This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
mamv498.21 297.86 399.26 198.24 7199.36 196.10 6399.32 298.75 299.58 298.70 1891.78 12899.88 198.60 199.67 2098.54 117
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 1
test_fmvsmconf0.01_n95.90 5596.09 4995.31 8897.30 13789.21 9794.24 13598.76 1286.25 22697.56 4098.66 1995.73 1998.44 19397.35 398.99 11198.27 135
test_fmvsmconf0.1_n95.61 6695.72 7195.26 8996.85 15989.20 9893.51 16098.60 1585.68 23997.42 5098.30 3795.34 3398.39 19496.85 498.98 11298.19 141
LTVRE_ROB93.87 197.93 398.16 297.26 2798.81 2793.86 3299.07 298.98 797.01 1698.92 698.78 1495.22 4098.61 17296.85 499.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1896.42 3197.68 798.00 8994.03 2696.97 1997.61 11187.68 20898.45 2098.77 1594.20 7499.50 2396.70 699.40 5599.53 14
test_fmvsmconf_n95.43 7495.50 7895.22 9396.48 18689.19 9993.23 17098.36 2385.61 24296.92 7298.02 5095.23 3998.38 19796.69 798.95 12198.09 149
MM94.41 11894.14 13495.22 9395.84 23587.21 13794.31 13490.92 32994.48 4992.80 24397.52 8085.27 23599.49 2696.58 899.57 3398.97 60
MVSFormer92.18 19492.23 18692.04 22094.74 28280.06 25897.15 1597.37 12988.98 17788.83 32292.79 30577.02 30999.60 1196.41 996.75 27896.46 259
test_djsdf96.62 2496.49 2897.01 3398.55 4491.77 6097.15 1597.37 12988.98 17798.26 2498.86 1093.35 8999.60 1196.41 999.45 4599.66 6
test_fmvsmvis_n_192095.08 9195.40 8494.13 13896.66 16987.75 12993.44 16498.49 1785.57 24398.27 2297.11 11794.11 7697.75 25996.26 1198.72 14996.89 240
v7n96.82 1097.31 1195.33 8598.54 4686.81 14896.83 2298.07 6496.59 2398.46 1998.43 3492.91 10499.52 2196.25 1299.76 1099.65 8
mvs_tets96.83 996.71 2097.17 2898.83 2492.51 4996.58 3397.61 11187.57 21098.80 998.90 996.50 999.59 1596.15 1399.47 4199.40 20
jajsoiax96.59 2896.42 3197.12 3098.76 3092.49 5096.44 4397.42 12786.96 21998.71 1298.72 1795.36 3299.56 1995.92 1499.45 4599.32 25
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 7694.15 5498.93 599.07 588.07 19199.57 1695.86 1599.69 1499.46 17
test_fmvsm_n_192094.72 10494.74 11094.67 11396.30 20088.62 11093.19 17198.07 6485.63 24197.08 6197.35 9690.86 15197.66 26695.70 1698.48 17697.74 191
fmvsm_s_conf0.1_n94.19 13194.41 12193.52 16797.22 14184.37 19693.73 15495.26 24884.45 26395.76 12598.00 5191.85 12697.21 28895.62 1797.82 23198.98 58
fmvsm_s_conf0.5_n94.00 13694.20 13293.42 17196.69 16784.37 19693.38 16695.13 25184.50 26295.40 14597.55 7991.77 12997.20 28995.59 1897.79 23298.69 101
fmvsm_l_conf0.5_n93.79 14193.81 14093.73 15696.16 21186.26 16692.46 19796.72 18481.69 29895.77 12497.11 11790.83 15397.82 24995.58 1997.99 22197.11 229
fmvsm_s_conf0.1_n_a94.26 12594.37 12493.95 14697.36 13485.72 18094.15 13995.44 24183.25 27695.51 13898.05 4692.54 11397.19 29195.55 2097.46 25098.94 64
fmvsm_s_conf0.5_n_a94.02 13594.08 13793.84 15296.72 16685.73 17993.65 15895.23 24983.30 27495.13 16397.56 7592.22 11897.17 29295.51 2197.41 25298.64 109
MP-MVS-pluss96.08 4995.92 6096.57 4599.06 1091.21 6693.25 16898.32 2687.89 20196.86 7497.38 8995.55 2699.39 5095.47 2299.47 4199.11 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvs392.42 18692.40 18492.46 20793.80 30887.28 13593.86 15097.05 15876.86 33896.25 10198.66 1982.87 25691.26 38395.44 2396.83 27498.82 80
MVSMamba_PlusPlus94.82 10195.89 6191.62 23497.82 10178.88 28896.52 3597.60 11397.14 1494.23 19498.48 3087.01 21099.71 395.43 2498.80 14096.28 267
iter_conf0595.52 6996.74 1991.88 22297.82 10177.68 30997.26 1398.91 897.14 1499.22 398.48 3087.01 21099.71 395.43 2499.38 5798.25 136
PS-MVSNAJss96.01 5196.04 5495.89 6698.82 2588.51 11595.57 8897.88 8888.72 18398.81 898.86 1090.77 15499.60 1195.43 2499.53 3799.57 13
tt080595.42 7795.93 5993.86 15198.75 3188.47 11697.68 994.29 27296.48 2495.38 14693.63 28494.89 5797.94 23795.38 2796.92 27195.17 310
fmvsm_l_conf0.5_n_a93.59 14693.63 14993.49 16996.10 21785.66 18292.32 20696.57 19381.32 30195.63 13397.14 11490.19 16797.73 26295.37 2898.03 21797.07 230
UA-Net97.35 597.24 1297.69 598.22 7293.87 3198.42 698.19 4396.95 1795.46 14399.23 493.45 8499.57 1695.34 2999.89 299.63 9
MVS_030492.88 16992.27 18594.69 11292.35 33286.03 17292.88 18189.68 33690.53 14791.52 27896.43 16282.52 26399.32 6995.01 3099.54 3698.71 97
ACMH88.36 1296.59 2897.43 694.07 14098.56 4185.33 18896.33 4998.30 2994.66 4598.72 1098.30 3797.51 598.00 23194.87 3199.59 2798.86 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1094.68 10795.27 9192.90 18696.57 17680.15 25494.65 12097.57 11690.68 14397.43 4898.00 5188.18 18899.15 8794.84 3299.55 3599.41 19
SixPastTwentyTwo94.91 9695.21 9293.98 14298.52 4883.19 21795.93 7194.84 25994.86 4498.49 1798.74 1681.45 27299.60 1194.69 3399.39 5699.15 37
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1097.41 1197.28 5698.46 3294.62 6498.84 13094.64 3499.53 3798.99 54
v124093.29 15493.71 14692.06 21996.01 22677.89 30491.81 23297.37 12985.12 25296.69 8296.40 16586.67 21999.07 10094.51 3598.76 14699.22 31
APDe-MVScopyleft96.46 3296.64 2395.93 6197.68 11689.38 9596.90 2198.41 2192.52 8497.43 4897.92 5895.11 4599.50 2394.45 3699.30 7098.92 70
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP96.21 4596.12 4896.49 4998.90 1991.42 6494.57 12498.03 7390.42 15196.37 9297.35 9695.68 2199.25 7794.44 3799.34 6398.80 83
ZNCC-MVS96.42 3696.20 4397.07 3198.80 2992.79 4796.08 6598.16 5291.74 11695.34 15096.36 17295.68 2199.44 3094.41 3899.28 7898.97 60
v894.65 10895.29 8992.74 19196.65 17079.77 26994.59 12197.17 14991.86 10497.47 4797.93 5588.16 18999.08 9694.32 3999.47 4199.38 21
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4993.11 7696.48 8997.36 9396.92 699.34 6394.31 4099.38 5798.92 70
MTAPA96.65 2396.38 3597.47 1698.95 1894.05 2495.88 7497.62 10994.46 5096.29 9896.94 12993.56 8199.37 5894.29 4199.42 5098.99 54
WR-MVS_H96.60 2697.05 1495.24 9199.02 1286.44 16096.78 2698.08 6197.42 1098.48 1897.86 6291.76 13199.63 994.23 4299.84 399.66 6
v192192093.26 15693.61 15192.19 21296.04 22578.31 29891.88 22797.24 14585.17 25096.19 10896.19 18486.76 21899.05 10194.18 4398.84 13199.22 31
v119293.49 14893.78 14392.62 19996.16 21179.62 27191.83 23197.22 14786.07 23196.10 11196.38 17087.22 20599.02 10694.14 4498.88 12699.22 31
MSC_two_6792asdad95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
No_MVS95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
HPM-MVScopyleft96.81 1296.62 2497.36 2498.89 2093.53 3997.51 1098.44 1892.35 8995.95 11596.41 16496.71 899.42 3493.99 4799.36 5999.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++95.93 5396.34 3694.70 11196.54 17986.66 15498.45 498.22 4093.26 7497.54 4197.36 9393.12 9799.38 5693.88 4898.68 15598.04 153
test_0728_THIRD93.26 7497.40 5297.35 9694.69 6199.34 6393.88 4899.42 5098.89 73
nrg03096.32 4196.55 2795.62 7597.83 10088.55 11495.77 7798.29 3292.68 8098.03 2897.91 5995.13 4398.95 11693.85 5099.49 4099.36 23
v14419293.20 16193.54 15592.16 21696.05 22178.26 29991.95 22097.14 15184.98 25695.96 11496.11 18887.08 20999.04 10493.79 5198.84 13199.17 35
HFP-MVS96.39 3996.17 4697.04 3298.51 4993.37 4096.30 5697.98 7992.35 8995.63 13396.47 15995.37 3099.27 7593.78 5299.14 9798.48 123
EI-MVSNet-UG-set94.35 12194.27 13094.59 12092.46 33185.87 17692.42 20194.69 26593.67 6796.13 10995.84 20091.20 14498.86 12793.78 5298.23 19999.03 50
ACMMPR96.46 3296.14 4797.41 2198.60 3893.82 3496.30 5697.96 8292.35 8995.57 13696.61 15494.93 5699.41 4093.78 5299.15 9699.00 52
EI-MVSNet-Vis-set94.36 12094.28 12894.61 11692.55 32885.98 17392.44 19994.69 26593.70 6496.12 11095.81 20191.24 14198.86 12793.76 5598.22 20198.98 58
region2R96.41 3796.09 4997.38 2398.62 3593.81 3696.32 5197.96 8292.26 9295.28 15596.57 15695.02 5099.41 4093.63 5699.11 9998.94 64
EC-MVSNet95.44 7395.62 7494.89 10296.93 15487.69 13096.48 4099.14 593.93 5992.77 24594.52 25693.95 7899.49 2693.62 5799.22 8797.51 206
XVS96.49 3096.18 4497.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19196.49 15894.56 6699.39 5093.57 5899.05 10498.93 66
X-MVStestdata90.70 21988.45 26697.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19126.89 40994.56 6699.39 5093.57 5899.05 10498.93 66
SMA-MVScopyleft95.77 6095.54 7796.47 5098.27 6791.19 6795.09 10497.79 9986.48 22297.42 5097.51 8394.47 7199.29 7193.55 6099.29 7398.93 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114493.50 14793.81 14092.57 20296.28 20179.61 27291.86 23096.96 16486.95 22095.91 11896.32 17487.65 19898.96 11493.51 6198.88 12699.13 39
SR-MVS-dyc-post96.84 896.60 2697.56 1198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12394.85 5899.42 3493.49 6298.84 13198.00 158
RE-MVS-def96.66 2198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12395.40 2993.49 6298.84 13198.00 158
SteuartSystems-ACMMP96.40 3896.30 3896.71 4198.63 3491.96 5695.70 7998.01 7693.34 7396.64 8496.57 15694.99 5299.36 5993.48 6499.34 6398.82 80
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS95.77 6095.58 7696.37 5196.84 16091.72 6296.73 2899.06 694.23 5292.48 25494.79 24693.56 8199.49 2693.47 6599.05 10497.89 173
ACMMPcopyleft96.61 2596.34 3697.43 1998.61 3793.88 3096.95 2098.18 4592.26 9296.33 9496.84 13795.10 4699.40 4793.47 6599.33 6599.02 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.94.96 9594.75 10895.57 7798.86 2288.69 10796.37 4696.81 17785.23 24894.75 18197.12 11691.85 12699.40 4793.45 6798.33 18998.62 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvs290.62 22390.40 23291.29 24891.93 34885.46 18692.70 18696.48 20074.44 35394.91 17597.59 7375.52 32090.57 38593.44 6896.56 28297.84 179
DVP-MVScopyleft95.82 5996.18 4494.72 11098.51 4986.69 15295.20 10197.00 16191.85 10597.40 5297.35 9695.58 2499.34 6393.44 6899.31 6898.13 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10398.55 4486.72 15195.20 10198.22 4099.38 5693.44 6899.31 6898.53 119
MSP-MVS95.34 8094.63 11897.48 1598.67 3294.05 2496.41 4598.18 4591.26 12995.12 16495.15 22986.60 22199.50 2393.43 7196.81 27598.89 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-CasMVS96.69 2197.43 694.49 12699.13 684.09 20596.61 3297.97 8197.91 698.64 1598.13 4295.24 3899.65 693.39 7299.84 399.72 2
Vis-MVSNetpermissive95.50 7195.48 7995.56 7898.11 7889.40 9495.35 9298.22 4092.36 8894.11 19698.07 4592.02 12299.44 3093.38 7397.67 23997.85 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVS_3200maxsize96.82 1096.65 2297.32 2697.95 9393.82 3496.31 5298.25 3395.51 3896.99 6997.05 12295.63 2399.39 5093.31 7498.88 12698.75 89
SED-MVS96.00 5296.41 3494.76 10898.51 4986.97 14495.21 9998.10 5891.95 9997.63 3697.25 10396.48 1099.35 6093.29 7599.29 7397.95 166
test_241102_TWO98.10 5891.95 9997.54 4197.25 10395.37 3099.35 6093.29 7599.25 8198.49 122
DTE-MVSNet96.74 1897.43 694.67 11399.13 684.68 19496.51 3797.94 8798.14 498.67 1498.32 3695.04 4899.69 593.27 7799.82 799.62 10
3Dnovator+92.74 295.86 5895.77 6996.13 5396.81 16390.79 7496.30 5697.82 9496.13 2994.74 18297.23 10591.33 13899.16 8693.25 7898.30 19298.46 124
K. test v393.37 15293.27 16293.66 15898.05 8382.62 22594.35 13186.62 35996.05 3297.51 4498.85 1276.59 31699.65 693.21 7998.20 20498.73 93
Anonymous2023121196.60 2697.13 1395.00 9997.46 13086.35 16497.11 1898.24 3697.58 998.72 1098.97 793.15 9699.15 8793.18 8099.74 1299.50 16
GST-MVS96.24 4495.99 5697.00 3498.65 3392.71 4895.69 8198.01 7692.08 9795.74 12896.28 17895.22 4099.42 3493.17 8199.06 10198.88 75
CP-MVS96.44 3596.08 5197.54 1298.29 6594.62 1596.80 2498.08 6192.67 8295.08 16896.39 16994.77 6099.42 3493.17 8199.44 4898.58 116
mPP-MVS96.46 3296.05 5397.69 598.62 3594.65 1496.45 4197.74 10292.59 8395.47 14196.68 15094.50 6899.42 3493.10 8399.26 8098.99 54
ACMM88.83 996.30 4396.07 5296.97 3598.39 5992.95 4594.74 11698.03 7390.82 13997.15 5996.85 13596.25 1499.00 10893.10 8399.33 6598.95 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet96.19 4696.80 1794.38 13198.99 1683.82 20896.31 5297.53 12097.60 898.34 2197.52 8091.98 12499.63 993.08 8599.81 899.70 3
v2v48293.29 15493.63 14992.29 20896.35 19478.82 29191.77 23496.28 20688.45 19095.70 13296.26 18186.02 22798.90 12093.02 8698.81 13999.14 38
IU-MVS98.51 4986.66 15496.83 17672.74 36595.83 12293.00 8799.29 7398.64 109
SR-MVS96.70 2096.42 3197.54 1298.05 8394.69 1296.13 6298.07 6495.17 4096.82 7696.73 14795.09 4799.43 3392.99 8898.71 15198.50 120
PEN-MVS96.69 2197.39 994.61 11699.16 484.50 19596.54 3498.05 6898.06 598.64 1598.25 3995.01 5199.65 692.95 8999.83 599.68 4
FC-MVSNet-test95.32 8195.88 6293.62 15998.49 5681.77 23595.90 7398.32 2693.93 5997.53 4397.56 7588.48 18499.40 4792.91 9099.83 599.68 4
OPM-MVS95.61 6695.45 8096.08 5498.49 5691.00 6992.65 18997.33 13790.05 15696.77 7996.85 13595.04 4898.56 17992.77 9199.06 10198.70 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS96.32 4195.94 5797.43 1998.59 4093.84 3395.33 9498.30 2991.40 12795.76 12596.87 13495.26 3799.45 2992.77 9199.21 8899.00 52
CNVR-MVS94.58 11194.29 12795.46 8196.94 15289.35 9691.81 23296.80 17889.66 16393.90 20895.44 22092.80 10898.72 15392.74 9398.52 17198.32 130
DeepC-MVS91.39 495.43 7495.33 8795.71 7397.67 11790.17 8193.86 15098.02 7587.35 21296.22 10497.99 5394.48 7099.05 10192.73 9499.68 1797.93 168
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS95.19 8895.73 7093.55 16296.62 17488.88 10694.67 11898.05 6891.26 12997.25 5896.40 16595.42 2894.36 36492.72 9599.19 9097.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet87.39 30186.71 30589.44 29993.40 31276.11 32994.93 11290.00 33557.17 40495.71 13197.37 9064.77 36797.68 26592.67 9694.37 33594.52 334
lessismore_v093.87 15098.05 8383.77 20980.32 39797.13 6097.91 5977.49 30199.11 9492.62 9798.08 21398.74 92
Anonymous2024052192.86 17293.57 15390.74 27096.57 17675.50 33694.15 13995.60 23189.38 16895.90 11997.90 6180.39 28197.96 23592.60 9899.68 1798.75 89
MVS_Test92.57 18393.29 15990.40 27993.53 31175.85 33292.52 19396.96 16488.73 18292.35 26296.70 14990.77 15498.37 20192.53 9995.49 30596.99 236
balanced_conf0393.45 15094.17 13391.28 24995.81 23978.40 29696.20 6097.48 12488.56 18995.29 15497.20 11085.56 23499.21 8092.52 10098.91 12396.24 271
3Dnovator92.54 394.80 10294.90 10294.47 12795.47 25987.06 14196.63 3197.28 14391.82 11194.34 19397.41 8790.60 16198.65 16992.47 10198.11 21097.70 193
SF-MVS95.88 5795.88 6295.87 6798.12 7789.65 8795.58 8798.56 1691.84 10896.36 9396.68 15094.37 7299.32 6992.41 10299.05 10498.64 109
V4293.43 15193.58 15292.97 18195.34 26581.22 24492.67 18796.49 19987.25 21496.20 10696.37 17187.32 20498.85 12992.39 10398.21 20298.85 79
casdiffmvs_mvgpermissive95.10 9095.62 7493.53 16596.25 20583.23 21592.66 18898.19 4393.06 7797.49 4597.15 11394.78 5998.71 15992.27 10498.72 14998.65 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft95.02 9294.39 12296.91 3897.88 9793.58 3894.09 14396.99 16391.05 13492.40 25995.22 22891.03 15099.25 7792.11 10598.69 15497.90 171
UniMVSNet (Re)95.32 8195.15 9495.80 6997.79 10588.91 10492.91 17998.07 6493.46 7096.31 9695.97 19590.14 16899.34 6392.11 10599.64 2399.16 36
XVG-OURS-SEG-HR95.38 7895.00 10196.51 4798.10 7994.07 2192.46 19798.13 5490.69 14293.75 21096.25 18298.03 297.02 30092.08 10795.55 30398.45 125
LPG-MVS_test96.38 4096.23 4196.84 3998.36 6392.13 5395.33 9498.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
LGP-MVS_train96.84 3998.36 6392.13 5398.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
tttt051789.81 25188.90 26092.55 20397.00 14979.73 27095.03 10883.65 38389.88 15995.30 15294.79 24653.64 39599.39 5091.99 11098.79 14398.54 117
EI-MVSNet92.99 16593.26 16392.19 21292.12 34179.21 28292.32 20694.67 26791.77 11495.24 15995.85 19887.14 20898.49 18691.99 11098.26 19598.86 76
MP-MVScopyleft96.14 4795.68 7297.51 1498.81 2794.06 2296.10 6397.78 10092.73 7993.48 21796.72 14894.23 7399.42 3491.99 11099.29 7399.05 49
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IterMVS-LS93.78 14294.28 12892.27 20996.27 20279.21 28291.87 22896.78 17991.77 11496.57 8897.07 12087.15 20798.74 15191.99 11099.03 11098.86 76
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT91.65 20291.55 20291.94 22193.89 30479.22 28187.56 33193.51 28791.53 12495.37 14896.62 15378.65 29198.90 12091.89 11494.95 32197.70 193
EGC-MVSNET80.97 35875.73 37496.67 4398.85 2394.55 1696.83 2296.60 1902.44 4115.32 41298.25 3992.24 11798.02 22991.85 11599.21 8897.45 209
CS-MVS-test95.32 8195.10 9795.96 5796.86 15890.75 7596.33 4999.20 393.99 5691.03 28893.73 28293.52 8399.55 2091.81 11699.45 4597.58 200
LS3D96.11 4895.83 6696.95 3794.75 28194.20 2097.34 1297.98 7997.31 1295.32 15196.77 13993.08 9999.20 8391.79 11798.16 20697.44 211
DPE-MVScopyleft95.89 5695.88 6295.92 6397.93 9489.83 8593.46 16298.30 2992.37 8797.75 3396.95 12895.14 4299.51 2291.74 11899.28 7898.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FIs94.90 9795.35 8593.55 16298.28 6681.76 23695.33 9498.14 5393.05 7897.07 6297.18 11187.65 19899.29 7191.72 11999.69 1499.61 11
Gipumacopyleft95.31 8495.80 6893.81 15497.99 9290.91 7196.42 4497.95 8496.69 2091.78 27598.85 1291.77 12995.49 34491.72 11999.08 10095.02 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
baseline94.26 12594.80 10692.64 19596.08 21980.99 24793.69 15698.04 7290.80 14094.89 17696.32 17493.19 9498.48 19091.68 12198.51 17398.43 126
alignmvs93.26 15692.85 17094.50 12495.70 24587.45 13293.45 16395.76 22691.58 12195.25 15892.42 31681.96 26998.72 15391.61 12297.87 22997.33 220
UniMVSNet_NR-MVSNet95.35 7995.21 9295.76 7097.69 11588.59 11292.26 21197.84 9294.91 4396.80 7795.78 20590.42 16399.41 4091.60 12399.58 3199.29 27
DU-MVS95.28 8595.12 9695.75 7197.75 10788.59 11292.58 19197.81 9593.99 5696.80 7795.90 19690.10 17199.41 4091.60 12399.58 3199.26 28
EG-PatchMatch MVS94.54 11394.67 11694.14 13797.87 9986.50 15692.00 21996.74 18388.16 19796.93 7197.61 7293.04 10197.90 23891.60 12398.12 20998.03 156
MGCFI-Net94.44 11694.67 11693.75 15595.56 25585.47 18595.25 9898.24 3691.53 12495.04 16992.21 31894.94 5598.54 18291.56 12697.66 24097.24 224
test_040295.73 6296.22 4294.26 13498.19 7485.77 17893.24 16997.24 14596.88 1997.69 3497.77 6594.12 7599.13 9191.54 12799.29 7397.88 174
sasdasda94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
canonicalmvs94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
XVG-OURS94.72 10494.12 13596.50 4898.00 8994.23 1991.48 23898.17 4990.72 14195.30 15296.47 15987.94 19596.98 30191.41 13097.61 24398.30 133
pmmvs696.80 1397.36 1095.15 9699.12 887.82 12896.68 2997.86 8996.10 3098.14 2699.28 397.94 398.21 21291.38 13199.69 1499.42 18
XVG-ACMP-BASELINE95.68 6495.34 8696.69 4298.40 5893.04 4294.54 12898.05 6890.45 15096.31 9696.76 14192.91 10498.72 15391.19 13299.42 5098.32 130
test_fmvs1_n88.73 27688.38 26889.76 29492.06 34382.53 22692.30 20996.59 19271.14 37392.58 25195.41 22468.55 34589.57 39391.12 13395.66 30197.18 228
RPSCF95.58 6894.89 10397.62 897.58 12296.30 895.97 7097.53 12092.42 8593.41 21897.78 6391.21 14397.77 25691.06 13497.06 26398.80 83
h-mvs3392.89 16891.99 19395.58 7696.97 15090.55 7793.94 14894.01 28089.23 17193.95 20596.19 18476.88 31299.14 8991.02 13595.71 30097.04 234
hse-mvs292.24 19391.20 21295.38 8296.16 21190.65 7692.52 19392.01 31989.23 17193.95 20592.99 30076.88 31298.69 16291.02 13596.03 29296.81 244
casdiffmvspermissive94.32 12394.80 10692.85 18896.05 22181.44 24192.35 20498.05 6891.53 12495.75 12796.80 13893.35 8998.49 18691.01 13798.32 19198.64 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.55 11294.68 11594.15 13697.23 13985.11 19094.14 14197.34 13688.71 18495.26 15695.50 21794.65 6399.12 9290.94 13898.40 17998.23 137
c3_l91.32 21191.42 20791.00 26192.29 33476.79 32287.52 33496.42 20285.76 23794.72 18493.89 27882.73 25998.16 21890.93 13998.55 16798.04 153
TranMVSNet+NR-MVSNet96.07 5096.26 4095.50 7998.26 6887.69 13093.75 15397.86 8995.96 3597.48 4697.14 11495.33 3499.44 3090.79 14099.76 1099.38 21
test_vis1_n89.01 26789.01 25689.03 30792.57 32782.46 22892.62 19096.06 21773.02 36390.40 29895.77 20674.86 32289.68 39190.78 14194.98 32094.95 320
UniMVSNet_ETH3D97.13 697.72 495.35 8399.51 287.38 13397.70 897.54 11898.16 398.94 499.33 297.84 499.08 9690.73 14299.73 1399.59 12
9.1494.81 10597.49 12794.11 14298.37 2287.56 21195.38 14696.03 19294.66 6299.08 9690.70 14398.97 117
diffmvspermissive91.74 20091.93 19591.15 25693.06 31878.17 30088.77 31697.51 12386.28 22592.42 25893.96 27588.04 19297.46 27690.69 14496.67 28097.82 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs187.59 29687.27 29288.54 31788.32 39181.26 24390.43 26795.72 22870.55 37991.70 27694.63 25168.13 34689.42 39490.59 14595.34 31194.94 322
dcpmvs_293.96 13795.01 10090.82 26897.60 12074.04 34893.68 15798.85 989.80 16197.82 3097.01 12691.14 14899.21 8090.56 14698.59 16499.19 34
MVSTER89.32 25988.75 26291.03 25890.10 37676.62 32490.85 25194.67 26782.27 29195.24 15995.79 20261.09 38298.49 18690.49 14798.26 19597.97 165
DP-MVS95.62 6595.84 6594.97 10097.16 14488.62 11094.54 12897.64 10796.94 1896.58 8797.32 10093.07 10098.72 15390.45 14898.84 13197.57 201
ACMP88.15 1395.71 6395.43 8296.54 4698.17 7591.73 6194.24 13598.08 6189.46 16696.61 8696.47 15995.85 1899.12 9290.45 14899.56 3498.77 88
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_LR93.66 14493.28 16194.80 10696.25 20590.95 7090.21 27395.43 24387.91 19993.74 21294.40 25892.88 10696.38 32490.39 15098.28 19397.07 230
ANet_high94.83 10096.28 3990.47 27696.65 17073.16 35394.33 13298.74 1396.39 2798.09 2798.93 893.37 8898.70 16090.38 15199.68 1799.53 14
DeepPCF-MVS90.46 694.20 12993.56 15496.14 5295.96 22892.96 4489.48 29697.46 12585.14 25196.23 10395.42 22193.19 9498.08 22390.37 15298.76 14697.38 218
MSLP-MVS++93.25 15893.88 13991.37 24396.34 19582.81 22493.11 17397.74 10289.37 16994.08 19895.29 22790.40 16596.35 32690.35 15398.25 19794.96 319
PM-MVS93.33 15392.67 17795.33 8596.58 17594.06 2292.26 21192.18 31285.92 23496.22 10496.61 15485.64 23295.99 33590.35 15398.23 19995.93 285
test_vis1_n_192089.45 25689.85 24388.28 32393.59 31076.71 32390.67 25897.78 10079.67 31590.30 30196.11 18876.62 31592.17 37990.31 15593.57 35295.96 283
ACMH+88.43 1196.48 3196.82 1695.47 8098.54 4689.06 10195.65 8298.61 1496.10 3098.16 2597.52 8096.90 798.62 17190.30 15699.60 2598.72 94
DIV-MVS_self_test90.65 22190.56 22890.91 26591.85 34976.99 31886.75 34895.36 24685.52 24694.06 20094.89 24077.37 30597.99 23390.28 15798.97 11797.76 188
cl____90.65 22190.56 22890.91 26591.85 34976.98 31986.75 34895.36 24685.53 24494.06 20094.89 24077.36 30697.98 23490.27 15898.98 11297.76 188
PHI-MVS94.34 12293.80 14295.95 5895.65 24991.67 6394.82 11497.86 8987.86 20293.04 23694.16 26791.58 13398.78 14490.27 15898.96 11997.41 212
patch_mono-292.46 18592.72 17691.71 23096.65 17078.91 28788.85 31397.17 14983.89 26992.45 25696.76 14189.86 17597.09 29690.24 16098.59 16499.12 41
MVS_111021_HR93.63 14593.42 15894.26 13496.65 17086.96 14689.30 30396.23 21088.36 19393.57 21594.60 25393.45 8497.77 25690.23 16198.38 18398.03 156
NCCC94.08 13393.54 15595.70 7496.49 18489.90 8492.39 20396.91 17090.64 14492.33 26594.60 25390.58 16298.96 11490.21 16297.70 23798.23 137
pm-mvs195.43 7495.94 5793.93 14798.38 6085.08 19195.46 9197.12 15491.84 10897.28 5698.46 3295.30 3697.71 26390.17 16399.42 5098.99 54
RPMNet90.31 23690.14 23890.81 26991.01 36478.93 28492.52 19398.12 5591.91 10289.10 31996.89 13368.84 34499.41 4090.17 16392.70 36794.08 341
NR-MVSNet95.28 8595.28 9095.26 8997.75 10787.21 13795.08 10597.37 12993.92 6197.65 3595.90 19690.10 17199.33 6890.11 16599.66 2199.26 28
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2998.38 6094.31 1896.79 2598.32 2696.69 2096.86 7497.56 7595.48 2798.77 14790.11 16599.44 4898.31 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet94.47 11595.09 9892.60 20198.50 5580.82 25092.08 21596.68 18693.82 6296.29 9898.56 2590.10 17197.75 25990.10 16799.66 2199.24 30
v14892.87 17193.29 15991.62 23496.25 20577.72 30791.28 24395.05 25289.69 16295.93 11796.04 19187.34 20398.38 19790.05 16897.99 22198.78 85
MCST-MVS92.91 16792.51 18094.10 13997.52 12585.72 18091.36 24297.13 15380.33 30992.91 24194.24 26391.23 14298.72 15389.99 16997.93 22697.86 176
miper_lstm_enhance89.90 24989.80 24490.19 28791.37 36077.50 31083.82 38495.00 25484.84 25993.05 23594.96 23876.53 31795.20 35389.96 17098.67 15797.86 176
ambc92.98 18096.88 15683.01 22195.92 7296.38 20496.41 9197.48 8588.26 18797.80 25189.96 17098.93 12298.12 148
CPTT-MVS94.74 10394.12 13596.60 4498.15 7693.01 4395.84 7597.66 10689.21 17493.28 22495.46 21888.89 18298.98 10989.80 17298.82 13797.80 184
miper_ehance_all_eth90.48 22590.42 23190.69 27191.62 35676.57 32586.83 34696.18 21483.38 27294.06 20092.66 31082.20 26598.04 22589.79 17397.02 26597.45 209
eth_miper_zixun_eth90.72 21890.61 22691.05 25792.04 34476.84 32186.91 34396.67 18785.21 24994.41 18993.92 27679.53 28598.26 20989.76 17497.02 26598.06 150
VPA-MVSNet95.14 8995.67 7393.58 16197.76 10683.15 21894.58 12397.58 11593.39 7197.05 6598.04 4893.25 9298.51 18589.75 17599.59 2799.08 46
DELS-MVS92.05 19692.16 18791.72 22994.44 29180.13 25687.62 32897.25 14487.34 21392.22 26793.18 29789.54 17898.73 15289.67 17698.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest053088.69 27787.52 28892.20 21196.33 19679.36 27792.81 18284.01 38286.44 22393.67 21392.68 30953.62 39699.25 7789.65 17798.45 17798.00 158
DeepC-MVS_fast89.96 793.73 14393.44 15794.60 11996.14 21487.90 12593.36 16797.14 15185.53 24493.90 20895.45 21991.30 14098.59 17689.51 17898.62 16097.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet92.38 18891.99 19393.52 16793.82 30783.46 21191.14 24597.00 16189.81 16086.47 35594.04 27087.90 19699.21 8089.50 17998.27 19497.90 171
TSAR-MVS + GP.93.07 16492.41 18395.06 9895.82 23790.87 7390.97 24992.61 30688.04 19894.61 18593.79 28188.08 19097.81 25089.41 18098.39 18296.50 256
testf196.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
APD_test296.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
bld_raw_conf0392.59 18092.96 16591.47 24095.85 23478.88 28896.52 3597.60 11383.31 27394.23 19496.75 14384.27 24399.26 7689.30 18398.80 14096.28 267
APD-MVScopyleft95.00 9394.69 11295.93 6197.38 13290.88 7294.59 12197.81 9589.22 17395.46 14396.17 18793.42 8799.34 6389.30 18398.87 12997.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xiu_mvs_v1_base_debu91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
xiu_mvs_v1_base91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
xiu_mvs_v1_base_debi91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
HQP_MVS94.26 12593.93 13895.23 9297.71 11288.12 12194.56 12597.81 9591.74 11693.31 22195.59 21286.93 21498.95 11689.26 18898.51 17398.60 114
plane_prior597.81 9598.95 11689.26 18898.51 17398.60 114
Patchmatch-RL test88.81 27388.52 26489.69 29795.33 26679.94 26386.22 36092.71 30278.46 32895.80 12394.18 26666.25 35995.33 35089.22 19098.53 17093.78 350
PatchT87.51 29888.17 27985.55 35590.64 36766.91 38292.02 21886.09 36392.20 9489.05 32197.16 11264.15 36996.37 32589.21 19192.98 36593.37 360
test_f86.65 31487.13 29785.19 35990.28 37486.11 17086.52 35691.66 32269.76 38395.73 13097.21 10969.51 34381.28 40589.15 19294.40 33388.17 391
CSCG94.69 10694.75 10894.52 12397.55 12487.87 12695.01 10997.57 11692.68 8096.20 10693.44 29091.92 12598.78 14489.11 19399.24 8396.92 238
KD-MVS_self_test94.10 13294.73 11192.19 21297.66 11879.49 27594.86 11397.12 15489.59 16596.87 7397.65 6990.40 16598.34 20289.08 19499.35 6098.75 89
test_vis3_rt90.40 22890.03 23991.52 23992.58 32688.95 10390.38 26897.72 10473.30 36097.79 3197.51 8377.05 30887.10 39889.03 19594.89 32298.50 120
cl2289.02 26588.50 26590.59 27489.76 37876.45 32686.62 35394.03 27782.98 28392.65 24892.49 31172.05 33397.53 27188.93 19697.02 26597.78 186
VDD-MVS94.37 11994.37 12494.40 13097.49 12786.07 17193.97 14793.28 29194.49 4896.24 10297.78 6387.99 19498.79 14188.92 19799.14 9798.34 129
AUN-MVS90.05 24688.30 27095.32 8796.09 21890.52 7892.42 20192.05 31882.08 29488.45 33492.86 30265.76 36198.69 16288.91 19896.07 29196.75 248
TransMVSNet (Re)95.27 8796.04 5492.97 18198.37 6281.92 23495.07 10696.76 18293.97 5897.77 3298.57 2495.72 2097.90 23888.89 19999.23 8499.08 46
CR-MVSNet87.89 28787.12 29890.22 28491.01 36478.93 28492.52 19392.81 29873.08 36289.10 31996.93 13067.11 35197.64 26888.80 20092.70 36794.08 341
CVMVSNet85.16 32384.72 32186.48 34692.12 34170.19 36992.32 20688.17 34656.15 40590.64 29495.85 19867.97 34996.69 31488.78 20190.52 38392.56 370
FMVSNet194.84 9995.13 9593.97 14397.60 12084.29 19895.99 6796.56 19492.38 8697.03 6698.53 2690.12 16998.98 10988.78 20199.16 9598.65 104
ZD-MVS97.23 13990.32 7997.54 11884.40 26494.78 18095.79 20292.76 10999.39 5088.72 20398.40 179
train_agg92.71 17791.83 19895.35 8396.45 18789.46 9090.60 26096.92 16879.37 31890.49 29594.39 25991.20 14498.88 12388.66 20498.43 17897.72 192
Anonymous2024052995.50 7195.83 6694.50 12497.33 13685.93 17495.19 10396.77 18196.64 2297.61 3998.05 4693.23 9398.79 14188.60 20599.04 10998.78 85
test111190.39 23090.61 22689.74 29598.04 8671.50 36495.59 8479.72 39989.41 16795.94 11698.14 4170.79 33898.81 13788.52 20699.32 6798.90 72
test_prior290.21 27389.33 17090.77 29194.81 24390.41 16488.21 20798.55 167
APD_test195.91 5495.42 8397.36 2498.82 2596.62 795.64 8397.64 10793.38 7295.89 12097.23 10593.35 8997.66 26688.20 20898.66 15997.79 185
D2MVS89.93 24889.60 24990.92 26394.03 30178.40 29688.69 31894.85 25878.96 32593.08 23395.09 23374.57 32396.94 30388.19 20998.96 11997.41 212
IS-MVSNet94.49 11494.35 12694.92 10198.25 7086.46 15997.13 1794.31 27196.24 2896.28 10096.36 17282.88 25599.35 6088.19 20999.52 3998.96 62
test9_res88.16 21198.40 17997.83 180
UGNet93.08 16292.50 18194.79 10793.87 30587.99 12495.07 10694.26 27490.64 14487.33 35197.67 6886.89 21698.49 18688.10 21298.71 15197.91 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250685.42 32184.57 32487.96 32897.81 10366.53 38596.14 6156.35 41289.04 17593.55 21698.10 4342.88 41098.68 16488.09 21399.18 9298.67 102
test_cas_vis1_n_192088.25 28388.27 27388.20 32592.19 33978.92 28689.45 29795.44 24175.29 35093.23 22995.65 21171.58 33590.23 38988.05 21493.55 35495.44 306
FA-MVS(test-final)91.81 19991.85 19791.68 23294.95 27279.99 26296.00 6693.44 28987.80 20394.02 20397.29 10177.60 30098.45 19288.04 21597.49 24796.61 250
ETV-MVS92.99 16592.74 17393.72 15795.86 23386.30 16592.33 20597.84 9291.70 11992.81 24286.17 38392.22 11899.19 8488.03 21697.73 23495.66 299
EIA-MVS92.35 18992.03 19193.30 17495.81 23983.97 20692.80 18398.17 4987.71 20689.79 31287.56 37391.17 14799.18 8587.97 21797.27 25696.77 246
mvs_anonymous90.37 23291.30 21187.58 33392.17 34068.00 37889.84 28694.73 26483.82 27093.22 23097.40 8887.54 20097.40 28187.94 21895.05 31997.34 219
IterMVS90.18 23890.16 23590.21 28593.15 31675.98 33187.56 33192.97 29686.43 22494.09 19796.40 16578.32 29597.43 27887.87 21994.69 32997.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_enhance_ethall88.42 28087.87 28390.07 28888.67 39075.52 33585.10 37195.59 23575.68 34392.49 25389.45 35878.96 28897.88 24287.86 22097.02 26596.81 244
ET-MVSNet_ETH3D86.15 31684.27 32791.79 22693.04 31981.28 24287.17 33986.14 36279.57 31683.65 37688.66 36457.10 38898.18 21687.74 22195.40 30895.90 288
Effi-MVS+-dtu93.90 14092.60 17997.77 494.74 28296.67 694.00 14595.41 24489.94 15791.93 27492.13 32190.12 16998.97 11387.68 22297.48 24897.67 196
SDMVSNet94.43 11795.02 9992.69 19397.93 9482.88 22391.92 22495.99 22293.65 6895.51 13898.63 2194.60 6596.48 31987.57 22399.35 6098.70 98
WR-MVS93.49 14893.72 14592.80 19097.57 12380.03 26090.14 27695.68 22993.70 6496.62 8595.39 22587.21 20699.04 10487.50 22499.64 2399.33 24
tfpnnormal94.27 12494.87 10492.48 20597.71 11280.88 24994.55 12795.41 24493.70 6496.67 8397.72 6691.40 13798.18 21687.45 22599.18 9298.36 128
jason89.17 26188.32 26991.70 23195.73 24480.07 25788.10 32493.22 29271.98 36890.09 30392.79 30578.53 29498.56 17987.43 22697.06 26396.46 259
jason: jason.
Effi-MVS+92.79 17392.74 17392.94 18495.10 26983.30 21394.00 14597.53 12091.36 12889.35 31890.65 34694.01 7798.66 16687.40 22795.30 31296.88 242
FMVSNet292.78 17492.73 17592.95 18395.40 26181.98 23394.18 13895.53 23988.63 18596.05 11297.37 9081.31 27498.81 13787.38 22898.67 15798.06 150
EPP-MVSNet93.91 13993.68 14894.59 12098.08 8085.55 18497.44 1194.03 27794.22 5394.94 17396.19 18482.07 26799.57 1687.28 22998.89 12498.65 104
PC_three_145275.31 34995.87 12195.75 20792.93 10396.34 32887.18 23098.68 15598.04 153
ECVR-MVScopyleft90.12 24190.16 23590.00 29197.81 10372.68 35895.76 7878.54 40289.04 17595.36 14998.10 4370.51 34098.64 17087.10 23199.18 9298.67 102
VDDNet94.03 13494.27 13093.31 17398.87 2182.36 22995.51 9091.78 32197.19 1396.32 9598.60 2384.24 24498.75 14887.09 23298.83 13698.81 82
agg_prior287.06 23398.36 18897.98 162
LF4IMVS92.72 17692.02 19294.84 10595.65 24991.99 5592.92 17896.60 19085.08 25492.44 25793.62 28586.80 21796.35 32686.81 23498.25 19796.18 274
GBi-Net93.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
test193.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
FMVSNet390.78 21790.32 23492.16 21693.03 32079.92 26492.54 19294.95 25686.17 23095.10 16596.01 19369.97 34298.75 14886.74 23598.38 18397.82 182
lupinMVS88.34 28287.31 29091.45 24194.74 28280.06 25887.23 33692.27 31171.10 37488.83 32291.15 33577.02 30998.53 18386.67 23896.75 27895.76 293
OMC-MVS94.22 12893.69 14795.81 6897.25 13891.27 6592.27 21097.40 12887.10 21894.56 18695.42 22193.74 7998.11 22186.62 23998.85 13098.06 150
mvsany_test389.11 26388.21 27891.83 22491.30 36190.25 8088.09 32578.76 40076.37 34196.43 9098.39 3583.79 24790.43 38886.57 24094.20 34094.80 326
pmmvs-eth3d91.54 20590.73 22493.99 14195.76 24387.86 12790.83 25293.98 28178.23 33094.02 20396.22 18382.62 26296.83 31086.57 24098.33 18997.29 222
BP-MVS86.55 242
HQP-MVS92.09 19591.49 20693.88 14996.36 19184.89 19291.37 23997.31 13887.16 21588.81 32493.40 29184.76 24098.60 17486.55 24297.73 23498.14 146
ppachtmachnet_test88.61 27888.64 26388.50 31991.76 35170.99 36784.59 37792.98 29579.30 32292.38 26093.53 28979.57 28497.45 27786.50 24497.17 26097.07 230
MIMVSNet195.52 6995.45 8095.72 7299.14 589.02 10296.23 5996.87 17393.73 6397.87 2998.49 2990.73 15899.05 10186.43 24599.60 2599.10 45
PVSNet_Blended_VisFu91.63 20391.20 21292.94 18497.73 11083.95 20792.14 21497.46 12578.85 32792.35 26294.98 23784.16 24599.08 9686.36 24696.77 27795.79 292
Fast-Effi-MVS+-dtu92.77 17592.16 18794.58 12294.66 28788.25 11992.05 21696.65 18889.62 16490.08 30491.23 33492.56 11298.60 17486.30 24796.27 28996.90 239
OPU-MVS95.15 9696.84 16089.43 9295.21 9995.66 21093.12 9798.06 22486.28 24898.61 16197.95 166
PMVScopyleft87.21 1494.97 9495.33 8793.91 14898.97 1797.16 395.54 8995.85 22596.47 2593.40 22097.46 8695.31 3595.47 34586.18 24998.78 14489.11 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft89.45 892.27 19292.13 19092.68 19494.53 29084.10 20495.70 7997.03 15982.44 29091.14 28796.42 16388.47 18598.38 19785.95 25097.47 24995.55 304
Syy-MVS84.81 32684.93 32084.42 36691.71 35363.36 40085.89 36381.49 39081.03 30285.13 36381.64 39977.44 30295.00 35485.94 25194.12 34394.91 323
CDPH-MVS92.67 17891.83 19895.18 9596.94 15288.46 11790.70 25797.07 15777.38 33392.34 26495.08 23492.67 11198.88 12385.74 25298.57 16698.20 140
SSC-MVS90.16 23992.96 16581.78 37897.88 9748.48 41090.75 25487.69 35196.02 3496.70 8197.63 7185.60 23397.80 25185.73 25398.60 16399.06 48
CANet_DTU89.85 25089.17 25291.87 22392.20 33880.02 26190.79 25395.87 22486.02 23282.53 38691.77 32780.01 28298.57 17885.66 25497.70 23797.01 235
ITE_SJBPF95.95 5897.34 13593.36 4196.55 19791.93 10194.82 17895.39 22591.99 12397.08 29785.53 25597.96 22497.41 212
new-patchmatchnet88.97 26990.79 22283.50 37394.28 29555.83 40885.34 37093.56 28686.18 22995.47 14195.73 20883.10 25296.51 31885.40 25698.06 21498.16 144
EPNet89.80 25288.25 27494.45 12883.91 40886.18 16893.87 14987.07 35791.16 13380.64 39694.72 24878.83 28998.89 12285.17 25798.89 12498.28 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry90.11 24289.92 24190.66 27290.35 37377.00 31792.96 17792.81 29890.25 15494.74 18296.93 13067.11 35197.52 27285.17 25798.98 11297.46 208
旧先验290.00 28168.65 38792.71 24796.52 31785.15 259
MDA-MVSNet-bldmvs91.04 21390.88 21891.55 23794.68 28680.16 25385.49 36892.14 31590.41 15294.93 17495.79 20285.10 23796.93 30585.15 25994.19 34297.57 201
Anonymous20240521192.58 18192.50 18192.83 18996.55 17883.22 21692.43 20091.64 32394.10 5595.59 13596.64 15281.88 27197.50 27385.12 26198.52 17197.77 187
AllTest94.88 9894.51 12096.00 5598.02 8792.17 5195.26 9798.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
TestCases96.00 5598.02 8792.17 5198.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
VPNet93.08 16293.76 14491.03 25898.60 3875.83 33491.51 23795.62 23091.84 10895.74 12897.10 11989.31 17998.32 20385.07 26499.06 10198.93 66
LFMVS91.33 21091.16 21591.82 22596.27 20279.36 27795.01 10985.61 37096.04 3394.82 17897.06 12172.03 33498.46 19184.96 26598.70 15397.65 197
VNet92.67 17892.96 16591.79 22696.27 20280.15 25491.95 22094.98 25592.19 9594.52 18896.07 19087.43 20297.39 28284.83 26698.38 18397.83 180
our_test_387.55 29787.59 28787.44 33591.76 35170.48 36883.83 38390.55 33379.79 31292.06 27292.17 32078.63 29395.63 34084.77 26794.73 32796.22 272
TAPA-MVS88.58 1092.49 18491.75 20094.73 10996.50 18389.69 8692.91 17997.68 10578.02 33192.79 24494.10 26890.85 15297.96 23584.76 26898.16 20696.54 251
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+91.28 21290.86 21992.53 20495.45 26082.53 22689.25 30696.52 19885.00 25589.91 30888.55 36792.94 10298.84 13084.72 26995.44 30796.22 272
GA-MVS87.70 29186.82 30290.31 28093.27 31477.22 31584.72 37692.79 30085.11 25389.82 31090.07 34766.80 35497.76 25884.56 27094.27 33895.96 283
QAPM92.88 16992.77 17193.22 17695.82 23783.31 21296.45 4197.35 13583.91 26893.75 21096.77 13989.25 18098.88 12384.56 27097.02 26597.49 207
mvsmamba90.24 23789.43 25092.64 19595.52 25782.36 22996.64 3092.29 31081.77 29692.14 26996.28 17870.59 33999.10 9584.44 27295.22 31596.47 258
UnsupCasMVSNet_eth90.33 23490.34 23390.28 28194.64 28880.24 25289.69 29195.88 22385.77 23693.94 20795.69 20981.99 26892.98 37684.21 27391.30 37897.62 198
testing383.66 33582.52 34087.08 33795.84 23565.84 39089.80 28877.17 40688.17 19690.84 29088.63 36530.95 41498.11 22184.05 27497.19 25997.28 223
CLD-MVS91.82 19891.41 20893.04 17896.37 18983.65 21086.82 34797.29 14184.65 26192.27 26689.67 35592.20 12097.85 24883.95 27599.47 4197.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t90.51 22489.80 24492.63 19898.00 8982.24 23193.40 16597.29 14165.84 39589.40 31794.80 24586.99 21298.75 14883.88 27698.61 16196.89 240
DP-MVS Recon92.31 19091.88 19693.60 16097.18 14386.87 14791.10 24797.37 12984.92 25792.08 27194.08 26988.59 18398.20 21383.50 27798.14 20895.73 294
YYNet188.17 28488.24 27587.93 32992.21 33773.62 35080.75 39388.77 33982.51 28994.99 17295.11 23282.70 26093.70 36983.33 27893.83 34896.48 257
MDA-MVSNet_test_wron88.16 28588.23 27687.93 32992.22 33673.71 34980.71 39488.84 33882.52 28894.88 17795.14 23082.70 26093.61 37083.28 27993.80 34996.46 259
XXY-MVS92.58 18193.16 16490.84 26797.75 10779.84 26591.87 22896.22 21285.94 23395.53 13797.68 6792.69 11094.48 36083.21 28097.51 24698.21 139
cascas87.02 31186.28 31389.25 30591.56 35876.45 32684.33 38096.78 17971.01 37586.89 35485.91 38481.35 27396.94 30383.09 28195.60 30294.35 338
test-LLR83.58 33683.17 33584.79 36389.68 38066.86 38383.08 38584.52 37983.07 28182.85 38384.78 39162.86 37693.49 37182.85 28294.86 32394.03 344
test-mter81.21 35680.01 36384.79 36389.68 38066.86 38383.08 38584.52 37973.85 35782.85 38384.78 39143.66 40793.49 37182.85 28294.86 32394.03 344
pmmvs488.95 27087.70 28692.70 19294.30 29485.60 18387.22 33792.16 31474.62 35289.75 31494.19 26577.97 29896.41 32282.71 28496.36 28796.09 277
testdata91.03 25896.87 15782.01 23294.28 27371.55 37092.46 25595.42 22185.65 23197.38 28482.64 28597.27 25693.70 353
thisisatest051584.72 32782.99 33789.90 29292.96 32275.33 33784.36 37983.42 38477.37 33488.27 33786.65 37853.94 39498.72 15382.56 28697.40 25395.67 298
PS-MVSNAJ88.86 27288.99 25788.48 32094.88 27374.71 33886.69 35095.60 23180.88 30587.83 34387.37 37690.77 15498.82 13282.52 28794.37 33591.93 375
xiu_mvs_v2_base89.00 26889.19 25188.46 32194.86 27574.63 34086.97 34195.60 23180.88 30587.83 34388.62 36691.04 14998.81 13782.51 28894.38 33491.93 375
WB-MVS89.44 25792.15 18981.32 37997.73 11048.22 41189.73 28987.98 34995.24 3996.05 11296.99 12785.18 23696.95 30282.45 28997.97 22398.78 85
PAPM_NR91.03 21490.81 22191.68 23296.73 16581.10 24693.72 15596.35 20588.19 19588.77 32892.12 32285.09 23897.25 28682.40 29093.90 34796.68 249
test_yl90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
DCV-MVSNet90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
DPM-MVS89.35 25888.40 26792.18 21596.13 21684.20 20286.96 34296.15 21675.40 34787.36 35091.55 33283.30 25098.01 23082.17 29396.62 28194.32 339
MG-MVS89.54 25489.80 24488.76 31294.88 27372.47 36089.60 29292.44 30985.82 23589.48 31695.98 19482.85 25797.74 26181.87 29495.27 31396.08 278
PatchmatchNetpermissive85.22 32284.64 32286.98 33989.51 38369.83 37490.52 26287.34 35578.87 32687.22 35292.74 30766.91 35396.53 31681.77 29586.88 39294.58 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap92.00 19792.76 17289.71 29695.62 25277.02 31690.72 25696.17 21587.70 20795.26 15696.29 17692.54 11396.45 32181.77 29598.77 14595.66 299
sd_testset93.94 13894.39 12292.61 20097.93 9483.24 21493.17 17295.04 25393.65 6895.51 13898.63 2194.49 6995.89 33781.72 29799.35 6098.70 98
test_vis1_rt85.58 32084.58 32388.60 31687.97 39286.76 14985.45 36993.59 28466.43 39287.64 34689.20 36179.33 28685.38 40281.59 29889.98 38693.66 354
原ACMM192.87 18796.91 15584.22 20197.01 16076.84 33989.64 31594.46 25788.00 19398.70 16081.53 29998.01 22095.70 297
1112_ss88.42 28087.41 28991.45 24196.69 16780.99 24789.72 29096.72 18473.37 35987.00 35390.69 34477.38 30498.20 21381.38 30093.72 35095.15 312
MS-PatchMatch88.05 28687.75 28488.95 30893.28 31377.93 30287.88 32792.49 30875.42 34692.57 25293.59 28780.44 28094.24 36781.28 30192.75 36694.69 332
LCM-MVSNet-Re94.20 12994.58 11993.04 17895.91 23183.13 21993.79 15299.19 492.00 9898.84 798.04 4893.64 8099.02 10681.28 30198.54 16996.96 237
tpmrst82.85 34482.93 33882.64 37587.65 39358.99 40690.14 27687.90 35075.54 34583.93 37591.63 33066.79 35695.36 34881.21 30381.54 40293.57 359
无先验89.94 28295.75 22770.81 37798.59 17681.17 30494.81 325
新几何193.17 17797.16 14487.29 13494.43 26967.95 38991.29 28294.94 23986.97 21398.23 21181.06 30597.75 23393.98 346
MSDG90.82 21590.67 22591.26 25094.16 29683.08 22086.63 35296.19 21390.60 14691.94 27391.89 32589.16 18195.75 33980.96 30694.51 33294.95 320
mvsany_test183.91 33482.93 33886.84 34386.18 40285.93 17481.11 39275.03 40770.80 37888.57 33394.63 25183.08 25387.38 39780.39 30786.57 39387.21 393
pmmvs587.87 28887.14 29690.07 28893.26 31576.97 32088.89 31192.18 31273.71 35888.36 33593.89 27876.86 31496.73 31380.32 30896.81 27596.51 253
PVSNet_BlendedMVS90.35 23389.96 24091.54 23894.81 27778.80 29390.14 27696.93 16679.43 31788.68 33195.06 23586.27 22498.15 21980.27 30998.04 21697.68 195
PVSNet_Blended88.74 27588.16 28090.46 27894.81 27778.80 29386.64 35196.93 16674.67 35188.68 33189.18 36286.27 22498.15 21980.27 30996.00 29394.44 336
testdata298.03 22680.24 311
FE-MVS89.06 26488.29 27191.36 24494.78 27979.57 27396.77 2790.99 32784.87 25892.96 23996.29 17660.69 38498.80 14080.18 31297.11 26295.71 295
F-COLMAP92.28 19191.06 21695.95 5897.52 12591.90 5793.53 15997.18 14883.98 26788.70 33094.04 27088.41 18698.55 18180.17 31395.99 29497.39 216
EPMVS81.17 35780.37 35983.58 37285.58 40465.08 39490.31 27171.34 40877.31 33585.80 35991.30 33359.38 38592.70 37779.99 31482.34 40192.96 366
TESTMET0.1,179.09 36978.04 37182.25 37687.52 39564.03 39883.08 38580.62 39670.28 38180.16 39783.22 39644.13 40590.56 38679.95 31593.36 35592.15 373
Test_1112_low_res87.50 29986.58 30690.25 28396.80 16477.75 30687.53 33396.25 20869.73 38486.47 35593.61 28675.67 31997.88 24279.95 31593.20 35995.11 316
CL-MVSNet_self_test90.04 24789.90 24290.47 27695.24 26777.81 30586.60 35492.62 30585.64 24093.25 22893.92 27683.84 24696.06 33379.93 31798.03 21797.53 205
OpenMVS_ROBcopyleft85.12 1689.52 25589.05 25490.92 26394.58 28981.21 24591.10 24793.41 29077.03 33793.41 21893.99 27483.23 25197.80 25179.93 31794.80 32693.74 352
CNLPA91.72 20191.20 21293.26 17596.17 21091.02 6891.14 24595.55 23890.16 15590.87 28993.56 28886.31 22394.40 36379.92 31997.12 26194.37 337
ab-mvs92.40 18792.62 17891.74 22897.02 14881.65 23795.84 7595.50 24086.95 22092.95 24097.56 7590.70 15997.50 27379.63 32097.43 25196.06 279
test_post190.21 2735.85 41365.36 36396.00 33479.61 321
SCA87.43 30087.21 29488.10 32792.01 34571.98 36289.43 29888.11 34782.26 29288.71 32992.83 30378.65 29197.59 26979.61 32193.30 35794.75 329
tpmvs84.22 33183.97 32984.94 36187.09 39865.18 39291.21 24488.35 34282.87 28485.21 36190.96 33965.24 36596.75 31279.60 32385.25 39592.90 367
baseline187.62 29587.31 29088.54 31794.71 28574.27 34693.10 17488.20 34586.20 22892.18 26893.04 29873.21 32895.52 34279.32 32485.82 39495.83 290
tpm84.38 33084.08 32885.30 35890.47 37163.43 39989.34 30185.63 36977.24 33687.62 34795.03 23661.00 38397.30 28579.26 32591.09 38195.16 311
BH-untuned90.68 22090.90 21790.05 29095.98 22779.57 27390.04 27994.94 25787.91 19994.07 19993.00 29987.76 19797.78 25579.19 32695.17 31692.80 368
API-MVS91.52 20691.61 20191.26 25094.16 29686.26 16694.66 11994.82 26091.17 13292.13 27091.08 33790.03 17497.06 29979.09 32797.35 25590.45 385
131486.46 31586.33 31286.87 34291.65 35574.54 34191.94 22294.10 27674.28 35484.78 36887.33 37783.03 25495.00 35478.72 32891.16 38091.06 382
BH-RMVSNet90.47 22690.44 23090.56 27595.21 26878.65 29589.15 30793.94 28288.21 19492.74 24694.22 26486.38 22297.88 24278.67 32995.39 30995.14 313
MVP-Stereo90.07 24588.92 25893.54 16496.31 19886.49 15790.93 25095.59 23579.80 31191.48 27995.59 21280.79 27897.39 28278.57 33091.19 37996.76 247
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDTV_nov1_ep1383.88 33289.42 38461.52 40188.74 31787.41 35373.99 35684.96 36794.01 27365.25 36495.53 34178.02 33193.16 360
Vis-MVSNet (Re-imp)90.42 22790.16 23591.20 25497.66 11877.32 31394.33 13287.66 35291.20 13192.99 23795.13 23175.40 32198.28 20577.86 33299.19 9097.99 161
sss87.23 30486.82 30288.46 32193.96 30277.94 30186.84 34592.78 30177.59 33287.61 34891.83 32678.75 29091.92 38077.84 33394.20 34095.52 305
IB-MVS77.21 1983.11 33981.05 35189.29 30391.15 36275.85 33285.66 36786.00 36479.70 31482.02 39086.61 37948.26 39998.39 19477.84 33392.22 37293.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-test86.10 31786.01 31486.38 35090.63 36874.22 34789.57 29386.69 35885.73 23889.81 31192.83 30365.24 36591.04 38477.82 33595.78 29993.88 349
USDC89.02 26589.08 25388.84 31195.07 27074.50 34388.97 30996.39 20373.21 36193.27 22596.28 17882.16 26696.39 32377.55 33698.80 14095.62 302
CDS-MVSNet89.55 25388.22 27793.53 16595.37 26486.49 15789.26 30493.59 28479.76 31391.15 28692.31 31777.12 30798.38 19777.51 33797.92 22795.71 295
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
N_pmnet88.90 27187.25 29393.83 15394.40 29393.81 3684.73 37487.09 35679.36 32093.26 22692.43 31579.29 28791.68 38177.50 33897.22 25896.00 281
AdaColmapbinary91.63 20391.36 20992.47 20695.56 25586.36 16392.24 21396.27 20788.88 18189.90 30992.69 30891.65 13298.32 20377.38 33997.64 24192.72 369
CostFormer83.09 34082.21 34385.73 35389.27 38567.01 38190.35 26986.47 36070.42 38083.52 37993.23 29661.18 38196.85 30977.21 34088.26 39093.34 361
E-PMN80.72 36080.86 35480.29 38285.11 40568.77 37672.96 40081.97 38887.76 20583.25 38283.01 39762.22 37989.17 39577.15 34194.31 33782.93 399
PLCcopyleft85.34 1590.40 22888.92 25894.85 10496.53 18290.02 8291.58 23696.48 20080.16 31086.14 35792.18 31985.73 22998.25 21076.87 34294.61 33196.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS90.32 23588.87 26194.66 11594.82 27691.85 5894.22 13794.75 26380.91 30487.52 34988.07 37186.63 22097.87 24576.67 34396.21 29094.25 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet_dtu85.63 31984.37 32589.40 30186.30 40174.33 34591.64 23588.26 34384.84 25972.96 40589.85 34871.27 33797.69 26476.60 34497.62 24296.18 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9982.94 34281.72 34586.59 34492.55 32866.53 38586.08 36285.70 36785.47 24783.95 37485.70 38645.87 40197.07 29876.58 34593.56 35396.17 276
JIA-IIPM85.08 32483.04 33691.19 25587.56 39486.14 16989.40 30084.44 38188.98 17782.20 38797.95 5456.82 39096.15 32976.55 34683.45 39891.30 380
PatchMatch-RL89.18 26088.02 28292.64 19595.90 23292.87 4688.67 32091.06 32680.34 30890.03 30691.67 32983.34 24994.42 36276.35 34794.84 32590.64 384
testing9183.56 33782.45 34186.91 34192.92 32367.29 37986.33 35888.07 34886.22 22784.26 37285.76 38548.15 40097.17 29276.27 34894.08 34696.27 269
FMVSNet587.82 29086.56 30791.62 23492.31 33379.81 26893.49 16194.81 26283.26 27591.36 28196.93 13052.77 39797.49 27576.07 34998.03 21797.55 204
PMMVS83.00 34181.11 35088.66 31583.81 40986.44 16082.24 38985.65 36861.75 40282.07 38885.64 38779.75 28391.59 38275.99 35093.09 36287.94 392
CMPMVSbinary68.83 2287.28 30385.67 31792.09 21888.77 38985.42 18790.31 27194.38 27070.02 38288.00 34093.30 29373.78 32794.03 36875.96 35196.54 28396.83 243
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EMVS80.35 36380.28 36180.54 38184.73 40769.07 37572.54 40280.73 39587.80 20381.66 39281.73 39862.89 37589.84 39075.79 35294.65 33082.71 400
HyFIR lowres test87.19 30785.51 31892.24 21097.12 14780.51 25185.03 37296.06 21766.11 39491.66 27792.98 30170.12 34199.14 8975.29 35395.23 31497.07 230
UnsupCasMVSNet_bld88.50 27988.03 28189.90 29295.52 25778.88 28887.39 33594.02 27979.32 32193.06 23494.02 27280.72 27994.27 36575.16 35493.08 36396.54 251
WTY-MVS86.93 31286.50 31188.24 32494.96 27174.64 33987.19 33892.07 31778.29 32988.32 33691.59 33178.06 29794.27 36574.88 35593.15 36195.80 291
WAC-MVS61.25 40274.55 356
KD-MVS_2432*160082.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
miper_refine_blended82.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
baseline283.38 33881.54 34888.90 30991.38 35972.84 35788.78 31581.22 39278.97 32479.82 39887.56 37361.73 38097.80 25174.30 35990.05 38596.05 280
testing1181.98 35180.52 35886.38 35092.69 32567.13 38085.79 36584.80 37882.16 29381.19 39585.41 38845.24 40296.88 30874.14 36093.24 35895.14 313
gm-plane-assit87.08 39959.33 40571.22 37283.58 39597.20 28973.95 361
test20.0390.80 21690.85 22090.63 27395.63 25179.24 28089.81 28792.87 29789.90 15894.39 19096.40 16585.77 22895.27 35273.86 36299.05 10497.39 216
TAMVS90.16 23989.05 25493.49 16996.49 18486.37 16290.34 27092.55 30780.84 30792.99 23794.57 25581.94 27098.20 21373.51 36398.21 20295.90 288
CHOSEN 1792x268887.19 30785.92 31691.00 26197.13 14679.41 27684.51 37895.60 23164.14 39890.07 30594.81 24378.26 29697.14 29573.34 36495.38 31096.46 259
thres600view787.66 29387.10 29989.36 30296.05 22173.17 35292.72 18485.31 37391.89 10393.29 22390.97 33863.42 37398.39 19473.23 36596.99 27096.51 253
dp79.28 36878.62 36881.24 38085.97 40356.45 40786.91 34385.26 37572.97 36481.45 39489.17 36356.01 39295.45 34673.19 36676.68 40491.82 378
pmmvs380.83 35978.96 36786.45 34787.23 39777.48 31184.87 37382.31 38763.83 39985.03 36589.50 35749.66 39893.10 37473.12 36795.10 31788.78 390
MDTV_nov1_ep13_2view42.48 41488.45 32267.22 39183.56 37866.80 35472.86 36894.06 343
TR-MVS87.70 29187.17 29589.27 30494.11 29879.26 27988.69 31891.86 32081.94 29590.69 29389.79 35282.82 25897.42 27972.65 36991.98 37591.14 381
PAPR87.65 29486.77 30490.27 28292.85 32477.38 31288.56 32196.23 21076.82 34084.98 36689.75 35486.08 22697.16 29472.33 37093.35 35696.26 270
Anonymous2023120688.77 27488.29 27190.20 28696.31 19878.81 29289.56 29493.49 28874.26 35592.38 26095.58 21582.21 26495.43 34772.07 37198.75 14896.34 263
MVS84.98 32584.30 32687.01 33891.03 36377.69 30891.94 22294.16 27559.36 40384.23 37387.50 37585.66 23096.80 31171.79 37293.05 36486.54 395
tpm cat180.61 36179.46 36484.07 36988.78 38865.06 39589.26 30488.23 34462.27 40181.90 39189.66 35662.70 37895.29 35171.72 37380.60 40391.86 377
HY-MVS82.50 1886.81 31385.93 31589.47 29893.63 30977.93 30294.02 14491.58 32475.68 34383.64 37793.64 28377.40 30397.42 27971.70 37492.07 37493.05 365
testgi90.38 23191.34 21087.50 33497.49 12771.54 36389.43 29895.16 25088.38 19294.54 18794.68 25092.88 10693.09 37571.60 37597.85 23097.88 174
BH-w/o87.21 30587.02 30087.79 33294.77 28077.27 31487.90 32693.21 29481.74 29789.99 30788.39 36983.47 24896.93 30571.29 37692.43 37189.15 386
thres100view90087.35 30286.89 30188.72 31396.14 21473.09 35493.00 17685.31 37392.13 9693.26 22690.96 33963.42 37398.28 20571.27 37796.54 28394.79 327
tfpn200view987.05 31086.52 30988.67 31495.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28394.79 327
thres40087.20 30686.52 30989.24 30695.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28396.51 253
myMVS_eth3d79.62 36778.26 37083.72 37191.71 35361.25 40285.89 36381.49 39081.03 30285.13 36381.64 39932.12 41395.00 35471.17 38094.12 34394.91 323
tpm281.46 35380.35 36084.80 36289.90 37765.14 39390.44 26485.36 37265.82 39682.05 38992.44 31457.94 38796.69 31470.71 38188.49 38992.56 370
ADS-MVSNet284.01 33382.20 34489.41 30089.04 38676.37 32887.57 32990.98 32872.71 36684.46 36992.45 31268.08 34796.48 31970.58 38283.97 39695.38 307
ADS-MVSNet82.25 34681.55 34784.34 36789.04 38665.30 39187.57 32985.13 37772.71 36684.46 36992.45 31268.08 34792.33 37870.58 38283.97 39695.38 307
PVSNet76.22 2082.89 34382.37 34284.48 36593.96 30264.38 39778.60 39688.61 34071.50 37184.43 37186.36 38274.27 32494.60 35969.87 38493.69 35194.46 335
CHOSEN 280x42080.04 36577.97 37286.23 35290.13 37574.53 34272.87 40189.59 33766.38 39376.29 40285.32 38956.96 38995.36 34869.49 38594.72 32888.79 389
thres20085.85 31885.18 31987.88 33194.44 29172.52 35989.08 30886.21 36188.57 18891.44 28088.40 36864.22 36898.00 23168.35 38695.88 29893.12 362
dmvs_re84.69 32883.94 33086.95 34092.24 33582.93 22289.51 29587.37 35484.38 26585.37 36085.08 39072.44 33086.59 39968.05 38791.03 38291.33 379
PCF-MVS84.52 1789.12 26287.71 28593.34 17296.06 22085.84 17786.58 35597.31 13868.46 38893.61 21493.89 27887.51 20198.52 18467.85 38898.11 21095.66 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet81.22 35581.01 35381.86 37790.92 36670.15 37084.03 38180.25 39870.83 37685.97 35889.78 35367.93 35084.65 40367.44 38991.90 37690.78 383
gg-mvs-nofinetune82.10 35081.02 35285.34 35787.46 39671.04 36594.74 11667.56 40996.44 2679.43 39998.99 645.24 40296.15 32967.18 39092.17 37388.85 388
DSMNet-mixed82.21 34781.56 34684.16 36889.57 38270.00 37390.65 25977.66 40454.99 40683.30 38197.57 7477.89 29990.50 38766.86 39195.54 30491.97 374
test0.0.03 182.48 34581.47 34985.48 35689.70 37973.57 35184.73 37481.64 38983.07 28188.13 33986.61 37962.86 37689.10 39666.24 39290.29 38493.77 351
MIMVSNet87.13 30986.54 30888.89 31096.05 22176.11 32994.39 13088.51 34181.37 30088.27 33796.75 14372.38 33195.52 34265.71 39395.47 30695.03 317
UWE-MVS80.29 36479.10 36583.87 37091.97 34759.56 40486.50 35777.43 40575.40 34787.79 34588.10 37044.08 40696.90 30764.23 39496.36 28795.14 313
PMMVS281.31 35483.44 33374.92 38790.52 37046.49 41369.19 40385.23 37684.30 26687.95 34294.71 24976.95 31184.36 40464.07 39598.09 21293.89 348
FPMVS84.50 32983.28 33488.16 32696.32 19794.49 1785.76 36685.47 37183.09 28085.20 36294.26 26263.79 37286.58 40063.72 39691.88 37783.40 398
MVS-HIRNet78.83 37080.60 35773.51 38893.07 31747.37 41287.10 34078.00 40368.94 38677.53 40197.26 10271.45 33694.62 35863.28 39788.74 38878.55 403
WB-MVSnew84.20 33283.89 33185.16 36091.62 35666.15 38988.44 32381.00 39376.23 34287.98 34187.77 37284.98 23993.35 37362.85 39894.10 34595.98 282
testing22280.54 36278.53 36986.58 34592.54 33068.60 37786.24 35982.72 38683.78 27182.68 38584.24 39339.25 41295.94 33660.25 39995.09 31895.20 309
wuyk23d87.83 28990.79 22278.96 38490.46 37288.63 10992.72 18490.67 33291.65 12098.68 1397.64 7096.06 1577.53 40659.84 40099.41 5470.73 404
GG-mvs-BLEND83.24 37485.06 40671.03 36694.99 11165.55 41074.09 40475.51 40444.57 40494.46 36159.57 40187.54 39184.24 397
PVSNet_070.34 2174.58 37272.96 37579.47 38390.63 36866.24 38773.26 39983.40 38563.67 40078.02 40078.35 40372.53 32989.59 39256.68 40260.05 40782.57 401
ETVMVS79.85 36677.94 37385.59 35492.97 32166.20 38886.13 36180.99 39481.41 29983.52 37983.89 39441.81 41194.98 35756.47 40394.25 33995.61 303
MVEpermissive59.87 2373.86 37372.65 37677.47 38587.00 40074.35 34461.37 40560.93 41167.27 39069.69 40686.49 38181.24 27772.33 40856.45 40483.45 39885.74 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM81.91 35280.11 36287.31 33693.87 30572.32 36184.02 38293.22 29269.47 38576.13 40389.84 34972.15 33297.23 28753.27 40589.02 38792.37 372
test_method50.44 37548.94 37854.93 38939.68 41512.38 41828.59 40690.09 3346.82 40941.10 41178.41 40254.41 39370.69 40950.12 40651.26 40881.72 402
dmvs_testset78.23 37178.99 36675.94 38691.99 34655.34 40988.86 31278.70 40182.69 28581.64 39379.46 40175.93 31885.74 40148.78 40782.85 40086.76 394
tmp_tt37.97 37744.33 37918.88 39311.80 41621.54 41763.51 40445.66 4154.23 41051.34 40950.48 40859.08 38622.11 41244.50 40868.35 40613.00 408
DeepMVS_CXcopyleft53.83 39070.38 41364.56 39648.52 41433.01 40865.50 40874.21 40556.19 39146.64 41138.45 40970.07 40550.30 406
dongtai53.72 37453.79 37753.51 39179.69 41236.70 41577.18 39732.53 41771.69 36968.63 40760.79 40626.65 41573.11 40730.67 41036.29 40950.73 405
kuosan43.63 37644.25 38041.78 39266.04 41434.37 41675.56 39832.62 41653.25 40750.46 41051.18 40725.28 41649.13 41013.44 41130.41 41041.84 407
test1239.49 37912.01 3821.91 3942.87 4171.30 41982.38 3881.34 4191.36 4122.84 4136.56 4112.45 4170.97 4132.73 4125.56 4113.47 409
testmvs9.02 38011.42 3831.81 3952.77 4181.13 42079.44 3951.90 4181.18 4132.65 4146.80 4101.95 4180.87 4142.62 4133.45 4123.44 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.35 37831.13 3810.00 3960.00 4190.00 4210.00 40795.58 2370.00 4140.00 41591.15 33593.43 860.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.56 38110.09 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41490.77 1540.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.56 38110.08 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41590.69 3440.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
FOURS199.21 394.68 1398.45 498.81 1097.73 798.27 22
test_one_060198.26 6887.14 13998.18 4594.25 5196.99 6997.36 9395.13 43
eth-test20.00 419
eth-test0.00 419
test_241102_ONE98.51 4986.97 14498.10 5891.85 10597.63 3697.03 12396.48 1098.95 116
save fliter97.46 13088.05 12392.04 21797.08 15687.63 209
test072698.51 4986.69 15295.34 9398.18 4591.85 10597.63 3697.37 9095.58 24
GSMVS94.75 329
test_part298.21 7389.41 9396.72 80
sam_mvs166.64 35794.75 329
sam_mvs66.41 358
MTGPAbinary97.62 109
test_post6.07 41265.74 36295.84 338
patchmatchnet-post91.71 32866.22 36097.59 269
MTMP94.82 11454.62 413
TEST996.45 18789.46 9090.60 26096.92 16879.09 32390.49 29594.39 25991.31 13998.88 123
test_896.37 18989.14 10090.51 26396.89 17179.37 31890.42 29794.36 26191.20 14498.82 132
agg_prior96.20 20888.89 10596.88 17290.21 30298.78 144
test_prior489.91 8390.74 255
test_prior94.61 11695.95 22987.23 13697.36 13498.68 16497.93 168
新几何290.02 280
旧先验196.20 20884.17 20394.82 26095.57 21689.57 17797.89 22896.32 264
原ACMM289.34 301
test22296.95 15185.27 18988.83 31493.61 28365.09 39790.74 29294.85 24284.62 24297.36 25493.91 347
segment_acmp92.14 121
testdata188.96 31088.44 191
test1294.43 12995.95 22986.75 15096.24 20989.76 31389.79 17698.79 14197.95 22597.75 190
plane_prior797.71 11288.68 108
plane_prior697.21 14288.23 12086.93 214
plane_prior495.59 212
plane_prior388.43 11890.35 15393.31 221
plane_prior294.56 12591.74 116
plane_prior197.38 132
plane_prior88.12 12193.01 17588.98 17798.06 214
n20.00 420
nn0.00 420
door-mid92.13 316
test1196.65 188
door91.26 325
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23987.16 21588.81 324
ACMP_Plane96.36 19191.37 23987.16 21588.81 324
HQP4-MVS88.81 32498.61 17298.15 145
HQP3-MVS97.31 13897.73 234
HQP2-MVS84.76 240
NP-MVS96.82 16287.10 14093.40 291
ACMMP++_ref98.82 137
ACMMP++99.25 81
Test By Simon90.61 160