This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 15999.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23297.97 17999.86 1398.22 14099.88 1799.71 1798.59 4999.84 13799.73 1999.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24597.87 19199.85 1598.56 12199.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
test_fmvs399.12 5199.41 1998.25 22999.76 3195.07 28299.05 6499.94 297.78 17499.82 2199.84 298.56 5299.71 24699.96 199.96 2599.97 3
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20399.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
test_f98.67 11498.87 7198.05 24699.72 4495.59 26098.51 11599.81 2496.30 28099.78 2699.82 496.14 20498.63 39399.82 899.93 4499.95 6
test_fmvs298.70 10398.97 6597.89 25699.54 9894.05 30998.55 10699.92 696.78 25699.72 3199.78 896.60 18799.67 26799.91 299.90 6999.94 7
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8699.96 1199.53 30100.00 199.93 8
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7599.94 297.80 17299.91 1199.67 2597.15 15498.91 38899.76 1699.56 21099.92 9
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23297.79 20099.82 2298.21 14199.81 2399.53 5498.46 5899.84 13799.70 2299.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 24897.74 20899.81 2498.55 12299.85 1999.55 4898.60 4899.84 13799.69 2499.98 1299.89 11
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21499.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7199.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31699.49 3199.59 5299.65 3094.79 25699.95 2299.45 3599.96 2599.88 14
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8199.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
EU-MVSNet97.66 21898.50 12095.13 36499.63 7485.84 39498.35 13498.21 31298.23 13999.54 5699.46 6695.02 24599.68 26498.24 10599.87 7799.87 16
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 8999.96 1198.85 6999.99 599.86 18
MM98.22 17297.99 18598.91 14798.66 29196.97 21897.89 18794.44 37999.54 2798.95 15799.14 12993.50 28299.92 5099.80 1299.96 2599.85 19
MVS_030498.10 18197.88 19698.76 17098.82 25796.50 23497.90 18591.35 39799.56 2698.32 23999.13 13096.06 20899.93 4099.84 799.97 1999.85 19
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21497.80 19999.76 2998.70 10999.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20097.82 19699.76 2998.73 10699.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22298.58 10399.10 22496.49 26899.96 499.81 598.18 7899.45 34498.97 6399.79 11499.83 22
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25098.74 8598.64 29499.74 699.67 4199.24 10594.57 26099.95 2299.11 5299.24 26799.82 25
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9699.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7199.95 2298.89 6899.95 3299.81 28
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15599.85 12099.02 6099.94 4099.80 29
test_cas_vis1_n_192098.33 15898.68 9597.27 30399.69 5692.29 35298.03 16799.85 1597.62 18499.96 499.62 3493.98 27599.74 23399.52 3199.86 8099.79 30
test_vis1_n_192098.40 15098.92 6896.81 32699.74 3790.76 37598.15 15199.91 798.33 12999.89 1599.55 4895.07 24499.88 8399.76 1699.93 4499.79 30
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14799.42 4199.33 9799.26 10097.01 16399.94 3598.74 7699.93 4499.79 30
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
CVMVSNet96.25 29697.21 24093.38 38299.10 20180.56 40997.20 26198.19 31596.94 24799.00 14899.02 15289.50 32499.80 18496.36 23699.59 19899.78 33
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17099.83 15499.21 4899.91 6399.77 35
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8299.96 1198.78 7299.93 4499.77 35
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14499.93 4098.90 6699.93 4499.77 35
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS98.52 13998.55 11398.43 21499.65 6595.59 26098.52 11098.77 28199.65 1499.52 6299.00 16494.34 26699.93 4098.65 8398.83 31199.76 39
patch_mono-298.51 14098.63 10298.17 23599.38 14094.78 28797.36 24799.69 3798.16 15198.49 22699.29 9597.06 15899.97 498.29 10499.91 6399.76 39
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4699.73 23899.17 5199.92 5599.76 39
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17699.82 16498.69 8199.88 7499.76 39
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 5999.95 2299.73 1999.96 2599.75 43
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 7899.48 9697.57 19099.35 9499.24 10597.83 10299.89 7497.88 12999.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7199.97 498.78 7299.93 4499.72 45
MSC_two_6792asdad99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
No_MVS99.32 8098.43 31798.37 11198.86 26699.89 7497.14 16799.60 19499.71 46
PMMVS298.07 18698.08 17898.04 24799.41 13794.59 29694.59 37599.40 12497.50 19798.82 18598.83 20396.83 17299.84 13797.50 14999.81 9999.71 46
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24199.57 6299.37 4599.21 12099.61 3796.76 17999.83 15498.06 11699.83 9299.71 46
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17598.85 8199.62 4898.48 12499.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
test_0728_THIRD98.17 14899.08 13499.02 15297.89 9999.88 8397.07 17399.71 15499.70 51
MSP-MVS98.40 15098.00 18499.61 999.57 8199.25 2498.57 10499.35 14197.55 19499.31 10597.71 31694.61 25999.88 8396.14 25199.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22399.91 5999.32 4099.95 3299.70 51
dcpmvs_298.78 9099.11 5297.78 26399.56 8993.67 32799.06 6299.86 1399.50 3099.66 4299.26 10097.21 15299.99 298.00 12199.91 6399.68 54
test_0728_SECOND99.60 1199.50 10899.23 2698.02 16999.32 15499.88 8396.99 17999.63 18499.68 54
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19599.92 5099.44 3699.92 5599.68 54
CHOSEN 1792x268897.49 22997.14 24598.54 20399.68 5896.09 24896.50 29699.62 4891.58 36998.84 18198.97 17192.36 30099.88 8396.76 20299.95 3299.67 57
IU-MVS99.49 11599.15 4798.87 26192.97 35499.41 8096.76 20299.62 18799.66 58
test_241102_TWO99.30 16798.03 15599.26 11299.02 15297.51 13299.88 8396.91 18599.60 19499.66 58
DPE-MVScopyleft98.59 12698.26 15799.57 1699.27 16199.15 4797.01 26999.39 12697.67 18099.44 7598.99 16597.53 12999.89 7495.40 28199.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23797.23 25798.87 26199.20 6499.19 12298.99 16597.30 14499.85 12098.77 7599.79 11499.65 62
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23697.23 25798.86 26699.20 6499.18 12698.97 17197.29 14699.85 12098.72 7899.78 11999.64 63
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13299.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12399.33 15299.63 1799.48 6899.15 12697.23 15099.75 22897.17 16399.66 17899.63 66
test_fmvs1_n98.09 18498.28 15497.52 28999.68 5893.47 33198.63 9799.93 495.41 31099.68 3999.64 3291.88 30799.48 33899.82 899.87 7799.62 67
test111196.49 28996.82 26195.52 35899.42 13587.08 39199.22 4287.14 40499.11 7199.46 7199.58 4188.69 32899.86 10898.80 7199.95 3299.62 67
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 10899.63 1799.52 6299.44 7198.25 6999.88 8399.09 5499.84 8599.62 67
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14199.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26399.10 13299.06 14098.71 3999.83 15495.58 27799.78 11999.62 67
Test_1112_low_res96.99 26896.55 27998.31 22599.35 15195.47 26795.84 33699.53 8191.51 37196.80 33298.48 26191.36 31199.83 15496.58 21599.53 21999.62 67
v1098.97 6699.11 5298.55 20099.44 12996.21 24498.90 7699.55 7398.73 10699.48 6899.60 3996.63 18699.83 15499.70 2299.99 599.61 73
test_vis1_n98.31 16198.50 12097.73 27299.76 3194.17 30798.68 9499.91 796.31 27899.79 2599.57 4292.85 29499.42 34999.79 1399.84 8599.60 74
v899.01 6099.16 4598.57 19599.47 12496.31 24098.90 7699.47 10399.03 8799.52 6299.57 4296.93 16699.81 17799.60 2599.98 1299.60 74
EI-MVSNet98.40 15098.51 11898.04 24799.10 20194.73 29097.20 26198.87 26198.97 9299.06 13699.02 15296.00 21299.80 18498.58 8699.82 9599.60 74
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31399.37 4599.70 3599.65 3092.65 29799.93 4099.04 5899.84 8599.60 74
IterMVS-LS98.55 13298.70 9298.09 23999.48 12294.73 29097.22 26099.39 12698.97 9299.38 8799.31 9396.00 21299.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 25396.60 27798.96 13999.62 7697.28 20095.17 35699.50 8794.21 33699.01 14798.32 27786.61 34099.99 297.10 17199.84 8599.60 74
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19699.25 18796.94 24798.78 18899.12 13298.02 9099.84 13797.13 16999.67 17399.59 80
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18498.43 12699.35 14199.47 3499.28 10699.05 14796.72 18299.82 16498.09 11499.36 24799.59 80
WR-MVS98.40 15098.19 16499.03 13099.00 22197.65 18196.85 27998.94 24898.57 11998.89 17098.50 25895.60 22999.85 12097.54 14699.85 8199.59 80
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 11896.74 25898.61 20998.38 26998.62 4699.87 10096.47 22999.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 18998.04 16699.59 5398.15 15299.40 8399.36 8298.58 5199.76 22198.78 7299.68 16799.59 80
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7199.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 12798.23 16099.60 1199.69 5699.35 1297.16 26499.38 12894.87 32198.97 15498.99 16598.01 9199.88 8397.29 15799.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11099.31 15997.46 20598.44 23098.51 25497.83 10299.88 8396.46 23099.58 20399.58 86
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11099.31 15997.47 20098.56 21898.54 25097.75 10999.88 8396.57 21799.59 19899.58 86
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14199.49 9497.01 24498.69 19898.88 19498.00 9299.89 7495.87 26399.59 19899.58 86
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14199.31 15997.92 16398.90 16898.90 18798.00 9299.88 8396.15 25099.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19698.84 8399.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12399.92 5599.57 91
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1197.25 16099.92 5599.57 91
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13099.42 12199.42 4199.36 9299.06 14098.38 6299.95 2298.34 10199.90 6999.57 91
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9799.24 19297.47 20098.09 25698.68 22897.62 12099.89 7496.22 24599.62 18799.57 91
PVSNet_Blended_VisFu98.17 17998.15 17098.22 23299.73 3895.15 27897.36 24799.68 4294.45 33198.99 14999.27 9896.87 16999.94 3597.13 16999.91 6399.57 91
1112_ss97.29 24596.86 25798.58 19399.34 15396.32 23996.75 28599.58 5593.14 35296.89 32797.48 33092.11 30499.86 10896.91 18599.54 21599.57 91
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12699.20 19898.83 10598.89 17098.90 18796.98 16599.92 5097.16 16499.70 15999.56 97
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29398.63 24097.50 13399.83 15496.79 19899.53 21999.56 97
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
X-MVStestdata94.32 33292.59 35099.53 3499.46 12599.21 2898.65 9599.34 14798.62 11497.54 29345.85 40497.50 13399.83 15496.79 19899.53 21999.56 97
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21698.94 16498.86 19798.75 3699.82 16497.53 14799.71 15499.56 97
K. test v398.00 19097.66 21299.03 13099.79 2497.56 18599.19 4992.47 39199.62 2099.52 6299.66 2789.61 32299.96 1199.25 4599.81 9999.56 97
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 8999.36 13697.54 19598.30 24098.40 26697.86 10199.89 7496.53 22699.72 14999.56 97
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12399.29 17597.28 22298.11 25498.39 26798.00 9299.87 10096.86 19599.64 18199.55 104
v119298.60 12498.66 9898.41 21699.27 16195.88 25497.52 23599.36 13697.41 20999.33 9799.20 11296.37 19899.82 16499.57 2799.92 5599.55 104
v124098.55 13298.62 10498.32 22399.22 17195.58 26297.51 23799.45 10897.16 23799.45 7499.24 10596.12 20699.85 12099.60 2599.88 7499.55 104
UGNet98.53 13698.45 13098.79 16397.94 34796.96 22099.08 5898.54 29899.10 7896.82 33199.47 6596.55 18999.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250692.39 36091.89 36293.89 37699.38 14082.28 40699.32 2366.03 41299.08 8398.77 19199.57 4266.26 40299.84 13798.71 7999.95 3299.54 108
ECVR-MVScopyleft96.42 29196.61 27595.85 35099.38 14088.18 38799.22 4286.00 40699.08 8399.36 9299.57 4288.47 33399.82 16498.52 9299.95 3299.54 108
v14419298.54 13498.57 11298.45 21299.21 17395.98 25197.63 22299.36 13697.15 23999.32 10399.18 11695.84 22499.84 13799.50 3299.91 6399.54 108
v192192098.54 13498.60 10998.38 21999.20 17795.76 25997.56 23199.36 13697.23 23199.38 8799.17 12096.02 21099.84 13799.57 2799.90 6999.54 108
MP-MVScopyleft98.46 14498.09 17599.54 2799.57 8199.22 2798.50 11799.19 20297.61 18797.58 28998.66 23397.40 14099.88 8394.72 29599.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15599.90 6499.21 4899.87 7799.54 108
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 7899.37 13297.16 23798.82 18599.01 16197.71 11199.87 10096.29 24099.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 15098.03 18299.51 4399.16 19099.21 2898.05 16499.22 19594.16 33798.98 15099.10 13697.52 13199.79 19796.45 23199.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11099.31 15997.47 20098.58 21598.50 25897.97 9699.85 12096.57 21799.59 19899.53 115
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21499.40 12499.14 7099.06 13698.59 24696.71 18399.93 4098.57 8899.77 12499.53 115
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 13999.25 18797.44 20898.67 20098.39 26797.68 11299.85 12096.00 25599.51 22499.52 118
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4399.80 18498.24 10599.84 8599.52 118
v114498.60 12498.66 9898.41 21699.36 14795.90 25397.58 22999.34 14797.51 19699.27 10899.15 12696.34 20099.80 18499.47 3499.93 4499.51 120
v2v48298.56 12898.62 10498.37 22099.42 13595.81 25797.58 22999.16 21397.90 16599.28 10699.01 16195.98 21799.79 19799.33 3999.90 6999.51 120
CPTT-MVS97.84 20797.36 23299.27 8899.31 15498.46 10598.29 13699.27 18194.90 32097.83 27398.37 27094.90 24799.84 13793.85 32399.54 21599.51 120
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23399.25 18798.84 10499.06 13698.76 21696.76 17999.93 4098.57 8899.77 12499.50 123
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 19899.10 7899.72 3198.76 21696.38 19799.86 10898.00 12199.82 9599.50 123
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17798.00 17399.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10199.58 5599.11 7199.53 6099.18 11698.81 3299.67 26796.71 20999.77 12499.50 123
DVP-MVS++98.90 7598.70 9299.51 4398.43 31799.15 4799.43 1199.32 15498.17 14899.26 11299.02 15298.18 7899.88 8397.07 17399.45 23699.49 127
PC_three_145293.27 35099.40 8398.54 25098.22 7497.00 40195.17 28499.45 23699.49 127
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 8899.56 6998.42 12598.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
h-mvs3397.77 21097.33 23599.10 11499.21 17397.84 16498.35 13498.57 29799.11 7198.58 21599.02 15288.65 33199.96 1198.11 11296.34 38399.49 127
IterMVS-SCA-FT97.85 20698.18 16596.87 32299.27 16191.16 37095.53 34499.25 18799.10 7899.41 8099.35 8393.10 28799.96 1198.65 8399.94 4099.49 127
new-patchmatchnet98.35 15698.74 8397.18 30699.24 16692.23 35496.42 30199.48 9698.30 13299.69 3799.53 5497.44 13899.82 16498.84 7099.77 12499.49 127
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 19998.93 7197.76 20699.28 17894.97 31898.72 19798.77 21497.04 15999.85 12093.79 32499.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 16298.04 18199.07 12099.56 8997.83 16599.29 3398.07 32099.03 8798.59 21399.13 13092.16 30399.90 6496.87 19399.68 16799.49 127
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17299.46 10597.56 19299.54 5699.50 5998.97 2399.84 13798.06 11699.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16199.37 13297.62 18499.04 14398.96 17498.84 3099.79 19797.43 15199.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 16998.84 27097.97 15899.08 13499.02 15297.61 12199.88 8396.99 17999.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13399.29 17598.29 13598.88 17498.85 20097.53 12999.87 10096.14 25199.31 25599.48 137
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11598.94 24896.96 24599.24 11798.89 19397.83 10299.81 17796.88 19299.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 17497.95 18899.01 13399.58 7797.74 17599.01 6697.29 33999.67 1298.97 15499.50 5990.45 31799.80 18497.88 12999.20 27399.48 137
IterMVS97.73 21298.11 17496.57 33199.24 16690.28 37895.52 34699.21 19698.86 10199.33 9799.33 8993.11 28699.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 17697.90 19499.08 11899.57 8197.97 15299.31 2798.32 30899.01 8998.98 15099.03 15191.59 30899.79 19795.49 27999.80 10999.48 137
ACMP95.32 1598.41 14898.09 17599.36 6499.51 10598.79 8097.68 21499.38 12895.76 29798.81 18798.82 20698.36 6399.82 16494.75 29299.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19097.63 21599.10 11499.24 16698.17 12796.89 27898.73 28895.66 29897.92 26597.70 31897.17 15399.66 27896.18 24999.23 26999.47 144
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20298.99 9098.07 25799.28 9697.11 15799.84 13796.84 19699.32 25399.47 144
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20499.13 5597.52 23598.75 28597.46 20596.90 32697.83 31196.01 21199.84 13795.82 26799.35 24999.46 146
V4298.78 9098.78 8198.76 17099.44 12997.04 21598.27 13899.19 20297.87 16799.25 11699.16 12296.84 17099.78 20899.21 4899.84 8599.46 146
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 11899.33 15298.64 11099.03 14698.98 16997.89 9999.85 12096.54 22599.42 24099.46 146
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21099.38 12898.93 9699.12 12898.73 21996.77 17799.86 10898.63 8599.80 10999.46 146
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.49 13699.86 10896.56 22199.39 24399.45 150
RE-MVS-def98.58 11199.20 17799.38 898.48 12199.30 16798.64 11098.95 15798.96 17497.75 10996.56 22199.39 24399.45 150
HQP_MVS97.99 19397.67 20998.93 14499.19 18097.65 18197.77 20399.27 18198.20 14597.79 27697.98 30194.90 24799.70 25094.42 30499.51 22499.45 150
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 150
lessismore_v098.97 13899.73 3897.53 18786.71 40599.37 8999.52 5789.93 32099.92 5098.99 6299.72 14999.44 154
TAMVS98.24 17198.05 18098.80 16099.07 20897.18 20997.88 18898.81 27596.66 26299.17 12799.21 11094.81 25399.77 21596.96 18399.88 7499.44 154
DeepPCF-MVS96.93 598.32 15998.01 18399.23 9798.39 32298.97 6695.03 36099.18 20696.88 25099.33 9798.78 21298.16 8299.28 37096.74 20499.62 18799.44 154
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17099.25 4099.30 16798.57 11998.55 22099.33 8997.95 9799.90 6497.16 16499.67 17399.44 154
MVSFormer98.26 16898.43 13397.77 26498.88 24693.89 32199.39 1799.56 6999.11 7198.16 24898.13 28893.81 27899.97 499.26 4399.57 20799.43 158
jason97.45 23397.35 23397.76 26799.24 16693.93 31795.86 33398.42 30494.24 33598.50 22598.13 28894.82 25199.91 5997.22 16199.73 14299.43 158
jason: jason.
NCCC97.86 20197.47 22799.05 12798.61 29598.07 14196.98 27198.90 25697.63 18397.04 31697.93 30695.99 21699.66 27895.31 28298.82 31399.43 158
Anonymous2024052198.69 10698.87 7198.16 23799.77 2895.11 28199.08 5899.44 11299.34 4999.33 9799.55 4894.10 27499.94 3599.25 4599.96 2599.42 161
MVS_111021_HR98.25 17098.08 17898.75 17399.09 20497.46 19095.97 32599.27 18197.60 18897.99 26398.25 28098.15 8499.38 35596.87 19399.57 20799.42 161
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8599.56 6999.09 8199.33 9799.19 11398.40 6199.72 24595.98 25799.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15799.31 15998.03 15599.66 4299.02 15298.36 6399.88 8396.91 18599.62 18799.41 164
OPU-MVS98.82 15698.59 30098.30 11698.10 15798.52 25398.18 7898.75 39294.62 29699.48 23399.41 164
our_test_397.39 23797.73 20696.34 33698.70 27889.78 38094.61 37498.97 24796.50 26799.04 14398.85 20095.98 21799.84 13797.26 15999.67 17399.41 164
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19797.82 19699.57 6299.17 6999.35 9499.17 12098.35 6699.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 22297.67 20997.39 29999.04 21693.04 33895.27 35398.38 30797.25 22598.92 16698.95 17895.48 23599.73 23896.99 17998.74 31599.41 164
MDA-MVSNet_test_wron97.60 22297.66 21297.41 29899.04 21693.09 33495.27 35398.42 30497.26 22498.88 17498.95 17895.43 23699.73 23897.02 17698.72 31799.41 164
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11298.59 11698.95 15799.55 4894.14 27099.86 10897.77 13599.69 16299.41 164
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11299.21 6299.43 7699.55 4897.82 10599.86 10898.42 9899.89 7399.41 164
test_fmvs197.72 21397.94 19097.07 31398.66 29192.39 34997.68 21499.81 2495.20 31499.54 5699.44 7191.56 30999.41 35099.78 1599.77 12499.40 173
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19199.14 21997.73 17698.89 17098.95 17875.75 39199.87 10098.50 9399.92 5599.40 173
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9399.54 7899.31 5299.62 5199.53 5497.36 14299.86 10899.24 4799.71 15499.39 175
v14898.45 14598.60 10998.00 24999.44 12994.98 28397.44 24399.06 22998.30 13299.32 10398.97 17196.65 18599.62 29298.37 9999.85 8199.39 175
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20797.78 20199.24 19299.04 8699.41 8098.90 18797.65 11599.76 22197.70 14099.79 11499.39 175
CDPH-MVS97.26 24696.66 27399.07 12099.00 22198.15 12896.03 32399.01 24391.21 37597.79 27697.85 31096.89 16899.69 25592.75 34799.38 24699.39 175
EPNet96.14 29895.44 30998.25 22990.76 40995.50 26697.92 18294.65 37798.97 9292.98 39398.85 20089.12 32699.87 10095.99 25699.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 17997.87 19799.07 12098.67 28698.24 12097.01 26998.93 25097.25 22597.62 28598.34 27497.27 14799.57 31196.42 23299.33 25299.39 175
DeepC-MVS_fast96.85 698.30 16298.15 17098.75 17398.61 29597.23 20397.76 20699.09 22697.31 21998.75 19498.66 23397.56 12599.64 28696.10 25499.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 13698.27 15699.32 8099.31 15498.75 8198.19 14699.41 12296.77 25798.83 18298.90 18797.80 10699.82 16495.68 27399.52 22299.38 182
test9_res93.28 33699.15 28199.38 182
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26699.18 20697.10 24098.75 19498.92 18398.18 7899.65 28396.68 21199.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 35299.16 27999.37 184
AllTest98.44 14698.20 16299.16 10599.50 10898.55 9798.25 14099.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25498.88 17499.06 14097.65 11599.57 31194.45 30299.61 19299.37 184
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24499.44 12994.96 28496.63 29199.15 21898.35 12798.83 18299.11 13394.31 26799.85 12096.60 21498.72 31799.37 184
MVSTER96.86 27296.55 27997.79 26297.91 34994.21 30597.56 23198.87 26197.49 19999.06 13699.05 14780.72 37499.80 18498.44 9699.82 9599.37 184
pmmvs597.64 21997.49 22498.08 24299.14 19595.12 28096.70 28899.05 23293.77 34498.62 20798.83 20393.23 28399.75 22898.33 10399.76 13599.36 190
Anonymous2023120698.21 17498.21 16198.20 23399.51 10595.43 26998.13 15299.32 15496.16 28398.93 16598.82 20696.00 21299.83 15497.32 15699.73 14299.36 190
train_agg97.10 25896.45 28299.07 12098.71 27498.08 13995.96 32799.03 23791.64 36795.85 35897.53 32696.47 19299.76 22193.67 32699.16 27999.36 190
PVSNet_BlendedMVS97.55 22697.53 22097.60 28098.92 23693.77 32596.64 29099.43 11894.49 32797.62 28599.18 11696.82 17399.67 26794.73 29399.93 4499.36 190
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24699.25 5899.54 5699.37 7997.04 15999.80 18497.89 12699.52 22299.35 194
F-COLMAP97.30 24396.68 27099.14 10899.19 18098.39 10897.27 25699.30 16792.93 35596.62 33998.00 29995.73 22699.68 26492.62 35098.46 33199.35 194
ppachtmachnet_test97.50 22797.74 20496.78 32898.70 27891.23 36994.55 37699.05 23296.36 27599.21 12098.79 21196.39 19599.78 20896.74 20499.82 9599.34 196
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10297.01 34499.59 2399.11 12999.27 9894.82 25199.79 19798.34 10199.63 18499.34 196
testgi98.32 15998.39 14098.13 23899.57 8195.54 26397.78 20199.49 9497.37 21399.19 12297.65 32098.96 2499.49 33596.50 22898.99 30099.34 196
diffmvspermissive98.22 17298.24 15998.17 23599.00 22195.44 26896.38 30399.58 5597.79 17398.53 22398.50 25896.76 17999.74 23397.95 12599.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17399.31 15497.17 21097.62 22399.35 14198.72 10898.76 19398.68 22892.57 29899.74 23397.76 13995.60 39199.34 196
baseline98.96 6899.02 6098.76 17099.38 14097.26 20298.49 11899.50 8798.86 10199.19 12299.06 14098.23 7199.69 25598.71 7999.76 13599.33 201
MG-MVS96.77 27696.61 27597.26 30498.31 32693.06 33595.93 33098.12 31996.45 27297.92 26598.73 21993.77 28099.39 35391.19 37099.04 29399.33 201
HQP4-MVS95.56 36399.54 32299.32 203
CDS-MVSNet97.69 21597.35 23398.69 17898.73 26997.02 21796.92 27798.75 28595.89 29498.59 21398.67 23092.08 30599.74 23396.72 20799.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 26796.49 28198.55 20098.67 28696.79 22696.29 30999.04 23596.05 28695.55 36496.84 34893.84 27699.54 32292.82 34499.26 26599.32 203
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10699.57 6297.72 17898.90 16899.26 10096.12 20699.52 32895.72 27099.71 15499.32 203
MVP-Stereo98.08 18597.92 19298.57 19598.96 22896.79 22697.90 18599.18 20696.41 27498.46 22898.95 17895.93 22099.60 29996.51 22798.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15098.68 9597.54 28798.96 22897.99 14897.88 18899.36 13698.20 14599.63 4899.04 14998.76 3595.33 40596.56 22199.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 14798.30 15298.79 16398.79 26497.29 19998.23 14198.66 29199.31 5298.85 17998.80 20994.80 25499.78 20898.13 11199.13 28499.31 207
test_prior98.95 14198.69 28397.95 15699.03 23799.59 30399.30 210
USDC97.41 23697.40 22897.44 29698.94 23093.67 32795.17 35699.53 8194.03 34198.97 15499.10 13695.29 23899.34 36095.84 26699.73 14299.30 210
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17797.93 18099.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21398.61 10099.13 22098.59 11699.19 12299.28 9694.14 27099.82 16497.97 12399.80 10999.29 212
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29399.48 9697.32 21899.11 12998.61 24499.33 1399.30 36696.23 24498.38 33299.28 214
test1298.93 14498.58 30297.83 16598.66 29196.53 34295.51 23399.69 25599.13 28499.27 215
DSMNet-mixed97.42 23597.60 21796.87 32299.15 19491.46 36098.54 10899.12 22192.87 35797.58 28999.63 3396.21 20399.90 6495.74 26999.54 21599.27 215
N_pmnet97.63 22097.17 24198.99 13599.27 16197.86 16295.98 32493.41 38895.25 31299.47 7098.90 18795.63 22899.85 12096.91 18599.73 14299.27 215
ambc98.24 23198.82 25795.97 25298.62 9999.00 24599.27 10899.21 11096.99 16499.50 33396.55 22499.50 23199.26 218
LFMVS97.20 25296.72 26798.64 18198.72 27196.95 22198.93 7494.14 38599.74 698.78 18899.01 16184.45 35899.73 23897.44 15099.27 26299.25 219
FMVSNet596.01 30195.20 31898.41 21697.53 36996.10 24598.74 8599.50 8797.22 23498.03 26299.04 14969.80 39599.88 8397.27 15899.71 15499.25 219
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31394.05 30996.67 28997.36 33596.70 26197.87 26997.98 30195.14 24299.44 34690.47 37798.58 32999.25 219
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9199.69 3798.90 9899.43 7699.35 8398.86 2899.67 26797.81 13299.81 9999.24 222
旧先验198.82 25797.45 19198.76 28298.34 27495.50 23499.01 29899.23 224
test22298.92 23696.93 22395.54 34398.78 28085.72 39596.86 32998.11 29194.43 26299.10 28999.23 224
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21199.46 10597.25 22598.98 15098.99 16597.54 12799.84 13795.88 26099.74 13999.23 224
FMVSNet397.50 22797.24 23898.29 22798.08 34095.83 25697.86 19398.91 25597.89 16698.95 15798.95 17887.06 33799.81 17797.77 13599.69 16299.23 224
无先验95.74 33898.74 28789.38 38699.73 23892.38 35499.22 228
tttt051795.64 31394.98 32297.64 27899.36 14793.81 32398.72 8990.47 39998.08 15498.67 20098.34 27473.88 39399.92 5097.77 13599.51 22499.20 229
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17397.16 26499.28 17895.54 30399.42 7999.19 11397.27 14799.63 28997.89 12699.97 1999.20 229
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33293.78 32497.29 25398.84 27096.10 28598.64 20498.65 23596.04 20999.36 35696.84 19699.14 28299.20 229
新几何198.91 14798.94 23097.76 17398.76 28287.58 39296.75 33598.10 29294.80 25499.78 20892.73 34899.00 29999.20 229
PHI-MVS98.29 16597.95 18899.34 7398.44 31699.16 4398.12 15499.38 12896.01 28998.06 25898.43 26497.80 10699.67 26795.69 27299.58 20399.20 229
Anonymous20240521197.90 19597.50 22399.08 11898.90 24098.25 11998.53 10996.16 36298.87 10099.11 12998.86 19790.40 31899.78 20897.36 15499.31 25599.19 234
CANet97.87 20097.76 20298.19 23497.75 35595.51 26596.76 28499.05 23297.74 17596.93 32098.21 28495.59 23099.89 7497.86 13199.93 4499.19 234
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32599.50 8797.30 22099.05 14198.98 16999.35 1299.32 36395.72 27099.68 16799.18 236
WTY-MVS96.67 28096.27 28997.87 25798.81 26094.61 29596.77 28397.92 32494.94 31997.12 31197.74 31591.11 31399.82 16493.89 32098.15 34499.18 236
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22299.55 9396.10 24598.94 7398.44 30398.32 13198.16 24898.62 24288.76 32799.73 23893.88 32199.79 11499.18 236
TinyColmap97.89 19797.98 18697.60 28098.86 24894.35 30296.21 31399.44 11297.45 20799.06 13698.88 19497.99 9599.28 37094.38 30899.58 20399.18 236
testdata98.09 23998.93 23295.40 27098.80 27790.08 38397.45 30198.37 27095.26 23999.70 25093.58 32998.95 30599.17 240
lupinMVS97.06 26196.86 25797.65 27698.88 24693.89 32195.48 34797.97 32293.53 34798.16 24897.58 32493.81 27899.91 5996.77 20199.57 20799.17 240
Patchmtry97.35 23996.97 25098.50 20897.31 37996.47 23598.18 14798.92 25398.95 9598.78 18899.37 7985.44 35299.85 12095.96 25899.83 9299.17 240
sss97.21 25196.93 25198.06 24498.83 25495.22 27696.75 28598.48 30294.49 32797.27 30897.90 30792.77 29599.80 18496.57 21799.32 25399.16 243
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10599.57 6297.87 16798.85 17998.04 29897.66 11499.84 13796.72 20799.81 9999.13 244
MVS_111021_LR98.30 16298.12 17398.83 15599.16 19098.03 14696.09 32199.30 16797.58 18998.10 25598.24 28198.25 6999.34 36096.69 21099.65 17999.12 245
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33592.85 34095.15 35899.31 15997.25 22598.74 19698.78 21290.07 31999.78 20897.19 16299.80 10999.11 246
testing393.51 34692.09 35597.75 26898.60 29794.40 30097.32 25095.26 37497.56 19296.79 33395.50 37553.57 41199.77 21595.26 28398.97 30399.08 247
原ACMM198.35 22198.90 24096.25 24298.83 27492.48 36196.07 35598.10 29295.39 23799.71 24692.61 35198.99 30099.08 247
QAPM97.31 24296.81 26398.82 15698.80 26397.49 18899.06 6299.19 20290.22 38197.69 28299.16 12296.91 16799.90 6490.89 37599.41 24199.07 249
PAPM_NR96.82 27596.32 28598.30 22699.07 20896.69 23197.48 23998.76 28295.81 29696.61 34096.47 35794.12 27399.17 37790.82 37697.78 35599.06 250
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34392.77 34294.71 36899.18 20697.27 22398.56 21898.74 21891.89 30699.69 25597.06 17599.81 9999.05 251
D2MVS97.84 20797.84 19997.83 25999.14 19594.74 28996.94 27398.88 25995.84 29598.89 17098.96 17494.40 26499.69 25597.55 14499.95 3299.05 251
c3_l97.36 23897.37 23197.31 30098.09 33993.25 33395.01 36199.16 21397.05 24198.77 19198.72 22192.88 29299.64 28696.93 18499.76 13599.05 251
PLCcopyleft94.65 1696.51 28695.73 29798.85 15398.75 26797.91 15896.42 30199.06 22990.94 37895.59 36197.38 33694.41 26399.59 30390.93 37398.04 35399.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11299.45 3699.51 6699.24 10598.20 7799.86 10895.92 25999.69 16299.04 255
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31598.79 27897.23 23195.14 37398.24 28193.22 28499.84 13797.34 15599.84 8599.04 255
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17699.68 4297.62 18499.34 9699.18 11697.54 12799.77 21597.79 13499.74 13999.04 255
TSAR-MVS + GP.98.18 17797.98 18698.77 16998.71 27497.88 16096.32 30798.66 29196.33 27699.23 11998.51 25497.48 13799.40 35197.16 16499.46 23499.02 258
DIV-MVS_self_test97.02 26496.84 25997.58 28297.82 35394.03 31294.66 37199.16 21397.04 24298.63 20598.71 22288.69 32899.69 25597.00 17799.81 9999.01 259
GA-MVS95.86 30695.32 31597.49 29298.60 29794.15 30893.83 38897.93 32395.49 30596.68 33697.42 33483.21 36699.30 36696.22 24598.55 33099.01 259
OMC-MVS97.88 19997.49 22499.04 12998.89 24598.63 8996.94 27399.25 18795.02 31698.53 22398.51 25497.27 14799.47 34193.50 33299.51 22499.01 259
cl____97.02 26496.83 26097.58 28297.82 35394.04 31194.66 37199.16 21397.04 24298.63 20598.71 22288.68 33099.69 25597.00 17799.81 9999.00 262
pmmvs497.58 22597.28 23698.51 20698.84 25296.93 22395.40 35198.52 30093.60 34698.61 20998.65 23595.10 24399.60 29996.97 18299.79 11498.99 263
EPNet_dtu94.93 32694.78 32795.38 36293.58 40687.68 38996.78 28295.69 37297.35 21589.14 40298.09 29488.15 33599.49 33594.95 28999.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 28895.77 29598.69 17899.48 12297.43 19397.84 19599.55 7381.42 40096.51 34498.58 24795.53 23199.67 26793.41 33499.58 20398.98 264
PVSNet_Blended96.88 27196.68 27097.47 29498.92 23693.77 32594.71 36899.43 11890.98 37797.62 28597.36 33896.82 17399.67 26794.73 29399.56 21098.98 264
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 12899.45 10898.28 13798.98 15099.19 11397.76 10899.58 30996.57 21799.55 21398.97 267
PAPR95.29 31994.47 32897.75 26897.50 37495.14 27994.89 36598.71 28991.39 37395.35 37195.48 37694.57 26099.14 38084.95 39397.37 36798.97 267
EGC-MVSNET85.24 37080.54 37399.34 7399.77 2899.20 3499.08 5899.29 17512.08 40620.84 40799.42 7397.55 12699.85 12097.08 17299.72 14998.96 269
thisisatest053095.27 32094.45 32997.74 27099.19 18094.37 30197.86 19390.20 40097.17 23698.22 24497.65 32073.53 39499.90 6496.90 19099.35 24998.95 270
mvs_anonymous97.83 20998.16 16996.87 32298.18 33491.89 35697.31 25198.90 25697.37 21398.83 18299.46 6696.28 20199.79 19798.90 6698.16 34398.95 270
baseline195.96 30495.44 30997.52 28998.51 31193.99 31598.39 13096.09 36498.21 14198.40 23797.76 31486.88 33899.63 28995.42 28089.27 40398.95 270
CLD-MVS97.49 22997.16 24298.48 20999.07 20897.03 21694.71 36899.21 19694.46 32998.06 25897.16 34297.57 12499.48 33894.46 30199.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 18898.14 17297.64 27898.58 30295.19 27797.48 23999.23 19497.47 20097.90 26798.62 24297.04 15998.81 39197.55 14499.41 24198.94 274
DELS-MVS98.27 16698.20 16298.48 20998.86 24896.70 23095.60 34299.20 19897.73 17698.45 22998.71 22297.50 13399.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 30895.39 31296.98 31696.77 39192.79 34194.40 37998.53 29994.59 32697.89 26898.17 28782.82 37099.24 37296.37 23499.03 29498.92 276
LS3D98.63 12098.38 14299.36 6497.25 38099.38 899.12 5799.32 15499.21 6298.44 23098.88 19497.31 14399.80 18496.58 21599.34 25198.92 276
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15496.25 39998.69 8897.02 26899.12 22188.90 38897.83 27398.86 19789.51 32398.90 38991.92 35599.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 11899.83 2098.37 12699.69 3799.46 6698.21 7699.92 5094.13 31499.30 25898.91 279
DPM-MVS96.32 29395.59 30398.51 20698.76 26597.21 20694.54 37798.26 31091.94 36696.37 34897.25 34093.06 28999.43 34791.42 36598.74 31598.89 280
test_yl96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32795.24 27497.29 25397.36 33598.21 14198.17 24697.86 30886.27 34299.55 31794.87 29098.32 33398.89 280
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4399.93 4098.91 6599.85 8198.88 283
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21299.28 15996.78 22996.20 31499.27 18195.42 30798.28 24298.30 27893.16 28599.71 24694.99 28797.37 36798.87 284
Effi-MVS+98.02 18897.82 20098.62 18698.53 30997.19 20897.33 24999.68 4297.30 22096.68 33697.46 33298.56 5299.80 18496.63 21398.20 33998.86 285
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12599.34 14799.28 5698.95 15798.91 18498.34 6799.79 19795.63 27499.91 6398.86 285
PatchmatchNetpermissive95.58 31495.67 30095.30 36397.34 37887.32 39097.65 22096.65 35495.30 31197.07 31498.69 22684.77 35599.75 22894.97 28898.64 32498.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 21197.72 20797.83 25998.81 26096.35 23897.30 25299.69 3794.61 32597.87 26998.05 29796.26 20298.32 39698.74 7698.18 34098.82 288
CL-MVSNet_self_test97.44 23497.22 23998.08 24298.57 30495.78 25894.30 38198.79 27896.58 26598.60 21198.19 28694.74 25899.64 28696.41 23398.84 31098.82 288
miper_ehance_all_eth97.06 26197.03 24897.16 31097.83 35293.06 33594.66 37199.09 22695.99 29098.69 19898.45 26392.73 29699.61 29896.79 19899.03 29498.82 288
MIMVSNet96.62 28396.25 29097.71 27399.04 21694.66 29399.16 5196.92 35097.23 23197.87 26999.10 13686.11 34699.65 28391.65 36099.21 27298.82 288
hse-mvs297.46 23197.07 24698.64 18198.73 26997.33 19797.45 24297.64 33299.11 7198.58 21597.98 30188.65 33199.79 19798.11 11297.39 36698.81 292
GSMVS98.81 292
sam_mvs184.74 35698.81 292
SCA96.41 29296.66 27395.67 35498.24 33088.35 38595.85 33596.88 35196.11 28497.67 28398.67 23093.10 28799.85 12094.16 31099.22 27098.81 292
Patchmatch-RL test97.26 24697.02 24997.99 25099.52 10395.53 26496.13 31999.71 3497.47 20099.27 10899.16 12284.30 36199.62 29297.89 12699.77 12498.81 292
AUN-MVS96.24 29795.45 30898.60 19198.70 27897.22 20597.38 24597.65 33095.95 29295.53 36897.96 30582.11 37399.79 19796.31 23897.44 36398.80 297
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14197.50 19798.28 24298.60 24597.64 11899.35 35993.86 32299.27 26298.79 298
tpm94.67 32894.34 33295.66 35597.68 36388.42 38497.88 18894.90 37594.46 32996.03 35798.56 24978.66 38499.79 19795.88 26095.01 39498.78 299
Patchmatch-test96.55 28496.34 28497.17 30898.35 32393.06 33598.40 12997.79 32597.33 21698.41 23398.67 23083.68 36599.69 25595.16 28599.31 25598.77 300
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8398.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
PMMVS96.51 28695.98 29298.09 23997.53 36995.84 25594.92 36498.84 27091.58 36996.05 35695.58 37295.68 22799.66 27895.59 27698.09 34798.76 302
test_method79.78 37179.50 37480.62 38780.21 41045.76 41370.82 40198.41 30631.08 40580.89 40697.71 31684.85 35497.37 40091.51 36480.03 40498.75 303
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20399.32 2398.81 27597.66 18198.62 20799.40 7896.82 17399.80 18495.88 26099.51 22498.75 303
CHOSEN 280x42095.51 31795.47 30695.65 35698.25 32988.27 38693.25 39298.88 25993.53 34794.65 37997.15 34386.17 34499.93 4097.41 15299.93 4498.73 305
test_fmvsmvis_n_192099.26 3299.49 1298.54 20399.66 6496.97 21898.00 17399.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
MVS_Test98.18 17798.36 14497.67 27498.48 31294.73 29098.18 14799.02 24097.69 17998.04 26199.11 13397.22 15199.56 31498.57 8898.90 30998.71 306
PVSNet93.40 1795.67 31195.70 29895.57 35798.83 25488.57 38392.50 39597.72 32792.69 35996.49 34796.44 35893.72 28199.43 34793.61 32799.28 26198.71 306
alignmvs97.35 23996.88 25698.78 16698.54 30798.09 13597.71 21197.69 32999.20 6497.59 28895.90 36788.12 33699.55 31798.18 10998.96 30498.70 309
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33691.74 35797.92 18297.76 32690.23 37996.51 34498.91 18485.61 34999.85 12092.88 34296.90 37698.69 310
ADS-MVSNet95.24 32194.93 32596.18 34498.14 33690.10 37997.92 18297.32 33890.23 37996.51 34498.91 18485.61 34999.74 23392.88 34296.90 37698.69 310
MDTV_nov1_ep13_2view74.92 41197.69 21390.06 38497.75 27985.78 34893.52 33098.69 310
MSDG97.71 21497.52 22198.28 22898.91 23996.82 22594.42 37899.37 13297.65 18298.37 23898.29 27997.40 14099.33 36294.09 31599.22 27098.68 313
mvsany_test197.60 22297.54 21997.77 26497.72 35695.35 27195.36 35297.13 34294.13 33899.71 3399.33 8997.93 9899.30 36697.60 14398.94 30698.67 314
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
Syy-MVS96.04 30095.56 30597.49 29297.10 38494.48 29896.18 31696.58 35695.65 29994.77 37692.29 40191.27 31299.36 35698.17 11098.05 35198.63 316
myMVS_eth3d91.92 36790.45 36996.30 33797.10 38490.90 37296.18 31696.58 35695.65 29994.77 37692.29 40153.88 41099.36 35689.59 38198.05 35198.63 316
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39792.27 35393.69 39098.89 25891.14 37698.30 24097.35 33990.58 31699.58 30996.31 23899.03 29498.60 318
Effi-MVS+-dtu98.26 16897.90 19499.35 7098.02 34299.49 598.02 16999.16 21398.29 13597.64 28497.99 30096.44 19499.95 2296.66 21298.93 30798.60 318
new_pmnet96.99 26896.76 26597.67 27498.72 27194.89 28595.95 32998.20 31392.62 36098.55 22098.54 25094.88 25099.52 32893.96 31899.44 23998.59 320
testing9193.32 34992.27 35296.47 33497.54 36791.25 36796.17 31896.76 35397.18 23593.65 39193.50 39565.11 40599.63 28993.04 33997.45 36298.53 321
EIA-MVS98.00 19097.74 20498.80 16098.72 27198.09 13598.05 16499.60 5297.39 21196.63 33895.55 37397.68 11299.80 18496.73 20699.27 26298.52 322
PatchMatch-RL97.24 24996.78 26498.61 18999.03 21997.83 16596.36 30499.06 22993.49 34997.36 30797.78 31295.75 22599.49 33593.44 33398.77 31498.52 322
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33694.47 29994.78 36793.24 39094.72 32389.56 40195.87 36878.57 38699.81 17796.91 18597.11 37598.46 324
canonicalmvs98.34 15798.26 15798.58 19398.46 31497.82 16898.96 7299.46 10599.19 6897.46 30095.46 37798.59 4999.46 34398.08 11598.71 31998.46 324
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34698.86 10198.87 17897.62 32398.63 4598.96 38599.41 3798.29 33698.45 326
TAPA-MVS96.21 1196.63 28295.95 29398.65 18098.93 23298.09 13596.93 27599.28 17883.58 39898.13 25297.78 31296.13 20599.40 35193.52 33099.29 26098.45 326
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 27396.75 26697.08 31198.74 26893.33 33296.71 28798.26 31096.72 25998.44 23097.37 33795.20 24099.47 34191.89 35697.43 36498.44 328
WB-MVSnew95.73 31095.57 30496.23 34296.70 39290.70 37696.07 32293.86 38695.60 30197.04 31695.45 37996.00 21299.55 31791.04 37198.31 33598.43 329
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35997.71 32888.57 38997.71 28098.08 29579.39 38199.82 16496.19 24799.11 28898.43 329
DP-MVS Recon97.33 24196.92 25398.57 19599.09 20497.99 14896.79 28199.35 14193.18 35197.71 28098.07 29695.00 24699.31 36493.97 31799.13 28498.42 331
testing9993.04 35491.98 36096.23 34297.53 36990.70 37696.35 30595.94 36796.87 25193.41 39293.43 39663.84 40799.59 30393.24 33797.19 37298.40 332
ETVMVS92.60 35891.08 36797.18 30697.70 36093.65 32996.54 29395.70 37096.51 26694.68 37892.39 40061.80 40899.50 33386.97 38897.41 36598.40 332
Fast-Effi-MVS+-dtu98.27 16698.09 17598.81 15898.43 31798.11 13297.61 22599.50 8798.64 11097.39 30597.52 32898.12 8599.95 2296.90 19098.71 31998.38 334
LF4IMVS97.90 19597.69 20898.52 20599.17 18897.66 18097.19 26399.47 10396.31 27897.85 27298.20 28596.71 18399.52 32894.62 29699.72 14998.38 334
testing1193.08 35392.02 35796.26 34097.56 36590.83 37496.32 30795.70 37096.47 27092.66 39593.73 39264.36 40699.59 30393.77 32597.57 35898.37 336
Fast-Effi-MVS+97.67 21797.38 23098.57 19598.71 27497.43 19397.23 25799.45 10894.82 32296.13 35296.51 35498.52 5499.91 5996.19 24798.83 31198.37 336
test0.0.03 194.51 32993.69 33896.99 31596.05 40093.61 33094.97 36393.49 38796.17 28197.57 29194.88 38682.30 37199.01 38493.60 32894.17 39898.37 336
UWE-MVS92.38 36191.76 36494.21 37297.16 38284.65 39995.42 35088.45 40395.96 29196.17 35195.84 37066.36 40199.71 24691.87 35798.64 32498.28 339
FE-MVS95.66 31294.95 32497.77 26498.53 30995.28 27399.40 1696.09 36493.11 35397.96 26499.26 10079.10 38399.77 21592.40 35398.71 31998.27 340
baseline293.73 34392.83 34996.42 33597.70 36091.28 36696.84 28089.77 40193.96 34392.44 39695.93 36679.14 38299.77 21592.94 34096.76 38098.21 341
thisisatest051594.12 33893.16 34596.97 31798.60 29792.90 33993.77 38990.61 39894.10 33996.91 32395.87 36874.99 39299.80 18494.52 29999.12 28798.20 342
EPMVS93.72 34493.27 34395.09 36696.04 40187.76 38898.13 15285.01 40794.69 32496.92 32198.64 23878.47 38899.31 36495.04 28696.46 38298.20 342
dp93.47 34793.59 34093.13 38496.64 39381.62 40897.66 21896.42 35992.80 35896.11 35398.64 23878.55 38799.59 30393.31 33592.18 40298.16 344
CNLPA97.17 25596.71 26898.55 20098.56 30598.05 14596.33 30698.93 25096.91 24997.06 31597.39 33594.38 26599.45 34491.66 35999.18 27898.14 345
dmvs_re95.98 30395.39 31297.74 27098.86 24897.45 19198.37 13295.69 37297.95 16096.56 34195.95 36590.70 31597.68 39988.32 38496.13 38798.11 346
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8496.94 34992.28 36495.17 37298.57 24889.90 32199.75 22891.20 36997.33 37198.10 347
CostFormer93.97 34093.78 33794.51 36997.53 36985.83 39597.98 17695.96 36689.29 38794.99 37598.63 24078.63 38599.62 29294.54 29896.50 38198.09 348
FA-MVS(test-final)96.99 26896.82 26197.50 29198.70 27894.78 28799.34 2096.99 34595.07 31598.48 22799.33 8988.41 33499.65 28396.13 25398.92 30898.07 349
AdaColmapbinary97.14 25796.71 26898.46 21198.34 32497.80 17196.95 27298.93 25095.58 30296.92 32197.66 31995.87 22299.53 32490.97 37299.14 28298.04 350
KD-MVS_2432*160092.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
miper_refine_blended92.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31795.42 30797.25 30996.44 35867.86 39799.24 37291.28 36796.08 38898.02 351
TESTMET0.1,192.19 36591.77 36393.46 38096.48 39682.80 40594.05 38591.52 39694.45 33194.00 38794.88 38666.65 40099.56 31495.78 26898.11 34698.02 351
testing22291.96 36690.37 37096.72 33097.47 37592.59 34496.11 32094.76 37696.83 25392.90 39492.87 39857.92 40999.55 31786.93 38997.52 35998.00 354
PCF-MVS92.86 1894.36 33193.00 34898.42 21598.70 27897.56 18593.16 39399.11 22379.59 40197.55 29297.43 33392.19 30299.73 23879.85 40299.45 23697.97 355
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf05_1196.72 27796.30 28697.97 25197.97 34496.24 24394.99 36296.19 36196.45 27296.77 33496.84 34891.46 31099.78 20896.27 24199.78 11997.90 356
bld_raw_dy_0_6497.62 22197.51 22297.96 25297.97 34496.28 24198.20 14599.82 2296.46 27199.37 8997.12 34792.42 29999.70 25096.27 24199.97 1997.90 356
OpenMVScopyleft96.65 797.09 25996.68 27098.32 22398.32 32597.16 21198.86 8099.37 13289.48 38596.29 35099.15 12696.56 18899.90 6492.90 34199.20 27397.89 358
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7499.51 33297.70 14099.73 14297.89 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 36990.30 37293.70 37897.72 35684.34 40390.24 39897.42 33390.20 38293.79 38993.09 39790.90 31498.89 39086.57 39172.76 40597.87 360
test-LLR93.90 34193.85 33594.04 37396.53 39484.62 40094.05 38592.39 39296.17 28194.12 38495.07 38082.30 37199.67 26795.87 26398.18 34097.82 361
test-mter92.33 36391.76 36494.04 37396.53 39484.62 40094.05 38592.39 39294.00 34294.12 38495.07 38065.63 40499.67 26795.87 26398.18 34097.82 361
tpm293.09 35292.58 35194.62 36897.56 36586.53 39297.66 21895.79 36986.15 39494.07 38698.23 28375.95 38999.53 32490.91 37496.86 37997.81 363
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15598.92 25392.31 36396.91 32399.37 7985.44 35299.81 17797.39 15397.36 36997.81 363
RPMNet97.02 26496.93 25197.30 30197.71 35894.22 30398.11 15599.30 16799.37 4596.91 32399.34 8786.72 33999.87 10097.53 14797.36 36997.81 363
tpmrst95.07 32395.46 30793.91 37597.11 38384.36 40297.62 22396.96 34794.98 31796.35 34998.80 20985.46 35199.59 30395.60 27596.23 38597.79 366
PAPM91.88 36890.34 37196.51 33298.06 34192.56 34592.44 39697.17 34086.35 39390.38 40096.01 36386.61 34099.21 37570.65 40695.43 39297.75 367
FPMVS93.44 34892.23 35397.08 31199.25 16597.86 16295.61 34197.16 34192.90 35693.76 39098.65 23575.94 39095.66 40379.30 40397.49 36097.73 368
MAR-MVS96.47 29095.70 29898.79 16397.92 34899.12 5798.28 13798.60 29692.16 36595.54 36796.17 36294.77 25799.52 32889.62 38098.23 33797.72 369
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 18797.86 19898.56 19998.69 28398.07 14197.51 23799.50 8798.10 15397.50 29795.51 37498.41 6099.88 8396.27 24199.24 26797.71 370
thres600view794.45 33093.83 33696.29 33899.06 21291.53 35997.99 17594.24 38398.34 12897.44 30295.01 38279.84 37799.67 26784.33 39498.23 33797.66 371
thres40094.14 33793.44 34196.24 34198.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34897.66 371
IB-MVS91.63 1992.24 36490.90 36896.27 33997.22 38191.24 36894.36 38093.33 38992.37 36292.24 39794.58 38966.20 40399.89 7493.16 33894.63 39697.66 371
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 32595.25 31694.33 37096.39 39885.87 39398.08 15996.83 35295.46 30695.51 36998.69 22685.91 34799.53 32494.16 31096.23 38597.58 374
cascas94.79 32794.33 33396.15 34896.02 40292.36 35192.34 39799.26 18685.34 39695.08 37494.96 38592.96 29198.53 39494.41 30798.59 32897.56 375
PatchT96.65 28196.35 28397.54 28797.40 37695.32 27297.98 17696.64 35599.33 5096.89 32799.42 7384.32 36099.81 17797.69 14297.49 36097.48 376
TR-MVS95.55 31595.12 32096.86 32597.54 36793.94 31696.49 29796.53 35894.36 33497.03 31896.61 35394.26 26999.16 37886.91 39096.31 38497.47 377
dmvs_testset92.94 35592.21 35495.13 36498.59 30090.99 37197.65 22092.09 39496.95 24694.00 38793.55 39492.34 30196.97 40272.20 40592.52 40097.43 378
JIA-IIPM95.52 31695.03 32197.00 31496.85 38994.03 31296.93 27595.82 36899.20 6494.63 38099.71 1783.09 36799.60 29994.42 30494.64 39597.36 379
BH-w/o95.13 32294.89 32695.86 34998.20 33391.31 36495.65 34097.37 33493.64 34596.52 34395.70 37193.04 29099.02 38288.10 38595.82 39097.24 380
tpm cat193.29 35093.13 34793.75 37797.39 37784.74 39897.39 24497.65 33083.39 39994.16 38398.41 26582.86 36999.39 35391.56 36395.35 39397.14 381
xiu_mvs_v1_base_debu97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
xiu_mvs_v1_base_debi97.86 20198.17 16696.92 31998.98 22593.91 31896.45 29899.17 21097.85 16998.41 23397.14 34498.47 5599.92 5098.02 11899.05 29096.92 382
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4797.94 15798.52 11098.68 29098.99 9097.52 29599.35 8397.41 13998.18 39791.59 36299.67 17396.82 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 30995.60 30296.17 34597.53 36992.75 34398.07 16198.31 30991.22 37494.25 38296.68 35295.53 23199.03 38191.64 36197.18 37396.74 386
MVS-HIRNet94.32 33295.62 30190.42 38698.46 31475.36 41096.29 30989.13 40295.25 31295.38 37099.75 1192.88 29299.19 37694.07 31699.39 24396.72 387
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32197.15 21297.37 24698.62 29583.86 39798.65 20398.37 27094.29 26899.68 26488.41 38398.62 32796.60 388
thres100view90094.19 33593.67 33995.75 35399.06 21291.35 36398.03 16794.24 38398.33 12997.40 30494.98 38479.84 37799.62 29283.05 39698.08 34896.29 389
tfpn200view994.03 33993.44 34195.78 35298.93 23291.44 36197.60 22694.29 38197.94 16197.10 31294.31 39079.67 37999.62 29283.05 39698.08 34896.29 389
MVS93.19 35192.09 35596.50 33396.91 38794.03 31298.07 16198.06 32168.01 40294.56 38196.48 35695.96 21999.30 36683.84 39596.89 37896.17 391
gg-mvs-nofinetune92.37 36291.20 36695.85 35095.80 40392.38 35099.31 2781.84 40999.75 591.83 39899.74 1368.29 39699.02 38287.15 38797.12 37496.16 392
xiu_mvs_v2_base97.16 25697.49 22496.17 34598.54 30792.46 34795.45 34898.84 27097.25 22597.48 29996.49 35598.31 6899.90 6496.34 23798.68 32296.15 393
PS-MVSNAJ97.08 26097.39 22996.16 34798.56 30592.46 34795.24 35598.85 26997.25 22597.49 29895.99 36498.07 8699.90 6496.37 23498.67 32396.12 394
E-PMN94.17 33694.37 33193.58 37996.86 38885.71 39690.11 39997.07 34398.17 14897.82 27597.19 34184.62 35798.94 38689.77 37997.68 35796.09 395
EMVS93.83 34294.02 33493.23 38396.83 39084.96 39789.77 40096.32 36097.92 16397.43 30396.36 36186.17 34498.93 38787.68 38697.73 35695.81 396
MVEpermissive83.40 2292.50 35991.92 36194.25 37198.83 25491.64 35892.71 39483.52 40895.92 29386.46 40595.46 37795.20 24095.40 40480.51 40198.64 32495.73 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 34493.14 34695.46 36198.66 29191.29 36596.61 29294.63 37897.39 21196.83 33093.71 39379.88 37699.56 31482.40 39998.13 34595.54 398
API-MVS97.04 26396.91 25597.42 29797.88 35198.23 12498.18 14798.50 30197.57 19097.39 30596.75 35196.77 17799.15 37990.16 37899.02 29794.88 399
GG-mvs-BLEND94.76 36794.54 40592.13 35599.31 2780.47 41088.73 40391.01 40367.59 39998.16 39882.30 40094.53 39793.98 400
DeepMVS_CXcopyleft93.44 38198.24 33094.21 30594.34 38064.28 40391.34 39994.87 38889.45 32592.77 40677.54 40493.14 39993.35 401
tmp_tt78.77 37278.73 37578.90 38858.45 41174.76 41294.20 38278.26 41139.16 40486.71 40492.82 39980.50 37575.19 40786.16 39292.29 40186.74 402
wuyk23d96.06 29997.62 21691.38 38598.65 29498.57 9698.85 8196.95 34896.86 25299.90 1299.16 12299.18 1798.40 39589.23 38299.77 12477.18 403
test12317.04 37520.11 3787.82 38910.25 4134.91 41494.80 3664.47 4144.93 40710.00 40924.28 4069.69 4123.64 40810.14 40712.43 40714.92 404
testmvs17.12 37420.53 3776.87 39012.05 4124.20 41593.62 3916.73 4134.62 40810.41 40824.33 4058.28 4133.56 4099.69 40815.07 40612.86 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.66 37332.88 3760.00 3910.00 4140.00 4160.00 40299.10 2240.00 4090.00 41097.58 32499.21 160.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.17 37610.90 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40998.07 860.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.12 37710.83 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.48 3300.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.90 37291.37 366
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
test_one_060199.39 13999.20 3499.31 15998.49 12398.66 20299.02 15297.64 118
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.01 22098.84 7599.07 22894.10 33998.05 26098.12 29096.36 19999.86 10892.70 34999.19 276
test_241102_ONE99.49 11599.17 3999.31 15997.98 15799.66 4298.90 18798.36 6399.48 338
9.1497.78 20199.07 20897.53 23499.32 15495.53 30498.54 22298.70 22597.58 12399.76 22194.32 30999.46 234
save fliter99.11 19997.97 15296.53 29599.02 24098.24 138
test072699.50 10899.21 2898.17 15099.35 14197.97 15899.26 11299.06 14097.61 121
test_part299.36 14799.10 6099.05 141
sam_mvs84.29 362
MTGPAbinary99.20 198
test_post197.59 22820.48 40883.07 36899.66 27894.16 310
test_post21.25 40783.86 36499.70 250
patchmatchnet-post98.77 21484.37 35999.85 120
MTMP97.93 18091.91 395
gm-plane-assit94.83 40481.97 40788.07 39194.99 38399.60 29991.76 358
TEST998.71 27498.08 13995.96 32799.03 23791.40 37295.85 35897.53 32696.52 19099.76 221
test_898.67 28698.01 14795.91 33299.02 24091.64 36795.79 36097.50 32996.47 19299.76 221
agg_prior98.68 28597.99 14899.01 24395.59 36199.77 215
test_prior497.97 15295.86 333
test_prior295.74 33896.48 26996.11 35397.63 32295.92 22194.16 31099.20 273
旧先验295.76 33788.56 39097.52 29599.66 27894.48 300
新几何295.93 330
原ACMM295.53 344
testdata299.79 19792.80 346
segment_acmp97.02 162
testdata195.44 34996.32 277
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 17994.90 247
plane_prior497.98 301
plane_prior397.78 17297.41 20997.79 276
plane_prior297.77 20398.20 145
plane_prior199.05 215
plane_prior97.65 18197.07 26796.72 25999.36 247
n20.00 415
nn0.00 415
door-mid99.57 62
test1198.87 261
door99.41 122
HQP5-MVS96.79 226
HQP-NCC98.67 28696.29 30996.05 28695.55 364
ACMP_Plane98.67 28696.29 30996.05 28695.55 364
BP-MVS92.82 344
HQP3-MVS99.04 23599.26 265
HQP2-MVS93.84 276
NP-MVS98.84 25297.39 19596.84 348
MDTV_nov1_ep1395.22 31797.06 38683.20 40497.74 20896.16 36294.37 33396.99 31998.83 20383.95 36399.53 32493.90 31997.95 354
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190