This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2898.81 2893.86 3499.07 298.98 697.01 1398.92 498.78 1495.22 3998.61 18396.85 299.77 1099.31 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1996.42 3197.68 798.00 9394.03 2896.97 1997.61 10887.68 20998.45 1898.77 1594.20 6999.50 2196.70 399.40 5799.53 15
MVSFormer92.18 18892.23 17792.04 22194.74 27080.06 25197.15 1497.37 12488.98 17888.83 30992.79 29477.02 29899.60 996.41 496.75 27396.46 252
test_djsdf96.62 2596.49 2897.01 3598.55 4491.77 6397.15 1497.37 12488.98 17898.26 2298.86 1093.35 8499.60 996.41 499.45 4699.66 6
v7n96.82 1097.31 1095.33 9598.54 4786.81 15596.83 2298.07 5996.59 2098.46 1798.43 2992.91 9899.52 1996.25 699.76 1199.65 8
mvs_tets96.83 996.71 1997.17 2998.83 2692.51 5296.58 3397.61 10887.57 21298.80 798.90 996.50 1099.59 1396.15 799.47 4299.40 22
jajsoiax96.59 2996.42 3197.12 3198.76 3192.49 5396.44 4197.42 12286.96 22198.71 1098.72 1795.36 3399.56 1795.92 899.45 4699.32 28
OurMVSNet-221017-096.80 1396.75 1896.96 3899.03 1191.85 6197.98 798.01 7294.15 5398.93 399.07 588.07 18899.57 1495.86 999.69 1599.46 19
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4486.28 17295.80 7495.55 23288.41 19297.09 5898.08 4178.69 28198.87 13695.63 1099.53 3798.81 83
mvsmamba95.61 6795.40 7996.22 5598.44 6189.86 9197.14 1697.45 12191.25 12897.49 4398.14 3683.49 23899.45 2695.52 1199.66 2299.36 25
RRT_MVS95.41 7695.20 8996.05 5998.86 2388.92 10997.49 1094.48 26193.12 7497.94 2798.54 2281.19 26899.63 695.48 1299.69 1599.60 12
MP-MVS-pluss96.08 5195.92 5996.57 4899.06 1091.21 6993.25 16298.32 2387.89 20296.86 7197.38 7895.55 2699.39 5295.47 1399.47 4299.11 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FMVS292.42 18092.40 17692.46 20893.80 29887.28 14293.86 14797.05 15476.86 32296.25 10098.66 1882.87 24691.26 36895.44 1496.83 26998.82 81
PS-MVSNAJss96.01 5396.04 5495.89 7298.82 2788.51 12295.57 8497.88 8588.72 18498.81 698.86 1090.77 14999.60 995.43 1599.53 3799.57 14
UA-Net97.35 497.24 1197.69 598.22 7593.87 3398.42 698.19 3896.95 1495.46 13899.23 493.45 7999.57 1495.34 1699.89 299.63 9
ACMH88.36 1296.59 2997.43 594.07 14898.56 4185.33 18896.33 4798.30 2694.66 4298.72 898.30 3397.51 598.00 23994.87 1799.59 2998.86 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1094.68 10795.27 8692.90 19096.57 17380.15 24794.65 11897.57 11190.68 14197.43 4698.00 4688.18 18599.15 9094.84 1899.55 3699.41 21
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21495.93 6894.84 25094.86 4198.49 1598.74 1681.45 26299.60 994.69 1999.39 5899.15 40
TDRefinement97.68 397.60 497.93 299.02 1295.95 798.61 398.81 897.41 1097.28 5398.46 2794.62 6098.84 14094.64 2099.53 3798.99 56
v124093.29 14793.71 13992.06 22096.01 22077.89 29391.81 22597.37 12485.12 24896.69 7896.40 14886.67 21599.07 10694.51 2198.76 14699.22 34
APDe-MVS96.46 3496.64 2295.93 6797.68 11489.38 10396.90 2198.41 1792.52 8297.43 4697.92 5295.11 4499.50 2194.45 2299.30 6998.92 70
ACMMP_NAP96.21 4796.12 4996.49 5298.90 2091.42 6794.57 12298.03 6890.42 14896.37 8997.35 8595.68 2199.25 8094.44 2399.34 6298.80 85
ZNCC-MVS96.42 3896.20 4397.07 3298.80 3092.79 5096.08 6198.16 4691.74 11495.34 14396.36 15595.68 2199.44 2894.41 2499.28 7798.97 62
v894.65 10895.29 8492.74 19596.65 16679.77 26294.59 11997.17 14591.86 10297.47 4597.93 4988.16 18699.08 10294.32 2599.47 4299.38 23
HPM-MVS_fast97.01 796.89 1597.39 2499.12 893.92 3197.16 1398.17 4393.11 7596.48 8597.36 8296.92 699.34 6694.31 2699.38 5998.92 70
zzz-MVS96.47 3396.14 4797.47 1798.95 1894.05 2593.69 15297.62 10594.46 4796.29 9696.94 11093.56 7599.37 6094.29 2799.42 5198.99 56
MTAPA96.65 2496.38 3597.47 1798.95 1894.05 2595.88 7197.62 10594.46 4796.29 9696.94 11093.56 7599.37 6094.29 2799.42 5198.99 56
Regformer-494.90 9594.67 11095.59 8592.78 31589.02 10792.39 19195.91 21694.50 4596.41 8795.56 19892.10 11699.01 11594.23 2998.14 21098.74 93
WR-MVS_H96.60 2797.05 1495.24 10099.02 1286.44 16696.78 2698.08 5697.42 998.48 1697.86 5691.76 12499.63 694.23 2999.84 399.66 6
v192192093.26 15093.61 14392.19 21396.04 21978.31 28791.88 21897.24 14185.17 24696.19 10796.19 16686.76 21499.05 10794.18 3198.84 13299.22 34
v119293.49 14293.78 13692.62 20196.16 20679.62 26491.83 22497.22 14386.07 23196.10 11196.38 15387.22 20299.02 11394.14 3298.88 12799.22 34
MSC_two_6792asdad95.90 7096.54 17689.57 9696.87 17099.41 4094.06 3399.30 6998.72 96
No_MVS95.90 7096.54 17689.57 9696.87 17099.41 4094.06 3399.30 6998.72 96
abl_697.31 597.12 1397.86 398.54 4795.32 996.61 3198.35 2095.81 3197.55 3897.44 7596.51 999.40 4794.06 3399.23 8498.85 79
HPM-MVScopyleft96.81 1296.62 2397.36 2698.89 2193.53 4197.51 998.44 1392.35 8795.95 11596.41 14796.71 899.42 3393.99 3699.36 6099.13 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++95.93 5596.34 3694.70 12096.54 17686.66 16098.45 498.22 3593.26 7297.54 3997.36 8293.12 9199.38 5893.88 3798.68 15398.04 155
test_0728_THIRD93.26 7297.40 4997.35 8594.69 5799.34 6693.88 3799.42 5198.89 73
nrg03096.32 4396.55 2695.62 8497.83 10188.55 12095.77 7598.29 2992.68 7898.03 2697.91 5395.13 4298.95 12493.85 3999.49 4199.36 25
v14419293.20 15593.54 14792.16 21796.05 21578.26 28891.95 21197.14 14784.98 25295.96 11496.11 17087.08 20699.04 11093.79 4098.84 13299.17 38
HFP-MVS96.39 4196.17 4697.04 3398.51 5193.37 4296.30 5497.98 7592.35 8795.63 13196.47 14295.37 3099.27 7893.78 4199.14 9898.48 121
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31985.87 18192.42 18994.69 25793.67 6896.13 10995.84 18291.20 14198.86 13793.78 4198.23 20199.03 52
ACMMPR96.46 3496.14 4797.41 2398.60 3893.82 3696.30 5497.96 7992.35 8795.57 13496.61 13794.93 5399.41 4093.78 4199.15 9799.00 54
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31885.98 17992.44 18794.69 25793.70 6496.12 11095.81 18391.24 13898.86 13793.76 4498.22 20398.98 61
region2R96.41 3996.09 5097.38 2598.62 3593.81 3896.32 4997.96 7992.26 9095.28 14796.57 13995.02 4999.41 4093.63 4599.11 10198.94 65
DROMVSNet95.44 7395.62 7194.89 11196.93 15387.69 13696.48 3899.14 493.93 5992.77 23494.52 24493.95 7299.49 2493.62 4699.22 8897.51 207
XVS96.49 3196.18 4497.44 1998.56 4193.99 2996.50 3697.95 8194.58 4394.38 18196.49 14194.56 6199.39 5293.57 4799.05 10698.93 66
X-MVStestdata90.70 21588.45 25797.44 1998.56 4193.99 2996.50 3697.95 8194.58 4394.38 18126.89 38294.56 6199.39 5293.57 4799.05 10698.93 66
SMA-MVScopyleft95.77 6195.54 7396.47 5398.27 7191.19 7095.09 10197.79 9786.48 22497.42 4897.51 7294.47 6599.29 7493.55 4999.29 7298.93 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114493.50 14193.81 13492.57 20396.28 19679.61 26591.86 22396.96 16086.95 22295.91 11996.32 15787.65 19598.96 12293.51 5098.88 12799.13 42
SR-MVS-dyc-post96.84 896.60 2597.56 1298.07 8495.27 1096.37 4498.12 4995.66 3397.00 6497.03 10594.85 5499.42 3393.49 5198.84 13298.00 160
RE-MVS-def96.66 2098.07 8495.27 1096.37 4498.12 4995.66 3397.00 6497.03 10595.40 2993.49 5198.84 13298.00 160
Regformer-294.86 9894.55 11495.77 7892.83 31389.98 8791.87 21996.40 19694.38 4996.19 10795.04 22292.47 11199.04 11093.49 5198.31 19198.28 134
SteuartSystems-ACMMP96.40 4096.30 3896.71 4498.63 3491.96 5995.70 7798.01 7293.34 7196.64 8096.57 13994.99 5199.36 6293.48 5499.34 6298.82 81
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS95.77 6195.58 7296.37 5496.84 15891.72 6596.73 2899.06 594.23 5192.48 24294.79 23693.56 7599.49 2493.47 5599.05 10697.89 176
ACMMPcopyleft96.61 2696.34 3697.43 2198.61 3793.88 3296.95 2098.18 3992.26 9096.33 9296.84 12095.10 4599.40 4793.47 5599.33 6499.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2388.69 11496.37 4496.81 17485.23 24494.75 17197.12 10091.85 12299.40 4793.45 5798.33 18898.62 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-394.28 12294.23 12894.46 13792.78 31586.28 17292.39 19194.70 25693.69 6795.97 11395.56 19891.34 13398.48 20193.45 5798.14 21098.62 110
DVP-MVScopyleft95.82 6096.18 4494.72 11998.51 5186.69 15895.20 9797.00 15791.85 10397.40 4997.35 8595.58 2499.34 6693.44 5999.31 6798.13 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 11298.55 4486.72 15795.20 9798.22 3599.38 5893.44 5999.31 6798.53 117
MSP-MVS95.34 7994.63 11297.48 1698.67 3294.05 2596.41 4398.18 3991.26 12695.12 15495.15 21586.60 21799.50 2193.43 6196.81 27098.89 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_part194.39 11694.55 11493.92 15596.14 20882.86 21995.54 8598.09 5595.36 3698.27 2098.36 3175.91 30699.44 2893.41 6299.84 399.47 18
PS-CasMVS96.69 2297.43 594.49 13599.13 684.09 20496.61 3197.97 7897.91 598.64 1398.13 3895.24 3899.65 393.39 6399.84 399.72 2
Vis-MVSNetpermissive95.50 7195.48 7595.56 8898.11 8189.40 10295.35 8998.22 3592.36 8694.11 18498.07 4292.02 11799.44 2893.38 6497.67 24097.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test117296.79 1596.52 2797.60 998.03 9094.87 1296.07 6298.06 6295.76 3296.89 6996.85 11794.85 5499.42 3393.35 6598.81 14098.53 117
APD-MVS_3200maxsize96.82 1096.65 2197.32 2797.95 9793.82 3696.31 5098.25 3095.51 3596.99 6697.05 10495.63 2399.39 5293.31 6698.88 12798.75 90
SED-MVS96.00 5496.41 3494.76 11798.51 5186.97 15195.21 9598.10 5291.95 9797.63 3497.25 9196.48 1199.35 6393.29 6799.29 7297.95 168
test_241102_TWO98.10 5291.95 9797.54 3997.25 9195.37 3099.35 6393.29 6799.25 8198.49 120
DTE-MVSNet96.74 1997.43 594.67 12199.13 684.68 19496.51 3597.94 8498.14 398.67 1298.32 3295.04 4799.69 293.27 6999.82 899.62 10
3Dnovator+92.74 295.86 5995.77 6796.13 5796.81 16290.79 7796.30 5497.82 9296.13 2594.74 17297.23 9391.33 13499.16 8993.25 7098.30 19398.46 123
K. test v393.37 14593.27 15593.66 16398.05 8682.62 22194.35 12986.62 34596.05 2897.51 4298.85 1276.59 30499.65 393.21 7198.20 20698.73 95
Anonymous2023121196.60 2797.13 1295.00 10897.46 12986.35 17097.11 1898.24 3397.58 898.72 898.97 793.15 9099.15 9093.18 7299.74 1399.50 17
GST-MVS96.24 4695.99 5697.00 3698.65 3392.71 5195.69 7998.01 7292.08 9595.74 12696.28 16195.22 3999.42 3393.17 7399.06 10398.88 75
CP-MVS96.44 3796.08 5197.54 1398.29 6994.62 1696.80 2498.08 5692.67 8095.08 15896.39 15294.77 5699.42 3393.17 7399.44 4998.58 115
Regformer-194.55 11194.33 12295.19 10292.83 31388.54 12191.87 21995.84 22093.99 5595.95 11595.04 22292.00 11898.79 15193.14 7598.31 19198.23 138
mPP-MVS96.46 3496.05 5397.69 598.62 3594.65 1596.45 3997.74 9992.59 8195.47 13696.68 13294.50 6399.42 3393.10 7699.26 8098.99 56
ACMM88.83 996.30 4596.07 5296.97 3798.39 6392.95 4894.74 11498.03 6890.82 13797.15 5696.85 11796.25 1599.00 11693.10 7699.33 6498.95 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet96.19 4896.80 1794.38 14198.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 7091.98 12099.63 693.08 7899.81 999.70 3
v2v48293.29 14793.63 14292.29 20996.35 19078.82 28191.77 22796.28 20088.45 19095.70 13096.26 16386.02 22398.90 12893.02 7998.81 14099.14 41
IU-MVS98.51 5186.66 16096.83 17372.74 34395.83 12293.00 8099.29 7298.64 106
SR-MVS96.70 2196.42 3197.54 1398.05 8694.69 1396.13 5998.07 5995.17 3796.82 7396.73 12995.09 4699.43 3292.99 8198.71 14998.50 119
PEN-MVS96.69 2297.39 894.61 12499.16 484.50 19596.54 3498.05 6398.06 498.64 1398.25 3495.01 5099.65 392.95 8299.83 699.68 4
FC-MVSNet-test95.32 8095.88 6093.62 16498.49 5981.77 22895.90 7098.32 2393.93 5997.53 4197.56 6788.48 18199.40 4792.91 8399.83 699.68 4
OPM-MVS95.61 6795.45 7696.08 5898.49 5991.00 7292.65 17997.33 13390.05 15396.77 7696.85 11795.04 4798.56 19192.77 8499.06 10398.70 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS96.32 4395.94 5797.43 2198.59 4093.84 3595.33 9198.30 2691.40 12395.76 12496.87 11695.26 3799.45 2692.77 8499.21 8999.00 54
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10491.81 22596.80 17589.66 16193.90 19695.44 20592.80 10298.72 16592.74 8698.52 16898.32 130
DeepC-MVS91.39 495.43 7495.33 8295.71 8297.67 11590.17 8593.86 14798.02 7087.35 21496.22 10397.99 4794.48 6499.05 10792.73 8799.68 1997.93 170
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS95.19 8795.73 6893.55 16796.62 17088.88 11394.67 11698.05 6391.26 12697.25 5596.40 14895.42 2894.36 35192.72 8899.19 9197.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet87.39 29086.71 29489.44 29493.40 30176.11 31794.93 10990.00 32657.17 37895.71 12997.37 7964.77 34897.68 26992.67 8994.37 32394.52 312
lessismore_v093.87 15998.05 8683.77 20880.32 37697.13 5797.91 5377.49 29299.11 10092.62 9098.08 21798.74 93
Anonymous2024052192.86 16693.57 14590.74 26696.57 17375.50 32494.15 13695.60 22589.38 16795.90 12097.90 5580.39 27297.96 24392.60 9199.68 1998.75 90
MVS_Test92.57 17793.29 15290.40 27593.53 30075.85 32092.52 18296.96 16088.73 18392.35 25096.70 13190.77 14998.37 21092.53 9295.49 29896.99 231
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14896.63 3097.28 13991.82 10994.34 18397.41 7690.60 15698.65 18092.47 9398.11 21497.70 193
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12992.04 20798.42 1687.63 21096.36 9096.68 13294.37 6699.32 7292.41 9499.05 10698.64 106
SF-MVS95.88 5895.88 6095.87 7398.12 8089.65 9595.58 8398.56 1291.84 10696.36 9096.68 13294.37 6699.32 7292.41 9499.05 10698.64 106
V4293.43 14493.58 14492.97 18495.34 25381.22 23792.67 17896.49 19387.25 21696.20 10596.37 15487.32 20198.85 13992.39 9698.21 20498.85 79
iter_conf_final90.23 23289.32 24192.95 18694.65 27781.46 23494.32 13295.40 24085.61 24092.84 23195.37 21154.58 37499.13 9492.16 9798.94 12398.25 137
HPM-MVS++copyleft95.02 9094.39 11996.91 4097.88 9993.58 4094.09 13996.99 15991.05 13292.40 24795.22 21491.03 14799.25 8092.11 9898.69 15297.90 174
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 11092.91 17098.07 5993.46 6996.31 9495.97 17690.14 16399.34 6692.11 9899.64 2599.16 39
XVG-OURS-SEG-HR95.38 7795.00 9696.51 5098.10 8294.07 2292.46 18698.13 4890.69 14093.75 19896.25 16498.03 297.02 29692.08 10095.55 29698.45 124
LPG-MVS_test96.38 4296.23 4196.84 4298.36 6792.13 5695.33 9198.25 3091.78 11097.07 5997.22 9496.38 1399.28 7692.07 10199.59 2999.11 45
LGP-MVS_train96.84 4298.36 6792.13 5698.25 3091.78 11097.07 5997.22 9496.38 1399.28 7692.07 10199.59 2999.11 45
tttt051789.81 24588.90 25192.55 20497.00 14879.73 26395.03 10583.65 36789.88 15795.30 14594.79 23653.64 37799.39 5291.99 10398.79 14398.54 116
#test#95.89 5695.51 7497.04 3398.51 5193.37 4295.14 10097.98 7589.34 16995.63 13196.47 14295.37 3099.27 7891.99 10399.14 9898.48 121
EI-MVSNet92.99 16093.26 15692.19 21392.12 32679.21 27592.32 19694.67 25991.77 11295.24 15195.85 17987.14 20598.49 19791.99 10398.26 19698.86 76
MP-MVScopyleft96.14 4995.68 6997.51 1598.81 2894.06 2396.10 6097.78 9892.73 7793.48 20796.72 13094.23 6899.42 3391.99 10399.29 7299.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IterMVS-LS93.78 13794.28 12492.27 21096.27 19779.21 27591.87 21996.78 17691.77 11296.57 8497.07 10287.15 20498.74 16391.99 10399.03 11398.86 76
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT91.65 19791.55 19491.94 22293.89 29479.22 27487.56 31693.51 27991.53 12195.37 14196.62 13678.65 28298.90 12891.89 10894.95 31097.70 193
EGC-MVSNET80.97 33875.73 34996.67 4698.85 2594.55 1796.83 2296.60 1862.44 3845.32 38598.25 3492.24 11298.02 23791.85 10999.21 8997.45 210
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7896.33 4799.20 293.99 5591.03 27493.73 27293.52 7899.55 1891.81 11099.45 4697.58 201
LS3D96.11 5095.83 6496.95 3994.75 26994.20 2197.34 1297.98 7597.31 1195.32 14496.77 12293.08 9399.20 8691.79 11198.16 20897.44 212
DPE-MVScopyleft95.89 5695.88 6095.92 6997.93 9889.83 9293.46 15898.30 2692.37 8597.75 3196.95 10995.14 4199.51 2091.74 11299.28 7798.41 126
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FIs94.90 9595.35 8093.55 16798.28 7081.76 22995.33 9198.14 4793.05 7697.07 5997.18 9787.65 19599.29 7491.72 11399.69 1599.61 11
Gipumacopyleft95.31 8395.80 6693.81 16197.99 9690.91 7496.42 4297.95 8196.69 1791.78 26398.85 1291.77 12395.49 33491.72 11399.08 10295.02 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
baseline94.26 12594.80 10292.64 19896.08 21380.99 24093.69 15298.04 6790.80 13894.89 16696.32 15793.19 8898.48 20191.68 11598.51 17098.43 125
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13893.45 15995.76 22191.58 11995.25 15092.42 30581.96 25998.72 16591.61 11697.87 23097.33 221
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11892.26 19997.84 9094.91 4096.80 7495.78 18790.42 15899.41 4091.60 11799.58 3399.29 30
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11892.58 18097.81 9393.99 5596.80 7495.90 17790.10 16799.41 4091.60 11799.58 3399.26 31
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16292.00 21096.74 18088.16 19796.93 6897.61 6593.04 9597.90 24591.60 11798.12 21398.03 158
test_040295.73 6396.22 4294.26 14398.19 7785.77 18393.24 16397.24 14196.88 1697.69 3297.77 5994.12 7099.13 9491.54 12099.29 7297.88 177
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 15095.59 8198.24 3391.56 12095.21 15392.04 31194.95 5298.66 17891.45 12197.57 24497.20 225
XVG-OURS94.72 10594.12 13096.50 5198.00 9394.23 2091.48 23198.17 4390.72 13995.30 14596.47 14287.94 19296.98 29791.41 12297.61 24398.30 133
pmmvs696.80 1397.36 995.15 10499.12 887.82 13596.68 2997.86 8696.10 2698.14 2499.28 397.94 398.21 22191.38 12399.69 1599.42 20
XVG-ACMP-BASELINE95.68 6595.34 8196.69 4598.40 6293.04 4594.54 12698.05 6390.45 14796.31 9496.76 12492.91 9898.72 16591.19 12499.42 5198.32 130
RPSCF95.58 6994.89 9997.62 897.58 12196.30 695.97 6797.53 11592.42 8393.41 20897.78 5791.21 14097.77 26291.06 12597.06 25998.80 85
h-mvs3392.89 16391.99 18395.58 8696.97 14990.55 8093.94 14594.01 27389.23 17293.95 19396.19 16676.88 30199.14 9291.02 12695.71 29397.04 229
hse-mvs292.24 18791.20 20595.38 9296.16 20690.65 7992.52 18292.01 31189.23 17293.95 19392.99 28976.88 30198.69 17391.02 12696.03 28596.81 238
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23592.35 19498.05 6391.53 12195.75 12596.80 12193.35 8498.49 19791.01 12898.32 19098.64 106
GeoE94.55 11194.68 10994.15 14597.23 13785.11 19094.14 13797.34 13288.71 18595.26 14895.50 20194.65 5999.12 9890.94 12998.40 17698.23 138
c3_l91.32 20691.42 19991.00 25792.29 32176.79 31187.52 31996.42 19585.76 23794.72 17493.89 26782.73 24998.16 22790.93 13098.55 16398.04 155
iter_conf0588.94 26288.09 27091.50 23892.74 31776.97 30892.80 17395.92 21582.82 27593.65 20295.37 21149.41 38199.13 9490.82 13199.28 7798.40 127
TranMVSNet+NR-MVSNet96.07 5296.26 4095.50 8998.26 7287.69 13693.75 15097.86 8695.96 3097.48 4497.14 9995.33 3499.44 2890.79 13299.76 1199.38 23
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 14097.70 897.54 11398.16 298.94 299.33 297.84 499.08 10290.73 13399.73 1499.59 13
9.1494.81 10197.49 12694.11 13898.37 1887.56 21395.38 14096.03 17394.66 5899.08 10290.70 13498.97 119
diffmvs91.74 19591.93 18591.15 25293.06 30878.17 28988.77 30297.51 11886.28 22792.42 24693.96 26488.04 18997.46 27890.69 13596.67 27597.82 184
dcpmvs_293.96 13495.01 9590.82 26497.60 11974.04 33693.68 15498.85 789.80 15997.82 2997.01 10891.14 14599.21 8490.56 13698.59 16099.19 37
MVSTER89.32 25188.75 25391.03 25490.10 35476.62 31290.85 24494.67 25982.27 28195.24 15195.79 18461.09 36398.49 19790.49 13798.26 19697.97 167
DP-MVS95.62 6695.84 6394.97 10997.16 14288.62 11794.54 12697.64 10496.94 1596.58 8397.32 8893.07 9498.72 16590.45 13898.84 13297.57 202
ACMP88.15 1395.71 6495.43 7896.54 4998.17 7891.73 6494.24 13398.08 5689.46 16596.61 8296.47 14295.85 1999.12 9890.45 13899.56 3598.77 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7390.21 26395.43 23687.91 20093.74 20094.40 24792.88 10096.38 31690.39 14098.28 19497.07 226
ANet_high94.83 10196.28 3990.47 27296.65 16673.16 34194.33 13098.74 1096.39 2398.09 2598.93 893.37 8398.70 17190.38 14199.68 1999.53 15
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4789.48 28497.46 11985.14 24796.23 10295.42 20693.19 8898.08 23190.37 14298.76 14697.38 219
MSLP-MVS++93.25 15293.88 13391.37 24196.34 19182.81 22093.11 16497.74 9989.37 16894.08 18695.29 21390.40 16196.35 31890.35 14398.25 19894.96 301
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2392.26 19992.18 30485.92 23496.22 10396.61 13785.64 22895.99 32790.35 14398.23 20195.93 272
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9394.05 14098.37 1888.09 19895.06 15995.85 17992.58 10699.10 10190.33 14598.99 11498.62 110
ACMH+88.43 1196.48 3296.82 1695.47 9098.54 4789.06 10695.65 8098.61 1196.10 2698.16 2397.52 7096.90 798.62 18290.30 14699.60 2798.72 96
DIV-MVS_self_test90.65 21790.56 22190.91 26191.85 33076.99 30686.75 33395.36 24185.52 24394.06 18894.89 22977.37 29597.99 24190.28 14798.97 11997.76 189
cl____90.65 21790.56 22190.91 26191.85 33076.98 30786.75 33395.36 24185.53 24194.06 18894.89 22977.36 29697.98 24290.27 14898.98 11597.76 189
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6694.82 11197.86 8687.86 20393.04 22594.16 25691.58 12898.78 15590.27 14898.96 12197.41 213
patch_mono-292.46 17992.72 16891.71 23096.65 16678.91 27988.85 29997.17 14583.89 26392.45 24496.76 12489.86 17197.09 29390.24 15098.59 16099.12 44
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15389.30 29096.23 20488.36 19493.57 20594.60 24193.45 7997.77 26290.23 15198.38 18198.03 158
NCCC94.08 13193.54 14795.70 8396.49 18189.90 9092.39 19196.91 16690.64 14292.33 25394.60 24190.58 15798.96 12290.21 15297.70 23898.23 138
pm-mvs195.43 7495.94 5793.93 15498.38 6485.08 19195.46 8897.12 15091.84 10697.28 5398.46 2795.30 3697.71 26790.17 15399.42 5198.99 56
RPMNet90.31 23090.14 23190.81 26591.01 34278.93 27792.52 18298.12 4991.91 10089.10 30696.89 11568.84 32799.41 4090.17 15392.70 34694.08 319
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14595.08 10297.37 12493.92 6197.65 3395.90 17790.10 16799.33 7190.11 15599.66 2299.26 31
COLMAP_ROBcopyleft91.06 596.75 1896.62 2397.13 3098.38 6494.31 1996.79 2598.32 2396.69 1796.86 7197.56 6795.48 2798.77 15990.11 15599.44 4998.31 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24392.08 20596.68 18293.82 6296.29 9698.56 2190.10 16797.75 26590.10 15799.66 2299.24 33
v14892.87 16593.29 15291.62 23496.25 20077.72 29691.28 23695.05 24489.69 16095.93 11896.04 17287.34 20098.38 20790.05 15897.99 22498.78 87
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18491.36 23597.13 14980.33 29292.91 23094.24 25291.23 13998.72 16589.99 15997.93 22797.86 179
miper_lstm_enhance89.90 24389.80 23590.19 28391.37 33877.50 29883.82 36095.00 24584.84 25593.05 22494.96 22676.53 30595.20 34389.96 16098.67 15597.86 179
ambc92.98 18396.88 15583.01 21895.92 6996.38 19896.41 8797.48 7388.26 18497.80 25889.96 16098.93 12498.12 150
CPTT-MVS94.74 10494.12 13096.60 4798.15 7993.01 4695.84 7297.66 10389.21 17593.28 21495.46 20388.89 17898.98 11789.80 16298.82 13897.80 186
miper_ehance_all_eth90.48 22090.42 22490.69 26791.62 33576.57 31386.83 33196.18 20883.38 26594.06 18892.66 29982.20 25598.04 23389.79 16397.02 26197.45 210
eth_miper_zixun_eth90.72 21490.61 21991.05 25392.04 32876.84 31086.91 32896.67 18385.21 24594.41 17993.92 26579.53 27698.26 21889.76 16497.02 26198.06 152
VPA-MVSNet95.14 8895.67 7093.58 16697.76 10583.15 21594.58 12197.58 11093.39 7097.05 6298.04 4493.25 8698.51 19689.75 16599.59 2999.08 49
DELS-MVS92.05 19092.16 17891.72 22994.44 28180.13 24987.62 31397.25 14087.34 21592.22 25593.18 28689.54 17498.73 16489.67 16698.20 20696.30 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest053088.69 26887.52 27892.20 21296.33 19279.36 27092.81 17284.01 36686.44 22593.67 20192.68 29853.62 37899.25 8089.65 16798.45 17498.00 160
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13293.36 16197.14 14785.53 24193.90 19695.45 20491.30 13698.59 18789.51 16898.62 15797.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet92.38 18291.99 18393.52 17193.82 29783.46 21091.14 23897.00 15789.81 15886.47 33894.04 25987.90 19399.21 8489.50 16998.27 19597.90 174
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7690.97 24292.61 29888.04 19994.61 17593.79 27088.08 18797.81 25789.41 17098.39 17996.50 250
FMVS196.77 1696.49 2897.60 999.01 1496.70 396.31 5098.33 2194.96 3897.30 5197.93 4996.05 1797.90 24589.32 17199.23 8498.19 143
APD_test96.77 1696.49 2897.60 999.01 1496.70 396.31 5098.33 2194.96 3897.30 5197.93 4996.05 1797.90 24589.32 17199.23 8498.19 143
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7594.59 11997.81 9389.22 17495.46 13896.17 16993.42 8299.34 6689.30 17398.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xiu_mvs_v1_base_debu91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
xiu_mvs_v1_base91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
xiu_mvs_v1_base_debi91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12794.56 12397.81 9391.74 11493.31 21195.59 19386.93 20998.95 12489.26 17798.51 17098.60 113
plane_prior597.81 9398.95 12489.26 17798.51 17098.60 113
Patchmatch-RL test88.81 26588.52 25589.69 29295.33 25479.94 25686.22 34292.71 29478.46 31295.80 12394.18 25566.25 34095.33 34089.22 17998.53 16793.78 329
PatchT87.51 28788.17 26885.55 33790.64 34566.91 36792.02 20986.09 34992.20 9289.05 30897.16 9864.15 35096.37 31789.21 18092.98 34493.37 338
FMVS86.65 30387.13 28685.19 34190.28 35286.11 17786.52 34191.66 31469.76 35795.73 12897.21 9669.51 32681.28 38089.15 18194.40 32188.17 368
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13395.01 10697.57 11192.68 7896.20 10593.44 27991.92 12198.78 15589.11 18299.24 8396.92 233
KD-MVS_self_test94.10 13094.73 10692.19 21397.66 11679.49 26894.86 11097.12 15089.59 16496.87 7097.65 6390.40 16198.34 21189.08 18399.35 6198.75 90
cl2289.02 25788.50 25690.59 27089.76 35676.45 31486.62 33894.03 27082.98 27392.65 23792.49 30072.05 31897.53 27388.93 18497.02 26197.78 187
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17893.97 14493.28 28394.49 4696.24 10197.78 5787.99 19198.79 15188.92 18599.14 9898.34 129
AUN-MVS90.05 24088.30 26095.32 9896.09 21290.52 8192.42 18992.05 31082.08 28388.45 32092.86 29165.76 34298.69 17388.91 18696.07 28496.75 242
TransMVSNet (Re)95.27 8696.04 5492.97 18498.37 6681.92 22795.07 10396.76 17993.97 5897.77 3098.57 2095.72 2097.90 24588.89 18799.23 8499.08 49
CR-MVSNet87.89 27787.12 28790.22 28091.01 34278.93 27792.52 18292.81 29073.08 34189.10 30696.93 11267.11 33297.64 27088.80 18892.70 34694.08 319
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8892.72 17598.02 7084.73 25793.65 20295.54 20091.68 12699.22 8388.78 18998.49 17398.26 136
CVMVSNet85.16 31184.72 30986.48 33092.12 32670.19 35792.32 19688.17 33656.15 37990.64 28195.85 17967.97 33096.69 30788.78 18990.52 36192.56 348
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19795.99 6496.56 18892.38 8497.03 6398.53 2390.12 16498.98 11788.78 18999.16 9698.65 102
ZD-MVS97.23 13790.32 8397.54 11384.40 25994.78 17095.79 18492.76 10399.39 5288.72 19298.40 176
train_agg92.71 17191.83 18895.35 9396.45 18389.46 9890.60 25196.92 16479.37 30190.49 28294.39 24891.20 14198.88 13188.66 19398.43 17597.72 192
Anonymous2024052995.50 7195.83 6494.50 13397.33 13585.93 18095.19 9996.77 17896.64 1997.61 3798.05 4393.23 8798.79 15188.60 19499.04 11298.78 87
test111190.39 22490.61 21989.74 29098.04 8971.50 35295.59 8179.72 37889.41 16695.94 11798.14 3670.79 32298.81 14788.52 19599.32 6698.90 72
agg_prior192.60 17491.76 19195.10 10696.20 20288.89 11190.37 25896.88 16879.67 29890.21 28794.41 24691.30 13698.78 15588.46 19698.37 18697.64 198
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14390.21 26397.36 12989.33 17090.77 27794.81 23290.41 15998.68 17588.21 19798.55 16397.93 170
test_prior290.21 26389.33 17090.77 27794.81 23290.41 15988.21 19798.55 163
D2MVS89.93 24289.60 24090.92 25994.03 29178.40 28688.69 30494.85 24978.96 30893.08 22295.09 21974.57 30996.94 29888.19 19998.96 12197.41 213
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16597.13 1794.31 26596.24 2496.28 9996.36 15582.88 24599.35 6388.19 19999.52 4098.96 63
test9_res88.16 20198.40 17697.83 182
UGNet93.08 15692.50 17394.79 11693.87 29587.99 13195.07 10394.26 26790.64 14287.33 33497.67 6286.89 21298.49 19788.10 20298.71 14997.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250685.42 30984.57 31187.96 31897.81 10266.53 37096.14 5856.35 38789.04 17693.55 20698.10 3942.88 38998.68 17588.09 20399.18 9398.67 100
testtj94.81 10294.42 11896.01 6097.23 13790.51 8294.77 11397.85 8991.29 12594.92 16595.66 19191.71 12599.40 4788.07 20498.25 19898.11 151
FA-MVS(test-final)91.81 19491.85 18791.68 23294.95 26079.99 25596.00 6393.44 28187.80 20494.02 19197.29 8977.60 29198.45 20488.04 20597.49 24696.61 244
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 17192.33 19597.84 9091.70 11792.81 23286.17 36792.22 11399.19 8788.03 20697.73 23495.66 286
EIA-MVS92.35 18392.03 18193.30 17795.81 23183.97 20592.80 17398.17 4387.71 20789.79 29987.56 35791.17 14499.18 8887.97 20797.27 25396.77 240
mvs_anonymous90.37 22691.30 20387.58 32392.17 32568.00 36589.84 27794.73 25583.82 26493.22 21997.40 7787.54 19797.40 28387.94 20895.05 30997.34 220
IterMVS90.18 23390.16 22790.21 28193.15 30675.98 31987.56 31692.97 28886.43 22694.09 18596.40 14878.32 28697.43 28087.87 20994.69 31797.23 224
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_enhance_ethall88.42 27187.87 27390.07 28488.67 36875.52 32385.10 34795.59 22975.68 32692.49 24189.45 34678.96 27897.88 24987.86 21097.02 26196.81 238
ET-MVSNet_ETH3D86.15 30584.27 31491.79 22693.04 30981.28 23687.17 32486.14 34879.57 29983.65 35488.66 35157.10 36998.18 22587.74 21195.40 30195.90 275
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 27096.67 594.00 14295.41 23789.94 15491.93 26192.13 30990.12 16498.97 12187.68 21297.48 24797.67 196
mvs-test193.07 15891.80 19096.89 4194.74 27095.83 892.17 20295.41 23789.94 15489.85 29690.59 33490.12 16498.88 13187.68 21295.66 29495.97 270
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25390.14 26795.68 22393.70 6496.62 8195.39 20987.21 20399.04 11087.50 21499.64 2599.33 27
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 24294.55 12595.41 23793.70 6496.67 7997.72 6091.40 13298.18 22587.45 21599.18 9398.36 128
jason89.17 25388.32 25991.70 23195.73 23580.07 25088.10 30993.22 28471.98 34690.09 28992.79 29478.53 28598.56 19187.43 21697.06 25996.46 252
jason: jason.
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 21294.00 14297.53 11591.36 12489.35 30590.65 33394.01 7198.66 17887.40 21795.30 30496.88 236
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22694.18 13595.53 23488.63 18696.05 11297.37 7981.31 26498.81 14787.38 21898.67 15598.06 152
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18697.44 1194.03 27094.22 5294.94 16396.19 16682.07 25799.57 1487.28 21998.89 12598.65 102
PC_three_145275.31 33195.87 12195.75 18892.93 9796.34 32087.18 22098.68 15398.04 155
ECVR-MVScopyleft90.12 23590.16 22790.00 28797.81 10272.68 34695.76 7678.54 38089.04 17695.36 14298.10 3970.51 32398.64 18187.10 22199.18 9398.67 100
VDDNet94.03 13294.27 12693.31 17698.87 2282.36 22395.51 8791.78 31397.19 1296.32 9398.60 1984.24 23498.75 16087.09 22298.83 13798.81 83
agg_prior287.06 22398.36 18797.98 164
LF4IMVS92.72 17092.02 18294.84 11495.65 24091.99 5892.92 16996.60 18685.08 25092.44 24593.62 27486.80 21396.35 31886.81 22498.25 19896.18 263
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19795.99 6496.56 18888.63 18695.10 15598.53 2381.31 26498.98 11786.74 22598.38 18198.65 102
test193.21 15392.96 15893.97 15195.40 24984.29 19795.99 6496.56 18888.63 18695.10 15598.53 2381.31 26498.98 11786.74 22598.38 18198.65 102
FMVSNet390.78 21390.32 22692.16 21793.03 31079.92 25792.54 18194.95 24786.17 23095.10 15596.01 17469.97 32598.75 16086.74 22598.38 18197.82 184
lupinMVS88.34 27387.31 28091.45 23994.74 27080.06 25187.23 32192.27 30371.10 35088.83 30991.15 32277.02 29898.53 19486.67 22896.75 27395.76 280
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6892.27 19897.40 12387.10 22094.56 17695.42 20693.74 7398.11 23086.62 22998.85 13198.06 152
mvsany_test89.11 25588.21 26791.83 22491.30 33990.25 8488.09 31078.76 37976.37 32596.43 8698.39 3083.79 23790.43 37286.57 23094.20 32794.80 304
pmmvs-eth3d91.54 20090.73 21793.99 14995.76 23487.86 13490.83 24593.98 27478.23 31494.02 19196.22 16582.62 25296.83 30386.57 23098.33 18897.29 223
BP-MVS86.55 232
HQP-MVS92.09 18991.49 19893.88 15896.36 18784.89 19291.37 23297.31 13487.16 21788.81 31193.40 28084.76 23198.60 18586.55 23297.73 23498.14 147
ppachtmachnet_test88.61 26988.64 25488.50 31191.76 33270.99 35584.59 35392.98 28779.30 30592.38 24893.53 27879.57 27597.45 27986.50 23497.17 25697.07 226
MIMVSNet195.52 7095.45 7695.72 8199.14 589.02 10796.23 5796.87 17093.73 6397.87 2898.49 2690.73 15399.05 10786.43 23599.60 2799.10 48
PVSNet_Blended_VisFu91.63 19891.20 20592.94 18897.73 10983.95 20692.14 20397.46 11978.85 31092.35 25094.98 22584.16 23599.08 10286.36 23696.77 27295.79 279
Fast-Effi-MVS+-dtu92.77 16992.16 17894.58 13194.66 27688.25 12592.05 20696.65 18489.62 16290.08 29091.23 32192.56 10798.60 18586.30 23796.27 28296.90 234
OPU-MVS95.15 10496.84 15889.43 10095.21 9595.66 19193.12 9198.06 23286.28 23898.61 15897.95 168
PMVScopyleft87.21 1494.97 9295.33 8293.91 15698.97 1797.16 295.54 8595.85 21996.47 2193.40 21097.46 7495.31 3595.47 33586.18 23998.78 14489.11 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft89.45 892.27 18692.13 18092.68 19794.53 28084.10 20395.70 7797.03 15582.44 28091.14 27396.42 14688.47 18298.38 20785.95 24097.47 24895.55 290
CDPH-MVS92.67 17291.83 18895.18 10396.94 15188.46 12390.70 24997.07 15377.38 31792.34 25295.08 22092.67 10598.88 13185.74 24198.57 16298.20 142
CANet_DTU89.85 24489.17 24491.87 22392.20 32480.02 25490.79 24695.87 21886.02 23282.53 36291.77 31480.01 27398.57 19085.66 24297.70 23897.01 230
ITE_SJBPF95.95 6497.34 13493.36 4496.55 19191.93 9994.82 16895.39 20991.99 11997.08 29485.53 24397.96 22597.41 213
new-patchmatchnet88.97 26090.79 21583.50 35194.28 28555.83 38585.34 34693.56 27886.18 22995.47 13695.73 18983.10 24396.51 31185.40 24498.06 21898.16 145
EPNet89.80 24688.25 26394.45 13883.91 38386.18 17593.87 14687.07 34391.16 13180.64 37194.72 23878.83 27998.89 13085.17 24598.89 12598.28 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry90.11 23689.92 23390.66 26890.35 35177.00 30592.96 16892.81 29090.25 15194.74 17296.93 11267.11 33297.52 27485.17 24598.98 11597.46 209
旧先验290.00 27268.65 36192.71 23696.52 31085.15 247
MDA-MVSNet-bldmvs91.04 20890.88 21191.55 23694.68 27580.16 24685.49 34592.14 30790.41 14994.93 16495.79 18485.10 22996.93 30085.15 24794.19 32997.57 202
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21392.43 18891.64 31594.10 5495.59 13396.64 13581.88 26197.50 27585.12 24998.52 16897.77 188
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5495.26 9498.43 1490.48 14595.04 16096.74 12792.54 10897.86 25385.11 25098.98 11597.98 164
TestCases96.00 6198.02 9192.17 5498.43 1490.48 14595.04 16096.74 12792.54 10897.86 25385.11 25098.98 11597.98 164
VPNet93.08 15693.76 13791.03 25498.60 3875.83 32291.51 23095.62 22491.84 10695.74 12697.10 10189.31 17598.32 21285.07 25299.06 10398.93 66
LFMVS91.33 20591.16 20891.82 22596.27 19779.36 27095.01 10685.61 35596.04 2994.82 16897.06 10372.03 31998.46 20384.96 25398.70 15197.65 197
VNet92.67 17292.96 15891.79 22696.27 19780.15 24791.95 21194.98 24692.19 9394.52 17896.07 17187.43 19997.39 28484.83 25498.38 18197.83 182
our_test_387.55 28687.59 27787.44 32591.76 33270.48 35683.83 35990.55 32479.79 29592.06 25992.17 30878.63 28495.63 33084.77 25594.73 31596.22 261
TAPA-MVS88.58 1092.49 17891.75 19294.73 11896.50 18089.69 9492.91 17097.68 10278.02 31592.79 23394.10 25790.85 14897.96 24384.76 25698.16 20896.54 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+91.28 20790.86 21292.53 20595.45 24882.53 22289.25 29396.52 19285.00 25189.91 29488.55 35392.94 9698.84 14084.72 25795.44 30096.22 261
GA-MVS87.70 28186.82 29190.31 27693.27 30377.22 30384.72 35292.79 29285.11 24989.82 29790.07 33566.80 33597.76 26484.56 25894.27 32695.96 271
QAPM92.88 16492.77 16393.22 17995.82 22983.31 21196.45 3997.35 13183.91 26293.75 19896.77 12289.25 17698.88 13184.56 25897.02 26197.49 208
MVS_030490.96 21090.15 23093.37 17393.17 30587.06 14893.62 15592.43 30289.60 16382.25 36395.50 20182.56 25397.83 25684.41 26097.83 23295.22 294
UnsupCasMVSNet_eth90.33 22890.34 22590.28 27794.64 27880.24 24589.69 28095.88 21785.77 23693.94 19595.69 19081.99 25892.98 36284.21 26191.30 35797.62 199
CLD-MVS91.82 19391.41 20093.04 18196.37 18583.65 20986.82 33297.29 13784.65 25892.27 25489.67 34392.20 11497.85 25583.95 26299.47 4297.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t90.51 21989.80 23592.63 20098.00 9382.24 22493.40 16097.29 13765.84 36989.40 30494.80 23586.99 20798.75 16083.88 26398.61 15896.89 235
ETH3 D test640091.91 19291.25 20493.89 15796.59 17184.41 19692.10 20497.72 10178.52 31191.82 26293.78 27188.70 17999.13 9483.61 26498.39 17998.14 147
DP-MVS Recon92.31 18491.88 18693.60 16597.18 14186.87 15491.10 24097.37 12484.92 25392.08 25894.08 25888.59 18098.20 22283.50 26598.14 21095.73 281
YYNet188.17 27488.24 26487.93 31992.21 32373.62 33880.75 36888.77 32982.51 27994.99 16295.11 21882.70 25093.70 35683.33 26693.83 33196.48 251
MDA-MVSNet_test_wron88.16 27588.23 26587.93 31992.22 32273.71 33780.71 36988.84 32882.52 27894.88 16795.14 21682.70 25093.61 35783.28 26793.80 33296.46 252
XXY-MVS92.58 17593.16 15790.84 26397.75 10679.84 25891.87 21996.22 20685.94 23395.53 13597.68 6192.69 10494.48 34783.21 26897.51 24598.21 141
cascas87.02 30086.28 30289.25 30091.56 33676.45 31484.33 35696.78 17671.01 35186.89 33785.91 36881.35 26396.94 29883.09 26995.60 29594.35 316
test-LLR83.58 31983.17 32084.79 34489.68 35866.86 36883.08 36184.52 36383.07 27182.85 36084.78 37162.86 35793.49 35882.85 27094.86 31194.03 322
test-mter81.21 33680.01 34384.79 34489.68 35866.86 36883.08 36184.52 36373.85 33782.85 36084.78 37143.66 38693.49 35882.85 27094.86 31194.03 322
pmmvs488.95 26187.70 27692.70 19694.30 28485.60 18587.22 32292.16 30674.62 33389.75 30194.19 25477.97 28996.41 31482.71 27296.36 28196.09 265
testdata91.03 25496.87 15682.01 22594.28 26671.55 34792.46 24395.42 20685.65 22797.38 28682.64 27397.27 25393.70 332
thisisatest051584.72 31482.99 32289.90 28892.96 31175.33 32584.36 35583.42 36877.37 31888.27 32386.65 36253.94 37698.72 16582.56 27497.40 25095.67 285
PS-MVSNAJ88.86 26488.99 24888.48 31294.88 26174.71 32686.69 33595.60 22580.88 28887.83 32887.37 36090.77 14998.82 14282.52 27594.37 32391.93 353
xiu_mvs_v2_base89.00 25989.19 24388.46 31394.86 26374.63 32886.97 32695.60 22580.88 28887.83 32888.62 35291.04 14698.81 14782.51 27694.38 32291.93 353
PAPM_NR91.03 20990.81 21491.68 23296.73 16481.10 23993.72 15196.35 19988.19 19688.77 31592.12 31085.09 23097.25 28882.40 27793.90 33096.68 243
test_yl90.11 23689.73 23891.26 24694.09 28979.82 25990.44 25592.65 29590.90 13393.19 22093.30 28273.90 31198.03 23482.23 27896.87 26795.93 272
DCV-MVSNet90.11 23689.73 23891.26 24694.09 28979.82 25990.44 25592.65 29590.90 13393.19 22093.30 28273.90 31198.03 23482.23 27896.87 26795.93 272
DPM-MVS89.35 25088.40 25892.18 21696.13 21184.20 20186.96 32796.15 21075.40 33087.36 33391.55 31983.30 24198.01 23882.17 28096.62 27694.32 317
MG-MVS89.54 24889.80 23588.76 30694.88 26172.47 34889.60 28192.44 30185.82 23589.48 30395.98 17582.85 24797.74 26681.87 28195.27 30596.08 266
PatchmatchNetpermissive85.22 31084.64 31086.98 32889.51 36169.83 36290.52 25387.34 34178.87 30987.22 33592.74 29666.91 33496.53 30981.77 28286.88 36994.58 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap92.00 19192.76 16489.71 29195.62 24377.02 30490.72 24896.17 20987.70 20895.26 14896.29 15992.54 10896.45 31381.77 28298.77 14595.66 286
原ACMM192.87 19196.91 15484.22 20097.01 15676.84 32389.64 30294.46 24588.00 19098.70 17181.53 28498.01 22395.70 284
1112_ss88.42 27187.41 27991.45 23996.69 16580.99 24089.72 27996.72 18173.37 33987.00 33690.69 33177.38 29498.20 22281.38 28593.72 33395.15 296
MS-PatchMatch88.05 27687.75 27488.95 30293.28 30277.93 29187.88 31292.49 30075.42 32992.57 24093.59 27680.44 27194.24 35481.28 28692.75 34594.69 310
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21693.79 14999.19 392.00 9698.84 598.04 4493.64 7499.02 11381.28 28698.54 16696.96 232
tpmrst82.85 32582.93 32382.64 35387.65 36958.99 38390.14 26787.90 33875.54 32883.93 35391.63 31766.79 33795.36 33881.21 28881.54 37793.57 337
无先验89.94 27395.75 22270.81 35398.59 18781.17 28994.81 303
112190.26 23189.23 24293.34 17497.15 14487.40 13991.94 21394.39 26367.88 36491.02 27594.91 22886.91 21198.59 18781.17 28997.71 23794.02 324
新几何193.17 18097.16 14287.29 14194.43 26267.95 36391.29 26894.94 22786.97 20898.23 22081.06 29197.75 23393.98 325
MSDG90.82 21190.67 21891.26 24694.16 28683.08 21786.63 33796.19 20790.60 14491.94 26091.89 31289.16 17795.75 32980.96 29294.51 32094.95 302
pmmvs587.87 27887.14 28590.07 28493.26 30476.97 30888.89 29892.18 30473.71 33888.36 32193.89 26776.86 30396.73 30680.32 29396.81 27096.51 247
PVSNet_BlendedMVS90.35 22789.96 23291.54 23794.81 26578.80 28390.14 26796.93 16279.43 30088.68 31895.06 22186.27 22098.15 22880.27 29498.04 22097.68 195
PVSNet_Blended88.74 26788.16 26990.46 27494.81 26578.80 28386.64 33696.93 16274.67 33288.68 31889.18 34986.27 22098.15 22880.27 29496.00 28694.44 314
testdata298.03 23480.24 296
FE-MVS89.06 25688.29 26191.36 24294.78 26779.57 26696.77 2790.99 31984.87 25492.96 22896.29 15960.69 36598.80 15080.18 29797.11 25895.71 282
F-COLMAP92.28 18591.06 20995.95 6497.52 12491.90 6093.53 15697.18 14483.98 26188.70 31794.04 25988.41 18398.55 19380.17 29895.99 28797.39 217
EPMVS81.17 33780.37 33983.58 35085.58 37965.08 37590.31 26171.34 38377.31 31985.80 34291.30 32059.38 36692.70 36379.99 29982.34 37692.96 344
TESTMET0.1,179.09 34578.04 34782.25 35487.52 37164.03 37983.08 36180.62 37570.28 35580.16 37283.22 37444.13 38590.56 37079.95 30093.36 33592.15 351
Test_1112_low_res87.50 28886.58 29590.25 27996.80 16377.75 29587.53 31896.25 20269.73 35886.47 33893.61 27575.67 30797.88 24979.95 30093.20 33895.11 298
CL-MVSNet_self_test90.04 24189.90 23490.47 27295.24 25577.81 29486.60 33992.62 29785.64 23993.25 21893.92 26583.84 23696.06 32579.93 30298.03 22197.53 206
OpenMVS_ROBcopyleft85.12 1689.52 24989.05 24690.92 25994.58 27981.21 23891.10 24093.41 28277.03 32193.41 20893.99 26383.23 24297.80 25879.93 30294.80 31493.74 331
CNLPA91.72 19691.20 20593.26 17896.17 20591.02 7191.14 23895.55 23290.16 15290.87 27693.56 27786.31 21994.40 35079.92 30497.12 25794.37 315
ab-mvs92.40 18192.62 17091.74 22897.02 14781.65 23095.84 7295.50 23586.95 22292.95 22997.56 6790.70 15497.50 27579.63 30597.43 24996.06 267
test_post190.21 2635.85 38665.36 34496.00 32679.61 306
SCA87.43 28987.21 28388.10 31792.01 32971.98 35089.43 28588.11 33782.26 28288.71 31692.83 29278.65 28297.59 27179.61 30693.30 33794.75 307
tpmvs84.22 31783.97 31684.94 34287.09 37465.18 37391.21 23788.35 33282.87 27485.21 34390.96 32665.24 34696.75 30579.60 30885.25 37192.90 345
baseline187.62 28587.31 28088.54 31094.71 27474.27 33493.10 16588.20 33586.20 22892.18 25693.04 28773.21 31495.52 33279.32 30985.82 37095.83 277
tpm84.38 31684.08 31585.30 34090.47 34963.43 38089.34 28885.63 35477.24 32087.62 33095.03 22461.00 36497.30 28779.26 31091.09 36095.16 295
BH-untuned90.68 21690.90 21090.05 28695.98 22179.57 26690.04 27094.94 24887.91 20094.07 18793.00 28887.76 19497.78 26179.19 31195.17 30792.80 346
API-MVS91.52 20191.61 19391.26 24694.16 28686.26 17494.66 11794.82 25191.17 13092.13 25791.08 32490.03 17097.06 29579.09 31297.35 25290.45 362
131486.46 30486.33 30186.87 32991.65 33474.54 32991.94 21394.10 26974.28 33484.78 34887.33 36183.03 24495.00 34478.72 31391.16 35991.06 359
BH-RMVSNet90.47 22190.44 22390.56 27195.21 25678.65 28589.15 29493.94 27588.21 19592.74 23594.22 25386.38 21897.88 24978.67 31495.39 30295.14 297
MVP-Stereo90.07 23988.92 24993.54 16996.31 19486.49 16390.93 24395.59 22979.80 29491.48 26595.59 19380.79 26997.39 28478.57 31591.19 35896.76 241
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDTV_nov1_ep1383.88 31789.42 36261.52 38188.74 30387.41 34073.99 33684.96 34794.01 26265.25 34595.53 33178.02 31693.16 339
Vis-MVSNet (Re-imp)90.42 22290.16 22791.20 25097.66 11677.32 30194.33 13087.66 33991.20 12992.99 22695.13 21775.40 30898.28 21477.86 31799.19 9197.99 163
sss87.23 29386.82 29188.46 31393.96 29277.94 29086.84 33092.78 29377.59 31687.61 33191.83 31378.75 28091.92 36577.84 31894.20 32795.52 291
IB-MVS77.21 1983.11 32181.05 33289.29 29891.15 34075.85 32085.66 34486.00 35079.70 29782.02 36786.61 36348.26 38298.39 20577.84 31892.22 35193.63 333
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-test86.10 30686.01 30386.38 33490.63 34674.22 33589.57 28286.69 34485.73 23889.81 29892.83 29265.24 34691.04 36977.82 32095.78 29293.88 328
USDC89.02 25789.08 24588.84 30595.07 25874.50 33188.97 29696.39 19773.21 34093.27 21596.28 16182.16 25696.39 31577.55 32198.80 14295.62 289
CDS-MVSNet89.55 24788.22 26693.53 17095.37 25286.49 16389.26 29193.59 27779.76 29691.15 27292.31 30677.12 29798.38 20777.51 32297.92 22895.71 282
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
N_pmnet88.90 26387.25 28293.83 16094.40 28393.81 3884.73 35087.09 34279.36 30393.26 21692.43 30479.29 27791.68 36677.50 32397.22 25596.00 269
AdaColmapbinary91.63 19891.36 20192.47 20795.56 24586.36 16992.24 20196.27 20188.88 18289.90 29592.69 29791.65 12798.32 21277.38 32497.64 24192.72 347
CostFormer83.09 32282.21 32585.73 33689.27 36367.01 36690.35 25986.47 34670.42 35483.52 35793.23 28561.18 36296.85 30277.21 32588.26 36793.34 339
E-PMN80.72 34080.86 33580.29 35885.11 38068.77 36472.96 37381.97 37187.76 20683.25 35983.01 37562.22 36089.17 37577.15 32694.31 32582.93 374
PLCcopyleft85.34 1590.40 22388.92 24994.85 11396.53 17990.02 8691.58 22996.48 19480.16 29386.14 34092.18 30785.73 22598.25 21976.87 32794.61 31996.30 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS90.32 22988.87 25294.66 12294.82 26491.85 6194.22 13494.75 25480.91 28787.52 33288.07 35686.63 21697.87 25276.67 32896.21 28394.25 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet_dtu85.63 30884.37 31289.40 29686.30 37774.33 33391.64 22888.26 33384.84 25572.96 38089.85 33671.27 32197.69 26876.60 32997.62 24296.18 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 31283.04 32191.19 25187.56 37086.14 17689.40 28784.44 36588.98 17882.20 36497.95 4856.82 37196.15 32176.55 33083.45 37491.30 357
PatchMatch-RL89.18 25288.02 27292.64 19895.90 22792.87 4988.67 30691.06 31880.34 29190.03 29291.67 31683.34 24094.42 34976.35 33194.84 31390.64 361
FMVSNet587.82 28086.56 29691.62 23492.31 32079.81 26193.49 15794.81 25383.26 26691.36 26796.93 11252.77 37997.49 27776.07 33298.03 22197.55 205
PMMVS83.00 32381.11 33188.66 30983.81 38486.44 16682.24 36585.65 35361.75 37682.07 36585.64 36979.75 27491.59 36775.99 33393.09 34187.94 369
CMPMVSbinary68.83 2287.28 29285.67 30692.09 21988.77 36785.42 18790.31 26194.38 26470.02 35688.00 32693.30 28273.78 31394.03 35575.96 33496.54 27796.83 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EMVS80.35 34280.28 34180.54 35784.73 38269.07 36372.54 37580.73 37487.80 20481.66 36981.73 37662.89 35689.84 37375.79 33594.65 31882.71 375
HyFIR lowres test87.19 29685.51 30792.24 21197.12 14680.51 24485.03 34896.06 21166.11 36891.66 26492.98 29070.12 32499.14 9275.29 33695.23 30697.07 226
UnsupCasMVSNet_bld88.50 27088.03 27189.90 28895.52 24678.88 28087.39 32094.02 27279.32 30493.06 22394.02 26180.72 27094.27 35275.16 33793.08 34296.54 245
WTY-MVS86.93 30186.50 30088.24 31594.96 25974.64 32787.19 32392.07 30978.29 31388.32 32291.59 31878.06 28894.27 35274.88 33893.15 34095.80 278
KD-MVS_2432*160082.17 32980.75 33686.42 33282.04 38570.09 35981.75 36690.80 32182.56 27690.37 28589.30 34742.90 38796.11 32374.47 33992.55 34893.06 341
miper_refine_blended82.17 32980.75 33686.42 33282.04 38570.09 35981.75 36690.80 32182.56 27690.37 28589.30 34742.90 38796.11 32374.47 33992.55 34893.06 341
baseline283.38 32081.54 32988.90 30391.38 33772.84 34588.78 30181.22 37378.97 30779.82 37387.56 35761.73 36197.80 25874.30 34190.05 36396.05 268
gm-plane-assit87.08 37559.33 38271.22 34983.58 37397.20 29073.95 342
test20.0390.80 21290.85 21390.63 26995.63 24279.24 27389.81 27892.87 28989.90 15694.39 18096.40 14885.77 22495.27 34273.86 34399.05 10697.39 217
TAMVS90.16 23489.05 24693.49 17296.49 18186.37 16890.34 26092.55 29980.84 29092.99 22694.57 24381.94 26098.20 22273.51 34498.21 20495.90 275
CHOSEN 1792x268887.19 29685.92 30591.00 25797.13 14579.41 26984.51 35495.60 22564.14 37290.07 29194.81 23278.26 28797.14 29273.34 34595.38 30396.46 252
thres600view787.66 28387.10 28889.36 29796.05 21573.17 34092.72 17585.31 35891.89 10193.29 21390.97 32563.42 35498.39 20573.23 34696.99 26696.51 247
dp79.28 34478.62 34681.24 35685.97 37856.45 38486.91 32885.26 36072.97 34281.45 37089.17 35056.01 37395.45 33673.19 34776.68 37991.82 356
pmmvs380.83 33978.96 34586.45 33187.23 37377.48 29984.87 34982.31 37063.83 37385.03 34589.50 34549.66 38093.10 36073.12 34895.10 30888.78 367
MDTV_nov1_ep13_2view42.48 38888.45 30867.22 36683.56 35666.80 33572.86 34994.06 321
TR-MVS87.70 28187.17 28489.27 29994.11 28879.26 27288.69 30491.86 31281.94 28490.69 28089.79 34082.82 24897.42 28172.65 35091.98 35491.14 358
PAPR87.65 28486.77 29390.27 27892.85 31277.38 30088.56 30796.23 20476.82 32484.98 34689.75 34286.08 22297.16 29172.33 35193.35 33696.26 260
Anonymous2023120688.77 26688.29 26190.20 28296.31 19478.81 28289.56 28393.49 28074.26 33592.38 24895.58 19682.21 25495.43 33772.07 35298.75 14896.34 256
MVS84.98 31384.30 31387.01 32791.03 34177.69 29791.94 21394.16 26859.36 37784.23 35287.50 35985.66 22696.80 30471.79 35393.05 34386.54 370
tpm cat180.61 34179.46 34484.07 34988.78 36665.06 37689.26 29188.23 33462.27 37581.90 36889.66 34462.70 35995.29 34171.72 35480.60 37891.86 355
HY-MVS82.50 1886.81 30285.93 30489.47 29393.63 29977.93 29194.02 14191.58 31675.68 32683.64 35593.64 27377.40 29397.42 28171.70 35592.07 35393.05 343
testgi90.38 22591.34 20287.50 32497.49 12671.54 35189.43 28595.16 24388.38 19394.54 17794.68 24092.88 10093.09 36171.60 35697.85 23197.88 177
BH-w/o87.21 29487.02 28987.79 32294.77 26877.27 30287.90 31193.21 28681.74 28589.99 29388.39 35583.47 23996.93 30071.29 35792.43 35089.15 363
thres100view90087.35 29186.89 29088.72 30796.14 20873.09 34293.00 16785.31 35892.13 9493.26 21690.96 32663.42 35498.28 21471.27 35896.54 27794.79 305
tfpn200view987.05 29986.52 29888.67 30895.77 23272.94 34391.89 21686.00 35090.84 13592.61 23889.80 33863.93 35198.28 21471.27 35896.54 27794.79 305
thres40087.20 29586.52 29889.24 30195.77 23272.94 34391.89 21686.00 35090.84 13592.61 23889.80 33863.93 35198.28 21471.27 35896.54 27796.51 247
tpm281.46 33380.35 34084.80 34389.90 35565.14 37490.44 25585.36 35765.82 37082.05 36692.44 30357.94 36896.69 30770.71 36188.49 36692.56 348
ADS-MVSNet284.01 31882.20 32689.41 29589.04 36476.37 31687.57 31490.98 32072.71 34484.46 34992.45 30168.08 32896.48 31270.58 36283.97 37295.38 292
ADS-MVSNet82.25 32781.55 32884.34 34789.04 36465.30 37287.57 31485.13 36272.71 34484.46 34992.45 30168.08 32892.33 36470.58 36283.97 37295.38 292
PVSNet76.22 2082.89 32482.37 32484.48 34693.96 29264.38 37878.60 37188.61 33071.50 34884.43 35186.36 36674.27 31094.60 34669.87 36493.69 33494.46 313
CHOSEN 280x42080.04 34377.97 34886.23 33590.13 35374.53 33072.87 37489.59 32766.38 36776.29 37785.32 37056.96 37095.36 33869.49 36594.72 31688.79 366
thres20085.85 30785.18 30887.88 32194.44 28172.52 34789.08 29586.21 34788.57 18991.44 26688.40 35464.22 34998.00 23968.35 36695.88 29193.12 340
PCF-MVS84.52 1789.12 25487.71 27593.34 17496.06 21485.84 18286.58 34097.31 13468.46 36293.61 20493.89 26787.51 19898.52 19567.85 36798.11 21495.66 286
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet81.22 33581.01 33481.86 35590.92 34470.15 35884.03 35780.25 37770.83 35285.97 34189.78 34167.93 33184.65 37867.44 36891.90 35590.78 360
gg-mvs-nofinetune82.10 33181.02 33385.34 33987.46 37271.04 35394.74 11467.56 38496.44 2279.43 37498.99 645.24 38396.15 32167.18 36992.17 35288.85 365
DSMNet-mixed82.21 32881.56 32784.16 34889.57 36070.00 36190.65 25077.66 38254.99 38083.30 35897.57 6677.89 29090.50 37166.86 37095.54 29791.97 352
test0.0.03 182.48 32681.47 33085.48 33889.70 35773.57 33984.73 35081.64 37283.07 27188.13 32586.61 36362.86 35789.10 37666.24 37190.29 36293.77 330
MIMVSNet87.13 29886.54 29788.89 30496.05 21576.11 31794.39 12888.51 33181.37 28688.27 32396.75 12672.38 31695.52 33265.71 37295.47 29995.03 299
PMMVS281.31 33483.44 31874.92 36290.52 34846.49 38769.19 37685.23 36184.30 26087.95 32794.71 23976.95 30084.36 37964.07 37398.09 21693.89 327
FPMVS84.50 31583.28 31988.16 31696.32 19394.49 1885.76 34385.47 35683.09 27085.20 34494.26 25163.79 35386.58 37763.72 37491.88 35683.40 373
MVS-HIRNet78.83 34680.60 33873.51 36393.07 30747.37 38687.10 32578.00 38168.94 36077.53 37697.26 9071.45 32094.62 34563.28 37588.74 36578.55 378
wuyk23d87.83 27990.79 21578.96 36090.46 35088.63 11692.72 17590.67 32391.65 11898.68 1197.64 6496.06 1677.53 38159.84 37699.41 5670.73 379
GG-mvs-BLEND83.24 35285.06 38171.03 35494.99 10865.55 38574.09 37975.51 37944.57 38494.46 34859.57 37787.54 36884.24 372
PVSNet_070.34 2174.58 34772.96 35079.47 35990.63 34666.24 37173.26 37283.40 36963.67 37478.02 37578.35 37872.53 31589.59 37456.68 37860.05 38282.57 376
MVEpermissive59.87 2373.86 34872.65 35177.47 36187.00 37674.35 33261.37 37860.93 38667.27 36569.69 38186.49 36581.24 26772.33 38256.45 37983.45 37485.74 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM81.91 33280.11 34287.31 32693.87 29572.32 34984.02 35893.22 28469.47 35976.13 37889.84 33772.15 31797.23 28953.27 38089.02 36492.37 350
test_method50.44 34948.94 35254.93 36439.68 38812.38 39028.59 37990.09 3256.82 38241.10 38478.41 37754.41 37570.69 38350.12 38151.26 38381.72 377
tmp_tt37.97 35044.33 35318.88 36611.80 38921.54 38963.51 37745.66 3904.23 38351.34 38350.48 38159.08 36722.11 38544.50 38268.35 38113.00 381
DeepMVS_CXcopyleft53.83 36570.38 38764.56 37748.52 38933.01 38165.50 38274.21 38056.19 37246.64 38438.45 38370.07 38050.30 380
test1239.49 35212.01 3551.91 3672.87 3901.30 39182.38 3641.34 3921.36 3852.84 3866.56 3842.45 3900.97 3862.73 3845.56 3843.47 382
testmvs9.02 35311.42 3561.81 3682.77 3911.13 39279.44 3701.90 3911.18 3862.65 3876.80 3831.95 3910.87 3872.62 3853.45 3853.44 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.35 35131.13 3540.00 3690.00 3920.00 3930.00 38095.58 2310.00 3870.00 38891.15 32293.43 810.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.56 35410.09 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38790.77 1490.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.56 35410.08 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38890.69 3310.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.21 394.68 1498.45 498.81 897.73 698.27 20
test_one_060198.26 7287.14 14698.18 3994.25 5096.99 6697.36 8295.13 42
eth-test20.00 392
eth-test0.00 392
test_241102_ONE98.51 5186.97 15198.10 5291.85 10397.63 3497.03 10596.48 1198.95 124
save fliter97.46 12988.05 12992.04 20797.08 15287.63 210
test072698.51 5186.69 15895.34 9098.18 3991.85 10397.63 3497.37 7995.58 24
GSMVS94.75 307
test_part298.21 7689.41 10196.72 77
sam_mvs166.64 33894.75 307
sam_mvs66.41 339
MTGPAbinary97.62 105
test_post6.07 38565.74 34395.84 328
patchmatchnet-post91.71 31566.22 34197.59 271
MTMP94.82 11154.62 388
TEST996.45 18389.46 9890.60 25196.92 16479.09 30690.49 28294.39 24891.31 13598.88 131
test_896.37 18589.14 10590.51 25496.89 16779.37 30190.42 28494.36 25091.20 14198.82 142
agg_prior96.20 20288.89 11196.88 16890.21 28798.78 155
test_prior489.91 8990.74 247
test_prior94.61 12495.95 22387.23 14397.36 12998.68 17597.93 170
新几何290.02 271
旧先验196.20 20284.17 20294.82 25195.57 19789.57 17397.89 22996.32 257
原ACMM289.34 288
test22296.95 15085.27 18988.83 30093.61 27665.09 37190.74 27994.85 23184.62 23397.36 25193.91 326
segment_acmp92.14 115
testdata188.96 29788.44 191
test1294.43 13995.95 22386.75 15696.24 20389.76 30089.79 17298.79 15197.95 22697.75 191
plane_prior797.71 11088.68 115
plane_prior697.21 14088.23 12686.93 209
plane_prior495.59 193
plane_prior388.43 12490.35 15093.31 211
plane_prior294.56 12391.74 114
plane_prior197.38 132
plane_prior88.12 12793.01 16688.98 17898.06 218
n20.00 393
nn0.00 393
door-mid92.13 308
test1196.65 184
door91.26 317
HQP5-MVS84.89 192
HQP-NCC96.36 18791.37 23287.16 21788.81 311
ACMP_Plane96.36 18791.37 23287.16 21788.81 311
HQP4-MVS88.81 31198.61 18398.15 146
HQP3-MVS97.31 13497.73 234
HQP2-MVS84.76 231
NP-MVS96.82 16087.10 14793.40 280
ACMMP++_ref98.82 138
ACMMP++99.25 81
Test By Simon90.61 155