This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
Effi-MVS+-dtu96.81 14796.09 18298.99 1096.90 32098.69 496.42 15598.09 23795.86 14595.15 29195.54 32294.26 17399.81 3794.06 21698.51 28198.47 250
APD_test197.95 5897.68 8398.75 3199.60 1798.60 597.21 11299.08 5596.57 10798.07 13898.38 11796.22 11199.14 27894.71 19399.31 19398.52 245
RPSCF97.87 7497.51 10598.95 1499.15 8698.43 697.56 9199.06 5996.19 12498.48 8898.70 8694.72 15799.24 26594.37 20499.33 18899.17 148
FOURS199.59 1898.20 799.03 799.25 2898.96 1898.87 54
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 15997.21 6799.76 5999.40 100
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.60 9199.76 6295.49 14099.20 20699.26 131
RE-MVS-def97.88 6498.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.94 6795.49 14099.20 20699.26 131
SR-MVS98.00 5197.66 8599.01 898.77 13497.93 1197.38 10498.83 12497.32 8298.06 13997.85 18796.65 8699.77 5795.00 17799.11 22099.32 114
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14697.69 6397.90 15597.96 17595.81 12699.82 3596.13 10499.61 9799.45 86
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2399.08 1097.87 16099.67 296.47 9899.92 597.88 4199.98 299.85 3
mPP-MVS97.91 6997.53 10399.04 499.22 6997.87 1497.74 7998.78 13896.04 13297.10 19897.73 20096.53 9399.78 4895.16 16599.50 13799.46 82
CP-MVS97.92 6697.56 10098.99 1098.99 11197.82 1597.93 6698.96 9196.11 12796.89 21897.45 21896.85 7899.78 4895.19 16199.63 9099.38 105
PMVScopyleft89.60 1796.71 15596.97 13595.95 23199.51 3197.81 1697.42 10397.49 27397.93 5095.95 26698.58 9796.88 7596.91 38089.59 31299.36 17593.12 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft97.64 9697.18 12399.00 999.32 5697.77 1797.49 9898.73 14696.27 11895.59 28197.75 19796.30 10699.78 4893.70 23199.48 14499.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.45 11096.92 14099.03 599.26 6097.70 1897.66 8398.89 10095.65 15498.51 8396.46 28692.15 22499.81 3795.14 16898.58 27799.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS97.96 5497.63 9198.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24897.64 20596.49 9699.72 8895.66 13199.37 17299.45 86
X-MVStestdata92.86 29990.83 32598.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24836.50 39596.49 9699.72 8895.66 13199.37 17299.45 86
PGM-MVS97.88 7397.52 10498.96 1399.20 7897.62 2197.09 11999.06 5995.45 16497.55 17097.94 17897.11 5399.78 4894.77 18999.46 14999.48 77
ACMMPcopyleft98.05 4897.75 7898.93 1899.23 6697.60 2298.09 5798.96 9195.75 15197.91 15498.06 16596.89 7399.76 6295.32 15599.57 10799.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS++copyleft96.99 13296.38 17198.81 2798.64 14897.59 2395.97 19298.20 21995.51 16295.06 29396.53 28294.10 17699.70 11294.29 20799.15 21399.13 156
LS3D97.77 8697.50 10798.57 4796.24 33297.58 2498.45 3198.85 11598.58 2897.51 17397.94 17895.74 12999.63 14495.19 16198.97 23498.51 246
ACMMPR97.95 5897.62 9398.94 1599.20 7897.56 2597.59 8998.83 12496.05 13097.46 18097.63 20696.77 8299.76 6295.61 13599.46 14999.49 71
EGC-MVSNET83.08 36077.93 36398.53 5099.57 2097.55 2698.33 3898.57 1774.71 39710.38 39898.90 7095.60 13499.50 18595.69 12899.61 9798.55 242
region2R97.92 6697.59 9798.92 2199.22 6997.55 2697.60 8798.84 11896.00 13597.22 18797.62 20796.87 7799.76 6295.48 14399.43 16199.46 82
ACMM93.33 1198.05 4897.79 7298.85 2499.15 8697.55 2696.68 14698.83 12495.21 17398.36 10298.13 15298.13 1899.62 14996.04 10899.54 11999.39 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS97.94 6297.64 8998.83 2599.15 8697.50 2997.59 8998.84 11896.05 13097.49 17597.54 21297.07 5799.70 11295.61 13599.46 14999.30 119
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7095.88 14397.88 15798.22 14498.15 1699.74 7796.50 9099.62 9199.42 97
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6395.43 16797.41 18297.50 21697.98 1999.79 4595.58 13899.57 10799.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 12696.74 14998.26 7098.99 11197.45 3293.82 30299.05 6395.19 17598.32 10997.70 20295.22 14598.41 35094.27 20898.13 29698.93 193
MAR-MVS94.21 26593.03 28497.76 11096.94 31897.44 3396.97 12597.15 28387.89 32792.00 36292.73 36492.14 22599.12 28183.92 36797.51 32596.73 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR97.38 11597.07 12998.30 6899.01 11097.41 3494.66 26799.02 7295.20 17498.15 12897.52 21498.83 598.43 34994.87 18296.41 35199.07 171
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3798.34 3598.78 6398.52 10397.32 4399.45 20294.08 21599.67 8399.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13097.31 3697.55 9298.92 9797.72 5998.25 11698.13 15297.10 5499.75 6895.44 14799.24 20499.32 114
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3495.62 15699.35 2599.37 1997.38 4199.90 1498.59 2699.91 1899.77 12
GST-MVS97.82 8197.49 10898.81 2799.23 6697.25 3897.16 11398.79 13495.96 13797.53 17197.40 22296.93 6999.77 5795.04 17499.35 18099.42 97
ZNCC-MVS97.92 6697.62 9398.83 2599.32 5697.24 3997.45 9998.84 11895.76 14996.93 21597.43 22097.26 4899.79 4596.06 10599.53 12399.45 86
DeepPCF-MVS94.58 596.90 14096.43 16898.31 6797.48 28697.23 4092.56 33298.60 17192.84 25798.54 8197.40 22296.64 8898.78 31694.40 20399.41 16898.93 193
SteuartSystems-ACMMP98.02 5097.76 7798.79 2999.43 4097.21 4197.15 11498.90 9996.58 10498.08 13697.87 18697.02 6299.76 6295.25 15899.59 10299.40 100
Skip Steuart: Steuart Systems R&D Blog.
LPG-MVS_test97.94 6297.67 8498.74 3499.15 8697.02 4297.09 11999.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18098.58 2799.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FPMVS89.92 33788.63 34593.82 31798.37 18496.94 4591.58 34993.34 34888.00 32590.32 37497.10 24670.87 37991.13 39471.91 39296.16 35693.39 384
XVG-ACMP-BASELINE97.58 10297.28 11898.49 5299.16 8396.90 4696.39 15698.98 8795.05 18298.06 13998.02 16995.86 11899.56 16894.37 20499.64 8899.00 180
MP-MVS-pluss97.69 9297.36 11398.70 3899.50 3496.84 4795.38 22998.99 8492.45 26598.11 13198.31 12397.25 4999.77 5796.60 8699.62 9199.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 7297.63 9198.67 4099.35 5296.84 4796.36 16198.79 13495.07 18197.88 15798.35 11997.24 5099.72 8896.05 10799.58 10499.45 86
PM-MVS97.36 11997.10 12698.14 8298.91 11996.77 4996.20 17398.63 16993.82 22298.54 8198.33 12193.98 17999.05 29195.99 11399.45 15298.61 237
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10098.49 3199.38 2299.14 4695.44 13999.84 3096.47 9199.80 5199.47 80
ACMP92.54 1397.47 10997.10 12698.55 4999.04 10796.70 5196.24 17198.89 10093.71 22597.97 14997.75 19797.44 3899.63 14493.22 24399.70 7699.32 114
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CS-MVS98.09 4498.01 5298.32 6598.45 17896.69 5298.52 2699.69 598.07 4696.07 26297.19 24196.88 7599.86 2497.50 5999.73 6698.41 253
SMA-MVScopyleft97.48 10897.11 12598.60 4598.83 12596.67 5396.74 13998.73 14691.61 27798.48 8898.36 11896.53 9399.68 12495.17 16399.54 11999.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ITE_SJBPF97.85 10598.64 14896.66 5498.51 18295.63 15597.22 18797.30 23595.52 13598.55 34090.97 28098.90 24298.34 264
CPTT-MVS96.69 15696.08 18398.49 5298.89 12096.64 5597.25 10898.77 13992.89 25696.01 26597.13 24392.23 22399.67 13092.24 25699.34 18399.17 148
OPM-MVS97.54 10497.25 11998.41 5999.11 9596.61 5695.24 24098.46 18594.58 20098.10 13398.07 16097.09 5699.39 22495.16 16599.44 15399.21 139
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3699.05 1399.17 3598.79 7695.47 13799.89 1897.95 4099.91 1899.75 19
N_pmnet95.18 22294.23 25898.06 8897.85 23796.55 5892.49 33391.63 36589.34 30698.09 13497.41 22190.33 25599.06 29091.58 26999.31 19398.56 240
PHI-MVS96.96 13696.53 16398.25 7397.48 28696.50 5996.76 13898.85 11593.52 23096.19 25896.85 26295.94 11699.42 20993.79 22799.43 16198.83 210
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4695.83 14799.67 799.37 1998.25 1399.92 598.77 1899.94 899.82 6
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2996.23 12199.71 499.48 1098.77 799.93 398.89 1599.95 599.84 5
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2499.01 1699.63 1199.66 399.27 299.68 12497.75 4999.89 2699.62 36
tt080597.44 11197.56 10097.11 16299.55 2396.36 6398.66 1895.66 31798.31 3697.09 20395.45 32597.17 5298.50 34498.67 2397.45 32996.48 356
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6398.05 4799.61 1399.52 793.72 18799.88 2098.72 2299.88 2799.65 33
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3299.67 299.73 399.65 599.15 399.86 2497.22 6699.92 1599.77 12
APD-MVScopyleft97.00 13196.53 16398.41 5998.55 16396.31 6696.32 16498.77 13992.96 25597.44 18197.58 21195.84 11999.74 7791.96 25999.35 18099.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7296.50 10999.32 2699.44 1497.43 3999.92 598.73 2099.95 599.86 2
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 4998.76 2396.79 22199.34 2596.61 8998.82 31296.38 9499.50 13796.98 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DPE-MVScopyleft97.64 9697.35 11498.50 5198.85 12496.18 6995.21 24298.99 8495.84 14698.78 6398.08 15896.84 7999.81 3793.98 22199.57 10799.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
AllTest97.20 12596.92 14098.06 8899.08 9996.16 7097.14 11699.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
TestCases98.06 8899.08 9996.16 7099.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4999.36 499.29 2899.06 5297.27 4699.93 397.71 5199.91 1899.70 26
h-mvs3396.29 17495.63 20498.26 7098.50 17296.11 7396.90 12897.09 28696.58 10497.21 18998.19 14684.14 31699.78 4895.89 11996.17 35598.89 201
test_part299.03 10896.07 7498.08 136
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13896.04 7598.07 5899.10 4995.96 13798.59 7898.69 8796.94 6799.81 3796.64 8499.58 10499.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
F-COLMAP95.30 21794.38 25598.05 9298.64 14896.04 7595.61 21698.66 16389.00 31293.22 34296.40 29092.90 20399.35 23987.45 34397.53 32498.77 218
CS-MVS-test97.91 6997.84 6698.14 8298.52 16796.03 7798.38 3499.67 698.11 4495.50 28396.92 25996.81 8199.87 2296.87 8199.76 5998.51 246
OMC-MVS96.48 16796.00 18697.91 10098.30 18896.01 7894.86 25998.60 17191.88 27497.18 19297.21 24096.11 11399.04 29290.49 30099.34 18398.69 228
ZD-MVS98.43 18095.94 7998.56 17890.72 28996.66 23197.07 24795.02 15199.74 7791.08 27798.93 240
test_vis3_rt97.04 12996.98 13497.23 15698.44 17995.88 8096.82 13299.67 690.30 29699.27 2999.33 2794.04 17796.03 38697.14 7197.83 30799.78 11
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6398.67 2498.84 5798.45 11097.58 3699.88 2096.45 9299.86 3199.54 54
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9497.71 6198.85 5599.10 4891.35 24099.83 3398.47 2899.90 2499.64 35
UniMVSNet (Re)97.83 7897.65 8698.35 6498.80 12895.86 8395.92 19899.04 6997.51 7298.22 11997.81 19294.68 16099.78 4897.14 7199.75 6499.41 99
UniMVSNet_NR-MVSNet97.83 7897.65 8698.37 6298.72 13895.78 8495.66 21099.02 7298.11 4498.31 11197.69 20394.65 16299.85 2797.02 7699.71 7399.48 77
DU-MVS97.79 8497.60 9698.36 6398.73 13695.78 8495.65 21298.87 10897.57 6798.31 11197.83 18894.69 15899.85 2797.02 7699.71 7399.46 82
PatchMatch-RL94.61 25093.81 27197.02 17198.19 20295.72 8693.66 30797.23 27988.17 32394.94 29895.62 32091.43 23798.57 33787.36 34497.68 31796.76 349
DeepC-MVS95.41 497.82 8197.70 7998.16 7998.78 13395.72 8696.23 17299.02 7293.92 22098.62 7498.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.60 10097.39 11198.22 7598.93 11795.69 8897.05 12199.10 4995.32 17097.83 16397.88 18596.44 10099.72 8894.59 19899.39 17099.25 135
NCCC96.52 16595.99 18798.10 8597.81 24695.68 8995.00 25498.20 21995.39 16895.40 28696.36 29293.81 18499.45 20293.55 23498.42 28599.17 148
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4199.33 599.30 2799.00 5597.27 4699.92 597.64 5599.92 1599.75 19
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5598.31 3699.02 4398.74 8297.68 3099.61 15697.77 4899.85 3899.70 26
3Dnovator+96.13 397.73 8897.59 9798.15 8198.11 21895.60 9298.04 6098.70 15598.13 4396.93 21598.45 11095.30 14399.62 14995.64 13398.96 23599.24 136
RRT_MVS97.95 5897.79 7298.43 5799.67 1295.56 9398.86 1096.73 30297.99 4999.15 3699.35 2389.84 26499.90 1498.64 2499.90 2499.82 6
LF4IMVS96.07 18295.63 20497.36 14798.19 20295.55 9495.44 22298.82 13292.29 26895.70 27996.55 28092.63 21298.69 32691.75 26899.33 18897.85 307
NR-MVSNet97.96 5497.86 6598.26 7098.73 13695.54 9598.14 5498.73 14697.79 5399.42 2097.83 18894.40 17099.78 4895.91 11899.76 5999.46 82
CNVR-MVS96.92 13896.55 16098.03 9398.00 22795.54 9594.87 25898.17 22594.60 19796.38 24597.05 24995.67 13199.36 23595.12 17199.08 22499.19 144
hse-mvs295.77 19595.09 21697.79 10897.84 24295.51 9795.66 21095.43 32696.58 10497.21 18996.16 29984.14 31699.54 17595.89 11996.92 33698.32 265
DVP-MVScopyleft97.78 8597.65 8698.16 7999.24 6495.51 9796.74 13998.23 21495.92 14098.40 9698.28 13297.06 5899.71 10495.48 14399.52 12899.26 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6495.51 9796.89 12998.89 10095.92 14098.64 7298.31 12397.06 58
test_one_060199.05 10695.50 10098.87 10897.21 8698.03 14398.30 12796.93 69
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10099.75 6895.48 14399.52 12899.53 57
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4599.22 899.22 3398.96 6197.35 4299.92 597.79 4799.93 1199.79 10
DVP-MVS++97.96 5497.90 5998.12 8497.75 26295.40 10399.03 798.89 10096.62 9998.62 7498.30 12796.97 6599.75 6895.70 12699.25 20199.21 139
IU-MVS99.22 6995.40 10398.14 23285.77 34798.36 10295.23 16099.51 13399.49 71
AUN-MVS93.95 27692.69 29597.74 11197.80 25095.38 10595.57 21995.46 32591.26 28392.64 35596.10 30574.67 36399.55 17293.72 23096.97 33598.30 269
test_prior495.38 10593.61 310
wuyk23d93.25 29495.20 21187.40 37596.07 34395.38 10597.04 12294.97 33195.33 16999.70 698.11 15698.14 1791.94 39377.76 38699.68 8174.89 393
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12496.11 12799.08 4098.24 13997.87 2399.72 8895.44 14799.51 13399.14 154
test_241102_ONE99.22 6995.35 10898.83 12496.04 13299.08 4098.13 15297.87 2399.33 243
MSC_two_6792asdad98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
No_MVS98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
MVS_111021_LR96.82 14696.55 16097.62 12098.27 19395.34 11093.81 30498.33 20494.59 19996.56 23796.63 27796.61 8998.73 32194.80 18599.34 18398.78 215
OPU-MVS97.64 11998.01 22395.27 11396.79 13697.35 23196.97 6598.51 34391.21 27699.25 20199.14 154
CNLPA95.04 22894.47 25196.75 18997.81 24695.25 11494.12 29097.89 24994.41 20394.57 30495.69 31690.30 25898.35 35686.72 34898.76 25896.64 351
TEST997.84 24295.23 11593.62 30898.39 19686.81 33693.78 32395.99 30794.68 16099.52 180
train_agg95.46 21094.66 23797.88 10397.84 24295.23 11593.62 30898.39 19687.04 33293.78 32395.99 30794.58 16499.52 18091.76 26798.90 24298.89 201
TSAR-MVS + GP.96.47 16896.12 18097.49 13597.74 26595.23 11594.15 28696.90 29393.26 23898.04 14296.70 27394.41 16998.89 30794.77 18999.14 21498.37 258
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 11899.05 1399.01 4498.65 9295.37 14099.90 1497.57 5699.91 1899.77 12
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3298.21 4199.25 3198.51 10598.21 1499.40 22094.79 18699.72 7099.32 114
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16499.11 4796.75 8399.86 2497.84 4499.36 17599.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet97.90 7197.94 5897.79 10898.66 14795.14 12198.31 3999.66 897.57 6795.95 26697.01 25396.99 6499.82 3597.66 5499.64 8898.39 256
SD-MVS97.37 11797.70 7996.35 21298.14 21495.13 12296.54 15198.92 9795.94 13999.19 3498.08 15897.74 2895.06 38795.24 15999.54 11998.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PLCcopyleft91.02 1694.05 27292.90 28797.51 12898.00 22795.12 12394.25 27998.25 21186.17 34191.48 36795.25 32791.01 24499.19 27085.02 36296.69 34698.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_897.81 24695.07 12493.54 31198.38 19887.04 33293.71 32795.96 31094.58 16499.52 180
TSAR-MVS + MP.97.42 11397.23 12198.00 9599.38 4995.00 12597.63 8698.20 21993.00 25098.16 12698.06 16595.89 11799.72 8895.67 13099.10 22299.28 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior97.80 25094.96 12698.36 20093.49 33599.53 177
CDPH-MVS95.45 21194.65 23897.84 10698.28 19194.96 12693.73 30698.33 20485.03 35595.44 28496.60 27895.31 14299.44 20590.01 30699.13 21699.11 164
CSCG97.40 11497.30 11697.69 11698.95 11394.83 12897.28 10798.99 8496.35 11798.13 13095.95 31195.99 11599.66 13694.36 20699.73 6698.59 238
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3096.91 9299.75 299.45 1395.82 12299.92 598.80 1799.96 499.89 1
DP-MVS97.87 7497.89 6297.81 10798.62 15494.82 12997.13 11798.79 13498.98 1798.74 6998.49 10695.80 12799.49 19095.04 17499.44 15399.11 164
save fliter98.48 17594.71 13194.53 27198.41 19395.02 184
alignmvs96.01 18695.52 20797.50 13297.77 25994.71 13196.07 18396.84 29497.48 7396.78 22594.28 34785.50 30799.40 22096.22 10098.73 26398.40 254
新几何197.25 15498.29 18994.70 13397.73 25977.98 38594.83 30096.67 27592.08 22899.45 20288.17 33398.65 27197.61 319
plane_prior798.70 14394.67 134
CMPMVSbinary73.10 2392.74 30191.39 31396.77 18893.57 38594.67 13494.21 28397.67 26280.36 37893.61 33196.60 27882.85 32597.35 37484.86 36398.78 25698.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8197.57 6799.27 2999.22 3498.32 1299.50 18597.09 7399.75 6499.50 63
GeoE97.75 8797.70 7997.89 10298.88 12194.53 14097.10 11898.98 8795.75 15197.62 16897.59 20997.61 3599.77 5796.34 9699.44 15399.36 111
plane_prior394.51 14195.29 17296.16 259
TAPA-MVS93.32 1294.93 23294.23 25897.04 16998.18 20594.51 14195.22 24198.73 14681.22 37496.25 25495.95 31193.80 18598.98 30089.89 30898.87 24697.62 318
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.37 11797.25 11997.74 11198.69 14594.50 14397.04 12295.61 32198.59 2798.51 8398.72 8392.54 21699.58 16196.02 11099.49 14099.12 161
AdaColmapbinary95.11 22594.62 24296.58 19897.33 30194.45 14494.92 25698.08 23893.15 24693.98 32195.53 32394.34 17199.10 28685.69 35398.61 27496.20 361
Fast-Effi-MVS+-dtu96.44 16996.12 18097.39 14697.18 30894.39 14595.46 22198.73 14696.03 13494.72 30194.92 33596.28 10999.69 11993.81 22697.98 30198.09 283
canonicalmvs97.23 12497.21 12297.30 15097.65 27494.39 14597.84 7199.05 6397.42 7596.68 22993.85 35097.63 3499.33 24396.29 9798.47 28298.18 281
Anonymous2023121198.55 2098.76 1397.94 9998.79 13094.37 14798.84 1199.15 4199.37 399.67 799.43 1595.61 13399.72 8898.12 3399.86 3199.73 22
plane_prior698.38 18394.37 14791.91 234
mvsany_test396.21 17795.93 19297.05 16797.40 29494.33 14995.76 20494.20 33989.10 30999.36 2499.60 693.97 18097.85 36895.40 15498.63 27298.99 183
pmmvs-eth3d96.49 16696.18 17997.42 14398.25 19594.29 15094.77 26398.07 24289.81 30397.97 14998.33 12193.11 19799.08 28895.46 14699.84 4098.89 201
HQP_MVS96.66 15896.33 17497.68 11798.70 14394.29 15096.50 15298.75 14396.36 11596.16 25996.77 26991.91 23499.46 19892.59 25299.20 20699.28 126
plane_prior94.29 15095.42 22494.31 20798.93 240
Anonymous2024052997.96 5498.04 4997.71 11398.69 14594.28 15397.86 7098.31 20898.79 2299.23 3298.86 7495.76 12899.61 15695.49 14099.36 17599.23 137
bld_raw_dy_0_6497.69 9297.61 9597.91 10099.54 2694.27 15498.06 5998.60 17196.60 10198.79 6298.95 6389.62 26599.84 3098.43 3099.91 1899.62 36
test_prior97.46 13897.79 25594.26 15598.42 19299.34 24198.79 214
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4499.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
DeepC-MVS_fast94.34 796.74 15096.51 16597.44 14097.69 26894.15 15796.02 18798.43 18993.17 24597.30 18497.38 22895.48 13699.28 25693.74 22899.34 18398.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS96.24 17695.80 19797.56 12398.75 13594.13 15894.66 26798.17 22590.17 29996.21 25696.10 30595.14 14799.43 20794.13 21498.85 24999.13 156
test1297.46 13897.61 27794.07 15997.78 25793.57 33393.31 19499.42 20998.78 25698.89 201
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14698.66 2598.56 8098.41 11396.84 7999.69 11994.82 18499.81 4898.64 232
API-MVS95.09 22795.01 22095.31 26096.61 32494.02 16196.83 13197.18 28295.60 15795.79 27394.33 34694.54 16698.37 35585.70 35298.52 27993.52 382
IS-MVSNet96.93 13796.68 15297.70 11499.25 6394.00 16298.57 2096.74 30098.36 3498.14 12997.98 17488.23 28399.71 10493.10 24699.72 7099.38 105
DP-MVS Recon95.55 20495.13 21496.80 18598.51 16993.99 16394.60 26998.69 15690.20 29895.78 27596.21 29892.73 20898.98 30090.58 29698.86 24897.42 327
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12193.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14199.21 799.87 2998.69 228
ETV-MVS96.13 18195.90 19396.82 18497.76 26093.89 16595.40 22798.95 9395.87 14495.58 28291.00 38296.36 10599.72 8893.36 23798.83 25296.85 343
旧先验197.80 25093.87 16697.75 25897.04 25093.57 18998.68 26698.72 224
Anonymous20240521196.34 17395.98 18897.43 14198.25 19593.85 16796.74 13994.41 33797.72 5998.37 9998.03 16887.15 29599.53 17794.06 21699.07 22698.92 196
UGNet96.81 14796.56 15997.58 12296.64 32393.84 16897.75 7797.12 28596.47 11293.62 33098.88 7293.22 19699.53 17795.61 13599.69 7799.36 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8198.40 3399.07 4298.98 5896.89 7399.75 6897.19 7099.79 5399.55 53
LCM-MVSNet-Re97.33 12097.33 11597.32 14998.13 21793.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30499.06 22998.32 265
EPP-MVSNet96.84 14296.58 15797.65 11899.18 8193.78 17198.68 1496.34 30597.91 5197.30 18498.06 16588.46 28099.85 2793.85 22599.40 16999.32 114
NP-MVS98.14 21493.72 17295.08 329
GBi-Net96.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
test196.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16397.41 7899.00 4699.19 3695.47 13799.73 8395.83 12399.76 5999.30 119
MVS_111021_HR96.73 15296.54 16297.27 15298.35 18693.66 17693.42 31498.36 20094.74 19196.58 23596.76 27196.54 9298.99 29894.87 18299.27 19999.15 151
3Dnovator96.53 297.61 9997.64 8997.50 13297.74 26593.65 17798.49 2898.88 10696.86 9497.11 19798.55 10195.82 12299.73 8395.94 11699.42 16499.13 156
CDS-MVSNet94.88 23594.12 26397.14 16097.64 27593.57 17893.96 29897.06 28890.05 30096.30 25196.55 28086.10 30199.47 19590.10 30599.31 19398.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6397.40 7999.37 2399.08 5198.79 699.47 19597.74 5099.71 7399.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS97.69 9297.79 7297.40 14599.06 10293.52 18095.96 19498.97 9094.55 20198.82 5998.76 8197.31 4499.29 25497.20 6999.44 15399.38 105
PCF-MVS89.43 1892.12 31290.64 32896.57 20097.80 25093.48 18189.88 37798.45 18674.46 39096.04 26495.68 31790.71 24999.31 24773.73 38999.01 23396.91 340
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21198.58 2898.78 6399.39 1698.21 1499.56 16892.65 25099.86 3199.52 59
test_vis1_rt94.03 27393.65 27395.17 26695.76 35293.42 18393.97 29798.33 20484.68 35993.17 34395.89 31392.53 21894.79 38893.50 23594.97 36897.31 331
TAMVS95.49 20694.94 22197.16 15898.31 18793.41 18495.07 24996.82 29691.09 28597.51 17397.82 19189.96 26199.42 20988.42 32999.44 15398.64 232
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 10898.23 4099.48 1699.27 3098.47 1199.55 17296.52 8999.53 12399.60 38
MM97.62 12093.30 18696.39 15692.61 35897.90 5296.76 22698.64 9390.46 25299.81 3799.16 999.94 899.76 17
test_fmvsmvis_n_192098.08 4598.47 2696.93 17599.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 303
Baseline_NR-MVSNet97.72 9097.79 7297.50 13299.56 2193.29 18795.44 22298.86 11198.20 4298.37 9999.24 3294.69 15899.55 17295.98 11499.79 5399.65 33
VDDNet96.98 13596.84 14397.41 14499.40 4693.26 18997.94 6595.31 32899.26 798.39 9899.18 3987.85 29099.62 14995.13 17099.09 22399.35 113
test22298.17 20893.24 19092.74 32997.61 27175.17 38994.65 30396.69 27490.96 24698.66 26997.66 315
test_f95.82 19495.88 19595.66 24497.61 27793.21 19195.61 21698.17 22586.98 33498.42 9499.47 1190.46 25294.74 38997.71 5198.45 28399.03 176
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3098.43 3298.89 5298.83 7594.30 17299.81 3797.87 4299.91 1899.77 12
MVP-Stereo95.69 19795.28 20996.92 17698.15 21293.03 19395.64 21598.20 21990.39 29596.63 23497.73 20091.63 23699.10 28691.84 26497.31 33398.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EIA-MVS96.04 18495.77 19996.85 18197.80 25092.98 19496.12 18099.16 3794.65 19593.77 32591.69 37695.68 13099.67 13094.18 21198.85 24997.91 302
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4798.04 4898.62 7498.66 8993.75 18699.78 4897.23 6599.84 4099.73 22
Fast-Effi-MVS+95.49 20695.07 21796.75 18997.67 27292.82 19694.22 28298.60 17191.61 27793.42 33992.90 36096.73 8499.70 11292.60 25197.89 30697.74 312
test_fmvs397.38 11597.56 10096.84 18398.63 15292.81 19797.60 8799.61 1390.87 28798.76 6899.66 394.03 17897.90 36799.24 699.68 8199.81 8
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6992.81 19797.55 9298.94 9497.10 8898.85 5598.88 7295.03 15099.67 13097.39 6399.65 8699.26 131
PMMVS92.39 30591.08 31996.30 21693.12 38792.81 19790.58 36895.96 31279.17 38291.85 36492.27 36990.29 25998.66 33189.85 30996.68 34797.43 326
dmvs_re92.08 31491.27 31694.51 30097.16 30992.79 20095.65 21292.64 35794.11 21492.74 35190.98 38383.41 32294.44 39180.72 37894.07 37596.29 359
pmmvs494.82 23794.19 26196.70 19297.42 29392.75 20192.09 34496.76 29886.80 33795.73 27897.22 23989.28 27498.89 30793.28 24199.14 21498.46 252
DPM-MVS93.68 28192.77 29496.42 20997.91 23392.54 20291.17 35997.47 27584.99 35793.08 34594.74 33789.90 26299.00 29687.54 34198.09 29897.72 313
CLD-MVS95.47 20995.07 21796.69 19398.27 19392.53 20391.36 35298.67 16191.22 28495.78 27594.12 34895.65 13298.98 30090.81 28599.72 7098.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8292.51 20496.57 14999.15 4193.68 22798.89 5299.30 2896.42 10199.37 23299.03 1199.83 4399.66 30
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12892.51 20496.25 17099.06 5993.67 22898.64 7299.00 5596.23 11099.36 23598.99 1399.80 5199.53 57
HQP5-MVS92.47 206
HQP-MVS95.17 22494.58 24696.92 17697.85 23792.47 20694.26 27698.43 18993.18 24292.86 34895.08 32990.33 25599.23 26790.51 29898.74 26099.05 175
SixPastTwentyTwo97.49 10797.57 9997.26 15399.56 2192.33 20898.28 4296.97 29198.30 3899.45 1899.35 2388.43 28199.89 1898.01 3899.76 5999.54 54
MVS_030496.62 16096.40 17097.28 15197.91 23392.30 20996.47 15489.74 38197.52 7195.38 28798.63 9492.76 20699.81 3799.28 499.93 1199.75 19
EPNet93.72 27992.62 29897.03 17087.61 39992.25 21096.27 16691.28 36896.74 9787.65 38697.39 22685.00 31099.64 14192.14 25799.48 14499.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpnnormal97.72 9097.97 5596.94 17499.26 6092.23 21197.83 7298.45 18698.25 3999.13 3898.66 8996.65 8699.69 11993.92 22399.62 9198.91 197
SDMVSNet97.97 5298.26 3997.11 16299.41 4392.21 21296.92 12798.60 17198.58 2898.78 6399.39 1697.80 2599.62 14994.98 18099.86 3199.52 59
XXY-MVS97.54 10497.70 7997.07 16699.46 3792.21 21297.22 11199.00 8194.93 18898.58 7998.92 6697.31 4499.41 21894.44 19999.43 16199.59 39
ab-mvs96.59 16196.59 15696.60 19698.64 14892.21 21298.35 3597.67 26294.45 20296.99 21098.79 7694.96 15499.49 19090.39 30199.07 22698.08 284
WR-MVS96.90 14096.81 14597.16 15898.56 16292.20 21594.33 27598.12 23497.34 8198.20 12097.33 23392.81 20499.75 6894.79 18699.81 4899.54 54
Effi-MVS+96.19 17896.01 18596.71 19197.43 29292.19 21696.12 18099.10 4995.45 16493.33 34194.71 33897.23 5199.56 16893.21 24497.54 32398.37 258
mvsany_test193.47 28893.03 28494.79 28794.05 38092.12 21790.82 36590.01 38085.02 35697.26 18698.28 13293.57 18997.03 37792.51 25495.75 36295.23 373
原ACMM196.58 19898.16 21092.12 21798.15 23185.90 34593.49 33596.43 28792.47 22099.38 22787.66 33898.62 27398.23 276
lessismore_v097.05 16799.36 5192.12 21784.07 39398.77 6798.98 5885.36 30899.74 7797.34 6499.37 17299.30 119
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17298.57 16092.10 22095.97 19299.18 3597.67 6699.00 4698.48 10997.64 3399.50 18596.96 7899.54 11999.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set97.32 12197.39 11197.11 16297.36 29692.08 22195.34 23397.65 26697.74 5798.29 11498.11 15695.05 14899.68 12497.50 5999.50 13799.56 51
VNet96.84 14296.83 14496.88 17998.06 21992.02 22296.35 16297.57 27297.70 6297.88 15797.80 19392.40 22199.54 17594.73 19198.96 23599.08 169
EI-MVSNet-UG-set97.32 12197.40 11097.09 16597.34 29992.01 22395.33 23497.65 26697.74 5798.30 11398.14 15095.04 14999.69 11997.55 5799.52 12899.58 40
OpenMVScopyleft94.22 895.48 20895.20 21196.32 21497.16 30991.96 22497.74 7998.84 11887.26 32994.36 31098.01 17193.95 18199.67 13090.70 29398.75 25997.35 330
FMVSNet296.72 15396.67 15396.87 18097.96 22991.88 22597.15 11498.06 24395.59 15898.50 8598.62 9589.51 27199.65 13894.99 17999.60 10099.07 171
MSDG95.33 21595.13 21495.94 23397.40 29491.85 22691.02 36398.37 19995.30 17196.31 25095.99 30794.51 16798.38 35389.59 31297.65 32097.60 320
QAPM95.88 19195.57 20696.80 18597.90 23591.84 22798.18 5398.73 14688.41 31896.42 24398.13 15294.73 15699.75 6888.72 32498.94 23898.81 212
HyFIR lowres test93.72 27992.65 29696.91 17898.93 11791.81 22891.23 35898.52 18082.69 36796.46 24296.52 28480.38 33799.90 1490.36 30298.79 25599.03 176
test20.0396.58 16396.61 15596.48 20598.49 17391.72 22995.68 20997.69 26196.81 9598.27 11597.92 18194.18 17598.71 32490.78 28799.66 8599.00 180
ambc96.56 20198.23 19891.68 23097.88 6998.13 23398.42 9498.56 10094.22 17499.04 29294.05 21899.35 18098.95 187
K. test v396.44 16996.28 17596.95 17399.41 4391.53 23197.65 8490.31 37798.89 2098.93 4999.36 2184.57 31499.92 597.81 4599.56 11099.39 103
UnsupCasMVSNet_eth95.91 19095.73 20096.44 20698.48 17591.52 23295.31 23698.45 18695.76 14997.48 17797.54 21289.53 27098.69 32694.43 20094.61 37299.13 156
LFMVS95.32 21694.88 22796.62 19598.03 22091.47 23397.65 8490.72 37499.11 997.89 15698.31 12379.20 34099.48 19393.91 22499.12 21998.93 193
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18598.79 13091.44 23496.14 17999.06 5994.19 21098.82 5998.98 5896.22 11199.38 22798.98 1499.86 3199.58 40
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18199.09 9891.43 23596.37 16099.11 4794.19 21099.01 4499.25 3196.30 10699.38 22799.00 1299.88 2799.73 22
test_fmvs296.38 17296.45 16796.16 22297.85 23791.30 23696.81 13399.45 1889.24 30898.49 8699.38 1888.68 27897.62 37298.83 1699.32 19099.57 47
PAPM_NR94.61 25094.17 26295.96 22998.36 18591.23 23795.93 19797.95 24592.98 25193.42 33994.43 34590.53 25098.38 35387.60 33996.29 35398.27 273
OpenMVS_ROBcopyleft91.80 1493.64 28493.05 28295.42 25797.31 30391.21 23895.08 24896.68 30381.56 37196.88 21996.41 28890.44 25499.25 26285.39 35897.67 31895.80 365
V4297.04 12997.16 12496.68 19498.59 15891.05 23996.33 16398.36 20094.60 19797.99 14598.30 12793.32 19399.62 14997.40 6299.53 12399.38 105
casdiffmvspermissive97.50 10697.81 7196.56 20198.51 16991.04 24095.83 20299.09 5497.23 8598.33 10898.30 12797.03 6199.37 23296.58 8899.38 17199.28 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM91.79 31890.69 32795.11 26793.80 38290.98 24194.16 28591.78 36496.38 11390.30 37599.30 2872.02 37598.90 30688.28 33190.17 38595.45 371
114514_t93.96 27493.22 28196.19 22099.06 10290.97 24295.99 19098.94 9473.88 39193.43 33896.93 25792.38 22299.37 23289.09 31999.28 19798.25 275
1112_ss94.12 26893.42 27796.23 21798.59 15890.85 24394.24 28098.85 11585.49 34892.97 34694.94 33386.01 30299.64 14191.78 26697.92 30398.20 279
CANet95.86 19295.65 20396.49 20496.41 32990.82 24494.36 27498.41 19394.94 18692.62 35796.73 27292.68 20999.71 10495.12 17199.60 10098.94 189
Patchmtry95.03 23094.59 24596.33 21394.83 36890.82 24496.38 15997.20 28096.59 10397.49 17598.57 9877.67 34799.38 22792.95 24999.62 9198.80 213
FMVSNet593.39 29092.35 30096.50 20395.83 34990.81 24697.31 10598.27 20992.74 25896.27 25298.28 13262.23 39299.67 13090.86 28399.36 17599.03 176
baseline97.44 11197.78 7696.43 20798.52 16790.75 24796.84 13099.03 7096.51 10897.86 16198.02 16996.67 8599.36 23597.09 7399.47 14699.19 144
PVSNet_Blended_VisFu95.95 18895.80 19796.42 20999.28 5890.62 24895.31 23699.08 5588.40 31996.97 21398.17 14992.11 22699.78 4893.64 23299.21 20598.86 208
testdata95.70 24398.16 21090.58 24997.72 26080.38 37795.62 28097.02 25192.06 22998.98 30089.06 32198.52 27997.54 322
VPNet97.26 12397.49 10896.59 19799.47 3690.58 24996.27 16698.53 17997.77 5498.46 9198.41 11394.59 16399.68 12494.61 19499.29 19699.52 59
MSLP-MVS++96.42 17196.71 15095.57 24797.82 24590.56 25195.71 20598.84 11894.72 19296.71 22897.39 22694.91 15598.10 36595.28 15699.02 23198.05 293
UnsupCasMVSNet_bld94.72 24394.26 25796.08 22598.62 15490.54 25293.38 31698.05 24490.30 29697.02 20896.80 26889.54 26899.16 27688.44 32896.18 35498.56 240
iter_conf_final94.54 25493.91 27096.43 20797.23 30690.41 25396.81 13398.10 23593.87 22196.80 22097.89 18368.02 38599.72 8896.73 8399.77 5899.18 147
FMVSNet395.26 21994.94 22196.22 21996.53 32690.06 25495.99 19097.66 26494.11 21497.99 14597.91 18280.22 33899.63 14494.60 19599.44 15398.96 186
CHOSEN 1792x268894.10 26993.41 27896.18 22199.16 8390.04 25592.15 34198.68 15879.90 37996.22 25597.83 18887.92 28999.42 20989.18 31899.65 8699.08 169
DELS-MVS96.17 17996.23 17695.99 22797.55 28290.04 25592.38 33998.52 18094.13 21296.55 23997.06 24894.99 15299.58 16195.62 13499.28 19798.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 26393.72 27295.74 24097.71 26789.95 25793.84 30196.98 29088.38 32093.75 32695.74 31587.94 28598.89 30791.02 27998.10 29798.37 258
test_vis1_n95.67 19995.89 19495.03 27298.18 20589.89 25896.94 12699.28 2688.25 32298.20 12098.92 6686.69 29997.19 37597.70 5398.82 25398.00 298
CL-MVSNet_self_test95.04 22894.79 23495.82 23797.51 28489.79 25991.14 36096.82 29693.05 24896.72 22796.40 29090.82 24799.16 27691.95 26098.66 26998.50 248
CANet_DTU94.65 24894.21 26095.96 22995.90 34689.68 26093.92 29997.83 25593.19 24190.12 37695.64 31988.52 27999.57 16793.27 24299.47 14698.62 235
v1097.55 10397.97 5596.31 21598.60 15689.64 26197.44 10099.02 7296.60 10198.72 7199.16 4393.48 19199.72 8898.76 1999.92 1599.58 40
ANet_high98.31 3198.94 696.41 21199.33 5489.64 26197.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5799.98 299.77 12
test_yl94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
DCV-MVSNet94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
v897.60 10098.06 4796.23 21798.71 14189.44 26597.43 10298.82 13297.29 8498.74 6999.10 4893.86 18299.68 12498.61 2599.94 899.56 51
Anonymous2023120695.27 21895.06 21995.88 23598.72 13889.37 26695.70 20697.85 25188.00 32596.98 21297.62 20791.95 23199.34 24189.21 31799.53 12398.94 189
v119296.83 14597.06 13096.15 22398.28 19189.29 26795.36 23098.77 13993.73 22498.11 13198.34 12093.02 20299.67 13098.35 3199.58 10499.50 63
v114496.84 14297.08 12896.13 22498.42 18189.28 26895.41 22698.67 16194.21 20897.97 14998.31 12393.06 19899.65 13898.06 3799.62 9199.45 86
Vis-MVSNet (Re-imp)95.11 22594.85 22895.87 23699.12 9489.17 26997.54 9794.92 33296.50 10996.58 23597.27 23683.64 32099.48 19388.42 32999.67 8398.97 185
new_pmnet92.34 30791.69 31194.32 30796.23 33489.16 27092.27 34092.88 35284.39 36495.29 28896.35 29385.66 30596.74 38484.53 36597.56 32297.05 334
ET-MVSNet_ETH3D91.12 32489.67 33695.47 25496.41 32989.15 27191.54 35090.23 37889.07 31086.78 39092.84 36169.39 38399.44 20594.16 21296.61 34897.82 309
test_fmvs1_n95.21 22095.28 20994.99 27598.15 21289.13 27296.81 13399.43 2086.97 33597.21 18998.92 6683.00 32497.13 37698.09 3598.94 23898.72 224
v14419296.69 15696.90 14296.03 22698.25 19588.92 27395.49 22098.77 13993.05 24898.09 13498.29 13192.51 21999.70 11298.11 3499.56 11099.47 80
Patchmatch-RL test94.66 24794.49 24995.19 26498.54 16588.91 27492.57 33198.74 14591.46 28098.32 10997.75 19777.31 35298.81 31496.06 10599.61 9797.85 307
HY-MVS91.43 1592.58 30391.81 30894.90 28096.49 32788.87 27597.31 10594.62 33485.92 34490.50 37396.84 26385.05 30999.40 22083.77 37095.78 36096.43 357
Test_1112_low_res93.53 28792.86 28895.54 25198.60 15688.86 27692.75 32798.69 15682.66 36892.65 35496.92 25984.75 31299.56 16890.94 28197.76 31098.19 280
PAPR92.22 30991.27 31695.07 27095.73 35488.81 27791.97 34597.87 25085.80 34690.91 36992.73 36491.16 24198.33 35779.48 38095.76 36198.08 284
v192192096.72 15396.96 13795.99 22798.21 19988.79 27895.42 22498.79 13493.22 24098.19 12498.26 13792.68 20999.70 11298.34 3299.55 11699.49 71
v2v48296.78 14997.06 13095.95 23198.57 16088.77 27995.36 23098.26 21095.18 17697.85 16298.23 14192.58 21399.63 14497.80 4699.69 7799.45 86
MDA-MVSNet-bldmvs95.69 19795.67 20195.74 24098.48 17588.76 28092.84 32497.25 27896.00 13597.59 16997.95 17791.38 23899.46 19893.16 24596.35 35298.99 183
v124096.74 15097.02 13395.91 23498.18 20588.52 28195.39 22898.88 10693.15 24698.46 9198.40 11692.80 20599.71 10498.45 2999.49 14099.49 71
xiu_mvs_v1_base_debu95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base_debi95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
pmmvs594.63 24994.34 25695.50 25297.63 27688.34 28594.02 29297.13 28487.15 33195.22 29097.15 24287.50 29199.27 25993.99 22099.26 20098.88 205
FE-MVS92.95 29892.22 30295.11 26797.21 30788.33 28698.54 2393.66 34489.91 30296.21 25698.14 15070.33 38199.50 18587.79 33598.24 29297.51 323
thisisatest053092.71 30291.76 31095.56 24998.42 18188.23 28796.03 18687.35 38794.04 21796.56 23795.47 32464.03 39099.77 5794.78 18899.11 22098.68 231
MIMVSNet93.42 28992.86 28895.10 26998.17 20888.19 28898.13 5593.69 34192.07 26995.04 29698.21 14580.95 33599.03 29581.42 37698.06 29998.07 286
Anonymous2024052197.07 12897.51 10595.76 23999.35 5288.18 28997.78 7398.40 19597.11 8798.34 10599.04 5389.58 26799.79 4598.09 3599.93 1199.30 119
CR-MVSNet93.29 29392.79 29194.78 28895.44 35988.15 29096.18 17497.20 28084.94 35894.10 31598.57 9877.67 34799.39 22495.17 16395.81 35796.81 347
RPMNet94.68 24694.60 24394.90 28095.44 35988.15 29096.18 17498.86 11197.43 7494.10 31598.49 10679.40 33999.76 6295.69 12895.81 35796.81 347
EI-MVSNet96.63 15996.93 13895.74 24097.26 30488.13 29295.29 23897.65 26696.99 8997.94 15298.19 14692.55 21499.58 16196.91 7999.56 11099.50 63
IterMVS-LS96.92 13897.29 11795.79 23898.51 16988.13 29295.10 24598.66 16396.99 8998.46 9198.68 8892.55 21499.74 7796.91 7999.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)94.91 23394.89 22694.99 27597.51 28488.11 29498.27 4495.20 32992.40 26796.68 22998.60 9683.44 32199.28 25693.34 23898.53 27897.59 321
diffmvspermissive96.04 18496.23 17695.46 25597.35 29788.03 29593.42 31499.08 5594.09 21696.66 23196.93 25793.85 18399.29 25496.01 11298.67 26799.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs194.51 25694.60 24394.26 31095.91 34587.92 29695.35 23299.02 7286.56 33996.79 22198.52 10382.64 32697.00 37997.87 4298.71 26497.88 305
TinyColmap96.00 18796.34 17394.96 27797.90 23587.91 29794.13 28998.49 18394.41 20398.16 12697.76 19496.29 10898.68 32990.52 29799.42 16498.30 269
tttt051793.31 29292.56 29995.57 24798.71 14187.86 29897.44 10087.17 38895.79 14897.47 17996.84 26364.12 38999.81 3796.20 10199.32 19099.02 179
WTY-MVS93.55 28693.00 28695.19 26497.81 24687.86 29893.89 30096.00 31089.02 31194.07 31795.44 32686.27 30099.33 24387.69 33796.82 34298.39 256
jason94.39 26094.04 26595.41 25998.29 18987.85 30092.74 32996.75 29985.38 35295.29 28896.15 30088.21 28499.65 13894.24 20999.34 18398.74 221
jason: jason.
MVSFormer96.14 18096.36 17295.49 25397.68 26987.81 30198.67 1599.02 7296.50 10994.48 30896.15 30086.90 29699.92 598.73 2099.13 21698.74 221
lupinMVS93.77 27793.28 27995.24 26297.68 26987.81 30192.12 34296.05 30884.52 36194.48 30895.06 33186.90 29699.63 14493.62 23399.13 21698.27 273
D2MVS95.18 22295.17 21395.21 26397.76 26087.76 30394.15 28697.94 24689.77 30496.99 21097.68 20487.45 29299.14 27895.03 17699.81 4898.74 221
testgi96.07 18296.50 16694.80 28699.26 6087.69 30495.96 19498.58 17695.08 18098.02 14496.25 29697.92 2097.60 37388.68 32698.74 26099.11 164
v14896.58 16396.97 13595.42 25798.63 15287.57 30595.09 24697.90 24895.91 14298.24 11797.96 17593.42 19299.39 22496.04 10899.52 12899.29 125
BH-untuned94.69 24494.75 23594.52 29997.95 23287.53 30694.07 29197.01 28993.99 21897.10 19895.65 31892.65 21198.95 30587.60 33996.74 34597.09 333
Patchmatch-test93.60 28593.25 28094.63 29296.14 34187.47 30796.04 18594.50 33693.57 22996.47 24196.97 25476.50 35598.61 33490.67 29498.41 28697.81 311
iter_conf0593.65 28393.05 28295.46 25596.13 34287.45 30895.95 19698.22 21592.66 26097.04 20697.89 18363.52 39199.72 8896.19 10299.82 4799.21 139
BH-RMVSNet94.56 25294.44 25494.91 27897.57 27987.44 30993.78 30596.26 30693.69 22696.41 24496.50 28592.10 22799.00 29685.96 35097.71 31498.31 267
PVSNet_BlendedMVS95.02 23194.93 22395.27 26197.79 25587.40 31094.14 28898.68 15888.94 31394.51 30698.01 17193.04 19999.30 25089.77 31099.49 14099.11 164
PVSNet_Blended93.96 27493.65 27394.91 27897.79 25587.40 31091.43 35198.68 15884.50 36294.51 30694.48 34493.04 19999.30 25089.77 31098.61 27498.02 296
PatchT93.75 27893.57 27594.29 30995.05 36687.32 31296.05 18492.98 35197.54 7094.25 31198.72 8375.79 36099.24 26595.92 11795.81 35796.32 358
GA-MVS92.83 30092.15 30494.87 28296.97 31587.27 31390.03 37296.12 30791.83 27594.05 31894.57 33976.01 35998.97 30492.46 25597.34 33298.36 263
baseline193.14 29692.64 29794.62 29397.34 29987.20 31496.67 14893.02 35094.71 19396.51 24095.83 31481.64 32898.60 33690.00 30788.06 38998.07 286
patch_mono-296.59 16196.93 13895.55 25098.88 12187.12 31594.47 27299.30 2494.12 21396.65 23398.41 11394.98 15399.87 2295.81 12599.78 5699.66 30
MS-PatchMatch94.83 23694.91 22594.57 29796.81 32187.10 31694.23 28197.34 27788.74 31697.14 19497.11 24591.94 23298.23 36192.99 24797.92 30398.37 258
cl____94.73 23994.64 23995.01 27395.85 34887.00 31791.33 35498.08 23893.34 23597.10 19897.33 23384.01 31999.30 25095.14 16899.56 11098.71 227
DIV-MVS_self_test94.73 23994.64 23995.01 27395.86 34787.00 31791.33 35498.08 23893.34 23597.10 19897.34 23284.02 31899.31 24795.15 16799.55 11698.72 224
MVS90.02 33389.20 34092.47 34894.71 36986.90 31995.86 20096.74 30064.72 39390.62 37092.77 36292.54 21698.39 35279.30 38195.56 36492.12 386
test0.0.03 190.11 33289.21 33992.83 34193.89 38186.87 32091.74 34888.74 38492.02 27094.71 30291.14 38173.92 36694.48 39083.75 37192.94 37897.16 332
test_cas_vis1_n_192095.34 21495.67 20194.35 30698.21 19986.83 32195.61 21699.26 2790.45 29498.17 12598.96 6184.43 31598.31 35896.74 8299.17 21197.90 303
TR-MVS92.54 30492.20 30393.57 32396.49 32786.66 32293.51 31294.73 33389.96 30194.95 29793.87 34990.24 26098.61 33481.18 37794.88 36995.45 371
MVS_Test96.27 17596.79 14894.73 29096.94 31886.63 32396.18 17498.33 20494.94 18696.07 26298.28 13295.25 14499.26 26097.21 6797.90 30598.30 269
MVSTER94.21 26593.93 26995.05 27195.83 34986.46 32495.18 24397.65 26692.41 26697.94 15298.00 17372.39 37499.58 16196.36 9599.56 11099.12 161
miper_lstm_enhance94.81 23894.80 23394.85 28396.16 33886.45 32591.14 36098.20 21993.49 23197.03 20797.37 23084.97 31199.26 26095.28 15699.56 11098.83 210
c3_l95.20 22195.32 20894.83 28596.19 33686.43 32691.83 34798.35 20393.47 23297.36 18397.26 23788.69 27799.28 25695.41 15399.36 17598.78 215
USDC94.56 25294.57 24894.55 29897.78 25886.43 32692.75 32798.65 16885.96 34396.91 21797.93 18090.82 24798.74 32090.71 29299.59 10298.47 250
miper_ehance_all_eth94.69 24494.70 23694.64 29195.77 35186.22 32891.32 35698.24 21391.67 27697.05 20596.65 27688.39 28299.22 26994.88 18198.34 28798.49 249
eth_miper_zixun_eth94.89 23494.93 22394.75 28995.99 34486.12 32991.35 35398.49 18393.40 23397.12 19697.25 23886.87 29899.35 23995.08 17398.82 25398.78 215
cl2293.25 29492.84 29094.46 30294.30 37486.00 33091.09 36296.64 30490.74 28895.79 27396.31 29478.24 34498.77 31794.15 21398.34 28798.62 235
MG-MVS94.08 27194.00 26694.32 30797.09 31285.89 33193.19 32195.96 31292.52 26294.93 29997.51 21589.54 26898.77 31787.52 34297.71 31498.31 267
ADS-MVSNet291.47 32290.51 33094.36 30595.51 35785.63 33295.05 25195.70 31683.46 36592.69 35296.84 26379.15 34199.41 21885.66 35490.52 38398.04 294
cascas91.89 31791.35 31493.51 32494.27 37585.60 33388.86 38298.61 17079.32 38192.16 36191.44 37889.22 27598.12 36490.80 28697.47 32896.82 346
IterMVS-SCA-FT95.86 19296.19 17894.85 28397.68 26985.53 33492.42 33797.63 27096.99 8998.36 10298.54 10287.94 28599.75 6897.07 7599.08 22499.27 130
thisisatest051590.43 33089.18 34294.17 31397.07 31385.44 33589.75 37887.58 38688.28 32193.69 32991.72 37565.27 38899.58 16190.59 29598.67 26797.50 325
pmmvs390.00 33488.90 34493.32 32694.20 37885.34 33691.25 35792.56 35978.59 38393.82 32295.17 32867.36 38798.69 32689.08 32098.03 30095.92 362
BH-w/o92.14 31191.94 30592.73 34397.13 31185.30 33792.46 33495.64 31889.33 30794.21 31292.74 36389.60 26698.24 36081.68 37594.66 37194.66 376
miper_enhance_ethall93.14 29692.78 29394.20 31193.65 38385.29 33889.97 37397.85 25185.05 35496.15 26194.56 34085.74 30499.14 27893.74 22898.34 28798.17 282
DeepMVS_CXcopyleft77.17 37790.94 39585.28 33974.08 40052.51 39480.87 39588.03 38875.25 36270.63 39759.23 39784.94 39275.62 392
MVEpermissive73.61 2286.48 35885.92 35988.18 37396.23 33485.28 33981.78 39175.79 39786.01 34282.53 39391.88 37392.74 20787.47 39671.42 39394.86 37091.78 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131492.38 30692.30 30192.64 34495.42 36185.15 34195.86 20096.97 29185.40 35190.62 37093.06 35891.12 24297.80 37086.74 34795.49 36594.97 375
MDA-MVSNet_test_wron94.73 23994.83 23194.42 30397.48 28685.15 34190.28 37195.87 31492.52 26297.48 17797.76 19491.92 23399.17 27593.32 23996.80 34498.94 189
YYNet194.73 23994.84 22994.41 30497.47 29085.09 34390.29 37095.85 31592.52 26297.53 17197.76 19491.97 23099.18 27193.31 24096.86 33998.95 187
PAPM87.64 35485.84 36093.04 33496.54 32584.99 34488.42 38395.57 32279.52 38083.82 39193.05 35980.57 33698.41 35062.29 39592.79 37995.71 366
PS-MVSNAJ94.10 26994.47 25193.00 33697.35 29784.88 34591.86 34697.84 25391.96 27294.17 31392.50 36895.82 12299.71 10491.27 27397.48 32694.40 378
test_vis1_n_192095.77 19596.41 16993.85 31698.55 16384.86 34695.91 19999.71 492.72 25997.67 16798.90 7087.44 29398.73 32197.96 3998.85 24997.96 299
xiu_mvs_v2_base94.22 26394.63 24192.99 33797.32 30284.84 34792.12 34297.84 25391.96 27294.17 31393.43 35196.07 11499.71 10491.27 27397.48 32694.42 377
IB-MVS85.98 2088.63 34786.95 35793.68 32195.12 36584.82 34890.85 36490.17 37987.55 32888.48 38491.34 37958.01 39399.59 15987.24 34593.80 37796.63 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view792.03 31591.43 31293.82 31798.19 20284.61 34996.27 16690.39 37596.81 9596.37 24693.11 35373.44 37299.49 19080.32 37997.95 30297.36 328
thres100view90091.76 31991.26 31893.26 32898.21 19984.50 35096.39 15690.39 37596.87 9396.33 24793.08 35773.44 37299.42 20978.85 38397.74 31195.85 363
gg-mvs-nofinetune88.28 35086.96 35692.23 35292.84 39084.44 35198.19 5274.60 39899.08 1087.01 38999.47 1156.93 39498.23 36178.91 38295.61 36394.01 380
tfpn200view991.55 32191.00 32093.21 33198.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31195.85 363
thres40091.68 32091.00 32093.71 32098.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31197.36 328
testing389.72 34088.26 34894.10 31497.66 27384.30 35494.80 26088.25 38594.66 19495.07 29292.51 36741.15 40299.43 20791.81 26598.44 28498.55 242
GG-mvs-BLEND90.60 36291.00 39484.21 35598.23 4672.63 40182.76 39284.11 39356.14 39796.79 38272.20 39192.09 38290.78 390
dcpmvs_297.12 12697.99 5494.51 30099.11 9584.00 35697.75 7799.65 997.38 8099.14 3798.42 11295.16 14699.96 295.52 13999.78 5699.58 40
thres20091.00 32790.42 33192.77 34297.47 29083.98 35794.01 29391.18 37095.12 17995.44 28491.21 38073.93 36599.31 24777.76 38697.63 32195.01 374
IterMVS95.42 21295.83 19694.20 31197.52 28383.78 35892.41 33897.47 27595.49 16398.06 13998.49 10687.94 28599.58 16196.02 11099.02 23199.23 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DSMNet-mixed92.19 31091.83 30793.25 32996.18 33783.68 35996.27 16693.68 34376.97 38892.54 35899.18 3989.20 27698.55 34083.88 36898.60 27697.51 323
ECVR-MVScopyleft94.37 26194.48 25094.05 31598.95 11383.10 36098.31 3982.48 39596.20 12298.23 11899.16 4381.18 33299.66 13695.95 11599.83 4399.38 105
baseline289.65 34188.44 34793.25 32995.62 35582.71 36193.82 30285.94 39188.89 31487.35 38892.54 36671.23 37799.33 24386.01 34994.60 37397.72 313
Syy-MVS92.09 31391.80 30992.93 34095.19 36382.65 36292.46 33491.35 36690.67 29191.76 36587.61 38985.64 30698.50 34494.73 19196.84 34097.65 316
EPNet_dtu91.39 32390.75 32693.31 32790.48 39682.61 36394.80 26092.88 35293.39 23481.74 39494.90 33681.36 33199.11 28488.28 33198.87 24698.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet94.25 26294.47 25193.60 32298.14 21482.60 36497.24 11092.72 35585.08 35398.48 8898.94 6482.59 32798.76 31997.47 6199.53 12399.44 95
ADS-MVSNet90.95 32890.26 33293.04 33495.51 35782.37 36595.05 25193.41 34783.46 36592.69 35296.84 26379.15 34198.70 32585.66 35490.52 38398.04 294
ppachtmachnet_test94.49 25794.84 22993.46 32596.16 33882.10 36690.59 36797.48 27490.53 29397.01 20997.59 20991.01 24499.36 23593.97 22299.18 21098.94 189
KD-MVS_2432*160088.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
miper_refine_blended88.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
test111194.53 25594.81 23293.72 31999.06 10281.94 36998.31 3983.87 39496.37 11498.49 8699.17 4281.49 32999.73 8396.64 8499.86 3199.49 71
mvs_anonymous95.36 21396.07 18493.21 33196.29 33181.56 37094.60 26997.66 26493.30 23796.95 21498.91 6993.03 20199.38 22796.60 8697.30 33498.69 228
SCA93.38 29193.52 27692.96 33896.24 33281.40 37193.24 31994.00 34091.58 27994.57 30496.97 25487.94 28599.42 20989.47 31497.66 31998.06 290
our_test_394.20 26794.58 24693.07 33396.16 33881.20 37290.42 36996.84 29490.72 28997.14 19497.13 24390.47 25199.11 28494.04 21998.25 29198.91 197
CHOSEN 280x42089.98 33589.19 34192.37 35095.60 35681.13 37386.22 38697.09 28681.44 37387.44 38793.15 35273.99 36499.47 19588.69 32599.07 22696.52 355
PMMVS293.66 28294.07 26492.45 34997.57 27980.67 37486.46 38596.00 31093.99 21897.10 19897.38 22889.90 26297.82 36988.76 32399.47 14698.86 208
new-patchmatchnet95.67 19996.58 15792.94 33997.48 28680.21 37592.96 32398.19 22494.83 18998.82 5998.79 7693.31 19499.51 18495.83 12399.04 23099.12 161
PatchmatchNetpermissive91.98 31691.87 30692.30 35194.60 37179.71 37695.12 24493.59 34689.52 30593.61 33197.02 25177.94 34599.18 27190.84 28494.57 37498.01 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WAC-MVS79.32 37785.41 357
myMVS_eth3d87.16 35785.61 36191.82 35595.19 36379.32 37792.46 33491.35 36690.67 29191.76 36587.61 38941.96 40198.50 34482.66 37396.84 34097.65 316
EPMVS89.26 34388.55 34691.39 35892.36 39279.11 37995.65 21279.86 39688.60 31793.12 34496.53 28270.73 38098.10 36590.75 28889.32 38796.98 336
SSC-MVS95.92 18997.03 13292.58 34599.28 5878.39 38096.68 14695.12 33098.90 1999.11 3998.66 8991.36 23999.68 12495.00 17799.16 21299.67 28
tpm91.08 32690.85 32491.75 35695.33 36278.09 38195.03 25391.27 36988.75 31593.53 33497.40 22271.24 37699.30 25091.25 27593.87 37697.87 306
PVSNet86.72 1991.10 32590.97 32291.49 35797.56 28178.04 38287.17 38494.60 33584.65 36092.34 35992.20 37087.37 29498.47 34785.17 36197.69 31697.96 299
CostFormer89.75 33989.25 33791.26 35994.69 37078.00 38395.32 23591.98 36281.50 37290.55 37296.96 25671.06 37898.89 30788.59 32792.63 38096.87 341
E-PMN89.52 34289.78 33588.73 36993.14 38677.61 38483.26 38992.02 36194.82 19093.71 32793.11 35375.31 36196.81 38185.81 35196.81 34391.77 388
dmvs_testset87.30 35586.99 35588.24 37296.71 32277.48 38594.68 26686.81 39092.64 26189.61 37987.01 39185.91 30393.12 39261.04 39688.49 38894.13 379
EMVS89.06 34489.22 33888.61 37093.00 38877.34 38682.91 39090.92 37194.64 19692.63 35691.81 37476.30 35797.02 37883.83 36996.90 33891.48 389
tpm288.47 34887.69 35290.79 36194.98 36777.34 38695.09 24691.83 36377.51 38789.40 38096.41 28867.83 38698.73 32183.58 37292.60 38196.29 359
WB-MVS95.50 20596.62 15492.11 35399.21 7677.26 38896.12 18095.40 32798.62 2698.84 5798.26 13791.08 24399.50 18593.37 23698.70 26599.58 40
test250689.86 33889.16 34391.97 35498.95 11376.83 38998.54 2361.07 40296.20 12297.07 20499.16 4355.19 39999.69 11996.43 9399.83 4399.38 105
tpmvs90.79 32990.87 32390.57 36392.75 39176.30 39095.79 20393.64 34591.04 28691.91 36396.26 29577.19 35398.86 31189.38 31689.85 38696.56 354
tpm cat188.01 35287.33 35390.05 36694.48 37276.28 39194.47 27294.35 33873.84 39289.26 38195.61 32173.64 36898.30 35984.13 36686.20 39195.57 370
CVMVSNet92.33 30892.79 29190.95 36097.26 30475.84 39295.29 23892.33 36081.86 36996.27 25298.19 14681.44 33098.46 34894.23 21098.29 29098.55 242
test-LLR89.97 33689.90 33490.16 36494.24 37674.98 39389.89 37489.06 38292.02 27089.97 37790.77 38473.92 36698.57 33791.88 26297.36 33096.92 338
test-mter87.92 35387.17 35490.16 36494.24 37674.98 39389.89 37489.06 38286.44 34089.97 37790.77 38454.96 40098.57 33791.88 26297.36 33096.92 338
PVSNet_081.89 2184.49 35983.21 36288.34 37195.76 35274.97 39583.49 38892.70 35678.47 38487.94 38586.90 39283.38 32396.63 38573.44 39066.86 39693.40 383
MDTV_nov1_ep1391.28 31594.31 37373.51 39694.80 26093.16 34986.75 33893.45 33797.40 22276.37 35698.55 34088.85 32296.43 350
TESTMET0.1,187.20 35686.57 35889.07 36893.62 38472.84 39789.89 37487.01 38985.46 35089.12 38290.20 38656.00 39897.72 37190.91 28296.92 33696.64 351
tpmrst90.31 33190.61 32989.41 36794.06 37972.37 39895.06 25093.69 34188.01 32492.32 36096.86 26177.45 34998.82 31291.04 27887.01 39097.04 335
gm-plane-assit91.79 39371.40 39981.67 37090.11 38798.99 29884.86 363
dp88.08 35188.05 34988.16 37492.85 38968.81 40094.17 28492.88 35285.47 34991.38 36896.14 30268.87 38498.81 31486.88 34683.80 39396.87 341
MVS-HIRNet88.40 34990.20 33382.99 37697.01 31460.04 40193.11 32285.61 39284.45 36388.72 38399.09 5084.72 31398.23 36182.52 37496.59 34990.69 391
MDTV_nov1_ep13_2view57.28 40294.89 25780.59 37694.02 31978.66 34385.50 35697.82 309
tmp_tt57.23 36262.50 36541.44 37934.77 40149.21 40383.93 38760.22 40315.31 39571.11 39679.37 39470.09 38244.86 39864.76 39482.93 39430.25 394
test_method66.88 36166.13 36469.11 37862.68 40025.73 40449.76 39296.04 30914.32 39664.27 39791.69 37673.45 37188.05 39576.06 38866.94 39593.54 381
test12312.59 36415.49 3673.87 3806.07 4022.55 40590.75 3662.59 4052.52 3985.20 40013.02 3974.96 4031.85 4005.20 3989.09 3977.23 395
testmvs12.33 36515.23 3683.64 3815.77 4032.23 40688.99 3813.62 4042.30 3995.29 39913.09 3964.52 4041.95 3995.16 3998.32 3986.75 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.22 36332.30 3660.00 3820.00 4040.00 4070.00 39398.10 2350.00 4000.00 40195.06 33197.54 370.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.98 36610.65 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40095.82 1220.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.91 36710.55 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.94 3330.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
PC_three_145287.24 33098.37 9997.44 21997.00 6396.78 38392.01 25899.25 20199.21 139
eth-test20.00 404
eth-test0.00 404
test_241102_TWO98.83 12496.11 12798.62 7498.24 13996.92 7199.72 8895.44 14799.49 14099.49 71
9.1496.69 15198.53 16696.02 18798.98 8793.23 23997.18 19297.46 21796.47 9899.62 14992.99 24799.32 190
test_0728_THIRD96.62 9998.40 9698.28 13297.10 5499.71 10495.70 12699.62 9199.58 40
GSMVS98.06 290
sam_mvs177.80 34698.06 290
sam_mvs77.38 350
MTGPAbinary98.73 146
test_post194.98 25510.37 39976.21 35899.04 29289.47 314
test_post10.87 39876.83 35499.07 289
patchmatchnet-post96.84 26377.36 35199.42 209
MTMP96.55 15074.60 398
test9_res91.29 27298.89 24599.00 180
agg_prior290.34 30398.90 24299.10 168
test_prior293.33 31894.21 20894.02 31996.25 29693.64 18891.90 26198.96 235
旧先验293.35 31777.95 38695.77 27798.67 33090.74 291
新几何293.43 313
无先验93.20 32097.91 24780.78 37599.40 22087.71 33697.94 301
原ACMM292.82 325
testdata299.46 19887.84 334
segment_acmp95.34 141
testdata192.77 32693.78 223
plane_prior598.75 14399.46 19892.59 25299.20 20699.28 126
plane_prior496.77 269
plane_prior296.50 15296.36 115
plane_prior198.49 173
n20.00 406
nn0.00 406
door-mid98.17 225
test1198.08 238
door97.81 256
HQP-NCC97.85 23794.26 27693.18 24292.86 348
ACMP_Plane97.85 23794.26 27693.18 24292.86 348
BP-MVS90.51 298
HQP4-MVS92.87 34799.23 26799.06 173
HQP3-MVS98.43 18998.74 260
HQP2-MVS90.33 255
ACMMP++_ref99.52 128
ACMMP++99.55 116
Test By Simon94.51 167