This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
mvs5depth99.30 2999.59 998.44 22499.65 6495.35 28199.82 399.94 299.83 499.42 8599.94 298.13 9399.96 1299.63 2699.96 25100.00 1
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3999.98 299.75 1399.80 199.97 599.82 899.99 599.99 2
fmvsm_s_conf0.1_n_a99.17 4599.30 3798.80 16399.75 3396.59 24297.97 19299.86 1698.22 15599.88 1799.71 1998.59 5099.84 14899.73 2099.98 1299.98 3
fmvsm_s_conf0.1_n_299.20 4399.38 2498.65 18599.69 5496.08 25897.49 25299.90 1199.53 3199.88 1799.64 3498.51 5799.90 6899.83 799.98 1299.97 4
mmtdpeth99.30 2999.42 2098.92 14999.58 7796.89 22999.48 1099.92 799.92 298.26 25499.80 998.33 7299.91 6299.56 3199.95 3299.97 4
fmvsm_s_conf0.1_n99.16 4899.33 3098.64 18799.71 4596.10 25397.87 20499.85 1898.56 13399.90 1299.68 2298.69 4199.85 13099.72 2299.98 1299.97 4
test_fmvs399.12 5699.41 2198.25 24299.76 2995.07 29399.05 6499.94 297.78 19199.82 2399.84 398.56 5499.71 25799.96 199.96 2599.97 4
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5399.97 399.66 2999.71 399.96 1299.79 1499.99 599.96 8
test_f98.67 12198.87 7898.05 25999.72 4295.59 27098.51 12399.81 2696.30 29699.78 2999.82 596.14 21598.63 40899.82 899.93 4599.95 9
test_fmvs298.70 11098.97 7097.89 26699.54 9994.05 32098.55 11499.92 796.78 27499.72 3499.78 1096.60 19799.67 27799.91 299.90 6999.94 10
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 5199.48 3499.92 899.71 1998.07 9599.96 1299.53 33100.00 199.93 11
test_vis3_rt99.14 5099.17 4899.07 12299.78 2398.38 11198.92 7999.94 297.80 18999.91 1199.67 2797.15 16498.91 40299.76 1799.56 21899.92 12
fmvsm_s_conf0.5_n_299.14 5099.31 3498.63 19199.49 11696.08 25897.38 25999.81 2699.48 3499.84 2199.57 4698.46 6199.89 8099.82 899.97 2099.91 13
MVStest195.86 31995.60 31596.63 34395.87 41991.70 37097.93 19398.94 25998.03 17099.56 5599.66 2971.83 40898.26 41299.35 4299.24 27699.91 13
fmvsm_s_conf0.5_n_a99.10 5899.20 4698.78 16999.55 9496.59 24297.79 21399.82 2598.21 15699.81 2699.53 6098.46 6199.84 14899.70 2399.97 2099.90 15
fmvsm_s_conf0.5_n99.09 5999.26 4298.61 19699.55 9496.09 25697.74 22199.81 2698.55 13499.85 2099.55 5498.60 4999.84 14899.69 2599.98 1299.89 16
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 7098.10 13697.68 22799.84 2199.29 5899.92 899.57 4699.60 599.96 1299.74 1999.98 1299.89 16
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7599.11 7899.70 3899.73 1799.00 2299.97 599.26 4899.98 1299.89 16
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3899.27 6099.90 1299.74 1599.68 499.97 599.55 3299.99 599.88 19
ttmdpeth97.91 20498.02 19397.58 29398.69 29194.10 31998.13 16298.90 26897.95 17697.32 32499.58 4495.95 23098.75 40696.41 24999.22 28099.87 20
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 5099.09 8899.89 1599.68 2299.53 799.97 599.50 3699.99 599.87 20
EU-MVSNet97.66 22998.50 12895.13 38099.63 7485.84 41098.35 14298.21 32798.23 15499.54 5999.46 7295.02 25699.68 27498.24 11399.87 7899.87 20
UA-Net99.47 1399.40 2299.70 299.49 11699.29 2399.80 499.72 3799.82 599.04 14999.81 698.05 9899.96 1298.85 7699.99 599.86 23
MM98.22 18297.99 19698.91 15098.66 30196.97 22297.89 20094.44 39699.54 3098.95 16499.14 14393.50 29299.92 5399.80 1399.96 2599.85 24
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1399.98 199.99 199.96 199.77 2100.00 199.81 12100.00 199.85 24
fmvsm_l_conf0.5_n_a99.19 4499.27 4098.94 14499.65 6497.05 21897.80 21299.76 3398.70 11999.78 2999.11 14698.79 3499.95 2499.85 599.96 2599.83 26
fmvsm_l_conf0.5_n99.21 4199.28 3999.02 13499.64 7097.28 20497.82 20999.76 3398.73 11699.82 2399.09 15298.81 3299.95 2499.86 499.96 2599.83 26
mvsany_test398.87 8498.92 7398.74 17999.38 14296.94 22698.58 11199.10 23596.49 28699.96 499.81 698.18 8699.45 35898.97 6899.79 11799.83 26
SSC-MVS98.71 10698.74 9098.62 19399.72 4296.08 25898.74 9298.64 30899.74 1099.67 4499.24 11794.57 27099.95 2499.11 5799.24 27699.82 29
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4298.93 10699.65 4899.72 1898.93 2699.95 2499.11 57100.00 199.82 29
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 44100.00 199.82 29
PS-CasMVS99.40 2299.33 3099.62 999.71 4599.10 6499.29 3399.53 8699.53 3199.46 7799.41 8398.23 7999.95 2498.89 7499.95 3299.81 32
FC-MVSNet-test99.27 3399.25 4399.34 7599.77 2698.37 11399.30 3299.57 6899.61 2699.40 9099.50 6497.12 16599.85 13099.02 6599.94 4099.80 33
test_cas_vis1_n_192098.33 16898.68 10397.27 31599.69 5492.29 36498.03 17899.85 1897.62 20099.96 499.62 3793.98 28599.74 24499.52 3599.86 8299.79 34
test_vis1_n_192098.40 15898.92 7396.81 33899.74 3590.76 38998.15 16099.91 998.33 14399.89 1599.55 5495.07 25599.88 9399.76 1799.93 4599.79 34
CP-MVSNet99.21 4199.09 5999.56 2599.65 6498.96 7499.13 5599.34 15999.42 4499.33 10299.26 11297.01 17399.94 3798.74 8599.93 4599.79 34
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 6199.90 399.86 1999.78 1099.58 699.95 2499.00 6699.95 3299.78 37
CVMVSNet96.25 30897.21 25193.38 39999.10 20880.56 42697.20 27698.19 33096.94 26599.00 15499.02 16589.50 33699.80 19696.36 25399.59 20699.78 37
reproduce_monomvs95.00 34195.25 33094.22 38897.51 38783.34 42097.86 20598.44 31798.51 13599.29 11199.30 10367.68 41599.56 32498.89 7499.81 10199.77 39
Anonymous2023121199.27 3399.27 4099.26 9299.29 16398.18 12899.49 999.51 9099.70 1299.80 2799.68 2296.84 18099.83 16599.21 5399.91 6399.77 39
PEN-MVS99.41 2199.34 2999.62 999.73 3699.14 5699.29 3399.54 8399.62 2499.56 5599.42 7998.16 9099.96 1298.78 8099.93 4599.77 39
WR-MVS_H99.33 2799.22 4599.65 899.71 4599.24 2999.32 2399.55 7999.46 3899.50 7199.34 9597.30 15499.93 4498.90 7299.93 4599.77 39
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 3199.63 2199.78 2999.67 2799.48 999.81 18999.30 4599.97 2099.77 39
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS98.52 14798.55 12198.43 22599.65 6495.59 27098.52 11898.77 29499.65 1899.52 6599.00 17794.34 27699.93 4498.65 9298.83 32399.76 44
patch_mono-298.51 14898.63 11098.17 24899.38 14294.78 29897.36 26299.69 4298.16 16698.49 23599.29 10597.06 16899.97 598.29 11299.91 6399.76 44
nrg03099.40 2299.35 2799.54 3099.58 7799.13 5998.98 7299.48 10199.68 1599.46 7799.26 11298.62 4799.73 24999.17 5699.92 5699.76 44
FIs99.14 5099.09 5999.29 8699.70 5298.28 11999.13 5599.52 8999.48 3499.24 12399.41 8396.79 18699.82 17598.69 9099.88 7599.76 44
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5799.66 1799.68 4299.66 2998.44 6399.95 2499.73 2099.96 2599.75 48
APDe-MVScopyleft98.99 6898.79 8799.60 1499.21 18099.15 5198.87 8499.48 10197.57 20699.35 9999.24 11797.83 11199.89 8097.88 13999.70 16799.75 48
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.43 1999.35 2799.66 799.71 4599.30 2199.31 2799.51 9099.64 1999.56 5599.46 7298.23 7999.97 598.78 8099.93 4599.72 50
MSC_two_6792asdad99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
No_MVS99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
PMMVS298.07 19598.08 18898.04 26099.41 13994.59 30794.59 39299.40 13697.50 21498.82 19198.83 21596.83 18299.84 14897.50 16399.81 10199.71 51
Baseline_NR-MVSNet98.98 7198.86 8199.36 6699.82 1998.55 9997.47 25599.57 6899.37 4899.21 12699.61 4096.76 18999.83 16598.06 12699.83 9499.71 51
XXY-MVS99.14 5099.15 5599.10 11699.76 2997.74 17898.85 8799.62 5498.48 13799.37 9599.49 6998.75 3699.86 11898.20 11699.80 11299.71 51
test_0728_THIRD98.17 16399.08 14099.02 16597.89 10899.88 9397.07 18799.71 16099.70 56
MSP-MVS98.40 15898.00 19599.61 1299.57 8299.25 2898.57 11299.35 15397.55 21099.31 11097.71 33294.61 26999.88 9396.14 26699.19 28799.70 56
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_298.78 9799.11 5697.78 27399.56 9093.67 33999.06 6299.86 1699.50 3399.66 4599.26 11297.21 16299.99 298.00 13199.91 6399.68 58
test_0728_SECOND99.60 1499.50 10999.23 3098.02 18099.32 16699.88 9396.99 19399.63 19299.68 58
OurMVSNet-221017-099.37 2599.31 3499.53 3799.91 398.98 6999.63 799.58 6199.44 4199.78 2999.76 1296.39 20599.92 5399.44 3999.92 5699.68 58
CHOSEN 1792x268897.49 24197.14 25698.54 21199.68 5796.09 25696.50 31299.62 5491.58 38698.84 18798.97 18492.36 31099.88 9396.76 21699.95 3299.67 61
reproduce_model99.15 4998.97 7099.67 499.33 15699.44 1098.15 16099.47 10999.12 7799.52 6599.32 10198.31 7399.90 6897.78 14599.73 14799.66 62
IU-MVS99.49 11699.15 5198.87 27492.97 37199.41 8796.76 21699.62 19599.66 62
test_241102_TWO99.30 17998.03 17099.26 11899.02 16597.51 14299.88 9396.91 19999.60 20299.66 62
DPE-MVScopyleft98.59 13498.26 16699.57 2099.27 16699.15 5197.01 28599.39 13897.67 19699.44 8198.99 17897.53 13999.89 8095.40 29699.68 17599.66 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6899.39 4699.75 3399.62 3799.17 1899.83 16599.06 6199.62 19599.66 62
EI-MVSNet-UG-set98.69 11398.71 9798.62 19399.10 20896.37 24797.23 27298.87 27499.20 6799.19 12898.99 17897.30 15499.85 13098.77 8399.79 11799.65 67
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3399.64 1999.84 2199.83 499.50 899.87 11099.36 4199.92 5699.64 68
EI-MVSNet-Vis-set98.68 11898.70 10098.63 19199.09 21196.40 24697.23 27298.86 27999.20 6799.18 13298.97 18497.29 15699.85 13098.72 8799.78 12299.64 68
ACMH96.65 799.25 3699.24 4499.26 9299.72 4298.38 11199.07 6199.55 7998.30 14799.65 4899.45 7699.22 1599.76 23298.44 10499.77 12899.64 68
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 7798.81 8699.28 8799.21 18098.45 10898.46 13199.33 16499.63 2199.48 7299.15 14097.23 16099.75 23997.17 17799.66 18699.63 71
reproduce-ours99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
our_new_method99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
test_fmvs1_n98.09 19398.28 16297.52 30199.68 5793.47 34398.63 10599.93 595.41 32799.68 4299.64 3491.88 31799.48 35199.82 899.87 7899.62 72
test111196.49 30196.82 27595.52 37399.42 13787.08 40799.22 4287.14 42199.11 7899.46 7799.58 4488.69 34099.86 11898.80 7899.95 3299.62 72
VPA-MVSNet99.30 2999.30 3799.28 8799.49 11698.36 11699.00 6999.45 11699.63 2199.52 6599.44 7798.25 7799.88 9399.09 5999.84 8799.62 72
LPG-MVS_test98.71 10698.46 13799.47 5699.57 8298.97 7098.23 15099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
LGP-MVS_train99.47 5699.57 8298.97 7099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
Test_1112_low_res96.99 28296.55 29398.31 23899.35 15395.47 27795.84 35399.53 8691.51 38896.80 34998.48 27691.36 32199.83 16596.58 23199.53 22899.62 72
v1098.97 7299.11 5698.55 20899.44 13196.21 25298.90 8099.55 7998.73 11699.48 7299.60 4296.63 19699.83 16599.70 2399.99 599.61 80
test_vis1_n98.31 17198.50 12897.73 28299.76 2994.17 31798.68 10299.91 996.31 29499.79 2899.57 4692.85 30499.42 36399.79 1499.84 8799.60 81
v899.01 6699.16 5098.57 20399.47 12696.31 25098.90 8099.47 10999.03 9699.52 6599.57 4696.93 17699.81 18999.60 2799.98 1299.60 81
EI-MVSNet98.40 15898.51 12698.04 26099.10 20894.73 30197.20 27698.87 27498.97 10299.06 14299.02 16596.00 22299.80 19698.58 9599.82 9799.60 81
SixPastTwentyTwo98.75 10298.62 11299.16 10799.83 1897.96 15799.28 3798.20 32899.37 4899.70 3899.65 3392.65 30899.93 4499.04 6399.84 8799.60 81
IterMVS-LS98.55 14098.70 10098.09 25299.48 12494.73 30197.22 27599.39 13898.97 10299.38 9399.31 10296.00 22299.93 4498.58 9599.97 2099.60 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 26796.60 29198.96 14199.62 7697.28 20495.17 37499.50 9294.21 35399.01 15398.32 29386.61 35299.99 297.10 18599.84 8799.60 81
ACMMP_NAP98.75 10298.48 13399.57 2099.58 7799.29 2397.82 20999.25 19996.94 26598.78 19499.12 14598.02 9999.84 14897.13 18399.67 18199.59 87
VPNet98.87 8498.83 8399.01 13599.70 5297.62 18798.43 13499.35 15399.47 3799.28 11299.05 16096.72 19299.82 17598.09 12399.36 25699.59 87
WR-MVS98.40 15898.19 17499.03 13299.00 23097.65 18496.85 29598.94 25998.57 13098.89 17798.50 27395.60 24099.85 13097.54 16099.85 8399.59 87
HPM-MVScopyleft98.79 9598.53 12499.59 1899.65 6499.29 2399.16 5199.43 12696.74 27698.61 21798.38 28598.62 4799.87 11096.47 24599.67 18199.59 87
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 6899.01 6598.94 14499.50 10997.47 19398.04 17799.59 5998.15 16799.40 9099.36 9098.58 5399.76 23298.78 8099.68 17599.59 87
Vis-MVSNetpermissive99.34 2699.36 2699.27 9099.73 3698.26 12099.17 5099.78 3199.11 7899.27 11499.48 7098.82 3199.95 2498.94 7099.93 4599.59 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 13598.23 17099.60 1499.69 5499.35 1697.16 28099.38 14094.87 33898.97 16098.99 17898.01 10099.88 9397.29 17199.70 16799.58 93
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 11398.40 14599.54 3099.53 10299.17 4398.52 11899.31 17197.46 22298.44 23998.51 26997.83 11199.88 9396.46 24699.58 21199.58 93
ACMMPR98.70 11098.42 14399.54 3099.52 10499.14 5698.52 11899.31 17197.47 21798.56 22698.54 26497.75 11999.88 9396.57 23399.59 20699.58 93
PGM-MVS98.66 12298.37 15199.55 2799.53 10299.18 4298.23 15099.49 9997.01 26298.69 20598.88 20698.00 10199.89 8095.87 27899.59 20699.58 93
SteuartSystems-ACMMP98.79 9598.54 12399.54 3099.73 3699.16 4798.23 15099.31 17197.92 18098.90 17598.90 19998.00 10199.88 9396.15 26599.72 15599.58 93
Skip Steuart: Steuart Systems R&D Blog.
SDMVSNet99.23 4099.32 3298.96 14199.68 5797.35 20098.84 8999.48 10199.69 1399.63 5199.68 2299.03 2199.96 1297.97 13399.92 5699.57 98
sd_testset99.28 3299.31 3499.19 10399.68 5798.06 14699.41 1499.30 17999.69 1399.63 5199.68 2299.25 1499.96 1297.25 17499.92 5699.57 98
TranMVSNet+NR-MVSNet99.17 4599.07 6299.46 5899.37 14898.87 7798.39 13899.42 12999.42 4499.36 9799.06 15398.38 6699.95 2498.34 10999.90 6999.57 98
mPP-MVS98.64 12598.34 15599.54 3099.54 9999.17 4398.63 10599.24 20497.47 21798.09 26898.68 24197.62 13099.89 8096.22 26099.62 19599.57 98
PVSNet_Blended_VisFu98.17 18998.15 18098.22 24599.73 3695.15 28997.36 26299.68 4794.45 34898.99 15599.27 10896.87 17999.94 3797.13 18399.91 6399.57 98
1112_ss97.29 25996.86 27198.58 20099.34 15596.32 24996.75 30199.58 6193.14 36996.89 34497.48 34692.11 31499.86 11896.91 19999.54 22499.57 98
MTAPA98.88 8398.64 10999.61 1299.67 6199.36 1598.43 13499.20 21098.83 11598.89 17798.90 19996.98 17599.92 5397.16 17899.70 16799.56 104
XVS98.72 10598.45 13899.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30798.63 25397.50 14399.83 16596.79 21299.53 22899.56 104
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5399.30 5799.65 4899.60 4299.16 2099.82 17599.07 6099.83 9499.56 104
X-MVStestdata94.32 34892.59 36699.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30745.85 42397.50 14399.83 16596.79 21299.53 22899.56 104
HPM-MVS_fast99.01 6698.82 8499.57 2099.71 4599.35 1699.00 6999.50 9297.33 23398.94 17198.86 20998.75 3699.82 17597.53 16199.71 16099.56 104
K. test v398.00 19997.66 22399.03 13299.79 2297.56 18999.19 4992.47 40899.62 2499.52 6599.66 2989.61 33499.96 1299.25 5099.81 10199.56 104
CP-MVS98.70 11098.42 14399.52 4299.36 14999.12 6198.72 9799.36 14897.54 21198.30 24898.40 28297.86 11099.89 8096.53 24299.72 15599.56 104
ZNCC-MVS98.68 11898.40 14599.54 3099.57 8299.21 3298.46 13199.29 18797.28 23998.11 26698.39 28398.00 10199.87 11096.86 20999.64 18999.55 111
v119298.60 13298.66 10698.41 22799.27 16695.88 26497.52 24899.36 14897.41 22699.33 10299.20 12596.37 20899.82 17599.57 2999.92 5699.55 111
v124098.55 14098.62 11298.32 23699.22 17895.58 27297.51 25099.45 11697.16 25499.45 8099.24 11796.12 21799.85 13099.60 2799.88 7599.55 111
UGNet98.53 14498.45 13898.79 16697.94 35996.96 22499.08 5898.54 31299.10 8596.82 34899.47 7196.55 19999.84 14898.56 10099.94 4099.55 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WBMVS95.18 33694.78 34296.37 34997.68 37589.74 39695.80 35498.73 30197.54 21198.30 24898.44 27970.06 40999.82 17596.62 22899.87 7899.54 115
test250692.39 37791.89 37993.89 39399.38 14282.28 42399.32 2366.03 42999.08 9098.77 19799.57 4666.26 41999.84 14898.71 8899.95 3299.54 115
ECVR-MVScopyleft96.42 30396.61 28995.85 36599.38 14288.18 40399.22 4286.00 42399.08 9099.36 9799.57 4688.47 34599.82 17598.52 10199.95 3299.54 115
v14419298.54 14298.57 12098.45 22299.21 18095.98 26197.63 23599.36 14897.15 25699.32 10899.18 13095.84 23499.84 14899.50 3699.91 6399.54 115
v192192098.54 14298.60 11798.38 23099.20 18495.76 26997.56 24499.36 14897.23 24899.38 9399.17 13496.02 22099.84 14899.57 2999.90 6999.54 115
MP-MVScopyleft98.46 15298.09 18599.54 3099.57 8299.22 3198.50 12599.19 21497.61 20397.58 30398.66 24697.40 15099.88 9394.72 31199.60 20299.54 115
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2499.32 3299.55 2799.86 1499.19 4199.41 1499.59 5999.59 2799.71 3699.57 4697.12 16599.90 6899.21 5399.87 7899.54 115
ACMMPcopyleft98.75 10298.50 12899.52 4299.56 9099.16 4798.87 8499.37 14497.16 25498.82 19199.01 17497.71 12199.87 11096.29 25799.69 17099.54 115
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 15898.03 19299.51 4699.16 19799.21 3298.05 17599.22 20794.16 35498.98 15699.10 14997.52 14199.79 20996.45 24799.64 18999.53 123
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 10698.44 14099.51 4699.49 11699.16 4798.52 11899.31 17197.47 21798.58 22398.50 27397.97 10599.85 13096.57 23399.59 20699.53 123
UniMVSNet_NR-MVSNet98.86 8798.68 10399.40 6499.17 19598.74 8497.68 22799.40 13699.14 7699.06 14298.59 26096.71 19399.93 4498.57 9799.77 12899.53 123
GST-MVS98.61 13198.30 16099.52 4299.51 10699.20 3898.26 14899.25 19997.44 22598.67 20898.39 28397.68 12299.85 13096.00 27099.51 23399.52 126
MVS_030497.44 24697.01 26298.72 18096.42 41296.74 23797.20 27691.97 41298.46 13898.30 24898.79 22392.74 30699.91 6299.30 4599.94 4099.52 126
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3899.38 4799.53 6399.61 4098.64 4499.80 19698.24 11399.84 8799.52 126
v114498.60 13298.66 10698.41 22799.36 14995.90 26397.58 24299.34 15997.51 21399.27 11499.15 14096.34 21099.80 19699.47 3899.93 4599.51 129
v2v48298.56 13698.62 11298.37 23299.42 13795.81 26797.58 24299.16 22597.90 18299.28 11299.01 17495.98 22799.79 20999.33 4399.90 6999.51 129
CPTT-MVS97.84 21897.36 24299.27 9099.31 15898.46 10798.29 14599.27 19394.90 33797.83 28798.37 28694.90 25899.84 14893.85 33999.54 22499.51 129
DU-MVS98.82 9198.63 11099.39 6599.16 19798.74 8497.54 24699.25 19998.84 11499.06 14298.76 22996.76 18999.93 4498.57 9799.77 12899.50 132
NR-MVSNet98.95 7598.82 8499.36 6699.16 19798.72 8999.22 4299.20 21099.10 8599.72 3498.76 22996.38 20799.86 11898.00 13199.82 9799.50 132
casdiffmvs_mvgpermissive99.12 5699.16 5098.99 13799.43 13697.73 18098.00 18499.62 5499.22 6399.55 5899.22 12298.93 2699.75 23998.66 9199.81 10199.50 132
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 6399.00 6699.33 8099.71 4598.83 7998.60 10999.58 6199.11 7899.53 6399.18 13098.81 3299.67 27796.71 22399.77 12899.50 132
DVP-MVS++98.90 8198.70 10099.51 4698.43 33099.15 5199.43 1299.32 16698.17 16399.26 11899.02 16598.18 8699.88 9397.07 18799.45 24599.49 136
PC_three_145293.27 36799.40 9098.54 26498.22 8297.00 41895.17 29999.45 24599.49 136
GeoE99.05 6498.99 6899.25 9599.44 13198.35 11798.73 9699.56 7598.42 13998.91 17498.81 22098.94 2599.91 6298.35 10899.73 14799.49 136
h-mvs3397.77 22197.33 24599.10 11699.21 18097.84 16698.35 14298.57 31199.11 7898.58 22399.02 16588.65 34399.96 1298.11 12196.34 39999.49 136
IterMVS-SCA-FT97.85 21798.18 17596.87 33499.27 16691.16 38395.53 36299.25 19999.10 8599.41 8799.35 9193.10 29799.96 1298.65 9299.94 4099.49 136
new-patchmatchnet98.35 16498.74 9097.18 31899.24 17392.23 36696.42 31799.48 10198.30 14799.69 4099.53 6097.44 14899.82 17598.84 7799.77 12899.49 136
APD-MVScopyleft98.10 19197.67 22099.42 6099.11 20698.93 7597.76 21999.28 19094.97 33598.72 20398.77 22797.04 16999.85 13093.79 34099.54 22499.49 136
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 17298.04 19199.07 12299.56 9097.83 16799.29 3398.07 33499.03 9698.59 22199.13 14492.16 31399.90 6896.87 20799.68 17599.49 136
DeepC-MVS97.60 498.97 7298.93 7299.10 11699.35 15397.98 15398.01 18399.46 11297.56 20899.54 5999.50 6498.97 2399.84 14898.06 12699.92 5699.49 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 7998.73 9299.48 5399.55 9499.14 5698.07 17299.37 14497.62 20099.04 14998.96 18798.84 3099.79 20997.43 16599.65 18799.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 10098.52 12599.52 4299.50 10999.21 3298.02 18098.84 28397.97 17499.08 14099.02 16597.61 13199.88 9396.99 19399.63 19299.48 146
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 10698.43 14199.57 2099.18 19499.35 1698.36 14199.29 18798.29 15098.88 18098.85 21297.53 13999.87 11096.14 26699.31 26499.48 146
TSAR-MVS + MP.98.63 12798.49 13299.06 12899.64 7097.90 16198.51 12398.94 25996.96 26399.24 12398.89 20597.83 11199.81 18996.88 20699.49 24199.48 146
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 18497.95 20099.01 13599.58 7797.74 17899.01 6797.29 35499.67 1698.97 16099.50 6490.45 32999.80 19697.88 13999.20 28499.48 146
IterMVS97.73 22398.11 18496.57 34499.24 17390.28 39295.52 36499.21 20898.86 11199.33 10299.33 9793.11 29699.94 3798.49 10299.94 4099.48 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 18697.90 20699.08 12099.57 8297.97 15499.31 2798.32 32399.01 9898.98 15699.03 16491.59 31999.79 20995.49 29499.80 11299.48 146
ACMP95.32 1598.41 15698.09 18599.36 6699.51 10698.79 8297.68 22799.38 14095.76 31498.81 19398.82 21898.36 6799.82 17594.75 30899.77 12899.48 146
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19997.63 22699.10 11699.24 17398.17 12996.89 29498.73 30195.66 31597.92 27897.70 33497.17 16399.66 28896.18 26499.23 27999.47 153
3Dnovator+97.89 398.69 11398.51 12699.24 9798.81 26898.40 10999.02 6699.19 21498.99 9998.07 26999.28 10697.11 16799.84 14896.84 21099.32 26299.47 153
HPM-MVS++copyleft98.10 19197.64 22599.48 5399.09 21199.13 5997.52 24898.75 29897.46 22296.90 34397.83 32796.01 22199.84 14895.82 28299.35 25899.46 155
V4298.78 9798.78 8898.76 17399.44 13197.04 21998.27 14799.19 21497.87 18499.25 12299.16 13696.84 18099.78 22099.21 5399.84 8799.46 155
APD-MVS_3200maxsize98.84 8898.61 11699.53 3799.19 18799.27 2698.49 12699.33 16498.64 12099.03 15298.98 18297.89 10899.85 13096.54 24199.42 24999.46 155
UniMVSNet (Re)98.87 8498.71 9799.35 7299.24 17398.73 8797.73 22399.38 14098.93 10699.12 13498.73 23296.77 18799.86 11898.63 9499.80 11299.46 155
SR-MVS-dyc-post98.81 9398.55 12199.57 2099.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.49 14699.86 11896.56 23799.39 25299.45 159
RE-MVS-def98.58 11999.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.75 11996.56 23799.39 25299.45 159
HQP_MVS97.99 20297.67 22098.93 14699.19 18797.65 18497.77 21699.27 19398.20 16097.79 29097.98 31794.90 25899.70 26194.42 32099.51 23399.45 159
plane_prior599.27 19399.70 26194.42 32099.51 23399.45 159
lessismore_v098.97 14099.73 3697.53 19186.71 42299.37 9599.52 6389.93 33299.92 5398.99 6799.72 15599.44 163
TAMVS98.24 18198.05 19098.80 16399.07 21597.18 21397.88 20198.81 28896.66 28099.17 13399.21 12394.81 26499.77 22696.96 19799.88 7599.44 163
DeepPCF-MVS96.93 598.32 16998.01 19499.23 9998.39 33598.97 7095.03 37899.18 21896.88 26899.33 10298.78 22598.16 9099.28 38496.74 21899.62 19599.44 163
3Dnovator98.27 298.81 9398.73 9299.05 12998.76 27397.81 17399.25 4099.30 17998.57 13098.55 22899.33 9797.95 10699.90 6897.16 17899.67 18199.44 163
MVSFormer98.26 17898.43 14197.77 27498.88 25593.89 33299.39 1799.56 7599.11 7898.16 26098.13 30493.81 28899.97 599.26 4899.57 21599.43 167
jason97.45 24597.35 24397.76 27799.24 17393.93 32895.86 35098.42 31994.24 35298.50 23498.13 30494.82 26299.91 6297.22 17599.73 14799.43 167
jason: jason.
NCCC97.86 21297.47 23799.05 12998.61 30698.07 14396.98 28798.90 26897.63 19997.04 33397.93 32295.99 22699.66 28895.31 29798.82 32599.43 167
Anonymous2024052198.69 11398.87 7898.16 25099.77 2695.11 29299.08 5899.44 12099.34 5299.33 10299.55 5494.10 28499.94 3799.25 5099.96 2599.42 170
MVS_111021_HR98.25 18098.08 18898.75 17599.09 21197.46 19495.97 34199.27 19397.60 20497.99 27698.25 29698.15 9299.38 36996.87 20799.57 21599.42 170
COLMAP_ROBcopyleft96.50 1098.99 6898.85 8299.41 6299.58 7799.10 6498.74 9299.56 7599.09 8899.33 10299.19 12698.40 6599.72 25695.98 27299.76 14099.42 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 7998.72 9499.49 5199.49 11699.17 4398.10 16899.31 17198.03 17099.66 4599.02 16598.36 6799.88 9396.91 19999.62 19599.41 173
OPU-MVS98.82 15998.59 31198.30 11898.10 16898.52 26898.18 8698.75 40694.62 31299.48 24299.41 173
our_test_397.39 25197.73 21796.34 35098.70 28689.78 39594.61 39198.97 25896.50 28599.04 14998.85 21295.98 22799.84 14897.26 17399.67 18199.41 173
casdiffmvspermissive98.95 7599.00 6698.81 16199.38 14297.33 20197.82 20999.57 6899.17 7499.35 9999.17 13498.35 7099.69 26598.46 10399.73 14799.41 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 23297.67 22097.39 31199.04 22493.04 35095.27 37198.38 32297.25 24298.92 17398.95 19195.48 24699.73 24996.99 19398.74 32799.41 173
MDA-MVSNet_test_wron97.60 23297.66 22397.41 31099.04 22493.09 34695.27 37198.42 31997.26 24198.88 18098.95 19195.43 24799.73 24997.02 19098.72 32999.41 173
GBi-Net98.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
test198.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
FMVSNet199.17 4599.17 4899.17 10499.55 9498.24 12299.20 4599.44 12099.21 6599.43 8299.55 5497.82 11499.86 11898.42 10699.89 7399.41 173
test_fmvs197.72 22497.94 20297.07 32598.66 30192.39 36197.68 22799.81 2695.20 33199.54 5999.44 7791.56 32099.41 36499.78 1699.77 12899.40 182
KD-MVS_self_test99.25 3699.18 4799.44 5999.63 7499.06 6898.69 10199.54 8399.31 5599.62 5499.53 6097.36 15299.86 11899.24 5299.71 16099.39 183
v14898.45 15398.60 11798.00 26299.44 13194.98 29497.44 25799.06 24098.30 14799.32 10898.97 18496.65 19599.62 30298.37 10799.85 8399.39 183
test20.0398.78 9798.77 8998.78 16999.46 12797.20 21197.78 21499.24 20499.04 9599.41 8798.90 19997.65 12599.76 23297.70 15199.79 11799.39 183
CDPH-MVS97.26 26096.66 28799.07 12299.00 23098.15 13096.03 33999.01 25491.21 39297.79 29097.85 32696.89 17899.69 26592.75 36399.38 25599.39 183
EPNet96.14 31195.44 32398.25 24290.76 42795.50 27697.92 19694.65 39498.97 10292.98 41098.85 21289.12 33899.87 11095.99 27199.68 17599.39 183
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 18997.87 20899.07 12298.67 29698.24 12297.01 28598.93 26297.25 24297.62 29998.34 29097.27 15799.57 32196.42 24899.33 26199.39 183
DeepC-MVS_fast96.85 698.30 17298.15 18098.75 17598.61 30697.23 20797.76 21999.09 23797.31 23698.75 20098.66 24697.56 13599.64 29696.10 26999.55 22299.39 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 14498.27 16599.32 8299.31 15898.75 8398.19 15499.41 13396.77 27598.83 18898.90 19997.80 11699.82 17595.68 28899.52 23199.38 190
test9_res93.28 35299.15 29299.38 190
BP-MVS197.40 25096.97 26398.71 18199.07 21596.81 23298.34 14497.18 35698.58 12998.17 25798.61 25784.01 37599.94 3798.97 6899.78 12299.37 192
OPM-MVS98.56 13698.32 15999.25 9599.41 13998.73 8797.13 28299.18 21897.10 25798.75 20098.92 19598.18 8699.65 29396.68 22599.56 21899.37 192
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 36899.16 29099.37 192
AllTest98.44 15498.20 17299.16 10799.50 10998.55 9998.25 14999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
TestCases99.16 10799.50 10998.55 9999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
MDA-MVSNet-bldmvs97.94 20397.91 20598.06 25799.44 13194.96 29596.63 30799.15 23098.35 14198.83 18899.11 14694.31 27799.85 13096.60 23098.72 32999.37 192
MVSTER96.86 28696.55 29397.79 27297.91 36194.21 31597.56 24498.87 27497.49 21699.06 14299.05 16080.72 38899.80 19698.44 10499.82 9799.37 192
pmmvs597.64 23097.49 23498.08 25599.14 20295.12 29196.70 30499.05 24393.77 36198.62 21598.83 21593.23 29399.75 23998.33 11199.76 14099.36 199
Anonymous2023120698.21 18498.21 17198.20 24699.51 10695.43 27998.13 16299.32 16696.16 29998.93 17298.82 21896.00 22299.83 16597.32 17099.73 14799.36 199
train_agg97.10 27296.45 29799.07 12298.71 28298.08 14195.96 34399.03 24891.64 38495.85 37497.53 34296.47 20299.76 23293.67 34299.16 29099.36 199
PVSNet_BlendedMVS97.55 23797.53 23197.60 29198.92 24593.77 33696.64 30699.43 12694.49 34497.62 29999.18 13096.82 18399.67 27794.73 30999.93 4599.36 199
Anonymous2024052998.93 7798.87 7899.12 11299.19 18798.22 12799.01 6798.99 25799.25 6199.54 5999.37 8697.04 16999.80 19697.89 13699.52 23199.35 203
F-COLMAP97.30 25796.68 28499.14 11099.19 18798.39 11097.27 27199.30 17992.93 37296.62 35598.00 31595.73 23799.68 27492.62 36698.46 34699.35 203
ppachtmachnet_test97.50 23897.74 21596.78 34098.70 28691.23 38294.55 39399.05 24396.36 29199.21 12698.79 22396.39 20599.78 22096.74 21899.82 9799.34 205
VDD-MVS98.56 13698.39 14899.07 12299.13 20498.07 14398.59 11097.01 36199.59 2799.11 13599.27 10894.82 26299.79 20998.34 10999.63 19299.34 205
testgi98.32 16998.39 14898.13 25199.57 8295.54 27397.78 21499.49 9997.37 23099.19 12897.65 33698.96 2499.49 34896.50 24498.99 31299.34 205
diffmvspermissive98.22 18298.24 16998.17 24899.00 23095.44 27896.38 31999.58 6197.79 19098.53 23198.50 27396.76 18999.74 24497.95 13599.64 18999.34 205
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 20797.60 22898.75 17599.31 15897.17 21497.62 23699.35 15398.72 11898.76 19998.68 24192.57 30999.74 24497.76 15095.60 40799.34 205
baseline98.96 7499.02 6498.76 17399.38 14297.26 20698.49 12699.50 9298.86 11199.19 12899.06 15398.23 7999.69 26598.71 8899.76 14099.33 210
MG-MVS96.77 29096.61 28997.26 31698.31 33993.06 34795.93 34698.12 33396.45 28997.92 27898.73 23293.77 29099.39 36791.19 38699.04 30499.33 210
HQP4-MVS95.56 37999.54 33399.32 212
CDS-MVSNet97.69 22697.35 24398.69 18298.73 27797.02 22196.92 29398.75 29895.89 31198.59 22198.67 24392.08 31599.74 24496.72 22199.81 10199.32 212
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 28196.49 29698.55 20898.67 29696.79 23396.29 32599.04 24696.05 30295.55 38096.84 36393.84 28699.54 33392.82 36099.26 27499.32 212
RPSCF98.62 13098.36 15299.42 6099.65 6499.42 1198.55 11499.57 6897.72 19498.90 17599.26 11296.12 21799.52 33995.72 28599.71 16099.32 212
MVP-Stereo98.08 19497.92 20498.57 20398.96 23796.79 23397.90 19999.18 21896.41 29098.46 23798.95 19195.93 23199.60 30996.51 24398.98 31499.31 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15898.68 10397.54 29998.96 23797.99 15097.88 20199.36 14898.20 16099.63 5199.04 16298.76 3595.33 42296.56 23799.74 14499.31 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 15598.30 16098.79 16698.79 27297.29 20398.23 15098.66 30599.31 5598.85 18598.80 22194.80 26599.78 22098.13 12099.13 29599.31 216
test_prior98.95 14398.69 29197.95 15899.03 24899.59 31399.30 219
USDC97.41 24997.40 23897.44 30898.94 23993.67 33995.17 37499.53 8694.03 35898.97 16099.10 14995.29 24999.34 37495.84 28199.73 14799.30 219
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8297.73 18097.93 19399.83 2399.22 6399.93 699.30 10399.42 1099.96 1299.85 599.99 599.29 221
FMVSNet298.49 14998.40 14598.75 17598.90 24997.14 21798.61 10899.13 23198.59 12699.19 12899.28 10694.14 28099.82 17597.97 13399.80 11299.29 221
XVG-OURS-SEG-HR98.49 14998.28 16299.14 11099.49 11698.83 7996.54 30999.48 10197.32 23599.11 13598.61 25799.33 1399.30 38096.23 25998.38 34799.28 223
test1298.93 14698.58 31397.83 16798.66 30596.53 35895.51 24499.69 26599.13 29599.27 224
DSMNet-mixed97.42 24897.60 22896.87 33499.15 20191.46 37398.54 11699.12 23292.87 37497.58 30399.63 3696.21 21399.90 6895.74 28499.54 22499.27 224
N_pmnet97.63 23197.17 25298.99 13799.27 16697.86 16495.98 34093.41 40595.25 32999.47 7698.90 19995.63 23999.85 13096.91 19999.73 14799.27 224
ambc98.24 24498.82 26695.97 26298.62 10799.00 25699.27 11499.21 12396.99 17499.50 34596.55 24099.50 24099.26 227
LFMVS97.20 26696.72 28198.64 18798.72 27996.95 22598.93 7894.14 40299.74 1098.78 19499.01 17484.45 37099.73 24997.44 16499.27 27199.25 228
FMVSNet596.01 31495.20 33398.41 22797.53 38296.10 25398.74 9299.50 9297.22 25198.03 27499.04 16269.80 41099.88 9397.27 17299.71 16099.25 228
BH-RMVSNet96.83 28796.58 29297.58 29398.47 32494.05 32096.67 30597.36 35096.70 27997.87 28397.98 31795.14 25399.44 36090.47 39498.58 34399.25 228
testf199.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
APD_test299.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
旧先验198.82 26697.45 19598.76 29598.34 29095.50 24599.01 30999.23 233
test22298.92 24596.93 22795.54 36198.78 29385.72 41296.86 34698.11 30794.43 27299.10 30099.23 233
XVG-ACMP-BASELINE98.56 13698.34 15599.22 10099.54 9998.59 9697.71 22499.46 11297.25 24298.98 15698.99 17897.54 13799.84 14895.88 27599.74 14499.23 233
FMVSNet397.50 23897.24 24998.29 24098.08 35495.83 26697.86 20598.91 26797.89 18398.95 16498.95 19187.06 34999.81 18997.77 14699.69 17099.23 233
无先验95.74 35698.74 30089.38 40399.73 24992.38 37099.22 237
tttt051795.64 32794.98 33797.64 28899.36 14993.81 33498.72 9790.47 41698.08 16998.67 20898.34 29073.88 40699.92 5397.77 14699.51 23399.20 238
pmmvs-eth3d98.47 15198.34 15598.86 15599.30 16197.76 17697.16 28099.28 19095.54 32099.42 8599.19 12697.27 15799.63 29997.89 13699.97 2099.20 238
MS-PatchMatch97.68 22797.75 21497.45 30798.23 34593.78 33597.29 26898.84 28396.10 30198.64 21298.65 24896.04 21999.36 37096.84 21099.14 29399.20 238
新几何198.91 15098.94 23997.76 17698.76 29587.58 40996.75 35198.10 30894.80 26599.78 22092.73 36499.00 31099.20 238
PHI-MVS98.29 17597.95 20099.34 7598.44 32999.16 4798.12 16599.38 14096.01 30698.06 27098.43 28097.80 11699.67 27795.69 28799.58 21199.20 238
GDP-MVS97.50 23897.11 25798.67 18499.02 22896.85 23098.16 15999.71 3898.32 14598.52 23398.54 26483.39 37999.95 2498.79 7999.56 21899.19 243
Anonymous20240521197.90 20597.50 23399.08 12098.90 24998.25 12198.53 11796.16 37898.87 11099.11 13598.86 20990.40 33099.78 22097.36 16899.31 26499.19 243
CANet97.87 21197.76 21398.19 24797.75 36695.51 27596.76 30099.05 24397.74 19296.93 33798.21 30095.59 24199.89 8097.86 14199.93 4599.19 243
XVG-OURS98.53 14498.34 15599.11 11499.50 10998.82 8195.97 34199.50 9297.30 23799.05 14798.98 18299.35 1299.32 37795.72 28599.68 17599.18 246
WTY-MVS96.67 29396.27 30397.87 26798.81 26894.61 30696.77 29997.92 33894.94 33697.12 32897.74 33191.11 32399.82 17593.89 33698.15 35999.18 246
Vis-MVSNet (Re-imp)97.46 24397.16 25398.34 23599.55 9496.10 25398.94 7798.44 31798.32 14598.16 26098.62 25588.76 33999.73 24993.88 33799.79 11799.18 246
TinyColmap97.89 20797.98 19797.60 29198.86 25794.35 31296.21 32999.44 12097.45 22499.06 14298.88 20697.99 10499.28 38494.38 32499.58 21199.18 246
testdata98.09 25298.93 24195.40 28098.80 29090.08 40097.45 31698.37 28695.26 25099.70 26193.58 34598.95 31799.17 250
lupinMVS97.06 27596.86 27197.65 28698.88 25593.89 33295.48 36597.97 33693.53 36498.16 26097.58 34093.81 28899.91 6296.77 21599.57 21599.17 250
Patchmtry97.35 25396.97 26398.50 21897.31 39396.47 24598.18 15598.92 26598.95 10598.78 19499.37 8685.44 36499.85 13095.96 27399.83 9499.17 250
RRT-MVS97.88 20997.98 19797.61 29098.15 34993.77 33698.97 7399.64 5299.16 7598.69 20599.42 7991.60 31899.89 8097.63 15498.52 34599.16 253
sss97.21 26596.93 26598.06 25798.83 26395.22 28796.75 30198.48 31694.49 34497.27 32597.90 32392.77 30599.80 19696.57 23399.32 26299.16 253
CSCG98.68 11898.50 12899.20 10199.45 13098.63 9198.56 11399.57 6897.87 18498.85 18598.04 31497.66 12499.84 14896.72 22199.81 10199.13 255
MVS_111021_LR98.30 17298.12 18398.83 15899.16 19798.03 14896.09 33799.30 17997.58 20598.10 26798.24 29798.25 7799.34 37496.69 22499.65 18799.12 256
miper_lstm_enhance97.18 26897.16 25397.25 31798.16 34892.85 35295.15 37699.31 17197.25 24298.74 20298.78 22590.07 33199.78 22097.19 17699.80 11299.11 257
testing393.51 36292.09 37297.75 27898.60 30894.40 31097.32 26595.26 39197.56 20896.79 35095.50 38953.57 42899.77 22695.26 29898.97 31599.08 258
原ACMM198.35 23498.90 24996.25 25198.83 28792.48 37896.07 37198.10 30895.39 24899.71 25792.61 36798.99 31299.08 258
QAPM97.31 25696.81 27798.82 15998.80 27197.49 19299.06 6299.19 21490.22 39897.69 29699.16 13696.91 17799.90 6890.89 39199.41 25099.07 260
PAPM_NR96.82 28996.32 30098.30 23999.07 21596.69 24097.48 25398.76 29595.81 31396.61 35696.47 37194.12 28399.17 39190.82 39297.78 37199.06 261
eth_miper_zixun_eth97.23 26497.25 24897.17 32098.00 35792.77 35494.71 38599.18 21897.27 24098.56 22698.74 23191.89 31699.69 26597.06 18999.81 10199.05 262
D2MVS97.84 21897.84 21097.83 26999.14 20294.74 30096.94 28998.88 27295.84 31298.89 17798.96 18794.40 27499.69 26597.55 15899.95 3299.05 262
c3_l97.36 25297.37 24197.31 31298.09 35393.25 34595.01 37999.16 22597.05 25898.77 19798.72 23492.88 30299.64 29696.93 19899.76 14099.05 262
PLCcopyleft94.65 1696.51 29895.73 31098.85 15698.75 27597.91 16096.42 31799.06 24090.94 39595.59 37797.38 35294.41 27399.59 31390.93 38998.04 36899.05 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 8198.90 7598.91 15099.67 6197.82 17099.00 6999.44 12099.45 3999.51 7099.24 11798.20 8599.86 11895.92 27499.69 17099.04 266
CANet_DTU97.26 26097.06 25997.84 26897.57 37794.65 30596.19 33198.79 29197.23 24895.14 38998.24 29793.22 29499.84 14897.34 16999.84 8799.04 266
PM-MVS98.82 9198.72 9499.12 11299.64 7098.54 10297.98 18999.68 4797.62 20099.34 10199.18 13097.54 13799.77 22697.79 14499.74 14499.04 266
TSAR-MVS + GP.98.18 18797.98 19798.77 17298.71 28297.88 16296.32 32398.66 30596.33 29299.23 12598.51 26997.48 14799.40 36597.16 17899.46 24399.02 269
DIV-MVS_self_test97.02 27896.84 27397.58 29397.82 36494.03 32394.66 38899.16 22597.04 25998.63 21398.71 23588.69 34099.69 26597.00 19199.81 10199.01 270
mamv499.44 1599.39 2399.58 1999.30 16199.74 299.04 6599.81 2699.77 799.82 2399.57 4697.82 11499.98 499.53 3399.89 7399.01 270
GA-MVS95.86 31995.32 32997.49 30498.60 30894.15 31893.83 40597.93 33795.49 32296.68 35297.42 35083.21 38099.30 38096.22 26098.55 34499.01 270
OMC-MVS97.88 20997.49 23499.04 13198.89 25498.63 9196.94 28999.25 19995.02 33398.53 23198.51 26997.27 15799.47 35493.50 34899.51 23399.01 270
cl____97.02 27896.83 27497.58 29397.82 36494.04 32294.66 38899.16 22597.04 25998.63 21398.71 23588.68 34299.69 26597.00 19199.81 10199.00 274
pmmvs497.58 23597.28 24698.51 21498.84 26196.93 22795.40 36998.52 31493.60 36398.61 21798.65 24895.10 25499.60 30996.97 19699.79 11798.99 275
EPNet_dtu94.93 34294.78 34295.38 37893.58 42387.68 40596.78 29895.69 38997.35 23289.14 42098.09 31088.15 34799.49 34894.95 30599.30 26798.98 276
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 30095.77 30898.69 18299.48 12497.43 19797.84 20899.55 7981.42 41896.51 36098.58 26195.53 24299.67 27793.41 35099.58 21198.98 276
PVSNet_Blended96.88 28596.68 28497.47 30698.92 24593.77 33694.71 38599.43 12690.98 39497.62 29997.36 35496.82 18399.67 27794.73 30999.56 21898.98 276
APD_test198.83 8998.66 10699.34 7599.78 2399.47 998.42 13699.45 11698.28 15298.98 15699.19 12697.76 11899.58 31996.57 23399.55 22298.97 279
PAPR95.29 33394.47 34497.75 27897.50 38895.14 29094.89 38298.71 30391.39 39095.35 38795.48 39194.57 27099.14 39484.95 41097.37 38398.97 279
EGC-MVSNET85.24 38780.54 39099.34 7599.77 2699.20 3899.08 5899.29 18712.08 42520.84 42699.42 7997.55 13699.85 13097.08 18699.72 15598.96 281
thisisatest053095.27 33494.45 34597.74 28099.19 18794.37 31197.86 20590.20 41797.17 25398.22 25597.65 33673.53 40799.90 6896.90 20499.35 25898.95 282
mvs_anonymous97.83 22098.16 17996.87 33498.18 34791.89 36897.31 26698.90 26897.37 23098.83 18899.46 7296.28 21199.79 20998.90 7298.16 35898.95 282
baseline195.96 31795.44 32397.52 30198.51 32293.99 32698.39 13896.09 38098.21 15698.40 24697.76 33086.88 35099.63 29995.42 29589.27 42098.95 282
CLD-MVS97.49 24197.16 25398.48 21999.07 21597.03 22094.71 38599.21 20894.46 34698.06 27097.16 35897.57 13499.48 35194.46 31799.78 12298.95 282
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 19798.14 18297.64 28898.58 31395.19 28897.48 25399.23 20697.47 21797.90 28098.62 25597.04 16998.81 40597.55 15899.41 25098.94 286
DELS-MVS98.27 17698.20 17298.48 21998.86 25796.70 23995.60 36099.20 21097.73 19398.45 23898.71 23597.50 14399.82 17598.21 11599.59 20698.93 287
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 32295.39 32696.98 32896.77 40592.79 35394.40 39698.53 31394.59 34397.89 28198.17 30382.82 38499.24 38696.37 25199.03 30598.92 288
LS3D98.63 12798.38 15099.36 6697.25 39499.38 1299.12 5799.32 16699.21 6598.44 23998.88 20697.31 15399.80 19696.58 23199.34 26098.92 288
CMPMVSbinary75.91 2396.29 30695.44 32398.84 15796.25 41598.69 9097.02 28499.12 23288.90 40597.83 28798.86 20989.51 33598.90 40391.92 37199.51 23398.92 288
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 12598.48 13399.11 11498.85 26098.51 10498.49 12699.83 2398.37 14099.69 4099.46 7298.21 8499.92 5394.13 33099.30 26798.91 291
mvsmamba97.57 23697.26 24798.51 21498.69 29196.73 23898.74 9297.25 35597.03 26197.88 28299.23 12190.95 32499.87 11096.61 22999.00 31098.91 291
DPM-MVS96.32 30595.59 31798.51 21498.76 27397.21 21094.54 39498.26 32591.94 38396.37 36497.25 35693.06 29999.43 36191.42 38198.74 32798.89 293
test_yl96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
DCV-MVSNet96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
SPE-MVS-test99.13 5499.09 5999.26 9299.13 20498.97 7099.31 2799.88 1499.44 4198.16 26098.51 26998.64 4499.93 4498.91 7199.85 8398.88 296
UnsupCasMVSNet_bld97.30 25796.92 26798.45 22299.28 16496.78 23696.20 33099.27 19395.42 32498.28 25298.30 29493.16 29599.71 25794.99 30297.37 38398.87 297
Effi-MVS+98.02 19797.82 21198.62 19398.53 32097.19 21297.33 26499.68 4797.30 23796.68 35297.46 34898.56 5499.80 19696.63 22798.20 35498.86 298
test_040298.76 10198.71 9798.93 14699.56 9098.14 13298.45 13399.34 15999.28 5998.95 16498.91 19698.34 7199.79 20995.63 28999.91 6398.86 298
PatchmatchNetpermissive95.58 32895.67 31395.30 37997.34 39287.32 40697.65 23396.65 37195.30 32897.07 33198.69 23984.77 36799.75 23994.97 30498.64 33898.83 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 22297.72 21897.83 26998.81 26896.35 24897.30 26799.69 4294.61 34297.87 28398.05 31396.26 21298.32 41198.74 8598.18 35598.82 301
CL-MVSNet_self_test97.44 24697.22 25098.08 25598.57 31595.78 26894.30 39898.79 29196.58 28398.60 21998.19 30294.74 26899.64 29696.41 24998.84 32298.82 301
miper_ehance_all_eth97.06 27597.03 26097.16 32297.83 36393.06 34794.66 38899.09 23795.99 30798.69 20598.45 27892.73 30799.61 30896.79 21299.03 30598.82 301
MIMVSNet96.62 29696.25 30497.71 28399.04 22494.66 30499.16 5196.92 36797.23 24897.87 28399.10 14986.11 35899.65 29391.65 37699.21 28398.82 301
hse-mvs297.46 24397.07 25898.64 18798.73 27797.33 20197.45 25697.64 34799.11 7898.58 22397.98 31788.65 34399.79 20998.11 12197.39 38298.81 305
GSMVS98.81 305
sam_mvs184.74 36898.81 305
SCA96.41 30496.66 28795.67 36998.24 34388.35 40195.85 35296.88 36896.11 30097.67 29798.67 24393.10 29799.85 13094.16 32699.22 28098.81 305
Patchmatch-RL test97.26 26097.02 26197.99 26399.52 10495.53 27496.13 33599.71 3897.47 21799.27 11499.16 13684.30 37399.62 30297.89 13699.77 12898.81 305
AUN-MVS96.24 31095.45 32298.60 19898.70 28697.22 20997.38 25997.65 34595.95 30995.53 38497.96 32182.11 38799.79 20996.31 25597.44 37998.80 310
ITE_SJBPF98.87 15499.22 17898.48 10699.35 15397.50 21498.28 25298.60 25997.64 12899.35 37393.86 33899.27 27198.79 311
tpm94.67 34494.34 34895.66 37097.68 37588.42 40097.88 20194.90 39294.46 34696.03 37398.56 26378.66 39899.79 20995.88 27595.01 41098.78 312
Patchmatch-test96.55 29796.34 29997.17 32098.35 33693.06 34798.40 13797.79 33997.33 23398.41 24298.67 24383.68 37899.69 26595.16 30099.31 26498.77 313
EC-MVSNet99.09 5999.05 6399.20 10199.28 16498.93 7599.24 4199.84 2199.08 9098.12 26598.37 28698.72 3899.90 6899.05 6299.77 12898.77 313
PMMVS96.51 29895.98 30598.09 25297.53 38295.84 26594.92 38198.84 28391.58 38696.05 37295.58 38695.68 23899.66 28895.59 29198.09 36298.76 315
test_method79.78 38879.50 39180.62 40480.21 42945.76 43270.82 42098.41 32131.08 42480.89 42497.71 33284.85 36697.37 41791.51 38080.03 42198.75 316
ab-mvs98.41 15698.36 15298.59 19999.19 18797.23 20799.32 2398.81 28897.66 19798.62 21599.40 8596.82 18399.80 19695.88 27599.51 23398.75 316
CHOSEN 280x42095.51 33195.47 32095.65 37198.25 34288.27 40293.25 40998.88 27293.53 36494.65 39597.15 35986.17 35699.93 4497.41 16699.93 4598.73 318
test_fmvsmvis_n_192099.26 3599.49 1398.54 21199.66 6396.97 22298.00 18499.85 1899.24 6299.92 899.50 6499.39 1199.95 2499.89 399.98 1298.71 319
MVS_Test98.18 18798.36 15297.67 28498.48 32394.73 30198.18 15599.02 25197.69 19598.04 27399.11 14697.22 16199.56 32498.57 9798.90 32198.71 319
PVSNet93.40 1795.67 32595.70 31195.57 37298.83 26388.57 39992.50 41297.72 34192.69 37696.49 36396.44 37293.72 29199.43 36193.61 34399.28 27098.71 319
alignmvs97.35 25396.88 27098.78 16998.54 31898.09 13797.71 22497.69 34399.20 6797.59 30295.90 38188.12 34899.55 32898.18 11798.96 31698.70 322
ADS-MVSNet295.43 33294.98 33796.76 34198.14 35091.74 36997.92 19697.76 34090.23 39696.51 36098.91 19685.61 36199.85 13092.88 35896.90 39298.69 323
ADS-MVSNet95.24 33594.93 34096.18 35898.14 35090.10 39497.92 19697.32 35390.23 39696.51 36098.91 19685.61 36199.74 24492.88 35896.90 39298.69 323
MDTV_nov1_ep13_2view74.92 42897.69 22690.06 40197.75 29385.78 36093.52 34698.69 323
MSDG97.71 22597.52 23298.28 24198.91 24896.82 23194.42 39599.37 14497.65 19898.37 24798.29 29597.40 15099.33 37694.09 33199.22 28098.68 326
mvsany_test197.60 23297.54 23097.77 27497.72 36795.35 28195.36 37097.13 35994.13 35599.71 3699.33 9797.93 10799.30 38097.60 15798.94 31898.67 327
CS-MVS99.13 5499.10 5899.24 9799.06 22099.15 5199.36 1999.88 1499.36 5198.21 25698.46 27798.68 4299.93 4499.03 6499.85 8398.64 328
Syy-MVS96.04 31395.56 31997.49 30497.10 39894.48 30896.18 33296.58 37395.65 31694.77 39292.29 41991.27 32299.36 37098.17 11998.05 36698.63 329
myMVS_eth3d91.92 38490.45 38696.30 35197.10 39890.90 38696.18 33296.58 37395.65 31694.77 39292.29 41953.88 42799.36 37089.59 39898.05 36698.63 329
balanced_conf0398.63 12798.72 9498.38 23098.66 30196.68 24198.90 8099.42 12998.99 9998.97 16099.19 12695.81 23599.85 13098.77 8399.77 12898.60 331
miper_enhance_ethall96.01 31495.74 30996.81 33896.41 41392.27 36593.69 40798.89 27191.14 39398.30 24897.35 35590.58 32899.58 31996.31 25599.03 30598.60 331
Effi-MVS+-dtu98.26 17897.90 20699.35 7298.02 35699.49 698.02 18099.16 22598.29 15097.64 29897.99 31696.44 20499.95 2496.66 22698.93 31998.60 331
new_pmnet96.99 28296.76 27997.67 28498.72 27994.89 29695.95 34598.20 32892.62 37798.55 22898.54 26494.88 26199.52 33993.96 33499.44 24898.59 334
MVSMamba_PlusPlus98.83 8998.98 6998.36 23399.32 15796.58 24498.90 8099.41 13399.75 898.72 20399.50 6496.17 21499.94 3799.27 4799.78 12298.57 335
testing9193.32 36592.27 36996.47 34797.54 38091.25 38096.17 33496.76 37097.18 25293.65 40893.50 41265.11 42299.63 29993.04 35597.45 37898.53 336
EIA-MVS98.00 19997.74 21598.80 16398.72 27998.09 13798.05 17599.60 5897.39 22896.63 35495.55 38797.68 12299.80 19696.73 22099.27 27198.52 337
PatchMatch-RL97.24 26396.78 27898.61 19699.03 22797.83 16796.36 32099.06 24093.49 36697.36 32397.78 32895.75 23699.49 34893.44 34998.77 32698.52 337
sasdasda98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
ET-MVSNet_ETH3D94.30 35093.21 36097.58 29398.14 35094.47 30994.78 38493.24 40794.72 34089.56 41895.87 38278.57 40099.81 18996.91 19997.11 39198.46 339
canonicalmvs98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
UBG93.25 36792.32 36896.04 36397.72 36790.16 39395.92 34895.91 38496.03 30593.95 40593.04 41569.60 41199.52 33990.72 39397.98 36998.45 342
tt080598.69 11398.62 11298.90 15399.75 3399.30 2199.15 5396.97 36398.86 11198.87 18497.62 33998.63 4698.96 39999.41 4098.29 35198.45 342
TAPA-MVS96.21 1196.63 29595.95 30698.65 18598.93 24198.09 13796.93 29199.28 19083.58 41598.13 26497.78 32896.13 21699.40 36593.52 34699.29 26998.45 342
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net98.34 16598.28 16298.51 21498.47 32497.59 18898.96 7499.48 10199.18 7397.40 31995.50 38998.66 4399.50 34598.18 11798.71 33198.44 345
BH-untuned96.83 28796.75 28097.08 32398.74 27693.33 34496.71 30398.26 32596.72 27798.44 23997.37 35395.20 25199.47 35491.89 37297.43 38098.44 345
WB-MVSnew95.73 32495.57 31896.23 35696.70 40690.70 39096.07 33893.86 40395.60 31897.04 33395.45 39596.00 22299.55 32891.04 38798.31 35098.43 347
pmmvs395.03 33994.40 34696.93 33097.70 37292.53 35895.08 37797.71 34288.57 40697.71 29498.08 31179.39 39599.82 17596.19 26299.11 29998.43 347
DP-MVS Recon97.33 25596.92 26798.57 20399.09 21197.99 15096.79 29799.35 15393.18 36897.71 29498.07 31295.00 25799.31 37893.97 33399.13 29598.42 349
testing9993.04 37191.98 37796.23 35697.53 38290.70 39096.35 32195.94 38396.87 26993.41 40993.43 41363.84 42499.59 31393.24 35397.19 38898.40 350
ETVMVS92.60 37591.08 38497.18 31897.70 37293.65 34196.54 30995.70 38796.51 28494.68 39492.39 41861.80 42599.50 34586.97 40597.41 38198.40 350
Fast-Effi-MVS+-dtu98.27 17698.09 18598.81 16198.43 33098.11 13497.61 23899.50 9298.64 12097.39 32197.52 34498.12 9499.95 2496.90 20498.71 33198.38 352
LF4IMVS97.90 20597.69 21998.52 21399.17 19597.66 18397.19 27999.47 10996.31 29497.85 28698.20 30196.71 19399.52 33994.62 31299.72 15598.38 352
testing1193.08 37092.02 37496.26 35497.56 37890.83 38896.32 32395.70 38796.47 28892.66 41293.73 40964.36 42399.59 31393.77 34197.57 37498.37 354
Fast-Effi-MVS+97.67 22897.38 24098.57 20398.71 28297.43 19797.23 27299.45 11694.82 33996.13 36896.51 36898.52 5699.91 6296.19 26298.83 32398.37 354
test0.0.03 194.51 34593.69 35496.99 32796.05 41693.61 34294.97 38093.49 40496.17 29797.57 30594.88 40282.30 38599.01 39893.60 34494.17 41498.37 354
UWE-MVS92.38 37891.76 38194.21 38997.16 39684.65 41595.42 36888.45 42095.96 30896.17 36795.84 38466.36 41899.71 25791.87 37398.64 33898.28 357
FE-MVS95.66 32694.95 33997.77 27498.53 32095.28 28499.40 1696.09 38093.11 37097.96 27799.26 11279.10 39799.77 22692.40 36998.71 33198.27 358
baseline293.73 35992.83 36596.42 34897.70 37291.28 37996.84 29689.77 41893.96 36092.44 41395.93 38079.14 39699.77 22692.94 35696.76 39698.21 359
thisisatest051594.12 35493.16 36196.97 32998.60 30892.90 35193.77 40690.61 41594.10 35696.91 34095.87 38274.99 40599.80 19694.52 31599.12 29898.20 360
EPMVS93.72 36093.27 35995.09 38296.04 41787.76 40498.13 16285.01 42494.69 34196.92 33898.64 25178.47 40299.31 37895.04 30196.46 39898.20 360
dp93.47 36393.59 35693.13 40196.64 40781.62 42597.66 23196.42 37692.80 37596.11 36998.64 25178.55 40199.59 31393.31 35192.18 41998.16 362
CNLPA97.17 26996.71 28298.55 20898.56 31698.05 14796.33 32298.93 26296.91 26797.06 33297.39 35194.38 27599.45 35891.66 37599.18 28998.14 363
dmvs_re95.98 31695.39 32697.74 28098.86 25797.45 19598.37 14095.69 38997.95 17696.56 35795.95 37990.70 32797.68 41688.32 40196.13 40398.11 364
HY-MVS95.94 1395.90 31895.35 32897.55 29897.95 35894.79 29798.81 9196.94 36692.28 38195.17 38898.57 26289.90 33399.75 23991.20 38597.33 38798.10 365
CostFormer93.97 35693.78 35394.51 38597.53 38285.83 41197.98 18995.96 38289.29 40494.99 39198.63 25378.63 39999.62 30294.54 31496.50 39798.09 366
FA-MVS(test-final)96.99 28296.82 27597.50 30398.70 28694.78 29899.34 2096.99 36295.07 33298.48 23699.33 9788.41 34699.65 29396.13 26898.92 32098.07 367
AdaColmapbinary97.14 27196.71 28298.46 22198.34 33797.80 17496.95 28898.93 26295.58 31996.92 33897.66 33595.87 23399.53 33590.97 38899.14 29398.04 368
KD-MVS_2432*160092.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
miper_refine_blended92.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
TESTMET0.1,192.19 38291.77 38093.46 39796.48 41182.80 42294.05 40291.52 41494.45 34894.00 40394.88 40266.65 41799.56 32495.78 28398.11 36198.02 369
testing22291.96 38390.37 38796.72 34297.47 38992.59 35696.11 33694.76 39396.83 27192.90 41192.87 41657.92 42699.55 32886.93 40697.52 37598.00 372
PCF-MVS92.86 1894.36 34793.00 36498.42 22698.70 28697.56 18993.16 41099.11 23479.59 41997.55 30697.43 34992.19 31299.73 24979.85 41999.45 24597.97 373
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 27396.68 28498.32 23698.32 33897.16 21598.86 8699.37 14489.48 40296.29 36699.15 14096.56 19899.90 6892.90 35799.20 28497.89 374
Gipumacopyleft99.03 6599.16 5098.64 18799.94 298.51 10499.32 2399.75 3699.58 2998.60 21999.62 3798.22 8299.51 34497.70 15199.73 14797.89 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 38690.30 38993.70 39597.72 36784.34 41990.24 41697.42 34890.20 39993.79 40693.09 41490.90 32698.89 40486.57 40872.76 42397.87 376
test-LLR93.90 35793.85 35194.04 39096.53 40984.62 41694.05 40292.39 40996.17 29794.12 40095.07 39682.30 38599.67 27795.87 27898.18 35597.82 377
test-mter92.33 38091.76 38194.04 39096.53 40984.62 41694.05 40292.39 40994.00 35994.12 40095.07 39665.63 42199.67 27795.87 27898.18 35597.82 377
tpm293.09 36992.58 36794.62 38497.56 37886.53 40897.66 23195.79 38686.15 41194.07 40298.23 29975.95 40399.53 33590.91 39096.86 39597.81 379
CR-MVSNet96.28 30795.95 30697.28 31497.71 37094.22 31398.11 16698.92 26592.31 38096.91 34099.37 8685.44 36499.81 18997.39 16797.36 38597.81 379
RPMNet97.02 27896.93 26597.30 31397.71 37094.22 31398.11 16699.30 17999.37 4896.91 34099.34 9586.72 35199.87 11097.53 16197.36 38597.81 379
tpmrst95.07 33895.46 32193.91 39297.11 39784.36 41897.62 23696.96 36494.98 33496.35 36598.80 22185.46 36399.59 31395.60 29096.23 40197.79 382
PAPM91.88 38590.34 38896.51 34598.06 35592.56 35792.44 41397.17 35786.35 41090.38 41796.01 37786.61 35299.21 38970.65 42395.43 40897.75 383
FPMVS93.44 36492.23 37097.08 32399.25 17297.86 16495.61 35997.16 35892.90 37393.76 40798.65 24875.94 40495.66 42079.30 42097.49 37697.73 384
MAR-MVS96.47 30295.70 31198.79 16697.92 36099.12 6198.28 14698.60 31092.16 38295.54 38396.17 37694.77 26799.52 33989.62 39798.23 35297.72 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 19697.86 20998.56 20798.69 29198.07 14397.51 25099.50 9298.10 16897.50 31195.51 38898.41 6499.88 9396.27 25899.24 27697.71 386
thres600view794.45 34693.83 35296.29 35299.06 22091.53 37297.99 18894.24 40098.34 14297.44 31795.01 39879.84 39199.67 27784.33 41198.23 35297.66 387
thres40094.14 35393.44 35796.24 35598.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36397.66 387
IB-MVS91.63 1992.24 38190.90 38596.27 35397.22 39591.24 38194.36 39793.33 40692.37 37992.24 41494.58 40666.20 42099.89 8093.16 35494.63 41297.66 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 34095.25 33094.33 38696.39 41485.87 40998.08 17096.83 36995.46 32395.51 38598.69 23985.91 35999.53 33594.16 32696.23 40197.58 390
cascas94.79 34394.33 34996.15 36296.02 41892.36 36392.34 41499.26 19885.34 41395.08 39094.96 40192.96 30198.53 40994.41 32398.59 34297.56 391
PatchT96.65 29496.35 29897.54 29997.40 39095.32 28397.98 18996.64 37299.33 5396.89 34499.42 7984.32 37299.81 18997.69 15397.49 37697.48 392
TR-MVS95.55 32995.12 33596.86 33797.54 38093.94 32796.49 31396.53 37594.36 35197.03 33596.61 36794.26 27999.16 39286.91 40796.31 40097.47 393
dmvs_testset92.94 37292.21 37195.13 38098.59 31190.99 38597.65 23392.09 41196.95 26494.00 40393.55 41192.34 31196.97 41972.20 42292.52 41797.43 394
MonoMVSNet96.25 30896.53 29595.39 37796.57 40891.01 38498.82 9097.68 34498.57 13098.03 27499.37 8690.92 32597.78 41594.99 30293.88 41597.38 395
JIA-IIPM95.52 33095.03 33697.00 32696.85 40394.03 32396.93 29195.82 38599.20 6794.63 39699.71 1983.09 38199.60 30994.42 32094.64 41197.36 396
BH-w/o95.13 33794.89 34195.86 36498.20 34691.31 37795.65 35897.37 34993.64 36296.52 35995.70 38593.04 30099.02 39688.10 40295.82 40697.24 397
tpm cat193.29 36693.13 36393.75 39497.39 39184.74 41497.39 25897.65 34583.39 41694.16 39998.41 28182.86 38399.39 36791.56 37995.35 40997.14 398
xiu_mvs_v1_base_debu97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
xiu_mvs_v1_base97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
xiu_mvs_v1_base_debi97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
PMVScopyleft91.26 2097.86 21297.94 20297.65 28699.71 4597.94 15998.52 11898.68 30498.99 9997.52 30999.35 9197.41 14998.18 41391.59 37899.67 18196.82 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 32395.60 31596.17 35997.53 38292.75 35598.07 17298.31 32491.22 39194.25 39896.68 36695.53 24299.03 39591.64 37797.18 38996.74 403
MVS-HIRNet94.32 34895.62 31490.42 40398.46 32675.36 42796.29 32589.13 41995.25 32995.38 38699.75 1392.88 30299.19 39094.07 33299.39 25296.72 404
OpenMVS_ROBcopyleft95.38 1495.84 32195.18 33497.81 27198.41 33497.15 21697.37 26198.62 30983.86 41498.65 21198.37 28694.29 27899.68 27488.41 40098.62 34196.60 405
thres100view90094.19 35193.67 35595.75 36899.06 22091.35 37698.03 17894.24 40098.33 14397.40 31994.98 40079.84 39199.62 30283.05 41398.08 36396.29 406
tfpn200view994.03 35593.44 35795.78 36798.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36396.29 406
MVS93.19 36892.09 37296.50 34696.91 40194.03 32398.07 17298.06 33568.01 42194.56 39796.48 37095.96 22999.30 38083.84 41296.89 39496.17 408
gg-mvs-nofinetune92.37 37991.20 38395.85 36595.80 42092.38 36299.31 2781.84 42699.75 891.83 41599.74 1568.29 41299.02 39687.15 40497.12 39096.16 409
xiu_mvs_v2_base97.16 27097.49 23496.17 35998.54 31892.46 35995.45 36698.84 28397.25 24297.48 31396.49 36998.31 7399.90 6896.34 25498.68 33696.15 410
PS-MVSNAJ97.08 27497.39 23996.16 36198.56 31692.46 35995.24 37398.85 28297.25 24297.49 31295.99 37898.07 9599.90 6896.37 25198.67 33796.12 411
E-PMN94.17 35294.37 34793.58 39696.86 40285.71 41290.11 41897.07 36098.17 16397.82 28997.19 35784.62 36998.94 40089.77 39697.68 37396.09 412
EMVS93.83 35894.02 35093.23 40096.83 40484.96 41389.77 41996.32 37797.92 18097.43 31896.36 37586.17 35698.93 40187.68 40397.73 37295.81 413
MVEpermissive83.40 2292.50 37691.92 37894.25 38798.83 26391.64 37192.71 41183.52 42595.92 31086.46 42395.46 39295.20 25195.40 42180.51 41898.64 33895.73 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 36093.14 36295.46 37698.66 30191.29 37896.61 30894.63 39597.39 22896.83 34793.71 41079.88 39099.56 32482.40 41698.13 36095.54 415
API-MVS97.04 27796.91 26997.42 30997.88 36298.23 12698.18 15598.50 31597.57 20697.39 32196.75 36596.77 18799.15 39390.16 39599.02 30894.88 416
GG-mvs-BLEND94.76 38394.54 42292.13 36799.31 2780.47 42788.73 42191.01 42167.59 41698.16 41482.30 41794.53 41393.98 417
DeepMVS_CXcopyleft93.44 39898.24 34394.21 31594.34 39764.28 42291.34 41694.87 40489.45 33792.77 42377.54 42193.14 41693.35 418
tmp_tt78.77 38978.73 39278.90 40558.45 43074.76 42994.20 39978.26 42839.16 42386.71 42292.82 41780.50 38975.19 42586.16 40992.29 41886.74 419
dongtai76.24 39075.95 39377.12 40692.39 42467.91 43090.16 41759.44 43182.04 41789.42 41994.67 40549.68 42981.74 42448.06 42477.66 42281.72 420
kuosan69.30 39168.95 39470.34 40787.68 42865.00 43191.11 41559.90 43069.02 42074.46 42588.89 42248.58 43068.03 42628.61 42572.33 42477.99 421
wuyk23d96.06 31297.62 22791.38 40298.65 30598.57 9898.85 8796.95 36596.86 27099.90 1299.16 13699.18 1798.40 41089.23 39999.77 12877.18 422
test12317.04 39420.11 3977.82 40810.25 4324.91 43394.80 3834.47 4334.93 42610.00 42824.28 4259.69 4313.64 42710.14 42612.43 42614.92 423
testmvs17.12 39320.53 3966.87 40912.05 4314.20 43493.62 4086.73 4324.62 42710.41 42724.33 4248.28 4323.56 4289.69 42715.07 42512.86 424
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k24.66 39232.88 3950.00 4100.00 4330.00 4350.00 42199.10 2350.00 4280.00 42997.58 34099.21 160.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas8.17 39510.90 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42898.07 950.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re8.12 39610.83 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42997.48 3460.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS90.90 38691.37 382
FOURS199.73 3699.67 399.43 1299.54 8399.43 4399.26 118
test_one_060199.39 14199.20 3899.31 17198.49 13698.66 21099.02 16597.64 128
eth-test20.00 433
eth-test0.00 433
ZD-MVS99.01 22998.84 7899.07 23994.10 35698.05 27298.12 30696.36 20999.86 11892.70 36599.19 287
test_241102_ONE99.49 11699.17 4399.31 17197.98 17399.66 4598.90 19998.36 6799.48 351
9.1497.78 21299.07 21597.53 24799.32 16695.53 32198.54 23098.70 23897.58 13399.76 23294.32 32599.46 243
save fliter99.11 20697.97 15496.53 31199.02 25198.24 153
test072699.50 10999.21 3298.17 15899.35 15397.97 17499.26 11899.06 15397.61 131
test_part299.36 14999.10 6499.05 147
sam_mvs84.29 374
MTGPAbinary99.20 210
test_post197.59 24120.48 42783.07 38299.66 28894.16 326
test_post21.25 42683.86 37799.70 261
patchmatchnet-post98.77 22784.37 37199.85 130
MTMP97.93 19391.91 413
gm-plane-assit94.83 42181.97 42488.07 40894.99 39999.60 30991.76 374
TEST998.71 28298.08 14195.96 34399.03 24891.40 38995.85 37497.53 34296.52 20099.76 232
test_898.67 29698.01 14995.91 34999.02 25191.64 38495.79 37697.50 34596.47 20299.76 232
agg_prior98.68 29597.99 15099.01 25495.59 37799.77 226
test_prior497.97 15495.86 350
test_prior295.74 35696.48 28796.11 36997.63 33895.92 23294.16 32699.20 284
旧先验295.76 35588.56 40797.52 30999.66 28894.48 316
新几何295.93 346
原ACMM295.53 362
testdata299.79 20992.80 362
segment_acmp97.02 172
testdata195.44 36796.32 293
plane_prior799.19 18797.87 163
plane_prior698.99 23397.70 18294.90 258
plane_prior497.98 317
plane_prior397.78 17597.41 22697.79 290
plane_prior297.77 21698.20 160
plane_prior199.05 223
plane_prior97.65 18497.07 28396.72 27799.36 256
n20.00 434
nn0.00 434
door-mid99.57 68
test1198.87 274
door99.41 133
HQP5-MVS96.79 233
HQP-NCC98.67 29696.29 32596.05 30295.55 380
ACMP_Plane98.67 29696.29 32596.05 30295.55 380
BP-MVS92.82 360
HQP3-MVS99.04 24699.26 274
HQP2-MVS93.84 286
NP-MVS98.84 26197.39 19996.84 363
MDTV_nov1_ep1395.22 33297.06 40083.20 42197.74 22196.16 37894.37 35096.99 33698.83 21583.95 37699.53 33593.90 33597.95 370
ACMMP++_ref99.77 128
ACMMP++99.68 175
Test By Simon96.52 200