This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18898.58 1599.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1999.67 299.73 399.65 499.15 399.86 2597.22 5199.92 1499.77 10
pmmvs699.07 499.24 498.56 5099.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13297.75 3499.89 2699.62 29
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2499.22 1696.23 12099.71 499.48 798.77 699.93 398.89 399.95 599.84 5
TDRefinement98.90 598.86 899.02 999.54 2498.06 899.34 499.44 1098.85 2099.00 3999.20 2697.42 3299.59 16697.21 5299.76 4999.40 90
UA-Net98.88 798.76 1399.22 299.11 8997.89 1499.47 399.32 1199.08 1097.87 14699.67 296.47 9099.92 597.88 2799.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4899.55 2296.12 7498.48 3099.10 3499.36 499.29 2399.06 4397.27 3899.93 397.71 3699.91 1799.70 20
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3199.12 3195.83 14799.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5899.58 1795.67 9498.45 3199.15 2799.33 599.30 2199.00 4597.27 3899.92 597.64 3899.92 1499.75 15
v7n98.73 1198.99 597.95 10299.64 1294.20 16298.67 1699.14 2999.08 1099.42 1599.23 2496.53 8599.91 1399.27 299.93 1099.73 17
PS-CasMVS98.73 1198.85 1098.39 6499.55 2295.47 10798.49 2899.13 3099.22 899.22 2798.96 4997.35 3499.92 597.79 3299.93 1099.79 9
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1699.02 5596.50 10899.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 2099.19 2195.62 15599.35 1999.37 1297.38 3399.90 1498.59 1499.91 1799.77 10
WR-MVS_H98.65 1598.62 2198.75 3399.51 2996.61 5898.55 2399.17 2299.05 1399.17 2998.79 6095.47 12899.89 1897.95 2699.91 1799.75 15
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4698.05 4499.61 1199.52 593.72 18399.88 2098.72 999.88 2899.65 26
Anonymous2023121198.55 1798.76 1397.94 10398.79 11994.37 15398.84 1199.15 2799.37 399.67 699.43 1195.61 12299.72 9298.12 2199.86 3099.73 17
nrg03098.54 1898.62 2198.32 6999.22 6495.66 9597.90 6799.08 4098.31 3399.02 3798.74 6497.68 2499.61 16497.77 3399.85 3399.70 20
PS-MVSNAJss98.53 1998.63 1998.21 8399.68 994.82 13598.10 5599.21 1796.91 9299.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
bld_raw_conf00598.51 2098.52 2498.47 5699.57 1895.91 8398.75 1399.27 1498.28 3599.17 2999.27 2193.85 17899.83 3498.63 1299.91 1799.66 23
MIMVSNet198.51 2098.45 2798.67 4199.72 696.71 5298.76 1298.89 8398.49 2899.38 1799.14 3695.44 13099.84 3196.47 7699.80 4299.47 68
pm-mvs198.47 2298.67 1797.86 11099.52 2894.58 14598.28 4299.00 6397.57 6699.27 2499.22 2598.32 999.50 19397.09 5899.75 5499.50 51
ACMH93.61 998.44 2398.76 1397.51 13699.43 3993.54 18798.23 4599.05 4697.40 7899.37 1899.08 4198.79 599.47 20197.74 3599.71 6399.50 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2498.46 2598.30 7399.46 3595.22 12398.27 4498.84 10399.05 1399.01 3898.65 7295.37 13199.90 1497.57 4099.91 1799.77 10
abl_698.42 2498.19 3399.09 399.16 7698.10 697.73 8099.11 3297.76 5498.62 5898.27 11097.88 1999.80 4695.67 11499.50 12499.38 94
TransMVSNet (Re)98.38 2698.67 1797.51 13699.51 2993.39 19198.20 5098.87 9198.23 3799.48 1299.27 2198.47 899.55 17996.52 7399.53 11099.60 31
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 6099.07 9495.87 8496.73 13799.05 4698.67 2498.84 4698.45 8597.58 2899.88 2096.45 7799.86 3099.54 44
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2497.48 3298.35 3599.03 5395.88 14297.88 14398.22 11798.15 1299.74 8296.50 7599.62 7899.42 87
ANet_high98.31 2998.94 696.41 21199.33 5089.64 25597.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3497.55 4199.98 299.77 10
VPA-MVSNet98.27 3098.46 2597.70 12299.06 9593.80 17697.76 7599.00 6398.40 3099.07 3698.98 4796.89 6499.75 7297.19 5599.79 4399.55 43
Vis-MVSNetpermissive98.27 3098.34 2998.07 9399.33 5095.21 12598.04 5999.46 997.32 8197.82 15199.11 3796.75 7499.86 2597.84 2999.36 16799.15 148
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4499.21 7197.35 3797.96 6299.16 2398.34 3298.78 5098.52 8097.32 3599.45 20894.08 19999.67 7099.13 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3398.31 3097.98 10199.39 4495.22 12397.55 8999.20 1998.21 3899.25 2598.51 8198.21 1199.40 22594.79 16999.72 6099.32 107
test_low_dy_conf_00198.18 3498.04 4198.60 4699.62 1496.14 7398.66 1997.66 25797.24 8498.78 5099.33 1992.47 21499.87 2298.71 1099.89 2699.80 8
FC-MVSNet-test98.16 3598.37 2897.56 13199.49 3393.10 19698.35 3599.21 1798.43 2998.89 4298.83 5994.30 16799.81 4097.87 2899.91 1799.77 10
mvsmamba98.16 3598.06 3998.44 5899.53 2795.87 8498.70 1498.94 7797.71 6098.85 4499.10 3891.35 23699.83 3498.47 1699.90 2499.64 28
SR-MVS-dyc-post98.14 3797.84 5699.02 998.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.60 8299.76 6595.49 12599.20 20099.26 126
MTAPA98.14 3797.84 5699.06 499.44 3797.90 1297.25 10698.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
APDe-MVS98.14 3798.03 4398.47 5698.72 12796.04 7798.07 5799.10 3495.96 13698.59 6398.69 6896.94 5899.81 4096.64 6799.58 9299.57 38
APD-MVS_3200maxsize98.13 4097.90 5098.79 3198.79 11997.31 3897.55 8998.92 8097.72 5898.25 10098.13 12497.10 4599.75 7295.44 13299.24 19899.32 107
HPM-MVScopyleft98.11 4197.83 5998.92 2299.42 4197.46 3398.57 2199.05 4695.43 16497.41 16997.50 19597.98 1599.79 4795.58 12399.57 9599.50 51
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4298.01 4498.32 6998.45 16796.69 5498.52 2699.69 298.07 4396.07 24497.19 22396.88 6699.86 2597.50 4399.73 5698.41 246
test117298.08 4397.76 6699.05 698.78 12198.07 797.41 10198.85 9897.57 6698.15 11197.96 14796.60 8299.76 6595.30 14099.18 20499.33 106
Gipumacopyleft98.07 4498.31 3097.36 15699.76 596.28 6998.51 2799.10 3498.76 2396.79 20699.34 1896.61 8098.82 31196.38 7999.50 12496.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4597.75 6898.93 2199.23 6197.60 2398.09 5698.96 7495.75 15197.91 13998.06 13796.89 6499.76 6595.32 13999.57 9599.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4597.79 6198.85 2599.15 7997.55 2796.68 13998.83 11095.21 17098.36 8598.13 12498.13 1499.62 15896.04 9299.54 10799.39 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 4797.76 6698.79 3199.43 3997.21 4397.15 11198.90 8296.58 10498.08 12197.87 16397.02 5399.76 6595.25 14399.59 9099.40 90
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.01 4897.66 7499.06 499.44 3797.90 1295.66 19198.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
SR-MVS98.00 4997.66 7499.01 1198.77 12397.93 1197.38 10298.83 11097.32 8198.06 12397.85 16496.65 7799.77 6095.00 16299.11 21499.32 107
DVP-MVS++97.96 5097.90 5098.12 9097.75 25195.40 10899.03 798.89 8396.62 9998.62 5898.30 10196.97 5699.75 7295.70 11099.25 19599.21 135
Anonymous2024052997.96 5098.04 4197.71 12098.69 13494.28 15897.86 6998.31 19898.79 2299.23 2698.86 5895.76 11799.61 16495.49 12599.36 16799.23 133
XVS97.96 5097.63 8198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23197.64 18396.49 8899.72 9295.66 11699.37 16499.45 75
NR-MVSNet97.96 5097.86 5598.26 7598.73 12595.54 10098.14 5398.73 13397.79 5099.42 1597.83 16594.40 16599.78 5195.91 10299.76 4999.46 70
RRT_MVS97.95 5497.79 6198.43 6099.67 1095.56 9898.86 1096.73 29797.99 4699.15 3199.35 1689.84 25899.90 1498.64 1199.90 2499.82 6
ACMMPR97.95 5497.62 8398.94 1899.20 7297.56 2697.59 8698.83 11096.05 12997.46 16797.63 18496.77 7399.76 6595.61 12099.46 13799.49 59
FMVSNet197.95 5498.08 3697.56 13199.14 8793.67 18198.23 4598.66 15397.41 7799.00 3999.19 2795.47 12899.73 8795.83 10799.76 4999.30 113
SED-MVS97.94 5797.90 5098.07 9399.22 6495.35 11396.79 13098.83 11096.11 12699.08 3498.24 11297.87 2099.72 9295.44 13299.51 12099.14 151
HFP-MVS97.94 5797.64 7998.83 2699.15 7997.50 3097.59 8698.84 10396.05 12997.49 16197.54 19097.07 4899.70 11795.61 12099.46 13799.30 113
LPG-MVS_test97.94 5797.67 7398.74 3599.15 7997.02 4497.09 11699.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
FIs97.93 6098.07 3797.48 14399.38 4592.95 19998.03 6199.11 3298.04 4598.62 5898.66 7093.75 18299.78 5197.23 5099.84 3499.73 17
ZNCC-MVS97.92 6197.62 8398.83 2699.32 5297.24 4197.45 9698.84 10395.76 14996.93 20097.43 20197.26 4099.79 4796.06 8999.53 11099.45 75
region2R97.92 6197.59 8798.92 2299.22 6497.55 2797.60 8598.84 10396.00 13497.22 17397.62 18596.87 6899.76 6595.48 12899.43 15099.46 70
CP-MVS97.92 6197.56 9098.99 1398.99 10397.82 1697.93 6498.96 7496.11 12696.89 20397.45 19996.85 6999.78 5195.19 14699.63 7799.38 94
CS-MVS-test97.91 6497.84 5698.14 8898.52 15496.03 7998.38 3499.67 398.11 4195.50 26696.92 24396.81 7299.87 2296.87 6599.76 4998.51 239
mPP-MVS97.91 6497.53 9199.04 799.22 6497.87 1597.74 7898.78 12496.04 13197.10 18397.73 17796.53 8599.78 5195.16 15099.50 12499.46 70
DROMVSNet97.90 6697.94 4997.79 11498.66 13695.14 12698.31 3999.66 497.57 6695.95 24997.01 23796.99 5599.82 3797.66 3799.64 7598.39 249
ACMMP_NAP97.89 6797.63 8198.67 4199.35 4896.84 4996.36 15098.79 12095.07 17897.88 14398.35 9397.24 4299.72 9296.05 9199.58 9299.45 75
PGM-MVS97.88 6897.52 9298.96 1699.20 7297.62 2297.09 11699.06 4495.45 16297.55 15697.94 15297.11 4499.78 5194.77 17299.46 13799.48 65
DP-MVS97.87 6997.89 5397.81 11398.62 14294.82 13597.13 11498.79 12098.98 1798.74 5498.49 8295.80 11699.49 19595.04 15999.44 14299.11 161
RPSCF97.87 6997.51 9398.95 1799.15 7998.43 397.56 8899.06 4496.19 12398.48 7298.70 6794.72 15199.24 26594.37 18799.33 18299.17 144
KD-MVS_self_test97.86 7198.07 3797.25 16399.22 6492.81 20297.55 8998.94 7797.10 8898.85 4498.88 5695.03 14399.67 13797.39 4899.65 7399.26 126
test_040297.84 7297.97 4697.47 14499.19 7494.07 16596.71 13898.73 13398.66 2598.56 6598.41 8896.84 7099.69 12594.82 16799.81 3998.64 227
UniMVSNet_NR-MVSNet97.83 7397.65 7698.37 6598.72 12795.78 8795.66 19199.02 5598.11 4198.31 9597.69 18194.65 15699.85 2897.02 6199.71 6399.48 65
UniMVSNet (Re)97.83 7397.65 7698.35 6898.80 11895.86 8695.92 18099.04 5297.51 7198.22 10397.81 16994.68 15499.78 5197.14 5799.75 5499.41 89
GST-MVS97.82 7597.49 9698.81 2999.23 6197.25 4097.16 11098.79 12095.96 13697.53 15797.40 20396.93 6099.77 6095.04 15999.35 17299.42 87
DeepC-MVS95.41 497.82 7597.70 6998.16 8498.78 12195.72 8996.23 15999.02 5593.92 21698.62 5898.99 4697.69 2399.62 15896.18 8699.87 2999.15 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS97.79 7797.60 8698.36 6698.73 12595.78 8795.65 19498.87 9197.57 6698.31 9597.83 16594.69 15299.85 2897.02 6199.71 6399.46 70
DVP-MVScopyleft97.78 7897.65 7698.16 8499.24 5995.51 10296.74 13398.23 20495.92 13998.40 7998.28 10697.06 5099.71 10895.48 12899.52 11599.26 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 7997.50 9598.57 4996.24 32097.58 2598.45 3198.85 9898.58 2797.51 15997.94 15295.74 11899.63 15095.19 14698.97 22898.51 239
GeoE97.75 8097.70 6997.89 10798.88 11294.53 14697.10 11598.98 6995.75 15197.62 15497.59 18797.61 2799.77 6096.34 8199.44 14299.36 102
3Dnovator+96.13 397.73 8197.59 8798.15 8798.11 20595.60 9798.04 5998.70 14398.13 4096.93 20098.45 8595.30 13599.62 15895.64 11898.96 22999.24 132
tfpnnormal97.72 8297.97 4696.94 17799.26 5592.23 21297.83 7198.45 17598.25 3699.13 3398.66 7096.65 7799.69 12593.92 20899.62 7898.91 194
Baseline_NR-MVSNet97.72 8297.79 6197.50 13999.56 2093.29 19295.44 20198.86 9498.20 3998.37 8299.24 2394.69 15299.55 17995.98 9899.79 4399.65 26
bld_raw_dy_0_6497.69 8497.61 8597.91 10599.54 2494.27 15998.06 5898.60 16196.60 10198.79 4998.95 5089.62 25999.84 3198.43 1899.91 1799.62 29
MP-MVS-pluss97.69 8497.36 10298.70 3999.50 3296.84 4995.38 20898.99 6692.45 25898.11 11598.31 9797.25 4199.77 6096.60 6999.62 7899.48 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 8497.79 6197.40 15499.06 9593.52 18895.96 17598.97 7394.55 19798.82 4798.76 6397.31 3699.29 25797.20 5499.44 14299.38 94
DPE-MVScopyleft97.64 8797.35 10398.50 5398.85 11496.18 7095.21 22298.99 6695.84 14698.78 5098.08 13096.84 7099.81 4093.98 20699.57 9599.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 8797.18 11599.00 1299.32 5297.77 1897.49 9598.73 13396.27 11795.59 26497.75 17496.30 9899.78 5193.70 21699.48 13299.45 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#97.62 8997.22 11398.83 2699.15 7997.50 3096.81 12898.84 10394.25 20597.49 16197.54 19097.07 4899.70 11794.37 18799.46 13799.30 113
3Dnovator96.53 297.61 9097.64 7997.50 13997.74 25493.65 18598.49 2898.88 8996.86 9497.11 18298.55 7895.82 11099.73 8795.94 10099.42 15399.13 153
SF-MVS97.60 9197.39 10098.22 8098.93 10895.69 9197.05 11899.10 3495.32 16797.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
v897.60 9198.06 3996.23 21798.71 13089.44 25997.43 9998.82 11897.29 8398.74 5499.10 3893.86 17799.68 13298.61 1399.94 899.56 41
XVG-ACMP-BASELINE97.58 9397.28 10898.49 5499.16 7696.90 4896.39 14798.98 6995.05 17998.06 12398.02 14195.86 10699.56 17594.37 18799.64 7599.00 177
v1097.55 9497.97 4696.31 21598.60 14589.64 25597.44 9799.02 5596.60 10198.72 5699.16 3393.48 18799.72 9298.76 699.92 1499.58 33
OPM-MVS97.54 9597.25 10998.41 6299.11 8996.61 5895.24 22098.46 17494.58 19698.10 11898.07 13297.09 4799.39 23095.16 15099.44 14299.21 135
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 9597.70 6997.07 17199.46 3592.21 21397.22 10999.00 6394.93 18598.58 6498.92 5397.31 3699.41 22394.44 18299.43 15099.59 32
Regformer-497.53 9797.47 9897.71 12097.35 28293.91 17095.26 21898.14 22197.97 4798.34 8897.89 15795.49 12699.71 10897.41 4699.42 15399.51 50
casdiffmvs97.50 9897.81 6096.56 20198.51 15691.04 23595.83 18499.09 3997.23 8598.33 9298.30 10197.03 5299.37 23696.58 7199.38 16399.28 121
SixPastTwentyTwo97.49 9997.57 8997.26 16299.56 2092.33 20998.28 4296.97 28698.30 3499.45 1499.35 1688.43 27499.89 1898.01 2599.76 4999.54 44
SMA-MVScopyleft97.48 10097.11 11898.60 4698.83 11596.67 5596.74 13398.73 13391.61 26998.48 7298.36 9296.53 8599.68 13295.17 14899.54 10799.45 75
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 10197.10 11998.55 5199.04 10096.70 5396.24 15898.89 8393.71 22197.97 13497.75 17497.44 3099.63 15093.22 22599.70 6699.32 107
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 10296.92 13299.03 899.26 5597.70 1997.66 8198.89 8395.65 15398.51 6896.46 27192.15 21999.81 4095.14 15398.58 27099.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
baseline97.44 10397.78 6596.43 20798.52 15490.75 24296.84 12699.03 5396.51 10797.86 14798.02 14196.67 7699.36 23897.09 5899.47 13499.19 140
TSAR-MVS + MP.97.42 10497.23 11298.00 10099.38 4595.00 13097.63 8498.20 20993.00 24598.16 10998.06 13795.89 10599.72 9295.67 11499.10 21699.28 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.41 10597.24 11197.93 10497.21 29494.72 13894.85 24298.27 19997.74 5598.11 11597.50 19595.58 12499.69 12596.57 7299.31 18699.37 101
CSCG97.40 10697.30 10597.69 12498.95 10594.83 13497.28 10598.99 6696.35 11698.13 11495.95 29895.99 10399.66 14394.36 19099.73 5698.59 233
XVG-OURS-SEG-HR97.38 10797.07 12298.30 7399.01 10297.41 3694.66 24999.02 5595.20 17198.15 11197.52 19398.83 498.43 34494.87 16596.41 33799.07 168
VDD-MVS97.37 10897.25 10997.74 11898.69 13494.50 14997.04 11995.61 31698.59 2698.51 6898.72 6592.54 21199.58 16896.02 9499.49 12899.12 158
SD-MVS97.37 10897.70 6996.35 21298.14 20095.13 12796.54 14298.92 8095.94 13899.19 2898.08 13097.74 2295.06 37395.24 14499.54 10798.87 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 11097.10 11998.14 8898.91 11096.77 5196.20 16098.63 15993.82 21898.54 6698.33 9593.98 17599.05 29095.99 9799.45 14198.61 232
LCM-MVSNet-Re97.33 11197.33 10497.32 15898.13 20393.79 17796.99 12299.65 596.74 9799.47 1398.93 5296.91 6399.84 3190.11 28899.06 22398.32 258
EI-MVSNet-UG-set97.32 11297.40 9997.09 17097.34 28692.01 22195.33 21297.65 26097.74 5598.30 9798.14 12395.04 14299.69 12597.55 4199.52 11599.58 33
EI-MVSNet-Vis-set97.32 11297.39 10097.11 16897.36 28192.08 21995.34 21197.65 26097.74 5598.29 9898.11 12895.05 14099.68 13297.50 4399.50 12499.56 41
Regformer-197.27 11497.16 11697.61 12997.21 29493.86 17394.85 24298.04 23697.62 6598.03 12797.50 19595.34 13299.63 15096.52 7399.31 18699.35 104
VPNet97.26 11597.49 9696.59 19799.47 3490.58 24496.27 15498.53 16897.77 5198.46 7598.41 8894.59 15899.68 13294.61 17599.29 19099.52 48
Regformer-397.25 11697.29 10697.11 16897.35 28292.32 21095.26 21897.62 26597.67 6498.17 10897.89 15795.05 14099.56 17597.16 5699.42 15399.46 70
xxxxxxxxxxxxxcwj97.24 11797.03 12597.89 10798.48 16294.71 13994.53 25499.07 4395.02 18197.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
canonicalmvs97.23 11897.21 11497.30 15997.65 26294.39 15197.84 7099.05 4697.42 7496.68 21393.85 33797.63 2699.33 24696.29 8298.47 27498.18 274
AllTest97.20 11996.92 13298.06 9599.08 9296.16 7197.14 11399.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
dcpmvs_297.12 12097.99 4594.51 29299.11 8984.00 34397.75 7699.65 597.38 7999.14 3298.42 8795.16 13899.96 295.52 12499.78 4699.58 33
XVG-OURS97.12 12096.74 14198.26 7598.99 10397.45 3493.82 28599.05 4695.19 17298.32 9397.70 17995.22 13798.41 34594.27 19298.13 28598.93 189
Anonymous2024052197.07 12297.51 9395.76 23899.35 4888.18 28197.78 7298.40 18597.11 8798.34 8899.04 4489.58 26199.79 4798.09 2399.93 1099.30 113
V4297.04 12397.16 11696.68 19498.59 14791.05 23496.33 15298.36 19094.60 19397.99 13098.30 10193.32 18999.62 15897.40 4799.53 11099.38 94
APD-MVScopyleft97.00 12496.53 15498.41 6298.55 15196.31 6796.32 15398.77 12592.96 25097.44 16897.58 18995.84 10799.74 8291.96 24099.35 17299.19 140
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 12596.38 16198.81 2998.64 13797.59 2495.97 17498.20 20995.51 16095.06 27496.53 26794.10 17299.70 11794.29 19199.15 20699.13 153
GBi-Net96.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
test196.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
VDDNet96.98 12896.84 13597.41 15399.40 4393.26 19397.94 6395.31 32299.26 798.39 8199.18 3087.85 28399.62 15895.13 15599.09 21799.35 104
PHI-MVS96.96 12996.53 15498.25 7897.48 27296.50 6196.76 13298.85 9893.52 22496.19 24096.85 24695.94 10499.42 21493.79 21299.43 15098.83 207
IS-MVSNet96.93 13096.68 14497.70 12299.25 5894.00 16898.57 2196.74 29598.36 3198.14 11397.98 14688.23 27699.71 10893.10 22899.72 6099.38 94
CNVR-MVS96.92 13196.55 15198.03 9998.00 21595.54 10094.87 24098.17 21594.60 19396.38 22897.05 23395.67 12099.36 23895.12 15699.08 21899.19 140
IterMVS-LS96.92 13197.29 10695.79 23798.51 15688.13 28495.10 22598.66 15396.99 8998.46 7598.68 6992.55 20999.74 8296.91 6399.79 4399.50 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 13396.81 13797.16 16598.56 15092.20 21594.33 25998.12 22497.34 8098.20 10497.33 21492.81 20099.75 7294.79 16999.81 3999.54 44
DeepPCF-MVS94.58 596.90 13396.43 16098.31 7297.48 27297.23 4292.56 31798.60 16192.84 25298.54 6697.40 20396.64 7998.78 31594.40 18699.41 15998.93 189
ETH3D-3000-0.196.89 13596.46 15998.16 8498.62 14295.69 9195.96 17598.98 6993.36 22997.04 19097.31 21694.93 14899.63 15092.60 23299.34 17599.17 144
v114496.84 13697.08 12196.13 22398.42 16989.28 26295.41 20598.67 15194.21 20697.97 13498.31 9793.06 19499.65 14598.06 2499.62 7899.45 75
VNet96.84 13696.83 13696.88 18198.06 20692.02 22096.35 15197.57 26797.70 6197.88 14397.80 17092.40 21699.54 18294.73 17498.96 22999.08 166
EPP-MVSNet96.84 13696.58 14897.65 12699.18 7593.78 17898.68 1596.34 30097.91 4997.30 17198.06 13788.46 27399.85 2893.85 21099.40 16099.32 107
v119296.83 13997.06 12396.15 22298.28 17989.29 26195.36 20998.77 12593.73 22098.11 11598.34 9493.02 19899.67 13798.35 1999.58 9299.50 51
MVS_111021_LR96.82 14096.55 15197.62 12898.27 18195.34 11593.81 28798.33 19594.59 19596.56 22096.63 26296.61 8098.73 32094.80 16899.34 17598.78 213
Effi-MVS+-dtu96.81 14196.09 17398.99 1396.90 30798.69 296.42 14698.09 22795.86 14495.15 27395.54 30994.26 16899.81 4094.06 20098.51 27398.47 243
UGNet96.81 14196.56 15097.58 13096.64 31093.84 17597.75 7697.12 28096.47 11193.62 31598.88 5693.22 19299.53 18495.61 12099.69 6799.36 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 14397.06 12395.95 23098.57 14988.77 27295.36 20998.26 20195.18 17397.85 14898.23 11492.58 20899.63 15097.80 3199.69 6799.45 75
test_part196.77 14496.53 15497.47 14498.04 20792.92 20097.93 6498.85 9898.83 2199.30 2199.07 4279.25 32499.79 4797.59 3999.93 1099.69 22
v124096.74 14597.02 12695.91 23398.18 19388.52 27495.39 20798.88 8993.15 24198.46 7598.40 9192.80 20199.71 10898.45 1799.49 12899.49 59
DeepC-MVS_fast94.34 796.74 14596.51 15797.44 15097.69 25794.15 16396.02 17098.43 17893.17 24097.30 17197.38 20995.48 12799.28 25993.74 21399.34 17598.88 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 14796.54 15397.27 16098.35 17493.66 18493.42 29798.36 19094.74 18896.58 21896.76 25596.54 8498.99 29794.87 16599.27 19399.15 148
v192192096.72 14896.96 12995.99 22698.21 18888.79 27195.42 20398.79 12093.22 23598.19 10798.26 11192.68 20499.70 11798.34 2099.55 10499.49 59
FMVSNet296.72 14896.67 14596.87 18297.96 21791.88 22397.15 11198.06 23495.59 15798.50 7098.62 7389.51 26599.65 14594.99 16399.60 8899.07 168
PMVScopyleft89.60 1796.71 15096.97 12795.95 23099.51 2997.81 1797.42 10097.49 26897.93 4895.95 24998.58 7496.88 6696.91 36789.59 29699.36 16793.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj96.69 15196.13 17098.36 6698.46 16696.02 8096.44 14598.70 14394.26 20496.79 20697.13 22594.07 17399.75 7290.53 28098.80 24999.31 112
v14419296.69 15196.90 13496.03 22598.25 18488.92 26695.49 19998.77 12593.05 24398.09 11998.29 10592.51 21399.70 11798.11 2299.56 9899.47 68
CPTT-MVS96.69 15196.08 17498.49 5498.89 11196.64 5797.25 10698.77 12592.89 25196.01 24897.13 22592.23 21899.67 13792.24 23799.34 17599.17 144
HQP_MVS96.66 15496.33 16497.68 12598.70 13294.29 15596.50 14398.75 12996.36 11496.16 24196.77 25391.91 23099.46 20492.59 23499.20 20099.28 121
EI-MVSNet96.63 15596.93 13095.74 23997.26 29188.13 28495.29 21697.65 26096.99 8997.94 13798.19 11992.55 20999.58 16896.91 6399.56 9899.50 51
patch_mono-296.59 15696.93 13095.55 24898.88 11287.12 30594.47 25699.30 1294.12 21096.65 21698.41 8894.98 14699.87 2295.81 10999.78 4699.66 23
ab-mvs96.59 15696.59 14796.60 19698.64 13792.21 21398.35 3597.67 25594.45 19896.99 19598.79 6094.96 14799.49 19590.39 28599.07 22098.08 277
v14896.58 15896.97 12795.42 25598.63 14187.57 29595.09 22697.90 24095.91 14198.24 10197.96 14793.42 18899.39 23096.04 9299.52 11599.29 120
test20.0396.58 15896.61 14696.48 20598.49 16091.72 22795.68 19097.69 25496.81 9598.27 9997.92 15594.18 17198.71 32290.78 27099.66 7299.00 177
NCCC96.52 16095.99 17898.10 9197.81 23395.68 9395.00 23598.20 20995.39 16595.40 26996.36 27793.81 18099.45 20893.55 21998.42 27599.17 144
pmmvs-eth3d96.49 16196.18 16997.42 15298.25 18494.29 15594.77 24698.07 23389.81 29097.97 13498.33 9593.11 19399.08 28795.46 13199.84 3498.89 198
OMC-MVS96.48 16296.00 17797.91 10598.30 17696.01 8194.86 24198.60 16191.88 26697.18 17797.21 22296.11 10199.04 29190.49 28499.34 17598.69 224
TSAR-MVS + GP.96.47 16396.12 17197.49 14297.74 25495.23 12094.15 27096.90 28893.26 23398.04 12696.70 25894.41 16498.89 30694.77 17299.14 20798.37 251
Fast-Effi-MVS+-dtu96.44 16496.12 17197.39 15597.18 29694.39 15195.46 20098.73 13396.03 13394.72 28294.92 32196.28 10099.69 12593.81 21197.98 29098.09 276
K. test v396.44 16496.28 16596.95 17699.41 4291.53 22997.65 8290.31 36398.89 1998.93 4199.36 1484.57 30399.92 597.81 3099.56 9899.39 92
MSLP-MVS++96.42 16696.71 14295.57 24597.82 23290.56 24695.71 18698.84 10394.72 18996.71 21297.39 20794.91 14998.10 35995.28 14199.02 22598.05 286
Anonymous20240521196.34 16795.98 17997.43 15198.25 18493.85 17496.74 13394.41 32997.72 5898.37 8298.03 14087.15 28799.53 18494.06 20099.07 22098.92 193
h-mvs3396.29 16895.63 19198.26 7598.50 15996.11 7596.90 12497.09 28196.58 10497.21 17598.19 11984.14 30499.78 5195.89 10396.17 34198.89 198
MVS_Test96.27 16996.79 14094.73 28296.94 30586.63 31296.18 16198.33 19594.94 18396.07 24498.28 10695.25 13699.26 26297.21 5297.90 29498.30 262
MCST-MVS96.24 17095.80 18597.56 13198.75 12494.13 16494.66 24998.17 21590.17 28796.21 23996.10 29195.14 13999.43 21394.13 19898.85 24599.13 153
ETH3D cwj APD-0.1696.23 17195.61 19398.09 9297.91 22195.65 9694.94 23798.74 13191.31 27596.02 24797.08 23094.05 17499.69 12591.51 25298.94 23398.93 189
mvs-test196.20 17295.50 19698.32 6996.90 30798.16 595.07 22998.09 22795.86 14493.63 31494.32 33394.26 16899.71 10894.06 20097.27 32297.07 319
Effi-MVS+96.19 17396.01 17696.71 19197.43 27892.19 21696.12 16499.10 3495.45 16293.33 32794.71 32497.23 4399.56 17593.21 22697.54 31198.37 251
DELS-MVS96.17 17496.23 16695.99 22697.55 26990.04 25092.38 32298.52 16994.13 20996.55 22297.06 23294.99 14599.58 16895.62 11999.28 19198.37 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 17596.36 16295.49 25197.68 25887.81 29198.67 1699.02 5596.50 10894.48 29196.15 28686.90 28899.92 598.73 799.13 21098.74 218
ETV-MVS96.13 17695.90 18396.82 18597.76 24993.89 17195.40 20698.95 7695.87 14395.58 26591.00 36896.36 9799.72 9293.36 22098.83 24796.85 329
testgi96.07 17796.50 15894.80 27999.26 5587.69 29495.96 17598.58 16595.08 17798.02 12996.25 28197.92 1697.60 36488.68 31098.74 25599.11 161
LF4IMVS96.07 17795.63 19197.36 15698.19 19095.55 9995.44 20198.82 11892.29 26095.70 26296.55 26592.63 20798.69 32491.75 24999.33 18297.85 296
EIA-MVS96.04 17995.77 18796.85 18397.80 23792.98 19896.12 16499.16 2394.65 19193.77 30991.69 36295.68 11999.67 13794.18 19598.85 24597.91 294
diffmvs96.04 17996.23 16695.46 25397.35 28288.03 28693.42 29799.08 4094.09 21296.66 21496.93 24193.85 17899.29 25796.01 9698.67 26099.06 170
alignmvs96.01 18195.52 19597.50 13997.77 24894.71 13996.07 16696.84 28997.48 7296.78 21094.28 33485.50 29699.40 22596.22 8398.73 25898.40 247
TinyColmap96.00 18296.34 16394.96 27097.90 22387.91 28794.13 27398.49 17294.41 19998.16 10997.76 17196.29 9998.68 32790.52 28199.42 15398.30 262
PVSNet_Blended_VisFu95.95 18395.80 18596.42 20999.28 5490.62 24395.31 21499.08 4088.40 30496.97 19898.17 12292.11 22199.78 5193.64 21799.21 19998.86 205
test_prior395.91 18495.39 19797.46 14797.79 24394.26 16093.33 30298.42 18194.21 20694.02 30296.25 28193.64 18499.34 24391.90 24298.96 22998.79 211
UnsupCasMVSNet_eth95.91 18495.73 18896.44 20698.48 16291.52 23095.31 21498.45 17595.76 14997.48 16497.54 19089.53 26498.69 32494.43 18394.61 35699.13 153
QAPM95.88 18695.57 19496.80 18697.90 22391.84 22598.18 5298.73 13388.41 30396.42 22698.13 12494.73 15099.75 7288.72 30898.94 23398.81 209
CANet95.86 18795.65 19096.49 20496.41 31690.82 23994.36 25898.41 18394.94 18392.62 34196.73 25692.68 20499.71 10895.12 15699.60 8898.94 185
IterMVS-SCA-FT95.86 18796.19 16894.85 27697.68 25885.53 32392.42 32097.63 26496.99 8998.36 8598.54 7987.94 27899.75 7297.07 6099.08 21899.27 125
hse-mvs295.77 18995.09 20597.79 11497.84 22995.51 10295.66 19195.43 32196.58 10497.21 17596.16 28584.14 30499.54 18295.89 10396.92 32498.32 258
MVP-Stereo95.69 19095.28 19996.92 17898.15 19993.03 19795.64 19698.20 20990.39 28496.63 21797.73 17791.63 23399.10 28591.84 24697.31 32098.63 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 19095.67 18995.74 23998.48 16288.76 27392.84 30997.25 27396.00 13497.59 15597.95 15191.38 23599.46 20493.16 22796.35 33898.99 180
new-patchmatchnet95.67 19296.58 14892.94 32697.48 27280.21 36192.96 30898.19 21494.83 18698.82 4798.79 6093.31 19099.51 19295.83 10799.04 22499.12 158
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
DP-MVS Recon95.55 19695.13 20396.80 18698.51 15693.99 16994.60 25198.69 14690.20 28695.78 25896.21 28492.73 20398.98 29990.58 27998.86 24397.42 313
MVS_030495.50 19795.05 20996.84 18496.28 31993.12 19597.00 12196.16 30295.03 18089.22 36397.70 17990.16 25499.48 19894.51 18199.34 17597.93 293
Fast-Effi-MVS+95.49 19895.07 20696.75 18997.67 26192.82 20194.22 26698.60 16191.61 26993.42 32592.90 34796.73 7599.70 11792.60 23297.89 29597.74 301
TAMVS95.49 19894.94 21197.16 16598.31 17593.41 19095.07 22996.82 29191.09 27897.51 15997.82 16889.96 25599.42 21488.42 31399.44 14298.64 227
OpenMVScopyleft94.22 895.48 20095.20 20096.32 21497.16 29791.96 22297.74 7898.84 10387.26 31394.36 29398.01 14393.95 17699.67 13790.70 27698.75 25497.35 316
CLD-MVS95.47 20195.07 20696.69 19398.27 18192.53 20691.36 33598.67 15191.22 27795.78 25894.12 33595.65 12198.98 29990.81 26899.72 6098.57 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 20294.66 22697.88 10997.84 22995.23 12093.62 29198.39 18687.04 31793.78 30795.99 29394.58 15999.52 18891.76 24898.90 23798.89 198
CDPH-MVS95.45 20394.65 22797.84 11298.28 17994.96 13193.73 28998.33 19585.03 33895.44 26796.60 26395.31 13499.44 21190.01 29099.13 21099.11 161
IterMVS95.42 20495.83 18494.20 30097.52 27083.78 34592.41 32197.47 27095.49 16198.06 12398.49 8287.94 27899.58 16896.02 9499.02 22599.23 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
agg_prior195.39 20594.60 23297.75 11797.80 23794.96 13193.39 29998.36 19087.20 31593.49 32095.97 29694.65 15699.53 18491.69 25098.86 24398.77 216
mvs_anonymous95.36 20696.07 17593.21 31896.29 31881.56 35694.60 25197.66 25793.30 23296.95 19998.91 5493.03 19799.38 23396.60 6997.30 32198.69 224
MSDG95.33 20795.13 20395.94 23297.40 28091.85 22491.02 34698.37 18995.30 16896.31 23395.99 29394.51 16298.38 34889.59 29697.65 30897.60 308
LFMVS95.32 20894.88 21696.62 19598.03 20891.47 23197.65 8290.72 36099.11 997.89 14298.31 9779.20 32599.48 19893.91 20999.12 21398.93 189
F-COLMAP95.30 20994.38 24498.05 9898.64 13796.04 7795.61 19798.66 15389.00 29793.22 32896.40 27592.90 19999.35 24187.45 32797.53 31298.77 216
Anonymous2023120695.27 21095.06 20895.88 23498.72 12789.37 26095.70 18797.85 24388.00 30996.98 19797.62 18591.95 22699.34 24389.21 30199.53 11098.94 185
FMVSNet395.26 21194.94 21196.22 21996.53 31390.06 24995.99 17297.66 25794.11 21197.99 13097.91 15680.22 32299.63 15094.60 17699.44 14298.96 182
c3_l95.20 21295.32 19894.83 27896.19 32486.43 31591.83 33098.35 19493.47 22697.36 17097.26 21988.69 27199.28 25995.41 13899.36 16798.78 213
D2MVS95.18 21395.17 20295.21 26197.76 24987.76 29394.15 27097.94 23889.77 29196.99 19597.68 18287.45 28599.14 27895.03 16199.81 3998.74 218
N_pmnet95.18 21394.23 24798.06 9597.85 22596.55 6092.49 31891.63 35389.34 29398.09 11997.41 20290.33 24899.06 28991.58 25199.31 18698.56 235
HQP-MVS95.17 21594.58 23596.92 17897.85 22592.47 20794.26 26098.43 17893.18 23792.86 33395.08 31590.33 24899.23 26790.51 28298.74 25599.05 172
Vis-MVSNet (Re-imp)95.11 21694.85 21795.87 23599.12 8889.17 26397.54 9494.92 32496.50 10896.58 21897.27 21883.64 30899.48 19888.42 31399.67 7098.97 181
AdaColmapbinary95.11 21694.62 23196.58 19897.33 28894.45 15094.92 23898.08 22993.15 24193.98 30595.53 31094.34 16699.10 28585.69 33898.61 26796.20 345
API-MVS95.09 21895.01 21095.31 25896.61 31194.02 16796.83 12797.18 27795.60 15695.79 25694.33 33294.54 16198.37 35085.70 33798.52 27193.52 364
CL-MVSNet_self_test95.04 21994.79 22395.82 23697.51 27189.79 25391.14 34396.82 29193.05 24396.72 21196.40 27590.82 24299.16 27691.95 24198.66 26298.50 241
CNLPA95.04 21994.47 24096.75 18997.81 23395.25 11994.12 27497.89 24194.41 19994.57 28695.69 30390.30 25198.35 35186.72 33298.76 25396.64 337
Patchmtry95.03 22194.59 23496.33 21394.83 35290.82 23996.38 14997.20 27596.59 10397.49 16198.57 7577.67 33299.38 23392.95 23199.62 7898.80 210
PVSNet_BlendedMVS95.02 22294.93 21395.27 25997.79 24387.40 30094.14 27298.68 14888.94 29894.51 28998.01 14393.04 19599.30 25389.77 29499.49 12899.11 161
TAPA-MVS93.32 1294.93 22394.23 24797.04 17398.18 19394.51 14795.22 22198.73 13381.22 35596.25 23795.95 29893.80 18198.98 29989.89 29298.87 24197.62 306
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
eth_miper_zixun_eth94.89 22494.93 21394.75 28195.99 33286.12 31891.35 33698.49 17293.40 22797.12 18197.25 22086.87 29099.35 24195.08 15898.82 24898.78 213
CDS-MVSNet94.88 22594.12 25297.14 16797.64 26393.57 18693.96 28197.06 28390.05 28896.30 23496.55 26586.10 29299.47 20190.10 28999.31 18698.40 247
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 22694.91 21594.57 28996.81 30987.10 30694.23 26597.34 27288.74 30197.14 17997.11 22891.94 22798.23 35592.99 22997.92 29298.37 251
pmmvs494.82 22794.19 25096.70 19297.42 27992.75 20492.09 32796.76 29386.80 32095.73 26197.22 22189.28 26898.89 30693.28 22399.14 20798.46 245
miper_lstm_enhance94.81 22894.80 22294.85 27696.16 32686.45 31491.14 34398.20 20993.49 22597.03 19297.37 21184.97 30099.26 26295.28 14199.56 9898.83 207
ETH3 D test640094.77 22993.87 26097.47 14498.12 20493.73 17994.56 25398.70 14385.45 33394.70 28495.93 30091.77 23299.63 15086.45 33399.14 20799.05 172
cl____94.73 23094.64 22895.01 26895.85 33587.00 30791.33 33798.08 22993.34 23097.10 18397.33 21484.01 30799.30 25395.14 15399.56 9898.71 223
DIV-MVS_self_test94.73 23094.64 22895.01 26895.86 33487.00 30791.33 33798.08 22993.34 23097.10 18397.34 21384.02 30699.31 25095.15 15299.55 10498.72 221
YYNet194.73 23094.84 21894.41 29597.47 27685.09 33290.29 35295.85 31192.52 25597.53 15797.76 17191.97 22599.18 27193.31 22296.86 32798.95 183
MDA-MVSNet_test_wron94.73 23094.83 22094.42 29497.48 27285.15 33090.28 35395.87 31092.52 25597.48 16497.76 17191.92 22999.17 27593.32 22196.80 33098.94 185
UnsupCasMVSNet_bld94.72 23494.26 24696.08 22498.62 14290.54 24793.38 30098.05 23590.30 28597.02 19396.80 25289.54 26299.16 27688.44 31296.18 34098.56 235
miper_ehance_all_eth94.69 23594.70 22594.64 28395.77 33886.22 31791.32 33998.24 20391.67 26897.05 18996.65 26188.39 27599.22 26994.88 16498.34 27798.49 242
BH-untuned94.69 23594.75 22494.52 29197.95 22087.53 29694.07 27597.01 28493.99 21497.10 18395.65 30592.65 20698.95 30487.60 32396.74 33197.09 318
RPMNet94.68 23794.60 23294.90 27395.44 34588.15 28296.18 16198.86 9497.43 7394.10 29898.49 8279.40 32399.76 6595.69 11295.81 34396.81 333
Patchmatch-RL test94.66 23894.49 23895.19 26298.54 15288.91 26792.57 31698.74 13191.46 27298.32 9397.75 17477.31 33798.81 31396.06 8999.61 8497.85 296
CANet_DTU94.65 23994.21 24995.96 22895.90 33389.68 25493.92 28297.83 24793.19 23690.12 35895.64 30688.52 27299.57 17493.27 22499.47 13498.62 230
pmmvs594.63 24094.34 24595.50 25097.63 26488.34 27894.02 27697.13 27987.15 31695.22 27297.15 22487.50 28499.27 26193.99 20599.26 19498.88 202
PAPM_NR94.61 24194.17 25195.96 22898.36 17391.23 23295.93 17997.95 23792.98 24693.42 32594.43 33190.53 24598.38 34887.60 32396.29 33998.27 266
PatchMatch-RL94.61 24193.81 26197.02 17598.19 19095.72 8993.66 29097.23 27488.17 30794.94 27995.62 30791.43 23498.57 33587.36 32897.68 30596.76 335
BH-RMVSNet94.56 24394.44 24394.91 27197.57 26687.44 29993.78 28896.26 30193.69 22296.41 22796.50 27092.10 22299.00 29585.96 33597.71 30298.31 260
USDC94.56 24394.57 23794.55 29097.78 24786.43 31592.75 31298.65 15885.96 32596.91 20297.93 15490.82 24298.74 31990.71 27599.59 9098.47 243
iter_conf_final94.54 24593.91 25996.43 20797.23 29390.41 24896.81 12898.10 22593.87 21796.80 20597.89 15768.02 36999.72 9296.73 6699.77 4899.18 143
test111194.53 24694.81 22193.72 30699.06 9581.94 35598.31 3983.87 37696.37 11398.49 7199.17 3281.49 31399.73 8796.64 6799.86 3099.49 59
ppachtmachnet_test94.49 24794.84 21893.46 31296.16 32682.10 35290.59 34997.48 26990.53 28397.01 19497.59 18791.01 23999.36 23893.97 20799.18 20498.94 185
test_yl94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
DCV-MVSNet94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
jason94.39 25094.04 25495.41 25798.29 17787.85 29092.74 31496.75 29485.38 33595.29 27096.15 28688.21 27799.65 14594.24 19399.34 17598.74 218
jason: jason.
ECVR-MVScopyleft94.37 25194.48 23994.05 30398.95 10583.10 34798.31 3982.48 37796.20 12198.23 10299.16 3381.18 31699.66 14395.95 9999.83 3699.38 94
112194.26 25293.26 26997.27 16098.26 18394.73 13795.86 18197.71 25377.96 36794.53 28896.71 25791.93 22899.40 22587.71 31998.64 26597.69 304
EU-MVSNet94.25 25394.47 24093.60 30998.14 20082.60 35097.24 10892.72 34585.08 33698.48 7298.94 5182.59 31198.76 31897.47 4599.53 11099.44 85
xiu_mvs_v2_base94.22 25494.63 23092.99 32497.32 28984.84 33592.12 32597.84 24591.96 26494.17 29693.43 33896.07 10299.71 10891.27 25697.48 31494.42 360
sss94.22 25493.72 26295.74 23997.71 25689.95 25293.84 28496.98 28588.38 30593.75 31095.74 30287.94 27898.89 30691.02 26298.10 28698.37 251
MVSTER94.21 25693.93 25895.05 26795.83 33686.46 31395.18 22397.65 26092.41 25997.94 13798.00 14572.39 35999.58 16896.36 8099.56 9899.12 158
MAR-MVS94.21 25693.03 27497.76 11696.94 30597.44 3596.97 12397.15 27887.89 31192.00 34692.73 35192.14 22099.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 25894.58 23593.07 32096.16 32681.20 35890.42 35196.84 28990.72 28197.14 17997.13 22590.47 24699.11 28394.04 20498.25 28198.91 194
1112_ss94.12 25993.42 26696.23 21798.59 14790.85 23894.24 26498.85 9885.49 33092.97 33194.94 31986.01 29399.64 14891.78 24797.92 29298.20 272
PS-MVSNAJ94.10 26094.47 24093.00 32397.35 28284.88 33491.86 32997.84 24591.96 26494.17 29692.50 35495.82 11099.71 10891.27 25697.48 31494.40 361
CHOSEN 1792x268894.10 26093.41 26796.18 22199.16 7690.04 25092.15 32498.68 14879.90 36096.22 23897.83 16587.92 28299.42 21489.18 30299.65 7399.08 166
MG-MVS94.08 26294.00 25594.32 29797.09 29985.89 32093.19 30695.96 30892.52 25594.93 28097.51 19489.54 26298.77 31687.52 32697.71 30298.31 260
PLCcopyleft91.02 1694.05 26392.90 27697.51 13698.00 21595.12 12894.25 26398.25 20286.17 32391.48 34995.25 31391.01 23999.19 27085.02 34696.69 33298.22 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t93.96 26493.22 27196.19 22099.06 9590.97 23795.99 17298.94 7773.88 37393.43 32496.93 24192.38 21799.37 23689.09 30399.28 19198.25 268
PVSNet_Blended93.96 26493.65 26394.91 27197.79 24387.40 30091.43 33498.68 14884.50 34394.51 28994.48 33093.04 19599.30 25389.77 29498.61 26798.02 289
AUN-MVS93.95 26692.69 28497.74 11897.80 23795.38 11095.57 19895.46 32091.26 27692.64 33996.10 29174.67 34899.55 17993.72 21596.97 32398.30 262
lupinMVS93.77 26793.28 26895.24 26097.68 25887.81 29192.12 32596.05 30484.52 34294.48 29195.06 31786.90 28899.63 15093.62 21899.13 21098.27 266
PatchT93.75 26893.57 26494.29 29995.05 35087.32 30296.05 16792.98 34197.54 7094.25 29498.72 6575.79 34599.24 26595.92 10195.81 34396.32 343
EPNet93.72 26992.62 28797.03 17487.61 38292.25 21196.27 15491.28 35496.74 9787.65 36897.39 20785.00 29999.64 14892.14 23899.48 13299.20 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 26992.65 28596.91 18098.93 10891.81 22691.23 34198.52 16982.69 34896.46 22596.52 26980.38 32199.90 1490.36 28698.79 25099.03 174
DPM-MVS93.68 27192.77 28396.42 20997.91 22192.54 20591.17 34297.47 27084.99 33993.08 33094.74 32389.90 25699.00 29587.54 32598.09 28797.72 302
PMMVS293.66 27294.07 25392.45 33497.57 26680.67 36086.46 36796.00 30693.99 21497.10 18397.38 20989.90 25697.82 36188.76 30799.47 13498.86 205
iter_conf0593.65 27393.05 27295.46 25396.13 33087.45 29895.95 17898.22 20592.66 25497.04 19097.89 15763.52 37599.72 9296.19 8599.82 3899.21 135
OpenMVS_ROBcopyleft91.80 1493.64 27493.05 27295.42 25597.31 29091.21 23395.08 22896.68 29881.56 35296.88 20496.41 27390.44 24799.25 26485.39 34297.67 30695.80 349
Patchmatch-test93.60 27593.25 27094.63 28496.14 32987.47 29796.04 16894.50 32893.57 22396.47 22496.97 23876.50 34098.61 33290.67 27798.41 27697.81 300
WTY-MVS93.55 27693.00 27595.19 26297.81 23387.86 28893.89 28396.00 30689.02 29694.07 30095.44 31286.27 29199.33 24687.69 32196.82 32898.39 249
Test_1112_low_res93.53 27792.86 27795.54 24998.60 14588.86 26992.75 31298.69 14682.66 34992.65 33896.92 24384.75 30199.56 17590.94 26497.76 29898.19 273
MIMVSNet93.42 27892.86 27795.10 26598.17 19588.19 28098.13 5493.69 33292.07 26195.04 27798.21 11880.95 31999.03 29481.42 35998.06 28898.07 279
FMVSNet593.39 27992.35 28996.50 20395.83 33690.81 24197.31 10398.27 19992.74 25396.27 23598.28 10662.23 37699.67 13790.86 26699.36 16799.03 174
SCA93.38 28093.52 26592.96 32596.24 32081.40 35793.24 30494.00 33191.58 27194.57 28696.97 23887.94 27899.42 21489.47 29897.66 30798.06 283
tttt051793.31 28192.56 28895.57 24598.71 13087.86 28897.44 9787.17 37195.79 14897.47 16696.84 24764.12 37399.81 4096.20 8499.32 18499.02 176
CR-MVSNet93.29 28292.79 28094.78 28095.44 34588.15 28296.18 16197.20 27584.94 34094.10 29898.57 7577.67 33299.39 23095.17 14895.81 34396.81 333
cl2293.25 28392.84 27994.46 29394.30 35886.00 31991.09 34596.64 29990.74 28095.79 25696.31 27978.24 32998.77 31694.15 19798.34 27798.62 230
wuyk23d93.25 28395.20 20087.40 35796.07 33195.38 11097.04 11994.97 32395.33 16699.70 598.11 12898.14 1391.94 37577.76 36899.68 6974.89 375
miper_enhance_ethall93.14 28592.78 28294.20 30093.65 36685.29 32789.97 35597.85 24385.05 33796.15 24394.56 32685.74 29499.14 27893.74 21398.34 27798.17 275
baseline193.14 28592.64 28694.62 28597.34 28687.20 30496.67 14093.02 34094.71 19096.51 22395.83 30181.64 31298.60 33490.00 29188.06 37198.07 279
X-MVStestdata92.86 28790.83 31198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23136.50 37796.49 8899.72 9295.66 11699.37 16499.45 75
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30391.83 26794.05 30194.57 32576.01 34498.97 30392.46 23697.34 31998.36 256
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18893.57 36894.67 14394.21 26797.67 25580.36 35993.61 31696.60 26382.85 31097.35 36584.86 34798.78 25198.29 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 29091.76 29795.56 24798.42 16988.23 27996.03 16987.35 37094.04 21396.56 22095.47 31164.03 37499.77 6094.78 17199.11 21498.68 226
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26897.31 10394.62 32685.92 32690.50 35596.84 24785.05 29899.40 22583.77 35495.78 34696.43 342
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32589.96 28994.95 27893.87 33690.24 25398.61 33281.18 36094.88 35395.45 355
PMMVS92.39 29391.08 30596.30 21693.12 37092.81 20290.58 35095.96 30879.17 36391.85 34892.27 35590.29 25298.66 32989.85 29396.68 33397.43 312
131492.38 29492.30 29092.64 33095.42 34785.15 33095.86 18196.97 28685.40 33490.62 35293.06 34591.12 23897.80 36286.74 33195.49 35094.97 358
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26492.27 32392.88 34284.39 34595.29 27096.35 27885.66 29596.74 37184.53 34997.56 31097.05 320
CVMVSNet92.33 29692.79 28090.95 34397.26 29175.84 37395.29 21692.33 34881.86 35096.27 23598.19 11981.44 31498.46 34394.23 19498.29 28098.55 237
PAPR92.22 29791.27 30395.07 26695.73 34088.81 27091.97 32897.87 24285.80 32890.91 35192.73 35191.16 23798.33 35279.48 36295.76 34798.08 277
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33476.97 37092.54 34299.18 3089.20 27098.55 33883.88 35298.60 26997.51 310
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31389.33 29494.21 29592.74 35089.60 26098.24 35481.68 35894.66 35594.66 359
PCF-MVS89.43 1892.12 30090.64 31496.57 20097.80 23793.48 18989.88 35998.45 17574.46 37296.04 24695.68 30490.71 24499.31 25073.73 37199.01 22796.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.03 30191.43 29993.82 30498.19 19084.61 33796.27 15490.39 36196.81 9596.37 22993.11 34073.44 35799.49 19580.32 36197.95 29197.36 314
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 33099.18 27190.84 26794.57 35898.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 16079.32 36292.16 34591.44 36489.22 26998.12 35890.80 26997.47 31696.82 332
JIA-IIPM91.79 30490.69 31395.11 26493.80 36590.98 23694.16 26991.78 35296.38 11290.30 35799.30 2072.02 36098.90 30588.28 31590.17 36895.45 355
thres100view90091.76 30591.26 30493.26 31598.21 18884.50 33896.39 14790.39 36196.87 9396.33 23093.08 34473.44 35799.42 21478.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29997.36 314
tfpn200view991.55 30791.00 30693.21 31898.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29995.85 347
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31283.46 34692.69 33696.84 24779.15 32699.41 22385.66 33990.52 36698.04 287
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22881.74 37694.90 32281.36 31599.11 28388.28 31598.87 24198.21 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25296.41 31689.15 26591.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21194.16 19696.61 33497.82 298
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26878.04 36587.17 36694.60 32784.65 34192.34 34392.20 35687.37 28698.47 34285.17 34597.69 30497.96 291
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36199.30 25391.25 25893.87 35997.87 295
thres20091.00 31390.42 31792.77 32897.47 27683.98 34494.01 27791.18 35695.12 17695.44 26791.21 36673.93 35099.31 25077.76 36897.63 30995.01 357
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32698.70 32385.66 33990.52 36698.04 287
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27991.91 34796.26 28077.19 33898.86 31089.38 30089.85 36996.56 340
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16890.59 27898.67 26097.50 311
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33288.01 30892.32 34496.86 24577.45 33498.82 31191.04 26187.01 37297.04 321
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26294.71 28391.14 36773.92 35194.48 37483.75 35592.94 36197.16 317
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29564.72 37590.62 35292.77 34992.54 21198.39 34779.30 36395.56 34992.12 368
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30498.03 28995.92 346
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 28181.44 35487.44 36993.15 33973.99 34999.47 20188.69 30999.07 22096.52 341
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26289.97 35990.77 36973.92 35198.57 33591.88 24497.36 31796.92 324
FPMVS89.92 32388.63 33193.82 30498.37 17296.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36491.13 37671.91 37496.16 34293.39 366
test250689.86 32489.16 32991.97 33898.95 10576.83 37098.54 2461.07 38496.20 12197.07 18899.16 3355.19 38399.69 12596.43 7899.83 3699.38 94
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36398.89 30688.59 31192.63 36396.87 327
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36299.33 24686.01 33494.60 35797.72 302
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18793.71 31193.11 34075.31 34696.81 36885.81 33696.81 32991.77 370
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36598.10 35990.75 27189.32 37096.98 322
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19292.63 34091.81 36076.30 34297.02 36683.83 35396.90 32691.48 371
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16687.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 4084.72 30298.23 35582.52 35796.59 33590.69 373
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 33073.84 37489.26 36295.61 30873.64 35398.30 35384.13 35086.20 37395.57 354
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24497.36 31796.92 324
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31779.52 36183.82 37393.05 34680.57 32098.41 34562.29 37792.79 36295.71 350
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26596.92 32496.64 337
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20287.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30996.63 37273.44 37266.86 37893.40 365
EGC-MVSNET83.08 34377.93 34698.53 5299.57 1897.55 2798.33 3898.57 1664.71 37910.38 38098.90 5595.60 12399.50 19395.69 11299.61 8498.55 237
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30514.32 37864.27 37991.69 36273.45 35688.05 37776.06 37066.94 37793.54 363
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2250.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.59 1698.20 499.03 799.25 1598.96 1898.87 43
MSC_two_6792asdad98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
PC_three_145287.24 31498.37 8297.44 20097.00 5496.78 37092.01 23999.25 19599.21 135
No_MVS98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
test_one_060199.05 9995.50 10598.87 9197.21 8698.03 12798.30 10196.93 60
eth-test20.00 387
eth-test0.00 387
ZD-MVS98.43 16895.94 8298.56 16790.72 28196.66 21497.07 23195.02 14499.74 8291.08 26098.93 235
RE-MVS-def97.88 5498.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.94 5895.49 12599.20 20099.26 126
IU-MVS99.22 6495.40 10898.14 22185.77 32998.36 8595.23 14599.51 12099.49 59
OPU-MVS97.64 12798.01 21195.27 11896.79 13097.35 21296.97 5698.51 34191.21 25999.25 19599.14 151
test_241102_TWO98.83 11096.11 12698.62 5898.24 11296.92 6299.72 9295.44 13299.49 12899.49 59
test_241102_ONE99.22 6495.35 11398.83 11096.04 13199.08 3498.13 12497.87 2099.33 246
9.1496.69 14398.53 15396.02 17098.98 6993.23 23497.18 17797.46 19896.47 9099.62 15892.99 22999.32 184
save fliter98.48 16294.71 13994.53 25498.41 18395.02 181
test_0728_THIRD96.62 9998.40 7998.28 10697.10 4599.71 10895.70 11099.62 7899.58 33
test_0728_SECOND98.25 7899.23 6195.49 10696.74 13398.89 8399.75 7295.48 12899.52 11599.53 47
test072699.24 5995.51 10296.89 12598.89 8395.92 13998.64 5798.31 9797.06 50
GSMVS98.06 283
test_part299.03 10196.07 7698.08 121
sam_mvs177.80 33198.06 283
sam_mvs77.38 335
ambc96.56 20198.23 18791.68 22897.88 6898.13 22398.42 7898.56 7794.22 17099.04 29194.05 20399.35 17298.95 183
MTGPAbinary98.73 133
test_post194.98 23610.37 38176.21 34399.04 29189.47 298
test_post10.87 38076.83 33999.07 288
patchmatchnet-post96.84 24777.36 33699.42 214
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
MTMP96.55 14174.60 380
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
test9_res91.29 25598.89 24099.00 177
TEST997.84 22995.23 12093.62 29198.39 18686.81 31993.78 30795.99 29394.68 15499.52 188
test_897.81 23395.07 12993.54 29498.38 18887.04 31793.71 31195.96 29794.58 15999.52 188
agg_prior290.34 28798.90 23799.10 165
agg_prior97.80 23794.96 13198.36 19093.49 32099.53 184
TestCases98.06 9599.08 9296.16 7199.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
test_prior495.38 11093.61 293
test_prior293.33 30294.21 20694.02 30296.25 28193.64 18491.90 24298.96 229
test_prior97.46 14797.79 24394.26 16098.42 18199.34 24398.79 211
旧先验293.35 30177.95 36895.77 26098.67 32890.74 274
新几何293.43 296
新几何197.25 16398.29 17794.70 14297.73 25177.98 36694.83 28196.67 26092.08 22399.45 20888.17 31798.65 26497.61 307
旧先验197.80 23793.87 17297.75 25097.04 23493.57 18698.68 25998.72 221
无先验93.20 30597.91 23980.78 35699.40 22587.71 31997.94 292
原ACMM292.82 310
原ACMM196.58 19898.16 19792.12 21798.15 22085.90 32793.49 32096.43 27292.47 21499.38 23387.66 32298.62 26698.23 269
test22298.17 19593.24 19492.74 31497.61 26675.17 37194.65 28596.69 25990.96 24198.66 26297.66 305
testdata299.46 20487.84 318
segment_acmp95.34 132
testdata95.70 24298.16 19790.58 24497.72 25280.38 35895.62 26397.02 23592.06 22498.98 29989.06 30598.52 27197.54 309
testdata192.77 31193.78 219
test1297.46 14797.61 26594.07 16597.78 24993.57 31893.31 19099.42 21498.78 25198.89 198
plane_prior798.70 13294.67 143
plane_prior698.38 17194.37 15391.91 230
plane_prior598.75 12999.46 20492.59 23499.20 20099.28 121
plane_prior496.77 253
plane_prior394.51 14795.29 16996.16 241
plane_prior296.50 14396.36 114
plane_prior198.49 160
plane_prior94.29 15595.42 20394.31 20398.93 235
n20.00 388
nn0.00 388
door-mid98.17 215
lessismore_v097.05 17299.36 4792.12 21784.07 37598.77 5398.98 4785.36 29799.74 8297.34 4999.37 16499.30 113
LGP-MVS_train98.74 3599.15 7997.02 4499.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
test1198.08 229
door97.81 248
HQP5-MVS92.47 207
HQP-NCC97.85 22594.26 26093.18 23792.86 333
ACMP_Plane97.85 22594.26 26093.18 23792.86 333
BP-MVS90.51 282
HQP4-MVS92.87 33299.23 26799.06 170
HQP3-MVS98.43 17898.74 255
HQP2-MVS90.33 248
NP-MVS98.14 20093.72 18095.08 315
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32885.50 34197.82 298
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34198.55 33888.85 30696.43 336
ACMMP++_ref99.52 115
ACMMP++99.55 104
Test By Simon94.51 162
ITE_SJBPF97.85 11198.64 13796.66 5698.51 17195.63 15497.22 17397.30 21795.52 12598.55 33890.97 26398.90 23798.34 257
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34770.63 37959.23 37884.94 37475.62 374