This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 599.99 1100.00 199.98 1099.78 8100.00 199.92 4100.00 199.87 12
mvs_tets99.90 299.90 399.90 599.96 499.79 4399.72 2999.88 2399.92 1199.98 699.93 1799.94 199.98 1099.77 15100.00 199.92 6
jajsoiax99.89 399.89 499.89 899.96 499.78 4699.70 3499.86 2899.89 1899.98 699.90 2699.94 199.98 1099.75 16100.00 199.90 7
ANet_high99.88 499.87 799.91 299.99 199.91 499.65 58100.00 199.90 13100.00 199.97 1199.61 1999.97 2099.75 16100.00 199.84 17
LTVRE_ROB99.19 199.88 499.87 799.88 1299.91 2399.90 799.96 199.92 1299.90 1399.97 999.87 3699.81 799.95 4899.54 3599.99 1299.80 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 999.83 2499.94 1499.90 799.83 699.91 1599.85 3299.94 1599.95 1399.73 1099.90 14399.65 2299.97 3999.69 61
mvsany_test99.85 799.88 599.75 6099.95 1299.37 16899.53 8199.98 499.77 5299.99 599.95 1399.85 399.94 6299.95 399.98 2899.94 4
UniMVSNet_ETH3D99.85 799.83 1099.90 599.89 2999.91 499.89 499.71 10299.93 999.95 1499.89 3099.71 1199.96 3899.51 4099.97 3999.84 17
PS-MVSNAJss99.84 999.82 1199.89 899.96 499.77 4999.68 4399.85 3299.95 499.98 699.92 2199.28 4699.98 1099.75 16100.00 199.94 4
test_djsdf99.84 999.81 1299.91 299.94 1499.84 2299.77 1499.80 5699.73 5499.97 999.92 2199.77 999.98 1099.43 48100.00 199.90 7
FMVS299.83 1199.93 299.53 16399.96 498.62 26899.67 47100.00 199.95 4100.00 199.95 1399.85 399.99 699.98 199.99 1299.98 1
v7n99.82 1299.80 1399.88 1299.96 499.84 2299.82 899.82 4599.84 3599.94 1599.91 2499.13 6599.96 3899.83 1299.99 1299.83 21
anonymousdsp99.80 1399.77 1599.90 599.96 499.88 1199.73 2699.85 3299.70 6299.92 2299.93 1799.45 2899.97 2099.36 60100.00 199.85 16
pm-mvs199.79 1499.79 1499.78 4099.91 2399.83 2799.76 1899.87 2599.73 5499.89 3399.87 3699.63 1699.87 18999.54 3599.92 8599.63 106
UA-Net99.78 1599.76 1799.86 1799.72 11999.71 7699.91 399.95 1199.96 299.71 11199.91 2499.15 6099.97 2099.50 42100.00 199.90 7
TransMVSNet (Re)99.78 1599.77 1599.81 2999.91 2399.85 1799.75 2199.86 2899.70 6299.91 2499.89 3099.60 2199.87 18999.59 2799.74 20099.71 54
FMVS99.75 1799.88 599.37 21599.96 498.21 29199.51 84100.00 199.94 8100.00 199.93 1799.58 2299.94 6299.97 299.99 1299.97 2
OurMVSNet-221017-099.75 1799.71 1999.84 2299.96 499.83 2799.83 699.85 3299.80 4499.93 1899.93 1798.54 14599.93 7999.59 2799.98 2899.76 45
Vis-MVSNetpermissive99.75 1799.74 1899.79 3799.88 3399.66 9499.69 4099.92 1299.67 7199.77 8299.75 9899.61 1999.98 1099.35 6199.98 2899.72 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba99.74 2099.70 2099.85 1999.93 2099.83 2799.76 1899.81 5499.96 299.91 2499.81 6298.60 13699.94 6299.58 3099.98 2899.77 40
TDRefinement99.72 2199.70 2099.77 4399.90 2799.85 1799.86 599.92 1299.69 6599.78 7799.92 2199.37 3699.88 17698.93 12399.95 6299.60 131
XXY-MVS99.71 2299.67 2799.81 2999.89 2999.72 7499.59 7299.82 4599.39 12599.82 5999.84 5199.38 3499.91 12399.38 5599.93 8199.80 28
bld_raw_dy_0_6499.70 2399.65 3099.85 1999.95 1299.77 4999.66 5299.71 10299.95 499.91 2499.77 8998.35 173100.00 199.54 3599.99 1299.79 34
nrg03099.70 2399.66 2899.82 2699.76 9599.84 2299.61 6699.70 10899.93 999.78 7799.68 14199.10 6699.78 29399.45 4699.96 5399.83 21
FC-MVSNet-test99.70 2399.65 3099.86 1799.88 3399.86 1699.72 2999.78 6799.90 1399.82 5999.83 5298.45 16099.87 18999.51 4099.97 3999.86 14
GeoE99.69 2699.66 2899.78 4099.76 9599.76 5799.60 7199.82 4599.46 11299.75 9299.56 21599.63 1699.95 4899.43 4899.88 11399.62 117
v1099.69 2699.69 2499.66 10599.81 6199.39 16299.66 5299.75 8299.60 9399.92 2299.87 3698.75 11799.86 20999.90 599.99 1299.73 50
DROMVSNet99.69 2699.69 2499.68 9599.71 12299.91 499.76 1899.96 999.86 2799.51 19099.39 26699.57 2399.93 7999.64 2499.86 13199.20 273
CS-MVS-test99.68 2999.70 2099.64 11799.57 18099.83 2799.78 1199.97 599.92 1199.50 19299.38 26899.57 2399.95 4899.69 1999.90 9599.15 284
v899.68 2999.69 2499.65 11099.80 6699.40 16099.66 5299.76 7599.64 7999.93 1899.85 4698.66 12899.84 24499.88 999.99 1299.71 54
DTE-MVSNet99.68 2999.61 3999.88 1299.80 6699.87 1399.67 4799.71 10299.72 5799.84 5499.78 8298.67 12699.97 2099.30 7299.95 6299.80 28
CS-MVS99.67 3299.70 2099.58 14499.53 19899.84 2299.79 1099.96 999.90 1399.61 15399.41 25899.51 2799.95 4899.66 2199.89 10498.96 317
RRT_MVS99.67 3299.59 4499.91 299.94 1499.88 1199.78 1199.27 29499.87 2499.91 2499.87 3698.04 20299.96 3899.68 2099.99 1299.90 7
VPA-MVSNet99.66 3499.62 3599.79 3799.68 14299.75 6199.62 6199.69 11499.85 3299.80 6999.81 6298.81 10299.91 12399.47 4499.88 11399.70 57
PS-CasMVS99.66 3499.58 4899.89 899.80 6699.85 1799.66 5299.73 9099.62 8399.84 5499.71 11798.62 13299.96 3899.30 7299.96 5399.86 14
PEN-MVS99.66 3499.59 4499.89 899.83 4799.87 1399.66 5299.73 9099.70 6299.84 5499.73 10498.56 14299.96 3899.29 7599.94 7399.83 21
FMVSNet199.66 3499.63 3499.73 7799.78 8399.77 4999.68 4399.70 10899.67 7199.82 5999.83 5298.98 8399.90 14399.24 7999.97 3999.53 171
MIMVSNet199.66 3499.62 3599.80 3299.94 1499.87 1399.69 4099.77 7099.78 4999.93 1899.89 3097.94 21199.92 9999.65 2299.98 2899.62 117
FIs99.65 3999.58 4899.84 2299.84 4399.85 1799.66 5299.75 8299.86 2799.74 10199.79 7598.27 18299.85 22799.37 5899.93 8199.83 21
FMVS199.63 4099.60 4299.72 8399.94 1499.95 299.47 9199.89 1999.43 12099.88 3999.80 6599.26 5099.90 14398.81 13299.88 11399.32 248
APD_test99.63 4099.60 4299.72 8399.94 1499.95 299.47 9199.89 1999.43 12099.88 3999.80 6599.26 5099.90 14398.81 13299.88 11399.32 248
KD-MVS_self_test99.63 4099.59 4499.76 5099.84 4399.90 799.37 10999.79 6299.83 3899.88 3999.85 4698.42 16499.90 14399.60 2699.73 20799.49 195
casdiffmvs99.63 4099.61 3999.67 9899.79 7699.59 11899.13 18399.85 3299.79 4799.76 8499.72 11099.33 4199.82 26699.21 8299.94 7399.59 140
baseline99.63 4099.62 3599.66 10599.80 6699.62 10799.44 9799.80 5699.71 5899.72 10699.69 13099.15 6099.83 25699.32 6899.94 7399.53 171
Anonymous2023121199.62 4599.57 5199.76 5099.61 15999.60 11599.81 999.73 9099.82 4099.90 2999.90 2697.97 21099.86 20999.42 5399.96 5399.80 28
DeepC-MVS98.90 499.62 4599.61 3999.67 9899.72 11999.44 14899.24 14699.71 10299.27 13999.93 1899.90 2699.70 1399.93 7998.99 11199.99 1299.64 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_299.61 4799.64 3399.53 16399.79 7698.82 25099.58 7499.97 599.95 499.96 1199.76 9398.44 16199.99 699.34 6299.96 5399.78 36
WR-MVS_H99.61 4799.53 6099.87 1599.80 6699.83 2799.67 4799.75 8299.58 9699.85 5199.69 13098.18 19499.94 6299.28 7799.95 6299.83 21
ACMH98.42 699.59 4999.54 5699.72 8399.86 3999.62 10799.56 7899.79 6298.77 21199.80 6999.85 4699.64 1599.85 22798.70 14399.89 10499.70 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 5099.57 5199.57 15099.77 9199.22 20499.04 20399.60 16799.18 15499.87 4899.72 11099.08 7299.85 22799.89 899.98 2899.66 84
EG-PatchMatch MVS99.57 5099.56 5599.62 13399.77 9199.33 17999.26 13999.76 7599.32 13499.80 6999.78 8299.29 4499.87 18999.15 9599.91 9499.66 84
Gipumacopyleft99.57 5099.59 4499.49 17599.98 399.71 7699.72 2999.84 3899.81 4199.94 1599.78 8298.91 9299.71 31898.41 15799.95 6299.05 308
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 5399.57 5199.55 15799.75 10699.11 21899.05 20199.61 15499.15 16499.88 3999.71 11799.08 7299.87 18999.90 599.97 3999.66 84
v124099.56 5399.58 4899.51 16999.80 6699.00 23099.00 21199.65 13699.15 16499.90 2999.75 9899.09 6899.88 17699.90 599.96 5399.67 74
V4299.56 5399.54 5699.63 12499.79 7699.46 14199.39 10399.59 17499.24 14599.86 4999.70 12498.55 14399.82 26699.79 1499.95 6299.60 131
v14419299.55 5699.54 5699.58 14499.78 8399.20 21099.11 18999.62 14799.18 15499.89 3399.72 11098.66 12899.87 18999.88 999.97 3999.66 84
test20.0399.55 5699.54 5699.58 14499.79 7699.37 16899.02 20799.89 1999.60 9399.82 5999.62 17698.81 10299.89 16199.43 4899.86 13199.47 205
v114499.54 5899.53 6099.59 14099.79 7699.28 18799.10 19099.61 15499.20 15299.84 5499.73 10498.67 12699.84 24499.86 1199.98 2899.64 101
CP-MVSNet99.54 5899.43 7499.87 1599.76 9599.82 3399.57 7699.61 15499.54 9799.80 6999.64 15797.79 22499.95 4899.21 8299.94 7399.84 17
TranMVSNet+NR-MVSNet99.54 5899.47 6499.76 5099.58 17099.64 10199.30 12699.63 14499.61 8799.71 11199.56 21598.76 11599.96 3899.14 10199.92 8599.68 67
patch_mono-299.51 6199.46 6899.64 11799.70 13099.11 21899.04 20399.87 2599.71 5899.47 19799.79 7598.24 18499.98 1099.38 5599.96 5399.83 21
v2v48299.50 6299.47 6499.58 14499.78 8399.25 19599.14 17799.58 18499.25 14399.81 6699.62 17698.24 18499.84 24499.83 1299.97 3999.64 101
ACMH+98.40 899.50 6299.43 7499.71 8999.86 3999.76 5799.32 11999.77 7099.53 9999.77 8299.76 9399.26 5099.78 29397.77 21499.88 11399.60 131
Baseline_NR-MVSNet99.49 6499.37 8499.82 2699.91 2399.84 2298.83 23799.86 2899.68 6799.65 13299.88 3397.67 23299.87 18999.03 10899.86 13199.76 45
TAMVS99.49 6499.45 6999.63 12499.48 22699.42 15599.45 9499.57 18699.66 7599.78 7799.83 5297.85 22099.86 20999.44 4799.96 5399.61 127
pmmvs-eth3d99.48 6699.47 6499.51 16999.77 9199.41 15998.81 24299.66 12699.42 12499.75 9299.66 15099.20 5599.76 30398.98 11399.99 1299.36 239
EI-MVSNet-UG-set99.48 6699.50 6299.42 19699.57 18098.65 26799.24 14699.46 24399.68 6799.80 6999.66 15098.99 8299.89 16199.19 8699.90 9599.72 51
APDe-MVS99.48 6699.36 8799.85 1999.55 19299.81 3699.50 8599.69 11498.99 18099.75 9299.71 11798.79 10999.93 7998.46 15599.85 13599.80 28
PMMVS299.48 6699.45 6999.57 15099.76 9598.99 23198.09 31199.90 1898.95 18699.78 7799.58 20299.57 2399.93 7999.48 4399.95 6299.79 34
DSMNet-mixed99.48 6699.65 3098.95 27699.71 12297.27 32899.50 8599.82 4599.59 9599.41 21799.85 4699.62 18100.00 199.53 3899.89 10499.59 140
DP-MVS99.48 6699.39 7999.74 6799.57 18099.62 10799.29 13399.61 15499.87 2499.74 10199.76 9398.69 12299.87 18998.20 17599.80 17299.75 48
EI-MVSNet-Vis-set99.47 7299.49 6399.42 19699.57 18098.66 26499.24 14699.46 24399.67 7199.79 7499.65 15598.97 8599.89 16199.15 9599.89 10499.71 54
VPNet99.46 7399.37 8499.71 8999.82 5499.59 11899.48 8999.70 10899.81 4199.69 11799.58 20297.66 23699.86 20999.17 9199.44 28799.67 74
ACMM98.09 1199.46 7399.38 8199.72 8399.80 6699.69 8799.13 18399.65 13698.99 18099.64 13499.72 11099.39 3099.86 20998.23 17299.81 16799.60 131
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Regformer-499.45 7599.44 7199.50 17299.52 20498.94 23899.17 16799.53 21299.64 7999.76 8499.60 19498.96 8899.90 14398.91 12499.84 14099.67 74
COLMAP_ROBcopyleft98.06 1299.45 7599.37 8499.70 9399.83 4799.70 8399.38 10599.78 6799.53 9999.67 12499.78 8299.19 5699.86 20997.32 25199.87 12499.55 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052199.44 7799.42 7699.49 17599.89 2998.96 23699.62 6199.76 7599.85 3299.82 5999.88 3396.39 28199.97 2099.59 2799.98 2899.55 157
tfpnnormal99.43 7899.38 8199.60 13899.87 3799.75 6199.59 7299.78 6799.71 5899.90 2999.69 13098.85 10099.90 14397.25 26199.78 18399.15 284
HPM-MVS_fast99.43 7899.30 10099.80 3299.83 4799.81 3699.52 8299.70 10898.35 25599.51 19099.50 23599.31 4299.88 17698.18 17999.84 14099.69 61
3Dnovator99.15 299.43 7899.36 8799.65 11099.39 25699.42 15599.70 3499.56 19199.23 14799.35 22899.80 6599.17 5899.95 4898.21 17499.84 14099.59 140
Anonymous2024052999.42 8199.34 8999.65 11099.53 19899.60 11599.63 6099.39 26599.47 10899.76 8499.78 8298.13 19699.86 20998.70 14399.68 22699.49 195
SixPastTwentyTwo99.42 8199.30 10099.76 5099.92 2299.67 9299.70 3499.14 31799.65 7799.89 3399.90 2696.20 28699.94 6299.42 5399.92 8599.67 74
GBi-Net99.42 8199.31 9599.73 7799.49 22099.77 4999.68 4399.70 10899.44 11599.62 14799.83 5297.21 25599.90 14398.96 11799.90 9599.53 171
test199.42 8199.31 9599.73 7799.49 22099.77 4999.68 4399.70 10899.44 11599.62 14799.83 5297.21 25599.90 14398.96 11799.90 9599.53 171
Regformer-399.41 8599.41 7799.40 20499.52 20498.70 25999.17 16799.44 24899.62 8399.75 9299.60 19498.90 9599.85 22798.89 12599.84 14099.65 92
MVSFormer99.41 8599.44 7199.31 23099.57 18098.40 28099.77 1499.80 5699.73 5499.63 13899.30 28998.02 20599.98 1099.43 4899.69 22199.55 157
IterMVS-LS99.41 8599.47 6499.25 24299.81 6198.09 30098.85 23499.76 7599.62 8399.83 5899.64 15798.54 14599.97 2099.15 9599.99 1299.68 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 8899.28 10799.77 4399.69 13499.82 3399.20 15699.54 20399.13 16699.82 5999.63 16798.91 9299.92 9997.85 20999.70 21899.58 145
v14899.40 8899.41 7799.39 20899.76 9598.94 23899.09 19599.59 17499.17 15899.81 6699.61 18598.41 16599.69 32699.32 6899.94 7399.53 171
NR-MVSNet99.40 8899.31 9599.68 9599.43 24599.55 12799.73 2699.50 22899.46 11299.88 3999.36 27597.54 24099.87 18998.97 11599.87 12499.63 106
PVSNet_Blended_VisFu99.40 8899.38 8199.44 19099.90 2798.66 26498.94 22599.91 1597.97 28199.79 7499.73 10499.05 7799.97 2099.15 9599.99 1299.68 67
EU-MVSNet99.39 9299.62 3598.72 30399.88 3396.44 34499.56 7899.85 3299.90 1399.90 2999.85 4698.09 19899.83 25699.58 3099.95 6299.90 7
CHOSEN 1792x268899.39 9299.30 10099.65 11099.88 3399.25 19598.78 24999.88 2398.66 21999.96 1199.79 7597.45 24399.93 7999.34 6299.99 1299.78 36
DVP-MVS++99.38 9499.25 11499.77 4399.03 33499.77 4999.74 2399.61 15499.18 15499.76 8499.61 18599.00 8099.92 9997.72 22099.60 25599.62 117
EI-MVSNet99.38 9499.44 7199.21 24799.58 17098.09 30099.26 13999.46 24399.62 8399.75 9299.67 14698.54 14599.85 22799.15 9599.92 8599.68 67
UGNet99.38 9499.34 8999.49 17598.90 34498.90 24699.70 3499.35 27699.86 2798.57 32699.81 6298.50 15599.93 7999.38 5599.98 2899.66 84
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 9799.25 11499.72 8399.47 23299.56 12498.97 22199.61 15499.43 12099.67 12499.28 29497.85 22099.95 4899.17 9199.81 16799.65 92
UniMVSNet (Re)99.37 9799.26 11299.68 9599.51 20999.58 12198.98 22099.60 16799.43 12099.70 11499.36 27597.70 22799.88 17699.20 8599.87 12499.59 140
CSCG99.37 9799.29 10599.60 13899.71 12299.46 14199.43 9999.85 3298.79 20899.41 21799.60 19498.92 9099.92 9998.02 18999.92 8599.43 222
PM-MVS99.36 10099.29 10599.58 14499.83 4799.66 9498.95 22399.86 2898.85 20099.81 6699.73 10498.40 16999.92 9998.36 16099.83 15099.17 280
abl_699.36 10099.23 11899.75 6099.71 12299.74 6799.33 11699.76 7599.07 17399.65 13299.63 16799.09 6899.92 9997.13 26899.76 18999.58 145
new-patchmatchnet99.35 10299.57 5198.71 30599.82 5496.62 34298.55 27099.75 8299.50 10199.88 3999.87 3699.31 4299.88 17699.43 48100.00 199.62 117
Anonymous2023120699.35 10299.31 9599.47 18199.74 11299.06 22999.28 13499.74 8799.23 14799.72 10699.53 22697.63 23899.88 17699.11 10399.84 14099.48 200
MTAPA99.35 10299.20 12099.80 3299.81 6199.81 3699.33 11699.53 21299.27 13999.42 20999.63 16798.21 18999.95 4897.83 21299.79 17799.65 92
FMVSNet299.35 10299.28 10799.55 15799.49 22099.35 17699.45 9499.57 18699.44 11599.70 11499.74 10097.21 25599.87 18999.03 10899.94 7399.44 216
3Dnovator+98.92 399.35 10299.24 11699.67 9899.35 26699.47 13799.62 6199.50 22899.44 11599.12 27399.78 8298.77 11499.94 6297.87 20699.72 21399.62 117
TSAR-MVS + MP.99.34 10799.24 11699.63 12499.82 5499.37 16899.26 13999.35 27698.77 21199.57 16499.70 12499.27 4999.88 17697.71 22299.75 19299.65 92
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-299.34 10799.27 11099.53 16399.41 25199.10 22398.99 21699.53 21299.47 10899.66 12899.52 22898.80 10699.89 16198.31 16699.74 20099.60 131
diffmvs99.34 10799.32 9499.39 20899.67 14798.77 25498.57 26899.81 5499.61 8799.48 19599.41 25898.47 15699.86 20998.97 11599.90 9599.53 171
DELS-MVS99.34 10799.30 10099.48 17999.51 20999.36 17298.12 30799.53 21299.36 12999.41 21799.61 18599.22 5499.87 18999.21 8299.68 22699.20 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 11199.21 11999.71 8999.43 24599.56 12498.83 23799.53 21299.38 12699.67 12499.36 27597.67 23299.95 4899.17 9199.81 16799.63 106
ab-mvs99.33 11199.28 10799.47 18199.57 18099.39 16299.78 1199.43 25298.87 19899.57 16499.82 5998.06 20199.87 18998.69 14599.73 20799.15 284
DVP-MVScopyleft99.32 11399.17 12399.77 4399.69 13499.80 4199.14 17799.31 28599.16 16099.62 14799.61 18598.35 17399.91 12397.88 20399.72 21399.61 127
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-199.32 11399.27 11099.47 18199.41 25198.95 23798.99 21699.48 23599.48 10399.66 12899.52 22898.78 11199.87 18998.36 16099.74 20099.60 131
APD-MVS_3200maxsize99.31 11599.16 12499.74 6799.53 19899.75 6199.27 13799.61 15499.19 15399.57 16499.64 15798.76 11599.90 14397.29 25399.62 24599.56 154
zzz-MVS99.30 11699.14 12899.80 3299.81 6199.81 3698.73 25599.53 21299.27 13999.42 20999.63 16798.21 18999.95 4897.83 21299.79 17799.65 92
SteuartSystems-ACMMP99.30 11699.14 12899.76 5099.87 3799.66 9499.18 16299.60 16798.55 23099.57 16499.67 14699.03 7999.94 6297.01 27299.80 17299.69 61
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 11899.26 11299.37 21599.75 10698.81 25198.84 23599.89 1998.38 24899.75 9299.04 33199.36 3999.86 20999.08 10599.25 31599.45 211
ACMMP_NAP99.28 11999.11 13899.79 3799.75 10699.81 3698.95 22399.53 21298.27 26499.53 18399.73 10498.75 11799.87 18997.70 22599.83 15099.68 67
LCM-MVSNet-Re99.28 11999.15 12799.67 9899.33 28199.76 5799.34 11499.97 598.93 19099.91 2499.79 7598.68 12399.93 7996.80 28599.56 26299.30 253
mvs_anonymous99.28 11999.39 7998.94 27799.19 30997.81 31399.02 20799.55 19799.78 4999.85 5199.80 6598.24 18499.86 20999.57 3299.50 27999.15 284
MVS_Test99.28 11999.31 9599.19 25099.35 26698.79 25399.36 11299.49 23399.17 15899.21 25999.67 14698.78 11199.66 34699.09 10499.66 23799.10 295
SR-MVS-dyc-post99.27 12399.11 13899.73 7799.54 19399.74 6799.26 13999.62 14799.16 16099.52 18599.64 15798.41 16599.91 12397.27 25699.61 25299.54 165
XVS99.27 12399.11 13899.75 6099.71 12299.71 7699.37 10999.61 15499.29 13598.76 31299.47 24898.47 15699.88 17697.62 23399.73 20799.67 74
OPM-MVS99.26 12599.13 13199.63 12499.70 13099.61 11398.58 26499.48 23598.50 23699.52 18599.63 16799.14 6399.76 30397.89 20299.77 18799.51 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS99.25 12699.08 14999.76 5099.73 11599.70 8399.31 12399.59 17498.36 25099.36 22699.37 27098.80 10699.91 12397.43 24699.75 19299.68 67
HPM-MVScopyleft99.25 12699.07 15399.78 4099.81 6199.75 6199.61 6699.67 12297.72 29599.35 22899.25 30199.23 5399.92 9997.21 26499.82 15999.67 74
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 12699.08 14999.74 6799.79 7699.68 9099.50 8599.65 13698.07 27599.52 18599.69 13098.57 14099.92 9997.18 26599.79 17799.63 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 12999.11 13899.61 13698.38 37199.79 4399.57 7699.68 11799.61 8799.15 26899.71 11798.70 12199.91 12397.54 23999.68 22699.13 292
test117299.23 13099.05 15999.74 6799.52 20499.75 6199.20 15699.61 15498.97 18299.48 19599.58 20298.41 16599.91 12397.15 26799.55 26699.57 151
xiu_mvs_v1_base_debu99.23 13099.34 8998.91 28399.59 16598.23 28898.47 27999.66 12699.61 8799.68 11998.94 34899.39 3099.97 2099.18 8899.55 26698.51 346
xiu_mvs_v1_base99.23 13099.34 8998.91 28399.59 16598.23 28898.47 27999.66 12699.61 8799.68 11998.94 34899.39 3099.97 2099.18 8899.55 26698.51 346
xiu_mvs_v1_base_debi99.23 13099.34 8998.91 28399.59 16598.23 28898.47 27999.66 12699.61 8799.68 11998.94 34899.39 3099.97 2099.18 8899.55 26698.51 346
region2R99.23 13099.05 15999.77 4399.76 9599.70 8399.31 12399.59 17498.41 24499.32 23699.36 27598.73 12099.93 7997.29 25399.74 20099.67 74
ACMMPR99.23 13099.06 15599.76 5099.74 11299.69 8799.31 12399.59 17498.36 25099.35 22899.38 26898.61 13499.93 7997.43 24699.75 19299.67 74
XVG-ACMP-BASELINE99.23 13099.10 14699.63 12499.82 5499.58 12198.83 23799.72 9998.36 25099.60 15699.71 11798.92 9099.91 12397.08 27099.84 14099.40 228
CP-MVS99.23 13099.05 15999.75 6099.66 14899.66 9499.38 10599.62 14798.38 24899.06 28199.27 29698.79 10999.94 6297.51 24299.82 15999.66 84
DeepC-MVS_fast98.47 599.23 13099.12 13599.56 15499.28 29399.22 20498.99 21699.40 26299.08 17199.58 16199.64 15798.90 9599.83 25697.44 24599.75 19299.63 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 13999.04 16599.77 4399.76 9599.73 7099.28 13499.56 19198.19 26999.14 27099.29 29298.84 10199.92 9997.53 24199.80 17299.64 101
D2MVS99.22 13999.19 12199.29 23399.69 13498.74 25798.81 24299.41 25598.55 23099.68 11999.69 13098.13 19699.87 18998.82 13099.98 2899.24 262
LPG-MVS_test99.22 13999.05 15999.74 6799.82 5499.63 10599.16 17399.73 9097.56 30199.64 13499.69 13099.37 3699.89 16196.66 29399.87 12499.69 61
CDS-MVSNet99.22 13999.13 13199.50 17299.35 26699.11 21898.96 22299.54 20399.46 11299.61 15399.70 12496.31 28399.83 25699.34 6299.88 11399.55 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 13999.14 12899.45 18899.79 7699.43 15299.28 13499.68 11799.54 9799.40 22299.56 21599.07 7499.82 26696.01 32299.96 5399.11 293
AllTest99.21 14499.07 15399.63 12499.78 8399.64 10199.12 18799.83 4098.63 22299.63 13899.72 11098.68 12399.75 30796.38 30999.83 15099.51 184
XVG-OURS99.21 14499.06 15599.65 11099.82 5499.62 10797.87 33599.74 8798.36 25099.66 12899.68 14199.71 1199.90 14396.84 28399.88 11399.43 222
Fast-Effi-MVS+-dtu99.20 14699.12 13599.43 19499.25 29899.69 8799.05 20199.82 4599.50 10198.97 28599.05 32898.98 8399.98 1098.20 17599.24 31798.62 339
VDD-MVS99.20 14699.11 13899.44 19099.43 24598.98 23299.50 8598.32 35499.80 4499.56 17199.69 13096.99 26599.85 22798.99 11199.73 20799.50 190
PGM-MVS99.20 14699.01 17199.77 4399.75 10699.71 7699.16 17399.72 9997.99 27999.42 20999.60 19498.81 10299.93 7996.91 27799.74 20099.66 84
SR-MVS99.19 14999.00 17499.74 6799.51 20999.72 7499.18 16299.60 16798.85 20099.47 19799.58 20298.38 17099.92 9996.92 27699.54 27299.57 151
SMA-MVScopyleft99.19 14999.00 17499.73 7799.46 23799.73 7099.13 18399.52 22097.40 31299.57 16499.64 15798.93 8999.83 25697.61 23599.79 17799.63 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 14999.11 13899.42 19699.76 9598.88 24798.55 27099.73 9098.82 20499.72 10699.62 17696.56 27299.82 26699.32 6899.95 6299.56 154
mPP-MVS99.19 14999.00 17499.76 5099.76 9599.68 9099.38 10599.54 20398.34 25999.01 28399.50 23598.53 14999.93 7997.18 26599.78 18399.66 84
ETV-MVS99.18 15399.18 12299.16 25399.34 27699.28 18799.12 18799.79 6299.48 10398.93 28998.55 36899.40 2999.93 7998.51 15399.52 27698.28 356
VNet99.18 15399.06 15599.56 15499.24 30099.36 17299.33 11699.31 28599.67 7199.47 19799.57 21296.48 27599.84 24499.15 9599.30 30899.47 205
RPSCF99.18 15399.02 16899.64 11799.83 4799.85 1799.44 9799.82 4598.33 26099.50 19299.78 8297.90 21499.65 35296.78 28699.83 15099.44 216
DeepPCF-MVS98.42 699.18 15399.02 16899.67 9899.22 30299.75 6197.25 36299.47 23998.72 21699.66 12899.70 12499.29 4499.63 35598.07 18899.81 16799.62 117
EPP-MVSNet99.17 15799.00 17499.66 10599.80 6699.43 15299.70 3499.24 30399.48 10399.56 17199.77 8994.89 29999.93 7998.72 14299.89 10499.63 106
GST-MVS99.16 15898.96 18599.75 6099.73 11599.73 7099.20 15699.55 19798.22 26699.32 23699.35 28098.65 13099.91 12396.86 28099.74 20099.62 117
MVP-Stereo99.16 15899.08 14999.43 19499.48 22699.07 22799.08 19899.55 19798.63 22299.31 24099.68 14198.19 19299.78 29398.18 17999.58 26099.45 211
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 15898.99 17999.66 10599.84 4399.64 10198.25 29799.73 9098.39 24799.63 13899.43 25699.70 1399.90 14397.34 25098.64 34899.44 216
jason99.16 15899.11 13899.32 22799.75 10698.44 27798.26 29699.39 26598.70 21799.74 10199.30 28998.54 14599.97 2098.48 15499.82 15999.55 157
jason: jason.
DPE-MVScopyleft99.14 16298.92 19299.82 2699.57 18099.77 4998.74 25399.60 16798.55 23099.76 8499.69 13098.23 18899.92 9996.39 30899.75 19299.76 45
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 16298.92 19299.80 3299.83 4799.83 2798.61 26099.63 14496.84 33499.44 20399.58 20298.81 10299.91 12397.70 22599.82 15999.67 74
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 16499.06 15599.36 21999.57 18099.10 22398.01 31999.25 30098.78 21099.58 16199.44 25598.24 18499.76 30398.74 14099.93 8199.22 267
MVS_111021_LR99.13 16499.03 16799.42 19699.58 17099.32 18197.91 33499.73 9098.68 21899.31 24099.48 24399.09 6899.66 34697.70 22599.77 18799.29 256
EIA-MVS99.12 16699.01 17199.45 18899.36 26499.62 10799.34 11499.79 6298.41 24498.84 30298.89 35398.75 11799.84 24498.15 18399.51 27798.89 324
#test#99.12 16698.90 19699.76 5099.73 11599.70 8399.10 19099.59 17497.60 30099.36 22699.37 27098.80 10699.91 12396.84 28399.75 19299.68 67
TSAR-MVS + GP.99.12 16699.04 16599.38 21299.34 27699.16 21398.15 30399.29 29098.18 27099.63 13899.62 17699.18 5799.68 33798.20 17599.74 20099.30 253
MVS_111021_HR99.12 16699.02 16899.40 20499.50 21599.11 21897.92 33299.71 10298.76 21499.08 27799.47 24899.17 5899.54 36597.85 20999.76 18999.54 165
xxxxxxxxxxxxxcwj99.11 17098.96 18599.54 16199.53 19899.25 19598.29 29399.76 7599.07 17399.42 20999.61 18598.86 9899.87 18996.45 30599.68 22699.49 195
CANet99.11 17099.05 15999.28 23598.83 35398.56 27098.71 25899.41 25599.25 14399.23 25399.22 30897.66 23699.94 6299.19 8699.97 3999.33 245
WR-MVS99.11 17098.93 18899.66 10599.30 28899.42 15598.42 28599.37 27299.04 17899.57 16499.20 31296.89 26799.86 20998.66 14799.87 12499.70 57
PHI-MVS99.11 17098.95 18799.59 14099.13 31799.59 11899.17 16799.65 13697.88 28799.25 24999.46 25198.97 8599.80 28797.26 25899.82 15999.37 236
SF-MVS99.10 17498.93 18899.62 13399.58 17099.51 13299.13 18399.65 13697.97 28199.42 20999.61 18598.86 9899.87 18996.45 30599.68 22699.49 195
MSDG99.08 17598.98 18299.37 21599.60 16199.13 21697.54 34899.74 8798.84 20399.53 18399.55 22299.10 6699.79 29097.07 27199.86 13199.18 278
Effi-MVS+-dtu99.07 17698.92 19299.52 16698.89 34799.78 4699.15 17599.66 12699.34 13098.92 29299.24 30697.69 22999.98 1098.11 18599.28 31198.81 331
Effi-MVS+99.06 17798.97 18399.34 22199.31 28498.98 23298.31 29299.91 1598.81 20598.79 30898.94 34899.14 6399.84 24498.79 13498.74 34499.20 273
MP-MVScopyleft99.06 17798.83 20599.76 5099.76 9599.71 7699.32 11999.50 22898.35 25598.97 28599.48 24398.37 17199.92 9995.95 32899.75 19299.63 106
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 17799.05 15999.07 26899.80 6697.83 31298.89 22799.72 9999.29 13599.63 13899.70 12496.47 27699.89 16198.17 18199.82 15999.50 190
MSLP-MVS++99.05 18099.09 14798.91 28399.21 30498.36 28498.82 24199.47 23998.85 20098.90 29599.56 21598.78 11199.09 37898.57 15099.68 22699.26 259
1112_ss99.05 18098.84 20399.67 9899.66 14899.29 18598.52 27599.82 4597.65 29899.43 20799.16 31596.42 27899.91 12399.07 10699.84 14099.80 28
ACMP97.51 1499.05 18098.84 20399.67 9899.78 8399.55 12798.88 22899.66 12697.11 32899.47 19799.60 19499.07 7499.89 16196.18 31799.85 13599.58 145
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 18398.79 21099.81 2999.78 8399.73 7099.35 11399.57 18698.54 23399.54 17898.99 33896.81 26999.93 7996.97 27499.53 27499.77 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 18499.01 17199.09 26499.54 19397.99 30498.58 26499.82 4597.62 29999.34 23199.71 11798.52 15299.77 30197.98 19499.97 3999.52 182
IS-MVSNet99.03 18498.85 20199.55 15799.80 6699.25 19599.73 2699.15 31699.37 12799.61 15399.71 11794.73 30299.81 28297.70 22599.88 11399.58 145
xiu_mvs_v2_base99.02 18699.11 13898.77 30099.37 26298.09 30098.13 30699.51 22499.47 10899.42 20998.54 36999.38 3499.97 2098.83 12899.33 30598.24 358
Fast-Effi-MVS+99.02 18698.87 19999.46 18499.38 25999.50 13399.04 20399.79 6297.17 32498.62 32198.74 36199.34 4099.95 4898.32 16599.41 29398.92 322
canonicalmvs99.02 18699.00 17499.09 26499.10 32598.70 25999.61 6699.66 12699.63 8298.64 32097.65 38299.04 7899.54 36598.79 13498.92 33399.04 309
MCST-MVS99.02 18698.81 20799.65 11099.58 17099.49 13498.58 26499.07 32098.40 24699.04 28299.25 30198.51 15499.80 28797.31 25299.51 27799.65 92
SD-MVS99.01 19099.30 10098.15 32599.50 21599.40 16098.94 22599.61 15499.22 15199.75 9299.82 5999.54 2695.51 38597.48 24399.87 12499.54 165
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 19098.92 19299.27 23799.71 12299.28 18798.59 26399.77 7098.32 26199.39 22399.41 25898.62 13299.84 24496.62 29799.84 14098.69 337
IterMVS-SCA-FT99.00 19299.16 12498.51 31099.75 10695.90 35298.07 31499.84 3899.84 3599.89 3399.73 10496.01 29099.99 699.33 66100.00 199.63 106
MS-PatchMatch99.00 19298.97 18399.09 26499.11 32498.19 29298.76 25299.33 27998.49 23899.44 20399.58 20298.21 18999.69 32698.20 17599.62 24599.39 231
PS-MVSNAJ99.00 19299.08 14998.76 30199.37 26298.10 29998.00 32199.51 22499.47 10899.41 21798.50 37199.28 4699.97 2098.83 12899.34 30398.20 362
CNVR-MVS98.99 19598.80 20999.56 15499.25 29899.43 15298.54 27399.27 29498.58 22798.80 30799.43 25698.53 14999.70 32097.22 26399.59 25999.54 165
VDDNet98.97 19698.82 20699.42 19699.71 12298.81 25199.62 6198.68 33799.81 4199.38 22499.80 6594.25 30699.85 22798.79 13499.32 30699.59 140
IterMVS98.97 19699.16 12498.42 31499.74 11295.64 35598.06 31699.83 4099.83 3899.85 5199.74 10096.10 28999.99 699.27 78100.00 199.63 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 19698.93 18899.07 26899.46 23798.19 29297.75 33999.75 8298.79 20899.54 17899.70 12498.97 8599.62 35696.63 29699.83 15099.41 226
HPM-MVS++copyleft98.96 19998.70 21799.74 6799.52 20499.71 7698.86 23299.19 31298.47 24098.59 32499.06 32798.08 20099.91 12396.94 27599.60 25599.60 131
lupinMVS98.96 19998.87 19999.24 24499.57 18098.40 28098.12 30799.18 31398.28 26399.63 13899.13 31798.02 20599.97 2098.22 17399.69 22199.35 242
USDC98.96 19998.93 18899.05 27099.54 19397.99 30497.07 36899.80 5698.21 26799.75 9299.77 8998.43 16299.64 35497.90 20199.88 11399.51 184
YYNet198.95 20298.99 17998.84 29399.64 15297.14 33298.22 29999.32 28198.92 19299.59 15999.66 15097.40 24599.83 25698.27 16999.90 9599.55 157
MDA-MVSNet_test_wron98.95 20298.99 17998.85 29199.64 15297.16 33198.23 29899.33 27998.93 19099.56 17199.66 15097.39 24799.83 25698.29 16799.88 11399.55 157
Test_1112_low_res98.95 20298.73 21299.63 12499.68 14299.15 21598.09 31199.80 5697.14 32699.46 20199.40 26296.11 28899.89 16199.01 11099.84 14099.84 17
CANet_DTU98.91 20598.85 20199.09 26498.79 35898.13 29598.18 30099.31 28599.48 10398.86 30099.51 23296.56 27299.95 4899.05 10799.95 6299.19 276
HyFIR lowres test98.91 20598.64 22099.73 7799.85 4299.47 13798.07 31499.83 4098.64 22199.89 3399.60 19492.57 324100.00 199.33 6699.97 3999.72 51
HQP_MVS98.90 20798.68 21999.55 15799.58 17099.24 20098.80 24599.54 20398.94 18799.14 27099.25 30197.24 25399.82 26695.84 33199.78 18399.60 131
sss98.90 20798.77 21199.27 23799.48 22698.44 27798.72 25699.32 28197.94 28599.37 22599.35 28096.31 28399.91 12398.85 12799.63 24499.47 205
OMC-MVS98.90 20798.72 21399.44 19099.39 25699.42 15598.58 26499.64 14297.31 31899.44 20399.62 17698.59 13799.69 32696.17 31899.79 17799.22 267
ppachtmachnet_test98.89 21099.12 13598.20 32499.66 14895.24 35997.63 34499.68 11799.08 17199.78 7799.62 17698.65 13099.88 17698.02 18999.96 5399.48 200
MVS_030498.88 21198.71 21499.39 20898.85 35198.91 24599.45 9499.30 28898.56 22897.26 37099.68 14196.18 28799.96 3899.17 9199.94 7399.29 256
new_pmnet98.88 21198.89 19798.84 29399.70 13097.62 31998.15 30399.50 22897.98 28099.62 14799.54 22498.15 19599.94 6297.55 23899.84 14098.95 319
K. test v398.87 21398.60 22399.69 9499.93 2099.46 14199.74 2394.97 37799.78 4999.88 3999.88 3393.66 31499.97 2099.61 2599.95 6299.64 101
APD-MVScopyleft98.87 21398.59 22599.71 8999.50 21599.62 10799.01 20999.57 18696.80 33699.54 17899.63 16798.29 18099.91 12395.24 34599.71 21699.61 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 21599.09 14798.13 32699.66 14894.90 36297.72 34099.58 18499.07 17399.64 13499.62 17698.19 19299.93 7998.41 15799.95 6299.55 157
mvs-test198.83 21698.70 21799.22 24698.89 34799.65 9998.88 22899.66 12699.34 13098.29 33798.94 34897.69 22999.96 3898.11 18598.54 35298.04 366
UnsupCasMVSNet_eth98.83 21698.57 22999.59 14099.68 14299.45 14698.99 21699.67 12299.48 10399.55 17699.36 27594.92 29899.86 20998.95 12196.57 37699.45 211
NCCC98.82 21898.57 22999.58 14499.21 30499.31 18298.61 26099.25 30098.65 22098.43 33499.26 29997.86 21899.81 28296.55 29899.27 31499.61 127
PMVScopyleft92.94 2198.82 21898.81 20798.85 29199.84 4397.99 30499.20 15699.47 23999.71 5899.42 20999.82 5998.09 19899.47 37293.88 36499.85 13599.07 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 22098.63 22299.32 22799.13 31798.72 25899.10 19099.48 23599.23 14799.62 14799.64 15792.57 32499.86 20998.96 11799.90 9599.39 231
Patchmtry98.78 22198.54 23399.49 17598.89 34799.19 21199.32 11999.67 12299.65 7799.72 10699.79 7591.87 33299.95 4898.00 19399.97 3999.33 245
ETH3D-3000-0.198.77 22298.50 23799.59 14099.47 23299.53 12998.77 25099.60 16797.33 31799.23 25399.50 23597.91 21399.83 25695.02 34999.67 23399.41 226
Vis-MVSNet (Re-imp)98.77 22298.58 22899.34 22199.78 8398.88 24799.61 6699.56 19199.11 17099.24 25299.56 21593.00 32299.78 29397.43 24699.89 10499.35 242
CLD-MVS98.76 22498.57 22999.33 22399.57 18098.97 23497.53 35099.55 19796.41 34099.27 24799.13 31799.07 7499.78 29396.73 28999.89 10499.23 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final98.75 22598.54 23399.40 20499.33 28198.75 25599.26 13999.59 17499.80 4499.76 8499.58 20290.17 35399.92 9999.37 5899.97 3999.54 165
Anonymous20240521198.75 22598.46 23999.63 12499.34 27699.66 9499.47 9197.65 36399.28 13899.56 17199.50 23593.15 31899.84 24498.62 14899.58 26099.40 228
CPTT-MVS98.74 22798.44 24199.64 11799.61 15999.38 16599.18 16299.55 19796.49 33999.27 24799.37 27097.11 26199.92 9995.74 33599.67 23399.62 117
F-COLMAP98.74 22798.45 24099.62 13399.57 18099.47 13798.84 23599.65 13696.31 34398.93 28999.19 31497.68 23199.87 18996.52 30099.37 30099.53 171
N_pmnet98.73 22998.53 23599.35 22099.72 11998.67 26198.34 28894.65 37898.35 25599.79 7499.68 14198.03 20399.93 7998.28 16899.92 8599.44 216
c3_l98.72 23098.71 21498.72 30399.12 31997.22 33097.68 34399.56 19198.90 19499.54 17899.48 24396.37 28299.73 31297.88 20399.88 11399.21 269
CL-MVSNet_self_test98.71 23198.56 23299.15 25599.22 30298.66 26497.14 36599.51 22498.09 27499.54 17899.27 29696.87 26899.74 30998.43 15698.96 33099.03 310
PVSNet_Blended98.70 23298.59 22599.02 27299.54 19397.99 30497.58 34799.82 4595.70 35299.34 23198.98 34198.52 15299.77 30197.98 19499.83 15099.30 253
eth_miper_zixun_eth98.68 23398.71 21498.60 30799.10 32596.84 33997.52 35299.54 20398.94 18799.58 16199.48 24396.25 28599.76 30398.01 19299.93 8199.21 269
PatchMatch-RL98.68 23398.47 23899.30 23299.44 24299.28 18798.14 30599.54 20397.12 32799.11 27499.25 30197.80 22399.70 32096.51 30199.30 30898.93 321
miper_lstm_enhance98.65 23598.60 22398.82 29899.20 30797.33 32797.78 33899.66 12699.01 17999.59 15999.50 23594.62 30399.85 22798.12 18499.90 9599.26 259
test_part198.63 23698.26 26099.75 6099.40 25499.49 13499.67 4799.68 11799.86 2799.88 3999.86 4386.73 37299.93 7999.34 6299.97 3999.81 27
test_prior398.62 23798.34 25299.46 18499.35 26699.22 20497.95 32899.39 26597.87 28898.05 35099.05 32897.90 21499.69 32695.99 32499.49 28199.48 200
h-mvs3398.61 23898.34 25299.44 19099.60 16198.67 26199.27 13799.44 24899.68 6799.32 23699.49 24092.50 327100.00 199.24 7996.51 37799.65 92
CVMVSNet98.61 23898.88 19897.80 33499.58 17093.60 36999.26 13999.64 14299.66 7599.72 10699.67 14693.26 31799.93 7999.30 7299.81 16799.87 12
Patchmatch-RL test98.60 24098.36 24999.33 22399.77 9199.07 22798.27 29599.87 2598.91 19399.74 10199.72 11090.57 34999.79 29098.55 15199.85 13599.11 293
RPMNet98.60 24098.53 23598.83 29599.05 33098.12 29699.30 12699.62 14799.86 2799.16 26699.74 10092.53 32699.92 9998.75 13998.77 34098.44 351
AdaColmapbinary98.60 24098.35 25199.38 21299.12 31999.22 20498.67 25999.42 25497.84 29298.81 30599.27 29697.32 25199.81 28295.14 34699.53 27499.10 295
miper_ehance_all_eth98.59 24398.59 22598.59 30898.98 34097.07 33397.49 35399.52 22098.50 23699.52 18599.37 27096.41 28099.71 31897.86 20799.62 24599.00 316
WTY-MVS98.59 24398.37 24899.26 23999.43 24598.40 28098.74 25399.13 31998.10 27299.21 25999.24 30694.82 30099.90 14397.86 20798.77 34099.49 195
CNLPA98.57 24598.34 25299.28 23599.18 31199.10 22398.34 28899.41 25598.48 23998.52 32998.98 34197.05 26399.78 29395.59 33799.50 27998.96 317
testtj98.56 24698.17 27199.72 8399.45 24099.60 11598.88 22899.50 22896.88 33199.18 26599.48 24397.08 26299.92 9993.69 36599.38 29699.63 106
112198.56 24698.24 26199.52 16699.49 22099.24 20099.30 12699.22 30795.77 35098.52 32999.29 29297.39 24799.85 22795.79 33399.34 30399.46 209
CDPH-MVS98.56 24698.20 26699.61 13699.50 21599.46 14198.32 29199.41 25595.22 35799.21 25999.10 32498.34 17699.82 26695.09 34899.66 23799.56 154
UnsupCasMVSNet_bld98.55 24998.27 25999.40 20499.56 19199.37 16897.97 32799.68 11797.49 30899.08 27799.35 28095.41 29799.82 26697.70 22598.19 36199.01 315
cl____98.54 25098.41 24498.92 28199.03 33497.80 31497.46 35499.59 17498.90 19499.60 15699.46 25193.85 31099.78 29397.97 19699.89 10499.17 280
DIV-MVS_self_test98.54 25098.42 24398.92 28199.03 33497.80 31497.46 35499.59 17498.90 19499.60 15699.46 25193.87 30999.78 29397.97 19699.89 10499.18 278
FA-MVS(test-final)98.52 25298.32 25599.10 26399.48 22698.67 26199.77 1498.60 34397.35 31599.63 13899.80 6593.07 32099.84 24497.92 19999.30 30898.78 334
hse-mvs298.52 25298.30 25799.16 25399.29 29098.60 26998.77 25099.02 32499.68 6799.32 23699.04 33192.50 32799.85 22799.24 7997.87 36899.03 310
MG-MVS98.52 25298.39 24698.94 27799.15 31497.39 32698.18 30099.21 31198.89 19799.23 25399.63 16797.37 24999.74 30994.22 35899.61 25299.69 61
ETH3D cwj APD-0.1698.50 25598.16 27299.51 16999.04 33299.39 16298.47 27999.47 23996.70 33898.78 31099.33 28497.62 23999.86 20994.69 35499.38 29699.28 258
DP-MVS Recon98.50 25598.23 26299.31 23099.49 22099.46 14198.56 26999.63 14494.86 36398.85 30199.37 27097.81 22299.59 36296.08 31999.44 28798.88 325
CMPMVSbinary77.52 2398.50 25598.19 26999.41 20398.33 37399.56 12499.01 20999.59 17495.44 35499.57 16499.80 6595.64 29499.46 37496.47 30499.92 8599.21 269
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 25898.11 27599.64 11799.73 11599.58 12199.24 14699.76 7589.94 37699.42 20999.56 21597.76 22699.86 20997.74 21999.82 15999.47 205
PMMVS98.49 25898.29 25899.11 26198.96 34198.42 27997.54 34899.32 28197.53 30598.47 33398.15 37797.88 21799.82 26697.46 24499.24 31799.09 298
MVSTER98.47 26098.22 26499.24 24499.06 32998.35 28599.08 19899.46 24399.27 13999.75 9299.66 15088.61 36199.85 22799.14 10199.92 8599.52 182
iter_conf0598.46 26198.23 26299.15 25599.04 33297.99 30499.10 19099.61 15499.79 4799.76 8499.58 20287.88 36399.92 9999.31 7199.97 3999.53 171
LFMVS98.46 26198.19 26999.26 23999.24 30098.52 27399.62 6196.94 37099.87 2499.31 24099.58 20291.04 34099.81 28298.68 14699.42 29299.45 211
PatchT98.45 26398.32 25598.83 29598.94 34298.29 28699.24 14698.82 33299.84 3599.08 27799.76 9391.37 33599.94 6298.82 13099.00 32998.26 357
MIMVSNet98.43 26498.20 26699.11 26199.53 19898.38 28399.58 7498.61 34198.96 18599.33 23399.76 9390.92 34299.81 28297.38 24999.76 18999.15 284
PVSNet97.47 1598.42 26598.44 24198.35 31799.46 23796.26 34696.70 37399.34 27897.68 29799.00 28499.13 31797.40 24599.72 31497.59 23799.68 22699.08 301
CHOSEN 280x42098.41 26698.41 24498.40 31599.34 27695.89 35396.94 37099.44 24898.80 20799.25 24999.52 22893.51 31699.98 1098.94 12299.98 2899.32 248
BH-RMVSNet98.41 26698.14 27499.21 24799.21 30498.47 27498.60 26298.26 35598.35 25598.93 28999.31 28797.20 25899.66 34694.32 35699.10 32399.51 184
QAPM98.40 26897.99 28199.65 11099.39 25699.47 13799.67 4799.52 22091.70 37398.78 31099.80 6598.55 14399.95 4894.71 35399.75 19299.53 171
API-MVS98.38 26998.39 24698.35 31798.83 35399.26 19199.14 17799.18 31398.59 22698.66 31998.78 35998.61 13499.57 36494.14 35999.56 26296.21 378
HQP-MVS98.36 27098.02 28099.39 20899.31 28498.94 23897.98 32499.37 27297.45 30998.15 34498.83 35696.67 27099.70 32094.73 35199.67 23399.53 171
PAPM_NR98.36 27098.04 27899.33 22399.48 22698.93 24298.79 24899.28 29397.54 30498.56 32798.57 36697.12 26099.69 32694.09 36098.90 33599.38 233
PLCcopyleft97.35 1698.36 27097.99 28199.48 17999.32 28399.24 20098.50 27799.51 22495.19 35998.58 32598.96 34696.95 26699.83 25695.63 33699.25 31599.37 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 27397.95 28599.57 15099.35 26699.35 17698.11 30999.41 25594.90 36197.92 35598.99 33898.02 20599.85 22795.38 34399.44 28799.50 190
CR-MVSNet98.35 27398.20 26698.83 29599.05 33098.12 29699.30 12699.67 12297.39 31399.16 26699.79 7591.87 33299.91 12398.78 13798.77 34098.44 351
agg_prior198.33 27597.92 29199.57 15099.35 26699.36 17297.99 32399.39 26594.85 36497.76 36498.98 34198.03 20399.85 22795.49 33999.44 28799.51 184
DPM-MVS98.28 27697.94 28999.32 22799.36 26499.11 21897.31 36098.78 33496.88 33198.84 30299.11 32397.77 22599.61 36094.03 36299.36 30199.23 265
alignmvs98.28 27697.96 28499.25 24299.12 31998.93 24299.03 20698.42 35099.64 7998.72 31597.85 38090.86 34599.62 35698.88 12699.13 32099.19 276
test_yl98.25 27897.95 28599.13 25999.17 31298.47 27499.00 21198.67 33998.97 18299.22 25799.02 33691.31 33699.69 32697.26 25898.93 33199.24 262
DCV-MVSNet98.25 27897.95 28599.13 25999.17 31298.47 27499.00 21198.67 33998.97 18299.22 25799.02 33691.31 33699.69 32697.26 25898.93 33199.24 262
MAR-MVS98.24 28097.92 29199.19 25098.78 36099.65 9999.17 16799.14 31795.36 35598.04 35298.81 35897.47 24299.72 31495.47 34199.06 32498.21 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 28197.89 29599.26 23999.19 30999.26 19199.65 5899.69 11491.33 37498.14 34899.77 8998.28 18199.96 3895.41 34299.55 26698.58 343
BH-untuned98.22 28298.09 27698.58 30999.38 25997.24 32998.55 27098.98 32797.81 29399.20 26498.76 36097.01 26499.65 35294.83 35098.33 35698.86 327
HY-MVS98.23 998.21 28397.95 28598.99 27399.03 33498.24 28799.61 6698.72 33696.81 33598.73 31499.51 23294.06 30799.86 20996.91 27798.20 35998.86 327
EPNet98.13 28497.77 29999.18 25294.57 38797.99 30499.24 14697.96 35999.74 5397.29 36999.62 17693.13 31999.97 2098.59 14999.83 15099.58 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 28598.36 24997.36 34499.20 30792.99 37198.17 30298.49 34898.24 26599.10 27699.57 21296.01 29099.94 6296.86 28099.62 24599.14 289
Patchmatch-test98.10 28697.98 28398.48 31299.27 29596.48 34399.40 10199.07 32098.81 20599.23 25399.57 21290.11 35499.87 18996.69 29099.64 24299.09 298
pmmvs398.08 28797.80 29698.91 28399.41 25197.69 31897.87 33599.66 12695.87 34799.50 19299.51 23290.35 35199.97 2098.55 15199.47 28499.08 301
JIA-IIPM98.06 28897.92 29198.50 31198.59 36797.02 33498.80 24598.51 34699.88 2397.89 35799.87 3691.89 33199.90 14398.16 18297.68 37098.59 341
miper_enhance_ethall98.03 28997.94 28998.32 31998.27 37496.43 34596.95 36999.41 25596.37 34299.43 20798.96 34694.74 30199.69 32697.71 22299.62 24598.83 330
TAPA-MVS97.92 1398.03 28997.55 30599.46 18499.47 23299.44 14898.50 27799.62 14786.79 37799.07 28099.26 29998.26 18399.62 35697.28 25599.73 20799.31 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 29197.90 29498.27 32398.90 34497.45 32499.30 12699.06 32294.98 36097.21 37199.12 32198.43 16299.67 34295.58 33898.56 35197.71 370
GA-MVS97.99 29297.68 30298.93 28099.52 20498.04 30397.19 36499.05 32398.32 26198.81 30598.97 34489.89 35799.41 37598.33 16499.05 32599.34 244
MVS-HIRNet97.86 29398.22 26496.76 35399.28 29391.53 37998.38 28792.60 38399.13 16699.31 24099.96 1297.18 25999.68 33798.34 16399.83 15099.07 306
FE-MVS97.85 29497.42 30799.15 25599.44 24298.75 25599.77 1498.20 35695.85 34899.33 23399.80 6588.86 36099.88 17696.40 30799.12 32198.81 331
AUN-MVS97.82 29597.38 30899.14 25899.27 29598.53 27198.72 25699.02 32498.10 27297.18 37299.03 33589.26 35999.85 22797.94 19897.91 36699.03 310
FMVSNet597.80 29697.25 31299.42 19698.83 35398.97 23499.38 10599.80 5698.87 19899.25 24999.69 13080.60 38399.91 12398.96 11799.90 9599.38 233
ADS-MVSNet297.78 29797.66 30498.12 32799.14 31595.36 35799.22 15398.75 33596.97 32998.25 34099.64 15790.90 34399.94 6296.51 30199.56 26299.08 301
ETH3 D test640097.76 29897.19 31499.50 17299.38 25999.26 19198.34 28899.49 23392.99 37098.54 32899.20 31295.92 29299.82 26691.14 37299.66 23799.40 228
test111197.74 29998.16 27296.49 35899.60 16189.86 38799.71 3391.21 38499.89 1899.88 3999.87 3693.73 31399.90 14399.56 3399.99 1299.70 57
ECVR-MVScopyleft97.73 30098.04 27896.78 35299.59 16590.81 38399.72 2990.43 38699.89 1899.86 4999.86 4393.60 31599.89 16199.46 4599.99 1299.65 92
baseline197.73 30097.33 30998.96 27599.30 28897.73 31699.40 10198.42 35099.33 13399.46 20199.21 31091.18 33899.82 26698.35 16291.26 38299.32 248
tpmrst97.73 30098.07 27796.73 35598.71 36492.00 37599.10 19098.86 32998.52 23498.92 29299.54 22491.90 33099.82 26698.02 18999.03 32798.37 353
ADS-MVSNet97.72 30397.67 30397.86 33299.14 31594.65 36399.22 15398.86 32996.97 32998.25 34099.64 15790.90 34399.84 24496.51 30199.56 26299.08 301
PatchmatchNetpermissive97.65 30497.80 29697.18 34998.82 35692.49 37399.17 16798.39 35298.12 27198.79 30899.58 20290.71 34799.89 16197.23 26299.41 29399.16 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 30597.20 31398.90 28999.76 9597.40 32599.48 8994.36 37999.06 17799.70 11499.49 24084.55 37899.94 6298.73 14199.65 24099.36 239
EPNet_dtu97.62 30597.79 29897.11 35196.67 38492.31 37498.51 27698.04 35799.24 14595.77 37899.47 24893.78 31299.66 34698.98 11399.62 24599.37 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 30799.13 13192.93 36599.69 13499.49 13499.52 8299.77 7097.97 28199.96 1199.79 7599.84 599.94 6295.85 33099.82 15979.36 381
cl2297.56 30897.28 31098.40 31598.37 37296.75 34097.24 36399.37 27297.31 31899.41 21799.22 30887.30 36499.37 37697.70 22599.62 24599.08 301
PAPR97.56 30897.07 31699.04 27198.80 35798.11 29897.63 34499.25 30094.56 36798.02 35398.25 37697.43 24499.68 33790.90 37398.74 34499.33 245
thisisatest053097.45 31096.95 32098.94 27799.68 14297.73 31699.09 19594.19 38198.61 22599.56 17199.30 28984.30 37999.93 7998.27 16999.54 27299.16 282
TR-MVS97.44 31197.15 31598.32 31998.53 36997.46 32398.47 27997.91 36196.85 33398.21 34398.51 37096.42 27899.51 37092.16 36897.29 37297.98 367
tpmvs97.39 31297.69 30196.52 35798.41 37091.76 37699.30 12698.94 32897.74 29497.85 36099.55 22292.40 32999.73 31296.25 31498.73 34698.06 365
test0.0.03 197.37 31396.91 32398.74 30297.72 38097.57 32097.60 34697.36 36998.00 27799.21 25998.02 37890.04 35599.79 29098.37 15995.89 38098.86 327
OpenMVS_ROBcopyleft97.31 1797.36 31496.84 32498.89 29099.29 29099.45 14698.87 23199.48 23586.54 37999.44 20399.74 10097.34 25099.86 20991.61 36999.28 31197.37 374
BH-w/o97.20 31597.01 31897.76 33599.08 32895.69 35498.03 31898.52 34595.76 35197.96 35498.02 37895.62 29599.47 37292.82 36797.25 37398.12 364
test-LLR97.15 31696.95 32097.74 33798.18 37795.02 36097.38 35696.10 37198.00 27797.81 36198.58 36490.04 35599.91 12397.69 23198.78 33898.31 354
tpm97.15 31696.95 32097.75 33698.91 34394.24 36599.32 11997.96 35997.71 29698.29 33799.32 28586.72 37399.92 9998.10 18796.24 37999.09 298
E-PMN97.14 31897.43 30696.27 36098.79 35891.62 37895.54 37799.01 32699.44 11598.88 29699.12 32192.78 32399.68 33794.30 35799.03 32797.50 371
cascas96.99 31996.82 32597.48 34097.57 38395.64 35596.43 37599.56 19191.75 37297.13 37397.61 38395.58 29698.63 38196.68 29199.11 32298.18 363
thisisatest051596.98 32096.42 32798.66 30699.42 25097.47 32297.27 36194.30 38097.24 32099.15 26898.86 35585.01 37699.87 18997.10 26999.39 29598.63 338
EMVS96.96 32197.28 31095.99 36398.76 36291.03 38195.26 37898.61 34199.34 13098.92 29298.88 35493.79 31199.66 34692.87 36699.05 32597.30 375
dp96.86 32297.07 31696.24 36198.68 36690.30 38699.19 16198.38 35397.35 31598.23 34299.59 20087.23 36599.82 26696.27 31398.73 34698.59 341
baseline296.83 32396.28 32998.46 31399.09 32796.91 33798.83 23793.87 38297.23 32196.23 37798.36 37388.12 36299.90 14396.68 29198.14 36398.57 344
ET-MVSNet_ETH3D96.78 32496.07 33398.91 28399.26 29797.92 31197.70 34296.05 37497.96 28492.37 38398.43 37287.06 36699.90 14398.27 16997.56 37198.91 323
tpm cat196.78 32496.98 31996.16 36298.85 35190.59 38599.08 19899.32 28192.37 37197.73 36699.46 25191.15 33999.69 32696.07 32098.80 33798.21 360
PCF-MVS96.03 1896.73 32695.86 33799.33 22399.44 24299.16 21396.87 37199.44 24886.58 37898.95 28799.40 26294.38 30599.88 17687.93 37799.80 17298.95 319
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 32796.79 32696.46 35998.90 34490.71 38499.41 10098.68 33794.69 36698.14 34899.34 28386.32 37599.80 28797.60 23698.07 36598.88 325
MVEpermissive92.54 2296.66 32896.11 33298.31 32199.68 14297.55 32197.94 33095.60 37699.37 12790.68 38498.70 36296.56 27298.61 38286.94 38299.55 26698.77 335
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 32996.16 33197.93 33099.63 15496.09 35099.18 16297.57 36498.77 21198.72 31597.32 38587.04 36799.72 31488.57 37598.62 34997.98 367
EPMVS96.53 33096.32 32897.17 35098.18 37792.97 37299.39 10389.95 38798.21 26798.61 32299.59 20086.69 37499.72 31496.99 27399.23 31998.81 331
thres40096.40 33195.89 33597.92 33199.58 17096.11 34899.00 21197.54 36798.43 24198.52 32996.98 38886.85 36999.67 34287.62 37898.51 35397.98 367
thres100view90096.39 33296.03 33497.47 34199.63 15495.93 35199.18 16297.57 36498.75 21598.70 31797.31 38687.04 36799.67 34287.62 37898.51 35396.81 376
tpm296.35 33396.22 33096.73 35598.88 35091.75 37799.21 15598.51 34693.27 36997.89 35799.21 31084.83 37799.70 32096.04 32198.18 36298.75 336
FPMVS96.32 33495.50 34198.79 29999.60 16198.17 29498.46 28498.80 33397.16 32596.28 37499.63 16782.19 38099.09 37888.45 37698.89 33699.10 295
tfpn200view996.30 33595.89 33597.53 33999.58 17096.11 34899.00 21197.54 36798.43 24198.52 32996.98 38886.85 36999.67 34287.62 37898.51 35396.81 376
TESTMET0.1,196.24 33695.84 33897.41 34398.24 37593.84 36897.38 35695.84 37598.43 24197.81 36198.56 36779.77 38499.89 16197.77 21498.77 34098.52 345
test-mter96.23 33795.73 33997.74 33798.18 37795.02 36097.38 35696.10 37197.90 28697.81 36198.58 36479.12 38799.91 12397.69 23198.78 33898.31 354
X-MVStestdata96.09 33894.87 34799.75 6099.71 12299.71 7699.37 10999.61 15499.29 13598.76 31261.30 39198.47 15699.88 17697.62 23399.73 20799.67 74
thres20096.09 33895.68 34097.33 34699.48 22696.22 34798.53 27497.57 36498.06 27698.37 33696.73 39086.84 37199.61 36086.99 38198.57 35096.16 379
KD-MVS_2432*160095.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30797.23 32198.88 29699.04 33179.23 38599.54 36596.24 31596.81 37498.50 349
miper_refine_blended95.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30797.23 32198.88 29699.04 33179.23 38599.54 36596.24 31596.81 37498.50 349
gg-mvs-nofinetune95.87 34295.17 34697.97 32998.19 37696.95 33599.69 4089.23 38899.89 1896.24 37699.94 1681.19 38199.51 37093.99 36398.20 35997.44 372
PVSNet_095.53 1995.85 34395.31 34597.47 34198.78 36093.48 37095.72 37699.40 26296.18 34597.37 36797.73 38195.73 29399.58 36395.49 33981.40 38399.36 239
tmp_tt95.75 34495.42 34296.76 35389.90 38994.42 36498.86 23297.87 36278.01 38099.30 24599.69 13097.70 22795.89 38499.29 7598.14 36399.95 3
MVS95.72 34594.63 34998.99 27398.56 36897.98 31099.30 12698.86 32972.71 38297.30 36899.08 32598.34 17699.74 30989.21 37498.33 35699.26 259
PAPM95.61 34694.71 34898.31 32199.12 31996.63 34196.66 37498.46 34990.77 37596.25 37598.68 36393.01 32199.69 32681.60 38397.86 36998.62 339
IB-MVS95.41 2095.30 34794.46 35197.84 33398.76 36295.33 35897.33 35996.07 37396.02 34695.37 38197.41 38476.17 38999.96 3897.54 23995.44 38198.22 359
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.73 34894.59 35095.15 36499.59 16585.90 38999.75 2174.01 39099.89 1899.71 11199.86 4379.00 38899.90 14399.52 3999.99 1299.65 92
test_method91.72 34992.32 35289.91 36693.49 38870.18 39090.28 37999.56 19161.71 38395.39 38099.52 22893.90 30899.94 6298.76 13898.27 35899.62 117
EGC-MVSNET89.05 35085.52 35399.64 11799.89 2999.78 4699.56 7899.52 22024.19 38449.96 38599.83 5299.15 6099.92 9997.71 22299.85 13599.21 269
test12329.31 35133.05 35618.08 36725.93 39112.24 39197.53 35010.93 39211.78 38524.21 38650.08 39521.04 3908.60 38623.51 38432.43 38533.39 382
testmvs28.94 35233.33 35415.79 36826.03 3909.81 39296.77 37215.67 39111.55 38623.87 38750.74 39419.03 3918.53 38723.21 38533.07 38429.03 383
cdsmvs_eth3d_5k24.88 35333.17 3550.00 3690.00 3920.00 3930.00 38099.62 1470.00 3870.00 38899.13 31799.82 60.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas16.61 35422.14 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 199.28 460.00 3880.00 3860.00 3860.00 384
test_blank8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
sosnet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
Regformer8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.26 36311.02 3660.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.16 3150.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.83 4799.89 1099.74 2399.71 10299.69 6599.63 138
MSC_two_6792asdad99.74 6799.03 33499.53 12999.23 30499.92 9997.77 21499.69 22199.78 36
PC_three_145297.56 30199.68 11999.41 25899.09 6897.09 38396.66 29399.60 25599.62 117
No_MVS99.74 6799.03 33499.53 12999.23 30499.92 9997.77 21499.69 22199.78 36
test_one_060199.63 15499.76 5799.55 19799.23 14799.31 24099.61 18598.59 137
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.43 24599.61 11399.43 25296.38 34199.11 27499.07 32697.86 21899.92 9994.04 36199.49 281
RE-MVS-def99.13 13199.54 19399.74 6799.26 13999.62 14799.16 16099.52 18599.64 15798.57 14097.27 25699.61 25299.54 165
IU-MVS99.69 13499.77 4999.22 30797.50 30799.69 11797.75 21899.70 21899.77 40
OPU-MVS99.29 23399.12 31999.44 14899.20 15699.40 26299.00 8098.84 38096.54 29999.60 25599.58 145
test_241102_TWO99.54 20399.13 16699.76 8499.63 16798.32 17999.92 9997.85 20999.69 22199.75 48
test_241102_ONE99.69 13499.82 3399.54 20399.12 16999.82 5999.49 24098.91 9299.52 369
9.1498.64 22099.45 24098.81 24299.60 16797.52 30699.28 24699.56 21598.53 14999.83 25695.36 34499.64 242
save fliter99.53 19899.25 19598.29 29399.38 27199.07 173
test_0728_THIRD99.18 15499.62 14799.61 18598.58 13999.91 12397.72 22099.80 17299.77 40
test_0728_SECOND99.83 2499.70 13099.79 4399.14 17799.61 15499.92 9997.88 20399.72 21399.77 40
test072699.69 13499.80 4199.24 14699.57 18699.16 16099.73 10599.65 15598.35 173
GSMVS99.14 289
test_part299.62 15899.67 9299.55 176
sam_mvs190.81 34699.14 289
sam_mvs90.52 350
ambc99.20 24999.35 26698.53 27199.17 16799.46 24399.67 12499.80 6598.46 15999.70 32097.92 19999.70 21899.38 233
MTGPAbinary99.53 212
test_post199.14 17751.63 39389.54 35899.82 26696.86 280
test_post52.41 39290.25 35299.86 209
patchmatchnet-post99.62 17690.58 34899.94 62
GG-mvs-BLEND97.36 34497.59 38196.87 33899.70 3488.49 38994.64 38297.26 38780.66 38299.12 37791.50 37096.50 37896.08 380
MTMP99.09 19598.59 344
gm-plane-assit97.59 38189.02 38893.47 36898.30 37499.84 24496.38 309
test9_res95.10 34799.44 28799.50 190
TEST999.35 26699.35 17698.11 30999.41 25594.83 36597.92 35598.99 33898.02 20599.85 227
test_899.34 27699.31 18298.08 31399.40 26294.90 36197.87 35998.97 34498.02 20599.84 244
agg_prior294.58 35599.46 28699.50 190
agg_prior99.35 26699.36 17299.39 26597.76 36499.85 227
TestCases99.63 12499.78 8399.64 10199.83 4098.63 22299.63 13899.72 11098.68 12399.75 30796.38 30999.83 15099.51 184
test_prior499.19 21198.00 321
test_prior297.95 32897.87 28898.05 35099.05 32897.90 21495.99 32499.49 281
test_prior99.46 18499.35 26699.22 20499.39 26599.69 32699.48 200
旧先验297.94 33095.33 35698.94 28899.88 17696.75 287
新几何298.04 317
新几何199.52 16699.50 21599.22 20499.26 29795.66 35398.60 32399.28 29497.67 23299.89 16195.95 32899.32 30699.45 211
旧先验199.49 22099.29 18599.26 29799.39 26697.67 23299.36 30199.46 209
无先验98.01 31999.23 30495.83 34999.85 22795.79 33399.44 216
原ACMM297.92 332
原ACMM199.37 21599.47 23298.87 24999.27 29496.74 33798.26 33999.32 28597.93 21299.82 26695.96 32799.38 29699.43 222
test22299.51 20999.08 22697.83 33799.29 29095.21 35898.68 31899.31 28797.28 25299.38 29699.43 222
testdata299.89 16195.99 324
segment_acmp98.37 171
testdata99.42 19699.51 20998.93 24299.30 28896.20 34498.87 29999.40 26298.33 17899.89 16196.29 31299.28 31199.44 216
testdata197.72 34097.86 291
test1299.54 16199.29 29099.33 17999.16 31598.43 33497.54 24099.82 26699.47 28499.48 200
plane_prior799.58 17099.38 165
plane_prior699.47 23299.26 19197.24 253
plane_prior599.54 20399.82 26695.84 33199.78 18399.60 131
plane_prior499.25 301
plane_prior399.31 18298.36 25099.14 270
plane_prior298.80 24598.94 187
plane_prior199.51 209
plane_prior99.24 20098.42 28597.87 28899.71 216
n20.00 393
nn0.00 393
door-mid99.83 40
lessismore_v099.64 11799.86 3999.38 16590.66 38599.89 3399.83 5294.56 30499.97 2099.56 3399.92 8599.57 151
LGP-MVS_train99.74 6799.82 5499.63 10599.73 9097.56 30199.64 13499.69 13099.37 3699.89 16196.66 29399.87 12499.69 61
test1199.29 290
door99.77 70
HQP5-MVS98.94 238
HQP-NCC99.31 28497.98 32497.45 30998.15 344
ACMP_Plane99.31 28497.98 32497.45 30998.15 344
BP-MVS94.73 351
HQP4-MVS98.15 34499.70 32099.53 171
HQP3-MVS99.37 27299.67 233
HQP2-MVS96.67 270
NP-MVS99.40 25499.13 21698.83 356
MDTV_nov1_ep13_2view91.44 38099.14 17797.37 31499.21 25991.78 33496.75 28799.03 310
MDTV_nov1_ep1397.73 30098.70 36590.83 38299.15 17598.02 35898.51 23598.82 30499.61 18590.98 34199.66 34696.89 27998.92 333
ACMMP++_ref99.94 73
ACMMP++99.79 177
Test By Simon98.41 165
ITE_SJBPF99.38 21299.63 15499.44 14899.73 9098.56 22899.33 23399.53 22698.88 9799.68 33796.01 32299.65 24099.02 314
DeepMVS_CXcopyleft97.98 32899.69 13496.95 33599.26 29775.51 38195.74 37998.28 37596.47 27699.62 35691.23 37197.89 36797.38 373