This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
DU-MVS74.91 10175.57 9672.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
NR-MVSNet73.62 11374.05 11172.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
v7n79.37 5680.41 5276.28 9078.67 16255.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
mvsmamba77.20 7576.37 8579.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 15036.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
v1075.69 8776.20 8874.16 11474.44 22348.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
UniMVSNet (Re)75.00 9975.48 9773.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
anonymousdsp78.60 6177.80 7281.00 3178.01 16974.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
v875.07 9775.64 9573.35 12773.42 23747.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
IS-MVSNet75.10 9675.42 9874.15 11579.23 14948.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
FIs72.56 14073.80 11568.84 21278.74 16137.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
WR-MVS71.20 15372.48 14267.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
tttt051769.46 17567.79 20174.46 10775.34 20552.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37781.15 12063.95 13087.93 16889.51 25
v2v48272.55 14272.58 14072.43 15672.92 25046.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
Anonymous2023121175.54 9077.19 7970.59 17577.67 17545.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
EI-MVSNet-UG-set72.63 13971.68 15375.47 10074.67 21758.64 17072.02 17071.50 23363.53 10278.58 13071.39 33465.98 11878.53 16767.30 10580.18 26989.23 29
V4271.06 15470.83 16571.72 16467.25 31447.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
RPSCF75.76 8674.37 10679.93 4074.81 21477.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
v119273.40 11773.42 12173.32 12974.65 22048.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
EI-MVSNet-Vis-set72.78 13671.87 14975.54 9974.77 21559.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
v114473.29 12073.39 12273.01 13674.12 22848.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
nrg03074.87 10475.99 9171.52 16774.90 21249.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
v124073.06 12673.14 12872.84 14574.74 21647.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192072.96 13272.98 13372.89 14474.67 21747.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16553.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
v14419272.99 13073.06 13172.77 14674.58 22147.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
EI-MVSNet69.61 17369.01 18171.41 16973.94 23049.90 22471.31 18771.32 23858.22 14375.40 18170.44 33758.16 19475.85 20562.51 14379.81 27388.48 44
IterMVS-LS73.01 12873.12 13072.66 15073.79 23249.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15372.87 25149.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
eth_miper_zixun_eth69.42 17668.73 18771.50 16867.99 30646.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LS3D80.99 4180.85 4981.41 2578.37 16371.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
ITE_SJBPF80.35 3876.94 18473.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
thisisatest053067.05 21365.16 23272.73 14973.10 24550.55 21471.26 18963.91 29550.22 24474.46 19580.75 23626.81 37680.25 14159.43 17486.50 19387.37 54
CS-MVS76.51 8076.00 9078.06 7177.02 18164.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
pmmvs671.82 14873.66 11866.31 24175.94 20142.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
c3_l69.82 17069.89 17169.61 19466.24 32443.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
Anonymous2024052972.56 14073.79 11668.86 21176.89 18845.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
tt080576.12 8478.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
Effi-MVS+-dtu75.43 9172.28 14684.91 277.05 17983.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
iter_conf0567.34 20965.62 22572.50 15469.82 28447.06 25872.19 16776.86 18745.32 28772.86 21782.85 21020.53 39683.73 7861.13 15589.02 15486.70 65
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
EC-MVSNet77.08 7777.39 7776.14 9276.86 18956.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
cl2267.14 21066.51 21669.03 20563.20 34543.46 28766.88 25376.25 19249.22 25474.48 19477.88 28145.49 27377.40 19360.64 16084.59 22086.24 69
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_self_test68.27 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20650.04 24776.86 15582.43 21648.74 26075.38 21160.94 15789.81 13385.81 76
AllTest77.66 7177.43 7678.35 6679.19 15170.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15170.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cl____68.26 19668.26 19268.29 21964.98 33643.67 28465.89 26274.67 20650.04 24776.86 15582.42 21748.74 26075.38 21160.92 15889.81 13385.80 80
CS-MVS-test74.89 10374.23 10976.86 8177.01 18262.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
miper_ehance_all_eth68.36 19168.16 19668.98 20665.14 33543.34 28867.07 24878.92 15549.11 25676.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
test_fmvsm_n_192069.63 17168.45 18973.16 13170.56 27265.86 9870.26 20278.35 16737.69 34574.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
MM78.15 7077.68 7479.55 4880.10 13765.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
MVS_030476.32 8275.96 9277.42 7679.33 14660.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
iter_conf_final68.69 18767.00 21273.76 12173.68 23352.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38683.73 7865.40 11886.33 19585.22 87
diffmvspermissive67.42 20767.50 20467.20 23162.26 34945.21 27364.87 27677.04 18648.21 26171.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Baseline_NR-MVSNet70.62 16073.19 12762.92 27276.97 18334.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21368.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS72.88 13472.36 14574.43 11077.03 18054.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
CDPH-MVS77.33 7477.06 8178.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
K. test v373.67 11273.61 12073.87 11979.78 13955.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
test250661.23 27060.85 27162.38 27678.80 15927.88 38667.33 24537.42 40054.23 19167.55 28888.68 10717.87 40474.39 22646.33 28189.41 14384.86 97
ECVR-MVScopyleft64.82 23265.22 23063.60 26178.80 15931.14 37266.97 25056.47 33254.23 19169.94 25688.68 10737.23 32574.81 22145.28 29189.41 14384.86 97
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
alignmvs70.54 16171.00 16369.15 20373.50 23548.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
IU-MVS86.12 5360.90 14580.38 12945.49 28481.31 10175.64 4194.39 4184.65 103
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 40373.86 5286.31 1978.84 1994.03 5384.64 104
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
VDD-MVS70.81 15871.44 15968.91 21079.07 15646.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
test111164.62 23565.19 23162.93 27179.01 15729.91 37865.45 27054.41 34254.09 19671.47 24188.48 11137.02 32674.29 22846.83 27889.94 13184.58 110
bld_raw_dy_0_6472.85 13572.76 13773.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31369.91 27270.73 7391.60 8984.56 111
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17542.52 30973.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
GBi-Net68.30 19268.79 18366.81 23573.14 24240.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
test168.30 19268.79 18366.81 23573.14 24240.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26275.20 21547.12 27385.37 20384.54 112
FMVSNet171.06 15472.48 14266.81 23577.65 17640.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS63.80 1372.70 13871.69 15275.72 9678.10 16660.01 15573.04 16081.50 10145.34 28679.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs72.29 14573.38 12369.04 20474.23 22447.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
TransMVSNet (Re)69.62 17271.63 15463.57 26276.51 19135.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
VDDNet71.60 15073.13 12967.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
FA-MVS(test-final)71.27 15271.06 16271.92 16373.96 22952.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
MVS_Test69.84 16970.71 16667.24 23067.49 31243.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 13079.90 13846.03 27976.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
pm-mvs168.40 19069.85 17264.04 25873.10 24539.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
HQP4-MVS71.59 23385.31 5283.74 134
HQP-MVS75.24 9475.01 10075.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
PHI-MVS74.92 10074.36 10776.61 8476.40 19262.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14879.34 14845.58 28175.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
PC_three_145246.98 27381.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ANet_high67.08 21169.94 17058.51 30657.55 37527.09 38858.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31650.10 24688.86 15683.46 143
Effi-MVS+72.10 14672.28 14671.58 16574.21 22650.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
test_fmvsmconf_n72.91 13372.40 14474.46 10768.62 29866.12 9674.21 15378.80 15845.64 28074.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
VPA-MVSNet68.71 18670.37 16863.72 26076.13 19638.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
fmvsm_s_conf0.1_n66.60 21665.54 22669.77 19268.99 29559.15 16272.12 16856.74 33040.72 32668.25 28280.14 24861.18 16666.92 29967.34 10474.40 32183.23 152
GeoE73.14 12273.77 11771.26 17078.09 16752.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
test_fmvsmvis_n_192072.36 14372.49 14171.96 16271.29 26364.06 11472.79 16281.82 9640.23 32981.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23841.83 31275.40 18179.12 26530.25 36575.85 20556.30 19579.81 27383.03 158
CANet73.00 12971.84 15076.48 8775.82 20261.28 13774.81 14080.37 13063.17 10862.43 32480.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24644.04 29573.06 21578.84 27039.72 30960.33 33355.82 20084.64 21982.88 161
PAPM_NR73.91 10974.16 11073.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21948.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28651.21 23267.46 28981.01 23350.75 24463.51 32338.47 32988.12 16382.75 166
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
lessismore_v072.75 14779.60 14256.83 17857.37 32183.80 7289.01 9847.45 26778.74 16564.39 12586.49 19482.69 168
fmvsm_s_conf0.5_n66.34 22165.27 22969.57 19568.20 30359.14 16471.66 18056.48 33140.92 32267.78 28479.46 25761.23 16366.90 30067.39 10074.32 32482.66 169
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
F-COLMAP75.29 9273.99 11279.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
FMVSNet267.48 20468.21 19465.29 24773.14 24238.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26274.60 22347.98 26886.11 19882.35 175
fmvsm_s_conf0.1_n_a67.37 20866.36 21770.37 17970.86 26561.17 13974.00 15557.18 32540.77 32468.83 27680.88 23463.11 14167.61 29266.94 10774.72 31682.33 178
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
mvs_anonymous65.08 23065.49 22763.83 25963.79 34237.60 33566.52 25769.82 25543.44 30473.46 21086.08 16558.79 19071.75 25851.90 23275.63 30882.15 180
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34872.42 24838.61 32783.46 23582.02 181
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35281.73 25182.02 181
ETV-MVS72.72 13772.16 14874.38 11276.90 18755.95 18073.34 15884.67 5162.04 11572.19 22970.81 33565.90 12085.24 5658.64 17884.96 21481.95 183
CNLPA73.44 11573.03 13274.66 10578.27 16475.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
fmvsm_s_conf0.5_n_a67.00 21465.95 22470.17 18469.72 28961.16 14073.34 15856.83 32840.96 32168.36 27980.08 24962.84 14267.57 29366.90 10974.50 32081.78 186
PAPR69.20 17968.66 18870.82 17275.15 20947.77 24875.31 13481.11 11149.62 25166.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
Anonymous20240521166.02 22266.89 21463.43 26574.22 22538.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32274.44 22547.12 27385.37 20381.57 189
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24653.87 34453.60 20469.88 25883.37 20040.52 30470.98 26441.40 31086.78 18981.48 190
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
VPNet65.58 22567.56 20259.65 29879.72 14030.17 37760.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
FE-MVS68.29 19466.96 21372.26 16074.16 22754.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 35081.49 11548.43 26281.85 24881.04 195
Fast-Effi-MVS+-dtu70.00 16668.74 18673.77 12073.47 23664.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22448.11 37257.24 32453.31 20780.95 10679.39 25949.00 25861.55 33045.92 28480.05 27081.03 196
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24556.29 33769.58 25639.32 33370.07 25578.19 27734.93 33372.68 24153.44 22683.74 23081.00 198
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
hse-mvs272.32 14470.66 16777.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25679.23 15563.62 13589.13 15180.92 200
DP-MVS Recon73.57 11472.69 13876.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13877.56 10363.57 29760.95 12256.62 35882.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AUN-MVS70.22 16367.88 19977.22 8082.96 10571.61 4869.08 21771.39 23649.17 25571.70 23278.07 28037.62 32479.21 15661.81 14689.15 14980.82 203
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10254.10 19459.93 31572.24 22833.67 36669.00 26775.63 29638.69 31676.93 19736.60 34475.45 31180.81 205
EIA-MVS68.59 18967.16 20872.90 14375.18 20855.64 18569.39 21281.29 10652.44 21364.53 30570.69 33660.33 17482.30 10354.27 21876.31 30380.75 206
MCST-MVS73.42 11673.34 12573.63 12481.28 12759.17 16174.80 14283.13 7845.50 28272.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
tfpnnormal66.48 21867.93 19762.16 27873.40 23836.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
dcpmvs_271.02 15672.65 13966.16 24276.06 20050.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
testing358.28 29258.38 29058.00 30977.45 17826.12 39360.78 30943.00 38656.02 16770.18 25375.76 29413.27 41167.24 29748.02 26780.89 26080.65 210
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15774.50 20952.05 21854.78 36775.44 30043.99 28270.42 27053.49 22578.41 28880.59 212
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32774.94 21850.60 24274.72 31680.57 213
114514_t73.40 11773.33 12673.64 12384.15 8657.11 17578.20 9880.02 13643.76 29972.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
IterMVS-SCA-FT67.68 20266.07 22172.49 15573.34 23958.20 17263.80 28765.55 28048.10 26276.91 15282.64 21545.20 27478.84 16261.20 15377.89 29480.44 215
ambc70.10 18777.74 17350.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32363.58 31869.12 35126.28 37978.34 17648.83 25682.13 24480.26 217
LFMVS67.06 21267.89 19864.56 25278.02 16838.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28375.22 21446.35 28089.63 13780.21 218
UGNet70.20 16469.05 17973.65 12276.24 19463.64 11675.87 13172.53 22461.48 11860.93 33486.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MIMVSNet166.57 21769.23 17758.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 29074.89 21945.50 28884.97 21179.81 221
cascas64.59 23662.77 25770.05 18875.27 20650.02 22161.79 30171.61 23042.46 31063.68 31668.89 35649.33 25480.35 13847.82 27084.05 22779.78 223
ET-MVSNet_ETH3D63.32 25060.69 27371.20 17170.15 28155.66 18465.02 27564.32 29143.28 30868.99 26872.05 32825.46 38378.19 18254.16 22082.80 23979.74 224
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
testf175.66 8876.57 8272.95 13967.07 31867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8876.57 8272.95 13967.07 31867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
CSCG74.12 10874.39 10573.33 12879.35 14561.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14156.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MG-MVS70.47 16271.34 16067.85 22479.26 14840.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
VNet64.01 24665.15 23460.57 29273.28 24035.61 34857.60 33067.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
TSAR-MVS + GP.73.08 12471.60 15677.54 7378.99 15870.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
SSC-MVS61.79 26666.08 22048.89 35576.91 18510.00 40953.56 35647.37 37468.20 5876.56 16389.21 9054.13 22657.59 34554.75 20974.07 32579.08 234
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
PLCcopyleft62.01 1671.79 14970.28 16976.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_Blended_VisFu70.04 16568.88 18273.53 12682.71 10863.62 11774.81 14081.95 9548.53 26067.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
h-mvs3373.08 12471.61 15577.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25680.98 12763.62 13590.77 11678.58 239
agg_prior270.70 7590.93 10878.55 240
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32565.80 29872.57 32441.23 29763.92 32046.87 27782.42 24278.33 241
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19253.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 23065.60 26978.96 15345.50 28259.98 33778.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23768.79 26149.08 25765.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2630.60 4051.13 40791.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
MVSFormer69.93 16869.03 18072.63 15274.93 21059.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28780.56 13472.28 6778.67 28578.14 246
jason64.47 23962.84 25669.34 19976.91 18559.20 15867.15 24765.67 27735.29 35665.16 30276.74 29044.67 27870.68 26554.74 21079.28 27978.14 246
jason: jason.
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31864.28 30879.82 25244.77 27748.43 36536.24 34887.61 16978.03 248
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13458.28 17165.26 27265.66 27844.36 29467.30 29175.54 29743.27 28671.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS65.31 22763.75 24669.97 19082.23 11559.76 15766.78 25463.37 29845.20 28869.79 25979.37 26047.42 26872.17 25034.48 35785.15 21077.99 250
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24258.76 32266.22 27327.54 38476.66 16068.69 35925.32 38551.31 35453.42 22773.38 33077.97 251
LCM-MVSNet-Re69.10 18171.57 15761.70 28170.37 27734.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 24056.40 33354.05 19772.04 23086.66 14333.19 33960.17 33443.69 29687.45 17477.42 253
test9_res72.12 6991.37 9377.40 254
WB-MVS60.04 28064.19 24247.59 35776.09 19710.22 40852.44 36146.74 37565.17 8474.07 20287.48 12553.48 22955.28 34849.36 25272.84 33377.28 255
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32854.41 21584.67 21677.28 255
sd_testset63.55 24765.38 22858.07 30873.04 24838.83 32357.41 33165.44 28151.42 22768.93 27182.72 21363.76 13858.11 34341.05 31284.67 21677.28 255
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
lupinMVS63.36 24961.49 26568.97 20774.93 21059.19 15965.80 26564.52 29034.68 36163.53 31974.25 31143.19 28770.62 26653.88 22278.67 28577.10 259
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34872.09 25135.61 35281.73 25177.08 260
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34572.09 25135.61 35281.73 25177.08 260
fmvsm_l_conf0.5_n67.48 20466.88 21569.28 20067.41 31362.04 12770.69 19769.85 25439.46 33269.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
fmvsm_l_conf0.5_n_a66.66 21565.97 22368.72 21467.09 31661.38 13570.03 20469.15 25938.59 33968.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
MVS_111021_HR72.98 13172.97 13472.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
xiu_mvs_v1_base_debu67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19867.07 20970.26 18179.13 15361.90 12967.34 24271.25 24147.98 26367.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33772.45 24737.14 33964.22 37475.60 268
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19678.29 9677.35 18248.85 25870.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
3Dnovator65.95 1171.50 15171.22 16172.34 15873.16 24163.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
1112_ss59.48 28458.99 28460.96 29077.84 17142.39 29761.42 30368.45 26437.96 34359.93 34067.46 36545.11 27665.07 31540.89 31471.81 34275.41 271
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20163.81 28662.25 30146.57 27571.51 23980.40 24144.60 27966.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14438.13 33057.62 32966.98 27034.74 35959.62 34377.56 28442.92 28963.65 32238.66 32670.73 34975.35 273
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 22044.34 38378.17 17123.62 39668.95 27062.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20480.37 7178.79 15949.63 25073.51 20885.14 17753.66 22879.12 15755.11 20675.54 30975.11 275
DPM-MVS69.98 16769.22 17872.26 16082.69 10958.82 16670.53 19881.23 10947.79 26764.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20360.18 15469.49 21062.05 30538.81 33874.13 20082.23 21943.76 28468.65 28242.53 30280.63 26674.63 277
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25256.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 24157.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
MSDG67.47 20667.48 20567.46 22870.70 26854.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29974.49 280
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
MAR-MVS67.72 20166.16 21972.40 15774.45 22264.99 10774.87 13877.50 18148.67 25965.78 29968.58 36057.01 21277.79 18846.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27863.83 31478.47 27241.20 29863.68 32139.44 31968.99 35974.13 283
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16468.27 26526.96 38669.08 26675.71 29532.09 34767.44 29455.59 20378.90 28273.97 284
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28239.24 33554.69 36978.14 27844.28 28167.18 29833.75 36270.79 34873.95 285
TR-MVS64.59 23663.54 24967.73 22775.75 20450.83 21363.39 29170.29 25249.33 25371.55 23874.55 30650.94 24378.46 17040.43 31675.69 30773.89 286
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21861.42 30365.18 28347.57 26955.83 36267.15 36923.77 39079.60 15143.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052163.55 24766.07 22155.99 31866.18 32644.04 28168.77 22468.80 26046.99 27272.57 22185.84 17039.87 30850.22 35753.40 22892.23 8173.71 288
AdaColmapbinary74.22 10774.56 10373.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 289
PAPM61.79 26660.37 27566.05 24376.09 19741.87 29969.30 21376.79 19040.64 32753.80 37279.62 25644.38 28082.92 9429.64 37773.11 33273.36 290
MVS_111021_LR72.10 14671.82 15172.95 13979.53 14373.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 291
UWE-MVS52.94 32352.70 32653.65 32873.56 23427.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 293
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13850.93 21254.07 35465.59 27928.56 38261.53 32774.33 30941.09 30066.52 30733.91 36067.69 36772.92 294
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27756.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
TinyColmap67.98 19769.28 17564.08 25667.98 30746.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 296
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 30161.06 33183.38 19925.46 38354.87 34930.11 37481.64 25672.75 297
EG-PatchMatch MVS70.70 15970.88 16470.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 298
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 23061.23 30578.96 15342.04 31159.98 33768.86 35751.82 23778.20 18044.30 29277.77 29572.52 299
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23960.22 31137.14 34959.12 34576.34 29232.78 34271.99 25439.12 32369.27 35872.47 300
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17251.42 20963.33 29272.33 22645.09 29061.60 32668.04 36262.39 14973.95 23249.07 25473.87 32772.34 301
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17451.32 21063.63 28972.31 22745.06 29161.70 32569.66 34862.56 14573.93 23349.06 25573.91 32672.31 302
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22672.63 22333.54 36861.05 33267.29 36843.62 28571.26 26249.49 25167.84 36672.19 304
无先验74.82 13970.94 24747.75 26876.85 20054.47 21372.09 305
LF4IMVS67.50 20367.31 20768.08 22258.86 37061.93 12871.43 18375.90 19744.67 29372.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 306
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17464.53 28160.22 31136.91 35065.96 29677.27 28639.66 31068.54 28338.87 32474.89 31571.80 307
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 308
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 36932.93 36471.48 309
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18260.84 30864.11 29441.23 31764.04 31078.22 27660.00 17648.80 36154.17 21983.71 23271.37 310
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23256.77 32933.60 36758.25 34875.52 29930.25 36574.33 22733.27 36369.76 35771.32 311
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20868.07 23468.00 26633.88 36365.87 29781.25 22937.91 32167.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
API-MVS70.97 15771.51 15869.37 19675.20 20755.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 313
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22867.14 26843.74 30070.61 24879.22 26247.90 26672.66 24248.75 25773.84 32871.21 314
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24364.01 31171.46 33232.49 34471.39 26131.31 36979.57 27771.19 315
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24565.07 30383.23 20745.61 27248.11 36630.22 37383.82 22971.07 316
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32863.85 31369.91 34740.04 30758.22 34243.49 29975.29 31471.03 317
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22356.70 33565.80 27626.22 38969.42 26265.25 37231.82 35149.98 35849.63 25070.36 35170.71 318
BH-untuned69.39 17769.46 17369.18 20277.96 17056.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 319
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 25069.97 20558.02 31749.73 24947.28 38973.02 32238.14 31862.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24174.20 21035.80 35572.25 22784.48 18445.67 27171.95 25537.95 33384.97 21170.42 321
GSMVS70.05 322
sam_mvs131.41 35470.05 322
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30761.00 33373.48 31745.20 27469.38 27640.34 31770.31 35270.05 322
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29252.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 27056.04 36073.60 31631.05 36068.06 28840.64 31564.64 37269.77 326
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 327
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23970.93 19356.40 33332.87 36961.35 32886.66 14333.19 33963.22 32448.50 26170.17 35369.62 328
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23970.93 19386.27 1954.66 18461.35 32886.77 13833.29 33885.67 4755.93 19870.17 35369.62 328
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25957.28 32232.16 37156.90 35470.39 33932.75 34365.30 31434.29 35858.79 38769.41 330
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25151.80 35839.89 33058.39 34673.12 32131.69 35358.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30143.88 38341.10 31171.14 34769.21 332
CVMVSNet59.21 28658.44 28961.51 28373.94 23047.76 24971.31 18764.56 28926.91 38860.34 33670.44 33736.24 33067.65 29053.57 22468.66 36169.12 333
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30243.85 38440.98 31371.20 34669.10 334
MVP-Stereo61.56 26859.22 28168.58 21679.28 14760.44 15269.20 21571.57 23143.58 30256.42 35978.37 27439.57 31176.46 20434.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30354.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29758.05 34964.07 37446.22 26958.83 33946.16 28272.36 33768.12 337
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29758.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
新几何169.99 18988.37 3471.34 5162.08 30443.85 29674.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 339
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32174.75 30441.82 29545.83 37138.59 32859.42 38667.98 340
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36433.87 39929.29 37972.61 33567.39 341
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19159.63 31647.51 37341.05 32074.58 19374.30 31031.06 35965.31 31351.61 23379.85 27267.39 341
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28567.84 28381.17 23051.81 23943.20 38629.30 37879.41 27867.34 343
test22287.30 3769.15 7367.85 23559.59 31441.06 31973.05 21685.72 17248.03 26580.65 26466.92 344
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30238.08 31957.37 34634.02 35974.40 32166.88 345
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26242.52 29344.29 38227.95 38481.88 24766.88 345
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26630.20 36742.32 38732.77 36566.36 36966.81 347
testdata64.13 25585.87 5963.34 11961.80 30747.83 26676.42 17086.60 14848.83 25962.31 32754.46 21481.26 25866.74 348
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31355.94 36183.86 19341.19 29950.42 35626.05 38775.38 31266.27 349
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33248.69 36239.24 32158.51 38965.89 350
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38142.04 38937.19 33855.50 39465.78 351
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33454.20 35230.34 37269.87 35565.71 352
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21655.80 34265.90 27524.96 39265.39 30060.64 38627.69 37448.46 36345.88 28567.99 36465.46 353
BH-w/o64.81 23364.29 24166.36 24076.08 19954.71 18965.61 26875.23 20350.10 24671.05 24571.86 32954.33 22579.02 15938.20 33176.14 30465.36 354
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31579.43 25856.59 21445.57 37236.92 34371.29 34565.25 355
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35654.26 35125.93 38855.93 39265.07 356
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35639.31 39425.93 38855.93 39265.07 356
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28741.53 31464.37 30670.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28741.53 31464.37 30670.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30555.81 36367.65 36429.22 37143.77 38525.73 39169.87 35564.62 360
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18759.10 31847.72 37150.85 23550.31 38585.81 17120.10 39863.97 31936.16 34955.41 39564.55 361
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13229.97 36849.98 35843.62 29774.40 32164.53 362
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22256.75 33460.53 31025.68 39059.74 34257.86 39029.40 37047.41 36843.10 30063.66 37564.08 363
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21841.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
MVS60.62 27659.97 27762.58 27468.13 30547.28 25568.59 22673.96 21132.19 37059.94 33968.86 35750.48 24677.64 19141.85 30775.74 30662.83 365
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32031.03 40029.13 38371.35 34462.70 366
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32559.75 17291.55 9162.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23254.11 35364.96 28524.64 39463.66 31759.61 38928.33 37348.45 36445.38 29067.30 36862.66 368
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29445.40 37431.28 37064.42 37362.47 369
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 21139.91 38967.56 26721.84 40051.94 37750.79 39833.83 33639.77 39335.25 35561.50 38162.38 370
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30549.41 38660.47 38729.22 37144.73 37942.09 30572.14 34062.33 371
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29230.56 38059.87 34160.68 38540.16 30647.47 36748.25 26562.46 37861.58 373
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29647.07 36930.68 37160.78 38361.13 374
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30541.91 39031.85 36761.97 38060.35 375
PM-MVS64.49 23863.61 24867.14 23376.68 19075.15 2768.49 22942.85 38751.17 23377.85 13980.51 23945.76 27066.31 30852.83 22976.35 30259.96 376
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24751.44 36554.61 34026.95 38763.95 31260.85 38437.86 32344.97 37745.53 28762.97 37759.72 377
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20942.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 32944.40 38129.15 38268.23 36258.75 379
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17342.47 38523.85 40923.30 39764.80 30462.17 38127.12 37540.59 39229.17 38148.11 39957.69 381
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23361.00 30762.93 30035.98 35358.36 34768.93 35536.71 32866.59 30637.62 33663.30 37657.39 382
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31727.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23855.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19573.59 3961.83 30049.00 36847.30 27161.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31651.79 37856.48 39139.44 31249.91 36021.42 40055.35 39650.85 387
wuyk23d61.97 26366.25 21849.12 35358.19 37460.77 15066.32 25852.97 35255.93 17090.62 586.91 13373.07 5735.98 39820.63 40291.63 8750.62 388
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33129.51 40219.08 40367.85 36550.22 389
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28338.83 31539.29 39525.32 39360.12 38548.08 390
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20733.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27438.00 40248.43 40026.42 37846.27 37037.11 34075.38 31246.03 393
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27639.55 40051.15 39726.00 38045.37 37537.68 33476.41 30145.69 394
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 29063.15 37731.82 35130.60 40139.19 32262.28 37945.53 395
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22436.54 39524.37 40819.56 40145.76 39153.46 39432.99 34137.97 39726.17 38635.52 40144.99 396
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19948.08 37342.40 38922.36 39844.01 39853.05 39542.60 29245.49 37331.69 36861.36 38241.79 397
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30345.12 37623.15 39734.96 40241.16 398
FPMVS59.43 28560.07 27657.51 31177.62 17771.52 4962.33 29950.92 35957.40 15569.40 26380.00 25039.14 31461.92 32937.47 33766.36 36939.09 399
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22833.96 33555.48 34724.46 39556.79 39138.43 400
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3824.57 40711.61 40527.37 4031.96 403
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2530.00 4090.00 41074.25 31168.16 950.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS22.69 39936.10 350
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 414
eth-test0.00 414
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
test_part285.90 5766.44 9184.61 62
sam_mvs31.21 358
MTGPAbinary80.63 123
test_post166.63 2552.08 40530.66 36359.33 33740.34 317
test_post1.99 40630.91 36154.76 350
patchmatchnet-post68.99 35231.32 35569.38 276
MTMP84.83 3119.26 410
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24038.70 325
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
test_prior470.14 6377.57 102
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
旧先验271.17 19045.11 28978.54 13161.28 33159.19 176
新几何271.33 186
原ACMM274.78 143
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata168.34 23157.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 81
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 415
nn0.00 415
door-mid55.02 338
test1182.71 84
door52.91 353
HQP5-MVS58.80 167
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
BP-MVS67.38 102
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9563.07 12285.97 167
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29330.77 36259.62 33638.21 33073.33 331
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145