This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11684.80 3287.77 986.18 196.26 196.06 190.32 184.49 6868.08 8597.05 196.93 1
PEN-MVS80.46 4682.91 3473.11 12989.83 839.02 31077.06 11282.61 8680.04 490.60 692.85 974.93 4485.21 5663.15 13195.15 1795.09 2
PS-CasMVS80.41 4782.86 3673.07 13189.93 639.21 30777.15 11081.28 10779.74 590.87 492.73 1175.03 4384.93 6163.83 12395.19 1595.07 3
CP-MVSNet79.48 5481.65 4572.98 13489.66 1239.06 30976.76 11380.46 12778.91 790.32 791.70 2568.49 9184.89 6263.40 12895.12 1895.01 4
WR-MVS_H80.22 5082.17 4174.39 10789.46 1442.69 28478.24 9682.24 8978.21 989.57 992.10 1868.05 9685.59 4766.04 10395.62 994.88 5
DTE-MVSNet80.35 4882.89 3572.74 14489.84 737.34 32777.16 10981.81 9780.45 390.92 392.95 774.57 4786.12 2863.65 12494.68 3194.76 6
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6574.51 4796.15 292.88 7
DU-MVS74.91 10075.57 9572.93 13883.50 9145.79 25869.47 20180.14 13565.22 8081.74 9687.08 12561.82 15081.07 12356.21 18694.98 2091.93 8
NR-MVSNet73.62 11174.05 11072.33 15583.50 9143.71 27365.65 25777.32 17964.32 9075.59 17487.08 12562.45 14381.34 11554.90 19795.63 891.93 8
v7n79.37 5680.41 5276.28 8978.67 16155.81 17379.22 8582.51 8870.72 4387.54 2192.44 1468.00 9881.34 11572.84 5791.72 8491.69 10
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13083.29 4880.34 13257.43 15186.65 3191.79 2350.52 23386.01 3071.36 6694.65 3291.62 11
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 12880.58 6582.12 9153.54 20183.93 7091.03 3749.49 23985.97 3273.26 5593.08 6791.59 12
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16284.61 7842.57 28670.98 18478.29 16668.67 5583.04 7889.26 8872.99 5880.75 13255.58 19495.47 1091.35 13
FC-MVSNet-test73.32 11774.78 10168.93 20079.21 14936.57 32971.82 17279.54 14557.63 15082.57 8790.38 6459.38 17678.99 15957.91 17494.56 3491.23 14
v1075.69 8676.20 8774.16 11074.44 21948.69 22475.84 13082.93 8159.02 13585.92 4189.17 9258.56 18382.74 9570.73 6989.14 15091.05 15
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 14783.04 10245.79 25869.26 20478.81 15466.66 6581.74 9686.88 13163.26 13681.07 12356.21 18694.98 2091.05 15
UniMVSNet (Re)75.00 9875.48 9673.56 12183.14 9647.92 23570.41 19281.04 11563.67 9779.54 12086.37 15162.83 13881.82 10957.10 17895.25 1490.94 17
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7676.12 18950.51 23689.19 1090.88 4271.45 6777.78 18873.38 5490.60 11990.90 18
v875.07 9675.64 9473.35 12373.42 23247.46 24375.20 13381.45 10360.05 12585.64 4589.26 8858.08 19081.80 11069.71 7787.97 16690.79 19
IS-MVSNet75.10 9575.42 9774.15 11179.23 14848.05 23379.43 8178.04 17070.09 4879.17 12488.02 12053.04 21983.60 8058.05 17393.76 5990.79 19
FIs72.56 13673.80 11468.84 20378.74 16037.74 32371.02 18379.83 13856.12 16380.88 11089.45 8558.18 18578.28 17756.63 18093.36 6490.51 21
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19452.27 21087.37 2692.25 1668.04 9780.56 13372.28 6391.15 9990.32 22
WR-MVS71.20 14972.48 13967.36 21984.98 7135.70 33764.43 27268.66 25665.05 8381.49 9986.43 15057.57 19776.48 20250.36 23393.32 6589.90 23
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6284.76 4662.54 10981.77 9486.65 14271.46 6683.53 8267.95 8992.44 7689.60 24
tttt051769.46 17167.79 19774.46 10475.34 20152.72 19275.05 13463.27 29354.69 17978.87 12784.37 18126.63 36381.15 11963.95 12087.93 16789.51 25
v2v48272.55 13872.58 13772.43 15272.92 24546.72 25071.41 17679.13 14955.27 17081.17 10485.25 17355.41 21081.13 12067.25 9985.46 19889.43 26
Anonymous2023121175.54 8977.19 7870.59 17177.67 17445.70 26174.73 14280.19 13368.80 5282.95 8192.91 866.26 11376.76 20058.41 17192.77 7289.30 27
OurMVSNet-221017-078.57 6278.53 6778.67 6080.48 13364.16 10980.24 7382.06 9261.89 11388.77 1293.32 457.15 19982.60 9770.08 7392.80 7189.25 28
EI-MVSNet-UG-set72.63 13571.68 14975.47 9974.67 21358.64 16072.02 16371.50 22963.53 9978.58 13071.39 32065.98 11578.53 16667.30 9880.18 26489.23 29
V4271.06 15070.83 16171.72 16067.25 29347.14 24765.94 25180.35 13151.35 22583.40 7683.23 20159.25 17778.80 16265.91 10480.81 25889.23 29
RPSCF75.76 8574.37 10579.93 4074.81 21077.53 1677.53 10479.30 14759.44 13078.88 12689.80 8071.26 6973.09 23457.45 17580.89 25689.17 31
UniMVSNet_ETH3D76.74 7879.02 6169.92 18589.27 1943.81 27274.47 14671.70 22572.33 3585.50 5093.65 377.98 2176.88 19854.60 20191.64 8689.08 32
v119273.40 11573.42 11973.32 12574.65 21648.67 22572.21 16081.73 9852.76 20781.85 9284.56 17857.12 20082.24 10468.58 8087.33 17689.06 33
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 17387.58 473.06 5691.34 9489.01 34
EI-MVSNet-Vis-set72.78 13271.87 14575.54 9874.77 21159.02 15572.24 15971.56 22863.92 9378.59 12871.59 31766.22 11478.60 16567.58 9180.32 26289.00 35
v114473.29 11873.39 12073.01 13274.12 22448.11 23172.01 16481.08 11453.83 19881.77 9484.68 17658.07 19181.91 10868.10 8486.86 18488.99 36
nrg03074.87 10375.99 9071.52 16374.90 20849.88 21874.10 15082.58 8754.55 18383.50 7589.21 9071.51 6575.74 20861.24 14292.34 7988.94 37
v124073.06 12373.14 12672.84 14174.74 21247.27 24671.88 17181.11 11151.80 21782.28 8984.21 18356.22 20882.34 10168.82 7987.17 18288.91 38
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11381.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192072.96 12972.98 13172.89 14074.67 21347.58 24171.92 16980.69 12051.70 21981.69 9883.89 18756.58 20682.25 10368.34 8287.36 17488.82 40
EPP-MVSNet73.86 10973.38 12175.31 10078.19 16453.35 19080.45 6777.32 17965.11 8276.47 16686.80 13249.47 24083.77 7653.89 21092.72 7488.81 41
UA-Net81.56 3382.28 4079.40 4988.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14072.63 5994.46 3688.78 42
v14419272.99 12773.06 12972.77 14274.58 21747.48 24271.90 17080.44 12851.57 22081.46 10084.11 18558.04 19282.12 10567.98 8887.47 17288.70 43
EI-MVSNet69.61 16969.01 17771.41 16573.94 22649.90 21471.31 17971.32 23458.22 14075.40 17870.44 32358.16 18675.85 20462.51 13379.81 26888.48 44
IterMVS-LS73.01 12573.12 12872.66 14673.79 22849.90 21471.63 17378.44 16258.22 14080.51 11286.63 14358.15 18779.62 14962.51 13388.20 16088.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 14972.87 24649.47 21972.94 15584.71 5059.49 12980.90 10988.81 10370.07 7979.71 14867.40 9488.39 15888.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5779.45 1294.91 2488.15 47
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4266.91 10095.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJss77.54 7177.35 7778.13 6984.88 7266.37 9278.55 9279.59 14353.48 20286.29 3692.43 1562.39 14480.25 14067.90 9090.61 11887.77 49
eth_miper_zixun_eth69.42 17268.73 18371.50 16467.99 28646.42 25367.58 22878.81 15450.72 23378.13 13580.34 23450.15 23780.34 13860.18 15484.65 21487.74 50
casdiffmvspermissive73.06 12373.84 11370.72 16971.32 25646.71 25170.93 18584.26 6155.62 16877.46 14587.10 12467.09 10277.81 18663.95 12086.83 18587.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5366.15 10191.24 9687.61 52
ITE_SJBPF80.35 3876.94 18273.60 3880.48 12666.87 6283.64 7486.18 15670.25 7879.90 14661.12 14688.95 15487.56 53
thisisatest053067.05 20765.16 22172.73 14573.10 24050.55 20471.26 18163.91 28950.22 23974.46 19180.75 22826.81 36280.25 14059.43 16486.50 18987.37 54
CS-MVS76.51 7976.00 8978.06 7077.02 17964.77 10580.78 6382.66 8560.39 12374.15 19583.30 19969.65 8482.07 10669.27 7886.75 18787.36 55
pmmvs671.82 14473.66 11766.31 23175.94 19742.01 28866.99 23972.53 22063.45 10176.43 16792.78 1072.95 5969.69 27051.41 22490.46 12087.22 56
ACMH+66.64 1081.20 3682.48 3977.35 7781.16 12962.39 12180.51 6687.80 773.02 2687.57 2091.08 3680.28 982.44 9864.82 11296.10 487.21 57
c3_l69.82 16669.89 16769.61 18766.24 30243.48 27668.12 22379.61 14251.43 22277.72 14180.18 23854.61 21478.15 18263.62 12587.50 17187.20 58
Anonymous2024052972.56 13673.79 11568.86 20276.89 18545.21 26368.80 21377.25 18167.16 5976.89 15390.44 5665.95 11674.19 22850.75 22990.00 12887.18 59
tt080576.12 8378.43 6869.20 19281.32 12641.37 29276.72 11477.64 17563.78 9682.06 9087.88 12179.78 1179.05 15764.33 11692.40 7787.17 60
baseline73.10 12073.96 11270.51 17371.46 25546.39 25572.08 16284.40 5855.95 16576.62 16186.46 14967.20 10178.03 18364.22 11787.27 17987.11 61
Effi-MVS+-dtu75.43 9072.28 14284.91 277.05 17783.58 178.47 9377.70 17457.68 14674.89 18278.13 26764.80 12884.26 7356.46 18485.32 20386.88 62
v14869.38 17469.39 17069.36 18969.14 27944.56 26768.83 21072.70 21854.79 17778.59 12884.12 18454.69 21276.74 20159.40 16582.20 23986.79 63
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4485.14 5490.42 5878.99 1586.62 1280.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
iter_conf0567.34 20365.62 21672.50 15069.82 27247.06 24872.19 16176.86 18345.32 27772.86 21282.85 20420.53 37983.73 7761.13 14589.02 15386.70 65
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6476.50 18751.98 21587.40 2391.86 2176.09 3378.53 16668.58 8090.20 12386.69 66
EC-MVSNet77.08 7677.39 7676.14 9176.86 18656.87 16780.32 7287.52 1163.45 10174.66 18884.52 17969.87 8284.94 6069.76 7589.59 13986.60 67
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6876.12 18951.33 22687.19 2791.51 2973.79 5478.44 17068.27 8390.13 12786.49 68
cl2267.14 20466.51 21169.03 19663.20 32343.46 27766.88 24376.25 18849.22 24874.48 19077.88 26945.49 25977.40 19260.64 15084.59 21686.24 69
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10585.38 5291.26 3376.33 3084.67 6783.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
SixPastTwentyTwo75.77 8476.34 8574.06 11281.69 12254.84 17876.47 11575.49 19664.10 9287.73 1792.24 1750.45 23581.30 11767.41 9391.46 9286.04 73
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 6977.73 2794.34 4785.93 74
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 12780.91 10890.53 5372.19 6088.56 173.67 5394.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_self_test68.27 19168.26 18868.29 20964.98 31443.67 27465.89 25274.67 20250.04 24276.86 15582.43 21048.74 24775.38 21060.94 14789.81 13385.81 76
AllTest77.66 7077.43 7578.35 6579.19 15070.81 5578.60 9188.64 365.37 7780.09 11688.17 11670.33 7678.43 17155.60 19190.90 11085.81 76
TestCases78.35 6579.19 15070.81 5588.64 365.37 7780.09 11688.17 11670.33 7678.43 17155.60 19190.90 11085.81 76
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6386.70 3089.99 7681.64 685.95 3374.35 4896.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cl____68.26 19268.26 18868.29 20964.98 31443.67 27465.89 25274.67 20250.04 24276.86 15582.42 21148.74 24775.38 21060.92 14889.81 13385.80 80
CS-MVS-test74.89 10274.23 10876.86 8077.01 18062.94 11978.98 8784.61 5558.62 13870.17 24780.80 22766.74 10981.96 10761.74 13889.40 14585.69 81
miper_ehance_all_eth68.36 18768.16 19268.98 19765.14 31343.34 27867.07 23878.92 15349.11 25076.21 17077.72 27053.48 21877.92 18561.16 14484.59 21685.68 82
test_fmvsm_n_192069.63 16768.45 18573.16 12770.56 26465.86 9570.26 19378.35 16337.69 32374.29 19378.89 25761.10 16068.10 28165.87 10579.07 27585.53 83
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4285.64 4590.41 5975.55 3887.69 379.75 795.08 1985.36 84
Skip Steuart: Steuart Systems R&D Blog.
MVS_030476.32 8175.96 9177.42 7579.33 14560.86 13980.18 7574.88 20166.93 6069.11 25788.95 10057.84 19586.12 2876.63 3689.77 13685.28 85
iter_conf_final68.69 18367.00 20873.76 11773.68 22952.33 19575.96 12873.54 20950.56 23569.90 25082.85 20424.76 37283.73 7765.40 10886.33 19185.22 86
diffmvspermissive67.42 20267.50 20067.20 22162.26 32745.21 26364.87 26677.04 18248.21 25571.74 22579.70 24358.40 18471.17 25964.99 11080.27 26385.22 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Baseline_NR-MVSNet70.62 15673.19 12562.92 26276.97 18134.44 34568.84 20970.88 24460.25 12479.50 12190.53 5361.82 15069.11 27454.67 20095.27 1385.22 86
TAPA-MVS65.27 1275.16 9474.29 10777.77 7174.86 20968.08 7777.89 10084.04 6855.15 17276.19 17183.39 19366.91 10480.11 14460.04 15890.14 12685.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS72.88 13072.36 14174.43 10677.03 17854.30 18268.77 21483.43 7552.12 21276.79 15874.44 29569.54 8583.91 7455.88 18993.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
KD-MVS_self_test66.38 21067.51 19962.97 26061.76 32934.39 34658.11 31675.30 19750.84 23277.12 14885.42 17056.84 20469.44 27151.07 22791.16 9885.08 91
CDPH-MVS77.33 7377.06 8078.14 6884.21 8463.98 11176.07 12683.45 7454.20 18977.68 14387.18 12369.98 8085.37 5068.01 8792.72 7485.08 91
K. test v373.67 11073.61 11873.87 11579.78 13855.62 17674.69 14462.04 30066.16 6984.76 6093.23 549.47 24080.97 12765.66 10686.67 18885.02 93
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4878.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
test250661.23 25960.85 25962.38 26678.80 15827.88 37167.33 23537.42 37854.23 18767.55 27588.68 10517.87 38474.39 22546.33 26889.41 14384.86 96
ECVR-MVScopyleft64.82 22265.22 21963.60 25178.80 15831.14 36166.97 24056.47 32254.23 18769.94 24988.68 10537.23 31174.81 22045.28 27789.41 14384.86 96
HQP_MVS78.77 6078.78 6478.72 5985.18 6665.18 10082.74 5185.49 2965.45 7478.23 13389.11 9460.83 16386.15 2671.09 6790.94 10684.82 98
plane_prior585.49 2986.15 2671.09 6790.94 10684.82 98
SF-MVS80.72 4381.80 4277.48 7382.03 11764.40 10883.41 4688.46 565.28 7984.29 6589.18 9173.73 5583.22 8776.01 3793.77 5884.81 100
alignmvs70.54 15771.00 15969.15 19473.50 23048.04 23469.85 19879.62 14053.94 19776.54 16482.00 21459.00 17974.68 22157.32 17687.21 18084.72 101
IU-MVS86.12 5360.90 13780.38 12945.49 27481.31 10175.64 4094.39 4184.65 102
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1878.84 1994.03 5384.64 103
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 38173.86 5286.31 1878.84 1994.03 5384.64 103
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4185.85 4290.58 5178.77 1685.78 4179.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 9984.23 6691.47 3072.02 6287.16 679.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
VDD-MVS70.81 15471.44 15568.91 20179.07 15546.51 25267.82 22670.83 24561.23 11674.07 19888.69 10459.86 17175.62 20951.11 22690.28 12284.61 106
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 5884.02 6890.39 6274.73 4586.46 1480.73 694.43 4084.60 108
test111164.62 22565.19 22062.93 26179.01 15629.91 36565.45 26054.41 33154.09 19271.47 23588.48 10937.02 31274.29 22746.83 26589.94 13184.58 109
bld_raw_dy_0_6472.85 13172.76 13473.09 13085.08 7064.80 10478.72 8964.22 28751.92 21683.13 7790.26 7039.21 29969.91 26870.73 6991.60 8984.56 110
miper_enhance_ethall65.86 21365.05 22868.28 21161.62 33142.62 28564.74 26777.97 17142.52 29573.42 20672.79 31049.66 23877.68 18958.12 17284.59 21684.54 111
GBi-Net68.30 18868.79 17966.81 22573.14 23740.68 29871.96 16673.03 21254.81 17474.72 18590.36 6748.63 24975.20 21447.12 26085.37 19984.54 111
test168.30 18868.79 17966.81 22573.14 23740.68 29871.96 16673.03 21254.81 17474.72 18590.36 6748.63 24975.20 21447.12 26085.37 19984.54 111
FMVSNet171.06 15072.48 13966.81 22577.65 17540.68 29871.96 16673.03 21261.14 11779.45 12290.36 6760.44 16575.20 21450.20 23488.05 16384.54 111
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 21877.15 14791.42 3265.49 12187.20 579.44 1387.17 18284.51 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS63.80 1372.70 13471.69 14875.72 9578.10 16560.01 14773.04 15481.50 10145.34 27679.66 11984.35 18265.15 12582.65 9648.70 24689.38 14684.50 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs72.29 14173.38 12169.04 19574.23 22047.37 24473.93 15183.18 7654.36 18476.61 16281.64 22172.03 6175.34 21257.12 17787.28 17884.40 117
TransMVSNet (Re)69.62 16871.63 15063.57 25276.51 18835.93 33565.75 25671.29 23661.05 11875.02 18089.90 7965.88 11870.41 26749.79 23689.48 14184.38 118
OPM-MVS80.99 4181.63 4679.07 5386.86 4369.39 6879.41 8384.00 6965.64 7185.54 4989.28 8776.32 3183.47 8374.03 5093.57 6284.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4477.43 3094.74 2984.31 120
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8681.05 10588.38 11257.10 20187.10 779.75 783.87 22484.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5684.14 6790.21 7373.37 5686.41 1579.09 1893.98 5684.30 122
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4584.49 6390.67 5075.15 4186.37 1779.58 1094.26 4984.18 123
VDDNet71.60 14673.13 12767.02 22486.29 4741.11 29469.97 19566.50 26668.72 5474.74 18491.70 2559.90 17075.81 20648.58 24891.72 8484.15 124
FA-MVS(test-final)71.27 14871.06 15871.92 15973.96 22552.32 19676.45 11776.12 18959.07 13474.04 19986.18 15652.18 22379.43 15359.75 16281.76 24684.03 125
MVS_Test69.84 16570.71 16267.24 22067.49 29243.25 28069.87 19781.22 11052.69 20871.57 23186.68 13962.09 14874.51 22366.05 10278.74 27883.96 126
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4783.86 7190.72 4975.20 4086.27 2079.41 1494.25 5083.95 127
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5784.91 5990.88 4275.59 3686.57 1378.16 2294.71 3083.82 128
pm-mvs168.40 18669.85 16864.04 24873.10 24039.94 30464.61 27070.50 24655.52 16973.97 20089.33 8663.91 13468.38 27949.68 23888.02 16483.81 129
MSC_two_6792asdad79.02 5483.14 9667.03 8780.75 11886.24 2177.27 3294.85 2583.78 130
No_MVS79.02 5483.14 9667.03 8780.75 11886.24 2177.27 3294.85 2583.78 130
HQP4-MVS71.59 22785.31 5183.74 132
HQP-MVS75.24 9375.01 9975.94 9282.37 11158.80 15777.32 10684.12 6559.08 13171.58 22885.96 16558.09 18885.30 5267.38 9689.16 14783.73 133
PHI-MVS74.92 9974.36 10676.61 8376.40 18962.32 12280.38 6983.15 7754.16 19173.23 20980.75 22862.19 14783.86 7568.02 8690.92 10983.65 134
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12084.05 6756.66 15980.27 11585.31 17268.56 9087.03 967.39 9591.26 9583.50 135
DVP-MVS++81.24 3582.74 3776.76 8183.14 9660.90 13791.64 185.49 2974.03 2184.93 5690.38 6466.82 10685.90 3777.43 3090.78 11483.49 136
PC_three_145246.98 26781.83 9386.28 15266.55 11284.47 7063.31 13090.78 11483.49 136
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5687.01 3872.91 4380.23 7485.56 2866.56 6685.64 4589.57 8369.12 8780.55 13572.51 6193.37 6383.48 138
APDe-MVS82.88 2384.14 1479.08 5284.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 877.93 2594.32 4883.47 139
ANet_high67.08 20569.94 16658.51 29657.55 35327.09 37258.43 31476.80 18563.56 9882.40 8891.93 2059.82 17264.98 30150.10 23588.86 15583.46 140
Effi-MVS+72.10 14272.28 14271.58 16174.21 22250.33 20774.72 14382.73 8362.62 10870.77 24076.83 27769.96 8180.97 12760.20 15378.43 28283.45 141
test1276.51 8582.28 11460.94 13681.64 10073.60 20264.88 12785.19 5890.42 12183.38 142
VPA-MVSNet68.71 18270.37 16463.72 25076.13 19338.06 32164.10 27471.48 23056.60 16174.10 19788.31 11364.78 12969.72 26947.69 25890.15 12583.37 143
ACMMP_NAP82.33 2783.28 2879.46 4889.28 1869.09 7483.62 4284.98 4164.77 8783.97 6991.02 3875.53 3985.93 3682.00 294.36 4583.35 144
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7883.75 7056.73 15874.88 18385.32 17165.54 12087.79 265.61 10791.14 10083.35 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 3975.29 4194.22 5283.25 146
test_0728_SECOND76.57 8486.20 4860.57 14383.77 4085.49 2985.90 3775.86 3894.39 4183.25 146
GeoE73.14 11973.77 11671.26 16678.09 16652.64 19374.32 14779.56 14456.32 16276.35 16983.36 19770.76 7477.96 18463.32 12981.84 24583.18 148
test_fmvsmvis_n_192072.36 13972.49 13871.96 15871.29 25764.06 11072.79 15681.82 9640.23 31181.25 10381.04 22570.62 7568.69 27669.74 7683.60 23083.14 149
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3477.77 2693.58 6183.09 150
SED-MVS81.78 3183.48 2476.67 8286.12 5361.06 13383.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 3975.29 4194.39 4183.08 151
OPU-MVS78.65 6183.44 9466.85 8983.62 4286.12 16066.82 10686.01 3061.72 13989.79 13583.08 151
MVSTER63.29 24161.60 25268.36 20759.77 34446.21 25660.62 29971.32 23441.83 29875.40 17879.12 25330.25 35175.85 20456.30 18579.81 26883.03 153
CANet73.00 12671.84 14676.48 8675.82 19861.28 13174.81 13880.37 13063.17 10562.43 31080.50 23261.10 16085.16 5964.00 11984.34 22083.01 154
Vis-MVSNetpermissive74.85 10474.56 10275.72 9581.63 12364.64 10676.35 12079.06 15062.85 10773.33 20788.41 11062.54 14279.59 15163.94 12282.92 23482.94 155
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
miper_lstm_enhance61.97 25361.63 25162.98 25960.04 33845.74 26047.53 35270.95 24244.04 28473.06 21078.84 25839.72 29560.33 31755.82 19084.64 21582.88 156
PAPM_NR73.91 10874.16 10973.16 12781.90 11953.50 18881.28 6081.40 10466.17 6873.30 20883.31 19859.96 16983.10 9058.45 17081.66 25182.87 157
Fast-Effi-MVS+68.81 18068.30 18770.35 17574.66 21548.61 22666.06 25078.32 16450.62 23471.48 23475.54 28468.75 8979.59 15150.55 23278.73 27982.86 158
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4584.47 6490.43 5776.79 2685.94 3479.58 1094.23 5182.82 159
DELS-MVS68.83 17968.31 18670.38 17470.55 26648.31 22763.78 27882.13 9054.00 19468.96 26175.17 28858.95 18080.06 14558.55 16982.74 23682.76 160
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CL-MVSNet_self_test62.44 25163.40 23859.55 28972.34 24932.38 35456.39 32364.84 28051.21 22867.46 27681.01 22650.75 23263.51 30838.47 31588.12 16282.75 161
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6678.41 2194.78 2782.74 162
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
lessismore_v072.75 14379.60 14156.83 16857.37 31583.80 7289.01 9747.45 25478.74 16464.39 11586.49 19082.69 163
DPE-MVScopyleft82.00 3083.02 3378.95 5785.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1074.56 4694.02 5582.62 164
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_prior75.27 10182.15 11659.85 14884.33 5983.39 8582.58 165
F-COLMAP75.29 9173.99 11179.18 5181.73 12171.90 4681.86 5882.98 7959.86 12872.27 22084.00 18664.56 13083.07 9151.48 22387.19 18182.56 166
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2579.24 1795.36 1282.49 167
XVG-OURS79.51 5379.82 5678.58 6286.11 5674.96 2876.33 12284.95 4366.89 6182.75 8588.99 9866.82 10678.37 17474.80 4390.76 11782.40 168
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6279.30 1694.63 3382.35 169
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6386.46 4674.79 2977.15 11085.39 3466.73 6480.39 11488.85 10274.43 5078.33 17674.73 4585.79 19682.35 169
FMVSNet267.48 20068.21 19065.29 23773.14 23738.94 31168.81 21171.21 24054.81 17476.73 15986.48 14848.63 24974.60 22247.98 25586.11 19482.35 169
CNVR-MVS78.49 6478.59 6678.16 6785.86 6067.40 8478.12 9981.50 10163.92 9377.51 14486.56 14668.43 9384.82 6473.83 5191.61 8882.26 172
mvs_anonymous65.08 22065.49 21763.83 24963.79 32037.60 32566.52 24769.82 25043.44 29073.46 20586.08 16258.79 18271.75 25451.90 22175.63 29782.15 173
thres600view761.82 25561.38 25463.12 25771.81 25334.93 34264.64 26856.99 31954.78 17870.33 24579.74 24232.07 33472.42 24438.61 31383.46 23182.02 174
thres40060.77 26459.97 26563.15 25670.78 25935.35 33963.27 28357.47 31353.00 20568.31 26977.09 27532.45 33172.09 24735.61 33581.73 24782.02 174
ETV-MVS72.72 13372.16 14474.38 10876.90 18455.95 17073.34 15384.67 5162.04 11272.19 22370.81 32165.90 11785.24 5558.64 16884.96 21081.95 176
CNLPA73.44 11373.03 13074.66 10378.27 16375.29 2675.99 12778.49 16165.39 7675.67 17383.22 20361.23 15866.77 29453.70 21285.33 20281.92 177
NCCC78.25 6778.04 7178.89 5885.61 6269.45 6679.80 8080.99 11665.77 7075.55 17586.25 15567.42 10085.42 4970.10 7290.88 11281.81 178
PAPR69.20 17568.66 18470.82 16875.15 20547.77 23875.31 13281.11 11149.62 24666.33 28279.27 24961.53 15382.96 9248.12 25481.50 25381.74 179
Anonymous20240521166.02 21266.89 21063.43 25574.22 22138.14 31959.00 30866.13 26863.33 10469.76 25385.95 16651.88 22470.50 26444.23 28087.52 17081.64 180
FMVSNet365.00 22165.16 22164.52 24369.47 27637.56 32666.63 24570.38 24751.55 22174.72 18583.27 20037.89 30874.44 22447.12 26085.37 19981.57 181
Vis-MVSNet (Re-imp)62.74 24863.21 24161.34 27672.19 25031.56 35867.31 23653.87 33253.60 20069.88 25183.37 19540.52 29070.98 26041.40 29686.78 18681.48 182
test_040278.17 6979.48 5974.24 10983.50 9159.15 15472.52 15774.60 20475.34 1588.69 1391.81 2275.06 4282.37 10065.10 10988.68 15681.20 183
VPNet65.58 21567.56 19859.65 28879.72 13930.17 36460.27 30262.14 29654.19 19071.24 23686.63 14358.80 18167.62 28544.17 28190.87 11381.18 184
APD-MVScopyleft81.13 3881.73 4479.36 5084.47 8070.53 5983.85 3883.70 7169.43 5183.67 7388.96 9975.89 3486.41 1572.62 6092.95 6981.14 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5280.92 10788.52 10872.00 6382.39 9974.80 4393.04 6881.14 185
FE-MVS68.29 19066.96 20972.26 15674.16 22354.24 18377.55 10373.42 21157.65 14972.66 21584.91 17532.02 33681.49 11448.43 25081.85 24481.04 187
Fast-Effi-MVS+-dtu70.00 16268.74 18273.77 11673.47 23164.53 10771.36 17778.14 16955.81 16768.84 26774.71 29265.36 12375.75 20752.00 22079.00 27681.03 188
MDA-MVSNet-bldmvs62.34 25261.73 24864.16 24461.64 33049.90 21448.11 35057.24 31853.31 20380.95 10679.39 24749.00 24561.55 31545.92 27080.05 26581.03 188
D2MVS62.58 25061.05 25767.20 22163.85 31947.92 23556.29 32469.58 25139.32 31470.07 24878.19 26534.93 31972.68 23753.44 21583.74 22681.00 190
ACMM69.25 982.11 2983.31 2778.49 6388.17 3673.96 3483.11 4984.52 5666.40 6787.45 2289.16 9381.02 880.52 13674.27 4995.73 780.98 191
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
hse-mvs272.32 14070.66 16377.31 7883.10 10171.77 4769.19 20671.45 23154.28 18577.89 13778.26 26349.04 24379.23 15463.62 12589.13 15180.92 192
DP-MVS Recon73.57 11272.69 13576.23 9082.85 10663.39 11474.32 14782.96 8057.75 14570.35 24481.98 21564.34 13284.41 7249.69 23789.95 13080.89 193
EPNet69.10 17767.32 20274.46 10468.33 28361.27 13277.56 10263.57 29160.95 11956.62 33882.75 20651.53 22881.24 11854.36 20690.20 12380.88 194
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AUN-MVS70.22 15967.88 19577.22 7982.96 10571.61 4869.08 20771.39 23249.17 24971.70 22678.07 26837.62 31079.21 15561.81 13689.15 14980.82 195
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7180.98 494.75 2880.82 195
HyFIR lowres test63.01 24460.47 26270.61 17083.04 10254.10 18459.93 30472.24 22433.67 34469.00 25975.63 28338.69 30276.93 19636.60 32875.45 30080.81 197
EIA-MVS68.59 18567.16 20472.90 13975.18 20455.64 17569.39 20281.29 10652.44 20964.53 29270.69 32260.33 16682.30 10254.27 20776.31 29380.75 198
MCST-MVS73.42 11473.34 12373.63 12081.28 12759.17 15374.80 14083.13 7845.50 27272.84 21383.78 18965.15 12580.99 12564.54 11389.09 15280.73 199
tfpnnormal66.48 20967.93 19362.16 26873.40 23336.65 32863.45 28064.99 27855.97 16472.82 21487.80 12257.06 20269.10 27548.31 25287.54 16980.72 200
dcpmvs_271.02 15272.65 13666.16 23276.06 19650.49 20571.97 16579.36 14650.34 23782.81 8483.63 19064.38 13167.27 28861.54 14083.71 22880.71 201
SD-MVS80.28 4981.55 4776.47 8783.57 9067.83 8083.39 4785.35 3564.42 8986.14 3987.07 12774.02 5180.97 12777.70 2892.32 8080.62 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet_DTU64.04 23563.83 23364.66 24168.39 28042.97 28273.45 15274.50 20552.05 21454.78 34675.44 28743.99 26870.42 26653.49 21478.41 28380.59 203
GA-MVS62.91 24561.66 24966.66 22967.09 29544.49 26861.18 29669.36 25351.33 22669.33 25674.47 29436.83 31374.94 21750.60 23174.72 30580.57 204
114514_t73.40 11573.33 12473.64 11984.15 8657.11 16578.20 9780.02 13643.76 28672.55 21786.07 16364.00 13383.35 8660.14 15691.03 10580.45 205
IterMVS-SCA-FT67.68 19866.07 21472.49 15173.34 23458.20 16263.80 27765.55 27448.10 25676.91 15282.64 20945.20 26078.84 16161.20 14377.89 28880.44 206
ambc70.10 18177.74 17250.21 20974.28 14977.93 17379.26 12388.29 11454.11 21679.77 14764.43 11491.10 10380.30 207
thisisatest051560.48 26657.86 28068.34 20867.25 29346.42 25360.58 30062.14 29640.82 30763.58 30569.12 33426.28 36578.34 17548.83 24482.13 24080.26 208
LFMVS67.06 20667.89 19464.56 24278.02 16738.25 31870.81 18859.60 30765.18 8171.06 23886.56 14643.85 26975.22 21346.35 26789.63 13780.21 209
UGNet70.20 16069.05 17573.65 11876.24 19163.64 11275.87 12972.53 22061.48 11560.93 32086.14 15952.37 22277.12 19450.67 23085.21 20480.17 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MIMVSNet166.57 20869.23 17358.59 29581.26 12837.73 32464.06 27557.62 31257.02 15478.40 13290.75 4662.65 13958.10 32541.77 29489.58 14079.95 211
test_yl65.11 21865.09 22565.18 23870.59 26240.86 29663.22 28572.79 21557.91 14368.88 26579.07 25542.85 27674.89 21845.50 27484.97 20779.81 212
DCV-MVSNet65.11 21865.09 22565.18 23870.59 26240.86 29663.22 28572.79 21557.91 14368.88 26579.07 25542.85 27674.89 21845.50 27484.97 20779.81 212
cascas64.59 22662.77 24570.05 18275.27 20250.02 21161.79 29171.61 22642.46 29663.68 30368.89 33849.33 24280.35 13747.82 25784.05 22379.78 214
ET-MVSNet_ETH3D63.32 24060.69 26171.20 16770.15 27055.66 17465.02 26564.32 28543.28 29468.99 26072.05 31525.46 36978.19 18154.16 20982.80 23579.74 215
APD_test175.04 9775.38 9874.02 11369.89 27170.15 6276.46 11679.71 13965.50 7382.99 8088.60 10766.94 10372.35 24559.77 16188.54 15779.56 216
testf175.66 8776.57 8172.95 13567.07 29667.62 8176.10 12480.68 12164.95 8486.58 3390.94 4071.20 7071.68 25560.46 15191.13 10179.56 216
APD_test275.66 8776.57 8172.95 13567.07 29667.62 8176.10 12480.68 12164.95 8486.58 3390.94 4071.20 7071.68 25560.46 15191.13 10179.56 216
CSCG74.12 10774.39 10473.33 12479.35 14461.66 12777.45 10581.98 9462.47 11179.06 12580.19 23761.83 14978.79 16359.83 16087.35 17579.54 219
ACMH63.62 1477.50 7280.11 5469.68 18679.61 14056.28 16978.81 8883.62 7263.41 10387.14 2990.23 7276.11 3273.32 23267.58 9194.44 3979.44 220
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MG-MVS70.47 15871.34 15667.85 21479.26 14740.42 30274.67 14575.15 20058.41 13968.74 26888.14 11956.08 20983.69 7959.90 15981.71 25079.43 221
DVP-MVScopyleft81.15 3783.12 3275.24 10286.16 5160.78 14083.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4475.86 3894.39 4179.24 222
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
VNet64.01 23665.15 22360.57 28273.28 23535.61 33857.60 31867.08 26354.61 18166.76 28183.37 19556.28 20766.87 29042.19 29085.20 20579.23 223
TSAR-MVS + GP.73.08 12171.60 15277.54 7278.99 15770.73 5774.96 13569.38 25260.73 12174.39 19278.44 26157.72 19682.78 9460.16 15589.60 13879.11 224
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 8878.11 13688.39 11165.46 12283.14 8877.64 2991.20 9778.94 225
DP-MVS78.44 6679.29 6075.90 9381.86 12065.33 9879.05 8684.63 5474.83 1880.41 11386.27 15371.68 6483.45 8462.45 13592.40 7778.92 226
PLCcopyleft62.01 1671.79 14570.28 16576.33 8880.31 13668.63 7578.18 9881.24 10854.57 18267.09 28080.63 23059.44 17481.74 11246.91 26384.17 22178.63 227
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_Blended_VisFu70.04 16168.88 17873.53 12282.71 10863.62 11374.81 13881.95 9548.53 25467.16 27979.18 25251.42 22978.38 17354.39 20579.72 27178.60 228
h-mvs3373.08 12171.61 15177.48 7383.89 8972.89 4470.47 19071.12 24154.28 18577.89 13783.41 19249.04 24380.98 12663.62 12590.77 11678.58 229
agg_prior270.70 7190.93 10878.55 230
ppachtmachnet_test60.26 26859.61 26862.20 26767.70 29044.33 26958.18 31560.96 30340.75 30865.80 28572.57 31141.23 28363.92 30546.87 26482.42 23878.33 231
BH-RMVSNet68.69 18368.20 19170.14 18076.40 18953.90 18764.62 26973.48 21058.01 14273.91 20181.78 21759.09 17878.22 17848.59 24777.96 28778.31 232
PVSNet_BlendedMVS65.38 21664.30 22968.61 20569.81 27349.36 22065.60 25978.96 15145.50 27259.98 32378.61 25951.82 22578.20 17944.30 27884.11 22278.27 233
ab-mvs64.11 23465.13 22461.05 27871.99 25238.03 32267.59 22768.79 25549.08 25165.32 28886.26 15458.02 19366.85 29239.33 30679.79 27078.27 233
EGC-MVSNET64.77 22461.17 25575.60 9786.90 4274.47 3084.04 3568.62 2570.60 3831.13 38591.61 2865.32 12474.15 22964.01 11888.28 15978.17 235
MVSFormer69.93 16469.03 17672.63 14874.93 20659.19 15183.98 3675.72 19452.27 21063.53 30676.74 27843.19 27380.56 13372.28 6378.67 28078.14 236
jason64.47 22962.84 24469.34 19176.91 18359.20 15067.15 23765.67 27135.29 33465.16 28976.74 27844.67 26470.68 26154.74 19979.28 27478.14 236
jason: jason.
new-patchmatchnet52.89 30455.76 29644.26 35059.94 3426.31 38737.36 37250.76 34741.10 30464.28 29579.82 24144.77 26348.43 34336.24 33287.61 16878.03 238
CDS-MVSNet64.33 23262.66 24669.35 19080.44 13458.28 16165.26 26265.66 27244.36 28367.30 27875.54 28443.27 27271.77 25237.68 32084.44 21978.01 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS65.31 21763.75 23469.97 18482.23 11559.76 14966.78 24463.37 29245.20 27869.79 25279.37 24847.42 25572.17 24634.48 34085.15 20677.99 240
test_fmvs356.78 28555.99 29459.12 29153.96 37148.09 23258.76 31166.22 26727.54 36276.66 16068.69 34125.32 37151.31 33253.42 21673.38 31377.97 241
LCM-MVSNet-Re69.10 17771.57 15361.70 27170.37 26734.30 34761.45 29279.62 14056.81 15689.59 888.16 11868.44 9272.94 23542.30 28987.33 17677.85 242
Patchmtry60.91 26163.01 24354.62 31066.10 30526.27 37567.47 23056.40 32354.05 19372.04 22486.66 14033.19 32560.17 31843.69 28287.45 17377.42 243
test9_res72.12 6591.37 9377.40 244
SDMVSNet66.36 21167.85 19661.88 27073.04 24346.14 25758.54 31271.36 23351.42 22368.93 26382.72 20765.62 11962.22 31354.41 20484.67 21277.28 245
sd_testset63.55 23765.38 21858.07 29873.04 24338.83 31357.41 31965.44 27551.42 22368.93 26382.72 20763.76 13558.11 32441.05 29884.67 21277.28 245
train_agg76.38 8076.55 8375.86 9485.47 6369.32 7076.42 11878.69 15754.00 19476.97 14986.74 13666.60 11081.10 12172.50 6291.56 9077.15 247
lupinMVS63.36 23961.49 25368.97 19874.93 20659.19 15165.80 25564.52 28434.68 33963.53 30674.25 29843.19 27370.62 26253.88 21178.67 28077.10 248
thres100view90061.17 26061.09 25661.39 27572.14 25135.01 34165.42 26156.99 31955.23 17170.71 24179.90 24032.07 33472.09 24735.61 33581.73 24777.08 249
tfpn200view960.35 26759.97 26561.51 27370.78 25935.35 33963.27 28357.47 31353.00 20568.31 26977.09 27532.45 33172.09 24735.61 33581.73 24777.08 249
MVS_111021_HR72.98 12872.97 13272.99 13380.82 13065.47 9768.81 21172.77 21757.67 14775.76 17282.38 21271.01 7277.17 19361.38 14186.15 19276.32 251
xiu_mvs_v1_base_debu67.87 19467.07 20570.26 17679.13 15261.90 12467.34 23271.25 23747.98 25767.70 27274.19 30061.31 15572.62 23956.51 18178.26 28476.27 252
xiu_mvs_v1_base67.87 19467.07 20570.26 17679.13 15261.90 12467.34 23271.25 23747.98 25767.70 27274.19 30061.31 15572.62 23956.51 18178.26 28476.27 252
xiu_mvs_v1_base_debi67.87 19467.07 20570.26 17679.13 15261.90 12467.34 23271.25 23747.98 25767.70 27274.19 30061.31 15572.62 23956.51 18178.26 28476.27 252
baseline255.57 29252.74 30864.05 24765.26 30944.11 27062.38 28854.43 33039.03 31751.21 35767.35 34733.66 32372.45 24337.14 32564.22 35275.60 255
OpenMVScopyleft62.51 1568.76 18168.75 18168.78 20470.56 26453.91 18678.29 9577.35 17848.85 25270.22 24683.52 19152.65 22176.93 19655.31 19581.99 24175.49 256
3Dnovator65.95 1171.50 14771.22 15772.34 15473.16 23663.09 11778.37 9478.32 16457.67 14772.22 22284.61 17754.77 21178.47 16860.82 14981.07 25575.45 257
1112_ss59.48 27258.99 27260.96 28077.84 17042.39 28761.42 29368.45 25837.96 32259.93 32667.46 34545.11 26265.07 30040.89 30071.81 32175.41 258
IterMVS63.12 24362.48 24765.02 24066.34 30152.86 19163.81 27662.25 29546.57 26971.51 23380.40 23344.60 26566.82 29351.38 22575.47 29975.38 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res58.78 27758.69 27459.04 29379.41 14338.13 32057.62 31766.98 26434.74 33759.62 32977.56 27242.92 27563.65 30738.66 31270.73 32775.35 260
test_vis3_rt51.94 31351.04 31954.65 30946.32 38250.13 21044.34 36178.17 16723.62 37468.95 26262.81 35621.41 37738.52 37441.49 29572.22 31875.30 261
QAPM69.18 17669.26 17268.94 19971.61 25452.58 19480.37 7078.79 15649.63 24573.51 20385.14 17453.66 21779.12 15655.11 19675.54 29875.11 262
DPM-MVS69.98 16369.22 17472.26 15682.69 10958.82 15670.53 18981.23 10947.79 26164.16 29680.21 23551.32 23083.12 8960.14 15684.95 21174.83 263
pmmvs-eth3d64.41 23163.27 24067.82 21675.81 19960.18 14669.49 20062.05 29938.81 31974.13 19682.23 21343.76 27068.65 27742.53 28880.63 26174.63 264
MSDG67.47 20167.48 20167.46 21870.70 26154.69 18066.90 24278.17 16760.88 12070.41 24374.76 29061.22 15973.18 23347.38 25976.87 29074.49 265
MAR-MVS67.72 19766.16 21372.40 15374.45 21864.99 10374.87 13677.50 17748.67 25365.78 28668.58 34257.01 20377.79 18746.68 26681.92 24274.42 266
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline157.82 28258.36 27856.19 30469.17 27830.76 36362.94 28755.21 32646.04 27163.83 30178.47 26041.20 28463.68 30639.44 30568.99 33774.13 267
EU-MVSNet60.82 26260.80 26060.86 28168.37 28141.16 29372.27 15868.27 25926.96 36469.08 25875.71 28232.09 33367.44 28655.59 19378.90 27773.97 268
HY-MVS49.31 1957.96 28157.59 28259.10 29266.85 29836.17 33265.13 26465.39 27639.24 31654.69 34878.14 26644.28 26767.18 28933.75 34470.79 32673.95 269
TR-MVS64.59 22663.54 23767.73 21775.75 20050.83 20363.39 28170.29 24849.33 24771.55 23274.55 29350.94 23178.46 16940.43 30275.69 29673.89 270
IB-MVS49.67 1859.69 27156.96 28667.90 21368.19 28450.30 20861.42 29365.18 27747.57 26355.83 34267.15 34923.77 37579.60 15043.56 28479.97 26673.79 271
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052163.55 23766.07 21455.99 30566.18 30444.04 27168.77 21468.80 25446.99 26672.57 21685.84 16739.87 29450.22 33553.40 21792.23 8173.71 272
AdaColmapbinary74.22 10674.56 10273.20 12681.95 11860.97 13579.43 8180.90 11765.57 7272.54 21881.76 21970.98 7385.26 5347.88 25690.00 12873.37 273
PAPM61.79 25660.37 26366.05 23376.09 19441.87 28969.30 20376.79 18640.64 30953.80 35179.62 24544.38 26682.92 9329.64 35873.11 31573.36 274
MVS_111021_LR72.10 14271.82 14772.95 13579.53 14273.90 3670.45 19166.64 26556.87 15576.81 15781.76 21968.78 8871.76 25361.81 13683.74 22673.18 275
原ACMM173.90 11485.90 5765.15 10281.67 9950.97 23074.25 19486.16 15861.60 15283.54 8156.75 17991.08 10473.00 276
CHOSEN 1792x268858.09 28056.30 29163.45 25479.95 13750.93 20254.07 33565.59 27328.56 36061.53 31374.33 29641.09 28666.52 29633.91 34367.69 34572.92 277
TinyColmap67.98 19369.28 17164.08 24667.98 28746.82 24970.04 19475.26 19853.05 20477.36 14686.79 13359.39 17572.59 24245.64 27288.01 16572.83 278
FMVSNet555.08 29455.54 29753.71 31265.80 30633.50 35156.22 32552.50 34243.72 28861.06 31783.38 19425.46 36954.87 32830.11 35581.64 25272.75 279
EG-PatchMatch MVS70.70 15570.88 16070.16 17982.64 11058.80 15771.48 17473.64 20854.98 17376.55 16381.77 21861.10 16078.94 16054.87 19880.84 25772.74 280
PVSNet_Blended62.90 24661.64 25066.69 22869.81 27349.36 22061.23 29578.96 15142.04 29759.98 32368.86 33951.82 22578.20 17944.30 27877.77 28972.52 281
CostFormer57.35 28456.14 29260.97 27963.76 32138.43 31567.50 22960.22 30537.14 32759.12 33076.34 28032.78 32871.99 25039.12 30969.27 33672.47 282
PS-MVSNAJ64.27 23363.73 23565.90 23577.82 17151.42 19963.33 28272.33 22245.09 28061.60 31268.04 34362.39 14473.95 23049.07 24273.87 31172.34 283
xiu_mvs_v2_base64.43 23063.96 23265.85 23677.72 17351.32 20063.63 27972.31 22345.06 28161.70 31169.66 33162.56 14073.93 23149.06 24373.91 31072.31 284
PMVScopyleft70.70 681.70 3283.15 3177.36 7690.35 582.82 282.15 5479.22 14874.08 2087.16 2891.97 1984.80 276.97 19564.98 11193.61 6072.28 285
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131459.83 27058.86 27362.74 26365.71 30744.78 26668.59 21672.63 21933.54 34661.05 31867.29 34843.62 27171.26 25849.49 24067.84 34472.19 286
无先验74.82 13770.94 24347.75 26276.85 19954.47 20272.09 287
LF4IMVS67.50 19967.31 20368.08 21258.86 34861.93 12371.43 17575.90 19344.67 28272.42 21980.20 23657.16 19870.44 26558.99 16786.12 19371.88 288
pmmvs460.78 26359.04 27166.00 23473.06 24257.67 16464.53 27160.22 30536.91 32865.96 28377.27 27439.66 29668.54 27838.87 31074.89 30471.80 289
MSLP-MVS++74.48 10575.78 9270.59 17184.66 7662.40 12078.65 9084.24 6260.55 12277.71 14281.98 21563.12 13777.64 19062.95 13288.14 16171.73 290
MDTV_nov1_ep13_2view18.41 38253.74 33631.57 35444.89 37229.90 35532.93 34671.48 291
patch_mono-262.73 24964.08 23158.68 29470.36 26855.87 17260.84 29864.11 28841.23 30364.04 29778.22 26460.00 16848.80 33954.17 20883.71 22871.37 292
tpm256.12 28754.64 30060.55 28366.24 30236.01 33368.14 22256.77 32133.60 34558.25 33375.52 28630.25 35174.33 22633.27 34569.76 33571.32 293
CMPMVSbinary48.73 2061.54 25860.89 25863.52 25361.08 33351.55 19868.07 22468.00 26033.88 34165.87 28481.25 22337.91 30767.71 28349.32 24182.60 23771.31 294
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
API-MVS70.97 15371.51 15469.37 18875.20 20355.94 17180.99 6176.84 18462.48 11071.24 23677.51 27361.51 15480.96 13052.04 21985.76 19771.22 295
OpenMVS_ROBcopyleft54.93 1763.23 24263.28 23963.07 25869.81 27345.34 26268.52 21867.14 26243.74 28770.61 24279.22 25047.90 25372.66 23848.75 24573.84 31271.21 296
thres20057.55 28357.02 28559.17 29067.89 28934.93 34258.91 31057.25 31750.24 23864.01 29871.46 31932.49 33071.39 25731.31 35079.57 27271.19 297
test20.0355.74 29057.51 28350.42 32659.89 34332.09 35650.63 34449.01 35150.11 24065.07 29083.23 20145.61 25848.11 34430.22 35483.82 22571.07 298
our_test_356.46 28656.51 28956.30 30367.70 29039.66 30655.36 33152.34 34340.57 31063.85 30069.91 33040.04 29358.22 32343.49 28575.29 30371.03 299
test_fmvs254.80 29554.11 30256.88 30251.76 37549.95 21356.70 32265.80 27026.22 36769.42 25465.25 35231.82 33749.98 33649.63 23970.36 32970.71 300
BH-untuned69.39 17369.46 16969.18 19377.96 16956.88 16668.47 22077.53 17656.77 15777.79 14079.63 24460.30 16780.20 14346.04 26980.65 25970.47 301
EPNet_dtu58.93 27658.52 27560.16 28667.91 28847.70 24069.97 19558.02 31149.73 24447.28 36773.02 30938.14 30462.34 31136.57 32985.99 19570.43 302
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC62.80 24763.10 24261.89 26965.19 31043.30 27967.42 23174.20 20635.80 33372.25 22184.48 18045.67 25771.95 25137.95 31984.97 20770.42 303
GSMVS70.05 304
sam_mvs131.41 34070.05 304
SCA58.57 27958.04 27960.17 28570.17 26941.07 29565.19 26353.38 33843.34 29361.00 31973.48 30445.20 26069.38 27240.34 30370.31 33070.05 304
tpmvs55.84 28855.45 29857.01 30160.33 33733.20 35265.89 25259.29 30947.52 26456.04 34073.60 30331.05 34668.06 28240.64 30164.64 35069.77 307
旧先验184.55 7960.36 14563.69 29087.05 12854.65 21383.34 23269.66 308
CR-MVSNet58.96 27558.49 27660.36 28466.37 29948.24 22970.93 18556.40 32332.87 34761.35 31486.66 14033.19 32563.22 30948.50 24970.17 33169.62 309
RPMNet65.77 21465.08 22767.84 21566.37 29948.24 22970.93 18586.27 1954.66 18061.35 31486.77 13533.29 32485.67 4655.93 18870.17 33169.62 309
tpm cat154.02 30052.63 30958.19 29764.85 31639.86 30566.26 24957.28 31632.16 34956.90 33670.39 32532.75 32965.30 29934.29 34158.79 36569.41 311
PatchmatchNetpermissive54.60 29654.27 30155.59 30665.17 31239.08 30866.92 24151.80 34439.89 31258.39 33173.12 30831.69 33958.33 32243.01 28758.38 36869.38 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
YYNet152.58 30653.50 30449.85 32754.15 36836.45 33140.53 36546.55 35938.09 32175.52 17673.31 30741.08 28743.88 36141.10 29771.14 32569.21 313
CVMVSNet59.21 27458.44 27761.51 27373.94 22647.76 23971.31 17964.56 28326.91 36660.34 32270.44 32336.24 31667.65 28453.57 21368.66 33969.12 314
MDA-MVSNet_test_wron52.57 30753.49 30649.81 32854.24 36736.47 33040.48 36646.58 35838.13 32075.47 17773.32 30641.05 28843.85 36240.98 29971.20 32469.10 315
MVP-Stereo61.56 25759.22 26968.58 20679.28 14660.44 14469.20 20571.57 22743.58 28956.42 33978.37 26239.57 29776.46 20334.86 33960.16 36268.86 316
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何169.99 18388.37 3471.34 5162.08 29843.85 28574.99 18186.11 16152.85 22070.57 26350.99 22883.23 23368.05 317
UnsupCasMVSNet_eth52.26 30953.29 30749.16 33255.08 36433.67 35050.03 34558.79 31037.67 32463.43 30874.75 29141.82 28145.83 34938.59 31459.42 36467.98 318
Patchmatch-test47.93 32649.96 32741.84 35457.42 35424.26 37848.75 34741.49 37239.30 31556.79 33773.48 30430.48 35033.87 37729.29 36072.61 31667.39 319
Patchmatch-RL test59.95 26959.12 27062.44 26572.46 24854.61 18159.63 30547.51 35741.05 30674.58 18974.30 29731.06 34565.31 29851.61 22279.85 26767.39 319
testgi54.00 30156.86 28745.45 34458.20 35125.81 37649.05 34649.50 35045.43 27567.84 27181.17 22451.81 22743.20 36429.30 35979.41 27367.34 321
test22287.30 3769.15 7367.85 22559.59 30841.06 30573.05 21185.72 16948.03 25280.65 25966.92 322
pmmvs552.49 30852.58 31052.21 32054.99 36532.38 35455.45 33053.84 33332.15 35055.49 34474.81 28938.08 30557.37 32634.02 34274.40 30866.88 323
Anonymous2023120654.13 29855.82 29549.04 33470.89 25835.96 33451.73 34150.87 34634.86 33562.49 30979.22 25042.52 27944.29 36027.95 36581.88 24366.88 323
tpm50.60 31852.42 31145.14 34665.18 31126.29 37460.30 30143.50 36237.41 32557.01 33579.09 25430.20 35342.32 36532.77 34766.36 34766.81 325
testdata64.13 24585.87 5963.34 11561.80 30147.83 26076.42 16886.60 14548.83 24662.31 31254.46 20381.26 25466.74 326
MIMVSNet54.39 29756.12 29349.20 33172.57 24730.91 36259.98 30348.43 35441.66 29955.94 34183.86 18841.19 28550.42 33426.05 36875.38 30166.27 327
tpmrst50.15 32051.38 31646.45 34156.05 35924.77 37764.40 27349.98 34836.14 33053.32 35269.59 33235.16 31848.69 34039.24 30758.51 36765.89 328
EPMVS45.74 33146.53 33443.39 35254.14 36922.33 38055.02 33235.00 38134.69 33851.09 35870.20 32725.92 36742.04 36737.19 32455.50 37265.78 329
PVSNet43.83 2151.56 31451.17 31752.73 31768.34 28238.27 31748.22 34953.56 33636.41 32954.29 34964.94 35334.60 32054.20 33130.34 35369.87 33365.71 330
test_fmvs1_n52.70 30552.01 31254.76 30853.83 37250.36 20655.80 32865.90 26924.96 37065.39 28760.64 36427.69 36048.46 34145.88 27167.99 34265.46 331
BH-w/o64.81 22364.29 23066.36 23076.08 19554.71 17965.61 25875.23 19950.10 24171.05 23971.86 31654.33 21579.02 15838.20 31776.14 29465.36 332
XXY-MVS55.19 29357.40 28448.56 33564.45 31734.84 34451.54 34253.59 33438.99 31863.79 30279.43 24656.59 20545.57 35036.92 32771.29 32365.25 333
ADS-MVSNet248.76 32447.25 33353.29 31655.90 36140.54 30147.34 35354.99 32831.41 35550.48 36072.06 31331.23 34254.26 33025.93 36955.93 37065.07 334
ADS-MVSNet44.62 33745.58 33641.73 35555.90 36120.83 38147.34 35339.94 37631.41 35550.48 36072.06 31331.23 34239.31 37225.93 36955.93 37065.07 334
KD-MVS_2432*160052.05 31151.58 31453.44 31452.11 37331.20 35944.88 35964.83 28141.53 30064.37 29370.03 32815.61 38864.20 30236.25 33074.61 30664.93 336
miper_refine_blended52.05 31151.58 31453.44 31452.11 37331.20 35944.88 35964.83 28141.53 30064.37 29370.03 32815.61 38864.20 30236.25 33074.61 30664.93 336
test0.0.03 147.72 32748.31 32945.93 34255.53 36329.39 36646.40 35641.21 37443.41 29155.81 34367.65 34429.22 35743.77 36325.73 37169.87 33364.62 338
JIA-IIPM54.03 29951.62 31361.25 27759.14 34755.21 17759.10 30747.72 35550.85 23150.31 36385.81 16820.10 38163.97 30436.16 33355.41 37364.55 339
PatchT53.35 30256.47 29043.99 35164.19 31817.46 38359.15 30643.10 36452.11 21354.74 34786.95 12929.97 35449.98 33643.62 28374.40 30864.53 340
test_vis1_n51.27 31650.41 32553.83 31156.99 35550.01 21256.75 32160.53 30425.68 36859.74 32857.86 36829.40 35647.41 34643.10 28663.66 35364.08 341
gg-mvs-nofinetune55.75 28956.75 28852.72 31862.87 32428.04 37068.92 20841.36 37371.09 4050.80 35992.63 1220.74 37866.86 29129.97 35672.41 31763.25 342
MVS60.62 26559.97 26562.58 26468.13 28547.28 24568.59 21673.96 20732.19 34859.94 32568.86 33950.48 23477.64 19041.85 29375.74 29562.83 343
N_pmnet52.06 31051.11 31854.92 30759.64 34571.03 5337.42 37161.62 30233.68 34357.12 33472.10 31237.94 30631.03 37829.13 36471.35 32262.70 344
Gipumacopyleft69.55 17072.83 13359.70 28763.63 32253.97 18580.08 7775.93 19264.24 9173.49 20488.93 10157.89 19462.46 31059.75 16291.55 9162.67 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs151.51 31550.86 32253.48 31349.72 37849.35 22254.11 33464.96 27924.64 37263.66 30459.61 36728.33 35948.45 34245.38 27667.30 34662.66 346
WTY-MVS49.39 32350.31 32646.62 34061.22 33232.00 35746.61 35549.77 34933.87 34254.12 35069.55 33341.96 28045.40 35231.28 35164.42 35162.47 347
test_vis1_rt46.70 33045.24 33851.06 32444.58 38351.04 20139.91 36767.56 26121.84 37851.94 35550.79 37633.83 32239.77 37135.25 33861.50 35962.38 348
test-LLR50.43 31950.69 32449.64 32960.76 33441.87 28953.18 33745.48 36043.41 29149.41 36460.47 36529.22 35744.73 35742.09 29172.14 31962.33 349
test-mter48.56 32548.20 33049.64 32960.76 33441.87 28953.18 33745.48 36031.91 35349.41 36460.47 36518.34 38244.73 35742.09 29172.14 31962.33 349
test_vis1_n_192052.96 30353.50 30451.32 32359.15 34644.90 26556.13 32664.29 28630.56 35859.87 32760.68 36340.16 29247.47 34548.25 25362.46 35661.58 351
UnsupCasMVSNet_bld50.01 32151.03 32046.95 33758.61 34932.64 35348.31 34853.27 33934.27 34060.47 32171.53 31841.40 28247.07 34730.68 35260.78 36161.13 352
sss47.59 32848.32 32845.40 34556.73 35833.96 34845.17 35848.51 35332.11 35252.37 35465.79 35040.39 29141.91 36831.85 34861.97 35860.35 353
PM-MVS64.49 22863.61 23667.14 22376.68 18775.15 2768.49 21942.85 36551.17 22977.85 13980.51 23145.76 25666.31 29752.83 21876.35 29259.96 354
test_cas_vis1_n_192050.90 31750.92 32150.83 32554.12 37047.80 23751.44 34354.61 32926.95 36563.95 29960.85 36237.86 30944.97 35545.53 27362.97 35559.72 355
GG-mvs-BLEND52.24 31960.64 33629.21 36869.73 19942.41 36645.47 37052.33 37420.43 38068.16 28025.52 37265.42 34959.36 356
dmvs_re49.91 32250.77 32347.34 33659.98 33938.86 31253.18 33753.58 33539.75 31355.06 34561.58 36136.42 31544.40 35929.15 36368.23 34058.75 357
TESTMET0.1,145.17 33444.93 34045.89 34356.02 36038.31 31653.18 33741.94 37127.85 36144.86 37356.47 37017.93 38341.50 36938.08 31868.06 34157.85 358
mvsany_test343.76 34141.01 34552.01 32148.09 38057.74 16342.47 36323.85 38723.30 37564.80 29162.17 35927.12 36140.59 37029.17 36248.11 37757.69 359
MS-PatchMatch55.59 29154.89 29957.68 29969.18 27749.05 22361.00 29762.93 29435.98 33158.36 33268.93 33736.71 31466.59 29537.62 32263.30 35457.39 360
dp44.09 33944.88 34141.72 35658.53 35023.18 37954.70 33342.38 36834.80 33644.25 37565.61 35124.48 37444.80 35629.77 35749.42 37657.18 361
MVEpermissive27.91 2336.69 34835.64 35139.84 35843.37 38435.85 33619.49 37724.61 38524.68 37139.05 37962.63 35838.67 30327.10 38221.04 37847.25 37856.56 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
pmmvs346.71 32945.09 33951.55 32256.76 35748.25 22855.78 32939.53 37724.13 37350.35 36263.40 35415.90 38751.08 33329.29 36070.69 32855.33 363
PatchMatch-RL58.68 27857.72 28161.57 27276.21 19273.59 3961.83 29049.00 35247.30 26561.08 31668.97 33650.16 23659.01 32136.06 33468.84 33852.10 364
dmvs_testset45.26 33347.51 33138.49 36059.96 34114.71 38558.50 31343.39 36341.30 30251.79 35656.48 36939.44 29849.91 33821.42 37755.35 37450.85 365
wuyk23d61.97 25366.25 21249.12 33358.19 35260.77 14266.32 24852.97 34055.93 16690.62 586.91 13073.07 5735.98 37620.63 37991.63 8750.62 366
PMMVS237.74 34640.87 34628.36 36342.41 3855.35 38824.61 37627.75 38332.15 35047.85 36670.27 32635.85 31729.51 38019.08 38067.85 34350.22 367
DSMNet-mixed43.18 34244.66 34238.75 35954.75 36628.88 36957.06 32027.42 38413.47 38047.27 36877.67 27138.83 30139.29 37325.32 37360.12 36348.08 368
new_pmnet37.55 34739.80 34930.79 36256.83 35616.46 38439.35 36830.65 38225.59 36945.26 37161.60 36024.54 37328.02 38121.60 37652.80 37547.90 369
CHOSEN 280x42041.62 34339.89 34846.80 33961.81 32851.59 19733.56 37535.74 38027.48 36337.64 38153.53 37123.24 37642.09 36627.39 36658.64 36646.72 370
EMVS44.61 33844.45 34345.10 34748.91 37943.00 28137.92 37041.10 37546.75 26838.00 38048.43 37826.42 36446.27 34837.11 32675.38 30146.03 371
E-PMN45.17 33445.36 33744.60 34850.07 37642.75 28338.66 36942.29 36946.39 27039.55 37851.15 37526.00 36645.37 35337.68 32076.41 29145.69 372
test_f43.79 34045.63 33538.24 36142.29 38638.58 31434.76 37447.68 35622.22 37767.34 27763.15 35531.82 33730.60 37939.19 30862.28 35745.53 373
mvsany_test137.88 34535.74 35044.28 34947.28 38149.90 21436.54 37324.37 38619.56 37945.76 36953.46 37232.99 32737.97 37526.17 36735.52 37944.99 374
PMMVS44.69 33643.95 34446.92 33850.05 37753.47 18948.08 35142.40 36722.36 37644.01 37653.05 37342.60 27845.49 35131.69 34961.36 36041.79 375
PVSNet_036.71 2241.12 34440.78 34742.14 35359.97 34040.13 30340.97 36442.24 37030.81 35744.86 37349.41 37740.70 28945.12 35423.15 37534.96 38041.16 376
FPMVS59.43 27360.07 26457.51 30077.62 17671.52 4962.33 28950.92 34557.40 15269.40 25580.00 23939.14 30061.92 31437.47 32366.36 34739.09 377
MVS-HIRNet45.53 33247.29 33240.24 35762.29 32626.82 37356.02 32737.41 37929.74 35943.69 37781.27 22233.96 32155.48 32724.46 37456.79 36938.43 378
test_method19.26 34919.12 35319.71 3649.09 3881.91 3907.79 37953.44 3371.42 38210.27 38435.80 37917.42 38525.11 38312.44 38124.38 38232.10 379
DeepMVS_CXcopyleft11.83 36515.51 38713.86 38611.25 3905.76 38120.85 38326.46 38017.06 3869.22 3849.69 38313.82 38312.42 380
tmp_tt11.98 35114.73 3543.72 3662.28 3894.62 38919.44 37814.50 3890.47 38421.55 3829.58 38225.78 3684.57 38511.61 38227.37 3811.96 381
testmvs4.06 3555.28 3580.41 3670.64 3910.16 39242.54 3620.31 3920.26 3860.50 3871.40 3860.77 3900.17 3860.56 3840.55 3850.90 382
test1234.43 3545.78 3570.39 3680.97 3900.28 39146.33 3570.45 3910.31 3850.62 3861.50 3850.61 3910.11 3870.56 3840.63 3840.77 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k17.71 35023.62 3520.00 3690.00 3920.00 3930.00 38070.17 2490.00 3870.00 38874.25 29868.16 950.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas5.20 3536.93 3560.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38762.39 1440.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re5.62 3527.50 3550.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38867.46 3450.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
test_one_060185.84 6161.45 12985.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 392
eth-test0.00 392
ZD-MVS83.91 8769.36 6981.09 11358.91 13782.73 8689.11 9475.77 3586.63 1172.73 5892.93 70
test_241102_ONE86.12 5361.06 13384.72 4872.64 2987.38 2489.47 8477.48 2385.74 43
9.1480.22 5380.68 13180.35 7187.69 1059.90 12683.00 7988.20 11574.57 4781.75 11173.75 5293.78 57
save fliter87.00 3967.23 8679.24 8477.94 17256.65 160
test072686.16 5160.78 14083.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
test_part285.90 5766.44 9184.61 62
sam_mvs31.21 344
MTGPAbinary80.63 123
test_post166.63 2452.08 38330.66 34959.33 32040.34 303
test_post1.99 38430.91 34754.76 329
patchmatchnet-post68.99 33531.32 34169.38 272
MTMP84.83 3119.26 388
gm-plane-assit62.51 32533.91 34937.25 32662.71 35772.74 23638.70 311
TEST985.47 6369.32 7076.42 11878.69 15753.73 19976.97 14986.74 13666.84 10581.10 121
test_885.09 6967.89 7976.26 12378.66 15954.00 19476.89 15386.72 13866.60 11080.89 131
agg_prior84.44 8266.02 9478.62 16076.95 15180.34 138
test_prior470.14 6377.57 101
test_prior275.57 13158.92 13676.53 16586.78 13467.83 9969.81 7492.76 73
旧先验271.17 18245.11 27978.54 13161.28 31659.19 166
新几何271.33 178
原ACMM274.78 141
testdata267.30 28748.34 251
segment_acmp68.30 94
testdata168.34 22157.24 153
plane_prior785.18 6666.21 93
plane_prior684.18 8565.31 9960.83 163
plane_prior489.11 94
plane_prior365.67 9663.82 9578.23 133
plane_prior282.74 5165.45 74
plane_prior184.46 81
plane_prior65.18 10080.06 7861.88 11489.91 132
n20.00 393
nn0.00 393
door-mid55.02 327
test1182.71 84
door52.91 341
HQP5-MVS58.80 157
HQP-NCC82.37 11177.32 10659.08 13171.58 228
ACMP_Plane82.37 11177.32 10659.08 13171.58 228
BP-MVS67.38 96
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 188
NP-MVS83.34 9563.07 11885.97 164
MDTV_nov1_ep1354.05 30365.54 30829.30 36759.00 30855.22 32535.96 33252.44 35375.98 28130.77 34859.62 31938.21 31673.33 314
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 140