This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3096.91 9299.75 299.45 1395.82 12299.92 598.80 1799.96 499.89 1
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7296.50 10999.32 2699.44 1497.43 3999.92 598.73 2099.95 599.86 2
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2399.08 1097.87 16099.67 296.47 9899.92 597.88 4199.98 299.85 3
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2996.23 12199.71 499.48 1098.77 799.93 398.89 1599.95 599.84 5
RRT_MVS97.95 5897.79 7298.43 5799.67 1295.56 9398.86 1096.73 30297.99 4999.15 3699.35 2389.84 26499.90 1498.64 2499.90 2499.82 6
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4695.83 14799.67 799.37 1998.25 1399.92 598.77 1899.94 899.82 6
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
test_fmvs397.38 11597.56 10096.84 18398.63 15292.81 19797.60 8799.61 1390.87 28798.76 6899.66 394.03 17897.90 36799.24 699.68 8199.81 8
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4599.22 899.22 3398.96 6197.35 4299.92 597.79 4799.93 1199.79 10
test_vis3_rt97.04 12996.98 13497.23 15698.44 17995.88 8096.82 13299.67 690.30 29699.27 2999.33 2794.04 17796.03 38697.14 7197.83 30799.78 11
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3299.67 299.73 399.65 599.15 399.86 2497.22 6699.92 1599.77 12
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3495.62 15699.35 2599.37 1997.38 4199.90 1498.59 2699.91 1899.77 12
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3098.43 3298.89 5298.83 7594.30 17299.81 3797.87 4299.91 1899.77 12
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 11899.05 1399.01 4498.65 9295.37 14099.90 1497.57 5699.91 1899.77 12
ANet_high98.31 3198.94 696.41 21199.33 5489.64 26197.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5799.98 299.77 12
MM97.62 12093.30 18696.39 15692.61 35897.90 5296.76 22698.64 9390.46 25299.81 3799.16 999.94 899.76 17
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
MVS_030496.62 16096.40 17097.28 15197.91 23392.30 20996.47 15489.74 38197.52 7195.38 28798.63 9492.76 20699.81 3799.28 499.93 1199.75 19
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4199.33 599.30 2799.00 5597.27 4699.92 597.64 5599.92 1599.75 19
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3699.05 1399.17 3598.79 7695.47 13799.89 1897.95 4099.91 1899.75 19
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18199.09 9891.43 23596.37 16099.11 4794.19 21099.01 4499.25 3196.30 10699.38 22799.00 1299.88 2799.73 22
Anonymous2023121198.55 2098.76 1397.94 9998.79 13094.37 14798.84 1199.15 4199.37 399.67 799.43 1595.61 13399.72 8898.12 3399.86 3199.73 22
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4798.04 4898.62 7498.66 8993.75 18699.78 4897.23 6599.84 4099.73 22
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4499.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5598.31 3699.02 4398.74 8297.68 3099.61 15697.77 4899.85 3899.70 26
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4999.36 499.29 2899.06 5297.27 4699.93 397.71 5199.91 1899.70 26
SSC-MVS95.92 18997.03 13292.58 34599.28 5878.39 38096.68 14695.12 33098.90 1999.11 3998.66 8991.36 23999.68 12495.00 17799.16 21299.67 28
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8292.51 20496.57 14999.15 4193.68 22798.89 5299.30 2896.42 10199.37 23299.03 1199.83 4399.66 30
patch_mono-296.59 16196.93 13895.55 25098.88 12187.12 31594.47 27299.30 2494.12 21396.65 23398.41 11394.98 15399.87 2295.81 12599.78 5699.66 30
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18098.58 2799.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Baseline_NR-MVSNet97.72 9097.79 7297.50 13299.56 2193.29 18795.44 22298.86 11198.20 4298.37 9999.24 3294.69 15899.55 17295.98 11499.79 5399.65 33
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6398.05 4799.61 1399.52 793.72 18799.88 2098.72 2299.88 2799.65 33
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9497.71 6198.85 5599.10 4891.35 24099.83 3398.47 2899.90 2499.64 35
bld_raw_dy_0_6497.69 9297.61 9597.91 10099.54 2694.27 15498.06 5998.60 17196.60 10198.79 6298.95 6389.62 26599.84 3098.43 3099.91 1899.62 36
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2499.01 1699.63 1199.66 399.27 299.68 12497.75 4999.89 2699.62 36
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 10898.23 4099.48 1699.27 3098.47 1199.55 17296.52 8999.53 12399.60 38
XXY-MVS97.54 10497.70 7997.07 16699.46 3792.21 21297.22 11199.00 8194.93 18898.58 7998.92 6697.31 4499.41 21894.44 19999.43 16199.59 39
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18598.79 13091.44 23496.14 17999.06 5994.19 21098.82 5998.98 5896.22 11199.38 22798.98 1499.86 3199.58 40
WB-MVS95.50 20596.62 15492.11 35399.21 7677.26 38896.12 18095.40 32798.62 2698.84 5798.26 13791.08 24399.50 18593.37 23698.70 26599.58 40
dcpmvs_297.12 12697.99 5494.51 30099.11 9584.00 35697.75 7799.65 997.38 8099.14 3798.42 11295.16 14699.96 295.52 13999.78 5699.58 40
test_0728_THIRD96.62 9998.40 9698.28 13297.10 5499.71 10495.70 12699.62 9199.58 40
MSP-MVS97.45 11096.92 14099.03 599.26 6097.70 1897.66 8398.89 10095.65 15498.51 8396.46 28692.15 22499.81 3795.14 16898.58 27799.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set97.32 12197.40 11097.09 16597.34 29992.01 22395.33 23497.65 26697.74 5798.30 11398.14 15095.04 14999.69 11997.55 5799.52 12899.58 40
v1097.55 10397.97 5596.31 21598.60 15689.64 26197.44 10099.02 7296.60 10198.72 7199.16 4393.48 19199.72 8898.76 1999.92 1599.58 40
test_fmvs296.38 17296.45 16796.16 22297.85 23791.30 23696.81 13399.45 1889.24 30898.49 8699.38 1888.68 27897.62 37298.83 1699.32 19099.57 47
MSC_two_6792asdad98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
No_MVS98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13896.04 7598.07 5899.10 4995.96 13798.59 7898.69 8796.94 6799.81 3796.64 8499.58 10499.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet-Vis-set97.32 12197.39 11197.11 16297.36 29692.08 22195.34 23397.65 26697.74 5798.29 11498.11 15695.05 14899.68 12497.50 5999.50 13799.56 51
v897.60 10098.06 4796.23 21798.71 14189.44 26597.43 10298.82 13297.29 8498.74 6999.10 4893.86 18299.68 12498.61 2599.94 899.56 51
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8198.40 3399.07 4298.98 5896.89 7399.75 6897.19 7099.79 5399.55 53
WR-MVS96.90 14096.81 14597.16 15898.56 16292.20 21594.33 27598.12 23497.34 8198.20 12097.33 23392.81 20499.75 6894.79 18699.81 4899.54 54
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6398.67 2498.84 5798.45 11097.58 3699.88 2096.45 9299.86 3199.54 54
SixPastTwentyTwo97.49 10797.57 9997.26 15399.56 2192.33 20898.28 4296.97 29198.30 3899.45 1899.35 2388.43 28199.89 1898.01 3899.76 5999.54 54
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12892.51 20496.25 17099.06 5993.67 22898.64 7299.00 5596.23 11099.36 23598.99 1399.80 5199.53 57
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10099.75 6895.48 14399.52 12899.53 57
SDMVSNet97.97 5298.26 3997.11 16299.41 4392.21 21296.92 12798.60 17198.58 2898.78 6399.39 1697.80 2599.62 14994.98 18099.86 3199.52 59
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21198.58 2898.78 6399.39 1698.21 1499.56 16892.65 25099.86 3199.52 59
DPE-MVScopyleft97.64 9697.35 11498.50 5198.85 12496.18 6995.21 24298.99 8495.84 14698.78 6398.08 15896.84 7999.81 3793.98 22199.57 10799.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
VPNet97.26 12397.49 10896.59 19799.47 3690.58 24996.27 16698.53 17997.77 5498.46 9198.41 11394.59 16399.68 12494.61 19499.29 19699.52 59
v119296.83 14597.06 13096.15 22398.28 19189.29 26795.36 23098.77 13993.73 22498.11 13198.34 12093.02 20299.67 13098.35 3199.58 10499.50 63
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8197.57 6799.27 2999.22 3498.32 1299.50 18597.09 7399.75 6499.50 63
EI-MVSNet96.63 15996.93 13895.74 24097.26 30488.13 29295.29 23897.65 26696.99 8997.94 15298.19 14692.55 21499.58 16196.91 7999.56 11099.50 63
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6395.43 16797.41 18297.50 21697.98 1999.79 4595.58 13899.57 10799.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LPG-MVS_test97.94 6297.67 8498.74 3499.15 8697.02 4297.09 11999.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
IterMVS-LS96.92 13897.29 11795.79 23898.51 16988.13 29295.10 24598.66 16396.99 8998.46 9198.68 8892.55 21499.74 7796.91 7999.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6397.40 7999.37 2399.08 5198.79 699.47 19597.74 5099.71 7399.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111194.53 25594.81 23293.72 31999.06 10281.94 36998.31 3983.87 39496.37 11498.49 8699.17 4281.49 32999.73 8396.64 8499.86 3199.49 71
IU-MVS99.22 6995.40 10398.14 23285.77 34798.36 10295.23 16099.51 13399.49 71
test_241102_TWO98.83 12496.11 12798.62 7498.24 13996.92 7199.72 8895.44 14799.49 14099.49 71
v192192096.72 15396.96 13795.99 22798.21 19988.79 27895.42 22498.79 13493.22 24098.19 12498.26 13792.68 20999.70 11298.34 3299.55 11699.49 71
v124096.74 15097.02 13395.91 23498.18 20588.52 28195.39 22898.88 10693.15 24698.46 9198.40 11692.80 20599.71 10498.45 2999.49 14099.49 71
ACMMPR97.95 5897.62 9398.94 1599.20 7897.56 2597.59 8998.83 12496.05 13097.46 18097.63 20696.77 8299.76 6295.61 13599.46 14999.49 71
MP-MVS-pluss97.69 9297.36 11398.70 3899.50 3496.84 4795.38 22998.99 8492.45 26598.11 13198.31 12397.25 4999.77 5796.60 8699.62 9199.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PGM-MVS97.88 7397.52 10498.96 1399.20 7897.62 2197.09 11999.06 5995.45 16497.55 17097.94 17897.11 5399.78 4894.77 18999.46 14999.48 77
UniMVSNet_NR-MVSNet97.83 7897.65 8698.37 6298.72 13895.78 8495.66 21099.02 7298.11 4498.31 11197.69 20394.65 16299.85 2797.02 7699.71 7399.48 77
v14419296.69 15696.90 14296.03 22698.25 19588.92 27395.49 22098.77 13993.05 24898.09 13498.29 13192.51 21999.70 11298.11 3499.56 11099.47 80
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10098.49 3199.38 2299.14 4695.44 13999.84 3096.47 9199.80 5199.47 80
region2R97.92 6697.59 9798.92 2199.22 6997.55 2697.60 8798.84 11896.00 13597.22 18797.62 20796.87 7799.76 6295.48 14399.43 16199.46 82
DU-MVS97.79 8497.60 9698.36 6398.73 13695.78 8495.65 21298.87 10897.57 6798.31 11197.83 18894.69 15899.85 2797.02 7699.71 7399.46 82
NR-MVSNet97.96 5497.86 6598.26 7098.73 13695.54 9598.14 5498.73 14697.79 5399.42 2097.83 18894.40 17099.78 4895.91 11899.76 5999.46 82
mPP-MVS97.91 6997.53 10399.04 499.22 6997.87 1497.74 7998.78 13896.04 13297.10 19897.73 20096.53 9399.78 4895.16 16599.50 13799.46 82
ZNCC-MVS97.92 6697.62 9398.83 2599.32 5697.24 3997.45 9998.84 11895.76 14996.93 21597.43 22097.26 4899.79 4596.06 10599.53 12399.45 86
SMA-MVScopyleft97.48 10897.11 12598.60 4598.83 12596.67 5396.74 13998.73 14691.61 27798.48 8898.36 11896.53 9399.68 12495.17 16399.54 11999.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 7297.63 9198.67 4099.35 5296.84 4796.36 16198.79 13495.07 18197.88 15798.35 11997.24 5099.72 8896.05 10799.58 10499.45 86
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14697.69 6397.90 15597.96 17595.81 12699.82 3596.13 10499.61 9799.45 86
v114496.84 14297.08 12896.13 22498.42 18189.28 26895.41 22698.67 16194.21 20897.97 14998.31 12393.06 19899.65 13898.06 3799.62 9199.45 86
XVS97.96 5497.63 9198.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24897.64 20596.49 9699.72 8895.66 13199.37 17299.45 86
X-MVStestdata92.86 29990.83 32598.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24836.50 39596.49 9699.72 8895.66 13199.37 17299.45 86
v2v48296.78 14997.06 13095.95 23198.57 16088.77 27995.36 23098.26 21095.18 17697.85 16298.23 14192.58 21399.63 14497.80 4699.69 7799.45 86
MP-MVScopyleft97.64 9697.18 12399.00 999.32 5697.77 1797.49 9898.73 14696.27 11895.59 28197.75 19796.30 10699.78 4893.70 23199.48 14499.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EU-MVSNet94.25 26294.47 25193.60 32298.14 21482.60 36497.24 11092.72 35585.08 35398.48 8898.94 6482.59 32798.76 31997.47 6199.53 12399.44 95
ACMMPcopyleft98.05 4897.75 7898.93 1899.23 6697.60 2298.09 5798.96 9195.75 15197.91 15498.06 16596.89 7399.76 6295.32 15599.57 10799.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS97.82 8197.49 10898.81 2799.23 6697.25 3897.16 11398.79 13495.96 13797.53 17197.40 22296.93 6999.77 5795.04 17499.35 18099.42 97
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7095.88 14397.88 15798.22 14498.15 1699.74 7796.50 9099.62 9199.42 97
UniMVSNet (Re)97.83 7897.65 8698.35 6498.80 12895.86 8395.92 19899.04 6997.51 7298.22 11997.81 19294.68 16099.78 4897.14 7199.75 6499.41 99
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17298.57 16092.10 22095.97 19299.18 3597.67 6699.00 4698.48 10997.64 3399.50 18596.96 7899.54 11999.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SteuartSystems-ACMMP98.02 5097.76 7798.79 2999.43 4097.21 4197.15 11498.90 9996.58 10498.08 13697.87 18697.02 6299.76 6295.25 15899.59 10299.40 100
Skip Steuart: Steuart Systems R&D Blog.
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 15997.21 6799.76 5999.40 100
K. test v396.44 16996.28 17596.95 17399.41 4391.53 23197.65 8490.31 37798.89 2098.93 4999.36 2184.57 31499.92 597.81 4599.56 11099.39 103
ACMM93.33 1198.05 4897.79 7298.85 2499.15 8697.55 2696.68 14698.83 12495.21 17398.36 10298.13 15298.13 1899.62 14996.04 10899.54 11999.39 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250689.86 33889.16 34391.97 35498.95 11376.83 38998.54 2361.07 40296.20 12297.07 20499.16 4355.19 39999.69 11996.43 9399.83 4399.38 105
ECVR-MVScopyleft94.37 26194.48 25094.05 31598.95 11383.10 36098.31 3982.48 39596.20 12298.23 11899.16 4381.18 33299.66 13695.95 11599.83 4399.38 105
V4297.04 12997.16 12496.68 19498.59 15891.05 23996.33 16398.36 20094.60 19797.99 14598.30 12793.32 19399.62 14997.40 6299.53 12399.38 105
CP-MVS97.92 6697.56 10098.99 1098.99 11197.82 1597.93 6698.96 9196.11 12796.89 21897.45 21896.85 7899.78 4895.19 16199.63 9099.38 105
EG-PatchMatch MVS97.69 9297.79 7297.40 14599.06 10293.52 18095.96 19498.97 9094.55 20198.82 5998.76 8197.31 4499.29 25497.20 6999.44 15399.38 105
IS-MVSNet96.93 13796.68 15297.70 11499.25 6394.00 16298.57 2096.74 30098.36 3498.14 12997.98 17488.23 28399.71 10493.10 24699.72 7099.38 105
GeoE97.75 8797.70 7997.89 10298.88 12194.53 14097.10 11898.98 8795.75 15197.62 16897.59 20997.61 3599.77 5796.34 9699.44 15399.36 111
UGNet96.81 14796.56 15997.58 12296.64 32393.84 16897.75 7797.12 28596.47 11293.62 33098.88 7293.22 19699.53 17795.61 13599.69 7799.36 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet96.98 13596.84 14397.41 14499.40 4693.26 18997.94 6595.31 32899.26 798.39 9899.18 3987.85 29099.62 14995.13 17099.09 22399.35 113
SR-MVS98.00 5197.66 8599.01 898.77 13497.93 1197.38 10498.83 12497.32 8298.06 13997.85 18796.65 8699.77 5795.00 17799.11 22099.32 114
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13097.31 3697.55 9298.92 9797.72 5998.25 11698.13 15297.10 5499.75 6895.44 14799.24 20499.32 114
EPP-MVSNet96.84 14296.58 15797.65 11899.18 8193.78 17198.68 1496.34 30597.91 5197.30 18498.06 16588.46 28099.85 2793.85 22599.40 16999.32 114
ACMP92.54 1397.47 10997.10 12698.55 4999.04 10796.70 5196.24 17198.89 10093.71 22597.97 14997.75 19797.44 3899.63 14493.22 24399.70 7699.32 114
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3298.21 4199.25 3198.51 10598.21 1499.40 22094.79 18699.72 7099.32 114
Anonymous2024052197.07 12897.51 10595.76 23999.35 5288.18 28997.78 7398.40 19597.11 8798.34 10599.04 5389.58 26799.79 4598.09 3599.93 1199.30 119
HFP-MVS97.94 6297.64 8998.83 2599.15 8697.50 2997.59 8998.84 11896.05 13097.49 17597.54 21297.07 5799.70 11295.61 13599.46 14999.30 119
lessismore_v097.05 16799.36 5192.12 21784.07 39398.77 6798.98 5885.36 30899.74 7797.34 6499.37 17299.30 119
GBi-Net96.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
test196.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16397.41 7899.00 4699.19 3695.47 13799.73 8395.83 12399.76 5999.30 119
v14896.58 16396.97 13595.42 25798.63 15287.57 30595.09 24697.90 24895.91 14298.24 11797.96 17593.42 19299.39 22496.04 10899.52 12899.29 125
TSAR-MVS + MP.97.42 11397.23 12198.00 9599.38 4995.00 12597.63 8698.20 21993.00 25098.16 12698.06 16595.89 11799.72 8895.67 13099.10 22299.28 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
casdiffmvspermissive97.50 10697.81 7196.56 20198.51 16991.04 24095.83 20299.09 5497.23 8598.33 10898.30 12797.03 6199.37 23296.58 8899.38 17199.28 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP_MVS96.66 15896.33 17497.68 11798.70 14394.29 15096.50 15298.75 14396.36 11596.16 25996.77 26991.91 23499.46 19892.59 25299.20 20699.28 126
plane_prior598.75 14399.46 19892.59 25299.20 20699.28 126
IterMVS-SCA-FT95.86 19296.19 17894.85 28397.68 26985.53 33492.42 33797.63 27096.99 8998.36 10298.54 10287.94 28599.75 6897.07 7599.08 22499.27 130
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6992.81 19797.55 9298.94 9497.10 8898.85 5598.88 7295.03 15099.67 13097.39 6399.65 8699.26 131
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.60 9199.76 6295.49 14099.20 20699.26 131
RE-MVS-def97.88 6498.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.94 6795.49 14099.20 20699.26 131
DVP-MVScopyleft97.78 8597.65 8698.16 7999.24 6495.51 9796.74 13998.23 21495.92 14098.40 9698.28 13297.06 5899.71 10495.48 14399.52 12899.26 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SF-MVS97.60 10097.39 11198.22 7598.93 11795.69 8897.05 12199.10 4995.32 17097.83 16397.88 18596.44 10099.72 8894.59 19899.39 17099.25 135
3Dnovator+96.13 397.73 8897.59 9798.15 8198.11 21895.60 9298.04 6098.70 15598.13 4396.93 21598.45 11095.30 14399.62 14995.64 13398.96 23599.24 136
Anonymous2024052997.96 5498.04 4997.71 11398.69 14594.28 15397.86 7098.31 20898.79 2299.23 3298.86 7495.76 12899.61 15695.49 14099.36 17599.23 137
IterMVS95.42 21295.83 19694.20 31197.52 28383.78 35892.41 33897.47 27595.49 16398.06 13998.49 10687.94 28599.58 16196.02 11099.02 23199.23 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DVP-MVS++97.96 5497.90 5998.12 8497.75 26295.40 10399.03 798.89 10096.62 9998.62 7498.30 12796.97 6599.75 6895.70 12699.25 20199.21 139
PC_three_145287.24 33098.37 9997.44 21997.00 6396.78 38392.01 25899.25 20199.21 139
OPM-MVS97.54 10497.25 11998.41 5999.11 9596.61 5695.24 24098.46 18594.58 20098.10 13398.07 16097.09 5699.39 22495.16 16599.44 15399.21 139
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf0593.65 28393.05 28295.46 25596.13 34287.45 30895.95 19698.22 21592.66 26097.04 20697.89 18363.52 39199.72 8896.19 10299.82 4799.21 139
EPNet93.72 27992.62 29897.03 17087.61 39992.25 21096.27 16691.28 36896.74 9787.65 38697.39 22685.00 31099.64 14192.14 25799.48 14499.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.44 11197.78 7696.43 20798.52 16790.75 24796.84 13099.03 7096.51 10897.86 16198.02 16996.67 8599.36 23597.09 7399.47 14699.19 144
APD-MVScopyleft97.00 13196.53 16398.41 5998.55 16396.31 6696.32 16498.77 13992.96 25597.44 18197.58 21195.84 11999.74 7791.96 25999.35 18099.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.92 13896.55 16098.03 9398.00 22795.54 9594.87 25898.17 22594.60 19796.38 24597.05 24995.67 13199.36 23595.12 17199.08 22499.19 144
iter_conf_final94.54 25493.91 27096.43 20797.23 30690.41 25396.81 13398.10 23593.87 22196.80 22097.89 18368.02 38599.72 8896.73 8399.77 5899.18 147
NCCC96.52 16595.99 18798.10 8597.81 24695.68 8995.00 25498.20 21995.39 16895.40 28696.36 29293.81 18499.45 20293.55 23498.42 28599.17 148
CPTT-MVS96.69 15696.08 18398.49 5298.89 12096.64 5597.25 10898.77 13992.89 25696.01 26597.13 24392.23 22399.67 13092.24 25699.34 18399.17 148
RPSCF97.87 7497.51 10598.95 1499.15 8698.43 697.56 9199.06 5996.19 12498.48 8898.70 8694.72 15799.24 26594.37 20499.33 18899.17 148
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16499.11 4796.75 8399.86 2497.84 4499.36 17599.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.73 15296.54 16297.27 15298.35 18693.66 17693.42 31498.36 20094.74 19196.58 23596.76 27196.54 9298.99 29894.87 18299.27 19999.15 151
DeepC-MVS95.41 497.82 8197.70 7998.16 7998.78 13395.72 8696.23 17299.02 7293.92 22098.62 7498.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12496.11 12799.08 4098.24 13997.87 2399.72 8895.44 14799.51 13399.14 154
OPU-MVS97.64 11998.01 22395.27 11396.79 13697.35 23196.97 6598.51 34391.21 27699.25 20199.14 154
HPM-MVS++copyleft96.99 13296.38 17198.81 2798.64 14897.59 2395.97 19298.20 21995.51 16295.06 29396.53 28294.10 17699.70 11294.29 20799.15 21399.13 156
MCST-MVS96.24 17695.80 19797.56 12398.75 13594.13 15894.66 26798.17 22590.17 29996.21 25696.10 30595.14 14799.43 20794.13 21498.85 24999.13 156
UnsupCasMVSNet_eth95.91 19095.73 20096.44 20698.48 17591.52 23295.31 23698.45 18695.76 14997.48 17797.54 21289.53 27098.69 32694.43 20094.61 37299.13 156
3Dnovator96.53 297.61 9997.64 8997.50 13297.74 26593.65 17798.49 2898.88 10696.86 9497.11 19798.55 10195.82 12299.73 8395.94 11699.42 16499.13 156
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3798.34 3598.78 6398.52 10397.32 4399.45 20294.08 21599.67 8399.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet95.67 19996.58 15792.94 33997.48 28680.21 37592.96 32398.19 22494.83 18998.82 5998.79 7693.31 19499.51 18495.83 12399.04 23099.12 161
VDD-MVS97.37 11797.25 11997.74 11198.69 14594.50 14397.04 12295.61 32198.59 2798.51 8398.72 8392.54 21699.58 16196.02 11099.49 14099.12 161
MVSTER94.21 26593.93 26995.05 27195.83 34986.46 32495.18 24397.65 26692.41 26697.94 15298.00 17372.39 37499.58 16196.36 9599.56 11099.12 161
testgi96.07 18296.50 16694.80 28699.26 6087.69 30495.96 19498.58 17695.08 18098.02 14496.25 29697.92 2097.60 37388.68 32698.74 26099.11 164
CDPH-MVS95.45 21194.65 23897.84 10698.28 19194.96 12693.73 30698.33 20485.03 35595.44 28496.60 27895.31 14299.44 20590.01 30699.13 21699.11 164
PVSNet_BlendedMVS95.02 23194.93 22395.27 26197.79 25587.40 31094.14 28898.68 15888.94 31394.51 30698.01 17193.04 19999.30 25089.77 31099.49 14099.11 164
DP-MVS97.87 7497.89 6297.81 10798.62 15494.82 12997.13 11798.79 13498.98 1798.74 6998.49 10695.80 12799.49 19095.04 17499.44 15399.11 164
agg_prior290.34 30398.90 24299.10 168
VNet96.84 14296.83 14496.88 17998.06 21992.02 22296.35 16297.57 27297.70 6297.88 15797.80 19392.40 22199.54 17594.73 19198.96 23599.08 169
CHOSEN 1792x268894.10 26993.41 27896.18 22199.16 8390.04 25592.15 34198.68 15879.90 37996.22 25597.83 18887.92 28999.42 20989.18 31899.65 8699.08 169
XVG-OURS-SEG-HR97.38 11597.07 12998.30 6899.01 11097.41 3494.66 26799.02 7295.20 17498.15 12897.52 21498.83 598.43 34994.87 18296.41 35199.07 171
FMVSNet296.72 15396.67 15396.87 18097.96 22991.88 22597.15 11498.06 24395.59 15898.50 8598.62 9589.51 27199.65 13894.99 17999.60 10099.07 171
diffmvspermissive96.04 18496.23 17695.46 25597.35 29788.03 29593.42 31499.08 5594.09 21696.66 23196.93 25793.85 18399.29 25496.01 11298.67 26799.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP4-MVS92.87 34799.23 26799.06 173
HQP-MVS95.17 22494.58 24696.92 17697.85 23792.47 20694.26 27698.43 18993.18 24292.86 34895.08 32990.33 25599.23 26790.51 29898.74 26099.05 175
test_f95.82 19495.88 19595.66 24497.61 27793.21 19195.61 21698.17 22586.98 33498.42 9499.47 1190.46 25294.74 38997.71 5198.45 28399.03 176
FMVSNet593.39 29092.35 30096.50 20395.83 34990.81 24697.31 10598.27 20992.74 25896.27 25298.28 13262.23 39299.67 13090.86 28399.36 17599.03 176
HyFIR lowres test93.72 27992.65 29696.91 17898.93 11791.81 22891.23 35898.52 18082.69 36796.46 24296.52 28480.38 33799.90 1490.36 30298.79 25599.03 176
tttt051793.31 29292.56 29995.57 24798.71 14187.86 29897.44 10087.17 38895.79 14897.47 17996.84 26364.12 38999.81 3796.20 10199.32 19099.02 179
test9_res91.29 27298.89 24599.00 180
test20.0396.58 16396.61 15596.48 20598.49 17391.72 22995.68 20997.69 26196.81 9598.27 11597.92 18194.18 17598.71 32490.78 28799.66 8599.00 180
XVG-ACMP-BASELINE97.58 10297.28 11898.49 5299.16 8396.90 4696.39 15698.98 8795.05 18298.06 13998.02 16995.86 11899.56 16894.37 20499.64 8899.00 180
mvsany_test396.21 17795.93 19297.05 16797.40 29494.33 14995.76 20494.20 33989.10 30999.36 2499.60 693.97 18097.85 36895.40 15498.63 27298.99 183
MDA-MVSNet-bldmvs95.69 19795.67 20195.74 24098.48 17588.76 28092.84 32497.25 27896.00 13597.59 16997.95 17791.38 23899.46 19893.16 24596.35 35298.99 183
Vis-MVSNet (Re-imp)95.11 22594.85 22895.87 23699.12 9489.17 26997.54 9794.92 33296.50 10996.58 23597.27 23683.64 32099.48 19388.42 32999.67 8398.97 185
FMVSNet395.26 21994.94 22196.22 21996.53 32690.06 25495.99 19097.66 26494.11 21497.99 14597.91 18280.22 33899.63 14494.60 19599.44 15398.96 186
ambc96.56 20198.23 19891.68 23097.88 6998.13 23398.42 9498.56 10094.22 17499.04 29294.05 21899.35 18098.95 187
YYNet194.73 23994.84 22994.41 30497.47 29085.09 34390.29 37095.85 31592.52 26297.53 17197.76 19491.97 23099.18 27193.31 24096.86 33998.95 187
ppachtmachnet_test94.49 25794.84 22993.46 32596.16 33882.10 36690.59 36797.48 27490.53 29397.01 20997.59 20991.01 24499.36 23593.97 22299.18 21098.94 189
CANet95.86 19295.65 20396.49 20496.41 32990.82 24494.36 27498.41 19394.94 18692.62 35796.73 27292.68 20999.71 10495.12 17199.60 10098.94 189
Anonymous2023120695.27 21895.06 21995.88 23598.72 13889.37 26695.70 20697.85 25188.00 32596.98 21297.62 20791.95 23199.34 24189.21 31799.53 12398.94 189
MDA-MVSNet_test_wron94.73 23994.83 23194.42 30397.48 28685.15 34190.28 37195.87 31492.52 26297.48 17797.76 19491.92 23399.17 27593.32 23996.80 34498.94 189
LFMVS95.32 21694.88 22796.62 19598.03 22091.47 23397.65 8490.72 37499.11 997.89 15698.31 12379.20 34099.48 19393.91 22499.12 21998.93 193
XVG-OURS97.12 12696.74 14998.26 7098.99 11197.45 3293.82 30299.05 6395.19 17598.32 10997.70 20295.22 14598.41 35094.27 20898.13 29698.93 193
DeepPCF-MVS94.58 596.90 14096.43 16898.31 6797.48 28697.23 4092.56 33298.60 17192.84 25798.54 8197.40 22296.64 8898.78 31694.40 20399.41 16898.93 193
Anonymous20240521196.34 17395.98 18897.43 14198.25 19593.85 16796.74 13994.41 33797.72 5998.37 9998.03 16887.15 29599.53 17794.06 21699.07 22698.92 196
our_test_394.20 26794.58 24693.07 33396.16 33881.20 37290.42 36996.84 29490.72 28997.14 19497.13 24390.47 25199.11 28494.04 21998.25 29198.91 197
tfpnnormal97.72 9097.97 5596.94 17499.26 6092.23 21197.83 7298.45 18698.25 3999.13 3898.66 8996.65 8699.69 11993.92 22399.62 9198.91 197
AllTest97.20 12596.92 14098.06 8899.08 9996.16 7097.14 11699.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
TestCases98.06 8899.08 9996.16 7099.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
h-mvs3396.29 17495.63 20498.26 7098.50 17296.11 7396.90 12897.09 28696.58 10497.21 18998.19 14684.14 31699.78 4895.89 11996.17 35598.89 201
pmmvs-eth3d96.49 16696.18 17997.42 14398.25 19594.29 15094.77 26398.07 24289.81 30397.97 14998.33 12193.11 19799.08 28895.46 14699.84 4098.89 201
train_agg95.46 21094.66 23797.88 10397.84 24295.23 11593.62 30898.39 19687.04 33293.78 32395.99 30794.58 16499.52 18091.76 26798.90 24298.89 201
test1297.46 13897.61 27794.07 15997.78 25793.57 33393.31 19499.42 20998.78 25698.89 201
pmmvs594.63 24994.34 25695.50 25297.63 27688.34 28594.02 29297.13 28487.15 33195.22 29097.15 24287.50 29199.27 25993.99 22099.26 20098.88 205
DeepC-MVS_fast94.34 796.74 15096.51 16597.44 14097.69 26894.15 15796.02 18798.43 18993.17 24597.30 18497.38 22895.48 13699.28 25693.74 22899.34 18398.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS97.37 11797.70 7996.35 21298.14 21495.13 12296.54 15198.92 9795.94 13999.19 3498.08 15897.74 2895.06 38795.24 15999.54 11998.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS293.66 28294.07 26492.45 34997.57 27980.67 37486.46 38596.00 31093.99 21897.10 19897.38 22889.90 26297.82 36988.76 32399.47 14698.86 208
PVSNet_Blended_VisFu95.95 18895.80 19796.42 20999.28 5890.62 24895.31 23699.08 5588.40 31996.97 21398.17 14992.11 22699.78 4893.64 23299.21 20598.86 208
miper_lstm_enhance94.81 23894.80 23394.85 28396.16 33886.45 32591.14 36098.20 21993.49 23197.03 20797.37 23084.97 31199.26 26095.28 15699.56 11098.83 210
PHI-MVS96.96 13696.53 16398.25 7397.48 28696.50 5996.76 13898.85 11593.52 23096.19 25896.85 26295.94 11699.42 20993.79 22799.43 16198.83 210
QAPM95.88 19195.57 20696.80 18597.90 23591.84 22798.18 5398.73 14688.41 31896.42 24398.13 15294.73 15699.75 6888.72 32498.94 23898.81 212
Patchmtry95.03 23094.59 24596.33 21394.83 36890.82 24496.38 15997.20 28096.59 10397.49 17598.57 9877.67 34799.38 22792.95 24999.62 9198.80 213
test_prior97.46 13897.79 25594.26 15598.42 19299.34 24198.79 214
eth_miper_zixun_eth94.89 23494.93 22394.75 28995.99 34486.12 32991.35 35398.49 18393.40 23397.12 19697.25 23886.87 29899.35 23995.08 17398.82 25398.78 215
c3_l95.20 22195.32 20894.83 28596.19 33686.43 32691.83 34798.35 20393.47 23297.36 18397.26 23788.69 27799.28 25695.41 15399.36 17598.78 215
MVS_111021_LR96.82 14696.55 16097.62 12098.27 19395.34 11093.81 30498.33 20494.59 19996.56 23796.63 27796.61 8998.73 32194.80 18599.34 18398.78 215
F-COLMAP95.30 21794.38 25598.05 9298.64 14896.04 7595.61 21698.66 16389.00 31293.22 34296.40 29092.90 20399.35 23987.45 34397.53 32498.77 218
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
D2MVS95.18 22295.17 21395.21 26397.76 26087.76 30394.15 28697.94 24689.77 30496.99 21097.68 20487.45 29299.14 27895.03 17699.81 4898.74 221
MVSFormer96.14 18096.36 17295.49 25397.68 26987.81 30198.67 1599.02 7296.50 10994.48 30896.15 30086.90 29699.92 598.73 2099.13 21698.74 221
jason94.39 26094.04 26595.41 25998.29 18987.85 30092.74 32996.75 29985.38 35295.29 28896.15 30088.21 28499.65 13894.24 20999.34 18398.74 221
jason: jason.
test_fmvs1_n95.21 22095.28 20994.99 27598.15 21289.13 27296.81 13399.43 2086.97 33597.21 18998.92 6683.00 32497.13 37698.09 3598.94 23898.72 224
DIV-MVS_self_test94.73 23994.64 23995.01 27395.86 34787.00 31791.33 35498.08 23893.34 23597.10 19897.34 23284.02 31899.31 24795.15 16799.55 11698.72 224
旧先验197.80 25093.87 16697.75 25897.04 25093.57 18998.68 26698.72 224
cl____94.73 23994.64 23995.01 27395.85 34887.00 31791.33 35498.08 23893.34 23597.10 19897.33 23384.01 31999.30 25095.14 16899.56 11098.71 227
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12193.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14199.21 799.87 2998.69 228
mvs_anonymous95.36 21396.07 18493.21 33196.29 33181.56 37094.60 26997.66 26493.30 23796.95 21498.91 6993.03 20199.38 22796.60 8697.30 33498.69 228
OMC-MVS96.48 16796.00 18697.91 10098.30 18896.01 7894.86 25998.60 17191.88 27497.18 19297.21 24096.11 11399.04 29290.49 30099.34 18398.69 228
thisisatest053092.71 30291.76 31095.56 24998.42 18188.23 28796.03 18687.35 38794.04 21796.56 23795.47 32464.03 39099.77 5794.78 18899.11 22098.68 231
TAMVS95.49 20694.94 22197.16 15898.31 18793.41 18495.07 24996.82 29691.09 28597.51 17397.82 19189.96 26199.42 20988.42 32999.44 15398.64 232
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14698.66 2598.56 8098.41 11396.84 7999.69 11994.82 18499.81 4898.64 232
MVP-Stereo95.69 19795.28 20996.92 17698.15 21293.03 19395.64 21598.20 21990.39 29596.63 23497.73 20091.63 23699.10 28691.84 26497.31 33398.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl2293.25 29492.84 29094.46 30294.30 37486.00 33091.09 36296.64 30490.74 28895.79 27396.31 29478.24 34498.77 31794.15 21398.34 28798.62 235
CANet_DTU94.65 24894.21 26095.96 22995.90 34689.68 26093.92 29997.83 25593.19 24190.12 37695.64 31988.52 27999.57 16793.27 24299.47 14698.62 235
PM-MVS97.36 11997.10 12698.14 8298.91 11996.77 4996.20 17398.63 16993.82 22298.54 8198.33 12193.98 17999.05 29195.99 11399.45 15298.61 237
CSCG97.40 11497.30 11697.69 11698.95 11394.83 12897.28 10798.99 8496.35 11798.13 13095.95 31195.99 11599.66 13694.36 20699.73 6698.59 238
CLD-MVS95.47 20995.07 21796.69 19398.27 19392.53 20391.36 35298.67 16191.22 28495.78 27594.12 34895.65 13298.98 30090.81 28599.72 7098.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld94.72 24394.26 25796.08 22598.62 15490.54 25293.38 31698.05 24490.30 29697.02 20896.80 26889.54 26899.16 27688.44 32896.18 35498.56 240
N_pmnet95.18 22294.23 25898.06 8897.85 23796.55 5892.49 33391.63 36589.34 30698.09 13497.41 22190.33 25599.06 29091.58 26999.31 19398.56 240
testing389.72 34088.26 34894.10 31497.66 27384.30 35494.80 26088.25 38594.66 19495.07 29292.51 36741.15 40299.43 20791.81 26598.44 28498.55 242
EGC-MVSNET83.08 36077.93 36398.53 5099.57 2097.55 2698.33 3898.57 1774.71 39710.38 39898.90 7095.60 13499.50 18595.69 12899.61 9798.55 242
CVMVSNet92.33 30892.79 29190.95 36097.26 30475.84 39295.29 23892.33 36081.86 36996.27 25298.19 14681.44 33098.46 34894.23 21098.29 29098.55 242
APD_test197.95 5897.68 8398.75 3199.60 1798.60 597.21 11299.08 5596.57 10798.07 13898.38 11796.22 11199.14 27894.71 19399.31 19398.52 245
CS-MVS-test97.91 6997.84 6698.14 8298.52 16796.03 7798.38 3499.67 698.11 4495.50 28396.92 25996.81 8199.87 2296.87 8199.76 5998.51 246
LS3D97.77 8697.50 10798.57 4796.24 33297.58 2498.45 3198.85 11598.58 2897.51 17397.94 17895.74 12999.63 14495.19 16198.97 23498.51 246
CL-MVSNet_self_test95.04 22894.79 23495.82 23797.51 28489.79 25991.14 36096.82 29693.05 24896.72 22796.40 29090.82 24799.16 27691.95 26098.66 26998.50 248
miper_ehance_all_eth94.69 24494.70 23694.64 29195.77 35186.22 32891.32 35698.24 21391.67 27697.05 20596.65 27688.39 28299.22 26994.88 18198.34 28798.49 249
Effi-MVS+-dtu96.81 14796.09 18298.99 1096.90 32098.69 496.42 15598.09 23795.86 14595.15 29195.54 32294.26 17399.81 3794.06 21698.51 28198.47 250
USDC94.56 25294.57 24894.55 29897.78 25886.43 32692.75 32798.65 16885.96 34396.91 21797.93 18090.82 24798.74 32090.71 29299.59 10298.47 250
pmmvs494.82 23794.19 26196.70 19297.42 29392.75 20192.09 34496.76 29886.80 33795.73 27897.22 23989.28 27498.89 30793.28 24199.14 21498.46 252
CS-MVS98.09 4498.01 5298.32 6598.45 17896.69 5298.52 2699.69 598.07 4696.07 26297.19 24196.88 7599.86 2497.50 5999.73 6698.41 253
alignmvs96.01 18695.52 20797.50 13297.77 25994.71 13196.07 18396.84 29497.48 7396.78 22594.28 34785.50 30799.40 22096.22 10098.73 26398.40 254
CDS-MVSNet94.88 23594.12 26397.14 16097.64 27593.57 17893.96 29897.06 28890.05 30096.30 25196.55 28086.10 30199.47 19590.10 30599.31 19398.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS93.55 28693.00 28695.19 26497.81 24687.86 29893.89 30096.00 31089.02 31194.07 31795.44 32686.27 30099.33 24387.69 33796.82 34298.39 256
EC-MVSNet97.90 7197.94 5897.79 10898.66 14795.14 12198.31 3999.66 897.57 6795.95 26697.01 25396.99 6499.82 3597.66 5499.64 8898.39 256
Effi-MVS+96.19 17896.01 18596.71 19197.43 29292.19 21696.12 18099.10 4995.45 16493.33 34194.71 33897.23 5199.56 16893.21 24497.54 32398.37 258
MS-PatchMatch94.83 23694.91 22594.57 29796.81 32187.10 31694.23 28197.34 27788.74 31697.14 19497.11 24591.94 23298.23 36192.99 24797.92 30398.37 258
TSAR-MVS + GP.96.47 16896.12 18097.49 13597.74 26595.23 11594.15 28696.90 29393.26 23898.04 14296.70 27394.41 16998.89 30794.77 18999.14 21498.37 258
DELS-MVS96.17 17996.23 17695.99 22797.55 28290.04 25592.38 33998.52 18094.13 21296.55 23997.06 24894.99 15299.58 16195.62 13499.28 19798.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 26393.72 27295.74 24097.71 26789.95 25793.84 30196.98 29088.38 32093.75 32695.74 31587.94 28598.89 30791.02 27998.10 29798.37 258
GA-MVS92.83 30092.15 30494.87 28296.97 31587.27 31390.03 37296.12 30791.83 27594.05 31894.57 33976.01 35998.97 30492.46 25597.34 33298.36 263
ITE_SJBPF97.85 10598.64 14896.66 5498.51 18295.63 15597.22 18797.30 23595.52 13598.55 34090.97 28098.90 24298.34 264
hse-mvs295.77 19595.09 21697.79 10897.84 24295.51 9795.66 21095.43 32696.58 10497.21 18996.16 29984.14 31699.54 17595.89 11996.92 33698.32 265
LCM-MVSNet-Re97.33 12097.33 11597.32 14998.13 21793.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30499.06 22998.32 265
BH-RMVSNet94.56 25294.44 25494.91 27897.57 27987.44 30993.78 30596.26 30693.69 22696.41 24496.50 28592.10 22799.00 29685.96 35097.71 31498.31 267
MG-MVS94.08 27194.00 26694.32 30797.09 31285.89 33193.19 32195.96 31292.52 26294.93 29997.51 21589.54 26898.77 31787.52 34297.71 31498.31 267
AUN-MVS93.95 27692.69 29597.74 11197.80 25095.38 10595.57 21995.46 32591.26 28392.64 35596.10 30574.67 36399.55 17293.72 23096.97 33598.30 269
MVS_Test96.27 17596.79 14894.73 29096.94 31886.63 32396.18 17498.33 20494.94 18696.07 26298.28 13295.25 14499.26 26097.21 6797.90 30598.30 269
TinyColmap96.00 18796.34 17394.96 27797.90 23587.91 29794.13 28998.49 18394.41 20398.16 12697.76 19496.29 10898.68 32990.52 29799.42 16498.30 269
CMPMVSbinary73.10 2392.74 30191.39 31396.77 18893.57 38594.67 13494.21 28397.67 26280.36 37893.61 33196.60 27882.85 32597.35 37484.86 36398.78 25698.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lupinMVS93.77 27793.28 27995.24 26297.68 26987.81 30192.12 34296.05 30884.52 36194.48 30895.06 33186.90 29699.63 14493.62 23399.13 21698.27 273
PAPM_NR94.61 25094.17 26295.96 22998.36 18591.23 23795.93 19797.95 24592.98 25193.42 33994.43 34590.53 25098.38 35387.60 33996.29 35398.27 273
114514_t93.96 27493.22 28196.19 22099.06 10290.97 24295.99 19098.94 9473.88 39193.43 33896.93 25792.38 22299.37 23289.09 31999.28 19798.25 275
原ACMM196.58 19898.16 21092.12 21798.15 23185.90 34593.49 33596.43 28792.47 22099.38 22787.66 33898.62 27398.23 276
PLCcopyleft91.02 1694.05 27292.90 28797.51 12898.00 22795.12 12394.25 27998.25 21186.17 34191.48 36795.25 32791.01 24499.19 27085.02 36296.69 34698.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu91.39 32390.75 32693.31 32790.48 39682.61 36394.80 26092.88 35293.39 23481.74 39494.90 33681.36 33199.11 28488.28 33198.87 24698.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 26893.42 27796.23 21798.59 15890.85 24394.24 28098.85 11585.49 34892.97 34694.94 33386.01 30299.64 14191.78 26697.92 30398.20 279
Test_1112_low_res93.53 28792.86 28895.54 25198.60 15688.86 27692.75 32798.69 15682.66 36892.65 35496.92 25984.75 31299.56 16890.94 28197.76 31098.19 280
canonicalmvs97.23 12497.21 12297.30 15097.65 27494.39 14597.84 7199.05 6397.42 7596.68 22993.85 35097.63 3499.33 24396.29 9798.47 28298.18 281
miper_enhance_ethall93.14 29692.78 29394.20 31193.65 38385.29 33889.97 37397.85 25185.05 35496.15 26194.56 34085.74 30499.14 27893.74 22898.34 28798.17 282
Fast-Effi-MVS+-dtu96.44 16996.12 18097.39 14697.18 30894.39 14595.46 22198.73 14696.03 13494.72 30194.92 33596.28 10999.69 11993.81 22697.98 30198.09 283
ab-mvs96.59 16196.59 15696.60 19698.64 14892.21 21298.35 3597.67 26294.45 20296.99 21098.79 7694.96 15499.49 19090.39 30199.07 22698.08 284
PAPR92.22 30991.27 31695.07 27095.73 35488.81 27791.97 34597.87 25085.80 34690.91 36992.73 36491.16 24198.33 35779.48 38095.76 36198.08 284
test_yl94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
DCV-MVSNet94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
baseline193.14 29692.64 29794.62 29397.34 29987.20 31496.67 14893.02 35094.71 19396.51 24095.83 31481.64 32898.60 33690.00 30788.06 38998.07 286
MIMVSNet93.42 28992.86 28895.10 26998.17 20888.19 28898.13 5593.69 34192.07 26995.04 29698.21 14580.95 33599.03 29581.42 37698.06 29998.07 286
GSMVS98.06 290
sam_mvs177.80 34698.06 290
SCA93.38 29193.52 27692.96 33896.24 33281.40 37193.24 31994.00 34091.58 27994.57 30496.97 25487.94 28599.42 20989.47 31497.66 31998.06 290
MSLP-MVS++96.42 17196.71 15095.57 24797.82 24590.56 25195.71 20598.84 11894.72 19296.71 22897.39 22694.91 15598.10 36595.28 15699.02 23198.05 293
ADS-MVSNet291.47 32290.51 33094.36 30595.51 35785.63 33295.05 25195.70 31683.46 36592.69 35296.84 26379.15 34199.41 21885.66 35490.52 38398.04 294
ADS-MVSNet90.95 32890.26 33293.04 33495.51 35782.37 36595.05 25193.41 34783.46 36592.69 35296.84 26379.15 34198.70 32585.66 35490.52 38398.04 294
PVSNet_Blended93.96 27493.65 27394.91 27897.79 25587.40 31091.43 35198.68 15884.50 36294.51 30694.48 34493.04 19999.30 25089.77 31098.61 27498.02 296
PatchmatchNetpermissive91.98 31691.87 30692.30 35194.60 37179.71 37695.12 24493.59 34689.52 30593.61 33197.02 25177.94 34599.18 27190.84 28494.57 37498.01 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n95.67 19995.89 19495.03 27298.18 20589.89 25896.94 12699.28 2688.25 32298.20 12098.92 6686.69 29997.19 37597.70 5398.82 25398.00 298
test_vis1_n_192095.77 19596.41 16993.85 31698.55 16384.86 34695.91 19999.71 492.72 25997.67 16798.90 7087.44 29398.73 32197.96 3998.85 24997.96 299
PVSNet86.72 1991.10 32590.97 32291.49 35797.56 28178.04 38287.17 38494.60 33584.65 36092.34 35992.20 37087.37 29498.47 34785.17 36197.69 31697.96 299
无先验93.20 32097.91 24780.78 37599.40 22087.71 33697.94 301
EIA-MVS96.04 18495.77 19996.85 18197.80 25092.98 19496.12 18099.16 3794.65 19593.77 32591.69 37695.68 13099.67 13094.18 21198.85 24997.91 302
test_fmvsmvis_n_192098.08 4598.47 2696.93 17599.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 303
test_cas_vis1_n_192095.34 21495.67 20194.35 30698.21 19986.83 32195.61 21699.26 2790.45 29498.17 12598.96 6184.43 31598.31 35896.74 8299.17 21197.90 303
test_fmvs194.51 25694.60 24394.26 31095.91 34587.92 29695.35 23299.02 7286.56 33996.79 22198.52 10382.64 32697.00 37997.87 4298.71 26497.88 305
tpm91.08 32690.85 32491.75 35695.33 36278.09 38195.03 25391.27 36988.75 31593.53 33497.40 22271.24 37699.30 25091.25 27593.87 37697.87 306
Patchmatch-RL test94.66 24794.49 24995.19 26498.54 16588.91 27492.57 33198.74 14591.46 28098.32 10997.75 19777.31 35298.81 31496.06 10599.61 9797.85 307
LF4IMVS96.07 18295.63 20497.36 14798.19 20295.55 9495.44 22298.82 13292.29 26895.70 27996.55 28092.63 21298.69 32691.75 26899.33 18897.85 307
ET-MVSNet_ETH3D91.12 32489.67 33695.47 25496.41 32989.15 27191.54 35090.23 37889.07 31086.78 39092.84 36169.39 38399.44 20594.16 21296.61 34897.82 309
MDTV_nov1_ep13_2view57.28 40294.89 25780.59 37694.02 31978.66 34385.50 35697.82 309
Patchmatch-test93.60 28593.25 28094.63 29296.14 34187.47 30796.04 18594.50 33693.57 22996.47 24196.97 25476.50 35598.61 33490.67 29498.41 28697.81 311
Fast-Effi-MVS+95.49 20695.07 21796.75 18997.67 27292.82 19694.22 28298.60 17191.61 27793.42 33992.90 36096.73 8499.70 11292.60 25197.89 30697.74 312
DPM-MVS93.68 28192.77 29496.42 20997.91 23392.54 20291.17 35997.47 27584.99 35793.08 34594.74 33789.90 26299.00 29687.54 34198.09 29897.72 313
baseline289.65 34188.44 34793.25 32995.62 35582.71 36193.82 30285.94 39188.89 31487.35 38892.54 36671.23 37799.33 24386.01 34994.60 37397.72 313
test22298.17 20893.24 19092.74 32997.61 27175.17 38994.65 30396.69 27490.96 24698.66 26997.66 315
Syy-MVS92.09 31391.80 30992.93 34095.19 36382.65 36292.46 33491.35 36690.67 29191.76 36587.61 38985.64 30698.50 34494.73 19196.84 34097.65 316
myMVS_eth3d87.16 35785.61 36191.82 35595.19 36379.32 37792.46 33491.35 36690.67 29191.76 36587.61 38941.96 40198.50 34482.66 37396.84 34097.65 316
TAPA-MVS93.32 1294.93 23294.23 25897.04 16998.18 20594.51 14195.22 24198.73 14681.22 37496.25 25495.95 31193.80 18598.98 30089.89 30898.87 24697.62 318
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何197.25 15498.29 18994.70 13397.73 25977.98 38594.83 30096.67 27592.08 22899.45 20288.17 33398.65 27197.61 319
MSDG95.33 21595.13 21495.94 23397.40 29491.85 22691.02 36398.37 19995.30 17196.31 25095.99 30794.51 16798.38 35389.59 31297.65 32097.60 320
FA-MVS(test-final)94.91 23394.89 22694.99 27597.51 28488.11 29498.27 4495.20 32992.40 26796.68 22998.60 9683.44 32199.28 25693.34 23898.53 27897.59 321
testdata95.70 24398.16 21090.58 24997.72 26080.38 37795.62 28097.02 25192.06 22998.98 30089.06 32198.52 27997.54 322
FE-MVS92.95 29892.22 30295.11 26797.21 30788.33 28698.54 2393.66 34489.91 30296.21 25698.14 15070.33 38199.50 18587.79 33598.24 29297.51 323
DSMNet-mixed92.19 31091.83 30793.25 32996.18 33783.68 35996.27 16693.68 34376.97 38892.54 35899.18 3989.20 27698.55 34083.88 36898.60 27697.51 323
thisisatest051590.43 33089.18 34294.17 31397.07 31385.44 33589.75 37887.58 38688.28 32193.69 32991.72 37565.27 38899.58 16190.59 29598.67 26797.50 325
PMMVS92.39 30591.08 31996.30 21693.12 38792.81 19790.58 36895.96 31279.17 38291.85 36492.27 36990.29 25998.66 33189.85 30996.68 34797.43 326
DP-MVS Recon95.55 20495.13 21496.80 18598.51 16993.99 16394.60 26998.69 15690.20 29895.78 27596.21 29892.73 20898.98 30090.58 29698.86 24897.42 327
thres600view792.03 31591.43 31293.82 31798.19 20284.61 34996.27 16690.39 37596.81 9596.37 24693.11 35373.44 37299.49 19080.32 37997.95 30297.36 328
thres40091.68 32091.00 32093.71 32098.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31197.36 328
OpenMVScopyleft94.22 895.48 20895.20 21196.32 21497.16 30991.96 22497.74 7998.84 11887.26 32994.36 31098.01 17193.95 18199.67 13090.70 29398.75 25997.35 330
test_vis1_rt94.03 27393.65 27395.17 26695.76 35293.42 18393.97 29798.33 20484.68 35993.17 34395.89 31392.53 21894.79 38893.50 23594.97 36897.31 331
test0.0.03 190.11 33289.21 33992.83 34193.89 38186.87 32091.74 34888.74 38492.02 27094.71 30291.14 38173.92 36694.48 39083.75 37192.94 37897.16 332
BH-untuned94.69 24494.75 23594.52 29997.95 23287.53 30694.07 29197.01 28993.99 21897.10 19895.65 31892.65 21198.95 30587.60 33996.74 34597.09 333
new_pmnet92.34 30791.69 31194.32 30796.23 33489.16 27092.27 34092.88 35284.39 36495.29 28896.35 29385.66 30596.74 38484.53 36597.56 32297.05 334
tpmrst90.31 33190.61 32989.41 36794.06 37972.37 39895.06 25093.69 34188.01 32492.32 36096.86 26177.45 34998.82 31291.04 27887.01 39097.04 335
EPMVS89.26 34388.55 34691.39 35892.36 39279.11 37995.65 21279.86 39688.60 31793.12 34496.53 28270.73 38098.10 36590.75 28889.32 38796.98 336
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 4998.76 2396.79 22199.34 2596.61 8998.82 31296.38 9499.50 13796.98 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test-LLR89.97 33689.90 33490.16 36494.24 37674.98 39389.89 37489.06 38292.02 27089.97 37790.77 38473.92 36698.57 33791.88 26297.36 33096.92 338
test-mter87.92 35387.17 35490.16 36494.24 37674.98 39389.89 37489.06 38286.44 34089.97 37790.77 38454.96 40098.57 33791.88 26297.36 33096.92 338
PCF-MVS89.43 1892.12 31290.64 32896.57 20097.80 25093.48 18189.88 37798.45 18674.46 39096.04 26495.68 31790.71 24999.31 24773.73 38999.01 23396.91 340
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer89.75 33989.25 33791.26 35994.69 37078.00 38395.32 23591.98 36281.50 37290.55 37296.96 25671.06 37898.89 30788.59 32792.63 38096.87 341
dp88.08 35188.05 34988.16 37492.85 38968.81 40094.17 28492.88 35285.47 34991.38 36896.14 30268.87 38498.81 31486.88 34683.80 39396.87 341
KD-MVS_2432*160088.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
miper_refine_blended88.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
ETV-MVS96.13 18195.90 19396.82 18497.76 26093.89 16595.40 22798.95 9395.87 14495.58 28291.00 38296.36 10599.72 8893.36 23798.83 25296.85 343
cascas91.89 31791.35 31493.51 32494.27 37585.60 33388.86 38298.61 17079.32 38192.16 36191.44 37889.22 27598.12 36490.80 28697.47 32896.82 346
CR-MVSNet93.29 29392.79 29194.78 28895.44 35988.15 29096.18 17497.20 28084.94 35894.10 31598.57 9877.67 34799.39 22495.17 16395.81 35796.81 347
RPMNet94.68 24694.60 24394.90 28095.44 35988.15 29096.18 17498.86 11197.43 7494.10 31598.49 10679.40 33999.76 6295.69 12895.81 35796.81 347
PatchMatch-RL94.61 25093.81 27197.02 17198.19 20295.72 8693.66 30797.23 27988.17 32394.94 29895.62 32091.43 23798.57 33787.36 34497.68 31796.76 349
MAR-MVS94.21 26593.03 28497.76 11096.94 31897.44 3396.97 12597.15 28387.89 32792.00 36292.73 36492.14 22599.12 28183.92 36797.51 32596.73 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TESTMET0.1,187.20 35686.57 35889.07 36893.62 38472.84 39789.89 37487.01 38985.46 35089.12 38290.20 38656.00 39897.72 37190.91 28296.92 33696.64 351
CNLPA95.04 22894.47 25196.75 18997.81 24695.25 11494.12 29097.89 24994.41 20394.57 30495.69 31690.30 25898.35 35686.72 34898.76 25896.64 351
IB-MVS85.98 2088.63 34786.95 35793.68 32195.12 36584.82 34890.85 36490.17 37987.55 32888.48 38491.34 37958.01 39399.59 15987.24 34593.80 37796.63 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs90.79 32990.87 32390.57 36392.75 39176.30 39095.79 20393.64 34591.04 28691.91 36396.26 29577.19 35398.86 31189.38 31689.85 38696.56 354
CHOSEN 280x42089.98 33589.19 34192.37 35095.60 35681.13 37386.22 38697.09 28681.44 37387.44 38793.15 35273.99 36499.47 19588.69 32599.07 22696.52 355
tt080597.44 11197.56 10097.11 16299.55 2396.36 6398.66 1895.66 31798.31 3697.09 20395.45 32597.17 5298.50 34498.67 2397.45 32996.48 356
HY-MVS91.43 1592.58 30391.81 30894.90 28096.49 32788.87 27597.31 10594.62 33485.92 34490.50 37396.84 26385.05 30999.40 22083.77 37095.78 36096.43 357
PatchT93.75 27893.57 27594.29 30995.05 36687.32 31296.05 18492.98 35197.54 7094.25 31198.72 8375.79 36099.24 26595.92 11795.81 35796.32 358
dmvs_re92.08 31491.27 31694.51 30097.16 30992.79 20095.65 21292.64 35794.11 21492.74 35190.98 38383.41 32294.44 39180.72 37894.07 37596.29 359
tpm288.47 34887.69 35290.79 36194.98 36777.34 38695.09 24691.83 36377.51 38789.40 38096.41 28867.83 38698.73 32183.58 37292.60 38196.29 359
AdaColmapbinary95.11 22594.62 24296.58 19897.33 30194.45 14494.92 25698.08 23893.15 24693.98 32195.53 32394.34 17199.10 28685.69 35398.61 27496.20 361
pmmvs390.00 33488.90 34493.32 32694.20 37885.34 33691.25 35792.56 35978.59 38393.82 32295.17 32867.36 38798.69 32689.08 32098.03 30095.92 362
thres100view90091.76 31991.26 31893.26 32898.21 19984.50 35096.39 15690.39 37596.87 9396.33 24793.08 35773.44 37299.42 20978.85 38397.74 31195.85 363
tfpn200view991.55 32191.00 32093.21 33198.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31195.85 363
OpenMVS_ROBcopyleft91.80 1493.64 28493.05 28295.42 25797.31 30391.21 23895.08 24896.68 30381.56 37196.88 21996.41 28890.44 25499.25 26285.39 35897.67 31895.80 365
PAPM87.64 35485.84 36093.04 33496.54 32584.99 34488.42 38395.57 32279.52 38083.82 39193.05 35980.57 33698.41 35062.29 39592.79 37995.71 366
xiu_mvs_v1_base_debu95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base_debi95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
tpm cat188.01 35287.33 35390.05 36694.48 37276.28 39194.47 27294.35 33873.84 39289.26 38195.61 32173.64 36898.30 35984.13 36686.20 39195.57 370
JIA-IIPM91.79 31890.69 32795.11 26793.80 38290.98 24194.16 28591.78 36496.38 11390.30 37599.30 2872.02 37598.90 30688.28 33190.17 38595.45 371
TR-MVS92.54 30492.20 30393.57 32396.49 32786.66 32293.51 31294.73 33389.96 30194.95 29793.87 34990.24 26098.61 33481.18 37794.88 36995.45 371
mvsany_test193.47 28893.03 28494.79 28794.05 38092.12 21790.82 36590.01 38085.02 35697.26 18698.28 13293.57 18997.03 37792.51 25495.75 36295.23 373
thres20091.00 32790.42 33192.77 34297.47 29083.98 35794.01 29391.18 37095.12 17995.44 28491.21 38073.93 36599.31 24777.76 38697.63 32195.01 374
131492.38 30692.30 30192.64 34495.42 36185.15 34195.86 20096.97 29185.40 35190.62 37093.06 35891.12 24297.80 37086.74 34795.49 36594.97 375
BH-w/o92.14 31191.94 30592.73 34397.13 31185.30 33792.46 33495.64 31889.33 30794.21 31292.74 36389.60 26698.24 36081.68 37594.66 37194.66 376
xiu_mvs_v2_base94.22 26394.63 24192.99 33797.32 30284.84 34792.12 34297.84 25391.96 27294.17 31393.43 35196.07 11499.71 10491.27 27397.48 32694.42 377
PS-MVSNAJ94.10 26994.47 25193.00 33697.35 29784.88 34591.86 34697.84 25391.96 27294.17 31392.50 36895.82 12299.71 10491.27 27397.48 32694.40 378
dmvs_testset87.30 35586.99 35588.24 37296.71 32277.48 38594.68 26686.81 39092.64 26189.61 37987.01 39185.91 30393.12 39261.04 39688.49 38894.13 379
gg-mvs-nofinetune88.28 35086.96 35692.23 35292.84 39084.44 35198.19 5274.60 39899.08 1087.01 38999.47 1156.93 39498.23 36178.91 38295.61 36394.01 380
test_method66.88 36166.13 36469.11 37862.68 40025.73 40449.76 39296.04 30914.32 39664.27 39791.69 37673.45 37188.05 39576.06 38866.94 39593.54 381
API-MVS95.09 22795.01 22095.31 26096.61 32494.02 16196.83 13197.18 28295.60 15795.79 27394.33 34694.54 16698.37 35585.70 35298.52 27993.52 382
PVSNet_081.89 2184.49 35983.21 36288.34 37195.76 35274.97 39583.49 38892.70 35678.47 38487.94 38586.90 39283.38 32396.63 38573.44 39066.86 39693.40 383
FPMVS89.92 33788.63 34593.82 31798.37 18496.94 4591.58 34993.34 34888.00 32590.32 37497.10 24670.87 37991.13 39471.91 39296.16 35693.39 384
PMVScopyleft89.60 1796.71 15596.97 13595.95 23199.51 3197.81 1697.42 10397.49 27397.93 5095.95 26698.58 9796.88 7596.91 38089.59 31299.36 17593.12 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS90.02 33389.20 34092.47 34894.71 36986.90 31995.86 20096.74 30064.72 39390.62 37092.77 36292.54 21698.39 35279.30 38195.56 36492.12 386
MVEpermissive73.61 2286.48 35885.92 35988.18 37396.23 33485.28 33981.78 39175.79 39786.01 34282.53 39391.88 37392.74 20787.47 39671.42 39394.86 37091.78 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN89.52 34289.78 33588.73 36993.14 38677.61 38483.26 38992.02 36194.82 19093.71 32793.11 35375.31 36196.81 38185.81 35196.81 34391.77 388
EMVS89.06 34489.22 33888.61 37093.00 38877.34 38682.91 39090.92 37194.64 19692.63 35691.81 37476.30 35797.02 37883.83 36996.90 33891.48 389
GG-mvs-BLEND90.60 36291.00 39484.21 35598.23 4672.63 40182.76 39284.11 39356.14 39796.79 38272.20 39192.09 38290.78 390
MVS-HIRNet88.40 34990.20 33382.99 37697.01 31460.04 40193.11 32285.61 39284.45 36388.72 38399.09 5084.72 31398.23 36182.52 37496.59 34990.69 391
DeepMVS_CXcopyleft77.17 37790.94 39585.28 33974.08 40052.51 39480.87 39588.03 38875.25 36270.63 39759.23 39784.94 39275.62 392
wuyk23d93.25 29495.20 21187.40 37596.07 34395.38 10597.04 12294.97 33195.33 16999.70 698.11 15698.14 1791.94 39377.76 38699.68 8174.89 393
tmp_tt57.23 36262.50 36541.44 37934.77 40149.21 40383.93 38760.22 40315.31 39571.11 39679.37 39470.09 38244.86 39864.76 39482.93 39430.25 394
test12312.59 36415.49 3673.87 3806.07 4022.55 40590.75 3662.59 4052.52 3985.20 40013.02 3974.96 4031.85 4005.20 3989.09 3977.23 395
testmvs12.33 36515.23 3683.64 3815.77 4032.23 40688.99 3813.62 4042.30 3995.29 39913.09 3964.52 4041.95 3995.16 3998.32 3986.75 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.22 36332.30 3660.00 3820.00 4040.00 4070.00 39398.10 2350.00 4000.00 40195.06 33197.54 370.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.98 36610.65 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40095.82 1220.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.91 36710.55 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.94 3330.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS79.32 37785.41 357
FOURS199.59 1898.20 799.03 799.25 2898.96 1898.87 54
test_one_060199.05 10695.50 10098.87 10897.21 8698.03 14398.30 12796.93 69
eth-test20.00 404
eth-test0.00 404
ZD-MVS98.43 18095.94 7998.56 17890.72 28996.66 23197.07 24795.02 15199.74 7791.08 27798.93 240
test_241102_ONE99.22 6995.35 10898.83 12496.04 13299.08 4098.13 15297.87 2399.33 243
9.1496.69 15198.53 16696.02 18798.98 8793.23 23997.18 19297.46 21796.47 9899.62 14992.99 24799.32 190
save fliter98.48 17594.71 13194.53 27198.41 19395.02 184
test072699.24 6495.51 9796.89 12998.89 10095.92 14098.64 7298.31 12397.06 58
test_part299.03 10896.07 7498.08 136
sam_mvs77.38 350
MTGPAbinary98.73 146
test_post194.98 25510.37 39976.21 35899.04 29289.47 314
test_post10.87 39876.83 35499.07 289
patchmatchnet-post96.84 26377.36 35199.42 209
MTMP96.55 15074.60 398
gm-plane-assit91.79 39371.40 39981.67 37090.11 38798.99 29884.86 363
TEST997.84 24295.23 11593.62 30898.39 19686.81 33693.78 32395.99 30794.68 16099.52 180
test_897.81 24695.07 12493.54 31198.38 19887.04 33293.71 32795.96 31094.58 16499.52 180
agg_prior97.80 25094.96 12698.36 20093.49 33599.53 177
test_prior495.38 10593.61 310
test_prior293.33 31894.21 20894.02 31996.25 29693.64 18891.90 26198.96 235
旧先验293.35 31777.95 38695.77 27798.67 33090.74 291
新几何293.43 313
原ACMM292.82 325
testdata299.46 19887.84 334
segment_acmp95.34 141
testdata192.77 32693.78 223
plane_prior798.70 14394.67 134
plane_prior698.38 18394.37 14791.91 234
plane_prior496.77 269
plane_prior394.51 14195.29 17296.16 259
plane_prior296.50 15296.36 115
plane_prior198.49 173
plane_prior94.29 15095.42 22494.31 20798.93 240
n20.00 406
nn0.00 406
door-mid98.17 225
test1198.08 238
door97.81 256
HQP5-MVS92.47 206
HQP-NCC97.85 23794.26 27693.18 24292.86 348
ACMP_Plane97.85 23794.26 27693.18 24292.86 348
BP-MVS90.51 298
HQP3-MVS98.43 18998.74 260
HQP2-MVS90.33 255
NP-MVS98.14 21493.72 17295.08 329
MDTV_nov1_ep1391.28 31594.31 37373.51 39694.80 26093.16 34986.75 33893.45 33797.40 22276.37 35698.55 34088.85 32296.43 350
ACMMP++_ref99.52 128
ACMMP++99.55 116
Test By Simon94.51 167