This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 12999.20 3599.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8099.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
mvs_tets99.63 599.67 599.49 4999.88 798.61 9199.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9199.28 2999.66 1999.09 6699.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
EU-MVSNet97.66 19498.50 9195.13 33099.63 4985.84 35998.35 11298.21 29698.23 12199.54 3099.46 4395.02 22899.68 25098.24 7599.87 5299.87 4
UA-Net99.47 1199.40 1499.70 299.49 8599.29 1899.80 399.72 1099.82 399.04 11499.81 398.05 6999.96 898.85 4299.99 599.86 6
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
RRT_test8_iter0595.24 29495.13 29495.57 32397.32 34487.02 35697.99 15099.41 9498.06 13499.12 9699.05 10866.85 37299.85 10898.93 3799.47 20699.84 8
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6299.34 1599.69 1598.93 8199.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
ANet_high99.57 799.67 599.28 8299.89 698.09 13399.14 4399.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
PS-CasMVS99.40 1899.33 2099.62 699.71 3199.10 5999.29 2599.53 5499.53 2399.46 4399.41 5198.23 5299.95 1598.89 4099.95 1699.81 11
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11099.30 2499.57 3599.61 1999.40 5299.50 3697.12 13999.85 10899.02 3399.94 2199.80 12
CP-MVSNet99.21 2999.09 3499.56 2499.65 4498.96 6899.13 4499.34 12199.42 3199.33 6399.26 6997.01 14699.94 2398.74 5099.93 2599.79 13
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
CVMVSNet96.25 27397.21 21593.38 34699.10 16980.56 37297.20 22598.19 29996.94 22399.00 12199.02 11589.50 29799.80 17296.36 20599.59 16799.78 14
Anonymous2023121199.27 2599.27 2499.26 8899.29 12498.18 12699.49 899.51 5899.70 899.80 999.68 1496.84 15499.83 13999.21 2399.91 4099.77 16
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 5199.29 2599.54 5099.62 1799.56 2899.42 4998.16 6299.96 898.78 4599.93 2599.77 16
WR-MVS_H99.33 2399.22 2799.65 599.71 3199.24 2499.32 1799.55 4699.46 2799.50 3999.34 6097.30 12899.93 2898.90 3899.93 2599.77 16
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5899.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16399.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
nrg03099.40 1899.35 1799.54 2999.58 5299.13 5498.98 5899.48 7099.68 999.46 4399.26 6998.62 3099.73 22699.17 2699.92 3499.76 20
FIs99.14 3299.09 3499.29 8099.70 3798.28 11699.13 4499.52 5799.48 2499.24 8399.41 5196.79 16099.82 15098.69 5399.88 4999.76 20
v7n99.53 899.57 899.41 6199.88 798.54 9999.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
APDe-MVS98.99 4098.79 5399.60 1399.21 13999.15 4798.87 6499.48 7097.57 16799.35 6099.24 7297.83 8399.89 5997.88 9799.70 12399.75 22
test_part197.91 17097.46 20099.27 8598.80 23698.18 12699.07 4999.36 10999.75 599.63 2599.49 3982.20 34599.89 5998.87 4199.95 1699.74 24
DTE-MVSNet99.43 1599.35 1799.66 499.71 3199.30 1799.31 2099.51 5899.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
MSC_two_6792asdad99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
No_MVS99.32 7798.43 28998.37 11098.86 24999.89 5997.14 13599.60 16399.71 26
PMMVS298.07 16098.08 15498.04 23799.41 10794.59 28094.59 33899.40 9797.50 17398.82 15898.83 17096.83 15699.84 12597.50 11799.81 6999.71 26
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9697.47 20599.57 3599.37 3599.21 8799.61 2396.76 16399.83 13998.06 8699.83 6299.71 26
XXY-MVS99.14 3299.15 3299.10 11099.76 2297.74 17698.85 6799.62 2298.48 10599.37 5799.49 3998.75 2499.86 9498.20 7899.80 7799.71 26
test_0728_THIRD98.17 12899.08 10499.02 11597.89 7999.88 7097.07 14099.71 11899.70 31
MSP-MVS98.40 12998.00 16099.61 999.57 5699.25 2398.57 8699.35 11597.55 17099.31 7197.71 28994.61 24199.88 7096.14 21899.19 25299.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7899.23 2598.02 14699.32 12899.88 7096.99 14699.63 15199.68 33
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6499.63 699.58 2899.44 2999.78 1099.76 696.39 18199.92 3599.44 1399.92 3499.68 33
CHOSEN 1792x268897.49 20597.14 22098.54 19699.68 4096.09 24096.50 26799.62 2291.58 33298.84 15398.97 13392.36 27999.88 7096.76 16999.95 1699.67 35
IU-MVS99.49 8599.15 4798.87 24492.97 31599.41 4996.76 16999.62 15499.66 36
test_241102_TWO99.30 14498.03 13599.26 7899.02 11597.51 11399.88 7096.91 15299.60 16399.66 36
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 12799.15 4797.01 23699.39 9997.67 15899.44 4698.99 12797.53 11099.89 5995.40 24999.68 13499.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9499.27 3199.57 3599.39 3399.75 1299.62 2199.17 1299.83 13999.06 3099.62 15499.66 36
EI-MVSNet-UG-set98.69 8398.71 6298.62 18099.10 16996.37 23297.23 22198.87 24499.20 4999.19 8998.99 12797.30 12899.85 10898.77 4899.79 8299.65 40
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3499.64 41
bset_n11_16_dypcd96.99 24796.56 25498.27 22199.00 19195.25 26092.18 36194.05 35698.75 8999.01 11898.38 24088.98 30099.93 2898.77 4899.92 3499.64 41
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17899.09 17296.40 23197.23 22198.86 24999.20 4999.18 9398.97 13397.29 13099.85 10898.72 5199.78 8699.64 41
ACMH96.65 799.25 2799.24 2699.26 8899.72 3098.38 10999.07 4999.55 4698.30 11399.65 2299.45 4799.22 999.76 21198.44 6599.77 9099.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 5098.81 5299.28 8299.21 13998.45 10598.46 10299.33 12699.63 1499.48 4099.15 9097.23 13699.75 21897.17 13099.66 14599.63 45
VPA-MVSNet99.30 2499.30 2399.28 8299.49 8598.36 11399.00 5599.45 8199.63 1499.52 3599.44 4898.25 5099.88 7099.09 2899.84 5699.62 46
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5698.97 6598.23 11999.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
LGP-MVS_train99.47 5499.57 5698.97 6599.48 7096.60 23699.10 10199.06 10198.71 2799.83 13995.58 24599.78 8699.62 46
Test_1112_low_res96.99 24796.55 25598.31 21799.35 11795.47 25595.84 30099.53 5491.51 33496.80 30398.48 23291.36 28699.83 13996.58 18399.53 18999.62 46
v1098.97 4599.11 3398.55 19399.44 10196.21 23798.90 6299.55 4698.73 9099.48 4099.60 2596.63 17099.83 13999.70 399.99 599.61 50
Regformer-498.73 7698.68 6898.89 14599.02 18897.22 20397.17 22999.06 20899.21 4699.17 9498.85 16497.45 12099.86 9498.48 6399.70 12399.60 51
v899.01 3899.16 3098.57 18899.47 9596.31 23598.90 6299.47 7699.03 7099.52 3599.57 2796.93 15099.81 16399.60 499.98 999.60 51
EI-MVSNet98.40 12998.51 8998.04 23799.10 16994.73 27497.20 22598.87 24498.97 7699.06 10799.02 11596.00 19599.80 17298.58 5699.82 6599.60 51
SixPastTwentyTwo98.75 7398.62 7599.16 10199.83 1597.96 15499.28 2998.20 29799.37 3599.70 1599.65 1992.65 27799.93 2899.04 3299.84 5699.60 51
IterMVS-LS98.55 10998.70 6598.09 23099.48 9394.73 27497.22 22499.39 9998.97 7699.38 5599.31 6496.00 19599.93 2898.58 5699.97 1199.60 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 23096.60 25198.96 13599.62 5197.28 19995.17 32099.50 6094.21 29899.01 11898.32 24986.61 31199.99 297.10 13999.84 5699.60 51
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5299.29 1897.82 16799.25 16296.94 22398.78 16199.12 9498.02 7099.84 12597.13 13799.67 14099.59 57
VPNet98.87 5798.83 4999.01 13199.70 3797.62 18498.43 10599.35 11599.47 2699.28 7299.05 10896.72 16699.82 15098.09 8499.36 22399.59 57
WR-MVS98.40 12998.19 13999.03 12799.00 19197.65 18196.85 24898.94 23198.57 10298.89 14398.50 22795.60 21299.85 10897.54 11499.85 5499.59 57
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4499.29 1899.16 4199.43 9096.74 23198.61 18198.38 24098.62 3099.87 8796.47 19699.67 14099.59 57
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 4099.01 3998.94 13899.50 7897.47 18998.04 14399.59 2698.15 13199.40 5299.36 5798.58 3399.76 21198.78 4599.68 13499.59 57
Vis-MVSNetpermissive99.34 2299.36 1699.27 8599.73 2498.26 11799.17 4099.78 699.11 5799.27 7499.48 4198.82 2199.95 1598.94 3699.93 2599.59 57
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 3999.35 1297.16 23199.38 10194.87 28498.97 12798.99 12798.01 7199.88 7097.29 12599.70 12399.58 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 8398.40 11099.54 2999.53 7199.17 3898.52 9199.31 13497.46 18198.44 20198.51 22497.83 8399.88 7096.46 19799.58 17399.58 63
ACMMPR98.70 8198.42 10899.54 2999.52 7399.14 5198.52 9199.31 13497.47 17698.56 19198.54 22097.75 9099.88 7096.57 18599.59 16799.58 63
PGM-MVS98.66 9098.37 11699.55 2699.53 7199.18 3798.23 11999.49 6897.01 22198.69 17098.88 15798.00 7299.89 5995.87 22999.59 16799.58 63
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2499.16 4298.23 11999.31 13497.92 14398.90 14098.90 14898.00 7299.88 7096.15 21799.72 11499.58 63
Skip Steuart: Steuart Systems R&D Blog.
Regformer-398.61 9898.61 7898.63 17899.02 18896.53 22997.17 22998.84 25399.13 5699.10 10198.85 16497.24 13599.79 18698.41 6899.70 12399.57 68
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11298.87 7198.39 10899.42 9399.42 3199.36 5999.06 10198.38 4399.95 1598.34 7299.90 4499.57 68
mPP-MVS98.64 9398.34 12099.54 2999.54 6999.17 3898.63 7999.24 16797.47 17698.09 22698.68 19597.62 10299.89 5996.22 21299.62 15499.57 68
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22499.73 2495.15 26597.36 21299.68 1694.45 29398.99 12299.27 6796.87 15399.94 2397.13 13799.91 4099.57 68
1112_ss97.29 22296.86 23498.58 18599.34 11996.32 23496.75 25599.58 2893.14 31496.89 29797.48 30492.11 28299.86 9496.91 15299.54 18599.57 68
zzz-MVS98.79 6598.52 8799.61 999.67 4199.36 1097.33 21499.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
MTAPA98.88 5698.64 7399.61 999.67 4199.36 1098.43 10599.20 17398.83 8798.89 14398.90 14896.98 14899.92 3597.16 13199.70 12399.56 73
XVS98.72 7798.45 10299.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26298.63 20997.50 11499.83 13996.79 16599.53 18999.56 73
pm-mvs199.44 1399.48 1199.33 7599.80 1798.63 8899.29 2599.63 2199.30 4299.65 2299.60 2599.16 1499.82 15099.07 2999.83 6299.56 73
X-MVStestdata94.32 30692.59 32499.53 3699.46 9699.21 2798.65 7799.34 12198.62 9697.54 26245.85 36897.50 11499.83 13996.79 16599.53 18999.56 73
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3199.35 1299.00 5599.50 6097.33 19498.94 13698.86 16198.75 2499.82 15097.53 11599.71 11899.56 73
K. test v398.00 16597.66 18499.03 12799.79 1997.56 18599.19 3992.47 36199.62 1799.52 3599.66 1789.61 29599.96 899.25 2099.81 6999.56 73
CP-MVS98.70 8198.42 10899.52 4199.36 11399.12 5698.72 7399.36 10997.54 17198.30 21198.40 23697.86 8199.89 5996.53 19399.72 11499.56 73
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5699.21 2798.46 10299.29 15197.28 20098.11 22498.39 23898.00 7299.87 8796.86 16299.64 14899.55 81
v119298.60 10098.66 7198.41 20899.27 12795.88 24497.52 19999.36 10997.41 18799.33 6399.20 7796.37 18499.82 15099.57 699.92 3499.55 81
v124098.55 10998.62 7598.32 21599.22 13795.58 25097.51 20199.45 8197.16 21499.45 4599.24 7296.12 19099.85 10899.60 499.88 4999.55 81
UGNet98.53 11498.45 10298.79 15997.94 31896.96 21799.08 4798.54 28299.10 6396.82 30299.47 4296.55 17399.84 12598.56 6199.94 2199.55 81
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testtj97.79 18797.25 21199.42 5899.03 18698.85 7297.78 16999.18 18295.83 26398.12 22298.50 22795.50 21799.86 9492.23 32499.07 26899.54 85
v14419298.54 11298.57 8398.45 20599.21 13995.98 24197.63 18699.36 10997.15 21699.32 6999.18 8095.84 20699.84 12599.50 1099.91 4099.54 85
v192192098.54 11298.60 8098.38 21199.20 14395.76 24997.56 19599.36 10997.23 20999.38 5599.17 8496.02 19399.84 12599.57 699.90 4499.54 85
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5699.22 2698.50 9699.19 17897.61 16497.58 25898.66 20097.40 12399.88 7094.72 26399.60 16399.54 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3699.41 1299.59 2699.59 2099.71 1499.57 2797.12 13999.90 4999.21 2399.87 5299.54 85
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6399.16 4298.87 6499.37 10597.16 21498.82 15899.01 12497.71 9399.87 8796.29 20999.69 12999.54 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 15799.21 2798.05 14199.22 17094.16 30098.98 12499.10 9897.52 11299.79 18696.45 19899.64 14899.53 91
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 7898.44 10499.51 4599.49 8599.16 4298.52 9199.31 13497.47 17698.58 18798.50 22797.97 7699.85 10896.57 18599.59 16799.53 91
#test#98.50 11798.16 14499.51 4599.49 8599.16 4298.03 14499.31 13496.30 24898.58 18798.50 22797.97 7699.85 10895.68 23999.59 16799.53 91
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15598.74 8097.68 18199.40 9799.14 5599.06 10798.59 21696.71 16799.93 2898.57 5899.77 9099.53 91
GST-MVS98.61 9898.30 12599.52 4199.51 7599.20 3398.26 11799.25 16297.44 18598.67 17298.39 23897.68 9499.85 10896.00 22199.51 19599.52 95
Regformer-298.60 10098.46 10099.02 13098.85 22397.71 17896.91 24599.09 20498.98 7599.01 11898.64 20597.37 12599.84 12597.75 10899.57 17799.52 95
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17298.24 7599.84 5699.52 95
v114498.60 10098.66 7198.41 20899.36 11395.90 24397.58 19399.34 12197.51 17299.27 7499.15 9096.34 18699.80 17299.47 1299.93 2599.51 98
Regformer-198.55 10998.44 10498.87 14798.85 22397.29 19796.91 24598.99 22898.97 7698.99 12298.64 20597.26 13499.81 16397.79 10199.57 17799.51 98
v2v48298.56 10598.62 7598.37 21299.42 10695.81 24797.58 19399.16 19197.90 14599.28 7299.01 12495.98 19999.79 18699.33 1599.90 4499.51 98
CPTT-MVS97.84 18397.36 20599.27 8599.31 12098.46 10498.29 11499.27 15694.90 28397.83 24198.37 24294.90 23099.84 12593.85 29399.54 18599.51 98
DU-MVS98.82 6198.63 7499.39 6499.16 15798.74 8097.54 19799.25 16298.84 8699.06 10798.76 18396.76 16399.93 2898.57 5899.77 9099.50 102
NR-MVSNet98.95 4898.82 5099.36 6599.16 15798.72 8599.22 3499.20 17399.10 6399.72 1398.76 18396.38 18399.86 9498.00 9199.82 6599.50 102
abl_698.99 4098.78 5499.61 999.45 9999.46 498.60 8299.50 6098.59 9899.24 8399.04 11198.54 3599.89 5996.45 19899.62 15499.50 102
ACMH+96.62 999.08 3599.00 4099.33 7599.71 3198.83 7498.60 8299.58 2899.11 5799.53 3399.18 8098.81 2299.67 25396.71 17699.77 9099.50 102
DVP-MVS++.98.90 5498.70 6599.51 4598.43 28999.15 4799.43 1099.32 12898.17 12899.26 7899.02 11598.18 5999.88 7097.07 14099.45 21099.49 106
PC_three_145293.27 31299.40 5298.54 22098.22 5597.00 36695.17 25199.45 21099.49 106
GeoE99.05 3698.99 4299.25 9099.44 10198.35 11498.73 7299.56 4298.42 10798.91 13998.81 17598.94 1899.91 4598.35 7199.73 10799.49 106
h-mvs3397.77 18897.33 20999.10 11099.21 13997.84 16498.35 11298.57 28199.11 5798.58 18799.02 11588.65 30499.96 898.11 8196.34 34899.49 106
IterMVS-SCA-FT97.85 18298.18 14096.87 29699.27 12791.16 34295.53 31099.25 16299.10 6399.41 4999.35 5893.10 26899.96 898.65 5499.94 2199.49 106
new-patchmatchnet98.35 13498.74 5797.18 28299.24 13292.23 32796.42 27299.48 7098.30 11399.69 1799.53 3397.44 12199.82 15098.84 4399.77 9099.49 106
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16598.93 6997.76 17499.28 15394.97 28198.72 16998.77 18197.04 14299.85 10893.79 29499.54 18599.49 106
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 13898.04 15799.07 11799.56 6397.83 16599.29 2598.07 30399.03 7098.59 18599.13 9392.16 28199.90 4996.87 16099.68 13499.49 106
DeepC-MVS97.60 498.97 4598.93 4399.10 11099.35 11797.98 14998.01 14999.46 7897.56 16999.54 3099.50 3698.97 1699.84 12598.06 8699.92 3499.49 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6699.14 5198.07 13799.37 10597.62 16299.04 11498.96 13698.84 2099.79 18697.43 11999.65 14699.49 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test117298.76 7198.49 9499.57 1899.18 15399.37 998.39 10899.31 13498.43 10698.90 14098.88 15797.49 11799.86 9496.43 20099.37 22299.48 116
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7899.21 2798.02 14698.84 25397.97 13999.08 10499.02 11597.61 10399.88 7096.99 14699.63 15199.48 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 7898.43 10699.57 1899.18 15399.35 1298.36 11199.29 15198.29 11698.88 14798.85 16497.53 11099.87 8796.14 21899.31 23199.48 116
TSAR-MVS + MP.98.63 9598.49 9499.06 12299.64 4797.90 15998.51 9598.94 23196.96 22299.24 8398.89 15697.83 8399.81 16396.88 15999.49 20399.48 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 14997.95 16399.01 13199.58 5297.74 17699.01 5397.29 32399.67 1098.97 12799.50 3690.45 29099.80 17297.88 9799.20 24899.48 116
IterMVS97.73 18998.11 15096.57 30399.24 13290.28 34395.52 31299.21 17198.86 8499.33 6399.33 6293.11 26799.94 2398.49 6299.94 2199.48 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 15197.90 16899.08 11499.57 5697.97 15099.31 2098.32 29299.01 7298.98 12499.03 11491.59 28599.79 18695.49 24799.80 7799.48 116
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7598.79 7897.68 18199.38 10195.76 26598.81 16098.82 17398.36 4499.82 15094.75 26099.77 9099.48 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 16597.63 18799.10 11099.24 13298.17 12896.89 24798.73 27295.66 26697.92 23497.70 29197.17 13899.66 26196.18 21699.23 24499.47 124
3Dnovator+97.89 398.69 8398.51 8999.24 9298.81 23498.40 10699.02 5299.19 17898.99 7398.07 22799.28 6597.11 14199.84 12596.84 16399.32 22999.47 124
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17299.13 5497.52 19998.75 26997.46 18196.90 29697.83 28396.01 19499.84 12595.82 23399.35 22599.46 126
V4298.78 6898.78 5498.76 16599.44 10197.04 21398.27 11699.19 17897.87 14799.25 8299.16 8696.84 15499.78 19899.21 2399.84 5699.46 126
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 14699.27 2198.49 9799.33 12698.64 9299.03 11798.98 13197.89 7999.85 10896.54 19299.42 21499.46 126
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13298.73 8397.73 17799.38 10198.93 8199.12 9698.73 18696.77 16199.86 9498.63 5599.80 7799.46 126
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.49 11799.86 9496.56 18899.39 21899.45 130
RE-MVS-def98.58 8299.20 14399.38 698.48 10099.30 14498.64 9298.95 13098.96 13697.75 9096.56 18899.39 21899.45 130
RRT_MVS97.07 23896.57 25398.58 18595.89 36696.33 23397.36 21298.77 26597.85 14999.08 10499.12 9482.30 34299.96 898.82 4499.90 4499.45 130
HQP_MVS97.99 16897.67 18198.93 13999.19 14697.65 18197.77 17299.27 15698.20 12597.79 24497.98 27394.90 23099.70 23794.42 27299.51 19599.45 130
plane_prior599.27 15699.70 23794.42 27299.51 19599.45 130
lessismore_v098.97 13499.73 2497.53 18786.71 37199.37 5799.52 3589.93 29399.92 3598.99 3599.72 11499.44 135
TAMVS98.24 14798.05 15698.80 15799.07 17697.18 20897.88 16098.81 25996.66 23599.17 9499.21 7594.81 23699.77 20496.96 15099.88 4999.44 135
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9398.39 29498.97 6595.03 32499.18 18296.88 22699.33 6398.78 17998.16 6299.28 34096.74 17199.62 15499.44 135
3Dnovator98.27 298.81 6398.73 5899.05 12498.76 23997.81 17099.25 3299.30 14498.57 10298.55 19399.33 6297.95 7899.90 4997.16 13199.67 14099.44 135
MVSFormer98.26 14498.43 10697.77 24998.88 21893.89 30099.39 1399.56 4299.11 5798.16 21898.13 26093.81 25899.97 399.26 1899.57 17799.43 139
jason97.45 21097.35 20697.76 25099.24 13293.93 29695.86 29798.42 28894.24 29798.50 19898.13 26094.82 23499.91 4597.22 12899.73 10799.43 139
jason: jason.
NCCC97.86 17797.47 19999.05 12498.61 26898.07 13996.98 23898.90 23997.63 16197.04 28797.93 27895.99 19899.66 26195.31 25098.82 28999.43 139
Anonymous2024052198.69 8398.87 4598.16 22899.77 2095.11 26899.08 4799.44 8499.34 3899.33 6399.55 2994.10 25599.94 2399.25 2099.96 1499.42 142
MVS_111021_HR98.25 14698.08 15498.75 16799.09 17297.46 19095.97 28999.27 15697.60 16597.99 23398.25 25298.15 6499.38 32896.87 16099.57 17799.42 142
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5299.10 5998.74 7099.56 4299.09 6699.33 6399.19 7898.40 4299.72 23495.98 22399.76 10099.42 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 5298.72 6099.49 4999.49 8599.17 3898.10 13399.31 13498.03 13599.66 2099.02 11598.36 4499.88 7096.91 15299.62 15499.41 145
OPU-MVS98.82 15398.59 27298.30 11598.10 13398.52 22398.18 5998.75 36094.62 26499.48 20599.41 145
our_test_397.39 21497.73 17996.34 30798.70 25289.78 34594.61 33798.97 23096.50 23999.04 11498.85 16495.98 19999.84 12597.26 12799.67 14099.41 145
casdiffmvs98.95 4899.00 4098.81 15599.38 11097.33 19597.82 16799.57 3599.17 5499.35 6099.17 8498.35 4799.69 24198.46 6499.73 10799.41 145
YYNet197.60 19897.67 18197.39 27699.04 18393.04 31495.27 31798.38 29197.25 20398.92 13898.95 14095.48 21999.73 22696.99 14698.74 29199.41 145
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27599.04 18393.09 31095.27 31798.42 28897.26 20298.88 14798.95 14095.43 22099.73 22697.02 14398.72 29399.41 145
GBi-Net98.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
test198.65 9198.47 9899.17 9898.90 21298.24 11999.20 3599.44 8498.59 9898.95 13099.55 2994.14 25199.86 9497.77 10399.69 12999.41 145
FMVSNet199.17 3099.17 2999.17 9899.55 6698.24 11999.20 3599.44 8499.21 4699.43 4799.55 2997.82 8699.86 9498.42 6799.89 4899.41 145
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 4999.06 6398.69 7699.54 5099.31 4099.62 2799.53 3397.36 12699.86 9499.24 2299.71 11899.39 154
v14898.45 12298.60 8098.00 23999.44 10194.98 26997.44 20899.06 20898.30 11399.32 6998.97 13396.65 16999.62 27398.37 6999.85 5499.39 154
test20.0398.78 6898.77 5698.78 16299.46 9697.20 20697.78 16999.24 16799.04 6999.41 4998.90 14897.65 9799.76 21197.70 10999.79 8299.39 154
CDPH-MVS97.26 22396.66 24899.07 11799.00 19198.15 12996.03 28799.01 22491.21 33897.79 24497.85 28296.89 15299.69 24192.75 31699.38 22199.39 154
EPNet96.14 27595.44 28498.25 22290.76 37395.50 25497.92 15694.65 34898.97 7692.98 35998.85 16489.12 29999.87 8795.99 22299.68 13499.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 15497.87 17099.07 11798.67 26198.24 11997.01 23698.93 23397.25 20397.62 25498.34 24697.27 13199.57 29096.42 20199.33 22899.39 154
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16798.61 26897.23 20197.76 17499.09 20497.31 19798.75 16698.66 20097.56 10799.64 26896.10 22099.55 18499.39 154
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12299.11 16597.97 15096.53 26499.54 5098.24 11998.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
SF-MVS98.53 11498.27 12999.32 7799.31 12098.75 7998.19 12399.41 9496.77 23098.83 15498.90 14897.80 8799.82 15095.68 23999.52 19299.38 161
test9_res93.28 30799.15 25899.38 161
OPM-MVS98.56 10598.32 12499.25 9099.41 10798.73 8397.13 23399.18 18297.10 21798.75 16698.92 14498.18 5999.65 26696.68 17899.56 18299.37 164
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 32199.16 25599.37 164
AllTest98.44 12398.20 13799.16 10199.50 7898.55 9698.25 11899.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
TestCases99.16 10199.50 7898.55 9699.58 2896.80 22898.88 14799.06 10197.65 9799.57 29094.45 27099.61 16199.37 164
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23599.44 10194.96 27096.63 26199.15 19798.35 10998.83 15499.11 9694.31 24899.85 10896.60 18298.72 29399.37 164
MVSTER96.86 25196.55 25597.79 24897.91 32094.21 28697.56 19598.87 24497.49 17599.06 10799.05 10880.72 34799.80 17298.44 6599.82 6599.37 164
pmmvs597.64 19597.49 19598.08 23399.14 16295.12 26796.70 25899.05 21293.77 30698.62 17998.83 17093.23 26499.75 21898.33 7499.76 10099.36 170
Anonymous2023120698.21 14998.21 13698.20 22599.51 7595.43 25798.13 12899.32 12896.16 25198.93 13798.82 17396.00 19599.83 13997.32 12499.73 10799.36 170
train_agg97.10 23596.45 25899.07 11798.71 24898.08 13795.96 29199.03 21791.64 33095.85 32897.53 29996.47 17799.76 21193.67 29699.16 25599.36 170
PVSNet_BlendedMVS97.55 20197.53 19297.60 26098.92 20893.77 30496.64 26099.43 9094.49 28997.62 25499.18 8096.82 15799.67 25394.73 26199.93 2599.36 170
Anonymous2024052998.93 5098.87 4599.12 10699.19 14698.22 12499.01 5398.99 22899.25 4599.54 3099.37 5497.04 14299.80 17297.89 9499.52 19299.35 174
F-COLMAP97.30 22096.68 24599.14 10499.19 14698.39 10797.27 22099.30 14492.93 31696.62 30898.00 27195.73 20999.68 25092.62 31998.46 30599.35 174
ppachtmachnet_test97.50 20397.74 17796.78 30198.70 25291.23 34194.55 33999.05 21296.36 24499.21 8798.79 17896.39 18199.78 19896.74 17199.82 6599.34 176
agg_prior197.06 23996.40 25999.03 12798.68 25997.99 14595.76 30199.01 22491.73 32995.59 33197.50 30296.49 17699.77 20493.71 29599.14 25999.34 176
VDD-MVS98.56 10598.39 11399.07 11799.13 16498.07 13998.59 8497.01 32799.59 2099.11 9899.27 6794.82 23499.79 18698.34 7299.63 15199.34 176
testgi98.32 13698.39 11398.13 22999.57 5695.54 25197.78 16999.49 6897.37 19199.19 8997.65 29398.96 1799.49 31196.50 19598.99 28099.34 176
diffmvs98.22 14898.24 13298.17 22799.00 19195.44 25696.38 27499.58 2897.79 15398.53 19698.50 22796.76 16399.74 22297.95 9399.64 14899.34 176
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16799.31 12097.17 20997.62 18799.35 11598.72 9198.76 16598.68 19592.57 27899.74 22297.76 10795.60 35599.34 176
baseline98.96 4799.02 3898.76 16599.38 11097.26 20098.49 9799.50 6098.86 8499.19 8999.06 10198.23 5299.69 24198.71 5299.76 10099.33 182
MG-MVS96.77 25596.61 25097.26 28098.31 29893.06 31195.93 29498.12 30296.45 24297.92 23498.73 18693.77 26099.39 32691.19 33899.04 27299.33 182
HQP4-MVS95.56 33499.54 29999.32 184
CDS-MVSNet97.69 19197.35 20698.69 17298.73 24397.02 21596.92 24498.75 26995.89 26198.59 18598.67 19792.08 28399.74 22296.72 17499.81 6999.32 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 24696.49 25798.55 19398.67 26196.79 22296.29 27899.04 21596.05 25495.55 33596.84 32493.84 25699.54 29992.82 31399.26 24199.32 184
RPSCF98.62 9798.36 11799.42 5899.65 4499.42 598.55 8899.57 3597.72 15698.90 14099.26 6996.12 19099.52 30595.72 23699.71 11899.32 184
MVP-Stereo98.08 15997.92 16698.57 18898.96 19996.79 22297.90 15999.18 18296.41 24398.46 19998.95 14095.93 20299.60 28096.51 19498.98 28299.31 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 12998.68 6897.54 26798.96 19997.99 14597.88 16099.36 10998.20 12599.63 2599.04 11198.76 2395.33 36996.56 18899.74 10499.31 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 12598.30 12598.79 15998.79 23897.29 19798.23 11998.66 27699.31 4098.85 15198.80 17694.80 23799.78 19898.13 8099.13 26299.31 188
ETH3D-3000-0.198.03 16197.62 18899.29 8099.11 16598.80 7797.47 20599.32 12895.54 26898.43 20498.62 21196.61 17199.77 20493.95 28899.49 20399.30 191
test_prior397.48 20797.00 22598.95 13698.69 25697.95 15595.74 30399.03 21796.48 24096.11 32297.63 29595.92 20399.59 28494.16 27899.20 24899.30 191
test_prior98.95 13698.69 25697.95 15599.03 21799.59 28499.30 191
USDC97.41 21397.40 20197.44 27398.94 20293.67 30695.17 32099.53 5494.03 30398.97 12799.10 9895.29 22299.34 33195.84 23299.73 10799.30 191
FMVSNet298.49 11898.40 11098.75 16798.90 21297.14 21298.61 8199.13 19898.59 9899.19 8999.28 6594.14 25199.82 15097.97 9299.80 7799.29 195
ETH3 D test640096.46 26895.59 27999.08 11498.88 21898.21 12596.53 26499.18 18288.87 35297.08 28497.79 28493.64 26399.77 20488.92 34999.40 21799.28 196
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10499.49 8598.83 7496.54 26399.48 7097.32 19699.11 9898.61 21499.33 899.30 33796.23 21198.38 30699.28 196
test1298.93 13998.58 27397.83 16598.66 27696.53 31195.51 21699.69 24199.13 26299.27 198
DSMNet-mixed97.42 21297.60 19096.87 29699.15 16191.46 33398.54 8999.12 20092.87 31897.58 25899.63 2096.21 18899.90 4995.74 23599.54 18599.27 198
N_pmnet97.63 19797.17 21698.99 13399.27 12797.86 16295.98 28893.41 35895.25 27799.47 4298.90 14895.63 21199.85 10896.91 15299.73 10799.27 198
ambc98.24 22398.82 23295.97 24298.62 8099.00 22799.27 7499.21 7596.99 14799.50 31096.55 19199.50 20299.26 201
LFMVS97.20 22996.72 24298.64 17598.72 24596.95 21898.93 6194.14 35599.74 798.78 16199.01 12484.45 32999.73 22697.44 11899.27 23899.25 202
FMVSNet596.01 27795.20 29298.41 20897.53 33696.10 23898.74 7099.50 6097.22 21298.03 23299.04 11169.80 36799.88 7097.27 12699.71 11899.25 202
BH-RMVSNet96.83 25296.58 25297.58 26298.47 28594.05 28996.67 25997.36 31996.70 23497.87 23897.98 27395.14 22699.44 32190.47 34498.58 30399.25 202
112196.73 25696.00 26798.91 14298.95 20197.76 17398.07 13798.73 27287.65 35696.54 31098.13 26094.52 24399.73 22692.38 32299.02 27699.24 205
旧先验198.82 23297.45 19198.76 26698.34 24695.50 21799.01 27899.23 206
test22298.92 20896.93 21995.54 30998.78 26485.72 36096.86 29998.11 26494.43 24499.10 26799.23 206
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9499.54 6998.59 9397.71 17899.46 7897.25 20398.98 12498.99 12797.54 10899.84 12595.88 22699.74 10499.23 206
FMVSNet397.50 20397.24 21398.29 21998.08 31295.83 24697.86 16398.91 23897.89 14698.95 13098.95 14087.06 30899.81 16397.77 10399.69 12999.23 206
无先验95.74 30398.74 27189.38 34999.73 22692.38 32299.22 210
tttt051795.64 28694.98 29797.64 25899.36 11393.81 30298.72 7390.47 36798.08 13398.67 17298.34 24673.88 36499.92 3597.77 10399.51 19599.20 211
pmmvs-eth3d98.47 12098.34 12098.86 14999.30 12397.76 17397.16 23199.28 15395.54 26899.42 4899.19 7897.27 13199.63 27197.89 9499.97 1199.20 211
MS-PatchMatch97.68 19297.75 17697.45 27298.23 30493.78 30397.29 21798.84 25396.10 25398.64 17698.65 20296.04 19299.36 32996.84 16399.14 25999.20 211
新几何198.91 14298.94 20297.76 17398.76 26687.58 35796.75 30498.10 26594.80 23799.78 19892.73 31799.00 27999.20 211
PHI-MVS98.29 14197.95 16399.34 7398.44 28899.16 4298.12 13099.38 10196.01 25798.06 22898.43 23497.80 8799.67 25395.69 23899.58 17399.20 211
Anonymous20240521197.90 17197.50 19499.08 11498.90 21298.25 11898.53 9096.16 33998.87 8399.11 9898.86 16190.40 29199.78 19897.36 12299.31 23199.19 216
CANet97.87 17697.76 17598.19 22697.75 32695.51 25396.76 25499.05 21297.74 15496.93 29098.21 25695.59 21399.89 5997.86 9999.93 2599.19 216
XVG-OURS98.53 11498.34 12099.11 10899.50 7898.82 7695.97 28999.50 6097.30 19899.05 11298.98 13199.35 799.32 33495.72 23699.68 13499.18 218
WTY-MVS96.67 25996.27 26597.87 24498.81 23494.61 27996.77 25397.92 30894.94 28297.12 28197.74 28891.11 28799.82 15093.89 29098.15 31599.18 218
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21499.55 6696.10 23898.94 6098.44 28798.32 11298.16 21898.62 21188.76 30199.73 22693.88 29199.79 8299.18 218
TinyColmap97.89 17397.98 16197.60 26098.86 22194.35 28396.21 28299.44 8497.45 18399.06 10798.88 15797.99 7599.28 34094.38 27699.58 17399.18 218
testdata98.09 23098.93 20495.40 25898.80 26190.08 34697.45 27098.37 24295.26 22399.70 23793.58 29998.95 28499.17 222
lupinMVS97.06 23996.86 23497.65 25698.88 21893.89 30095.48 31397.97 30693.53 30998.16 21897.58 29793.81 25899.91 4596.77 16899.57 17799.17 222
Patchmtry97.35 21696.97 22798.50 20197.31 34596.47 23098.18 12498.92 23698.95 8098.78 16199.37 5485.44 32399.85 10895.96 22499.83 6299.17 222
sss97.21 22896.93 22898.06 23598.83 22995.22 26396.75 25598.48 28694.49 28997.27 27897.90 27992.77 27599.80 17296.57 18599.32 22999.16 225
CSCG98.68 8798.50 9199.20 9599.45 9998.63 8898.56 8799.57 3597.87 14798.85 15198.04 27097.66 9699.84 12596.72 17499.81 6999.13 226
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9798.51 28298.64 8796.85 24899.13 19894.19 29997.65 25298.40 23695.78 20799.81 16393.37 30599.16 25599.12 227
MVS_111021_LR98.30 13898.12 14998.83 15299.16 15798.03 14396.09 28699.30 14497.58 16698.10 22598.24 25398.25 5099.34 33196.69 17799.65 14699.12 227
miper_lstm_enhance97.18 23197.16 21797.25 28198.16 30792.85 31695.15 32299.31 13497.25 20398.74 16898.78 17990.07 29299.78 19897.19 12999.80 7799.11 229
原ACMM198.35 21398.90 21296.25 23698.83 25892.48 32296.07 32598.10 26595.39 22199.71 23592.61 32098.99 28099.08 230
QAPM97.31 21996.81 23898.82 15398.80 23697.49 18899.06 5199.19 17890.22 34497.69 25099.16 8696.91 15199.90 4990.89 34299.41 21599.07 231
PAPM_NR96.82 25496.32 26298.30 21899.07 17696.69 22797.48 20398.76 26695.81 26496.61 30996.47 33294.12 25499.17 34790.82 34397.78 32599.06 232
eth_miper_zixun_eth97.23 22797.25 21197.17 28398.00 31692.77 31894.71 33199.18 18297.27 20198.56 19198.74 18591.89 28499.69 24197.06 14299.81 6999.05 233
D2MVS97.84 18397.84 17297.83 24699.14 16294.74 27396.94 24098.88 24295.84 26298.89 14398.96 13694.40 24699.69 24197.55 11299.95 1699.05 233
c3_l97.36 21597.37 20497.31 27798.09 31193.25 30995.01 32599.16 19197.05 21898.77 16498.72 18892.88 27399.64 26896.93 15199.76 10099.05 233
PLCcopyleft94.65 1696.51 26495.73 27398.85 15098.75 24197.91 15896.42 27299.06 20890.94 34195.59 33197.38 31094.41 24599.59 28490.93 34098.04 32299.05 233
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 5498.90 4498.91 14299.67 4197.82 16899.00 5599.44 8499.45 2899.51 3899.24 7298.20 5899.86 9495.92 22599.69 12999.04 237
CANet_DTU97.26 22397.06 22297.84 24597.57 33394.65 27896.19 28498.79 26297.23 20995.14 34498.24 25393.22 26599.84 12597.34 12399.84 5699.04 237
PM-MVS98.82 6198.72 6099.12 10699.64 4798.54 9997.98 15299.68 1697.62 16299.34 6299.18 8097.54 10899.77 20497.79 10199.74 10499.04 237
TSAR-MVS + GP.98.18 15297.98 16198.77 16498.71 24897.88 16096.32 27798.66 27696.33 24599.23 8698.51 22497.48 11999.40 32497.16 13199.46 20799.02 240
DIV-MVS_self_test97.02 24396.84 23697.58 26297.82 32494.03 29194.66 33499.16 19197.04 21998.63 17798.71 18988.69 30299.69 24197.00 14499.81 6999.01 241
GA-MVS95.86 28195.32 28997.49 27098.60 27094.15 28893.83 35197.93 30795.49 27196.68 30597.42 30883.21 33799.30 33796.22 21298.55 30499.01 241
OMC-MVS97.88 17597.49 19599.04 12698.89 21798.63 8896.94 24099.25 16295.02 27998.53 19698.51 22497.27 13199.47 31693.50 30299.51 19599.01 241
cl____97.02 24396.83 23797.58 26297.82 32494.04 29094.66 33499.16 19197.04 21998.63 17798.71 18988.68 30399.69 24197.00 14499.81 6999.00 244
pmmvs497.58 20097.28 21098.51 19998.84 22696.93 21995.40 31698.52 28493.60 30898.61 18198.65 20295.10 22799.60 28096.97 14999.79 8298.99 245
MVS_030497.64 19597.35 20698.52 19797.87 32296.69 22798.59 8498.05 30597.44 18593.74 35898.85 16493.69 26299.88 7098.11 8199.81 6998.98 246
EPNet_dtu94.93 30094.78 30195.38 32893.58 37087.68 35396.78 25295.69 34597.35 19389.14 36798.09 26788.15 30699.49 31194.95 25799.30 23498.98 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 26695.77 27198.69 17299.48 9397.43 19297.84 16599.55 4681.42 36596.51 31398.58 21795.53 21499.67 25393.41 30499.58 17398.98 246
PVSNet_Blended96.88 25096.68 24597.47 27198.92 20893.77 30494.71 33199.43 9090.98 34097.62 25497.36 31396.82 15799.67 25394.73 26199.56 18298.98 246
PAPR95.29 29294.47 30297.75 25197.50 34095.14 26694.89 32898.71 27491.39 33695.35 34295.48 34894.57 24299.14 35084.95 35797.37 33398.97 250
thisisatest053095.27 29394.45 30397.74 25299.19 14694.37 28297.86 16390.20 36897.17 21398.22 21597.65 29373.53 36599.90 4996.90 15799.35 22598.95 251
mvs_anonymous97.83 18598.16 14496.87 29698.18 30691.89 32997.31 21698.90 23997.37 19198.83 15499.46 4396.28 18799.79 18698.90 3898.16 31498.95 251
baseline195.96 27995.44 28497.52 26998.51 28293.99 29498.39 10896.09 34198.21 12298.40 20997.76 28786.88 30999.63 27195.42 24889.27 36798.95 251
CLD-MVS97.49 20597.16 21798.48 20299.07 17697.03 21494.71 33199.21 17194.46 29198.06 22897.16 31997.57 10699.48 31494.46 26999.78 8698.95 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 16398.14 14897.64 25898.58 27395.19 26497.48 20399.23 16997.47 17697.90 23698.62 21197.04 14298.81 35997.55 11299.41 21598.94 255
DELS-MVS98.27 14298.20 13798.48 20298.86 22196.70 22695.60 30899.20 17397.73 15598.45 20098.71 18997.50 11499.82 15098.21 7799.59 16798.93 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 28395.39 28796.98 29096.77 35492.79 31794.40 34298.53 28394.59 28897.89 23798.17 25982.82 34199.24 34296.37 20399.03 27398.92 257
LS3D98.63 9598.38 11599.36 6597.25 34699.38 699.12 4699.32 12899.21 4698.44 20198.88 15797.31 12799.80 17296.58 18399.34 22798.92 257
CMPMVSbinary75.91 2396.29 27195.44 28498.84 15196.25 36298.69 8697.02 23599.12 20088.90 35197.83 24198.86 16189.51 29698.90 35791.92 32599.51 19598.92 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 9398.48 9699.11 10898.85 22398.51 10198.49 9799.83 498.37 10899.69 1799.46 4398.21 5799.92 3594.13 28399.30 23498.91 260
DPM-MVS96.32 27095.59 27998.51 19998.76 23997.21 20594.54 34098.26 29491.94 32896.37 31897.25 31593.06 27099.43 32291.42 33498.74 29198.89 261
test_yl96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
DCV-MVSNet96.69 25796.29 26397.90 24298.28 29995.24 26197.29 21797.36 31998.21 12298.17 21697.86 28086.27 31399.55 29694.87 25898.32 30798.89 261
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20599.28 12596.78 22596.20 28399.27 15695.42 27398.28 21398.30 25093.16 26699.71 23594.99 25597.37 33398.87 264
Effi-MVS+98.02 16397.82 17398.62 18098.53 28197.19 20797.33 21499.68 1697.30 19896.68 30597.46 30698.56 3499.80 17296.63 18198.20 31198.86 265
test_040298.76 7198.71 6298.93 13999.56 6398.14 13198.45 10499.34 12199.28 4398.95 13098.91 14598.34 4899.79 18695.63 24299.91 4098.86 265
PatchmatchNetpermissive95.58 28795.67 27695.30 32997.34 34387.32 35497.65 18596.65 33495.30 27697.07 28598.69 19384.77 32699.75 21894.97 25698.64 29998.83 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test97.44 21197.22 21498.08 23398.57 27595.78 24894.30 34498.79 26296.58 23898.60 18398.19 25894.74 24099.64 26896.41 20298.84 28798.82 268
miper_ehance_all_eth97.06 23997.03 22397.16 28597.83 32393.06 31194.66 33499.09 20495.99 25898.69 17098.45 23392.73 27699.61 27996.79 16599.03 27398.82 268
MIMVSNet96.62 26296.25 26697.71 25399.04 18394.66 27799.16 4196.92 33197.23 20997.87 23899.10 9886.11 31799.65 26691.65 32999.21 24798.82 268
hse-mvs297.46 20897.07 22198.64 17598.73 24397.33 19597.45 20797.64 31699.11 5798.58 18797.98 27388.65 30499.79 18698.11 8197.39 33298.81 271
GSMVS98.81 271
sam_mvs184.74 32798.81 271
SCA96.41 26996.66 24895.67 32098.24 30288.35 35095.85 29996.88 33296.11 25297.67 25198.67 19793.10 26899.85 10894.16 27899.22 24598.81 271
Patchmatch-RL test97.26 22397.02 22497.99 24099.52 7395.53 25296.13 28599.71 1197.47 17699.27 7499.16 8684.30 33299.62 27397.89 9499.77 9098.81 271
AUN-MVS96.24 27495.45 28398.60 18398.70 25297.22 20397.38 21097.65 31495.95 25995.53 33997.96 27782.11 34699.79 18696.31 20797.44 33098.80 276
ITE_SJBPF98.87 14799.22 13798.48 10399.35 11597.50 17398.28 21398.60 21597.64 10099.35 33093.86 29299.27 23898.79 277
tpm94.67 30294.34 30695.66 32197.68 33288.42 34997.88 16094.90 34794.46 29196.03 32798.56 21978.66 35699.79 18695.88 22695.01 35898.78 278
Patchmatch-test96.55 26396.34 26197.17 28398.35 29593.06 31198.40 10797.79 30997.33 19498.41 20598.67 19783.68 33699.69 24195.16 25299.31 23198.77 279
DROMVSNet99.09 3499.05 3799.20 9599.28 12598.93 6999.24 3399.84 399.08 6898.12 22298.37 24298.72 2699.90 4999.05 3199.77 9098.77 279
PMMVS96.51 26495.98 26898.09 23097.53 33695.84 24594.92 32798.84 25391.58 33296.05 32695.58 34595.68 21099.66 26195.59 24498.09 31898.76 281
test_method79.78 33579.50 33880.62 35180.21 37445.76 37670.82 36598.41 29031.08 37080.89 37197.71 28984.85 32597.37 36591.51 33380.03 36898.75 282
ab-mvs98.41 12698.36 11798.59 18499.19 14697.23 20199.32 1798.81 25997.66 15998.62 17999.40 5396.82 15799.80 17295.88 22699.51 19598.75 282
CHOSEN 280x42095.51 29095.47 28195.65 32298.25 30188.27 35193.25 35598.88 24293.53 30994.65 34797.15 32086.17 31599.93 2897.41 12099.93 2598.73 284
MVS_Test98.18 15298.36 11797.67 25498.48 28494.73 27498.18 12499.02 22197.69 15798.04 23199.11 9697.22 13799.56 29398.57 5898.90 28698.71 285
PVSNet93.40 1795.67 28595.70 27495.57 32398.83 22988.57 34892.50 35897.72 31192.69 32096.49 31696.44 33393.72 26199.43 32293.61 29799.28 23798.71 285
alignmvs97.35 21696.88 23398.78 16298.54 27998.09 13397.71 17897.69 31399.20 4997.59 25795.90 34188.12 30799.55 29698.18 7998.96 28398.70 287
ADS-MVSNet295.43 29194.98 29796.76 30298.14 30891.74 33097.92 15697.76 31090.23 34296.51 31398.91 14585.61 32099.85 10892.88 31196.90 34198.69 288
ADS-MVSNet95.24 29494.93 29996.18 31198.14 30890.10 34497.92 15697.32 32290.23 34296.51 31398.91 14585.61 32099.74 22292.88 31196.90 34198.69 288
MDTV_nov1_ep13_2view74.92 37497.69 18090.06 34797.75 24785.78 31993.52 30098.69 288
MSDG97.71 19097.52 19398.28 22098.91 21196.82 22194.42 34199.37 10597.65 16098.37 21098.29 25197.40 12399.33 33394.09 28499.22 24598.68 291
miper_enhance_ethall96.01 27795.74 27296.81 30096.41 36092.27 32693.69 35398.89 24191.14 33998.30 21197.35 31490.58 28999.58 28996.31 20799.03 27398.60 292
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31499.49 398.02 14699.16 19198.29 11697.64 25397.99 27296.44 17999.95 1596.66 17998.93 28598.60 292
new_pmnet96.99 24796.76 24097.67 25498.72 24594.89 27195.95 29398.20 29792.62 32198.55 19398.54 22094.88 23399.52 30593.96 28799.44 21398.59 294
EIA-MVS98.00 16597.74 17798.80 15798.72 24598.09 13398.05 14199.60 2597.39 18996.63 30795.55 34697.68 9499.80 17296.73 17399.27 23898.52 295
PatchMatch-RL97.24 22696.78 23998.61 18299.03 18697.83 16596.36 27599.06 20893.49 31197.36 27697.78 28595.75 20899.49 31193.44 30398.77 29098.52 295
ET-MVSNet_ETH3D94.30 30893.21 31897.58 26298.14 30894.47 28194.78 33093.24 36094.72 28689.56 36695.87 34278.57 35899.81 16396.91 15297.11 34098.46 297
canonicalmvs98.34 13598.26 13098.58 18598.46 28697.82 16898.96 5999.46 7899.19 5397.46 26995.46 34998.59 3299.46 31898.08 8598.71 29598.46 297
TAPA-MVS96.21 1196.63 26195.95 26998.65 17498.93 20498.09 13396.93 24299.28 15383.58 36398.13 22197.78 28596.13 18999.40 32493.52 30099.29 23698.45 299
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 25296.75 24197.08 28698.74 24293.33 30896.71 25798.26 29496.72 23298.44 20197.37 31295.20 22499.47 31691.89 32697.43 33198.44 300
pmmvs395.03 29894.40 30496.93 29297.70 33092.53 32195.08 32397.71 31288.57 35397.71 24898.08 26879.39 35499.82 15096.19 21499.11 26698.43 301
DP-MVS Recon97.33 21896.92 23098.57 18899.09 17297.99 14596.79 25199.35 11593.18 31397.71 24898.07 26995.00 22999.31 33593.97 28699.13 26298.42 302
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15598.43 28998.11 13297.61 18999.50 6098.64 9297.39 27497.52 30198.12 6599.95 1596.90 15798.71 29598.38 303
LF4IMVS97.90 17197.69 18098.52 19799.17 15597.66 18097.19 22899.47 7696.31 24797.85 24098.20 25796.71 16799.52 30594.62 26499.72 11498.38 303
Fast-Effi-MVS+97.67 19397.38 20398.57 18898.71 24897.43 19297.23 22199.45 8194.82 28596.13 32196.51 32998.52 3699.91 4596.19 21498.83 28898.37 305
test0.0.03 194.51 30393.69 31296.99 28996.05 36393.61 30794.97 32693.49 35796.17 24997.57 26094.88 35782.30 34299.01 35493.60 29894.17 36398.37 305
baseline293.73 31792.83 32396.42 30697.70 33091.28 33996.84 25089.77 36993.96 30592.44 36195.93 34079.14 35599.77 20492.94 30996.76 34598.21 307
thisisatest051594.12 31293.16 31996.97 29198.60 27092.90 31593.77 35290.61 36694.10 30196.91 29395.87 34274.99 36399.80 17294.52 26799.12 26598.20 308
EPMVS93.72 31893.27 31795.09 33196.04 36487.76 35298.13 12885.01 37294.69 28796.92 29198.64 20578.47 36099.31 33595.04 25396.46 34798.20 308
dp93.47 32093.59 31493.13 34896.64 35581.62 37197.66 18396.42 33792.80 31996.11 32298.64 20578.55 35999.59 28493.31 30692.18 36698.16 310
CNLPA97.17 23296.71 24398.55 19398.56 27698.05 14296.33 27698.93 23396.91 22597.06 28697.39 30994.38 24799.45 32091.66 32899.18 25498.14 311
HY-MVS95.94 1395.90 28095.35 28897.55 26697.95 31794.79 27298.81 6996.94 33092.28 32595.17 34398.57 21889.90 29499.75 21891.20 33797.33 33798.10 312
CostFormer93.97 31493.78 31194.51 33597.53 33685.83 36097.98 15295.96 34289.29 35094.99 34698.63 20978.63 35799.62 27394.54 26696.50 34698.09 313
AdaColmapbinary97.14 23496.71 24398.46 20498.34 29697.80 17196.95 23998.93 23395.58 26796.92 29197.66 29295.87 20599.53 30190.97 33999.14 25998.04 314
KD-MVS_2432*160092.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
miper_refine_blended92.87 32591.99 32995.51 32591.37 37189.27 34694.07 34698.14 30095.42 27397.25 27996.44 33367.86 36999.24 34291.28 33596.08 35298.02 315
TESTMET0.1,192.19 33291.77 33293.46 34496.48 35882.80 36994.05 34891.52 36594.45 29394.00 35594.88 35766.65 37399.56 29395.78 23498.11 31798.02 315
CS-MVS-test98.41 12698.30 12598.73 17198.84 22698.39 10798.71 7599.79 597.98 13796.86 29997.38 31097.86 8199.83 13997.81 10099.46 20797.97 318
PCF-MVS92.86 1894.36 30593.00 32298.42 20798.70 25297.56 18593.16 35699.11 20279.59 36697.55 26197.43 30792.19 28099.73 22679.85 36699.45 21097.97 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 23696.68 24598.32 21598.32 29797.16 21098.86 6699.37 10589.48 34896.29 32099.15 9096.56 17299.90 4992.90 31099.20 24897.89 320
Gipumacopyleft99.03 3799.16 3098.64 17599.94 298.51 10199.32 1799.75 999.58 2298.60 18399.62 2198.22 5599.51 30997.70 10999.73 10797.89 320
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DWT-MVSNet_test92.75 32792.05 32894.85 33296.48 35887.21 35597.83 16694.99 34692.22 32692.72 36094.11 36370.75 36699.46 31895.01 25494.33 36297.87 322
PVSNet_089.98 2191.15 33490.30 33793.70 34297.72 32784.34 36790.24 36297.42 31790.20 34593.79 35693.09 36590.90 28898.89 35886.57 35572.76 36997.87 322
test-LLR93.90 31593.85 30994.04 33896.53 35684.62 36494.05 34892.39 36296.17 24994.12 35295.07 35182.30 34299.67 25395.87 22998.18 31297.82 324
test-mter92.33 33091.76 33394.04 33896.53 35684.62 36494.05 34892.39 36294.00 30494.12 35295.07 35165.63 37599.67 25395.87 22998.18 31297.82 324
tpm293.09 32492.58 32594.62 33497.56 33486.53 35797.66 18395.79 34486.15 35994.07 35498.23 25575.95 36199.53 30190.91 34196.86 34497.81 326
CR-MVSNet96.28 27295.95 26997.28 27997.71 32894.22 28498.11 13198.92 23692.31 32496.91 29399.37 5485.44 32399.81 16397.39 12197.36 33597.81 326
RPMNet97.02 24396.93 22897.30 27897.71 32894.22 28498.11 13199.30 14499.37 3596.91 29399.34 6086.72 31099.87 8797.53 11597.36 33597.81 326
tpmrst95.07 29795.46 28293.91 34097.11 34884.36 36697.62 18796.96 32894.98 28096.35 31998.80 17685.46 32299.59 28495.60 24396.23 35097.79 329
PAPM91.88 33390.34 33696.51 30498.06 31392.56 32092.44 35997.17 32486.35 35890.38 36596.01 33886.61 31199.21 34570.65 36995.43 35697.75 330
FPMVS93.44 32192.23 32697.08 28699.25 13197.86 16295.61 30797.16 32592.90 31793.76 35798.65 20275.94 36295.66 36779.30 36797.49 32897.73 331
MAR-MVS96.47 26795.70 27498.79 15997.92 31999.12 5698.28 11598.60 28092.16 32795.54 33896.17 33794.77 23999.52 30589.62 34798.23 30997.72 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 16197.86 17198.56 19298.69 25698.07 13997.51 20199.50 6098.10 13297.50 26695.51 34798.41 4199.88 7096.27 21099.24 24397.71 333
thres600view794.45 30493.83 31096.29 30899.06 18091.53 33297.99 15094.24 35398.34 11097.44 27195.01 35379.84 35099.67 25384.33 35898.23 30997.66 334
thres40094.14 31193.44 31596.24 31098.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31997.66 334
IB-MVS91.63 1992.24 33190.90 33596.27 30997.22 34791.24 34094.36 34393.33 35992.37 32392.24 36294.58 36066.20 37499.89 5993.16 30894.63 36097.66 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 29995.25 29094.33 33696.39 36185.87 35898.08 13696.83 33395.46 27295.51 34098.69 19385.91 31899.53 30194.16 27896.23 35097.58 337
cascas94.79 30194.33 30796.15 31596.02 36592.36 32592.34 36099.26 16185.34 36195.08 34594.96 35692.96 27298.53 36194.41 27598.59 30297.56 338
mvs-test197.83 18597.48 19898.89 14598.02 31499.20 3397.20 22599.16 19198.29 11696.46 31797.17 31896.44 17999.92 3596.66 17997.90 32497.54 339
PatchT96.65 26096.35 26097.54 26797.40 34195.32 25997.98 15296.64 33599.33 3996.89 29799.42 4984.32 33199.81 16397.69 11197.49 32897.48 340
TR-MVS95.55 28895.12 29596.86 29997.54 33593.94 29596.49 26896.53 33694.36 29697.03 28896.61 32894.26 25099.16 34886.91 35496.31 34997.47 341
JIA-IIPM95.52 28995.03 29697.00 28896.85 35294.03 29196.93 24295.82 34399.20 4994.63 34899.71 1283.09 33899.60 28094.42 27294.64 35997.36 342
BH-w/o95.13 29694.89 30095.86 31698.20 30591.31 33795.65 30697.37 31893.64 30796.52 31295.70 34493.04 27199.02 35288.10 35195.82 35497.24 343
tpm cat193.29 32293.13 32193.75 34197.39 34284.74 36397.39 20997.65 31483.39 36494.16 35198.41 23582.86 34099.39 32691.56 33295.35 35797.14 344
CS-MVS98.16 15698.22 13597.97 24198.56 27697.01 21698.10 13399.70 1497.45 18397.29 27797.19 31697.72 9299.80 17298.37 6999.62 15497.11 345
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29398.98 19693.91 29796.45 26999.17 18897.85 14998.41 20597.14 32198.47 3799.92 3598.02 8899.05 26996.92 346
PMVScopyleft91.26 2097.86 17797.94 16597.65 25699.71 3197.94 15798.52 9198.68 27598.99 7397.52 26499.35 5897.41 12298.18 36391.59 33199.67 14096.82 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 28495.60 27896.17 31297.53 33692.75 31998.07 13798.31 29391.22 33794.25 35096.68 32795.53 21499.03 35191.64 33097.18 33896.74 350
MVS-HIRNet94.32 30695.62 27790.42 35098.46 28675.36 37396.29 27889.13 37095.25 27795.38 34199.75 792.88 27399.19 34694.07 28599.39 21896.72 351
OpenMVS_ROBcopyleft95.38 1495.84 28295.18 29397.81 24798.41 29397.15 21197.37 21198.62 27983.86 36298.65 17598.37 24294.29 24999.68 25088.41 35098.62 30196.60 352
thres100view90094.19 30993.67 31395.75 31999.06 18091.35 33698.03 14494.24 35398.33 11197.40 27394.98 35579.84 35099.62 27383.05 36098.08 31996.29 353
tfpn200view994.03 31393.44 31595.78 31898.93 20491.44 33497.60 19094.29 35197.94 14197.10 28294.31 36179.67 35299.62 27383.05 36098.08 31996.29 353
MVS93.19 32392.09 32796.50 30596.91 35094.03 29198.07 13798.06 30468.01 36794.56 34996.48 33195.96 20199.30 33783.84 35996.89 34396.17 355
gg-mvs-nofinetune92.37 32991.20 33495.85 31795.80 36792.38 32499.31 2081.84 37499.75 591.83 36399.74 868.29 36899.02 35287.15 35397.12 33996.16 356
xiu_mvs_v2_base97.16 23397.49 19596.17 31298.54 27992.46 32295.45 31498.84 25397.25 20397.48 26896.49 33098.31 4999.90 4996.34 20698.68 29796.15 357
PS-MVSNAJ97.08 23797.39 20296.16 31498.56 27692.46 32295.24 31998.85 25297.25 20397.49 26795.99 33998.07 6699.90 4996.37 20398.67 29896.12 358
E-PMN94.17 31094.37 30593.58 34396.86 35185.71 36190.11 36397.07 32698.17 12897.82 24397.19 31684.62 32898.94 35589.77 34697.68 32796.09 359
EMVS93.83 31694.02 30893.23 34796.83 35384.96 36289.77 36496.32 33897.92 14397.43 27296.36 33686.17 31598.93 35687.68 35297.73 32695.81 360
MVEpermissive83.40 2292.50 32891.92 33194.25 33798.83 22991.64 33192.71 35783.52 37395.92 26086.46 37095.46 34995.20 22495.40 36880.51 36598.64 29995.73 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 31893.14 32095.46 32798.66 26691.29 33896.61 26294.63 34997.39 18996.83 30193.71 36479.88 34999.56 29382.40 36398.13 31695.54 362
API-MVS97.04 24296.91 23297.42 27497.88 32198.23 12398.18 12498.50 28597.57 16797.39 27496.75 32696.77 16199.15 34990.16 34599.02 27694.88 363
GG-mvs-BLEND94.76 33394.54 36992.13 32899.31 2080.47 37588.73 36891.01 36767.59 37198.16 36482.30 36494.53 36193.98 364
DeepMVS_CXcopyleft93.44 34598.24 30294.21 28694.34 35064.28 36891.34 36494.87 35989.45 29892.77 37077.54 36893.14 36493.35 365
tmp_tt78.77 33678.73 33978.90 35258.45 37574.76 37594.20 34578.26 37639.16 36986.71 36992.82 36680.50 34875.19 37186.16 35692.29 36586.74 366
wuyk23d96.06 27697.62 18891.38 34998.65 26798.57 9598.85 6796.95 32996.86 22799.90 499.16 8699.18 1198.40 36289.23 34899.77 9077.18 367
test12317.04 33920.11 3427.82 35310.25 3774.91 37794.80 3294.47 3784.93 37110.00 37324.28 3709.69 3763.64 37210.14 37012.43 37114.92 368
testmvs17.12 33820.53 3416.87 35412.05 3764.20 37893.62 3546.73 3774.62 37210.41 37224.33 3698.28 3773.56 3739.69 37115.07 37012.86 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.66 33732.88 3400.00 3550.00 3780.00 3790.00 36699.10 2030.00 3730.00 37497.58 29799.21 100.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas8.17 34010.90 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37398.07 660.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.12 34110.83 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37497.48 3040.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.73 2499.67 299.43 1099.54 5099.43 3099.26 78
test_one_060199.39 10999.20 3399.31 13498.49 10498.66 17499.02 11597.64 100
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.01 19098.84 7399.07 20794.10 30198.05 23098.12 26396.36 18599.86 9492.70 31899.19 252
test_241102_ONE99.49 8599.17 3899.31 13497.98 13799.66 2098.90 14898.36 4499.48 314
9.1497.78 17499.07 17697.53 19899.32 12895.53 27098.54 19598.70 19297.58 10599.76 21194.32 27799.46 207
save fliter99.11 16597.97 15096.53 26499.02 22198.24 119
test072699.50 7899.21 2798.17 12799.35 11597.97 13999.26 7899.06 10197.61 103
test_part299.36 11399.10 5999.05 112
sam_mvs84.29 333
MTGPAbinary99.20 173
test_post197.59 19220.48 37283.07 33999.66 26194.16 278
test_post21.25 37183.86 33599.70 237
patchmatchnet-post98.77 18184.37 33099.85 108
MTMP97.93 15591.91 364
gm-plane-assit94.83 36881.97 37088.07 35594.99 35499.60 28091.76 327
TEST998.71 24898.08 13795.96 29199.03 21791.40 33595.85 32897.53 29996.52 17499.76 211
test_898.67 26198.01 14495.91 29699.02 22191.64 33095.79 33097.50 30296.47 17799.76 211
agg_prior98.68 25997.99 14599.01 22495.59 33199.77 204
test_prior497.97 15095.86 297
test_prior295.74 30396.48 24096.11 32297.63 29595.92 20394.16 27899.20 248
旧先验295.76 30188.56 35497.52 26499.66 26194.48 268
新几何295.93 294
原ACMM295.53 310
testdata299.79 18692.80 315
segment_acmp97.02 145
testdata195.44 31596.32 246
plane_prior799.19 14697.87 161
plane_prior698.99 19597.70 17994.90 230
plane_prior497.98 273
plane_prior397.78 17297.41 18797.79 244
plane_prior297.77 17298.20 125
plane_prior199.05 182
plane_prior97.65 18197.07 23496.72 23299.36 223
n20.00 379
nn0.00 379
door-mid99.57 35
test1198.87 244
door99.41 94
HQP5-MVS96.79 222
HQP-NCC98.67 26196.29 27896.05 25495.55 335
ACMP_Plane98.67 26196.29 27896.05 25495.55 335
BP-MVS92.82 313
HQP3-MVS99.04 21599.26 241
HQP2-MVS93.84 256
NP-MVS98.84 22697.39 19496.84 324
MDTV_nov1_ep1395.22 29197.06 34983.20 36897.74 17696.16 33994.37 29596.99 28998.83 17083.95 33499.53 30193.90 28997.95 323
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 174