This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 4996.26 2872.84 2699.38 192.64 1795.93 997.08 9
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1097.22 379.93 599.10 983.12 9097.64 297.94 1
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6894.37 4672.48 17392.07 696.85 1483.82 299.15 291.53 2797.42 497.55 4
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18193.06 10594.33 4882.19 2893.65 396.15 3385.89 197.19 8291.02 3197.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 2996.80 1770.86 3499.06 1592.64 1795.71 1096.12 35
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5094.91 6674.11 1998.91 1787.26 5795.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2696.26 2868.44 3898.74 2495.82 294.72 3095.90 42
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20292.11 497.21 476.79 999.11 692.34 1995.36 1397.62 2
DeepPCF-MVS81.17 189.72 991.38 384.72 12193.00 6958.16 29396.72 894.41 4286.50 890.25 1997.83 175.46 1498.67 2592.78 1695.49 1297.32 6
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19195.04 4095.19 1586.74 791.53 1295.15 6073.86 2097.58 5993.38 1292.00 6796.28 32
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2595.78 3865.94 5999.10 992.99 1493.91 4096.58 18
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 18990.55 1796.93 1073.77 2199.08 1191.91 2594.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3096.35 2571.89 3398.63 2688.76 4596.40 696.06 36
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4196.20 3066.56 5598.76 2389.03 4494.56 3295.92 41
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5594.15 5368.77 25290.74 1597.27 276.09 1298.49 2990.58 3594.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7594.03 5574.18 13691.74 996.67 1965.61 6398.42 3389.24 4196.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2796.06 3453.55 20497.89 4391.10 2993.31 5194.54 94
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21593.55 7282.89 1991.29 1392.89 11772.27 3096.03 13387.99 4894.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8385.93 4894.80 6975.80 1398.21 3489.38 3888.78 10196.59 16
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7196.19 3164.53 7798.44 3183.42 8994.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2795.95 3653.45 20897.68 5091.07 3092.62 5894.54 94
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3294.53 7566.79 5297.34 7383.89 8691.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2387.77 2387.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3795.27 5464.99 6895.80 13889.34 3991.80 7095.93 40
test_fmvsm_n_192087.69 2488.50 1785.27 10187.05 21363.55 19893.69 8591.08 17684.18 1390.17 2197.04 867.58 4797.99 3995.72 390.03 9294.26 102
APDe-MVScopyleft87.54 2587.84 2286.65 5896.07 2366.30 12694.84 4593.78 5969.35 24388.39 3196.34 2667.74 4697.66 5490.62 3493.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS87.49 2687.49 2787.50 3693.60 5368.82 6293.90 7292.63 11076.86 10287.90 3395.76 3966.17 5697.63 5689.06 4391.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
dcpmvs_287.37 2787.55 2686.85 5095.04 3268.20 7890.36 21590.66 18879.37 6281.20 8793.67 10174.73 1596.55 11690.88 3292.00 6795.82 44
alignmvs87.28 2886.97 3388.24 2491.30 11471.14 2195.61 2593.56 7179.30 6387.07 3995.25 5668.43 3996.93 10387.87 4984.33 14096.65 14
train_agg87.21 2987.42 2886.60 5994.18 4167.28 10094.16 5693.51 7371.87 19485.52 5295.33 4968.19 4197.27 8089.09 4294.90 2195.25 69
MG-MVS87.11 3086.27 3989.62 797.79 176.27 494.96 4394.49 3878.74 7883.87 7092.94 11564.34 7896.94 10175.19 14594.09 3695.66 47
SF-MVS87.03 3187.09 3186.84 5192.70 7767.45 9893.64 8793.76 6270.78 22686.25 4396.44 2466.98 5097.79 4788.68 4694.56 3295.28 65
CSCG86.87 3286.26 4088.72 1595.05 3170.79 2593.83 8095.33 1368.48 25677.63 12894.35 8473.04 2498.45 3084.92 7793.71 4596.92 11
canonicalmvs86.85 3386.25 4188.66 1891.80 10171.92 1493.54 9291.71 14780.26 5087.55 3595.25 5663.59 9196.93 10388.18 4784.34 13997.11 8
PHI-MVS86.83 3486.85 3786.78 5593.47 5765.55 14495.39 3095.10 1871.77 19985.69 5196.52 2162.07 10898.77 2286.06 6895.60 1196.03 38
SteuartSystems-ACMMP86.82 3586.90 3586.58 6190.42 12966.38 12396.09 1793.87 5777.73 9084.01 6995.66 4163.39 9397.94 4087.40 5593.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 3686.86 3686.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9293.08 11163.19 9797.29 7687.08 5991.38 7894.13 109
test_fmvsmconf_n86.58 3787.17 3084.82 11485.28 24262.55 22194.26 5489.78 22183.81 1687.78 3496.33 2765.33 6596.98 9694.40 987.55 11194.95 78
jason86.40 3886.17 4287.11 4486.16 22770.54 2895.71 2492.19 12582.00 3084.58 6294.34 8561.86 11095.53 15887.76 5090.89 8495.27 66
jason: jason.
fmvsm_s_conf0.5_n86.39 3986.91 3484.82 11487.36 20763.54 19994.74 4790.02 21582.52 2490.14 2296.92 1262.93 10197.84 4695.28 682.26 15293.07 145
WTY-MVS86.32 4085.81 4987.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8294.73 7067.93 4597.63 5679.55 11582.25 15396.54 19
MSLP-MVS++86.27 4185.91 4887.35 3992.01 9368.97 5995.04 4092.70 10479.04 7281.50 8596.50 2358.98 14396.78 10883.49 8893.93 3996.29 30
VNet86.20 4285.65 5287.84 2793.92 4669.99 3395.73 2395.94 778.43 8086.00 4793.07 11258.22 14897.00 9285.22 7284.33 14096.52 20
MVS_111021_HR86.19 4385.80 5087.37 3893.17 6569.79 4093.99 6793.76 6279.08 7078.88 11693.99 9562.25 10798.15 3685.93 6991.15 8294.15 108
CS-MVS-test86.14 4487.01 3283.52 15992.63 8059.36 28195.49 2791.92 13480.09 5185.46 5495.53 4561.82 11395.77 14186.77 6393.37 5095.41 54
ACMMP_NAP86.05 4585.80 5086.80 5491.58 10667.53 9591.79 16093.49 7674.93 12784.61 6195.30 5159.42 13797.92 4186.13 6694.92 1994.94 79
ETV-MVS86.01 4686.11 4385.70 8990.21 13467.02 10993.43 9791.92 13481.21 4284.13 6894.07 9460.93 12195.63 14989.28 4089.81 9394.46 100
APD-MVScopyleft85.93 4785.99 4685.76 8795.98 2665.21 15193.59 9092.58 11266.54 27086.17 4595.88 3763.83 8497.00 9286.39 6592.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 4885.46 5387.18 4288.20 18672.42 1392.41 13392.77 10282.11 2980.34 9793.07 11268.27 4095.02 17078.39 12893.59 4794.09 111
CS-MVS85.80 4986.65 3883.27 16792.00 9458.92 28695.31 3191.86 13979.97 5284.82 6095.40 4762.26 10695.51 15986.11 6792.08 6695.37 57
fmvsm_s_conf0.5_n_a85.75 5086.09 4484.72 12185.73 23663.58 19693.79 8189.32 23981.42 3990.21 2096.91 1362.41 10597.67 5194.48 880.56 16992.90 151
test_fmvsmconf0.1_n85.71 5186.08 4584.62 12880.83 29562.33 22593.84 7888.81 26483.50 1887.00 4096.01 3563.36 9496.93 10394.04 1087.29 11494.61 91
CDPH-MVS85.71 5185.46 5386.46 6594.75 3467.19 10293.89 7392.83 10170.90 22283.09 7495.28 5263.62 8997.36 7180.63 10994.18 3594.84 83
casdiffmvs_mvgpermissive85.66 5385.18 5687.09 4588.22 18569.35 5093.74 8491.89 13781.47 3580.10 9991.45 14464.80 7396.35 11987.23 5887.69 10995.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n85.61 5485.93 4784.68 12482.95 27963.48 20194.03 6689.46 23381.69 3389.86 2396.74 1861.85 11197.75 4994.74 782.01 15692.81 153
DeepC-MVS77.85 385.52 5585.24 5586.37 6988.80 16866.64 11792.15 14093.68 6781.07 4376.91 13893.64 10262.59 10398.44 3185.50 7092.84 5794.03 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 5684.87 6286.84 5188.25 18369.07 5593.04 10791.76 14481.27 4180.84 9492.07 13564.23 7996.06 13184.98 7687.43 11395.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 5785.08 5886.06 7593.09 6865.65 14093.89 7393.41 8073.75 14779.94 10194.68 7260.61 12498.03 3882.63 9393.72 4494.52 96
MP-MVS-pluss85.24 5885.13 5785.56 9291.42 11165.59 14291.54 17092.51 11474.56 13080.62 9595.64 4259.15 14197.00 9286.94 6193.80 4194.07 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPR85.15 5984.47 6487.18 4296.02 2568.29 7391.85 15893.00 9676.59 10979.03 11295.00 6161.59 11497.61 5878.16 12989.00 10095.63 48
MP-MVScopyleft85.02 6084.97 6085.17 10592.60 8164.27 17793.24 10092.27 11973.13 15879.63 10594.43 7861.90 10997.17 8385.00 7592.56 5994.06 114
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 6184.44 6586.71 5688.33 18068.73 6390.24 22091.82 14381.05 4481.18 8892.50 12463.69 8796.08 13084.45 8186.71 12395.32 61
CHOSEN 1792x268884.98 6283.45 7789.57 1089.94 13975.14 592.07 14692.32 11781.87 3175.68 14788.27 19260.18 12798.60 2780.46 11190.27 9194.96 77
EIA-MVS84.84 6384.88 6184.69 12391.30 11462.36 22493.85 7592.04 12979.45 5979.33 10994.28 8862.42 10496.35 11980.05 11291.25 8195.38 56
fmvsm_s_conf0.1_n_a84.76 6484.84 6384.53 13080.23 30563.50 20092.79 11588.73 26880.46 4889.84 2496.65 2060.96 12097.57 6193.80 1180.14 17192.53 160
HFP-MVS84.73 6584.40 6685.72 8893.75 5165.01 15793.50 9493.19 8772.19 18379.22 11094.93 6459.04 14297.67 5181.55 10092.21 6294.49 99
MVS84.66 6682.86 9290.06 290.93 12074.56 687.91 26695.54 1168.55 25472.35 18894.71 7159.78 13398.90 1981.29 10694.69 3196.74 13
GST-MVS84.63 6784.29 6785.66 9092.82 7365.27 14993.04 10793.13 9073.20 15678.89 11394.18 9159.41 13897.85 4581.45 10292.48 6193.86 123
EC-MVSNet84.53 6885.04 5983.01 17189.34 15161.37 24594.42 5191.09 17477.91 8783.24 7294.20 9058.37 14695.40 16085.35 7191.41 7792.27 170
ACMMPR84.37 6984.06 6885.28 10093.56 5464.37 17393.50 9493.15 8972.19 18378.85 11894.86 6756.69 16897.45 6581.55 10092.20 6394.02 116
region2R84.36 7084.03 6985.36 9893.54 5564.31 17593.43 9792.95 9772.16 18678.86 11794.84 6856.97 16397.53 6381.38 10492.11 6594.24 103
LFMVS84.34 7182.73 9489.18 1294.76 3373.25 994.99 4291.89 13771.90 19182.16 8193.49 10647.98 25597.05 8782.55 9484.82 13597.25 7
test_yl84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
DCV-MVSNet84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
diffmvspermissive84.28 7283.83 7085.61 9187.40 20568.02 8290.88 19989.24 24280.54 4781.64 8492.52 12359.83 13294.52 19587.32 5685.11 13394.29 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 7283.36 8387.02 4892.22 8767.74 8884.65 29294.50 3779.15 6782.23 8087.93 20166.88 5196.94 10180.53 11082.20 15496.39 28
MAR-MVS84.18 7683.43 7886.44 6696.25 2165.93 13594.28 5394.27 5074.41 13179.16 11195.61 4353.99 19998.88 2169.62 19493.26 5294.50 98
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 7783.20 8487.05 4791.56 10769.82 3989.99 22992.05 12877.77 8982.84 7586.57 21963.93 8396.09 12774.91 15089.18 9995.25 69
CANet_DTU84.09 7883.52 7285.81 8490.30 13266.82 11291.87 15689.01 25685.27 986.09 4693.74 9947.71 25996.98 9677.90 13189.78 9593.65 128
ET-MVSNet_ETH3D84.01 7983.15 8786.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 31893.64 10273.64 2392.35 27182.66 9278.66 18596.50 24
PVSNet_Blended_VisFu83.97 8083.50 7485.39 9790.02 13766.59 12093.77 8291.73 14577.43 9877.08 13789.81 17463.77 8696.97 9879.67 11488.21 10592.60 157
MTAPA83.91 8183.38 8285.50 9391.89 9965.16 15381.75 31592.23 12075.32 12280.53 9695.21 5856.06 17697.16 8484.86 7892.55 6094.18 105
XVS83.87 8283.47 7685.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12294.31 8755.25 18297.41 6879.16 11991.58 7493.95 118
Effi-MVS+83.82 8382.76 9386.99 4989.56 14769.40 4691.35 18286.12 30872.59 17083.22 7392.81 12159.60 13596.01 13581.76 9987.80 10895.56 51
test_fmvsmvis_n_192083.80 8483.48 7584.77 11882.51 28163.72 18991.37 18083.99 32881.42 3977.68 12795.74 4058.37 14697.58 5993.38 1286.87 11793.00 148
EI-MVSNet-Vis-set83.77 8583.67 7184.06 14692.79 7663.56 19791.76 16394.81 2679.65 5877.87 12594.09 9263.35 9597.90 4279.35 11779.36 17790.74 195
MVSFormer83.75 8682.88 9186.37 6989.24 15871.18 1989.07 24890.69 18565.80 27587.13 3794.34 8564.99 6892.67 25772.83 16191.80 7095.27 66
CP-MVS83.71 8783.40 8184.65 12593.14 6663.84 18394.59 4992.28 11871.03 22077.41 13194.92 6555.21 18596.19 12381.32 10590.70 8693.91 120
test_fmvsmconf0.01_n83.70 8883.52 7284.25 14275.26 34761.72 23992.17 13987.24 29782.36 2684.91 5995.41 4655.60 18096.83 10792.85 1585.87 12994.21 104
baseline283.68 8983.42 8084.48 13387.37 20666.00 13290.06 22495.93 879.71 5769.08 22490.39 16277.92 696.28 12178.91 12381.38 16291.16 191
thisisatest051583.41 9082.49 9986.16 7489.46 15068.26 7593.54 9294.70 3074.31 13475.75 14590.92 15272.62 2896.52 11769.64 19281.50 16193.71 126
PVSNet_BlendedMVS83.38 9183.43 7883.22 16893.76 4967.53 9594.06 6193.61 6979.13 6881.00 9285.14 23463.19 9797.29 7687.08 5973.91 22384.83 294
test250683.29 9282.92 9084.37 13788.39 17863.18 20792.01 14991.35 16277.66 9278.49 12191.42 14564.58 7695.09 16973.19 15789.23 9794.85 80
iter_conf0583.27 9382.70 9584.98 10993.32 5971.84 1594.16 5681.76 33982.74 2173.83 16988.40 18872.77 2794.61 18682.10 9675.21 21288.48 227
PGM-MVS83.25 9482.70 9584.92 11092.81 7564.07 18090.44 21192.20 12471.28 21477.23 13494.43 7855.17 18697.31 7579.33 11891.38 7893.37 134
HPM-MVScopyleft83.25 9482.95 8984.17 14492.25 8662.88 21690.91 19691.86 13970.30 23277.12 13593.96 9656.75 16696.28 12182.04 9791.34 8093.34 135
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-UG-set83.14 9682.96 8883.67 15792.28 8563.19 20691.38 17994.68 3179.22 6576.60 14093.75 9862.64 10297.76 4878.07 13078.01 18890.05 204
VDD-MVS83.06 9781.81 10886.81 5390.86 12367.70 8995.40 2991.50 15775.46 11981.78 8392.34 13140.09 29697.13 8586.85 6282.04 15595.60 49
h-mvs3383.01 9882.56 9884.35 13889.34 15162.02 23192.72 11893.76 6281.45 3682.73 7792.25 13360.11 12897.13 8587.69 5162.96 30293.91 120
PAPM_NR82.97 9981.84 10786.37 6994.10 4466.76 11587.66 27192.84 10069.96 23674.07 16693.57 10463.10 9997.50 6470.66 18590.58 8894.85 80
mPP-MVS82.96 10082.44 10084.52 13192.83 7162.92 21492.76 11691.85 14171.52 21075.61 15094.24 8953.48 20796.99 9578.97 12290.73 8593.64 129
SR-MVS82.81 10182.58 9783.50 16293.35 5861.16 24892.23 13891.28 16664.48 28481.27 8695.28 5253.71 20395.86 13782.87 9188.77 10293.49 132
DP-MVS Recon82.73 10281.65 10985.98 7797.31 467.06 10695.15 3691.99 13169.08 24976.50 14293.89 9754.48 19498.20 3570.76 18385.66 13192.69 154
CLD-MVS82.73 10282.35 10283.86 15087.90 19367.65 9195.45 2892.18 12685.06 1072.58 18192.27 13252.46 21595.78 13984.18 8279.06 18088.16 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 10482.38 10183.73 15489.25 15559.58 27692.24 13794.89 2377.96 8579.86 10292.38 12956.70 16797.05 8777.26 13480.86 16694.55 92
3Dnovator73.91 682.69 10580.82 12088.31 2389.57 14671.26 1892.60 12694.39 4578.84 7567.89 24592.48 12748.42 25098.52 2868.80 20494.40 3495.15 71
MVSTER82.47 10682.05 10383.74 15292.68 7869.01 5791.90 15593.21 8479.83 5372.14 18985.71 23174.72 1694.72 18175.72 14172.49 23487.50 238
TESTMET0.1,182.41 10781.98 10683.72 15588.08 18763.74 18792.70 12093.77 6179.30 6377.61 12987.57 20758.19 14994.08 21173.91 15686.68 12493.33 137
CostFormer82.33 10881.15 11385.86 8289.01 16368.46 6982.39 31293.01 9475.59 11780.25 9881.57 27772.03 3294.96 17379.06 12177.48 19694.16 107
API-MVS82.28 10980.53 12787.54 3596.13 2270.59 2793.63 8891.04 18065.72 27775.45 15292.83 12056.11 17598.89 2064.10 24789.75 9693.15 141
IB-MVS77.80 482.18 11080.46 12987.35 3989.14 16070.28 3195.59 2695.17 1778.85 7470.19 21285.82 22970.66 3597.67 5172.19 17266.52 27594.09 111
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base_debi82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
3Dnovator+73.60 782.10 11480.60 12686.60 5990.89 12266.80 11495.20 3493.44 7874.05 13867.42 25192.49 12649.46 24097.65 5570.80 18291.68 7295.33 59
MVS_111021_LR82.02 11581.52 11083.51 16188.42 17662.88 21689.77 23388.93 26076.78 10575.55 15193.10 10950.31 23295.38 16283.82 8787.02 11692.26 171
PMMVS81.98 11682.04 10481.78 20489.76 14356.17 31391.13 19290.69 18577.96 8580.09 10093.57 10446.33 26994.99 17281.41 10387.46 11294.17 106
baseline181.84 11781.03 11884.28 14191.60 10566.62 11891.08 19391.66 15181.87 3174.86 15691.67 14269.98 3794.92 17671.76 17564.75 29091.29 189
EPP-MVSNet81.79 11881.52 11082.61 18088.77 16960.21 26893.02 10993.66 6868.52 25572.90 17690.39 16272.19 3194.96 17374.93 14979.29 17992.67 155
iter_conf_final81.74 11980.93 11984.18 14392.66 7969.10 5492.94 11182.80 33779.01 7374.85 15788.40 18861.83 11294.61 18679.36 11676.52 20588.83 218
test_vis1_n_192081.66 12082.01 10580.64 23182.24 28455.09 32194.76 4686.87 29981.67 3484.40 6494.63 7338.17 30794.67 18591.98 2483.34 14692.16 174
APD-MVS_3200maxsize81.64 12181.32 11282.59 18192.36 8358.74 28891.39 17791.01 18163.35 29379.72 10494.62 7451.82 21896.14 12579.71 11387.93 10792.89 152
ACMMPcopyleft81.49 12280.67 12383.93 14991.71 10362.90 21592.13 14192.22 12371.79 19871.68 19693.49 10650.32 23196.96 9978.47 12784.22 14491.93 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 12380.74 12183.52 15986.26 22564.45 16792.09 14490.65 18975.83 11673.95 16889.81 17463.97 8292.91 24771.27 17882.82 14993.20 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 12479.99 13485.46 9490.39 13168.40 7086.88 28290.61 19074.41 13170.31 21184.67 24063.79 8592.32 27273.13 15885.70 13095.67 46
ECVR-MVScopyleft81.29 12580.38 13084.01 14888.39 17861.96 23392.56 13186.79 30177.66 9276.63 13991.42 14546.34 26895.24 16774.36 15489.23 9794.85 80
thisisatest053081.15 12680.07 13184.39 13688.26 18265.63 14191.40 17594.62 3471.27 21570.93 20289.18 17972.47 2996.04 13265.62 23676.89 20291.49 180
Fast-Effi-MVS+81.14 12780.01 13384.51 13290.24 13365.86 13694.12 6089.15 24873.81 14675.37 15388.26 19357.26 15694.53 19466.97 22184.92 13493.15 141
HQP-MVS81.14 12780.64 12482.64 17987.54 20163.66 19494.06 6191.70 14979.80 5474.18 16290.30 16451.63 22295.61 15177.63 13278.90 18188.63 223
hse-mvs281.12 12981.11 11781.16 21886.52 22057.48 30389.40 24191.16 16981.45 3682.73 7790.49 16060.11 12894.58 18887.69 5160.41 32991.41 183
SR-MVS-dyc-post81.06 13080.70 12282.15 19592.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7651.26 22695.61 15178.77 12586.77 12192.28 167
HyFIR lowres test81.03 13179.56 14185.43 9587.81 19768.11 8090.18 22190.01 21670.65 22872.95 17586.06 22763.61 9094.50 19675.01 14879.75 17593.67 127
nrg03080.93 13279.86 13684.13 14583.69 26868.83 6193.23 10191.20 16775.55 11875.06 15588.22 19663.04 10094.74 18081.88 9866.88 27288.82 221
Vis-MVSNetpermissive80.92 13379.98 13583.74 15288.48 17361.80 23593.44 9688.26 28473.96 14277.73 12691.76 13949.94 23694.76 17865.84 23390.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 13480.02 13283.33 16587.87 19460.76 25692.62 12586.86 30077.86 8875.73 14691.39 14746.35 26794.70 18472.79 16388.68 10394.52 96
131480.70 13578.95 15285.94 7987.77 19967.56 9387.91 26692.55 11372.17 18567.44 25093.09 11050.27 23397.04 9071.68 17787.64 11093.23 139
tpmrst80.57 13679.14 15184.84 11390.10 13668.28 7481.70 31689.72 22877.63 9475.96 14479.54 30964.94 7092.71 25475.43 14377.28 19993.55 130
1112_ss80.56 13779.83 13782.77 17588.65 17060.78 25492.29 13588.36 27872.58 17172.46 18594.95 6265.09 6793.42 23566.38 22777.71 19094.10 110
VDDNet80.50 13878.26 16087.21 4186.19 22669.79 4094.48 5091.31 16360.42 31879.34 10890.91 15338.48 30596.56 11582.16 9581.05 16495.27 66
BH-w/o80.49 13979.30 14884.05 14790.83 12464.36 17493.60 8989.42 23674.35 13369.09 22390.15 16955.23 18495.61 15164.61 24486.43 12792.17 173
test_cas_vis1_n_192080.45 14080.61 12579.97 24878.25 33157.01 30994.04 6588.33 27979.06 7182.81 7693.70 10038.65 30291.63 28690.82 3379.81 17391.27 190
TAMVS80.37 14179.45 14483.13 17085.14 24563.37 20291.23 18790.76 18474.81 12972.65 17988.49 18560.63 12392.95 24269.41 19681.95 15793.08 144
HQP_MVS80.34 14279.75 13882.12 19786.94 21462.42 22293.13 10391.31 16378.81 7672.53 18289.14 18150.66 22995.55 15676.74 13578.53 18688.39 230
SDMVSNet80.26 14378.88 15384.40 13589.25 15567.63 9285.35 28893.02 9376.77 10670.84 20387.12 21347.95 25696.09 12785.04 7474.55 21489.48 214
HPM-MVS_fast80.25 14479.55 14382.33 18791.55 10859.95 27191.32 18489.16 24765.23 28174.71 15993.07 11247.81 25895.74 14274.87 15288.23 10491.31 188
ab-mvs80.18 14578.31 15985.80 8588.44 17565.49 14783.00 30992.67 10671.82 19777.36 13285.01 23554.50 19196.59 11276.35 13975.63 21095.32 61
IS-MVSNet80.14 14679.41 14582.33 18787.91 19260.08 27091.97 15388.27 28272.90 16671.44 19991.73 14161.44 11593.66 23062.47 26186.53 12593.24 138
test-LLR80.10 14779.56 14181.72 20686.93 21661.17 24692.70 12091.54 15471.51 21175.62 14886.94 21553.83 20092.38 26872.21 17084.76 13791.60 178
PVSNet73.49 880.05 14878.63 15584.31 13990.92 12164.97 15892.47 13291.05 17979.18 6672.43 18690.51 15937.05 32294.06 21368.06 20886.00 12893.90 122
UA-Net80.02 14979.65 13981.11 22089.33 15357.72 29886.33 28589.00 25977.44 9781.01 9189.15 18059.33 13995.90 13661.01 26884.28 14289.73 210
test-mter79.96 15079.38 14781.72 20686.93 21661.17 24692.70 12091.54 15473.85 14475.62 14886.94 21549.84 23892.38 26872.21 17084.76 13791.60 178
QAPM79.95 15177.39 17787.64 3089.63 14571.41 1793.30 9993.70 6665.34 28067.39 25391.75 14047.83 25798.96 1657.71 28489.81 9392.54 159
UGNet79.87 15278.68 15483.45 16489.96 13861.51 24292.13 14190.79 18376.83 10478.85 11886.33 22338.16 30896.17 12467.93 21187.17 11592.67 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 15377.95 16685.34 9988.28 18168.26 7581.56 31891.42 16070.11 23477.59 13080.50 29567.40 4894.26 20567.34 21677.35 19793.51 131
thres20079.66 15478.33 15883.66 15892.54 8265.82 13893.06 10596.31 374.90 12873.30 17288.66 18359.67 13495.61 15147.84 32178.67 18489.56 213
CPTT-MVS79.59 15579.16 15080.89 22991.54 10959.80 27392.10 14388.54 27660.42 31872.96 17493.28 10848.27 25192.80 25178.89 12486.50 12690.06 203
Test_1112_low_res79.56 15678.60 15682.43 18388.24 18460.39 26592.09 14487.99 28872.10 18771.84 19287.42 20964.62 7593.04 23965.80 23477.30 19893.85 124
tttt051779.50 15778.53 15782.41 18687.22 20961.43 24489.75 23494.76 2769.29 24467.91 24388.06 20072.92 2595.63 14962.91 25773.90 22490.16 202
FIs79.47 15879.41 14579.67 25585.95 23059.40 27891.68 16793.94 5678.06 8468.96 22888.28 19166.61 5491.77 28366.20 23074.99 21387.82 235
BH-RMVSNet79.46 15977.65 16984.89 11191.68 10465.66 13993.55 9188.09 28672.93 16373.37 17191.12 15146.20 27196.12 12656.28 28885.61 13292.91 150
PCF-MVS73.15 979.29 16077.63 17084.29 14086.06 22865.96 13487.03 27891.10 17369.86 23869.79 21990.64 15557.54 15596.59 11264.37 24682.29 15190.32 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 16179.57 14078.24 27688.46 17452.29 33290.41 21389.12 25074.24 13569.13 22291.91 13765.77 6190.09 30859.00 28088.09 10692.33 164
114514_t79.17 16277.67 16883.68 15695.32 2965.53 14592.85 11491.60 15363.49 29167.92 24290.63 15746.65 26495.72 14767.01 22083.54 14589.79 208
FA-MVS(test-final)79.12 16377.23 17984.81 11790.54 12763.98 18281.35 32191.71 14771.09 21974.85 15782.94 25852.85 21197.05 8767.97 20981.73 16093.41 133
VPA-MVSNet79.03 16478.00 16482.11 20085.95 23064.48 16693.22 10294.66 3275.05 12674.04 16784.95 23652.17 21793.52 23274.90 15167.04 27188.32 232
OPM-MVS79.00 16578.09 16281.73 20583.52 27163.83 18491.64 16990.30 20276.36 11271.97 19189.93 17346.30 27095.17 16875.10 14677.70 19186.19 266
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 16678.22 16181.25 21585.33 24062.73 21989.53 23893.21 8472.39 17872.14 18990.13 17060.99 11894.72 18167.73 21372.49 23486.29 262
AdaColmapbinary78.94 16777.00 18384.76 11996.34 1765.86 13692.66 12487.97 29062.18 30570.56 20592.37 13043.53 28497.35 7264.50 24582.86 14891.05 193
GeoE78.90 16877.43 17383.29 16688.95 16462.02 23192.31 13486.23 30670.24 23371.34 20089.27 17854.43 19594.04 21663.31 25380.81 16893.81 125
miper_enhance_ethall78.86 16977.97 16581.54 21088.00 19165.17 15291.41 17389.15 24875.19 12468.79 23183.98 24967.17 4992.82 24972.73 16465.30 28186.62 259
VPNet78.82 17077.53 17282.70 17784.52 25566.44 12293.93 7092.23 12080.46 4872.60 18088.38 19049.18 24493.13 23872.47 16863.97 29988.55 226
EPNet_dtu78.80 17179.26 14977.43 28488.06 18849.71 34591.96 15491.95 13377.67 9176.56 14191.28 14958.51 14590.20 30656.37 28780.95 16592.39 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 17277.43 17382.88 17392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19388.83 218
TR-MVS78.77 17377.37 17882.95 17290.49 12860.88 25293.67 8690.07 21170.08 23574.51 16091.37 14845.69 27495.70 14860.12 27480.32 17092.29 166
thres40078.68 17477.43 17382.43 18392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19387.48 239
BH-untuned78.68 17477.08 18083.48 16389.84 14063.74 18792.70 12088.59 27471.57 20866.83 26088.65 18451.75 22095.39 16159.03 27984.77 13691.32 187
OMC-MVS78.67 17677.91 16780.95 22785.76 23557.40 30588.49 25788.67 27173.85 14472.43 18692.10 13449.29 24394.55 19372.73 16477.89 18990.91 194
tpm78.58 17777.03 18183.22 16885.94 23264.56 16283.21 30691.14 17278.31 8173.67 17079.68 30764.01 8192.09 27766.07 23171.26 24493.03 146
OpenMVScopyleft70.45 1178.54 17875.92 19686.41 6885.93 23371.68 1692.74 11792.51 11466.49 27164.56 27591.96 13643.88 28398.10 3754.61 29390.65 8789.44 216
EPMVS78.49 17975.98 19586.02 7691.21 11669.68 4480.23 33091.20 16775.25 12372.48 18478.11 31754.65 19093.69 22957.66 28583.04 14794.69 86
AUN-MVS78.37 18077.43 17381.17 21786.60 21957.45 30489.46 24091.16 16974.11 13774.40 16190.49 16055.52 18194.57 19074.73 15360.43 32891.48 181
thres100view90078.37 18077.01 18282.46 18291.89 9963.21 20591.19 19196.33 172.28 18170.45 20887.89 20260.31 12595.32 16345.16 33277.58 19388.83 218
GA-MVS78.33 18276.23 19284.65 12583.65 26966.30 12691.44 17190.14 20976.01 11470.32 21084.02 24842.50 28894.72 18170.98 18077.00 20192.94 149
cascas78.18 18375.77 19885.41 9687.14 21169.11 5392.96 11091.15 17166.71 26970.47 20686.07 22637.49 31696.48 11870.15 18879.80 17490.65 196
UniMVSNet_NR-MVSNet78.15 18477.55 17179.98 24684.46 25760.26 26692.25 13693.20 8677.50 9668.88 22986.61 21866.10 5792.13 27566.38 22762.55 30687.54 237
thres600view778.00 18576.66 18782.03 20291.93 9663.69 19291.30 18596.33 172.43 17670.46 20787.89 20260.31 12594.92 17642.64 34476.64 20387.48 239
FC-MVSNet-test77.99 18678.08 16377.70 27984.89 25055.51 31890.27 21893.75 6576.87 10166.80 26187.59 20665.71 6290.23 30562.89 25873.94 22287.37 242
Anonymous20240521177.96 18775.33 20585.87 8193.73 5264.52 16394.85 4485.36 31462.52 30376.11 14390.18 16729.43 35197.29 7668.51 20677.24 20095.81 45
cl2277.94 18876.78 18581.42 21287.57 20064.93 16090.67 20688.86 26372.45 17567.63 24982.68 26264.07 8092.91 24771.79 17365.30 28186.44 260
XXY-MVS77.94 18876.44 18982.43 18382.60 28064.44 16892.01 14991.83 14273.59 15270.00 21585.82 22954.43 19594.76 17869.63 19368.02 26588.10 234
MS-PatchMatch77.90 19076.50 18882.12 19785.99 22969.95 3691.75 16592.70 10473.97 14162.58 29684.44 24441.11 29395.78 13963.76 25092.17 6480.62 340
FMVSNet377.73 19176.04 19482.80 17491.20 11768.99 5891.87 15691.99 13173.35 15567.04 25683.19 25756.62 16992.14 27459.80 27669.34 25287.28 246
miper_ehance_all_eth77.60 19276.44 18981.09 22485.70 23764.41 17190.65 20788.64 27372.31 17967.37 25482.52 26364.77 7492.64 26170.67 18465.30 28186.24 264
UniMVSNet (Re)77.58 19376.78 18579.98 24684.11 26360.80 25391.76 16393.17 8876.56 11069.93 21884.78 23963.32 9692.36 27064.89 24362.51 30886.78 254
PatchmatchNetpermissive77.46 19474.63 21185.96 7889.55 14870.35 3079.97 33589.55 23172.23 18270.94 20176.91 32857.03 15992.79 25254.27 29581.17 16394.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 19575.65 20182.73 17680.38 30167.13 10591.85 15890.23 20675.09 12569.37 22083.39 25553.79 20294.44 19771.77 17465.00 28786.63 258
CHOSEN 280x42077.35 19676.95 18478.55 27187.07 21262.68 22069.71 36382.95 33568.80 25171.48 19887.27 21266.03 5884.00 35076.47 13882.81 15088.95 217
PS-MVSNAJss77.26 19776.31 19180.13 24280.64 29959.16 28390.63 21091.06 17872.80 16768.58 23584.57 24253.55 20493.96 22172.97 15971.96 23887.27 247
gg-mvs-nofinetune77.18 19874.31 21885.80 8591.42 11168.36 7171.78 35794.72 2949.61 35877.12 13545.92 38177.41 893.98 22067.62 21493.16 5395.05 74
MVP-Stereo77.12 19976.23 19279.79 25381.72 28966.34 12589.29 24290.88 18270.56 23062.01 29982.88 25949.34 24194.13 20865.55 23893.80 4178.88 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 20075.37 20382.20 19389.25 15562.11 23082.06 31389.09 25276.77 10670.84 20387.12 21341.43 29295.01 17167.23 21874.55 21489.48 214
dmvs_re76.93 20175.36 20481.61 20887.78 19860.71 25980.00 33487.99 28879.42 6069.02 22689.47 17746.77 26294.32 19963.38 25274.45 21789.81 207
X-MVStestdata76.86 20274.13 22285.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12210.19 39655.25 18297.41 6879.16 11991.58 7493.95 118
DU-MVS76.86 20275.84 19779.91 24982.96 27760.26 26691.26 18691.54 15476.46 11168.88 22986.35 22156.16 17392.13 27566.38 22762.55 30687.35 244
mvsmamba76.85 20475.71 20080.25 23983.07 27659.16 28391.44 17180.64 34476.84 10367.95 24186.33 22346.17 27294.24 20676.06 14072.92 23087.36 243
Anonymous2024052976.84 20574.15 22184.88 11291.02 11864.95 15993.84 7891.09 17453.57 34773.00 17387.42 20935.91 32697.32 7469.14 20072.41 23692.36 163
c3_l76.83 20675.47 20280.93 22885.02 24864.18 17990.39 21488.11 28571.66 20166.65 26281.64 27563.58 9292.56 26269.31 19862.86 30386.04 271
WR-MVS76.76 20775.74 19979.82 25284.60 25362.27 22892.60 12692.51 11476.06 11367.87 24685.34 23256.76 16590.24 30462.20 26263.69 30186.94 252
v114476.73 20874.88 20882.27 18980.23 30566.60 11991.68 16790.21 20873.69 14969.06 22581.89 27052.73 21394.40 19869.21 19965.23 28485.80 277
IterMVS-LS76.49 20975.18 20780.43 23484.49 25662.74 21890.64 20888.80 26572.40 17765.16 26981.72 27360.98 11992.27 27367.74 21264.65 29286.29 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 21074.55 21482.19 19479.14 31967.82 8690.26 21989.42 23673.75 14768.63 23481.89 27051.31 22594.09 21071.69 17664.84 28884.66 295
v14876.19 21174.47 21681.36 21380.05 30764.44 16891.75 16590.23 20673.68 15067.13 25580.84 29055.92 17893.86 22768.95 20261.73 31785.76 280
Effi-MVS+-dtu76.14 21275.28 20678.72 27083.22 27355.17 32089.87 23087.78 29175.42 12067.98 24081.43 27945.08 27992.52 26475.08 14771.63 23988.48 227
cl____76.07 21374.67 20980.28 23785.15 24461.76 23790.12 22288.73 26871.16 21665.43 26681.57 27761.15 11692.95 24266.54 22462.17 31086.13 269
DIV-MVS_self_test76.07 21374.67 20980.28 23785.14 24561.75 23890.12 22288.73 26871.16 21665.42 26781.60 27661.15 11692.94 24666.54 22462.16 31286.14 267
FMVSNet276.07 21374.01 22482.26 19188.85 16567.66 9091.33 18391.61 15270.84 22365.98 26382.25 26648.03 25292.00 27958.46 28168.73 26087.10 249
v14419276.05 21674.03 22382.12 19779.50 31366.55 12191.39 17789.71 22972.30 18068.17 23881.33 28251.75 22094.03 21867.94 21064.19 29485.77 278
NR-MVSNet76.05 21674.59 21280.44 23382.96 27762.18 22990.83 20191.73 14577.12 10060.96 30386.35 22159.28 14091.80 28260.74 26961.34 32187.35 244
v119275.98 21873.92 22582.15 19579.73 30966.24 12891.22 18889.75 22372.67 16968.49 23681.42 28049.86 23794.27 20367.08 21965.02 28685.95 274
FE-MVS75.97 21973.02 23584.82 11489.78 14165.56 14377.44 34691.07 17764.55 28372.66 17879.85 30546.05 27396.69 11054.97 29280.82 16792.21 172
eth_miper_zixun_eth75.96 22074.40 21780.66 23084.66 25263.02 20989.28 24388.27 28271.88 19365.73 26481.65 27459.45 13692.81 25068.13 20760.53 32686.14 267
TranMVSNet+NR-MVSNet75.86 22174.52 21579.89 25082.44 28260.64 26291.37 18091.37 16176.63 10867.65 24886.21 22552.37 21691.55 28861.84 26460.81 32487.48 239
SCA75.82 22272.76 23985.01 10886.63 21870.08 3281.06 32389.19 24571.60 20770.01 21477.09 32645.53 27590.25 30160.43 27173.27 22694.68 87
LPG-MVS_test75.82 22274.58 21379.56 25984.31 26059.37 27990.44 21189.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
GBi-Net75.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
test175.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
v192192075.63 22673.49 23182.06 20179.38 31466.35 12491.07 19589.48 23271.98 18867.99 23981.22 28549.16 24693.90 22466.56 22364.56 29385.92 276
ACMP71.68 1075.58 22774.23 22079.62 25784.97 24959.64 27490.80 20289.07 25470.39 23162.95 29287.30 21138.28 30693.87 22572.89 16071.45 24285.36 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 22873.26 23381.61 20880.67 29866.82 11289.54 23789.27 24171.65 20263.30 28880.30 29954.99 18894.06 21367.33 21762.33 30983.94 300
tpm cat175.30 22972.21 24884.58 12988.52 17167.77 8778.16 34488.02 28761.88 31068.45 23776.37 33260.65 12294.03 21853.77 29874.11 22091.93 176
PLCcopyleft68.80 1475.23 23073.68 22979.86 25192.93 7058.68 28990.64 20888.30 28060.90 31564.43 27990.53 15842.38 28994.57 19056.52 28676.54 20486.33 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 23172.98 23681.88 20379.20 31666.00 13290.75 20489.11 25171.63 20667.41 25281.22 28547.36 26093.87 22565.46 23964.72 29185.77 278
Fast-Effi-MVS+-dtu75.04 23273.37 23280.07 24380.86 29459.52 27791.20 19085.38 31371.90 19165.20 26884.84 23841.46 29192.97 24166.50 22672.96 22987.73 236
dp75.01 23372.09 24983.76 15189.28 15466.22 12979.96 33689.75 22371.16 21667.80 24777.19 32551.81 21992.54 26350.39 30671.44 24392.51 161
TAPA-MVS70.22 1274.94 23473.53 23079.17 26490.40 13052.07 33389.19 24689.61 23062.69 30270.07 21392.67 12248.89 24994.32 19938.26 35879.97 17291.12 192
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 23572.54 24581.46 21180.33 30366.71 11689.15 24789.08 25370.94 22163.08 29179.86 30452.52 21494.04 21665.70 23562.17 31083.64 302
XVG-OURS-SEG-HR74.70 23673.08 23479.57 25878.25 33157.33 30680.49 32687.32 29463.22 29568.76 23290.12 17244.89 28091.59 28770.55 18674.09 22189.79 208
RRT_MVS74.44 23772.97 23778.84 26982.36 28357.66 30089.83 23288.79 26770.61 22964.58 27484.89 23739.24 29892.65 26070.11 18966.34 27686.21 265
ACMM69.62 1374.34 23872.73 24179.17 26484.25 26257.87 29690.36 21589.93 21763.17 29765.64 26586.04 22837.79 31494.10 20965.89 23271.52 24185.55 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 23972.30 24780.32 23591.49 11061.66 24090.85 20080.72 34356.67 33963.85 28390.64 15546.75 26390.84 29653.79 29775.99 20988.47 229
XVG-OURS74.25 24072.46 24679.63 25678.45 32957.59 30280.33 32887.39 29363.86 28868.76 23289.62 17640.50 29591.72 28469.00 20174.25 21989.58 211
test_fmvs174.07 24173.69 22875.22 30378.91 32347.34 35789.06 25074.69 35863.68 29079.41 10791.59 14324.36 36087.77 32785.22 7276.26 20790.55 199
CVMVSNet74.04 24274.27 21973.33 31885.33 24043.94 36889.53 23888.39 27754.33 34670.37 20990.13 17049.17 24584.05 34861.83 26579.36 17791.99 175
Baseline_NR-MVSNet73.99 24372.83 23877.48 28380.78 29659.29 28291.79 16084.55 32168.85 25068.99 22780.70 29156.16 17392.04 27862.67 25960.98 32381.11 334
pmmvs473.92 24471.81 25380.25 23979.17 31765.24 15087.43 27487.26 29667.64 26363.46 28683.91 25048.96 24891.53 29262.94 25665.49 28083.96 299
D2MVS73.80 24572.02 25079.15 26679.15 31862.97 21088.58 25690.07 21172.94 16259.22 31278.30 31442.31 29092.70 25665.59 23772.00 23781.79 329
CR-MVSNet73.79 24670.82 26182.70 17783.15 27467.96 8370.25 36084.00 32673.67 15169.97 21672.41 34657.82 15289.48 31252.99 30173.13 22790.64 197
test_djsdf73.76 24772.56 24477.39 28577.00 34153.93 32689.07 24890.69 18565.80 27563.92 28182.03 26943.14 28792.67 25772.83 16168.53 26185.57 282
pmmvs573.35 24871.52 25578.86 26878.64 32760.61 26391.08 19386.90 29867.69 26063.32 28783.64 25144.33 28290.53 29862.04 26366.02 27885.46 285
Anonymous2023121173.08 24970.39 26581.13 21990.62 12663.33 20391.40 17590.06 21351.84 35264.46 27880.67 29336.49 32494.07 21263.83 24964.17 29585.98 273
tt080573.07 25070.73 26280.07 24378.37 33057.05 30887.78 26892.18 12661.23 31467.04 25686.49 22031.35 34594.58 18865.06 24267.12 27088.57 225
miper_lstm_enhance73.05 25171.73 25477.03 29083.80 26658.32 29281.76 31488.88 26169.80 23961.01 30278.23 31657.19 15787.51 33165.34 24059.53 33185.27 290
jajsoiax73.05 25171.51 25677.67 28077.46 33854.83 32288.81 25290.04 21469.13 24862.85 29483.51 25331.16 34692.75 25370.83 18169.80 24885.43 286
LCM-MVSNet-Re72.93 25371.84 25276.18 29988.49 17248.02 35280.07 33370.17 36973.96 14252.25 34280.09 30349.98 23588.24 32167.35 21584.23 14392.28 167
pm-mvs172.89 25471.09 25878.26 27579.10 32057.62 30190.80 20289.30 24067.66 26162.91 29381.78 27249.11 24792.95 24260.29 27358.89 33484.22 298
tpmvs72.88 25569.76 27182.22 19290.98 11967.05 10778.22 34388.30 28063.10 29864.35 28074.98 33955.09 18794.27 20343.25 33869.57 25185.34 288
test0.0.03 172.76 25672.71 24272.88 32280.25 30447.99 35391.22 18889.45 23471.51 21162.51 29787.66 20553.83 20085.06 34450.16 30867.84 26885.58 281
UniMVSNet_ETH3D72.74 25770.53 26479.36 26178.62 32856.64 31185.01 29089.20 24463.77 28964.84 27284.44 24434.05 33391.86 28163.94 24870.89 24689.57 212
mvs_tets72.71 25871.11 25777.52 28177.41 33954.52 32488.45 25889.76 22268.76 25362.70 29583.26 25629.49 35092.71 25470.51 18769.62 25085.34 288
FMVSNet172.71 25869.91 26981.10 22183.60 27065.11 15490.01 22690.32 19863.92 28763.56 28580.25 30036.35 32591.54 28954.46 29466.75 27386.64 255
test_fmvs1_n72.69 26071.92 25174.99 30671.15 36047.08 35987.34 27675.67 35363.48 29278.08 12491.17 15020.16 37187.87 32484.65 7975.57 21190.01 205
IterMVS72.65 26170.83 25978.09 27782.17 28562.96 21187.64 27286.28 30471.56 20960.44 30578.85 31245.42 27786.66 33563.30 25461.83 31484.65 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d72.58 26272.74 24072.10 33087.87 19449.45 34788.07 26289.01 25672.91 16463.11 28988.10 19763.63 8885.54 34032.73 37269.23 25581.32 332
PatchMatch-RL72.06 26369.98 26678.28 27489.51 14955.70 31783.49 29983.39 33361.24 31363.72 28482.76 26034.77 33093.03 24053.37 30077.59 19286.12 270
PVSNet_068.08 1571.81 26468.32 28182.27 18984.68 25162.31 22788.68 25490.31 20175.84 11557.93 32380.65 29437.85 31394.19 20769.94 19029.05 38690.31 201
MIMVSNet71.64 26568.44 27981.23 21681.97 28864.44 16873.05 35688.80 26569.67 24064.59 27374.79 34032.79 33787.82 32553.99 29676.35 20691.42 182
test_vis1_n71.63 26670.73 26274.31 31369.63 36647.29 35886.91 28072.11 36463.21 29675.18 15490.17 16820.40 36985.76 33984.59 8074.42 21889.87 206
bld_raw_dy_0_6471.59 26769.71 27277.22 28977.82 33758.12 29487.71 27073.66 36068.01 25861.90 30184.29 24633.68 33488.43 31969.91 19170.43 24785.11 291
IterMVS-SCA-FT71.55 26869.97 26776.32 29781.48 29060.67 26187.64 27285.99 30966.17 27359.50 31078.88 31145.53 27583.65 35262.58 26061.93 31384.63 297
v7n71.31 26968.65 27679.28 26276.40 34360.77 25586.71 28389.45 23464.17 28658.77 31778.24 31544.59 28193.54 23157.76 28361.75 31683.52 305
anonymousdsp71.14 27069.37 27476.45 29672.95 35554.71 32384.19 29488.88 26161.92 30962.15 29879.77 30638.14 30991.44 29468.90 20367.45 26983.21 311
F-COLMAP70.66 27168.44 27977.32 28686.37 22455.91 31588.00 26486.32 30356.94 33757.28 32688.07 19933.58 33592.49 26551.02 30468.37 26283.55 303
WR-MVS_H70.59 27269.94 26872.53 32481.03 29351.43 33687.35 27592.03 13067.38 26460.23 30780.70 29155.84 17983.45 35446.33 32858.58 33682.72 318
CP-MVSNet70.50 27369.91 26972.26 32780.71 29751.00 33987.23 27790.30 20267.84 25959.64 30982.69 26150.23 23482.30 36251.28 30359.28 33283.46 307
RPMNet70.42 27465.68 29384.63 12783.15 27467.96 8370.25 36090.45 19246.83 36669.97 21665.10 36556.48 17295.30 16635.79 36373.13 22790.64 197
testing370.38 27570.83 25969.03 34185.82 23443.93 36990.72 20590.56 19168.06 25760.24 30686.82 21764.83 7284.12 34626.33 37964.10 29679.04 353
tfpnnormal70.10 27667.36 28478.32 27383.45 27260.97 25188.85 25192.77 10264.85 28260.83 30478.53 31343.52 28593.48 23331.73 37561.70 31880.52 341
TransMVSNet (Re)70.07 27767.66 28377.31 28780.62 30059.13 28591.78 16284.94 31865.97 27460.08 30880.44 29650.78 22891.87 28048.84 31445.46 36480.94 336
CL-MVSNet_self_test69.92 27868.09 28275.41 30273.25 35455.90 31690.05 22589.90 21869.96 23661.96 30076.54 32951.05 22787.64 32849.51 31250.59 35682.70 320
DP-MVS69.90 27966.48 28680.14 24195.36 2862.93 21289.56 23576.11 35150.27 35757.69 32485.23 23339.68 29795.73 14333.35 36871.05 24581.78 330
PS-CasMVS69.86 28069.13 27572.07 33180.35 30250.57 34187.02 27989.75 22367.27 26559.19 31382.28 26546.58 26582.24 36350.69 30559.02 33383.39 309
Syy-MVS69.65 28169.52 27370.03 33787.87 19443.21 37088.07 26289.01 25672.91 16463.11 28988.10 19745.28 27885.54 34022.07 38369.23 25581.32 332
MSDG69.54 28265.73 29280.96 22685.11 24763.71 19084.19 29483.28 33456.95 33654.50 33384.03 24731.50 34396.03 13342.87 34269.13 25783.14 313
PEN-MVS69.46 28368.56 27772.17 32979.27 31549.71 34586.90 28189.24 24267.24 26859.08 31482.51 26447.23 26183.54 35348.42 31657.12 33783.25 310
LS3D69.17 28466.40 28877.50 28291.92 9756.12 31485.12 28980.37 34546.96 36456.50 32887.51 20837.25 31793.71 22832.52 37479.40 17682.68 321
PatchT69.11 28565.37 29780.32 23582.07 28763.68 19367.96 36987.62 29250.86 35569.37 22065.18 36457.09 15888.53 31841.59 34766.60 27488.74 222
KD-MVS_2432*160069.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
miper_refine_blended69.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
mvsany_test168.77 28868.56 27769.39 33973.57 35345.88 36480.93 32460.88 38259.65 32471.56 19790.26 16643.22 28675.05 37274.26 15562.70 30587.25 248
ACMH63.93 1768.62 28964.81 29980.03 24585.22 24363.25 20487.72 26984.66 32060.83 31651.57 34579.43 31027.29 35694.96 17341.76 34564.84 28881.88 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 29065.41 29677.96 27878.69 32662.93 21289.86 23189.17 24660.55 31750.27 35077.73 32022.60 36594.06 21347.18 32472.65 23376.88 362
ADS-MVSNet68.54 29164.38 30681.03 22588.06 18866.90 11168.01 36784.02 32557.57 33164.48 27669.87 35638.68 30089.21 31440.87 34967.89 26686.97 250
DTE-MVSNet68.46 29267.33 28571.87 33377.94 33549.00 35086.16 28688.58 27566.36 27258.19 31882.21 26746.36 26683.87 35144.97 33555.17 34482.73 317
our_test_368.29 29364.69 30179.11 26778.92 32164.85 16188.40 25985.06 31660.32 32052.68 34076.12 33440.81 29489.80 31144.25 33755.65 34282.67 322
Patchmatch-RL test68.17 29464.49 30479.19 26371.22 35953.93 32670.07 36271.54 36869.22 24556.79 32762.89 36856.58 17088.61 31569.53 19552.61 35195.03 76
XVG-ACMP-BASELINE68.04 29565.53 29575.56 30174.06 35252.37 33178.43 34085.88 31062.03 30758.91 31681.21 28720.38 37091.15 29560.69 27068.18 26383.16 312
FMVSNet568.04 29565.66 29475.18 30584.43 25857.89 29583.54 29886.26 30561.83 31153.64 33873.30 34337.15 32085.08 34348.99 31361.77 31582.56 323
ppachtmachnet_test67.72 29763.70 30879.77 25478.92 32166.04 13188.68 25482.90 33660.11 32255.45 33075.96 33539.19 29990.55 29739.53 35352.55 35282.71 319
ACMH+65.35 1667.65 29864.55 30276.96 29384.59 25457.10 30788.08 26180.79 34258.59 33053.00 33981.09 28926.63 35892.95 24246.51 32661.69 31980.82 337
pmmvs667.57 29964.76 30076.00 30072.82 35753.37 32888.71 25386.78 30253.19 34857.58 32578.03 31835.33 32992.41 26755.56 29054.88 34682.21 326
Anonymous2023120667.53 30065.78 29172.79 32374.95 34847.59 35588.23 26087.32 29461.75 31258.07 32077.29 32337.79 31487.29 33342.91 34063.71 30083.48 306
Patchmtry67.53 30063.93 30778.34 27282.12 28664.38 17268.72 36484.00 32648.23 36359.24 31172.41 34657.82 15289.27 31346.10 32956.68 34181.36 331
USDC67.43 30264.51 30376.19 29877.94 33555.29 31978.38 34185.00 31773.17 15748.36 35780.37 29721.23 36792.48 26652.15 30264.02 29880.81 338
ADS-MVSNet266.90 30363.44 31077.26 28888.06 18860.70 26068.01 36775.56 35557.57 33164.48 27669.87 35638.68 30084.10 34740.87 34967.89 26686.97 250
CMPMVSbinary48.56 2166.77 30464.41 30573.84 31570.65 36350.31 34277.79 34585.73 31245.54 36844.76 36782.14 26835.40 32890.14 30763.18 25574.54 21681.07 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 30562.92 31376.80 29576.51 34257.77 29789.22 24483.41 33255.48 34353.86 33777.84 31926.28 35993.95 22234.90 36568.76 25978.68 356
LTVRE_ROB59.60 1966.27 30663.54 30974.45 31084.00 26551.55 33567.08 37083.53 33058.78 32854.94 33280.31 29834.54 33193.23 23740.64 35168.03 26478.58 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 30762.45 31676.88 29481.42 29254.45 32557.49 38288.67 27149.36 35963.86 28246.86 38056.06 17690.25 30149.53 31168.83 25885.95 274
Patchmatch-test65.86 30860.94 32280.62 23283.75 26758.83 28758.91 38175.26 35744.50 37150.95 34977.09 32658.81 14487.90 32335.13 36464.03 29795.12 72
UnsupCasMVSNet_eth65.79 30963.10 31173.88 31470.71 36250.29 34381.09 32289.88 21972.58 17149.25 35574.77 34132.57 33987.43 33255.96 28941.04 37183.90 301
test_fmvs265.78 31064.84 29868.60 34366.54 37141.71 37283.27 30369.81 37054.38 34567.91 24384.54 24315.35 37681.22 36775.65 14266.16 27782.88 314
dmvs_testset65.55 31166.45 28762.86 35379.87 30822.35 39676.55 34871.74 36677.42 9955.85 32987.77 20451.39 22480.69 36831.51 37865.92 27985.55 283
pmmvs-eth3d65.53 31262.32 31775.19 30469.39 36759.59 27582.80 31083.43 33162.52 30351.30 34772.49 34432.86 33687.16 33455.32 29150.73 35578.83 355
SixPastTwentyTwo64.92 31361.78 32074.34 31278.74 32549.76 34483.42 30279.51 34862.86 29950.27 35077.35 32130.92 34890.49 29945.89 33047.06 36182.78 315
OurMVSNet-221017-064.68 31462.17 31872.21 32876.08 34647.35 35680.67 32581.02 34156.19 34051.60 34479.66 30827.05 35788.56 31753.60 29953.63 34980.71 339
test_040264.54 31561.09 32174.92 30784.10 26460.75 25787.95 26579.71 34752.03 35052.41 34177.20 32432.21 34191.64 28523.14 38161.03 32272.36 370
testgi64.48 31662.87 31469.31 34071.24 35840.62 37585.49 28779.92 34665.36 27954.18 33583.49 25423.74 36384.55 34541.60 34660.79 32582.77 316
RPSCF64.24 31761.98 31971.01 33576.10 34545.00 36575.83 35275.94 35246.94 36558.96 31584.59 24131.40 34482.00 36447.76 32260.33 33086.04 271
EU-MVSNet64.01 31863.01 31267.02 34974.40 35138.86 38083.27 30386.19 30745.11 36954.27 33481.15 28836.91 32380.01 37048.79 31557.02 33882.19 327
test20.0363.83 31962.65 31567.38 34870.58 36439.94 37686.57 28484.17 32363.29 29451.86 34377.30 32237.09 32182.47 36038.87 35754.13 34879.73 347
MDA-MVSNet_test_wron63.78 32060.16 32374.64 30878.15 33360.41 26483.49 29984.03 32456.17 34239.17 37671.59 35237.22 31883.24 35742.87 34248.73 35880.26 344
YYNet163.76 32160.14 32474.62 30978.06 33460.19 26983.46 30183.99 32856.18 34139.25 37571.56 35337.18 31983.34 35542.90 34148.70 35980.32 343
K. test v363.09 32259.61 32673.53 31776.26 34449.38 34983.27 30377.15 35064.35 28547.77 35972.32 34828.73 35287.79 32649.93 31036.69 37783.41 308
COLMAP_ROBcopyleft57.96 2062.98 32359.65 32572.98 32181.44 29153.00 33083.75 29775.53 35648.34 36248.81 35681.40 28124.14 36190.30 30032.95 37060.52 32775.65 365
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 32459.08 32771.10 33467.19 37048.72 35183.91 29685.23 31550.38 35647.84 35871.22 35520.74 36885.51 34246.47 32758.75 33579.06 352
AllTest61.66 32558.06 32972.46 32579.57 31051.42 33780.17 33168.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
UnsupCasMVSNet_bld61.60 32657.71 33073.29 31968.73 36851.64 33478.61 33989.05 25557.20 33546.11 36061.96 37128.70 35388.60 31650.08 30938.90 37579.63 348
MDA-MVSNet-bldmvs61.54 32757.70 33173.05 32079.53 31257.00 31083.08 30781.23 34057.57 33134.91 37972.45 34532.79 33786.26 33835.81 36241.95 36975.89 364
KD-MVS_self_test60.87 32858.60 32867.68 34666.13 37239.93 37775.63 35384.70 31957.32 33449.57 35368.45 35929.55 34982.87 35848.09 31747.94 36080.25 345
TinyColmap60.32 32956.42 33672.00 33278.78 32453.18 32978.36 34275.64 35452.30 34941.59 37475.82 33714.76 37988.35 32035.84 36154.71 34774.46 366
MVS-HIRNet60.25 33055.55 33774.35 31184.37 25956.57 31271.64 35874.11 35934.44 37945.54 36542.24 38631.11 34789.81 30940.36 35276.10 20876.67 363
MIMVSNet160.16 33157.33 33268.67 34269.71 36544.13 36778.92 33884.21 32255.05 34444.63 36871.85 35023.91 36281.54 36632.63 37355.03 34580.35 342
PM-MVS59.40 33256.59 33467.84 34463.63 37441.86 37176.76 34763.22 37959.01 32751.07 34872.27 34911.72 38283.25 35661.34 26650.28 35778.39 358
new-patchmatchnet59.30 33356.48 33567.79 34565.86 37344.19 36682.47 31181.77 33859.94 32343.65 37166.20 36327.67 35581.68 36539.34 35441.40 37077.50 361
test_vis1_rt59.09 33457.31 33364.43 35168.44 36946.02 36383.05 30848.63 39151.96 35149.57 35363.86 36716.30 37480.20 36971.21 17962.79 30467.07 376
test_fmvs356.82 33554.86 33862.69 35453.59 38435.47 38275.87 35165.64 37743.91 37255.10 33171.43 3546.91 39074.40 37568.64 20552.63 35078.20 359
DSMNet-mixed56.78 33654.44 33963.79 35263.21 37529.44 39164.43 37364.10 37842.12 37651.32 34671.60 35131.76 34275.04 37336.23 36065.20 28586.87 253
pmmvs355.51 33751.50 34267.53 34757.90 38250.93 34080.37 32773.66 36040.63 37744.15 37064.75 36616.30 37478.97 37144.77 33640.98 37372.69 368
TDRefinement55.28 33851.58 34166.39 35059.53 38146.15 36276.23 35072.80 36244.60 37042.49 37276.28 33315.29 37782.39 36133.20 36943.75 36670.62 372
LF4IMVS54.01 33952.12 34059.69 35562.41 37739.91 37868.59 36568.28 37442.96 37544.55 36975.18 33814.09 38168.39 38141.36 34851.68 35370.78 371
N_pmnet50.55 34049.11 34354.88 36177.17 3404.02 40484.36 2932.00 40248.59 36045.86 36368.82 35832.22 34082.80 35931.58 37651.38 35477.81 360
new_pmnet49.31 34146.44 34457.93 35662.84 37640.74 37468.47 36662.96 38036.48 37835.09 37857.81 37514.97 37872.18 37732.86 37146.44 36260.88 378
mvsany_test348.86 34246.35 34556.41 35746.00 39031.67 38762.26 37547.25 39243.71 37345.54 36568.15 36010.84 38364.44 38957.95 28235.44 38073.13 367
test_f46.58 34343.45 34755.96 35845.18 39132.05 38661.18 37649.49 39033.39 38042.05 37362.48 3707.00 38965.56 38547.08 32543.21 36870.27 373
WB-MVS46.23 34444.94 34650.11 36562.13 37821.23 39876.48 34955.49 38445.89 36735.78 37761.44 37335.54 32772.83 3769.96 39221.75 38756.27 380
FPMVS45.64 34543.10 34953.23 36351.42 38736.46 38164.97 37271.91 36529.13 38327.53 38361.55 3729.83 38565.01 38716.00 38955.58 34358.22 379
SSC-MVS44.51 34643.35 34847.99 36961.01 38018.90 40074.12 35554.36 38543.42 37434.10 38060.02 37434.42 33270.39 3799.14 39419.57 38854.68 381
EGC-MVSNET42.35 34738.09 35055.11 36074.57 34946.62 36171.63 35955.77 3830.04 3970.24 39862.70 36914.24 38074.91 37417.59 38646.06 36343.80 383
LCM-MVSNet40.54 34835.79 35354.76 36236.92 39730.81 38851.41 38569.02 37122.07 38524.63 38545.37 3824.56 39465.81 38433.67 36734.50 38167.67 374
APD_test140.50 34937.31 35250.09 36651.88 38535.27 38359.45 38052.59 38721.64 38626.12 38457.80 3764.56 39466.56 38322.64 38239.09 37448.43 382
test_vis3_rt40.46 35037.79 35148.47 36844.49 39233.35 38566.56 37132.84 39932.39 38129.65 38139.13 3893.91 39768.65 38050.17 30740.99 37243.40 384
ANet_high40.27 35135.20 35455.47 35934.74 39834.47 38463.84 37471.56 36748.42 36118.80 38841.08 3879.52 38664.45 38820.18 3848.66 39567.49 375
test_method38.59 35235.16 35548.89 36754.33 38321.35 39745.32 38853.71 3867.41 39428.74 38251.62 3788.70 38752.87 39233.73 36632.89 38272.47 369
PMMVS237.93 35333.61 35650.92 36446.31 38924.76 39460.55 37950.05 38828.94 38420.93 38647.59 3794.41 39665.13 38625.14 38018.55 39062.87 377
Gipumacopyleft34.91 35431.44 35745.30 37070.99 36139.64 37919.85 39272.56 36320.10 38816.16 39221.47 3935.08 39371.16 37813.07 39043.70 36725.08 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
APD_test232.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
PMVScopyleft26.43 2231.84 35728.16 36042.89 37125.87 40027.58 39250.92 38649.78 38921.37 38714.17 39340.81 3882.01 40066.62 3829.61 39338.88 37634.49 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 35824.00 36226.45 37643.74 39318.44 40160.86 37739.66 39515.11 3919.53 39522.10 3926.52 39146.94 3948.31 39510.14 39213.98 392
MVEpermissive24.84 2324.35 35919.77 36538.09 37434.56 39926.92 39326.57 39038.87 39711.73 39311.37 39427.44 3901.37 40150.42 39311.41 39114.60 39136.93 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 36023.20 36425.46 37741.52 39616.90 40260.56 37838.79 39814.62 3928.99 39620.24 3957.35 38845.82 3957.25 3969.46 39313.64 393
tmp_tt22.26 36123.75 36317.80 3785.23 40112.06 40335.26 38939.48 3962.82 39618.94 38744.20 38522.23 36624.64 39736.30 3599.31 39416.69 391
cdsmvs_eth3d_5k19.86 36226.47 3610.00 3820.00 4040.00 4070.00 39393.45 770.00 4000.00 40195.27 5449.56 2390.00 4010.00 4000.00 3980.00 397
wuyk23d11.30 36310.95 36612.33 37948.05 38819.89 39925.89 3911.92 4033.58 3953.12 3971.37 3970.64 40215.77 3986.23 3977.77 3961.35 394
ab-mvs-re7.91 36410.55 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.95 620.00 4050.00 4010.00 4000.00 3980.00 397
testmvs7.23 3659.62 3680.06 3810.04 4020.02 40684.98 2910.02 4040.03 3980.18 3991.21 3980.01 4040.02 3990.14 3980.01 3970.13 396
test1236.92 3669.21 3690.08 3800.03 4030.05 40581.65 3170.01 4050.02 3990.14 4000.85 3990.03 4030.02 3990.12 3990.00 3980.16 395
pcd_1.5k_mvsjas4.46 3675.95 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40053.55 2040.00 4010.00 4000.00 3980.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1196.19 3170.12 3698.91 1796.83 195.06 1696.76 12
WAC-MVS49.45 34731.56 377
FOURS193.95 4561.77 23693.96 6891.92 13462.14 30686.57 42
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
PC_three_145280.91 4594.07 296.83 1683.57 499.12 595.70 597.42 497.55 4
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
test_one_060196.32 1869.74 4294.18 5171.42 21390.67 1696.85 1474.45 18
eth-test20.00 404
eth-test0.00 404
ZD-MVS96.63 965.50 14693.50 7570.74 22785.26 5795.19 5964.92 7197.29 7687.51 5393.01 54
RE-MVS-def80.48 12892.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7649.30 24278.77 12586.77 12192.28 167
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 1995.36 1396.47 25
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 397.63 397.62 2
test_241102_TWO94.41 4271.65 20292.07 697.21 474.58 1799.11 692.34 1995.36 1396.59 16
test_241102_ONE96.45 1269.38 4794.44 4071.65 20292.11 497.05 776.79 999.11 6
9.1487.63 2493.86 4794.41 5294.18 5172.76 16886.21 4496.51 2266.64 5397.88 4490.08 3694.04 37
save fliter93.84 4867.89 8595.05 3992.66 10778.19 82
test_0728_THIRD72.48 17390.55 1796.93 1076.24 1199.08 1191.53 2794.99 1796.43 26
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2594.90 2196.51 21
test072696.40 1569.99 3396.76 794.33 4871.92 18991.89 897.11 673.77 21
GSMVS94.68 87
test_part296.29 1968.16 7990.78 14
sam_mvs157.85 15194.68 87
sam_mvs54.91 189
ambc69.61 33861.38 37941.35 37349.07 38785.86 31150.18 35266.40 36210.16 38488.14 32245.73 33144.20 36579.32 351
MTGPAbinary92.23 120
test_post178.95 33720.70 39453.05 20991.50 29360.43 271
test_post23.01 39156.49 17192.67 257
patchmatchnet-post67.62 36157.62 15490.25 301
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35494.75 2878.67 12090.85 15477.91 794.56 19272.25 16993.74 4395.36 58
MTMP93.77 8232.52 400
gm-plane-assit88.42 17667.04 10878.62 7991.83 13897.37 7076.57 137
test9_res89.41 3794.96 1895.29 63
TEST994.18 4167.28 10094.16 5693.51 7371.75 20085.52 5295.33 4968.01 4397.27 80
test_894.19 4067.19 10294.15 5993.42 7971.87 19485.38 5595.35 4868.19 4196.95 100
agg_prior286.41 6494.75 2995.33 59
agg_prior94.16 4366.97 11093.31 8284.49 6396.75 109
TestCases72.46 32579.57 31051.42 33768.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
test_prior467.18 10493.92 71
test_prior295.10 3875.40 12185.25 5895.61 4367.94 4487.47 5494.77 25
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10695.05 74
旧先验292.00 15259.37 32687.54 3693.47 23475.39 144
新几何291.41 173
新几何184.73 12092.32 8464.28 17691.46 15959.56 32579.77 10392.90 11656.95 16496.57 11463.40 25192.91 5693.34 135
旧先验191.94 9560.74 25891.50 15794.36 8065.23 6691.84 6994.55 92
无先验92.71 11992.61 11162.03 30797.01 9166.63 22293.97 117
原ACMM292.01 149
原ACMM184.42 13493.21 6364.27 17793.40 8165.39 27879.51 10692.50 12458.11 15096.69 11065.27 24193.96 3892.32 165
test22289.77 14261.60 24189.55 23689.42 23656.83 33877.28 13392.43 12852.76 21291.14 8393.09 143
testdata296.09 12761.26 267
segment_acmp65.94 59
testdata81.34 21489.02 16257.72 29889.84 22058.65 32985.32 5694.09 9257.03 15993.28 23669.34 19790.56 8993.03 146
testdata189.21 24577.55 95
test1287.09 4594.60 3668.86 6092.91 9882.67 7965.44 6497.55 6293.69 4694.84 83
plane_prior786.94 21461.51 242
plane_prior687.23 20862.32 22650.66 229
plane_prior591.31 16395.55 15676.74 13578.53 18688.39 230
plane_prior489.14 181
plane_prior361.95 23479.09 6972.53 182
plane_prior293.13 10378.81 76
plane_prior187.15 210
plane_prior62.42 22293.85 7579.38 6178.80 183
n20.00 406
nn0.00 406
door-mid66.01 376
lessismore_v073.72 31672.93 35647.83 35461.72 38145.86 36373.76 34228.63 35489.81 30947.75 32331.37 38383.53 304
LGP-MVS_train79.56 25984.31 26059.37 27989.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
test1193.01 94
door66.57 375
HQP5-MVS63.66 194
HQP-NCC87.54 20194.06 6179.80 5474.18 162
ACMP_Plane87.54 20194.06 6179.80 5474.18 162
BP-MVS77.63 132
HQP4-MVS74.18 16295.61 15188.63 223
HQP3-MVS91.70 14978.90 181
HQP2-MVS51.63 222
NP-MVS87.41 20463.04 20890.30 164
MDTV_nov1_ep13_2view59.90 27280.13 33267.65 26272.79 17754.33 19759.83 27592.58 158
MDTV_nov1_ep1372.61 24389.06 16168.48 6880.33 32890.11 21071.84 19671.81 19375.92 33653.01 21093.92 22348.04 31873.38 225
ACMMP++_ref71.63 239
ACMMP++69.72 249
Test By Simon54.21 198
ITE_SJBPF70.43 33674.44 35047.06 36077.32 34960.16 32154.04 33683.53 25223.30 36484.01 34943.07 33961.58 32080.21 346
DeepMVS_CXcopyleft34.71 37551.45 38624.73 39528.48 40131.46 38217.49 39152.75 3775.80 39242.60 39618.18 38519.42 38936.81 388