This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 27799.78 2699.82 496.14 20498.63 38999.82 899.93 4499.95 6
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25699.72 3199.78 896.60 18799.67 26699.91 299.90 7099.94 7
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38499.76 1699.56 21099.92 9
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25799.95 2399.45 3599.96 2599.88 14
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
EU-MVSNet97.66 21998.50 12195.13 36199.63 7585.84 39198.35 13598.21 31398.23 14099.54 5699.46 6695.02 24699.68 26398.24 10799.87 7899.87 16
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
MM98.22 17397.99 18698.91 14898.66 29296.97 21997.89 18894.44 37699.54 2798.95 15799.14 13093.50 28399.92 5199.80 1299.96 2599.85 19
MVS_030498.10 18297.88 19798.76 17198.82 25896.50 23597.90 18691.35 39499.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 26899.96 499.81 598.18 7899.45 34098.97 6499.79 11599.83 22
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26199.95 2399.11 5399.24 26799.82 25
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35298.03 16899.85 1597.62 18699.96 499.62 3493.98 27699.74 23499.52 3199.86 8199.79 30
test_vis1_n_192098.40 15198.92 6996.81 32699.74 3890.76 37398.15 15299.91 798.33 13099.89 1599.55 4895.07 24599.88 8499.76 1699.93 4499.79 30
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
CVMVSNet96.25 29697.21 24093.38 37899.10 20280.56 40597.20 26298.19 31696.94 24899.00 14899.02 15389.50 32399.80 18696.36 23899.59 19899.78 33
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26799.93 4198.65 8598.83 31199.76 39
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 24099.97 499.31 4199.98 1299.73 45
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
No_MVS99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
PMMVS298.07 18798.08 17998.04 24999.41 13894.59 29694.59 37199.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 26099.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22399.91 6099.32 4099.95 3299.70 52
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
CHOSEN 1792x268897.49 22997.14 24598.54 20499.68 5996.09 24796.50 29799.62 4791.58 36598.84 18298.97 17292.36 30099.88 8496.76 20499.95 3299.67 58
IU-MVS99.49 11699.15 4798.87 26292.97 35099.41 8096.76 20499.62 18799.66 59
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
test_fmvs1_n98.09 18598.28 15597.52 28999.68 5993.47 33198.63 9899.93 495.41 30699.68 3999.64 3291.88 30799.48 33499.82 899.87 7899.62 68
test111196.49 28996.82 26195.52 35599.42 13687.08 38899.22 4287.14 40099.11 7299.46 7199.58 4188.69 32799.86 11098.80 7299.95 3299.62 68
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26399.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26399.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
Test_1112_low_res96.99 26996.55 28098.31 22799.35 15295.47 26795.84 33499.53 8091.51 36796.80 33398.48 26391.36 31099.83 15696.58 21799.53 21999.62 68
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27599.79 2599.57 4292.85 29599.42 34599.79 1399.84 8699.60 75
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29899.93 4199.04 5999.84 8699.60 75
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 25396.60 27898.96 14099.62 7797.28 20195.17 35399.50 8694.21 33299.01 14798.32 27986.61 33999.99 297.10 17399.84 8699.60 75
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24898.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22999.85 12297.54 14899.85 8299.59 81
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 25898.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 31798.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24598.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
PVSNet_Blended_VisFu98.17 18098.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 32798.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
1112_ss97.29 24596.86 25798.58 19499.34 15496.32 24096.75 28699.58 5493.14 34896.89 32897.48 33292.11 30499.86 11096.91 18799.54 21599.57 92
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
X-MVStestdata94.32 33292.59 35099.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 40097.50 13399.83 15696.79 20099.53 21999.56 98
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
K. test v398.00 19197.66 21399.03 13199.79 2597.56 18699.19 4992.47 38899.62 2099.52 6299.66 2789.61 32199.96 1299.25 4699.81 10099.56 98
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23899.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
UGNet98.53 13798.45 13198.79 16497.94 34796.96 22199.08 5998.54 29999.10 7996.82 33299.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250692.39 35791.89 35993.89 37299.38 14182.28 40299.32 2366.03 40899.08 8498.77 19299.57 4266.26 40199.84 13998.71 8099.95 3299.54 109
ECVR-MVScopyleft96.42 29196.61 27695.85 34799.38 14188.18 38499.22 4286.00 40299.08 8499.36 9299.57 4288.47 33299.82 16698.52 9499.95 3299.54 109
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24099.32 10399.18 11795.84 22499.84 13999.50 3299.91 6399.54 109
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23898.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33398.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21799.79 19999.33 3999.90 7099.51 121
CPTT-MVS97.84 20897.36 23299.27 8999.31 15598.46 10598.29 13899.27 18194.90 31697.83 27498.37 27294.90 24899.84 13993.85 32399.54 21599.51 121
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26696.71 21199.77 12499.50 124
DVP-MVS++98.90 7698.70 9399.51 4398.43 31999.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
PC_three_145293.27 34699.40 8398.54 25298.22 7497.00 39795.17 28499.45 23699.49 128
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
h-mvs3397.77 21197.33 23599.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 33099.96 1298.11 11496.34 37999.49 128
IterMVS-SCA-FT97.85 20798.18 16696.87 32299.27 16291.16 36995.53 34299.25 18799.10 7999.41 8099.35 8493.10 28899.96 1298.65 8599.94 4099.49 128
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35496.42 30299.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
APD-MVScopyleft98.10 18297.67 21099.42 5899.11 20098.93 7197.76 20799.28 17894.97 31498.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30399.90 6596.87 19599.68 16799.49 128
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24699.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 17597.95 18999.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31699.80 18697.88 13199.20 27399.48 138
IterMVS97.73 21398.11 17596.57 33199.24 16790.28 37595.52 34499.21 19698.86 10299.33 9799.33 9093.11 28799.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 17797.90 19599.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30899.79 19995.49 27999.80 11099.48 138
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29398.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19197.63 21699.10 11599.24 16798.17 12896.89 27998.73 28995.66 29497.92 26697.70 32097.17 15399.66 27796.18 24999.23 26999.47 145
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
HPM-MVS++copyleft98.10 18297.64 21599.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32797.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
HQP_MVS97.99 19497.67 21098.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24899.70 25094.42 30499.51 22499.45 151
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 151
lessismore_v098.97 13999.73 3997.53 18886.71 40199.37 9099.52 5789.93 31999.92 5198.99 6399.72 14999.44 155
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26299.17 12799.21 11194.81 25499.77 21696.96 18599.88 7599.44 155
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32498.97 6695.03 35799.18 20696.88 25199.33 9798.78 21498.16 8299.28 36696.74 20699.62 18799.44 155
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27999.97 499.26 4499.57 20799.43 159
jason97.45 23397.35 23397.76 26799.24 16793.93 31795.86 33198.42 30594.24 33198.50 22698.13 29094.82 25299.91 6097.22 16399.73 14299.43 159
jason: jason.
NCCC97.86 20297.47 22799.05 12898.61 29698.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21699.66 27795.31 28298.82 31399.43 159
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27599.94 3699.25 4699.96 2599.42 162
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32399.27 18197.60 19097.99 26498.25 28298.15 8499.38 35196.87 19599.57 20799.42 162
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
OPU-MVS98.82 15798.59 30198.30 11698.10 15898.52 25598.18 7898.75 38894.62 29699.48 23399.41 165
our_test_397.39 23797.73 20796.34 33598.70 27989.78 37794.61 37098.97 24896.50 26799.04 14398.85 20295.98 21799.84 13997.26 16199.67 17399.41 165
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25498.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 22297.67 21097.39 29999.04 21793.04 33895.27 35098.38 30897.25 22798.92 16698.95 17995.48 23599.73 23996.99 18198.74 31599.41 165
MDA-MVSNet_test_wron97.60 22297.66 21397.41 29899.04 21793.09 33495.27 35098.42 30597.26 22698.88 17498.95 17995.43 23699.73 23997.02 17898.72 31799.41 165
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
test_fmvs197.72 21497.94 19197.07 31398.66 29292.39 34997.68 21599.81 2395.20 31099.54 5699.44 7191.56 30999.41 34699.78 1599.77 12499.40 174
iter_conf_final97.10 25896.65 27598.45 21398.53 31096.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38199.87 10198.68 8399.91 6399.40 174
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39199.87 10198.50 9599.92 5599.40 174
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29098.37 10199.85 8299.39 177
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
CDPH-MVS97.26 24696.66 27399.07 12199.00 22298.15 12996.03 32199.01 24491.21 37197.79 27797.85 31296.89 16899.69 25492.75 34499.38 24699.39 177
EPNet96.14 29895.44 30998.25 23190.76 40595.50 26697.92 18394.65 37498.97 9392.98 39098.85 20289.12 32599.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 18097.87 19899.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 30796.42 23499.33 25299.39 177
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29697.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28596.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25798.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
test9_res93.28 33599.15 28199.38 184
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24198.75 19598.92 18598.18 7899.65 28296.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 34999.16 27999.37 186
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25498.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25498.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
MDA-MVSNet-bldmvs97.94 19597.91 19498.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26899.85 12296.60 21698.72 31799.37 186
MVSTER96.86 27396.55 28097.79 26297.91 34994.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37399.80 18698.44 9899.82 9699.37 186
pmmvs597.64 22097.49 22498.08 24499.14 19695.12 28096.70 28999.05 23393.77 34098.62 20898.83 20593.23 28499.75 22998.33 10599.76 13599.36 192
Anonymous2023120698.21 17598.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 28098.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
train_agg97.10 25896.45 28399.07 12198.71 27598.08 14095.96 32599.03 23891.64 36395.85 35797.53 32896.47 19299.76 22293.67 32599.16 27999.36 192
PVSNet_BlendedMVS97.55 22697.53 22197.60 28098.92 23793.77 32596.64 29199.43 11794.49 32397.62 28699.18 11796.82 17399.67 26694.73 29399.93 4499.36 192
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
F-COLMAP97.30 24396.68 27099.14 10999.19 18198.39 10897.27 25799.30 16792.93 35196.62 33998.00 30195.73 22699.68 26392.62 34798.46 33099.35 196
ppachtmachnet_test97.50 22797.74 20596.78 32898.70 27991.23 36894.55 37299.05 23396.36 27299.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25299.79 19998.34 10399.63 18499.34 198
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 33196.50 23098.99 30099.34 198
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30499.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 19897.60 21898.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29999.74 23497.76 14195.60 38799.34 198
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25498.71 8099.76 13599.33 203
MG-MVS96.77 27796.61 27697.26 30498.31 32893.06 33595.93 32898.12 32096.45 27097.92 26698.73 22193.77 28199.39 34991.19 36699.04 29399.33 203
HQP4-MVS95.56 36299.54 31899.32 205
CDS-MVSNet97.69 21697.35 23398.69 17998.73 27097.02 21896.92 27898.75 28695.89 29098.59 21498.67 23292.08 30599.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 26896.49 28298.55 20198.67 28796.79 22796.29 30899.04 23696.05 28395.55 36396.84 34993.84 27799.54 31892.82 34199.26 26599.32 205
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32495.72 27099.71 15499.32 205
MVP-Stereo98.08 18697.92 19398.57 19698.96 22996.79 22797.90 18699.18 20696.41 27198.46 22998.95 17995.93 22099.60 29796.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 40196.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25599.78 21098.13 11399.13 28499.31 209
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30199.30 212
USDC97.41 23697.40 22897.44 29698.94 23193.67 32795.17 35399.53 8094.03 33798.97 15499.10 13795.29 23899.34 35695.84 26699.73 14299.30 212
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27199.82 16697.97 12599.80 11099.29 214
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 36296.23 24498.38 33199.28 216
test1298.93 14598.58 30397.83 16698.66 29296.53 34295.51 23399.69 25499.13 28499.27 217
DSMNet-mixed97.42 23597.60 21896.87 32299.15 19591.46 36098.54 10999.12 22192.87 35397.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
N_pmnet97.63 22197.17 24198.99 13699.27 16297.86 16395.98 32293.41 38595.25 30899.47 7098.90 18995.63 22899.85 12296.91 18799.73 14299.27 217
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 32996.55 22699.50 23199.26 220
LFMVS97.20 25296.72 26798.64 18298.72 27296.95 22298.93 7594.14 38299.74 698.78 18999.01 16284.45 35799.73 23997.44 15299.27 26299.25 221
FMVSNet596.01 30195.20 31898.41 21897.53 36796.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39599.88 8497.27 16099.71 15499.25 221
BH-RMVSNet96.83 27496.58 27997.58 28298.47 31594.05 30996.67 29097.36 33696.70 26197.87 27097.98 30395.14 24399.44 34290.47 37398.58 32899.25 221
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23499.01 29899.23 226
test22298.92 23796.93 22495.54 34198.78 28185.72 39196.86 33098.11 29394.43 26399.10 28999.23 226
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
FMVSNet397.50 22797.24 23898.29 22998.08 34295.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33699.81 17997.77 13799.69 16299.23 226
无先验95.74 33698.74 28889.38 38299.73 23992.38 35199.22 230
tttt051795.64 31394.98 32297.64 27899.36 14893.81 32398.72 9090.47 39698.08 15698.67 20198.34 27673.88 39399.92 5197.77 13799.51 22499.20 231
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 29999.42 7999.19 11497.27 14799.63 28897.89 12899.97 2099.20 231
MS-PatchMatch97.68 21797.75 20497.45 29598.23 33493.78 32497.29 25498.84 27196.10 28298.64 20598.65 23796.04 20999.36 35296.84 19899.14 28299.20 231
新几何198.91 14898.94 23197.76 17498.76 28387.58 38896.75 33598.10 29494.80 25599.78 21092.73 34599.00 29999.20 231
PHI-MVS98.29 16697.95 18999.34 7398.44 31899.16 4398.12 15599.38 12896.01 28698.06 25998.43 26697.80 10699.67 26695.69 27299.58 20399.20 231
Anonymous20240521197.90 19697.50 22399.08 11998.90 24198.25 11998.53 11096.16 36198.87 10199.11 12998.86 19990.40 31799.78 21097.36 15699.31 25599.19 236
CANet97.87 20197.76 20398.19 23697.75 35595.51 26596.76 28599.05 23397.74 17796.93 32198.21 28695.59 23099.89 7597.86 13399.93 4499.19 236
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32399.50 8697.30 22299.05 14198.98 17099.35 1299.32 35995.72 27099.68 16799.18 238
WTY-MVS96.67 28096.27 28997.87 25798.81 26194.61 29596.77 28497.92 32594.94 31597.12 31297.74 31791.11 31299.82 16693.89 32098.15 34399.18 238
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32699.73 23993.88 32199.79 11599.18 238
TinyColmap97.89 19897.98 18797.60 28098.86 24994.35 30296.21 31299.44 11197.45 20999.06 13698.88 19697.99 9599.28 36694.38 30899.58 20399.18 238
testdata98.09 24198.93 23395.40 27098.80 27890.08 37997.45 30298.37 27295.26 23999.70 25093.58 32898.95 30599.17 242
lupinMVS97.06 26296.86 25797.65 27698.88 24793.89 32195.48 34597.97 32393.53 34398.16 24997.58 32693.81 27999.91 6096.77 20399.57 20799.17 242
Patchmtry97.35 23996.97 25098.50 20997.31 37696.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35199.85 12295.96 25899.83 9399.17 242
sss97.21 25196.93 25198.06 24698.83 25595.22 27696.75 28698.48 30394.49 32397.27 30997.90 30992.77 29699.80 18696.57 21999.32 25399.16 245
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 31999.30 16797.58 19198.10 25698.24 28398.25 6999.34 35696.69 21299.65 17999.12 247
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33792.85 34095.15 35599.31 15997.25 22798.74 19798.78 21490.07 31899.78 21097.19 16499.80 11099.11 248
testing393.51 34692.09 35497.75 26898.60 29894.40 30097.32 25195.26 37197.56 19496.79 33495.50 37453.57 40799.77 21695.26 28398.97 30399.08 249
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 35796.07 35498.10 29495.39 23799.71 24792.61 34898.99 30099.08 249
QAPM97.31 24296.81 26398.82 15798.80 26497.49 18999.06 6399.19 20290.22 37797.69 28399.16 12396.91 16799.90 6590.89 37199.41 24199.07 251
PAPM_NR96.82 27696.32 28698.30 22899.07 20996.69 23297.48 24098.76 28395.81 29296.61 34096.47 35794.12 27499.17 37390.82 37297.78 35499.06 252
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34592.77 34294.71 36499.18 20697.27 22598.56 21998.74 22091.89 30699.69 25497.06 17799.81 10099.05 253
D2MVS97.84 20897.84 20097.83 25999.14 19694.74 28996.94 27498.88 26095.84 29198.89 17098.96 17594.40 26599.69 25497.55 14699.95 3299.05 253
c3_l97.36 23897.37 23197.31 30098.09 34193.25 33395.01 35899.16 21397.05 24298.77 19298.72 22392.88 29399.64 28596.93 18699.76 13599.05 253
PLCcopyleft94.65 1696.51 28695.73 29798.85 15498.75 26897.91 15996.42 30299.06 23090.94 37495.59 36097.38 33894.41 26499.59 30190.93 36998.04 35299.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31498.79 27997.23 23395.14 37298.24 28393.22 28599.84 13997.34 15799.84 8699.04 257
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
TSAR-MVS + GP.98.18 17897.98 18798.77 17098.71 27597.88 16196.32 30798.66 29296.33 27399.23 11998.51 25697.48 13799.40 34797.16 16699.46 23499.02 260
DIV-MVS_self_test97.02 26596.84 25997.58 28297.82 35394.03 31294.66 36799.16 21397.04 24398.63 20698.71 22488.69 32799.69 25497.00 17999.81 10099.01 261
GA-MVS95.86 30695.32 31597.49 29298.60 29894.15 30893.83 38497.93 32495.49 30196.68 33697.42 33683.21 36599.30 36296.22 24598.55 32999.01 261
OMC-MVS97.88 20097.49 22499.04 13098.89 24698.63 8996.94 27499.25 18795.02 31298.53 22498.51 25697.27 14799.47 33793.50 33199.51 22499.01 261
cl____97.02 26596.83 26097.58 28297.82 35394.04 31194.66 36799.16 21397.04 24398.63 20698.71 22488.68 32999.69 25497.00 17999.81 10099.00 264
pmmvs497.58 22597.28 23698.51 20798.84 25396.93 22495.40 34898.52 30193.60 34298.61 21098.65 23795.10 24499.60 29796.97 18499.79 11598.99 265
EPNet_dtu94.93 32694.78 32795.38 35993.58 40287.68 38696.78 28395.69 36997.35 21789.14 39898.09 29688.15 33499.49 33194.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 28895.77 29598.69 17999.48 12397.43 19497.84 19699.55 7281.42 39696.51 34498.58 24995.53 23199.67 26693.41 33399.58 20398.98 266
PVSNet_Blended96.88 27296.68 27097.47 29498.92 23793.77 32594.71 36499.43 11790.98 37397.62 28697.36 34096.82 17399.67 26694.73 29399.56 21098.98 266
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30596.57 21999.55 21398.97 269
PAPR95.29 31994.47 32897.75 26897.50 37195.14 27994.89 36198.71 29091.39 36995.35 37095.48 37594.57 26199.14 37684.95 38997.37 36498.97 269
EGC-MVSNET85.24 36680.54 36999.34 7399.77 2999.20 3499.08 5999.29 17512.08 40220.84 40399.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
thisisatest053095.27 32094.45 32997.74 27099.19 18194.37 30197.86 19490.20 39797.17 23798.22 24597.65 32273.53 39499.90 6596.90 19299.35 24998.95 272
mvs_anonymous97.83 21098.16 17096.87 32298.18 33691.89 35697.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34298.95 272
baseline195.96 30495.44 30997.52 28998.51 31393.99 31598.39 13196.09 36398.21 14298.40 23897.76 31686.88 33799.63 28895.42 28089.27 39998.95 272
CLD-MVS97.49 22997.16 24298.48 21099.07 20997.03 21794.71 36499.21 19694.46 32598.06 25997.16 34497.57 12499.48 33494.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 18998.14 17397.64 27898.58 30395.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 38797.55 14699.41 24198.94 276
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 34099.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 30895.39 31296.98 31696.77 38792.79 34194.40 37598.53 30094.59 32297.89 26998.17 28982.82 36999.24 36896.37 23699.03 29498.92 278
LS3D98.63 12198.38 14399.36 6497.25 37799.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15596.25 39598.69 8897.02 26999.12 22188.90 38497.83 27498.86 19989.51 32298.90 38591.92 35299.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
DPM-MVS96.32 29395.59 30398.51 20798.76 26697.21 20794.54 37398.26 31191.94 36296.37 34897.25 34293.06 29099.43 34391.42 36198.74 31598.89 282
test_yl96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31394.87 29098.32 33298.89 282
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31394.87 29098.32 33298.89 282
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21399.28 16096.78 23096.20 31399.27 18195.42 30398.28 24398.30 28093.16 28699.71 24794.99 28797.37 36498.87 286
Effi-MVS+98.02 18997.82 20198.62 18798.53 31097.19 20997.33 25099.68 4197.30 22296.68 33697.46 33498.56 5299.80 18696.63 21598.20 33898.86 287
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
PatchmatchNetpermissive95.58 31495.67 30095.30 36097.34 37587.32 38797.65 22196.65 35495.30 30797.07 31598.69 22884.77 35499.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 21297.72 20897.83 25998.81 26196.35 23997.30 25399.69 3694.61 32197.87 27098.05 29996.26 20298.32 39298.74 7798.18 33998.82 290
CL-MVSNet_self_test97.44 23497.22 23998.08 24498.57 30595.78 25894.30 37798.79 27996.58 26598.60 21298.19 28894.74 25999.64 28596.41 23598.84 31098.82 290
miper_ehance_all_eth97.06 26297.03 24897.16 31097.83 35293.06 33594.66 36799.09 22795.99 28798.69 19998.45 26592.73 29799.61 29696.79 20099.03 29498.82 290
MIMVSNet96.62 28396.25 29097.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34599.65 28291.65 35699.21 27298.82 290
hse-mvs297.46 23197.07 24698.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 33099.79 19998.11 11497.39 36398.81 294
GSMVS98.81 294
sam_mvs184.74 35598.81 294
SCA96.41 29296.66 27395.67 35198.24 33288.35 38295.85 33396.88 35296.11 28197.67 28498.67 23293.10 28899.85 12294.16 31099.22 27098.81 294
Patchmatch-RL test97.26 24697.02 24997.99 25299.52 10495.53 26496.13 31799.71 3397.47 20299.27 10899.16 12384.30 36099.62 29097.89 12899.77 12498.81 294
AUN-MVS96.24 29795.45 30898.60 19298.70 27997.22 20697.38 24697.65 33195.95 28895.53 36797.96 30782.11 37299.79 19996.31 24097.44 36098.80 299
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35593.86 32299.27 26298.79 300
tpm94.67 32894.34 33295.66 35297.68 36388.42 38197.88 18994.90 37294.46 32596.03 35698.56 25178.66 38499.79 19995.88 26095.01 39098.78 301
Patchmatch-test96.55 28496.34 28597.17 30898.35 32593.06 33598.40 13097.79 32697.33 21898.41 23498.67 23283.68 36499.69 25495.16 28599.31 25598.77 302
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
PMMVS96.51 28695.98 29298.09 24197.53 36795.84 25594.92 36098.84 27191.58 36596.05 35595.58 37195.68 22799.66 27795.59 27698.09 34698.76 304
test_method79.78 36779.50 37080.62 38380.21 40645.76 40970.82 39798.41 30731.08 40180.89 40297.71 31884.85 35397.37 39691.51 36080.03 40098.75 305
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
CHOSEN 280x42095.51 31795.47 30695.65 35398.25 33188.27 38393.25 38898.88 26093.53 34394.65 37897.15 34586.17 34399.93 4197.41 15499.93 4498.73 307
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
MVS_Test98.18 17898.36 14597.67 27498.48 31494.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31098.57 9098.90 30998.71 308
PVSNet93.40 1795.67 31195.70 29895.57 35498.83 25588.57 38092.50 39197.72 32892.69 35596.49 34796.44 35893.72 28299.43 34393.61 32699.28 26198.71 308
alignmvs97.35 23996.88 25698.78 16798.54 30898.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33599.55 31398.18 11198.96 30498.70 311
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33891.74 35797.92 18397.76 32790.23 37596.51 34498.91 18685.61 34899.85 12292.88 33996.90 37298.69 312
ADS-MVSNet95.24 32194.93 32596.18 34198.14 33890.10 37697.92 18397.32 33990.23 37596.51 34498.91 18685.61 34899.74 23492.88 33996.90 37298.69 312
MDTV_nov1_ep13_2view74.92 40797.69 21490.06 38097.75 28085.78 34793.52 32998.69 312
MSDG97.71 21597.52 22298.28 23098.91 24096.82 22694.42 37499.37 13297.65 18498.37 23998.29 28197.40 14099.33 35894.09 31599.22 27098.68 315
mvsany_test197.60 22297.54 22097.77 26497.72 35695.35 27195.36 34997.13 34394.13 33499.71 3399.33 9097.93 9899.30 36297.60 14598.94 30698.67 316
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
Syy-MVS96.04 30095.56 30597.49 29297.10 38094.48 29896.18 31596.58 35695.65 29594.77 37592.29 39791.27 31199.36 35298.17 11298.05 35098.63 318
myMVS_eth3d91.92 36390.45 36596.30 33697.10 38090.90 37196.18 31596.58 35695.65 29594.77 37592.29 39753.88 40699.36 35289.59 37798.05 35098.63 318
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39392.27 35393.69 38698.89 25991.14 37298.30 24197.35 34190.58 31599.58 30596.31 24099.03 29498.60 320
Effi-MVS+-dtu98.26 16997.90 19599.35 7098.02 34499.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
new_pmnet96.99 26996.76 26597.67 27498.72 27294.89 28595.95 32798.20 31492.62 35698.55 22198.54 25294.88 25199.52 32493.96 31899.44 23998.59 322
EIA-MVS98.00 19197.74 20598.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33895.55 37297.68 11299.80 18696.73 20899.27 26298.52 323
PatchMatch-RL97.24 24996.78 26498.61 19099.03 22097.83 16696.36 30599.06 23093.49 34597.36 30897.78 31495.75 22599.49 33193.44 33298.77 31498.52 323
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33894.47 29994.78 36393.24 38794.72 31989.56 39795.87 36878.57 38699.81 17996.91 18797.11 37198.46 325
canonicalmvs98.34 15898.26 15898.58 19498.46 31697.82 16998.96 7399.46 10499.19 6997.46 30195.46 37698.59 4999.46 33998.08 11798.71 31998.46 325
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 38199.41 3798.29 33598.45 327
TAPA-MVS96.21 1196.63 28295.95 29398.65 18198.93 23398.09 13696.93 27699.28 17883.58 39498.13 25397.78 31496.13 20599.40 34793.52 32999.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 27496.75 26697.08 31198.74 26993.33 33296.71 28898.26 31196.72 25998.44 23197.37 33995.20 24199.47 33791.89 35397.43 36198.44 329
WB-MVSnew95.73 31095.57 30496.23 34096.70 38890.70 37496.07 32093.86 38395.60 29797.04 31795.45 37896.00 21299.55 31391.04 36798.31 33498.43 330
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35697.71 32988.57 38597.71 28198.08 29779.39 38099.82 16696.19 24799.11 28898.43 330
DP-MVS Recon97.33 24196.92 25398.57 19699.09 20597.99 14996.79 28299.35 14193.18 34797.71 28198.07 29895.00 24799.31 36093.97 31799.13 28498.42 332
ETVMVS92.60 35591.08 36397.18 30697.70 36093.65 32996.54 29495.70 36896.51 26694.68 37792.39 39661.80 40499.50 32986.97 38497.41 36298.40 333
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31998.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 334
LF4IMVS97.90 19697.69 20998.52 20699.17 18997.66 18197.19 26499.47 10296.31 27597.85 27398.20 28796.71 18399.52 32494.62 29699.72 14998.38 334
Fast-Effi-MVS+97.67 21897.38 23098.57 19698.71 27597.43 19497.23 25899.45 10794.82 31896.13 35196.51 35498.52 5499.91 6096.19 24798.83 31198.37 336
test0.0.03 194.51 32993.69 33896.99 31596.05 39693.61 33094.97 35993.49 38496.17 27897.57 29294.88 38582.30 37099.01 38093.60 32794.17 39498.37 336
FE-MVS95.66 31294.95 32497.77 26498.53 31095.28 27399.40 1696.09 36393.11 34997.96 26599.26 10179.10 38399.77 21692.40 35098.71 31998.27 338
baseline293.73 34392.83 34996.42 33497.70 36091.28 36696.84 28189.77 39893.96 33992.44 39295.93 36679.14 38299.77 21692.94 33796.76 37698.21 339
thisisatest051594.12 33893.16 34596.97 31798.60 29892.90 33993.77 38590.61 39594.10 33596.91 32495.87 36874.99 39299.80 18694.52 29999.12 28798.20 340
EPMVS93.72 34493.27 34395.09 36396.04 39787.76 38598.13 15385.01 40394.69 32096.92 32298.64 24078.47 38899.31 36095.04 28696.46 37898.20 340
dp93.47 34793.59 34093.13 38096.64 38981.62 40497.66 21996.42 35992.80 35496.11 35298.64 24078.55 38799.59 30193.31 33492.18 39898.16 342
CNLPA97.17 25596.71 26898.55 20198.56 30698.05 14696.33 30698.93 25196.91 25097.06 31697.39 33794.38 26699.45 34091.66 35599.18 27898.14 343
dmvs_re95.98 30395.39 31297.74 27098.86 24997.45 19298.37 13395.69 36997.95 16296.56 34195.95 36590.70 31497.68 39588.32 38096.13 38398.11 344
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8596.94 35092.28 36095.17 37198.57 25089.90 32099.75 22991.20 36597.33 36898.10 345
CostFormer93.97 34093.78 33794.51 36697.53 36785.83 39297.98 17795.96 36589.29 38394.99 37498.63 24278.63 38599.62 29094.54 29896.50 37798.09 346
FA-MVS(test-final)96.99 26996.82 26197.50 29198.70 27994.78 28799.34 2096.99 34695.07 31198.48 22899.33 9088.41 33399.65 28296.13 25398.92 30898.07 347
AdaColmapbinary97.14 25796.71 26898.46 21298.34 32697.80 17296.95 27398.93 25195.58 29896.92 32297.66 32195.87 22299.53 32090.97 36899.14 28298.04 348
KD-MVS_2432*160092.87 35391.99 35695.51 35691.37 40389.27 37894.07 37998.14 31895.42 30397.25 31096.44 35867.86 39799.24 36891.28 36396.08 38498.02 349
miper_refine_blended92.87 35391.99 35695.51 35691.37 40389.27 37894.07 37998.14 31895.42 30397.25 31096.44 35867.86 39799.24 36891.28 36396.08 38498.02 349
TESTMET0.1,192.19 36191.77 36093.46 37696.48 39282.80 40194.05 38191.52 39394.45 32794.00 38694.88 38566.65 40099.56 31095.78 26898.11 34598.02 349
testing22291.96 36290.37 36696.72 33097.47 37292.59 34496.11 31894.76 37396.83 25392.90 39192.87 39457.92 40599.55 31386.93 38597.52 35798.00 352
PCF-MVS92.86 1894.36 33193.00 34898.42 21798.70 27997.56 18693.16 38999.11 22379.59 39797.55 29397.43 33592.19 30299.73 23979.85 39899.45 23697.97 353
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 26096.68 27098.32 22598.32 32797.16 21298.86 8199.37 13289.48 38196.29 35099.15 12796.56 18899.90 6592.90 33899.20 27397.89 354
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 32897.70 14299.73 14297.89 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 36590.30 36893.70 37497.72 35684.34 39990.24 39497.42 33490.20 37893.79 38893.09 39390.90 31398.89 38686.57 38772.76 40197.87 356
test-LLR93.90 34193.85 33594.04 36996.53 39084.62 39694.05 38192.39 38996.17 27894.12 38395.07 37982.30 37099.67 26695.87 26398.18 33997.82 357
test-mter92.33 35991.76 36194.04 36996.53 39084.62 39694.05 38192.39 38994.00 33894.12 38395.07 37965.63 40399.67 26695.87 26398.18 33997.82 357
tpm293.09 35192.58 35194.62 36597.56 36586.53 38997.66 21995.79 36786.15 39094.07 38598.23 28575.95 38999.53 32090.91 37096.86 37597.81 359
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15698.92 25492.31 35996.91 32499.37 8085.44 35199.81 17997.39 15597.36 36697.81 359
RPMNet97.02 26596.93 25197.30 30197.71 35894.22 30398.11 15699.30 16799.37 4596.91 32499.34 8886.72 33899.87 10197.53 14997.36 36697.81 359
tpmrst95.07 32395.46 30793.91 37197.11 37984.36 39897.62 22496.96 34894.98 31396.35 34998.80 21185.46 35099.59 30195.60 27596.23 38197.79 362
PAPM91.88 36490.34 36796.51 33298.06 34392.56 34592.44 39297.17 34186.35 38990.38 39696.01 36386.61 33999.21 37170.65 40295.43 38897.75 363
FPMVS93.44 34892.23 35297.08 31199.25 16697.86 16395.61 33997.16 34292.90 35293.76 38998.65 23775.94 39095.66 39979.30 39997.49 35897.73 364
MAR-MVS96.47 29095.70 29898.79 16497.92 34899.12 5798.28 13998.60 29792.16 36195.54 36696.17 36294.77 25899.52 32489.62 37698.23 33697.72 365
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 18897.86 19998.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37398.41 6099.88 8496.27 24399.24 26797.71 366
thres600view794.45 33093.83 33696.29 33799.06 21391.53 35997.99 17694.24 38098.34 12997.44 30395.01 38179.84 37699.67 26684.33 39098.23 33697.66 367
thres40094.14 33793.44 34196.24 33998.93 23391.44 36197.60 22794.29 37897.94 16397.10 31394.31 38979.67 37899.62 29083.05 39298.08 34797.66 367
IB-MVS91.63 1992.24 36090.90 36496.27 33897.22 37891.24 36794.36 37693.33 38692.37 35892.24 39394.58 38866.20 40299.89 7593.16 33694.63 39297.66 367
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 32595.25 31694.33 36796.39 39485.87 39098.08 16096.83 35395.46 30295.51 36898.69 22885.91 34699.53 32094.16 31096.23 38197.58 370
cascas94.79 32794.33 33396.15 34596.02 39892.36 35192.34 39399.26 18685.34 39295.08 37394.96 38492.96 29298.53 39094.41 30798.59 32797.56 371
PatchT96.65 28196.35 28497.54 28797.40 37395.32 27297.98 17796.64 35599.33 5096.89 32899.42 7484.32 35999.81 17997.69 14497.49 35897.48 372
TR-MVS95.55 31595.12 32096.86 32597.54 36693.94 31696.49 29896.53 35894.36 33097.03 31996.61 35394.26 27099.16 37486.91 38696.31 38097.47 373
dmvs_testset92.94 35292.21 35395.13 36198.59 30190.99 37097.65 22192.09 39196.95 24794.00 38693.55 39292.34 30196.97 39872.20 40192.52 39697.43 374
JIA-IIPM95.52 31695.03 32197.00 31496.85 38594.03 31296.93 27695.82 36699.20 6594.63 37999.71 1783.09 36699.60 29794.42 30494.64 39197.36 375
BH-w/o95.13 32294.89 32695.86 34698.20 33591.31 36495.65 33897.37 33593.64 34196.52 34395.70 37093.04 29199.02 37888.10 38195.82 38697.24 376
tpm cat193.29 34993.13 34793.75 37397.39 37484.74 39597.39 24597.65 33183.39 39594.16 38298.41 26782.86 36899.39 34991.56 35995.35 38997.14 377
xiu_mvs_v1_base_debu97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
xiu_mvs_v1_base97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
xiu_mvs_v1_base_debi97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
PMVScopyleft91.26 2097.86 20297.94 19197.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39391.59 35899.67 17396.82 381
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 30995.60 30296.17 34297.53 36792.75 34398.07 16298.31 31091.22 37094.25 38196.68 35295.53 23199.03 37791.64 35797.18 36996.74 382
MVS-HIRNet94.32 33295.62 30190.42 38298.46 31675.36 40696.29 30889.13 39995.25 30895.38 36999.75 1192.88 29399.19 37294.07 31699.39 24396.72 383
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32397.15 21397.37 24798.62 29683.86 39398.65 20498.37 27294.29 26999.68 26388.41 37998.62 32696.60 384
thres100view90094.19 33593.67 33995.75 35099.06 21391.35 36398.03 16894.24 38098.33 13097.40 30594.98 38379.84 37699.62 29083.05 39298.08 34796.29 385
tfpn200view994.03 33993.44 34195.78 34998.93 23391.44 36197.60 22794.29 37897.94 16397.10 31394.31 38979.67 37899.62 29083.05 39298.08 34796.29 385
MVS93.19 35092.09 35496.50 33396.91 38394.03 31298.07 16298.06 32268.01 39894.56 38096.48 35695.96 21999.30 36283.84 39196.89 37496.17 387
gg-mvs-nofinetune92.37 35891.20 36295.85 34795.80 39992.38 35099.31 2781.84 40599.75 591.83 39499.74 1368.29 39699.02 37887.15 38397.12 37096.16 388
xiu_mvs_v2_base97.16 25697.49 22496.17 34298.54 30892.46 34795.45 34698.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 389
PS-MVSNAJ97.08 26197.39 22996.16 34498.56 30692.46 34795.24 35298.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 390
E-PMN94.17 33694.37 33193.58 37596.86 38485.71 39390.11 39597.07 34498.17 14997.82 27697.19 34384.62 35698.94 38289.77 37597.68 35696.09 391
EMVS93.83 34294.02 33493.23 37996.83 38684.96 39489.77 39696.32 36097.92 16597.43 30496.36 36186.17 34398.93 38387.68 38297.73 35595.81 392
MVEpermissive83.40 2292.50 35691.92 35894.25 36898.83 25591.64 35892.71 39083.52 40495.92 28986.46 40195.46 37695.20 24195.40 40080.51 39798.64 32495.73 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 34493.14 34695.46 35898.66 29291.29 36596.61 29394.63 37597.39 21396.83 33193.71 39179.88 37599.56 31082.40 39598.13 34495.54 394
API-MVS97.04 26496.91 25597.42 29797.88 35198.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37590.16 37499.02 29794.88 395
GG-mvs-BLEND94.76 36494.54 40192.13 35599.31 2780.47 40688.73 39991.01 39967.59 39998.16 39482.30 39694.53 39393.98 396
DeepMVS_CXcopyleft93.44 37798.24 33294.21 30594.34 37764.28 39991.34 39594.87 38789.45 32492.77 40277.54 40093.14 39593.35 397
tmp_tt78.77 36878.73 37178.90 38458.45 40774.76 40894.20 37878.26 40739.16 40086.71 40092.82 39580.50 37475.19 40386.16 38892.29 39786.74 398
wuyk23d96.06 29997.62 21791.38 38198.65 29598.57 9698.85 8296.95 34996.86 25299.90 1299.16 12399.18 1798.40 39189.23 37899.77 12477.18 399
test12317.04 37120.11 3747.82 38510.25 4094.91 41094.80 3624.47 4104.93 40310.00 40524.28 4029.69 4083.64 40410.14 40312.43 40314.92 400
testmvs17.12 37020.53 3736.87 38612.05 4084.20 41193.62 3876.73 4094.62 40410.41 40424.33 4018.28 4093.56 4059.69 40415.07 40212.86 401
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k24.66 36932.88 3720.00 3870.00 4100.00 4120.00 39899.10 2250.00 4050.00 40697.58 32699.21 160.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas8.17 37210.90 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40598.07 860.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re8.12 37310.83 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40697.48 3320.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS90.90 37191.37 362
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
eth-test20.00 410
eth-test0.00 410
ZD-MVS99.01 22198.84 7599.07 22994.10 33598.05 26198.12 29296.36 19999.86 11092.70 34699.19 276
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 334
9.1497.78 20299.07 20997.53 23599.32 15495.53 30098.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
save fliter99.11 20097.97 15396.53 29699.02 24198.24 139
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
test_part299.36 14899.10 6099.05 141
sam_mvs84.29 361
MTGPAbinary99.20 198
test_post197.59 22920.48 40483.07 36799.66 27794.16 310
test_post21.25 40383.86 36399.70 250
patchmatchnet-post98.77 21684.37 35899.85 122
MTMP97.93 18191.91 392
gm-plane-assit94.83 40081.97 40388.07 38794.99 38299.60 29791.76 354
TEST998.71 27598.08 14095.96 32599.03 23891.40 36895.85 35797.53 32896.52 19099.76 222
test_898.67 28798.01 14895.91 33099.02 24191.64 36395.79 35997.50 33196.47 19299.76 222
agg_prior98.68 28697.99 14999.01 24495.59 36099.77 216
test_prior497.97 15395.86 331
test_prior295.74 33696.48 26996.11 35297.63 32495.92 22194.16 31099.20 273
旧先验295.76 33588.56 38697.52 29699.66 27794.48 300
新几何295.93 328
原ACMM295.53 342
testdata299.79 19992.80 343
segment_acmp97.02 162
testdata195.44 34796.32 274
plane_prior799.19 18197.87 162
plane_prior698.99 22597.70 18094.90 248
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 25999.36 247
n20.00 411
nn0.00 411
door-mid99.57 61
test1198.87 262
door99.41 121
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 30896.05 28395.55 363
ACMP_Plane98.67 28796.29 30896.05 28395.55 363
BP-MVS92.82 341
HQP3-MVS99.04 23699.26 265
HQP2-MVS93.84 277
NP-MVS98.84 25397.39 19696.84 349
MDTV_nov1_ep1395.22 31797.06 38283.20 40097.74 20996.16 36194.37 32996.99 32098.83 20583.95 36299.53 32093.90 31997.95 353
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190