This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
mvs5depth99.30 2999.59 998.44 22299.65 6395.35 27999.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24297.97 19299.86 1598.22 15399.88 1799.71 1998.59 5099.84 14699.73 1899.98 1299.98 3
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25299.80 998.33 7099.91 6299.56 2999.95 3099.97 4
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18699.71 4596.10 25397.87 20499.85 1798.56 13199.90 1299.68 2298.69 4199.85 12899.72 2099.98 1299.97 4
test_fmvs399.12 5499.41 2198.25 24099.76 2995.07 29199.05 6499.94 297.78 18999.82 2199.84 398.56 5499.71 25599.96 199.96 2399.97 4
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
test_f98.67 11998.87 7698.05 25799.72 4295.59 26898.51 12399.81 2596.30 29499.78 2799.82 596.14 21398.63 40699.82 799.93 4399.95 8
test_fmvs298.70 10898.97 6897.89 26499.54 9894.05 31898.55 11499.92 796.78 27299.72 3299.78 1096.60 19599.67 27599.91 299.90 6799.94 9
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4999.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18799.91 1199.67 2797.15 16298.91 40099.76 1599.56 21699.92 11
MVStest195.86 31795.60 31396.63 34195.87 41791.70 36897.93 19398.94 25798.03 16899.56 5399.66 2971.83 40698.26 41099.35 4099.24 27499.91 12
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24297.79 21399.82 2498.21 15499.81 2499.53 5898.46 6099.84 14699.70 2199.97 1999.90 13
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19499.55 9396.09 25697.74 22199.81 2598.55 13299.85 1999.55 5298.60 4999.84 14699.69 2399.98 1299.89 14
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22799.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7399.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
ttmdpeth97.91 20298.02 19197.58 29198.69 28994.10 31798.13 16298.90 26697.95 17497.32 32299.58 4395.95 22898.75 40496.41 24799.22 27899.87 18
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4899.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
EU-MVSNet97.66 22798.50 12695.13 37899.63 7385.84 40898.35 14298.21 32598.23 15299.54 5799.46 7095.02 25499.68 27298.24 11199.87 7699.87 18
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7499.99 599.86 21
MM98.22 18097.99 19498.91 15098.66 29996.97 22297.89 20094.44 39499.54 3098.95 16299.14 14193.50 29099.92 5399.80 1199.96 2399.85 22
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21299.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20999.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23396.49 28499.96 499.81 698.18 8499.45 35698.97 6699.79 11599.83 24
SSC-MVS98.71 10498.74 8898.62 19199.72 4296.08 25898.74 9298.64 30699.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27499.82 27
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4098.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 42100.00 199.82 27
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8499.53 3199.46 7599.41 8198.23 7799.95 2498.89 7299.95 3099.81 30
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6699.61 2699.40 8899.50 6297.12 16399.85 12899.02 6399.94 3899.80 31
test_cas_vis1_n_192098.33 16698.68 10197.27 31399.69 5492.29 36298.03 17899.85 1797.62 19899.96 499.62 3693.98 28399.74 24299.52 3399.86 8099.79 32
test_vis1_n_192098.40 15698.92 7196.81 33699.74 3590.76 38798.15 16099.91 998.33 14199.89 1599.55 5295.07 25399.88 9199.76 1599.93 4399.79 32
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15799.42 4299.33 10099.26 11097.01 17199.94 3798.74 8399.93 4399.79 32
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5999.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
CVMVSNet96.25 30697.21 24993.38 39799.10 20680.56 42497.20 27498.19 32896.94 26399.00 15299.02 16389.50 33499.80 19496.36 25199.59 20499.78 35
reproduce_monomvs95.00 33995.25 32894.22 38697.51 38583.34 41897.86 20598.44 31598.51 13399.29 10999.30 10167.68 41399.56 32298.89 7299.81 9999.77 37
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8899.70 1299.80 2599.68 2296.84 17899.83 16399.21 5199.91 6199.77 37
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8199.62 2499.56 5399.42 7798.16 8899.96 1298.78 7899.93 4399.77 37
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7799.46 3699.50 6999.34 9397.30 15299.93 4498.90 7099.93 4399.77 37
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18799.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS98.52 14598.55 11998.43 22399.65 6395.59 26898.52 11898.77 29299.65 1899.52 6399.00 17594.34 27499.93 4498.65 9098.83 32199.76 42
patch_mono-298.51 14698.63 10898.17 24699.38 14094.78 29697.36 26099.69 4098.16 16498.49 23399.29 10397.06 16699.97 598.29 11099.91 6199.76 42
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9999.68 1599.46 7599.26 11098.62 4799.73 24799.17 5499.92 5499.76 42
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8799.48 3399.24 12199.41 8196.79 18499.82 17398.69 8899.88 7399.76 42
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5599.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9997.57 20499.35 9799.24 11597.83 10999.89 7997.88 13799.70 16599.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8899.64 1999.56 5399.46 7098.23 7799.97 598.78 7899.93 4399.72 48
MSC_two_6792asdad99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
No_MVS99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
PMMVS298.07 19398.08 18698.04 25899.41 13794.59 30594.59 39099.40 13497.50 21298.82 18998.83 21396.83 18099.84 14697.50 16199.81 9999.71 49
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25499.57 6699.37 4699.21 12499.61 3996.76 18799.83 16398.06 12499.83 9299.71 49
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5298.48 13599.37 9399.49 6798.75 3699.86 11698.20 11499.80 11099.71 49
test_0728_THIRD98.17 16199.08 13899.02 16397.89 10699.88 9197.07 18599.71 15899.70 54
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15197.55 20899.31 10897.71 33094.61 26799.88 9196.14 26499.19 28599.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_298.78 9599.11 5497.78 27199.56 8993.67 33799.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12999.91 6199.68 56
test_0728_SECOND99.60 1499.50 10899.23 3098.02 18099.32 16499.88 9196.99 19199.63 19099.68 56
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5999.44 3999.78 2799.76 1296.39 20399.92 5399.44 3799.92 5499.68 56
CHOSEN 1792x268897.49 23997.14 25498.54 20999.68 5696.09 25696.50 31099.62 5291.58 38498.84 18598.97 18292.36 30899.88 9196.76 21499.95 3099.67 59
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 16099.47 10799.12 7599.52 6399.32 9998.31 7199.90 6897.78 14399.73 14599.66 60
IU-MVS99.49 11599.15 5198.87 27292.97 36999.41 8596.76 21499.62 19399.66 60
test_241102_TWO99.30 17798.03 16899.26 11699.02 16397.51 14099.88 9196.91 19799.60 20099.66 60
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28399.39 13697.67 19499.44 7998.99 17697.53 13799.89 7995.40 29499.68 17399.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6699.39 4499.75 3199.62 3699.17 1899.83 16399.06 5999.62 19399.66 60
EI-MVSNet-UG-set98.69 11198.71 9598.62 19199.10 20696.37 24797.23 27098.87 27299.20 6599.19 12698.99 17697.30 15299.85 12898.77 8199.79 11599.65 65
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10899.36 3999.92 5499.64 66
EI-MVSNet-Vis-set98.68 11698.70 9898.63 19099.09 20996.40 24697.23 27098.86 27799.20 6599.18 13098.97 18297.29 15499.85 12898.72 8599.78 12099.64 66
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7798.30 14599.65 4699.45 7499.22 1599.76 23098.44 10299.77 12699.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16299.63 2199.48 7099.15 13897.23 15899.75 23797.17 17599.66 18499.63 69
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
test_fmvs1_n98.09 19198.28 16097.52 29999.68 5693.47 34198.63 10599.93 595.41 32599.68 4099.64 3491.88 31599.48 34999.82 799.87 7699.62 70
test111196.49 29996.82 27395.52 37199.42 13587.08 40599.22 4287.14 41999.11 7699.46 7599.58 4388.69 33899.86 11698.80 7699.95 3099.62 70
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11499.63 2199.52 6399.44 7598.25 7599.88 9199.09 5799.84 8599.62 70
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 15099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
Test_1112_low_res96.99 28096.55 29198.31 23699.35 15195.47 27595.84 35199.53 8491.51 38696.80 34798.48 27491.36 31999.83 16396.58 22999.53 22699.62 70
v1098.97 7099.11 5498.55 20699.44 12996.21 25298.90 8099.55 7798.73 11499.48 7099.60 4196.63 19499.83 16399.70 2199.99 599.61 78
test_vis1_n98.31 16998.50 12697.73 28099.76 2994.17 31598.68 10299.91 996.31 29299.79 2699.57 4592.85 30299.42 36199.79 1299.84 8599.60 79
v899.01 6499.16 4898.57 20199.47 12496.31 25098.90 8099.47 10799.03 9499.52 6399.57 4596.93 17499.81 18799.60 2599.98 1299.60 79
EI-MVSNet98.40 15698.51 12498.04 25899.10 20694.73 29997.20 27498.87 27298.97 10099.06 14099.02 16396.00 22099.80 19498.58 9399.82 9599.60 79
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32699.37 4699.70 3699.65 3392.65 30699.93 4499.04 6199.84 8599.60 79
IterMVS-LS98.55 13898.70 9898.09 25099.48 12294.73 29997.22 27399.39 13698.97 10099.38 9199.31 10096.00 22099.93 4498.58 9399.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 26596.60 28998.96 14199.62 7597.28 20495.17 37299.50 9094.21 35199.01 15198.32 29186.61 35099.99 297.10 18399.84 8599.60 79
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20999.25 19796.94 26398.78 19299.12 14398.02 9799.84 14697.13 18199.67 17999.59 85
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15199.47 3599.28 11099.05 15896.72 19099.82 17398.09 12199.36 25499.59 85
WR-MVS98.40 15698.19 17299.03 13299.00 22897.65 18496.85 29398.94 25798.57 12898.89 17598.50 27195.60 23899.85 12897.54 15899.85 8199.59 85
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12496.74 27498.61 21598.38 28398.62 4799.87 10896.47 24399.67 17999.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17799.59 5798.15 16599.40 8899.36 8898.58 5399.76 23098.78 7899.68 17399.59 85
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6899.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27899.38 13894.87 33698.97 15898.99 17698.01 9899.88 9197.29 16999.70 16599.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16997.46 22098.44 23798.51 26797.83 10999.88 9196.46 24499.58 20999.58 91
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16997.47 21598.56 22498.54 26297.75 11799.88 9196.57 23199.59 20499.58 91
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 15099.49 9797.01 26098.69 20398.88 20498.00 9999.89 7995.87 27699.59 20499.58 91
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 15099.31 16997.92 17898.90 17398.90 19798.00 9999.88 9196.15 26399.72 15399.58 91
Skip Steuart: Steuart Systems R&D Blog.
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9999.69 1399.63 4999.68 2299.03 2199.96 1297.97 13199.92 5499.57 96
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17799.69 1399.63 4999.68 2299.25 1499.96 1297.25 17299.92 5499.57 96
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12799.42 4299.36 9599.06 15198.38 6499.95 2498.34 10799.90 6799.57 96
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20297.47 21598.09 26698.68 23997.62 12899.89 7996.22 25899.62 19399.57 96
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24399.73 3695.15 28797.36 26099.68 4594.45 34698.99 15399.27 10696.87 17799.94 3797.13 18199.91 6199.57 96
1112_ss97.29 25796.86 26998.58 19899.34 15396.32 24996.75 29999.58 5993.14 36796.89 34297.48 34492.11 31299.86 11696.91 19799.54 22299.57 96
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20898.83 11398.89 17598.90 19796.98 17399.92 5397.16 17699.70 16599.56 102
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30598.63 25197.50 14199.83 16396.79 21099.53 22699.56 102
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5199.30 5599.65 4699.60 4199.16 2099.82 17399.07 5899.83 9299.56 102
X-MVStestdata94.32 34692.59 36499.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30545.85 42197.50 14199.83 16396.79 21099.53 22699.56 102
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 9097.33 23198.94 16998.86 20798.75 3699.82 17397.53 15999.71 15899.56 102
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40699.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14697.54 20998.30 24698.40 28097.86 10899.89 7996.53 24099.72 15399.56 102
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18597.28 23798.11 26498.39 28198.00 9999.87 10896.86 20799.64 18799.55 109
v119298.60 13098.66 10498.41 22599.27 16495.88 26297.52 24899.36 14697.41 22499.33 10099.20 12396.37 20699.82 17399.57 2799.92 5499.55 109
v124098.55 13898.62 11098.32 23499.22 17695.58 27097.51 25099.45 11497.16 25299.45 7899.24 11596.12 21599.85 12899.60 2599.88 7399.55 109
UGNet98.53 14298.45 13698.79 16697.94 35796.96 22499.08 5898.54 31099.10 8396.82 34699.47 6996.55 19799.84 14698.56 9899.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WBMVS95.18 33494.78 34096.37 34797.68 37389.74 39495.80 35298.73 29997.54 20998.30 24698.44 27770.06 40799.82 17396.62 22699.87 7699.54 113
test250692.39 37591.89 37793.89 39199.38 14082.28 42199.32 2366.03 42799.08 8898.77 19599.57 4566.26 41799.84 14698.71 8699.95 3099.54 113
ECVR-MVScopyleft96.42 30196.61 28795.85 36399.38 14088.18 40199.22 4286.00 42199.08 8899.36 9599.57 4588.47 34399.82 17398.52 9999.95 3099.54 113
v14419298.54 14098.57 11898.45 22099.21 17895.98 25997.63 23599.36 14697.15 25499.32 10699.18 12895.84 23299.84 14699.50 3499.91 6199.54 113
v192192098.54 14098.60 11598.38 22899.20 18295.76 26797.56 24499.36 14697.23 24699.38 9199.17 13296.02 21899.84 14699.57 2799.90 6799.54 113
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21297.61 20197.58 30198.66 24497.40 14899.88 9194.72 30999.60 20099.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5799.59 2799.71 3499.57 4597.12 16399.90 6899.21 5199.87 7699.54 113
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14297.16 25298.82 18999.01 17297.71 11999.87 10896.29 25599.69 16899.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17599.22 20594.16 35298.98 15499.10 14797.52 13999.79 20796.45 24599.64 18799.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16997.47 21598.58 22198.50 27197.97 10399.85 12896.57 23199.59 20499.53 121
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22799.40 13499.14 7499.06 14098.59 25896.71 19199.93 4498.57 9599.77 12699.53 121
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14899.25 19797.44 22398.67 20698.39 28197.68 12099.85 12896.00 26899.51 23199.52 124
MVS_030497.44 24497.01 26098.72 18096.42 41096.74 23797.20 27491.97 41098.46 13698.30 24698.79 22192.74 30499.91 6299.30 4399.94 3899.52 124
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19498.24 11199.84 8599.52 124
v114498.60 13098.66 10498.41 22599.36 14795.90 26197.58 24299.34 15797.51 21199.27 11299.15 13896.34 20899.80 19499.47 3699.93 4399.51 127
v2v48298.56 13498.62 11098.37 23099.42 13595.81 26597.58 24299.16 22397.90 18099.28 11099.01 17295.98 22599.79 20799.33 4199.90 6799.51 127
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14599.27 19194.90 33597.83 28598.37 28494.90 25699.84 14693.85 33799.54 22299.51 127
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24699.25 19798.84 11299.06 14098.76 22796.76 18799.93 4498.57 9599.77 12699.50 130
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20899.10 8399.72 3298.76 22796.38 20599.86 11698.00 12999.82 9599.50 130
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18499.62 5299.22 6199.55 5699.22 12098.93 2699.75 23798.66 8999.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5999.11 7699.53 6199.18 12898.81 3299.67 27596.71 22199.77 12699.50 130
DVP-MVS++98.90 7998.70 9899.51 4698.43 32899.15 5199.43 1299.32 16498.17 16199.26 11699.02 16398.18 8499.88 9197.07 18599.45 24399.49 134
PC_three_145293.27 36599.40 8898.54 26298.22 8097.00 41695.17 29799.45 24399.49 134
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7398.42 13798.91 17298.81 21898.94 2599.91 6298.35 10699.73 14599.49 134
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30999.11 7698.58 22199.02 16388.65 34199.96 1298.11 11996.34 39799.49 134
IterMVS-SCA-FT97.85 21598.18 17396.87 33299.27 16491.16 38195.53 36099.25 19799.10 8399.41 8599.35 8993.10 29599.96 1298.65 9099.94 3899.49 134
new-patchmatchnet98.35 16298.74 8897.18 31699.24 17192.23 36496.42 31599.48 9998.30 14599.69 3899.53 5897.44 14699.82 17398.84 7599.77 12699.49 134
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21999.28 18894.97 33398.72 20198.77 22597.04 16799.85 12893.79 33899.54 22299.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33299.03 9498.59 21999.13 14292.16 31199.90 6896.87 20599.68 17399.49 134
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18399.46 11097.56 20699.54 5799.50 6298.97 2399.84 14698.06 12499.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17299.37 14297.62 19899.04 14798.96 18598.84 3099.79 20797.43 16399.65 18599.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 18098.84 28197.97 17299.08 13899.02 16397.61 12999.88 9196.99 19199.63 19099.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18598.29 14898.88 17898.85 21097.53 13799.87 10896.14 26499.31 26299.48 144
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25796.96 26199.24 12198.89 20397.83 10999.81 18796.88 20499.49 23999.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35299.67 1698.97 15899.50 6290.45 32799.80 19497.88 13799.20 28299.48 144
IterMVS97.73 22198.11 18296.57 34299.24 17190.28 39095.52 36299.21 20698.86 10999.33 10099.33 9593.11 29499.94 3798.49 10099.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32199.01 9698.98 15499.03 16291.59 31799.79 20795.49 29299.80 11099.48 144
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22799.38 13895.76 31298.81 19198.82 21698.36 6599.82 17394.75 30699.77 12699.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29298.73 29995.66 31397.92 27697.70 33297.17 16199.66 28696.18 26299.23 27799.47 151
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26698.40 10999.02 6699.19 21298.99 9798.07 26799.28 10497.11 16599.84 14696.84 20899.32 26099.47 151
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24898.75 29697.46 22096.90 34197.83 32596.01 21999.84 14695.82 28099.35 25699.46 153
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14799.19 21297.87 18299.25 12099.16 13496.84 17899.78 21899.21 5199.84 8599.46 153
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16298.64 11899.03 15098.98 18097.89 10699.85 12896.54 23999.42 24799.46 153
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22399.38 13898.93 10499.12 13298.73 23096.77 18599.86 11698.63 9299.80 11099.46 153
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.49 14499.86 11696.56 23599.39 25099.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.75 11796.56 23599.39 25099.45 157
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21699.27 19198.20 15897.79 28897.98 31594.90 25699.70 25994.42 31899.51 23199.45 157
plane_prior599.27 19199.70 25994.42 31899.51 23199.45 157
lessismore_v098.97 14099.73 3697.53 19186.71 42099.37 9399.52 6189.93 33099.92 5398.99 6599.72 15399.44 161
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 20198.81 28696.66 27899.17 13199.21 12194.81 26299.77 22496.96 19599.88 7399.44 161
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33398.97 7095.03 37699.18 21696.88 26699.33 10098.78 22398.16 8899.28 38296.74 21699.62 19399.44 161
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 27197.81 17399.25 4099.30 17798.57 12898.55 22699.33 9597.95 10499.90 6897.16 17699.67 17999.44 161
MVSFormer98.26 17698.43 13997.77 27298.88 25393.89 33099.39 1799.56 7399.11 7698.16 25898.13 30293.81 28699.97 599.26 4699.57 21399.43 165
jason97.45 24397.35 24197.76 27599.24 17193.93 32695.86 34898.42 31794.24 35098.50 23298.13 30294.82 26099.91 6297.22 17399.73 14599.43 165
jason: jason.
NCCC97.86 21097.47 23599.05 12998.61 30498.07 14396.98 28598.90 26697.63 19797.04 33197.93 32095.99 22499.66 28695.31 29598.82 32399.43 165
Anonymous2024052198.69 11198.87 7698.16 24899.77 2695.11 29099.08 5899.44 11899.34 5099.33 10099.55 5294.10 28299.94 3799.25 4899.96 2399.42 168
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33999.27 19197.60 20297.99 27498.25 29498.15 9099.38 36796.87 20599.57 21399.42 168
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7399.09 8699.33 10099.19 12498.40 6399.72 25495.98 27099.76 13899.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16899.31 16998.03 16899.66 4399.02 16398.36 6599.88 9196.91 19799.62 19399.41 171
OPU-MVS98.82 15998.59 30998.30 11898.10 16898.52 26698.18 8498.75 40494.62 31099.48 24099.41 171
our_test_397.39 24997.73 21596.34 34898.70 28489.78 39394.61 38998.97 25696.50 28399.04 14798.85 21095.98 22599.84 14697.26 17199.67 17999.41 171
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20999.57 6699.17 7299.35 9799.17 13298.35 6899.69 26398.46 10199.73 14599.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 23097.67 21897.39 30999.04 22293.04 34895.27 36998.38 32097.25 24098.92 17198.95 18995.48 24499.73 24796.99 19198.74 32599.41 171
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30899.04 22293.09 34495.27 36998.42 31797.26 23998.88 17898.95 18995.43 24599.73 24797.02 18898.72 32799.41 171
GBi-Net98.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
test198.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11899.21 6399.43 8099.55 5297.82 11299.86 11698.42 10499.89 7199.41 171
test_fmvs197.72 22297.94 20097.07 32398.66 29992.39 35997.68 22799.81 2595.20 32999.54 5799.44 7591.56 31899.41 36299.78 1499.77 12699.40 180
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8199.31 5399.62 5299.53 5897.36 15099.86 11699.24 5099.71 15899.39 181
v14898.45 15198.60 11598.00 26099.44 12994.98 29297.44 25699.06 23898.30 14599.32 10698.97 18296.65 19399.62 30098.37 10599.85 8199.39 181
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21499.24 20299.04 9399.41 8598.90 19797.65 12399.76 23097.70 14999.79 11599.39 181
CDPH-MVS97.26 25896.66 28599.07 12299.00 22898.15 13096.03 33799.01 25291.21 39097.79 28897.85 32496.89 17699.69 26392.75 36199.38 25399.39 181
EPNet96.14 30995.44 32198.25 24090.76 42595.50 27497.92 19694.65 39298.97 10092.98 40898.85 21089.12 33699.87 10895.99 26999.68 17399.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 18797.87 20699.07 12298.67 29498.24 12297.01 28398.93 26097.25 24097.62 29798.34 28897.27 15599.57 31996.42 24699.33 25999.39 181
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30497.23 20797.76 21999.09 23597.31 23498.75 19898.66 24497.56 13399.64 29496.10 26799.55 22099.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15499.41 13196.77 27398.83 18698.90 19797.80 11499.82 17395.68 28699.52 22999.38 188
test9_res93.28 35099.15 29099.38 188
BP-MVS197.40 24896.97 26198.71 18199.07 21396.81 23298.34 14497.18 35498.58 12798.17 25598.61 25584.01 37399.94 3798.97 6699.78 12099.37 190
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 28099.18 21697.10 25598.75 19898.92 19398.18 8499.65 29196.68 22399.56 21699.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 36699.16 28899.37 190
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
TestCases99.16 10799.50 10898.55 9999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25599.44 12994.96 29396.63 30599.15 22898.35 13998.83 18699.11 14494.31 27599.85 12896.60 22898.72 32799.37 190
MVSTER96.86 28496.55 29197.79 27097.91 35994.21 31397.56 24498.87 27297.49 21499.06 14099.05 15880.72 38699.80 19498.44 10299.82 9599.37 190
pmmvs597.64 22897.49 23298.08 25399.14 20095.12 28996.70 30299.05 24193.77 35998.62 21398.83 21393.23 29199.75 23798.33 10999.76 13899.36 197
Anonymous2023120698.21 18298.21 16998.20 24499.51 10595.43 27798.13 16299.32 16496.16 29798.93 17098.82 21696.00 22099.83 16397.32 16899.73 14599.36 197
train_agg97.10 27096.45 29599.07 12298.71 28098.08 14195.96 34199.03 24691.64 38295.85 37297.53 34096.47 20099.76 23093.67 34099.16 28899.36 197
PVSNet_BlendedMVS97.55 23597.53 22997.60 28998.92 24393.77 33496.64 30499.43 12494.49 34297.62 29799.18 12896.82 18199.67 27594.73 30799.93 4399.36 197
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25599.25 5999.54 5799.37 8497.04 16799.80 19497.89 13499.52 22999.35 201
F-COLMAP97.30 25596.68 28299.14 11099.19 18598.39 11097.27 26999.30 17792.93 37096.62 35398.00 31395.73 23599.68 27292.62 36498.46 34499.35 201
ppachtmachnet_test97.50 23697.74 21396.78 33898.70 28491.23 38094.55 39199.05 24196.36 28999.21 12498.79 22196.39 20399.78 21896.74 21699.82 9599.34 203
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35999.59 2799.11 13399.27 10694.82 26099.79 20798.34 10799.63 19099.34 203
testgi98.32 16798.39 14698.13 24999.57 8195.54 27197.78 21499.49 9797.37 22899.19 12697.65 33498.96 2499.49 34696.50 24298.99 31099.34 203
diffmvspermissive98.22 18098.24 16798.17 24699.00 22895.44 27696.38 31799.58 5997.79 18898.53 22998.50 27196.76 18799.74 24297.95 13399.64 18799.34 203
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23699.35 15198.72 11698.76 19798.68 23992.57 30799.74 24297.76 14895.60 40599.34 203
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 9098.86 10999.19 12699.06 15198.23 7799.69 26398.71 8699.76 13899.33 208
MG-MVS96.77 28896.61 28797.26 31498.31 33793.06 34595.93 34498.12 33196.45 28797.92 27698.73 23093.77 28899.39 36591.19 38499.04 30299.33 208
HQP4-MVS95.56 37799.54 33199.32 210
CDS-MVSNet97.69 22497.35 24198.69 18298.73 27597.02 22196.92 29198.75 29695.89 30998.59 21998.67 24192.08 31399.74 24296.72 21999.81 9999.32 210
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 27996.49 29498.55 20698.67 29496.79 23396.29 32399.04 24496.05 30095.55 37896.84 36193.84 28499.54 33192.82 35899.26 27299.32 210
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6697.72 19298.90 17399.26 11096.12 21599.52 33795.72 28399.71 15899.32 210
MVP-Stereo98.08 19297.92 20298.57 20198.96 23596.79 23397.90 19999.18 21696.41 28898.46 23598.95 18995.93 22999.60 30796.51 24198.98 31299.31 214
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15698.68 10197.54 29798.96 23597.99 15097.88 20199.36 14698.20 15899.63 4999.04 16098.76 3595.33 42096.56 23599.74 14299.31 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 15398.30 15898.79 16698.79 27097.29 20398.23 15098.66 30399.31 5398.85 18398.80 21994.80 26399.78 21898.13 11899.13 29399.31 214
test_prior98.95 14398.69 28997.95 15899.03 24699.59 31199.30 217
USDC97.41 24797.40 23697.44 30698.94 23793.67 33795.17 37299.53 8494.03 35698.97 15899.10 14795.29 24799.34 37295.84 27999.73 14599.30 217
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19399.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 219
FMVSNet298.49 14798.40 14398.75 17598.90 24797.14 21798.61 10899.13 22998.59 12499.19 12699.28 10494.14 27899.82 17397.97 13199.80 11099.29 219
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30799.48 9997.32 23399.11 13398.61 25599.33 1399.30 37896.23 25798.38 34599.28 221
test1298.93 14698.58 31197.83 16798.66 30396.53 35695.51 24299.69 26399.13 29399.27 222
DSMNet-mixed97.42 24697.60 22696.87 33299.15 19991.46 37198.54 11699.12 23092.87 37297.58 30199.63 3596.21 21199.90 6895.74 28299.54 22299.27 222
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33893.41 40395.25 32799.47 7498.90 19795.63 23799.85 12896.91 19799.73 14599.27 222
ambc98.24 24298.82 26495.97 26098.62 10799.00 25499.27 11299.21 12196.99 17299.50 34396.55 23899.50 23899.26 225
LFMVS97.20 26496.72 27998.64 18698.72 27796.95 22598.93 7894.14 40099.74 1098.78 19299.01 17284.45 36899.73 24797.44 16299.27 26999.25 226
FMVSNet596.01 31295.20 33198.41 22597.53 38096.10 25398.74 9299.50 9097.22 24998.03 27299.04 16069.80 40899.88 9197.27 17099.71 15899.25 226
BH-RMVSNet96.83 28596.58 29097.58 29198.47 32294.05 31896.67 30397.36 34896.70 27797.87 28197.98 31595.14 25199.44 35890.47 39298.58 34199.25 226
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
旧先验198.82 26497.45 19598.76 29398.34 28895.50 24399.01 30799.23 231
test22298.92 24396.93 22795.54 35998.78 29185.72 41096.86 34498.11 30594.43 27099.10 29899.23 231
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22499.46 11097.25 24098.98 15498.99 17697.54 13599.84 14695.88 27399.74 14299.23 231
FMVSNet397.50 23697.24 24798.29 23898.08 35295.83 26497.86 20598.91 26597.89 18198.95 16298.95 18987.06 34799.81 18797.77 14499.69 16899.23 231
无先验95.74 35498.74 29889.38 40199.73 24792.38 36899.22 235
tttt051795.64 32594.98 33597.64 28699.36 14793.81 33298.72 9790.47 41498.08 16798.67 20698.34 28873.88 40499.92 5397.77 14499.51 23199.20 236
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27899.28 18895.54 31899.42 8399.19 12497.27 15599.63 29797.89 13499.97 1999.20 236
MS-PatchMatch97.68 22597.75 21297.45 30598.23 34393.78 33397.29 26698.84 28196.10 29998.64 21098.65 24696.04 21799.36 36896.84 20899.14 29199.20 236
新几何198.91 15098.94 23797.76 17698.76 29387.58 40796.75 34998.10 30694.80 26399.78 21892.73 36299.00 30899.20 236
PHI-MVS98.29 17397.95 19899.34 7598.44 32799.16 4798.12 16599.38 13896.01 30498.06 26898.43 27897.80 11499.67 27595.69 28599.58 20999.20 236
GDP-MVS97.50 23697.11 25598.67 18499.02 22696.85 23098.16 15999.71 3698.32 14398.52 23198.54 26283.39 37799.95 2498.79 7799.56 21699.19 241
Anonymous20240521197.90 20397.50 23199.08 12098.90 24798.25 12198.53 11796.16 37698.87 10899.11 13398.86 20790.40 32899.78 21897.36 16699.31 26299.19 241
CANet97.87 20997.76 21198.19 24597.75 36495.51 27396.76 29899.05 24197.74 19096.93 33598.21 29895.59 23999.89 7997.86 13999.93 4399.19 241
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33999.50 9097.30 23599.05 14598.98 18099.35 1299.32 37595.72 28399.68 17399.18 244
WTY-MVS96.67 29196.27 30197.87 26598.81 26694.61 30496.77 29797.92 33694.94 33497.12 32697.74 32991.11 32199.82 17393.89 33498.15 35799.18 244
Vis-MVSNet (Re-imp)97.46 24197.16 25198.34 23399.55 9396.10 25398.94 7798.44 31598.32 14398.16 25898.62 25388.76 33799.73 24793.88 33599.79 11599.18 244
TinyColmap97.89 20597.98 19597.60 28998.86 25594.35 31096.21 32799.44 11897.45 22299.06 14098.88 20497.99 10299.28 38294.38 32299.58 20999.18 244
testdata98.09 25098.93 23995.40 27898.80 28890.08 39897.45 31498.37 28495.26 24899.70 25993.58 34398.95 31599.17 248
lupinMVS97.06 27396.86 26997.65 28498.88 25393.89 33095.48 36397.97 33493.53 36298.16 25897.58 33893.81 28699.91 6296.77 21399.57 21399.17 248
Patchmtry97.35 25196.97 26198.50 21697.31 39196.47 24598.18 15598.92 26398.95 10398.78 19299.37 8485.44 36299.85 12895.96 27199.83 9299.17 248
RRT-MVS97.88 20797.98 19597.61 28898.15 34793.77 33498.97 7399.64 5099.16 7398.69 20399.42 7791.60 31699.89 7997.63 15298.52 34399.16 251
sss97.21 26396.93 26398.06 25598.83 26195.22 28596.75 29998.48 31494.49 34297.27 32397.90 32192.77 30399.80 19496.57 23199.32 26099.16 251
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6697.87 18298.85 18398.04 31297.66 12299.84 14696.72 21999.81 9999.13 253
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33599.30 17797.58 20398.10 26598.24 29598.25 7599.34 37296.69 22299.65 18599.12 254
miper_lstm_enhance97.18 26697.16 25197.25 31598.16 34692.85 35095.15 37499.31 16997.25 24098.74 20098.78 22390.07 32999.78 21897.19 17499.80 11099.11 255
testing393.51 36092.09 37097.75 27698.60 30694.40 30897.32 26395.26 38997.56 20696.79 34895.50 38753.57 42699.77 22495.26 29698.97 31399.08 256
原ACMM198.35 23298.90 24796.25 25198.83 28592.48 37696.07 36998.10 30695.39 24699.71 25592.61 36598.99 31099.08 256
QAPM97.31 25496.81 27598.82 15998.80 26997.49 19299.06 6299.19 21290.22 39697.69 29499.16 13496.91 17599.90 6890.89 38999.41 24899.07 258
PAPM_NR96.82 28796.32 29898.30 23799.07 21396.69 24097.48 25298.76 29395.81 31196.61 35496.47 36994.12 28199.17 38990.82 39097.78 36999.06 259
eth_miper_zixun_eth97.23 26297.25 24697.17 31898.00 35592.77 35294.71 38399.18 21697.27 23898.56 22498.74 22991.89 31499.69 26397.06 18799.81 9999.05 260
D2MVS97.84 21697.84 20897.83 26799.14 20094.74 29896.94 28798.88 27095.84 31098.89 17598.96 18594.40 27299.69 26397.55 15699.95 3099.05 260
c3_l97.36 25097.37 23997.31 31098.09 35193.25 34395.01 37799.16 22397.05 25698.77 19598.72 23292.88 30099.64 29496.93 19699.76 13899.05 260
PLCcopyleft94.65 1696.51 29695.73 30898.85 15698.75 27397.91 16096.42 31599.06 23890.94 39395.59 37597.38 35094.41 27199.59 31190.93 38798.04 36699.05 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11899.45 3799.51 6899.24 11598.20 8399.86 11695.92 27299.69 16899.04 264
CANet_DTU97.26 25897.06 25797.84 26697.57 37594.65 30396.19 32998.79 28997.23 24695.14 38798.24 29593.22 29299.84 14697.34 16799.84 8599.04 264
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18999.68 4597.62 19899.34 9999.18 12897.54 13599.77 22497.79 14299.74 14299.04 264
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 28097.88 16296.32 32198.66 30396.33 29099.23 12398.51 26797.48 14599.40 36397.16 17699.46 24199.02 267
DIV-MVS_self_test97.02 27696.84 27197.58 29197.82 36294.03 32194.66 38699.16 22397.04 25798.63 21198.71 23388.69 33899.69 26397.00 18999.81 9999.01 268
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 268
GA-MVS95.86 31795.32 32797.49 30298.60 30694.15 31693.83 40397.93 33595.49 32096.68 35097.42 34883.21 37899.30 37896.22 25898.55 34299.01 268
OMC-MVS97.88 20797.49 23299.04 13198.89 25298.63 9196.94 28799.25 19795.02 33198.53 22998.51 26797.27 15599.47 35293.50 34699.51 23199.01 268
cl____97.02 27696.83 27297.58 29197.82 36294.04 32094.66 38699.16 22397.04 25798.63 21198.71 23388.68 34099.69 26397.00 18999.81 9999.00 272
pmmvs497.58 23397.28 24498.51 21298.84 25996.93 22795.40 36798.52 31293.60 36198.61 21598.65 24695.10 25299.60 30796.97 19499.79 11598.99 273
EPNet_dtu94.93 34094.78 34095.38 37693.58 42187.68 40396.78 29695.69 38797.35 23089.14 41898.09 30888.15 34599.49 34694.95 30399.30 26598.98 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 29895.77 30698.69 18299.48 12297.43 19797.84 20899.55 7781.42 41696.51 35898.58 25995.53 24099.67 27593.41 34899.58 20998.98 274
PVSNet_Blended96.88 28396.68 28297.47 30498.92 24393.77 33494.71 38399.43 12490.98 39297.62 29797.36 35296.82 18199.67 27594.73 30799.56 21698.98 274
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11498.28 15098.98 15499.19 12497.76 11699.58 31796.57 23199.55 22098.97 277
PAPR95.29 33194.47 34297.75 27697.50 38695.14 28894.89 38098.71 30191.39 38895.35 38595.48 38994.57 26899.14 39284.95 40897.37 38198.97 277
EGC-MVSNET85.24 38580.54 38899.34 7599.77 2699.20 3899.08 5899.29 18512.08 42320.84 42499.42 7797.55 13499.85 12897.08 18499.72 15398.96 279
thisisatest053095.27 33294.45 34397.74 27899.19 18594.37 30997.86 20590.20 41597.17 25198.22 25397.65 33473.53 40599.90 6896.90 20299.35 25698.95 280
mvs_anonymous97.83 21898.16 17796.87 33298.18 34591.89 36697.31 26498.90 26697.37 22898.83 18699.46 7096.28 20999.79 20798.90 7098.16 35698.95 280
baseline195.96 31595.44 32197.52 29998.51 32093.99 32498.39 13896.09 37898.21 15498.40 24497.76 32886.88 34899.63 29795.42 29389.27 41898.95 280
CLD-MVS97.49 23997.16 25198.48 21799.07 21397.03 22094.71 38399.21 20694.46 34498.06 26897.16 35697.57 13299.48 34994.46 31599.78 12098.95 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 19598.14 18097.64 28698.58 31195.19 28697.48 25299.23 20497.47 21597.90 27898.62 25397.04 16798.81 40397.55 15699.41 24898.94 284
DELS-MVS98.27 17498.20 17098.48 21798.86 25596.70 23995.60 35899.20 20897.73 19198.45 23698.71 23397.50 14199.82 17398.21 11399.59 20498.93 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 32095.39 32496.98 32696.77 40392.79 35194.40 39498.53 31194.59 34197.89 27998.17 30182.82 38299.24 38496.37 24999.03 30398.92 286
LS3D98.63 12598.38 14899.36 6697.25 39299.38 1299.12 5799.32 16499.21 6398.44 23798.88 20497.31 15199.80 19496.58 22999.34 25898.92 286
CMPMVSbinary75.91 2396.29 30495.44 32198.84 15796.25 41398.69 9097.02 28299.12 23088.90 40397.83 28598.86 20789.51 33398.90 40191.92 36999.51 23198.92 286
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25898.51 10498.49 12699.83 2298.37 13899.69 3899.46 7098.21 8299.92 5394.13 32899.30 26598.91 289
mvsmamba97.57 23497.26 24598.51 21298.69 28996.73 23898.74 9297.25 35397.03 25997.88 28099.23 11990.95 32299.87 10896.61 22799.00 30898.91 289
DPM-MVS96.32 30395.59 31598.51 21298.76 27197.21 21094.54 39298.26 32391.94 38196.37 36297.25 35493.06 29799.43 35991.42 37998.74 32598.89 291
test_yl96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
DCV-MVSNet96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25898.51 26798.64 4499.93 4498.91 6999.85 8198.88 294
UnsupCasMVSNet_bld97.30 25596.92 26598.45 22099.28 16296.78 23696.20 32899.27 19195.42 32298.28 25098.30 29293.16 29399.71 25594.99 30097.37 38198.87 295
Effi-MVS+98.02 19597.82 20998.62 19198.53 31897.19 21297.33 26299.68 4597.30 23596.68 35097.46 34698.56 5499.80 19496.63 22598.20 35298.86 296
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15799.28 5798.95 16298.91 19498.34 6999.79 20795.63 28799.91 6198.86 296
PatchmatchNetpermissive95.58 32695.67 31195.30 37797.34 39087.32 40497.65 23396.65 36995.30 32697.07 32998.69 23784.77 36599.75 23794.97 30298.64 33698.83 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 22097.72 21697.83 26798.81 26696.35 24897.30 26599.69 4094.61 34097.87 28198.05 31196.26 21098.32 40998.74 8398.18 35398.82 299
CL-MVSNet_self_test97.44 24497.22 24898.08 25398.57 31395.78 26694.30 39698.79 28996.58 28198.60 21798.19 30094.74 26699.64 29496.41 24798.84 32098.82 299
miper_ehance_all_eth97.06 27397.03 25897.16 32097.83 36193.06 34594.66 38699.09 23595.99 30598.69 20398.45 27692.73 30599.61 30696.79 21099.03 30398.82 299
MIMVSNet96.62 29496.25 30297.71 28199.04 22294.66 30299.16 5196.92 36597.23 24697.87 28199.10 14786.11 35699.65 29191.65 37499.21 28198.82 299
hse-mvs297.46 24197.07 25698.64 18698.73 27597.33 20197.45 25597.64 34599.11 7698.58 22197.98 31588.65 34199.79 20798.11 11997.39 38098.81 303
GSMVS98.81 303
sam_mvs184.74 36698.81 303
SCA96.41 30296.66 28595.67 36798.24 34188.35 39995.85 35096.88 36696.11 29897.67 29598.67 24193.10 29599.85 12894.16 32499.22 27898.81 303
Patchmatch-RL test97.26 25897.02 25997.99 26199.52 10395.53 27296.13 33399.71 3697.47 21599.27 11299.16 13484.30 37199.62 30097.89 13499.77 12698.81 303
AUN-MVS96.24 30895.45 32098.60 19698.70 28497.22 20997.38 25897.65 34395.95 30795.53 38297.96 31982.11 38599.79 20796.31 25397.44 37798.80 308
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15197.50 21298.28 25098.60 25797.64 12699.35 37193.86 33699.27 26998.79 309
tpm94.67 34294.34 34695.66 36897.68 37388.42 39897.88 20194.90 39094.46 34496.03 37198.56 26178.66 39699.79 20795.88 27395.01 40898.78 310
Patchmatch-test96.55 29596.34 29797.17 31898.35 33493.06 34598.40 13797.79 33797.33 23198.41 24098.67 24183.68 37699.69 26395.16 29899.31 26298.77 311
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26398.37 28498.72 3899.90 6899.05 6099.77 12698.77 311
PMMVS96.51 29695.98 30398.09 25097.53 38095.84 26394.92 37998.84 28191.58 38496.05 37095.58 38495.68 23699.66 28695.59 28998.09 36098.76 313
test_method79.78 38679.50 38980.62 40280.21 42745.76 43070.82 41898.41 31931.08 42280.89 42297.71 33084.85 36497.37 41591.51 37880.03 41998.75 314
ab-mvs98.41 15498.36 15098.59 19799.19 18597.23 20799.32 2398.81 28697.66 19598.62 21399.40 8396.82 18199.80 19495.88 27399.51 23198.75 314
CHOSEN 280x42095.51 32995.47 31895.65 36998.25 34088.27 40093.25 40798.88 27093.53 36294.65 39397.15 35786.17 35499.93 4497.41 16499.93 4398.73 316
test_fmvsmvis_n_192099.26 3599.49 1398.54 20999.66 6296.97 22298.00 18499.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 317
MVS_Test98.18 18598.36 15097.67 28298.48 32194.73 29998.18 15599.02 24997.69 19398.04 27199.11 14497.22 15999.56 32298.57 9598.90 31998.71 317
PVSNet93.40 1795.67 32395.70 30995.57 37098.83 26188.57 39792.50 41097.72 33992.69 37496.49 36196.44 37093.72 28999.43 35993.61 34199.28 26898.71 317
alignmvs97.35 25196.88 26898.78 16998.54 31698.09 13797.71 22497.69 34199.20 6597.59 30095.90 37988.12 34699.55 32698.18 11598.96 31498.70 320
ADS-MVSNet295.43 33094.98 33596.76 33998.14 34891.74 36797.92 19697.76 33890.23 39496.51 35898.91 19485.61 35999.85 12892.88 35696.90 39098.69 321
ADS-MVSNet95.24 33394.93 33896.18 35698.14 34890.10 39297.92 19697.32 35190.23 39496.51 35898.91 19485.61 35999.74 24292.88 35696.90 39098.69 321
MDTV_nov1_ep13_2view74.92 42697.69 22690.06 39997.75 29185.78 35893.52 34498.69 321
MSDG97.71 22397.52 23098.28 23998.91 24696.82 23194.42 39399.37 14297.65 19698.37 24598.29 29397.40 14899.33 37494.09 32999.22 27898.68 324
mvsany_test197.60 23097.54 22897.77 27297.72 36595.35 27995.36 36897.13 35794.13 35399.71 3499.33 9597.93 10599.30 37897.60 15598.94 31698.67 325
CS-MVS99.13 5299.10 5699.24 9799.06 21899.15 5199.36 1999.88 1399.36 4998.21 25498.46 27598.68 4299.93 4499.03 6299.85 8198.64 326
Syy-MVS96.04 31195.56 31797.49 30297.10 39694.48 30696.18 33096.58 37195.65 31494.77 39092.29 41791.27 32099.36 36898.17 11798.05 36498.63 327
myMVS_eth3d91.92 38290.45 38496.30 34997.10 39690.90 38496.18 33096.58 37195.65 31494.77 39092.29 41753.88 42599.36 36889.59 39698.05 36498.63 327
balanced_conf0398.63 12598.72 9298.38 22898.66 29996.68 24198.90 8099.42 12798.99 9798.97 15899.19 12495.81 23399.85 12898.77 8199.77 12698.60 329
miper_enhance_ethall96.01 31295.74 30796.81 33696.41 41192.27 36393.69 40598.89 26991.14 39198.30 24697.35 35390.58 32699.58 31796.31 25399.03 30398.60 329
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35499.49 698.02 18099.16 22398.29 14897.64 29697.99 31496.44 20299.95 2496.66 22498.93 31798.60 329
new_pmnet96.99 28096.76 27797.67 28298.72 27794.89 29495.95 34398.20 32692.62 37598.55 22698.54 26294.88 25999.52 33793.96 33299.44 24698.59 332
MVSMamba_PlusPlus98.83 8798.98 6798.36 23199.32 15596.58 24498.90 8099.41 13199.75 898.72 20199.50 6296.17 21299.94 3799.27 4599.78 12098.57 333
testing9193.32 36392.27 36796.47 34597.54 37891.25 37896.17 33296.76 36897.18 25093.65 40693.50 41065.11 42099.63 29793.04 35397.45 37698.53 334
EIA-MVS98.00 19797.74 21398.80 16398.72 27798.09 13798.05 17599.60 5697.39 22696.63 35295.55 38597.68 12099.80 19496.73 21899.27 26998.52 335
PatchMatch-RL97.24 26196.78 27698.61 19499.03 22597.83 16796.36 31899.06 23893.49 36497.36 32197.78 32695.75 23499.49 34693.44 34798.77 32498.52 335
sasdasda98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
ET-MVSNet_ETH3D94.30 34893.21 35897.58 29198.14 34894.47 30794.78 38293.24 40594.72 33889.56 41695.87 38078.57 39899.81 18796.91 19797.11 38998.46 337
canonicalmvs98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
UBG93.25 36592.32 36696.04 36197.72 36590.16 39195.92 34695.91 38296.03 30393.95 40393.04 41369.60 40999.52 33790.72 39197.98 36798.45 340
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 36198.86 10998.87 18297.62 33798.63 4698.96 39799.41 3898.29 34998.45 340
TAPA-MVS96.21 1196.63 29395.95 30498.65 18598.93 23998.09 13796.93 28999.28 18883.58 41398.13 26297.78 32696.13 21499.40 36393.52 34499.29 26798.45 340
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net98.34 16398.28 16098.51 21298.47 32297.59 18898.96 7499.48 9999.18 7197.40 31795.50 38798.66 4399.50 34398.18 11598.71 32998.44 343
BH-untuned96.83 28596.75 27897.08 32198.74 27493.33 34296.71 30198.26 32396.72 27598.44 23797.37 35195.20 24999.47 35291.89 37097.43 37898.44 343
WB-MVSnew95.73 32295.57 31696.23 35496.70 40490.70 38896.07 33693.86 40195.60 31697.04 33195.45 39396.00 22099.55 32691.04 38598.31 34898.43 345
pmmvs395.03 33794.40 34496.93 32897.70 37092.53 35695.08 37597.71 34088.57 40497.71 29298.08 30979.39 39399.82 17396.19 26099.11 29798.43 345
DP-MVS Recon97.33 25396.92 26598.57 20199.09 20997.99 15096.79 29599.35 15193.18 36697.71 29298.07 31095.00 25599.31 37693.97 33199.13 29398.42 347
testing9993.04 36991.98 37596.23 35497.53 38090.70 38896.35 31995.94 38196.87 26793.41 40793.43 41163.84 42299.59 31193.24 35197.19 38698.40 348
ETVMVS92.60 37391.08 38297.18 31697.70 37093.65 33996.54 30795.70 38596.51 28294.68 39292.39 41661.80 42399.50 34386.97 40397.41 37998.40 348
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32898.11 13497.61 23899.50 9098.64 11897.39 31997.52 34298.12 9299.95 2496.90 20298.71 32998.38 350
LF4IMVS97.90 20397.69 21798.52 21199.17 19397.66 18397.19 27799.47 10796.31 29297.85 28498.20 29996.71 19199.52 33794.62 31099.72 15398.38 350
testing1193.08 36892.02 37296.26 35297.56 37690.83 38696.32 32195.70 38596.47 28692.66 41093.73 40764.36 42199.59 31193.77 33997.57 37298.37 352
Fast-Effi-MVS+97.67 22697.38 23898.57 20198.71 28097.43 19797.23 27099.45 11494.82 33796.13 36696.51 36698.52 5699.91 6296.19 26098.83 32198.37 352
test0.0.03 194.51 34393.69 35296.99 32596.05 41493.61 34094.97 37893.49 40296.17 29597.57 30394.88 40082.30 38399.01 39693.60 34294.17 41298.37 352
UWE-MVS92.38 37691.76 37994.21 38797.16 39484.65 41395.42 36688.45 41895.96 30696.17 36595.84 38266.36 41699.71 25591.87 37198.64 33698.28 355
FE-MVS95.66 32494.95 33797.77 27298.53 31895.28 28299.40 1696.09 37893.11 36897.96 27599.26 11079.10 39599.77 22492.40 36798.71 32998.27 356
baseline293.73 35792.83 36396.42 34697.70 37091.28 37796.84 29489.77 41693.96 35892.44 41195.93 37879.14 39499.77 22492.94 35496.76 39498.21 357
thisisatest051594.12 35293.16 35996.97 32798.60 30692.90 34993.77 40490.61 41394.10 35496.91 33895.87 38074.99 40399.80 19494.52 31399.12 29698.20 358
EPMVS93.72 35893.27 35795.09 38096.04 41587.76 40298.13 16285.01 42294.69 33996.92 33698.64 24978.47 40099.31 37695.04 29996.46 39698.20 358
dp93.47 36193.59 35493.13 39996.64 40581.62 42397.66 23196.42 37492.80 37396.11 36798.64 24978.55 39999.59 31193.31 34992.18 41798.16 360
CNLPA97.17 26796.71 28098.55 20698.56 31498.05 14796.33 32098.93 26096.91 26597.06 33097.39 34994.38 27399.45 35691.66 37399.18 28798.14 361
dmvs_re95.98 31495.39 32497.74 27898.86 25597.45 19598.37 14095.69 38797.95 17496.56 35595.95 37790.70 32597.68 41488.32 39996.13 40198.11 362
HY-MVS95.94 1395.90 31695.35 32697.55 29697.95 35694.79 29598.81 9196.94 36492.28 37995.17 38698.57 26089.90 33199.75 23791.20 38397.33 38598.10 363
CostFormer93.97 35493.78 35194.51 38397.53 38085.83 40997.98 18995.96 38089.29 40294.99 38998.63 25178.63 39799.62 30094.54 31296.50 39598.09 364
FA-MVS(test-final)96.99 28096.82 27397.50 30198.70 28494.78 29699.34 2096.99 36095.07 33098.48 23499.33 9588.41 34499.65 29196.13 26698.92 31898.07 365
AdaColmapbinary97.14 26996.71 28098.46 21998.34 33597.80 17496.95 28698.93 26095.58 31796.92 33697.66 33395.87 23199.53 33390.97 38699.14 29198.04 366
KD-MVS_2432*160092.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
miper_refine_blended92.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
TESTMET0.1,192.19 38091.77 37893.46 39596.48 40982.80 42094.05 40091.52 41294.45 34694.00 40194.88 40066.65 41599.56 32295.78 28198.11 35998.02 367
testing22291.96 38190.37 38596.72 34097.47 38792.59 35496.11 33494.76 39196.83 26992.90 40992.87 41457.92 42499.55 32686.93 40497.52 37398.00 370
PCF-MVS92.86 1894.36 34593.00 36298.42 22498.70 28497.56 18993.16 40899.11 23279.59 41797.55 30497.43 34792.19 31099.73 24779.85 41799.45 24397.97 371
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 27196.68 28298.32 23498.32 33697.16 21598.86 8699.37 14289.48 40096.29 36499.15 13896.56 19699.90 6892.90 35599.20 28297.89 372
Gipumacopyleft99.03 6399.16 4898.64 18699.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34297.70 14999.73 14597.89 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 38490.30 38793.70 39397.72 36584.34 41790.24 41497.42 34690.20 39793.79 40493.09 41290.90 32498.89 40286.57 40672.76 42197.87 374
test-LLR93.90 35593.85 34994.04 38896.53 40784.62 41494.05 40092.39 40796.17 29594.12 39895.07 39482.30 38399.67 27595.87 27698.18 35397.82 375
test-mter92.33 37891.76 37994.04 38896.53 40784.62 41494.05 40092.39 40794.00 35794.12 39895.07 39465.63 41999.67 27595.87 27698.18 35397.82 375
tpm293.09 36792.58 36594.62 38297.56 37686.53 40697.66 23195.79 38486.15 40994.07 40098.23 29775.95 40199.53 33390.91 38896.86 39397.81 377
CR-MVSNet96.28 30595.95 30497.28 31297.71 36894.22 31198.11 16698.92 26392.31 37896.91 33899.37 8485.44 36299.81 18797.39 16597.36 38397.81 377
RPMNet97.02 27696.93 26397.30 31197.71 36894.22 31198.11 16699.30 17799.37 4696.91 33899.34 9386.72 34999.87 10897.53 15997.36 38397.81 377
tpmrst95.07 33695.46 31993.91 39097.11 39584.36 41697.62 23696.96 36294.98 33296.35 36398.80 21985.46 36199.59 31195.60 28896.23 39997.79 380
PAPM91.88 38390.34 38696.51 34398.06 35392.56 35592.44 41197.17 35586.35 40890.38 41596.01 37586.61 35099.21 38770.65 42195.43 40697.75 381
FPMVS93.44 36292.23 36897.08 32199.25 17097.86 16495.61 35797.16 35692.90 37193.76 40598.65 24675.94 40295.66 41879.30 41897.49 37497.73 382
MAR-MVS96.47 30095.70 30998.79 16697.92 35899.12 6198.28 14698.60 30892.16 38095.54 38196.17 37494.77 26599.52 33789.62 39598.23 35097.72 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 19497.86 20798.56 20598.69 28998.07 14397.51 25099.50 9098.10 16697.50 30995.51 38698.41 6299.88 9196.27 25699.24 27497.71 384
thres600view794.45 34493.83 35096.29 35099.06 21891.53 37097.99 18894.24 39898.34 14097.44 31595.01 39679.84 38999.67 27584.33 40998.23 35097.66 385
thres40094.14 35193.44 35596.24 35398.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36197.66 385
IB-MVS91.63 1992.24 37990.90 38396.27 35197.22 39391.24 37994.36 39593.33 40492.37 37792.24 41294.58 40466.20 41899.89 7993.16 35294.63 41097.66 385
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 33895.25 32894.33 38496.39 41285.87 40798.08 17096.83 36795.46 32195.51 38398.69 23785.91 35799.53 33394.16 32496.23 39997.58 388
cascas94.79 34194.33 34796.15 36096.02 41692.36 36192.34 41299.26 19685.34 41195.08 38894.96 39992.96 29998.53 40794.41 32198.59 34097.56 389
PatchT96.65 29296.35 29697.54 29797.40 38895.32 28197.98 18996.64 37099.33 5196.89 34299.42 7784.32 37099.81 18797.69 15197.49 37497.48 390
TR-MVS95.55 32795.12 33396.86 33597.54 37893.94 32596.49 31196.53 37394.36 34997.03 33396.61 36594.26 27799.16 39086.91 40596.31 39897.47 391
dmvs_testset92.94 37092.21 36995.13 37898.59 30990.99 38397.65 23392.09 40996.95 26294.00 40193.55 40992.34 30996.97 41772.20 42092.52 41597.43 392
MonoMVSNet96.25 30696.53 29395.39 37596.57 40691.01 38298.82 9097.68 34298.57 12898.03 27299.37 8490.92 32397.78 41394.99 30093.88 41397.38 393
JIA-IIPM95.52 32895.03 33497.00 32496.85 40194.03 32196.93 28995.82 38399.20 6594.63 39499.71 1983.09 37999.60 30794.42 31894.64 40997.36 394
BH-w/o95.13 33594.89 33995.86 36298.20 34491.31 37595.65 35697.37 34793.64 36096.52 35795.70 38393.04 29899.02 39488.10 40095.82 40497.24 395
tpm cat193.29 36493.13 36193.75 39297.39 38984.74 41297.39 25797.65 34383.39 41494.16 39798.41 27982.86 38199.39 36591.56 37795.35 40797.14 396
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
PMVScopyleft91.26 2097.86 21097.94 20097.65 28499.71 4597.94 15998.52 11898.68 30298.99 9797.52 30799.35 8997.41 14798.18 41191.59 37699.67 17996.82 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 32195.60 31396.17 35797.53 38092.75 35398.07 17298.31 32291.22 38994.25 39696.68 36495.53 24099.03 39391.64 37597.18 38796.74 401
MVS-HIRNet94.32 34695.62 31290.42 40198.46 32475.36 42596.29 32389.13 41795.25 32795.38 38499.75 1392.88 30099.19 38894.07 33099.39 25096.72 402
OpenMVS_ROBcopyleft95.38 1495.84 31995.18 33297.81 26998.41 33297.15 21697.37 25998.62 30783.86 41298.65 20998.37 28494.29 27699.68 27288.41 39898.62 33996.60 403
thres100view90094.19 34993.67 35395.75 36699.06 21891.35 37498.03 17894.24 39898.33 14197.40 31794.98 39879.84 38999.62 30083.05 41198.08 36196.29 404
tfpn200view994.03 35393.44 35595.78 36598.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36196.29 404
MVS93.19 36692.09 37096.50 34496.91 39994.03 32198.07 17298.06 33368.01 41994.56 39596.48 36895.96 22799.30 37883.84 41096.89 39296.17 406
gg-mvs-nofinetune92.37 37791.20 38195.85 36395.80 41892.38 36099.31 2781.84 42499.75 891.83 41399.74 1568.29 41099.02 39487.15 40297.12 38896.16 407
xiu_mvs_v2_base97.16 26897.49 23296.17 35798.54 31692.46 35795.45 36498.84 28197.25 24097.48 31196.49 36798.31 7199.90 6896.34 25298.68 33496.15 408
PS-MVSNAJ97.08 27297.39 23796.16 35998.56 31492.46 35795.24 37198.85 28097.25 24097.49 31095.99 37698.07 9399.90 6896.37 24998.67 33596.12 409
E-PMN94.17 35094.37 34593.58 39496.86 40085.71 41090.11 41697.07 35898.17 16197.82 28797.19 35584.62 36798.94 39889.77 39497.68 37196.09 410
EMVS93.83 35694.02 34893.23 39896.83 40284.96 41189.77 41796.32 37597.92 17897.43 31696.36 37386.17 35498.93 39987.68 40197.73 37095.81 411
MVEpermissive83.40 2292.50 37491.92 37694.25 38598.83 26191.64 36992.71 40983.52 42395.92 30886.46 42195.46 39095.20 24995.40 41980.51 41698.64 33695.73 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 35893.14 36095.46 37498.66 29991.29 37696.61 30694.63 39397.39 22696.83 34593.71 40879.88 38899.56 32282.40 41498.13 35895.54 413
API-MVS97.04 27596.91 26797.42 30797.88 36098.23 12698.18 15598.50 31397.57 20497.39 31996.75 36396.77 18599.15 39190.16 39399.02 30694.88 414
GG-mvs-BLEND94.76 38194.54 42092.13 36599.31 2780.47 42588.73 41991.01 41967.59 41498.16 41282.30 41594.53 41193.98 415
DeepMVS_CXcopyleft93.44 39698.24 34194.21 31394.34 39564.28 42091.34 41494.87 40289.45 33592.77 42177.54 41993.14 41493.35 416
tmp_tt78.77 38778.73 39078.90 40358.45 42874.76 42794.20 39778.26 42639.16 42186.71 42092.82 41580.50 38775.19 42386.16 40792.29 41686.74 417
dongtai76.24 38875.95 39177.12 40492.39 42267.91 42890.16 41559.44 42982.04 41589.42 41794.67 40349.68 42781.74 42248.06 42277.66 42081.72 418
kuosan69.30 38968.95 39270.34 40587.68 42665.00 42991.11 41359.90 42869.02 41874.46 42388.89 42048.58 42868.03 42428.61 42372.33 42277.99 419
wuyk23d96.06 31097.62 22591.38 40098.65 30398.57 9898.85 8796.95 36396.86 26899.90 1299.16 13499.18 1798.40 40889.23 39799.77 12677.18 420
test12317.04 39220.11 3957.82 40610.25 4304.91 43194.80 3814.47 4314.93 42410.00 42624.28 4239.69 4293.64 42510.14 42412.43 42414.92 421
testmvs17.12 39120.53 3946.87 40712.05 4294.20 43293.62 4066.73 4304.62 42510.41 42524.33 4228.28 4303.56 4269.69 42515.07 42312.86 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.66 39032.88 3930.00 4080.00 4310.00 4330.00 41999.10 2330.00 4260.00 42797.58 33899.21 160.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.17 39310.90 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42698.07 930.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.12 39410.83 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.48 3440.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.90 38491.37 380
FOURS199.73 3699.67 399.43 1299.54 8199.43 4199.26 116
test_one_060199.39 13999.20 3899.31 16998.49 13498.66 20899.02 16397.64 126
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.01 22798.84 7899.07 23794.10 35498.05 27098.12 30496.36 20799.86 11692.70 36399.19 285
test_241102_ONE99.49 11599.17 4399.31 16997.98 17199.66 4398.90 19798.36 6599.48 349
9.1497.78 21099.07 21397.53 24799.32 16495.53 31998.54 22898.70 23697.58 13199.76 23094.32 32399.46 241
save fliter99.11 20497.97 15496.53 30999.02 24998.24 151
test072699.50 10899.21 3298.17 15899.35 15197.97 17299.26 11699.06 15197.61 129
test_part299.36 14799.10 6499.05 145
sam_mvs84.29 372
MTGPAbinary99.20 208
test_post197.59 24120.48 42583.07 38099.66 28694.16 324
test_post21.25 42483.86 37599.70 259
patchmatchnet-post98.77 22584.37 36999.85 128
MTMP97.93 19391.91 411
gm-plane-assit94.83 41981.97 42288.07 40694.99 39799.60 30791.76 372
TEST998.71 28098.08 14195.96 34199.03 24691.40 38795.85 37297.53 34096.52 19899.76 230
test_898.67 29498.01 14995.91 34799.02 24991.64 38295.79 37497.50 34396.47 20099.76 230
agg_prior98.68 29397.99 15099.01 25295.59 37599.77 224
test_prior497.97 15495.86 348
test_prior295.74 35496.48 28596.11 36797.63 33695.92 23094.16 32499.20 282
旧先验295.76 35388.56 40597.52 30799.66 28694.48 314
新几何295.93 344
原ACMM295.53 360
testdata299.79 20792.80 360
segment_acmp97.02 170
testdata195.44 36596.32 291
plane_prior799.19 18597.87 163
plane_prior698.99 23197.70 18294.90 256
plane_prior497.98 315
plane_prior397.78 17597.41 22497.79 288
plane_prior297.77 21698.20 158
plane_prior199.05 221
plane_prior97.65 18497.07 28196.72 27599.36 254
n20.00 432
nn0.00 432
door-mid99.57 66
test1198.87 272
door99.41 131
HQP5-MVS96.79 233
HQP-NCC98.67 29496.29 32396.05 30095.55 378
ACMP_Plane98.67 29496.29 32396.05 30095.55 378
BP-MVS92.82 358
HQP3-MVS99.04 24499.26 272
HQP2-MVS93.84 284
NP-MVS98.84 25997.39 19996.84 361
MDTV_nov1_ep1395.22 33097.06 39883.20 41997.74 22196.16 37694.37 34896.99 33498.83 21383.95 37499.53 33393.90 33397.95 368
ACMMP++_ref99.77 126
ACMMP++99.68 173
Test By Simon96.52 198