This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
tmp_tt95.75 33695.42 33496.76 34489.90 38194.42 35598.86 22497.87 35378.01 37299.30 23699.69 12297.70 22095.89 37699.29 6998.14 35499.95 1
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4699.68 4099.85 2899.95 499.98 399.92 1899.28 4399.98 899.75 13100.00 199.94 2
mvs_tets99.90 299.90 299.90 499.96 499.79 4099.72 2699.88 1999.92 899.98 399.93 1599.94 199.98 899.77 12100.00 199.92 3
UA-Net99.78 1499.76 1599.86 1699.72 11299.71 7299.91 399.95 899.96 399.71 10499.91 2199.15 5699.97 1999.50 37100.00 199.90 4
jajsoiax99.89 399.89 399.89 799.96 499.78 4399.70 3199.86 2499.89 1599.98 399.90 2399.94 199.98 899.75 13100.00 199.90 4
EU-MVSNet99.39 8599.62 3198.72 29499.88 2696.44 33599.56 7399.85 2899.90 1099.90 2499.85 4398.09 19299.83 24799.58 2799.95 5699.90 4
test_djsdf99.84 899.81 999.91 299.94 1099.84 2099.77 1399.80 5199.73 4899.97 699.92 1899.77 799.98 899.43 43100.00 199.90 4
CVMVSNet98.61 23198.88 19197.80 32599.58 16393.60 36099.26 13099.64 13799.66 6999.72 9999.67 13893.26 31099.93 7599.30 6699.81 16099.87 8
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 8
FC-MVSNet-test99.70 2099.65 2799.86 1699.88 2699.86 1399.72 2699.78 6299.90 1099.82 5399.83 4998.45 15599.87 18199.51 3599.97 3499.86 10
PS-CasMVS99.66 2999.58 4199.89 799.80 5999.85 1499.66 4899.73 8599.62 7799.84 4799.71 10998.62 12899.96 3799.30 6699.96 4799.86 10
anonymousdsp99.80 1299.77 1399.90 499.96 499.88 999.73 2399.85 2899.70 5699.92 1999.93 1599.45 2599.97 1999.36 54100.00 199.85 12
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2299.91 299.89 499.71 9799.93 699.95 1199.89 2799.71 999.96 3799.51 3599.97 3499.84 13
CP-MVSNet99.54 5199.43 6799.87 1499.76 8899.82 3099.57 7199.61 14999.54 9199.80 6399.64 14997.79 21799.95 4699.21 7699.94 6899.84 13
Test_1112_low_res98.95 19598.73 20599.63 11999.68 13599.15 21098.09 30399.80 5197.14 31899.46 19399.40 25396.11 28199.89 15499.01 10599.84 13399.84 13
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 53100.00 199.90 10100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 13
patch_mono-299.51 5499.46 6199.64 11299.70 12399.11 21399.04 19499.87 2199.71 5299.47 18999.79 6798.24 17899.98 899.38 5099.96 4799.83 17
nrg03099.70 2099.66 2599.82 2499.76 8899.84 2099.61 6199.70 10299.93 699.78 7199.68 13399.10 6299.78 28499.45 4199.96 4799.83 17
FIs99.65 3499.58 4199.84 2099.84 3699.85 1499.66 4899.75 7799.86 2399.74 9499.79 6798.27 17699.85 21999.37 5399.93 7699.83 17
v7n99.82 1099.80 1099.88 1199.96 499.84 2099.82 899.82 4199.84 3199.94 1299.91 2199.13 6199.96 3799.83 999.99 1299.83 17
PEN-MVS99.66 2999.59 3899.89 799.83 4099.87 1099.66 4899.73 8599.70 5699.84 4799.73 9698.56 13799.96 3799.29 6999.94 6899.83 17
WR-MVS_H99.61 4099.53 5399.87 1499.80 5999.83 2599.67 4499.75 7799.58 9099.85 4499.69 12298.18 18899.94 6099.28 7199.95 5699.83 17
test_part198.63 22998.26 25299.75 5899.40 24599.49 13099.67 4499.68 11199.86 2399.88 3499.86 3986.73 36399.93 7599.34 5699.97 3499.81 23
Anonymous2023121199.62 3899.57 4499.76 4899.61 15299.60 11199.81 999.73 8599.82 3699.90 2499.90 2397.97 20399.86 20199.42 4899.96 4799.80 24
APDe-MVS99.48 5999.36 8099.85 1999.55 18599.81 3399.50 7899.69 10898.99 17399.75 8599.71 10998.79 10599.93 7598.46 14899.85 12899.80 24
DTE-MVSNet99.68 2599.61 3599.88 1199.80 5999.87 1099.67 4499.71 9799.72 5199.84 4799.78 7498.67 12299.97 1999.30 6699.95 5699.80 24
XXY-MVS99.71 1999.67 2499.81 2799.89 2299.72 7099.59 6799.82 4199.39 11799.82 5399.84 4899.38 3199.91 11899.38 5099.93 7699.80 24
1112_ss99.05 17398.84 19699.67 9399.66 14199.29 18098.52 26799.82 4197.65 29199.43 19999.16 30696.42 27199.91 11899.07 10199.84 13399.80 24
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1699.90 599.96 199.92 999.90 1099.97 699.87 3399.81 599.95 4699.54 3199.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS299.48 5999.45 6299.57 14599.76 8898.99 22698.09 30399.90 1598.95 17999.78 7199.58 19499.57 2099.93 7599.48 3899.95 5699.79 30
MSC_two_6792asdad99.74 6499.03 32499.53 12599.23 29799.92 9597.77 20699.69 21499.78 31
No_MVS99.74 6499.03 32499.53 12599.23 29799.92 9597.77 20699.69 21499.78 31
dcpmvs_299.61 4099.64 2999.53 15899.79 6998.82 24599.58 6999.97 299.95 499.96 899.76 8498.44 15699.99 599.34 5699.96 4799.78 31
bld_raw_conf00599.81 1199.79 1199.86 1699.94 1099.85 1499.77 1399.90 1599.97 299.92 1999.86 3999.21 5099.94 6099.59 2399.98 2499.78 31
CHOSEN 1792x268899.39 8599.30 9399.65 10599.88 2699.25 19098.78 24199.88 1998.66 21299.96 899.79 6797.45 23699.93 7599.34 5699.99 1299.78 31
IU-MVS99.69 12799.77 4699.22 30097.50 30099.69 11097.75 21099.70 21199.77 36
test_0728_THIRD99.18 14799.62 13999.61 17798.58 13499.91 11897.72 21299.80 16599.77 36
test_0728_SECOND99.83 2299.70 12399.79 4099.14 16899.61 14999.92 9597.88 19599.72 20699.77 36
MSP-MVS99.04 17698.79 20399.81 2799.78 7699.73 6699.35 10499.57 18098.54 22699.54 17098.99 32996.81 26299.93 7596.97 26799.53 26799.77 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft99.14 15598.92 18599.82 2499.57 17399.77 4698.74 24599.60 16298.55 22399.76 7899.69 12298.23 18299.92 9596.39 30099.75 18599.76 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Baseline_NR-MVSNet99.49 5799.37 7799.82 2499.91 1699.84 2098.83 22999.86 2499.68 6199.65 12599.88 3097.67 22599.87 18199.03 10399.86 12499.76 40
OurMVSNet-221017-099.75 1699.71 1799.84 2099.96 499.83 2599.83 699.85 2899.80 4099.93 1599.93 1598.54 14099.93 7599.59 2399.98 2499.76 40
test_241102_TWO99.54 19799.13 15999.76 7899.63 15998.32 17399.92 9597.85 20199.69 21499.75 43
DP-MVS99.48 5999.39 7299.74 6499.57 17399.62 10399.29 12499.61 14999.87 2199.74 9499.76 8498.69 11899.87 18198.20 16899.80 16599.75 43
v1099.69 2299.69 2199.66 10099.81 5499.39 15899.66 4899.75 7799.60 8799.92 1999.87 3398.75 11399.86 20199.90 299.99 1299.73 45
EI-MVSNet-UG-set99.48 5999.50 5599.42 19099.57 17398.65 25999.24 13799.46 23799.68 6199.80 6399.66 14298.99 7899.89 15499.19 8199.90 9099.72 46
Vis-MVSNetpermissive99.75 1699.74 1699.79 3599.88 2699.66 9099.69 3799.92 999.67 6599.77 7699.75 8999.61 1799.98 899.35 5599.98 2499.72 46
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 19898.64 21399.73 7499.85 3599.47 13398.07 30699.83 3698.64 21499.89 2899.60 18692.57 316100.00 199.33 6099.97 3499.72 46
EI-MVSNet-Vis-set99.47 6599.49 5699.42 19099.57 17398.66 25699.24 13799.46 23799.67 6599.79 6899.65 14798.97 8199.89 15499.15 9099.89 9999.71 49
v899.68 2599.69 2199.65 10599.80 5999.40 15699.66 4899.76 7099.64 7399.93 1599.85 4398.66 12499.84 23699.88 699.99 1299.71 49
TransMVSNet (Re)99.78 1499.77 1399.81 2799.91 1699.85 1499.75 1899.86 2499.70 5699.91 2299.89 2799.60 1999.87 18199.59 2399.74 19399.71 49
test111197.74 29098.16 26496.49 35099.60 15489.86 37999.71 3091.21 37699.89 1599.88 3499.87 3393.73 30699.90 13899.56 2999.99 1299.70 52
VPA-MVSNet99.66 2999.62 3199.79 3599.68 13599.75 5799.62 5699.69 10899.85 2899.80 6399.81 5998.81 9899.91 11899.47 3999.88 10899.70 52
WR-MVS99.11 16398.93 18199.66 10099.30 27899.42 15198.42 27799.37 26699.04 17199.57 15699.20 30396.89 26099.86 20198.66 14099.87 11799.70 52
ACMH98.42 699.59 4299.54 4999.72 8099.86 3299.62 10399.56 7399.79 5798.77 20499.80 6399.85 4399.64 1399.85 21998.70 13699.89 9999.70 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 699.86 699.83 2299.94 1099.90 599.83 699.91 1299.85 2899.94 1299.95 1399.73 899.90 13899.65 1899.97 3499.69 56
HPM-MVS_fast99.43 7199.30 9399.80 3099.83 4099.81 3399.52 7699.70 10298.35 24899.51 18299.50 22699.31 3999.88 16998.18 17299.84 13399.69 56
LPG-MVS_test99.22 13299.05 15299.74 6499.82 4799.63 10199.16 16499.73 8597.56 29499.64 12799.69 12299.37 3399.89 15496.66 28699.87 11799.69 56
LGP-MVS_train99.74 6499.82 4799.63 10199.73 8597.56 29499.64 12799.69 12299.37 3399.89 15496.66 28699.87 11799.69 56
SteuartSystems-ACMMP99.30 10999.14 12199.76 4899.87 3099.66 9099.18 15399.60 16298.55 22399.57 15699.67 13899.03 7599.94 6097.01 26599.80 16599.69 56
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 24598.39 23998.94 26899.15 30497.39 31798.18 29299.21 30498.89 19099.23 24499.63 15997.37 24299.74 30094.22 35099.61 24599.69 56
ACMMP_NAP99.28 11299.11 13199.79 3599.75 9999.81 3398.95 21599.53 20698.27 25799.53 17599.73 9698.75 11399.87 18197.70 21799.83 14399.68 62
HFP-MVS99.25 11999.08 14299.76 4899.73 10899.70 7999.31 11499.59 16998.36 24399.36 21899.37 26198.80 10299.91 11897.43 23899.75 18599.68 62
#test#99.12 15998.90 18999.76 4899.73 10899.70 7999.10 18199.59 16997.60 29399.36 21899.37 26198.80 10299.91 11896.84 27699.75 18599.68 62
EI-MVSNet99.38 8799.44 6499.21 24099.58 16398.09 29199.26 13099.46 23799.62 7799.75 8599.67 13898.54 14099.85 21999.15 9099.92 8099.68 62
TranMVSNet+NR-MVSNet99.54 5199.47 5799.76 4899.58 16399.64 9799.30 11799.63 13999.61 8199.71 10499.56 20698.76 11199.96 3799.14 9699.92 8099.68 62
PVSNet_Blended_VisFu99.40 8199.38 7499.44 18499.90 2098.66 25698.94 21799.91 1297.97 27499.79 6899.73 9699.05 7399.97 1999.15 9099.99 1299.68 62
IterMVS-LS99.41 7899.47 5799.25 23599.81 5498.09 29198.85 22699.76 7099.62 7799.83 5299.64 14998.54 14099.97 1999.15 9099.99 1299.68 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 15598.92 18599.80 3099.83 4099.83 2598.61 25299.63 13996.84 32699.44 19599.58 19498.81 9899.91 11897.70 21799.82 15299.67 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 12399.05 15299.77 4199.76 8899.70 7999.31 11499.59 16998.41 23799.32 22799.36 26698.73 11699.93 7597.29 24599.74 19399.67 69
Regformer-499.45 6899.44 6499.50 16699.52 19798.94 23399.17 15899.53 20699.64 7399.76 7899.60 18698.96 8499.90 13898.91 11999.84 13399.67 69
XVS99.27 11699.11 13199.75 5899.71 11599.71 7299.37 10099.61 14999.29 12898.76 30399.47 23998.47 15199.88 16997.62 22599.73 20099.67 69
v124099.56 4699.58 4199.51 16399.80 5999.00 22599.00 20299.65 13199.15 15799.90 2499.75 8999.09 6499.88 16999.90 299.96 4799.67 69
X-MVStestdata96.09 32994.87 33999.75 5899.71 11599.71 7299.37 10099.61 14999.29 12898.76 30361.30 38398.47 15199.88 16997.62 22599.73 20099.67 69
VPNet99.46 6699.37 7799.71 8499.82 4799.59 11499.48 8299.70 10299.81 3799.69 11099.58 19497.66 22999.86 20199.17 8699.44 28099.67 69
ACMMPR99.23 12399.06 14899.76 4899.74 10599.69 8399.31 11499.59 16998.36 24399.35 22099.38 25998.61 13099.93 7597.43 23899.75 18599.67 69
SixPastTwentyTwo99.42 7499.30 9399.76 4899.92 1599.67 8899.70 3199.14 31099.65 7199.89 2899.90 2396.20 27999.94 6099.42 4899.92 8099.67 69
HPM-MVScopyleft99.25 11999.07 14699.78 3899.81 5499.75 5799.61 6199.67 11697.72 28899.35 22099.25 29299.23 4899.92 9597.21 25699.82 15299.67 69
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 4999.54 4999.58 13999.78 7699.20 20599.11 18099.62 14299.18 14799.89 2899.72 10298.66 12499.87 18199.88 699.97 3499.66 79
v192192099.56 4699.57 4499.55 15299.75 9999.11 21399.05 19299.61 14999.15 15799.88 3499.71 10999.08 6899.87 18199.90 299.97 3499.66 79
v119299.57 4399.57 4499.57 14599.77 8499.22 19999.04 19499.60 16299.18 14799.87 4199.72 10299.08 6899.85 21999.89 599.98 2499.66 79
PGM-MVS99.20 13999.01 16499.77 4199.75 9999.71 7299.16 16499.72 9497.99 27299.42 20199.60 18698.81 9899.93 7596.91 27099.74 19399.66 79
mPP-MVS99.19 14299.00 16799.76 4899.76 8899.68 8699.38 9699.54 19798.34 25299.01 27499.50 22698.53 14499.93 7597.18 25899.78 17699.66 79
CP-MVS99.23 12399.05 15299.75 5899.66 14199.66 9099.38 9699.62 14298.38 24199.06 27299.27 28798.79 10599.94 6097.51 23499.82 15299.66 79
EG-PatchMatch MVS99.57 4399.56 4899.62 12899.77 8499.33 17499.26 13099.76 7099.32 12699.80 6399.78 7499.29 4199.87 18199.15 9099.91 8999.66 79
UGNet99.38 8799.34 8299.49 16998.90 33498.90 24199.70 3199.35 27099.86 2398.57 31799.81 5998.50 15099.93 7599.38 5099.98 2499.66 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250694.73 34094.59 34295.15 35699.59 15885.90 38199.75 1874.01 38299.89 1599.71 10499.86 3979.00 38099.90 13899.52 3499.99 1299.65 87
ECVR-MVScopyleft97.73 29198.04 27096.78 34399.59 15890.81 37599.72 2690.43 37899.89 1599.86 4299.86 3993.60 30899.89 15499.46 4099.99 1299.65 87
h-mvs3398.61 23198.34 24599.44 18499.60 15498.67 25499.27 12899.44 24299.68 6199.32 22799.49 23192.50 319100.00 199.24 7396.51 36999.65 87
TSAR-MVS + MP.99.34 10099.24 10999.63 11999.82 4799.37 16499.26 13099.35 27098.77 20499.57 15699.70 11699.27 4699.88 16997.71 21499.75 18599.65 87
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS99.30 10999.14 12199.80 3099.81 5499.81 3398.73 24799.53 20699.27 13299.42 20199.63 15998.21 18399.95 4697.83 20499.79 17099.65 87
MTAPA99.35 9599.20 11399.80 3099.81 5499.81 3399.33 10799.53 20699.27 13299.42 20199.63 15998.21 18399.95 4697.83 20499.79 17099.65 87
Regformer-399.41 7899.41 7099.40 19999.52 19798.70 25299.17 15899.44 24299.62 7799.75 8599.60 18698.90 9199.85 21998.89 12099.84 13399.65 87
MCST-MVS99.02 17998.81 20099.65 10599.58 16399.49 13098.58 25699.07 31398.40 23999.04 27399.25 29298.51 14999.80 27897.31 24499.51 27099.65 87
UniMVSNet_NR-MVSNet99.37 9099.25 10799.72 8099.47 22499.56 12098.97 21399.61 14999.43 11499.67 11799.28 28597.85 21399.95 4699.17 8699.81 16099.65 87
ZNCC-MVS99.22 13299.04 15899.77 4199.76 8899.73 6699.28 12599.56 18598.19 26299.14 26199.29 28398.84 9799.92 9597.53 23399.80 16599.64 96
v114499.54 5199.53 5399.59 13599.79 6999.28 18299.10 18199.61 14999.20 14599.84 4799.73 9698.67 12299.84 23699.86 899.98 2499.64 96
v2v48299.50 5599.47 5799.58 13999.78 7699.25 19099.14 16899.58 17899.25 13699.81 6099.62 16898.24 17899.84 23699.83 999.97 3499.64 96
K. test v398.87 20698.60 21699.69 8999.93 1499.46 13799.74 2094.97 36999.78 4499.88 3499.88 3093.66 30799.97 1999.61 2199.95 5699.64 96
DeepC-MVS98.90 499.62 3899.61 3599.67 9399.72 11299.44 14499.24 13799.71 9799.27 13299.93 1599.90 2399.70 1199.93 7598.99 10699.99 1299.64 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.56 23998.17 26399.72 8099.45 23299.60 11198.88 22099.50 22296.88 32399.18 25699.48 23497.08 25599.92 9593.69 35799.38 28999.63 101
SMA-MVScopyleft99.19 14299.00 16799.73 7499.46 22999.73 6699.13 17499.52 21497.40 30599.57 15699.64 14998.93 8599.83 24797.61 22799.79 17099.63 101
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 18599.16 11798.51 30199.75 9995.90 34398.07 30699.84 3499.84 3199.89 2899.73 9696.01 28399.99 599.33 60100.00 199.63 101
pm-mvs199.79 1399.79 1199.78 3899.91 1699.83 2599.76 1699.87 2199.73 4899.89 2899.87 3399.63 1499.87 18199.54 3199.92 8099.63 101
MP-MVScopyleft99.06 17098.83 19899.76 4899.76 8899.71 7299.32 11099.50 22298.35 24898.97 27699.48 23498.37 16699.92 9595.95 32099.75 18599.63 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 10499.21 11299.71 8499.43 23699.56 12098.83 22999.53 20699.38 11899.67 11799.36 26697.67 22599.95 4699.17 8699.81 16099.63 101
NR-MVSNet99.40 8199.31 8899.68 9099.43 23699.55 12399.73 2399.50 22299.46 10699.88 3499.36 26697.54 23399.87 18198.97 11099.87 11799.63 101
IterMVS98.97 18999.16 11798.42 30599.74 10595.64 34698.06 30899.83 3699.83 3499.85 4499.74 9296.10 28299.99 599.27 72100.00 199.63 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 15099.00 16799.66 10099.80 5999.43 14899.70 3199.24 29699.48 9799.56 16399.77 8194.89 29299.93 7598.72 13599.89 9999.63 101
ACMMPcopyleft99.25 11999.08 14299.74 6499.79 6999.68 8699.50 7899.65 13198.07 26899.52 17799.69 12298.57 13599.92 9597.18 25899.79 17099.63 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 12399.12 12899.56 14999.28 28399.22 19998.99 20799.40 25699.08 16499.58 15399.64 14998.90 9199.83 24797.44 23799.75 18599.63 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.38 8799.25 10799.77 4199.03 32499.77 4699.74 2099.61 14999.18 14799.76 7899.61 17799.00 7699.92 9597.72 21299.60 24899.62 112
PC_three_145297.56 29499.68 11299.41 24999.09 6497.09 37596.66 28699.60 24899.62 112
GeoE99.69 2299.66 2599.78 3899.76 8899.76 5399.60 6699.82 4199.46 10699.75 8599.56 20699.63 1499.95 4699.43 4399.88 10899.62 112
test_method91.72 34192.32 34489.91 35893.49 38070.18 38290.28 37199.56 18561.71 37595.39 37299.52 21993.90 30199.94 6098.76 13198.27 34999.62 112
GST-MVS99.16 15198.96 17899.75 5899.73 10899.73 6699.20 14799.55 19198.22 25999.32 22799.35 27198.65 12699.91 11896.86 27399.74 19399.62 112
new-patchmatchnet99.35 9599.57 4498.71 29699.82 4796.62 33398.55 26299.75 7799.50 9599.88 3499.87 3399.31 3999.88 16999.43 43100.00 199.62 112
RRT_MVS98.75 21898.54 22699.41 19798.14 37198.61 26098.98 21199.66 12099.31 12799.84 4799.75 8991.98 32299.98 899.20 7999.95 5699.62 112
CPTT-MVS98.74 22098.44 23499.64 11299.61 15299.38 16199.18 15399.55 19196.49 33199.27 23899.37 26197.11 25499.92 9595.74 32799.67 22699.62 112
MIMVSNet199.66 2999.62 3199.80 3099.94 1099.87 1099.69 3799.77 6599.78 4499.93 1599.89 2797.94 20499.92 9599.65 1899.98 2499.62 112
DeepPCF-MVS98.42 699.18 14699.02 16199.67 9399.22 29299.75 5797.25 35499.47 23398.72 20999.66 12199.70 11699.29 4199.63 34798.07 18199.81 16099.62 112
3Dnovator+98.92 399.35 9599.24 10999.67 9399.35 25799.47 13399.62 5699.50 22299.44 10999.12 26499.78 7498.77 11099.94 6097.87 19899.72 20699.62 112
DVP-MVScopyleft99.32 10699.17 11699.77 4199.69 12799.80 3899.14 16899.31 27999.16 15399.62 13999.61 17798.35 16899.91 11897.88 19599.72 20699.61 123
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 20698.59 21899.71 8499.50 20899.62 10399.01 20099.57 18096.80 32899.54 17099.63 15998.29 17499.91 11895.24 33799.71 20999.61 123
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 21198.57 22299.58 13999.21 29499.31 17798.61 25299.25 29398.65 21398.43 32599.26 29097.86 21199.81 27396.55 29199.27 30699.61 123
TAMVS99.49 5799.45 6299.63 11999.48 21999.42 15199.45 8599.57 18099.66 6999.78 7199.83 4997.85 21399.86 20199.44 4299.96 4799.61 123
Regformer-199.32 10699.27 10399.47 17599.41 24298.95 23298.99 20799.48 22999.48 9799.66 12199.52 21998.78 10799.87 18198.36 15399.74 19399.60 127
Regformer-299.34 10099.27 10399.53 15899.41 24299.10 21898.99 20799.53 20699.47 10299.66 12199.52 21998.80 10299.89 15498.31 15999.74 19399.60 127
HPM-MVS++copyleft98.96 19298.70 21099.74 6499.52 19799.71 7298.86 22499.19 30598.47 23398.59 31599.06 31898.08 19499.91 11896.94 26899.60 24899.60 127
V4299.56 4699.54 4999.63 11999.79 6999.46 13799.39 9499.59 16999.24 13899.86 4299.70 11698.55 13899.82 25799.79 1199.95 5699.60 127
HQP_MVS98.90 20098.68 21299.55 15299.58 16399.24 19598.80 23799.54 19798.94 18099.14 26199.25 29297.24 24699.82 25795.84 32399.78 17699.60 127
plane_prior599.54 19799.82 25795.84 32399.78 17699.60 127
TDRefinement99.72 1899.70 1899.77 4199.90 2099.85 1499.86 599.92 999.69 5999.78 7199.92 1899.37 3399.88 16998.93 11899.95 5699.60 127
ACMH+98.40 899.50 5599.43 6799.71 8499.86 3299.76 5399.32 11099.77 6599.53 9399.77 7699.76 8499.26 4799.78 28497.77 20699.88 10899.60 127
ACMM98.09 1199.46 6699.38 7499.72 8099.80 5999.69 8399.13 17499.65 13198.99 17399.64 12799.72 10299.39 2799.86 20198.23 16599.81 16099.60 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 18998.82 19999.42 19099.71 11598.81 24699.62 5698.68 33099.81 3799.38 21699.80 6194.25 29999.85 21998.79 12799.32 29999.59 136
casdiffmvs99.63 3599.61 3599.67 9399.79 6999.59 11499.13 17499.85 2899.79 4299.76 7899.72 10299.33 3899.82 25799.21 7699.94 6899.59 136
UniMVSNet (Re)99.37 9099.26 10599.68 9099.51 20299.58 11798.98 21199.60 16299.43 11499.70 10799.36 26697.70 22099.88 16999.20 7999.87 11799.59 136
DSMNet-mixed99.48 5999.65 2798.95 26799.71 11597.27 31999.50 7899.82 4199.59 8999.41 20999.85 4399.62 16100.00 199.53 3399.89 9999.59 136
3Dnovator99.15 299.43 7199.36 8099.65 10599.39 24799.42 15199.70 3199.56 18599.23 14099.35 22099.80 6199.17 5499.95 4698.21 16799.84 13399.59 136
SED-MVS99.40 8199.28 10099.77 4199.69 12799.82 3099.20 14799.54 19799.13 15999.82 5399.63 15998.91 8899.92 9597.85 20199.70 21199.58 141
OPU-MVS99.29 22699.12 30999.44 14499.20 14799.40 25399.00 7698.84 37296.54 29299.60 24899.58 141
abl_699.36 9399.23 11199.75 5899.71 11599.74 6399.33 10799.76 7099.07 16699.65 12599.63 15999.09 6499.92 9597.13 26199.76 18299.58 141
EPNet98.13 27697.77 29199.18 24594.57 37997.99 29599.24 13797.96 35099.74 4797.29 36099.62 16893.13 31299.97 1998.59 14299.83 14399.58 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 17798.85 19499.55 15299.80 5999.25 19099.73 2399.15 30999.37 11999.61 14599.71 10994.73 29599.81 27397.70 21799.88 10899.58 141
ACMP97.51 1499.05 17398.84 19699.67 9399.78 7699.55 12398.88 22099.66 12097.11 32099.47 18999.60 18699.07 7099.89 15496.18 30999.85 12899.58 141
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test117299.23 12399.05 15299.74 6499.52 19799.75 5799.20 14799.61 14998.97 17599.48 18799.58 19498.41 16099.91 11897.15 26099.55 25999.57 147
SR-MVS99.19 14299.00 16799.74 6499.51 20299.72 7099.18 15399.60 16298.85 19399.47 18999.58 19498.38 16599.92 9596.92 26999.54 26599.57 147
lessismore_v099.64 11299.86 3299.38 16190.66 37799.89 2899.83 4994.56 29799.97 1999.56 2999.92 8099.57 147
pmmvs599.19 14299.11 13199.42 19099.76 8898.88 24298.55 26299.73 8598.82 19799.72 9999.62 16896.56 26599.82 25799.32 6299.95 5699.56 150
APD-MVS_3200maxsize99.31 10899.16 11799.74 6499.53 19199.75 5799.27 12899.61 14999.19 14699.57 15699.64 14998.76 11199.90 13897.29 24599.62 23899.56 150
CDPH-MVS98.56 23998.20 25899.61 13199.50 20899.46 13798.32 28399.41 24995.22 34999.21 25099.10 31598.34 17099.82 25795.09 34099.66 23099.56 150
Anonymous2024052199.44 7099.42 6999.49 16999.89 2298.96 23199.62 5699.76 7099.85 2899.82 5399.88 3096.39 27499.97 1999.59 2399.98 2499.55 153
our_test_398.85 20899.09 14098.13 31799.66 14194.90 35397.72 33299.58 17899.07 16699.64 12799.62 16898.19 18699.93 7598.41 15099.95 5699.55 153
YYNet198.95 19598.99 17298.84 28499.64 14597.14 32398.22 29199.32 27598.92 18599.59 15199.66 14297.40 23899.83 24798.27 16299.90 9099.55 153
MDA-MVSNet_test_wron98.95 19598.99 17298.85 28299.64 14597.16 32298.23 29099.33 27398.93 18399.56 16399.66 14297.39 24099.83 24798.29 16099.88 10899.55 153
MVSFormer99.41 7899.44 6499.31 22399.57 17398.40 27299.77 1399.80 5199.73 4899.63 13199.30 28098.02 19899.98 899.43 4399.69 21499.55 153
jason99.16 15199.11 13199.32 22099.75 9998.44 26998.26 28899.39 25998.70 21099.74 9499.30 28098.54 14099.97 1998.48 14799.82 15299.55 153
jason: jason.
CDS-MVSNet99.22 13299.13 12499.50 16699.35 25799.11 21398.96 21499.54 19799.46 10699.61 14599.70 11696.31 27699.83 24799.34 5699.88 10899.55 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 6899.37 7799.70 8899.83 4099.70 7999.38 9699.78 6299.53 9399.67 11799.78 7499.19 5299.86 20197.32 24399.87 11799.55 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post99.27 11699.11 13199.73 7499.54 18699.74 6399.26 13099.62 14299.16 15399.52 17799.64 14998.41 16099.91 11897.27 24899.61 24599.54 161
RE-MVS-def99.13 12499.54 18699.74 6399.26 13099.62 14299.16 15399.52 17799.64 14998.57 13597.27 24899.61 24599.54 161
SD-MVS99.01 18399.30 9398.15 31699.50 20899.40 15698.94 21799.61 14999.22 14499.75 8599.82 5699.54 2395.51 37797.48 23599.87 11799.54 161
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 18898.80 20299.56 14999.25 28899.43 14898.54 26599.27 28898.58 22098.80 29899.43 24798.53 14499.70 31197.22 25599.59 25299.54 161
MVS_111021_HR99.12 15999.02 16199.40 19999.50 20899.11 21397.92 32499.71 9798.76 20799.08 26899.47 23999.17 5499.54 35797.85 20199.76 18299.54 161
v14899.40 8199.41 7099.39 20299.76 8898.94 23399.09 18699.59 16999.17 15199.81 6099.61 17798.41 16099.69 31799.32 6299.94 6899.53 166
iter_conf0598.46 25398.23 25499.15 24899.04 32297.99 29599.10 18199.61 14999.79 4299.76 7899.58 19487.88 35499.92 9599.31 6599.97 3499.53 166
diffmvs99.34 10099.32 8799.39 20299.67 14098.77 24998.57 26099.81 5099.61 8199.48 18799.41 24998.47 15199.86 20198.97 11099.90 9099.53 166
baseline99.63 3599.62 3199.66 10099.80 5999.62 10399.44 8899.80 5199.71 5299.72 9999.69 12299.15 5699.83 24799.32 6299.94 6899.53 166
HQP4-MVS98.15 33599.70 31199.53 166
GBi-Net99.42 7499.31 8899.73 7499.49 21399.77 4699.68 4099.70 10299.44 10999.62 13999.83 4997.21 24899.90 13898.96 11299.90 9099.53 166
test199.42 7499.31 8899.73 7499.49 21399.77 4699.68 4099.70 10299.44 10999.62 13999.83 4997.21 24899.90 13898.96 11299.90 9099.53 166
FMVSNet199.66 2999.63 3099.73 7499.78 7699.77 4699.68 4099.70 10299.67 6599.82 5399.83 4998.98 7999.90 13899.24 7399.97 3499.53 166
HQP-MVS98.36 26298.02 27299.39 20299.31 27498.94 23397.98 31699.37 26697.45 30298.15 33598.83 34796.67 26399.70 31194.73 34399.67 22699.53 166
QAPM98.40 26097.99 27399.65 10599.39 24799.47 13399.67 4499.52 21491.70 36598.78 30199.80 6198.55 13899.95 4694.71 34599.75 18599.53 166
F-COLMAP98.74 22098.45 23399.62 12899.57 17399.47 13398.84 22799.65 13196.31 33598.93 28099.19 30597.68 22499.87 18196.52 29399.37 29399.53 166
MVSTER98.47 25298.22 25699.24 23799.06 31998.35 27799.08 18999.46 23799.27 13299.75 8599.66 14288.61 35299.85 21999.14 9699.92 8099.52 177
PVSNet_BlendedMVS99.03 17799.01 16499.09 25599.54 18697.99 29598.58 25699.82 4197.62 29299.34 22399.71 10998.52 14799.77 29297.98 18799.97 3499.52 177
OPM-MVS99.26 11899.13 12499.63 11999.70 12399.61 10998.58 25699.48 22998.50 22999.52 17799.63 15999.14 5999.76 29497.89 19499.77 18099.51 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior198.33 26797.92 28399.57 14599.35 25799.36 16797.99 31599.39 25994.85 35697.76 35598.98 33298.03 19699.85 21995.49 33199.44 28099.51 179
AllTest99.21 13799.07 14699.63 11999.78 7699.64 9799.12 17899.83 3698.63 21599.63 13199.72 10298.68 11999.75 29896.38 30199.83 14399.51 179
TestCases99.63 11999.78 7699.64 9799.83 3698.63 21599.63 13199.72 10298.68 11999.75 29896.38 30199.83 14399.51 179
BH-RMVSNet98.41 25898.14 26699.21 24099.21 29498.47 26698.60 25498.26 34798.35 24898.93 28099.31 27897.20 25199.66 33794.32 34899.10 31499.51 179
USDC98.96 19298.93 18199.05 26199.54 18697.99 29597.07 36099.80 5198.21 26099.75 8599.77 8198.43 15799.64 34697.90 19399.88 10899.51 179
test9_res95.10 33999.44 28099.50 185
train_agg98.35 26597.95 27799.57 14599.35 25799.35 17198.11 30199.41 24994.90 35397.92 34698.99 32998.02 19899.85 21995.38 33599.44 28099.50 185
agg_prior294.58 34799.46 27999.50 185
VDD-MVS99.20 13999.11 13199.44 18499.43 23698.98 22799.50 7898.32 34699.80 4099.56 16399.69 12296.99 25899.85 21998.99 10699.73 20099.50 185
MDA-MVSNet-bldmvs99.06 17099.05 15299.07 25999.80 5997.83 30398.89 21999.72 9499.29 12899.63 13199.70 11696.47 26999.89 15498.17 17499.82 15299.50 185
KD-MVS_self_test99.63 3599.59 3899.76 4899.84 3699.90 599.37 10099.79 5799.83 3499.88 3499.85 4398.42 15999.90 13899.60 2299.73 20099.49 190
xxxxxxxxxxxxxcwj99.11 16398.96 17899.54 15699.53 19199.25 19098.29 28599.76 7099.07 16699.42 20199.61 17798.86 9499.87 18196.45 29899.68 21999.49 190
SF-MVS99.10 16798.93 18199.62 12899.58 16399.51 12899.13 17499.65 13197.97 27499.42 20199.61 17798.86 9499.87 18196.45 29899.68 21999.49 190
Anonymous2024052999.42 7499.34 8299.65 10599.53 19199.60 11199.63 5599.39 25999.47 10299.76 7899.78 7498.13 19099.86 20198.70 13699.68 21999.49 190
WTY-MVS98.59 23698.37 24199.26 23299.43 23698.40 27298.74 24599.13 31298.10 26599.21 25099.24 29794.82 29399.90 13897.86 19998.77 33199.49 190
ppachtmachnet_test98.89 20399.12 12898.20 31599.66 14195.24 35097.63 33699.68 11199.08 16499.78 7199.62 16898.65 12699.88 16998.02 18299.96 4799.48 195
Anonymous2023120699.35 9599.31 8899.47 17599.74 10599.06 22499.28 12599.74 8299.23 14099.72 9999.53 21797.63 23199.88 16999.11 9899.84 13399.48 195
test_prior398.62 23098.34 24599.46 17899.35 25799.22 19997.95 32099.39 25997.87 28198.05 34199.05 31997.90 20799.69 31795.99 31699.49 27499.48 195
test_prior99.46 17899.35 25799.22 19999.39 25999.69 31799.48 195
test1299.54 15699.29 28099.33 17499.16 30898.43 32597.54 23399.82 25799.47 27799.48 195
VNet99.18 14699.06 14899.56 14999.24 29099.36 16799.33 10799.31 27999.67 6599.47 18999.57 20396.48 26899.84 23699.15 9099.30 30199.47 200
test20.0399.55 4999.54 4999.58 13999.79 6999.37 16499.02 19899.89 1799.60 8799.82 5399.62 16898.81 9899.89 15499.43 4399.86 12499.47 200
114514_t98.49 25098.11 26799.64 11299.73 10899.58 11799.24 13799.76 7089.94 36899.42 20199.56 20697.76 21999.86 20197.74 21199.82 15299.47 200
sss98.90 20098.77 20499.27 23099.48 21998.44 26998.72 24899.32 27597.94 27899.37 21799.35 27196.31 27699.91 11898.85 12299.63 23799.47 200
旧先验199.49 21399.29 18099.26 29099.39 25797.67 22599.36 29499.46 204
112198.56 23998.24 25399.52 16099.49 21399.24 19599.30 11799.22 30095.77 34298.52 32099.29 28397.39 24099.85 21995.79 32599.34 29699.46 204
MVP-Stereo99.16 15199.08 14299.43 18899.48 21999.07 22299.08 18999.55 19198.63 21599.31 23199.68 13398.19 18699.78 28498.18 17299.58 25399.45 206
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 16099.50 20899.22 19999.26 29095.66 34598.60 31499.28 28597.67 22599.89 15495.95 32099.32 29999.45 206
LFMVS98.46 25398.19 26199.26 23299.24 29098.52 26599.62 5696.94 36299.87 2199.31 23199.58 19491.04 33399.81 27398.68 13999.42 28599.45 206
testgi99.29 11199.26 10599.37 20999.75 9998.81 24698.84 22799.89 1798.38 24199.75 8599.04 32299.36 3699.86 20199.08 10099.25 30799.45 206
UnsupCasMVSNet_eth98.83 20998.57 22299.59 13599.68 13599.45 14298.99 20799.67 11699.48 9799.55 16899.36 26694.92 29199.86 20198.95 11696.57 36899.45 206
无先验98.01 31199.23 29795.83 34199.85 21995.79 32599.44 211
testdata99.42 19099.51 20298.93 23799.30 28296.20 33698.87 29099.40 25398.33 17299.89 15496.29 30499.28 30399.44 211
XVG-OURS-SEG-HR99.16 15198.99 17299.66 10099.84 3699.64 9798.25 28999.73 8598.39 24099.63 13199.43 24799.70 1199.90 13897.34 24298.64 33999.44 211
FMVSNet299.35 9599.28 10099.55 15299.49 21399.35 17199.45 8599.57 18099.44 10999.70 10799.74 9297.21 24899.87 18199.03 10399.94 6899.44 211
N_pmnet98.73 22298.53 22899.35 21399.72 11298.67 25498.34 28094.65 37098.35 24899.79 6899.68 13398.03 19699.93 7598.28 16199.92 8099.44 211
RPSCF99.18 14699.02 16199.64 11299.83 4099.85 1499.44 8899.82 4198.33 25399.50 18499.78 7497.90 20799.65 34496.78 27999.83 14399.44 211
原ACMM199.37 20999.47 22498.87 24499.27 28896.74 32998.26 33099.32 27697.93 20599.82 25795.96 31999.38 28999.43 217
test22299.51 20299.08 22197.83 32999.29 28495.21 35098.68 30999.31 27897.28 24599.38 28999.43 217
XVG-OURS99.21 13799.06 14899.65 10599.82 4799.62 10397.87 32799.74 8298.36 24399.66 12199.68 13399.71 999.90 13896.84 27699.88 10899.43 217
CSCG99.37 9099.29 9899.60 13399.71 11599.46 13799.43 9099.85 2898.79 20199.41 20999.60 18698.92 8699.92 9598.02 18299.92 8099.43 217
ETH3D-3000-0.198.77 21598.50 23099.59 13599.47 22499.53 12598.77 24299.60 16297.33 30999.23 24499.50 22697.91 20699.83 24795.02 34199.67 22699.41 221
TinyColmap98.97 18998.93 18199.07 25999.46 22998.19 28397.75 33199.75 7798.79 20199.54 17099.70 11698.97 8199.62 34896.63 28999.83 14399.41 221
ETH3 D test640097.76 28997.19 30599.50 16699.38 25099.26 18698.34 28099.49 22792.99 36298.54 31999.20 30395.92 28599.82 25791.14 36499.66 23099.40 223
Anonymous20240521198.75 21898.46 23299.63 11999.34 26799.66 9099.47 8497.65 35599.28 13199.56 16399.50 22693.15 31199.84 23698.62 14199.58 25399.40 223
XVG-ACMP-BASELINE99.23 12399.10 13999.63 11999.82 4799.58 11798.83 22999.72 9498.36 24399.60 14899.71 10998.92 8699.91 11897.08 26399.84 13399.40 223
MS-PatchMatch99.00 18598.97 17699.09 25599.11 31498.19 28398.76 24499.33 27398.49 23199.44 19599.58 19498.21 18399.69 31798.20 16899.62 23899.39 226
FMVSNet398.80 21398.63 21599.32 22099.13 30798.72 25199.10 18199.48 22999.23 14099.62 13999.64 14992.57 31699.86 20198.96 11299.90 9099.39 226
ambc99.20 24299.35 25798.53 26399.17 15899.46 23799.67 11799.80 6198.46 15499.70 31197.92 19299.70 21199.38 228
FMVSNet597.80 28797.25 30399.42 19098.83 34398.97 22999.38 9699.80 5198.87 19199.25 24099.69 12280.60 37599.91 11898.96 11299.90 9099.38 228
PAPM_NR98.36 26298.04 27099.33 21699.48 21998.93 23798.79 24099.28 28797.54 29798.56 31898.57 35797.12 25399.69 31794.09 35298.90 32699.38 228
EPNet_dtu97.62 29697.79 29097.11 34296.67 37692.31 36598.51 26898.04 34899.24 13895.77 37099.47 23993.78 30599.66 33798.98 10899.62 23899.37 231
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 16398.95 18099.59 13599.13 30799.59 11499.17 15899.65 13197.88 28099.25 24099.46 24298.97 8199.80 27897.26 25099.82 15299.37 231
PLCcopyleft97.35 1698.36 26297.99 27399.48 17399.32 27399.24 19598.50 26999.51 21895.19 35198.58 31698.96 33796.95 25999.83 24795.63 32899.25 30799.37 231
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 29697.20 30498.90 28099.76 8897.40 31699.48 8294.36 37199.06 17099.70 10799.49 23184.55 36999.94 6098.73 13499.65 23399.36 234
pmmvs-eth3d99.48 5999.47 5799.51 16399.77 8499.41 15598.81 23499.66 12099.42 11699.75 8599.66 14299.20 5199.76 29498.98 10899.99 1299.36 234
PVSNet_095.53 1995.85 33595.31 33797.47 33298.78 35093.48 36195.72 36899.40 25696.18 33797.37 35897.73 37295.73 28699.58 35595.49 33181.40 37599.36 234
lupinMVS98.96 19298.87 19299.24 23799.57 17398.40 27298.12 29999.18 30698.28 25699.63 13199.13 30898.02 19899.97 1998.22 16699.69 21499.35 237
Vis-MVSNet (Re-imp)98.77 21598.58 22199.34 21499.78 7698.88 24299.61 6199.56 18599.11 16399.24 24399.56 20693.00 31499.78 28497.43 23899.89 9999.35 237
GA-MVS97.99 28497.68 29498.93 27199.52 19798.04 29497.19 35699.05 31698.32 25498.81 29698.97 33589.89 34999.41 36798.33 15799.05 31699.34 239
CANet99.11 16399.05 15299.28 22898.83 34398.56 26298.71 25099.41 24999.25 13699.23 24499.22 29997.66 22999.94 6099.19 8199.97 3499.33 240
Patchmtry98.78 21498.54 22699.49 16998.89 33799.19 20699.32 11099.67 11699.65 7199.72 9999.79 6791.87 32599.95 4698.00 18699.97 3499.33 240
PAPR97.56 29997.07 30799.04 26298.80 34798.11 28997.63 33699.25 29394.56 35998.02 34498.25 36797.43 23799.68 32890.90 36598.74 33599.33 240
CHOSEN 280x42098.41 25898.41 23798.40 30699.34 26795.89 34496.94 36299.44 24298.80 20099.25 24099.52 21993.51 30999.98 898.94 11799.98 2499.32 243
baseline197.73 29197.33 30098.96 26699.30 27897.73 30799.40 9298.42 34299.33 12599.46 19399.21 30191.18 33199.82 25798.35 15591.26 37499.32 243
TAPA-MVS97.92 1398.03 28197.55 29799.46 17899.47 22499.44 14498.50 26999.62 14286.79 36999.07 27199.26 29098.26 17799.62 34897.28 24799.73 20099.31 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 11299.15 12099.67 9399.33 27299.76 5399.34 10599.97 298.93 18399.91 2299.79 6798.68 11999.93 7596.80 27899.56 25599.30 246
TSAR-MVS + GP.99.12 15999.04 15899.38 20699.34 26799.16 20898.15 29599.29 28498.18 26399.63 13199.62 16899.18 5399.68 32898.20 16899.74 19399.30 246
PVSNet_Blended98.70 22598.59 21899.02 26399.54 18697.99 29597.58 33999.82 4195.70 34499.34 22398.98 33298.52 14799.77 29297.98 18799.83 14399.30 246
MVS_030498.88 20498.71 20799.39 20298.85 34198.91 24099.45 8599.30 28298.56 22197.26 36199.68 13396.18 28099.96 3799.17 8699.94 6899.29 249
MVS_111021_LR99.13 15799.03 16099.42 19099.58 16399.32 17697.91 32699.73 8598.68 21199.31 23199.48 23499.09 6499.66 33797.70 21799.77 18099.29 249
ETH3D cwj APD-0.1698.50 24798.16 26499.51 16399.04 32299.39 15898.47 27199.47 23396.70 33098.78 30199.33 27597.62 23299.86 20194.69 34699.38 28999.28 251
miper_lstm_enhance98.65 22898.60 21698.82 28999.20 29797.33 31897.78 33099.66 12099.01 17299.59 15199.50 22694.62 29699.85 21998.12 17799.90 9099.26 252
MVS95.72 33794.63 34198.99 26498.56 35897.98 30199.30 11798.86 32272.71 37497.30 35999.08 31698.34 17099.74 30089.21 36698.33 34799.26 252
MSLP-MVS++99.05 17399.09 14098.91 27499.21 29498.36 27698.82 23399.47 23398.85 19398.90 28699.56 20698.78 10799.09 37098.57 14399.68 21999.26 252
D2MVS99.22 13299.19 11499.29 22699.69 12798.74 25098.81 23499.41 24998.55 22399.68 11299.69 12298.13 19099.87 18198.82 12599.98 2499.24 255
test_yl98.25 27097.95 27799.13 25199.17 30298.47 26699.00 20298.67 33298.97 17599.22 24899.02 32791.31 32999.69 31797.26 25098.93 32299.24 255
DCV-MVSNet98.25 27097.95 27799.13 25199.17 30298.47 26699.00 20298.67 33298.97 17599.22 24899.02 32791.31 32999.69 31797.26 25098.93 32299.24 255
DPM-MVS98.28 26897.94 28199.32 22099.36 25599.11 21397.31 35298.78 32796.88 32398.84 29399.11 31497.77 21899.61 35294.03 35499.36 29499.23 258
CLD-MVS98.76 21798.57 22299.33 21699.57 17398.97 22997.53 34299.55 19196.41 33299.27 23899.13 30899.07 7099.78 28496.73 28299.89 9999.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 15799.06 14899.36 21299.57 17399.10 21898.01 31199.25 29398.78 20399.58 15399.44 24698.24 17899.76 29498.74 13399.93 7699.22 260
OMC-MVS98.90 20098.72 20699.44 18499.39 24799.42 15198.58 25699.64 13797.31 31099.44 19599.62 16898.59 13299.69 31796.17 31099.79 17099.22 260
EGC-MVSNET89.05 34285.52 34599.64 11299.89 2299.78 4399.56 7399.52 21424.19 37649.96 37799.83 4999.15 5699.92 9597.71 21499.85 12899.21 262
eth_miper_zixun_eth98.68 22698.71 20798.60 29899.10 31596.84 33097.52 34499.54 19798.94 18099.58 15399.48 23496.25 27899.76 29498.01 18599.93 7699.21 262
c3_l98.72 22398.71 20798.72 29499.12 30997.22 32197.68 33599.56 18598.90 18799.54 17099.48 23496.37 27599.73 30397.88 19599.88 10899.21 262
CMPMVSbinary77.52 2398.50 24798.19 26199.41 19798.33 36499.56 12099.01 20099.59 16995.44 34699.57 15699.80 6195.64 28799.46 36696.47 29799.92 8099.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 17098.97 17699.34 21499.31 27498.98 22798.31 28499.91 1298.81 19898.79 29998.94 33999.14 5999.84 23698.79 12798.74 33599.20 266
DELS-MVS99.34 10099.30 9399.48 17399.51 20299.36 16798.12 29999.53 20699.36 12199.41 20999.61 17799.22 4999.87 18199.21 7699.68 21999.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DROMVSNet99.69 2299.69 2199.68 9099.71 11599.91 299.76 1699.96 699.86 2399.51 18299.39 25799.57 2099.93 7599.64 2099.86 12499.20 266
CANet_DTU98.91 19898.85 19499.09 25598.79 34898.13 28698.18 29299.31 27999.48 9798.86 29199.51 22396.56 26599.95 4699.05 10299.95 5699.19 269
alignmvs98.28 26897.96 27699.25 23599.12 30998.93 23799.03 19798.42 34299.64 7398.72 30697.85 37190.86 33899.62 34898.88 12199.13 31299.19 269
DIV-MVS_self_test98.54 24398.42 23698.92 27299.03 32497.80 30597.46 34699.59 16998.90 18799.60 14899.46 24293.87 30299.78 28497.97 18999.89 9999.18 271
MSDG99.08 16898.98 17599.37 20999.60 15499.13 21197.54 34099.74 8298.84 19699.53 17599.55 21399.10 6299.79 28197.07 26499.86 12499.18 271
cl____98.54 24398.41 23798.92 27299.03 32497.80 30597.46 34699.59 16998.90 18799.60 14899.46 24293.85 30399.78 28497.97 18999.89 9999.17 273
PM-MVS99.36 9399.29 9899.58 13999.83 4099.66 9098.95 21599.86 2498.85 19399.81 6099.73 9698.40 16499.92 9598.36 15399.83 14399.17 273
thisisatest053097.45 30196.95 31198.94 26899.68 13597.73 30799.09 18694.19 37398.61 21899.56 16399.30 28084.30 37099.93 7598.27 16299.54 26599.16 275
PatchmatchNetpermissive97.65 29597.80 28897.18 34098.82 34692.49 36499.17 15898.39 34498.12 26498.79 29999.58 19490.71 34099.89 15497.23 25499.41 28699.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 7199.38 7499.60 13399.87 3099.75 5799.59 6799.78 6299.71 5299.90 2499.69 12298.85 9699.90 13897.25 25399.78 17699.15 277
CS-MVS-test99.68 2599.70 1899.64 11299.57 17399.83 2599.78 1199.97 299.92 899.50 18499.38 25999.57 2099.95 4699.69 1699.90 9099.15 277
mvs_anonymous99.28 11299.39 7298.94 26899.19 29997.81 30499.02 19899.55 19199.78 4499.85 4499.80 6198.24 17899.86 20199.57 2899.50 27299.15 277
ab-mvs99.33 10499.28 10099.47 17599.57 17399.39 15899.78 1199.43 24698.87 19199.57 15699.82 5698.06 19599.87 18198.69 13899.73 20099.15 277
MIMVSNet98.43 25698.20 25899.11 25399.53 19198.38 27599.58 6998.61 33498.96 17899.33 22599.76 8490.92 33599.81 27397.38 24199.76 18299.15 277
GSMVS99.14 282
sam_mvs190.81 33999.14 282
SCA98.11 27798.36 24297.36 33599.20 29792.99 36298.17 29498.49 34098.24 25899.10 26799.57 20396.01 28399.94 6096.86 27399.62 23899.14 282
LS3D99.24 12299.11 13199.61 13198.38 36299.79 4099.57 7199.68 11199.61 8199.15 25999.71 10998.70 11799.91 11897.54 23199.68 21999.13 285
Patchmatch-RL test98.60 23398.36 24299.33 21699.77 8499.07 22298.27 28799.87 2198.91 18699.74 9499.72 10290.57 34299.79 28198.55 14499.85 12899.11 286
test_040299.22 13299.14 12199.45 18299.79 6999.43 14899.28 12599.68 11199.54 9199.40 21499.56 20699.07 7099.82 25796.01 31499.96 4799.11 286
MVS_Test99.28 11299.31 8899.19 24399.35 25798.79 24899.36 10399.49 22799.17 15199.21 25099.67 13898.78 10799.66 33799.09 9999.66 23099.10 288
AdaColmapbinary98.60 23398.35 24499.38 20699.12 30999.22 19998.67 25199.42 24897.84 28598.81 29699.27 28797.32 24499.81 27395.14 33899.53 26799.10 288
FPMVS96.32 32595.50 33398.79 29099.60 15498.17 28598.46 27698.80 32697.16 31796.28 36699.63 15982.19 37199.09 37088.45 36898.89 32799.10 288
Patchmatch-test98.10 27897.98 27598.48 30399.27 28596.48 33499.40 9299.07 31398.81 19899.23 24499.57 20390.11 34699.87 18196.69 28399.64 23599.09 291
tpm97.15 30796.95 31197.75 32798.91 33394.24 35699.32 11097.96 35097.71 28998.29 32899.32 27686.72 36499.92 9598.10 18096.24 37199.09 291
PMMVS98.49 25098.29 25099.11 25398.96 33198.42 27197.54 34099.32 27597.53 29898.47 32498.15 36897.88 21099.82 25797.46 23699.24 30999.09 291
cl2297.56 29997.28 30198.40 30698.37 36396.75 33197.24 35599.37 26697.31 31099.41 20999.22 29987.30 35599.37 36897.70 21799.62 23899.08 294
ADS-MVSNet297.78 28897.66 29698.12 31899.14 30595.36 34899.22 14498.75 32896.97 32198.25 33199.64 14990.90 33699.94 6096.51 29499.56 25599.08 294
ADS-MVSNet97.72 29497.67 29597.86 32399.14 30594.65 35499.22 14498.86 32296.97 32198.25 33199.64 14990.90 33699.84 23696.51 29499.56 25599.08 294
pmmvs398.08 27997.80 28898.91 27499.41 24297.69 30997.87 32799.66 12095.87 34099.50 18499.51 22390.35 34499.97 1998.55 14499.47 27799.08 294
PVSNet97.47 1598.42 25798.44 23498.35 30899.46 22996.26 33796.70 36599.34 27297.68 29099.00 27599.13 30897.40 23899.72 30597.59 22999.68 21999.08 294
MVS-HIRNet97.86 28598.22 25696.76 34499.28 28391.53 37198.38 27992.60 37599.13 15999.31 23199.96 1297.18 25299.68 32898.34 15699.83 14399.07 299
PMVScopyleft92.94 2198.82 21198.81 20098.85 28299.84 3697.99 29599.20 14799.47 23399.71 5299.42 20199.82 5698.09 19299.47 36493.88 35699.85 12899.07 299
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft99.57 4399.59 3899.49 16999.98 399.71 7299.72 2699.84 3499.81 3799.94 1299.78 7498.91 8899.71 30998.41 15099.95 5699.05 301
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
canonicalmvs99.02 17999.00 16799.09 25599.10 31598.70 25299.61 6199.66 12099.63 7698.64 31197.65 37399.04 7499.54 35798.79 12798.92 32499.04 302
hse-mvs298.52 24598.30 24999.16 24699.29 28098.60 26198.77 24299.02 31799.68 6199.32 22799.04 32292.50 31999.85 21999.24 7397.87 36099.03 303
CL-MVSNet_self_test98.71 22498.56 22599.15 24899.22 29298.66 25697.14 35799.51 21898.09 26799.54 17099.27 28796.87 26199.74 30098.43 14998.96 32199.03 303
AUN-MVS97.82 28697.38 29999.14 25099.27 28598.53 26398.72 24899.02 31798.10 26597.18 36399.03 32689.26 35199.85 21997.94 19197.91 35899.03 303
MDTV_nov1_ep13_2view91.44 37299.14 16897.37 30799.21 25091.78 32796.75 28099.03 303
ITE_SJBPF99.38 20699.63 14799.44 14499.73 8598.56 22199.33 22599.53 21798.88 9399.68 32896.01 31499.65 23399.02 307
UnsupCasMVSNet_bld98.55 24298.27 25199.40 19999.56 18499.37 16497.97 31999.68 11197.49 30199.08 26899.35 27195.41 29099.82 25797.70 21798.19 35299.01 308
miper_ehance_all_eth98.59 23698.59 21898.59 29998.98 33097.07 32497.49 34599.52 21498.50 22999.52 17799.37 26196.41 27399.71 30997.86 19999.62 23899.00 309
CS-MVS99.67 2899.70 1899.58 13999.53 19199.84 2099.79 1099.96 699.90 1099.61 14599.41 24999.51 2499.95 4699.66 1799.89 9998.96 310
CNLPA98.57 23898.34 24599.28 22899.18 30199.10 21898.34 28099.41 24998.48 23298.52 32098.98 33297.05 25699.78 28495.59 32999.50 27298.96 310
new_pmnet98.88 20498.89 19098.84 28499.70 12397.62 31098.15 29599.50 22297.98 27399.62 13999.54 21598.15 18999.94 6097.55 23099.84 13398.95 312
PCF-MVS96.03 1896.73 31795.86 32899.33 21699.44 23499.16 20896.87 36399.44 24286.58 37098.95 27899.40 25394.38 29899.88 16987.93 36999.80 16598.95 312
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL98.68 22698.47 23199.30 22599.44 23499.28 18298.14 29799.54 19797.12 31999.11 26599.25 29297.80 21699.70 31196.51 29499.30 30198.93 314
Fast-Effi-MVS+99.02 17998.87 19299.46 17899.38 25099.50 12999.04 19499.79 5797.17 31698.62 31298.74 35299.34 3799.95 4698.32 15899.41 28698.92 315
ET-MVSNet_ETH3D96.78 31596.07 32498.91 27499.26 28797.92 30297.70 33496.05 36697.96 27792.37 37598.43 36387.06 35799.90 13898.27 16297.56 36398.91 316
EIA-MVS99.12 15999.01 16499.45 18299.36 25599.62 10399.34 10599.79 5798.41 23798.84 29398.89 34498.75 11399.84 23698.15 17699.51 27098.89 317
CostFormer96.71 31896.79 31796.46 35198.90 33490.71 37699.41 9198.68 33094.69 35898.14 33999.34 27486.32 36699.80 27897.60 22898.07 35698.88 318
DP-MVS Recon98.50 24798.23 25499.31 22399.49 21399.46 13798.56 26199.63 13994.86 35598.85 29299.37 26197.81 21599.59 35496.08 31199.44 28098.88 318
test0.0.03 197.37 30496.91 31498.74 29397.72 37297.57 31197.60 33897.36 36198.00 27099.21 25098.02 36990.04 34799.79 28198.37 15295.89 37298.86 320
BH-untuned98.22 27498.09 26898.58 30099.38 25097.24 32098.55 26298.98 32097.81 28699.20 25598.76 35197.01 25799.65 34494.83 34298.33 34798.86 320
HY-MVS98.23 998.21 27597.95 27798.99 26499.03 32498.24 27999.61 6198.72 32996.81 32798.73 30599.51 22394.06 30099.86 20196.91 27098.20 35098.86 320
miper_enhance_ethall98.03 28197.94 28198.32 31098.27 36596.43 33696.95 36199.41 24996.37 33499.43 19998.96 33794.74 29499.69 31797.71 21499.62 23898.83 323
Effi-MVS+-dtu99.07 16998.92 18599.52 16098.89 33799.78 4399.15 16699.66 12099.34 12298.92 28399.24 29797.69 22299.98 898.11 17899.28 30398.81 324
EPMVS96.53 32196.32 31997.17 34198.18 36892.97 36399.39 9489.95 37998.21 26098.61 31399.59 19286.69 36599.72 30596.99 26699.23 31198.81 324
MVEpermissive92.54 2296.66 31996.11 32398.31 31299.68 13597.55 31297.94 32295.60 36899.37 11990.68 37698.70 35396.56 26598.61 37486.94 37499.55 25998.77 326
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tpm296.35 32496.22 32196.73 34698.88 34091.75 36999.21 14698.51 33893.27 36197.89 34899.21 30184.83 36899.70 31196.04 31398.18 35398.75 327
LF4IMVS99.01 18398.92 18599.27 23099.71 11599.28 18298.59 25599.77 6598.32 25499.39 21599.41 24998.62 12899.84 23696.62 29099.84 13398.69 328
thisisatest051596.98 31196.42 31898.66 29799.42 24197.47 31397.27 35394.30 37297.24 31299.15 25998.86 34685.01 36799.87 18197.10 26299.39 28898.63 329
Fast-Effi-MVS+-dtu99.20 13999.12 12899.43 18899.25 28899.69 8399.05 19299.82 4199.50 9598.97 27699.05 31998.98 7999.98 898.20 16899.24 30998.62 330
PAPM95.61 33894.71 34098.31 31299.12 30996.63 33296.66 36698.46 34190.77 36796.25 36798.68 35493.01 31399.69 31781.60 37597.86 36198.62 330
JIA-IIPM98.06 28097.92 28398.50 30298.59 35797.02 32598.80 23798.51 33899.88 2097.89 34899.87 3391.89 32499.90 13898.16 17597.68 36298.59 332
dp96.86 31397.07 30796.24 35398.68 35690.30 37899.19 15298.38 34597.35 30898.23 33399.59 19287.23 35699.82 25796.27 30598.73 33798.59 332
OpenMVScopyleft98.12 1098.23 27397.89 28799.26 23299.19 29999.26 18699.65 5399.69 10891.33 36698.14 33999.77 8198.28 17599.96 3795.41 33499.55 25998.58 334
baseline296.83 31496.28 32098.46 30499.09 31796.91 32898.83 22993.87 37497.23 31396.23 36998.36 36488.12 35399.90 13896.68 28498.14 35498.57 335
DWT-MVSNet_test96.03 33195.80 33096.71 34898.50 36091.93 36799.25 13697.87 35395.99 33996.81 36597.61 37481.02 37399.66 33797.20 25797.98 35798.54 336
TESTMET0.1,196.24 32795.84 32997.41 33498.24 36693.84 35997.38 34895.84 36798.43 23497.81 35298.56 35879.77 37699.89 15497.77 20698.77 33198.52 337
xiu_mvs_v1_base_debu99.23 12399.34 8298.91 27499.59 15898.23 28098.47 27199.66 12099.61 8199.68 11298.94 33999.39 2799.97 1999.18 8399.55 25998.51 338
xiu_mvs_v1_base99.23 12399.34 8298.91 27499.59 15898.23 28098.47 27199.66 12099.61 8199.68 11298.94 33999.39 2799.97 1999.18 8399.55 25998.51 338
xiu_mvs_v1_base_debi99.23 12399.34 8298.91 27499.59 15898.23 28098.47 27199.66 12099.61 8199.68 11298.94 33999.39 2799.97 1999.18 8399.55 25998.51 338
KD-MVS_2432*160095.89 33295.41 33597.31 33894.96 37793.89 35797.09 35899.22 30097.23 31398.88 28799.04 32279.23 37799.54 35796.24 30796.81 36698.50 341
miper_refine_blended95.89 33295.41 33597.31 33894.96 37793.89 35797.09 35899.22 30097.23 31398.88 28799.04 32279.23 37799.54 35796.24 30796.81 36698.50 341
CR-MVSNet98.35 26598.20 25898.83 28699.05 32098.12 28799.30 11799.67 11697.39 30699.16 25799.79 6791.87 32599.91 11898.78 13098.77 33198.44 343
RPMNet98.60 23398.53 22898.83 28699.05 32098.12 28799.30 11799.62 14299.86 2399.16 25799.74 9292.53 31899.92 9598.75 13298.77 33198.44 343
tpmrst97.73 29198.07 26996.73 34698.71 35492.00 36699.10 18198.86 32298.52 22798.92 28399.54 21591.90 32399.82 25798.02 18299.03 31898.37 345
test-LLR97.15 30796.95 31197.74 32898.18 36895.02 35197.38 34896.10 36398.00 27097.81 35298.58 35590.04 34799.91 11897.69 22398.78 32998.31 346
test-mter96.23 32895.73 33197.74 32898.18 36895.02 35197.38 34896.10 36397.90 27997.81 35298.58 35579.12 37999.91 11897.69 22398.78 32998.31 346
ETV-MVS99.18 14699.18 11599.16 24699.34 26799.28 18299.12 17899.79 5799.48 9798.93 28098.55 35999.40 2699.93 7598.51 14699.52 26998.28 348
PatchT98.45 25598.32 24898.83 28698.94 33298.29 27899.24 13798.82 32599.84 3199.08 26899.76 8491.37 32899.94 6098.82 12599.00 32098.26 349
xiu_mvs_v2_base99.02 17999.11 13198.77 29199.37 25398.09 29198.13 29899.51 21899.47 10299.42 20198.54 36099.38 3199.97 1998.83 12399.33 29898.24 350
IB-MVS95.41 2095.30 33994.46 34397.84 32498.76 35295.33 34997.33 35196.07 36596.02 33895.37 37397.41 37676.17 38199.96 3797.54 23195.44 37398.22 351
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 31596.98 31096.16 35498.85 34190.59 37799.08 18999.32 27592.37 36397.73 35799.46 24291.15 33299.69 31796.07 31298.80 32898.21 352
MAR-MVS98.24 27297.92 28399.19 24398.78 35099.65 9599.17 15899.14 31095.36 34798.04 34398.81 34997.47 23599.72 30595.47 33399.06 31598.21 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 18599.08 14298.76 29299.37 25398.10 29098.00 31399.51 21899.47 10299.41 20998.50 36299.28 4399.97 1998.83 12399.34 29698.20 354
cascas96.99 31096.82 31697.48 33197.57 37595.64 34696.43 36799.56 18591.75 36497.13 36497.61 37495.58 28998.63 37396.68 28499.11 31398.18 355
BH-w/o97.20 30697.01 30997.76 32699.08 31895.69 34598.03 31098.52 33795.76 34397.96 34598.02 36995.62 28899.47 36492.82 35997.25 36598.12 356
tpmvs97.39 30397.69 29396.52 34998.41 36191.76 36899.30 11798.94 32197.74 28797.85 35199.55 21392.40 32199.73 30396.25 30698.73 33798.06 357
mvs-test198.83 20998.70 21099.22 23998.89 33799.65 9598.88 22099.66 12099.34 12298.29 32898.94 33997.69 22299.96 3798.11 17898.54 34398.04 358
thres600view796.60 32096.16 32297.93 32199.63 14796.09 34199.18 15397.57 35698.77 20498.72 30697.32 37787.04 35899.72 30588.57 36798.62 34097.98 359
thres40096.40 32295.89 32697.92 32299.58 16396.11 33999.00 20297.54 35998.43 23498.52 32096.98 38086.85 36099.67 33387.62 37098.51 34497.98 359
TR-MVS97.44 30297.15 30698.32 31098.53 35997.46 31498.47 27197.91 35296.85 32598.21 33498.51 36196.42 27199.51 36292.16 36097.29 36497.98 359
131498.00 28397.90 28698.27 31498.90 33497.45 31599.30 11799.06 31594.98 35297.21 36299.12 31298.43 15799.67 33395.58 33098.56 34297.71 362
E-PMN97.14 30997.43 29896.27 35298.79 34891.62 37095.54 36999.01 31999.44 10998.88 28799.12 31292.78 31599.68 32894.30 34999.03 31897.50 363
gg-mvs-nofinetune95.87 33495.17 33897.97 32098.19 36796.95 32699.69 3789.23 38099.89 1596.24 36899.94 1481.19 37299.51 36293.99 35598.20 35097.44 364
DeepMVS_CXcopyleft97.98 31999.69 12796.95 32699.26 29075.51 37395.74 37198.28 36696.47 26999.62 34891.23 36397.89 35997.38 365
OpenMVS_ROBcopyleft97.31 1797.36 30596.84 31598.89 28199.29 28099.45 14298.87 22399.48 22986.54 37199.44 19599.74 9297.34 24399.86 20191.61 36199.28 30397.37 366
EMVS96.96 31297.28 30195.99 35598.76 35291.03 37395.26 37098.61 33499.34 12298.92 28398.88 34593.79 30499.66 33792.87 35899.05 31697.30 367
thres100view90096.39 32396.03 32597.47 33299.63 14795.93 34299.18 15397.57 35698.75 20898.70 30897.31 37887.04 35899.67 33387.62 37098.51 34496.81 368
tfpn200view996.30 32695.89 32697.53 33099.58 16396.11 33999.00 20297.54 35998.43 23498.52 32096.98 38086.85 36099.67 33387.62 37098.51 34496.81 368
API-MVS98.38 26198.39 23998.35 30898.83 34399.26 18699.14 16899.18 30698.59 21998.66 31098.78 35098.61 13099.57 35694.14 35199.56 25596.21 370
thres20096.09 32995.68 33297.33 33799.48 21996.22 33898.53 26697.57 35698.06 26998.37 32796.73 38286.84 36299.61 35286.99 37398.57 34196.16 371
GG-mvs-BLEND97.36 33597.59 37396.87 32999.70 3188.49 38194.64 37497.26 37980.66 37499.12 36991.50 36296.50 37096.08 372
wuyk23d97.58 29899.13 12492.93 35799.69 12799.49 13099.52 7699.77 6597.97 27499.96 899.79 6799.84 399.94 6095.85 32299.82 15279.36 373
test12329.31 34333.05 34818.08 35925.93 38312.24 38397.53 34210.93 38411.78 37724.21 37850.08 38721.04 3828.60 37823.51 37632.43 37733.39 374
testmvs28.94 34433.33 34615.79 36026.03 3829.81 38496.77 36415.67 38311.55 37823.87 37950.74 38619.03 3838.53 37923.21 37733.07 37629.03 375
test_blank8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.88 34533.17 3470.00 3610.00 3840.00 3850.00 37299.62 1420.00 3790.00 38099.13 30899.82 40.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas16.61 34622.14 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 199.28 430.00 3800.00 3780.00 3780.00 376
sosnet-low-res8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
sosnet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
Regformer8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.26 35511.02 3580.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.16 3060.00 3840.00 3800.00 3780.00 3780.00 376
uanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.83 4099.89 899.74 2099.71 9799.69 5999.63 131
test_one_060199.63 14799.76 5399.55 19199.23 14099.31 23199.61 17798.59 132
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.43 23699.61 10999.43 24696.38 33399.11 26599.07 31797.86 21199.92 9594.04 35399.49 274
test_241102_ONE99.69 12799.82 3099.54 19799.12 16299.82 5399.49 23198.91 8899.52 361
9.1498.64 21399.45 23298.81 23499.60 16297.52 29999.28 23799.56 20698.53 14499.83 24795.36 33699.64 235
save fliter99.53 19199.25 19098.29 28599.38 26599.07 166
test072699.69 12799.80 3899.24 13799.57 18099.16 15399.73 9899.65 14798.35 168
test_part299.62 15199.67 8899.55 168
sam_mvs90.52 343
MTGPAbinary99.53 206
test_post199.14 16851.63 38589.54 35099.82 25796.86 273
test_post52.41 38490.25 34599.86 201
patchmatchnet-post99.62 16890.58 34199.94 60
MTMP99.09 18698.59 336
gm-plane-assit97.59 37389.02 38093.47 36098.30 36599.84 23696.38 301
TEST999.35 25799.35 17198.11 30199.41 24994.83 35797.92 34698.99 32998.02 19899.85 219
test_899.34 26799.31 17798.08 30599.40 25694.90 35397.87 35098.97 33598.02 19899.84 236
agg_prior99.35 25799.36 16799.39 25997.76 35599.85 219
test_prior499.19 20698.00 313
test_prior297.95 32097.87 28198.05 34199.05 31997.90 20795.99 31699.49 274
旧先验297.94 32295.33 34898.94 27999.88 16996.75 280
新几何298.04 309
原ACMM297.92 324
testdata299.89 15495.99 316
segment_acmp98.37 166
testdata197.72 33297.86 284
plane_prior799.58 16399.38 161
plane_prior699.47 22499.26 18697.24 246
plane_prior499.25 292
plane_prior399.31 17798.36 24399.14 261
plane_prior298.80 23798.94 180
plane_prior199.51 202
plane_prior99.24 19598.42 27797.87 28199.71 209
n20.00 385
nn0.00 385
door-mid99.83 36
test1199.29 284
door99.77 65
HQP5-MVS98.94 233
HQP-NCC99.31 27497.98 31697.45 30298.15 335
ACMP_Plane99.31 27497.98 31697.45 30298.15 335
BP-MVS94.73 343
HQP3-MVS99.37 26699.67 226
HQP2-MVS96.67 263
NP-MVS99.40 24599.13 21198.83 347
MDTV_nov1_ep1397.73 29298.70 35590.83 37499.15 16698.02 34998.51 22898.82 29599.61 17790.98 33499.66 33796.89 27298.92 324
ACMMP++_ref99.94 68
ACMMP++99.79 170
Test By Simon98.41 160