test_vis3_rt | | | 99.89 3 | 99.90 3 | 99.87 15 | 99.98 3 | 99.75 62 | 99.70 34 | 100.00 1 | 99.73 57 | 100.00 1 | 99.89 31 | 99.79 8 | 99.88 172 | 99.98 1 | 100.00 1 | 99.98 1 |
|
test_fmvs3 | | | 99.83 12 | 99.93 2 | 99.53 158 | 99.96 5 | 98.62 256 | 99.67 48 | 100.00 1 | 99.95 4 | 100.00 1 | 99.95 13 | 99.85 3 | 99.99 6 | 99.98 1 | 99.99 13 | 99.98 1 |
|
test_f | | | 99.75 18 | 99.88 6 | 99.37 204 | 99.96 5 | 98.21 279 | 99.51 86 | 100.00 1 | 99.94 8 | 100.00 1 | 99.93 17 | 99.58 24 | 99.94 64 | 99.97 4 | 99.99 13 | 99.97 3 |
|
test_fmvs2 | | | 99.72 22 | 99.85 11 | 99.34 211 | 99.91 26 | 98.08 292 | 99.48 92 | 100.00 1 | 99.90 13 | 99.99 7 | 99.91 24 | 99.50 31 | 99.98 10 | 99.98 1 | 99.99 13 | 99.96 4 |
|
test_vis1_n | | | 99.68 31 | 99.79 17 | 99.36 208 | 99.94 16 | 98.18 282 | 99.52 83 | 100.00 1 | 99.86 28 | 100.00 1 | 99.88 36 | 98.99 87 | 99.96 41 | 99.97 4 | 99.96 56 | 99.95 5 |
|
tmp_tt | | | 95.75 336 | 95.42 334 | 96.76 345 | 89.90 381 | 94.42 356 | 98.86 230 | 97.87 354 | 78.01 372 | 99.30 245 | 99.69 137 | 97.70 225 | 95.89 376 | 99.29 83 | 98.14 355 | 99.95 5 |
|
mvsany_test3 | | | 99.85 8 | 99.88 6 | 99.75 60 | 99.95 13 | 99.37 163 | 99.53 82 | 99.98 8 | 99.77 55 | 99.99 7 | 99.95 13 | 99.85 3 | 99.94 64 | 99.95 7 | 99.98 30 | 99.94 7 |
|
PS-MVSNAJss | | | 99.84 10 | 99.82 13 | 99.89 8 | 99.96 5 | 99.77 50 | 99.68 44 | 99.85 39 | 99.95 4 | 99.98 10 | 99.92 21 | 99.28 51 | 99.98 10 | 99.75 23 | 100.00 1 | 99.94 7 |
|
test_fmvs1_n | | | 99.68 31 | 99.81 14 | 99.28 226 | 99.95 13 | 97.93 301 | 99.49 91 | 100.00 1 | 99.82 41 | 99.99 7 | 99.89 31 | 99.21 60 | 99.98 10 | 99.97 4 | 99.98 30 | 99.93 9 |
|
mvs_tets | | | 99.90 2 | 99.90 3 | 99.90 5 | 99.96 5 | 99.79 44 | 99.72 29 | 99.88 30 | 99.92 11 | 99.98 10 | 99.93 17 | 99.94 1 | 99.98 10 | 99.77 22 | 100.00 1 | 99.92 10 |
|
UA-Net | | | 99.78 16 | 99.76 21 | 99.86 18 | 99.72 124 | 99.71 76 | 99.91 3 | 99.95 17 | 99.96 2 | 99.71 117 | 99.91 24 | 99.15 66 | 99.97 22 | 99.50 50 | 100.00 1 | 99.90 11 |
|
RRT_MVS | | | 99.67 37 | 99.59 50 | 99.91 2 | 99.94 16 | 99.88 12 | 99.78 11 | 99.27 286 | 99.87 25 | 99.91 31 | 99.87 40 | 98.04 203 | 99.96 41 | 99.68 27 | 99.99 13 | 99.90 11 |
|
jajsoiax | | | 99.89 3 | 99.89 5 | 99.89 8 | 99.96 5 | 99.78 47 | 99.70 34 | 99.86 35 | 99.89 19 | 99.98 10 | 99.90 27 | 99.94 1 | 99.98 10 | 99.75 23 | 100.00 1 | 99.90 11 |
|
EU-MVSNet | | | 99.39 99 | 99.62 41 | 98.72 295 | 99.88 38 | 96.44 336 | 99.56 79 | 99.85 39 | 99.90 13 | 99.90 37 | 99.85 49 | 98.09 199 | 99.83 250 | 99.58 37 | 99.95 67 | 99.90 11 |
|
test_djsdf | | | 99.84 10 | 99.81 14 | 99.91 2 | 99.94 16 | 99.84 24 | 99.77 14 | 99.80 63 | 99.73 57 | 99.97 13 | 99.92 21 | 99.77 10 | 99.98 10 | 99.43 56 | 100.00 1 | 99.90 11 |
|
CVMVSNet | | | 98.61 235 | 98.88 199 | 97.80 326 | 99.58 175 | 93.60 361 | 99.26 143 | 99.64 146 | 99.66 81 | 99.72 112 | 99.67 153 | 93.26 310 | 99.93 81 | 99.30 80 | 99.81 172 | 99.87 16 |
|
LCM-MVSNet | | | 99.95 1 | 99.95 1 | 99.95 1 | 99.99 1 | 99.99 1 | 99.95 2 | 99.97 10 | 99.99 1 | 100.00 1 | 99.98 10 | 99.78 9 | 100.00 1 | 99.92 9 | 100.00 1 | 99.87 16 |
|
FC-MVSNet-test | | | 99.70 25 | 99.65 35 | 99.86 18 | 99.88 38 | 99.86 18 | 99.72 29 | 99.78 74 | 99.90 13 | 99.82 66 | 99.83 55 | 98.45 162 | 99.87 186 | 99.51 48 | 99.97 42 | 99.86 18 |
|
PS-CasMVS | | | 99.66 39 | 99.58 54 | 99.89 8 | 99.80 72 | 99.85 19 | 99.66 52 | 99.73 96 | 99.62 88 | 99.84 61 | 99.71 124 | 98.62 134 | 99.96 41 | 99.30 80 | 99.96 56 | 99.86 18 |
|
anonymousdsp | | | 99.80 14 | 99.77 19 | 99.90 5 | 99.96 5 | 99.88 12 | 99.73 26 | 99.85 39 | 99.70 68 | 99.92 28 | 99.93 17 | 99.45 32 | 99.97 22 | 99.36 68 | 100.00 1 | 99.85 20 |
|
UniMVSNet_ETH3D | | | 99.85 8 | 99.83 12 | 99.90 5 | 99.89 33 | 99.91 4 | 99.89 4 | 99.71 108 | 99.93 9 | 99.95 19 | 99.89 31 | 99.71 13 | 99.96 41 | 99.51 48 | 99.97 42 | 99.84 21 |
|
CP-MVSNet | | | 99.54 64 | 99.43 82 | 99.87 15 | 99.76 101 | 99.82 35 | 99.57 77 | 99.61 158 | 99.54 101 | 99.80 76 | 99.64 164 | 97.79 222 | 99.95 51 | 99.21 90 | 99.94 78 | 99.84 21 |
|
Test_1112_low_res | | | 98.95 203 | 98.73 213 | 99.63 121 | 99.68 147 | 99.15 205 | 98.09 304 | 99.80 63 | 97.14 323 | 99.46 204 | 99.40 260 | 96.11 282 | 99.89 158 | 99.01 118 | 99.84 146 | 99.84 21 |
|
ANet_high | | | 99.88 5 | 99.87 8 | 99.91 2 | 99.99 1 | 99.91 4 | 99.65 58 | 100.00 1 | 99.90 13 | 100.00 1 | 99.97 11 | 99.61 21 | 99.97 22 | 99.75 23 | 100.00 1 | 99.84 21 |
|
patch_mono-2 | | | 99.51 67 | 99.46 75 | 99.64 114 | 99.70 135 | 99.11 208 | 99.04 204 | 99.87 32 | 99.71 63 | 99.47 200 | 99.79 80 | 98.24 186 | 99.98 10 | 99.38 63 | 99.96 56 | 99.83 25 |
|
nrg030 | | | 99.70 25 | 99.66 33 | 99.82 27 | 99.76 101 | 99.84 24 | 99.61 66 | 99.70 114 | 99.93 9 | 99.78 85 | 99.68 148 | 99.10 72 | 99.78 286 | 99.45 54 | 99.96 56 | 99.83 25 |
|
FIs | | | 99.65 44 | 99.58 54 | 99.84 23 | 99.84 49 | 99.85 19 | 99.66 52 | 99.75 87 | 99.86 28 | 99.74 107 | 99.79 80 | 98.27 184 | 99.85 221 | 99.37 66 | 99.93 86 | 99.83 25 |
|
v7n | | | 99.82 13 | 99.80 16 | 99.88 12 | 99.96 5 | 99.84 24 | 99.82 8 | 99.82 52 | 99.84 36 | 99.94 21 | 99.91 24 | 99.13 71 | 99.96 41 | 99.83 17 | 99.99 13 | 99.83 25 |
|
PEN-MVS | | | 99.66 39 | 99.59 50 | 99.89 8 | 99.83 53 | 99.87 15 | 99.66 52 | 99.73 96 | 99.70 68 | 99.84 61 | 99.73 110 | 98.56 144 | 99.96 41 | 99.29 83 | 99.94 78 | 99.83 25 |
|
WR-MVS_H | | | 99.61 53 | 99.53 67 | 99.87 15 | 99.80 72 | 99.83 29 | 99.67 48 | 99.75 87 | 99.58 100 | 99.85 58 | 99.69 137 | 98.18 195 | 99.94 64 | 99.28 85 | 99.95 67 | 99.83 25 |
|
Anonymous20231211 | | | 99.62 51 | 99.57 57 | 99.76 51 | 99.61 164 | 99.60 113 | 99.81 9 | 99.73 96 | 99.82 41 | 99.90 37 | 99.90 27 | 97.97 210 | 99.86 204 | 99.42 61 | 99.96 56 | 99.80 31 |
|
APDe-MVS | | | 99.48 72 | 99.36 94 | 99.85 20 | 99.55 197 | 99.81 38 | 99.50 87 | 99.69 120 | 98.99 181 | 99.75 99 | 99.71 124 | 98.79 110 | 99.93 81 | 98.46 161 | 99.85 141 | 99.80 31 |
|
DTE-MVSNet | | | 99.68 31 | 99.61 45 | 99.88 12 | 99.80 72 | 99.87 15 | 99.67 48 | 99.71 108 | 99.72 61 | 99.84 61 | 99.78 87 | 98.67 128 | 99.97 22 | 99.30 80 | 99.95 67 | 99.80 31 |
|
XXY-MVS | | | 99.71 24 | 99.67 32 | 99.81 30 | 99.89 33 | 99.72 74 | 99.59 72 | 99.82 52 | 99.39 127 | 99.82 66 | 99.84 54 | 99.38 39 | 99.91 123 | 99.38 63 | 99.93 86 | 99.80 31 |
|
1112_ss | | | 99.05 181 | 98.84 204 | 99.67 95 | 99.66 153 | 99.29 179 | 98.52 271 | 99.82 52 | 97.65 297 | 99.43 210 | 99.16 309 | 96.42 272 | 99.91 123 | 99.07 114 | 99.84 146 | 99.80 31 |
|
LTVRE_ROB | | 99.19 1 | 99.88 5 | 99.87 8 | 99.88 12 | 99.91 26 | 99.90 7 | 99.96 1 | 99.92 18 | 99.90 13 | 99.97 13 | 99.87 40 | 99.81 7 | 99.95 51 | 99.54 43 | 99.99 13 | 99.80 31 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_fmvs1 | | | 99.48 72 | 99.65 35 | 98.97 266 | 99.54 198 | 97.16 322 | 99.11 190 | 99.98 8 | 99.78 51 | 99.96 15 | 99.81 66 | 98.72 122 | 99.97 22 | 99.95 7 | 99.97 42 | 99.79 37 |
|
bld_raw_dy_0_64 | | | 99.70 25 | 99.65 35 | 99.85 20 | 99.95 13 | 99.77 50 | 99.66 52 | 99.71 108 | 99.95 4 | 99.91 31 | 99.77 94 | 98.35 175 | 100.00 1 | 99.54 43 | 99.99 13 | 99.79 37 |
|
PMMVS2 | | | 99.48 72 | 99.45 77 | 99.57 147 | 99.76 101 | 98.99 220 | 98.09 304 | 99.90 24 | 98.95 186 | 99.78 85 | 99.58 205 | 99.57 25 | 99.93 81 | 99.48 51 | 99.95 67 | 99.79 37 |
|
MSC_two_6792asdad | | | | | 99.74 65 | 99.03 327 | 99.53 127 | | 99.23 296 | | | | | 99.92 101 | 97.77 217 | 99.69 222 | 99.78 40 |
|
No_MVS | | | | | 99.74 65 | 99.03 327 | 99.53 127 | | 99.23 296 | | | | | 99.92 101 | 97.77 217 | 99.69 222 | 99.78 40 |
|
dcpmvs_2 | | | 99.61 53 | 99.64 39 | 99.53 158 | 99.79 82 | 98.82 237 | 99.58 74 | 99.97 10 | 99.95 4 | 99.96 15 | 99.76 98 | 98.44 163 | 99.99 6 | 99.34 71 | 99.96 56 | 99.78 40 |
|
CHOSEN 1792x2688 | | | 99.39 99 | 99.30 107 | 99.65 107 | 99.88 38 | 99.25 188 | 98.78 247 | 99.88 30 | 98.66 219 | 99.96 15 | 99.79 80 | 97.45 239 | 99.93 81 | 99.34 71 | 99.99 13 | 99.78 40 |
|
test_vis1_rt | | | 99.45 82 | 99.46 75 | 99.41 191 | 99.71 127 | 98.63 255 | 98.99 217 | 99.96 14 | 99.03 179 | 99.95 19 | 99.12 315 | 98.75 117 | 99.84 235 | 99.82 19 | 99.82 163 | 99.77 44 |
|
IU-MVS | | | | | | 99.69 139 | 99.77 50 | | 99.22 299 | 97.50 305 | 99.69 123 | | | | 97.75 221 | 99.70 218 | 99.77 44 |
|
test_0728_THIRD | | | | | | | | | | 99.18 155 | 99.62 151 | 99.61 190 | 98.58 141 | 99.91 123 | 97.72 223 | 99.80 177 | 99.77 44 |
|
test_0728_SECOND | | | | | 99.83 25 | 99.70 135 | 99.79 44 | 99.14 178 | 99.61 158 | | | | | 99.92 101 | 97.88 206 | 99.72 213 | 99.77 44 |
|
MSP-MVS | | | 99.04 184 | 98.79 211 | 99.81 30 | 99.78 89 | 99.73 70 | 99.35 117 | 99.57 188 | 98.54 233 | 99.54 182 | 98.99 332 | 96.81 263 | 99.93 81 | 96.97 275 | 99.53 271 | 99.77 44 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mvsmamba | | | 99.74 21 | 99.70 24 | 99.85 20 | 99.93 23 | 99.83 29 | 99.76 18 | 99.81 61 | 99.96 2 | 99.91 31 | 99.81 66 | 98.60 138 | 99.94 64 | 99.58 37 | 99.98 30 | 99.77 44 |
|
DPE-MVS |  | | 99.14 165 | 98.92 194 | 99.82 27 | 99.57 185 | 99.77 50 | 98.74 250 | 99.60 170 | 98.55 230 | 99.76 92 | 99.69 137 | 98.23 190 | 99.92 101 | 96.39 307 | 99.75 195 | 99.76 50 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
Baseline_NR-MVSNet | | | 99.49 70 | 99.37 91 | 99.82 27 | 99.91 26 | 99.84 24 | 98.83 235 | 99.86 35 | 99.68 73 | 99.65 137 | 99.88 36 | 97.67 229 | 99.87 186 | 99.03 116 | 99.86 137 | 99.76 50 |
|
OurMVSNet-221017-0 | | | 99.75 18 | 99.71 23 | 99.84 23 | 99.96 5 | 99.83 29 | 99.83 6 | 99.85 39 | 99.80 46 | 99.93 24 | 99.93 17 | 98.54 147 | 99.93 81 | 99.59 34 | 99.98 30 | 99.76 50 |
|
test_241102_TWO | | | | | | | | | 99.54 205 | 99.13 168 | 99.76 92 | 99.63 174 | 98.32 181 | 99.92 101 | 97.85 212 | 99.69 222 | 99.75 53 |
|
DP-MVS | | | 99.48 72 | 99.39 86 | 99.74 65 | 99.57 185 | 99.62 105 | 99.29 136 | 99.61 158 | 99.87 25 | 99.74 107 | 99.76 98 | 98.69 124 | 99.87 186 | 98.20 179 | 99.80 177 | 99.75 53 |
|
tt0805 | | | 99.63 45 | 99.57 57 | 99.81 30 | 99.87 42 | 99.88 12 | 99.58 74 | 98.70 328 | 99.72 61 | 99.91 31 | 99.60 198 | 99.43 33 | 99.81 274 | 99.81 20 | 99.53 271 | 99.73 55 |
|
v10 | | | 99.69 28 | 99.69 28 | 99.66 102 | 99.81 67 | 99.39 158 | 99.66 52 | 99.75 87 | 99.60 97 | 99.92 28 | 99.87 40 | 98.75 117 | 99.86 204 | 99.90 10 | 99.99 13 | 99.73 55 |
|
EI-MVSNet-UG-set | | | 99.48 72 | 99.50 69 | 99.42 184 | 99.57 185 | 98.65 253 | 99.24 150 | 99.46 238 | 99.68 73 | 99.80 76 | 99.66 157 | 98.99 87 | 99.89 158 | 99.19 94 | 99.90 100 | 99.72 57 |
|
Vis-MVSNet |  | | 99.75 18 | 99.74 22 | 99.79 38 | 99.88 38 | 99.66 93 | 99.69 41 | 99.92 18 | 99.67 77 | 99.77 90 | 99.75 103 | 99.61 21 | 99.98 10 | 99.35 70 | 99.98 30 | 99.72 57 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
HyFIR lowres test | | | 98.91 206 | 98.64 220 | 99.73 74 | 99.85 48 | 99.47 133 | 98.07 307 | 99.83 47 | 98.64 221 | 99.89 41 | 99.60 198 | 92.57 317 | 100.00 1 | 99.33 74 | 99.97 42 | 99.72 57 |
|
EI-MVSNet-Vis-set | | | 99.47 79 | 99.49 70 | 99.42 184 | 99.57 185 | 98.66 250 | 99.24 150 | 99.46 238 | 99.67 77 | 99.79 81 | 99.65 162 | 98.97 91 | 99.89 158 | 99.15 103 | 99.89 109 | 99.71 60 |
|
v8 | | | 99.68 31 | 99.69 28 | 99.65 107 | 99.80 72 | 99.40 156 | 99.66 52 | 99.76 82 | 99.64 85 | 99.93 24 | 99.85 49 | 98.66 130 | 99.84 235 | 99.88 14 | 99.99 13 | 99.71 60 |
|
TransMVSNet (Re) | | | 99.78 16 | 99.77 19 | 99.81 30 | 99.91 26 | 99.85 19 | 99.75 21 | 99.86 35 | 99.70 68 | 99.91 31 | 99.89 31 | 99.60 23 | 99.87 186 | 99.59 34 | 99.74 202 | 99.71 60 |
|
test1111 | | | 97.74 291 | 98.16 267 | 96.49 350 | 99.60 166 | 89.86 379 | 99.71 33 | 91.21 376 | 99.89 19 | 99.88 47 | 99.87 40 | 93.73 306 | 99.90 141 | 99.56 40 | 99.99 13 | 99.70 63 |
|
VPA-MVSNet | | | 99.66 39 | 99.62 41 | 99.79 38 | 99.68 147 | 99.75 62 | 99.62 61 | 99.69 120 | 99.85 33 | 99.80 76 | 99.81 66 | 98.81 105 | 99.91 123 | 99.47 52 | 99.88 118 | 99.70 63 |
|
WR-MVS | | | 99.11 172 | 98.93 190 | 99.66 102 | 99.30 282 | 99.42 151 | 98.42 280 | 99.37 264 | 99.04 178 | 99.57 168 | 99.20 307 | 96.89 261 | 99.86 204 | 98.66 153 | 99.87 129 | 99.70 63 |
|
ACMH | | 98.42 6 | 99.59 55 | 99.54 63 | 99.72 80 | 99.86 45 | 99.62 105 | 99.56 79 | 99.79 69 | 98.77 211 | 99.80 76 | 99.85 49 | 99.64 17 | 99.85 221 | 98.70 149 | 99.89 109 | 99.70 63 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs6 | | | 99.86 7 | 99.86 10 | 99.83 25 | 99.94 16 | 99.90 7 | 99.83 6 | 99.91 21 | 99.85 33 | 99.94 21 | 99.95 13 | 99.73 12 | 99.90 141 | 99.65 29 | 99.97 42 | 99.69 67 |
|
HPM-MVS_fast | | | 99.43 86 | 99.30 107 | 99.80 34 | 99.83 53 | 99.81 38 | 99.52 83 | 99.70 114 | 98.35 255 | 99.51 194 | 99.50 235 | 99.31 47 | 99.88 172 | 98.18 183 | 99.84 146 | 99.69 67 |
|
LPG-MVS_test | | | 99.22 142 | 99.05 163 | 99.74 65 | 99.82 60 | 99.63 103 | 99.16 174 | 99.73 96 | 97.56 299 | 99.64 138 | 99.69 137 | 99.37 41 | 99.89 158 | 96.66 293 | 99.87 129 | 99.69 67 |
|
LGP-MVS_train | | | | | 99.74 65 | 99.82 60 | 99.63 103 | | 99.73 96 | 97.56 299 | 99.64 138 | 99.69 137 | 99.37 41 | 99.89 158 | 96.66 293 | 99.87 129 | 99.69 67 |
|
SteuartSystems-ACMMP | | | 99.30 121 | 99.14 133 | 99.76 51 | 99.87 42 | 99.66 93 | 99.18 165 | 99.60 170 | 98.55 230 | 99.57 168 | 99.67 153 | 99.03 84 | 99.94 64 | 97.01 273 | 99.80 177 | 99.69 67 |
Skip Steuart: Steuart Systems R&D Blog. |
MG-MVS | | | 98.52 247 | 98.39 245 | 98.94 269 | 99.15 308 | 97.39 317 | 98.18 293 | 99.21 302 | 98.89 197 | 99.23 253 | 99.63 174 | 97.37 244 | 99.74 302 | 94.22 352 | 99.61 250 | 99.69 67 |
|
ACMMP_NAP | | | 99.28 123 | 99.11 142 | 99.79 38 | 99.75 112 | 99.81 38 | 98.95 223 | 99.53 214 | 98.27 264 | 99.53 187 | 99.73 110 | 98.75 117 | 99.87 186 | 97.70 228 | 99.83 154 | 99.68 73 |
|
HFP-MVS | | | 99.25 130 | 99.08 153 | 99.76 51 | 99.73 121 | 99.70 83 | 99.31 127 | 99.59 176 | 98.36 250 | 99.36 227 | 99.37 268 | 98.80 109 | 99.91 123 | 97.43 249 | 99.75 195 | 99.68 73 |
|
EI-MVSNet | | | 99.38 101 | 99.44 80 | 99.21 238 | 99.58 175 | 98.09 289 | 99.26 143 | 99.46 238 | 99.62 88 | 99.75 99 | 99.67 153 | 98.54 147 | 99.85 221 | 99.15 103 | 99.92 90 | 99.68 73 |
|
TranMVSNet+NR-MVSNet | | | 99.54 64 | 99.47 71 | 99.76 51 | 99.58 175 | 99.64 99 | 99.30 130 | 99.63 148 | 99.61 91 | 99.71 117 | 99.56 217 | 98.76 115 | 99.96 41 | 99.14 109 | 99.92 90 | 99.68 73 |
|
PVSNet_Blended_VisFu | | | 99.40 95 | 99.38 88 | 99.44 178 | 99.90 31 | 98.66 250 | 98.94 225 | 99.91 21 | 97.97 281 | 99.79 81 | 99.73 110 | 99.05 82 | 99.97 22 | 99.15 103 | 99.99 13 | 99.68 73 |
|
IterMVS-LS | | | 99.41 93 | 99.47 71 | 99.25 234 | 99.81 67 | 98.09 289 | 98.85 232 | 99.76 82 | 99.62 88 | 99.83 65 | 99.64 164 | 98.54 147 | 99.97 22 | 99.15 103 | 99.99 13 | 99.68 73 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MP-MVS-pluss | | | 99.14 165 | 98.92 194 | 99.80 34 | 99.83 53 | 99.83 29 | 98.61 256 | 99.63 148 | 96.84 330 | 99.44 206 | 99.58 205 | 98.81 105 | 99.91 123 | 97.70 228 | 99.82 163 | 99.67 79 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
region2R | | | 99.23 134 | 99.05 163 | 99.77 44 | 99.76 101 | 99.70 83 | 99.31 127 | 99.59 176 | 98.41 244 | 99.32 236 | 99.36 272 | 98.73 121 | 99.93 81 | 97.29 256 | 99.74 202 | 99.67 79 |
|
XVS | | | 99.27 127 | 99.11 142 | 99.75 60 | 99.71 127 | 99.71 76 | 99.37 113 | 99.61 158 | 99.29 136 | 98.76 309 | 99.47 246 | 98.47 158 | 99.88 172 | 97.62 236 | 99.73 207 | 99.67 79 |
|
v1240 | | | 99.56 59 | 99.58 54 | 99.51 162 | 99.80 72 | 99.00 219 | 99.00 212 | 99.65 140 | 99.15 166 | 99.90 37 | 99.75 103 | 99.09 74 | 99.88 172 | 99.90 10 | 99.96 56 | 99.67 79 |
|
X-MVStestdata | | | 96.09 330 | 94.87 339 | 99.75 60 | 99.71 127 | 99.71 76 | 99.37 113 | 99.61 158 | 99.29 136 | 98.76 309 | 61.30 383 | 98.47 158 | 99.88 172 | 97.62 236 | 99.73 207 | 99.67 79 |
|
VPNet | | | 99.46 80 | 99.37 91 | 99.71 85 | 99.82 60 | 99.59 115 | 99.48 92 | 99.70 114 | 99.81 43 | 99.69 123 | 99.58 205 | 97.66 233 | 99.86 204 | 99.17 99 | 99.44 284 | 99.67 79 |
|
ACMMPR | | | 99.23 134 | 99.06 159 | 99.76 51 | 99.74 118 | 99.69 86 | 99.31 127 | 99.59 176 | 98.36 250 | 99.35 228 | 99.38 266 | 98.61 136 | 99.93 81 | 97.43 249 | 99.75 195 | 99.67 79 |
|
SixPastTwentyTwo | | | 99.42 89 | 99.30 107 | 99.76 51 | 99.92 25 | 99.67 91 | 99.70 34 | 99.14 308 | 99.65 83 | 99.89 41 | 99.90 27 | 96.20 280 | 99.94 64 | 99.42 61 | 99.92 90 | 99.67 79 |
|
HPM-MVS |  | | 99.25 130 | 99.07 157 | 99.78 41 | 99.81 67 | 99.75 62 | 99.61 66 | 99.67 127 | 97.72 294 | 99.35 228 | 99.25 296 | 99.23 58 | 99.92 101 | 97.21 267 | 99.82 163 | 99.67 79 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
v144192 | | | 99.55 62 | 99.54 63 | 99.58 141 | 99.78 89 | 99.20 200 | 99.11 190 | 99.62 151 | 99.18 155 | 99.89 41 | 99.72 117 | 98.66 130 | 99.87 186 | 99.88 14 | 99.97 42 | 99.66 88 |
|
v1921920 | | | 99.56 59 | 99.57 57 | 99.55 153 | 99.75 112 | 99.11 208 | 99.05 202 | 99.61 158 | 99.15 166 | 99.88 47 | 99.71 124 | 99.08 77 | 99.87 186 | 99.90 10 | 99.97 42 | 99.66 88 |
|
v1192 | | | 99.57 56 | 99.57 57 | 99.57 147 | 99.77 97 | 99.22 195 | 99.04 204 | 99.60 170 | 99.18 155 | 99.87 55 | 99.72 117 | 99.08 77 | 99.85 221 | 99.89 13 | 99.98 30 | 99.66 88 |
|
PGM-MVS | | | 99.20 149 | 99.01 174 | 99.77 44 | 99.75 112 | 99.71 76 | 99.16 174 | 99.72 105 | 97.99 279 | 99.42 212 | 99.60 198 | 98.81 105 | 99.93 81 | 96.91 278 | 99.74 202 | 99.66 88 |
|
mPP-MVS | | | 99.19 152 | 99.00 177 | 99.76 51 | 99.76 101 | 99.68 89 | 99.38 109 | 99.54 205 | 98.34 259 | 99.01 281 | 99.50 235 | 98.53 151 | 99.93 81 | 97.18 268 | 99.78 187 | 99.66 88 |
|
CP-MVS | | | 99.23 134 | 99.05 163 | 99.75 60 | 99.66 153 | 99.66 93 | 99.38 109 | 99.62 151 | 98.38 248 | 99.06 279 | 99.27 291 | 98.79 110 | 99.94 64 | 97.51 245 | 99.82 163 | 99.66 88 |
|
EG-PatchMatch MVS | | | 99.57 56 | 99.56 62 | 99.62 130 | 99.77 97 | 99.33 173 | 99.26 143 | 99.76 82 | 99.32 135 | 99.80 76 | 99.78 87 | 99.29 49 | 99.87 186 | 99.15 103 | 99.91 99 | 99.66 88 |
|
UGNet | | | 99.38 101 | 99.34 96 | 99.49 165 | 98.90 337 | 98.90 233 | 99.70 34 | 99.35 268 | 99.86 28 | 98.57 323 | 99.81 66 | 98.50 157 | 99.93 81 | 99.38 63 | 99.98 30 | 99.66 88 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
test2506 | | | 94.73 340 | 94.59 342 | 95.15 356 | 99.59 170 | 85.90 381 | 99.75 21 | 74.01 382 | 99.89 19 | 99.71 117 | 99.86 47 | 79.00 380 | 99.90 141 | 99.52 47 | 99.99 13 | 99.65 96 |
|
ECVR-MVS |  | | 97.73 292 | 98.04 272 | 96.78 344 | 99.59 170 | 90.81 375 | 99.72 29 | 90.43 378 | 99.89 19 | 99.86 56 | 99.86 47 | 93.60 308 | 99.89 158 | 99.46 53 | 99.99 13 | 99.65 96 |
|
h-mvs33 | | | 98.61 235 | 98.34 251 | 99.44 178 | 99.60 166 | 98.67 247 | 99.27 141 | 99.44 243 | 99.68 73 | 99.32 236 | 99.49 239 | 92.50 320 | 100.00 1 | 99.24 87 | 96.51 369 | 99.65 96 |
|
TSAR-MVS + MP. | | | 99.34 114 | 99.24 122 | 99.63 121 | 99.82 60 | 99.37 163 | 99.26 143 | 99.35 268 | 98.77 211 | 99.57 168 | 99.70 131 | 99.27 54 | 99.88 172 | 97.71 225 | 99.75 195 | 99.65 96 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MTAPA | | | 99.35 109 | 99.20 125 | 99.80 34 | 99.81 67 | 99.81 38 | 99.33 120 | 99.53 214 | 99.27 140 | 99.42 212 | 99.63 174 | 98.21 191 | 99.95 51 | 97.83 216 | 99.79 182 | 99.65 96 |
|
MCST-MVS | | | 99.02 187 | 98.81 208 | 99.65 107 | 99.58 175 | 99.49 131 | 98.58 260 | 99.07 311 | 98.40 246 | 99.04 280 | 99.25 296 | 98.51 156 | 99.80 280 | 97.31 255 | 99.51 275 | 99.65 96 |
|
UniMVSNet_NR-MVSNet | | | 99.37 104 | 99.25 120 | 99.72 80 | 99.47 233 | 99.56 122 | 98.97 221 | 99.61 158 | 99.43 122 | 99.67 131 | 99.28 289 | 97.85 218 | 99.95 51 | 99.17 99 | 99.81 172 | 99.65 96 |
|
casdiffmvs_mvg |  | | 99.68 31 | 99.68 31 | 99.69 90 | 99.81 67 | 99.59 115 | 99.29 136 | 99.90 24 | 99.71 63 | 99.79 81 | 99.73 110 | 99.54 28 | 99.84 235 | 99.36 68 | 99.96 56 | 99.65 96 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ZNCC-MVS | | | 99.22 142 | 99.04 168 | 99.77 44 | 99.76 101 | 99.73 70 | 99.28 138 | 99.56 193 | 98.19 269 | 99.14 268 | 99.29 288 | 98.84 104 | 99.92 101 | 97.53 244 | 99.80 177 | 99.64 104 |
|
v1144 | | | 99.54 64 | 99.53 67 | 99.59 138 | 99.79 82 | 99.28 181 | 99.10 192 | 99.61 158 | 99.20 153 | 99.84 61 | 99.73 110 | 98.67 128 | 99.84 235 | 99.86 16 | 99.98 30 | 99.64 104 |
|
v2v482 | | | 99.50 68 | 99.47 71 | 99.58 141 | 99.78 89 | 99.25 188 | 99.14 178 | 99.58 186 | 99.25 144 | 99.81 73 | 99.62 181 | 98.24 186 | 99.84 235 | 99.83 17 | 99.97 42 | 99.64 104 |
|
K. test v3 | | | 98.87 214 | 98.60 223 | 99.69 90 | 99.93 23 | 99.46 137 | 99.74 23 | 94.97 369 | 99.78 51 | 99.88 47 | 99.88 36 | 93.66 307 | 99.97 22 | 99.61 32 | 99.95 67 | 99.64 104 |
|
DeepC-MVS | | 98.90 4 | 99.62 51 | 99.61 45 | 99.67 95 | 99.72 124 | 99.44 144 | 99.24 150 | 99.71 108 | 99.27 140 | 99.93 24 | 99.90 27 | 99.70 15 | 99.93 81 | 98.99 119 | 99.99 13 | 99.64 104 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mvsany_test1 | | | 99.44 84 | 99.45 77 | 99.40 193 | 99.37 257 | 98.64 254 | 97.90 326 | 99.59 176 | 99.27 140 | 99.92 28 | 99.82 62 | 99.74 11 | 99.93 81 | 99.55 42 | 99.87 129 | 99.63 109 |
|
SMA-MVS |  | | 99.19 152 | 99.00 177 | 99.73 74 | 99.46 237 | 99.73 70 | 99.13 184 | 99.52 219 | 97.40 310 | 99.57 168 | 99.64 164 | 98.93 94 | 99.83 250 | 97.61 238 | 99.79 182 | 99.63 109 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
IterMVS-SCA-FT | | | 99.00 193 | 99.16 129 | 98.51 302 | 99.75 112 | 95.90 344 | 98.07 307 | 99.84 45 | 99.84 36 | 99.89 41 | 99.73 110 | 96.01 284 | 99.99 6 | 99.33 74 | 100.00 1 | 99.63 109 |
|
pm-mvs1 | | | 99.79 15 | 99.79 17 | 99.78 41 | 99.91 26 | 99.83 29 | 99.76 18 | 99.87 32 | 99.73 57 | 99.89 41 | 99.87 40 | 99.63 18 | 99.87 186 | 99.54 43 | 99.92 90 | 99.63 109 |
|
MP-MVS |  | | 99.06 178 | 98.83 206 | 99.76 51 | 99.76 101 | 99.71 76 | 99.32 122 | 99.50 227 | 98.35 255 | 98.97 283 | 99.48 242 | 98.37 173 | 99.92 101 | 95.95 326 | 99.75 195 | 99.63 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DU-MVS | | | 99.33 117 | 99.21 124 | 99.71 85 | 99.43 244 | 99.56 122 | 98.83 235 | 99.53 214 | 99.38 128 | 99.67 131 | 99.36 272 | 97.67 229 | 99.95 51 | 99.17 99 | 99.81 172 | 99.63 109 |
|
NR-MVSNet | | | 99.40 95 | 99.31 102 | 99.68 92 | 99.43 244 | 99.55 125 | 99.73 26 | 99.50 227 | 99.46 114 | 99.88 47 | 99.36 272 | 97.54 236 | 99.87 186 | 98.97 123 | 99.87 129 | 99.63 109 |
|
IterMVS | | | 98.97 197 | 99.16 129 | 98.42 306 | 99.74 118 | 95.64 347 | 98.06 309 | 99.83 47 | 99.83 39 | 99.85 58 | 99.74 106 | 96.10 283 | 99.99 6 | 99.27 86 | 100.00 1 | 99.63 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EPP-MVSNet | | | 99.17 160 | 99.00 177 | 99.66 102 | 99.80 72 | 99.43 148 | 99.70 34 | 99.24 295 | 99.48 107 | 99.56 175 | 99.77 94 | 94.89 292 | 99.93 81 | 98.72 148 | 99.89 109 | 99.63 109 |
|
ACMMP |  | | 99.25 130 | 99.08 153 | 99.74 65 | 99.79 82 | 99.68 89 | 99.50 87 | 99.65 140 | 98.07 275 | 99.52 189 | 99.69 137 | 98.57 142 | 99.92 101 | 97.18 268 | 99.79 182 | 99.63 109 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepC-MVS_fast | | 98.47 5 | 99.23 134 | 99.12 139 | 99.56 150 | 99.28 287 | 99.22 195 | 98.99 217 | 99.40 256 | 99.08 173 | 99.58 165 | 99.64 164 | 98.90 100 | 99.83 250 | 97.44 248 | 99.75 195 | 99.63 109 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DVP-MVS++ | | | 99.38 101 | 99.25 120 | 99.77 44 | 99.03 327 | 99.77 50 | 99.74 23 | 99.61 158 | 99.18 155 | 99.76 92 | 99.61 190 | 99.00 85 | 99.92 101 | 97.72 223 | 99.60 253 | 99.62 120 |
|
PC_three_1452 | | | | | | | | | | 97.56 299 | 99.68 126 | 99.41 256 | 99.09 74 | 97.09 375 | 96.66 293 | 99.60 253 | 99.62 120 |
|
GeoE | | | 99.69 28 | 99.66 33 | 99.78 41 | 99.76 101 | 99.76 58 | 99.60 71 | 99.82 52 | 99.46 114 | 99.75 99 | 99.56 217 | 99.63 18 | 99.95 51 | 99.43 56 | 99.88 118 | 99.62 120 |
|
test_method | | | 91.72 341 | 92.32 344 | 89.91 358 | 93.49 380 | 70.18 382 | 90.28 371 | 99.56 193 | 61.71 375 | 95.39 372 | 99.52 230 | 93.90 301 | 99.94 64 | 98.76 144 | 98.27 350 | 99.62 120 |
|
GST-MVS | | | 99.16 161 | 98.96 188 | 99.75 60 | 99.73 121 | 99.73 70 | 99.20 160 | 99.55 199 | 98.22 266 | 99.32 236 | 99.35 277 | 98.65 132 | 99.91 123 | 96.86 281 | 99.74 202 | 99.62 120 |
|
new-patchmatchnet | | | 99.35 109 | 99.57 57 | 98.71 297 | 99.82 60 | 96.62 334 | 98.55 266 | 99.75 87 | 99.50 105 | 99.88 47 | 99.87 40 | 99.31 47 | 99.88 172 | 99.43 56 | 100.00 1 | 99.62 120 |
|
CPTT-MVS | | | 98.74 226 | 98.44 240 | 99.64 114 | 99.61 164 | 99.38 160 | 99.18 165 | 99.55 199 | 96.49 334 | 99.27 247 | 99.37 268 | 97.11 256 | 99.92 101 | 95.74 332 | 99.67 233 | 99.62 120 |
|
MIMVSNet1 | | | 99.66 39 | 99.62 41 | 99.80 34 | 99.94 16 | 99.87 15 | 99.69 41 | 99.77 77 | 99.78 51 | 99.93 24 | 99.89 31 | 97.94 211 | 99.92 101 | 99.65 29 | 99.98 30 | 99.62 120 |
|
DeepPCF-MVS | | 98.42 6 | 99.18 156 | 99.02 171 | 99.67 95 | 99.22 296 | 99.75 62 | 97.25 354 | 99.47 235 | 98.72 216 | 99.66 135 | 99.70 131 | 99.29 49 | 99.63 347 | 98.07 191 | 99.81 172 | 99.62 120 |
|
3Dnovator+ | | 98.92 3 | 99.35 109 | 99.24 122 | 99.67 95 | 99.35 262 | 99.47 133 | 99.62 61 | 99.50 227 | 99.44 117 | 99.12 271 | 99.78 87 | 98.77 114 | 99.94 64 | 97.87 209 | 99.72 213 | 99.62 120 |
|
DVP-MVS |  | | 99.32 119 | 99.17 128 | 99.77 44 | 99.69 139 | 99.80 42 | 99.14 178 | 99.31 277 | 99.16 162 | 99.62 151 | 99.61 190 | 98.35 175 | 99.91 123 | 97.88 206 | 99.72 213 | 99.61 130 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APD-MVS |  | | 98.87 214 | 98.59 225 | 99.71 85 | 99.50 217 | 99.62 105 | 99.01 210 | 99.57 188 | 96.80 332 | 99.54 182 | 99.63 174 | 98.29 182 | 99.91 123 | 95.24 341 | 99.71 216 | 99.61 130 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
NCCC | | | 98.82 218 | 98.57 229 | 99.58 141 | 99.21 298 | 99.31 176 | 98.61 256 | 99.25 292 | 98.65 220 | 98.43 329 | 99.26 294 | 97.86 216 | 99.81 274 | 96.55 298 | 99.27 307 | 99.61 130 |
|
TAMVS | | | 99.49 70 | 99.45 77 | 99.63 121 | 99.48 227 | 99.42 151 | 99.45 98 | 99.57 188 | 99.66 81 | 99.78 85 | 99.83 55 | 97.85 218 | 99.86 204 | 99.44 55 | 99.96 56 | 99.61 130 |
|
HPM-MVS++ |  | | 98.96 200 | 98.70 218 | 99.74 65 | 99.52 209 | 99.71 76 | 98.86 230 | 99.19 303 | 98.47 240 | 98.59 321 | 99.06 322 | 98.08 201 | 99.91 123 | 96.94 276 | 99.60 253 | 99.60 134 |
|
V42 | | | 99.56 59 | 99.54 63 | 99.63 121 | 99.79 82 | 99.46 137 | 99.39 107 | 99.59 176 | 99.24 146 | 99.86 56 | 99.70 131 | 98.55 145 | 99.82 259 | 99.79 21 | 99.95 67 | 99.60 134 |
|
HQP_MVS | | | 98.90 208 | 98.68 219 | 99.55 153 | 99.58 175 | 99.24 192 | 98.80 243 | 99.54 205 | 98.94 187 | 99.14 268 | 99.25 296 | 97.24 248 | 99.82 259 | 95.84 329 | 99.78 187 | 99.60 134 |
|
plane_prior5 | | | | | | | | | 99.54 205 | | | | | 99.82 259 | 95.84 329 | 99.78 187 | 99.60 134 |
|
TDRefinement | | | 99.72 22 | 99.70 24 | 99.77 44 | 99.90 31 | 99.85 19 | 99.86 5 | 99.92 18 | 99.69 71 | 99.78 85 | 99.92 21 | 99.37 41 | 99.88 172 | 98.93 131 | 99.95 67 | 99.60 134 |
|
ACMH+ | | 98.40 8 | 99.50 68 | 99.43 82 | 99.71 85 | 99.86 45 | 99.76 58 | 99.32 122 | 99.77 77 | 99.53 103 | 99.77 90 | 99.76 98 | 99.26 55 | 99.78 286 | 97.77 217 | 99.88 118 | 99.60 134 |
|
ACMM | | 98.09 11 | 99.46 80 | 99.38 88 | 99.72 80 | 99.80 72 | 99.69 86 | 99.13 184 | 99.65 140 | 98.99 181 | 99.64 138 | 99.72 117 | 99.39 35 | 99.86 204 | 98.23 176 | 99.81 172 | 99.60 134 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VDDNet | | | 98.97 197 | 98.82 207 | 99.42 184 | 99.71 127 | 98.81 238 | 99.62 61 | 98.68 329 | 99.81 43 | 99.38 225 | 99.80 70 | 94.25 299 | 99.85 221 | 98.79 140 | 99.32 299 | 99.59 141 |
|
casdiffmvs |  | | 99.63 45 | 99.61 45 | 99.67 95 | 99.79 82 | 99.59 115 | 99.13 184 | 99.85 39 | 99.79 49 | 99.76 92 | 99.72 117 | 99.33 46 | 99.82 259 | 99.21 90 | 99.94 78 | 99.59 141 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UniMVSNet (Re) | | | 99.37 104 | 99.26 118 | 99.68 92 | 99.51 211 | 99.58 119 | 98.98 220 | 99.60 170 | 99.43 122 | 99.70 120 | 99.36 272 | 97.70 225 | 99.88 172 | 99.20 93 | 99.87 129 | 99.59 141 |
|
DSMNet-mixed | | | 99.48 72 | 99.65 35 | 98.95 268 | 99.71 127 | 97.27 319 | 99.50 87 | 99.82 52 | 99.59 99 | 99.41 218 | 99.85 49 | 99.62 20 | 100.00 1 | 99.53 46 | 99.89 109 | 99.59 141 |
|
3Dnovator | | 99.15 2 | 99.43 86 | 99.36 94 | 99.65 107 | 99.39 252 | 99.42 151 | 99.70 34 | 99.56 193 | 99.23 148 | 99.35 228 | 99.80 70 | 99.17 64 | 99.95 51 | 98.21 178 | 99.84 146 | 99.59 141 |
|
SED-MVS | | | 99.40 95 | 99.28 114 | 99.77 44 | 99.69 139 | 99.82 35 | 99.20 160 | 99.54 205 | 99.13 168 | 99.82 66 | 99.63 174 | 98.91 97 | 99.92 101 | 97.85 212 | 99.70 218 | 99.58 146 |
|
OPU-MVS | | | | | 99.29 224 | 99.12 313 | 99.44 144 | 99.20 160 | | | | 99.40 260 | 99.00 85 | 98.84 372 | 96.54 299 | 99.60 253 | 99.58 146 |
|
EPNet | | | 98.13 277 | 97.77 292 | 99.18 243 | 94.57 379 | 97.99 294 | 99.24 150 | 97.96 351 | 99.74 56 | 97.29 361 | 99.62 181 | 93.13 312 | 99.97 22 | 98.59 155 | 99.83 154 | 99.58 146 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IS-MVSNet | | | 99.03 185 | 98.85 202 | 99.55 153 | 99.80 72 | 99.25 188 | 99.73 26 | 99.15 307 | 99.37 129 | 99.61 157 | 99.71 124 | 94.73 295 | 99.81 274 | 97.70 228 | 99.88 118 | 99.58 146 |
|
ACMP | | 97.51 14 | 99.05 181 | 98.84 204 | 99.67 95 | 99.78 89 | 99.55 125 | 98.88 228 | 99.66 131 | 97.11 325 | 99.47 200 | 99.60 198 | 99.07 79 | 99.89 158 | 96.18 316 | 99.85 141 | 99.58 146 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SR-MVS | | | 99.19 152 | 99.00 177 | 99.74 65 | 99.51 211 | 99.72 74 | 99.18 165 | 99.60 170 | 98.85 200 | 99.47 200 | 99.58 205 | 98.38 172 | 99.92 101 | 96.92 277 | 99.54 269 | 99.57 151 |
|
lessismore_v0 | | | | | 99.64 114 | 99.86 45 | 99.38 160 | | 90.66 377 | | 99.89 41 | 99.83 55 | 94.56 297 | 99.97 22 | 99.56 40 | 99.92 90 | 99.57 151 |
|
pmmvs5 | | | 99.19 152 | 99.11 142 | 99.42 184 | 99.76 101 | 98.88 234 | 98.55 266 | 99.73 96 | 98.82 204 | 99.72 112 | 99.62 181 | 96.56 266 | 99.82 259 | 99.32 76 | 99.95 67 | 99.56 153 |
|
APD-MVS_3200maxsize | | | 99.31 120 | 99.16 129 | 99.74 65 | 99.53 204 | 99.75 62 | 99.27 141 | 99.61 158 | 99.19 154 | 99.57 168 | 99.64 164 | 98.76 115 | 99.90 141 | 97.29 256 | 99.62 243 | 99.56 153 |
|
CDPH-MVS | | | 98.56 243 | 98.20 262 | 99.61 133 | 99.50 217 | 99.46 137 | 98.32 285 | 99.41 249 | 95.22 351 | 99.21 258 | 99.10 319 | 98.34 178 | 99.82 259 | 95.09 344 | 99.66 236 | 99.56 153 |
|
Anonymous20240521 | | | 99.44 84 | 99.42 84 | 99.49 165 | 99.89 33 | 98.96 225 | 99.62 61 | 99.76 82 | 99.85 33 | 99.82 66 | 99.88 36 | 96.39 275 | 99.97 22 | 99.59 34 | 99.98 30 | 99.55 156 |
|
our_test_3 | | | 98.85 216 | 99.09 151 | 98.13 318 | 99.66 153 | 94.90 354 | 97.72 332 | 99.58 186 | 99.07 175 | 99.64 138 | 99.62 181 | 98.19 193 | 99.93 81 | 98.41 163 | 99.95 67 | 99.55 156 |
|
YYNet1 | | | 98.95 203 | 98.99 182 | 98.84 285 | 99.64 157 | 97.14 324 | 98.22 292 | 99.32 273 | 98.92 192 | 99.59 163 | 99.66 157 | 97.40 241 | 99.83 250 | 98.27 173 | 99.90 100 | 99.55 156 |
|
MDA-MVSNet_test_wron | | | 98.95 203 | 98.99 182 | 98.85 283 | 99.64 157 | 97.16 322 | 98.23 291 | 99.33 271 | 98.93 190 | 99.56 175 | 99.66 157 | 97.39 243 | 99.83 250 | 98.29 171 | 99.88 118 | 99.55 156 |
|
MVSFormer | | | 99.41 93 | 99.44 80 | 99.31 221 | 99.57 185 | 98.40 268 | 99.77 14 | 99.80 63 | 99.73 57 | 99.63 142 | 99.30 285 | 98.02 205 | 99.98 10 | 99.43 56 | 99.69 222 | 99.55 156 |
|
jason | | | 99.16 161 | 99.11 142 | 99.32 218 | 99.75 112 | 98.44 265 | 98.26 289 | 99.39 259 | 98.70 217 | 99.74 107 | 99.30 285 | 98.54 147 | 99.97 22 | 98.48 160 | 99.82 163 | 99.55 156 |
jason: jason. |
CDS-MVSNet | | | 99.22 142 | 99.13 135 | 99.50 164 | 99.35 262 | 99.11 208 | 98.96 222 | 99.54 205 | 99.46 114 | 99.61 157 | 99.70 131 | 96.31 277 | 99.83 250 | 99.34 71 | 99.88 118 | 99.55 156 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
COLMAP_ROB |  | 98.06 12 | 99.45 82 | 99.37 91 | 99.70 89 | 99.83 53 | 99.70 83 | 99.38 109 | 99.78 74 | 99.53 103 | 99.67 131 | 99.78 87 | 99.19 62 | 99.86 204 | 97.32 254 | 99.87 129 | 99.55 156 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
iter_conf_final | | | 98.75 224 | 98.54 233 | 99.40 193 | 99.33 275 | 98.75 242 | 99.26 143 | 99.59 176 | 99.80 46 | 99.76 92 | 99.58 205 | 90.17 346 | 99.92 101 | 99.37 66 | 99.97 42 | 99.54 164 |
|
SR-MVS-dyc-post | | | 99.27 127 | 99.11 142 | 99.73 74 | 99.54 198 | 99.74 68 | 99.26 143 | 99.62 151 | 99.16 162 | 99.52 189 | 99.64 164 | 98.41 167 | 99.91 123 | 97.27 259 | 99.61 250 | 99.54 164 |
|
RE-MVS-def | | | | 99.13 135 | | 99.54 198 | 99.74 68 | 99.26 143 | 99.62 151 | 99.16 162 | 99.52 189 | 99.64 164 | 98.57 142 | | 97.27 259 | 99.61 250 | 99.54 164 |
|
SD-MVS | | | 99.01 191 | 99.30 107 | 98.15 317 | 99.50 217 | 99.40 156 | 98.94 225 | 99.61 158 | 99.22 152 | 99.75 99 | 99.82 62 | 99.54 28 | 95.51 377 | 97.48 246 | 99.87 129 | 99.54 164 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CNVR-MVS | | | 98.99 196 | 98.80 210 | 99.56 150 | 99.25 292 | 99.43 148 | 98.54 269 | 99.27 286 | 98.58 227 | 98.80 305 | 99.43 254 | 98.53 151 | 99.70 313 | 97.22 266 | 99.59 257 | 99.54 164 |
|
MVS_111021_HR | | | 99.12 169 | 99.02 171 | 99.40 193 | 99.50 217 | 99.11 208 | 97.92 323 | 99.71 108 | 98.76 214 | 99.08 275 | 99.47 246 | 99.17 64 | 99.54 357 | 97.85 212 | 99.76 193 | 99.54 164 |
|
v148 | | | 99.40 95 | 99.41 85 | 99.39 197 | 99.76 101 | 98.94 226 | 99.09 196 | 99.59 176 | 99.17 160 | 99.81 73 | 99.61 190 | 98.41 167 | 99.69 319 | 99.32 76 | 99.94 78 | 99.53 170 |
|
iter_conf05 | | | 98.46 255 | 98.23 258 | 99.15 246 | 99.04 326 | 97.99 294 | 99.10 192 | 99.61 158 | 99.79 49 | 99.76 92 | 99.58 205 | 87.88 356 | 99.92 101 | 99.31 79 | 99.97 42 | 99.53 170 |
|
diffmvs |  | | 99.34 114 | 99.32 101 | 99.39 197 | 99.67 152 | 98.77 241 | 98.57 264 | 99.81 61 | 99.61 91 | 99.48 199 | 99.41 256 | 98.47 158 | 99.86 204 | 98.97 123 | 99.90 100 | 99.53 170 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline | | | 99.63 45 | 99.62 41 | 99.66 102 | 99.80 72 | 99.62 105 | 99.44 101 | 99.80 63 | 99.71 63 | 99.72 112 | 99.69 137 | 99.15 66 | 99.83 250 | 99.32 76 | 99.94 78 | 99.53 170 |
|
HQP4-MVS | | | | | | | | | | | 98.15 338 | | | 99.70 313 | | | 99.53 170 |
|
GBi-Net | | | 99.42 89 | 99.31 102 | 99.73 74 | 99.49 222 | 99.77 50 | 99.68 44 | 99.70 114 | 99.44 117 | 99.62 151 | 99.83 55 | 97.21 250 | 99.90 141 | 98.96 125 | 99.90 100 | 99.53 170 |
|
test1 | | | 99.42 89 | 99.31 102 | 99.73 74 | 99.49 222 | 99.77 50 | 99.68 44 | 99.70 114 | 99.44 117 | 99.62 151 | 99.83 55 | 97.21 250 | 99.90 141 | 98.96 125 | 99.90 100 | 99.53 170 |
|
FMVSNet1 | | | 99.66 39 | 99.63 40 | 99.73 74 | 99.78 89 | 99.77 50 | 99.68 44 | 99.70 114 | 99.67 77 | 99.82 66 | 99.83 55 | 98.98 89 | 99.90 141 | 99.24 87 | 99.97 42 | 99.53 170 |
|
HQP-MVS | | | 98.36 264 | 98.02 274 | 99.39 197 | 99.31 278 | 98.94 226 | 97.98 316 | 99.37 264 | 97.45 307 | 98.15 338 | 98.83 348 | 96.67 264 | 99.70 313 | 94.73 346 | 99.67 233 | 99.53 170 |
|
QAPM | | | 98.40 262 | 97.99 275 | 99.65 107 | 99.39 252 | 99.47 133 | 99.67 48 | 99.52 219 | 91.70 365 | 98.78 308 | 99.80 70 | 98.55 145 | 99.95 51 | 94.71 348 | 99.75 195 | 99.53 170 |
|
F-COLMAP | | | 98.74 226 | 98.45 239 | 99.62 130 | 99.57 185 | 99.47 133 | 98.84 233 | 99.65 140 | 96.31 338 | 98.93 287 | 99.19 308 | 97.68 228 | 99.87 186 | 96.52 300 | 99.37 294 | 99.53 170 |
|
MVSTER | | | 98.47 254 | 98.22 260 | 99.24 236 | 99.06 323 | 98.35 273 | 99.08 199 | 99.46 238 | 99.27 140 | 99.75 99 | 99.66 157 | 88.61 354 | 99.85 221 | 99.14 109 | 99.92 90 | 99.52 181 |
|
PVSNet_BlendedMVS | | | 99.03 185 | 99.01 174 | 99.09 255 | 99.54 198 | 97.99 294 | 98.58 260 | 99.82 52 | 97.62 298 | 99.34 231 | 99.71 124 | 98.52 154 | 99.77 294 | 97.98 197 | 99.97 42 | 99.52 181 |
|
OPM-MVS | | | 99.26 129 | 99.13 135 | 99.63 121 | 99.70 135 | 99.61 111 | 98.58 260 | 99.48 232 | 98.50 236 | 99.52 189 | 99.63 174 | 99.14 69 | 99.76 296 | 97.89 205 | 99.77 191 | 99.51 183 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
AllTest | | | 99.21 147 | 99.07 157 | 99.63 121 | 99.78 89 | 99.64 99 | 99.12 188 | 99.83 47 | 98.63 222 | 99.63 142 | 99.72 117 | 98.68 125 | 99.75 300 | 96.38 308 | 99.83 154 | 99.51 183 |
|
TestCases | | | | | 99.63 121 | 99.78 89 | 99.64 99 | | 99.83 47 | 98.63 222 | 99.63 142 | 99.72 117 | 98.68 125 | 99.75 300 | 96.38 308 | 99.83 154 | 99.51 183 |
|
BH-RMVSNet | | | 98.41 260 | 98.14 268 | 99.21 238 | 99.21 298 | 98.47 262 | 98.60 258 | 98.26 347 | 98.35 255 | 98.93 287 | 99.31 283 | 97.20 253 | 99.66 338 | 94.32 350 | 99.10 316 | 99.51 183 |
|
USDC | | | 98.96 200 | 98.93 190 | 99.05 261 | 99.54 198 | 97.99 294 | 97.07 360 | 99.80 63 | 98.21 267 | 99.75 99 | 99.77 94 | 98.43 164 | 99.64 346 | 97.90 204 | 99.88 118 | 99.51 183 |
|
test9_res | | | | | | | | | | | | | | | 95.10 343 | 99.44 284 | 99.50 188 |
|
train_agg | | | 98.35 267 | 97.95 279 | 99.57 147 | 99.35 262 | 99.35 170 | 98.11 302 | 99.41 249 | 94.90 355 | 97.92 348 | 98.99 332 | 98.02 205 | 99.85 221 | 95.38 339 | 99.44 284 | 99.50 188 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.58 349 | 99.46 283 | 99.50 188 |
|
VDD-MVS | | | 99.20 149 | 99.11 142 | 99.44 178 | 99.43 244 | 98.98 221 | 99.50 87 | 98.32 346 | 99.80 46 | 99.56 175 | 99.69 137 | 96.99 259 | 99.85 221 | 98.99 119 | 99.73 207 | 99.50 188 |
|
MDA-MVSNet-bldmvs | | | 99.06 178 | 99.05 163 | 99.07 259 | 99.80 72 | 97.83 303 | 98.89 227 | 99.72 105 | 99.29 136 | 99.63 142 | 99.70 131 | 96.47 270 | 99.89 158 | 98.17 185 | 99.82 163 | 99.50 188 |
|
KD-MVS_self_test | | | 99.63 45 | 99.59 50 | 99.76 51 | 99.84 49 | 99.90 7 | 99.37 113 | 99.79 69 | 99.83 39 | 99.88 47 | 99.85 49 | 98.42 166 | 99.90 141 | 99.60 33 | 99.73 207 | 99.49 193 |
|
SF-MVS | | | 99.10 175 | 98.93 190 | 99.62 130 | 99.58 175 | 99.51 129 | 99.13 184 | 99.65 140 | 97.97 281 | 99.42 212 | 99.61 190 | 98.86 102 | 99.87 186 | 96.45 305 | 99.68 227 | 99.49 193 |
|
Anonymous20240529 | | | 99.42 89 | 99.34 96 | 99.65 107 | 99.53 204 | 99.60 113 | 99.63 60 | 99.39 259 | 99.47 111 | 99.76 92 | 99.78 87 | 98.13 197 | 99.86 204 | 98.70 149 | 99.68 227 | 99.49 193 |
|
WTY-MVS | | | 98.59 240 | 98.37 247 | 99.26 231 | 99.43 244 | 98.40 268 | 98.74 250 | 99.13 310 | 98.10 272 | 99.21 258 | 99.24 301 | 94.82 293 | 99.90 141 | 97.86 210 | 98.77 333 | 99.49 193 |
|
ppachtmachnet_test | | | 98.89 211 | 99.12 139 | 98.20 316 | 99.66 153 | 95.24 351 | 97.63 336 | 99.68 123 | 99.08 173 | 99.78 85 | 99.62 181 | 98.65 132 | 99.88 172 | 98.02 192 | 99.96 56 | 99.48 197 |
|
Anonymous20231206 | | | 99.35 109 | 99.31 102 | 99.47 171 | 99.74 118 | 99.06 218 | 99.28 138 | 99.74 92 | 99.23 148 | 99.72 112 | 99.53 228 | 97.63 235 | 99.88 172 | 99.11 111 | 99.84 146 | 99.48 197 |
|
test_prior | | | | | 99.46 173 | 99.35 262 | 99.22 195 | | 99.39 259 | | | | | 99.69 319 | | | 99.48 197 |
|
test12 | | | | | 99.54 157 | 99.29 284 | 99.33 173 | | 99.16 306 | | 98.43 329 | | 97.54 236 | 99.82 259 | | 99.47 281 | 99.48 197 |
|
VNet | | | 99.18 156 | 99.06 159 | 99.56 150 | 99.24 294 | 99.36 167 | 99.33 120 | 99.31 277 | 99.67 77 | 99.47 200 | 99.57 214 | 96.48 269 | 99.84 235 | 99.15 103 | 99.30 301 | 99.47 201 |
|
test20.03 | | | 99.55 62 | 99.54 63 | 99.58 141 | 99.79 82 | 99.37 163 | 99.02 208 | 99.89 26 | 99.60 97 | 99.82 66 | 99.62 181 | 98.81 105 | 99.89 158 | 99.43 56 | 99.86 137 | 99.47 201 |
|
114514_t | | | 98.49 252 | 98.11 269 | 99.64 114 | 99.73 121 | 99.58 119 | 99.24 150 | 99.76 82 | 89.94 368 | 99.42 212 | 99.56 217 | 97.76 224 | 99.86 204 | 97.74 222 | 99.82 163 | 99.47 201 |
|
sss | | | 98.90 208 | 98.77 212 | 99.27 229 | 99.48 227 | 98.44 265 | 98.72 252 | 99.32 273 | 97.94 285 | 99.37 226 | 99.35 277 | 96.31 277 | 99.91 123 | 98.85 133 | 99.63 242 | 99.47 201 |
|
旧先验1 | | | | | | 99.49 222 | 99.29 179 | | 99.26 289 | | | 99.39 264 | 97.67 229 | | | 99.36 295 | 99.46 205 |
|
MVP-Stereo | | | 99.16 161 | 99.08 153 | 99.43 182 | 99.48 227 | 99.07 216 | 99.08 199 | 99.55 199 | 98.63 222 | 99.31 240 | 99.68 148 | 98.19 193 | 99.78 286 | 98.18 183 | 99.58 258 | 99.45 206 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
æ–°å‡ ä½•1 | | | | | 99.52 160 | 99.50 217 | 99.22 195 | | 99.26 289 | 95.66 347 | 98.60 320 | 99.28 289 | 97.67 229 | 99.89 158 | 95.95 326 | 99.32 299 | 99.45 206 |
|
LFMVS | | | 98.46 255 | 98.19 265 | 99.26 231 | 99.24 294 | 98.52 261 | 99.62 61 | 96.94 362 | 99.87 25 | 99.31 240 | 99.58 205 | 91.04 333 | 99.81 274 | 98.68 152 | 99.42 288 | 99.45 206 |
|
testgi | | | 99.29 122 | 99.26 118 | 99.37 204 | 99.75 112 | 98.81 238 | 98.84 233 | 99.89 26 | 98.38 248 | 99.75 99 | 99.04 325 | 99.36 44 | 99.86 204 | 99.08 113 | 99.25 308 | 99.45 206 |
|
UnsupCasMVSNet_eth | | | 98.83 217 | 98.57 229 | 99.59 138 | 99.68 147 | 99.45 142 | 98.99 217 | 99.67 127 | 99.48 107 | 99.55 180 | 99.36 272 | 94.92 291 | 99.86 204 | 98.95 129 | 96.57 368 | 99.45 206 |
|
æ— å…ˆéªŒ | | | | | | | | 98.01 312 | 99.23 296 | 95.83 344 | | | | 99.85 221 | 95.79 331 | | 99.44 211 |
|
testdata | | | | | 99.42 184 | 99.51 211 | 98.93 229 | | 99.30 280 | 96.20 339 | 98.87 297 | 99.40 260 | 98.33 180 | 99.89 158 | 96.29 311 | 99.28 304 | 99.44 211 |
|
XVG-OURS-SEG-HR | | | 99.16 161 | 98.99 182 | 99.66 102 | 99.84 49 | 99.64 99 | 98.25 290 | 99.73 96 | 98.39 247 | 99.63 142 | 99.43 254 | 99.70 15 | 99.90 141 | 97.34 253 | 98.64 341 | 99.44 211 |
|
FMVSNet2 | | | 99.35 109 | 99.28 114 | 99.55 153 | 99.49 222 | 99.35 170 | 99.45 98 | 99.57 188 | 99.44 117 | 99.70 120 | 99.74 106 | 97.21 250 | 99.87 186 | 99.03 116 | 99.94 78 | 99.44 211 |
|
N_pmnet | | | 98.73 228 | 98.53 235 | 99.35 210 | 99.72 124 | 98.67 247 | 98.34 283 | 94.65 370 | 98.35 255 | 99.79 81 | 99.68 148 | 98.03 204 | 99.93 81 | 98.28 172 | 99.92 90 | 99.44 211 |
|
RPSCF | | | 99.18 156 | 99.02 171 | 99.64 114 | 99.83 53 | 99.85 19 | 99.44 101 | 99.82 52 | 98.33 260 | 99.50 196 | 99.78 87 | 97.90 213 | 99.65 344 | 96.78 286 | 99.83 154 | 99.44 211 |
|
原ACMM1 | | | | | 99.37 204 | 99.47 233 | 98.87 236 | | 99.27 286 | 96.74 333 | 98.26 333 | 99.32 281 | 97.93 212 | 99.82 259 | 95.96 325 | 99.38 292 | 99.43 217 |
|
test222 | | | | | | 99.51 211 | 99.08 215 | 97.83 329 | 99.29 282 | 95.21 352 | 98.68 315 | 99.31 283 | 97.28 247 | | | 99.38 292 | 99.43 217 |
|
XVG-OURS | | | 99.21 147 | 99.06 159 | 99.65 107 | 99.82 60 | 99.62 105 | 97.87 327 | 99.74 92 | 98.36 250 | 99.66 135 | 99.68 148 | 99.71 13 | 99.90 141 | 96.84 284 | 99.88 118 | 99.43 217 |
|
CSCG | | | 99.37 104 | 99.29 112 | 99.60 136 | 99.71 127 | 99.46 137 | 99.43 103 | 99.85 39 | 98.79 208 | 99.41 218 | 99.60 198 | 98.92 95 | 99.92 101 | 98.02 192 | 99.92 90 | 99.43 217 |
|
TinyColmap | | | 98.97 197 | 98.93 190 | 99.07 259 | 99.46 237 | 98.19 280 | 97.75 331 | 99.75 87 | 98.79 208 | 99.54 182 | 99.70 131 | 98.97 91 | 99.62 348 | 96.63 296 | 99.83 154 | 99.41 221 |
|
Anonymous202405211 | | | 98.75 224 | 98.46 238 | 99.63 121 | 99.34 270 | 99.66 93 | 99.47 95 | 97.65 355 | 99.28 139 | 99.56 175 | 99.50 235 | 93.15 311 | 99.84 235 | 98.62 154 | 99.58 258 | 99.40 222 |
|
XVG-ACMP-BASELINE | | | 99.23 134 | 99.10 150 | 99.63 121 | 99.82 60 | 99.58 119 | 98.83 235 | 99.72 105 | 98.36 250 | 99.60 160 | 99.71 124 | 98.92 95 | 99.91 123 | 97.08 271 | 99.84 146 | 99.40 222 |
|
MS-PatchMatch | | | 99.00 193 | 98.97 186 | 99.09 255 | 99.11 318 | 98.19 280 | 98.76 249 | 99.33 271 | 98.49 238 | 99.44 206 | 99.58 205 | 98.21 191 | 99.69 319 | 98.20 179 | 99.62 243 | 99.39 224 |
|
FMVSNet3 | | | 98.80 220 | 98.63 222 | 99.32 218 | 99.13 311 | 98.72 245 | 99.10 192 | 99.48 232 | 99.23 148 | 99.62 151 | 99.64 164 | 92.57 317 | 99.86 204 | 98.96 125 | 99.90 100 | 99.39 224 |
|
ambc | | | | | 99.20 240 | 99.35 262 | 98.53 259 | 99.17 170 | 99.46 238 | | 99.67 131 | 99.80 70 | 98.46 161 | 99.70 313 | 97.92 202 | 99.70 218 | 99.38 226 |
|
FMVSNet5 | | | 97.80 289 | 97.25 305 | 99.42 184 | 98.83 345 | 98.97 223 | 99.38 109 | 99.80 63 | 98.87 198 | 99.25 249 | 99.69 137 | 80.60 375 | 99.91 123 | 98.96 125 | 99.90 100 | 99.38 226 |
|
PAPM_NR | | | 98.36 264 | 98.04 272 | 99.33 214 | 99.48 227 | 98.93 229 | 98.79 246 | 99.28 285 | 97.54 302 | 98.56 324 | 98.57 358 | 97.12 255 | 99.69 319 | 94.09 354 | 98.90 328 | 99.38 226 |
|
EPNet_dtu | | | 97.62 297 | 97.79 291 | 97.11 343 | 96.67 376 | 92.31 366 | 98.51 272 | 98.04 349 | 99.24 146 | 95.77 370 | 99.47 246 | 93.78 305 | 99.66 338 | 98.98 121 | 99.62 243 | 99.37 229 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PHI-MVS | | | 99.11 172 | 98.95 189 | 99.59 138 | 99.13 311 | 99.59 115 | 99.17 170 | 99.65 140 | 97.88 287 | 99.25 249 | 99.46 249 | 98.97 91 | 99.80 280 | 97.26 261 | 99.82 163 | 99.37 229 |
|
PLC |  | 97.35 16 | 98.36 264 | 97.99 275 | 99.48 169 | 99.32 277 | 99.24 192 | 98.50 273 | 99.51 223 | 95.19 353 | 98.58 322 | 98.96 339 | 96.95 260 | 99.83 250 | 95.63 333 | 99.25 308 | 99.37 229 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tttt0517 | | | 97.62 297 | 97.20 306 | 98.90 281 | 99.76 101 | 97.40 316 | 99.48 92 | 94.36 371 | 99.06 177 | 99.70 120 | 99.49 239 | 84.55 370 | 99.94 64 | 98.73 147 | 99.65 238 | 99.36 232 |
|
pmmvs-eth3d | | | 99.48 72 | 99.47 71 | 99.51 162 | 99.77 97 | 99.41 155 | 98.81 240 | 99.66 131 | 99.42 126 | 99.75 99 | 99.66 157 | 99.20 61 | 99.76 296 | 98.98 121 | 99.99 13 | 99.36 232 |
|
PVSNet_0 | | 95.53 19 | 95.85 335 | 95.31 337 | 97.47 333 | 98.78 352 | 93.48 362 | 95.72 368 | 99.40 256 | 96.18 340 | 97.37 359 | 97.73 373 | 95.73 286 | 99.58 355 | 95.49 336 | 81.40 375 | 99.36 232 |
|
lupinMVS | | | 98.96 200 | 98.87 200 | 99.24 236 | 99.57 185 | 98.40 268 | 98.12 300 | 99.18 304 | 98.28 263 | 99.63 142 | 99.13 311 | 98.02 205 | 99.97 22 | 98.22 177 | 99.69 222 | 99.35 235 |
|
Vis-MVSNet (Re-imp) | | | 98.77 222 | 98.58 228 | 99.34 211 | 99.78 89 | 98.88 234 | 99.61 66 | 99.56 193 | 99.11 172 | 99.24 252 | 99.56 217 | 93.00 315 | 99.78 286 | 97.43 249 | 99.89 109 | 99.35 235 |
|
GA-MVS | | | 97.99 285 | 97.68 295 | 98.93 272 | 99.52 209 | 98.04 293 | 97.19 356 | 99.05 314 | 98.32 261 | 98.81 303 | 98.97 337 | 89.89 350 | 99.41 367 | 98.33 169 | 99.05 318 | 99.34 237 |
|
CANet | | | 99.11 172 | 99.05 163 | 99.28 226 | 98.83 345 | 98.56 258 | 98.71 254 | 99.41 249 | 99.25 144 | 99.23 253 | 99.22 303 | 97.66 233 | 99.94 64 | 99.19 94 | 99.97 42 | 99.33 238 |
|
Patchmtry | | | 98.78 221 | 98.54 233 | 99.49 165 | 98.89 340 | 99.19 201 | 99.32 122 | 99.67 127 | 99.65 83 | 99.72 112 | 99.79 80 | 91.87 325 | 99.95 51 | 98.00 196 | 99.97 42 | 99.33 238 |
|
PAPR | | | 97.56 300 | 97.07 308 | 99.04 262 | 98.80 349 | 98.11 287 | 97.63 336 | 99.25 292 | 94.56 360 | 98.02 346 | 98.25 368 | 97.43 240 | 99.68 329 | 90.90 365 | 98.74 337 | 99.33 238 |
|
testf1 | | | 99.63 45 | 99.60 48 | 99.72 80 | 99.94 16 | 99.95 2 | 99.47 95 | 99.89 26 | 99.43 122 | 99.88 47 | 99.80 70 | 99.26 55 | 99.90 141 | 98.81 138 | 99.88 118 | 99.32 241 |
|
APD_test2 | | | 99.63 45 | 99.60 48 | 99.72 80 | 99.94 16 | 99.95 2 | 99.47 95 | 99.89 26 | 99.43 122 | 99.88 47 | 99.80 70 | 99.26 55 | 99.90 141 | 98.81 138 | 99.88 118 | 99.32 241 |
|
CHOSEN 280x420 | | | 98.41 260 | 98.41 243 | 98.40 307 | 99.34 270 | 95.89 345 | 96.94 362 | 99.44 243 | 98.80 207 | 99.25 249 | 99.52 230 | 93.51 309 | 99.98 10 | 98.94 130 | 99.98 30 | 99.32 241 |
|
baseline1 | | | 97.73 292 | 97.33 302 | 98.96 267 | 99.30 282 | 97.73 307 | 99.40 105 | 98.42 342 | 99.33 134 | 99.46 204 | 99.21 305 | 91.18 331 | 99.82 259 | 98.35 167 | 91.26 374 | 99.32 241 |
|
TAPA-MVS | | 97.92 13 | 98.03 282 | 97.55 298 | 99.46 173 | 99.47 233 | 99.44 144 | 98.50 273 | 99.62 151 | 86.79 369 | 99.07 278 | 99.26 294 | 98.26 185 | 99.62 348 | 97.28 258 | 99.73 207 | 99.31 245 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
LCM-MVSNet-Re | | | 99.28 123 | 99.15 132 | 99.67 95 | 99.33 275 | 99.76 58 | 99.34 118 | 99.97 10 | 98.93 190 | 99.91 31 | 99.79 80 | 98.68 125 | 99.93 81 | 96.80 285 | 99.56 260 | 99.30 246 |
|
TSAR-MVS + GP. | | | 99.12 169 | 99.04 168 | 99.38 201 | 99.34 270 | 99.16 203 | 98.15 296 | 99.29 282 | 98.18 270 | 99.63 142 | 99.62 181 | 99.18 63 | 99.68 329 | 98.20 179 | 99.74 202 | 99.30 246 |
|
PVSNet_Blended | | | 98.70 231 | 98.59 225 | 99.02 263 | 99.54 198 | 97.99 294 | 97.58 339 | 99.82 52 | 95.70 346 | 99.34 231 | 98.98 335 | 98.52 154 | 99.77 294 | 97.98 197 | 99.83 154 | 99.30 246 |
|
MVS_0304 | | | 98.88 212 | 98.71 215 | 99.39 197 | 98.85 343 | 98.91 232 | 99.45 98 | 99.30 280 | 98.56 228 | 97.26 362 | 99.68 148 | 96.18 281 | 99.96 41 | 99.17 99 | 99.94 78 | 99.29 249 |
|
MVS_111021_LR | | | 99.13 167 | 99.03 170 | 99.42 184 | 99.58 175 | 99.32 175 | 97.91 325 | 99.73 96 | 98.68 218 | 99.31 240 | 99.48 242 | 99.09 74 | 99.66 338 | 97.70 228 | 99.77 191 | 99.29 249 |
|
miper_lstm_enhance | | | 98.65 234 | 98.60 223 | 98.82 290 | 99.20 301 | 97.33 318 | 97.78 330 | 99.66 131 | 99.01 180 | 99.59 163 | 99.50 235 | 94.62 296 | 99.85 221 | 98.12 188 | 99.90 100 | 99.26 251 |
|
MVS | | | 95.72 337 | 94.63 341 | 98.99 264 | 98.56 360 | 97.98 300 | 99.30 130 | 98.86 320 | 72.71 374 | 97.30 360 | 99.08 320 | 98.34 178 | 99.74 302 | 89.21 366 | 98.33 348 | 99.26 251 |
|
MSLP-MVS++ | | | 99.05 181 | 99.09 151 | 98.91 275 | 99.21 298 | 98.36 272 | 98.82 239 | 99.47 235 | 98.85 200 | 98.90 293 | 99.56 217 | 98.78 112 | 99.09 370 | 98.57 156 | 99.68 227 | 99.26 251 |
|
D2MVS | | | 99.22 142 | 99.19 126 | 99.29 224 | 99.69 139 | 98.74 244 | 98.81 240 | 99.41 249 | 98.55 230 | 99.68 126 | 99.69 137 | 98.13 197 | 99.87 186 | 98.82 136 | 99.98 30 | 99.24 254 |
|
test_yl | | | 98.25 271 | 97.95 279 | 99.13 250 | 99.17 306 | 98.47 262 | 99.00 212 | 98.67 331 | 98.97 183 | 99.22 256 | 99.02 330 | 91.31 329 | 99.69 319 | 97.26 261 | 98.93 324 | 99.24 254 |
|
DCV-MVSNet | | | 98.25 271 | 97.95 279 | 99.13 250 | 99.17 306 | 98.47 262 | 99.00 212 | 98.67 331 | 98.97 183 | 99.22 256 | 99.02 330 | 91.31 329 | 99.69 319 | 97.26 261 | 98.93 324 | 99.24 254 |
|
DPM-MVS | | | 98.28 269 | 97.94 283 | 99.32 218 | 99.36 260 | 99.11 208 | 97.31 352 | 98.78 325 | 96.88 328 | 98.84 300 | 99.11 318 | 97.77 223 | 99.61 352 | 94.03 356 | 99.36 295 | 99.23 257 |
|
CLD-MVS | | | 98.76 223 | 98.57 229 | 99.33 214 | 99.57 185 | 98.97 223 | 97.53 342 | 99.55 199 | 96.41 335 | 99.27 247 | 99.13 311 | 99.07 79 | 99.78 286 | 96.73 289 | 99.89 109 | 99.23 257 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
pmmvs4 | | | 99.13 167 | 99.06 159 | 99.36 208 | 99.57 185 | 99.10 213 | 98.01 312 | 99.25 292 | 98.78 210 | 99.58 165 | 99.44 253 | 98.24 186 | 99.76 296 | 98.74 146 | 99.93 86 | 99.22 259 |
|
OMC-MVS | | | 98.90 208 | 98.72 214 | 99.44 178 | 99.39 252 | 99.42 151 | 98.58 260 | 99.64 146 | 97.31 315 | 99.44 206 | 99.62 181 | 98.59 139 | 99.69 319 | 96.17 317 | 99.79 182 | 99.22 259 |
|
EGC-MVSNET | | | 89.05 342 | 85.52 345 | 99.64 114 | 99.89 33 | 99.78 47 | 99.56 79 | 99.52 219 | 24.19 376 | 49.96 377 | 99.83 55 | 99.15 66 | 99.92 101 | 97.71 225 | 99.85 141 | 99.21 261 |
|
eth_miper_zixun_eth | | | 98.68 232 | 98.71 215 | 98.60 299 | 99.10 319 | 96.84 331 | 97.52 344 | 99.54 205 | 98.94 187 | 99.58 165 | 99.48 242 | 96.25 279 | 99.76 296 | 98.01 195 | 99.93 86 | 99.21 261 |
|
c3_l | | | 98.72 229 | 98.71 215 | 98.72 295 | 99.12 313 | 97.22 321 | 97.68 335 | 99.56 193 | 98.90 194 | 99.54 182 | 99.48 242 | 96.37 276 | 99.73 305 | 97.88 206 | 99.88 118 | 99.21 261 |
|
CMPMVS |  | 77.52 23 | 98.50 250 | 98.19 265 | 99.41 191 | 98.33 365 | 99.56 122 | 99.01 210 | 99.59 176 | 95.44 348 | 99.57 168 | 99.80 70 | 95.64 287 | 99.46 366 | 96.47 304 | 99.92 90 | 99.21 261 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Effi-MVS+ | | | 99.06 178 | 98.97 186 | 99.34 211 | 99.31 278 | 98.98 221 | 98.31 286 | 99.91 21 | 98.81 205 | 98.79 306 | 98.94 341 | 99.14 69 | 99.84 235 | 98.79 140 | 98.74 337 | 99.20 265 |
|
DELS-MVS | | | 99.34 114 | 99.30 107 | 99.48 169 | 99.51 211 | 99.36 167 | 98.12 300 | 99.53 214 | 99.36 131 | 99.41 218 | 99.61 190 | 99.22 59 | 99.87 186 | 99.21 90 | 99.68 227 | 99.20 265 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DROMVSNet | | | 99.69 28 | 99.69 28 | 99.68 92 | 99.71 127 | 99.91 4 | 99.76 18 | 99.96 14 | 99.86 28 | 99.51 194 | 99.39 264 | 99.57 25 | 99.93 81 | 99.64 31 | 99.86 137 | 99.20 265 |
|
CANet_DTU | | | 98.91 206 | 98.85 202 | 99.09 255 | 98.79 350 | 98.13 284 | 98.18 293 | 99.31 277 | 99.48 107 | 98.86 298 | 99.51 232 | 96.56 266 | 99.95 51 | 99.05 115 | 99.95 67 | 99.19 268 |
|
alignmvs | | | 98.28 269 | 97.96 278 | 99.25 234 | 99.12 313 | 98.93 229 | 99.03 207 | 98.42 342 | 99.64 85 | 98.72 312 | 97.85 372 | 90.86 338 | 99.62 348 | 98.88 132 | 99.13 313 | 99.19 268 |
|
DIV-MVS_self_test | | | 98.54 245 | 98.42 242 | 98.92 273 | 99.03 327 | 97.80 305 | 97.46 346 | 99.59 176 | 98.90 194 | 99.60 160 | 99.46 249 | 93.87 302 | 99.78 286 | 97.97 199 | 99.89 109 | 99.18 270 |
|
MSDG | | | 99.08 176 | 98.98 185 | 99.37 204 | 99.60 166 | 99.13 206 | 97.54 340 | 99.74 92 | 98.84 203 | 99.53 187 | 99.55 224 | 99.10 72 | 99.79 283 | 97.07 272 | 99.86 137 | 99.18 270 |
|
cl____ | | | 98.54 245 | 98.41 243 | 98.92 273 | 99.03 327 | 97.80 305 | 97.46 346 | 99.59 176 | 98.90 194 | 99.60 160 | 99.46 249 | 93.85 303 | 99.78 286 | 97.97 199 | 99.89 109 | 99.17 272 |
|
PM-MVS | | | 99.36 107 | 99.29 112 | 99.58 141 | 99.83 53 | 99.66 93 | 98.95 223 | 99.86 35 | 98.85 200 | 99.81 73 | 99.73 110 | 98.40 171 | 99.92 101 | 98.36 166 | 99.83 154 | 99.17 272 |
|
thisisatest0530 | | | 97.45 302 | 96.95 312 | 98.94 269 | 99.68 147 | 97.73 307 | 99.09 196 | 94.19 373 | 98.61 225 | 99.56 175 | 99.30 285 | 84.30 371 | 99.93 81 | 98.27 173 | 99.54 269 | 99.16 274 |
|
PatchmatchNet |  | | 97.65 296 | 97.80 289 | 97.18 341 | 98.82 348 | 92.49 365 | 99.17 170 | 98.39 344 | 98.12 271 | 98.79 306 | 99.58 205 | 90.71 340 | 99.89 158 | 97.23 265 | 99.41 289 | 99.16 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tfpnnormal | | | 99.43 86 | 99.38 88 | 99.60 136 | 99.87 42 | 99.75 62 | 99.59 72 | 99.78 74 | 99.71 63 | 99.90 37 | 99.69 137 | 98.85 103 | 99.90 141 | 97.25 264 | 99.78 187 | 99.15 276 |
|
CS-MVS-test | | | 99.68 31 | 99.70 24 | 99.64 114 | 99.57 185 | 99.83 29 | 99.78 11 | 99.97 10 | 99.92 11 | 99.50 196 | 99.38 266 | 99.57 25 | 99.95 51 | 99.69 26 | 99.90 100 | 99.15 276 |
|
mvs_anonymous | | | 99.28 123 | 99.39 86 | 98.94 269 | 99.19 303 | 97.81 304 | 99.02 208 | 99.55 199 | 99.78 51 | 99.85 58 | 99.80 70 | 98.24 186 | 99.86 204 | 99.57 39 | 99.50 277 | 99.15 276 |
|
ab-mvs | | | 99.33 117 | 99.28 114 | 99.47 171 | 99.57 185 | 99.39 158 | 99.78 11 | 99.43 246 | 98.87 198 | 99.57 168 | 99.82 62 | 98.06 202 | 99.87 186 | 98.69 151 | 99.73 207 | 99.15 276 |
|
MIMVSNet | | | 98.43 258 | 98.20 262 | 99.11 252 | 99.53 204 | 98.38 271 | 99.58 74 | 98.61 333 | 98.96 185 | 99.33 233 | 99.76 98 | 90.92 335 | 99.81 274 | 97.38 252 | 99.76 193 | 99.15 276 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.14 281 |
|
sam_mvs1 | | | | | | | | | | | | | 90.81 339 | | | | 99.14 281 |
|
SCA | | | 98.11 278 | 98.36 248 | 97.36 336 | 99.20 301 | 92.99 363 | 98.17 295 | 98.49 340 | 98.24 265 | 99.10 274 | 99.57 214 | 96.01 284 | 99.94 64 | 96.86 281 | 99.62 243 | 99.14 281 |
|
LS3D | | | 99.24 133 | 99.11 142 | 99.61 133 | 98.38 363 | 99.79 44 | 99.57 77 | 99.68 123 | 99.61 91 | 99.15 266 | 99.71 124 | 98.70 123 | 99.91 123 | 97.54 242 | 99.68 227 | 99.13 284 |
|
Patchmatch-RL test | | | 98.60 237 | 98.36 248 | 99.33 214 | 99.77 97 | 99.07 216 | 98.27 288 | 99.87 32 | 98.91 193 | 99.74 107 | 99.72 117 | 90.57 342 | 99.79 283 | 98.55 157 | 99.85 141 | 99.11 285 |
|
test_0402 | | | 99.22 142 | 99.14 133 | 99.45 176 | 99.79 82 | 99.43 148 | 99.28 138 | 99.68 123 | 99.54 101 | 99.40 223 | 99.56 217 | 99.07 79 | 99.82 259 | 96.01 321 | 99.96 56 | 99.11 285 |
|
APD_test1 | | | 99.36 107 | 99.28 114 | 99.61 133 | 99.89 33 | 99.89 10 | 99.32 122 | 99.74 92 | 99.18 155 | 99.69 123 | 99.75 103 | 98.41 167 | 99.84 235 | 97.85 212 | 99.70 218 | 99.10 287 |
|
MVS_Test | | | 99.28 123 | 99.31 102 | 99.19 241 | 99.35 262 | 98.79 240 | 99.36 116 | 99.49 231 | 99.17 160 | 99.21 258 | 99.67 153 | 98.78 112 | 99.66 338 | 99.09 112 | 99.66 236 | 99.10 287 |
|
AdaColmap |  | | 98.60 237 | 98.35 250 | 99.38 201 | 99.12 313 | 99.22 195 | 98.67 255 | 99.42 248 | 97.84 291 | 98.81 303 | 99.27 291 | 97.32 246 | 99.81 274 | 95.14 342 | 99.53 271 | 99.10 287 |
|
FPMVS | | | 96.32 326 | 95.50 333 | 98.79 291 | 99.60 166 | 98.17 283 | 98.46 279 | 98.80 324 | 97.16 322 | 96.28 366 | 99.63 174 | 82.19 372 | 99.09 370 | 88.45 368 | 98.89 329 | 99.10 287 |
|
Patchmatch-test | | | 98.10 279 | 97.98 277 | 98.48 304 | 99.27 289 | 96.48 335 | 99.40 105 | 99.07 311 | 98.81 205 | 99.23 253 | 99.57 214 | 90.11 347 | 99.87 186 | 96.69 290 | 99.64 240 | 99.09 291 |
|
tpm | | | 97.15 308 | 96.95 312 | 97.75 328 | 98.91 336 | 94.24 357 | 99.32 122 | 97.96 351 | 97.71 295 | 98.29 332 | 99.32 281 | 86.72 365 | 99.92 101 | 98.10 190 | 96.24 371 | 99.09 291 |
|
PMMVS | | | 98.49 252 | 98.29 256 | 99.11 252 | 98.96 334 | 98.42 267 | 97.54 340 | 99.32 273 | 97.53 303 | 98.47 328 | 98.15 369 | 97.88 215 | 99.82 259 | 97.46 247 | 99.24 310 | 99.09 291 |
|
cl22 | | | 97.56 300 | 97.28 303 | 98.40 307 | 98.37 364 | 96.75 332 | 97.24 355 | 99.37 264 | 97.31 315 | 99.41 218 | 99.22 303 | 87.30 357 | 99.37 368 | 97.70 228 | 99.62 243 | 99.08 294 |
|
ADS-MVSNet2 | | | 97.78 290 | 97.66 297 | 98.12 319 | 99.14 309 | 95.36 349 | 99.22 157 | 98.75 326 | 96.97 326 | 98.25 334 | 99.64 164 | 90.90 336 | 99.94 64 | 96.51 301 | 99.56 260 | 99.08 294 |
|
ADS-MVSNet | | | 97.72 295 | 97.67 296 | 97.86 324 | 99.14 309 | 94.65 355 | 99.22 157 | 98.86 320 | 96.97 326 | 98.25 334 | 99.64 164 | 90.90 336 | 99.84 235 | 96.51 301 | 99.56 260 | 99.08 294 |
|
pmmvs3 | | | 98.08 280 | 97.80 289 | 98.91 275 | 99.41 250 | 97.69 309 | 97.87 327 | 99.66 131 | 95.87 342 | 99.50 196 | 99.51 232 | 90.35 344 | 99.97 22 | 98.55 157 | 99.47 281 | 99.08 294 |
|
PVSNet | | 97.47 15 | 98.42 259 | 98.44 240 | 98.35 309 | 99.46 237 | 96.26 338 | 96.70 365 | 99.34 270 | 97.68 296 | 99.00 282 | 99.13 311 | 97.40 241 | 99.72 307 | 97.59 240 | 99.68 227 | 99.08 294 |
|
MVS-HIRNet | | | 97.86 286 | 98.22 260 | 96.76 345 | 99.28 287 | 91.53 371 | 98.38 282 | 92.60 375 | 99.13 168 | 99.31 240 | 99.96 12 | 97.18 254 | 99.68 329 | 98.34 168 | 99.83 154 | 99.07 299 |
|
PMVS |  | 92.94 21 | 98.82 218 | 98.81 208 | 98.85 283 | 99.84 49 | 97.99 294 | 99.20 160 | 99.47 235 | 99.71 63 | 99.42 212 | 99.82 62 | 98.09 199 | 99.47 364 | 93.88 358 | 99.85 141 | 99.07 299 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 99.57 56 | 99.59 50 | 99.49 165 | 99.98 3 | 99.71 76 | 99.72 29 | 99.84 45 | 99.81 43 | 99.94 21 | 99.78 87 | 98.91 97 | 99.71 311 | 98.41 163 | 99.95 67 | 99.05 301 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
canonicalmvs | | | 99.02 187 | 99.00 177 | 99.09 255 | 99.10 319 | 98.70 246 | 99.61 66 | 99.66 131 | 99.63 87 | 98.64 317 | 97.65 374 | 99.04 83 | 99.54 357 | 98.79 140 | 98.92 326 | 99.04 302 |
|
hse-mvs2 | | | 98.52 247 | 98.30 255 | 99.16 244 | 99.29 284 | 98.60 257 | 98.77 248 | 99.02 315 | 99.68 73 | 99.32 236 | 99.04 325 | 92.50 320 | 99.85 221 | 99.24 87 | 97.87 360 | 99.03 303 |
|
CL-MVSNet_self_test | | | 98.71 230 | 98.56 232 | 99.15 246 | 99.22 296 | 98.66 250 | 97.14 357 | 99.51 223 | 98.09 274 | 99.54 182 | 99.27 291 | 96.87 262 | 99.74 302 | 98.43 162 | 98.96 323 | 99.03 303 |
|
AUN-MVS | | | 97.82 288 | 97.38 301 | 99.14 249 | 99.27 289 | 98.53 259 | 98.72 252 | 99.02 315 | 98.10 272 | 97.18 364 | 99.03 329 | 89.26 352 | 99.85 221 | 97.94 201 | 97.91 358 | 99.03 303 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.44 372 | 99.14 178 | | 97.37 312 | 99.21 258 | | 91.78 327 | | 96.75 287 | | 99.03 303 |
|
ITE_SJBPF | | | | | 99.38 201 | 99.63 159 | 99.44 144 | | 99.73 96 | 98.56 228 | 99.33 233 | 99.53 228 | 98.88 101 | 99.68 329 | 96.01 321 | 99.65 238 | 99.02 307 |
|
UnsupCasMVSNet_bld | | | 98.55 244 | 98.27 257 | 99.40 193 | 99.56 196 | 99.37 163 | 97.97 319 | 99.68 123 | 97.49 306 | 99.08 275 | 99.35 277 | 95.41 290 | 99.82 259 | 97.70 228 | 98.19 353 | 99.01 308 |
|
miper_ehance_all_eth | | | 98.59 240 | 98.59 225 | 98.59 300 | 98.98 333 | 97.07 325 | 97.49 345 | 99.52 219 | 98.50 236 | 99.52 189 | 99.37 268 | 96.41 274 | 99.71 311 | 97.86 210 | 99.62 243 | 99.00 309 |
|
CS-MVS | | | 99.67 37 | 99.70 24 | 99.58 141 | 99.53 204 | 99.84 24 | 99.79 10 | 99.96 14 | 99.90 13 | 99.61 157 | 99.41 256 | 99.51 30 | 99.95 51 | 99.66 28 | 99.89 109 | 98.96 310 |
|
CNLPA | | | 98.57 242 | 98.34 251 | 99.28 226 | 99.18 305 | 99.10 213 | 98.34 283 | 99.41 249 | 98.48 239 | 98.52 325 | 98.98 335 | 97.05 257 | 99.78 286 | 95.59 334 | 99.50 277 | 98.96 310 |
|
new_pmnet | | | 98.88 212 | 98.89 198 | 98.84 285 | 99.70 135 | 97.62 310 | 98.15 296 | 99.50 227 | 97.98 280 | 99.62 151 | 99.54 226 | 98.15 196 | 99.94 64 | 97.55 241 | 99.84 146 | 98.95 312 |
|
PCF-MVS | | 96.03 18 | 96.73 318 | 95.86 329 | 99.33 214 | 99.44 241 | 99.16 203 | 96.87 363 | 99.44 243 | 86.58 370 | 98.95 285 | 99.40 260 | 94.38 298 | 99.88 172 | 87.93 369 | 99.80 177 | 98.95 312 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PatchMatch-RL | | | 98.68 232 | 98.47 237 | 99.30 223 | 99.44 241 | 99.28 181 | 98.14 298 | 99.54 205 | 97.12 324 | 99.11 272 | 99.25 296 | 97.80 221 | 99.70 313 | 96.51 301 | 99.30 301 | 98.93 314 |
|
Fast-Effi-MVS+ | | | 99.02 187 | 98.87 200 | 99.46 173 | 99.38 255 | 99.50 130 | 99.04 204 | 99.79 69 | 97.17 321 | 98.62 318 | 98.74 353 | 99.34 45 | 99.95 51 | 98.32 170 | 99.41 289 | 98.92 315 |
|
ET-MVSNet_ETH3D | | | 96.78 316 | 96.07 325 | 98.91 275 | 99.26 291 | 97.92 302 | 97.70 334 | 96.05 366 | 97.96 284 | 92.37 375 | 98.43 364 | 87.06 359 | 99.90 141 | 98.27 173 | 97.56 363 | 98.91 316 |
|
EIA-MVS | | | 99.12 169 | 99.01 174 | 99.45 176 | 99.36 260 | 99.62 105 | 99.34 118 | 99.79 69 | 98.41 244 | 98.84 300 | 98.89 345 | 98.75 117 | 99.84 235 | 98.15 187 | 99.51 275 | 98.89 317 |
|
CostFormer | | | 96.71 319 | 96.79 318 | 96.46 351 | 98.90 337 | 90.71 376 | 99.41 104 | 98.68 329 | 94.69 359 | 98.14 342 | 99.34 280 | 86.32 367 | 99.80 280 | 97.60 239 | 98.07 357 | 98.88 318 |
|
DP-MVS Recon | | | 98.50 250 | 98.23 258 | 99.31 221 | 99.49 222 | 99.46 137 | 98.56 265 | 99.63 148 | 94.86 357 | 98.85 299 | 99.37 268 | 97.81 220 | 99.59 354 | 96.08 318 | 99.44 284 | 98.88 318 |
|
test0.0.03 1 | | | 97.37 305 | 96.91 315 | 98.74 294 | 97.72 372 | 97.57 311 | 97.60 338 | 97.36 361 | 98.00 277 | 99.21 258 | 98.02 370 | 90.04 348 | 99.79 283 | 98.37 165 | 95.89 372 | 98.86 320 |
|
BH-untuned | | | 98.22 275 | 98.09 270 | 98.58 301 | 99.38 255 | 97.24 320 | 98.55 266 | 98.98 318 | 97.81 292 | 99.20 263 | 98.76 352 | 97.01 258 | 99.65 344 | 94.83 345 | 98.33 348 | 98.86 320 |
|
HY-MVS | | 98.23 9 | 98.21 276 | 97.95 279 | 98.99 264 | 99.03 327 | 98.24 275 | 99.61 66 | 98.72 327 | 96.81 331 | 98.73 311 | 99.51 232 | 94.06 300 | 99.86 204 | 96.91 278 | 98.20 351 | 98.86 320 |
|
miper_enhance_ethall | | | 98.03 282 | 97.94 283 | 98.32 311 | 98.27 366 | 96.43 337 | 96.95 361 | 99.41 249 | 96.37 337 | 99.43 210 | 98.96 339 | 94.74 294 | 99.69 319 | 97.71 225 | 99.62 243 | 98.83 323 |
|
FE-MVS | | | 97.85 287 | 97.42 300 | 99.15 246 | 99.44 241 | 98.75 242 | 99.77 14 | 98.20 348 | 95.85 343 | 99.33 233 | 99.80 70 | 88.86 353 | 99.88 172 | 96.40 306 | 99.12 314 | 98.81 324 |
|
Effi-MVS+-dtu | | | 99.07 177 | 98.92 194 | 99.52 160 | 98.89 340 | 99.78 47 | 99.15 176 | 99.66 131 | 99.34 132 | 98.92 290 | 99.24 301 | 97.69 227 | 99.98 10 | 98.11 189 | 99.28 304 | 98.81 324 |
|
EPMVS | | | 96.53 322 | 96.32 320 | 97.17 342 | 98.18 369 | 92.97 364 | 99.39 107 | 89.95 379 | 98.21 267 | 98.61 319 | 99.59 203 | 86.69 366 | 99.72 307 | 96.99 274 | 99.23 312 | 98.81 324 |
|
FA-MVS(test-final) | | | 98.52 247 | 98.32 253 | 99.10 254 | 99.48 227 | 98.67 247 | 99.77 14 | 98.60 335 | 97.35 313 | 99.63 142 | 99.80 70 | 93.07 313 | 99.84 235 | 97.92 202 | 99.30 301 | 98.78 327 |
|
MVE |  | 92.54 22 | 96.66 320 | 96.11 324 | 98.31 313 | 99.68 147 | 97.55 312 | 97.94 321 | 95.60 368 | 99.37 129 | 90.68 376 | 98.70 354 | 96.56 266 | 98.61 374 | 86.94 374 | 99.55 264 | 98.77 328 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tpm2 | | | 96.35 325 | 96.22 322 | 96.73 347 | 98.88 342 | 91.75 369 | 99.21 159 | 98.51 338 | 93.27 362 | 97.89 350 | 99.21 305 | 84.83 369 | 99.70 313 | 96.04 320 | 98.18 354 | 98.75 329 |
|
LF4IMVS | | | 99.01 191 | 98.92 194 | 99.27 229 | 99.71 127 | 99.28 181 | 98.59 259 | 99.77 77 | 98.32 261 | 99.39 224 | 99.41 256 | 98.62 134 | 99.84 235 | 96.62 297 | 99.84 146 | 98.69 330 |
|
thisisatest0515 | | | 96.98 312 | 96.42 319 | 98.66 298 | 99.42 249 | 97.47 313 | 97.27 353 | 94.30 372 | 97.24 317 | 99.15 266 | 98.86 347 | 85.01 368 | 99.87 186 | 97.10 270 | 99.39 291 | 98.63 331 |
|
Fast-Effi-MVS+-dtu | | | 99.20 149 | 99.12 139 | 99.43 182 | 99.25 292 | 99.69 86 | 99.05 202 | 99.82 52 | 99.50 105 | 98.97 283 | 99.05 323 | 98.98 89 | 99.98 10 | 98.20 179 | 99.24 310 | 98.62 332 |
|
PAPM | | | 95.61 338 | 94.71 340 | 98.31 313 | 99.12 313 | 96.63 333 | 96.66 366 | 98.46 341 | 90.77 367 | 96.25 367 | 98.68 355 | 93.01 314 | 99.69 319 | 81.60 375 | 97.86 361 | 98.62 332 |
|
JIA-IIPM | | | 98.06 281 | 97.92 285 | 98.50 303 | 98.59 359 | 97.02 326 | 98.80 243 | 98.51 338 | 99.88 24 | 97.89 350 | 99.87 40 | 91.89 324 | 99.90 141 | 98.16 186 | 97.68 362 | 98.59 334 |
|
dp | | | 96.86 314 | 97.07 308 | 96.24 353 | 98.68 358 | 90.30 378 | 99.19 164 | 98.38 345 | 97.35 313 | 98.23 336 | 99.59 203 | 87.23 358 | 99.82 259 | 96.27 312 | 98.73 339 | 98.59 334 |
|
OpenMVS |  | 98.12 10 | 98.23 274 | 97.89 288 | 99.26 231 | 99.19 303 | 99.26 185 | 99.65 58 | 99.69 120 | 91.33 366 | 98.14 342 | 99.77 94 | 98.28 183 | 99.96 41 | 95.41 338 | 99.55 264 | 98.58 336 |
|
baseline2 | | | 96.83 315 | 96.28 321 | 98.46 305 | 99.09 321 | 96.91 329 | 98.83 235 | 93.87 374 | 97.23 318 | 96.23 369 | 98.36 365 | 88.12 355 | 99.90 141 | 96.68 291 | 98.14 355 | 98.57 337 |
|
TESTMET0.1,1 | | | 96.24 328 | 95.84 330 | 97.41 335 | 98.24 367 | 93.84 360 | 97.38 348 | 95.84 367 | 98.43 241 | 97.81 354 | 98.56 359 | 79.77 376 | 99.89 158 | 97.77 217 | 98.77 333 | 98.52 338 |
|
xiu_mvs_v1_base_debu | | | 99.23 134 | 99.34 96 | 98.91 275 | 99.59 170 | 98.23 276 | 98.47 275 | 99.66 131 | 99.61 91 | 99.68 126 | 98.94 341 | 99.39 35 | 99.97 22 | 99.18 96 | 99.55 264 | 98.51 339 |
|
xiu_mvs_v1_base | | | 99.23 134 | 99.34 96 | 98.91 275 | 99.59 170 | 98.23 276 | 98.47 275 | 99.66 131 | 99.61 91 | 99.68 126 | 98.94 341 | 99.39 35 | 99.97 22 | 99.18 96 | 99.55 264 | 98.51 339 |
|
xiu_mvs_v1_base_debi | | | 99.23 134 | 99.34 96 | 98.91 275 | 99.59 170 | 98.23 276 | 98.47 275 | 99.66 131 | 99.61 91 | 99.68 126 | 98.94 341 | 99.39 35 | 99.97 22 | 99.18 96 | 99.55 264 | 98.51 339 |
|
KD-MVS_2432*1600 | | | 95.89 332 | 95.41 335 | 97.31 339 | 94.96 377 | 93.89 358 | 97.09 358 | 99.22 299 | 97.23 318 | 98.88 294 | 99.04 325 | 79.23 377 | 99.54 357 | 96.24 314 | 96.81 366 | 98.50 342 |
|
miper_refine_blended | | | 95.89 332 | 95.41 335 | 97.31 339 | 94.96 377 | 93.89 358 | 97.09 358 | 99.22 299 | 97.23 318 | 98.88 294 | 99.04 325 | 79.23 377 | 99.54 357 | 96.24 314 | 96.81 366 | 98.50 342 |
|
CR-MVSNet | | | 98.35 267 | 98.20 262 | 98.83 287 | 99.05 324 | 98.12 285 | 99.30 130 | 99.67 127 | 97.39 311 | 99.16 264 | 99.79 80 | 91.87 325 | 99.91 123 | 98.78 143 | 98.77 333 | 98.44 344 |
|
RPMNet | | | 98.60 237 | 98.53 235 | 98.83 287 | 99.05 324 | 98.12 285 | 99.30 130 | 99.62 151 | 99.86 28 | 99.16 264 | 99.74 106 | 92.53 319 | 99.92 101 | 98.75 145 | 98.77 333 | 98.44 344 |
|
tpmrst | | | 97.73 292 | 98.07 271 | 96.73 347 | 98.71 356 | 92.00 367 | 99.10 192 | 98.86 320 | 98.52 234 | 98.92 290 | 99.54 226 | 91.90 323 | 99.82 259 | 98.02 192 | 99.03 320 | 98.37 346 |
|
test-LLR | | | 97.15 308 | 96.95 312 | 97.74 329 | 98.18 369 | 95.02 352 | 97.38 348 | 96.10 363 | 98.00 277 | 97.81 354 | 98.58 356 | 90.04 348 | 99.91 123 | 97.69 234 | 98.78 331 | 98.31 347 |
|
test-mter | | | 96.23 329 | 95.73 331 | 97.74 329 | 98.18 369 | 95.02 352 | 97.38 348 | 96.10 363 | 97.90 286 | 97.81 354 | 98.58 356 | 79.12 379 | 99.91 123 | 97.69 234 | 98.78 331 | 98.31 347 |
|
ETV-MVS | | | 99.18 156 | 99.18 127 | 99.16 244 | 99.34 270 | 99.28 181 | 99.12 188 | 99.79 69 | 99.48 107 | 98.93 287 | 98.55 360 | 99.40 34 | 99.93 81 | 98.51 159 | 99.52 274 | 98.28 349 |
|
PatchT | | | 98.45 257 | 98.32 253 | 98.83 287 | 98.94 335 | 98.29 274 | 99.24 150 | 98.82 323 | 99.84 36 | 99.08 275 | 99.76 98 | 91.37 328 | 99.94 64 | 98.82 136 | 99.00 322 | 98.26 350 |
|
xiu_mvs_v2_base | | | 99.02 187 | 99.11 142 | 98.77 292 | 99.37 257 | 98.09 289 | 98.13 299 | 99.51 223 | 99.47 111 | 99.42 212 | 98.54 361 | 99.38 39 | 99.97 22 | 98.83 134 | 99.33 298 | 98.24 351 |
|
IB-MVS | | 95.41 20 | 95.30 339 | 94.46 343 | 97.84 325 | 98.76 354 | 95.33 350 | 97.33 351 | 96.07 365 | 96.02 341 | 95.37 373 | 97.41 376 | 76.17 381 | 99.96 41 | 97.54 242 | 95.44 373 | 98.22 352 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpm cat1 | | | 96.78 316 | 96.98 311 | 96.16 354 | 98.85 343 | 90.59 377 | 99.08 199 | 99.32 273 | 92.37 363 | 97.73 358 | 99.46 249 | 91.15 332 | 99.69 319 | 96.07 319 | 98.80 330 | 98.21 353 |
|
MAR-MVS | | | 98.24 273 | 97.92 285 | 99.19 241 | 98.78 352 | 99.65 98 | 99.17 170 | 99.14 308 | 95.36 349 | 98.04 345 | 98.81 350 | 97.47 238 | 99.72 307 | 95.47 337 | 99.06 317 | 98.21 353 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PS-MVSNAJ | | | 99.00 193 | 99.08 153 | 98.76 293 | 99.37 257 | 98.10 288 | 98.00 314 | 99.51 223 | 99.47 111 | 99.41 218 | 98.50 363 | 99.28 51 | 99.97 22 | 98.83 134 | 99.34 297 | 98.20 355 |
|
cascas | | | 96.99 311 | 96.82 317 | 97.48 332 | 97.57 375 | 95.64 347 | 96.43 367 | 99.56 193 | 91.75 364 | 97.13 365 | 97.61 375 | 95.58 289 | 98.63 373 | 96.68 291 | 99.11 315 | 98.18 356 |
|
BH-w/o | | | 97.20 307 | 97.01 310 | 97.76 327 | 99.08 322 | 95.69 346 | 98.03 311 | 98.52 337 | 95.76 345 | 97.96 347 | 98.02 370 | 95.62 288 | 99.47 364 | 92.82 360 | 97.25 365 | 98.12 357 |
|
tpmvs | | | 97.39 304 | 97.69 294 | 96.52 349 | 98.41 362 | 91.76 368 | 99.30 130 | 98.94 319 | 97.74 293 | 97.85 353 | 99.55 224 | 92.40 322 | 99.73 305 | 96.25 313 | 98.73 339 | 98.06 358 |
|
thres600view7 | | | 96.60 321 | 96.16 323 | 97.93 322 | 99.63 159 | 96.09 342 | 99.18 165 | 97.57 356 | 98.77 211 | 98.72 312 | 97.32 377 | 87.04 360 | 99.72 307 | 88.57 367 | 98.62 342 | 97.98 359 |
|
thres400 | | | 96.40 323 | 95.89 327 | 97.92 323 | 99.58 175 | 96.11 340 | 99.00 212 | 97.54 359 | 98.43 241 | 98.52 325 | 96.98 380 | 86.85 362 | 99.67 334 | 87.62 370 | 98.51 345 | 97.98 359 |
|
TR-MVS | | | 97.44 303 | 97.15 307 | 98.32 311 | 98.53 361 | 97.46 314 | 98.47 275 | 97.91 353 | 96.85 329 | 98.21 337 | 98.51 362 | 96.42 272 | 99.51 362 | 92.16 361 | 97.29 364 | 97.98 359 |
|
1314 | | | 98.00 284 | 97.90 287 | 98.27 315 | 98.90 337 | 97.45 315 | 99.30 130 | 99.06 313 | 94.98 354 | 97.21 363 | 99.12 315 | 98.43 164 | 99.67 334 | 95.58 335 | 98.56 344 | 97.71 362 |
|
E-PMN | | | 97.14 310 | 97.43 299 | 96.27 352 | 98.79 350 | 91.62 370 | 95.54 369 | 99.01 317 | 99.44 117 | 98.88 294 | 99.12 315 | 92.78 316 | 99.68 329 | 94.30 351 | 99.03 320 | 97.50 363 |
|
gg-mvs-nofinetune | | | 95.87 334 | 95.17 338 | 97.97 321 | 98.19 368 | 96.95 327 | 99.69 41 | 89.23 380 | 99.89 19 | 96.24 368 | 99.94 16 | 81.19 373 | 99.51 362 | 93.99 357 | 98.20 351 | 97.44 364 |
|
DeepMVS_CX |  | | | | 97.98 320 | 99.69 139 | 96.95 327 | | 99.26 289 | 75.51 373 | 95.74 371 | 98.28 367 | 96.47 270 | 99.62 348 | 91.23 364 | 97.89 359 | 97.38 365 |
|
OpenMVS_ROB |  | 97.31 17 | 97.36 306 | 96.84 316 | 98.89 282 | 99.29 284 | 99.45 142 | 98.87 229 | 99.48 232 | 86.54 371 | 99.44 206 | 99.74 106 | 97.34 245 | 99.86 204 | 91.61 362 | 99.28 304 | 97.37 366 |
|
EMVS | | | 96.96 313 | 97.28 303 | 95.99 355 | 98.76 354 | 91.03 373 | 95.26 370 | 98.61 333 | 99.34 132 | 98.92 290 | 98.88 346 | 93.79 304 | 99.66 338 | 92.87 359 | 99.05 318 | 97.30 367 |
|
thres100view900 | | | 96.39 324 | 96.03 326 | 97.47 333 | 99.63 159 | 95.93 343 | 99.18 165 | 97.57 356 | 98.75 215 | 98.70 314 | 97.31 378 | 87.04 360 | 99.67 334 | 87.62 370 | 98.51 345 | 96.81 368 |
|
tfpn200view9 | | | 96.30 327 | 95.89 327 | 97.53 331 | 99.58 175 | 96.11 340 | 99.00 212 | 97.54 359 | 98.43 241 | 98.52 325 | 96.98 380 | 86.85 362 | 99.67 334 | 87.62 370 | 98.51 345 | 96.81 368 |
|
API-MVS | | | 98.38 263 | 98.39 245 | 98.35 309 | 98.83 345 | 99.26 185 | 99.14 178 | 99.18 304 | 98.59 226 | 98.66 316 | 98.78 351 | 98.61 136 | 99.57 356 | 94.14 353 | 99.56 260 | 96.21 370 |
|
thres200 | | | 96.09 330 | 95.68 332 | 97.33 338 | 99.48 227 | 96.22 339 | 98.53 270 | 97.57 356 | 98.06 276 | 98.37 331 | 96.73 382 | 86.84 364 | 99.61 352 | 86.99 373 | 98.57 343 | 96.16 371 |
|
GG-mvs-BLEND | | | | | 97.36 336 | 97.59 373 | 96.87 330 | 99.70 34 | 88.49 381 | | 94.64 374 | 97.26 379 | 80.66 374 | 99.12 369 | 91.50 363 | 96.50 370 | 96.08 372 |
|
wuyk23d | | | 97.58 299 | 99.13 135 | 92.93 357 | 99.69 139 | 99.49 131 | 99.52 83 | 99.77 77 | 97.97 281 | 99.96 15 | 99.79 80 | 99.84 5 | 99.94 64 | 95.85 328 | 99.82 163 | 79.36 373 |
|
test123 | | | 29.31 343 | 33.05 348 | 18.08 359 | 25.93 383 | 12.24 383 | 97.53 342 | 10.93 384 | 11.78 377 | 24.21 378 | 50.08 387 | 21.04 382 | 8.60 378 | 23.51 376 | 32.43 377 | 33.39 374 |
|
testmvs | | | 28.94 344 | 33.33 346 | 15.79 360 | 26.03 382 | 9.81 384 | 96.77 364 | 15.67 383 | 11.55 378 | 23.87 379 | 50.74 386 | 19.03 383 | 8.53 379 | 23.21 377 | 33.07 376 | 29.03 375 |
|
test_blank | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 24.88 345 | 33.17 347 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 99.62 151 | 0.00 379 | 0.00 380 | 99.13 311 | 99.82 6 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 16.61 346 | 22.14 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 99.28 51 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.26 355 | 11.02 358 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 99.16 309 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 8.33 347 | 11.11 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 100.00 1 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 99.83 53 | 99.89 10 | 99.74 23 | 99.71 108 | 99.69 71 | 99.63 142 | | | | | | |
|
test_one_0601 | | | | | | 99.63 159 | 99.76 58 | | 99.55 199 | 99.23 148 | 99.31 240 | 99.61 190 | 98.59 139 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.43 244 | 99.61 111 | | 99.43 246 | 96.38 336 | 99.11 272 | 99.07 321 | 97.86 216 | 99.92 101 | 94.04 355 | 99.49 279 | |
|
test_241102_ONE | | | | | | 99.69 139 | 99.82 35 | | 99.54 205 | 99.12 171 | 99.82 66 | 99.49 239 | 98.91 97 | 99.52 361 | | | |
|
9.14 | | | | 98.64 220 | | 99.45 240 | | 98.81 240 | 99.60 170 | 97.52 304 | 99.28 246 | 99.56 217 | 98.53 151 | 99.83 250 | 95.36 340 | 99.64 240 | |
|
save fliter | | | | | | 99.53 204 | 99.25 188 | 98.29 287 | 99.38 263 | 99.07 175 | | | | | | | |
|
test0726 | | | | | | 99.69 139 | 99.80 42 | 99.24 150 | 99.57 188 | 99.16 162 | 99.73 111 | 99.65 162 | 98.35 175 | | | | |
|
test_part2 | | | | | | 99.62 163 | 99.67 91 | | | | 99.55 180 | | | | | | |
|
sam_mvs | | | | | | | | | | | | | 90.52 343 | | | | |
|
MTGPA |  | | | | | | | | 99.53 214 | | | | | | | | |
|
test_post1 | | | | | | | | 99.14 178 | | | | 51.63 385 | 89.54 351 | 99.82 259 | 96.86 281 | | |
|
test_post | | | | | | | | | | | | 52.41 384 | 90.25 345 | 99.86 204 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 99.62 181 | 90.58 341 | 99.94 64 | | | |
|
MTMP | | | | | | | | 99.09 196 | 98.59 336 | | | | | | | | |
|
gm-plane-assit | | | | | | 97.59 373 | 89.02 380 | | | 93.47 361 | | 98.30 366 | | 99.84 235 | 96.38 308 | | |
|
TEST9 | | | | | | 99.35 262 | 99.35 170 | 98.11 302 | 99.41 249 | 94.83 358 | 97.92 348 | 98.99 332 | 98.02 205 | 99.85 221 | | | |
|
test_8 | | | | | | 99.34 270 | 99.31 176 | 98.08 306 | 99.40 256 | 94.90 355 | 97.87 352 | 98.97 337 | 98.02 205 | 99.84 235 | | | |
|
agg_prior | | | | | | 99.35 262 | 99.36 167 | | 99.39 259 | | 97.76 357 | | | 99.85 221 | | | |
|
test_prior4 | | | | | | | 99.19 201 | 98.00 314 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.95 320 | | 97.87 288 | 98.05 344 | 99.05 323 | 97.90 213 | | 95.99 323 | 99.49 279 | |
|
旧先验2 | | | | | | | | 97.94 321 | | 95.33 350 | 98.94 286 | | | 99.88 172 | 96.75 287 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 98.04 310 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 97.92 323 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 158 | 95.99 323 | | |
|
segment_acmp | | | | | | | | | | | | | 98.37 173 | | | | |
|
testdata1 | | | | | | | | 97.72 332 | | 97.86 290 | | | | | | | |
|
plane_prior7 | | | | | | 99.58 175 | 99.38 160 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.47 233 | 99.26 185 | | | | | | 97.24 248 | | | | |
|
plane_prior4 | | | | | | | | | | | | 99.25 296 | | | | | |
|
plane_prior3 | | | | | | | 99.31 176 | | | 98.36 250 | 99.14 268 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 243 | | 98.94 187 | | | | | | | |
|
plane_prior1 | | | | | | 99.51 211 | | | | | | | | | | | |
|
plane_prior | | | | | | | 99.24 192 | 98.42 280 | | 97.87 288 | | | | | | 99.71 216 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 99.83 47 | | | | | | | | |
|
test11 | | | | | | | | | 99.29 282 | | | | | | | | |
|
door | | | | | | | | | 99.77 77 | | | | | | | | |
|
HQP5-MVS | | | | | | | 98.94 226 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.31 278 | | 97.98 316 | | 97.45 307 | 98.15 338 | | | | | | |
|
ACMP_Plane | | | | | | 99.31 278 | | 97.98 316 | | 97.45 307 | 98.15 338 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 94.73 346 | | |
|
HQP3-MVS | | | | | | | | | 99.37 264 | | | | | | | 99.67 233 | |
|
HQP2-MVS | | | | | | | | | | | | | 96.67 264 | | | | |
|
NP-MVS | | | | | | 99.40 251 | 99.13 206 | | | | | 98.83 348 | | | | | |
|
MDTV_nov1_ep13 | | | | 97.73 293 | | 98.70 357 | 90.83 374 | 99.15 176 | 98.02 350 | 98.51 235 | 98.82 302 | 99.61 190 | 90.98 334 | 99.66 338 | 96.89 280 | 98.92 326 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.94 78 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.79 182 | |
|
Test By Simon | | | | | | | | | | | | | 98.41 167 | | | | |
|