 283 | 98.19 293 | 99.26 257 | 99.24 321 | 98.52 287 | 99.62 64 | 96.94 402 | 99.87 43 | 99.31 269 | 99.58 235 | 91.04 366 | 99.81 302 | 98.68 177 | 99.42 313 | 99.45 229 |
|
| test_yl | | | 98.25 299 | 97.95 309 | 99.13 276 | 99.17 335 | 98.47 288 | 99.00 241 | 98.67 361 | 98.97 215 | 99.22 285 | 99.02 360 | 91.31 362 | 99.69 351 | 97.26 293 | 98.93 355 | 99.24 281 |
|
| DCV-MVSNet | | | 98.25 299 | 97.95 309 | 99.13 276 | 99.17 335 | 98.47 288 | 99.00 241 | 98.67 361 | 98.97 215 | 99.22 285 | 99.02 360 | 91.31 362 | 99.69 351 | 97.26 293 | 98.93 355 | 99.24 281 |
|
| BH-RMVSNet | | | 98.41 287 | 98.14 296 | 99.21 264 | 99.21 326 | 98.47 288 | 98.60 292 | 98.26 382 | 98.35 296 | 98.93 316 | 99.31 313 | 97.20 277 | 99.66 373 | 94.32 393 | 99.10 344 | 99.51 206 |
|
| jason | | | 99.16 185 | 99.11 165 | 99.32 241 | 99.75 129 | 98.44 291 | 98.26 331 | 99.39 286 | 98.70 256 | 99.74 127 | 99.30 315 | 98.54 170 | 99.97 34 | 98.48 187 | 99.82 181 | 99.55 181 |
| jason: jason. |
| sss | | | 98.90 236 | 98.77 240 | 99.27 254 | 99.48 250 | 98.44 291 | 98.72 284 | 99.32 300 | 97.94 326 | 99.37 252 | 99.35 307 | 96.31 306 | 99.91 145 | 98.85 156 | 99.63 264 | 99.47 224 |
|
| PMMVS | | | 98.49 280 | 98.29 285 | 99.11 278 | 98.96 367 | 98.42 293 | 97.54 383 | 99.32 300 | 97.53 346 | 98.47 361 | 98.15 402 | 97.88 238 | 99.82 287 | 97.46 278 | 99.24 337 | 99.09 321 |
|
| test_cas_vis1_n_1920 | | | 99.76 33 | 99.86 13 | 99.45 198 | 99.93 24 | 98.40 294 | 99.30 143 | 99.98 12 | 99.94 23 | 99.99 7 | 99.89 38 | 99.80 15 | 99.97 34 | 99.96 9 | 99.97 55 | 99.97 9 |
|
| MVSFormer | | | 99.41 116 | 99.44 98 | 99.31 244 | 99.57 205 | 98.40 294 | 99.77 16 | 99.80 84 | 99.73 78 | 99.63 164 | 99.30 315 | 98.02 228 | 99.98 21 | 99.43 76 | 99.69 243 | 99.55 181 |
|
| lupinMVS | | | 98.96 228 | 98.87 228 | 99.24 262 | 99.57 205 | 98.40 294 | 98.12 342 | 99.18 331 | 98.28 304 | 99.63 164 | 99.13 341 | 98.02 228 | 99.97 34 | 98.22 205 | 99.69 243 | 99.35 259 |
|
| WTY-MVS | | | 98.59 268 | 98.37 274 | 99.26 257 | 99.43 268 | 98.40 294 | 98.74 282 | 99.13 338 | 98.10 313 | 99.21 287 | 99.24 331 | 94.82 326 | 99.90 163 | 97.86 240 | 98.77 366 | 99.49 216 |
|
| MIMVSNet | | | 98.43 285 | 98.20 290 | 99.11 278 | 99.53 227 | 98.38 298 | 99.58 79 | 98.61 364 | 98.96 217 | 99.33 261 | 99.76 122 | 90.92 368 | 99.81 302 | 97.38 283 | 99.76 214 | 99.15 305 |
|
| MSLP-MVS++ | | | 99.05 207 | 99.09 174 | 98.91 305 | 99.21 326 | 98.36 299 | 98.82 270 | 99.47 262 | 98.85 234 | 98.90 322 | 99.56 246 | 98.78 136 | 99.09 411 | 98.57 183 | 99.68 248 | 99.26 278 |
|
| MVSTER | | | 98.47 282 | 98.22 288 | 99.24 262 | 99.06 354 | 98.35 300 | 99.08 221 | 99.46 265 | 99.27 172 | 99.75 119 | 99.66 185 | 88.61 386 | 99.85 247 | 99.14 130 | 99.92 105 | 99.52 204 |
|
| PatchT | | | 98.45 284 | 98.32 280 | 98.83 318 | 98.94 368 | 98.29 301 | 99.24 164 | 98.82 352 | 99.84 55 | 99.08 304 | 99.76 122 | 91.37 361 | 99.94 79 | 98.82 160 | 99.00 352 | 98.26 395 |
|
| HY-MVS | | 98.23 9 | 98.21 306 | 97.95 309 | 98.99 293 | 99.03 359 | 98.24 302 | 99.61 70 | 98.72 357 | 96.81 374 | 98.73 341 | 99.51 261 | 94.06 333 | 99.86 229 | 96.91 313 | 98.20 390 | 98.86 361 |
|
| xiu_mvs_v1_base_debu | | | 99.23 157 | 99.34 118 | 98.91 305 | 99.59 190 | 98.23 303 | 98.47 314 | 99.66 156 | 99.61 116 | 99.68 147 | 98.94 371 | 99.39 52 | 99.97 34 | 99.18 118 | 99.55 288 | 98.51 384 |
|
| xiu_mvs_v1_base | | | 99.23 157 | 99.34 118 | 98.91 305 | 99.59 190 | 98.23 303 | 98.47 314 | 99.66 156 | 99.61 116 | 99.68 147 | 98.94 371 | 99.39 52 | 99.97 34 | 99.18 118 | 99.55 288 | 98.51 384 |
|
| xiu_mvs_v1_base_debi | | | 99.23 157 | 99.34 118 | 98.91 305 | 99.59 190 | 98.23 303 | 98.47 314 | 99.66 156 | 99.61 116 | 99.68 147 | 98.94 371 | 99.39 52 | 99.97 34 | 99.18 118 | 99.55 288 | 98.51 384 |
|
| test_f | | | 99.75 34 | 99.88 7 | 99.37 226 | 99.96 7 | 98.21 306 | 99.51 95 | 100.00 1 | 99.94 23 | 100.00 1 | 99.93 21 | 99.58 38 | 99.94 79 | 99.97 4 | 99.99 16 | 99.97 9 |
|
| MS-PatchMatch | | | 99.00 221 | 98.97 213 | 99.09 281 | 99.11 347 | 98.19 307 | 98.76 280 | 99.33 298 | 98.49 279 | 99.44 230 | 99.58 235 | 98.21 214 | 99.69 351 | 98.20 207 | 99.62 265 | 99.39 248 |
|
| TinyColmap | | | 98.97 225 | 98.93 218 | 99.07 286 | 99.46 260 | 98.19 307 | 97.75 374 | 99.75 109 | 98.79 244 | 99.54 204 | 99.70 158 | 98.97 113 | 99.62 383 | 96.63 333 | 99.83 172 | 99.41 244 |
|
| test_vis1_n | | | 99.68 47 | 99.79 29 | 99.36 230 | 99.94 18 | 98.18 309 | 99.52 89 | 100.00 1 | 99.86 46 | 100.00 1 | 99.88 47 | 98.99 109 | 99.96 55 | 99.97 4 | 99.96 68 | 99.95 13 |
|
| FPMVS | | | 96.32 362 | 95.50 370 | 98.79 322 | 99.60 185 | 98.17 310 | 98.46 318 | 98.80 354 | 97.16 365 | 96.28 409 | 99.63 203 | 82.19 404 | 99.09 411 | 88.45 411 | 98.89 362 | 99.10 316 |
|
| ttmdpeth | | | 99.48 91 | 99.55 79 | 99.29 248 | 99.76 117 | 98.16 311 | 99.33 132 | 99.95 30 | 99.79 70 | 99.36 253 | 99.89 38 | 99.13 88 | 99.77 323 | 99.09 134 | 99.64 261 | 99.93 18 |
|
| CANet_DTU | | | 98.91 234 | 98.85 230 | 99.09 281 | 98.79 385 | 98.13 312 | 98.18 335 | 99.31 304 | 99.48 134 | 98.86 327 | 99.51 261 | 96.56 294 | 99.95 64 | 99.05 138 | 99.95 81 | 99.19 297 |
|
| CR-MVSNet | | | 98.35 294 | 98.20 290 | 98.83 318 | 99.05 355 | 98.12 313 | 99.30 143 | 99.67 151 | 97.39 354 | 99.16 293 | 99.79 100 | 91.87 358 | 99.91 145 | 98.78 168 | 98.77 366 | 98.44 389 |
|
| RPMNet | | | 98.60 265 | 98.53 261 | 98.83 318 | 99.05 355 | 98.12 313 | 99.30 143 | 99.62 179 | 99.86 46 | 99.16 293 | 99.74 131 | 92.53 352 | 99.92 123 | 98.75 170 | 98.77 366 | 98.44 389 |
|
| PAPR | | | 97.56 331 | 97.07 341 | 99.04 290 | 98.80 383 | 98.11 315 | 97.63 379 | 99.25 317 | 94.56 403 | 98.02 380 | 98.25 400 | 97.43 264 | 99.68 363 | 90.90 408 | 98.74 370 | 99.33 263 |
|
| PS-MVSNAJ | | | 99.00 221 | 99.08 176 | 98.76 324 | 99.37 282 | 98.10 316 | 98.00 357 | 99.51 250 | 99.47 138 | 99.41 243 | 98.50 395 | 99.28 68 | 99.97 34 | 98.83 158 | 99.34 323 | 98.20 400 |
|
| xiu_mvs_v2_base | | | 99.02 213 | 99.11 165 | 98.77 323 | 99.37 282 | 98.09 317 | 98.13 341 | 99.51 250 | 99.47 138 | 99.42 237 | 98.54 393 | 99.38 56 | 99.97 34 | 98.83 158 | 99.33 324 | 98.24 396 |
|
| EI-MVSNet | | | 99.38 124 | 99.44 98 | 99.21 264 | 99.58 195 | 98.09 317 | 99.26 157 | 99.46 265 | 99.62 112 | 99.75 119 | 99.67 180 | 98.54 170 | 99.85 247 | 99.15 124 | 99.92 105 | 99.68 94 |
|
| IterMVS-LS | | | 99.41 116 | 99.47 89 | 99.25 260 | 99.81 80 | 98.09 317 | 98.85 263 | 99.76 104 | 99.62 112 | 99.83 81 | 99.64 192 | 98.54 170 | 99.97 34 | 99.15 124 | 99.99 16 | 99.68 94 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test_fmvs2 | | | 99.72 38 | 99.85 17 | 99.34 233 | 99.91 30 | 98.08 320 | 99.48 102 | 100.00 1 | 99.90 31 | 99.99 7 | 99.91 28 | 99.50 48 | 99.98 21 | 99.98 1 | 99.99 16 | 99.96 12 |
|
| GA-MVS | | | 97.99 316 | 97.68 326 | 98.93 302 | 99.52 232 | 98.04 321 | 97.19 399 | 99.05 343 | 98.32 302 | 98.81 332 | 98.97 367 | 89.89 382 | 99.41 407 | 98.33 196 | 99.05 348 | 99.34 262 |
|
| ETVMVS | | | 96.14 367 | 95.22 377 | 98.89 312 | 98.80 383 | 98.01 322 | 98.66 288 | 98.35 380 | 98.71 255 | 97.18 400 | 96.31 429 | 74.23 421 | 99.75 330 | 96.64 332 | 98.13 397 | 98.90 356 |
|
| EPNet | | | 98.13 308 | 97.77 323 | 99.18 269 | 94.57 424 | 97.99 323 | 99.24 164 | 97.96 388 | 99.74 77 | 97.29 397 | 99.62 210 | 93.13 345 | 99.97 34 | 98.59 182 | 99.83 172 | 99.58 171 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PVSNet_BlendedMVS | | | 99.03 211 | 99.01 198 | 99.09 281 | 99.54 221 | 97.99 323 | 98.58 297 | 99.82 72 | 97.62 341 | 99.34 259 | 99.71 150 | 98.52 177 | 99.77 323 | 97.98 227 | 99.97 55 | 99.52 204 |
|
| PVSNet_Blended | | | 98.70 257 | 98.59 252 | 99.02 291 | 99.54 221 | 97.99 323 | 97.58 382 | 99.82 72 | 95.70 389 | 99.34 259 | 98.98 365 | 98.52 177 | 99.77 323 | 97.98 227 | 99.83 172 | 99.30 272 |
|
| USDC | | | 98.96 228 | 98.93 218 | 99.05 289 | 99.54 221 | 97.99 323 | 97.07 403 | 99.80 84 | 98.21 308 | 99.75 119 | 99.77 119 | 98.43 187 | 99.64 381 | 97.90 234 | 99.88 135 | 99.51 206 |
|
| PMVS |  | 92.94 21 | 98.82 245 | 98.81 236 | 98.85 314 | 99.84 61 | 97.99 323 | 99.20 174 | 99.47 262 | 99.71 84 | 99.42 237 | 99.82 80 | 98.09 223 | 99.47 404 | 93.88 401 | 99.85 159 | 99.07 332 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MVS | | | 95.72 378 | 94.63 383 | 98.99 293 | 98.56 399 | 97.98 328 | 99.30 143 | 98.86 349 | 72.71 419 | 97.30 396 | 99.08 350 | 98.34 200 | 99.74 333 | 89.21 409 | 98.33 385 | 99.26 278 |
|
| test_fmvs1_n | | | 99.68 47 | 99.81 25 | 99.28 251 | 99.95 15 | 97.93 329 | 99.49 100 | 100.00 1 | 99.82 62 | 99.99 7 | 99.89 38 | 99.21 77 | 99.98 21 | 99.97 4 | 99.98 41 | 99.93 18 |
|
| ET-MVSNet_ETH3D | | | 96.78 350 | 96.07 359 | 98.91 305 | 99.26 318 | 97.92 330 | 97.70 377 | 96.05 407 | 97.96 325 | 92.37 419 | 98.43 396 | 87.06 390 | 99.90 163 | 98.27 200 | 97.56 405 | 98.91 355 |
|
| WB-MVSnew | | | 98.34 296 | 98.14 296 | 98.96 296 | 98.14 414 | 97.90 331 | 98.27 329 | 97.26 401 | 98.63 262 | 98.80 334 | 98.00 405 | 97.77 246 | 99.90 163 | 97.37 284 | 98.98 353 | 99.09 321 |
|
| test_vis1_n_1920 | | | 99.72 38 | 99.88 7 | 99.27 254 | 99.93 24 | 97.84 332 | 99.34 129 | 100.00 1 | 99.99 3 | 99.99 7 | 99.82 80 | 99.87 9 | 99.99 8 | 99.97 4 | 99.99 16 | 99.97 9 |
|
| MDA-MVSNet-bldmvs | | | 99.06 204 | 99.05 186 | 99.07 286 | 99.80 86 | 97.83 333 | 98.89 258 | 99.72 128 | 99.29 168 | 99.63 164 | 99.70 158 | 96.47 298 | 99.89 182 | 98.17 213 | 99.82 181 | 99.50 211 |
|
| testing3 | | | 96.48 358 | 95.63 369 | 99.01 292 | 99.23 323 | 97.81 334 | 98.90 257 | 99.10 339 | 98.72 253 | 97.84 388 | 97.92 406 | 72.44 422 | 99.85 247 | 97.21 300 | 99.33 324 | 99.35 259 |
|
| mvs_anonymous | | | 99.28 146 | 99.39 106 | 98.94 299 | 99.19 331 | 97.81 334 | 99.02 236 | 99.55 225 | 99.78 72 | 99.85 74 | 99.80 90 | 98.24 209 | 99.86 229 | 99.57 59 | 99.50 302 | 99.15 305 |
|
| cl____ | | | 98.54 273 | 98.41 270 | 98.92 303 | 99.03 359 | 97.80 336 | 97.46 389 | 99.59 203 | 98.90 227 | 99.60 182 | 99.46 278 | 93.85 336 | 99.78 315 | 97.97 229 | 99.89 126 | 99.17 301 |
|
| DIV-MVS_self_test | | | 98.54 273 | 98.42 269 | 98.92 303 | 99.03 359 | 97.80 336 | 97.46 389 | 99.59 203 | 98.90 227 | 99.60 182 | 99.46 278 | 93.87 335 | 99.78 315 | 97.97 229 | 99.89 126 | 99.18 299 |
|
| thisisatest0530 | | | 97.45 334 | 96.95 345 | 98.94 299 | 99.68 164 | 97.73 338 | 99.09 218 | 94.19 414 | 98.61 266 | 99.56 197 | 99.30 315 | 84.30 403 | 99.93 97 | 98.27 200 | 99.54 293 | 99.16 303 |
|
| baseline1 | | | 97.73 323 | 97.33 334 | 98.96 296 | 99.30 308 | 97.73 338 | 99.40 115 | 98.42 374 | 99.33 165 | 99.46 228 | 99.21 335 | 91.18 364 | 99.82 287 | 98.35 194 | 91.26 419 | 99.32 266 |
|
| pmmvs3 | | | 98.08 311 | 97.80 320 | 98.91 305 | 99.41 275 | 97.69 340 | 97.87 370 | 99.66 156 | 95.87 385 | 99.50 219 | 99.51 261 | 90.35 377 | 99.97 34 | 98.55 184 | 99.47 306 | 99.08 327 |
|
| new_pmnet | | | 98.88 240 | 98.89 226 | 98.84 316 | 99.70 152 | 97.62 341 | 98.15 338 | 99.50 254 | 97.98 321 | 99.62 173 | 99.54 255 | 98.15 220 | 99.94 79 | 97.55 272 | 99.84 164 | 98.95 349 |
|
| test0.0.03 1 | | | 97.37 338 | 96.91 348 | 98.74 325 | 97.72 417 | 97.57 342 | 97.60 381 | 97.36 400 | 98.00 318 | 99.21 287 | 98.02 403 | 90.04 380 | 99.79 312 | 98.37 192 | 95.89 416 | 98.86 361 |
|
| dmvs_testset | | | 97.27 340 | 96.83 350 | 98.59 333 | 99.46 260 | 97.55 343 | 99.25 163 | 96.84 403 | 98.78 246 | 97.24 398 | 97.67 409 | 97.11 280 | 98.97 413 | 86.59 418 | 98.54 381 | 99.27 276 |
|
| MVE |  | 92.54 22 | 96.66 354 | 96.11 358 | 98.31 349 | 99.68 164 | 97.55 343 | 97.94 364 | 95.60 409 | 99.37 159 | 90.68 420 | 98.70 386 | 96.56 294 | 98.61 416 | 86.94 417 | 99.55 288 | 98.77 370 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| thisisatest0515 | | | 96.98 346 | 96.42 353 | 98.66 329 | 99.42 273 | 97.47 345 | 97.27 396 | 94.30 413 | 97.24 360 | 99.15 295 | 98.86 377 | 85.01 400 | 99.87 210 | 97.10 304 | 99.39 316 | 98.63 374 |
|
| TR-MVS | | | 97.44 335 | 97.15 340 | 98.32 347 | 98.53 400 | 97.46 346 | 98.47 314 | 97.91 390 | 96.85 372 | 98.21 371 | 98.51 394 | 96.42 300 | 99.51 402 | 92.16 404 | 97.29 407 | 97.98 404 |
|
| testing222 | | | 95.60 381 | 94.59 384 | 98.61 331 | 98.66 397 | 97.45 347 | 98.54 306 | 97.90 391 | 98.53 274 | 96.54 408 | 96.47 426 | 70.62 425 | 99.81 302 | 95.91 368 | 98.15 394 | 98.56 382 |
|
| 1314 | | | 98.00 315 | 97.90 317 | 98.27 352 | 98.90 370 | 97.45 347 | 99.30 143 | 99.06 342 | 94.98 397 | 97.21 399 | 99.12 345 | 98.43 187 | 99.67 368 | 95.58 376 | 98.56 380 | 97.71 407 |
|
| tttt0517 | | | 97.62 328 | 97.20 338 | 98.90 311 | 99.76 117 | 97.40 349 | 99.48 102 | 94.36 412 | 99.06 209 | 99.70 141 | 99.49 268 | 84.55 402 | 99.94 79 | 98.73 172 | 99.65 259 | 99.36 256 |
|
| MG-MVS | | | 98.52 275 | 98.39 272 | 98.94 299 | 99.15 337 | 97.39 350 | 98.18 335 | 99.21 327 | 98.89 230 | 99.23 282 | 99.63 203 | 97.37 268 | 99.74 333 | 94.22 395 | 99.61 272 | 99.69 88 |
|
| miper_lstm_enhance | | | 98.65 261 | 98.60 250 | 98.82 321 | 99.20 329 | 97.33 351 | 97.78 373 | 99.66 156 | 99.01 212 | 99.59 185 | 99.50 264 | 94.62 329 | 99.85 247 | 98.12 216 | 99.90 116 | 99.26 278 |
|
| DSMNet-mixed | | | 99.48 91 | 99.65 52 | 98.95 298 | 99.71 144 | 97.27 352 | 99.50 96 | 99.82 72 | 99.59 124 | 99.41 243 | 99.85 63 | 99.62 33 | 100.00 1 | 99.53 66 | 99.89 126 | 99.59 166 |
|
| BH-untuned | | | 98.22 304 | 98.09 299 | 98.58 335 | 99.38 280 | 97.24 353 | 98.55 303 | 98.98 347 | 97.81 335 | 99.20 292 | 98.76 383 | 97.01 283 | 99.65 379 | 94.83 387 | 98.33 385 | 98.86 361 |
|
| c3_l | | | 98.72 255 | 98.71 243 | 98.72 326 | 99.12 342 | 97.22 354 | 97.68 378 | 99.56 219 | 98.90 227 | 99.54 204 | 99.48 271 | 96.37 304 | 99.73 336 | 97.88 236 | 99.88 135 | 99.21 290 |
|
| test_fmvs1 | | | 99.48 91 | 99.65 52 | 98.97 295 | 99.54 221 | 97.16 355 | 99.11 211 | 99.98 12 | 99.78 72 | 99.96 24 | 99.81 87 | 98.72 146 | 99.97 34 | 99.95 12 | 99.97 55 | 99.79 57 |
|
| MDA-MVSNet_test_wron | | | 98.95 231 | 98.99 209 | 98.85 314 | 99.64 176 | 97.16 355 | 98.23 333 | 99.33 298 | 98.93 223 | 99.56 197 | 99.66 185 | 97.39 267 | 99.83 277 | 98.29 198 | 99.88 135 | 99.55 181 |
|
| YYNet1 | | | 98.95 231 | 98.99 209 | 98.84 316 | 99.64 176 | 97.14 357 | 98.22 334 | 99.32 300 | 98.92 225 | 99.59 185 | 99.66 185 | 97.40 265 | 99.83 277 | 98.27 200 | 99.90 116 | 99.55 181 |
|
| miper_ehance_all_eth | | | 98.59 268 | 98.59 252 | 98.59 333 | 98.98 365 | 97.07 358 | 97.49 388 | 99.52 245 | 98.50 277 | 99.52 211 | 99.37 298 | 96.41 302 | 99.71 342 | 97.86 240 | 99.62 265 | 99.00 345 |
|
| JIA-IIPM | | | 98.06 312 | 97.92 315 | 98.50 337 | 98.59 398 | 97.02 359 | 98.80 274 | 98.51 369 | 99.88 42 | 97.89 384 | 99.87 52 | 91.89 357 | 99.90 163 | 98.16 214 | 97.68 404 | 98.59 378 |
|
| gg-mvs-nofinetune | | | 95.87 374 | 95.17 379 | 97.97 360 | 98.19 410 | 96.95 360 | 99.69 42 | 89.23 423 | 99.89 37 | 96.24 411 | 99.94 19 | 81.19 405 | 99.51 402 | 93.99 400 | 98.20 390 | 97.44 409 |
|
| DeepMVS_CX |  | | | | 97.98 359 | 99.69 156 | 96.95 360 | | 99.26 314 | 75.51 418 | 95.74 414 | 98.28 399 | 96.47 298 | 99.62 383 | 91.23 407 | 97.89 401 | 97.38 410 |
|
| baseline2 | | | 96.83 349 | 96.28 355 | 98.46 340 | 99.09 352 | 96.91 362 | 98.83 266 | 93.87 417 | 97.23 361 | 96.23 412 | 98.36 397 | 88.12 387 | 99.90 163 | 96.68 327 | 98.14 395 | 98.57 381 |
|
| GG-mvs-BLEND | | | | | 97.36 378 | 97.59 418 | 96.87 363 | 99.70 35 | 88.49 424 | | 94.64 417 | 97.26 417 | 80.66 407 | 99.12 410 | 91.50 406 | 96.50 413 | 96.08 417 |
|
| eth_miper_zixun_eth | | | 98.68 259 | 98.71 243 | 98.60 332 | 99.10 349 | 96.84 364 | 97.52 387 | 99.54 231 | 98.94 220 | 99.58 187 | 99.48 271 | 96.25 309 | 99.76 326 | 98.01 225 | 99.93 101 | 99.21 290 |
|
| cl22 | | | 97.56 331 | 97.28 335 | 98.40 342 | 98.37 406 | 96.75 365 | 97.24 398 | 99.37 291 | 97.31 358 | 99.41 243 | 99.22 333 | 87.30 388 | 99.37 408 | 97.70 258 | 99.62 265 | 99.08 327 |
|
| PAPM | | | 95.61 380 | 94.71 382 | 98.31 349 | 99.12 342 | 96.63 366 | 96.66 409 | 98.46 372 | 90.77 411 | 96.25 410 | 98.68 387 | 93.01 347 | 99.69 351 | 81.60 419 | 97.86 403 | 98.62 375 |
|
| MonoMVSNet | | | 98.23 302 | 98.32 280 | 97.99 358 | 98.97 366 | 96.62 367 | 99.49 100 | 98.42 374 | 99.62 112 | 99.40 248 | 99.79 100 | 95.51 320 | 98.58 417 | 97.68 266 | 95.98 415 | 98.76 371 |
|
| new-patchmatchnet | | | 99.35 132 | 99.57 73 | 98.71 328 | 99.82 72 | 96.62 367 | 98.55 303 | 99.75 109 | 99.50 131 | 99.88 62 | 99.87 52 | 99.31 64 | 99.88 196 | 99.43 76 | 100.00 1 | 99.62 145 |
|
| Patchmatch-test | | | 98.10 310 | 97.98 307 | 98.48 338 | 99.27 315 | 96.48 369 | 99.40 115 | 99.07 340 | 98.81 241 | 99.23 282 | 99.57 242 | 90.11 379 | 99.87 210 | 96.69 326 | 99.64 261 | 99.09 321 |
|
| EU-MVSNet | | | 99.39 122 | 99.62 57 | 98.72 326 | 99.88 43 | 96.44 370 | 99.56 84 | 99.85 59 | 99.90 31 | 99.90 49 | 99.85 63 | 98.09 223 | 99.83 277 | 99.58 58 | 99.95 81 | 99.90 24 |
|
| miper_enhance_ethall | | | 98.03 313 | 97.94 313 | 98.32 347 | 98.27 408 | 96.43 371 | 96.95 404 | 99.41 276 | 96.37 380 | 99.43 234 | 98.96 369 | 94.74 327 | 99.69 351 | 97.71 255 | 99.62 265 | 98.83 364 |
|
| WAC-MVS | | | | | | | 96.36 372 | | | | | | | | 95.20 383 | | |
|
| myMVS_eth3d | | | 95.63 379 | 94.73 381 | 98.34 346 | 98.50 402 | 96.36 372 | 98.60 292 | 99.21 327 | 97.89 328 | 96.76 404 | 96.37 427 | 72.10 423 | 99.57 392 | 94.38 392 | 98.73 373 | 99.09 321 |
|
| UBG | | | 96.53 356 | 95.95 361 | 98.29 351 | 98.87 376 | 96.31 374 | 98.48 313 | 98.07 385 | 98.83 238 | 97.32 395 | 96.54 425 | 79.81 411 | 99.62 383 | 96.84 319 | 98.74 370 | 98.95 349 |
|
| PVSNet | | 97.47 15 | 98.42 286 | 98.44 267 | 98.35 344 | 99.46 260 | 96.26 375 | 96.70 408 | 99.34 297 | 97.68 339 | 99.00 311 | 99.13 341 | 97.40 265 | 99.72 338 | 97.59 271 | 99.68 248 | 99.08 327 |
|
| MVStest1 | | | 98.22 304 | 98.09 299 | 98.62 330 | 99.04 358 | 96.23 376 | 99.20 174 | 99.92 34 | 99.44 146 | 99.98 13 | 99.87 52 | 85.87 399 | 99.67 368 | 99.91 24 | 99.57 283 | 99.95 13 |
|
| thres200 | | | 96.09 368 | 95.68 368 | 97.33 380 | 99.48 250 | 96.22 377 | 98.53 308 | 97.57 395 | 98.06 317 | 98.37 365 | 96.73 422 | 86.84 395 | 99.61 388 | 86.99 416 | 98.57 379 | 96.16 416 |
|
| tfpn200view9 | | | 96.30 363 | 95.89 362 | 97.53 372 | 99.58 195 | 96.11 378 | 99.00 241 | 97.54 398 | 98.43 282 | 98.52 358 | 96.98 418 | 86.85 393 | 99.67 368 | 87.62 413 | 98.51 382 | 96.81 413 |
|
| thres400 | | | 96.40 359 | 95.89 362 | 97.92 363 | 99.58 195 | 96.11 378 | 99.00 241 | 97.54 398 | 98.43 282 | 98.52 358 | 96.98 418 | 86.85 393 | 99.67 368 | 87.62 413 | 98.51 382 | 97.98 404 |
|
| thres600view7 | | | 96.60 355 | 96.16 357 | 97.93 362 | 99.63 178 | 96.09 380 | 99.18 181 | 97.57 395 | 98.77 248 | 98.72 342 | 97.32 415 | 87.04 391 | 99.72 338 | 88.57 410 | 98.62 378 | 97.98 404 |
|
| thres100view900 | | | 96.39 360 | 96.03 360 | 97.47 375 | 99.63 178 | 95.93 381 | 99.18 181 | 97.57 395 | 98.75 252 | 98.70 345 | 97.31 416 | 87.04 391 | 99.67 368 | 87.62 413 | 98.51 382 | 96.81 413 |
|
| IterMVS-SCA-FT | | | 99.00 221 | 99.16 152 | 98.51 336 | 99.75 129 | 95.90 382 | 98.07 349 | 99.84 65 | 99.84 55 | 99.89 53 | 99.73 135 | 96.01 313 | 99.99 8 | 99.33 96 | 100.00 1 | 99.63 134 |
|
| WBMVS | | | 97.50 333 | 97.18 339 | 98.48 338 | 98.85 377 | 95.89 383 | 98.44 319 | 99.52 245 | 99.53 128 | 99.52 211 | 99.42 285 | 80.10 409 | 99.86 229 | 99.24 108 | 99.95 81 | 99.68 94 |
|
| CHOSEN 280x420 | | | 98.41 287 | 98.41 270 | 98.40 342 | 99.34 297 | 95.89 383 | 96.94 405 | 99.44 270 | 98.80 243 | 99.25 278 | 99.52 259 | 93.51 342 | 99.98 21 | 98.94 153 | 99.98 41 | 99.32 266 |
|
| BH-w/o | | | 97.20 341 | 97.01 343 | 97.76 368 | 99.08 353 | 95.69 385 | 98.03 354 | 98.52 368 | 95.76 388 | 97.96 381 | 98.02 403 | 95.62 317 | 99.47 404 | 92.82 403 | 97.25 408 | 98.12 402 |
|
| cascas | | | 96.99 345 | 96.82 351 | 97.48 374 | 97.57 420 | 95.64 386 | 96.43 410 | 99.56 219 | 91.75 408 | 97.13 402 | 97.61 413 | 95.58 318 | 98.63 415 | 96.68 327 | 99.11 343 | 98.18 401 |
|
| IterMVS | | | 98.97 225 | 99.16 152 | 98.42 341 | 99.74 135 | 95.64 386 | 98.06 351 | 99.83 67 | 99.83 60 | 99.85 74 | 99.74 131 | 96.10 312 | 99.99 8 | 99.27 107 | 100.00 1 | 99.63 134 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| testing91 | | | 96.00 371 | 95.32 375 | 98.02 357 | 98.76 390 | 95.39 388 | 98.38 322 | 98.65 363 | 98.82 239 | 96.84 403 | 96.71 423 | 75.06 419 | 99.71 342 | 96.46 343 | 98.23 389 | 98.98 346 |
|
| ADS-MVSNet2 | | | 97.78 321 | 97.66 328 | 98.12 356 | 99.14 338 | 95.36 389 | 99.22 171 | 98.75 356 | 96.97 369 | 98.25 368 | 99.64 192 | 90.90 369 | 99.94 79 | 96.51 338 | 99.56 284 | 99.08 327 |
|
| IB-MVS | | 95.41 20 | 95.30 382 | 94.46 386 | 97.84 366 | 98.76 390 | 95.33 390 | 97.33 394 | 96.07 406 | 96.02 384 | 95.37 416 | 97.41 414 | 76.17 417 | 99.96 55 | 97.54 273 | 95.44 418 | 98.22 397 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| testing11 | | | 96.05 370 | 95.41 372 | 97.97 360 | 98.78 387 | 95.27 391 | 98.59 295 | 98.23 383 | 98.86 233 | 96.56 407 | 96.91 420 | 75.20 418 | 99.69 351 | 97.26 293 | 98.29 387 | 98.93 352 |
|
| ppachtmachnet_test | | | 98.89 239 | 99.12 162 | 98.20 353 | 99.66 171 | 95.24 392 | 97.63 379 | 99.68 146 | 99.08 205 | 99.78 103 | 99.62 210 | 98.65 156 | 99.88 196 | 98.02 222 | 99.96 68 | 99.48 220 |
|
| testing99 | | | 95.86 375 | 95.19 378 | 97.87 364 | 98.76 390 | 95.03 393 | 98.62 289 | 98.44 373 | 98.68 257 | 96.67 406 | 96.66 424 | 74.31 420 | 99.69 351 | 96.51 338 | 98.03 399 | 98.90 356 |
|
| test-LLR | | | 97.15 342 | 96.95 345 | 97.74 370 | 98.18 411 | 95.02 394 | 97.38 391 | 96.10 404 | 98.00 318 | 97.81 389 | 98.58 388 | 90.04 380 | 99.91 145 | 97.69 264 | 98.78 364 | 98.31 392 |
|
| test-mter | | | 96.23 365 | 95.73 367 | 97.74 370 | 98.18 411 | 95.02 394 | 97.38 391 | 96.10 404 | 97.90 327 | 97.81 389 | 98.58 388 | 79.12 415 | 99.91 145 | 97.69 264 | 98.78 364 | 98.31 392 |
|
| our_test_3 | | | 98.85 243 | 99.09 174 | 98.13 355 | 99.66 171 | 94.90 396 | 97.72 375 | 99.58 212 | 99.07 207 | 99.64 160 | 99.62 210 | 98.19 217 | 99.93 97 | 98.41 190 | 99.95 81 | 99.55 181 |
|
| ADS-MVSNet | | | 97.72 326 | 97.67 327 | 97.86 365 | 99.14 338 | 94.65 397 | 99.22 171 | 98.86 349 | 96.97 369 | 98.25 368 | 99.64 192 | 90.90 369 | 99.84 262 | 96.51 338 | 99.56 284 | 99.08 327 |
|
| tmp_tt | | | 95.75 377 | 95.42 371 | 96.76 388 | 89.90 426 | 94.42 398 | 98.86 261 | 97.87 392 | 78.01 417 | 99.30 274 | 99.69 165 | 97.70 249 | 95.89 419 | 99.29 104 | 98.14 395 | 99.95 13 |
|
| tpm | | | 97.15 342 | 96.95 345 | 97.75 369 | 98.91 369 | 94.24 399 | 99.32 135 | 97.96 388 | 97.71 338 | 98.29 366 | 99.32 311 | 86.72 396 | 99.92 123 | 98.10 220 | 96.24 414 | 99.09 321 |
|
| KD-MVS_2432*1600 | | | 95.89 372 | 95.41 372 | 97.31 381 | 94.96 422 | 93.89 400 | 97.09 401 | 99.22 324 | 97.23 361 | 98.88 323 | 99.04 355 | 79.23 413 | 99.54 396 | 96.24 353 | 96.81 409 | 98.50 387 |
|
| miper_refine_blended | | | 95.89 372 | 95.41 372 | 97.31 381 | 94.96 422 | 93.89 400 | 97.09 401 | 99.22 324 | 97.23 361 | 98.88 323 | 99.04 355 | 79.23 413 | 99.54 396 | 96.24 353 | 96.81 409 | 98.50 387 |
|
| TESTMET0.1,1 | | | 96.24 364 | 95.84 365 | 97.41 377 | 98.24 409 | 93.84 402 | 97.38 391 | 95.84 408 | 98.43 282 | 97.81 389 | 98.56 391 | 79.77 412 | 99.89 182 | 97.77 247 | 98.77 366 | 98.52 383 |
|
| UWE-MVS | | | 96.21 366 | 95.78 366 | 97.49 373 | 98.53 400 | 93.83 403 | 98.04 352 | 93.94 416 | 98.96 217 | 98.46 362 | 98.17 401 | 79.86 410 | 99.87 210 | 96.99 308 | 99.06 346 | 98.78 368 |
|
| CVMVSNet | | | 98.61 262 | 98.88 227 | 97.80 367 | 99.58 195 | 93.60 404 | 99.26 157 | 99.64 174 | 99.66 102 | 99.72 132 | 99.67 180 | 93.26 343 | 99.93 97 | 99.30 101 | 99.81 191 | 99.87 32 |
|
| PVSNet_0 | | 95.53 19 | 95.85 376 | 95.31 376 | 97.47 375 | 98.78 387 | 93.48 405 | 95.72 412 | 99.40 283 | 96.18 383 | 97.37 394 | 97.73 408 | 95.73 315 | 99.58 391 | 95.49 377 | 81.40 420 | 99.36 256 |
|
| SCA | | | 98.11 309 | 98.36 275 | 97.36 378 | 99.20 329 | 92.99 406 | 98.17 337 | 98.49 371 | 98.24 306 | 99.10 303 | 99.57 242 | 96.01 313 | 99.94 79 | 96.86 316 | 99.62 265 | 99.14 310 |
|
| EPMVS | | | 96.53 356 | 96.32 354 | 97.17 385 | 98.18 411 | 92.97 407 | 99.39 117 | 89.95 422 | 98.21 308 | 98.61 351 | 99.59 232 | 86.69 397 | 99.72 338 | 96.99 308 | 99.23 339 | 98.81 365 |
|
| PatchmatchNet |  | | 97.65 327 | 97.80 320 | 97.18 384 | 98.82 382 | 92.49 408 | 99.17 186 | 98.39 377 | 98.12 312 | 98.79 336 | 99.58 235 | 90.71 373 | 99.89 182 | 97.23 298 | 99.41 314 | 99.16 303 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EPNet_dtu | | | 97.62 328 | 97.79 322 | 97.11 386 | 96.67 421 | 92.31 409 | 98.51 310 | 98.04 386 | 99.24 178 | 95.77 413 | 99.47 275 | 93.78 338 | 99.66 373 | 98.98 144 | 99.62 265 | 99.37 253 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tpmrst | | | 97.73 323 | 98.07 301 | 96.73 390 | 98.71 394 | 92.00 410 | 99.10 214 | 98.86 349 | 98.52 275 | 98.92 319 | 99.54 255 | 91.90 356 | 99.82 287 | 98.02 222 | 99.03 350 | 98.37 391 |
|
| reproduce_monomvs | | | 97.40 336 | 97.46 330 | 97.20 383 | 99.05 355 | 91.91 411 | 99.20 174 | 99.18 331 | 99.84 55 | 99.86 71 | 99.75 127 | 80.67 406 | 99.83 277 | 99.69 45 | 99.95 81 | 99.85 37 |
|
| tpmvs | | | 97.39 337 | 97.69 325 | 96.52 392 | 98.41 404 | 91.76 412 | 99.30 143 | 98.94 348 | 97.74 336 | 97.85 387 | 99.55 253 | 92.40 355 | 99.73 336 | 96.25 352 | 98.73 373 | 98.06 403 |
|
| tpm2 | | | 96.35 361 | 96.22 356 | 96.73 390 | 98.88 375 | 91.75 413 | 99.21 173 | 98.51 369 | 93.27 405 | 97.89 384 | 99.21 335 | 84.83 401 | 99.70 345 | 96.04 359 | 98.18 393 | 98.75 372 |
|
| E-PMN | | | 97.14 344 | 97.43 331 | 96.27 395 | 98.79 385 | 91.62 414 | 95.54 413 | 99.01 346 | 99.44 146 | 98.88 323 | 99.12 345 | 92.78 349 | 99.68 363 | 94.30 394 | 99.03 350 | 97.50 408 |
|
| MVS-HIRNet | | | 97.86 317 | 98.22 288 | 96.76 388 | 99.28 313 | 91.53 415 | 98.38 322 | 92.60 418 | 99.13 200 | 99.31 269 | 99.96 15 | 97.18 278 | 99.68 363 | 98.34 195 | 99.83 172 | 99.07 332 |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.44 416 | 99.14 196 | | 97.37 355 | 99.21 287 | | 91.78 360 | | 96.75 323 | | 99.03 338 |
|
| EMVS | | | 96.96 347 | 97.28 335 | 95.99 398 | 98.76 390 | 91.03 417 | 95.26 415 | 98.61 364 | 99.34 163 | 98.92 319 | 98.88 376 | 93.79 337 | 99.66 373 | 92.87 402 | 99.05 348 | 97.30 412 |
|
| MDTV_nov1_ep13 | | | | 97.73 324 | | 98.70 395 | 90.83 418 | 99.15 194 | 98.02 387 | 98.51 276 | 98.82 331 | 99.61 219 | 90.98 367 | 99.66 373 | 96.89 315 | 98.92 357 | |
|
| ECVR-MVS |  | | 97.73 323 | 98.04 302 | 96.78 387 | 99.59 190 | 90.81 419 | 99.72 30 | 90.43 421 | 99.89 37 | 99.86 71 | 99.86 59 | 93.60 341 | 99.89 182 | 99.46 73 | 99.99 16 | 99.65 119 |
|
| CostFormer | | | 96.71 353 | 96.79 352 | 96.46 394 | 98.90 370 | 90.71 420 | 99.41 114 | 98.68 359 | 94.69 402 | 98.14 376 | 99.34 310 | 86.32 398 | 99.80 309 | 97.60 270 | 98.07 398 | 98.88 359 |
|
| tpm cat1 | | | 96.78 350 | 96.98 344 | 96.16 397 | 98.85 377 | 90.59 421 | 99.08 221 | 99.32 300 | 92.37 406 | 97.73 393 | 99.46 278 | 91.15 365 | 99.69 351 | 96.07 358 | 98.80 363 | 98.21 398 |
|
| dp | | | 96.86 348 | 97.07 341 | 96.24 396 | 98.68 396 | 90.30 422 | 99.19 180 | 98.38 378 | 97.35 356 | 98.23 370 | 99.59 232 | 87.23 389 | 99.82 287 | 96.27 351 | 98.73 373 | 98.59 378 |
|
| test1111 | | | 97.74 322 | 98.16 295 | 96.49 393 | 99.60 185 | 89.86 423 | 99.71 34 | 91.21 419 | 99.89 37 | 99.88 62 | 99.87 52 | 93.73 339 | 99.90 163 | 99.56 60 | 99.99 16 | 99.70 82 |
|
| gm-plane-assit | | | | | | 97.59 418 | 89.02 424 | | | 93.47 404 | | 98.30 398 | | 99.84 262 | 96.38 347 | | |
|
| test2506 | | | 94.73 383 | 94.59 384 | 95.15 399 | 99.59 190 | 85.90 425 | 99.75 22 | 74.01 427 | 99.89 37 | 99.71 137 | 99.86 59 | 79.00 416 | 99.90 163 | 99.52 67 | 99.99 16 | 99.65 119 |
|
| dongtai | | | 89.37 385 | 88.91 388 | 90.76 401 | 99.19 331 | 77.46 426 | 95.47 414 | 87.82 425 | 92.28 407 | 94.17 418 | 98.82 380 | 71.22 424 | 95.54 420 | 63.85 420 | 97.34 406 | 99.27 276 |
|
| kuosan | | | 85.65 387 | 84.57 390 | 88.90 403 | 97.91 415 | 77.11 427 | 96.37 411 | 87.62 426 | 85.24 416 | 85.45 421 | 96.83 421 | 69.94 426 | 90.98 422 | 45.90 421 | 95.83 417 | 98.62 375 |
|
| test_method | | | 91.72 384 | 92.32 387 | 89.91 402 | 93.49 425 | 70.18 428 | 90.28 416 | 99.56 219 | 61.71 420 | 95.39 415 | 99.52 259 | 93.90 334 | 99.94 79 | 98.76 169 | 98.27 388 | 99.62 145 |
|
| test123 | | | 29.31 388 | 33.05 393 | 18.08 404 | 25.93 428 | 12.24 429 | 97.53 385 | 10.93 429 | 11.78 422 | 24.21 423 | 50.08 434 | 21.04 427 | 8.60 423 | 23.51 422 | 32.43 422 | 33.39 419 |
|
| testmvs | | | 28.94 389 | 33.33 391 | 15.79 405 | 26.03 427 | 9.81 430 | 96.77 407 | 15.67 428 | 11.55 423 | 23.87 424 | 50.74 433 | 19.03 428 | 8.53 424 | 23.21 423 | 33.07 421 | 29.03 420 |
|
| mmdepth | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet_test | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 24.88 390 | 33.17 392 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 99.62 179 | 0.00 424 | 0.00 425 | 99.13 341 | 99.82 13 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 16.61 391 | 22.14 394 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 99.28 68 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs-re | | | 8.26 402 | 11.02 405 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 99.16 339 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 8.33 392 | 11.11 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 100.00 1 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| PC_three_1452 | | | | | | | | | | 97.56 342 | 99.68 147 | 99.41 286 | 99.09 92 | 97.09 418 | 96.66 329 | 99.60 275 | 99.62 145 |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| test_241102_TWO | | | | | | | | | 99.54 231 | 99.13 200 | 99.76 114 | 99.63 203 | 98.32 203 | 99.92 123 | 97.85 242 | 99.69 243 | 99.75 71 |
|
| 9.14 | | | | 98.64 247 | | 99.45 264 | | 98.81 271 | 99.60 197 | 97.52 347 | 99.28 275 | 99.56 246 | 98.53 174 | 99.83 277 | 95.36 381 | 99.64 261 | |
|
| test_0728_THIRD | | | | | | | | | | 99.18 187 | 99.62 173 | 99.61 219 | 98.58 164 | 99.91 145 | 97.72 253 | 99.80 198 | 99.77 63 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.14 310 |
|
| sam_mvs1 | | | | | | | | | | | | | 90.81 372 | | | | 99.14 310 |
|
| sam_mvs | | | | | | | | | | | | | 90.52 376 | | | | |
|
| MTGPA |  | | | | | | | | 99.53 240 | | | | | | | | |
|
| test_post1 | | | | | | | | 99.14 196 | | | | 51.63 432 | 89.54 383 | 99.82 287 | 96.86 316 | | |
|
| test_post | | | | | | | | | | | | 52.41 431 | 90.25 378 | 99.86 229 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 99.62 210 | 90.58 374 | 99.94 79 | | | |
|
| MTMP | | | | | | | | 99.09 218 | 98.59 367 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 95.10 385 | 99.44 309 | 99.50 211 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.58 391 | 99.46 308 | 99.50 211 |
|
| test_prior2 | | | | | | | | 97.95 363 | | 97.87 331 | 98.05 378 | 99.05 353 | 97.90 236 | | 95.99 363 | 99.49 304 | |
|
| 旧先验2 | | | | | | | | 97.94 364 | | 95.33 393 | 98.94 315 | | | 99.88 196 | 96.75 323 | | |
|
| 新几何2 | | | | | | | | 98.04 352 | | | | | | | | | |
|
| 无先验 | | | | | | | | 98.01 355 | 99.23 321 | 95.83 387 | | | | 99.85 247 | 95.79 372 | | 99.44 234 |
|
| 原ACMM2 | | | | | | | | 97.92 366 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.89 182 | 95.99 363 | | |
|
| segment_acmp | | | | | | | | | | | | | 98.37 196 | | | | |
|
| testdata1 | | | | | | | | 97.72 375 | | 97.86 333 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 99.54 231 | | | | | 99.82 287 | 95.84 370 | 99.78 208 | 99.60 159 |
|
| plane_prior4 | | | | | | | | | | | | 99.25 326 | | | | | |
|
| plane_prior2 | | | | | | | | 98.80 274 | | 98.94 220 | | | | | | | |
|
| plane_prior1 | | | | | | 99.51 234 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 99.83 67 | | | | | | | | |
|
| test11 | | | | | | | | | 99.29 308 | | | | | | | | |
|
| door | | | | | | | | | 99.77 99 | | | | | | | | |
|
| HQP-NCC | | | | | | 99.31 304 | | 97.98 359 | | 97.45 350 | 98.15 372 | | | | | | |
|
| ACMP_Plane | | | | | | 99.31 304 | | 97.98 359 | | 97.45 350 | 98.15 372 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 94.73 388 | | |
|
| HQP4-MVS | | | | | | | | | | | 98.15 372 | | | 99.70 345 | | | 99.53 194 |
|
| HQP3-MVS | | | | | | | | | 99.37 291 | | | | | | | 99.67 254 | |
|
| HQP2-MVS | | | | | | | | | | | | | 96.67 291 | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.94 94 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.79 203 | |
|
| Test By Simon | | | | | | | | | | | | | 98.41 190 | | | | |
|