| mvs5depth | | | 99.30 29 | 99.59 9 | 98.44 222 | 99.65 63 | 95.35 279 | 99.82 3 | 99.94 2 | 99.83 4 | 99.42 83 | 99.94 2 | 98.13 91 | 99.96 12 | 99.63 24 | 99.96 23 | 100.00 1 |
|
| test_fmvsmconf0.01_n | | | 99.57 7 | 99.63 7 | 99.36 66 | 99.87 12 | 98.13 133 | 98.08 170 | 99.95 1 | 99.45 37 | 99.98 2 | 99.75 13 | 99.80 1 | 99.97 5 | 99.82 7 | 99.99 5 | 99.99 2 |
|
| fmvsm_s_conf0.1_n_a | | | 99.17 44 | 99.30 35 | 98.80 163 | 99.75 33 | 96.59 242 | 97.97 192 | 99.86 15 | 98.22 153 | 99.88 17 | 99.71 19 | 98.59 50 | 99.84 146 | 99.73 18 | 99.98 12 | 99.98 3 |
|
| mmtdpeth | | | 99.30 29 | 99.42 20 | 98.92 149 | 99.58 76 | 96.89 229 | 99.48 10 | 99.92 7 | 99.92 2 | 98.26 252 | 99.80 9 | 98.33 70 | 99.91 62 | 99.56 29 | 99.95 30 | 99.97 4 |
|
| fmvsm_s_conf0.1_n | | | 99.16 47 | 99.33 29 | 98.64 186 | 99.71 45 | 96.10 253 | 97.87 204 | 99.85 17 | 98.56 131 | 99.90 12 | 99.68 22 | 98.69 41 | 99.85 128 | 99.72 20 | 99.98 12 | 99.97 4 |
|
| test_fmvs3 | | | 99.12 54 | 99.41 21 | 98.25 240 | 99.76 29 | 95.07 291 | 99.05 64 | 99.94 2 | 97.78 189 | 99.82 21 | 99.84 3 | 98.56 54 | 99.71 255 | 99.96 1 | 99.96 23 | 99.97 4 |
|
| test_fmvsmconf0.1_n | | | 99.49 12 | 99.54 11 | 99.34 75 | 99.78 23 | 98.11 134 | 97.77 216 | 99.90 11 | 99.33 51 | 99.97 3 | 99.66 29 | 99.71 3 | 99.96 12 | 99.79 12 | 99.99 5 | 99.96 7 |
|
| test_f | | | 98.67 119 | 98.87 76 | 98.05 257 | 99.72 42 | 95.59 268 | 98.51 123 | 99.81 25 | 96.30 294 | 99.78 27 | 99.82 5 | 96.14 213 | 98.63 406 | 99.82 7 | 99.93 43 | 99.95 8 |
|
| test_fmvs2 | | | 98.70 108 | 98.97 68 | 97.89 264 | 99.54 98 | 94.05 318 | 98.55 114 | 99.92 7 | 96.78 272 | 99.72 32 | 99.78 10 | 96.60 195 | 99.67 275 | 99.91 2 | 99.90 67 | 99.94 9 |
|
| PS-MVSNAJss | | | 99.46 14 | 99.49 13 | 99.35 72 | 99.90 4 | 98.15 130 | 99.20 45 | 99.65 49 | 99.48 33 | 99.92 8 | 99.71 19 | 98.07 93 | 99.96 12 | 99.53 31 | 100.00 1 | 99.93 10 |
|
| test_vis3_rt | | | 99.14 49 | 99.17 46 | 99.07 122 | 99.78 23 | 98.38 111 | 98.92 79 | 99.94 2 | 97.80 187 | 99.91 11 | 99.67 27 | 97.15 162 | 98.91 400 | 99.76 15 | 99.56 216 | 99.92 11 |
|
| MVStest1 | | | 95.86 317 | 95.60 313 | 96.63 341 | 95.87 417 | 91.70 368 | 97.93 193 | 98.94 257 | 98.03 168 | 99.56 53 | 99.66 29 | 71.83 406 | 98.26 410 | 99.35 40 | 99.24 274 | 99.91 12 |
|
| fmvsm_s_conf0.5_n_a | | | 99.10 56 | 99.20 44 | 98.78 169 | 99.55 93 | 96.59 242 | 97.79 213 | 99.82 24 | 98.21 154 | 99.81 24 | 99.53 58 | 98.46 60 | 99.84 146 | 99.70 21 | 99.97 19 | 99.90 13 |
|
| fmvsm_s_conf0.5_n | | | 99.09 57 | 99.26 40 | 98.61 194 | 99.55 93 | 96.09 256 | 97.74 221 | 99.81 25 | 98.55 132 | 99.85 19 | 99.55 52 | 98.60 49 | 99.84 146 | 99.69 23 | 99.98 12 | 99.89 14 |
|
| test_fmvsmconf_n | | | 99.44 15 | 99.48 15 | 99.31 85 | 99.64 69 | 98.10 136 | 97.68 227 | 99.84 20 | 99.29 56 | 99.92 8 | 99.57 45 | 99.60 5 | 99.96 12 | 99.74 17 | 99.98 12 | 99.89 14 |
|
| test_djsdf | | | 99.52 10 | 99.51 12 | 99.53 37 | 99.86 14 | 98.74 84 | 99.39 17 | 99.56 73 | 99.11 76 | 99.70 36 | 99.73 17 | 99.00 22 | 99.97 5 | 99.26 46 | 99.98 12 | 99.89 14 |
|
| mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 51 | 99.88 9 | 98.61 94 | 99.34 20 | 99.71 36 | 99.27 58 | 99.90 12 | 99.74 15 | 99.68 4 | 99.97 5 | 99.55 30 | 99.99 5 | 99.88 17 |
|
| ttmdpeth | | | 97.91 202 | 98.02 191 | 97.58 291 | 98.69 289 | 94.10 317 | 98.13 162 | 98.90 266 | 97.95 174 | 97.32 322 | 99.58 43 | 95.95 228 | 98.75 404 | 96.41 247 | 99.22 278 | 99.87 18 |
|
| jajsoiax | | | 99.58 6 | 99.61 8 | 99.48 53 | 99.87 12 | 98.61 94 | 99.28 37 | 99.66 48 | 99.09 86 | 99.89 15 | 99.68 22 | 99.53 7 | 99.97 5 | 99.50 34 | 99.99 5 | 99.87 18 |
|
| EU-MVSNet | | | 97.66 227 | 98.50 126 | 95.13 378 | 99.63 73 | 85.84 408 | 98.35 142 | 98.21 325 | 98.23 152 | 99.54 57 | 99.46 70 | 95.02 254 | 99.68 272 | 98.24 111 | 99.87 76 | 99.87 18 |
|
| UA-Net | | | 99.47 13 | 99.40 22 | 99.70 2 | 99.49 115 | 99.29 23 | 99.80 4 | 99.72 35 | 99.82 5 | 99.04 147 | 99.81 6 | 98.05 96 | 99.96 12 | 98.85 74 | 99.99 5 | 99.86 21 |
|
| MM | | | 98.22 180 | 97.99 194 | 98.91 150 | 98.66 299 | 96.97 222 | 97.89 200 | 94.44 394 | 99.54 30 | 98.95 162 | 99.14 141 | 93.50 290 | 99.92 53 | 99.80 11 | 99.96 23 | 99.85 22 |
|
| LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 12 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 2 | 100.00 1 | 99.81 10 | 100.00 1 | 99.85 22 |
|
| fmvsm_l_conf0.5_n_a | | | 99.19 43 | 99.27 38 | 98.94 144 | 99.65 63 | 97.05 218 | 97.80 212 | 99.76 31 | 98.70 117 | 99.78 27 | 99.11 144 | 98.79 34 | 99.95 24 | 99.85 5 | 99.96 23 | 99.83 24 |
|
| fmvsm_l_conf0.5_n | | | 99.21 41 | 99.28 37 | 99.02 134 | 99.64 69 | 97.28 204 | 97.82 209 | 99.76 31 | 98.73 114 | 99.82 21 | 99.09 150 | 98.81 32 | 99.95 24 | 99.86 4 | 99.96 23 | 99.83 24 |
|
| mvsany_test3 | | | 98.87 82 | 98.92 71 | 98.74 179 | 99.38 140 | 96.94 226 | 98.58 111 | 99.10 233 | 96.49 284 | 99.96 4 | 99.81 6 | 98.18 84 | 99.45 356 | 98.97 66 | 99.79 115 | 99.83 24 |
|
| SSC-MVS | | | 98.71 104 | 98.74 88 | 98.62 191 | 99.72 42 | 96.08 258 | 98.74 92 | 98.64 306 | 99.74 10 | 99.67 42 | 99.24 115 | 94.57 268 | 99.95 24 | 99.11 55 | 99.24 274 | 99.82 27 |
|
| anonymousdsp | | | 99.51 11 | 99.47 17 | 99.62 9 | 99.88 9 | 99.08 67 | 99.34 20 | 99.69 40 | 98.93 104 | 99.65 46 | 99.72 18 | 98.93 26 | 99.95 24 | 99.11 55 | 100.00 1 | 99.82 27 |
|
| ANet_high | | | 99.57 7 | 99.67 5 | 99.28 87 | 99.89 6 | 98.09 137 | 99.14 54 | 99.93 5 | 99.82 5 | 99.93 6 | 99.81 6 | 99.17 18 | 99.94 37 | 99.31 42 | 100.00 1 | 99.82 27 |
|
| PS-CasMVS | | | 99.40 22 | 99.33 29 | 99.62 9 | 99.71 45 | 99.10 64 | 99.29 33 | 99.53 84 | 99.53 31 | 99.46 75 | 99.41 81 | 98.23 77 | 99.95 24 | 98.89 72 | 99.95 30 | 99.81 30 |
|
| FC-MVSNet-test | | | 99.27 33 | 99.25 41 | 99.34 75 | 99.77 26 | 98.37 113 | 99.30 32 | 99.57 66 | 99.61 26 | 99.40 88 | 99.50 62 | 97.12 163 | 99.85 128 | 99.02 63 | 99.94 38 | 99.80 31 |
|
| test_cas_vis1_n_1920 | | | 98.33 166 | 98.68 101 | 97.27 313 | 99.69 54 | 92.29 362 | 98.03 178 | 99.85 17 | 97.62 198 | 99.96 4 | 99.62 36 | 93.98 283 | 99.74 242 | 99.52 33 | 99.86 80 | 99.79 32 |
|
| test_vis1_n_1920 | | | 98.40 156 | 98.92 71 | 96.81 336 | 99.74 35 | 90.76 387 | 98.15 160 | 99.91 9 | 98.33 141 | 99.89 15 | 99.55 52 | 95.07 253 | 99.88 91 | 99.76 15 | 99.93 43 | 99.79 32 |
|
| CP-MVSNet | | | 99.21 41 | 99.09 57 | 99.56 25 | 99.65 63 | 98.96 74 | 99.13 55 | 99.34 157 | 99.42 42 | 99.33 100 | 99.26 110 | 97.01 171 | 99.94 37 | 98.74 83 | 99.93 43 | 99.79 32 |
|
| UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 17 | 99.34 19 | 99.69 5 | 99.58 59 | 99.90 3 | 99.86 18 | 99.78 10 | 99.58 6 | 99.95 24 | 99.00 64 | 99.95 30 | 99.78 35 |
|
| CVMVSNet | | | 96.25 306 | 97.21 249 | 93.38 397 | 99.10 206 | 80.56 424 | 97.20 274 | 98.19 328 | 96.94 263 | 99.00 152 | 99.02 163 | 89.50 334 | 99.80 194 | 96.36 251 | 99.59 204 | 99.78 35 |
|
| reproduce_monomvs | | | 95.00 339 | 95.25 328 | 94.22 386 | 97.51 385 | 83.34 418 | 97.86 205 | 98.44 315 | 98.51 133 | 99.29 109 | 99.30 101 | 67.68 413 | 99.56 322 | 98.89 72 | 99.81 99 | 99.77 37 |
|
| Anonymous20231211 | | | 99.27 33 | 99.27 38 | 99.26 92 | 99.29 161 | 98.18 128 | 99.49 9 | 99.51 88 | 99.70 12 | 99.80 25 | 99.68 22 | 96.84 178 | 99.83 163 | 99.21 51 | 99.91 61 | 99.77 37 |
|
| PEN-MVS | | | 99.41 21 | 99.34 28 | 99.62 9 | 99.73 36 | 99.14 56 | 99.29 33 | 99.54 81 | 99.62 24 | 99.56 53 | 99.42 77 | 98.16 88 | 99.96 12 | 98.78 78 | 99.93 43 | 99.77 37 |
|
| WR-MVS_H | | | 99.33 27 | 99.22 43 | 99.65 8 | 99.71 45 | 99.24 29 | 99.32 23 | 99.55 77 | 99.46 36 | 99.50 69 | 99.34 93 | 97.30 152 | 99.93 44 | 98.90 70 | 99.93 43 | 99.77 37 |
|
| LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 25 | 99.85 16 | 99.11 63 | 99.90 1 | 99.78 29 | 99.63 21 | 99.78 27 | 99.67 27 | 99.48 9 | 99.81 187 | 99.30 43 | 99.97 19 | 99.77 37 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| WB-MVS | | | 98.52 145 | 98.55 119 | 98.43 223 | 99.65 63 | 95.59 268 | 98.52 118 | 98.77 292 | 99.65 18 | 99.52 63 | 99.00 175 | 94.34 274 | 99.93 44 | 98.65 90 | 98.83 321 | 99.76 42 |
|
| patch_mono-2 | | | 98.51 146 | 98.63 108 | 98.17 246 | 99.38 140 | 94.78 296 | 97.36 260 | 99.69 40 | 98.16 164 | 98.49 233 | 99.29 103 | 97.06 166 | 99.97 5 | 98.29 110 | 99.91 61 | 99.76 42 |
|
| nrg030 | | | 99.40 22 | 99.35 26 | 99.54 30 | 99.58 76 | 99.13 59 | 98.98 72 | 99.48 99 | 99.68 15 | 99.46 75 | 99.26 110 | 98.62 47 | 99.73 247 | 99.17 54 | 99.92 54 | 99.76 42 |
|
| FIs | | | 99.14 49 | 99.09 57 | 99.29 86 | 99.70 52 | 98.28 119 | 99.13 55 | 99.52 87 | 99.48 33 | 99.24 121 | 99.41 81 | 96.79 184 | 99.82 173 | 98.69 88 | 99.88 73 | 99.76 42 |
|
| v7n | | | 99.53 9 | 99.57 10 | 99.41 62 | 99.88 9 | 98.54 102 | 99.45 11 | 99.61 55 | 99.66 17 | 99.68 40 | 99.66 29 | 98.44 61 | 99.95 24 | 99.73 18 | 99.96 23 | 99.75 46 |
|
| APDe-MVS |  | | 98.99 66 | 98.79 85 | 99.60 14 | 99.21 178 | 99.15 51 | 98.87 84 | 99.48 99 | 97.57 204 | 99.35 97 | 99.24 115 | 97.83 109 | 99.89 79 | 97.88 137 | 99.70 165 | 99.75 46 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DTE-MVSNet | | | 99.43 19 | 99.35 26 | 99.66 7 | 99.71 45 | 99.30 21 | 99.31 27 | 99.51 88 | 99.64 19 | 99.56 53 | 99.46 70 | 98.23 77 | 99.97 5 | 98.78 78 | 99.93 43 | 99.72 48 |
|
| MSC_two_6792asdad | | | | | 99.32 82 | 98.43 328 | 98.37 113 | | 98.86 277 | | | | | 99.89 79 | 97.14 179 | 99.60 200 | 99.71 49 |
|
| No_MVS | | | | | 99.32 82 | 98.43 328 | 98.37 113 | | 98.86 277 | | | | | 99.89 79 | 97.14 179 | 99.60 200 | 99.71 49 |
|
| PMMVS2 | | | 98.07 193 | 98.08 186 | 98.04 258 | 99.41 137 | 94.59 305 | 94.59 390 | 99.40 134 | 97.50 212 | 98.82 189 | 98.83 213 | 96.83 180 | 99.84 146 | 97.50 161 | 99.81 99 | 99.71 49 |
|
| Baseline_NR-MVSNet | | | 98.98 69 | 98.86 79 | 99.36 66 | 99.82 19 | 98.55 99 | 97.47 254 | 99.57 66 | 99.37 46 | 99.21 124 | 99.61 39 | 96.76 187 | 99.83 163 | 98.06 124 | 99.83 92 | 99.71 49 |
|
| XXY-MVS | | | 99.14 49 | 99.15 53 | 99.10 116 | 99.76 29 | 97.74 178 | 98.85 87 | 99.62 52 | 98.48 135 | 99.37 93 | 99.49 67 | 98.75 36 | 99.86 116 | 98.20 114 | 99.80 110 | 99.71 49 |
|
| test_0728_THIRD | | | | | | | | | | 98.17 161 | 99.08 138 | 99.02 163 | 97.89 106 | 99.88 91 | 97.07 185 | 99.71 158 | 99.70 54 |
|
| MSP-MVS | | | 98.40 156 | 98.00 193 | 99.61 12 | 99.57 81 | 99.25 28 | 98.57 112 | 99.35 151 | 97.55 208 | 99.31 108 | 97.71 330 | 94.61 267 | 99.88 91 | 96.14 264 | 99.19 285 | 99.70 54 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| dcpmvs_2 | | | 98.78 95 | 99.11 54 | 97.78 271 | 99.56 89 | 93.67 337 | 99.06 62 | 99.86 15 | 99.50 32 | 99.66 43 | 99.26 110 | 97.21 160 | 99.99 2 | 98.00 129 | 99.91 61 | 99.68 56 |
|
| test_0728_SECOND | | | | | 99.60 14 | 99.50 108 | 99.23 30 | 98.02 180 | 99.32 164 | | | | | 99.88 91 | 96.99 191 | 99.63 190 | 99.68 56 |
|
| OurMVSNet-221017-0 | | | 99.37 25 | 99.31 33 | 99.53 37 | 99.91 3 | 98.98 69 | 99.63 7 | 99.58 59 | 99.44 39 | 99.78 27 | 99.76 12 | 96.39 203 | 99.92 53 | 99.44 37 | 99.92 54 | 99.68 56 |
|
| CHOSEN 1792x2688 | | | 97.49 239 | 97.14 254 | 98.54 209 | 99.68 56 | 96.09 256 | 96.50 310 | 99.62 52 | 91.58 384 | 98.84 185 | 98.97 182 | 92.36 308 | 99.88 91 | 96.76 214 | 99.95 30 | 99.67 59 |
|
| reproduce_model | | | 99.15 48 | 98.97 68 | 99.67 4 | 99.33 154 | 99.44 10 | 98.15 160 | 99.47 107 | 99.12 75 | 99.52 63 | 99.32 99 | 98.31 71 | 99.90 68 | 97.78 143 | 99.73 145 | 99.66 60 |
|
| IU-MVS | | | | | | 99.49 115 | 99.15 51 | | 98.87 272 | 92.97 369 | 99.41 85 | | | | 96.76 214 | 99.62 193 | 99.66 60 |
|
| test_241102_TWO | | | | | | | | | 99.30 177 | 98.03 168 | 99.26 116 | 99.02 163 | 97.51 140 | 99.88 91 | 96.91 197 | 99.60 200 | 99.66 60 |
|
| DPE-MVS |  | | 98.59 132 | 98.26 164 | 99.57 20 | 99.27 164 | 99.15 51 | 97.01 283 | 99.39 136 | 97.67 194 | 99.44 79 | 98.99 176 | 97.53 137 | 99.89 79 | 95.40 294 | 99.68 173 | 99.66 60 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| TransMVSNet (Re) | | | 99.44 15 | 99.47 17 | 99.36 66 | 99.80 20 | 98.58 97 | 99.27 39 | 99.57 66 | 99.39 44 | 99.75 31 | 99.62 36 | 99.17 18 | 99.83 163 | 99.06 59 | 99.62 193 | 99.66 60 |
|
| EI-MVSNet-UG-set | | | 98.69 111 | 98.71 95 | 98.62 191 | 99.10 206 | 96.37 247 | 97.23 270 | 98.87 272 | 99.20 65 | 99.19 126 | 98.99 176 | 97.30 152 | 99.85 128 | 98.77 81 | 99.79 115 | 99.65 65 |
|
| pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 14 | 99.90 4 | 99.27 26 | 99.53 8 | 99.76 31 | 99.64 19 | 99.84 20 | 99.83 4 | 99.50 8 | 99.87 108 | 99.36 39 | 99.92 54 | 99.64 66 |
|
| EI-MVSNet-Vis-set | | | 98.68 116 | 98.70 98 | 98.63 190 | 99.09 209 | 96.40 246 | 97.23 270 | 98.86 277 | 99.20 65 | 99.18 130 | 98.97 182 | 97.29 154 | 99.85 128 | 98.72 85 | 99.78 120 | 99.64 66 |
|
| ACMH | | 96.65 7 | 99.25 36 | 99.24 42 | 99.26 92 | 99.72 42 | 98.38 111 | 99.07 61 | 99.55 77 | 98.30 145 | 99.65 46 | 99.45 74 | 99.22 15 | 99.76 230 | 98.44 102 | 99.77 126 | 99.64 66 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DP-MVS | | | 98.93 75 | 98.81 84 | 99.28 87 | 99.21 178 | 98.45 108 | 98.46 131 | 99.33 162 | 99.63 21 | 99.48 70 | 99.15 138 | 97.23 158 | 99.75 237 | 97.17 175 | 99.66 184 | 99.63 69 |
|
| reproduce-ours | | | 99.09 57 | 98.90 73 | 99.67 4 | 99.27 164 | 99.49 6 | 98.00 184 | 99.42 127 | 99.05 91 | 99.48 70 | 99.27 106 | 98.29 73 | 99.89 79 | 97.61 153 | 99.71 158 | 99.62 70 |
|
| our_new_method | | | 99.09 57 | 98.90 73 | 99.67 4 | 99.27 164 | 99.49 6 | 98.00 184 | 99.42 127 | 99.05 91 | 99.48 70 | 99.27 106 | 98.29 73 | 99.89 79 | 97.61 153 | 99.71 158 | 99.62 70 |
|
| test_fmvs1_n | | | 98.09 191 | 98.28 160 | 97.52 299 | 99.68 56 | 93.47 341 | 98.63 105 | 99.93 5 | 95.41 325 | 99.68 40 | 99.64 34 | 91.88 315 | 99.48 349 | 99.82 7 | 99.87 76 | 99.62 70 |
|
| test1111 | | | 96.49 299 | 96.82 273 | 95.52 371 | 99.42 135 | 87.08 405 | 99.22 42 | 87.14 419 | 99.11 76 | 99.46 75 | 99.58 43 | 88.69 338 | 99.86 116 | 98.80 76 | 99.95 30 | 99.62 70 |
|
| VPA-MVSNet | | | 99.30 29 | 99.30 35 | 99.28 87 | 99.49 115 | 98.36 116 | 99.00 69 | 99.45 114 | 99.63 21 | 99.52 63 | 99.44 75 | 98.25 75 | 99.88 91 | 99.09 57 | 99.84 85 | 99.62 70 |
|
| LPG-MVS_test | | | 98.71 104 | 98.46 135 | 99.47 56 | 99.57 81 | 98.97 70 | 98.23 150 | 99.48 99 | 96.60 279 | 99.10 136 | 99.06 151 | 98.71 39 | 99.83 163 | 95.58 290 | 99.78 120 | 99.62 70 |
|
| LGP-MVS_train | | | | | 99.47 56 | 99.57 81 | 98.97 70 | | 99.48 99 | 96.60 279 | 99.10 136 | 99.06 151 | 98.71 39 | 99.83 163 | 95.58 290 | 99.78 120 | 99.62 70 |
|
| Test_1112_low_res | | | 96.99 280 | 96.55 291 | 98.31 236 | 99.35 151 | 95.47 275 | 95.84 351 | 99.53 84 | 91.51 386 | 96.80 347 | 98.48 274 | 91.36 319 | 99.83 163 | 96.58 229 | 99.53 226 | 99.62 70 |
|
| v10 | | | 98.97 70 | 99.11 54 | 98.55 206 | 99.44 129 | 96.21 252 | 98.90 80 | 99.55 77 | 98.73 114 | 99.48 70 | 99.60 41 | 96.63 194 | 99.83 163 | 99.70 21 | 99.99 5 | 99.61 78 |
|
| test_vis1_n | | | 98.31 169 | 98.50 126 | 97.73 280 | 99.76 29 | 94.17 315 | 98.68 102 | 99.91 9 | 96.31 292 | 99.79 26 | 99.57 45 | 92.85 302 | 99.42 361 | 99.79 12 | 99.84 85 | 99.60 79 |
|
| v8 | | | 99.01 64 | 99.16 48 | 98.57 201 | 99.47 124 | 96.31 250 | 98.90 80 | 99.47 107 | 99.03 94 | 99.52 63 | 99.57 45 | 96.93 174 | 99.81 187 | 99.60 25 | 99.98 12 | 99.60 79 |
|
| EI-MVSNet | | | 98.40 156 | 98.51 124 | 98.04 258 | 99.10 206 | 94.73 299 | 97.20 274 | 98.87 272 | 98.97 100 | 99.06 140 | 99.02 163 | 96.00 220 | 99.80 194 | 98.58 93 | 99.82 95 | 99.60 79 |
|
| SixPastTwentyTwo | | | 98.75 100 | 98.62 110 | 99.16 107 | 99.83 18 | 97.96 157 | 99.28 37 | 98.20 326 | 99.37 46 | 99.70 36 | 99.65 33 | 92.65 306 | 99.93 44 | 99.04 61 | 99.84 85 | 99.60 79 |
|
| IterMVS-LS | | | 98.55 138 | 98.70 98 | 98.09 250 | 99.48 122 | 94.73 299 | 97.22 273 | 99.39 136 | 98.97 100 | 99.38 91 | 99.31 100 | 96.00 220 | 99.93 44 | 98.58 93 | 99.97 19 | 99.60 79 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| HyFIR lowres test | | | 97.19 265 | 96.60 289 | 98.96 141 | 99.62 75 | 97.28 204 | 95.17 372 | 99.50 90 | 94.21 351 | 99.01 151 | 98.32 291 | 86.61 350 | 99.99 2 | 97.10 183 | 99.84 85 | 99.60 79 |
|
| ACMMP_NAP | | | 98.75 100 | 98.48 131 | 99.57 20 | 99.58 76 | 99.29 23 | 97.82 209 | 99.25 197 | 96.94 263 | 98.78 192 | 99.12 143 | 98.02 97 | 99.84 146 | 97.13 181 | 99.67 179 | 99.59 85 |
|
| VPNet | | | 98.87 82 | 98.83 81 | 99.01 135 | 99.70 52 | 97.62 187 | 98.43 134 | 99.35 151 | 99.47 35 | 99.28 110 | 99.05 158 | 96.72 190 | 99.82 173 | 98.09 121 | 99.36 254 | 99.59 85 |
|
| WR-MVS | | | 98.40 156 | 98.19 172 | 99.03 132 | 99.00 228 | 97.65 184 | 96.85 293 | 98.94 257 | 98.57 128 | 98.89 175 | 98.50 271 | 95.60 238 | 99.85 128 | 97.54 158 | 99.85 81 | 99.59 85 |
|
| HPM-MVS |  | | 98.79 93 | 98.53 122 | 99.59 18 | 99.65 63 | 99.29 23 | 99.16 51 | 99.43 124 | 96.74 274 | 98.61 215 | 98.38 283 | 98.62 47 | 99.87 108 | 96.47 243 | 99.67 179 | 99.59 85 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EG-PatchMatch MVS | | | 98.99 66 | 99.01 63 | 98.94 144 | 99.50 108 | 97.47 193 | 98.04 177 | 99.59 57 | 98.15 165 | 99.40 88 | 99.36 88 | 98.58 53 | 99.76 230 | 98.78 78 | 99.68 173 | 99.59 85 |
|
| Vis-MVSNet |  | | 99.34 26 | 99.36 25 | 99.27 90 | 99.73 36 | 98.26 120 | 99.17 50 | 99.78 29 | 99.11 76 | 99.27 112 | 99.48 68 | 98.82 31 | 99.95 24 | 98.94 68 | 99.93 43 | 99.59 85 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MP-MVS-pluss | | | 98.57 133 | 98.23 168 | 99.60 14 | 99.69 54 | 99.35 16 | 97.16 278 | 99.38 138 | 94.87 336 | 98.97 158 | 98.99 176 | 98.01 98 | 99.88 91 | 97.29 169 | 99.70 165 | 99.58 91 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| region2R | | | 98.69 111 | 98.40 143 | 99.54 30 | 99.53 101 | 99.17 43 | 98.52 118 | 99.31 169 | 97.46 220 | 98.44 237 | 98.51 267 | 97.83 109 | 99.88 91 | 96.46 244 | 99.58 209 | 99.58 91 |
|
| ACMMPR | | | 98.70 108 | 98.42 141 | 99.54 30 | 99.52 103 | 99.14 56 | 98.52 118 | 99.31 169 | 97.47 215 | 98.56 224 | 98.54 262 | 97.75 117 | 99.88 91 | 96.57 231 | 99.59 204 | 99.58 91 |
|
| PGM-MVS | | | 98.66 120 | 98.37 149 | 99.55 27 | 99.53 101 | 99.18 42 | 98.23 150 | 99.49 97 | 97.01 260 | 98.69 203 | 98.88 204 | 98.00 99 | 99.89 79 | 95.87 276 | 99.59 204 | 99.58 91 |
|
| SteuartSystems-ACMMP | | | 98.79 93 | 98.54 121 | 99.54 30 | 99.73 36 | 99.16 47 | 98.23 150 | 99.31 169 | 97.92 178 | 98.90 173 | 98.90 197 | 98.00 99 | 99.88 91 | 96.15 263 | 99.72 153 | 99.58 91 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SDMVSNet | | | 99.23 40 | 99.32 31 | 98.96 141 | 99.68 56 | 97.35 200 | 98.84 89 | 99.48 99 | 99.69 13 | 99.63 49 | 99.68 22 | 99.03 21 | 99.96 12 | 97.97 131 | 99.92 54 | 99.57 96 |
|
| sd_testset | | | 99.28 32 | 99.31 33 | 99.19 103 | 99.68 56 | 98.06 146 | 99.41 14 | 99.30 177 | 99.69 13 | 99.63 49 | 99.68 22 | 99.25 14 | 99.96 12 | 97.25 172 | 99.92 54 | 99.57 96 |
|
| TranMVSNet+NR-MVSNet | | | 99.17 44 | 99.07 60 | 99.46 58 | 99.37 146 | 98.87 77 | 98.39 138 | 99.42 127 | 99.42 42 | 99.36 95 | 99.06 151 | 98.38 64 | 99.95 24 | 98.34 107 | 99.90 67 | 99.57 96 |
|
| mPP-MVS | | | 98.64 123 | 98.34 153 | 99.54 30 | 99.54 98 | 99.17 43 | 98.63 105 | 99.24 202 | 97.47 215 | 98.09 266 | 98.68 239 | 97.62 128 | 99.89 79 | 96.22 258 | 99.62 193 | 99.57 96 |
|
| PVSNet_Blended_VisFu | | | 98.17 187 | 98.15 178 | 98.22 243 | 99.73 36 | 95.15 287 | 97.36 260 | 99.68 45 | 94.45 346 | 98.99 153 | 99.27 106 | 96.87 177 | 99.94 37 | 97.13 181 | 99.91 61 | 99.57 96 |
|
| 1112_ss | | | 97.29 257 | 96.86 269 | 98.58 198 | 99.34 153 | 96.32 249 | 96.75 299 | 99.58 59 | 93.14 367 | 96.89 342 | 97.48 344 | 92.11 312 | 99.86 116 | 96.91 197 | 99.54 222 | 99.57 96 |
|
| MTAPA | | | 98.88 81 | 98.64 107 | 99.61 12 | 99.67 60 | 99.36 15 | 98.43 134 | 99.20 208 | 98.83 113 | 98.89 175 | 98.90 197 | 96.98 173 | 99.92 53 | 97.16 176 | 99.70 165 | 99.56 102 |
|
| XVS | | | 98.72 103 | 98.45 136 | 99.53 37 | 99.46 125 | 99.21 32 | 98.65 103 | 99.34 157 | 98.62 122 | 97.54 305 | 98.63 251 | 97.50 141 | 99.83 163 | 96.79 210 | 99.53 226 | 99.56 102 |
|
| pm-mvs1 | | | 99.44 15 | 99.48 15 | 99.33 80 | 99.80 20 | 98.63 91 | 99.29 33 | 99.63 51 | 99.30 55 | 99.65 46 | 99.60 41 | 99.16 20 | 99.82 173 | 99.07 58 | 99.83 92 | 99.56 102 |
|
| X-MVStestdata | | | 94.32 346 | 92.59 364 | 99.53 37 | 99.46 125 | 99.21 32 | 98.65 103 | 99.34 157 | 98.62 122 | 97.54 305 | 45.85 421 | 97.50 141 | 99.83 163 | 96.79 210 | 99.53 226 | 99.56 102 |
|
| HPM-MVS_fast | | | 99.01 64 | 98.82 82 | 99.57 20 | 99.71 45 | 99.35 16 | 99.00 69 | 99.50 90 | 97.33 231 | 98.94 169 | 98.86 207 | 98.75 36 | 99.82 173 | 97.53 159 | 99.71 158 | 99.56 102 |
|
| K. test v3 | | | 98.00 197 | 97.66 221 | 99.03 132 | 99.79 22 | 97.56 189 | 99.19 49 | 92.47 406 | 99.62 24 | 99.52 63 | 99.66 29 | 89.61 332 | 99.96 12 | 99.25 48 | 99.81 99 | 99.56 102 |
|
| CP-MVS | | | 98.70 108 | 98.42 141 | 99.52 42 | 99.36 147 | 99.12 61 | 98.72 97 | 99.36 146 | 97.54 209 | 98.30 246 | 98.40 280 | 97.86 108 | 99.89 79 | 96.53 240 | 99.72 153 | 99.56 102 |
|
| ZNCC-MVS | | | 98.68 116 | 98.40 143 | 99.54 30 | 99.57 81 | 99.21 32 | 98.46 131 | 99.29 185 | 97.28 237 | 98.11 264 | 98.39 281 | 98.00 99 | 99.87 108 | 96.86 207 | 99.64 187 | 99.55 109 |
|
| v1192 | | | 98.60 130 | 98.66 104 | 98.41 225 | 99.27 164 | 95.88 262 | 97.52 248 | 99.36 146 | 97.41 224 | 99.33 100 | 99.20 123 | 96.37 206 | 99.82 173 | 99.57 27 | 99.92 54 | 99.55 109 |
|
| v1240 | | | 98.55 138 | 98.62 110 | 98.32 234 | 99.22 176 | 95.58 270 | 97.51 250 | 99.45 114 | 97.16 252 | 99.45 78 | 99.24 115 | 96.12 215 | 99.85 128 | 99.60 25 | 99.88 73 | 99.55 109 |
|
| UGNet | | | 98.53 142 | 98.45 136 | 98.79 166 | 97.94 357 | 96.96 224 | 99.08 58 | 98.54 310 | 99.10 83 | 96.82 346 | 99.47 69 | 96.55 197 | 99.84 146 | 98.56 98 | 99.94 38 | 99.55 109 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WBMVS | | | 95.18 334 | 94.78 340 | 96.37 347 | 97.68 373 | 89.74 394 | 95.80 352 | 98.73 299 | 97.54 209 | 98.30 246 | 98.44 277 | 70.06 407 | 99.82 173 | 96.62 226 | 99.87 76 | 99.54 113 |
|
| test2506 | | | 92.39 375 | 91.89 377 | 93.89 391 | 99.38 140 | 82.28 421 | 99.32 23 | 66.03 427 | 99.08 88 | 98.77 195 | 99.57 45 | 66.26 417 | 99.84 146 | 98.71 86 | 99.95 30 | 99.54 113 |
|
| ECVR-MVS |  | | 96.42 301 | 96.61 287 | 95.85 363 | 99.38 140 | 88.18 401 | 99.22 42 | 86.00 421 | 99.08 88 | 99.36 95 | 99.57 45 | 88.47 343 | 99.82 173 | 98.52 99 | 99.95 30 | 99.54 113 |
|
| v144192 | | | 98.54 140 | 98.57 118 | 98.45 220 | 99.21 178 | 95.98 259 | 97.63 235 | 99.36 146 | 97.15 254 | 99.32 106 | 99.18 128 | 95.84 232 | 99.84 146 | 99.50 34 | 99.91 61 | 99.54 113 |
|
| v1921920 | | | 98.54 140 | 98.60 115 | 98.38 228 | 99.20 182 | 95.76 267 | 97.56 244 | 99.36 146 | 97.23 246 | 99.38 91 | 99.17 132 | 96.02 218 | 99.84 146 | 99.57 27 | 99.90 67 | 99.54 113 |
|
| MP-MVS |  | | 98.46 150 | 98.09 183 | 99.54 30 | 99.57 81 | 99.22 31 | 98.50 125 | 99.19 212 | 97.61 201 | 97.58 301 | 98.66 244 | 97.40 148 | 99.88 91 | 94.72 309 | 99.60 200 | 99.54 113 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MIMVSNet1 | | | 99.38 24 | 99.32 31 | 99.55 27 | 99.86 14 | 99.19 41 | 99.41 14 | 99.59 57 | 99.59 27 | 99.71 34 | 99.57 45 | 97.12 163 | 99.90 68 | 99.21 51 | 99.87 76 | 99.54 113 |
|
| ACMMP |  | | 98.75 100 | 98.50 126 | 99.52 42 | 99.56 89 | 99.16 47 | 98.87 84 | 99.37 142 | 97.16 252 | 98.82 189 | 99.01 172 | 97.71 119 | 99.87 108 | 96.29 255 | 99.69 168 | 99.54 113 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SMA-MVS |  | | 98.40 156 | 98.03 190 | 99.51 46 | 99.16 195 | 99.21 32 | 98.05 175 | 99.22 205 | 94.16 352 | 98.98 154 | 99.10 147 | 97.52 139 | 99.79 207 | 96.45 245 | 99.64 187 | 99.53 121 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HFP-MVS | | | 98.71 104 | 98.44 138 | 99.51 46 | 99.49 115 | 99.16 47 | 98.52 118 | 99.31 169 | 97.47 215 | 98.58 221 | 98.50 271 | 97.97 103 | 99.85 128 | 96.57 231 | 99.59 204 | 99.53 121 |
|
| UniMVSNet_NR-MVSNet | | | 98.86 85 | 98.68 101 | 99.40 64 | 99.17 193 | 98.74 84 | 97.68 227 | 99.40 134 | 99.14 74 | 99.06 140 | 98.59 258 | 96.71 191 | 99.93 44 | 98.57 95 | 99.77 126 | 99.53 121 |
|
| GST-MVS | | | 98.61 129 | 98.30 158 | 99.52 42 | 99.51 105 | 99.20 38 | 98.26 148 | 99.25 197 | 97.44 223 | 98.67 206 | 98.39 281 | 97.68 120 | 99.85 128 | 96.00 268 | 99.51 231 | 99.52 124 |
|
| MVS_0304 | | | 97.44 244 | 97.01 260 | 98.72 180 | 96.42 410 | 96.74 237 | 97.20 274 | 91.97 410 | 98.46 136 | 98.30 246 | 98.79 221 | 92.74 304 | 99.91 62 | 99.30 43 | 99.94 38 | 99.52 124 |
|
| TDRefinement | | | 99.42 20 | 99.38 24 | 99.55 27 | 99.76 29 | 99.33 20 | 99.68 6 | 99.71 36 | 99.38 45 | 99.53 61 | 99.61 39 | 98.64 44 | 99.80 194 | 98.24 111 | 99.84 85 | 99.52 124 |
|
| v1144 | | | 98.60 130 | 98.66 104 | 98.41 225 | 99.36 147 | 95.90 261 | 97.58 242 | 99.34 157 | 97.51 211 | 99.27 112 | 99.15 138 | 96.34 208 | 99.80 194 | 99.47 36 | 99.93 43 | 99.51 127 |
|
| v2v482 | | | 98.56 134 | 98.62 110 | 98.37 230 | 99.42 135 | 95.81 265 | 97.58 242 | 99.16 223 | 97.90 180 | 99.28 110 | 99.01 172 | 95.98 225 | 99.79 207 | 99.33 41 | 99.90 67 | 99.51 127 |
|
| CPTT-MVS | | | 97.84 216 | 97.36 240 | 99.27 90 | 99.31 156 | 98.46 107 | 98.29 145 | 99.27 191 | 94.90 335 | 97.83 285 | 98.37 284 | 94.90 256 | 99.84 146 | 93.85 337 | 99.54 222 | 99.51 127 |
|
| DU-MVS | | | 98.82 89 | 98.63 108 | 99.39 65 | 99.16 195 | 98.74 84 | 97.54 246 | 99.25 197 | 98.84 112 | 99.06 140 | 98.76 227 | 96.76 187 | 99.93 44 | 98.57 95 | 99.77 126 | 99.50 130 |
|
| NR-MVSNet | | | 98.95 73 | 98.82 82 | 99.36 66 | 99.16 195 | 98.72 89 | 99.22 42 | 99.20 208 | 99.10 83 | 99.72 32 | 98.76 227 | 96.38 205 | 99.86 116 | 98.00 129 | 99.82 95 | 99.50 130 |
|
| casdiffmvs_mvg |  | | 99.12 54 | 99.16 48 | 98.99 137 | 99.43 134 | 97.73 180 | 98.00 184 | 99.62 52 | 99.22 61 | 99.55 56 | 99.22 120 | 98.93 26 | 99.75 237 | 98.66 89 | 99.81 99 | 99.50 130 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ACMH+ | | 96.62 9 | 99.08 61 | 99.00 64 | 99.33 80 | 99.71 45 | 98.83 79 | 98.60 109 | 99.58 59 | 99.11 76 | 99.53 61 | 99.18 128 | 98.81 32 | 99.67 275 | 96.71 221 | 99.77 126 | 99.50 130 |
|
| DVP-MVS++ | | | 98.90 79 | 98.70 98 | 99.51 46 | 98.43 328 | 99.15 51 | 99.43 12 | 99.32 164 | 98.17 161 | 99.26 116 | 99.02 163 | 98.18 84 | 99.88 91 | 97.07 185 | 99.45 243 | 99.49 134 |
|
| PC_three_1452 | | | | | | | | | | 93.27 365 | 99.40 88 | 98.54 262 | 98.22 80 | 97.00 416 | 95.17 297 | 99.45 243 | 99.49 134 |
|
| GeoE | | | 99.05 62 | 98.99 66 | 99.25 95 | 99.44 129 | 98.35 117 | 98.73 96 | 99.56 73 | 98.42 137 | 98.91 172 | 98.81 218 | 98.94 25 | 99.91 62 | 98.35 106 | 99.73 145 | 99.49 134 |
|
| h-mvs33 | | | 97.77 219 | 97.33 243 | 99.10 116 | 99.21 178 | 97.84 166 | 98.35 142 | 98.57 309 | 99.11 76 | 98.58 221 | 99.02 163 | 88.65 341 | 99.96 12 | 98.11 119 | 96.34 397 | 99.49 134 |
|
| IterMVS-SCA-FT | | | 97.85 215 | 98.18 173 | 96.87 332 | 99.27 164 | 91.16 381 | 95.53 360 | 99.25 197 | 99.10 83 | 99.41 85 | 99.35 89 | 93.10 295 | 99.96 12 | 98.65 90 | 99.94 38 | 99.49 134 |
|
| new-patchmatchnet | | | 98.35 162 | 98.74 88 | 97.18 316 | 99.24 171 | 92.23 364 | 96.42 315 | 99.48 99 | 98.30 145 | 99.69 38 | 99.53 58 | 97.44 146 | 99.82 173 | 98.84 75 | 99.77 126 | 99.49 134 |
|
| APD-MVS |  | | 98.10 189 | 97.67 218 | 99.42 60 | 99.11 204 | 98.93 75 | 97.76 219 | 99.28 188 | 94.97 333 | 98.72 201 | 98.77 225 | 97.04 167 | 99.85 128 | 93.79 338 | 99.54 222 | 99.49 134 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| EPP-MVSNet | | | 98.30 170 | 98.04 189 | 99.07 122 | 99.56 89 | 97.83 167 | 99.29 33 | 98.07 332 | 99.03 94 | 98.59 219 | 99.13 142 | 92.16 311 | 99.90 68 | 96.87 205 | 99.68 173 | 99.49 134 |
|
| DeepC-MVS | | 97.60 4 | 98.97 70 | 98.93 70 | 99.10 116 | 99.35 151 | 97.98 153 | 98.01 183 | 99.46 110 | 97.56 206 | 99.54 57 | 99.50 62 | 98.97 23 | 99.84 146 | 98.06 124 | 99.92 54 | 99.49 134 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMM | | 96.08 12 | 98.91 77 | 98.73 90 | 99.48 53 | 99.55 93 | 99.14 56 | 98.07 172 | 99.37 142 | 97.62 198 | 99.04 147 | 98.96 185 | 98.84 30 | 99.79 207 | 97.43 163 | 99.65 185 | 99.49 134 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DVP-MVS |  | | 98.77 98 | 98.52 123 | 99.52 42 | 99.50 108 | 99.21 32 | 98.02 180 | 98.84 281 | 97.97 172 | 99.08 138 | 99.02 163 | 97.61 129 | 99.88 91 | 96.99 191 | 99.63 190 | 99.48 144 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| SR-MVS | | | 98.71 104 | 98.43 139 | 99.57 20 | 99.18 192 | 99.35 16 | 98.36 141 | 99.29 185 | 98.29 148 | 98.88 178 | 98.85 210 | 97.53 137 | 99.87 108 | 96.14 264 | 99.31 262 | 99.48 144 |
|
| TSAR-MVS + MP. | | | 98.63 125 | 98.49 130 | 99.06 128 | 99.64 69 | 97.90 161 | 98.51 123 | 98.94 257 | 96.96 261 | 99.24 121 | 98.89 203 | 97.83 109 | 99.81 187 | 96.88 204 | 99.49 239 | 99.48 144 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| VDDNet | | | 98.21 182 | 97.95 198 | 99.01 135 | 99.58 76 | 97.74 178 | 99.01 67 | 97.29 352 | 99.67 16 | 98.97 158 | 99.50 62 | 90.45 327 | 99.80 194 | 97.88 137 | 99.20 282 | 99.48 144 |
|
| IterMVS | | | 97.73 221 | 98.11 182 | 96.57 342 | 99.24 171 | 90.28 390 | 95.52 362 | 99.21 206 | 98.86 109 | 99.33 100 | 99.33 95 | 93.11 294 | 99.94 37 | 98.49 100 | 99.94 38 | 99.48 144 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IS-MVSNet | | | 98.19 184 | 97.90 204 | 99.08 120 | 99.57 81 | 97.97 154 | 99.31 27 | 98.32 321 | 99.01 96 | 98.98 154 | 99.03 162 | 91.59 317 | 99.79 207 | 95.49 292 | 99.80 110 | 99.48 144 |
|
| ACMP | | 95.32 15 | 98.41 154 | 98.09 183 | 99.36 66 | 99.51 105 | 98.79 82 | 97.68 227 | 99.38 138 | 95.76 312 | 98.81 191 | 98.82 216 | 98.36 65 | 99.82 173 | 94.75 306 | 99.77 126 | 99.48 144 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MCST-MVS | | | 98.00 197 | 97.63 224 | 99.10 116 | 99.24 171 | 98.17 129 | 96.89 292 | 98.73 299 | 95.66 313 | 97.92 276 | 97.70 332 | 97.17 161 | 99.66 286 | 96.18 262 | 99.23 277 | 99.47 151 |
|
| 3Dnovator+ | | 97.89 3 | 98.69 111 | 98.51 124 | 99.24 97 | 98.81 266 | 98.40 109 | 99.02 66 | 99.19 212 | 98.99 97 | 98.07 267 | 99.28 104 | 97.11 165 | 99.84 146 | 96.84 208 | 99.32 260 | 99.47 151 |
|
| HPM-MVS++ |  | | 98.10 189 | 97.64 223 | 99.48 53 | 99.09 209 | 99.13 59 | 97.52 248 | 98.75 296 | 97.46 220 | 96.90 341 | 97.83 325 | 96.01 219 | 99.84 146 | 95.82 280 | 99.35 256 | 99.46 153 |
|
| V42 | | | 98.78 95 | 98.78 86 | 98.76 173 | 99.44 129 | 97.04 219 | 98.27 147 | 99.19 212 | 97.87 182 | 99.25 120 | 99.16 134 | 96.84 178 | 99.78 218 | 99.21 51 | 99.84 85 | 99.46 153 |
|
| APD-MVS_3200maxsize | | | 98.84 86 | 98.61 114 | 99.53 37 | 99.19 185 | 99.27 26 | 98.49 126 | 99.33 162 | 98.64 118 | 99.03 150 | 98.98 180 | 97.89 106 | 99.85 128 | 96.54 239 | 99.42 247 | 99.46 153 |
|
| UniMVSNet (Re) | | | 98.87 82 | 98.71 95 | 99.35 72 | 99.24 171 | 98.73 87 | 97.73 223 | 99.38 138 | 98.93 104 | 99.12 132 | 98.73 230 | 96.77 185 | 99.86 116 | 98.63 92 | 99.80 110 | 99.46 153 |
|
| SR-MVS-dyc-post | | | 98.81 91 | 98.55 119 | 99.57 20 | 99.20 182 | 99.38 12 | 98.48 129 | 99.30 177 | 98.64 118 | 98.95 162 | 98.96 185 | 97.49 144 | 99.86 116 | 96.56 235 | 99.39 250 | 99.45 157 |
|
| RE-MVS-def | | | | 98.58 117 | | 99.20 182 | 99.38 12 | 98.48 129 | 99.30 177 | 98.64 118 | 98.95 162 | 98.96 185 | 97.75 117 | | 96.56 235 | 99.39 250 | 99.45 157 |
|
| HQP_MVS | | | 97.99 200 | 97.67 218 | 98.93 146 | 99.19 185 | 97.65 184 | 97.77 216 | 99.27 191 | 98.20 158 | 97.79 288 | 97.98 315 | 94.90 256 | 99.70 259 | 94.42 318 | 99.51 231 | 99.45 157 |
|
| plane_prior5 | | | | | | | | | 99.27 191 | | | | | 99.70 259 | 94.42 318 | 99.51 231 | 99.45 157 |
|
| lessismore_v0 | | | | | 98.97 140 | 99.73 36 | 97.53 191 | | 86.71 420 | | 99.37 93 | 99.52 61 | 89.93 330 | 99.92 53 | 98.99 65 | 99.72 153 | 99.44 161 |
|
| TAMVS | | | 98.24 179 | 98.05 188 | 98.80 163 | 99.07 213 | 97.18 213 | 97.88 201 | 98.81 286 | 96.66 278 | 99.17 131 | 99.21 121 | 94.81 262 | 99.77 224 | 96.96 195 | 99.88 73 | 99.44 161 |
|
| DeepPCF-MVS | | 96.93 5 | 98.32 167 | 98.01 192 | 99.23 99 | 98.39 333 | 98.97 70 | 95.03 376 | 99.18 216 | 96.88 266 | 99.33 100 | 98.78 223 | 98.16 88 | 99.28 382 | 96.74 216 | 99.62 193 | 99.44 161 |
|
| 3Dnovator | | 98.27 2 | 98.81 91 | 98.73 90 | 99.05 129 | 98.76 271 | 97.81 173 | 99.25 40 | 99.30 177 | 98.57 128 | 98.55 226 | 99.33 95 | 97.95 104 | 99.90 68 | 97.16 176 | 99.67 179 | 99.44 161 |
|
| MVSFormer | | | 98.26 176 | 98.43 139 | 97.77 272 | 98.88 253 | 93.89 330 | 99.39 17 | 99.56 73 | 99.11 76 | 98.16 258 | 98.13 302 | 93.81 286 | 99.97 5 | 99.26 46 | 99.57 213 | 99.43 165 |
|
| jason | | | 97.45 243 | 97.35 241 | 97.76 275 | 99.24 171 | 93.93 326 | 95.86 348 | 98.42 317 | 94.24 350 | 98.50 232 | 98.13 302 | 94.82 260 | 99.91 62 | 97.22 173 | 99.73 145 | 99.43 165 |
| jason: jason. |
| NCCC | | | 97.86 210 | 97.47 235 | 99.05 129 | 98.61 304 | 98.07 143 | 96.98 285 | 98.90 266 | 97.63 197 | 97.04 331 | 97.93 320 | 95.99 224 | 99.66 286 | 95.31 295 | 98.82 323 | 99.43 165 |
|
| Anonymous20240521 | | | 98.69 111 | 98.87 76 | 98.16 248 | 99.77 26 | 95.11 290 | 99.08 58 | 99.44 118 | 99.34 50 | 99.33 100 | 99.55 52 | 94.10 282 | 99.94 37 | 99.25 48 | 99.96 23 | 99.42 168 |
|
| MVS_111021_HR | | | 98.25 178 | 98.08 186 | 98.75 175 | 99.09 209 | 97.46 194 | 95.97 339 | 99.27 191 | 97.60 202 | 97.99 274 | 98.25 294 | 98.15 90 | 99.38 367 | 96.87 205 | 99.57 213 | 99.42 168 |
|
| COLMAP_ROB |  | 96.50 10 | 98.99 66 | 98.85 80 | 99.41 62 | 99.58 76 | 99.10 64 | 98.74 92 | 99.56 73 | 99.09 86 | 99.33 100 | 99.19 124 | 98.40 63 | 99.72 254 | 95.98 270 | 99.76 138 | 99.42 168 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| SED-MVS | | | 98.91 77 | 98.72 92 | 99.49 51 | 99.49 115 | 99.17 43 | 98.10 168 | 99.31 169 | 98.03 168 | 99.66 43 | 99.02 163 | 98.36 65 | 99.88 91 | 96.91 197 | 99.62 193 | 99.41 171 |
|
| OPU-MVS | | | | | 98.82 159 | 98.59 309 | 98.30 118 | 98.10 168 | | | | 98.52 266 | 98.18 84 | 98.75 404 | 94.62 310 | 99.48 240 | 99.41 171 |
|
| our_test_3 | | | 97.39 249 | 97.73 215 | 96.34 348 | 98.70 284 | 89.78 393 | 94.61 389 | 98.97 256 | 96.50 283 | 99.04 147 | 98.85 210 | 95.98 225 | 99.84 146 | 97.26 171 | 99.67 179 | 99.41 171 |
|
| casdiffmvs |  | | 98.95 73 | 99.00 64 | 98.81 161 | 99.38 140 | 97.33 201 | 97.82 209 | 99.57 66 | 99.17 72 | 99.35 97 | 99.17 132 | 98.35 68 | 99.69 263 | 98.46 101 | 99.73 145 | 99.41 171 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| YYNet1 | | | 97.60 230 | 97.67 218 | 97.39 309 | 99.04 222 | 93.04 348 | 95.27 369 | 98.38 320 | 97.25 240 | 98.92 171 | 98.95 189 | 95.48 244 | 99.73 247 | 96.99 191 | 98.74 325 | 99.41 171 |
|
| MDA-MVSNet_test_wron | | | 97.60 230 | 97.66 221 | 97.41 308 | 99.04 222 | 93.09 344 | 95.27 369 | 98.42 317 | 97.26 239 | 98.88 178 | 98.95 189 | 95.43 245 | 99.73 247 | 97.02 188 | 98.72 327 | 99.41 171 |
|
| GBi-Net | | | 98.65 121 | 98.47 133 | 99.17 104 | 98.90 247 | 98.24 122 | 99.20 45 | 99.44 118 | 98.59 124 | 98.95 162 | 99.55 52 | 94.14 278 | 99.86 116 | 97.77 144 | 99.69 168 | 99.41 171 |
|
| test1 | | | 98.65 121 | 98.47 133 | 99.17 104 | 98.90 247 | 98.24 122 | 99.20 45 | 99.44 118 | 98.59 124 | 98.95 162 | 99.55 52 | 94.14 278 | 99.86 116 | 97.77 144 | 99.69 168 | 99.41 171 |
|
| FMVSNet1 | | | 99.17 44 | 99.17 46 | 99.17 104 | 99.55 93 | 98.24 122 | 99.20 45 | 99.44 118 | 99.21 63 | 99.43 80 | 99.55 52 | 97.82 112 | 99.86 116 | 98.42 104 | 99.89 71 | 99.41 171 |
|
| test_fmvs1 | | | 97.72 222 | 97.94 200 | 97.07 323 | 98.66 299 | 92.39 359 | 97.68 227 | 99.81 25 | 95.20 329 | 99.54 57 | 99.44 75 | 91.56 318 | 99.41 362 | 99.78 14 | 99.77 126 | 99.40 180 |
|
| KD-MVS_self_test | | | 99.25 36 | 99.18 45 | 99.44 59 | 99.63 73 | 99.06 68 | 98.69 101 | 99.54 81 | 99.31 53 | 99.62 52 | 99.53 58 | 97.36 150 | 99.86 116 | 99.24 50 | 99.71 158 | 99.39 181 |
|
| v148 | | | 98.45 151 | 98.60 115 | 98.00 260 | 99.44 129 | 94.98 292 | 97.44 256 | 99.06 238 | 98.30 145 | 99.32 106 | 98.97 182 | 96.65 193 | 99.62 300 | 98.37 105 | 99.85 81 | 99.39 181 |
|
| test20.03 | | | 98.78 95 | 98.77 87 | 98.78 169 | 99.46 125 | 97.20 211 | 97.78 214 | 99.24 202 | 99.04 93 | 99.41 85 | 98.90 197 | 97.65 123 | 99.76 230 | 97.70 149 | 99.79 115 | 99.39 181 |
|
| CDPH-MVS | | | 97.26 258 | 96.66 285 | 99.07 122 | 99.00 228 | 98.15 130 | 96.03 337 | 99.01 252 | 91.21 390 | 97.79 288 | 97.85 324 | 96.89 176 | 99.69 263 | 92.75 361 | 99.38 253 | 99.39 181 |
|
| EPNet | | | 96.14 309 | 95.44 321 | 98.25 240 | 90.76 425 | 95.50 274 | 97.92 196 | 94.65 392 | 98.97 100 | 92.98 408 | 98.85 210 | 89.12 336 | 99.87 108 | 95.99 269 | 99.68 173 | 99.39 181 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CNVR-MVS | | | 98.17 187 | 97.87 206 | 99.07 122 | 98.67 294 | 98.24 122 | 97.01 283 | 98.93 260 | 97.25 240 | 97.62 297 | 98.34 288 | 97.27 155 | 99.57 319 | 96.42 246 | 99.33 259 | 99.39 181 |
|
| DeepC-MVS_fast | | 96.85 6 | 98.30 170 | 98.15 178 | 98.75 175 | 98.61 304 | 97.23 207 | 97.76 219 | 99.09 235 | 97.31 234 | 98.75 198 | 98.66 244 | 97.56 133 | 99.64 294 | 96.10 267 | 99.55 220 | 99.39 181 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SF-MVS | | | 98.53 142 | 98.27 163 | 99.32 82 | 99.31 156 | 98.75 83 | 98.19 154 | 99.41 131 | 96.77 273 | 98.83 186 | 98.90 197 | 97.80 114 | 99.82 173 | 95.68 286 | 99.52 229 | 99.38 188 |
|
| test9_res | | | | | | | | | | | | | | | 93.28 350 | 99.15 290 | 99.38 188 |
|
| BP-MVS1 | | | 97.40 248 | 96.97 261 | 98.71 181 | 99.07 213 | 96.81 232 | 98.34 144 | 97.18 354 | 98.58 127 | 98.17 255 | 98.61 255 | 84.01 373 | 99.94 37 | 98.97 66 | 99.78 120 | 99.37 190 |
|
| OPM-MVS | | | 98.56 134 | 98.32 157 | 99.25 95 | 99.41 137 | 98.73 87 | 97.13 280 | 99.18 216 | 97.10 255 | 98.75 198 | 98.92 193 | 98.18 84 | 99.65 291 | 96.68 223 | 99.56 216 | 99.37 190 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| agg_prior2 | | | | | | | | | | | | | | | 92.50 366 | 99.16 288 | 99.37 190 |
|
| AllTest | | | 98.44 152 | 98.20 170 | 99.16 107 | 99.50 108 | 98.55 99 | 98.25 149 | 99.58 59 | 96.80 270 | 98.88 178 | 99.06 151 | 97.65 123 | 99.57 319 | 94.45 316 | 99.61 198 | 99.37 190 |
|
| TestCases | | | | | 99.16 107 | 99.50 108 | 98.55 99 | | 99.58 59 | 96.80 270 | 98.88 178 | 99.06 151 | 97.65 123 | 99.57 319 | 94.45 316 | 99.61 198 | 99.37 190 |
|
| MDA-MVSNet-bldmvs | | | 97.94 201 | 97.91 203 | 98.06 255 | 99.44 129 | 94.96 293 | 96.63 305 | 99.15 228 | 98.35 139 | 98.83 186 | 99.11 144 | 94.31 275 | 99.85 128 | 96.60 228 | 98.72 327 | 99.37 190 |
|
| MVSTER | | | 96.86 284 | 96.55 291 | 97.79 270 | 97.91 359 | 94.21 313 | 97.56 244 | 98.87 272 | 97.49 214 | 99.06 140 | 99.05 158 | 80.72 386 | 99.80 194 | 98.44 102 | 99.82 95 | 99.37 190 |
|
| pmmvs5 | | | 97.64 228 | 97.49 232 | 98.08 253 | 99.14 200 | 95.12 289 | 96.70 302 | 99.05 241 | 93.77 359 | 98.62 213 | 98.83 213 | 93.23 291 | 99.75 237 | 98.33 109 | 99.76 138 | 99.36 197 |
|
| Anonymous20231206 | | | 98.21 182 | 98.21 169 | 98.20 244 | 99.51 105 | 95.43 277 | 98.13 162 | 99.32 164 | 96.16 297 | 98.93 170 | 98.82 216 | 96.00 220 | 99.83 163 | 97.32 168 | 99.73 145 | 99.36 197 |
|
| train_agg | | | 97.10 270 | 96.45 295 | 99.07 122 | 98.71 280 | 98.08 141 | 95.96 341 | 99.03 246 | 91.64 382 | 95.85 372 | 97.53 340 | 96.47 200 | 99.76 230 | 93.67 340 | 99.16 288 | 99.36 197 |
|
| PVSNet_BlendedMVS | | | 97.55 235 | 97.53 229 | 97.60 289 | 98.92 243 | 93.77 334 | 96.64 304 | 99.43 124 | 94.49 342 | 97.62 297 | 99.18 128 | 96.82 181 | 99.67 275 | 94.73 307 | 99.93 43 | 99.36 197 |
|
| Anonymous20240529 | | | 98.93 75 | 98.87 76 | 99.12 112 | 99.19 185 | 98.22 127 | 99.01 67 | 98.99 255 | 99.25 59 | 99.54 57 | 99.37 84 | 97.04 167 | 99.80 194 | 97.89 134 | 99.52 229 | 99.35 201 |
|
| F-COLMAP | | | 97.30 255 | 96.68 282 | 99.14 110 | 99.19 185 | 98.39 110 | 97.27 269 | 99.30 177 | 92.93 370 | 96.62 353 | 98.00 313 | 95.73 235 | 99.68 272 | 92.62 364 | 98.46 344 | 99.35 201 |
|
| ppachtmachnet_test | | | 97.50 236 | 97.74 213 | 96.78 338 | 98.70 284 | 91.23 380 | 94.55 391 | 99.05 241 | 96.36 289 | 99.21 124 | 98.79 221 | 96.39 203 | 99.78 218 | 96.74 216 | 99.82 95 | 99.34 203 |
|
| VDD-MVS | | | 98.56 134 | 98.39 146 | 99.07 122 | 99.13 202 | 98.07 143 | 98.59 110 | 97.01 359 | 99.59 27 | 99.11 133 | 99.27 106 | 94.82 260 | 99.79 207 | 98.34 107 | 99.63 190 | 99.34 203 |
|
| testgi | | | 98.32 167 | 98.39 146 | 98.13 249 | 99.57 81 | 95.54 271 | 97.78 214 | 99.49 97 | 97.37 228 | 99.19 126 | 97.65 334 | 98.96 24 | 99.49 346 | 96.50 242 | 98.99 310 | 99.34 203 |
|
| diffmvs |  | | 98.22 180 | 98.24 167 | 98.17 246 | 99.00 228 | 95.44 276 | 96.38 317 | 99.58 59 | 97.79 188 | 98.53 229 | 98.50 271 | 96.76 187 | 99.74 242 | 97.95 133 | 99.64 187 | 99.34 203 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UnsupCasMVSNet_eth | | | 97.89 205 | 97.60 226 | 98.75 175 | 99.31 156 | 97.17 214 | 97.62 236 | 99.35 151 | 98.72 116 | 98.76 197 | 98.68 239 | 92.57 307 | 99.74 242 | 97.76 148 | 95.60 405 | 99.34 203 |
|
| baseline | | | 98.96 72 | 99.02 62 | 98.76 173 | 99.38 140 | 97.26 206 | 98.49 126 | 99.50 90 | 98.86 109 | 99.19 126 | 99.06 151 | 98.23 77 | 99.69 263 | 98.71 86 | 99.76 138 | 99.33 208 |
|
| MG-MVS | | | 96.77 288 | 96.61 287 | 97.26 314 | 98.31 337 | 93.06 345 | 95.93 344 | 98.12 331 | 96.45 287 | 97.92 276 | 98.73 230 | 93.77 288 | 99.39 365 | 91.19 384 | 99.04 302 | 99.33 208 |
|
| HQP4-MVS | | | | | | | | | | | 95.56 377 | | | 99.54 331 | | | 99.32 210 |
|
| CDS-MVSNet | | | 97.69 224 | 97.35 241 | 98.69 182 | 98.73 275 | 97.02 221 | 96.92 291 | 98.75 296 | 95.89 309 | 98.59 219 | 98.67 241 | 92.08 313 | 99.74 242 | 96.72 219 | 99.81 99 | 99.32 210 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| HQP-MVS | | | 97.00 279 | 96.49 294 | 98.55 206 | 98.67 294 | 96.79 233 | 96.29 323 | 99.04 244 | 96.05 300 | 95.55 378 | 96.84 361 | 93.84 284 | 99.54 331 | 92.82 358 | 99.26 272 | 99.32 210 |
|
| RPSCF | | | 98.62 128 | 98.36 150 | 99.42 60 | 99.65 63 | 99.42 11 | 98.55 114 | 99.57 66 | 97.72 192 | 98.90 173 | 99.26 110 | 96.12 215 | 99.52 337 | 95.72 283 | 99.71 158 | 99.32 210 |
|
| MVP-Stereo | | | 98.08 192 | 97.92 202 | 98.57 201 | 98.96 235 | 96.79 233 | 97.90 199 | 99.18 216 | 96.41 288 | 98.46 235 | 98.95 189 | 95.93 229 | 99.60 307 | 96.51 241 | 98.98 312 | 99.31 214 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| SD-MVS | | | 98.40 156 | 98.68 101 | 97.54 297 | 98.96 235 | 97.99 150 | 97.88 201 | 99.36 146 | 98.20 158 | 99.63 49 | 99.04 160 | 98.76 35 | 95.33 420 | 96.56 235 | 99.74 142 | 99.31 214 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| VNet | | | 98.42 153 | 98.30 158 | 98.79 166 | 98.79 270 | 97.29 203 | 98.23 150 | 98.66 303 | 99.31 53 | 98.85 183 | 98.80 219 | 94.80 263 | 99.78 218 | 98.13 118 | 99.13 293 | 99.31 214 |
|
| test_prior | | | | | 98.95 143 | 98.69 289 | 97.95 158 | | 99.03 246 | | | | | 99.59 311 | | | 99.30 217 |
|
| USDC | | | 97.41 247 | 97.40 236 | 97.44 306 | 98.94 237 | 93.67 337 | 95.17 372 | 99.53 84 | 94.03 356 | 98.97 158 | 99.10 147 | 95.29 247 | 99.34 372 | 95.84 279 | 99.73 145 | 99.30 217 |
|
| test_fmvsm_n_1920 | | | 99.33 27 | 99.45 19 | 98.99 137 | 99.57 81 | 97.73 180 | 97.93 193 | 99.83 22 | 99.22 61 | 99.93 6 | 99.30 101 | 99.42 10 | 99.96 12 | 99.85 5 | 99.99 5 | 99.29 219 |
|
| FMVSNet2 | | | 98.49 147 | 98.40 143 | 98.75 175 | 98.90 247 | 97.14 217 | 98.61 108 | 99.13 229 | 98.59 124 | 99.19 126 | 99.28 104 | 94.14 278 | 99.82 173 | 97.97 131 | 99.80 110 | 99.29 219 |
|
| XVG-OURS-SEG-HR | | | 98.49 147 | 98.28 160 | 99.14 110 | 99.49 115 | 98.83 79 | 96.54 307 | 99.48 99 | 97.32 233 | 99.11 133 | 98.61 255 | 99.33 13 | 99.30 378 | 96.23 257 | 98.38 345 | 99.28 221 |
|
| test12 | | | | | 98.93 146 | 98.58 311 | 97.83 167 | | 98.66 303 | | 96.53 356 | | 95.51 242 | 99.69 263 | | 99.13 293 | 99.27 222 |
|
| DSMNet-mixed | | | 97.42 246 | 97.60 226 | 96.87 332 | 99.15 199 | 91.46 371 | 98.54 116 | 99.12 230 | 92.87 372 | 97.58 301 | 99.63 35 | 96.21 211 | 99.90 68 | 95.74 282 | 99.54 222 | 99.27 222 |
|
| N_pmnet | | | 97.63 229 | 97.17 250 | 98.99 137 | 99.27 164 | 97.86 164 | 95.98 338 | 93.41 403 | 95.25 327 | 99.47 74 | 98.90 197 | 95.63 237 | 99.85 128 | 96.91 197 | 99.73 145 | 99.27 222 |
|
| ambc | | | | | 98.24 242 | 98.82 264 | 95.97 260 | 98.62 107 | 99.00 254 | | 99.27 112 | 99.21 121 | 96.99 172 | 99.50 343 | 96.55 238 | 99.50 238 | 99.26 225 |
|
| LFMVS | | | 97.20 264 | 96.72 279 | 98.64 186 | 98.72 277 | 96.95 225 | 98.93 78 | 94.14 400 | 99.74 10 | 98.78 192 | 99.01 172 | 84.45 368 | 99.73 247 | 97.44 162 | 99.27 269 | 99.25 226 |
|
| FMVSNet5 | | | 96.01 312 | 95.20 331 | 98.41 225 | 97.53 380 | 96.10 253 | 98.74 92 | 99.50 90 | 97.22 249 | 98.03 272 | 99.04 160 | 69.80 408 | 99.88 91 | 97.27 170 | 99.71 158 | 99.25 226 |
|
| BH-RMVSNet | | | 96.83 285 | 96.58 290 | 97.58 291 | 98.47 322 | 94.05 318 | 96.67 303 | 97.36 348 | 96.70 277 | 97.87 281 | 97.98 315 | 95.14 251 | 99.44 358 | 90.47 392 | 98.58 341 | 99.25 226 |
|
| testf1 | | | 99.25 36 | 99.16 48 | 99.51 46 | 99.89 6 | 99.63 4 | 98.71 99 | 99.69 40 | 98.90 106 | 99.43 80 | 99.35 89 | 98.86 28 | 99.67 275 | 97.81 140 | 99.81 99 | 99.24 229 |
|
| APD_test2 | | | 99.25 36 | 99.16 48 | 99.51 46 | 99.89 6 | 99.63 4 | 98.71 99 | 99.69 40 | 98.90 106 | 99.43 80 | 99.35 89 | 98.86 28 | 99.67 275 | 97.81 140 | 99.81 99 | 99.24 229 |
|
| 旧先验1 | | | | | | 98.82 264 | 97.45 195 | | 98.76 293 | | | 98.34 288 | 95.50 243 | | | 99.01 307 | 99.23 231 |
|
| test222 | | | | | | 98.92 243 | 96.93 227 | 95.54 359 | 98.78 291 | 85.72 410 | 96.86 344 | 98.11 305 | 94.43 270 | | | 99.10 298 | 99.23 231 |
|
| XVG-ACMP-BASELINE | | | 98.56 134 | 98.34 153 | 99.22 100 | 99.54 98 | 98.59 96 | 97.71 224 | 99.46 110 | 97.25 240 | 98.98 154 | 98.99 176 | 97.54 135 | 99.84 146 | 95.88 273 | 99.74 142 | 99.23 231 |
|
| FMVSNet3 | | | 97.50 236 | 97.24 247 | 98.29 238 | 98.08 352 | 95.83 264 | 97.86 205 | 98.91 265 | 97.89 181 | 98.95 162 | 98.95 189 | 87.06 347 | 99.81 187 | 97.77 144 | 99.69 168 | 99.23 231 |
|
| æ— å…ˆéªŒ | | | | | | | | 95.74 354 | 98.74 298 | 89.38 401 | | | | 99.73 247 | 92.38 368 | | 99.22 235 |
|
| tttt0517 | | | 95.64 325 | 94.98 335 | 97.64 286 | 99.36 147 | 93.81 332 | 98.72 97 | 90.47 414 | 98.08 167 | 98.67 206 | 98.34 288 | 73.88 404 | 99.92 53 | 97.77 144 | 99.51 231 | 99.20 236 |
|
| pmmvs-eth3d | | | 98.47 149 | 98.34 153 | 98.86 155 | 99.30 159 | 97.76 176 | 97.16 278 | 99.28 188 | 95.54 318 | 99.42 83 | 99.19 124 | 97.27 155 | 99.63 297 | 97.89 134 | 99.97 19 | 99.20 236 |
|
| MS-PatchMatch | | | 97.68 225 | 97.75 212 | 97.45 305 | 98.23 343 | 93.78 333 | 97.29 266 | 98.84 281 | 96.10 299 | 98.64 210 | 98.65 246 | 96.04 217 | 99.36 368 | 96.84 208 | 99.14 291 | 99.20 236 |
|
| æ–°å‡ ä½•1 | | | | | 98.91 150 | 98.94 237 | 97.76 176 | | 98.76 293 | 87.58 407 | 96.75 349 | 98.10 306 | 94.80 263 | 99.78 218 | 92.73 362 | 99.00 308 | 99.20 236 |
|
| PHI-MVS | | | 98.29 173 | 97.95 198 | 99.34 75 | 98.44 327 | 99.16 47 | 98.12 165 | 99.38 138 | 96.01 304 | 98.06 268 | 98.43 278 | 97.80 114 | 99.67 275 | 95.69 285 | 99.58 209 | 99.20 236 |
|
| GDP-MVS | | | 97.50 236 | 97.11 255 | 98.67 184 | 99.02 226 | 96.85 230 | 98.16 159 | 99.71 36 | 98.32 143 | 98.52 231 | 98.54 262 | 83.39 377 | 99.95 24 | 98.79 77 | 99.56 216 | 99.19 241 |
|
| Anonymous202405211 | | | 97.90 203 | 97.50 231 | 99.08 120 | 98.90 247 | 98.25 121 | 98.53 117 | 96.16 376 | 98.87 108 | 99.11 133 | 98.86 207 | 90.40 328 | 99.78 218 | 97.36 166 | 99.31 262 | 99.19 241 |
|
| CANet | | | 97.87 209 | 97.76 211 | 98.19 245 | 97.75 364 | 95.51 273 | 96.76 298 | 99.05 241 | 97.74 190 | 96.93 335 | 98.21 298 | 95.59 239 | 99.89 79 | 97.86 139 | 99.93 43 | 99.19 241 |
|
| XVG-OURS | | | 98.53 142 | 98.34 153 | 99.11 114 | 99.50 108 | 98.82 81 | 95.97 339 | 99.50 90 | 97.30 235 | 99.05 145 | 98.98 180 | 99.35 12 | 99.32 375 | 95.72 283 | 99.68 173 | 99.18 244 |
|
| WTY-MVS | | | 96.67 291 | 96.27 301 | 97.87 265 | 98.81 266 | 94.61 304 | 96.77 297 | 97.92 336 | 94.94 334 | 97.12 326 | 97.74 329 | 91.11 321 | 99.82 173 | 93.89 334 | 98.15 357 | 99.18 244 |
|
| Vis-MVSNet (Re-imp) | | | 97.46 241 | 97.16 251 | 98.34 233 | 99.55 93 | 96.10 253 | 98.94 77 | 98.44 315 | 98.32 143 | 98.16 258 | 98.62 253 | 88.76 337 | 99.73 247 | 93.88 335 | 99.79 115 | 99.18 244 |
|
| TinyColmap | | | 97.89 205 | 97.98 195 | 97.60 289 | 98.86 255 | 94.35 310 | 96.21 327 | 99.44 118 | 97.45 222 | 99.06 140 | 98.88 204 | 97.99 102 | 99.28 382 | 94.38 322 | 99.58 209 | 99.18 244 |
|
| testdata | | | | | 98.09 250 | 98.93 239 | 95.40 278 | | 98.80 288 | 90.08 398 | 97.45 314 | 98.37 284 | 95.26 248 | 99.70 259 | 93.58 343 | 98.95 315 | 99.17 248 |
|
| lupinMVS | | | 97.06 273 | 96.86 269 | 97.65 284 | 98.88 253 | 93.89 330 | 95.48 363 | 97.97 334 | 93.53 362 | 98.16 258 | 97.58 338 | 93.81 286 | 99.91 62 | 96.77 213 | 99.57 213 | 99.17 248 |
|
| Patchmtry | | | 97.35 251 | 96.97 261 | 98.50 216 | 97.31 391 | 96.47 245 | 98.18 155 | 98.92 263 | 98.95 103 | 98.78 192 | 99.37 84 | 85.44 362 | 99.85 128 | 95.96 271 | 99.83 92 | 99.17 248 |
|
| RRT-MVS | | | 97.88 207 | 97.98 195 | 97.61 288 | 98.15 347 | 93.77 334 | 98.97 73 | 99.64 50 | 99.16 73 | 98.69 203 | 99.42 77 | 91.60 316 | 99.89 79 | 97.63 152 | 98.52 343 | 99.16 251 |
|
| sss | | | 97.21 263 | 96.93 263 | 98.06 255 | 98.83 261 | 95.22 285 | 96.75 299 | 98.48 314 | 94.49 342 | 97.27 323 | 97.90 321 | 92.77 303 | 99.80 194 | 96.57 231 | 99.32 260 | 99.16 251 |
|
| CSCG | | | 98.68 116 | 98.50 126 | 99.20 101 | 99.45 128 | 98.63 91 | 98.56 113 | 99.57 66 | 97.87 182 | 98.85 183 | 98.04 312 | 97.66 122 | 99.84 146 | 96.72 219 | 99.81 99 | 99.13 253 |
|
| MVS_111021_LR | | | 98.30 170 | 98.12 181 | 98.83 158 | 99.16 195 | 98.03 148 | 96.09 335 | 99.30 177 | 97.58 203 | 98.10 265 | 98.24 295 | 98.25 75 | 99.34 372 | 96.69 222 | 99.65 185 | 99.12 254 |
|
| miper_lstm_enhance | | | 97.18 266 | 97.16 251 | 97.25 315 | 98.16 346 | 92.85 350 | 95.15 374 | 99.31 169 | 97.25 240 | 98.74 200 | 98.78 223 | 90.07 329 | 99.78 218 | 97.19 174 | 99.80 110 | 99.11 255 |
|
| testing3 | | | 93.51 360 | 92.09 370 | 97.75 276 | 98.60 306 | 94.40 308 | 97.32 263 | 95.26 389 | 97.56 206 | 96.79 348 | 95.50 387 | 53.57 426 | 99.77 224 | 95.26 296 | 98.97 313 | 99.08 256 |
|
| 原ACMM1 | | | | | 98.35 232 | 98.90 247 | 96.25 251 | | 98.83 285 | 92.48 376 | 96.07 369 | 98.10 306 | 95.39 246 | 99.71 255 | 92.61 365 | 98.99 310 | 99.08 256 |
|
| QAPM | | | 97.31 254 | 96.81 275 | 98.82 159 | 98.80 269 | 97.49 192 | 99.06 62 | 99.19 212 | 90.22 396 | 97.69 294 | 99.16 134 | 96.91 175 | 99.90 68 | 90.89 389 | 99.41 248 | 99.07 258 |
|
| PAPM_NR | | | 96.82 287 | 96.32 298 | 98.30 237 | 99.07 213 | 96.69 240 | 97.48 252 | 98.76 293 | 95.81 311 | 96.61 354 | 96.47 369 | 94.12 281 | 99.17 389 | 90.82 390 | 97.78 369 | 99.06 259 |
|
| eth_miper_zixun_eth | | | 97.23 262 | 97.25 246 | 97.17 318 | 98.00 355 | 92.77 352 | 94.71 383 | 99.18 216 | 97.27 238 | 98.56 224 | 98.74 229 | 91.89 314 | 99.69 263 | 97.06 187 | 99.81 99 | 99.05 260 |
|
| D2MVS | | | 97.84 216 | 97.84 208 | 97.83 267 | 99.14 200 | 94.74 298 | 96.94 287 | 98.88 270 | 95.84 310 | 98.89 175 | 98.96 185 | 94.40 272 | 99.69 263 | 97.55 156 | 99.95 30 | 99.05 260 |
|
| c3_l | | | 97.36 250 | 97.37 239 | 97.31 310 | 98.09 351 | 93.25 343 | 95.01 377 | 99.16 223 | 97.05 256 | 98.77 195 | 98.72 232 | 92.88 300 | 99.64 294 | 96.93 196 | 99.76 138 | 99.05 260 |
|
| PLC |  | 94.65 16 | 96.51 296 | 95.73 308 | 98.85 156 | 98.75 273 | 97.91 160 | 96.42 315 | 99.06 238 | 90.94 393 | 95.59 375 | 97.38 350 | 94.41 271 | 99.59 311 | 90.93 387 | 98.04 366 | 99.05 260 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| tfpnnormal | | | 98.90 79 | 98.90 73 | 98.91 150 | 99.67 60 | 97.82 170 | 99.00 69 | 99.44 118 | 99.45 37 | 99.51 68 | 99.24 115 | 98.20 83 | 99.86 116 | 95.92 272 | 99.69 168 | 99.04 264 |
|
| CANet_DTU | | | 97.26 258 | 97.06 257 | 97.84 266 | 97.57 375 | 94.65 303 | 96.19 329 | 98.79 289 | 97.23 246 | 95.14 387 | 98.24 295 | 93.22 292 | 99.84 146 | 97.34 167 | 99.84 85 | 99.04 264 |
|
| PM-MVS | | | 98.82 89 | 98.72 92 | 99.12 112 | 99.64 69 | 98.54 102 | 97.98 189 | 99.68 45 | 97.62 198 | 99.34 99 | 99.18 128 | 97.54 135 | 99.77 224 | 97.79 142 | 99.74 142 | 99.04 264 |
|
| TSAR-MVS + GP. | | | 98.18 185 | 97.98 195 | 98.77 172 | 98.71 280 | 97.88 162 | 96.32 321 | 98.66 303 | 96.33 290 | 99.23 123 | 98.51 267 | 97.48 145 | 99.40 363 | 97.16 176 | 99.46 241 | 99.02 267 |
|
| DIV-MVS_self_test | | | 97.02 276 | 96.84 271 | 97.58 291 | 97.82 362 | 94.03 321 | 94.66 386 | 99.16 223 | 97.04 257 | 98.63 211 | 98.71 233 | 88.69 338 | 99.69 263 | 97.00 189 | 99.81 99 | 99.01 268 |
|
| mamv4 | | | 99.44 15 | 99.39 23 | 99.58 19 | 99.30 159 | 99.74 2 | 99.04 65 | 99.81 25 | 99.77 7 | 99.82 21 | 99.57 45 | 97.82 112 | 99.98 4 | 99.53 31 | 99.89 71 | 99.01 268 |
|
| GA-MVS | | | 95.86 317 | 95.32 327 | 97.49 302 | 98.60 306 | 94.15 316 | 93.83 403 | 97.93 335 | 95.49 320 | 96.68 350 | 97.42 348 | 83.21 378 | 99.30 378 | 96.22 258 | 98.55 342 | 99.01 268 |
|
| OMC-MVS | | | 97.88 207 | 97.49 232 | 99.04 131 | 98.89 252 | 98.63 91 | 96.94 287 | 99.25 197 | 95.02 331 | 98.53 229 | 98.51 267 | 97.27 155 | 99.47 352 | 93.50 346 | 99.51 231 | 99.01 268 |
|
| cl____ | | | 97.02 276 | 96.83 272 | 97.58 291 | 97.82 362 | 94.04 320 | 94.66 386 | 99.16 223 | 97.04 257 | 98.63 211 | 98.71 233 | 88.68 340 | 99.69 263 | 97.00 189 | 99.81 99 | 99.00 272 |
|
| pmmvs4 | | | 97.58 233 | 97.28 244 | 98.51 212 | 98.84 259 | 96.93 227 | 95.40 367 | 98.52 312 | 93.60 361 | 98.61 215 | 98.65 246 | 95.10 252 | 99.60 307 | 96.97 194 | 99.79 115 | 98.99 273 |
|
| EPNet_dtu | | | 94.93 340 | 94.78 340 | 95.38 376 | 93.58 421 | 87.68 403 | 96.78 296 | 95.69 387 | 97.35 230 | 89.14 418 | 98.09 308 | 88.15 345 | 99.49 346 | 94.95 303 | 99.30 265 | 98.98 274 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| 114514_t | | | 96.50 298 | 95.77 306 | 98.69 182 | 99.48 122 | 97.43 197 | 97.84 208 | 99.55 77 | 81.42 416 | 96.51 358 | 98.58 259 | 95.53 240 | 99.67 275 | 93.41 348 | 99.58 209 | 98.98 274 |
|
| PVSNet_Blended | | | 96.88 283 | 96.68 282 | 97.47 304 | 98.92 243 | 93.77 334 | 94.71 383 | 99.43 124 | 90.98 392 | 97.62 297 | 97.36 352 | 96.82 181 | 99.67 275 | 94.73 307 | 99.56 216 | 98.98 274 |
|
| APD_test1 | | | 98.83 87 | 98.66 104 | 99.34 75 | 99.78 23 | 99.47 9 | 98.42 136 | 99.45 114 | 98.28 150 | 98.98 154 | 99.19 124 | 97.76 116 | 99.58 317 | 96.57 231 | 99.55 220 | 98.97 277 |
|
| PAPR | | | 95.29 331 | 94.47 342 | 97.75 276 | 97.50 386 | 95.14 288 | 94.89 380 | 98.71 301 | 91.39 388 | 95.35 385 | 95.48 389 | 94.57 268 | 99.14 392 | 84.95 408 | 97.37 381 | 98.97 277 |
|
| EGC-MVSNET | | | 85.24 385 | 80.54 388 | 99.34 75 | 99.77 26 | 99.20 38 | 99.08 58 | 99.29 185 | 12.08 423 | 20.84 424 | 99.42 77 | 97.55 134 | 99.85 128 | 97.08 184 | 99.72 153 | 98.96 279 |
|
| thisisatest0530 | | | 95.27 332 | 94.45 343 | 97.74 278 | 99.19 185 | 94.37 309 | 97.86 205 | 90.20 415 | 97.17 251 | 98.22 253 | 97.65 334 | 73.53 405 | 99.90 68 | 96.90 202 | 99.35 256 | 98.95 280 |
|
| mvs_anonymous | | | 97.83 218 | 98.16 177 | 96.87 332 | 98.18 345 | 91.89 366 | 97.31 264 | 98.90 266 | 97.37 228 | 98.83 186 | 99.46 70 | 96.28 209 | 99.79 207 | 98.90 70 | 98.16 356 | 98.95 280 |
|
| baseline1 | | | 95.96 315 | 95.44 321 | 97.52 299 | 98.51 320 | 93.99 324 | 98.39 138 | 96.09 378 | 98.21 154 | 98.40 244 | 97.76 328 | 86.88 348 | 99.63 297 | 95.42 293 | 89.27 418 | 98.95 280 |
|
| CLD-MVS | | | 97.49 239 | 97.16 251 | 98.48 217 | 99.07 213 | 97.03 220 | 94.71 383 | 99.21 206 | 94.46 344 | 98.06 268 | 97.16 356 | 97.57 132 | 99.48 349 | 94.46 315 | 99.78 120 | 98.95 280 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MSLP-MVS++ | | | 98.02 195 | 98.14 180 | 97.64 286 | 98.58 311 | 95.19 286 | 97.48 252 | 99.23 204 | 97.47 215 | 97.90 278 | 98.62 253 | 97.04 167 | 98.81 403 | 97.55 156 | 99.41 248 | 98.94 284 |
|
| DELS-MVS | | | 98.27 174 | 98.20 170 | 98.48 217 | 98.86 255 | 96.70 239 | 95.60 358 | 99.20 208 | 97.73 191 | 98.45 236 | 98.71 233 | 97.50 141 | 99.82 173 | 98.21 113 | 99.59 204 | 98.93 285 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| cl22 | | | 95.79 320 | 95.39 324 | 96.98 326 | 96.77 403 | 92.79 351 | 94.40 394 | 98.53 311 | 94.59 341 | 97.89 279 | 98.17 301 | 82.82 382 | 99.24 384 | 96.37 249 | 99.03 303 | 98.92 286 |
|
| LS3D | | | 98.63 125 | 98.38 148 | 99.36 66 | 97.25 392 | 99.38 12 | 99.12 57 | 99.32 164 | 99.21 63 | 98.44 237 | 98.88 204 | 97.31 151 | 99.80 194 | 96.58 229 | 99.34 258 | 98.92 286 |
|
| CMPMVS |  | 75.91 23 | 96.29 304 | 95.44 321 | 98.84 157 | 96.25 413 | 98.69 90 | 97.02 282 | 99.12 230 | 88.90 403 | 97.83 285 | 98.86 207 | 89.51 333 | 98.90 401 | 91.92 369 | 99.51 231 | 98.92 286 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| LCM-MVSNet-Re | | | 98.64 123 | 98.48 131 | 99.11 114 | 98.85 258 | 98.51 104 | 98.49 126 | 99.83 22 | 98.37 138 | 99.69 38 | 99.46 70 | 98.21 82 | 99.92 53 | 94.13 328 | 99.30 265 | 98.91 289 |
|
| mvsmamba | | | 97.57 234 | 97.26 245 | 98.51 212 | 98.69 289 | 96.73 238 | 98.74 92 | 97.25 353 | 97.03 259 | 97.88 280 | 99.23 119 | 90.95 322 | 99.87 108 | 96.61 227 | 99.00 308 | 98.91 289 |
|
| DPM-MVS | | | 96.32 303 | 95.59 315 | 98.51 212 | 98.76 271 | 97.21 210 | 94.54 392 | 98.26 323 | 91.94 381 | 96.37 362 | 97.25 354 | 93.06 297 | 99.43 359 | 91.42 379 | 98.74 325 | 98.89 291 |
|
| test_yl | | | 96.69 289 | 96.29 299 | 97.90 262 | 98.28 338 | 95.24 283 | 97.29 266 | 97.36 348 | 98.21 154 | 98.17 255 | 97.86 322 | 86.27 352 | 99.55 326 | 94.87 304 | 98.32 346 | 98.89 291 |
|
| DCV-MVSNet | | | 96.69 289 | 96.29 299 | 97.90 262 | 98.28 338 | 95.24 283 | 97.29 266 | 97.36 348 | 98.21 154 | 98.17 255 | 97.86 322 | 86.27 352 | 99.55 326 | 94.87 304 | 98.32 346 | 98.89 291 |
|
| SPE-MVS-test | | | 99.13 52 | 99.09 57 | 99.26 92 | 99.13 202 | 98.97 70 | 99.31 27 | 99.88 13 | 99.44 39 | 98.16 258 | 98.51 267 | 98.64 44 | 99.93 44 | 98.91 69 | 99.85 81 | 98.88 294 |
|
| UnsupCasMVSNet_bld | | | 97.30 255 | 96.92 265 | 98.45 220 | 99.28 162 | 96.78 236 | 96.20 328 | 99.27 191 | 95.42 322 | 98.28 250 | 98.30 292 | 93.16 293 | 99.71 255 | 94.99 300 | 97.37 381 | 98.87 295 |
|
| Effi-MVS+ | | | 98.02 195 | 97.82 209 | 98.62 191 | 98.53 318 | 97.19 212 | 97.33 262 | 99.68 45 | 97.30 235 | 96.68 350 | 97.46 346 | 98.56 54 | 99.80 194 | 96.63 225 | 98.20 352 | 98.86 296 |
|
| test_0402 | | | 98.76 99 | 98.71 95 | 98.93 146 | 99.56 89 | 98.14 132 | 98.45 133 | 99.34 157 | 99.28 57 | 98.95 162 | 98.91 194 | 98.34 69 | 99.79 207 | 95.63 287 | 99.91 61 | 98.86 296 |
|
| PatchmatchNet |  | | 95.58 326 | 95.67 311 | 95.30 377 | 97.34 390 | 87.32 404 | 97.65 233 | 96.65 369 | 95.30 326 | 97.07 329 | 98.69 237 | 84.77 365 | 99.75 237 | 94.97 302 | 98.64 336 | 98.83 298 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_vis1_rt | | | 97.75 220 | 97.72 216 | 97.83 267 | 98.81 266 | 96.35 248 | 97.30 265 | 99.69 40 | 94.61 340 | 97.87 281 | 98.05 311 | 96.26 210 | 98.32 409 | 98.74 83 | 98.18 353 | 98.82 299 |
|
| CL-MVSNet_self_test | | | 97.44 244 | 97.22 248 | 98.08 253 | 98.57 313 | 95.78 266 | 94.30 396 | 98.79 289 | 96.58 281 | 98.60 217 | 98.19 300 | 94.74 266 | 99.64 294 | 96.41 247 | 98.84 320 | 98.82 299 |
|
| miper_ehance_all_eth | | | 97.06 273 | 97.03 258 | 97.16 320 | 97.83 361 | 93.06 345 | 94.66 386 | 99.09 235 | 95.99 305 | 98.69 203 | 98.45 276 | 92.73 305 | 99.61 306 | 96.79 210 | 99.03 303 | 98.82 299 |
|
| MIMVSNet | | | 96.62 294 | 96.25 302 | 97.71 281 | 99.04 222 | 94.66 302 | 99.16 51 | 96.92 365 | 97.23 246 | 97.87 281 | 99.10 147 | 86.11 356 | 99.65 291 | 91.65 374 | 99.21 281 | 98.82 299 |
|
| hse-mvs2 | | | 97.46 241 | 97.07 256 | 98.64 186 | 98.73 275 | 97.33 201 | 97.45 255 | 97.64 345 | 99.11 76 | 98.58 221 | 97.98 315 | 88.65 341 | 99.79 207 | 98.11 119 | 97.39 380 | 98.81 303 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.81 303 |
|
| sam_mvs1 | | | | | | | | | | | | | 84.74 366 | | | | 98.81 303 |
|
| SCA | | | 96.41 302 | 96.66 285 | 95.67 367 | 98.24 341 | 88.35 399 | 95.85 350 | 96.88 366 | 96.11 298 | 97.67 295 | 98.67 241 | 93.10 295 | 99.85 128 | 94.16 324 | 99.22 278 | 98.81 303 |
|
| Patchmatch-RL test | | | 97.26 258 | 97.02 259 | 97.99 261 | 99.52 103 | 95.53 272 | 96.13 333 | 99.71 36 | 97.47 215 | 99.27 112 | 99.16 134 | 84.30 371 | 99.62 300 | 97.89 134 | 99.77 126 | 98.81 303 |
|
| AUN-MVS | | | 96.24 308 | 95.45 320 | 98.60 196 | 98.70 284 | 97.22 209 | 97.38 258 | 97.65 343 | 95.95 307 | 95.53 382 | 97.96 319 | 82.11 385 | 99.79 207 | 96.31 253 | 97.44 377 | 98.80 308 |
|
| ITE_SJBPF | | | | | 98.87 154 | 99.22 176 | 98.48 106 | | 99.35 151 | 97.50 212 | 98.28 250 | 98.60 257 | 97.64 126 | 99.35 371 | 93.86 336 | 99.27 269 | 98.79 309 |
|
| tpm | | | 94.67 342 | 94.34 346 | 95.66 368 | 97.68 373 | 88.42 398 | 97.88 201 | 94.90 390 | 94.46 344 | 96.03 371 | 98.56 261 | 78.66 396 | 99.79 207 | 95.88 273 | 95.01 408 | 98.78 310 |
|
| Patchmatch-test | | | 96.55 295 | 96.34 297 | 97.17 318 | 98.35 334 | 93.06 345 | 98.40 137 | 97.79 337 | 97.33 231 | 98.41 240 | 98.67 241 | 83.68 376 | 99.69 263 | 95.16 298 | 99.31 262 | 98.77 311 |
|
| EC-MVSNet | | | 99.09 57 | 99.05 61 | 99.20 101 | 99.28 162 | 98.93 75 | 99.24 41 | 99.84 20 | 99.08 88 | 98.12 263 | 98.37 284 | 98.72 38 | 99.90 68 | 99.05 60 | 99.77 126 | 98.77 311 |
|
| PMMVS | | | 96.51 296 | 95.98 303 | 98.09 250 | 97.53 380 | 95.84 263 | 94.92 379 | 98.84 281 | 91.58 384 | 96.05 370 | 95.58 384 | 95.68 236 | 99.66 286 | 95.59 289 | 98.09 360 | 98.76 313 |
|
| test_method | | | 79.78 386 | 79.50 389 | 80.62 402 | 80.21 427 | 45.76 430 | 70.82 418 | 98.41 319 | 31.08 422 | 80.89 422 | 97.71 330 | 84.85 364 | 97.37 415 | 91.51 378 | 80.03 419 | 98.75 314 |
|
| ab-mvs | | | 98.41 154 | 98.36 150 | 98.59 197 | 99.19 185 | 97.23 207 | 99.32 23 | 98.81 286 | 97.66 195 | 98.62 213 | 99.40 83 | 96.82 181 | 99.80 194 | 95.88 273 | 99.51 231 | 98.75 314 |
|
| CHOSEN 280x420 | | | 95.51 329 | 95.47 318 | 95.65 369 | 98.25 340 | 88.27 400 | 93.25 407 | 98.88 270 | 93.53 362 | 94.65 393 | 97.15 357 | 86.17 354 | 99.93 44 | 97.41 164 | 99.93 43 | 98.73 316 |
|
| test_fmvsmvis_n_1920 | | | 99.26 35 | 99.49 13 | 98.54 209 | 99.66 62 | 96.97 222 | 98.00 184 | 99.85 17 | 99.24 60 | 99.92 8 | 99.50 62 | 99.39 11 | 99.95 24 | 99.89 3 | 99.98 12 | 98.71 317 |
|
| MVS_Test | | | 98.18 185 | 98.36 150 | 97.67 282 | 98.48 321 | 94.73 299 | 98.18 155 | 99.02 249 | 97.69 193 | 98.04 271 | 99.11 144 | 97.22 159 | 99.56 322 | 98.57 95 | 98.90 319 | 98.71 317 |
|
| PVSNet | | 93.40 17 | 95.67 323 | 95.70 309 | 95.57 370 | 98.83 261 | 88.57 397 | 92.50 410 | 97.72 339 | 92.69 374 | 96.49 361 | 96.44 370 | 93.72 289 | 99.43 359 | 93.61 341 | 99.28 268 | 98.71 317 |
|
| alignmvs | | | 97.35 251 | 96.88 268 | 98.78 169 | 98.54 316 | 98.09 137 | 97.71 224 | 97.69 341 | 99.20 65 | 97.59 300 | 95.90 379 | 88.12 346 | 99.55 326 | 98.18 115 | 98.96 314 | 98.70 320 |
|
| ADS-MVSNet2 | | | 95.43 330 | 94.98 335 | 96.76 339 | 98.14 348 | 91.74 367 | 97.92 196 | 97.76 338 | 90.23 394 | 96.51 358 | 98.91 194 | 85.61 359 | 99.85 128 | 92.88 356 | 96.90 390 | 98.69 321 |
|
| ADS-MVSNet | | | 95.24 333 | 94.93 338 | 96.18 356 | 98.14 348 | 90.10 392 | 97.92 196 | 97.32 351 | 90.23 394 | 96.51 358 | 98.91 194 | 85.61 359 | 99.74 242 | 92.88 356 | 96.90 390 | 98.69 321 |
|
| MDTV_nov1_ep13_2view | | | | | | | 74.92 426 | 97.69 226 | | 90.06 399 | 97.75 291 | | 85.78 358 | | 93.52 344 | | 98.69 321 |
|
| MSDG | | | 97.71 223 | 97.52 230 | 98.28 239 | 98.91 246 | 96.82 231 | 94.42 393 | 99.37 142 | 97.65 196 | 98.37 245 | 98.29 293 | 97.40 148 | 99.33 374 | 94.09 329 | 99.22 278 | 98.68 324 |
|
| mvsany_test1 | | | 97.60 230 | 97.54 228 | 97.77 272 | 97.72 365 | 95.35 279 | 95.36 368 | 97.13 357 | 94.13 353 | 99.71 34 | 99.33 95 | 97.93 105 | 99.30 378 | 97.60 155 | 98.94 316 | 98.67 325 |
|
| CS-MVS | | | 99.13 52 | 99.10 56 | 99.24 97 | 99.06 218 | 99.15 51 | 99.36 19 | 99.88 13 | 99.36 49 | 98.21 254 | 98.46 275 | 98.68 42 | 99.93 44 | 99.03 62 | 99.85 81 | 98.64 326 |
|
| Syy-MVS | | | 96.04 311 | 95.56 317 | 97.49 302 | 97.10 396 | 94.48 306 | 96.18 330 | 96.58 371 | 95.65 314 | 94.77 390 | 92.29 417 | 91.27 320 | 99.36 368 | 98.17 117 | 98.05 364 | 98.63 327 |
|
| myMVS_eth3d | | | 91.92 382 | 90.45 384 | 96.30 349 | 97.10 396 | 90.90 384 | 96.18 330 | 96.58 371 | 95.65 314 | 94.77 390 | 92.29 417 | 53.88 425 | 99.36 368 | 89.59 396 | 98.05 364 | 98.63 327 |
|
| balanced_conf03 | | | 98.63 125 | 98.72 92 | 98.38 228 | 98.66 299 | 96.68 241 | 98.90 80 | 99.42 127 | 98.99 97 | 98.97 158 | 99.19 124 | 95.81 233 | 99.85 128 | 98.77 81 | 99.77 126 | 98.60 329 |
|
| miper_enhance_ethall | | | 96.01 312 | 95.74 307 | 96.81 336 | 96.41 411 | 92.27 363 | 93.69 405 | 98.89 269 | 91.14 391 | 98.30 246 | 97.35 353 | 90.58 326 | 99.58 317 | 96.31 253 | 99.03 303 | 98.60 329 |
|
| Effi-MVS+-dtu | | | 98.26 176 | 97.90 204 | 99.35 72 | 98.02 354 | 99.49 6 | 98.02 180 | 99.16 223 | 98.29 148 | 97.64 296 | 97.99 314 | 96.44 202 | 99.95 24 | 96.66 224 | 98.93 317 | 98.60 329 |
|
| new_pmnet | | | 96.99 280 | 96.76 277 | 97.67 282 | 98.72 277 | 94.89 294 | 95.95 343 | 98.20 326 | 92.62 375 | 98.55 226 | 98.54 262 | 94.88 259 | 99.52 337 | 93.96 332 | 99.44 246 | 98.59 332 |
|
| MVSMamba_PlusPlus | | | 98.83 87 | 98.98 67 | 98.36 231 | 99.32 155 | 96.58 244 | 98.90 80 | 99.41 131 | 99.75 8 | 98.72 201 | 99.50 62 | 96.17 212 | 99.94 37 | 99.27 45 | 99.78 120 | 98.57 333 |
|
| testing91 | | | 93.32 363 | 92.27 367 | 96.47 345 | 97.54 378 | 91.25 378 | 96.17 332 | 96.76 368 | 97.18 250 | 93.65 406 | 93.50 410 | 65.11 420 | 99.63 297 | 93.04 353 | 97.45 376 | 98.53 334 |
|
| EIA-MVS | | | 98.00 197 | 97.74 213 | 98.80 163 | 98.72 277 | 98.09 137 | 98.05 175 | 99.60 56 | 97.39 226 | 96.63 352 | 95.55 385 | 97.68 120 | 99.80 194 | 96.73 218 | 99.27 269 | 98.52 335 |
|
| PatchMatch-RL | | | 97.24 261 | 96.78 276 | 98.61 194 | 99.03 225 | 97.83 167 | 96.36 318 | 99.06 238 | 93.49 364 | 97.36 321 | 97.78 326 | 95.75 234 | 99.49 346 | 93.44 347 | 98.77 324 | 98.52 335 |
|
| sasdasda | | | 98.34 163 | 98.26 164 | 98.58 198 | 98.46 324 | 97.82 170 | 98.96 74 | 99.46 110 | 99.19 69 | 97.46 312 | 95.46 390 | 98.59 50 | 99.46 354 | 98.08 122 | 98.71 329 | 98.46 337 |
|
| ET-MVSNet_ETH3D | | | 94.30 348 | 93.21 358 | 97.58 291 | 98.14 348 | 94.47 307 | 94.78 382 | 93.24 405 | 94.72 338 | 89.56 416 | 95.87 380 | 78.57 398 | 99.81 187 | 96.91 197 | 97.11 389 | 98.46 337 |
|
| canonicalmvs | | | 98.34 163 | 98.26 164 | 98.58 198 | 98.46 324 | 97.82 170 | 98.96 74 | 99.46 110 | 99.19 69 | 97.46 312 | 95.46 390 | 98.59 50 | 99.46 354 | 98.08 122 | 98.71 329 | 98.46 337 |
|
| UBG | | | 93.25 365 | 92.32 366 | 96.04 361 | 97.72 365 | 90.16 391 | 95.92 346 | 95.91 382 | 96.03 303 | 93.95 403 | 93.04 413 | 69.60 409 | 99.52 337 | 90.72 391 | 97.98 367 | 98.45 340 |
|
| tt0805 | | | 98.69 111 | 98.62 110 | 98.90 153 | 99.75 33 | 99.30 21 | 99.15 53 | 96.97 361 | 98.86 109 | 98.87 182 | 97.62 337 | 98.63 46 | 98.96 397 | 99.41 38 | 98.29 349 | 98.45 340 |
|
| TAPA-MVS | | 96.21 11 | 96.63 293 | 95.95 304 | 98.65 185 | 98.93 239 | 98.09 137 | 96.93 289 | 99.28 188 | 83.58 413 | 98.13 262 | 97.78 326 | 96.13 214 | 99.40 363 | 93.52 344 | 99.29 267 | 98.45 340 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| MGCFI-Net | | | 98.34 163 | 98.28 160 | 98.51 212 | 98.47 322 | 97.59 188 | 98.96 74 | 99.48 99 | 99.18 71 | 97.40 317 | 95.50 387 | 98.66 43 | 99.50 343 | 98.18 115 | 98.71 329 | 98.44 343 |
|
| BH-untuned | | | 96.83 285 | 96.75 278 | 97.08 321 | 98.74 274 | 93.33 342 | 96.71 301 | 98.26 323 | 96.72 275 | 98.44 237 | 97.37 351 | 95.20 249 | 99.47 352 | 91.89 370 | 97.43 378 | 98.44 343 |
|
| WB-MVSnew | | | 95.73 322 | 95.57 316 | 96.23 354 | 96.70 404 | 90.70 388 | 96.07 336 | 93.86 401 | 95.60 316 | 97.04 331 | 95.45 393 | 96.00 220 | 99.55 326 | 91.04 385 | 98.31 348 | 98.43 345 |
|
| pmmvs3 | | | 95.03 337 | 94.40 344 | 96.93 328 | 97.70 370 | 92.53 356 | 95.08 375 | 97.71 340 | 88.57 404 | 97.71 292 | 98.08 309 | 79.39 393 | 99.82 173 | 96.19 260 | 99.11 297 | 98.43 345 |
|
| DP-MVS Recon | | | 97.33 253 | 96.92 265 | 98.57 201 | 99.09 209 | 97.99 150 | 96.79 295 | 99.35 151 | 93.18 366 | 97.71 292 | 98.07 310 | 95.00 255 | 99.31 376 | 93.97 331 | 99.13 293 | 98.42 347 |
|
| testing99 | | | 93.04 369 | 91.98 375 | 96.23 354 | 97.53 380 | 90.70 388 | 96.35 319 | 95.94 381 | 96.87 267 | 93.41 407 | 93.43 411 | 63.84 422 | 99.59 311 | 93.24 351 | 97.19 386 | 98.40 348 |
|
| ETVMVS | | | 92.60 373 | 91.08 382 | 97.18 316 | 97.70 370 | 93.65 339 | 96.54 307 | 95.70 385 | 96.51 282 | 94.68 392 | 92.39 416 | 61.80 423 | 99.50 343 | 86.97 403 | 97.41 379 | 98.40 348 |
|
| Fast-Effi-MVS+-dtu | | | 98.27 174 | 98.09 183 | 98.81 161 | 98.43 328 | 98.11 134 | 97.61 238 | 99.50 90 | 98.64 118 | 97.39 319 | 97.52 342 | 98.12 92 | 99.95 24 | 96.90 202 | 98.71 329 | 98.38 350 |
|
| LF4IMVS | | | 97.90 203 | 97.69 217 | 98.52 211 | 99.17 193 | 97.66 183 | 97.19 277 | 99.47 107 | 96.31 292 | 97.85 284 | 98.20 299 | 96.71 191 | 99.52 337 | 94.62 310 | 99.72 153 | 98.38 350 |
|
| testing11 | | | 93.08 368 | 92.02 372 | 96.26 352 | 97.56 376 | 90.83 386 | 96.32 321 | 95.70 385 | 96.47 286 | 92.66 410 | 93.73 407 | 64.36 421 | 99.59 311 | 93.77 339 | 97.57 372 | 98.37 352 |
|
| Fast-Effi-MVS+ | | | 97.67 226 | 97.38 238 | 98.57 201 | 98.71 280 | 97.43 197 | 97.23 270 | 99.45 114 | 94.82 337 | 96.13 366 | 96.51 366 | 98.52 56 | 99.91 62 | 96.19 260 | 98.83 321 | 98.37 352 |
|
| test0.0.03 1 | | | 94.51 343 | 93.69 352 | 96.99 325 | 96.05 414 | 93.61 340 | 94.97 378 | 93.49 402 | 96.17 295 | 97.57 303 | 94.88 400 | 82.30 383 | 99.01 396 | 93.60 342 | 94.17 412 | 98.37 352 |
|
| UWE-MVS | | | 92.38 376 | 91.76 379 | 94.21 387 | 97.16 394 | 84.65 413 | 95.42 366 | 88.45 418 | 95.96 306 | 96.17 365 | 95.84 382 | 66.36 416 | 99.71 255 | 91.87 371 | 98.64 336 | 98.28 355 |
|
| FE-MVS | | | 95.66 324 | 94.95 337 | 97.77 272 | 98.53 318 | 95.28 282 | 99.40 16 | 96.09 378 | 93.11 368 | 97.96 275 | 99.26 110 | 79.10 395 | 99.77 224 | 92.40 367 | 98.71 329 | 98.27 356 |
|
| baseline2 | | | 93.73 357 | 92.83 363 | 96.42 346 | 97.70 370 | 91.28 377 | 96.84 294 | 89.77 416 | 93.96 358 | 92.44 411 | 95.93 378 | 79.14 394 | 99.77 224 | 92.94 354 | 96.76 394 | 98.21 357 |
|
| thisisatest0515 | | | 94.12 352 | 93.16 359 | 96.97 327 | 98.60 306 | 92.90 349 | 93.77 404 | 90.61 413 | 94.10 354 | 96.91 338 | 95.87 380 | 74.99 403 | 99.80 194 | 94.52 313 | 99.12 296 | 98.20 358 |
|
| EPMVS | | | 93.72 358 | 93.27 357 | 95.09 380 | 96.04 415 | 87.76 402 | 98.13 162 | 85.01 422 | 94.69 339 | 96.92 336 | 98.64 249 | 78.47 400 | 99.31 376 | 95.04 299 | 96.46 396 | 98.20 358 |
|
| dp | | | 93.47 361 | 93.59 354 | 93.13 399 | 96.64 405 | 81.62 423 | 97.66 231 | 96.42 374 | 92.80 373 | 96.11 367 | 98.64 249 | 78.55 399 | 99.59 311 | 93.31 349 | 92.18 417 | 98.16 360 |
|
| CNLPA | | | 97.17 267 | 96.71 280 | 98.55 206 | 98.56 314 | 98.05 147 | 96.33 320 | 98.93 260 | 96.91 265 | 97.06 330 | 97.39 349 | 94.38 273 | 99.45 356 | 91.66 373 | 99.18 287 | 98.14 361 |
|
| dmvs_re | | | 95.98 314 | 95.39 324 | 97.74 278 | 98.86 255 | 97.45 195 | 98.37 140 | 95.69 387 | 97.95 174 | 96.56 355 | 95.95 377 | 90.70 325 | 97.68 414 | 88.32 399 | 96.13 401 | 98.11 362 |
|
| HY-MVS | | 95.94 13 | 95.90 316 | 95.35 326 | 97.55 296 | 97.95 356 | 94.79 295 | 98.81 91 | 96.94 364 | 92.28 379 | 95.17 386 | 98.57 260 | 89.90 331 | 99.75 237 | 91.20 383 | 97.33 385 | 98.10 363 |
|
| CostFormer | | | 93.97 354 | 93.78 351 | 94.51 383 | 97.53 380 | 85.83 409 | 97.98 189 | 95.96 380 | 89.29 402 | 94.99 389 | 98.63 251 | 78.63 397 | 99.62 300 | 94.54 312 | 96.50 395 | 98.09 364 |
|
| FA-MVS(test-final) | | | 96.99 280 | 96.82 273 | 97.50 301 | 98.70 284 | 94.78 296 | 99.34 20 | 96.99 360 | 95.07 330 | 98.48 234 | 99.33 95 | 88.41 344 | 99.65 291 | 96.13 266 | 98.92 318 | 98.07 365 |
|
| AdaColmap |  | | 97.14 269 | 96.71 280 | 98.46 219 | 98.34 335 | 97.80 174 | 96.95 286 | 98.93 260 | 95.58 317 | 96.92 336 | 97.66 333 | 95.87 231 | 99.53 333 | 90.97 386 | 99.14 291 | 98.04 366 |
|
| KD-MVS_2432*1600 | | | 92.87 371 | 91.99 373 | 95.51 372 | 91.37 423 | 89.27 395 | 94.07 398 | 98.14 329 | 95.42 322 | 97.25 324 | 96.44 370 | 67.86 411 | 99.24 384 | 91.28 381 | 96.08 402 | 98.02 367 |
|
| miper_refine_blended | | | 92.87 371 | 91.99 373 | 95.51 372 | 91.37 423 | 89.27 395 | 94.07 398 | 98.14 329 | 95.42 322 | 97.25 324 | 96.44 370 | 67.86 411 | 99.24 384 | 91.28 381 | 96.08 402 | 98.02 367 |
|
| TESTMET0.1,1 | | | 92.19 380 | 91.77 378 | 93.46 395 | 96.48 409 | 82.80 420 | 94.05 400 | 91.52 412 | 94.45 346 | 94.00 401 | 94.88 400 | 66.65 415 | 99.56 322 | 95.78 281 | 98.11 359 | 98.02 367 |
|
| testing222 | | | 91.96 381 | 90.37 385 | 96.72 340 | 97.47 387 | 92.59 354 | 96.11 334 | 94.76 391 | 96.83 269 | 92.90 409 | 92.87 414 | 57.92 424 | 99.55 326 | 86.93 404 | 97.52 373 | 98.00 370 |
|
| PCF-MVS | | 92.86 18 | 94.36 345 | 93.00 362 | 98.42 224 | 98.70 284 | 97.56 189 | 93.16 408 | 99.11 232 | 79.59 417 | 97.55 304 | 97.43 347 | 92.19 310 | 99.73 247 | 79.85 417 | 99.45 243 | 97.97 371 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| OpenMVS |  | 96.65 7 | 97.09 271 | 96.68 282 | 98.32 234 | 98.32 336 | 97.16 215 | 98.86 86 | 99.37 142 | 89.48 400 | 96.29 364 | 99.15 138 | 96.56 196 | 99.90 68 | 92.90 355 | 99.20 282 | 97.89 372 |
|
| Gipuma |  | | 99.03 63 | 99.16 48 | 98.64 186 | 99.94 2 | 98.51 104 | 99.32 23 | 99.75 34 | 99.58 29 | 98.60 217 | 99.62 36 | 98.22 80 | 99.51 342 | 97.70 149 | 99.73 145 | 97.89 372 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PVSNet_0 | | 89.98 21 | 91.15 384 | 90.30 387 | 93.70 393 | 97.72 365 | 84.34 417 | 90.24 414 | 97.42 346 | 90.20 397 | 93.79 404 | 93.09 412 | 90.90 324 | 98.89 402 | 86.57 406 | 72.76 421 | 97.87 374 |
|
| test-LLR | | | 93.90 355 | 93.85 349 | 94.04 388 | 96.53 407 | 84.62 414 | 94.05 400 | 92.39 407 | 96.17 295 | 94.12 398 | 95.07 394 | 82.30 383 | 99.67 275 | 95.87 276 | 98.18 353 | 97.82 375 |
|
| test-mter | | | 92.33 378 | 91.76 379 | 94.04 388 | 96.53 407 | 84.62 414 | 94.05 400 | 92.39 407 | 94.00 357 | 94.12 398 | 95.07 394 | 65.63 419 | 99.67 275 | 95.87 276 | 98.18 353 | 97.82 375 |
|
| tpm2 | | | 93.09 367 | 92.58 365 | 94.62 382 | 97.56 376 | 86.53 406 | 97.66 231 | 95.79 384 | 86.15 409 | 94.07 400 | 98.23 297 | 75.95 401 | 99.53 333 | 90.91 388 | 96.86 393 | 97.81 377 |
|
| CR-MVSNet | | | 96.28 305 | 95.95 304 | 97.28 312 | 97.71 368 | 94.22 311 | 98.11 166 | 98.92 263 | 92.31 378 | 96.91 338 | 99.37 84 | 85.44 362 | 99.81 187 | 97.39 165 | 97.36 383 | 97.81 377 |
|
| RPMNet | | | 97.02 276 | 96.93 263 | 97.30 311 | 97.71 368 | 94.22 311 | 98.11 166 | 99.30 177 | 99.37 46 | 96.91 338 | 99.34 93 | 86.72 349 | 99.87 108 | 97.53 159 | 97.36 383 | 97.81 377 |
|
| tpmrst | | | 95.07 336 | 95.46 319 | 93.91 390 | 97.11 395 | 84.36 416 | 97.62 236 | 96.96 362 | 94.98 332 | 96.35 363 | 98.80 219 | 85.46 361 | 99.59 311 | 95.60 288 | 96.23 399 | 97.79 380 |
|
| PAPM | | | 91.88 383 | 90.34 386 | 96.51 343 | 98.06 353 | 92.56 355 | 92.44 411 | 97.17 355 | 86.35 408 | 90.38 415 | 96.01 375 | 86.61 350 | 99.21 387 | 70.65 421 | 95.43 406 | 97.75 381 |
|
| FPMVS | | | 93.44 362 | 92.23 368 | 97.08 321 | 99.25 170 | 97.86 164 | 95.61 357 | 97.16 356 | 92.90 371 | 93.76 405 | 98.65 246 | 75.94 402 | 95.66 418 | 79.30 418 | 97.49 374 | 97.73 382 |
|
| MAR-MVS | | | 96.47 300 | 95.70 309 | 98.79 166 | 97.92 358 | 99.12 61 | 98.28 146 | 98.60 308 | 92.16 380 | 95.54 381 | 96.17 374 | 94.77 265 | 99.52 337 | 89.62 395 | 98.23 350 | 97.72 383 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| ETV-MVS | | | 98.03 194 | 97.86 207 | 98.56 205 | 98.69 289 | 98.07 143 | 97.51 250 | 99.50 90 | 98.10 166 | 97.50 309 | 95.51 386 | 98.41 62 | 99.88 91 | 96.27 256 | 99.24 274 | 97.71 384 |
|
| thres600view7 | | | 94.45 344 | 93.83 350 | 96.29 350 | 99.06 218 | 91.53 370 | 97.99 188 | 94.24 398 | 98.34 140 | 97.44 315 | 95.01 396 | 79.84 389 | 99.67 275 | 84.33 409 | 98.23 350 | 97.66 385 |
|
| thres400 | | | 94.14 351 | 93.44 355 | 96.24 353 | 98.93 239 | 91.44 372 | 97.60 239 | 94.29 396 | 97.94 176 | 97.10 327 | 94.31 405 | 79.67 391 | 99.62 300 | 83.05 411 | 98.08 361 | 97.66 385 |
|
| IB-MVS | | 91.63 19 | 92.24 379 | 90.90 383 | 96.27 351 | 97.22 393 | 91.24 379 | 94.36 395 | 93.33 404 | 92.37 377 | 92.24 412 | 94.58 404 | 66.20 418 | 99.89 79 | 93.16 352 | 94.63 410 | 97.66 385 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| tpmvs | | | 95.02 338 | 95.25 328 | 94.33 384 | 96.39 412 | 85.87 407 | 98.08 170 | 96.83 367 | 95.46 321 | 95.51 383 | 98.69 237 | 85.91 357 | 99.53 333 | 94.16 324 | 96.23 399 | 97.58 388 |
|
| cascas | | | 94.79 341 | 94.33 347 | 96.15 360 | 96.02 416 | 92.36 361 | 92.34 412 | 99.26 196 | 85.34 411 | 95.08 388 | 94.96 399 | 92.96 299 | 98.53 407 | 94.41 321 | 98.59 340 | 97.56 389 |
|
| PatchT | | | 96.65 292 | 96.35 296 | 97.54 297 | 97.40 388 | 95.32 281 | 97.98 189 | 96.64 370 | 99.33 51 | 96.89 342 | 99.42 77 | 84.32 370 | 99.81 187 | 97.69 151 | 97.49 374 | 97.48 390 |
|
| TR-MVS | | | 95.55 327 | 95.12 333 | 96.86 335 | 97.54 378 | 93.94 325 | 96.49 311 | 96.53 373 | 94.36 349 | 97.03 333 | 96.61 365 | 94.26 277 | 99.16 390 | 86.91 405 | 96.31 398 | 97.47 391 |
|
| dmvs_testset | | | 92.94 370 | 92.21 369 | 95.13 378 | 98.59 309 | 90.99 383 | 97.65 233 | 92.09 409 | 96.95 262 | 94.00 401 | 93.55 409 | 92.34 309 | 96.97 417 | 72.20 420 | 92.52 415 | 97.43 392 |
|
| MonoMVSNet | | | 96.25 306 | 96.53 293 | 95.39 375 | 96.57 406 | 91.01 382 | 98.82 90 | 97.68 342 | 98.57 128 | 98.03 272 | 99.37 84 | 90.92 323 | 97.78 413 | 94.99 300 | 93.88 413 | 97.38 393 |
|
| JIA-IIPM | | | 95.52 328 | 95.03 334 | 97.00 324 | 96.85 401 | 94.03 321 | 96.93 289 | 95.82 383 | 99.20 65 | 94.63 394 | 99.71 19 | 83.09 379 | 99.60 307 | 94.42 318 | 94.64 409 | 97.36 394 |
|
| BH-w/o | | | 95.13 335 | 94.89 339 | 95.86 362 | 98.20 344 | 91.31 375 | 95.65 356 | 97.37 347 | 93.64 360 | 96.52 357 | 95.70 383 | 93.04 298 | 99.02 394 | 88.10 400 | 95.82 404 | 97.24 395 |
|
| tpm cat1 | | | 93.29 364 | 93.13 361 | 93.75 392 | 97.39 389 | 84.74 412 | 97.39 257 | 97.65 343 | 83.39 414 | 94.16 397 | 98.41 279 | 82.86 381 | 99.39 365 | 91.56 377 | 95.35 407 | 97.14 396 |
|
| xiu_mvs_v1_base_debu | | | 97.86 210 | 98.17 174 | 96.92 329 | 98.98 232 | 93.91 327 | 96.45 312 | 99.17 220 | 97.85 184 | 98.41 240 | 97.14 358 | 98.47 57 | 99.92 53 | 98.02 126 | 99.05 299 | 96.92 397 |
|
| xiu_mvs_v1_base | | | 97.86 210 | 98.17 174 | 96.92 329 | 98.98 232 | 93.91 327 | 96.45 312 | 99.17 220 | 97.85 184 | 98.41 240 | 97.14 358 | 98.47 57 | 99.92 53 | 98.02 126 | 99.05 299 | 96.92 397 |
|
| xiu_mvs_v1_base_debi | | | 97.86 210 | 98.17 174 | 96.92 329 | 98.98 232 | 93.91 327 | 96.45 312 | 99.17 220 | 97.85 184 | 98.41 240 | 97.14 358 | 98.47 57 | 99.92 53 | 98.02 126 | 99.05 299 | 96.92 397 |
|
| PMVS |  | 91.26 20 | 97.86 210 | 97.94 200 | 97.65 284 | 99.71 45 | 97.94 159 | 98.52 118 | 98.68 302 | 98.99 97 | 97.52 307 | 99.35 89 | 97.41 147 | 98.18 411 | 91.59 376 | 99.67 179 | 96.82 400 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| 1314 | | | 95.74 321 | 95.60 313 | 96.17 357 | 97.53 380 | 92.75 353 | 98.07 172 | 98.31 322 | 91.22 389 | 94.25 396 | 96.68 364 | 95.53 240 | 99.03 393 | 91.64 375 | 97.18 387 | 96.74 401 |
|
| MVS-HIRNet | | | 94.32 346 | 95.62 312 | 90.42 401 | 98.46 324 | 75.36 425 | 96.29 323 | 89.13 417 | 95.25 327 | 95.38 384 | 99.75 13 | 92.88 300 | 99.19 388 | 94.07 330 | 99.39 250 | 96.72 402 |
|
| OpenMVS_ROB |  | 95.38 14 | 95.84 319 | 95.18 332 | 97.81 269 | 98.41 332 | 97.15 216 | 97.37 259 | 98.62 307 | 83.86 412 | 98.65 209 | 98.37 284 | 94.29 276 | 99.68 272 | 88.41 398 | 98.62 339 | 96.60 403 |
|
| thres100view900 | | | 94.19 349 | 93.67 353 | 95.75 366 | 99.06 218 | 91.35 374 | 98.03 178 | 94.24 398 | 98.33 141 | 97.40 317 | 94.98 398 | 79.84 389 | 99.62 300 | 83.05 411 | 98.08 361 | 96.29 404 |
|
| tfpn200view9 | | | 94.03 353 | 93.44 355 | 95.78 365 | 98.93 239 | 91.44 372 | 97.60 239 | 94.29 396 | 97.94 176 | 97.10 327 | 94.31 405 | 79.67 391 | 99.62 300 | 83.05 411 | 98.08 361 | 96.29 404 |
|
| MVS | | | 93.19 366 | 92.09 370 | 96.50 344 | 96.91 399 | 94.03 321 | 98.07 172 | 98.06 333 | 68.01 419 | 94.56 395 | 96.48 368 | 95.96 227 | 99.30 378 | 83.84 410 | 96.89 392 | 96.17 406 |
|
| gg-mvs-nofinetune | | | 92.37 377 | 91.20 381 | 95.85 363 | 95.80 418 | 92.38 360 | 99.31 27 | 81.84 424 | 99.75 8 | 91.83 413 | 99.74 15 | 68.29 410 | 99.02 394 | 87.15 402 | 97.12 388 | 96.16 407 |
|
| xiu_mvs_v2_base | | | 97.16 268 | 97.49 232 | 96.17 357 | 98.54 316 | 92.46 357 | 95.45 364 | 98.84 281 | 97.25 240 | 97.48 311 | 96.49 367 | 98.31 71 | 99.90 68 | 96.34 252 | 98.68 334 | 96.15 408 |
|
| PS-MVSNAJ | | | 97.08 272 | 97.39 237 | 96.16 359 | 98.56 314 | 92.46 357 | 95.24 371 | 98.85 280 | 97.25 240 | 97.49 310 | 95.99 376 | 98.07 93 | 99.90 68 | 96.37 249 | 98.67 335 | 96.12 409 |
|
| E-PMN | | | 94.17 350 | 94.37 345 | 93.58 394 | 96.86 400 | 85.71 410 | 90.11 416 | 97.07 358 | 98.17 161 | 97.82 287 | 97.19 355 | 84.62 367 | 98.94 398 | 89.77 394 | 97.68 371 | 96.09 410 |
|
| EMVS | | | 93.83 356 | 94.02 348 | 93.23 398 | 96.83 402 | 84.96 411 | 89.77 417 | 96.32 375 | 97.92 178 | 97.43 316 | 96.36 373 | 86.17 354 | 98.93 399 | 87.68 401 | 97.73 370 | 95.81 411 |
|
| MVE |  | 83.40 22 | 92.50 374 | 91.92 376 | 94.25 385 | 98.83 261 | 91.64 369 | 92.71 409 | 83.52 423 | 95.92 308 | 86.46 421 | 95.46 390 | 95.20 249 | 95.40 419 | 80.51 416 | 98.64 336 | 95.73 412 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| thres200 | | | 93.72 358 | 93.14 360 | 95.46 374 | 98.66 299 | 91.29 376 | 96.61 306 | 94.63 393 | 97.39 226 | 96.83 345 | 93.71 408 | 79.88 388 | 99.56 322 | 82.40 414 | 98.13 358 | 95.54 413 |
|
| API-MVS | | | 97.04 275 | 96.91 267 | 97.42 307 | 97.88 360 | 98.23 126 | 98.18 155 | 98.50 313 | 97.57 204 | 97.39 319 | 96.75 363 | 96.77 185 | 99.15 391 | 90.16 393 | 99.02 306 | 94.88 414 |
|
| GG-mvs-BLEND | | | | | 94.76 381 | 94.54 420 | 92.13 365 | 99.31 27 | 80.47 425 | | 88.73 419 | 91.01 419 | 67.59 414 | 98.16 412 | 82.30 415 | 94.53 411 | 93.98 415 |
|
| DeepMVS_CX |  | | | | 93.44 396 | 98.24 341 | 94.21 313 | | 94.34 395 | 64.28 420 | 91.34 414 | 94.87 402 | 89.45 335 | 92.77 421 | 77.54 419 | 93.14 414 | 93.35 416 |
|
| tmp_tt | | | 78.77 387 | 78.73 390 | 78.90 403 | 58.45 428 | 74.76 427 | 94.20 397 | 78.26 426 | 39.16 421 | 86.71 420 | 92.82 415 | 80.50 387 | 75.19 423 | 86.16 407 | 92.29 416 | 86.74 417 |
|
| dongtai | | | 76.24 388 | 75.95 391 | 77.12 404 | 92.39 422 | 67.91 428 | 90.16 415 | 59.44 429 | 82.04 415 | 89.42 417 | 94.67 403 | 49.68 427 | 81.74 422 | 48.06 422 | 77.66 420 | 81.72 418 |
|
| kuosan | | | 69.30 389 | 68.95 392 | 70.34 405 | 87.68 426 | 65.00 429 | 91.11 413 | 59.90 428 | 69.02 418 | 74.46 423 | 88.89 420 | 48.58 428 | 68.03 424 | 28.61 423 | 72.33 422 | 77.99 419 |
|
| wuyk23d | | | 96.06 310 | 97.62 225 | 91.38 400 | 98.65 303 | 98.57 98 | 98.85 87 | 96.95 363 | 96.86 268 | 99.90 12 | 99.16 134 | 99.18 17 | 98.40 408 | 89.23 397 | 99.77 126 | 77.18 420 |
|
| test123 | | | 17.04 392 | 20.11 395 | 7.82 406 | 10.25 430 | 4.91 431 | 94.80 381 | 4.47 431 | 4.93 424 | 10.00 426 | 24.28 423 | 9.69 429 | 3.64 425 | 10.14 424 | 12.43 424 | 14.92 421 |
|
| testmvs | | | 17.12 391 | 20.53 394 | 6.87 407 | 12.05 429 | 4.20 432 | 93.62 406 | 6.73 430 | 4.62 425 | 10.41 425 | 24.33 422 | 8.28 430 | 3.56 426 | 9.69 425 | 15.07 423 | 12.86 422 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 24.66 390 | 32.88 393 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 99.10 233 | 0.00 426 | 0.00 427 | 97.58 338 | 99.21 16 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 8.17 393 | 10.90 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 98.07 93 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| ab-mvs-re | | | 8.12 394 | 10.83 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 97.48 344 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 90.90 384 | | | | | | | | 91.37 380 | | |
|
| FOURS1 | | | | | | 99.73 36 | 99.67 3 | 99.43 12 | 99.54 81 | 99.43 41 | 99.26 116 | | | | | | |
|
| test_one_0601 | | | | | | 99.39 139 | 99.20 38 | | 99.31 169 | 98.49 134 | 98.66 208 | 99.02 163 | 97.64 126 | | | | |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.01 227 | 98.84 78 | | 99.07 237 | 94.10 354 | 98.05 270 | 98.12 304 | 96.36 207 | 99.86 116 | 92.70 363 | 99.19 285 | |
|
| test_241102_ONE | | | | | | 99.49 115 | 99.17 43 | | 99.31 169 | 97.98 171 | 99.66 43 | 98.90 197 | 98.36 65 | 99.48 349 | | | |
|
| 9.14 | | | | 97.78 210 | | 99.07 213 | | 97.53 247 | 99.32 164 | 95.53 319 | 98.54 228 | 98.70 236 | 97.58 131 | 99.76 230 | 94.32 323 | 99.46 241 | |
|
| save fliter | | | | | | 99.11 204 | 97.97 154 | 96.53 309 | 99.02 249 | 98.24 151 | | | | | | | |
|
| test0726 | | | | | | 99.50 108 | 99.21 32 | 98.17 158 | 99.35 151 | 97.97 172 | 99.26 116 | 99.06 151 | 97.61 129 | | | | |
|
| test_part2 | | | | | | 99.36 147 | 99.10 64 | | | | 99.05 145 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 84.29 372 | | | | |
|
| MTGPA |  | | | | | | | | 99.20 208 | | | | | | | | |
|
| test_post1 | | | | | | | | 97.59 241 | | | | 20.48 425 | 83.07 380 | 99.66 286 | 94.16 324 | | |
|
| test_post | | | | | | | | | | | | 21.25 424 | 83.86 375 | 99.70 259 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 98.77 225 | 84.37 369 | 99.85 128 | | | |
|
| MTMP | | | | | | | | 97.93 193 | 91.91 411 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.83 419 | 81.97 422 | | | 88.07 406 | | 94.99 397 | | 99.60 307 | 91.76 372 | | |
|
| TEST9 | | | | | | 98.71 280 | 98.08 141 | 95.96 341 | 99.03 246 | 91.40 387 | 95.85 372 | 97.53 340 | 96.52 198 | 99.76 230 | | | |
|
| test_8 | | | | | | 98.67 294 | 98.01 149 | 95.91 347 | 99.02 249 | 91.64 382 | 95.79 374 | 97.50 343 | 96.47 200 | 99.76 230 | | | |
|
| agg_prior | | | | | | 98.68 293 | 97.99 150 | | 99.01 252 | | 95.59 375 | | | 99.77 224 | | | |
|
| test_prior4 | | | | | | | 97.97 154 | 95.86 348 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.74 354 | | 96.48 285 | 96.11 367 | 97.63 336 | 95.92 230 | | 94.16 324 | 99.20 282 | |
|
| 旧先验2 | | | | | | | | 95.76 353 | | 88.56 405 | 97.52 307 | | | 99.66 286 | 94.48 314 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 95.93 344 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 95.53 360 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.79 207 | 92.80 360 | | |
|
| segment_acmp | | | | | | | | | | | | | 97.02 170 | | | | |
|
| testdata1 | | | | | | | | 95.44 365 | | 96.32 291 | | | | | | | |
|
| plane_prior7 | | | | | | 99.19 185 | 97.87 163 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.99 231 | 97.70 182 | | | | | | 94.90 256 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 97.98 315 | | | | | |
|
| plane_prior3 | | | | | | | 97.78 175 | | | 97.41 224 | 97.79 288 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.77 216 | | 98.20 158 | | | | | | | |
|
| plane_prior1 | | | | | | 99.05 221 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 97.65 184 | 97.07 281 | | 96.72 275 | | | | | | 99.36 254 | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 99.57 66 | | | | | | | | |
|
| test11 | | | | | | | | | 98.87 272 | | | | | | | | |
|
| door | | | | | | | | | 99.41 131 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 96.79 233 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 98.67 294 | | 96.29 323 | | 96.05 300 | 95.55 378 | | | | | | |
|
| ACMP_Plane | | | | | | 98.67 294 | | 96.29 323 | | 96.05 300 | 95.55 378 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.82 358 | | |
|
| HQP3-MVS | | | | | | | | | 99.04 244 | | | | | | | 99.26 272 | |
|
| HQP2-MVS | | | | | | | | | | | | | 93.84 284 | | | | |
|
| NP-MVS | | | | | | 98.84 259 | 97.39 199 | | | | | 96.84 361 | | | | | |
|
| MDTV_nov1_ep13 | | | | 95.22 330 | | 97.06 398 | 83.20 419 | 97.74 221 | 96.16 376 | 94.37 348 | 96.99 334 | 98.83 213 | 83.95 374 | 99.53 333 | 93.90 333 | 97.95 368 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 126 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.68 173 | |
|
| Test By Simon | | | | | | | | | | | | | 96.52 198 | | | | |
|