This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1099.02 1599.62 1099.36 1898.53 799.52 17098.58 1699.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2699.67 299.73 399.65 599.15 399.86 2497.22 5599.92 1399.77 11
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 1999.01 1699.63 999.66 399.27 299.68 11997.75 3899.89 2499.62 28
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2396.23 11599.71 499.48 998.77 699.93 398.89 499.95 599.84 5
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1498.85 2099.00 3999.20 2997.42 3499.59 15097.21 5699.76 4699.40 87
UA-Net98.88 798.76 1399.22 299.11 8897.89 1399.47 399.32 1899.08 1097.87 14699.67 296.47 9199.92 597.88 3099.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4199.36 499.29 2399.06 4597.27 4099.93 397.71 4099.91 1699.70 21
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 3995.83 14199.67 699.37 1698.25 1099.92 598.77 799.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3599.33 599.30 2299.00 4797.27 4099.92 597.64 4499.92 1399.75 16
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 3799.08 1099.42 1599.23 2796.53 8699.91 1399.27 299.93 1099.73 18
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 3899.22 899.22 2898.96 5197.35 3699.92 597.79 3699.93 1099.79 9
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6296.50 10399.32 2199.44 1397.43 3399.92 598.73 999.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 2895.62 14999.35 2099.37 1697.38 3599.90 1498.59 1599.91 1699.77 11
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3099.05 1399.17 3098.79 6595.47 12699.89 1897.95 2999.91 1699.75 16
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5398.05 4399.61 1199.52 793.72 17699.88 2098.72 1199.88 2599.65 25
testf198.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
APD_test298.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
Anonymous2023121198.55 1998.76 1397.94 9698.79 11894.37 14498.84 1199.15 3599.37 399.67 699.43 1495.61 12299.72 8598.12 2299.86 2799.73 18
nrg03098.54 2098.62 2198.32 6599.22 6595.66 9197.90 6799.08 4798.31 3299.02 3798.74 7197.68 2599.61 14897.77 3799.85 3099.70 21
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2496.91 8699.75 299.45 1295.82 11199.92 598.80 699.96 499.89 1
MIMVSNet198.51 2298.45 2698.67 4099.72 896.71 5098.76 1298.89 9098.49 2799.38 1799.14 3995.44 12899.84 3096.47 7999.80 3999.47 67
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7197.57 6299.27 2499.22 2898.32 999.50 17597.09 6299.75 5199.50 50
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17598.23 4699.05 5397.40 7399.37 1899.08 4498.79 599.47 18597.74 3999.71 6099.50 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2598.46 2498.30 6899.46 3795.22 11898.27 4498.84 10899.05 1399.01 3898.65 7995.37 12999.90 1497.57 4599.91 1699.77 11
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18098.20 5198.87 9898.23 3699.48 1299.27 2598.47 899.55 16296.52 7799.53 11099.60 30
TranMVSNet+NR-MVSNet98.33 2798.30 3398.43 5799.07 9395.87 8196.73 14299.05 5398.67 2398.84 4998.45 9597.58 3099.88 2096.45 8099.86 2799.54 44
HPM-MVS_fast98.32 2898.13 3498.88 2399.54 2697.48 3098.35 3599.03 6095.88 13797.88 14398.22 12898.15 1299.74 7596.50 7899.62 7899.42 84
ANet_high98.31 2998.94 696.41 19999.33 5189.64 24897.92 6699.56 1199.27 699.66 899.50 897.67 2699.83 3397.55 4699.98 299.77 11
VPA-MVSNet98.27 3098.46 2497.70 11199.06 9493.80 16597.76 7599.00 7198.40 2999.07 3698.98 4996.89 6699.75 6697.19 5999.79 4099.55 43
Vis-MVSNetpermissive98.27 3098.34 3098.07 8699.33 5195.21 12098.04 6099.46 1297.32 7697.82 15099.11 4096.75 7699.86 2497.84 3399.36 16299.15 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4399.21 7297.35 3597.96 6399.16 3198.34 3198.78 5398.52 8897.32 3799.45 19294.08 20199.67 7099.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3398.31 3197.98 9499.39 4595.22 11897.55 9199.20 2698.21 3799.25 2698.51 9098.21 1199.40 20994.79 17299.72 5799.32 101
FC-MVSNet-test98.16 3498.37 2997.56 11999.49 3593.10 18698.35 3599.21 2498.43 2898.89 4598.83 6494.30 16199.81 3797.87 3199.91 1699.77 11
mvsmamba98.16 3498.06 4098.44 5599.53 2995.87 8198.70 1398.94 8497.71 5698.85 4799.10 4191.35 22799.83 3398.47 1799.90 2299.64 27
SR-MVS-dyc-post98.14 3697.84 5699.02 698.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.60 8499.76 6095.49 12899.20 19499.26 118
MTAPA98.14 3697.84 5699.06 399.44 3997.90 1297.25 10798.73 13697.69 5897.90 14197.96 15995.81 11599.82 3596.13 9299.61 8499.45 73
APDe-MVS98.14 3698.03 4398.47 5498.72 12596.04 7598.07 5899.10 4195.96 13198.59 6598.69 7596.94 6099.81 3796.64 7299.58 9199.57 37
APD-MVS_3200maxsize98.13 3997.90 5098.79 2998.79 11897.31 3697.55 9198.92 8797.72 5498.25 10398.13 13697.10 4899.75 6695.44 13599.24 19299.32 101
HPM-MVScopyleft98.11 4097.83 5998.92 2199.42 4297.46 3198.57 2099.05 5395.43 15897.41 16897.50 20197.98 1599.79 4395.58 12699.57 9499.50 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4198.01 4498.32 6598.45 16596.69 5298.52 2699.69 398.07 4296.07 24797.19 22696.88 6899.86 2497.50 4899.73 5398.41 238
Gipumacopyleft98.07 4298.31 3197.36 14199.76 796.28 6898.51 2799.10 4198.76 2296.79 20799.34 2296.61 8298.82 29796.38 8299.50 12496.98 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4397.75 6798.93 1899.23 6297.60 2298.09 5798.96 8195.75 14597.91 14098.06 14996.89 6699.76 6095.32 14399.57 9499.43 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4397.79 6198.85 2499.15 7997.55 2696.68 14498.83 11495.21 16498.36 8998.13 13698.13 1499.62 14296.04 9699.54 10699.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 4597.76 6698.79 2999.43 4097.21 4197.15 11398.90 8996.58 9898.08 12297.87 17097.02 5599.76 6095.25 14699.59 8999.40 87
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4697.66 7499.01 898.77 12197.93 1197.38 10398.83 11497.32 7698.06 12597.85 17196.65 7999.77 5595.00 16599.11 20699.32 101
DVP-MVS++97.96 4797.90 5098.12 8497.75 24795.40 10399.03 798.89 9096.62 9398.62 6198.30 11296.97 5899.75 6695.70 11499.25 18999.21 126
Anonymous2024052997.96 4798.04 4297.71 11098.69 13294.28 15097.86 6998.31 19798.79 2199.23 2798.86 6395.76 11799.61 14895.49 12899.36 16299.23 124
XVS97.96 4797.63 8098.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23397.64 19096.49 8999.72 8595.66 11999.37 15999.45 73
NR-MVSNet97.96 4797.86 5598.26 7098.73 12395.54 9598.14 5498.73 13697.79 4899.42 1597.83 17294.40 15999.78 4695.91 10699.76 4699.46 69
APD_test197.95 5197.68 7298.75 3199.60 1798.60 597.21 11199.08 4796.57 10198.07 12498.38 10296.22 10199.14 26394.71 17899.31 18198.52 230
RRT_MVS97.95 5197.79 6198.43 5799.67 1295.56 9398.86 1096.73 29097.99 4599.15 3199.35 2089.84 25099.90 1498.64 1399.90 2299.82 6
ACMMPR97.95 5197.62 8298.94 1599.20 7397.56 2597.59 8898.83 11496.05 12497.46 16697.63 19196.77 7599.76 6095.61 12399.46 13699.49 58
FMVSNet197.95 5198.08 3797.56 11999.14 8693.67 16998.23 4698.66 15397.41 7299.00 3999.19 3095.47 12699.73 8095.83 11199.76 4699.30 106
SED-MVS97.94 5597.90 5098.07 8699.22 6595.35 10896.79 13598.83 11496.11 12199.08 3498.24 12397.87 1999.72 8595.44 13599.51 12099.14 141
HFP-MVS97.94 5597.64 7898.83 2599.15 7997.50 2997.59 8898.84 10896.05 12497.49 16197.54 19797.07 5199.70 10795.61 12399.46 13699.30 106
LPG-MVS_test97.94 5597.67 7398.74 3499.15 7997.02 4297.09 11899.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
FIs97.93 5898.07 3897.48 13199.38 4692.95 18998.03 6299.11 4098.04 4498.62 6198.66 7793.75 17599.78 4697.23 5499.84 3199.73 18
ZNCC-MVS97.92 5997.62 8298.83 2599.32 5397.24 3997.45 9898.84 10895.76 14396.93 20197.43 20597.26 4299.79 4396.06 9399.53 11099.45 73
region2R97.92 5997.59 8698.92 2199.22 6597.55 2697.60 8698.84 10896.00 12997.22 17397.62 19296.87 7099.76 6095.48 13199.43 14899.46 69
CP-MVS97.92 5997.56 8998.99 1098.99 10297.82 1597.93 6598.96 8196.11 12196.89 20497.45 20396.85 7199.78 4695.19 14999.63 7799.38 92
CS-MVS-test97.91 6297.84 5698.14 8298.52 15496.03 7798.38 3499.67 498.11 4095.50 26896.92 24496.81 7499.87 2296.87 7099.76 4698.51 231
mPP-MVS97.91 6297.53 9299.04 499.22 6597.87 1497.74 7898.78 12896.04 12697.10 18497.73 18496.53 8699.78 4695.16 15399.50 12499.46 69
DROMVSNet97.90 6497.94 4997.79 10598.66 13495.14 12198.31 3999.66 697.57 6295.95 25197.01 23896.99 5799.82 3597.66 4399.64 7598.39 241
ACMMP_NAP97.89 6597.63 8098.67 4099.35 4996.84 4796.36 15498.79 12495.07 17297.88 14398.35 10497.24 4499.72 8596.05 9599.58 9199.45 73
PGM-MVS97.88 6697.52 9398.96 1399.20 7397.62 2197.09 11899.06 5195.45 15697.55 15697.94 16297.11 4799.78 4694.77 17599.46 13699.48 64
DP-MVS97.87 6797.89 5397.81 10498.62 14194.82 12997.13 11698.79 12498.98 1798.74 5798.49 9195.80 11699.49 17995.04 16299.44 14099.11 151
RPSCF97.87 6797.51 9498.95 1499.15 7998.43 697.56 9099.06 5196.19 11898.48 7598.70 7494.72 14699.24 25094.37 19099.33 17699.17 135
KD-MVS_self_test97.86 6998.07 3897.25 14799.22 6592.81 19197.55 9198.94 8497.10 8298.85 4798.88 6195.03 13999.67 12497.39 5299.65 7399.26 118
test_040297.84 7097.97 4697.47 13299.19 7594.07 15696.71 14398.73 13698.66 2498.56 6798.41 9896.84 7299.69 11494.82 17099.81 3698.64 218
UniMVSNet_NR-MVSNet97.83 7197.65 7598.37 6298.72 12595.78 8495.66 19699.02 6298.11 4098.31 9897.69 18894.65 15199.85 2797.02 6599.71 6099.48 64
UniMVSNet (Re)97.83 7197.65 7598.35 6498.80 11795.86 8395.92 18499.04 5997.51 6698.22 10697.81 17694.68 14999.78 4697.14 6099.75 5199.41 86
casdiffmvs_mvgpermissive97.83 7198.11 3597.00 16298.57 14792.10 20995.97 17899.18 2997.67 6199.00 3998.48 9497.64 2799.50 17596.96 6799.54 10699.40 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 7497.49 9798.81 2799.23 6297.25 3897.16 11298.79 12495.96 13197.53 15797.40 20796.93 6299.77 5595.04 16299.35 16799.42 84
DeepC-MVS95.41 497.82 7497.70 6898.16 7998.78 12095.72 8696.23 16399.02 6293.92 20698.62 6198.99 4897.69 2499.62 14296.18 9199.87 2699.15 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS97.79 7697.60 8598.36 6398.73 12395.78 8495.65 19898.87 9897.57 6298.31 9897.83 17294.69 14799.85 2797.02 6599.71 6099.46 69
DVP-MVScopyleft97.78 7797.65 7598.16 7999.24 6095.51 9796.74 13898.23 20295.92 13498.40 8398.28 11797.06 5299.71 10095.48 13199.52 11599.26 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 7897.50 9698.57 4796.24 31597.58 2498.45 3198.85 10598.58 2697.51 15997.94 16295.74 11899.63 13795.19 14998.97 22098.51 231
GeoE97.75 7997.70 6897.89 9998.88 11194.53 13797.10 11798.98 7795.75 14597.62 15497.59 19497.61 2999.77 5596.34 8499.44 14099.36 98
3Dnovator+96.13 397.73 8097.59 8698.15 8198.11 20495.60 9298.04 6098.70 14598.13 3996.93 20198.45 9595.30 13299.62 14295.64 12198.96 22199.24 123
tfpnnormal97.72 8197.97 4696.94 16499.26 5692.23 20197.83 7198.45 17598.25 3599.13 3398.66 7796.65 7999.69 11493.92 20999.62 7898.91 184
Baseline_NR-MVSNet97.72 8197.79 6197.50 12799.56 2193.29 18195.44 20698.86 10198.20 3898.37 8699.24 2694.69 14799.55 16295.98 10299.79 4099.65 25
bld_raw_dy_0_6497.69 8397.61 8497.91 9799.54 2694.27 15198.06 5998.60 16196.60 9598.79 5298.95 5289.62 25199.84 3098.43 1999.91 1699.62 28
MP-MVS-pluss97.69 8397.36 10298.70 3899.50 3496.84 4795.38 21398.99 7492.45 24898.11 11798.31 10897.25 4399.77 5596.60 7499.62 7899.48 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 8397.79 6197.40 13999.06 9493.52 17695.96 18098.97 8094.55 19098.82 5098.76 7097.31 3899.29 23997.20 5899.44 14099.38 92
DPE-MVScopyleft97.64 8697.35 10398.50 5198.85 11396.18 6995.21 22698.99 7495.84 14098.78 5398.08 14296.84 7299.81 3793.98 20799.57 9499.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 8697.18 11299.00 999.32 5397.77 1797.49 9798.73 13696.27 11295.59 26697.75 18196.30 9899.78 4693.70 21799.48 13199.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
3Dnovator96.53 297.61 8897.64 7897.50 12797.74 25093.65 17398.49 2898.88 9696.86 8897.11 18398.55 8695.82 11199.73 8095.94 10499.42 15199.13 143
SF-MVS97.60 8997.39 10098.22 7598.93 10795.69 8897.05 12099.10 4195.32 16197.83 14997.88 16996.44 9399.72 8594.59 18399.39 15799.25 122
v897.60 8998.06 4096.23 20598.71 12889.44 25297.43 10198.82 12297.29 7898.74 5799.10 4193.86 17199.68 11998.61 1499.94 899.56 41
XVG-ACMP-BASELINE97.58 9197.28 10798.49 5299.16 7796.90 4696.39 15198.98 7795.05 17398.06 12598.02 15395.86 10799.56 15994.37 19099.64 7599.00 167
v1097.55 9297.97 4696.31 20398.60 14389.64 24897.44 9999.02 6296.60 9598.72 5999.16 3693.48 18099.72 8598.76 899.92 1399.58 32
OPM-MVS97.54 9397.25 10898.41 5999.11 8896.61 5695.24 22498.46 17494.58 18998.10 11998.07 14497.09 5099.39 21395.16 15399.44 14099.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 9397.70 6897.07 15699.46 3792.21 20297.22 11099.00 7194.93 17898.58 6698.92 5597.31 3899.41 20794.44 18599.43 14899.59 31
casdiffmvspermissive97.50 9597.81 6096.56 18998.51 15691.04 22795.83 18899.09 4697.23 7998.33 9598.30 11297.03 5499.37 21996.58 7699.38 15899.28 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 9697.57 8897.26 14699.56 2192.33 19998.28 4296.97 27998.30 3499.45 1499.35 2088.43 26799.89 1898.01 2799.76 4699.54 44
SMA-MVScopyleft97.48 9797.11 11498.60 4598.83 11496.67 5396.74 13898.73 13691.61 26098.48 7598.36 10396.53 8699.68 11995.17 15199.54 10699.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 9897.10 11598.55 4999.04 9996.70 5196.24 16298.89 9093.71 21197.97 13597.75 18197.44 3299.63 13793.22 22899.70 6399.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 9996.92 12899.03 599.26 5697.70 1897.66 8298.89 9095.65 14798.51 7096.46 27192.15 21299.81 3795.14 15698.58 26299.58 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 10097.56 8997.11 15399.55 2396.36 6398.66 1895.66 30698.31 3297.09 18995.45 31097.17 4698.50 32998.67 1297.45 31396.48 338
baseline97.44 10097.78 6596.43 19598.52 15490.75 23496.84 12999.03 6096.51 10297.86 14798.02 15396.67 7899.36 22197.09 6299.47 13399.19 131
TSAR-MVS + MP.97.42 10297.23 11098.00 9399.38 4695.00 12597.63 8598.20 20793.00 23498.16 11298.06 14995.89 10699.72 8595.67 11899.10 20899.28 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 10397.30 10597.69 11398.95 10494.83 12897.28 10698.99 7496.35 11198.13 11695.95 29695.99 10499.66 13094.36 19299.73 5398.59 224
test_fmvs397.38 10497.56 8996.84 17198.63 13992.81 19197.60 8699.61 990.87 27098.76 5699.66 394.03 16797.90 34999.24 399.68 6899.81 8
XVG-OURS-SEG-HR97.38 10497.07 11898.30 6899.01 10197.41 3494.66 24999.02 6295.20 16598.15 11497.52 19998.83 498.43 33294.87 16896.41 33399.07 158
VDD-MVS97.37 10697.25 10897.74 10898.69 13294.50 14097.04 12195.61 31098.59 2598.51 7098.72 7292.54 20499.58 15296.02 9899.49 12799.12 148
SD-MVS97.37 10697.70 6896.35 20098.14 20095.13 12296.54 14798.92 8795.94 13399.19 2998.08 14297.74 2395.06 36995.24 14799.54 10698.87 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 10897.10 11598.14 8298.91 10996.77 4996.20 16498.63 15993.82 20898.54 6898.33 10693.98 16899.05 27695.99 10199.45 13998.61 223
LCM-MVSNet-Re97.33 10997.33 10497.32 14398.13 20393.79 16696.99 12499.65 796.74 9199.47 1398.93 5496.91 6599.84 3090.11 28799.06 21598.32 250
EI-MVSNet-UG-set97.32 11097.40 9997.09 15597.34 28392.01 21295.33 21897.65 25497.74 5298.30 10098.14 13495.04 13899.69 11497.55 4699.52 11599.58 32
EI-MVSNet-Vis-set97.32 11097.39 10097.11 15397.36 28092.08 21095.34 21797.65 25497.74 5298.29 10198.11 14095.05 13799.68 11997.50 4899.50 12499.56 41
VPNet97.26 11297.49 9796.59 18599.47 3690.58 23696.27 15898.53 16897.77 4998.46 7898.41 9894.59 15299.68 11994.61 17999.29 18499.52 48
canonicalmvs97.23 11397.21 11197.30 14497.65 25894.39 14297.84 7099.05 5397.42 6996.68 21493.85 33597.63 2899.33 22896.29 8598.47 26798.18 266
AllTest97.20 11496.92 12898.06 8899.08 9196.16 7097.14 11599.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
dcpmvs_297.12 11597.99 4594.51 28899.11 8884.00 34197.75 7699.65 797.38 7499.14 3298.42 9795.16 13599.96 295.52 12799.78 4399.58 32
XVG-OURS97.12 11596.74 13798.26 7098.99 10297.45 3293.82 28499.05 5395.19 16698.32 9697.70 18695.22 13498.41 33394.27 19498.13 28098.93 180
Anonymous2024052197.07 11797.51 9495.76 22799.35 4988.18 27697.78 7298.40 18497.11 8198.34 9299.04 4689.58 25399.79 4398.09 2499.93 1099.30 106
test_vis3_rt97.04 11896.98 12297.23 14998.44 16695.88 8096.82 13199.67 490.30 27699.27 2499.33 2394.04 16696.03 36897.14 6097.83 29199.78 10
V4297.04 11897.16 11396.68 18298.59 14591.05 22696.33 15698.36 18994.60 18697.99 13198.30 11293.32 18299.62 14297.40 5199.53 11099.38 92
APD-MVScopyleft97.00 12096.53 15098.41 5998.55 15096.31 6696.32 15798.77 12992.96 23997.44 16797.58 19695.84 10899.74 7591.96 24399.35 16799.19 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 12196.38 15798.81 2798.64 13597.59 2395.97 17898.20 20795.51 15495.06 27696.53 26794.10 16599.70 10794.29 19399.15 19999.13 143
GBi-Net96.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
test196.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
VDDNet96.98 12496.84 13197.41 13899.40 4493.26 18297.94 6495.31 31699.26 798.39 8599.18 3387.85 27699.62 14295.13 15899.09 20999.35 100
PHI-MVS96.96 12596.53 15098.25 7397.48 27096.50 5996.76 13798.85 10593.52 21496.19 24396.85 24795.94 10599.42 19893.79 21399.43 14898.83 197
IS-MVSNet96.93 12696.68 14097.70 11199.25 5994.00 15998.57 2096.74 28898.36 3098.14 11597.98 15888.23 26999.71 10093.10 23199.72 5799.38 92
CNVR-MVS96.92 12796.55 14798.03 9298.00 21395.54 9594.87 24298.17 21394.60 18696.38 23097.05 23495.67 12099.36 22195.12 15999.08 21099.19 131
IterMVS-LS96.92 12797.29 10695.79 22698.51 15688.13 27995.10 22998.66 15396.99 8398.46 7898.68 7692.55 20299.74 7596.91 6899.79 4099.50 50
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 12996.81 13397.16 15098.56 14992.20 20494.33 25798.12 22297.34 7598.20 10797.33 21892.81 19399.75 6694.79 17299.81 3699.54 44
DeepPCF-MVS94.58 596.90 12996.43 15598.31 6797.48 27097.23 4092.56 31498.60 16192.84 24198.54 6897.40 20796.64 8198.78 30194.40 18999.41 15598.93 180
v114496.84 13197.08 11796.13 21298.42 16889.28 25595.41 21098.67 15194.21 19797.97 13598.31 10893.06 18799.65 13298.06 2699.62 7899.45 73
VNet96.84 13196.83 13296.88 16898.06 20592.02 21196.35 15597.57 26097.70 5797.88 14397.80 17792.40 20999.54 16594.73 17798.96 22199.08 156
EPP-MVSNet96.84 13196.58 14497.65 11599.18 7693.78 16798.68 1496.34 29397.91 4797.30 17098.06 14988.46 26699.85 2793.85 21199.40 15699.32 101
v119296.83 13497.06 11996.15 21198.28 17889.29 25495.36 21498.77 12993.73 21098.11 11798.34 10593.02 19199.67 12498.35 2099.58 9199.50 50
MVS_111021_LR96.82 13596.55 14797.62 11798.27 18095.34 11093.81 28698.33 19394.59 18896.56 22296.63 26296.61 8298.73 30694.80 17199.34 17098.78 202
Effi-MVS+-dtu96.81 13696.09 16898.99 1096.90 30398.69 496.42 15098.09 22595.86 13995.15 27595.54 30794.26 16299.81 3794.06 20298.51 26698.47 235
UGNet96.81 13696.56 14697.58 11896.64 30593.84 16497.75 7697.12 27396.47 10693.62 31398.88 6193.22 18599.53 16795.61 12399.69 6499.36 98
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 13897.06 11995.95 21998.57 14788.77 26695.36 21498.26 19995.18 16797.85 14898.23 12592.58 20199.63 13797.80 3599.69 6499.45 73
v124096.74 13997.02 12195.91 22298.18 19188.52 26895.39 21298.88 9693.15 23098.46 7898.40 10192.80 19499.71 10098.45 1899.49 12799.49 58
DeepC-MVS_fast94.34 796.74 13996.51 15297.44 13597.69 25394.15 15496.02 17498.43 17893.17 22997.30 17097.38 21395.48 12599.28 24193.74 21499.34 17098.88 192
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 14196.54 14997.27 14598.35 17393.66 17293.42 29698.36 18994.74 18196.58 22096.76 25696.54 8598.99 28394.87 16899.27 18799.15 138
v192192096.72 14296.96 12595.99 21598.21 18688.79 26595.42 20898.79 12493.22 22498.19 11198.26 12292.68 19799.70 10798.34 2199.55 10399.49 58
FMVSNet296.72 14296.67 14196.87 16997.96 21591.88 21497.15 11398.06 23195.59 15198.50 7298.62 8089.51 25799.65 13294.99 16699.60 8799.07 158
PMVScopyleft89.60 1796.71 14496.97 12395.95 21999.51 3197.81 1697.42 10297.49 26197.93 4695.95 25198.58 8296.88 6896.91 36289.59 29599.36 16293.12 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 14596.90 13096.03 21498.25 18288.92 26095.49 20498.77 12993.05 23298.09 12098.29 11692.51 20799.70 10798.11 2399.56 9799.47 67
CPTT-MVS96.69 14596.08 16998.49 5298.89 11096.64 5597.25 10798.77 12992.89 24096.01 25097.13 22892.23 21199.67 12492.24 24099.34 17099.17 135
HQP_MVS96.66 14796.33 16097.68 11498.70 13094.29 14796.50 14898.75 13396.36 10996.16 24496.77 25491.91 22299.46 18892.59 23699.20 19499.28 113
EI-MVSNet96.63 14896.93 12695.74 22897.26 28888.13 27995.29 22297.65 25496.99 8397.94 13898.19 13092.55 20299.58 15296.91 6899.56 9799.50 50
patch_mono-296.59 14996.93 12695.55 23898.88 11187.12 30294.47 25499.30 1994.12 20096.65 21898.41 9894.98 14299.87 2295.81 11399.78 4399.66 23
ab-mvs96.59 14996.59 14396.60 18498.64 13592.21 20298.35 3597.67 25094.45 19196.99 19698.79 6594.96 14399.49 17990.39 28499.07 21298.08 269
v14896.58 15196.97 12395.42 24598.63 13987.57 29295.09 23097.90 23695.91 13698.24 10497.96 15993.42 18199.39 21396.04 9699.52 11599.29 112
test20.0396.58 15196.61 14296.48 19398.49 16091.72 21895.68 19597.69 24996.81 8998.27 10297.92 16594.18 16498.71 30990.78 27099.66 7299.00 167
NCCC96.52 15395.99 17398.10 8597.81 23195.68 8995.00 23898.20 20795.39 15995.40 27196.36 27793.81 17399.45 19293.55 22098.42 26999.17 135
pmmvs-eth3d96.49 15496.18 16597.42 13798.25 18294.29 14794.77 24698.07 23089.81 28397.97 13598.33 10693.11 18699.08 27395.46 13499.84 3198.89 188
OMC-MVS96.48 15596.00 17297.91 9798.30 17596.01 7894.86 24398.60 16191.88 25797.18 17897.21 22596.11 10299.04 27790.49 28399.34 17098.69 215
TSAR-MVS + GP.96.47 15696.12 16697.49 13097.74 25095.23 11594.15 26896.90 28193.26 22298.04 12896.70 25894.41 15898.89 29294.77 17599.14 20098.37 243
Fast-Effi-MVS+-dtu96.44 15796.12 16697.39 14097.18 29294.39 14295.46 20598.73 13696.03 12894.72 28494.92 32096.28 10099.69 11493.81 21297.98 28598.09 268
K. test v396.44 15796.28 16196.95 16399.41 4391.53 22097.65 8390.31 36098.89 1998.93 4299.36 1884.57 29899.92 597.81 3499.56 9799.39 90
MSLP-MVS++96.42 15996.71 13895.57 23597.82 23090.56 23895.71 19198.84 10894.72 18296.71 21397.39 21194.91 14498.10 34795.28 14499.02 21798.05 278
test_fmvs296.38 16096.45 15496.16 21097.85 22291.30 22396.81 13299.45 1389.24 28898.49 7399.38 1588.68 26497.62 35498.83 599.32 17899.57 37
Anonymous20240521196.34 16195.98 17497.43 13698.25 18293.85 16396.74 13894.41 32497.72 5498.37 8698.03 15287.15 28199.53 16794.06 20299.07 21298.92 183
h-mvs3396.29 16295.63 18998.26 7098.50 15996.11 7396.90 12797.09 27496.58 9897.21 17598.19 13084.14 29999.78 4695.89 10796.17 33798.89 188
MVS_Test96.27 16396.79 13694.73 27896.94 30186.63 30996.18 16598.33 19394.94 17696.07 24798.28 11795.25 13399.26 24597.21 5697.90 28998.30 254
MCST-MVS96.24 16495.80 18397.56 11998.75 12294.13 15594.66 24998.17 21390.17 27996.21 24196.10 29095.14 13699.43 19794.13 20098.85 23599.13 143
mvsany_test396.21 16595.93 17897.05 15797.40 27894.33 14695.76 19094.20 32689.10 28999.36 1999.60 693.97 16997.85 35095.40 14298.63 25798.99 170
Effi-MVS+96.19 16696.01 17196.71 17997.43 27692.19 20596.12 16899.10 4195.45 15693.33 32494.71 32397.23 4599.56 15993.21 22997.54 30798.37 243
DELS-MVS96.17 16796.23 16295.99 21597.55 26690.04 24292.38 31998.52 16994.13 19996.55 22497.06 23394.99 14199.58 15295.62 12299.28 18598.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 16896.36 15895.49 24197.68 25487.81 28898.67 1599.02 6296.50 10394.48 29196.15 28586.90 28299.92 598.73 999.13 20298.74 208
ETV-MVS96.13 16995.90 17996.82 17397.76 24593.89 16195.40 21198.95 8395.87 13895.58 26791.00 36696.36 9799.72 8593.36 22298.83 23896.85 325
testgi96.07 17096.50 15394.80 27499.26 5687.69 29195.96 18098.58 16595.08 17198.02 13096.25 28197.92 1697.60 35588.68 30998.74 24699.11 151
LF4IMVS96.07 17095.63 18997.36 14198.19 18895.55 9495.44 20698.82 12292.29 25195.70 26496.55 26592.63 20098.69 31191.75 25199.33 17697.85 291
EIA-MVS96.04 17295.77 18596.85 17097.80 23592.98 18896.12 16899.16 3194.65 18493.77 30891.69 36095.68 11999.67 12494.18 19798.85 23597.91 288
diffmvspermissive96.04 17296.23 16295.46 24397.35 28188.03 28293.42 29699.08 4794.09 20296.66 21696.93 24293.85 17299.29 23996.01 10098.67 25299.06 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 17495.52 19297.50 12797.77 24494.71 13196.07 17096.84 28297.48 6796.78 21194.28 33285.50 29199.40 20996.22 8898.73 24998.40 239
TinyColmap96.00 17596.34 15994.96 26597.90 22087.91 28494.13 27198.49 17294.41 19298.16 11297.76 17896.29 9998.68 31490.52 28099.42 15198.30 254
PVSNet_Blended_VisFu95.95 17695.80 18396.42 19799.28 5590.62 23595.31 22099.08 4788.40 29996.97 19998.17 13392.11 21499.78 4693.64 21899.21 19398.86 195
UnsupCasMVSNet_eth95.91 17795.73 18696.44 19498.48 16291.52 22195.31 22098.45 17595.76 14397.48 16397.54 19789.53 25698.69 31194.43 18694.61 35499.13 143
QAPM95.88 17895.57 19196.80 17497.90 22091.84 21698.18 5398.73 13688.41 29896.42 22898.13 13694.73 14599.75 6688.72 30798.94 22498.81 199
CANet95.86 17995.65 18896.49 19296.41 31190.82 23194.36 25698.41 18294.94 17692.62 33996.73 25792.68 19799.71 10095.12 15999.60 8798.94 176
IterMVS-SCA-FT95.86 17996.19 16494.85 27197.68 25485.53 32092.42 31797.63 25896.99 8398.36 8998.54 8787.94 27199.75 6697.07 6499.08 21099.27 117
test_f95.82 18195.88 18195.66 23297.61 26193.21 18495.61 20198.17 21386.98 31498.42 8199.47 1090.46 23894.74 37197.71 4098.45 26899.03 163
test_vis1_n_192095.77 18296.41 15693.85 30198.55 15084.86 33295.91 18599.71 292.72 24397.67 15398.90 5987.44 27998.73 30697.96 2898.85 23597.96 284
hse-mvs295.77 18295.09 20197.79 10597.84 22795.51 9795.66 19695.43 31596.58 9897.21 17596.16 28484.14 29999.54 16595.89 10796.92 32098.32 250
MVP-Stereo95.69 18495.28 19496.92 16598.15 19893.03 18795.64 20098.20 20790.39 27596.63 21997.73 18491.63 22499.10 27191.84 24897.31 31798.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 18495.67 18795.74 22898.48 16288.76 26792.84 30697.25 26696.00 12997.59 15597.95 16191.38 22699.46 18893.16 23096.35 33498.99 170
test_vis1_n95.67 18695.89 18095.03 26098.18 19189.89 24596.94 12699.28 2188.25 30298.20 10798.92 5586.69 28597.19 35797.70 4298.82 23998.00 283
new-patchmatchnet95.67 18696.58 14492.94 32497.48 27080.21 35992.96 30598.19 21294.83 17998.82 5098.79 6593.31 18399.51 17495.83 11199.04 21699.12 148
xiu_mvs_v1_base_debu95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base_debi95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
DP-MVS Recon95.55 19195.13 19996.80 17498.51 15693.99 16094.60 25198.69 14690.20 27895.78 26096.21 28392.73 19698.98 28590.58 27998.86 23497.42 309
MVS_030495.50 19295.05 20596.84 17196.28 31493.12 18597.00 12396.16 29595.03 17489.22 36197.70 18690.16 24699.48 18294.51 18499.34 17097.93 287
Fast-Effi-MVS+95.49 19395.07 20296.75 17797.67 25792.82 19094.22 26498.60 16191.61 26093.42 32292.90 34596.73 7799.70 10792.60 23597.89 29097.74 296
TAMVS95.49 19394.94 20797.16 15098.31 17493.41 17995.07 23396.82 28491.09 26897.51 15997.82 17589.96 24799.42 19888.42 31299.44 14098.64 218
OpenMVScopyleft94.22 895.48 19595.20 19696.32 20297.16 29391.96 21397.74 7898.84 10887.26 30994.36 29398.01 15593.95 17099.67 12490.70 27698.75 24597.35 312
CLD-MVS95.47 19695.07 20296.69 18198.27 18092.53 19691.36 33298.67 15191.22 26795.78 26094.12 33395.65 12198.98 28590.81 26899.72 5798.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 19794.66 22397.88 10097.84 22795.23 11593.62 29098.39 18587.04 31293.78 30695.99 29294.58 15399.52 17091.76 25098.90 22898.89 188
CDPH-MVS95.45 19894.65 22497.84 10398.28 17894.96 12693.73 28898.33 19385.03 33595.44 26996.60 26395.31 13199.44 19590.01 28999.13 20299.11 151
IterMVS95.42 19995.83 18294.20 29797.52 26783.78 34392.41 31897.47 26395.49 15598.06 12598.49 9187.94 27199.58 15296.02 9899.02 21799.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 20096.07 17093.21 31696.29 31381.56 35494.60 25197.66 25293.30 22196.95 20098.91 5893.03 19099.38 21696.60 7497.30 31898.69 215
MSDG95.33 20195.13 19995.94 22197.40 27891.85 21591.02 34398.37 18895.30 16296.31 23595.99 29294.51 15698.38 33689.59 29597.65 30497.60 302
LFMVS95.32 20294.88 21396.62 18398.03 20691.47 22297.65 8390.72 35799.11 997.89 14298.31 10879.20 32299.48 18293.91 21099.12 20598.93 180
F-COLMAP95.30 20394.38 24198.05 9198.64 13596.04 7595.61 20198.66 15389.00 29293.22 32596.40 27592.90 19299.35 22487.45 32697.53 30898.77 205
Anonymous2023120695.27 20495.06 20495.88 22398.72 12589.37 25395.70 19297.85 23988.00 30596.98 19897.62 19291.95 21999.34 22689.21 30099.53 11098.94 176
FMVSNet395.26 20594.94 20796.22 20796.53 30890.06 24195.99 17697.66 25294.11 20197.99 13197.91 16680.22 32099.63 13794.60 18099.44 14098.96 173
test_fmvs1_n95.21 20695.28 19494.99 26398.15 19889.13 25996.81 13299.43 1586.97 31597.21 17598.92 5583.00 30697.13 35898.09 2498.94 22498.72 211
c3_l95.20 20795.32 19394.83 27396.19 31986.43 31291.83 32798.35 19293.47 21697.36 16997.26 22288.69 26399.28 24195.41 14199.36 16298.78 202
D2MVS95.18 20895.17 19895.21 25197.76 24587.76 29094.15 26897.94 23489.77 28496.99 19697.68 18987.45 27899.14 26395.03 16499.81 3698.74 208
N_pmnet95.18 20894.23 24498.06 8897.85 22296.55 5892.49 31591.63 35089.34 28698.09 12097.41 20690.33 24099.06 27591.58 25299.31 18198.56 226
HQP-MVS95.17 21094.58 23296.92 16597.85 22292.47 19794.26 25898.43 17893.18 22692.86 33195.08 31490.33 24099.23 25290.51 28198.74 24699.05 162
Vis-MVSNet (Re-imp)95.11 21194.85 21495.87 22499.12 8789.17 25697.54 9694.92 31996.50 10396.58 22097.27 22183.64 30399.48 18288.42 31299.67 7098.97 172
AdaColmapbinary95.11 21194.62 22896.58 18697.33 28594.45 14194.92 24098.08 22693.15 23093.98 30495.53 30894.34 16099.10 27185.69 33698.61 25996.20 342
API-MVS95.09 21395.01 20695.31 24896.61 30694.02 15896.83 13097.18 27095.60 15095.79 25894.33 33194.54 15598.37 33885.70 33598.52 26493.52 362
CL-MVSNet_self_test95.04 21494.79 22095.82 22597.51 26889.79 24691.14 34096.82 28493.05 23296.72 21296.40 27590.82 23399.16 26191.95 24498.66 25498.50 233
CNLPA95.04 21494.47 23796.75 17797.81 23195.25 11494.12 27297.89 23794.41 19294.57 28795.69 30190.30 24398.35 33986.72 33198.76 24496.64 333
Patchmtry95.03 21694.59 23196.33 20194.83 34990.82 23196.38 15397.20 26896.59 9797.49 16198.57 8377.67 32999.38 21692.95 23499.62 7898.80 200
PVSNet_BlendedMVS95.02 21794.93 20995.27 24997.79 24087.40 29794.14 27098.68 14888.94 29394.51 28998.01 15593.04 18899.30 23589.77 29399.49 12799.11 151
TAPA-MVS93.32 1294.93 21894.23 24497.04 15998.18 19194.51 13895.22 22598.73 13681.22 35496.25 23995.95 29693.80 17498.98 28589.89 29198.87 23297.62 300
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 21994.89 21294.99 26397.51 26888.11 28198.27 4495.20 31792.40 25096.68 21498.60 8183.44 30499.28 24193.34 22398.53 26397.59 303
eth_miper_zixun_eth94.89 22094.93 20994.75 27795.99 32786.12 31591.35 33398.49 17293.40 21797.12 18297.25 22386.87 28499.35 22495.08 16198.82 23998.78 202
CDS-MVSNet94.88 22194.12 24997.14 15297.64 25993.57 17493.96 28097.06 27690.05 28096.30 23696.55 26586.10 28799.47 18590.10 28899.31 18198.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 22294.91 21194.57 28596.81 30487.10 30394.23 26397.34 26588.74 29697.14 18097.11 23091.94 22098.23 34392.99 23297.92 28798.37 243
pmmvs494.82 22394.19 24796.70 18097.42 27792.75 19492.09 32496.76 28686.80 31795.73 26397.22 22489.28 26098.89 29293.28 22699.14 20098.46 237
miper_lstm_enhance94.81 22494.80 21994.85 27196.16 32186.45 31191.14 34098.20 20793.49 21597.03 19397.37 21584.97 29599.26 24595.28 14499.56 9798.83 197
cl____94.73 22594.64 22595.01 26195.85 33187.00 30491.33 33498.08 22693.34 21997.10 18497.33 21884.01 30299.30 23595.14 15699.56 9798.71 214
DIV-MVS_self_test94.73 22594.64 22595.01 26195.86 33087.00 30491.33 33498.08 22693.34 21997.10 18497.34 21784.02 30199.31 23295.15 15599.55 10398.72 211
YYNet194.73 22594.84 21594.41 29197.47 27485.09 32990.29 35095.85 30492.52 24597.53 15797.76 17891.97 21899.18 25693.31 22596.86 32398.95 174
MDA-MVSNet_test_wron94.73 22594.83 21794.42 29097.48 27085.15 32790.28 35195.87 30392.52 24597.48 16397.76 17891.92 22199.17 26093.32 22496.80 32698.94 176
UnsupCasMVSNet_bld94.72 22994.26 24396.08 21398.62 14190.54 23993.38 29898.05 23290.30 27697.02 19496.80 25389.54 25499.16 26188.44 31196.18 33698.56 226
miper_ehance_all_eth94.69 23094.70 22294.64 27995.77 33486.22 31491.32 33698.24 20191.67 25997.05 19196.65 26188.39 26899.22 25494.88 16798.34 27198.49 234
BH-untuned94.69 23094.75 22194.52 28797.95 21887.53 29394.07 27397.01 27793.99 20497.10 18495.65 30392.65 19998.95 29087.60 32296.74 32797.09 315
RPMNet94.68 23294.60 22994.90 26895.44 34288.15 27796.18 16598.86 10197.43 6894.10 29898.49 9179.40 32199.76 6095.69 11695.81 33996.81 329
Patchmatch-RL test94.66 23394.49 23595.19 25298.54 15288.91 26192.57 31398.74 13591.46 26398.32 9697.75 18177.31 33498.81 29996.06 9399.61 8497.85 291
CANet_DTU94.65 23494.21 24695.96 21795.90 32989.68 24793.92 28197.83 24393.19 22590.12 35695.64 30488.52 26599.57 15893.27 22799.47 13398.62 221
pmmvs594.63 23594.34 24295.50 24097.63 26088.34 27294.02 27497.13 27287.15 31195.22 27497.15 22787.50 27799.27 24493.99 20699.26 18898.88 192
PAPM_NR94.61 23694.17 24895.96 21798.36 17291.23 22495.93 18397.95 23392.98 23593.42 32294.43 33090.53 23698.38 33687.60 32296.29 33598.27 258
PatchMatch-RL94.61 23693.81 25797.02 16198.19 18895.72 8693.66 28997.23 26788.17 30394.94 28195.62 30591.43 22598.57 32287.36 32797.68 30196.76 331
BH-RMVSNet94.56 23894.44 24094.91 26697.57 26387.44 29693.78 28796.26 29493.69 21296.41 22996.50 27092.10 21599.00 28185.96 33397.71 29898.31 252
USDC94.56 23894.57 23494.55 28697.78 24386.43 31292.75 30998.65 15885.96 32396.91 20397.93 16490.82 23398.74 30590.71 27599.59 8998.47 235
iter_conf_final94.54 24093.91 25696.43 19597.23 29090.41 24096.81 13298.10 22393.87 20796.80 20697.89 16768.02 36799.72 8596.73 7199.77 4599.18 134
test111194.53 24194.81 21893.72 30499.06 9481.94 35398.31 3983.87 37496.37 10898.49 7399.17 3581.49 31199.73 8096.64 7299.86 2799.49 58
test_fmvs194.51 24294.60 22994.26 29695.91 32887.92 28395.35 21699.02 6286.56 31996.79 20798.52 8882.64 30897.00 36197.87 3198.71 25097.88 289
ppachtmachnet_test94.49 24394.84 21593.46 31096.16 32182.10 35090.59 34797.48 26290.53 27497.01 19597.59 19491.01 23099.36 22193.97 20899.18 19898.94 176
test_yl94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
DCV-MVSNet94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
jason94.39 24694.04 25195.41 24798.29 17687.85 28792.74 31196.75 28785.38 33295.29 27296.15 28588.21 27099.65 13294.24 19599.34 17098.74 208
jason: jason.
ECVR-MVScopyleft94.37 24794.48 23694.05 30098.95 10483.10 34598.31 3982.48 37596.20 11698.23 10599.16 3681.18 31499.66 13095.95 10399.83 3399.38 92
EU-MVSNet94.25 24894.47 23793.60 30798.14 20082.60 34897.24 10992.72 34285.08 33398.48 7598.94 5382.59 30998.76 30497.47 5099.53 11099.44 82
xiu_mvs_v2_base94.22 24994.63 22792.99 32297.32 28684.84 33392.12 32297.84 24191.96 25594.17 29693.43 33696.07 10399.71 10091.27 25697.48 31094.42 358
sss94.22 24993.72 25895.74 22897.71 25289.95 24493.84 28396.98 27888.38 30093.75 30995.74 30087.94 27198.89 29291.02 26298.10 28198.37 243
MVSTER94.21 25193.93 25595.05 25995.83 33286.46 31095.18 22797.65 25492.41 24997.94 13898.00 15772.39 35699.58 15296.36 8399.56 9799.12 148
MAR-MVS94.21 25193.03 27097.76 10796.94 30197.44 3396.97 12597.15 27187.89 30792.00 34492.73 34992.14 21399.12 26683.92 34997.51 30996.73 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 25394.58 23293.07 31896.16 32181.20 35690.42 34996.84 28290.72 27297.14 18097.13 22890.47 23799.11 26994.04 20598.25 27598.91 184
1112_ss94.12 25493.42 26396.23 20598.59 14590.85 23094.24 26298.85 10585.49 32892.97 32994.94 31886.01 28899.64 13591.78 24997.92 28798.20 264
PS-MVSNAJ94.10 25594.47 23793.00 32197.35 28184.88 33191.86 32697.84 24191.96 25594.17 29692.50 35295.82 11199.71 10091.27 25697.48 31094.40 359
CHOSEN 1792x268894.10 25593.41 26496.18 20999.16 7790.04 24292.15 32198.68 14879.90 35996.22 24097.83 17287.92 27599.42 19889.18 30199.65 7399.08 156
MG-MVS94.08 25794.00 25294.32 29397.09 29585.89 31793.19 30395.96 30192.52 24594.93 28297.51 20089.54 25498.77 30287.52 32597.71 29898.31 252
PLCcopyleft91.02 1694.05 25892.90 27397.51 12498.00 21395.12 12394.25 26198.25 20086.17 32191.48 34795.25 31291.01 23099.19 25585.02 34496.69 32898.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 25993.65 25995.17 25495.76 33593.42 17893.97 27998.33 19384.68 33993.17 32695.89 29892.53 20694.79 37093.50 22194.97 35097.31 313
114514_t93.96 26093.22 26796.19 20899.06 9490.97 22995.99 17698.94 8473.88 37193.43 32196.93 24292.38 21099.37 21989.09 30299.28 18598.25 260
PVSNet_Blended93.96 26093.65 25994.91 26697.79 24087.40 29791.43 33198.68 14884.50 34294.51 28994.48 32993.04 18899.30 23589.77 29398.61 25998.02 281
AUN-MVS93.95 26292.69 28197.74 10897.80 23595.38 10595.57 20395.46 31491.26 26692.64 33796.10 29074.67 34599.55 16293.72 21696.97 31998.30 254
lupinMVS93.77 26393.28 26595.24 25097.68 25487.81 28892.12 32296.05 29784.52 34194.48 29195.06 31686.90 28299.63 13793.62 21999.13 20298.27 258
PatchT93.75 26493.57 26194.29 29595.05 34787.32 29996.05 17192.98 33897.54 6594.25 29498.72 7275.79 34299.24 25095.92 10595.81 33996.32 340
EPNet93.72 26592.62 28497.03 16087.61 38092.25 20096.27 15891.28 35196.74 9187.65 36697.39 21185.00 29499.64 13592.14 24199.48 13199.20 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 26592.65 28296.91 16798.93 10791.81 21791.23 33898.52 16982.69 34796.46 22796.52 26980.38 31999.90 1490.36 28598.79 24199.03 163
DPM-MVS93.68 26792.77 28096.42 19797.91 21992.54 19591.17 33997.47 26384.99 33793.08 32894.74 32289.90 24899.00 28187.54 32498.09 28297.72 297
PMMVS293.66 26894.07 25092.45 33297.57 26380.67 35886.46 36596.00 29993.99 20497.10 18497.38 21389.90 24897.82 35188.76 30699.47 13398.86 195
iter_conf0593.65 26993.05 26895.46 24396.13 32587.45 29595.95 18298.22 20392.66 24497.04 19297.89 16763.52 37399.72 8596.19 9099.82 3599.21 126
OpenMVS_ROBcopyleft91.80 1493.64 27093.05 26895.42 24597.31 28791.21 22595.08 23296.68 29181.56 35196.88 20596.41 27390.44 23999.25 24785.39 34097.67 30295.80 346
Patchmatch-test93.60 27193.25 26694.63 28096.14 32487.47 29496.04 17294.50 32393.57 21396.47 22696.97 23976.50 33798.61 31990.67 27798.41 27097.81 295
WTY-MVS93.55 27293.00 27295.19 25297.81 23187.86 28593.89 28296.00 29989.02 29194.07 30095.44 31186.27 28699.33 22887.69 32096.82 32498.39 241
Test_1112_low_res93.53 27392.86 27495.54 23998.60 14388.86 26392.75 30998.69 14682.66 34892.65 33696.92 24484.75 29699.56 15990.94 26497.76 29498.19 265
mvsany_test193.47 27493.03 27094.79 27594.05 36192.12 20690.82 34590.01 36385.02 33697.26 17298.28 11793.57 17897.03 35992.51 23895.75 34495.23 354
MIMVSNet93.42 27592.86 27495.10 25798.17 19488.19 27598.13 5593.69 32892.07 25295.04 27998.21 12980.95 31799.03 28081.42 35798.06 28398.07 271
FMVSNet593.39 27692.35 28696.50 19195.83 33290.81 23397.31 10498.27 19892.74 24296.27 23798.28 11762.23 37499.67 12490.86 26699.36 16299.03 163
SCA93.38 27793.52 26292.96 32396.24 31581.40 35593.24 30194.00 32791.58 26294.57 28796.97 23987.94 27199.42 19889.47 29797.66 30398.06 275
tttt051793.31 27892.56 28595.57 23598.71 12887.86 28597.44 9987.17 36995.79 14297.47 16596.84 24864.12 37199.81 3796.20 8999.32 17899.02 166
CR-MVSNet93.29 27992.79 27794.78 27695.44 34288.15 27796.18 16597.20 26884.94 33894.10 29898.57 8377.67 32999.39 21395.17 15195.81 33996.81 329
cl2293.25 28092.84 27694.46 28994.30 35586.00 31691.09 34296.64 29290.74 27195.79 25896.31 27978.24 32698.77 30294.15 19998.34 27198.62 221
wuyk23d93.25 28095.20 19687.40 35596.07 32695.38 10597.04 12194.97 31895.33 16099.70 598.11 14098.14 1391.94 37377.76 36699.68 6874.89 373
miper_enhance_ethall93.14 28292.78 27994.20 29793.65 36485.29 32489.97 35397.85 23985.05 33496.15 24694.56 32585.74 28999.14 26393.74 21498.34 27198.17 267
baseline193.14 28292.64 28394.62 28197.34 28387.20 30196.67 14593.02 33794.71 18396.51 22595.83 29981.64 31098.60 32190.00 29088.06 36998.07 271
FE-MVS92.95 28492.22 28895.11 25597.21 29188.33 27398.54 2393.66 33189.91 28296.21 24198.14 13470.33 36399.50 17587.79 31898.24 27697.51 305
X-MVStestdata92.86 28590.83 30998.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23336.50 37596.49 8999.72 8595.66 11999.37 15999.45 73
GA-MVS92.83 28692.15 29094.87 27096.97 29887.27 30090.03 35296.12 29691.83 25894.05 30194.57 32476.01 34198.97 28992.46 23997.34 31698.36 248
CMPMVSbinary73.10 2392.74 28791.39 29896.77 17693.57 36694.67 13494.21 26597.67 25080.36 35893.61 31496.60 26382.85 30797.35 35684.86 34598.78 24298.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 28891.76 29595.56 23798.42 16888.23 27496.03 17387.35 36894.04 20396.56 22295.47 30964.03 37299.77 5594.78 17499.11 20698.68 217
HY-MVS91.43 1592.58 28991.81 29494.90 26896.49 30988.87 26297.31 10494.62 32185.92 32490.50 35396.84 24885.05 29399.40 20983.77 35295.78 34296.43 339
TR-MVS92.54 29092.20 28993.57 30896.49 30986.66 30893.51 29494.73 32089.96 28194.95 28093.87 33490.24 24598.61 31981.18 35894.88 35195.45 352
PMMVS92.39 29191.08 30396.30 20493.12 36892.81 19190.58 34895.96 30179.17 36291.85 34692.27 35390.29 24498.66 31689.85 29296.68 32997.43 308
131492.38 29292.30 28792.64 32895.42 34485.15 32795.86 18696.97 27985.40 33190.62 35093.06 34391.12 22997.80 35286.74 33095.49 34794.97 356
new_pmnet92.34 29391.69 29694.32 29396.23 31789.16 25792.27 32092.88 33984.39 34495.29 27296.35 27885.66 29096.74 36684.53 34797.56 30697.05 316
CVMVSNet92.33 29492.79 27790.95 34197.26 28875.84 37195.29 22292.33 34581.86 34996.27 23798.19 13081.44 31298.46 33194.23 19698.29 27498.55 228
PAPR92.22 29591.27 30195.07 25895.73 33788.81 26491.97 32597.87 23885.80 32690.91 34992.73 34991.16 22898.33 34079.48 36095.76 34398.08 269
DSMNet-mixed92.19 29691.83 29393.25 31496.18 32083.68 34496.27 15893.68 33076.97 36892.54 34099.18 3389.20 26298.55 32583.88 35098.60 26197.51 305
BH-w/o92.14 29791.94 29192.73 32797.13 29485.30 32392.46 31695.64 30789.33 28794.21 29592.74 34889.60 25298.24 34281.68 35694.66 35394.66 357
PCF-MVS89.43 1892.12 29890.64 31296.57 18897.80 23593.48 17789.88 35798.45 17574.46 37096.04 24995.68 30290.71 23599.31 23273.73 36999.01 21996.91 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.03 29991.43 29793.82 30298.19 18884.61 33596.27 15890.39 35896.81 8996.37 23193.11 33873.44 35499.49 17980.32 35997.95 28697.36 310
PatchmatchNetpermissive91.98 30091.87 29292.30 33494.60 35279.71 36095.12 22893.59 33389.52 28593.61 31497.02 23677.94 32799.18 25690.84 26794.57 35698.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 30191.35 29993.51 30994.27 35685.60 31988.86 36298.61 16079.32 36192.16 34391.44 36289.22 26198.12 34690.80 26997.47 31296.82 328
JIA-IIPM91.79 30290.69 31195.11 25593.80 36390.98 22894.16 26791.78 34996.38 10790.30 35599.30 2472.02 35798.90 29188.28 31490.17 36695.45 352
thres100view90091.76 30391.26 30293.26 31398.21 18684.50 33696.39 15190.39 35896.87 8796.33 23293.08 34273.44 35499.42 19878.85 36397.74 29595.85 344
thres40091.68 30491.00 30493.71 30598.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29597.36 310
tfpn200view991.55 30591.00 30493.21 31698.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29595.85 344
ADS-MVSNet291.47 30690.51 31494.36 29295.51 34085.63 31895.05 23595.70 30583.46 34592.69 33496.84 24879.15 32399.41 20785.66 33790.52 36498.04 279
EPNet_dtu91.39 30790.75 31093.31 31290.48 37782.61 34794.80 24492.88 33993.39 21881.74 37494.90 32181.36 31399.11 26988.28 31498.87 23298.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 30889.67 32095.47 24296.41 31189.15 25891.54 33090.23 36189.07 29086.78 37092.84 34669.39 36599.44 19594.16 19896.61 33097.82 293
PVSNet86.72 1991.10 30990.97 30691.49 33897.56 26578.04 36387.17 36494.60 32284.65 34092.34 34192.20 35487.37 28098.47 33085.17 34397.69 30097.96 284
tpm91.08 31090.85 30891.75 33795.33 34578.09 36295.03 23791.27 35288.75 29593.53 31797.40 20771.24 35899.30 23591.25 25893.87 35797.87 290
thres20091.00 31190.42 31592.77 32697.47 27483.98 34294.01 27591.18 35395.12 17095.44 26991.21 36473.93 34799.31 23277.76 36697.63 30595.01 355
ADS-MVSNet90.95 31290.26 31693.04 31995.51 34082.37 34995.05 23593.41 33483.46 34592.69 33496.84 24879.15 32398.70 31085.66 33790.52 36498.04 279
tpmvs90.79 31390.87 30790.57 34492.75 37276.30 36995.79 18993.64 33291.04 26991.91 34596.26 28077.19 33598.86 29689.38 29989.85 36796.56 336
thisisatest051590.43 31489.18 32694.17 29997.07 29685.44 32189.75 35887.58 36788.28 30193.69 31291.72 35965.27 37099.58 15290.59 27898.67 25297.50 307
tpmrst90.31 31590.61 31389.41 34894.06 36072.37 37795.06 23493.69 32888.01 30492.32 34296.86 24677.45 33198.82 29791.04 26187.01 37097.04 317
test0.0.03 190.11 31689.21 32392.83 32593.89 36286.87 30791.74 32888.74 36692.02 25394.71 28591.14 36573.92 34894.48 37283.75 35392.94 35997.16 314
MVS90.02 31789.20 32492.47 33194.71 35086.90 30695.86 18696.74 28864.72 37390.62 35092.77 34792.54 20498.39 33579.30 36195.56 34692.12 366
pmmvs390.00 31888.90 32893.32 31194.20 35985.34 32291.25 33792.56 34478.59 36393.82 30595.17 31367.36 36998.69 31189.08 30398.03 28495.92 343
CHOSEN 280x42089.98 31989.19 32592.37 33395.60 33981.13 35786.22 36697.09 27481.44 35387.44 36793.15 33773.99 34699.47 18588.69 30899.07 21296.52 337
test-LLR89.97 32089.90 31890.16 34594.24 35774.98 37289.89 35489.06 36492.02 25389.97 35790.77 36773.92 34898.57 32291.88 24697.36 31496.92 320
FPMVS89.92 32188.63 32993.82 30298.37 17196.94 4591.58 32993.34 33588.00 30590.32 35497.10 23170.87 36191.13 37471.91 37296.16 33893.39 364
test250689.86 32289.16 32791.97 33698.95 10476.83 36898.54 2361.07 38296.20 11697.07 19099.16 3655.19 38199.69 11496.43 8199.83 3399.38 92
CostFormer89.75 32389.25 32191.26 34094.69 35178.00 36495.32 21991.98 34781.50 35290.55 35296.96 24171.06 36098.89 29288.59 31092.63 36196.87 323
baseline289.65 32488.44 33193.25 31495.62 33882.71 34693.82 28485.94 37188.89 29487.35 36892.54 35171.23 35999.33 22886.01 33294.60 35597.72 297
E-PMN89.52 32589.78 31988.73 35093.14 36777.61 36583.26 36992.02 34694.82 18093.71 31093.11 33875.31 34396.81 36385.81 33496.81 32591.77 368
EPMVS89.26 32688.55 33091.39 33992.36 37379.11 36195.65 19879.86 37688.60 29793.12 32796.53 26770.73 36298.10 34790.75 27189.32 36896.98 318
EMVS89.06 32789.22 32288.61 35193.00 36977.34 36682.91 37090.92 35494.64 18592.63 33891.81 35876.30 33997.02 36083.83 35196.90 32291.48 369
KD-MVS_2432*160088.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
miper_refine_blended88.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
IB-MVS85.98 2088.63 33086.95 33993.68 30695.12 34684.82 33490.85 34490.17 36287.55 30888.48 36491.34 36358.01 37599.59 15087.24 32893.80 35896.63 335
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 33187.69 33590.79 34294.98 34877.34 36695.09 23091.83 34877.51 36789.40 35996.41 27367.83 36898.73 30683.58 35492.60 36296.29 341
MVS-HIRNet88.40 33290.20 31782.99 35697.01 29760.04 38093.11 30485.61 37284.45 34388.72 36399.09 4384.72 29798.23 34382.52 35596.59 33190.69 371
gg-mvs-nofinetune88.28 33386.96 33892.23 33592.84 37184.44 33798.19 5274.60 37899.08 1087.01 36999.47 1056.93 37698.23 34378.91 36295.61 34594.01 360
dp88.08 33488.05 33288.16 35492.85 37068.81 37994.17 26692.88 33985.47 32991.38 34896.14 28768.87 36698.81 29986.88 32983.80 37396.87 323
tpm cat188.01 33587.33 33690.05 34794.48 35376.28 37094.47 25494.35 32573.84 37289.26 36095.61 30673.64 35098.30 34184.13 34886.20 37195.57 351
test-mter87.92 33687.17 33790.16 34594.24 35774.98 37289.89 35489.06 36486.44 32089.97 35790.77 36754.96 38298.57 32291.88 24697.36 31496.92 320
PAPM87.64 33785.84 34293.04 31996.54 30784.99 33088.42 36395.57 31179.52 36083.82 37193.05 34480.57 31898.41 33362.29 37592.79 36095.71 347
TESTMET0.1,187.20 33886.57 34089.07 34993.62 36572.84 37689.89 35487.01 37085.46 33089.12 36290.20 36956.00 38097.72 35390.91 26596.92 32096.64 333
MVEpermissive73.61 2286.48 33985.92 34188.18 35396.23 31785.28 32581.78 37175.79 37786.01 32282.53 37391.88 35792.74 19587.47 37671.42 37394.86 35291.78 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 34083.21 34388.34 35295.76 33574.97 37483.49 36892.70 34378.47 36487.94 36586.90 37283.38 30596.63 36773.44 37066.86 37693.40 363
EGC-MVSNET83.08 34177.93 34498.53 5099.57 2097.55 2698.33 3898.57 1664.71 37710.38 37898.90 5995.60 12399.50 17595.69 11699.61 8498.55 228
test_method66.88 34266.13 34569.11 35862.68 38125.73 38349.76 37296.04 29814.32 37664.27 37791.69 36073.45 35388.05 37576.06 36866.94 37593.54 361
tmp_tt57.23 34362.50 34641.44 35934.77 38249.21 38283.93 36760.22 38315.31 37571.11 37679.37 37470.09 36444.86 37864.76 37482.93 37430.25 374
cdsmvs_eth3d_5k24.22 34432.30 3470.00 3620.00 3850.00 3860.00 37398.10 2230.00 3800.00 38195.06 31697.54 310.00 3810.00 3790.00 3790.00 377
test12312.59 34515.49 3483.87 3606.07 3832.55 38490.75 3462.59 3852.52 3785.20 38013.02 3774.96 3831.85 3805.20 3779.09 3777.23 375
testmvs12.33 34615.23 3493.64 3615.77 3842.23 38588.99 3613.62 3842.30 3795.29 37913.09 3764.52 3841.95 3795.16 3788.32 3786.75 376
pcd_1.5k_mvsjas7.98 34710.65 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38095.82 1110.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.91 34810.55 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.94 3180.00 3850.00 3810.00 3790.00 3790.00 377
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.59 1898.20 799.03 799.25 2298.96 1898.87 46
MSC_two_6792asdad98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
PC_three_145287.24 31098.37 8697.44 20497.00 5696.78 36592.01 24299.25 18999.21 126
No_MVS98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
test_one_060199.05 9895.50 10098.87 9897.21 8098.03 12998.30 11296.93 62
eth-test20.00 385
eth-test0.00 385
ZD-MVS98.43 16795.94 7998.56 16790.72 27296.66 21697.07 23295.02 14099.74 7591.08 26098.93 226
RE-MVS-def97.88 5498.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.94 6095.49 12899.20 19499.26 118
IU-MVS99.22 6595.40 10398.14 22085.77 32798.36 8995.23 14899.51 12099.49 58
OPU-MVS97.64 11698.01 20995.27 11396.79 13597.35 21696.97 5898.51 32891.21 25999.25 18999.14 141
test_241102_TWO98.83 11496.11 12198.62 6198.24 12396.92 6499.72 8595.44 13599.49 12799.49 58
test_241102_ONE99.22 6595.35 10898.83 11496.04 12699.08 3498.13 13697.87 1999.33 228
9.1496.69 13998.53 15396.02 17498.98 7793.23 22397.18 17897.46 20296.47 9199.62 14292.99 23299.32 178
save fliter98.48 16294.71 13194.53 25398.41 18295.02 175
test_0728_THIRD96.62 9398.40 8398.28 11797.10 4899.71 10095.70 11499.62 7899.58 32
test_0728_SECOND98.25 7399.23 6295.49 10196.74 13898.89 9099.75 6695.48 13199.52 11599.53 47
test072699.24 6095.51 9796.89 12898.89 9095.92 13498.64 6098.31 10897.06 52
GSMVS98.06 275
test_part299.03 10096.07 7498.08 122
sam_mvs177.80 32898.06 275
sam_mvs77.38 332
ambc96.56 18998.23 18591.68 21997.88 6898.13 22198.42 8198.56 8594.22 16399.04 27794.05 20499.35 16798.95 174
MTGPAbinary98.73 136
test_post194.98 23910.37 37976.21 34099.04 27789.47 297
test_post10.87 37876.83 33699.07 274
patchmatchnet-post96.84 24877.36 33399.42 198
GG-mvs-BLEND90.60 34391.00 37584.21 34098.23 4672.63 38182.76 37284.11 37356.14 37996.79 36472.20 37192.09 36390.78 370
MTMP96.55 14674.60 378
gm-plane-assit91.79 37471.40 37881.67 35090.11 37098.99 28384.86 345
test9_res91.29 25598.89 23199.00 167
TEST997.84 22795.23 11593.62 29098.39 18586.81 31693.78 30695.99 29294.68 14999.52 170
test_897.81 23195.07 12493.54 29398.38 18787.04 31293.71 31095.96 29594.58 15399.52 170
agg_prior290.34 28698.90 22899.10 155
agg_prior97.80 23594.96 12698.36 18993.49 31899.53 167
TestCases98.06 8899.08 9196.16 7099.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
test_prior495.38 10593.61 292
test_prior293.33 30094.21 19794.02 30296.25 28193.64 17791.90 24598.96 221
test_prior97.46 13397.79 24094.26 15298.42 18199.34 22698.79 201
旧先验293.35 29977.95 36695.77 26298.67 31590.74 274
新几何293.43 295
新几何197.25 14798.29 17694.70 13397.73 24777.98 36594.83 28396.67 26092.08 21699.45 19288.17 31698.65 25697.61 301
旧先验197.80 23593.87 16297.75 24697.04 23593.57 17898.68 25198.72 211
无先验93.20 30297.91 23580.78 35599.40 20987.71 31997.94 286
原ACMM292.82 307
原ACMM196.58 18698.16 19692.12 20698.15 21985.90 32593.49 31896.43 27292.47 20899.38 21687.66 32198.62 25898.23 261
test22298.17 19493.24 18392.74 31197.61 25975.17 36994.65 28696.69 25990.96 23298.66 25497.66 299
testdata299.46 18887.84 317
segment_acmp95.34 130
testdata95.70 23198.16 19690.58 23697.72 24880.38 35795.62 26597.02 23692.06 21798.98 28589.06 30498.52 26497.54 304
testdata192.77 30893.78 209
test1297.46 13397.61 26194.07 15697.78 24593.57 31693.31 18399.42 19898.78 24298.89 188
plane_prior798.70 13094.67 134
plane_prior698.38 17094.37 14491.91 222
plane_prior598.75 13399.46 18892.59 23699.20 19499.28 113
plane_prior496.77 254
plane_prior394.51 13895.29 16396.16 244
plane_prior296.50 14896.36 109
plane_prior198.49 160
plane_prior94.29 14795.42 20894.31 19698.93 226
n20.00 386
nn0.00 386
door-mid98.17 213
lessismore_v097.05 15799.36 4892.12 20684.07 37398.77 5598.98 4985.36 29299.74 7597.34 5399.37 15999.30 106
LGP-MVS_train98.74 3499.15 7997.02 4299.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
test1198.08 226
door97.81 244
HQP5-MVS92.47 197
HQP-NCC97.85 22294.26 25893.18 22692.86 331
ACMP_Plane97.85 22294.26 25893.18 22692.86 331
BP-MVS90.51 281
HQP4-MVS92.87 33099.23 25299.06 160
HQP3-MVS98.43 17898.74 246
HQP2-MVS90.33 240
NP-MVS98.14 20093.72 16895.08 314
MDTV_nov1_ep13_2view57.28 38194.89 24180.59 35694.02 30278.66 32585.50 33997.82 293
MDTV_nov1_ep1391.28 30094.31 35473.51 37594.80 24493.16 33686.75 31893.45 32097.40 20776.37 33898.55 32588.85 30596.43 332
ACMMP++_ref99.52 115
ACMMP++99.55 103
Test By Simon94.51 156
ITE_SJBPF97.85 10298.64 13596.66 5498.51 17195.63 14897.22 17397.30 22095.52 12498.55 32590.97 26398.90 22898.34 249
DeepMVS_CXcopyleft77.17 35790.94 37685.28 32574.08 38052.51 37480.87 37588.03 37175.25 34470.63 37759.23 37684.94 37275.62 372