This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
FMVS299.12 3999.41 1498.25 22999.76 2895.07 27799.05 6499.94 197.78 16399.82 1099.84 298.56 3899.71 24499.96 199.96 1599.97 1
FMVS98.67 10098.87 5598.05 24699.72 3795.59 25798.51 11099.81 996.30 25999.78 1299.82 496.14 19698.63 37499.82 299.93 3299.95 2
PS-MVSNAJss99.46 1299.49 1099.35 7499.90 498.15 13699.20 4499.65 2699.48 2799.92 499.71 1598.07 7299.96 1199.53 11100.00 199.93 3
test_djsdf99.52 999.51 999.53 3799.86 1498.74 8799.39 1699.56 4899.11 6399.70 1899.73 1399.00 1599.97 499.26 2399.98 999.89 4
RRT_MVS99.09 4098.94 5199.55 2699.87 1298.82 8299.48 998.16 31099.49 2699.59 3299.65 2294.79 24999.95 1799.45 1599.96 1599.88 5
mvs_tets99.63 599.67 599.49 5299.88 998.61 9899.34 1999.71 1599.27 5099.90 599.74 1199.68 299.97 499.55 1099.99 599.88 5
jajsoiax99.58 699.61 799.48 5599.87 1298.61 9899.28 3699.66 2599.09 7399.89 799.68 1799.53 499.97 499.50 1299.99 599.87 7
EU-MVSNet97.66 20498.50 10395.13 34499.63 5785.84 37298.35 12898.21 30698.23 13199.54 3599.46 5195.02 23899.68 26098.24 8599.87 6299.87 7
UA-Net99.47 1199.40 1599.70 299.49 9499.29 2099.80 399.72 1499.82 399.04 12399.81 598.05 7599.96 1198.85 4999.99 599.86 9
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 399.98 199.99 199.96 199.77 1100.00 199.81 3100.00 199.85 10
mvsany_test98.87 6598.92 5398.74 17999.38 12096.94 22598.58 10099.10 21396.49 25099.96 299.81 598.18 6499.45 33298.97 4299.79 9699.83 11
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6699.34 1999.69 1898.93 9099.65 2699.72 1498.93 1999.95 1799.11 32100.00 199.82 12
ANet_high99.57 799.67 599.28 8899.89 698.09 14099.14 5299.93 299.82 399.93 399.81 599.17 1299.94 2699.31 20100.00 199.82 12
PS-CasMVS99.40 1899.33 2199.62 699.71 3999.10 6399.29 3299.53 6199.53 2499.46 4899.41 6198.23 5799.95 1798.89 4799.95 1999.81 14
FC-MVSNet-test99.27 2599.25 2699.34 7799.77 2598.37 11699.30 3199.57 4199.61 1999.40 6099.50 4497.12 14599.85 11699.02 3999.94 2899.80 15
CP-MVSNet99.21 3299.09 4099.56 2499.65 5298.96 7399.13 5399.34 12899.42 3599.33 7499.26 8397.01 15399.94 2698.74 5699.93 3299.79 16
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1799.69 499.58 3499.90 299.86 899.78 899.58 399.95 1799.00 4099.95 1999.78 17
CVMVSNet96.25 28697.21 22593.38 36099.10 18480.56 38697.20 24098.19 30996.94 23399.00 12999.02 12989.50 30899.80 18196.36 21899.59 18299.78 17
Anonymous2023121199.27 2599.27 2599.26 9499.29 13898.18 13299.49 899.51 6599.70 899.80 1199.68 1796.84 16199.83 14899.21 2899.91 4899.77 19
PEN-MVS99.41 1799.34 2099.62 699.73 3199.14 5599.29 3299.54 5799.62 1799.56 3399.42 5898.16 6899.96 1198.78 5299.93 3299.77 19
WR-MVS_H99.33 2399.22 2899.65 599.71 3999.24 2699.32 2299.55 5299.46 3099.50 4499.34 7297.30 13399.93 3198.90 4599.93 3299.77 19
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1699.11 6299.90 199.78 1099.63 1499.78 1299.67 1999.48 699.81 17299.30 2299.97 1299.77 19
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
patch_mono-298.51 12898.63 8598.17 23599.38 12094.78 28297.36 22799.69 1898.16 14198.49 21099.29 7897.06 14899.97 498.29 8499.91 4899.76 23
nrg03099.40 1899.35 1899.54 3099.58 6099.13 5898.98 7199.48 7799.68 999.46 4899.26 8398.62 3499.73 23599.17 3199.92 4299.76 23
FIs99.14 3599.09 4099.29 8599.70 4598.28 12299.13 5399.52 6499.48 2799.24 9499.41 6196.79 16799.82 15898.69 6099.88 5999.76 23
v7n99.53 899.57 899.41 6599.88 998.54 10699.45 1099.61 3099.66 1199.68 2299.66 2098.44 4599.95 1799.73 499.96 1599.75 26
APDe-MVS98.99 4898.79 6499.60 1399.21 15399.15 5098.87 7799.48 7797.57 17899.35 7199.24 8897.83 8899.89 6497.88 10899.70 13999.75 26
test_part197.91 18097.46 21099.27 9198.80 25098.18 13299.07 6099.36 11699.75 599.63 2999.49 4782.20 35799.89 6498.87 4899.95 1999.74 28
bld_raw_dy_0_6499.07 4399.00 4799.29 8599.85 1698.18 13299.11 5699.40 10399.33 4499.38 6499.44 5695.21 23399.97 499.31 2099.98 999.73 29
DTE-MVSNet99.43 1599.35 1899.66 499.71 3999.30 1999.31 2699.51 6599.64 1299.56 3399.46 5198.23 5799.97 498.78 5299.93 3299.72 30
MSC_two_6792asdad99.32 8298.43 30598.37 11698.86 26099.89 6497.14 14799.60 17899.71 31
No_MVS99.32 8298.43 30598.37 11698.86 26099.89 6497.14 14799.60 17899.71 31
PMMVS298.07 17098.08 16498.04 24799.41 11794.59 29194.59 35399.40 10397.50 18498.82 16898.83 18696.83 16399.84 13397.50 12999.81 8199.71 31
Baseline_NR-MVSNet98.98 5298.86 5899.36 6999.82 2198.55 10397.47 22099.57 4199.37 3999.21 9899.61 2796.76 17099.83 14898.06 9699.83 7499.71 31
XXY-MVS99.14 3599.15 3599.10 11899.76 2897.74 18398.85 8099.62 2898.48 11599.37 6799.49 4798.75 2699.86 10198.20 8899.80 9199.71 31
test_0728_THIRD98.17 13899.08 11499.02 12997.89 8599.88 7597.07 15399.71 13499.70 36
MSP-MVS98.40 14098.00 17099.61 999.57 6499.25 2598.57 10199.35 12297.55 18199.31 8297.71 30694.61 25299.88 7596.14 23199.19 26599.70 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.24 3199.15 3599.49 5299.83 1998.85 7799.41 1399.55 5299.54 2399.40 6099.52 4295.86 21499.91 4999.32 1999.95 1999.70 36
dcpmvs_298.78 7799.11 3797.78 25999.56 7193.67 31899.06 6299.86 699.50 2599.66 2399.26 8397.21 14399.99 298.00 10199.91 4899.68 39
test_0728_SECOND99.60 1399.50 8799.23 2798.02 16299.32 13599.88 7596.99 15999.63 16799.68 39
OurMVSNet-221017-099.37 2199.31 2399.53 3799.91 398.98 6899.63 699.58 3499.44 3299.78 1299.76 996.39 18899.92 3999.44 1699.92 4299.68 39
CHOSEN 1792x268897.49 21597.14 23098.54 20399.68 4896.09 24696.50 28299.62 2891.58 34598.84 16398.97 14792.36 29099.88 7596.76 18299.95 1999.67 42
IU-MVS99.49 9499.15 5098.87 25592.97 32999.41 5796.76 18299.62 17099.66 43
test_241102_TWO99.30 15198.03 14699.26 8999.02 12997.51 11899.88 7596.91 16599.60 17899.66 43
DPE-MVScopyleft98.59 11498.26 14199.57 1899.27 14199.15 5097.01 25199.39 10697.67 16999.44 5298.99 14197.53 11599.89 6495.40 26399.68 15099.66 43
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1399.47 1299.36 6999.80 2298.58 10199.27 3899.57 4199.39 3799.75 1599.62 2599.17 1299.83 14899.06 3599.62 17099.66 43
EI-MVSNet-UG-set98.69 9398.71 7398.62 18899.10 18496.37 23997.23 23698.87 25599.20 5599.19 10098.99 14197.30 13399.85 11698.77 5599.79 9699.65 47
pmmvs699.67 399.70 399.60 1399.90 499.27 2399.53 799.76 1299.64 1299.84 999.83 399.50 599.87 9299.36 1799.92 4299.64 48
EI-MVSNet-Vis-set98.68 9798.70 7698.63 18699.09 18796.40 23897.23 23698.86 26099.20 5599.18 10498.97 14797.29 13599.85 11698.72 5799.78 10199.64 48
ACMH96.65 799.25 2799.24 2799.26 9499.72 3798.38 11599.07 6099.55 5298.30 12399.65 2699.45 5599.22 999.76 22098.44 7599.77 10599.64 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 5898.81 6399.28 8899.21 15398.45 11298.46 11899.33 13399.63 1499.48 4599.15 10697.23 14199.75 22797.17 14299.66 16199.63 51
test111196.49 27896.82 24895.52 33899.42 11587.08 36999.22 4187.14 38299.11 6399.46 4899.58 3188.69 31299.86 10198.80 5199.95 1999.62 52
VPA-MVSNet99.30 2499.30 2499.28 8899.49 9498.36 11999.00 6899.45 8899.63 1499.52 4099.44 5698.25 5599.88 7599.09 3399.84 6899.62 52
LPG-MVS_test98.71 8898.46 11299.47 5899.57 6498.97 6998.23 13699.48 7796.60 24699.10 11199.06 11698.71 2999.83 14895.58 25999.78 10199.62 52
LGP-MVS_train99.47 5899.57 6498.97 6999.48 7796.60 24699.10 11199.06 11698.71 2999.83 14895.58 25999.78 10199.62 52
Test_1112_low_res96.99 25796.55 26798.31 22599.35 13195.47 26395.84 31599.53 6191.51 34796.80 31798.48 24991.36 29799.83 14896.58 19699.53 20499.62 52
v1098.97 5399.11 3798.55 20099.44 11096.21 24398.90 7599.55 5298.73 10099.48 4599.60 2996.63 17799.83 14899.70 599.99 599.61 57
Regformer-498.73 8698.68 7998.89 15399.02 20497.22 21097.17 24499.06 21999.21 5299.17 10598.85 18097.45 12599.86 10198.48 7399.70 13999.60 58
v899.01 4699.16 3198.57 19599.47 10496.31 24198.90 7599.47 8399.03 7999.52 4099.57 3296.93 15799.81 17299.60 699.98 999.60 58
EI-MVSNet98.40 14098.51 10198.04 24799.10 18494.73 28597.20 24098.87 25598.97 8599.06 11699.02 12996.00 20399.80 18198.58 6499.82 7799.60 58
SixPastTwentyTwo98.75 8398.62 8799.16 10999.83 1997.96 16199.28 3698.20 30799.37 3999.70 1899.65 2292.65 28899.93 3199.04 3799.84 6899.60 58
IterMVS-LS98.55 12098.70 7698.09 23999.48 10294.73 28597.22 23999.39 10698.97 8599.38 6499.31 7796.00 20399.93 3198.58 6499.97 1299.60 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 24096.60 26598.96 14399.62 5997.28 20695.17 33599.50 6794.21 31199.01 12798.32 26686.61 32499.99 297.10 15199.84 6899.60 58
ACMMP_NAP98.75 8398.48 10899.57 1899.58 6099.29 2097.82 18299.25 17096.94 23398.78 17199.12 11098.02 7699.84 13397.13 14999.67 15699.59 64
VPNet98.87 6598.83 6099.01 13999.70 4597.62 19198.43 12199.35 12299.47 2999.28 8399.05 12396.72 17399.82 15898.09 9499.36 23699.59 64
WR-MVS98.40 14098.19 14999.03 13599.00 20797.65 18896.85 26398.94 24298.57 11298.89 15198.50 24495.60 22199.85 11697.54 12699.85 6499.59 64
HPM-MVScopyleft98.79 7498.53 9899.59 1799.65 5299.29 2099.16 5099.43 9796.74 24198.61 19298.38 25898.62 3499.87 9296.47 20999.67 15699.59 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 4899.01 4698.94 14699.50 8797.47 19698.04 15999.59 3298.15 14299.40 6099.36 6798.58 3799.76 22098.78 5299.68 15099.59 64
Vis-MVSNetpermissive99.34 2299.36 1799.27 9199.73 3198.26 12399.17 4999.78 1099.11 6399.27 8599.48 4998.82 2399.95 1798.94 4399.93 3299.59 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 11598.23 14599.60 1399.69 4799.35 1497.16 24699.38 10894.87 29798.97 13598.99 14198.01 7799.88 7597.29 13799.70 13999.58 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 9398.40 12299.54 3099.53 8099.17 4198.52 10699.31 14197.46 19298.44 21498.51 24097.83 8899.88 7596.46 21099.58 18899.58 70
ACMMPR98.70 9198.42 12099.54 3099.52 8299.14 5598.52 10699.31 14197.47 18798.56 20298.54 23697.75 9599.88 7596.57 19899.59 18299.58 70
PGM-MVS98.66 10198.37 12899.55 2699.53 8099.18 4098.23 13699.49 7597.01 23198.69 18198.88 17398.00 7899.89 6495.87 24399.59 18299.58 70
SteuartSystems-ACMMP98.79 7498.54 9799.54 3099.73 3199.16 4598.23 13699.31 14197.92 15398.90 14898.90 16498.00 7899.88 7596.15 23099.72 12999.58 70
Skip Steuart: Steuart Systems R&D Blog.
Regformer-398.61 10998.61 9098.63 18699.02 20496.53 23697.17 24498.84 26499.13 6299.10 11198.85 18097.24 14099.79 19498.41 7899.70 13999.57 75
TranMVSNet+NR-MVSNet99.17 3399.07 4399.46 6099.37 12698.87 7698.39 12499.42 10099.42 3599.36 6999.06 11698.38 4899.95 1798.34 8199.90 5599.57 75
mPP-MVS98.64 10498.34 13299.54 3099.54 7899.17 4198.63 9399.24 17597.47 18798.09 24198.68 21197.62 10699.89 6496.22 22599.62 17099.57 75
PVSNet_Blended_VisFu98.17 16598.15 15698.22 23299.73 3195.15 27397.36 22799.68 2294.45 30698.99 13099.27 8196.87 16099.94 2697.13 14999.91 4899.57 75
1112_ss97.29 23296.86 24498.58 19399.34 13396.32 24096.75 27099.58 3493.14 32796.89 31297.48 32192.11 29399.86 10196.91 16599.54 20099.57 75
zzz-MVS98.79 7498.52 9999.61 999.67 4999.36 1297.33 22999.20 18198.83 9898.89 15198.90 16496.98 15599.92 3997.16 14399.70 13999.56 80
MTAPA98.88 6498.64 8499.61 999.67 4999.36 1298.43 12199.20 18198.83 9898.89 15198.90 16496.98 15599.92 3997.16 14399.70 13999.56 80
XVS98.72 8798.45 11499.53 3799.46 10599.21 2998.65 9199.34 12898.62 10697.54 27898.63 22597.50 11999.83 14896.79 17899.53 20499.56 80
pm-mvs199.44 1399.48 1199.33 8099.80 2298.63 9599.29 3299.63 2799.30 4899.65 2699.60 2999.16 1499.82 15899.07 3499.83 7499.56 80
X-MVStestdata94.32 31992.59 33799.53 3799.46 10599.21 2998.65 9199.34 12898.62 10697.54 27845.85 38297.50 11999.83 14896.79 17899.53 20499.56 80
HPM-MVS_fast99.01 4698.82 6199.57 1899.71 3999.35 1499.00 6899.50 6797.33 20498.94 14498.86 17798.75 2699.82 15897.53 12799.71 13499.56 80
K. test v398.00 17597.66 19499.03 13599.79 2497.56 19299.19 4892.47 37299.62 1799.52 4099.66 2089.61 30699.96 1199.25 2599.81 8199.56 80
CP-MVS98.70 9198.42 12099.52 4299.36 12799.12 6098.72 8699.36 11697.54 18298.30 22498.40 25497.86 8799.89 6496.53 20699.72 12999.56 80
ZNCC-MVS98.68 9798.40 12299.54 3099.57 6499.21 2998.46 11899.29 15897.28 21098.11 23998.39 25698.00 7899.87 9296.86 17599.64 16499.55 88
v119298.60 11198.66 8298.41 21699.27 14195.88 25197.52 21499.36 11697.41 19799.33 7499.20 9396.37 19199.82 15899.57 899.92 4299.55 88
v124098.55 12098.62 8798.32 22399.22 15195.58 25897.51 21699.45 8897.16 22499.45 5199.24 8896.12 19899.85 11699.60 699.88 5999.55 88
UGNet98.53 12598.45 11498.79 16797.94 33496.96 22399.08 5798.54 29299.10 7096.82 31699.47 5096.55 18099.84 13398.56 6999.94 2899.55 88
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250692.39 34191.89 34493.89 35499.38 12082.28 38399.32 2266.03 39099.08 7598.77 17499.57 3266.26 38799.84 13398.71 5899.95 1999.54 92
ECVR-MVScopyleft96.42 28196.61 26395.85 33099.38 12088.18 36599.22 4186.00 38499.08 7599.36 6999.57 3288.47 31799.82 15898.52 7099.95 1999.54 92
testtj97.79 19797.25 22199.42 6299.03 20298.85 7797.78 18499.18 19095.83 27598.12 23798.50 24495.50 22699.86 10192.23 33899.07 28199.54 92
v14419298.54 12398.57 9598.45 21299.21 15395.98 24897.63 20199.36 11697.15 22699.32 8099.18 9695.84 21599.84 13399.50 1299.91 4899.54 92
v192192098.54 12398.60 9298.38 21999.20 15795.76 25697.56 21099.36 11697.23 21999.38 6499.17 10096.02 20199.84 13399.57 899.90 5599.54 92
MP-MVScopyleft98.46 13398.09 16199.54 3099.57 6499.22 2898.50 11299.19 18697.61 17597.58 27498.66 21697.40 12899.88 7594.72 27699.60 17899.54 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2099.32 2299.55 2699.86 1499.19 3999.41 1399.59 3299.59 2099.71 1799.57 3297.12 14599.90 5499.21 2899.87 6299.54 92
ACMMPcopyleft98.75 8398.50 10399.52 4299.56 7199.16 4598.87 7799.37 11297.16 22498.82 16899.01 13897.71 9799.87 9296.29 22299.69 14599.54 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 14098.03 16899.51 4699.16 17199.21 2998.05 15799.22 17894.16 31398.98 13299.10 11397.52 11799.79 19496.45 21199.64 16499.53 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 8898.44 11699.51 4699.49 9499.16 4598.52 10699.31 14197.47 18798.58 19898.50 24497.97 8299.85 11696.57 19899.59 18299.53 100
#test#98.50 12998.16 15499.51 4699.49 9499.16 4598.03 16099.31 14196.30 25998.58 19898.50 24497.97 8299.85 11695.68 25399.59 18299.53 100
UniMVSNet_NR-MVSNet98.86 6898.68 7999.40 6799.17 16998.74 8797.68 19699.40 10399.14 6199.06 11698.59 23296.71 17499.93 3198.57 6699.77 10599.53 100
GST-MVS98.61 10998.30 13799.52 4299.51 8499.20 3598.26 13499.25 17097.44 19598.67 18398.39 25697.68 9899.85 11696.00 23599.51 21099.52 104
Regformer-298.60 11198.46 11299.02 13898.85 23897.71 18596.91 26099.09 21598.98 8499.01 12798.64 22197.37 13099.84 13397.75 12099.57 19299.52 104
TDRefinement99.42 1699.38 1699.55 2699.76 2899.33 1899.68 599.71 1599.38 3899.53 3899.61 2798.64 3299.80 18198.24 8599.84 6899.52 104
v114498.60 11198.66 8298.41 21699.36 12795.90 25097.58 20899.34 12897.51 18399.27 8599.15 10696.34 19399.80 18199.47 1499.93 3299.51 107
Regformer-198.55 12098.44 11698.87 15598.85 23897.29 20496.91 26098.99 23998.97 8598.99 13098.64 22197.26 13999.81 17297.79 11399.57 19299.51 107
v2v48298.56 11698.62 8798.37 22099.42 11595.81 25497.58 20899.16 19997.90 15599.28 8399.01 13895.98 20799.79 19499.33 1899.90 5599.51 107
CPTT-MVS97.84 19397.36 21599.27 9199.31 13498.46 11198.29 13199.27 16494.90 29697.83 25798.37 25994.90 24099.84 13393.85 30699.54 20099.51 107
DU-MVS98.82 7098.63 8599.39 6899.16 17198.74 8797.54 21299.25 17098.84 9799.06 11698.76 19996.76 17099.93 3198.57 6699.77 10599.50 111
NR-MVSNet98.95 5698.82 6199.36 6999.16 17198.72 9299.22 4199.20 18199.10 7099.72 1698.76 19996.38 19099.86 10198.00 10199.82 7799.50 111
abl_698.99 4898.78 6599.61 999.45 10899.46 698.60 9699.50 6798.59 10899.24 9499.04 12598.54 4099.89 6496.45 21199.62 17099.50 111
ACMH+96.62 999.08 4299.00 4799.33 8099.71 3998.83 8098.60 9699.58 3499.11 6399.53 3899.18 9698.81 2499.67 26396.71 18999.77 10599.50 111
DVP-MVS++98.90 6298.70 7699.51 4698.43 30599.15 5099.43 1199.32 13598.17 13899.26 8999.02 12998.18 6499.88 7597.07 15399.45 22399.49 115
PC_three_145293.27 32599.40 6098.54 23698.22 6097.00 38095.17 26599.45 22399.49 115
GeoE99.05 4498.99 5099.25 9799.44 11098.35 12098.73 8599.56 4898.42 11798.91 14798.81 19198.94 1899.91 4998.35 8099.73 12299.49 115
h-mvs3397.77 19897.33 21999.10 11899.21 15397.84 17198.35 12898.57 29199.11 6398.58 19899.02 12988.65 31599.96 1198.11 9196.34 36399.49 115
IterMVS-SCA-FT97.85 19298.18 15096.87 30999.27 14191.16 35595.53 32599.25 17099.10 7099.41 5799.35 6893.10 27999.96 1198.65 6299.94 2899.49 115
new-patchmatchnet98.35 14598.74 6897.18 29599.24 14692.23 34096.42 28799.48 7798.30 12399.69 2099.53 4097.44 12699.82 15898.84 5099.77 10599.49 115
APD-MVScopyleft98.10 16797.67 19199.42 6299.11 18098.93 7497.76 18999.28 16194.97 29498.72 18098.77 19797.04 14999.85 11693.79 30799.54 20099.49 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 14998.04 16799.07 12599.56 7197.83 17299.29 3298.07 31499.03 7998.59 19699.13 10992.16 29299.90 5496.87 17399.68 15099.49 115
DeepC-MVS97.60 498.97 5398.93 5299.10 11899.35 13197.98 15698.01 16599.46 8597.56 18099.54 3599.50 4498.97 1699.84 13398.06 9699.92 4299.49 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 6098.73 6999.48 5599.55 7599.14 5598.07 15399.37 11297.62 17399.04 12398.96 15098.84 2299.79 19497.43 13199.65 16299.49 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test117298.76 8198.49 10699.57 1899.18 16799.37 1198.39 12499.31 14198.43 11698.90 14898.88 17397.49 12299.86 10196.43 21399.37 23599.48 125
DVP-MVScopyleft98.77 8098.52 9999.52 4299.50 8799.21 2998.02 16298.84 26497.97 14999.08 11499.02 12997.61 10799.88 7596.99 15999.63 16799.48 125
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 8898.43 11899.57 1899.18 16799.35 1498.36 12799.29 15898.29 12698.88 15698.85 18097.53 11599.87 9296.14 23199.31 24499.48 125
TSAR-MVS + MP.98.63 10698.49 10699.06 13099.64 5597.90 16698.51 11098.94 24296.96 23299.24 9498.89 17297.83 8899.81 17296.88 17299.49 21899.48 125
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 16097.95 17399.01 13999.58 6097.74 18399.01 6697.29 33499.67 1098.97 13599.50 4490.45 30199.80 18197.88 10899.20 26199.48 125
IterMVS97.73 19998.11 16096.57 31699.24 14690.28 35695.52 32799.21 17998.86 9599.33 7499.33 7493.11 27899.94 2698.49 7299.94 2899.48 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 16297.90 17899.08 12299.57 6497.97 15799.31 2698.32 30299.01 8198.98 13299.03 12891.59 29699.79 19495.49 26199.80 9199.48 125
ACMP95.32 1598.41 13898.09 16199.36 6999.51 8498.79 8597.68 19699.38 10895.76 27798.81 17098.82 18998.36 4999.82 15894.75 27399.77 10599.48 125
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 17597.63 19799.10 11899.24 14698.17 13596.89 26298.73 28295.66 27897.92 25097.70 30897.17 14499.66 27396.18 22999.23 25799.47 133
3Dnovator+97.89 398.69 9398.51 10199.24 9998.81 24898.40 11399.02 6599.19 18698.99 8298.07 24299.28 7997.11 14799.84 13396.84 17699.32 24299.47 133
HPM-MVS++copyleft98.10 16797.64 19699.48 5599.09 18799.13 5897.52 21498.75 27997.46 19296.90 31197.83 30096.01 20299.84 13395.82 24799.35 23899.46 135
V4298.78 7798.78 6598.76 17399.44 11097.04 22098.27 13399.19 18697.87 15799.25 9399.16 10296.84 16199.78 20699.21 2899.84 6899.46 135
APD-MVS_3200maxsize98.84 6998.61 9099.53 3799.19 16099.27 2398.49 11399.33 13398.64 10299.03 12698.98 14597.89 8599.85 11696.54 20599.42 22799.46 135
UniMVSNet (Re)98.87 6598.71 7399.35 7499.24 14698.73 9097.73 19299.38 10898.93 9099.12 10798.73 20296.77 16899.86 10198.63 6399.80 9199.46 135
SR-MVS-dyc-post98.81 7298.55 9699.57 1899.20 15799.38 898.48 11699.30 15198.64 10298.95 13898.96 15097.49 12299.86 10196.56 20199.39 23199.45 139
RE-MVS-def98.58 9499.20 15799.38 898.48 11699.30 15198.64 10298.95 13898.96 15097.75 9596.56 20199.39 23199.45 139
HQP_MVS97.99 17897.67 19198.93 14799.19 16097.65 18897.77 18799.27 16498.20 13597.79 26097.98 29094.90 24099.70 24794.42 28599.51 21099.45 139
plane_prior599.27 16499.70 24794.42 28599.51 21099.45 139
lessismore_v098.97 14299.73 3197.53 19486.71 38399.37 6799.52 4289.93 30499.92 3998.99 4199.72 12999.44 143
TAMVS98.24 15898.05 16698.80 16599.07 19197.18 21597.88 17598.81 27096.66 24599.17 10599.21 9194.81 24699.77 21296.96 16399.88 5999.44 143
DeepPCF-MVS96.93 598.32 14798.01 16999.23 10198.39 31098.97 6995.03 33999.18 19096.88 23699.33 7498.78 19598.16 6899.28 35396.74 18499.62 17099.44 143
3Dnovator98.27 298.81 7298.73 6999.05 13298.76 25397.81 17799.25 3999.30 15198.57 11298.55 20499.33 7497.95 8499.90 5497.16 14399.67 15699.44 143
MVSFormer98.26 15598.43 11897.77 26098.88 23393.89 31299.39 1699.56 4899.11 6398.16 23298.13 27793.81 26999.97 499.26 2399.57 19299.43 147
jason97.45 22097.35 21697.76 26299.24 14693.93 30895.86 31298.42 29894.24 31098.50 20998.13 27794.82 24499.91 4997.22 14099.73 12299.43 147
jason: jason.
NCCC97.86 18797.47 20999.05 13298.61 28398.07 14696.98 25398.90 25097.63 17297.04 30297.93 29595.99 20699.66 27395.31 26498.82 30399.43 147
Anonymous2024052198.69 9398.87 5598.16 23799.77 2595.11 27699.08 5799.44 9199.34 4399.33 7499.55 3694.10 26699.94 2699.25 2599.96 1599.42 150
MVS_111021_HR98.25 15798.08 16498.75 17599.09 18797.46 19795.97 30499.27 16497.60 17697.99 24898.25 26998.15 7099.38 34196.87 17399.57 19299.42 150
COLMAP_ROBcopyleft96.50 1098.99 4898.85 5999.41 6599.58 6099.10 6398.74 8399.56 4899.09 7399.33 7499.19 9498.40 4799.72 24395.98 23799.76 11599.42 150
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 6098.72 7199.49 5299.49 9499.17 4198.10 15099.31 14198.03 14699.66 2399.02 12998.36 4999.88 7596.91 16599.62 17099.41 153
OPU-MVS98.82 16198.59 28798.30 12198.10 15098.52 23998.18 6498.75 37394.62 27799.48 22099.41 153
our_test_397.39 22497.73 18996.34 32098.70 26689.78 35894.61 35298.97 24196.50 24999.04 12398.85 18095.98 20799.84 13397.26 13999.67 15699.41 153
casdiffmvs98.95 5699.00 4798.81 16399.38 12097.33 20297.82 18299.57 4199.17 6099.35 7199.17 10098.35 5299.69 25198.46 7499.73 12299.41 153
YYNet197.60 20897.67 19197.39 28999.04 19993.04 32795.27 33298.38 30197.25 21398.92 14698.95 15495.48 22899.73 23596.99 15998.74 30599.41 153
MDA-MVSNet_test_wron97.60 20897.66 19497.41 28899.04 19993.09 32395.27 33298.42 29897.26 21298.88 15698.95 15495.43 22999.73 23597.02 15698.72 30799.41 153
GBi-Net98.65 10298.47 11099.17 10698.90 22798.24 12599.20 4499.44 9198.59 10898.95 13899.55 3694.14 26299.86 10197.77 11599.69 14599.41 153
test198.65 10298.47 11099.17 10698.90 22798.24 12599.20 4499.44 9198.59 10898.95 13899.55 3694.14 26299.86 10197.77 11599.69 14599.41 153
FMVSNet199.17 3399.17 3099.17 10699.55 7598.24 12599.20 4499.44 9199.21 5299.43 5399.55 3697.82 9199.86 10198.42 7799.89 5899.41 153
iter_conf_final97.10 24596.65 26298.45 21298.53 29596.08 24798.30 13099.11 21198.10 14398.85 16098.95 15479.38 36799.87 9298.68 6199.91 4899.40 162
iter_conf0596.54 27496.07 27997.92 25197.90 33794.50 29297.87 17899.14 20697.73 16598.89 15198.95 15475.75 37799.87 9298.50 7199.92 4299.40 162
KD-MVS_self_test99.25 2799.18 2999.44 6199.63 5799.06 6798.69 9099.54 5799.31 4699.62 3199.53 4097.36 13199.86 10199.24 2799.71 13499.39 164
v14898.45 13498.60 9298.00 24999.44 11094.98 27897.44 22399.06 21998.30 12399.32 8098.97 14796.65 17699.62 28698.37 7999.85 6499.39 164
test20.0398.78 7798.77 6798.78 17099.46 10597.20 21397.78 18499.24 17599.04 7899.41 5798.90 16497.65 10199.76 22097.70 12199.79 9699.39 164
CDPH-MVS97.26 23396.66 26099.07 12599.00 20798.15 13696.03 30299.01 23591.21 35197.79 26097.85 29996.89 15999.69 25192.75 32999.38 23499.39 164
EPNet96.14 28895.44 29798.25 22990.76 38795.50 26297.92 17194.65 36098.97 8592.98 37398.85 18089.12 31099.87 9295.99 23699.68 15099.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 16597.87 18099.07 12598.67 27698.24 12597.01 25198.93 24497.25 21397.62 27098.34 26397.27 13699.57 30396.42 21499.33 24199.39 164
DeepC-MVS_fast96.85 698.30 14998.15 15698.75 17598.61 28397.23 20897.76 18999.09 21597.31 20798.75 17798.66 21697.56 11199.64 28196.10 23499.55 19999.39 164
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj98.44 13598.24 14399.06 13099.11 18097.97 15796.53 27999.54 5798.24 12998.83 16498.90 16497.80 9299.82 15895.68 25399.52 20799.38 171
SF-MVS98.53 12598.27 14099.32 8299.31 13498.75 8698.19 14099.41 10196.77 24098.83 16498.90 16497.80 9299.82 15895.68 25399.52 20799.38 171
test9_res93.28 32099.15 27199.38 171
OPM-MVS98.56 11698.32 13699.25 9799.41 11798.73 9097.13 24899.18 19097.10 22798.75 17798.92 16098.18 6499.65 27896.68 19199.56 19799.37 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 33499.16 26899.37 174
AllTest98.44 13598.20 14799.16 10999.50 8798.55 10398.25 13599.58 3496.80 23898.88 15699.06 11697.65 10199.57 30394.45 28399.61 17699.37 174
TestCases99.16 10999.50 8798.55 10399.58 3496.80 23898.88 15699.06 11697.65 10199.57 30394.45 28399.61 17699.37 174
MDA-MVSNet-bldmvs97.94 17997.91 17798.06 24499.44 11094.96 27996.63 27699.15 20598.35 11998.83 16499.11 11194.31 25999.85 11696.60 19598.72 30799.37 174
MVSTER96.86 26196.55 26797.79 25897.91 33694.21 29897.56 21098.87 25597.49 18699.06 11699.05 12380.72 35999.80 18198.44 7599.82 7799.37 174
pmmvs597.64 20597.49 20598.08 24299.14 17695.12 27596.70 27399.05 22393.77 31998.62 19098.83 18693.23 27599.75 22798.33 8399.76 11599.36 180
Anonymous2023120698.21 16098.21 14698.20 23399.51 8495.43 26598.13 14599.32 13596.16 26398.93 14598.82 18996.00 20399.83 14897.32 13699.73 12299.36 180
train_agg97.10 24596.45 27099.07 12598.71 26298.08 14495.96 30699.03 22891.64 34395.85 34297.53 31696.47 18499.76 22093.67 30999.16 26899.36 180
PVSNet_BlendedMVS97.55 21197.53 20297.60 27298.92 22393.77 31696.64 27599.43 9794.49 30297.62 27099.18 9696.82 16499.67 26394.73 27499.93 3299.36 180
Anonymous2024052998.93 5898.87 5599.12 11499.19 16098.22 13099.01 6698.99 23999.25 5199.54 3599.37 6497.04 14999.80 18197.89 10599.52 20799.35 184
F-COLMAP97.30 23096.68 25799.14 11299.19 16098.39 11497.27 23599.30 15192.93 33096.62 32298.00 28895.73 21899.68 26092.62 33298.46 32099.35 184
ppachtmachnet_test97.50 21397.74 18796.78 31498.70 26691.23 35494.55 35499.05 22396.36 25599.21 9898.79 19496.39 18899.78 20696.74 18499.82 7799.34 186
agg_prior197.06 24996.40 27199.03 13598.68 27497.99 15295.76 31699.01 23591.73 34295.59 34597.50 31996.49 18399.77 21293.71 30899.14 27299.34 186
VDD-MVS98.56 11698.39 12599.07 12599.13 17898.07 14698.59 9897.01 33899.59 2099.11 10899.27 8194.82 24499.79 19498.34 8199.63 16799.34 186
testgi98.32 14798.39 12598.13 23899.57 6495.54 25997.78 18499.49 7597.37 20199.19 10097.65 31098.96 1799.49 32496.50 20898.99 29399.34 186
diffmvs98.22 15998.24 14398.17 23599.00 20795.44 26496.38 28999.58 3497.79 16298.53 20798.50 24496.76 17099.74 23197.95 10499.64 16499.34 186
UnsupCasMVSNet_eth97.89 18397.60 20098.75 17599.31 13497.17 21697.62 20299.35 12298.72 10198.76 17698.68 21192.57 28999.74 23197.76 11995.60 37099.34 186
baseline98.96 5599.02 4598.76 17399.38 12097.26 20798.49 11399.50 6798.86 9599.19 10099.06 11698.23 5799.69 25198.71 5899.76 11599.33 192
MG-MVS96.77 26596.61 26397.26 29398.31 31493.06 32495.93 30998.12 31396.45 25397.92 25098.73 20293.77 27199.39 33991.19 35299.04 28599.33 192
HQP4-MVS95.56 34899.54 31299.32 194
CDS-MVSNet97.69 20197.35 21698.69 18098.73 25797.02 22296.92 25998.75 27995.89 27398.59 19698.67 21392.08 29499.74 23196.72 18799.81 8199.32 194
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 25696.49 26998.55 20098.67 27696.79 22996.29 29399.04 22696.05 26695.55 34996.84 33993.84 26799.54 31292.82 32699.26 25499.32 194
RPSCF98.62 10898.36 12999.42 6299.65 5299.42 798.55 10399.57 4197.72 16798.90 14899.26 8396.12 19899.52 31895.72 25099.71 13499.32 194
MVP-Stereo98.08 16997.92 17698.57 19598.96 21496.79 22997.90 17499.18 19096.41 25498.46 21298.95 15495.93 21099.60 29396.51 20798.98 29599.31 198
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 14098.68 7997.54 27998.96 21497.99 15297.88 17599.36 11698.20 13599.63 2999.04 12598.76 2595.33 38396.56 20199.74 11999.31 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 13798.30 13798.79 16798.79 25297.29 20498.23 13698.66 28699.31 4698.85 16098.80 19294.80 24799.78 20698.13 9099.13 27599.31 198
ETH3D-3000-0.198.03 17197.62 19899.29 8599.11 18098.80 8497.47 22099.32 13595.54 28098.43 21798.62 22796.61 17899.77 21293.95 30199.49 21899.30 201
test_prior397.48 21797.00 23598.95 14498.69 27197.95 16295.74 31899.03 22896.48 25196.11 33697.63 31295.92 21199.59 29794.16 29199.20 26199.30 201
test_prior98.95 14498.69 27197.95 16299.03 22899.59 29799.30 201
USDC97.41 22397.40 21197.44 28698.94 21793.67 31895.17 33599.53 6194.03 31698.97 13599.10 11395.29 23199.34 34495.84 24699.73 12299.30 201
FMVSNet298.49 13098.40 12298.75 17598.90 22797.14 21998.61 9599.13 20798.59 10899.19 10099.28 7994.14 26299.82 15897.97 10399.80 9199.29 205
ETH3 D test640096.46 28095.59 29299.08 12298.88 23398.21 13196.53 27999.18 19088.87 36597.08 29997.79 30193.64 27499.77 21288.92 36399.40 23099.28 206
XVG-OURS-SEG-HR98.49 13098.28 13999.14 11299.49 9498.83 8096.54 27899.48 7797.32 20699.11 10898.61 23099.33 899.30 35096.23 22498.38 32199.28 206
test1298.93 14798.58 28897.83 17298.66 28696.53 32595.51 22599.69 25199.13 27599.27 208
DSMNet-mixed97.42 22297.60 20096.87 30999.15 17591.46 34698.54 10499.12 20992.87 33297.58 27499.63 2496.21 19599.90 5495.74 24999.54 20099.27 208
N_pmnet97.63 20797.17 22698.99 14199.27 14197.86 16995.98 30393.41 36995.25 28999.47 4798.90 16495.63 22099.85 11696.91 16599.73 12299.27 208
ambc98.24 23198.82 24695.97 24998.62 9499.00 23899.27 8599.21 9196.99 15499.50 32396.55 20499.50 21799.26 211
LFMVS97.20 23996.72 25498.64 18398.72 25996.95 22498.93 7494.14 36799.74 798.78 17199.01 13884.45 34299.73 23597.44 13099.27 25199.25 212
FMVSNet596.01 29095.20 30598.41 21697.53 35396.10 24498.74 8399.50 6797.22 22298.03 24799.04 12569.80 38199.88 7597.27 13899.71 13499.25 212
BH-RMVSNet96.83 26296.58 26697.58 27498.47 30194.05 30196.67 27497.36 33096.70 24497.87 25497.98 29095.14 23699.44 33490.47 35898.58 31899.25 212
FMVS199.25 2799.16 3199.51 4699.89 699.63 398.71 8899.69 1898.90 9299.43 5399.35 6898.86 2099.67 26397.81 11199.81 8199.24 215
APD_test99.25 2799.16 3199.51 4699.89 699.63 398.71 8899.69 1898.90 9299.43 5399.35 6898.86 2099.67 26397.81 11199.81 8199.24 215
112196.73 26696.00 28098.91 15098.95 21697.76 18098.07 15398.73 28287.65 36996.54 32498.13 27794.52 25499.73 23592.38 33699.02 28999.24 215
旧先验198.82 24697.45 19898.76 27698.34 26395.50 22699.01 29199.23 218
test22298.92 22396.93 22695.54 32498.78 27585.72 37396.86 31498.11 28194.43 25599.10 28099.23 218
XVG-ACMP-BASELINE98.56 11698.34 13299.22 10299.54 7898.59 10097.71 19399.46 8597.25 21398.98 13298.99 14197.54 11399.84 13395.88 24099.74 11999.23 218
FMVSNet397.50 21397.24 22398.29 22798.08 32895.83 25397.86 17998.91 24997.89 15698.95 13898.95 15487.06 32199.81 17297.77 11599.69 14599.23 218
无先验95.74 31898.74 28189.38 36299.73 23592.38 33699.22 222
tttt051795.64 30094.98 30997.64 27099.36 12793.81 31498.72 8690.47 37898.08 14598.67 18398.34 26373.88 37999.92 3997.77 11599.51 21099.20 223
pmmvs-eth3d98.47 13298.34 13298.86 15799.30 13797.76 18097.16 24699.28 16195.54 28099.42 5699.19 9497.27 13699.63 28497.89 10599.97 1299.20 223
MS-PatchMatch97.68 20297.75 18697.45 28598.23 32093.78 31597.29 23298.84 26496.10 26598.64 18798.65 21896.04 20099.36 34296.84 17699.14 27299.20 223
新几何198.91 15098.94 21797.76 18098.76 27687.58 37096.75 31898.10 28294.80 24799.78 20692.73 33099.00 29299.20 223
PHI-MVS98.29 15297.95 17399.34 7798.44 30499.16 4598.12 14799.38 10896.01 26998.06 24398.43 25297.80 9299.67 26395.69 25299.58 18899.20 223
Anonymous20240521197.90 18197.50 20499.08 12298.90 22798.25 12498.53 10596.16 35198.87 9499.11 10898.86 17790.40 30299.78 20697.36 13499.31 24499.19 228
CANet97.87 18697.76 18598.19 23497.75 34395.51 26196.76 26999.05 22397.74 16496.93 30598.21 27395.59 22299.89 6497.86 11099.93 3299.19 228
XVG-OURS98.53 12598.34 13299.11 11699.50 8798.82 8295.97 30499.50 6797.30 20899.05 12198.98 14599.35 799.32 34795.72 25099.68 15099.18 230
WTY-MVS96.67 26996.27 27797.87 25498.81 24894.61 29096.77 26897.92 31994.94 29597.12 29697.74 30591.11 29899.82 15893.89 30398.15 33099.18 230
Vis-MVSNet (Re-imp)97.46 21897.16 22798.34 22299.55 7596.10 24498.94 7398.44 29798.32 12298.16 23298.62 22788.76 31199.73 23593.88 30499.79 9699.18 230
TinyColmap97.89 18397.98 17197.60 27298.86 23694.35 29596.21 29799.44 9197.45 19499.06 11698.88 17397.99 8199.28 35394.38 28999.58 18899.18 230
testdata98.09 23998.93 21995.40 26698.80 27290.08 35997.45 28698.37 25995.26 23299.70 24793.58 31298.95 29799.17 234
lupinMVS97.06 24996.86 24497.65 26898.88 23393.89 31295.48 32897.97 31793.53 32298.16 23297.58 31493.81 26999.91 4996.77 18199.57 19299.17 234
Patchmtry97.35 22696.97 23798.50 20897.31 36196.47 23798.18 14198.92 24798.95 8998.78 17199.37 6485.44 33699.85 11695.96 23899.83 7499.17 234
sss97.21 23896.93 23898.06 24498.83 24395.22 27196.75 27098.48 29694.49 30297.27 29397.90 29692.77 28699.80 18196.57 19899.32 24299.16 237
CSCG98.68 9798.50 10399.20 10399.45 10898.63 9598.56 10299.57 4197.87 15798.85 16098.04 28797.66 10099.84 13396.72 18799.81 8199.13 238
ETH3D cwj APD-0.1697.55 21197.00 23599.19 10598.51 29898.64 9496.85 26399.13 20794.19 31297.65 26898.40 25495.78 21699.81 17293.37 31899.16 26899.12 239
MVS_111021_LR98.30 14998.12 15998.83 16099.16 17198.03 15096.09 30199.30 15197.58 17798.10 24098.24 27098.25 5599.34 34496.69 19099.65 16299.12 239
miper_lstm_enhance97.18 24197.16 22797.25 29498.16 32392.85 32995.15 33799.31 14197.25 21398.74 17998.78 19590.07 30399.78 20697.19 14199.80 9199.11 241
原ACMM198.35 22198.90 22796.25 24298.83 26992.48 33696.07 33998.10 28295.39 23099.71 24492.61 33398.99 29399.08 242
QAPM97.31 22996.81 25098.82 16198.80 25097.49 19599.06 6299.19 18690.22 35797.69 26699.16 10296.91 15899.90 5490.89 35699.41 22899.07 243
PAPM_NR96.82 26496.32 27498.30 22699.07 19196.69 23497.48 21898.76 27695.81 27696.61 32396.47 34794.12 26599.17 36090.82 35797.78 34099.06 244
eth_miper_zixun_eth97.23 23797.25 22197.17 29698.00 33292.77 33194.71 34699.18 19097.27 21198.56 20298.74 20191.89 29599.69 25197.06 15599.81 8199.05 245
D2MVS97.84 19397.84 18297.83 25699.14 17694.74 28496.94 25598.88 25395.84 27498.89 15198.96 15094.40 25799.69 25197.55 12499.95 1999.05 245
c3_l97.36 22597.37 21497.31 29098.09 32793.25 32295.01 34099.16 19997.05 22898.77 17498.72 20492.88 28499.64 28196.93 16499.76 11599.05 245
PLCcopyleft94.65 1696.51 27595.73 28698.85 15898.75 25597.91 16596.42 28799.06 21990.94 35495.59 34597.38 32794.41 25699.59 29790.93 35498.04 33799.05 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 6298.90 5498.91 15099.67 4997.82 17599.00 6899.44 9199.45 3199.51 4399.24 8898.20 6399.86 10195.92 23999.69 14599.04 249
CANet_DTU97.26 23397.06 23297.84 25597.57 35094.65 28996.19 29998.79 27397.23 21995.14 35898.24 27093.22 27699.84 13397.34 13599.84 6899.04 249
PM-MVS98.82 7098.72 7199.12 11499.64 5598.54 10697.98 16799.68 2297.62 17399.34 7399.18 9697.54 11399.77 21297.79 11399.74 11999.04 249
TSAR-MVS + GP.98.18 16397.98 17198.77 17298.71 26297.88 16796.32 29298.66 28696.33 25699.23 9798.51 24097.48 12499.40 33797.16 14399.46 22199.02 252
DIV-MVS_self_test97.02 25396.84 24697.58 27497.82 34194.03 30394.66 34999.16 19997.04 22998.63 18898.71 20588.69 31299.69 25197.00 15799.81 8199.01 253
GA-MVS95.86 29495.32 30297.49 28398.60 28594.15 30093.83 36697.93 31895.49 28396.68 31997.42 32583.21 35099.30 35096.22 22598.55 31999.01 253
OMC-MVS97.88 18597.49 20599.04 13498.89 23298.63 9596.94 25599.25 17095.02 29298.53 20798.51 24097.27 13699.47 32993.50 31599.51 21099.01 253
cl____97.02 25396.83 24797.58 27497.82 34194.04 30294.66 34999.16 19997.04 22998.63 18898.71 20588.68 31499.69 25197.00 15799.81 8199.00 256
pmmvs497.58 21097.28 22098.51 20698.84 24196.93 22695.40 33198.52 29493.60 32198.61 19298.65 21895.10 23799.60 29396.97 16299.79 9698.99 257
MVS_030497.64 20597.35 21698.52 20497.87 33996.69 23498.59 9898.05 31697.44 19593.74 37298.85 18093.69 27399.88 7598.11 9199.81 8198.98 258
EPNet_dtu94.93 31394.78 31495.38 34293.58 38487.68 36796.78 26795.69 35897.35 20389.14 38098.09 28488.15 31999.49 32494.95 27099.30 24798.98 258
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 27795.77 28498.69 18099.48 10297.43 19997.84 18199.55 5281.42 37896.51 32798.58 23395.53 22399.67 26393.41 31799.58 18898.98 258
PVSNet_Blended96.88 26096.68 25797.47 28498.92 22393.77 31694.71 34699.43 9790.98 35397.62 27097.36 32996.82 16499.67 26394.73 27499.56 19798.98 258
PAPR95.29 30694.47 31597.75 26397.50 35795.14 27494.89 34398.71 28491.39 34995.35 35695.48 36394.57 25399.14 36384.95 37197.37 34898.97 262
EGC-MVSNET85.24 34880.54 35199.34 7799.77 2599.20 3599.08 5799.29 15812.08 38420.84 38599.42 5897.55 11299.85 11697.08 15299.72 12998.96 263
thisisatest053095.27 30794.45 31697.74 26499.19 16094.37 29497.86 17990.20 37997.17 22398.22 22897.65 31073.53 38099.90 5496.90 17099.35 23898.95 264
mvs_anonymous97.83 19598.16 15496.87 30998.18 32291.89 34297.31 23198.90 25097.37 20198.83 16499.46 5196.28 19499.79 19498.90 4598.16 32998.95 264
baseline195.96 29295.44 29797.52 28198.51 29893.99 30698.39 12496.09 35398.21 13298.40 22297.76 30486.88 32299.63 28495.42 26289.27 38198.95 264
CLD-MVS97.49 21597.16 22798.48 20999.07 19197.03 22194.71 34699.21 17994.46 30498.06 24397.16 33497.57 11099.48 32794.46 28299.78 10198.95 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 17398.14 15897.64 27098.58 28895.19 27297.48 21899.23 17797.47 18797.90 25298.62 22797.04 14998.81 37297.55 12499.41 22898.94 268
DELS-MVS98.27 15398.20 14798.48 20998.86 23696.70 23395.60 32399.20 18197.73 16598.45 21398.71 20597.50 11999.82 15898.21 8799.59 18298.93 269
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 29695.39 30096.98 30396.77 37092.79 33094.40 35798.53 29394.59 30197.89 25398.17 27682.82 35499.24 35596.37 21699.03 28698.92 270
LS3D98.63 10698.38 12799.36 6997.25 36299.38 899.12 5599.32 13599.21 5298.44 21498.88 17397.31 13299.80 18196.58 19699.34 24098.92 270
CMPMVSbinary75.91 2396.29 28495.44 29798.84 15996.25 37798.69 9397.02 25099.12 20988.90 36497.83 25798.86 17789.51 30798.90 37091.92 33999.51 21098.92 270
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 10498.48 10899.11 11698.85 23898.51 10898.49 11399.83 898.37 11899.69 2099.46 5198.21 6299.92 3994.13 29699.30 24798.91 273
DPM-MVS96.32 28395.59 29298.51 20698.76 25397.21 21294.54 35598.26 30491.94 34196.37 33297.25 33193.06 28199.43 33591.42 34898.74 30598.89 274
test_yl96.69 26796.29 27597.90 25298.28 31595.24 26997.29 23297.36 33098.21 13298.17 23097.86 29786.27 32699.55 30994.87 27198.32 32298.89 274
DCV-MVSNet96.69 26796.29 27597.90 25298.28 31595.24 26997.29 23297.36 33098.21 13298.17 23097.86 29786.27 32699.55 30994.87 27198.32 32298.89 274
CS-MVS-test99.13 3799.09 4099.26 9499.13 17898.97 6999.31 2699.88 499.44 3298.16 23298.51 24098.64 3299.93 3198.91 4499.85 6498.88 277
UnsupCasMVSNet_bld97.30 23096.92 24098.45 21299.28 13996.78 23296.20 29899.27 16495.42 28598.28 22698.30 26793.16 27799.71 24494.99 26897.37 34898.87 278
Effi-MVS+98.02 17397.82 18398.62 18898.53 29597.19 21497.33 22999.68 2297.30 20896.68 31997.46 32398.56 3899.80 18196.63 19498.20 32698.86 279
test_040298.76 8198.71 7398.93 14799.56 7198.14 13898.45 12099.34 12899.28 4998.95 13898.91 16198.34 5399.79 19495.63 25699.91 4898.86 279
PatchmatchNetpermissive95.58 30195.67 28995.30 34397.34 36087.32 36897.65 20096.65 34695.30 28897.07 30098.69 20984.77 33999.75 22794.97 26998.64 31498.83 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test97.44 22197.22 22498.08 24298.57 29095.78 25594.30 35998.79 27396.58 24898.60 19498.19 27594.74 25199.64 28196.41 21598.84 30198.82 282
miper_ehance_all_eth97.06 24997.03 23397.16 29897.83 34093.06 32494.66 34999.09 21595.99 27098.69 18198.45 25192.73 28799.61 29296.79 17899.03 28698.82 282
MIMVSNet96.62 27296.25 27897.71 26599.04 19994.66 28899.16 5096.92 34397.23 21997.87 25499.10 11386.11 33099.65 27891.65 34399.21 26098.82 282
hse-mvs297.46 21897.07 23198.64 18398.73 25797.33 20297.45 22297.64 32799.11 6398.58 19897.98 29088.65 31599.79 19498.11 9197.39 34798.81 285
GSMVS98.81 285
sam_mvs184.74 34098.81 285
SCA96.41 28296.66 26095.67 33498.24 31888.35 36395.85 31496.88 34496.11 26497.67 26798.67 21393.10 27999.85 11694.16 29199.22 25898.81 285
Patchmatch-RL test97.26 23397.02 23497.99 25099.52 8295.53 26096.13 30099.71 1597.47 18799.27 8599.16 10284.30 34599.62 28697.89 10599.77 10598.81 285
AUN-MVS96.24 28795.45 29698.60 19198.70 26697.22 21097.38 22597.65 32595.95 27195.53 35397.96 29482.11 35899.79 19496.31 22097.44 34598.80 290
ITE_SJBPF98.87 15599.22 15198.48 11099.35 12297.50 18498.28 22698.60 23197.64 10499.35 34393.86 30599.27 25198.79 291
tpm94.67 31594.34 31995.66 33597.68 34988.42 36297.88 17594.90 35994.46 30496.03 34198.56 23578.66 37099.79 19495.88 24095.01 37398.78 292
Patchmatch-test96.55 27396.34 27397.17 29698.35 31193.06 32498.40 12397.79 32097.33 20498.41 21898.67 21383.68 34999.69 25195.16 26699.31 24498.77 293
DROMVSNet99.09 4099.05 4499.20 10399.28 13998.93 7499.24 4099.84 799.08 7598.12 23798.37 25998.72 2899.90 5499.05 3699.77 10598.77 293
PMMVS96.51 27595.98 28198.09 23997.53 35395.84 25294.92 34298.84 26491.58 34596.05 34095.58 36095.68 21999.66 27395.59 25898.09 33398.76 295
test_method79.78 34979.50 35280.62 36580.21 38845.76 39070.82 37998.41 30031.08 38380.89 38497.71 30684.85 33897.37 37991.51 34780.03 38298.75 296
ab-mvs98.41 13898.36 12998.59 19299.19 16097.23 20899.32 2298.81 27097.66 17098.62 19099.40 6396.82 16499.80 18195.88 24099.51 21098.75 296
CHOSEN 280x42095.51 30495.47 29495.65 33698.25 31788.27 36493.25 37098.88 25393.53 32294.65 36197.15 33586.17 32899.93 3197.41 13299.93 3298.73 298
MVS_Test98.18 16398.36 12997.67 26698.48 30094.73 28598.18 14199.02 23297.69 16898.04 24699.11 11197.22 14299.56 30698.57 6698.90 30098.71 299
PVSNet93.40 1795.67 29895.70 28795.57 33798.83 24388.57 36192.50 37397.72 32292.69 33496.49 33096.44 34893.72 27299.43 33593.61 31099.28 25098.71 299
alignmvs97.35 22696.88 24398.78 17098.54 29398.09 14097.71 19397.69 32499.20 5597.59 27395.90 35688.12 32099.55 30998.18 8998.96 29698.70 301
ADS-MVSNet295.43 30594.98 30996.76 31598.14 32491.74 34397.92 17197.76 32190.23 35596.51 32798.91 16185.61 33399.85 11692.88 32496.90 35698.69 302
ADS-MVSNet95.24 30894.93 31296.18 32498.14 32490.10 35797.92 17197.32 33390.23 35596.51 32798.91 16185.61 33399.74 23192.88 32496.90 35698.69 302
MDTV_nov1_ep13_2view74.92 38897.69 19590.06 36097.75 26385.78 33293.52 31398.69 302
MSDG97.71 20097.52 20398.28 22898.91 22696.82 22894.42 35699.37 11297.65 17198.37 22398.29 26897.40 12899.33 34694.09 29799.22 25898.68 305
CS-MVS99.13 3799.10 3999.24 9999.06 19599.15 5099.36 1899.88 499.36 4298.21 22998.46 25098.68 3199.93 3199.03 3899.85 6498.64 306
miper_enhance_ethall96.01 29095.74 28596.81 31396.41 37592.27 33993.69 36898.89 25291.14 35298.30 22497.35 33090.58 30099.58 30296.31 22099.03 28698.60 307
Effi-MVS+-dtu98.26 15597.90 17899.35 7498.02 33099.49 598.02 16299.16 19998.29 12697.64 26997.99 28996.44 18699.95 1796.66 19298.93 29898.60 307
new_pmnet96.99 25796.76 25297.67 26698.72 25994.89 28095.95 30898.20 30792.62 33598.55 20498.54 23694.88 24399.52 31893.96 30099.44 22698.59 309
EIA-MVS98.00 17597.74 18798.80 16598.72 25998.09 14098.05 15799.60 3197.39 19996.63 32195.55 36197.68 9899.80 18196.73 18699.27 25198.52 310
PatchMatch-RL97.24 23696.78 25198.61 19099.03 20297.83 17296.36 29099.06 21993.49 32497.36 29297.78 30295.75 21799.49 32493.44 31698.77 30498.52 310
ET-MVSNet_ETH3D94.30 32193.21 33197.58 27498.14 32494.47 29394.78 34593.24 37194.72 29989.56 37995.87 35778.57 37299.81 17296.91 16597.11 35598.46 312
canonicalmvs98.34 14698.26 14198.58 19398.46 30297.82 17598.96 7299.46 8599.19 5997.46 28595.46 36498.59 3699.46 33198.08 9598.71 30998.46 312
TAPA-MVS96.21 1196.63 27195.95 28298.65 18298.93 21998.09 14096.93 25799.28 16183.58 37698.13 23697.78 30296.13 19799.40 33793.52 31399.29 24998.45 314
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 26296.75 25397.08 29998.74 25693.33 32196.71 27298.26 30496.72 24298.44 21497.37 32895.20 23499.47 32991.89 34097.43 34698.44 315
pmmvs395.03 31194.40 31796.93 30597.70 34792.53 33495.08 33897.71 32388.57 36697.71 26498.08 28579.39 36699.82 15896.19 22799.11 27998.43 316
DP-MVS Recon97.33 22896.92 24098.57 19599.09 18797.99 15296.79 26699.35 12293.18 32697.71 26498.07 28695.00 23999.31 34893.97 29999.13 27598.42 317
Fast-Effi-MVS+-dtu98.27 15398.09 16198.81 16398.43 30598.11 13997.61 20499.50 6798.64 10297.39 29097.52 31898.12 7199.95 1796.90 17098.71 30998.38 318
LF4IMVS97.90 18197.69 19098.52 20499.17 16997.66 18797.19 24399.47 8396.31 25897.85 25698.20 27496.71 17499.52 31894.62 27799.72 12998.38 318
Fast-Effi-MVS+97.67 20397.38 21398.57 19598.71 26297.43 19997.23 23699.45 8894.82 29896.13 33596.51 34498.52 4199.91 4996.19 22798.83 30298.37 320
test0.0.03 194.51 31693.69 32596.99 30296.05 37893.61 32094.97 34193.49 36896.17 26197.57 27694.88 37282.30 35599.01 36793.60 31194.17 37798.37 320
FE-MVS95.66 29994.95 31197.77 26098.53 29595.28 26899.40 1596.09 35393.11 32897.96 24999.26 8379.10 36999.77 21292.40 33598.71 30998.27 322
baseline293.73 33092.83 33696.42 31997.70 34791.28 35296.84 26589.77 38093.96 31892.44 37495.93 35579.14 36899.77 21292.94 32296.76 36098.21 323
thisisatest051594.12 32593.16 33296.97 30498.60 28592.90 32893.77 36790.61 37794.10 31496.91 30895.87 35774.99 37899.80 18194.52 28099.12 27898.20 324
EPMVS93.72 33193.27 33095.09 34596.04 37987.76 36698.13 14585.01 38594.69 30096.92 30698.64 22178.47 37499.31 34895.04 26796.46 36298.20 324
dp93.47 33393.59 32793.13 36296.64 37181.62 38597.66 19896.42 34992.80 33396.11 33698.64 22178.55 37399.59 29793.31 31992.18 38098.16 326
CNLPA97.17 24296.71 25598.55 20098.56 29198.05 14996.33 29198.93 24496.91 23597.06 30197.39 32694.38 25899.45 33291.66 34299.18 26798.14 327
HY-MVS95.94 1395.90 29395.35 30197.55 27897.95 33394.79 28198.81 8296.94 34292.28 33995.17 35798.57 23489.90 30599.75 22791.20 35197.33 35298.10 328
CostFormer93.97 32793.78 32494.51 34897.53 35385.83 37397.98 16795.96 35589.29 36394.99 36098.63 22578.63 37199.62 28694.54 27996.50 36198.09 329
FA-MVS(test-final)96.99 25796.82 24897.50 28298.70 26694.78 28299.34 1996.99 33995.07 29198.48 21199.33 7488.41 31899.65 27896.13 23398.92 29998.07 330
AdaColmapbinary97.14 24496.71 25598.46 21198.34 31297.80 17896.95 25498.93 24495.58 27996.92 30697.66 30995.87 21399.53 31490.97 35399.14 27298.04 331
KD-MVS_2432*160092.87 33891.99 34195.51 33991.37 38589.27 35994.07 36198.14 31195.42 28597.25 29496.44 34867.86 38399.24 35591.28 34996.08 36798.02 332
miper_refine_blended92.87 33891.99 34195.51 33991.37 38589.27 35994.07 36198.14 31195.42 28597.25 29496.44 34867.86 38399.24 35591.28 34996.08 36798.02 332
TESTMET0.1,192.19 34591.77 34593.46 35896.48 37482.80 38294.05 36391.52 37694.45 30694.00 36994.88 37266.65 38699.56 30695.78 24898.11 33298.02 332
PCF-MVS92.86 1894.36 31893.00 33598.42 21598.70 26697.56 19293.16 37199.11 21179.59 37997.55 27797.43 32492.19 29199.73 23579.85 38099.45 22397.97 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 24796.68 25798.32 22398.32 31397.16 21798.86 7999.37 11289.48 36196.29 33499.15 10696.56 17999.90 5492.90 32399.20 26197.89 336
Gipumacopyleft99.03 4599.16 3198.64 18399.94 298.51 10899.32 2299.75 1399.58 2298.60 19499.62 2598.22 6099.51 32297.70 12199.73 12297.89 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 34790.30 35093.70 35697.72 34484.34 38090.24 37697.42 32890.20 35893.79 37093.09 37990.90 29998.89 37186.57 36972.76 38397.87 338
test-LLR93.90 32893.85 32294.04 35196.53 37284.62 37794.05 36392.39 37396.17 26194.12 36695.07 36682.30 35599.67 26395.87 24398.18 32797.82 339
test-mter92.33 34391.76 34694.04 35196.53 37284.62 37794.05 36392.39 37394.00 31794.12 36695.07 36665.63 38999.67 26395.87 24398.18 32797.82 339
tpm293.09 33792.58 33894.62 34797.56 35186.53 37097.66 19895.79 35786.15 37294.07 36898.23 27275.95 37599.53 31490.91 35596.86 35997.81 341
CR-MVSNet96.28 28595.95 28297.28 29297.71 34594.22 29698.11 14898.92 24792.31 33896.91 30899.37 6485.44 33699.81 17297.39 13397.36 35097.81 341
RPMNet97.02 25396.93 23897.30 29197.71 34594.22 29698.11 14899.30 15199.37 3996.91 30899.34 7286.72 32399.87 9297.53 12797.36 35097.81 341
tpmrst95.07 31095.46 29593.91 35397.11 36484.36 37997.62 20296.96 34094.98 29396.35 33398.80 19285.46 33599.59 29795.60 25796.23 36597.79 344
PAPM91.88 34690.34 34996.51 31798.06 32992.56 33392.44 37497.17 33586.35 37190.38 37896.01 35386.61 32499.21 35870.65 38395.43 37197.75 345
FPMVS93.44 33492.23 33997.08 29999.25 14597.86 16995.61 32297.16 33692.90 33193.76 37198.65 21875.94 37695.66 38179.30 38197.49 34397.73 346
MAR-MVS96.47 27995.70 28798.79 16797.92 33599.12 6098.28 13298.60 29092.16 34095.54 35296.17 35294.77 25099.52 31889.62 36198.23 32497.72 347
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 17197.86 18198.56 19998.69 27198.07 14697.51 21699.50 6798.10 14397.50 28295.51 36298.41 4699.88 7596.27 22399.24 25697.71 348
thres600view794.45 31793.83 32396.29 32199.06 19591.53 34597.99 16694.24 36598.34 12097.44 28795.01 36879.84 36299.67 26384.33 37298.23 32497.66 349
thres40094.14 32493.44 32896.24 32398.93 21991.44 34797.60 20594.29 36397.94 15197.10 29794.31 37679.67 36499.62 28683.05 37498.08 33497.66 349
IB-MVS91.63 1992.24 34490.90 34896.27 32297.22 36391.24 35394.36 35893.33 37092.37 33792.24 37594.58 37566.20 38899.89 6493.16 32194.63 37597.66 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 31295.25 30394.33 34996.39 37685.87 37198.08 15296.83 34595.46 28495.51 35498.69 20985.91 33199.53 31494.16 29196.23 36597.58 352
cascas94.79 31494.33 32096.15 32896.02 38092.36 33892.34 37599.26 16985.34 37495.08 35994.96 37192.96 28398.53 37594.41 28898.59 31797.56 353
mvs-test197.83 19597.48 20898.89 15398.02 33099.20 3597.20 24099.16 19998.29 12696.46 33197.17 33396.44 18699.92 3996.66 19297.90 33997.54 354
PatchT96.65 27096.35 27297.54 27997.40 35895.32 26797.98 16796.64 34799.33 4496.89 31299.42 5884.32 34499.81 17297.69 12397.49 34397.48 355
TR-MVS95.55 30295.12 30796.86 31297.54 35293.94 30796.49 28396.53 34894.36 30997.03 30396.61 34394.26 26199.16 36186.91 36896.31 36497.47 356
JIA-IIPM95.52 30395.03 30897.00 30196.85 36894.03 30396.93 25795.82 35699.20 5594.63 36299.71 1583.09 35199.60 29394.42 28594.64 37497.36 357
BH-w/o95.13 30994.89 31395.86 32998.20 32191.31 35095.65 32197.37 32993.64 32096.52 32695.70 35993.04 28299.02 36588.10 36595.82 36997.24 358
tpm cat193.29 33593.13 33493.75 35597.39 35984.74 37697.39 22497.65 32583.39 37794.16 36598.41 25382.86 35399.39 33991.56 34695.35 37297.14 359
xiu_mvs_v1_base_debu97.86 18798.17 15196.92 30698.98 21193.91 30996.45 28499.17 19697.85 15998.41 21897.14 33698.47 4299.92 3998.02 9899.05 28296.92 360
xiu_mvs_v1_base97.86 18798.17 15196.92 30698.98 21193.91 30996.45 28499.17 19697.85 15998.41 21897.14 33698.47 4299.92 3998.02 9899.05 28296.92 360
xiu_mvs_v1_base_debi97.86 18798.17 15196.92 30698.98 21193.91 30996.45 28499.17 19697.85 15998.41 21897.14 33698.47 4299.92 3998.02 9899.05 28296.92 360
PMVScopyleft91.26 2097.86 18797.94 17597.65 26899.71 3997.94 16498.52 10698.68 28598.99 8297.52 28099.35 6897.41 12798.18 37791.59 34599.67 15696.82 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 29795.60 29196.17 32597.53 35392.75 33298.07 15398.31 30391.22 35094.25 36496.68 34295.53 22399.03 36491.64 34497.18 35396.74 364
MVS-HIRNet94.32 31995.62 29090.42 36498.46 30275.36 38796.29 29389.13 38195.25 28995.38 35599.75 1092.88 28499.19 35994.07 29899.39 23196.72 365
OpenMVS_ROBcopyleft95.38 1495.84 29595.18 30697.81 25798.41 30997.15 21897.37 22698.62 28983.86 37598.65 18698.37 25994.29 26099.68 26088.41 36498.62 31696.60 366
thres100view90094.19 32293.67 32695.75 33399.06 19591.35 34998.03 16094.24 36598.33 12197.40 28994.98 37079.84 36299.62 28683.05 37498.08 33496.29 367
tfpn200view994.03 32693.44 32895.78 33298.93 21991.44 34797.60 20594.29 36397.94 15197.10 29794.31 37679.67 36499.62 28683.05 37498.08 33496.29 367
MVS93.19 33692.09 34096.50 31896.91 36694.03 30398.07 15398.06 31568.01 38094.56 36396.48 34695.96 20999.30 35083.84 37396.89 35896.17 369
gg-mvs-nofinetune92.37 34291.20 34795.85 33095.80 38192.38 33799.31 2681.84 38799.75 591.83 37699.74 1168.29 38299.02 36587.15 36797.12 35496.16 370
xiu_mvs_v2_base97.16 24397.49 20596.17 32598.54 29392.46 33595.45 32998.84 26497.25 21397.48 28496.49 34598.31 5499.90 5496.34 21998.68 31296.15 371
PS-MVSNAJ97.08 24897.39 21296.16 32798.56 29192.46 33595.24 33498.85 26397.25 21397.49 28395.99 35498.07 7299.90 5496.37 21698.67 31396.12 372
E-PMN94.17 32394.37 31893.58 35796.86 36785.71 37490.11 37797.07 33798.17 13897.82 25997.19 33284.62 34198.94 36889.77 36097.68 34296.09 373
EMVS93.83 32994.02 32193.23 36196.83 36984.96 37589.77 37896.32 35097.92 15397.43 28896.36 35186.17 32898.93 36987.68 36697.73 34195.81 374
MVEpermissive83.40 2292.50 34091.92 34394.25 35098.83 24391.64 34492.71 37283.52 38695.92 27286.46 38395.46 36495.20 23495.40 38280.51 37998.64 31495.73 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 33193.14 33395.46 34198.66 28191.29 35196.61 27794.63 36197.39 19996.83 31593.71 37879.88 36199.56 30682.40 37798.13 33195.54 376
API-MVS97.04 25296.91 24297.42 28797.88 33898.23 12998.18 14198.50 29597.57 17897.39 29096.75 34196.77 16899.15 36290.16 35999.02 28994.88 377
GG-mvs-BLEND94.76 34694.54 38392.13 34199.31 2680.47 38888.73 38191.01 38167.59 38598.16 37882.30 37894.53 37693.98 378
DeepMVS_CXcopyleft93.44 35998.24 31894.21 29894.34 36264.28 38191.34 37794.87 37489.45 30992.77 38477.54 38293.14 37893.35 379
tmp_tt78.77 35078.73 35378.90 36658.45 38974.76 38994.20 36078.26 38939.16 38286.71 38292.82 38080.50 36075.19 38586.16 37092.29 37986.74 380
wuyk23d96.06 28997.62 19891.38 36398.65 28298.57 10298.85 8096.95 34196.86 23799.90 599.16 10299.18 1198.40 37689.23 36299.77 10577.18 381
test12317.04 35320.11 3567.82 36710.25 3914.91 39194.80 3444.47 3924.93 38510.00 38724.28 3849.69 3903.64 38610.14 38412.43 38514.92 382
testmvs17.12 35220.53 3556.87 36812.05 3904.20 39293.62 3696.73 3914.62 38610.41 38624.33 3838.28 3913.56 3879.69 38515.07 38412.86 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.66 35132.88 3540.00 3690.00 3920.00 3930.00 38099.10 2130.00 3870.00 38897.58 31499.21 100.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.17 35410.90 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38798.07 720.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.12 35510.83 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.48 3210.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.73 3199.67 299.43 1199.54 5799.43 3499.26 89
test_one_060199.39 11999.20 3599.31 14198.49 11498.66 18599.02 12997.64 104
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.01 20698.84 7999.07 21894.10 31498.05 24598.12 28096.36 19299.86 10192.70 33199.19 265
test_241102_ONE99.49 9499.17 4199.31 14197.98 14899.66 2398.90 16498.36 4999.48 327
9.1497.78 18499.07 19197.53 21399.32 13595.53 28298.54 20698.70 20897.58 10999.76 22094.32 29099.46 221
save fliter99.11 18097.97 15796.53 27999.02 23298.24 129
test072699.50 8799.21 2998.17 14499.35 12297.97 14999.26 8999.06 11697.61 107
test_part299.36 12799.10 6399.05 121
sam_mvs84.29 346
MTGPAbinary99.20 181
test_post197.59 20720.48 38683.07 35299.66 27394.16 291
test_post21.25 38583.86 34899.70 247
patchmatchnet-post98.77 19784.37 34399.85 116
MTMP97.93 17091.91 375
gm-plane-assit94.83 38281.97 38488.07 36894.99 36999.60 29391.76 341
TEST998.71 26298.08 14495.96 30699.03 22891.40 34895.85 34297.53 31696.52 18199.76 220
test_898.67 27698.01 15195.91 31199.02 23291.64 34395.79 34497.50 31996.47 18499.76 220
agg_prior98.68 27497.99 15299.01 23595.59 34599.77 212
test_prior497.97 15795.86 312
test_prior295.74 31896.48 25196.11 33697.63 31295.92 21194.16 29199.20 261
旧先验295.76 31688.56 36797.52 28099.66 27394.48 281
新几何295.93 309
原ACMM295.53 325
testdata299.79 19492.80 328
segment_acmp97.02 152
testdata195.44 33096.32 257
plane_prior799.19 16097.87 168
plane_prior698.99 21097.70 18694.90 240
plane_prior497.98 290
plane_prior397.78 17997.41 19797.79 260
plane_prior297.77 18798.20 135
plane_prior199.05 198
plane_prior97.65 18897.07 24996.72 24299.36 236
n20.00 393
nn0.00 393
door-mid99.57 41
test1198.87 255
door99.41 101
HQP5-MVS96.79 229
HQP-NCC98.67 27696.29 29396.05 26695.55 349
ACMP_Plane98.67 27696.29 29396.05 26695.55 349
BP-MVS92.82 326
HQP3-MVS99.04 22699.26 254
HQP2-MVS93.84 267
NP-MVS98.84 24197.39 20196.84 339
MDTV_nov1_ep1395.22 30497.06 36583.20 38197.74 19196.16 35194.37 30896.99 30498.83 18683.95 34799.53 31493.90 30297.95 338
ACMMP++_ref99.77 105
ACMMP++99.68 150
Test By Simon96.52 181