This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20496.61 3297.97 7897.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 8091.98 12299.63 693.08 8499.81 899.70 3
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5781.77 23395.90 6998.32 2593.93 5697.53 4297.56 7588.48 18199.40 4692.91 8999.83 599.68 4
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19496.54 3498.05 6598.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5897.42 998.48 1697.86 6191.76 12899.63 694.23 4199.84 399.66 6
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12488.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
v7n96.82 997.31 1095.33 8698.54 4786.81 14896.83 2398.07 6196.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4096.95 1495.46 14499.23 493.45 8299.57 1495.34 2999.89 299.63 9
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19396.51 3597.94 8498.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
FIs94.90 9795.35 8393.55 16198.28 6881.76 23495.33 8998.14 5093.05 7697.07 6297.18 11087.65 19599.29 7091.72 11799.69 1499.61 11
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26593.12 7397.94 2798.54 2581.19 27399.63 695.48 2399.69 1499.60 12
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11398.16 298.94 299.33 297.84 499.08 9390.73 13999.73 1399.59 13
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8397.88 8588.72 18098.81 698.86 1090.77 15199.60 995.43 2699.53 3999.57 14
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 10887.68 20498.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
ANet_high94.83 10096.28 3790.47 27296.65 16973.16 35094.33 12798.74 1296.39 2498.09 2598.93 893.37 8698.70 15890.38 14899.68 1899.53 15
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16497.11 1998.24 3597.58 898.72 898.97 793.15 9499.15 8493.18 7999.74 1299.50 17
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7394.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8696.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
v1094.68 10695.27 8992.90 18596.57 17580.15 25294.65 11497.57 11190.68 14197.43 4898.00 5088.18 18599.15 8494.84 3199.55 3899.41 20
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10887.57 20698.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
v894.65 10795.29 8792.74 19096.65 16979.77 26794.59 11597.17 14491.86 10397.47 4797.93 5488.16 18699.08 9394.32 3899.47 4399.38 22
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 14997.86 8695.96 3297.48 4697.14 11395.33 3499.44 2990.79 13799.76 1099.38 22
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12191.25 12897.49 4498.14 3983.49 24299.45 2795.52 2199.66 2199.36 24
WR-MVS93.49 14693.72 14192.80 18997.57 12280.03 25890.14 27295.68 22593.70 6196.62 8695.39 22187.21 20399.04 10187.50 22099.64 2499.33 26
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12286.96 21598.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 16996.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20797.84 8994.91 4096.80 7895.78 20190.42 16099.41 3991.60 12199.58 3499.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18797.81 9293.99 5396.80 7895.90 19290.10 16899.41 3991.60 12199.58 3499.26 30
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 9997.37 12493.92 5897.65 3495.90 19290.10 16899.33 6890.11 16299.66 2199.26 30
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5680.82 24892.08 21196.68 18193.82 5996.29 9998.56 2490.10 16897.75 25690.10 16499.66 2199.24 32
v192192093.26 15393.61 14892.19 21096.04 22478.31 29391.88 22397.24 14085.17 24696.19 10996.19 18086.76 21399.05 9894.18 4298.84 13299.22 33
v119293.49 14693.78 13992.62 19796.16 21079.62 26991.83 22797.22 14286.07 22796.10 11296.38 16787.22 20299.02 10394.14 4398.88 12799.22 33
v124093.29 15193.71 14292.06 21796.01 22577.89 30091.81 22897.37 12485.12 24896.69 8396.40 16286.67 21599.07 9794.51 3498.76 14599.22 33
dcpmvs_293.96 13495.01 9990.82 26397.60 11974.04 34593.68 15398.85 889.80 15897.82 2997.01 12591.14 14599.21 7890.56 14398.59 16499.19 36
v14419293.20 15893.54 15292.16 21496.05 22078.26 29491.95 21697.14 14684.98 25295.96 11596.11 18487.08 20699.04 10193.79 5098.84 13299.17 37
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17598.07 6193.46 6796.31 9795.97 19190.14 16599.34 6392.11 10399.64 2499.16 38
SixPastTwentyTwo94.91 9695.21 9093.98 14298.52 4983.19 21695.93 6794.84 25594.86 4198.49 1598.74 1681.45 26799.60 994.69 3299.39 5899.15 39
v2v48293.29 15193.63 14692.29 20696.35 19378.82 28791.77 23096.28 20188.45 18695.70 13396.26 17786.02 22398.90 11893.02 8598.81 14099.14 40
v114493.50 14593.81 13692.57 20096.28 20079.61 27091.86 22696.96 15986.95 21695.91 11996.32 17187.65 19598.96 11193.51 6098.88 12799.13 41
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
patch_mono-292.46 18092.72 17291.71 22796.65 16978.91 28588.85 30997.17 14483.89 26592.45 25396.76 14089.86 17297.09 29390.24 15798.59 16499.12 43
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16498.32 2587.89 19796.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 8998.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16893.73 6097.87 2898.49 2990.73 15599.05 9886.43 24199.60 2799.10 47
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10583.15 21794.58 11797.58 11093.39 6897.05 6598.04 4793.25 9098.51 18289.75 17299.59 2999.08 48
TransMVSNet (Re)95.27 8796.04 5292.97 18098.37 6481.92 23295.07 10096.76 17793.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
SSC-MVS90.16 23492.96 16281.78 37597.88 9848.48 40790.75 25087.69 34896.02 3196.70 8297.63 7185.60 22997.80 24885.73 24998.60 16399.06 50
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9792.73 7893.48 21496.72 14694.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set94.35 11894.27 12794.59 12192.46 32985.87 17592.42 19794.69 26193.67 6496.13 11095.84 19691.20 14198.86 12593.78 5198.23 19999.03 52
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4292.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7992.35 8895.57 13796.61 15294.93 5499.41 3993.78 5199.15 9899.00 54
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 8998.30 2891.40 12495.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10694.46 4796.29 9996.94 12893.56 7999.37 5794.29 4099.42 5298.99 56
pm-mvs195.43 7395.94 5593.93 14798.38 6285.08 19095.46 8697.12 14991.84 10797.28 5698.46 3095.30 3697.71 26090.17 16099.42 5298.99 56
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9992.59 8295.47 14296.68 14894.50 6699.42 3393.10 8299.26 8298.99 56
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6298.84 12894.64 3399.53 3998.99 56
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14084.37 19593.73 15095.26 24484.45 25995.76 12698.00 5091.85 12497.21 28595.62 1797.82 23198.98 60
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11792.55 32685.98 17292.44 19594.69 26193.70 6196.12 11195.81 19791.24 13898.86 12593.76 5498.22 20198.98 60
MM94.41 11594.14 13095.22 9495.84 23487.21 13894.31 12990.92 32694.48 4692.80 24097.52 8085.27 23099.49 2496.58 899.57 3698.97 62
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4991.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
IS-MVSNet94.49 11294.35 12394.92 10298.25 7286.46 15997.13 1894.31 26896.24 2596.28 10196.36 16982.88 25099.35 6088.19 20599.52 4198.96 64
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11098.03 7090.82 13797.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14697.36 13385.72 18094.15 13495.44 23783.25 27195.51 13998.05 4592.54 11197.19 28895.55 2097.46 24898.94 66
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7992.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 9897.79 9686.48 21897.42 5097.51 8394.47 6999.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18996.49 15694.56 6499.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21588.45 26197.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18926.89 40494.56 6499.39 4993.57 5799.05 10698.93 68
VPNet93.08 15993.76 14091.03 25398.60 3975.83 33191.51 23395.62 22691.84 10795.74 12997.10 11889.31 17698.32 20085.07 26299.06 10398.93 68
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4693.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
test111190.39 22690.61 22289.74 29298.04 8771.50 36195.59 8079.72 39689.41 16495.94 11798.14 3970.79 33598.81 13588.52 20299.32 6898.90 74
test_0728_THIRD93.26 7197.40 5297.35 9694.69 5999.34 6393.88 4799.42 5298.89 75
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4291.26 12695.12 16395.15 22686.60 21799.50 2193.43 7096.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7392.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
EI-MVSNet92.99 16293.26 16092.19 21092.12 33879.21 28092.32 20294.67 26391.77 11395.24 15995.85 19487.14 20598.49 18391.99 10898.26 19598.86 78
IterMVS-LS93.78 14094.28 12592.27 20796.27 20179.21 28091.87 22496.78 17491.77 11396.57 8997.07 11987.15 20498.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH88.36 1296.59 2797.43 594.07 14098.56 4285.33 18796.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 22894.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4293.43 14893.58 14992.97 18095.34 26081.22 24292.67 18396.49 19487.25 21096.20 10796.37 16887.32 20198.85 12792.39 10198.21 20298.85 81
test_fmvs392.42 18192.40 18092.46 20593.80 30587.28 13693.86 14697.05 15376.86 33596.25 10298.66 1882.87 25191.26 38095.44 2596.83 27298.82 82
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7393.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
VDDNet94.03 13194.27 12793.31 17298.87 2182.36 22895.51 8591.78 31897.19 1296.32 9698.60 2284.24 23898.75 14687.09 22898.83 13798.81 84
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11898.03 7090.42 14896.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11592.42 8493.41 21597.78 6291.21 14097.77 25391.06 13097.06 26198.80 85
WB-MVS89.44 25292.15 18481.32 37697.73 10948.22 40889.73 28587.98 34695.24 3696.05 11396.99 12685.18 23196.95 29982.45 28697.97 22398.78 87
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17395.19 9796.77 17696.64 1997.61 3898.05 4593.23 9198.79 13988.60 20199.04 11198.78 87
v14892.87 16793.29 15691.62 23196.25 20477.72 30491.28 23995.05 24889.69 15995.93 11896.04 18787.34 20098.38 19490.05 16597.99 22198.78 87
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13098.08 5889.46 16396.61 8796.47 15795.85 1899.12 9090.45 14599.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052192.86 16893.57 15090.74 26596.57 17575.50 33394.15 13495.60 22789.38 16595.90 12097.90 6080.39 27797.96 23292.60 9799.68 1898.75 91
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11779.49 27394.86 10797.12 14989.59 16296.87 7497.65 6990.40 16298.34 19989.08 19099.35 6198.75 91
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
lessismore_v093.87 15098.05 8483.77 20880.32 39497.13 6097.91 5877.49 29899.11 9292.62 9698.08 21398.74 94
K. test v393.37 14993.27 15993.66 15798.05 8482.62 22494.35 12586.62 35696.05 2997.51 4398.85 1276.59 31399.65 393.21 7898.20 20498.73 95
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
MVS_030493.92 13693.68 14494.64 11695.94 23085.83 17794.34 12688.14 34392.98 7791.09 28397.68 6686.73 21499.36 5896.64 799.59 2998.72 96
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16890.30 15399.60 2798.72 96
SDMVSNet94.43 11495.02 9892.69 19297.93 9582.88 22291.92 22095.99 21793.65 6595.51 13998.63 2094.60 6396.48 31687.57 21999.35 6198.70 100
sd_testset93.94 13594.39 11992.61 19897.93 9583.24 21393.17 16895.04 24993.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 100
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18597.33 13290.05 15396.77 8096.85 13495.04 4898.56 17792.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17096.69 16684.37 19593.38 16295.13 24784.50 25895.40 14697.55 7991.77 12697.20 28695.59 1897.79 23298.69 103
test250685.42 31884.57 32187.96 32597.81 10266.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16288.09 20999.18 9498.67 104
ECVR-MVScopyleft90.12 23690.16 23190.00 28897.81 10272.68 35595.76 7478.54 39989.04 17295.36 15098.10 4270.51 33698.64 16787.10 22799.18 9498.67 104
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20483.23 21492.66 18498.19 4093.06 7597.49 4497.15 11294.78 5798.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net93.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
test193.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
FMVSNet194.84 9995.13 9493.97 14397.60 11984.29 19795.99 6396.56 18992.38 8597.03 6698.53 2690.12 16698.98 10688.78 19799.16 9798.65 106
EPP-MVSNet93.91 13793.68 14494.59 12198.08 8185.55 18497.44 1294.03 27494.22 5094.94 17196.19 18082.07 26199.57 1487.28 22598.89 12598.65 106
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15296.72 16585.73 17993.65 15495.23 24583.30 26995.13 16297.56 7592.22 11697.17 28995.51 2297.41 25098.64 111
IU-MVS98.51 5086.66 15496.83 17172.74 36295.83 12393.00 8699.29 7498.64 111
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8298.56 1591.84 10796.36 9496.68 14894.37 7099.32 6992.41 10099.05 10698.64 111
casdiffmvspermissive94.32 12094.80 10592.85 18796.05 22081.44 23992.35 20098.05 6591.53 12295.75 12896.80 13793.35 8798.49 18391.01 13398.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17285.23 24494.75 17997.12 11591.85 12499.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP_MVS94.26 12293.93 13495.23 9397.71 11188.12 12294.56 11997.81 9291.74 11593.31 21895.59 20886.93 20998.95 11489.26 18498.51 17398.60 116
plane_prior597.81 9298.95 11489.26 18498.51 17398.60 116
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 5892.67 8195.08 16796.39 16694.77 5899.42 3393.17 8099.44 5098.58 118
tttt051789.81 24688.90 25592.55 20197.00 14879.73 26895.03 10283.65 38089.88 15695.30 15394.79 24353.64 39199.39 4991.99 10898.79 14298.54 119
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9598.22 3799.38 5593.44 6799.31 6998.53 120
test_vis3_rt90.40 22490.03 23591.52 23592.58 32488.95 10390.38 26497.72 10173.30 35797.79 3097.51 8377.05 30587.10 39589.03 19194.89 31998.50 121
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6195.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
test_241102_TWO98.10 5591.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7692.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9196.13 2694.74 18097.23 10591.33 13599.16 8393.25 7798.30 19298.46 125
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19398.13 5190.69 14093.75 20696.25 17898.03 297.02 29792.08 10595.55 30198.45 126
baseline94.26 12294.80 10592.64 19496.08 21880.99 24593.69 15298.04 6990.80 13894.89 17496.32 17193.19 9298.48 18791.68 11998.51 17398.43 127
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 15898.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0588.94 26688.09 27791.50 23692.74 32276.97 31692.80 17895.92 21882.82 28093.65 21095.37 22349.41 39599.13 8890.82 13699.28 7998.40 129
tfpnnormal94.27 12194.87 10392.48 20397.71 11180.88 24794.55 12195.41 24093.70 6196.67 8497.72 6591.40 13498.18 21387.45 22199.18 9498.36 130
VDD-MVS94.37 11694.37 12194.40 13197.49 12686.07 17193.97 14393.28 28894.49 4596.24 10397.78 6287.99 19198.79 13988.92 19399.14 9998.34 131
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12298.05 6590.45 14796.31 9796.76 14092.91 10298.72 15191.19 12899.42 5298.32 132
CNVR-MVS94.58 10994.29 12495.46 8296.94 15189.35 9691.81 22896.80 17389.66 16093.90 20495.44 21692.80 10698.72 15192.74 9298.52 17198.32 132
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16299.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 10394.12 13196.50 4798.00 9094.23 1891.48 23498.17 4690.72 13995.30 15396.47 15787.94 19296.98 29891.41 12697.61 24298.30 135
EPNet89.80 24788.25 27094.45 12983.91 40586.18 16893.87 14587.07 35491.16 13180.64 39394.72 24578.83 28698.89 12085.17 25598.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13098.76 1186.25 22297.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 137
GeoE94.55 11094.68 11394.15 13697.23 13885.11 18994.14 13697.34 13188.71 18195.26 15695.50 21394.65 6199.12 9090.94 13498.40 17998.23 138
NCCC94.08 13093.54 15295.70 7596.49 18389.90 8392.39 19996.91 16590.64 14292.33 26294.60 25090.58 15998.96 11190.21 15997.70 23798.23 138
XXY-MVS92.58 17693.16 16190.84 26297.75 10679.84 26391.87 22496.22 20785.94 22995.53 13897.68 6692.69 10894.48 35783.21 27797.51 24498.21 140
CDPH-MVS92.67 17491.83 19395.18 9696.94 15188.46 11890.70 25397.07 15277.38 33092.34 26195.08 23192.67 10998.88 12185.74 24898.57 16698.20 141
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15698.60 1485.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 142
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
new-patchmatchnet88.97 26490.79 21883.50 37094.28 29055.83 40585.34 36793.56 28386.18 22595.47 14295.73 20483.10 24796.51 31585.40 25298.06 21498.16 145
HQP4-MVS88.81 32098.61 16998.15 146
HQP-MVS92.09 19091.49 20193.88 14996.36 19084.89 19191.37 23597.31 13387.16 21188.81 32093.40 28884.76 23598.60 17186.55 23897.73 23498.14 147
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15295.20 9597.00 15691.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ambc92.98 17996.88 15583.01 22095.92 6896.38 19996.41 9297.48 8588.26 18497.80 24889.96 16798.93 12498.12 149
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16698.36 2285.61 23896.92 7398.02 4995.23 3998.38 19496.69 698.95 12398.09 150
eth_miper_zixun_eth90.72 21490.61 22291.05 25292.04 34176.84 31886.91 34096.67 18285.21 24594.41 18793.92 27379.53 28298.26 20689.76 17197.02 26398.06 151
FMVSNet292.78 17092.73 17192.95 18295.40 25681.98 23194.18 13395.53 23588.63 18296.05 11397.37 9081.31 26998.81 13587.38 22498.67 15798.06 151
OMC-MVS94.22 12593.69 14395.81 6997.25 13791.27 6492.27 20697.40 12387.10 21494.56 18495.42 21793.74 7798.11 21886.62 23598.85 13198.06 151
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15498.45 498.22 3793.26 7197.54 4097.36 9393.12 9599.38 5593.88 4798.68 15598.04 154
PC_three_145275.31 34695.87 12295.75 20392.93 10196.34 32587.18 22698.68 15598.04 154
c3_l91.32 20691.42 20291.00 25692.29 33176.79 31987.52 33096.42 19785.76 23394.72 18293.89 27582.73 25498.16 21590.93 13598.55 16798.04 154
EG-PatchMatch MVS94.54 11194.67 11494.14 13797.87 10086.50 15692.00 21596.74 17888.16 19396.93 7297.61 7293.04 9997.90 23591.60 12198.12 20998.03 157
MVS_111021_HR93.63 14393.42 15594.26 13496.65 16986.96 14689.30 29996.23 20588.36 18993.57 21294.60 25093.45 8297.77 25390.23 15898.38 18398.03 157
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12294.85 5699.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
thisisatest053088.69 27487.52 28592.20 20996.33 19579.36 27592.81 17784.01 37986.44 21993.67 20992.68 30653.62 39299.25 7589.65 17498.45 17798.00 159
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 24997.66 11777.32 30994.33 12787.66 34991.20 12992.99 23495.13 22875.40 31898.28 20277.86 32999.19 9297.99 162
agg_prior287.06 22998.36 18897.98 163
AllTest94.88 9894.51 11796.00 5698.02 8892.17 5095.26 9298.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
MVSTER89.32 25488.75 25791.03 25390.10 37376.62 32190.85 24794.67 26382.27 28795.24 15995.79 19861.09 37898.49 18390.49 14498.26 19597.97 166
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14495.21 9398.10 5591.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
OPU-MVS95.15 9796.84 15989.43 9295.21 9395.66 20693.12 9598.06 22186.28 24498.61 16197.95 167
test_prior94.61 11795.95 22887.23 13797.36 12998.68 16297.93 169
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14698.02 7287.35 20896.22 10597.99 5294.48 6899.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet93.08 15992.50 17794.79 10893.87 30287.99 12595.07 10094.26 27190.64 14287.33 34897.67 6886.89 21198.49 18388.10 20898.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet92.38 18391.99 18893.52 16693.82 30483.46 21091.14 24197.00 15689.81 15786.47 35294.04 26787.90 19399.21 7889.50 17698.27 19497.90 172
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9893.58 3794.09 13896.99 15891.05 13292.40 25695.22 22591.03 14799.25 7592.11 10398.69 15397.90 172
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25194.79 24393.56 7999.49 2493.47 6499.05 10697.89 174
testgi90.38 22791.34 20587.50 33197.49 12671.54 36089.43 29495.16 24688.38 18894.54 18594.68 24792.88 10493.09 37271.60 37297.85 23097.88 175
test_040295.73 6196.22 4094.26 13498.19 7585.77 17893.24 16597.24 14096.88 1697.69 3397.77 6494.12 7399.13 8891.54 12499.29 7497.88 175
miper_lstm_enhance89.90 24489.80 24090.19 28491.37 35777.50 30683.82 38195.00 25084.84 25593.05 23294.96 23576.53 31495.20 35089.96 16798.67 15797.86 177
MCST-MVS92.91 16492.51 17694.10 13997.52 12485.72 18091.36 23897.13 14880.33 30492.91 23894.24 26091.23 13998.72 15189.99 16697.93 22697.86 177
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8798.22 3792.36 8794.11 19298.07 4492.02 12099.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs290.62 21990.40 22891.29 24491.93 34585.46 18592.70 18296.48 19574.44 35094.91 17397.59 7375.52 31790.57 38293.44 6796.56 28097.84 180
test9_res88.16 20798.40 17997.83 181
VNet92.67 17492.96 16291.79 22396.27 20180.15 25291.95 21694.98 25192.19 9494.52 18696.07 18687.43 19997.39 27984.83 26498.38 18397.83 181
diffmvspermissive91.74 19591.93 19091.15 25193.06 31578.17 29588.77 31297.51 11886.28 22192.42 25593.96 27288.04 18997.46 27390.69 14196.67 27897.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet390.78 21390.32 23092.16 21493.03 31779.92 26292.54 18894.95 25286.17 22695.10 16496.01 18969.97 33898.75 14686.74 23198.38 18397.82 183
CPTT-MVS94.74 10294.12 13196.60 4398.15 7793.01 4295.84 7197.66 10389.21 17193.28 22195.46 21488.89 17998.98 10689.80 16998.82 13897.80 185
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10493.38 6995.89 12197.23 10593.35 8797.66 26388.20 20498.66 15997.79 186
cl2289.02 26088.50 26090.59 27089.76 37576.45 32386.62 35094.03 27482.98 27892.65 24592.49 30872.05 33097.53 26888.93 19297.02 26397.78 187
Anonymous20240521192.58 17692.50 17792.83 18896.55 17783.22 21592.43 19691.64 32094.10 5295.59 13696.64 15081.88 26597.50 27085.12 25998.52 17197.77 188
cl____90.65 21790.56 22490.91 26091.85 34676.98 31586.75 34595.36 24285.53 24094.06 19694.89 23777.36 30397.98 23190.27 15598.98 11497.76 189
DIV-MVS_self_test90.65 21790.56 22490.91 26091.85 34676.99 31486.75 34595.36 24285.52 24294.06 19694.89 23777.37 30297.99 23090.28 15498.97 11997.76 189
test1294.43 13095.95 22886.75 15096.24 20489.76 30989.79 17398.79 13997.95 22597.75 191
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16798.07 6185.63 23797.08 6197.35 9690.86 14897.66 26395.70 1698.48 17697.74 192
train_agg92.71 17391.83 19395.35 8496.45 18689.46 9090.60 25696.92 16379.37 31390.49 29194.39 25691.20 14198.88 12188.66 20098.43 17897.72 193
IterMVS-SCA-FT91.65 19791.55 19791.94 21993.89 30179.22 27987.56 32793.51 28491.53 12295.37 14996.62 15178.65 28898.90 11891.89 11294.95 31897.70 194
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25487.06 14296.63 3197.28 13891.82 11094.34 19197.41 8790.60 15898.65 16692.47 9998.11 21097.70 194
PVSNet_BlendedMVS90.35 22989.96 23691.54 23494.81 27278.80 28990.14 27296.93 16179.43 31288.68 32795.06 23286.27 22098.15 21680.27 30698.04 21697.68 196
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14095.41 24089.94 15491.93 27092.13 31790.12 16698.97 11087.68 21897.48 24697.67 197
LFMVS91.33 20591.16 21091.82 22296.27 20179.36 27595.01 10385.61 36796.04 3094.82 17697.06 12072.03 33198.46 18884.96 26398.70 15297.65 198
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28380.24 25089.69 28795.88 21985.77 23293.94 20395.69 20581.99 26292.98 37384.21 27091.30 37597.62 199
CLD-MVS91.82 19391.41 20393.04 17796.37 18883.65 20986.82 34497.29 13684.65 25792.27 26389.67 35292.20 11897.85 24583.95 27299.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28493.73 27993.52 8199.55 1891.81 11499.45 4797.58 201
MDA-MVSNet-bldmvs91.04 20890.88 21491.55 23394.68 28180.16 25185.49 36592.14 31290.41 14994.93 17295.79 19885.10 23296.93 30285.15 25794.19 33997.57 202
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12297.64 10496.94 1596.58 8897.32 10093.07 9898.72 15190.45 14598.84 13297.57 202
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11597.81 9289.22 17095.46 14496.17 18393.42 8599.34 6389.30 18098.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet587.82 28786.56 30491.62 23192.31 33079.81 26693.49 15794.81 25883.26 27091.36 27696.93 12952.77 39397.49 27276.07 34698.03 21797.55 205
CL-MVSNet_self_test90.04 24289.90 23890.47 27295.24 26277.81 30286.60 35192.62 30385.64 23693.25 22593.92 27383.84 24096.06 33079.93 31498.03 21797.53 206
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24294.52 25393.95 7699.49 2493.62 5699.22 8997.51 207
QAPM92.88 16692.77 16793.22 17595.82 23683.31 21196.45 3997.35 13083.91 26493.75 20696.77 13889.25 17798.88 12184.56 26897.02 26397.49 208
Patchmtry90.11 23789.92 23790.66 26790.35 37077.00 31392.96 17392.81 29690.25 15194.74 18096.93 12967.11 34797.52 26985.17 25598.98 11497.46 209
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1852.44 4065.32 40798.25 3792.24 11598.02 22691.85 11399.21 9097.45 210
miper_ehance_all_eth90.48 22190.42 22790.69 26691.62 35376.57 32286.83 34396.18 20983.38 26894.06 19692.66 30782.20 25998.04 22289.79 17097.02 26397.45 210
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7697.31 1195.32 15296.77 13893.08 9799.20 8091.79 11598.16 20697.44 212
D2MVS89.93 24389.60 24590.92 25894.03 29678.40 29288.69 31494.85 25478.96 32193.08 23095.09 23074.57 32096.94 30088.19 20598.96 12197.41 213
PHI-MVS94.34 11993.80 13895.95 5995.65 24791.67 6294.82 10897.86 8687.86 19893.04 23394.16 26491.58 13098.78 14290.27 15598.96 12197.41 213
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19291.93 10094.82 17695.39 22191.99 12197.08 29485.53 25197.96 22497.41 213
SD-MVS95.19 8895.73 6793.55 16196.62 17388.88 10794.67 11298.05 6591.26 12697.25 5896.40 16295.42 2894.36 36192.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 21290.85 21690.63 26995.63 24979.24 27889.81 28392.87 29589.90 15594.39 18896.40 16285.77 22495.27 34973.86 35999.05 10697.39 217
F-COLMAP92.28 18691.06 21195.95 5997.52 12491.90 5693.53 15597.18 14383.98 26388.70 32694.04 26788.41 18398.55 17980.17 31095.99 29297.39 217
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22792.96 4389.48 29297.46 11985.14 24796.23 10495.42 21793.19 9298.08 22090.37 14998.76 14597.38 219
mvs_anonymous90.37 22891.30 20687.58 33092.17 33768.00 37589.84 28294.73 26083.82 26693.22 22797.40 8887.54 19797.40 27887.94 21495.05 31697.34 220
alignmvs93.26 15392.85 16694.50 12595.70 24387.45 13393.45 15995.76 22291.58 12095.25 15892.42 31381.96 26398.72 15191.61 12097.87 22997.33 221
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12096.14 21387.90 12693.36 16397.14 14685.53 24093.90 20495.45 21591.30 13798.59 17389.51 17598.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d91.54 20090.73 22093.99 14195.76 24187.86 12890.83 24893.98 27878.23 32694.02 19996.22 17982.62 25796.83 30786.57 23698.33 18997.29 223
testing383.66 33282.52 33787.08 33495.84 23465.84 38789.80 28477.17 40388.17 19290.84 28688.63 36230.95 41198.11 21884.05 27197.19 25797.28 224
IterMVS90.18 23390.16 23190.21 28293.15 31375.98 32887.56 32792.97 29486.43 22094.09 19396.40 16278.32 29297.43 27587.87 21594.69 32697.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 31994.95 5398.66 16491.45 12597.57 24397.20 226
test_fmvs1_n88.73 27388.38 26389.76 29192.06 34082.53 22592.30 20596.59 18771.14 36992.58 24895.41 22068.55 34189.57 39091.12 12995.66 29997.18 227
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15596.16 21086.26 16692.46 19396.72 17981.69 29395.77 12597.11 11690.83 15097.82 24695.58 1997.99 22197.11 228
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16896.10 21685.66 18292.32 20296.57 18881.32 29695.63 13497.14 11390.19 16497.73 25995.37 2898.03 21797.07 229
ppachtmachnet_test88.61 27588.64 25888.50 31691.76 34870.99 36484.59 37492.98 29379.30 31892.38 25793.53 28679.57 28197.45 27486.50 24097.17 25897.07 229
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20490.95 6990.21 26995.43 23987.91 19593.74 20894.40 25592.88 10496.38 32190.39 14798.28 19397.07 229
HyFIR lowres test87.19 30485.51 31592.24 20897.12 14680.51 24985.03 36996.06 21266.11 39091.66 27392.98 29870.12 33799.14 8675.29 35095.23 31297.07 229
h-mvs3392.89 16591.99 18895.58 7796.97 14990.55 7693.94 14494.01 27789.23 16893.95 20196.19 18076.88 30999.14 8691.02 13195.71 29897.04 233
CANet_DTU89.85 24589.17 24791.87 22092.20 33580.02 25990.79 24995.87 22086.02 22882.53 38391.77 32280.01 27998.57 17685.66 25097.70 23797.01 234
MVS_Test92.57 17893.29 15690.40 27693.53 30875.85 32992.52 18996.96 15988.73 17992.35 25996.70 14790.77 15198.37 19892.53 9895.49 30396.99 235
LCM-MVSNet-Re94.20 12694.58 11693.04 17795.91 23183.13 21893.79 14899.19 392.00 9798.84 598.04 4793.64 7899.02 10381.28 29898.54 16996.96 236
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10397.57 11192.68 7996.20 10793.44 28791.92 12398.78 14289.11 18999.24 8596.92 237
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12394.66 28288.25 12092.05 21296.65 18389.62 16190.08 30091.23 32992.56 11098.60 17186.30 24396.27 28796.90 238
test_fmvsmvis_n_192095.08 9195.40 8194.13 13896.66 16887.75 13093.44 16098.49 1685.57 23998.27 2097.11 11694.11 7497.75 25696.26 1198.72 14896.89 239
114514_t90.51 22089.80 24092.63 19698.00 9082.24 22993.40 16197.29 13665.84 39189.40 31394.80 24286.99 20798.75 14683.88 27398.61 16196.89 239
Effi-MVS+92.79 16992.74 16992.94 18395.10 26483.30 21294.00 14097.53 11591.36 12589.35 31490.65 34194.01 7598.66 16487.40 22395.30 31096.88 241
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21688.77 38685.42 18690.31 26794.38 26770.02 37888.00 33693.30 29073.78 32494.03 36575.96 34896.54 28196.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
hse-mvs292.24 18891.20 20795.38 8396.16 21090.65 7592.52 18992.01 31689.23 16893.95 20192.99 29776.88 30998.69 16091.02 13196.03 29096.81 243
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23175.68 34092.49 25089.45 35578.96 28597.88 23987.86 21697.02 26396.81 243
EIA-MVS92.35 18492.03 18693.30 17395.81 23883.97 20592.80 17898.17 4687.71 20289.79 30887.56 37091.17 14499.18 8287.97 21397.27 25496.77 245
MVP-Stereo90.07 24088.92 25393.54 16396.31 19786.49 15790.93 24695.59 23179.80 30691.48 27495.59 20880.79 27497.39 27978.57 32791.19 37696.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 24188.30 26695.32 8896.09 21790.52 7792.42 19792.05 31582.08 29088.45 33092.86 29965.76 35798.69 16088.91 19496.07 28996.75 247
PAPM_NR91.03 20990.81 21791.68 22996.73 16481.10 24493.72 15196.35 20088.19 19188.77 32492.12 31885.09 23397.25 28382.40 28793.90 34496.68 248
FA-MVS(test-final)91.81 19491.85 19291.68 22994.95 26779.99 26096.00 6293.44 28687.80 19994.02 19997.29 10177.60 29798.45 18988.04 21197.49 24596.61 249
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25378.88 28687.39 33194.02 27679.32 31793.06 23194.02 26980.72 27594.27 36275.16 35193.08 36096.54 250
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18289.69 8692.91 17597.68 10278.02 32792.79 24194.10 26590.85 14997.96 23284.76 26698.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30792.18 30973.71 35588.36 33193.89 27576.86 31196.73 31080.32 30596.81 27396.51 252
thres600view787.66 29087.10 29689.36 29996.05 22073.17 34992.72 18085.31 37091.89 10293.29 22090.97 33363.42 36998.39 19173.23 36296.99 26896.51 252
thres40087.20 30386.52 30689.24 30395.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28196.51 252
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24592.61 30488.04 19494.61 18393.79 27888.08 18797.81 24789.41 17798.39 18296.50 255
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28594.99 17095.11 22982.70 25593.70 36683.33 27593.83 34596.48 256
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28494.88 17595.14 22782.70 25593.61 36783.28 27693.80 34696.46 257
MVSFormer92.18 18992.23 18192.04 21894.74 27780.06 25697.15 1597.37 12488.98 17488.83 31892.79 30277.02 30699.60 996.41 996.75 27696.46 257
jason89.17 25688.32 26491.70 22895.73 24280.07 25588.10 32093.22 28971.98 36590.09 29992.79 30278.53 29198.56 17787.43 22297.06 26196.46 257
jason: jason.
CHOSEN 1792x268887.19 30485.92 31391.00 25697.13 14579.41 27484.51 37595.60 22764.14 39490.07 30194.81 24078.26 29397.14 29273.34 36195.38 30896.46 257
Anonymous2023120688.77 27188.29 26790.20 28396.31 19778.81 28889.56 29093.49 28574.26 35292.38 25795.58 21182.21 25895.43 34472.07 36898.75 14796.34 261
旧先验196.20 20784.17 20294.82 25695.57 21289.57 17497.89 22896.32 262
DELS-MVS92.05 19192.16 18291.72 22694.44 28680.13 25487.62 32497.25 13987.34 20992.22 26493.18 29489.54 17598.73 15089.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft85.34 1590.40 22488.92 25394.85 10596.53 18190.02 8191.58 23296.48 19580.16 30586.14 35492.18 31585.73 22598.25 20776.87 33994.61 32896.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22384.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 265
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31796.23 20576.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 266
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30792.06 26892.17 31678.63 29095.63 33784.77 26594.73 32496.22 267
Fast-Effi-MVS+91.28 20790.86 21592.53 20295.45 25582.53 22589.25 30296.52 19385.00 25189.91 30488.55 36492.94 10098.84 12884.72 26795.44 30596.22 267
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23188.26 33984.84 25572.96 40289.85 34471.27 33497.69 26176.60 34197.62 24196.18 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17496.60 18585.08 25092.44 25493.62 28286.80 21296.35 32386.81 23098.25 19796.18 269
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24383.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 271
pmmvs488.95 26587.70 28392.70 19194.30 28985.60 18387.22 33392.16 31174.62 34989.75 31094.19 26277.97 29596.41 31982.71 28196.36 28596.09 272
MG-MVS89.54 24989.80 24088.76 30994.88 26872.47 35789.60 28892.44 30785.82 23189.48 31295.98 19082.85 25297.74 25881.87 29195.27 31196.08 273
ab-mvs92.40 18292.62 17491.74 22597.02 14781.65 23595.84 7195.50 23686.95 21692.95 23797.56 7590.70 15697.50 27079.63 31797.43 24996.06 274
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31181.22 38978.97 32079.82 39587.56 37061.73 37697.80 24874.30 35690.05 38296.05 275
N_pmnet88.90 26887.25 29093.83 15394.40 28893.81 3584.73 37187.09 35379.36 31593.26 22392.43 31279.29 28491.68 37877.50 33597.22 25696.00 276
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 31981.00 39076.23 33987.98 33787.77 36984.98 23493.35 37062.85 39594.10 34295.98 277
test_vis1_n_192089.45 25189.85 23988.28 32093.59 30776.71 32090.67 25497.78 9779.67 31090.30 29796.11 18476.62 31292.17 37690.31 15293.57 34995.96 278
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 24989.82 30690.07 34366.80 35097.76 25584.56 26894.27 33595.96 278
test_yl90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
DCV-MVSNet90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
PM-MVS93.33 15092.67 17395.33 8696.58 17494.06 2192.26 20792.18 30985.92 23096.22 10596.61 15285.64 22895.99 33290.35 15098.23 19995.93 280
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22393.04 31681.28 24087.17 33586.14 35979.57 31183.65 37388.66 36157.10 38498.18 21387.74 21795.40 30695.90 283
TAMVS90.16 23489.05 24993.49 16896.49 18386.37 16290.34 26692.55 30580.84 30292.99 23494.57 25281.94 26498.20 21073.51 36098.21 20295.90 283
baseline187.62 29287.31 28788.54 31494.71 28074.27 34393.10 17088.20 34186.20 22492.18 26593.04 29573.21 32595.52 33979.32 32185.82 39195.83 285
WTY-MVS86.93 30986.50 30888.24 32194.96 26674.64 33687.19 33492.07 31478.29 32588.32 33291.59 32678.06 29494.27 36274.88 35293.15 35895.80 286
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18397.73 10983.95 20692.14 21097.46 11978.85 32392.35 25994.98 23484.16 23999.08 9386.36 24296.77 27595.79 287
lupinMVS88.34 27987.31 28791.45 23794.74 27780.06 25687.23 33292.27 30871.10 37088.83 31891.15 33077.02 30698.53 18086.67 23496.75 27695.76 288
DP-MVS Recon92.31 18591.88 19193.60 15997.18 14286.87 14791.10 24397.37 12484.92 25392.08 26794.08 26688.59 18098.20 21083.50 27498.14 20895.73 289
FE-MVS89.06 25988.29 26791.36 24094.78 27479.57 27196.77 2890.99 32484.87 25492.96 23696.29 17360.69 38098.80 13880.18 30997.11 26095.71 290
CDS-MVSNet89.55 24888.22 27393.53 16495.37 25986.49 15789.26 30093.59 28179.76 30891.15 28192.31 31477.12 30498.38 19477.51 33497.92 22795.71 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
原ACMM192.87 18696.91 15484.22 20097.01 15576.84 33689.64 31194.46 25488.00 19098.70 15881.53 29698.01 22095.70 292
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33386.65 37553.94 39098.72 15182.56 28397.40 25195.67 293
ETV-MVS92.99 16292.74 16993.72 15695.86 23386.30 16592.33 20197.84 8991.70 11892.81 23986.17 38092.22 11699.19 8188.03 21297.73 23495.66 294
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25296.17 21087.70 20395.26 15696.29 17392.54 11196.45 31881.77 29298.77 14495.66 294
PCF-MVS84.52 1789.12 25787.71 28293.34 17196.06 21985.84 17686.58 35297.31 13368.46 38493.61 21193.89 27587.51 19898.52 18167.85 38598.11 21095.66 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30596.39 19873.21 35893.27 22296.28 17582.16 26096.39 32077.55 33398.80 14195.62 297
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29483.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 298
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19394.53 28584.10 20395.70 7597.03 15482.44 28691.14 28296.42 16088.47 18298.38 19485.95 24697.47 24795.55 299
sss87.23 30186.82 29988.46 31893.96 29777.94 29786.84 34292.78 29977.59 32987.61 34591.83 32178.75 28791.92 37777.84 33094.20 33795.52 300
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28489.45 29395.44 23775.29 34793.23 22695.65 20771.58 33290.23 38688.05 21093.55 35195.44 301
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32590.98 32572.71 36384.46 36692.45 30968.08 34396.48 31670.58 37983.97 39395.38 302
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32585.13 37472.71 36384.46 36692.45 30968.08 34392.33 37570.58 37983.97 39395.38 302
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26782.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 304
tt080595.42 7695.93 5793.86 15198.75 3288.47 11797.68 994.29 26996.48 2195.38 14793.63 28194.89 5597.94 23495.38 2796.92 26995.17 305
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29785.63 36677.24 33387.62 34495.03 23361.00 37997.30 28279.26 32291.09 37895.16 306
1112_ss88.42 27787.41 28691.45 23796.69 16680.99 24589.72 28696.72 17973.37 35687.00 35090.69 33977.38 30198.20 21081.38 29793.72 34795.15 307
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 28981.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 308
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34188.10 36744.08 40396.90 30464.23 39196.36 28595.14 308
BH-RMVSNet90.47 22290.44 22690.56 27195.21 26378.65 29189.15 30393.94 27988.21 19092.74 24394.22 26186.38 21897.88 23978.67 32695.39 30795.14 308
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16377.75 30387.53 32996.25 20369.73 38086.47 35293.61 28375.67 31697.88 23979.95 31293.20 35695.11 311
MIMVSNet87.13 30686.54 30588.89 30796.05 22076.11 32694.39 12488.51 33781.37 29588.27 33396.75 14272.38 32895.52 33965.71 39095.47 30495.03 312
Gipumacopyleft95.31 8495.80 6593.81 15497.99 9390.91 7096.42 4297.95 8196.69 1791.78 27198.85 1291.77 12695.49 34191.72 11799.08 10295.02 313
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++93.25 15593.88 13591.37 23996.34 19482.81 22393.11 16997.74 9989.37 16694.08 19495.29 22490.40 16296.35 32390.35 15098.25 19794.96 314
test_vis1_n89.01 26289.01 25189.03 30492.57 32582.46 22792.62 18696.06 21273.02 36090.40 29495.77 20274.86 31989.68 38890.78 13894.98 31794.95 315
iter_conf05_1188.91 26788.32 26490.66 26793.95 29978.09 29686.98 33793.06 29279.35 31687.64 34289.80 34680.25 27898.96 11185.18 25398.69 15394.95 315
bld_raw_dy_0_6490.86 21090.99 21290.47 27293.95 29977.88 30193.99 14298.93 777.75 32897.03 6690.61 34281.82 26698.58 17585.18 25399.61 2694.95 315
MSDG90.82 21190.67 22191.26 24594.16 29183.08 21986.63 34996.19 20890.60 14491.94 26991.89 32089.16 17895.75 33680.96 30394.51 32994.95 315
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24190.43 26395.72 22470.55 37591.70 27294.63 24868.13 34289.42 39190.59 14295.34 30994.94 319
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29785.13 36081.64 39677.44 29995.00 35185.94 24794.12 34094.91 320
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29785.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
无先验89.94 27895.75 22370.81 37398.59 17381.17 30194.81 322
mvsany_test389.11 25888.21 27491.83 22191.30 35890.25 7988.09 32178.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23694.20 33794.80 323
thres100view90087.35 29986.89 29888.72 31096.14 21373.09 35193.00 17285.31 37092.13 9593.26 22390.96 33463.42 36998.28 20271.27 37496.54 28194.79 324
tfpn200view987.05 30786.52 30688.67 31195.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28194.79 324
GSMVS94.75 326
sam_mvs166.64 35394.75 326
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29488.11 34482.26 28888.71 32592.83 30078.65 28897.59 26679.61 31893.30 35494.75 326
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29887.88 32392.49 30675.42 34392.57 24993.59 28480.44 27694.24 36481.28 29892.75 36394.69 329
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25887.34 35278.87 32287.22 34992.74 30466.91 34996.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10690.00 33257.17 40095.71 13297.37 9064.77 36397.68 26292.67 9594.37 33294.52 331
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29764.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32194.60 35669.87 38193.69 34894.46 332
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27278.80 28986.64 34896.93 16174.67 34888.68 32789.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
CNLPA91.72 19691.20 20793.26 17496.17 20991.02 6791.14 24195.55 23490.16 15290.87 28593.56 28586.31 21994.40 36079.92 31697.12 25994.37 334
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17471.01 37186.89 35185.91 38181.35 26896.94 30083.09 27895.60 30094.35 335
DPM-MVS89.35 25388.40 26292.18 21396.13 21584.20 20186.96 33996.15 21175.40 34487.36 34791.55 32783.30 24598.01 22782.17 29096.62 27994.32 336
MAR-MVS90.32 23188.87 25694.66 11594.82 27191.85 5794.22 13294.75 25980.91 29987.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28292.52 18992.81 29673.08 35989.10 31596.93 12967.11 34797.64 26588.80 19692.70 36494.08 338
RPMNet90.31 23290.14 23490.81 26491.01 36178.93 28292.52 18998.12 5291.91 10189.10 31596.89 13268.84 34099.41 3990.17 16092.70 36494.08 338
MDTV_nov1_ep13_2view42.48 41188.45 31867.22 38783.56 37566.80 35072.86 36594.06 340
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27682.85 38084.78 38862.86 37293.49 36882.85 27994.86 32094.03 341
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
新几何193.17 17697.16 14387.29 13594.43 26667.95 38591.29 27794.94 23686.97 20898.23 20881.06 30297.75 23393.98 343
test22296.95 15085.27 18888.83 31093.61 28065.09 39390.74 28894.85 23984.62 23797.36 25293.91 344
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26287.95 33894.71 24676.95 30884.36 40164.07 39298.09 21293.89 345
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 28986.69 35585.73 23489.81 30792.83 30065.24 36191.04 38177.82 33295.78 29793.88 346
Patchmatch-RL test88.81 27088.52 25989.69 29495.33 26179.94 26186.22 35792.71 30078.46 32495.80 12494.18 26366.25 35595.33 34789.22 18698.53 17093.78 347
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27688.13 33586.61 37662.86 37289.10 39366.24 38990.29 38193.77 348
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 25894.58 28481.21 24391.10 24393.41 28777.03 33493.41 21593.99 27183.23 24697.80 24879.93 31494.80 32393.74 349
testdata91.03 25396.87 15682.01 23094.28 27071.55 36692.46 25295.42 21785.65 22797.38 28182.64 28297.27 25493.70 350
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28166.43 38887.64 34289.20 35879.33 28385.38 39981.59 29589.98 38393.66 351
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 30982.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27287.90 34775.54 34283.93 37291.63 32566.79 35295.36 34581.21 30081.54 39993.57 356
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21486.09 36092.20 9389.05 31797.16 11164.15 36596.37 32289.21 18792.98 36293.37 357
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26586.47 35770.42 37683.52 37693.23 29361.18 37796.85 30677.21 33788.26 38793.34 358
thres20085.85 31585.18 31687.88 32894.44 28672.52 35689.08 30486.21 35888.57 18591.44 27588.40 36564.22 36498.00 22868.35 38395.88 29693.12 359
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29894.02 13991.58 32175.68 34083.64 37493.64 28077.40 30097.42 27671.70 37192.07 37193.05 362
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26771.34 40577.31 33285.80 35691.30 32859.38 38192.70 37479.99 31182.34 39892.96 363
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24088.35 33882.87 27985.21 35890.96 33465.24 36196.75 30979.60 32085.25 39292.90 364
BH-untuned90.68 21690.90 21390.05 28795.98 22679.57 27190.04 27594.94 25387.91 19594.07 19593.00 29687.76 19497.78 25279.19 32395.17 31392.80 365
AdaColmapbinary91.63 19891.36 20492.47 20495.56 25286.36 16392.24 20996.27 20288.88 17889.90 30592.69 30591.65 12998.32 20077.38 33697.64 24092.72 366
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20288.17 34256.15 40190.64 29095.85 19467.97 34596.69 31188.78 19790.52 38092.56 367
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26085.36 36965.82 39282.05 38692.44 31157.94 38396.69 31170.71 37888.49 38692.56 367
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 28969.47 38176.13 40089.84 34572.15 32997.23 28453.27 40289.02 38492.37 369
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25577.66 40154.99 40283.30 37897.57 7477.89 29690.50 38466.86 38895.54 30291.97 371
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33895.60 22780.88 30087.83 33988.62 36391.04 14698.81 13582.51 28594.38 33191.93 372
PS-MVSNAJ88.86 26988.99 25288.48 31794.88 26874.71 33586.69 34795.60 22780.88 30087.83 33987.37 37390.77 15198.82 13082.52 28494.37 33291.93 372
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30088.23 34062.27 39781.90 38889.66 35362.70 37495.29 34871.72 37080.60 40091.86 374
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38895.45 34373.19 36376.68 40191.82 375
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22189.51 29187.37 35184.38 26185.37 35785.08 38772.44 32786.59 39668.05 38491.03 37991.33 376
JIA-IIPM85.08 32183.04 33391.19 25087.56 39186.14 16989.40 29684.44 37888.98 17482.20 38497.95 5356.82 38696.15 32676.55 34383.45 39591.30 377
TR-MVS87.70 28887.17 29289.27 30194.11 29379.26 27788.69 31491.86 31781.94 29190.69 28989.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21894.10 27374.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34684.65 40067.44 38691.90 37390.78 380
PatchMatch-RL89.18 25588.02 27992.64 19495.90 23292.87 4588.67 31691.06 32380.34 30390.03 30291.67 32483.34 24494.42 35976.35 34494.84 32290.64 381
API-MVS91.52 20191.61 19691.26 24594.16 29186.26 16694.66 11394.82 25691.17 13092.13 26691.08 33290.03 17197.06 29679.09 32497.35 25390.45 382
BH-w/o87.21 30287.02 29787.79 32994.77 27577.27 31087.90 32293.21 29181.74 29289.99 30388.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
PMVScopyleft87.21 1494.97 9495.33 8593.91 14898.97 1797.16 295.54 8495.85 22196.47 2293.40 21797.46 8695.31 3595.47 34286.18 24598.78 14389.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11067.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38595.36 34569.49 38294.72 32588.79 386
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
test_f86.65 31187.13 29485.19 35690.28 37186.11 17086.52 35391.66 31969.76 37995.73 13197.21 10969.51 33981.28 40289.15 18894.40 33088.17 388
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 28091.59 37975.99 34793.09 35987.94 389
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17381.11 38975.03 40470.80 37488.57 32994.63 24883.08 24887.38 39480.39 30486.57 39087.21 390
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30878.70 39882.69 28181.64 39079.46 39875.93 31585.74 39848.78 40482.85 39786.76 391
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21894.16 27259.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27272.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10565.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
FPMVS84.50 32683.28 33188.16 32396.32 19694.49 1685.76 36385.47 36883.09 27585.20 35994.26 25963.79 36886.58 39763.72 39391.88 37483.40 395
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20183.25 37983.01 39462.22 37589.17 39277.15 33894.31 33482.93 396
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 19981.66 38981.73 39562.89 37189.84 38775.79 34994.65 32782.71 397
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32689.59 38956.68 39960.05 40482.57 398
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33678.00 40068.94 38277.53 39897.26 10271.45 33394.62 35563.28 39488.74 38578.55 400
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18090.67 32991.65 11998.68 1197.64 7096.06 1577.53 40359.84 39799.41 5670.73 401
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38746.64 40638.45 40670.07 40250.30 402
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38222.11 40744.50 40568.35 40313.00 403
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2330.00 4090.00 41091.15 33093.43 840.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3390.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS61.25 39974.55 353
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
test_one_060198.26 7087.14 14098.18 4294.25 4896.99 7097.36 9395.13 43
eth-test20.00 414
eth-test0.00 414
ZD-MVS97.23 13890.32 7897.54 11384.40 26094.78 17895.79 19892.76 10799.39 4988.72 19998.40 179
test_241102_ONE98.51 5086.97 14498.10 5591.85 10497.63 3597.03 12296.48 1098.95 114
9.1494.81 10497.49 12694.11 13798.37 2187.56 20795.38 14796.03 18894.66 6099.08 9390.70 14098.97 119
save fliter97.46 12988.05 12492.04 21397.08 15187.63 205
test072698.51 5086.69 15295.34 8898.18 4291.85 10497.63 3597.37 9095.58 24
test_part298.21 7489.41 9396.72 81
sam_mvs66.41 354
MTGPAbinary97.62 106
test_post190.21 2695.85 40865.36 35996.00 33179.61 318
test_post6.07 40765.74 35895.84 335
patchmatchnet-post91.71 32366.22 35697.59 266
MTMP94.82 10854.62 410
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
TEST996.45 18689.46 9090.60 25696.92 16379.09 31990.49 29194.39 25691.31 13698.88 121
test_896.37 18889.14 10090.51 25996.89 16679.37 31390.42 29394.36 25891.20 14198.82 130
agg_prior96.20 20788.89 10696.88 16790.21 29898.78 142
test_prior489.91 8290.74 251
test_prior290.21 26989.33 16790.77 28794.81 24090.41 16188.21 20398.55 167
旧先验290.00 27768.65 38392.71 24496.52 31485.15 257
新几何290.02 276
原ACMM289.34 297
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata188.96 30688.44 187
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 209
plane_prior495.59 208
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 11991.74 115
plane_prior197.38 131
plane_prior88.12 12293.01 17188.98 17498.06 214
n20.00 415
nn0.00 415
door-mid92.13 313
test1196.65 183
door91.26 322
HQP5-MVS84.89 191
HQP-NCC96.36 19091.37 23587.16 21188.81 320
ACMP_Plane96.36 19091.37 23587.16 21188.81 320
BP-MVS86.55 238
HQP3-MVS97.31 13397.73 234
HQP2-MVS84.76 235
NP-MVS96.82 16187.10 14193.40 288
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31387.41 35073.99 35384.96 36494.01 27065.25 36095.53 33878.02 32893.16 357
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 157