This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4599.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 13999.67 296.47 8899.92 497.88 2399.98 299.85 3
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11199.71 499.48 798.77 699.93 298.89 399.95 599.84 5
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2599.12 2895.83 13699.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2299.13 2799.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14499.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2899.21 1498.43 2998.89 3998.83 5094.30 16499.81 3297.87 2499.91 1799.77 8
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3498.84 9999.05 1399.01 3598.65 6395.37 12999.90 1397.57 3699.91 1799.77 8
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5599.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2599.15 2499.33 599.30 2199.00 3897.27 3899.92 497.64 3499.92 1499.75 13
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5195.47 12699.89 1697.95 2199.91 1799.75 13
Anonymous2023121198.55 1798.76 1397.94 9698.79 10894.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8598.12 1699.86 2599.73 15
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5099.11 2998.04 4298.62 5298.66 6193.75 17899.78 4397.23 4599.84 2899.73 15
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5699.08 3798.31 3399.02 3498.74 5597.68 2499.61 15597.77 2999.85 2799.70 18
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2499.10 3199.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
test_part196.77 13696.53 14697.47 13698.04 19492.92 19497.93 5398.85 9498.83 2199.30 2199.07 3579.25 31599.79 3997.59 3599.93 1099.69 20
RRT_test8_iter0592.46 28492.52 28092.29 32795.33 33677.43 35995.73 17498.55 16294.41 19097.46 16197.72 16757.44 36999.74 7596.92 5999.14 19699.69 20
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 17998.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19098.86 9098.20 3898.37 7599.24 2094.69 14999.55 17095.98 9199.79 3599.65 23
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12397.75 3099.89 2299.62 25
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4098.87 8798.23 3699.48 1299.27 1998.47 899.55 17096.52 6799.53 9799.60 26
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 9799.00 6094.93 17598.58 5898.92 4597.31 3699.41 21394.44 17299.43 13799.59 27
test_0728_THIRD96.62 9298.40 7298.28 9597.10 4599.71 9995.70 10199.62 6699.58 28
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 6998.89 7995.65 14298.51 6296.46 25892.15 21499.81 3295.14 14398.58 26099.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27592.01 21595.33 20197.65 25297.74 5198.30 9098.14 11295.04 13999.69 11697.55 3799.52 10299.58 28
v1097.55 8797.97 4196.31 20898.60 13489.64 25097.44 8599.02 5296.60 9498.72 5099.16 2993.48 18399.72 8598.76 699.92 1499.58 28
MSC_two_6792asdad98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
No_MVS98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
APDe-MVS98.14 3498.03 4098.47 5498.72 11696.04 7498.07 4799.10 3195.96 12598.59 5798.69 5996.94 5899.81 3296.64 6299.58 7999.57 32
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27092.08 21395.34 20097.65 25297.74 5198.29 9198.11 11795.05 13799.68 12397.50 3999.50 11199.56 35
v897.60 8498.06 3896.23 21198.71 11989.44 25497.43 8798.82 11497.29 7798.74 4899.10 3293.86 17499.68 12398.61 1099.94 899.56 35
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6499.00 6098.40 3099.07 3398.98 4096.89 6499.75 6597.19 5199.79 3599.55 37
WR-MVS96.90 12596.81 12897.16 15898.56 13992.20 20994.33 24998.12 21897.34 7498.20 9797.33 20392.81 19699.75 6594.79 15999.81 3099.54 38
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12599.05 4398.67 2498.84 4298.45 7697.58 2899.88 1896.45 7199.86 2599.54 38
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3296.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 3999.54 38
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12198.89 7999.75 6595.48 11799.52 10299.53 41
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10396.18 6895.21 21298.99 6395.84 13598.78 4598.08 11996.84 6999.81 3293.98 19699.57 8299.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14298.53 16397.77 4798.46 6898.41 7894.59 15599.68 12394.61 16599.29 17899.52 42
Regformer-497.53 9097.47 9097.71 11297.35 27193.91 16295.26 20798.14 21597.97 4398.34 8197.89 14695.49 12399.71 9997.41 4199.42 14099.51 44
v119296.83 13197.06 11596.15 21698.28 16689.29 25695.36 19898.77 12193.73 21298.11 10898.34 8393.02 19499.67 12898.35 1499.58 7999.50 45
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3299.00 6097.57 6199.27 2499.22 2298.32 999.50 18497.09 5499.75 4399.50 45
EI-MVSNet96.63 14796.93 12295.74 23397.26 28088.13 27995.29 20597.65 25296.99 8297.94 13098.19 10892.55 20599.58 15996.91 6099.56 8599.50 45
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15497.41 16497.50 18497.98 1599.79 3995.58 11399.57 8299.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10599.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
IterMVS-LS96.92 12397.29 9895.79 23198.51 14488.13 27995.10 21598.66 14996.99 8298.46 6898.68 6092.55 20599.74 7596.91 6099.79 3599.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3599.05 4397.40 7399.37 1899.08 3498.79 599.47 19197.74 3199.71 5199.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IU-MVS99.22 5895.40 10198.14 21585.77 32098.36 7895.23 13599.51 10799.49 53
test_241102_TWO98.83 10696.11 11598.62 5298.24 10196.92 6299.72 8595.44 12199.49 11599.49 53
v192192096.72 14096.96 12195.99 22098.21 17588.79 26695.42 19298.79 11693.22 22798.19 10098.26 10092.68 20099.70 10898.34 1599.55 9199.49 53
v124096.74 13797.02 11895.91 22798.18 18088.52 26995.39 19698.88 8593.15 23398.46 6898.40 8092.80 19799.71 9998.45 1399.49 11599.49 53
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7498.83 10696.05 11897.46 16197.63 17396.77 7199.76 5895.61 11099.46 12499.49 53
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 19798.99 6392.45 24998.11 10898.31 8697.25 4199.77 5396.60 6399.62 6699.48 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10599.06 4195.45 15297.55 14997.94 14197.11 4499.78 4394.77 16299.46 12499.48 58
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11695.78 8195.66 18099.02 5298.11 4098.31 8897.69 17094.65 15399.85 2297.02 5799.71 5199.48 58
v14419296.69 14396.90 12596.03 21998.25 17188.92 26195.49 18898.77 12193.05 23598.09 11298.29 9492.51 20999.70 10898.11 1799.56 8599.47 61
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3095.44 12899.84 2596.47 7099.80 3399.47 61
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7398.84 9996.00 12397.22 16897.62 17496.87 6799.76 5895.48 11799.43 13799.46 63
Regformer-397.25 10997.29 9897.11 16197.35 27192.32 20495.26 20797.62 25797.67 5998.17 10197.89 14695.05 13799.56 16697.16 5299.42 14099.46 63
DU-MVS97.79 7197.60 7898.36 6198.73 11495.78 8195.65 18398.87 8797.57 6198.31 8897.83 15394.69 14999.85 2297.02 5799.71 5199.46 63
NR-MVSNet97.96 4697.86 5098.26 6998.73 11495.54 9398.14 4398.73 12997.79 4699.42 1597.83 15394.40 16299.78 4395.91 9499.76 3999.46 63
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6698.78 12096.04 12097.10 17897.73 16596.53 8399.78 4395.16 14099.50 11199.46 63
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8498.84 9995.76 13896.93 19397.43 19097.26 4099.79 3996.06 8299.53 9799.45 68
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10496.67 5396.74 12198.73 12991.61 26098.48 6598.36 8196.53 8399.68 12395.17 13899.54 9499.45 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 13898.79 11695.07 16897.88 13698.35 8297.24 4299.72 8596.05 8499.58 7999.45 68
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18098.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9498.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
v114496.84 12897.08 11396.13 21798.42 15689.28 25795.41 19498.67 14794.21 19897.97 12798.31 8693.06 19099.65 13598.06 1999.62 6699.45 68
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22297.64 17296.49 8699.72 8595.66 10699.37 15299.45 68
X-MVStestdata92.86 27890.83 30398.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22236.50 36896.49 8699.72 8595.66 10699.37 15299.45 68
v2v48296.78 13597.06 11595.95 22498.57 13888.77 26795.36 19898.26 19695.18 16397.85 14198.23 10392.58 20499.63 14097.80 2799.69 5599.45 68
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8398.73 12996.27 10895.59 25497.75 16296.30 9699.78 4393.70 20699.48 11999.45 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EU-MVSNet94.25 24594.47 23193.60 29998.14 18782.60 34197.24 9692.72 33785.08 32898.48 6598.94 4382.59 30398.76 30997.47 4099.53 9799.44 78
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4698.96 7195.75 14097.91 13298.06 12696.89 6499.76 5895.32 12999.57 8299.43 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 9998.79 11695.96 12597.53 15097.40 19296.93 6099.77 5395.04 14999.35 16099.42 80
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2899.03 5095.88 13197.88 13698.22 10698.15 1299.74 7596.50 6999.62 6699.42 80
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 10795.86 8095.92 16799.04 4997.51 6698.22 9697.81 15794.68 15199.78 4397.14 5399.75 4399.41 82
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10098.90 7896.58 9698.08 11497.87 15097.02 5399.76 5895.25 13399.59 7799.40 83
Skip Steuart: Steuart Systems R&D Blog.
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 15797.21 4899.76 3999.40 83
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7090.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8599.39 85
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 12798.83 10695.21 16098.36 7898.13 11398.13 1499.62 14896.04 8599.54 9499.39 85
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4297.04 11597.16 10896.68 18898.59 13691.05 22896.33 14098.36 18594.60 18497.99 12398.30 9093.32 18599.62 14897.40 4299.53 9799.38 87
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 6899.11 2997.76 5098.62 5298.27 9997.88 1999.80 3895.67 10499.50 11199.38 87
CP-MVS97.92 5697.56 8298.99 1398.99 9597.82 1697.93 5398.96 7196.11 11596.89 19697.45 18896.85 6899.78 4395.19 13699.63 6599.38 87
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16398.97 7094.55 18898.82 4398.76 5497.31 3699.29 24797.20 5099.44 12999.38 87
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10697.98 13588.23 26899.71 9993.10 21899.72 4899.38 87
Regformer-297.41 9897.24 10397.93 9797.21 28394.72 13194.85 23398.27 19497.74 5198.11 10897.50 18495.58 12199.69 11696.57 6699.31 17499.37 92
GeoE97.75 7497.70 6297.89 9998.88 10294.53 13997.10 10498.98 6695.75 14097.62 14797.59 17697.61 2799.77 5396.34 7499.44 12999.36 93
UGNet96.81 13396.56 14297.58 12296.64 29993.84 16797.75 6597.12 27396.47 10393.62 30698.88 4793.22 18899.53 17595.61 11099.69 5599.36 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Regformer-197.27 10797.16 10897.61 12197.21 28393.86 16594.85 23398.04 22997.62 6098.03 12097.50 18495.34 13099.63 14096.52 6799.31 17499.35 95
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5295.31 31499.26 798.39 7499.18 2787.85 27599.62 14895.13 14599.09 20799.35 95
test117298.08 3997.76 5999.05 698.78 11098.07 797.41 8998.85 9497.57 6198.15 10497.96 13696.60 8099.76 5895.30 13099.18 19399.33 97
SR-MVS98.00 4597.66 6799.01 1198.77 11297.93 1197.38 9098.83 10697.32 7598.06 11697.85 15196.65 7599.77 5395.00 15299.11 20499.32 98
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 10897.31 3797.55 7798.92 7697.72 5498.25 9398.13 11397.10 4599.75 6595.44 12199.24 18699.32 98
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16698.06 12688.46 26599.85 2293.85 20099.40 14799.32 98
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9296.70 5296.24 14698.89 7993.71 21397.97 12797.75 16297.44 3099.63 14093.22 21599.70 5499.32 98
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 7799.20 1698.21 3799.25 2598.51 7298.21 1199.40 21594.79 15999.72 4899.32 98
testtj96.69 14396.13 16398.36 6198.46 15496.02 7696.44 13398.70 13994.26 19696.79 19897.13 21394.07 17099.75 6590.53 27198.80 23999.31 103
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6198.40 18097.11 8098.34 8199.04 3789.58 25399.79 3998.09 1899.93 1099.30 104
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7498.84 9996.05 11897.49 15597.54 17997.07 4899.70 10895.61 11099.46 12499.30 104
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 11798.84 9994.25 19797.49 15597.54 17997.07 4899.70 10894.37 17799.46 12499.30 104
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4085.36 28999.74 7597.34 4499.37 15299.30 104
GBi-Net96.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
test196.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3598.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 9999.76 3999.30 104
v14896.58 15096.97 11995.42 24798.63 13087.57 29095.09 21797.90 23395.91 13098.24 9597.96 13693.42 18499.39 22096.04 8599.52 10299.29 111
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7298.20 20393.00 23798.16 10298.06 12695.89 10399.72 8595.67 10499.10 20699.28 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
casdiffmvs97.50 9197.81 5496.56 19598.51 14491.04 22995.83 17299.09 3697.23 7898.33 8598.30 9097.03 5299.37 22696.58 6599.38 15199.28 112
HQP_MVS96.66 14696.33 15697.68 11798.70 12194.29 14896.50 13198.75 12596.36 10596.16 23296.77 24091.91 22599.46 19492.59 22499.20 18899.28 112
plane_prior598.75 12599.46 19492.59 22499.20 18899.28 112
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24685.53 31692.42 31097.63 25696.99 8298.36 7898.54 7087.94 27099.75 6597.07 5699.08 20899.27 116
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 7798.94 7497.10 8198.85 4198.88 4795.03 14099.67 12897.39 4399.65 6199.26 117
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.60 8099.76 5895.49 11499.20 18899.26 117
RE-MVS-def97.88 4998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.94 5895.49 11499.20 18899.26 117
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12198.23 19995.92 12898.40 7298.28 9597.06 5099.71 9995.48 11799.52 10299.26 117
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15094.71 13294.53 24599.07 4095.02 17197.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
SF-MVS97.60 8497.39 9298.22 7498.93 9895.69 8597.05 10799.10 3195.32 15797.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19295.60 9198.04 4898.70 13998.13 3996.93 19398.45 7695.30 13399.62 14895.64 10898.96 21999.24 123
Anonymous2024052997.96 4698.04 3997.71 11298.69 12394.28 15197.86 5898.31 19398.79 2299.23 2698.86 4995.76 11599.61 15595.49 11499.36 15599.23 124
IterMVS95.42 19795.83 17794.20 29297.52 25983.78 33792.41 31197.47 26395.49 15198.06 11698.49 7387.94 27099.58 15996.02 8799.02 21599.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DVP-MVS++.97.96 4697.90 4598.12 8397.75 23995.40 10199.03 798.89 7996.62 9298.62 5298.30 9096.97 5699.75 6595.70 10199.25 18399.21 126
PC_three_145287.24 30598.37 7597.44 18997.00 5496.78 36192.01 22999.25 18399.21 126
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21098.46 16994.58 18798.10 11198.07 12197.09 4799.39 22095.16 14099.44 12999.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet93.72 26192.62 27897.03 16787.61 37392.25 20596.27 14291.28 34896.74 9087.65 36097.39 19685.00 29199.64 13892.14 22899.48 11999.20 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.44 9697.78 5896.43 20198.52 14390.75 23696.84 11599.03 5096.51 9997.86 14098.02 13096.67 7499.36 22897.09 5499.47 12199.19 130
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14096.31 6596.32 14198.77 12192.96 24297.44 16397.58 17895.84 10599.74 7591.96 23099.35 16099.19 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.92 12396.55 14398.03 9298.00 20295.54 9394.87 23198.17 20994.60 18496.38 21997.05 22195.67 11899.36 22895.12 14699.08 20899.19 130
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13195.69 8595.96 16398.98 6693.36 22197.04 18497.31 20594.93 14499.63 14092.60 22299.34 16399.17 133
NCCC96.52 15295.99 17198.10 8497.81 22195.68 8795.00 22698.20 20395.39 15595.40 25896.36 26593.81 17699.45 19893.55 20998.42 26599.17 133
CPTT-MVS96.69 14396.08 16798.49 5298.89 10196.64 5597.25 9498.77 12192.89 24396.01 23897.13 21392.23 21399.67 12892.24 22799.34 16399.17 133
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7699.06 4196.19 11298.48 6598.70 5894.72 14899.24 25594.37 17799.33 17099.17 133
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 4899.46 797.32 7597.82 14499.11 3196.75 7299.86 2097.84 2599.36 15599.15 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16193.66 17693.42 28798.36 18594.74 17996.58 20996.76 24296.54 8298.99 28794.87 15599.27 18199.15 137
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11095.72 8396.23 14799.02 5293.92 20898.62 5298.99 3997.69 2399.62 14896.18 7899.87 2499.15 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 11898.83 10696.11 11599.08 3198.24 10197.87 2099.72 8595.44 12199.51 10799.14 140
OPU-MVS97.64 11998.01 19895.27 11196.79 11897.35 20196.97 5698.51 33291.21 24999.25 18399.14 140
RRT_MVS94.90 21794.07 24497.39 14793.18 35893.21 18795.26 20797.49 26093.94 20798.25 9397.85 15172.96 35099.84 2597.90 2299.78 3899.14 140
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12697.59 2495.97 16298.20 20395.51 15095.06 26396.53 25494.10 16999.70 10894.29 18199.15 19599.13 143
MCST-MVS96.24 16295.80 17897.56 12398.75 11394.13 15694.66 24098.17 20990.17 27896.21 23096.10 27995.14 13699.43 20394.13 18898.85 23599.13 143
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15091.52 22495.31 20398.45 17095.76 13897.48 15897.54 17989.53 25698.69 31594.43 17394.61 34699.13 143
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24293.65 17798.49 2298.88 8596.86 8797.11 17798.55 6995.82 10899.73 8195.94 9299.42 14099.13 143
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5199.16 2098.34 3298.78 4598.52 7197.32 3599.45 19894.08 18999.67 5899.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet95.67 18596.58 14092.94 31697.48 26180.21 35192.96 29898.19 20894.83 17798.82 4398.79 5193.31 18699.51 18395.83 9999.04 21499.12 148
bset_n11_16_dypcd94.53 23993.95 25096.25 21097.56 25689.85 24788.52 35591.32 34794.90 17697.51 15296.38 26482.34 30499.78 4397.22 4699.80 3399.12 148
VDD-MVS97.37 10197.25 10197.74 11098.69 12394.50 14297.04 10895.61 30898.59 2698.51 6298.72 5692.54 20799.58 15996.02 8799.49 11599.12 148
MVSTER94.21 24893.93 25195.05 26095.83 32486.46 30695.18 21397.65 25292.41 25097.94 13098.00 13472.39 35199.58 15996.36 7399.56 8599.12 148
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16398.58 16095.08 16798.02 12296.25 26997.92 1697.60 35588.68 30198.74 24599.11 152
CDPH-MVS95.45 19694.65 21997.84 10498.28 16694.96 12493.73 27998.33 19085.03 33095.44 25696.60 25095.31 13299.44 20190.01 28199.13 20099.11 152
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23187.40 29494.14 26298.68 14488.94 28994.51 27898.01 13293.04 19199.30 24389.77 28599.49 11599.11 152
DP-MVS97.87 6397.89 4897.81 10598.62 13194.82 12897.13 10398.79 11698.98 1798.74 4898.49 7395.80 11499.49 18595.04 14999.44 12999.11 152
agg_prior290.34 27898.90 22799.10 156
VNet96.84 12896.83 12796.88 17498.06 19392.02 21496.35 13997.57 25997.70 5697.88 13697.80 15892.40 21199.54 17394.73 16498.96 21999.08 157
CHOSEN 1792x268894.10 25293.41 25996.18 21599.16 7090.04 24392.15 31498.68 14479.90 35296.22 22997.83 15387.92 27499.42 20489.18 29399.65 6199.08 157
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9497.41 3594.66 24099.02 5295.20 16198.15 10497.52 18298.83 498.43 33594.87 15596.41 32799.07 159
FMVSNet296.72 14096.67 13696.87 17597.96 20491.88 21797.15 10098.06 22795.59 14798.50 6498.62 6489.51 25799.65 13594.99 15399.60 7599.07 159
diffmvs96.04 17196.23 15995.46 24697.35 27188.03 28193.42 28799.08 3794.09 20396.66 20696.93 22993.85 17599.29 24796.01 8998.67 25099.06 161
HQP4-MVS92.87 32399.23 25799.06 161
ETH3 D test640094.77 22393.87 25297.47 13698.12 19193.73 17194.56 24498.70 13985.45 32594.70 27395.93 28891.77 22799.63 14086.45 32499.14 19699.05 163
HQP-MVS95.17 20894.58 22796.92 17197.85 21392.47 20194.26 25098.43 17393.18 22992.86 32495.08 30590.33 24299.23 25790.51 27398.74 24599.05 163
FMVSNet593.39 27092.35 28196.50 19795.83 32490.81 23597.31 9198.27 19492.74 24596.27 22698.28 9562.23 36699.67 12890.86 25699.36 15599.03 165
HyFIR lowres test93.72 26192.65 27696.91 17398.93 9891.81 22091.23 33198.52 16482.69 34096.46 21696.52 25680.38 31299.90 1390.36 27798.79 24099.03 165
tttt051793.31 27292.56 27995.57 23998.71 11987.86 28397.44 8587.17 36595.79 13797.47 16096.84 23464.12 36499.81 3296.20 7799.32 17299.02 167
test9_res91.29 24598.89 23099.00 168
test20.0396.58 15096.61 13796.48 19998.49 14891.72 22195.68 17997.69 24796.81 8898.27 9297.92 14494.18 16898.71 31390.78 26099.66 6099.00 168
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13598.98 6695.05 16998.06 11698.02 13095.86 10499.56 16694.37 17799.64 6399.00 168
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15088.76 26892.84 29997.25 26696.00 12397.59 14897.95 14091.38 23099.46 19493.16 21796.35 32898.99 171
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8294.92 31696.50 10096.58 20997.27 20783.64 30099.48 18888.42 30499.67 5898.97 172
FMVSNet395.26 20494.94 20496.22 21396.53 30290.06 24295.99 16097.66 25094.11 20297.99 12397.91 14580.22 31399.63 14094.60 16699.44 12998.96 173
ambc96.56 19598.23 17491.68 22297.88 5798.13 21798.42 7198.56 6894.22 16799.04 28194.05 19399.35 16098.95 174
YYNet194.73 22494.84 21194.41 28797.47 26585.09 32590.29 34295.85 30392.52 24697.53 15097.76 15991.97 22099.18 26193.31 21296.86 31798.95 174
ppachtmachnet_test94.49 24094.84 21193.46 30296.16 31582.10 34390.59 33997.48 26290.53 27497.01 18797.59 17691.01 23399.36 22893.97 19799.18 19398.94 176
CANet95.86 18095.65 18396.49 19896.41 30590.82 23394.36 24898.41 17894.94 17392.62 33296.73 24392.68 20099.71 9995.12 14699.60 7598.94 176
Anonymous2023120695.27 20395.06 20195.88 22898.72 11689.37 25595.70 17697.85 23688.00 30096.98 19097.62 17491.95 22199.34 23389.21 29299.53 9798.94 176
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26185.15 32390.28 34395.87 30292.52 24697.48 15897.76 15991.92 22499.17 26593.32 21196.80 32098.94 176
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 20895.65 9094.94 22898.74 12791.31 26696.02 23797.08 21894.05 17199.69 11691.51 24298.94 22398.93 180
LFMVS95.32 20194.88 20996.62 18998.03 19591.47 22597.65 7090.72 35499.11 997.89 13598.31 8679.20 31699.48 18893.91 19999.12 20398.93 180
XVG-OURS97.12 11396.74 13298.26 6998.99 9597.45 3393.82 27599.05 4395.19 16298.32 8697.70 16895.22 13598.41 33694.27 18298.13 27598.93 180
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26197.23 4192.56 30798.60 15792.84 24498.54 6097.40 19296.64 7798.78 30694.40 17699.41 14698.93 180
Anonymous20240521196.34 15995.98 17297.43 14398.25 17193.85 16696.74 12194.41 32197.72 5498.37 7598.03 12987.15 27999.53 17594.06 19099.07 21098.92 184
our_test_394.20 25094.58 22793.07 31096.16 31581.20 34890.42 34196.84 28290.72 27297.14 17497.13 21390.47 24099.11 27394.04 19498.25 27198.91 185
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6098.45 17098.25 3599.13 3098.66 6196.65 7599.69 11693.92 19899.62 6698.91 185
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10299.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
h-mvs3396.29 16095.63 18498.26 6998.50 14796.11 7296.90 11397.09 27496.58 9697.21 17098.19 10884.14 29699.78 4395.89 9596.17 33198.89 189
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17194.29 14894.77 23798.07 22689.81 28197.97 12798.33 8493.11 18999.08 27795.46 12099.84 2898.89 189
train_agg95.46 19594.66 21897.88 10197.84 21795.23 11393.62 28198.39 18187.04 30893.78 29795.99 28194.58 15699.52 17991.76 23898.90 22798.89 189
test1297.46 13997.61 25394.07 15797.78 24293.57 30993.31 18699.42 20498.78 24198.89 189
pmmvs594.63 23494.34 23695.50 24397.63 25288.34 27394.02 26697.13 27287.15 30795.22 26197.15 21287.50 27699.27 25193.99 19599.26 18298.88 193
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24594.15 15596.02 15898.43 17393.17 23297.30 16697.38 19895.48 12599.28 24993.74 20399.34 16398.88 193
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS97.37 10197.70 6296.35 20598.14 18795.13 12096.54 13098.92 7695.94 12799.19 2898.08 11997.74 2295.06 36495.24 13499.54 9498.87 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS293.66 26494.07 24492.45 32497.57 25480.67 35086.46 35896.00 29893.99 20597.10 17897.38 19889.90 25097.82 35288.76 29899.47 12198.86 196
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20399.08 3788.40 29596.97 19198.17 11192.11 21699.78 4393.64 20799.21 18798.86 196
miper_lstm_enhance94.81 22294.80 21494.85 26996.16 31586.45 30791.14 33398.20 20393.49 21797.03 18597.37 20084.97 29299.26 25295.28 13199.56 8598.83 198
PHI-MVS96.96 12196.53 14698.25 7297.48 26196.50 5996.76 12098.85 9493.52 21696.19 23196.85 23395.94 10299.42 20493.79 20299.43 13798.83 198
QAPM95.88 17995.57 18796.80 17997.90 21091.84 21998.18 4298.73 12988.41 29496.42 21798.13 11394.73 14799.75 6588.72 29998.94 22398.81 200
Patchmtry95.03 21494.59 22696.33 20694.83 34190.82 23396.38 13797.20 26896.59 9597.49 15598.57 6677.67 32399.38 22392.95 22199.62 6698.80 201
test_prior395.91 17795.39 19097.46 13997.79 23194.26 15293.33 29298.42 17694.21 19894.02 29296.25 26993.64 18099.34 23391.90 23298.96 21998.79 202
test_prior97.46 13997.79 23194.26 15298.42 17699.34 23398.79 202
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32086.12 31191.35 32698.49 16793.40 21997.12 17697.25 20986.87 28299.35 23195.08 14898.82 23898.78 204
c3_l95.20 20595.32 19194.83 27196.19 31386.43 30891.83 32098.35 18993.47 21897.36 16597.26 20888.69 26399.28 24995.41 12799.36 15598.78 204
MVS_111021_LR96.82 13296.55 14397.62 12098.27 16895.34 10893.81 27798.33 19094.59 18696.56 21196.63 24996.61 7898.73 31194.80 15899.34 16398.78 204
agg_prior195.39 19894.60 22497.75 10997.80 22594.96 12493.39 28998.36 18587.20 30693.49 31195.97 28494.65 15399.53 17591.69 24098.86 23398.77 207
F-COLMAP95.30 20294.38 23598.05 9198.64 12696.04 7495.61 18698.66 14989.00 28893.22 31996.40 26292.90 19599.35 23187.45 31897.53 30298.77 207
D2MVS95.18 20695.17 19595.21 25397.76 23787.76 28894.15 26097.94 23189.77 28296.99 18897.68 17187.45 27799.14 26895.03 15199.81 3098.74 209
MVSFormer96.14 16796.36 15495.49 24497.68 24687.81 28698.67 1399.02 5296.50 10094.48 28096.15 27486.90 28099.92 498.73 799.13 20098.74 209
jason94.39 24394.04 24695.41 24998.29 16487.85 28592.74 30496.75 28785.38 32795.29 25996.15 27488.21 26999.65 13594.24 18399.34 16398.74 209
jason: jason.
DIV-MVS_self_test94.73 22494.64 22095.01 26195.86 32287.00 30091.33 32798.08 22293.34 22297.10 17897.34 20284.02 29899.31 24095.15 14299.55 9198.72 212
旧先验197.80 22593.87 16497.75 24397.04 22293.57 18298.68 24998.72 212
cl____94.73 22494.64 22095.01 26195.85 32387.00 30091.33 32798.08 22293.34 22297.10 17897.33 20384.01 29999.30 24395.14 14399.56 8598.71 214
mvs_anonymous95.36 19996.07 16893.21 30896.29 30781.56 34694.60 24297.66 25093.30 22496.95 19298.91 4693.03 19399.38 22396.60 6397.30 31198.69 215
OMC-MVS96.48 15496.00 17097.91 9898.30 16396.01 7794.86 23298.60 15791.88 25797.18 17297.21 21196.11 9999.04 28190.49 27599.34 16398.69 215
thisisatest053092.71 28191.76 28995.56 24198.42 15688.23 27496.03 15787.35 36494.04 20496.56 21195.47 29964.03 36599.77 5394.78 16199.11 20498.68 217
TAMVS95.49 19194.94 20497.16 15898.31 16293.41 18295.07 22096.82 28491.09 26997.51 15297.82 15689.96 24999.42 20488.42 30499.44 12998.64 218
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12698.73 12998.66 2598.56 5998.41 7896.84 6999.69 11694.82 15799.81 3098.64 218
MVP-Stereo95.69 18395.28 19296.92 17198.15 18693.03 19195.64 18598.20 20390.39 27596.63 20897.73 16591.63 22899.10 27591.84 23697.31 31098.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl2293.25 27492.84 27094.46 28594.30 34786.00 31291.09 33596.64 29190.74 27195.79 24696.31 26778.24 32098.77 30794.15 18798.34 26798.62 221
CANet_DTU94.65 23394.21 24095.96 22295.90 32189.68 24993.92 27297.83 24093.19 22890.12 34995.64 29488.52 26499.57 16593.27 21499.47 12198.62 221
PM-MVS97.36 10397.10 11198.14 8298.91 10096.77 5096.20 14898.63 15593.82 21098.54 6098.33 8493.98 17299.05 28095.99 9099.45 12898.61 223
CSCG97.40 9997.30 9797.69 11698.95 9794.83 12797.28 9398.99 6396.35 10798.13 10795.95 28695.99 10199.66 13494.36 18099.73 4598.59 224
CLD-MVS95.47 19495.07 19996.69 18698.27 16892.53 20091.36 32598.67 14791.22 26895.78 24894.12 32595.65 11998.98 28990.81 25899.72 4898.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld94.72 22894.26 23796.08 21898.62 13190.54 24193.38 29098.05 22890.30 27697.02 18696.80 23989.54 25499.16 26688.44 30396.18 33098.56 226
N_pmnet95.18 20694.23 23898.06 8897.85 21396.55 5892.49 30891.63 34589.34 28498.09 11297.41 19190.33 24299.06 27991.58 24199.31 17498.56 226
CVMVSNet92.33 28892.79 27190.95 33497.26 28075.84 36495.29 20592.33 34081.86 34296.27 22698.19 10881.44 30698.46 33494.23 18498.29 27098.55 228
LS3D97.77 7397.50 8798.57 4896.24 30997.58 2598.45 2598.85 9498.58 2797.51 15297.94 14195.74 11699.63 14095.19 13698.97 21898.51 229
CL-MVSNet_self_test95.04 21294.79 21595.82 23097.51 26089.79 24891.14 33396.82 28493.05 23596.72 20396.40 26290.82 23699.16 26691.95 23198.66 25298.50 230
miper_ehance_all_eth94.69 22994.70 21794.64 27695.77 32686.22 31091.32 32998.24 19891.67 25997.05 18396.65 24888.39 26799.22 25994.88 15498.34 26798.49 231
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29698.69 296.42 13498.09 22095.86 13395.15 26295.54 29794.26 16599.81 3294.06 19098.51 26398.47 232
USDC94.56 23794.57 22994.55 28397.78 23586.43 30892.75 30298.65 15485.96 31696.91 19597.93 14390.82 23698.74 31090.71 26599.59 7798.47 232
pmmvs494.82 22194.19 24196.70 18597.42 26892.75 19892.09 31796.76 28686.80 31195.73 25197.22 21089.28 26098.89 29793.28 21399.14 19698.46 234
alignmvs96.01 17395.52 18897.50 13197.77 23694.71 13296.07 15496.84 28297.48 6796.78 20294.28 32485.50 28899.40 21596.22 7698.73 24898.40 235
CDS-MVSNet94.88 21994.12 24397.14 16097.64 25193.57 17893.96 27197.06 27690.05 27996.30 22596.55 25286.10 28499.47 19190.10 28099.31 17498.40 235
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS93.55 26793.00 26695.19 25597.81 22187.86 28393.89 27396.00 29889.02 28794.07 29095.44 30086.27 28399.33 23687.69 31296.82 31898.39 237
DROMVSNet97.90 6097.94 4497.79 10698.66 12595.14 11998.31 3199.66 297.57 6195.95 23997.01 22596.99 5599.82 2997.66 3399.64 6398.39 237
Effi-MVS+96.19 16596.01 16996.71 18497.43 26792.19 21096.12 15299.10 3195.45 15293.33 31894.71 31497.23 4399.56 16693.21 21697.54 30198.37 239
MS-PatchMatch94.83 22094.91 20894.57 28296.81 29887.10 29994.23 25597.34 26588.74 29297.14 17497.11 21691.94 22298.23 34692.99 21997.92 28298.37 239
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24295.23 11394.15 26096.90 28193.26 22598.04 11996.70 24594.41 16198.89 29794.77 16299.14 19698.37 239
DELS-MVS96.17 16696.23 15995.99 22097.55 25890.04 24392.38 31298.52 16494.13 20196.55 21397.06 22094.99 14299.58 15995.62 10999.28 17998.37 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 24693.72 25495.74 23397.71 24489.95 24593.84 27496.98 27888.38 29693.75 30095.74 29087.94 27098.89 29791.02 25298.10 27698.37 239
GA-MVS92.83 27992.15 28494.87 26896.97 29187.27 29790.03 34496.12 29591.83 25894.05 29194.57 31576.01 33598.97 29392.46 22697.34 30998.36 244
ITE_SJBPF97.85 10398.64 12696.66 5498.51 16695.63 14397.22 16897.30 20695.52 12298.55 32990.97 25398.90 22798.34 245
hse-mvs295.77 18295.09 19897.79 10697.84 21795.51 9595.66 18095.43 31396.58 9697.21 17096.16 27384.14 29699.54 17395.89 9596.92 31498.32 246
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19093.79 16996.99 11199.65 396.74 9099.47 1398.93 4496.91 6399.84 2590.11 27999.06 21398.32 246
BH-RMVSNet94.56 23794.44 23494.91 26497.57 25487.44 29393.78 27896.26 29393.69 21496.41 21896.50 25792.10 21799.00 28585.96 32697.71 29298.31 248
MG-MVS94.08 25494.00 24794.32 28997.09 28885.89 31393.19 29695.96 30092.52 24694.93 26997.51 18389.54 25498.77 30787.52 31797.71 29298.31 248
AUN-MVS93.95 25892.69 27597.74 11097.80 22595.38 10395.57 18795.46 31291.26 26792.64 33096.10 27974.67 33999.55 17093.72 20596.97 31398.30 250
MVS_Test96.27 16196.79 13194.73 27596.94 29486.63 30596.18 14998.33 19094.94 17396.07 23598.28 9595.25 13499.26 25297.21 4897.90 28498.30 250
TinyColmap96.00 17496.34 15594.96 26397.90 21087.91 28294.13 26398.49 16794.41 19098.16 10297.76 15996.29 9798.68 31890.52 27299.42 14098.30 250
CMPMVSbinary73.10 2392.74 28091.39 29296.77 18193.57 35794.67 13694.21 25797.67 24880.36 35193.61 30796.60 25082.85 30297.35 35684.86 33898.78 24198.29 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lupinMVS93.77 25993.28 26095.24 25297.68 24687.81 28692.12 31596.05 29684.52 33494.48 28095.06 30786.90 28099.63 14093.62 20899.13 20098.27 254
PAPM_NR94.61 23594.17 24295.96 22298.36 16091.23 22695.93 16697.95 23092.98 23893.42 31694.43 32190.53 23998.38 33987.60 31496.29 32998.27 254
114514_t93.96 25693.22 26396.19 21499.06 8890.97 23195.99 16098.94 7473.88 36593.43 31596.93 22992.38 21299.37 22689.09 29499.28 17998.25 256
原ACMM196.58 19298.16 18492.12 21198.15 21485.90 31893.49 31196.43 25992.47 21099.38 22387.66 31398.62 25698.23 257
PLCcopyleft91.02 1694.05 25592.90 26797.51 12898.00 20295.12 12194.25 25398.25 19786.17 31491.48 34095.25 30291.01 23399.19 26085.02 33796.69 32298.22 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu91.39 30190.75 30493.31 30490.48 37082.61 34094.80 23592.88 33493.39 22081.74 36894.90 31281.36 30799.11 27388.28 30698.87 23198.21 259
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 25193.42 25896.23 21198.59 13690.85 23294.24 25498.85 9485.49 32292.97 32294.94 30986.01 28599.64 13891.78 23797.92 28298.20 260
Test_1112_low_res93.53 26892.86 26895.54 24298.60 13488.86 26492.75 30298.69 14282.66 34192.65 32996.92 23184.75 29399.56 16690.94 25497.76 28898.19 261
canonicalmvs97.23 11197.21 10697.30 15297.65 25094.39 14497.84 5999.05 4397.42 6996.68 20593.85 32797.63 2699.33 23696.29 7598.47 26498.18 262
miper_enhance_ethall93.14 27692.78 27394.20 29293.65 35585.29 32089.97 34597.85 23685.05 32996.15 23494.56 31685.74 28699.14 26893.74 20398.34 26798.17 263
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28594.39 14495.46 18998.73 12996.03 12294.72 27194.92 31196.28 9899.69 11693.81 20197.98 28098.09 264
ab-mvs96.59 14996.59 13896.60 19098.64 12692.21 20798.35 2897.67 24894.45 18996.99 18898.79 5194.96 14399.49 18590.39 27699.07 21098.08 265
PAPR92.22 28991.27 29595.07 25995.73 32888.81 26591.97 31897.87 23585.80 31990.91 34292.73 34191.16 23198.33 34379.48 35395.76 33798.08 265
test_yl94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
DCV-MVSNet94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
baseline193.14 27692.64 27794.62 27897.34 27587.20 29896.67 12893.02 33294.71 18196.51 21495.83 28981.64 30598.60 32590.00 28288.06 36198.07 267
MIMVSNet93.42 26992.86 26895.10 25898.17 18288.19 27598.13 4493.69 32492.07 25295.04 26698.21 10780.95 31099.03 28481.42 35098.06 27898.07 267
GSMVS98.06 271
sam_mvs177.80 32298.06 271
SCA93.38 27193.52 25792.96 31596.24 30981.40 34793.24 29494.00 32391.58 26294.57 27596.97 22687.94 27099.42 20489.47 28997.66 29798.06 271
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22090.56 24095.71 17598.84 9994.72 18096.71 20497.39 19694.91 14598.10 35095.28 13199.02 21598.05 274
ADS-MVSNet291.47 30090.51 30894.36 28895.51 33185.63 31495.05 22395.70 30483.46 33892.69 32796.84 23479.15 31799.41 21385.66 33090.52 35698.04 275
ADS-MVSNet90.95 30690.26 31093.04 31195.51 33182.37 34295.05 22393.41 32983.46 33892.69 32796.84 23479.15 31798.70 31485.66 33090.52 35698.04 275
PVSNet_Blended93.96 25693.65 25594.91 26497.79 23187.40 29491.43 32498.68 14484.50 33594.51 27894.48 32093.04 19199.30 24389.77 28598.61 25798.02 277
PatchmatchNetpermissive91.98 29491.87 28692.30 32694.60 34479.71 35295.12 21493.59 32889.52 28393.61 30797.02 22377.94 32199.18 26190.84 25794.57 34898.01 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet86.72 1991.10 30390.97 30091.49 33097.56 25678.04 35687.17 35794.60 31984.65 33392.34 33492.20 34687.37 27898.47 33385.17 33697.69 29497.96 279
无先验93.20 29597.91 23280.78 34899.40 21587.71 31097.94 280
MVS_030495.50 19095.05 20296.84 17796.28 30893.12 18997.00 11096.16 29495.03 17089.22 35497.70 16890.16 24899.48 18894.51 17199.34 16397.93 281
EIA-MVS96.04 17195.77 18096.85 17697.80 22592.98 19296.12 15299.16 2094.65 18293.77 29991.69 35295.68 11799.67 12894.18 18598.85 23597.91 282
tpm91.08 30490.85 30291.75 32995.33 33678.09 35595.03 22591.27 34988.75 29193.53 31097.40 19271.24 35399.30 24391.25 24893.87 34997.87 283
Patchmatch-RL test94.66 23294.49 23095.19 25598.54 14188.91 26292.57 30698.74 12791.46 26398.32 8697.75 16277.31 32898.81 30496.06 8299.61 7297.85 284
LF4IMVS96.07 16995.63 18497.36 14998.19 17795.55 9295.44 19098.82 11492.29 25195.70 25296.55 25292.63 20398.69 31591.75 23999.33 17097.85 284
ET-MVSNet_ETH3D91.12 30289.67 31495.47 24596.41 30589.15 26091.54 32390.23 35889.07 28686.78 36492.84 33869.39 35999.44 20194.16 18696.61 32497.82 286
MDTV_nov1_ep13_2view57.28 37494.89 23080.59 34994.02 29278.66 31985.50 33297.82 286
Patchmatch-test93.60 26693.25 26294.63 27796.14 31887.47 29296.04 15694.50 32093.57 21596.47 21596.97 22676.50 33198.61 32390.67 26798.41 26697.81 288
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 24992.82 19594.22 25698.60 15791.61 26093.42 31692.90 33796.73 7399.70 10892.60 22297.89 28597.74 289
DPM-MVS93.68 26392.77 27496.42 20297.91 20892.54 19991.17 33297.47 26384.99 33193.08 32194.74 31389.90 25099.00 28587.54 31698.09 27797.72 290
baseline289.65 31788.44 32493.25 30695.62 32982.71 33993.82 27585.94 36788.89 29087.35 36292.54 34371.23 35499.33 23686.01 32594.60 34797.72 290
112194.26 24493.26 26197.27 15398.26 17094.73 13095.86 16897.71 24677.96 35994.53 27796.71 24491.93 22399.40 21587.71 31098.64 25597.69 292
test22298.17 18293.24 18692.74 30497.61 25875.17 36394.65 27496.69 24690.96 23598.66 25297.66 293
TAPA-MVS93.32 1294.93 21694.23 23897.04 16698.18 18094.51 14095.22 21198.73 12981.22 34796.25 22895.95 28693.80 17798.98 28989.89 28398.87 23197.62 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何197.25 15698.29 16494.70 13597.73 24477.98 35894.83 27096.67 24792.08 21899.45 19888.17 30898.65 25497.61 295
MSDG95.33 20095.13 19695.94 22697.40 26991.85 21891.02 33698.37 18495.30 15896.31 22495.99 28194.51 15998.38 33989.59 28797.65 29897.60 296
testdata95.70 23698.16 18490.58 23897.72 24580.38 35095.62 25397.02 22392.06 21998.98 28989.06 29698.52 26197.54 297
DSMNet-mixed92.19 29091.83 28793.25 30696.18 31483.68 33896.27 14293.68 32676.97 36292.54 33399.18 2789.20 26298.55 32983.88 34398.60 25997.51 298
thisisatest051590.43 30889.18 32094.17 29497.07 28985.44 31789.75 35087.58 36388.28 29793.69 30491.72 35165.27 36399.58 15990.59 26998.67 25097.50 299
PMMVS92.39 28591.08 29796.30 20993.12 36192.81 19690.58 34095.96 30079.17 35591.85 33992.27 34590.29 24698.66 32089.85 28496.68 32397.43 300
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14493.99 16194.60 24298.69 14290.20 27795.78 24896.21 27292.73 19998.98 28990.58 27098.86 23397.42 301
thres600view792.03 29391.43 29193.82 29598.19 17784.61 33096.27 14290.39 35596.81 8896.37 22093.11 33073.44 34899.49 18580.32 35297.95 28197.36 302
thres40091.68 29891.00 29893.71 29798.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28997.36 302
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28691.96 21697.74 6698.84 9987.26 30494.36 28298.01 13293.95 17399.67 12890.70 26698.75 24497.35 304
CS-MVS-test96.62 14896.59 13896.69 18697.88 21293.16 18897.21 9899.53 695.61 14593.72 30195.33 30195.49 12399.69 11695.37 12899.19 19297.22 305
test0.0.03 190.11 31089.21 31792.83 31793.89 35386.87 30391.74 32188.74 36292.02 25394.71 27291.14 35773.92 34294.48 36583.75 34692.94 35197.16 306
BH-untuned94.69 22994.75 21694.52 28497.95 20787.53 29194.07 26597.01 27793.99 20597.10 17895.65 29392.65 20298.95 29487.60 31496.74 32197.09 307
mvs-test196.20 16495.50 18998.32 6496.90 29698.16 595.07 22098.09 22095.86 13393.63 30594.32 32394.26 16599.71 9994.06 19097.27 31297.07 308
new_pmnet92.34 28791.69 29094.32 28996.23 31189.16 25992.27 31392.88 33484.39 33795.29 25996.35 26685.66 28796.74 36284.53 34097.56 30097.05 309
tpmrst90.31 30990.61 30789.41 34194.06 35272.37 37095.06 22293.69 32488.01 29992.32 33596.86 23277.45 32598.82 30291.04 25187.01 36397.04 310
EPMVS89.26 31988.55 32391.39 33192.36 36679.11 35395.65 18379.86 37088.60 29393.12 32096.53 25470.73 35798.10 35090.75 26189.32 36096.98 311
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2199.10 3198.76 2396.79 19899.34 1796.61 7898.82 30296.38 7299.50 11196.98 311
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test-LLR89.97 31489.90 31290.16 33894.24 34974.98 36589.89 34689.06 36092.02 25389.97 35090.77 35973.92 34298.57 32691.88 23497.36 30796.92 313
test-mter87.92 32987.17 33090.16 33894.24 34974.98 36589.89 34689.06 36086.44 31389.97 35090.77 35954.96 37598.57 32691.88 23497.36 30796.92 313
PCF-MVS89.43 1892.12 29290.64 30696.57 19497.80 22593.48 18189.88 34998.45 17074.46 36496.04 23695.68 29290.71 23899.31 24073.73 36299.01 21796.91 315
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer89.75 31689.25 31591.26 33394.69 34378.00 35795.32 20291.98 34281.50 34590.55 34596.96 22871.06 35598.89 29788.59 30292.63 35396.87 316
dp88.08 32788.05 32588.16 34792.85 36368.81 37294.17 25892.88 33485.47 32391.38 34196.14 27668.87 36098.81 30486.88 32183.80 36696.87 316
KD-MVS_2432*160088.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
miper_refine_blended88.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
ETV-MVS96.13 16895.90 17696.82 17897.76 23793.89 16395.40 19598.95 7395.87 13295.58 25591.00 35896.36 9599.72 8593.36 21098.83 23796.85 318
cascas91.89 29591.35 29393.51 30194.27 34885.60 31588.86 35498.61 15679.32 35492.16 33691.44 35489.22 26198.12 34990.80 25997.47 30696.82 321
CR-MVSNet93.29 27392.79 27194.78 27395.44 33388.15 27796.18 14997.20 26884.94 33294.10 28898.57 6677.67 32399.39 22095.17 13895.81 33396.81 322
RPMNet94.68 23194.60 22494.90 26695.44 33388.15 27796.18 14998.86 9097.43 6894.10 28898.49 7379.40 31499.76 5895.69 10395.81 33396.81 322
PatchMatch-RL94.61 23593.81 25397.02 16898.19 17795.72 8393.66 28097.23 26788.17 29894.94 26895.62 29591.43 22998.57 32687.36 31997.68 29596.76 324
MAR-MVS94.21 24893.03 26597.76 10896.94 29497.44 3496.97 11297.15 27187.89 30292.00 33792.73 34192.14 21599.12 27083.92 34297.51 30396.73 325
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DWT-MVSNet_test87.92 32986.77 33391.39 33193.18 35878.62 35495.10 21591.42 34685.58 32188.00 35888.73 36360.60 36798.90 29590.60 26887.70 36296.65 326
TESTMET0.1,187.20 33286.57 33489.07 34293.62 35672.84 36989.89 34687.01 36685.46 32489.12 35590.20 36156.00 37497.72 35490.91 25596.92 31496.64 327
CNLPA95.04 21294.47 23196.75 18297.81 22195.25 11294.12 26497.89 23494.41 19094.57 27595.69 29190.30 24598.35 34286.72 32398.76 24396.64 327
IB-MVS85.98 2088.63 32386.95 33293.68 29895.12 33884.82 32990.85 33790.17 35987.55 30388.48 35791.34 35558.01 36899.59 15787.24 32093.80 35096.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs90.79 30790.87 30190.57 33792.75 36576.30 36295.79 17393.64 32791.04 27091.91 33896.26 26877.19 32998.86 30189.38 29189.85 35996.56 330
CHOSEN 280x42089.98 31389.19 31992.37 32595.60 33081.13 34986.22 35997.09 27481.44 34687.44 36193.15 32973.99 34099.47 19188.69 30099.07 21096.52 331
HY-MVS91.43 1592.58 28291.81 28894.90 26696.49 30388.87 26397.31 9194.62 31885.92 31790.50 34696.84 23485.05 29099.40 21583.77 34595.78 33696.43 332
PatchT93.75 26093.57 25694.29 29195.05 33987.32 29696.05 15592.98 33397.54 6594.25 28498.72 5675.79 33699.24 25595.92 9395.81 33396.32 333
tpm288.47 32487.69 32890.79 33594.98 34077.34 36095.09 21791.83 34377.51 36189.40 35296.41 26067.83 36198.73 31183.58 34792.60 35496.29 334
AdaColmapbinary95.11 20994.62 22396.58 19297.33 27794.45 14394.92 22998.08 22293.15 23393.98 29595.53 29894.34 16399.10 27585.69 32998.61 25796.20 335
CS-MVS95.98 17596.24 15895.20 25497.26 28089.88 24695.84 17199.39 993.89 20994.28 28395.15 30494.81 14699.62 14896.11 8199.40 14796.10 336
pmmvs390.00 31288.90 32193.32 30394.20 35185.34 31891.25 33092.56 33978.59 35693.82 29695.17 30367.36 36298.69 31589.08 29598.03 27995.92 337
thres100view90091.76 29791.26 29693.26 30598.21 17584.50 33196.39 13590.39 35596.87 8696.33 22193.08 33473.44 34899.42 20478.85 35697.74 28995.85 338
tfpn200view991.55 29991.00 29893.21 30898.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28995.85 338
OpenMVS_ROBcopyleft91.80 1493.64 26593.05 26495.42 24797.31 27991.21 22795.08 21996.68 29081.56 34496.88 19796.41 26090.44 24199.25 25485.39 33397.67 29695.80 340
PAPM87.64 33185.84 33693.04 31196.54 30184.99 32688.42 35695.57 30979.52 35383.82 36593.05 33680.57 31198.41 33662.29 36892.79 35295.71 341
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
tpm cat188.01 32887.33 32990.05 34094.48 34576.28 36394.47 24794.35 32273.84 36689.26 35395.61 29673.64 34498.30 34484.13 34186.20 36495.57 345
JIA-IIPM91.79 29690.69 30595.11 25793.80 35490.98 23094.16 25991.78 34496.38 10490.30 34899.30 1872.02 35298.90 29588.28 30690.17 35895.45 346
TR-MVS92.54 28392.20 28393.57 30096.49 30386.66 30493.51 28594.73 31789.96 28094.95 26793.87 32690.24 24798.61 32381.18 35194.88 34395.45 346
thres20091.00 30590.42 30992.77 31897.47 26583.98 33694.01 26791.18 35095.12 16695.44 25691.21 35673.93 34199.31 24077.76 35997.63 29995.01 348
131492.38 28692.30 28292.64 32095.42 33585.15 32395.86 16896.97 27985.40 32690.62 34393.06 33591.12 23297.80 35386.74 32295.49 34094.97 349
BH-w/o92.14 29191.94 28592.73 31997.13 28785.30 31992.46 30995.64 30589.33 28594.21 28592.74 34089.60 25298.24 34581.68 34994.66 34594.66 350
xiu_mvs_v2_base94.22 24694.63 22292.99 31497.32 27884.84 32892.12 31597.84 23891.96 25594.17 28693.43 32896.07 10099.71 9991.27 24697.48 30494.42 351
PS-MVSNAJ94.10 25294.47 23193.00 31397.35 27184.88 32791.86 31997.84 23891.96 25594.17 28692.50 34495.82 10899.71 9991.27 24697.48 30494.40 352
gg-mvs-nofinetune88.28 32686.96 33192.23 32892.84 36484.44 33298.19 4174.60 37299.08 1087.01 36399.47 856.93 37098.23 34678.91 35595.61 33894.01 353
test_method66.88 33566.13 33869.11 35162.68 37425.73 37649.76 36596.04 29714.32 37064.27 37191.69 35273.45 34788.05 36876.06 36166.94 36893.54 354
API-MVS95.09 21195.01 20395.31 25096.61 30094.02 15996.83 11697.18 27095.60 14695.79 24694.33 32294.54 15898.37 34185.70 32898.52 26193.52 355
PVSNet_081.89 2184.49 33483.21 33788.34 34595.76 32774.97 36783.49 36192.70 33878.47 35787.94 35986.90 36583.38 30196.63 36373.44 36366.86 36993.40 356
FPMVS89.92 31588.63 32293.82 29598.37 15996.94 4691.58 32293.34 33088.00 30090.32 34797.10 21770.87 35691.13 36771.91 36596.16 33293.39 357
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 8897.49 26097.93 4495.95 23998.58 6596.88 6696.91 35889.59 28799.36 15593.12 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS90.02 31189.20 31892.47 32394.71 34286.90 30295.86 16896.74 28864.72 36790.62 34392.77 33992.54 20798.39 33879.30 35495.56 33992.12 359
MVEpermissive73.61 2286.48 33385.92 33588.18 34696.23 31185.28 32181.78 36475.79 37186.01 31582.53 36791.88 34992.74 19887.47 36971.42 36694.86 34491.78 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN89.52 31889.78 31388.73 34393.14 36077.61 35883.26 36292.02 34194.82 17893.71 30293.11 33075.31 33796.81 35985.81 32796.81 31991.77 361
EMVS89.06 32089.22 31688.61 34493.00 36277.34 36082.91 36390.92 35194.64 18392.63 33191.81 35076.30 33397.02 35783.83 34496.90 31691.48 362
GG-mvs-BLEND90.60 33691.00 36884.21 33598.23 3572.63 37582.76 36684.11 36656.14 37396.79 36072.20 36492.09 35590.78 363
MVS-HIRNet88.40 32590.20 31182.99 34997.01 29060.04 37393.11 29785.61 36884.45 33688.72 35699.09 3384.72 29498.23 34682.52 34896.59 32590.69 364
DeepMVS_CXcopyleft77.17 35090.94 36985.28 32174.08 37452.51 36880.87 36988.03 36475.25 33870.63 37059.23 36984.94 36575.62 365
wuyk23d93.25 27495.20 19387.40 34896.07 31995.38 10397.04 10894.97 31595.33 15699.70 598.11 11798.14 1391.94 36677.76 35999.68 5774.89 366
tmp_tt57.23 33662.50 33941.44 35234.77 37549.21 37583.93 36060.22 37615.31 36971.11 37079.37 36770.09 35844.86 37164.76 36782.93 36730.25 367
test12312.59 33815.49 3413.87 3536.07 3762.55 37790.75 3382.59 3782.52 3715.20 37313.02 3704.96 3761.85 3735.20 3709.09 3707.23 368
testmvs12.33 33915.23 3423.64 3545.77 3772.23 37888.99 3533.62 3772.30 3725.29 37213.09 3694.52 3771.95 3725.16 3718.32 3716.75 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.22 33732.30 3400.00 3550.00 3780.00 3790.00 36698.10 2190.00 3730.00 37495.06 30797.54 290.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.98 34010.65 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37395.82 1080.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.91 34110.55 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37494.94 3090.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
test_one_060199.05 9195.50 9898.87 8797.21 7998.03 12098.30 9096.93 60
eth-test20.00 378
eth-test0.00 378
ZD-MVS98.43 15595.94 7898.56 16190.72 27296.66 20697.07 21995.02 14199.74 7591.08 25098.93 225
test_241102_ONE99.22 5895.35 10698.83 10696.04 12099.08 3198.13 11397.87 2099.33 236
9.1496.69 13498.53 14296.02 15898.98 6693.23 22697.18 17297.46 18796.47 8899.62 14892.99 21999.32 172
save fliter98.48 15094.71 13294.53 24598.41 17895.02 171
test072699.24 5395.51 9596.89 11498.89 7995.92 12898.64 5198.31 8697.06 50
test_part299.03 9396.07 7398.08 114
sam_mvs77.38 326
MTGPAbinary98.73 129
test_post194.98 22710.37 37276.21 33499.04 28189.47 289
test_post10.87 37176.83 33099.07 278
patchmatchnet-post96.84 23477.36 32799.42 204
MTMP96.55 12974.60 372
gm-plane-assit91.79 36771.40 37181.67 34390.11 36298.99 28784.86 338
TEST997.84 21795.23 11393.62 28198.39 18186.81 31093.78 29795.99 28194.68 15199.52 179
test_897.81 22195.07 12293.54 28498.38 18387.04 30893.71 30295.96 28594.58 15699.52 179
agg_prior97.80 22594.96 12498.36 18593.49 31199.53 175
test_prior495.38 10393.61 283
test_prior293.33 29294.21 19894.02 29296.25 26993.64 18091.90 23298.96 219
旧先验293.35 29177.95 36095.77 25098.67 31990.74 264
新几何293.43 286
原ACMM292.82 300
testdata299.46 19487.84 309
segment_acmp95.34 130
testdata192.77 30193.78 211
plane_prior798.70 12194.67 136
plane_prior698.38 15894.37 14691.91 225
plane_prior496.77 240
plane_prior394.51 14095.29 15996.16 232
plane_prior296.50 13196.36 105
plane_prior198.49 148
plane_prior94.29 14895.42 19294.31 19598.93 225
n20.00 379
nn0.00 379
door-mid98.17 209
test1198.08 222
door97.81 241
HQP5-MVS92.47 201
HQP-NCC97.85 21394.26 25093.18 22992.86 324
ACMP_Plane97.85 21394.26 25093.18 22992.86 324
BP-MVS90.51 273
HQP3-MVS98.43 17398.74 245
HQP2-MVS90.33 242
NP-MVS98.14 18793.72 17295.08 305
MDTV_nov1_ep1391.28 29494.31 34673.51 36894.80 23593.16 33186.75 31293.45 31497.40 19276.37 33298.55 32988.85 29796.43 326
ACMMP++_ref99.52 102
ACMMP++99.55 91
Test By Simon94.51 159