This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6299.70 34100.00 199.73 57100.00 199.89 3199.79 899.88 17299.98 1100.00 199.98 1
test_fmvs399.83 1299.93 299.53 15899.96 598.62 25699.67 48100.00 199.95 4100.00 199.95 1399.85 399.99 699.98 199.99 1399.98 1
test_f99.75 1899.88 699.37 20499.96 598.21 27999.51 86100.00 199.94 8100.00 199.93 1799.58 2499.94 6499.97 499.99 1399.97 3
test_fmvs299.72 2299.85 1199.34 21199.91 2698.08 29299.48 92100.00 199.90 1399.99 799.91 2499.50 3199.98 1099.98 199.99 1399.96 4
test_vis1_n99.68 3199.79 1799.36 20899.94 1698.18 28299.52 83100.00 199.86 28100.00 199.88 3698.99 8799.96 4199.97 499.96 5699.95 5
tmp_tt95.75 33695.42 33496.76 34589.90 38194.42 35698.86 23097.87 35478.01 37299.30 24599.69 13797.70 22595.89 37699.29 8398.14 35599.95 5
mvsany_test399.85 899.88 699.75 6099.95 1399.37 16399.53 8299.98 899.77 5599.99 799.95 1399.85 399.94 6499.95 799.98 3099.94 7
PS-MVSNAJss99.84 1099.82 1399.89 899.96 599.77 5099.68 4499.85 3999.95 499.98 1099.92 2199.28 5199.98 1099.75 23100.00 199.94 7
test_fmvs1_n99.68 3199.81 1499.28 22699.95 1397.93 30199.49 91100.00 199.82 4199.99 799.89 3199.21 6099.98 1099.97 499.98 3099.93 9
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 2999.88 3099.92 1199.98 1099.93 1799.94 199.98 1099.77 22100.00 199.92 10
UA-Net99.78 1699.76 2199.86 1899.72 12499.71 7699.91 399.95 1799.96 299.71 11799.91 2499.15 6699.97 2299.50 50100.00 199.90 11
RRT_MVS99.67 3799.59 5099.91 299.94 1699.88 1299.78 1199.27 28699.87 2599.91 3199.87 4098.04 20399.96 4199.68 2799.99 1399.90 11
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3499.86 3599.89 1999.98 1099.90 2799.94 199.98 1099.75 23100.00 199.90 11
EU-MVSNet99.39 9999.62 4198.72 29599.88 3896.44 33699.56 7999.85 3999.90 1399.90 3799.85 4998.09 19999.83 25099.58 3799.95 6799.90 11
test_djsdf99.84 1099.81 1499.91 299.94 1699.84 2499.77 1499.80 6399.73 5799.97 1399.92 2199.77 1099.98 1099.43 56100.00 199.90 11
CVMVSNet98.61 23598.88 19997.80 32699.58 17593.60 36199.26 14399.64 14699.66 8199.72 11299.67 15393.26 31099.93 8199.30 8099.81 17299.87 16
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1099.99 1100.00 199.98 1099.78 9100.00 199.92 9100.00 199.87 16
FC-MVSNet-test99.70 2599.65 3599.86 1899.88 3899.86 1899.72 2999.78 7499.90 1399.82 6699.83 5598.45 16299.87 18699.51 4899.97 4299.86 18
PS-CasMVS99.66 3999.58 5499.89 899.80 7299.85 1999.66 5299.73 9699.62 8899.84 6199.71 12498.62 13499.96 4199.30 8099.96 5699.86 18
anonymousdsp99.80 1499.77 1999.90 599.96 599.88 1299.73 2699.85 3999.70 6899.92 2899.93 1799.45 3299.97 2299.36 68100.00 199.85 20
UniMVSNet_ETH3D99.85 899.83 1299.90 599.89 3399.91 499.89 499.71 10899.93 999.95 1999.89 3199.71 1399.96 4199.51 4899.97 4299.84 21
CP-MVSNet99.54 6499.43 8299.87 1599.76 10199.82 3599.57 7799.61 15899.54 10199.80 7699.64 16497.79 22299.95 5199.21 9099.94 7899.84 21
Test_1112_low_res98.95 20398.73 21399.63 12199.68 14799.15 20598.09 30499.80 6397.14 32399.46 20499.40 26096.11 28299.89 15899.01 11899.84 14699.84 21
ANet_high99.88 599.87 899.91 299.99 199.91 499.65 58100.00 199.90 13100.00 199.97 1199.61 2199.97 2299.75 23100.00 199.84 21
patch_mono-299.51 6799.46 7599.64 11499.70 13599.11 20899.04 20499.87 3299.71 6399.47 20099.79 8098.24 18699.98 1099.38 6399.96 5699.83 25
nrg03099.70 2599.66 3399.82 2799.76 10199.84 2499.61 6699.70 11499.93 999.78 8599.68 14899.10 7299.78 28699.45 5499.96 5699.83 25
FIs99.65 4499.58 5499.84 2399.84 4999.85 1999.66 5299.75 8799.86 2899.74 10799.79 8098.27 18499.85 22199.37 6699.93 8699.83 25
v7n99.82 1399.80 1699.88 1299.96 599.84 2499.82 899.82 5299.84 3699.94 2199.91 2499.13 7199.96 4199.83 1799.99 1399.83 25
PEN-MVS99.66 3999.59 5099.89 899.83 5399.87 1599.66 5299.73 9699.70 6899.84 6199.73 11098.56 14499.96 4199.29 8399.94 7899.83 25
WR-MVS_H99.61 5399.53 6799.87 1599.80 7299.83 2999.67 4899.75 8799.58 10099.85 5899.69 13798.18 19599.94 6499.28 8599.95 6799.83 25
Anonymous2023121199.62 5199.57 5799.76 5199.61 16499.60 11399.81 999.73 9699.82 4199.90 3799.90 2797.97 21099.86 20499.42 6199.96 5699.80 31
APDe-MVS99.48 7299.36 9499.85 2099.55 19799.81 3899.50 8799.69 12098.99 18199.75 9999.71 12498.79 11099.93 8198.46 16199.85 14199.80 31
DTE-MVSNet99.68 3199.61 4599.88 1299.80 7299.87 1599.67 4899.71 10899.72 6199.84 6199.78 8798.67 12899.97 2299.30 8099.95 6799.80 31
XXY-MVS99.71 2499.67 3299.81 3099.89 3399.72 7499.59 7299.82 5299.39 12799.82 6699.84 5499.38 3999.91 12399.38 6399.93 8699.80 31
1112_ss99.05 18198.84 20499.67 9599.66 15399.29 17998.52 27199.82 5297.65 29799.43 21099.16 30996.42 27299.91 12399.07 11499.84 14699.80 31
LTVRE_ROB99.19 199.88 599.87 899.88 1299.91 2699.90 799.96 199.92 1899.90 1399.97 1399.87 4099.81 799.95 5199.54 4399.99 1399.80 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs199.48 7299.65 3598.97 26699.54 19897.16 32299.11 19099.98 899.78 5199.96 1599.81 6698.72 12299.97 2299.95 799.97 4299.79 37
bld_raw_dy_0_6499.70 2599.65 3599.85 2099.95 1399.77 5099.66 5299.71 10899.95 499.91 3199.77 9498.35 175100.00 199.54 4399.99 1399.79 37
PMMVS299.48 7299.45 7799.57 14799.76 10198.99 22098.09 30499.90 2498.95 18699.78 8599.58 20599.57 2599.93 8199.48 5199.95 6799.79 37
MSC_two_6792asdad99.74 6599.03 32799.53 12799.23 29699.92 10197.77 21799.69 22299.78 40
No_MVS99.74 6599.03 32799.53 12799.23 29699.92 10197.77 21799.69 22299.78 40
dcpmvs_299.61 5399.64 3999.53 15899.79 8298.82 23799.58 7499.97 1099.95 499.96 1599.76 9898.44 16399.99 699.34 7199.96 5699.78 40
CHOSEN 1792x268899.39 9999.30 10799.65 10799.88 3899.25 18898.78 24799.88 3098.66 21999.96 1599.79 8097.45 23999.93 8199.34 7199.99 1399.78 40
test_vis1_rt99.45 8299.46 7599.41 19199.71 12798.63 25598.99 21799.96 1499.03 17999.95 1999.12 31598.75 11799.84 23599.82 1999.82 16399.77 44
IU-MVS99.69 13999.77 5099.22 29997.50 30599.69 12397.75 22199.70 21899.77 44
test_0728_THIRD99.18 15599.62 15199.61 19098.58 14199.91 12397.72 22399.80 17799.77 44
test_0728_SECOND99.83 2599.70 13599.79 4499.14 17899.61 15899.92 10197.88 20699.72 21399.77 44
MSP-MVS99.04 18498.79 21199.81 3099.78 8999.73 7099.35 11799.57 18898.54 23399.54 18298.99 33296.81 26399.93 8196.97 27599.53 27199.77 44
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.74 2199.70 2499.85 2099.93 2399.83 2999.76 1899.81 6199.96 299.91 3199.81 6698.60 13899.94 6499.58 3799.98 3099.77 44
DPE-MVScopyleft99.14 16598.92 19499.82 2799.57 18599.77 5098.74 25099.60 17098.55 23099.76 9299.69 13798.23 19099.92 10196.39 30799.75 19599.76 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Baseline_NR-MVSNet99.49 7099.37 9199.82 2799.91 2699.84 2498.83 23599.86 3599.68 7399.65 13799.88 3697.67 22999.87 18699.03 11699.86 13799.76 50
OurMVSNet-221017-099.75 1899.71 2399.84 2399.96 599.83 2999.83 699.85 3999.80 4699.93 2499.93 1798.54 14799.93 8199.59 3499.98 3099.76 50
test_241102_TWO99.54 20599.13 16899.76 9299.63 17498.32 18199.92 10197.85 21299.69 22299.75 53
DP-MVS99.48 7299.39 8699.74 6599.57 18599.62 10599.29 13699.61 15899.87 2599.74 10799.76 9898.69 12499.87 18698.20 17999.80 17799.75 53
tt080599.63 4599.57 5799.81 3099.87 4299.88 1299.58 7498.70 32899.72 6199.91 3199.60 19899.43 3399.81 27499.81 2099.53 27199.73 55
v1099.69 2899.69 2899.66 10299.81 6799.39 15899.66 5299.75 8799.60 9799.92 2899.87 4098.75 11799.86 20499.90 1099.99 1399.73 55
EI-MVSNet-UG-set99.48 7299.50 6999.42 18499.57 18598.65 25399.24 15099.46 23899.68 7399.80 7699.66 15798.99 8799.89 15899.19 9499.90 10099.72 57
Vis-MVSNetpermissive99.75 1899.74 2299.79 3899.88 3899.66 9399.69 4199.92 1899.67 7799.77 9099.75 10399.61 2199.98 1099.35 7099.98 3099.72 57
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 20698.64 22099.73 7499.85 4899.47 13398.07 30799.83 4798.64 22199.89 4199.60 19892.57 317100.00 199.33 7499.97 4299.72 57
EI-MVSNet-Vis-set99.47 7999.49 7099.42 18499.57 18598.66 25099.24 15099.46 23899.67 7799.79 8199.65 16298.97 9199.89 15899.15 10399.89 10999.71 60
v899.68 3199.69 2899.65 10799.80 7299.40 15699.66 5299.76 8299.64 8599.93 2499.85 4998.66 13099.84 23599.88 1499.99 1399.71 60
TransMVSNet (Re)99.78 1699.77 1999.81 3099.91 2699.85 1999.75 2199.86 3599.70 6899.91 3199.89 3199.60 2399.87 18699.59 3499.74 20299.71 60
test111197.74 29198.16 26796.49 35099.60 16689.86 37999.71 3391.21 37699.89 1999.88 4799.87 4093.73 30699.90 14199.56 4099.99 1399.70 63
VPA-MVSNet99.66 3999.62 4199.79 3899.68 14799.75 6299.62 6199.69 12099.85 3399.80 7699.81 6698.81 10599.91 12399.47 5299.88 11899.70 63
WR-MVS99.11 17298.93 19099.66 10299.30 28299.42 15198.42 28099.37 26499.04 17899.57 16899.20 30796.89 26199.86 20498.66 15399.87 12999.70 63
ACMH98.42 699.59 5599.54 6399.72 8099.86 4599.62 10599.56 7999.79 6998.77 21199.80 7699.85 4999.64 1799.85 22198.70 14999.89 10999.70 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 799.86 1099.83 2599.94 1699.90 799.83 699.91 2199.85 3399.94 2199.95 1399.73 1299.90 14199.65 2999.97 4299.69 67
HPM-MVS_fast99.43 8699.30 10799.80 3499.83 5399.81 3899.52 8399.70 11498.35 25599.51 19499.50 23599.31 4799.88 17298.18 18399.84 14699.69 67
LPG-MVS_test99.22 14299.05 16399.74 6599.82 6099.63 10399.16 17499.73 9697.56 29999.64 13899.69 13799.37 4199.89 15896.66 29399.87 12999.69 67
LGP-MVS_train99.74 6599.82 6099.63 10399.73 9697.56 29999.64 13899.69 13799.37 4199.89 15896.66 29399.87 12999.69 67
SteuartSystems-ACMMP99.30 12199.14 13399.76 5199.87 4299.66 9399.18 16599.60 17098.55 23099.57 16899.67 15399.03 8499.94 6497.01 27399.80 17799.69 67
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 24798.39 24598.94 26999.15 30897.39 31798.18 29399.21 30298.89 19799.23 25399.63 17497.37 24499.74 30294.22 35299.61 25099.69 67
ACMMP_NAP99.28 12399.11 14299.79 3899.75 11299.81 3898.95 22399.53 21498.27 26499.53 18799.73 11098.75 11799.87 18697.70 22899.83 15499.68 73
HFP-MVS99.25 13099.08 15399.76 5199.73 12199.70 8399.31 12799.59 17698.36 25099.36 22799.37 26898.80 10999.91 12397.43 24999.75 19599.68 73
EI-MVSNet99.38 10199.44 8099.21 23899.58 17598.09 28999.26 14399.46 23899.62 8899.75 9999.67 15398.54 14799.85 22199.15 10399.92 9099.68 73
TranMVSNet+NR-MVSNet99.54 6499.47 7199.76 5199.58 17599.64 9999.30 13099.63 14899.61 9199.71 11799.56 21798.76 11599.96 4199.14 10999.92 9099.68 73
PVSNet_Blended_VisFu99.40 9599.38 8899.44 17899.90 3198.66 25098.94 22599.91 2197.97 28199.79 8199.73 11099.05 8299.97 2299.15 10399.99 1399.68 73
IterMVS-LS99.41 9399.47 7199.25 23499.81 6798.09 28998.85 23299.76 8299.62 8899.83 6599.64 16498.54 14799.97 2299.15 10399.99 1399.68 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 16598.92 19499.80 3499.83 5399.83 2998.61 25699.63 14896.84 33099.44 20699.58 20598.81 10599.91 12397.70 22899.82 16399.67 79
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 13499.05 16399.77 4499.76 10199.70 8399.31 12799.59 17698.41 24499.32 23699.36 27298.73 12199.93 8197.29 25699.74 20299.67 79
XVS99.27 12799.11 14299.75 6099.71 12799.71 7699.37 11399.61 15899.29 13698.76 30999.47 24698.47 15899.88 17297.62 23699.73 20799.67 79
v124099.56 5999.58 5499.51 16299.80 7299.00 21999.00 21299.65 14099.15 16699.90 3799.75 10399.09 7499.88 17299.90 1099.96 5699.67 79
X-MVStestdata96.09 33094.87 33999.75 6099.71 12799.71 7699.37 11399.61 15899.29 13698.76 30961.30 38398.47 15899.88 17297.62 23699.73 20799.67 79
VPNet99.46 8099.37 9199.71 8599.82 6099.59 11599.48 9299.70 11499.81 4399.69 12399.58 20597.66 23399.86 20499.17 9999.44 28499.67 79
ACMMPR99.23 13499.06 15999.76 5199.74 11899.69 8699.31 12799.59 17698.36 25099.35 22899.38 26698.61 13699.93 8197.43 24999.75 19599.67 79
SixPastTwentyTwo99.42 8999.30 10799.76 5199.92 2599.67 9199.70 3499.14 30899.65 8399.89 4199.90 2796.20 28099.94 6499.42 6199.92 9099.67 79
HPM-MVScopyleft99.25 13099.07 15799.78 4199.81 6799.75 6299.61 6699.67 12797.72 29499.35 22899.25 29699.23 5899.92 10197.21 26799.82 16399.67 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 6299.54 6399.58 14199.78 8999.20 20099.11 19099.62 15199.18 15599.89 4199.72 11798.66 13099.87 18699.88 1499.97 4299.66 88
v192192099.56 5999.57 5799.55 15399.75 11299.11 20899.05 20299.61 15899.15 16699.88 4799.71 12499.08 7799.87 18699.90 1099.97 4299.66 88
v119299.57 5699.57 5799.57 14799.77 9799.22 19599.04 20499.60 17099.18 15599.87 5599.72 11799.08 7799.85 22199.89 1399.98 3099.66 88
PGM-MVS99.20 14999.01 17499.77 4499.75 11299.71 7699.16 17499.72 10597.99 27999.42 21299.60 19898.81 10599.93 8196.91 27899.74 20299.66 88
mPP-MVS99.19 15299.00 17799.76 5199.76 10199.68 8999.38 10999.54 20598.34 25999.01 28199.50 23598.53 15199.93 8197.18 26899.78 18799.66 88
CP-MVS99.23 13499.05 16399.75 6099.66 15399.66 9399.38 10999.62 15198.38 24899.06 27999.27 29198.79 11099.94 6497.51 24599.82 16399.66 88
EG-PatchMatch MVS99.57 5699.56 6299.62 13099.77 9799.33 17399.26 14399.76 8299.32 13599.80 7699.78 8799.29 4999.87 18699.15 10399.91 9999.66 88
UGNet99.38 10199.34 9699.49 16598.90 33798.90 23399.70 3499.35 26899.86 2898.57 32399.81 6698.50 15799.93 8199.38 6399.98 3099.66 88
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250694.73 34094.59 34295.15 35699.59 17085.90 38199.75 2174.01 38299.89 1999.71 11799.86 4779.00 38099.90 14199.52 4799.99 1399.65 96
ECVR-MVScopyleft97.73 29298.04 27296.78 34499.59 17090.81 37599.72 2990.43 37899.89 1999.86 5699.86 4793.60 30899.89 15899.46 5399.99 1399.65 96
h-mvs3398.61 23598.34 25199.44 17899.60 16698.67 24799.27 14199.44 24399.68 7399.32 23699.49 23992.50 320100.00 199.24 8796.51 36999.65 96
TSAR-MVS + MP.99.34 11499.24 12299.63 12199.82 6099.37 16399.26 14399.35 26898.77 21199.57 16899.70 13199.27 5499.88 17297.71 22599.75 19599.65 96
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA99.35 10999.20 12599.80 3499.81 6799.81 3899.33 12099.53 21499.27 14099.42 21299.63 17498.21 19199.95 5197.83 21699.79 18299.65 96
MCST-MVS99.02 18798.81 20899.65 10799.58 17599.49 13198.58 26099.07 31198.40 24699.04 28099.25 29698.51 15699.80 28097.31 25599.51 27599.65 96
UniMVSNet_NR-MVSNet99.37 10499.25 12099.72 8099.47 23399.56 12298.97 22199.61 15899.43 12299.67 13199.28 28997.85 21899.95 5199.17 9999.81 17299.65 96
casdiffmvs_mvgpermissive99.68 3199.68 3199.69 9099.81 6799.59 11599.29 13699.90 2499.71 6399.79 8199.73 11099.54 2899.84 23599.36 6899.96 5699.65 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS99.22 14299.04 16899.77 4499.76 10199.73 7099.28 13899.56 19398.19 26999.14 26899.29 28898.84 10499.92 10197.53 24499.80 17799.64 104
v114499.54 6499.53 6799.59 13899.79 8299.28 18199.10 19299.61 15899.20 15399.84 6199.73 11098.67 12899.84 23599.86 1699.98 3099.64 104
v2v48299.50 6899.47 7199.58 14199.78 8999.25 18899.14 17899.58 18699.25 14499.81 7399.62 18198.24 18699.84 23599.83 1799.97 4299.64 104
K. test v398.87 21498.60 22399.69 9099.93 2399.46 13799.74 2394.97 36999.78 5199.88 4799.88 3693.66 30799.97 2299.61 3299.95 6799.64 104
DeepC-MVS98.90 499.62 5199.61 4599.67 9599.72 12499.44 14499.24 15099.71 10899.27 14099.93 2499.90 2799.70 1599.93 8198.99 11999.99 1399.64 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 8499.45 7799.40 19399.37 25798.64 25497.90 32699.59 17699.27 14099.92 2899.82 6299.74 1199.93 8199.55 4299.87 12999.63 109
SMA-MVScopyleft99.19 15299.00 17799.73 7499.46 23799.73 7099.13 18499.52 21997.40 31099.57 16899.64 16498.93 9499.83 25097.61 23899.79 18299.63 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 19399.16 12998.51 30299.75 11295.90 34498.07 30799.84 4599.84 3699.89 4199.73 11096.01 28499.99 699.33 74100.00 199.63 109
pm-mvs199.79 1599.79 1799.78 4199.91 2699.83 2999.76 1899.87 3299.73 5799.89 4199.87 4099.63 1899.87 18699.54 4399.92 9099.63 109
MP-MVScopyleft99.06 17898.83 20699.76 5199.76 10199.71 7699.32 12299.50 22798.35 25598.97 28399.48 24298.37 17399.92 10195.95 32699.75 19599.63 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 11799.21 12499.71 8599.43 24499.56 12298.83 23599.53 21499.38 12899.67 13199.36 27297.67 22999.95 5199.17 9999.81 17299.63 109
NR-MVSNet99.40 9599.31 10299.68 9299.43 24499.55 12599.73 2699.50 22799.46 11499.88 4799.36 27297.54 23699.87 18698.97 12399.87 12999.63 109
IterMVS98.97 19799.16 12998.42 30699.74 11895.64 34798.06 30999.83 4799.83 3999.85 5899.74 10696.10 28399.99 699.27 86100.00 199.63 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 16099.00 17799.66 10299.80 7299.43 14899.70 3499.24 29599.48 10799.56 17599.77 9494.89 29299.93 8198.72 14899.89 10999.63 109
ACMMPcopyleft99.25 13099.08 15399.74 6599.79 8299.68 8999.50 8799.65 14098.07 27599.52 18999.69 13798.57 14299.92 10197.18 26899.79 18299.63 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 13499.12 13999.56 15099.28 28799.22 19598.99 21799.40 25699.08 17399.58 16599.64 16498.90 10099.83 25097.44 24899.75 19599.63 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.38 10199.25 12099.77 4499.03 32799.77 5099.74 2399.61 15899.18 15599.76 9299.61 19099.00 8599.92 10197.72 22399.60 25399.62 120
PC_three_145297.56 29999.68 12699.41 25699.09 7497.09 37596.66 29399.60 25399.62 120
GeoE99.69 2899.66 3399.78 4199.76 10199.76 5899.60 7199.82 5299.46 11499.75 9999.56 21799.63 1899.95 5199.43 5699.88 11899.62 120
test_method91.72 34192.32 34489.91 35893.49 38070.18 38290.28 37199.56 19361.71 37595.39 37299.52 23093.90 30199.94 6498.76 14498.27 35099.62 120
GST-MVS99.16 16198.96 18899.75 6099.73 12199.73 7099.20 16099.55 19998.22 26699.32 23699.35 27798.65 13299.91 12396.86 28199.74 20299.62 120
new-patchmatchnet99.35 10999.57 5798.71 29799.82 6096.62 33498.55 26699.75 8799.50 10599.88 4799.87 4099.31 4799.88 17299.43 56100.00 199.62 120
CPTT-MVS98.74 22698.44 24099.64 11499.61 16499.38 16099.18 16599.55 19996.49 33499.27 24799.37 26897.11 25699.92 10195.74 33299.67 23399.62 120
MIMVSNet199.66 3999.62 4199.80 3499.94 1699.87 1599.69 4199.77 7799.78 5199.93 2499.89 3197.94 21199.92 10199.65 2999.98 3099.62 120
DeepPCF-MVS98.42 699.18 15699.02 17199.67 9599.22 29699.75 6297.25 35499.47 23598.72 21699.66 13599.70 13199.29 4999.63 34798.07 19199.81 17299.62 120
3Dnovator+98.92 399.35 10999.24 12299.67 9599.35 26299.47 13399.62 6199.50 22799.44 11799.12 27199.78 8798.77 11499.94 6497.87 20999.72 21399.62 120
DVP-MVScopyleft99.32 11999.17 12899.77 4499.69 13999.80 4299.14 17899.31 27799.16 16299.62 15199.61 19098.35 17599.91 12397.88 20699.72 21399.61 130
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 21498.59 22599.71 8599.50 21799.62 10599.01 21099.57 18896.80 33299.54 18299.63 17498.29 18299.91 12395.24 34199.71 21699.61 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 21898.57 22999.58 14199.21 29899.31 17698.61 25699.25 29298.65 22098.43 32999.26 29497.86 21699.81 27496.55 29899.27 30799.61 130
TAMVS99.49 7099.45 7799.63 12199.48 22799.42 15199.45 9899.57 18899.66 8199.78 8599.83 5597.85 21899.86 20499.44 5599.96 5699.61 130
HPM-MVS++copyleft98.96 20098.70 21899.74 6599.52 20999.71 7698.86 23099.19 30398.47 24098.59 32199.06 32298.08 20199.91 12396.94 27699.60 25399.60 134
V4299.56 5999.54 6399.63 12199.79 8299.46 13799.39 10799.59 17699.24 14699.86 5699.70 13198.55 14599.82 25999.79 2199.95 6799.60 134
HQP_MVS98.90 20898.68 21999.55 15399.58 17599.24 19298.80 24399.54 20598.94 18799.14 26899.25 29697.24 24899.82 25995.84 32999.78 18799.60 134
plane_prior599.54 20599.82 25995.84 32999.78 18799.60 134
TDRefinement99.72 2299.70 2499.77 4499.90 3199.85 1999.86 599.92 1899.69 7199.78 8599.92 2199.37 4199.88 17298.93 13199.95 6799.60 134
ACMH+98.40 899.50 6899.43 8299.71 8599.86 4599.76 5899.32 12299.77 7799.53 10399.77 9099.76 9899.26 5599.78 28697.77 21799.88 11899.60 134
ACMM98.09 1199.46 8099.38 8899.72 8099.80 7299.69 8699.13 18499.65 14098.99 18199.64 13899.72 11799.39 3599.86 20498.23 17699.81 17299.60 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 19798.82 20799.42 18499.71 12798.81 23899.62 6198.68 32999.81 4399.38 22599.80 7094.25 29999.85 22198.79 14099.32 29999.59 141
casdiffmvspermissive99.63 4599.61 4599.67 9599.79 8299.59 11599.13 18499.85 3999.79 4999.76 9299.72 11799.33 4699.82 25999.21 9099.94 7899.59 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 10499.26 11899.68 9299.51 21199.58 11998.98 22099.60 17099.43 12299.70 12099.36 27297.70 22599.88 17299.20 9399.87 12999.59 141
DSMNet-mixed99.48 7299.65 3598.95 26899.71 12797.27 31999.50 8799.82 5299.59 9999.41 21899.85 4999.62 20100.00 199.53 4699.89 10999.59 141
3Dnovator99.15 299.43 8699.36 9499.65 10799.39 25299.42 15199.70 3499.56 19399.23 14899.35 22899.80 7099.17 6499.95 5198.21 17899.84 14699.59 141
SED-MVS99.40 9599.28 11499.77 4499.69 13999.82 3599.20 16099.54 20599.13 16899.82 6699.63 17498.91 9799.92 10197.85 21299.70 21899.58 146
OPU-MVS99.29 22499.12 31399.44 14499.20 16099.40 26099.00 8598.84 37296.54 29999.60 25399.58 146
EPNet98.13 27797.77 29299.18 24394.57 37997.99 29499.24 15097.96 35199.74 5697.29 36199.62 18193.13 31299.97 2298.59 15599.83 15499.58 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 18598.85 20299.55 15399.80 7299.25 18899.73 2699.15 30799.37 12999.61 15799.71 12494.73 29599.81 27497.70 22899.88 11899.58 146
ACMP97.51 1499.05 18198.84 20499.67 9599.78 8999.55 12598.88 22899.66 13197.11 32599.47 20099.60 19899.07 7999.89 15896.18 31699.85 14199.58 146
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS99.19 15299.00 17799.74 6599.51 21199.72 7499.18 16599.60 17098.85 20099.47 20099.58 20598.38 17299.92 10196.92 27799.54 26999.57 151
lessismore_v099.64 11499.86 4599.38 16090.66 37799.89 4199.83 5594.56 29799.97 2299.56 4099.92 9099.57 151
pmmvs599.19 15299.11 14299.42 18499.76 10198.88 23498.55 26699.73 9698.82 20499.72 11299.62 18196.56 26699.82 25999.32 7699.95 6799.56 153
APD-MVS_3200maxsize99.31 12099.16 12999.74 6599.53 20499.75 6299.27 14199.61 15899.19 15499.57 16899.64 16498.76 11599.90 14197.29 25699.62 24399.56 153
CDPH-MVS98.56 24398.20 26299.61 13399.50 21799.46 13798.32 28599.41 24995.22 35199.21 25899.10 31998.34 17899.82 25995.09 34499.66 23699.56 153
Anonymous2024052199.44 8499.42 8499.49 16599.89 3398.96 22599.62 6199.76 8299.85 3399.82 6699.88 3696.39 27599.97 2299.59 3499.98 3099.55 156
our_test_398.85 21699.09 15198.13 31899.66 15394.90 35497.72 33299.58 18699.07 17599.64 13899.62 18198.19 19399.93 8198.41 16399.95 6799.55 156
YYNet198.95 20398.99 18298.84 28599.64 15797.14 32498.22 29299.32 27398.92 19299.59 16399.66 15797.40 24199.83 25098.27 17399.90 10099.55 156
MDA-MVSNet_test_wron98.95 20398.99 18298.85 28399.64 15797.16 32298.23 29199.33 27198.93 19099.56 17599.66 15797.39 24399.83 25098.29 17199.88 11899.55 156
MVSFormer99.41 9399.44 8099.31 22199.57 18598.40 26899.77 1499.80 6399.73 5799.63 14299.30 28598.02 20599.98 1099.43 5699.69 22299.55 156
jason99.16 16199.11 14299.32 21899.75 11298.44 26598.26 28999.39 25998.70 21799.74 10799.30 28598.54 14799.97 2298.48 16099.82 16399.55 156
jason: jason.
CDS-MVSNet99.22 14299.13 13599.50 16499.35 26299.11 20898.96 22299.54 20599.46 11499.61 15799.70 13196.31 27799.83 25099.34 7199.88 11899.55 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 8299.37 9199.70 8999.83 5399.70 8399.38 10999.78 7499.53 10399.67 13199.78 8799.19 6299.86 20497.32 25499.87 12999.55 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
iter_conf_final98.75 22498.54 23399.40 19399.33 27598.75 24299.26 14399.59 17699.80 4699.76 9299.58 20590.17 34699.92 10199.37 6699.97 4299.54 164
SR-MVS-dyc-post99.27 12799.11 14299.73 7499.54 19899.74 6899.26 14399.62 15199.16 16299.52 18999.64 16498.41 16799.91 12397.27 25999.61 25099.54 164
RE-MVS-def99.13 13599.54 19899.74 6899.26 14399.62 15199.16 16299.52 18999.64 16498.57 14297.27 25999.61 25099.54 164
SD-MVS99.01 19199.30 10798.15 31799.50 21799.40 15698.94 22599.61 15899.22 15299.75 9999.82 6299.54 2895.51 37797.48 24699.87 12999.54 164
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 19698.80 21099.56 15099.25 29299.43 14898.54 26999.27 28698.58 22798.80 30599.43 25498.53 15199.70 31397.22 26699.59 25799.54 164
MVS_111021_HR99.12 16999.02 17199.40 19399.50 21799.11 20897.92 32399.71 10898.76 21499.08 27599.47 24699.17 6499.54 35797.85 21299.76 19399.54 164
v14899.40 9599.41 8599.39 19799.76 10198.94 22699.09 19699.59 17699.17 16099.81 7399.61 19098.41 16799.69 31999.32 7699.94 7899.53 170
iter_conf0598.46 25598.23 25899.15 24699.04 32697.99 29499.10 19299.61 15899.79 4999.76 9299.58 20587.88 35699.92 10199.31 7999.97 4299.53 170
diffmvspermissive99.34 11499.32 10199.39 19799.67 15298.77 24198.57 26499.81 6199.61 9199.48 19999.41 25698.47 15899.86 20498.97 12399.90 10099.53 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 4599.62 4199.66 10299.80 7299.62 10599.44 10199.80 6399.71 6399.72 11299.69 13799.15 6699.83 25099.32 7699.94 7899.53 170
HQP4-MVS98.15 33899.70 31399.53 170
GBi-Net99.42 8999.31 10299.73 7499.49 22299.77 5099.68 4499.70 11499.44 11799.62 15199.83 5597.21 25099.90 14198.96 12599.90 10099.53 170
test199.42 8999.31 10299.73 7499.49 22299.77 5099.68 4499.70 11499.44 11799.62 15199.83 5597.21 25099.90 14198.96 12599.90 10099.53 170
FMVSNet199.66 3999.63 4099.73 7499.78 8999.77 5099.68 4499.70 11499.67 7799.82 6699.83 5598.98 8999.90 14199.24 8799.97 4299.53 170
HQP-MVS98.36 26498.02 27499.39 19799.31 27898.94 22697.98 31699.37 26497.45 30798.15 33898.83 34896.67 26499.70 31394.73 34699.67 23399.53 170
QAPM98.40 26297.99 27599.65 10799.39 25299.47 13399.67 4899.52 21991.70 36598.78 30899.80 7098.55 14599.95 5194.71 34899.75 19599.53 170
F-COLMAP98.74 22698.45 23999.62 13099.57 18599.47 13398.84 23399.65 14096.31 33898.93 28799.19 30897.68 22899.87 18696.52 30099.37 29499.53 170
MVSTER98.47 25498.22 26099.24 23699.06 32398.35 27399.08 19999.46 23899.27 14099.75 9999.66 15788.61 35499.85 22199.14 10999.92 9099.52 181
PVSNet_BlendedMVS99.03 18599.01 17499.09 25599.54 19897.99 29498.58 26099.82 5297.62 29899.34 23199.71 12498.52 15499.77 29497.98 19799.97 4299.52 181
OPM-MVS99.26 12999.13 13599.63 12199.70 13599.61 11198.58 26099.48 23298.50 23699.52 18999.63 17499.14 6999.76 29697.89 20599.77 19199.51 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 14799.07 15799.63 12199.78 8999.64 9999.12 18899.83 4798.63 22299.63 14299.72 11798.68 12599.75 30096.38 30899.83 15499.51 183
TestCases99.63 12199.78 8999.64 9999.83 4798.63 22299.63 14299.72 11798.68 12599.75 30096.38 30899.83 15499.51 183
BH-RMVSNet98.41 26098.14 26899.21 23899.21 29898.47 26298.60 25898.26 34798.35 25598.93 28799.31 28397.20 25399.66 33894.32 35099.10 31699.51 183
USDC98.96 20098.93 19099.05 26199.54 19897.99 29497.07 36099.80 6398.21 26799.75 9999.77 9498.43 16499.64 34697.90 20499.88 11899.51 183
test9_res95.10 34399.44 28499.50 188
train_agg98.35 26797.95 27999.57 14799.35 26299.35 17098.11 30299.41 24994.90 35597.92 34898.99 33298.02 20599.85 22195.38 33999.44 28499.50 188
agg_prior294.58 34999.46 28399.50 188
VDD-MVS99.20 14999.11 14299.44 17899.43 24498.98 22199.50 8798.32 34699.80 4699.56 17599.69 13796.99 25999.85 22198.99 11999.73 20799.50 188
MDA-MVSNet-bldmvs99.06 17899.05 16399.07 25999.80 7297.83 30398.89 22799.72 10599.29 13699.63 14299.70 13196.47 27099.89 15898.17 18599.82 16399.50 188
KD-MVS_self_test99.63 4599.59 5099.76 5199.84 4999.90 799.37 11399.79 6999.83 3999.88 4799.85 4998.42 16699.90 14199.60 3399.73 20799.49 193
SF-MVS99.10 17598.93 19099.62 13099.58 17599.51 12999.13 18499.65 14097.97 28199.42 21299.61 19098.86 10299.87 18696.45 30599.68 22799.49 193
Anonymous2024052999.42 8999.34 9699.65 10799.53 20499.60 11399.63 6099.39 25999.47 11199.76 9299.78 8798.13 19799.86 20498.70 14999.68 22799.49 193
WTY-MVS98.59 24098.37 24799.26 23199.43 24498.40 26898.74 25099.13 31098.10 27299.21 25899.24 30194.82 29399.90 14197.86 21098.77 33399.49 193
ppachtmachnet_test98.89 21199.12 13998.20 31699.66 15395.24 35197.63 33699.68 12399.08 17399.78 8599.62 18198.65 13299.88 17298.02 19299.96 5699.48 197
Anonymous2023120699.35 10999.31 10299.47 17199.74 11899.06 21899.28 13899.74 9299.23 14899.72 11299.53 22897.63 23599.88 17299.11 11199.84 14699.48 197
test_prior99.46 17399.35 26299.22 19599.39 25999.69 31999.48 197
test1299.54 15799.29 28499.33 17399.16 30698.43 32997.54 23699.82 25999.47 28199.48 197
VNet99.18 15699.06 15999.56 15099.24 29499.36 16799.33 12099.31 27799.67 7799.47 20099.57 21496.48 26999.84 23599.15 10399.30 30199.47 201
test20.0399.55 6299.54 6399.58 14199.79 8299.37 16399.02 20899.89 2699.60 9799.82 6699.62 18198.81 10599.89 15899.43 5699.86 13799.47 201
114514_t98.49 25298.11 26999.64 11499.73 12199.58 11999.24 15099.76 8289.94 36899.42 21299.56 21797.76 22499.86 20497.74 22299.82 16399.47 201
sss98.90 20898.77 21299.27 22999.48 22798.44 26598.72 25299.32 27397.94 28599.37 22699.35 27796.31 27799.91 12398.85 13399.63 24299.47 201
旧先验199.49 22299.29 17999.26 28999.39 26497.67 22999.36 29599.46 205
MVP-Stereo99.16 16199.08 15399.43 18299.48 22799.07 21699.08 19999.55 19998.63 22299.31 24099.68 14898.19 19399.78 28698.18 18399.58 25899.45 206
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 16099.50 21799.22 19599.26 28995.66 34798.60 32099.28 28997.67 22999.89 15895.95 32699.32 29999.45 206
LFMVS98.46 25598.19 26599.26 23199.24 29498.52 26199.62 6196.94 36299.87 2599.31 24099.58 20591.04 33399.81 27498.68 15299.42 28899.45 206
testgi99.29 12299.26 11899.37 20499.75 11298.81 23898.84 23399.89 2698.38 24899.75 9999.04 32599.36 4499.86 20499.08 11399.25 30899.45 206
UnsupCasMVSNet_eth98.83 21798.57 22999.59 13899.68 14799.45 14298.99 21799.67 12799.48 10799.55 18099.36 27294.92 29199.86 20498.95 12996.57 36899.45 206
无先验98.01 31299.23 29695.83 34499.85 22195.79 33199.44 211
testdata99.42 18499.51 21198.93 22999.30 28096.20 33998.87 29799.40 26098.33 18099.89 15896.29 31199.28 30499.44 211
XVG-OURS-SEG-HR99.16 16198.99 18299.66 10299.84 4999.64 9998.25 29099.73 9698.39 24799.63 14299.43 25499.70 1599.90 14197.34 25398.64 34199.44 211
FMVSNet299.35 10999.28 11499.55 15399.49 22299.35 17099.45 9899.57 18899.44 11799.70 12099.74 10697.21 25099.87 18699.03 11699.94 7899.44 211
N_pmnet98.73 22898.53 23599.35 21099.72 12498.67 24798.34 28394.65 37098.35 25599.79 8199.68 14898.03 20499.93 8198.28 17299.92 9099.44 211
RPSCF99.18 15699.02 17199.64 11499.83 5399.85 1999.44 10199.82 5298.33 26099.50 19699.78 8797.90 21399.65 34496.78 28699.83 15499.44 211
原ACMM199.37 20499.47 23398.87 23699.27 28696.74 33398.26 33399.32 28197.93 21299.82 25995.96 32599.38 29299.43 217
test22299.51 21199.08 21597.83 32999.29 28295.21 35298.68 31599.31 28397.28 24799.38 29299.43 217
XVG-OURS99.21 14799.06 15999.65 10799.82 6099.62 10597.87 32799.74 9298.36 25099.66 13599.68 14899.71 1399.90 14196.84 28499.88 11899.43 217
CSCG99.37 10499.29 11299.60 13699.71 12799.46 13799.43 10399.85 3998.79 20899.41 21899.60 19898.92 9599.92 10198.02 19299.92 9099.43 217
TinyColmap98.97 19798.93 19099.07 25999.46 23798.19 28097.75 33199.75 8798.79 20899.54 18299.70 13198.97 9199.62 34896.63 29699.83 15499.41 221
Anonymous20240521198.75 22498.46 23899.63 12199.34 27099.66 9399.47 9597.65 35599.28 13999.56 17599.50 23593.15 31199.84 23598.62 15499.58 25899.40 222
XVG-ACMP-BASELINE99.23 13499.10 15099.63 12199.82 6099.58 11998.83 23599.72 10598.36 25099.60 16099.71 12498.92 9599.91 12397.08 27199.84 14699.40 222
MS-PatchMatch99.00 19398.97 18699.09 25599.11 31898.19 28098.76 24999.33 27198.49 23899.44 20699.58 20598.21 19199.69 31998.20 17999.62 24399.39 224
FMVSNet398.80 22098.63 22299.32 21899.13 31198.72 24599.10 19299.48 23299.23 14899.62 15199.64 16492.57 31799.86 20498.96 12599.90 10099.39 224
ambc99.20 24099.35 26298.53 25999.17 17099.46 23899.67 13199.80 7098.46 16199.70 31397.92 20299.70 21899.38 226
FMVSNet597.80 28997.25 30599.42 18498.83 34598.97 22399.38 10999.80 6398.87 19899.25 24999.69 13780.60 37599.91 12398.96 12599.90 10099.38 226
PAPM_NR98.36 26498.04 27299.33 21499.48 22798.93 22998.79 24699.28 28597.54 30298.56 32498.57 35897.12 25599.69 31994.09 35498.90 32899.38 226
EPNet_dtu97.62 29797.79 29197.11 34396.67 37692.31 36698.51 27298.04 34999.24 14695.77 37099.47 24693.78 30599.66 33898.98 12199.62 24399.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 17298.95 18999.59 13899.13 31199.59 11599.17 17099.65 14097.88 28799.25 24999.46 24998.97 9199.80 28097.26 26199.82 16399.37 229
PLCcopyleft97.35 1698.36 26497.99 27599.48 16999.32 27799.24 19298.50 27399.51 22395.19 35398.58 32298.96 33996.95 26099.83 25095.63 33399.25 30899.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 29797.20 30698.90 28199.76 10197.40 31699.48 9294.36 37199.06 17799.70 12099.49 23984.55 37099.94 6498.73 14799.65 23899.36 232
pmmvs-eth3d99.48 7299.47 7199.51 16299.77 9799.41 15598.81 24099.66 13199.42 12699.75 9999.66 15799.20 6199.76 29698.98 12199.99 1399.36 232
PVSNet_095.53 1995.85 33595.31 33797.47 33398.78 35293.48 36295.72 36899.40 25696.18 34097.37 35997.73 37395.73 28699.58 35595.49 33681.40 37599.36 232
lupinMVS98.96 20098.87 20099.24 23699.57 18598.40 26898.12 30099.18 30498.28 26399.63 14299.13 31198.02 20599.97 2298.22 17799.69 22299.35 235
Vis-MVSNet (Re-imp)98.77 22298.58 22899.34 21199.78 8998.88 23499.61 6699.56 19399.11 17299.24 25299.56 21793.00 31599.78 28697.43 24999.89 10999.35 235
GA-MVS97.99 28597.68 29598.93 27299.52 20998.04 29397.19 35699.05 31498.32 26198.81 30398.97 33789.89 35099.41 36798.33 16999.05 31899.34 237
CANet99.11 17299.05 16399.28 22698.83 34598.56 25898.71 25499.41 24999.25 14499.23 25399.22 30397.66 23399.94 6499.19 9499.97 4299.33 238
Patchmtry98.78 22198.54 23399.49 16598.89 34099.19 20199.32 12299.67 12799.65 8399.72 11299.79 8091.87 32599.95 5198.00 19699.97 4299.33 238
PAPR97.56 30097.07 30899.04 26298.80 34998.11 28797.63 33699.25 29294.56 36098.02 34698.25 36897.43 24099.68 32990.90 36598.74 33799.33 238
testf199.63 4599.60 4899.72 8099.94 1699.95 299.47 9599.89 2699.43 12299.88 4799.80 7099.26 5599.90 14198.81 13899.88 11899.32 241
APD_test299.63 4599.60 4899.72 8099.94 1699.95 299.47 9599.89 2699.43 12299.88 4799.80 7099.26 5599.90 14198.81 13899.88 11899.32 241
CHOSEN 280x42098.41 26098.41 24398.40 30799.34 27095.89 34596.94 36299.44 24398.80 20799.25 24999.52 23093.51 30999.98 1098.94 13099.98 3099.32 241
baseline197.73 29297.33 30298.96 26799.30 28297.73 30799.40 10598.42 34299.33 13499.46 20499.21 30591.18 33199.82 25998.35 16791.26 37499.32 241
TAPA-MVS97.92 1398.03 28297.55 29899.46 17399.47 23399.44 14498.50 27399.62 15186.79 36999.07 27899.26 29498.26 18599.62 34897.28 25899.73 20799.31 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 12399.15 13299.67 9599.33 27599.76 5899.34 11899.97 1098.93 19099.91 3199.79 8098.68 12599.93 8196.80 28599.56 26099.30 246
TSAR-MVS + GP.99.12 16999.04 16899.38 20199.34 27099.16 20398.15 29699.29 28298.18 27099.63 14299.62 18199.18 6399.68 32998.20 17999.74 20299.30 246
PVSNet_Blended98.70 23198.59 22599.02 26399.54 19897.99 29497.58 33999.82 5295.70 34699.34 23198.98 33598.52 15499.77 29497.98 19799.83 15499.30 246
MVS_030498.88 21298.71 21599.39 19798.85 34398.91 23299.45 9899.30 28098.56 22897.26 36299.68 14896.18 28199.96 4199.17 9999.94 7899.29 249
MVS_111021_LR99.13 16799.03 17099.42 18499.58 17599.32 17597.91 32599.73 9698.68 21899.31 24099.48 24299.09 7499.66 33897.70 22899.77 19199.29 249
miper_lstm_enhance98.65 23498.60 22398.82 29099.20 30197.33 31897.78 33099.66 13199.01 18099.59 16399.50 23594.62 29699.85 22198.12 18899.90 10099.26 251
MVS95.72 33794.63 34198.99 26498.56 36097.98 30099.30 13098.86 32072.71 37497.30 36099.08 32098.34 17899.74 30289.21 36698.33 34899.26 251
MSLP-MVS++99.05 18199.09 15198.91 27599.21 29898.36 27298.82 23999.47 23598.85 20098.90 29399.56 21798.78 11299.09 37098.57 15699.68 22799.26 251
D2MVS99.22 14299.19 12699.29 22499.69 13998.74 24498.81 24099.41 24998.55 23099.68 12699.69 13798.13 19799.87 18698.82 13699.98 3099.24 254
test_yl98.25 27197.95 27999.13 25099.17 30698.47 26299.00 21298.67 33198.97 18399.22 25699.02 33091.31 32999.69 31997.26 26198.93 32499.24 254
DCV-MVSNet98.25 27197.95 27999.13 25099.17 30698.47 26299.00 21298.67 33198.97 18399.22 25699.02 33091.31 32999.69 31997.26 26198.93 32499.24 254
DPM-MVS98.28 26997.94 28399.32 21899.36 26099.11 20897.31 35298.78 32596.88 32898.84 30099.11 31897.77 22399.61 35294.03 35699.36 29599.23 257
CLD-MVS98.76 22398.57 22999.33 21499.57 18598.97 22397.53 34299.55 19996.41 33599.27 24799.13 31199.07 7999.78 28696.73 28999.89 10999.23 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 16799.06 15999.36 20899.57 18599.10 21398.01 31299.25 29298.78 21099.58 16599.44 25398.24 18699.76 29698.74 14699.93 8699.22 259
OMC-MVS98.90 20898.72 21499.44 17899.39 25299.42 15198.58 26099.64 14697.31 31599.44 20699.62 18198.59 13999.69 31996.17 31799.79 18299.22 259
EGC-MVSNET89.05 34285.52 34599.64 11499.89 3399.78 4799.56 7999.52 21924.19 37649.96 37799.83 5599.15 6699.92 10197.71 22599.85 14199.21 261
eth_miper_zixun_eth98.68 23298.71 21598.60 29999.10 31996.84 33197.52 34499.54 20598.94 18799.58 16599.48 24296.25 27999.76 29698.01 19599.93 8699.21 261
c3_l98.72 22998.71 21598.72 29599.12 31397.22 32197.68 33599.56 19398.90 19499.54 18299.48 24296.37 27699.73 30597.88 20699.88 11899.21 261
CMPMVSbinary77.52 2398.50 25098.19 26599.41 19198.33 36599.56 12299.01 21099.59 17695.44 34899.57 16899.80 7095.64 28799.46 36696.47 30499.92 9099.21 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 17898.97 18699.34 21199.31 27898.98 22198.31 28699.91 2198.81 20598.79 30698.94 34199.14 6999.84 23598.79 14098.74 33799.20 265
DELS-MVS99.34 11499.30 10799.48 16999.51 21199.36 16798.12 30099.53 21499.36 13199.41 21899.61 19099.22 5999.87 18699.21 9099.68 22799.20 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DROMVSNet99.69 2899.69 2899.68 9299.71 12799.91 499.76 1899.96 1499.86 2899.51 19499.39 26499.57 2599.93 8199.64 3199.86 13799.20 265
CANet_DTU98.91 20698.85 20299.09 25598.79 35098.13 28498.18 29399.31 27799.48 10798.86 29899.51 23296.56 26699.95 5199.05 11599.95 6799.19 268
alignmvs98.28 26997.96 27899.25 23499.12 31398.93 22999.03 20798.42 34299.64 8598.72 31297.85 37290.86 33899.62 34898.88 13299.13 31399.19 268
DIV-MVS_self_test98.54 24598.42 24298.92 27399.03 32797.80 30597.46 34699.59 17698.90 19499.60 16099.46 24993.87 30299.78 28697.97 19999.89 10999.18 270
MSDG99.08 17698.98 18599.37 20499.60 16699.13 20697.54 34099.74 9298.84 20399.53 18799.55 22499.10 7299.79 28397.07 27299.86 13799.18 270
cl____98.54 24598.41 24398.92 27399.03 32797.80 30597.46 34699.59 17698.90 19499.60 16099.46 24993.85 30399.78 28697.97 19999.89 10999.17 272
PM-MVS99.36 10799.29 11299.58 14199.83 5399.66 9398.95 22399.86 3598.85 20099.81 7399.73 11098.40 17199.92 10198.36 16699.83 15499.17 272
thisisatest053097.45 30296.95 31298.94 26999.68 14797.73 30799.09 19694.19 37398.61 22599.56 17599.30 28584.30 37199.93 8198.27 17399.54 26999.16 274
PatchmatchNetpermissive97.65 29697.80 28997.18 34198.82 34892.49 36599.17 17098.39 34498.12 27198.79 30699.58 20590.71 34099.89 15897.23 26599.41 28999.16 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 8699.38 8899.60 13699.87 4299.75 6299.59 7299.78 7499.71 6399.90 3799.69 13798.85 10399.90 14197.25 26499.78 18799.15 276
CS-MVS-test99.68 3199.70 2499.64 11499.57 18599.83 2999.78 1199.97 1099.92 1199.50 19699.38 26699.57 2599.95 5199.69 2699.90 10099.15 276
mvs_anonymous99.28 12399.39 8698.94 26999.19 30397.81 30499.02 20899.55 19999.78 5199.85 5899.80 7098.24 18699.86 20499.57 3999.50 27799.15 276
ab-mvs99.33 11799.28 11499.47 17199.57 18599.39 15899.78 1199.43 24698.87 19899.57 16899.82 6298.06 20299.87 18698.69 15199.73 20799.15 276
MIMVSNet98.43 25898.20 26299.11 25299.53 20498.38 27199.58 7498.61 33398.96 18599.33 23399.76 9890.92 33599.81 27497.38 25299.76 19399.15 276
GSMVS99.14 281
sam_mvs190.81 33999.14 281
SCA98.11 27898.36 24897.36 33699.20 30192.99 36398.17 29598.49 34098.24 26599.10 27499.57 21496.01 28499.94 6496.86 28199.62 24399.14 281
LS3D99.24 13399.11 14299.61 13398.38 36399.79 4499.57 7799.68 12399.61 9199.15 26699.71 12498.70 12399.91 12397.54 24299.68 22799.13 284
Patchmatch-RL test98.60 23798.36 24899.33 21499.77 9799.07 21698.27 28899.87 3298.91 19399.74 10799.72 11790.57 34299.79 28398.55 15799.85 14199.11 285
test_040299.22 14299.14 13399.45 17699.79 8299.43 14899.28 13899.68 12399.54 10199.40 22399.56 21799.07 7999.82 25996.01 32199.96 5699.11 285
APD_test199.36 10799.28 11499.61 13399.89 3399.89 1099.32 12299.74 9299.18 15599.69 12399.75 10398.41 16799.84 23597.85 21299.70 21899.10 287
MVS_Test99.28 12399.31 10299.19 24199.35 26298.79 24099.36 11699.49 23199.17 16099.21 25899.67 15398.78 11299.66 33899.09 11299.66 23699.10 287
AdaColmapbinary98.60 23798.35 25099.38 20199.12 31399.22 19598.67 25599.42 24897.84 29198.81 30399.27 29197.32 24699.81 27495.14 34299.53 27199.10 287
FPMVS96.32 32695.50 33398.79 29199.60 16698.17 28398.46 27998.80 32497.16 32296.28 36699.63 17482.19 37299.09 37088.45 36898.89 32999.10 287
Patchmatch-test98.10 27997.98 27798.48 30499.27 28996.48 33599.40 10599.07 31198.81 20599.23 25399.57 21490.11 34799.87 18696.69 29099.64 24099.09 291
tpm97.15 30896.95 31297.75 32898.91 33694.24 35799.32 12297.96 35197.71 29598.29 33299.32 28186.72 36599.92 10198.10 19096.24 37199.09 291
PMMVS98.49 25298.29 25699.11 25298.96 33498.42 26797.54 34099.32 27397.53 30398.47 32898.15 36997.88 21599.82 25997.46 24799.24 31099.09 291
cl2297.56 30097.28 30398.40 30798.37 36496.75 33297.24 35599.37 26497.31 31599.41 21899.22 30387.30 35799.37 36897.70 22899.62 24399.08 294
ADS-MVSNet297.78 29097.66 29798.12 31999.14 30995.36 34999.22 15798.75 32696.97 32698.25 33499.64 16490.90 33699.94 6496.51 30199.56 26099.08 294
ADS-MVSNet97.72 29597.67 29697.86 32499.14 30994.65 35599.22 15798.86 32096.97 32698.25 33499.64 16490.90 33699.84 23596.51 30199.56 26099.08 294
pmmvs398.08 28097.80 28998.91 27599.41 25097.69 30997.87 32799.66 13195.87 34299.50 19699.51 23290.35 34499.97 2298.55 15799.47 28199.08 294
PVSNet97.47 1598.42 25998.44 24098.35 30999.46 23796.26 33896.70 36599.34 27097.68 29699.00 28299.13 31197.40 24199.72 30797.59 24099.68 22799.08 294
MVS-HIRNet97.86 28698.22 26096.76 34599.28 28791.53 37198.38 28292.60 37599.13 16899.31 24099.96 1297.18 25499.68 32998.34 16899.83 15499.07 299
PMVScopyleft92.94 2198.82 21898.81 20898.85 28399.84 4997.99 29499.20 16099.47 23599.71 6399.42 21299.82 6298.09 19999.47 36493.88 35899.85 14199.07 299
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft99.57 5699.59 5099.49 16599.98 399.71 7699.72 2999.84 4599.81 4399.94 2199.78 8798.91 9799.71 31198.41 16399.95 6799.05 301
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
canonicalmvs99.02 18799.00 17799.09 25599.10 31998.70 24699.61 6699.66 13199.63 8798.64 31797.65 37499.04 8399.54 35798.79 14098.92 32699.04 302
hse-mvs298.52 24798.30 25599.16 24499.29 28498.60 25798.77 24899.02 31599.68 7399.32 23699.04 32592.50 32099.85 22199.24 8797.87 36099.03 303
CL-MVSNet_self_test98.71 23098.56 23299.15 24699.22 29698.66 25097.14 35799.51 22398.09 27499.54 18299.27 29196.87 26299.74 30298.43 16298.96 32399.03 303
AUN-MVS97.82 28897.38 30199.14 24999.27 28998.53 25998.72 25299.02 31598.10 27297.18 36499.03 32989.26 35299.85 22197.94 20197.91 35899.03 303
MDTV_nov1_ep13_2view91.44 37299.14 17897.37 31299.21 25891.78 32796.75 28799.03 303
ITE_SJBPF99.38 20199.63 15999.44 14499.73 9698.56 22899.33 23399.53 22898.88 10199.68 32996.01 32199.65 23899.02 307
UnsupCasMVSNet_bld98.55 24498.27 25799.40 19399.56 19699.37 16397.97 31999.68 12397.49 30699.08 27599.35 27795.41 29099.82 25997.70 22898.19 35399.01 308
miper_ehance_all_eth98.59 24098.59 22598.59 30098.98 33397.07 32597.49 34599.52 21998.50 23699.52 18999.37 26896.41 27499.71 31197.86 21099.62 24399.00 309
CS-MVS99.67 3799.70 2499.58 14199.53 20499.84 2499.79 1099.96 1499.90 1399.61 15799.41 25699.51 3099.95 5199.66 2899.89 10998.96 310
CNLPA98.57 24298.34 25199.28 22699.18 30599.10 21398.34 28399.41 24998.48 23998.52 32598.98 33597.05 25799.78 28695.59 33499.50 27798.96 310
new_pmnet98.88 21298.89 19898.84 28599.70 13597.62 31098.15 29699.50 22797.98 28099.62 15199.54 22698.15 19699.94 6497.55 24199.84 14698.95 312
PCF-MVS96.03 1896.73 31895.86 32999.33 21499.44 24199.16 20396.87 36399.44 24386.58 37098.95 28599.40 26094.38 29899.88 17287.93 36999.80 17798.95 312
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL98.68 23298.47 23799.30 22399.44 24199.28 18198.14 29899.54 20597.12 32499.11 27299.25 29697.80 22199.70 31396.51 30199.30 30198.93 314
Fast-Effi-MVS+99.02 18798.87 20099.46 17399.38 25599.50 13099.04 20499.79 6997.17 32198.62 31898.74 35399.34 4599.95 5198.32 17099.41 28998.92 315
ET-MVSNet_ETH3D96.78 31696.07 32598.91 27599.26 29197.92 30297.70 33496.05 36697.96 28492.37 37598.43 36487.06 35999.90 14198.27 17397.56 36398.91 316
EIA-MVS99.12 16999.01 17499.45 17699.36 26099.62 10599.34 11899.79 6998.41 24498.84 30098.89 34598.75 11799.84 23598.15 18799.51 27598.89 317
CostFormer96.71 31996.79 31896.46 35198.90 33790.71 37699.41 10498.68 32994.69 35998.14 34299.34 28086.32 36799.80 28097.60 23998.07 35798.88 318
DP-MVS Recon98.50 25098.23 25899.31 22199.49 22299.46 13798.56 26599.63 14894.86 35798.85 29999.37 26897.81 22099.59 35496.08 31899.44 28498.88 318
test0.0.03 197.37 30596.91 31598.74 29497.72 37297.57 31197.60 33897.36 36198.00 27799.21 25898.02 37090.04 34899.79 28398.37 16595.89 37298.86 320
BH-untuned98.22 27598.09 27098.58 30199.38 25597.24 32098.55 26698.98 31897.81 29299.20 26398.76 35297.01 25899.65 34494.83 34598.33 34898.86 320
HY-MVS98.23 998.21 27697.95 27998.99 26499.03 32798.24 27599.61 6698.72 32796.81 33198.73 31199.51 23294.06 30099.86 20496.91 27898.20 35198.86 320
miper_enhance_ethall98.03 28297.94 28398.32 31198.27 36696.43 33796.95 36199.41 24996.37 33799.43 21098.96 33994.74 29499.69 31997.71 22599.62 24398.83 323
FE-MVS97.85 28797.42 30099.15 24699.44 24198.75 24299.77 1498.20 34895.85 34399.33 23399.80 7088.86 35399.88 17296.40 30699.12 31498.81 324
Effi-MVS+-dtu99.07 17798.92 19499.52 16098.89 34099.78 4799.15 17699.66 13199.34 13298.92 29099.24 30197.69 22799.98 1098.11 18999.28 30498.81 324
EPMVS96.53 32296.32 32097.17 34298.18 36992.97 36499.39 10789.95 37998.21 26798.61 31999.59 20386.69 36699.72 30796.99 27499.23 31298.81 324
FA-MVS(test-final)98.52 24798.32 25399.10 25499.48 22798.67 24799.77 1498.60 33597.35 31399.63 14299.80 7093.07 31399.84 23597.92 20299.30 30198.78 327
MVEpermissive92.54 2296.66 32096.11 32498.31 31399.68 14797.55 31297.94 32195.60 36899.37 12990.68 37698.70 35496.56 26698.61 37486.94 37499.55 26498.77 328
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tpm296.35 32596.22 32296.73 34798.88 34291.75 36999.21 15998.51 33893.27 36297.89 35099.21 30584.83 36999.70 31396.04 32098.18 35498.75 329
LF4IMVS99.01 19198.92 19499.27 22999.71 12799.28 18198.59 25999.77 7798.32 26199.39 22499.41 25698.62 13499.84 23596.62 29799.84 14698.69 330
thisisatest051596.98 31296.42 31998.66 29899.42 24997.47 31397.27 35394.30 37297.24 31799.15 26698.86 34785.01 36899.87 18697.10 27099.39 29198.63 331
Fast-Effi-MVS+-dtu99.20 14999.12 13999.43 18299.25 29299.69 8699.05 20299.82 5299.50 10598.97 28399.05 32398.98 8999.98 1098.20 17999.24 31098.62 332
PAPM95.61 33894.71 34098.31 31399.12 31396.63 33396.66 36698.46 34190.77 36796.25 36798.68 35593.01 31499.69 31981.60 37597.86 36198.62 332
JIA-IIPM98.06 28197.92 28598.50 30398.59 35997.02 32698.80 24398.51 33899.88 2497.89 35099.87 4091.89 32499.90 14198.16 18697.68 36298.59 334
dp96.86 31497.07 30896.24 35398.68 35890.30 37899.19 16498.38 34597.35 31398.23 33699.59 20387.23 35899.82 25996.27 31298.73 33998.59 334
OpenMVScopyleft98.12 1098.23 27497.89 28899.26 23199.19 30399.26 18599.65 5899.69 12091.33 36698.14 34299.77 9498.28 18399.96 4195.41 33899.55 26498.58 336
baseline296.83 31596.28 32198.46 30599.09 32196.91 32998.83 23593.87 37497.23 31896.23 36998.36 36588.12 35599.90 14196.68 29198.14 35598.57 337
TESTMET0.1,196.24 32895.84 33097.41 33598.24 36793.84 36097.38 34895.84 36798.43 24197.81 35498.56 35979.77 37699.89 15897.77 21798.77 33398.52 338
xiu_mvs_v1_base_debu99.23 13499.34 9698.91 27599.59 17098.23 27698.47 27599.66 13199.61 9199.68 12698.94 34199.39 3599.97 2299.18 9699.55 26498.51 339
xiu_mvs_v1_base99.23 13499.34 9698.91 27599.59 17098.23 27698.47 27599.66 13199.61 9199.68 12698.94 34199.39 3599.97 2299.18 9699.55 26498.51 339
xiu_mvs_v1_base_debi99.23 13499.34 9698.91 27599.59 17098.23 27698.47 27599.66 13199.61 9199.68 12698.94 34199.39 3599.97 2299.18 9699.55 26498.51 339
KD-MVS_2432*160095.89 33295.41 33597.31 33994.96 37793.89 35897.09 35899.22 29997.23 31898.88 29499.04 32579.23 37799.54 35796.24 31496.81 36698.50 342
miper_refine_blended95.89 33295.41 33597.31 33994.96 37793.89 35897.09 35899.22 29997.23 31898.88 29499.04 32579.23 37799.54 35796.24 31496.81 36698.50 342
CR-MVSNet98.35 26798.20 26298.83 28799.05 32498.12 28599.30 13099.67 12797.39 31199.16 26499.79 8091.87 32599.91 12398.78 14398.77 33398.44 344
RPMNet98.60 23798.53 23598.83 28799.05 32498.12 28599.30 13099.62 15199.86 2899.16 26499.74 10692.53 31999.92 10198.75 14598.77 33398.44 344
tpmrst97.73 29298.07 27196.73 34798.71 35692.00 36799.10 19298.86 32098.52 23498.92 29099.54 22691.90 32399.82 25998.02 19299.03 32098.37 346
test-LLR97.15 30896.95 31297.74 32998.18 36995.02 35297.38 34896.10 36398.00 27797.81 35498.58 35690.04 34899.91 12397.69 23498.78 33198.31 347
test-mter96.23 32995.73 33197.74 32998.18 36995.02 35297.38 34896.10 36397.90 28697.81 35498.58 35679.12 37999.91 12397.69 23498.78 33198.31 347
ETV-MVS99.18 15699.18 12799.16 24499.34 27099.28 18199.12 18899.79 6999.48 10798.93 28798.55 36099.40 3499.93 8198.51 15999.52 27498.28 349
PatchT98.45 25798.32 25398.83 28798.94 33598.29 27499.24 15098.82 32399.84 3699.08 27599.76 9891.37 32899.94 6498.82 13699.00 32298.26 350
xiu_mvs_v2_base99.02 18799.11 14298.77 29299.37 25798.09 28998.13 29999.51 22399.47 11199.42 21298.54 36199.38 3999.97 2298.83 13499.33 29898.24 351
IB-MVS95.41 2095.30 33994.46 34397.84 32598.76 35495.33 35097.33 35196.07 36596.02 34195.37 37397.41 37676.17 38199.96 4197.54 24295.44 37398.22 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 31696.98 31196.16 35498.85 34390.59 37799.08 19999.32 27392.37 36397.73 35899.46 24991.15 33299.69 31996.07 31998.80 33098.21 353
MAR-MVS98.24 27397.92 28599.19 24198.78 35299.65 9899.17 17099.14 30895.36 34998.04 34598.81 35097.47 23899.72 30795.47 33799.06 31798.21 353
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 19399.08 15398.76 29399.37 25798.10 28898.00 31499.51 22399.47 11199.41 21898.50 36399.28 5199.97 2298.83 13499.34 29798.20 355
cascas96.99 31196.82 31797.48 33297.57 37595.64 34796.43 36799.56 19391.75 36497.13 36597.61 37595.58 28998.63 37396.68 29199.11 31598.18 356
BH-w/o97.20 30797.01 31097.76 32799.08 32295.69 34698.03 31198.52 33795.76 34597.96 34798.02 37095.62 28899.47 36492.82 36097.25 36598.12 357
tpmvs97.39 30497.69 29496.52 34998.41 36291.76 36899.30 13098.94 31997.74 29397.85 35399.55 22492.40 32299.73 30596.25 31398.73 33998.06 358
thres600view796.60 32196.16 32397.93 32299.63 15996.09 34299.18 16597.57 35698.77 21198.72 31297.32 37787.04 36099.72 30788.57 36798.62 34297.98 359
thres40096.40 32395.89 32797.92 32399.58 17596.11 34099.00 21297.54 35998.43 24198.52 32596.98 38086.85 36299.67 33487.62 37098.51 34597.98 359
TR-MVS97.44 30397.15 30798.32 31198.53 36197.46 31498.47 27597.91 35396.85 32998.21 33798.51 36296.42 27299.51 36292.16 36197.29 36497.98 359
131498.00 28497.90 28798.27 31598.90 33797.45 31599.30 13099.06 31394.98 35497.21 36399.12 31598.43 16499.67 33495.58 33598.56 34497.71 362
E-PMN97.14 31097.43 29996.27 35298.79 35091.62 37095.54 36999.01 31799.44 11798.88 29499.12 31592.78 31699.68 32994.30 35199.03 32097.50 363
gg-mvs-nofinetune95.87 33495.17 33897.97 32198.19 36896.95 32799.69 4189.23 38099.89 1996.24 36899.94 1681.19 37399.51 36293.99 35798.20 35197.44 364
DeepMVS_CXcopyleft97.98 32099.69 13996.95 32799.26 28975.51 37395.74 37198.28 36796.47 27099.62 34891.23 36497.89 35997.38 365
OpenMVS_ROBcopyleft97.31 1797.36 30696.84 31698.89 28299.29 28499.45 14298.87 22999.48 23286.54 37199.44 20699.74 10697.34 24599.86 20491.61 36299.28 30497.37 366
EMVS96.96 31397.28 30395.99 35598.76 35491.03 37395.26 37098.61 33399.34 13298.92 29098.88 34693.79 30499.66 33892.87 35999.05 31897.30 367
thres100view90096.39 32496.03 32697.47 33399.63 15995.93 34399.18 16597.57 35698.75 21598.70 31497.31 37887.04 36099.67 33487.62 37098.51 34596.81 368
tfpn200view996.30 32795.89 32797.53 33199.58 17596.11 34099.00 21297.54 35998.43 24198.52 32596.98 38086.85 36299.67 33487.62 37098.51 34596.81 368
API-MVS98.38 26398.39 24598.35 30998.83 34599.26 18599.14 17899.18 30498.59 22698.66 31698.78 35198.61 13699.57 35694.14 35399.56 26096.21 370
thres20096.09 33095.68 33297.33 33899.48 22796.22 33998.53 27097.57 35698.06 27698.37 33196.73 38286.84 36499.61 35286.99 37398.57 34396.16 371
GG-mvs-BLEND97.36 33697.59 37396.87 33099.70 3488.49 38194.64 37497.26 37980.66 37499.12 36991.50 36396.50 37096.08 372
wuyk23d97.58 29999.13 13592.93 35799.69 13999.49 13199.52 8399.77 7797.97 28199.96 1599.79 8099.84 599.94 6495.85 32899.82 16379.36 373
test12329.31 34333.05 34818.08 35925.93 38312.24 38397.53 34210.93 38411.78 37724.21 37850.08 38721.04 3828.60 37823.51 37632.43 37733.39 374
testmvs28.94 34433.33 34615.79 36026.03 3829.81 38496.77 36415.67 38311.55 37823.87 37950.74 38619.03 3838.53 37923.21 37733.07 37629.03 375
test_blank8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.88 34533.17 3470.00 3610.00 3840.00 3850.00 37299.62 1510.00 3790.00 38099.13 31199.82 60.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas16.61 34622.14 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 199.28 510.00 3800.00 3780.00 3780.00 376
sosnet-low-res8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
sosnet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
Regformer8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.26 35511.02 3580.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.16 3090.00 3840.00 3800.00 3780.00 3780.00 376
uanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.83 5399.89 1099.74 2399.71 10899.69 7199.63 142
test_one_060199.63 15999.76 5899.55 19999.23 14899.31 24099.61 19098.59 139
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.43 24499.61 11199.43 24696.38 33699.11 27299.07 32197.86 21699.92 10194.04 35599.49 279
test_241102_ONE99.69 13999.82 3599.54 20599.12 17199.82 6699.49 23998.91 9799.52 361
9.1498.64 22099.45 24098.81 24099.60 17097.52 30499.28 24699.56 21798.53 15199.83 25095.36 34099.64 240
save fliter99.53 20499.25 18898.29 28799.38 26399.07 175
test072699.69 13999.80 4299.24 15099.57 18899.16 16299.73 11199.65 16298.35 175
test_part299.62 16399.67 9199.55 180
sam_mvs90.52 343
MTGPAbinary99.53 214
test_post199.14 17851.63 38589.54 35199.82 25996.86 281
test_post52.41 38490.25 34599.86 204
patchmatchnet-post99.62 18190.58 34199.94 64
MTMP99.09 19698.59 336
gm-plane-assit97.59 37389.02 38093.47 36198.30 36699.84 23596.38 308
TEST999.35 26299.35 17098.11 30299.41 24994.83 35897.92 34898.99 33298.02 20599.85 221
test_899.34 27099.31 17698.08 30699.40 25694.90 35597.87 35298.97 33798.02 20599.84 235
agg_prior99.35 26299.36 16799.39 25997.76 35799.85 221
test_prior499.19 20198.00 314
test_prior297.95 32097.87 28898.05 34499.05 32397.90 21395.99 32399.49 279
旧先验297.94 32195.33 35098.94 28699.88 17296.75 287
新几何298.04 310
原ACMM297.92 323
testdata299.89 15895.99 323
segment_acmp98.37 173
testdata197.72 33297.86 290
plane_prior799.58 17599.38 160
plane_prior699.47 23399.26 18597.24 248
plane_prior499.25 296
plane_prior399.31 17698.36 25099.14 268
plane_prior298.80 24398.94 187
plane_prior199.51 211
plane_prior99.24 19298.42 28097.87 28899.71 216
n20.00 385
nn0.00 385
door-mid99.83 47
test1199.29 282
door99.77 77
HQP5-MVS98.94 226
HQP-NCC99.31 27897.98 31697.45 30798.15 338
ACMP_Plane99.31 27897.98 31697.45 30798.15 338
BP-MVS94.73 346
HQP3-MVS99.37 26499.67 233
HQP2-MVS96.67 264
NP-MVS99.40 25199.13 20698.83 348
MDTV_nov1_ep1397.73 29398.70 35790.83 37499.15 17698.02 35098.51 23598.82 30299.61 19090.98 33499.66 33896.89 28098.92 326
ACMMP++_ref99.94 78
ACMMP++99.79 182
Test By Simon98.41 167