This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 17196.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13294.64 1799.53 3598.99 53
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6496.51 999.40 4094.06 3099.23 7698.85 75
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10598.16 298.94 299.33 297.84 499.08 9490.73 12499.73 1499.59 12
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11898.00 145
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19798.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5196.59 1998.46 1798.43 2792.91 9099.52 1796.25 699.76 1199.65 8
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8995.63 2199.39 4593.31 5898.88 11398.75 84
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20891.38 11599.69 1599.42 19
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17899.57 1395.86 999.69 1599.46 18
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12698.53 107
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5695.48 2598.77 14990.11 14499.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19498.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17896.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18896.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 17996.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10495.10 4299.40 4093.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2797.58 798.72 898.97 793.15 8499.15 8393.18 6499.74 1399.50 16
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 4897.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20698.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22594.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16796.49 12494.56 5899.39 4593.57 4099.05 9498.93 63
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17090.30 13699.60 2598.72 90
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9794.46 4496.29 8696.94 9493.56 7199.37 5294.29 2499.42 4798.99 53
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 12096.61 12094.93 5099.41 3593.78 3599.15 8499.00 51
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13396.57 12295.02 4699.41 3593.63 3999.11 8998.94 62
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11793.85 3399.49 3899.36 24
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11196.87 10095.26 3599.45 2292.77 7699.21 7899.00 51
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6090.82 12897.15 4996.85 10196.25 1599.00 10993.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9198.88 71
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6090.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19196.31 4197.53 10797.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 19296.72 11394.23 6599.42 2891.99 9599.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6797.31 1095.32 13096.77 10693.08 8699.20 7991.79 10298.16 19297.44 193
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1787.89 18896.86 6297.38 6795.55 2499.39 4595.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 7895.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7788.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 7998.10 4491.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2092.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15895.63 11796.47 12595.37 2899.27 7291.99 9599.14 8598.48 111
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 891.84 9796.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8496.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17698.46 113
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8197.00 14691.85 9497.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 21097.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13296.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 4889.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5590.45 13896.31 8496.76 10892.91 9098.72 15591.19 11699.42 4798.32 120
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9696.94 1496.58 7497.32 7593.07 8798.72 15590.45 12898.84 11897.57 185
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12490.05 14496.77 6796.85 10195.04 4498.56 17992.77 7699.06 9198.70 91
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 19397.78 4691.21 13297.77 24691.06 11797.06 24198.80 79
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 15993.73 5697.87 2698.49 2490.73 14499.05 9986.43 21599.60 2599.10 44
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8396.77 16596.64 1897.61 3498.05 3493.23 8198.79 14188.60 18099.04 9998.78 81
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7398.22 2992.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22497.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17595.46 7297.12 14091.84 9797.28 4698.46 2595.30 3497.71 25190.17 14299.42 4798.99 53
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6287.35 19996.22 9297.99 3894.48 6199.05 9992.73 7999.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4090.69 13193.75 18596.25 14698.03 297.02 27992.08 9295.55 27798.45 114
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8294.91 3796.80 6595.78 16990.42 14999.41 3591.60 10999.58 3199.29 28
MSP-MVS95.34 7294.63 10397.48 1498.67 2794.05 2196.41 3598.18 3291.26 11895.12 14095.15 19686.60 20799.50 1993.43 5396.81 25198.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FC-MVSNet-test95.32 7395.88 5793.62 15398.49 5381.77 21395.90 5798.32 1793.93 5397.53 3797.56 5688.48 17199.40 4092.91 7599.83 699.68 4
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5193.46 6296.31 8495.97 15890.14 15499.34 5992.11 9099.64 2399.16 36
Gipumacopyleft95.31 7595.80 6393.81 15097.99 8790.91 6996.42 3497.95 7396.69 1691.78 24398.85 1291.77 11595.49 31791.72 10599.08 9095.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8593.99 5096.80 6595.90 15990.10 15899.41 3591.60 10999.58 3199.26 29
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8697.37 11593.92 5497.65 3095.90 15990.10 15899.33 6490.11 14499.66 2199.26 29
TransMVSNet (Re)95.27 7896.04 5192.97 17398.37 5981.92 21295.07 8796.76 16693.97 5297.77 2798.57 1995.72 1897.90 23188.89 17399.23 7699.08 45
SD-MVS95.19 7995.73 6593.55 15696.62 15488.88 10294.67 10198.05 5591.26 11897.25 4896.40 13195.42 2694.36 33492.72 8099.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VPA-MVSNet95.14 8095.67 6793.58 15597.76 9483.15 20094.58 10697.58 10293.39 6397.05 5498.04 3593.25 8098.51 18489.75 15499.59 2799.08 45
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1287.63 19596.36 8096.68 11594.37 6399.32 6592.41 8799.05 9498.64 96
HPM-MVS++copyleft95.02 8294.39 11096.91 3897.88 9093.58 3694.09 12396.99 14891.05 12392.40 22795.22 19591.03 13899.25 7492.11 9098.69 13997.90 159
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10497.81 8589.22 16395.46 12596.17 15193.42 7699.34 5989.30 16098.87 11697.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 6995.85 20596.47 2093.40 19597.46 6395.31 3395.47 31886.18 21998.78 13089.11 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TSAR-MVS + MP.94.96 8594.75 9595.57 7898.86 2088.69 10396.37 3696.81 16185.23 23094.75 15797.12 8591.85 11499.40 4093.45 4998.33 17198.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23594.86 3898.49 1598.74 1681.45 24999.60 894.69 1699.39 5499.15 37
FIs94.90 8795.35 7493.55 15698.28 6381.76 21495.33 7598.14 3993.05 6797.07 5197.18 8287.65 18599.29 6891.72 10599.69 1599.61 11
Regformer-494.90 8794.67 10195.59 7692.78 29489.02 9792.39 17395.91 20294.50 4296.41 7795.56 18092.10 10899.01 10794.23 2698.14 19498.74 87
AllTest94.88 8994.51 10896.00 5598.02 8292.17 5095.26 7898.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
ETH3D-3000-0.194.86 9094.55 10595.81 6597.61 10789.72 8594.05 12498.37 1488.09 18495.06 14595.85 16192.58 9899.10 9390.33 13598.99 10198.62 100
Regformer-294.86 9094.55 10595.77 6992.83 29289.98 8091.87 20196.40 18394.38 4696.19 9695.04 20392.47 10399.04 10293.49 4498.31 17498.28 124
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18195.99 5196.56 17592.38 7597.03 5598.53 2190.12 15598.98 11088.78 17599.16 8398.65 92
ANet_high94.83 9396.28 3690.47 25596.65 15173.16 32194.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16190.38 13199.68 1899.53 14
testtj94.81 9494.42 10996.01 5497.23 12590.51 7694.77 9897.85 8191.29 11794.92 15195.66 17391.71 11799.40 4088.07 18898.25 18298.11 138
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13091.82 10094.34 16997.41 6590.60 14798.65 16992.47 8598.11 19897.70 177
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9589.21 16493.28 19995.46 18588.89 16898.98 11089.80 15198.82 12497.80 170
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21498.17 3590.72 13095.30 13196.47 12587.94 18296.98 28091.41 11497.61 22798.30 123
CSCG94.69 9894.75 9594.52 12197.55 11187.87 12395.01 9097.57 10392.68 6996.20 9493.44 25791.92 11398.78 14589.11 16899.24 7596.92 215
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10390.68 13297.43 4198.00 3788.18 17599.15 8394.84 1599.55 3499.41 20
v894.65 10095.29 7892.74 18496.65 15179.77 24694.59 10497.17 13691.86 9397.47 4097.93 4088.16 17699.08 9494.32 2299.47 3999.38 22
canonicalmvs94.59 10194.69 9894.30 13195.60 22687.03 13795.59 6698.24 2791.56 11195.21 13992.04 29194.95 4998.66 16791.45 11397.57 22897.20 207
CNVR-MVS94.58 10294.29 11495.46 8296.94 13989.35 9491.81 20796.80 16289.66 15193.90 18295.44 18792.80 9498.72 15592.74 7898.52 15198.32 120
GeoE94.55 10394.68 10094.15 13497.23 12585.11 17494.14 12197.34 12388.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 15998.23 127
Regformer-194.55 10394.33 11395.19 9492.83 29288.54 11091.87 20195.84 20693.99 5095.95 10495.04 20392.00 11098.79 14193.14 6798.31 17498.23 127
EG-PatchMatch MVS94.54 10594.67 10194.14 13597.87 9186.50 14892.00 19296.74 16788.16 18396.93 5997.61 5493.04 8897.90 23191.60 10998.12 19798.03 143
IS-MVSNet94.49 10694.35 11294.92 10298.25 6686.46 15197.13 1394.31 24996.24 2396.28 8996.36 13882.88 23399.35 5688.19 18499.52 3798.96 60
Baseline_NR-MVSNet94.47 10795.09 8692.60 19198.50 5280.82 22892.08 18796.68 16993.82 5596.29 8698.56 2090.10 15897.75 24990.10 14699.66 2199.24 31
test_part194.39 10894.55 10593.92 14496.14 18982.86 20495.54 6998.09 4795.36 3598.27 2098.36 2875.91 29099.44 2393.41 5499.84 399.47 17
VDD-MVS94.37 10994.37 11194.40 12997.49 11486.07 16293.97 12893.28 26694.49 4396.24 9097.78 4687.99 18198.79 14188.92 17199.14 8598.34 119
EI-MVSNet-Vis-set94.36 11094.28 11594.61 11392.55 29685.98 16392.44 16994.69 24293.70 5796.12 9995.81 16591.24 13098.86 12993.76 3898.22 18798.98 58
EI-MVSNet-UG-set94.35 11194.27 11794.59 11892.46 29785.87 16592.42 17194.69 24293.67 6196.13 9895.84 16491.20 13398.86 12993.78 3598.23 18599.03 49
PHI-MVS94.34 11293.80 12695.95 5795.65 22191.67 6194.82 9697.86 7887.86 18993.04 21094.16 23591.58 12098.78 14590.27 13898.96 10897.41 194
casdiffmvs94.32 11394.80 9392.85 18196.05 19681.44 21992.35 17698.05 5591.53 11295.75 11296.80 10593.35 7898.49 18591.01 12098.32 17398.64 96
Regformer-394.28 11494.23 11994.46 12692.78 29486.28 15892.39 17394.70 24193.69 6095.97 10295.56 18091.34 12598.48 18993.45 4998.14 19498.62 100
tfpnnormal94.27 11594.87 9192.48 19697.71 9980.88 22794.55 11095.41 22293.70 5796.67 7097.72 4991.40 12498.18 21287.45 19899.18 8298.36 118
HQP_MVS94.26 11693.93 12395.23 9397.71 9988.12 11794.56 10897.81 8591.74 10593.31 19695.59 17586.93 19998.95 11789.26 16498.51 15398.60 103
baseline94.26 11694.80 9392.64 18796.08 19480.99 22593.69 13598.04 5990.80 12994.89 15296.32 14093.19 8298.48 18991.68 10798.51 15398.43 115
OMC-MVS94.22 11893.69 13195.81 6597.25 12491.27 6392.27 18097.40 11487.10 20594.56 16295.42 18893.74 6998.11 21786.62 21098.85 11798.06 139
LCM-MVSNet-Re94.20 11994.58 10493.04 17095.91 20783.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10581.28 26798.54 14996.96 214
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5195.96 20392.96 4389.48 26897.46 11185.14 23396.23 9195.42 18893.19 8298.08 21890.37 13298.76 13297.38 200
DIV-MVS_2432*160094.10 12194.73 9792.19 20297.66 10579.49 25194.86 9597.12 14089.59 15496.87 6197.65 5290.40 15298.34 19889.08 16999.35 5798.75 84
NCCC94.08 12293.54 13895.70 7496.49 16289.90 8392.39 17396.91 15590.64 13392.33 23394.60 22190.58 14898.96 11590.21 14197.70 22298.23 127
VDDNet94.03 12394.27 11793.31 16598.87 1982.36 20895.51 7191.78 29697.19 1196.32 8398.60 1884.24 22498.75 15087.09 20398.83 12398.81 78
ETH3D cwj APD-0.1693.99 12493.38 14295.80 6796.82 14589.92 8192.72 15698.02 6284.73 24393.65 18995.54 18291.68 11899.22 7788.78 17598.49 15698.26 126
CS-MVS93.91 12594.22 12092.95 17595.65 22183.25 19794.91 9498.87 491.32 11691.32 24893.07 26592.24 10499.37 5291.90 10098.73 13596.21 244
EPP-MVSNet93.91 12593.68 13294.59 11898.08 7585.55 17097.44 894.03 25494.22 4794.94 14996.19 14882.07 24499.57 1387.28 20298.89 11198.65 92
Effi-MVS+-dtu93.90 12792.60 16197.77 494.74 25196.67 394.00 12695.41 22289.94 14591.93 24192.13 28990.12 15598.97 11487.68 19597.48 23097.67 180
IterMVS-LS93.78 12894.28 11592.27 19996.27 17879.21 25891.87 20196.78 16391.77 10396.57 7597.07 8787.15 19498.74 15391.99 9599.03 10098.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 18987.90 12293.36 14397.14 13785.53 22793.90 18295.45 18691.30 12898.59 17589.51 15798.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18190.95 6890.21 24695.43 22187.91 18693.74 18794.40 22692.88 9296.38 30090.39 13098.28 17797.07 208
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27496.23 19188.36 18093.57 19194.60 22193.45 7397.77 24690.23 14098.38 16498.03 143
v114493.50 13293.81 12592.57 19296.28 17779.61 24991.86 20596.96 14986.95 20795.91 10796.32 14087.65 18598.96 11593.51 4398.88 11399.13 39
v119293.49 13393.78 12792.62 19096.16 18779.62 24891.83 20697.22 13486.07 21896.10 10096.38 13687.22 19299.02 10594.14 2998.88 11399.22 32
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25095.68 20993.70 5796.62 7295.39 19187.21 19399.04 10287.50 19799.64 2399.33 25
V4293.43 13593.58 13592.97 17395.34 23581.22 22292.67 15996.49 18087.25 20196.20 9496.37 13787.32 19198.85 13192.39 8998.21 18898.85 75
K. test v393.37 13693.27 14693.66 15298.05 7882.62 20694.35 11486.62 32796.05 2797.51 3898.85 1276.59 28899.65 393.21 6398.20 19098.73 89
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28785.92 22196.22 9296.61 12085.64 21895.99 31090.35 13398.23 18595.93 254
v124093.29 13893.71 13092.06 20996.01 20177.89 27591.81 20797.37 11585.12 23596.69 6996.40 13186.67 20599.07 9894.51 1898.76 13299.22 32
test_prior393.29 13892.85 15294.61 11395.95 20487.23 13190.21 24697.36 12089.33 15990.77 25794.81 21390.41 15098.68 16588.21 18298.55 14697.93 155
v2v48293.29 13893.63 13392.29 19896.35 17178.82 26391.77 20996.28 18788.45 17795.70 11696.26 14586.02 21398.90 12193.02 7198.81 12699.14 38
alignmvs93.26 14192.85 15294.50 12295.70 21787.45 12793.45 14195.76 20791.58 11095.25 13692.42 28581.96 24698.72 15591.61 10897.87 21497.33 202
v192192093.26 14193.61 13492.19 20296.04 20078.31 26991.88 20097.24 13285.17 23296.19 9696.19 14886.76 20499.05 9994.18 2898.84 11899.22 32
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17282.81 20593.11 14697.74 9189.37 15794.08 17395.29 19490.40 15296.35 30290.35 13398.25 18294.96 282
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18195.99 5196.56 17588.63 17395.10 14198.53 2181.31 25198.98 11086.74 20698.38 16498.65 92
v14419293.20 14693.54 13892.16 20696.05 19678.26 27091.95 19397.14 13784.98 23995.96 10396.11 15287.08 19699.04 10293.79 3498.84 11899.17 35
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30391.51 21395.62 21091.84 9795.74 11397.10 8689.31 16598.32 19985.07 23299.06 9198.93 63
UGNet93.08 14792.50 16394.79 10793.87 27587.99 12195.07 8794.26 25190.64 13387.33 31497.67 5186.89 20298.49 18588.10 18798.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs-test193.07 14991.80 17896.89 3994.74 25195.83 692.17 18495.41 22289.94 14589.85 27690.59 31490.12 15598.88 12487.68 19595.66 27595.97 252
TSAR-MVS + GP.93.07 14992.41 16595.06 9995.82 21090.87 7190.97 22592.61 28188.04 18594.61 16193.79 24988.08 17797.81 24189.41 15998.39 16296.50 231
ETV-MVS92.99 15192.74 15693.72 15195.86 20986.30 15792.33 17797.84 8291.70 10892.81 21586.17 34792.22 10599.19 8088.03 18997.73 21895.66 267
EI-MVSNet92.99 15193.26 14792.19 20292.12 30479.21 25892.32 17894.67 24491.77 10395.24 13795.85 16187.14 19598.49 18591.99 9598.26 17998.86 72
MCST-MVS92.91 15392.51 16294.10 13697.52 11285.72 16891.36 21897.13 13980.33 27692.91 21494.24 23191.23 13198.72 15589.99 14897.93 21197.86 163
hse-mvs392.89 15491.99 17295.58 7796.97 13790.55 7493.94 12994.01 25789.23 16193.95 17996.19 14876.88 28599.14 8591.02 11895.71 27497.04 211
QAPM92.88 15592.77 15493.22 16895.82 21083.31 19596.45 3197.35 12283.91 24893.75 18596.77 10689.25 16698.88 12484.56 23897.02 24397.49 190
v14892.87 15693.29 14391.62 22096.25 18177.72 27891.28 21995.05 22889.69 15095.93 10696.04 15487.34 19098.38 19490.05 14797.99 20898.78 81
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30594.15 12095.60 21189.38 15695.90 10897.90 4480.39 25897.96 22992.60 8399.68 1898.75 84
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19694.00 12697.53 10791.36 11589.35 28590.65 31394.01 6898.66 16787.40 20095.30 28596.88 218
FMVSNet292.78 15992.73 15892.95 17595.40 23181.98 21194.18 11995.53 21988.63 17396.05 10197.37 6881.31 25198.81 13987.38 20198.67 14098.06 139
Fast-Effi-MVS+-dtu92.77 16092.16 16794.58 12094.66 25788.25 11492.05 18896.65 17189.62 15290.08 27091.23 30192.56 9998.60 17386.30 21796.27 26396.90 216
LF4IMVS92.72 16192.02 17194.84 10595.65 22191.99 5492.92 15196.60 17385.08 23792.44 22593.62 25286.80 20396.35 30286.81 20598.25 18296.18 245
train_agg92.71 16291.83 17695.35 8496.45 16489.46 8890.60 23496.92 15379.37 28590.49 26294.39 22791.20 13398.88 12488.66 17998.43 15897.72 176
VNet92.67 16392.96 14991.79 21496.27 17880.15 23291.95 19394.98 23092.19 8494.52 16496.07 15387.43 18997.39 26884.83 23498.38 16497.83 166
CDPH-MVS92.67 16391.83 17695.18 9596.94 13988.46 11290.70 23297.07 14377.38 30192.34 23295.08 20192.67 9798.88 12485.74 22198.57 14598.20 131
agg_prior192.60 16591.76 17995.10 9896.20 18388.89 10090.37 24196.88 15779.67 28290.21 26794.41 22591.30 12898.78 14588.46 18198.37 16997.64 182
Anonymous20240521192.58 16692.50 16392.83 18296.55 15983.22 19892.43 17091.64 29794.10 4995.59 11996.64 11881.88 24897.50 25985.12 22998.52 15197.77 172
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24291.87 20196.22 19385.94 22095.53 12297.68 5092.69 9694.48 33083.21 24897.51 22998.21 130
MVS_Test92.57 16893.29 14390.40 25893.53 27975.85 30192.52 16396.96 14988.73 17092.35 23096.70 11490.77 14098.37 19792.53 8495.49 27996.99 213
TAPA-MVS88.58 1092.49 16991.75 18094.73 10996.50 16189.69 8692.91 15297.68 9478.02 29992.79 21694.10 23690.85 13997.96 22984.76 23698.16 19296.54 226
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22086.95 20792.95 21397.56 5690.70 14597.50 25979.63 28597.43 23296.06 249
CANet92.38 17191.99 17293.52 16093.82 27783.46 19491.14 22197.00 14689.81 14986.47 31894.04 23887.90 18399.21 7889.50 15898.27 17897.90 159
EIA-MVS92.35 17292.03 17093.30 16695.81 21283.97 18992.80 15598.17 3587.71 19289.79 27987.56 33791.17 13699.18 8187.97 19097.27 23696.77 222
DP-MVS Recon92.31 17391.88 17593.60 15497.18 12986.87 14191.10 22397.37 11584.92 24092.08 23894.08 23788.59 17098.20 20983.50 24598.14 19495.73 263
F-COLMAP92.28 17491.06 19795.95 5797.52 11291.90 5693.53 13897.18 13583.98 24788.70 29794.04 23888.41 17398.55 18180.17 27895.99 26897.39 198
OpenMVScopyleft89.45 892.27 17592.13 16992.68 18694.53 26084.10 18795.70 6297.03 14482.44 26491.14 25496.42 12988.47 17298.38 19485.95 22097.47 23195.55 271
hse-mvs292.24 17691.20 19395.38 8396.16 18790.65 7392.52 16392.01 29489.23 16193.95 17992.99 26876.88 28598.69 16391.02 11896.03 26696.81 220
MVSFormer92.18 17792.23 16692.04 21094.74 25180.06 23697.15 1197.37 11588.98 16588.83 28992.79 27377.02 28299.60 896.41 496.75 25496.46 233
HQP-MVS92.09 17891.49 18693.88 14796.36 16884.89 17691.37 21597.31 12587.16 20288.81 29193.40 25884.76 22198.60 17386.55 21297.73 21898.14 134
DELS-MVS92.05 17992.16 16791.72 21794.44 26180.13 23487.62 29597.25 13187.34 20092.22 23593.18 26489.54 16498.73 15489.67 15598.20 19096.30 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap92.00 18092.76 15589.71 27295.62 22577.02 28690.72 23196.17 19687.70 19395.26 13496.29 14292.54 10096.45 29781.77 26298.77 13195.66 267
ETH3 D test640091.91 18191.25 19293.89 14696.59 15584.41 18092.10 18697.72 9378.52 29591.82 24293.78 25088.70 16999.13 8783.61 24498.39 16298.14 134
CLD-MVS91.82 18291.41 18893.04 17096.37 16683.65 19386.82 31497.29 12884.65 24492.27 23489.67 32392.20 10697.85 23983.95 24299.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
diffmvs91.74 18391.93 17491.15 23693.06 28778.17 27188.77 28597.51 11086.28 21492.42 22693.96 24388.04 17997.46 26290.69 12696.67 25697.82 168
CNLPA91.72 18491.20 19393.26 16796.17 18691.02 6691.14 22195.55 21890.16 14390.87 25693.56 25586.31 20994.40 33379.92 28497.12 24094.37 295
IterMVS-SCA-FT91.65 18591.55 18291.94 21193.89 27479.22 25787.56 29893.51 26391.53 11295.37 12896.62 11978.65 26798.90 12191.89 10194.95 29197.70 177
PVSNet_Blended_VisFu91.63 18691.20 19392.94 17797.73 9883.95 19092.14 18597.46 11178.85 29492.35 23094.98 20684.16 22599.08 9486.36 21696.77 25395.79 261
AdaColmapbinary91.63 18691.36 18992.47 19795.56 22786.36 15592.24 18396.27 18888.88 16989.90 27592.69 27691.65 11998.32 19977.38 30497.64 22592.72 328
pmmvs-eth3d91.54 18890.73 20593.99 13895.76 21587.86 12490.83 22893.98 25878.23 29894.02 17896.22 14782.62 23996.83 28686.57 21198.33 17197.29 204
API-MVS91.52 18991.61 18191.26 23094.16 26686.26 15994.66 10294.82 23691.17 12192.13 23791.08 30490.03 16197.06 27879.09 29297.35 23590.45 343
xiu_mvs_v1_base_debu91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
xiu_mvs_v1_base_debi91.47 19091.52 18391.33 22795.69 21881.56 21689.92 25796.05 19983.22 25291.26 25090.74 30891.55 12198.82 13489.29 16195.91 26993.62 314
RRT_MVS91.36 19390.05 21895.29 9089.21 34188.15 11692.51 16794.89 23386.73 20995.54 12195.68 17261.82 34399.30 6794.91 1399.13 8898.43 115
LFMVS91.33 19491.16 19691.82 21396.27 17879.36 25395.01 9085.61 33896.04 2894.82 15497.06 8872.03 30498.46 19184.96 23398.70 13897.65 181
cl_fuxian91.32 19591.42 18791.00 24192.29 29976.79 29287.52 30196.42 18285.76 22494.72 16093.89 24682.73 23698.16 21490.93 12298.55 14698.04 142
Fast-Effi-MVS+91.28 19690.86 20092.53 19495.45 23082.53 20789.25 27796.52 17985.00 23889.91 27488.55 33392.94 8998.84 13284.72 23795.44 28196.22 242
MDA-MVSNet-bldmvs91.04 19790.88 19991.55 22294.68 25680.16 23185.49 32692.14 29090.41 14094.93 15095.79 16685.10 21996.93 28385.15 22794.19 30897.57 185
PAPM_NR91.03 19890.81 20291.68 21996.73 14981.10 22493.72 13496.35 18688.19 18288.77 29592.12 29085.09 22097.25 27282.40 25793.90 30996.68 225
MVS_030490.96 19990.15 21693.37 16293.17 28487.06 13593.62 13792.43 28589.60 15382.25 34395.50 18382.56 24097.83 24084.41 24097.83 21695.22 275
MSDG90.82 20090.67 20691.26 23094.16 26683.08 20286.63 31996.19 19490.60 13591.94 24091.89 29289.16 16795.75 31280.96 27394.51 30194.95 283
test20.0390.80 20190.85 20190.63 25295.63 22479.24 25689.81 26292.87 27289.90 14794.39 16696.40 13185.77 21495.27 32573.86 32399.05 9497.39 198
FMVSNet390.78 20290.32 21392.16 20693.03 28979.92 24192.54 16294.95 23186.17 21795.10 14196.01 15669.97 30898.75 15086.74 20698.38 16497.82 168
eth_miper_zixun_eth90.72 20390.61 20791.05 23792.04 30676.84 29186.91 31096.67 17085.21 23194.41 16593.92 24479.53 26298.26 20589.76 15397.02 24398.06 139
X-MVStestdata90.70 20488.45 24497.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16726.89 36394.56 5899.39 4593.57 4099.05 9498.93 63
BH-untuned90.68 20590.90 19890.05 26995.98 20279.57 25090.04 25394.94 23287.91 18694.07 17493.00 26787.76 18497.78 24579.19 29195.17 28892.80 326
cl-mvsnet____90.65 20690.56 20890.91 24591.85 30876.98 28986.75 31595.36 22585.53 22794.06 17594.89 21077.36 28097.98 22890.27 13898.98 10297.76 173
cl-mvsnet190.65 20690.56 20890.91 24591.85 30876.99 28886.75 31595.36 22585.52 22994.06 17594.89 21077.37 27997.99 22790.28 13798.97 10697.76 173
114514_t90.51 20889.80 22292.63 18998.00 8482.24 20993.40 14297.29 12865.84 35089.40 28494.80 21686.99 19798.75 15083.88 24398.61 14396.89 217
miper_ehance_all_eth90.48 20990.42 21190.69 25091.62 31376.57 29486.83 31396.18 19583.38 25094.06 17592.66 27882.20 24298.04 22089.79 15297.02 24397.45 192
BH-RMVSNet90.47 21090.44 21090.56 25495.21 23878.65 26789.15 27893.94 25988.21 18192.74 21794.22 23286.38 20897.88 23378.67 29495.39 28395.14 278
Vis-MVSNet (Re-imp)90.42 21190.16 21491.20 23497.66 10577.32 28394.33 11587.66 32091.20 12092.99 21195.13 19875.40 29298.28 20177.86 29799.19 8097.99 148
PLCcopyleft85.34 1590.40 21288.92 23694.85 10496.53 16090.02 7991.58 21296.48 18180.16 27786.14 32092.18 28785.73 21598.25 20676.87 30794.61 30096.30 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testgi90.38 21391.34 19087.50 30597.49 11471.54 33089.43 26995.16 22788.38 17994.54 16394.68 22092.88 9293.09 34471.60 33697.85 21597.88 161
mvs_anonymous90.37 21491.30 19187.58 30492.17 30368.00 34389.84 26194.73 24083.82 24993.22 20497.40 6687.54 18797.40 26787.94 19195.05 29097.34 201
PVSNet_BlendedMVS90.35 21589.96 21991.54 22394.81 24678.80 26590.14 25096.93 15179.43 28488.68 29895.06 20286.27 21098.15 21580.27 27598.04 20497.68 179
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26094.64 25880.24 23089.69 26495.88 20385.77 22393.94 18195.69 17181.99 24592.98 34584.21 24191.30 33697.62 183
MAR-MVS90.32 21788.87 23994.66 11294.82 24591.85 5794.22 11894.75 23980.91 27187.52 31288.07 33686.63 20697.87 23676.67 30896.21 26494.25 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
RPMNet90.31 21890.14 21790.81 24891.01 32078.93 26092.52 16398.12 4191.91 9189.10 28696.89 9968.84 30999.41 3590.17 14292.70 32594.08 299
112190.26 21989.23 22893.34 16397.15 13287.40 12891.94 19594.39 24767.88 34591.02 25594.91 20986.91 20198.59 17581.17 27097.71 22194.02 304
IterMVS90.18 22090.16 21490.21 26493.15 28575.98 30087.56 29892.97 27186.43 21294.09 17296.40 13178.32 27197.43 26487.87 19294.69 29897.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.16 22189.05 23393.49 16196.49 16286.37 15490.34 24392.55 28280.84 27492.99 21194.57 22381.94 24798.20 20973.51 32498.21 18895.90 257
test_yl90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
DCV-MVSNet90.11 22289.73 22591.26 23094.09 26979.82 24390.44 23892.65 27890.90 12493.19 20593.30 26073.90 29598.03 22182.23 25896.87 24995.93 254
Patchmtry90.11 22289.92 22090.66 25190.35 32977.00 28792.96 15092.81 27390.25 14294.74 15896.93 9667.11 31497.52 25885.17 22598.98 10297.46 191
MVP-Stereo90.07 22588.92 23693.54 15896.31 17586.49 14990.93 22695.59 21579.80 27891.48 24595.59 17580.79 25597.39 26878.57 29591.19 33796.76 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 22688.30 24795.32 8996.09 19390.52 7592.42 17192.05 29382.08 26788.45 30092.86 27065.76 32498.69 16388.91 17296.07 26596.75 224
CL-MVSNet_2432*160090.04 22789.90 22190.47 25595.24 23777.81 27686.60 32192.62 28085.64 22693.25 20393.92 24483.84 22696.06 30879.93 28298.03 20597.53 189
bset_n11_16_dypcd89.99 22889.15 23192.53 19494.75 24981.34 22084.19 33887.56 32185.13 23493.77 18492.46 28072.82 29999.01 10792.46 8699.21 7897.23 205
D2MVS89.93 22989.60 22790.92 24394.03 27178.40 26888.69 28794.85 23478.96 29293.08 20795.09 20074.57 29396.94 28188.19 18498.96 10897.41 194
miper_lstm_enhance89.90 23089.80 22290.19 26691.37 31777.50 28083.82 34295.00 22984.84 24193.05 20994.96 20776.53 28995.20 32689.96 14998.67 14097.86 163
CANet_DTU89.85 23189.17 23091.87 21292.20 30280.02 23990.79 22995.87 20486.02 21982.53 34291.77 29480.01 25998.57 17885.66 22297.70 22297.01 212
tttt051789.81 23288.90 23892.55 19397.00 13679.73 24795.03 8983.65 35089.88 14895.30 13194.79 21753.64 35899.39 4591.99 9598.79 12998.54 106
EPNet89.80 23388.25 24994.45 12783.91 36286.18 16093.87 13087.07 32591.16 12280.64 35294.72 21878.83 26598.89 12385.17 22598.89 11198.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet89.55 23488.22 25293.53 15995.37 23486.49 14989.26 27593.59 26179.76 28091.15 25392.31 28677.12 28198.38 19477.51 30297.92 21295.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS89.54 23589.80 22288.76 28794.88 24272.47 32789.60 26592.44 28485.82 22289.48 28395.98 15782.85 23497.74 25081.87 26195.27 28696.08 248
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23390.92 24394.58 25981.21 22391.10 22393.41 26577.03 30593.41 19393.99 24283.23 23097.80 24279.93 28294.80 29593.74 311
DPM-MVS89.35 23788.40 24592.18 20596.13 19284.20 18586.96 30996.15 19775.40 31287.36 31391.55 29983.30 22998.01 22482.17 26096.62 25794.32 297
MVSTER89.32 23888.75 24091.03 23890.10 33176.62 29390.85 22794.67 24482.27 26595.24 13795.79 16661.09 34698.49 18590.49 12798.26 17997.97 152
PatchMatch-RL89.18 23988.02 25792.64 18795.90 20892.87 4588.67 28991.06 30080.34 27590.03 27291.67 29683.34 22894.42 33276.35 31194.84 29490.64 342
jason89.17 24088.32 24691.70 21895.73 21680.07 23588.10 29293.22 26771.98 32890.09 26992.79 27378.53 27098.56 17987.43 19997.06 24196.46 233
jason: jason.
PCF-MVS84.52 1789.12 24187.71 26093.34 16396.06 19585.84 16686.58 32297.31 12568.46 34393.61 19093.89 24687.51 18898.52 18367.85 34798.11 19895.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet289.02 24288.50 24390.59 25389.76 33376.45 29586.62 32094.03 25482.98 25892.65 21992.49 27972.05 30397.53 25788.93 17097.02 24397.78 171
USDC89.02 24289.08 23288.84 28695.07 24074.50 31288.97 28096.39 18473.21 32293.27 20096.28 14382.16 24396.39 29977.55 30198.80 12895.62 270
xiu_mvs_v2_base89.00 24489.19 22988.46 29494.86 24474.63 30986.97 30895.60 21180.88 27287.83 30888.62 33291.04 13798.81 13982.51 25694.38 30291.93 334
new-patchmatchnet88.97 24590.79 20383.50 33294.28 26555.83 36485.34 32793.56 26286.18 21695.47 12395.73 17083.10 23196.51 29585.40 22498.06 20298.16 132
pmmvs488.95 24687.70 26192.70 18594.30 26485.60 16987.22 30492.16 28974.62 31489.75 28194.19 23377.97 27496.41 29882.71 25296.36 26296.09 247
N_pmnet88.90 24787.25 26793.83 14994.40 26393.81 3484.73 33187.09 32479.36 28793.26 20192.43 28479.29 26391.68 34977.50 30397.22 23896.00 251
PS-MVSNAJ88.86 24888.99 23588.48 29394.88 24274.71 30786.69 31795.60 21180.88 27287.83 30887.37 34090.77 14098.82 13482.52 25594.37 30391.93 334
Patchmatch-RL test88.81 24988.52 24289.69 27395.33 23679.94 24086.22 32392.71 27778.46 29695.80 11094.18 23466.25 32295.33 32389.22 16698.53 15093.78 309
Anonymous2023120688.77 25088.29 24890.20 26596.31 17578.81 26489.56 26793.49 26474.26 31692.38 22895.58 17882.21 24195.43 32072.07 33298.75 13496.34 237
PVSNet_Blended88.74 25188.16 25590.46 25794.81 24678.80 26586.64 31896.93 15174.67 31388.68 29889.18 32986.27 21098.15 21580.27 27596.00 26794.44 294
thisisatest053088.69 25287.52 26392.20 20196.33 17379.36 25392.81 15484.01 34986.44 21193.67 18892.68 27753.62 35999.25 7489.65 15698.45 15798.00 145
ppachtmachnet_test88.61 25388.64 24188.50 29291.76 31070.99 33384.59 33492.98 27079.30 28992.38 22893.53 25679.57 26197.45 26386.50 21497.17 23997.07 208
UnsupCasMVSNet_bld88.50 25488.03 25689.90 27095.52 22878.88 26287.39 30294.02 25679.32 28893.06 20894.02 24080.72 25694.27 33575.16 31793.08 32196.54 226
miper_enhance_ethall88.42 25587.87 25890.07 26788.67 34675.52 30485.10 32895.59 21575.68 30892.49 22389.45 32678.96 26497.88 23387.86 19397.02 24396.81 220
1112_ss88.42 25587.41 26491.45 22496.69 15080.99 22589.72 26396.72 16873.37 32187.00 31690.69 31177.38 27898.20 20981.38 26693.72 31295.15 277
lupinMVS88.34 25787.31 26591.45 22494.74 25180.06 23687.23 30392.27 28671.10 33288.83 28991.15 30277.02 28298.53 18286.67 20996.75 25495.76 262
RRT_test8_iter0588.21 25888.17 25388.33 29691.62 31366.82 34991.73 21096.60 17386.34 21394.14 17095.38 19347.72 36499.11 9191.78 10398.26 17999.06 47
YYNet188.17 25988.24 25087.93 30092.21 30173.62 31880.75 35088.77 31082.51 26394.99 14895.11 19982.70 23793.70 33983.33 24693.83 31096.48 232
MDA-MVSNet_test_wron88.16 26088.23 25187.93 30092.22 30073.71 31780.71 35188.84 30982.52 26294.88 15395.14 19782.70 23793.61 34083.28 24793.80 31196.46 233
MS-PatchMatch88.05 26187.75 25988.95 28393.28 28177.93 27387.88 29492.49 28375.42 31192.57 22293.59 25480.44 25794.24 33781.28 26792.75 32494.69 290
CR-MVSNet87.89 26287.12 27190.22 26391.01 32078.93 26092.52 16392.81 27373.08 32389.10 28696.93 9667.11 31497.64 25488.80 17492.70 32594.08 299
pmmvs587.87 26387.14 27090.07 26793.26 28376.97 29088.89 28292.18 28773.71 32088.36 30193.89 24676.86 28796.73 28980.32 27496.81 25196.51 228
wuyk23d87.83 26490.79 20378.96 34190.46 32888.63 10592.72 15690.67 30491.65 10998.68 1197.64 5396.06 1677.53 36159.84 35699.41 5270.73 359
FMVSNet587.82 26586.56 28091.62 22092.31 29879.81 24593.49 13994.81 23883.26 25191.36 24796.93 9652.77 36097.49 26176.07 31298.03 20597.55 188
GA-MVS87.70 26686.82 27590.31 25993.27 28277.22 28584.72 33392.79 27585.11 23689.82 27790.07 31566.80 31797.76 24884.56 23894.27 30695.96 253
TR-MVS87.70 26687.17 26989.27 28094.11 26879.26 25588.69 28791.86 29581.94 26890.69 26089.79 32082.82 23597.42 26572.65 33091.98 33391.14 339
thres600view787.66 26887.10 27289.36 27896.05 19673.17 32092.72 15685.31 34191.89 9293.29 19890.97 30563.42 33698.39 19273.23 32696.99 24896.51 228
PAPR87.65 26986.77 27790.27 26192.85 29177.38 28288.56 29096.23 19176.82 30784.98 32689.75 32286.08 21297.16 27572.33 33193.35 31596.26 241
baseline187.62 27087.31 26588.54 29194.71 25574.27 31593.10 14788.20 31686.20 21592.18 23693.04 26673.21 29895.52 31579.32 28985.82 34995.83 259
our_test_387.55 27187.59 26287.44 30691.76 31070.48 33483.83 34190.55 30579.79 27992.06 23992.17 28878.63 26995.63 31384.77 23594.73 29696.22 242
PatchT87.51 27288.17 25385.55 31890.64 32366.91 34592.02 19186.09 33192.20 8389.05 28897.16 8364.15 33296.37 30189.21 16792.98 32393.37 318
Test_1112_low_res87.50 27386.58 27990.25 26296.80 14877.75 27787.53 30096.25 18969.73 33986.47 31893.61 25375.67 29197.88 23379.95 28093.20 31795.11 279
SCA87.43 27487.21 26888.10 29992.01 30771.98 32989.43 26988.11 31882.26 26688.71 29692.83 27178.65 26797.59 25579.61 28693.30 31694.75 287
EU-MVSNet87.39 27586.71 27889.44 27593.40 28076.11 29894.93 9390.00 30757.17 35995.71 11597.37 6864.77 33097.68 25392.67 8194.37 30394.52 292
thres100view90087.35 27686.89 27488.72 28896.14 18973.09 32293.00 14985.31 34192.13 8593.26 20190.96 30663.42 33698.28 20171.27 33896.54 25894.79 285
CMPMVSbinary68.83 2287.28 27785.67 29092.09 20888.77 34585.42 17190.31 24494.38 24870.02 33888.00 30693.30 26073.78 29794.03 33875.96 31496.54 25896.83 219
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sss87.23 27886.82 27588.46 29493.96 27277.94 27286.84 31292.78 27677.59 30087.61 31191.83 29378.75 26691.92 34877.84 29894.20 30795.52 272
BH-w/o87.21 27987.02 27387.79 30394.77 24877.27 28487.90 29393.21 26981.74 26989.99 27388.39 33583.47 22796.93 28371.29 33792.43 32989.15 344
thres40087.20 28086.52 28289.24 28295.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25896.51 228
CHOSEN 1792x268887.19 28185.92 28991.00 24197.13 13379.41 25284.51 33595.60 21164.14 35390.07 27194.81 21378.26 27297.14 27673.34 32595.38 28496.46 233
HyFIR lowres test87.19 28185.51 29192.24 20097.12 13480.51 22985.03 32996.06 19866.11 34991.66 24492.98 26970.12 30799.14 8575.29 31695.23 28797.07 208
MIMVSNet87.13 28386.54 28188.89 28596.05 19676.11 29894.39 11388.51 31281.37 27088.27 30396.75 10972.38 30195.52 31565.71 35295.47 28095.03 280
tfpn200view987.05 28486.52 28288.67 28995.77 21372.94 32391.89 19886.00 33390.84 12692.61 22089.80 31863.93 33398.28 20171.27 33896.54 25894.79 285
cascas87.02 28586.28 28689.25 28191.56 31576.45 29584.33 33796.78 16371.01 33386.89 31785.91 34881.35 25096.94 28183.09 24995.60 27694.35 296
WTY-MVS86.93 28686.50 28488.24 29794.96 24174.64 30887.19 30592.07 29278.29 29788.32 30291.59 29878.06 27394.27 33574.88 31893.15 31995.80 260
HY-MVS82.50 1886.81 28785.93 28889.47 27493.63 27877.93 27394.02 12591.58 29875.68 30883.64 33593.64 25177.40 27797.42 26571.70 33592.07 33293.05 323
131486.46 28886.33 28586.87 31091.65 31274.54 31091.94 19594.10 25374.28 31584.78 32887.33 34183.03 23295.00 32778.72 29391.16 33891.06 340
ET-MVSNet_ETH3D86.15 28984.27 29791.79 21493.04 28881.28 22187.17 30686.14 33079.57 28383.65 33488.66 33157.10 35198.18 21287.74 19495.40 28295.90 257
Patchmatch-test86.10 29086.01 28786.38 31590.63 32474.22 31689.57 26686.69 32685.73 22589.81 27892.83 27165.24 32891.04 35177.82 30095.78 27393.88 308
thres20085.85 29185.18 29287.88 30294.44 26172.52 32689.08 27986.21 32988.57 17691.44 24688.40 33464.22 33198.00 22568.35 34695.88 27293.12 320
EPNet_dtu85.63 29284.37 29589.40 27786.30 35674.33 31491.64 21188.26 31484.84 24172.96 36189.85 31671.27 30697.69 25276.60 30997.62 22696.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive85.22 29384.64 29486.98 30989.51 33869.83 34090.52 23687.34 32378.87 29387.22 31592.74 27566.91 31696.53 29381.77 26286.88 34894.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet85.16 29484.72 29386.48 31192.12 30470.19 33592.32 17888.17 31756.15 36090.64 26195.85 16167.97 31296.69 29088.78 17590.52 34092.56 329
JIA-IIPM85.08 29583.04 30491.19 23587.56 34886.14 16189.40 27184.44 34888.98 16582.20 34497.95 3956.82 35396.15 30476.55 31083.45 35391.30 338
MVS84.98 29684.30 29687.01 30891.03 31977.69 27991.94 19594.16 25259.36 35884.23 33287.50 33985.66 21696.80 28771.79 33393.05 32286.54 350
thisisatest051584.72 29782.99 30589.90 27092.96 29075.33 30684.36 33683.42 35177.37 30288.27 30386.65 34253.94 35798.72 15582.56 25497.40 23395.67 266
FPMVS84.50 29883.28 30288.16 29896.32 17494.49 1485.76 32485.47 33983.09 25585.20 32494.26 23063.79 33586.58 35863.72 35491.88 33583.40 353
tpm84.38 29984.08 29885.30 32290.47 32763.43 35989.34 27285.63 33777.24 30487.62 31095.03 20561.00 34797.30 27179.26 29091.09 33995.16 276
tpmvs84.22 30083.97 29984.94 32387.09 35365.18 35291.21 22088.35 31382.87 25985.21 32390.96 30665.24 32896.75 28879.60 28885.25 35092.90 325
ADS-MVSNet284.01 30182.20 30989.41 27689.04 34276.37 29787.57 29690.98 30172.71 32684.46 32992.45 28168.08 31096.48 29670.58 34283.97 35195.38 273
test-LLR83.58 30283.17 30384.79 32589.68 33566.86 34783.08 34384.52 34683.07 25682.85 34084.78 35162.86 33993.49 34182.85 25094.86 29294.03 302
baseline283.38 30381.54 31288.90 28491.38 31672.84 32588.78 28481.22 35678.97 29179.82 35487.56 33761.73 34497.80 24274.30 32190.05 34296.05 250
IB-MVS77.21 1983.11 30481.05 31589.29 27991.15 31875.85 30185.66 32586.00 33379.70 28182.02 34786.61 34348.26 36398.39 19277.84 29892.22 33093.63 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer83.09 30582.21 30885.73 31789.27 34067.01 34490.35 24286.47 32870.42 33683.52 33793.23 26361.18 34596.85 28577.21 30588.26 34693.34 319
PMMVS83.00 30681.11 31488.66 29083.81 36386.44 15282.24 34785.65 33661.75 35782.07 34585.64 34979.75 26091.59 35075.99 31393.09 32087.94 349
PVSNet76.22 2082.89 30782.37 30784.48 32793.96 27264.38 35778.60 35388.61 31171.50 33084.43 33186.36 34674.27 29494.60 32969.87 34493.69 31394.46 293
tpmrst82.85 30882.93 30682.64 33487.65 34758.99 36290.14 25087.90 31975.54 31083.93 33391.63 29766.79 31995.36 32181.21 26981.54 35793.57 317
test0.0.03 182.48 30981.47 31385.48 31989.70 33473.57 31984.73 33181.64 35583.07 25688.13 30586.61 34362.86 33989.10 35766.24 35190.29 34193.77 310
ADS-MVSNet82.25 31081.55 31184.34 32889.04 34265.30 35187.57 29685.13 34572.71 32684.46 32992.45 28168.08 31092.33 34770.58 34283.97 35195.38 273
DSMNet-mixed82.21 31181.56 31084.16 32989.57 33770.00 33990.65 23377.66 36254.99 36183.30 33897.57 5577.89 27590.50 35366.86 35095.54 27891.97 333
KD-MVS_2432*160082.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
miper_refine_blended82.17 31280.75 31986.42 31382.04 36470.09 33781.75 34890.80 30282.56 26090.37 26589.30 32742.90 36996.11 30674.47 31992.55 32793.06 321
gg-mvs-nofinetune82.10 31481.02 31685.34 32187.46 35171.04 33194.74 9967.56 36496.44 2179.43 35598.99 645.24 36596.15 30467.18 34992.17 33188.85 346
PAPM81.91 31580.11 32587.31 30793.87 27572.32 32884.02 34093.22 26769.47 34076.13 35989.84 31772.15 30297.23 27353.27 36089.02 34392.37 331
tpm281.46 31680.35 32384.80 32489.90 33265.14 35390.44 23885.36 34065.82 35182.05 34692.44 28357.94 35096.69 29070.71 34188.49 34592.56 329
PMMVS281.31 31783.44 30174.92 34390.52 32646.49 36669.19 35885.23 34484.30 24687.95 30794.71 21976.95 28484.36 36064.07 35398.09 20093.89 307
new_pmnet81.22 31881.01 31781.86 33690.92 32270.15 33684.03 33980.25 36070.83 33485.97 32189.78 32167.93 31384.65 35967.44 34891.90 33490.78 341
test-mter81.21 31980.01 32684.79 32589.68 33566.86 34783.08 34384.52 34673.85 31982.85 34084.78 35143.66 36893.49 34182.85 25094.86 29294.03 302
EPMVS81.17 32080.37 32283.58 33185.58 35865.08 35490.31 24471.34 36377.31 30385.80 32291.30 30059.38 34892.70 34679.99 27982.34 35692.96 324
pmmvs380.83 32178.96 32986.45 31287.23 35277.48 28184.87 33082.31 35363.83 35485.03 32589.50 32549.66 36193.10 34373.12 32895.10 28988.78 348
DWT-MVSNet_test80.74 32279.18 32885.43 32087.51 35066.87 34689.87 26086.01 33274.20 31780.86 35180.62 35748.84 36296.68 29281.54 26483.14 35592.75 327
E-PMN80.72 32380.86 31880.29 33985.11 35968.77 34272.96 35581.97 35487.76 19183.25 33983.01 35562.22 34289.17 35677.15 30694.31 30582.93 354
tpm cat180.61 32479.46 32784.07 33088.78 34465.06 35589.26 27588.23 31562.27 35681.90 34889.66 32462.70 34195.29 32471.72 33480.60 35891.86 336
EMVS80.35 32580.28 32480.54 33884.73 36169.07 34172.54 35780.73 35787.80 19081.66 34981.73 35662.89 33889.84 35475.79 31594.65 29982.71 355
CHOSEN 280x42080.04 32677.97 33286.23 31690.13 33074.53 31172.87 35689.59 30866.38 34876.29 35885.32 35056.96 35295.36 32169.49 34594.72 29788.79 347
dp79.28 32778.62 33081.24 33785.97 35756.45 36386.91 31085.26 34372.97 32481.45 35089.17 33056.01 35595.45 31973.19 32776.68 35991.82 337
TESTMET0.1,179.09 32878.04 33182.25 33587.52 34964.03 35883.08 34380.62 35870.28 33780.16 35383.22 35444.13 36790.56 35279.95 28093.36 31492.15 332
MVS-HIRNet78.83 32980.60 32173.51 34493.07 28647.37 36587.10 30778.00 36168.94 34177.53 35797.26 7671.45 30594.62 32863.28 35588.74 34478.55 358
PVSNet_070.34 2174.58 33072.96 33379.47 34090.63 32466.24 35073.26 35483.40 35263.67 35578.02 35678.35 35972.53 30089.59 35556.68 35860.05 36282.57 356
MVEpermissive59.87 2373.86 33172.65 33477.47 34287.00 35574.35 31361.37 36060.93 36667.27 34669.69 36286.49 34581.24 25472.33 36256.45 35983.45 35385.74 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 33248.94 33554.93 34539.68 36712.38 36928.59 36190.09 3066.82 36341.10 36578.41 35854.41 35670.69 36350.12 36151.26 36381.72 357
tmp_tt37.97 33344.33 33618.88 34711.80 36821.54 36863.51 35945.66 3694.23 36451.34 36450.48 36259.08 34922.11 36544.50 36268.35 36113.00 361
cdsmvs_eth3d_5k23.35 33431.13 3370.00 3500.00 3710.00 3720.00 36295.58 2170.00 3670.00 36891.15 30293.43 750.00 3680.00 3660.00 3660.00 364
test1239.49 33512.01 3381.91 3482.87 3691.30 37082.38 3461.34 3711.36 3652.84 3666.56 3652.45 3710.97 3662.73 3645.56 3643.47 362
testmvs9.02 33611.42 3391.81 3492.77 3701.13 37179.44 3521.90 3701.18 3662.65 3676.80 3641.95 3720.87 3672.62 3653.45 3653.44 363
pcd_1.5k_mvsjas7.56 33710.09 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36890.77 1400.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.56 33710.08 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36890.69 3110.00 3730.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS97.23 12590.32 7797.54 10584.40 24594.78 15695.79 16692.76 9599.39 4588.72 17898.40 159
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9095.40 2793.49 4498.84 11898.00 145
IU-MVS98.51 4586.66 14796.83 16072.74 32595.83 10993.00 7299.29 6598.64 96
OPU-MVS95.15 9696.84 14489.43 9095.21 7995.66 17393.12 8598.06 21986.28 21898.61 14397.95 153
test_241102_TWO98.10 4491.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
test_241102_ONE98.51 4586.97 13898.10 4491.85 9497.63 3197.03 9096.48 1198.95 117
9.1494.81 9297.49 11494.11 12298.37 1487.56 19895.38 12796.03 15594.66 5599.08 9490.70 12598.97 106
save fliter97.46 11788.05 11992.04 18997.08 14287.63 195
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8198.22 2999.38 5193.44 5199.31 6298.53 107
test072698.51 4586.69 14595.34 7498.18 3291.85 9497.63 3197.37 6895.58 22
GSMVS94.75 287
test_part298.21 6889.41 9196.72 68
sam_mvs166.64 32094.75 287
sam_mvs66.41 321
ambc92.98 17296.88 14283.01 20395.92 5696.38 18596.41 7797.48 6288.26 17497.80 24289.96 14998.93 11098.12 137
MTGPAbinary97.62 97
test_post190.21 2465.85 36765.36 32696.00 30979.61 286
test_post6.07 36665.74 32595.84 311
patchmatchnet-post91.71 29566.22 32397.59 255
GG-mvs-BLEND83.24 33385.06 36071.03 33294.99 9265.55 36574.09 36075.51 36044.57 36694.46 33159.57 35787.54 34784.24 352
MTMP94.82 9654.62 367
gm-plane-assit87.08 35459.33 36171.22 33183.58 35397.20 27473.95 322
test9_res88.16 18698.40 15997.83 166
TEST996.45 16489.46 8890.60 23496.92 15379.09 29090.49 26294.39 22791.31 12798.88 124
test_896.37 16689.14 9590.51 23796.89 15679.37 28590.42 26494.36 22991.20 13398.82 134
agg_prior287.06 20498.36 17097.98 149
agg_prior96.20 18388.89 10096.88 15790.21 26798.78 145
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13695.04 14696.74 11092.54 10097.86 23785.11 23098.98 10297.98 149
test_prior489.91 8290.74 230
test_prior290.21 24689.33 15990.77 25794.81 21390.41 15088.21 18298.55 146
test_prior94.61 11395.95 20487.23 13197.36 12098.68 16597.93 155
旧先验290.00 25568.65 34292.71 21896.52 29485.15 227
新几何290.02 254
新几何193.17 16997.16 13087.29 13094.43 24667.95 34491.29 24994.94 20886.97 19898.23 20781.06 27297.75 21793.98 305
旧先验196.20 18384.17 18694.82 23695.57 17989.57 16397.89 21396.32 238
无先验89.94 25695.75 20870.81 33598.59 17581.17 27094.81 284
原ACMM289.34 272
原ACMM192.87 18096.91 14184.22 18497.01 14576.84 30689.64 28294.46 22488.00 18098.70 16181.53 26598.01 20795.70 265
test22296.95 13885.27 17388.83 28393.61 26065.09 35290.74 25994.85 21284.62 22397.36 23493.91 306
testdata298.03 22180.24 277
segment_acmp92.14 107
testdata91.03 23896.87 14382.01 21094.28 25071.55 32992.46 22495.42 18885.65 21797.38 27082.64 25397.27 23693.70 312
testdata188.96 28188.44 178
test1294.43 12895.95 20486.75 14396.24 19089.76 28089.79 16298.79 14197.95 21097.75 175
plane_prior797.71 9988.68 104
plane_prior697.21 12888.23 11586.93 199
plane_prior597.81 8598.95 11789.26 16498.51 15398.60 103
plane_prior495.59 175
plane_prior388.43 11390.35 14193.31 196
plane_prior294.56 10891.74 105
plane_prior197.38 120
plane_prior88.12 11793.01 14888.98 16598.06 202
n20.00 372
nn0.00 372
door-mid92.13 291
lessismore_v093.87 14898.05 7883.77 19280.32 35997.13 5097.91 4277.49 27699.11 9192.62 8298.08 20198.74 87
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
test1196.65 171
door91.26 299
HQP5-MVS84.89 176
HQP-NCC96.36 16891.37 21587.16 20288.81 291
ACMP_Plane96.36 16891.37 21587.16 20288.81 291
BP-MVS86.55 212
HQP4-MVS88.81 29198.61 17198.15 133
HQP3-MVS97.31 12597.73 218
HQP2-MVS84.76 221
NP-MVS96.82 14587.10 13493.40 258
MDTV_nov1_ep13_2view42.48 36788.45 29167.22 34783.56 33666.80 31772.86 32994.06 301
MDTV_nov1_ep1383.88 30089.42 33961.52 36088.74 28687.41 32273.99 31884.96 32794.01 24165.25 32795.53 31478.02 29693.16 318
ACMMP++_ref98.82 124
ACMMP++99.25 73
Test By Simon90.61 146
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17891.93 9094.82 15495.39 19191.99 11197.08 27785.53 22397.96 20997.41 194
DeepMVS_CXcopyleft53.83 34670.38 36664.56 35648.52 36833.01 36265.50 36374.21 36156.19 35446.64 36438.45 36370.07 36050.30 360