This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8199.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 15999.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 5999.95 2299.73 1999.96 2599.75 43
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7199.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9699.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20399.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 8999.96 1198.85 6999.99 599.86 18
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8699.96 1199.53 30100.00 199.93 8
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21499.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7199.97 498.78 7299.93 4499.72 45
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4399.80 18498.24 10599.84 8599.52 118
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8299.96 1198.78 7299.93 4499.77 35
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4699.73 23899.17 5199.92 5599.76 39
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7199.95 2298.89 6899.95 3299.81 28
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15599.90 6499.21 4899.87 7799.54 108
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19599.92 5099.44 3699.92 5599.68 54
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7199.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17797.93 18099.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14499.93 4098.90 6699.93 4499.77 35
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 10899.63 1799.52 6299.44 7198.25 6999.88 8399.09 5499.84 8599.62 67
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1197.25 16099.92 5599.57 91
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17099.83 15499.21 4899.91 6399.77 35
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15599.85 12099.02 6099.94 4099.80 29
test_fmvsmvis_n_192099.26 3299.49 1298.54 20399.66 6496.97 21898.00 17399.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9399.54 7899.31 5299.62 5199.53 5497.36 14299.86 10899.24 4799.71 15499.39 175
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13299.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22399.91 5999.32 4099.95 3299.70 51
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19698.84 8399.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12399.92 5599.57 91
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20097.82 19699.76 2998.73 10699.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14799.42 4199.33 9799.26 10097.01 16399.94 3598.74 7699.93 4499.79 30
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21497.80 19999.76 2998.70 10999.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23297.97 17999.86 1398.22 14099.88 1799.71 1798.59 4999.84 13799.73 1999.98 1299.98 2
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13099.42 12199.42 4199.36 9299.06 14098.38 6299.95 2298.34 10199.90 6999.57 91
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11299.21 6299.43 7699.55 4897.82 10599.86 10898.42 9899.89 7399.41 164
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24597.87 19199.85 1598.56 12199.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7599.94 297.80 17299.91 1199.67 2597.15 15498.91 38899.76 1699.56 21099.92 9
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17699.82 16498.69 8199.88 7499.76 39
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17598.85 8199.62 4898.48 12499.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4399.93 4098.91 6599.85 8198.88 283
test_fmvs399.12 5199.41 1998.25 22999.76 3195.07 28299.05 6499.94 297.78 17499.82 2199.84 298.56 5299.71 24699.96 199.96 2599.97 3
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17798.00 17399.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23297.79 20099.82 2298.21 14199.81 2399.53 5498.46 5899.84 13799.70 2299.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 24897.74 20899.81 2498.55 12299.85 1999.55 4898.60 4899.84 13799.69 2499.98 1299.89 11
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31699.49 3199.59 5299.65 3094.79 25699.95 2299.45 3599.96 2599.88 14
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8398.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10199.58 5599.11 7199.53 6099.18 11698.81 3299.67 26796.71 20999.77 12499.50 123
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 8899.56 6998.42 12598.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7499.51 33297.70 14099.73 14297.89 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 6099.16 4598.57 19599.47 12496.31 24098.90 7699.47 10399.03 8799.52 6299.57 4296.93 16699.81 17799.60 2599.98 1299.60 74
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21698.94 16498.86 19798.75 3699.82 16497.53 14799.71 15499.56 97
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 7899.48 9697.57 19099.35 9499.24 10597.83 10299.89 7497.88 12999.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 18998.04 16699.59 5398.15 15299.40 8399.36 8298.58 5199.76 22198.78 7299.68 16799.59 80
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8599.56 6999.09 8199.33 9799.19 11398.40 6199.72 24595.98 25799.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24199.57 6299.37 4599.21 12099.61 3796.76 17999.83 15498.06 11699.83 9299.71 46
v1098.97 6699.11 5298.55 20099.44 12996.21 24498.90 7699.55 7398.73 10699.48 6899.60 3996.63 18699.83 15499.70 2299.99 599.61 73
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17299.46 10597.56 19299.54 5699.50 5998.97 2399.84 13798.06 11699.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 6899.02 6098.76 17099.38 14097.26 20298.49 11899.50 8798.86 10199.19 12299.06 14098.23 7199.69 25598.71 7999.76 13599.33 201
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19797.82 19699.57 6299.17 6999.35 9499.17 12098.35 6699.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 19899.10 7899.72 3198.76 21696.38 19799.86 10898.00 12199.82 9599.50 123
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24699.25 5899.54 5699.37 7997.04 15999.80 18497.89 12699.52 22299.35 194
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12399.33 15299.63 1799.48 6899.15 12697.23 15099.75 22897.17 16399.66 17899.63 66
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15799.31 15998.03 15599.66 4299.02 15298.36 6399.88 8396.91 18599.62 18799.41 164
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16199.37 13297.62 18499.04 14398.96 17498.84 3099.79 19797.43 15199.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 7598.70 9299.51 4398.43 31799.15 4799.43 1199.32 15498.17 14899.26 11299.02 15298.18 7899.88 8397.07 17399.45 23699.49 127
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11299.45 3699.51 6699.24 10598.20 7799.86 10895.92 25999.69 16299.04 255
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12699.20 19898.83 10598.89 17098.90 18796.98 16599.92 5097.16 16499.70 15999.56 97
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22298.58 10399.10 22496.49 26899.96 499.81 598.18 7899.45 34498.97 6399.79 11499.83 22
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18498.43 12699.35 14199.47 3499.28 10699.05 14796.72 18299.82 16498.09 11499.36 24799.59 80
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21099.38 12898.93 9699.12 12898.73 21996.77 17799.86 10898.63 8599.80 10999.46 146
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21499.40 12499.14 7099.06 13698.59 24696.71 18399.93 4098.57 8899.77 12499.53 115
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 11899.33 15298.64 11099.03 14698.98 16997.89 9999.85 12096.54 22599.42 24099.46 146
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 12899.45 10898.28 13798.98 15099.19 11397.76 10899.58 30996.57 21799.55 21398.97 267
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17699.68 4297.62 18499.34 9699.18 11697.54 12799.77 21597.79 13499.74 13999.04 255
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23399.25 18798.84 10499.06 13698.76 21696.76 17999.93 4098.57 8899.77 12499.50 123
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.49 13699.86 10896.56 22199.39 24399.45 150
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17099.25 4099.30 16798.57 11998.55 22099.33 8997.95 9799.90 6497.16 16499.67 17399.44 154
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 11896.74 25898.61 20998.38 26998.62 4699.87 10096.47 22999.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14199.31 15997.92 16398.90 16898.90 18798.00 9299.88 8396.15 25099.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 9099.11 5297.78 26399.56 8993.67 32799.06 6299.86 1399.50 3099.66 4299.26 10097.21 15299.99 298.00 12199.91 6399.68 54
V4298.78 9098.78 8198.76 17099.44 12997.04 21598.27 13899.19 20297.87 16799.25 11699.16 12296.84 17099.78 20899.21 4899.84 8599.46 146
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20797.78 20199.24 19299.04 8699.41 8098.90 18797.65 11599.76 22197.70 14099.79 11499.39 175
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 16998.84 27097.97 15899.08 13499.02 15297.61 12199.88 8396.99 17999.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12599.34 14799.28 5698.95 15798.91 18498.34 6799.79 19795.63 27499.91 6398.86 285
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19699.25 18796.94 24798.78 18899.12 13298.02 9099.84 13797.13 16999.67 17399.59 80
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31399.37 4599.70 3599.65 3092.65 29799.93 4099.04 5899.84 8599.60 74
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 7899.37 13297.16 23798.82 18599.01 16197.71 11199.87 10096.29 24099.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29398.63 24097.50 13399.83 15496.79 19899.53 21999.56 97
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25098.74 8598.64 29499.74 699.67 4199.24 10594.57 26099.95 2299.11 5299.24 26799.82 25
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13399.29 17598.29 13598.88 17498.85 20097.53 12999.87 10096.14 25199.31 25599.48 137
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11099.31 15997.47 20098.58 21598.50 25897.97 9699.85 12096.57 21799.59 19899.53 115
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14199.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
test_fmvs298.70 10398.97 6597.89 25699.54 9894.05 30998.55 10699.92 696.78 25699.72 3199.78 896.60 18799.67 26799.91 299.90 6999.94 7
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11099.31 15997.47 20098.56 21898.54 25097.75 10999.88 8396.57 21799.59 19899.58 86
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 8999.36 13697.54 19598.30 24098.40 26697.86 10199.89 7496.53 22699.72 14999.56 97
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34698.86 10198.87 17897.62 32398.63 4598.96 38599.41 3798.29 33698.45 326
Anonymous2024052198.69 10698.87 7198.16 23799.77 2895.11 28199.08 5899.44 11299.34 4999.33 9799.55 4894.10 27499.94 3599.25 4599.96 2599.42 161
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11099.31 15997.46 20598.44 23098.51 25497.83 10299.88 8396.46 23099.58 20399.58 86
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23797.23 25798.87 26199.20 6499.19 12298.99 16597.30 14499.85 12098.77 7599.79 11499.65 62
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20298.99 9098.07 25799.28 9697.11 15799.84 13796.84 19699.32 25399.47 144
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12399.29 17597.28 22298.11 25498.39 26798.00 9299.87 10096.86 19599.64 18199.55 104
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23697.23 25798.86 26699.20 6499.18 12698.97 17197.29 14699.85 12098.72 7899.78 11999.64 63
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10599.57 6297.87 16798.85 17998.04 29897.66 11499.84 13796.72 20799.81 9999.13 244
test_f98.67 11498.87 7198.05 24699.72 4495.59 26098.51 11599.81 2496.30 28099.78 2699.82 496.14 20498.63 39399.82 899.93 4499.95 6
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14199.49 9497.01 24498.69 19898.88 19498.00 9299.89 7495.87 26399.59 19899.58 86
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 11899.83 2098.37 12699.69 3799.46 6698.21 7699.92 5094.13 31499.30 25898.91 279
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9799.24 19297.47 20098.09 25698.68 22897.62 12099.89 7496.22 24599.62 18799.57 91
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11598.94 24896.96 24599.24 11798.89 19397.83 10299.81 17796.88 19299.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 12098.38 14299.36 6497.25 38099.38 899.12 5799.32 15499.21 6298.44 23098.88 19497.31 14399.80 18496.58 21599.34 25198.92 276
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10699.57 6297.72 17898.90 16899.26 10096.12 20699.52 32895.72 27099.71 15499.32 203
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 13999.25 18797.44 20898.67 20098.39 26797.68 11299.85 12096.00 25599.51 22499.52 118
v119298.60 12498.66 9898.41 21699.27 16195.88 25497.52 23599.36 13697.41 20999.33 9799.20 11296.37 19899.82 16499.57 2799.92 5599.55 104
v114498.60 12498.66 9898.41 21699.36 14795.90 25397.58 22999.34 14797.51 19699.27 10899.15 12696.34 20099.80 18499.47 3499.93 4499.51 120
DPE-MVScopyleft98.59 12698.26 15799.57 1699.27 16199.15 4797.01 26999.39 12697.67 18099.44 7598.99 16597.53 12999.89 7495.40 28199.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 12798.23 16099.60 1199.69 5699.35 1297.16 26499.38 12894.87 32198.97 15498.99 16598.01 9199.88 8397.29 15799.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26699.18 20697.10 24098.75 19498.92 18398.18 7899.65 28396.68 21199.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10297.01 34499.59 2399.11 12999.27 9894.82 25199.79 19798.34 10199.63 18499.34 196
v2v48298.56 12898.62 10498.37 22099.42 13595.81 25797.58 22999.16 21397.90 16599.28 10699.01 16195.98 21799.79 19799.33 3999.90 6999.51 120
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21199.46 10597.25 22598.98 15098.99 16597.54 12799.84 13795.88 26099.74 13999.23 224
v124098.55 13298.62 10498.32 22399.22 17195.58 26297.51 23799.45 10897.16 23799.45 7499.24 10596.12 20699.85 12099.60 2599.88 7499.55 104
IterMVS-LS98.55 13298.70 9298.09 23999.48 12294.73 29097.22 26099.39 12698.97 9299.38 8799.31 9396.00 21299.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 13498.57 11298.45 21299.21 17395.98 25197.63 22299.36 13697.15 23999.32 10399.18 11695.84 22499.84 13799.50 3299.91 6399.54 108
v192192098.54 13498.60 10998.38 21999.20 17795.76 25997.56 23199.36 13697.23 23199.38 8799.17 12096.02 21099.84 13799.57 2799.90 6999.54 108
SF-MVS98.53 13698.27 15699.32 8099.31 15498.75 8198.19 14699.41 12296.77 25798.83 18298.90 18797.80 10699.82 16495.68 27399.52 22299.38 182
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32599.50 8797.30 22099.05 14198.98 16999.35 1299.32 36395.72 27099.68 16799.18 236
UGNet98.53 13698.45 13098.79 16397.94 34796.96 22099.08 5898.54 29899.10 7896.82 33199.47 6596.55 18999.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS98.52 13998.55 11398.43 21499.65 6595.59 26098.52 11098.77 28199.65 1499.52 6299.00 16494.34 26699.93 4098.65 8398.83 31199.76 39
patch_mono-298.51 14098.63 10298.17 23599.38 14094.78 28797.36 24799.69 3798.16 15198.49 22699.29 9597.06 15899.97 498.29 10499.91 6399.76 39
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29399.48 9697.32 21899.11 12998.61 24499.33 1399.30 36696.23 24498.38 33299.28 214
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21398.61 10099.13 22098.59 11699.19 12299.28 9694.14 27099.82 16497.97 12399.80 10999.29 212
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17397.16 26499.28 17895.54 30399.42 7999.19 11397.27 14799.63 28997.89 12699.97 1999.20 229
MP-MVScopyleft98.46 14498.09 17599.54 2799.57 8199.22 2798.50 11799.19 20297.61 18797.58 28998.66 23397.40 14099.88 8394.72 29599.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 14598.60 10998.00 24999.44 12994.98 28397.44 24399.06 22998.30 13299.32 10398.97 17196.65 18599.62 29298.37 9999.85 8199.39 175
AllTest98.44 14698.20 16299.16 10599.50 10898.55 9798.25 14099.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
VNet98.42 14798.30 15298.79 16398.79 26497.29 19998.23 14198.66 29199.31 5298.85 17998.80 20994.80 25499.78 20898.13 11199.13 28499.31 207
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20399.32 2398.81 27597.66 18198.62 20799.40 7896.82 17399.80 18495.88 26099.51 22498.75 303
ACMP95.32 1598.41 14898.09 17599.36 6499.51 10598.79 8097.68 21499.38 12895.76 29798.81 18798.82 20698.36 6399.82 16494.75 29299.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192098.40 15098.92 6896.81 32699.74 3790.76 37598.15 15199.91 798.33 12999.89 1599.55 4895.07 24499.88 8399.76 1699.93 4499.79 30
SMA-MVScopyleft98.40 15098.03 18299.51 4399.16 19099.21 2898.05 16499.22 19594.16 33798.98 15099.10 13697.52 13199.79 19796.45 23199.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 15098.00 18499.61 999.57 8199.25 2498.57 10499.35 14197.55 19499.31 10597.71 31694.61 25999.88 8396.14 25199.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 15098.68 9597.54 28798.96 22897.99 14897.88 18899.36 13698.20 14599.63 4899.04 14998.76 3595.33 40596.56 22199.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 15098.51 11898.04 24799.10 20194.73 29097.20 26198.87 26198.97 9299.06 13699.02 15296.00 21299.80 18498.58 8699.82 9599.60 74
WR-MVS98.40 15098.19 16499.03 13099.00 22197.65 18196.85 27998.94 24898.57 11998.89 17098.50 25895.60 22999.85 12097.54 14699.85 8199.59 80
new-patchmatchnet98.35 15698.74 8397.18 30699.24 16692.23 35496.42 30199.48 9698.30 13299.69 3799.53 5497.44 13899.82 16498.84 7099.77 12499.49 127
canonicalmvs98.34 15798.26 15798.58 19398.46 31497.82 16898.96 7299.46 10599.19 6897.46 30095.46 37798.59 4999.46 34398.08 11598.71 31998.46 324
test_cas_vis1_n_192098.33 15898.68 9597.27 30399.69 5692.29 35298.03 16799.85 1597.62 18499.96 499.62 3493.98 27599.74 23399.52 3199.86 8099.79 30
testgi98.32 15998.39 14098.13 23899.57 8195.54 26397.78 20199.49 9497.37 21399.19 12297.65 32098.96 2499.49 33596.50 22898.99 30099.34 196
DeepPCF-MVS96.93 598.32 15998.01 18399.23 9798.39 32298.97 6695.03 36099.18 20696.88 25099.33 9798.78 21298.16 8299.28 37096.74 20499.62 18799.44 154
test_vis1_n98.31 16198.50 12097.73 27299.76 3194.17 30798.68 9499.91 796.31 27899.79 2599.57 4292.85 29499.42 34999.79 1399.84 8599.60 74
MVS_111021_LR98.30 16298.12 17398.83 15599.16 19098.03 14696.09 32199.30 16797.58 18998.10 25598.24 28198.25 6999.34 36096.69 21099.65 17999.12 245
EPP-MVSNet98.30 16298.04 18199.07 12099.56 8997.83 16599.29 3398.07 32099.03 8798.59 21399.13 13092.16 30399.90 6496.87 19399.68 16799.49 127
DeepC-MVS_fast96.85 698.30 16298.15 17098.75 17398.61 29597.23 20397.76 20699.09 22697.31 21998.75 19498.66 23397.56 12599.64 28696.10 25499.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 16597.95 18899.34 7398.44 31699.16 4398.12 15499.38 12896.01 28998.06 25898.43 26497.80 10699.67 26795.69 27299.58 20399.20 229
Fast-Effi-MVS+-dtu98.27 16698.09 17598.81 15898.43 31798.11 13297.61 22599.50 8798.64 11097.39 30597.52 32898.12 8599.95 2296.90 19098.71 31998.38 334
DELS-MVS98.27 16698.20 16298.48 20998.86 24896.70 23095.60 34299.20 19897.73 17698.45 22998.71 22297.50 13399.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 16897.90 19499.35 7098.02 34299.49 598.02 16999.16 21398.29 13597.64 28497.99 30096.44 19499.95 2296.66 21298.93 30798.60 318
MVSFormer98.26 16898.43 13397.77 26498.88 24693.89 32199.39 1799.56 6999.11 7198.16 24898.13 28893.81 27899.97 499.26 4399.57 20799.43 158
MVS_111021_HR98.25 17098.08 17898.75 17399.09 20497.46 19095.97 32599.27 18197.60 18897.99 26398.25 28098.15 8499.38 35596.87 19399.57 20799.42 161
TAMVS98.24 17198.05 18098.80 16099.07 20897.18 20997.88 18898.81 27596.66 26299.17 12799.21 11094.81 25399.77 21596.96 18399.88 7499.44 154
MM98.22 17297.99 18598.91 14798.66 29196.97 21897.89 18794.44 37999.54 2798.95 15799.14 12993.50 28299.92 5099.80 1299.96 2599.85 19
diffmvspermissive98.22 17298.24 15998.17 23599.00 22195.44 26896.38 30399.58 5597.79 17398.53 22398.50 25896.76 17999.74 23397.95 12599.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 17498.21 16198.20 23399.51 10595.43 26998.13 15299.32 15496.16 28398.93 16598.82 20696.00 21299.83 15497.32 15699.73 14299.36 190
VDDNet98.21 17497.95 18899.01 13399.58 7797.74 17599.01 6697.29 33999.67 1298.97 15499.50 5990.45 31799.80 18497.88 12999.20 27399.48 137
IS-MVSNet98.19 17697.90 19499.08 11899.57 8197.97 15299.31 2798.32 30899.01 8998.98 15099.03 15191.59 30899.79 19795.49 27999.80 10999.48 137
MVS_Test98.18 17798.36 14497.67 27498.48 31294.73 29098.18 14799.02 24097.69 17998.04 26199.11 13397.22 15199.56 31498.57 8898.90 30998.71 306
TSAR-MVS + GP.98.18 17797.98 18698.77 16998.71 27497.88 16096.32 30798.66 29196.33 27699.23 11998.51 25497.48 13799.40 35197.16 16499.46 23499.02 258
CNVR-MVS98.17 17997.87 19799.07 12098.67 28698.24 12097.01 26998.93 25097.25 22597.62 28598.34 27497.27 14799.57 31196.42 23299.33 25299.39 175
PVSNet_Blended_VisFu98.17 17998.15 17098.22 23299.73 3895.15 27897.36 24799.68 4294.45 33198.99 14999.27 9896.87 16999.94 3597.13 16999.91 6399.57 91
MVS_030498.10 18197.88 19698.76 17098.82 25796.50 23497.90 18591.35 39799.56 2698.32 23999.13 13096.06 20899.93 4099.84 799.97 1999.85 19
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20499.13 5597.52 23598.75 28597.46 20596.90 32697.83 31196.01 21199.84 13795.82 26799.35 24999.46 146
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 19998.93 7197.76 20699.28 17894.97 31898.72 19798.77 21497.04 15999.85 12093.79 32499.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs1_n98.09 18498.28 15497.52 28999.68 5893.47 33198.63 9799.93 495.41 31099.68 3999.64 3291.88 30799.48 33899.82 899.87 7799.62 67
MVP-Stereo98.08 18597.92 19298.57 19598.96 22896.79 22697.90 18599.18 20696.41 27498.46 22898.95 17895.93 22099.60 29996.51 22798.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 18698.08 17898.04 24799.41 13794.59 29694.59 37599.40 12497.50 19798.82 18598.83 20396.83 17299.84 13797.50 14999.81 9999.71 46
ETV-MVS98.03 18797.86 19898.56 19998.69 28398.07 14197.51 23799.50 8798.10 15397.50 29795.51 37498.41 6099.88 8396.27 24199.24 26797.71 370
Effi-MVS+98.02 18897.82 20098.62 18698.53 30997.19 20897.33 24999.68 4297.30 22096.68 33697.46 33298.56 5299.80 18496.63 21398.20 33998.86 285
MSLP-MVS++98.02 18898.14 17297.64 27898.58 30295.19 27797.48 23999.23 19497.47 20097.90 26798.62 24297.04 15998.81 39197.55 14499.41 24198.94 274
EIA-MVS98.00 19097.74 20498.80 16098.72 27198.09 13598.05 16499.60 5297.39 21196.63 33895.55 37397.68 11299.80 18496.73 20699.27 26298.52 322
MCST-MVS98.00 19097.63 21599.10 11499.24 16698.17 12796.89 27898.73 28895.66 29897.92 26597.70 31897.17 15399.66 27896.18 24999.23 26999.47 144
K. test v398.00 19097.66 21299.03 13099.79 2497.56 18599.19 4992.47 39199.62 2099.52 6299.66 2789.61 32299.96 1199.25 4599.81 9999.56 97
HQP_MVS97.99 19397.67 20998.93 14499.19 18097.65 18197.77 20399.27 18198.20 14597.79 27697.98 30194.90 24799.70 25094.42 30499.51 22499.45 150
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24499.44 12994.96 28496.63 29199.15 21898.35 12798.83 18299.11 13394.31 26799.85 12096.60 21498.72 31799.37 184
Anonymous20240521197.90 19597.50 22399.08 11898.90 24098.25 11998.53 10996.16 36298.87 10099.11 12998.86 19790.40 31899.78 20897.36 15499.31 25599.19 234
LF4IMVS97.90 19597.69 20898.52 20599.17 18897.66 18097.19 26399.47 10396.31 27897.85 27298.20 28596.71 18399.52 32894.62 29699.72 14998.38 334
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17399.31 15497.17 21097.62 22399.35 14198.72 10898.76 19398.68 22892.57 29899.74 23397.76 13995.60 39199.34 196
TinyColmap97.89 19797.98 18697.60 28098.86 24894.35 30296.21 31399.44 11297.45 20799.06 13698.88 19497.99 9599.28 37094.38 30899.58 20399.18 236
OMC-MVS97.88 19997.49 22499.04 12998.89 24598.63 8996.94 27399.25 18795.02 31698.53 22398.51 25497.27 14799.47 34193.50 33299.51 22499.01 259
CANet97.87 20097.76 20298.19 23497.75 35595.51 26596.76 28499.05 23297.74 17596.93 32098.21 28495.59 23099.89 7497.86 13199.93 4499.19 234
xiu_mvs_v1_base_debu97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base_debi97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
NCCC97.86 20197.47 22799.05 12798.61 29598.07 14196.98 27198.90 25697.63 18397.04 31697.93 30695.99 21699.66 27895.31 28298.82 31399.43 158
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4797.94 15798.52 11098.68 29098.99 9097.52 29599.35 8397.41 13998.18 39791.59 36299.67 17396.82 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 20698.18 16596.87 32299.27 16191.16 37095.53 34499.25 18799.10 7899.41 8099.35 8393.10 28799.96 1198.65 8399.94 4099.49 127
D2MVS97.84 20797.84 19997.83 25999.14 19594.74 28996.94 27398.88 25995.84 29598.89 17098.96 17494.40 26499.69 25597.55 14499.95 3299.05 251
CPTT-MVS97.84 20797.36 23299.27 8899.31 15498.46 10598.29 13699.27 18194.90 32097.83 27398.37 27094.90 24799.84 13793.85 32399.54 21599.51 120
mvs_anonymous97.83 20998.16 16996.87 32298.18 33491.89 35697.31 25198.90 25697.37 21398.83 18299.46 6696.28 20199.79 19798.90 6698.16 34398.95 270
h-mvs3397.77 21097.33 23599.10 11499.21 17397.84 16498.35 13498.57 29799.11 7198.58 21599.02 15288.65 33199.96 1198.11 11296.34 38399.49 127
test_vis1_rt97.75 21197.72 20797.83 25998.81 26096.35 23897.30 25299.69 3794.61 32597.87 26998.05 29796.26 20298.32 39698.74 7698.18 34098.82 288
IterMVS97.73 21298.11 17496.57 33199.24 16690.28 37895.52 34699.21 19698.86 10199.33 9799.33 8993.11 28699.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs197.72 21397.94 19097.07 31398.66 29192.39 34997.68 21499.81 2495.20 31499.54 5699.44 7191.56 30999.41 35099.78 1599.77 12499.40 173
MSDG97.71 21497.52 22198.28 22898.91 23996.82 22594.42 37899.37 13297.65 18298.37 23898.29 27997.40 14099.33 36294.09 31599.22 27098.68 313
CDS-MVSNet97.69 21597.35 23398.69 17898.73 26997.02 21796.92 27798.75 28595.89 29498.59 21398.67 23092.08 30599.74 23396.72 20799.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33293.78 32497.29 25398.84 27096.10 28598.64 20498.65 23596.04 20999.36 35696.84 19699.14 28299.20 229
Fast-Effi-MVS+97.67 21797.38 23098.57 19598.71 27497.43 19397.23 25799.45 10894.82 32296.13 35296.51 35498.52 5499.91 5996.19 24798.83 31198.37 336
EU-MVSNet97.66 21898.50 12095.13 36499.63 7485.84 39498.35 13498.21 31298.23 13999.54 5699.46 6695.02 24599.68 26498.24 10599.87 7799.87 16
pmmvs597.64 21997.49 22498.08 24299.14 19595.12 28096.70 28899.05 23293.77 34498.62 20798.83 20393.23 28399.75 22898.33 10399.76 13599.36 190
N_pmnet97.63 22097.17 24198.99 13599.27 16197.86 16295.98 32493.41 38895.25 31299.47 7098.90 18795.63 22899.85 12096.91 18599.73 14299.27 215
bld_raw_dy_0_6497.62 22197.51 22297.96 25297.97 34496.28 24198.20 14599.82 2296.46 27199.37 8997.12 34792.42 29999.70 25096.27 24199.97 1997.90 356
mvsany_test197.60 22297.54 21997.77 26497.72 35695.35 27195.36 35297.13 34294.13 33899.71 3399.33 8997.93 9899.30 36697.60 14398.94 30698.67 314
YYNet197.60 22297.67 20997.39 29999.04 21693.04 33895.27 35398.38 30797.25 22598.92 16698.95 17895.48 23599.73 23896.99 17998.74 31599.41 164
MDA-MVSNet_test_wron97.60 22297.66 21297.41 29899.04 21693.09 33495.27 35398.42 30497.26 22498.88 17498.95 17895.43 23699.73 23897.02 17698.72 31799.41 164
pmmvs497.58 22597.28 23698.51 20698.84 25296.93 22395.40 35198.52 30093.60 34698.61 20998.65 23595.10 24399.60 29996.97 18299.79 11498.99 263
PVSNet_BlendedMVS97.55 22697.53 22097.60 28098.92 23693.77 32596.64 29099.43 11894.49 32797.62 28599.18 11696.82 17399.67 26794.73 29399.93 4499.36 190
ppachtmachnet_test97.50 22797.74 20496.78 32898.70 27891.23 36994.55 37699.05 23296.36 27599.21 12098.79 21196.39 19599.78 20896.74 20499.82 9599.34 196
FMVSNet397.50 22797.24 23898.29 22798.08 34095.83 25697.86 19398.91 25597.89 16698.95 15798.95 17887.06 33799.81 17797.77 13599.69 16299.23 224
CHOSEN 1792x268897.49 22997.14 24598.54 20399.68 5896.09 24896.50 29699.62 4891.58 36998.84 18198.97 17192.36 30099.88 8396.76 20299.95 3299.67 57
CLD-MVS97.49 22997.16 24298.48 20999.07 20897.03 21694.71 36899.21 19694.46 32998.06 25897.16 34297.57 12499.48 33894.46 30199.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs297.46 23197.07 24698.64 18198.73 26997.33 19797.45 24297.64 33299.11 7198.58 21597.98 30188.65 33199.79 19798.11 11297.39 36698.81 292
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22299.55 9396.10 24598.94 7398.44 30398.32 13198.16 24898.62 24288.76 32799.73 23893.88 32199.79 11499.18 236
jason97.45 23397.35 23397.76 26799.24 16693.93 31795.86 33398.42 30494.24 33598.50 22598.13 28894.82 25199.91 5997.22 16199.73 14299.43 158
jason: jason.
CL-MVSNet_self_test97.44 23497.22 23998.08 24298.57 30495.78 25894.30 38198.79 27896.58 26598.60 21198.19 28694.74 25899.64 28696.41 23398.84 31098.82 288
DSMNet-mixed97.42 23597.60 21796.87 32299.15 19491.46 36098.54 10899.12 22192.87 35797.58 28999.63 3396.21 20399.90 6495.74 26999.54 21599.27 215
USDC97.41 23697.40 22897.44 29698.94 23093.67 32795.17 35699.53 8194.03 34198.97 15499.10 13695.29 23899.34 36095.84 26699.73 14299.30 210
our_test_397.39 23797.73 20696.34 33698.70 27889.78 38094.61 37498.97 24796.50 26799.04 14398.85 20095.98 21799.84 13797.26 15999.67 17399.41 164
c3_l97.36 23897.37 23197.31 30098.09 33993.25 33395.01 36199.16 21397.05 24198.77 19198.72 22192.88 29299.64 28696.93 18499.76 13599.05 251
alignmvs97.35 23996.88 25698.78 16698.54 30798.09 13597.71 21197.69 32999.20 6497.59 28895.90 36788.12 33699.55 31798.18 10998.96 30498.70 309
Patchmtry97.35 23996.97 25098.50 20897.31 37996.47 23598.18 14798.92 25398.95 9598.78 18899.37 7985.44 35299.85 12095.96 25899.83 9299.17 240
DP-MVS Recon97.33 24196.92 25398.57 19599.09 20497.99 14896.79 28199.35 14193.18 35197.71 28098.07 29695.00 24699.31 36493.97 31799.13 28498.42 331
QAPM97.31 24296.81 26398.82 15698.80 26397.49 18899.06 6299.19 20290.22 38197.69 28299.16 12296.91 16799.90 6490.89 37599.41 24199.07 249
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21299.28 15996.78 22996.20 31499.27 18195.42 30798.28 24298.30 27893.16 28599.71 24694.99 28797.37 36798.87 284
F-COLMAP97.30 24396.68 27099.14 10899.19 18098.39 10897.27 25699.30 16792.93 35596.62 33998.00 29995.73 22699.68 26492.62 35098.46 33199.35 194
1112_ss97.29 24596.86 25798.58 19399.34 15396.32 23996.75 28599.58 5593.14 35296.89 32797.48 33092.11 30499.86 10896.91 18599.54 21599.57 91
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31598.79 27897.23 23195.14 37398.24 28193.22 28499.84 13797.34 15599.84 8599.04 255
Patchmatch-RL test97.26 24697.02 24997.99 25099.52 10395.53 26496.13 31999.71 3497.47 20099.27 10899.16 12284.30 36199.62 29297.89 12699.77 12498.81 292
CDPH-MVS97.26 24696.66 27399.07 12099.00 22198.15 12896.03 32399.01 24391.21 37597.79 27697.85 31096.89 16899.69 25592.75 34799.38 24699.39 175
PatchMatch-RL97.24 24996.78 26498.61 18999.03 21997.83 16596.36 30499.06 22993.49 34997.36 30797.78 31295.75 22599.49 33593.44 33398.77 31498.52 322
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34392.77 34294.71 36899.18 20697.27 22398.56 21898.74 21891.89 30699.69 25597.06 17599.81 9999.05 251
sss97.21 25196.93 25198.06 24498.83 25495.22 27696.75 28598.48 30294.49 32797.27 30897.90 30792.77 29599.80 18496.57 21799.32 25399.16 243
LFMVS97.20 25296.72 26798.64 18198.72 27196.95 22198.93 7494.14 38599.74 698.78 18899.01 16184.45 35899.73 23897.44 15099.27 26299.25 219
HyFIR lowres test97.19 25396.60 27798.96 13999.62 7697.28 20095.17 35699.50 8794.21 33699.01 14798.32 27786.61 34099.99 297.10 17199.84 8599.60 74
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33592.85 34095.15 35899.31 15997.25 22598.74 19698.78 21290.07 31999.78 20897.19 16299.80 10999.11 246
CNLPA97.17 25596.71 26898.55 20098.56 30598.05 14596.33 30698.93 25096.91 24997.06 31597.39 33594.38 26599.45 34491.66 35999.18 27898.14 345
xiu_mvs_v2_base97.16 25697.49 22496.17 34598.54 30792.46 34795.45 34898.84 27097.25 22597.48 29996.49 35598.31 6899.90 6496.34 23798.68 32296.15 393
AdaColmapbinary97.14 25796.71 26898.46 21198.34 32497.80 17196.95 27298.93 25095.58 30296.92 32197.66 31995.87 22299.53 32490.97 37299.14 28298.04 350
train_agg97.10 25896.45 28299.07 12098.71 27498.08 13995.96 32799.03 23791.64 36795.85 35897.53 32696.47 19299.76 22193.67 32699.16 27999.36 190
OpenMVScopyleft96.65 797.09 25996.68 27098.32 22398.32 32597.16 21198.86 8099.37 13289.48 38596.29 35099.15 12696.56 18899.90 6492.90 34199.20 27397.89 358
PS-MVSNAJ97.08 26097.39 22996.16 34798.56 30592.46 34795.24 35598.85 26997.25 22597.49 29895.99 36498.07 8699.90 6496.37 23498.67 32396.12 394
miper_ehance_all_eth97.06 26197.03 24897.16 31097.83 35293.06 33594.66 37199.09 22695.99 29098.69 19898.45 26392.73 29699.61 29896.79 19899.03 29498.82 288
lupinMVS97.06 26196.86 25797.65 27698.88 24693.89 32195.48 34797.97 32293.53 34798.16 24897.58 32493.81 27899.91 5996.77 20199.57 20799.17 240
API-MVS97.04 26396.91 25597.42 29797.88 35198.23 12498.18 14798.50 30197.57 19097.39 30596.75 35196.77 17799.15 37990.16 37899.02 29794.88 399
cl____97.02 26496.83 26097.58 28297.82 35394.04 31194.66 37199.16 21397.04 24298.63 20598.71 22288.68 33099.69 25597.00 17799.81 9999.00 262
DIV-MVS_self_test97.02 26496.84 25997.58 28297.82 35394.03 31294.66 37199.16 21397.04 24298.63 20598.71 22288.69 32899.69 25597.00 17799.81 9999.01 259
RPMNet97.02 26496.93 25197.30 30197.71 35894.22 30398.11 15599.30 16799.37 4596.91 32399.34 8786.72 33999.87 10097.53 14797.36 36997.81 363
HQP-MVS97.00 26796.49 28198.55 20098.67 28696.79 22696.29 30999.04 23596.05 28695.55 36496.84 34893.84 27699.54 32292.82 34499.26 26599.32 203
FA-MVS(test-final)96.99 26896.82 26197.50 29198.70 27894.78 28799.34 2096.99 34595.07 31598.48 22799.33 8988.41 33499.65 28396.13 25398.92 30898.07 349
new_pmnet96.99 26896.76 26597.67 27498.72 27194.89 28595.95 32998.20 31392.62 36098.55 22098.54 25094.88 25099.52 32893.96 31899.44 23998.59 320
Test_1112_low_res96.99 26896.55 27998.31 22599.35 15195.47 26795.84 33699.53 8191.51 37196.80 33298.48 26191.36 31199.83 15496.58 21599.53 21999.62 67
PVSNet_Blended96.88 27196.68 27097.47 29498.92 23693.77 32594.71 36899.43 11890.98 37797.62 28597.36 33896.82 17399.67 26794.73 29399.56 21098.98 264
MVSTER96.86 27296.55 27997.79 26297.91 34994.21 30597.56 23198.87 26197.49 19999.06 13699.05 14780.72 37499.80 18498.44 9699.82 9599.37 184
BH-untuned96.83 27396.75 26697.08 31198.74 26893.33 33296.71 28798.26 31096.72 25998.44 23097.37 33795.20 24099.47 34191.89 35697.43 36498.44 328
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31394.05 30996.67 28997.36 33596.70 26197.87 26997.98 30195.14 24299.44 34690.47 37798.58 32999.25 219
PAPM_NR96.82 27596.32 28598.30 22699.07 20896.69 23197.48 23998.76 28295.81 29696.61 34096.47 35794.12 27399.17 37790.82 37697.78 35599.06 250
MG-MVS96.77 27696.61 27597.26 30498.31 32693.06 33595.93 33098.12 31996.45 27297.92 26598.73 21993.77 28099.39 35391.19 37099.04 29399.33 201
iter_conf05_1196.72 27796.30 28697.97 25197.97 34496.24 24394.99 36296.19 36196.45 27296.77 33496.84 34891.46 31099.78 20896.27 24199.78 11997.90 356
test_yl96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
WTY-MVS96.67 28096.27 28997.87 25798.81 26094.61 29596.77 28397.92 32494.94 31997.12 31197.74 31591.11 31399.82 16493.89 32098.15 34499.18 236
PatchT96.65 28196.35 28397.54 28797.40 37695.32 27297.98 17696.64 35599.33 5096.89 32799.42 7384.32 36099.81 17797.69 14297.49 36097.48 376
TAPA-MVS96.21 1196.63 28295.95 29398.65 18098.93 23298.09 13596.93 27599.28 17883.58 39898.13 25297.78 31296.13 20599.40 35193.52 33099.29 26098.45 326
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 28396.25 29097.71 27399.04 21694.66 29399.16 5196.92 35097.23 23197.87 26999.10 13686.11 34699.65 28391.65 36099.21 27298.82 288
Patchmatch-test96.55 28496.34 28497.17 30898.35 32393.06 33598.40 12997.79 32597.33 21698.41 23398.67 23083.68 36599.69 25595.16 28599.31 25598.77 300
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19199.14 21997.73 17698.89 17098.95 17875.75 39199.87 10098.50 9399.92 5599.40 173
PMMVS96.51 28695.98 29298.09 23997.53 36995.84 25594.92 36498.84 27091.58 36996.05 35695.58 37295.68 22799.66 27895.59 27698.09 34798.76 302
PLCcopyleft94.65 1696.51 28695.73 29798.85 15398.75 26797.91 15896.42 30199.06 22990.94 37895.59 36197.38 33694.41 26399.59 30390.93 37398.04 35399.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 28895.77 29598.69 17899.48 12297.43 19397.84 19599.55 7381.42 40096.51 34498.58 24795.53 23199.67 26793.41 33499.58 20398.98 264
test111196.49 28996.82 26195.52 35899.42 13587.08 39199.22 4287.14 40499.11 7199.46 7199.58 4188.69 32899.86 10898.80 7199.95 3299.62 67
MAR-MVS96.47 29095.70 29898.79 16397.92 34899.12 5798.28 13798.60 29692.16 36595.54 36796.17 36294.77 25799.52 32889.62 38098.23 33797.72 369
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft96.42 29196.61 27595.85 35099.38 14088.18 38799.22 4286.00 40699.08 8399.36 9299.57 4288.47 33399.82 16498.52 9299.95 3299.54 108
SCA96.41 29296.66 27395.67 35498.24 33088.35 38595.85 33596.88 35196.11 28497.67 28398.67 23093.10 28799.85 12094.16 31099.22 27098.81 292
DPM-MVS96.32 29395.59 30398.51 20698.76 26597.21 20694.54 37798.26 31091.94 36696.37 34897.25 34093.06 28999.43 34791.42 36598.74 31598.89 280
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15496.25 39998.69 8897.02 26899.12 22188.90 38897.83 27398.86 19789.51 32398.90 38991.92 35599.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15598.92 25392.31 36396.91 32399.37 7985.44 35299.81 17797.39 15397.36 36997.81 363
CVMVSNet96.25 29697.21 24093.38 38299.10 20180.56 40997.20 26198.19 31596.94 24799.00 14899.02 15289.50 32499.80 18496.36 23699.59 19899.78 33
AUN-MVS96.24 29795.45 30898.60 19198.70 27897.22 20597.38 24597.65 33095.95 29295.53 36897.96 30582.11 37399.79 19796.31 23897.44 36398.80 297
EPNet96.14 29895.44 30998.25 22990.76 40995.50 26697.92 18294.65 37798.97 9292.98 39398.85 20089.12 32699.87 10095.99 25699.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 29997.62 21691.38 38598.65 29498.57 9698.85 8196.95 34896.86 25299.90 1299.16 12299.18 1798.40 39589.23 38299.77 12477.18 403
Syy-MVS96.04 30095.56 30597.49 29297.10 38494.48 29896.18 31696.58 35695.65 29994.77 37692.29 40191.27 31299.36 35698.17 11098.05 35198.63 316
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39792.27 35393.69 39098.89 25891.14 37698.30 24097.35 33990.58 31699.58 30996.31 23899.03 29498.60 318
FMVSNet596.01 30195.20 31898.41 21697.53 36996.10 24598.74 8599.50 8797.22 23498.03 26299.04 14969.80 39599.88 8397.27 15899.71 15499.25 219
dmvs_re95.98 30395.39 31297.74 27098.86 24897.45 19198.37 13295.69 37297.95 16096.56 34195.95 36590.70 31597.68 39988.32 38496.13 38798.11 346
baseline195.96 30495.44 30997.52 28998.51 31193.99 31598.39 13096.09 36498.21 14198.40 23797.76 31486.88 33899.63 28995.42 28089.27 40398.95 270
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8496.94 34992.28 36495.17 37298.57 24889.90 32199.75 22891.20 36997.33 37198.10 347
GA-MVS95.86 30695.32 31597.49 29298.60 29794.15 30893.83 38897.93 32395.49 30596.68 33697.42 33483.21 36699.30 36696.22 24598.55 33099.01 259
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32197.15 21297.37 24698.62 29583.86 39798.65 20398.37 27094.29 26899.68 26488.41 38398.62 32796.60 388
cl2295.79 30895.39 31296.98 31696.77 39192.79 34194.40 37998.53 29994.59 32697.89 26898.17 28782.82 37099.24 37296.37 23499.03 29498.92 276
131495.74 30995.60 30296.17 34597.53 36992.75 34398.07 16198.31 30991.22 37494.25 38296.68 35295.53 23199.03 38191.64 36197.18 37396.74 386
WB-MVSnew95.73 31095.57 30496.23 34296.70 39290.70 37696.07 32293.86 38695.60 30197.04 31695.45 37996.00 21299.55 31791.04 37198.31 33598.43 329
PVSNet93.40 1795.67 31195.70 29895.57 35798.83 25488.57 38392.50 39597.72 32792.69 35996.49 34796.44 35893.72 28199.43 34793.61 32799.28 26198.71 306
FE-MVS95.66 31294.95 32497.77 26498.53 30995.28 27399.40 1696.09 36493.11 35397.96 26499.26 10079.10 38399.77 21592.40 35398.71 31998.27 340
tttt051795.64 31394.98 32297.64 27899.36 14793.81 32398.72 8990.47 39998.08 15498.67 20098.34 27473.88 39399.92 5097.77 13599.51 22499.20 229
PatchmatchNetpermissive95.58 31495.67 30095.30 36397.34 37887.32 39097.65 22096.65 35495.30 31197.07 31498.69 22684.77 35599.75 22894.97 28898.64 32498.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 31595.12 32096.86 32597.54 36793.94 31696.49 29796.53 35894.36 33497.03 31896.61 35394.26 26999.16 37886.91 39096.31 38497.47 377
JIA-IIPM95.52 31695.03 32197.00 31496.85 38994.03 31296.93 27595.82 36899.20 6494.63 38099.71 1783.09 36799.60 29994.42 30494.64 39597.36 379
CHOSEN 280x42095.51 31795.47 30695.65 35698.25 32988.27 38693.25 39298.88 25993.53 34794.65 37997.15 34386.17 34499.93 4097.41 15299.93 4498.73 305
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33691.74 35797.92 18297.76 32690.23 37996.51 34498.91 18485.61 34999.85 12092.88 34296.90 37698.69 310
PAPR95.29 31994.47 32897.75 26897.50 37495.14 27994.89 36598.71 28991.39 37395.35 37195.48 37694.57 26099.14 38084.95 39397.37 36798.97 267
thisisatest053095.27 32094.45 32997.74 27099.19 18094.37 30197.86 19390.20 40097.17 23698.22 24497.65 32073.53 39499.90 6496.90 19099.35 24998.95 270
ADS-MVSNet95.24 32194.93 32596.18 34498.14 33690.10 37997.92 18297.32 33890.23 37996.51 34498.91 18485.61 34999.74 23392.88 34296.90 37698.69 310
BH-w/o95.13 32294.89 32695.86 34998.20 33391.31 36495.65 34097.37 33493.64 34596.52 34395.70 37193.04 29099.02 38288.10 38595.82 39097.24 380
tpmrst95.07 32395.46 30793.91 37597.11 38384.36 40297.62 22396.96 34794.98 31796.35 34998.80 20985.46 35199.59 30395.60 27596.23 38597.79 366
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35997.71 32888.57 38997.71 28098.08 29579.39 38199.82 16496.19 24799.11 28898.43 329
tpmvs95.02 32595.25 31694.33 37096.39 39885.87 39398.08 15996.83 35295.46 30695.51 36998.69 22685.91 34799.53 32494.16 31096.23 38597.58 374
EPNet_dtu94.93 32694.78 32795.38 36293.58 40687.68 38996.78 28295.69 37297.35 21589.14 40298.09 29488.15 33599.49 33594.95 28999.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 32794.33 33396.15 34896.02 40292.36 35192.34 39799.26 18685.34 39695.08 37494.96 38592.96 29198.53 39494.41 30798.59 32897.56 375
tpm94.67 32894.34 33295.66 35597.68 36388.42 38497.88 18894.90 37594.46 32996.03 35798.56 24978.66 38499.79 19795.88 26095.01 39498.78 299
test0.0.03 194.51 32993.69 33896.99 31596.05 40093.61 33094.97 36393.49 38796.17 28197.57 29194.88 38682.30 37199.01 38493.60 32894.17 39898.37 336
thres600view794.45 33093.83 33696.29 33899.06 21291.53 35997.99 17594.24 38398.34 12897.44 30295.01 38279.84 37799.67 26784.33 39498.23 33797.66 371
PCF-MVS92.86 1894.36 33193.00 34898.42 21598.70 27897.56 18593.16 39399.11 22379.59 40197.55 29297.43 33392.19 30299.73 23879.85 40299.45 23697.97 355
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 33292.59 35099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29345.85 40497.50 13399.83 15496.79 19899.53 21999.56 97
MVS-HIRNet94.32 33295.62 30190.42 38698.46 31475.36 41096.29 30989.13 40295.25 31295.38 37099.75 1192.88 29299.19 37694.07 31699.39 24396.72 387
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33694.47 29994.78 36793.24 39094.72 32389.56 40195.87 36878.57 38699.81 17796.91 18597.11 37598.46 324
thres100view90094.19 33593.67 33995.75 35399.06 21291.35 36398.03 16794.24 38398.33 12997.40 30494.98 38479.84 37799.62 29283.05 39698.08 34896.29 389
E-PMN94.17 33694.37 33193.58 37996.86 38885.71 39690.11 39997.07 34398.17 14897.82 27597.19 34184.62 35798.94 38689.77 37997.68 35796.09 395
thres40094.14 33793.44 34196.24 34198.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34897.66 371
thisisatest051594.12 33893.16 34596.97 31798.60 29792.90 33993.77 38990.61 39894.10 33996.91 32395.87 36874.99 39299.80 18494.52 29999.12 28798.20 342
tfpn200view994.03 33993.44 34195.78 35298.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34896.29 389
CostFormer93.97 34093.78 33794.51 36997.53 36985.83 39597.98 17695.96 36689.29 38794.99 37598.63 24078.63 38599.62 29294.54 29896.50 38198.09 348
test-LLR93.90 34193.85 33594.04 37396.53 39484.62 40094.05 38592.39 39296.17 28194.12 38495.07 38082.30 37199.67 26795.87 26398.18 34097.82 361
EMVS93.83 34294.02 33493.23 38396.83 39084.96 39789.77 40096.32 36097.92 16397.43 30396.36 36186.17 34498.93 38787.68 38697.73 35695.81 396
baseline293.73 34392.83 34996.42 33597.70 36091.28 36696.84 28089.77 40193.96 34392.44 39695.93 36679.14 38299.77 21592.94 34096.76 38098.21 341
thres20093.72 34493.14 34695.46 36198.66 29191.29 36596.61 29294.63 37897.39 21196.83 33093.71 39379.88 37699.56 31482.40 39998.13 34595.54 398
EPMVS93.72 34493.27 34395.09 36696.04 40187.76 38898.13 15285.01 40794.69 32496.92 32198.64 23878.47 38899.31 36495.04 28696.46 38298.20 342
testing393.51 34692.09 35597.75 26898.60 29794.40 30097.32 25095.26 37497.56 19296.79 33395.50 37553.57 41199.77 21595.26 28398.97 30399.08 247
dp93.47 34793.59 34093.13 38496.64 39381.62 40897.66 21896.42 35992.80 35896.11 35398.64 23878.55 38799.59 30393.31 33592.18 40298.16 344
FPMVS93.44 34892.23 35397.08 31199.25 16597.86 16295.61 34197.16 34192.90 35693.76 39098.65 23575.94 39095.66 40379.30 40397.49 36097.73 368
testing9193.32 34992.27 35296.47 33497.54 36791.25 36796.17 31896.76 35397.18 23593.65 39193.50 39565.11 40599.63 28993.04 33997.45 36298.53 321
tpm cat193.29 35093.13 34793.75 37797.39 37784.74 39897.39 24497.65 33083.39 39994.16 38398.41 26582.86 36999.39 35391.56 36395.35 39397.14 381
MVS93.19 35192.09 35596.50 33396.91 38794.03 31298.07 16198.06 32168.01 40294.56 38196.48 35695.96 21999.30 36683.84 39596.89 37896.17 391
tpm293.09 35292.58 35194.62 36897.56 36586.53 39297.66 21895.79 36986.15 39494.07 38698.23 28375.95 38999.53 32490.91 37496.86 37997.81 363
testing1193.08 35392.02 35796.26 34097.56 36590.83 37496.32 30795.70 37096.47 27092.66 39593.73 39264.36 40699.59 30393.77 32597.57 35898.37 336
testing9993.04 35491.98 36096.23 34297.53 36990.70 37696.35 30595.94 36796.87 25193.41 39293.43 39663.84 40799.59 30393.24 33797.19 37298.40 332
dmvs_testset92.94 35592.21 35495.13 36498.59 30090.99 37197.65 22092.09 39496.95 24694.00 38793.55 39492.34 30196.97 40272.20 40592.52 40097.43 378
KD-MVS_2432*160092.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
miper_refine_blended92.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
ETVMVS92.60 35891.08 36797.18 30697.70 36093.65 32996.54 29395.70 37096.51 26694.68 37892.39 40061.80 40899.50 33386.97 38897.41 36598.40 332
MVEpermissive83.40 2292.50 35991.92 36194.25 37198.83 25491.64 35892.71 39483.52 40895.92 29386.46 40595.46 37795.20 24095.40 40480.51 40198.64 32495.73 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 36091.89 36293.89 37699.38 14082.28 40699.32 2366.03 41299.08 8398.77 19199.57 4266.26 40299.84 13798.71 7999.95 3299.54 108
UWE-MVS92.38 36191.76 36494.21 37297.16 38284.65 39995.42 35088.45 40395.96 29196.17 35195.84 37066.36 40199.71 24691.87 35798.64 32498.28 339
gg-mvs-nofinetune92.37 36291.20 36695.85 35095.80 40392.38 35099.31 2781.84 40999.75 591.83 39899.74 1368.29 39699.02 38287.15 38797.12 37496.16 392
test-mter92.33 36391.76 36494.04 37396.53 39484.62 40094.05 38592.39 39294.00 34294.12 38495.07 38065.63 40499.67 26795.87 26398.18 34097.82 361
IB-MVS91.63 1992.24 36490.90 36896.27 33997.22 38191.24 36894.36 38093.33 38992.37 36292.24 39794.58 38966.20 40399.89 7493.16 33894.63 39697.66 371
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 36591.77 36393.46 38096.48 39682.80 40594.05 38591.52 39694.45 33194.00 38794.88 38666.65 40099.56 31495.78 26898.11 34698.02 351
testing22291.96 36690.37 37096.72 33097.47 37592.59 34496.11 32094.76 37696.83 25392.90 39492.87 39857.92 40999.55 31786.93 38997.52 35998.00 354
myMVS_eth3d91.92 36790.45 36996.30 33797.10 38490.90 37296.18 31696.58 35695.65 29994.77 37692.29 40153.88 41099.36 35689.59 38198.05 35198.63 316
PAPM91.88 36890.34 37196.51 33298.06 34192.56 34592.44 39697.17 34086.35 39390.38 40096.01 36386.61 34099.21 37570.65 40695.43 39297.75 367
PVSNet_089.98 2191.15 36990.30 37293.70 37897.72 35684.34 40390.24 39897.42 33390.20 38293.79 38993.09 39790.90 31498.89 39086.57 39172.76 40597.87 360
EGC-MVSNET85.24 37080.54 37399.34 7399.77 2899.20 3499.08 5899.29 17512.08 40620.84 40799.42 7397.55 12699.85 12097.08 17299.72 14998.96 269
test_method79.78 37179.50 37480.62 38780.21 41045.76 41370.82 40198.41 30631.08 40580.89 40697.71 31684.85 35497.37 40091.51 36480.03 40498.75 303
tmp_tt78.77 37278.73 37578.90 38858.45 41174.76 41294.20 38278.26 41139.16 40486.71 40492.82 39980.50 37575.19 40786.16 39292.29 40186.74 402
cdsmvs_eth3d_5k24.66 37332.88 3760.00 3910.00 4140.00 4160.00 40299.10 2240.00 4090.00 41097.58 32499.21 160.00 4100.00 4090.00 4080.00 406
testmvs17.12 37420.53 3776.87 39012.05 4124.20 41593.62 3916.73 4134.62 40810.41 40824.33 4058.28 4133.56 4099.69 40815.07 40612.86 405
test12317.04 37520.11 3787.82 38910.25 4134.91 41494.80 3664.47 4144.93 40710.00 40924.28 4069.69 4123.64 40810.14 40712.43 40714.92 404
pcd_1.5k_mvsjas8.17 37610.90 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40998.07 860.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.12 37710.83 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.48 3300.00 4140.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.90 37291.37 366
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
MSC_two_6792asdad99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
PC_three_145293.27 35099.40 8398.54 25098.22 7497.00 40195.17 28499.45 23699.49 127
No_MVS99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
test_one_060199.39 13999.20 3499.31 15998.49 12398.66 20299.02 15297.64 118
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.01 22098.84 7599.07 22894.10 33998.05 26098.12 29096.36 19999.86 10892.70 34999.19 276
RE-MVS-def98.58 11199.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.75 10996.56 22199.39 24399.45 150
IU-MVS99.49 11599.15 4798.87 26192.97 35499.41 8096.76 20299.62 18799.66 58
OPU-MVS98.82 15698.59 30098.30 11698.10 15798.52 25398.18 7898.75 39294.62 29699.48 23399.41 164
test_241102_TWO99.30 16798.03 15599.26 11299.02 15297.51 13299.88 8396.91 18599.60 19499.66 58
test_241102_ONE99.49 11599.17 3999.31 15997.98 15799.66 4298.90 18798.36 6399.48 338
9.1497.78 20199.07 20897.53 23499.32 15495.53 30498.54 22298.70 22597.58 12399.76 22194.32 30999.46 234
save fliter99.11 19997.97 15296.53 29599.02 24098.24 138
test_0728_THIRD98.17 14899.08 13499.02 15297.89 9999.88 8397.07 17399.71 15499.70 51
test_0728_SECOND99.60 1199.50 10899.23 2698.02 16999.32 15499.88 8396.99 17999.63 18499.68 54
test072699.50 10899.21 2898.17 15099.35 14197.97 15899.26 11299.06 14097.61 121
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
sam_mvs184.74 35698.81 292
sam_mvs84.29 362
ambc98.24 23198.82 25795.97 25298.62 9999.00 24599.27 10899.21 11096.99 16499.50 33396.55 22499.50 23199.26 218
MTGPAbinary99.20 198
test_post197.59 22820.48 40883.07 36899.66 27894.16 310
test_post21.25 40783.86 36499.70 250
patchmatchnet-post98.77 21484.37 35999.85 120
GG-mvs-BLEND94.76 36794.54 40592.13 35599.31 2780.47 41088.73 40391.01 40367.59 39998.16 39882.30 40094.53 39793.98 400
MTMP97.93 18091.91 395
gm-plane-assit94.83 40481.97 40788.07 39194.99 38399.60 29991.76 358
test9_res93.28 33699.15 28199.38 182
TEST998.71 27498.08 13995.96 32799.03 23791.40 37295.85 35897.53 32696.52 19099.76 221
test_898.67 28698.01 14795.91 33299.02 24091.64 36795.79 36097.50 32996.47 19299.76 221
agg_prior292.50 35299.16 27999.37 184
agg_prior98.68 28597.99 14899.01 24395.59 36199.77 215
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
test_prior497.97 15295.86 333
test_prior295.74 33896.48 26996.11 35397.63 32295.92 22194.16 31099.20 273
test_prior98.95 14198.69 28397.95 15699.03 23799.59 30399.30 210
旧先验295.76 33788.56 39097.52 29599.66 27894.48 300
新几何295.93 330
新几何198.91 14798.94 23097.76 17398.76 28287.58 39296.75 33598.10 29294.80 25499.78 20892.73 34899.00 29999.20 229
旧先验198.82 25797.45 19198.76 28298.34 27495.50 23499.01 29899.23 224
无先验95.74 33898.74 28789.38 38699.73 23892.38 35499.22 228
原ACMM295.53 344
原ACMM198.35 22198.90 24096.25 24298.83 27492.48 36196.07 35598.10 29295.39 23799.71 24692.61 35198.99 30099.08 247
test22298.92 23696.93 22395.54 34398.78 28085.72 39596.86 32998.11 29194.43 26299.10 28999.23 224
testdata299.79 19792.80 346
segment_acmp97.02 162
testdata98.09 23998.93 23295.40 27098.80 27790.08 38397.45 30198.37 27095.26 23999.70 25093.58 32998.95 30599.17 240
testdata195.44 34996.32 277
test1298.93 14498.58 30297.83 16598.66 29196.53 34295.51 23399.69 25599.13 28499.27 215
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 17994.90 247
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 150
plane_prior497.98 301
plane_prior397.78 17297.41 20997.79 276
plane_prior297.77 20398.20 145
plane_prior199.05 215
plane_prior97.65 18197.07 26796.72 25999.36 247
n20.00 415
nn0.00 415
door-mid99.57 62
lessismore_v098.97 13899.73 3897.53 18786.71 40599.37 8999.52 5789.93 32099.92 5098.99 6299.72 14999.44 154
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
test1198.87 261
door99.41 122
HQP5-MVS96.79 226
HQP-NCC98.67 28696.29 30996.05 28695.55 364
ACMP_Plane98.67 28696.29 30996.05 28695.55 364
BP-MVS92.82 344
HQP4-MVS95.56 36399.54 32299.32 203
HQP3-MVS99.04 23599.26 265
HQP2-MVS93.84 276
NP-MVS98.84 25297.39 19596.84 348
MDTV_nov1_ep13_2view74.92 41197.69 21390.06 38497.75 27985.78 34893.52 33098.69 310
MDTV_nov1_ep1395.22 31797.06 38683.20 40497.74 20896.16 36294.37 33396.99 31998.83 20383.95 36399.53 32493.90 31997.95 354
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14197.50 19798.28 24298.60 24597.64 11899.35 35993.86 32299.27 26298.79 298
DeepMVS_CXcopyleft93.44 38198.24 33094.21 30594.34 38064.28 40391.34 39994.87 38889.45 32592.77 40677.54 40493.14 39993.35 401