This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32198.69 496.42 15498.09 23895.86 14495.15 29295.54 32294.26 17599.81 3694.06 21698.51 28398.47 250
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11199.08 5896.57 10698.07 14098.38 11896.22 11399.14 28294.71 19399.31 19598.52 245
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9099.06 6296.19 12398.48 9098.70 8594.72 15999.24 26894.37 20499.33 19099.17 148
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4099.59 15997.21 6899.76 5899.40 100
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.60 9199.76 6195.49 14099.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.94 6795.49 14099.20 20899.26 132
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10398.83 12797.32 8298.06 14197.85 18796.65 8699.77 5695.00 17799.11 22299.32 115
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10798.73 14997.69 6397.90 15797.96 17695.81 12899.82 3496.13 10499.61 9899.45 85
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9899.92 597.88 4299.98 299.85 3
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7898.78 14196.04 13197.10 20097.73 20096.53 9399.78 4795.16 16599.50 13999.46 81
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9496.11 12696.89 22097.45 21896.85 7899.78 4795.19 16199.63 9199.38 106
PMVScopyleft89.60 1796.71 15796.97 13695.95 23199.51 3097.81 1697.42 10297.49 27497.93 5095.95 26798.58 9696.88 7596.91 38989.59 31499.36 17793.12 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft97.64 9697.18 12499.00 999.32 5597.77 1797.49 9798.73 14996.27 11795.59 28297.75 19796.30 10899.78 4793.70 23199.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.45 11196.92 14199.03 599.26 5997.70 1897.66 8298.89 10395.65 15398.51 8596.46 28692.15 22799.81 3695.14 16898.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24997.64 20596.49 9699.72 8795.66 13199.37 17499.45 85
X-MVStestdata92.86 30290.83 32998.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24936.50 40496.49 9699.72 8795.66 13199.37 17499.45 85
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11899.06 6295.45 16397.55 17297.94 17997.11 5399.78 4794.77 18999.46 15199.48 76
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9495.75 15097.91 15698.06 16696.89 7399.76 6195.32 15599.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS++copyleft96.99 13396.38 17398.81 2798.64 14997.59 2395.97 19198.20 22195.51 16195.06 29496.53 28294.10 17899.70 11094.29 20799.15 21599.13 156
LS3D97.77 8697.50 10898.57 4796.24 33597.58 2498.45 3198.85 11898.58 2897.51 17597.94 17995.74 13199.63 14495.19 16198.97 23698.51 246
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8898.83 12796.05 12997.46 18297.63 20696.77 8299.76 6195.61 13599.46 15199.49 70
EGC-MVSNET83.08 37077.93 37398.53 5099.57 2097.55 2698.33 3898.57 1794.71 40610.38 40798.90 6995.60 13699.50 18695.69 12899.61 9898.55 242
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8698.84 12196.00 13497.22 18997.62 20796.87 7799.76 6195.48 14399.43 16399.46 81
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14498.83 12795.21 17298.36 10498.13 15398.13 1899.62 14996.04 10899.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8898.84 12196.05 12997.49 17797.54 21297.07 5799.70 11095.61 13599.46 15199.30 120
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7395.88 14297.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16697.41 18497.50 21697.98 1999.79 4495.58 13899.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 12796.74 15098.26 7098.99 11097.45 3293.82 30399.05 6695.19 17498.32 11197.70 20295.22 14798.41 35894.27 20898.13 29898.93 193
MAR-MVS94.21 26793.03 28797.76 10996.94 31997.44 3396.97 12497.15 28487.89 33692.00 36692.73 36792.14 22899.12 28683.92 37297.51 32896.73 359
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR97.38 11697.07 13098.30 6899.01 10997.41 3494.66 26899.02 7595.20 17398.15 13097.52 21498.83 598.43 35794.87 18296.41 35699.07 171
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4399.45 20394.08 21599.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9198.92 10097.72 5998.25 11898.13 15397.10 5499.75 6795.44 14799.24 20699.32 115
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15599.35 2599.37 1997.38 4199.90 1498.59 2899.91 1999.77 12
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11298.79 13795.96 13697.53 17397.40 22296.93 6999.77 5695.04 17499.35 18299.42 97
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9898.84 12195.76 14896.93 21797.43 22097.26 4899.79 4496.06 10599.53 12599.45 85
DeepPCF-MVS94.58 596.90 14196.43 17098.31 6797.48 28897.23 4092.56 33798.60 17492.84 25998.54 8397.40 22296.64 8898.78 32294.40 20399.41 17098.93 193
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11398.90 10296.58 10398.08 13897.87 18697.02 6299.76 6195.25 15899.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11899.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FPMVS89.92 34188.63 34993.82 31998.37 18596.94 4591.58 35793.34 35188.00 33490.32 37997.10 24670.87 38391.13 40371.91 40196.16 36493.39 393
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15598.98 9095.05 18198.06 14198.02 17095.86 12099.56 16894.37 20499.64 8999.00 180
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23098.99 8792.45 26898.11 13398.31 12497.25 4999.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16098.79 13795.07 18097.88 15998.35 12097.24 5099.72 8796.05 10799.58 10599.45 85
PM-MVS97.36 12097.10 12798.14 8298.91 12096.77 4996.20 17298.63 17293.82 22098.54 8398.33 12293.98 18199.05 29795.99 11399.45 15498.61 237
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10398.49 3199.38 2299.14 4695.44 14199.84 3096.47 9199.80 5199.47 79
ACMP92.54 1397.47 11097.10 12798.55 4999.04 10696.70 5196.24 17098.89 10393.71 22397.97 15197.75 19797.44 3899.63 14493.22 24399.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26397.19 24196.88 7599.86 2497.50 6099.73 6798.41 253
SMA-MVScopyleft97.48 10997.11 12698.60 4598.83 12696.67 5396.74 13798.73 14991.61 28198.48 9098.36 11996.53 9399.68 12295.17 16399.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18495.63 15497.22 18997.30 23595.52 13798.55 34890.97 28298.90 24498.34 264
CPTT-MVS96.69 15896.08 18598.49 5298.89 12196.64 5597.25 10798.77 14292.89 25896.01 26697.13 24392.23 22699.67 12892.24 25699.34 18599.17 148
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24198.46 18794.58 19998.10 13598.07 16197.09 5699.39 22595.16 16599.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 13999.89 1897.95 4199.91 1999.75 19
N_pmnet95.18 22494.23 26198.06 8897.85 23896.55 5892.49 33891.63 36989.34 31398.09 13697.41 22190.33 25899.06 29691.58 27199.31 19598.56 240
PHI-MVS96.96 13796.53 16598.25 7397.48 28896.50 5996.76 13698.85 11893.52 22996.19 25996.85 26295.94 11899.42 21093.79 22799.43 16398.83 210
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14699.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12099.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
tt080597.44 11297.56 10197.11 16299.55 2396.36 6398.66 1895.66 31898.31 3697.09 20595.45 32597.17 5298.50 35298.67 2597.45 33296.48 365
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
APD-MVScopyleft97.00 13296.53 16598.41 5998.55 16496.31 6696.32 16398.77 14292.96 25797.44 18397.58 21195.84 12199.74 7691.96 26199.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7596.50 10899.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 8998.82 31896.38 9499.50 13996.98 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24398.99 8795.84 14598.78 6498.08 15996.84 7999.81 3693.98 22199.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
AllTest97.20 12696.92 14198.06 8899.08 9896.16 7097.14 11599.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4699.93 397.71 5299.91 1999.70 26
h-mvs3396.29 17695.63 20698.26 7098.50 17396.11 7396.90 12797.09 28796.58 10397.21 19198.19 14784.14 32099.78 4795.89 11996.17 36398.89 201
test_part299.03 10796.07 7498.08 138
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13698.59 8098.69 8696.94 6799.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
F-COLMAP95.30 21994.38 25898.05 9298.64 14996.04 7595.61 21798.66 16689.00 31993.22 34496.40 29092.90 20599.35 24187.45 34697.53 32798.77 218
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28496.92 25996.81 8199.87 2296.87 8299.76 5898.51 246
OMC-MVS96.48 16996.00 18897.91 10098.30 18996.01 7894.86 26098.60 17491.88 27797.18 19497.21 24096.11 11599.04 29890.49 30299.34 18598.69 228
ZD-MVS98.43 18195.94 7998.56 18090.72 29496.66 23297.07 24795.02 15399.74 7691.08 27998.93 242
test_vis3_rt97.04 13096.98 13597.23 15698.44 18095.88 8096.82 13199.67 690.30 30199.27 2999.33 2794.04 17996.03 39597.14 7297.83 31099.78 11
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14199.05 6698.67 2498.84 5998.45 11097.58 3699.88 2096.45 9299.86 3199.54 53
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9797.71 6198.85 5799.10 4891.35 24399.83 3298.47 3099.90 2499.64 35
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19799.04 7297.51 7298.22 12197.81 19294.68 16299.78 4797.14 7299.75 6599.41 99
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21199.02 7598.11 4498.31 11397.69 20394.65 16499.85 2797.02 7799.71 7499.48 76
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21398.87 11197.57 6798.31 11397.83 18894.69 16099.85 2797.02 7799.71 7499.46 81
PatchMatch-RL94.61 25393.81 27397.02 17298.19 20395.72 8693.66 30897.23 28088.17 33294.94 29995.62 32091.43 24098.57 34587.36 34797.68 32096.76 358
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17199.02 7593.92 21998.62 7698.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12099.10 5295.32 16997.83 16597.88 18596.44 10199.72 8794.59 19899.39 17299.25 136
NCCC96.52 16795.99 18998.10 8597.81 24795.68 8995.00 25598.20 22195.39 16795.40 28796.36 29293.81 18699.45 20393.55 23498.42 28799.17 148
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4699.92 597.64 5699.92 1699.75 19
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15898.13 4396.93 21798.45 11095.30 14599.62 14995.64 13398.96 23799.24 137
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30397.99 4999.15 3699.35 2389.84 26799.90 1498.64 2699.90 2499.82 6
LF4IMVS96.07 18495.63 20697.36 14698.19 20395.55 9495.44 22398.82 13592.29 27195.70 28096.55 28092.63 21498.69 33391.75 27099.33 19097.85 309
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 14997.79 5399.42 2097.83 18894.40 17299.78 4795.91 11899.76 5899.46 81
CNVR-MVS96.92 13996.55 16298.03 9398.00 22895.54 9594.87 25998.17 22794.60 19696.38 24697.05 24995.67 13399.36 23795.12 17199.08 22699.19 145
hse-mvs295.77 19795.09 21997.79 10797.84 24395.51 9795.66 21195.43 32796.58 10397.21 19196.16 29984.14 32099.54 17695.89 11996.92 34098.32 265
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13798.23 21695.92 13998.40 9898.28 13397.06 5899.71 10295.48 14399.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6395.51 9796.89 12898.89 10395.92 13998.64 7498.31 12497.06 58
test_one_060199.05 10595.50 10098.87 11197.21 8698.03 14598.30 12896.93 69
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13798.89 10399.75 6795.48 14399.52 13099.53 56
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4299.92 597.79 4899.93 1199.79 10
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10396.62 9998.62 7698.30 12896.97 6599.75 6795.70 12699.25 20399.21 140
IU-MVS99.22 6895.40 10398.14 23485.77 35698.36 10495.23 16099.51 13599.49 70
AUN-MVS93.95 27892.69 29897.74 11097.80 25195.38 10595.57 22095.46 32691.26 28892.64 35996.10 30574.67 36799.55 17393.72 23096.97 33998.30 269
test_prior495.38 10593.61 311
wuyk23d93.25 29795.20 21387.40 38496.07 34795.38 10597.04 12194.97 33395.33 16899.70 698.11 15798.14 1791.94 40277.76 39399.68 8274.89 402
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13498.83 12796.11 12699.08 4098.24 14097.87 2399.72 8795.44 14799.51 13599.14 154
test_241102_ONE99.22 6895.35 10898.83 12796.04 13199.08 4098.13 15397.87 2399.33 245
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
MVS_111021_LR96.82 14896.55 16297.62 11998.27 19495.34 11093.81 30598.33 20694.59 19896.56 23896.63 27796.61 8998.73 32794.80 18599.34 18598.78 215
OPU-MVS97.64 11898.01 22495.27 11396.79 13497.35 23196.97 6598.51 35191.21 27899.25 20399.14 154
CNLPA95.04 23194.47 25496.75 19097.81 24795.25 11494.12 29197.89 25094.41 20294.57 30595.69 31690.30 26198.35 36486.72 35398.76 26096.64 360
TEST997.84 24395.23 11593.62 30998.39 19886.81 34593.78 32595.99 30794.68 16299.52 181
train_agg95.46 21294.66 24097.88 10297.84 24395.23 11593.62 30998.39 19887.04 34193.78 32595.99 30794.58 16699.52 18191.76 26998.90 24498.89 201
TSAR-MVS + GP.96.47 17096.12 18297.49 13497.74 26695.23 11594.15 28796.90 29493.26 23898.04 14496.70 27394.41 17198.89 31394.77 18999.14 21698.37 258
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12199.05 1399.01 4498.65 9195.37 14299.90 1497.57 5799.91 1999.77 12
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9199.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18699.72 7199.32 115
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8297.82 16699.11 4796.75 8399.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26797.01 25396.99 6499.82 3497.66 5599.64 8998.39 256
SD-MVS97.37 11897.70 8196.35 21298.14 21595.13 12296.54 15098.92 10095.94 13899.19 3498.08 15997.74 2895.06 39695.24 15999.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PLCcopyleft91.02 1694.05 27492.90 29097.51 12798.00 22895.12 12394.25 28098.25 21386.17 35091.48 37195.25 32791.01 24799.19 27485.02 36796.69 35198.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_897.81 24795.07 12493.54 31298.38 20087.04 34193.71 32995.96 31094.58 16699.52 181
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8598.20 22193.00 25298.16 12898.06 16695.89 11999.72 8795.67 13099.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior97.80 25194.96 12698.36 20293.49 33799.53 178
CDPH-MVS95.45 21394.65 24197.84 10598.28 19294.96 12693.73 30798.33 20685.03 36495.44 28596.60 27895.31 14499.44 20690.01 30899.13 21899.11 164
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10698.99 8796.35 11698.13 13295.95 31195.99 11799.66 13494.36 20699.73 6798.59 238
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11698.79 13798.98 1798.74 7098.49 10595.80 12999.49 19195.04 17499.44 15599.11 164
save fliter98.48 17694.71 13194.53 27298.41 19595.02 183
alignmvs96.01 18895.52 20997.50 13197.77 26094.71 13196.07 18296.84 29597.48 7396.78 22694.28 34885.50 31199.40 22196.22 10098.73 26598.40 254
新几何197.25 15498.29 19094.70 13397.73 26077.98 39494.83 30196.67 27592.08 23199.45 20388.17 33598.65 27397.61 324
plane_prior798.70 14494.67 134
CMPMVSbinary73.10 2392.74 30491.39 31696.77 18993.57 39594.67 13494.21 28497.67 26380.36 38793.61 33396.60 27882.85 32997.35 38384.86 36898.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14399.82 195.44 16599.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17399.73 395.05 18199.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18899.64 1294.99 18499.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8497.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11798.98 9095.75 15097.62 17097.59 20997.61 3599.77 5696.34 9699.44 15599.36 112
plane_prior394.51 14195.29 17196.16 260
TAPA-MVS93.32 1294.93 23594.23 26197.04 17098.18 20694.51 14195.22 24298.73 14981.22 38396.25 25595.95 31193.80 18798.98 30689.89 31098.87 24897.62 323
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12195.61 32298.59 2798.51 8598.72 8292.54 21999.58 16196.02 11099.49 14299.12 161
AdaColmapbinary95.11 22894.62 24596.58 19997.33 30394.45 14494.92 25798.08 23993.15 24893.98 32395.53 32394.34 17399.10 29285.69 35898.61 27696.20 370
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14597.18 30994.39 14595.46 22298.73 14996.03 13394.72 30294.92 33596.28 11199.69 11793.81 22697.98 30398.09 284
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14798.84 1199.15 4499.37 399.67 799.43 1595.61 13599.72 8798.12 3499.86 3199.73 22
plane_prior698.38 18494.37 14791.91 237
mvsany_test396.21 17995.93 19497.05 16897.40 29694.33 14995.76 20594.20 34189.10 31699.36 2499.60 693.97 18297.85 37795.40 15498.63 27498.99 183
pmmvs-eth3d96.49 16896.18 18197.42 14298.25 19694.29 15094.77 26498.07 24389.81 30997.97 15198.33 12293.11 19999.08 29495.46 14699.84 4098.89 201
HQP_MVS96.66 16096.33 17697.68 11698.70 14494.29 15096.50 15198.75 14696.36 11496.16 26096.77 26991.91 23799.46 19992.59 25299.20 20899.28 127
plane_prior94.29 15095.42 22594.31 20698.93 242
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15397.86 6998.31 21098.79 2299.23 3298.86 7395.76 13099.61 15695.49 14099.36 17799.23 138
test_prior97.46 13797.79 25694.26 15498.42 19499.34 24398.79 214
v7n98.73 1198.99 597.95 9899.64 1494.20 15598.67 1599.14 4799.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 13997.69 27094.15 15696.02 18698.43 19193.17 24797.30 18697.38 22895.48 13899.28 25893.74 22899.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS96.24 17895.80 19997.56 12298.75 13694.13 15794.66 26898.17 22790.17 30496.21 25796.10 30595.14 14999.43 20894.13 21498.85 25199.13 156
test1297.46 13797.61 27994.07 15897.78 25893.57 33593.31 19699.42 21098.78 25898.89 201
test_040297.84 7797.97 5597.47 13699.19 7994.07 15896.71 14298.73 14998.66 2598.56 8298.41 11496.84 7999.69 11794.82 18499.81 4898.64 232
API-MVS95.09 23095.01 22395.31 26096.61 32594.02 16096.83 13097.18 28395.60 15695.79 27494.33 34794.54 16898.37 36385.70 35798.52 28193.52 391
IS-MVSNet96.93 13896.68 15397.70 11399.25 6294.00 16198.57 2096.74 30198.36 3498.14 13197.98 17588.23 28699.71 10293.10 24699.72 7199.38 106
DP-MVS Recon95.55 20695.13 21796.80 18698.51 17093.99 16294.60 27098.69 15990.20 30395.78 27696.21 29892.73 21098.98 30690.58 29898.86 25097.42 333
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16396.17 17799.57 1495.66 15299.52 1598.71 8497.04 6099.64 14099.21 799.87 2998.69 228
ETV-MVS96.13 18395.90 19596.82 18597.76 26193.89 16495.40 22898.95 9695.87 14395.58 28391.00 38696.36 10699.72 8793.36 23798.83 25496.85 352
旧先验197.80 25193.87 16597.75 25997.04 25093.57 19198.68 26898.72 224
Anonymous20240521196.34 17595.98 19097.43 14098.25 19693.85 16696.74 13794.41 33997.72 5998.37 10198.03 16987.15 29999.53 17894.06 21699.07 22898.92 196
UGNet96.81 14996.56 16197.58 12196.64 32493.84 16797.75 7697.12 28696.47 11193.62 33298.88 7193.22 19899.53 17895.61 13599.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16897.76 7599.00 8498.40 3399.07 4298.98 5896.89 7399.75 6797.19 7199.79 5399.55 52
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 16996.99 12399.65 996.74 9799.47 1798.93 6496.91 7299.84 3090.11 30699.06 23198.32 265
EPP-MVSNet96.84 14496.58 15997.65 11799.18 8093.78 17098.68 1496.34 30697.91 5197.30 18698.06 16688.46 28399.85 2793.85 22599.40 17199.32 115
NP-MVS98.14 21593.72 17195.08 329
GBi-Net96.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
test196.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17298.23 4698.66 16697.41 7899.00 4699.19 3695.47 13999.73 8295.83 12399.76 5899.30 120
MVS_111021_HR96.73 15496.54 16497.27 15198.35 18793.66 17593.42 31598.36 20294.74 19096.58 23696.76 27196.54 9298.99 30494.87 18299.27 20199.15 151
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17698.49 2898.88 10996.86 9497.11 19998.55 10095.82 12499.73 8295.94 11699.42 16699.13 156
CDS-MVSNet94.88 23894.12 26697.14 16097.64 27793.57 17793.96 29997.06 28990.05 30696.30 25296.55 28086.10 30599.47 19690.10 30799.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17898.23 4699.05 6697.40 7999.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 17995.96 19398.97 9394.55 20098.82 6198.76 8097.31 4499.29 25697.20 7099.44 15599.38 106
PCF-MVS89.43 1892.12 31590.64 33296.57 20197.80 25193.48 18089.88 38698.45 18874.46 39996.04 26595.68 31790.71 25299.31 24973.73 39899.01 23596.91 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18197.96 6298.25 21398.58 2898.78 6499.39 1698.21 1499.56 16892.65 25099.86 3199.52 58
test_vis1_rt94.03 27593.65 27595.17 26795.76 36093.42 18293.97 29898.33 20684.68 36893.17 34695.89 31392.53 22194.79 39793.50 23594.97 37797.31 337
TAMVS95.49 20894.94 22497.16 15898.31 18893.41 18395.07 25096.82 29791.09 29097.51 17597.82 19189.96 26499.42 21088.42 33199.44 15598.64 232
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18498.20 5198.87 11198.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
MM96.87 14396.62 15597.62 11997.72 26893.30 18596.39 15592.61 36197.90 5296.76 22798.64 9290.46 25599.81 3699.16 999.94 899.76 17
test_fmvsmvis_n_192098.08 4598.47 2696.93 17699.03 10793.29 18696.32 16399.65 995.59 15799.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 305
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18695.44 22398.86 11498.20 4298.37 10199.24 3294.69 16099.55 17395.98 11499.79 5399.65 33
VDDNet96.98 13696.84 14497.41 14399.40 4593.26 18897.94 6495.31 32999.26 798.39 10099.18 3987.85 29399.62 14995.13 17099.09 22599.35 114
test22298.17 20993.24 18992.74 33297.61 27275.17 39894.65 30496.69 27490.96 24998.66 27197.66 320
test_f95.82 19695.88 19795.66 24497.61 27993.21 19095.61 21798.17 22786.98 34398.42 9699.47 1190.46 25594.74 39897.71 5298.45 28599.03 176
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19198.35 3599.21 3398.43 3298.89 5498.83 7494.30 17499.81 3697.87 4399.91 1999.77 12
MVP-Stereo95.69 19995.28 21196.92 17798.15 21393.03 19295.64 21698.20 22190.39 30096.63 23597.73 20091.63 23999.10 29291.84 26697.31 33698.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EIA-MVS96.04 18695.77 20196.85 18297.80 25192.98 19396.12 17999.16 4094.65 19493.77 32791.69 38095.68 13299.67 12894.18 21198.85 25197.91 304
FIs97.93 6598.07 4597.48 13599.38 4892.95 19498.03 6199.11 5098.04 4898.62 7698.66 8893.75 18899.78 4797.23 6699.84 4099.73 22
Fast-Effi-MVS+95.49 20895.07 22096.75 19097.67 27492.82 19594.22 28398.60 17491.61 28193.42 34192.90 36296.73 8499.70 11092.60 25197.89 30997.74 317
test_fmvs397.38 11697.56 10196.84 18498.63 15392.81 19697.60 8699.61 1390.87 29298.76 6999.66 394.03 18097.90 37699.24 699.68 8299.81 8
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6892.81 19697.55 9198.94 9797.10 8898.85 5798.88 7195.03 15299.67 12897.39 6499.65 8799.26 132
PMMVS92.39 30891.08 32396.30 21693.12 39792.81 19690.58 37795.96 31379.17 39191.85 36892.27 37290.29 26298.66 33889.85 31196.68 35297.43 332
dmvs_re92.08 31791.27 32094.51 30297.16 31092.79 19995.65 21392.64 36094.11 21392.74 35590.98 38783.41 32694.44 40080.72 38494.07 38496.29 368
pmmvs494.82 24094.19 26496.70 19397.42 29592.75 20092.09 35196.76 29986.80 34695.73 27997.22 23989.28 27698.89 31393.28 24199.14 21698.46 252
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15198.92 11892.71 20195.89 19999.41 2493.36 23499.00 4698.44 11296.46 10099.65 13699.09 1199.76 5899.45 85
DPM-MVS93.68 28492.77 29796.42 20997.91 23492.54 20291.17 36897.47 27684.99 36693.08 34894.74 33789.90 26599.00 30287.54 34398.09 30097.72 318
CLD-MVS95.47 21195.07 22096.69 19498.27 19492.53 20391.36 36198.67 16491.22 28995.78 27694.12 34995.65 13498.98 30690.81 28799.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8192.51 20496.57 14899.15 4493.68 22698.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12992.51 20496.25 16999.06 6293.67 22798.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 56
HQP5-MVS92.47 206
HQP-MVS95.17 22694.58 24996.92 17797.85 23892.47 20694.26 27798.43 19193.18 24492.86 35295.08 32990.33 25899.23 27090.51 30098.74 26299.05 175
SixPastTwentyTwo97.49 10897.57 10097.26 15399.56 2192.33 20898.28 4296.97 29298.30 3899.45 1899.35 2388.43 28499.89 1898.01 3999.76 5899.54 53
MVS_030496.62 16296.40 17297.28 15097.91 23492.30 20996.47 15389.74 38897.52 7195.38 28898.63 9392.76 20899.81 3699.28 499.93 1199.75 19
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16298.92 11892.28 21095.83 20299.32 2593.22 24098.91 5398.49 10596.31 10799.64 14099.07 1299.76 5899.40 100
EPNet93.72 28292.62 30197.03 17187.61 40992.25 21196.27 16591.28 37396.74 9787.65 39597.39 22685.00 31499.64 14092.14 25999.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpnnormal97.72 9097.97 5596.94 17599.26 5992.23 21297.83 7198.45 18898.25 3999.13 3898.66 8896.65 8699.69 11793.92 22399.62 9298.91 197
SDMVSNet97.97 5298.26 3997.11 16299.41 4292.21 21396.92 12698.60 17498.58 2898.78 6499.39 1697.80 2599.62 14994.98 18099.86 3199.52 58
XXY-MVS97.54 10597.70 8197.07 16799.46 3692.21 21397.22 11099.00 8494.93 18798.58 8198.92 6597.31 4499.41 21994.44 19999.43 16399.59 38
ab-mvs96.59 16396.59 15896.60 19798.64 14992.21 21398.35 3597.67 26394.45 20196.99 21298.79 7594.96 15699.49 19190.39 30399.07 22898.08 285
WR-MVS96.90 14196.81 14697.16 15898.56 16392.20 21694.33 27698.12 23697.34 8198.20 12297.33 23392.81 20699.75 6794.79 18699.81 4899.54 53
Effi-MVS+96.19 18096.01 18796.71 19297.43 29492.19 21796.12 17999.10 5295.45 16393.33 34394.71 33897.23 5199.56 16893.21 24497.54 32698.37 258
mvsany_test193.47 29193.03 28794.79 28994.05 39092.12 21890.82 37490.01 38785.02 36597.26 18898.28 13393.57 19197.03 38692.51 25495.75 37195.23 382
原ACMM196.58 19998.16 21192.12 21898.15 23385.90 35493.49 33796.43 28792.47 22399.38 22887.66 34098.62 27598.23 276
lessismore_v097.05 16899.36 5092.12 21884.07 40198.77 6898.98 5885.36 31299.74 7697.34 6599.37 17499.30 120
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17398.57 16192.10 22195.97 19199.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16297.36 29892.08 22295.34 23497.65 26797.74 5798.29 11698.11 15795.05 15099.68 12297.50 6099.50 13999.56 50
VNet96.84 14496.83 14596.88 18098.06 22092.02 22396.35 16197.57 27397.70 6297.88 15997.80 19392.40 22499.54 17694.73 19198.96 23799.08 169
EI-MVSNet-UG-set97.32 12297.40 11197.09 16697.34 30192.01 22495.33 23597.65 26797.74 5798.30 11598.14 15195.04 15199.69 11797.55 5899.52 13099.58 39
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21497.16 31091.96 22597.74 7898.84 12187.26 33894.36 31198.01 17293.95 18399.67 12890.70 29598.75 26197.35 336
FMVSNet296.72 15596.67 15496.87 18197.96 23091.88 22697.15 11398.06 24495.59 15798.50 8798.62 9489.51 27399.65 13694.99 17999.60 10199.07 171
MSDG95.33 21795.13 21795.94 23397.40 29691.85 22791.02 37298.37 20195.30 17096.31 25195.99 30794.51 16998.38 36189.59 31497.65 32397.60 325
QAPM95.88 19395.57 20896.80 18697.90 23691.84 22898.18 5398.73 14988.41 32796.42 24498.13 15394.73 15899.75 6788.72 32698.94 24098.81 212
HyFIR lowres test93.72 28292.65 29996.91 17998.93 11691.81 22991.23 36798.52 18282.69 37696.46 24396.52 28480.38 34199.90 1490.36 30498.79 25799.03 176
test20.0396.58 16596.61 15796.48 20698.49 17491.72 23095.68 21097.69 26296.81 9598.27 11797.92 18294.18 17798.71 33090.78 28999.66 8699.00 180
ambc96.56 20298.23 19991.68 23197.88 6898.13 23598.42 9698.56 9994.22 17699.04 29894.05 21899.35 18298.95 187
K. test v396.44 17196.28 17796.95 17499.41 4291.53 23297.65 8390.31 38398.89 2098.93 5099.36 2184.57 31899.92 597.81 4699.56 11199.39 104
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20798.48 17691.52 23395.31 23798.45 18895.76 14897.48 17997.54 21289.53 27298.69 33394.43 20094.61 38199.13 156
LFMVS95.32 21894.88 23096.62 19698.03 22191.47 23497.65 8390.72 37999.11 997.89 15898.31 12479.20 34499.48 19493.91 22499.12 22198.93 193
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18698.79 13191.44 23596.14 17899.06 6294.19 20998.82 6198.98 5896.22 11399.38 22898.98 1699.86 3199.58 39
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18299.09 9791.43 23696.37 15999.11 5094.19 20999.01 4499.25 3196.30 10899.38 22899.00 1499.88 2799.73 22
test_fmvs296.38 17496.45 16996.16 22297.85 23891.30 23796.81 13299.45 1989.24 31598.49 8899.38 1888.68 28097.62 38198.83 1899.32 19299.57 46
PAPM_NR94.61 25394.17 26595.96 22998.36 18691.23 23895.93 19697.95 24692.98 25393.42 34194.43 34690.53 25398.38 36187.60 34196.29 36098.27 273
OpenMVS_ROBcopyleft91.80 1493.64 28793.05 28595.42 25797.31 30591.21 23995.08 24996.68 30481.56 38096.88 22196.41 28890.44 25799.25 26485.39 36397.67 32195.80 374
V4297.04 13097.16 12596.68 19598.59 15991.05 24096.33 16298.36 20294.60 19697.99 14798.30 12893.32 19599.62 14997.40 6399.53 12599.38 106
casdiffmvspermissive97.50 10797.81 7196.56 20298.51 17091.04 24195.83 20299.09 5797.23 8598.33 11098.30 12897.03 6199.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM91.79 32190.69 33195.11 26993.80 39290.98 24294.16 28691.78 36896.38 11290.30 38099.30 2872.02 37998.90 31288.28 33390.17 39495.45 380
114514_t93.96 27693.22 28496.19 22099.06 10190.97 24395.99 18998.94 9773.88 40093.43 34096.93 25792.38 22599.37 23489.09 32199.28 19998.25 275
1112_ss94.12 27093.42 27996.23 21798.59 15990.85 24494.24 28198.85 11885.49 35792.97 35094.94 33386.01 30699.64 14091.78 26897.92 30698.20 279
CANet95.86 19495.65 20596.49 20596.41 33290.82 24594.36 27598.41 19594.94 18592.62 36196.73 27292.68 21199.71 10295.12 17199.60 10198.94 189
Patchmtry95.03 23394.59 24896.33 21394.83 37890.82 24596.38 15897.20 28196.59 10297.49 17798.57 9777.67 35199.38 22892.95 24999.62 9298.80 213
FMVSNet593.39 29392.35 30396.50 20495.83 35590.81 24797.31 10498.27 21192.74 26196.27 25398.28 13362.23 39599.67 12890.86 28599.36 17799.03 176
baseline97.44 11297.78 7796.43 20898.52 16890.75 24896.84 12999.03 7396.51 10797.86 16398.02 17096.67 8599.36 23797.09 7499.47 14899.19 145
PVSNet_Blended_VisFu95.95 19095.80 19996.42 20999.28 5790.62 24995.31 23799.08 5888.40 32896.97 21598.17 15092.11 22999.78 4793.64 23299.21 20798.86 208
testdata95.70 24398.16 21190.58 25097.72 26180.38 38695.62 28197.02 25192.06 23298.98 30689.06 32398.52 28197.54 328
VPNet97.26 12497.49 10996.59 19899.47 3590.58 25096.27 16598.53 18197.77 5498.46 9398.41 11494.59 16599.68 12294.61 19499.29 19899.52 58
MSLP-MVS++96.42 17396.71 15195.57 24797.82 24690.56 25295.71 20698.84 12194.72 19196.71 22997.39 22694.91 15798.10 37495.28 15699.02 23398.05 294
UnsupCasMVSNet_bld94.72 24694.26 26096.08 22598.62 15590.54 25393.38 31798.05 24590.30 30197.02 21096.80 26889.54 27099.16 28088.44 33096.18 36298.56 240
FMVSNet395.26 22194.94 22496.22 21996.53 32990.06 25495.99 18997.66 26594.11 21397.99 14797.91 18380.22 34299.63 14494.60 19599.44 15598.96 186
CHOSEN 1792x268894.10 27193.41 28096.18 22199.16 8290.04 25592.15 34898.68 16179.90 38896.22 25697.83 18887.92 29299.42 21089.18 32099.65 8799.08 169
DELS-MVS96.17 18196.23 17895.99 22797.55 28490.04 25592.38 34698.52 18294.13 21196.55 24097.06 24894.99 15499.58 16195.62 13499.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 26593.72 27495.74 24097.71 26989.95 25793.84 30296.98 29188.38 32993.75 32895.74 31587.94 28898.89 31391.02 28198.10 29998.37 258
test_vis1_n95.67 20195.89 19695.03 27498.18 20689.89 25896.94 12599.28 2988.25 33198.20 12298.92 6586.69 30397.19 38497.70 5498.82 25598.00 299
CL-MVSNet_self_test95.04 23194.79 23795.82 23797.51 28689.79 25991.14 36996.82 29793.05 25096.72 22896.40 29090.82 25099.16 28091.95 26298.66 27198.50 248
CANet_DTU94.65 25194.21 26395.96 22995.90 35089.68 26093.92 30097.83 25693.19 24390.12 38295.64 31988.52 28299.57 16793.27 24299.47 14898.62 235
v1097.55 10497.97 5596.31 21598.60 15789.64 26197.44 9999.02 7596.60 10198.72 7299.16 4393.48 19399.72 8798.76 2199.92 1699.58 39
ANet_high98.31 3198.94 696.41 21199.33 5389.64 26197.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
test_yl94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
DCV-MVSNet94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
v897.60 10098.06 4796.23 21798.71 14289.44 26597.43 10198.82 13597.29 8498.74 7099.10 4893.86 18499.68 12298.61 2799.94 899.56 50
Anonymous2023120695.27 22095.06 22295.88 23598.72 13989.37 26695.70 20797.85 25288.00 33496.98 21497.62 20791.95 23499.34 24389.21 31999.53 12598.94 189
v119296.83 14797.06 13196.15 22398.28 19289.29 26795.36 23198.77 14293.73 22298.11 13398.34 12193.02 20499.67 12898.35 3299.58 10599.50 62
v114496.84 14497.08 12996.13 22498.42 18289.28 26895.41 22798.67 16494.21 20797.97 15198.31 12493.06 20099.65 13698.06 3899.62 9299.45 85
Vis-MVSNet (Re-imp)95.11 22894.85 23195.87 23699.12 9389.17 26997.54 9694.92 33496.50 10896.58 23697.27 23683.64 32499.48 19488.42 33199.67 8498.97 185
new_pmnet92.34 31091.69 31494.32 30996.23 33789.16 27092.27 34792.88 35584.39 37395.29 28996.35 29385.66 30996.74 39384.53 37097.56 32597.05 341
ET-MVSNet_ETH3D91.12 32889.67 34095.47 25496.41 33289.15 27191.54 35990.23 38489.07 31786.78 39992.84 36469.39 38799.44 20694.16 21296.61 35397.82 311
iter_conf05_1193.77 27993.29 28195.24 26296.54 32689.14 27291.55 35895.02 33290.16 30593.21 34593.94 35087.37 29799.56 16892.24 25699.56 11197.03 343
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21389.13 27396.81 13299.43 2186.97 34497.21 19198.92 6583.00 32897.13 38598.09 3698.94 24098.72 224
bld_raw_dy_0_6495.16 22795.16 21695.15 26896.54 32689.06 27496.63 14799.54 1789.68 31198.72 7294.50 34488.64 28199.38 22892.24 25699.93 1197.03 343
v14419296.69 15896.90 14396.03 22698.25 19688.92 27595.49 22198.77 14293.05 25098.09 13698.29 13292.51 22299.70 11098.11 3599.56 11199.47 79
Patchmatch-RL test94.66 25094.49 25295.19 26598.54 16688.91 27692.57 33698.74 14891.46 28498.32 11197.75 19777.31 35698.81 32096.06 10599.61 9897.85 309
HY-MVS91.43 1592.58 30691.81 31194.90 28296.49 33088.87 27797.31 10494.62 33685.92 35390.50 37796.84 26385.05 31399.40 22183.77 37595.78 36996.43 366
Test_1112_low_res93.53 29092.86 29195.54 25198.60 15788.86 27892.75 33098.69 15982.66 37792.65 35896.92 25984.75 31699.56 16890.94 28397.76 31398.19 280
PAPR92.22 31291.27 32095.07 27295.73 36288.81 27991.97 35297.87 25185.80 35590.91 37392.73 36791.16 24498.33 36579.48 38795.76 37098.08 285
v192192096.72 15596.96 13895.99 22798.21 20088.79 28095.42 22598.79 13793.22 24098.19 12698.26 13892.68 21199.70 11098.34 3399.55 11899.49 70
v2v48296.78 15197.06 13195.95 23198.57 16188.77 28195.36 23198.26 21295.18 17597.85 16498.23 14292.58 21599.63 14497.80 4799.69 7899.45 85
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24098.48 17688.76 28292.84 32797.25 27996.00 13497.59 17197.95 17891.38 24199.46 19993.16 24596.35 35898.99 183
v124096.74 15297.02 13495.91 23498.18 20688.52 28395.39 22998.88 10993.15 24898.46 9398.40 11792.80 20799.71 10298.45 3199.49 14299.49 70
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
pmmvs594.63 25294.34 25995.50 25297.63 27888.34 28794.02 29397.13 28587.15 34095.22 29197.15 24287.50 29499.27 26193.99 22099.26 20298.88 205
FE-MVS92.95 30192.22 30595.11 26997.21 30888.33 28898.54 2393.66 34789.91 30896.21 25798.14 15170.33 38599.50 18687.79 33798.24 29497.51 329
thisisatest053092.71 30591.76 31395.56 24998.42 18288.23 28996.03 18587.35 39594.04 21696.56 23895.47 32464.03 39399.77 5694.78 18899.11 22298.68 231
MIMVSNet93.42 29292.86 29195.10 27198.17 20988.19 29098.13 5593.69 34492.07 27295.04 29798.21 14680.95 33999.03 30181.42 38298.06 30198.07 287
Anonymous2024052197.07 12997.51 10695.76 23999.35 5188.18 29197.78 7298.40 19797.11 8798.34 10799.04 5389.58 26999.79 4498.09 3699.93 1199.30 120
CR-MVSNet93.29 29692.79 29494.78 29095.44 36788.15 29296.18 17397.20 28184.94 36794.10 31698.57 9777.67 35199.39 22595.17 16395.81 36696.81 356
RPMNet94.68 24994.60 24694.90 28295.44 36788.15 29296.18 17398.86 11497.43 7494.10 31698.49 10579.40 34399.76 6195.69 12895.81 36696.81 356
EI-MVSNet96.63 16196.93 13995.74 24097.26 30688.13 29495.29 23997.65 26796.99 8997.94 15498.19 14792.55 21799.58 16196.91 8099.56 11199.50 62
IterMVS-LS96.92 13997.29 11895.79 23898.51 17088.13 29495.10 24698.66 16696.99 8998.46 9398.68 8792.55 21799.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)94.91 23694.89 22994.99 27797.51 28688.11 29698.27 4495.20 33092.40 27096.68 23098.60 9583.44 32599.28 25893.34 23898.53 28097.59 326
diffmvspermissive96.04 18696.23 17895.46 25597.35 29988.03 29793.42 31599.08 5894.09 21596.66 23296.93 25793.85 18599.29 25696.01 11298.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs194.51 25894.60 24694.26 31295.91 34987.92 29895.35 23399.02 7586.56 34896.79 22298.52 10282.64 33097.00 38897.87 4398.71 26697.88 307
TinyColmap96.00 18996.34 17594.96 27997.90 23687.91 29994.13 29098.49 18594.41 20298.16 12897.76 19496.29 11098.68 33690.52 29999.42 16698.30 269
tttt051793.31 29592.56 30295.57 24798.71 14287.86 30097.44 9987.17 39695.79 14797.47 18196.84 26364.12 39299.81 3696.20 10199.32 19299.02 179
WTY-MVS93.55 28993.00 28995.19 26597.81 24787.86 30093.89 30196.00 31189.02 31894.07 31895.44 32686.27 30499.33 24587.69 33996.82 34698.39 256
jason94.39 26294.04 26895.41 25998.29 19087.85 30292.74 33296.75 30085.38 36195.29 28996.15 30088.21 28799.65 13694.24 20999.34 18598.74 221
jason: jason.
MVSFormer96.14 18296.36 17495.49 25397.68 27187.81 30398.67 1599.02 7596.50 10894.48 30996.15 30086.90 30099.92 598.73 2299.13 21898.74 221
lupinMVS93.77 27993.28 28295.24 26297.68 27187.81 30392.12 34996.05 30984.52 37094.48 30995.06 33186.90 30099.63 14493.62 23399.13 21898.27 273
D2MVS95.18 22495.17 21595.21 26497.76 26187.76 30594.15 28797.94 24789.77 31096.99 21297.68 20487.45 29599.14 28295.03 17699.81 4898.74 221
testgi96.07 18496.50 16894.80 28899.26 5987.69 30695.96 19398.58 17895.08 17998.02 14696.25 29697.92 2097.60 38288.68 32898.74 26299.11 164
v14896.58 16596.97 13695.42 25798.63 15387.57 30795.09 24797.90 24995.91 14198.24 11997.96 17693.42 19499.39 22596.04 10899.52 13099.29 126
BH-untuned94.69 24794.75 23894.52 30197.95 23387.53 30894.07 29297.01 29093.99 21797.10 20095.65 31892.65 21398.95 31187.60 34196.74 34997.09 340
Patchmatch-test93.60 28893.25 28394.63 29496.14 34587.47 30996.04 18494.50 33893.57 22896.47 24296.97 25476.50 35998.61 34290.67 29698.41 28897.81 313
iter_conf0593.65 28693.05 28595.46 25596.13 34687.45 31095.95 19598.22 21792.66 26397.04 20897.89 18463.52 39499.72 8796.19 10299.82 4799.21 140
BH-RMVSNet94.56 25594.44 25794.91 28097.57 28187.44 31193.78 30696.26 30793.69 22596.41 24596.50 28592.10 23099.00 30285.96 35597.71 31798.31 267
PVSNet_BlendedMVS95.02 23494.93 22695.27 26197.79 25687.40 31294.14 28998.68 16188.94 32094.51 30798.01 17293.04 20199.30 25289.77 31299.49 14299.11 164
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25687.40 31291.43 36098.68 16184.50 37194.51 30794.48 34593.04 20199.30 25289.77 31298.61 27698.02 297
PatchT93.75 28193.57 27794.29 31195.05 37587.32 31496.05 18392.98 35497.54 7094.25 31298.72 8275.79 36499.24 26895.92 11795.81 36696.32 367
GA-MVS92.83 30392.15 30794.87 28496.97 31687.27 31590.03 38196.12 30891.83 27894.05 31994.57 33976.01 36398.97 31092.46 25597.34 33598.36 263
baseline193.14 29992.64 30094.62 29597.34 30187.20 31696.67 14693.02 35394.71 19296.51 24195.83 31481.64 33298.60 34490.00 30988.06 39898.07 287
patch_mono-296.59 16396.93 13995.55 25098.88 12287.12 31794.47 27399.30 2794.12 21296.65 23498.41 11494.98 15599.87 2295.81 12599.78 5699.66 30
MS-PatchMatch94.83 23994.91 22894.57 29996.81 32287.10 31894.23 28297.34 27888.74 32397.14 19697.11 24591.94 23598.23 37092.99 24797.92 30698.37 258
cl____94.73 24294.64 24295.01 27595.85 35487.00 31991.33 36398.08 23993.34 23597.10 20097.33 23384.01 32399.30 25295.14 16899.56 11198.71 227
DIV-MVS_self_test94.73 24294.64 24295.01 27595.86 35387.00 31991.33 36398.08 23993.34 23597.10 20097.34 23284.02 32299.31 24995.15 16799.55 11898.72 224
MVS90.02 33789.20 34492.47 35594.71 37986.90 32195.86 20096.74 30164.72 40290.62 37492.77 36592.54 21998.39 36079.30 38895.56 37392.12 395
test0.0.03 190.11 33689.21 34392.83 34693.89 39186.87 32291.74 35688.74 39292.02 27394.71 30391.14 38573.92 37094.48 39983.75 37692.94 38797.16 339
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20086.83 32395.61 21799.26 3090.45 29998.17 12798.96 6184.43 31998.31 36696.74 8399.17 21397.90 305
TR-MVS92.54 30792.20 30693.57 32596.49 33086.66 32493.51 31394.73 33589.96 30794.95 29893.87 35190.24 26398.61 34281.18 38394.88 37895.45 380
MVS_Test96.27 17796.79 14994.73 29296.94 31986.63 32596.18 17398.33 20694.94 18596.07 26398.28 13395.25 14699.26 26297.21 6897.90 30898.30 269
MVSTER94.21 26793.93 27295.05 27395.83 35586.46 32695.18 24497.65 26792.41 26997.94 15498.00 17472.39 37899.58 16196.36 9599.56 11199.12 161
miper_lstm_enhance94.81 24194.80 23694.85 28596.16 34186.45 32791.14 36998.20 22193.49 23097.03 20997.37 23084.97 31599.26 26295.28 15699.56 11198.83 210
c3_l95.20 22395.32 21094.83 28796.19 33986.43 32891.83 35598.35 20593.47 23197.36 18597.26 23788.69 27999.28 25895.41 15399.36 17798.78 215
USDC94.56 25594.57 25194.55 30097.78 25986.43 32892.75 33098.65 17185.96 35296.91 21997.93 18190.82 25098.74 32690.71 29499.59 10398.47 250
miper_ehance_all_eth94.69 24794.70 23994.64 29395.77 35986.22 33091.32 36598.24 21591.67 27997.05 20796.65 27688.39 28599.22 27294.88 18198.34 28998.49 249
eth_miper_zixun_eth94.89 23794.93 22694.75 29195.99 34886.12 33191.35 36298.49 18593.40 23297.12 19897.25 23886.87 30299.35 24195.08 17398.82 25598.78 215
cl2293.25 29792.84 29394.46 30494.30 38486.00 33291.09 37196.64 30590.74 29395.79 27496.31 29478.24 34898.77 32394.15 21398.34 28998.62 235
MG-MVS94.08 27394.00 26994.32 30997.09 31385.89 33393.19 32395.96 31392.52 26594.93 30097.51 21589.54 27098.77 32387.52 34597.71 31798.31 267
ADS-MVSNet291.47 32690.51 33494.36 30795.51 36585.63 33495.05 25295.70 31783.46 37492.69 35696.84 26379.15 34599.41 21985.66 35990.52 39298.04 295
cascas91.89 32091.35 31793.51 32694.27 38585.60 33588.86 39198.61 17379.32 39092.16 36591.44 38289.22 27798.12 37390.80 28897.47 33196.82 355
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 34397.63 27196.99 8998.36 10498.54 10187.94 28899.75 6797.07 7699.08 22699.27 131
thisisatest051590.43 33489.18 34694.17 31597.07 31485.44 33789.75 38787.58 39488.28 33093.69 33191.72 37965.27 39199.58 16190.59 29798.67 26997.50 331
pmmvs390.00 33888.90 34893.32 32894.20 38885.34 33891.25 36692.56 36278.59 39293.82 32495.17 32867.36 39098.69 33389.08 32298.03 30295.92 371
BH-w/o92.14 31491.94 30892.73 34997.13 31285.30 33992.46 34095.64 31989.33 31494.21 31392.74 36689.60 26898.24 36981.68 38194.66 38094.66 385
miper_enhance_ethall93.14 29992.78 29694.20 31393.65 39385.29 34089.97 38297.85 25285.05 36396.15 26294.56 34085.74 30899.14 28293.74 22898.34 28998.17 282
DeepMVS_CXcopyleft77.17 38690.94 40585.28 34174.08 40952.51 40380.87 40488.03 39775.25 36670.63 40659.23 40684.94 40175.62 401
MVEpermissive73.61 2286.48 36885.92 36788.18 38296.23 33785.28 34181.78 40075.79 40686.01 35182.53 40291.88 37792.74 20987.47 40571.42 40294.86 37991.78 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131492.38 30992.30 30492.64 35195.42 36985.15 34395.86 20096.97 29285.40 36090.62 37493.06 36091.12 24597.80 37986.74 35295.49 37494.97 384
MDA-MVSNet_test_wron94.73 24294.83 23494.42 30597.48 28885.15 34390.28 38095.87 31592.52 26597.48 17997.76 19491.92 23699.17 27993.32 23996.80 34898.94 189
YYNet194.73 24294.84 23294.41 30697.47 29285.09 34590.29 37995.85 31692.52 26597.53 17397.76 19491.97 23399.18 27593.31 24096.86 34398.95 187
PAPM87.64 36185.84 36893.04 33796.54 32684.99 34688.42 39295.57 32379.52 38983.82 40093.05 36180.57 34098.41 35862.29 40492.79 38895.71 375
PS-MVSNAJ94.10 27194.47 25493.00 34097.35 29984.88 34791.86 35497.84 25491.96 27594.17 31492.50 37195.82 12499.71 10291.27 27597.48 32994.40 387
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16484.86 34895.91 19899.71 492.72 26297.67 16998.90 6987.44 29698.73 32797.96 4098.85 25197.96 301
xiu_mvs_v2_base94.22 26594.63 24492.99 34197.32 30484.84 34992.12 34997.84 25491.96 27594.17 31493.43 35396.07 11699.71 10291.27 27597.48 32994.42 386
IB-MVS85.98 2088.63 35486.95 36493.68 32395.12 37484.82 35090.85 37390.17 38587.55 33788.48 39291.34 38358.01 39699.59 15987.24 34993.80 38696.63 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view792.03 31891.43 31593.82 31998.19 20384.61 35196.27 16590.39 38096.81 9596.37 24793.11 35573.44 37699.49 19180.32 38597.95 30597.36 334
thres100view90091.76 32291.26 32293.26 33098.21 20084.50 35296.39 15590.39 38096.87 9396.33 24893.08 35973.44 37699.42 21078.85 39097.74 31495.85 372
gg-mvs-nofinetune88.28 35786.96 36392.23 35992.84 40084.44 35398.19 5274.60 40799.08 1087.01 39899.47 1156.93 39898.23 37078.91 38995.61 37294.01 389
tfpn200view991.55 32491.00 32493.21 33498.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31495.85 372
thres40091.68 32391.00 32493.71 32298.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31497.36 334
testing389.72 34488.26 35394.10 31697.66 27584.30 35694.80 26188.25 39394.66 19395.07 29392.51 37041.15 41199.43 20891.81 26798.44 28698.55 242
GG-mvs-BLEND90.60 37091.00 40484.21 35798.23 4672.63 41082.76 40184.11 40256.14 40196.79 39172.20 40092.09 39190.78 399
dcpmvs_297.12 12797.99 5494.51 30299.11 9484.00 35897.75 7699.65 997.38 8099.14 3798.42 11395.16 14899.96 295.52 13999.78 5699.58 39
thres20091.00 33190.42 33592.77 34897.47 29283.98 35994.01 29491.18 37595.12 17895.44 28591.21 38473.93 36999.31 24977.76 39397.63 32495.01 383
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34497.47 27695.49 16298.06 14198.49 10587.94 28899.58 16196.02 11099.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DSMNet-mixed92.19 31391.83 31093.25 33196.18 34083.68 36196.27 16593.68 34676.97 39792.54 36299.18 3989.20 27898.55 34883.88 37398.60 27897.51 329
ETVMVS87.62 36285.75 36993.22 33396.15 34483.26 36292.94 32690.37 38291.39 28590.37 37888.45 39651.93 40898.64 33973.76 39796.38 35797.75 316
ECVR-MVScopyleft94.37 26394.48 25394.05 31798.95 11283.10 36398.31 3982.48 40496.20 12198.23 12099.16 4381.18 33699.66 13495.95 11599.83 4399.38 106
testing22287.35 36485.50 37192.93 34495.79 35782.83 36492.40 34590.10 38692.80 26088.87 39089.02 39548.34 40998.70 33175.40 39696.74 34997.27 338
baseline289.65 34688.44 35293.25 33195.62 36382.71 36593.82 30385.94 39988.89 32187.35 39792.54 36971.23 38199.33 24586.01 35494.60 38297.72 318
Syy-MVS92.09 31691.80 31292.93 34495.19 37282.65 36692.46 34091.35 37190.67 29691.76 36987.61 39885.64 31098.50 35294.73 19196.84 34497.65 321
EPNet_dtu91.39 32790.75 33093.31 32990.48 40682.61 36794.80 26192.88 35593.39 23381.74 40394.90 33681.36 33599.11 28988.28 33398.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet94.25 26494.47 25493.60 32498.14 21582.60 36897.24 10992.72 35885.08 36298.48 9098.94 6382.59 33198.76 32597.47 6299.53 12599.44 95
ADS-MVSNet90.95 33290.26 33693.04 33795.51 36582.37 36995.05 25293.41 35083.46 37492.69 35696.84 26379.15 34598.70 33185.66 35990.52 39298.04 295
ppachtmachnet_test94.49 25994.84 23293.46 32796.16 34182.10 37090.59 37697.48 27590.53 29897.01 21197.59 20991.01 24799.36 23793.97 22299.18 21298.94 189
KD-MVS_2432*160088.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
miper_refine_blended88.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
test111194.53 25794.81 23593.72 32199.06 10181.94 37398.31 3983.87 40296.37 11398.49 8899.17 4281.49 33399.73 8296.64 8499.86 3199.49 70
testing9189.67 34588.55 35093.04 33795.90 35081.80 37492.71 33493.71 34393.71 22390.18 38190.15 39257.11 39799.22 27287.17 35096.32 35998.12 283
mvs_anonymous95.36 21596.07 18693.21 33496.29 33481.56 37594.60 27097.66 26593.30 23796.95 21698.91 6893.03 20399.38 22896.60 8697.30 33798.69 228
testing1188.93 35187.63 35992.80 34795.87 35281.49 37692.48 33991.54 37091.62 28088.27 39390.24 39055.12 40699.11 28987.30 34896.28 36197.81 313
SCA93.38 29493.52 27892.96 34296.24 33581.40 37793.24 32194.00 34291.58 28394.57 30596.97 25487.94 28899.42 21089.47 31697.66 32298.06 291
our_test_394.20 26994.58 24993.07 33696.16 34181.20 37890.42 37896.84 29590.72 29497.14 19697.13 24390.47 25499.11 28994.04 21998.25 29398.91 197
CHOSEN 280x42089.98 33989.19 34592.37 35795.60 36481.13 37986.22 39597.09 28781.44 38287.44 39693.15 35473.99 36899.47 19688.69 32799.07 22896.52 364
testing9989.21 34988.04 35592.70 35095.78 35881.00 38092.65 33592.03 36493.20 24289.90 38590.08 39455.25 40399.14 28287.54 34395.95 36597.97 300
PMMVS293.66 28594.07 26792.45 35697.57 28180.67 38186.46 39496.00 31193.99 21797.10 20097.38 22889.90 26597.82 37888.76 32599.47 14898.86 208
WB-MVSnew91.50 32591.29 31892.14 36094.85 37780.32 38293.29 32088.77 39188.57 32694.03 32092.21 37392.56 21698.28 36880.21 38697.08 33897.81 313
new-patchmatchnet95.67 20196.58 15992.94 34397.48 28880.21 38392.96 32598.19 22694.83 18898.82 6198.79 7593.31 19699.51 18595.83 12399.04 23299.12 161
PatchmatchNetpermissive91.98 31991.87 30992.30 35894.60 38179.71 38495.12 24593.59 34989.52 31293.61 33397.02 25177.94 34999.18 27590.84 28694.57 38398.01 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WAC-MVS79.32 38585.41 362
myMVS_eth3d87.16 36785.61 37091.82 36395.19 37279.32 38592.46 34091.35 37190.67 29691.76 36987.61 39841.96 41098.50 35282.66 37896.84 34497.65 321
EPMVS89.26 34888.55 35091.39 36692.36 40279.11 38795.65 21379.86 40588.60 32593.12 34796.53 28270.73 38498.10 37490.75 29089.32 39696.98 345
SSC-MVS95.92 19197.03 13392.58 35299.28 5778.39 38896.68 14495.12 33198.90 1999.11 3998.66 8891.36 24299.68 12295.00 17799.16 21499.67 28
tpm91.08 33090.85 32891.75 36495.33 37078.09 38995.03 25491.27 37488.75 32293.53 33697.40 22271.24 38099.30 25291.25 27793.87 38597.87 308
PVSNet86.72 1991.10 32990.97 32691.49 36597.56 28378.04 39087.17 39394.60 33784.65 36992.34 36392.20 37487.37 29798.47 35585.17 36697.69 31997.96 301
CostFormer89.75 34389.25 34191.26 36794.69 38078.00 39195.32 23691.98 36681.50 38190.55 37696.96 25671.06 38298.89 31388.59 32992.63 38996.87 350
E-PMN89.52 34789.78 33988.73 37893.14 39677.61 39283.26 39892.02 36594.82 18993.71 32993.11 35575.31 36596.81 39085.81 35696.81 34791.77 397
dmvs_testset87.30 36586.99 36288.24 38196.71 32377.48 39394.68 26786.81 39892.64 26489.61 38687.01 40085.91 30793.12 40161.04 40588.49 39794.13 388
EMVS89.06 35089.22 34288.61 37993.00 39877.34 39482.91 39990.92 37694.64 19592.63 36091.81 37876.30 36197.02 38783.83 37496.90 34291.48 398
tpm288.47 35587.69 35890.79 36994.98 37677.34 39495.09 24791.83 36777.51 39689.40 38796.41 28867.83 38998.73 32783.58 37792.60 39096.29 368
WB-MVS95.50 20796.62 15592.11 36199.21 7577.26 39696.12 17995.40 32898.62 2698.84 5998.26 13891.08 24699.50 18693.37 23698.70 26799.58 39
test250689.86 34289.16 34791.97 36298.95 11276.83 39798.54 2361.07 41196.20 12197.07 20699.16 4355.19 40599.69 11796.43 9399.83 4399.38 106
tpmvs90.79 33390.87 32790.57 37192.75 40176.30 39895.79 20493.64 34891.04 29191.91 36796.26 29577.19 35798.86 31789.38 31889.85 39596.56 363
tpm cat188.01 35987.33 36090.05 37594.48 38276.28 39994.47 27394.35 34073.84 40189.26 38895.61 32173.64 37298.30 36784.13 37186.20 40095.57 379
CVMVSNet92.33 31192.79 29490.95 36897.26 30675.84 40095.29 23992.33 36381.86 37896.27 25398.19 14781.44 33498.46 35694.23 21098.29 29298.55 242
test-LLR89.97 34089.90 33890.16 37294.24 38674.98 40189.89 38389.06 38992.02 27389.97 38390.77 38873.92 37098.57 34591.88 26497.36 33396.92 347
test-mter87.92 36087.17 36190.16 37294.24 38674.98 40189.89 38389.06 38986.44 34989.97 38390.77 38854.96 40798.57 34591.88 26497.36 33396.92 347
PVSNet_081.89 2184.49 36983.21 37288.34 38095.76 36074.97 40383.49 39792.70 35978.47 39387.94 39486.90 40183.38 32796.63 39473.44 39966.86 40593.40 392
UWE-MVS87.57 36386.72 36590.13 37495.21 37173.56 40491.94 35383.78 40388.73 32493.00 34992.87 36355.22 40499.25 26481.74 38097.96 30497.59 326
MDTV_nov1_ep1391.28 31994.31 38373.51 40594.80 26193.16 35286.75 34793.45 33997.40 22276.37 36098.55 34888.85 32496.43 355
TESTMET0.1,187.20 36686.57 36689.07 37793.62 39472.84 40689.89 38387.01 39785.46 35989.12 38990.20 39156.00 40297.72 38090.91 28496.92 34096.64 360
tpmrst90.31 33590.61 33389.41 37694.06 38972.37 40795.06 25193.69 34488.01 33392.32 36496.86 26177.45 35398.82 31891.04 28087.01 39997.04 342
gm-plane-assit91.79 40371.40 40881.67 37990.11 39398.99 30484.86 368
dp88.08 35888.05 35488.16 38392.85 39968.81 40994.17 28592.88 35585.47 35891.38 37296.14 30268.87 38898.81 32086.88 35183.80 40296.87 350
MVS-HIRNet88.40 35690.20 33782.99 38597.01 31560.04 41093.11 32485.61 40084.45 37288.72 39199.09 5084.72 31798.23 37082.52 37996.59 35490.69 400
MDTV_nov1_ep13_2view57.28 41194.89 25880.59 38594.02 32178.66 34785.50 36197.82 311
tmp_tt57.23 37262.50 37541.44 38834.77 41149.21 41283.93 39660.22 41215.31 40471.11 40579.37 40370.09 38644.86 40764.76 40382.93 40330.25 403
test_method66.88 37166.13 37469.11 38762.68 41025.73 41349.76 40196.04 31014.32 40564.27 40691.69 38073.45 37588.05 40476.06 39566.94 40493.54 390
test12312.59 37415.49 3773.87 3896.07 4122.55 41490.75 3752.59 4142.52 4075.20 40913.02 4064.96 4121.85 4095.20 4079.09 4067.23 404
testmvs12.33 37515.23 3783.64 3905.77 4132.23 41588.99 3903.62 4132.30 4085.29 40813.09 4054.52 4131.95 4085.16 4088.32 4076.75 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.22 37332.30 3760.00 3910.00 4140.00 4160.00 40298.10 2370.00 4090.00 41095.06 33197.54 370.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.98 37610.65 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40995.82 1240.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.91 37710.55 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.94 3330.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
PC_three_145287.24 33998.37 10197.44 21997.00 6396.78 39292.01 26099.25 20399.21 140
eth-test20.00 414
eth-test0.00 414
test_241102_TWO98.83 12796.11 12698.62 7698.24 14096.92 7199.72 8795.44 14799.49 14299.49 70
9.1496.69 15298.53 16796.02 18698.98 9093.23 23997.18 19497.46 21796.47 9899.62 14992.99 24799.32 192
test_0728_THIRD96.62 9998.40 9898.28 13397.10 5499.71 10295.70 12699.62 9299.58 39
GSMVS98.06 291
sam_mvs177.80 35098.06 291
sam_mvs77.38 354
MTGPAbinary98.73 149
test_post194.98 25610.37 40876.21 36299.04 29889.47 316
test_post10.87 40776.83 35899.07 295
patchmatchnet-post96.84 26377.36 35599.42 210
MTMP96.55 14974.60 407
test9_res91.29 27498.89 24799.00 180
agg_prior290.34 30598.90 24499.10 168
test_prior293.33 31994.21 20794.02 32196.25 29693.64 19091.90 26398.96 237
旧先验293.35 31877.95 39595.77 27898.67 33790.74 293
新几何293.43 314
无先验93.20 32297.91 24880.78 38499.40 22187.71 33897.94 303
原ACMM292.82 328
testdata299.46 19987.84 336
segment_acmp95.34 143
testdata192.77 32993.78 221
plane_prior598.75 14699.46 19992.59 25299.20 20899.28 127
plane_prior496.77 269
plane_prior296.50 15196.36 114
plane_prior198.49 174
n20.00 415
nn0.00 415
door-mid98.17 227
test1198.08 239
door97.81 257
HQP-NCC97.85 23894.26 27793.18 24492.86 352
ACMP_Plane97.85 23894.26 27793.18 24492.86 352
BP-MVS90.51 300
HQP4-MVS92.87 35199.23 27099.06 173
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 258
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169