This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16996.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10487.68 20198.45 1898.77 1594.20 6999.50 2196.70 399.40 5699.53 15
MVS_030493.92 12993.68 13694.64 11395.94 22085.83 17394.34 12788.14 33392.98 7491.09 27297.68 6286.73 20599.36 5796.64 499.59 2898.72 92
MVSFormer92.18 18092.23 17192.04 21094.74 26580.06 24897.15 1597.37 12088.98 17188.83 30692.79 29277.02 29199.60 996.41 596.75 26396.46 246
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12088.98 17198.26 2298.86 1093.35 8499.60 996.41 599.45 4699.66 6
test_fmvsmvis_n_192095.08 8895.40 7894.13 13596.66 16187.75 12793.44 15598.49 1385.57 23398.27 2097.11 10794.11 7197.75 24996.26 798.72 14596.89 228
v7n96.82 997.31 1095.33 8698.54 4886.81 14496.83 2398.07 5796.59 2098.46 1798.43 3192.91 9999.52 1996.25 899.76 1099.65 8
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10487.57 20398.80 798.90 996.50 999.59 1396.15 999.47 4299.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11886.96 21298.71 1098.72 1795.36 3199.56 1795.92 1099.45 4699.32 27
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6994.15 4898.93 399.07 588.07 17999.57 1495.86 1199.69 1499.46 18
test_fmvsm_n_192094.72 10094.74 10694.67 10996.30 19188.62 10893.19 16098.07 5785.63 23197.08 6097.35 8890.86 14197.66 25595.70 1298.48 17197.74 184
bld_raw_dy_0_6494.27 11794.15 12494.65 11298.55 4586.28 16295.80 7395.55 22888.41 18597.09 5998.08 4278.69 27398.87 12495.63 1399.53 3798.81 80
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11791.25 12597.49 4398.14 3783.49 22999.45 2695.52 1499.66 2199.36 24
RRT_MVS95.41 7495.20 8996.05 5598.86 2288.92 10197.49 1194.48 25793.12 7097.94 2798.54 2481.19 25999.63 695.48 1599.69 1499.60 12
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15898.32 2187.89 19496.86 7297.38 8195.55 2599.39 4895.47 1699.47 4299.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvs392.42 17292.40 17092.46 19793.80 29287.28 13393.86 14497.05 14976.86 31596.25 9898.66 1882.87 23891.26 35895.44 1796.83 25998.82 78
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11395.57 8497.88 8188.72 17798.81 698.86 1090.77 14399.60 995.43 1899.53 3799.57 14
tt080595.42 7395.93 5693.86 14798.75 3288.47 11497.68 994.29 26196.48 2195.38 13793.63 27194.89 5297.94 22995.38 1996.92 25695.17 289
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3696.95 1495.46 13599.23 493.45 7999.57 1495.34 2099.89 299.63 9
ACMH88.36 1296.59 2797.43 594.07 13798.56 4285.33 18096.33 4798.30 2494.66 4098.72 898.30 3497.51 598.00 22394.87 2199.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1094.68 10395.27 8692.90 17796.57 16880.15 24494.65 11597.57 10790.68 13897.43 4798.00 4788.18 17699.15 8394.84 2299.55 3699.41 20
SixPastTwentyTwo94.91 9395.21 8793.98 13998.52 5083.19 20795.93 6794.84 24794.86 3998.49 1598.74 1681.45 25399.60 994.69 2399.39 5799.15 39
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5498.46 2994.62 5998.84 12894.64 2499.53 3798.99 55
v124093.29 14293.71 13492.06 20996.01 21577.89 29191.81 21997.37 12085.12 24196.69 7996.40 15186.67 20699.07 9794.51 2598.76 14299.22 33
APDe-MVS96.46 3196.64 2195.93 6297.68 11489.38 9596.90 2298.41 1792.52 8097.43 4797.92 5395.11 4299.50 2194.45 2699.30 7098.92 68
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6690.42 14596.37 8997.35 8895.68 2099.25 7494.44 2799.34 6398.80 82
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4591.74 11295.34 14196.36 15895.68 2099.44 2894.41 2899.28 7898.97 60
v894.65 10495.29 8492.74 18296.65 16279.77 25994.59 11697.17 14091.86 10097.47 4697.93 5088.16 17799.08 9394.32 2999.47 4299.38 22
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4293.11 7196.48 8697.36 8596.92 699.34 6294.31 3099.38 5898.92 68
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10294.46 4496.29 9596.94 11793.56 7699.37 5694.29 3199.42 5198.99 55
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15696.78 2798.08 5497.42 998.48 1697.86 5791.76 12199.63 694.23 3299.84 399.66 6
v192192093.26 14493.61 13992.19 20296.04 21478.31 28591.88 21497.24 13685.17 23996.19 10596.19 16986.76 20499.05 9894.18 3398.84 12999.22 33
v119293.49 13793.78 13192.62 18996.16 20279.62 26191.83 21897.22 13886.07 22296.10 10896.38 15687.22 19399.02 10394.14 3498.88 12499.22 33
MSC_two_6792asdad95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
No_MVS95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1492.35 8595.95 11196.41 15096.71 899.42 3293.99 3799.36 5999.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++95.93 5296.34 3494.70 10896.54 17186.66 15098.45 498.22 3393.26 6897.54 3997.36 8593.12 9299.38 5493.88 3898.68 15198.04 146
test_0728_THIRD93.26 6897.40 5097.35 8894.69 5699.34 6293.88 3899.42 5198.89 71
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11295.77 7498.29 2792.68 7698.03 2697.91 5495.13 4098.95 11393.85 4099.49 4199.36 24
v14419293.20 14993.54 14392.16 20696.05 21078.26 28691.95 20797.14 14284.98 24595.96 11096.11 17387.08 19799.04 10193.79 4198.84 12999.17 37
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7292.35 8595.63 12796.47 14695.37 2999.27 7393.78 4299.14 9898.48 118
EI-MVSNet-UG-set94.35 11494.27 12294.59 11892.46 31185.87 17192.42 18994.69 25393.67 6196.13 10695.84 18591.20 13498.86 12593.78 4298.23 19499.03 51
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7592.35 8595.57 12996.61 14194.93 5199.41 3893.78 4299.15 9799.00 53
EI-MVSNet-Vis-set94.36 11394.28 12094.61 11492.55 31085.98 16892.44 18794.69 25393.70 5896.12 10795.81 18691.24 13198.86 12593.76 4598.22 19698.98 59
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7592.26 8895.28 14596.57 14395.02 4799.41 3893.63 4699.11 10098.94 63
EC-MVSNet95.44 7095.62 6994.89 9996.93 14987.69 12896.48 3899.14 493.93 5392.77 23194.52 24393.95 7399.49 2493.62 4799.22 8897.51 199
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17896.49 14594.56 6199.39 4893.57 4899.05 10598.93 64
X-MVStestdata90.70 20588.45 25097.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17826.89 38294.56 6199.39 4893.57 4899.05 10598.93 64
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9286.48 21597.42 4997.51 7594.47 6699.29 6993.55 5099.29 7398.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114493.50 13693.81 12992.57 19296.28 19279.61 26291.86 21796.96 15586.95 21395.91 11496.32 16087.65 18698.96 11193.51 5198.88 12499.13 41
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11294.85 5399.42 3293.49 5298.84 12998.00 151
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11295.40 2893.49 5298.84 12998.00 151
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6993.34 6796.64 8196.57 14394.99 4999.36 5793.48 5499.34 6398.82 78
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS95.77 5895.58 7196.37 5096.84 15491.72 6196.73 2999.06 594.23 4692.48 24094.79 23393.56 7699.49 2493.47 5599.05 10597.89 166
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3892.26 8896.33 9196.84 12595.10 4399.40 4593.47 5599.33 6599.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.94.96 9294.75 10495.57 7898.86 2288.69 10596.37 4496.81 16885.23 23794.75 16897.12 10691.85 11999.40 4593.45 5798.33 18498.62 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvs290.62 20990.40 21691.29 23691.93 32685.46 17892.70 17596.48 18974.44 32894.91 16297.59 6875.52 30290.57 36093.44 5896.56 26797.84 172
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14895.20 9697.00 15291.85 10197.40 5097.35 8895.58 2399.34 6293.44 5899.31 6898.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10098.55 4586.72 14795.20 9698.22 3399.38 5493.44 5899.31 6898.53 114
MSP-MVS95.34 7794.63 11297.48 1498.67 3394.05 2396.41 4398.18 3891.26 12395.12 15295.15 21686.60 20899.50 2193.43 6196.81 26098.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-CasMVS96.69 2097.43 594.49 12499.13 684.09 19596.61 3297.97 7497.91 598.64 1398.13 3995.24 3699.65 393.39 6299.84 399.72 2
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3392.36 8494.11 18198.07 4392.02 11599.44 2893.38 6397.67 22997.85 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2895.51 3496.99 6897.05 11195.63 2299.39 4893.31 6498.88 12498.75 87
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 14095.21 9498.10 5191.95 9597.63 3597.25 9596.48 1099.35 5993.29 6599.29 7397.95 159
test_241102_TWO98.10 5191.95 9597.54 3997.25 9595.37 2999.35 5993.29 6599.25 8298.49 117
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18696.51 3597.94 8098.14 398.67 1298.32 3395.04 4599.69 293.27 6799.82 799.62 10
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15790.79 7396.30 5497.82 8796.13 2694.74 16997.23 9791.33 12899.16 8293.25 6898.30 18798.46 119
K. test v393.37 14093.27 15093.66 15198.05 8582.62 21594.35 12686.62 34396.05 2997.51 4298.85 1276.59 29899.65 393.21 6998.20 19998.73 91
Anonymous2023121196.60 2597.13 1295.00 9697.46 12886.35 16097.11 1998.24 3197.58 898.72 898.97 793.15 9199.15 8393.18 7099.74 1299.50 17
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6992.08 9395.74 12296.28 16495.22 3799.42 3293.17 7199.06 10298.88 73
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5492.67 7895.08 15696.39 15594.77 5599.42 3293.17 7199.44 4998.58 112
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9592.59 7995.47 13396.68 13794.50 6399.42 3293.10 7399.26 8198.99 55
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6690.82 13497.15 5796.85 12396.25 1499.00 10593.10 7399.33 6598.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet96.19 4596.80 1694.38 12998.99 1683.82 19896.31 5097.53 11197.60 798.34 1997.52 7391.98 11799.63 693.08 7599.81 899.70 3
v2v48293.29 14293.63 13892.29 19896.35 18578.82 27991.77 22196.28 19588.45 18395.70 12696.26 16686.02 21498.90 11793.02 7698.81 13799.14 40
IU-MVS98.51 5186.66 15096.83 16772.74 34095.83 11893.00 7799.29 7398.64 106
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5795.17 3596.82 7496.73 13495.09 4499.43 3192.99 7898.71 14798.50 115
PEN-MVS96.69 2097.39 894.61 11499.16 484.50 18796.54 3498.05 6198.06 498.64 1398.25 3595.01 4899.65 392.95 7999.83 599.68 4
FC-MVSNet-test95.32 7895.88 5893.62 15298.49 5881.77 22495.90 6998.32 2193.93 5397.53 4197.56 7088.48 17299.40 4592.91 8099.83 599.68 4
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17897.33 12890.05 15096.77 7796.85 12395.04 4598.56 17692.77 8199.06 10298.70 96
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2491.40 12195.76 12096.87 12295.26 3599.45 2692.77 8199.21 8999.00 53
CNVR-MVS94.58 10694.29 11995.46 8296.94 14789.35 9691.81 21996.80 16989.66 15793.90 19395.44 20592.80 10398.72 15192.74 8398.52 16698.32 126
DeepC-MVS91.39 495.43 7195.33 8295.71 7497.67 11590.17 8093.86 14498.02 6887.35 20596.22 10197.99 4894.48 6599.05 9892.73 8499.68 1897.93 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS95.19 8595.73 6693.55 15596.62 16688.88 10494.67 11398.05 6191.26 12397.25 5696.40 15195.42 2794.36 34092.72 8599.19 9197.40 208
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet87.39 28686.71 29089.44 28693.40 29676.11 31694.93 10790.00 32257.17 37895.71 12597.37 8264.77 34897.68 25492.67 8694.37 31794.52 309
lessismore_v093.87 14698.05 8583.77 19980.32 37497.13 5897.91 5477.49 28499.11 9292.62 8798.08 20898.74 90
Anonymous2024052192.86 15993.57 14190.74 25796.57 16875.50 32394.15 13495.60 22189.38 16295.90 11597.90 5680.39 26397.96 22792.60 8899.68 1898.75 87
MVS_Test92.57 16993.29 14790.40 26693.53 29575.85 31992.52 18296.96 15588.73 17692.35 24896.70 13690.77 14398.37 19492.53 8995.49 28996.99 224
3Dnovator92.54 394.80 9894.90 9894.47 12595.47 24287.06 13896.63 3197.28 13491.82 10794.34 18097.41 7990.60 15098.65 16692.47 9098.11 20597.70 186
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10496.36 9096.68 13794.37 6799.32 6892.41 9199.05 10598.64 106
V4293.43 13993.58 14092.97 17195.34 24881.22 23492.67 17696.49 18887.25 20796.20 10396.37 15787.32 19298.85 12792.39 9298.21 19798.85 77
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15896.25 19683.23 20592.66 17798.19 3693.06 7297.49 4397.15 10494.78 5498.71 15792.27 9398.72 14598.65 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final90.23 22389.32 23492.95 17394.65 27181.46 23094.32 13095.40 23685.61 23292.84 22895.37 21254.58 37499.13 8792.16 9498.94 12098.25 131
HPM-MVS++copyleft95.02 8994.39 11596.91 3797.88 9993.58 3794.09 13796.99 15491.05 12992.40 24595.22 21591.03 14099.25 7492.11 9598.69 15097.90 164
UniMVSNet (Re)95.32 7895.15 9095.80 7097.79 10488.91 10292.91 16898.07 5793.46 6496.31 9395.97 18090.14 15699.34 6292.11 9599.64 2499.16 38
XVG-OURS-SEG-HR95.38 7595.00 9796.51 4698.10 8194.07 2092.46 18698.13 4790.69 13793.75 19596.25 16798.03 297.02 28392.08 9795.55 28798.45 120
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
tttt051789.81 23688.90 24492.55 19397.00 14479.73 26095.03 10383.65 36589.88 15395.30 14394.79 23353.64 37799.39 4891.99 10098.79 13998.54 113
EI-MVSNet92.99 15393.26 15192.19 20292.12 32079.21 27292.32 19494.67 25591.77 11095.24 14995.85 18387.14 19698.49 18291.99 10098.26 19098.86 74
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9392.73 7593.48 20396.72 13594.23 6899.42 3291.99 10099.29 7399.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IterMVS-LS93.78 13294.28 12092.27 19996.27 19379.21 27291.87 21596.78 17091.77 11096.57 8597.07 10987.15 19598.74 14991.99 10099.03 11198.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT91.65 18891.55 18691.94 21193.89 28879.22 27187.56 31493.51 27691.53 11995.37 13996.62 14078.65 27498.90 11791.89 10494.95 30397.70 186
EGC-MVSNET80.97 33775.73 34996.67 4298.85 2494.55 1596.83 2396.60 1802.44 3845.32 38598.25 3592.24 11198.02 22191.85 10599.21 8997.45 202
CS-MVS-test95.32 7895.10 9395.96 5896.86 15390.75 7496.33 4799.20 293.99 5091.03 27393.73 26993.52 7899.55 1891.81 10699.45 4697.58 193
LS3D96.11 4795.83 6296.95 3694.75 26494.20 1997.34 1397.98 7297.31 1195.32 14296.77 12793.08 9499.20 7991.79 10798.16 20197.44 204
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2492.37 8397.75 3296.95 11695.14 3999.51 2091.74 10899.28 7898.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FIs94.90 9495.35 8093.55 15598.28 6981.76 22595.33 9098.14 4693.05 7397.07 6197.18 10287.65 18699.29 6991.72 10999.69 1499.61 11
Gipumacopyleft95.31 8195.80 6493.81 14997.99 9490.91 7096.42 4297.95 7796.69 1791.78 26098.85 1291.77 12095.49 32391.72 10999.08 10195.02 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
baseline94.26 11994.80 10292.64 18696.08 20880.99 23793.69 14998.04 6590.80 13594.89 16396.32 16093.19 8998.48 18691.68 11198.51 16898.43 121
alignmvs93.26 14492.85 15694.50 12295.70 23187.45 13093.45 15495.76 21691.58 11795.25 14892.42 30381.96 25098.72 15191.61 11297.87 22197.33 213
UniMVSNet_NR-MVSNet95.35 7695.21 8795.76 7197.69 11388.59 11092.26 19897.84 8594.91 3896.80 7595.78 19090.42 15299.41 3891.60 11399.58 3399.29 29
DU-MVS95.28 8295.12 9295.75 7297.75 10688.59 11092.58 18097.81 8893.99 5096.80 7595.90 18190.10 15999.41 3891.60 11399.58 3399.26 30
EG-PatchMatch MVS94.54 10894.67 11194.14 13497.87 10086.50 15292.00 20696.74 17488.16 19096.93 7097.61 6793.04 9697.90 23091.60 11398.12 20498.03 149
test_040295.73 6096.22 4094.26 13198.19 7685.77 17493.24 15997.24 13696.88 1697.69 3397.77 6094.12 7099.13 8791.54 11699.29 7397.88 167
canonicalmvs94.59 10594.69 10894.30 13095.60 23987.03 13995.59 8198.24 3191.56 11895.21 15192.04 30994.95 5098.66 16491.45 11797.57 23397.20 217
XVG-OURS94.72 10094.12 12596.50 4798.00 9194.23 1891.48 22598.17 4290.72 13695.30 14396.47 14687.94 18396.98 28491.41 11897.61 23298.30 129
pmmvs696.80 1297.36 995.15 9399.12 887.82 12696.68 3097.86 8296.10 2798.14 2499.28 397.94 398.21 20591.38 11999.69 1499.42 19
XVG-ACMP-BASELINE95.68 6295.34 8196.69 4198.40 6193.04 4194.54 12398.05 6190.45 14496.31 9396.76 12992.91 9998.72 15191.19 12099.42 5198.32 126
test_fmvs1_n88.73 26188.38 25289.76 28192.06 32282.53 21692.30 19696.59 18271.14 34792.58 23795.41 20968.55 32689.57 36891.12 12195.66 28597.18 218
RPSCF95.58 6694.89 9997.62 797.58 12096.30 795.97 6697.53 11192.42 8193.41 20497.78 5891.21 13397.77 24691.06 12297.06 24898.80 82
h-mvs3392.89 15691.99 17795.58 7796.97 14590.55 7693.94 14294.01 26989.23 16593.95 19096.19 16976.88 29499.14 8591.02 12395.71 28497.04 222
hse-mvs292.24 17991.20 19695.38 8396.16 20290.65 7592.52 18292.01 30789.23 16593.95 19092.99 28776.88 29498.69 16091.02 12396.03 27696.81 232
casdiffmvspermissive94.32 11694.80 10292.85 17996.05 21081.44 23192.35 19298.05 6191.53 11995.75 12196.80 12693.35 8498.49 18291.01 12598.32 18698.64 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.55 10794.68 11094.15 13397.23 13585.11 18294.14 13597.34 12788.71 17895.26 14695.50 20294.65 5899.12 9090.94 12698.40 17498.23 132
c3_l91.32 19791.42 19191.00 24892.29 31376.79 30987.52 31796.42 19185.76 22894.72 17193.89 26582.73 24198.16 21190.93 12798.55 16298.04 146
iter_conf0588.94 25588.09 26591.50 22892.74 30776.97 30692.80 17195.92 21282.82 26893.65 19995.37 21249.41 38199.13 8790.82 12899.28 7898.40 123
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12893.75 14797.86 8295.96 3197.48 4597.14 10595.33 3299.44 2890.79 12999.76 1099.38 22
test_vis1_n89.01 25189.01 24089.03 29492.57 30982.46 21892.62 17996.06 20673.02 33890.40 28295.77 19174.86 30489.68 36690.78 13094.98 30294.95 297
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13197.70 897.54 10998.16 298.94 299.33 297.84 499.08 9390.73 13199.73 1399.59 13
9.1494.81 10197.49 12594.11 13698.37 1887.56 20495.38 13796.03 17794.66 5799.08 9390.70 13298.97 116
diffmvspermissive91.74 18691.93 17991.15 24393.06 30278.17 28788.77 30097.51 11486.28 21892.42 24493.96 26288.04 18097.46 26590.69 13396.67 26597.82 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs187.59 28187.27 27788.54 30488.32 36681.26 23390.43 25395.72 21870.55 35391.70 26194.63 23868.13 32789.42 36990.59 13495.34 29594.94 299
dcpmvs_293.96 12795.01 9690.82 25597.60 11874.04 33593.68 15098.85 789.80 15597.82 2997.01 11591.14 13899.21 7790.56 13598.59 15999.19 36
MVSTER89.32 24388.75 24691.03 24590.10 35176.62 31190.85 23894.67 25582.27 27595.24 14995.79 18761.09 36398.49 18290.49 13698.26 19097.97 158
DP-MVS95.62 6395.84 6194.97 9797.16 13988.62 10894.54 12397.64 10096.94 1596.58 8497.32 9293.07 9598.72 15190.45 13798.84 12997.57 194
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13198.08 5489.46 16096.61 8396.47 14695.85 1899.12 9090.45 13799.56 3598.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_LR93.66 13493.28 14994.80 10396.25 19690.95 6990.21 25995.43 23387.91 19293.74 19794.40 24592.88 10196.38 30490.39 13998.28 18897.07 219
ANet_high94.83 9796.28 3790.47 26396.65 16273.16 34094.33 12898.74 1096.39 2498.09 2598.93 893.37 8398.70 15890.38 14099.68 1899.53 15
DeepPCF-MVS90.46 694.20 12293.56 14296.14 5295.96 21792.96 4389.48 28097.46 11585.14 24096.23 10095.42 20693.19 8998.08 21590.37 14198.76 14297.38 211
MSLP-MVS++93.25 14693.88 12891.37 23196.34 18682.81 21493.11 16297.74 9589.37 16394.08 18395.29 21490.40 15496.35 30690.35 14298.25 19294.96 296
PM-MVS93.33 14192.67 16395.33 8696.58 16794.06 2192.26 19892.18 30085.92 22596.22 10196.61 14185.64 21995.99 31590.35 14298.23 19495.93 266
test_vis1_n_192089.45 24189.85 22788.28 31093.59 29476.71 31090.67 24497.78 9379.67 29290.30 28596.11 17376.62 29792.17 35490.31 14493.57 32995.96 264
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2397.52 7396.90 798.62 16890.30 14599.60 2698.72 92
DIV-MVS_self_test90.65 20790.56 21290.91 25291.85 32776.99 30486.75 33195.36 23785.52 23694.06 18594.89 22777.37 28797.99 22590.28 14698.97 11697.76 181
cl____90.65 20790.56 21290.91 25291.85 32776.98 30586.75 33195.36 23785.53 23494.06 18594.89 22777.36 28897.98 22690.27 14798.98 11297.76 181
PHI-MVS94.34 11593.80 13095.95 5995.65 23591.67 6294.82 10997.86 8287.86 19593.04 22294.16 25491.58 12398.78 14290.27 14798.96 11897.41 205
patch_mono-292.46 17192.72 16291.71 21996.65 16278.91 27788.85 29797.17 14083.89 25692.45 24296.76 12989.86 16397.09 28090.24 14998.59 15999.12 43
MVS_111021_HR93.63 13593.42 14694.26 13196.65 16286.96 14289.30 28796.23 19988.36 18793.57 20194.60 24093.45 7997.77 24690.23 15098.38 17898.03 149
NCCC94.08 12593.54 14395.70 7596.49 17689.90 8392.39 19196.91 16190.64 13992.33 25194.60 24090.58 15198.96 11190.21 15197.70 22798.23 132
pm-mvs195.43 7195.94 5493.93 14398.38 6385.08 18395.46 8797.12 14591.84 10497.28 5498.46 2995.30 3497.71 25290.17 15299.42 5198.99 55
RPMNet90.31 22290.14 22290.81 25691.01 33978.93 27492.52 18298.12 4891.91 9889.10 30396.89 12168.84 32599.41 3890.17 15292.70 34294.08 316
NR-MVSNet95.28 8295.28 8595.26 8997.75 10687.21 13595.08 10097.37 12093.92 5597.65 3495.90 18190.10 15999.33 6790.11 15499.66 2199.26 30
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2196.69 1796.86 7297.56 7095.48 2698.77 14590.11 15499.44 4998.31 128
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet94.47 11095.09 9492.60 19198.50 5780.82 24092.08 20296.68 17693.82 5696.29 9598.56 2390.10 15997.75 24990.10 15699.66 2199.24 32
v14892.87 15893.29 14791.62 22396.25 19677.72 29491.28 23095.05 24089.69 15695.93 11396.04 17687.34 19198.38 19190.05 15797.99 21598.78 84
MCST-MVS92.91 15592.51 16694.10 13697.52 12385.72 17591.36 22997.13 14480.33 28692.91 22794.24 25091.23 13298.72 15189.99 15897.93 21897.86 169
miper_lstm_enhance89.90 23489.80 22890.19 27491.37 33577.50 29683.82 35995.00 24284.84 24893.05 22194.96 22576.53 29995.20 33289.96 15998.67 15397.86 169
ambc92.98 17096.88 15183.01 21195.92 6896.38 19396.41 8897.48 7788.26 17597.80 24289.96 15998.93 12198.12 142
CPTT-MVS94.74 9994.12 12596.60 4398.15 7893.01 4295.84 7197.66 9989.21 16893.28 21095.46 20388.89 17098.98 10689.80 16198.82 13597.80 177
miper_ehance_all_eth90.48 21190.42 21590.69 25891.62 33276.57 31286.83 32996.18 20383.38 25894.06 18592.66 29782.20 24698.04 21789.79 16297.02 25097.45 202
eth_miper_zixun_eth90.72 20490.61 21091.05 24492.04 32376.84 30886.91 32696.67 17785.21 23894.41 17693.92 26379.53 26798.26 20289.76 16397.02 25098.06 143
VPA-MVSNet95.14 8695.67 6893.58 15497.76 10583.15 20894.58 11897.58 10693.39 6597.05 6498.04 4593.25 8798.51 18189.75 16499.59 2899.08 48
DELS-MVS92.05 18292.16 17291.72 21894.44 27580.13 24687.62 31197.25 13587.34 20692.22 25393.18 28489.54 16698.73 15089.67 16598.20 19996.30 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest053088.69 26287.52 27392.20 20196.33 18779.36 26792.81 17084.01 36486.44 21693.67 19892.68 29653.62 37899.25 7489.65 16698.45 17298.00 151
DeepC-MVS_fast89.96 793.73 13393.44 14594.60 11796.14 20487.90 12393.36 15797.14 14285.53 23493.90 19395.45 20491.30 13098.59 17389.51 16798.62 15697.31 214
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet92.38 17491.99 17793.52 16093.82 29183.46 20191.14 23297.00 15289.81 15486.47 33794.04 25787.90 18499.21 7789.50 16898.27 18997.90 164
TSAR-MVS + GP.93.07 15292.41 16995.06 9595.82 22490.87 7290.97 23692.61 29588.04 19194.61 17293.79 26888.08 17897.81 24189.41 16998.39 17796.50 244
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
APD-MVScopyleft95.00 9094.69 10895.93 6297.38 13090.88 7194.59 11697.81 8889.22 16795.46 13596.17 17293.42 8299.34 6289.30 17298.87 12797.56 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xiu_mvs_v1_base_debu91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
xiu_mvs_v1_base91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
xiu_mvs_v1_base_debi91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
HQP_MVS94.26 11993.93 12795.23 9197.71 11088.12 11994.56 12097.81 8891.74 11293.31 20795.59 19786.93 20098.95 11389.26 17698.51 16898.60 110
plane_prior597.81 8898.95 11389.26 17698.51 16898.60 110
Patchmatch-RL test88.81 25888.52 24889.69 28495.33 24979.94 25386.22 34092.71 29178.46 30595.80 11994.18 25366.25 34095.33 32989.22 17898.53 16593.78 325
PatchT87.51 28388.17 26385.55 33690.64 34266.91 36692.02 20586.09 34792.20 9089.05 30597.16 10364.15 35096.37 30589.21 17992.98 34093.37 335
test_f86.65 29987.13 28285.19 34090.28 34986.11 16686.52 33991.66 31069.76 35795.73 12497.21 10169.51 32481.28 38089.15 18094.40 31588.17 366
CSCG94.69 10294.75 10494.52 12197.55 12287.87 12495.01 10497.57 10792.68 7696.20 10393.44 27791.92 11898.78 14289.11 18199.24 8496.92 226
KD-MVS_self_test94.10 12494.73 10792.19 20297.66 11679.49 26594.86 10897.12 14589.59 15996.87 7197.65 6590.40 15498.34 19589.08 18299.35 6098.75 87
test_vis3_rt90.40 21490.03 22391.52 22792.58 30888.95 10090.38 25497.72 9773.30 33597.79 3097.51 7577.05 29087.10 37389.03 18394.89 30498.50 115
cl2289.02 24988.50 24990.59 26189.76 35376.45 31386.62 33694.03 26682.98 26692.65 23492.49 29872.05 31597.53 26088.93 18497.02 25097.78 179
VDD-MVS94.37 11294.37 11794.40 12897.49 12586.07 16793.97 14193.28 28094.49 4396.24 9997.78 5887.99 18298.79 13988.92 18599.14 9898.34 125
AUN-MVS90.05 23188.30 25495.32 8896.09 20790.52 7792.42 18992.05 30682.08 27788.45 31892.86 28965.76 34298.69 16088.91 18696.07 27596.75 236
TransMVSNet (Re)95.27 8496.04 5192.97 17198.37 6581.92 22395.07 10196.76 17393.97 5297.77 3198.57 2295.72 1997.90 23088.89 18799.23 8599.08 48
CR-MVSNet87.89 27287.12 28390.22 27191.01 33978.93 27492.52 18292.81 28773.08 33789.10 30396.93 11867.11 33297.64 25788.80 18892.70 34294.08 316
CVMVSNet85.16 30884.72 30586.48 32992.12 32070.19 35692.32 19488.17 33256.15 37990.64 27895.85 18367.97 33096.69 29488.78 18990.52 35892.56 345
FMVSNet194.84 9695.13 9193.97 14097.60 11884.29 18895.99 6396.56 18392.38 8297.03 6598.53 2590.12 15798.98 10688.78 18999.16 9698.65 101
ZD-MVS97.23 13590.32 7897.54 10984.40 25194.78 16795.79 18792.76 10499.39 4888.72 19198.40 174
train_agg92.71 16491.83 18295.35 8496.45 17889.46 9090.60 24696.92 15979.37 29590.49 27994.39 24691.20 13498.88 12088.66 19298.43 17397.72 185
Anonymous2024052995.50 6895.83 6294.50 12297.33 13385.93 16995.19 9896.77 17296.64 1997.61 3898.05 4493.23 8898.79 13988.60 19399.04 11098.78 84
test111190.39 21690.61 21089.74 28298.04 8871.50 35195.59 8179.72 37689.41 16195.94 11298.14 3770.79 32098.81 13588.52 19499.32 6798.90 70
test_prior290.21 25989.33 16490.77 27594.81 23090.41 15388.21 19598.55 162
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 10093.38 6695.89 11697.23 9793.35 8497.66 25588.20 19698.66 15597.79 178
D2MVS89.93 23389.60 23390.92 25094.03 28578.40 28488.69 30294.85 24678.96 30293.08 21995.09 22074.57 30596.94 28588.19 19798.96 11897.41 205
IS-MVSNet94.49 10994.35 11894.92 9898.25 7386.46 15597.13 1894.31 26096.24 2596.28 9796.36 15882.88 23799.35 5988.19 19799.52 4098.96 61
test9_res88.16 19998.40 17497.83 173
UGNet93.08 15092.50 16794.79 10493.87 28987.99 12295.07 10194.26 26390.64 13987.33 33397.67 6486.89 20298.49 18288.10 20098.71 14797.91 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250685.42 30684.57 30887.96 31597.81 10266.53 36996.14 5856.35 38789.04 16993.55 20298.10 4042.88 38998.68 16288.09 20199.18 9398.67 99
test_cas_vis1_n_192088.25 26888.27 25788.20 31292.19 31878.92 27689.45 28195.44 23275.29 32593.23 21595.65 19671.58 31790.23 36488.05 20293.55 33095.44 286
FA-MVS(test-final)91.81 18591.85 18191.68 22194.95 25579.99 25296.00 6293.44 27887.80 19694.02 18897.29 9377.60 28398.45 18888.04 20397.49 23596.61 238
ETV-MVS92.99 15392.74 15993.72 15095.86 22386.30 16192.33 19397.84 8591.70 11592.81 22986.17 36592.22 11299.19 8088.03 20497.73 22495.66 280
EIA-MVS92.35 17592.03 17593.30 16495.81 22683.97 19692.80 17198.17 4287.71 19989.79 29687.56 35591.17 13799.18 8187.97 20597.27 24296.77 234
mvs_anonymous90.37 21891.30 19587.58 32092.17 31968.00 36489.84 27294.73 25283.82 25793.22 21697.40 8087.54 18897.40 27087.94 20695.05 30197.34 212
IterMVS90.18 22490.16 21990.21 27293.15 30075.98 31887.56 31492.97 28586.43 21794.09 18296.40 15178.32 27897.43 26787.87 20794.69 31197.23 216
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_enhance_ethall88.42 26587.87 26890.07 27588.67 36575.52 32285.10 34695.59 22575.68 31992.49 23989.45 34378.96 27097.88 23487.86 20897.02 25096.81 232
ET-MVSNet_ETH3D86.15 30184.27 31191.79 21593.04 30381.28 23287.17 32286.14 34679.57 29383.65 35488.66 34957.10 36998.18 20987.74 20995.40 29295.90 269
Effi-MVS+-dtu93.90 13192.60 16597.77 394.74 26596.67 594.00 13995.41 23489.94 15191.93 25992.13 30790.12 15798.97 11087.68 21097.48 23697.67 189
SDMVSNet94.43 11195.02 9592.69 18497.93 9682.88 21391.92 21195.99 21193.65 6295.51 13198.63 1994.60 6096.48 29987.57 21199.35 6098.70 96
WR-MVS93.49 13793.72 13392.80 18197.57 12180.03 25090.14 26295.68 21993.70 5896.62 8295.39 21087.21 19499.04 10187.50 21299.64 2499.33 26
tfpnnormal94.27 11794.87 10092.48 19597.71 11080.88 23994.55 12295.41 23493.70 5896.67 8097.72 6191.40 12798.18 20987.45 21399.18 9398.36 124
jason89.17 24588.32 25391.70 22095.73 23080.07 24788.10 30793.22 28171.98 34390.09 28792.79 29278.53 27798.56 17687.43 21497.06 24896.46 246
jason: jason.
Effi-MVS+92.79 16092.74 15992.94 17595.10 25283.30 20394.00 13997.53 11191.36 12289.35 30290.65 33194.01 7298.66 16487.40 21595.30 29696.88 230
FMVSNet292.78 16192.73 16192.95 17395.40 24481.98 22294.18 13395.53 23088.63 17996.05 10997.37 8281.31 25598.81 13587.38 21698.67 15398.06 143
EPP-MVSNet93.91 13093.68 13694.59 11898.08 8285.55 17797.44 1294.03 26694.22 4794.94 16096.19 16982.07 24899.57 1487.28 21798.89 12298.65 101
PC_three_145275.31 32495.87 11795.75 19292.93 9896.34 30887.18 21898.68 15198.04 146
ECVR-MVScopyleft90.12 22690.16 21990.00 27897.81 10272.68 34595.76 7578.54 37989.04 16995.36 14098.10 4070.51 32198.64 16787.10 21999.18 9398.67 99
VDDNet94.03 12694.27 12293.31 16398.87 2182.36 21995.51 8691.78 30997.19 1296.32 9298.60 2184.24 22598.75 14687.09 22098.83 13498.81 80
agg_prior287.06 22198.36 18397.98 155
LF4IMVS92.72 16392.02 17694.84 10295.65 23591.99 5492.92 16796.60 18085.08 24392.44 24393.62 27286.80 20396.35 30686.81 22298.25 19296.18 257
GBi-Net93.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
test193.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
FMVSNet390.78 20390.32 21892.16 20693.03 30479.92 25492.54 18194.95 24486.17 22195.10 15396.01 17869.97 32398.75 14686.74 22398.38 17897.82 175
lupinMVS88.34 26787.31 27591.45 22994.74 26580.06 24887.23 31992.27 29971.10 34888.83 30691.15 32077.02 29198.53 17986.67 22696.75 26395.76 274
OMC-MVS94.22 12193.69 13595.81 6997.25 13491.27 6492.27 19797.40 11987.10 21194.56 17395.42 20693.74 7498.11 21486.62 22798.85 12898.06 143
mvsany_test389.11 24788.21 26291.83 21391.30 33690.25 7988.09 30878.76 37776.37 31896.43 8798.39 3283.79 22890.43 36386.57 22894.20 32194.80 301
pmmvs-eth3d91.54 19190.73 20893.99 13895.76 22987.86 12590.83 23993.98 27078.23 30794.02 18896.22 16882.62 24496.83 29086.57 22898.33 18497.29 215
BP-MVS86.55 230
HQP-MVS92.09 18191.49 19093.88 14596.36 18284.89 18491.37 22697.31 12987.16 20888.81 30893.40 27884.76 22298.60 17186.55 23097.73 22498.14 140
ppachtmachnet_test88.61 26388.64 24788.50 30691.76 32970.99 35484.59 35292.98 28479.30 29992.38 24693.53 27679.57 26697.45 26686.50 23297.17 24597.07 219
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16493.73 5797.87 2898.49 2890.73 14799.05 9886.43 23399.60 2699.10 47
PVSNet_Blended_VisFu91.63 18991.20 19692.94 17597.73 10983.95 19792.14 20197.46 11578.85 30492.35 24894.98 22484.16 22699.08 9386.36 23496.77 26295.79 273
Fast-Effi-MVS+-dtu92.77 16292.16 17294.58 12094.66 27088.25 11792.05 20396.65 17889.62 15890.08 28891.23 31992.56 10798.60 17186.30 23596.27 27396.90 227
OPU-MVS95.15 9396.84 15489.43 9295.21 9495.66 19593.12 9298.06 21686.28 23698.61 15797.95 159
PMVScopyleft87.21 1494.97 9195.33 8293.91 14498.97 1797.16 295.54 8595.85 21596.47 2293.40 20697.46 7895.31 3395.47 32486.18 23798.78 14089.11 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft89.45 892.27 17892.13 17492.68 18594.53 27484.10 19495.70 7697.03 15082.44 27491.14 27196.42 14988.47 17398.38 19185.95 23897.47 23795.55 284
CDPH-MVS92.67 16591.83 18295.18 9296.94 14788.46 11590.70 24397.07 14877.38 31092.34 25095.08 22192.67 10698.88 12085.74 23998.57 16198.20 135
CANet_DTU89.85 23589.17 23691.87 21292.20 31780.02 25190.79 24095.87 21486.02 22382.53 36291.77 31280.01 26498.57 17585.66 24097.70 22797.01 223
ITE_SJBPF95.95 5997.34 13293.36 4096.55 18691.93 9794.82 16595.39 21091.99 11697.08 28185.53 24197.96 21697.41 205
new-patchmatchnet88.97 25390.79 20683.50 35094.28 27955.83 38485.34 34593.56 27586.18 22095.47 13395.73 19383.10 23496.51 29885.40 24298.06 20998.16 138
EPNet89.80 23788.25 25894.45 12683.91 38386.18 16493.87 14387.07 34191.16 12880.64 37194.72 23578.83 27198.89 11985.17 24398.89 12298.28 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry90.11 22789.92 22590.66 25990.35 34877.00 30392.96 16692.81 28790.25 14894.74 16996.93 11867.11 33297.52 26185.17 24398.98 11297.46 201
旧先验290.00 26768.65 36192.71 23396.52 29785.15 245
MDA-MVSNet-bldmvs91.04 19990.88 20291.55 22594.68 26980.16 24385.49 34392.14 30390.41 14694.93 16195.79 18785.10 22096.93 28785.15 24594.19 32397.57 194
Anonymous20240521192.58 16792.50 16792.83 18096.55 17083.22 20692.43 18891.64 31194.10 4995.59 12896.64 13981.88 25297.50 26285.12 24798.52 16697.77 180
AllTest94.88 9594.51 11496.00 5698.02 8992.17 5095.26 9398.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
TestCases96.00 5698.02 8992.17 5098.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
VPNet93.08 15093.76 13291.03 24598.60 3975.83 32191.51 22495.62 22091.84 10495.74 12297.10 10889.31 16798.32 19685.07 25099.06 10298.93 64
LFMVS91.33 19691.16 19991.82 21496.27 19379.36 26795.01 10485.61 35396.04 3094.82 16597.06 11072.03 31698.46 18784.96 25198.70 14997.65 190
VNet92.67 16592.96 15391.79 21596.27 19380.15 24491.95 20794.98 24392.19 9194.52 17596.07 17587.43 19097.39 27184.83 25298.38 17897.83 173
our_test_387.55 28287.59 27287.44 32291.76 32970.48 35583.83 35890.55 32079.79 28992.06 25792.17 30678.63 27695.63 31984.77 25394.73 30996.22 255
TAPA-MVS88.58 1092.49 17091.75 18494.73 10696.50 17589.69 8692.91 16897.68 9878.02 30892.79 23094.10 25590.85 14297.96 22784.76 25498.16 20196.54 239
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+91.28 19890.86 20392.53 19495.45 24382.53 21689.25 29096.52 18785.00 24489.91 29288.55 35192.94 9798.84 12884.72 25595.44 29196.22 255
GA-MVS87.70 27686.82 28790.31 26793.27 29877.22 30184.72 35192.79 28985.11 24289.82 29490.07 33266.80 33597.76 24884.56 25694.27 32095.96 264
QAPM92.88 15792.77 15793.22 16695.82 22483.31 20296.45 3997.35 12683.91 25593.75 19596.77 12789.25 16898.88 12084.56 25697.02 25097.49 200
UnsupCasMVSNet_eth90.33 22090.34 21790.28 26894.64 27280.24 24289.69 27595.88 21385.77 22793.94 19295.69 19481.99 24992.98 35184.21 25891.30 35397.62 191
CLD-MVS91.82 18491.41 19293.04 16896.37 18083.65 20086.82 33097.29 13284.65 25092.27 25289.67 34092.20 11397.85 24083.95 25999.47 4297.62 191
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t90.51 21089.80 22892.63 18898.00 9182.24 22093.40 15697.29 13265.84 36989.40 30194.80 23286.99 19898.75 14683.88 26098.61 15796.89 228
DP-MVS Recon92.31 17691.88 18093.60 15397.18 13886.87 14391.10 23497.37 12084.92 24692.08 25694.08 25688.59 17198.20 20683.50 26198.14 20395.73 275
YYNet188.17 26988.24 25987.93 31692.21 31673.62 33780.75 36888.77 32582.51 27394.99 15995.11 21982.70 24293.70 34583.33 26293.83 32596.48 245
MDA-MVSNet_test_wron88.16 27088.23 26087.93 31692.22 31573.71 33680.71 36988.84 32482.52 27294.88 16495.14 21782.70 24293.61 34683.28 26393.80 32696.46 246
XXY-MVS92.58 16793.16 15290.84 25497.75 10679.84 25591.87 21596.22 20185.94 22495.53 13097.68 6292.69 10594.48 33683.21 26497.51 23498.21 134
cascas87.02 29686.28 29889.25 29291.56 33376.45 31384.33 35596.78 17071.01 34986.89 33685.91 36681.35 25496.94 28583.09 26595.60 28694.35 313
test-LLR83.58 31883.17 31884.79 34389.68 35566.86 36783.08 36084.52 36183.07 26482.85 36084.78 37062.86 35793.49 34782.85 26694.86 30594.03 319
test-mter81.21 33580.01 34284.79 34389.68 35566.86 36783.08 36084.52 36173.85 33282.85 36084.78 37043.66 38693.49 34782.85 26694.86 30594.03 319
pmmvs488.95 25487.70 27192.70 18394.30 27885.60 17687.22 32092.16 30274.62 32789.75 29894.19 25277.97 28196.41 30282.71 26896.36 27296.09 259
testdata91.03 24596.87 15282.01 22194.28 26271.55 34492.46 24195.42 20685.65 21897.38 27382.64 26997.27 24293.70 328
thisisatest051584.72 31182.99 32089.90 27992.96 30575.33 32484.36 35483.42 36677.37 31188.27 32186.65 36053.94 37698.72 15182.56 27097.40 23995.67 279
PS-MVSNAJ88.86 25788.99 24188.48 30794.88 25674.71 32586.69 33395.60 22180.88 28287.83 32687.37 35890.77 14398.82 13082.52 27194.37 31791.93 350
xiu_mvs_v2_base89.00 25289.19 23588.46 30894.86 25874.63 32786.97 32495.60 22180.88 28287.83 32688.62 35091.04 13998.81 13582.51 27294.38 31691.93 350
PAPM_NR91.03 20090.81 20591.68 22196.73 15981.10 23693.72 14896.35 19488.19 18988.77 31292.12 30885.09 22197.25 27582.40 27393.90 32496.68 237
test_yl90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
DCV-MVSNet90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
DPM-MVS89.35 24288.40 25192.18 20596.13 20684.20 19286.96 32596.15 20575.40 32387.36 33291.55 31783.30 23298.01 22282.17 27696.62 26694.32 314
MG-MVS89.54 23989.80 22888.76 29994.88 25672.47 34789.60 27692.44 29885.82 22689.48 30095.98 17982.85 23997.74 25181.87 27795.27 29796.08 260
PatchmatchNetpermissive85.22 30784.64 30686.98 32589.51 35869.83 36190.52 24887.34 33978.87 30387.22 33492.74 29466.91 33496.53 29681.77 27886.88 36794.58 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap92.00 18392.76 15889.71 28395.62 23877.02 30290.72 24296.17 20487.70 20095.26 14696.29 16292.54 10896.45 30181.77 27898.77 14195.66 280
sd_testset93.94 12894.39 11592.61 19097.93 9683.24 20493.17 16195.04 24193.65 6295.51 13198.63 1994.49 6495.89 31681.72 28099.35 6098.70 96
test_vis1_rt85.58 30584.58 30788.60 30387.97 36786.76 14585.45 34493.59 27366.43 36687.64 32889.20 34679.33 26885.38 37781.59 28189.98 36193.66 329
原ACMM192.87 17896.91 15084.22 19197.01 15176.84 31689.64 29994.46 24488.00 18198.70 15881.53 28298.01 21495.70 278
1112_ss88.42 26587.41 27491.45 22996.69 16080.99 23789.72 27496.72 17573.37 33487.00 33590.69 32977.38 28698.20 20681.38 28393.72 32795.15 291
MS-PatchMatch88.05 27187.75 26988.95 29593.28 29777.93 28987.88 31092.49 29775.42 32292.57 23893.59 27480.44 26294.24 34381.28 28492.75 34194.69 307
LCM-MVSNet-Re94.20 12294.58 11393.04 16895.91 22183.13 20993.79 14699.19 392.00 9498.84 598.04 4593.64 7599.02 10381.28 28498.54 16496.96 225
tpmrst82.85 32482.93 32182.64 35287.65 36858.99 38290.14 26287.90 33575.54 32183.93 35391.63 31566.79 33795.36 32781.21 28681.54 37793.57 334
无先验89.94 26895.75 21770.81 35198.59 17381.17 28794.81 300
新几何193.17 16797.16 13987.29 13294.43 25867.95 36391.29 26694.94 22686.97 19998.23 20481.06 28897.75 22393.98 321
MSDG90.82 20190.67 20991.26 23794.16 28083.08 21086.63 33596.19 20290.60 14191.94 25891.89 31089.16 16995.75 31880.96 28994.51 31494.95 297
mvsany_test183.91 31782.93 32186.84 32886.18 37785.93 16981.11 36775.03 38270.80 35288.57 31794.63 23883.08 23587.38 37280.39 29086.57 36887.21 368
pmmvs587.87 27387.14 28190.07 27593.26 29976.97 30688.89 29592.18 30073.71 33388.36 31993.89 26576.86 29696.73 29380.32 29196.81 26096.51 241
PVSNet_BlendedMVS90.35 21989.96 22491.54 22694.81 26078.80 28190.14 26296.93 15779.43 29488.68 31595.06 22286.27 21198.15 21280.27 29298.04 21197.68 188
PVSNet_Blended88.74 26088.16 26490.46 26594.81 26078.80 28186.64 33496.93 15774.67 32688.68 31589.18 34786.27 21198.15 21280.27 29296.00 27794.44 311
testdata298.03 21880.24 294
FE-MVS89.06 24888.29 25591.36 23294.78 26279.57 26396.77 2890.99 31584.87 24792.96 22596.29 16260.69 36598.80 13880.18 29597.11 24795.71 276
F-COLMAP92.28 17791.06 20095.95 5997.52 12391.90 5693.53 15197.18 13983.98 25488.70 31494.04 25788.41 17498.55 17880.17 29695.99 27897.39 209
EPMVS81.17 33680.37 33883.58 34985.58 37965.08 37490.31 25771.34 38377.31 31285.80 34191.30 31859.38 36692.70 35279.99 29782.34 37692.96 341
TESTMET0.1,179.09 34478.04 34782.25 35387.52 37064.03 37883.08 36080.62 37370.28 35580.16 37283.22 37344.13 38590.56 36179.95 29893.36 33192.15 348
Test_1112_low_res87.50 28486.58 29190.25 27096.80 15877.75 29387.53 31696.25 19769.73 35886.47 33793.61 27375.67 30197.88 23479.95 29893.20 33495.11 293
CL-MVSNet_self_test90.04 23289.90 22690.47 26395.24 25077.81 29286.60 33792.62 29485.64 23093.25 21493.92 26383.84 22796.06 31379.93 30098.03 21297.53 198
OpenMVS_ROBcopyleft85.12 1689.52 24089.05 23890.92 25094.58 27381.21 23591.10 23493.41 27977.03 31493.41 20493.99 26183.23 23397.80 24279.93 30094.80 30893.74 327
CNLPA91.72 18791.20 19693.26 16596.17 20191.02 6791.14 23295.55 22890.16 14990.87 27493.56 27586.31 21094.40 33979.92 30297.12 24694.37 312
ab-mvs92.40 17392.62 16491.74 21797.02 14381.65 22695.84 7195.50 23186.95 21392.95 22697.56 7090.70 14897.50 26279.63 30397.43 23896.06 261
test_post190.21 2595.85 38665.36 34496.00 31479.61 304
SCA87.43 28587.21 27988.10 31492.01 32471.98 34989.43 28288.11 33482.26 27688.71 31392.83 29078.65 27497.59 25879.61 30493.30 33394.75 304
tpmvs84.22 31583.97 31384.94 34187.09 37365.18 37291.21 23188.35 32882.87 26785.21 34390.96 32465.24 34696.75 29279.60 30685.25 37092.90 342
baseline187.62 28087.31 27588.54 30494.71 26874.27 33393.10 16388.20 33186.20 21992.18 25493.04 28573.21 31095.52 32179.32 30785.82 36995.83 271
tpm84.38 31484.08 31285.30 33990.47 34663.43 37989.34 28585.63 35277.24 31387.62 32995.03 22361.00 36497.30 27479.26 30891.09 35695.16 290
BH-untuned90.68 20690.90 20190.05 27795.98 21679.57 26390.04 26594.94 24587.91 19294.07 18493.00 28687.76 18597.78 24579.19 30995.17 29992.80 343
API-MVS91.52 19291.61 18591.26 23794.16 28086.26 16394.66 11494.82 24891.17 12792.13 25591.08 32290.03 16297.06 28279.09 31097.35 24190.45 360
131486.46 30086.33 29786.87 32791.65 33174.54 32891.94 20994.10 26574.28 32984.78 34887.33 35983.03 23695.00 33378.72 31191.16 35591.06 357
BH-RMVSNet90.47 21290.44 21490.56 26295.21 25178.65 28389.15 29193.94 27188.21 18892.74 23294.22 25186.38 20997.88 23478.67 31295.39 29395.14 292
MVP-Stereo90.07 23088.92 24293.54 15796.31 18986.49 15390.93 23795.59 22579.80 28891.48 26395.59 19780.79 26097.39 27178.57 31391.19 35496.76 235
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDTV_nov1_ep1383.88 31589.42 35961.52 38088.74 30187.41 33773.99 33184.96 34794.01 26065.25 34595.53 32078.02 31493.16 335
Vis-MVSNet (Re-imp)90.42 21390.16 21991.20 24197.66 11677.32 29994.33 12887.66 33691.20 12692.99 22395.13 21875.40 30398.28 19877.86 31599.19 9197.99 154
sss87.23 28986.82 28788.46 30893.96 28677.94 28886.84 32892.78 29077.59 30987.61 33091.83 31178.75 27291.92 35577.84 31694.20 32195.52 285
IB-MVS77.21 1983.11 32081.05 33189.29 29091.15 33775.85 31985.66 34286.00 34879.70 29182.02 36686.61 36148.26 38298.39 18977.84 31692.22 34793.63 330
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-test86.10 30286.01 29986.38 33390.63 34374.22 33489.57 27786.69 34285.73 22989.81 29592.83 29065.24 34691.04 35977.82 31895.78 28393.88 324
USDC89.02 24989.08 23788.84 29895.07 25374.50 33088.97 29396.39 19273.21 33693.27 21196.28 16482.16 24796.39 30377.55 31998.80 13895.62 283
CDS-MVSNet89.55 23888.22 26193.53 15895.37 24786.49 15389.26 28893.59 27379.76 29091.15 27092.31 30477.12 28998.38 19177.51 32097.92 21995.71 276
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
N_pmnet88.90 25687.25 27893.83 14894.40 27793.81 3584.73 34987.09 34079.36 29793.26 21292.43 30279.29 26991.68 35677.50 32197.22 24496.00 263
AdaColmapbinary91.63 18991.36 19392.47 19695.56 24086.36 15992.24 20096.27 19688.88 17589.90 29392.69 29591.65 12298.32 19677.38 32297.64 23092.72 344
CostFormer83.09 32182.21 32485.73 33589.27 36067.01 36590.35 25586.47 34470.42 35483.52 35793.23 28361.18 36296.85 28977.21 32388.26 36593.34 336
E-PMN80.72 33980.86 33480.29 35785.11 38068.77 36372.96 37381.97 36987.76 19883.25 35983.01 37462.22 36089.17 37077.15 32494.31 31982.93 374
PLCcopyleft85.34 1590.40 21488.92 24294.85 10196.53 17490.02 8191.58 22396.48 18980.16 28786.14 33992.18 30585.73 21698.25 20376.87 32594.61 31396.30 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS90.32 22188.87 24594.66 11194.82 25991.85 5794.22 13294.75 25180.91 28187.52 33188.07 35486.63 20797.87 23776.67 32696.21 27494.25 315
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet_dtu85.63 30484.37 30989.40 28886.30 37674.33 33291.64 22288.26 32984.84 24872.96 38089.85 33371.27 31997.69 25376.60 32797.62 23196.18 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 30983.04 31991.19 24287.56 36986.14 16589.40 28484.44 36388.98 17182.20 36397.95 4956.82 37196.15 30976.55 32883.45 37391.30 355
PatchMatch-RL89.18 24488.02 26792.64 18695.90 22292.87 4588.67 30491.06 31480.34 28590.03 29091.67 31483.34 23194.42 33876.35 32994.84 30790.64 359
FMVSNet587.82 27586.56 29291.62 22392.31 31279.81 25893.49 15294.81 25083.26 25991.36 26596.93 11852.77 37997.49 26476.07 33098.03 21297.55 197
PMMVS83.00 32281.11 33088.66 30283.81 38486.44 15682.24 36485.65 35161.75 37682.07 36485.64 36779.75 26591.59 35775.99 33193.09 33787.94 367
CMPMVSbinary68.83 2287.28 28885.67 30292.09 20888.77 36485.42 17990.31 25794.38 25970.02 35688.00 32493.30 28073.78 30994.03 34475.96 33296.54 26896.83 231
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EMVS80.35 34180.28 34080.54 35684.73 38269.07 36272.54 37580.73 37287.80 19681.66 36881.73 37562.89 35689.84 36575.79 33394.65 31282.71 375
HyFIR lowres test87.19 29285.51 30392.24 20097.12 14280.51 24185.03 34796.06 20666.11 36891.66 26292.98 28870.12 32299.14 8575.29 33495.23 29897.07 219
UnsupCasMVSNet_bld88.50 26488.03 26689.90 27995.52 24178.88 27887.39 31894.02 26879.32 29893.06 22094.02 25980.72 26194.27 34175.16 33593.08 33896.54 239
WTY-MVS86.93 29786.50 29688.24 31194.96 25474.64 32687.19 32192.07 30578.29 30688.32 32091.59 31678.06 28094.27 34174.88 33693.15 33695.80 272
KD-MVS_2432*160082.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
miper_refine_blended82.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
baseline283.38 31981.54 32888.90 29691.38 33472.84 34488.78 29981.22 37178.97 30179.82 37387.56 35561.73 36197.80 24274.30 33990.05 36096.05 262
gm-plane-assit87.08 37459.33 38171.22 34683.58 37297.20 27773.95 340
test20.0390.80 20290.85 20490.63 26095.63 23779.24 27089.81 27392.87 28689.90 15294.39 17796.40 15185.77 21595.27 33173.86 34199.05 10597.39 209
TAMVS90.16 22589.05 23893.49 16196.49 17686.37 15890.34 25692.55 29680.84 28492.99 22394.57 24281.94 25198.20 20673.51 34298.21 19795.90 269
CHOSEN 1792x268887.19 29285.92 30191.00 24897.13 14179.41 26684.51 35395.60 22164.14 37290.07 28994.81 23078.26 27997.14 27973.34 34395.38 29496.46 246
thres600view787.66 27887.10 28489.36 28996.05 21073.17 33992.72 17385.31 35691.89 9993.29 20990.97 32363.42 35498.39 18973.23 34496.99 25596.51 241
dp79.28 34378.62 34681.24 35585.97 37856.45 38386.91 32685.26 35872.97 33981.45 37089.17 34856.01 37395.45 32573.19 34576.68 37991.82 353
pmmvs380.83 33878.96 34586.45 33087.23 37277.48 29784.87 34882.31 36863.83 37385.03 34589.50 34249.66 38093.10 34973.12 34695.10 30088.78 365
MDTV_nov1_ep13_2view42.48 38888.45 30667.22 36583.56 35666.80 33572.86 34794.06 318
TR-MVS87.70 27687.17 28089.27 29194.11 28279.26 26988.69 30291.86 30881.94 27890.69 27789.79 33782.82 24097.42 26872.65 34891.98 35091.14 356
PAPR87.65 27986.77 28990.27 26992.85 30677.38 29888.56 30596.23 19976.82 31784.98 34689.75 33986.08 21397.16 27872.33 34993.35 33296.26 254
Anonymous2023120688.77 25988.29 25590.20 27396.31 18978.81 28089.56 27893.49 27774.26 33092.38 24695.58 20082.21 24595.43 32672.07 35098.75 14496.34 250
MVS84.98 31084.30 31087.01 32491.03 33877.69 29591.94 20994.16 26459.36 37784.23 35287.50 35785.66 21796.80 29171.79 35193.05 33986.54 370
tpm cat180.61 34079.46 34384.07 34888.78 36365.06 37589.26 28888.23 33062.27 37581.90 36789.66 34162.70 35995.29 33071.72 35280.60 37891.86 352
HY-MVS82.50 1886.81 29885.93 30089.47 28593.63 29377.93 28994.02 13891.58 31275.68 31983.64 35593.64 27077.40 28597.42 26871.70 35392.07 34993.05 340
testgi90.38 21791.34 19487.50 32197.49 12571.54 35089.43 28295.16 23988.38 18694.54 17494.68 23792.88 10193.09 35071.60 35497.85 22297.88 167
BH-w/o87.21 29087.02 28587.79 31994.77 26377.27 30087.90 30993.21 28381.74 27989.99 29188.39 35383.47 23096.93 28771.29 35592.43 34689.15 361
thres100view90087.35 28786.89 28688.72 30096.14 20473.09 34193.00 16585.31 35692.13 9293.26 21290.96 32463.42 35498.28 19871.27 35696.54 26894.79 302
tfpn200view987.05 29586.52 29488.67 30195.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26894.79 302
thres40087.20 29186.52 29489.24 29395.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26896.51 241
tpm281.46 33280.35 33984.80 34289.90 35265.14 37390.44 25085.36 35565.82 37082.05 36592.44 30157.94 36896.69 29470.71 35988.49 36492.56 345
ADS-MVSNet284.01 31682.20 32589.41 28789.04 36176.37 31587.57 31290.98 31672.71 34184.46 34992.45 29968.08 32896.48 29970.58 36083.97 37195.38 287
ADS-MVSNet82.25 32681.55 32784.34 34689.04 36165.30 37187.57 31285.13 36072.71 34184.46 34992.45 29968.08 32892.33 35370.58 36083.97 37195.38 287
PVSNet76.22 2082.89 32382.37 32384.48 34593.96 28664.38 37778.60 37188.61 32671.50 34584.43 35186.36 36474.27 30694.60 33569.87 36293.69 32894.46 310
CHOSEN 280x42080.04 34277.97 34886.23 33490.13 35074.53 32972.87 37489.59 32366.38 36776.29 37785.32 36856.96 37095.36 32769.49 36394.72 31088.79 364
thres20085.85 30385.18 30487.88 31894.44 27572.52 34689.08 29286.21 34588.57 18291.44 26488.40 35264.22 34998.00 22368.35 36495.88 28293.12 337
dmvs_re84.69 31283.94 31486.95 32692.24 31482.93 21289.51 27987.37 33884.38 25285.37 34285.08 36972.44 31286.59 37468.05 36591.03 35791.33 354
PCF-MVS84.52 1789.12 24687.71 27093.34 16296.06 20985.84 17286.58 33897.31 12968.46 36293.61 20093.89 26587.51 18998.52 18067.85 36698.11 20595.66 280
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet81.22 33481.01 33381.86 35490.92 34170.15 35784.03 35680.25 37570.83 35085.97 34089.78 33867.93 33184.65 37867.44 36791.90 35190.78 358
gg-mvs-nofinetune82.10 33081.02 33285.34 33887.46 37171.04 35294.74 11167.56 38496.44 2379.43 37498.99 645.24 38396.15 30967.18 36892.17 34888.85 363
DSMNet-mixed82.21 32781.56 32684.16 34789.57 35770.00 36090.65 24577.66 38154.99 38083.30 35897.57 6977.89 28290.50 36266.86 36995.54 28891.97 349
test0.0.03 182.48 32581.47 32985.48 33789.70 35473.57 33884.73 34981.64 37083.07 26488.13 32386.61 36162.86 35789.10 37166.24 37090.29 35993.77 326
MIMVSNet87.13 29486.54 29388.89 29796.05 21076.11 31694.39 12588.51 32781.37 28088.27 32196.75 13172.38 31395.52 32165.71 37195.47 29095.03 294
PMMVS281.31 33383.44 31674.92 36290.52 34546.49 38769.19 37685.23 35984.30 25387.95 32594.71 23676.95 29384.36 37964.07 37298.09 20793.89 323
FPMVS84.50 31383.28 31788.16 31396.32 18894.49 1685.76 34185.47 35483.09 26385.20 34494.26 24963.79 35386.58 37563.72 37391.88 35283.40 373
MVS-HIRNet78.83 34580.60 33773.51 36393.07 30147.37 38687.10 32378.00 38068.94 36077.53 37697.26 9471.45 31894.62 33463.28 37488.74 36378.55 378
wuyk23d87.83 27490.79 20678.96 35990.46 34788.63 10792.72 17390.67 31991.65 11698.68 1197.64 6696.06 1577.53 38159.84 37599.41 5570.73 379
GG-mvs-BLEND83.24 35185.06 38171.03 35394.99 10665.55 38574.09 37975.51 37944.57 38494.46 33759.57 37687.54 36684.24 372
PVSNet_070.34 2174.58 34772.96 35079.47 35890.63 34366.24 37073.26 37283.40 36763.67 37478.02 37578.35 37872.53 31189.59 36756.68 37760.05 38282.57 376
MVEpermissive59.87 2373.86 34872.65 35177.47 36087.00 37574.35 33161.37 37860.93 38667.27 36469.69 38186.49 36381.24 25872.33 38256.45 37883.45 37385.74 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM81.91 33180.11 34187.31 32393.87 28972.32 34884.02 35793.22 28169.47 35976.13 37889.84 33472.15 31497.23 27653.27 37989.02 36292.37 347
test_method50.44 34948.94 35254.93 36439.68 38812.38 39028.59 37990.09 3216.82 38241.10 38478.41 37754.41 37570.69 38350.12 38051.26 38381.72 377
dmvs_testset78.23 34678.99 34475.94 36191.99 32555.34 38588.86 29678.70 37882.69 26981.64 36979.46 37675.93 30085.74 37648.78 38182.85 37586.76 369
tmp_tt37.97 35044.33 35318.88 36611.80 38921.54 38963.51 37745.66 3904.23 38351.34 38350.48 38159.08 36722.11 38544.50 38268.35 38113.00 381
DeepMVS_CXcopyleft53.83 36570.38 38764.56 37648.52 38933.01 38165.50 38274.21 38056.19 37246.64 38438.45 38370.07 38050.30 380
test1239.49 35212.01 3551.91 3672.87 3901.30 39182.38 3631.34 3921.36 3852.84 3866.56 3842.45 3900.97 3862.73 3845.56 3843.47 382
testmvs9.02 35311.42 3561.81 3682.77 3911.13 39279.44 3701.90 3911.18 3862.65 3876.80 3831.95 3910.87 3872.62 3853.45 3853.44 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.35 35131.13 3540.00 3690.00 3920.00 3930.00 38095.58 2270.00 3870.00 38891.15 32093.43 810.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.56 35410.09 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38790.77 1430.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.56 35410.08 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38890.69 3290.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7187.14 13698.18 3894.25 4596.99 6897.36 8595.13 40
eth-test20.00 392
eth-test0.00 392
test_241102_ONE98.51 5186.97 14098.10 5191.85 10197.63 3597.03 11296.48 1098.95 113
save fliter97.46 12888.05 12192.04 20497.08 14787.63 202
test072698.51 5186.69 14895.34 8998.18 3891.85 10197.63 3597.37 8295.58 23
GSMVS94.75 304
test_part298.21 7589.41 9396.72 78
sam_mvs166.64 33894.75 304
sam_mvs66.41 339
MTGPAbinary97.62 102
test_post6.07 38565.74 34395.84 317
patchmatchnet-post91.71 31366.22 34197.59 258
MTMP94.82 10954.62 388
TEST996.45 17889.46 9090.60 24696.92 15979.09 30090.49 27994.39 24691.31 12998.88 120
test_896.37 18089.14 9790.51 24996.89 16279.37 29590.42 28194.36 24891.20 13498.82 130
agg_prior96.20 19988.89 10396.88 16390.21 28698.78 142
test_prior489.91 8290.74 241
test_prior94.61 11495.95 21887.23 13497.36 12598.68 16297.93 161
新几何290.02 266
旧先验196.20 19984.17 19394.82 24895.57 20189.57 16597.89 22096.32 251
原ACMM289.34 285
test22296.95 14685.27 18188.83 29893.61 27265.09 37190.74 27694.85 22984.62 22497.36 24093.91 322
segment_acmp92.14 114
testdata188.96 29488.44 184
test1294.43 12795.95 21886.75 14696.24 19889.76 29789.79 16498.79 13997.95 21797.75 183
plane_prior797.71 11088.68 106
plane_prior697.21 13788.23 11886.93 200
plane_prior495.59 197
plane_prior388.43 11690.35 14793.31 207
plane_prior294.56 12091.74 112
plane_prior197.38 130
plane_prior88.12 11993.01 16488.98 17198.06 209
n20.00 393
nn0.00 393
door-mid92.13 304
test1196.65 178
door91.26 313
HQP5-MVS84.89 184
HQP-NCC96.36 18291.37 22687.16 20888.81 308
ACMP_Plane96.36 18291.37 22687.16 20888.81 308
HQP4-MVS88.81 30898.61 16998.15 139
HQP3-MVS97.31 12997.73 224
HQP2-MVS84.76 222
NP-MVS96.82 15687.10 13793.40 278
ACMMP++_ref98.82 135
ACMMP++99.25 82
Test By Simon90.61 149