This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PS-CasMVS96.69 2097.43 594.49 12299.13 684.09 19396.61 3297.97 7297.91 598.64 1398.13 3795.24 3699.65 393.39 5999.84 399.72 2
CP-MVSNet96.19 4596.80 1694.38 12798.99 1683.82 19696.31 5097.53 10897.60 798.34 1997.52 7091.98 11499.63 693.08 7299.81 899.70 3
FC-MVSNet-test95.32 7895.88 5893.62 14998.49 5881.77 21995.90 6998.32 2093.93 5397.53 4097.56 6788.48 16899.40 4592.91 7799.83 599.68 4
PEN-MVS96.69 2097.39 894.61 11299.16 484.50 18596.54 3498.05 5998.06 498.64 1398.25 3395.01 4899.65 392.95 7699.83 599.68 4
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15596.78 2798.08 5397.42 998.48 1697.86 5591.76 11899.63 694.23 2999.84 399.66 6
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 11788.98 16998.26 2198.86 1093.35 8199.60 996.41 499.45 4599.66 6
v7n96.82 997.31 1095.33 8698.54 4886.81 14396.83 2398.07 5696.59 2098.46 1798.43 2992.91 9699.52 1996.25 699.76 1099.65 8
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3596.95 1495.46 13199.23 493.45 7699.57 1495.34 1799.89 299.63 9
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18496.51 3597.94 7898.14 398.67 1298.32 3195.04 4599.69 293.27 6499.82 799.62 10
FIs94.90 9395.35 7993.55 15298.28 6981.76 22095.33 9098.14 4593.05 7197.07 5997.18 9887.65 18299.29 6891.72 10699.69 1499.61 11
RRT_MVS95.41 7495.20 8896.05 5598.86 2288.92 10197.49 1194.48 25193.12 6897.94 2698.54 2281.19 25599.63 695.48 1299.69 1499.60 12
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 12997.70 897.54 10698.16 298.94 299.33 297.84 499.08 9290.73 12899.73 1399.59 13
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11295.57 8497.88 7988.72 17598.81 698.86 1090.77 13999.60 995.43 1599.53 3699.57 14
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10187.68 19998.45 1898.77 1594.20 6799.50 2196.70 399.40 5599.53 15
ANet_high94.83 9696.28 3790.47 25996.65 15973.16 33394.33 12798.74 1096.39 2498.09 2498.93 893.37 8098.70 15790.38 13799.68 1899.53 15
Anonymous2023121196.60 2597.13 1295.00 9697.46 12686.35 15997.11 1998.24 3097.58 898.72 898.97 793.15 8899.15 8293.18 6799.74 1299.50 17
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6794.15 4898.93 399.07 588.07 17599.57 1495.86 999.69 1499.46 18
pmmvs696.80 1297.36 995.15 9399.12 887.82 12596.68 3097.86 8096.10 2798.14 2399.28 397.94 398.21 20491.38 11699.69 1499.42 19
v1094.68 10195.27 8592.90 17596.57 16580.15 23994.65 11597.57 10490.68 13597.43 4698.00 4588.18 17299.15 8294.84 1999.55 3599.41 20
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10187.57 20198.80 798.90 996.50 999.59 1396.15 799.47 4199.40 21
v894.65 10295.29 8392.74 18096.65 15979.77 25494.59 11697.17 13791.86 9797.47 4597.93 4888.16 17399.08 9294.32 2699.47 4199.38 22
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12693.75 14697.86 8095.96 3197.48 4497.14 10195.33 3299.44 2890.79 12699.76 1099.38 22
nrg03096.32 4096.55 2595.62 7697.83 9988.55 11195.77 7498.29 2692.68 7398.03 2597.91 5295.13 4098.95 11293.85 3799.49 4099.36 24
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11491.25 12297.49 4298.14 3583.49 22499.45 2695.52 1199.66 2199.36 24
WR-MVS93.49 13293.72 12992.80 17997.57 11980.03 24590.14 25795.68 21593.70 5896.62 8095.39 20487.21 19099.04 10087.50 20699.64 2499.33 26
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11586.96 21098.71 1098.72 1795.36 3199.56 1795.92 899.45 4599.32 27
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16896.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet95.35 7695.21 8695.76 7197.69 11188.59 10992.26 19597.84 8394.91 3896.80 7395.78 18490.42 14899.41 3891.60 11099.58 3299.29 29
DU-MVS95.28 8295.12 9195.75 7297.75 10488.59 10992.58 17797.81 8693.99 5096.80 7395.90 17590.10 15599.41 3891.60 11099.58 3299.26 30
NR-MVSNet95.28 8295.28 8495.26 8997.75 10487.21 13395.08 10097.37 11793.92 5597.65 3395.90 17590.10 15599.33 6690.11 15099.66 2199.26 30
Baseline_NR-MVSNet94.47 10895.09 9392.60 18798.50 5780.82 23592.08 19996.68 17393.82 5696.29 9398.56 2190.10 15597.75 24990.10 15299.66 2199.24 32
v192192093.26 13993.61 13492.19 19896.04 21078.31 27991.88 21097.24 13385.17 23596.19 10396.19 16486.76 20099.05 9794.18 3098.84 12699.22 33
v119293.49 13293.78 12792.62 18696.16 19879.62 25691.83 21497.22 13586.07 22096.10 10696.38 15187.22 18999.02 10294.14 3198.88 12199.22 33
v124093.29 13793.71 13092.06 20596.01 21177.89 28591.81 21597.37 11785.12 23796.69 7796.40 14686.67 20199.07 9694.51 2298.76 13999.22 33
dcpmvs_293.96 12495.01 9490.82 25197.60 11674.04 32893.68 14998.85 789.80 15297.82 2897.01 11091.14 13599.21 7690.56 13298.59 15599.19 36
v14419293.20 14493.54 13892.16 20296.05 20678.26 28091.95 20497.14 13984.98 24195.96 10896.11 16887.08 19399.04 10093.79 3898.84 12699.17 37
UniMVSNet (Re)95.32 7895.15 8995.80 7097.79 10288.91 10292.91 16598.07 5693.46 6296.31 9195.97 17490.14 15299.34 6192.11 9299.64 2499.16 38
SixPastTwentyTwo94.91 9295.21 8693.98 13698.52 5083.19 20495.93 6794.84 24194.86 3998.49 1598.74 1681.45 24999.60 994.69 2099.39 5699.15 39
v2v48293.29 13793.63 13392.29 19496.35 18278.82 27391.77 21796.28 19288.45 18195.70 12496.26 16186.02 20998.90 11693.02 7398.81 13499.14 40
v114493.50 13193.81 12592.57 18896.28 18879.61 25791.86 21396.96 15286.95 21195.91 11296.32 15587.65 18298.96 11093.51 4898.88 12199.13 41
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1392.35 8295.95 10996.41 14596.71 899.42 3293.99 3499.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
patch_mono-292.46 16692.72 15791.71 21596.65 15978.91 27188.85 28997.17 13783.89 25192.45 23796.76 12489.86 15997.09 27890.24 14598.59 15599.12 43
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15798.32 2087.89 19296.86 7097.38 7895.55 2599.39 4895.47 1399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16193.73 5797.87 2798.49 2690.73 14399.05 9786.43 22799.60 2699.10 47
VPA-MVSNet95.14 8695.67 6893.58 15197.76 10383.15 20594.58 11897.58 10393.39 6397.05 6298.04 4393.25 8498.51 18089.75 16099.59 2899.08 48
TransMVSNet (Re)95.27 8496.04 5192.97 16998.37 6581.92 21895.07 10196.76 17093.97 5297.77 3098.57 2095.72 1997.90 22988.89 18399.23 8299.08 48
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9192.73 7293.48 19996.72 13094.23 6699.42 3291.99 9799.29 7099.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set94.35 11194.27 11894.59 11692.46 30685.87 17092.42 18694.69 24793.67 6196.13 10495.84 17991.20 13198.86 12493.78 3998.23 18999.03 51
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3792.26 8596.33 8996.84 12095.10 4399.40 4593.47 5299.33 6299.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7392.35 8295.57 12796.61 13694.93 5199.41 3893.78 3999.15 9499.00 53
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2391.40 11895.76 11896.87 11795.26 3599.45 2692.77 7899.21 8699.00 53
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 9994.46 4496.29 9396.94 11293.56 7399.37 5694.29 2899.42 5098.99 55
pm-mvs195.43 7195.94 5493.93 14098.38 6385.08 18195.46 8797.12 14291.84 10197.28 5398.46 2795.30 3497.71 25190.17 14899.42 5098.99 55
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9292.59 7695.47 12996.68 13294.50 6299.42 3293.10 7099.26 7898.99 55
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5398.46 2794.62 5998.84 12794.64 2199.53 3698.99 55
EI-MVSNet-Vis-set94.36 11094.28 11694.61 11292.55 30585.98 16792.44 18494.69 24793.70 5896.12 10595.81 18091.24 12898.86 12493.76 4298.22 19198.98 59
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4491.74 10995.34 13796.36 15395.68 2099.44 2894.41 2599.28 7598.97 60
IS-MVSNet94.49 10794.35 11494.92 9898.25 7386.46 15497.13 1894.31 25496.24 2596.28 9596.36 15382.88 23299.35 5888.19 19399.52 3998.96 61
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6490.82 13197.15 5696.85 11896.25 1499.00 10493.10 7099.33 6298.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7392.26 8595.28 14196.57 13895.02 4799.41 3893.63 4399.11 9798.94 63
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9086.48 21397.42 4897.51 7294.47 6499.29 6893.55 4799.29 7098.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17496.49 14094.56 6099.39 4893.57 4599.05 10298.93 64
X-MVStestdata90.70 20188.45 24597.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17426.89 37494.56 6099.39 4893.57 4599.05 10298.93 64
VPNet93.08 14593.76 12891.03 24198.60 3975.83 31491.51 22095.62 21691.84 10195.74 12097.10 10389.31 16398.32 19585.07 24499.06 9998.93 64
APDe-MVS96.46 3196.64 2195.93 6297.68 11289.38 9596.90 2298.41 1692.52 7797.43 4697.92 5195.11 4299.50 2194.45 2399.30 6798.92 68
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4193.11 6996.48 8497.36 8296.92 699.34 6194.31 2799.38 5798.92 68
test111190.39 21290.61 20589.74 27898.04 8871.50 34495.59 8179.72 36989.41 15995.94 11098.14 3570.79 31298.81 13488.52 19099.32 6498.90 70
test_0728_THIRD93.26 6697.40 4997.35 8594.69 5699.34 6193.88 3599.42 5098.89 71
MSP-MVS95.34 7794.63 10997.48 1498.67 3394.05 2396.41 4398.18 3791.26 12095.12 14895.15 21086.60 20399.50 2193.43 5896.81 25698.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6792.08 9095.74 12096.28 15995.22 3799.42 3293.17 6899.06 9998.88 73
EI-MVSNet92.99 14893.26 14692.19 19892.12 31379.21 26792.32 19194.67 24991.77 10795.24 14595.85 17787.14 19298.49 18191.99 9798.26 18598.86 74
IterMVS-LS93.78 12794.28 11692.27 19596.27 18979.21 26791.87 21196.78 16791.77 10796.57 8397.07 10487.15 19198.74 14891.99 9799.03 10898.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH88.36 1296.59 2797.43 594.07 13498.56 4285.33 17896.33 4798.30 2394.66 4098.72 898.30 3297.51 598.00 22294.87 1899.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4293.43 13493.58 13592.97 16995.34 24381.22 22992.67 17396.49 18587.25 20596.20 10196.37 15287.32 18898.85 12692.39 8998.21 19298.85 77
test_fmvs392.42 16792.40 16592.46 19393.80 28787.28 13193.86 14397.05 14676.86 30896.25 9698.66 1882.87 23391.26 35395.44 1496.83 25598.82 78
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6793.34 6596.64 7996.57 13894.99 4999.36 5793.48 5199.34 6098.82 78
Skip Steuart: Steuart Systems R&D Blog.
bld_raw_dy_0_6494.27 11494.15 12094.65 11198.55 4586.28 16195.80 7395.55 22488.41 18397.09 5898.08 4078.69 26998.87 12395.63 1099.53 3698.81 80
VDDNet94.03 12394.27 11893.31 16198.87 2182.36 21495.51 8691.78 30497.19 1296.32 9098.60 1984.24 22098.75 14587.09 21498.83 13198.81 80
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6490.42 14296.37 8797.35 8595.68 2099.25 7394.44 2499.34 6098.80 82
RPSCF95.58 6694.89 9797.62 797.58 11896.30 795.97 6697.53 10892.42 7893.41 20097.78 5691.21 13097.77 24691.06 11997.06 24498.80 82
Anonymous2024052995.50 6895.83 6294.50 12097.33 13185.93 16895.19 9896.77 16996.64 1997.61 3798.05 4293.23 8598.79 13888.60 18999.04 10798.78 84
v14892.87 15393.29 14291.62 21996.25 19277.72 28891.28 22695.05 23589.69 15395.93 11196.04 17087.34 18798.38 19090.05 15397.99 21098.78 84
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13098.08 5389.46 15896.61 8196.47 14195.85 1899.12 8990.45 13499.56 3498.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052192.86 15493.57 13690.74 25396.57 16575.50 31694.15 13395.60 21789.38 16095.90 11397.90 5480.39 25997.96 22692.60 8599.68 1898.75 87
KD-MVS_self_test94.10 12194.73 10492.19 19897.66 11479.49 26094.86 10897.12 14289.59 15796.87 6997.65 6290.40 15098.34 19489.08 17899.35 5998.75 87
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2795.51 3496.99 6697.05 10695.63 2299.39 4893.31 6198.88 12198.75 87
lessismore_v093.87 14398.05 8583.77 19780.32 36797.13 5797.91 5277.49 28099.11 9192.62 8498.08 20398.74 90
K. test v393.37 13593.27 14593.66 14898.05 8582.62 21094.35 12686.62 33696.05 2997.51 4198.85 1276.59 29399.65 393.21 6698.20 19498.73 91
MSC_two_6792asdad95.90 6596.54 16889.57 8896.87 16199.41 3894.06 3299.30 6798.72 92
No_MVS95.90 6596.54 16889.57 8896.87 16199.41 3894.06 3299.30 6798.72 92
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2297.52 7096.90 798.62 16790.30 14199.60 2698.72 92
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17597.33 12590.05 14796.77 7596.85 11895.04 4598.56 17592.77 7899.06 9998.70 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250685.42 30084.57 30287.96 30997.81 10066.53 36296.14 5856.35 37989.04 16793.55 19898.10 3842.88 38198.68 16188.09 19799.18 9098.67 96
ECVR-MVScopyleft90.12 22290.16 21490.00 27497.81 10072.68 33895.76 7578.54 37189.04 16795.36 13698.10 3870.51 31398.64 16687.10 21399.18 9098.67 96
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15596.25 19283.23 20292.66 17498.19 3593.06 7097.49 4297.15 10094.78 5498.71 15692.27 9098.72 14298.65 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net93.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18088.63 17795.10 14998.53 2381.31 25198.98 10586.74 21798.38 17398.65 98
test193.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18088.63 17795.10 14998.53 2381.31 25198.98 10586.74 21798.38 17398.65 98
FMVSNet194.84 9595.13 9093.97 13797.60 11684.29 18695.99 6396.56 18092.38 7997.03 6398.53 2390.12 15398.98 10588.78 18599.16 9398.65 98
EPP-MVSNet93.91 12593.68 13294.59 11698.08 8285.55 17597.44 1294.03 26094.22 4794.94 15696.19 16482.07 24499.57 1487.28 21198.89 11998.65 98
IU-MVS98.51 5186.66 14996.83 16472.74 33295.83 11693.00 7499.29 7098.64 103
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10196.36 8896.68 13294.37 6599.32 6792.41 8899.05 10298.64 103
casdiffmvspermissive94.32 11394.80 10092.85 17796.05 20681.44 22692.35 18998.05 5991.53 11695.75 11996.80 12193.35 8198.49 18191.01 12298.32 18198.64 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + MP.94.96 9194.75 10295.57 7898.86 2288.69 10596.37 4496.81 16585.23 23394.75 16497.12 10291.85 11699.40 4593.45 5498.33 17998.62 106
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP_MVS94.26 11693.93 12395.23 9197.71 10888.12 11894.56 12097.81 8691.74 10993.31 20395.59 19086.93 19698.95 11289.26 17298.51 16498.60 107
plane_prior597.81 8698.95 11289.26 17298.51 16498.60 107
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5392.67 7595.08 15296.39 15094.77 5599.42 3293.17 6899.44 4898.58 109
tttt051789.81 23288.90 23992.55 18997.00 14279.73 25595.03 10383.65 35889.88 15095.30 13994.79 22753.64 36999.39 4891.99 9798.79 13698.54 110
test_0728_SECOND94.88 10098.55 4586.72 14695.20 9698.22 3299.38 5493.44 5599.31 6598.53 111
test_vis3_rt90.40 21090.03 21991.52 22392.58 30388.95 10090.38 24997.72 9473.30 32797.79 2997.51 7277.05 28687.10 36789.03 17994.89 30098.50 112
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5695.17 3596.82 7296.73 12995.09 4499.43 3192.99 7598.71 14398.50 112
test_241102_TWO98.10 5091.95 9297.54 3897.25 9195.37 2999.35 5893.29 6299.25 7998.49 114
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7092.35 8295.63 12596.47 14195.37 2999.27 7293.78 3999.14 9598.48 115
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15590.79 7396.30 5497.82 8596.13 2694.74 16597.23 9391.33 12599.16 8193.25 6598.30 18298.46 116
XVG-OURS-SEG-HR95.38 7595.00 9596.51 4698.10 8194.07 2092.46 18398.13 4690.69 13493.75 19196.25 16298.03 297.02 28192.08 9495.55 28398.45 117
baseline94.26 11694.80 10092.64 18396.08 20480.99 23293.69 14898.04 6390.80 13294.89 15996.32 15593.19 8698.48 18591.68 10898.51 16498.43 118
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2392.37 8097.75 3196.95 11195.14 3999.51 2091.74 10599.28 7598.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0588.94 25088.09 25991.50 22492.74 30276.97 30092.80 16895.92 20882.82 26393.65 19595.37 20649.41 37399.13 8690.82 12599.28 7598.40 120
tfpnnormal94.27 11494.87 9892.48 19197.71 10880.88 23494.55 12295.41 22993.70 5896.67 7897.72 5991.40 12498.18 20887.45 20799.18 9098.36 121
VDD-MVS94.37 10994.37 11394.40 12697.49 12386.07 16693.97 14093.28 27494.49 4396.24 9797.78 5687.99 17898.79 13888.92 18199.14 9598.34 122
XVG-ACMP-BASELINE95.68 6295.34 8096.69 4198.40 6193.04 4194.54 12398.05 5990.45 14196.31 9196.76 12492.91 9698.72 15091.19 11799.42 5098.32 123
CNVR-MVS94.58 10494.29 11595.46 8296.94 14589.35 9691.81 21596.80 16689.66 15493.90 18995.44 19992.80 10098.72 15092.74 8098.52 16298.32 123
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2096.69 1796.86 7097.56 6795.48 2698.77 14490.11 15099.44 4898.31 125
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 9994.12 12196.50 4798.00 9194.23 1891.48 22198.17 4190.72 13395.30 13996.47 14187.94 17996.98 28291.41 11597.61 22898.30 126
EPNet89.80 23388.25 25294.45 12483.91 37586.18 16393.87 14287.07 33491.16 12580.64 36394.72 22978.83 26798.89 11885.17 23798.89 11998.28 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf_final90.23 21989.32 22992.95 17194.65 26681.46 22594.32 12995.40 23185.61 22992.84 22395.37 20654.58 36699.13 8692.16 9198.94 11798.25 128
GeoE94.55 10594.68 10794.15 13197.23 13385.11 18094.14 13497.34 12488.71 17695.26 14295.50 19594.65 5899.12 8990.94 12398.40 16998.23 129
NCCC94.08 12293.54 13895.70 7596.49 17389.90 8392.39 18896.91 15890.64 13692.33 24694.60 23490.58 14798.96 11090.21 14797.70 22398.23 129
XXY-MVS92.58 16293.16 14790.84 25097.75 10479.84 25091.87 21196.22 19885.94 22295.53 12897.68 6092.69 10294.48 33283.21 25997.51 23098.21 131
CDPH-MVS92.67 16091.83 17795.18 9296.94 14588.46 11490.70 23997.07 14577.38 30392.34 24595.08 21592.67 10398.88 11985.74 23398.57 15798.20 132
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16699.23 8298.19 133
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16699.23 8298.19 133
new-patchmatchnet88.97 24890.79 20183.50 34394.28 27455.83 37785.34 33793.56 26986.18 21895.47 12995.73 18783.10 22996.51 29685.40 23698.06 20498.16 135
HQP4-MVS88.81 30198.61 16898.15 136
HQP-MVS92.09 17691.49 18593.88 14296.36 17984.89 18291.37 22297.31 12687.16 20688.81 30193.40 27284.76 21798.60 17086.55 22497.73 22098.14 137
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14795.20 9697.00 14991.85 9897.40 4997.35 8595.58 2399.34 6193.44 5599.31 6598.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ambc92.98 16896.88 14983.01 20895.92 6896.38 19096.41 8697.48 7488.26 17197.80 24289.96 15598.93 11898.12 139
eth_miper_zixun_eth90.72 20090.61 20591.05 24092.04 31676.84 30286.91 31896.67 17485.21 23494.41 17293.92 25779.53 26398.26 20189.76 15997.02 24698.06 140
FMVSNet292.78 15692.73 15692.95 17195.40 23981.98 21794.18 13295.53 22688.63 17796.05 10797.37 7981.31 25198.81 13487.38 21098.67 14998.06 140
OMC-MVS94.22 11893.69 13195.81 6997.25 13291.27 6492.27 19497.40 11687.10 20994.56 16995.42 20093.74 7198.11 21386.62 22198.85 12598.06 140
DVP-MVS++95.93 5296.34 3494.70 10896.54 16886.66 14998.45 498.22 3293.26 6697.54 3897.36 8293.12 8999.38 5493.88 3598.68 14798.04 143
PC_three_145275.31 31795.87 11595.75 18692.93 9596.34 30587.18 21298.68 14798.04 143
c3_l91.32 19291.42 18691.00 24492.29 30876.79 30387.52 30996.42 18885.76 22694.72 16793.89 25982.73 23698.16 21090.93 12498.55 15898.04 143
EG-PatchMatch MVS94.54 10694.67 10894.14 13297.87 9886.50 15192.00 20396.74 17188.16 18896.93 6897.61 6493.04 9397.90 22991.60 11098.12 19998.03 146
MVS_111021_HR93.63 13093.42 14194.26 12996.65 15986.96 14189.30 28096.23 19688.36 18593.57 19794.60 23493.45 7697.77 24690.23 14698.38 17398.03 146
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10794.85 5399.42 3293.49 4998.84 12698.00 148
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10795.40 2893.49 4998.84 12698.00 148
thisisatest053088.69 25787.52 26792.20 19796.33 18479.36 26292.81 16784.01 35786.44 21493.67 19492.68 29053.62 37099.25 7389.65 16298.45 16798.00 148
Vis-MVSNet (Re-imp)90.42 20990.16 21491.20 23797.66 11477.32 29394.33 12787.66 33091.20 12392.99 21895.13 21275.40 29798.28 19777.86 30999.19 8897.99 151
agg_prior287.06 21598.36 17897.98 152
AllTest94.88 9494.51 11196.00 5698.02 8992.17 5095.26 9398.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24298.98 10997.98 152
TestCases96.00 5698.02 8992.17 5098.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24298.98 10997.98 152
MVSTER89.32 23888.75 24191.03 24190.10 34376.62 30490.85 23494.67 24982.27 26995.24 14595.79 18161.09 35598.49 18190.49 13398.26 18597.97 155
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 13995.21 9498.10 5091.95 9297.63 3497.25 9196.48 1099.35 5893.29 6299.29 7097.95 156
OPU-MVS95.15 9396.84 15289.43 9295.21 9495.66 18993.12 8998.06 21586.28 23098.61 15397.95 156
test_prior94.61 11295.95 21487.23 13297.36 12298.68 16197.93 158
DeepC-MVS91.39 495.43 7195.33 8195.71 7497.67 11390.17 8093.86 14398.02 6687.35 20396.22 9997.99 4694.48 6399.05 9792.73 8199.68 1897.93 158
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet93.08 14592.50 16294.79 10493.87 28487.99 12195.07 10194.26 25790.64 13687.33 32697.67 6186.89 19898.49 18188.10 19698.71 14397.91 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet92.38 16991.99 17293.52 15793.82 28683.46 19991.14 22897.00 14989.81 15186.47 33094.04 25187.90 18099.21 7689.50 16498.27 18497.90 161
HPM-MVS++copyleft95.02 8894.39 11296.91 3797.88 9793.58 3794.09 13696.99 15191.05 12692.40 24095.22 20991.03 13799.25 7392.11 9298.69 14697.90 161
CS-MVS95.77 5895.58 7196.37 5096.84 15291.72 6196.73 2999.06 594.23 4692.48 23594.79 22793.56 7399.49 2493.47 5299.05 10297.89 163
testgi90.38 21391.34 18987.50 31597.49 12371.54 34389.43 27595.16 23488.38 18494.54 17094.68 23192.88 9893.09 34671.60 34897.85 21797.88 164
test_040295.73 6096.22 4094.26 12998.19 7685.77 17293.24 15897.24 13396.88 1697.69 3297.77 5894.12 6899.13 8691.54 11399.29 7097.88 164
miper_lstm_enhance89.90 23089.80 22390.19 27091.37 32777.50 29083.82 35195.00 23684.84 24493.05 21694.96 21976.53 29495.20 32889.96 15598.67 14997.86 166
MCST-MVS92.91 15092.51 16194.10 13397.52 12185.72 17391.36 22597.13 14180.33 28092.91 22294.24 24491.23 12998.72 15089.99 15497.93 21397.86 166
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3292.36 8194.11 17798.07 4192.02 11299.44 2893.38 6097.67 22597.85 168
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs290.62 20590.40 21191.29 23291.93 31885.46 17692.70 17296.48 18674.44 32094.91 15897.59 6575.52 29690.57 35593.44 5596.56 26397.84 169
test9_res88.16 19598.40 16997.83 170
VNet92.67 16092.96 14891.79 21196.27 18980.15 23991.95 20494.98 23792.19 8894.52 17196.07 16987.43 18697.39 26984.83 24698.38 17397.83 170
diffmvspermissive91.74 18191.93 17491.15 23993.06 29778.17 28188.77 29297.51 11186.28 21692.42 23993.96 25688.04 17697.46 26390.69 13096.67 26197.82 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet390.78 19990.32 21392.16 20293.03 29979.92 24992.54 17894.95 23886.17 21995.10 14996.01 17269.97 31598.75 14586.74 21798.38 17397.82 172
CPTT-MVS94.74 9894.12 12196.60 4398.15 7893.01 4295.84 7197.66 9689.21 16693.28 20695.46 19788.89 16698.98 10589.80 15798.82 13297.80 174
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 9793.38 6495.89 11497.23 9393.35 8197.66 25488.20 19298.66 15197.79 175
cl2289.02 24488.50 24490.59 25789.76 34576.45 30686.62 32894.03 26082.98 26192.65 22992.49 29272.05 30897.53 25888.93 18097.02 24697.78 176
Anonymous20240521192.58 16292.50 16292.83 17896.55 16783.22 20392.43 18591.64 30694.10 4995.59 12696.64 13481.88 24897.50 26085.12 24198.52 16297.77 177
cl____90.65 20390.56 20790.91 24891.85 31976.98 29986.75 32395.36 23285.53 23094.06 18194.89 22177.36 28497.98 22590.27 14398.98 10997.76 178
DIV-MVS_self_test90.65 20390.56 20790.91 24891.85 31976.99 29886.75 32395.36 23285.52 23294.06 18194.89 22177.37 28397.99 22490.28 14298.97 11397.76 178
test1294.43 12595.95 21486.75 14596.24 19589.76 29089.79 16098.79 13897.95 21297.75 180
train_agg92.71 15991.83 17795.35 8496.45 17589.46 9090.60 24196.92 15679.37 28890.49 27394.39 24091.20 13198.88 11988.66 18898.43 16897.72 181
IterMVS-SCA-FT91.65 18391.55 18191.94 20793.89 28379.22 26687.56 30693.51 27091.53 11695.37 13596.62 13578.65 27098.90 11691.89 10194.95 29997.70 182
3Dnovator92.54 394.80 9794.90 9694.47 12395.47 23787.06 13696.63 3197.28 13191.82 10494.34 17697.41 7690.60 14698.65 16592.47 8798.11 20097.70 182
PVSNet_BlendedMVS90.35 21589.96 22091.54 22294.81 25578.80 27590.14 25796.93 15479.43 28788.68 30895.06 21686.27 20698.15 21180.27 28698.04 20697.68 184
Effi-MVS+-dtu93.90 12692.60 16097.77 394.74 26096.67 594.00 13895.41 22989.94 14891.93 25492.13 30190.12 15398.97 10987.68 20597.48 23297.67 185
LFMVS91.33 19191.16 19491.82 21096.27 18979.36 26295.01 10485.61 34696.04 3094.82 16197.06 10572.03 30998.46 18684.96 24598.70 14597.65 186
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26494.64 26780.24 23789.69 27095.88 20985.77 22593.94 18895.69 18881.99 24592.98 34784.21 25391.30 34797.62 187
CLD-MVS91.82 17991.41 18793.04 16696.37 17783.65 19886.82 32297.29 12984.65 24692.27 24789.67 33492.20 11097.85 23983.95 25499.47 4197.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test95.32 7895.10 9295.96 5896.86 15190.75 7496.33 4799.20 293.99 5091.03 26793.73 26393.52 7599.55 1891.81 10399.45 4597.58 189
MDA-MVSNet-bldmvs91.04 19490.88 19791.55 22194.68 26480.16 23885.49 33592.14 29890.41 14394.93 15795.79 18185.10 21596.93 28585.15 23994.19 31997.57 190
DP-MVS95.62 6395.84 6194.97 9797.16 13788.62 10894.54 12397.64 9796.94 1596.58 8297.32 8893.07 9298.72 15090.45 13498.84 12697.57 190
APD-MVScopyleft95.00 8994.69 10595.93 6297.38 12890.88 7194.59 11697.81 8689.22 16595.46 13196.17 16793.42 7999.34 6189.30 16898.87 12497.56 192
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet587.82 26986.56 28691.62 21992.31 30779.81 25393.49 15294.81 24483.26 25491.36 26096.93 11352.77 37197.49 26276.07 32498.03 20797.55 193
CL-MVSNet_self_test90.04 22889.90 22290.47 25995.24 24577.81 28686.60 32992.62 28885.64 22893.25 21093.92 25783.84 22296.06 31079.93 29498.03 20797.53 194
DROMVSNet95.44 7095.62 6994.89 9996.93 14787.69 12696.48 3899.14 493.93 5392.77 22694.52 23793.95 7099.49 2493.62 4499.22 8597.51 195
QAPM92.88 15292.77 15293.22 16495.82 21983.31 20096.45 3997.35 12383.91 25093.75 19196.77 12289.25 16498.88 11984.56 25097.02 24697.49 196
Patchmtry90.11 22389.92 22190.66 25590.35 34077.00 29792.96 16392.81 28190.25 14594.74 16596.93 11367.11 32497.52 25985.17 23798.98 10997.46 197
EGC-MVSNET80.97 33075.73 34196.67 4298.85 2494.55 1596.83 2396.60 1772.44 3765.32 37798.25 3392.24 10898.02 22091.85 10299.21 8697.45 198
miper_ehance_all_eth90.48 20790.42 21090.69 25491.62 32476.57 30586.83 32196.18 20083.38 25394.06 18192.66 29182.20 24298.04 21689.79 15897.02 24697.45 198
LS3D96.11 4795.83 6296.95 3694.75 25994.20 1997.34 1397.98 7097.31 1195.32 13896.77 12293.08 9199.20 7891.79 10498.16 19697.44 200
D2MVS89.93 22989.60 22890.92 24694.03 28078.40 27888.69 29494.85 24078.96 29593.08 21495.09 21474.57 29996.94 28388.19 19398.96 11597.41 201
PHI-MVS94.34 11293.80 12695.95 5995.65 23091.67 6294.82 10997.86 8087.86 19393.04 21794.16 24891.58 12098.78 14190.27 14398.96 11597.41 201
ITE_SJBPF95.95 5997.34 13093.36 4096.55 18391.93 9494.82 16195.39 20491.99 11397.08 27985.53 23597.96 21197.41 201
SD-MVS95.19 8595.73 6693.55 15296.62 16388.88 10494.67 11398.05 5991.26 12097.25 5596.40 14695.42 2794.36 33692.72 8299.19 8897.40 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 19890.85 19990.63 25695.63 23279.24 26589.81 26892.87 28089.90 14994.39 17396.40 14685.77 21095.27 32773.86 33599.05 10297.39 205
F-COLMAP92.28 17291.06 19595.95 5997.52 12191.90 5693.53 15197.18 13683.98 24988.70 30794.04 25188.41 17098.55 17780.17 29095.99 27497.39 205
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5295.96 21392.96 4389.48 27497.46 11285.14 23696.23 9895.42 20093.19 8698.08 21490.37 13898.76 13997.38 207
mvs_anonymous90.37 21491.30 19087.58 31492.17 31268.00 35789.84 26794.73 24683.82 25293.22 21197.40 7787.54 18497.40 26887.94 20195.05 29797.34 208
alignmvs93.26 13992.85 15194.50 12095.70 22687.45 12893.45 15495.76 21291.58 11495.25 14492.42 29781.96 24698.72 15091.61 10997.87 21697.33 209
DeepC-MVS_fast89.96 793.73 12893.44 14094.60 11596.14 20087.90 12293.36 15697.14 13985.53 23093.90 18995.45 19891.30 12798.59 17289.51 16398.62 15297.31 210
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d91.54 18690.73 20393.99 13595.76 22487.86 12490.83 23593.98 26478.23 30094.02 18496.22 16382.62 23996.83 28886.57 22298.33 17997.29 211
IterMVS90.18 22090.16 21490.21 26893.15 29575.98 31187.56 30692.97 27986.43 21594.09 17896.40 14678.32 27497.43 26587.87 20294.69 30797.23 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
canonicalmvs94.59 10394.69 10594.30 12895.60 23487.03 13895.59 8198.24 3091.56 11595.21 14792.04 30394.95 5098.66 16391.45 11497.57 22997.20 213
test_fmvs1_n88.73 25688.38 24789.76 27792.06 31582.53 21192.30 19396.59 17971.14 33992.58 23295.41 20368.55 31889.57 36291.12 11895.66 28197.18 214
ppachtmachnet_test88.61 25888.64 24288.50 30291.76 32170.99 34784.59 34492.98 27879.30 29292.38 24193.53 27079.57 26297.45 26486.50 22697.17 24197.07 215
MVS_111021_LR93.66 12993.28 14494.80 10396.25 19290.95 6990.21 25495.43 22887.91 19093.74 19394.40 23992.88 9896.38 30190.39 13698.28 18397.07 215
HyFIR lowres test87.19 28685.51 29792.24 19697.12 14080.51 23685.03 33996.06 20366.11 36091.66 25792.98 28270.12 31499.14 8475.29 32895.23 29497.07 215
h-mvs3392.89 15191.99 17295.58 7796.97 14390.55 7693.94 14194.01 26389.23 16393.95 18696.19 16476.88 29099.14 8491.02 12095.71 28097.04 218
CANet_DTU89.85 23189.17 23191.87 20892.20 31180.02 24690.79 23695.87 21086.02 22182.53 35491.77 30680.01 26098.57 17485.66 23497.70 22397.01 219
MVS_Test92.57 16493.29 14290.40 26293.53 28975.85 31292.52 17996.96 15288.73 17492.35 24396.70 13190.77 13998.37 19392.53 8695.49 28596.99 220
LCM-MVSNet-Re94.20 11994.58 11093.04 16695.91 21683.13 20693.79 14599.19 392.00 9198.84 598.04 4393.64 7299.02 10281.28 27898.54 16096.96 221
CSCG94.69 10094.75 10294.52 11997.55 12087.87 12395.01 10497.57 10492.68 7396.20 10193.44 27191.92 11598.78 14189.11 17799.24 8196.92 222
Fast-Effi-MVS+-dtu92.77 15792.16 16794.58 11894.66 26588.25 11692.05 20096.65 17589.62 15590.08 28191.23 31392.56 10498.60 17086.30 22996.27 26996.90 223
114514_t90.51 20689.80 22392.63 18598.00 9182.24 21593.40 15597.29 12965.84 36189.40 29494.80 22686.99 19498.75 14583.88 25598.61 15396.89 224
Effi-MVS+92.79 15592.74 15492.94 17395.10 24783.30 20194.00 13897.53 10891.36 11989.35 29590.65 32594.01 6998.66 16387.40 20995.30 29296.88 225
CMPMVSbinary68.83 2287.28 28285.67 29692.09 20488.77 35685.42 17790.31 25294.38 25370.02 34888.00 31793.30 27473.78 30394.03 34075.96 32696.54 26496.83 226
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
hse-mvs292.24 17491.20 19195.38 8396.16 19890.65 7592.52 17992.01 30289.23 16393.95 18692.99 28176.88 29098.69 15991.02 12096.03 27296.81 227
miper_enhance_ethall88.42 26087.87 26290.07 27188.67 35775.52 31585.10 33895.59 22175.68 31292.49 23489.45 33778.96 26697.88 23387.86 20397.02 24696.81 227
EIA-MVS92.35 17092.03 17093.30 16295.81 22183.97 19492.80 16898.17 4187.71 19789.79 28987.56 34991.17 13499.18 8087.97 20097.27 23896.77 229
MVP-Stereo90.07 22688.92 23793.54 15496.31 18686.49 15290.93 23395.59 22179.80 28291.48 25895.59 19080.79 25697.39 26978.57 30791.19 34896.76 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 22788.30 24995.32 8896.09 20390.52 7792.42 18692.05 30182.08 27188.45 31192.86 28365.76 33498.69 15988.91 18296.07 27196.75 231
PAPM_NR91.03 19590.81 20091.68 21796.73 15781.10 23193.72 14796.35 19188.19 18788.77 30592.12 30285.09 21697.25 27382.40 26893.90 32096.68 232
FA-MVS(test-final)91.81 18091.85 17691.68 21794.95 25079.99 24796.00 6293.44 27287.80 19494.02 18497.29 8977.60 27998.45 18788.04 19897.49 23196.61 233
UnsupCasMVSNet_bld88.50 25988.03 26089.90 27595.52 23678.88 27287.39 31094.02 26279.32 29193.06 21594.02 25380.72 25794.27 33775.16 32993.08 33296.54 234
TAPA-MVS88.58 1092.49 16591.75 17994.73 10696.50 17289.69 8692.91 16597.68 9578.02 30192.79 22594.10 24990.85 13897.96 22684.76 24898.16 19696.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs587.87 26787.14 27590.07 27193.26 29376.97 30088.89 28892.18 29573.71 32588.36 31293.89 25976.86 29296.73 29180.32 28596.81 25696.51 236
thres600view787.66 27287.10 27889.36 28596.05 20673.17 33292.72 17085.31 34991.89 9693.29 20590.97 31763.42 34698.39 18873.23 33896.99 25196.51 236
thres40087.20 28586.52 28889.24 28995.77 22272.94 33591.89 20886.00 34190.84 12992.61 23089.80 32963.93 34398.28 19771.27 35096.54 26496.51 236
TSAR-MVS + GP.93.07 14792.41 16495.06 9595.82 21990.87 7290.97 23292.61 28988.04 18994.61 16893.79 26288.08 17497.81 24189.41 16598.39 17296.50 239
YYNet188.17 26388.24 25387.93 31092.21 31073.62 33080.75 36088.77 32082.51 26794.99 15595.11 21382.70 23793.70 34183.33 25793.83 32196.48 240
MDA-MVSNet_test_wron88.16 26488.23 25487.93 31092.22 30973.71 32980.71 36188.84 31982.52 26694.88 16095.14 21182.70 23793.61 34283.28 25893.80 32296.46 241
MVSFormer92.18 17592.23 16692.04 20694.74 26080.06 24397.15 1597.37 11788.98 16988.83 29992.79 28677.02 28799.60 996.41 496.75 25996.46 241
jason89.17 24088.32 24891.70 21695.73 22580.07 24288.10 29993.22 27571.98 33590.09 28092.79 28678.53 27398.56 17587.43 20897.06 24496.46 241
jason: jason.
CHOSEN 1792x268887.19 28685.92 29591.00 24497.13 13979.41 26184.51 34595.60 21764.14 36490.07 28294.81 22478.26 27597.14 27773.34 33795.38 29096.46 241
Anonymous2023120688.77 25488.29 25090.20 26996.31 18678.81 27489.56 27393.49 27174.26 32292.38 24195.58 19382.21 24195.43 32272.07 34498.75 14196.34 245
旧先验196.20 19584.17 19194.82 24295.57 19489.57 16197.89 21596.32 246
DELS-MVS92.05 17792.16 16791.72 21494.44 27080.13 24187.62 30397.25 13287.34 20492.22 24893.18 27889.54 16298.73 14989.67 16198.20 19496.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft85.34 1590.40 21088.92 23794.85 10196.53 17190.02 8191.58 21996.48 18680.16 28186.14 33292.18 29985.73 21198.25 20276.87 31994.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR87.65 27386.77 28390.27 26592.85 30177.38 29288.56 29796.23 19676.82 31084.98 33889.75 33386.08 20897.16 27672.33 34393.35 32696.26 249
our_test_387.55 27687.59 26687.44 31691.76 32170.48 34883.83 35090.55 31579.79 28392.06 25292.17 30078.63 27295.63 31584.77 24794.73 30596.22 250
Fast-Effi-MVS+91.28 19390.86 19892.53 19095.45 23882.53 21189.25 28396.52 18485.00 24089.91 28588.55 34592.94 9498.84 12784.72 24995.44 28796.22 250
EPNet_dtu85.63 29884.37 30389.40 28486.30 36874.33 32591.64 21888.26 32484.84 24472.96 37289.85 32771.27 31197.69 25276.60 32197.62 22796.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS92.72 15892.02 17194.84 10295.65 23091.99 5492.92 16496.60 17785.08 23992.44 23893.62 26686.80 19996.35 30386.81 21698.25 18796.18 252
pmmvs488.95 24987.70 26592.70 18194.30 27385.60 17487.22 31292.16 29774.62 31989.75 29194.19 24677.97 27796.41 29982.71 26396.36 26896.09 254
MG-MVS89.54 23589.80 22388.76 29594.88 25172.47 34089.60 27192.44 29285.82 22489.48 29395.98 17382.85 23497.74 25081.87 27295.27 29396.08 255
ab-mvs92.40 16892.62 15991.74 21397.02 14181.65 22195.84 7195.50 22786.95 21192.95 22197.56 6790.70 14497.50 26079.63 29797.43 23496.06 256
baseline283.38 31281.54 32188.90 29291.38 32672.84 33788.78 29181.22 36478.97 29479.82 36587.56 34961.73 35397.80 24274.30 33390.05 35396.05 257
N_pmnet88.90 25187.25 27293.83 14594.40 27293.81 3584.73 34187.09 33379.36 29093.26 20892.43 29679.29 26591.68 35177.50 31597.22 24096.00 258
GA-MVS87.70 27086.82 28190.31 26393.27 29277.22 29584.72 34392.79 28385.11 23889.82 28790.07 32666.80 32797.76 24884.56 25094.27 31695.96 259
test_yl90.11 22389.73 22691.26 23394.09 27879.82 25190.44 24592.65 28690.90 12793.19 21293.30 27473.90 30198.03 21782.23 26996.87 25395.93 260
DCV-MVSNet90.11 22389.73 22691.26 23394.09 27879.82 25190.44 24592.65 28690.90 12793.19 21293.30 27473.90 30198.03 21782.23 26996.87 25395.93 260
PM-MVS93.33 13692.67 15895.33 8696.58 16494.06 2192.26 19592.18 29585.92 22396.22 9996.61 13685.64 21495.99 31290.35 13998.23 18995.93 260
ET-MVSNet_ETH3D86.15 29584.27 30591.79 21193.04 29881.28 22787.17 31486.14 33979.57 28683.65 34688.66 34357.10 36198.18 20887.74 20495.40 28895.90 263
TAMVS90.16 22189.05 23393.49 15896.49 17386.37 15790.34 25192.55 29080.84 27892.99 21894.57 23681.94 24798.20 20573.51 33698.21 19295.90 263
baseline187.62 27487.31 26988.54 30094.71 26374.27 32693.10 16088.20 32686.20 21792.18 24993.04 27973.21 30495.52 31779.32 30185.82 36295.83 265
WTY-MVS86.93 29186.50 29088.24 30694.96 24974.64 31987.19 31392.07 30078.29 29988.32 31391.59 31078.06 27694.27 33774.88 33093.15 33095.80 266
PVSNet_Blended_VisFu91.63 18491.20 19192.94 17397.73 10783.95 19592.14 19897.46 11278.85 29792.35 24394.98 21884.16 22199.08 9286.36 22896.77 25895.79 267
lupinMVS88.34 26287.31 26991.45 22594.74 26080.06 24387.23 31192.27 29471.10 34088.83 29991.15 31477.02 28798.53 17886.67 22096.75 25995.76 268
DP-MVS Recon92.31 17191.88 17593.60 15097.18 13686.87 14291.10 23097.37 11784.92 24292.08 25194.08 25088.59 16798.20 20583.50 25698.14 19895.73 269
FE-MVS89.06 24388.29 25091.36 22894.78 25779.57 25896.77 2890.99 31084.87 24392.96 22096.29 15760.69 35798.80 13780.18 28997.11 24395.71 270
CDS-MVSNet89.55 23488.22 25593.53 15595.37 24286.49 15289.26 28193.59 26779.76 28491.15 26592.31 29877.12 28598.38 19077.51 31497.92 21495.71 270
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
原ACMM192.87 17696.91 14884.22 18997.01 14876.84 30989.64 29294.46 23888.00 17798.70 15781.53 27698.01 20995.70 272
thisisatest051584.72 30582.99 31389.90 27592.96 30075.33 31784.36 34683.42 35977.37 30488.27 31486.65 35453.94 36898.72 15082.56 26597.40 23595.67 273
ETV-MVS92.99 14892.74 15493.72 14795.86 21886.30 16092.33 19097.84 8391.70 11292.81 22486.17 35992.22 10999.19 7988.03 19997.73 22095.66 274
TinyColmap92.00 17892.76 15389.71 27995.62 23377.02 29690.72 23896.17 20187.70 19895.26 14296.29 15792.54 10596.45 29881.77 27398.77 13895.66 274
PCF-MVS84.52 1789.12 24187.71 26493.34 16096.06 20585.84 17186.58 33097.31 12668.46 35493.61 19693.89 25987.51 18598.52 17967.85 35998.11 20095.66 274
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC89.02 24489.08 23288.84 29495.07 24874.50 32388.97 28696.39 18973.21 32893.27 20796.28 15982.16 24396.39 30077.55 31398.80 13595.62 277
OpenMVScopyleft89.45 892.27 17392.13 16992.68 18294.53 26984.10 19295.70 7697.03 14782.44 26891.14 26696.42 14488.47 16998.38 19085.95 23297.47 23395.55 278
sss87.23 28386.82 28188.46 30493.96 28177.94 28286.84 32092.78 28477.59 30287.61 32391.83 30578.75 26891.92 35077.84 31094.20 31795.52 279
ADS-MVSNet284.01 30982.20 31889.41 28389.04 35376.37 30887.57 30490.98 31172.71 33384.46 34192.45 29368.08 32096.48 29770.58 35483.97 36495.38 280
ADS-MVSNet82.25 31981.55 32084.34 33989.04 35365.30 36487.57 30485.13 35372.71 33384.46 34192.45 29368.08 32092.33 34970.58 35483.97 36495.38 280
MVS_030490.96 19690.15 21793.37 15993.17 29487.06 13693.62 15092.43 29389.60 15682.25 35595.50 19582.56 24097.83 24084.41 25297.83 21895.22 282
tt080595.42 7395.93 5693.86 14498.75 3288.47 11397.68 994.29 25596.48 2195.38 13393.63 26594.89 5297.94 22895.38 1696.92 25295.17 283
tpm84.38 30784.08 30685.30 33290.47 33863.43 37289.34 27885.63 34577.24 30687.62 32295.03 21761.00 35697.30 27279.26 30291.09 35095.16 284
1112_ss88.42 26087.41 26891.45 22596.69 15880.99 23289.72 26996.72 17273.37 32687.00 32890.69 32377.38 28298.20 20581.38 27793.72 32395.15 285
BH-RMVSNet90.47 20890.44 20990.56 25895.21 24678.65 27789.15 28493.94 26588.21 18692.74 22794.22 24586.38 20497.88 23378.67 30695.39 28995.14 286
Test_1112_low_res87.50 27886.58 28590.25 26696.80 15677.75 28787.53 30896.25 19469.73 35086.47 33093.61 26775.67 29597.88 23379.95 29293.20 32895.11 287
MIMVSNet87.13 28886.54 28788.89 29396.05 20676.11 30994.39 12588.51 32281.37 27488.27 31496.75 12672.38 30695.52 31765.71 36495.47 28695.03 288
Gipumacopyleft95.31 8195.80 6493.81 14697.99 9490.91 7096.42 4297.95 7596.69 1791.78 25598.85 1291.77 11795.49 31991.72 10699.08 9895.02 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++93.25 14193.88 12491.37 22796.34 18382.81 20993.11 15997.74 9289.37 16194.08 17995.29 20890.40 15096.35 30390.35 13998.25 18794.96 290
test_vis1_n89.01 24689.01 23589.03 29092.57 30482.46 21392.62 17696.06 20373.02 33090.40 27695.77 18574.86 29889.68 36090.78 12794.98 29894.95 291
MSDG90.82 19790.67 20491.26 23394.16 27583.08 20786.63 32796.19 19990.60 13891.94 25391.89 30489.16 16595.75 31480.96 28394.51 31094.95 291
test_fmvs187.59 27587.27 27188.54 30088.32 35881.26 22890.43 24895.72 21470.55 34591.70 25694.63 23268.13 31989.42 36390.59 13195.34 29194.94 293
无先验89.94 26395.75 21370.81 34398.59 17281.17 28194.81 294
mvsany_test389.11 24288.21 25691.83 20991.30 32890.25 7988.09 30078.76 37076.37 31196.43 8598.39 3083.79 22390.43 35886.57 22294.20 31794.80 295
thres100view90087.35 28186.89 28088.72 29696.14 20073.09 33493.00 16285.31 34992.13 8993.26 20890.96 31863.42 34698.28 19771.27 35096.54 26494.79 296
tfpn200view987.05 28986.52 28888.67 29795.77 22272.94 33591.89 20886.00 34190.84 12992.61 23089.80 32963.93 34398.28 19771.27 35096.54 26494.79 296
GSMVS94.75 298
sam_mvs166.64 33094.75 298
SCA87.43 27987.21 27388.10 30892.01 31771.98 34289.43 27588.11 32882.26 27088.71 30692.83 28478.65 27097.59 25679.61 29893.30 32794.75 298
MS-PatchMatch88.05 26587.75 26388.95 29193.28 29177.93 28387.88 30292.49 29175.42 31592.57 23393.59 26880.44 25894.24 33981.28 27892.75 33594.69 301
PatchmatchNetpermissive85.22 30184.64 30086.98 31989.51 35069.83 35490.52 24387.34 33278.87 29687.22 32792.74 28866.91 32696.53 29481.77 27386.88 36094.58 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet87.39 28086.71 28489.44 28293.40 29076.11 30994.93 10790.00 31757.17 37095.71 12397.37 7964.77 34097.68 25392.67 8394.37 31394.52 303
PVSNet76.22 2082.89 31682.37 31684.48 33893.96 28164.38 37078.60 36388.61 32171.50 33784.43 34386.36 35874.27 30094.60 33169.87 35693.69 32494.46 304
PVSNet_Blended88.74 25588.16 25890.46 26194.81 25578.80 27586.64 32696.93 15474.67 31888.68 30889.18 34186.27 20698.15 21180.27 28696.00 27394.44 305
CNLPA91.72 18291.20 19193.26 16396.17 19791.02 6791.14 22895.55 22490.16 14690.87 26893.56 26986.31 20594.40 33579.92 29697.12 24294.37 306
cascas87.02 29086.28 29289.25 28891.56 32576.45 30684.33 34796.78 16771.01 34186.89 32985.91 36081.35 25096.94 28383.09 26095.60 28294.35 307
DPM-MVS89.35 23788.40 24692.18 20196.13 20284.20 19086.96 31796.15 20275.40 31687.36 32591.55 31183.30 22798.01 22182.17 27196.62 26294.32 308
MAR-MVS90.32 21788.87 24094.66 11094.82 25491.85 5794.22 13194.75 24580.91 27587.52 32488.07 34886.63 20297.87 23676.67 32096.21 27094.25 309
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet87.89 26687.12 27790.22 26791.01 33178.93 26992.52 17992.81 28173.08 32989.10 29696.93 11367.11 32497.64 25588.80 18492.70 33694.08 310
RPMNet90.31 21890.14 21890.81 25291.01 33178.93 26992.52 17998.12 4791.91 9589.10 29696.89 11668.84 31799.41 3890.17 14892.70 33694.08 310
MDTV_nov1_ep13_2view42.48 38088.45 29867.22 35783.56 34866.80 32772.86 34194.06 312
test-LLR83.58 31183.17 31184.79 33689.68 34766.86 36083.08 35284.52 35483.07 25982.85 35284.78 36362.86 34993.49 34382.85 26194.86 30194.03 313
test-mter81.21 32880.01 33584.79 33689.68 34766.86 36083.08 35284.52 35473.85 32482.85 35284.78 36343.66 37893.49 34382.85 26194.86 30194.03 313
新几何193.17 16597.16 13787.29 13094.43 25267.95 35591.29 26194.94 22086.97 19598.23 20381.06 28297.75 21993.98 315
test22296.95 14485.27 17988.83 29093.61 26665.09 36390.74 27094.85 22384.62 21997.36 23693.91 316
PMMVS281.31 32683.44 30974.92 35490.52 33746.49 37969.19 36885.23 35284.30 24887.95 31894.71 23076.95 28984.36 37164.07 36598.09 20293.89 317
Patchmatch-test86.10 29686.01 29386.38 32690.63 33574.22 32789.57 27286.69 33585.73 22789.81 28892.83 28465.24 33891.04 35477.82 31295.78 27993.88 318
Patchmatch-RL test88.81 25388.52 24389.69 28095.33 24479.94 24886.22 33292.71 28578.46 29895.80 11794.18 24766.25 33295.33 32589.22 17498.53 16193.78 319
test0.0.03 182.48 31881.47 32285.48 33089.70 34673.57 33184.73 34181.64 36383.07 25988.13 31686.61 35562.86 34989.10 36566.24 36390.29 35293.77 320
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23390.92 24694.58 26881.21 23091.10 23093.41 27377.03 30793.41 20093.99 25583.23 22897.80 24279.93 29494.80 30493.74 321
testdata91.03 24196.87 15082.01 21694.28 25671.55 33692.46 23695.42 20085.65 21397.38 27182.64 26497.27 23893.70 322
test_vis1_rt85.58 29984.58 30188.60 29987.97 35986.76 14485.45 33693.59 26766.43 35887.64 32189.20 34079.33 26485.38 36981.59 27589.98 35493.66 323
IB-MVS77.21 1983.11 31381.05 32489.29 28691.15 32975.85 31285.66 33486.00 34179.70 28582.02 35986.61 35548.26 37498.39 18877.84 31092.22 34193.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26496.05 20583.22 25591.26 26290.74 32091.55 12198.82 12989.29 16995.91 27593.62 325
xiu_mvs_v1_base91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26496.05 20583.22 25591.26 26290.74 32091.55 12198.82 12989.29 16995.91 27593.62 325
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26496.05 20583.22 25591.26 26290.74 32091.55 12198.82 12989.29 16995.91 27593.62 325
tpmrst82.85 31782.93 31482.64 34587.65 36058.99 37590.14 25787.90 32975.54 31483.93 34591.63 30966.79 32995.36 32381.21 28081.54 36993.57 328
PatchT87.51 27788.17 25785.55 32990.64 33466.91 35992.02 20286.09 34092.20 8789.05 29897.16 9964.15 34296.37 30289.21 17592.98 33493.37 329
CostFormer83.09 31482.21 31785.73 32889.27 35267.01 35890.35 25086.47 33770.42 34683.52 34993.23 27761.18 35496.85 28777.21 31788.26 35893.34 330
thres20085.85 29785.18 29887.88 31294.44 27072.52 33989.08 28586.21 33888.57 18091.44 25988.40 34664.22 34198.00 22268.35 35895.88 27893.12 331
KD-MVS_2432*160082.17 32180.75 32886.42 32482.04 37770.09 35181.75 35790.80 31282.56 26490.37 27789.30 33842.90 37996.11 30874.47 33192.55 33893.06 332
miper_refine_blended82.17 32180.75 32886.42 32482.04 37770.09 35181.75 35790.80 31282.56 26490.37 27789.30 33842.90 37996.11 30874.47 33192.55 33893.06 332
HY-MVS82.50 1886.81 29285.93 29489.47 28193.63 28877.93 28394.02 13791.58 30775.68 31283.64 34793.64 26477.40 28197.42 26671.70 34792.07 34393.05 334
EPMVS81.17 32980.37 33183.58 34285.58 37165.08 36790.31 25271.34 37577.31 30585.80 33491.30 31259.38 35892.70 34879.99 29182.34 36892.96 335
tpmvs84.22 30883.97 30784.94 33487.09 36565.18 36591.21 22788.35 32382.87 26285.21 33590.96 31865.24 33896.75 29079.60 30085.25 36392.90 336
BH-untuned90.68 20290.90 19690.05 27395.98 21279.57 25890.04 26094.94 23987.91 19094.07 18093.00 28087.76 18197.78 24579.19 30395.17 29592.80 337
AdaColmapbinary91.63 18491.36 18892.47 19295.56 23586.36 15892.24 19796.27 19388.88 17389.90 28692.69 28991.65 11998.32 19577.38 31697.64 22692.72 338
CVMVSNet85.16 30284.72 29986.48 32292.12 31370.19 34992.32 19188.17 32756.15 37190.64 27295.85 17767.97 32296.69 29288.78 18590.52 35192.56 339
tpm281.46 32580.35 33284.80 33589.90 34465.14 36690.44 24585.36 34865.82 36282.05 35892.44 29557.94 36096.69 29270.71 35388.49 35792.56 339
PAPM81.91 32480.11 33487.31 31793.87 28472.32 34184.02 34993.22 27569.47 35176.13 37089.84 32872.15 30797.23 27453.27 37289.02 35592.37 341
TESTMET0.1,179.09 33778.04 33982.25 34687.52 36264.03 37183.08 35280.62 36670.28 34780.16 36483.22 36644.13 37790.56 35679.95 29293.36 32592.15 342
DSMNet-mixed82.21 32081.56 31984.16 34089.57 34970.00 35390.65 24077.66 37354.99 37283.30 35097.57 6677.89 27890.50 35766.86 36295.54 28491.97 343
xiu_mvs_v2_base89.00 24789.19 23088.46 30494.86 25374.63 32086.97 31695.60 21780.88 27687.83 31988.62 34491.04 13698.81 13482.51 26794.38 31291.93 344
PS-MVSNAJ88.86 25288.99 23688.48 30394.88 25174.71 31886.69 32595.60 21780.88 27687.83 31987.37 35290.77 13998.82 12982.52 26694.37 31391.93 344
tpm cat180.61 33379.46 33684.07 34188.78 35565.06 36889.26 28188.23 32562.27 36781.90 36089.66 33562.70 35195.29 32671.72 34680.60 37091.86 346
dp79.28 33678.62 33881.24 34885.97 37056.45 37686.91 31885.26 35172.97 33181.45 36289.17 34256.01 36595.45 32173.19 33976.68 37191.82 347
JIA-IIPM85.08 30383.04 31291.19 23887.56 36186.14 16489.40 27784.44 35688.98 16982.20 35697.95 4756.82 36396.15 30676.55 32283.45 36691.30 348
TR-MVS87.70 27087.17 27489.27 28794.11 27779.26 26488.69 29491.86 30381.94 27290.69 27189.79 33182.82 23597.42 26672.65 34291.98 34491.14 349
131486.46 29486.33 29186.87 32091.65 32374.54 32191.94 20694.10 25974.28 32184.78 34087.33 35383.03 23195.00 32978.72 30591.16 34991.06 350
new_pmnet81.22 32781.01 32681.86 34790.92 33370.15 35084.03 34880.25 36870.83 34285.97 33389.78 33267.93 32384.65 37067.44 36091.90 34590.78 351
PatchMatch-RL89.18 23988.02 26192.64 18395.90 21792.87 4588.67 29691.06 30980.34 27990.03 28391.67 30883.34 22694.42 33476.35 32394.84 30390.64 352
API-MVS91.52 18791.61 18091.26 23394.16 27586.26 16294.66 11494.82 24291.17 12492.13 25091.08 31690.03 15897.06 28079.09 30497.35 23790.45 353
BH-w/o87.21 28487.02 27987.79 31394.77 25877.27 29487.90 30193.21 27781.74 27389.99 28488.39 34783.47 22596.93 28571.29 34992.43 34089.15 354
PMVScopyleft87.21 1494.97 9095.33 8193.91 14198.97 1797.16 295.54 8595.85 21196.47 2293.40 20297.46 7595.31 3395.47 32086.18 23198.78 13789.11 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 32381.02 32585.34 33187.46 36371.04 34594.74 11167.56 37696.44 2379.43 36698.99 645.24 37596.15 30667.18 36192.17 34288.85 356
CHOSEN 280x42080.04 33577.97 34086.23 32790.13 34274.53 32272.87 36689.59 31866.38 35976.29 36985.32 36256.96 36295.36 32369.49 35794.72 30688.79 357
pmmvs380.83 33178.96 33786.45 32387.23 36477.48 29184.87 34082.31 36163.83 36585.03 33789.50 33649.66 37293.10 34573.12 34095.10 29688.78 358
test_f86.65 29387.13 27685.19 33390.28 34186.11 16586.52 33191.66 30569.76 34995.73 12297.21 9769.51 31681.28 37289.15 17694.40 31188.17 359
PMMVS83.00 31581.11 32388.66 29883.81 37686.44 15582.24 35685.65 34461.75 36882.07 35785.64 36179.75 26191.59 35275.99 32593.09 33187.94 360
mvsany_test183.91 31082.93 31486.84 32186.18 36985.93 16881.11 35975.03 37470.80 34488.57 31094.63 23283.08 23087.38 36680.39 28486.57 36187.21 361
MVS84.98 30484.30 30487.01 31891.03 33077.69 28991.94 20694.16 25859.36 36984.23 34487.50 35185.66 21296.80 28971.79 34593.05 33386.54 362
MVEpermissive59.87 2373.86 34072.65 34377.47 35387.00 36774.35 32461.37 37060.93 37867.27 35669.69 37386.49 35781.24 25472.33 37456.45 37183.45 36685.74 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND83.24 34485.06 37371.03 34694.99 10665.55 37774.09 37175.51 37144.57 37694.46 33359.57 36987.54 35984.24 364
FPMVS84.50 30683.28 31088.16 30796.32 18594.49 1685.76 33385.47 34783.09 25885.20 33694.26 24363.79 34586.58 36863.72 36691.88 34683.40 365
E-PMN80.72 33280.86 32780.29 35085.11 37268.77 35672.96 36581.97 36287.76 19683.25 35183.01 36762.22 35289.17 36477.15 31894.31 31582.93 366
EMVS80.35 33480.28 33380.54 34984.73 37469.07 35572.54 36780.73 36587.80 19481.66 36181.73 36862.89 34889.84 35975.79 32794.65 30882.71 367
PVSNet_070.34 2174.58 33972.96 34279.47 35190.63 33566.24 36373.26 36483.40 36063.67 36678.02 36778.35 37072.53 30589.59 36156.68 37060.05 37482.57 368
test_method50.44 34148.94 34454.93 35639.68 38012.38 38228.59 37190.09 3166.82 37441.10 37678.41 36954.41 36770.69 37550.12 37351.26 37581.72 369
MVS-HIRNet78.83 33880.60 33073.51 35593.07 29647.37 37887.10 31578.00 37268.94 35277.53 36897.26 9071.45 31094.62 33063.28 36788.74 35678.55 370
wuyk23d87.83 26890.79 20178.96 35290.46 33988.63 10792.72 17090.67 31491.65 11398.68 1197.64 6396.06 1577.53 37359.84 36899.41 5470.73 371
DeepMVS_CXcopyleft53.83 35770.38 37964.56 36948.52 38133.01 37365.50 37474.21 37256.19 36446.64 37638.45 37570.07 37250.30 372
tmp_tt37.97 34244.33 34518.88 35811.80 38121.54 38163.51 36945.66 3824.23 37551.34 37550.48 37359.08 35922.11 37744.50 37468.35 37313.00 373
test1239.49 34412.01 3471.91 3592.87 3821.30 38382.38 3551.34 3841.36 3772.84 3786.56 3762.45 3820.97 3782.73 3765.56 3763.47 374
testmvs9.02 34511.42 3481.81 3602.77 3831.13 38479.44 3621.90 3831.18 3782.65 3796.80 3751.95 3830.87 3792.62 3773.45 3773.44 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k23.35 34331.13 3460.00 3610.00 3840.00 3850.00 37295.58 2230.00 3790.00 38091.15 31493.43 780.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.56 34610.09 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37990.77 1390.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.56 34610.08 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38090.69 3230.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7187.14 13498.18 3794.25 4596.99 6697.36 8295.13 40
eth-test20.00 384
eth-test0.00 384
ZD-MVS97.23 13390.32 7897.54 10684.40 24794.78 16395.79 18192.76 10199.39 4888.72 18798.40 169
test_241102_ONE98.51 5186.97 13998.10 5091.85 9897.63 3497.03 10796.48 1098.95 112
9.1494.81 9997.49 12394.11 13598.37 1787.56 20295.38 13396.03 17194.66 5799.08 9290.70 12998.97 113
save fliter97.46 12688.05 12092.04 20197.08 14487.63 200
test072698.51 5186.69 14795.34 8998.18 3791.85 9897.63 3497.37 7995.58 23
test_part298.21 7589.41 9396.72 76
sam_mvs66.41 331
MTGPAbinary97.62 99
test_post190.21 2545.85 37865.36 33696.00 31179.61 298
test_post6.07 37765.74 33595.84 313
patchmatchnet-post91.71 30766.22 33397.59 256
MTMP94.82 10954.62 380
gm-plane-assit87.08 36659.33 37471.22 33883.58 36597.20 27573.95 334
TEST996.45 17589.46 9090.60 24196.92 15679.09 29390.49 27394.39 24091.31 12698.88 119
test_896.37 17789.14 9790.51 24496.89 15979.37 28890.42 27594.36 24291.20 13198.82 129
agg_prior96.20 19588.89 10396.88 16090.21 27998.78 141
test_prior489.91 8290.74 237
test_prior290.21 25489.33 16290.77 26994.81 22490.41 14988.21 19198.55 158
旧先验290.00 26268.65 35392.71 22896.52 29585.15 239
新几何290.02 261
原ACMM289.34 278
testdata298.03 21780.24 288
segment_acmp92.14 111
testdata188.96 28788.44 182
plane_prior797.71 10888.68 106
plane_prior697.21 13588.23 11786.93 196
plane_prior495.59 190
plane_prior388.43 11590.35 14493.31 203
plane_prior294.56 12091.74 109
plane_prior197.38 128
plane_prior88.12 11893.01 16188.98 16998.06 204
n20.00 385
nn0.00 385
door-mid92.13 299
test1196.65 175
door91.26 308
HQP5-MVS84.89 182
HQP-NCC96.36 17991.37 22287.16 20688.81 301
ACMP_Plane96.36 17991.37 22287.16 20688.81 301
BP-MVS86.55 224
HQP3-MVS97.31 12697.73 220
HQP2-MVS84.76 217
NP-MVS96.82 15487.10 13593.40 272
MDTV_nov1_ep1383.88 30889.42 35161.52 37388.74 29387.41 33173.99 32384.96 33994.01 25465.25 33795.53 31678.02 30893.16 329
ACMMP++_ref98.82 132
ACMMP++99.25 79
Test By Simon90.61 145