This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2496.91 8699.75 299.45 1295.82 11199.92 598.80 699.96 499.89 1
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6296.50 10399.32 2199.44 1397.43 3399.92 598.73 999.95 599.86 2
UA-Net98.88 798.76 1399.22 299.11 8897.89 1399.47 399.32 1899.08 1097.87 14699.67 296.47 9199.92 597.88 3099.98 299.85 3
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2396.23 11599.71 499.48 998.77 699.93 398.89 499.95 599.84 5
RRT_MVS97.95 5197.79 6198.43 5799.67 1295.56 9398.86 1096.73 29097.99 4599.15 3199.35 2089.84 25099.90 1498.64 1399.90 2299.82 6
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 3995.83 14199.67 699.37 1698.25 1099.92 598.77 799.94 899.82 6
test_fmvs397.38 10497.56 8996.84 17198.63 13992.81 19197.60 8699.61 990.87 27098.76 5699.66 394.03 16797.90 34999.24 399.68 6899.81 8
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 3899.22 899.22 2898.96 5197.35 3699.92 597.79 3699.93 1099.79 9
test_vis3_rt97.04 11896.98 12297.23 14998.44 16695.88 8096.82 13199.67 490.30 27699.27 2499.33 2394.04 16696.03 36897.14 6097.83 29199.78 10
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2699.67 299.73 399.65 599.15 399.86 2497.22 5599.92 1399.77 11
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 2895.62 14999.35 2099.37 1697.38 3599.90 1498.59 1599.91 1699.77 11
FC-MVSNet-test98.16 3498.37 2997.56 11999.49 3593.10 18698.35 3599.21 2498.43 2898.89 4598.83 6494.30 16199.81 3797.87 3199.91 1699.77 11
CP-MVSNet98.42 2598.46 2498.30 6899.46 3795.22 11898.27 4498.84 10899.05 1399.01 3898.65 7995.37 12999.90 1497.57 4599.91 1699.77 11
ANet_high98.31 2998.94 696.41 19999.33 5189.64 24897.92 6699.56 1199.27 699.66 899.50 897.67 2699.83 3397.55 4699.98 299.77 11
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3599.33 599.30 2299.00 4797.27 4099.92 597.64 4499.92 1399.75 16
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3099.05 1399.17 3098.79 6595.47 12699.89 1897.95 2999.91 1699.75 16
Anonymous2023121198.55 1998.76 1397.94 9698.79 11894.37 14498.84 1199.15 3599.37 399.67 699.43 1495.61 12299.72 8598.12 2299.86 2799.73 18
FIs97.93 5898.07 3897.48 13199.38 4692.95 18998.03 6299.11 4098.04 4498.62 6198.66 7793.75 17599.78 4697.23 5499.84 3199.73 18
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 3799.08 1099.42 1599.23 2796.53 8699.91 1399.27 299.93 1099.73 18
nrg03098.54 2098.62 2198.32 6599.22 6595.66 9197.90 6799.08 4798.31 3299.02 3798.74 7197.68 2599.61 14897.77 3799.85 3099.70 21
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4199.36 499.29 2399.06 4597.27 4099.93 397.71 4099.91 1699.70 21
patch_mono-296.59 14996.93 12695.55 23898.88 11187.12 30294.47 25499.30 1994.12 20096.65 21898.41 9894.98 14299.87 2295.81 11399.78 4399.66 23
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1099.02 1599.62 1099.36 1898.53 799.52 17098.58 1699.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Baseline_NR-MVSNet97.72 8197.79 6197.50 12799.56 2193.29 18195.44 20698.86 10198.20 3898.37 8699.24 2694.69 14799.55 16295.98 10299.79 4099.65 25
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5398.05 4399.61 1199.52 793.72 17699.88 2098.72 1199.88 2599.65 25
mvsmamba98.16 3498.06 4098.44 5599.53 2995.87 8198.70 1398.94 8497.71 5698.85 4799.10 4191.35 22799.83 3398.47 1799.90 2299.64 27
bld_raw_dy_0_6497.69 8397.61 8497.91 9799.54 2694.27 15198.06 5998.60 16196.60 9598.79 5298.95 5289.62 25199.84 3098.43 1999.91 1699.62 28
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 1999.01 1699.63 999.66 399.27 299.68 11997.75 3899.89 2499.62 28
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18098.20 5198.87 9898.23 3699.48 1299.27 2598.47 899.55 16296.52 7799.53 11099.60 30
XXY-MVS97.54 9397.70 6897.07 15699.46 3792.21 20297.22 11099.00 7194.93 17898.58 6698.92 5597.31 3899.41 20794.44 18599.43 14899.59 31
dcpmvs_297.12 11597.99 4594.51 28899.11 8884.00 34197.75 7699.65 797.38 7499.14 3298.42 9795.16 13599.96 295.52 12799.78 4399.58 32
test_0728_THIRD96.62 9398.40 8398.28 11797.10 4899.71 10095.70 11499.62 7899.58 32
MSP-MVS97.45 9996.92 12899.03 599.26 5697.70 1897.66 8298.89 9095.65 14798.51 7096.46 27192.15 21299.81 3795.14 15698.58 26299.58 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set97.32 11097.40 9997.09 15597.34 28392.01 21295.33 21897.65 25497.74 5298.30 10098.14 13495.04 13899.69 11497.55 4699.52 11599.58 32
v1097.55 9297.97 4696.31 20398.60 14389.64 24897.44 9999.02 6296.60 9598.72 5999.16 3693.48 18099.72 8598.76 899.92 1399.58 32
test_fmvs296.38 16096.45 15496.16 21097.85 22291.30 22396.81 13299.45 1389.24 28898.49 7399.38 1588.68 26497.62 35498.83 599.32 17899.57 37
MSC_two_6792asdad98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
No_MVS98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
APDe-MVS98.14 3698.03 4398.47 5498.72 12596.04 7598.07 5899.10 4195.96 13198.59 6598.69 7596.94 6099.81 3796.64 7299.58 9199.57 37
EI-MVSNet-Vis-set97.32 11097.39 10097.11 15397.36 28092.08 21095.34 21797.65 25497.74 5298.29 10198.11 14095.05 13799.68 11997.50 4899.50 12499.56 41
v897.60 8998.06 4096.23 20598.71 12889.44 25297.43 10198.82 12297.29 7898.74 5799.10 4193.86 17199.68 11998.61 1499.94 899.56 41
VPA-MVSNet98.27 3098.46 2497.70 11199.06 9493.80 16597.76 7599.00 7198.40 2999.07 3698.98 4996.89 6699.75 6697.19 5999.79 4099.55 43
WR-MVS96.90 12996.81 13397.16 15098.56 14992.20 20494.33 25798.12 22297.34 7598.20 10797.33 21892.81 19399.75 6694.79 17299.81 3699.54 44
TranMVSNet+NR-MVSNet98.33 2798.30 3398.43 5799.07 9395.87 8196.73 14299.05 5398.67 2398.84 4998.45 9597.58 3099.88 2096.45 8099.86 2799.54 44
SixPastTwentyTwo97.49 9697.57 8897.26 14699.56 2192.33 19998.28 4296.97 27998.30 3499.45 1499.35 2088.43 26799.89 1898.01 2799.76 4699.54 44
test_0728_SECOND98.25 7399.23 6295.49 10196.74 13898.89 9099.75 6695.48 13199.52 11599.53 47
DPE-MVScopyleft97.64 8697.35 10398.50 5198.85 11396.18 6995.21 22698.99 7495.84 14098.78 5398.08 14296.84 7299.81 3793.98 20799.57 9499.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
VPNet97.26 11297.49 9796.59 18599.47 3690.58 23696.27 15898.53 16897.77 4998.46 7898.41 9894.59 15299.68 11994.61 17999.29 18499.52 48
v119296.83 13497.06 11996.15 21198.28 17889.29 25495.36 21498.77 12993.73 21098.11 11798.34 10593.02 19199.67 12498.35 2099.58 9199.50 50
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7197.57 6299.27 2499.22 2898.32 999.50 17597.09 6299.75 5199.50 50
EI-MVSNet96.63 14896.93 12695.74 22897.26 28888.13 27995.29 22297.65 25496.99 8397.94 13898.19 13092.55 20299.58 15296.91 6899.56 9799.50 50
HPM-MVScopyleft98.11 4097.83 5998.92 2199.42 4297.46 3198.57 2099.05 5395.43 15897.41 16897.50 20197.98 1599.79 4395.58 12699.57 9499.50 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LPG-MVS_test97.94 5597.67 7398.74 3499.15 7997.02 4297.09 11899.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
LGP-MVS_train98.74 3499.15 7997.02 4299.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
IterMVS-LS96.92 12797.29 10695.79 22698.51 15688.13 27995.10 22998.66 15396.99 8398.46 7898.68 7692.55 20299.74 7596.91 6899.79 4099.50 50
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17598.23 4699.05 5397.40 7399.37 1899.08 4498.79 599.47 18597.74 3999.71 6099.50 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111194.53 24194.81 21893.72 30499.06 9481.94 35398.31 3983.87 37496.37 10898.49 7399.17 3581.49 31199.73 8096.64 7299.86 2799.49 58
IU-MVS99.22 6595.40 10398.14 22085.77 32798.36 8995.23 14899.51 12099.49 58
test_241102_TWO98.83 11496.11 12198.62 6198.24 12396.92 6499.72 8595.44 13599.49 12799.49 58
v192192096.72 14296.96 12595.99 21598.21 18688.79 26595.42 20898.79 12493.22 22498.19 11198.26 12292.68 19799.70 10798.34 2199.55 10399.49 58
v124096.74 13997.02 12195.91 22298.18 19188.52 26895.39 21298.88 9693.15 23098.46 7898.40 10192.80 19499.71 10098.45 1899.49 12799.49 58
ACMMPR97.95 5197.62 8298.94 1599.20 7397.56 2597.59 8898.83 11496.05 12497.46 16697.63 19196.77 7599.76 6095.61 12399.46 13699.49 58
MP-MVS-pluss97.69 8397.36 10298.70 3899.50 3496.84 4795.38 21398.99 7492.45 24898.11 11798.31 10897.25 4399.77 5596.60 7499.62 7899.48 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PGM-MVS97.88 6697.52 9398.96 1399.20 7397.62 2197.09 11899.06 5195.45 15697.55 15697.94 16297.11 4799.78 4694.77 17599.46 13699.48 64
UniMVSNet_NR-MVSNet97.83 7197.65 7598.37 6298.72 12595.78 8495.66 19699.02 6298.11 4098.31 9897.69 18894.65 15199.85 2797.02 6599.71 6099.48 64
v14419296.69 14596.90 13096.03 21498.25 18288.92 26095.49 20498.77 12993.05 23298.09 12098.29 11692.51 20799.70 10798.11 2399.56 9799.47 67
MIMVSNet198.51 2298.45 2698.67 4099.72 896.71 5098.76 1298.89 9098.49 2799.38 1799.14 3995.44 12899.84 3096.47 7999.80 3999.47 67
region2R97.92 5997.59 8698.92 2199.22 6597.55 2697.60 8698.84 10896.00 12997.22 17397.62 19296.87 7099.76 6095.48 13199.43 14899.46 69
DU-MVS97.79 7697.60 8598.36 6398.73 12395.78 8495.65 19898.87 9897.57 6298.31 9897.83 17294.69 14799.85 2797.02 6599.71 6099.46 69
NR-MVSNet97.96 4797.86 5598.26 7098.73 12395.54 9598.14 5498.73 13697.79 4899.42 1597.83 17294.40 15999.78 4695.91 10699.76 4699.46 69
mPP-MVS97.91 6297.53 9299.04 499.22 6597.87 1497.74 7898.78 12896.04 12697.10 18497.73 18496.53 8699.78 4695.16 15399.50 12499.46 69
ZNCC-MVS97.92 5997.62 8298.83 2599.32 5397.24 3997.45 9898.84 10895.76 14396.93 20197.43 20597.26 4299.79 4396.06 9399.53 11099.45 73
SMA-MVScopyleft97.48 9797.11 11498.60 4598.83 11496.67 5396.74 13898.73 13691.61 26098.48 7598.36 10396.53 8699.68 11995.17 15199.54 10699.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6597.63 8098.67 4099.35 4996.84 4796.36 15498.79 12495.07 17297.88 14398.35 10497.24 4499.72 8596.05 9599.58 9199.45 73
MTAPA98.14 3697.84 5699.06 399.44 3997.90 1297.25 10798.73 13697.69 5897.90 14197.96 15995.81 11599.82 3596.13 9299.61 8499.45 73
v114496.84 13197.08 11796.13 21298.42 16889.28 25595.41 21098.67 15194.21 19797.97 13598.31 10893.06 18799.65 13298.06 2699.62 7899.45 73
XVS97.96 4797.63 8098.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23397.64 19096.49 8999.72 8595.66 11999.37 15999.45 73
X-MVStestdata92.86 28590.83 30998.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23336.50 37596.49 8999.72 8595.66 11999.37 15999.45 73
v2v48296.78 13897.06 11995.95 21998.57 14788.77 26695.36 21498.26 19995.18 16797.85 14898.23 12592.58 20199.63 13797.80 3599.69 6499.45 73
MP-MVScopyleft97.64 8697.18 11299.00 999.32 5397.77 1797.49 9798.73 13696.27 11295.59 26697.75 18196.30 9899.78 4693.70 21799.48 13199.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EU-MVSNet94.25 24894.47 23793.60 30798.14 20082.60 34897.24 10992.72 34285.08 33398.48 7598.94 5382.59 30998.76 30497.47 5099.53 11099.44 82
ACMMPcopyleft98.05 4397.75 6798.93 1899.23 6297.60 2298.09 5798.96 8195.75 14597.91 14098.06 14996.89 6699.76 6095.32 14399.57 9499.43 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS97.82 7497.49 9798.81 2799.23 6297.25 3897.16 11298.79 12495.96 13197.53 15797.40 20796.93 6299.77 5595.04 16299.35 16799.42 84
HPM-MVS_fast98.32 2898.13 3498.88 2399.54 2697.48 3098.35 3599.03 6095.88 13797.88 14398.22 12898.15 1299.74 7596.50 7899.62 7899.42 84
UniMVSNet (Re)97.83 7197.65 7598.35 6498.80 11795.86 8395.92 18499.04 5997.51 6698.22 10697.81 17694.68 14999.78 4697.14 6099.75 5199.41 86
casdiffmvs_mvgpermissive97.83 7198.11 3597.00 16298.57 14792.10 20995.97 17899.18 2997.67 6199.00 3998.48 9497.64 2799.50 17596.96 6799.54 10699.40 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SteuartSystems-ACMMP98.02 4597.76 6698.79 2999.43 4097.21 4197.15 11398.90 8996.58 9898.08 12297.87 17097.02 5599.76 6095.25 14699.59 8999.40 87
Skip Steuart: Steuart Systems R&D Blog.
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1498.85 2099.00 3999.20 2997.42 3499.59 15097.21 5699.76 4699.40 87
K. test v396.44 15796.28 16196.95 16399.41 4391.53 22097.65 8390.31 36098.89 1998.93 4299.36 1884.57 29899.92 597.81 3499.56 9799.39 90
ACMM93.33 1198.05 4397.79 6198.85 2499.15 7997.55 2696.68 14498.83 11495.21 16498.36 8998.13 13698.13 1499.62 14296.04 9699.54 10699.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250689.86 32289.16 32791.97 33698.95 10476.83 36898.54 2361.07 38296.20 11697.07 19099.16 3655.19 38199.69 11496.43 8199.83 3399.38 92
ECVR-MVScopyleft94.37 24794.48 23694.05 30098.95 10483.10 34598.31 3982.48 37596.20 11698.23 10599.16 3681.18 31499.66 13095.95 10399.83 3399.38 92
V4297.04 11897.16 11396.68 18298.59 14591.05 22696.33 15698.36 18994.60 18697.99 13198.30 11293.32 18299.62 14297.40 5199.53 11099.38 92
CP-MVS97.92 5997.56 8998.99 1098.99 10297.82 1597.93 6598.96 8196.11 12196.89 20497.45 20396.85 7199.78 4695.19 14999.63 7799.38 92
EG-PatchMatch MVS97.69 8397.79 6197.40 13999.06 9493.52 17695.96 18098.97 8094.55 19098.82 5098.76 7097.31 3899.29 23997.20 5899.44 14099.38 92
IS-MVSNet96.93 12696.68 14097.70 11199.25 5994.00 15998.57 2096.74 28898.36 3098.14 11597.98 15888.23 26999.71 10093.10 23199.72 5799.38 92
GeoE97.75 7997.70 6897.89 9998.88 11194.53 13797.10 11798.98 7795.75 14597.62 15497.59 19497.61 2999.77 5596.34 8499.44 14099.36 98
UGNet96.81 13696.56 14697.58 11896.64 30593.84 16497.75 7697.12 27396.47 10693.62 31398.88 6193.22 18599.53 16795.61 12399.69 6499.36 98
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet96.98 12496.84 13197.41 13899.40 4493.26 18297.94 6495.31 31699.26 798.39 8599.18 3387.85 27699.62 14295.13 15899.09 20999.35 100
SR-MVS98.00 4697.66 7499.01 898.77 12197.93 1197.38 10398.83 11497.32 7698.06 12597.85 17196.65 7999.77 5595.00 16599.11 20699.32 101
APD-MVS_3200maxsize98.13 3997.90 5098.79 2998.79 11897.31 3697.55 9198.92 8797.72 5498.25 10398.13 13697.10 4899.75 6695.44 13599.24 19299.32 101
EPP-MVSNet96.84 13196.58 14497.65 11599.18 7693.78 16798.68 1496.34 29397.91 4797.30 17098.06 14988.46 26699.85 2793.85 21199.40 15699.32 101
ACMP92.54 1397.47 9897.10 11598.55 4999.04 9996.70 5196.24 16298.89 9093.71 21197.97 13597.75 18197.44 3299.63 13793.22 22899.70 6399.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+93.58 1098.23 3398.31 3197.98 9499.39 4595.22 11897.55 9199.20 2698.21 3799.25 2698.51 9098.21 1199.40 20994.79 17299.72 5799.32 101
Anonymous2024052197.07 11797.51 9495.76 22799.35 4988.18 27697.78 7298.40 18497.11 8198.34 9299.04 4689.58 25399.79 4398.09 2499.93 1099.30 106
HFP-MVS97.94 5597.64 7898.83 2599.15 7997.50 2997.59 8898.84 10896.05 12497.49 16197.54 19797.07 5199.70 10795.61 12399.46 13699.30 106
lessismore_v097.05 15799.36 4892.12 20684.07 37398.77 5598.98 4985.36 29299.74 7597.34 5399.37 15999.30 106
GBi-Net96.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
test196.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
FMVSNet197.95 5198.08 3797.56 11999.14 8693.67 16998.23 4698.66 15397.41 7299.00 3999.19 3095.47 12699.73 8095.83 11199.76 4699.30 106
v14896.58 15196.97 12395.42 24598.63 13987.57 29295.09 23097.90 23695.91 13698.24 10497.96 15993.42 18199.39 21396.04 9699.52 11599.29 112
TSAR-MVS + MP.97.42 10297.23 11098.00 9399.38 4695.00 12597.63 8598.20 20793.00 23498.16 11298.06 14995.89 10699.72 8595.67 11899.10 20899.28 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
casdiffmvspermissive97.50 9597.81 6096.56 18998.51 15691.04 22795.83 18899.09 4697.23 7998.33 9598.30 11297.03 5499.37 21996.58 7699.38 15899.28 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP_MVS96.66 14796.33 16097.68 11498.70 13094.29 14796.50 14898.75 13396.36 10996.16 24496.77 25491.91 22299.46 18892.59 23699.20 19499.28 113
plane_prior598.75 13399.46 18892.59 23699.20 19499.28 113
IterMVS-SCA-FT95.86 17996.19 16494.85 27197.68 25485.53 32092.42 31797.63 25896.99 8398.36 8998.54 8787.94 27199.75 6697.07 6499.08 21099.27 117
KD-MVS_self_test97.86 6998.07 3897.25 14799.22 6592.81 19197.55 9198.94 8497.10 8298.85 4798.88 6195.03 13999.67 12497.39 5299.65 7399.26 118
SR-MVS-dyc-post98.14 3697.84 5699.02 698.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.60 8499.76 6095.49 12899.20 19499.26 118
RE-MVS-def97.88 5498.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.94 6095.49 12899.20 19499.26 118
DVP-MVScopyleft97.78 7797.65 7598.16 7999.24 6095.51 9796.74 13898.23 20295.92 13498.40 8398.28 11797.06 5299.71 10095.48 13199.52 11599.26 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SF-MVS97.60 8997.39 10098.22 7598.93 10795.69 8897.05 12099.10 4195.32 16197.83 14997.88 16996.44 9399.72 8594.59 18399.39 15799.25 122
3Dnovator+96.13 397.73 8097.59 8698.15 8198.11 20495.60 9298.04 6098.70 14598.13 3996.93 20198.45 9595.30 13299.62 14295.64 12198.96 22199.24 123
Anonymous2024052997.96 4798.04 4297.71 11098.69 13294.28 15097.86 6998.31 19798.79 2199.23 2798.86 6395.76 11799.61 14895.49 12899.36 16299.23 124
IterMVS95.42 19995.83 18294.20 29797.52 26783.78 34392.41 31897.47 26395.49 15598.06 12598.49 9187.94 27199.58 15296.02 9899.02 21799.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DVP-MVS++97.96 4797.90 5098.12 8497.75 24795.40 10399.03 798.89 9096.62 9398.62 6198.30 11296.97 5899.75 6695.70 11499.25 18999.21 126
PC_three_145287.24 31098.37 8697.44 20497.00 5696.78 36592.01 24299.25 18999.21 126
OPM-MVS97.54 9397.25 10898.41 5999.11 8896.61 5695.24 22498.46 17494.58 18998.10 11998.07 14497.09 5099.39 21395.16 15399.44 14099.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf0593.65 26993.05 26895.46 24396.13 32587.45 29595.95 18298.22 20392.66 24497.04 19297.89 16763.52 37399.72 8596.19 9099.82 3599.21 126
EPNet93.72 26592.62 28497.03 16087.61 38092.25 20096.27 15891.28 35196.74 9187.65 36697.39 21185.00 29499.64 13592.14 24199.48 13199.20 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.44 10097.78 6596.43 19598.52 15490.75 23496.84 12999.03 6096.51 10297.86 14798.02 15396.67 7899.36 22197.09 6299.47 13399.19 131
APD-MVScopyleft97.00 12096.53 15098.41 5998.55 15096.31 6696.32 15798.77 12992.96 23997.44 16797.58 19695.84 10899.74 7591.96 24399.35 16799.19 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.92 12796.55 14798.03 9298.00 21395.54 9594.87 24298.17 21394.60 18696.38 23097.05 23495.67 12099.36 22195.12 15999.08 21099.19 131
iter_conf_final94.54 24093.91 25696.43 19597.23 29090.41 24096.81 13298.10 22393.87 20796.80 20697.89 16768.02 36799.72 8596.73 7199.77 4599.18 134
NCCC96.52 15395.99 17398.10 8597.81 23195.68 8995.00 23898.20 20795.39 15995.40 27196.36 27793.81 17399.45 19293.55 22098.42 26999.17 135
CPTT-MVS96.69 14596.08 16998.49 5298.89 11096.64 5597.25 10798.77 12992.89 24096.01 25097.13 22892.23 21199.67 12492.24 24099.34 17099.17 135
RPSCF97.87 6797.51 9498.95 1499.15 7998.43 697.56 9099.06 5196.19 11898.48 7598.70 7494.72 14699.24 25094.37 19099.33 17699.17 135
Vis-MVSNetpermissive98.27 3098.34 3098.07 8699.33 5195.21 12098.04 6099.46 1297.32 7697.82 15099.11 4096.75 7699.86 2497.84 3399.36 16299.15 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.73 14196.54 14997.27 14598.35 17393.66 17293.42 29698.36 18994.74 18196.58 22096.76 25696.54 8598.99 28394.87 16899.27 18799.15 138
DeepC-MVS95.41 497.82 7497.70 6898.16 7998.78 12095.72 8696.23 16399.02 6293.92 20698.62 6198.99 4897.69 2499.62 14296.18 9199.87 2699.15 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS97.94 5597.90 5098.07 8699.22 6595.35 10896.79 13598.83 11496.11 12199.08 3498.24 12397.87 1999.72 8595.44 13599.51 12099.14 141
OPU-MVS97.64 11698.01 20995.27 11396.79 13597.35 21696.97 5898.51 32891.21 25999.25 18999.14 141
HPM-MVS++copyleft96.99 12196.38 15798.81 2798.64 13597.59 2395.97 17898.20 20795.51 15495.06 27696.53 26794.10 16599.70 10794.29 19399.15 19999.13 143
MCST-MVS96.24 16495.80 18397.56 11998.75 12294.13 15594.66 24998.17 21390.17 27996.21 24196.10 29095.14 13699.43 19794.13 20098.85 23599.13 143
UnsupCasMVSNet_eth95.91 17795.73 18696.44 19498.48 16291.52 22195.31 22098.45 17595.76 14397.48 16397.54 19789.53 25698.69 31194.43 18694.61 35499.13 143
3Dnovator96.53 297.61 8897.64 7897.50 12797.74 25093.65 17398.49 2898.88 9696.86 8897.11 18398.55 8695.82 11199.73 8095.94 10499.42 15199.13 143
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4399.21 7297.35 3597.96 6399.16 3198.34 3198.78 5398.52 8897.32 3799.45 19294.08 20199.67 7099.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet95.67 18696.58 14492.94 32497.48 27080.21 35992.96 30598.19 21294.83 17998.82 5098.79 6593.31 18399.51 17495.83 11199.04 21699.12 148
VDD-MVS97.37 10697.25 10897.74 10898.69 13294.50 14097.04 12195.61 31098.59 2598.51 7098.72 7292.54 20499.58 15296.02 9899.49 12799.12 148
MVSTER94.21 25193.93 25595.05 25995.83 33286.46 31095.18 22797.65 25492.41 24997.94 13898.00 15772.39 35699.58 15296.36 8399.56 9799.12 148
testgi96.07 17096.50 15394.80 27499.26 5687.69 29195.96 18098.58 16595.08 17198.02 13096.25 28197.92 1697.60 35588.68 30998.74 24699.11 151
CDPH-MVS95.45 19894.65 22497.84 10398.28 17894.96 12693.73 28898.33 19385.03 33595.44 26996.60 26395.31 13199.44 19590.01 28999.13 20299.11 151
PVSNet_BlendedMVS95.02 21794.93 20995.27 24997.79 24087.40 29794.14 27098.68 14888.94 29394.51 28998.01 15593.04 18899.30 23589.77 29399.49 12799.11 151
DP-MVS97.87 6797.89 5397.81 10498.62 14194.82 12997.13 11698.79 12498.98 1798.74 5798.49 9195.80 11699.49 17995.04 16299.44 14099.11 151
agg_prior290.34 28698.90 22899.10 155
VNet96.84 13196.83 13296.88 16898.06 20592.02 21196.35 15597.57 26097.70 5797.88 14397.80 17792.40 20999.54 16594.73 17798.96 22199.08 156
CHOSEN 1792x268894.10 25593.41 26496.18 20999.16 7790.04 24292.15 32198.68 14879.90 35996.22 24097.83 17287.92 27599.42 19889.18 30199.65 7399.08 156
XVG-OURS-SEG-HR97.38 10497.07 11898.30 6899.01 10197.41 3494.66 24999.02 6295.20 16598.15 11497.52 19998.83 498.43 33294.87 16896.41 33399.07 158
FMVSNet296.72 14296.67 14196.87 16997.96 21591.88 21497.15 11398.06 23195.59 15198.50 7298.62 8089.51 25799.65 13294.99 16699.60 8799.07 158
diffmvspermissive96.04 17296.23 16295.46 24397.35 28188.03 28293.42 29699.08 4794.09 20296.66 21696.93 24293.85 17299.29 23996.01 10098.67 25299.06 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP4-MVS92.87 33099.23 25299.06 160
HQP-MVS95.17 21094.58 23296.92 16597.85 22292.47 19794.26 25898.43 17893.18 22692.86 33195.08 31490.33 24099.23 25290.51 28198.74 24699.05 162
test_f95.82 18195.88 18195.66 23297.61 26193.21 18495.61 20198.17 21386.98 31498.42 8199.47 1090.46 23894.74 37197.71 4098.45 26899.03 163
FMVSNet593.39 27692.35 28696.50 19195.83 33290.81 23397.31 10498.27 19892.74 24296.27 23798.28 11762.23 37499.67 12490.86 26699.36 16299.03 163
HyFIR lowres test93.72 26592.65 28296.91 16798.93 10791.81 21791.23 33898.52 16982.69 34796.46 22796.52 26980.38 31999.90 1490.36 28598.79 24199.03 163
tttt051793.31 27892.56 28595.57 23598.71 12887.86 28597.44 9987.17 36995.79 14297.47 16596.84 24864.12 37199.81 3796.20 8999.32 17899.02 166
test9_res91.29 25598.89 23199.00 167
test20.0396.58 15196.61 14296.48 19398.49 16091.72 21895.68 19597.69 24996.81 8998.27 10297.92 16594.18 16498.71 30990.78 27099.66 7299.00 167
XVG-ACMP-BASELINE97.58 9197.28 10798.49 5299.16 7796.90 4696.39 15198.98 7795.05 17398.06 12598.02 15395.86 10799.56 15994.37 19099.64 7599.00 167
mvsany_test396.21 16595.93 17897.05 15797.40 27894.33 14695.76 19094.20 32689.10 28999.36 1999.60 693.97 16997.85 35095.40 14298.63 25798.99 170
MDA-MVSNet-bldmvs95.69 18495.67 18795.74 22898.48 16288.76 26792.84 30697.25 26696.00 12997.59 15597.95 16191.38 22699.46 18893.16 23096.35 33498.99 170
Vis-MVSNet (Re-imp)95.11 21194.85 21495.87 22499.12 8789.17 25697.54 9694.92 31996.50 10396.58 22097.27 22183.64 30399.48 18288.42 31299.67 7098.97 172
FMVSNet395.26 20594.94 20796.22 20796.53 30890.06 24195.99 17697.66 25294.11 20197.99 13197.91 16680.22 32099.63 13794.60 18099.44 14098.96 173
ambc96.56 18998.23 18591.68 21997.88 6898.13 22198.42 8198.56 8594.22 16399.04 27794.05 20499.35 16798.95 174
YYNet194.73 22594.84 21594.41 29197.47 27485.09 32990.29 35095.85 30492.52 24597.53 15797.76 17891.97 21899.18 25693.31 22596.86 32398.95 174
ppachtmachnet_test94.49 24394.84 21593.46 31096.16 32182.10 35090.59 34797.48 26290.53 27497.01 19597.59 19491.01 23099.36 22193.97 20899.18 19898.94 176
CANet95.86 17995.65 18896.49 19296.41 31190.82 23194.36 25698.41 18294.94 17692.62 33996.73 25792.68 19799.71 10095.12 15999.60 8798.94 176
Anonymous2023120695.27 20495.06 20495.88 22398.72 12589.37 25395.70 19297.85 23988.00 30596.98 19897.62 19291.95 21999.34 22689.21 30099.53 11098.94 176
MDA-MVSNet_test_wron94.73 22594.83 21794.42 29097.48 27085.15 32790.28 35195.87 30392.52 24597.48 16397.76 17891.92 22199.17 26093.32 22496.80 32698.94 176
LFMVS95.32 20294.88 21396.62 18398.03 20691.47 22297.65 8390.72 35799.11 997.89 14298.31 10879.20 32299.48 18293.91 21099.12 20598.93 180
XVG-OURS97.12 11596.74 13798.26 7098.99 10297.45 3293.82 28499.05 5395.19 16698.32 9697.70 18695.22 13498.41 33394.27 19498.13 28098.93 180
DeepPCF-MVS94.58 596.90 12996.43 15598.31 6797.48 27097.23 4092.56 31498.60 16192.84 24198.54 6897.40 20796.64 8198.78 30194.40 18999.41 15598.93 180
Anonymous20240521196.34 16195.98 17497.43 13698.25 18293.85 16396.74 13894.41 32497.72 5498.37 8698.03 15287.15 28199.53 16794.06 20299.07 21298.92 183
our_test_394.20 25394.58 23293.07 31896.16 32181.20 35690.42 34996.84 28290.72 27297.14 18097.13 22890.47 23799.11 26994.04 20598.25 27598.91 184
tfpnnormal97.72 8197.97 4696.94 16499.26 5692.23 20197.83 7198.45 17598.25 3599.13 3398.66 7796.65 7999.69 11493.92 20999.62 7898.91 184
AllTest97.20 11496.92 12898.06 8899.08 9196.16 7097.14 11599.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
TestCases98.06 8899.08 9196.16 7099.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
h-mvs3396.29 16295.63 18998.26 7098.50 15996.11 7396.90 12797.09 27496.58 9897.21 17598.19 13084.14 29999.78 4695.89 10796.17 33798.89 188
pmmvs-eth3d96.49 15496.18 16597.42 13798.25 18294.29 14794.77 24698.07 23089.81 28397.97 13598.33 10693.11 18699.08 27395.46 13499.84 3198.89 188
train_agg95.46 19794.66 22397.88 10097.84 22795.23 11593.62 29098.39 18587.04 31293.78 30695.99 29294.58 15399.52 17091.76 25098.90 22898.89 188
test1297.46 13397.61 26194.07 15697.78 24593.57 31693.31 18399.42 19898.78 24298.89 188
pmmvs594.63 23594.34 24295.50 24097.63 26088.34 27294.02 27497.13 27287.15 31195.22 27497.15 22787.50 27799.27 24493.99 20699.26 18898.88 192
DeepC-MVS_fast94.34 796.74 13996.51 15297.44 13597.69 25394.15 15496.02 17498.43 17893.17 22997.30 17097.38 21395.48 12599.28 24193.74 21499.34 17098.88 192
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS97.37 10697.70 6896.35 20098.14 20095.13 12296.54 14798.92 8795.94 13399.19 2998.08 14297.74 2395.06 36995.24 14799.54 10698.87 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS293.66 26894.07 25092.45 33297.57 26380.67 35886.46 36596.00 29993.99 20497.10 18497.38 21389.90 24897.82 35188.76 30699.47 13398.86 195
PVSNet_Blended_VisFu95.95 17695.80 18396.42 19799.28 5590.62 23595.31 22099.08 4788.40 29996.97 19998.17 13392.11 21499.78 4693.64 21899.21 19398.86 195
miper_lstm_enhance94.81 22494.80 21994.85 27196.16 32186.45 31191.14 34098.20 20793.49 21597.03 19397.37 21584.97 29599.26 24595.28 14499.56 9798.83 197
PHI-MVS96.96 12596.53 15098.25 7397.48 27096.50 5996.76 13798.85 10593.52 21496.19 24396.85 24795.94 10599.42 19893.79 21399.43 14898.83 197
QAPM95.88 17895.57 19196.80 17497.90 22091.84 21698.18 5398.73 13688.41 29896.42 22898.13 13694.73 14599.75 6688.72 30798.94 22498.81 199
Patchmtry95.03 21694.59 23196.33 20194.83 34990.82 23196.38 15397.20 26896.59 9797.49 16198.57 8377.67 32999.38 21692.95 23499.62 7898.80 200
test_prior97.46 13397.79 24094.26 15298.42 18199.34 22698.79 201
eth_miper_zixun_eth94.89 22094.93 20994.75 27795.99 32786.12 31591.35 33398.49 17293.40 21797.12 18297.25 22386.87 28499.35 22495.08 16198.82 23998.78 202
c3_l95.20 20795.32 19394.83 27396.19 31986.43 31291.83 32798.35 19293.47 21697.36 16997.26 22288.69 26399.28 24195.41 14199.36 16298.78 202
MVS_111021_LR96.82 13596.55 14797.62 11798.27 18095.34 11093.81 28698.33 19394.59 18896.56 22296.63 26296.61 8298.73 30694.80 17199.34 17098.78 202
F-COLMAP95.30 20394.38 24198.05 9198.64 13596.04 7595.61 20198.66 15389.00 29293.22 32596.40 27592.90 19299.35 22487.45 32697.53 30898.77 205
testf198.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
APD_test298.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
D2MVS95.18 20895.17 19895.21 25197.76 24587.76 29094.15 26897.94 23489.77 28496.99 19697.68 18987.45 27899.14 26395.03 16499.81 3698.74 208
MVSFormer96.14 16896.36 15895.49 24197.68 25487.81 28898.67 1599.02 6296.50 10394.48 29196.15 28586.90 28299.92 598.73 999.13 20298.74 208
jason94.39 24694.04 25195.41 24798.29 17687.85 28792.74 31196.75 28785.38 33295.29 27296.15 28588.21 27099.65 13294.24 19599.34 17098.74 208
jason: jason.
test_fmvs1_n95.21 20695.28 19494.99 26398.15 19889.13 25996.81 13299.43 1586.97 31597.21 17598.92 5583.00 30697.13 35898.09 2498.94 22498.72 211
DIV-MVS_self_test94.73 22594.64 22595.01 26195.86 33087.00 30491.33 33498.08 22693.34 21997.10 18497.34 21784.02 30199.31 23295.15 15599.55 10398.72 211
旧先验197.80 23593.87 16297.75 24697.04 23593.57 17898.68 25198.72 211
cl____94.73 22594.64 22595.01 26195.85 33187.00 30491.33 33498.08 22693.34 21997.10 18497.33 21884.01 30299.30 23595.14 15699.56 9798.71 214
mvs_anonymous95.36 20096.07 17093.21 31696.29 31381.56 35494.60 25197.66 25293.30 22196.95 20098.91 5893.03 19099.38 21696.60 7497.30 31898.69 215
OMC-MVS96.48 15596.00 17297.91 9798.30 17596.01 7894.86 24398.60 16191.88 25797.18 17897.21 22596.11 10299.04 27790.49 28399.34 17098.69 215
thisisatest053092.71 28891.76 29595.56 23798.42 16888.23 27496.03 17387.35 36894.04 20396.56 22295.47 30964.03 37299.77 5594.78 17499.11 20698.68 217
TAMVS95.49 19394.94 20797.16 15098.31 17493.41 17995.07 23396.82 28491.09 26897.51 15997.82 17589.96 24799.42 19888.42 31299.44 14098.64 218
test_040297.84 7097.97 4697.47 13299.19 7594.07 15696.71 14398.73 13698.66 2498.56 6798.41 9896.84 7299.69 11494.82 17099.81 3698.64 218
MVP-Stereo95.69 18495.28 19496.92 16598.15 19893.03 18795.64 20098.20 20790.39 27596.63 21997.73 18491.63 22499.10 27191.84 24897.31 31798.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl2293.25 28092.84 27694.46 28994.30 35586.00 31691.09 34296.64 29290.74 27195.79 25896.31 27978.24 32698.77 30294.15 19998.34 27198.62 221
CANet_DTU94.65 23494.21 24695.96 21795.90 32989.68 24793.92 28197.83 24393.19 22590.12 35695.64 30488.52 26599.57 15893.27 22799.47 13398.62 221
PM-MVS97.36 10897.10 11598.14 8298.91 10996.77 4996.20 16498.63 15993.82 20898.54 6898.33 10693.98 16899.05 27695.99 10199.45 13998.61 223
CSCG97.40 10397.30 10597.69 11398.95 10494.83 12897.28 10698.99 7496.35 11198.13 11695.95 29695.99 10499.66 13094.36 19299.73 5398.59 224
CLD-MVS95.47 19695.07 20296.69 18198.27 18092.53 19691.36 33298.67 15191.22 26795.78 26094.12 33395.65 12198.98 28590.81 26899.72 5798.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld94.72 22994.26 24396.08 21398.62 14190.54 23993.38 29898.05 23290.30 27697.02 19496.80 25389.54 25499.16 26188.44 31196.18 33698.56 226
N_pmnet95.18 20894.23 24498.06 8897.85 22296.55 5892.49 31591.63 35089.34 28698.09 12097.41 20690.33 24099.06 27591.58 25299.31 18198.56 226
EGC-MVSNET83.08 34177.93 34498.53 5099.57 2097.55 2698.33 3898.57 1664.71 37710.38 37898.90 5995.60 12399.50 17595.69 11699.61 8498.55 228
CVMVSNet92.33 29492.79 27790.95 34197.26 28875.84 37195.29 22292.33 34581.86 34996.27 23798.19 13081.44 31298.46 33194.23 19698.29 27498.55 228
APD_test197.95 5197.68 7298.75 3199.60 1798.60 597.21 11199.08 4796.57 10198.07 12498.38 10296.22 10199.14 26394.71 17899.31 18198.52 230
CS-MVS-test97.91 6297.84 5698.14 8298.52 15496.03 7798.38 3499.67 498.11 4095.50 26896.92 24496.81 7499.87 2296.87 7099.76 4698.51 231
LS3D97.77 7897.50 9698.57 4796.24 31597.58 2498.45 3198.85 10598.58 2697.51 15997.94 16295.74 11899.63 13795.19 14998.97 22098.51 231
CL-MVSNet_self_test95.04 21494.79 22095.82 22597.51 26889.79 24691.14 34096.82 28493.05 23296.72 21296.40 27590.82 23399.16 26191.95 24498.66 25498.50 233
miper_ehance_all_eth94.69 23094.70 22294.64 27995.77 33486.22 31491.32 33698.24 20191.67 25997.05 19196.65 26188.39 26899.22 25494.88 16798.34 27198.49 234
Effi-MVS+-dtu96.81 13696.09 16898.99 1096.90 30398.69 496.42 15098.09 22595.86 13995.15 27595.54 30794.26 16299.81 3794.06 20298.51 26698.47 235
USDC94.56 23894.57 23494.55 28697.78 24386.43 31292.75 30998.65 15885.96 32396.91 20397.93 16490.82 23398.74 30590.71 27599.59 8998.47 235
pmmvs494.82 22394.19 24796.70 18097.42 27792.75 19492.09 32496.76 28686.80 31795.73 26397.22 22489.28 26098.89 29293.28 22699.14 20098.46 237
CS-MVS98.09 4198.01 4498.32 6598.45 16596.69 5298.52 2699.69 398.07 4296.07 24797.19 22696.88 6899.86 2497.50 4899.73 5398.41 238
alignmvs96.01 17495.52 19297.50 12797.77 24494.71 13196.07 17096.84 28297.48 6796.78 21194.28 33285.50 29199.40 20996.22 8898.73 24998.40 239
CDS-MVSNet94.88 22194.12 24997.14 15297.64 25993.57 17493.96 28097.06 27690.05 28096.30 23696.55 26586.10 28799.47 18590.10 28899.31 18198.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS93.55 27293.00 27295.19 25297.81 23187.86 28593.89 28296.00 29989.02 29194.07 30095.44 31186.27 28699.33 22887.69 32096.82 32498.39 241
DROMVSNet97.90 6497.94 4997.79 10598.66 13495.14 12198.31 3999.66 697.57 6295.95 25197.01 23896.99 5799.82 3597.66 4399.64 7598.39 241
Effi-MVS+96.19 16696.01 17196.71 17997.43 27692.19 20596.12 16899.10 4195.45 15693.33 32494.71 32397.23 4599.56 15993.21 22997.54 30798.37 243
MS-PatchMatch94.83 22294.91 21194.57 28596.81 30487.10 30394.23 26397.34 26588.74 29697.14 18097.11 23091.94 22098.23 34392.99 23297.92 28798.37 243
TSAR-MVS + GP.96.47 15696.12 16697.49 13097.74 25095.23 11594.15 26896.90 28193.26 22298.04 12896.70 25894.41 15898.89 29294.77 17599.14 20098.37 243
DELS-MVS96.17 16796.23 16295.99 21597.55 26690.04 24292.38 31998.52 16994.13 19996.55 22497.06 23394.99 14199.58 15295.62 12299.28 18598.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 24993.72 25895.74 22897.71 25289.95 24493.84 28396.98 27888.38 30093.75 30995.74 30087.94 27198.89 29291.02 26298.10 28198.37 243
GA-MVS92.83 28692.15 29094.87 27096.97 29887.27 30090.03 35296.12 29691.83 25894.05 30194.57 32476.01 34198.97 28992.46 23997.34 31698.36 248
ITE_SJBPF97.85 10298.64 13596.66 5498.51 17195.63 14897.22 17397.30 22095.52 12498.55 32590.97 26398.90 22898.34 249
hse-mvs295.77 18295.09 20197.79 10597.84 22795.51 9795.66 19695.43 31596.58 9897.21 17596.16 28484.14 29999.54 16595.89 10796.92 32098.32 250
LCM-MVSNet-Re97.33 10997.33 10497.32 14398.13 20393.79 16696.99 12499.65 796.74 9199.47 1398.93 5496.91 6599.84 3090.11 28799.06 21598.32 250
BH-RMVSNet94.56 23894.44 24094.91 26697.57 26387.44 29693.78 28796.26 29493.69 21296.41 22996.50 27092.10 21599.00 28185.96 33397.71 29898.31 252
MG-MVS94.08 25794.00 25294.32 29397.09 29585.89 31793.19 30395.96 30192.52 24594.93 28297.51 20089.54 25498.77 30287.52 32597.71 29898.31 252
AUN-MVS93.95 26292.69 28197.74 10897.80 23595.38 10595.57 20395.46 31491.26 26692.64 33796.10 29074.67 34599.55 16293.72 21696.97 31998.30 254
MVS_Test96.27 16396.79 13694.73 27896.94 30186.63 30996.18 16598.33 19394.94 17696.07 24798.28 11795.25 13399.26 24597.21 5697.90 28998.30 254
TinyColmap96.00 17596.34 15994.96 26597.90 22087.91 28494.13 27198.49 17294.41 19298.16 11297.76 17896.29 9998.68 31490.52 28099.42 15198.30 254
CMPMVSbinary73.10 2392.74 28791.39 29896.77 17693.57 36694.67 13494.21 26597.67 25080.36 35893.61 31496.60 26382.85 30797.35 35684.86 34598.78 24298.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lupinMVS93.77 26393.28 26595.24 25097.68 25487.81 28892.12 32296.05 29784.52 34194.48 29195.06 31686.90 28299.63 13793.62 21999.13 20298.27 258
PAPM_NR94.61 23694.17 24895.96 21798.36 17291.23 22495.93 18397.95 23392.98 23593.42 32294.43 33090.53 23698.38 33687.60 32296.29 33598.27 258
114514_t93.96 26093.22 26796.19 20899.06 9490.97 22995.99 17698.94 8473.88 37193.43 32196.93 24292.38 21099.37 21989.09 30299.28 18598.25 260
原ACMM196.58 18698.16 19692.12 20698.15 21985.90 32593.49 31896.43 27292.47 20899.38 21687.66 32198.62 25898.23 261
PLCcopyleft91.02 1694.05 25892.90 27397.51 12498.00 21395.12 12394.25 26198.25 20086.17 32191.48 34795.25 31291.01 23099.19 25585.02 34496.69 32898.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu91.39 30790.75 31093.31 31290.48 37782.61 34794.80 24492.88 33993.39 21881.74 37494.90 32181.36 31399.11 26988.28 31498.87 23298.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 25493.42 26396.23 20598.59 14590.85 23094.24 26298.85 10585.49 32892.97 32994.94 31886.01 28899.64 13591.78 24997.92 28798.20 264
Test_1112_low_res93.53 27392.86 27495.54 23998.60 14388.86 26392.75 30998.69 14682.66 34892.65 33696.92 24484.75 29699.56 15990.94 26497.76 29498.19 265
canonicalmvs97.23 11397.21 11197.30 14497.65 25894.39 14297.84 7099.05 5397.42 6996.68 21493.85 33597.63 2899.33 22896.29 8598.47 26798.18 266
miper_enhance_ethall93.14 28292.78 27994.20 29793.65 36485.29 32489.97 35397.85 23985.05 33496.15 24694.56 32585.74 28999.14 26393.74 21498.34 27198.17 267
Fast-Effi-MVS+-dtu96.44 15796.12 16697.39 14097.18 29294.39 14295.46 20598.73 13696.03 12894.72 28494.92 32096.28 10099.69 11493.81 21297.98 28598.09 268
ab-mvs96.59 14996.59 14396.60 18498.64 13592.21 20298.35 3597.67 25094.45 19196.99 19698.79 6594.96 14399.49 17990.39 28499.07 21298.08 269
PAPR92.22 29591.27 30195.07 25895.73 33788.81 26491.97 32597.87 23885.80 32690.91 34992.73 34991.16 22898.33 34079.48 36095.76 34398.08 269
test_yl94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
DCV-MVSNet94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
baseline193.14 28292.64 28394.62 28197.34 28387.20 30196.67 14593.02 33794.71 18396.51 22595.83 29981.64 31098.60 32190.00 29088.06 36998.07 271
MIMVSNet93.42 27592.86 27495.10 25798.17 19488.19 27598.13 5593.69 32892.07 25295.04 27998.21 12980.95 31799.03 28081.42 35798.06 28398.07 271
GSMVS98.06 275
sam_mvs177.80 32898.06 275
SCA93.38 27793.52 26292.96 32396.24 31581.40 35593.24 30194.00 32791.58 26294.57 28796.97 23987.94 27199.42 19889.47 29797.66 30398.06 275
MSLP-MVS++96.42 15996.71 13895.57 23597.82 23090.56 23895.71 19198.84 10894.72 18296.71 21397.39 21194.91 14498.10 34795.28 14499.02 21798.05 278
ADS-MVSNet291.47 30690.51 31494.36 29295.51 34085.63 31895.05 23595.70 30583.46 34592.69 33496.84 24879.15 32399.41 20785.66 33790.52 36498.04 279
ADS-MVSNet90.95 31290.26 31693.04 31995.51 34082.37 34995.05 23593.41 33483.46 34592.69 33496.84 24879.15 32398.70 31085.66 33790.52 36498.04 279
PVSNet_Blended93.96 26093.65 25994.91 26697.79 24087.40 29791.43 33198.68 14884.50 34294.51 28994.48 32993.04 18899.30 23589.77 29398.61 25998.02 281
PatchmatchNetpermissive91.98 30091.87 29292.30 33494.60 35279.71 36095.12 22893.59 33389.52 28593.61 31497.02 23677.94 32799.18 25690.84 26794.57 35698.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n95.67 18695.89 18095.03 26098.18 19189.89 24596.94 12699.28 2188.25 30298.20 10798.92 5586.69 28597.19 35797.70 4298.82 23998.00 283
test_vis1_n_192095.77 18296.41 15693.85 30198.55 15084.86 33295.91 18599.71 292.72 24397.67 15398.90 5987.44 27998.73 30697.96 2898.85 23597.96 284
PVSNet86.72 1991.10 30990.97 30691.49 33897.56 26578.04 36387.17 36494.60 32284.65 34092.34 34192.20 35487.37 28098.47 33085.17 34397.69 30097.96 284
无先验93.20 30297.91 23580.78 35599.40 20987.71 31997.94 286
MVS_030495.50 19295.05 20596.84 17196.28 31493.12 18597.00 12396.16 29595.03 17489.22 36197.70 18690.16 24699.48 18294.51 18499.34 17097.93 287
EIA-MVS96.04 17295.77 18596.85 17097.80 23592.98 18896.12 16899.16 3194.65 18493.77 30891.69 36095.68 11999.67 12494.18 19798.85 23597.91 288
test_fmvs194.51 24294.60 22994.26 29695.91 32887.92 28395.35 21699.02 6286.56 31996.79 20798.52 8882.64 30897.00 36197.87 3198.71 25097.88 289
tpm91.08 31090.85 30891.75 33795.33 34578.09 36295.03 23791.27 35288.75 29593.53 31797.40 20771.24 35899.30 23591.25 25893.87 35797.87 290
Patchmatch-RL test94.66 23394.49 23595.19 25298.54 15288.91 26192.57 31398.74 13591.46 26398.32 9697.75 18177.31 33498.81 29996.06 9399.61 8497.85 291
LF4IMVS96.07 17095.63 18997.36 14198.19 18895.55 9495.44 20698.82 12292.29 25195.70 26496.55 26592.63 20098.69 31191.75 25199.33 17697.85 291
ET-MVSNet_ETH3D91.12 30889.67 32095.47 24296.41 31189.15 25891.54 33090.23 36189.07 29086.78 37092.84 34669.39 36599.44 19594.16 19896.61 33097.82 293
MDTV_nov1_ep13_2view57.28 38194.89 24180.59 35694.02 30278.66 32585.50 33997.82 293
Patchmatch-test93.60 27193.25 26694.63 28096.14 32487.47 29496.04 17294.50 32393.57 21396.47 22696.97 23976.50 33798.61 31990.67 27798.41 27097.81 295
Fast-Effi-MVS+95.49 19395.07 20296.75 17797.67 25792.82 19094.22 26498.60 16191.61 26093.42 32292.90 34596.73 7799.70 10792.60 23597.89 29097.74 296
DPM-MVS93.68 26792.77 28096.42 19797.91 21992.54 19591.17 33997.47 26384.99 33793.08 32894.74 32289.90 24899.00 28187.54 32498.09 28297.72 297
baseline289.65 32488.44 33193.25 31495.62 33882.71 34693.82 28485.94 37188.89 29487.35 36892.54 35171.23 35999.33 22886.01 33294.60 35597.72 297
test22298.17 19493.24 18392.74 31197.61 25975.17 36994.65 28696.69 25990.96 23298.66 25497.66 299
TAPA-MVS93.32 1294.93 21894.23 24497.04 15998.18 19194.51 13895.22 22598.73 13681.22 35496.25 23995.95 29693.80 17498.98 28589.89 29198.87 23297.62 300
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何197.25 14798.29 17694.70 13397.73 24777.98 36594.83 28396.67 26092.08 21699.45 19288.17 31698.65 25697.61 301
MSDG95.33 20195.13 19995.94 22197.40 27891.85 21591.02 34398.37 18895.30 16296.31 23595.99 29294.51 15698.38 33689.59 29597.65 30497.60 302
FA-MVS(test-final)94.91 21994.89 21294.99 26397.51 26888.11 28198.27 4495.20 31792.40 25096.68 21498.60 8183.44 30499.28 24193.34 22398.53 26397.59 303
testdata95.70 23198.16 19690.58 23697.72 24880.38 35795.62 26597.02 23692.06 21798.98 28589.06 30498.52 26497.54 304
FE-MVS92.95 28492.22 28895.11 25597.21 29188.33 27398.54 2393.66 33189.91 28296.21 24198.14 13470.33 36399.50 17587.79 31898.24 27697.51 305
DSMNet-mixed92.19 29691.83 29393.25 31496.18 32083.68 34496.27 15893.68 33076.97 36892.54 34099.18 3389.20 26298.55 32583.88 35098.60 26197.51 305
thisisatest051590.43 31489.18 32694.17 29997.07 29685.44 32189.75 35887.58 36788.28 30193.69 31291.72 35965.27 37099.58 15290.59 27898.67 25297.50 307
PMMVS92.39 29191.08 30396.30 20493.12 36892.81 19190.58 34895.96 30179.17 36291.85 34692.27 35390.29 24498.66 31689.85 29296.68 32997.43 308
DP-MVS Recon95.55 19195.13 19996.80 17498.51 15693.99 16094.60 25198.69 14690.20 27895.78 26096.21 28392.73 19698.98 28590.58 27998.86 23497.42 309
thres600view792.03 29991.43 29793.82 30298.19 18884.61 33596.27 15890.39 35896.81 8996.37 23193.11 33873.44 35499.49 17980.32 35997.95 28697.36 310
thres40091.68 30491.00 30493.71 30598.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29597.36 310
OpenMVScopyleft94.22 895.48 19595.20 19696.32 20297.16 29391.96 21397.74 7898.84 10887.26 30994.36 29398.01 15593.95 17099.67 12490.70 27698.75 24597.35 312
test_vis1_rt94.03 25993.65 25995.17 25495.76 33593.42 17893.97 27998.33 19384.68 33993.17 32695.89 29892.53 20694.79 37093.50 22194.97 35097.31 313
test0.0.03 190.11 31689.21 32392.83 32593.89 36286.87 30791.74 32888.74 36692.02 25394.71 28591.14 36573.92 34894.48 37283.75 35392.94 35997.16 314
BH-untuned94.69 23094.75 22194.52 28797.95 21887.53 29394.07 27397.01 27793.99 20497.10 18495.65 30392.65 19998.95 29087.60 32296.74 32797.09 315
new_pmnet92.34 29391.69 29694.32 29396.23 31789.16 25792.27 32092.88 33984.39 34495.29 27296.35 27885.66 29096.74 36684.53 34797.56 30697.05 316
tpmrst90.31 31590.61 31389.41 34894.06 36072.37 37795.06 23493.69 32888.01 30492.32 34296.86 24677.45 33198.82 29791.04 26187.01 37097.04 317
EPMVS89.26 32688.55 33091.39 33992.36 37379.11 36195.65 19879.86 37688.60 29793.12 32796.53 26770.73 36298.10 34790.75 27189.32 36896.98 318
Gipumacopyleft98.07 4298.31 3197.36 14199.76 796.28 6898.51 2799.10 4198.76 2296.79 20799.34 2296.61 8298.82 29796.38 8299.50 12496.98 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test-LLR89.97 32089.90 31890.16 34594.24 35774.98 37289.89 35489.06 36492.02 25389.97 35790.77 36773.92 34898.57 32291.88 24697.36 31496.92 320
test-mter87.92 33687.17 33790.16 34594.24 35774.98 37289.89 35489.06 36486.44 32089.97 35790.77 36754.96 38298.57 32291.88 24697.36 31496.92 320
PCF-MVS89.43 1892.12 29890.64 31296.57 18897.80 23593.48 17789.88 35798.45 17574.46 37096.04 24995.68 30290.71 23599.31 23273.73 36999.01 21996.91 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer89.75 32389.25 32191.26 34094.69 35178.00 36495.32 21991.98 34781.50 35290.55 35296.96 24171.06 36098.89 29288.59 31092.63 36196.87 323
dp88.08 33488.05 33288.16 35492.85 37068.81 37994.17 26692.88 33985.47 32991.38 34896.14 28768.87 36698.81 29986.88 32983.80 37396.87 323
KD-MVS_2432*160088.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
miper_refine_blended88.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
ETV-MVS96.13 16995.90 17996.82 17397.76 24593.89 16195.40 21198.95 8395.87 13895.58 26791.00 36696.36 9799.72 8593.36 22298.83 23896.85 325
cascas91.89 30191.35 29993.51 30994.27 35685.60 31988.86 36298.61 16079.32 36192.16 34391.44 36289.22 26198.12 34690.80 26997.47 31296.82 328
CR-MVSNet93.29 27992.79 27794.78 27695.44 34288.15 27796.18 16597.20 26884.94 33894.10 29898.57 8377.67 32999.39 21395.17 15195.81 33996.81 329
RPMNet94.68 23294.60 22994.90 26895.44 34288.15 27796.18 16598.86 10197.43 6894.10 29898.49 9179.40 32199.76 6095.69 11695.81 33996.81 329
PatchMatch-RL94.61 23693.81 25797.02 16198.19 18895.72 8693.66 28997.23 26788.17 30394.94 28195.62 30591.43 22598.57 32287.36 32797.68 30196.76 331
MAR-MVS94.21 25193.03 27097.76 10796.94 30197.44 3396.97 12597.15 27187.89 30792.00 34492.73 34992.14 21399.12 26683.92 34997.51 30996.73 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TESTMET0.1,187.20 33886.57 34089.07 34993.62 36572.84 37689.89 35487.01 37085.46 33089.12 36290.20 36956.00 38097.72 35390.91 26596.92 32096.64 333
CNLPA95.04 21494.47 23796.75 17797.81 23195.25 11494.12 27297.89 23794.41 19294.57 28795.69 30190.30 24398.35 33986.72 33198.76 24496.64 333
IB-MVS85.98 2088.63 33086.95 33993.68 30695.12 34684.82 33490.85 34490.17 36287.55 30888.48 36491.34 36358.01 37599.59 15087.24 32893.80 35896.63 335
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs90.79 31390.87 30790.57 34492.75 37276.30 36995.79 18993.64 33291.04 26991.91 34596.26 28077.19 33598.86 29689.38 29989.85 36796.56 336
CHOSEN 280x42089.98 31989.19 32592.37 33395.60 33981.13 35786.22 36697.09 27481.44 35387.44 36793.15 33773.99 34699.47 18588.69 30899.07 21296.52 337
tt080597.44 10097.56 8997.11 15399.55 2396.36 6398.66 1895.66 30698.31 3297.09 18995.45 31097.17 4698.50 32998.67 1297.45 31396.48 338
HY-MVS91.43 1592.58 28991.81 29494.90 26896.49 30988.87 26297.31 10494.62 32185.92 32490.50 35396.84 24885.05 29399.40 20983.77 35295.78 34296.43 339
PatchT93.75 26493.57 26194.29 29595.05 34787.32 29996.05 17192.98 33897.54 6594.25 29498.72 7275.79 34299.24 25095.92 10595.81 33996.32 340
tpm288.47 33187.69 33590.79 34294.98 34877.34 36695.09 23091.83 34877.51 36789.40 35996.41 27367.83 36898.73 30683.58 35492.60 36296.29 341
AdaColmapbinary95.11 21194.62 22896.58 18697.33 28594.45 14194.92 24098.08 22693.15 23093.98 30495.53 30894.34 16099.10 27185.69 33698.61 25996.20 342
pmmvs390.00 31888.90 32893.32 31194.20 35985.34 32291.25 33792.56 34478.59 36393.82 30595.17 31367.36 36998.69 31189.08 30398.03 28495.92 343
thres100view90091.76 30391.26 30293.26 31398.21 18684.50 33696.39 15190.39 35896.87 8796.33 23293.08 34273.44 35499.42 19878.85 36397.74 29595.85 344
tfpn200view991.55 30591.00 30493.21 31698.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29595.85 344
OpenMVS_ROBcopyleft91.80 1493.64 27093.05 26895.42 24597.31 28791.21 22595.08 23296.68 29181.56 35196.88 20596.41 27390.44 23999.25 24785.39 34097.67 30295.80 346
PAPM87.64 33785.84 34293.04 31996.54 30784.99 33088.42 36395.57 31179.52 36083.82 37193.05 34480.57 31898.41 33362.29 37592.79 36095.71 347
xiu_mvs_v1_base_debu95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base_debi95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
tpm cat188.01 33587.33 33690.05 34794.48 35376.28 37094.47 25494.35 32573.84 37289.26 36095.61 30673.64 35098.30 34184.13 34886.20 37195.57 351
JIA-IIPM91.79 30290.69 31195.11 25593.80 36390.98 22894.16 26791.78 34996.38 10790.30 35599.30 2472.02 35798.90 29188.28 31490.17 36695.45 352
TR-MVS92.54 29092.20 28993.57 30896.49 30986.66 30893.51 29494.73 32089.96 28194.95 28093.87 33490.24 24598.61 31981.18 35894.88 35195.45 352
mvsany_test193.47 27493.03 27094.79 27594.05 36192.12 20690.82 34590.01 36385.02 33697.26 17298.28 11793.57 17897.03 35992.51 23895.75 34495.23 354
thres20091.00 31190.42 31592.77 32697.47 27483.98 34294.01 27591.18 35395.12 17095.44 26991.21 36473.93 34799.31 23277.76 36697.63 30595.01 355
131492.38 29292.30 28792.64 32895.42 34485.15 32795.86 18696.97 27985.40 33190.62 35093.06 34391.12 22997.80 35286.74 33095.49 34794.97 356
BH-w/o92.14 29791.94 29192.73 32797.13 29485.30 32392.46 31695.64 30789.33 28794.21 29592.74 34889.60 25298.24 34281.68 35694.66 35394.66 357
xiu_mvs_v2_base94.22 24994.63 22792.99 32297.32 28684.84 33392.12 32297.84 24191.96 25594.17 29693.43 33696.07 10399.71 10091.27 25697.48 31094.42 358
PS-MVSNAJ94.10 25594.47 23793.00 32197.35 28184.88 33191.86 32697.84 24191.96 25594.17 29692.50 35295.82 11199.71 10091.27 25697.48 31094.40 359
gg-mvs-nofinetune88.28 33386.96 33892.23 33592.84 37184.44 33798.19 5274.60 37899.08 1087.01 36999.47 1056.93 37698.23 34378.91 36295.61 34594.01 360
test_method66.88 34266.13 34569.11 35862.68 38125.73 38349.76 37296.04 29814.32 37664.27 37791.69 36073.45 35388.05 37576.06 36866.94 37593.54 361
API-MVS95.09 21395.01 20695.31 24896.61 30694.02 15896.83 13097.18 27095.60 15095.79 25894.33 33194.54 15598.37 33885.70 33598.52 26493.52 362
PVSNet_081.89 2184.49 34083.21 34388.34 35295.76 33574.97 37483.49 36892.70 34378.47 36487.94 36586.90 37283.38 30596.63 36773.44 37066.86 37693.40 363
FPMVS89.92 32188.63 32993.82 30298.37 17196.94 4591.58 32993.34 33588.00 30590.32 35497.10 23170.87 36191.13 37471.91 37296.16 33893.39 364
PMVScopyleft89.60 1796.71 14496.97 12395.95 21999.51 3197.81 1697.42 10297.49 26197.93 4695.95 25198.58 8296.88 6896.91 36289.59 29599.36 16293.12 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS90.02 31789.20 32492.47 33194.71 35086.90 30695.86 18696.74 28864.72 37390.62 35092.77 34792.54 20498.39 33579.30 36195.56 34692.12 366
MVEpermissive73.61 2286.48 33985.92 34188.18 35396.23 31785.28 32581.78 37175.79 37786.01 32282.53 37391.88 35792.74 19587.47 37671.42 37394.86 35291.78 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN89.52 32589.78 31988.73 35093.14 36777.61 36583.26 36992.02 34694.82 18093.71 31093.11 33875.31 34396.81 36385.81 33496.81 32591.77 368
EMVS89.06 32789.22 32288.61 35193.00 36977.34 36682.91 37090.92 35494.64 18592.63 33891.81 35876.30 33997.02 36083.83 35196.90 32291.48 369
GG-mvs-BLEND90.60 34391.00 37584.21 34098.23 4672.63 38182.76 37284.11 37356.14 37996.79 36472.20 37192.09 36390.78 370
MVS-HIRNet88.40 33290.20 31782.99 35697.01 29760.04 38093.11 30485.61 37284.45 34388.72 36399.09 4384.72 29798.23 34382.52 35596.59 33190.69 371
DeepMVS_CXcopyleft77.17 35790.94 37685.28 32574.08 38052.51 37480.87 37588.03 37175.25 34470.63 37759.23 37684.94 37275.62 372
wuyk23d93.25 28095.20 19687.40 35596.07 32695.38 10597.04 12194.97 31895.33 16099.70 598.11 14098.14 1391.94 37377.76 36699.68 6874.89 373
tmp_tt57.23 34362.50 34641.44 35934.77 38249.21 38283.93 36760.22 38315.31 37571.11 37679.37 37470.09 36444.86 37864.76 37482.93 37430.25 374
test12312.59 34515.49 3483.87 3606.07 3832.55 38490.75 3462.59 3852.52 3785.20 38013.02 3774.96 3831.85 3805.20 3779.09 3777.23 375
testmvs12.33 34615.23 3493.64 3615.77 3842.23 38588.99 3613.62 3842.30 3795.29 37913.09 3764.52 3841.95 3795.16 3788.32 3786.75 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.22 34432.30 3470.00 3620.00 3850.00 3860.00 37398.10 2230.00 3800.00 38195.06 31697.54 310.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.98 34710.65 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38095.82 1110.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.91 34810.55 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.94 3180.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.59 1898.20 799.03 799.25 2298.96 1898.87 46
test_one_060199.05 9895.50 10098.87 9897.21 8098.03 12998.30 11296.93 62
eth-test20.00 385
eth-test0.00 385
ZD-MVS98.43 16795.94 7998.56 16790.72 27296.66 21697.07 23295.02 14099.74 7591.08 26098.93 226
test_241102_ONE99.22 6595.35 10898.83 11496.04 12699.08 3498.13 13697.87 1999.33 228
9.1496.69 13998.53 15396.02 17498.98 7793.23 22397.18 17897.46 20296.47 9199.62 14292.99 23299.32 178
save fliter98.48 16294.71 13194.53 25398.41 18295.02 175
test072699.24 6095.51 9796.89 12898.89 9095.92 13498.64 6098.31 10897.06 52
test_part299.03 10096.07 7498.08 122
sam_mvs77.38 332
MTGPAbinary98.73 136
test_post194.98 23910.37 37976.21 34099.04 27789.47 297
test_post10.87 37876.83 33699.07 274
patchmatchnet-post96.84 24877.36 33399.42 198
MTMP96.55 14674.60 378
gm-plane-assit91.79 37471.40 37881.67 35090.11 37098.99 28384.86 345
TEST997.84 22795.23 11593.62 29098.39 18586.81 31693.78 30695.99 29294.68 14999.52 170
test_897.81 23195.07 12493.54 29398.38 18787.04 31293.71 31095.96 29594.58 15399.52 170
agg_prior97.80 23594.96 12698.36 18993.49 31899.53 167
test_prior495.38 10593.61 292
test_prior293.33 30094.21 19794.02 30296.25 28193.64 17791.90 24598.96 221
旧先验293.35 29977.95 36695.77 26298.67 31590.74 274
新几何293.43 295
原ACMM292.82 307
testdata299.46 18887.84 317
segment_acmp95.34 130
testdata192.77 30893.78 209
plane_prior798.70 13094.67 134
plane_prior698.38 17094.37 14491.91 222
plane_prior496.77 254
plane_prior394.51 13895.29 16396.16 244
plane_prior296.50 14896.36 109
plane_prior198.49 160
plane_prior94.29 14795.42 20894.31 19698.93 226
n20.00 386
nn0.00 386
door-mid98.17 213
test1198.08 226
door97.81 244
HQP5-MVS92.47 197
HQP-NCC97.85 22294.26 25893.18 22692.86 331
ACMP_Plane97.85 22294.26 25893.18 22692.86 331
BP-MVS90.51 281
HQP3-MVS98.43 17898.74 246
HQP2-MVS90.33 240
NP-MVS98.14 20093.72 16895.08 314
MDTV_nov1_ep1391.28 30094.31 35473.51 37594.80 24493.16 33686.75 31893.45 32097.40 20776.37 33898.55 32588.85 30596.43 332
ACMMP++_ref99.52 115
ACMMP++99.55 103
Test By Simon94.51 156