This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16199.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 15999.75 3496.59 23597.97 18199.86 1398.22 14299.88 1799.71 1798.59 5099.84 13699.73 1999.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18399.71 4696.10 24997.87 19399.85 1598.56 12399.90 1299.68 2098.69 4199.85 11999.72 2199.98 1299.97 3
test_fmvs399.12 5299.41 1998.25 23599.76 3095.07 28699.05 6499.94 297.78 17799.82 2299.84 298.56 5499.71 24899.96 199.96 2499.97 3
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2498.11 13197.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
test_f98.67 11498.87 7198.05 25299.72 4395.59 26498.51 11899.81 2396.30 28299.78 2799.82 496.14 20798.63 39699.82 899.93 4399.95 6
test_fmvs298.70 10398.97 6697.89 25999.54 9894.05 31298.55 10999.92 696.78 26099.72 3299.78 896.60 18999.67 26899.91 299.90 6899.94 7
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4599.65 4599.48 3299.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
test_vis3_rt99.14 4699.17 4499.07 11999.78 2498.38 10898.92 7799.94 297.80 17599.91 1199.67 2597.15 15698.91 39199.76 1699.56 21199.92 9
fmvsm_s_conf0.5_n_a99.10 5499.20 4298.78 16599.55 9396.59 23597.79 20199.82 2298.21 14399.81 2499.53 5498.46 6099.84 13699.70 2299.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5599.26 3898.61 19199.55 9396.09 25297.74 20999.81 2398.55 12499.85 1999.55 4898.60 4999.84 13699.69 2499.98 1299.89 11
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6998.10 13397.68 21599.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
test_djsdf99.52 1099.51 1199.53 3399.86 1498.74 8199.39 1799.56 6999.11 7399.70 3699.73 1599.00 2299.97 499.26 4299.98 1299.89 11
mvs_tets99.63 599.67 599.49 4799.88 998.61 9199.34 2099.71 3399.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3799.66 4499.09 8399.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 15
EU-MVSNet97.66 22498.50 12195.13 36799.63 7385.84 39798.35 13798.21 31798.23 14199.54 5699.46 6695.02 25299.68 26598.24 10699.87 7699.87 15
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3299.82 399.04 14299.81 598.05 9199.96 1198.85 6999.99 599.86 17
MM98.22 17697.99 19098.91 14698.66 29396.97 22197.89 18994.44 38299.54 2898.95 15699.14 13093.50 28899.92 5099.80 1299.96 2499.85 18
MVS_030498.10 18597.88 20298.76 16998.82 25896.50 24097.90 18791.35 40099.56 2798.32 23999.13 13196.06 21199.93 4099.84 799.97 1999.85 18
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 18
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6497.05 21797.80 20099.76 2898.70 11199.78 2799.11 13498.79 3499.95 2399.85 599.96 2499.83 21
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13199.64 6997.28 20297.82 19799.76 2898.73 10899.82 2299.09 14098.81 3299.95 2399.86 499.96 2499.83 21
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22598.58 10699.10 22996.49 27299.96 499.81 598.18 8099.45 34798.97 6399.79 11599.83 21
SSC-MVS98.71 9998.74 8398.62 18899.72 4396.08 25498.74 8898.64 29999.74 799.67 4299.24 10594.57 26699.95 2399.11 5299.24 26899.82 24
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9899.65 4699.72 1698.93 2699.95 2399.11 52100.00 199.82 24
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 40100.00 199.82 24
PS-CasMVS99.40 2199.33 2699.62 699.71 4699.10 6099.29 3399.53 8199.53 3099.46 7199.41 7698.23 7399.95 2398.89 6899.95 3199.81 27
FC-MVSNet-test99.27 3099.25 3999.34 7299.77 2798.37 11099.30 3299.57 6299.61 2399.40 8399.50 5997.12 15799.85 11999.02 6099.94 3999.80 28
test_cas_vis1_n_192098.33 16298.68 9597.27 30699.69 5592.29 35598.03 16999.85 1597.62 18699.96 499.62 3493.98 28199.74 23599.52 3199.86 7999.79 29
test_vis1_n_192098.40 15298.92 6896.81 32999.74 3690.76 37898.15 15399.91 798.33 13199.89 1599.55 4895.07 25199.88 8399.76 1699.93 4399.79 29
CP-MVSNet99.21 3999.09 5699.56 2199.65 6498.96 7099.13 5599.34 15399.42 4199.33 9699.26 10097.01 16599.94 3598.74 7699.93 4399.79 29
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1599.69 599.58 5599.90 299.86 1899.78 899.58 699.95 2399.00 6199.95 3199.78 32
CVMVSNet96.25 29997.21 24593.38 38599.10 20280.56 41297.20 26598.19 32096.94 25199.00 14799.02 15389.50 32899.80 18596.36 24199.59 19999.78 32
Anonymous2023121199.27 3099.27 3699.26 8999.29 15898.18 12599.49 999.51 8699.70 999.80 2599.68 2096.84 17299.83 15499.21 4799.91 6299.77 34
PEN-MVS99.41 2099.34 2599.62 699.73 3799.14 5299.29 3399.54 7899.62 2199.56 5399.42 7398.16 8499.96 1198.78 7299.93 4399.77 34
WR-MVS_H99.33 2699.22 4199.65 599.71 4699.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14699.93 4098.90 6699.93 4399.77 34
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 2699.63 1899.78 2799.67 2599.48 999.81 17899.30 4199.97 1999.77 34
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVS98.52 14098.55 11498.43 21899.65 6495.59 26498.52 11398.77 28699.65 1599.52 6299.00 16694.34 27299.93 4098.65 8398.83 31299.76 38
patch_mono-298.51 14198.63 10298.17 24199.38 14094.78 29197.36 25199.69 3698.16 15398.49 22699.29 9597.06 16099.97 498.29 10599.91 6299.76 38
nrg03099.40 2199.35 2399.54 2699.58 7799.13 5598.98 7199.48 9899.68 1299.46 7199.26 10098.62 4799.73 24099.17 5099.92 5499.76 38
FIs99.14 4699.09 5699.29 8399.70 5398.28 11699.13 5599.52 8499.48 3299.24 11699.41 7696.79 17899.82 16498.69 8199.88 7399.76 38
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5199.66 1499.68 4099.66 2798.44 6199.95 2399.73 1999.96 2499.75 42
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17499.15 4798.87 8199.48 9897.57 19299.35 9399.24 10597.83 10499.89 7497.88 13299.70 16099.75 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.43 1899.35 2399.66 499.71 4699.30 1799.31 2799.51 8699.64 1699.56 5399.46 6698.23 7399.97 498.78 7299.93 4399.72 44
MSC_two_6792asdad99.32 7998.43 32198.37 11098.86 27199.89 7497.14 17299.60 19599.71 45
No_MVS99.32 7998.43 32198.37 11098.86 27199.89 7497.14 17299.60 19599.71 45
PMMVS298.07 19198.08 18298.04 25399.41 13794.59 30094.59 37899.40 12997.50 20198.82 18498.83 20696.83 17499.84 13697.50 15399.81 10099.71 45
Baseline_NR-MVSNet98.98 6598.86 7499.36 6399.82 2098.55 9697.47 24599.57 6299.37 4599.21 11999.61 3796.76 18199.83 15498.06 11999.83 9199.71 45
XXY-MVS99.14 4699.15 5199.10 11399.76 3097.74 17598.85 8499.62 4898.48 12699.37 8999.49 6398.75 3699.86 10798.20 10999.80 11099.71 45
test_0728_THIRD98.17 15099.08 13399.02 15397.89 10199.88 8397.07 17899.71 15599.70 50
MSP-MVS98.40 15298.00 18999.61 999.57 8199.25 2498.57 10799.35 14797.55 19899.31 10497.71 31994.61 26599.88 8396.14 25499.19 27799.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.24 3799.15 5199.49 4799.83 1898.85 7499.41 1399.55 7399.54 2899.40 8399.52 5795.86 22699.91 5999.32 3999.95 3199.70 50
dcpmvs_298.78 9099.11 5397.78 26699.56 8993.67 33099.06 6299.86 1399.50 3199.66 4399.26 10097.21 15499.99 298.00 12499.91 6299.68 53
test_0728_SECOND99.60 1199.50 10899.23 2698.02 17199.32 16099.88 8396.99 18499.63 18599.68 53
OurMVSNet-221017-099.37 2499.31 3099.53 3399.91 398.98 6599.63 799.58 5599.44 3899.78 2799.76 1096.39 19799.92 5099.44 3599.92 5499.68 53
CHOSEN 1792x268897.49 23497.14 25098.54 20699.68 5796.09 25296.50 30099.62 4891.58 37298.84 18098.97 17392.36 30599.88 8396.76 20799.95 3199.67 56
IU-MVS99.49 11599.15 4798.87 26692.97 35799.41 8096.76 20799.62 18899.66 57
test_241102_TWO99.30 17398.03 15899.26 11199.02 15397.51 13499.88 8396.91 19099.60 19599.66 57
DPE-MVScopyleft98.59 12798.26 16099.57 1699.27 16199.15 4797.01 27399.39 13197.67 18299.44 7598.99 16797.53 13199.89 7495.40 28499.68 16899.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2198.58 9499.27 3999.57 6299.39 4399.75 3199.62 3499.17 1899.83 15499.06 5699.62 18899.66 57
EI-MVSNet-UG-set98.69 10698.71 8998.62 18899.10 20296.37 24397.23 26198.87 26699.20 6499.19 12198.99 16797.30 14699.85 11998.77 7599.79 11599.65 61
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 899.76 2899.64 1699.84 2199.83 399.50 899.87 10099.36 3799.92 5499.64 62
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18799.09 20596.40 24297.23 26198.86 27199.20 6499.18 12598.97 17397.29 14899.85 11998.72 7899.78 12099.64 62
ACMH96.65 799.25 3399.24 4099.26 8999.72 4398.38 10899.07 6199.55 7398.30 13499.65 4699.45 7099.22 1599.76 22398.44 9699.77 12599.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 7198.81 7999.28 8499.21 17498.45 10598.46 12699.33 15899.63 1899.48 6899.15 12797.23 15299.75 23097.17 16899.66 17999.63 65
test_fmvs1_n98.09 18898.28 15697.52 29299.68 5793.47 33498.63 10099.93 495.41 31399.68 4099.64 3191.88 31299.48 34099.82 899.87 7699.62 66
bld_raw_dy_0_6499.14 4699.28 3498.72 17899.62 7596.58 23899.72 499.64 4699.82 399.85 1999.64 3196.17 20699.96 1199.13 5199.92 5499.62 66
test111196.49 29296.82 26695.52 36199.42 13587.08 39499.22 4287.14 40799.11 7399.46 7199.58 4188.69 33299.86 10798.80 7199.95 3199.62 66
VPA-MVSNet99.30 2899.30 3299.28 8499.49 11598.36 11399.00 6899.45 11299.63 1899.52 6299.44 7198.25 7199.88 8399.09 5499.84 8499.62 66
LPG-MVS_test98.71 9998.46 13099.47 5399.57 8198.97 6698.23 14499.48 9896.60 26799.10 13199.06 14198.71 3999.83 15495.58 28099.78 12099.62 66
LGP-MVS_train99.47 5399.57 8198.97 6699.48 9896.60 26799.10 13199.06 14198.71 3999.83 15495.58 28099.78 12099.62 66
Test_1112_low_res96.99 27396.55 28498.31 23099.35 15195.47 27195.84 34099.53 8191.51 37496.80 33698.48 26491.36 31599.83 15496.58 22099.53 22099.62 66
v1098.97 6699.11 5398.55 20399.44 12996.21 24898.90 7899.55 7398.73 10899.48 6899.60 3996.63 18899.83 15499.70 2299.99 599.61 73
test_vis1_n98.31 16598.50 12197.73 27599.76 3094.17 31098.68 9799.91 796.31 28099.79 2699.57 4292.85 30099.42 35299.79 1399.84 8499.60 74
v899.01 6099.16 4698.57 19899.47 12496.31 24698.90 7899.47 10699.03 8999.52 6299.57 4296.93 16899.81 17899.60 2599.98 1299.60 74
EI-MVSNet98.40 15298.51 11998.04 25399.10 20294.73 29497.20 26598.87 26698.97 9499.06 13599.02 15396.00 21599.80 18598.58 8699.82 9599.60 74
SixPastTwentyTwo98.75 9598.62 10499.16 10499.83 1897.96 15499.28 3798.20 31899.37 4599.70 3699.65 3092.65 30399.93 4099.04 5899.84 8499.60 74
IterMVS-LS98.55 13398.70 9298.09 24599.48 12294.73 29497.22 26499.39 13198.97 9499.38 8799.31 9396.00 21599.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 25896.60 28298.96 13899.62 7597.28 20295.17 36099.50 8994.21 33999.01 14698.32 28086.61 34499.99 297.10 17699.84 8499.60 74
ACMMP_NAP98.75 9598.48 12699.57 1699.58 7799.29 1997.82 19799.25 19396.94 25198.78 18799.12 13398.02 9299.84 13697.13 17499.67 17499.59 80
VPNet98.87 7898.83 7699.01 13299.70 5397.62 18598.43 12999.35 14799.47 3499.28 10599.05 14896.72 18499.82 16498.09 11699.36 24899.59 80
WR-MVS98.40 15298.19 16899.03 12999.00 22297.65 18196.85 28398.94 25398.57 12198.89 17098.50 26195.60 23299.85 11997.54 15099.85 8099.59 80
HPM-MVScopyleft98.79 8898.53 11799.59 1599.65 6499.29 1999.16 5199.43 12296.74 26298.61 20998.38 27298.62 4799.87 10096.47 23499.67 17499.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10897.47 19198.04 16899.59 5398.15 15499.40 8399.36 8298.58 5399.76 22398.78 7299.68 16899.59 80
Vis-MVSNetpermissive99.34 2599.36 2299.27 8799.73 3798.26 11799.17 5099.78 2699.11 7399.27 10799.48 6498.82 3199.95 2398.94 6499.93 4399.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 12898.23 16499.60 1199.69 5599.35 1297.16 26899.38 13394.87 32498.97 15398.99 16798.01 9399.88 8397.29 16299.70 16099.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 10698.40 13899.54 2699.53 10199.17 3998.52 11399.31 16597.46 20998.44 23098.51 25797.83 10499.88 8396.46 23599.58 20499.58 86
ACMMPR98.70 10398.42 13699.54 2699.52 10399.14 5298.52 11399.31 16597.47 20498.56 21898.54 25397.75 11199.88 8396.57 22299.59 19999.58 86
PGM-MVS98.66 11598.37 14599.55 2399.53 10199.18 3898.23 14499.49 9697.01 24898.69 19898.88 19798.00 9499.89 7495.87 26699.59 19999.58 86
SteuartSystems-ACMMP98.79 8898.54 11699.54 2699.73 3799.16 4398.23 14499.31 16597.92 16698.90 16898.90 18998.00 9499.88 8396.15 25399.72 15099.58 86
Skip Steuart: Steuart Systems R&D Blog.
SDMVSNet99.23 3899.32 2898.96 13899.68 5797.35 19898.84 8699.48 9899.69 1099.63 4999.68 2099.03 2199.96 1197.97 12699.92 5499.57 91
sd_testset99.28 2999.31 3099.19 10099.68 5798.06 14399.41 1399.30 17399.69 1099.63 4999.68 2099.25 1499.96 1197.25 16599.92 5499.57 91
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14698.87 7398.39 13399.42 12599.42 4199.36 9199.06 14198.38 6499.95 2398.34 10199.90 6899.57 91
mPP-MVS98.64 11898.34 14999.54 2699.54 9899.17 3998.63 10099.24 19897.47 20498.09 25698.68 23197.62 12299.89 7496.22 24899.62 18899.57 91
PVSNet_Blended_VisFu98.17 18398.15 17498.22 23899.73 3795.15 28297.36 25199.68 4194.45 33498.99 14899.27 9896.87 17199.94 3597.13 17499.91 6299.57 91
1112_ss97.29 25096.86 26298.58 19599.34 15396.32 24596.75 28999.58 5593.14 35596.89 33197.48 33392.11 30999.86 10796.91 19099.54 21699.57 91
MTAPA98.88 7798.64 10199.61 999.67 6199.36 1198.43 12999.20 20498.83 10798.89 17098.90 18996.98 16799.92 5097.16 16999.70 16099.56 97
XVS98.72 9898.45 13199.53 3399.46 12599.21 2898.65 9899.34 15398.62 11697.54 29598.63 24397.50 13599.83 15496.79 20399.53 22099.56 97
pm-mvs199.44 1599.48 1499.33 7799.80 2198.63 8899.29 3399.63 4799.30 5499.65 4699.60 3999.16 2099.82 16499.07 5599.83 9199.56 97
X-MVStestdata94.32 33592.59 35399.53 3399.46 12599.21 2898.65 9899.34 15398.62 11697.54 29545.85 40997.50 13599.83 15496.79 20399.53 22099.56 97
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4699.35 1299.00 6899.50 8997.33 22098.94 16498.86 20098.75 3699.82 16497.53 15199.71 15599.56 97
K. test v398.00 19697.66 21899.03 12999.79 2397.56 18799.19 4992.47 39499.62 2199.52 6299.66 2789.61 32699.96 1199.25 4499.81 10099.56 97
CP-MVS98.70 10398.42 13699.52 3899.36 14799.12 5798.72 9299.36 14297.54 19998.30 24098.40 26997.86 10399.89 7496.53 23199.72 15099.56 97
ZNCC-MVS98.68 11198.40 13899.54 2699.57 8199.21 2898.46 12699.29 18197.28 22698.11 25498.39 27098.00 9499.87 10096.86 20099.64 18299.55 104
v119298.60 12598.66 9898.41 22099.27 16195.88 25897.52 23899.36 14297.41 21399.33 9699.20 11296.37 20099.82 16499.57 2799.92 5499.55 104
v124098.55 13398.62 10498.32 22799.22 17295.58 26697.51 24099.45 11297.16 24199.45 7499.24 10596.12 20999.85 11999.60 2599.88 7399.55 104
UGNet98.53 13798.45 13198.79 16297.94 35196.96 22399.08 5898.54 30399.10 8096.82 33599.47 6596.55 19199.84 13698.56 9299.94 3999.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250692.39 36391.89 36593.89 37999.38 14082.28 40999.32 2366.03 41599.08 8598.77 19099.57 4266.26 40599.84 13698.71 7999.95 3199.54 108
ECVR-MVScopyleft96.42 29496.61 28095.85 35399.38 14088.18 39099.22 4286.00 40999.08 8599.36 9199.57 4288.47 33799.82 16498.52 9399.95 3199.54 108
v14419298.54 13598.57 11298.45 21699.21 17495.98 25597.63 22399.36 14297.15 24399.32 10299.18 11795.84 22799.84 13699.50 3299.91 6299.54 108
v192192098.54 13598.60 10998.38 22399.20 17895.76 26397.56 23399.36 14297.23 23599.38 8799.17 12196.02 21399.84 13699.57 2799.90 6899.54 108
MP-MVScopyleft98.46 14598.09 17999.54 2699.57 8199.22 2798.50 12099.19 20897.61 18997.58 29198.66 23697.40 14299.88 8394.72 29899.60 19599.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2399.32 2899.55 2399.86 1499.19 3799.41 1399.59 5399.59 2499.71 3499.57 4297.12 15799.90 6499.21 4799.87 7699.54 108
ACMMPcopyleft98.75 9598.50 12199.52 3899.56 8999.16 4398.87 8199.37 13897.16 24198.82 18499.01 16297.71 11399.87 10096.29 24599.69 16399.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 15298.03 18699.51 4299.16 19199.21 2898.05 16699.22 20194.16 34098.98 14999.10 13797.52 13399.79 20096.45 23699.64 18299.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 9998.44 13399.51 4299.49 11599.16 4398.52 11399.31 16597.47 20498.58 21598.50 26197.97 9899.85 11996.57 22299.59 19999.53 115
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6199.17 18998.74 8197.68 21599.40 12999.14 7299.06 13598.59 24996.71 18599.93 4098.57 8999.77 12599.53 115
GST-MVS98.61 12498.30 15499.52 3899.51 10599.20 3498.26 14299.25 19397.44 21298.67 20098.39 27097.68 11499.85 11996.00 25899.51 22599.52 118
TDRefinement99.42 1999.38 2199.55 2399.76 3099.33 1699.68 699.71 3399.38 4499.53 6099.61 3798.64 4499.80 18598.24 10699.84 8499.52 118
v114498.60 12598.66 9898.41 22099.36 14795.90 25797.58 23099.34 15397.51 20099.27 10799.15 12796.34 20299.80 18599.47 3499.93 4399.51 120
v2v48298.56 12998.62 10498.37 22499.42 13595.81 26197.58 23099.16 21997.90 16899.28 10599.01 16295.98 22099.79 20099.33 3899.90 6899.51 120
CPTT-MVS97.84 21397.36 23799.27 8799.31 15498.46 10498.29 13999.27 18794.90 32397.83 27598.37 27394.90 25499.84 13693.85 32699.54 21699.51 120
DU-MVS98.82 8498.63 10299.39 6299.16 19198.74 8197.54 23599.25 19398.84 10699.06 13598.76 21996.76 18199.93 4098.57 8999.77 12599.50 123
NR-MVSNet98.95 6998.82 7799.36 6399.16 19198.72 8699.22 4299.20 20499.10 8099.72 3298.76 21996.38 19999.86 10798.00 12499.82 9599.50 123
casdiffmvs_mvgpermissive99.12 5299.16 4698.99 13499.43 13497.73 17798.00 17599.62 4899.22 6099.55 5599.22 10998.93 2699.75 23098.66 8299.81 10099.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 5799.00 6399.33 7799.71 4698.83 7698.60 10499.58 5599.11 7399.53 6099.18 11798.81 3299.67 26896.71 21499.77 12599.50 123
DVP-MVS++98.90 7598.70 9299.51 4298.43 32199.15 4799.43 1199.32 16098.17 15099.26 11199.02 15398.18 8099.88 8397.07 17899.45 23799.49 127
PC_three_145293.27 35399.40 8398.54 25398.22 7697.00 40495.17 28799.45 23799.49 127
GeoE99.05 5898.99 6599.25 9299.44 12998.35 11498.73 9199.56 6998.42 12798.91 16798.81 21198.94 2599.91 5998.35 10099.73 14399.49 127
h-mvs3397.77 21697.33 24099.10 11399.21 17497.84 16398.35 13798.57 30299.11 7398.58 21599.02 15388.65 33599.96 1198.11 11496.34 38699.49 127
IterMVS-SCA-FT97.85 21298.18 16996.87 32599.27 16191.16 37395.53 34899.25 19399.10 8099.41 8099.35 8393.10 29399.96 1198.65 8399.94 3999.49 127
new-patchmatchnet98.35 15898.74 8397.18 30999.24 16792.23 35796.42 30599.48 9898.30 13499.69 3899.53 5497.44 14099.82 16498.84 7099.77 12599.49 127
APD-MVScopyleft98.10 18597.67 21599.42 5799.11 20098.93 7197.76 20799.28 18494.97 32198.72 19698.77 21797.04 16199.85 11993.79 32799.54 21699.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 16698.04 18599.07 11999.56 8997.83 16499.29 3398.07 32499.03 8998.59 21399.13 13192.16 30899.90 6496.87 19899.68 16899.49 127
DeepC-MVS97.60 498.97 6698.93 6799.10 11399.35 15197.98 15098.01 17499.46 10897.56 19699.54 5699.50 5998.97 2399.84 13698.06 11999.92 5499.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 7398.73 8599.48 5099.55 9399.14 5298.07 16399.37 13897.62 18699.04 14298.96 17698.84 3099.79 20097.43 15699.65 18099.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 9398.52 11899.52 3899.50 10899.21 2898.02 17198.84 27597.97 16199.08 13399.02 15397.61 12399.88 8396.99 18499.63 18599.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 9998.43 13499.57 1699.18 18899.35 1298.36 13699.29 18198.29 13798.88 17398.85 20397.53 13199.87 10096.14 25499.31 25699.48 137
TSAR-MVS + MP.98.63 12098.49 12599.06 12599.64 6997.90 15898.51 11898.94 25396.96 24999.24 11698.89 19597.83 10499.81 17896.88 19799.49 23399.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 17897.95 19399.01 13299.58 7797.74 17599.01 6697.29 34399.67 1398.97 15399.50 5990.45 32199.80 18597.88 13299.20 27499.48 137
IterMVS97.73 21898.11 17896.57 33499.24 16790.28 38195.52 35099.21 20298.86 10399.33 9699.33 8993.11 29299.94 3598.49 9499.94 3999.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 18097.90 19999.08 11799.57 8197.97 15199.31 2798.32 31399.01 9198.98 14999.03 15291.59 31399.79 20095.49 28299.80 11099.48 137
ACMP95.32 1598.41 15098.09 17999.36 6399.51 10598.79 7997.68 21599.38 13395.76 30098.81 18698.82 20998.36 6599.82 16494.75 29599.77 12599.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19697.63 22199.10 11399.24 16798.17 12696.89 28298.73 29395.66 30197.92 26697.70 32197.17 15599.66 27996.18 25299.23 27099.47 144
3Dnovator+97.89 398.69 10698.51 11999.24 9498.81 26198.40 10699.02 6599.19 20898.99 9298.07 25799.28 9697.11 15999.84 13696.84 20199.32 25499.47 144
HPM-MVS++copyleft98.10 18597.64 22099.48 5099.09 20599.13 5597.52 23898.75 29097.46 20996.90 33097.83 31496.01 21499.84 13695.82 27099.35 25099.46 146
V4298.78 9098.78 8198.76 16999.44 12997.04 21898.27 14199.19 20897.87 17099.25 11599.16 12396.84 17299.78 21199.21 4799.84 8499.46 146
APD-MVS_3200maxsize98.84 8298.61 10899.53 3399.19 18199.27 2298.49 12199.33 15898.64 11299.03 14598.98 17197.89 10199.85 11996.54 23099.42 24199.46 146
UniMVSNet (Re)98.87 7898.71 8999.35 6999.24 16798.73 8497.73 21199.38 13398.93 9899.12 12798.73 22296.77 17999.86 10798.63 8599.80 11099.46 146
SR-MVS-dyc-post98.81 8698.55 11499.57 1699.20 17899.38 898.48 12499.30 17398.64 11298.95 15698.96 17697.49 13899.86 10796.56 22699.39 24499.45 150
RE-MVS-def98.58 11199.20 17899.38 898.48 12499.30 17398.64 11298.95 15698.96 17697.75 11196.56 22699.39 24499.45 150
HQP_MVS97.99 19997.67 21598.93 14399.19 18197.65 18197.77 20499.27 18798.20 14797.79 27897.98 30494.90 25499.70 25294.42 30799.51 22599.45 150
plane_prior599.27 18799.70 25294.42 30799.51 22599.45 150
lessismore_v098.97 13799.73 3797.53 18986.71 40899.37 8999.52 5789.93 32499.92 5098.99 6299.72 15099.44 154
TAMVS98.24 17598.05 18498.80 15999.07 20997.18 21197.88 19098.81 28096.66 26699.17 12699.21 11094.81 26099.77 21796.96 18899.88 7399.44 154
DeepPCF-MVS96.93 598.32 16398.01 18799.23 9698.39 32698.97 6695.03 36499.18 21296.88 25499.33 9698.78 21598.16 8499.28 37396.74 20999.62 18899.44 154
3Dnovator98.27 298.81 8698.73 8599.05 12698.76 26697.81 17099.25 4099.30 17398.57 12198.55 22099.33 8997.95 9999.90 6497.16 16999.67 17499.44 154
MVSFormer98.26 17298.43 13497.77 26798.88 24793.89 32499.39 1799.56 6999.11 7398.16 24898.13 29193.81 28499.97 499.26 4299.57 20899.43 158
jason97.45 23897.35 23897.76 27099.24 16793.93 32095.86 33798.42 30994.24 33898.50 22598.13 29194.82 25899.91 5997.22 16699.73 14399.43 158
jason: jason.
NCCC97.86 20797.47 23299.05 12698.61 29798.07 14096.98 27598.90 26197.63 18597.04 32097.93 30995.99 21999.66 27995.31 28598.82 31499.43 158
Anonymous2024052198.69 10698.87 7198.16 24399.77 2795.11 28599.08 5899.44 11699.34 4999.33 9699.55 4894.10 28099.94 3599.25 4499.96 2499.42 161
MVS_111021_HR98.25 17498.08 18298.75 17399.09 20597.46 19295.97 32999.27 18797.60 19097.99 26398.25 28398.15 8699.38 35896.87 19899.57 20899.42 161
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 5999.58 7799.10 6098.74 8899.56 6999.09 8399.33 9699.19 11498.40 6399.72 24795.98 26099.76 13699.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 7398.72 8799.49 4799.49 11599.17 3998.10 15999.31 16598.03 15899.66 4399.02 15398.36 6599.88 8396.91 19099.62 18899.41 164
OPU-MVS98.82 15598.59 30298.30 11598.10 15998.52 25698.18 8098.75 39594.62 29999.48 23499.41 164
our_test_397.39 24297.73 21296.34 33998.70 27989.78 38394.61 37798.97 25296.50 27199.04 14298.85 20395.98 22099.84 13697.26 16499.67 17499.41 164
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 14097.33 19997.82 19799.57 6299.17 7199.35 9399.17 12198.35 6899.69 25698.46 9599.73 14399.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 22797.67 21597.39 30299.04 21793.04 34195.27 35798.38 31297.25 22998.92 16698.95 18195.48 24099.73 24096.99 18498.74 31699.41 164
MDA-MVSNet_test_wron97.60 22797.66 21897.41 30199.04 21793.09 33795.27 35798.42 30997.26 22898.88 17398.95 18195.43 24399.73 24097.02 18198.72 31899.41 164
GBi-Net98.65 11698.47 12899.17 10198.90 24198.24 11999.20 4599.44 11698.59 11898.95 15699.55 4894.14 27699.86 10797.77 13899.69 16399.41 164
test198.65 11698.47 12899.17 10198.90 24198.24 11999.20 4599.44 11698.59 11898.95 15699.55 4894.14 27699.86 10797.77 13899.69 16399.41 164
FMVSNet199.17 4299.17 4499.17 10199.55 9398.24 11999.20 4599.44 11699.21 6299.43 7699.55 4897.82 10799.86 10798.42 9899.89 7299.41 164
test_fmvs197.72 21997.94 19597.07 31698.66 29392.39 35297.68 21599.81 2395.20 31799.54 5699.44 7191.56 31499.41 35399.78 1599.77 12599.40 173
KD-MVS_self_test99.25 3399.18 4399.44 5699.63 7399.06 6498.69 9699.54 7899.31 5299.62 5299.53 5497.36 14499.86 10799.24 4699.71 15599.39 174
v14898.45 14798.60 10998.00 25599.44 12994.98 28797.44 24799.06 23498.30 13499.32 10298.97 17396.65 18799.62 29398.37 9999.85 8099.39 174
test20.0398.78 9098.77 8298.78 16599.46 12597.20 20997.78 20299.24 19899.04 8899.41 8098.90 18997.65 11799.76 22397.70 14499.79 11599.39 174
CDPH-MVS97.26 25196.66 27899.07 11999.00 22298.15 12796.03 32799.01 24891.21 37897.79 27897.85 31396.89 17099.69 25692.75 35099.38 24799.39 174
EPNet96.14 30195.44 31298.25 23590.76 41395.50 27097.92 18494.65 38098.97 9492.98 39698.85 20389.12 33099.87 10095.99 25999.68 16899.39 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 18397.87 20399.07 11998.67 28898.24 11997.01 27398.93 25597.25 22997.62 28798.34 27797.27 14999.57 31296.42 23799.33 25399.39 174
DeepC-MVS_fast96.85 698.30 16698.15 17498.75 17398.61 29797.23 20597.76 20799.09 23197.31 22398.75 19398.66 23697.56 12799.64 28796.10 25799.55 21499.39 174
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 13798.27 15999.32 7999.31 15498.75 8098.19 14899.41 12696.77 26198.83 18198.90 18997.80 10899.82 16495.68 27699.52 22399.38 181
test9_res93.28 33999.15 28299.38 181
OPM-MVS98.56 12998.32 15399.25 9299.41 13798.73 8497.13 27099.18 21297.10 24498.75 19398.92 18598.18 8099.65 28496.68 21699.56 21199.37 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 35599.16 28099.37 183
AllTest98.44 14898.20 16699.16 10499.50 10898.55 9698.25 14399.58 5596.80 25898.88 17399.06 14197.65 11799.57 31294.45 30599.61 19399.37 183
TestCases99.16 10499.50 10898.55 9699.58 5596.80 25898.88 17399.06 14197.65 11799.57 31294.45 30599.61 19399.37 183
MDA-MVSNet-bldmvs97.94 20097.91 19898.06 25099.44 12994.96 28896.63 29599.15 22498.35 12998.83 18199.11 13494.31 27399.85 11996.60 21998.72 31899.37 183
MVSTER96.86 27796.55 28497.79 26597.91 35394.21 30897.56 23398.87 26697.49 20399.06 13599.05 14880.72 37899.80 18598.44 9699.82 9599.37 183
pmmvs597.64 22597.49 22998.08 24899.14 19695.12 28496.70 29299.05 23793.77 34798.62 20798.83 20693.23 28999.75 23098.33 10399.76 13699.36 189
Anonymous2023120698.21 17898.21 16598.20 23999.51 10595.43 27398.13 15499.32 16096.16 28598.93 16598.82 20996.00 21599.83 15497.32 16199.73 14399.36 189
train_agg97.10 26396.45 28799.07 11998.71 27598.08 13895.96 33199.03 24291.64 37095.85 36197.53 32996.47 19499.76 22393.67 32999.16 28099.36 189
PVSNet_BlendedMVS97.55 23197.53 22697.60 28398.92 23793.77 32896.64 29499.43 12294.49 33097.62 28799.18 11796.82 17599.67 26894.73 29699.93 4399.36 189
Anonymous2024052998.93 7198.87 7199.12 10999.19 18198.22 12499.01 6698.99 25199.25 5899.54 5699.37 7997.04 16199.80 18597.89 12999.52 22399.35 193
F-COLMAP97.30 24896.68 27599.14 10799.19 18198.39 10797.27 26099.30 17392.93 35896.62 34298.00 30295.73 22999.68 26592.62 35398.46 33499.35 193
ppachtmachnet_test97.50 23297.74 21096.78 33198.70 27991.23 37294.55 37999.05 23796.36 27799.21 11998.79 21496.39 19799.78 21196.74 20999.82 9599.34 195
VDD-MVS98.56 12998.39 14199.07 11999.13 19898.07 14098.59 10597.01 34899.59 2499.11 12899.27 9894.82 25899.79 20098.34 10199.63 18599.34 195
testgi98.32 16398.39 14198.13 24499.57 8195.54 26797.78 20299.49 9697.37 21799.19 12197.65 32398.96 2499.49 33796.50 23398.99 30199.34 195
diffmvspermissive98.22 17698.24 16398.17 24199.00 22295.44 27296.38 30799.58 5597.79 17698.53 22398.50 26196.76 18199.74 23597.95 12899.64 18299.34 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 20397.60 22398.75 17399.31 15497.17 21297.62 22499.35 14798.72 11098.76 19298.68 23192.57 30499.74 23597.76 14295.60 39499.34 195
baseline98.96 6899.02 6198.76 16999.38 14097.26 20498.49 12199.50 8998.86 10399.19 12199.06 14198.23 7399.69 25698.71 7999.76 13699.33 200
MG-MVS96.77 28196.61 28097.26 30798.31 33093.06 33895.93 33498.12 32396.45 27597.92 26698.73 22293.77 28699.39 35691.19 37399.04 29499.33 200
HQP4-MVS95.56 36699.54 32399.32 202
CDS-MVSNet97.69 22197.35 23898.69 18098.73 27097.02 22096.92 28198.75 29095.89 29798.59 21398.67 23392.08 31099.74 23596.72 21299.81 10099.32 202
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 27296.49 28698.55 20398.67 28896.79 22996.29 31399.04 24096.05 28995.55 36796.84 35093.84 28299.54 32392.82 34799.26 26699.32 202
RPSCF98.62 12298.36 14699.42 5799.65 6499.42 798.55 10999.57 6297.72 18098.90 16899.26 10096.12 20999.52 32995.72 27399.71 15599.32 202
MVP-Stereo98.08 19097.92 19798.57 19898.96 22996.79 22997.90 18799.18 21296.41 27698.46 22898.95 18195.93 22399.60 30096.51 23298.98 30399.31 206
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15298.68 9597.54 29098.96 22997.99 14797.88 19099.36 14298.20 14799.63 4999.04 15098.76 3595.33 40896.56 22699.74 14099.31 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 14998.30 15498.79 16298.79 26597.29 20198.23 14498.66 29699.31 5298.85 17898.80 21294.80 26199.78 21198.13 11399.13 28599.31 206
test_prior98.95 14098.69 28497.95 15599.03 24299.59 30499.30 209
USDC97.41 24197.40 23397.44 29998.94 23193.67 33095.17 36099.53 8194.03 34498.97 15399.10 13795.29 24599.34 36395.84 26999.73 14399.30 209
test_fmvsm_n_192099.33 2699.45 1898.99 13499.57 8197.73 17797.93 18299.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 211
FMVSNet298.49 14298.40 13898.75 17398.90 24197.14 21698.61 10399.13 22598.59 11899.19 12199.28 9694.14 27699.82 16497.97 12699.80 11099.29 211
XVG-OURS-SEG-HR98.49 14298.28 15699.14 10799.49 11598.83 7696.54 29799.48 9897.32 22299.11 12898.61 24799.33 1399.30 36996.23 24798.38 33599.28 213
test1298.93 14398.58 30497.83 16498.66 29696.53 34595.51 23899.69 25699.13 28599.27 214
DSMNet-mixed97.42 24097.60 22396.87 32599.15 19591.46 36398.54 11199.12 22692.87 36097.58 29199.63 3396.21 20599.90 6495.74 27299.54 21699.27 214
N_pmnet97.63 22697.17 24698.99 13499.27 16197.86 16195.98 32893.41 39195.25 31599.47 7098.90 18995.63 23199.85 11996.91 19099.73 14399.27 214
ambc98.24 23798.82 25895.97 25698.62 10299.00 25099.27 10799.21 11096.99 16699.50 33496.55 22999.50 23299.26 217
LFMVS97.20 25796.72 27298.64 18398.72 27296.95 22498.93 7694.14 38899.74 798.78 18799.01 16284.45 36299.73 24097.44 15599.27 26399.25 218
FMVSNet596.01 30495.20 32198.41 22097.53 37296.10 24998.74 8899.50 8997.22 23898.03 26299.04 15069.80 39899.88 8397.27 16399.71 15599.25 218
BH-RMVSNet96.83 27896.58 28397.58 28598.47 31594.05 31296.67 29397.36 33996.70 26597.87 27197.98 30495.14 24999.44 34990.47 38098.58 33299.25 218
testf199.25 3399.16 4699.51 4299.89 699.63 398.71 9499.69 3698.90 10099.43 7699.35 8398.86 2899.67 26897.81 13599.81 10099.24 221
APD_test299.25 3399.16 4699.51 4299.89 699.63 398.71 9499.69 3698.90 10099.43 7699.35 8398.86 2899.67 26897.81 13599.81 10099.24 221
旧先验198.82 25897.45 19398.76 28798.34 27795.50 23999.01 29999.23 223
test22298.92 23796.93 22695.54 34798.78 28585.72 39896.86 33398.11 29494.43 26899.10 29099.23 223
XVG-ACMP-BASELINE98.56 12998.34 14999.22 9799.54 9898.59 9397.71 21299.46 10897.25 22998.98 14998.99 16797.54 12999.84 13695.88 26399.74 14099.23 223
FMVSNet397.50 23297.24 24398.29 23398.08 34495.83 26097.86 19498.91 26097.89 16998.95 15698.95 18187.06 34199.81 17897.77 13899.69 16399.23 223
无先验95.74 34298.74 29289.38 38999.73 24092.38 35799.22 227
tttt051795.64 31694.98 32597.64 28199.36 14793.81 32698.72 9290.47 40298.08 15798.67 20098.34 27773.88 39699.92 5097.77 13899.51 22599.20 228
pmmvs-eth3d98.47 14498.34 14998.86 15199.30 15797.76 17397.16 26899.28 18495.54 30699.42 7999.19 11497.27 14999.63 29097.89 12999.97 1999.20 228
MS-PatchMatch97.68 22297.75 20997.45 29898.23 33693.78 32797.29 25798.84 27596.10 28798.64 20498.65 23896.04 21299.36 35996.84 20199.14 28399.20 228
新几何198.91 14698.94 23197.76 17398.76 28787.58 39596.75 33898.10 29594.80 26199.78 21192.73 35199.00 30099.20 228
PHI-MVS98.29 16997.95 19399.34 7298.44 32099.16 4398.12 15699.38 13396.01 29298.06 25898.43 26797.80 10899.67 26895.69 27599.58 20499.20 228
Anonymous20240521197.90 20197.50 22899.08 11798.90 24198.25 11898.53 11296.16 36598.87 10299.11 12898.86 20090.40 32299.78 21197.36 15999.31 25699.19 233
CANet97.87 20697.76 20898.19 24097.75 35895.51 26996.76 28899.05 23797.74 17896.93 32498.21 28795.59 23399.89 7497.86 13499.93 4399.19 233
XVG-OURS98.53 13798.34 14999.11 11199.50 10898.82 7895.97 32999.50 8997.30 22499.05 14098.98 17199.35 1299.32 36695.72 27399.68 16899.18 235
WTY-MVS96.67 28496.27 29397.87 26098.81 26194.61 29996.77 28797.92 32894.94 32297.12 31597.74 31891.11 31799.82 16493.89 32398.15 34799.18 235
Vis-MVSNet (Re-imp)97.46 23697.16 24798.34 22699.55 9396.10 24998.94 7598.44 30898.32 13398.16 24898.62 24588.76 33199.73 24093.88 32499.79 11599.18 235
TinyColmap97.89 20397.98 19197.60 28398.86 24994.35 30596.21 31799.44 11697.45 21199.06 13598.88 19797.99 9799.28 37394.38 31199.58 20499.18 235
testdata98.09 24598.93 23395.40 27498.80 28290.08 38697.45 30498.37 27395.26 24699.70 25293.58 33298.95 30699.17 239
lupinMVS97.06 26696.86 26297.65 27998.88 24793.89 32495.48 35197.97 32693.53 35098.16 24897.58 32793.81 28499.91 5996.77 20699.57 20899.17 239
Patchmtry97.35 24496.97 25598.50 21297.31 38296.47 24198.18 14998.92 25898.95 9798.78 18799.37 7985.44 35699.85 11995.96 26199.83 9199.17 239
sss97.21 25696.93 25698.06 25098.83 25595.22 28096.75 28998.48 30794.49 33097.27 31297.90 31092.77 30199.80 18596.57 22299.32 25499.16 242
iter_conf0598.46 14598.38 14398.70 17999.27 16197.15 21497.51 24099.51 8697.57 19298.95 15698.89 19595.48 24099.82 16498.30 10499.96 2499.14 243
CSCG98.68 11198.50 12199.20 9899.45 12898.63 8898.56 10899.57 6297.87 17098.85 17898.04 30197.66 11699.84 13696.72 21299.81 10099.13 244
MVS_111021_LR98.30 16698.12 17798.83 15499.16 19198.03 14596.09 32599.30 17397.58 19198.10 25598.24 28498.25 7199.34 36396.69 21599.65 18099.12 245
miper_lstm_enhance97.18 25997.16 24797.25 30898.16 33992.85 34395.15 36299.31 16597.25 22998.74 19598.78 21590.07 32399.78 21197.19 16799.80 11099.11 246
testing393.51 34992.09 35897.75 27198.60 29994.40 30397.32 25495.26 37797.56 19696.79 33795.50 37653.57 41499.77 21795.26 28698.97 30499.08 247
原ACMM198.35 22598.90 24196.25 24798.83 27992.48 36496.07 35898.10 29595.39 24499.71 24892.61 35498.99 30199.08 247
QAPM97.31 24796.81 26898.82 15598.80 26497.49 19099.06 6299.19 20890.22 38497.69 28499.16 12396.91 16999.90 6490.89 37899.41 24299.07 249
PAPM_NR96.82 28096.32 29098.30 23299.07 20996.69 23497.48 24398.76 28795.81 29996.61 34396.47 35894.12 27999.17 38090.82 37997.78 35899.06 250
eth_miper_zixun_eth97.23 25597.25 24297.17 31198.00 34892.77 34594.71 37199.18 21297.27 22798.56 21898.74 22191.89 31199.69 25697.06 18099.81 10099.05 251
D2MVS97.84 21397.84 20597.83 26299.14 19694.74 29396.94 27798.88 26495.84 29898.89 17098.96 17694.40 27099.69 25697.55 14899.95 3199.05 251
c3_l97.36 24397.37 23697.31 30398.09 34393.25 33695.01 36599.16 21997.05 24598.77 19098.72 22492.88 29899.64 28796.93 18999.76 13699.05 251
PLCcopyleft94.65 1696.51 28995.73 30098.85 15298.75 26897.91 15796.42 30599.06 23490.94 38195.59 36497.38 33994.41 26999.59 30490.93 37698.04 35699.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 7598.90 7098.91 14699.67 6197.82 16799.00 6899.44 11699.45 3699.51 6699.24 10598.20 7999.86 10795.92 26299.69 16399.04 255
CANet_DTU97.26 25197.06 25297.84 26197.57 36794.65 29896.19 31998.79 28397.23 23595.14 37698.24 28493.22 29099.84 13697.34 16099.84 8499.04 255
PM-MVS98.82 8498.72 8799.12 10999.64 6998.54 9997.98 17899.68 4197.62 18699.34 9599.18 11797.54 12999.77 21797.79 13799.74 14099.04 255
TSAR-MVS + GP.98.18 18197.98 19198.77 16898.71 27597.88 15996.32 31198.66 29696.33 27899.23 11898.51 25797.48 13999.40 35497.16 16999.46 23599.02 258
DIV-MVS_self_test97.02 26996.84 26497.58 28597.82 35694.03 31594.66 37499.16 21997.04 24698.63 20598.71 22588.69 33299.69 25697.00 18299.81 10099.01 259
GA-MVS95.86 30995.32 31897.49 29598.60 29994.15 31193.83 39197.93 32795.49 30896.68 33997.42 33783.21 37099.30 36996.22 24898.55 33399.01 259
OMC-MVS97.88 20597.49 22999.04 12898.89 24698.63 8896.94 27799.25 19395.02 31998.53 22398.51 25797.27 14999.47 34393.50 33599.51 22599.01 259
cl____97.02 26996.83 26597.58 28597.82 35694.04 31494.66 37499.16 21997.04 24698.63 20598.71 22588.68 33499.69 25697.00 18299.81 10099.00 262
pmmvs497.58 23097.28 24198.51 20998.84 25396.93 22695.40 35598.52 30593.60 34998.61 20998.65 23895.10 25099.60 30096.97 18799.79 11598.99 263
EPNet_dtu94.93 32994.78 33095.38 36593.58 40987.68 39296.78 28695.69 37597.35 21989.14 40698.09 29788.15 33999.49 33794.95 29299.30 25998.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 29195.77 29898.69 18099.48 12297.43 19597.84 19699.55 7381.42 40496.51 34798.58 25095.53 23699.67 26893.41 33799.58 20498.98 264
PVSNet_Blended96.88 27696.68 27597.47 29798.92 23793.77 32894.71 37199.43 12290.98 38097.62 28797.36 34196.82 17599.67 26894.73 29699.56 21198.98 264
APD_test198.83 8398.66 9899.34 7299.78 2499.47 698.42 13199.45 11298.28 13998.98 14999.19 11497.76 11099.58 31096.57 22299.55 21498.97 267
PAPR95.29 32294.47 33197.75 27197.50 37795.14 28394.89 36898.71 29491.39 37695.35 37495.48 37894.57 26699.14 38384.95 39697.37 37098.97 267
EGC-MVSNET85.24 37380.54 37699.34 7299.77 2799.20 3499.08 5899.29 18112.08 41120.84 41299.42 7397.55 12899.85 11997.08 17799.72 15098.96 269
thisisatest053095.27 32394.45 33297.74 27399.19 18194.37 30497.86 19490.20 40397.17 24098.22 24497.65 32373.53 39799.90 6496.90 19599.35 25098.95 270
mvs_anonymous97.83 21598.16 17396.87 32598.18 33891.89 35997.31 25598.90 26197.37 21798.83 18199.46 6696.28 20399.79 20098.90 6698.16 34698.95 270
baseline195.96 30795.44 31297.52 29298.51 31393.99 31898.39 13396.09 36798.21 14398.40 23797.76 31786.88 34299.63 29095.42 28389.27 40698.95 270
CLD-MVS97.49 23497.16 24798.48 21399.07 20997.03 21994.71 37199.21 20294.46 33298.06 25897.16 34597.57 12699.48 34094.46 30499.78 12098.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 19398.14 17697.64 28198.58 30495.19 28197.48 24399.23 20097.47 20497.90 26898.62 24597.04 16198.81 39497.55 14899.41 24298.94 274
DELS-MVS98.27 17098.20 16698.48 21398.86 24996.70 23395.60 34699.20 20497.73 17998.45 22998.71 22597.50 13599.82 16498.21 10899.59 19998.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 31195.39 31596.98 31996.77 39492.79 34494.40 38298.53 30494.59 32997.89 26998.17 29082.82 37499.24 37596.37 23999.03 29598.92 276
LS3D98.63 12098.38 14399.36 6397.25 38399.38 899.12 5799.32 16099.21 6298.44 23098.88 19797.31 14599.80 18596.58 22099.34 25298.92 276
CMPMVSbinary75.91 2396.29 29795.44 31298.84 15396.25 40298.69 8797.02 27299.12 22688.90 39197.83 27598.86 20089.51 32798.90 39291.92 35899.51 22598.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 11898.48 12699.11 11198.85 25298.51 10198.49 12199.83 2098.37 12899.69 3899.46 6698.21 7899.92 5094.13 31799.30 25998.91 279
DPM-MVS96.32 29695.59 30698.51 20998.76 26697.21 20894.54 38098.26 31591.94 36996.37 35197.25 34393.06 29599.43 35091.42 36898.74 31698.89 280
test_yl96.69 28296.29 29197.90 25798.28 33195.24 27897.29 25797.36 33998.21 14398.17 24697.86 31186.27 34699.55 31894.87 29398.32 33698.89 280
DCV-MVSNet96.69 28296.29 29197.90 25798.28 33195.24 27897.29 25797.36 33998.21 14398.17 24697.86 31186.27 34699.55 31894.87 29398.32 33698.89 280
CS-MVS-test99.13 5099.09 5699.26 8999.13 19898.97 6699.31 2799.88 1199.44 3898.16 24898.51 25798.64 4499.93 4098.91 6599.85 8098.88 283
UnsupCasMVSNet_bld97.30 24896.92 25898.45 21699.28 15996.78 23296.20 31899.27 18795.42 31098.28 24298.30 28193.16 29199.71 24894.99 29097.37 37098.87 284
Effi-MVS+98.02 19397.82 20698.62 18898.53 31197.19 21097.33 25399.68 4197.30 22496.68 33997.46 33598.56 5499.80 18596.63 21898.20 34298.86 285
test_040298.76 9498.71 8998.93 14399.56 8998.14 12998.45 12899.34 15399.28 5698.95 15698.91 18698.34 6999.79 20095.63 27799.91 6298.86 285
PatchmatchNetpermissive95.58 31795.67 30395.30 36697.34 38187.32 39397.65 22196.65 35895.30 31497.07 31898.69 22984.77 35999.75 23094.97 29198.64 32798.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 21797.72 21397.83 26298.81 26196.35 24497.30 25699.69 3694.61 32897.87 27198.05 30096.26 20498.32 39998.74 7698.18 34398.82 288
CL-MVSNet_self_test97.44 23997.22 24498.08 24898.57 30695.78 26294.30 38498.79 28396.58 26998.60 21198.19 28994.74 26499.64 28796.41 23898.84 31198.82 288
miper_ehance_all_eth97.06 26697.03 25397.16 31397.83 35593.06 33894.66 37499.09 23195.99 29398.69 19898.45 26692.73 30299.61 29996.79 20399.03 29598.82 288
MIMVSNet96.62 28796.25 29497.71 27699.04 21794.66 29799.16 5196.92 35497.23 23597.87 27199.10 13786.11 35099.65 28491.65 36399.21 27398.82 288
iter_conf05_1198.62 12298.57 11298.76 16998.69 28497.65 18198.90 7899.52 8498.15 15498.72 19699.20 11295.57 23499.84 13698.58 8699.83 9198.81 292
hse-mvs297.46 23697.07 25198.64 18398.73 27097.33 19997.45 24697.64 33699.11 7398.58 21597.98 30488.65 33599.79 20098.11 11497.39 36998.81 292
GSMVS98.81 292
sam_mvs184.74 36098.81 292
SCA96.41 29596.66 27895.67 35798.24 33488.35 38895.85 33996.88 35596.11 28697.67 28598.67 23393.10 29399.85 11994.16 31399.22 27198.81 292
Patchmatch-RL test97.26 25197.02 25497.99 25699.52 10395.53 26896.13 32399.71 3397.47 20499.27 10799.16 12384.30 36599.62 29397.89 12999.77 12598.81 292
AUN-MVS96.24 30095.45 31198.60 19398.70 27997.22 20797.38 24997.65 33495.95 29595.53 37197.96 30882.11 37799.79 20096.31 24397.44 36698.80 298
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14797.50 20198.28 24298.60 24897.64 12099.35 36293.86 32599.27 26398.79 299
tpm94.67 33194.34 33595.66 35897.68 36688.42 38797.88 19094.90 37894.46 33296.03 36098.56 25278.66 38899.79 20095.88 26395.01 39798.78 300
Patchmatch-test96.55 28896.34 28997.17 31198.35 32793.06 33898.40 13297.79 32997.33 22098.41 23398.67 23383.68 36999.69 25695.16 28899.31 25698.77 301
EC-MVSNet99.09 5599.05 6099.20 9899.28 15998.93 7199.24 4199.84 1899.08 8598.12 25398.37 27398.72 3899.90 6499.05 5799.77 12598.77 301
PMMVS96.51 28995.98 29598.09 24597.53 37295.84 25994.92 36798.84 27591.58 37296.05 35995.58 37395.68 23099.66 27995.59 27998.09 35098.76 303
test_method79.78 37479.50 37780.62 39080.21 41545.76 41870.82 40698.41 31131.08 41080.89 41097.71 31984.85 35897.37 40391.51 36780.03 40798.75 304
ab-mvs98.41 15098.36 14698.59 19499.19 18197.23 20599.32 2398.81 28097.66 18398.62 20799.40 7896.82 17599.80 18595.88 26399.51 22598.75 304
CHOSEN 280x42095.51 32095.47 30995.65 35998.25 33388.27 38993.25 39598.88 26493.53 35094.65 38297.15 34686.17 34899.93 4097.41 15799.93 4398.73 306
test_fmvsmvis_n_192099.26 3299.49 1298.54 20699.66 6396.97 22198.00 17599.85 1599.24 5999.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 307
MVS_Test98.18 18198.36 14697.67 27798.48 31494.73 29498.18 14999.02 24597.69 18198.04 26199.11 13497.22 15399.56 31598.57 8998.90 31098.71 307
PVSNet93.40 1795.67 31495.70 30195.57 36098.83 25588.57 38692.50 39897.72 33192.69 36296.49 35096.44 35993.72 28799.43 35093.61 33099.28 26298.71 307
alignmvs97.35 24496.88 26198.78 16598.54 30998.09 13497.71 21297.69 33399.20 6497.59 29095.90 36888.12 34099.55 31898.18 11098.96 30598.70 310
ADS-MVSNet295.43 32194.98 32596.76 33298.14 34091.74 36097.92 18497.76 33090.23 38296.51 34798.91 18685.61 35399.85 11992.88 34596.90 37998.69 311
ADS-MVSNet95.24 32494.93 32896.18 34798.14 34090.10 38297.92 18497.32 34290.23 38296.51 34798.91 18685.61 35399.74 23592.88 34596.90 37998.69 311
MDTV_nov1_ep13_2view74.92 41497.69 21490.06 38797.75 28185.78 35293.52 33398.69 311
MSDG97.71 22097.52 22798.28 23498.91 24096.82 22894.42 38199.37 13897.65 18498.37 23898.29 28297.40 14299.33 36594.09 31899.22 27198.68 314
mvsany_test197.60 22797.54 22597.77 26797.72 35995.35 27595.36 35697.13 34694.13 34199.71 3499.33 8997.93 10099.30 36997.60 14798.94 30798.67 315
CS-MVS99.13 5099.10 5599.24 9499.06 21399.15 4799.36 1999.88 1199.36 4898.21 24598.46 26598.68 4299.93 4099.03 5999.85 8098.64 316
Syy-MVS96.04 30395.56 30897.49 29597.10 38794.48 30196.18 32096.58 36095.65 30294.77 37992.29 40591.27 31699.36 35998.17 11298.05 35498.63 317
myMVS_eth3d91.92 37090.45 37296.30 34097.10 38790.90 37596.18 32096.58 36095.65 30294.77 37992.29 40553.88 41399.36 35989.59 38498.05 35498.63 317
miper_enhance_ethall96.01 30495.74 29996.81 32996.41 40092.27 35693.69 39398.89 26391.14 37998.30 24097.35 34290.58 32099.58 31096.31 24399.03 29598.60 319
Effi-MVS+-dtu98.26 17297.90 19999.35 6998.02 34699.49 598.02 17199.16 21998.29 13797.64 28697.99 30396.44 19699.95 2396.66 21798.93 30898.60 319
new_pmnet96.99 27396.76 27097.67 27798.72 27294.89 28995.95 33398.20 31892.62 36398.55 22098.54 25394.88 25799.52 32993.96 32199.44 24098.59 321
MVSMamba_pp98.01 19597.90 19998.32 22797.95 34996.59 23597.57 23299.38 13396.07 28897.99 26399.01 16295.57 23499.80 18597.76 14299.82 9598.57 322
mamv498.09 18898.01 18798.31 23098.02 34696.58 23897.53 23699.41 12697.57 19297.89 26998.96 17695.45 24299.80 18597.48 15499.78 12098.57 322
testing9193.32 35292.27 35596.47 33797.54 37091.25 37096.17 32296.76 35797.18 23993.65 39493.50 39965.11 40899.63 29093.04 34297.45 36598.53 324
EIA-MVS98.00 19697.74 21098.80 15998.72 27298.09 13498.05 16699.60 5297.39 21596.63 34195.55 37497.68 11499.80 18596.73 21199.27 26398.52 325
PatchMatch-RL97.24 25496.78 26998.61 19199.03 22097.83 16496.36 30899.06 23493.49 35297.36 31197.78 31595.75 22899.49 33793.44 33698.77 31598.52 325
sasdasda98.34 15998.26 16098.58 19598.46 31797.82 16798.96 7299.46 10899.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
ET-MVSNet_ETH3D94.30 33793.21 34797.58 28598.14 34094.47 30294.78 37093.24 39394.72 32689.56 40495.87 36978.57 39099.81 17896.91 19097.11 37898.46 327
canonicalmvs98.34 15998.26 16098.58 19598.46 31797.82 16798.96 7299.46 10899.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
tt080598.69 10698.62 10498.90 14999.75 3499.30 1799.15 5396.97 35098.86 10398.87 17797.62 32698.63 4698.96 38899.41 3698.29 33998.45 330
TAPA-MVS96.21 1196.63 28695.95 29698.65 18298.93 23398.09 13496.93 27999.28 18483.58 40198.13 25297.78 31596.13 20899.40 35493.52 33399.29 26198.45 330
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net98.34 15998.28 15698.51 20998.47 31597.59 18698.96 7299.48 9899.18 7097.40 30795.50 37698.66 4399.50 33498.18 11098.71 32098.44 332
BH-untuned96.83 27896.75 27197.08 31498.74 26993.33 33596.71 29198.26 31596.72 26398.44 23097.37 34095.20 24799.47 34391.89 35997.43 36798.44 332
WB-MVSnew95.73 31395.57 30796.23 34596.70 39590.70 37996.07 32693.86 38995.60 30497.04 32095.45 38296.00 21599.55 31891.04 37498.31 33898.43 334
pmmvs395.03 32794.40 33396.93 32197.70 36392.53 34995.08 36397.71 33288.57 39297.71 28298.08 29879.39 38599.82 16496.19 25099.11 28998.43 334
DP-MVS Recon97.33 24696.92 25898.57 19899.09 20597.99 14796.79 28599.35 14793.18 35497.71 28298.07 29995.00 25399.31 36793.97 32099.13 28598.42 336
testing9993.04 35791.98 36396.23 34597.53 37290.70 37996.35 30995.94 37096.87 25593.41 39593.43 40063.84 41099.59 30493.24 34097.19 37598.40 337
ETVMVS92.60 36191.08 37097.18 30997.70 36393.65 33296.54 29795.70 37396.51 27094.68 38192.39 40461.80 41199.50 33486.97 39197.41 36898.40 337
Fast-Effi-MVS+-dtu98.27 17098.09 17998.81 15798.43 32198.11 13197.61 22699.50 8998.64 11297.39 30997.52 33198.12 8799.95 2396.90 19598.71 32098.38 339
LF4IMVS97.90 20197.69 21498.52 20899.17 18997.66 18097.19 26799.47 10696.31 28097.85 27498.20 28896.71 18599.52 32994.62 29999.72 15098.38 339
testing1193.08 35692.02 36096.26 34397.56 36890.83 37796.32 31195.70 37396.47 27492.66 39893.73 39664.36 40999.59 30493.77 32897.57 36198.37 341
Fast-Effi-MVS+97.67 22397.38 23598.57 19898.71 27597.43 19597.23 26199.45 11294.82 32596.13 35596.51 35598.52 5699.91 5996.19 25098.83 31298.37 341
test0.0.03 194.51 33293.69 34196.99 31896.05 40393.61 33394.97 36693.49 39096.17 28397.57 29394.88 38982.30 37599.01 38793.60 33194.17 40198.37 341
UWE-MVS92.38 36491.76 36794.21 37597.16 38584.65 40295.42 35488.45 40695.96 29496.17 35495.84 37166.36 40499.71 24891.87 36098.64 32798.28 344
FE-MVS95.66 31594.95 32797.77 26798.53 31195.28 27799.40 1696.09 36793.11 35697.96 26599.26 10079.10 38799.77 21792.40 35698.71 32098.27 345
baseline293.73 34692.83 35296.42 33897.70 36391.28 36996.84 28489.77 40493.96 34692.44 39995.93 36779.14 38699.77 21792.94 34396.76 38398.21 346
thisisatest051594.12 34193.16 34896.97 32098.60 29992.90 34293.77 39290.61 40194.10 34296.91 32795.87 36974.99 39599.80 18594.52 30299.12 28898.20 347
EPMVS93.72 34793.27 34695.09 36996.04 40487.76 39198.13 15485.01 41094.69 32796.92 32598.64 24178.47 39299.31 36795.04 28996.46 38598.20 347
dp93.47 35093.59 34393.13 38796.64 39681.62 41197.66 21996.42 36392.80 36196.11 35698.64 24178.55 39199.59 30493.31 33892.18 40598.16 349
CNLPA97.17 26096.71 27398.55 20398.56 30798.05 14496.33 31098.93 25596.91 25397.06 31997.39 33894.38 27199.45 34791.66 36299.18 27998.14 350
dmvs_re95.98 30695.39 31597.74 27398.86 24997.45 19398.37 13595.69 37597.95 16396.56 34495.95 36690.70 31997.68 40288.32 38796.13 39098.11 351
HY-MVS95.94 1395.90 30895.35 31797.55 28997.95 34994.79 29098.81 8796.94 35392.28 36795.17 37598.57 25189.90 32599.75 23091.20 37297.33 37498.10 352
CostFormer93.97 34393.78 34094.51 37297.53 37285.83 39897.98 17895.96 36989.29 39094.99 37898.63 24378.63 38999.62 29394.54 30196.50 38498.09 353
FA-MVS(test-final)96.99 27396.82 26697.50 29498.70 27994.78 29199.34 2096.99 34995.07 31898.48 22799.33 8988.41 33899.65 28496.13 25698.92 30998.07 354
AdaColmapbinary97.14 26296.71 27398.46 21598.34 32897.80 17196.95 27698.93 25595.58 30596.92 32597.66 32295.87 22599.53 32590.97 37599.14 28398.04 355
KD-MVS_2432*160092.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32195.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
miper_refine_blended92.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32195.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
TESTMET0.1,192.19 36891.77 36693.46 38396.48 39982.80 40894.05 38891.52 39994.45 33494.00 39094.88 38966.65 40399.56 31595.78 27198.11 34998.02 356
testing22291.96 36990.37 37396.72 33397.47 37892.59 34796.11 32494.76 37996.83 25792.90 39792.87 40257.92 41299.55 31886.93 39297.52 36298.00 359
PCF-MVS92.86 1894.36 33493.00 35198.42 21998.70 27997.56 18793.16 39699.11 22879.59 40597.55 29497.43 33692.19 30799.73 24079.85 40599.45 23797.97 360
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 26496.68 27598.32 22798.32 32997.16 21398.86 8399.37 13889.48 38896.29 35399.15 12796.56 19099.90 6492.90 34499.20 27497.89 361
Gipumacopyleft99.03 5999.16 4698.64 18399.94 298.51 10199.32 2399.75 3199.58 2698.60 21199.62 3498.22 7699.51 33397.70 14499.73 14397.89 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 37290.30 37593.70 38197.72 35984.34 40690.24 40297.42 33790.20 38593.79 39293.09 40190.90 31898.89 39386.57 39472.76 40997.87 363
test-LLR93.90 34493.85 33894.04 37696.53 39784.62 40394.05 38892.39 39596.17 28394.12 38795.07 38382.30 37599.67 26895.87 26698.18 34397.82 364
test-mter92.33 36691.76 36794.04 37696.53 39784.62 40394.05 38892.39 39594.00 34594.12 38795.07 38365.63 40799.67 26895.87 26698.18 34397.82 364
tpm293.09 35592.58 35494.62 37197.56 36886.53 39597.66 21995.79 37286.15 39794.07 38998.23 28675.95 39399.53 32590.91 37796.86 38297.81 366
CR-MVSNet96.28 29895.95 29697.28 30597.71 36194.22 30698.11 15798.92 25892.31 36696.91 32799.37 7985.44 35699.81 17897.39 15897.36 37297.81 366
RPMNet97.02 26996.93 25697.30 30497.71 36194.22 30698.11 15799.30 17399.37 4596.91 32799.34 8786.72 34399.87 10097.53 15197.36 37297.81 366
tpmrst95.07 32695.46 31093.91 37897.11 38684.36 40597.62 22496.96 35194.98 32096.35 35298.80 21285.46 35599.59 30495.60 27896.23 38897.79 369
PAPM91.88 37190.34 37496.51 33598.06 34592.56 34892.44 39997.17 34486.35 39690.38 40396.01 36486.61 34499.21 37870.65 40995.43 39597.75 370
FPMVS93.44 35192.23 35697.08 31499.25 16697.86 16195.61 34597.16 34592.90 35993.76 39398.65 23875.94 39495.66 40679.30 40697.49 36397.73 371
MAR-MVS96.47 29395.70 30198.79 16297.92 35299.12 5798.28 14098.60 30192.16 36895.54 37096.17 36394.77 26399.52 32989.62 38398.23 34097.72 372
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 19297.86 20498.56 20298.69 28498.07 14097.51 24099.50 8998.10 15697.50 29995.51 37598.41 6299.88 8396.27 24699.24 26897.71 373
thres600view794.45 33393.83 33996.29 34199.06 21391.53 36297.99 17794.24 38698.34 13097.44 30595.01 38579.84 38199.67 26884.33 39798.23 34097.66 374
thres40094.14 34093.44 34496.24 34498.93 23391.44 36497.60 22794.29 38497.94 16497.10 31694.31 39479.67 38399.62 29383.05 39998.08 35197.66 374
IB-MVS91.63 1992.24 36790.90 37196.27 34297.22 38491.24 37194.36 38393.33 39292.37 36592.24 40094.58 39366.20 40699.89 7493.16 34194.63 39997.66 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 32895.25 31994.33 37396.39 40185.87 39698.08 16196.83 35695.46 30995.51 37298.69 22985.91 35199.53 32594.16 31396.23 38897.58 377
cascas94.79 33094.33 33696.15 35196.02 40592.36 35492.34 40099.26 19285.34 39995.08 37794.96 38892.96 29798.53 39794.41 31098.59 33197.56 378
PatchT96.65 28596.35 28897.54 29097.40 37995.32 27697.98 17896.64 35999.33 5096.89 33199.42 7384.32 36499.81 17897.69 14697.49 36397.48 379
TR-MVS95.55 31895.12 32396.86 32897.54 37093.94 31996.49 30196.53 36294.36 33797.03 32296.61 35494.26 27599.16 38186.91 39396.31 38797.47 380
dmvs_testset92.94 35892.21 35795.13 36798.59 30290.99 37497.65 22192.09 39796.95 25094.00 39093.55 39892.34 30696.97 40572.20 40892.52 40397.43 381
JIA-IIPM95.52 31995.03 32497.00 31796.85 39294.03 31596.93 27995.82 37199.20 6494.63 38399.71 1783.09 37199.60 30094.42 30794.64 39897.36 382
BH-w/o95.13 32594.89 32995.86 35298.20 33791.31 36795.65 34497.37 33893.64 34896.52 34695.70 37293.04 29699.02 38588.10 38895.82 39397.24 383
tpm cat193.29 35393.13 35093.75 38097.39 38084.74 40197.39 24897.65 33483.39 40294.16 38698.41 26882.86 37399.39 35691.56 36695.35 39697.14 384
xiu_mvs_v1_base_debu97.86 20798.17 17096.92 32298.98 22693.91 32196.45 30299.17 21697.85 17298.41 23397.14 34798.47 5799.92 5098.02 12199.05 29196.92 385
xiu_mvs_v1_base97.86 20798.17 17096.92 32298.98 22693.91 32196.45 30299.17 21697.85 17298.41 23397.14 34798.47 5799.92 5098.02 12199.05 29196.92 385
xiu_mvs_v1_base_debi97.86 20798.17 17096.92 32298.98 22693.91 32196.45 30299.17 21697.85 17298.41 23397.14 34798.47 5799.92 5098.02 12199.05 29196.92 385
PMVScopyleft91.26 2097.86 20797.94 19597.65 27999.71 4697.94 15698.52 11398.68 29598.99 9297.52 29799.35 8397.41 14198.18 40091.59 36599.67 17496.82 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 31295.60 30596.17 34897.53 37292.75 34698.07 16398.31 31491.22 37794.25 38596.68 35395.53 23699.03 38491.64 36497.18 37696.74 389
MVS-HIRNet94.32 33595.62 30490.42 38998.46 31775.36 41396.29 31389.13 40595.25 31595.38 37399.75 1192.88 29899.19 37994.07 31999.39 24496.72 390
OpenMVS_ROBcopyleft95.38 1495.84 31095.18 32297.81 26498.41 32597.15 21497.37 25098.62 30083.86 40098.65 20398.37 27394.29 27499.68 26588.41 38698.62 33096.60 391
thres100view90094.19 33893.67 34295.75 35699.06 21391.35 36698.03 16994.24 38698.33 13197.40 30794.98 38779.84 38199.62 29383.05 39998.08 35196.29 392
tfpn200view994.03 34293.44 34495.78 35598.93 23391.44 36497.60 22794.29 38497.94 16497.10 31694.31 39479.67 38399.62 29383.05 39998.08 35196.29 392
MVS93.19 35492.09 35896.50 33696.91 39094.03 31598.07 16398.06 32568.01 40794.56 38496.48 35795.96 22299.30 36983.84 39896.89 38196.17 394
gg-mvs-nofinetune92.37 36591.20 36995.85 35395.80 40692.38 35399.31 2781.84 41299.75 691.83 40199.74 1368.29 39999.02 38587.15 39097.12 37796.16 395
xiu_mvs_v2_base97.16 26197.49 22996.17 34898.54 30992.46 35095.45 35298.84 27597.25 22997.48 30196.49 35698.31 7099.90 6496.34 24298.68 32596.15 396
PS-MVSNAJ97.08 26597.39 23496.16 35098.56 30792.46 35095.24 35998.85 27497.25 22997.49 30095.99 36598.07 8899.90 6496.37 23998.67 32696.12 397
E-PMN94.17 33994.37 33493.58 38296.86 39185.71 39990.11 40497.07 34798.17 15097.82 27797.19 34484.62 36198.94 38989.77 38297.68 36096.09 398
EMVS93.83 34594.02 33793.23 38696.83 39384.96 40089.77 40596.32 36497.92 16697.43 30696.36 36286.17 34898.93 39087.68 38997.73 35995.81 399
MVEpermissive83.40 2292.50 36291.92 36494.25 37498.83 25591.64 36192.71 39783.52 41195.92 29686.46 40995.46 37995.20 24795.40 40780.51 40498.64 32795.73 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 34793.14 34995.46 36498.66 29391.29 36896.61 29694.63 38197.39 21596.83 33493.71 39779.88 38099.56 31582.40 40298.13 34895.54 401
API-MVS97.04 26896.91 26097.42 30097.88 35498.23 12398.18 14998.50 30697.57 19297.39 30996.75 35296.77 17999.15 38290.16 38199.02 29894.88 402
GG-mvs-BLEND94.76 37094.54 40892.13 35899.31 2780.47 41388.73 40791.01 40767.59 40298.16 40182.30 40394.53 40093.98 403
DeepMVS_CXcopyleft93.44 38498.24 33494.21 30894.34 38364.28 40891.34 40294.87 39189.45 32992.77 40977.54 40793.14 40293.35 404
tmp_tt78.77 37578.73 37878.90 39158.45 41674.76 41594.20 38578.26 41439.16 40986.71 40892.82 40380.50 37975.19 41186.16 39592.29 40486.74 405
dongtai76.24 37675.95 37977.12 39292.39 41067.91 41690.16 40359.44 41782.04 40389.42 40594.67 39249.68 41581.74 41048.06 41077.66 40881.72 406
kuosan69.30 37768.95 38070.34 39387.68 41465.00 41791.11 40159.90 41669.02 40674.46 41188.89 40848.58 41668.03 41228.61 41172.33 41077.99 407
wuyk23d96.06 30297.62 22291.38 38898.65 29698.57 9598.85 8496.95 35296.86 25699.90 1299.16 12399.18 1798.40 39889.23 38599.77 12577.18 408
test12317.04 38020.11 3837.82 39410.25 4184.91 41994.80 3694.47 4194.93 41210.00 41424.28 4119.69 4173.64 41310.14 41212.43 41214.92 409
testmvs17.12 37920.53 3826.87 39512.05 4174.20 42093.62 3946.73 4184.62 41310.41 41324.33 4108.28 4183.56 4149.69 41315.07 41112.86 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.66 37832.88 3810.00 3960.00 4190.00 4210.00 40799.10 2290.00 4140.00 41597.58 32799.21 160.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.17 38110.90 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41498.07 880.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.12 38210.83 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.48 3330.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.90 37591.37 369
FOURS199.73 3799.67 299.43 1199.54 7899.43 4099.26 111
test_one_060199.39 13999.20 3499.31 16598.49 12598.66 20299.02 15397.64 120
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.01 22198.84 7599.07 23394.10 34298.05 26098.12 29396.36 20199.86 10792.70 35299.19 277
test_241102_ONE99.49 11599.17 3999.31 16597.98 16099.66 4398.90 18998.36 6599.48 340
9.1497.78 20799.07 20997.53 23699.32 16095.53 30798.54 22298.70 22897.58 12599.76 22394.32 31299.46 235
save fliter99.11 20097.97 15196.53 29999.02 24598.24 140
test072699.50 10899.21 2898.17 15299.35 14797.97 16199.26 11199.06 14197.61 123
test_part299.36 14799.10 6099.05 140
sam_mvs84.29 366
MTGPAbinary99.20 204
test_post197.59 22920.48 41383.07 37299.66 27994.16 313
test_post21.25 41283.86 36899.70 252
patchmatchnet-post98.77 21784.37 36399.85 119
MTMP97.93 18291.91 398
gm-plane-assit94.83 40781.97 41088.07 39494.99 38699.60 30091.76 361
TEST998.71 27598.08 13895.96 33199.03 24291.40 37595.85 36197.53 32996.52 19299.76 223
test_898.67 28898.01 14695.91 33699.02 24591.64 37095.79 36397.50 33296.47 19499.76 223
agg_prior98.68 28797.99 14799.01 24895.59 36499.77 217
test_prior497.97 15195.86 337
test_prior295.74 34296.48 27396.11 35697.63 32595.92 22494.16 31399.20 274
旧先验295.76 34188.56 39397.52 29799.66 27994.48 303
新几何295.93 334
原ACMM295.53 348
testdata299.79 20092.80 349
segment_acmp97.02 164
testdata195.44 35396.32 279
plane_prior799.19 18197.87 160
plane_prior698.99 22597.70 17994.90 254
plane_prior497.98 304
plane_prior397.78 17297.41 21397.79 278
plane_prior297.77 20498.20 147
plane_prior199.05 216
plane_prior97.65 18197.07 27196.72 26399.36 248
n20.00 420
nn0.00 420
door-mid99.57 62
test1198.87 266
door99.41 126
HQP5-MVS96.79 229
HQP-NCC98.67 28896.29 31396.05 28995.55 367
ACMP_Plane98.67 28896.29 31396.05 28995.55 367
BP-MVS92.82 347
HQP3-MVS99.04 24099.26 266
HQP2-MVS93.84 282
NP-MVS98.84 25397.39 19796.84 350
MDTV_nov1_ep1395.22 32097.06 38983.20 40797.74 20996.16 36594.37 33696.99 32398.83 20683.95 36799.53 32593.90 32297.95 357
ACMMP++_ref99.77 125
ACMMP++99.68 168
Test By Simon96.52 192