This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12099.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4099.59 15997.21 6899.76 5899.40 100
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9899.92 597.88 4299.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4699.93 397.71 5299.91 1999.70 26
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14699.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4699.92 597.64 5699.92 1699.75 19
v7n98.73 1198.99 597.95 9899.64 1494.20 15598.67 1599.14 4799.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4299.92 597.79 4899.93 1199.79 10
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7596.50 10899.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15599.35 2599.37 1997.38 4199.90 1498.59 2899.91 1999.77 12
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 13999.89 1897.95 4199.91 1999.75 19
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14399.82 195.44 16599.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14798.84 1199.15 4499.37 399.67 799.43 1595.61 13599.72 8798.12 3499.86 3199.73 22
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10398.49 3199.38 2299.14 4695.44 14199.84 3096.47 9199.80 5199.47 79
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8497.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17898.23 4699.05 6697.40 7999.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12199.05 1399.01 4498.65 9195.37 14299.90 1497.57 5799.91 1999.77 12
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17399.73 395.05 18199.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18498.20 5198.87 11198.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14199.05 6698.67 2498.84 5998.45 11097.58 3699.88 2096.45 9299.86 3199.54 53
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7395.88 14297.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
ANet_high98.31 3198.94 696.41 21199.33 5389.64 26197.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18899.64 1294.99 18499.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16897.76 7599.00 8498.40 3399.07 4298.98 5896.89 7399.75 6797.19 7199.79 5399.55 52
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8297.82 16699.11 4796.75 8399.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4399.45 20394.08 21599.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9199.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18699.72 7199.32 115
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19198.35 3599.21 3398.43 3298.89 5498.83 7494.30 17499.81 3697.87 4399.91 1999.77 12
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9797.71 6198.85 5799.10 4891.35 24399.83 3298.47 3099.90 2499.64 35
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.60 9199.76 6195.49 14099.20 20899.26 132
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10798.73 14997.69 6397.90 15797.96 17695.81 12899.82 3496.13 10499.61 9899.45 85
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13698.59 8098.69 8696.94 6799.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9198.92 10097.72 5998.25 11898.13 15397.10 5499.75 6795.44 14799.24 20699.32 115
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16697.41 18497.50 21697.98 1999.79 4495.58 13899.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26397.19 24196.88 7599.86 2497.50 6099.73 6798.41 253
test_fmvsmvis_n_192098.08 4598.47 2696.93 17699.03 10793.29 18696.32 16399.65 995.59 15799.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 305
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16396.17 17799.57 1495.66 15299.52 1598.71 8497.04 6099.64 14099.21 799.87 2998.69 228
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 8998.82 31896.38 9499.50 13996.98 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9495.75 15097.91 15698.06 16696.89 7399.76 6195.32 15599.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14498.83 12795.21 17298.36 10498.13 15398.13 1899.62 14996.04 10899.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11398.90 10296.58 10398.08 13897.87 18697.02 6299.76 6195.25 15899.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10398.83 12797.32 8298.06 14197.85 18796.65 8699.77 5695.00 17799.11 22299.32 115
SDMVSNet97.97 5298.26 3997.11 16299.41 4292.21 21396.92 12698.60 17498.58 2898.78 6499.39 1697.80 2599.62 14994.98 18099.86 3199.52 58
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18197.96 6298.25 21398.58 2898.78 6499.39 1698.21 1499.56 16892.65 25099.86 3199.52 58
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10396.62 9998.62 7698.30 12896.97 6599.75 6795.70 12699.25 20399.21 140
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15397.86 6998.31 21098.79 2299.23 3298.86 7395.76 13099.61 15695.49 14099.36 17799.23 138
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24997.64 20596.49 9699.72 8795.66 13199.37 17499.45 85
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 14997.79 5399.42 2097.83 18894.40 17299.78 4795.91 11899.76 5899.46 81
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11199.08 5896.57 10698.07 14098.38 11896.22 11399.14 28294.71 19399.31 19598.52 245
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30397.99 4999.15 3699.35 2389.84 26799.90 1498.64 2699.90 2499.82 6
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8898.83 12796.05 12997.46 18297.63 20696.77 8299.76 6195.61 13599.46 15199.49 70
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17298.23 4698.66 16697.41 7899.00 4699.19 3695.47 13999.73 8295.83 12399.76 5899.30 120
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13498.83 12796.11 12699.08 4098.24 14097.87 2399.72 8795.44 14799.51 13599.14 154
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8898.84 12196.05 12997.49 17797.54 21297.07 5799.70 11095.61 13599.46 15199.30 120
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11899.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
FIs97.93 6598.07 4597.48 13599.38 4892.95 19498.03 6199.11 5098.04 4898.62 7698.66 8893.75 18899.78 4797.23 6699.84 4099.73 22
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9898.84 12195.76 14896.93 21797.43 22097.26 4899.79 4496.06 10599.53 12599.45 85
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8698.84 12196.00 13497.22 18997.62 20796.87 7799.76 6195.48 14399.43 16399.46 81
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9496.11 12696.89 22097.45 21896.85 7899.78 4795.19 16199.63 9199.38 106
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28496.92 25996.81 8199.87 2296.87 8299.76 5898.51 246
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7898.78 14196.04 13197.10 20097.73 20096.53 9399.78 4795.16 16599.50 13999.46 81
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26797.01 25396.99 6499.82 3497.66 5599.64 8998.39 256
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16098.79 13795.07 18097.88 15998.35 12097.24 5099.72 8796.05 10799.58 10599.45 85
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11899.06 6295.45 16397.55 17297.94 17997.11 5399.78 4794.77 18999.46 15199.48 76
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11698.79 13798.98 1798.74 7098.49 10595.80 12999.49 19195.04 17499.44 15599.11 164
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9099.06 6296.19 12398.48 9098.70 8594.72 15999.24 26894.37 20499.33 19099.17 148
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6892.81 19697.55 9198.94 9797.10 8898.85 5798.88 7195.03 15299.67 12897.39 6499.65 8799.26 132
test_040297.84 7797.97 5597.47 13699.19 7994.07 15896.71 14298.73 14998.66 2598.56 8298.41 11496.84 7999.69 11794.82 18499.81 4898.64 232
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21199.02 7598.11 4498.31 11397.69 20394.65 16499.85 2797.02 7799.71 7499.48 76
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19799.04 7297.51 7298.22 12197.81 19294.68 16299.78 4797.14 7299.75 6599.41 99
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17398.57 16192.10 22195.97 19199.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11298.79 13795.96 13697.53 17397.40 22296.93 6999.77 5695.04 17499.35 18299.42 97
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17199.02 7593.92 21998.62 7698.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8192.51 20496.57 14899.15 4493.68 22698.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21398.87 11197.57 6798.31 11397.83 18894.69 16099.85 2797.02 7799.71 7499.46 81
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13798.23 21695.92 13998.40 9898.28 13397.06 5899.71 10295.48 14399.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 8697.50 10898.57 4796.24 33597.58 2498.45 3198.85 11898.58 2897.51 17597.94 17995.74 13199.63 14495.19 16198.97 23698.51 246
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11798.98 9095.75 15097.62 17097.59 20997.61 3599.77 5696.34 9699.44 15599.36 112
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18299.09 9791.43 23696.37 15999.11 5094.19 20999.01 4499.25 3196.30 10899.38 22899.00 1499.88 2799.73 22
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15898.13 4396.93 21798.45 11095.30 14599.62 14995.64 13398.96 23799.24 137
tfpnnormal97.72 9097.97 5596.94 17599.26 5992.23 21297.83 7198.45 18898.25 3999.13 3898.66 8896.65 8699.69 11793.92 22399.62 9298.91 197
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18695.44 22398.86 11498.20 4298.37 10199.24 3294.69 16099.55 17395.98 11499.79 5399.65 33
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23098.99 8792.45 26898.11 13398.31 12497.25 4999.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 17995.96 19398.97 9394.55 20098.82 6198.76 8097.31 4499.29 25697.20 7099.44 15599.38 106
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15198.92 11892.71 20195.89 19999.41 2493.36 23499.00 4698.44 11296.46 10099.65 13699.09 1199.76 5899.45 85
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12992.51 20496.25 16999.06 6293.67 22798.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 56
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24398.99 8795.84 14598.78 6498.08 15996.84 7999.81 3693.98 22199.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 9697.18 12499.00 999.32 5597.77 1797.49 9798.73 14996.27 11795.59 28297.75 19796.30 10899.78 4793.70 23199.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18698.79 13191.44 23596.14 17899.06 6294.19 20998.82 6198.98 5896.22 11399.38 22898.98 1699.86 3199.58 39
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17698.49 2898.88 10996.86 9497.11 19998.55 10095.82 12499.73 8295.94 11699.42 16699.13 156
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16298.92 11892.28 21095.83 20299.32 2593.22 24098.91 5398.49 10596.31 10799.64 14099.07 1299.76 5899.40 100
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12099.10 5295.32 16997.83 16597.88 18596.44 10199.72 8794.59 19899.39 17299.25 136
v897.60 10098.06 4796.23 21798.71 14289.44 26597.43 10198.82 13597.29 8498.74 7099.10 4893.86 18499.68 12298.61 2799.94 899.56 50
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15598.98 9095.05 18198.06 14198.02 17095.86 12099.56 16894.37 20499.64 8999.00 180
v1097.55 10497.97 5596.31 21598.60 15789.64 26197.44 9999.02 7596.60 10198.72 7299.16 4393.48 19399.72 8798.76 2199.92 1699.58 39
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24198.46 18794.58 19998.10 13598.07 16197.09 5699.39 22595.16 16599.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 10597.70 8197.07 16799.46 3692.21 21397.22 11099.00 8494.93 18798.58 8198.92 6597.31 4499.41 21994.44 19999.43 16399.59 38
casdiffmvspermissive97.50 10797.81 7196.56 20298.51 17091.04 24195.83 20299.09 5797.23 8598.33 11098.30 12897.03 6199.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 10897.57 10097.26 15399.56 2192.33 20898.28 4296.97 29298.30 3899.45 1899.35 2388.43 28499.89 1898.01 3999.76 5899.54 53
SMA-MVScopyleft97.48 10997.11 12698.60 4598.83 12696.67 5396.74 13798.73 14991.61 28198.48 9098.36 11996.53 9399.68 12295.17 16399.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 11097.10 12798.55 4999.04 10696.70 5196.24 17098.89 10393.71 22397.97 15197.75 19797.44 3899.63 14493.22 24399.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 11196.92 14199.03 599.26 5997.70 1897.66 8298.89 10395.65 15398.51 8596.46 28692.15 22799.81 3695.14 16898.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 11297.56 10197.11 16299.55 2396.36 6398.66 1895.66 31898.31 3697.09 20595.45 32597.17 5298.50 35298.67 2597.45 33296.48 365
baseline97.44 11297.78 7796.43 20898.52 16890.75 24896.84 12999.03 7396.51 10797.86 16398.02 17096.67 8599.36 23797.09 7499.47 14899.19 145
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8598.20 22193.00 25298.16 12898.06 16695.89 11999.72 8795.67 13099.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10698.99 8796.35 11698.13 13295.95 31195.99 11799.66 13494.36 20699.73 6798.59 238
test_fmvs397.38 11697.56 10196.84 18498.63 15392.81 19697.60 8699.61 1390.87 29298.76 6999.66 394.03 18097.90 37699.24 699.68 8299.81 8
XVG-OURS-SEG-HR97.38 11697.07 13098.30 6899.01 10997.41 3494.66 26899.02 7595.20 17398.15 13097.52 21498.83 598.43 35794.87 18296.41 35699.07 171
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12195.61 32298.59 2798.51 8598.72 8292.54 21999.58 16196.02 11099.49 14299.12 161
SD-MVS97.37 11897.70 8196.35 21298.14 21595.13 12296.54 15098.92 10095.94 13899.19 3498.08 15997.74 2895.06 39695.24 15999.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 12097.10 12798.14 8298.91 12096.77 4996.20 17298.63 17293.82 22098.54 8398.33 12293.98 18199.05 29795.99 11399.45 15498.61 237
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 16996.99 12399.65 996.74 9799.47 1798.93 6496.91 7299.84 3090.11 30699.06 23198.32 265
EI-MVSNet-UG-set97.32 12297.40 11197.09 16697.34 30192.01 22495.33 23597.65 26797.74 5798.30 11598.14 15195.04 15199.69 11797.55 5899.52 13099.58 39
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16297.36 29892.08 22295.34 23497.65 26797.74 5798.29 11698.11 15795.05 15099.68 12297.50 6099.50 13999.56 50
VPNet97.26 12497.49 10996.59 19899.47 3590.58 25096.27 16598.53 18197.77 5498.46 9398.41 11494.59 16599.68 12294.61 19499.29 19899.52 58
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
AllTest97.20 12696.92 14198.06 8899.08 9896.16 7097.14 11599.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
dcpmvs_297.12 12797.99 5494.51 30299.11 9484.00 35897.75 7699.65 997.38 8099.14 3798.42 11395.16 14899.96 295.52 13999.78 5699.58 39
XVG-OURS97.12 12796.74 15098.26 7098.99 11097.45 3293.82 30399.05 6695.19 17498.32 11197.70 20295.22 14798.41 35894.27 20898.13 29898.93 193
Anonymous2024052197.07 12997.51 10695.76 23999.35 5188.18 29197.78 7298.40 19797.11 8798.34 10799.04 5389.58 26999.79 4498.09 3699.93 1199.30 120
test_vis3_rt97.04 13096.98 13597.23 15698.44 18095.88 8096.82 13199.67 690.30 30199.27 2999.33 2794.04 17996.03 39597.14 7297.83 31099.78 11
V4297.04 13097.16 12596.68 19598.59 15991.05 24096.33 16298.36 20294.60 19697.99 14798.30 12893.32 19599.62 14997.40 6399.53 12599.38 106
APD-MVScopyleft97.00 13296.53 16598.41 5998.55 16496.31 6696.32 16398.77 14292.96 25797.44 18397.58 21195.84 12199.74 7691.96 26199.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 13396.38 17398.81 2798.64 14997.59 2395.97 19198.20 22195.51 16195.06 29496.53 28294.10 17899.70 11094.29 20799.15 21599.13 156
GBi-Net96.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
test196.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
VDDNet96.98 13696.84 14497.41 14399.40 4593.26 18897.94 6495.31 32999.26 798.39 10099.18 3987.85 29399.62 14995.13 17099.09 22599.35 114
PHI-MVS96.96 13796.53 16598.25 7397.48 28896.50 5996.76 13698.85 11893.52 22996.19 25996.85 26295.94 11899.42 21093.79 22799.43 16398.83 210
IS-MVSNet96.93 13896.68 15397.70 11399.25 6294.00 16198.57 2096.74 30198.36 3498.14 13197.98 17588.23 28699.71 10293.10 24699.72 7199.38 106
CNVR-MVS96.92 13996.55 16298.03 9398.00 22895.54 9594.87 25998.17 22794.60 19696.38 24697.05 24995.67 13399.36 23795.12 17199.08 22699.19 145
IterMVS-LS96.92 13997.29 11895.79 23898.51 17088.13 29495.10 24698.66 16696.99 8998.46 9398.68 8792.55 21799.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 14196.81 14697.16 15898.56 16392.20 21694.33 27698.12 23697.34 8198.20 12297.33 23392.81 20699.75 6794.79 18699.81 4899.54 53
DeepPCF-MVS94.58 596.90 14196.43 17098.31 6797.48 28897.23 4092.56 33798.60 17492.84 25998.54 8397.40 22296.64 8898.78 32294.40 20399.41 17098.93 193
MM96.87 14396.62 15597.62 11997.72 26893.30 18596.39 15592.61 36197.90 5296.76 22798.64 9290.46 25599.81 3699.16 999.94 899.76 17
v114496.84 14497.08 12996.13 22498.42 18289.28 26895.41 22798.67 16494.21 20797.97 15198.31 12493.06 20099.65 13698.06 3899.62 9299.45 85
VNet96.84 14496.83 14596.88 18098.06 22092.02 22396.35 16197.57 27397.70 6297.88 15997.80 19392.40 22499.54 17694.73 19198.96 23799.08 169
EPP-MVSNet96.84 14496.58 15997.65 11799.18 8093.78 17098.68 1496.34 30697.91 5197.30 18698.06 16688.46 28399.85 2793.85 22599.40 17199.32 115
v119296.83 14797.06 13196.15 22398.28 19289.29 26795.36 23198.77 14293.73 22298.11 13398.34 12193.02 20499.67 12898.35 3299.58 10599.50 62
MVS_111021_LR96.82 14896.55 16297.62 11998.27 19495.34 11093.81 30598.33 20694.59 19896.56 23896.63 27796.61 8998.73 32794.80 18599.34 18598.78 215
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32198.69 496.42 15498.09 23895.86 14495.15 29295.54 32294.26 17599.81 3694.06 21698.51 28398.47 250
UGNet96.81 14996.56 16197.58 12196.64 32493.84 16797.75 7697.12 28696.47 11193.62 33298.88 7193.22 19899.53 17895.61 13599.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 15197.06 13195.95 23198.57 16188.77 28195.36 23198.26 21295.18 17597.85 16498.23 14292.58 21599.63 14497.80 4799.69 7899.45 85
v124096.74 15297.02 13495.91 23498.18 20688.52 28395.39 22998.88 10993.15 24898.46 9398.40 11792.80 20799.71 10298.45 3199.49 14299.49 70
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 13997.69 27094.15 15696.02 18698.43 19193.17 24797.30 18697.38 22895.48 13899.28 25893.74 22899.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 15496.54 16497.27 15198.35 18793.66 17593.42 31598.36 20294.74 19096.58 23696.76 27196.54 9298.99 30494.87 18299.27 20199.15 151
v192192096.72 15596.96 13895.99 22798.21 20088.79 28095.42 22598.79 13793.22 24098.19 12698.26 13892.68 21199.70 11098.34 3399.55 11899.49 70
FMVSNet296.72 15596.67 15496.87 18197.96 23091.88 22697.15 11398.06 24495.59 15798.50 8798.62 9489.51 27399.65 13694.99 17999.60 10199.07 171
PMVScopyleft89.60 1796.71 15796.97 13695.95 23199.51 3097.81 1697.42 10297.49 27497.93 5095.95 26798.58 9696.88 7596.91 38989.59 31499.36 17793.12 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 15896.90 14396.03 22698.25 19688.92 27595.49 22198.77 14293.05 25098.09 13698.29 13292.51 22299.70 11098.11 3599.56 11199.47 79
CPTT-MVS96.69 15896.08 18598.49 5298.89 12196.64 5597.25 10798.77 14292.89 25896.01 26697.13 24392.23 22699.67 12892.24 25699.34 18599.17 148
HQP_MVS96.66 16096.33 17697.68 11698.70 14494.29 15096.50 15198.75 14696.36 11496.16 26096.77 26991.91 23799.46 19992.59 25299.20 20899.28 127
EI-MVSNet96.63 16196.93 13995.74 24097.26 30688.13 29495.29 23997.65 26796.99 8997.94 15498.19 14792.55 21799.58 16196.91 8099.56 11199.50 62
MVS_030496.62 16296.40 17297.28 15097.91 23492.30 20996.47 15389.74 38897.52 7195.38 28898.63 9392.76 20899.81 3699.28 499.93 1199.75 19
patch_mono-296.59 16396.93 13995.55 25098.88 12287.12 31794.47 27399.30 2794.12 21296.65 23498.41 11494.98 15599.87 2295.81 12599.78 5699.66 30
ab-mvs96.59 16396.59 15896.60 19798.64 14992.21 21398.35 3597.67 26394.45 20196.99 21298.79 7594.96 15699.49 19190.39 30399.07 22898.08 285
v14896.58 16596.97 13695.42 25798.63 15387.57 30795.09 24797.90 24995.91 14198.24 11997.96 17693.42 19499.39 22596.04 10899.52 13099.29 126
test20.0396.58 16596.61 15796.48 20698.49 17491.72 23095.68 21097.69 26296.81 9598.27 11797.92 18294.18 17798.71 33090.78 28999.66 8699.00 180
NCCC96.52 16795.99 18998.10 8597.81 24795.68 8995.00 25598.20 22195.39 16795.40 28796.36 29293.81 18699.45 20393.55 23498.42 28799.17 148
pmmvs-eth3d96.49 16896.18 18197.42 14298.25 19694.29 15094.77 26498.07 24389.81 30997.97 15198.33 12293.11 19999.08 29495.46 14699.84 4098.89 201
OMC-MVS96.48 16996.00 18897.91 10098.30 18996.01 7894.86 26098.60 17491.88 27797.18 19497.21 24096.11 11599.04 29890.49 30299.34 18598.69 228
TSAR-MVS + GP.96.47 17096.12 18297.49 13497.74 26695.23 11594.15 28796.90 29493.26 23898.04 14496.70 27394.41 17198.89 31394.77 18999.14 21698.37 258
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14597.18 30994.39 14595.46 22298.73 14996.03 13394.72 30294.92 33596.28 11199.69 11793.81 22697.98 30398.09 284
K. test v396.44 17196.28 17796.95 17499.41 4291.53 23297.65 8390.31 38398.89 2098.93 5099.36 2184.57 31899.92 597.81 4699.56 11199.39 104
MSLP-MVS++96.42 17396.71 15195.57 24797.82 24690.56 25295.71 20698.84 12194.72 19196.71 22997.39 22694.91 15798.10 37495.28 15699.02 23398.05 294
test_fmvs296.38 17496.45 16996.16 22297.85 23891.30 23796.81 13299.45 1989.24 31598.49 8899.38 1888.68 28097.62 38198.83 1899.32 19299.57 46
Anonymous20240521196.34 17595.98 19097.43 14098.25 19693.85 16696.74 13794.41 33997.72 5998.37 10198.03 16987.15 29999.53 17894.06 21699.07 22898.92 196
h-mvs3396.29 17695.63 20698.26 7098.50 17396.11 7396.90 12797.09 28796.58 10397.21 19198.19 14784.14 32099.78 4795.89 11996.17 36398.89 201
MVS_Test96.27 17796.79 14994.73 29296.94 31986.63 32596.18 17398.33 20694.94 18596.07 26398.28 13395.25 14699.26 26297.21 6897.90 30898.30 269
MCST-MVS96.24 17895.80 19997.56 12298.75 13694.13 15794.66 26898.17 22790.17 30496.21 25796.10 30595.14 14999.43 20894.13 21498.85 25199.13 156
mvsany_test396.21 17995.93 19497.05 16897.40 29694.33 14995.76 20594.20 34189.10 31699.36 2499.60 693.97 18297.85 37795.40 15498.63 27498.99 183
Effi-MVS+96.19 18096.01 18796.71 19297.43 29492.19 21796.12 17999.10 5295.45 16393.33 34394.71 33897.23 5199.56 16893.21 24497.54 32698.37 258
DELS-MVS96.17 18196.23 17895.99 22797.55 28490.04 25592.38 34698.52 18294.13 21196.55 24097.06 24894.99 15499.58 16195.62 13499.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 18296.36 17495.49 25397.68 27187.81 30398.67 1599.02 7596.50 10894.48 30996.15 30086.90 30099.92 598.73 2299.13 21898.74 221
ETV-MVS96.13 18395.90 19596.82 18597.76 26193.89 16495.40 22898.95 9695.87 14395.58 28391.00 38696.36 10699.72 8793.36 23798.83 25496.85 352
testgi96.07 18496.50 16894.80 28899.26 5987.69 30695.96 19398.58 17895.08 17998.02 14696.25 29697.92 2097.60 38288.68 32898.74 26299.11 164
LF4IMVS96.07 18495.63 20697.36 14698.19 20395.55 9495.44 22398.82 13592.29 27195.70 28096.55 28092.63 21498.69 33391.75 27099.33 19097.85 309
EIA-MVS96.04 18695.77 20196.85 18297.80 25192.98 19396.12 17999.16 4094.65 19493.77 32791.69 38095.68 13299.67 12894.18 21198.85 25197.91 304
diffmvspermissive96.04 18696.23 17895.46 25597.35 29988.03 29793.42 31599.08 5894.09 21596.66 23296.93 25793.85 18599.29 25696.01 11298.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 18895.52 20997.50 13197.77 26094.71 13196.07 18296.84 29597.48 7396.78 22694.28 34885.50 31199.40 22196.22 10098.73 26598.40 254
TinyColmap96.00 18996.34 17594.96 27997.90 23687.91 29994.13 29098.49 18594.41 20298.16 12897.76 19496.29 11098.68 33690.52 29999.42 16698.30 269
PVSNet_Blended_VisFu95.95 19095.80 19996.42 20999.28 5790.62 24995.31 23799.08 5888.40 32896.97 21598.17 15092.11 22999.78 4793.64 23299.21 20798.86 208
SSC-MVS95.92 19197.03 13392.58 35299.28 5778.39 38896.68 14495.12 33198.90 1999.11 3998.66 8891.36 24299.68 12295.00 17799.16 21499.67 28
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20798.48 17691.52 23395.31 23798.45 18895.76 14897.48 17997.54 21289.53 27298.69 33394.43 20094.61 38199.13 156
QAPM95.88 19395.57 20896.80 18697.90 23691.84 22898.18 5398.73 14988.41 32796.42 24498.13 15394.73 15899.75 6788.72 32698.94 24098.81 212
CANet95.86 19495.65 20596.49 20596.41 33290.82 24594.36 27598.41 19594.94 18592.62 36196.73 27292.68 21199.71 10295.12 17199.60 10198.94 189
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 34397.63 27196.99 8998.36 10498.54 10187.94 28899.75 6797.07 7699.08 22699.27 131
test_f95.82 19695.88 19795.66 24497.61 27993.21 19095.61 21798.17 22786.98 34398.42 9699.47 1190.46 25594.74 39897.71 5298.45 28599.03 176
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16484.86 34895.91 19899.71 492.72 26297.67 16998.90 6987.44 29698.73 32797.96 4098.85 25197.96 301
hse-mvs295.77 19795.09 21997.79 10797.84 24395.51 9795.66 21195.43 32796.58 10397.21 19196.16 29984.14 32099.54 17695.89 11996.92 34098.32 265
MVP-Stereo95.69 19995.28 21196.92 17798.15 21393.03 19295.64 21698.20 22190.39 30096.63 23597.73 20091.63 23999.10 29291.84 26697.31 33698.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24098.48 17688.76 28292.84 32797.25 27996.00 13497.59 17197.95 17891.38 24199.46 19993.16 24596.35 35898.99 183
test_vis1_n95.67 20195.89 19695.03 27498.18 20689.89 25896.94 12599.28 2988.25 33198.20 12298.92 6586.69 30397.19 38497.70 5498.82 25598.00 299
new-patchmatchnet95.67 20196.58 15992.94 34397.48 28880.21 38392.96 32598.19 22694.83 18898.82 6198.79 7593.31 19699.51 18595.83 12399.04 23299.12 161
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
DP-MVS Recon95.55 20695.13 21796.80 18698.51 17093.99 16294.60 27098.69 15990.20 30395.78 27696.21 29892.73 21098.98 30690.58 29898.86 25097.42 333
WB-MVS95.50 20796.62 15592.11 36199.21 7577.26 39696.12 17995.40 32898.62 2698.84 5998.26 13891.08 24699.50 18693.37 23698.70 26799.58 39
Fast-Effi-MVS+95.49 20895.07 22096.75 19097.67 27492.82 19594.22 28398.60 17491.61 28193.42 34192.90 36296.73 8499.70 11092.60 25197.89 30997.74 317
TAMVS95.49 20894.94 22497.16 15898.31 18893.41 18395.07 25096.82 29791.09 29097.51 17597.82 19189.96 26499.42 21088.42 33199.44 15598.64 232
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21497.16 31091.96 22597.74 7898.84 12187.26 33894.36 31198.01 17293.95 18399.67 12890.70 29598.75 26197.35 336
CLD-MVS95.47 21195.07 22096.69 19498.27 19492.53 20391.36 36198.67 16491.22 28995.78 27694.12 34995.65 13498.98 30690.81 28799.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 21294.66 24097.88 10297.84 24395.23 11593.62 30998.39 19887.04 34193.78 32595.99 30794.58 16699.52 18191.76 26998.90 24498.89 201
CDPH-MVS95.45 21394.65 24197.84 10598.28 19294.96 12693.73 30798.33 20685.03 36495.44 28596.60 27895.31 14499.44 20690.01 30899.13 21899.11 164
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34497.47 27695.49 16298.06 14198.49 10587.94 28899.58 16196.02 11099.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 21596.07 18693.21 33496.29 33481.56 37594.60 27097.66 26593.30 23796.95 21698.91 6893.03 20399.38 22896.60 8697.30 33798.69 228
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20086.83 32395.61 21799.26 3090.45 29998.17 12798.96 6184.43 31998.31 36696.74 8399.17 21397.90 305
MSDG95.33 21795.13 21795.94 23397.40 29691.85 22791.02 37298.37 20195.30 17096.31 25195.99 30794.51 16998.38 36189.59 31497.65 32397.60 325
LFMVS95.32 21894.88 23096.62 19698.03 22191.47 23497.65 8390.72 37999.11 997.89 15898.31 12479.20 34499.48 19493.91 22499.12 22198.93 193
F-COLMAP95.30 21994.38 25898.05 9298.64 14996.04 7595.61 21798.66 16689.00 31993.22 34496.40 29092.90 20599.35 24187.45 34697.53 32798.77 218
Anonymous2023120695.27 22095.06 22295.88 23598.72 13989.37 26695.70 20797.85 25288.00 33496.98 21497.62 20791.95 23499.34 24389.21 31999.53 12598.94 189
FMVSNet395.26 22194.94 22496.22 21996.53 32990.06 25495.99 18997.66 26594.11 21397.99 14797.91 18380.22 34299.63 14494.60 19599.44 15598.96 186
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21389.13 27396.81 13299.43 2186.97 34497.21 19198.92 6583.00 32897.13 38598.09 3698.94 24098.72 224
c3_l95.20 22395.32 21094.83 28796.19 33986.43 32891.83 35598.35 20593.47 23197.36 18597.26 23788.69 27999.28 25895.41 15399.36 17798.78 215
D2MVS95.18 22495.17 21595.21 26497.76 26187.76 30594.15 28797.94 24789.77 31096.99 21297.68 20487.45 29599.14 28295.03 17699.81 4898.74 221
N_pmnet95.18 22494.23 26198.06 8897.85 23896.55 5892.49 33891.63 36989.34 31398.09 13697.41 22190.33 25899.06 29691.58 27199.31 19598.56 240
HQP-MVS95.17 22694.58 24996.92 17797.85 23892.47 20694.26 27798.43 19193.18 24492.86 35295.08 32990.33 25899.23 27090.51 30098.74 26299.05 175
bld_raw_dy_0_6495.16 22795.16 21695.15 26896.54 32689.06 27496.63 14799.54 1789.68 31198.72 7294.50 34488.64 28199.38 22892.24 25699.93 1197.03 343
Vis-MVSNet (Re-imp)95.11 22894.85 23195.87 23699.12 9389.17 26997.54 9694.92 33496.50 10896.58 23697.27 23683.64 32499.48 19488.42 33199.67 8498.97 185
AdaColmapbinary95.11 22894.62 24596.58 19997.33 30394.45 14494.92 25798.08 23993.15 24893.98 32395.53 32394.34 17399.10 29285.69 35898.61 27696.20 370
API-MVS95.09 23095.01 22395.31 26096.61 32594.02 16096.83 13097.18 28395.60 15695.79 27494.33 34794.54 16898.37 36385.70 35798.52 28193.52 391
CL-MVSNet_self_test95.04 23194.79 23795.82 23797.51 28689.79 25991.14 36996.82 29793.05 25096.72 22896.40 29090.82 25099.16 28091.95 26298.66 27198.50 248
CNLPA95.04 23194.47 25496.75 19097.81 24795.25 11494.12 29197.89 25094.41 20294.57 30595.69 31690.30 26198.35 36486.72 35398.76 26096.64 360
Patchmtry95.03 23394.59 24896.33 21394.83 37890.82 24596.38 15897.20 28196.59 10297.49 17798.57 9777.67 35199.38 22892.95 24999.62 9298.80 213
PVSNet_BlendedMVS95.02 23494.93 22695.27 26197.79 25687.40 31294.14 28998.68 16188.94 32094.51 30798.01 17293.04 20199.30 25289.77 31299.49 14299.11 164
TAPA-MVS93.32 1294.93 23594.23 26197.04 17098.18 20694.51 14195.22 24298.73 14981.22 38396.25 25595.95 31193.80 18798.98 30689.89 31098.87 24897.62 323
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 23694.89 22994.99 27797.51 28688.11 29698.27 4495.20 33092.40 27096.68 23098.60 9583.44 32599.28 25893.34 23898.53 28097.59 326
eth_miper_zixun_eth94.89 23794.93 22694.75 29195.99 34886.12 33191.35 36298.49 18593.40 23297.12 19897.25 23886.87 30299.35 24195.08 17398.82 25598.78 215
CDS-MVSNet94.88 23894.12 26697.14 16097.64 27793.57 17793.96 29997.06 28990.05 30696.30 25296.55 28086.10 30599.47 19690.10 30799.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 23994.91 22894.57 29996.81 32287.10 31894.23 28297.34 27888.74 32397.14 19697.11 24591.94 23598.23 37092.99 24797.92 30698.37 258
pmmvs494.82 24094.19 26496.70 19397.42 29592.75 20092.09 35196.76 29986.80 34695.73 27997.22 23989.28 27698.89 31393.28 24199.14 21698.46 252
miper_lstm_enhance94.81 24194.80 23694.85 28596.16 34186.45 32791.14 36998.20 22193.49 23097.03 20997.37 23084.97 31599.26 26295.28 15699.56 11198.83 210
cl____94.73 24294.64 24295.01 27595.85 35487.00 31991.33 36398.08 23993.34 23597.10 20097.33 23384.01 32399.30 25295.14 16899.56 11198.71 227
DIV-MVS_self_test94.73 24294.64 24295.01 27595.86 35387.00 31991.33 36398.08 23993.34 23597.10 20097.34 23284.02 32299.31 24995.15 16799.55 11898.72 224
YYNet194.73 24294.84 23294.41 30697.47 29285.09 34590.29 37995.85 31692.52 26597.53 17397.76 19491.97 23399.18 27593.31 24096.86 34398.95 187
MDA-MVSNet_test_wron94.73 24294.83 23494.42 30597.48 28885.15 34390.28 38095.87 31592.52 26597.48 17997.76 19491.92 23699.17 27993.32 23996.80 34898.94 189
UnsupCasMVSNet_bld94.72 24694.26 26096.08 22598.62 15590.54 25393.38 31798.05 24590.30 30197.02 21096.80 26889.54 27099.16 28088.44 33096.18 36298.56 240
miper_ehance_all_eth94.69 24794.70 23994.64 29395.77 35986.22 33091.32 36598.24 21591.67 27997.05 20796.65 27688.39 28599.22 27294.88 18198.34 28998.49 249
BH-untuned94.69 24794.75 23894.52 30197.95 23387.53 30894.07 29297.01 29093.99 21797.10 20095.65 31892.65 21398.95 31187.60 34196.74 34997.09 340
RPMNet94.68 24994.60 24694.90 28295.44 36788.15 29296.18 17398.86 11497.43 7494.10 31698.49 10579.40 34399.76 6195.69 12895.81 36696.81 356
Patchmatch-RL test94.66 25094.49 25295.19 26598.54 16688.91 27692.57 33698.74 14891.46 28498.32 11197.75 19777.31 35698.81 32096.06 10599.61 9897.85 309
CANet_DTU94.65 25194.21 26395.96 22995.90 35089.68 26093.92 30097.83 25693.19 24390.12 38295.64 31988.52 28299.57 16793.27 24299.47 14898.62 235
pmmvs594.63 25294.34 25995.50 25297.63 27888.34 28794.02 29397.13 28587.15 34095.22 29197.15 24287.50 29499.27 26193.99 22099.26 20298.88 205
PAPM_NR94.61 25394.17 26595.96 22998.36 18691.23 23895.93 19697.95 24692.98 25393.42 34194.43 34690.53 25398.38 36187.60 34196.29 36098.27 273
PatchMatch-RL94.61 25393.81 27397.02 17298.19 20395.72 8693.66 30897.23 28088.17 33294.94 29995.62 32091.43 24098.57 34587.36 34797.68 32096.76 358
BH-RMVSNet94.56 25594.44 25794.91 28097.57 28187.44 31193.78 30696.26 30793.69 22596.41 24596.50 28592.10 23099.00 30285.96 35597.71 31798.31 267
USDC94.56 25594.57 25194.55 30097.78 25986.43 32892.75 33098.65 17185.96 35296.91 21997.93 18190.82 25098.74 32690.71 29499.59 10398.47 250
test111194.53 25794.81 23593.72 32199.06 10181.94 37398.31 3983.87 40296.37 11398.49 8899.17 4281.49 33399.73 8296.64 8499.86 3199.49 70
test_fmvs194.51 25894.60 24694.26 31295.91 34987.92 29895.35 23399.02 7586.56 34896.79 22298.52 10282.64 33097.00 38897.87 4398.71 26697.88 307
ppachtmachnet_test94.49 25994.84 23293.46 32796.16 34182.10 37090.59 37697.48 27590.53 29897.01 21197.59 20991.01 24799.36 23793.97 22299.18 21298.94 189
test_yl94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
DCV-MVSNet94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
jason94.39 26294.04 26895.41 25998.29 19087.85 30292.74 33296.75 30085.38 36195.29 28996.15 30088.21 28799.65 13694.24 20999.34 18598.74 221
jason: jason.
ECVR-MVScopyleft94.37 26394.48 25394.05 31798.95 11283.10 36398.31 3982.48 40496.20 12198.23 12099.16 4381.18 33699.66 13495.95 11599.83 4399.38 106
EU-MVSNet94.25 26494.47 25493.60 32498.14 21582.60 36897.24 10992.72 35885.08 36298.48 9098.94 6382.59 33198.76 32597.47 6299.53 12599.44 95
xiu_mvs_v2_base94.22 26594.63 24492.99 34197.32 30484.84 34992.12 34997.84 25491.96 27594.17 31493.43 35396.07 11699.71 10291.27 27597.48 32994.42 386
sss94.22 26593.72 27495.74 24097.71 26989.95 25793.84 30296.98 29188.38 32993.75 32895.74 31587.94 28898.89 31391.02 28198.10 29998.37 258
MVSTER94.21 26793.93 27295.05 27395.83 35586.46 32695.18 24497.65 26792.41 26997.94 15498.00 17472.39 37899.58 16196.36 9599.56 11199.12 161
MAR-MVS94.21 26793.03 28797.76 10996.94 31997.44 3396.97 12497.15 28487.89 33692.00 36692.73 36792.14 22899.12 28683.92 37297.51 32896.73 359
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 26994.58 24993.07 33696.16 34181.20 37890.42 37896.84 29590.72 29497.14 19697.13 24390.47 25499.11 28994.04 21998.25 29398.91 197
1112_ss94.12 27093.42 27996.23 21798.59 15990.85 24494.24 28198.85 11885.49 35792.97 35094.94 33386.01 30699.64 14091.78 26897.92 30698.20 279
PS-MVSNAJ94.10 27194.47 25493.00 34097.35 29984.88 34791.86 35497.84 25491.96 27594.17 31492.50 37195.82 12499.71 10291.27 27597.48 32994.40 387
CHOSEN 1792x268894.10 27193.41 28096.18 22199.16 8290.04 25592.15 34898.68 16179.90 38896.22 25697.83 18887.92 29299.42 21089.18 32099.65 8799.08 169
MG-MVS94.08 27394.00 26994.32 30997.09 31385.89 33393.19 32395.96 31392.52 26594.93 30097.51 21589.54 27098.77 32387.52 34597.71 31798.31 267
PLCcopyleft91.02 1694.05 27492.90 29097.51 12798.00 22895.12 12394.25 28098.25 21386.17 35091.48 37195.25 32791.01 24799.19 27485.02 36796.69 35198.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 27593.65 27595.17 26795.76 36093.42 18293.97 29898.33 20684.68 36893.17 34695.89 31392.53 22194.79 39793.50 23594.97 37797.31 337
114514_t93.96 27693.22 28496.19 22099.06 10190.97 24395.99 18998.94 9773.88 40093.43 34096.93 25792.38 22599.37 23489.09 32199.28 19998.25 275
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25687.40 31291.43 36098.68 16184.50 37194.51 30794.48 34593.04 20199.30 25289.77 31298.61 27698.02 297
AUN-MVS93.95 27892.69 29897.74 11097.80 25195.38 10595.57 22095.46 32691.26 28892.64 35996.10 30574.67 36799.55 17393.72 23096.97 33998.30 269
iter_conf05_1193.77 27993.29 28195.24 26296.54 32689.14 27291.55 35895.02 33290.16 30593.21 34593.94 35087.37 29799.56 16892.24 25699.56 11197.03 343
lupinMVS93.77 27993.28 28295.24 26297.68 27187.81 30392.12 34996.05 30984.52 37094.48 30995.06 33186.90 30099.63 14493.62 23399.13 21898.27 273
PatchT93.75 28193.57 27794.29 31195.05 37587.32 31496.05 18392.98 35497.54 7094.25 31298.72 8275.79 36499.24 26895.92 11795.81 36696.32 367
EPNet93.72 28292.62 30197.03 17187.61 40992.25 21196.27 16591.28 37396.74 9787.65 39597.39 22685.00 31499.64 14092.14 25999.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 28292.65 29996.91 17998.93 11691.81 22991.23 36798.52 18282.69 37696.46 24396.52 28480.38 34199.90 1490.36 30498.79 25799.03 176
DPM-MVS93.68 28492.77 29796.42 20997.91 23492.54 20291.17 36897.47 27684.99 36693.08 34894.74 33789.90 26599.00 30287.54 34398.09 30097.72 318
PMMVS293.66 28594.07 26792.45 35697.57 28180.67 38186.46 39496.00 31193.99 21797.10 20097.38 22889.90 26597.82 37888.76 32599.47 14898.86 208
iter_conf0593.65 28693.05 28595.46 25596.13 34687.45 31095.95 19598.22 21792.66 26397.04 20897.89 18463.52 39499.72 8796.19 10299.82 4799.21 140
OpenMVS_ROBcopyleft91.80 1493.64 28793.05 28595.42 25797.31 30591.21 23995.08 24996.68 30481.56 38096.88 22196.41 28890.44 25799.25 26485.39 36397.67 32195.80 374
Patchmatch-test93.60 28893.25 28394.63 29496.14 34587.47 30996.04 18494.50 33893.57 22896.47 24296.97 25476.50 35998.61 34290.67 29698.41 28897.81 313
WTY-MVS93.55 28993.00 28995.19 26597.81 24787.86 30093.89 30196.00 31189.02 31894.07 31895.44 32686.27 30499.33 24587.69 33996.82 34698.39 256
Test_1112_low_res93.53 29092.86 29195.54 25198.60 15788.86 27892.75 33098.69 15982.66 37792.65 35896.92 25984.75 31699.56 16890.94 28397.76 31398.19 280
mvsany_test193.47 29193.03 28794.79 28994.05 39092.12 21890.82 37490.01 38785.02 36597.26 18898.28 13393.57 19197.03 38692.51 25495.75 37195.23 382
MIMVSNet93.42 29292.86 29195.10 27198.17 20988.19 29098.13 5593.69 34492.07 27295.04 29798.21 14680.95 33999.03 30181.42 38298.06 30198.07 287
FMVSNet593.39 29392.35 30396.50 20495.83 35590.81 24797.31 10498.27 21192.74 26196.27 25398.28 13362.23 39599.67 12890.86 28599.36 17799.03 176
SCA93.38 29493.52 27892.96 34296.24 33581.40 37793.24 32194.00 34291.58 28394.57 30596.97 25487.94 28899.42 21089.47 31697.66 32298.06 291
tttt051793.31 29592.56 30295.57 24798.71 14287.86 30097.44 9987.17 39695.79 14797.47 18196.84 26364.12 39299.81 3696.20 10199.32 19299.02 179
CR-MVSNet93.29 29692.79 29494.78 29095.44 36788.15 29296.18 17397.20 28184.94 36794.10 31698.57 9777.67 35199.39 22595.17 16395.81 36696.81 356
cl2293.25 29792.84 29394.46 30494.30 38486.00 33291.09 37196.64 30590.74 29395.79 27496.31 29478.24 34898.77 32394.15 21398.34 28998.62 235
wuyk23d93.25 29795.20 21387.40 38496.07 34795.38 10597.04 12194.97 33395.33 16899.70 698.11 15798.14 1791.94 40277.76 39399.68 8274.89 402
miper_enhance_ethall93.14 29992.78 29694.20 31393.65 39385.29 34089.97 38297.85 25285.05 36396.15 26294.56 34085.74 30899.14 28293.74 22898.34 28998.17 282
baseline193.14 29992.64 30094.62 29597.34 30187.20 31696.67 14693.02 35394.71 19296.51 24195.83 31481.64 33298.60 34490.00 30988.06 39898.07 287
FE-MVS92.95 30192.22 30595.11 26997.21 30888.33 28898.54 2393.66 34789.91 30896.21 25798.14 15170.33 38599.50 18687.79 33798.24 29497.51 329
X-MVStestdata92.86 30290.83 32998.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24936.50 40496.49 9699.72 8795.66 13199.37 17499.45 85
GA-MVS92.83 30392.15 30794.87 28496.97 31687.27 31590.03 38196.12 30891.83 27894.05 31994.57 33976.01 36398.97 31092.46 25597.34 33598.36 263
CMPMVSbinary73.10 2392.74 30491.39 31696.77 18993.57 39594.67 13494.21 28497.67 26380.36 38793.61 33396.60 27882.85 32997.35 38384.86 36898.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 30591.76 31395.56 24998.42 18288.23 28996.03 18587.35 39594.04 21696.56 23895.47 32464.03 39399.77 5694.78 18899.11 22298.68 231
HY-MVS91.43 1592.58 30691.81 31194.90 28296.49 33088.87 27797.31 10494.62 33685.92 35390.50 37796.84 26385.05 31399.40 22183.77 37595.78 36996.43 366
TR-MVS92.54 30792.20 30693.57 32596.49 33086.66 32493.51 31394.73 33589.96 30794.95 29893.87 35190.24 26398.61 34281.18 38394.88 37895.45 380
PMMVS92.39 30891.08 32396.30 21693.12 39792.81 19690.58 37795.96 31379.17 39191.85 36892.27 37290.29 26298.66 33889.85 31196.68 35297.43 332
131492.38 30992.30 30492.64 35195.42 36985.15 34395.86 20096.97 29285.40 36090.62 37493.06 36091.12 24597.80 37986.74 35295.49 37494.97 384
new_pmnet92.34 31091.69 31494.32 30996.23 33789.16 27092.27 34792.88 35584.39 37395.29 28996.35 29385.66 30996.74 39384.53 37097.56 32597.05 341
CVMVSNet92.33 31192.79 29490.95 36897.26 30675.84 40095.29 23992.33 36381.86 37896.27 25398.19 14781.44 33498.46 35694.23 21098.29 29298.55 242
PAPR92.22 31291.27 32095.07 27295.73 36288.81 27991.97 35297.87 25185.80 35590.91 37392.73 36791.16 24498.33 36579.48 38795.76 37098.08 285
DSMNet-mixed92.19 31391.83 31093.25 33196.18 34083.68 36196.27 16593.68 34676.97 39792.54 36299.18 3989.20 27898.55 34883.88 37398.60 27897.51 329
BH-w/o92.14 31491.94 30892.73 34997.13 31285.30 33992.46 34095.64 31989.33 31494.21 31392.74 36689.60 26898.24 36981.68 38194.66 38094.66 385
PCF-MVS89.43 1892.12 31590.64 33296.57 20197.80 25193.48 18089.88 38698.45 18874.46 39996.04 26595.68 31790.71 25299.31 24973.73 39899.01 23596.91 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Syy-MVS92.09 31691.80 31292.93 34495.19 37282.65 36692.46 34091.35 37190.67 29691.76 36987.61 39885.64 31098.50 35294.73 19196.84 34497.65 321
dmvs_re92.08 31791.27 32094.51 30297.16 31092.79 19995.65 21392.64 36094.11 21392.74 35590.98 38783.41 32694.44 40080.72 38494.07 38496.29 368
thres600view792.03 31891.43 31593.82 31998.19 20384.61 35196.27 16590.39 38096.81 9596.37 24793.11 35573.44 37699.49 19180.32 38597.95 30597.36 334
PatchmatchNetpermissive91.98 31991.87 30992.30 35894.60 38179.71 38495.12 24593.59 34989.52 31293.61 33397.02 25177.94 34999.18 27590.84 28694.57 38398.01 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 32091.35 31793.51 32694.27 38585.60 33588.86 39198.61 17379.32 39092.16 36591.44 38289.22 27798.12 37390.80 28897.47 33196.82 355
JIA-IIPM91.79 32190.69 33195.11 26993.80 39290.98 24294.16 28691.78 36896.38 11290.30 38099.30 2872.02 37998.90 31288.28 33390.17 39495.45 380
thres100view90091.76 32291.26 32293.26 33098.21 20084.50 35296.39 15590.39 38096.87 9396.33 24893.08 35973.44 37699.42 21078.85 39097.74 31495.85 372
thres40091.68 32391.00 32493.71 32298.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31497.36 334
tfpn200view991.55 32491.00 32493.21 33498.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31495.85 372
WB-MVSnew91.50 32591.29 31892.14 36094.85 37780.32 38293.29 32088.77 39188.57 32694.03 32092.21 37392.56 21698.28 36880.21 38697.08 33897.81 313
ADS-MVSNet291.47 32690.51 33494.36 30795.51 36585.63 33495.05 25295.70 31783.46 37492.69 35696.84 26379.15 34599.41 21985.66 35990.52 39298.04 295
EPNet_dtu91.39 32790.75 33093.31 32990.48 40682.61 36794.80 26192.88 35593.39 23381.74 40394.90 33681.36 33599.11 28988.28 33398.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 32889.67 34095.47 25496.41 33289.15 27191.54 35990.23 38489.07 31786.78 39992.84 36469.39 38799.44 20694.16 21296.61 35397.82 311
PVSNet86.72 1991.10 32990.97 32691.49 36597.56 28378.04 39087.17 39394.60 33784.65 36992.34 36392.20 37487.37 29798.47 35585.17 36697.69 31997.96 301
tpm91.08 33090.85 32891.75 36495.33 37078.09 38995.03 25491.27 37488.75 32293.53 33697.40 22271.24 38099.30 25291.25 27793.87 38597.87 308
thres20091.00 33190.42 33592.77 34897.47 29283.98 35994.01 29491.18 37595.12 17895.44 28591.21 38473.93 36999.31 24977.76 39397.63 32495.01 383
ADS-MVSNet90.95 33290.26 33693.04 33795.51 36582.37 36995.05 25293.41 35083.46 37492.69 35696.84 26379.15 34598.70 33185.66 35990.52 39298.04 295
tpmvs90.79 33390.87 32790.57 37192.75 40176.30 39895.79 20493.64 34891.04 29191.91 36796.26 29577.19 35798.86 31789.38 31889.85 39596.56 363
thisisatest051590.43 33489.18 34694.17 31597.07 31485.44 33789.75 38787.58 39488.28 33093.69 33191.72 37965.27 39199.58 16190.59 29798.67 26997.50 331
tpmrst90.31 33590.61 33389.41 37694.06 38972.37 40795.06 25193.69 34488.01 33392.32 36496.86 26177.45 35398.82 31891.04 28087.01 39997.04 342
test0.0.03 190.11 33689.21 34392.83 34693.89 39186.87 32291.74 35688.74 39292.02 27394.71 30391.14 38573.92 37094.48 39983.75 37692.94 38797.16 339
MVS90.02 33789.20 34492.47 35594.71 37986.90 32195.86 20096.74 30164.72 40290.62 37492.77 36592.54 21998.39 36079.30 38895.56 37392.12 395
pmmvs390.00 33888.90 34893.32 32894.20 38885.34 33891.25 36692.56 36278.59 39293.82 32495.17 32867.36 39098.69 33389.08 32298.03 30295.92 371
CHOSEN 280x42089.98 33989.19 34592.37 35795.60 36481.13 37986.22 39597.09 28781.44 38287.44 39693.15 35473.99 36899.47 19688.69 32799.07 22896.52 364
test-LLR89.97 34089.90 33890.16 37294.24 38674.98 40189.89 38389.06 38992.02 27389.97 38390.77 38873.92 37098.57 34591.88 26497.36 33396.92 347
FPMVS89.92 34188.63 34993.82 31998.37 18596.94 4591.58 35793.34 35188.00 33490.32 37997.10 24670.87 38391.13 40371.91 40196.16 36493.39 393
test250689.86 34289.16 34791.97 36298.95 11276.83 39798.54 2361.07 41196.20 12197.07 20699.16 4355.19 40599.69 11796.43 9399.83 4399.38 106
CostFormer89.75 34389.25 34191.26 36794.69 38078.00 39195.32 23691.98 36681.50 38190.55 37696.96 25671.06 38298.89 31388.59 32992.63 38996.87 350
testing389.72 34488.26 35394.10 31697.66 27584.30 35694.80 26188.25 39394.66 19395.07 29392.51 37041.15 41199.43 20891.81 26798.44 28698.55 242
testing9189.67 34588.55 35093.04 33795.90 35081.80 37492.71 33493.71 34393.71 22390.18 38190.15 39257.11 39799.22 27287.17 35096.32 35998.12 283
baseline289.65 34688.44 35293.25 33195.62 36382.71 36593.82 30385.94 39988.89 32187.35 39792.54 36971.23 38199.33 24586.01 35494.60 38297.72 318
E-PMN89.52 34789.78 33988.73 37893.14 39677.61 39283.26 39892.02 36594.82 18993.71 32993.11 35575.31 36596.81 39085.81 35696.81 34791.77 397
EPMVS89.26 34888.55 35091.39 36692.36 40279.11 38795.65 21379.86 40588.60 32593.12 34796.53 28270.73 38498.10 37490.75 29089.32 39696.98 345
testing9989.21 34988.04 35592.70 35095.78 35881.00 38092.65 33592.03 36493.20 24289.90 38590.08 39455.25 40399.14 28287.54 34395.95 36597.97 300
EMVS89.06 35089.22 34288.61 37993.00 39877.34 39482.91 39990.92 37694.64 19592.63 36091.81 37876.30 36197.02 38783.83 37496.90 34291.48 398
testing1188.93 35187.63 35992.80 34795.87 35281.49 37692.48 33991.54 37091.62 28088.27 39390.24 39055.12 40699.11 28987.30 34896.28 36197.81 313
KD-MVS_2432*160088.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
miper_refine_blended88.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
IB-MVS85.98 2088.63 35486.95 36493.68 32395.12 37484.82 35090.85 37390.17 38587.55 33788.48 39291.34 38358.01 39699.59 15987.24 34993.80 38696.63 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 35587.69 35890.79 36994.98 37677.34 39495.09 24791.83 36777.51 39689.40 38796.41 28867.83 38998.73 32783.58 37792.60 39096.29 368
MVS-HIRNet88.40 35690.20 33782.99 38597.01 31560.04 41093.11 32485.61 40084.45 37288.72 39199.09 5084.72 31798.23 37082.52 37996.59 35490.69 400
gg-mvs-nofinetune88.28 35786.96 36392.23 35992.84 40084.44 35398.19 5274.60 40799.08 1087.01 39899.47 1156.93 39898.23 37078.91 38995.61 37294.01 389
dp88.08 35888.05 35488.16 38392.85 39968.81 40994.17 28592.88 35585.47 35891.38 37296.14 30268.87 38898.81 32086.88 35183.80 40296.87 350
tpm cat188.01 35987.33 36090.05 37594.48 38276.28 39994.47 27394.35 34073.84 40189.26 38895.61 32173.64 37298.30 36784.13 37186.20 40095.57 379
test-mter87.92 36087.17 36190.16 37294.24 38674.98 40189.89 38389.06 38986.44 34989.97 38390.77 38854.96 40798.57 34591.88 26497.36 33396.92 347
PAPM87.64 36185.84 36893.04 33796.54 32684.99 34688.42 39295.57 32379.52 38983.82 40093.05 36180.57 34098.41 35862.29 40492.79 38895.71 375
ETVMVS87.62 36285.75 36993.22 33396.15 34483.26 36292.94 32690.37 38291.39 28590.37 37888.45 39651.93 40898.64 33973.76 39796.38 35797.75 316
UWE-MVS87.57 36386.72 36590.13 37495.21 37173.56 40491.94 35383.78 40388.73 32493.00 34992.87 36355.22 40499.25 26481.74 38097.96 30497.59 326
testing22287.35 36485.50 37192.93 34495.79 35782.83 36492.40 34590.10 38692.80 26088.87 39089.02 39548.34 40998.70 33175.40 39696.74 34997.27 338
dmvs_testset87.30 36586.99 36288.24 38196.71 32377.48 39394.68 26786.81 39892.64 26489.61 38687.01 40085.91 30793.12 40161.04 40588.49 39794.13 388
TESTMET0.1,187.20 36686.57 36689.07 37793.62 39472.84 40689.89 38387.01 39785.46 35989.12 38990.20 39156.00 40297.72 38090.91 28496.92 34096.64 360
myMVS_eth3d87.16 36785.61 37091.82 36395.19 37279.32 38592.46 34091.35 37190.67 29691.76 36987.61 39841.96 41098.50 35282.66 37896.84 34497.65 321
MVEpermissive73.61 2286.48 36885.92 36788.18 38296.23 33785.28 34181.78 40075.79 40686.01 35182.53 40291.88 37792.74 20987.47 40571.42 40294.86 37991.78 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 36983.21 37288.34 38095.76 36074.97 40383.49 39792.70 35978.47 39387.94 39486.90 40183.38 32796.63 39473.44 39966.86 40593.40 392
EGC-MVSNET83.08 37077.93 37398.53 5099.57 2097.55 2698.33 3898.57 1794.71 40610.38 40798.90 6995.60 13699.50 18695.69 12899.61 9898.55 242
test_method66.88 37166.13 37469.11 38762.68 41025.73 41349.76 40196.04 31014.32 40564.27 40691.69 38073.45 37588.05 40476.06 39566.94 40493.54 390
tmp_tt57.23 37262.50 37541.44 38834.77 41149.21 41283.93 39660.22 41215.31 40471.11 40579.37 40370.09 38644.86 40764.76 40382.93 40330.25 403
cdsmvs_eth3d_5k24.22 37332.30 3760.00 3910.00 4140.00 4160.00 40298.10 2370.00 4090.00 41095.06 33197.54 370.00 4100.00 4090.00 4080.00 406
test12312.59 37415.49 3773.87 3896.07 4122.55 41490.75 3752.59 4142.52 4075.20 40913.02 4064.96 4121.85 4095.20 4079.09 4067.23 404
testmvs12.33 37515.23 3783.64 3905.77 4132.23 41588.99 3903.62 4132.30 4085.29 40813.09 4054.52 4131.95 4085.16 4088.32 4076.75 405
pcd_1.5k_mvsjas7.98 37610.65 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40995.82 1240.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.91 37710.55 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.94 3330.00 4140.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.32 38585.41 362
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
PC_three_145287.24 33998.37 10197.44 21997.00 6396.78 39292.01 26099.25 20399.21 140
No_MVS98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
test_one_060199.05 10595.50 10098.87 11197.21 8698.03 14598.30 12896.93 69
eth-test20.00 414
eth-test0.00 414
ZD-MVS98.43 18195.94 7998.56 18090.72 29496.66 23297.07 24795.02 15399.74 7691.08 27998.93 242
RE-MVS-def97.88 6498.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.94 6795.49 14099.20 20899.26 132
IU-MVS99.22 6895.40 10398.14 23485.77 35698.36 10495.23 16099.51 13599.49 70
OPU-MVS97.64 11898.01 22495.27 11396.79 13497.35 23196.97 6598.51 35191.21 27899.25 20399.14 154
test_241102_TWO98.83 12796.11 12698.62 7698.24 14096.92 7199.72 8795.44 14799.49 14299.49 70
test_241102_ONE99.22 6895.35 10898.83 12796.04 13199.08 4098.13 15397.87 2399.33 245
9.1496.69 15298.53 16796.02 18698.98 9093.23 23997.18 19497.46 21796.47 9899.62 14992.99 24799.32 192
save fliter98.48 17694.71 13194.53 27298.41 19595.02 183
test_0728_THIRD96.62 9998.40 9898.28 13397.10 5499.71 10295.70 12699.62 9299.58 39
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13798.89 10399.75 6795.48 14399.52 13099.53 56
test072699.24 6395.51 9796.89 12898.89 10395.92 13998.64 7498.31 12497.06 58
GSMVS98.06 291
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35098.06 291
sam_mvs77.38 354
ambc96.56 20298.23 19991.68 23197.88 6898.13 23598.42 9698.56 9994.22 17699.04 29894.05 21899.35 18298.95 187
MTGPAbinary98.73 149
test_post194.98 25610.37 40876.21 36299.04 29889.47 316
test_post10.87 40776.83 35899.07 295
patchmatchnet-post96.84 26377.36 35599.42 210
GG-mvs-BLEND90.60 37091.00 40484.21 35798.23 4672.63 41082.76 40184.11 40256.14 40196.79 39172.20 40092.09 39190.78 399
MTMP96.55 14974.60 407
gm-plane-assit91.79 40371.40 40881.67 37990.11 39398.99 30484.86 368
test9_res91.29 27498.89 24799.00 180
TEST997.84 24395.23 11593.62 30998.39 19886.81 34593.78 32595.99 30794.68 16299.52 181
test_897.81 24795.07 12493.54 31298.38 20087.04 34193.71 32995.96 31094.58 16699.52 181
agg_prior290.34 30598.90 24499.10 168
agg_prior97.80 25194.96 12698.36 20293.49 33799.53 178
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
test_prior495.38 10593.61 311
test_prior293.33 31994.21 20794.02 32196.25 29693.64 19091.90 26398.96 237
test_prior97.46 13797.79 25694.26 15498.42 19499.34 24398.79 214
旧先验293.35 31877.95 39595.77 27898.67 33790.74 293
新几何293.43 314
新几何197.25 15498.29 19094.70 13397.73 26077.98 39494.83 30196.67 27592.08 23199.45 20388.17 33598.65 27397.61 324
旧先验197.80 25193.87 16597.75 25997.04 25093.57 19198.68 26898.72 224
无先验93.20 32297.91 24880.78 38499.40 22187.71 33897.94 303
原ACMM292.82 328
原ACMM196.58 19998.16 21192.12 21898.15 23385.90 35493.49 33796.43 28792.47 22399.38 22887.66 34098.62 27598.23 276
test22298.17 20993.24 18992.74 33297.61 27275.17 39894.65 30496.69 27490.96 24998.66 27197.66 320
testdata299.46 19987.84 336
segment_acmp95.34 143
testdata95.70 24398.16 21190.58 25097.72 26180.38 38695.62 28197.02 25192.06 23298.98 30689.06 32398.52 28197.54 328
testdata192.77 32993.78 221
test1297.46 13797.61 27994.07 15897.78 25893.57 33593.31 19699.42 21098.78 25898.89 201
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14791.91 237
plane_prior598.75 14699.46 19992.59 25299.20 20899.28 127
plane_prior496.77 269
plane_prior394.51 14195.29 17196.16 260
plane_prior296.50 15196.36 114
plane_prior198.49 174
plane_prior94.29 15095.42 22594.31 20698.93 242
n20.00 415
nn0.00 415
door-mid98.17 227
lessismore_v097.05 16899.36 5092.12 21884.07 40198.77 6898.98 5885.36 31299.74 7697.34 6599.37 17499.30 120
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
test1198.08 239
door97.81 257
HQP5-MVS92.47 206
HQP-NCC97.85 23894.26 27793.18 24492.86 352
ACMP_Plane97.85 23894.26 27793.18 24492.86 352
BP-MVS90.51 300
HQP4-MVS92.87 35199.23 27099.06 173
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 258
NP-MVS98.14 21593.72 17195.08 329
MDTV_nov1_ep13_2view57.28 41194.89 25880.59 38594.02 32178.66 34785.50 36197.82 311
MDTV_nov1_ep1391.28 31994.31 38373.51 40594.80 26193.16 35286.75 34793.45 33997.40 22276.37 36098.55 34888.85 32496.43 355
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18495.63 15497.22 18997.30 23595.52 13798.55 34890.97 28298.90 24498.34 264
DeepMVS_CXcopyleft77.17 38690.94 40585.28 34174.08 40952.51 40380.87 40488.03 39775.25 36670.63 40659.23 40684.94 40175.62 401