LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 24 | 93.86 31 | 99.07 2 | 98.98 4 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 176 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 5 | 98.61 3 | 98.81 6 | 97.41 10 | 97.28 48 | 98.46 25 | 94.62 58 | 98.84 137 | 94.64 17 | 99.53 35 | 98.99 53 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 69 | 93.87 30 | 98.42 6 | 98.19 35 | 96.95 14 | 95.46 129 | 99.23 4 | 93.45 75 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 42 | 95.32 7 | 96.61 26 | 98.35 19 | 95.81 31 | 97.55 36 | 97.44 64 | 96.51 9 | 99.40 43 | 94.06 30 | 99.23 78 | 98.85 75 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 86 | 99.51 2 | 87.38 133 | 97.70 8 | 97.54 110 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 99 | 90.73 127 | 99.73 14 | 99.59 12 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 8 | 93.92 28 | 97.16 12 | 98.17 40 | 93.11 70 | 96.48 79 | 97.36 71 | 96.92 6 | 99.34 62 | 94.31 23 | 99.38 55 | 98.92 67 |
|
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 78 | 95.27 8 | 96.37 39 | 98.12 46 | 95.66 33 | 97.00 58 | 97.03 92 | 94.85 52 | 99.42 29 | 93.49 48 | 98.84 121 | 98.00 149 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 22 | 92.51 49 | 96.58 28 | 97.61 105 | 87.57 202 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 39 | 99.40 21 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 88 | 98.54 42 | 86.81 147 | 96.83 20 | 98.07 56 | 96.59 20 | 98.46 17 | 98.43 27 | 92.91 94 | 99.52 17 | 96.25 6 | 99.76 11 | 99.65 8 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 90 | 93.82 33 | 96.31 44 | 98.25 27 | 95.51 35 | 96.99 60 | 97.05 91 | 95.63 21 | 99.39 48 | 93.31 62 | 98.88 116 | 98.75 84 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 19 | 93.53 38 | 97.51 9 | 98.44 12 | 92.35 82 | 95.95 107 | 96.41 132 | 96.71 8 | 99.42 29 | 93.99 33 | 99.36 56 | 99.13 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 98 | 99.12 8 | 87.82 128 | 96.68 24 | 97.86 83 | 96.10 26 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 213 | 91.38 118 | 99.69 15 | 99.42 19 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 11 | 91.85 58 | 97.98 7 | 98.01 69 | 94.15 50 | 98.93 3 | 99.07 5 | 88.07 183 | 99.57 13 | 95.86 9 | 99.69 15 | 99.46 18 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 83 | 94.87 10 | 96.07 53 | 98.06 59 | 95.76 32 | 96.89 63 | 96.85 103 | 94.85 52 | 99.42 29 | 93.35 61 | 98.81 129 | 98.53 109 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 58 | 94.31 16 | 96.79 22 | 98.32 20 | 96.69 17 | 96.86 65 | 97.56 56 | 95.48 25 | 98.77 154 | 90.11 149 | 99.44 45 | 98.31 124 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 86 | 94.03 25 | 96.97 17 | 97.61 105 | 87.68 199 | 98.45 18 | 98.77 15 | 94.20 67 | 99.50 19 | 96.70 3 | 99.40 53 | 99.53 14 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 115 | 99.13 6 | 84.68 184 | 96.51 30 | 97.94 81 | 98.14 3 | 98.67 12 | 98.32 29 | 95.04 45 | 99.69 2 | 93.27 65 | 99.82 8 | 99.62 10 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 80 | 94.69 11 | 96.13 50 | 98.07 56 | 95.17 37 | 96.82 67 | 96.73 114 | 95.09 44 | 99.43 28 | 92.99 77 | 98.71 138 | 98.50 111 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 128 | 99.13 6 | 84.09 194 | 96.61 26 | 97.97 75 | 97.91 5 | 98.64 13 | 98.13 32 | 95.24 36 | 99.65 3 | 93.39 59 | 99.84 3 | 99.72 2 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 117 | 99.16 4 | 84.50 185 | 96.54 29 | 98.05 60 | 98.06 4 | 98.64 13 | 98.25 31 | 95.01 48 | 99.65 3 | 92.95 78 | 99.83 6 | 99.68 4 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 16 | 94.05 22 | 95.88 61 | 97.62 102 | 94.46 45 | 96.29 89 | 96.94 96 | 93.56 73 | 99.37 56 | 94.29 24 | 99.42 47 | 98.99 53 |
|
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 40 | 91.77 60 | 97.15 13 | 97.37 120 | 88.98 169 | 98.26 22 | 98.86 10 | 93.35 80 | 99.60 8 | 96.41 4 | 99.45 43 | 99.66 6 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 33 | 93.88 29 | 96.95 18 | 98.18 36 | 92.26 85 | 96.33 85 | 96.84 106 | 95.10 43 | 99.40 43 | 93.47 52 | 99.33 60 | 99.02 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 102 | 97.46 119 | 86.35 162 | 97.11 16 | 98.24 30 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 86 | 99.15 87 | 93.18 68 | 99.74 13 | 99.50 16 |
|
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 94 | 99.02 12 | 86.44 158 | 96.78 23 | 98.08 53 | 97.42 9 | 98.48 16 | 97.86 45 | 91.76 120 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 27 | 92.49 50 | 96.44 36 | 97.42 118 | 86.96 211 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 16 | 95.92 8 | 99.45 43 | 99.32 26 |
|
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 141 | 98.56 37 | 85.33 178 | 96.33 42 | 98.30 23 | 94.66 40 | 98.72 8 | 98.30 30 | 97.51 5 | 98.00 230 | 94.87 14 | 99.59 27 | 98.86 72 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | 96.49 29 | 96.18 42 | 97.44 17 | 98.56 37 | 93.99 26 | 96.50 31 | 97.95 78 | 94.58 41 | 94.38 171 | 96.49 126 | 94.56 59 | 99.39 48 | 93.57 44 | 99.05 97 | 98.93 63 |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 83 | 98.54 42 | 89.06 99 | 95.65 68 | 98.61 9 | 96.10 26 | 98.16 23 | 97.52 59 | 96.90 7 | 98.62 175 | 90.30 140 | 99.60 25 | 98.72 90 |
|
zzz-MVS | | | 96.47 31 | 96.14 45 | 97.47 15 | 98.95 16 | 94.05 22 | 93.69 138 | 97.62 102 | 94.46 45 | 96.29 89 | 96.94 96 | 93.56 73 | 99.37 56 | 94.29 24 | 99.42 47 | 98.99 53 |
|
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 60 | 97.68 105 | 89.38 96 | 96.90 19 | 98.41 16 | 92.52 77 | 97.43 43 | 97.92 41 | 95.11 42 | 99.50 19 | 94.45 19 | 99.30 64 | 98.92 67 |
|
ACMMPR | | | 96.46 32 | 96.14 45 | 97.41 21 | 98.60 34 | 93.82 33 | 96.30 46 | 97.96 76 | 92.35 82 | 95.57 124 | 96.61 122 | 94.93 51 | 99.41 36 | 93.78 38 | 99.15 87 | 99.00 51 |
|
mPP-MVS | | | 96.46 32 | 96.05 51 | 97.69 5 | 98.62 31 | 94.65 13 | 96.45 34 | 97.74 96 | 92.59 76 | 95.47 127 | 96.68 117 | 94.50 61 | 99.42 29 | 93.10 72 | 99.26 74 | 98.99 53 |
|
CP-MVS | | | 96.44 35 | 96.08 49 | 97.54 11 | 98.29 63 | 94.62 14 | 96.80 21 | 98.08 53 | 92.67 75 | 95.08 148 | 96.39 137 | 94.77 54 | 99.42 29 | 93.17 69 | 99.44 45 | 98.58 107 |
|
ZNCC-MVS | | | 96.42 36 | 96.20 41 | 97.07 30 | 98.80 26 | 92.79 47 | 96.08 52 | 98.16 43 | 91.74 109 | 95.34 133 | 96.36 140 | 95.68 19 | 99.44 24 | 94.41 21 | 99.28 72 | 98.97 59 |
|
region2R | | | 96.41 37 | 96.09 48 | 97.38 23 | 98.62 31 | 93.81 35 | 96.32 43 | 97.96 76 | 92.26 85 | 95.28 137 | 96.57 124 | 95.02 47 | 99.41 36 | 93.63 42 | 99.11 92 | 98.94 62 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 36 | 96.71 42 | 98.63 30 | 91.96 56 | 95.70 65 | 98.01 69 | 93.34 67 | 96.64 74 | 96.57 124 | 94.99 49 | 99.36 58 | 93.48 51 | 99.34 58 | 98.82 77 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.39 39 | 96.17 44 | 97.04 31 | 98.51 46 | 93.37 39 | 96.30 46 | 97.98 72 | 92.35 82 | 95.63 121 | 96.47 127 | 95.37 28 | 99.27 75 | 93.78 38 | 99.14 88 | 98.48 113 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 39 | 96.84 40 | 98.36 61 | 92.13 53 | 95.33 78 | 98.25 27 | 91.78 105 | 97.07 53 | 97.22 82 | 96.38 13 | 99.28 73 | 92.07 97 | 99.59 27 | 99.11 41 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 77 | 97.83 94 | 88.55 112 | 95.77 64 | 98.29 26 | 92.68 73 | 98.03 26 | 97.91 42 | 95.13 40 | 98.95 122 | 93.85 36 | 99.49 38 | 99.36 24 |
|
PGM-MVS | | | 96.32 41 | 95.94 55 | 97.43 19 | 98.59 36 | 93.84 32 | 95.33 78 | 98.30 23 | 91.40 118 | 95.76 115 | 96.87 102 | 95.26 35 | 99.45 23 | 92.77 80 | 99.21 81 | 99.00 51 |
|
ACMM | | 88.83 9 | 96.30 43 | 96.07 50 | 96.97 35 | 98.39 57 | 92.95 45 | 94.74 101 | 98.03 65 | 90.82 132 | 97.15 51 | 96.85 103 | 96.25 15 | 99.00 114 | 93.10 72 | 99.33 60 | 98.95 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GST-MVS | | | 96.24 44 | 95.99 54 | 97.00 34 | 98.65 29 | 92.71 48 | 95.69 67 | 98.01 69 | 92.08 90 | 95.74 117 | 96.28 145 | 95.22 37 | 99.42 29 | 93.17 69 | 99.06 94 | 98.88 71 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 47 | 96.49 49 | 98.90 18 | 91.42 63 | 94.57 109 | 98.03 65 | 90.42 143 | 96.37 82 | 97.35 74 | 95.68 19 | 99.25 77 | 94.44 20 | 99.34 58 | 98.80 79 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 134 | 98.99 14 | 83.82 197 | 96.31 44 | 97.53 112 | 97.60 7 | 98.34 19 | 97.52 59 | 91.98 115 | 99.63 6 | 93.08 74 | 99.81 9 | 99.70 3 |
|
MP-MVS |  | | 96.14 47 | 95.68 67 | 97.51 13 | 98.81 24 | 94.06 20 | 96.10 51 | 97.78 95 | 92.73 72 | 93.48 196 | 96.72 115 | 94.23 66 | 99.42 29 | 91.99 99 | 99.29 67 | 99.05 48 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
LS3D | | | 96.11 48 | 95.83 62 | 96.95 37 | 94.75 255 | 94.20 18 | 97.34 11 | 97.98 72 | 97.31 11 | 95.32 134 | 96.77 108 | 93.08 89 | 99.20 83 | 91.79 105 | 98.16 198 | 97.44 198 |
|
MP-MVS-pluss | | | 96.08 49 | 95.92 57 | 96.57 45 | 99.06 10 | 91.21 65 | 93.25 147 | 98.32 20 | 87.89 192 | 96.86 65 | 97.38 67 | 95.55 24 | 99.39 48 | 95.47 10 | 99.47 39 | 99.11 41 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 38 | 95.50 82 | 98.26 66 | 87.69 129 | 93.75 136 | 97.86 83 | 95.96 30 | 97.48 41 | 97.14 86 | 95.33 32 | 99.44 24 | 90.79 126 | 99.76 11 | 99.38 22 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 52 | 95.89 65 | 98.82 23 | 88.51 114 | 95.57 71 | 97.88 82 | 88.72 175 | 98.81 6 | 98.86 10 | 90.77 144 | 99.60 8 | 95.43 11 | 99.53 35 | 99.57 13 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 111 | 98.51 46 | 86.97 143 | 95.21 82 | 98.10 49 | 91.95 92 | 97.63 32 | 97.25 79 | 96.48 11 | 99.35 59 | 93.29 63 | 99.29 67 | 97.95 157 |
|
DVP-MVS++. | | | 95.93 53 | 96.34 34 | 94.70 114 | 96.54 163 | 86.66 152 | 98.45 4 | 98.22 32 | 93.26 68 | 97.54 37 | 97.36 71 | 93.12 87 | 99.38 54 | 93.88 34 | 98.68 142 | 98.04 144 |
|
DPE-MVS |  | | 95.89 54 | 95.88 58 | 95.92 62 | 97.93 91 | 89.83 85 | 93.46 143 | 98.30 23 | 92.37 80 | 97.75 29 | 96.95 95 | 95.14 39 | 99.51 18 | 91.74 107 | 99.28 72 | 98.41 119 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
#test# | | | 95.89 54 | 95.51 71 | 97.04 31 | 98.51 46 | 93.37 39 | 95.14 87 | 97.98 72 | 89.34 162 | 95.63 121 | 96.47 127 | 95.37 28 | 99.27 75 | 91.99 99 | 99.14 88 | 98.48 113 |
|
SF-MVS | | | 95.88 56 | 95.88 58 | 95.87 66 | 98.12 74 | 89.65 88 | 95.58 70 | 98.56 11 | 91.84 101 | 96.36 83 | 96.68 117 | 94.37 64 | 99.32 68 | 92.41 91 | 99.05 97 | 98.64 98 |
|
3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 65 | 96.13 52 | 96.81 150 | 90.79 73 | 96.30 46 | 97.82 89 | 96.13 25 | 94.74 162 | 97.23 81 | 91.33 130 | 99.16 86 | 93.25 66 | 98.30 182 | 98.46 115 |
|
DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 113 | 98.51 46 | 86.69 150 | 95.20 84 | 97.00 151 | 91.85 98 | 97.40 46 | 97.35 74 | 95.58 22 | 99.34 62 | 93.44 55 | 99.31 62 | 98.13 138 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 95.77 59 | 95.54 70 | 96.47 50 | 98.27 65 | 91.19 66 | 95.09 88 | 97.79 94 | 86.48 215 | 97.42 45 | 97.51 61 | 94.47 63 | 99.29 71 | 93.55 46 | 99.29 67 | 98.93 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_0402 | | | 95.73 60 | 96.22 40 | 94.26 136 | 98.19 71 | 85.77 173 | 93.24 148 | 97.24 137 | 96.88 16 | 97.69 30 | 97.77 48 | 94.12 68 | 99.13 91 | 91.54 115 | 99.29 67 | 97.88 165 |
|
ACMP | | 88.15 13 | 95.71 61 | 95.43 75 | 96.54 46 | 98.17 72 | 91.73 61 | 94.24 120 | 98.08 53 | 89.46 159 | 96.61 76 | 96.47 127 | 95.85 17 | 99.12 93 | 90.45 131 | 99.56 33 | 98.77 83 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-ACMP-BASELINE | | | 95.68 62 | 95.34 77 | 96.69 43 | 98.40 56 | 93.04 42 | 94.54 114 | 98.05 60 | 90.45 142 | 96.31 87 | 96.76 110 | 92.91 94 | 98.72 160 | 91.19 119 | 99.42 47 | 98.32 122 |
|
DP-MVS | | | 95.62 63 | 95.84 61 | 94.97 103 | 97.16 132 | 88.62 109 | 94.54 114 | 97.64 101 | 96.94 15 | 96.58 77 | 97.32 77 | 93.07 90 | 98.72 160 | 90.45 131 | 98.84 121 | 97.57 189 |
|
OPM-MVS | | | 95.61 64 | 95.45 73 | 96.08 53 | 98.49 54 | 91.00 68 | 92.65 163 | 97.33 129 | 90.05 148 | 96.77 70 | 96.85 103 | 95.04 45 | 98.56 184 | 92.77 80 | 99.06 94 | 98.70 93 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
RPSCF | | | 95.58 65 | 94.89 92 | 97.62 8 | 97.58 111 | 96.30 4 | 95.97 57 | 97.53 112 | 92.42 78 | 93.41 197 | 97.78 46 | 91.21 136 | 97.77 251 | 91.06 120 | 97.06 247 | 98.80 79 |
|
MIMVSNet1 | | | 95.52 66 | 95.45 73 | 95.72 74 | 99.14 5 | 89.02 100 | 96.23 49 | 96.87 164 | 93.73 59 | 97.87 27 | 98.49 24 | 90.73 148 | 99.05 104 | 86.43 221 | 99.60 25 | 99.10 44 |
|
Anonymous20240529 | | | 95.50 67 | 95.83 62 | 94.50 126 | 97.33 125 | 85.93 170 | 95.19 86 | 96.77 172 | 96.64 19 | 97.61 35 | 98.05 34 | 93.23 83 | 98.79 146 | 88.60 185 | 99.04 102 | 98.78 81 |
|
Vis-MVSNet |  | | 95.50 67 | 95.48 72 | 95.56 81 | 98.11 75 | 89.40 95 | 95.35 76 | 98.22 32 | 92.36 81 | 94.11 175 | 98.07 33 | 92.02 112 | 99.44 24 | 93.38 60 | 97.67 230 | 97.85 169 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DROMVSNet | | | 95.44 69 | 95.62 69 | 94.89 105 | 96.93 143 | 87.69 129 | 96.48 33 | 99.14 3 | 93.93 55 | 92.77 221 | 94.52 227 | 93.95 70 | 99.49 22 | 93.62 43 | 99.22 80 | 97.51 194 |
|
pm-mvs1 | | | 95.43 70 | 95.94 55 | 93.93 147 | 98.38 58 | 85.08 181 | 95.46 75 | 97.12 145 | 91.84 101 | 97.28 48 | 98.46 25 | 95.30 34 | 97.71 256 | 90.17 147 | 99.42 47 | 98.99 53 |
|
DeepC-MVS | | 91.39 4 | 95.43 70 | 95.33 78 | 95.71 75 | 97.67 106 | 90.17 79 | 93.86 134 | 98.02 67 | 87.35 204 | 96.22 95 | 97.99 38 | 94.48 62 | 99.05 104 | 92.73 83 | 99.68 18 | 97.93 159 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVG-OURS-SEG-HR | | | 95.38 72 | 95.00 89 | 96.51 47 | 98.10 76 | 94.07 19 | 92.46 171 | 98.13 45 | 90.69 135 | 93.75 189 | 96.25 148 | 98.03 2 | 97.02 284 | 92.08 96 | 95.55 283 | 98.45 116 |
|
UniMVSNet_NR-MVSNet | | | 95.35 73 | 95.21 83 | 95.76 72 | 97.69 104 | 88.59 110 | 92.26 184 | 97.84 87 | 94.91 38 | 96.80 68 | 95.78 171 | 90.42 153 | 99.41 36 | 91.60 112 | 99.58 31 | 99.29 28 |
|
MSP-MVS | | | 95.34 74 | 94.63 105 | 97.48 14 | 98.67 28 | 94.05 22 | 96.41 38 | 98.18 36 | 91.26 121 | 95.12 144 | 95.15 199 | 86.60 212 | 99.50 19 | 93.43 57 | 96.81 257 | 98.89 69 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
FC-MVSNet-test | | | 95.32 75 | 95.88 58 | 93.62 157 | 98.49 54 | 81.77 219 | 95.90 60 | 98.32 20 | 93.93 55 | 97.53 39 | 97.56 56 | 88.48 176 | 99.40 43 | 92.91 79 | 99.83 6 | 99.68 4 |
|
UniMVSNet (Re) | | | 95.32 75 | 95.15 85 | 95.80 69 | 97.79 95 | 88.91 102 | 92.91 155 | 98.07 56 | 93.46 65 | 96.31 87 | 95.97 160 | 90.14 158 | 99.34 62 | 92.11 94 | 99.64 23 | 99.16 36 |
|
Gipuma |  | | 95.31 77 | 95.80 64 | 93.81 154 | 97.99 89 | 90.91 70 | 96.42 37 | 97.95 78 | 96.69 17 | 91.78 248 | 98.85 12 | 91.77 119 | 95.49 323 | 91.72 108 | 99.08 93 | 95.02 286 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DU-MVS | | | 95.28 78 | 95.12 87 | 95.75 73 | 97.75 97 | 88.59 110 | 92.58 164 | 97.81 90 | 93.99 52 | 96.80 68 | 95.90 161 | 90.10 162 | 99.41 36 | 91.60 112 | 99.58 31 | 99.26 29 |
|
NR-MVSNet | | | 95.28 78 | 95.28 81 | 95.26 93 | 97.75 97 | 87.21 137 | 95.08 89 | 97.37 120 | 93.92 57 | 97.65 31 | 95.90 161 | 90.10 162 | 99.33 67 | 90.11 149 | 99.66 21 | 99.26 29 |
|
TransMVSNet (Re) | | | 95.27 80 | 96.04 52 | 92.97 177 | 98.37 60 | 81.92 218 | 95.07 90 | 96.76 173 | 93.97 54 | 97.77 28 | 98.57 19 | 95.72 18 | 97.90 236 | 88.89 178 | 99.23 78 | 99.08 45 |
|
SD-MVS | | | 95.19 81 | 95.73 66 | 93.55 160 | 96.62 157 | 88.88 105 | 94.67 103 | 98.05 60 | 91.26 121 | 97.25 50 | 96.40 133 | 95.42 26 | 94.36 340 | 92.72 84 | 99.19 83 | 97.40 202 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
VPA-MVSNet | | | 95.14 82 | 95.67 68 | 93.58 159 | 97.76 96 | 83.15 205 | 94.58 108 | 97.58 107 | 93.39 66 | 97.05 56 | 98.04 35 | 93.25 82 | 98.51 189 | 89.75 159 | 99.59 27 | 99.08 45 |
|
xxxxxxxxxxxxxcwj | | | 95.03 83 | 94.93 90 | 95.33 88 | 97.46 119 | 88.05 122 | 92.04 192 | 98.42 15 | 87.63 200 | 96.36 83 | 96.68 117 | 94.37 64 | 99.32 68 | 92.41 91 | 99.05 97 | 98.64 98 |
|
HPM-MVS++ |  | | 95.02 84 | 94.39 112 | 96.91 38 | 97.88 92 | 93.58 37 | 94.09 126 | 96.99 153 | 91.05 126 | 92.40 232 | 95.22 198 | 91.03 142 | 99.25 77 | 92.11 94 | 98.69 141 | 97.90 163 |
|
APD-MVS |  | | 95.00 85 | 94.69 100 | 95.93 60 | 97.38 122 | 90.88 71 | 94.59 106 | 97.81 90 | 89.22 167 | 95.46 129 | 96.17 153 | 93.42 78 | 99.34 62 | 89.30 165 | 98.87 119 | 97.56 191 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PMVS |  | 87.21 14 | 94.97 86 | 95.33 78 | 93.91 149 | 98.97 15 | 97.16 2 | 95.54 72 | 95.85 212 | 96.47 21 | 93.40 199 | 97.46 63 | 95.31 33 | 95.47 324 | 86.18 225 | 98.78 133 | 89.11 351 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
TSAR-MVS + MP. | | | 94.96 87 | 94.75 97 | 95.57 80 | 98.86 21 | 88.69 106 | 96.37 39 | 96.81 168 | 85.23 235 | 94.75 161 | 97.12 87 | 91.85 117 | 99.40 43 | 93.45 53 | 98.33 177 | 98.62 102 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SixPastTwentyTwo | | | 94.91 88 | 95.21 83 | 93.98 143 | 98.52 45 | 83.19 204 | 95.93 58 | 94.84 242 | 94.86 39 | 98.49 15 | 98.74 16 | 81.45 254 | 99.60 8 | 94.69 16 | 99.39 54 | 99.15 37 |
|
FIs | | | 94.90 89 | 95.35 76 | 93.55 160 | 98.28 64 | 81.76 220 | 95.33 78 | 98.14 44 | 93.05 71 | 97.07 53 | 97.18 84 | 87.65 190 | 99.29 71 | 91.72 108 | 99.69 15 | 99.61 11 |
|
Regformer-4 | | | 94.90 89 | 94.67 103 | 95.59 78 | 92.78 301 | 89.02 100 | 92.39 176 | 95.91 209 | 94.50 43 | 96.41 80 | 95.56 183 | 92.10 111 | 99.01 112 | 94.23 26 | 98.14 200 | 98.74 87 |
|
AllTest | | | 94.88 91 | 94.51 110 | 96.00 55 | 98.02 84 | 92.17 51 | 95.26 81 | 98.43 13 | 90.48 140 | 95.04 150 | 96.74 112 | 92.54 104 | 97.86 242 | 85.11 236 | 98.98 105 | 97.98 153 |
|
ETH3D-3000-0.1 | | | 94.86 92 | 94.55 107 | 95.81 67 | 97.61 109 | 89.72 86 | 94.05 127 | 98.37 17 | 88.09 188 | 95.06 149 | 95.85 163 | 92.58 102 | 99.10 97 | 90.33 139 | 98.99 104 | 98.62 102 |
|
Regformer-2 | | | 94.86 92 | 94.55 107 | 95.77 71 | 92.83 299 | 89.98 81 | 91.87 205 | 96.40 190 | 94.38 47 | 96.19 99 | 95.04 206 | 92.47 107 | 99.04 107 | 93.49 48 | 98.31 180 | 98.28 126 |
|
FMVSNet1 | | | 94.84 94 | 95.13 86 | 93.97 144 | 97.60 110 | 84.29 187 | 95.99 54 | 96.56 182 | 92.38 79 | 97.03 57 | 98.53 21 | 90.12 159 | 98.98 115 | 88.78 180 | 99.16 86 | 98.65 94 |
|
ANet_high | | | 94.83 95 | 96.28 37 | 90.47 260 | 96.65 154 | 73.16 328 | 94.33 118 | 98.74 8 | 96.39 23 | 98.09 25 | 98.93 8 | 93.37 79 | 98.70 166 | 90.38 134 | 99.68 18 | 99.53 14 |
|
testtj | | | 94.81 96 | 94.42 111 | 96.01 54 | 97.23 127 | 90.51 77 | 94.77 100 | 97.85 86 | 91.29 120 | 94.92 155 | 95.66 176 | 91.71 121 | 99.40 43 | 88.07 193 | 98.25 188 | 98.11 140 |
|
3Dnovator | | 92.54 3 | 94.80 97 | 94.90 91 | 94.47 129 | 95.47 235 | 87.06 140 | 96.63 25 | 97.28 135 | 91.82 104 | 94.34 173 | 97.41 65 | 90.60 151 | 98.65 174 | 92.47 89 | 98.11 204 | 97.70 181 |
|
CPTT-MVS | | | 94.74 98 | 94.12 122 | 96.60 44 | 98.15 73 | 93.01 43 | 95.84 62 | 97.66 100 | 89.21 168 | 93.28 203 | 95.46 188 | 88.89 173 | 98.98 115 | 89.80 156 | 98.82 127 | 97.80 174 |
|
XVG-OURS | | | 94.72 99 | 94.12 122 | 96.50 48 | 98.00 86 | 94.23 17 | 91.48 218 | 98.17 40 | 90.72 134 | 95.30 135 | 96.47 127 | 87.94 187 | 96.98 285 | 91.41 117 | 97.61 233 | 98.30 125 |
|
CSCG | | | 94.69 100 | 94.75 97 | 94.52 125 | 97.55 113 | 87.87 126 | 95.01 93 | 97.57 108 | 92.68 73 | 96.20 97 | 93.44 261 | 91.92 116 | 98.78 150 | 89.11 173 | 99.24 77 | 96.92 220 |
|
v10 | | | 94.68 101 | 95.27 82 | 92.90 182 | 96.57 160 | 80.15 238 | 94.65 105 | 97.57 108 | 90.68 136 | 97.43 43 | 98.00 37 | 88.18 180 | 99.15 87 | 94.84 15 | 99.55 34 | 99.41 20 |
|
v8 | | | 94.65 102 | 95.29 80 | 92.74 187 | 96.65 154 | 79.77 252 | 94.59 106 | 97.17 141 | 91.86 97 | 97.47 42 | 97.93 40 | 88.16 181 | 99.08 99 | 94.32 22 | 99.47 39 | 99.38 22 |
|
canonicalmvs | | | 94.59 103 | 94.69 100 | 94.30 135 | 95.60 232 | 87.03 142 | 95.59 69 | 98.24 30 | 91.56 115 | 95.21 143 | 92.04 294 | 94.95 50 | 98.66 172 | 91.45 116 | 97.57 234 | 97.20 212 |
|
CNVR-MVS | | | 94.58 104 | 94.29 116 | 95.46 84 | 96.94 141 | 89.35 97 | 91.81 211 | 96.80 169 | 89.66 155 | 93.90 186 | 95.44 190 | 92.80 98 | 98.72 160 | 92.74 82 | 98.52 156 | 98.32 122 |
|
GeoE | | | 94.55 105 | 94.68 102 | 94.15 138 | 97.23 127 | 85.11 180 | 94.14 124 | 97.34 128 | 88.71 176 | 95.26 138 | 95.50 186 | 94.65 57 | 99.12 93 | 90.94 124 | 98.40 165 | 98.23 129 |
|
Regformer-1 | | | 94.55 105 | 94.33 115 | 95.19 96 | 92.83 299 | 88.54 113 | 91.87 205 | 95.84 213 | 93.99 52 | 95.95 107 | 95.04 206 | 92.00 113 | 98.79 146 | 93.14 71 | 98.31 180 | 98.23 129 |
|
EG-PatchMatch MVS | | | 94.54 107 | 94.67 103 | 94.14 139 | 97.87 93 | 86.50 154 | 92.00 195 | 96.74 174 | 88.16 187 | 96.93 62 | 97.61 54 | 93.04 91 | 97.90 236 | 91.60 112 | 98.12 203 | 98.03 147 |
|
IS-MVSNet | | | 94.49 108 | 94.35 114 | 94.92 104 | 98.25 68 | 86.46 157 | 97.13 15 | 94.31 256 | 96.24 24 | 96.28 92 | 96.36 140 | 82.88 238 | 99.35 59 | 88.19 189 | 99.52 37 | 98.96 60 |
|
Baseline_NR-MVSNet | | | 94.47 109 | 95.09 88 | 92.60 195 | 98.50 53 | 80.82 234 | 92.08 190 | 96.68 176 | 93.82 58 | 96.29 89 | 98.56 20 | 90.10 162 | 97.75 254 | 90.10 151 | 99.66 21 | 99.24 31 |
|
test_part1 | | | 94.39 110 | 94.55 107 | 93.92 148 | 96.14 195 | 82.86 210 | 95.54 72 | 98.09 52 | 95.36 36 | 98.27 20 | 98.36 28 | 75.91 295 | 99.44 24 | 93.41 58 | 99.84 3 | 99.47 17 |
|
VDD-MVS | | | 94.37 111 | 94.37 113 | 94.40 133 | 97.49 116 | 86.07 168 | 93.97 131 | 93.28 273 | 94.49 44 | 96.24 93 | 97.78 46 | 87.99 186 | 98.79 146 | 88.92 176 | 99.14 88 | 98.34 121 |
|
EI-MVSNet-Vis-set | | | 94.36 112 | 94.28 117 | 94.61 117 | 92.55 303 | 85.98 169 | 92.44 172 | 94.69 249 | 93.70 60 | 96.12 102 | 95.81 167 | 91.24 134 | 98.86 134 | 93.76 41 | 98.22 193 | 98.98 58 |
|
EI-MVSNet-UG-set | | | 94.35 113 | 94.27 119 | 94.59 122 | 92.46 304 | 85.87 171 | 92.42 174 | 94.69 249 | 93.67 64 | 96.13 101 | 95.84 166 | 91.20 137 | 98.86 134 | 93.78 38 | 98.23 191 | 99.03 49 |
|
PHI-MVS | | | 94.34 114 | 93.80 127 | 95.95 57 | 95.65 228 | 91.67 62 | 94.82 98 | 97.86 83 | 87.86 193 | 93.04 214 | 94.16 239 | 91.58 124 | 98.78 150 | 90.27 142 | 98.96 111 | 97.41 199 |
|
casdiffmvs | | | 94.32 115 | 94.80 95 | 92.85 184 | 96.05 202 | 81.44 225 | 92.35 179 | 98.05 60 | 91.53 116 | 95.75 116 | 96.80 107 | 93.35 80 | 98.49 190 | 91.01 123 | 98.32 179 | 98.64 98 |
|
Regformer-3 | | | 94.28 116 | 94.23 121 | 94.46 130 | 92.78 301 | 86.28 164 | 92.39 176 | 94.70 248 | 93.69 63 | 95.97 105 | 95.56 183 | 91.34 129 | 98.48 194 | 93.45 53 | 98.14 200 | 98.62 102 |
|
tfpnnormal | | | 94.27 117 | 94.87 93 | 92.48 200 | 97.71 101 | 80.88 233 | 94.55 112 | 95.41 229 | 93.70 60 | 96.67 73 | 97.72 49 | 91.40 128 | 98.18 217 | 87.45 203 | 99.18 85 | 98.36 120 |
|
HQP_MVS | | | 94.26 118 | 93.93 124 | 95.23 95 | 97.71 101 | 88.12 120 | 94.56 110 | 97.81 90 | 91.74 109 | 93.31 200 | 95.59 178 | 86.93 204 | 98.95 122 | 89.26 169 | 98.51 158 | 98.60 105 |
|
baseline | | | 94.26 118 | 94.80 95 | 92.64 191 | 96.08 200 | 80.99 231 | 93.69 138 | 98.04 64 | 90.80 133 | 94.89 156 | 96.32 142 | 93.19 84 | 98.48 194 | 91.68 110 | 98.51 158 | 98.43 117 |
|
OMC-MVS | | | 94.22 120 | 93.69 132 | 95.81 67 | 97.25 126 | 91.27 64 | 92.27 183 | 97.40 119 | 87.10 210 | 94.56 166 | 95.42 191 | 93.74 71 | 98.11 222 | 86.62 216 | 98.85 120 | 98.06 141 |
|
LCM-MVSNet-Re | | | 94.20 121 | 94.58 106 | 93.04 174 | 95.91 213 | 83.13 206 | 93.79 135 | 99.19 2 | 92.00 91 | 98.84 5 | 98.04 35 | 93.64 72 | 99.02 110 | 81.28 273 | 98.54 154 | 96.96 219 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 121 | 93.56 138 | 96.14 51 | 95.96 209 | 92.96 44 | 89.48 272 | 97.46 116 | 85.14 238 | 96.23 94 | 95.42 191 | 93.19 84 | 98.08 223 | 90.37 135 | 98.76 135 | 97.38 205 |
|
KD-MVS_self_test | | | 94.10 123 | 94.73 99 | 92.19 206 | 97.66 107 | 79.49 257 | 94.86 97 | 97.12 145 | 89.59 158 | 96.87 64 | 97.65 52 | 90.40 156 | 98.34 203 | 89.08 174 | 99.35 57 | 98.75 84 |
|
NCCC | | | 94.08 124 | 93.54 139 | 95.70 76 | 96.49 168 | 89.90 84 | 92.39 176 | 96.91 160 | 90.64 137 | 92.33 238 | 94.60 224 | 90.58 152 | 98.96 120 | 90.21 146 | 97.70 228 | 98.23 129 |
|
VDDNet | | | 94.03 125 | 94.27 119 | 93.31 169 | 98.87 20 | 82.36 214 | 95.51 74 | 91.78 303 | 97.19 12 | 96.32 86 | 98.60 18 | 84.24 229 | 98.75 155 | 87.09 209 | 98.83 126 | 98.81 78 |
|
ETH3D cwj APD-0.16 | | | 93.99 126 | 93.38 144 | 95.80 69 | 96.82 148 | 89.92 82 | 92.72 159 | 98.02 67 | 84.73 248 | 93.65 193 | 95.54 185 | 91.68 122 | 99.22 81 | 88.78 180 | 98.49 161 | 98.26 128 |
|
EPP-MVSNet | | | 93.91 127 | 93.68 133 | 94.59 122 | 98.08 77 | 85.55 176 | 97.44 10 | 94.03 261 | 94.22 49 | 94.94 153 | 96.19 150 | 82.07 249 | 99.57 13 | 87.28 207 | 98.89 114 | 98.65 94 |
|
Effi-MVS+-dtu | | | 93.90 128 | 92.60 164 | 97.77 4 | 94.74 257 | 96.67 3 | 94.00 129 | 95.41 229 | 89.94 149 | 91.93 246 | 92.13 292 | 90.12 159 | 98.97 119 | 87.68 200 | 97.48 236 | 97.67 184 |
|
IterMVS-LS | | | 93.78 129 | 94.28 117 | 92.27 203 | 96.27 184 | 79.21 264 | 91.87 205 | 96.78 170 | 91.77 107 | 96.57 78 | 97.07 89 | 87.15 199 | 98.74 158 | 91.99 99 | 99.03 103 | 98.86 72 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepC-MVS_fast | | 89.96 7 | 93.73 130 | 93.44 142 | 94.60 121 | 96.14 195 | 87.90 125 | 93.36 146 | 97.14 142 | 85.53 232 | 93.90 186 | 95.45 189 | 91.30 132 | 98.59 180 | 89.51 162 | 98.62 146 | 97.31 208 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_LR | | | 93.66 131 | 93.28 147 | 94.80 109 | 96.25 187 | 90.95 69 | 90.21 250 | 95.43 228 | 87.91 190 | 93.74 191 | 94.40 230 | 92.88 96 | 96.38 305 | 90.39 133 | 98.28 183 | 97.07 213 |
|
MVS_111021_HR | | | 93.63 132 | 93.42 143 | 94.26 136 | 96.65 154 | 86.96 145 | 89.30 278 | 96.23 198 | 88.36 184 | 93.57 195 | 94.60 224 | 93.45 75 | 97.77 251 | 90.23 144 | 98.38 170 | 98.03 147 |
|
v1144 | | | 93.50 133 | 93.81 126 | 92.57 196 | 96.28 183 | 79.61 255 | 91.86 209 | 96.96 154 | 86.95 212 | 95.91 110 | 96.32 142 | 87.65 190 | 98.96 120 | 93.51 47 | 98.88 116 | 99.13 39 |
|
v1192 | | | 93.49 134 | 93.78 128 | 92.62 194 | 96.16 193 | 79.62 254 | 91.83 210 | 97.22 139 | 86.07 223 | 96.10 103 | 96.38 138 | 87.22 197 | 99.02 110 | 94.14 29 | 98.88 116 | 99.22 32 |
|
WR-MVS | | | 93.49 134 | 93.72 130 | 92.80 186 | 97.57 112 | 80.03 244 | 90.14 254 | 95.68 216 | 93.70 60 | 96.62 75 | 95.39 194 | 87.21 198 | 99.04 107 | 87.50 202 | 99.64 23 | 99.33 25 |
|
V42 | | | 93.43 136 | 93.58 136 | 92.97 177 | 95.34 241 | 81.22 228 | 92.67 162 | 96.49 187 | 87.25 206 | 96.20 97 | 96.37 139 | 87.32 196 | 98.85 136 | 92.39 93 | 98.21 194 | 98.85 75 |
|
K. test v3 | | | 93.37 137 | 93.27 148 | 93.66 156 | 98.05 80 | 82.62 212 | 94.35 117 | 86.62 334 | 96.05 28 | 97.51 40 | 98.85 12 | 76.59 293 | 99.65 3 | 93.21 67 | 98.20 196 | 98.73 89 |
|
CS-MVS-test | | | 93.33 138 | 93.53 141 | 92.71 188 | 95.74 222 | 83.08 207 | 94.55 112 | 98.85 5 | 91.02 127 | 89.30 291 | 91.91 295 | 91.79 118 | 99.23 80 | 90.23 144 | 98.41 164 | 95.82 264 |
|
PM-MVS | | | 93.33 138 | 92.67 161 | 95.33 88 | 96.58 159 | 94.06 20 | 92.26 184 | 92.18 294 | 85.92 226 | 96.22 95 | 96.61 122 | 85.64 223 | 95.99 316 | 90.35 136 | 98.23 191 | 95.93 258 |
|
v1240 | | | 93.29 140 | 93.71 131 | 92.06 213 | 96.01 207 | 77.89 282 | 91.81 211 | 97.37 120 | 85.12 240 | 96.69 72 | 96.40 133 | 86.67 210 | 99.07 103 | 94.51 18 | 98.76 135 | 99.22 32 |
|
test_prior3 | | | 93.29 140 | 92.85 154 | 94.61 117 | 95.95 210 | 87.23 135 | 90.21 250 | 97.36 125 | 89.33 163 | 90.77 261 | 94.81 216 | 90.41 154 | 98.68 170 | 88.21 187 | 98.55 151 | 97.93 159 |
|
v2v482 | | | 93.29 140 | 93.63 134 | 92.29 202 | 96.35 177 | 78.82 269 | 91.77 213 | 96.28 194 | 88.45 181 | 95.70 120 | 96.26 147 | 86.02 218 | 98.90 126 | 93.02 75 | 98.81 129 | 99.14 38 |
|
alignmvs | | | 93.26 143 | 92.85 154 | 94.50 126 | 95.70 224 | 87.45 131 | 93.45 144 | 95.76 214 | 91.58 114 | 95.25 140 | 92.42 288 | 81.96 251 | 98.72 160 | 91.61 111 | 97.87 220 | 97.33 207 |
|
v1921920 | | | 93.26 143 | 93.61 135 | 92.19 206 | 96.04 206 | 78.31 275 | 91.88 204 | 97.24 137 | 85.17 237 | 96.19 99 | 96.19 150 | 86.76 209 | 99.05 104 | 94.18 28 | 98.84 121 | 99.22 32 |
|
MSLP-MVS++ | | | 93.25 145 | 93.88 125 | 91.37 230 | 96.34 178 | 82.81 211 | 93.11 149 | 97.74 96 | 89.37 161 | 94.08 177 | 95.29 197 | 90.40 156 | 96.35 307 | 90.35 136 | 98.25 188 | 94.96 287 |
|
GBi-Net | | | 93.21 146 | 92.96 151 | 93.97 144 | 95.40 237 | 84.29 187 | 95.99 54 | 96.56 182 | 88.63 177 | 95.10 145 | 98.53 21 | 81.31 256 | 98.98 115 | 86.74 212 | 98.38 170 | 98.65 94 |
|
test1 | | | 93.21 146 | 92.96 151 | 93.97 144 | 95.40 237 | 84.29 187 | 95.99 54 | 96.56 182 | 88.63 177 | 95.10 145 | 98.53 21 | 81.31 256 | 98.98 115 | 86.74 212 | 98.38 170 | 98.65 94 |
|
v144192 | | | 93.20 148 | 93.54 139 | 92.16 210 | 96.05 202 | 78.26 276 | 91.95 197 | 97.14 142 | 84.98 244 | 95.96 106 | 96.11 154 | 87.08 201 | 99.04 107 | 93.79 37 | 98.84 121 | 99.17 35 |
|
VPNet | | | 93.08 149 | 93.76 129 | 91.03 242 | 98.60 34 | 75.83 310 | 91.51 217 | 95.62 217 | 91.84 101 | 95.74 117 | 97.10 88 | 89.31 170 | 98.32 204 | 85.07 238 | 99.06 94 | 98.93 63 |
|
UGNet | | | 93.08 149 | 92.50 166 | 94.79 110 | 93.87 282 | 87.99 124 | 95.07 90 | 94.26 258 | 90.64 137 | 87.33 320 | 97.67 51 | 86.89 207 | 98.49 190 | 88.10 192 | 98.71 138 | 97.91 162 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
mvs-test1 | | | 93.07 151 | 91.80 181 | 96.89 39 | 94.74 257 | 95.83 6 | 92.17 187 | 95.41 229 | 89.94 149 | 89.85 281 | 90.59 319 | 90.12 159 | 98.88 129 | 87.68 200 | 95.66 281 | 95.97 256 |
|
TSAR-MVS + GP. | | | 93.07 151 | 92.41 168 | 95.06 101 | 95.82 216 | 90.87 72 | 90.97 229 | 92.61 288 | 88.04 189 | 94.61 165 | 93.79 253 | 88.08 182 | 97.81 246 | 89.41 164 | 98.39 168 | 96.50 236 |
|
ETV-MVS | | | 92.99 153 | 92.74 158 | 93.72 155 | 95.86 215 | 86.30 163 | 92.33 180 | 97.84 87 | 91.70 112 | 92.81 219 | 86.17 352 | 92.22 108 | 99.19 84 | 88.03 194 | 97.73 224 | 95.66 272 |
|
EI-MVSNet | | | 92.99 153 | 93.26 149 | 92.19 206 | 92.12 311 | 79.21 264 | 92.32 181 | 94.67 251 | 91.77 107 | 95.24 141 | 95.85 163 | 87.14 200 | 98.49 190 | 91.99 99 | 98.26 185 | 98.86 72 |
|
MCST-MVS | | | 92.91 155 | 92.51 165 | 94.10 140 | 97.52 114 | 85.72 174 | 91.36 222 | 97.13 144 | 80.33 281 | 92.91 218 | 94.24 235 | 91.23 135 | 98.72 160 | 89.99 153 | 97.93 217 | 97.86 167 |
|
h-mvs33 | | | 92.89 156 | 91.99 175 | 95.58 79 | 96.97 139 | 90.55 75 | 93.94 132 | 94.01 264 | 89.23 165 | 93.95 183 | 96.19 150 | 76.88 290 | 99.14 89 | 91.02 121 | 95.71 280 | 97.04 216 |
|
QAPM | | | 92.88 157 | 92.77 156 | 93.22 172 | 95.82 216 | 83.31 201 | 96.45 34 | 97.35 127 | 83.91 253 | 93.75 189 | 96.77 108 | 89.25 171 | 98.88 129 | 84.56 244 | 97.02 249 | 97.49 195 |
|
v148 | | | 92.87 158 | 93.29 145 | 91.62 224 | 96.25 187 | 77.72 285 | 91.28 223 | 95.05 235 | 89.69 154 | 95.93 109 | 96.04 156 | 87.34 195 | 98.38 199 | 90.05 152 | 97.99 214 | 98.78 81 |
|
Anonymous20240521 | | | 92.86 159 | 93.57 137 | 90.74 253 | 96.57 160 | 75.50 312 | 94.15 123 | 95.60 218 | 89.38 160 | 95.90 111 | 97.90 44 | 80.39 263 | 97.96 234 | 92.60 87 | 99.68 18 | 98.75 84 |
|
Effi-MVS+ | | | 92.79 160 | 92.74 158 | 92.94 180 | 95.10 245 | 83.30 202 | 94.00 129 | 97.53 112 | 91.36 119 | 89.35 290 | 90.65 318 | 94.01 69 | 98.66 172 | 87.40 205 | 95.30 291 | 96.88 223 |
|
FMVSNet2 | | | 92.78 161 | 92.73 160 | 92.95 179 | 95.40 237 | 81.98 217 | 94.18 122 | 95.53 226 | 88.63 177 | 96.05 104 | 97.37 68 | 81.31 256 | 98.81 144 | 87.38 206 | 98.67 144 | 98.06 141 |
|
Fast-Effi-MVS+-dtu | | | 92.77 162 | 92.16 170 | 94.58 124 | 94.66 263 | 88.25 117 | 92.05 191 | 96.65 178 | 89.62 156 | 90.08 274 | 91.23 306 | 92.56 103 | 98.60 178 | 86.30 223 | 96.27 269 | 96.90 221 |
|
LF4IMVS | | | 92.72 163 | 92.02 174 | 94.84 108 | 95.65 228 | 91.99 55 | 92.92 154 | 96.60 180 | 85.08 242 | 92.44 230 | 93.62 256 | 86.80 208 | 96.35 307 | 86.81 211 | 98.25 188 | 96.18 249 |
|
train_agg | | | 92.71 164 | 91.83 179 | 95.35 86 | 96.45 170 | 89.46 91 | 90.60 238 | 96.92 158 | 79.37 290 | 90.49 266 | 94.39 231 | 91.20 137 | 98.88 129 | 88.66 184 | 98.43 163 | 97.72 180 |
|
VNet | | | 92.67 165 | 92.96 151 | 91.79 218 | 96.27 184 | 80.15 238 | 91.95 197 | 94.98 237 | 92.19 88 | 94.52 168 | 96.07 155 | 87.43 194 | 97.39 273 | 84.83 240 | 98.38 170 | 97.83 170 |
|
CDPH-MVS | | | 92.67 165 | 91.83 179 | 95.18 97 | 96.94 141 | 88.46 115 | 90.70 236 | 97.07 148 | 77.38 306 | 92.34 237 | 95.08 204 | 92.67 101 | 98.88 129 | 85.74 227 | 98.57 150 | 98.20 133 |
|
agg_prior1 | | | 92.60 167 | 91.76 182 | 95.10 100 | 96.20 189 | 88.89 103 | 90.37 245 | 96.88 162 | 79.67 287 | 90.21 271 | 94.41 229 | 91.30 132 | 98.78 150 | 88.46 186 | 98.37 175 | 97.64 186 |
|
Anonymous202405211 | | | 92.58 168 | 92.50 166 | 92.83 185 | 96.55 162 | 83.22 203 | 92.43 173 | 91.64 304 | 94.10 51 | 95.59 123 | 96.64 120 | 81.88 253 | 97.50 264 | 85.12 235 | 98.52 156 | 97.77 176 |
|
XXY-MVS | | | 92.58 168 | 93.16 150 | 90.84 251 | 97.75 97 | 79.84 248 | 91.87 205 | 96.22 200 | 85.94 225 | 95.53 126 | 97.68 50 | 92.69 100 | 94.48 336 | 83.21 254 | 97.51 235 | 98.21 132 |
|
MVS_Test | | | 92.57 170 | 93.29 145 | 90.40 263 | 93.53 286 | 75.85 308 | 92.52 166 | 96.96 154 | 88.73 174 | 92.35 235 | 96.70 116 | 90.77 144 | 98.37 202 | 92.53 88 | 95.49 285 | 96.99 218 |
|
TAPA-MVS | | 88.58 10 | 92.49 171 | 91.75 183 | 94.73 112 | 96.50 167 | 89.69 87 | 92.91 155 | 97.68 99 | 78.02 304 | 92.79 220 | 94.10 240 | 90.85 143 | 97.96 234 | 84.76 242 | 98.16 198 | 96.54 231 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ab-mvs | | | 92.40 172 | 92.62 162 | 91.74 220 | 97.02 137 | 81.65 221 | 95.84 62 | 95.50 227 | 86.95 212 | 92.95 217 | 97.56 56 | 90.70 149 | 97.50 264 | 79.63 291 | 97.43 238 | 96.06 253 |
|
CANet | | | 92.38 173 | 91.99 175 | 93.52 164 | 93.82 284 | 83.46 200 | 91.14 225 | 97.00 151 | 89.81 153 | 86.47 324 | 94.04 242 | 87.90 188 | 99.21 82 | 89.50 163 | 98.27 184 | 97.90 163 |
|
EIA-MVS | | | 92.35 174 | 92.03 173 | 93.30 170 | 95.81 218 | 83.97 195 | 92.80 158 | 98.17 40 | 87.71 197 | 89.79 284 | 87.56 342 | 91.17 140 | 99.18 85 | 87.97 195 | 97.27 242 | 96.77 227 |
|
DP-MVS Recon | | | 92.31 175 | 91.88 178 | 93.60 158 | 97.18 131 | 86.87 146 | 91.10 227 | 97.37 120 | 84.92 245 | 92.08 243 | 94.08 241 | 88.59 175 | 98.20 214 | 83.50 251 | 98.14 200 | 95.73 268 |
|
F-COLMAP | | | 92.28 176 | 91.06 200 | 95.95 57 | 97.52 114 | 91.90 57 | 93.53 141 | 97.18 140 | 83.98 252 | 88.70 303 | 94.04 242 | 88.41 178 | 98.55 186 | 80.17 284 | 95.99 274 | 97.39 203 |
|
OpenMVS |  | 89.45 8 | 92.27 177 | 92.13 172 | 92.68 190 | 94.53 267 | 84.10 193 | 95.70 65 | 97.03 149 | 82.44 269 | 91.14 258 | 96.42 131 | 88.47 177 | 98.38 199 | 85.95 226 | 97.47 237 | 95.55 276 |
|
hse-mvs2 | | | 92.24 178 | 91.20 196 | 95.38 85 | 96.16 193 | 90.65 74 | 92.52 166 | 92.01 301 | 89.23 165 | 93.95 183 | 92.99 271 | 76.88 290 | 98.69 168 | 91.02 121 | 96.03 272 | 96.81 225 |
|
MVSFormer | | | 92.18 179 | 92.23 169 | 92.04 214 | 94.74 257 | 80.06 242 | 97.15 13 | 97.37 120 | 88.98 169 | 88.83 295 | 92.79 276 | 77.02 287 | 99.60 8 | 96.41 4 | 96.75 260 | 96.46 238 |
|
CS-MVS | | | 92.12 180 | 92.62 162 | 90.60 257 | 94.57 266 | 78.12 278 | 92.00 195 | 98.58 10 | 87.75 196 | 90.08 274 | 91.88 297 | 89.79 166 | 99.10 97 | 90.35 136 | 98.60 149 | 94.58 296 |
|
HQP-MVS | | | 92.09 181 | 91.49 189 | 93.88 151 | 96.36 174 | 84.89 182 | 91.37 219 | 97.31 130 | 87.16 207 | 88.81 297 | 93.40 262 | 84.76 226 | 98.60 178 | 86.55 218 | 97.73 224 | 98.14 136 |
|
DELS-MVS | | | 92.05 182 | 92.16 170 | 91.72 221 | 94.44 268 | 80.13 240 | 87.62 299 | 97.25 136 | 87.34 205 | 92.22 240 | 93.18 268 | 89.54 169 | 98.73 159 | 89.67 160 | 98.20 196 | 96.30 244 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TinyColmap | | | 92.00 183 | 92.76 157 | 89.71 277 | 95.62 231 | 77.02 293 | 90.72 235 | 96.17 203 | 87.70 198 | 95.26 138 | 96.29 144 | 92.54 104 | 96.45 302 | 81.77 268 | 98.77 134 | 95.66 272 |
|
ETH3 D test6400 | | | 91.91 184 | 91.25 195 | 93.89 150 | 96.59 158 | 84.41 186 | 92.10 189 | 97.72 98 | 78.52 300 | 91.82 247 | 93.78 254 | 88.70 174 | 99.13 91 | 83.61 250 | 98.39 168 | 98.14 136 |
|
CLD-MVS | | | 91.82 185 | 91.41 191 | 93.04 174 | 96.37 172 | 83.65 199 | 86.82 318 | 97.29 133 | 84.65 249 | 92.27 239 | 89.67 328 | 92.20 109 | 97.85 244 | 83.95 248 | 99.47 39 | 97.62 187 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
diffmvs | | | 91.74 186 | 91.93 177 | 91.15 240 | 93.06 294 | 78.17 277 | 88.77 289 | 97.51 115 | 86.28 219 | 92.42 231 | 93.96 247 | 88.04 184 | 97.46 267 | 90.69 129 | 96.67 262 | 97.82 172 |
|
CNLPA | | | 91.72 187 | 91.20 196 | 93.26 171 | 96.17 192 | 91.02 67 | 91.14 225 | 95.55 225 | 90.16 147 | 90.87 260 | 93.56 259 | 86.31 214 | 94.40 339 | 79.92 290 | 97.12 246 | 94.37 301 |
|
IterMVS-SCA-FT | | | 91.65 188 | 91.55 185 | 91.94 215 | 93.89 281 | 79.22 263 | 87.56 302 | 93.51 270 | 91.53 116 | 95.37 132 | 96.62 121 | 78.65 272 | 98.90 126 | 91.89 104 | 94.95 297 | 97.70 181 |
|
PVSNet_Blended_VisFu | | | 91.63 189 | 91.20 196 | 92.94 180 | 97.73 100 | 83.95 196 | 92.14 188 | 97.46 116 | 78.85 299 | 92.35 235 | 94.98 209 | 84.16 230 | 99.08 99 | 86.36 222 | 96.77 259 | 95.79 266 |
|
AdaColmap |  | | 91.63 189 | 91.36 192 | 92.47 201 | 95.56 233 | 86.36 161 | 92.24 186 | 96.27 195 | 88.88 173 | 89.90 280 | 92.69 279 | 91.65 123 | 98.32 204 | 77.38 310 | 97.64 231 | 92.72 334 |
|
pmmvs-eth3d | | | 91.54 191 | 90.73 208 | 93.99 142 | 95.76 221 | 87.86 127 | 90.83 232 | 93.98 265 | 78.23 303 | 94.02 182 | 96.22 149 | 82.62 244 | 96.83 291 | 86.57 217 | 98.33 177 | 97.29 209 |
|
API-MVS | | | 91.52 192 | 91.61 184 | 91.26 234 | 94.16 273 | 86.26 165 | 94.66 104 | 94.82 243 | 91.17 124 | 92.13 242 | 91.08 309 | 90.03 165 | 97.06 283 | 79.09 298 | 97.35 241 | 90.45 349 |
|
xiu_mvs_v1_base_debu | | | 91.47 193 | 91.52 186 | 91.33 231 | 95.69 225 | 81.56 222 | 89.92 261 | 96.05 206 | 83.22 257 | 91.26 254 | 90.74 313 | 91.55 125 | 98.82 139 | 89.29 166 | 95.91 275 | 93.62 320 |
|
xiu_mvs_v1_base | | | 91.47 193 | 91.52 186 | 91.33 231 | 95.69 225 | 81.56 222 | 89.92 261 | 96.05 206 | 83.22 257 | 91.26 254 | 90.74 313 | 91.55 125 | 98.82 139 | 89.29 166 | 95.91 275 | 93.62 320 |
|
xiu_mvs_v1_base_debi | | | 91.47 193 | 91.52 186 | 91.33 231 | 95.69 225 | 81.56 222 | 89.92 261 | 96.05 206 | 83.22 257 | 91.26 254 | 90.74 313 | 91.55 125 | 98.82 139 | 89.29 166 | 95.91 275 | 93.62 320 |
|
RRT_MVS | | | 91.36 196 | 90.05 221 | 95.29 92 | 89.21 348 | 88.15 119 | 92.51 170 | 94.89 240 | 86.73 214 | 95.54 125 | 95.68 175 | 61.82 348 | 99.30 70 | 94.91 13 | 99.13 91 | 98.43 117 |
|
LFMVS | | | 91.33 197 | 91.16 199 | 91.82 217 | 96.27 184 | 79.36 259 | 95.01 93 | 85.61 345 | 96.04 29 | 94.82 158 | 97.06 90 | 72.03 309 | 98.46 196 | 84.96 239 | 98.70 140 | 97.65 185 |
|
c3_l | | | 91.32 198 | 91.42 190 | 91.00 245 | 92.29 306 | 76.79 299 | 87.52 305 | 96.42 189 | 85.76 229 | 94.72 164 | 93.89 250 | 82.73 241 | 98.16 219 | 90.93 125 | 98.55 151 | 98.04 144 |
|
Fast-Effi-MVS+ | | | 91.28 199 | 90.86 203 | 92.53 198 | 95.45 236 | 82.53 213 | 89.25 281 | 96.52 186 | 85.00 243 | 89.91 279 | 88.55 338 | 92.94 92 | 98.84 137 | 84.72 243 | 95.44 287 | 96.22 247 |
|
MDA-MVSNet-bldmvs | | | 91.04 200 | 90.88 202 | 91.55 226 | 94.68 262 | 80.16 237 | 85.49 330 | 92.14 297 | 90.41 144 | 94.93 154 | 95.79 168 | 85.10 224 | 96.93 288 | 85.15 233 | 94.19 314 | 97.57 189 |
|
PAPM_NR | | | 91.03 201 | 90.81 205 | 91.68 223 | 96.73 152 | 81.10 230 | 93.72 137 | 96.35 193 | 88.19 186 | 88.77 301 | 92.12 293 | 85.09 225 | 97.25 277 | 82.40 263 | 93.90 315 | 96.68 230 |
|
MVS_0304 | | | 90.96 202 | 90.15 219 | 93.37 166 | 93.17 291 | 87.06 140 | 93.62 140 | 92.43 292 | 89.60 157 | 82.25 349 | 95.50 186 | 82.56 245 | 97.83 245 | 84.41 246 | 97.83 222 | 95.22 280 |
|
MSDG | | | 90.82 203 | 90.67 209 | 91.26 234 | 94.16 273 | 83.08 207 | 86.63 323 | 96.19 201 | 90.60 139 | 91.94 245 | 91.89 296 | 89.16 172 | 95.75 318 | 80.96 279 | 94.51 307 | 94.95 288 |
|
test20.03 | | | 90.80 204 | 90.85 204 | 90.63 256 | 95.63 230 | 79.24 262 | 89.81 266 | 92.87 279 | 89.90 151 | 94.39 170 | 96.40 133 | 85.77 219 | 95.27 331 | 73.86 329 | 99.05 97 | 97.39 203 |
|
FMVSNet3 | | | 90.78 205 | 90.32 216 | 92.16 210 | 93.03 296 | 79.92 247 | 92.54 165 | 94.95 238 | 86.17 222 | 95.10 145 | 96.01 158 | 69.97 313 | 98.75 155 | 86.74 212 | 98.38 170 | 97.82 172 |
|
eth_miper_zixun_eth | | | 90.72 206 | 90.61 210 | 91.05 241 | 92.04 313 | 76.84 298 | 86.91 314 | 96.67 177 | 85.21 236 | 94.41 169 | 93.92 248 | 79.53 267 | 98.26 210 | 89.76 158 | 97.02 249 | 98.06 141 |
|
X-MVStestdata | | | 90.70 207 | 88.45 247 | 97.44 17 | 98.56 37 | 93.99 26 | 96.50 31 | 97.95 78 | 94.58 41 | 94.38 171 | 26.89 368 | 94.56 59 | 99.39 48 | 93.57 44 | 99.05 97 | 98.93 63 |
|
BH-untuned | | | 90.68 208 | 90.90 201 | 90.05 274 | 95.98 208 | 79.57 256 | 90.04 257 | 94.94 239 | 87.91 190 | 94.07 178 | 93.00 270 | 87.76 189 | 97.78 250 | 79.19 297 | 95.17 294 | 92.80 332 |
|
cl____ | | | 90.65 209 | 90.56 211 | 90.91 249 | 91.85 315 | 76.98 296 | 86.75 319 | 95.36 232 | 85.53 232 | 94.06 179 | 94.89 213 | 77.36 285 | 97.98 233 | 90.27 142 | 98.98 105 | 97.76 177 |
|
DIV-MVS_self_test | | | 90.65 209 | 90.56 211 | 90.91 249 | 91.85 315 | 76.99 295 | 86.75 319 | 95.36 232 | 85.52 234 | 94.06 179 | 94.89 213 | 77.37 284 | 97.99 232 | 90.28 141 | 98.97 109 | 97.76 177 |
|
114514_t | | | 90.51 211 | 89.80 225 | 92.63 193 | 98.00 86 | 82.24 215 | 93.40 145 | 97.29 133 | 65.84 356 | 89.40 289 | 94.80 219 | 86.99 202 | 98.75 155 | 83.88 249 | 98.61 147 | 96.89 222 |
|
miper_ehance_all_eth | | | 90.48 212 | 90.42 214 | 90.69 254 | 91.62 320 | 76.57 301 | 86.83 317 | 96.18 202 | 83.38 255 | 94.06 179 | 92.66 281 | 82.20 247 | 98.04 225 | 89.79 157 | 97.02 249 | 97.45 197 |
|
BH-RMVSNet | | | 90.47 213 | 90.44 213 | 90.56 259 | 95.21 244 | 78.65 273 | 89.15 282 | 93.94 266 | 88.21 185 | 92.74 222 | 94.22 236 | 86.38 213 | 97.88 238 | 78.67 300 | 95.39 289 | 95.14 283 |
|
Vis-MVSNet (Re-imp) | | | 90.42 214 | 90.16 217 | 91.20 238 | 97.66 107 | 77.32 290 | 94.33 118 | 87.66 327 | 91.20 123 | 92.99 215 | 95.13 201 | 75.40 297 | 98.28 206 | 77.86 303 | 99.19 83 | 97.99 152 |
|
PLC |  | 85.34 15 | 90.40 215 | 88.92 239 | 94.85 107 | 96.53 166 | 90.02 80 | 91.58 216 | 96.48 188 | 80.16 282 | 86.14 326 | 92.18 290 | 85.73 220 | 98.25 211 | 76.87 313 | 94.61 306 | 96.30 244 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
testgi | | | 90.38 216 | 91.34 193 | 87.50 310 | 97.49 116 | 71.54 337 | 89.43 273 | 95.16 234 | 88.38 183 | 94.54 167 | 94.68 223 | 92.88 96 | 93.09 350 | 71.60 342 | 97.85 221 | 97.88 165 |
|
mvs_anonymous | | | 90.37 217 | 91.30 194 | 87.58 309 | 92.17 310 | 68.00 350 | 89.84 265 | 94.73 247 | 83.82 254 | 93.22 208 | 97.40 66 | 87.54 192 | 97.40 272 | 87.94 196 | 95.05 296 | 97.34 206 |
|
PVSNet_BlendedMVS | | | 90.35 218 | 89.96 222 | 91.54 227 | 94.81 252 | 78.80 271 | 90.14 254 | 96.93 156 | 79.43 289 | 88.68 304 | 95.06 205 | 86.27 215 | 98.15 220 | 80.27 281 | 98.04 210 | 97.68 183 |
|
UnsupCasMVSNet_eth | | | 90.33 219 | 90.34 215 | 90.28 265 | 94.64 264 | 80.24 236 | 89.69 268 | 95.88 210 | 85.77 228 | 93.94 185 | 95.69 174 | 81.99 250 | 92.98 351 | 84.21 247 | 91.30 342 | 97.62 187 |
|
MAR-MVS | | | 90.32 220 | 88.87 242 | 94.66 116 | 94.82 251 | 91.85 58 | 94.22 121 | 94.75 246 | 80.91 276 | 87.52 318 | 88.07 341 | 86.63 211 | 97.87 241 | 76.67 314 | 96.21 270 | 94.25 304 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
RPMNet | | | 90.31 221 | 90.14 220 | 90.81 252 | 91.01 327 | 78.93 266 | 92.52 166 | 98.12 46 | 91.91 95 | 89.10 292 | 96.89 101 | 68.84 314 | 99.41 36 | 90.17 147 | 92.70 331 | 94.08 305 |
|
1121 | | | 90.26 222 | 89.23 231 | 93.34 167 | 97.15 134 | 87.40 132 | 91.94 199 | 94.39 254 | 67.88 351 | 91.02 259 | 94.91 212 | 86.91 206 | 98.59 180 | 81.17 276 | 97.71 227 | 94.02 310 |
|
IterMVS | | | 90.18 223 | 90.16 217 | 90.21 269 | 93.15 292 | 75.98 307 | 87.56 302 | 92.97 278 | 86.43 217 | 94.09 176 | 96.40 133 | 78.32 276 | 97.43 269 | 87.87 197 | 94.69 304 | 97.23 210 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAMVS | | | 90.16 224 | 89.05 236 | 93.49 165 | 96.49 168 | 86.37 160 | 90.34 247 | 92.55 289 | 80.84 279 | 92.99 215 | 94.57 226 | 81.94 252 | 98.20 214 | 73.51 330 | 98.21 194 | 95.90 261 |
|
test_yl | | | 90.11 225 | 89.73 228 | 91.26 234 | 94.09 276 | 79.82 249 | 90.44 242 | 92.65 285 | 90.90 128 | 93.19 209 | 93.30 264 | 73.90 300 | 98.03 226 | 82.23 264 | 96.87 255 | 95.93 258 |
|
DCV-MVSNet | | | 90.11 225 | 89.73 228 | 91.26 234 | 94.09 276 | 79.82 249 | 90.44 242 | 92.65 285 | 90.90 128 | 93.19 209 | 93.30 264 | 73.90 300 | 98.03 226 | 82.23 264 | 96.87 255 | 95.93 258 |
|
Patchmtry | | | 90.11 225 | 89.92 223 | 90.66 255 | 90.35 336 | 77.00 294 | 92.96 153 | 92.81 280 | 90.25 146 | 94.74 162 | 96.93 98 | 67.11 319 | 97.52 263 | 85.17 231 | 98.98 105 | 97.46 196 |
|
MVP-Stereo | | | 90.07 228 | 88.92 239 | 93.54 162 | 96.31 181 | 86.49 155 | 90.93 230 | 95.59 222 | 79.80 283 | 91.48 250 | 95.59 178 | 80.79 260 | 97.39 273 | 78.57 301 | 91.19 343 | 96.76 228 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
AUN-MVS | | | 90.05 229 | 88.30 250 | 95.32 91 | 96.09 199 | 90.52 76 | 92.42 174 | 92.05 300 | 82.08 272 | 88.45 306 | 92.86 273 | 65.76 329 | 98.69 168 | 88.91 177 | 96.07 271 | 96.75 229 |
|
CL-MVSNet_self_test | | | 90.04 230 | 89.90 224 | 90.47 260 | 95.24 243 | 77.81 283 | 86.60 325 | 92.62 287 | 85.64 231 | 93.25 207 | 93.92 248 | 83.84 231 | 96.06 314 | 79.93 288 | 98.03 211 | 97.53 193 |
|
bset_n11_16_dypcd | | | 89.99 231 | 89.15 234 | 92.53 198 | 94.75 255 | 81.34 226 | 84.19 342 | 87.56 328 | 85.13 239 | 93.77 188 | 92.46 283 | 72.82 304 | 99.01 112 | 92.46 90 | 99.21 81 | 97.23 210 |
|
D2MVS | | | 89.93 232 | 89.60 230 | 90.92 247 | 94.03 278 | 78.40 274 | 88.69 291 | 94.85 241 | 78.96 297 | 93.08 211 | 95.09 203 | 74.57 298 | 96.94 286 | 88.19 189 | 98.96 111 | 97.41 199 |
|
miper_lstm_enhance | | | 89.90 233 | 89.80 225 | 90.19 271 | 91.37 324 | 77.50 287 | 83.82 346 | 95.00 236 | 84.84 246 | 93.05 213 | 94.96 210 | 76.53 294 | 95.20 332 | 89.96 154 | 98.67 144 | 97.86 167 |
|
CANet_DTU | | | 89.85 234 | 89.17 233 | 91.87 216 | 92.20 309 | 80.02 245 | 90.79 233 | 95.87 211 | 86.02 224 | 82.53 348 | 91.77 299 | 80.01 264 | 98.57 183 | 85.66 228 | 97.70 228 | 97.01 217 |
|
tttt0517 | | | 89.81 235 | 88.90 241 | 92.55 197 | 97.00 138 | 79.73 253 | 95.03 92 | 83.65 357 | 89.88 152 | 95.30 135 | 94.79 220 | 53.64 363 | 99.39 48 | 91.99 99 | 98.79 132 | 98.54 108 |
|
EPNet | | | 89.80 236 | 88.25 252 | 94.45 131 | 83.91 369 | 86.18 166 | 93.87 133 | 87.07 332 | 91.16 125 | 80.64 358 | 94.72 221 | 78.83 270 | 98.89 128 | 85.17 231 | 98.89 114 | 98.28 126 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CDS-MVSNet | | | 89.55 237 | 88.22 255 | 93.53 163 | 95.37 240 | 86.49 155 | 89.26 279 | 93.59 268 | 79.76 285 | 91.15 257 | 92.31 289 | 77.12 286 | 98.38 199 | 77.51 308 | 97.92 218 | 95.71 269 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MG-MVS | | | 89.54 238 | 89.80 225 | 88.76 292 | 94.88 248 | 72.47 334 | 89.60 269 | 92.44 291 | 85.82 227 | 89.48 288 | 95.98 159 | 82.85 239 | 97.74 255 | 81.87 267 | 95.27 292 | 96.08 252 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 239 | 89.05 236 | 90.92 247 | 94.58 265 | 81.21 229 | 91.10 227 | 93.41 272 | 77.03 310 | 93.41 197 | 93.99 246 | 83.23 235 | 97.80 247 | 79.93 288 | 94.80 301 | 93.74 317 |
|
DPM-MVS | | | 89.35 240 | 88.40 248 | 92.18 209 | 96.13 198 | 84.20 191 | 86.96 313 | 96.15 204 | 75.40 317 | 87.36 319 | 91.55 304 | 83.30 234 | 98.01 229 | 82.17 266 | 96.62 263 | 94.32 303 |
|
MVSTER | | | 89.32 241 | 88.75 243 | 91.03 242 | 90.10 338 | 76.62 300 | 90.85 231 | 94.67 251 | 82.27 270 | 95.24 141 | 95.79 168 | 61.09 351 | 98.49 190 | 90.49 130 | 98.26 185 | 97.97 156 |
|
PatchMatch-RL | | | 89.18 242 | 88.02 260 | 92.64 191 | 95.90 214 | 92.87 46 | 88.67 293 | 91.06 307 | 80.34 280 | 90.03 277 | 91.67 301 | 83.34 233 | 94.42 338 | 76.35 317 | 94.84 300 | 90.64 348 |
|
jason | | | 89.17 243 | 88.32 249 | 91.70 222 | 95.73 223 | 80.07 241 | 88.10 296 | 93.22 274 | 71.98 334 | 90.09 273 | 92.79 276 | 78.53 275 | 98.56 184 | 87.43 204 | 97.06 247 | 96.46 238 |
jason: jason. |
PCF-MVS | | 84.52 17 | 89.12 244 | 87.71 263 | 93.34 167 | 96.06 201 | 85.84 172 | 86.58 326 | 97.31 130 | 68.46 349 | 93.61 194 | 93.89 250 | 87.51 193 | 98.52 188 | 67.85 353 | 98.11 204 | 95.66 272 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
cl22 | | | 89.02 245 | 88.50 246 | 90.59 258 | 89.76 340 | 76.45 302 | 86.62 324 | 94.03 261 | 82.98 263 | 92.65 224 | 92.49 282 | 72.05 308 | 97.53 262 | 88.93 175 | 97.02 249 | 97.78 175 |
|
USDC | | | 89.02 245 | 89.08 235 | 88.84 291 | 95.07 246 | 74.50 319 | 88.97 284 | 96.39 191 | 73.21 328 | 93.27 204 | 96.28 145 | 82.16 248 | 96.39 304 | 77.55 307 | 98.80 131 | 95.62 275 |
|
xiu_mvs_v2_base | | | 89.00 247 | 89.19 232 | 88.46 299 | 94.86 250 | 74.63 316 | 86.97 312 | 95.60 218 | 80.88 277 | 87.83 314 | 88.62 337 | 91.04 141 | 98.81 144 | 82.51 262 | 94.38 308 | 91.93 340 |
|
new-patchmatchnet | | | 88.97 248 | 90.79 206 | 83.50 337 | 94.28 272 | 55.83 371 | 85.34 331 | 93.56 269 | 86.18 221 | 95.47 127 | 95.73 173 | 83.10 236 | 96.51 300 | 85.40 230 | 98.06 208 | 98.16 134 |
|
pmmvs4 | | | 88.95 249 | 87.70 264 | 92.70 189 | 94.30 271 | 85.60 175 | 87.22 308 | 92.16 296 | 74.62 320 | 89.75 286 | 94.19 237 | 77.97 279 | 96.41 303 | 82.71 258 | 96.36 268 | 96.09 251 |
|
N_pmnet | | | 88.90 250 | 87.25 270 | 93.83 153 | 94.40 270 | 93.81 35 | 84.73 335 | 87.09 331 | 79.36 292 | 93.26 205 | 92.43 287 | 79.29 268 | 91.68 355 | 77.50 309 | 97.22 244 | 96.00 255 |
|
PS-MVSNAJ | | | 88.86 251 | 88.99 238 | 88.48 298 | 94.88 248 | 74.71 314 | 86.69 321 | 95.60 218 | 80.88 277 | 87.83 314 | 87.37 345 | 90.77 144 | 98.82 139 | 82.52 261 | 94.37 309 | 91.93 340 |
|
Patchmatch-RL test | | | 88.81 252 | 88.52 245 | 89.69 278 | 95.33 242 | 79.94 246 | 86.22 327 | 92.71 284 | 78.46 301 | 95.80 114 | 94.18 238 | 66.25 327 | 95.33 329 | 89.22 171 | 98.53 155 | 93.78 315 |
|
Anonymous20231206 | | | 88.77 253 | 88.29 251 | 90.20 270 | 96.31 181 | 78.81 270 | 89.56 271 | 93.49 271 | 74.26 322 | 92.38 233 | 95.58 181 | 82.21 246 | 95.43 326 | 72.07 338 | 98.75 137 | 96.34 242 |
|
PVSNet_Blended | | | 88.74 254 | 88.16 258 | 90.46 262 | 94.81 252 | 78.80 271 | 86.64 322 | 96.93 156 | 74.67 319 | 88.68 304 | 89.18 334 | 86.27 215 | 98.15 220 | 80.27 281 | 96.00 273 | 94.44 300 |
|
thisisatest0530 | | | 88.69 255 | 87.52 266 | 92.20 205 | 96.33 179 | 79.36 259 | 92.81 157 | 84.01 356 | 86.44 216 | 93.67 192 | 92.68 280 | 53.62 364 | 99.25 77 | 89.65 161 | 98.45 162 | 98.00 149 |
|
ppachtmachnet_test | | | 88.61 256 | 88.64 244 | 88.50 297 | 91.76 317 | 70.99 340 | 84.59 338 | 92.98 277 | 79.30 294 | 92.38 233 | 93.53 260 | 79.57 266 | 97.45 268 | 86.50 220 | 97.17 245 | 97.07 213 |
|
UnsupCasMVSNet_bld | | | 88.50 257 | 88.03 259 | 89.90 275 | 95.52 234 | 78.88 268 | 87.39 306 | 94.02 263 | 79.32 293 | 93.06 212 | 94.02 244 | 80.72 261 | 94.27 341 | 75.16 323 | 93.08 327 | 96.54 231 |
|
miper_enhance_ethall | | | 88.42 258 | 87.87 261 | 90.07 272 | 88.67 353 | 75.52 311 | 85.10 332 | 95.59 222 | 75.68 313 | 92.49 228 | 89.45 331 | 78.96 269 | 97.88 238 | 87.86 198 | 97.02 249 | 96.81 225 |
|
1112_ss | | | 88.42 258 | 87.41 267 | 91.45 228 | 96.69 153 | 80.99 231 | 89.72 267 | 96.72 175 | 73.37 327 | 87.00 322 | 90.69 316 | 77.38 283 | 98.20 214 | 81.38 272 | 93.72 318 | 95.15 282 |
|
lupinMVS | | | 88.34 260 | 87.31 268 | 91.45 228 | 94.74 257 | 80.06 242 | 87.23 307 | 92.27 293 | 71.10 338 | 88.83 295 | 91.15 307 | 77.02 287 | 98.53 187 | 86.67 215 | 96.75 260 | 95.76 267 |
|
RRT_test8_iter05 | | | 88.21 261 | 88.17 256 | 88.33 301 | 91.62 320 | 66.82 356 | 91.73 214 | 96.60 180 | 86.34 218 | 94.14 174 | 95.38 196 | 47.72 369 | 99.11 95 | 91.78 106 | 98.26 185 | 99.06 47 |
|
YYNet1 | | | 88.17 262 | 88.24 253 | 87.93 305 | 92.21 308 | 73.62 325 | 80.75 354 | 88.77 317 | 82.51 268 | 94.99 152 | 95.11 202 | 82.70 242 | 93.70 345 | 83.33 252 | 93.83 316 | 96.48 237 |
|
MDA-MVSNet_test_wron | | | 88.16 263 | 88.23 254 | 87.93 305 | 92.22 307 | 73.71 324 | 80.71 355 | 88.84 316 | 82.52 267 | 94.88 157 | 95.14 200 | 82.70 242 | 93.61 346 | 83.28 253 | 93.80 317 | 96.46 238 |
|
MS-PatchMatch | | | 88.05 264 | 87.75 262 | 88.95 288 | 93.28 288 | 77.93 280 | 87.88 298 | 92.49 290 | 75.42 316 | 92.57 227 | 93.59 258 | 80.44 262 | 94.24 343 | 81.28 273 | 92.75 330 | 94.69 295 |
|
CR-MVSNet | | | 87.89 265 | 87.12 274 | 90.22 268 | 91.01 327 | 78.93 266 | 92.52 166 | 92.81 280 | 73.08 329 | 89.10 292 | 96.93 98 | 67.11 319 | 97.64 259 | 88.80 179 | 92.70 331 | 94.08 305 |
|
pmmvs5 | | | 87.87 266 | 87.14 273 | 90.07 272 | 93.26 290 | 76.97 297 | 88.89 286 | 92.18 294 | 73.71 326 | 88.36 307 | 93.89 250 | 76.86 292 | 96.73 294 | 80.32 280 | 96.81 257 | 96.51 233 |
|
wuyk23d | | | 87.83 267 | 90.79 206 | 78.96 346 | 90.46 335 | 88.63 108 | 92.72 159 | 90.67 311 | 91.65 113 | 98.68 11 | 97.64 53 | 96.06 16 | 77.53 367 | 59.84 362 | 99.41 52 | 70.73 365 |
|
FMVSNet5 | | | 87.82 268 | 86.56 283 | 91.62 224 | 92.31 305 | 79.81 251 | 93.49 142 | 94.81 245 | 83.26 256 | 91.36 252 | 96.93 98 | 52.77 365 | 97.49 266 | 76.07 318 | 98.03 211 | 97.55 192 |
|
GA-MVS | | | 87.70 269 | 86.82 278 | 90.31 264 | 93.27 289 | 77.22 292 | 84.72 337 | 92.79 282 | 85.11 241 | 89.82 282 | 90.07 320 | 66.80 322 | 97.76 253 | 84.56 244 | 94.27 312 | 95.96 257 |
|
TR-MVS | | | 87.70 269 | 87.17 272 | 89.27 285 | 94.11 275 | 79.26 261 | 88.69 291 | 91.86 302 | 81.94 273 | 90.69 264 | 89.79 325 | 82.82 240 | 97.42 270 | 72.65 336 | 91.98 339 | 91.14 345 |
|
thres600view7 | | | 87.66 271 | 87.10 275 | 89.36 283 | 96.05 202 | 73.17 327 | 92.72 159 | 85.31 348 | 91.89 96 | 93.29 202 | 90.97 310 | 63.42 341 | 98.39 197 | 73.23 332 | 96.99 254 | 96.51 233 |
|
PAPR | | | 87.65 272 | 86.77 280 | 90.27 266 | 92.85 298 | 77.38 289 | 88.56 294 | 96.23 198 | 76.82 312 | 84.98 332 | 89.75 327 | 86.08 217 | 97.16 280 | 72.33 337 | 93.35 321 | 96.26 246 |
|
baseline1 | | | 87.62 273 | 87.31 268 | 88.54 296 | 94.71 261 | 74.27 322 | 93.10 150 | 88.20 323 | 86.20 220 | 92.18 241 | 93.04 269 | 73.21 303 | 95.52 321 | 79.32 295 | 85.82 355 | 95.83 263 |
|
our_test_3 | | | 87.55 274 | 87.59 265 | 87.44 311 | 91.76 317 | 70.48 341 | 83.83 345 | 90.55 312 | 79.79 284 | 92.06 244 | 92.17 291 | 78.63 274 | 95.63 319 | 84.77 241 | 94.73 302 | 96.22 247 |
|
PatchT | | | 87.51 275 | 88.17 256 | 85.55 323 | 90.64 330 | 66.91 352 | 92.02 194 | 86.09 338 | 92.20 87 | 89.05 294 | 97.16 85 | 64.15 337 | 96.37 306 | 89.21 172 | 92.98 329 | 93.37 324 |
|
Test_1112_low_res | | | 87.50 276 | 86.58 282 | 90.25 267 | 96.80 151 | 77.75 284 | 87.53 304 | 96.25 196 | 69.73 345 | 86.47 324 | 93.61 257 | 75.67 296 | 97.88 238 | 79.95 286 | 93.20 323 | 95.11 284 |
|
SCA | | | 87.43 277 | 87.21 271 | 88.10 304 | 92.01 314 | 71.98 336 | 89.43 273 | 88.11 325 | 82.26 271 | 88.71 302 | 92.83 274 | 78.65 272 | 97.59 260 | 79.61 292 | 93.30 322 | 94.75 292 |
|
EU-MVSNet | | | 87.39 278 | 86.71 281 | 89.44 280 | 93.40 287 | 76.11 305 | 94.93 96 | 90.00 314 | 57.17 365 | 95.71 119 | 97.37 68 | 64.77 335 | 97.68 258 | 92.67 85 | 94.37 309 | 94.52 298 |
|
thres100view900 | | | 87.35 279 | 86.89 277 | 88.72 293 | 96.14 195 | 73.09 329 | 93.00 152 | 85.31 348 | 92.13 89 | 93.26 205 | 90.96 311 | 63.42 341 | 98.28 206 | 71.27 344 | 96.54 264 | 94.79 290 |
|
CMPMVS |  | 68.83 22 | 87.28 280 | 85.67 293 | 92.09 212 | 88.77 352 | 85.42 177 | 90.31 248 | 94.38 255 | 70.02 344 | 88.00 312 | 93.30 264 | 73.78 302 | 94.03 344 | 75.96 320 | 96.54 264 | 96.83 224 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
sss | | | 87.23 281 | 86.82 278 | 88.46 299 | 93.96 279 | 77.94 279 | 86.84 316 | 92.78 283 | 77.59 305 | 87.61 317 | 91.83 298 | 78.75 271 | 91.92 354 | 77.84 304 | 94.20 313 | 95.52 277 |
|
BH-w/o | | | 87.21 282 | 87.02 276 | 87.79 308 | 94.77 254 | 77.27 291 | 87.90 297 | 93.21 276 | 81.74 274 | 89.99 278 | 88.39 340 | 83.47 232 | 96.93 288 | 71.29 343 | 92.43 335 | 89.15 350 |
|
thres400 | | | 87.20 283 | 86.52 285 | 89.24 287 | 95.77 219 | 72.94 330 | 91.89 202 | 86.00 340 | 90.84 130 | 92.61 225 | 89.80 323 | 63.93 338 | 98.28 206 | 71.27 344 | 96.54 264 | 96.51 233 |
|
CHOSEN 1792x2688 | | | 87.19 284 | 85.92 292 | 91.00 245 | 97.13 135 | 79.41 258 | 84.51 339 | 95.60 218 | 64.14 359 | 90.07 276 | 94.81 216 | 78.26 277 | 97.14 281 | 73.34 331 | 95.38 290 | 96.46 238 |
|
HyFIR lowres test | | | 87.19 284 | 85.51 294 | 92.24 204 | 97.12 136 | 80.51 235 | 85.03 333 | 96.06 205 | 66.11 355 | 91.66 249 | 92.98 272 | 70.12 312 | 99.14 89 | 75.29 322 | 95.23 293 | 97.07 213 |
|
MIMVSNet | | | 87.13 286 | 86.54 284 | 88.89 290 | 96.05 202 | 76.11 305 | 94.39 116 | 88.51 319 | 81.37 275 | 88.27 309 | 96.75 111 | 72.38 306 | 95.52 321 | 65.71 358 | 95.47 286 | 95.03 285 |
|
tfpn200view9 | | | 87.05 287 | 86.52 285 | 88.67 294 | 95.77 219 | 72.94 330 | 91.89 202 | 86.00 340 | 90.84 130 | 92.61 225 | 89.80 323 | 63.93 338 | 98.28 206 | 71.27 344 | 96.54 264 | 94.79 290 |
|
cascas | | | 87.02 288 | 86.28 289 | 89.25 286 | 91.56 322 | 76.45 302 | 84.33 341 | 96.78 170 | 71.01 339 | 86.89 323 | 85.91 353 | 81.35 255 | 96.94 286 | 83.09 255 | 95.60 282 | 94.35 302 |
|
WTY-MVS | | | 86.93 289 | 86.50 287 | 88.24 302 | 94.96 247 | 74.64 315 | 87.19 309 | 92.07 299 | 78.29 302 | 88.32 308 | 91.59 303 | 78.06 278 | 94.27 341 | 74.88 324 | 93.15 325 | 95.80 265 |
|
HY-MVS | | 82.50 18 | 86.81 290 | 85.93 291 | 89.47 279 | 93.63 285 | 77.93 280 | 94.02 128 | 91.58 305 | 75.68 313 | 83.64 341 | 93.64 255 | 77.40 282 | 97.42 270 | 71.70 341 | 92.07 338 | 93.05 329 |
|
1314 | | | 86.46 291 | 86.33 288 | 86.87 315 | 91.65 319 | 74.54 317 | 91.94 199 | 94.10 260 | 74.28 321 | 84.78 334 | 87.33 346 | 83.03 237 | 95.00 333 | 78.72 299 | 91.16 344 | 91.06 346 |
|
ET-MVSNet_ETH3D | | | 86.15 292 | 84.27 300 | 91.79 218 | 93.04 295 | 81.28 227 | 87.17 310 | 86.14 337 | 79.57 288 | 83.65 340 | 88.66 336 | 57.10 356 | 98.18 217 | 87.74 199 | 95.40 288 | 95.90 261 |
|
Patchmatch-test | | | 86.10 293 | 86.01 290 | 86.38 320 | 90.63 331 | 74.22 323 | 89.57 270 | 86.69 333 | 85.73 230 | 89.81 283 | 92.83 274 | 65.24 333 | 91.04 357 | 77.82 306 | 95.78 279 | 93.88 314 |
|
thres200 | | | 85.85 294 | 85.18 295 | 87.88 307 | 94.44 268 | 72.52 333 | 89.08 283 | 86.21 336 | 88.57 180 | 91.44 251 | 88.40 339 | 64.22 336 | 98.00 230 | 68.35 352 | 95.88 278 | 93.12 326 |
|
EPNet_dtu | | | 85.63 295 | 84.37 298 | 89.40 282 | 86.30 363 | 74.33 321 | 91.64 215 | 88.26 321 | 84.84 246 | 72.96 367 | 89.85 321 | 71.27 311 | 97.69 257 | 76.60 315 | 97.62 232 | 96.18 249 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchmatchNet |  | | 85.22 296 | 84.64 297 | 86.98 314 | 89.51 345 | 69.83 347 | 90.52 240 | 87.34 330 | 78.87 298 | 87.22 321 | 92.74 278 | 66.91 321 | 96.53 298 | 81.77 268 | 86.88 354 | 94.58 296 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CVMVSNet | | | 85.16 297 | 84.72 296 | 86.48 316 | 92.12 311 | 70.19 342 | 92.32 181 | 88.17 324 | 56.15 366 | 90.64 265 | 95.85 163 | 67.97 317 | 96.69 295 | 88.78 180 | 90.52 346 | 92.56 335 |
|
JIA-IIPM | | | 85.08 298 | 83.04 307 | 91.19 239 | 87.56 355 | 86.14 167 | 89.40 275 | 84.44 355 | 88.98 169 | 82.20 350 | 97.95 39 | 56.82 358 | 96.15 310 | 76.55 316 | 83.45 359 | 91.30 344 |
|
MVS | | | 84.98 299 | 84.30 299 | 87.01 313 | 91.03 326 | 77.69 286 | 91.94 199 | 94.16 259 | 59.36 364 | 84.23 338 | 87.50 344 | 85.66 221 | 96.80 292 | 71.79 339 | 93.05 328 | 86.54 356 |
|
thisisatest0515 | | | 84.72 300 | 82.99 308 | 89.90 275 | 92.96 297 | 75.33 313 | 84.36 340 | 83.42 358 | 77.37 307 | 88.27 309 | 86.65 347 | 53.94 362 | 98.72 160 | 82.56 260 | 97.40 239 | 95.67 271 |
|
FPMVS | | | 84.50 301 | 83.28 305 | 88.16 303 | 96.32 180 | 94.49 15 | 85.76 328 | 85.47 346 | 83.09 260 | 85.20 330 | 94.26 234 | 63.79 340 | 86.58 364 | 63.72 360 | 91.88 341 | 83.40 359 |
|
tpm | | | 84.38 302 | 84.08 301 | 85.30 327 | 90.47 334 | 63.43 366 | 89.34 276 | 85.63 344 | 77.24 309 | 87.62 316 | 95.03 208 | 61.00 352 | 97.30 276 | 79.26 296 | 91.09 345 | 95.16 281 |
|
tpmvs | | | 84.22 303 | 83.97 302 | 84.94 328 | 87.09 360 | 65.18 359 | 91.21 224 | 88.35 320 | 82.87 264 | 85.21 329 | 90.96 311 | 65.24 333 | 96.75 293 | 79.60 294 | 85.25 356 | 92.90 331 |
|
ADS-MVSNet2 | | | 84.01 304 | 82.20 312 | 89.41 281 | 89.04 349 | 76.37 304 | 87.57 300 | 90.98 308 | 72.71 332 | 84.46 335 | 92.45 284 | 68.08 315 | 96.48 301 | 70.58 348 | 83.97 357 | 95.38 278 |
|
test-LLR | | | 83.58 305 | 83.17 306 | 84.79 330 | 89.68 342 | 66.86 354 | 83.08 347 | 84.52 353 | 83.07 261 | 82.85 346 | 84.78 356 | 62.86 344 | 93.49 347 | 82.85 256 | 94.86 298 | 94.03 308 |
|
baseline2 | | | 83.38 306 | 81.54 315 | 88.90 289 | 91.38 323 | 72.84 332 | 88.78 288 | 81.22 363 | 78.97 296 | 79.82 360 | 87.56 342 | 61.73 349 | 97.80 247 | 74.30 327 | 90.05 348 | 96.05 254 |
|
IB-MVS | | 77.21 19 | 83.11 307 | 81.05 318 | 89.29 284 | 91.15 325 | 75.85 308 | 85.66 329 | 86.00 340 | 79.70 286 | 82.02 353 | 86.61 348 | 48.26 368 | 98.39 197 | 77.84 304 | 92.22 336 | 93.63 319 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CostFormer | | | 83.09 308 | 82.21 311 | 85.73 322 | 89.27 347 | 67.01 351 | 90.35 246 | 86.47 335 | 70.42 342 | 83.52 343 | 93.23 267 | 61.18 350 | 96.85 290 | 77.21 311 | 88.26 352 | 93.34 325 |
|
PMMVS | | | 83.00 309 | 81.11 317 | 88.66 295 | 83.81 370 | 86.44 158 | 82.24 351 | 85.65 343 | 61.75 363 | 82.07 351 | 85.64 354 | 79.75 265 | 91.59 356 | 75.99 319 | 93.09 326 | 87.94 355 |
|
PVSNet | | 76.22 20 | 82.89 310 | 82.37 310 | 84.48 332 | 93.96 279 | 64.38 364 | 78.60 357 | 88.61 318 | 71.50 336 | 84.43 337 | 86.36 351 | 74.27 299 | 94.60 335 | 69.87 350 | 93.69 319 | 94.46 299 |
|
tpmrst | | | 82.85 311 | 82.93 309 | 82.64 339 | 87.65 354 | 58.99 369 | 90.14 254 | 87.90 326 | 75.54 315 | 83.93 339 | 91.63 302 | 66.79 324 | 95.36 327 | 81.21 275 | 81.54 363 | 93.57 323 |
|
test0.0.03 1 | | | 82.48 312 | 81.47 316 | 85.48 324 | 89.70 341 | 73.57 326 | 84.73 335 | 81.64 362 | 83.07 261 | 88.13 311 | 86.61 348 | 62.86 344 | 89.10 363 | 66.24 357 | 90.29 347 | 93.77 316 |
|
ADS-MVSNet | | | 82.25 313 | 81.55 314 | 84.34 333 | 89.04 349 | 65.30 358 | 87.57 300 | 85.13 352 | 72.71 332 | 84.46 335 | 92.45 284 | 68.08 315 | 92.33 353 | 70.58 348 | 83.97 357 | 95.38 278 |
|
DSMNet-mixed | | | 82.21 314 | 81.56 313 | 84.16 334 | 89.57 344 | 70.00 346 | 90.65 237 | 77.66 369 | 54.99 367 | 83.30 344 | 97.57 55 | 77.89 280 | 90.50 359 | 66.86 356 | 95.54 284 | 91.97 339 |
|
KD-MVS_2432*1600 | | | 82.17 315 | 80.75 322 | 86.42 318 | 82.04 371 | 70.09 344 | 81.75 352 | 90.80 309 | 82.56 265 | 90.37 269 | 89.30 332 | 42.90 374 | 96.11 312 | 74.47 325 | 92.55 333 | 93.06 327 |
|
miper_refine_blended | | | 82.17 315 | 80.75 322 | 86.42 318 | 82.04 371 | 70.09 344 | 81.75 352 | 90.80 309 | 82.56 265 | 90.37 269 | 89.30 332 | 42.90 374 | 96.11 312 | 74.47 325 | 92.55 333 | 93.06 327 |
|
gg-mvs-nofinetune | | | 82.10 317 | 81.02 319 | 85.34 326 | 87.46 358 | 71.04 338 | 94.74 101 | 67.56 371 | 96.44 22 | 79.43 361 | 98.99 6 | 45.24 370 | 96.15 310 | 67.18 355 | 92.17 337 | 88.85 352 |
|
PAPM | | | 81.91 318 | 80.11 328 | 87.31 312 | 93.87 282 | 72.32 335 | 84.02 344 | 93.22 274 | 69.47 346 | 76.13 365 | 89.84 322 | 72.15 307 | 97.23 278 | 53.27 366 | 89.02 349 | 92.37 337 |
|
tpm2 | | | 81.46 319 | 80.35 326 | 84.80 329 | 89.90 339 | 65.14 360 | 90.44 242 | 85.36 347 | 65.82 357 | 82.05 352 | 92.44 286 | 57.94 355 | 96.69 295 | 70.71 347 | 88.49 351 | 92.56 335 |
|
PMMVS2 | | | 81.31 320 | 83.44 304 | 74.92 348 | 90.52 333 | 46.49 373 | 69.19 362 | 85.23 351 | 84.30 251 | 87.95 313 | 94.71 222 | 76.95 289 | 84.36 366 | 64.07 359 | 98.09 206 | 93.89 313 |
|
new_pmnet | | | 81.22 321 | 81.01 320 | 81.86 341 | 90.92 329 | 70.15 343 | 84.03 343 | 80.25 367 | 70.83 340 | 85.97 327 | 89.78 326 | 67.93 318 | 84.65 365 | 67.44 354 | 91.90 340 | 90.78 347 |
|
test-mter | | | 81.21 322 | 80.01 329 | 84.79 330 | 89.68 342 | 66.86 354 | 83.08 347 | 84.52 353 | 73.85 325 | 82.85 346 | 84.78 356 | 43.66 373 | 93.49 347 | 82.85 256 | 94.86 298 | 94.03 308 |
|
EPMVS | | | 81.17 323 | 80.37 325 | 83.58 336 | 85.58 365 | 65.08 361 | 90.31 248 | 71.34 370 | 77.31 308 | 85.80 328 | 91.30 305 | 59.38 353 | 92.70 352 | 79.99 285 | 82.34 362 | 92.96 330 |
|
pmmvs3 | | | 80.83 324 | 78.96 332 | 86.45 317 | 87.23 359 | 77.48 288 | 84.87 334 | 82.31 360 | 63.83 360 | 85.03 331 | 89.50 330 | 49.66 366 | 93.10 349 | 73.12 334 | 95.10 295 | 88.78 354 |
|
DWT-MVSNet_test | | | 80.74 325 | 79.18 331 | 85.43 325 | 87.51 357 | 66.87 353 | 89.87 264 | 86.01 339 | 74.20 323 | 80.86 357 | 80.62 362 | 48.84 367 | 96.68 297 | 81.54 270 | 83.14 361 | 92.75 333 |
|
E-PMN | | | 80.72 326 | 80.86 321 | 80.29 344 | 85.11 366 | 68.77 349 | 72.96 359 | 81.97 361 | 87.76 195 | 83.25 345 | 83.01 360 | 62.22 347 | 89.17 362 | 77.15 312 | 94.31 311 | 82.93 360 |
|
tpm cat1 | | | 80.61 327 | 79.46 330 | 84.07 335 | 88.78 351 | 65.06 362 | 89.26 279 | 88.23 322 | 62.27 362 | 81.90 354 | 89.66 329 | 62.70 346 | 95.29 330 | 71.72 340 | 80.60 364 | 91.86 342 |
|
EMVS | | | 80.35 328 | 80.28 327 | 80.54 343 | 84.73 368 | 69.07 348 | 72.54 361 | 80.73 364 | 87.80 194 | 81.66 355 | 81.73 361 | 62.89 343 | 89.84 360 | 75.79 321 | 94.65 305 | 82.71 361 |
|
CHOSEN 280x420 | | | 80.04 329 | 77.97 335 | 86.23 321 | 90.13 337 | 74.53 318 | 72.87 360 | 89.59 315 | 66.38 354 | 76.29 364 | 85.32 355 | 56.96 357 | 95.36 327 | 69.49 351 | 94.72 303 | 88.79 353 |
|
dp | | | 79.28 330 | 78.62 333 | 81.24 342 | 85.97 364 | 56.45 370 | 86.91 314 | 85.26 350 | 72.97 330 | 81.45 356 | 89.17 335 | 56.01 360 | 95.45 325 | 73.19 333 | 76.68 365 | 91.82 343 |
|
TESTMET0.1,1 | | | 79.09 331 | 78.04 334 | 82.25 340 | 87.52 356 | 64.03 365 | 83.08 347 | 80.62 365 | 70.28 343 | 80.16 359 | 83.22 359 | 44.13 372 | 90.56 358 | 79.95 286 | 93.36 320 | 92.15 338 |
|
MVS-HIRNet | | | 78.83 332 | 80.60 324 | 73.51 349 | 93.07 293 | 47.37 372 | 87.10 311 | 78.00 368 | 68.94 347 | 77.53 363 | 97.26 78 | 71.45 310 | 94.62 334 | 63.28 361 | 88.74 350 | 78.55 364 |
|
PVSNet_0 | | 70.34 21 | 74.58 333 | 72.96 336 | 79.47 345 | 90.63 331 | 66.24 357 | 73.26 358 | 83.40 359 | 63.67 361 | 78.02 362 | 78.35 364 | 72.53 305 | 89.59 361 | 56.68 364 | 60.05 368 | 82.57 362 |
|
MVE |  | 59.87 23 | 73.86 334 | 72.65 337 | 77.47 347 | 87.00 362 | 74.35 320 | 61.37 364 | 60.93 373 | 67.27 352 | 69.69 368 | 86.49 350 | 81.24 259 | 72.33 368 | 56.45 365 | 83.45 359 | 85.74 357 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 50.44 335 | 48.94 338 | 54.93 350 | 39.68 374 | 12.38 376 | 28.59 365 | 90.09 313 | 6.82 369 | 41.10 371 | 78.41 363 | 54.41 361 | 70.69 369 | 50.12 367 | 51.26 369 | 81.72 363 |
|
tmp_tt | | | 37.97 336 | 44.33 339 | 18.88 352 | 11.80 375 | 21.54 375 | 63.51 363 | 45.66 376 | 4.23 370 | 51.34 370 | 50.48 367 | 59.08 354 | 22.11 371 | 44.50 368 | 68.35 367 | 13.00 367 |
|
cdsmvs_eth3d_5k | | | 23.35 337 | 31.13 340 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 95.58 224 | 0.00 373 | 0.00 374 | 91.15 307 | 93.43 77 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
test123 | | | 9.49 338 | 12.01 341 | 1.91 353 | 2.87 376 | 1.30 377 | 82.38 350 | 1.34 378 | 1.36 371 | 2.84 372 | 6.56 370 | 2.45 376 | 0.97 372 | 2.73 370 | 5.56 370 | 3.47 368 |
|
testmvs | | | 9.02 339 | 11.42 342 | 1.81 354 | 2.77 377 | 1.13 378 | 79.44 356 | 1.90 377 | 1.18 372 | 2.65 373 | 6.80 369 | 1.95 377 | 0.87 373 | 2.62 371 | 3.45 371 | 3.44 369 |
|
pcd_1.5k_mvsjas | | | 7.56 340 | 10.09 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 90.77 144 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
ab-mvs-re | | | 7.56 340 | 10.08 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 90.69 316 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
test_blank | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 6 | 97.73 6 | 98.27 20 | | | | | | |
|
MSC_two_6792asdad | | | | | 95.90 63 | 96.54 163 | 89.57 89 | | 96.87 164 | | | | | 99.41 36 | 94.06 30 | 99.30 64 | 98.72 90 |
|
PC_three_1452 | | | | | | | | | | 75.31 318 | 95.87 112 | 95.75 172 | 92.93 93 | 96.34 309 | 87.18 208 | 98.68 142 | 98.04 144 |
|
No_MVS | | | | | 95.90 63 | 96.54 163 | 89.57 89 | | 96.87 164 | | | | | 99.41 36 | 94.06 30 | 99.30 64 | 98.72 90 |
|
test_one_0601 | | | | | | 98.26 66 | 87.14 138 | | 98.18 36 | 94.25 48 | 96.99 60 | 97.36 71 | 95.13 40 | | | | |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 97.23 127 | 90.32 78 | | 97.54 110 | 84.40 250 | 94.78 160 | 95.79 168 | 92.76 99 | 99.39 48 | 88.72 183 | 98.40 165 | |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 78 | 95.27 8 | 96.37 39 | 98.12 46 | 95.66 33 | 97.00 58 | 97.03 92 | 95.40 27 | | 93.49 48 | 98.84 121 | 98.00 149 |
|
IU-MVS | | | | | | 98.51 46 | 86.66 152 | | 96.83 167 | 72.74 331 | 95.83 113 | | | | 93.00 76 | 99.29 67 | 98.64 98 |
|
OPU-MVS | | | | | 95.15 98 | 96.84 147 | 89.43 93 | 95.21 82 | | | | 95.66 176 | 93.12 87 | 98.06 224 | 86.28 224 | 98.61 147 | 97.95 157 |
|
test_241102_TWO | | | | | | | | | 98.10 49 | 91.95 92 | 97.54 37 | 97.25 79 | 95.37 28 | 99.35 59 | 93.29 63 | 99.25 75 | 98.49 112 |
|
test_241102_ONE | | | | | | 98.51 46 | 86.97 143 | | 98.10 49 | 91.85 98 | 97.63 32 | 97.03 92 | 96.48 11 | 98.95 122 | | | |
|
9.14 | | | | 94.81 94 | | 97.49 116 | | 94.11 125 | 98.37 17 | 87.56 203 | 95.38 131 | 96.03 157 | 94.66 56 | 99.08 99 | 90.70 128 | 98.97 109 | |
|
save fliter | | | | | | 97.46 119 | 88.05 122 | 92.04 192 | 97.08 147 | 87.63 200 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 93.26 68 | 97.40 46 | 97.35 74 | 94.69 55 | 99.34 62 | 93.88 34 | 99.42 47 | 98.89 69 |
|
test_0728_SECOND | | | | | 94.88 106 | 98.55 40 | 86.72 149 | 95.20 84 | 98.22 32 | | | | | 99.38 54 | 93.44 55 | 99.31 62 | 98.53 109 |
|
test0726 | | | | | | 98.51 46 | 86.69 150 | 95.34 77 | 98.18 36 | 91.85 98 | 97.63 32 | 97.37 68 | 95.58 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 292 |
|
test_part2 | | | | | | 98.21 70 | 89.41 94 | | | | 96.72 71 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 325 | | | | 94.75 292 |
|
sam_mvs | | | | | | | | | | | | | 66.41 326 | | | | |
|
ambc | | | | | 92.98 176 | 96.88 145 | 83.01 209 | 95.92 59 | 96.38 192 | | 96.41 80 | 97.48 62 | 88.26 179 | 97.80 247 | 89.96 154 | 98.93 113 | 98.12 139 |
|
MTGPA |  | | | | | | | | 97.62 102 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 250 | | | | 5.85 372 | 65.36 331 | 96.00 315 | 79.61 292 | | |
|
test_post | | | | | | | | | | | | 6.07 371 | 65.74 330 | 95.84 317 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 300 | 66.22 328 | 97.59 260 | | | |
|
GG-mvs-BLEND | | | | | 83.24 338 | 85.06 367 | 71.03 339 | 94.99 95 | 65.55 372 | | 74.09 366 | 75.51 365 | 44.57 371 | 94.46 337 | 59.57 363 | 87.54 353 | 84.24 358 |
|
MTMP | | | | | | | | 94.82 98 | 54.62 374 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 361 | 59.33 368 | | | 71.22 337 | | 83.58 358 | | 97.20 279 | 73.95 328 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 191 | 98.40 165 | 97.83 170 |
|
TEST9 | | | | | | 96.45 170 | 89.46 91 | 90.60 238 | 96.92 158 | 79.09 295 | 90.49 266 | 94.39 231 | 91.31 131 | 98.88 129 | | | |
|
test_8 | | | | | | 96.37 172 | 89.14 98 | 90.51 241 | 96.89 161 | 79.37 290 | 90.42 268 | 94.36 233 | 91.20 137 | 98.82 139 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 210 | 98.36 176 | 97.98 153 |
|
agg_prior | | | | | | 96.20 189 | 88.89 103 | | 96.88 162 | | 90.21 271 | | | 98.78 150 | | | |
|
TestCases | | | | | 96.00 55 | 98.02 84 | 92.17 51 | | 98.43 13 | 90.48 140 | 95.04 150 | 96.74 112 | 92.54 104 | 97.86 242 | 85.11 236 | 98.98 105 | 97.98 153 |
|
test_prior4 | | | | | | | 89.91 83 | 90.74 234 | | | | | | | | | |
|
test_prior2 | | | | | | | | 90.21 250 | | 89.33 163 | 90.77 261 | 94.81 216 | 90.41 154 | | 88.21 187 | 98.55 151 | |
|
test_prior | | | | | 94.61 117 | 95.95 210 | 87.23 135 | | 97.36 125 | | | | | 98.68 170 | | | 97.93 159 |
|
旧先验2 | | | | | | | | 90.00 259 | | 68.65 348 | 92.71 223 | | | 96.52 299 | 85.15 233 | | |
|
新几何2 | | | | | | | | 90.02 258 | | | | | | | | | |
|
新几何1 | | | | | 93.17 173 | 97.16 132 | 87.29 134 | | 94.43 253 | 67.95 350 | 91.29 253 | 94.94 211 | 86.97 203 | 98.23 212 | 81.06 278 | 97.75 223 | 93.98 311 |
|
旧先验1 | | | | | | 96.20 189 | 84.17 192 | | 94.82 243 | | | 95.57 182 | 89.57 168 | | | 97.89 219 | 96.32 243 |
|
无先验 | | | | | | | | 89.94 260 | 95.75 215 | 70.81 341 | | | | 98.59 180 | 81.17 276 | | 94.81 289 |
|
原ACMM2 | | | | | | | | 89.34 276 | | | | | | | | | |
|
原ACMM1 | | | | | 92.87 183 | 96.91 144 | 84.22 190 | | 97.01 150 | 76.84 311 | 89.64 287 | 94.46 228 | 88.00 185 | 98.70 166 | 81.53 271 | 98.01 213 | 95.70 270 |
|
test222 | | | | | | 96.95 140 | 85.27 179 | 88.83 287 | 93.61 267 | 65.09 358 | 90.74 263 | 94.85 215 | 84.62 228 | | | 97.36 240 | 93.91 312 |
|
testdata2 | | | | | | | | | | | | | | 98.03 226 | 80.24 283 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 110 | | | | |
|
testdata | | | | | 91.03 242 | 96.87 146 | 82.01 216 | | 94.28 257 | 71.55 335 | 92.46 229 | 95.42 191 | 85.65 222 | 97.38 275 | 82.64 259 | 97.27 242 | 93.70 318 |
|
testdata1 | | | | | | | | 88.96 285 | | 88.44 182 | | | | | | | |
|
test12 | | | | | 94.43 132 | 95.95 210 | 86.75 148 | | 96.24 197 | | 89.76 285 | | 89.79 166 | 98.79 146 | | 97.95 216 | 97.75 179 |
|
plane_prior7 | | | | | | 97.71 101 | 88.68 107 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 130 | 88.23 118 | | | | | | 86.93 204 | | | | |
|
plane_prior5 | | | | | | | | | 97.81 90 | | | | | 98.95 122 | 89.26 169 | 98.51 158 | 98.60 105 |
|
plane_prior4 | | | | | | | | | | | | 95.59 178 | | | | | |
|
plane_prior3 | | | | | | | 88.43 116 | | | 90.35 145 | 93.31 200 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 110 | | 91.74 109 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 122 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 120 | 93.01 151 | | 88.98 169 | | | | | | 98.06 208 | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 298 | | | | | | | | |
|
lessismore_v0 | | | | | 93.87 152 | 98.05 80 | 83.77 198 | | 80.32 366 | | 97.13 52 | 97.91 42 | 77.49 281 | 99.11 95 | 92.62 86 | 98.08 207 | 98.74 87 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 61 | 92.13 53 | | 98.25 27 | 91.78 105 | 97.07 53 | 97.22 82 | 96.38 13 | 99.28 73 | 92.07 97 | 99.59 27 | 99.11 41 |
|
test11 | | | | | | | | | 96.65 178 | | | | | | | | |
|
door | | | | | | | | | 91.26 306 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 182 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 174 | | 91.37 219 | | 87.16 207 | 88.81 297 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 174 | | 91.37 219 | | 87.16 207 | 88.81 297 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 218 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 297 | | | 98.61 176 | | | 98.15 135 |
|
HQP3-MVS | | | | | | | | | 97.31 130 | | | | | | | 97.73 224 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 226 | | | | |
|
NP-MVS | | | | | | 96.82 148 | 87.10 139 | | | | | 93.40 262 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 374 | 88.45 295 | | 67.22 353 | 83.56 342 | | 66.80 322 | | 72.86 335 | | 94.06 307 |
|
MDTV_nov1_ep13 | | | | 83.88 303 | | 89.42 346 | 61.52 367 | 88.74 290 | 87.41 329 | 73.99 324 | 84.96 333 | 94.01 245 | 65.25 332 | 95.53 320 | 78.02 302 | 93.16 324 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 127 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 75 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 150 | | | | |
|
ITE_SJBPF | | | | | 95.95 57 | 97.34 124 | 93.36 41 | | 96.55 185 | 91.93 94 | 94.82 158 | 95.39 194 | 91.99 114 | 97.08 282 | 85.53 229 | 97.96 215 | 97.41 199 |
|
DeepMVS_CX |  | | | | 53.83 351 | 70.38 373 | 64.56 363 | | 48.52 375 | 33.01 368 | 65.50 369 | 74.21 366 | 56.19 359 | 46.64 370 | 38.45 369 | 70.07 366 | 50.30 366 |
|