This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16599.95 199.45 3699.98 299.75 1199.80 199.97 599.82 799.99 599.99 1
fmvsm_s_conf0.1_n_a99.17 4299.30 3398.80 15999.75 3396.59 23697.97 18599.86 1398.22 14499.88 1799.71 1798.59 5099.84 14099.73 1899.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2798.64 18099.71 4596.10 24997.87 19799.85 1598.56 12499.90 1299.68 2098.69 4199.85 12299.72 2099.98 1299.97 3
test_fmvs399.12 5199.41 1998.25 23599.76 2995.07 28699.05 6399.94 297.78 18099.82 2199.84 298.56 5499.71 24999.96 199.96 2399.97 3
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2398.11 13197.77 20899.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1299.99 599.96 5
test_f98.67 11598.87 7298.05 25299.72 4295.59 26498.51 12199.81 2396.30 28699.78 2899.82 496.14 20998.63 39999.82 799.93 4199.95 6
test_fmvs298.70 10498.97 6797.89 25999.54 9694.05 31398.55 11299.92 696.78 26499.72 3399.78 896.60 19099.67 26999.91 299.90 6599.94 7
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4799.48 3299.92 899.71 1798.07 8899.96 1299.53 29100.00 199.93 8
test_vis3_rt99.14 4699.17 4599.07 11999.78 2398.38 10898.92 7799.94 297.80 17899.91 1199.67 2597.15 15798.91 39399.76 1599.56 21199.92 9
MVStest195.86 31095.60 30696.63 33595.87 40991.70 36297.93 18698.94 25298.03 15999.56 5499.66 2771.83 39998.26 40399.35 3899.24 26899.91 10
fmvsm_s_conf0.5_n_a99.10 5399.20 4398.78 16599.55 9196.59 23697.79 20599.82 2298.21 14599.81 2599.53 5698.46 6099.84 14099.70 2199.97 1999.90 11
fmvsm_s_conf0.5_n99.09 5499.26 3898.61 18899.55 9196.09 25297.74 21399.81 2398.55 12599.85 1999.55 5098.60 4999.84 14099.69 2399.98 1299.89 12
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6898.10 13397.68 21999.84 1899.29 5599.92 899.57 4399.60 599.96 1299.74 1799.98 1299.89 12
test_djsdf99.52 1099.51 1199.53 3499.86 1498.74 8199.39 1699.56 7099.11 7399.70 3799.73 1599.00 2299.97 599.26 4599.98 1299.89 12
mvs_tets99.63 599.67 599.49 4899.88 998.61 9199.34 1999.71 3499.27 5799.90 1299.74 1399.68 499.97 599.55 2899.99 599.88 15
m2depth97.91 19998.02 18897.58 28598.69 28394.10 31298.13 15798.90 26197.95 16597.32 31499.58 4195.95 22498.75 39796.41 24099.22 27299.87 16
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4699.09 8399.89 1599.68 2099.53 799.97 599.50 3299.99 599.87 16
EU-MVSNet97.66 22398.50 12295.13 37199.63 7285.84 40198.35 14098.21 31998.23 14399.54 5899.46 6995.02 25199.68 26698.24 10799.87 7499.87 16
UA-Net99.47 1399.40 2099.70 299.49 11399.29 2099.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1298.85 7199.99 599.86 19
MM98.22 17797.99 19198.91 14698.66 29496.97 21997.89 19394.44 38699.54 2998.95 15899.14 13593.50 28799.92 5199.80 1199.96 2399.85 20
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 20
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6397.05 21597.80 20499.76 2998.70 11299.78 2899.11 13898.79 3499.95 2399.85 599.96 2399.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3599.02 13199.64 6897.28 20197.82 20199.76 2998.73 10999.82 2199.09 14498.81 3299.95 2399.86 499.96 2399.83 22
mvsany_test398.87 7898.92 6998.74 17599.38 13896.94 22398.58 10999.10 22896.49 27699.96 499.81 598.18 8099.45 34998.97 6599.79 11399.83 22
SSC-MVS98.71 10098.74 8498.62 18599.72 4296.08 25498.74 9098.64 30199.74 999.67 4399.24 10894.57 26599.95 2399.11 5499.24 26899.82 25
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6499.34 1999.69 3898.93 9999.65 4799.72 1698.93 2699.95 2399.11 54100.00 199.82 25
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3599.31 40100.00 199.82 25
PS-CasMVS99.40 2299.33 2799.62 699.71 4599.10 6199.29 3299.53 8199.53 3099.46 7399.41 7998.23 7399.95 2398.89 7099.95 2999.81 28
FC-MVSNet-test99.27 3199.25 3999.34 7299.77 2698.37 11099.30 3199.57 6399.61 2599.40 8599.50 6097.12 15899.85 12299.02 6299.94 3699.80 29
test_cas_vis1_n_192098.33 16398.68 9797.27 30799.69 5492.29 35698.03 17399.85 1597.62 18999.96 499.62 3493.98 28099.74 23699.52 3199.86 7899.79 30
test_vis1_n_192098.40 15298.92 6996.81 33099.74 3590.76 38098.15 15699.91 798.33 13399.89 1599.55 5095.07 25099.88 8499.76 1599.93 4199.79 30
CP-MVSNet99.21 3999.09 5699.56 2299.65 6398.96 7199.13 5499.34 15299.42 4199.33 9799.26 10397.01 16699.94 3598.74 7999.93 4199.79 30
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1699.69 499.58 5699.90 299.86 1899.78 899.58 699.95 2399.00 6399.95 2999.78 33
CVMVSNet96.25 30097.21 24593.38 38999.10 20280.56 41697.20 26698.19 32296.94 25599.00 14899.02 15789.50 32999.80 18896.36 24499.59 19999.78 33
Anonymous2023121199.27 3199.27 3699.26 8999.29 15998.18 12599.49 999.51 8599.70 1199.80 2699.68 2096.84 17399.83 15799.21 5099.91 5999.77 35
PEN-MVS99.41 2199.34 2699.62 699.73 3699.14 5399.29 3299.54 7899.62 2399.56 5499.42 7698.16 8499.96 1298.78 7499.93 4199.77 35
WR-MVS_H99.33 2799.22 4199.65 599.71 4599.24 2699.32 2299.55 7499.46 3599.50 6999.34 9097.30 14799.93 4298.90 6899.93 4199.77 35
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1699.11 6099.90 199.78 2799.63 2099.78 2899.67 2599.48 999.81 18199.30 4199.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS98.52 14198.55 11598.43 21799.65 6395.59 26498.52 11698.77 28799.65 1799.52 6499.00 16994.34 27199.93 4298.65 8698.83 31599.76 39
patch_mono-298.51 14298.63 10498.17 24199.38 13894.78 29197.36 25299.69 3898.16 15598.49 22899.29 9897.06 16199.97 598.29 10699.91 5999.76 39
nrg03099.40 2299.35 2499.54 2799.58 7599.13 5698.98 7199.48 9699.68 1499.46 7399.26 10398.62 4799.73 24199.17 5399.92 5299.76 39
FIs99.14 4699.09 5699.29 8399.70 5298.28 11699.13 5499.52 8499.48 3299.24 11799.41 7996.79 17999.82 16798.69 8499.88 7199.76 39
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5299.66 1699.68 4199.66 2798.44 6199.95 2399.73 1899.96 2399.75 43
APDe-MVScopyleft98.99 6298.79 8199.60 1199.21 17499.15 4898.87 8399.48 9697.57 19599.35 9499.24 10897.83 10499.89 7597.88 13399.70 16099.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.43 1999.35 2499.66 499.71 4599.30 1899.31 2699.51 8599.64 1899.56 5499.46 6998.23 7399.97 598.78 7499.93 4199.72 45
MSC_two_6792asdad99.32 7998.43 32398.37 11098.86 27299.89 7597.14 17299.60 19599.71 46
No_MVS99.32 7998.43 32398.37 11098.86 27299.89 7597.14 17299.60 19599.71 46
PMMVS298.07 19098.08 18398.04 25399.41 13594.59 30094.59 38299.40 12997.50 20498.82 18598.83 20796.83 17599.84 14097.50 15499.81 9899.71 46
Baseline_NR-MVSNet98.98 6598.86 7599.36 6399.82 1998.55 9697.47 24699.57 6399.37 4599.21 12099.61 3796.76 18299.83 15798.06 12099.83 9199.71 46
XXY-MVS99.14 4699.15 5299.10 11399.76 2997.74 17598.85 8699.62 4998.48 12799.37 9099.49 6698.75 3699.86 10998.20 11099.80 10899.71 46
test_0728_THIRD98.17 15299.08 13499.02 15797.89 10199.88 8497.07 17899.71 15599.70 51
MSP-MVS98.40 15298.00 19099.61 999.57 7999.25 2598.57 11099.35 14697.55 20099.31 10597.71 32294.61 26499.88 8496.14 25799.19 27999.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_298.78 9199.11 5397.78 26699.56 8793.67 33199.06 6199.86 1399.50 3199.66 4499.26 10397.21 15599.99 298.00 12599.91 5999.68 53
test_0728_SECOND99.60 1199.50 10699.23 2798.02 17599.32 15999.88 8496.99 18499.63 18599.68 53
OurMVSNet-221017-099.37 2599.31 3199.53 3499.91 398.98 6699.63 699.58 5699.44 3899.78 2899.76 1096.39 19899.92 5199.44 3599.92 5299.68 53
CHOSEN 1792x268897.49 23497.14 25098.54 20399.68 5696.09 25296.50 30299.62 4991.58 37698.84 18198.97 17692.36 30599.88 8496.76 20799.95 2999.67 56
IU-MVS99.49 11399.15 4898.87 26792.97 36199.41 8296.76 20799.62 18899.66 57
test_241102_TWO99.30 17298.03 15999.26 11299.02 15797.51 13599.88 8496.91 19099.60 19599.66 57
DPE-MVScopyleft98.59 12898.26 16199.57 1799.27 16299.15 4897.01 27599.39 13197.67 18599.44 7798.99 17097.53 13299.89 7595.40 28799.68 16899.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2098.58 9499.27 3899.57 6399.39 4399.75 3299.62 3499.17 1899.83 15799.06 5899.62 18899.66 57
EI-MVSNet-UG-set98.69 10798.71 9198.62 18599.10 20296.37 24397.23 26298.87 26799.20 6499.19 12298.99 17097.30 14799.85 12298.77 7799.79 11399.65 61
pmmvs699.67 399.70 399.60 1199.90 499.27 2399.53 899.76 2999.64 1899.84 2099.83 399.50 899.87 10199.36 3799.92 5299.64 62
EI-MVSNet-Vis-set98.68 11298.70 9498.63 18499.09 20596.40 24297.23 26298.86 27299.20 6499.18 12698.97 17697.29 14999.85 12298.72 8199.78 11899.64 62
ACMH96.65 799.25 3499.24 4099.26 8999.72 4298.38 10899.07 6099.55 7498.30 13699.65 4799.45 7399.22 1599.76 22498.44 9899.77 12499.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 7198.81 8099.28 8499.21 17498.45 10598.46 12999.33 15799.63 2099.48 7099.15 13297.23 15399.75 23197.17 16899.66 17999.63 65
test_fmvs1_n98.09 18898.28 15797.52 29399.68 5693.47 33598.63 10399.93 495.41 31799.68 4199.64 3291.88 31299.48 34299.82 799.87 7499.62 66
test111196.49 29396.82 26795.52 36599.42 13387.08 39899.22 4187.14 41199.11 7399.46 7399.58 4188.69 33399.86 10998.80 7399.95 2999.62 66
VPA-MVSNet99.30 2999.30 3399.28 8499.49 11398.36 11399.00 6899.45 11099.63 2099.52 6499.44 7498.25 7199.88 8499.09 5699.84 8499.62 66
LPG-MVS_test98.71 10098.46 13199.47 5399.57 7998.97 6798.23 14799.48 9696.60 27199.10 13299.06 14598.71 3999.83 15795.58 28399.78 11899.62 66
LGP-MVS_train99.47 5399.57 7998.97 6799.48 9696.60 27199.10 13299.06 14598.71 3999.83 15795.58 28399.78 11899.62 66
Test_1112_low_res96.99 27496.55 28598.31 23199.35 14995.47 27195.84 34399.53 8191.51 37896.80 33998.48 26691.36 31599.83 15796.58 22299.53 22099.62 66
v1098.97 6699.11 5398.55 20099.44 12796.21 24898.90 7899.55 7498.73 10999.48 7099.60 3996.63 18999.83 15799.70 2199.99 599.61 72
test_vis1_n98.31 16698.50 12297.73 27599.76 2994.17 31098.68 10099.91 796.31 28499.79 2799.57 4392.85 29999.42 35499.79 1299.84 8499.60 73
v899.01 6099.16 4798.57 19599.47 12296.31 24698.90 7899.47 10499.03 8999.52 6499.57 4396.93 16999.81 18199.60 2499.98 1299.60 73
EI-MVSNet98.40 15298.51 12098.04 25399.10 20294.73 29497.20 26698.87 26798.97 9599.06 13699.02 15796.00 21699.80 18898.58 8999.82 9499.60 73
SixPastTwentyTwo98.75 9698.62 10699.16 10499.83 1897.96 15499.28 3698.20 32099.37 4599.70 3799.65 3192.65 30399.93 4299.04 6099.84 8499.60 73
IterMVS-LS98.55 13498.70 9498.09 24599.48 12094.73 29497.22 26599.39 13198.97 9599.38 8899.31 9696.00 21699.93 4298.58 8999.97 1999.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 25996.60 28398.96 13899.62 7497.28 20195.17 36499.50 8794.21 34399.01 14798.32 28386.61 34599.99 297.10 17699.84 8499.60 73
ACMMP_NAP98.75 9698.48 12799.57 1799.58 7599.29 2097.82 20199.25 19296.94 25598.78 18899.12 13798.02 9299.84 14097.13 17499.67 17499.59 79
VPNet98.87 7898.83 7799.01 13299.70 5297.62 18498.43 13299.35 14699.47 3499.28 10699.05 15296.72 18599.82 16798.09 11799.36 24899.59 79
WR-MVS98.40 15298.19 16999.03 12999.00 22297.65 18196.85 28598.94 25298.57 12298.89 17198.50 26395.60 23499.85 12297.54 15199.85 8099.59 79
HPM-MVScopyleft98.79 8998.53 11899.59 1599.65 6399.29 2099.16 5099.43 12096.74 26698.61 21198.38 27598.62 4799.87 10196.47 23699.67 17499.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10697.47 19098.04 17299.59 5498.15 15699.40 8599.36 8598.58 5399.76 22498.78 7499.68 16899.59 79
Vis-MVSNetpermissive99.34 2699.36 2399.27 8799.73 3698.26 11799.17 4999.78 2799.11 7399.27 10899.48 6798.82 3199.95 2398.94 6699.93 4199.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 12998.23 16599.60 1199.69 5499.35 1397.16 27099.38 13394.87 32898.97 15498.99 17098.01 9399.88 8497.29 16299.70 16099.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 10798.40 13999.54 2799.53 9999.17 4098.52 11699.31 16497.46 21298.44 23298.51 25997.83 10499.88 8496.46 23799.58 20499.58 85
ACMMPR98.70 10498.42 13799.54 2799.52 10199.14 5398.52 11699.31 16497.47 20798.56 22098.54 25597.75 11299.88 8496.57 22499.59 19999.58 85
PGM-MVS98.66 11698.37 14699.55 2499.53 9999.18 3998.23 14799.49 9497.01 25298.69 20098.88 19898.00 9499.89 7595.87 26999.59 19999.58 85
SteuartSystems-ACMMP98.79 8998.54 11799.54 2799.73 3699.16 4498.23 14799.31 16497.92 16998.90 16998.90 19198.00 9499.88 8496.15 25699.72 15099.58 85
Skip Steuart: Steuart Systems R&D Blog.
SDMVSNet99.23 3899.32 2998.96 13899.68 5697.35 19798.84 8899.48 9699.69 1299.63 5099.68 2099.03 2199.96 1297.97 12799.92 5299.57 90
sd_testset99.28 3099.31 3199.19 10099.68 5698.06 14399.41 1399.30 17299.69 1299.63 5099.68 2099.25 1499.96 1297.25 16599.92 5299.57 90
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14498.87 7498.39 13699.42 12399.42 4199.36 9299.06 14598.38 6499.95 2398.34 10399.90 6599.57 90
mPP-MVS98.64 11998.34 15099.54 2799.54 9699.17 4098.63 10399.24 19797.47 20798.09 25998.68 23397.62 12399.89 7596.22 25199.62 18899.57 90
PVSNet_Blended_VisFu98.17 18498.15 17598.22 23899.73 3695.15 28297.36 25299.68 4394.45 33898.99 14999.27 10196.87 17299.94 3597.13 17499.91 5999.57 90
1112_ss97.29 25196.86 26398.58 19299.34 15196.32 24596.75 29199.58 5693.14 35996.89 33497.48 33692.11 30999.86 10996.91 19099.54 21699.57 90
MTAPA98.88 7798.64 10399.61 999.67 6099.36 1298.43 13299.20 20398.83 10898.89 17198.90 19196.98 16899.92 5197.16 16999.70 16099.56 96
XVS98.72 9998.45 13299.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29798.63 24597.50 13699.83 15796.79 20399.53 22099.56 96
pm-mvs199.44 1599.48 1499.33 7799.80 2098.63 8899.29 3299.63 4899.30 5499.65 4799.60 3999.16 2099.82 16799.07 5799.83 9199.56 96
X-MVStestdata94.32 33892.59 35699.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29745.85 41397.50 13699.83 15796.79 20399.53 22099.56 96
HPM-MVS_fast99.01 6098.82 7899.57 1799.71 4599.35 1399.00 6899.50 8797.33 22398.94 16598.86 20198.75 3699.82 16797.53 15299.71 15599.56 96
K. test v398.00 19497.66 21799.03 12999.79 2297.56 18699.19 4892.47 39899.62 2399.52 6499.66 2789.61 32799.96 1299.25 4799.81 9899.56 96
CP-MVS98.70 10498.42 13799.52 3999.36 14599.12 5898.72 9599.36 14197.54 20198.30 24198.40 27297.86 10399.89 7596.53 23399.72 15099.56 96
ZNCC-MVS98.68 11298.40 13999.54 2799.57 7999.21 2998.46 12999.29 18097.28 22998.11 25798.39 27398.00 9499.87 10196.86 20099.64 18299.55 103
v119298.60 12698.66 10098.41 21999.27 16295.88 25897.52 24099.36 14197.41 21699.33 9799.20 11696.37 20199.82 16799.57 2699.92 5299.55 103
v124098.55 13498.62 10698.32 22999.22 17295.58 26697.51 24299.45 11097.16 24499.45 7699.24 10896.12 21199.85 12299.60 2499.88 7199.55 103
UGNet98.53 13898.45 13298.79 16297.94 35196.96 22199.08 5798.54 30599.10 8096.82 33899.47 6896.55 19299.84 14098.56 9499.94 3699.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WBMVS95.18 32794.78 33296.37 34197.68 36789.74 38795.80 34498.73 29497.54 20198.30 24198.44 26970.06 40099.82 16796.62 21999.87 7499.54 107
test250692.39 36791.89 36993.89 38399.38 13882.28 41399.32 2266.03 41999.08 8598.77 19199.57 4366.26 40999.84 14098.71 8299.95 2999.54 107
ECVR-MVScopyleft96.42 29596.61 28195.85 35799.38 13888.18 39499.22 4186.00 41399.08 8599.36 9299.57 4388.47 33899.82 16798.52 9599.95 2999.54 107
v14419298.54 13698.57 11498.45 21599.21 17495.98 25597.63 22799.36 14197.15 24699.32 10399.18 12295.84 22899.84 14099.50 3299.91 5999.54 107
v192192098.54 13698.60 11198.38 22299.20 17895.76 26397.56 23699.36 14197.23 23899.38 8899.17 12696.02 21499.84 14099.57 2699.90 6599.54 107
MP-MVScopyleft98.46 14698.09 18099.54 2799.57 7999.22 2898.50 12399.19 20797.61 19297.58 29398.66 23897.40 14399.88 8494.72 30199.60 19599.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2499.32 2999.55 2499.86 1499.19 3899.41 1399.59 5499.59 2699.71 3599.57 4397.12 15899.90 6599.21 5099.87 7499.54 107
ACMMPcopyleft98.75 9698.50 12299.52 3999.56 8799.16 4498.87 8399.37 13797.16 24498.82 18599.01 16697.71 11499.87 10196.29 24899.69 16399.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 15298.03 18799.51 4399.16 19199.21 2998.05 17099.22 20094.16 34498.98 15099.10 14197.52 13499.79 20196.45 23899.64 18299.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 10098.44 13499.51 4399.49 11399.16 4498.52 11699.31 16497.47 20798.58 21798.50 26397.97 9899.85 12296.57 22499.59 19999.53 115
UniMVSNet_NR-MVSNet98.86 8198.68 9799.40 6199.17 18998.74 8197.68 21999.40 12999.14 7299.06 13698.59 25196.71 18699.93 4298.57 9199.77 12499.53 115
GST-MVS98.61 12598.30 15599.52 3999.51 10399.20 3598.26 14599.25 19297.44 21598.67 20298.39 27397.68 11599.85 12296.00 26199.51 22599.52 118
MVS_030497.44 23997.01 25598.72 17696.42 40296.74 23197.20 26691.97 40298.46 12898.30 24198.79 21592.74 30199.91 6099.30 4199.94 3699.52 118
TDRefinement99.42 2099.38 2299.55 2499.76 2999.33 1799.68 599.71 3499.38 4499.53 6299.61 3798.64 4499.80 18898.24 10799.84 8499.52 118
v114498.60 12698.66 10098.41 21999.36 14595.90 25797.58 23499.34 15297.51 20399.27 10899.15 13296.34 20399.80 18899.47 3499.93 4199.51 121
v2v48298.56 13098.62 10698.37 22499.42 13395.81 26197.58 23499.16 21897.90 17199.28 10699.01 16695.98 22199.79 20199.33 3999.90 6599.51 121
CPTT-MVS97.84 21297.36 23699.27 8799.31 15498.46 10498.29 14299.27 18694.90 32797.83 27798.37 27694.90 25399.84 14093.85 32999.54 21699.51 121
DU-MVS98.82 8598.63 10499.39 6299.16 19198.74 8197.54 23899.25 19298.84 10799.06 13698.76 22196.76 18299.93 4298.57 9199.77 12499.50 124
NR-MVSNet98.95 6998.82 7899.36 6399.16 19198.72 8699.22 4199.20 20399.10 8099.72 3398.76 22196.38 20099.86 10998.00 12599.82 9499.50 124
casdiffmvs_mvgpermissive99.12 5199.16 4798.99 13499.43 13297.73 17798.00 17999.62 4999.22 6099.55 5799.22 11398.93 2699.75 23198.66 8599.81 9899.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 5699.00 6399.33 7799.71 4598.83 7698.60 10799.58 5699.11 7399.53 6299.18 12298.81 3299.67 26996.71 21499.77 12499.50 124
DVP-MVS++98.90 7598.70 9499.51 4398.43 32399.15 4899.43 1199.32 15998.17 15299.26 11299.02 15798.18 8099.88 8497.07 17899.45 23799.49 128
PC_three_145293.27 35799.40 8598.54 25598.22 7697.00 40895.17 29099.45 23799.49 128
GeoE99.05 5798.99 6599.25 9299.44 12798.35 11498.73 9499.56 7098.42 12998.91 16898.81 21298.94 2599.91 6098.35 10299.73 14399.49 128
h-mvs3397.77 21597.33 23999.10 11399.21 17497.84 16398.35 14098.57 30499.11 7398.58 21799.02 15788.65 33699.96 1298.11 11596.34 39099.49 128
IterMVS-SCA-FT97.85 21198.18 17096.87 32699.27 16291.16 37595.53 35299.25 19299.10 8099.41 8299.35 8693.10 29299.96 1298.65 8699.94 3699.49 128
new-patchmatchnet98.35 15998.74 8497.18 31099.24 16792.23 35896.42 30799.48 9698.30 13699.69 3999.53 5697.44 14199.82 16798.84 7299.77 12499.49 128
APD-MVScopyleft98.10 18697.67 21499.42 5799.11 20098.93 7297.76 21199.28 18394.97 32598.72 19798.77 21997.04 16299.85 12293.79 33099.54 21699.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 16798.04 18699.07 11999.56 8797.83 16499.29 3298.07 32699.03 8998.59 21599.13 13692.16 30899.90 6596.87 19899.68 16899.49 128
DeepC-MVS97.60 498.97 6698.93 6899.10 11399.35 14997.98 15098.01 17899.46 10697.56 19899.54 5899.50 6098.97 2399.84 14098.06 12099.92 5299.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 7398.73 8699.48 5099.55 9199.14 5398.07 16799.37 13797.62 18999.04 14398.96 17998.84 3099.79 20197.43 15699.65 18099.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 9498.52 11999.52 3999.50 10699.21 2998.02 17598.84 27697.97 16399.08 13499.02 15797.61 12499.88 8496.99 18499.63 18599.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 10098.43 13599.57 1799.18 18899.35 1398.36 13999.29 18098.29 13998.88 17498.85 20497.53 13299.87 10196.14 25799.31 25699.48 138
TSAR-MVS + MP.98.63 12198.49 12699.06 12599.64 6897.90 15898.51 12198.94 25296.96 25399.24 11798.89 19797.83 10499.81 18196.88 19799.49 23399.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 17997.95 19499.01 13299.58 7597.74 17599.01 6697.29 34599.67 1598.97 15499.50 6090.45 32299.80 18897.88 13399.20 27699.48 138
IterMVS97.73 21798.11 17996.57 33699.24 16790.28 38395.52 35499.21 20198.86 10499.33 9799.33 9293.11 29199.94 3598.49 9699.94 3699.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 18197.90 20099.08 11799.57 7997.97 15199.31 2698.32 31599.01 9198.98 15099.03 15691.59 31399.79 20195.49 28599.80 10899.48 138
ACMP95.32 1598.41 15098.09 18099.36 6399.51 10398.79 7997.68 21999.38 13395.76 30498.81 18798.82 21098.36 6599.82 16794.75 29899.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19497.63 22099.10 11399.24 16798.17 12696.89 28498.73 29495.66 30597.92 26897.70 32497.17 15699.66 28096.18 25599.23 27199.47 145
3Dnovator+97.89 398.69 10798.51 12099.24 9498.81 26098.40 10699.02 6599.19 20798.99 9298.07 26099.28 9997.11 16099.84 14096.84 20199.32 25499.47 145
HPM-MVS++copyleft98.10 18697.64 21999.48 5099.09 20599.13 5697.52 24098.75 29197.46 21296.90 33397.83 31796.01 21599.84 14095.82 27399.35 25099.46 147
V4298.78 9198.78 8298.76 16999.44 12797.04 21698.27 14499.19 20797.87 17399.25 11699.16 12896.84 17399.78 21299.21 5099.84 8499.46 147
APD-MVS_3200maxsize98.84 8298.61 11099.53 3499.19 18199.27 2398.49 12499.33 15798.64 11399.03 14698.98 17497.89 10199.85 12296.54 23299.42 24199.46 147
UniMVSNet (Re)98.87 7898.71 9199.35 6999.24 16798.73 8497.73 21599.38 13398.93 9999.12 12898.73 22496.77 18099.86 10998.63 8899.80 10899.46 147
SR-MVS-dyc-post98.81 8798.55 11599.57 1799.20 17899.38 998.48 12799.30 17298.64 11398.95 15898.96 17997.49 13999.86 10996.56 22899.39 24499.45 151
RE-MVS-def98.58 11399.20 17899.38 998.48 12799.30 17298.64 11398.95 15898.96 17997.75 11296.56 22899.39 24499.45 151
HQP_MVS97.99 19797.67 21498.93 14399.19 18197.65 18197.77 20899.27 18698.20 14997.79 28097.98 30794.90 25399.70 25394.42 31099.51 22599.45 151
plane_prior599.27 18699.70 25394.42 31099.51 22599.45 151
lessismore_v098.97 13799.73 3697.53 18886.71 41299.37 9099.52 5989.93 32599.92 5198.99 6499.72 15099.44 155
TAMVS98.24 17698.05 18598.80 15999.07 20997.18 21097.88 19498.81 28196.66 27099.17 12799.21 11494.81 25999.77 21896.96 18899.88 7199.44 155
DeepPCF-MVS96.93 598.32 16498.01 18999.23 9698.39 32898.97 6795.03 36899.18 21196.88 25899.33 9798.78 21798.16 8499.28 37596.74 20999.62 18899.44 155
3Dnovator98.27 298.81 8798.73 8699.05 12698.76 26597.81 17099.25 3999.30 17298.57 12298.55 22299.33 9297.95 9999.90 6597.16 16999.67 17499.44 155
MVSFormer98.26 17398.43 13597.77 26798.88 24793.89 32599.39 1699.56 7099.11 7398.16 25198.13 29493.81 28399.97 599.26 4599.57 20899.43 159
jason97.45 23897.35 23797.76 27099.24 16793.93 32195.86 34098.42 31194.24 34298.50 22798.13 29494.82 25799.91 6097.22 16699.73 14399.43 159
jason: jason.
NCCC97.86 20697.47 23199.05 12698.61 29998.07 14096.98 27798.90 26197.63 18897.04 32397.93 31295.99 22099.66 28095.31 28898.82 31799.43 159
Anonymous2024052198.69 10798.87 7298.16 24399.77 2695.11 28599.08 5799.44 11499.34 4999.33 9799.55 5094.10 27999.94 3599.25 4799.96 2399.42 162
MVS_111021_HR98.25 17598.08 18398.75 17199.09 20597.46 19195.97 33199.27 18697.60 19397.99 26698.25 28698.15 8699.38 36096.87 19899.57 20899.42 162
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7699.41 5999.58 7599.10 6198.74 9099.56 7099.09 8399.33 9799.19 11898.40 6399.72 24895.98 26399.76 13699.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 7398.72 8899.49 4899.49 11399.17 4098.10 16399.31 16498.03 15999.66 4499.02 15798.36 6599.88 8496.91 19099.62 18899.41 165
OPU-MVS98.82 15598.59 30498.30 11598.10 16398.52 25898.18 8098.75 39794.62 30299.48 23499.41 165
our_test_397.39 24397.73 21196.34 34298.70 27889.78 38694.61 38198.97 25196.50 27599.04 14398.85 20495.98 22199.84 14097.26 16499.67 17499.41 165
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 13897.33 19897.82 20199.57 6399.17 7199.35 9499.17 12698.35 6899.69 25798.46 9799.73 14399.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 22697.67 21497.39 30399.04 21793.04 34295.27 36198.38 31497.25 23298.92 16798.95 18395.48 24099.73 24196.99 18498.74 31999.41 165
MDA-MVSNet_test_wron97.60 22697.66 21797.41 30299.04 21793.09 33895.27 36198.42 31197.26 23198.88 17498.95 18395.43 24299.73 24197.02 18198.72 32199.41 165
GBi-Net98.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15899.55 5094.14 27599.86 10997.77 13999.69 16399.41 165
test198.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15899.55 5094.14 27599.86 10997.77 13999.69 16399.41 165
FMVSNet199.17 4299.17 4599.17 10199.55 9198.24 11999.20 4499.44 11499.21 6299.43 7899.55 5097.82 10799.86 10998.42 10099.89 6999.41 165
test_fmvs197.72 21897.94 19697.07 31798.66 29492.39 35397.68 21999.81 2395.20 32199.54 5899.44 7491.56 31499.41 35599.78 1499.77 12499.40 174
KD-MVS_self_test99.25 3499.18 4499.44 5699.63 7299.06 6598.69 9999.54 7899.31 5299.62 5399.53 5697.36 14599.86 10999.24 4999.71 15599.39 175
v14898.45 14798.60 11198.00 25599.44 12794.98 28797.44 24899.06 23398.30 13699.32 10398.97 17696.65 18899.62 29498.37 10199.85 8099.39 175
test20.0398.78 9198.77 8398.78 16599.46 12397.20 20897.78 20699.24 19799.04 8899.41 8298.90 19197.65 11899.76 22497.70 14599.79 11399.39 175
CDPH-MVS97.26 25296.66 27999.07 11999.00 22298.15 12796.03 32999.01 24791.21 38297.79 28097.85 31696.89 17199.69 25792.75 35399.38 24799.39 175
EPNet96.14 30295.44 31498.25 23590.76 41795.50 27097.92 18994.65 38498.97 9592.98 40098.85 20489.12 33199.87 10195.99 26299.68 16899.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 18497.87 20299.07 11998.67 28998.24 11997.01 27598.93 25597.25 23297.62 28998.34 28097.27 15099.57 31396.42 23999.33 25399.39 175
DeepC-MVS_fast96.85 698.30 16798.15 17598.75 17198.61 29997.23 20497.76 21199.09 23097.31 22698.75 19498.66 23897.56 12899.64 28896.10 26099.55 21499.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 13898.27 16099.32 7999.31 15498.75 8098.19 15199.41 12596.77 26598.83 18298.90 19197.80 10999.82 16795.68 27999.52 22399.38 182
test9_res93.28 34299.15 28499.38 182
OPM-MVS98.56 13098.32 15499.25 9299.41 13598.73 8497.13 27299.18 21197.10 24798.75 19498.92 18798.18 8099.65 28596.68 21699.56 21199.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 35899.16 28299.37 184
AllTest98.44 14898.20 16799.16 10499.50 10698.55 9698.25 14699.58 5696.80 26298.88 17499.06 14597.65 11899.57 31394.45 30899.61 19399.37 184
TestCases99.16 10499.50 10698.55 9699.58 5696.80 26298.88 17499.06 14597.65 11899.57 31394.45 30899.61 19399.37 184
MDA-MVSNet-bldmvs97.94 19897.91 19998.06 25099.44 12794.96 28896.63 29799.15 22398.35 13198.83 18299.11 13894.31 27299.85 12296.60 22198.72 32199.37 184
MVSTER96.86 27896.55 28597.79 26597.91 35394.21 30897.56 23698.87 26797.49 20699.06 13699.05 15280.72 37999.80 18898.44 9899.82 9499.37 184
pmmvs597.64 22497.49 22898.08 24899.14 19695.12 28496.70 29499.05 23693.77 35198.62 20998.83 20793.23 28899.75 23198.33 10599.76 13699.36 190
Anonymous2023120698.21 17998.21 16698.20 23999.51 10395.43 27398.13 15799.32 15996.16 28998.93 16698.82 21096.00 21699.83 15797.32 16199.73 14399.36 190
train_agg97.10 26496.45 28899.07 11998.71 27498.08 13895.96 33399.03 24191.64 37495.85 36497.53 33296.47 19599.76 22493.67 33299.16 28299.36 190
PVSNet_BlendedMVS97.55 23197.53 22597.60 28398.92 23793.77 32996.64 29699.43 12094.49 33497.62 28999.18 12296.82 17699.67 26994.73 29999.93 4199.36 190
Anonymous2024052998.93 7198.87 7299.12 10999.19 18198.22 12499.01 6698.99 25099.25 5899.54 5899.37 8297.04 16299.80 18897.89 13099.52 22399.35 194
F-COLMAP97.30 24996.68 27699.14 10799.19 18198.39 10797.27 26199.30 17292.93 36296.62 34598.00 30595.73 23199.68 26692.62 35698.46 33799.35 194
ppachtmachnet_test97.50 23297.74 20996.78 33298.70 27891.23 37494.55 38399.05 23696.36 28199.21 12098.79 21596.39 19899.78 21296.74 20999.82 9499.34 196
VDD-MVS98.56 13098.39 14299.07 11999.13 19898.07 14098.59 10897.01 35199.59 2699.11 12999.27 10194.82 25799.79 20198.34 10399.63 18599.34 196
testgi98.32 16498.39 14298.13 24499.57 7995.54 26797.78 20699.49 9497.37 22099.19 12297.65 32698.96 2499.49 33996.50 23598.99 30499.34 196
diffmvspermissive98.22 17798.24 16498.17 24199.00 22295.44 27296.38 30999.58 5697.79 17998.53 22598.50 26396.76 18299.74 23697.95 12999.64 18299.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 20297.60 22298.75 17199.31 15497.17 21197.62 22899.35 14698.72 11198.76 19398.68 23392.57 30499.74 23697.76 14395.60 39899.34 196
baseline98.96 6899.02 6198.76 16999.38 13897.26 20398.49 12499.50 8798.86 10499.19 12299.06 14598.23 7399.69 25798.71 8299.76 13699.33 201
MG-MVS96.77 28296.61 28197.26 30898.31 33293.06 33995.93 33698.12 32596.45 27997.92 26898.73 22493.77 28599.39 35891.19 37699.04 29699.33 201
HQP4-MVS95.56 36999.54 32499.32 203
CDS-MVSNet97.69 22097.35 23798.69 17798.73 26997.02 21896.92 28398.75 29195.89 30198.59 21598.67 23592.08 31099.74 23696.72 21299.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 27396.49 28798.55 20098.67 28996.79 22796.29 31599.04 23996.05 29295.55 37096.84 35393.84 28199.54 32492.82 35099.26 26699.32 203
RPSCF98.62 12498.36 14799.42 5799.65 6399.42 898.55 11299.57 6397.72 18398.90 16999.26 10396.12 21199.52 33095.72 27699.71 15599.32 203
MVP-Stereo98.08 18997.92 19898.57 19598.96 22996.79 22797.90 19299.18 21196.41 28098.46 23098.95 18395.93 22599.60 30196.51 23498.98 30699.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15298.68 9797.54 29198.96 22997.99 14797.88 19499.36 14198.20 14999.63 5099.04 15498.76 3595.33 41296.56 22899.74 14099.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 14998.30 15598.79 16298.79 26497.29 20098.23 14798.66 29899.31 5298.85 17998.80 21394.80 26099.78 21298.13 11499.13 28799.31 207
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30599.30 210
USDC97.41 24297.40 23297.44 30098.94 23193.67 33195.17 36499.53 8194.03 34898.97 15499.10 14195.29 24499.34 36595.84 27299.73 14399.30 210
test_fmvsm_n_192099.33 2799.45 1898.99 13499.57 7997.73 17797.93 18699.83 2099.22 6099.93 699.30 9799.42 1099.96 1299.85 599.99 599.29 212
FMVSNet298.49 14398.40 13998.75 17198.90 24197.14 21498.61 10699.13 22498.59 11999.19 12299.28 9994.14 27599.82 16797.97 12799.80 10899.29 212
XVG-OURS-SEG-HR98.49 14398.28 15799.14 10799.49 11398.83 7696.54 29999.48 9697.32 22599.11 12998.61 24999.33 1399.30 37196.23 25098.38 33899.28 214
test1298.93 14398.58 30697.83 16498.66 29896.53 34895.51 23899.69 25799.13 28799.27 215
DSMNet-mixed97.42 24197.60 22296.87 32699.15 19591.46 36598.54 11499.12 22592.87 36497.58 29399.63 3396.21 20699.90 6595.74 27599.54 21699.27 215
N_pmnet97.63 22597.17 24698.99 13499.27 16297.86 16195.98 33093.41 39595.25 31999.47 7298.90 19195.63 23399.85 12296.91 19099.73 14399.27 215
ambc98.24 23798.82 25895.97 25698.62 10599.00 24999.27 10899.21 11496.99 16799.50 33696.55 23199.50 23299.26 218
LFMVS97.20 25896.72 27398.64 18098.72 27196.95 22298.93 7694.14 39299.74 998.78 18899.01 16684.45 36399.73 24197.44 15599.27 26399.25 219
FMVSNet596.01 30595.20 32398.41 21997.53 37496.10 24998.74 9099.50 8797.22 24198.03 26599.04 15469.80 40199.88 8497.27 16399.71 15599.25 219
BH-RMVSNet96.83 27996.58 28497.58 28598.47 31794.05 31396.67 29597.36 34196.70 26997.87 27397.98 30795.14 24899.44 35190.47 38498.58 33599.25 219
testf199.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7899.35 8698.86 2899.67 26997.81 13699.81 9899.24 222
APD_test299.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7899.35 8698.86 2899.67 26997.81 13699.81 9899.24 222
旧先验198.82 25897.45 19298.76 28898.34 28095.50 23999.01 30199.23 224
test22298.92 23796.93 22495.54 35198.78 28685.72 40296.86 33698.11 29794.43 26799.10 29299.23 224
XVG-ACMP-BASELINE98.56 13098.34 15099.22 9799.54 9698.59 9397.71 21699.46 10697.25 23298.98 15098.99 17097.54 13099.84 14095.88 26699.74 14099.23 224
FMVSNet397.50 23297.24 24398.29 23398.08 34695.83 26097.86 19898.91 26097.89 17298.95 15898.95 18387.06 34299.81 18197.77 13999.69 16399.23 224
无先验95.74 34698.74 29389.38 39399.73 24192.38 36099.22 228
tttt051795.64 31894.98 32797.64 28199.36 14593.81 32798.72 9590.47 40698.08 15898.67 20298.34 28073.88 39799.92 5197.77 13999.51 22599.20 229
pmmvs-eth3d98.47 14598.34 15098.86 15199.30 15797.76 17397.16 27099.28 18395.54 31099.42 8199.19 11897.27 15099.63 29197.89 13099.97 1999.20 229
MS-PatchMatch97.68 22197.75 20897.45 29998.23 33893.78 32897.29 25898.84 27696.10 29198.64 20698.65 24096.04 21399.36 36196.84 20199.14 28599.20 229
新几何198.91 14698.94 23197.76 17398.76 28887.58 39996.75 34198.10 29894.80 26099.78 21292.73 35499.00 30299.20 229
PHI-MVS98.29 17097.95 19499.34 7298.44 32299.16 4498.12 16099.38 13396.01 29698.06 26198.43 27097.80 10999.67 26995.69 27899.58 20499.20 229
Anonymous20240521197.90 20097.50 22799.08 11798.90 24198.25 11898.53 11596.16 36898.87 10399.11 12998.86 20190.40 32399.78 21297.36 15999.31 25699.19 234
CANet97.87 20597.76 20798.19 24097.75 35895.51 26996.76 29099.05 23697.74 18196.93 32798.21 29095.59 23599.89 7597.86 13599.93 4199.19 234
XVG-OURS98.53 13898.34 15099.11 11199.50 10698.82 7895.97 33199.50 8797.30 22799.05 14198.98 17499.35 1299.32 36895.72 27699.68 16899.18 236
WTY-MVS96.67 28596.27 29497.87 26098.81 26094.61 29996.77 28997.92 33094.94 32697.12 31897.74 32191.11 31799.82 16793.89 32698.15 35099.18 236
Vis-MVSNet (Re-imp)97.46 23697.16 24798.34 22799.55 9196.10 24998.94 7598.44 31098.32 13598.16 25198.62 24788.76 33299.73 24193.88 32799.79 11399.18 236
TinyColmap97.89 20297.98 19297.60 28398.86 24994.35 30596.21 31999.44 11497.45 21499.06 13698.88 19897.99 9799.28 37594.38 31499.58 20499.18 236
testdata98.09 24598.93 23395.40 27498.80 28390.08 39097.45 30698.37 27695.26 24599.70 25393.58 33598.95 30999.17 240
lupinMVS97.06 26796.86 26397.65 27998.88 24793.89 32595.48 35597.97 32893.53 35498.16 25197.58 33093.81 28399.91 6096.77 20699.57 20899.17 240
Patchmtry97.35 24596.97 25698.50 21097.31 38496.47 24198.18 15298.92 25898.95 9898.78 18899.37 8285.44 35799.85 12295.96 26499.83 9199.17 240
sss97.21 25796.93 25798.06 25098.83 25595.22 28096.75 29198.48 30994.49 33497.27 31597.90 31392.77 30099.80 18896.57 22499.32 25499.16 243
CSCG98.68 11298.50 12299.20 9899.45 12698.63 8898.56 11199.57 6397.87 17398.85 17998.04 30497.66 11799.84 14096.72 21299.81 9899.13 244
MVS_111021_LR98.30 16798.12 17898.83 15499.16 19198.03 14596.09 32799.30 17297.58 19498.10 25898.24 28798.25 7199.34 36596.69 21599.65 18099.12 245
miper_lstm_enhance97.18 26097.16 24797.25 30998.16 34192.85 34495.15 36699.31 16497.25 23298.74 19698.78 21790.07 32499.78 21297.19 16799.80 10899.11 246
testing393.51 35292.09 36297.75 27198.60 30194.40 30397.32 25595.26 38197.56 19896.79 34095.50 37953.57 41899.77 21895.26 28998.97 30799.08 247
原ACMM198.35 22698.90 24196.25 24798.83 28092.48 36896.07 36198.10 29895.39 24399.71 24992.61 35798.99 30499.08 247
QAPM97.31 24896.81 26998.82 15598.80 26397.49 18999.06 6199.19 20790.22 38897.69 28699.16 12896.91 17099.90 6590.89 38199.41 24299.07 249
PAPM_NR96.82 28196.32 29198.30 23299.07 20996.69 23497.48 24498.76 28895.81 30396.61 34696.47 36194.12 27899.17 38290.82 38297.78 36299.06 250
eth_miper_zixun_eth97.23 25697.25 24297.17 31298.00 34992.77 34694.71 37599.18 21197.27 23098.56 22098.74 22391.89 31199.69 25797.06 18099.81 9899.05 251
D2MVS97.84 21297.84 20497.83 26299.14 19694.74 29396.94 27998.88 26595.84 30298.89 17198.96 17994.40 26999.69 25797.55 14999.95 2999.05 251
c3_l97.36 24497.37 23597.31 30498.09 34593.25 33795.01 36999.16 21897.05 24898.77 19198.72 22692.88 29799.64 28896.93 18999.76 13699.05 251
PLCcopyleft94.65 1696.51 29095.73 30198.85 15298.75 26797.91 15796.42 30799.06 23390.94 38595.59 36797.38 34294.41 26899.59 30590.93 37998.04 35999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 7598.90 7198.91 14699.67 6097.82 16799.00 6899.44 11499.45 3699.51 6899.24 10898.20 7999.86 10995.92 26599.69 16399.04 255
CANet_DTU97.26 25297.06 25297.84 26197.57 36994.65 29896.19 32198.79 28497.23 23895.14 37998.24 28793.22 28999.84 14097.34 16099.84 8499.04 255
PM-MVS98.82 8598.72 8899.12 10999.64 6898.54 9997.98 18299.68 4397.62 18999.34 9699.18 12297.54 13099.77 21897.79 13899.74 14099.04 255
TSAR-MVS + GP.98.18 18297.98 19298.77 16898.71 27497.88 15996.32 31398.66 29896.33 28299.23 11998.51 25997.48 14099.40 35697.16 16999.46 23599.02 258
DIV-MVS_self_test97.02 27096.84 26597.58 28597.82 35694.03 31694.66 37899.16 21897.04 24998.63 20798.71 22788.69 33399.69 25797.00 18299.81 9899.01 259
mamv499.44 1599.39 2199.58 1699.30 15799.74 299.04 6499.81 2399.77 599.82 2199.57 4397.82 10799.98 499.53 2999.89 6999.01 259
GA-MVS95.86 31095.32 32097.49 29698.60 30194.15 31193.83 39597.93 32995.49 31296.68 34297.42 34083.21 37199.30 37196.22 25198.55 33699.01 259
OMC-MVS97.88 20497.49 22899.04 12898.89 24698.63 8896.94 27999.25 19295.02 32398.53 22598.51 25997.27 15099.47 34593.50 33899.51 22599.01 259
cl____97.02 27096.83 26697.58 28597.82 35694.04 31594.66 37899.16 21897.04 24998.63 20798.71 22788.68 33599.69 25797.00 18299.81 9899.00 263
pmmvs497.58 22997.28 24098.51 20698.84 25396.93 22495.40 35998.52 30793.60 35398.61 21198.65 24095.10 24999.60 30196.97 18799.79 11398.99 264
EPNet_dtu94.93 33294.78 33295.38 36993.58 41387.68 39696.78 28895.69 37997.35 22289.14 41098.09 30088.15 34099.49 33994.95 29599.30 25998.98 265
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 29295.77 29998.69 17799.48 12097.43 19497.84 20099.55 7481.42 40896.51 35098.58 25295.53 23699.67 26993.41 34099.58 20498.98 265
PVSNet_Blended96.88 27796.68 27697.47 29898.92 23793.77 32994.71 37599.43 12090.98 38497.62 28997.36 34496.82 17699.67 26994.73 29999.56 21198.98 265
APD_test198.83 8398.66 10099.34 7299.78 2399.47 798.42 13499.45 11098.28 14198.98 15099.19 11897.76 11199.58 31196.57 22499.55 21498.97 268
PAPR95.29 32494.47 33497.75 27197.50 37995.14 28394.89 37298.71 29691.39 38095.35 37795.48 38194.57 26599.14 38584.95 40097.37 37498.97 268
EGC-MVSNET85.24 37780.54 38099.34 7299.77 2699.20 3599.08 5799.29 18012.08 41520.84 41699.42 7697.55 12999.85 12297.08 17799.72 15098.96 270
thisisatest053095.27 32594.45 33597.74 27399.19 18194.37 30497.86 19890.20 40797.17 24398.22 24797.65 32673.53 39899.90 6596.90 19599.35 25098.95 271
mvs_anonymous97.83 21498.16 17496.87 32698.18 34091.89 36097.31 25698.90 26197.37 22098.83 18299.46 6996.28 20499.79 20198.90 6898.16 34998.95 271
baseline195.96 30895.44 31497.52 29398.51 31593.99 31998.39 13696.09 37098.21 14598.40 23997.76 32086.88 34399.63 29195.42 28689.27 41098.95 271
CLD-MVS97.49 23497.16 24798.48 21199.07 20997.03 21794.71 37599.21 20194.46 33698.06 26197.16 34897.57 12799.48 34294.46 30799.78 11898.95 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 19298.14 17797.64 28198.58 30695.19 28197.48 24499.23 19997.47 20797.90 27098.62 24797.04 16298.81 39697.55 14999.41 24298.94 275
DELS-MVS98.27 17198.20 16798.48 21198.86 24996.70 23395.60 35099.20 20397.73 18298.45 23198.71 22797.50 13699.82 16798.21 10999.59 19998.93 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 31395.39 31796.98 32096.77 39692.79 34594.40 38698.53 30694.59 33397.89 27198.17 29382.82 37599.24 37796.37 24299.03 29798.92 277
LS3D98.63 12198.38 14599.36 6397.25 38599.38 999.12 5699.32 15999.21 6298.44 23298.88 19897.31 14699.80 18896.58 22299.34 25298.92 277
CMPMVSbinary75.91 2396.29 29895.44 31498.84 15396.25 40598.69 8797.02 27499.12 22588.90 39597.83 27798.86 20189.51 32898.90 39491.92 36199.51 22598.92 277
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 11998.48 12799.11 11198.85 25298.51 10198.49 12499.83 2098.37 13099.69 3999.46 6998.21 7899.92 5194.13 32099.30 25998.91 280
mvsmamba97.57 23097.26 24198.51 20698.69 28396.73 23298.74 9097.25 34697.03 25197.88 27299.23 11290.95 31899.87 10196.61 22099.00 30298.91 280
DPM-MVS96.32 29795.59 30898.51 20698.76 26597.21 20794.54 38498.26 31791.94 37396.37 35497.25 34693.06 29499.43 35291.42 37198.74 31998.89 282
test_yl96.69 28396.29 29297.90 25798.28 33395.24 27897.29 25897.36 34198.21 14598.17 24997.86 31486.27 34799.55 31994.87 29698.32 33998.89 282
DCV-MVSNet96.69 28396.29 29297.90 25798.28 33395.24 27897.29 25897.36 34198.21 14598.17 24997.86 31486.27 34799.55 31994.87 29698.32 33998.89 282
CS-MVS-test99.13 4999.09 5699.26 8999.13 19898.97 6799.31 2699.88 1199.44 3898.16 25198.51 25998.64 4499.93 4298.91 6799.85 8098.88 285
iter_conf0599.03 5899.22 4198.46 21399.32 15296.55 24099.55 799.70 3799.75 699.82 2199.50 6096.17 20799.94 3599.27 4399.86 7898.88 285
UnsupCasMVSNet_bld97.30 24996.92 25998.45 21599.28 16096.78 23096.20 32099.27 18695.42 31498.28 24598.30 28493.16 29099.71 24994.99 29397.37 37498.87 287
Effi-MVS+98.02 19297.82 20598.62 18598.53 31397.19 20997.33 25499.68 4397.30 22796.68 34297.46 33898.56 5499.80 18896.63 21898.20 34598.86 288
test_040298.76 9598.71 9198.93 14399.56 8798.14 12998.45 13199.34 15299.28 5698.95 15898.91 18898.34 6999.79 20195.63 28099.91 5998.86 288
PatchmatchNetpermissive95.58 31995.67 30495.30 37097.34 38387.32 39797.65 22596.65 36195.30 31897.07 32198.69 23184.77 36099.75 23194.97 29498.64 33098.83 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 21697.72 21297.83 26298.81 26096.35 24497.30 25799.69 3894.61 33297.87 27398.05 30396.26 20598.32 40298.74 7998.18 34698.82 291
CL-MVSNet_self_test97.44 23997.22 24498.08 24898.57 30895.78 26294.30 38898.79 28496.58 27398.60 21398.19 29294.74 26399.64 28896.41 24098.84 31498.82 291
miper_ehance_all_eth97.06 26797.03 25397.16 31497.83 35593.06 33994.66 37899.09 23095.99 29798.69 20098.45 26892.73 30299.61 30096.79 20399.03 29798.82 291
MIMVSNet96.62 28896.25 29597.71 27699.04 21794.66 29799.16 5096.92 35797.23 23897.87 27399.10 14186.11 35199.65 28591.65 36699.21 27598.82 291
hse-mvs297.46 23697.07 25198.64 18098.73 26997.33 19897.45 24797.64 33899.11 7398.58 21797.98 30788.65 33699.79 20198.11 11597.39 37398.81 295
GSMVS98.81 295
sam_mvs184.74 36198.81 295
SCA96.41 29696.66 27995.67 36198.24 33688.35 39295.85 34296.88 35896.11 29097.67 28798.67 23593.10 29299.85 12294.16 31699.22 27298.81 295
Patchmatch-RL test97.26 25297.02 25497.99 25699.52 10195.53 26896.13 32599.71 3497.47 20799.27 10899.16 12884.30 36699.62 29497.89 13099.77 12498.81 295
AUN-MVS96.24 30195.45 31398.60 19098.70 27897.22 20697.38 25097.65 33695.95 29995.53 37497.96 31182.11 37899.79 20196.31 24697.44 37098.80 300
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14697.50 20498.28 24598.60 25097.64 12199.35 36493.86 32899.27 26398.79 301
tpm94.67 33494.34 33895.66 36297.68 36788.42 39197.88 19494.90 38294.46 33696.03 36398.56 25478.66 38999.79 20195.88 26695.01 40198.78 302
Patchmatch-test96.55 28996.34 29097.17 31298.35 32993.06 33998.40 13597.79 33197.33 22398.41 23598.67 23583.68 37099.69 25795.16 29199.31 25698.77 303
EC-MVSNet99.09 5499.05 6099.20 9899.28 16098.93 7299.24 4099.84 1899.08 8598.12 25698.37 27698.72 3899.90 6599.05 5999.77 12498.77 303
PMMVS96.51 29095.98 29698.09 24597.53 37495.84 25994.92 37198.84 27691.58 37696.05 36295.58 37695.68 23299.66 28095.59 28298.09 35398.76 305
test_method79.78 37879.50 38180.62 39480.21 41945.76 42270.82 41098.41 31331.08 41480.89 41497.71 32284.85 35997.37 40791.51 37080.03 41198.75 306
ab-mvs98.41 15098.36 14798.59 19199.19 18197.23 20499.32 2298.81 28197.66 18698.62 20999.40 8196.82 17699.80 18895.88 26699.51 22598.75 306
CHOSEN 280x42095.51 32295.47 31195.65 36398.25 33588.27 39393.25 39998.88 26593.53 35494.65 38597.15 34986.17 34999.93 4297.41 15799.93 4198.73 308
test_fmvsmvis_n_192099.26 3399.49 1298.54 20399.66 6296.97 21998.00 17999.85 1599.24 5999.92 899.50 6099.39 1199.95 2399.89 399.98 1298.71 309
MVS_Test98.18 18298.36 14797.67 27798.48 31694.73 29498.18 15299.02 24497.69 18498.04 26499.11 13897.22 15499.56 31698.57 9198.90 31398.71 309
PVSNet93.40 1795.67 31695.70 30295.57 36498.83 25588.57 39092.50 40297.72 33392.69 36696.49 35396.44 36293.72 28699.43 35293.61 33399.28 26298.71 309
alignmvs97.35 24596.88 26298.78 16598.54 31198.09 13497.71 21697.69 33599.20 6497.59 29295.90 37188.12 34199.55 31998.18 11198.96 30898.70 312
ADS-MVSNet295.43 32394.98 32796.76 33398.14 34291.74 36197.92 18997.76 33290.23 38696.51 35098.91 18885.61 35499.85 12292.88 34896.90 38398.69 313
ADS-MVSNet95.24 32694.93 33096.18 35098.14 34290.10 38597.92 18997.32 34490.23 38696.51 35098.91 18885.61 35499.74 23692.88 34896.90 38398.69 313
MDTV_nov1_ep13_2view74.92 41897.69 21890.06 39197.75 28385.78 35393.52 33698.69 313
MSDG97.71 21997.52 22698.28 23498.91 24096.82 22694.42 38599.37 13797.65 18798.37 24098.29 28597.40 14399.33 36794.09 32199.22 27298.68 316
mvsany_test197.60 22697.54 22497.77 26797.72 35995.35 27595.36 36097.13 34994.13 34599.71 3599.33 9297.93 10099.30 37197.60 14898.94 31098.67 317
CS-MVS99.13 4999.10 5599.24 9499.06 21399.15 4899.36 1899.88 1199.36 4898.21 24898.46 26798.68 4299.93 4299.03 6199.85 8098.64 318
Syy-MVS96.04 30495.56 31097.49 29697.10 38994.48 30196.18 32296.58 36395.65 30694.77 38292.29 40991.27 31699.36 36198.17 11398.05 35798.63 319
myMVS_eth3d91.92 37490.45 37696.30 34397.10 38990.90 37796.18 32296.58 36395.65 30694.77 38292.29 40953.88 41799.36 36189.59 38898.05 35798.63 319
balanced_conf0398.63 12198.72 8898.38 22298.66 29496.68 23598.90 7899.42 12398.99 9298.97 15499.19 11895.81 22999.85 12298.77 7799.77 12498.60 321
miper_enhance_ethall96.01 30595.74 30096.81 33096.41 40392.27 35793.69 39798.89 26491.14 38398.30 24197.35 34590.58 32199.58 31196.31 24699.03 29798.60 321
Effi-MVS+-dtu98.26 17397.90 20099.35 6998.02 34899.49 698.02 17599.16 21898.29 13997.64 28897.99 30696.44 19799.95 2396.66 21798.93 31198.60 321
new_pmnet96.99 27496.76 27197.67 27798.72 27194.89 28995.95 33598.20 32092.62 36798.55 22298.54 25594.88 25699.52 33093.96 32499.44 24098.59 324
MVSMamba_PlusPlus98.83 8398.98 6698.36 22599.32 15296.58 23898.90 7899.41 12599.75 698.72 19799.50 6096.17 20799.94 3599.27 4399.78 11898.57 325
bld_raw_conf0398.38 15898.39 14298.33 22898.69 28396.58 23898.90 7899.41 12597.57 19598.72 19799.20 11695.48 24099.86 10997.76 14399.78 11898.57 325
testing9193.32 35592.27 35996.47 33997.54 37291.25 37296.17 32496.76 36097.18 24293.65 39893.50 40265.11 41299.63 29193.04 34597.45 36998.53 327
EIA-MVS98.00 19497.74 20998.80 15998.72 27198.09 13498.05 17099.60 5397.39 21896.63 34495.55 37797.68 11599.80 18896.73 21199.27 26398.52 328
PatchMatch-RL97.24 25596.78 27098.61 18899.03 22097.83 16496.36 31099.06 23393.49 35697.36 31397.78 31895.75 23099.49 33993.44 33998.77 31898.52 328
sasdasda98.34 16098.26 16198.58 19298.46 31997.82 16798.96 7299.46 10699.19 6897.46 30495.46 38298.59 5099.46 34798.08 11898.71 32398.46 330
ET-MVSNet_ETH3D94.30 34093.21 35097.58 28598.14 34294.47 30294.78 37493.24 39794.72 33089.56 40895.87 37278.57 39199.81 18196.91 19097.11 38298.46 330
canonicalmvs98.34 16098.26 16198.58 19298.46 31997.82 16798.96 7299.46 10699.19 6897.46 30495.46 38298.59 5099.46 34798.08 11898.71 32398.46 330
UBG93.25 35792.32 35896.04 35597.72 35990.16 38495.92 33895.91 37496.03 29593.95 39593.04 40569.60 40299.52 33090.72 38397.98 36098.45 333
tt080598.69 10798.62 10698.90 14999.75 3399.30 1899.15 5296.97 35398.86 10498.87 17897.62 32998.63 4698.96 39099.41 3698.29 34298.45 333
TAPA-MVS96.21 1196.63 28795.95 29798.65 17998.93 23398.09 13496.93 28199.28 18383.58 40598.13 25597.78 31896.13 21099.40 35693.52 33699.29 26198.45 333
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net98.34 16098.28 15798.51 20698.47 31797.59 18598.96 7299.48 9699.18 7097.40 30995.50 37998.66 4399.50 33698.18 11198.71 32398.44 336
BH-untuned96.83 27996.75 27297.08 31598.74 26893.33 33696.71 29398.26 31796.72 26798.44 23297.37 34395.20 24699.47 34591.89 36297.43 37198.44 336
WB-MVSnew95.73 31595.57 30996.23 34896.70 39790.70 38196.07 32893.86 39395.60 30897.04 32395.45 38596.00 21699.55 31991.04 37798.31 34198.43 338
pmmvs395.03 33094.40 33696.93 32297.70 36492.53 35095.08 36797.71 33488.57 39697.71 28498.08 30179.39 38699.82 16796.19 25399.11 29198.43 338
DP-MVS Recon97.33 24796.92 25998.57 19599.09 20597.99 14796.79 28799.35 14693.18 35897.71 28498.07 30295.00 25299.31 36993.97 32399.13 28798.42 340
testing9993.04 36191.98 36796.23 34897.53 37490.70 38196.35 31195.94 37396.87 25993.41 39993.43 40363.84 41499.59 30593.24 34397.19 37998.40 341
ETVMVS92.60 36591.08 37497.18 31097.70 36493.65 33396.54 29995.70 37796.51 27494.68 38492.39 40861.80 41599.50 33686.97 39597.41 37298.40 341
Fast-Effi-MVS+-dtu98.27 17198.09 18098.81 15798.43 32398.11 13197.61 23099.50 8798.64 11397.39 31197.52 33498.12 8799.95 2396.90 19598.71 32398.38 343
LF4IMVS97.90 20097.69 21398.52 20599.17 18997.66 18097.19 26999.47 10496.31 28497.85 27698.20 29196.71 18699.52 33094.62 30299.72 15098.38 343
testing1193.08 36092.02 36496.26 34697.56 37090.83 37996.32 31395.70 37796.47 27892.66 40293.73 39964.36 41399.59 30593.77 33197.57 36598.37 345
Fast-Effi-MVS+97.67 22297.38 23498.57 19598.71 27497.43 19497.23 26299.45 11094.82 32996.13 35896.51 35898.52 5699.91 6096.19 25398.83 31598.37 345
test0.0.03 194.51 33593.69 34496.99 31996.05 40693.61 33494.97 37093.49 39496.17 28797.57 29594.88 39282.30 37699.01 38993.60 33494.17 40598.37 345
UWE-MVS92.38 36891.76 37194.21 37997.16 38784.65 40695.42 35888.45 41095.96 29896.17 35795.84 37466.36 40899.71 24991.87 36398.64 33098.28 348
FE-MVS95.66 31794.95 32997.77 26798.53 31395.28 27799.40 1596.09 37093.11 36097.96 26799.26 10379.10 38899.77 21892.40 35998.71 32398.27 349
baseline293.73 34992.83 35596.42 34097.70 36491.28 37196.84 28689.77 40893.96 35092.44 40395.93 37079.14 38799.77 21892.94 34696.76 38798.21 350
thisisatest051594.12 34493.16 35196.97 32198.60 30192.90 34393.77 39690.61 40594.10 34696.91 33095.87 37274.99 39699.80 18894.52 30599.12 29098.20 351
EPMVS93.72 35093.27 34995.09 37396.04 40787.76 39598.13 15785.01 41494.69 33196.92 32898.64 24378.47 39399.31 36995.04 29296.46 38998.20 351
dp93.47 35393.59 34693.13 39196.64 39881.62 41597.66 22396.42 36692.80 36596.11 35998.64 24378.55 39299.59 30593.31 34192.18 40998.16 353
CNLPA97.17 26196.71 27498.55 20098.56 30998.05 14496.33 31298.93 25596.91 25797.06 32297.39 34194.38 27099.45 34991.66 36599.18 28198.14 354
dmvs_re95.98 30795.39 31797.74 27398.86 24997.45 19298.37 13895.69 37997.95 16596.56 34795.95 36990.70 32097.68 40688.32 39196.13 39498.11 355
HY-MVS95.94 1395.90 30995.35 31997.55 29097.95 35094.79 29098.81 8996.94 35692.28 37195.17 37898.57 25389.90 32699.75 23191.20 37597.33 37898.10 356
CostFormer93.97 34693.78 34394.51 37697.53 37485.83 40297.98 18295.96 37289.29 39494.99 38198.63 24578.63 39099.62 29494.54 30496.50 38898.09 357
FA-MVS(test-final)96.99 27496.82 26797.50 29598.70 27894.78 29199.34 1996.99 35295.07 32298.48 22999.33 9288.41 33999.65 28596.13 25998.92 31298.07 358
AdaColmapbinary97.14 26396.71 27498.46 21398.34 33097.80 17196.95 27898.93 25595.58 30996.92 32897.66 32595.87 22799.53 32690.97 37899.14 28598.04 359
KD-MVS_2432*160092.87 36391.99 36595.51 36691.37 41589.27 38894.07 39098.14 32395.42 31497.25 31696.44 36267.86 40499.24 37791.28 37396.08 39598.02 360
miper_refine_blended92.87 36391.99 36595.51 36691.37 41589.27 38894.07 39098.14 32395.42 31497.25 31696.44 36267.86 40499.24 37791.28 37396.08 39598.02 360
TESTMET0.1,192.19 37291.77 37093.46 38796.48 40182.80 41294.05 39291.52 40494.45 33894.00 39394.88 39266.65 40799.56 31695.78 27498.11 35298.02 360
testing22291.96 37390.37 37796.72 33497.47 38092.59 34896.11 32694.76 38396.83 26192.90 40192.87 40657.92 41699.55 31986.93 39697.52 36698.00 363
PCF-MVS92.86 1894.36 33793.00 35498.42 21898.70 27897.56 18693.16 40099.11 22779.59 40997.55 29697.43 33992.19 30799.73 24179.85 40999.45 23797.97 364
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 26596.68 27698.32 22998.32 33197.16 21298.86 8599.37 13789.48 39296.29 35699.15 13296.56 19199.90 6592.90 34799.20 27697.89 365
Gipumacopyleft99.03 5899.16 4798.64 18099.94 298.51 10199.32 2299.75 3299.58 2898.60 21399.62 3498.22 7699.51 33597.70 14599.73 14397.89 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 37690.30 37993.70 38597.72 35984.34 41090.24 40697.42 33990.20 38993.79 39693.09 40490.90 31998.89 39586.57 39872.76 41397.87 367
test-LLR93.90 34793.85 34194.04 38096.53 39984.62 40794.05 39292.39 39996.17 28794.12 39095.07 38682.30 37699.67 26995.87 26998.18 34697.82 368
test-mter92.33 37091.76 37194.04 38096.53 39984.62 40794.05 39292.39 39994.00 34994.12 39095.07 38665.63 41199.67 26995.87 26998.18 34697.82 368
tpm293.09 35992.58 35794.62 37597.56 37086.53 39997.66 22395.79 37686.15 40194.07 39298.23 28975.95 39499.53 32690.91 38096.86 38697.81 370
CR-MVSNet96.28 29995.95 29797.28 30697.71 36294.22 30698.11 16198.92 25892.31 37096.91 33099.37 8285.44 35799.81 18197.39 15897.36 37697.81 370
RPMNet97.02 27096.93 25797.30 30597.71 36294.22 30698.11 16199.30 17299.37 4596.91 33099.34 9086.72 34499.87 10197.53 15297.36 37697.81 370
tpmrst95.07 32995.46 31293.91 38297.11 38884.36 40997.62 22896.96 35494.98 32496.35 35598.80 21385.46 35699.59 30595.60 28196.23 39297.79 373
PAPM91.88 37590.34 37896.51 33798.06 34792.56 34992.44 40397.17 34786.35 40090.38 40796.01 36786.61 34599.21 38070.65 41395.43 39997.75 374
FPMVS93.44 35492.23 36097.08 31599.25 16697.86 16195.61 34997.16 34892.90 36393.76 39798.65 24075.94 39595.66 41079.30 41097.49 36797.73 375
MAR-MVS96.47 29495.70 30298.79 16297.92 35299.12 5898.28 14398.60 30392.16 37295.54 37396.17 36694.77 26299.52 33089.62 38798.23 34397.72 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 19197.86 20398.56 19998.69 28398.07 14097.51 24299.50 8798.10 15797.50 30195.51 37898.41 6299.88 8496.27 24999.24 26897.71 377
thres600view794.45 33693.83 34296.29 34499.06 21391.53 36497.99 18194.24 39098.34 13297.44 30795.01 38879.84 38299.67 26984.33 40198.23 34397.66 378
thres40094.14 34393.44 34796.24 34798.93 23391.44 36697.60 23194.29 38897.94 16797.10 31994.31 39779.67 38499.62 29483.05 40398.08 35497.66 378
IB-MVS91.63 1992.24 37190.90 37596.27 34597.22 38691.24 37394.36 38793.33 39692.37 36992.24 40494.58 39666.20 41099.89 7593.16 34494.63 40397.66 378
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 33195.25 32194.33 37796.39 40485.87 40098.08 16596.83 35995.46 31395.51 37598.69 23185.91 35299.53 32694.16 31696.23 39297.58 381
cascas94.79 33394.33 33996.15 35496.02 40892.36 35592.34 40499.26 19185.34 40395.08 38094.96 39192.96 29698.53 40094.41 31398.59 33497.56 382
PatchT96.65 28696.35 28997.54 29197.40 38195.32 27697.98 18296.64 36299.33 5096.89 33499.42 7684.32 36599.81 18197.69 14797.49 36797.48 383
TR-MVS95.55 32095.12 32596.86 32997.54 37293.94 32096.49 30396.53 36594.36 34197.03 32596.61 35794.26 27499.16 38386.91 39796.31 39197.47 384
dmvs_testset92.94 36292.21 36195.13 37198.59 30490.99 37697.65 22592.09 40196.95 25494.00 39393.55 40192.34 30696.97 40972.20 41292.52 40797.43 385
JIA-IIPM95.52 32195.03 32697.00 31896.85 39494.03 31696.93 28195.82 37599.20 6494.63 38699.71 1783.09 37299.60 30194.42 31094.64 40297.36 386
BH-w/o95.13 32894.89 33195.86 35698.20 33991.31 36995.65 34897.37 34093.64 35296.52 34995.70 37593.04 29599.02 38788.10 39295.82 39797.24 387
tpm cat193.29 35693.13 35393.75 38497.39 38284.74 40597.39 24997.65 33683.39 40694.16 38998.41 27182.86 37499.39 35891.56 36995.35 40097.14 388
xiu_mvs_v1_base_debu97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
xiu_mvs_v1_base97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
xiu_mvs_v1_base_debi97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
PMVScopyleft91.26 2097.86 20697.94 19697.65 27999.71 4597.94 15698.52 11698.68 29798.99 9297.52 29999.35 8697.41 14298.18 40491.59 36899.67 17496.82 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 31495.60 30696.17 35197.53 37492.75 34798.07 16798.31 31691.22 38194.25 38896.68 35695.53 23699.03 38691.64 36797.18 38096.74 393
MVS-HIRNet94.32 33895.62 30590.42 39398.46 31975.36 41796.29 31589.13 40995.25 31995.38 37699.75 1192.88 29799.19 38194.07 32299.39 24496.72 394
OpenMVS_ROBcopyleft95.38 1495.84 31295.18 32497.81 26498.41 32797.15 21397.37 25198.62 30283.86 40498.65 20598.37 27694.29 27399.68 26688.41 39098.62 33396.60 395
thres100view90094.19 34193.67 34595.75 36099.06 21391.35 36898.03 17394.24 39098.33 13397.40 30994.98 39079.84 38299.62 29483.05 40398.08 35496.29 396
tfpn200view994.03 34593.44 34795.78 35998.93 23391.44 36697.60 23194.29 38897.94 16797.10 31994.31 39779.67 38499.62 29483.05 40398.08 35496.29 396
MVS93.19 35892.09 36296.50 33896.91 39294.03 31698.07 16798.06 32768.01 41194.56 38796.48 36095.96 22399.30 37183.84 40296.89 38596.17 398
gg-mvs-nofinetune92.37 36991.20 37395.85 35795.80 41092.38 35499.31 2681.84 41699.75 691.83 40599.74 1368.29 40399.02 38787.15 39497.12 38196.16 399
xiu_mvs_v2_base97.16 26297.49 22896.17 35198.54 31192.46 35195.45 35698.84 27697.25 23297.48 30396.49 35998.31 7099.90 6596.34 24598.68 32896.15 400
PS-MVSNAJ97.08 26697.39 23396.16 35398.56 30992.46 35195.24 36398.85 27597.25 23297.49 30295.99 36898.07 8899.90 6596.37 24298.67 32996.12 401
E-PMN94.17 34294.37 33793.58 38696.86 39385.71 40390.11 40897.07 35098.17 15297.82 27997.19 34784.62 36298.94 39189.77 38697.68 36496.09 402
EMVS93.83 34894.02 34093.23 39096.83 39584.96 40489.77 40996.32 36797.92 16997.43 30896.36 36586.17 34998.93 39287.68 39397.73 36395.81 403
MVEpermissive83.40 2292.50 36691.92 36894.25 37898.83 25591.64 36392.71 40183.52 41595.92 30086.46 41395.46 38295.20 24695.40 41180.51 40898.64 33095.73 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 35093.14 35295.46 36898.66 29491.29 37096.61 29894.63 38597.39 21896.83 33793.71 40079.88 38199.56 31682.40 40698.13 35195.54 405
API-MVS97.04 26996.91 26197.42 30197.88 35498.23 12398.18 15298.50 30897.57 19597.39 31196.75 35596.77 18099.15 38490.16 38599.02 30094.88 406
GG-mvs-BLEND94.76 37494.54 41292.13 35999.31 2680.47 41788.73 41191.01 41167.59 40698.16 40582.30 40794.53 40493.98 407
DeepMVS_CXcopyleft93.44 38898.24 33694.21 30894.34 38764.28 41291.34 40694.87 39489.45 33092.77 41377.54 41193.14 40693.35 408
tmp_tt78.77 37978.73 38278.90 39558.45 42074.76 41994.20 38978.26 41839.16 41386.71 41292.82 40780.50 38075.19 41586.16 39992.29 40886.74 409
dongtai76.24 38075.95 38377.12 39692.39 41467.91 42090.16 40759.44 42182.04 40789.42 40994.67 39549.68 41981.74 41448.06 41477.66 41281.72 410
kuosan69.30 38168.95 38470.34 39787.68 41865.00 42191.11 40559.90 42069.02 41074.46 41588.89 41248.58 42068.03 41628.61 41572.33 41477.99 411
wuyk23d96.06 30397.62 22191.38 39298.65 29898.57 9598.85 8696.95 35596.86 26099.90 1299.16 12899.18 1798.40 40189.23 38999.77 12477.18 412
test12317.04 38420.11 3877.82 39810.25 4224.91 42394.80 3734.47 4234.93 41610.00 41824.28 4159.69 4213.64 41710.14 41612.43 41614.92 413
testmvs17.12 38320.53 3866.87 39912.05 4214.20 42493.62 3986.73 4224.62 41710.41 41724.33 4148.28 4223.56 4189.69 41715.07 41512.86 414
test_blank0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
uanet_test0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
DCPMVS0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
cdsmvs_eth3d_5k24.66 38232.88 3850.00 4000.00 4230.00 4250.00 41199.10 2280.00 4180.00 41997.58 33099.21 160.00 4190.00 4180.00 4170.00 415
pcd_1.5k_mvsjas8.17 38510.90 3880.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 41898.07 880.00 4190.00 4180.00 4170.00 415
sosnet-low-res0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
sosnet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
uncertanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
Regformer0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
ab-mvs-re8.12 38610.83 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 41997.48 3360.00 4230.00 4190.00 4180.00 4170.00 415
uanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
WAC-MVS90.90 37791.37 372
FOURS199.73 3699.67 399.43 1199.54 7899.43 4099.26 112
test_one_060199.39 13799.20 3599.31 16498.49 12698.66 20499.02 15797.64 121
eth-test20.00 423
eth-test0.00 423
ZD-MVS99.01 22198.84 7599.07 23294.10 34698.05 26398.12 29696.36 20299.86 10992.70 35599.19 279
test_241102_ONE99.49 11399.17 4099.31 16497.98 16299.66 4498.90 19198.36 6599.48 342
9.1497.78 20699.07 20997.53 23999.32 15995.53 31198.54 22498.70 23097.58 12699.76 22494.32 31599.46 235
save fliter99.11 20097.97 15196.53 30199.02 24498.24 142
test072699.50 10699.21 2998.17 15599.35 14697.97 16399.26 11299.06 14597.61 124
test_part299.36 14599.10 6199.05 141
sam_mvs84.29 367
MTGPAbinary99.20 203
test_post197.59 23320.48 41783.07 37399.66 28094.16 316
test_post21.25 41683.86 36999.70 253
patchmatchnet-post98.77 21984.37 36499.85 122
MTMP97.93 18691.91 403
gm-plane-assit94.83 41181.97 41488.07 39894.99 38999.60 30191.76 364
TEST998.71 27498.08 13895.96 33399.03 24191.40 37995.85 36497.53 33296.52 19399.76 224
test_898.67 28998.01 14695.91 33999.02 24491.64 37495.79 36697.50 33596.47 19599.76 224
agg_prior98.68 28897.99 14799.01 24795.59 36799.77 218
test_prior497.97 15195.86 340
test_prior295.74 34696.48 27796.11 35997.63 32895.92 22694.16 31699.20 276
旧先验295.76 34588.56 39797.52 29999.66 28094.48 306
新几何295.93 336
原ACMM295.53 352
testdata299.79 20192.80 352
segment_acmp97.02 165
testdata195.44 35796.32 283
plane_prior799.19 18197.87 160
plane_prior698.99 22597.70 17994.90 253
plane_prior497.98 307
plane_prior397.78 17297.41 21697.79 280
plane_prior297.77 20898.20 149
plane_prior199.05 216
plane_prior97.65 18197.07 27396.72 26799.36 248
n20.00 424
nn0.00 424
door-mid99.57 63
test1198.87 267
door99.41 125
HQP5-MVS96.79 227
HQP-NCC98.67 28996.29 31596.05 29295.55 370
ACMP_Plane98.67 28996.29 31596.05 29295.55 370
BP-MVS92.82 350
HQP3-MVS99.04 23999.26 266
HQP2-MVS93.84 281
NP-MVS98.84 25397.39 19696.84 353
MDTV_nov1_ep1395.22 32297.06 39183.20 41197.74 21396.16 36894.37 34096.99 32698.83 20783.95 36899.53 32693.90 32597.95 361
ACMMP++_ref99.77 124
ACMMP++99.68 168
Test By Simon96.52 193