This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18098.58 2799.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3299.67 299.73 399.65 599.15 399.86 2497.22 6699.92 1599.77 12
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2499.01 1699.63 1199.66 399.27 299.68 12497.75 4999.89 2699.62 36
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2996.23 12199.71 499.48 1098.77 799.93 398.89 1599.95 599.84 5
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 15997.21 6799.76 5999.40 100
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2399.08 1097.87 16099.67 296.47 9899.92 597.88 4199.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4999.36 499.29 2899.06 5297.27 4699.93 397.71 5199.91 1899.70 26
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4695.83 14799.67 799.37 1998.25 1399.92 598.77 1899.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4199.33 599.30 2799.00 5597.27 4699.92 597.64 5599.92 1599.75 19
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4499.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4599.22 899.22 3398.96 6197.35 4299.92 597.79 4799.93 1199.79 10
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7296.50 10999.32 2699.44 1497.43 3999.92 598.73 2099.95 599.86 2
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3495.62 15699.35 2599.37 1997.38 4199.90 1498.59 2699.91 1899.77 12
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3699.05 1399.17 3598.79 7695.47 13799.89 1897.95 4099.91 1899.75 19
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6398.05 4799.61 1399.52 793.72 18799.88 2098.72 2299.88 2799.65 33
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
Anonymous2023121198.55 2098.76 1397.94 9998.79 13094.37 14798.84 1199.15 4199.37 399.67 799.43 1595.61 13399.72 8898.12 3399.86 3199.73 22
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5598.31 3699.02 4398.74 8297.68 3099.61 15697.77 4899.85 3899.70 26
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3096.91 9299.75 299.45 1395.82 12299.92 598.80 1799.96 499.89 1
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10098.49 3199.38 2299.14 4695.44 13999.84 3096.47 9199.80 5199.47 80
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8197.57 6799.27 2999.22 3498.32 1299.50 18597.09 7399.75 6499.50 63
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6397.40 7999.37 2399.08 5198.79 699.47 19597.74 5099.71 7399.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 11899.05 1399.01 4498.65 9295.37 14099.90 1497.57 5699.91 1899.77 12
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 10898.23 4099.48 1699.27 3098.47 1199.55 17296.52 8999.53 12399.60 38
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6398.67 2498.84 5798.45 11097.58 3699.88 2096.45 9299.86 3199.54 54
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7095.88 14397.88 15798.22 14498.15 1699.74 7796.50 9099.62 9199.42 97
ANet_high98.31 3198.94 696.41 21199.33 5489.64 26197.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5799.98 299.77 12
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8198.40 3399.07 4298.98 5896.89 7399.75 6897.19 7099.79 5399.55 53
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16499.11 4796.75 8399.86 2497.84 4499.36 17599.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3798.34 3598.78 6398.52 10397.32 4399.45 20294.08 21599.67 8399.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3298.21 4199.25 3198.51 10598.21 1499.40 22094.79 18699.72 7099.32 114
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3098.43 3298.89 5298.83 7594.30 17299.81 3797.87 4299.91 1899.77 12
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9497.71 6198.85 5599.10 4891.35 24099.83 3398.47 2899.90 2499.64 35
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.60 9199.76 6295.49 14099.20 20699.26 131
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14697.69 6397.90 15597.96 17595.81 12699.82 3596.13 10499.61 9799.45 86
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13896.04 7598.07 5899.10 4995.96 13798.59 7898.69 8796.94 6799.81 3796.64 8499.58 10499.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13097.31 3697.55 9298.92 9797.72 5998.25 11698.13 15297.10 5499.75 6895.44 14799.24 20499.32 114
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6395.43 16797.41 18297.50 21697.98 1999.79 4595.58 13899.57 10799.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4498.01 5298.32 6598.45 17896.69 5298.52 2699.69 598.07 4696.07 26297.19 24196.88 7599.86 2497.50 5999.73 6698.41 253
test_fmvsmvis_n_192098.08 4598.47 2696.93 17599.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 303
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12193.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14199.21 799.87 2998.69 228
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 4998.76 2396.79 22199.34 2596.61 8998.82 31296.38 9499.50 13796.98 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4897.75 7898.93 1899.23 6697.60 2298.09 5798.96 9195.75 15197.91 15498.06 16596.89 7399.76 6295.32 15599.57 10799.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4897.79 7298.85 2499.15 8697.55 2696.68 14698.83 12495.21 17398.36 10298.13 15298.13 1899.62 14996.04 10899.54 11999.39 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 5097.76 7798.79 2999.43 4097.21 4197.15 11498.90 9996.58 10498.08 13697.87 18697.02 6299.76 6295.25 15899.59 10299.40 100
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5197.66 8599.01 898.77 13497.93 1197.38 10498.83 12497.32 8298.06 13997.85 18796.65 8699.77 5795.00 17799.11 22099.32 114
SDMVSNet97.97 5298.26 3997.11 16299.41 4392.21 21296.92 12798.60 17198.58 2898.78 6399.39 1697.80 2599.62 14994.98 18099.86 3199.52 59
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21198.58 2898.78 6399.39 1698.21 1499.56 16892.65 25099.86 3199.52 59
DVP-MVS++97.96 5497.90 5998.12 8497.75 26295.40 10399.03 798.89 10096.62 9998.62 7498.30 12796.97 6599.75 6895.70 12699.25 20199.21 139
Anonymous2024052997.96 5498.04 4997.71 11398.69 14594.28 15397.86 7098.31 20898.79 2299.23 3298.86 7495.76 12899.61 15695.49 14099.36 17599.23 137
XVS97.96 5497.63 9198.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24897.64 20596.49 9699.72 8895.66 13199.37 17299.45 86
NR-MVSNet97.96 5497.86 6598.26 7098.73 13695.54 9598.14 5498.73 14697.79 5399.42 2097.83 18894.40 17099.78 4895.91 11899.76 5999.46 82
APD_test197.95 5897.68 8398.75 3199.60 1798.60 597.21 11299.08 5596.57 10798.07 13898.38 11796.22 11199.14 27894.71 19399.31 19398.52 245
RRT_MVS97.95 5897.79 7298.43 5799.67 1295.56 9398.86 1096.73 30297.99 4999.15 3699.35 2389.84 26499.90 1498.64 2499.90 2499.82 6
ACMMPR97.95 5897.62 9398.94 1599.20 7897.56 2597.59 8998.83 12496.05 13097.46 18097.63 20696.77 8299.76 6295.61 13599.46 14999.49 71
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16397.41 7899.00 4699.19 3695.47 13799.73 8395.83 12399.76 5999.30 119
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12496.11 12799.08 4098.24 13997.87 2399.72 8895.44 14799.51 13399.14 154
HFP-MVS97.94 6297.64 8998.83 2599.15 8697.50 2997.59 8998.84 11896.05 13097.49 17597.54 21297.07 5799.70 11295.61 13599.46 14999.30 119
LPG-MVS_test97.94 6297.67 8498.74 3499.15 8697.02 4297.09 11999.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4798.04 4898.62 7498.66 8993.75 18699.78 4897.23 6599.84 4099.73 22
ZNCC-MVS97.92 6697.62 9398.83 2599.32 5697.24 3997.45 9998.84 11895.76 14996.93 21597.43 22097.26 4899.79 4596.06 10599.53 12399.45 86
region2R97.92 6697.59 9798.92 2199.22 6997.55 2697.60 8798.84 11896.00 13597.22 18797.62 20796.87 7799.76 6295.48 14399.43 16199.46 82
CP-MVS97.92 6697.56 10098.99 1098.99 11197.82 1597.93 6698.96 9196.11 12796.89 21897.45 21896.85 7899.78 4895.19 16199.63 9099.38 105
CS-MVS-test97.91 6997.84 6698.14 8298.52 16796.03 7798.38 3499.67 698.11 4495.50 28396.92 25996.81 8199.87 2296.87 8199.76 5998.51 246
mPP-MVS97.91 6997.53 10399.04 499.22 6997.87 1497.74 7998.78 13896.04 13297.10 19897.73 20096.53 9399.78 4895.16 16599.50 13799.46 82
EC-MVSNet97.90 7197.94 5897.79 10898.66 14795.14 12198.31 3999.66 897.57 6795.95 26697.01 25396.99 6499.82 3597.66 5499.64 8898.39 256
ACMMP_NAP97.89 7297.63 9198.67 4099.35 5296.84 4796.36 16198.79 13495.07 18197.88 15798.35 11997.24 5099.72 8896.05 10799.58 10499.45 86
PGM-MVS97.88 7397.52 10498.96 1399.20 7897.62 2197.09 11999.06 5995.45 16497.55 17097.94 17897.11 5399.78 4894.77 18999.46 14999.48 77
DP-MVS97.87 7497.89 6297.81 10798.62 15494.82 12997.13 11798.79 13498.98 1798.74 6998.49 10695.80 12799.49 19095.04 17499.44 15399.11 164
RPSCF97.87 7497.51 10598.95 1499.15 8698.43 697.56 9199.06 5996.19 12498.48 8898.70 8694.72 15799.24 26594.37 20499.33 18899.17 148
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6992.81 19797.55 9298.94 9497.10 8898.85 5598.88 7295.03 15099.67 13097.39 6399.65 8699.26 131
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14698.66 2598.56 8098.41 11396.84 7999.69 11994.82 18499.81 4898.64 232
UniMVSNet_NR-MVSNet97.83 7897.65 8698.37 6298.72 13895.78 8495.66 21099.02 7298.11 4498.31 11197.69 20394.65 16299.85 2797.02 7699.71 7399.48 77
UniMVSNet (Re)97.83 7897.65 8698.35 6498.80 12895.86 8395.92 19899.04 6997.51 7298.22 11997.81 19294.68 16099.78 4897.14 7199.75 6499.41 99
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17298.57 16092.10 22095.97 19299.18 3597.67 6699.00 4698.48 10997.64 3399.50 18596.96 7899.54 11999.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 8197.49 10898.81 2799.23 6697.25 3897.16 11398.79 13495.96 13797.53 17197.40 22296.93 6999.77 5795.04 17499.35 18099.42 97
DeepC-MVS95.41 497.82 8197.70 7998.16 7998.78 13395.72 8696.23 17299.02 7293.92 22098.62 7498.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8292.51 20496.57 14999.15 4193.68 22798.89 5299.30 2896.42 10199.37 23299.03 1199.83 4399.66 30
DU-MVS97.79 8497.60 9698.36 6398.73 13695.78 8495.65 21298.87 10897.57 6798.31 11197.83 18894.69 15899.85 2797.02 7699.71 7399.46 82
DVP-MVScopyleft97.78 8597.65 8698.16 7999.24 6495.51 9796.74 13998.23 21495.92 14098.40 9698.28 13297.06 5899.71 10495.48 14399.52 12899.26 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 8697.50 10798.57 4796.24 33297.58 2498.45 3198.85 11598.58 2897.51 17397.94 17895.74 12999.63 14495.19 16198.97 23498.51 246
GeoE97.75 8797.70 7997.89 10298.88 12194.53 14097.10 11898.98 8795.75 15197.62 16897.59 20997.61 3599.77 5796.34 9699.44 15399.36 111
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18199.09 9891.43 23596.37 16099.11 4794.19 21099.01 4499.25 3196.30 10699.38 22799.00 1299.88 2799.73 22
3Dnovator+96.13 397.73 8897.59 9798.15 8198.11 21895.60 9298.04 6098.70 15598.13 4396.93 21598.45 11095.30 14399.62 14995.64 13398.96 23599.24 136
tfpnnormal97.72 9097.97 5596.94 17499.26 6092.23 21197.83 7298.45 18698.25 3999.13 3898.66 8996.65 8699.69 11993.92 22399.62 9198.91 197
Baseline_NR-MVSNet97.72 9097.79 7297.50 13299.56 2193.29 18795.44 22298.86 11198.20 4298.37 9999.24 3294.69 15899.55 17295.98 11499.79 5399.65 33
bld_raw_dy_0_6497.69 9297.61 9597.91 10099.54 2694.27 15498.06 5998.60 17196.60 10198.79 6298.95 6389.62 26599.84 3098.43 3099.91 1899.62 36
MP-MVS-pluss97.69 9297.36 11398.70 3899.50 3496.84 4795.38 22998.99 8492.45 26598.11 13198.31 12397.25 4999.77 5796.60 8699.62 9199.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 9297.79 7297.40 14599.06 10293.52 18095.96 19498.97 9094.55 20198.82 5998.76 8197.31 4499.29 25497.20 6999.44 15399.38 105
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12892.51 20496.25 17099.06 5993.67 22898.64 7299.00 5596.23 11099.36 23598.99 1399.80 5199.53 57
DPE-MVScopyleft97.64 9697.35 11498.50 5198.85 12496.18 6995.21 24298.99 8495.84 14698.78 6398.08 15896.84 7999.81 3793.98 22199.57 10799.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 9697.18 12399.00 999.32 5697.77 1797.49 9898.73 14696.27 11895.59 28197.75 19796.30 10699.78 4893.70 23199.48 14499.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18598.79 13091.44 23496.14 17999.06 5994.19 21098.82 5998.98 5896.22 11199.38 22798.98 1499.86 3199.58 40
3Dnovator96.53 297.61 9997.64 8997.50 13297.74 26593.65 17798.49 2898.88 10696.86 9497.11 19798.55 10195.82 12299.73 8395.94 11699.42 16499.13 156
SF-MVS97.60 10097.39 11198.22 7598.93 11795.69 8897.05 12199.10 4995.32 17097.83 16397.88 18596.44 10099.72 8894.59 19899.39 17099.25 135
v897.60 10098.06 4796.23 21798.71 14189.44 26597.43 10298.82 13297.29 8498.74 6999.10 4893.86 18299.68 12498.61 2599.94 899.56 51
XVG-ACMP-BASELINE97.58 10297.28 11898.49 5299.16 8396.90 4696.39 15698.98 8795.05 18298.06 13998.02 16995.86 11899.56 16894.37 20499.64 8899.00 180
v1097.55 10397.97 5596.31 21598.60 15689.64 26197.44 10099.02 7296.60 10198.72 7199.16 4393.48 19199.72 8898.76 1999.92 1599.58 40
OPM-MVS97.54 10497.25 11998.41 5999.11 9596.61 5695.24 24098.46 18594.58 20098.10 13398.07 16097.09 5699.39 22495.16 16599.44 15399.21 139
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 10497.70 7997.07 16699.46 3792.21 21297.22 11199.00 8194.93 18898.58 7998.92 6697.31 4499.41 21894.44 19999.43 16199.59 39
casdiffmvspermissive97.50 10697.81 7196.56 20198.51 16991.04 24095.83 20299.09 5497.23 8598.33 10898.30 12797.03 6199.37 23296.58 8899.38 17199.28 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 10797.57 9997.26 15399.56 2192.33 20898.28 4296.97 29198.30 3899.45 1899.35 2388.43 28199.89 1898.01 3899.76 5999.54 54
SMA-MVScopyleft97.48 10897.11 12598.60 4598.83 12596.67 5396.74 13998.73 14691.61 27798.48 8898.36 11896.53 9399.68 12495.17 16399.54 11999.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 10997.10 12698.55 4999.04 10796.70 5196.24 17198.89 10093.71 22597.97 14997.75 19797.44 3899.63 14493.22 24399.70 7699.32 114
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 11096.92 14099.03 599.26 6097.70 1897.66 8398.89 10095.65 15498.51 8396.46 28692.15 22499.81 3795.14 16898.58 27799.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 11197.56 10097.11 16299.55 2396.36 6398.66 1895.66 31798.31 3697.09 20395.45 32597.17 5298.50 34498.67 2397.45 32996.48 356
baseline97.44 11197.78 7696.43 20798.52 16790.75 24796.84 13099.03 7096.51 10897.86 16198.02 16996.67 8599.36 23597.09 7399.47 14699.19 144
TSAR-MVS + MP.97.42 11397.23 12198.00 9599.38 4995.00 12597.63 8698.20 21993.00 25098.16 12698.06 16595.89 11799.72 8895.67 13099.10 22299.28 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 11497.30 11697.69 11698.95 11394.83 12897.28 10798.99 8496.35 11798.13 13095.95 31195.99 11599.66 13694.36 20699.73 6698.59 238
test_fmvs397.38 11597.56 10096.84 18398.63 15292.81 19797.60 8799.61 1390.87 28798.76 6899.66 394.03 17897.90 36799.24 699.68 8199.81 8
XVG-OURS-SEG-HR97.38 11597.07 12998.30 6899.01 11097.41 3494.66 26799.02 7295.20 17498.15 12897.52 21498.83 598.43 34994.87 18296.41 35199.07 171
VDD-MVS97.37 11797.25 11997.74 11198.69 14594.50 14397.04 12295.61 32198.59 2798.51 8398.72 8392.54 21699.58 16196.02 11099.49 14099.12 161
SD-MVS97.37 11797.70 7996.35 21298.14 21495.13 12296.54 15198.92 9795.94 13999.19 3498.08 15897.74 2895.06 38795.24 15999.54 11998.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 11997.10 12698.14 8298.91 11996.77 4996.20 17398.63 16993.82 22298.54 8198.33 12193.98 17999.05 29195.99 11399.45 15298.61 237
LCM-MVSNet-Re97.33 12097.33 11597.32 14998.13 21793.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30499.06 22998.32 265
EI-MVSNet-UG-set97.32 12197.40 11097.09 16597.34 29992.01 22395.33 23497.65 26697.74 5798.30 11398.14 15095.04 14999.69 11997.55 5799.52 12899.58 40
EI-MVSNet-Vis-set97.32 12197.39 11197.11 16297.36 29692.08 22195.34 23397.65 26697.74 5798.29 11498.11 15695.05 14899.68 12497.50 5999.50 13799.56 51
VPNet97.26 12397.49 10896.59 19799.47 3690.58 24996.27 16698.53 17997.77 5498.46 9198.41 11394.59 16399.68 12494.61 19499.29 19699.52 59
canonicalmvs97.23 12497.21 12297.30 15097.65 27494.39 14597.84 7199.05 6397.42 7596.68 22993.85 35097.63 3499.33 24396.29 9798.47 28298.18 281
AllTest97.20 12596.92 14098.06 8899.08 9996.16 7097.14 11699.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
dcpmvs_297.12 12697.99 5494.51 30099.11 9584.00 35697.75 7799.65 997.38 8099.14 3798.42 11295.16 14699.96 295.52 13999.78 5699.58 40
XVG-OURS97.12 12696.74 14998.26 7098.99 11197.45 3293.82 30299.05 6395.19 17598.32 10997.70 20295.22 14598.41 35094.27 20898.13 29698.93 193
Anonymous2024052197.07 12897.51 10595.76 23999.35 5288.18 28997.78 7398.40 19597.11 8798.34 10599.04 5389.58 26799.79 4598.09 3599.93 1199.30 119
test_vis3_rt97.04 12996.98 13497.23 15698.44 17995.88 8096.82 13299.67 690.30 29699.27 2999.33 2794.04 17796.03 38697.14 7197.83 30799.78 11
V4297.04 12997.16 12496.68 19498.59 15891.05 23996.33 16398.36 20094.60 19797.99 14598.30 12793.32 19399.62 14997.40 6299.53 12399.38 105
APD-MVScopyleft97.00 13196.53 16398.41 5998.55 16396.31 6696.32 16498.77 13992.96 25597.44 18197.58 21195.84 11999.74 7791.96 25999.35 18099.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 13296.38 17198.81 2798.64 14897.59 2395.97 19298.20 21995.51 16295.06 29396.53 28294.10 17699.70 11294.29 20799.15 21399.13 156
GBi-Net96.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
test196.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
VDDNet96.98 13596.84 14397.41 14499.40 4693.26 18997.94 6595.31 32899.26 798.39 9899.18 3987.85 29099.62 14995.13 17099.09 22399.35 113
PHI-MVS96.96 13696.53 16398.25 7397.48 28696.50 5996.76 13898.85 11593.52 23096.19 25896.85 26295.94 11699.42 20993.79 22799.43 16198.83 210
IS-MVSNet96.93 13796.68 15297.70 11499.25 6394.00 16298.57 2096.74 30098.36 3498.14 12997.98 17488.23 28399.71 10493.10 24699.72 7099.38 105
CNVR-MVS96.92 13896.55 16098.03 9398.00 22795.54 9594.87 25898.17 22594.60 19796.38 24597.05 24995.67 13199.36 23595.12 17199.08 22499.19 144
IterMVS-LS96.92 13897.29 11795.79 23898.51 16988.13 29295.10 24598.66 16396.99 8998.46 9198.68 8892.55 21499.74 7796.91 7999.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 14096.81 14597.16 15898.56 16292.20 21594.33 27598.12 23497.34 8198.20 12097.33 23392.81 20499.75 6894.79 18699.81 4899.54 54
DeepPCF-MVS94.58 596.90 14096.43 16898.31 6797.48 28697.23 4092.56 33298.60 17192.84 25798.54 8197.40 22296.64 8898.78 31694.40 20399.41 16898.93 193
v114496.84 14297.08 12896.13 22498.42 18189.28 26895.41 22698.67 16194.21 20897.97 14998.31 12393.06 19899.65 13898.06 3799.62 9199.45 86
VNet96.84 14296.83 14496.88 17998.06 21992.02 22296.35 16297.57 27297.70 6297.88 15797.80 19392.40 22199.54 17594.73 19198.96 23599.08 169
EPP-MVSNet96.84 14296.58 15797.65 11899.18 8193.78 17198.68 1496.34 30597.91 5197.30 18498.06 16588.46 28099.85 2793.85 22599.40 16999.32 114
v119296.83 14597.06 13096.15 22398.28 19189.29 26795.36 23098.77 13993.73 22498.11 13198.34 12093.02 20299.67 13098.35 3199.58 10499.50 63
MVS_111021_LR96.82 14696.55 16097.62 12098.27 19395.34 11093.81 30498.33 20494.59 19996.56 23796.63 27796.61 8998.73 32194.80 18599.34 18398.78 215
Effi-MVS+-dtu96.81 14796.09 18298.99 1096.90 32098.69 496.42 15598.09 23795.86 14595.15 29195.54 32294.26 17399.81 3794.06 21698.51 28198.47 250
UGNet96.81 14796.56 15997.58 12296.64 32393.84 16897.75 7797.12 28596.47 11293.62 33098.88 7293.22 19699.53 17795.61 13599.69 7799.36 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 14997.06 13095.95 23198.57 16088.77 27995.36 23098.26 21095.18 17697.85 16298.23 14192.58 21399.63 14497.80 4699.69 7799.45 86
v124096.74 15097.02 13395.91 23498.18 20588.52 28195.39 22898.88 10693.15 24698.46 9198.40 11692.80 20599.71 10498.45 2999.49 14099.49 71
DeepC-MVS_fast94.34 796.74 15096.51 16597.44 14097.69 26894.15 15796.02 18798.43 18993.17 24597.30 18497.38 22895.48 13699.28 25693.74 22899.34 18398.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 15296.54 16297.27 15298.35 18693.66 17693.42 31498.36 20094.74 19196.58 23596.76 27196.54 9298.99 29894.87 18299.27 19999.15 151
v192192096.72 15396.96 13795.99 22798.21 19988.79 27895.42 22498.79 13493.22 24098.19 12498.26 13792.68 20999.70 11298.34 3299.55 11699.49 71
FMVSNet296.72 15396.67 15396.87 18097.96 22991.88 22597.15 11498.06 24395.59 15898.50 8598.62 9589.51 27199.65 13894.99 17999.60 10099.07 171
PMVScopyleft89.60 1796.71 15596.97 13595.95 23199.51 3197.81 1697.42 10397.49 27397.93 5095.95 26698.58 9796.88 7596.91 38089.59 31299.36 17593.12 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 15696.90 14296.03 22698.25 19588.92 27395.49 22098.77 13993.05 24898.09 13498.29 13192.51 21999.70 11298.11 3499.56 11099.47 80
CPTT-MVS96.69 15696.08 18398.49 5298.89 12096.64 5597.25 10898.77 13992.89 25696.01 26597.13 24392.23 22399.67 13092.24 25699.34 18399.17 148
HQP_MVS96.66 15896.33 17497.68 11798.70 14394.29 15096.50 15298.75 14396.36 11596.16 25996.77 26991.91 23499.46 19892.59 25299.20 20699.28 126
EI-MVSNet96.63 15996.93 13895.74 24097.26 30488.13 29295.29 23897.65 26696.99 8997.94 15298.19 14692.55 21499.58 16196.91 7999.56 11099.50 63
MVS_030496.62 16096.40 17097.28 15197.91 23392.30 20996.47 15489.74 38197.52 7195.38 28798.63 9492.76 20699.81 3799.28 499.93 1199.75 19
patch_mono-296.59 16196.93 13895.55 25098.88 12187.12 31594.47 27299.30 2494.12 21396.65 23398.41 11394.98 15399.87 2295.81 12599.78 5699.66 30
ab-mvs96.59 16196.59 15696.60 19698.64 14892.21 21298.35 3597.67 26294.45 20296.99 21098.79 7694.96 15499.49 19090.39 30199.07 22698.08 284
v14896.58 16396.97 13595.42 25798.63 15287.57 30595.09 24697.90 24895.91 14298.24 11797.96 17593.42 19299.39 22496.04 10899.52 12899.29 125
test20.0396.58 16396.61 15596.48 20598.49 17391.72 22995.68 20997.69 26196.81 9598.27 11597.92 18194.18 17598.71 32490.78 28799.66 8599.00 180
NCCC96.52 16595.99 18798.10 8597.81 24695.68 8995.00 25498.20 21995.39 16895.40 28696.36 29293.81 18499.45 20293.55 23498.42 28599.17 148
pmmvs-eth3d96.49 16696.18 17997.42 14398.25 19594.29 15094.77 26398.07 24289.81 30397.97 14998.33 12193.11 19799.08 28895.46 14699.84 4098.89 201
OMC-MVS96.48 16796.00 18697.91 10098.30 18896.01 7894.86 25998.60 17191.88 27497.18 19297.21 24096.11 11399.04 29290.49 30099.34 18398.69 228
TSAR-MVS + GP.96.47 16896.12 18097.49 13597.74 26595.23 11594.15 28696.90 29393.26 23898.04 14296.70 27394.41 16998.89 30794.77 18999.14 21498.37 258
Fast-Effi-MVS+-dtu96.44 16996.12 18097.39 14697.18 30894.39 14595.46 22198.73 14696.03 13494.72 30194.92 33596.28 10999.69 11993.81 22697.98 30198.09 283
K. test v396.44 16996.28 17596.95 17399.41 4391.53 23197.65 8490.31 37798.89 2098.93 4999.36 2184.57 31499.92 597.81 4599.56 11099.39 103
MSLP-MVS++96.42 17196.71 15095.57 24797.82 24590.56 25195.71 20598.84 11894.72 19296.71 22897.39 22694.91 15598.10 36595.28 15699.02 23198.05 293
test_fmvs296.38 17296.45 16796.16 22297.85 23791.30 23696.81 13399.45 1889.24 30898.49 8699.38 1888.68 27897.62 37298.83 1699.32 19099.57 47
Anonymous20240521196.34 17395.98 18897.43 14198.25 19593.85 16796.74 13994.41 33797.72 5998.37 9998.03 16887.15 29599.53 17794.06 21699.07 22698.92 196
h-mvs3396.29 17495.63 20498.26 7098.50 17296.11 7396.90 12897.09 28696.58 10497.21 18998.19 14684.14 31699.78 4895.89 11996.17 35598.89 201
MVS_Test96.27 17596.79 14894.73 29096.94 31886.63 32396.18 17498.33 20494.94 18696.07 26298.28 13295.25 14499.26 26097.21 6797.90 30598.30 269
MCST-MVS96.24 17695.80 19797.56 12398.75 13594.13 15894.66 26798.17 22590.17 29996.21 25696.10 30595.14 14799.43 20794.13 21498.85 24999.13 156
mvsany_test396.21 17795.93 19297.05 16797.40 29494.33 14995.76 20494.20 33989.10 30999.36 2499.60 693.97 18097.85 36895.40 15498.63 27298.99 183
Effi-MVS+96.19 17896.01 18596.71 19197.43 29292.19 21696.12 18099.10 4995.45 16493.33 34194.71 33897.23 5199.56 16893.21 24497.54 32398.37 258
DELS-MVS96.17 17996.23 17695.99 22797.55 28290.04 25592.38 33998.52 18094.13 21296.55 23997.06 24894.99 15299.58 16195.62 13499.28 19798.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 18096.36 17295.49 25397.68 26987.81 30198.67 1599.02 7296.50 10994.48 30896.15 30086.90 29699.92 598.73 2099.13 21698.74 221
ETV-MVS96.13 18195.90 19396.82 18497.76 26093.89 16595.40 22798.95 9395.87 14495.58 28291.00 38296.36 10599.72 8893.36 23798.83 25296.85 343
testgi96.07 18296.50 16694.80 28699.26 6087.69 30495.96 19498.58 17695.08 18098.02 14496.25 29697.92 2097.60 37388.68 32698.74 26099.11 164
LF4IMVS96.07 18295.63 20497.36 14798.19 20295.55 9495.44 22298.82 13292.29 26895.70 27996.55 28092.63 21298.69 32691.75 26899.33 18897.85 307
EIA-MVS96.04 18495.77 19996.85 18197.80 25092.98 19496.12 18099.16 3794.65 19593.77 32591.69 37695.68 13099.67 13094.18 21198.85 24997.91 302
diffmvspermissive96.04 18496.23 17695.46 25597.35 29788.03 29593.42 31499.08 5594.09 21696.66 23196.93 25793.85 18399.29 25496.01 11298.67 26799.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 18695.52 20797.50 13297.77 25994.71 13196.07 18396.84 29497.48 7396.78 22594.28 34785.50 30799.40 22096.22 10098.73 26398.40 254
TinyColmap96.00 18796.34 17394.96 27797.90 23587.91 29794.13 28998.49 18394.41 20398.16 12697.76 19496.29 10898.68 32990.52 29799.42 16498.30 269
PVSNet_Blended_VisFu95.95 18895.80 19796.42 20999.28 5890.62 24895.31 23699.08 5588.40 31996.97 21398.17 14992.11 22699.78 4893.64 23299.21 20598.86 208
SSC-MVS95.92 18997.03 13292.58 34599.28 5878.39 38096.68 14695.12 33098.90 1999.11 3998.66 8991.36 23999.68 12495.00 17799.16 21299.67 28
UnsupCasMVSNet_eth95.91 19095.73 20096.44 20698.48 17591.52 23295.31 23698.45 18695.76 14997.48 17797.54 21289.53 27098.69 32694.43 20094.61 37299.13 156
QAPM95.88 19195.57 20696.80 18597.90 23591.84 22798.18 5398.73 14688.41 31896.42 24398.13 15294.73 15699.75 6888.72 32498.94 23898.81 212
CANet95.86 19295.65 20396.49 20496.41 32990.82 24494.36 27498.41 19394.94 18692.62 35796.73 27292.68 20999.71 10495.12 17199.60 10098.94 189
IterMVS-SCA-FT95.86 19296.19 17894.85 28397.68 26985.53 33492.42 33797.63 27096.99 8998.36 10298.54 10287.94 28599.75 6897.07 7599.08 22499.27 130
test_f95.82 19495.88 19595.66 24497.61 27793.21 19195.61 21698.17 22586.98 33498.42 9499.47 1190.46 25294.74 38997.71 5198.45 28399.03 176
test_vis1_n_192095.77 19596.41 16993.85 31698.55 16384.86 34695.91 19999.71 492.72 25997.67 16798.90 7087.44 29398.73 32197.96 3998.85 24997.96 299
hse-mvs295.77 19595.09 21697.79 10897.84 24295.51 9795.66 21095.43 32696.58 10497.21 18996.16 29984.14 31699.54 17595.89 11996.92 33698.32 265
MVP-Stereo95.69 19795.28 20996.92 17698.15 21293.03 19395.64 21598.20 21990.39 29596.63 23497.73 20091.63 23699.10 28691.84 26497.31 33398.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 19795.67 20195.74 24098.48 17588.76 28092.84 32497.25 27896.00 13597.59 16997.95 17791.38 23899.46 19893.16 24596.35 35298.99 183
test_vis1_n95.67 19995.89 19495.03 27298.18 20589.89 25896.94 12699.28 2688.25 32298.20 12098.92 6686.69 29997.19 37597.70 5398.82 25398.00 298
new-patchmatchnet95.67 19996.58 15792.94 33997.48 28680.21 37592.96 32398.19 22494.83 18998.82 5998.79 7693.31 19499.51 18495.83 12399.04 23099.12 161
xiu_mvs_v1_base_debu95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base_debi95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
DP-MVS Recon95.55 20495.13 21496.80 18598.51 16993.99 16394.60 26998.69 15690.20 29895.78 27596.21 29892.73 20898.98 30090.58 29698.86 24897.42 327
WB-MVS95.50 20596.62 15492.11 35399.21 7677.26 38896.12 18095.40 32798.62 2698.84 5798.26 13791.08 24399.50 18593.37 23698.70 26599.58 40
Fast-Effi-MVS+95.49 20695.07 21796.75 18997.67 27292.82 19694.22 28298.60 17191.61 27793.42 33992.90 36096.73 8499.70 11292.60 25197.89 30697.74 312
TAMVS95.49 20694.94 22197.16 15898.31 18793.41 18495.07 24996.82 29691.09 28597.51 17397.82 19189.96 26199.42 20988.42 32999.44 15398.64 232
OpenMVScopyleft94.22 895.48 20895.20 21196.32 21497.16 30991.96 22497.74 7998.84 11887.26 32994.36 31098.01 17193.95 18199.67 13090.70 29398.75 25997.35 330
CLD-MVS95.47 20995.07 21796.69 19398.27 19392.53 20391.36 35298.67 16191.22 28495.78 27594.12 34895.65 13298.98 30090.81 28599.72 7098.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 21094.66 23797.88 10397.84 24295.23 11593.62 30898.39 19687.04 33293.78 32395.99 30794.58 16499.52 18091.76 26798.90 24298.89 201
CDPH-MVS95.45 21194.65 23897.84 10698.28 19194.96 12693.73 30698.33 20485.03 35595.44 28496.60 27895.31 14299.44 20590.01 30699.13 21699.11 164
IterMVS95.42 21295.83 19694.20 31197.52 28383.78 35892.41 33897.47 27595.49 16398.06 13998.49 10687.94 28599.58 16196.02 11099.02 23199.23 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 21396.07 18493.21 33196.29 33181.56 37094.60 26997.66 26493.30 23796.95 21498.91 6993.03 20199.38 22796.60 8697.30 33498.69 228
test_cas_vis1_n_192095.34 21495.67 20194.35 30698.21 19986.83 32195.61 21699.26 2790.45 29498.17 12598.96 6184.43 31598.31 35896.74 8299.17 21197.90 303
MSDG95.33 21595.13 21495.94 23397.40 29491.85 22691.02 36398.37 19995.30 17196.31 25095.99 30794.51 16798.38 35389.59 31297.65 32097.60 320
LFMVS95.32 21694.88 22796.62 19598.03 22091.47 23397.65 8490.72 37499.11 997.89 15698.31 12379.20 34099.48 19393.91 22499.12 21998.93 193
F-COLMAP95.30 21794.38 25598.05 9298.64 14896.04 7595.61 21698.66 16389.00 31293.22 34296.40 29092.90 20399.35 23987.45 34397.53 32498.77 218
Anonymous2023120695.27 21895.06 21995.88 23598.72 13889.37 26695.70 20697.85 25188.00 32596.98 21297.62 20791.95 23199.34 24189.21 31799.53 12398.94 189
FMVSNet395.26 21994.94 22196.22 21996.53 32690.06 25495.99 19097.66 26494.11 21497.99 14597.91 18280.22 33899.63 14494.60 19599.44 15398.96 186
test_fmvs1_n95.21 22095.28 20994.99 27598.15 21289.13 27296.81 13399.43 2086.97 33597.21 18998.92 6683.00 32497.13 37698.09 3598.94 23898.72 224
c3_l95.20 22195.32 20894.83 28596.19 33686.43 32691.83 34798.35 20393.47 23297.36 18397.26 23788.69 27799.28 25695.41 15399.36 17598.78 215
D2MVS95.18 22295.17 21395.21 26397.76 26087.76 30394.15 28697.94 24689.77 30496.99 21097.68 20487.45 29299.14 27895.03 17699.81 4898.74 221
N_pmnet95.18 22294.23 25898.06 8897.85 23796.55 5892.49 33391.63 36589.34 30698.09 13497.41 22190.33 25599.06 29091.58 26999.31 19398.56 240
HQP-MVS95.17 22494.58 24696.92 17697.85 23792.47 20694.26 27698.43 18993.18 24292.86 34895.08 32990.33 25599.23 26790.51 29898.74 26099.05 175
Vis-MVSNet (Re-imp)95.11 22594.85 22895.87 23699.12 9489.17 26997.54 9794.92 33296.50 10996.58 23597.27 23683.64 32099.48 19388.42 32999.67 8398.97 185
AdaColmapbinary95.11 22594.62 24296.58 19897.33 30194.45 14494.92 25698.08 23893.15 24693.98 32195.53 32394.34 17199.10 28685.69 35398.61 27496.20 361
API-MVS95.09 22795.01 22095.31 26096.61 32494.02 16196.83 13197.18 28295.60 15795.79 27394.33 34694.54 16698.37 35585.70 35298.52 27993.52 382
CL-MVSNet_self_test95.04 22894.79 23495.82 23797.51 28489.79 25991.14 36096.82 29693.05 24896.72 22796.40 29090.82 24799.16 27691.95 26098.66 26998.50 248
CNLPA95.04 22894.47 25196.75 18997.81 24695.25 11494.12 29097.89 24994.41 20394.57 30495.69 31690.30 25898.35 35686.72 34898.76 25896.64 351
Patchmtry95.03 23094.59 24596.33 21394.83 36890.82 24496.38 15997.20 28096.59 10397.49 17598.57 9877.67 34799.38 22792.95 24999.62 9198.80 213
PVSNet_BlendedMVS95.02 23194.93 22395.27 26197.79 25587.40 31094.14 28898.68 15888.94 31394.51 30698.01 17193.04 19999.30 25089.77 31099.49 14099.11 164
TAPA-MVS93.32 1294.93 23294.23 25897.04 16998.18 20594.51 14195.22 24198.73 14681.22 37496.25 25495.95 31193.80 18598.98 30089.89 30898.87 24697.62 318
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 23394.89 22694.99 27597.51 28488.11 29498.27 4495.20 32992.40 26796.68 22998.60 9683.44 32199.28 25693.34 23898.53 27897.59 321
eth_miper_zixun_eth94.89 23494.93 22394.75 28995.99 34486.12 32991.35 35398.49 18393.40 23397.12 19697.25 23886.87 29899.35 23995.08 17398.82 25398.78 215
CDS-MVSNet94.88 23594.12 26397.14 16097.64 27593.57 17893.96 29897.06 28890.05 30096.30 25196.55 28086.10 30199.47 19590.10 30599.31 19398.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 23694.91 22594.57 29796.81 32187.10 31694.23 28197.34 27788.74 31697.14 19497.11 24591.94 23298.23 36192.99 24797.92 30398.37 258
pmmvs494.82 23794.19 26196.70 19297.42 29392.75 20192.09 34496.76 29886.80 33795.73 27897.22 23989.28 27498.89 30793.28 24199.14 21498.46 252
miper_lstm_enhance94.81 23894.80 23394.85 28396.16 33886.45 32591.14 36098.20 21993.49 23197.03 20797.37 23084.97 31199.26 26095.28 15699.56 11098.83 210
cl____94.73 23994.64 23995.01 27395.85 34887.00 31791.33 35498.08 23893.34 23597.10 19897.33 23384.01 31999.30 25095.14 16899.56 11098.71 227
DIV-MVS_self_test94.73 23994.64 23995.01 27395.86 34787.00 31791.33 35498.08 23893.34 23597.10 19897.34 23284.02 31899.31 24795.15 16799.55 11698.72 224
YYNet194.73 23994.84 22994.41 30497.47 29085.09 34390.29 37095.85 31592.52 26297.53 17197.76 19491.97 23099.18 27193.31 24096.86 33998.95 187
MDA-MVSNet_test_wron94.73 23994.83 23194.42 30397.48 28685.15 34190.28 37195.87 31492.52 26297.48 17797.76 19491.92 23399.17 27593.32 23996.80 34498.94 189
UnsupCasMVSNet_bld94.72 24394.26 25796.08 22598.62 15490.54 25293.38 31698.05 24490.30 29697.02 20896.80 26889.54 26899.16 27688.44 32896.18 35498.56 240
miper_ehance_all_eth94.69 24494.70 23694.64 29195.77 35186.22 32891.32 35698.24 21391.67 27697.05 20596.65 27688.39 28299.22 26994.88 18198.34 28798.49 249
BH-untuned94.69 24494.75 23594.52 29997.95 23287.53 30694.07 29197.01 28993.99 21897.10 19895.65 31892.65 21198.95 30587.60 33996.74 34597.09 333
RPMNet94.68 24694.60 24394.90 28095.44 35988.15 29096.18 17498.86 11197.43 7494.10 31598.49 10679.40 33999.76 6295.69 12895.81 35796.81 347
Patchmatch-RL test94.66 24794.49 24995.19 26498.54 16588.91 27492.57 33198.74 14591.46 28098.32 10997.75 19777.31 35298.81 31496.06 10599.61 9797.85 307
CANet_DTU94.65 24894.21 26095.96 22995.90 34689.68 26093.92 29997.83 25593.19 24190.12 37695.64 31988.52 27999.57 16793.27 24299.47 14698.62 235
pmmvs594.63 24994.34 25695.50 25297.63 27688.34 28594.02 29297.13 28487.15 33195.22 29097.15 24287.50 29199.27 25993.99 22099.26 20098.88 205
PAPM_NR94.61 25094.17 26295.96 22998.36 18591.23 23795.93 19797.95 24592.98 25193.42 33994.43 34590.53 25098.38 35387.60 33996.29 35398.27 273
PatchMatch-RL94.61 25093.81 27197.02 17198.19 20295.72 8693.66 30797.23 27988.17 32394.94 29895.62 32091.43 23798.57 33787.36 34497.68 31796.76 349
BH-RMVSNet94.56 25294.44 25494.91 27897.57 27987.44 30993.78 30596.26 30693.69 22696.41 24496.50 28592.10 22799.00 29685.96 35097.71 31498.31 267
USDC94.56 25294.57 24894.55 29897.78 25886.43 32692.75 32798.65 16885.96 34396.91 21797.93 18090.82 24798.74 32090.71 29299.59 10298.47 250
iter_conf_final94.54 25493.91 27096.43 20797.23 30690.41 25396.81 13398.10 23593.87 22196.80 22097.89 18368.02 38599.72 8896.73 8399.77 5899.18 147
test111194.53 25594.81 23293.72 31999.06 10281.94 36998.31 3983.87 39496.37 11498.49 8699.17 4281.49 32999.73 8396.64 8499.86 3199.49 71
test_fmvs194.51 25694.60 24394.26 31095.91 34587.92 29695.35 23299.02 7286.56 33996.79 22198.52 10382.64 32697.00 37997.87 4298.71 26497.88 305
ppachtmachnet_test94.49 25794.84 22993.46 32596.16 33882.10 36690.59 36797.48 27490.53 29397.01 20997.59 20991.01 24499.36 23593.97 22299.18 21098.94 189
test_yl94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
DCV-MVSNet94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
jason94.39 26094.04 26595.41 25998.29 18987.85 30092.74 32996.75 29985.38 35295.29 28896.15 30088.21 28499.65 13894.24 20999.34 18398.74 221
jason: jason.
ECVR-MVScopyleft94.37 26194.48 25094.05 31598.95 11383.10 36098.31 3982.48 39596.20 12298.23 11899.16 4381.18 33299.66 13695.95 11599.83 4399.38 105
EU-MVSNet94.25 26294.47 25193.60 32298.14 21482.60 36497.24 11092.72 35585.08 35398.48 8898.94 6482.59 32798.76 31997.47 6199.53 12399.44 95
xiu_mvs_v2_base94.22 26394.63 24192.99 33797.32 30284.84 34792.12 34297.84 25391.96 27294.17 31393.43 35196.07 11499.71 10491.27 27397.48 32694.42 377
sss94.22 26393.72 27295.74 24097.71 26789.95 25793.84 30196.98 29088.38 32093.75 32695.74 31587.94 28598.89 30791.02 27998.10 29798.37 258
MVSTER94.21 26593.93 26995.05 27195.83 34986.46 32495.18 24397.65 26692.41 26697.94 15298.00 17372.39 37499.58 16196.36 9599.56 11099.12 161
MAR-MVS94.21 26593.03 28497.76 11096.94 31897.44 3396.97 12597.15 28387.89 32792.00 36292.73 36492.14 22599.12 28183.92 36797.51 32596.73 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 26794.58 24693.07 33396.16 33881.20 37290.42 36996.84 29490.72 28997.14 19497.13 24390.47 25199.11 28494.04 21998.25 29198.91 197
1112_ss94.12 26893.42 27796.23 21798.59 15890.85 24394.24 28098.85 11585.49 34892.97 34694.94 33386.01 30299.64 14191.78 26697.92 30398.20 279
PS-MVSNAJ94.10 26994.47 25193.00 33697.35 29784.88 34591.86 34697.84 25391.96 27294.17 31392.50 36895.82 12299.71 10491.27 27397.48 32694.40 378
CHOSEN 1792x268894.10 26993.41 27896.18 22199.16 8390.04 25592.15 34198.68 15879.90 37996.22 25597.83 18887.92 28999.42 20989.18 31899.65 8699.08 169
MG-MVS94.08 27194.00 26694.32 30797.09 31285.89 33193.19 32195.96 31292.52 26294.93 29997.51 21589.54 26898.77 31787.52 34297.71 31498.31 267
PLCcopyleft91.02 1694.05 27292.90 28797.51 12898.00 22795.12 12394.25 27998.25 21186.17 34191.48 36795.25 32791.01 24499.19 27085.02 36296.69 34698.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 27393.65 27395.17 26695.76 35293.42 18393.97 29798.33 20484.68 35993.17 34395.89 31392.53 21894.79 38893.50 23594.97 36897.31 331
114514_t93.96 27493.22 28196.19 22099.06 10290.97 24295.99 19098.94 9473.88 39193.43 33896.93 25792.38 22299.37 23289.09 31999.28 19798.25 275
PVSNet_Blended93.96 27493.65 27394.91 27897.79 25587.40 31091.43 35198.68 15884.50 36294.51 30694.48 34493.04 19999.30 25089.77 31098.61 27498.02 296
AUN-MVS93.95 27692.69 29597.74 11197.80 25095.38 10595.57 21995.46 32591.26 28392.64 35596.10 30574.67 36399.55 17293.72 23096.97 33598.30 269
lupinMVS93.77 27793.28 27995.24 26297.68 26987.81 30192.12 34296.05 30884.52 36194.48 30895.06 33186.90 29699.63 14493.62 23399.13 21698.27 273
PatchT93.75 27893.57 27594.29 30995.05 36687.32 31296.05 18492.98 35197.54 7094.25 31198.72 8375.79 36099.24 26595.92 11795.81 35796.32 358
EPNet93.72 27992.62 29897.03 17087.61 39992.25 21096.27 16691.28 36896.74 9787.65 38697.39 22685.00 31099.64 14192.14 25799.48 14499.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 27992.65 29696.91 17898.93 11791.81 22891.23 35898.52 18082.69 36796.46 24296.52 28480.38 33799.90 1490.36 30298.79 25599.03 176
DPM-MVS93.68 28192.77 29496.42 20997.91 23392.54 20291.17 35997.47 27584.99 35793.08 34594.74 33789.90 26299.00 29687.54 34198.09 29897.72 313
PMMVS293.66 28294.07 26492.45 34997.57 27980.67 37486.46 38596.00 31093.99 21897.10 19897.38 22889.90 26297.82 36988.76 32399.47 14698.86 208
iter_conf0593.65 28393.05 28295.46 25596.13 34287.45 30895.95 19698.22 21592.66 26097.04 20697.89 18363.52 39199.72 8896.19 10299.82 4799.21 139
OpenMVS_ROBcopyleft91.80 1493.64 28493.05 28295.42 25797.31 30391.21 23895.08 24896.68 30381.56 37196.88 21996.41 28890.44 25499.25 26285.39 35897.67 31895.80 365
Patchmatch-test93.60 28593.25 28094.63 29296.14 34187.47 30796.04 18594.50 33693.57 22996.47 24196.97 25476.50 35598.61 33490.67 29498.41 28697.81 311
WTY-MVS93.55 28693.00 28695.19 26497.81 24687.86 29893.89 30096.00 31089.02 31194.07 31795.44 32686.27 30099.33 24387.69 33796.82 34298.39 256
Test_1112_low_res93.53 28792.86 28895.54 25198.60 15688.86 27692.75 32798.69 15682.66 36892.65 35496.92 25984.75 31299.56 16890.94 28197.76 31098.19 280
mvsany_test193.47 28893.03 28494.79 28794.05 38092.12 21790.82 36590.01 38085.02 35697.26 18698.28 13293.57 18997.03 37792.51 25495.75 36295.23 373
MIMVSNet93.42 28992.86 28895.10 26998.17 20888.19 28898.13 5593.69 34192.07 26995.04 29698.21 14580.95 33599.03 29581.42 37698.06 29998.07 286
FMVSNet593.39 29092.35 30096.50 20395.83 34990.81 24697.31 10598.27 20992.74 25896.27 25298.28 13262.23 39299.67 13090.86 28399.36 17599.03 176
SCA93.38 29193.52 27692.96 33896.24 33281.40 37193.24 31994.00 34091.58 27994.57 30496.97 25487.94 28599.42 20989.47 31497.66 31998.06 290
tttt051793.31 29292.56 29995.57 24798.71 14187.86 29897.44 10087.17 38895.79 14897.47 17996.84 26364.12 38999.81 3796.20 10199.32 19099.02 179
CR-MVSNet93.29 29392.79 29194.78 28895.44 35988.15 29096.18 17497.20 28084.94 35894.10 31598.57 9877.67 34799.39 22495.17 16395.81 35796.81 347
cl2293.25 29492.84 29094.46 30294.30 37486.00 33091.09 36296.64 30490.74 28895.79 27396.31 29478.24 34498.77 31794.15 21398.34 28798.62 235
wuyk23d93.25 29495.20 21187.40 37596.07 34395.38 10597.04 12294.97 33195.33 16999.70 698.11 15698.14 1791.94 39377.76 38699.68 8174.89 393
miper_enhance_ethall93.14 29692.78 29394.20 31193.65 38385.29 33889.97 37397.85 25185.05 35496.15 26194.56 34085.74 30499.14 27893.74 22898.34 28798.17 282
baseline193.14 29692.64 29794.62 29397.34 29987.20 31496.67 14893.02 35094.71 19396.51 24095.83 31481.64 32898.60 33690.00 30788.06 38998.07 286
FE-MVS92.95 29892.22 30295.11 26797.21 30788.33 28698.54 2393.66 34489.91 30296.21 25698.14 15070.33 38199.50 18587.79 33598.24 29297.51 323
X-MVStestdata92.86 29990.83 32598.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24836.50 39596.49 9699.72 8895.66 13199.37 17299.45 86
GA-MVS92.83 30092.15 30494.87 28296.97 31587.27 31390.03 37296.12 30791.83 27594.05 31894.57 33976.01 35998.97 30492.46 25597.34 33298.36 263
CMPMVSbinary73.10 2392.74 30191.39 31396.77 18893.57 38594.67 13494.21 28397.67 26280.36 37893.61 33196.60 27882.85 32597.35 37484.86 36398.78 25698.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 30291.76 31095.56 24998.42 18188.23 28796.03 18687.35 38794.04 21796.56 23795.47 32464.03 39099.77 5794.78 18899.11 22098.68 231
HY-MVS91.43 1592.58 30391.81 30894.90 28096.49 32788.87 27597.31 10594.62 33485.92 34490.50 37396.84 26385.05 30999.40 22083.77 37095.78 36096.43 357
TR-MVS92.54 30492.20 30393.57 32396.49 32786.66 32293.51 31294.73 33389.96 30194.95 29793.87 34990.24 26098.61 33481.18 37794.88 36995.45 371
PMMVS92.39 30591.08 31996.30 21693.12 38792.81 19790.58 36895.96 31279.17 38291.85 36492.27 36990.29 25998.66 33189.85 30996.68 34797.43 326
131492.38 30692.30 30192.64 34495.42 36185.15 34195.86 20096.97 29185.40 35190.62 37093.06 35891.12 24297.80 37086.74 34795.49 36594.97 375
new_pmnet92.34 30791.69 31194.32 30796.23 33489.16 27092.27 34092.88 35284.39 36495.29 28896.35 29385.66 30596.74 38484.53 36597.56 32297.05 334
CVMVSNet92.33 30892.79 29190.95 36097.26 30475.84 39295.29 23892.33 36081.86 36996.27 25298.19 14681.44 33098.46 34894.23 21098.29 29098.55 242
PAPR92.22 30991.27 31695.07 27095.73 35488.81 27791.97 34597.87 25085.80 34690.91 36992.73 36491.16 24198.33 35779.48 38095.76 36198.08 284
DSMNet-mixed92.19 31091.83 30793.25 32996.18 33783.68 35996.27 16693.68 34376.97 38892.54 35899.18 3989.20 27698.55 34083.88 36898.60 27697.51 323
BH-w/o92.14 31191.94 30592.73 34397.13 31185.30 33792.46 33495.64 31889.33 30794.21 31292.74 36389.60 26698.24 36081.68 37594.66 37194.66 376
PCF-MVS89.43 1892.12 31290.64 32896.57 20097.80 25093.48 18189.88 37798.45 18674.46 39096.04 26495.68 31790.71 24999.31 24773.73 38999.01 23396.91 340
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Syy-MVS92.09 31391.80 30992.93 34095.19 36382.65 36292.46 33491.35 36690.67 29191.76 36587.61 38985.64 30698.50 34494.73 19196.84 34097.65 316
dmvs_re92.08 31491.27 31694.51 30097.16 30992.79 20095.65 21292.64 35794.11 21492.74 35190.98 38383.41 32294.44 39180.72 37894.07 37596.29 359
thres600view792.03 31591.43 31293.82 31798.19 20284.61 34996.27 16690.39 37596.81 9596.37 24693.11 35373.44 37299.49 19080.32 37997.95 30297.36 328
PatchmatchNetpermissive91.98 31691.87 30692.30 35194.60 37179.71 37695.12 24493.59 34689.52 30593.61 33197.02 25177.94 34599.18 27190.84 28494.57 37498.01 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 31791.35 31493.51 32494.27 37585.60 33388.86 38298.61 17079.32 38192.16 36191.44 37889.22 27598.12 36490.80 28697.47 32896.82 346
JIA-IIPM91.79 31890.69 32795.11 26793.80 38290.98 24194.16 28591.78 36496.38 11390.30 37599.30 2872.02 37598.90 30688.28 33190.17 38595.45 371
thres100view90091.76 31991.26 31893.26 32898.21 19984.50 35096.39 15690.39 37596.87 9396.33 24793.08 35773.44 37299.42 20978.85 38397.74 31195.85 363
thres40091.68 32091.00 32093.71 32098.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31197.36 328
tfpn200view991.55 32191.00 32093.21 33198.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31195.85 363
ADS-MVSNet291.47 32290.51 33094.36 30595.51 35785.63 33295.05 25195.70 31683.46 36592.69 35296.84 26379.15 34199.41 21885.66 35490.52 38398.04 294
EPNet_dtu91.39 32390.75 32693.31 32790.48 39682.61 36394.80 26092.88 35293.39 23481.74 39494.90 33681.36 33199.11 28488.28 33198.87 24698.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 32489.67 33695.47 25496.41 32989.15 27191.54 35090.23 37889.07 31086.78 39092.84 36169.39 38399.44 20594.16 21296.61 34897.82 309
PVSNet86.72 1991.10 32590.97 32291.49 35797.56 28178.04 38287.17 38494.60 33584.65 36092.34 35992.20 37087.37 29498.47 34785.17 36197.69 31697.96 299
tpm91.08 32690.85 32491.75 35695.33 36278.09 38195.03 25391.27 36988.75 31593.53 33497.40 22271.24 37699.30 25091.25 27593.87 37697.87 306
thres20091.00 32790.42 33192.77 34297.47 29083.98 35794.01 29391.18 37095.12 17995.44 28491.21 38073.93 36599.31 24777.76 38697.63 32195.01 374
ADS-MVSNet90.95 32890.26 33293.04 33495.51 35782.37 36595.05 25193.41 34783.46 36592.69 35296.84 26379.15 34198.70 32585.66 35490.52 38398.04 294
tpmvs90.79 32990.87 32390.57 36392.75 39176.30 39095.79 20393.64 34591.04 28691.91 36396.26 29577.19 35398.86 31189.38 31689.85 38696.56 354
thisisatest051590.43 33089.18 34294.17 31397.07 31385.44 33589.75 37887.58 38688.28 32193.69 32991.72 37565.27 38899.58 16190.59 29598.67 26797.50 325
tpmrst90.31 33190.61 32989.41 36794.06 37972.37 39895.06 25093.69 34188.01 32492.32 36096.86 26177.45 34998.82 31291.04 27887.01 39097.04 335
test0.0.03 190.11 33289.21 33992.83 34193.89 38186.87 32091.74 34888.74 38492.02 27094.71 30291.14 38173.92 36694.48 39083.75 37192.94 37897.16 332
MVS90.02 33389.20 34092.47 34894.71 36986.90 31995.86 20096.74 30064.72 39390.62 37092.77 36292.54 21698.39 35279.30 38195.56 36492.12 386
pmmvs390.00 33488.90 34493.32 32694.20 37885.34 33691.25 35792.56 35978.59 38393.82 32295.17 32867.36 38798.69 32689.08 32098.03 30095.92 362
CHOSEN 280x42089.98 33589.19 34192.37 35095.60 35681.13 37386.22 38697.09 28681.44 37387.44 38793.15 35273.99 36499.47 19588.69 32599.07 22696.52 355
test-LLR89.97 33689.90 33490.16 36494.24 37674.98 39389.89 37489.06 38292.02 27089.97 37790.77 38473.92 36698.57 33791.88 26297.36 33096.92 338
FPMVS89.92 33788.63 34593.82 31798.37 18496.94 4591.58 34993.34 34888.00 32590.32 37497.10 24670.87 37991.13 39471.91 39296.16 35693.39 384
test250689.86 33889.16 34391.97 35498.95 11376.83 38998.54 2361.07 40296.20 12297.07 20499.16 4355.19 39999.69 11996.43 9399.83 4399.38 105
CostFormer89.75 33989.25 33791.26 35994.69 37078.00 38395.32 23591.98 36281.50 37290.55 37296.96 25671.06 37898.89 30788.59 32792.63 38096.87 341
testing389.72 34088.26 34894.10 31497.66 27384.30 35494.80 26088.25 38594.66 19495.07 29292.51 36741.15 40299.43 20791.81 26598.44 28498.55 242
baseline289.65 34188.44 34793.25 32995.62 35582.71 36193.82 30285.94 39188.89 31487.35 38892.54 36671.23 37799.33 24386.01 34994.60 37397.72 313
E-PMN89.52 34289.78 33588.73 36993.14 38677.61 38483.26 38992.02 36194.82 19093.71 32793.11 35375.31 36196.81 38185.81 35196.81 34391.77 388
EPMVS89.26 34388.55 34691.39 35892.36 39279.11 37995.65 21279.86 39688.60 31793.12 34496.53 28270.73 38098.10 36590.75 28889.32 38796.98 336
EMVS89.06 34489.22 33888.61 37093.00 38877.34 38682.91 39090.92 37194.64 19692.63 35691.81 37476.30 35797.02 37883.83 36996.90 33891.48 389
KD-MVS_2432*160088.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
miper_refine_blended88.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
IB-MVS85.98 2088.63 34786.95 35793.68 32195.12 36584.82 34890.85 36490.17 37987.55 32888.48 38491.34 37958.01 39399.59 15987.24 34593.80 37796.63 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 34887.69 35290.79 36194.98 36777.34 38695.09 24691.83 36377.51 38789.40 38096.41 28867.83 38698.73 32183.58 37292.60 38196.29 359
MVS-HIRNet88.40 34990.20 33382.99 37697.01 31460.04 40193.11 32285.61 39284.45 36388.72 38399.09 5084.72 31398.23 36182.52 37496.59 34990.69 391
gg-mvs-nofinetune88.28 35086.96 35692.23 35292.84 39084.44 35198.19 5274.60 39899.08 1087.01 38999.47 1156.93 39498.23 36178.91 38295.61 36394.01 380
dp88.08 35188.05 34988.16 37492.85 38968.81 40094.17 28492.88 35285.47 34991.38 36896.14 30268.87 38498.81 31486.88 34683.80 39396.87 341
tpm cat188.01 35287.33 35390.05 36694.48 37276.28 39194.47 27294.35 33873.84 39289.26 38195.61 32173.64 36898.30 35984.13 36686.20 39195.57 370
test-mter87.92 35387.17 35490.16 36494.24 37674.98 39389.89 37489.06 38286.44 34089.97 37790.77 38454.96 40098.57 33791.88 26297.36 33096.92 338
PAPM87.64 35485.84 36093.04 33496.54 32584.99 34488.42 38395.57 32279.52 38083.82 39193.05 35980.57 33698.41 35062.29 39592.79 37995.71 366
dmvs_testset87.30 35586.99 35588.24 37296.71 32277.48 38594.68 26686.81 39092.64 26189.61 37987.01 39185.91 30393.12 39261.04 39688.49 38894.13 379
TESTMET0.1,187.20 35686.57 35889.07 36893.62 38472.84 39789.89 37487.01 38985.46 35089.12 38290.20 38656.00 39897.72 37190.91 28296.92 33696.64 351
myMVS_eth3d87.16 35785.61 36191.82 35595.19 36379.32 37792.46 33491.35 36690.67 29191.76 36587.61 38941.96 40198.50 34482.66 37396.84 34097.65 316
MVEpermissive73.61 2286.48 35885.92 35988.18 37396.23 33485.28 33981.78 39175.79 39786.01 34282.53 39391.88 37392.74 20787.47 39671.42 39394.86 37091.78 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 35983.21 36288.34 37195.76 35274.97 39583.49 38892.70 35678.47 38487.94 38586.90 39283.38 32396.63 38573.44 39066.86 39693.40 383
EGC-MVSNET83.08 36077.93 36398.53 5099.57 2097.55 2698.33 3898.57 1774.71 39710.38 39898.90 7095.60 13499.50 18595.69 12899.61 9798.55 242
test_method66.88 36166.13 36469.11 37862.68 40025.73 40449.76 39296.04 30914.32 39664.27 39791.69 37673.45 37188.05 39576.06 38866.94 39593.54 381
tmp_tt57.23 36262.50 36541.44 37934.77 40149.21 40383.93 38760.22 40315.31 39571.11 39679.37 39470.09 38244.86 39864.76 39482.93 39430.25 394
cdsmvs_eth3d_5k24.22 36332.30 3660.00 3820.00 4040.00 4070.00 39398.10 2350.00 4000.00 40195.06 33197.54 370.00 4010.00 4000.00 3990.00 397
test12312.59 36415.49 3673.87 3806.07 4022.55 40590.75 3662.59 4052.52 3985.20 40013.02 3974.96 4031.85 4005.20 3989.09 3977.23 395
testmvs12.33 36515.23 3683.64 3815.77 4032.23 40688.99 3813.62 4042.30 3995.29 39913.09 3964.52 4041.95 3995.16 3998.32 3986.75 396
pcd_1.5k_mvsjas7.98 36610.65 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40095.82 1220.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.91 36710.55 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.94 3330.00 4050.00 4010.00 4000.00 3990.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM97.62 12093.30 18696.39 15692.61 35897.90 5296.76 22698.64 9390.46 25299.81 3799.16 999.94 899.76 17
WAC-MVS79.32 37785.41 357
FOURS199.59 1898.20 799.03 799.25 2898.96 1898.87 54
MSC_two_6792asdad98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
PC_three_145287.24 33098.37 9997.44 21997.00 6396.78 38392.01 25899.25 20199.21 139
No_MVS98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
test_one_060199.05 10695.50 10098.87 10897.21 8698.03 14398.30 12796.93 69
eth-test20.00 404
eth-test0.00 404
ZD-MVS98.43 18095.94 7998.56 17890.72 28996.66 23197.07 24795.02 15199.74 7791.08 27798.93 240
RE-MVS-def97.88 6498.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.94 6795.49 14099.20 20699.26 131
IU-MVS99.22 6995.40 10398.14 23285.77 34798.36 10295.23 16099.51 13399.49 71
OPU-MVS97.64 11998.01 22395.27 11396.79 13697.35 23196.97 6598.51 34391.21 27699.25 20199.14 154
test_241102_TWO98.83 12496.11 12798.62 7498.24 13996.92 7199.72 8895.44 14799.49 14099.49 71
test_241102_ONE99.22 6995.35 10898.83 12496.04 13299.08 4098.13 15297.87 2399.33 243
9.1496.69 15198.53 16696.02 18798.98 8793.23 23997.18 19297.46 21796.47 9899.62 14992.99 24799.32 190
save fliter98.48 17594.71 13194.53 27198.41 19395.02 184
test_0728_THIRD96.62 9998.40 9698.28 13297.10 5499.71 10495.70 12699.62 9199.58 40
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10099.75 6895.48 14399.52 12899.53 57
test072699.24 6495.51 9796.89 12998.89 10095.92 14098.64 7298.31 12397.06 58
GSMVS98.06 290
test_part299.03 10896.07 7498.08 136
sam_mvs177.80 34698.06 290
sam_mvs77.38 350
ambc96.56 20198.23 19891.68 23097.88 6998.13 23398.42 9498.56 10094.22 17499.04 29294.05 21899.35 18098.95 187
MTGPAbinary98.73 146
test_post194.98 25510.37 39976.21 35899.04 29289.47 314
test_post10.87 39876.83 35499.07 289
patchmatchnet-post96.84 26377.36 35199.42 209
GG-mvs-BLEND90.60 36291.00 39484.21 35598.23 4672.63 40182.76 39284.11 39356.14 39796.79 38272.20 39192.09 38290.78 390
MTMP96.55 15074.60 398
gm-plane-assit91.79 39371.40 39981.67 37090.11 38798.99 29884.86 363
test9_res91.29 27298.89 24599.00 180
TEST997.84 24295.23 11593.62 30898.39 19686.81 33693.78 32395.99 30794.68 16099.52 180
test_897.81 24695.07 12493.54 31198.38 19887.04 33293.71 32795.96 31094.58 16499.52 180
agg_prior290.34 30398.90 24299.10 168
agg_prior97.80 25094.96 12698.36 20093.49 33599.53 177
TestCases98.06 8899.08 9996.16 7099.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
test_prior495.38 10593.61 310
test_prior293.33 31894.21 20894.02 31996.25 29693.64 18891.90 26198.96 235
test_prior97.46 13897.79 25594.26 15598.42 19299.34 24198.79 214
旧先验293.35 31777.95 38695.77 27798.67 33090.74 291
新几何293.43 313
新几何197.25 15498.29 18994.70 13397.73 25977.98 38594.83 30096.67 27592.08 22899.45 20288.17 33398.65 27197.61 319
旧先验197.80 25093.87 16697.75 25897.04 25093.57 18998.68 26698.72 224
无先验93.20 32097.91 24780.78 37599.40 22087.71 33697.94 301
原ACMM292.82 325
原ACMM196.58 19898.16 21092.12 21798.15 23185.90 34593.49 33596.43 28792.47 22099.38 22787.66 33898.62 27398.23 276
test22298.17 20893.24 19092.74 32997.61 27175.17 38994.65 30396.69 27490.96 24698.66 26997.66 315
testdata299.46 19887.84 334
segment_acmp95.34 141
testdata95.70 24398.16 21090.58 24997.72 26080.38 37795.62 28097.02 25192.06 22998.98 30089.06 32198.52 27997.54 322
testdata192.77 32693.78 223
test1297.46 13897.61 27794.07 15997.78 25793.57 33393.31 19499.42 20998.78 25698.89 201
plane_prior798.70 14394.67 134
plane_prior698.38 18394.37 14791.91 234
plane_prior598.75 14399.46 19892.59 25299.20 20699.28 126
plane_prior496.77 269
plane_prior394.51 14195.29 17296.16 259
plane_prior296.50 15296.36 115
plane_prior198.49 173
plane_prior94.29 15095.42 22494.31 20798.93 240
n20.00 406
nn0.00 406
door-mid98.17 225
lessismore_v097.05 16799.36 5192.12 21784.07 39398.77 6798.98 5885.36 30899.74 7797.34 6499.37 17299.30 119
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
test1198.08 238
door97.81 256
HQP5-MVS92.47 206
HQP-NCC97.85 23794.26 27693.18 24292.86 348
ACMP_Plane97.85 23794.26 27693.18 24292.86 348
BP-MVS90.51 298
HQP4-MVS92.87 34799.23 26799.06 173
HQP3-MVS98.43 18998.74 260
HQP2-MVS90.33 255
NP-MVS98.14 21493.72 17295.08 329
MDTV_nov1_ep13_2view57.28 40294.89 25780.59 37694.02 31978.66 34385.50 35697.82 309
MDTV_nov1_ep1391.28 31594.31 37373.51 39694.80 26093.16 34986.75 33893.45 33797.40 22276.37 35698.55 34088.85 32296.43 350
ACMMP++_ref99.52 128
ACMMP++99.55 116
Test By Simon94.51 167
ITE_SJBPF97.85 10598.64 14896.66 5498.51 18295.63 15597.22 18797.30 23595.52 13598.55 34090.97 28098.90 24298.34 264
DeepMVS_CXcopyleft77.17 37790.94 39585.28 33974.08 40052.51 39480.87 39588.03 38875.25 36270.63 39759.23 39784.94 39275.62 392