This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18798.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3799.67 299.73 499.65 699.15 399.86 2697.22 7099.92 1499.77 13
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12797.75 5399.89 2399.62 36
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 216
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3496.23 12799.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16697.21 7199.76 5799.40 105
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4499.98 299.85 5
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5599.36 599.29 2999.06 5697.27 4899.93 497.71 5599.91 1799.70 26
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5195.83 15499.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4699.33 699.30 2899.00 5997.27 4899.92 697.64 5999.92 1499.75 20
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 4999.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5099.22 1099.22 3498.96 6597.35 4499.92 697.79 5099.93 1199.79 11
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8196.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 3995.62 16399.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4199.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7198.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15499.82 195.44 17499.64 1199.52 998.96 499.74 8199.38 399.86 2899.81 9
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4699.37 499.67 899.43 1795.61 14199.72 9398.12 3699.86 2899.73 22
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6098.42 3799.03 4398.71 8996.93 7399.83 3497.09 7799.63 9099.56 50
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6398.31 4199.02 4498.74 8597.68 3099.61 16397.77 5299.85 3699.70 26
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3596.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11098.49 3599.38 2399.14 4995.44 14799.84 3296.47 9899.80 5099.47 84
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9297.57 7299.27 3099.22 3598.32 1299.50 19297.09 7799.75 6499.50 67
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7197.40 8499.37 2499.08 5598.79 699.47 20297.74 5499.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13099.05 1799.01 4598.65 9795.37 14999.90 1697.57 6099.91 1799.77 13
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18299.73 595.05 19199.60 1599.34 2698.68 899.72 9399.21 799.85 3699.76 18
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 11998.23 4799.48 1799.27 3198.47 1199.55 17996.52 9699.53 12999.60 37
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8798.53 2999.86 2899.95 2
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15299.05 7198.67 2898.84 6198.45 11897.58 3899.88 2196.45 9999.86 2899.54 54
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 7995.88 15097.88 16398.22 15698.15 1699.74 8196.50 9799.62 9299.42 102
ANet_high98.31 3698.94 696.41 21799.33 5189.64 26997.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6199.98 299.77 13
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19799.64 1594.99 19499.43 2099.18 4298.51 1099.71 10799.13 1099.84 3899.67 28
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9298.40 3899.07 4298.98 6296.89 7899.75 7297.19 7499.79 5299.55 53
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4799.36 18299.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4298.34 4098.78 6698.52 11097.32 4599.45 21094.08 22599.67 8399.13 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3798.21 4899.25 3298.51 11298.21 1499.40 22894.79 19699.72 7099.32 122
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3598.43 3698.89 5798.83 7894.30 18199.81 4097.87 4599.91 1799.77 13
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.60 9699.76 6695.49 14999.20 21399.26 139
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15897.69 6897.90 16197.96 18795.81 13499.82 3696.13 11399.61 9899.45 90
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5595.96 14398.59 8298.69 9296.94 7199.81 4096.64 9199.58 10999.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10797.72 6598.25 12198.13 16497.10 5899.75 7295.44 15799.24 21199.32 122
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7195.43 17597.41 18997.50 22797.98 1999.79 4795.58 14799.57 11299.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27397.19 25296.88 8099.86 2697.50 6399.73 6698.41 261
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17299.65 1295.59 16599.71 599.01 5897.66 3399.60 16599.44 299.83 4297.90 316
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18699.57 1795.66 16099.52 1698.71 8997.04 6499.64 14799.21 799.87 2698.69 236
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5598.76 2796.79 22899.34 2696.61 9498.82 32896.38 10299.50 14396.98 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs5depth98.06 5298.58 2696.51 20998.97 11489.65 26899.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10295.75 15897.91 16098.06 17796.89 7899.76 6695.32 16599.57 11299.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15598.83 13695.21 18298.36 10698.13 16498.13 1899.62 15696.04 11799.54 12599.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 10996.58 11098.08 14197.87 19697.02 6699.76 6695.25 16899.59 10699.40 105
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13697.32 8898.06 14497.85 19796.65 9199.77 6195.00 18799.11 22799.32 122
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18398.58 3298.78 6699.39 1897.80 2599.62 15694.98 19099.86 2899.52 60
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22298.58 3298.78 6699.39 1898.21 1499.56 17592.65 26099.86 2899.52 60
DVP-MVS++97.96 5997.90 6598.12 8697.75 26795.40 10599.03 898.89 11096.62 10698.62 7898.30 13996.97 6999.75 7295.70 13599.25 20899.21 147
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 21998.79 2699.23 3398.86 7795.76 13699.61 16395.49 14999.36 18299.23 145
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25897.64 21696.49 10199.72 9395.66 14099.37 17999.45 90
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15897.79 5999.42 2197.83 19894.40 17999.78 5195.91 12799.76 5799.46 86
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6396.57 11398.07 14398.38 12796.22 11899.14 29094.71 20399.31 20098.52 253
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13696.05 13697.46 18797.63 21796.77 8799.76 6695.61 14499.46 15599.49 75
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17597.41 8399.00 4799.19 3895.47 14599.73 8795.83 13299.76 5799.30 127
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13696.11 13399.08 4098.24 15197.87 2399.72 9395.44 15799.51 13999.14 160
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13096.05 13697.49 18297.54 22397.07 6199.70 11595.61 14499.46 15599.30 127
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5298.04 5598.62 7898.66 9493.75 19599.78 5197.23 6999.84 3899.73 22
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13095.76 15696.93 22297.43 23197.26 5299.79 4796.06 11499.53 12999.45 90
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13096.00 14197.22 19597.62 21896.87 8299.76 6695.48 15399.43 16899.46 86
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10296.11 13396.89 22597.45 22996.85 8399.78 5195.19 17199.63 9099.38 112
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29796.92 27096.81 8699.87 2496.87 8799.76 5798.51 254
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15096.04 13897.10 20697.73 21196.53 9899.78 5195.16 17599.50 14399.46 86
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27797.01 26496.99 6899.82 3697.66 5899.64 8898.39 264
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 16998.79 14695.07 19097.88 16398.35 13097.24 5499.72 9396.05 11699.58 10999.45 90
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6795.45 17297.55 17797.94 19097.11 5799.78 5194.77 19999.46 15599.48 81
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14698.98 2198.74 7398.49 11395.80 13599.49 19795.04 18499.44 15999.11 170
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6796.19 13098.48 9298.70 9194.72 16699.24 27694.37 21499.33 19599.17 154
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10597.10 9598.85 6098.88 7595.03 15999.67 13597.39 6799.65 8699.26 139
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15398.73 15898.66 2998.56 8498.41 12396.84 8499.69 12294.82 19499.81 4798.64 240
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22299.02 8198.11 5198.31 11697.69 21494.65 17199.85 2997.02 8299.71 7399.48 81
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20699.04 7897.51 7698.22 12497.81 20394.68 16999.78 5197.14 7599.75 6499.41 104
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20199.18 4097.67 7199.00 4798.48 11797.64 3499.50 19296.96 8499.54 12599.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14695.96 14397.53 17897.40 23396.93 7399.77 6195.04 18499.35 18799.42 102
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18099.02 8193.92 23098.62 7898.99 6197.69 2999.62 15696.18 11299.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15899.15 4693.68 23798.89 5799.30 2996.42 10799.37 24099.03 1399.83 4299.66 30
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22498.87 11997.57 7298.31 11697.83 19894.69 16799.85 2997.02 8299.71 7399.46 86
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14898.23 22595.92 14798.40 10098.28 14497.06 6299.71 10795.48 15399.52 13499.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 9097.50 11398.57 5196.24 34297.58 2898.45 3198.85 12698.58 3297.51 18097.94 19095.74 13799.63 15195.19 17198.97 24198.51 254
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9895.75 15897.62 17597.59 22097.61 3799.77 6196.34 10599.44 15999.36 118
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18799.09 9591.43 24196.37 16899.11 5294.19 22099.01 4599.25 3296.30 11399.38 23599.00 1499.88 2499.73 22
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22495.60 9598.04 5998.70 16798.13 5096.93 22298.45 11895.30 15299.62 15695.64 14298.96 24299.24 144
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19798.25 4699.13 3898.66 9496.65 9199.69 12293.92 23399.62 9298.91 203
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23498.86 12298.20 4998.37 10399.24 3394.69 16799.55 17995.98 12399.79 5299.65 33
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24198.99 9592.45 27898.11 13698.31 13597.25 5399.77 6196.60 9399.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20398.97 10194.55 21098.82 6398.76 8497.31 4699.29 26497.20 7399.44 15999.38 112
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 20899.41 2693.36 24599.00 4798.44 12096.46 10599.65 14399.09 1199.76 5799.45 90
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 17899.06 6793.67 23898.64 7699.00 5996.23 11799.36 24398.99 1599.80 5099.53 57
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25598.99 9595.84 15398.78 6698.08 17096.84 8499.81 4093.98 23199.57 11299.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15896.27 12495.59 29497.75 20896.30 11399.78 5193.70 24199.48 15099.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19198.79 13691.44 24096.14 18799.06 6794.19 22098.82 6398.98 6296.22 11899.38 23598.98 1699.86 2899.58 39
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27093.65 18098.49 2898.88 11796.86 10197.11 20598.55 10795.82 13099.73 8795.94 12599.42 17199.13 162
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21199.32 2793.22 25198.91 5698.49 11396.31 11299.64 14799.07 1299.76 5799.40 105
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5595.32 17997.83 16997.88 19596.44 10699.72 9394.59 20899.39 17799.25 143
v897.60 10498.06 5396.23 22498.71 14789.44 27497.43 10998.82 14497.29 9098.74 7399.10 5293.86 19199.68 12798.61 2699.94 899.56 50
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16498.98 9895.05 19198.06 14498.02 18195.86 12699.56 17594.37 21499.64 8899.00 186
v1097.55 10897.97 6196.31 22298.60 16289.64 26997.44 10799.02 8196.60 10898.72 7599.16 4693.48 20099.72 9398.76 2199.92 1499.58 39
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25398.46 19694.58 20998.10 13898.07 17297.09 6099.39 23295.16 17599.44 15999.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9294.93 19798.58 8398.92 6997.31 4699.41 22694.44 20999.43 16899.59 38
casdiffmvspermissive97.50 11197.81 7796.56 20798.51 17591.04 24795.83 21199.09 6097.23 9198.33 11398.30 13997.03 6599.37 24096.58 9599.38 17899.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30198.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14898.73 15891.61 29398.48 9298.36 12996.53 9899.68 12795.17 17399.54 12599.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 17998.89 11093.71 23497.97 15497.75 20897.44 4099.63 15193.22 25399.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11095.65 16198.51 8796.46 29792.15 23699.81 4095.14 17898.58 28499.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32898.31 4197.09 21195.45 33797.17 5698.50 36298.67 2597.45 34396.48 377
baseline97.44 11697.78 8296.43 21498.52 17390.75 25496.84 13899.03 7996.51 11497.86 16798.02 18196.67 9099.36 24397.09 7799.47 15299.19 151
MVSMamba_PlusPlus97.43 11897.98 6095.78 24698.88 12689.70 26698.03 6198.85 12699.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12197.73 330
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 22993.00 26398.16 13198.06 17795.89 12599.72 9395.67 13999.10 22999.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9596.35 12398.13 13595.95 32395.99 12299.66 14194.36 21699.73 6698.59 246
test_fmvs397.38 12197.56 10696.84 18998.63 15892.81 20297.60 9499.61 1690.87 30698.76 7199.66 494.03 18797.90 38699.24 699.68 8199.81 9
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28099.02 8195.20 18398.15 13397.52 22598.83 598.43 36794.87 19296.41 36899.07 177
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33298.59 3198.51 8798.72 8692.54 22799.58 16896.02 11999.49 14699.12 167
SD-MVS97.37 12397.70 8696.35 21998.14 22095.13 12496.54 16098.92 10795.94 14599.19 3598.08 17097.74 2895.06 40995.24 16999.54 12598.87 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18198.63 18193.82 23198.54 8598.33 13393.98 18899.05 30595.99 12299.45 15898.61 245
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22393.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31799.06 23698.32 273
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 30992.01 22995.33 24797.65 27597.74 6398.30 11898.14 16295.04 15899.69 12297.55 6199.52 13499.58 39
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30692.08 22795.34 24697.65 27597.74 6398.29 11998.11 16895.05 15799.68 12797.50 6399.50 14399.56 50
VPNet97.26 12997.49 11496.59 20399.47 3390.58 25696.27 17498.53 19097.77 6098.46 9598.41 12394.59 17299.68 12794.61 20499.29 20399.52 60
sasdasda97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
canonicalmvs97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
MGCFI-Net97.20 13297.23 12897.08 17197.68 27593.71 17597.79 7799.09 6097.40 8496.59 24493.96 36197.67 3199.35 24796.43 10098.50 29098.17 292
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
dcpmvs_297.12 13497.99 5994.51 30899.11 9284.00 36797.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 14899.78 5599.58 39
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31599.05 7195.19 18498.32 11497.70 21395.22 15498.41 36894.27 21898.13 30798.93 199
Anonymous2024052197.07 13697.51 11195.76 24799.35 4988.18 29897.78 7898.40 20697.11 9498.34 11099.04 5789.58 27699.79 4798.09 3899.93 1199.30 127
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31599.27 3099.33 2894.04 18696.03 40797.14 7597.83 32099.78 12
V4297.04 13797.16 13396.68 20098.59 16491.05 24696.33 17198.36 21194.60 20697.99 15098.30 13993.32 20299.62 15697.40 6699.53 12999.38 112
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17298.77 15192.96 26897.44 18897.58 22295.84 12799.74 8191.96 27099.35 18799.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20198.20 22995.51 16995.06 30696.53 29394.10 18599.70 11594.29 21799.15 22099.13 162
GBi-Net96.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
test196.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34099.26 998.39 10299.18 4287.85 30099.62 15695.13 18099.09 23099.35 120
PHI-MVS96.96 14496.53 17398.25 7597.48 29696.50 6396.76 14798.85 12693.52 24096.19 26996.85 27395.94 12399.42 21793.79 23799.43 16898.83 216
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31098.36 3998.14 13497.98 18688.23 29399.71 10793.10 25699.72 7099.38 112
CNVR-MVS96.92 14696.55 17098.03 9598.00 23395.54 9794.87 27198.17 23594.60 20696.38 25597.05 26095.67 13999.36 24395.12 18199.08 23199.19 151
IterMVS-LS96.92 14697.29 12395.79 24598.51 17588.13 30195.10 25898.66 17596.99 9698.46 9598.68 9392.55 22599.74 8196.91 8599.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 28898.12 24497.34 8798.20 12597.33 24492.81 21599.75 7294.79 19699.81 4799.54 54
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29697.23 4492.56 34998.60 18392.84 27098.54 8597.40 23396.64 9398.78 33294.40 21399.41 17598.93 199
balanced_conf0396.88 15097.29 12395.63 25397.66 28089.47 27397.95 6698.89 11095.94 14597.77 17398.55 10792.23 23499.68 12797.05 8199.61 9897.73 330
MM96.87 15196.62 16397.62 12297.72 27293.30 19096.39 16492.61 37397.90 5896.76 23398.64 9890.46 26399.81 4099.16 999.94 899.76 18
v114496.84 15297.08 13796.13 23198.42 18789.28 27795.41 23898.67 17394.21 21897.97 15498.31 13593.06 20899.65 14398.06 4099.62 9299.45 90
VNet96.84 15296.83 15396.88 18598.06 22592.02 22896.35 17097.57 28197.70 6797.88 16397.80 20492.40 23299.54 18294.73 20198.96 24299.08 175
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31597.91 5797.30 19198.06 17788.46 28999.85 2993.85 23599.40 17699.32 122
v119296.83 15597.06 13996.15 23098.28 19789.29 27695.36 24298.77 15193.73 23398.11 13698.34 13293.02 21399.67 13598.35 3399.58 10999.50 67
MVS_111021_LR96.82 15696.55 17097.62 12298.27 19995.34 11293.81 31798.33 21594.59 20896.56 24796.63 28896.61 9498.73 33794.80 19599.34 19098.78 223
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 32998.69 596.42 16398.09 24695.86 15295.15 30495.54 33494.26 18299.81 4094.06 22698.51 28998.47 258
UGNet96.81 15796.56 16997.58 12496.64 33393.84 17097.75 8297.12 29496.47 11893.62 34598.88 7593.22 20599.53 18495.61 14499.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 15997.06 13995.95 23898.57 16688.77 28895.36 24298.26 22195.18 18597.85 16898.23 15392.58 22399.63 15197.80 4999.69 7799.45 90
v124096.74 16097.02 14295.91 24198.18 21188.52 29095.39 24098.88 11793.15 25998.46 9598.40 12692.80 21699.71 10798.45 3199.49 14699.49 75
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27494.15 15996.02 19598.43 20093.17 25897.30 19197.38 23995.48 14499.28 26693.74 23899.34 19098.88 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32798.36 21194.74 20096.58 24596.76 28296.54 9798.99 31394.87 19299.27 20699.15 157
v192192096.72 16396.96 14695.99 23498.21 20588.79 28795.42 23698.79 14693.22 25198.19 12998.26 14992.68 21999.70 11598.34 3499.55 12199.49 75
FMVSNet296.72 16396.67 16296.87 18697.96 23591.88 23197.15 12198.06 25295.59 16598.50 8998.62 9989.51 28099.65 14394.99 18999.60 10499.07 177
PMVScopyleft89.60 1796.71 16596.97 14495.95 23899.51 2897.81 2097.42 11097.49 28297.93 5695.95 27798.58 10396.88 8096.91 39989.59 32699.36 18293.12 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 16696.90 15196.03 23398.25 20188.92 28295.49 23298.77 15193.05 26198.09 13998.29 14392.51 23099.70 11598.11 3799.56 11599.47 84
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15192.89 26996.01 27697.13 25492.23 23499.67 13592.24 26799.34 19099.17 154
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16198.75 15596.36 12196.16 27096.77 28091.91 24699.46 20592.59 26299.20 21399.28 134
EI-MVSNet96.63 16996.93 14795.74 24897.26 31488.13 30195.29 25197.65 27596.99 9697.94 15898.19 15892.55 22599.58 16896.91 8599.56 11599.50 67
patch_mono-296.59 17096.93 14795.55 25998.88 12687.12 32394.47 28599.30 2994.12 22396.65 24198.41 12394.98 16299.87 2495.81 13499.78 5599.66 30
ab-mvs96.59 17096.59 16696.60 20298.64 15492.21 21898.35 3597.67 27194.45 21296.99 21798.79 7994.96 16399.49 19790.39 31499.07 23398.08 296
v14896.58 17296.97 14495.42 26598.63 15887.57 31495.09 25997.90 25795.91 14998.24 12297.96 18793.42 20199.39 23296.04 11799.52 13499.29 133
test20.0396.58 17296.61 16596.48 21298.49 17991.72 23595.68 22097.69 27096.81 10298.27 12097.92 19394.18 18498.71 34090.78 29999.66 8599.00 186
NCCC96.52 17495.99 19798.10 8797.81 25195.68 9295.00 26798.20 22995.39 17695.40 30096.36 30493.81 19399.45 21093.55 24498.42 29599.17 154
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20194.29 15394.77 27698.07 25189.81 32297.97 15498.33 13393.11 20799.08 30295.46 15699.84 3898.89 207
OMC-MVS96.48 17696.00 19697.91 10298.30 19496.01 8294.86 27298.60 18391.88 28897.18 20097.21 25196.11 12099.04 30790.49 31399.34 19098.69 236
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27095.23 11794.15 29996.90 30393.26 24998.04 14796.70 28494.41 17898.89 32394.77 19999.14 22198.37 266
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31794.39 14795.46 23398.73 15896.03 14094.72 31494.92 34796.28 11699.69 12293.81 23697.98 31298.09 295
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23797.65 9190.31 39798.89 2498.93 5399.36 2384.57 32699.92 697.81 4899.56 11599.39 110
MSLP-MVS++96.42 18096.71 15995.57 25697.82 25090.56 25895.71 21698.84 13094.72 20196.71 23597.39 23794.91 16498.10 38495.28 16699.02 23898.05 305
test_fmvs296.38 18196.45 17796.16 22997.85 24291.30 24296.81 14199.45 2189.24 32898.49 9099.38 2088.68 28797.62 39198.83 1899.32 19799.57 46
Anonymous20240521196.34 18295.98 19897.43 14398.25 20193.85 16996.74 14894.41 35197.72 6598.37 10398.03 18087.15 30599.53 18494.06 22699.07 23398.92 202
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29596.58 11097.21 19798.19 15884.14 32899.78 5195.89 12896.17 37598.89 207
MVS_Test96.27 18496.79 15794.73 29896.94 32786.63 33196.18 18298.33 21594.94 19596.07 27398.28 14495.25 15399.26 27097.21 7197.90 31798.30 277
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28098.17 23590.17 31896.21 26796.10 31795.14 15699.43 21594.13 22498.85 25699.13 162
mvsany_test396.21 18695.93 20297.05 17397.40 30494.33 15295.76 21594.20 35389.10 32999.36 2599.60 893.97 18997.85 38795.40 16498.63 27998.99 189
Effi-MVS+96.19 18796.01 19596.71 19797.43 30292.19 22296.12 18899.10 5595.45 17293.33 35694.71 35097.23 5599.56 17593.21 25497.54 33798.37 266
DELS-MVS96.17 18896.23 18695.99 23497.55 29290.04 26192.38 35898.52 19194.13 22296.55 24997.06 25994.99 16199.58 16895.62 14399.28 20498.37 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 18996.36 18195.49 26297.68 27587.81 31098.67 1599.02 8196.50 11594.48 32196.15 31286.90 30699.92 698.73 2299.13 22398.74 229
ETV-MVS96.13 19095.90 20396.82 19097.76 26593.89 16795.40 23998.95 10495.87 15195.58 29591.00 39896.36 11199.72 9393.36 24798.83 25996.85 364
testgi96.07 19196.50 17694.80 29499.26 5787.69 31395.96 20398.58 18795.08 18998.02 14996.25 30897.92 2097.60 39288.68 34098.74 26799.11 170
LF4IMVS96.07 19195.63 21497.36 14998.19 20895.55 9695.44 23498.82 14492.29 28195.70 29196.55 29192.63 22298.69 34391.75 27999.33 19597.85 320
EIA-MVS96.04 19395.77 20996.85 18797.80 25592.98 19896.12 18899.16 4294.65 20493.77 34091.69 39295.68 13899.67 13594.18 22198.85 25697.91 315
diffmvspermissive96.04 19396.23 18695.46 26497.35 30788.03 30493.42 32799.08 6394.09 22696.66 23996.93 26893.85 19299.29 26496.01 12198.67 27499.06 179
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 19595.52 21797.50 13497.77 26494.71 13396.07 19196.84 30497.48 7796.78 23294.28 35985.50 31999.40 22896.22 11098.73 27098.40 262
TinyColmap96.00 19696.34 18294.96 28597.90 24087.91 30694.13 30298.49 19494.41 21398.16 13197.76 20596.29 11598.68 34690.52 31099.42 17198.30 277
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21599.28 5590.62 25595.31 24999.08 6388.40 34196.97 22098.17 16192.11 23899.78 5193.64 24299.21 21298.86 214
SSC-MVS95.92 19897.03 14192.58 36199.28 5578.39 39896.68 15595.12 34298.90 2399.11 3998.66 9491.36 25199.68 12795.00 18799.16 21999.67 28
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21398.48 18191.52 23895.31 24998.45 19795.76 15697.48 18497.54 22389.53 27998.69 34394.43 21094.61 39399.13 162
QAPM95.88 20095.57 21696.80 19197.90 24091.84 23398.18 5398.73 15888.41 34096.42 25398.13 16494.73 16599.75 7288.72 33898.94 24598.81 219
CANet95.86 20195.65 21396.49 21196.41 33990.82 25194.36 28798.41 20494.94 19592.62 37396.73 28392.68 21999.71 10795.12 18199.60 10498.94 195
IterMVS-SCA-FT95.86 20196.19 18894.85 29197.68 27585.53 34292.42 35597.63 27996.99 9698.36 10698.54 10987.94 29599.75 7297.07 8099.08 23199.27 138
test_f95.82 20395.88 20595.66 25297.61 28793.21 19595.61 22898.17 23586.98 35698.42 9899.47 1390.46 26394.74 41197.71 5598.45 29399.03 182
RRT-MVS95.78 20496.25 18594.35 31496.68 33284.47 36197.72 8699.11 5297.23 9197.27 19398.72 8686.39 31099.79 4795.49 14997.67 33198.80 220
test_vis1_n_192095.77 20596.41 17993.85 32598.55 16984.86 35695.91 20799.71 692.72 27397.67 17498.90 7387.44 30398.73 33797.96 4298.85 25697.96 312
hse-mvs295.77 20595.09 22797.79 10997.84 24795.51 9995.66 22295.43 33796.58 11097.21 19796.16 31184.14 32899.54 18295.89 12896.92 35198.32 273
MVS_030495.71 20795.18 22397.33 15194.85 38792.82 20095.36 24290.89 39095.51 16995.61 29397.82 20188.39 29199.78 5198.23 3599.91 1799.40 105
MVP-Stereo95.69 20895.28 21996.92 18298.15 21893.03 19795.64 22798.20 22990.39 31496.63 24297.73 21191.63 24899.10 30091.84 27597.31 34798.63 242
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 24898.48 18188.76 28992.84 33997.25 28796.00 14197.59 17697.95 18991.38 25099.46 20593.16 25596.35 37098.99 189
test_vis1_n95.67 21095.89 20495.03 28098.18 21189.89 26496.94 13499.28 3188.25 34498.20 12598.92 6986.69 30997.19 39497.70 5798.82 26098.00 310
new-patchmatchnet95.67 21096.58 16792.94 35297.48 29680.21 39392.96 33798.19 23494.83 19898.82 6398.79 7993.31 20399.51 19195.83 13299.04 23799.12 167
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
xiu_mvs_v1_base95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
DP-MVS Recon95.55 21595.13 22596.80 19198.51 17593.99 16594.60 28298.69 16890.20 31795.78 28796.21 31092.73 21898.98 31590.58 30998.86 25597.42 347
WB-MVS95.50 21696.62 16392.11 37199.21 7377.26 40896.12 18895.40 33898.62 3098.84 6198.26 14991.08 25499.50 19293.37 24698.70 27299.58 39
Fast-Effi-MVS+95.49 21795.07 22896.75 19597.67 27992.82 20094.22 29598.60 18391.61 29393.42 35492.90 37496.73 8999.70 11592.60 26197.89 31897.74 329
TAMVS95.49 21794.94 23297.16 16298.31 19393.41 18895.07 26296.82 30691.09 30497.51 18097.82 20189.96 27299.42 21788.42 34399.44 15998.64 240
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22197.16 31891.96 23097.74 8498.84 13087.26 35194.36 32398.01 18393.95 19099.67 13590.70 30698.75 26697.35 350
CLD-MVS95.47 22095.07 22896.69 19998.27 19992.53 20991.36 37498.67 17391.22 30395.78 28794.12 36095.65 14098.98 31590.81 29799.72 7098.57 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 22194.66 24897.88 10497.84 24795.23 11793.62 32198.39 20787.04 35493.78 33895.99 31994.58 17399.52 18791.76 27898.90 24998.89 207
CDPH-MVS95.45 22294.65 24997.84 10798.28 19794.96 12893.73 31998.33 21585.03 37795.44 29896.60 28995.31 15199.44 21390.01 31999.13 22399.11 170
IterMVS95.42 22395.83 20694.20 32097.52 29383.78 36992.41 35697.47 28495.49 17198.06 14498.49 11387.94 29599.58 16896.02 11999.02 23899.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 22496.07 19493.21 34296.29 34181.56 38494.60 28297.66 27393.30 24896.95 22198.91 7293.03 21299.38 23596.60 9397.30 34898.69 236
test_cas_vis1_n_192095.34 22595.67 21194.35 31498.21 20586.83 32995.61 22899.26 3290.45 31398.17 13098.96 6584.43 32798.31 37696.74 9099.17 21897.90 316
MSDG95.33 22695.13 22595.94 24097.40 30491.85 23291.02 38598.37 21095.30 18096.31 26195.99 31994.51 17698.38 37189.59 32697.65 33497.60 339
LFMVS95.32 22794.88 23896.62 20198.03 22691.47 23997.65 9190.72 39399.11 1297.89 16298.31 13579.20 35499.48 20093.91 23499.12 22698.93 199
F-COLMAP95.30 22894.38 26798.05 9498.64 15496.04 7995.61 22898.66 17589.00 33293.22 35796.40 30292.90 21499.35 24787.45 35897.53 33898.77 226
Anonymous2023120695.27 22995.06 23095.88 24298.72 14489.37 27595.70 21797.85 26088.00 34796.98 21997.62 21891.95 24399.34 25089.21 33199.53 12998.94 195
FMVSNet395.26 23094.94 23296.22 22696.53 33690.06 26095.99 19997.66 27394.11 22497.99 15097.91 19480.22 35299.63 15194.60 20599.44 15998.96 192
test_fmvs1_n95.21 23195.28 21994.99 28398.15 21889.13 28196.81 14199.43 2386.97 35797.21 19798.92 6983.00 33897.13 39598.09 3898.94 24598.72 232
c3_l95.20 23295.32 21894.83 29396.19 34686.43 33491.83 36798.35 21493.47 24297.36 19097.26 24888.69 28699.28 26695.41 16399.36 18298.78 223
D2MVS95.18 23395.17 22495.21 27197.76 26587.76 31294.15 29997.94 25589.77 32396.99 21797.68 21587.45 30299.14 29095.03 18699.81 4798.74 229
N_pmnet95.18 23394.23 27098.06 9097.85 24296.55 6292.49 35091.63 38189.34 32698.09 13997.41 23290.33 26699.06 30491.58 28099.31 20098.56 248
HQP-MVS95.17 23594.58 25796.92 18297.85 24292.47 21294.26 28998.43 20093.18 25592.86 36495.08 34190.33 26699.23 27890.51 31198.74 26799.05 181
Vis-MVSNet (Re-imp)95.11 23694.85 23995.87 24399.12 9189.17 27897.54 10494.92 34696.50 11596.58 24597.27 24783.64 33399.48 20088.42 34399.67 8398.97 191
AdaColmapbinary95.11 23694.62 25396.58 20497.33 31194.45 14694.92 26998.08 24793.15 25993.98 33695.53 33594.34 18099.10 30085.69 37098.61 28196.20 382
API-MVS95.09 23895.01 23195.31 26896.61 33494.02 16396.83 13997.18 29195.60 16495.79 28594.33 35894.54 17598.37 37385.70 36998.52 28693.52 404
CL-MVSNet_self_test95.04 23994.79 24595.82 24497.51 29489.79 26591.14 38296.82 30693.05 26196.72 23496.40 30290.82 25899.16 28891.95 27198.66 27698.50 256
CNLPA95.04 23994.47 26296.75 19597.81 25195.25 11694.12 30397.89 25894.41 21394.57 31795.69 32890.30 26998.35 37486.72 36598.76 26596.64 372
Patchmtry95.03 24194.59 25696.33 22094.83 38990.82 25196.38 16797.20 28996.59 10997.49 18298.57 10477.67 36199.38 23592.95 25999.62 9298.80 220
PVSNet_BlendedMVS95.02 24294.93 23495.27 26997.79 26087.40 31894.14 30198.68 17088.94 33394.51 31998.01 18393.04 20999.30 26089.77 32499.49 14699.11 170
TAPA-MVS93.32 1294.93 24394.23 27097.04 17598.18 21194.51 14395.22 25498.73 15881.22 39696.25 26595.95 32393.80 19498.98 31589.89 32298.87 25397.62 337
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 24494.89 23794.99 28397.51 29488.11 30398.27 4495.20 34192.40 28096.68 23698.60 10283.44 33499.28 26693.34 24898.53 28597.59 340
mvsmamba94.91 24494.41 26696.40 21897.65 28291.30 24297.92 6995.32 33991.50 29695.54 29698.38 12783.06 33799.68 12792.46 26597.84 31998.23 284
eth_miper_zixun_eth94.89 24694.93 23494.75 29795.99 35586.12 33791.35 37598.49 19493.40 24397.12 20497.25 24986.87 30899.35 24795.08 18398.82 26098.78 223
CDS-MVSNet94.88 24794.12 27697.14 16497.64 28593.57 18193.96 31197.06 29790.05 31996.30 26296.55 29186.10 31299.47 20290.10 31899.31 20098.40 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 24894.91 23694.57 30596.81 33087.10 32494.23 29497.34 28688.74 33697.14 20297.11 25691.94 24498.23 38092.99 25797.92 31598.37 266
pmmvs494.82 24994.19 27396.70 19897.42 30392.75 20692.09 36396.76 30886.80 35995.73 29097.22 25089.28 28398.89 32393.28 25199.14 22198.46 260
miper_lstm_enhance94.81 25094.80 24494.85 29196.16 34886.45 33391.14 38298.20 22993.49 24197.03 21497.37 24184.97 32399.26 27095.28 16699.56 11598.83 216
cl____94.73 25194.64 25095.01 28195.85 36287.00 32591.33 37698.08 24793.34 24697.10 20697.33 24484.01 33299.30 26095.14 17899.56 11598.71 235
DIV-MVS_self_test94.73 25194.64 25095.01 28195.86 36187.00 32591.33 37698.08 24793.34 24697.10 20697.34 24384.02 33199.31 25795.15 17799.55 12198.72 232
YYNet194.73 25194.84 24094.41 31297.47 30085.09 35290.29 39295.85 32692.52 27597.53 17897.76 20591.97 24299.18 28393.31 25096.86 35498.95 193
MDA-MVSNet_test_wron94.73 25194.83 24294.42 31197.48 29685.15 35090.28 39395.87 32592.52 27597.48 18497.76 20591.92 24599.17 28793.32 24996.80 35998.94 195
UnsupCasMVSNet_bld94.72 25594.26 26996.08 23298.62 16090.54 25993.38 32998.05 25390.30 31597.02 21596.80 27989.54 27799.16 28888.44 34296.18 37498.56 248
miper_ehance_all_eth94.69 25694.70 24794.64 29995.77 36886.22 33691.32 37898.24 22491.67 29097.05 21396.65 28788.39 29199.22 28094.88 19198.34 29898.49 257
BH-untuned94.69 25694.75 24694.52 30797.95 23887.53 31594.07 30497.01 29993.99 22897.10 20695.65 33092.65 22198.95 32087.60 35396.74 36097.09 354
RPMNet94.68 25894.60 25494.90 28895.44 37688.15 29996.18 18298.86 12297.43 7894.10 32998.49 11379.40 35399.76 6695.69 13795.81 37896.81 368
Patchmatch-RL test94.66 25994.49 26095.19 27298.54 17188.91 28392.57 34898.74 15791.46 29898.32 11497.75 20877.31 36698.81 33096.06 11499.61 9897.85 320
CANet_DTU94.65 26094.21 27295.96 23695.90 35889.68 26793.92 31297.83 26493.19 25490.12 39495.64 33188.52 28899.57 17493.27 25299.47 15298.62 243
pmmvs594.63 26194.34 26895.50 26197.63 28688.34 29494.02 30597.13 29387.15 35395.22 30397.15 25387.50 30199.27 26993.99 23099.26 20798.88 211
PAPM_NR94.61 26294.17 27495.96 23698.36 19191.23 24495.93 20597.95 25492.98 26493.42 35494.43 35790.53 26198.38 37187.60 35396.29 37298.27 281
PatchMatch-RL94.61 26293.81 28497.02 17798.19 20895.72 8993.66 32097.23 28888.17 34594.94 31195.62 33291.43 24998.57 35587.36 35997.68 33096.76 370
BH-RMVSNet94.56 26494.44 26594.91 28697.57 28987.44 31793.78 31896.26 31693.69 23696.41 25496.50 29692.10 23999.00 31185.96 36797.71 32798.31 275
USDC94.56 26494.57 25994.55 30697.78 26386.43 33492.75 34298.65 18085.96 36596.91 22497.93 19290.82 25898.74 33690.71 30599.59 10698.47 258
test111194.53 26694.81 24393.72 32999.06 10081.94 38298.31 3983.87 41596.37 12098.49 9099.17 4581.49 34399.73 8796.64 9199.86 2899.49 75
test_fmvs194.51 26794.60 25494.26 31995.91 35787.92 30595.35 24599.02 8186.56 36196.79 22898.52 11082.64 34097.00 39897.87 4598.71 27197.88 318
ppachtmachnet_test94.49 26894.84 24093.46 33596.16 34882.10 37990.59 38997.48 28390.53 31297.01 21697.59 22091.01 25599.36 24393.97 23299.18 21798.94 195
test_yl94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
DCV-MVSNet94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
jason94.39 27194.04 27895.41 26798.29 19587.85 30992.74 34496.75 30985.38 37495.29 30196.15 31288.21 29499.65 14394.24 21999.34 19098.74 229
jason: jason.
ECVR-MVScopyleft94.37 27294.48 26194.05 32498.95 11583.10 37298.31 3982.48 41796.20 12898.23 12399.16 4681.18 34699.66 14195.95 12499.83 4299.38 112
EU-MVSNet94.25 27394.47 26293.60 33298.14 22082.60 37797.24 11792.72 37085.08 37598.48 9298.94 6782.59 34198.76 33597.47 6599.53 12999.44 100
xiu_mvs_v2_base94.22 27494.63 25292.99 35097.32 31284.84 35792.12 36197.84 26291.96 28694.17 32793.43 36596.07 12199.71 10791.27 28497.48 34094.42 399
sss94.22 27493.72 28595.74 24897.71 27389.95 26393.84 31496.98 30088.38 34293.75 34195.74 32787.94 29598.89 32391.02 29098.10 30898.37 266
MVSTER94.21 27693.93 28395.05 27995.83 36386.46 33295.18 25697.65 27592.41 27997.94 15898.00 18572.39 38899.58 16896.36 10399.56 11599.12 167
MAR-MVS94.21 27693.03 29697.76 11196.94 32797.44 3796.97 13397.15 29287.89 34992.00 37892.73 37992.14 23799.12 29483.92 38497.51 33996.73 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 27894.58 25793.07 34596.16 34881.20 38890.42 39196.84 30490.72 30897.14 20297.13 25490.47 26299.11 29794.04 22998.25 30298.91 203
1112_ss94.12 27993.42 29096.23 22498.59 16490.85 25094.24 29398.85 12685.49 37092.97 36294.94 34586.01 31399.64 14791.78 27797.92 31598.20 288
PS-MVSNAJ94.10 28094.47 26293.00 34997.35 30784.88 35491.86 36697.84 26291.96 28694.17 32792.50 38395.82 13099.71 10791.27 28497.48 34094.40 400
CHOSEN 1792x268894.10 28093.41 29196.18 22899.16 8090.04 26192.15 36098.68 17079.90 40196.22 26697.83 19887.92 29999.42 21789.18 33299.65 8699.08 175
MG-MVS94.08 28294.00 27994.32 31697.09 32185.89 33993.19 33595.96 32292.52 27594.93 31297.51 22689.54 27798.77 33387.52 35797.71 32798.31 275
ttmdpeth94.05 28394.15 27593.75 32895.81 36585.32 34596.00 19794.93 34592.07 28294.19 32699.09 5385.73 31696.41 40690.98 29198.52 28699.53 57
PLCcopyleft91.02 1694.05 28392.90 29997.51 13098.00 23395.12 12594.25 29298.25 22286.17 36391.48 38395.25 33991.01 25599.19 28285.02 37996.69 36398.22 286
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 28593.65 28695.17 27495.76 36993.42 18793.97 31098.33 21584.68 38193.17 35895.89 32592.53 22994.79 41093.50 24594.97 38997.31 351
114514_t93.96 28693.22 29496.19 22799.06 10090.97 24995.99 19998.94 10573.88 41493.43 35396.93 26892.38 23399.37 24089.09 33399.28 20498.25 283
PVSNet_Blended93.96 28693.65 28694.91 28697.79 26087.40 31891.43 37398.68 17084.50 38494.51 31994.48 35693.04 20999.30 26089.77 32498.61 28198.02 308
AUN-MVS93.95 28892.69 30797.74 11297.80 25595.38 10795.57 23195.46 33691.26 30292.64 37196.10 31774.67 37799.55 17993.72 24096.97 35098.30 277
lupinMVS93.77 28993.28 29295.24 27097.68 27587.81 31092.12 36196.05 31884.52 38394.48 32195.06 34386.90 30699.63 15193.62 24399.13 22398.27 281
PatchT93.75 29093.57 28894.29 31895.05 38587.32 32096.05 19292.98 36697.54 7594.25 32498.72 8675.79 37499.24 27695.92 12695.81 37896.32 379
EPNet93.72 29192.62 31097.03 17687.61 42292.25 21696.27 17491.28 38696.74 10487.65 40897.39 23785.00 32299.64 14792.14 26899.48 15099.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 29192.65 30896.91 18498.93 12091.81 23491.23 38098.52 19182.69 38996.46 25296.52 29580.38 35199.90 1690.36 31598.79 26299.03 182
DPM-MVS93.68 29392.77 30696.42 21597.91 23992.54 20891.17 38197.47 28484.99 37993.08 36094.74 34989.90 27399.00 31187.54 35598.09 30997.72 332
PMMVS293.66 29494.07 27792.45 36597.57 28980.67 39186.46 40796.00 32093.99 22897.10 20697.38 23989.90 27397.82 38888.76 33799.47 15298.86 214
OpenMVS_ROBcopyleft91.80 1493.64 29593.05 29595.42 26597.31 31391.21 24595.08 26196.68 31381.56 39396.88 22696.41 30090.44 26599.25 27285.39 37597.67 33195.80 387
Patchmatch-test93.60 29693.25 29394.63 30096.14 35287.47 31696.04 19394.50 35093.57 23996.47 25196.97 26576.50 36998.61 35290.67 30798.41 29697.81 324
WTY-MVS93.55 29793.00 29895.19 27297.81 25187.86 30793.89 31396.00 32089.02 33194.07 33195.44 33886.27 31199.33 25287.69 35196.82 35798.39 264
Test_1112_low_res93.53 29892.86 30095.54 26098.60 16288.86 28592.75 34298.69 16882.66 39092.65 37096.92 27084.75 32499.56 17590.94 29397.76 32398.19 289
mvsany_test193.47 29993.03 29694.79 29594.05 40292.12 22390.82 38790.01 40185.02 37897.26 19498.28 14493.57 19897.03 39692.51 26495.75 38395.23 395
MIMVSNet93.42 30092.86 30095.10 27798.17 21488.19 29798.13 5593.69 35692.07 28295.04 30998.21 15780.95 34999.03 31081.42 39498.06 31098.07 298
FMVSNet593.39 30192.35 31296.50 21095.83 36390.81 25397.31 11298.27 22092.74 27296.27 26398.28 14462.23 40499.67 13590.86 29599.36 18299.03 182
SCA93.38 30293.52 28992.96 35196.24 34281.40 38693.24 33394.00 35491.58 29594.57 31796.97 26587.94 29599.42 21789.47 32897.66 33398.06 302
tttt051793.31 30392.56 31195.57 25698.71 14787.86 30797.44 10787.17 40995.79 15597.47 18696.84 27464.12 40299.81 4096.20 11199.32 19799.02 185
MonoMVSNet93.30 30493.96 28291.33 37994.14 40081.33 38797.68 8996.69 31295.38 17796.32 25898.42 12184.12 33096.76 40390.78 29992.12 40395.89 384
CR-MVSNet93.29 30592.79 30394.78 29695.44 37688.15 29996.18 18297.20 28984.94 38094.10 32998.57 10477.67 36199.39 23295.17 17395.81 37896.81 368
cl2293.25 30692.84 30294.46 31094.30 39586.00 33891.09 38496.64 31490.74 30795.79 28596.31 30678.24 35898.77 33394.15 22398.34 29898.62 243
wuyk23d93.25 30695.20 22187.40 39796.07 35495.38 10797.04 12994.97 34495.33 17899.70 798.11 16898.14 1791.94 41577.76 40699.68 8174.89 415
miper_enhance_ethall93.14 30892.78 30594.20 32093.65 40585.29 34789.97 39597.85 26085.05 37696.15 27294.56 35285.74 31599.14 29093.74 23898.34 29898.17 292
baseline193.14 30892.64 30994.62 30197.34 30987.20 32296.67 15793.02 36594.71 20296.51 25095.83 32681.64 34298.60 35490.00 32088.06 41198.07 298
FE-MVS92.95 31092.22 31595.11 27597.21 31688.33 29598.54 2393.66 35989.91 32196.21 26798.14 16270.33 39599.50 19287.79 34998.24 30397.51 343
X-MVStestdata92.86 31190.83 34098.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25836.50 41996.49 10199.72 9395.66 14099.37 17999.45 90
GA-MVS92.83 31292.15 31794.87 29096.97 32487.27 32190.03 39496.12 31791.83 28994.05 33294.57 35176.01 37398.97 31992.46 26597.34 34698.36 271
CMPMVSbinary73.10 2392.74 31391.39 32796.77 19493.57 40794.67 13694.21 29697.67 27180.36 40093.61 34696.60 28982.85 33997.35 39384.86 38098.78 26398.29 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 31491.76 32395.56 25898.42 18788.23 29696.03 19487.35 40894.04 22796.56 24795.47 33664.03 40399.77 6194.78 19899.11 22798.68 239
HY-MVS91.43 1592.58 31591.81 32194.90 28896.49 33788.87 28497.31 11294.62 34885.92 36690.50 38996.84 27485.05 32199.40 22883.77 38795.78 38196.43 378
TR-MVS92.54 31692.20 31693.57 33396.49 33786.66 33093.51 32594.73 34789.96 32094.95 31093.87 36290.24 27198.61 35281.18 39694.88 39095.45 393
PMMVS92.39 31791.08 33496.30 22393.12 40992.81 20290.58 39095.96 32279.17 40491.85 38092.27 38490.29 27098.66 34889.85 32396.68 36497.43 346
131492.38 31892.30 31392.64 36095.42 37885.15 35095.86 20996.97 30185.40 37390.62 38693.06 37291.12 25397.80 38986.74 36495.49 38694.97 397
new_pmnet92.34 31991.69 32494.32 31696.23 34489.16 27992.27 35992.88 36784.39 38695.29 30196.35 30585.66 31796.74 40484.53 38297.56 33697.05 355
CVMVSNet92.33 32092.79 30390.95 38197.26 31475.84 41295.29 25192.33 37581.86 39196.27 26398.19 15881.44 34498.46 36694.23 22098.29 30198.55 250
PAPR92.22 32191.27 33195.07 27895.73 37188.81 28691.97 36497.87 25985.80 36890.91 38592.73 37991.16 25298.33 37579.48 40095.76 38298.08 296
DSMNet-mixed92.19 32291.83 32093.25 33996.18 34783.68 37096.27 17493.68 35876.97 41192.54 37499.18 4289.20 28598.55 35883.88 38598.60 28397.51 343
BH-w/o92.14 32391.94 31892.73 35897.13 32085.30 34692.46 35295.64 32989.33 32794.21 32592.74 37889.60 27598.24 37981.68 39394.66 39294.66 398
PCF-MVS89.43 1892.12 32490.64 34496.57 20697.80 25593.48 18489.88 39998.45 19774.46 41396.04 27595.68 32990.71 26099.31 25773.73 41199.01 24096.91 361
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Syy-MVS92.09 32591.80 32292.93 35395.19 38282.65 37592.46 35291.35 38490.67 31091.76 38187.61 41185.64 31898.50 36294.73 20196.84 35597.65 335
dmvs_re92.08 32691.27 33194.51 30897.16 31892.79 20595.65 22492.64 37294.11 22492.74 36790.98 39983.41 33594.44 41380.72 39794.07 39696.29 380
reproduce_monomvs92.05 32792.26 31491.43 37795.42 37875.72 41395.68 22097.05 29894.47 21197.95 15798.35 13055.58 41599.05 30596.36 10399.44 15999.51 64
thres600view792.03 32891.43 32693.82 32698.19 20884.61 35996.27 17490.39 39496.81 10296.37 25693.11 36773.44 38699.49 19780.32 39897.95 31497.36 348
PatchmatchNetpermissive91.98 32991.87 31992.30 36794.60 39279.71 39495.12 25793.59 36189.52 32593.61 34697.02 26277.94 35999.18 28390.84 29694.57 39598.01 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVStest191.89 33091.45 32593.21 34289.01 41984.87 35595.82 21395.05 34391.50 29698.75 7299.19 3857.56 40895.11 40897.78 5198.37 29799.64 35
cascas91.89 33091.35 32893.51 33494.27 39685.60 34188.86 40498.61 18279.32 40392.16 37791.44 39489.22 28498.12 38390.80 29897.47 34296.82 367
JIA-IIPM91.79 33290.69 34395.11 27593.80 40490.98 24894.16 29891.78 38096.38 11990.30 39299.30 2972.02 38998.90 32288.28 34590.17 40795.45 393
thres100view90091.76 33391.26 33393.26 33898.21 20584.50 36096.39 16490.39 39496.87 10096.33 25793.08 37173.44 38699.42 21778.85 40397.74 32495.85 385
thres40091.68 33491.00 33593.71 33098.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32497.36 348
tfpn200view991.55 33591.00 33593.21 34298.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32495.85 385
WB-MVSnew91.50 33691.29 32992.14 37094.85 38780.32 39293.29 33288.77 40488.57 33994.03 33392.21 38592.56 22498.28 37880.21 39997.08 34997.81 324
ADS-MVSNet291.47 33790.51 34694.36 31395.51 37485.63 34095.05 26495.70 32783.46 38792.69 36896.84 27479.15 35599.41 22685.66 37190.52 40598.04 306
EPNet_dtu91.39 33890.75 34193.31 33790.48 41882.61 37694.80 27392.88 36793.39 24481.74 41694.90 34881.36 34599.11 29788.28 34598.87 25398.21 287
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 33989.67 35295.47 26396.41 33989.15 28091.54 37190.23 39889.07 33086.78 41292.84 37669.39 39799.44 21394.16 22296.61 36597.82 322
WBMVS91.11 34090.72 34292.26 36895.99 35577.98 40391.47 37295.90 32491.63 29195.90 28296.45 29859.60 40599.46 20589.97 32199.59 10699.33 121
PVSNet86.72 1991.10 34190.97 33791.49 37697.56 29178.04 40187.17 40694.60 34984.65 38292.34 37592.20 38687.37 30498.47 36585.17 37897.69 32997.96 312
tpm91.08 34290.85 33991.75 37495.33 38078.09 40095.03 26691.27 38788.75 33593.53 34997.40 23371.24 39099.30 26091.25 28693.87 39797.87 319
thres20091.00 34390.42 34792.77 35797.47 30083.98 36894.01 30691.18 38895.12 18895.44 29891.21 39673.93 37999.31 25777.76 40697.63 33595.01 396
ADS-MVSNet90.95 34490.26 34893.04 34695.51 37482.37 37895.05 26493.41 36283.46 38792.69 36896.84 27479.15 35598.70 34185.66 37190.52 40598.04 306
tpmvs90.79 34590.87 33890.57 38492.75 41376.30 41095.79 21493.64 36091.04 30591.91 37996.26 30777.19 36798.86 32789.38 33089.85 40896.56 375
thisisatest051590.43 34689.18 35894.17 32297.07 32285.44 34389.75 40087.58 40788.28 34393.69 34491.72 39165.27 40199.58 16890.59 30898.67 27497.50 345
tpmrst90.31 34790.61 34589.41 38994.06 40172.37 42095.06 26393.69 35688.01 34692.32 37696.86 27277.45 36398.82 32891.04 28987.01 41297.04 356
test0.0.03 190.11 34889.21 35592.83 35593.89 40386.87 32891.74 36888.74 40592.02 28494.71 31591.14 39773.92 38094.48 41283.75 38892.94 39997.16 353
MVS90.02 34989.20 35692.47 36494.71 39086.90 32795.86 20996.74 31064.72 41690.62 38692.77 37792.54 22798.39 37079.30 40195.56 38592.12 408
pmmvs390.00 35088.90 36093.32 33694.20 39985.34 34491.25 37992.56 37478.59 40593.82 33795.17 34067.36 40098.69 34389.08 33498.03 31195.92 383
CHOSEN 280x42089.98 35189.19 35792.37 36695.60 37381.13 38986.22 40897.09 29581.44 39587.44 40993.15 36673.99 37899.47 20288.69 33999.07 23396.52 376
test-LLR89.97 35289.90 35090.16 38594.24 39774.98 41489.89 39689.06 40292.02 28489.97 39590.77 40073.92 38098.57 35591.88 27397.36 34496.92 359
FPMVS89.92 35388.63 36193.82 32698.37 19096.94 4991.58 37093.34 36388.00 34790.32 39197.10 25770.87 39391.13 41671.91 41496.16 37693.39 406
test250689.86 35489.16 35991.97 37298.95 11576.83 40998.54 2361.07 42496.20 12897.07 21299.16 4655.19 41899.69 12296.43 10099.83 4299.38 112
CostFormer89.75 35589.25 35391.26 38094.69 39178.00 40295.32 24891.98 37881.50 39490.55 38896.96 26771.06 39298.89 32388.59 34192.63 40196.87 362
testing389.72 35688.26 36594.10 32397.66 28084.30 36594.80 27388.25 40694.66 20395.07 30592.51 38241.15 42499.43 21591.81 27698.44 29498.55 250
testing9189.67 35788.55 36293.04 34695.90 35881.80 38392.71 34693.71 35593.71 23490.18 39390.15 40457.11 40999.22 28087.17 36296.32 37198.12 294
baseline289.65 35888.44 36493.25 33995.62 37282.71 37493.82 31585.94 41288.89 33487.35 41092.54 38171.23 39199.33 25286.01 36694.60 39497.72 332
E-PMN89.52 35989.78 35188.73 39193.14 40877.61 40483.26 41392.02 37794.82 19993.71 34293.11 36775.31 37596.81 40085.81 36896.81 35891.77 410
EPMVS89.26 36088.55 36291.39 37892.36 41479.11 39795.65 22479.86 41888.60 33893.12 35996.53 29370.73 39498.10 38490.75 30189.32 40996.98 357
testing9989.21 36188.04 36792.70 35995.78 36781.00 39092.65 34792.03 37693.20 25389.90 39790.08 40655.25 41699.14 29087.54 35595.95 37797.97 311
EMVS89.06 36289.22 35488.61 39293.00 41077.34 40682.91 41490.92 38994.64 20592.63 37291.81 39076.30 37197.02 39783.83 38696.90 35391.48 411
testing1188.93 36387.63 37192.80 35695.87 36081.49 38592.48 35191.54 38291.62 29288.27 40690.24 40255.12 41999.11 29787.30 36096.28 37397.81 324
KD-MVS_2432*160088.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
miper_refine_blended88.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
IB-MVS85.98 2088.63 36686.95 37793.68 33195.12 38484.82 35890.85 38690.17 39987.55 35088.48 40591.34 39558.01 40799.59 16687.24 36193.80 39896.63 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 36787.69 37090.79 38294.98 38677.34 40695.09 25991.83 37977.51 41089.40 40096.41 30067.83 39998.73 33783.58 38992.60 40296.29 380
MVS-HIRNet88.40 36890.20 34982.99 39897.01 32360.04 42393.11 33685.61 41384.45 38588.72 40499.09 5384.72 32598.23 38082.52 39196.59 36690.69 413
UBG88.29 36987.17 37391.63 37596.08 35378.21 39991.61 36991.50 38389.67 32489.71 39888.97 40859.01 40698.91 32181.28 39596.72 36297.77 327
gg-mvs-nofinetune88.28 37086.96 37692.23 36992.84 41284.44 36298.19 5274.60 42099.08 1487.01 41199.47 1356.93 41098.23 38078.91 40295.61 38494.01 402
dp88.08 37188.05 36688.16 39692.85 41168.81 42294.17 29792.88 36785.47 37191.38 38496.14 31468.87 39898.81 33086.88 36383.80 41596.87 362
tpm cat188.01 37287.33 37290.05 38894.48 39376.28 41194.47 28594.35 35273.84 41589.26 40195.61 33373.64 38298.30 37784.13 38386.20 41395.57 392
test-mter87.92 37387.17 37390.16 38594.24 39774.98 41489.89 39689.06 40286.44 36289.97 39590.77 40054.96 42098.57 35591.88 27397.36 34496.92 359
PAPM87.64 37485.84 38193.04 34696.54 33584.99 35388.42 40595.57 33379.52 40283.82 41393.05 37380.57 35098.41 36862.29 41792.79 40095.71 388
ETVMVS87.62 37585.75 38293.22 34196.15 35183.26 37192.94 33890.37 39691.39 29990.37 39088.45 40951.93 42198.64 34973.76 41096.38 36997.75 328
UWE-MVS87.57 37686.72 37890.13 38795.21 38173.56 41791.94 36583.78 41688.73 33793.00 36192.87 37555.22 41799.25 27281.74 39297.96 31397.59 340
testing22287.35 37785.50 38492.93 35395.79 36682.83 37392.40 35790.10 40092.80 27188.87 40389.02 40748.34 42298.70 34175.40 40996.74 36097.27 352
dmvs_testset87.30 37886.99 37588.24 39496.71 33177.48 40594.68 27986.81 41192.64 27489.61 39987.01 41385.91 31493.12 41461.04 41888.49 41094.13 401
TESTMET0.1,187.20 37986.57 37989.07 39093.62 40672.84 41989.89 39687.01 41085.46 37289.12 40290.20 40356.00 41497.72 39090.91 29496.92 35196.64 372
myMVS_eth3d87.16 38085.61 38391.82 37395.19 38279.32 39592.46 35291.35 38490.67 31091.76 38187.61 41141.96 42398.50 36282.66 39096.84 35597.65 335
MVEpermissive73.61 2286.48 38185.92 38088.18 39596.23 34485.28 34881.78 41575.79 41986.01 36482.53 41591.88 38992.74 21787.47 41871.42 41594.86 39191.78 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 38283.21 38588.34 39395.76 36974.97 41683.49 41292.70 37178.47 40687.94 40786.90 41483.38 33696.63 40573.44 41266.86 41893.40 405
EGC-MVSNET83.08 38377.93 38698.53 5499.57 1997.55 3098.33 3898.57 1884.71 42110.38 42298.90 7395.60 14299.50 19295.69 13799.61 9898.55 250
test_method66.88 38466.13 38769.11 40062.68 42525.73 42849.76 41696.04 31914.32 42064.27 42091.69 39273.45 38588.05 41776.06 40866.94 41793.54 403
dongtai63.43 38563.37 38863.60 40183.91 42353.17 42585.14 40943.40 42777.91 40980.96 41779.17 41736.36 42577.10 41937.88 42045.63 41960.54 416
tmp_tt57.23 38662.50 38941.44 40334.77 42649.21 42783.93 41160.22 42515.31 41971.11 41979.37 41670.09 39644.86 42264.76 41682.93 41630.25 418
kuosan54.81 38754.94 39054.42 40274.43 42450.03 42684.98 41044.27 42661.80 41762.49 42170.43 41835.16 42658.04 42119.30 42141.61 42055.19 417
cdsmvs_eth3d_5k24.22 38832.30 3910.00 4060.00 4290.00 4310.00 41798.10 2450.00 4240.00 42595.06 34397.54 390.00 4250.00 4240.00 4230.00 421
test12312.59 38915.49 3923.87 4046.07 4272.55 42990.75 3882.59 4292.52 4225.20 42413.02 4214.96 4271.85 4245.20 4229.09 4217.23 419
testmvs12.33 39015.23 3933.64 4055.77 4282.23 43088.99 4033.62 4282.30 4235.29 42313.09 4204.52 4281.95 4235.16 4238.32 4226.75 420
pcd_1.5k_mvsjas7.98 39110.65 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42495.82 1300.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.91 39210.55 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.94 3450.00 4290.00 4250.00 4240.00 4230.00 421
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.32 39585.41 374
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 59
MSC_two_6792asdad98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
PC_three_145287.24 35298.37 10397.44 23097.00 6796.78 40292.01 26999.25 20899.21 147
No_MVS98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
test_one_060199.05 10595.50 10298.87 11997.21 9398.03 14898.30 13996.93 73
eth-test20.00 429
eth-test0.00 429
ZD-MVS98.43 18695.94 8398.56 18990.72 30896.66 23997.07 25895.02 16099.74 8191.08 28898.93 247
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.94 7195.49 14999.20 21399.26 139
IU-MVS99.22 6695.40 10598.14 24285.77 36998.36 10695.23 17099.51 13999.49 75
OPU-MVS97.64 12198.01 22995.27 11596.79 14597.35 24296.97 6998.51 36191.21 28799.25 20899.14 160
test_241102_TWO98.83 13696.11 13398.62 7898.24 15196.92 7699.72 9395.44 15799.49 14699.49 75
test_241102_ONE99.22 6695.35 11098.83 13696.04 13899.08 4098.13 16497.87 2399.33 252
9.1496.69 16098.53 17296.02 19598.98 9893.23 25097.18 20097.46 22896.47 10399.62 15692.99 25799.32 197
save fliter98.48 18194.71 13394.53 28498.41 20495.02 193
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10795.70 13599.62 9299.58 39
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14898.89 11099.75 7295.48 15399.52 13499.53 57
test072699.24 6195.51 9996.89 13798.89 11095.92 14798.64 7698.31 13597.06 62
GSMVS98.06 302
test_part299.03 10796.07 7898.08 141
sam_mvs177.80 36098.06 302
sam_mvs77.38 364
ambc96.56 20798.23 20491.68 23697.88 7298.13 24398.42 9898.56 10694.22 18399.04 30794.05 22899.35 18798.95 193
MTGPAbinary98.73 158
test_post194.98 26810.37 42376.21 37299.04 30789.47 328
test_post10.87 42276.83 36899.07 303
patchmatchnet-post96.84 27477.36 36599.42 217
GG-mvs-BLEND90.60 38391.00 41684.21 36698.23 4672.63 42382.76 41484.11 41556.14 41396.79 40172.20 41392.09 40490.78 412
MTMP96.55 15974.60 420
gm-plane-assit91.79 41571.40 42181.67 39290.11 40598.99 31384.86 380
test9_res91.29 28398.89 25299.00 186
TEST997.84 24795.23 11793.62 32198.39 20786.81 35893.78 33895.99 31994.68 16999.52 187
test_897.81 25195.07 12693.54 32498.38 20987.04 35493.71 34295.96 32294.58 17399.52 187
agg_prior290.34 31698.90 24999.10 174
agg_prior97.80 25594.96 12898.36 21193.49 35099.53 184
TestCases98.06 9099.08 9696.16 7499.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
test_prior495.38 10793.61 323
test_prior293.33 33194.21 21894.02 33496.25 30893.64 19791.90 27298.96 242
test_prior97.46 14097.79 26094.26 15798.42 20399.34 25098.79 222
旧先验293.35 33077.95 40895.77 28998.67 34790.74 304
新几何293.43 326
新几何197.25 15898.29 19594.70 13597.73 26877.98 40794.83 31396.67 28692.08 24099.45 21088.17 34798.65 27897.61 338
旧先验197.80 25593.87 16897.75 26797.04 26193.57 19898.68 27398.72 232
无先验93.20 33497.91 25680.78 39799.40 22887.71 35097.94 314
原ACMM292.82 340
原ACMM196.58 20498.16 21692.12 22398.15 24185.90 36793.49 35096.43 29992.47 23199.38 23587.66 35298.62 28098.23 284
test22298.17 21493.24 19492.74 34497.61 28075.17 41294.65 31696.69 28590.96 25798.66 27697.66 334
testdata299.46 20587.84 348
segment_acmp95.34 150
testdata95.70 25198.16 21690.58 25697.72 26980.38 39995.62 29297.02 26292.06 24198.98 31589.06 33598.52 28697.54 342
testdata192.77 34193.78 232
test1297.46 14097.61 28794.07 16197.78 26693.57 34893.31 20399.42 21798.78 26398.89 207
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior598.75 15599.46 20592.59 26299.20 21399.28 134
plane_prior496.77 280
plane_prior394.51 14395.29 18196.16 270
plane_prior296.50 16196.36 121
plane_prior198.49 179
plane_prior94.29 15395.42 23694.31 21798.93 247
n20.00 430
nn0.00 430
door-mid98.17 235
lessismore_v097.05 17399.36 4892.12 22384.07 41498.77 7098.98 6285.36 32099.74 8197.34 6899.37 17999.30 127
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
test1198.08 247
door97.81 265
HQP5-MVS92.47 212
HQP-NCC97.85 24294.26 28993.18 25592.86 364
ACMP_Plane97.85 24294.26 28993.18 25592.86 364
BP-MVS90.51 311
HQP4-MVS92.87 36399.23 27899.06 179
HQP3-MVS98.43 20098.74 267
HQP2-MVS90.33 266
NP-MVS98.14 22093.72 17495.08 341
MDTV_nov1_ep13_2view57.28 42494.89 27080.59 39894.02 33478.66 35785.50 37397.82 322
MDTV_nov1_ep1391.28 33094.31 39473.51 41894.80 27393.16 36486.75 36093.45 35297.40 23376.37 37098.55 35888.85 33696.43 367
ACMMP++_ref99.52 134
ACMMP++99.55 121
Test By Simon94.51 176
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19395.63 16297.22 19597.30 24695.52 14398.55 35890.97 29298.90 24998.34 272
DeepMVS_CXcopyleft77.17 39990.94 41785.28 34874.08 42252.51 41880.87 41888.03 41075.25 37670.63 42059.23 41984.94 41475.62 414