This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29698.69 296.42 13498.09 22095.86 13395.15 26295.54 29794.26 16599.81 3294.06 19098.51 26398.47 232
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7699.06 4196.19 11298.48 6598.70 5894.72 14899.24 25594.37 17799.33 17099.17 133
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
mvs-test196.20 16495.50 18998.32 6496.90 29698.16 595.07 22098.09 22095.86 13393.63 30594.32 32394.26 16599.71 9994.06 19097.27 31297.07 308
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 6899.11 2997.76 5098.62 5298.27 9997.88 1999.80 3895.67 10499.50 11199.38 87
test117298.08 3997.76 5999.05 698.78 11098.07 797.41 8998.85 9497.57 6198.15 10497.96 13696.60 8099.76 5895.30 13099.18 19399.33 97
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 15797.21 4899.76 3999.40 83
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.60 8099.76 5895.49 11499.20 18899.26 117
RE-MVS-def97.88 4998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.94 5895.49 11499.20 18899.26 117
SR-MVS98.00 4597.66 6799.01 1198.77 11297.93 1197.38 9098.83 10697.32 7598.06 11697.85 15196.65 7599.77 5395.00 15299.11 20499.32 98
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18098.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9498.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 13999.67 296.47 8899.92 497.88 2399.98 299.85 3
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6698.78 12096.04 12097.10 17897.73 16596.53 8399.78 4395.16 14099.50 11199.46 63
CP-MVS97.92 5697.56 8298.99 1398.99 9597.82 1697.93 5398.96 7196.11 11596.89 19697.45 18896.85 6899.78 4395.19 13699.63 6599.38 87
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 8897.49 26097.93 4495.95 23998.58 6596.88 6696.91 35889.59 28799.36 15593.12 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8398.73 12996.27 10895.59 25497.75 16296.30 9699.78 4393.70 20699.48 11999.45 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 6998.89 7995.65 14298.51 6296.46 25892.15 21499.81 3295.14 14398.58 26099.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22297.64 17296.49 8699.72 8595.66 10699.37 15299.45 68
X-MVStestdata92.86 27890.83 30398.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22236.50 36896.49 8699.72 8595.66 10699.37 15299.45 68
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10599.06 4195.45 15297.55 14997.94 14197.11 4499.78 4394.77 16299.46 12499.48 58
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4698.96 7195.75 14097.91 13298.06 12696.89 6499.76 5895.32 12999.57 8299.43 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12697.59 2495.97 16298.20 20395.51 15095.06 26396.53 25494.10 16999.70 10894.29 18199.15 19599.13 143
LS3D97.77 7397.50 8798.57 4896.24 30997.58 2598.45 2598.85 9498.58 2797.51 15297.94 14195.74 11699.63 14095.19 13698.97 21898.51 229
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7498.83 10696.05 11897.46 16197.63 17396.77 7199.76 5895.61 11099.46 12499.49 53
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7398.84 9996.00 12397.22 16897.62 17496.87 6799.76 5895.48 11799.43 13799.46 63
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 12798.83 10695.21 16098.36 7898.13 11398.13 1499.62 14896.04 8599.54 9499.39 85
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7498.84 9996.05 11897.49 15597.54 17997.07 4899.70 10895.61 11099.46 12499.30 104
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 11798.84 9994.25 19797.49 15597.54 17997.07 4899.70 10894.37 17799.46 12499.30 104
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2899.03 5095.88 13197.88 13698.22 10698.15 1299.74 7596.50 6999.62 6699.42 80
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15497.41 16497.50 18497.98 1599.79 3995.58 11399.57 8299.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 11396.74 13298.26 6998.99 9597.45 3393.82 27599.05 4395.19 16298.32 8697.70 16895.22 13598.41 33694.27 18298.13 27598.93 180
MAR-MVS94.21 24893.03 26597.76 10896.94 29497.44 3496.97 11297.15 27187.89 30292.00 33792.73 34192.14 21599.12 27083.92 34297.51 30396.73 325
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9497.41 3594.66 24099.02 5295.20 16198.15 10497.52 18298.83 498.43 33594.87 15596.41 32799.07 159
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5199.16 2098.34 3298.78 4598.52 7197.32 3599.45 19894.08 18999.67 5899.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 10897.31 3797.55 7798.92 7697.72 5498.25 9398.13 11397.10 4599.75 6595.44 12199.24 18699.32 98
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14499.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 9998.79 11695.96 12597.53 15097.40 19296.93 6099.77 5395.04 14999.35 16099.42 80
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8498.84 9995.76 13896.93 19397.43 19097.26 4099.79 3996.06 8299.53 9799.45 68
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26197.23 4192.56 30798.60 15792.84 24498.54 6097.40 19296.64 7798.78 30694.40 17699.41 14698.93 180
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10098.90 7896.58 9698.08 11497.87 15097.02 5399.76 5895.25 13399.59 7799.40 83
Skip Steuart: Steuart Systems R&D Blog.
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10599.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 17998.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FPMVS89.92 31588.63 32293.82 29598.37 15996.94 4691.58 32293.34 33088.00 30090.32 34797.10 21770.87 35691.13 36771.91 36596.16 33293.39 357
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13598.98 6695.05 16998.06 11698.02 13095.86 10499.56 16694.37 17799.64 6399.00 168
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 19798.99 6392.45 24998.11 10898.31 8697.25 4199.77 5396.60 6399.62 6699.48 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 13898.79 11695.07 16897.88 13698.35 8297.24 4299.72 8596.05 8499.58 7999.45 68
PM-MVS97.36 10397.10 11198.14 8298.91 10096.77 5096.20 14898.63 15593.82 21098.54 6098.33 8493.98 17299.05 28095.99 9099.45 12898.61 223
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3095.44 12899.84 2596.47 7099.80 3399.47 61
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9296.70 5296.24 14698.89 7993.71 21397.97 12797.75 16297.44 3099.63 14093.22 21599.70 5499.32 98
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10496.67 5396.74 12198.73 12991.61 26098.48 6598.36 8196.53 8399.68 12395.17 13899.54 9499.45 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ITE_SJBPF97.85 10398.64 12696.66 5498.51 16695.63 14397.22 16897.30 20695.52 12298.55 32990.97 25398.90 22798.34 245
CPTT-MVS96.69 14396.08 16798.49 5298.89 10196.64 5597.25 9498.77 12192.89 24396.01 23897.13 21392.23 21399.67 12892.24 22799.34 16399.17 133
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21098.46 16994.58 18798.10 11198.07 12197.09 4799.39 22095.16 14099.44 12999.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5195.47 12699.89 1697.95 2199.91 1799.75 13
N_pmnet95.18 20694.23 23898.06 8897.85 21396.55 5892.49 30891.63 34589.34 28498.09 11297.41 19190.33 24299.06 27991.58 24199.31 17498.56 226
PHI-MVS96.96 12196.53 14698.25 7297.48 26196.50 5996.76 12098.85 9493.52 21696.19 23196.85 23395.94 10299.42 20493.79 20299.43 13798.83 198
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2599.12 2895.83 13699.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11199.71 499.48 798.77 699.93 298.89 399.95 599.84 5
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12397.75 3099.89 2299.62 25
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14096.31 6596.32 14198.77 12192.96 24297.44 16397.58 17895.84 10599.74 7591.96 23099.35 16099.19 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2199.10 3198.76 2396.79 19899.34 1796.61 7898.82 30296.38 7299.50 11196.98 311
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10396.18 6895.21 21298.99 6395.84 13598.78 4598.08 11996.84 6999.81 3293.98 19699.57 8299.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10299.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2499.10 3199.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
h-mvs3396.29 16095.63 18498.26 6998.50 14796.11 7296.90 11397.09 27496.58 9697.21 17098.19 10884.14 29699.78 4395.89 9596.17 33198.89 189
test_part299.03 9396.07 7398.08 114
APDe-MVS98.14 3498.03 4098.47 5498.72 11696.04 7498.07 4799.10 3195.96 12598.59 5798.69 5996.94 5899.81 3296.64 6299.58 7999.57 32
F-COLMAP95.30 20294.38 23598.05 9198.64 12696.04 7495.61 18698.66 14989.00 28893.22 31996.40 26292.90 19599.35 23187.45 31897.53 30298.77 207
testtj96.69 14396.13 16398.36 6198.46 15496.02 7696.44 13398.70 13994.26 19696.79 19897.13 21394.07 17099.75 6590.53 27198.80 23999.31 103
OMC-MVS96.48 15496.00 17097.91 9898.30 16396.01 7794.86 23298.60 15791.88 25797.18 17297.21 21196.11 9999.04 28190.49 27599.34 16398.69 215
ZD-MVS98.43 15595.94 7898.56 16190.72 27296.66 20697.07 21995.02 14199.74 7591.08 25098.93 225
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12599.05 4398.67 2498.84 4298.45 7697.58 2899.88 1896.45 7199.86 2599.54 38
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 10795.86 8095.92 16799.04 4997.51 6698.22 9697.81 15794.68 15199.78 4397.14 5399.75 4399.41 82
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11695.78 8195.66 18099.02 5298.11 4098.31 8897.69 17094.65 15399.85 2297.02 5799.71 5199.48 58
DU-MVS97.79 7197.60 7898.36 6198.73 11495.78 8195.65 18398.87 8797.57 6198.31 8897.83 15394.69 14999.85 2297.02 5799.71 5199.46 63
PatchMatch-RL94.61 23593.81 25397.02 16898.19 17795.72 8393.66 28097.23 26788.17 29894.94 26895.62 29591.43 22998.57 32687.36 31997.68 29596.76 324
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11095.72 8396.23 14799.02 5293.92 20898.62 5298.99 3997.69 2399.62 14896.18 7899.87 2499.15 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.60 8497.39 9298.22 7498.93 9895.69 8597.05 10799.10 3195.32 15797.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13195.69 8595.96 16398.98 6693.36 22197.04 18497.31 20594.93 14499.63 14092.60 22299.34 16399.17 133
NCCC96.52 15295.99 17198.10 8497.81 22195.68 8795.00 22698.20 20395.39 15595.40 25896.36 26593.81 17699.45 19893.55 20998.42 26599.17 133
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2599.15 2499.33 599.30 2199.00 3897.27 3899.92 497.64 3499.92 1499.75 13
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5699.08 3798.31 3399.02 3498.74 5597.68 2499.61 15597.77 2999.85 2799.70 18
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 20895.65 9094.94 22898.74 12791.31 26696.02 23797.08 21894.05 17199.69 11691.51 24298.94 22398.93 180
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19295.60 9198.04 4898.70 13998.13 3996.93 19398.45 7695.30 13399.62 14895.64 10898.96 21999.24 123
LF4IMVS96.07 16995.63 18497.36 14998.19 17795.55 9295.44 19098.82 11492.29 25195.70 25296.55 25292.63 20398.69 31591.75 23999.33 17097.85 284
NR-MVSNet97.96 4697.86 5098.26 6998.73 11495.54 9398.14 4398.73 12997.79 4699.42 1597.83 15394.40 16299.78 4395.91 9499.76 3999.46 63
CNVR-MVS96.92 12396.55 14398.03 9298.00 20295.54 9394.87 23198.17 20994.60 18496.38 21997.05 22195.67 11899.36 22895.12 14699.08 20899.19 130
hse-mvs295.77 18295.09 19897.79 10697.84 21795.51 9595.66 18095.43 31396.58 9697.21 17096.16 27384.14 29699.54 17395.89 9596.92 31498.32 246
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12198.23 19995.92 12898.40 7298.28 9597.06 5099.71 9995.48 11799.52 10299.26 117
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5395.51 9596.89 11498.89 7995.92 12898.64 5198.31 8697.06 50
test_one_060199.05 9195.50 9898.87 8797.21 7998.03 12098.30 9096.93 60
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12198.89 7999.75 6595.48 11799.52 10299.53 41
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2299.13 2799.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
DVP-MVS++.97.96 4697.90 4598.12 8397.75 23995.40 10199.03 798.89 7996.62 9298.62 5298.30 9096.97 5699.75 6595.70 10199.25 18399.21 126
IU-MVS99.22 5895.40 10198.14 21585.77 32098.36 7895.23 13599.51 10799.49 53
AUN-MVS93.95 25892.69 27597.74 11097.80 22595.38 10395.57 18795.46 31291.26 26792.64 33096.10 27974.67 33999.55 17093.72 20596.97 31398.30 250
test_prior495.38 10393.61 283
wuyk23d93.25 27495.20 19387.40 34896.07 31995.38 10397.04 10894.97 31595.33 15699.70 598.11 11798.14 1391.94 36677.76 35999.68 5774.89 366
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 11898.83 10696.11 11599.08 3198.24 10197.87 2099.72 8595.44 12199.51 10799.14 140
test_241102_ONE99.22 5895.35 10698.83 10696.04 12099.08 3198.13 11397.87 2099.33 236
MSC_two_6792asdad98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
No_MVS98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
MVS_111021_LR96.82 13296.55 14397.62 12098.27 16895.34 10893.81 27798.33 19094.59 18696.56 21196.63 24996.61 7898.73 31194.80 15899.34 16398.78 204
OPU-MVS97.64 11998.01 19895.27 11196.79 11897.35 20196.97 5698.51 33291.21 24999.25 18399.14 140
CNLPA95.04 21294.47 23196.75 18297.81 22195.25 11294.12 26497.89 23494.41 19094.57 27595.69 29190.30 24598.35 34286.72 32398.76 24396.64 327
TEST997.84 21795.23 11393.62 28198.39 18186.81 31093.78 29795.99 28194.68 15199.52 179
train_agg95.46 19594.66 21897.88 10197.84 21795.23 11393.62 28198.39 18187.04 30893.78 29795.99 28194.58 15699.52 17991.76 23898.90 22798.89 189
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24295.23 11394.15 26096.90 28193.26 22598.04 11996.70 24594.41 16198.89 29794.77 16299.14 19698.37 239
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3498.84 9999.05 1399.01 3598.65 6395.37 12999.90 1397.57 3699.91 1799.77 8
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 7799.20 1698.21 3799.25 2598.51 7298.21 1199.40 21594.79 15999.72 4899.32 98
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 4899.46 797.32 7597.82 14499.11 3196.75 7299.86 2097.84 2599.36 15599.15 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DROMVSNet97.90 6097.94 4497.79 10698.66 12595.14 11998.31 3199.66 297.57 6195.95 23997.01 22596.99 5599.82 2997.66 3399.64 6398.39 237
SD-MVS97.37 10197.70 6296.35 20598.14 18795.13 12096.54 13098.92 7695.94 12799.19 2898.08 11997.74 2295.06 36495.24 13499.54 9498.87 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PLCcopyleft91.02 1694.05 25592.90 26797.51 12898.00 20295.12 12194.25 25398.25 19786.17 31491.48 34095.25 30291.01 23399.19 26085.02 33796.69 32298.22 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_897.81 22195.07 12293.54 28498.38 18387.04 30893.71 30295.96 28594.58 15699.52 179
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7298.20 20393.00 23798.16 10298.06 12695.89 10399.72 8595.67 10499.10 20699.28 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior195.39 19894.60 22497.75 10997.80 22594.96 12493.39 28998.36 18587.20 30693.49 31195.97 28494.65 15399.53 17591.69 24098.86 23398.77 207
agg_prior97.80 22594.96 12498.36 18593.49 31199.53 175
CDPH-MVS95.45 19694.65 21997.84 10498.28 16694.96 12493.73 27998.33 19085.03 33095.44 25696.60 25095.31 13299.44 20190.01 28199.13 20099.11 152
CSCG97.40 9997.30 9797.69 11698.95 9794.83 12797.28 9398.99 6396.35 10798.13 10795.95 28695.99 10199.66 13494.36 18099.73 4598.59 224
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4599.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
DP-MVS97.87 6397.89 4897.81 10598.62 13194.82 12897.13 10398.79 11698.98 1798.74 4898.49 7395.80 11499.49 18595.04 14999.44 12999.11 152
112194.26 24493.26 26197.27 15398.26 17094.73 13095.86 16897.71 24677.96 35994.53 27796.71 24491.93 22399.40 21587.71 31098.64 25597.69 292
Regformer-297.41 9897.24 10397.93 9797.21 28394.72 13194.85 23398.27 19497.74 5198.11 10897.50 18495.58 12199.69 11696.57 6699.31 17499.37 92
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15094.71 13294.53 24599.07 4095.02 17197.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
save fliter98.48 15094.71 13294.53 24598.41 17895.02 171
alignmvs96.01 17395.52 18897.50 13197.77 23694.71 13296.07 15496.84 28297.48 6796.78 20294.28 32485.50 28899.40 21596.22 7698.73 24898.40 235
新几何197.25 15698.29 16494.70 13597.73 24477.98 35894.83 27096.67 24792.08 21899.45 19888.17 30898.65 25497.61 295
plane_prior798.70 12194.67 136
CMPMVSbinary73.10 2392.74 28091.39 29296.77 18193.57 35794.67 13694.21 25797.67 24880.36 35193.61 30796.60 25082.85 30297.35 35684.86 33898.78 24198.29 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3299.00 6097.57 6199.27 2499.22 2298.32 999.50 18497.09 5499.75 4399.50 45
GeoE97.75 7497.70 6297.89 9998.88 10294.53 13997.10 10498.98 6695.75 14097.62 14797.59 17697.61 2799.77 5396.34 7499.44 12999.36 93
plane_prior394.51 14095.29 15996.16 232
TAPA-MVS93.32 1294.93 21694.23 23897.04 16698.18 18094.51 14095.22 21198.73 12981.22 34796.25 22895.95 28693.80 17798.98 28989.89 28398.87 23197.62 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.37 10197.25 10197.74 11098.69 12394.50 14297.04 10895.61 30898.59 2698.51 6298.72 5692.54 20799.58 15996.02 8799.49 11599.12 148
AdaColmapbinary95.11 20994.62 22396.58 19297.33 27794.45 14394.92 22998.08 22293.15 23393.98 29595.53 29894.34 16399.10 27585.69 32998.61 25796.20 335
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28594.39 14495.46 18998.73 12996.03 12294.72 27194.92 31196.28 9899.69 11693.81 20197.98 28098.09 264
canonicalmvs97.23 11197.21 10697.30 15297.65 25094.39 14497.84 5999.05 4397.42 6996.68 20593.85 32797.63 2699.33 23696.29 7598.47 26498.18 262
Anonymous2023121198.55 1798.76 1397.94 9698.79 10894.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8598.12 1699.86 2599.73 15
plane_prior698.38 15894.37 14691.91 225
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17194.29 14894.77 23798.07 22689.81 28197.97 12798.33 8493.11 18999.08 27795.46 12099.84 2898.89 189
HQP_MVS96.66 14696.33 15697.68 11798.70 12194.29 14896.50 13198.75 12596.36 10596.16 23296.77 24091.91 22599.46 19492.59 22499.20 18899.28 112
plane_prior94.29 14895.42 19294.31 19598.93 225
Anonymous2024052997.96 4698.04 3997.71 11298.69 12394.28 15197.86 5898.31 19398.79 2299.23 2698.86 4995.76 11599.61 15595.49 11499.36 15599.23 124
test_prior395.91 17795.39 19097.46 13997.79 23194.26 15293.33 29298.42 17694.21 19894.02 29296.25 26993.64 18099.34 23391.90 23298.96 21998.79 202
test_prior97.46 13997.79 23194.26 15298.42 17699.34 23398.79 202
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24594.15 15596.02 15898.43 17393.17 23297.30 16697.38 19895.48 12599.28 24993.74 20399.34 16398.88 193
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS96.24 16295.80 17897.56 12398.75 11394.13 15694.66 24098.17 20990.17 27896.21 23096.10 27995.14 13699.43 20394.13 18898.85 23599.13 143
test1297.46 13997.61 25394.07 15797.78 24293.57 30993.31 18699.42 20498.78 24198.89 189
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12698.73 12998.66 2598.56 5998.41 7896.84 6999.69 11694.82 15799.81 3098.64 218
API-MVS95.09 21195.01 20395.31 25096.61 30094.02 15996.83 11697.18 27095.60 14695.79 24694.33 32294.54 15898.37 34185.70 32898.52 26193.52 355
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10697.98 13588.23 26899.71 9993.10 21899.72 4899.38 87
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14493.99 16194.60 24298.69 14290.20 27795.78 24896.21 27292.73 19998.98 28990.58 27098.86 23397.42 301
Regformer-497.53 9097.47 9097.71 11297.35 27193.91 16295.26 20798.14 21597.97 4398.34 8197.89 14695.49 12399.71 9997.41 4199.42 14099.51 44
ETV-MVS96.13 16895.90 17696.82 17897.76 23793.89 16395.40 19598.95 7395.87 13295.58 25591.00 35896.36 9599.72 8593.36 21098.83 23796.85 318
旧先验197.80 22593.87 16497.75 24397.04 22293.57 18298.68 24998.72 212
Regformer-197.27 10797.16 10897.61 12197.21 28393.86 16594.85 23398.04 22997.62 6098.03 12097.50 18495.34 13099.63 14096.52 6799.31 17499.35 95
Anonymous20240521196.34 15995.98 17297.43 14398.25 17193.85 16696.74 12194.41 32197.72 5498.37 7598.03 12987.15 27999.53 17594.06 19099.07 21098.92 184
UGNet96.81 13396.56 14297.58 12296.64 29993.84 16797.75 6597.12 27396.47 10393.62 30698.88 4793.22 18899.53 17595.61 11099.69 5599.36 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6499.00 6098.40 3099.07 3398.98 4096.89 6499.75 6597.19 5199.79 3599.55 37
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19093.79 16996.99 11199.65 396.74 9099.47 1398.93 4496.91 6399.84 2590.11 27999.06 21398.32 246
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16698.06 12688.46 26599.85 2293.85 20099.40 14799.32 98
ETH3 D test640094.77 22393.87 25297.47 13698.12 19193.73 17194.56 24498.70 13985.45 32594.70 27395.93 28891.77 22799.63 14086.45 32499.14 19699.05 163
NP-MVS98.14 18793.72 17295.08 305
GBi-Net96.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
test196.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3598.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 9999.76 3999.30 104
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16193.66 17693.42 28798.36 18594.74 17996.58 20996.76 24296.54 8298.99 28794.87 15599.27 18199.15 137
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24293.65 17798.49 2298.88 8596.86 8797.11 17798.55 6995.82 10899.73 8195.94 9299.42 14099.13 143
CDS-MVSNet94.88 21994.12 24397.14 16097.64 25193.57 17893.96 27197.06 27690.05 27996.30 22596.55 25286.10 28499.47 19190.10 28099.31 17498.40 235
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3599.05 4397.40 7399.37 1899.08 3498.79 599.47 19197.74 3199.71 5199.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16398.97 7094.55 18898.82 4398.76 5497.31 3699.29 24797.20 5099.44 12999.38 87
PCF-MVS89.43 1892.12 29290.64 30696.57 19497.80 22593.48 18189.88 34998.45 17074.46 36496.04 23695.68 29290.71 23899.31 24073.73 36299.01 21796.91 315
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAMVS95.49 19194.94 20497.16 15898.31 16293.41 18295.07 22096.82 28491.09 26997.51 15297.82 15689.96 24999.42 20488.42 30499.44 12998.64 218
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4098.87 8798.23 3699.48 1299.27 1998.47 899.55 17096.52 6799.53 9799.60 26
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19098.86 9098.20 3898.37 7599.24 2094.69 14999.55 17095.98 9199.79 3599.65 23
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5295.31 31499.26 798.39 7499.18 2787.85 27599.62 14895.13 14599.09 20799.35 95
test22298.17 18293.24 18692.74 30497.61 25875.17 36394.65 27496.69 24690.96 23598.66 25297.66 293
RRT_MVS94.90 21794.07 24497.39 14793.18 35893.21 18795.26 20797.49 26093.94 20798.25 9397.85 15172.96 35099.84 2597.90 2299.78 3899.14 140
CS-MVS-test96.62 14896.59 13896.69 18697.88 21293.16 18897.21 9899.53 695.61 14593.72 30195.33 30195.49 12399.69 11695.37 12899.19 19297.22 305
MVS_030495.50 19095.05 20296.84 17796.28 30893.12 18997.00 11096.16 29495.03 17089.22 35497.70 16890.16 24899.48 18894.51 17199.34 16397.93 281
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2899.21 1498.43 2998.89 3998.83 5094.30 16499.81 3297.87 2499.91 1799.77 8
MVP-Stereo95.69 18395.28 19296.92 17198.15 18693.03 19195.64 18598.20 20390.39 27596.63 20897.73 16591.63 22899.10 27591.84 23697.31 31098.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EIA-MVS96.04 17195.77 18096.85 17697.80 22592.98 19296.12 15299.16 2094.65 18293.77 29991.69 35295.68 11799.67 12894.18 18598.85 23597.91 282
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5099.11 2998.04 4298.62 5298.66 6193.75 17899.78 4397.23 4599.84 2899.73 15
test_part196.77 13696.53 14697.47 13698.04 19492.92 19497.93 5398.85 9498.83 2199.30 2199.07 3579.25 31599.79 3997.59 3599.93 1099.69 20
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 24992.82 19594.22 25698.60 15791.61 26093.42 31692.90 33796.73 7399.70 10892.60 22297.89 28597.74 289
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 7798.94 7497.10 8198.85 4198.88 4795.03 14099.67 12897.39 4399.65 6199.26 117
PMMVS92.39 28591.08 29796.30 20993.12 36192.81 19690.58 34095.96 30079.17 35591.85 33992.27 34590.29 24698.66 32089.85 28496.68 32397.43 300
pmmvs494.82 22194.19 24196.70 18597.42 26892.75 19892.09 31796.76 28686.80 31195.73 25197.22 21089.28 26098.89 29793.28 21399.14 19698.46 234
DPM-MVS93.68 26392.77 27496.42 20297.91 20892.54 19991.17 33297.47 26384.99 33193.08 32194.74 31389.90 25099.00 28587.54 31698.09 27797.72 290
CLD-MVS95.47 19495.07 19996.69 18698.27 16892.53 20091.36 32598.67 14791.22 26895.78 24894.12 32595.65 11998.98 28990.81 25899.72 4898.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP5-MVS92.47 201
HQP-MVS95.17 20894.58 22796.92 17197.85 21392.47 20194.26 25098.43 17393.18 22992.86 32495.08 30590.33 24299.23 25790.51 27398.74 24599.05 163
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3296.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 3999.54 38
Regformer-397.25 10997.29 9897.11 16197.35 27192.32 20495.26 20797.62 25797.67 5998.17 10197.89 14695.05 13799.56 16697.16 5299.42 14099.46 63
EPNet93.72 26192.62 27897.03 16787.61 37392.25 20596.27 14291.28 34896.74 9087.65 36097.39 19685.00 29199.64 13892.14 22899.48 11999.20 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6098.45 17098.25 3599.13 3098.66 6196.65 7599.69 11693.92 19899.62 6698.91 185
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 9799.00 6094.93 17598.58 5898.92 4597.31 3699.41 21394.44 17299.43 13799.59 27
ab-mvs96.59 14996.59 13896.60 19098.64 12692.21 20798.35 2897.67 24894.45 18996.99 18898.79 5194.96 14399.49 18590.39 27699.07 21098.08 265
WR-MVS96.90 12596.81 12897.16 15898.56 13992.20 20994.33 24998.12 21897.34 7498.20 9797.33 20392.81 19699.75 6594.79 15999.81 3099.54 38
Effi-MVS+96.19 16596.01 16996.71 18497.43 26792.19 21096.12 15299.10 3195.45 15293.33 31894.71 31497.23 4399.56 16693.21 21697.54 30198.37 239
原ACMM196.58 19298.16 18492.12 21198.15 21485.90 31893.49 31196.43 25992.47 21099.38 22387.66 31398.62 25698.23 257
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4085.36 28999.74 7597.34 4499.37 15299.30 104
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27092.08 21395.34 20097.65 25297.74 5198.29 9198.11 11795.05 13799.68 12397.50 3999.50 11199.56 35
VNet96.84 12896.83 12796.88 17498.06 19392.02 21496.35 13997.57 25997.70 5697.88 13697.80 15892.40 21199.54 17394.73 16498.96 21999.08 157
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27592.01 21595.33 20197.65 25297.74 5198.30 9098.14 11295.04 13999.69 11697.55 3799.52 10299.58 28
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28691.96 21697.74 6698.84 9987.26 30494.36 28298.01 13293.95 17399.67 12890.70 26698.75 24497.35 304
FMVSNet296.72 14096.67 13696.87 17597.96 20491.88 21797.15 10098.06 22795.59 14798.50 6498.62 6489.51 25799.65 13594.99 15399.60 7599.07 159
MSDG95.33 20095.13 19695.94 22697.40 26991.85 21891.02 33698.37 18495.30 15896.31 22495.99 28194.51 15998.38 33989.59 28797.65 29897.60 296
QAPM95.88 17995.57 18796.80 17997.90 21091.84 21998.18 4298.73 12988.41 29496.42 21798.13 11394.73 14799.75 6588.72 29998.94 22398.81 200
HyFIR lowres test93.72 26192.65 27696.91 17398.93 9891.81 22091.23 33198.52 16482.69 34096.46 21696.52 25680.38 31299.90 1390.36 27798.79 24099.03 165
test20.0396.58 15096.61 13796.48 19998.49 14891.72 22195.68 17997.69 24796.81 8898.27 9297.92 14494.18 16898.71 31390.78 26099.66 6099.00 168
ambc96.56 19598.23 17491.68 22297.88 5798.13 21798.42 7198.56 6894.22 16799.04 28194.05 19399.35 16098.95 174
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7090.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8599.39 85
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15091.52 22495.31 20398.45 17095.76 13897.48 15897.54 17989.53 25698.69 31594.43 17394.61 34699.13 143
LFMVS95.32 20194.88 20996.62 18998.03 19591.47 22597.65 7090.72 35499.11 997.89 13598.31 8679.20 31699.48 18893.91 19999.12 20398.93 180
PAPM_NR94.61 23594.17 24295.96 22298.36 16091.23 22695.93 16697.95 23092.98 23893.42 31694.43 32190.53 23998.38 33987.60 31496.29 32998.27 254
OpenMVS_ROBcopyleft91.80 1493.64 26593.05 26495.42 24797.31 27991.21 22795.08 21996.68 29081.56 34496.88 19796.41 26090.44 24199.25 25485.39 33397.67 29695.80 340
V4297.04 11597.16 10896.68 18898.59 13691.05 22896.33 14098.36 18594.60 18497.99 12398.30 9093.32 18599.62 14897.40 4299.53 9799.38 87
casdiffmvs97.50 9197.81 5496.56 19598.51 14491.04 22995.83 17299.09 3697.23 7898.33 8598.30 9097.03 5299.37 22696.58 6599.38 15199.28 112
JIA-IIPM91.79 29690.69 30595.11 25793.80 35490.98 23094.16 25991.78 34496.38 10490.30 34899.30 1872.02 35298.90 29588.28 30690.17 35895.45 346
114514_t93.96 25693.22 26396.19 21499.06 8890.97 23195.99 16098.94 7473.88 36593.43 31596.93 22992.38 21299.37 22689.09 29499.28 17998.25 256
1112_ss94.12 25193.42 25896.23 21198.59 13690.85 23294.24 25498.85 9485.49 32292.97 32294.94 30986.01 28599.64 13891.78 23797.92 28298.20 260
CANet95.86 18095.65 18396.49 19896.41 30590.82 23394.36 24898.41 17894.94 17392.62 33296.73 24392.68 20099.71 9995.12 14699.60 7598.94 176
Patchmtry95.03 21494.59 22696.33 20694.83 34190.82 23396.38 13797.20 26896.59 9597.49 15598.57 6677.67 32399.38 22392.95 22199.62 6698.80 201
FMVSNet593.39 27092.35 28196.50 19795.83 32490.81 23597.31 9198.27 19492.74 24596.27 22698.28 9562.23 36699.67 12890.86 25699.36 15599.03 165
baseline97.44 9697.78 5896.43 20198.52 14390.75 23696.84 11599.03 5096.51 9997.86 14098.02 13096.67 7499.36 22897.09 5499.47 12199.19 130
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20399.08 3788.40 29596.97 19198.17 11192.11 21699.78 4393.64 20799.21 18798.86 196
testdata95.70 23698.16 18490.58 23897.72 24580.38 35095.62 25397.02 22392.06 21998.98 28989.06 29698.52 26197.54 297
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14298.53 16397.77 4798.46 6898.41 7894.59 15599.68 12394.61 16599.29 17899.52 42
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22090.56 24095.71 17598.84 9994.72 18096.71 20497.39 19694.91 14598.10 35095.28 13199.02 21598.05 274
UnsupCasMVSNet_bld94.72 22894.26 23796.08 21898.62 13190.54 24193.38 29098.05 22890.30 27697.02 18696.80 23989.54 25499.16 26688.44 30396.18 33098.56 226
FMVSNet395.26 20494.94 20496.22 21396.53 30290.06 24295.99 16097.66 25094.11 20297.99 12397.91 14580.22 31399.63 14094.60 16699.44 12998.96 173
CHOSEN 1792x268894.10 25293.41 25996.18 21599.16 7090.04 24392.15 31498.68 14479.90 35296.22 22997.83 15387.92 27499.42 20489.18 29399.65 6199.08 157
DELS-MVS96.17 16696.23 15995.99 22097.55 25890.04 24392.38 31298.52 16494.13 20196.55 21397.06 22094.99 14299.58 15995.62 10999.28 17998.37 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 24693.72 25495.74 23397.71 24489.95 24593.84 27496.98 27888.38 29693.75 30095.74 29087.94 27098.89 29791.02 25298.10 27698.37 239
CS-MVS95.98 17596.24 15895.20 25497.26 28089.88 24695.84 17199.39 993.89 20994.28 28395.15 30494.81 14699.62 14896.11 8199.40 14796.10 336
bset_n11_16_dypcd94.53 23993.95 25096.25 21097.56 25689.85 24788.52 35591.32 34794.90 17697.51 15296.38 26482.34 30499.78 4397.22 4699.80 3399.12 148
CL-MVSNet_self_test95.04 21294.79 21595.82 23097.51 26089.79 24891.14 33396.82 28493.05 23596.72 20396.40 26290.82 23699.16 26691.95 23198.66 25298.50 230
CANet_DTU94.65 23394.21 24095.96 22295.90 32189.68 24993.92 27297.83 24093.19 22890.12 34995.64 29488.52 26499.57 16593.27 21499.47 12198.62 221
v1097.55 8797.97 4196.31 20898.60 13489.64 25097.44 8599.02 5296.60 9498.72 5099.16 2993.48 18399.72 8598.76 699.92 1499.58 28
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5599.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
test_yl94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
DCV-MVSNet94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
v897.60 8498.06 3896.23 21198.71 11989.44 25497.43 8798.82 11497.29 7798.74 4899.10 3293.86 17499.68 12398.61 1099.94 899.56 35
Anonymous2023120695.27 20395.06 20195.88 22898.72 11689.37 25595.70 17697.85 23688.00 30096.98 19097.62 17491.95 22199.34 23389.21 29299.53 9798.94 176
v119296.83 13197.06 11596.15 21698.28 16689.29 25695.36 19898.77 12193.73 21298.11 10898.34 8393.02 19499.67 12898.35 1499.58 7999.50 45
v114496.84 12897.08 11396.13 21798.42 15689.28 25795.41 19498.67 14794.21 19897.97 12798.31 8693.06 19099.65 13598.06 1999.62 6699.45 68
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8294.92 31696.50 10096.58 20997.27 20783.64 30099.48 18888.42 30499.67 5898.97 172
new_pmnet92.34 28791.69 29094.32 28996.23 31189.16 25992.27 31392.88 33484.39 33795.29 25996.35 26685.66 28796.74 36284.53 34097.56 30097.05 309
ET-MVSNet_ETH3D91.12 30289.67 31495.47 24596.41 30589.15 26091.54 32390.23 35889.07 28686.78 36492.84 33869.39 35999.44 20194.16 18696.61 32497.82 286
v14419296.69 14396.90 12596.03 21998.25 17188.92 26195.49 18898.77 12193.05 23598.09 11298.29 9492.51 20999.70 10898.11 1799.56 8599.47 61
Patchmatch-RL test94.66 23294.49 23095.19 25598.54 14188.91 26292.57 30698.74 12791.46 26398.32 8697.75 16277.31 32898.81 30496.06 8299.61 7297.85 284
HY-MVS91.43 1592.58 28291.81 28894.90 26696.49 30388.87 26397.31 9194.62 31885.92 31790.50 34696.84 23485.05 29099.40 21583.77 34595.78 33696.43 332
Test_1112_low_res93.53 26892.86 26895.54 24298.60 13488.86 26492.75 30298.69 14282.66 34192.65 32996.92 23184.75 29399.56 16690.94 25497.76 28898.19 261
PAPR92.22 28991.27 29595.07 25995.73 32888.81 26591.97 31897.87 23585.80 31990.91 34292.73 34191.16 23198.33 34379.48 35395.76 33798.08 265
v192192096.72 14096.96 12195.99 22098.21 17588.79 26695.42 19298.79 11693.22 22798.19 10098.26 10092.68 20099.70 10898.34 1599.55 9199.49 53
v2v48296.78 13597.06 11595.95 22498.57 13888.77 26795.36 19898.26 19695.18 16397.85 14198.23 10392.58 20499.63 14097.80 2799.69 5599.45 68
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15088.76 26892.84 29997.25 26696.00 12397.59 14897.95 14091.38 23099.46 19493.16 21796.35 32898.99 171
v124096.74 13797.02 11895.91 22798.18 18088.52 26995.39 19698.88 8593.15 23398.46 6898.40 8092.80 19799.71 9998.45 1399.49 11599.49 53
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
pmmvs594.63 23494.34 23695.50 24397.63 25288.34 27394.02 26697.13 27287.15 30795.22 26197.15 21287.50 27699.27 25193.99 19599.26 18298.88 193
thisisatest053092.71 28191.76 28995.56 24198.42 15688.23 27496.03 15787.35 36494.04 20496.56 21195.47 29964.03 36599.77 5394.78 16199.11 20498.68 217
MIMVSNet93.42 26992.86 26895.10 25898.17 18288.19 27598.13 4493.69 32492.07 25295.04 26698.21 10780.95 31099.03 28481.42 35098.06 27898.07 267
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6198.40 18097.11 8098.34 8199.04 3789.58 25399.79 3998.09 1899.93 1099.30 104
CR-MVSNet93.29 27392.79 27194.78 27395.44 33388.15 27796.18 14997.20 26884.94 33294.10 28898.57 6677.67 32399.39 22095.17 13895.81 33396.81 322
RPMNet94.68 23194.60 22494.90 26695.44 33388.15 27796.18 14998.86 9097.43 6894.10 28898.49 7379.40 31499.76 5895.69 10395.81 33396.81 322
EI-MVSNet96.63 14796.93 12295.74 23397.26 28088.13 27995.29 20597.65 25296.99 8297.94 13098.19 10892.55 20599.58 15996.91 6099.56 8599.50 45
IterMVS-LS96.92 12397.29 9895.79 23198.51 14488.13 27995.10 21598.66 14996.99 8298.46 6898.68 6092.55 20599.74 7596.91 6099.79 3599.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs96.04 17196.23 15995.46 24697.35 27188.03 28193.42 28799.08 3794.09 20396.66 20696.93 22993.85 17599.29 24796.01 8998.67 25099.06 161
TinyColmap96.00 17496.34 15594.96 26397.90 21087.91 28294.13 26398.49 16794.41 19098.16 10297.76 15996.29 9798.68 31890.52 27299.42 14098.30 250
tttt051793.31 27292.56 27995.57 23998.71 11987.86 28397.44 8587.17 36595.79 13797.47 16096.84 23464.12 36499.81 3296.20 7799.32 17299.02 167
WTY-MVS93.55 26793.00 26695.19 25597.81 22187.86 28393.89 27396.00 29889.02 28794.07 29095.44 30086.27 28399.33 23687.69 31296.82 31898.39 237
jason94.39 24394.04 24695.41 24998.29 16487.85 28592.74 30496.75 28785.38 32795.29 25996.15 27488.21 26999.65 13594.24 18399.34 16398.74 209
jason: jason.
MVSFormer96.14 16796.36 15495.49 24497.68 24687.81 28698.67 1399.02 5296.50 10094.48 28096.15 27486.90 28099.92 498.73 799.13 20098.74 209
lupinMVS93.77 25993.28 26095.24 25297.68 24687.81 28692.12 31596.05 29684.52 33494.48 28095.06 30786.90 28099.63 14093.62 20899.13 20098.27 254
D2MVS95.18 20695.17 19595.21 25397.76 23787.76 28894.15 26097.94 23189.77 28296.99 18897.68 17187.45 27799.14 26895.03 15199.81 3098.74 209
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16398.58 16095.08 16798.02 12296.25 26997.92 1697.60 35588.68 30198.74 24599.11 152
v14896.58 15096.97 11995.42 24798.63 13087.57 29095.09 21797.90 23395.91 13098.24 9597.96 13693.42 18499.39 22096.04 8599.52 10299.29 111
BH-untuned94.69 22994.75 21694.52 28497.95 20787.53 29194.07 26597.01 27793.99 20597.10 17895.65 29392.65 20298.95 29487.60 31496.74 32197.09 307
Patchmatch-test93.60 26693.25 26294.63 27796.14 31887.47 29296.04 15694.50 32093.57 21596.47 21596.97 22676.50 33198.61 32390.67 26798.41 26697.81 288
BH-RMVSNet94.56 23794.44 23494.91 26497.57 25487.44 29393.78 27896.26 29393.69 21496.41 21896.50 25792.10 21799.00 28585.96 32697.71 29298.31 248
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23187.40 29494.14 26298.68 14488.94 28994.51 27898.01 13293.04 19199.30 24389.77 28599.49 11599.11 152
PVSNet_Blended93.96 25693.65 25594.91 26497.79 23187.40 29491.43 32498.68 14484.50 33594.51 27894.48 32093.04 19199.30 24389.77 28598.61 25798.02 277
PatchT93.75 26093.57 25694.29 29195.05 33987.32 29696.05 15592.98 33397.54 6594.25 28498.72 5675.79 33699.24 25595.92 9395.81 33396.32 333
GA-MVS92.83 27992.15 28494.87 26896.97 29187.27 29790.03 34496.12 29591.83 25894.05 29194.57 31576.01 33598.97 29392.46 22697.34 30998.36 244
baseline193.14 27692.64 27794.62 27897.34 27587.20 29896.67 12893.02 33294.71 18196.51 21495.83 28981.64 30598.60 32590.00 28288.06 36198.07 267
MS-PatchMatch94.83 22094.91 20894.57 28296.81 29887.10 29994.23 25597.34 26588.74 29297.14 17497.11 21691.94 22298.23 34692.99 21997.92 28298.37 239
cl____94.73 22494.64 22095.01 26195.85 32387.00 30091.33 32798.08 22293.34 22297.10 17897.33 20384.01 29999.30 24395.14 14399.56 8598.71 214
DIV-MVS_self_test94.73 22494.64 22095.01 26195.86 32287.00 30091.33 32798.08 22293.34 22297.10 17897.34 20284.02 29899.31 24095.15 14299.55 9198.72 212
MVS90.02 31189.20 31892.47 32394.71 34286.90 30295.86 16896.74 28864.72 36790.62 34392.77 33992.54 20798.39 33879.30 35495.56 33992.12 359
test0.0.03 190.11 31089.21 31792.83 31793.89 35386.87 30391.74 32188.74 36292.02 25394.71 27291.14 35773.92 34294.48 36583.75 34692.94 35197.16 306
TR-MVS92.54 28392.20 28393.57 30096.49 30386.66 30493.51 28594.73 31789.96 28094.95 26793.87 32690.24 24798.61 32381.18 35194.88 34395.45 346
MVS_Test96.27 16196.79 13194.73 27596.94 29486.63 30596.18 14998.33 19094.94 17396.07 23598.28 9595.25 13499.26 25297.21 4897.90 28498.30 250
MVSTER94.21 24893.93 25195.05 26095.83 32486.46 30695.18 21397.65 25292.41 25097.94 13098.00 13472.39 35199.58 15996.36 7399.56 8599.12 148
miper_lstm_enhance94.81 22294.80 21494.85 26996.16 31586.45 30791.14 33398.20 20393.49 21797.03 18597.37 20084.97 29299.26 25295.28 13199.56 8598.83 198
c3_l95.20 20595.32 19194.83 27196.19 31386.43 30891.83 32098.35 18993.47 21897.36 16597.26 20888.69 26399.28 24995.41 12799.36 15598.78 204
USDC94.56 23794.57 22994.55 28397.78 23586.43 30892.75 30298.65 15485.96 31696.91 19597.93 14390.82 23698.74 31090.71 26599.59 7798.47 232
miper_ehance_all_eth94.69 22994.70 21794.64 27695.77 32686.22 31091.32 32998.24 19891.67 25997.05 18396.65 24888.39 26799.22 25994.88 15498.34 26798.49 231
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32086.12 31191.35 32698.49 16793.40 21997.12 17697.25 20986.87 28299.35 23195.08 14898.82 23898.78 204
cl2293.25 27492.84 27094.46 28594.30 34786.00 31291.09 33596.64 29190.74 27195.79 24696.31 26778.24 32098.77 30794.15 18798.34 26798.62 221
MG-MVS94.08 25494.00 24794.32 28997.09 28885.89 31393.19 29695.96 30092.52 24694.93 26997.51 18389.54 25498.77 30787.52 31797.71 29298.31 248
ADS-MVSNet291.47 30090.51 30894.36 28895.51 33185.63 31495.05 22395.70 30483.46 33892.69 32796.84 23479.15 31799.41 21385.66 33090.52 35698.04 275
cascas91.89 29591.35 29393.51 30194.27 34885.60 31588.86 35498.61 15679.32 35492.16 33691.44 35489.22 26198.12 34990.80 25997.47 30696.82 321
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24685.53 31692.42 31097.63 25696.99 8298.36 7898.54 7087.94 27099.75 6597.07 5699.08 20899.27 116
thisisatest051590.43 30889.18 32094.17 29497.07 28985.44 31789.75 35087.58 36388.28 29793.69 30491.72 35165.27 36399.58 15990.59 26998.67 25097.50 299
pmmvs390.00 31288.90 32193.32 30394.20 35185.34 31891.25 33092.56 33978.59 35693.82 29695.17 30367.36 36298.69 31589.08 29598.03 27995.92 337
BH-w/o92.14 29191.94 28592.73 31997.13 28785.30 31992.46 30995.64 30589.33 28594.21 28592.74 34089.60 25298.24 34581.68 34994.66 34594.66 350
miper_enhance_ethall93.14 27692.78 27394.20 29293.65 35585.29 32089.97 34597.85 23685.05 32996.15 23494.56 31685.74 28699.14 26893.74 20398.34 26798.17 263
DeepMVS_CXcopyleft77.17 35090.94 36985.28 32174.08 37452.51 36880.87 36988.03 36475.25 33870.63 37059.23 36984.94 36575.62 365
MVEpermissive73.61 2286.48 33385.92 33588.18 34696.23 31185.28 32181.78 36475.79 37186.01 31582.53 36791.88 34992.74 19887.47 36971.42 36694.86 34491.78 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131492.38 28692.30 28292.64 32095.42 33585.15 32395.86 16896.97 27985.40 32690.62 34393.06 33591.12 23297.80 35386.74 32295.49 34094.97 349
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26185.15 32390.28 34395.87 30292.52 24697.48 15897.76 15991.92 22499.17 26593.32 21196.80 32098.94 176
YYNet194.73 22494.84 21194.41 28797.47 26585.09 32590.29 34295.85 30392.52 24697.53 15097.76 15991.97 22099.18 26193.31 21296.86 31798.95 174
PAPM87.64 33185.84 33693.04 31196.54 30184.99 32688.42 35695.57 30979.52 35383.82 36593.05 33680.57 31198.41 33662.29 36892.79 35295.71 341
PS-MVSNAJ94.10 25294.47 23193.00 31397.35 27184.88 32791.86 31997.84 23891.96 25594.17 28692.50 34495.82 10899.71 9991.27 24697.48 30494.40 352
xiu_mvs_v2_base94.22 24694.63 22292.99 31497.32 27884.84 32892.12 31597.84 23891.96 25594.17 28693.43 32896.07 10099.71 9991.27 24697.48 30494.42 351
IB-MVS85.98 2088.63 32386.95 33293.68 29895.12 33884.82 32990.85 33790.17 35987.55 30388.48 35791.34 35558.01 36899.59 15787.24 32093.80 35096.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view792.03 29391.43 29193.82 29598.19 17784.61 33096.27 14290.39 35596.81 8896.37 22093.11 33073.44 34899.49 18580.32 35297.95 28197.36 302
thres100view90091.76 29791.26 29693.26 30598.21 17584.50 33196.39 13590.39 35596.87 8696.33 22193.08 33473.44 34899.42 20478.85 35697.74 28995.85 338
gg-mvs-nofinetune88.28 32686.96 33192.23 32892.84 36484.44 33298.19 4174.60 37299.08 1087.01 36399.47 856.93 37098.23 34678.91 35595.61 33894.01 353
tfpn200view991.55 29991.00 29893.21 30898.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28995.85 338
thres40091.68 29891.00 29893.71 29798.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28997.36 302
GG-mvs-BLEND90.60 33691.00 36884.21 33598.23 3572.63 37582.76 36684.11 36656.14 37396.79 36072.20 36492.09 35590.78 363
thres20091.00 30590.42 30992.77 31897.47 26583.98 33694.01 26791.18 35095.12 16695.44 25691.21 35673.93 34199.31 24077.76 35997.63 29995.01 348
IterMVS95.42 19795.83 17794.20 29297.52 25983.78 33792.41 31197.47 26395.49 15198.06 11698.49 7387.94 27099.58 15996.02 8799.02 21599.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DSMNet-mixed92.19 29091.83 28793.25 30696.18 31483.68 33896.27 14293.68 32676.97 36292.54 33399.18 2789.20 26298.55 32983.88 34398.60 25997.51 298
baseline289.65 31788.44 32493.25 30695.62 32982.71 33993.82 27585.94 36788.89 29087.35 36292.54 34371.23 35499.33 23686.01 32594.60 34797.72 290
EPNet_dtu91.39 30190.75 30493.31 30490.48 37082.61 34094.80 23592.88 33493.39 22081.74 36894.90 31281.36 30799.11 27388.28 30698.87 23198.21 259
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet94.25 24594.47 23193.60 29998.14 18782.60 34197.24 9692.72 33785.08 32898.48 6598.94 4382.59 30398.76 30997.47 4099.53 9799.44 78
ADS-MVSNet90.95 30690.26 31093.04 31195.51 33182.37 34295.05 22393.41 32983.46 33892.69 32796.84 23479.15 31798.70 31485.66 33090.52 35698.04 275
ppachtmachnet_test94.49 24094.84 21193.46 30296.16 31582.10 34390.59 33997.48 26290.53 27497.01 18797.59 17691.01 23399.36 22893.97 19799.18 19398.94 176
KD-MVS_2432*160088.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
miper_refine_blended88.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
mvs_anonymous95.36 19996.07 16893.21 30896.29 30781.56 34694.60 24297.66 25093.30 22496.95 19298.91 4693.03 19399.38 22396.60 6397.30 31198.69 215
SCA93.38 27193.52 25792.96 31596.24 30981.40 34793.24 29494.00 32391.58 26294.57 27596.97 22687.94 27099.42 20489.47 28997.66 29798.06 271
our_test_394.20 25094.58 22793.07 31096.16 31581.20 34890.42 34196.84 28290.72 27297.14 17497.13 21390.47 24099.11 27394.04 19498.25 27198.91 185
CHOSEN 280x42089.98 31389.19 31992.37 32595.60 33081.13 34986.22 35997.09 27481.44 34687.44 36193.15 32973.99 34099.47 19188.69 30099.07 21096.52 331
PMMVS293.66 26494.07 24492.45 32497.57 25480.67 35086.46 35896.00 29893.99 20597.10 17897.38 19889.90 25097.82 35288.76 29899.47 12198.86 196
new-patchmatchnet95.67 18596.58 14092.94 31697.48 26180.21 35192.96 29898.19 20894.83 17798.82 4398.79 5193.31 18699.51 18395.83 9999.04 21499.12 148
PatchmatchNetpermissive91.98 29491.87 28692.30 32694.60 34479.71 35295.12 21493.59 32889.52 28393.61 30797.02 22377.94 32199.18 26190.84 25794.57 34898.01 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS89.26 31988.55 32391.39 33192.36 36679.11 35395.65 18379.86 37088.60 29393.12 32096.53 25470.73 35798.10 35090.75 26189.32 36096.98 311
DWT-MVSNet_test87.92 32986.77 33391.39 33193.18 35878.62 35495.10 21591.42 34685.58 32188.00 35888.73 36360.60 36798.90 29590.60 26887.70 36296.65 326
tpm91.08 30490.85 30291.75 32995.33 33678.09 35595.03 22591.27 34988.75 29193.53 31097.40 19271.24 35399.30 24391.25 24893.87 34997.87 283
PVSNet86.72 1991.10 30390.97 30091.49 33097.56 25678.04 35687.17 35794.60 31984.65 33392.34 33492.20 34687.37 27898.47 33385.17 33697.69 29497.96 279
CostFormer89.75 31689.25 31591.26 33394.69 34378.00 35795.32 20291.98 34281.50 34590.55 34596.96 22871.06 35598.89 29788.59 30292.63 35396.87 316
E-PMN89.52 31889.78 31388.73 34393.14 36077.61 35883.26 36292.02 34194.82 17893.71 30293.11 33075.31 33796.81 35985.81 32796.81 31991.77 361
RRT_test8_iter0592.46 28492.52 28092.29 32795.33 33677.43 35995.73 17498.55 16294.41 19097.46 16197.72 16757.44 36999.74 7596.92 5999.14 19699.69 20
EMVS89.06 32089.22 31688.61 34493.00 36277.34 36082.91 36390.92 35194.64 18392.63 33191.81 35076.30 33397.02 35783.83 34496.90 31691.48 362
tpm288.47 32487.69 32890.79 33594.98 34077.34 36095.09 21791.83 34377.51 36189.40 35296.41 26067.83 36198.73 31183.58 34792.60 35496.29 334
tpmvs90.79 30790.87 30190.57 33792.75 36576.30 36295.79 17393.64 32791.04 27091.91 33896.26 26877.19 32998.86 30189.38 29189.85 35996.56 330
tpm cat188.01 32887.33 32990.05 34094.48 34576.28 36394.47 24794.35 32273.84 36689.26 35395.61 29673.64 34498.30 34484.13 34186.20 36495.57 345
CVMVSNet92.33 28892.79 27190.95 33497.26 28075.84 36495.29 20592.33 34081.86 34296.27 22698.19 10881.44 30698.46 33494.23 18498.29 27098.55 228
test-LLR89.97 31489.90 31290.16 33894.24 34974.98 36589.89 34689.06 36092.02 25389.97 35090.77 35973.92 34298.57 32691.88 23497.36 30796.92 313
test-mter87.92 32987.17 33090.16 33894.24 34974.98 36589.89 34689.06 36086.44 31389.97 35090.77 35954.96 37598.57 32691.88 23497.36 30796.92 313
PVSNet_081.89 2184.49 33483.21 33788.34 34595.76 32774.97 36783.49 36192.70 33878.47 35787.94 35986.90 36583.38 30196.63 36373.44 36366.86 36993.40 356
MDTV_nov1_ep1391.28 29494.31 34673.51 36894.80 23593.16 33186.75 31293.45 31497.40 19276.37 33298.55 32988.85 29796.43 326
TESTMET0.1,187.20 33286.57 33489.07 34293.62 35672.84 36989.89 34687.01 36685.46 32489.12 35590.20 36156.00 37497.72 35490.91 25596.92 31496.64 327
tpmrst90.31 30990.61 30789.41 34194.06 35272.37 37095.06 22293.69 32488.01 29992.32 33596.86 23277.45 32598.82 30291.04 25187.01 36397.04 310
gm-plane-assit91.79 36771.40 37181.67 34390.11 36298.99 28784.86 338
dp88.08 32788.05 32588.16 34792.85 36368.81 37294.17 25892.88 33485.47 32391.38 34196.14 27668.87 36098.81 30486.88 32183.80 36696.87 316
MVS-HIRNet88.40 32590.20 31182.99 34997.01 29060.04 37393.11 29785.61 36884.45 33688.72 35699.09 3384.72 29498.23 34682.52 34896.59 32590.69 364
MDTV_nov1_ep13_2view57.28 37494.89 23080.59 34994.02 29278.66 31985.50 33297.82 286
tmp_tt57.23 33662.50 33941.44 35234.77 37549.21 37583.93 36060.22 37615.31 36971.11 37079.37 36770.09 35844.86 37164.76 36782.93 36730.25 367
test_method66.88 33566.13 33869.11 35162.68 37425.73 37649.76 36596.04 29714.32 37064.27 37191.69 35273.45 34788.05 36876.06 36166.94 36893.54 354
test12312.59 33815.49 3413.87 3536.07 3762.55 37790.75 3382.59 3782.52 3715.20 37313.02 3704.96 3761.85 3735.20 3709.09 3707.23 368
testmvs12.33 33915.23 3423.64 3545.77 3772.23 37888.99 3533.62 3772.30 3725.29 37213.09 3694.52 3771.95 3725.16 3718.32 3716.75 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.22 33732.30 3400.00 3550.00 3780.00 3790.00 36698.10 2190.00 3730.00 37495.06 30797.54 290.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.98 34010.65 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37395.82 1080.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.91 34110.55 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37494.94 3090.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145287.24 30598.37 7597.44 18997.00 5496.78 36192.01 22999.25 18399.21 126
eth-test20.00 378
eth-test0.00 378
test_241102_TWO98.83 10696.11 11598.62 5298.24 10196.92 6299.72 8595.44 12199.49 11599.49 53
9.1496.69 13498.53 14296.02 15898.98 6693.23 22697.18 17297.46 18796.47 8899.62 14892.99 21999.32 172
test_0728_THIRD96.62 9298.40 7298.28 9597.10 4599.71 9995.70 10199.62 6699.58 28
GSMVS98.06 271
sam_mvs177.80 32298.06 271
sam_mvs77.38 326
MTGPAbinary98.73 129
test_post194.98 22710.37 37276.21 33499.04 28189.47 289
test_post10.87 37176.83 33099.07 278
patchmatchnet-post96.84 23477.36 32799.42 204
MTMP96.55 12974.60 372
test9_res91.29 24598.89 23099.00 168
agg_prior290.34 27898.90 22799.10 156
test_prior293.33 29294.21 19894.02 29296.25 26993.64 18091.90 23298.96 219
旧先验293.35 29177.95 36095.77 25098.67 31990.74 264
新几何293.43 286
无先验93.20 29597.91 23280.78 34899.40 21587.71 31097.94 280
原ACMM292.82 300
testdata299.46 19487.84 309
segment_acmp95.34 130
testdata192.77 30193.78 211
plane_prior598.75 12599.46 19492.59 22499.20 18899.28 112
plane_prior496.77 240
plane_prior296.50 13196.36 105
plane_prior198.49 148
n20.00 379
nn0.00 379
door-mid98.17 209
test1198.08 222
door97.81 241
HQP-NCC97.85 21394.26 25093.18 22992.86 324
ACMP_Plane97.85 21394.26 25093.18 22992.86 324
BP-MVS90.51 273
HQP4-MVS92.87 32399.23 25799.06 161
HQP3-MVS98.43 17398.74 245
HQP2-MVS90.33 242
ACMMP++_ref99.52 102
ACMMP++99.55 91
Test By Simon94.51 159