This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
mvs5depth99.30 2999.59 998.44 22599.65 6495.35 28299.82 399.94 299.83 499.42 8699.94 298.13 9499.96 1299.63 2799.96 26100.00 1
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 4099.98 299.75 1399.80 199.97 599.82 899.99 599.99 2
fmvsm_s_conf0.1_n_a99.17 4699.30 3898.80 16399.75 3396.59 24297.97 19299.86 1698.22 15699.88 1799.71 1998.59 5199.84 14999.73 2199.98 1299.98 3
fmvsm_s_conf0.1_n_299.20 4499.38 2498.65 18699.69 5496.08 25997.49 25399.90 1199.53 3199.88 1799.64 3498.51 5899.90 6899.83 799.98 1299.97 4
mmtdpeth99.30 2999.42 2098.92 14999.58 7796.89 22999.48 1099.92 799.92 298.26 25599.80 998.33 7399.91 6299.56 3299.95 3399.97 4
fmvsm_s_conf0.1_n99.16 4999.33 3198.64 18899.71 4596.10 25497.87 20499.85 1898.56 13499.90 1299.68 2298.69 4299.85 13199.72 2399.98 1299.97 4
test_fmvs399.12 5799.41 2198.25 24399.76 2995.07 29499.05 6499.94 297.78 19299.82 2499.84 398.56 5599.71 25899.96 199.96 2699.97 4
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5499.97 399.66 2999.71 399.96 1299.79 1499.99 599.96 8
test_f98.67 12298.87 7998.05 26099.72 4295.59 27198.51 12399.81 2696.30 29799.78 3099.82 596.14 21698.63 40999.82 899.93 4699.95 9
test_fmvs298.70 11198.97 7197.89 26799.54 9994.05 32198.55 11499.92 796.78 27599.72 3599.78 1096.60 19899.67 27899.91 299.90 7099.94 10
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 5299.48 3499.92 899.71 1998.07 9699.96 1299.53 34100.00 199.93 11
test_vis3_rt99.14 5199.17 4999.07 12299.78 2398.38 11198.92 7999.94 297.80 19099.91 1199.67 2797.15 16598.91 40399.76 1799.56 21999.92 12
fmvsm_s_conf0.5_n_299.14 5199.31 3598.63 19299.49 11696.08 25997.38 26099.81 2699.48 3499.84 2299.57 4698.46 6299.89 8099.82 899.97 2099.91 13
MVStest195.86 32095.60 31696.63 34495.87 42091.70 37197.93 19398.94 26098.03 17199.56 5699.66 2971.83 40998.26 41399.35 4399.24 27799.91 13
fmvsm_s_conf0.5_n_a99.10 5999.20 4798.78 16999.55 9496.59 24297.79 21399.82 2598.21 15799.81 2799.53 6098.46 6299.84 14999.70 2499.97 2099.90 15
fmvsm_s_conf0.5_n99.09 6099.26 4398.61 19799.55 9496.09 25797.74 22199.81 2698.55 13599.85 2199.55 5498.60 5099.84 14999.69 2699.98 1299.89 16
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 7098.10 13697.68 22799.84 2199.29 5999.92 899.57 4699.60 599.96 1299.74 2099.98 1299.89 16
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7699.11 7999.70 3999.73 1799.00 2299.97 599.26 4999.98 1299.89 16
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3999.27 6199.90 1299.74 1599.68 499.97 599.55 3399.99 599.88 19
ttmdpeth97.91 20598.02 19497.58 29498.69 29294.10 32098.13 16298.90 26997.95 17797.32 32599.58 4495.95 23198.75 40796.41 25099.22 28199.87 20
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 5199.09 8999.89 1599.68 2299.53 799.97 599.50 3799.99 599.87 20
EU-MVSNet97.66 23098.50 12995.13 38199.63 7485.84 41198.35 14298.21 32898.23 15599.54 6099.46 7395.02 25799.68 27598.24 11499.87 7999.87 20
fmvsm_s_conf0.5_n_399.22 4199.37 2698.78 16999.46 12796.58 24497.65 23399.72 3799.47 3799.86 1999.50 6498.94 2599.89 8099.75 1999.97 2099.86 23
UA-Net99.47 1399.40 2299.70 299.49 11699.29 2399.80 499.72 3799.82 599.04 15099.81 698.05 9999.96 1298.85 7799.99 599.86 23
MM98.22 18397.99 19798.91 15098.66 30296.97 22297.89 20094.44 39799.54 3098.95 16599.14 14493.50 29399.92 5399.80 1399.96 2699.85 25
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1399.98 199.99 199.96 199.77 2100.00 199.81 12100.00 199.85 25
fmvsm_l_conf0.5_n_a99.19 4599.27 4198.94 14499.65 6497.05 21897.80 21299.76 3398.70 12099.78 3099.11 14798.79 3599.95 2499.85 599.96 2699.83 27
fmvsm_l_conf0.5_n99.21 4299.28 4099.02 13499.64 7097.28 20497.82 20999.76 3398.73 11799.82 2499.09 15398.81 3399.95 2499.86 499.96 2699.83 27
mvsany_test398.87 8598.92 7498.74 18099.38 14396.94 22698.58 11199.10 23696.49 28799.96 499.81 698.18 8799.45 35998.97 6999.79 11899.83 27
SSC-MVS98.71 10798.74 9198.62 19499.72 4296.08 25998.74 9298.64 30999.74 1099.67 4599.24 11894.57 27199.95 2499.11 5899.24 27799.82 30
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4398.93 10799.65 4999.72 1898.93 2799.95 2499.11 58100.00 199.82 30
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 45100.00 199.82 30
PS-CasMVS99.40 2299.33 3199.62 999.71 4599.10 6499.29 3399.53 8799.53 3199.46 7899.41 8498.23 8099.95 2498.89 7599.95 3399.81 33
FC-MVSNet-test99.27 3399.25 4499.34 7599.77 2698.37 11399.30 3299.57 6999.61 2699.40 9199.50 6497.12 16699.85 13199.02 6699.94 4199.80 34
test_cas_vis1_n_192098.33 16998.68 10497.27 31699.69 5492.29 36598.03 17899.85 1897.62 20199.96 499.62 3793.98 28699.74 24599.52 3699.86 8399.79 35
test_vis1_n_192098.40 15998.92 7496.81 33999.74 3590.76 39098.15 16099.91 998.33 14499.89 1599.55 5495.07 25699.88 9499.76 1799.93 4699.79 35
CP-MVSNet99.21 4299.09 6099.56 2599.65 6498.96 7499.13 5599.34 16099.42 4599.33 10399.26 11397.01 17499.94 3798.74 8699.93 4699.79 35
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 6299.90 399.86 1999.78 1099.58 699.95 2499.00 6799.95 3399.78 38
CVMVSNet96.25 30997.21 25293.38 40099.10 20980.56 42797.20 27798.19 33196.94 26699.00 15599.02 16689.50 33799.80 19796.36 25499.59 20799.78 38
reproduce_monomvs95.00 34295.25 33194.22 38997.51 38883.34 42197.86 20598.44 31898.51 13699.29 11299.30 10467.68 41699.56 32598.89 7599.81 10299.77 40
Anonymous2023121199.27 3399.27 4199.26 9299.29 16498.18 12899.49 999.51 9199.70 1299.80 2899.68 2296.84 18199.83 16699.21 5499.91 6499.77 40
PEN-MVS99.41 2199.34 3099.62 999.73 3699.14 5699.29 3399.54 8499.62 2499.56 5699.42 8098.16 9199.96 1298.78 8199.93 4699.77 40
WR-MVS_H99.33 2799.22 4699.65 899.71 4599.24 2999.32 2399.55 8099.46 3999.50 7299.34 9697.30 15599.93 4498.90 7399.93 4699.77 40
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 3199.63 2199.78 3099.67 2799.48 999.81 19099.30 4699.97 2099.77 40
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS98.52 14898.55 12298.43 22699.65 6495.59 27198.52 11898.77 29599.65 1899.52 6699.00 17894.34 27799.93 4498.65 9398.83 32499.76 45
patch_mono-298.51 14998.63 11198.17 24999.38 14394.78 29997.36 26399.69 4398.16 16798.49 23699.29 10697.06 16999.97 598.29 11399.91 6499.76 45
nrg03099.40 2299.35 2899.54 3099.58 7799.13 5998.98 7299.48 10299.68 1599.46 7899.26 11398.62 4899.73 25099.17 5799.92 5799.76 45
FIs99.14 5199.09 6099.29 8699.70 5298.28 11999.13 5599.52 9099.48 3499.24 12499.41 8496.79 18799.82 17698.69 9199.88 7699.76 45
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5899.66 1799.68 4399.66 2998.44 6499.95 2499.73 2199.96 2699.75 49
APDe-MVScopyleft98.99 6998.79 8899.60 1499.21 18199.15 5198.87 8499.48 10297.57 20799.35 10099.24 11897.83 11299.89 8097.88 14099.70 16899.75 49
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.43 1999.35 2899.66 799.71 4599.30 2199.31 2799.51 9199.64 1999.56 5699.46 7398.23 8099.97 598.78 8199.93 4699.72 51
MSC_two_6792asdad99.32 8298.43 33198.37 11398.86 28099.89 8097.14 18299.60 20399.71 52
No_MVS99.32 8298.43 33198.37 11398.86 28099.89 8097.14 18299.60 20399.71 52
PMMVS298.07 19698.08 18998.04 26199.41 14094.59 30894.59 39399.40 13797.50 21598.82 19298.83 21696.83 18399.84 14997.50 16499.81 10299.71 52
Baseline_NR-MVSNet98.98 7298.86 8299.36 6699.82 1998.55 9997.47 25699.57 6999.37 4999.21 12799.61 4096.76 19099.83 16698.06 12799.83 9599.71 52
XXY-MVS99.14 5199.15 5699.10 11699.76 2997.74 17898.85 8799.62 5598.48 13899.37 9699.49 7098.75 3799.86 11998.20 11799.80 11399.71 52
test_0728_THIRD98.17 16499.08 14199.02 16697.89 10999.88 9497.07 18899.71 16199.70 57
MSP-MVS98.40 15998.00 19699.61 1299.57 8299.25 2898.57 11299.35 15497.55 21199.31 11197.71 33394.61 27099.88 9496.14 26799.19 28899.70 57
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_298.78 9899.11 5797.78 27499.56 9093.67 34099.06 6299.86 1699.50 3399.66 4699.26 11397.21 16399.99 298.00 13299.91 6499.68 59
test_0728_SECOND99.60 1499.50 10999.23 3098.02 18099.32 16799.88 9496.99 19499.63 19399.68 59
OurMVSNet-221017-099.37 2599.31 3599.53 3799.91 398.98 6999.63 799.58 6299.44 4299.78 3099.76 1296.39 20699.92 5399.44 4099.92 5799.68 59
CHOSEN 1792x268897.49 24297.14 25798.54 21299.68 5796.09 25796.50 31399.62 5591.58 38798.84 18898.97 18592.36 31199.88 9496.76 21799.95 3399.67 62
reproduce_model99.15 5098.97 7199.67 499.33 15799.44 1098.15 16099.47 11099.12 7899.52 6699.32 10298.31 7499.90 6897.78 14699.73 14899.66 63
IU-MVS99.49 11699.15 5198.87 27592.97 37299.41 8896.76 21799.62 19699.66 63
test_241102_TWO99.30 18098.03 17199.26 11999.02 16697.51 14399.88 9496.91 20099.60 20399.66 63
DPE-MVScopyleft98.59 13598.26 16799.57 2099.27 16799.15 5197.01 28699.39 13997.67 19799.44 8298.99 17997.53 14099.89 8095.40 29799.68 17699.66 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6999.39 4799.75 3499.62 3799.17 1899.83 16699.06 6299.62 19699.66 63
EI-MVSNet-UG-set98.69 11498.71 9898.62 19499.10 20996.37 24897.23 27398.87 27599.20 6899.19 12998.99 17997.30 15599.85 13198.77 8499.79 11899.65 68
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3399.64 1999.84 2299.83 499.50 899.87 11199.36 4299.92 5799.64 69
EI-MVSNet-Vis-set98.68 11998.70 10198.63 19299.09 21296.40 24797.23 27398.86 28099.20 6899.18 13398.97 18597.29 15799.85 13198.72 8899.78 12399.64 69
ACMH96.65 799.25 3699.24 4599.26 9299.72 4298.38 11199.07 6199.55 8098.30 14899.65 4999.45 7799.22 1599.76 23398.44 10599.77 12999.64 69
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 7898.81 8799.28 8799.21 18198.45 10898.46 13199.33 16599.63 2199.48 7399.15 14197.23 16199.75 24097.17 17899.66 18799.63 72
reproduce-ours99.09 6098.90 7699.67 499.27 16799.49 698.00 18499.42 13099.05 9499.48 7399.27 10998.29 7699.89 8097.61 15699.71 16199.62 73
our_new_method99.09 6098.90 7699.67 499.27 16799.49 698.00 18499.42 13099.05 9499.48 7399.27 10998.29 7699.89 8097.61 15699.71 16199.62 73
test_fmvs1_n98.09 19498.28 16397.52 30299.68 5793.47 34498.63 10599.93 595.41 32899.68 4399.64 3491.88 31899.48 35299.82 899.87 7999.62 73
test111196.49 30296.82 27695.52 37499.42 13887.08 40899.22 4287.14 42299.11 7999.46 7899.58 4488.69 34199.86 11998.80 7999.95 3399.62 73
VPA-MVSNet99.30 2999.30 3899.28 8799.49 11698.36 11699.00 6999.45 11799.63 2199.52 6699.44 7898.25 7899.88 9499.09 6099.84 8899.62 73
LPG-MVS_test98.71 10798.46 13899.47 5699.57 8298.97 7098.23 15099.48 10296.60 28299.10 13999.06 15498.71 4099.83 16695.58 29399.78 12399.62 73
LGP-MVS_train99.47 5699.57 8298.97 7099.48 10296.60 28299.10 13999.06 15498.71 4099.83 16695.58 29399.78 12399.62 73
Test_1112_low_res96.99 28396.55 29498.31 23999.35 15495.47 27895.84 35499.53 8791.51 38996.80 35098.48 27791.36 32299.83 16696.58 23299.53 22999.62 73
v1098.97 7399.11 5798.55 20999.44 13296.21 25398.90 8099.55 8098.73 11799.48 7399.60 4296.63 19799.83 16699.70 2499.99 599.61 81
test_vis1_n98.31 17298.50 12997.73 28399.76 2994.17 31898.68 10299.91 996.31 29599.79 2999.57 4692.85 30599.42 36499.79 1499.84 8899.60 82
v899.01 6799.16 5198.57 20499.47 12696.31 25198.90 8099.47 11099.03 9799.52 6699.57 4696.93 17799.81 19099.60 2899.98 1299.60 82
EI-MVSNet98.40 15998.51 12798.04 26199.10 20994.73 30297.20 27798.87 27598.97 10399.06 14399.02 16696.00 22399.80 19798.58 9699.82 9899.60 82
SixPastTwentyTwo98.75 10398.62 11399.16 10799.83 1897.96 15799.28 3798.20 32999.37 4999.70 3999.65 3392.65 30999.93 4499.04 6499.84 8899.60 82
IterMVS-LS98.55 14198.70 10198.09 25399.48 12494.73 30297.22 27699.39 13998.97 10399.38 9499.31 10396.00 22399.93 4498.58 9699.97 2099.60 82
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 26896.60 29298.96 14199.62 7697.28 20495.17 37599.50 9394.21 35499.01 15498.32 29486.61 35399.99 297.10 18699.84 8899.60 82
ACMMP_NAP98.75 10398.48 13499.57 2099.58 7799.29 2397.82 20999.25 20096.94 26698.78 19599.12 14698.02 10099.84 14997.13 18499.67 18299.59 88
VPNet98.87 8598.83 8499.01 13599.70 5297.62 18798.43 13499.35 15499.47 3799.28 11399.05 16196.72 19399.82 17698.09 12499.36 25799.59 88
WR-MVS98.40 15998.19 17599.03 13299.00 23197.65 18496.85 29698.94 26098.57 13198.89 17898.50 27495.60 24199.85 13197.54 16199.85 8499.59 88
HPM-MVScopyleft98.79 9698.53 12599.59 1899.65 6499.29 2399.16 5199.43 12796.74 27798.61 21898.38 28698.62 4899.87 11196.47 24699.67 18299.59 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 6999.01 6698.94 14499.50 10997.47 19398.04 17799.59 6098.15 16899.40 9199.36 9198.58 5499.76 23398.78 8199.68 17699.59 88
Vis-MVSNetpermissive99.34 2699.36 2799.27 9099.73 3698.26 12099.17 5099.78 3199.11 7999.27 11599.48 7198.82 3299.95 2498.94 7199.93 4699.59 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 13698.23 17199.60 1499.69 5499.35 1697.16 28199.38 14194.87 33998.97 16198.99 17998.01 10199.88 9497.29 17299.70 16899.58 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 11498.40 14699.54 3099.53 10299.17 4398.52 11899.31 17297.46 22398.44 24098.51 27097.83 11299.88 9496.46 24799.58 21299.58 94
ACMMPR98.70 11198.42 14499.54 3099.52 10499.14 5698.52 11899.31 17297.47 21898.56 22798.54 26597.75 12099.88 9496.57 23499.59 20799.58 94
PGM-MVS98.66 12398.37 15299.55 2799.53 10299.18 4298.23 15099.49 10097.01 26398.69 20698.88 20798.00 10299.89 8095.87 27999.59 20799.58 94
SteuartSystems-ACMMP98.79 9698.54 12499.54 3099.73 3699.16 4798.23 15099.31 17297.92 18198.90 17698.90 20098.00 10299.88 9496.15 26699.72 15699.58 94
Skip Steuart: Steuart Systems R&D Blog.
SDMVSNet99.23 4099.32 3398.96 14199.68 5797.35 20098.84 8999.48 10299.69 1399.63 5299.68 2299.03 2199.96 1297.97 13499.92 5799.57 99
sd_testset99.28 3299.31 3599.19 10399.68 5798.06 14699.41 1499.30 18099.69 1399.63 5299.68 2299.25 1499.96 1297.25 17599.92 5799.57 99
TranMVSNet+NR-MVSNet99.17 4699.07 6399.46 5899.37 14998.87 7798.39 13899.42 13099.42 4599.36 9899.06 15498.38 6799.95 2498.34 11099.90 7099.57 99
mPP-MVS98.64 12698.34 15699.54 3099.54 9999.17 4398.63 10599.24 20597.47 21898.09 26998.68 24297.62 13199.89 8096.22 26199.62 19699.57 99
PVSNet_Blended_VisFu98.17 19098.15 18198.22 24699.73 3695.15 29097.36 26399.68 4894.45 34998.99 15699.27 10996.87 18099.94 3797.13 18499.91 6499.57 99
1112_ss97.29 26096.86 27298.58 20199.34 15696.32 25096.75 30299.58 6293.14 37096.89 34597.48 34792.11 31599.86 11996.91 20099.54 22599.57 99
MTAPA98.88 8498.64 11099.61 1299.67 6199.36 1598.43 13499.20 21198.83 11698.89 17898.90 20096.98 17699.92 5397.16 17999.70 16899.56 105
XVS98.72 10698.45 13999.53 3799.46 12799.21 3298.65 10399.34 16098.62 12597.54 30898.63 25497.50 14499.83 16696.79 21399.53 22999.56 105
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5499.30 5899.65 4999.60 4299.16 2099.82 17699.07 6199.83 9599.56 105
X-MVStestdata94.32 34992.59 36799.53 3799.46 12799.21 3298.65 10399.34 16098.62 12597.54 30845.85 42497.50 14499.83 16696.79 21399.53 22999.56 105
HPM-MVS_fast99.01 6798.82 8599.57 2099.71 4599.35 1699.00 6999.50 9397.33 23498.94 17298.86 21098.75 3799.82 17697.53 16299.71 16199.56 105
K. test v398.00 20097.66 22499.03 13299.79 2297.56 18999.19 4992.47 40999.62 2499.52 6699.66 2989.61 33599.96 1299.25 5199.81 10299.56 105
CP-MVS98.70 11198.42 14499.52 4299.36 15099.12 6198.72 9799.36 14997.54 21298.30 24998.40 28397.86 11199.89 8096.53 24399.72 15699.56 105
ZNCC-MVS98.68 11998.40 14699.54 3099.57 8299.21 3298.46 13199.29 18897.28 24098.11 26798.39 28498.00 10299.87 11196.86 21099.64 19099.55 112
v119298.60 13398.66 10798.41 22899.27 16795.88 26597.52 24999.36 14997.41 22799.33 10399.20 12696.37 20999.82 17699.57 3099.92 5799.55 112
v124098.55 14198.62 11398.32 23799.22 17995.58 27397.51 25199.45 11797.16 25599.45 8199.24 11896.12 21899.85 13199.60 2899.88 7699.55 112
UGNet98.53 14598.45 13998.79 16697.94 36096.96 22499.08 5898.54 31399.10 8696.82 34999.47 7296.55 20099.84 14998.56 10199.94 4199.55 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WBMVS95.18 33794.78 34396.37 35097.68 37689.74 39795.80 35598.73 30297.54 21298.30 24998.44 28070.06 41099.82 17696.62 22999.87 7999.54 116
test250692.39 37891.89 38093.89 39499.38 14382.28 42499.32 2366.03 43099.08 9198.77 19899.57 4666.26 42099.84 14998.71 8999.95 3399.54 116
ECVR-MVScopyleft96.42 30496.61 29095.85 36699.38 14388.18 40499.22 4286.00 42499.08 9199.36 9899.57 4688.47 34699.82 17698.52 10299.95 3399.54 116
v14419298.54 14398.57 12198.45 22399.21 18195.98 26297.63 23699.36 14997.15 25799.32 10999.18 13195.84 23599.84 14999.50 3799.91 6499.54 116
v192192098.54 14398.60 11898.38 23199.20 18595.76 27097.56 24599.36 14997.23 24999.38 9499.17 13596.02 22199.84 14999.57 3099.90 7099.54 116
MP-MVScopyleft98.46 15398.09 18699.54 3099.57 8299.22 3198.50 12599.19 21597.61 20497.58 30498.66 24797.40 15199.88 9494.72 31299.60 20399.54 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2499.32 3399.55 2799.86 1499.19 4199.41 1499.59 6099.59 2799.71 3799.57 4697.12 16699.90 6899.21 5499.87 7999.54 116
ACMMPcopyleft98.75 10398.50 12999.52 4299.56 9099.16 4798.87 8499.37 14597.16 25598.82 19299.01 17597.71 12299.87 11196.29 25899.69 17199.54 116
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 15998.03 19399.51 4699.16 19899.21 3298.05 17599.22 20894.16 35598.98 15799.10 15097.52 14299.79 21096.45 24899.64 19099.53 124
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 10798.44 14199.51 4699.49 11699.16 4798.52 11899.31 17297.47 21898.58 22498.50 27497.97 10699.85 13196.57 23499.59 20799.53 124
UniMVSNet_NR-MVSNet98.86 8898.68 10499.40 6499.17 19698.74 8497.68 22799.40 13799.14 7799.06 14398.59 26196.71 19499.93 4498.57 9899.77 12999.53 124
GST-MVS98.61 13298.30 16199.52 4299.51 10699.20 3898.26 14899.25 20097.44 22698.67 20998.39 28497.68 12399.85 13196.00 27199.51 23499.52 127
MVS_030497.44 24797.01 26398.72 18196.42 41396.74 23797.20 27791.97 41398.46 13998.30 24998.79 22492.74 30799.91 6299.30 4699.94 4199.52 127
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3999.38 4899.53 6499.61 4098.64 4599.80 19798.24 11499.84 8899.52 127
v114498.60 13398.66 10798.41 22899.36 15095.90 26497.58 24399.34 16097.51 21499.27 11599.15 14196.34 21199.80 19799.47 3999.93 4699.51 130
v2v48298.56 13798.62 11398.37 23399.42 13895.81 26897.58 24399.16 22697.90 18399.28 11399.01 17595.98 22899.79 21099.33 4499.90 7099.51 130
CPTT-MVS97.84 21997.36 24399.27 9099.31 15998.46 10798.29 14599.27 19494.90 33897.83 28898.37 28794.90 25999.84 14993.85 34099.54 22599.51 130
DU-MVS98.82 9298.63 11199.39 6599.16 19898.74 8497.54 24799.25 20098.84 11599.06 14398.76 23096.76 19099.93 4498.57 9899.77 12999.50 133
NR-MVSNet98.95 7698.82 8599.36 6699.16 19898.72 8999.22 4299.20 21199.10 8699.72 3598.76 23096.38 20899.86 11998.00 13299.82 9899.50 133
casdiffmvs_mvgpermissive99.12 5799.16 5198.99 13799.43 13797.73 18098.00 18499.62 5599.22 6499.55 5999.22 12398.93 2799.75 24098.66 9299.81 10299.50 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 6499.00 6799.33 8099.71 4598.83 7998.60 10999.58 6299.11 7999.53 6499.18 13198.81 3399.67 27896.71 22499.77 12999.50 133
DVP-MVS++98.90 8298.70 10199.51 4698.43 33199.15 5199.43 1299.32 16798.17 16499.26 11999.02 16698.18 8799.88 9497.07 18899.45 24699.49 137
PC_three_145293.27 36899.40 9198.54 26598.22 8397.00 41995.17 30099.45 24699.49 137
GeoE99.05 6598.99 6999.25 9599.44 13298.35 11798.73 9699.56 7698.42 14098.91 17598.81 22198.94 2599.91 6298.35 10999.73 14899.49 137
h-mvs3397.77 22297.33 24699.10 11699.21 18197.84 16698.35 14298.57 31299.11 7998.58 22499.02 16688.65 34499.96 1298.11 12296.34 40099.49 137
IterMVS-SCA-FT97.85 21898.18 17696.87 33599.27 16791.16 38495.53 36399.25 20099.10 8699.41 8899.35 9293.10 29899.96 1298.65 9399.94 4199.49 137
new-patchmatchnet98.35 16598.74 9197.18 31999.24 17492.23 36796.42 31899.48 10298.30 14899.69 4199.53 6097.44 14999.82 17698.84 7899.77 12999.49 137
APD-MVScopyleft98.10 19297.67 22199.42 6099.11 20798.93 7597.76 21999.28 19194.97 33698.72 20498.77 22897.04 17099.85 13193.79 34199.54 22599.49 137
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 17398.04 19299.07 12299.56 9097.83 16799.29 3398.07 33599.03 9798.59 22299.13 14592.16 31499.90 6896.87 20899.68 17699.49 137
DeepC-MVS97.60 498.97 7398.93 7399.10 11699.35 15497.98 15398.01 18399.46 11397.56 20999.54 6099.50 6498.97 2399.84 14998.06 12799.92 5799.49 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 8098.73 9399.48 5399.55 9499.14 5698.07 17299.37 14597.62 20199.04 15098.96 18898.84 3199.79 21097.43 16699.65 18899.49 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 10198.52 12699.52 4299.50 10999.21 3298.02 18098.84 28497.97 17599.08 14199.02 16697.61 13299.88 9496.99 19499.63 19399.48 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 10798.43 14299.57 2099.18 19599.35 1698.36 14199.29 18898.29 15198.88 18198.85 21397.53 14099.87 11196.14 26799.31 26599.48 147
TSAR-MVS + MP.98.63 12898.49 13399.06 12899.64 7097.90 16198.51 12398.94 26096.96 26499.24 12498.89 20697.83 11299.81 19096.88 20799.49 24299.48 147
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 18597.95 20199.01 13599.58 7797.74 17899.01 6797.29 35599.67 1698.97 16199.50 6490.45 33099.80 19797.88 14099.20 28599.48 147
IterMVS97.73 22498.11 18596.57 34599.24 17490.28 39395.52 36599.21 20998.86 11299.33 10399.33 9893.11 29799.94 3798.49 10399.94 4199.48 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 18797.90 20799.08 12099.57 8297.97 15499.31 2798.32 32499.01 9998.98 15799.03 16591.59 32099.79 21095.49 29599.80 11399.48 147
ACMP95.32 1598.41 15798.09 18699.36 6699.51 10698.79 8297.68 22799.38 14195.76 31598.81 19498.82 21998.36 6899.82 17694.75 30999.77 12999.48 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 20097.63 22799.10 11699.24 17498.17 12996.89 29598.73 30295.66 31697.92 27997.70 33597.17 16499.66 28996.18 26599.23 28099.47 154
3Dnovator+97.89 398.69 11498.51 12799.24 9798.81 26998.40 10999.02 6699.19 21598.99 10098.07 27099.28 10797.11 16899.84 14996.84 21199.32 26399.47 154
HPM-MVS++copyleft98.10 19297.64 22699.48 5399.09 21299.13 5997.52 24998.75 29997.46 22396.90 34497.83 32896.01 22299.84 14995.82 28399.35 25999.46 156
V4298.78 9898.78 8998.76 17499.44 13297.04 21998.27 14799.19 21597.87 18599.25 12399.16 13796.84 18199.78 22199.21 5499.84 8899.46 156
APD-MVS_3200maxsize98.84 8998.61 11799.53 3799.19 18899.27 2698.49 12699.33 16598.64 12199.03 15398.98 18397.89 10999.85 13196.54 24299.42 25099.46 156
UniMVSNet (Re)98.87 8598.71 9899.35 7299.24 17498.73 8797.73 22399.38 14198.93 10799.12 13598.73 23396.77 18899.86 11998.63 9599.80 11399.46 156
SR-MVS-dyc-post98.81 9498.55 12299.57 2099.20 18599.38 1298.48 12999.30 18098.64 12198.95 16598.96 18897.49 14799.86 11996.56 23899.39 25399.45 160
RE-MVS-def98.58 12099.20 18599.38 1298.48 12999.30 18098.64 12198.95 16598.96 18897.75 12096.56 23899.39 25399.45 160
HQP_MVS97.99 20397.67 22198.93 14699.19 18897.65 18497.77 21699.27 19498.20 16197.79 29197.98 31894.90 25999.70 26294.42 32199.51 23499.45 160
plane_prior599.27 19499.70 26294.42 32199.51 23499.45 160
lessismore_v098.97 14099.73 3697.53 19186.71 42399.37 9699.52 6389.93 33399.92 5398.99 6899.72 15699.44 164
TAMVS98.24 18298.05 19198.80 16399.07 21697.18 21397.88 20198.81 28996.66 28199.17 13499.21 12494.81 26599.77 22796.96 19899.88 7699.44 164
DeepPCF-MVS96.93 598.32 17098.01 19599.23 9998.39 33698.97 7095.03 37999.18 21996.88 26999.33 10398.78 22698.16 9199.28 38596.74 21999.62 19699.44 164
3Dnovator98.27 298.81 9498.73 9399.05 12998.76 27497.81 17399.25 4099.30 18098.57 13198.55 22999.33 9897.95 10799.90 6897.16 17999.67 18299.44 164
MVSFormer98.26 17998.43 14297.77 27598.88 25693.89 33399.39 1799.56 7699.11 7998.16 26198.13 30593.81 28999.97 599.26 4999.57 21699.43 168
jason97.45 24697.35 24497.76 27899.24 17493.93 32995.86 35198.42 32094.24 35398.50 23598.13 30594.82 26399.91 6297.22 17699.73 14899.43 168
jason: jason.
NCCC97.86 21397.47 23899.05 12998.61 30798.07 14396.98 28898.90 26997.63 20097.04 33497.93 32395.99 22799.66 28995.31 29898.82 32699.43 168
Anonymous2024052198.69 11498.87 7998.16 25199.77 2695.11 29399.08 5899.44 12199.34 5399.33 10399.55 5494.10 28599.94 3799.25 5199.96 2699.42 171
MVS_111021_HR98.25 18198.08 18998.75 17699.09 21297.46 19495.97 34299.27 19497.60 20597.99 27798.25 29798.15 9399.38 37096.87 20899.57 21699.42 171
COLMAP_ROBcopyleft96.50 1098.99 6998.85 8399.41 6299.58 7799.10 6498.74 9299.56 7699.09 8999.33 10399.19 12798.40 6699.72 25795.98 27399.76 14199.42 171
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 8098.72 9599.49 5199.49 11699.17 4398.10 16899.31 17298.03 17199.66 4699.02 16698.36 6899.88 9496.91 20099.62 19699.41 174
OPU-MVS98.82 15998.59 31298.30 11898.10 16898.52 26998.18 8798.75 40794.62 31399.48 24399.41 174
our_test_397.39 25297.73 21896.34 35198.70 28789.78 39694.61 39298.97 25996.50 28699.04 15098.85 21395.98 22899.84 14997.26 17499.67 18299.41 174
casdiffmvspermissive98.95 7699.00 6798.81 16199.38 14397.33 20197.82 20999.57 6999.17 7599.35 10099.17 13598.35 7199.69 26698.46 10499.73 14899.41 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 23397.67 22197.39 31299.04 22593.04 35195.27 37298.38 32397.25 24398.92 17498.95 19295.48 24799.73 25096.99 19498.74 32899.41 174
MDA-MVSNet_test_wron97.60 23397.66 22497.41 31199.04 22593.09 34795.27 37298.42 32097.26 24298.88 18198.95 19295.43 24899.73 25097.02 19198.72 33099.41 174
GBi-Net98.65 12498.47 13699.17 10498.90 25098.24 12299.20 4599.44 12198.59 12798.95 16599.55 5494.14 28199.86 11997.77 14799.69 17199.41 174
test198.65 12498.47 13699.17 10498.90 25098.24 12299.20 4599.44 12198.59 12798.95 16599.55 5494.14 28199.86 11997.77 14799.69 17199.41 174
FMVSNet199.17 4699.17 4999.17 10499.55 9498.24 12299.20 4599.44 12199.21 6699.43 8399.55 5497.82 11599.86 11998.42 10799.89 7499.41 174
test_fmvs197.72 22597.94 20397.07 32698.66 30292.39 36297.68 22799.81 2695.20 33299.54 6099.44 7891.56 32199.41 36599.78 1699.77 12999.40 183
KD-MVS_self_test99.25 3699.18 4899.44 5999.63 7499.06 6898.69 10199.54 8499.31 5699.62 5599.53 6097.36 15399.86 11999.24 5399.71 16199.39 184
v14898.45 15498.60 11898.00 26399.44 13294.98 29597.44 25899.06 24198.30 14899.32 10998.97 18596.65 19699.62 30398.37 10899.85 8499.39 184
test20.0398.78 9898.77 9098.78 16999.46 12797.20 21197.78 21499.24 20599.04 9699.41 8898.90 20097.65 12699.76 23397.70 15299.79 11899.39 184
CDPH-MVS97.26 26196.66 28899.07 12299.00 23198.15 13096.03 34099.01 25591.21 39397.79 29197.85 32796.89 17999.69 26692.75 36499.38 25699.39 184
EPNet96.14 31295.44 32498.25 24390.76 42895.50 27797.92 19694.65 39598.97 10392.98 41198.85 21389.12 33999.87 11195.99 27299.68 17699.39 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 19097.87 20999.07 12298.67 29798.24 12297.01 28698.93 26397.25 24397.62 30098.34 29197.27 15899.57 32296.42 24999.33 26299.39 184
DeepC-MVS_fast96.85 698.30 17398.15 18198.75 17698.61 30797.23 20797.76 21999.09 23897.31 23798.75 20198.66 24797.56 13699.64 29796.10 27099.55 22399.39 184
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 14598.27 16699.32 8299.31 15998.75 8398.19 15499.41 13496.77 27698.83 18998.90 20097.80 11799.82 17695.68 28999.52 23299.38 191
test9_res93.28 35399.15 29399.38 191
BP-MVS197.40 25196.97 26498.71 18299.07 21696.81 23298.34 14497.18 35798.58 13098.17 25898.61 25884.01 37699.94 3798.97 6999.78 12399.37 193
OPM-MVS98.56 13798.32 16099.25 9599.41 14098.73 8797.13 28399.18 21997.10 25898.75 20198.92 19698.18 8799.65 29496.68 22699.56 21999.37 193
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 36999.16 29199.37 193
AllTest98.44 15598.20 17399.16 10799.50 10998.55 9998.25 14999.58 6296.80 27398.88 18199.06 15497.65 12699.57 32294.45 31999.61 20199.37 193
TestCases99.16 10799.50 10998.55 9999.58 6296.80 27398.88 18199.06 15497.65 12699.57 32294.45 31999.61 20199.37 193
MDA-MVSNet-bldmvs97.94 20497.91 20698.06 25899.44 13294.96 29696.63 30899.15 23198.35 14298.83 18999.11 14794.31 27899.85 13196.60 23198.72 33099.37 193
MVSTER96.86 28796.55 29497.79 27397.91 36294.21 31697.56 24598.87 27597.49 21799.06 14399.05 16180.72 38999.80 19798.44 10599.82 9899.37 193
pmmvs597.64 23197.49 23598.08 25699.14 20395.12 29296.70 30599.05 24493.77 36298.62 21698.83 21693.23 29499.75 24098.33 11299.76 14199.36 200
Anonymous2023120698.21 18598.21 17298.20 24799.51 10695.43 28098.13 16299.32 16796.16 30098.93 17398.82 21996.00 22399.83 16697.32 17199.73 14899.36 200
train_agg97.10 27396.45 29899.07 12298.71 28398.08 14195.96 34499.03 24991.64 38595.85 37597.53 34396.47 20399.76 23393.67 34399.16 29199.36 200
PVSNet_BlendedMVS97.55 23897.53 23297.60 29298.92 24693.77 33796.64 30799.43 12794.49 34597.62 30099.18 13196.82 18499.67 27894.73 31099.93 4699.36 200
Anonymous2024052998.93 7898.87 7999.12 11299.19 18898.22 12799.01 6798.99 25899.25 6299.54 6099.37 8797.04 17099.80 19797.89 13799.52 23299.35 204
F-COLMAP97.30 25896.68 28599.14 11099.19 18898.39 11097.27 27299.30 18092.93 37396.62 35698.00 31695.73 23899.68 27592.62 36798.46 34799.35 204
ppachtmachnet_test97.50 23997.74 21696.78 34198.70 28791.23 38394.55 39499.05 24496.36 29299.21 12798.79 22496.39 20699.78 22196.74 21999.82 9899.34 206
VDD-MVS98.56 13798.39 14999.07 12299.13 20598.07 14398.59 11097.01 36299.59 2799.11 13699.27 10994.82 26399.79 21098.34 11099.63 19399.34 206
testgi98.32 17098.39 14998.13 25299.57 8295.54 27497.78 21499.49 10097.37 23199.19 12997.65 33798.96 2499.49 34996.50 24598.99 31399.34 206
diffmvspermissive98.22 18398.24 17098.17 24999.00 23195.44 27996.38 32099.58 6297.79 19198.53 23298.50 27496.76 19099.74 24597.95 13699.64 19099.34 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 20897.60 22998.75 17699.31 15997.17 21497.62 23799.35 15498.72 11998.76 20098.68 24292.57 31099.74 24597.76 15195.60 40899.34 206
baseline98.96 7599.02 6598.76 17499.38 14397.26 20698.49 12699.50 9398.86 11299.19 12999.06 15498.23 8099.69 26698.71 8999.76 14199.33 211
MG-MVS96.77 29196.61 29097.26 31798.31 34093.06 34895.93 34798.12 33496.45 29097.92 27998.73 23393.77 29199.39 36891.19 38799.04 30599.33 211
HQP4-MVS95.56 38099.54 33499.32 213
CDS-MVSNet97.69 22797.35 24498.69 18398.73 27897.02 22196.92 29498.75 29995.89 31298.59 22298.67 24492.08 31699.74 24596.72 22299.81 10299.32 213
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 28296.49 29798.55 20998.67 29796.79 23396.29 32699.04 24796.05 30395.55 38196.84 36493.84 28799.54 33492.82 36199.26 27599.32 213
RPSCF98.62 13198.36 15399.42 6099.65 6499.42 1198.55 11499.57 6997.72 19598.90 17699.26 11396.12 21899.52 34095.72 28699.71 16199.32 213
MVP-Stereo98.08 19597.92 20598.57 20498.96 23896.79 23397.90 19999.18 21996.41 29198.46 23898.95 19295.93 23299.60 31096.51 24498.98 31599.31 217
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15998.68 10497.54 30098.96 23897.99 15097.88 20199.36 14998.20 16199.63 5299.04 16398.76 3695.33 42396.56 23899.74 14599.31 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 15698.30 16198.79 16698.79 27397.29 20398.23 15098.66 30699.31 5698.85 18698.80 22294.80 26699.78 22198.13 12199.13 29699.31 217
test_prior98.95 14398.69 29297.95 15899.03 24999.59 31499.30 220
USDC97.41 25097.40 23997.44 30998.94 24093.67 34095.17 37599.53 8794.03 35998.97 16199.10 15095.29 25099.34 37595.84 28299.73 14899.30 220
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8297.73 18097.93 19399.83 2399.22 6499.93 699.30 10499.42 1099.96 1299.85 599.99 599.29 222
FMVSNet298.49 15098.40 14698.75 17698.90 25097.14 21798.61 10899.13 23298.59 12799.19 12999.28 10794.14 28199.82 17697.97 13499.80 11399.29 222
XVG-OURS-SEG-HR98.49 15098.28 16399.14 11099.49 11698.83 7996.54 31099.48 10297.32 23699.11 13698.61 25899.33 1399.30 38196.23 26098.38 34899.28 224
test1298.93 14698.58 31497.83 16798.66 30696.53 35995.51 24599.69 26699.13 29699.27 225
DSMNet-mixed97.42 24997.60 22996.87 33599.15 20291.46 37498.54 11699.12 23392.87 37597.58 30499.63 3696.21 21499.90 6895.74 28599.54 22599.27 225
N_pmnet97.63 23297.17 25398.99 13799.27 16797.86 16495.98 34193.41 40695.25 33099.47 7798.90 20095.63 24099.85 13196.91 20099.73 14899.27 225
ambc98.24 24598.82 26795.97 26398.62 10799.00 25799.27 11599.21 12496.99 17599.50 34696.55 24199.50 24199.26 228
LFMVS97.20 26796.72 28298.64 18898.72 28096.95 22598.93 7894.14 40399.74 1098.78 19599.01 17584.45 37199.73 25097.44 16599.27 27299.25 229
FMVSNet596.01 31595.20 33498.41 22897.53 38396.10 25498.74 9299.50 9397.22 25298.03 27599.04 16369.80 41199.88 9497.27 17399.71 16199.25 229
BH-RMVSNet96.83 28896.58 29397.58 29498.47 32594.05 32196.67 30697.36 35196.70 28097.87 28497.98 31895.14 25499.44 36190.47 39598.58 34499.25 229
testf199.25 3699.16 5199.51 4699.89 699.63 498.71 9999.69 4398.90 10999.43 8399.35 9298.86 2999.67 27897.81 14399.81 10299.24 232
APD_test299.25 3699.16 5199.51 4699.89 699.63 498.71 9999.69 4398.90 10999.43 8399.35 9298.86 2999.67 27897.81 14399.81 10299.24 232
旧先验198.82 26797.45 19598.76 29698.34 29195.50 24699.01 31099.23 234
test22298.92 24696.93 22795.54 36298.78 29485.72 41396.86 34798.11 30894.43 27399.10 30199.23 234
XVG-ACMP-BASELINE98.56 13798.34 15699.22 10099.54 9998.59 9697.71 22499.46 11397.25 24398.98 15798.99 17997.54 13899.84 14995.88 27699.74 14599.23 234
FMVSNet397.50 23997.24 25098.29 24198.08 35595.83 26797.86 20598.91 26897.89 18498.95 16598.95 19287.06 35099.81 19097.77 14799.69 17199.23 234
无先验95.74 35798.74 30189.38 40499.73 25092.38 37199.22 238
tttt051795.64 32894.98 33897.64 28999.36 15093.81 33598.72 9790.47 41798.08 17098.67 20998.34 29173.88 40799.92 5397.77 14799.51 23499.20 239
pmmvs-eth3d98.47 15298.34 15698.86 15599.30 16297.76 17697.16 28199.28 19195.54 32199.42 8699.19 12797.27 15899.63 30097.89 13799.97 2099.20 239
MS-PatchMatch97.68 22897.75 21597.45 30898.23 34693.78 33697.29 26998.84 28496.10 30298.64 21398.65 24996.04 22099.36 37196.84 21199.14 29499.20 239
新几何198.91 15098.94 24097.76 17698.76 29687.58 41096.75 35298.10 30994.80 26699.78 22192.73 36599.00 31199.20 239
PHI-MVS98.29 17697.95 20199.34 7598.44 33099.16 4798.12 16599.38 14196.01 30798.06 27198.43 28197.80 11799.67 27895.69 28899.58 21299.20 239
GDP-MVS97.50 23997.11 25898.67 18599.02 22996.85 23098.16 15999.71 3998.32 14698.52 23498.54 26583.39 38099.95 2498.79 8099.56 21999.19 244
Anonymous20240521197.90 20697.50 23499.08 12098.90 25098.25 12198.53 11796.16 37998.87 11199.11 13698.86 21090.40 33199.78 22197.36 16999.31 26599.19 244
CANet97.87 21297.76 21498.19 24897.75 36795.51 27696.76 30199.05 24497.74 19396.93 33898.21 30195.59 24299.89 8097.86 14299.93 4699.19 244
XVG-OURS98.53 14598.34 15699.11 11499.50 10998.82 8195.97 34299.50 9397.30 23899.05 14898.98 18399.35 1299.32 37895.72 28699.68 17699.18 247
WTY-MVS96.67 29496.27 30497.87 26898.81 26994.61 30796.77 30097.92 33994.94 33797.12 32997.74 33291.11 32499.82 17693.89 33798.15 36099.18 247
Vis-MVSNet (Re-imp)97.46 24497.16 25498.34 23699.55 9496.10 25498.94 7798.44 31898.32 14698.16 26198.62 25688.76 34099.73 25093.88 33899.79 11899.18 247
TinyColmap97.89 20897.98 19897.60 29298.86 25894.35 31396.21 33099.44 12197.45 22599.06 14398.88 20797.99 10599.28 38594.38 32599.58 21299.18 247
testdata98.09 25398.93 24295.40 28198.80 29190.08 40197.45 31798.37 28795.26 25199.70 26293.58 34698.95 31899.17 251
lupinMVS97.06 27696.86 27297.65 28798.88 25693.89 33395.48 36697.97 33793.53 36598.16 26197.58 34193.81 28999.91 6296.77 21699.57 21699.17 251
Patchmtry97.35 25496.97 26498.50 21997.31 39496.47 24698.18 15598.92 26698.95 10698.78 19599.37 8785.44 36599.85 13195.96 27499.83 9599.17 251
RRT-MVS97.88 21097.98 19897.61 29198.15 35093.77 33798.97 7399.64 5399.16 7698.69 20699.42 8091.60 31999.89 8097.63 15598.52 34699.16 254
sss97.21 26696.93 26698.06 25898.83 26495.22 28896.75 30298.48 31794.49 34597.27 32697.90 32492.77 30699.80 19796.57 23499.32 26399.16 254
CSCG98.68 11998.50 12999.20 10199.45 13198.63 9198.56 11399.57 6997.87 18598.85 18698.04 31597.66 12599.84 14996.72 22299.81 10299.13 256
MVS_111021_LR98.30 17398.12 18498.83 15899.16 19898.03 14896.09 33899.30 18097.58 20698.10 26898.24 29898.25 7899.34 37596.69 22599.65 18899.12 257
miper_lstm_enhance97.18 26997.16 25497.25 31898.16 34992.85 35395.15 37799.31 17297.25 24398.74 20398.78 22690.07 33299.78 22197.19 17799.80 11399.11 258
testing393.51 36392.09 37397.75 27998.60 30994.40 31197.32 26695.26 39297.56 20996.79 35195.50 39053.57 42999.77 22795.26 29998.97 31699.08 259
原ACMM198.35 23598.90 25096.25 25298.83 28892.48 37996.07 37298.10 30995.39 24999.71 25892.61 36898.99 31399.08 259
QAPM97.31 25796.81 27898.82 15998.80 27297.49 19299.06 6299.19 21590.22 39997.69 29799.16 13796.91 17899.90 6890.89 39299.41 25199.07 261
PAPM_NR96.82 29096.32 30198.30 24099.07 21696.69 24097.48 25498.76 29695.81 31496.61 35796.47 37294.12 28499.17 39290.82 39397.78 37299.06 262
eth_miper_zixun_eth97.23 26597.25 24997.17 32198.00 35892.77 35594.71 38699.18 21997.27 24198.56 22798.74 23291.89 31799.69 26697.06 19099.81 10299.05 263
D2MVS97.84 21997.84 21197.83 27099.14 20394.74 30196.94 29098.88 27395.84 31398.89 17898.96 18894.40 27599.69 26697.55 15999.95 3399.05 263
c3_l97.36 25397.37 24297.31 31398.09 35493.25 34695.01 38099.16 22697.05 25998.77 19898.72 23592.88 30399.64 29796.93 19999.76 14199.05 263
PLCcopyleft94.65 1696.51 29995.73 31198.85 15698.75 27697.91 16096.42 31899.06 24190.94 39695.59 37897.38 35394.41 27499.59 31490.93 39098.04 36999.05 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 8298.90 7698.91 15099.67 6197.82 17099.00 6999.44 12199.45 4099.51 7199.24 11898.20 8699.86 11995.92 27599.69 17199.04 267
CANet_DTU97.26 26197.06 26097.84 26997.57 37894.65 30696.19 33298.79 29297.23 24995.14 39098.24 29893.22 29599.84 14997.34 17099.84 8899.04 267
PM-MVS98.82 9298.72 9599.12 11299.64 7098.54 10297.98 18999.68 4897.62 20199.34 10299.18 13197.54 13899.77 22797.79 14599.74 14599.04 267
TSAR-MVS + GP.98.18 18897.98 19898.77 17398.71 28397.88 16296.32 32498.66 30696.33 29399.23 12698.51 27097.48 14899.40 36697.16 17999.46 24499.02 270
DIV-MVS_self_test97.02 27996.84 27497.58 29497.82 36594.03 32494.66 38999.16 22697.04 26098.63 21498.71 23688.69 34199.69 26697.00 19299.81 10299.01 271
mamv499.44 1599.39 2399.58 1999.30 16299.74 299.04 6599.81 2699.77 799.82 2499.57 4697.82 11599.98 499.53 3499.89 7499.01 271
GA-MVS95.86 32095.32 33097.49 30598.60 30994.15 31993.83 40697.93 33895.49 32396.68 35397.42 35183.21 38199.30 38196.22 26198.55 34599.01 271
OMC-MVS97.88 21097.49 23599.04 13198.89 25598.63 9196.94 29099.25 20095.02 33498.53 23298.51 27097.27 15899.47 35593.50 34999.51 23499.01 271
cl____97.02 27996.83 27597.58 29497.82 36594.04 32394.66 38999.16 22697.04 26098.63 21498.71 23688.68 34399.69 26697.00 19299.81 10299.00 275
pmmvs497.58 23697.28 24798.51 21598.84 26296.93 22795.40 37098.52 31593.60 36498.61 21898.65 24995.10 25599.60 31096.97 19799.79 11898.99 276
EPNet_dtu94.93 34394.78 34395.38 37993.58 42487.68 40696.78 29995.69 39097.35 23389.14 42198.09 31188.15 34899.49 34994.95 30699.30 26898.98 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 30195.77 30998.69 18399.48 12497.43 19797.84 20899.55 8081.42 41996.51 36198.58 26295.53 24399.67 27893.41 35199.58 21298.98 277
PVSNet_Blended96.88 28696.68 28597.47 30798.92 24693.77 33794.71 38699.43 12790.98 39597.62 30097.36 35596.82 18499.67 27894.73 31099.56 21998.98 277
APD_test198.83 9098.66 10799.34 7599.78 2399.47 998.42 13699.45 11798.28 15398.98 15799.19 12797.76 11999.58 32096.57 23499.55 22398.97 280
PAPR95.29 33494.47 34597.75 27997.50 38995.14 29194.89 38398.71 30491.39 39195.35 38895.48 39294.57 27199.14 39584.95 41197.37 38498.97 280
EGC-MVSNET85.24 38880.54 39199.34 7599.77 2699.20 3899.08 5899.29 18812.08 42620.84 42799.42 8097.55 13799.85 13197.08 18799.72 15698.96 282
thisisatest053095.27 33594.45 34697.74 28199.19 18894.37 31297.86 20590.20 41897.17 25498.22 25697.65 33773.53 40899.90 6896.90 20599.35 25998.95 283
mvs_anonymous97.83 22198.16 18096.87 33598.18 34891.89 36997.31 26798.90 26997.37 23198.83 18999.46 7396.28 21299.79 21098.90 7398.16 35998.95 283
baseline195.96 31895.44 32497.52 30298.51 32393.99 32798.39 13896.09 38198.21 15798.40 24797.76 33186.88 35199.63 30095.42 29689.27 42198.95 283
CLD-MVS97.49 24297.16 25498.48 22099.07 21697.03 22094.71 38699.21 20994.46 34798.06 27197.16 35997.57 13599.48 35294.46 31899.78 12398.95 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 19898.14 18397.64 28998.58 31495.19 28997.48 25499.23 20797.47 21897.90 28198.62 25697.04 17098.81 40697.55 15999.41 25198.94 287
DELS-MVS98.27 17798.20 17398.48 22098.86 25896.70 23995.60 36199.20 21197.73 19498.45 23998.71 23697.50 14499.82 17698.21 11699.59 20798.93 288
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 32395.39 32796.98 32996.77 40692.79 35494.40 39798.53 31494.59 34497.89 28298.17 30482.82 38599.24 38796.37 25299.03 30698.92 289
LS3D98.63 12898.38 15199.36 6697.25 39599.38 1299.12 5799.32 16799.21 6698.44 24098.88 20797.31 15499.80 19796.58 23299.34 26198.92 289
CMPMVSbinary75.91 2396.29 30795.44 32498.84 15796.25 41698.69 9097.02 28599.12 23388.90 40697.83 28898.86 21089.51 33698.90 40491.92 37299.51 23498.92 289
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 12698.48 13499.11 11498.85 26198.51 10498.49 12699.83 2398.37 14199.69 4199.46 7398.21 8599.92 5394.13 33199.30 26898.91 292
mvsmamba97.57 23797.26 24898.51 21598.69 29296.73 23898.74 9297.25 35697.03 26297.88 28399.23 12290.95 32599.87 11196.61 23099.00 31198.91 292
DPM-MVS96.32 30695.59 31898.51 21598.76 27497.21 21094.54 39598.26 32691.94 38496.37 36597.25 35793.06 30099.43 36291.42 38298.74 32898.89 294
test_yl96.69 29296.29 30297.90 26598.28 34195.24 28697.29 26997.36 35198.21 15798.17 25897.86 32586.27 35599.55 32994.87 30798.32 34998.89 294
DCV-MVSNet96.69 29296.29 30297.90 26598.28 34195.24 28697.29 26997.36 35198.21 15798.17 25897.86 32586.27 35599.55 32994.87 30798.32 34998.89 294
SPE-MVS-test99.13 5599.09 6099.26 9299.13 20598.97 7099.31 2799.88 1499.44 4298.16 26198.51 27098.64 4599.93 4498.91 7299.85 8498.88 297
UnsupCasMVSNet_bld97.30 25896.92 26898.45 22399.28 16596.78 23696.20 33199.27 19495.42 32598.28 25398.30 29593.16 29699.71 25894.99 30397.37 38498.87 298
Effi-MVS+98.02 19897.82 21298.62 19498.53 32197.19 21297.33 26599.68 4897.30 23896.68 35397.46 34998.56 5599.80 19796.63 22898.20 35598.86 299
test_040298.76 10298.71 9898.93 14699.56 9098.14 13298.45 13399.34 16099.28 6098.95 16598.91 19798.34 7299.79 21095.63 29099.91 6498.86 299
PatchmatchNetpermissive95.58 32995.67 31495.30 38097.34 39387.32 40797.65 23396.65 37295.30 32997.07 33298.69 24084.77 36899.75 24094.97 30598.64 33998.83 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 22397.72 21997.83 27098.81 26996.35 24997.30 26899.69 4394.61 34397.87 28498.05 31496.26 21398.32 41298.74 8698.18 35698.82 302
CL-MVSNet_self_test97.44 24797.22 25198.08 25698.57 31695.78 26994.30 39998.79 29296.58 28498.60 22098.19 30394.74 26999.64 29796.41 25098.84 32398.82 302
miper_ehance_all_eth97.06 27697.03 26197.16 32397.83 36493.06 34894.66 38999.09 23895.99 30898.69 20698.45 27992.73 30899.61 30996.79 21399.03 30698.82 302
MIMVSNet96.62 29796.25 30597.71 28499.04 22594.66 30599.16 5196.92 36897.23 24997.87 28499.10 15086.11 35999.65 29491.65 37799.21 28498.82 302
hse-mvs297.46 24497.07 25998.64 18898.73 27897.33 20197.45 25797.64 34899.11 7998.58 22497.98 31888.65 34499.79 21098.11 12297.39 38398.81 306
GSMVS98.81 306
sam_mvs184.74 36998.81 306
SCA96.41 30596.66 28895.67 37098.24 34488.35 40295.85 35396.88 36996.11 30197.67 29898.67 24493.10 29899.85 13194.16 32799.22 28198.81 306
Patchmatch-RL test97.26 26197.02 26297.99 26499.52 10495.53 27596.13 33699.71 3997.47 21899.27 11599.16 13784.30 37499.62 30397.89 13799.77 12998.81 306
AUN-MVS96.24 31195.45 32398.60 19998.70 28797.22 20997.38 26097.65 34695.95 31095.53 38597.96 32282.11 38899.79 21096.31 25697.44 38098.80 311
ITE_SJBPF98.87 15499.22 17998.48 10699.35 15497.50 21598.28 25398.60 26097.64 12999.35 37493.86 33999.27 27298.79 312
tpm94.67 34594.34 34995.66 37197.68 37688.42 40197.88 20194.90 39394.46 34796.03 37498.56 26478.66 39999.79 21095.88 27695.01 41198.78 313
Patchmatch-test96.55 29896.34 30097.17 32198.35 33793.06 34898.40 13797.79 34097.33 23498.41 24398.67 24483.68 37999.69 26695.16 30199.31 26598.77 314
EC-MVSNet99.09 6099.05 6499.20 10199.28 16598.93 7599.24 4199.84 2199.08 9198.12 26698.37 28798.72 3999.90 6899.05 6399.77 12998.77 314
PMMVS96.51 29995.98 30698.09 25397.53 38395.84 26694.92 38298.84 28491.58 38796.05 37395.58 38795.68 23999.66 28995.59 29298.09 36398.76 316
test_method79.78 38979.50 39280.62 40580.21 43045.76 43370.82 42198.41 32231.08 42580.89 42597.71 33384.85 36797.37 41891.51 38180.03 42298.75 317
ab-mvs98.41 15798.36 15398.59 20099.19 18897.23 20799.32 2398.81 28997.66 19898.62 21699.40 8696.82 18499.80 19795.88 27699.51 23498.75 317
CHOSEN 280x42095.51 33295.47 32195.65 37298.25 34388.27 40393.25 41098.88 27393.53 36594.65 39697.15 36086.17 35799.93 4497.41 16799.93 4698.73 319
test_fmvsmvis_n_192099.26 3599.49 1398.54 21299.66 6396.97 22298.00 18499.85 1899.24 6399.92 899.50 6499.39 1199.95 2499.89 399.98 1298.71 320
MVS_Test98.18 18898.36 15397.67 28598.48 32494.73 30298.18 15599.02 25297.69 19698.04 27499.11 14797.22 16299.56 32598.57 9898.90 32298.71 320
PVSNet93.40 1795.67 32695.70 31295.57 37398.83 26488.57 40092.50 41397.72 34292.69 37796.49 36496.44 37393.72 29299.43 36293.61 34499.28 27198.71 320
alignmvs97.35 25496.88 27198.78 16998.54 31998.09 13797.71 22497.69 34499.20 6897.59 30395.90 38288.12 34999.55 32998.18 11898.96 31798.70 323
ADS-MVSNet295.43 33394.98 33896.76 34298.14 35191.74 37097.92 19697.76 34190.23 39796.51 36198.91 19785.61 36299.85 13192.88 35996.90 39398.69 324
ADS-MVSNet95.24 33694.93 34196.18 35998.14 35190.10 39597.92 19697.32 35490.23 39796.51 36198.91 19785.61 36299.74 24592.88 35996.90 39398.69 324
MDTV_nov1_ep13_2view74.92 42997.69 22690.06 40297.75 29485.78 36193.52 34798.69 324
MSDG97.71 22697.52 23398.28 24298.91 24996.82 23194.42 39699.37 14597.65 19998.37 24898.29 29697.40 15199.33 37794.09 33299.22 28198.68 327
mvsany_test197.60 23397.54 23197.77 27597.72 36895.35 28295.36 37197.13 36094.13 35699.71 3799.33 9897.93 10899.30 38197.60 15898.94 31998.67 328
CS-MVS99.13 5599.10 5999.24 9799.06 22199.15 5199.36 1999.88 1499.36 5298.21 25798.46 27898.68 4399.93 4499.03 6599.85 8498.64 329
Syy-MVS96.04 31495.56 32097.49 30597.10 39994.48 30996.18 33396.58 37495.65 31794.77 39392.29 42091.27 32399.36 37198.17 12098.05 36798.63 330
myMVS_eth3d91.92 38590.45 38796.30 35297.10 39990.90 38796.18 33396.58 37495.65 31794.77 39392.29 42053.88 42899.36 37189.59 39998.05 36798.63 330
balanced_conf0398.63 12898.72 9598.38 23198.66 30296.68 24198.90 8099.42 13098.99 10098.97 16199.19 12795.81 23699.85 13198.77 8499.77 12998.60 332
miper_enhance_ethall96.01 31595.74 31096.81 33996.41 41492.27 36693.69 40898.89 27291.14 39498.30 24997.35 35690.58 32999.58 32096.31 25699.03 30698.60 332
Effi-MVS+-dtu98.26 17997.90 20799.35 7298.02 35799.49 698.02 18099.16 22698.29 15197.64 29997.99 31796.44 20599.95 2496.66 22798.93 32098.60 332
new_pmnet96.99 28396.76 28097.67 28598.72 28094.89 29795.95 34698.20 32992.62 37898.55 22998.54 26594.88 26299.52 34093.96 33599.44 24998.59 335
MVSMamba_PlusPlus98.83 9098.98 7098.36 23499.32 15896.58 24498.90 8099.41 13499.75 898.72 20499.50 6496.17 21599.94 3799.27 4899.78 12398.57 336
testing9193.32 36692.27 37096.47 34897.54 38191.25 38196.17 33596.76 37197.18 25393.65 40993.50 41365.11 42399.63 30093.04 35697.45 37998.53 337
EIA-MVS98.00 20097.74 21698.80 16398.72 28098.09 13798.05 17599.60 5997.39 22996.63 35595.55 38897.68 12399.80 19796.73 22199.27 27298.52 338
PatchMatch-RL97.24 26496.78 27998.61 19799.03 22897.83 16796.36 32199.06 24193.49 36797.36 32497.78 32995.75 23799.49 34993.44 35098.77 32798.52 338
sasdasda98.34 16698.26 16798.58 20198.46 32797.82 17098.96 7499.46 11399.19 7297.46 31595.46 39398.59 5199.46 35798.08 12598.71 33298.46 340
ET-MVSNet_ETH3D94.30 35193.21 36197.58 29498.14 35194.47 31094.78 38593.24 40894.72 34189.56 41995.87 38378.57 40199.81 19096.91 20097.11 39298.46 340
canonicalmvs98.34 16698.26 16798.58 20198.46 32797.82 17098.96 7499.46 11399.19 7297.46 31595.46 39398.59 5199.46 35798.08 12598.71 33298.46 340
UBG93.25 36892.32 36996.04 36497.72 36890.16 39495.92 34995.91 38596.03 30693.95 40693.04 41669.60 41299.52 34090.72 39497.98 37098.45 343
tt080598.69 11498.62 11398.90 15399.75 3399.30 2199.15 5396.97 36498.86 11298.87 18597.62 34098.63 4798.96 40099.41 4198.29 35298.45 343
TAPA-MVS96.21 1196.63 29695.95 30798.65 18698.93 24298.09 13796.93 29299.28 19183.58 41698.13 26597.78 32996.13 21799.40 36693.52 34799.29 27098.45 343
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net98.34 16698.28 16398.51 21598.47 32597.59 18898.96 7499.48 10299.18 7497.40 32095.50 39098.66 4499.50 34698.18 11898.71 33298.44 346
BH-untuned96.83 28896.75 28197.08 32498.74 27793.33 34596.71 30498.26 32696.72 27898.44 24097.37 35495.20 25299.47 35591.89 37397.43 38198.44 346
WB-MVSnew95.73 32595.57 31996.23 35796.70 40790.70 39196.07 33993.86 40495.60 31997.04 33495.45 39696.00 22399.55 32991.04 38898.31 35198.43 348
pmmvs395.03 34094.40 34796.93 33197.70 37392.53 35995.08 37897.71 34388.57 40797.71 29598.08 31279.39 39699.82 17696.19 26399.11 30098.43 348
DP-MVS Recon97.33 25696.92 26898.57 20499.09 21297.99 15096.79 29899.35 15493.18 36997.71 29598.07 31395.00 25899.31 37993.97 33499.13 29698.42 350
testing9993.04 37291.98 37896.23 35797.53 38390.70 39196.35 32295.94 38496.87 27093.41 41093.43 41463.84 42599.59 31493.24 35497.19 38998.40 351
ETVMVS92.60 37691.08 38597.18 31997.70 37393.65 34296.54 31095.70 38896.51 28594.68 39592.39 41961.80 42699.50 34686.97 40697.41 38298.40 351
Fast-Effi-MVS+-dtu98.27 17798.09 18698.81 16198.43 33198.11 13497.61 23999.50 9398.64 12197.39 32297.52 34598.12 9599.95 2496.90 20598.71 33298.38 353
LF4IMVS97.90 20697.69 22098.52 21499.17 19697.66 18397.19 28099.47 11096.31 29597.85 28798.20 30296.71 19499.52 34094.62 31399.72 15698.38 353
testing1193.08 37192.02 37596.26 35597.56 37990.83 38996.32 32495.70 38896.47 28992.66 41393.73 41064.36 42499.59 31493.77 34297.57 37598.37 355
Fast-Effi-MVS+97.67 22997.38 24198.57 20498.71 28397.43 19797.23 27399.45 11794.82 34096.13 36996.51 36998.52 5799.91 6296.19 26398.83 32498.37 355
test0.0.03 194.51 34693.69 35596.99 32896.05 41793.61 34394.97 38193.49 40596.17 29897.57 30694.88 40382.30 38699.01 39993.60 34594.17 41598.37 355
UWE-MVS92.38 37991.76 38294.21 39097.16 39784.65 41695.42 36988.45 42195.96 30996.17 36895.84 38566.36 41999.71 25891.87 37498.64 33998.28 358
FE-MVS95.66 32794.95 34097.77 27598.53 32195.28 28599.40 1696.09 38193.11 37197.96 27899.26 11379.10 39899.77 22792.40 37098.71 33298.27 359
baseline293.73 36092.83 36696.42 34997.70 37391.28 38096.84 29789.77 41993.96 36192.44 41495.93 38179.14 39799.77 22792.94 35796.76 39798.21 360
thisisatest051594.12 35593.16 36296.97 33098.60 30992.90 35293.77 40790.61 41694.10 35796.91 34195.87 38374.99 40699.80 19794.52 31699.12 29998.20 361
EPMVS93.72 36193.27 36095.09 38396.04 41887.76 40598.13 16285.01 42594.69 34296.92 33998.64 25278.47 40399.31 37995.04 30296.46 39998.20 361
dp93.47 36493.59 35793.13 40296.64 40881.62 42697.66 23196.42 37792.80 37696.11 37098.64 25278.55 40299.59 31493.31 35292.18 42098.16 363
CNLPA97.17 27096.71 28398.55 20998.56 31798.05 14796.33 32398.93 26396.91 26897.06 33397.39 35294.38 27699.45 35991.66 37699.18 29098.14 364
dmvs_re95.98 31795.39 32797.74 28198.86 25897.45 19598.37 14095.69 39097.95 17796.56 35895.95 38090.70 32897.68 41788.32 40296.13 40498.11 365
HY-MVS95.94 1395.90 31995.35 32997.55 29997.95 35994.79 29898.81 9196.94 36792.28 38295.17 38998.57 26389.90 33499.75 24091.20 38697.33 38898.10 366
CostFormer93.97 35793.78 35494.51 38697.53 38385.83 41297.98 18995.96 38389.29 40594.99 39298.63 25478.63 40099.62 30394.54 31596.50 39898.09 367
FA-MVS(test-final)96.99 28396.82 27697.50 30498.70 28794.78 29999.34 2096.99 36395.07 33398.48 23799.33 9888.41 34799.65 29496.13 26998.92 32198.07 368
AdaColmapbinary97.14 27296.71 28398.46 22298.34 33897.80 17496.95 28998.93 26395.58 32096.92 33997.66 33695.87 23499.53 33690.97 38999.14 29498.04 369
KD-MVS_2432*160092.87 37491.99 37695.51 37591.37 42689.27 39894.07 40198.14 33295.42 32597.25 32796.44 37367.86 41499.24 38791.28 38496.08 40598.02 370
miper_refine_blended92.87 37491.99 37695.51 37591.37 42689.27 39894.07 40198.14 33295.42 32597.25 32796.44 37367.86 41499.24 38791.28 38496.08 40598.02 370
TESTMET0.1,192.19 38391.77 38193.46 39896.48 41282.80 42394.05 40391.52 41594.45 34994.00 40494.88 40366.65 41899.56 32595.78 28498.11 36298.02 370
testing22291.96 38490.37 38896.72 34397.47 39092.59 35796.11 33794.76 39496.83 27292.90 41292.87 41757.92 42799.55 32986.93 40797.52 37698.00 373
PCF-MVS92.86 1894.36 34893.00 36598.42 22798.70 28797.56 18993.16 41199.11 23579.59 42097.55 30797.43 35092.19 31399.73 25079.85 42099.45 24697.97 374
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 27496.68 28598.32 23798.32 33997.16 21598.86 8699.37 14589.48 40396.29 36799.15 14196.56 19999.90 6892.90 35899.20 28597.89 375
Gipumacopyleft99.03 6699.16 5198.64 18899.94 298.51 10499.32 2399.75 3699.58 2998.60 22099.62 3798.22 8399.51 34597.70 15299.73 14897.89 375
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 38790.30 39093.70 39697.72 36884.34 42090.24 41797.42 34990.20 40093.79 40793.09 41590.90 32798.89 40586.57 40972.76 42497.87 377
test-LLR93.90 35893.85 35294.04 39196.53 41084.62 41794.05 40392.39 41096.17 29894.12 40195.07 39782.30 38699.67 27895.87 27998.18 35697.82 378
test-mter92.33 38191.76 38294.04 39196.53 41084.62 41794.05 40392.39 41094.00 36094.12 40195.07 39765.63 42299.67 27895.87 27998.18 35697.82 378
tpm293.09 37092.58 36894.62 38597.56 37986.53 40997.66 23195.79 38786.15 41294.07 40398.23 30075.95 40499.53 33690.91 39196.86 39697.81 380
CR-MVSNet96.28 30895.95 30797.28 31597.71 37194.22 31498.11 16698.92 26692.31 38196.91 34199.37 8785.44 36599.81 19097.39 16897.36 38697.81 380
RPMNet97.02 27996.93 26697.30 31497.71 37194.22 31498.11 16699.30 18099.37 4996.91 34199.34 9686.72 35299.87 11197.53 16297.36 38697.81 380
tpmrst95.07 33995.46 32293.91 39397.11 39884.36 41997.62 23796.96 36594.98 33596.35 36698.80 22285.46 36499.59 31495.60 29196.23 40297.79 383
PAPM91.88 38690.34 38996.51 34698.06 35692.56 35892.44 41497.17 35886.35 41190.38 41896.01 37886.61 35399.21 39070.65 42495.43 40997.75 384
FPMVS93.44 36592.23 37197.08 32499.25 17397.86 16495.61 36097.16 35992.90 37493.76 40898.65 24975.94 40595.66 42179.30 42197.49 37797.73 385
MAR-MVS96.47 30395.70 31298.79 16697.92 36199.12 6198.28 14698.60 31192.16 38395.54 38496.17 37794.77 26899.52 34089.62 39898.23 35397.72 386
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 19797.86 21098.56 20898.69 29298.07 14397.51 25199.50 9398.10 16997.50 31295.51 38998.41 6599.88 9496.27 25999.24 27797.71 387
thres600view794.45 34793.83 35396.29 35399.06 22191.53 37397.99 18894.24 40198.34 14397.44 31895.01 39979.84 39299.67 27884.33 41298.23 35397.66 388
thres40094.14 35493.44 35896.24 35698.93 24291.44 37597.60 24094.29 39997.94 17997.10 33094.31 40879.67 39499.62 30383.05 41498.08 36497.66 388
IB-MVS91.63 1992.24 38290.90 38696.27 35497.22 39691.24 38294.36 39893.33 40792.37 38092.24 41594.58 40766.20 42199.89 8093.16 35594.63 41397.66 388
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 34195.25 33194.33 38796.39 41585.87 41098.08 17096.83 37095.46 32495.51 38698.69 24085.91 36099.53 33694.16 32796.23 40297.58 391
cascas94.79 34494.33 35096.15 36396.02 41992.36 36492.34 41599.26 19985.34 41495.08 39194.96 40292.96 30298.53 41094.41 32498.59 34397.56 392
PatchT96.65 29596.35 29997.54 30097.40 39195.32 28497.98 18996.64 37399.33 5496.89 34599.42 8084.32 37399.81 19097.69 15497.49 37797.48 393
TR-MVS95.55 33095.12 33696.86 33897.54 38193.94 32896.49 31496.53 37694.36 35297.03 33696.61 36894.26 28099.16 39386.91 40896.31 40197.47 394
dmvs_testset92.94 37392.21 37295.13 38198.59 31290.99 38697.65 23392.09 41296.95 26594.00 40493.55 41292.34 31296.97 42072.20 42392.52 41897.43 395
MonoMVSNet96.25 30996.53 29695.39 37896.57 40991.01 38598.82 9097.68 34598.57 13198.03 27599.37 8790.92 32697.78 41694.99 30393.88 41697.38 396
JIA-IIPM95.52 33195.03 33797.00 32796.85 40494.03 32496.93 29295.82 38699.20 6894.63 39799.71 1983.09 38299.60 31094.42 32194.64 41297.36 397
BH-w/o95.13 33894.89 34295.86 36598.20 34791.31 37895.65 35997.37 35093.64 36396.52 36095.70 38693.04 30199.02 39788.10 40395.82 40797.24 398
tpm cat193.29 36793.13 36493.75 39597.39 39284.74 41597.39 25997.65 34683.39 41794.16 40098.41 28282.86 38499.39 36891.56 38095.35 41097.14 399
xiu_mvs_v1_base_debu97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
xiu_mvs_v1_base97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
xiu_mvs_v1_base_debi97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
PMVScopyleft91.26 2097.86 21397.94 20397.65 28799.71 4597.94 15998.52 11898.68 30598.99 10097.52 31099.35 9297.41 15098.18 41491.59 37999.67 18296.82 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 32495.60 31696.17 36097.53 38392.75 35698.07 17298.31 32591.22 39294.25 39996.68 36795.53 24399.03 39691.64 37897.18 39096.74 404
MVS-HIRNet94.32 34995.62 31590.42 40498.46 32775.36 42896.29 32689.13 42095.25 33095.38 38799.75 1392.88 30399.19 39194.07 33399.39 25396.72 405
OpenMVS_ROBcopyleft95.38 1495.84 32295.18 33597.81 27298.41 33597.15 21697.37 26298.62 31083.86 41598.65 21298.37 28794.29 27999.68 27588.41 40198.62 34296.60 406
thres100view90094.19 35293.67 35695.75 36999.06 22191.35 37798.03 17894.24 40198.33 14497.40 32094.98 40179.84 39299.62 30383.05 41498.08 36496.29 407
tfpn200view994.03 35693.44 35895.78 36898.93 24291.44 37597.60 24094.29 39997.94 17997.10 33094.31 40879.67 39499.62 30383.05 41498.08 36496.29 407
MVS93.19 36992.09 37396.50 34796.91 40294.03 32498.07 17298.06 33668.01 42294.56 39896.48 37195.96 23099.30 38183.84 41396.89 39596.17 409
gg-mvs-nofinetune92.37 38091.20 38495.85 36695.80 42192.38 36399.31 2781.84 42799.75 891.83 41699.74 1568.29 41399.02 39787.15 40597.12 39196.16 410
xiu_mvs_v2_base97.16 27197.49 23596.17 36098.54 31992.46 36095.45 36798.84 28497.25 24397.48 31496.49 37098.31 7499.90 6896.34 25598.68 33796.15 411
PS-MVSNAJ97.08 27597.39 24096.16 36298.56 31792.46 36095.24 37498.85 28397.25 24397.49 31395.99 37998.07 9699.90 6896.37 25298.67 33896.12 412
E-PMN94.17 35394.37 34893.58 39796.86 40385.71 41390.11 41997.07 36198.17 16497.82 29097.19 35884.62 37098.94 40189.77 39797.68 37496.09 413
EMVS93.83 35994.02 35193.23 40196.83 40584.96 41489.77 42096.32 37897.92 18197.43 31996.36 37686.17 35798.93 40287.68 40497.73 37395.81 414
MVEpermissive83.40 2292.50 37791.92 37994.25 38898.83 26491.64 37292.71 41283.52 42695.92 31186.46 42495.46 39395.20 25295.40 42280.51 41998.64 33995.73 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 36193.14 36395.46 37798.66 30291.29 37996.61 30994.63 39697.39 22996.83 34893.71 41179.88 39199.56 32582.40 41798.13 36195.54 416
API-MVS97.04 27896.91 27097.42 31097.88 36398.23 12698.18 15598.50 31697.57 20797.39 32296.75 36696.77 18899.15 39490.16 39699.02 30994.88 417
GG-mvs-BLEND94.76 38494.54 42392.13 36899.31 2780.47 42888.73 42291.01 42267.59 41798.16 41582.30 41894.53 41493.98 418
DeepMVS_CXcopyleft93.44 39998.24 34494.21 31694.34 39864.28 42391.34 41794.87 40589.45 33892.77 42477.54 42293.14 41793.35 419
tmp_tt78.77 39078.73 39378.90 40658.45 43174.76 43094.20 40078.26 42939.16 42486.71 42392.82 41880.50 39075.19 42686.16 41092.29 41986.74 420
dongtai76.24 39175.95 39477.12 40792.39 42567.91 43190.16 41859.44 43282.04 41889.42 42094.67 40649.68 43081.74 42548.06 42577.66 42381.72 421
kuosan69.30 39268.95 39570.34 40887.68 42965.00 43291.11 41659.90 43169.02 42174.46 42688.89 42348.58 43168.03 42728.61 42672.33 42577.99 422
wuyk23d96.06 31397.62 22891.38 40398.65 30698.57 9898.85 8796.95 36696.86 27199.90 1299.16 13799.18 1798.40 41189.23 40099.77 12977.18 423
test12317.04 39520.11 3987.82 40910.25 4334.91 43494.80 3844.47 4344.93 42710.00 42924.28 4269.69 4323.64 42810.14 42712.43 42714.92 424
testmvs17.12 39420.53 3976.87 41012.05 4324.20 43593.62 4096.73 4334.62 42810.41 42824.33 4258.28 4333.56 4299.69 42815.07 42612.86 425
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k24.66 39332.88 3960.00 4110.00 4340.00 4360.00 42299.10 2360.00 4290.00 43097.58 34199.21 160.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas8.17 39610.90 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42998.07 960.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re8.12 39710.83 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43097.48 3470.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS90.90 38791.37 383
FOURS199.73 3699.67 399.43 1299.54 8499.43 4499.26 119
test_one_060199.39 14299.20 3899.31 17298.49 13798.66 21199.02 16697.64 129
eth-test20.00 434
eth-test0.00 434
ZD-MVS99.01 23098.84 7899.07 24094.10 35798.05 27398.12 30796.36 21099.86 11992.70 36699.19 288
test_241102_ONE99.49 11699.17 4399.31 17297.98 17499.66 4698.90 20098.36 6899.48 352
9.1497.78 21399.07 21697.53 24899.32 16795.53 32298.54 23198.70 23997.58 13499.76 23394.32 32699.46 244
save fliter99.11 20797.97 15496.53 31299.02 25298.24 154
test072699.50 10999.21 3298.17 15899.35 15497.97 17599.26 11999.06 15497.61 132
test_part299.36 15099.10 6499.05 148
sam_mvs84.29 375
MTGPAbinary99.20 211
test_post197.59 24220.48 42883.07 38399.66 28994.16 327
test_post21.25 42783.86 37899.70 262
patchmatchnet-post98.77 22884.37 37299.85 131
MTMP97.93 19391.91 414
gm-plane-assit94.83 42281.97 42588.07 40994.99 40099.60 31091.76 375
TEST998.71 28398.08 14195.96 34499.03 24991.40 39095.85 37597.53 34396.52 20199.76 233
test_898.67 29798.01 14995.91 35099.02 25291.64 38595.79 37797.50 34696.47 20399.76 233
agg_prior98.68 29697.99 15099.01 25595.59 37899.77 227
test_prior497.97 15495.86 351
test_prior295.74 35796.48 28896.11 37097.63 33995.92 23394.16 32799.20 285
旧先验295.76 35688.56 40897.52 31099.66 28994.48 317
新几何295.93 347
原ACMM295.53 363
testdata299.79 21092.80 363
segment_acmp97.02 173
testdata195.44 36896.32 294
plane_prior799.19 18897.87 163
plane_prior698.99 23497.70 18294.90 259
plane_prior497.98 318
plane_prior397.78 17597.41 22797.79 291
plane_prior297.77 21698.20 161
plane_prior199.05 224
plane_prior97.65 18497.07 28496.72 27899.36 257
n20.00 435
nn0.00 435
door-mid99.57 69
test1198.87 275
door99.41 134
HQP5-MVS96.79 233
HQP-NCC98.67 29796.29 32696.05 30395.55 381
ACMP_Plane98.67 29796.29 32696.05 30395.55 381
BP-MVS92.82 361
HQP3-MVS99.04 24799.26 275
HQP2-MVS93.84 287
NP-MVS98.84 26297.39 19996.84 364
MDTV_nov1_ep1395.22 33397.06 40183.20 42297.74 22196.16 37994.37 35196.99 33798.83 21683.95 37799.53 33693.90 33697.95 371
ACMMP++_ref99.77 129
ACMMP++99.68 176
Test By Simon96.52 201