This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23697.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23996.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
MVS_030493.92 13793.68 14594.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
MM94.41 11594.14 13195.22 9495.84 23587.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
MVSFormer92.18 19092.23 18292.04 22094.74 27880.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30599.60 996.41 996.75 27696.46 259
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24198.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23897.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
bld_raw_dy_0_6494.27 12194.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28698.87 12595.63 1799.53 3898.81 84
fmvsm_s_conf0.1_n94.19 12994.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 26195.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
fmvsm_s_conf0.5_n94.00 13494.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 26095.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
fmvsm_l_conf0.5_n93.79 14093.81 13793.73 15696.16 21186.26 16792.46 19496.72 17881.69 29595.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
fmvsm_s_conf0.1_n_a94.26 12394.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27395.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24299.45 2795.52 2299.66 2199.36 24
fmvsm_s_conf0.5_n_a94.02 13394.08 13493.84 15396.72 16685.73 18093.65 15595.23 24683.30 27195.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27299.63 695.48 2499.69 1499.60 12
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvs392.42 18292.40 18192.46 20793.80 30587.28 13693.86 14797.05 15276.86 33596.25 10298.66 1882.87 25191.26 38095.44 2696.83 27298.82 82
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 307
fmvsm_l_conf0.5_n_a93.59 14593.63 14793.49 16996.10 21785.66 18392.32 20396.57 18781.32 29895.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26699.60 994.69 3399.39 5899.15 39
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
v124093.29 15293.71 14392.06 21996.01 22677.89 30191.81 22997.37 12385.12 25096.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
v192192093.26 15493.61 14992.19 21296.04 22578.31 29591.88 22497.24 13985.17 24896.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
v119293.49 14793.78 14092.62 19996.16 21179.62 27191.83 22897.22 14186.07 22896.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
v14419293.20 15993.54 15392.16 21696.05 22178.26 29691.95 21797.14 14584.98 25495.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
EI-MVSNet-UG-set94.35 11894.27 12794.59 12292.46 32985.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11892.55 32685.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
X-MVStestdata90.70 21588.45 26297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 40494.56 6499.39 4993.57 5899.05 10698.93 68
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114493.50 14693.81 13792.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24694.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvs290.62 21990.40 22891.29 24691.93 34585.46 18692.70 18396.48 19474.44 35094.91 17397.59 7475.52 31690.57 38293.44 6896.56 28097.84 182
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
K. test v393.37 15093.27 16093.66 15898.05 8582.62 22594.35 12686.62 35696.05 2997.51 4398.85 1276.59 31299.65 393.21 7998.20 20498.73 96
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
v2v48293.29 15293.63 14792.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
IU-MVS98.51 5186.66 15496.83 17072.74 36295.83 12393.00 8799.29 7498.64 112
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 36192.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10790.00 33257.17 40095.71 13297.37 9164.77 36297.68 26292.67 9694.37 33294.52 331
lessismore_v093.87 15198.05 8583.77 20980.32 39497.13 6097.91 5977.49 29799.11 9392.62 9798.08 21398.74 95
Anonymous2024052192.86 16993.57 15190.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27697.96 23292.60 9899.68 1898.75 92
MVS_Test92.57 17993.29 15790.40 27693.53 30875.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30396.99 237
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25587.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
V4293.43 14993.58 15092.97 18195.34 26181.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final90.23 23389.32 24692.95 18394.65 28481.46 24094.32 13095.40 24285.61 23992.84 23995.37 22454.58 38899.13 8892.16 10498.94 12498.25 139
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29792.08 10795.55 30198.45 127
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
tttt051789.81 24788.90 25692.55 20397.00 14979.73 27095.03 10383.65 38089.88 15695.30 15394.79 24553.64 39199.39 4991.99 11098.79 14398.54 120
EI-MVSNet92.99 16393.26 16192.19 21292.12 33879.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IterMVS-LS93.78 14194.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT91.65 19891.55 19891.94 22193.89 30179.22 28187.56 32893.51 28591.53 12295.37 14996.62 15278.65 28798.90 11891.89 11494.95 31897.70 196
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1842.44 4065.32 40798.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
LS3D96.11 4795.83 6396.95 3694.75 27794.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 34191.72 11999.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
baseline94.26 12394.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
alignmvs93.26 15492.85 16794.50 12695.70 24487.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26398.72 15291.61 12297.87 22997.33 223
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
canonicalmvs94.59 10894.69 11194.30 13495.60 25287.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
XVG-OURS94.72 10394.12 13296.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29891.41 12897.61 24298.30 136
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
test_fmvs1_n88.73 27388.38 26489.76 29192.06 34082.53 22692.30 20696.59 18671.14 36992.58 24995.41 22168.55 34089.57 39091.12 13195.66 29997.18 229
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
h-mvs3392.89 16691.99 18995.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30899.14 8691.02 13395.71 29897.04 235
hse-mvs292.24 18991.20 20895.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30898.69 16191.02 13396.03 29096.81 245
casdiffmvspermissive94.32 12094.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
c3_l91.32 20791.42 20391.00 25892.29 33176.79 31987.52 33196.42 19685.76 23494.72 18293.89 27782.73 25498.16 21590.93 13798.55 16798.04 156
iter_conf0588.94 26788.09 27791.50 23892.74 32276.97 31692.80 17995.92 21782.82 28293.65 21095.37 22449.41 39599.13 8890.82 13899.28 7998.40 130
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
test_vis1_n89.01 26389.01 25289.03 30492.57 32582.46 22892.62 18796.06 21173.02 36090.40 29595.77 20374.86 31889.68 38890.78 14094.98 31794.95 317
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
diffmvspermissive91.74 19691.93 19191.15 25393.06 31578.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24390.43 26495.72 22370.55 37591.70 27394.63 25068.13 34189.42 39190.59 14495.34 30994.94 319
dcpmvs_293.96 13595.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
MVSTER89.32 25588.75 25891.03 25590.10 37376.62 32190.85 24894.67 26482.27 28995.24 15995.79 19961.09 37798.49 18390.49 14698.26 19597.97 168
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_LR93.66 14393.28 15994.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 32190.39 14998.28 19397.07 231
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
DeepPCF-MVS90.46 694.20 12793.56 15296.14 5295.96 22892.96 4389.48 29397.46 11885.14 24996.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
MSLP-MVS++93.25 15693.88 13691.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 32390.35 15298.25 19794.96 316
PM-MVS93.33 15192.67 17495.33 8696.58 17594.06 2192.26 20892.18 30985.92 23196.22 10596.61 15385.64 22895.99 33290.35 15298.23 19995.93 282
test_vis1_n_192089.45 25289.85 23988.28 32093.59 30776.71 32090.67 25597.78 9679.67 31290.30 29896.11 18576.62 31192.17 37690.31 15493.57 34995.96 280
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
DIV-MVS_self_test90.65 21790.56 22490.91 26291.85 34676.99 31486.75 34595.36 24385.52 24494.06 19694.89 23977.37 30197.99 23090.28 15698.97 11997.76 191
cl____90.65 21790.56 22490.91 26291.85 34676.98 31586.75 34595.36 24385.53 24294.06 19694.89 23977.36 30297.98 23190.27 15798.98 11497.76 191
PHI-MVS94.34 11993.80 13995.95 5995.65 24891.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
patch_mono-292.46 18192.72 17391.71 22996.65 17078.91 28788.85 31097.17 14383.89 26792.45 25496.76 14189.86 17297.09 29390.24 15998.59 16499.12 43
MVS_111021_HR93.63 14493.42 15694.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
NCCC94.08 13193.54 15395.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
RPMNet90.31 23290.14 23490.81 26691.01 36178.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33999.41 3990.17 16292.70 36494.08 338
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
v14892.87 16893.29 15791.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
MCST-MVS92.91 16592.51 17794.10 14097.52 12585.72 18191.36 23997.13 14780.33 30692.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
miper_lstm_enhance89.90 24589.80 24090.19 28491.37 35777.50 30683.82 38195.00 25184.84 25793.05 23294.96 23776.53 31395.20 35089.96 16998.67 15797.86 179
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
CPTT-MVS94.74 10294.12 13296.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
miper_ehance_all_eth90.48 22190.42 22790.69 26891.62 35376.57 32286.83 34396.18 20883.38 27094.06 19692.66 30982.20 25998.04 22289.79 17297.02 26397.45 212
eth_miper_zixun_eth90.72 21490.61 22291.05 25492.04 34176.84 31886.91 34096.67 18185.21 24794.41 18793.92 27579.53 28098.26 20689.76 17397.02 26398.06 153
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
DELS-MVS92.05 19292.16 18391.72 22894.44 28880.13 25687.62 32597.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest053088.69 27487.52 28592.20 21196.33 19679.36 27792.81 17884.01 37986.44 22093.67 20992.68 30853.62 39299.25 7589.65 17698.45 17798.00 161
DeepC-MVS_fast89.96 793.73 14293.44 15594.60 12196.14 21487.90 12693.36 16497.14 14585.53 24293.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet92.38 18491.99 18993.52 16793.82 30483.46 21191.14 24297.00 15589.81 15786.47 35294.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
TSAR-MVS + GP.93.07 16292.41 18095.06 9995.82 23790.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xiu_mvs_v1_base_debu91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
xiu_mvs_v1_base91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
HQP_MVS94.26 12393.93 13595.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
Patchmatch-RL test88.81 27088.52 26089.69 29495.33 26279.94 26386.22 35792.71 30078.46 32595.80 12494.18 26566.25 35495.33 34789.22 18898.53 17093.78 347
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21586.09 36092.20 9389.05 31897.16 11264.15 36496.37 32289.21 18992.98 36293.37 357
test_f86.65 31187.13 29485.19 35690.28 37186.11 17186.52 35391.66 31969.76 37995.73 13197.21 11069.51 33881.28 40289.15 19094.40 33088.17 388
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
KD-MVS_self_test94.10 13094.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
test_vis3_rt90.40 22490.03 23591.52 23792.58 32488.95 10390.38 26597.72 10073.30 35797.79 3097.51 8477.05 30487.10 39589.03 19394.89 31998.50 122
cl2289.02 26188.50 26190.59 27189.76 37576.45 32386.62 35094.03 27582.98 28092.65 24692.49 31072.05 32997.53 26888.93 19497.02 26397.78 189
VDD-MVS94.37 11694.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
AUN-MVS90.05 24288.30 26695.32 8896.09 21890.52 7792.42 19892.05 31582.08 29288.45 33192.86 30165.76 35698.69 16188.91 19696.07 28996.75 249
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28492.52 19092.81 29673.08 35989.10 31696.93 13067.11 34697.64 26588.80 19892.70 36494.08 338
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20388.17 34256.15 40190.64 29195.85 19567.97 34496.69 31188.78 19990.52 38092.56 367
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
ZD-MVS97.23 13990.32 7897.54 11284.40 26294.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
train_agg92.71 17491.83 19495.35 8496.45 18789.46 9090.60 25796.92 16279.37 31590.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
test111190.39 22690.61 22289.74 29298.04 8871.50 36195.59 8179.72 39689.41 16495.94 11798.14 3970.79 33498.81 13688.52 20499.32 6898.90 74
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
D2MVS89.93 24489.60 24590.92 26094.03 29878.40 29488.69 31594.85 25578.96 32293.08 23095.09 23274.57 31996.94 30088.19 20798.96 12197.41 215
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 25099.35 6088.19 20799.52 4198.96 64
test9_res88.16 20998.40 17997.83 183
UGNet93.08 16092.50 17894.79 10893.87 30287.99 12595.07 10194.26 27290.64 14287.33 34897.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250685.42 31884.57 32187.96 32597.81 10366.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16388.09 21199.18 9498.67 105
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28689.45 29495.44 23775.29 34793.23 22695.65 20871.58 33190.23 38688.05 21293.55 35195.44 303
FA-MVS(test-final)91.81 19591.85 19391.68 23194.95 26879.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29698.45 18988.04 21397.49 24596.61 251
ETV-MVS92.99 16392.74 17093.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 38092.22 11699.19 8188.03 21497.73 23495.66 296
EIA-MVS92.35 18592.03 18793.30 17495.81 23983.97 20692.80 17998.17 4587.71 20389.79 30987.56 37091.17 14499.18 8287.97 21597.27 25496.77 247
mvs_anonymous90.37 22891.30 20787.58 33092.17 33768.00 37589.84 28394.73 26183.82 26893.22 22797.40 8987.54 19797.40 27887.94 21695.05 31697.34 222
IterMVS90.18 23490.16 23190.21 28293.15 31375.98 32887.56 32892.97 29486.43 22194.09 19396.40 16378.32 29197.43 27587.87 21794.69 32697.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23075.68 34092.49 25189.45 35578.96 28397.88 23987.86 21897.02 26396.81 245
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22593.04 31681.28 24287.17 33686.14 35979.57 31383.65 37388.66 36157.10 38398.18 21387.74 21995.40 30695.90 285
Effi-MVS+-dtu93.90 13992.60 17697.77 394.74 27896.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31687.57 22199.35 6198.70 101
WR-MVS93.49 14793.72 14292.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
tfpnnormal94.27 12194.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
jason89.17 25788.32 26591.70 23095.73 24380.07 25788.10 32193.22 29071.98 36590.09 30092.79 30478.53 29098.56 17787.43 22497.06 26196.46 259
jason: jason.
Effi-MVS+92.79 17092.74 17092.94 18595.10 26583.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 31096.88 243
FMVSNet292.78 17192.73 17292.95 18395.40 25781.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26898.81 13687.38 22698.67 15798.06 153
EPP-MVSNet93.91 13893.68 14594.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26199.57 1487.28 22798.89 12698.65 107
PC_three_145275.31 34695.87 12295.75 20492.93 10196.34 32587.18 22898.68 15598.04 156
ECVR-MVScopyleft90.12 23790.16 23190.00 28897.81 10372.68 35595.76 7578.54 39989.04 17295.36 15098.10 4270.51 33598.64 16887.10 22999.18 9498.67 105
VDDNet94.03 13294.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23898.75 14787.09 23098.83 13898.81 84
agg_prior287.06 23198.36 18897.98 165
LF4IMVS92.72 17392.02 18894.84 10695.65 24891.99 5492.92 17596.60 18485.08 25292.44 25593.62 28486.80 21296.35 32386.81 23298.25 19796.18 271
GBi-Net93.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
test193.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
FMVSNet390.78 21390.32 23092.16 21693.03 31779.92 26492.54 18994.95 25386.17 22795.10 16496.01 19069.97 33798.75 14786.74 23398.38 18397.82 185
lupinMVS88.34 27987.31 28791.45 23994.74 27880.06 25887.23 33392.27 30871.10 37088.83 31991.15 33277.02 30598.53 18086.67 23696.75 27695.76 290
OMC-MVS94.22 12693.69 14495.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
mvsany_test389.11 25988.21 27491.83 22391.30 35890.25 7988.09 32278.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23894.20 33794.80 323
pmmvs-eth3d91.54 20190.73 22093.99 14295.76 24287.86 12890.83 24993.98 27978.23 32794.02 19996.22 18082.62 25796.83 30786.57 23898.33 18997.29 225
BP-MVS86.55 240
HQP-MVS92.09 19191.49 20293.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23598.60 17286.55 24097.73 23498.14 149
ppachtmachnet_test88.61 27588.64 25988.50 31691.76 34870.99 36484.59 37492.98 29379.30 31992.38 25893.53 28879.57 27997.45 27486.50 24297.17 25897.07 231
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
PVSNet_Blended_VisFu91.63 19991.20 20892.94 18597.73 11083.95 20792.14 21197.46 11878.85 32492.35 26094.98 23684.16 23999.08 9486.36 24496.77 27595.79 289
Fast-Effi-MVS+-dtu92.77 17292.16 18394.58 12494.66 28388.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28796.90 240
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 34286.18 24798.78 14489.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft89.45 892.27 18892.13 18692.68 19594.53 28784.10 20495.70 7697.03 15382.44 28891.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 301
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29985.13 36081.64 39677.44 29895.00 35185.94 24994.12 34094.91 320
CDPH-MVS92.67 17591.83 19495.18 9696.94 15288.46 11890.70 25497.07 15177.38 33092.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
SSC-MVS90.16 23592.96 16381.78 37597.88 9948.48 40790.75 25187.69 34896.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
CANet_DTU89.85 24689.17 24891.87 22292.20 33580.02 26190.79 25095.87 21986.02 22982.53 38391.77 32480.01 27798.57 17685.66 25297.70 23797.01 236
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29485.53 25397.96 22497.41 215
new-patchmatchnet88.97 26590.79 21883.50 37094.28 29255.83 40585.34 36793.56 28486.18 22695.47 14295.73 20583.10 24796.51 31585.40 25498.06 21498.16 147
EPNet89.80 24888.25 27094.45 13083.91 40586.18 16993.87 14687.07 35491.16 13180.64 39394.72 24778.83 28498.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry90.11 23889.92 23790.66 26990.35 37077.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34697.52 26985.17 25598.98 11497.46 211
旧先验290.00 27868.65 38392.71 24596.52 31485.15 257
MDA-MVSNet-bldmvs91.04 20990.88 21491.55 23594.68 28280.16 25385.49 36592.14 31290.41 14994.93 17295.79 19985.10 23296.93 30285.15 25794.19 33997.57 204
Anonymous20240521192.58 17792.50 17892.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26597.50 27085.12 25998.52 17197.77 190
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
VPNet93.08 16093.76 14191.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
LFMVS91.33 20691.16 21191.82 22496.27 20279.36 27795.01 10485.61 36796.04 3094.82 17697.06 12172.03 33098.46 18884.96 26398.70 15397.65 200
VNet92.67 17592.96 16391.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30992.06 26992.17 31878.63 28995.63 33784.77 26594.73 32496.22 269
TAPA-MVS88.58 1092.49 18091.75 19694.73 11096.50 18389.69 8692.91 17697.68 10178.02 32892.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+91.28 20890.86 21592.53 20495.45 25682.53 22689.25 30396.52 19285.00 25389.91 30588.55 36492.94 10098.84 12984.72 26795.44 30596.22 269
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 25189.82 30790.07 34466.80 34997.76 25584.56 26894.27 33595.96 280
QAPM92.88 16792.77 16893.22 17695.82 23783.31 21296.45 3997.35 12983.91 26693.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28580.24 25289.69 28895.88 21885.77 23393.94 20395.69 20681.99 26292.98 37384.21 27091.30 37597.62 201
testing383.66 33282.52 33787.08 33495.84 23565.84 38789.80 28577.17 40388.17 19390.84 28788.63 36230.95 41198.11 21884.05 27197.19 25797.28 226
CLD-MVS91.82 19491.41 20493.04 17896.37 18983.65 21086.82 34497.29 13584.65 25992.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t90.51 22089.80 24092.63 19898.00 9182.24 23093.40 16297.29 13565.84 39189.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
DP-MVS Recon92.31 18691.88 19293.60 16097.18 14386.87 14791.10 24497.37 12384.92 25592.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 291
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28794.99 17095.11 23182.70 25593.70 36683.33 27593.83 34596.48 258
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28694.88 17595.14 22982.70 25593.61 36783.28 27693.80 34696.46 259
XXY-MVS92.58 17793.16 16290.84 26497.75 10779.84 26591.87 22596.22 20685.94 23095.53 13897.68 6792.69 10894.48 35783.21 27797.51 24498.21 142
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17371.01 37186.89 35185.91 38181.35 26796.94 30083.09 27895.60 30094.35 335
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27882.85 38084.78 38862.86 37193.49 36882.85 27994.86 32094.03 341
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
pmmvs488.95 26687.70 28392.70 19394.30 29185.60 18487.22 33492.16 31174.62 34989.75 31194.19 26477.97 29496.41 31982.71 28196.36 28596.09 274
testdata91.03 25596.87 15782.01 23194.28 27171.55 36692.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 350
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33486.65 37553.94 39098.72 15282.56 28397.40 25195.67 295
PS-MVSNAJ88.86 26988.99 25388.48 31794.88 26974.71 33586.69 34795.60 22680.88 30287.83 34087.37 37390.77 15198.82 13182.52 28494.37 33291.93 372
xiu_mvs_v2_base89.00 26489.19 24788.46 31894.86 27174.63 33786.97 33895.60 22680.88 30287.83 34088.62 36391.04 14698.81 13682.51 28594.38 33191.93 372
WB-MVS89.44 25392.15 18581.32 37697.73 11048.22 40889.73 28687.98 34695.24 3696.05 11396.99 12785.18 23196.95 29982.45 28697.97 22398.78 88
PAPM_NR91.03 21090.81 21791.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 34496.68 250
test_yl90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
DCV-MVSNet90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
DPM-MVS89.35 25488.40 26392.18 21596.13 21684.20 20286.96 33996.15 21075.40 34487.36 34791.55 32983.30 24598.01 22782.17 29096.62 27994.32 336
MG-MVS89.54 25089.80 24088.76 30994.88 26972.47 35789.60 28992.44 30785.82 23289.48 31395.98 19182.85 25297.74 25881.87 29195.27 31196.08 275
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25987.34 35278.87 32387.22 34992.74 30666.91 34896.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap92.00 19392.76 16989.71 29395.62 25177.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31881.77 29298.77 14595.66 296
sd_testset93.94 13694.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 101
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28266.43 38887.64 34389.20 35879.33 28185.38 39981.59 29589.98 38393.66 351
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33689.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 294
1112_ss88.42 27787.41 28691.45 23996.69 16780.99 24789.72 28796.72 17873.37 35687.00 35090.69 34177.38 30098.20 21081.38 29793.72 34795.15 309
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29987.88 32492.49 30675.42 34392.57 25093.59 28680.44 27594.24 36481.28 29892.75 36394.69 329
LCM-MVSNet-Re94.20 12794.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27387.90 34775.54 34283.93 37291.63 32766.79 35195.36 34581.21 30081.54 39993.57 356
无先验89.94 27995.75 22270.81 37398.59 17481.17 30194.81 322
新几何193.17 17797.16 14487.29 13594.43 26767.95 38591.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 343
MSDG90.82 21190.67 22191.26 24794.16 29383.08 22086.63 34996.19 20790.60 14491.94 27091.89 32289.16 17895.75 33680.96 30394.51 32994.95 317
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17481.11 38975.03 40470.80 37488.57 33094.63 25083.08 24887.38 39480.39 30486.57 39087.21 390
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30892.18 30973.71 35588.36 33293.89 27776.86 31096.73 31080.32 30596.81 27396.51 254
PVSNet_BlendedMVS90.35 22989.96 23691.54 23694.81 27378.80 29190.14 27396.93 16079.43 31488.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27378.80 29186.64 34896.93 16074.67 34888.68 32889.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
testdata298.03 22380.24 308
FE-MVS89.06 26088.29 26791.36 24294.78 27579.57 27396.77 2890.99 32484.87 25692.96 23696.29 17460.69 37998.80 13980.18 30997.11 26095.71 292
F-COLMAP92.28 18791.06 21295.95 5997.52 12591.90 5693.53 15697.18 14283.98 26588.70 32794.04 26988.41 18398.55 17980.17 31095.99 29297.39 219
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26871.34 40577.31 33285.80 35691.30 33059.38 38092.70 37479.99 31182.34 39892.96 363
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16477.75 30387.53 33096.25 20269.73 38086.47 35293.61 28575.67 31597.88 23979.95 31293.20 35695.11 313
CL-MVSNet_self_test90.04 24389.90 23890.47 27395.24 26377.81 30286.60 35192.62 30385.64 23793.25 22593.92 27583.84 24096.06 33079.93 31498.03 21797.53 208
OpenMVS_ROBcopyleft85.12 1689.52 25189.05 25090.92 26094.58 28681.21 24591.10 24493.41 28877.03 33493.41 21593.99 27383.23 24697.80 24879.93 31494.80 32393.74 349
CNLPA91.72 19791.20 20893.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 36079.92 31697.12 25994.37 334
ab-mvs92.40 18392.62 17591.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 276
test_post190.21 2705.85 40865.36 35896.00 33179.61 318
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29588.11 34482.26 29088.71 32692.83 30278.65 28797.59 26679.61 31893.30 35494.75 326
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24188.35 33882.87 28185.21 35890.96 33665.24 36096.75 30979.60 32085.25 39292.90 364
baseline187.62 29287.31 28788.54 31494.71 28174.27 34393.10 17188.20 34186.20 22592.18 26693.04 29773.21 32495.52 33979.32 32185.82 39195.83 287
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29885.63 36677.24 33387.62 34495.03 23561.00 37897.30 28279.26 32291.09 37895.16 308
BH-untuned90.68 21690.90 21390.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31392.80 365
API-MVS91.52 20291.61 19791.26 24794.16 29386.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29679.09 32497.35 25390.45 382
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21994.10 27474.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
BH-RMVSNet90.47 22290.44 22690.56 27295.21 26478.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30795.14 310
MVP-Stereo90.07 24188.92 25493.54 16496.31 19886.49 15790.93 24795.59 23079.80 30891.48 27595.59 20980.79 27397.39 27978.57 32791.19 37696.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31487.41 35073.99 35384.96 36494.01 27265.25 35995.53 33878.02 32893.16 357
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 25197.66 11877.32 30994.33 12887.66 34991.20 12992.99 23495.13 23075.40 31798.28 20277.86 32999.19 9297.99 164
sss87.23 30186.82 29988.46 31893.96 29977.94 29886.84 34292.78 29977.59 32987.61 34591.83 32378.75 28591.92 37777.84 33094.20 33795.52 302
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 31182.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 29086.69 35585.73 23589.81 30892.83 30265.24 36091.04 38177.82 33295.78 29793.88 346
USDC89.02 26189.08 24988.84 30895.07 26674.50 34088.97 30696.39 19773.21 35893.27 22296.28 17682.16 26096.39 32077.55 33398.80 14295.62 299
CDS-MVSNet89.55 24988.22 27393.53 16595.37 26086.49 15789.26 30193.59 28279.76 31091.15 28292.31 31677.12 30398.38 19477.51 33497.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
N_pmnet88.90 26887.25 29093.83 15494.40 29093.81 3584.73 37187.09 35379.36 31793.26 22392.43 31479.29 28291.68 37877.50 33597.22 25696.00 278
AdaColmapbinary91.63 19991.36 20592.47 20695.56 25386.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 366
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26686.47 35770.42 37683.52 37693.23 29561.18 37696.85 30677.21 33788.26 38793.34 358
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20283.25 37983.01 39462.22 37489.17 39277.15 33894.31 33482.93 396
PLCcopyleft85.34 1590.40 22488.92 25494.85 10596.53 18290.02 8191.58 23396.48 19480.16 30786.14 35492.18 31785.73 22598.25 20776.87 33994.61 32896.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS90.32 23188.87 25794.66 11594.82 27291.85 5794.22 13494.75 26080.91 30187.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23288.26 33984.84 25772.96 40289.85 34571.27 33397.69 26176.60 34197.62 24196.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24583.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 273
JIA-IIPM85.08 32183.04 33391.19 25287.56 39186.14 17089.40 29784.44 37888.98 17482.20 38497.95 5456.82 38596.15 32676.55 34383.45 39591.30 377
PatchMatch-RL89.18 25688.02 27992.64 19695.90 23392.87 4588.67 31791.06 32380.34 30590.03 30391.67 32683.34 24494.42 35976.35 34494.84 32290.64 381
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22484.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 267
FMVSNet587.82 28786.56 30491.62 23392.31 33079.81 26893.49 15894.81 25983.26 27291.36 27796.93 13052.77 39397.49 27276.07 34698.03 21797.55 207
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 27891.59 37975.99 34793.09 35987.94 389
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21888.77 38685.42 18790.31 26894.38 26870.02 37888.00 33793.30 29273.78 32394.03 36575.96 34896.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 20081.66 38981.73 39562.89 37089.84 38775.79 34994.65 32782.71 397
HyFIR lowres test87.19 30485.51 31592.24 21097.12 14780.51 25185.03 36996.06 21166.11 39091.66 27492.98 30070.12 33699.14 8675.29 35095.23 31297.07 231
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25478.88 28887.39 33294.02 27779.32 31893.06 23194.02 27180.72 27494.27 36275.16 35193.08 36096.54 252
WTY-MVS86.93 30986.50 30888.24 32194.96 26774.64 33687.19 33592.07 31478.29 32688.32 33391.59 32878.06 29394.27 36274.88 35293.15 35895.80 288
WAC-MVS61.25 39974.55 353
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31281.22 38978.97 32179.82 39587.56 37061.73 37597.80 24874.30 35690.05 38296.05 277
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 29181.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 310
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
test20.0390.80 21290.85 21690.63 27095.63 25079.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34973.86 35999.05 10697.39 219
TAMVS90.16 23589.05 25093.49 16996.49 18486.37 16290.34 26792.55 30580.84 30492.99 23494.57 25481.94 26498.20 21073.51 36098.21 20295.90 285
CHOSEN 1792x268887.19 30485.92 31391.00 25897.13 14679.41 27684.51 37595.60 22664.14 39490.07 30294.81 24278.26 29297.14 29273.34 36195.38 30896.46 259
thres600view787.66 29087.10 29689.36 29996.05 22173.17 34992.72 18185.31 37091.89 10293.29 22090.97 33563.42 36898.39 19173.23 36296.99 26896.51 254
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38795.45 34373.19 36376.68 40191.82 375
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
MDTV_nov1_ep13_2view42.48 41188.45 31967.22 38783.56 37566.80 34972.86 36594.06 340
TR-MVS87.70 28887.17 29289.27 30194.11 29579.26 27988.69 31591.86 31781.94 29390.69 29089.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31896.23 20476.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 268
Anonymous2023120688.77 27188.29 26790.20 28396.31 19878.81 29089.56 29193.49 28674.26 35292.38 25895.58 21282.21 25895.43 34472.07 36898.75 14896.34 263
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21994.16 27359.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30188.23 34062.27 39781.90 38889.66 35362.70 37395.29 34871.72 37080.60 40091.86 374
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29994.02 14191.58 32175.68 34083.64 37493.64 28277.40 29997.42 27671.70 37192.07 37193.05 362
testgi90.38 22791.34 20687.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 37271.60 37297.85 23097.88 177
BH-w/o87.21 30287.02 29787.79 32994.77 27677.27 31087.90 32393.21 29281.74 29489.99 30488.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
thres100view90087.35 29986.89 29888.72 31096.14 21473.09 35193.00 17385.31 37092.13 9593.26 22390.96 33663.42 36898.28 20271.27 37496.54 28194.79 324
tfpn200view987.05 30786.52 30688.67 31195.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28194.79 324
thres40087.20 30386.52 30689.24 30395.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28196.51 254
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29985.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26185.36 36965.82 39282.05 38692.44 31357.94 38296.69 31170.71 37888.49 38692.56 367
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32690.98 32572.71 36384.46 36692.45 31168.08 34296.48 31670.58 37983.97 39395.38 304
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32685.13 37472.71 36384.46 36692.45 31168.08 34292.33 37570.58 37983.97 39395.38 304
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29964.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32094.60 35669.87 38193.69 34894.46 332
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38495.36 34569.49 38294.72 32588.79 386
thres20085.85 31585.18 31687.88 32894.44 28872.52 35689.08 30586.21 35888.57 18591.44 27688.40 36564.22 36398.00 22868.35 38395.88 29693.12 359
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22289.51 29287.37 35184.38 26385.37 35785.08 38772.44 32686.59 39668.05 38491.03 37991.33 376
PCF-MVS84.52 1789.12 25887.71 28293.34 17296.06 22085.84 17786.58 35297.31 13268.46 38493.61 21193.89 27787.51 19898.52 18167.85 38598.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34584.65 40067.44 38691.90 37390.78 380
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11167.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25677.66 40154.99 40283.30 37897.57 7577.89 29590.50 38466.86 38895.54 30291.97 371
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27888.13 33686.61 37662.86 37189.10 39366.24 38990.29 38193.77 348
MIMVSNet87.13 30686.54 30588.89 30796.05 22176.11 32694.39 12588.51 33781.37 29788.27 33496.75 14372.38 32795.52 33965.71 39095.47 30495.03 314
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34288.10 36744.08 40396.90 30464.23 39196.36 28595.14 310
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26487.95 33994.71 24876.95 30784.36 40164.07 39298.09 21293.89 345
FPMVS84.50 32683.28 33188.16 32396.32 19794.49 1685.76 36385.47 36883.09 27785.20 35994.26 26163.79 36786.58 39763.72 39391.88 37483.40 395
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33778.00 40068.94 38277.53 39897.26 10371.45 33294.62 35563.28 39488.74 38578.55 400
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 32081.00 39076.23 33987.98 33887.77 36984.98 23493.35 37062.85 39594.10 34295.98 279
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26982.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 306
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 40359.84 39799.41 5670.73 401
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10665.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32589.59 38956.68 39960.05 40482.57 398
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29683.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 300
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27172.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 29069.47 38176.13 40089.84 34672.15 32897.23 28453.27 40289.02 38492.37 369
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30978.70 39882.69 28381.64 39079.46 39875.93 31485.74 39848.78 40482.85 39786.76 391
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38122.11 40744.50 40568.35 40313.00 403
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38646.64 40638.45 40670.07 40250.30 402
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2320.00 4090.00 41091.15 33293.43 840.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3410.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 414
eth-test0.00 414
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
GSMVS94.75 326
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 35294.75 326
sam_mvs66.41 353
MTGPAbinary97.62 105
test_post6.07 40765.74 35795.84 335
patchmatchnet-post91.71 32566.22 35597.59 266
MTMP94.82 10954.62 410
TEST996.45 18789.46 9090.60 25796.92 16279.09 32090.49 29294.39 25891.31 13698.88 121
test_896.37 18989.14 10090.51 26096.89 16579.37 31590.42 29494.36 26091.20 14198.82 131
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
test_prior489.91 8290.74 252
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
新几何290.02 277
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
原ACMM289.34 298
test22296.95 15185.27 18988.83 31193.61 28165.09 39390.74 28994.85 24184.62 23797.36 25293.91 344
segment_acmp92.14 119
testdata188.96 30788.44 187
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 209
plane_prior495.59 209
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 12091.74 115
plane_prior197.38 132
plane_prior88.12 12293.01 17288.98 17498.06 214
n20.00 415
nn0.00 415
door-mid92.13 313
test1196.65 182
door91.26 322
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
HQP4-MVS88.81 32198.61 17098.15 148
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 235
NP-MVS96.82 16287.10 14193.40 290
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 157