This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20399.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 196100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21499.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22799.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28699.30 13499.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32499.34 121100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
test_f99.75 3299.88 699.37 21999.96 798.21 29899.51 89100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31199.48 95100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30199.52 85100.00 199.86 45100.00 199.88 4298.99 10299.96 5499.97 499.96 7099.95 11
tmp_tt95.75 36495.42 35896.76 37589.90 41194.42 38698.86 25097.87 37878.01 40299.30 26399.69 15197.70 24195.89 40699.29 10098.14 38399.95 11
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8499.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22299.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 23999.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32199.49 94100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22299.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30199.87 4199.91 4499.87 4798.04 21899.96 5499.68 4499.99 1699.90 20
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
EU-MVSNet99.39 11599.62 5598.72 31899.88 4496.44 36199.56 8099.85 5499.90 2999.90 4999.85 5698.09 21499.83 27099.58 5499.95 8399.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19699.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20099.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21597.79 37999.99 299.48 21699.59 21896.29 29999.95 6399.94 1699.98 4199.88 25
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17699.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21895.32 39799.99 299.68 14299.57 22998.30 19699.97 3399.94 1699.98 4199.88 25
CVMVSNet98.61 25398.88 21897.80 35599.58 19193.60 39299.26 14899.64 16399.66 9899.72 12799.67 16693.26 33399.93 9499.30 9799.81 18899.87 30
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8599.81 7699.87 4199.81 8899.79 9396.78 28199.99 799.83 3299.51 29199.86 32
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17799.87 20399.51 6499.97 5699.86 32
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10599.84 7699.71 13898.62 14999.96 5499.30 9799.96 7099.86 32
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7899.61 17599.54 11899.80 9299.64 17897.79 23799.95 6399.21 10799.94 9499.84 36
Test_1112_low_res98.95 22298.73 23299.63 13599.68 16399.15 22298.09 33299.80 8097.14 35399.46 22299.40 27696.11 30299.89 17599.01 13599.84 16299.84 36
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21899.87 4699.71 8099.47 21899.79 9398.24 20199.98 2099.38 8099.96 7099.83 40
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 19999.85 24099.37 8399.93 10199.83 40
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 15999.96 5499.29 10099.94 9499.83 40
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11799.85 7399.69 15198.18 21099.94 7799.28 10299.95 8399.83 40
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9899.81 7699.82 5899.71 13299.72 13096.60 28599.98 2099.75 3999.23 33199.82 46
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17699.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22599.86 22299.42 7799.96 7099.80 47
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9099.69 13798.99 20199.75 11499.71 13898.79 12599.93 9498.46 17899.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14399.97 3399.30 9799.95 8399.80 47
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7399.82 6799.39 14499.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
1112_ss99.05 19998.84 22399.67 10999.66 16999.29 19498.52 29799.82 6797.65 32799.43 22899.16 32596.42 29299.91 13999.07 13199.84 16299.80 47
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs199.48 8799.65 5098.97 28799.54 21597.16 34799.11 20099.98 1199.78 6899.96 2399.81 7998.72 13799.97 3399.95 1299.97 5699.79 54
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33299.90 3898.95 20799.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
MSC_two_6792asdad99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
No_MVS99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7599.97 1899.95 2099.96 2399.76 11198.44 17899.99 799.34 8899.96 7099.78 56
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26799.88 4498.66 24699.96 2399.79 9397.45 25599.93 9499.34 8899.99 1699.78 56
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27398.99 23599.96 2399.03 19999.95 3199.12 33198.75 13299.84 25599.82 3599.82 17999.77 60
IU-MVS99.69 15599.77 5499.22 31497.50 33599.69 13997.75 24099.70 23499.77 60
test_0728_THIRD99.18 17499.62 16899.61 20598.58 15699.91 13997.72 24299.80 19399.77 60
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18699.61 17599.92 11697.88 22599.72 22999.77 60
MSP-MVS99.04 20298.79 23099.81 4099.78 10599.73 7699.35 12099.57 20498.54 26099.54 19998.99 34996.81 28099.93 9496.97 29899.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15399.94 7799.58 5499.98 4199.77 60
DPE-MVScopyleft99.14 18398.92 21299.82 3799.57 20199.77 5498.74 27099.60 18798.55 25799.76 10899.69 15198.23 20599.92 11696.39 33399.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25599.86 4999.68 9099.65 15499.88 4297.67 24599.87 20399.03 13399.86 15399.76 66
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16299.93 9499.59 5199.98 4199.76 66
test_241102_TWO99.54 22199.13 18899.76 10899.63 18998.32 19599.92 11697.85 23199.69 23899.75 69
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14199.61 17599.87 4199.74 12299.76 11198.69 13999.87 20398.20 19899.80 19399.75 69
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7598.70 34699.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11499.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 71
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27199.24 15599.46 25499.68 9099.80 9299.66 17198.99 10299.89 17599.19 11199.90 11599.72 73
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 22598.64 23899.73 8899.85 5899.47 14798.07 33599.83 6298.64 24899.89 5399.60 21392.57 340100.00 199.33 9199.97 5699.72 73
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26899.24 15599.46 25499.67 9499.79 9799.65 17698.97 10699.89 17599.15 11999.89 12499.71 76
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14599.84 25599.88 2999.99 1699.71 76
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
test111197.74 31298.16 28696.49 38099.60 18289.86 41099.71 3491.21 40699.89 3599.88 6199.87 4793.73 32999.90 15799.56 5799.99 1699.70 79
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12099.91 13999.47 6899.88 13499.70 79
WR-MVS99.11 19098.93 20899.66 11699.30 30199.42 16598.42 30699.37 28099.04 19899.57 18599.20 32396.89 27899.86 22298.66 17099.87 14599.70 79
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8099.79 8698.77 23599.80 9299.85 5699.64 2899.85 24098.70 16699.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8599.70 13198.35 28399.51 21199.50 25199.31 6299.88 18998.18 20299.84 16299.69 83
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18299.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17199.60 18798.55 25799.57 18599.67 16699.03 9999.94 7797.01 29599.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 26698.39 26398.94 29199.15 32897.39 34298.18 32199.21 31798.89 21899.23 27299.63 18997.37 26099.74 32594.22 38299.61 26699.69 83
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24299.53 23098.27 29299.53 20499.73 12398.75 13299.87 20397.70 24799.83 17099.68 89
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13199.59 19398.36 27899.36 24599.37 28498.80 12499.91 13997.43 26899.75 21199.68 89
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30899.26 14899.46 25499.62 10599.75 11499.67 16698.54 16299.85 24099.15 11999.92 10599.68 89
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13499.63 16599.61 10899.71 13299.56 23398.76 13099.96 5499.14 12599.92 10599.68 89
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26898.94 24499.91 3397.97 30999.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30898.85 25299.76 10099.62 10599.83 8099.64 17898.54 16299.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 18398.92 21299.80 4599.83 6599.83 2998.61 27899.63 16596.84 36099.44 22499.58 22198.81 12099.91 13997.70 24799.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13199.59 19398.41 27299.32 25499.36 28898.73 13699.93 9497.29 27699.74 21899.67 95
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32999.47 26298.47 17399.88 18997.62 25599.73 22399.67 95
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23099.65 15799.15 18699.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
X-MVStestdata96.09 35594.87 36799.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32961.30 41398.47 17399.88 18997.62 25599.73 22399.67 95
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9599.70 13199.81 6199.69 13999.58 22197.66 24999.86 22299.17 11699.44 30199.67 95
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13199.59 19398.36 27899.35 24699.38 28298.61 15199.93 9497.43 26899.75 21199.67 95
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32599.65 10099.89 5399.90 2996.20 30199.94 7799.42 7799.92 10599.67 95
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32499.35 24699.25 31299.23 7399.92 11697.21 28899.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20099.62 16899.18 17499.89 5399.72 13098.66 14599.87 20399.88 2999.97 5699.66 104
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21599.61 17599.15 18699.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21899.60 18799.18 17499.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18299.72 12397.99 30799.42 23099.60 21398.81 12099.93 9496.91 30199.74 21899.66 104
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11299.54 22198.34 28799.01 30099.50 25198.53 16699.93 9497.18 29099.78 20399.66 104
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11299.62 16898.38 27699.06 29899.27 30798.79 12599.94 7797.51 26499.82 17999.66 104
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14899.76 10099.32 15299.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
UGNet99.38 11799.34 11199.49 18198.90 35998.90 24999.70 3599.35 28499.86 4598.57 34499.81 7998.50 17299.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
test250694.73 37094.59 37195.15 38699.59 18685.90 41299.75 2274.01 41299.89 3599.71 13299.86 5479.00 40399.90 15799.52 6399.99 1699.65 112
ECVR-MVScopyleft97.73 31398.04 29296.78 37499.59 18690.81 40699.72 3090.43 40899.89 3599.86 7199.86 5493.60 33199.89 17599.46 6999.99 1699.65 112
h-mvs3398.61 25398.34 26999.44 19599.60 18298.67 26599.27 14699.44 25999.68 9099.32 25499.49 25592.50 343100.00 199.24 10496.51 39999.65 112
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14899.35 28498.77 23599.57 18599.70 14599.27 6999.88 18997.71 24499.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12499.53 23099.27 15899.42 23099.63 18998.21 20699.95 6397.83 23599.79 19899.65 112
MCST-MVS99.02 20598.81 22799.65 12199.58 19199.49 14598.58 28599.07 32998.40 27499.04 29999.25 31298.51 17199.80 30297.31 27599.51 29199.65 112
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 23999.61 17599.43 13999.67 14899.28 30597.85 23399.95 6399.17 11699.81 18899.65 112
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14199.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14399.56 20998.19 29799.14 28799.29 30498.84 11999.92 11697.53 26399.80 19399.64 122
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20399.61 17599.20 17299.84 7699.73 12398.67 14399.84 25599.86 3199.98 4199.64 122
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18699.58 20299.25 16299.81 8899.62 19698.24 20199.84 25599.83 3299.97 5699.64 122
K. test v398.87 23298.60 24199.69 10499.93 2599.46 15199.74 2494.97 39899.78 6899.88 6199.88 4293.66 33099.97 3399.61 4999.95 8399.64 122
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15599.71 12699.27 15899.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27297.90 35699.59 19399.27 15899.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19299.52 23597.40 34099.57 18599.64 17898.93 10999.83 27097.61 25799.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 21199.16 14598.51 32799.75 12895.90 37198.07 33599.84 6099.84 5399.89 5399.73 12396.01 30499.99 799.33 91100.00 199.63 127
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
MP-MVScopyleft99.06 19698.83 22599.76 6499.76 11799.71 8399.32 12699.50 24398.35 28398.97 30299.48 25898.37 18899.92 11695.95 35399.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25599.53 23099.38 14599.67 14899.36 28897.67 24599.95 6399.17 11699.81 18899.63 127
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24399.46 13199.88 6199.36 28897.54 25299.87 20398.97 14099.87 14599.63 127
IterMVS98.97 21599.16 14598.42 33199.74 13495.64 37498.06 33799.83 6299.83 5699.85 7399.74 11996.10 30399.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31099.48 12499.56 19299.77 10894.89 31499.93 9498.72 16599.89 12499.63 127
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9099.65 15798.07 30399.52 20699.69 15198.57 15799.92 11697.18 29099.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23599.40 27299.08 19399.58 18299.64 17898.90 11599.83 27097.44 26799.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.38 11799.25 13699.77 5799.03 34999.77 5499.74 2499.61 17599.18 17499.76 10899.61 20599.00 10099.92 11697.72 24299.60 26999.62 138
PC_three_145297.56 32999.68 14299.41 27299.09 8997.09 40596.66 31699.60 26999.62 138
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7299.82 6799.46 13199.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
test_method91.72 37192.32 37489.91 38893.49 41070.18 41390.28 40199.56 20961.71 40595.39 40299.52 24693.90 32499.94 7798.76 16198.27 37699.62 138
GST-MVS99.16 17998.96 20699.75 7499.73 13799.73 7699.20 16699.55 21598.22 29499.32 25499.35 29398.65 14799.91 13996.86 30499.74 21899.62 138
new-patchmatchnet99.35 12599.57 7198.71 32099.82 7296.62 35998.55 29199.75 10599.50 12299.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
CPTT-MVS98.74 24398.44 25899.64 12899.61 18099.38 17599.18 17199.55 21596.49 36499.27 26699.37 28497.11 27299.92 11695.74 36099.67 24999.62 138
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22699.92 11699.65 4699.98 4199.62 138
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38499.47 25198.72 24099.66 15299.70 14599.29 6499.63 37398.07 21099.81 18899.62 138
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24399.44 13499.12 29099.78 10198.77 12999.94 7797.87 22899.72 22999.62 138
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18699.31 29399.16 18299.62 16899.61 20598.35 19099.91 13997.88 22599.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 23298.59 24399.71 9999.50 23499.62 11799.01 22799.57 20496.80 36299.54 19999.63 18998.29 19799.91 13995.24 36999.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 23698.57 24799.58 15699.21 31899.31 19198.61 27899.25 30798.65 24798.43 35199.26 31097.86 23199.81 29496.55 32299.27 32699.61 148
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10299.57 20499.66 9899.78 10199.83 6697.85 23399.86 22299.44 7199.96 7099.61 148
HPM-MVS++copyleft98.96 21998.70 23699.74 7999.52 22699.71 8398.86 25099.19 32098.47 26898.59 34299.06 33898.08 21699.91 13996.94 29999.60 26999.60 152
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11099.59 19399.24 16499.86 7199.70 14598.55 16099.82 27999.79 3799.95 8399.60 152
HQP_MVS98.90 22798.68 23799.55 16899.58 19199.24 20798.80 26399.54 22198.94 20899.14 28799.25 31297.24 26499.82 27995.84 35799.78 20399.60 152
plane_prior599.54 22199.82 27995.84 35799.78 20399.60 152
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12699.77 9599.53 12099.77 10699.76 11199.26 7099.78 30897.77 23699.88 13499.60 152
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19299.65 15798.99 20199.64 15599.72 13099.39 5099.86 22298.23 19599.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 21598.82 22699.42 20199.71 14398.81 25599.62 6298.68 34799.81 6199.38 24399.80 8394.25 32299.85 24098.79 15799.32 31899.59 159
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19299.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23899.60 18799.43 13999.70 13699.36 28897.70 24199.88 18999.20 11099.87 14599.59 159
DSMNet-mixed99.48 8799.65 5098.95 29099.71 14397.27 34499.50 9099.82 6799.59 11699.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 20999.23 16699.35 24699.80 8399.17 7999.95 6398.21 19799.84 16299.59 159
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16699.54 22199.13 18899.82 8199.63 18998.91 11299.92 11697.85 23199.70 23499.58 164
OPU-MVS99.29 24099.12 33399.44 15899.20 16699.40 27699.00 10098.84 40296.54 32399.60 26999.58 164
EPNet98.13 29897.77 31399.18 26094.57 40997.99 31499.24 15597.96 37499.74 7397.29 38499.62 19693.13 33599.97 3398.59 17299.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 20398.85 22199.55 16899.80 8699.25 20399.73 2799.15 32499.37 14699.61 17499.71 13894.73 31899.81 29497.70 24799.88 13499.58 164
ACMP97.51 1499.05 19998.84 22399.67 10999.78 10599.55 13898.88 24899.66 14897.11 35599.47 21899.60 21399.07 9499.89 17596.18 34299.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17199.60 18798.85 22299.47 21899.58 22198.38 18799.92 11696.92 30099.54 28599.57 169
lessismore_v099.64 12899.86 5499.38 17590.66 40799.89 5399.83 6694.56 32099.97 3399.56 5799.92 10599.57 169
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29199.73 11498.82 22699.72 12799.62 19696.56 28699.82 27999.32 9399.95 8399.56 171
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14699.61 17599.19 17399.57 18599.64 17898.76 13099.90 15797.29 27699.62 25999.56 171
CDPH-MVS98.56 26198.20 28199.61 14799.50 23499.46 15198.32 31299.41 26595.22 38199.21 27799.10 33598.34 19299.82 27995.09 37399.66 25299.56 171
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29599.97 3399.59 5199.98 4199.55 174
our_test_398.85 23499.09 16798.13 34499.66 16994.90 38497.72 36299.58 20299.07 19599.64 15599.62 19698.19 20899.93 9498.41 18099.95 8399.55 174
YYNet198.95 22298.99 20098.84 30899.64 17397.14 34998.22 32099.32 28998.92 21399.59 18099.66 17197.40 25799.83 27098.27 19299.90 11599.55 174
MDA-MVSNet_test_wron98.95 22298.99 20098.85 30699.64 17397.16 34798.23 31999.33 28798.93 21199.56 19299.66 17197.39 25999.83 27098.29 18899.88 13499.55 174
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28699.77 1599.80 8099.73 7499.63 15999.30 30198.02 22099.98 2099.43 7299.69 23899.55 174
jason99.16 17999.11 15899.32 23399.75 12898.44 28398.26 31799.39 27598.70 24399.74 12299.30 30198.54 16299.97 3398.48 17799.82 17999.55 174
jason: jason.
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24199.54 22199.46 13199.61 17499.70 14596.31 29799.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11299.78 9299.53 12099.67 14899.78 10199.19 7799.86 22297.32 27499.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.41 18299.91 13997.27 27999.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.57 15797.27 27999.61 26699.54 182
SD-MVS99.01 20999.30 12398.15 34399.50 23499.40 17198.94 24499.61 17599.22 17199.75 11499.82 7399.54 4195.51 40797.48 26599.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 21498.80 22999.56 16599.25 31199.43 16298.54 29499.27 30198.58 25598.80 32499.43 27098.53 16699.70 33797.22 28799.59 27399.54 182
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35399.71 12698.76 23899.08 29499.47 26299.17 7999.54 38597.85 23199.76 20999.54 182
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20899.59 19399.17 17999.81 8899.61 20598.41 18299.69 34399.32 9399.94 9499.53 187
iter_conf0598.46 27498.23 27799.15 26599.04 34897.99 31499.10 20399.61 17599.79 6699.76 10899.58 22187.88 37899.92 11699.31 9699.97 5699.53 187
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 28999.81 7699.61 10899.48 21699.41 27298.47 17399.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10499.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
HQP4-MVS98.15 36099.70 33799.53 187
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10499.90 15799.24 10499.97 5699.53 187
HQP-MVS98.36 28398.02 29499.39 21399.31 29798.94 24397.98 34599.37 28097.45 33798.15 36098.83 36696.67 28399.70 33794.73 37599.67 24999.53 187
QAPM98.40 28197.99 29599.65 12199.39 27199.47 14799.67 4999.52 23591.70 39598.78 32899.80 8398.55 16099.95 6394.71 37799.75 21199.53 187
F-COLMAP98.74 24398.45 25799.62 14499.57 20199.47 14798.84 25399.65 15796.31 36898.93 30699.19 32497.68 24499.87 20396.52 32499.37 31199.53 187
MVSTER98.47 27398.22 27999.24 25399.06 34598.35 29299.08 21199.46 25499.27 15899.75 11499.66 17188.61 37699.85 24099.14 12599.92 10599.52 198
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31498.58 28599.82 6797.62 32899.34 24999.71 13898.52 16999.77 31697.98 21699.97 5699.52 198
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28599.48 24898.50 26499.52 20699.63 18999.14 8499.76 31897.89 22499.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19699.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
BH-RMVSNet98.41 27998.14 28799.21 25599.21 31898.47 28098.60 28098.26 36998.35 28398.93 30699.31 29997.20 26999.66 36494.32 38099.10 33699.51 200
USDC98.96 21998.93 20899.05 28199.54 21597.99 31497.07 39099.80 8098.21 29599.75 11499.77 10898.43 17999.64 37297.90 22399.88 13499.51 200
test9_res95.10 37299.44 30199.50 205
train_agg98.35 28697.95 29999.57 16299.35 28199.35 18598.11 33099.41 26594.90 38597.92 37098.99 34998.02 22099.85 24095.38 36799.44 30199.50 205
agg_prior294.58 37899.46 30099.50 205
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9098.32 36899.80 6499.56 19299.69 15196.99 27699.85 24098.99 13699.73 22399.50 205
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 27999.80 8697.83 32598.89 24799.72 12399.29 15499.63 15999.70 14596.47 29099.89 17598.17 20499.82 17999.50 205
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11699.79 8699.83 5699.88 6199.85 5698.42 18199.90 15799.60 5099.73 22399.49 210
SF-MVS99.10 19398.93 20899.62 14499.58 19199.51 14399.13 19299.65 15797.97 30999.42 23099.61 20598.86 11799.87 20396.45 33199.68 24399.49 210
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27599.47 12899.76 10899.78 10198.13 21299.86 22298.70 16699.68 24399.49 210
WTY-MVS98.59 25898.37 26599.26 24899.43 26398.40 28698.74 27099.13 32798.10 30099.21 27799.24 31794.82 31599.90 15797.86 22998.77 35599.49 210
ppachtmachnet_test98.89 23099.12 15598.20 34299.66 16995.24 38097.63 36699.68 14099.08 19399.78 10199.62 19698.65 14799.88 18998.02 21199.96 7099.48 214
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14399.74 11099.23 16699.72 12799.53 24497.63 25199.88 18999.11 12799.84 16299.48 214
test_prior99.46 18999.35 28199.22 21199.39 27599.69 34399.48 214
test1299.54 17399.29 30399.33 18899.16 32398.43 35197.54 25299.82 27999.47 29899.48 214
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12499.31 29399.67 9499.47 21899.57 22996.48 28999.84 25599.15 11999.30 32099.47 218
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22599.89 4099.60 11499.82 8199.62 19698.81 12099.89 17599.43 7299.86 15399.47 218
114514_t98.49 27198.11 28999.64 12899.73 13799.58 13299.24 15599.76 10089.94 39899.42 23099.56 23397.76 24099.86 22297.74 24199.82 17999.47 218
sss98.90 22798.77 23199.27 24599.48 24498.44 28398.72 27299.32 28997.94 31399.37 24499.35 29396.31 29799.91 13998.85 15099.63 25899.47 218
旧先验199.49 23999.29 19499.26 30499.39 28097.67 24599.36 31299.46 222
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21199.55 21598.63 24999.31 25899.68 16298.19 20899.78 30898.18 20299.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 17699.50 23499.22 21199.26 30495.66 37798.60 34199.28 30597.67 24599.89 17595.95 35399.32 31899.45 223
LFMVS98.46 27498.19 28499.26 24899.24 31398.52 27999.62 6296.94 38999.87 4199.31 25899.58 22191.04 35699.81 29498.68 16999.42 30599.45 223
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25399.89 4098.38 27699.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
UnsupCasMVSNet_eth98.83 23598.57 24799.59 15299.68 16399.45 15698.99 23599.67 14499.48 12499.55 19799.36 28894.92 31399.86 22298.95 14696.57 39899.45 223
无先验98.01 34199.23 31195.83 37499.85 24095.79 35999.44 228
testdata99.42 20199.51 22898.93 24699.30 29696.20 36998.87 31699.40 27698.33 19499.89 17596.29 33799.28 32399.44 228
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11699.84 6199.64 11098.25 31899.73 11498.39 27599.63 15999.43 27099.70 2499.90 15797.34 27398.64 36599.44 228
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10299.57 20499.44 13499.70 13699.74 11997.21 26699.87 20399.03 13399.94 9499.44 228
N_pmnet98.73 24598.53 25299.35 22599.72 14098.67 26598.34 31094.65 39998.35 28399.79 9799.68 16298.03 21999.93 9498.28 19199.92 10599.44 228
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10499.82 6798.33 28899.50 21399.78 10197.90 22899.65 37096.78 30999.83 17099.44 228
原ACMM199.37 21999.47 25098.87 25399.27 30196.74 36398.26 35599.32 29797.93 22799.82 27995.96 35299.38 30999.43 234
test22299.51 22899.08 23297.83 35999.29 29795.21 38298.68 33699.31 29997.28 26399.38 30999.43 234
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35799.74 11098.36 27899.66 15299.68 16299.71 2299.90 15796.84 30799.88 13499.43 234
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10699.85 5498.79 23199.41 23699.60 21398.92 11099.92 11698.02 21199.92 10599.43 234
TinyColmap98.97 21598.93 20899.07 27999.46 25498.19 29997.75 36199.75 10598.79 23199.54 19999.70 14598.97 10699.62 37496.63 32099.83 17099.41 238
Anonymous20240521198.75 24298.46 25699.63 13599.34 29099.66 10199.47 9897.65 38099.28 15799.56 19299.50 25193.15 33499.84 25598.62 17199.58 27499.40 239
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25599.72 12398.36 27899.60 17799.71 13898.92 11099.91 13997.08 29399.84 16299.40 239
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33898.19 29998.76 26999.33 28798.49 26699.44 22499.58 22198.21 20699.69 34398.20 19899.62 25999.39 241
FMVSNet398.80 23898.63 24099.32 23399.13 33198.72 26399.10 20399.48 24899.23 16699.62 16899.64 17892.57 34099.86 22298.96 14299.90 11599.39 241
ambc99.20 25799.35 28198.53 27799.17 17699.46 25499.67 14899.80 8398.46 17699.70 33797.92 22199.70 23499.38 243
FMVSNet597.80 31097.25 32699.42 20198.83 36698.97 24099.38 11299.80 8098.87 21999.25 26899.69 15180.60 39799.91 13998.96 14299.90 11599.38 243
PAPM_NR98.36 28398.04 29299.33 22999.48 24498.93 24698.79 26699.28 30097.54 33298.56 34598.57 37797.12 27199.69 34394.09 38498.90 35099.38 243
EPNet_dtu97.62 31897.79 31297.11 37396.67 40692.31 39798.51 29898.04 37299.24 16495.77 40099.47 26293.78 32899.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 19098.95 20799.59 15299.13 33199.59 12899.17 17699.65 15797.88 31799.25 26899.46 26598.97 10699.80 30297.26 28199.82 17999.37 246
PLCcopyleft97.35 1698.36 28397.99 29599.48 18599.32 29699.24 20798.50 29999.51 23995.19 38398.58 34398.96 35696.95 27799.83 27095.63 36199.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 31897.20 32798.90 30399.76 11797.40 34199.48 9594.36 40099.06 19799.70 13699.49 25584.55 39299.94 7798.73 16499.65 25499.36 249
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26099.66 14899.42 14399.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
PVSNet_095.53 1995.85 36395.31 36397.47 36398.78 37493.48 39395.72 39899.40 27296.18 37097.37 38297.73 39595.73 30699.58 38195.49 36481.40 40599.36 249
testing396.48 34595.63 35699.01 28499.23 31597.81 32698.90 24699.10 32898.72 24097.84 37697.92 39372.44 40999.85 24097.21 28899.33 31699.35 252
lupinMVS98.96 21998.87 21999.24 25399.57 20198.40 28698.12 32899.18 32198.28 29199.63 15999.13 32798.02 22099.97 3398.22 19699.69 23899.35 252
Vis-MVSNet (Re-imp)98.77 24098.58 24699.34 22699.78 10598.88 25199.61 6799.56 20999.11 19299.24 27199.56 23393.00 33899.78 30897.43 26899.89 12499.35 252
GA-MVS97.99 30697.68 31698.93 29499.52 22698.04 31297.19 38699.05 33298.32 28998.81 32298.97 35489.89 37299.41 39598.33 18699.05 33999.34 255
CANet99.11 19099.05 17999.28 24298.83 36698.56 27698.71 27499.41 26599.25 16299.23 27299.22 31997.66 24999.94 7799.19 11199.97 5699.33 256
Patchmtry98.78 23998.54 25199.49 18198.89 36299.19 21899.32 12699.67 14499.65 10099.72 12799.79 9391.87 34899.95 6398.00 21599.97 5699.33 256
PAPR97.56 32197.07 32999.04 28298.80 37098.11 30697.63 36699.25 30794.56 39098.02 36898.25 38797.43 25699.68 35590.90 39598.74 35999.33 256
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
CHOSEN 280x42098.41 27998.41 26198.40 33299.34 29095.89 37296.94 39299.44 25998.80 23099.25 26899.52 24693.51 33299.98 2098.94 14799.98 4199.32 259
baseline197.73 31397.33 32398.96 28899.30 30197.73 33099.40 10898.42 36299.33 15199.46 22299.21 32191.18 35499.82 27998.35 18491.26 40499.32 259
dmvs_re98.69 24998.48 25499.31 23699.55 21399.42 16599.54 8398.38 36599.32 15298.72 33298.71 37296.76 28299.21 39796.01 34799.35 31499.31 263
TAPA-MVS97.92 1398.03 30397.55 31999.46 18999.47 25099.44 15898.50 29999.62 16886.79 39999.07 29799.26 31098.26 20099.62 37497.28 27899.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12199.97 1898.93 21199.91 4499.79 9398.68 14099.93 9496.80 30899.56 27699.30 265
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32499.29 29798.18 29899.63 15999.62 19699.18 7899.68 35598.20 19899.74 21899.30 265
PVSNet_Blended98.70 24898.59 24399.02 28399.54 21597.99 31497.58 36999.82 6795.70 37699.34 24998.98 35298.52 16999.77 31697.98 21699.83 17099.30 265
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35599.73 11498.68 24499.31 25899.48 25899.09 8999.66 36497.70 24799.77 20799.29 268
dmvs_testset97.27 32896.83 33898.59 32499.46 25497.55 33599.25 15496.84 39098.78 23397.24 38597.67 39697.11 27298.97 40186.59 40598.54 36999.27 269
miper_lstm_enhance98.65 25298.60 24198.82 31399.20 32197.33 34397.78 36099.66 14899.01 20099.59 18099.50 25194.62 31999.85 24098.12 20799.90 11599.26 270
MVS95.72 36594.63 37098.99 28598.56 38697.98 32099.30 13498.86 33872.71 40497.30 38399.08 33698.34 19299.74 32589.21 39698.33 37399.26 270
MSLP-MVS++99.05 19999.09 16798.91 29799.21 31898.36 29198.82 25999.47 25198.85 22298.90 31299.56 23398.78 12799.09 39998.57 17399.68 24399.26 270
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26099.41 26598.55 25799.68 14299.69 15198.13 21299.87 20398.82 15399.98 4199.24 273
test_yl98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
DCV-MVSNet98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
DPM-MVS98.28 28997.94 30399.32 23399.36 27999.11 22597.31 38298.78 34396.88 35898.84 31999.11 33497.77 23899.61 37894.03 38699.36 31299.23 276
CLD-MVS98.76 24198.57 24799.33 22999.57 20198.97 24097.53 37299.55 21596.41 36599.27 26699.13 32799.07 9499.78 30896.73 31299.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34199.25 30798.78 23399.58 18299.44 26998.24 20199.76 31898.74 16399.93 10199.22 278
OMC-MVS98.90 22798.72 23399.44 19599.39 27199.42 16598.58 28599.64 16397.31 34599.44 22499.62 19698.59 15499.69 34396.17 34399.79 19899.22 278
EGC-MVSNET89.05 37285.52 37599.64 12899.89 3999.78 4999.56 8099.52 23524.19 40649.96 40799.83 6699.15 8199.92 11697.71 24499.85 15799.21 280
eth_miper_zixun_eth98.68 25098.71 23498.60 32399.10 33996.84 35697.52 37499.54 22198.94 20899.58 18299.48 25896.25 30099.76 31898.01 21499.93 10199.21 280
c3_l98.72 24698.71 23498.72 31899.12 33397.22 34697.68 36599.56 20998.90 21599.54 19999.48 25896.37 29699.73 32897.88 22599.88 13499.21 280
CMPMVSbinary77.52 2398.50 26998.19 28499.41 20898.33 39499.56 13599.01 22799.59 19395.44 37899.57 18599.80 8395.64 30799.46 39496.47 32999.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 19698.97 20499.34 22699.31 29798.98 23898.31 31399.91 3398.81 22898.79 32698.94 35899.14 8499.84 25598.79 15798.74 35999.20 284
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32899.53 23099.36 14899.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
CANet_DTU98.91 22598.85 22199.09 27598.79 37298.13 30398.18 32199.31 29399.48 12498.86 31799.51 24896.56 28699.95 6399.05 13299.95 8399.19 287
alignmvs98.28 28997.96 29899.25 25199.12 33398.93 24699.03 22298.42 36299.64 10298.72 33297.85 39490.86 36199.62 37498.88 14999.13 33399.19 287
DIV-MVS_self_test98.54 26398.42 26098.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.87 32599.78 30897.97 21899.89 12499.18 289
MSDG99.08 19498.98 20399.37 21999.60 18299.13 22397.54 37099.74 11098.84 22599.53 20499.55 24099.10 8799.79 30597.07 29499.86 15399.18 289
cl____98.54 26398.41 26198.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.85 32699.78 30897.97 21899.89 12499.17 291
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24299.86 4998.85 22299.81 8899.73 12398.40 18699.92 11698.36 18399.83 17099.17 291
thisisatest053097.45 32396.95 33398.94 29199.68 16397.73 33099.09 20894.19 40298.61 25399.56 19299.30 30184.30 39399.93 9498.27 19299.54 28599.16 293
PatchmatchNetpermissive97.65 31797.80 31097.18 37198.82 36992.49 39699.17 17698.39 36498.12 29998.79 32699.58 22190.71 36399.89 17597.23 28699.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7399.78 9299.71 8099.90 4999.69 15198.85 11899.90 15797.25 28599.78 20399.15 295
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
mvs_anonymous99.28 13999.39 10198.94 29199.19 32397.81 32699.02 22599.55 21599.78 6899.85 7399.80 8398.24 20199.86 22299.57 5699.50 29499.15 295
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26298.87 21999.57 18599.82 7398.06 21799.87 20398.69 16899.73 22399.15 295
MIMVSNet98.43 27798.20 28199.11 27299.53 22198.38 29099.58 7598.61 35298.96 20599.33 25199.76 11190.92 35899.81 29497.38 27199.76 20999.15 295
GSMVS99.14 300
sam_mvs190.81 36299.14 300
SCA98.11 29998.36 26697.36 36699.20 32192.99 39498.17 32398.49 35998.24 29399.10 29399.57 22996.01 30499.94 7796.86 30499.62 25999.14 300
LS3D99.24 14999.11 15899.61 14798.38 39299.79 4699.57 7899.68 14099.61 10899.15 28599.71 13898.70 13899.91 13997.54 26199.68 24399.13 303
Patchmatch-RL test98.60 25598.36 26699.33 22999.77 11399.07 23398.27 31599.87 4698.91 21499.74 12299.72 13090.57 36599.79 30598.55 17499.85 15799.11 304
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14399.68 14099.54 11899.40 24199.56 23399.07 9499.82 27996.01 34799.96 7099.11 304
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12699.74 11099.18 17499.69 13999.75 11698.41 18299.84 25597.85 23199.70 23499.10 306
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 11999.49 24799.17 17999.21 27799.67 16698.78 12799.66 36499.09 12999.66 25299.10 306
AdaColmapbinary98.60 25598.35 26899.38 21699.12 33399.22 21198.67 27599.42 26497.84 32198.81 32299.27 30797.32 26299.81 29495.14 37199.53 28799.10 306
FPMVS96.32 34995.50 35798.79 31499.60 18298.17 30298.46 30598.80 34297.16 35296.28 39699.63 18982.19 39499.09 39988.45 39898.89 35199.10 306
WB-MVSnew98.34 28898.14 28798.96 28898.14 40197.90 32398.27 31597.26 38898.63 24998.80 32498.00 39297.77 23899.90 15797.37 27298.98 34499.09 310
Syy-MVS98.17 29797.85 30999.15 26598.50 38998.79 25898.60 28099.21 31797.89 31596.76 39196.37 41095.47 31199.57 38299.10 12898.73 36199.09 310
myMVS_eth3d95.63 36694.73 36898.34 33698.50 38996.36 36398.60 28099.21 31797.89 31596.76 39196.37 41072.10 41099.57 38294.38 37998.73 36199.09 310
Patchmatch-test98.10 30097.98 29798.48 32999.27 30896.48 36099.40 10899.07 32998.81 22899.23 27299.57 22990.11 36999.87 20396.69 31399.64 25699.09 310
tpm97.15 33096.95 33397.75 35798.91 35894.24 38799.32 12697.96 37497.71 32598.29 35499.32 29786.72 38799.92 11698.10 20996.24 40199.09 310
PMMVS98.49 27198.29 27599.11 27298.96 35698.42 28597.54 37099.32 28997.53 33398.47 34998.15 38997.88 23099.82 27997.46 26699.24 32999.09 310
cl2297.56 32197.28 32498.40 33298.37 39396.75 35797.24 38599.37 28097.31 34599.41 23699.22 31987.30 37999.37 39697.70 24799.62 25999.08 316
ADS-MVSNet297.78 31197.66 31898.12 34599.14 32995.36 37799.22 16398.75 34496.97 35698.25 35699.64 17890.90 35999.94 7796.51 32599.56 27699.08 316
ADS-MVSNet97.72 31697.67 31797.86 35399.14 32994.65 38599.22 16398.86 33896.97 35698.25 35699.64 17890.90 35999.84 25596.51 32599.56 27699.08 316
pmmvs398.08 30197.80 31098.91 29799.41 26997.69 33297.87 35799.66 14895.87 37299.50 21399.51 24890.35 36799.97 3398.55 17499.47 29899.08 316
PVSNet97.47 1598.42 27898.44 25898.35 33499.46 25496.26 36596.70 39599.34 28697.68 32699.00 30199.13 32797.40 25799.72 33097.59 25999.68 24399.08 316
MVS-HIRNet97.86 30798.22 27996.76 37599.28 30691.53 40298.38 30892.60 40599.13 18899.31 25899.96 1297.18 27099.68 35598.34 18599.83 17099.07 321
PMVScopyleft92.94 2198.82 23698.81 22798.85 30699.84 6197.99 31499.20 16699.47 25199.71 8099.42 23099.82 7398.09 21499.47 39293.88 38899.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11299.71 33498.41 18099.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
hse-mvs298.52 26698.30 27499.16 26399.29 30398.60 27598.77 26899.02 33399.68 9099.32 25499.04 34192.50 34399.85 24099.24 10497.87 39099.03 325
CL-MVSNet_self_test98.71 24798.56 25099.15 26599.22 31698.66 26897.14 38799.51 23998.09 30299.54 19999.27 30796.87 27999.74 32598.43 17998.96 34599.03 325
AUN-MVS97.82 30997.38 32299.14 26999.27 30898.53 27798.72 27299.02 33398.10 30097.18 38799.03 34589.26 37499.85 24097.94 22097.91 38899.03 325
MDTV_nov1_ep13_2view91.44 40399.14 18697.37 34299.21 27791.78 35096.75 31099.03 325
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25699.33 25199.53 24498.88 11699.68 35596.01 34799.65 25499.02 329
UnsupCasMVSNet_bld98.55 26298.27 27699.40 21099.56 21299.37 17897.97 34899.68 14097.49 33699.08 29499.35 29395.41 31299.82 27997.70 24798.19 38099.01 330
miper_ehance_all_eth98.59 25898.59 24398.59 32498.98 35597.07 35097.49 37599.52 23598.50 26499.52 20699.37 28496.41 29499.71 33497.86 22999.62 25999.00 331
testing9196.00 35895.32 36298.02 34698.76 37795.39 37698.38 30898.65 35198.82 22696.84 39096.71 40775.06 40699.71 33496.46 33098.23 37798.98 332
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 333
CNLPA98.57 26098.34 26999.28 24299.18 32599.10 23098.34 31099.41 26598.48 26798.52 34698.98 35297.05 27499.78 30895.59 36299.50 29498.96 333
new_pmnet98.88 23198.89 21798.84 30899.70 15197.62 33398.15 32499.50 24397.98 30899.62 16899.54 24298.15 21199.94 7797.55 26099.84 16298.95 335
PCF-MVS96.03 1896.73 34095.86 35199.33 22999.44 25999.16 22096.87 39399.44 25986.58 40098.95 30499.40 27694.38 32199.88 18987.93 39999.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testing1196.05 35795.41 35997.97 34898.78 37495.27 37998.59 28398.23 37098.86 22196.56 39496.91 40575.20 40599.69 34397.26 28198.29 37598.93 337
PatchMatch-RL98.68 25098.47 25599.30 23999.44 25999.28 19698.14 32699.54 22197.12 35499.11 29199.25 31297.80 23699.70 33796.51 32599.30 32098.93 337
Fast-Effi-MVS+99.02 20598.87 21999.46 18999.38 27499.50 14499.04 21899.79 8697.17 35198.62 33998.74 37199.34 6099.95 6398.32 18799.41 30698.92 339
ET-MVSNet_ETH3D96.78 33896.07 34798.91 29799.26 31097.92 32297.70 36496.05 39497.96 31292.37 40598.43 38387.06 38199.90 15798.27 19297.56 39398.91 340
testing9995.86 36295.19 36597.87 35298.76 37795.03 38198.62 27798.44 36198.68 24496.67 39396.66 40874.31 40799.69 34396.51 32598.03 38798.90 341
ETVMVS96.14 35495.22 36498.89 30498.80 37098.01 31398.66 27698.35 36798.71 24297.18 38796.31 41274.23 40899.75 32296.64 31998.13 38598.90 341
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12199.79 8698.41 27298.84 31998.89 36398.75 13299.84 25598.15 20699.51 29198.89 343
CostFormer96.71 34196.79 34096.46 38198.90 35990.71 40799.41 10798.68 34794.69 38998.14 36499.34 29686.32 38999.80 30297.60 25898.07 38698.88 344
DP-MVS Recon98.50 26998.23 27799.31 23699.49 23999.46 15198.56 29099.63 16594.86 38798.85 31899.37 28497.81 23599.59 38096.08 34499.44 30198.88 344
test0.0.03 197.37 32696.91 33698.74 31797.72 40297.57 33497.60 36897.36 38798.00 30599.21 27798.02 39090.04 37099.79 30598.37 18295.89 40298.86 346
BH-untuned98.22 29598.09 29098.58 32699.38 27497.24 34598.55 29198.98 33697.81 32299.20 28298.76 37097.01 27599.65 37094.83 37498.33 37398.86 346
HY-MVS98.23 998.21 29697.95 29998.99 28599.03 34998.24 29499.61 6798.72 34596.81 36198.73 33199.51 24894.06 32399.86 22296.91 30198.20 37898.86 346
miper_enhance_ethall98.03 30397.94 30398.32 33798.27 39596.43 36296.95 39199.41 26596.37 36799.43 22898.96 35694.74 31799.69 34397.71 24499.62 25998.83 349
FE-MVS97.85 30897.42 32199.15 26599.44 25998.75 26199.77 1598.20 37195.85 37399.33 25199.80 8388.86 37599.88 18996.40 33299.12 33498.81 350
Effi-MVS+-dtu99.07 19598.92 21299.52 17698.89 36299.78 4999.15 18499.66 14899.34 14998.92 30999.24 31797.69 24399.98 2098.11 20899.28 32398.81 350
EPMVS96.53 34496.32 34297.17 37298.18 39892.97 39599.39 11089.95 40998.21 29598.61 34099.59 21886.69 38899.72 33096.99 29699.23 33198.81 350
UWE-MVS96.21 35395.78 35397.49 36198.53 38793.83 39198.04 33893.94 40398.96 20598.46 35098.17 38879.86 39899.87 20396.99 29699.06 33798.78 353
FA-MVS(test-final)98.52 26698.32 27299.10 27499.48 24498.67 26599.77 1598.60 35497.35 34399.63 15999.80 8393.07 33699.84 25597.92 22199.30 32098.78 353
MVEpermissive92.54 2296.66 34296.11 34698.31 33999.68 16397.55 33597.94 35095.60 39699.37 14690.68 40698.70 37396.56 28698.61 40486.94 40499.55 28098.77 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tpm296.35 34896.22 34496.73 37798.88 36491.75 40099.21 16598.51 35793.27 39297.89 37299.21 32184.83 39199.70 33796.04 34698.18 38198.75 356
LF4IMVS99.01 20998.92 21299.27 24599.71 14399.28 19698.59 28399.77 9598.32 28999.39 24299.41 27298.62 14999.84 25596.62 32199.84 16298.69 357
thisisatest051596.98 33496.42 34198.66 32199.42 26897.47 33797.27 38394.30 40197.24 34799.15 28598.86 36585.01 39099.87 20397.10 29299.39 30898.63 358
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21599.82 6799.50 12298.97 30299.05 33998.98 10499.98 2098.20 19899.24 32998.62 359
PAPM95.61 36794.71 36998.31 33999.12 33396.63 35896.66 39698.46 36090.77 39796.25 39798.68 37493.01 33799.69 34381.60 40697.86 39198.62 359
JIA-IIPM98.06 30297.92 30598.50 32898.59 38597.02 35198.80 26398.51 35799.88 4097.89 37299.87 4791.89 34799.90 15798.16 20597.68 39298.59 361
dp96.86 33697.07 32996.24 38398.68 38390.30 40999.19 17098.38 36597.35 34398.23 35899.59 21887.23 38099.82 27996.27 33898.73 36198.59 361
OpenMVScopyleft98.12 1098.23 29497.89 30899.26 24899.19 32399.26 20099.65 5899.69 13791.33 39698.14 36499.77 10898.28 19899.96 5495.41 36699.55 28098.58 363
baseline296.83 33796.28 34398.46 33099.09 34196.91 35498.83 25593.87 40497.23 34896.23 39998.36 38488.12 37799.90 15796.68 31498.14 38398.57 364
testing22295.60 36894.59 37198.61 32298.66 38497.45 33998.54 29497.90 37798.53 26196.54 39596.47 40970.62 41199.81 29495.91 35598.15 38298.56 365
TESTMET0.1,196.24 35195.84 35297.41 36598.24 39693.84 39097.38 37895.84 39598.43 26997.81 37798.56 37879.77 39999.89 17597.77 23698.77 35598.52 366
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
KD-MVS_2432*160095.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
miper_refine_blended95.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
iter_conf05_1198.54 26398.33 27199.18 26099.07 34399.20 21697.94 35097.59 38199.17 17999.30 26398.92 36294.79 31699.86 22298.29 18899.89 12498.47 372
bld_raw_dy_0_6498.97 21598.90 21699.17 26299.07 34399.24 20799.24 15599.93 2999.23 16699.87 6999.03 34595.48 31099.81 29498.29 18899.99 1698.47 372
CR-MVSNet98.35 28698.20 28198.83 31099.05 34698.12 30499.30 13499.67 14497.39 34199.16 28399.79 9391.87 34899.91 13998.78 16098.77 35598.44 374
RPMNet98.60 25598.53 25298.83 31099.05 34698.12 30499.30 13499.62 16899.86 4599.16 28399.74 11992.53 34299.92 11698.75 16298.77 35598.44 374
tpmrst97.73 31398.07 29196.73 37798.71 38192.00 39899.10 20398.86 33898.52 26298.92 30999.54 24291.90 34699.82 27998.02 21199.03 34198.37 376
test-LLR97.15 33096.95 33397.74 35898.18 39895.02 38297.38 37896.10 39198.00 30597.81 37798.58 37590.04 37099.91 13997.69 25398.78 35398.31 377
test-mter96.23 35295.73 35497.74 35898.18 39895.02 38297.38 37896.10 39197.90 31497.81 37798.58 37579.12 40299.91 13997.69 25398.78 35398.31 377
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19699.79 8699.48 12498.93 30698.55 37999.40 4999.93 9498.51 17699.52 29098.28 379
PatchT98.45 27698.32 27298.83 31098.94 35798.29 29399.24 15598.82 34199.84 5399.08 29499.76 11191.37 35199.94 7798.82 15399.00 34398.26 380
xiu_mvs_v2_base99.02 20599.11 15898.77 31599.37 27698.09 30898.13 32799.51 23999.47 12899.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 381
IB-MVS95.41 2095.30 36994.46 37397.84 35498.76 37795.33 37897.33 38196.07 39396.02 37195.37 40397.41 39976.17 40499.96 5497.54 26195.44 40398.22 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 33896.98 33296.16 38498.85 36590.59 40899.08 21199.32 28992.37 39397.73 38199.46 26591.15 35599.69 34396.07 34598.80 35298.21 383
MAR-MVS98.24 29397.92 30599.19 25898.78 37499.65 10799.17 17699.14 32595.36 37998.04 36798.81 36897.47 25499.72 33095.47 36599.06 33798.21 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 21199.08 16998.76 31699.37 27698.10 30798.00 34399.51 23999.47 12899.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 385
cascas96.99 33396.82 33997.48 36297.57 40595.64 37496.43 39799.56 20991.75 39497.13 38997.61 39895.58 30998.63 40396.68 31499.11 33598.18 386
BH-w/o97.20 32997.01 33197.76 35699.08 34295.69 37398.03 34098.52 35695.76 37597.96 36998.02 39095.62 30899.47 39292.82 39097.25 39598.12 387
tpmvs97.39 32597.69 31596.52 37998.41 39191.76 39999.30 13498.94 33797.74 32397.85 37599.55 24092.40 34599.73 32896.25 33998.73 36198.06 388
thres600view796.60 34396.16 34597.93 35099.63 17596.09 36999.18 17197.57 38298.77 23598.72 33297.32 40087.04 38299.72 33088.57 39798.62 36697.98 389
thres40096.40 34695.89 34997.92 35199.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37097.98 389
TR-MVS97.44 32497.15 32898.32 33798.53 38797.46 33898.47 30197.91 37696.85 35998.21 35998.51 38196.42 29299.51 39092.16 39197.29 39497.98 389
131498.00 30597.90 30798.27 34198.90 35997.45 33999.30 13499.06 33194.98 38497.21 38699.12 33198.43 17999.67 36095.58 36398.56 36897.71 392
E-PMN97.14 33297.43 32096.27 38298.79 37291.62 40195.54 39999.01 33599.44 13498.88 31399.12 33192.78 33999.68 35594.30 38199.03 34197.50 393
gg-mvs-nofinetune95.87 36195.17 36697.97 34898.19 39796.95 35299.69 4289.23 41099.89 3596.24 39899.94 1681.19 39599.51 39093.99 38798.20 37897.44 394
DeepMVS_CXcopyleft97.98 34799.69 15596.95 35299.26 30475.51 40395.74 40198.28 38696.47 29099.62 37491.23 39497.89 38997.38 395
OpenMVS_ROBcopyleft97.31 1797.36 32796.84 33798.89 30499.29 30399.45 15698.87 24999.48 24886.54 40199.44 22499.74 11997.34 26199.86 22291.61 39299.28 32397.37 396
EMVS96.96 33597.28 32495.99 38598.76 37791.03 40495.26 40098.61 35299.34 14998.92 30998.88 36493.79 32799.66 36492.87 38999.05 33997.30 397
thres100view90096.39 34796.03 34897.47 36399.63 17595.93 37099.18 17197.57 38298.75 23998.70 33597.31 40187.04 38299.67 36087.62 40098.51 37096.81 398
tfpn200view996.30 35095.89 34997.53 36099.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37096.81 398
API-MVS98.38 28298.39 26398.35 33498.83 36699.26 20099.14 18699.18 32198.59 25498.66 33798.78 36998.61 15199.57 38294.14 38399.56 27696.21 400
thres20096.09 35595.68 35597.33 36899.48 24496.22 36698.53 29697.57 38298.06 30498.37 35396.73 40686.84 38699.61 37886.99 40398.57 36796.16 401
GG-mvs-BLEND97.36 36697.59 40396.87 35599.70 3588.49 41194.64 40497.26 40280.66 39699.12 39891.50 39396.50 40096.08 402
wuyk23d97.58 32099.13 15192.93 38799.69 15599.49 14599.52 8599.77 9597.97 30999.96 2399.79 9399.84 1299.94 7795.85 35699.82 17979.36 403
test12329.31 37333.05 37818.08 38925.93 41312.24 41497.53 37210.93 41411.78 40724.21 40850.08 41721.04 4128.60 40823.51 40732.43 40733.39 404
testmvs28.94 37433.33 37615.79 39026.03 4129.81 41596.77 39415.67 41311.55 40823.87 40950.74 41619.03 4138.53 40923.21 40833.07 40629.03 405
test_blank8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.88 37533.17 3770.00 3910.00 4140.00 4160.00 40299.62 1680.00 4090.00 41099.13 32799.82 130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas16.61 37622.14 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 199.28 660.00 4100.00 4090.00 4080.00 406
sosnet-low-res8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
Regformer8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.26 38511.02 3880.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.16 3250.00 4140.00 4100.00 4090.00 4080.00 406
uanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS96.36 36395.20 370
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
test_one_060199.63 17599.76 6199.55 21599.23 16699.31 25899.61 20598.59 154
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.43 26399.61 12399.43 26296.38 36699.11 29199.07 33797.86 23199.92 11694.04 38599.49 296
test_241102_ONE99.69 15599.82 3599.54 22199.12 19199.82 8199.49 25598.91 11299.52 389
9.1498.64 23899.45 25898.81 26099.60 18797.52 33499.28 26599.56 23398.53 16699.83 27095.36 36899.64 256
save fliter99.53 22199.25 20398.29 31499.38 27999.07 195
test072699.69 15599.80 4499.24 15599.57 20499.16 18299.73 12699.65 17698.35 190
test_part299.62 17999.67 9999.55 197
sam_mvs90.52 366
MTGPAbinary99.53 230
test_post199.14 18651.63 41589.54 37399.82 27996.86 304
test_post52.41 41490.25 36899.86 222
patchmatchnet-post99.62 19690.58 36499.94 77
MTMP99.09 20898.59 355
gm-plane-assit97.59 40389.02 41193.47 39198.30 38599.84 25596.38 334
TEST999.35 28199.35 18598.11 33099.41 26594.83 38897.92 37098.99 34998.02 22099.85 240
test_899.34 29099.31 19198.08 33499.40 27294.90 38597.87 37498.97 35498.02 22099.84 255
agg_prior99.35 28199.36 18299.39 27597.76 38099.85 240
test_prior499.19 21898.00 343
test_prior297.95 34997.87 31898.05 36699.05 33997.90 22895.99 35099.49 296
旧先验297.94 35095.33 38098.94 30599.88 18996.75 310
新几何298.04 338
原ACMM297.92 353
testdata299.89 17595.99 350
segment_acmp98.37 188
testdata197.72 36297.86 320
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 264
plane_prior499.25 312
plane_prior399.31 19198.36 27899.14 287
plane_prior298.80 26398.94 208
plane_prior199.51 228
plane_prior99.24 20798.42 30697.87 31899.71 232
n20.00 415
nn0.00 415
door-mid99.83 62
test1199.29 297
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34597.45 33798.15 360
ACMP_Plane99.31 29797.98 34597.45 33798.15 360
BP-MVS94.73 375
HQP3-MVS99.37 28099.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27099.13 22398.83 366
MDTV_nov1_ep1397.73 31498.70 38290.83 40599.15 18498.02 37398.51 26398.82 32199.61 20590.98 35799.66 36496.89 30398.92 348
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 182